
Measure and Probability Theory

April 17, 2016

Contents

1 Handling Disjoint Sets 10
1.1 Set of Disjoint Sets . 10

1.1.1 Family of Disjoint Sets 11
1.2 Construct Disjoint Sequences 12

2 Describing measurable sets 13
2.1 Families of sets . 14

2.1.1 Semiring of sets . 14
2.1.2 Restricted algebras . 17
2.1.3 Sigma Algebras . 18
2.1.4 Binary Unions . 22
2.1.5 Initial Sigma Algebra 22
2.1.6 Ring generated by a semiring 29
2.1.7 A Two-Element Series 32
2.1.8 Closed CDI . 32
2.1.9 Dynkin systems . 37
2.1.10 Intersection sets systems 39
2.1.11 Smallest Dynkin systems 39
2.1.12 Induction rule for intersection-stable generators 42

2.2 Measure type . 43
2.2.1 Constructing simple ′a measure 47
2.2.2 Measurable functions 49
2.2.3 Counting space . 52
2.2.4 Extend measure . 54
2.2.5 Supremum of a set of σ-algebras 55

2.3 The smallest σ-algebra regarding a function 57
2.3.1 Restricted Space Sigma Algebra 59

2.4 Measurability prover . 63
2.5 Measurability for (co)inductive predicates 72

1

2

3 Measure spaces and their properties 77
3.1 Relate extended reals and the indicator function 77
3.2 Extend binary sets . 78
3.3 Properties of a premeasure µ 79
3.4 Properties of emeasure . 86
3.5 µ-null sets . 95
3.6 The almost everywhere filter (i.e. quantifier) 97
3.7 σ-finite Measures . 102
3.8 Measure space induced by distribution of op →M -functions . 104
3.9 Real measure values . 107
3.10 Measure spaces with emeasure M (space M) < ∞ 111
3.11 Counting space . 115
3.12 Measure restricted to space 119
3.13 Null measure . 122
3.14 Scaling a measure . 123
3.15 Measures form a chain-complete partial order 124

4 Borel spaces 128
4.1 Generic Borel spaces . 135
4.2 Borel spaces on order topologies 142
4.3 Borel spaces on topological monoids 149
4.4 Borel spaces on Euclidean spaces 149
4.5 Borel measurable operators 157
4.6 Borel space on the extended reals 160
4.7 Borel space on the extended non-negative reals 164
4.8 LIMSEQ is borel measurable 166

5 Lebesgue Integration for Nonnegative Functions 170
5.1 Simple function . 170
5.2 Simple integral . 180
5.3 Integral on nonnegative functions 186
5.4 Integral under concrete measures 204

5.4.1 Distributions . 204
5.4.2 Counting space . 204
5.4.3 Measures with Restricted Space 211
5.4.4 Measure spaces with an associated density 213
5.4.5 Point measure . 218
5.4.6 Uniform measure . 219
5.4.7 Null measure . 221
5.4.8 Uniform count measure 221
5.4.9 Scaled measure . 222

3

6 Binary product measures 223
6.1 Binary products . 223
6.2 Binary products of σ-finite emeasure spaces 230
6.3 Fubinis theorem . 234
6.4 Products on counting spaces, densities and distributions . . . 236
6.5 Product of Borel spaces . 246

7 Finite product measures 247
7.0.1 More about Function restricted by extensional 247

7.1 Finite product spaces . 250
7.1.1 Products . 250

8 Bochner Integration for Vector-Valued Functions 274
8.1 Restricted measure spaces . 317
8.2 Measure spaces with an associated density 318
8.3 Distributions . 320
8.4 Lebesgue integration on count-space 321
8.5 Point measure . 323
8.6 Lebesgue integration on null-measure 323
8.7 Legacy lemmas for the real-valued Lebesgue integral 323
8.8 Product measure . 330

9 Caratheodory Extension Theorem 341
9.1 Characterizations of Measures 342

9.1.1 Lambda Systems . 342
9.2 Caratheodory’s theorem . 351
9.3 Volumes . 352

9.3.1 Caratheodory on semirings 355

10 Lebesgue measure 360
10.1 Every right continuous and nondecreasing function gives rise

to a measure . 360
10.2 Lebesgue-Borel measure . 368
10.3 Affine transformation on the Lebesgue-Borel 372
10.4 Equivalence Lebesgue integral on lborel and HK-integral . . . 376
10.5 Fundamental Theorem of Calculus for the Lebesgue integral . 384
10.6 Integration by parts . 389

11 Radon-Nikodým derivative 391
11.1 Absolutely continuous . 393
11.2 Existence of the Radon-Nikodym derivative 394
11.3 Uniqueness of densities . 408
11.4 Radon-Nikodym derivative . 414

4

12 Probability measure 419
12.1 Introduce binder for probability 425
12.2 Distributions . 431

13 Finite Maps 454
13.1 Domain and Application . 454
13.2 Countable Finite Maps . 455
13.3 Constructor of Finite Maps 455
13.4 Product set of Finite Maps 456

13.4.1 Basic Properties of Pi ′ 456
13.5 Topological Space of Finite Maps 457
13.6 Metric Space of Finite Maps 459
13.7 Complete Space of Finite Maps 464
13.8 Second Countable Space of Finite Maps 465
13.9 Polish Space of Finite Maps 468
13.10Product Measurable Space of Finite Maps 468
13.11Isomorphism between Functions and Finite Maps 480

14 Regularity of Measures 483

15 Integration by Substition 528

16 Adhoc overloading of constants based on their types 538

17 Monad notation for arbitrary types 538

18 Sub-probability spaces 539

19 Properties of return 550

20 Join 555

21 Measures form a ω-chain complete partial order 572

22 Projective Family 574

23 Infinite Product Measure 589
23.1 Sequence space . 592

24 Projective Limit 596
24.1 Sequences of Finite Maps in Compact Sets 596
24.2 Daniell-Kolmogorov Theorem 598

5

25 Probability mass function 606
25.1 PMF as measure . 608
25.2 Monad Interpretation . 613
25.3 PMFs as function . 621
25.4 Conditional Probabilities . 626
25.5 Relator . 628
25.6 Distributions . 639

25.6.1 Bernoulli Distribution 639
25.6.2 Geometric Distribution 640
25.6.3 Uniform Multiset Distribution 640
25.6.4 Uniform Distribution 641
25.6.5 Poisson Distribution 642
25.6.6 Binomial Distribution 643

26 Infinite Streams 644
26.1 prepend list to stream . 645
26.2 set of streams with elements in some fixed set 645
26.3 nth, take, drop for streams . 647
26.4 unary predicates lifted to streams 650
26.5 recurring stream out of a list 650
26.6 iterated application of a function 651
26.7 stream repeating a single element 651
26.8 stream of natural numbers . 652
26.9 flatten a stream of lists . 652
26.10merge a stream of streams . 653
26.11product of two streams . 654
26.12interleave two streams . 654
26.13zip . 655
26.14zip via function . 656

27 List prefixes, suffixes, and homeomorphic embedding 656
27.1 Prefix order on lists . 656
27.2 Basic properties of prefixes 657
27.3 Parallel lists . 660
27.4 Suffix order on lists . 662
27.5 Homeomorphic embedding on lists 665
27.6 Sublists (special case of homeomorphic embedding) 668
27.7 Appending elements . 669
27.8 Relation to standard list operations 670

28 Linear Temporal Logic on Streams 671

29 Preliminaries 671

6

30 Linear temporal logic 671

31 Embed Measure Spaces with a Function 697

32 Non-denumerability of the Continuum. 705
32.1 Abstract . 706

33 Distribution Functions 709
33.1 Properties of cdf’s . 709
33.2 uniqueness . 712

34 Weak Convergence of Functions and Distributions 714

35 Weak Convergence of Functions 714

36 Weak Convergence of Distributions 715

37 Skorohod’s theorem 715

38 Independent families of events, event sets, and random vari-
ables 723

39 Convolution Measure 754

40 Information theory 759
40.1 Information theory . 759
40.2 Kullback−Leibler divergence 760
40.3 Finite Entropy . 766
40.4 Mutual Information . 768
40.5 Entropy . 776
40.6 Conditional Mutual Information 779
40.7 Conditional Entropy . 793
40.8 Equalities . 797

41 Properties of Various Distributions 803
41.1 Erlang . 805
41.2 Exponential distribution . 811
41.3 Uniform distribution . 817
41.4 Normal distribution . 822

42 Characteristic Functions 835
42.1 Application of the FTC: integrating eix 836
42.2 The Characteristic Function of a Real Measure. 836
42.3 Independence . 837
42.4 Approximations to eix . 838

7

42.5 Calculation of the Characteristic Function of the Standard
Distribution . 845

43 Helly’s selection theorem 848

44 Integral of sinc 854
44.1 Various preparatory integrals 854

45 The sinc function, and the sine integral (Si) 857
45.1 The final theorems: boundedness and scalability 862

46 The Levy inversion theorem, and the Levy continuity theo-
rem. 864
46.1 The Levy inversion theorem 864
46.2 The Levy continuity theorem 870

47 The Central Limit Theorem 876

8

Adhoc_Overloading

Binary_Product_Measure

Bochner_Integration

Borel_Space

Caratheodory

Central_Limit_Theorem

Characteristic_Functions

Complete_Measure

ContNotDenum

Convolution

Diagonal_SubsequenceDiscrete_Topology Disjoint_Sets

Distribution_Functions

Distributions

Embed_Measure

Fin_Map

Finite_Product_Measure

Giry_MonadHelly_Selection

Independent_Family

Infinite_Product_Measure

Information

Interval_Integral

Lebesgue_Integral_Substitution

Lebesgue_Measure

Levy

Linear_Temporal_Logic_on_Streams

Measurable

Measure_Space

Monad_Syntax

Multiset

Nonnegative_Lebesgue_Integration

Permutation

Probability

Probability_Mass_Function

Probability_Measure

Projective_Family

Projective_Limit

Radon_Nikodym

Regularity

Set_Integral

Sigma_Algebra

Sinc_Integral

Stream

Stream_Space

Sublist

Weak_Convergence

[HOL-Multivariate_Analysis]

THEORY “Discrete-Topology” 9

theory Discrete-Topology
imports ∼∼/src/HOL/Multivariate-Analysis/Multivariate-Analysis
begin

Copy of discrete types with discrete topology. This space is polish.

typedef ′a discrete = UNIV :: ′a set
morphisms of-discrete discrete
..

instantiation discrete :: (type) metric-space
begin

definition dist-discrete :: ′a discrete ⇒ ′a discrete ⇒ real
where dist-discrete n m = (if n = m then 0 else 1)

definition uniformity-discrete :: (′a discrete × ′a discrete) filter where
(uniformity ::(′a discrete × ′a discrete) filter) = (INF e:{0 <..}. principal {(x ,

y). dist x y < e})

definition open-discrete :: ′a discrete set ⇒ bool where
(open:: ′a discrete set ⇒ bool) U ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→

y ∈ U) uniformity)

instance proof qed (auto simp: uniformity-discrete-def open-discrete-def dist-discrete-def
intro: exI [where x=1])
end

lemma open-discrete: open (S :: ′a discrete set)
unfolding open-dist dist-discrete-def by (auto intro!: exI [of - 1 / 2])

instance discrete :: (type) complete-space
proof

fix X ::nat⇒ ′a discrete assume Cauchy X
hence ∃n. ∀m≥n. X n = X m

by (force simp: dist-discrete-def Cauchy-def split : if-split-asm dest :spec[where
x=1])

then guess n ..
thus convergent X

by (intro convergentI [where L=X n] tendstoI eventually-sequentiallyI [of n])
(simp add : dist-discrete-def)

qed

instance discrete :: (countable) countable
proof

have inj (λc:: ′a discrete. to-nat (of-discrete c))
by (simp add : inj-on-def of-discrete-inject)

thus ∃ f :: ′a discrete ⇒ nat . inj f by blast

THEORY “Disjoint-Sets” 10

qed

instance discrete :: (countable) second-countable-topology
proof

let ?B = range (λn:: ′a discrete. {n})
have

∧
S . generate-topology ?B (

⋃
x∈S . {x})

by (intro generate-topology-Union) (auto intro: generate-topology .intros)
then have open = generate-topology ?B

by (auto intro!: ext simp: open-discrete)
moreover have countable ?B by simp
ultimately show ∃B :: ′a discrete set set . countable B ∧ open = generate-topology

B by blast
qed

instance discrete :: (countable) polish-space ..

