header {* \isaheader{Fixed Length Lists} *}
theory Listn
imports Err
begin
definition list :: "nat => 'a set => 'a list set"
where
"list n A = {xs. size xs = n ∧ set xs ⊆ A}"
definition le :: "'a ord => ('a list)ord"
where
"le r = list_all2 (λx y. x \<sqsubseteq>⇩r y)"
abbreviation
lesublist1 :: "'a list => 'a ord => 'a list => bool" ("(_ /[<=_] _)" [50, 0, 51] 50) where
"x [<=r] y == x <=_(Listn.le r) y"
abbreviation
lesssublist1 :: "'a list => 'a ord => 'a list => bool" ("(_ /[<_] _)" [50, 0, 51] 50) where
"x [<r] y == x <_(Listn.le r) y"
abbreviation (xsymbols)
lesublist :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubseteq>⇘_⇙] _)" [50, 0, 51] 50) where
"x [\<sqsubseteq>⇘r⇙] y == x <=_(Listn.le r) y"
abbreviation (xsymbols)
lesssublist :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubset>⇘_⇙] _)" [50, 0, 51] 50) where
"x [\<sqsubset>⇘r⇙] y == x <_(Listn.le r) y"
abbreviation (input)
lesublist2 :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubseteq>⇩_] _)" [50, 0, 51] 50) where
"x [\<sqsubseteq>⇩r] y == x [\<sqsubseteq>⇘r⇙] y"
abbreviation (input)
lesssublist2 :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubset>⇩_] _)" [50, 0, 51] 50) where
"x [\<sqsubset>⇩r] y == x [\<sqsubset>⇘r⇙] y"
definition map2 :: "('a => 'b => 'c) => 'a list => 'b list => 'c list"
where
"map2 f = (λxs ys. map (split f) (zip xs ys))"
abbreviation
plussublist1 :: "'a list => ('a => 'b => 'c) => 'b list => 'c list"
("(_ /[+_] _)" [65, 0, 66] 65) where
"x [+f] y == x \<squnion>⇘map2 f⇙ y"
abbreviation (xsymbols)
plussublist :: "'a list => ('a => 'b => 'c) => 'b list => 'c list"
("(_ /[\<squnion>⇘_⇙] _)" [65, 0, 66] 65) where
"x [\<squnion>⇘f⇙] y == x \<squnion>⇘map2 f⇙ y"
abbreviation (input)
plussublist2 :: "'a list => ('a => 'b => 'c) => 'b list => 'c list"
("(_ /[\<squnion>⇩_] _)" [65, 0, 66] 65) where
"x [\<squnion>⇩f] y == x [\<squnion>⇘f⇙] y"
primrec coalesce :: "'a err list => 'a list err"
where
"coalesce [] = OK[]"
| "coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)"
definition sl :: "nat => 'a sl => 'a list sl"
where
"sl n = (λ(A,r,f). (list n A, le r, map2 f))"
definition sup :: "('a => 'b => 'c err) => 'a list => 'b list => 'c list err"
where
"sup f = (λxs ys. if size xs = size ys then coalesce(xs [\<squnion>⇘f⇙] ys) else Err)"
definition upto_esl :: "nat => 'a esl => 'a list esl"
where
"upto_esl m = (λ(A,r,f). (Union{list n A |n. n ≤ m}, le r, sup f))"
lemmas [simp] = set_update_subsetI
lemma unfold_lesub_list: "xs [\<sqsubseteq>⇘r⇙] ys = Listn.le r xs ys"
by (simp add: lesub_def)
lemma Nil_le_conv [iff]: "([] [\<sqsubseteq>⇘r⇙] ys) = (ys = [])"
apply (unfold lesub_def Listn.le_def)
apply simp
done
lemma Cons_notle_Nil [iff]: "¬ x#xs [\<sqsubseteq>⇘r⇙] []"
apply (unfold lesub_def Listn.le_def)
apply simp
done
lemma Cons_le_Cons [iff]: "x#xs [\<sqsubseteq>⇘r⇙] y#ys = (x \<sqsubseteq>⇩r y ∧ xs [\<sqsubseteq>⇘r⇙] ys)"
by (simp add: lesub_def Listn.le_def)
