section ‹Map functions for various types›
theory Map_Functions
imports Deflation
begin
subsection ‹Map operator for continuous function space›
default_sort cpo
definition
cfun_map :: "('b → 'a) → ('c → 'd) → ('a → 'c) → ('b → 'd)"
where
"cfun_map = (Λ a b f x. b⋅(f⋅(a⋅x)))"
lemma cfun_map_beta [simp]: "cfun_map⋅a⋅b⋅f⋅x = b⋅(f⋅(a⋅x))"
unfolding cfun_map_def by simp
lemma cfun_map_ID: "cfun_map⋅ID⋅ID = ID"
unfolding cfun_eq_iff by simp
lemma cfun_map_map:
"cfun_map⋅f1⋅g1⋅(cfun_map⋅f2⋅g2⋅p) =
cfun_map⋅(Λ x. f2⋅(f1⋅x))⋅(Λ x. g1⋅(g2⋅x))⋅p"
by (rule cfun_eqI) simp
lemma ep_pair_cfun_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (cfun_map⋅p1⋅e2) (cfun_map⋅e1⋅p2)"
proof
interpret e1p1: ep_pair e1 p1 by fact
interpret e2p2: ep_pair e2 p2 by fact
fix f show "cfun_map⋅e1⋅p2⋅(cfun_map⋅p1⋅e2⋅f) = f"
by (simp add: cfun_eq_iff)
fix g show "cfun_map⋅p1⋅e2⋅(cfun_map⋅e1⋅p2⋅g) ⊑ g"
apply (rule cfun_belowI, simp)
apply (rule below_trans [OF e2p2.e_p_below])
apply (rule monofun_cfun_arg)
apply (rule e1p1.e_p_below)
done
qed
lemma deflation_cfun_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (cfun_map⋅d1⋅d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix f
show "cfun_map⋅d1⋅d2⋅(cfun_map⋅d1⋅d2⋅f) = cfun_map⋅d1⋅d2⋅f"
by (simp add: cfun_eq_iff d1.idem d2.idem)
show "cfun_map⋅d1⋅d2⋅f ⊑ f"
apply (rule cfun_belowI, simp)
apply (rule below_trans [OF d2.below])
apply (rule monofun_cfun_arg)
apply (rule d1.below)
done
qed
lemma finite_range_cfun_map:
assumes a: "finite (range (λx. a⋅x))"
assumes b: "finite (range (λy. b⋅y))"
shows "finite (range (λf. cfun_map⋅a⋅b⋅f))" (is "finite (range ?h)")
proof (rule finite_imageD)
let ?f = "λg. range (λx. (a⋅x, g⋅x))"
show "finite (?f ` range ?h)"
proof (rule finite_subset)
let ?B = "Pow (range (λx. a⋅x) × range (λy. b⋅y))"
show "?f ` range ?h ⊆ ?B"
by clarsimp
show "finite ?B"
by (simp add: a b)
qed
show "inj_on ?f (range ?h)"
proof (rule inj_onI, rule cfun_eqI, clarsimp)
fix x f g
assume "range (λx. (a⋅x, b⋅(f⋅(a⋅x)))) = range (λx. (a⋅x, b⋅(g⋅(a⋅x))))"
hence "range (λx. (a⋅x, b⋅(f⋅(a⋅x)))) ⊆ range (λx. (a⋅x, b⋅(g⋅(a⋅x))))"
by (rule equalityD1)
hence "(a⋅x, b⋅(f⋅(a⋅x))) ∈ range (λx. (a⋅x, b⋅(g⋅(a⋅x))))"
by (simp add: subset_eq)
then obtain y where "(a⋅x, b⋅(f⋅(a⋅x))) = (a⋅y, b⋅(g⋅(a⋅y)))"
by (rule rangeE)
thus "b⋅(f⋅(a⋅x)) = b⋅(g⋅(a⋅x))"
by clarsimp
qed
qed
lemma finite_deflation_cfun_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (cfun_map⋅d1⋅d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (cfun_map⋅d1⋅d2)" by (rule deflation_cfun_map)
have "finite (range (λf. cfun_map⋅d1⋅d2⋅f))"
using d1.finite_range d2.finite_range
by (rule finite_range_cfun_map)