end

1 Handling Disjoint Sets

theory Disjoint-Sets
imports Main

begin

lemma range-subsetD : range f ⊆ B =⇒ f i ∈ B
by blast

lemma Int-Diff-disjoint : A ∩ B ∩ (A − B) = {}
by blast

lemma Int-Diff-Un: A ∩ B ∪ (A − B) = A
by blast

lemma mono-Un: mono A =⇒ (
⋃

i≤n. A i) = A n
unfolding mono-def by auto

1.1 Set of Disjoint Sets

abbreviation disjoint :: ′a set set ⇒ bool where disjoint ≡ pairwise disjnt

lemma disjoint-def : disjoint A ←→ (∀ a∈A. ∀ b∈A. a 6= b −→ a ∩ b = {})
unfolding pairwise-def disjnt-def by auto

lemma disjointI :
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ a ∩ b = {}) =⇒ disjoint A
unfolding disjoint-def by auto

lemma disjointD :
disjoint A =⇒ a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ a ∩ b = {}

THEORY “Disjoint-Sets” 11

unfolding disjoint-def by auto

lemma disjoint-INT :
assumes ∗:

∧
i . i ∈ I =⇒ disjoint (F i)

shows disjoint {
⋂

i∈I . X i | X . ∀ i∈I . X i ∈ F i}
proof (safe intro!: disjointI del : equalityI)

fix A B :: ′a ⇒ ′b set assume (
⋂

i∈I . A i) 6= (
⋂

i∈I . B i)
then obtain i where A i 6= B i i ∈ I

by auto
moreover assume ∀ i∈I . A i ∈ F i ∀ i∈I . B i ∈ F i
ultimately show (

⋂
i∈I . A i) ∩ (

⋂
i∈I . B i) = {}

using ∗[OF 〈i∈I 〉, THEN disjointD , of A i B i]
by (auto simp: INT-Int-distrib[symmetric])

qed

1.1.1 Family of Disjoint Sets

definition disjoint-family-on :: (′i ⇒ ′a set) ⇒ ′i set ⇒ bool where
disjoint-family-on A S ←→ (∀m∈S . ∀n∈S . m 6= n −→ A m ∩ A n = {})

abbreviation disjoint-family A ≡ disjoint-family-on A UNIV

lemma disjoint-family-onD :
disjoint-family-on A I =⇒ i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ A i ∩ A j = {}
by (auto simp: disjoint-family-on-def)

lemma disjoint-family-subset : disjoint-family A =⇒ (
∧

x . B x ⊆ A x) =⇒ disjoint-family
B

by (force simp add : disjoint-family-on-def)

lemma disjoint-family-on-bisimulation:
assumes disjoint-family-on f S
and

∧
n m. n ∈ S =⇒ m ∈ S =⇒ n 6= m =⇒ f n ∩ f m = {} =⇒ g n ∩ g m

= {}
shows disjoint-family-on g S
using assms unfolding disjoint-family-on-def by auto

lemma disjoint-family-on-mono:
A ⊆ B =⇒ disjoint-family-on f B =⇒ disjoint-family-on f A
unfolding disjoint-family-on-def by auto

lemma disjoint-family-Suc:
(
∧

n. A n ⊆ A (Suc n)) =⇒ disjoint-family (λi . A (Suc i) − A i)
using lift-Suc-mono-le[of A]
by (auto simp add : disjoint-family-on-def)

(metis insert-absorb insert-subset le-SucE le-antisym not-le-imp-less less-imp-le)

lemma disjoint-family-on-disjoint-image:
disjoint-family-on A I =⇒ disjoint (A ‘ I)

THEORY “Disjoint-Sets” 12

unfolding disjoint-family-on-def disjoint-def by force

lemma disjoint-family-on-vimageI : disjoint-family-on F I =⇒ disjoint-family-on
(λi . f −‘ F i) I

by (auto simp: disjoint-family-on-def)

lemma disjoint-image-disjoint-family-on:
assumes d : disjoint (A ‘ I) and i : inj-on A I
shows disjoint-family-on A I
unfolding disjoint-family-on-def

proof (intro ballI impI)
fix n m assume nm: m ∈ I n ∈ I and n 6= m
with i [THEN inj-onD , of n m] show A n ∩ A m = {}

by (intro disjointD [OF d]) auto
qed

lemma disjoint-UN :
assumes F :

∧
i . i ∈ I =⇒ disjoint (F i) and ∗: disjoint-family-on (λi .

⋃
F i) I

shows disjoint (
⋃

i∈I . F i)
proof (safe intro!: disjointI del : equalityI)

fix A B i j assume A 6= B A ∈ F i i ∈ I B ∈ F j j ∈ I
show A ∩ B = {}
proof cases

assume i = j with F [of i] 〈i ∈ I 〉 〈A ∈ F i 〉 〈B ∈ F j 〉 〈A 6= B 〉 show A ∩ B
= {}

by (auto dest : disjointD)
next

assume i 6= j
with ∗ 〈i∈I 〉 〈j∈I 〉 have (

⋃
F i) ∩ (

⋃
F j) = {}

by (rule disjoint-family-onD)
with 〈A∈F i 〉 〈i∈I 〉 〈B∈F j 〉 〈j∈I 〉

show A ∩ B = {}
by auto

qed
qed

lemma disjoint-union: disjoint C =⇒ disjoint B =⇒
⋃

C ∩
⋃

B = {} =⇒ disjoint
(C ∪ B)

using disjoint-UN [of {C , B} λx . x] by (auto simp add : disjoint-family-on-def)

1.2 Construct Disjoint Sequences

definition disjointed :: (nat ⇒ ′a set) ⇒ nat ⇒ ′a set where
disjointed A n = A n − (

⋃
i∈{0 ..<n}. A i)

lemma finite-UN-disjointed-eq : (
⋃

i∈{0 ..<n}. disjointed A i) = (
⋃

i∈{0 ..<n}. A
i)
proof (induct n)

case 0 show ?case by simp

THEORY “Sigma-Algebra” 13

next
case (Suc n)
thus ?case by (simp add : atLeastLessThanSuc disjointed-def)

qed

lemma UN-disjointed-eq : (
⋃

i . disjointed A i) = (
⋃

i . A i)
by (rule UN-finite2-eq [where k=0])

(simp add : finite-UN-disjointed-eq)

lemma less-disjoint-disjointed : m < n =⇒ disjointed A m ∩ disjointed A n = {}
by (auto simp add : disjointed-def)

lemma disjoint-family-disjointed : disjoint-family (disjointed A)
by (simp add : disjoint-family-on-def)

(metis neq-iff Int-commute less-disjoint-disjointed)

lemma disjointed-subset : disjointed A n ⊆ A n
by (auto simp add : disjointed-def)

lemma disjointed-0 [simp]: disjointed A 0 = A 0
by (simp add : disjointed-def)

lemma disjointed-mono: mono A =⇒ disjointed A (Suc n) = A (Suc n) − A n
using mono-Un[of A] by (simp add : disjointed-def atLeastLessThanSuc-atLeastAtMost

atLeast0AtMost)

end

2 Describing measurable sets

theory Sigma-Algebra
imports

Complex-Main
∼∼/src/HOL/Library/Countable-Set
∼∼/src/HOL/Library/FuncSet
∼∼/src/HOL/Library/Indicator-Function
∼∼/src/HOL/Library/Extended-Nonnegative-Real
∼∼/src/HOL/Library/Disjoint-Sets

begin

Sigma algebras are an elementary concept in measure theory. To measure
— that is to integrate — functions, we first have to measure sets. Un-
fortunately, when dealing with a large universe, it is often not possible to
consistently assign a measure to every subset. Therefore it is necessary to
define the set of measurable subsets of the universe. A sigma algebra is such
a set that has three very natural and desirable properties.

THEORY “Sigma-Algebra” 14

2.1 Families of sets

locale subset-class =
fixes Ω :: ′a set and M :: ′a set set
assumes space-closed : M ⊆ Pow Ω

lemma (in subset-class) sets-into-space: x ∈ M =⇒ x ⊆ Ω
by (metis PowD contra-subsetD space-closed)

2.1.1 Semiring of sets

locale semiring-of-sets = subset-class +
assumes empty-sets[iff]: {} ∈ M
assumes Int [intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∩ b ∈ M

assumes Diff-cover :∧
a b. a ∈ M =⇒ b ∈ M =⇒ ∃C⊆M . finite C ∧ disjoint C ∧ a − b =

⋃
C

lemma (in semiring-of-sets) finite-INT [intro]:
assumes finite I I 6= {}

∧
i . i ∈ I =⇒ A i ∈ M

shows (
⋂

i∈I . A i) ∈ M
using assms by (induct rule: finite-ne-induct) auto

lemma (in semiring-of-sets) Int-space-eq1 [simp]: x ∈ M =⇒ Ω ∩ x = x
by (metis Int-absorb1 sets-into-space)

lemma (in semiring-of-sets) Int-space-eq2 [simp]: x ∈ M =⇒ x ∩ Ω = x
by (metis Int-absorb2 sets-into-space)

lemma (in semiring-of-sets) sets-Collect-conj :
assumes {x∈Ω. P x} ∈ M {x∈Ω. Q x} ∈ M
shows {x∈Ω. Q x ∧ P x} ∈ M

proof −
have {x∈Ω. Q x ∧ P x} = {x∈Ω. Q x} ∩ {x∈Ω. P x}

by auto
with assms show ?thesis by auto

qed

lemma (in semiring-of-sets) sets-Collect-finite-All ′:
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S S 6= {}

shows {x∈Ω. ∀ i∈S . P i x} ∈ M
proof −

have {x∈Ω. ∀ i∈S . P i x} = (
⋂

i∈S . {x∈Ω. P i x})
using 〈S 6= {}〉 by auto

with assms show ?thesis by auto
qed

locale ring-of-sets = semiring-of-sets +
assumes Un [intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∪ b ∈ M

lemma (in ring-of-sets) finite-Union [intro]:

THEORY “Sigma-Algebra” 15

finite X =⇒ X ⊆ M =⇒
⋃

X ∈ M
by (induct set : finite) (auto simp add : Un)

lemma (in ring-of-sets) finite-UN [intro]:
assumes finite I and

∧
i . i ∈ I =⇒ A i ∈ M

shows (
⋃

i∈I . A i) ∈ M
using assms by induct auto

lemma (in ring-of-sets) Diff [intro]:
assumes a ∈ M b ∈ M shows a − b ∈ M
using Diff-cover [OF assms] by auto

lemma ring-of-setsI :
assumes space-closed : M ⊆ Pow Ω
assumes empty-sets[iff]: {} ∈ M
assumes Un[intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∪ b ∈ M

assumes Diff [intro]:
∧

a b. a ∈ M =⇒ b ∈ M =⇒ a − b ∈ M
shows ring-of-sets Ω M

proof
fix a b assume ab: a ∈ M b ∈ M
from ab show ∃C⊆M . finite C ∧ disjoint C ∧ a − b =

⋃
C

by (intro exI [of - {a − b}]) (auto simp: disjoint-def)
have a ∩ b = a − (a − b) by auto
also have . . . ∈ M using ab by auto
finally show a ∩ b ∈ M .

qed fact+

lemma ring-of-sets-iff : ring-of-sets Ω M ←→ M ⊆ Pow Ω ∧ {} ∈ M ∧ (∀ a∈M .
∀ b∈M . a ∪ b ∈ M) ∧ (∀ a∈M . ∀ b∈M . a − b ∈ M)
proof

assume ring-of-sets Ω M
then interpret ring-of-sets Ω M .
show M ⊆ Pow Ω ∧ {} ∈ M ∧ (∀ a∈M . ∀ b∈M . a ∪ b ∈ M) ∧ (∀ a∈M . ∀ b∈M .