lemma Cons_less_Conss [simp]:
"order r ==> x#xs [\<sqsubset>⇩r] y#ys = (x \<sqsubset>⇩r y ∧ xs [\<sqsubseteq>⇘r⇙] ys ∨ x = y ∧ xs [\<sqsubset>⇩r] ys)"
apply (unfold lesssub_def)
apply blast
done
lemma list_update_le_cong:
"[| i<size xs; xs [\<sqsubseteq>⇘r⇙] ys; x \<sqsubseteq>⇩r y |] ==> xs[i:=x] [\<sqsubseteq>⇘r⇙] ys[i:=y]";
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (simp add: list_all2_update_cong)
done
lemma le_listD: "[| xs [\<sqsubseteq>⇘r⇙] ys; p < size xs |] ==> xs!p \<sqsubseteq>⇩r ys!p"
by (simp add: Listn.le_def lesub_def list_all2_nthD)
lemma le_list_refl: "∀x. x \<sqsubseteq>⇩r x ==> xs [\<sqsubseteq>⇘r⇙] xs"
apply (simp add: unfold_lesub_list lesub_def Listn.le_def list_all2_refl)
done
lemma le_list_trans: "[| order r; xs [\<sqsubseteq>⇘r⇙] ys; ys [\<sqsubseteq>⇘r⇙] zs |] ==> xs [\<sqsubseteq>⇘r⇙] zs"
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (rule list_all2_trans)
apply (erule order_trans)
apply assumption+
done
lemma le_list_antisym: "[| order r; xs [\<sqsubseteq>⇘r⇙] ys; ys [\<sqsubseteq>⇘r⇙] xs |] ==> xs = ys"
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (rule list_all2_antisym)
apply (rule order_antisym)
apply assumption+
done
lemma order_listI [simp, intro!]: "order r ==> order(Listn.le r)"
apply (subst order_def)
apply (blast intro: le_list_refl le_list_trans le_list_antisym
dest: order_refl)
done
lemma lesub_list_impl_same_size [simp]: "xs [\<sqsubseteq>⇘r⇙] ys ==> size ys = size xs"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_lengthD)
done
lemma lesssub_lengthD: "xs [\<sqsubset>⇩r] ys ==> size ys = size xs"
apply (unfold lesssub_def)
apply auto
done
lemma le_list_appendI: "a [\<sqsubseteq>⇘r⇙] b ==> c [\<sqsubseteq>⇘r⇙] d ==> a@c [\<sqsubseteq>⇘r⇙] b@d"
apply (unfold Listn.le_def lesub_def)
apply (rule list_all2_appendI, assumption+)
done
lemma le_listI:
assumes "length a = length b"
assumes "!!n. n < length a ==> a!n \<sqsubseteq>⇩r b!n"
shows "a [\<sqsubseteq>⇘r⇙] b"
proof -
from assms have "list_all2 r a b"
by (simp add: list_all2_all_nthI lesub_def)
then show ?thesis by (simp add: Listn.le_def lesub_def)
qed
lemma listI: "[| size xs = n; set xs ⊆ A |] ==> xs ∈ list n A"
apply (unfold list_def)
apply blast
done
lemma listE_length [simp]: "xs ∈ list n A ==> size xs = n"
apply (unfold list_def)
apply blast
done
lemma less_lengthI: "[| xs ∈ list n A; p < n |] ==> p < size xs"
by simp
lemma listE_set [simp]: "xs ∈ list n A ==> set xs ⊆ A"
apply (unfold list_def)
apply blast
done
lemma list_0 [simp]: "list 0 A = {[]}"
apply (unfold list_def)
apply auto
done
lemma in_list_Suc_iff:
"(xs ∈ list (Suc n) A) = (∃y∈A. ∃ys ∈ list n A. xs = y#ys)"
apply (unfold list_def)
apply (case_tac "xs")
apply auto
done
lemma Cons_in_list_Suc [iff]:
"(x#xs ∈ list (Suc n) A) = (x∈A ∧ xs ∈ list n A)";
apply (simp add: in_list_Suc_iff)
done
lemma list_not_empty:
"∃a. a∈A ==> ∃xs. xs ∈ list n A";
apply (induct "n")
apply simp
apply (simp add: in_list_Suc_iff)