thus "finite {f. cfun_map⋅d1⋅d2⋅f = f}"
by (rule finite_range_imp_finite_fixes)
qed
text ‹Finite deflations are compact elements of the function space›
lemma finite_deflation_imp_compact: "finite_deflation d ⟹ compact d"
apply (frule finite_deflation_imp_deflation)
apply (subgoal_tac "compact (cfun_map⋅d⋅d⋅d)")
apply (simp add: cfun_map_def deflation.idem eta_cfun)
apply (rule finite_deflation.compact)
apply (simp only: finite_deflation_cfun_map)
done
subsection ‹Map operator for product type›
definition
prod_map :: "('a → 'b) → ('c → 'd) → 'a × 'c → 'b × 'd"
where
"prod_map = (Λ f g p. (f⋅(fst p), g⋅(snd p)))"
lemma prod_map_Pair [simp]: "prod_map⋅f⋅g⋅(x, y) = (f⋅x, g⋅y)"
unfolding prod_map_def by simp
lemma prod_map_ID: "prod_map⋅ID⋅ID = ID"
unfolding cfun_eq_iff by auto
lemma prod_map_map:
"prod_map⋅f1⋅g1⋅(prod_map⋅f2⋅g2⋅p) =
prod_map⋅(Λ x. f1⋅(f2⋅x))⋅(Λ x. g1⋅(g2⋅x))⋅p"
by (induct p) simp
lemma ep_pair_prod_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (prod_map⋅e1⋅e2) (prod_map⋅p1⋅p2)"
proof
interpret e1p1: ep_pair e1 p1 by fact
interpret e2p2: ep_pair e2 p2 by fact
fix x show "prod_map⋅p1⋅p2⋅(prod_map⋅e1⋅e2⋅x) = x"
by (induct x) simp
fix y show "prod_map⋅e1⋅e2⋅(prod_map⋅p1⋅p2⋅y) ⊑ y"
by (induct y) (simp add: e1p1.e_p_below e2p2.e_p_below)
qed
lemma deflation_prod_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (prod_map⋅d1⋅d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "prod_map⋅d1⋅d2⋅(prod_map⋅d1⋅d2⋅x) = prod_map⋅d1⋅d2⋅x"
by (induct x) (simp add: d1.idem d2.idem)
show "prod_map⋅d1⋅d2⋅x ⊑ x"
by (induct x) (simp add: d1.below d2.below)
qed
lemma finite_deflation_prod_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (prod_map⋅d1⋅d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (prod_map⋅d1⋅d2)" by (rule deflation_prod_map)
have "{p. prod_map⋅d1⋅d2⋅p = p} ⊆ {x. d1⋅x = x} × {y. d2⋅y = y}"
by clarsimp
thus "finite {p. prod_map⋅d1⋅d2⋅p = p}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
subsection ‹Map function for lifted cpo›
definition
u_map :: "('a → 'b) → 'a u → 'b u"
where
"u_map = (Λ f. fup⋅(up oo f))"
lemma u_map_strict [simp]: "u_map⋅f⋅⊥ = ⊥"
unfolding u_map_def by simp
lemma u_map_up [simp]: "u_map⋅f⋅(up⋅x) = up⋅(f⋅x)"
unfolding u_map_def by simp
lemma u_map_ID: "u_map⋅ID = ID"
unfolding u_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma u_map_map: "u_map⋅f⋅(u_map⋅g⋅p) = u_map⋅(Λ x. f⋅(g⋅x))⋅p"
by (induct p) simp_all
lemma u_map_oo: "u_map⋅(f oo g) = u_map⋅f oo u_map⋅g"
by (simp add: cfcomp1 u_map_map eta_cfun)
lemma ep_pair_u_map: "ep_pair e p ⟹ ep_pair (u_map⋅e) (u_map⋅p)"
apply standard
apply (case_tac x, simp, simp add: ep_pair.e_inverse)