a − b ∈ M)
using space-closed by auto

qed (auto intro!: ring-of-setsI)

lemma (in ring-of-sets) insert-in-sets:
assumes {x} ∈ M A ∈ M shows insert x A ∈ M

proof −
have {x} ∪ A ∈ M using assms by (rule Un)
thus ?thesis by auto

qed

lemma (in ring-of-sets) sets-Collect-disj :
assumes {x∈Ω. P x} ∈ M {x∈Ω. Q x} ∈ M
shows {x∈Ω. Q x ∨ P x} ∈ M

proof −
have {x∈Ω. Q x ∨ P x} = {x∈Ω. Q x} ∪ {x∈Ω. P x}

THEORY “Sigma-Algebra” 16

by auto
with assms show ?thesis by auto

qed

lemma (in ring-of-sets) sets-Collect-finite-Ex :
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S

shows {x∈Ω. ∃ i∈S . P i x} ∈ M
proof −

have {x∈Ω. ∃ i∈S . P i x} = (
⋃

i∈S . {x∈Ω. P i x})
by auto

with assms show ?thesis by auto
qed

locale algebra = ring-of-sets +
assumes top [iff]: Ω ∈ M

lemma (in algebra) compl-sets [intro]:
a ∈ M =⇒ Ω − a ∈ M
by auto

lemma algebra-iff-Un:
algebra Ω M ←→

M ⊆ Pow Ω ∧
{} ∈ M ∧
(∀ a ∈ M . Ω − a ∈ M) ∧
(∀ a ∈ M . ∀ b ∈ M . a ∪ b ∈ M) (is - ←→ ?Un)

proof
assume algebra Ω M
then interpret algebra Ω M .
show ?Un using sets-into-space by auto

next
assume ?Un
then have Ω ∈ M by auto
interpret ring-of-sets Ω M
proof (rule ring-of-setsI)

show Ω: M ⊆ Pow Ω {} ∈ M
using 〈?Un〉 by auto

fix a b assume a: a ∈ M and b: b ∈ M
then show a ∪ b ∈ M using 〈?Un〉 by auto
have a − b = Ω − ((Ω − a) ∪ b)

using Ω a b by auto
then show a − b ∈ M

using a b 〈?Un〉 by auto
qed
show algebra Ω M proof qed fact

qed

lemma algebra-iff-Int :
algebra Ω M ←→

THEORY “Sigma-Algebra” 17

M ⊆ Pow Ω & {} ∈ M &
(∀ a ∈ M . Ω − a ∈ M) &
(∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M) (is - ←→ ?Int)

proof
assume algebra Ω M
then interpret algebra Ω M .
show ?Int using sets-into-space by auto

next
assume ?Int
show algebra Ω M
proof (unfold algebra-iff-Un, intro conjI ballI)

show Ω: M ⊆ Pow Ω {} ∈ M
using 〈?Int 〉 by auto

from 〈?Int 〉 show
∧

a. a ∈ M =⇒ Ω − a ∈ M by auto
fix a b assume M : a ∈ M b ∈ M
hence a ∪ b = Ω − ((Ω − a) ∩ (Ω − b))

using Ω by blast
also have ... ∈ M

using M 〈?Int 〉 by auto
finally show a ∪ b ∈ M .

qed
qed

lemma (in algebra) sets-Collect-neg :
assumes {x∈Ω. P x} ∈ M
shows {x∈Ω. ¬ P x} ∈ M

proof −
have {x∈Ω. ¬ P x} = Ω − {x∈Ω. P x} by auto
with assms show ?thesis by auto

qed

lemma (in algebra) sets-Collect-imp:
{x∈Ω. P x} ∈ M =⇒ {x∈Ω. Q x} ∈ M =⇒ {x∈Ω. Q x −→ P x} ∈ M
unfolding imp-conv-disj by (intro sets-Collect-disj sets-Collect-neg)

lemma (in algebra) sets-Collect-const :
{x∈Ω. P} ∈ M
by (cases P) auto

lemma algebra-single-set :
X ⊆ S =⇒ algebra S { {}, X , S − X , S }
by (auto simp: algebra-iff-Int)

2.1.2 Restricted algebras

abbreviation (in algebra)
restricted-space A ≡ (op ∩ A) ‘ M

lemma (in algebra) restricted-algebra:

THEORY “Sigma-Algebra” 18

assumes A ∈ M shows algebra A (restricted-space A)
using assms by (auto simp: algebra-iff-Int)

2.1.3 Sigma Algebras

locale sigma-algebra = algebra +
assumes countable-nat-UN [intro]:

∧
A. range A ⊆ M =⇒ (

⋃
i ::nat . A i) ∈ M

lemma (in algebra) is-sigma-algebra:
assumes finite M
shows sigma-algebra Ω M

proof
fix A :: nat ⇒ ′a set assume range A ⊆ M
then have (

⋃
i . A i) = (

⋃
s∈M ∩ range A. s)

by auto
also have (

⋃
s∈M ∩ range A. s) ∈ M

using 〈finite M 〉 by auto
finally show (

⋃
i . A i) ∈ M .

qed

lemma countable-UN-eq :
fixes A :: ′i ::countable ⇒ ′a set
shows (range A ⊆ M −→ (

⋃
i . A i) ∈ M) ←→

(range (A ◦ from-nat) ⊆ M −→ (
⋃

i . (A ◦ from-nat) i) ∈ M)
proof −

let ?A ′ = A ◦ from-nat
have ∗: (

⋃
i . ?A ′ i) = (

⋃
i . A i) (is ?l = ?r)

proof safe
fix x i assume x ∈ A i thus x ∈ ?l

by (auto intro!: exI [of - to-nat i])
next

fix x i assume x ∈ ?A ′ i thus x ∈ ?r
by (auto intro!: exI [of - from-nat i])

qed
have ∗∗: range ?A ′ = range A

using surj-from-nat
by (auto simp: image-comp [symmetric] intro!: imageI)

show ?thesis unfolding ∗ ∗∗ ..
qed

lemma (in sigma-algebra) countable-Union [intro]:
assumes countable X X ⊆ M shows

⋃
X ∈ M

proof cases
assume X 6= {}
hence

⋃
X = (

⋃
n. from-nat-into X n)

using assms by (auto intro: from-nat-into) (metis from-nat-into-surj)
also have . . . ∈ M using assms

by (auto intro!: countable-nat-UN) (metis 〈X 6= {}〉 from-nat-into set-mp)
finally show ?thesis .

THEORY “Sigma-Algebra” 19

qed simp

lemma (in sigma-algebra) countable-UN [intro]:
fixes A :: ′i ::countable ⇒ ′a set
assumes A‘X ⊆ M
shows (

⋃
x∈X . A x) ∈ M

proof −
let ?A = λi . if i ∈ X then A i else {}
from assms have range ?A ⊆ M by auto
with countable-nat-UN [of ?A ◦ from-nat] countable-UN-eq [of ?A M]
have (

⋃
x . ?A x) ∈ M by auto

moreover have (
⋃

x . ?A x) = (
⋃

x∈X . A x) by (auto split : if-split-asm)
ultimately show ?thesis by simp

qed

lemma (in sigma-algebra) countable-UN ′:
fixes A :: ′i ⇒ ′a set
assumes X : countable X
assumes A: A‘X ⊆ M
shows (

⋃
x∈X . A x) ∈ M

proof −
have (

⋃
x∈X . A x) = (

⋃
i∈to-nat-on X ‘ X . A (from-nat-into X i))

using X by auto
also have . . . ∈ M

using A X
by (intro countable-UN) auto

finally show ?thesis .
qed

lemma (in sigma-algebra) countable-UN ′′:
[[countable X ;

∧
x y . x ∈ X =⇒ A x ∈ M]] =⇒ (

⋃
x∈X . A x) ∈ M

by(erule countable-UN ′)(auto)

lemma (in sigma-algebra) countable-INT [intro]:
fixes A :: ′i ::countable ⇒ ′a set
assumes A: A‘X ⊆ M X 6= {}
shows (

⋂
i∈X . A i) ∈ M

proof −
from A have ∀ i∈X . A i ∈ M by fast
hence Ω − (

⋃
i∈X . Ω − A i) ∈ M by blast

moreover
have (

⋂
i∈X . A i) = Ω − (

⋃
i∈X . Ω − A i) using space-closed A

by blast
ultimately show ?thesis by metis

qed

lemma (in sigma-algebra) countable-INT ′:
fixes A :: ′i ⇒ ′a set
assumes X : countable X X 6= {}

THEORY “Sigma-Algebra” 20

assumes A: A‘X ⊆ M
shows (

⋂
x∈X . A x) ∈ M

proof −
have (

⋂
x∈X . A x) = (

⋂
i∈to-nat-on X ‘ X . A (from-nat-into X i))

using X by auto
also have . . . ∈ M

using A X
by (intro countable-INT) auto

finally show ?thesis .
qed

lemma (in sigma-algebra) countable-INT ′′:
UNIV ∈ M =⇒ countable I =⇒ (

∧
i . i ∈ I =⇒ F i ∈ M) =⇒ (

⋂
i∈I . F i) ∈ M

by (cases I = {}) (auto intro: countable-INT ′)

lemma (in sigma-algebra) countable:
assumes

∧
a. a ∈ A =⇒ {a} ∈ M countable A

shows A ∈ M
proof −

have (
⋃

a∈A. {a}) ∈ M
using assms by (intro countable-UN ′) auto

also have (
⋃

a∈A. {a}) = A by auto
finally show ?thesis by auto

qed

lemma ring-of-sets-Pow : ring-of-sets sp (Pow sp)
by (auto simp: ring-of-sets-iff)

lemma algebra-Pow : algebra sp (Pow sp)
by (auto simp: algebra-iff-Un)

lemma sigma-algebra-iff :
sigma-algebra Ω M ←→

algebra Ω M ∧ (∀A. range A ⊆ M −→ (
⋃

i ::nat . A i) ∈ M)
by (simp add : sigma-algebra-def sigma-algebra-axioms-def)

lemma sigma-algebra-Pow : sigma-algebra sp (Pow sp)
by (auto simp: sigma-algebra-iff algebra-iff-Int)

lemma (in sigma-algebra) sets-Collect-countable-All :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∀ i :: ′i ::countable. P i x} ∈ M
proof −

have {x∈Ω. ∀ i :: ′i ::countable. P i x} = (
⋂

i . {x∈Ω. P i x}) by auto
with assms show ?thesis by auto

qed

lemma (in sigma-algebra) sets-Collect-countable-Ex :
assumes

∧
i . {x∈Ω. P i x} ∈ M

THEORY “Sigma-Algebra” 21

shows {x∈Ω. ∃ i :: ′i ::countable. P i x} ∈ M
proof −

have {x∈Ω. ∃ i :: ′i ::countable. P i x} = (
⋃

i . {x∈Ω. P i x}) by auto
with assms show ?thesis by auto

qed

lemma (in sigma-algebra) sets-Collect-countable-Ex ′:
assumes

∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∃ i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∃ i∈I . P i x} = (

⋃
i∈I . {x∈Ω. P i x}) by auto

with assms show ?thesis
by (auto intro!: countable-UN ′)

qed

lemma (in sigma-algebra) sets-Collect-countable-All ′:
assumes

∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∀ i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∀ i∈I . P i x} = (

⋂
i∈I . {x∈Ω. P i x}) ∩ Ω by auto

with assms show ?thesis
by (cases I = {}) (auto intro!: countable-INT ′)

qed

lemma (in sigma-algebra) sets-Collect-countable-Ex1 ′:
assumes

∧
i . i ∈ I =⇒ {x∈Ω. P i x} ∈ M

assumes countable I
shows {x∈Ω. ∃ !i∈I . P i x} ∈ M

proof −
have {x∈Ω. ∃ !i∈I . P i x} = {x∈Ω. ∃ i∈I . P i x ∧ (∀ j∈I . P j x −→ i = j)}

by auto
with assms show ?thesis
by (auto intro!: sets-Collect-countable-All ′ sets-Collect-countable-Ex ′ sets-Collect-conj

sets-Collect-imp sets-Collect-const)
qed

lemmas (in sigma-algebra) sets-Collect =
sets-Collect-imp sets-Collect-disj sets-Collect-conj sets-Collect-neg sets-Collect-const
sets-Collect-countable-All sets-Collect-countable-Ex sets-Collect-countable-All

lemma (in sigma-algebra) sets-Collect-countable-Ball :
assumes

∧
i . {x∈Ω. P i x} ∈ M

shows {x∈Ω. ∀ i :: ′i ::countable∈X . P i x} ∈ M
unfolding Ball-def by (intro sets-Collect assms)

lemma (in sigma-algebra) sets-Collect-countable-Bex :
assumes

∧
i . {x∈Ω. P i x} ∈ M

THEORY “Sigma-Algebra” 22

shows {x∈Ω. ∃ i :: ′i ::countable∈X . P i x} ∈ M
unfolding Bex-def by (intro sets-Collect assms)

lemma sigma-algebra-single-set :
assumes X ⊆ S
shows sigma-algebra S { {}, X , S − X , S }
using algebra.is-sigma-algebra[OF algebra-single-set [OF 〈X ⊆ S 〉]] by simp