apply blast
done
lemma nth_in [rule_format, simp]:
"∀i n. size xs = n --> set xs ⊆ A --> i < n --> (xs!i) ∈ A"
apply (induct "xs")
apply simp
apply (simp add: nth_Cons split: nat.split)
done
lemma listE_nth_in: "[| xs ∈ list n A; i < n |] ==> xs!i ∈ A"
by auto
lemma listn_Cons_Suc [elim!]:
"l#xs ∈ list n A ==> (!!n'. n = Suc n' ==> l ∈ A ==> xs ∈ list n' A ==> P) ==> P"
by (cases n) auto
lemma listn_appendE [elim!]:
"a@b ∈ list n A ==> (!!n1 n2. n=n1+n2 ==> a ∈ list n1 A ==> b ∈ list n2 A ==> P) ==> P"
proof -
have "!!n. a@b ∈ list n A ==> ∃n1 n2. n=n1+n2 ∧ a ∈ list n1 A ∧ b ∈ list n2 A"
(is "!!n. ?list a n ==> ∃n1 n2. ?P a n n1 n2")
proof (induct a)
fix n assume "?list [] n"
hence "?P [] n 0 n" by simp
thus "∃n1 n2. ?P [] n n1 n2" by fast
next
fix n l ls
assume "?list (l#ls) n"
then obtain n' where n: "n = Suc n'" "l ∈ A" and n': "ls@b ∈ list n' A" by fastforce
assume "!!n. ls @ b ∈ list n A ==> ∃n1 n2. n = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A"
from this and n' have "∃n1 n2. n' = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A" .
then obtain n1 n2 where "n' = n1 + n2" "ls ∈ list n1 A" "b ∈ list n2 A" by fast
with n have "?P (l#ls) n (n1+1) n2" by simp
thus "∃n1 n2. ?P (l#ls) n n1 n2" by fastforce
qed
moreover
assume "a@b ∈ list n A" "!!n1 n2. n=n1+n2 ==> a ∈ list n1 A ==> b ∈ list n2 A ==> P"
ultimately
show ?thesis by blast
qed
lemma listt_update_in_list [simp, intro!]:
"[| xs ∈ list n A; x∈A |] ==> xs[i := x] ∈ list n A"
apply (unfold list_def)
apply simp
done
lemma list_appendI [intro?]:
"[| a ∈ list n A; b ∈ list m A |] ==> a @ b ∈ list (n+m) A"
by (unfold list_def) auto
lemma list_map [simp]: "(map f xs ∈ list (size xs) A) = (f ` set xs ⊆ A)"
by (unfold list_def) simp
lemma list_replicateI [intro]: "x ∈ A ==> replicate n x ∈ list n A"
by (induct n) auto
lemma plus_list_Nil [simp]: "[] [\<squnion>⇘f⇙] xs = []"
apply (unfold plussub_def map2_def)
apply simp
done
lemma plus_list_Cons [simp]:
"(x#xs) [\<squnion>⇘f⇙] ys = (case ys of [] => [] | y#ys => (x \<squnion>⇩f y)#(xs [\<squnion>⇘f⇙] ys))"
by (simp add: plussub_def map2_def split: list.split)
lemma length_plus_list [rule_format, simp]:
"∀ys. size(xs [\<squnion>⇘f⇙] ys) = min(size xs) (size ys)"
apply (induct xs)
apply simp
apply clarify
apply (simp (no_asm_simp) split: list.split)
done
lemma nth_plus_list [rule_format, simp]:
"∀xs ys i. size xs = n --> size ys = n --> i<n --> (xs [\<squnion>⇘f⇙] ys)!i = (xs!i) \<squnion>⇩f (ys!i)"
apply (induct n)
apply simp
apply clarify
apply (case_tac xs)
apply simp
apply (force simp add: nth_Cons split: list.split nat.split)
done
lemma (in Semilat) plus_list_ub1 [rule_format]:
"[| set xs ⊆ A; set ys ⊆ A; size xs = size ys |]
==> xs [\<sqsubseteq>⇘r⇙] xs [\<squnion>⇘f⇙] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) plus_list_ub2:
"[|set xs ⊆ A; set ys ⊆ A; size xs = size ys |] ==> ys [\<sqsubseteq>⇘r⇙] xs [\<squnion>⇘f⇙] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) plus_list_lub [rule_format]:
shows "∀xs ys zs. set xs ⊆ A --> set ys ⊆ A --> set zs ⊆ A
--> size xs = n ∧ size ys = n -->
xs [\<sqsubseteq>⇘r⇙] zs ∧ ys [\<sqsubseteq>⇘r⇙] zs --> xs [\<squnion>⇘f⇙] ys [\<sqsubseteq>⇘r⇙] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) list_update_incr [rule_format]:
"x∈A ==> set xs ⊆ A -->
(∀i. i<size xs --> xs [\<sqsubseteq>⇘r⇙] xs[i := x \<squnion>⇩f xs!i])"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (induct xs)
apply simp
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: nth_Cons split: nat.split)
done
lemma acc_le_listI [intro!]:
"[| order r; acc r |] ==> acc(Listn.le r)"
apply (unfold acc_def)
apply (subgoal_tac
"wf(UN n. {(ys,xs). size xs = n ∧ size ys = n ∧ xs <_(Listn.le r) ys})")
apply (erule wf_subset)
apply (blast intro: lesssub_lengthD)
apply (rule wf_UN)
prefer 2
apply clarify
apply (rename_tac m n)
apply (case_tac "m=n")
apply simp
apply (fast intro!: equals0I dest: not_sym)
apply clarify
apply (rename_tac n)
apply (induct_tac n)
apply (simp add: lesssub_def cong: conj_cong)
apply (rename_tac k)
apply (simp add: wf_eq_minimal)
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong)
apply clarify
apply (rename_tac M m)
apply (case_tac "∃x xs. size xs = k ∧ x#xs ∈ M")
prefer 2
apply (erule thin_rl)
apply (erule thin_rl)
apply blast
apply (erule_tac x = "{a. ∃xs. size xs = k ∧ a#xs:M}" in allE)
apply (erule impE)
apply blast
apply (thin_tac "∃x xs. ?P x xs")
apply clarify
apply (rename_tac maxA xs)
apply (erule_tac x = "{ys. size ys = size xs ∧ maxA#ys ∈ M}" in allE)
apply (erule impE)
apply blast
apply clarify
apply (thin_tac "m ∈ M")
apply (thin_tac "maxA#xs ∈ M")
apply (rule bexI)
prefer 2
apply assumption
apply clarify
apply simp
apply blast
done
lemma closed_listI:
"closed S f ==> closed (list n S) (map2 f)"
apply (unfold closed_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply simp
done
lemma Listn_sl_aux:
assumes "Semilat A r f" shows "semilat (Listn.sl n (A,r,f))"
proof -
interpret Semilat A r f by fact
show ?thesis
apply (unfold Listn.sl_def)
apply (simp (no_asm) only: semilat_Def split_conv)
apply (rule conjI)
apply simp
apply (rule conjI)
apply (simp only: closedI closed_listI)
apply (simp (no_asm) only: list_def)
apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub)
done
qed
lemma Listn_sl: "semilat L ==> semilat (Listn.sl n L)"
apply (cases L) apply simp
apply (drule Semilat.intro)
by (simp add: Listn_sl_aux split_tupled_all)
lemma coalesce_in_err_list [rule_format]:
"∀xes. xes ∈ list n (err A) --> coalesce xes ∈ err(list n A)"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split)
apply force
done
lemma lem: "!!x xs. x \<squnion>⇘op #⇙ xs = x#xs"
by (simp add: plussub_def)
lemma coalesce_eq_OK1_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs. coalesce (xs [\<squnion>⇘f⇙] ys) = OK zs --> xs [\<sqsubseteq>⇘r⇙] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK1)
done