apply (case_tac y, simp, simp add: ep_pair.e_p_below)
done
lemma deflation_u_map: "deflation d ⟹ deflation (u_map⋅d)"
apply standard
apply (case_tac x, simp, simp add: deflation.idem)
apply (case_tac x, simp, simp add: deflation.below)
done
lemma finite_deflation_u_map:
assumes "finite_deflation d" shows "finite_deflation (u_map⋅d)"
proof (rule finite_deflation_intro)
interpret d: finite_deflation d by fact
have "deflation d" by fact
thus "deflation (u_map⋅d)" by (rule deflation_u_map)
have "{x. u_map⋅d⋅x = x} ⊆ insert ⊥ ((λx. up⋅x) ` {x. d⋅x = x})"
by (rule subsetI, case_tac x, simp_all)
thus "finite {x. u_map⋅d⋅x = x}"
by (rule finite_subset, simp add: d.finite_fixes)
qed
subsection ‹Map function for strict products›
default_sort pcpo
definition
sprod_map :: "('a → 'b) → ('c → 'd) → 'a ⊗ 'c → 'b ⊗ 'd"
where
"sprod_map = (Λ f g. ssplit⋅(Λ x y. (:f⋅x, g⋅y:)))"
lemma sprod_map_strict [simp]: "sprod_map⋅a⋅b⋅⊥ = ⊥"
unfolding sprod_map_def by simp
lemma sprod_map_spair [simp]:
"x ≠ ⊥ ⟹ y ≠ ⊥ ⟹ sprod_map⋅f⋅g⋅(:x, y:) = (:f⋅x, g⋅y:)"
by (simp add: sprod_map_def)
lemma sprod_map_spair':
"f⋅⊥ = ⊥ ⟹ g⋅⊥ = ⊥ ⟹ sprod_map⋅f⋅g⋅(:x, y:) = (:f⋅x, g⋅y:)"
by (cases "x = ⊥ ∨ y = ⊥") auto
lemma sprod_map_ID: "sprod_map⋅ID⋅ID = ID"
unfolding sprod_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma sprod_map_map:
"⟦f1⋅⊥ = ⊥; g1⋅⊥ = ⊥⟧ ⟹
sprod_map⋅f1⋅g1⋅(sprod_map⋅f2⋅g2⋅p) =
sprod_map⋅(Λ x. f1⋅(f2⋅x))⋅(Λ x. g1⋅(g2⋅x))⋅p"
apply (induct p, simp)
apply (case_tac "f2⋅x = ⊥", simp)
apply (case_tac "g2⋅y = ⊥", simp)
apply simp
done
lemma ep_pair_sprod_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (sprod_map⋅e1⋅e2) (sprod_map⋅p1⋅p2)"
proof
interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact
interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact
fix x show "sprod_map⋅p1⋅p2⋅(sprod_map⋅e1⋅e2⋅x) = x"
by (induct x) simp_all
fix y show "sprod_map⋅e1⋅e2⋅(sprod_map⋅p1⋅p2⋅y) ⊑ y"
apply (induct y, simp)
apply (case_tac "p1⋅x = ⊥", simp, case_tac "p2⋅y = ⊥", simp)
apply (simp add: monofun_cfun e1p1.e_p_below e2p2.e_p_below)
done
qed
lemma deflation_sprod_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (sprod_map⋅d1⋅d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "sprod_map⋅d1⋅d2⋅(sprod_map⋅d1⋅d2⋅x) = sprod_map⋅d1⋅d2⋅x"
apply (induct x, simp)
apply (case_tac "d1⋅x = ⊥", simp, case_tac "d2⋅y = ⊥", simp)
apply (simp add: d1.idem d2.idem)
done
show "sprod_map⋅d1⋅d2⋅x ⊑ x"
apply (induct x, simp)
apply (simp add: monofun_cfun d1.below d2.below)
done
qed
lemma finite_deflation_sprod_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (sprod_map⋅d1⋅d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (sprod_map⋅d1⋅d2)" by (rule deflation_sprod_map)