2.1.4 Binary Unions

definition binary :: ′a ⇒ ′a ⇒ nat ⇒ ′a
where binary a b = (λx . b)(0 := a)

lemma range-binary-eq : range(binary a b) = {a,b}
by (auto simp add : binary-def)

lemma Un-range-binary : a ∪ b = (
⋃

i ::nat . binary a b i)
by (simp add : range-binary-eq cong del : strong-SUP-cong)

lemma Int-range-binary : a ∩ b = (
⋂

i ::nat . binary a b i)
by (simp add : range-binary-eq cong del : strong-INF-cong)

lemma sigma-algebra-iff2 :
sigma-algebra Ω M ←→

M ⊆ Pow Ω ∧
{} ∈ M ∧ (∀ s ∈ M . Ω − s ∈ M) ∧
(∀A. range A ⊆ M −→ (

⋃
i ::nat . A i) ∈ M)

by (auto simp add : range-binary-eq sigma-algebra-def sigma-algebra-axioms-def
algebra-iff-Un Un-range-binary)

2.1.5 Initial Sigma Algebra

Sigma algebras can naturally be created as the closure of any set of M with
regard to the properties just postulated.

inductive-set sigma-sets :: ′a set ⇒ ′a set set ⇒ ′a set set
for sp :: ′a set and A :: ′a set set
where

Basic[intro, simp]: a ∈ A =⇒ a ∈ sigma-sets sp A
| Empty : {} ∈ sigma-sets sp A
| Compl : a ∈ sigma-sets sp A =⇒ sp − a ∈ sigma-sets sp A
| Union: (

∧
i ::nat . a i ∈ sigma-sets sp A) =⇒ (

⋃
i . a i) ∈ sigma-sets sp A

lemma (in sigma-algebra) sigma-sets-subset :
assumes a: a ⊆ M
shows sigma-sets Ω a ⊆ M

proof
fix x
assume x ∈ sigma-sets Ω a
from this show x ∈ M

THEORY “Sigma-Algebra” 23

by (induct rule: sigma-sets.induct , auto) (metis a subsetD)
qed

lemma sigma-sets-into-sp: A ⊆ Pow sp =⇒ x ∈ sigma-sets sp A =⇒ x ⊆ sp
by (erule sigma-sets.induct , auto)

lemma sigma-algebra-sigma-sets:
a ⊆ Pow Ω =⇒ sigma-algebra Ω (sigma-sets Ω a)

by (auto simp add : sigma-algebra-iff2 dest : sigma-sets-into-sp
intro!: sigma-sets.Union sigma-sets.Empty sigma-sets.Compl)

lemma sigma-sets-least-sigma-algebra:
assumes A ⊆ Pow S
shows sigma-sets S A =

⋂
{B . A ⊆ B ∧ sigma-algebra S B}

proof safe
fix B X assume A ⊆ B and sa: sigma-algebra S B

and X : X ∈ sigma-sets S A
from sigma-algebra.sigma-sets-subset [OF sa, simplified , OF 〈A ⊆ B 〉] X
show X ∈ B by auto

next
fix X assume X ∈

⋂
{B . A ⊆ B ∧ sigma-algebra S B}

then have [intro!]:
∧

B . A ⊆ B =⇒ sigma-algebra S B =⇒ X ∈ B
by simp

have A ⊆ sigma-sets S A using assms by auto
moreover have sigma-algebra S (sigma-sets S A)

using assms by (intro sigma-algebra-sigma-sets[of A]) auto
ultimately show X ∈ sigma-sets S A by auto

qed

lemma sigma-sets-top: sp ∈ sigma-sets sp A
by (metis Diff-empty sigma-sets.Compl sigma-sets.Empty)

lemma sigma-sets-Un:
a ∈ sigma-sets sp A =⇒ b ∈ sigma-sets sp A =⇒ a ∪ b ∈ sigma-sets sp A

apply (simp add : Un-range-binary range-binary-eq)
apply (rule Union, simp add : binary-def)
done

lemma sigma-sets-Inter :
assumes Asb: A ⊆ Pow sp
shows (

∧
i ::nat . a i ∈ sigma-sets sp A) =⇒ (

⋂
i . a i) ∈ sigma-sets sp A

proof −
assume ai :

∧
i ::nat . a i ∈ sigma-sets sp A

hence
∧

i ::nat . sp−(a i) ∈ sigma-sets sp A
by (rule sigma-sets.Compl)

hence (
⋃

i . sp−(a i)) ∈ sigma-sets sp A
by (rule sigma-sets.Union)

hence sp−(
⋃

i . sp−(a i)) ∈ sigma-sets sp A
by (rule sigma-sets.Compl)

THEORY “Sigma-Algebra” 24

also have sp−(
⋃

i . sp−(a i)) = sp Int (
⋂

i . a i)
by auto

also have ... = (
⋂

i . a i) using ai
by (blast dest : sigma-sets-into-sp [OF Asb])

finally show ?thesis .
qed

lemma sigma-sets-INTER:
assumes Asb: A ⊆ Pow sp

and ai :
∧

i ::nat . i ∈ S =⇒ a i ∈ sigma-sets sp A and non: S 6= {}
shows (

⋂
i∈S . a i) ∈ sigma-sets sp A

proof −
from ai have

∧
i . (if i∈S then a i else sp) ∈ sigma-sets sp A

by (simp add : sigma-sets.intros(2−) sigma-sets-top)
hence (

⋂
i . (if i∈S then a i else sp)) ∈ sigma-sets sp A

by (rule sigma-sets-Inter [OF Asb])
also have (

⋂
i . (if i∈S then a i else sp)) = (

⋂
i∈S . a i)

by auto (metis ai non sigma-sets-into-sp subset-empty subset-iff Asb)+
finally show ?thesis .

qed

lemma sigma-sets-UNION :
countable B =⇒ (

∧
b. b ∈ B =⇒ b ∈ sigma-sets X A) =⇒ (

⋃
B) ∈ sigma-sets

X A
apply (cases B = {})
apply (simp add : sigma-sets.Empty)
using from-nat-into [of B] range-from-nat-into [of B] sigma-sets.Union [of from-nat-into

B X A]
apply simp
apply auto
apply (metis Sup-bot-conv(1) Union-empty 〈[[B 6= {}; countable B]] =⇒ range

(from-nat-into B) = B 〉)
done

lemma (in sigma-algebra) sigma-sets-eq :
sigma-sets Ω M = M

proof
show M ⊆ sigma-sets Ω M

by (metis Set .subsetI sigma-sets.Basic)
next
show sigma-sets Ω M ⊆ M

by (metis sigma-sets-subset subset-refl)
qed

lemma sigma-sets-eqI :
assumes A:

∧
a. a ∈ A =⇒ a ∈ sigma-sets M B

assumes B :
∧

b. b ∈ B =⇒ b ∈ sigma-sets M A
shows sigma-sets M A = sigma-sets M B

proof (intro set-eqI iffI)

THEORY “Sigma-Algebra” 25

fix a assume a ∈ sigma-sets M A
from this A show a ∈ sigma-sets M B

by induct (auto intro!: sigma-sets.intros(2−) del : sigma-sets.Basic)
next

fix b assume b ∈ sigma-sets M B
from this B show b ∈ sigma-sets M A

by induct (auto intro!: sigma-sets.intros(2−) del : sigma-sets.Basic)
qed

lemma sigma-sets-subseteq : assumes A ⊆ B shows sigma-sets X A ⊆ sigma-sets
X B
proof

fix x assume x ∈ sigma-sets X A then show x ∈ sigma-sets X B
by induct (insert 〈A ⊆ B 〉, auto intro: sigma-sets.intros(2−))

qed

lemma sigma-sets-mono: assumes A ⊆ sigma-sets X B shows sigma-sets X A ⊆
sigma-sets X B
proof

fix x assume x ∈ sigma-sets X A then show x ∈ sigma-sets X B
by induct (insert 〈A ⊆ sigma-sets X B 〉, auto intro: sigma-sets.intros(2−))

qed

lemma sigma-sets-mono ′: assumes A ⊆ B shows sigma-sets X A ⊆ sigma-sets
X B
proof

fix x assume x ∈ sigma-sets X A then show x ∈ sigma-sets X B
by induct (insert 〈A ⊆ B 〉, auto intro: sigma-sets.intros(2−))

qed

lemma sigma-sets-superset-generator : A ⊆ sigma-sets X A
by (auto intro: sigma-sets.Basic)

lemma (in sigma-algebra) restriction-in-sets:
fixes A :: nat ⇒ ′a set
assumes S ∈ M
and ∗: range A ⊆ (λA. S ∩ A) ‘ M (is - ⊆ ?r)
shows range A ⊆ M (

⋃
i . A i) ∈ (λA. S ∩ A) ‘ M

proof −
{ fix i have A i ∈ ?r using ∗ by auto

hence ∃B . A i = B ∩ S ∧ B ∈ M by auto
hence A i ⊆ S A i ∈ M using 〈S ∈ M 〉 by auto }

thus range A ⊆ M (
⋃

i . A i) ∈ (λA. S ∩ A) ‘ M
by (auto intro!: image-eqI [of - - (

⋃
i . A i)])

qed

lemma (in sigma-algebra) restricted-sigma-algebra:
assumes S ∈ M
shows sigma-algebra S (restricted-space S)

THEORY “Sigma-Algebra” 26

unfolding sigma-algebra-def sigma-algebra-axioms-def
proof safe

show algebra S (restricted-space S) using restricted-algebra[OF assms] .
next

fix A :: nat ⇒ ′a set assume range A ⊆ restricted-space S
from restriction-in-sets[OF assms this[simplified]]
show (

⋃
i . A i) ∈ restricted-space S by simp

qed

lemma sigma-sets-Int :
assumes A ∈ sigma-sets sp st A ⊆ sp
shows op ∩ A ‘ sigma-sets sp st = sigma-sets A (op ∩ A ‘ st)

proof (intro equalityI subsetI)
fix x assume x ∈ op ∩ A ‘ sigma-sets sp st
then obtain y where y ∈ sigma-sets sp st x = y ∩ A by auto
then have x ∈ sigma-sets (A ∩ sp) (op ∩ A ‘ st)
proof (induct arbitrary : x)

case (Compl a)
then show ?case

by (force intro!: sigma-sets.Compl simp: Diff-Int-distrib ac-simps)
next

case (Union a)
then show ?case

by (auto intro!: sigma-sets.Union
simp add : UN-extend-simps simp del : UN-simps)

qed (auto intro!: sigma-sets.intros(2−))
then show x ∈ sigma-sets A (op ∩ A ‘ st)

using 〈A ⊆ sp〉 by (simp add : Int-absorb2)
next

fix x assume x ∈ sigma-sets A (op ∩ A ‘ st)
then show x ∈ op ∩ A ‘ sigma-sets sp st
proof induct

case (Compl a)
then obtain x where a = A ∩ x x ∈ sigma-sets sp st by auto
then show ?case using 〈A ⊆ sp〉

by (force simp add : image-iff intro!: bexI [of - sp − x] sigma-sets.Compl)
next

case (Union a)
then have ∀ i . ∃ x . x ∈ sigma-sets sp st ∧ a i = A ∩ x

by (auto simp: image-iff Bex-def)
from choice[OF this] guess f ..
then show ?case

by (auto intro!: bexI [of - (
⋃

x . f x)] sigma-sets.Union
simp add : image-iff)

qed (auto intro!: sigma-sets.intros(2−))
qed

lemma sigma-sets-empty-eq : sigma-sets A {} = {{}, A}
proof (intro set-eqI iffI)