lemma coalesce_eq_OK2_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs. coalesce (xs [\<squnion>⇘f⇙] ys) = OK zs --> ys [\<sqsubseteq>⇘r⇙] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK2)
done
lemma lift2_le_ub:
"[| semilat(err A, Err.le r, lift2 f); x∈A; y∈A; x \<squnion>⇩f y = OK z;
u∈A; x \<sqsubseteq>⇩r u; y \<sqsubseteq>⇩r u |] ==> z \<sqsubseteq>⇩r u"
apply (unfold semilat_Def plussub_def err_def')
apply (simp add: lift2_def)
apply clarify
apply (rotate_tac -3)
apply (erule thin_rl)
apply (erule thin_rl)
apply force
done
lemma coalesce_eq_OK_ub_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs us. coalesce (xs [\<squnion>⇘f⇙] ys) = OK zs ∧ xs [\<sqsubseteq>⇘r⇙] us ∧ ys [\<sqsubseteq>⇘r⇙] us
∧ us ∈ list n A --> zs [\<sqsubseteq>⇘r⇙] us))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def)
apply clarify
apply (rule conjI)
apply (blast intro: lift2_le_ub)
apply blast
done
lemma lift2_eq_ErrD:
"[| x \<squnion>⇩f y = Err; semilat(err A, Err.le r, lift2 f); x∈A; y∈A |]
==> ¬(∃u∈A. x \<sqsubseteq>⇩r u ∧ y \<sqsubseteq>⇩r u)"
by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1])
lemma coalesce_eq_Err_D [rule_format]:
"[| semilat(err A, Err.le r, lift2 f) |]
==> ∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
coalesce (xs [\<squnion>⇘f⇙] ys) = Err -->
¬(∃zs ∈ list n A. xs [\<sqsubseteq>⇘r⇙] zs ∧ ys [\<sqsubseteq>⇘r⇙] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (blast dest: lift2_eq_ErrD)
done
lemma closed_err_lift2_conv:
"closed (err A) (lift2 f) = (∀x∈A. ∀y∈A. x \<squnion>⇩f y ∈ err A)"
apply (unfold closed_def)
apply (simp add: err_def')
done
lemma closed_map2_list [rule_format]:
"closed (err A) (lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
map2 f xs ys ∈ list n (err A))"
apply (unfold map2_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: plussub_def closed_err_lift2_conv)
done
lemma closed_lift2_sup:
"closed (err A) (lift2 f) ==>
closed (err (list n A)) (lift2 (sup f))"
by (fastforce simp add: closed_def plussub_def sup_def lift2_def
coalesce_in_err_list closed_map2_list
split: err.split)
lemma err_semilat_sup:
"err_semilat (A,r,f) ==>
err_semilat (list n A, Listn.le r, sup f)"
apply (unfold Err.sl_def)
apply (simp only: split_conv)
apply (simp (no_asm) only: semilat_Def plussub_def)
apply (simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_sup)
apply (rule conjI)
apply (drule Semilat.orderI [OF Semilat.intro])
apply simp
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def' sup_def lift2_def)
apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split)
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D)
done
lemma err_semilat_upto_esl:
"!!L. err_semilat L ==> err_semilat(upto_esl m L)"
apply (unfold Listn.upto_esl_def)
apply (simp (no_asm_simp) only: split_tupled_all)
apply simp
apply (fastforce intro!: err_semilat_UnionI err_semilat_sup
dest: lesub_list_impl_same_size
simp add: plussub_def Listn.sup_def)
done
end