Theory Compiler2

Up to index of Isabelle/HOL/Jinja

theory Compiler2
imports PCompiler J1 JVMExec
(*  Title:      Jinja/Compiler/Compiler2.thy
Author: Tobias Nipkow
Copyright TUM 2003
*)


header {* \isaheader{Compilation Stage 2} *}

theory Compiler2
imports PCompiler J1 "../JVM/JVMExec"
begin

primrec compE2 :: "expr1 => instr list"
and compEs2 :: "expr1 list => instr list" where
"compE2 (new C) = [New C]"
| "compE2 (Cast C e) = compE2 e @ [Checkcast C]"
| "compE2 (Val v) = [Push v]"
| "compE2 (e1 «bop» e2) = compE2 e1 @ compE2 e2 @
(case bop of Eq => [CmpEq]
| Add => [IAdd])"

| "compE2 (Var i) = [Load i]"
| "compE2 (i:=e) = compE2 e @ [Store i, Push Unit]"
| "compE2 (e•F{D}) = compE2 e @ [Getfield F D]"
| "compE2 (e1•F{D} := e2) =
compE2 e1 @ compE2 e2 @ [Putfield F D, Push Unit]"

| "compE2 (e•M(es)) = compE2 e @ compEs2 es @ [Invoke M (size es)]"
| "compE2 ({i:T; e}) = compE2 e"
| "compE2 (e1;;e2) = compE2 e1 @ [Pop] @ compE2 e2"
| "compE2 (if (e) e1 else e2) =
(let cnd = compE2 e;
thn = compE2 e1;
els = compE2 e2;
test = IfFalse (int(size thn + 2));
thnex = Goto (int(size els + 1))
in cnd @ [test] @ thn @ [thnex] @ els)"

| "compE2 (while (e) c) =
(let cnd = compE2 e;
bdy = compE2 c;
test = IfFalse (int(size bdy + 3));
loop = Goto (-int(size bdy + size cnd + 2))
in cnd @ [test] @ bdy @ [Pop] @ [loop] @ [Push Unit])"

| "compE2 (throw e) = compE2 e @ [instr.Throw]"
| "compE2 (try e1 catch(C i) e2) =
(let catch = compE2 e2
in compE2 e1 @ [Goto (int(size catch)+2), Store i] @ catch)"


| "compEs2 [] = []"
| "compEs2 (e#es) = compE2 e @ compEs2 es"

text{* Compilation of exception table. Is given start address of code
to compute absolute addresses necessary in exception table. *}


primrec compxE2 :: "expr1 => pc => nat => ex_table"
and compxEs2 :: "expr1 list => pc => nat => ex_table" where
"compxE2 (new C) pc d = []"
| "compxE2 (Cast C e) pc d = compxE2 e pc d"
| "compxE2 (Val v) pc d = []"
| "compxE2 (e1 «bop» e2) pc d =
compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)"

| "compxE2 (Var i) pc d = []"
| "compxE2 (i:=e) pc d = compxE2 e pc d"
| "compxE2 (e•F{D}) pc d = compxE2 e pc d"
| "compxE2 (e1•F{D} := e2) pc d =
compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)"

| "compxE2 (e•M(es)) pc d =
compxE2 e pc d @ compxEs2 es (pc + size(compE2 e)) (d+1)"

| "compxE2 ({i:T; e}) pc d = compxE2 e pc d"
| "compxE2 (e1;;e2) pc d =
compxE2 e1 pc d @ compxE2 e2 (pc+size(compE2 e1)+1) d"

| "compxE2 (if (e) e1 else e2) pc d =
(let pc1 = pc + size(compE2 e) + 1;
pc2 = pc1 + size(compE2 e1) + 1
in compxE2 e pc d @ compxE2 e1 pc1 d @ compxE2 e2 pc2 d)"

| "compxE2 (while (b) e) pc d =
compxE2 b pc d @ compxE2 e (pc+size(compE2 b)+1) d"

| "compxE2 (throw e) pc d = compxE2 e pc d"
| "compxE2 (try e1 catch(C i) e2) pc d =
(let pc1 = pc + size(compE2 e1)
in compxE2 e1 pc d @ compxE2 e2 (pc1+2) d @ [(pc,pc1,C,pc1+1,d)])"


| "compxEs2 [] pc d = []"
| "compxEs2 (e#es) pc d = compxE2 e pc d @ compxEs2 es (pc+size(compE2 e)) (d+1)"

primrec max_stack :: "expr1 => nat"
and max_stacks :: "expr1 list => nat" where
"max_stack (new C) = 1"
| "max_stack (Cast C e) = max_stack e"
| "max_stack (Val v) = 1"
| "max_stack (e1 «bop» e2) = max (max_stack e1) (max_stack e2) + 1"
| "max_stack (Var i) = 1"
| "max_stack (i:=e) = max_stack e"
| "max_stack (e•F{D}) = max_stack e"
| "max_stack (e1•F{D} := e2) = max (max_stack e1) (max_stack e2) + 1"
| "max_stack (e•M(es)) = max (max_stack e) (max_stacks es) + 1"
| "max_stack ({i:T; e}) = max_stack e"
| "max_stack (e1;;e2) = max (max_stack e1) (max_stack e2)"
| "max_stack (if (e) e1 else e2) =
max (max_stack e) (max (max_stack e1) (max_stack e2))"

| "max_stack (while (e) c) = max (max_stack e) (max_stack c)"
| "max_stack (throw e) = max_stack e"
| "max_stack (try e1 catch(C i) e2) = max (max_stack e1) (max_stack e2)"

| "max_stacks [] = 0"
| "max_stacks (e#es) = max (max_stack e) (1 + max_stacks es)"

lemma max_stack1: "1 ≤ max_stack e"
(*<*)by(induct e) (simp_all add:max_def)(*>*)


definition compMb2 :: "expr1 => jvm_method"
where
"compMb2 ≡ λbody.
let ins = compE2 body @ [Return];
xt = compxE2 body 0 0
in (max_stack body, max_vars body, ins, xt)"


definition compP2 :: "J1_prog => jvm_prog"
where
"compP2 ≡ compP compMb2"

(*<*)
declare compP2_def [simp]
(*>*)

lemma compMb2 [simp]:
"compMb2 e = (max_stack e, max_vars e, compE2 e @ [Return], compxE2 e 0 0)"
(*<*)by (simp add: compMb2_def)(*>*)


end