THEORY “Sigma-Algebra” 27

fix a assume a ∈ sigma-sets A {} then show a ∈ {{}, A}
by induct blast+

qed (auto intro: sigma-sets.Empty sigma-sets-top)

lemma sigma-sets-single[simp]: sigma-sets A {A} = {{}, A}
proof (intro set-eqI iffI)

fix x assume x ∈ sigma-sets A {A}
then show x ∈ {{}, A}

by induct blast+
next

fix x assume x ∈ {{}, A}
then show x ∈ sigma-sets A {A}

by (auto intro: sigma-sets.Empty sigma-sets-top)
qed

lemma sigma-sets-sigma-sets-eq :
M ⊆ Pow S =⇒ sigma-sets S (sigma-sets S M) = sigma-sets S M
by (rule sigma-algebra.sigma-sets-eq [OF sigma-algebra-sigma-sets, of M S]) auto

lemma sigma-sets-singleton:
assumes X ⊆ S
shows sigma-sets S { X } = { {}, X , S − X , S }

proof −
interpret sigma-algebra S { {}, X , S − X , S }

by (rule sigma-algebra-single-set) fact
have sigma-sets S { X } ⊆ sigma-sets S { {}, X , S − X , S }

by (rule sigma-sets-subseteq) simp
moreover have . . . = { {}, X , S − X , S }

using sigma-sets-eq by simp
moreover
{ fix A assume A ∈ { {}, X , S − X , S }

then have A ∈ sigma-sets S { X }
by (auto intro: sigma-sets.intros(2−) sigma-sets-top) }

ultimately have sigma-sets S { X } = sigma-sets S { {}, X , S − X , S }
by (intro antisym) auto

with sigma-sets-eq show ?thesis by simp
qed

lemma restricted-sigma:
assumes S : S ∈ sigma-sets Ω M and M : M ⊆ Pow Ω
shows algebra.restricted-space (sigma-sets Ω M) S =

sigma-sets S (algebra.restricted-space M S)
proof −

from S sigma-sets-into-sp[OF M]
have S ∈ sigma-sets Ω M S ⊆ Ω by auto
from sigma-sets-Int [OF this]
show ?thesis by simp

qed

THEORY “Sigma-Algebra” 28

lemma sigma-sets-vimage-commute:
assumes X : X ∈ Ω → Ω ′

shows {X −‘ A ∩ Ω |A. A ∈ sigma-sets Ω ′ M ′}
= sigma-sets Ω {X −‘ A ∩ Ω |A. A ∈ M ′} (is ?L = ?R)

proof
show ?L ⊆ ?R
proof clarify

fix A assume A ∈ sigma-sets Ω ′ M ′

then show X −‘ A ∩ Ω ∈ ?R
proof induct

case Empty then show ?case
by (auto intro!: sigma-sets.Empty)

next
case (Compl B)
have [simp]: X −‘ (Ω ′ − B) ∩ Ω = Ω − (X −‘ B ∩ Ω)

by (auto simp add : funcset-mem [OF X])
with Compl show ?case

by (auto intro!: sigma-sets.Compl)
next

case (Union F)
then show ?case

by (auto simp add : vimage-UN UN-extend-simps(4) simp del : UN-simps
intro!: sigma-sets.Union)

qed auto
qed
show ?R ⊆ ?L
proof clarify

fix A assume A ∈ ?R
then show ∃B . A = X −‘ B ∩ Ω ∧ B ∈ sigma-sets Ω ′ M ′

proof induct
case (Basic B) then show ?case by auto

next
case Empty then show ?case

by (auto intro!: sigma-sets.Empty exI [of - {}])
next

case (Compl B)
then obtain A where A: B = X −‘ A ∩ Ω A ∈ sigma-sets Ω ′ M ′ by auto
then have [simp]: Ω − B = X −‘ (Ω ′ − A) ∩ Ω

by (auto simp add : funcset-mem [OF X])
with A(2) show ?case

by (auto intro: sigma-sets.Compl)
next

case (Union F)
then have ∀ i . ∃B . F i = X −‘ B ∩ Ω ∧ B ∈ sigma-sets Ω ′ M ′ by auto
from choice[OF this] guess A .. note A = this
with A show ?case

by (auto simp: vimage-UN [symmetric] intro: sigma-sets.Union)
qed

qed

THEORY “Sigma-Algebra” 29

qed

lemma (in ring-of-sets) UNION-in-sets:
fixes A:: nat ⇒ ′a set
assumes A: range A ⊆ M
shows (

⋃
i∈{0 ..<n}. A i) ∈ M

proof (induct n)
case 0 show ?case by simp

next
case (Suc n)
thus ?case

by (simp add : atLeastLessThanSuc) (metis A Un UNIV-I image-subset-iff)
qed

lemma (in ring-of-sets) range-disjointed-sets:
assumes A: range A ⊆ M
shows range (disjointed A) ⊆ M

proof (auto simp add : disjointed-def)
fix n
show A n − (

⋃
i∈{0 ..<n}. A i) ∈ M using UNION-in-sets

by (metis A Diff UNIV-I image-subset-iff)
qed

lemma (in algebra) range-disjointed-sets ′:
range A ⊆ M =⇒ range (disjointed A) ⊆ M
using range-disjointed-sets .

lemma sigma-algebra-disjoint-iff :
sigma-algebra Ω M ←→ algebra Ω M ∧

(∀A. range A ⊆ M −→ disjoint-family A −→ (
⋃

i ::nat . A i) ∈ M)
proof (auto simp add : sigma-algebra-iff)

fix A :: nat ⇒ ′a set
assume M : algebra Ω M

and A: range A ⊆ M
and UnA: ∀A. range A ⊆ M −→ disjoint-family A −→ (

⋃
i ::nat . A i) ∈ M

hence range (disjointed A) ⊆ M −→
disjoint-family (disjointed A) −→
(
⋃

i . disjointed A i) ∈ M by blast
hence (

⋃
i . disjointed A i) ∈ M

by (simp add : algebra.range-disjointed-sets ′[of Ω] M A disjoint-family-disjointed)
thus (

⋃
i ::nat . A i) ∈ M by (simp add : UN-disjointed-eq)

qed

2.1.6 Ring generated by a semiring

definition (in semiring-of-sets)
generated-ring = {

⋃
C | C . C ⊆ M ∧ finite C ∧ disjoint C }

lemma (in semiring-of-sets) generated-ringE [elim?]:

THEORY “Sigma-Algebra” 30

assumes a ∈ generated-ring
obtains C where finite C disjoint C C ⊆ M a =

⋃
C

using assms unfolding generated-ring-def by auto

lemma (in semiring-of-sets) generated-ringI [intro?]:
assumes finite C disjoint C C ⊆ M a =

⋃
C

shows a ∈ generated-ring
using assms unfolding generated-ring-def by auto

lemma (in semiring-of-sets) generated-ringI-Basic:
A ∈ M =⇒ A ∈ generated-ring
by (rule generated-ringI [of {A}]) (auto simp: disjoint-def)

lemma (in semiring-of-sets) generated-ring-disjoint-Un[intro]:
assumes a: a ∈ generated-ring and b: b ∈ generated-ring
and a ∩ b = {}
shows a ∪ b ∈ generated-ring

proof −
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
show ?thesis
proof

show disjoint (Ca ∪ Cb)
using 〈a ∩ b = {}〉 Ca Cb by (auto intro!: disjoint-union)

qed (insert Ca Cb, auto)
qed

lemma (in semiring-of-sets) generated-ring-empty : {} ∈ generated-ring
by (auto simp: generated-ring-def disjoint-def)

lemma (in semiring-of-sets) generated-ring-disjoint-Union:
assumes finite A shows A ⊆ generated-ring =⇒ disjoint A =⇒

⋃
A ∈ generated-ring

using assms by (induct A) (auto simp: disjoint-def intro!: generated-ring-disjoint-Un
generated-ring-empty)

lemma (in semiring-of-sets) generated-ring-disjoint-UNION :
finite I =⇒ disjoint (A ‘ I) =⇒ (

∧
i . i ∈ I =⇒ A i ∈ generated-ring) =⇒ UNION

I A ∈ generated-ring
by (intro generated-ring-disjoint-Union) auto

lemma (in semiring-of-sets) generated-ring-Int :
assumes a: a ∈ generated-ring and b: b ∈ generated-ring
shows a ∩ b ∈ generated-ring

proof −
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
def C ≡ (λ(a,b). a ∩ b)‘ (Ca×Cb)
show ?thesis
proof

THEORY “Sigma-Algebra” 31

show disjoint C
proof (simp add : disjoint-def C-def , intro ballI impI)

fix a1 b1 a2 b2 assume sets: a1 ∈ Ca b1 ∈ Cb a2 ∈ Ca b2 ∈ Cb
assume a1 ∩ b1 6= a2 ∩ b2
then have a1 6= a2 ∨ b1 6= b2 by auto
then show (a1 ∩ b1) ∩ (a2 ∩ b2) = {}
proof

assume a1 6= a2
with sets Ca have a1 ∩ a2 = {}

by (auto simp: disjoint-def)
then show ?thesis by auto

next
assume b1 6= b2
with sets Cb have b1 ∩ b2 = {}

by (auto simp: disjoint-def)
then show ?thesis by auto

qed
qed

qed (insert Ca Cb, auto simp: C-def)
qed

lemma (in semiring-of-sets) generated-ring-Inter :
assumes finite A A 6= {} shows A ⊆ generated-ring =⇒

⋂
A ∈ generated-ring

using assms by (induct A rule: finite-ne-induct) (auto intro: generated-ring-Int)

lemma (in semiring-of-sets) generated-ring-INTER:
finite I =⇒ I 6= {} =⇒ (

∧
i . i ∈ I =⇒ A i ∈ generated-ring) =⇒ INTER I A ∈

generated-ring
by (intro generated-ring-Inter) auto

lemma (in semiring-of-sets) generating-ring :
ring-of-sets Ω generated-ring

proof (rule ring-of-setsI)
let ?R = generated-ring
show ?R ⊆ Pow Ω

using sets-into-space by (auto simp: generated-ring-def generated-ring-empty)
show {} ∈ ?R by (rule generated-ring-empty)

{ fix a assume a: a ∈ ?R then guess Ca .. note Ca = this
fix b assume b: b ∈ ?R then guess Cb .. note Cb = this

show a − b ∈ ?R
proof cases

assume Cb = {} with Cb 〈a ∈ ?R〉 show ?thesis
by simp

next
assume Cb 6= {}
with Ca Cb have a − b = (

⋃
a ′∈Ca.

⋂
b ′∈Cb. a ′ − b ′) by auto

also have . . . ∈ ?R

THEORY “Sigma-Algebra” 32

proof (intro generated-ring-INTER generated-ring-disjoint-UNION)
fix a b assume a ∈ Ca b ∈ Cb
with Ca Cb Diff-cover [of a b] show a − b ∈ ?R

by (auto simp add : generated-ring-def)
(metis DiffI Diff-eq-empty-iff empty-iff)

next
show disjoint ((λa ′.

⋂
b ′∈Cb. a ′ − b ′)‘Ca)

using Ca by (auto simp add : disjoint-def 〈Cb 6= {}〉)
next

show finite Ca finite Cb Cb 6= {} by fact+
qed
finally show a − b ∈ ?R .

qed }
note Diff = this

fix a b assume sets: a ∈ ?R b ∈ ?R
have a ∪ b = (a − b) ∪ (a ∩ b) ∪ (b − a) by auto
also have . . . ∈ ?R

by (intro sets generated-ring-disjoint-Un generated-ring-Int Diff) auto
finally show a ∪ b ∈ ?R .

qed

lemma (in semiring-of-sets) sigma-sets-generated-ring-eq : sigma-sets Ω generated-ring
= sigma-sets Ω M
proof

interpret M : sigma-algebra Ω sigma-sets Ω M
using space-closed by (rule sigma-algebra-sigma-sets)

show sigma-sets Ω generated-ring ⊆ sigma-sets Ω M
by (blast intro!: sigma-sets-mono elim: generated-ringE)

qed (auto intro!: generated-ringI-Basic sigma-sets-mono)

2.1.7 A Two-Element Series

definition binaryset :: ′a set ⇒ ′a set ⇒ nat ⇒ ′a set
where binaryset A B = (λx . {})(0 := A, Suc 0 := B)

lemma range-binaryset-eq : range(binaryset A B) = {A,B ,{}}
apply (simp add : binaryset-def)
apply (rule set-eqI)
apply (auto simp add : image-iff)
done

lemma UN-binaryset-eq : (
⋃

i . binaryset A B i) = A ∪ B
by (simp add : range-binaryset-eq cong del : strong-SUP-cong)

2.1.8 Closed CDI

definition closed-cdi where
closed-cdi Ω M ←→
M ⊆ Pow Ω &

THEORY “Sigma-Algebra” 33

(∀ s ∈ M . Ω − s ∈ M) &
(∀A. (range A ⊆ M) & (A 0 = {}) & (∀n. A n ⊆ A (Suc n)) −→

(
⋃

i . A i) ∈ M) &
(∀A. (range A ⊆ M) & disjoint-family A −→ (

⋃
i ::nat . A i) ∈ M)

inductive-set
smallest-ccdi-sets :: ′a set ⇒ ′a set set ⇒ ′a set set
for Ω M
where

