section ‹Class instances for the full function space›
theory Fun_Cpo
imports Adm
begin
subsection ‹Full function space is a partial order›
instantiation "fun" :: (type, below) below
begin
definition
below_fun_def: "(op ⊑) ≡ (λf g. ∀x. f x ⊑ g x)"
instance ..
end
instance "fun" :: (type, po) po
proof
fix f :: "'a ⇒ 'b"
show "f ⊑ f"
by (simp add: below_fun_def)
next
fix f g :: "'a ⇒ 'b"
assume "f ⊑ g" and "g ⊑ f" thus "f = g"
by (simp add: below_fun_def fun_eq_iff below_antisym)
next
fix f g h :: "'a ⇒ 'b"
assume "f ⊑ g" and "g ⊑ h" thus "f ⊑ h"
unfolding below_fun_def by (fast elim: below_trans)
qed
lemma fun_below_iff: "f ⊑ g ⟷ (∀x. f x ⊑ g x)"
by (simp add: below_fun_def)
lemma fun_belowI: "(⋀x. f x ⊑ g x) ⟹ f ⊑ g"
by (simp add: below_fun_def)
lemma fun_belowD: "f ⊑ g ⟹ f x ⊑ g x"
by (simp add: below_fun_def)
subsection ‹Full function space is chain complete›
text ‹Properties of chains of functions.›
lemma fun_chain_iff: "chain S ⟷ (∀x. chain (λi. S i x))"
unfolding chain_def fun_below_iff by auto
lemma ch2ch_fun: "chain S ⟹ chain (λi. S i x)"
by (simp add: chain_def below_fun_def)
lemma ch2ch_lambda: "(⋀x. chain (λi. S i x)) ⟹ chain S"
by (simp add: chain_def below_fun_def)
text ‹Type @{typ "'a::type => 'b::cpo"} is chain complete›
lemma is_lub_lambda:
"(⋀x. range (λi. Y i x) <<| f x) ⟹ range Y <<| f"
unfolding is_lub_def is_ub_def below_fun_def by simp
lemma is_lub_fun:
"chain (S::nat ⇒ 'a::type ⇒ 'b::cpo)
⟹ range S <<| (λx. ⨆i. S i x)"
apply (rule is_lub_lambda)
apply (rule cpo_lubI)
apply (erule ch2ch_fun)
done
lemma lub_fun:
"chain (S::nat ⇒ 'a::type ⇒ 'b::cpo)
⟹ (⨆i. S i) = (λx. ⨆i. S i x)"
by (rule is_lub_fun [THEN lub_eqI])
instance "fun" :: (type, cpo) cpo
by intro_classes (rule exI, erule is_lub_fun)
instance "fun" :: (type, discrete_cpo) discrete_cpo
proof
fix f g :: "'a ⇒ 'b"
show "f ⊑ g ⟷ f = g"
unfolding fun_below_iff fun_eq_iff
by simp
qed
subsection ‹Full function space is pointed›
lemma minimal_fun: "(λx. ⊥) ⊑ f"
by (simp add: below_fun_def)
instance "fun" :: (type, pcpo) pcpo
by standard (fast intro: minimal_fun)
lemma inst_fun_pcpo: "⊥ = (λx. ⊥)"
by (rule minimal_fun [THEN bottomI, symmetric])
lemma app_strict [simp]: "⊥ x = ⊥"
by (simp add: inst_fun_pcpo)
lemma lambda_strict: "(λx. ⊥) = ⊥"
by (rule bottomI, rule minimal_fun)
subsection ‹Propagation of monotonicity and continuity›
text ‹The lub of a chain of monotone functions is monotone.›
lemma adm_monofun: "adm monofun"
by (rule admI, simp add: lub_fun fun_chain_iff monofun_def lub_mono)
text ‹The lub of a chain of continuous functions is continuous.›
lemma adm_cont: "adm cont"
by (rule admI, simp add: lub_fun fun_chain_iff)
text ‹Function application preserves monotonicity and continuity.›
lemma mono2mono_fun: "monofun f ⟹ monofun (λx. f x y)"
by (simp add: monofun_def fun_below_iff)
lemma cont2cont_fun: "cont f ⟹ cont (λx. f x y)"
apply (rule contI2)
apply (erule cont2mono [THEN mono2mono_fun])
apply (simp add: cont2contlubE lub_fun ch2ch_cont)
done
lemma cont_fun: "cont (λf. f x)"
using cont_id by (rule cont2cont_fun)
text ‹
Lambda abstraction preserves monotonicity and continuity.
(Note ‹(λx. λy. f x y) = f›.)
›
lemma mono2mono_lambda:
assumes f: "⋀y. monofun (λx. f x y)" shows "monofun f"
using f by (simp add: monofun_def fun_below_iff)
lemma cont2cont_lambda [simp]:
assumes f: "⋀y. cont (λx. f x y)" shows "cont f"
by (rule contI, rule is_lub_lambda, rule contE [OF f])
text ‹What D.A.Schmidt calls continuity of abstraction; never used here›
lemma contlub_lambda:
"(⋀x::'a::type. chain (λi. S i x::'b::cpo))
⟹ (λx. ⨆i. S i x) = (⨆i. (λx. S i x))"
by (simp add: lub_fun ch2ch_lambda)
end