have "{x. sprod_map⋅d1⋅d2⋅x = x} ⊆ insert ⊥
((λ(x, y). (:x, y:)) ` ({x. d1⋅x = x} × {y. d2⋅y = y}))"
by (rule subsetI, case_tac x, auto simp add: spair_eq_iff)
thus "finite {x. sprod_map⋅d1⋅d2⋅x = x}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
subsection ‹Map function for strict sums›
definition
ssum_map :: "('a → 'b) → ('c → 'd) → 'a ⊕ 'c → 'b ⊕ 'd"
where
"ssum_map = (Λ f g. sscase⋅(sinl oo f)⋅(sinr oo g))"
lemma ssum_map_strict [simp]: "ssum_map⋅f⋅g⋅⊥ = ⊥"
unfolding ssum_map_def by simp
lemma ssum_map_sinl [simp]: "x ≠ ⊥ ⟹ ssum_map⋅f⋅g⋅(sinl⋅x) = sinl⋅(f⋅x)"
unfolding ssum_map_def by simp
lemma ssum_map_sinr [simp]: "x ≠ ⊥ ⟹ ssum_map⋅f⋅g⋅(sinr⋅x) = sinr⋅(g⋅x)"
unfolding ssum_map_def by simp
lemma ssum_map_sinl': "f⋅⊥ = ⊥ ⟹ ssum_map⋅f⋅g⋅(sinl⋅x) = sinl⋅(f⋅x)"
by (cases "x = ⊥") simp_all
lemma ssum_map_sinr': "g⋅⊥ = ⊥ ⟹ ssum_map⋅f⋅g⋅(sinr⋅x) = sinr⋅(g⋅x)"
by (cases "x = ⊥") simp_all
lemma ssum_map_ID: "ssum_map⋅ID⋅ID = ID"
unfolding ssum_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma ssum_map_map:
"⟦f1⋅⊥ = ⊥; g1⋅⊥ = ⊥⟧ ⟹
ssum_map⋅f1⋅g1⋅(ssum_map⋅f2⋅g2⋅p) =
ssum_map⋅(Λ x. f1⋅(f2⋅x))⋅(Λ x. g1⋅(g2⋅x))⋅p"
apply (induct p, simp)
apply (case_tac "f2⋅x = ⊥", simp, simp)
apply (case_tac "g2⋅y = ⊥", simp, simp)
done
lemma ep_pair_ssum_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (ssum_map⋅e1⋅e2) (ssum_map⋅p1⋅p2)"
proof
interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact
interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact
fix x show "ssum_map⋅p1⋅p2⋅(ssum_map⋅e1⋅e2⋅x) = x"
by (induct x) simp_all
fix y show "ssum_map⋅e1⋅e2⋅(ssum_map⋅p1⋅p2⋅y) ⊑ y"
apply (induct y, simp)
apply (case_tac "p1⋅x = ⊥", simp, simp add: e1p1.e_p_below)
apply (case_tac "p2⋅y = ⊥", simp, simp add: e2p2.e_p_below)
done
qed
lemma deflation_ssum_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (ssum_map⋅d1⋅d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "ssum_map⋅d1⋅d2⋅(ssum_map⋅d1⋅d2⋅x) = ssum_map⋅d1⋅d2⋅x"
apply (induct x, simp)
apply (case_tac "d1⋅x = ⊥", simp, simp add: d1.idem)
apply (case_tac "d2⋅y = ⊥", simp, simp add: d2.idem)
done
show "ssum_map⋅d1⋅d2⋅x ⊑ x"
apply (induct x, simp)
apply (case_tac "d1⋅x = ⊥", simp, simp add: d1.below)
apply (case_tac "d2⋅y = ⊥", simp, simp add: d2.below)
done
qed
lemma finite_deflation_ssum_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (ssum_map⋅d1⋅d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (ssum_map⋅d1⋅d2)" by (rule deflation_ssum_map)
have "{x. ssum_map⋅d1⋅d2⋅x = x} ⊆
(λx. sinl⋅x) ` {x. d1⋅x = x} ∪