Basic [intro]:
a ∈ M =⇒ a ∈ smallest-ccdi-sets Ω M

| Compl [intro]:
a ∈ smallest-ccdi-sets Ω M =⇒ Ω − a ∈ smallest-ccdi-sets Ω M

| Inc:
range A ∈ Pow(smallest-ccdi-sets Ω M) =⇒ A 0 = {} =⇒ (

∧
n. A n ⊆ A

(Suc n))
=⇒ (

⋃
i . A i) ∈ smallest-ccdi-sets Ω M

| Disj :
range A ∈ Pow(smallest-ccdi-sets Ω M) =⇒ disjoint-family A
=⇒ (

⋃
i ::nat . A i) ∈ smallest-ccdi-sets Ω M

lemma (in subset-class) smallest-closed-cdi1 : M ⊆ smallest-ccdi-sets Ω M
by auto

lemma (in subset-class) smallest-ccdi-sets: smallest-ccdi-sets Ω M ⊆ Pow Ω
apply (rule subsetI)
apply (erule smallest-ccdi-sets.induct)
apply (auto intro: range-subsetD dest : sets-into-space)
done

lemma (in subset-class) smallest-closed-cdi2 : closed-cdi Ω (smallest-ccdi-sets Ω
M)

apply (auto simp add : closed-cdi-def smallest-ccdi-sets)
apply (blast intro: smallest-ccdi-sets.Inc smallest-ccdi-sets.Disj) +
done

lemma closed-cdi-subset : closed-cdi Ω M =⇒ M ⊆ Pow Ω
by (simp add : closed-cdi-def)

lemma closed-cdi-Compl : closed-cdi Ω M =⇒ s ∈ M =⇒ Ω − s ∈ M
by (simp add : closed-cdi-def)

lemma closed-cdi-Inc:
closed-cdi Ω M =⇒ range A ⊆ M =⇒ A 0 = {} =⇒ (!!n. A n ⊆ A (Suc n))

=⇒ (
⋃

i . A i) ∈ M
by (simp add : closed-cdi-def)

lemma closed-cdi-Disj :
closed-cdi Ω M =⇒ range A ⊆ M =⇒ disjoint-family A =⇒ (

⋃
i ::nat . A i) ∈ M

THEORY “Sigma-Algebra” 34

by (simp add : closed-cdi-def)

lemma closed-cdi-Un:
assumes cdi : closed-cdi Ω M and empty : {} ∈ M

and A: A ∈ M and B : B ∈ M
and disj : A ∩ B = {}

shows A ∪ B ∈ M
proof −

have ra: range (binaryset A B) ⊆ M
by (simp add : range-binaryset-eq empty A B)

have di : disjoint-family (binaryset A B) using disj
by (simp add : disjoint-family-on-def binaryset-def Int-commute)

from closed-cdi-Disj [OF cdi ra di]
show ?thesis

by (simp add : UN-binaryset-eq)
qed

lemma (in algebra) smallest-ccdi-sets-Un:
assumes A: A ∈ smallest-ccdi-sets Ω M and B : B ∈ smallest-ccdi-sets Ω M

and disj : A ∩ B = {}
shows A ∪ B ∈ smallest-ccdi-sets Ω M

proof −
have ra: range (binaryset A B) ∈ Pow (smallest-ccdi-sets Ω M)

by (simp add : range-binaryset-eq A B smallest-ccdi-sets.Basic)
have di : disjoint-family (binaryset A B) using disj

by (simp add : disjoint-family-on-def binaryset-def Int-commute)
from Disj [OF ra di]
show ?thesis

by (simp add : UN-binaryset-eq)
qed

lemma (in algebra) smallest-ccdi-sets-Int1 :
assumes a: a ∈ M
shows b ∈ smallest-ccdi-sets Ω M =⇒ a ∩ b ∈ smallest-ccdi-sets Ω M

proof (induct rule: smallest-ccdi-sets.induct)
case (Basic x)
thus ?case

by (metis a Int smallest-ccdi-sets.Basic)
next

case (Compl x)
have a ∩ (Ω − x) = Ω − ((Ω − a) ∪ (a ∩ x))

by blast
also have ... ∈ smallest-ccdi-sets Ω M

by (metis smallest-ccdi-sets.Compl a Compl(2) Diff-Int2 Diff-Int-distrib2
Diff-disjoint Int-Diff Int-empty-right smallest-ccdi-sets-Un
smallest-ccdi-sets.Basic smallest-ccdi-sets.Compl)

finally show ?case .
next

case (Inc A)

THEORY “Sigma-Algebra” 35

have 1 : (
⋃

i . (λi . a ∩ A i) i) = a ∩ (
⋃

i . A i)
by blast

have range (λi . a ∩ A i) ∈ Pow(smallest-ccdi-sets Ω M) using Inc
by blast

moreover have (λi . a ∩ A i) 0 = {}
by (simp add : Inc)

moreover have !!n. (λi . a ∩ A i) n ⊆ (λi . a ∩ A i) (Suc n) using Inc
by blast

ultimately have 2 : (
⋃

i . (λi . a ∩ A i) i) ∈ smallest-ccdi-sets Ω M
by (rule smallest-ccdi-sets.Inc)

show ?case
by (metis 1 2)

next
case (Disj A)
have 1 : (

⋃
i . (λi . a ∩ A i) i) = a ∩ (

⋃
i . A i)

by blast
have range (λi . a ∩ A i) ∈ Pow(smallest-ccdi-sets Ω M) using Disj

by blast
moreover have disjoint-family (λi . a ∩ A i) using Disj

by (auto simp add : disjoint-family-on-def)
ultimately have 2 : (

⋃
i . (λi . a ∩ A i) i) ∈ smallest-ccdi-sets Ω M

by (rule smallest-ccdi-sets.Disj)
show ?case

by (metis 1 2)
qed

lemma (in algebra) smallest-ccdi-sets-Int :
assumes b: b ∈ smallest-ccdi-sets Ω M
shows a ∈ smallest-ccdi-sets Ω M =⇒ a ∩ b ∈ smallest-ccdi-sets Ω M

proof (induct rule: smallest-ccdi-sets.induct)
case (Basic x)
thus ?case

by (metis b smallest-ccdi-sets-Int1)
next

case (Compl x)
have (Ω − x) ∩ b = Ω − (x ∩ b ∪ (Ω − b))

by blast
also have ... ∈ smallest-ccdi-sets Ω M

by (metis Compl(2) Diff-disjoint Int-Diff Int-commute Int-empty-right b
smallest-ccdi-sets.Compl smallest-ccdi-sets-Un)

finally show ?case .
next

case (Inc A)
have 1 : (

⋃
i . (λi . A i ∩ b) i) = (

⋃
i . A i) ∩ b

by blast
have range (λi . A i ∩ b) ∈ Pow(smallest-ccdi-sets Ω M) using Inc

by blast
moreover have (λi . A i ∩ b) 0 = {}

THEORY “Sigma-Algebra” 36

by (simp add : Inc)
moreover have !!n. (λi . A i ∩ b) n ⊆ (λi . A i ∩ b) (Suc n) using Inc

by blast
ultimately have 2 : (

⋃
i . (λi . A i ∩ b) i) ∈ smallest-ccdi-sets Ω M

by (rule smallest-ccdi-sets.Inc)
show ?case

by (metis 1 2)
next

case (Disj A)
have 1 : (

⋃
i . (λi . A i ∩ b) i) = (

⋃
i . A i) ∩ b

by blast
have range (λi . A i ∩ b) ∈ Pow(smallest-ccdi-sets Ω M) using Disj

by blast
moreover have disjoint-family (λi . A i ∩ b) using Disj

by (auto simp add : disjoint-family-on-def)
ultimately have 2 : (

⋃
i . (λi . A i ∩ b) i) ∈ smallest-ccdi-sets Ω M

by (rule smallest-ccdi-sets.Disj)
show ?case

by (metis 1 2)
qed

lemma (in algebra) sigma-property-disjoint-lemma:
assumes sbC : M ⊆ C

and ccdi : closed-cdi Ω C
shows sigma-sets Ω M ⊆ C

proof −
have smallest-ccdi-sets Ω M ∈ {B . M ⊆ B ∧ sigma-algebra Ω B}

apply (auto simp add : sigma-algebra-disjoint-iff algebra-iff-Int
smallest-ccdi-sets-Int)

apply (metis Union-Pow-eq Union-upper subsetD smallest-ccdi-sets)
apply (blast intro: smallest-ccdi-sets.Disj)
done

hence sigma-sets (Ω) (M) ⊆ smallest-ccdi-sets Ω M
by clarsimp

(drule sigma-algebra.sigma-sets-subset [where a=M], auto)
also have ... ⊆ C

proof
fix x
assume x : x ∈ smallest-ccdi-sets Ω M
thus x ∈ C

proof (induct rule: smallest-ccdi-sets.induct)
case (Basic x)
thus ?case

by (metis Basic subsetD sbC)
next

case (Compl x)
thus ?case

by (blast intro: closed-cdi-Compl [OF ccdi , simplified])
next

THEORY “Sigma-Algebra” 37

case (Inc A)
thus ?case

by (auto intro: closed-cdi-Inc [OF ccdi , simplified])
next

case (Disj A)
thus ?case

by (auto intro: closed-cdi-Disj [OF ccdi , simplified])
qed

qed
finally show ?thesis .

qed

lemma (in algebra) sigma-property-disjoint :
assumes sbC : M ⊆ C

and compl : !!s. s ∈ C ∩ sigma-sets (Ω) (M) =⇒ Ω − s ∈ C
and inc: !!A. range A ⊆ C ∩ sigma-sets (Ω) (M)

=⇒ A 0 = {} =⇒ (!!n. A n ⊆ A (Suc n))
=⇒ (

⋃
i . A i) ∈ C

and disj : !!A. range A ⊆ C ∩ sigma-sets (Ω) (M)
=⇒ disjoint-family A =⇒ (

⋃
i ::nat . A i) ∈ C

shows sigma-sets (Ω) (M) ⊆ C
proof −

have sigma-sets (Ω) (M) ⊆ C ∩ sigma-sets (Ω) (M)
proof (rule sigma-property-disjoint-lemma)

show M ⊆ C ∩ sigma-sets (Ω) (M)
by (metis Int-greatest Set .subsetI sbC sigma-sets.Basic)

next
show closed-cdi Ω (C ∩ sigma-sets (Ω) (M))

by (simp add : closed-cdi-def compl inc disj)
(metis PowI Set .subsetI le-infI2 sigma-sets-into-sp space-closed

IntE sigma-sets.Compl range-subsetD sigma-sets.Union)
qed

thus ?thesis
by blast

qed

2.1.9 Dynkin systems

locale dynkin-system = subset-class +
assumes space: Ω ∈ M

and compl [intro!]:
∧

A. A ∈ M =⇒ Ω − A ∈ M
and UN [intro!]:

∧
A. disjoint-family A =⇒ range A ⊆ M

=⇒ (
⋃

i ::nat . A i) ∈ M

lemma (in dynkin-system) empty [intro, simp]: {} ∈ M
using space compl [of Ω] by simp

lemma (in dynkin-system) diff :
assumes sets: D ∈ M E ∈ M and D ⊆ E

THEORY “Sigma-Algebra” 38

shows E − D ∈ M
proof −

let ?f = λx . if x = 0 then D else if x = Suc 0 then Ω − E else {}
have range ?f = {D , Ω − E , {}}

by (auto simp: image-iff)
moreover have D ∪ (Ω − E) = (

⋃
i . ?f i)

by (auto simp: image-iff split : if-split-asm)
moreover
have disjoint-family ?f unfolding disjoint-family-on-def

using 〈D ∈ M 〉[THEN sets-into-space] 〈D ⊆ E 〉 by auto
ultimately have Ω − (D ∪ (Ω − E)) ∈ M

using sets by auto
also have Ω − (D ∪ (Ω − E)) = E − D

using assms sets-into-space by auto
finally show ?thesis .

qed

lemma dynkin-systemI :
assumes

∧
A. A ∈ M =⇒ A ⊆ Ω Ω ∈ M

assumes
∧

A. A ∈ M =⇒ Ω − A ∈ M
assumes

∧
A. disjoint-family A =⇒ range A ⊆ M

=⇒ (
⋃

i ::nat . A i) ∈ M
shows dynkin-system Ω M
using assms by (auto simp: dynkin-system-def dynkin-system-axioms-def subset-class-def)

lemma dynkin-systemI ′:
assumes 1 :

∧
A. A ∈ M =⇒ A ⊆ Ω

assumes empty : {} ∈ M
assumes Diff :

∧
A. A ∈ M =⇒ Ω − A ∈ M

assumes 2 :
∧

A. disjoint-family A =⇒ range A ⊆ M
=⇒ (

⋃
i ::nat . A i) ∈ M

shows dynkin-system Ω M
proof −

from Diff [OF empty] have Ω ∈ M by auto
from 1 this Diff 2 show ?thesis

by (intro dynkin-systemI) auto
qed

lemma dynkin-system-trivial :
shows dynkin-system A (Pow A)
by (rule dynkin-systemI) auto

lemma sigma-algebra-imp-dynkin-system:
assumes sigma-algebra Ω M shows dynkin-system Ω M

proof −
interpret sigma-algebra Ω M by fact
show ?thesis using sets-into-space by (fastforce intro!: dynkin-systemI)

qed

THEORY “Sigma-Algebra” 39

2.1.10 Intersection sets systems

definition Int-stable M ←→ (∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M)

lemma (in algebra) Int-stable: Int-stable M
unfolding Int-stable-def by auto

lemma Int-stableI :
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ a ∩ b ∈ A) =⇒ Int-stable A
unfolding Int-stable-def by auto

lemma Int-stableD :
Int-stable M =⇒ a ∈ M =⇒ b ∈ M =⇒ a ∩ b ∈ M
unfolding Int-stable-def by auto

lemma (in dynkin-system) sigma-algebra-eq-Int-stable:
sigma-algebra Ω M ←→ Int-stable M

proof
assume sigma-algebra Ω M then show Int-stable M

unfolding sigma-algebra-def using algebra.Int-stable by auto
next

assume Int-stable M
show sigma-algebra Ω M

unfolding sigma-algebra-disjoint-iff algebra-iff-Un
proof (intro conjI ballI allI impI)

show M ⊆ Pow (Ω) using sets-into-space by auto
next

fix A B assume A ∈ M B ∈ M
then have A ∪ B = Ω − ((Ω − A) ∩ (Ω − B))

Ω − A ∈ M Ω − B ∈ M
using sets-into-space by auto

then show A ∪ B ∈ M
using 〈Int-stable M 〉 unfolding Int-stable-def by auto

qed auto
qed

2.1.11 Smallest Dynkin systems

definition dynkin where
dynkin Ω M = (

⋂
{D . dynkin-system Ω D ∧ M ⊆ D})

lemma dynkin-system-dynkin:
assumes M ⊆ Pow (Ω)
shows dynkin-system Ω (dynkin Ω M)

proof (rule dynkin-systemI)
fix A assume A ∈ dynkin Ω M
moreover
{ fix D assume A ∈ D and d : dynkin-system Ω D

then have A ⊆ Ω by (auto simp: dynkin-system-def subset-class-def) }
moreover have {D . dynkin-system Ω D ∧ M ⊆ D} 6= {}

THEORY “Sigma-Algebra” 40

using assms dynkin-system-trivial by fastforce
ultimately show A ⊆ Ω

unfolding dynkin-def using assms
by auto

next
show Ω ∈ dynkin Ω M

unfolding dynkin-def using dynkin-system.space by fastforce
next

fix A assume A ∈ dynkin Ω M
then show Ω − A ∈ dynkin Ω M

unfolding dynkin-def using dynkin-system.compl by force
next

fix A :: nat ⇒ ′a set
assume A: disjoint-family A range A ⊆ dynkin Ω M
show (

⋃
i . A i) ∈ dynkin Ω M unfolding dynkin-def

proof (simp, safe)
fix D assume dynkin-system Ω D M ⊆ D
with A have (

⋃
i . A i) ∈ D

by (intro dynkin-system.UN) (auto simp: dynkin-def)
then show (

⋃
i . A i) ∈ D by auto

qed
qed

lemma dynkin-Basic[intro]: A ∈ M =⇒ A ∈ dynkin Ω M
unfolding dynkin-def by auto

lemma (in dynkin-system) restricted-dynkin-system:
assumes D ∈ M
shows dynkin-system Ω {Q . Q ⊆ Ω ∧ Q ∩ D ∈ M }

proof (rule dynkin-systemI , simp-all)
have Ω ∩ D = D

using 〈D ∈ M 〉 sets-into-space by auto
then show Ω ∩ D ∈ M

using 〈D ∈ M 〉 by auto
next

fix A assume A ⊆ Ω ∧ A ∩ D ∈ M
moreover have (Ω − A) ∩ D = (Ω − (A ∩ D)) − (Ω − D)

by auto
ultimately show Ω − A ⊆ Ω ∧ (Ω − A) ∩ D ∈ M

using 〈D ∈ M 〉 by (auto intro: diff)
next

fix A :: nat ⇒ ′a set
assume disjoint-family A range A ⊆ {Q . Q ⊆ Ω ∧ Q ∩ D ∈ M }
then have

∧
i . A i ⊆ Ω disjoint-family (λi . A i ∩ D)

range (λi . A i ∩ D) ⊆ M (
⋃

x . A x) ∩ D = (
⋃

x . A x ∩ D)
by ((fastforce simp: disjoint-family-on-def)+)

then show (
⋃

x . A x) ⊆ Ω ∧ (
⋃

x . A x) ∩ D ∈ M
by (auto simp del : UN-simps)

qed

THEORY “Sigma-Algebra” 41

lemma (in dynkin-system) dynkin-subset :
assumes N ⊆ M
shows dynkin Ω N ⊆ M

proof −
have dynkin-system Ω M ..
then have dynkin-system Ω M
using assms unfolding dynkin-system-def dynkin-system-axioms-def subset-class-def

by simp
with 〈N ⊆ M 〉 show ?thesis by (auto simp add : dynkin-def)

qed

lemma sigma-eq-dynkin:
assumes sets: M ⊆ Pow Ω
assumes Int-stable M
shows sigma-sets Ω M = dynkin Ω M

proof −
have dynkin Ω M ⊆ sigma-sets (Ω) (M)

using sigma-algebra-imp-dynkin-system
unfolding dynkin-def sigma-sets-least-sigma-algebra[OF sets] by auto

moreover
interpret dynkin-system Ω dynkin Ω M

using dynkin-system-dynkin[OF sets] .
have sigma-algebra Ω (dynkin Ω M)

unfolding sigma-algebra-eq-Int-stable Int-stable-def
proof (intro ballI)

fix A B assume A ∈ dynkin Ω M B ∈ dynkin Ω M
let ?D = λE . {Q . Q ⊆ Ω ∧ Q ∩ E ∈ dynkin Ω M }
have M ⊆ ?D B
proof

fix E assume E ∈ M
then have M ⊆ ?D E E ∈ dynkin Ω M

using sets-into-space 〈Int-stable M 〉 by (auto simp: Int-stable-def)
then have dynkin Ω M ⊆ ?D E

using restricted-dynkin-system 〈E ∈ dynkin Ω M 〉

by (intro dynkin-system.dynkin-subset) simp-all
then have B ∈ ?D E

using 〈B ∈ dynkin Ω M 〉 by auto
then have E ∩ B ∈ dynkin Ω M

by (subst Int-commute) simp
then show E ∈ ?D B

using sets 〈E ∈ M 〉 by auto
qed
then have dynkin Ω M ⊆ ?D B

using restricted-dynkin-system 〈B ∈ dynkin Ω M 〉

by (intro dynkin-system.dynkin-subset) simp-all
then show A ∩ B ∈ dynkin Ω M

using 〈A ∈ dynkin Ω M 〉 sets-into-space by auto
qed

THEORY “Sigma-Algebra” 42

from sigma-algebra.sigma-sets-subset [OF this, of M]
have sigma-sets (Ω) (M) ⊆ dynkin Ω M by auto
ultimately have sigma-sets (Ω) (M) = dynkin Ω M by auto
then show ?thesis

by (auto simp: dynkin-def)
qed

lemma (in dynkin-system) dynkin-idem:
dynkin Ω M = M

proof −
have dynkin Ω M = M
proof

show M ⊆ dynkin Ω M
using dynkin-Basic by auto

show dynkin Ω M ⊆ M
by (intro dynkin-subset) auto

qed
then show ?thesis

by (auto simp: dynkin-def)
qed

lemma (in dynkin-system) dynkin-lemma:
assumes Int-stable E
and E : E ⊆ M M ⊆ sigma-sets Ω E
shows sigma-sets Ω E = M

proof −
have E ⊆ Pow Ω

using E sets-into-space by force
then have ∗: sigma-sets Ω E = dynkin Ω E

using 〈Int-stable E 〉 by (rule sigma-eq-dynkin)
then have dynkin Ω E = M

using assms dynkin-subset [OF E (1)] by simp
with ∗ show ?thesis

using assms by (auto simp: dynkin-def)
qed

2.1.12 Induction rule for intersection-stable generators

The reason to introduce Dynkin-systems is the following induction rules for
σ-algebras generated by a generator closed under intersection.

lemma sigma-sets-induct-disjoint [consumes 3 , case-names basic empty compl union]:
assumes Int-stable G

and closed : G ⊆ Pow Ω
and A: A ∈ sigma-sets Ω G

assumes basic:
∧

A. A ∈ G =⇒ P A
and empty : P {}
and compl :

∧
A. A ∈ sigma-sets Ω G =⇒ P A =⇒ P (Ω − A)

and union:
∧

A. disjoint-family A =⇒ range A ⊆ sigma-sets Ω G =⇒ (
∧

i . P
(A i)) =⇒ P (

⋃
i ::nat . A i)

THEORY “Sigma-Algebra” 43

shows P A
proof −

let ?D = { A ∈ sigma-sets Ω G . P A }
interpret sigma-algebra Ω sigma-sets Ω G

using closed by (rule sigma-algebra-sigma-sets)
from compl [OF - empty] closed have space: P Ω by simp
interpret dynkin-system Ω ?D

by standard (auto dest : sets-into-space intro!: space compl union)
have sigma-sets Ω G = ?D

by (rule dynkin-lemma) (auto simp: basic 〈Int-stable G〉)
with A show ?thesis by auto

qed

2.2 Measure type

definition positive :: ′a set set ⇒ (′a set ⇒ ennreal) ⇒ bool where
positive M µ ←→ µ {} = 0

definition countably-additive :: ′a set set ⇒ (′a set ⇒ ennreal) ⇒ bool where
countably-additive M f ←→ (∀A. range A ⊆ M −→ disjoint-family A −→ (

⋃
i .

A i) ∈ M −→
(
∑

i . f (A i)) = f (
⋃

i . A i))

definition measure-space :: ′a set ⇒ ′a set set ⇒ (′a set ⇒ ennreal)⇒ bool where
measure-space Ω A µ ←→ sigma-algebra Ω A ∧ positive A µ ∧ countably-additive

A µ

typedef ′a measure = {(Ω:: ′a set , A, µ). (∀ a∈−A. µ a = 0) ∧ measure-space Ω
A µ }
proof

have sigma-algebra UNIV {{}, UNIV }
by (auto simp: sigma-algebra-iff2)

then show (UNIV , {{}, UNIV }, λA. 0) ∈ {(Ω, A, µ). (∀ a∈−A. µ a = 0) ∧
measure-space Ω A µ}

by (auto simp: measure-space-def positive-def countably-additive-def)
qed

definition space :: ′a measure ⇒ ′a set where
space M = fst (Rep-measure M)

definition sets :: ′a measure ⇒ ′a set set where
sets M = fst (snd (Rep-measure M))

definition emeasure :: ′a measure ⇒ ′a set ⇒ ennreal where
emeasure M = snd (snd (Rep-measure M))

definition measure :: ′a measure ⇒ ′a set ⇒ real where
measure M A = enn2real (emeasure M A)

THEORY “Sigma-Algebra” 44

declare [[coercion sets]]

declare [[coercion measure]]

declare [[coercion emeasure]]

lemma measure-space: measure-space (space M) (sets M) (emeasure M)
by (cases M) (auto simp: space-def sets-def emeasure-def Abs-measure-inverse)

interpretation sets: sigma-algebra space M sets M for M :: ′a measure
using measure-space[of M] by (auto simp: measure-space-def)

definition measure-of :: ′a set ⇒ ′a set set ⇒ (′a set ⇒ ennreal) ⇒ ′a measure
where

measure-of Ω A µ = Abs-measure (Ω, if A ⊆ Pow Ω then sigma-sets Ω A else
{{}, Ω},

λa. if a ∈ sigma-sets Ω A ∧ measure-space Ω (sigma-sets Ω A) µ then µ a else
0)

abbreviation sigma Ω A ≡ measure-of Ω A (λx . 0)

lemma measure-space-0 : A ⊆ Pow Ω =⇒ measure-space Ω (sigma-sets Ω A) (λx .
0)

unfolding measure-space-def
by (auto intro!: sigma-algebra-sigma-sets simp: positive-def countably-additive-def)

lemma sigma-algebra-trivial : sigma-algebra Ω {{}, Ω}
by unfold-locales(fastforce intro: exI [where x={{}}] exI [where x={Ω}])+

lemma measure-space-0 ′: measure-space Ω {{}, Ω} (λx . 0)
by(simp add : measure-space-def positive-def countably-additive-def sigma-algebra-trivial)

lemma measure-space-closed :
assumes measure-space Ω M µ
shows M ⊆ Pow Ω

proof −
interpret sigma-algebra Ω M using assms by(simp add : measure-space-def)
show ?thesis by(rule space-closed)

qed

lemma (in ring-of-sets) positive-cong-eq :
(
∧

a. a ∈ M =⇒ µ ′ a = µ a) =⇒ positive M µ ′ = positive M µ
by (auto simp add : positive-def)

lemma (in sigma-algebra) countably-additive-eq :
(
∧

a. a ∈ M =⇒ µ ′ a = µ a) =⇒ countably-additive M µ ′ = countably-additive
M µ

unfolding countably-additive-def
by (intro arg-cong [where f =All] ext) (auto simp add : countably-additive-def