(λx. sinr⋅x) ` {x. d2⋅x = x} ∪ {⊥}"
by (rule subsetI, case_tac x, simp_all)
thus "finite {x. ssum_map⋅d1⋅d2⋅x = x}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
subsection ‹Map operator for strict function space›
definition
sfun_map :: "('b → 'a) → ('c → 'd) → ('a →! 'c) → ('b →! 'd)"
where
"sfun_map = (Λ a b. sfun_abs oo cfun_map⋅a⋅b oo sfun_rep)"
lemma sfun_map_ID: "sfun_map⋅ID⋅ID = ID"
unfolding sfun_map_def
by (simp add: cfun_map_ID cfun_eq_iff)
lemma sfun_map_map:
assumes "f2⋅⊥ = ⊥" and "g2⋅⊥ = ⊥" shows
"sfun_map⋅f1⋅g1⋅(sfun_map⋅f2⋅g2⋅p) =
sfun_map⋅(Λ x. f2⋅(f1⋅x))⋅(Λ x. g1⋅(g2⋅x))⋅p"
unfolding sfun_map_def
by (simp add: cfun_eq_iff strictify_cancel assms cfun_map_map)
lemma ep_pair_sfun_map:
assumes 1: "ep_pair e1 p1"
assumes 2: "ep_pair e2 p2"
shows "ep_pair (sfun_map⋅p1⋅e2) (sfun_map⋅e1⋅p2)"
proof
interpret e1p1: pcpo_ep_pair e1 p1
unfolding pcpo_ep_pair_def by fact
interpret e2p2: pcpo_ep_pair e2 p2
unfolding pcpo_ep_pair_def by fact
fix f show "sfun_map⋅e1⋅p2⋅(sfun_map⋅p1⋅e2⋅f) = f"
unfolding sfun_map_def
apply (simp add: sfun_eq_iff strictify_cancel)
apply (rule ep_pair.e_inverse)
apply (rule ep_pair_cfun_map [OF 1 2])
done
fix g show "sfun_map⋅p1⋅e2⋅(sfun_map⋅e1⋅p2⋅g) ⊑ g"
unfolding sfun_map_def
apply (simp add: sfun_below_iff strictify_cancel)
apply (rule ep_pair.e_p_below)
apply (rule ep_pair_cfun_map [OF 1 2])
done
qed
lemma deflation_sfun_map:
assumes 1: "deflation d1"
assumes 2: "deflation d2"
shows "deflation (sfun_map⋅d1⋅d2)"
apply (simp add: sfun_map_def)
apply (rule deflation.intro)
apply simp
apply (subst strictify_cancel)
apply (simp add: cfun_map_def deflation_strict 1 2)
apply (simp add: cfun_map_def deflation.idem 1 2)
apply (simp add: sfun_below_iff)
apply (subst strictify_cancel)
apply (simp add: cfun_map_def deflation_strict 1 2)
apply (rule deflation.below)
apply (rule deflation_cfun_map [OF 1 2])
done
lemma finite_deflation_sfun_map:
assumes 1: "finite_deflation d1"
assumes 2: "finite_deflation d2"
shows "finite_deflation (sfun_map⋅d1⋅d2)"
proof (intro finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (sfun_map⋅d1⋅d2)" by (rule deflation_sfun_map)
from 1 2 have "finite_deflation (cfun_map⋅d1⋅d2)"
by (rule finite_deflation_cfun_map)
then have "finite {f. cfun_map⋅d1⋅d2⋅f = f}"
by (rule finite_deflation.finite_fixes)
moreover have "inj (λf. sfun_rep⋅f)"
by (rule inj_onI, simp add: sfun_eq_iff)
ultimately have "finite ((λf. sfun_rep⋅f) -` {f. cfun_map⋅d1⋅d2⋅f = f})"
by (rule finite_vimageI)
then show "finite {f. sfun_map⋅d1⋅d2⋅f = f}"
unfolding sfun_map_def sfun_eq_iff
by (simp add: strictify_cancel
deflation_strict ‹deflation d1› ‹deflation d2›)
qed
end