THEORY “Sigma-Algebra” 45

subset-eq)

lemma measure-space-eq :
assumes closed : A ⊆ Pow Ω and eq :

∧
a. a ∈ sigma-sets Ω A =⇒ µ a = µ ′ a

shows measure-space Ω (sigma-sets Ω A) µ = measure-space Ω (sigma-sets Ω
A) µ ′

proof −
interpret sigma-algebra Ω sigma-sets Ω A using closed by (rule sigma-algebra-sigma-sets)
from positive-cong-eq [OF eq , of λi . i] countably-additive-eq [OF eq , of λi . i]

show ?thesis
by (auto simp: measure-space-def)

qed

lemma measure-of-eq :
assumes closed : A ⊆ Pow Ω and eq : (

∧
a. a ∈ sigma-sets Ω A =⇒ µ a = µ ′ a)

shows measure-of Ω A µ = measure-of Ω A µ ′

proof −
have measure-space Ω (sigma-sets Ω A) µ = measure-space Ω (sigma-sets Ω A)

µ ′

using assms by (rule measure-space-eq)
with eq show ?thesis

by (auto simp add : measure-of-def intro!: arg-cong [where f =Abs-measure])
qed

lemma
shows space-measure-of-conv : space (measure-of Ω A µ) = Ω (is ?space)
and sets-measure-of-conv :
sets (measure-of Ω A µ) = (if A ⊆ Pow Ω then sigma-sets Ω A else {{}, Ω})

(is ?sets)
and emeasure-measure-of-conv :
emeasure (measure-of Ω A µ) =
(λB . if B ∈ sigma-sets Ω A ∧ measure-space Ω (sigma-sets Ω A) µ then µ B else

0) (is ?emeasure)
proof −

have ?space ∧ ?sets ∧ ?emeasure
proof(cases measure-space Ω (sigma-sets Ω A) µ)

case True
from measure-space-closed [OF this] sigma-sets-superset-generator [of A Ω]
have A ⊆ Pow Ω by simp
hence measure-space Ω (sigma-sets Ω A) µ = measure-space Ω (sigma-sets Ω

A)
(λa. if a ∈ sigma-sets Ω A then µ a else 0)
by(rule measure-space-eq) auto

with True 〈A ⊆ Pow Ω〉 show ?thesis
by(simp add : measure-of-def space-def sets-def emeasure-def Abs-measure-inverse)

next
case False thus ?thesis

by(cases A ⊆ Pow Ω)(simp-all add : Abs-measure-inverse measure-of-def
sets-def space-def emeasure-def measure-space-0 measure-space-0 ′)

THEORY “Sigma-Algebra” 46

qed
thus ?space ?sets ?emeasure by simp-all

qed

lemma [simp]:
assumes A: A ⊆ Pow Ω
shows sets-measure-of : sets (measure-of Ω A µ) = sigma-sets Ω A

and space-measure-of : space (measure-of Ω A µ) = Ω
using assms
by(simp-all add : sets-measure-of-conv space-measure-of-conv)

lemma (in sigma-algebra) sets-measure-of-eq [simp]: sets (measure-of Ω M µ) =
M

using space-closed by (auto intro!: sigma-sets-eq)

lemma (in sigma-algebra) space-measure-of-eq [simp]: space (measure-of Ω M µ)
= Ω

by (rule space-measure-of-conv)

lemma measure-of-subset : M ⊆ Pow Ω =⇒ M ′ ⊆ M =⇒ sets (measure-of Ω M ′

µ) ⊆ sets (measure-of Ω M µ ′)
by (auto intro!: sigma-sets-subseteq)

lemma emeasure-sigma: emeasure (sigma Ω A) = (λx . 0)
unfolding measure-of-def emeasure-def
by (subst Abs-measure-inverse)

(auto simp: measure-space-def positive-def countably-additive-def
intro!: sigma-algebra-sigma-sets sigma-algebra-trivial)

lemma sigma-sets-mono ′′:
assumes A ∈ sigma-sets C D
assumes B ⊆ D
assumes D ⊆ Pow C
shows sigma-sets A B ⊆ sigma-sets C D

proof
fix x assume x ∈ sigma-sets A B
thus x ∈ sigma-sets C D
proof induct

case (Basic a) with assms have a ∈ D by auto
thus ?case ..

next
case Empty show ?case by (rule sigma-sets.Empty)

next
from assms have A ∈ sets (sigma C D) by (subst sets-measure-of [OF 〈D ⊆

Pow C 〉])
moreover case (Compl a) hence a ∈ sets (sigma C D) by (subst sets-measure-of [OF

〈D ⊆ Pow C 〉])
ultimately have A − a ∈ sets (sigma C D) ..
thus ?case by (subst (asm) sets-measure-of [OF 〈D ⊆ Pow C 〉])

THEORY “Sigma-Algebra” 47

next
case (Union a)
thus ?case by (intro sigma-sets.Union)

qed
qed

lemma in-measure-of [intro, simp]: M ⊆ Pow Ω =⇒ A ∈M =⇒ A ∈ sets (measure-of
Ω M µ)

by auto

lemma space-empty-iff : space N = {} ←→ sets N = {{}}
by (metis Pow-empty Sup-bot-conv(1) cSup-singleton empty-iff

sets.sigma-sets-eq sets.space-closed sigma-sets-top subset-singletonD)

2.2.1 Constructing simple ′a measure

lemma emeasure-measure-of :
assumes M : M = measure-of Ω A µ
assumes ms: A ⊆ Pow Ω positive (sets M) µ countably-additive (sets M) µ
assumes X : X ∈ sets M
shows emeasure M X = µ X

proof −
interpret sigma-algebra Ω sigma-sets Ω A by (rule sigma-algebra-sigma-sets)

fact
have measure-space Ω (sigma-sets Ω A) µ

using ms M by (simp add : measure-space-def sigma-algebra-sigma-sets)
thus ?thesis using X ms

by(simp add : M emeasure-measure-of-conv sets-measure-of-conv)
qed

lemma emeasure-measure-of-sigma:
assumes ms: sigma-algebra Ω M positive M µ countably-additive M µ
assumes A: A ∈ M
shows emeasure (measure-of Ω M µ) A = µ A

proof −
interpret sigma-algebra Ω M by fact
have measure-space Ω (sigma-sets Ω M) µ

using ms sigma-sets-eq by (simp add : measure-space-def)
thus ?thesis by(simp add : emeasure-measure-of-conv A)

qed

lemma measure-cases[cases type: measure]:
obtains (measure) Ω A µ where x = Abs-measure (Ω, A, µ) ∀ a∈−A. µ a = 0

measure-space Ω A µ
by atomize-elim (cases x , auto)

lemma sets-le-imp-space-le: sets A ⊆ sets B =⇒ space A ⊆ space B
by (auto dest : sets.sets-into-space)

THEORY “Sigma-Algebra” 48

lemma sets-eq-imp-space-eq : sets M = sets M ′ =⇒ space M = space M ′

by (auto intro!: antisym sets-le-imp-space-le)

lemma emeasure-notin-sets: A /∈ sets M =⇒ emeasure M A = 0
by (cases M) (auto simp: sets-def emeasure-def Abs-measure-inverse measure-space-def)

lemma emeasure-neq-0-sets: emeasure M A 6= 0 =⇒ A ∈ sets M
using emeasure-notin-sets[of A M] by blast

lemma measure-notin-sets: A /∈ sets M =⇒ measure M A = 0
by (simp add : measure-def emeasure-notin-sets zero-ennreal .rep-eq)

lemma measure-eqI :
fixes M N :: ′a measure
assumes sets M = sets N and eq :

∧
A. A ∈ sets M =⇒ emeasure M A =

emeasure N A
shows M = N

proof (cases M N rule: measure-cases[case-product measure-cases])
case (measure-measure Ω A µ Ω ′ A ′ µ ′)
interpret M : sigma-algebra Ω A using measure-measure by (auto simp: measure-space-def)
interpret N : sigma-algebra Ω ′A ′ using measure-measure by (auto simp: measure-space-def)
have A = sets M A ′ = sets N

using measure-measure by (simp-all add : sets-def Abs-measure-inverse)
with 〈sets M = sets N 〉 have AA ′: A = A ′ by simp
moreover from M .top N .top M .space-closed N .space-closed AA ′ have Ω = Ω ′

by auto
moreover { fix B have µ B = µ ′ B

proof cases
assume B ∈ A
with eq 〈A = sets M 〉 have emeasure M B = emeasure N B by simp
with measure-measure show µ B = µ ′ B

by (simp add : emeasure-def Abs-measure-inverse)
next

assume B /∈ A
with 〈A = sets M 〉 〈A ′ = sets N 〉 〈A = A ′〉 have B /∈ sets M B /∈ sets N

by auto
then have emeasure M B = 0 emeasure N B = 0

by (simp-all add : emeasure-notin-sets)
with measure-measure show µ B = µ ′ B

by (simp add : emeasure-def Abs-measure-inverse)
qed }

then have µ = µ ′ by auto
ultimately show M = N

by (simp add : measure-measure)
qed

lemma sigma-eqI :
assumes [simp]: M ⊆ Pow Ω N ⊆ Pow Ω sigma-sets Ω M = sigma-sets Ω N
shows sigma Ω M = sigma Ω N

THEORY “Sigma-Algebra” 49

by (rule measure-eqI) (simp-all add : emeasure-sigma)

2.2.2 Measurable functions

definition measurable :: ′a measure ⇒ ′b measure ⇒ (′a ⇒ ′b) set (infixr →M

60) where
measurable A B = {f ∈ space A → space B . ∀ y ∈ sets B . f −‘ y ∩ space A ∈

sets A}

lemma measurableI :
(
∧

x . x ∈ space M =⇒ f x ∈ space N) =⇒ (
∧

A. A ∈ sets N =⇒ f −‘ A ∩ space
M ∈ sets M) =⇒

f ∈ measurable M N
by (auto simp: measurable-def)

lemma measurable-space:
f ∈ measurable M A =⇒ x ∈ space M =⇒ f x ∈ space A
unfolding measurable-def by auto

lemma measurable-sets:
f ∈ measurable M A =⇒ S ∈ sets A =⇒ f −‘ S ∩ space M ∈ sets M
unfolding measurable-def by auto

lemma measurable-sets-Collect :
assumes f : f ∈ measurable M N and P : {x∈space N . P x} ∈ sets N shows
{x∈space M . P (f x)} ∈ sets M
proof −

have f −‘ {x ∈ space N . P x} ∩ space M = {x∈space M . P (f x)}
using measurable-space[OF f] by auto

with measurable-sets[OF f P] show ?thesis
by simp

qed

lemma measurable-sigma-sets:
assumes B : sets N = sigma-sets Ω A A ⊆ Pow Ω

and f : f ∈ space M → Ω
and ba:

∧
y . y ∈ A =⇒ (f −‘ y) ∩ space M ∈ sets M

shows f ∈ measurable M N
proof −
interpret A: sigma-algebra Ω sigma-sets Ω A using B(2) by (rule sigma-algebra-sigma-sets)
from B sets.top[of N] A.top sets.space-closed [of N] A.space-closed have Ω: Ω =

space N by force

{ fix X assume X ∈ sigma-sets Ω A
then have f −‘ X ∩ space M ∈ sets M ∧ X ⊆ Ω

proof induct
case (Basic a) then show ?case

by (auto simp add : ba) (metis B(2) subsetD PowD)
next

THEORY “Sigma-Algebra” 50

case (Compl a)
have [simp]: f −‘ Ω ∩ space M = space M

by (auto simp add : funcset-mem [OF f])
then show ?case

by (auto simp add : vimage-Diff Diff-Int-distrib2 sets.compl-sets Compl)
next

case (Union a)
then show ?case

by (simp add : vimage-UN , simp only : UN-extend-simps(4)) blast
qed auto }

with f show ?thesis
by (auto simp add : measurable-def B Ω)

qed

lemma measurable-measure-of :
assumes B : N ⊆ Pow Ω

and f : f ∈ space M → Ω
and ba:

∧
y . y ∈ N =⇒ (f −‘ y) ∩ space M ∈ sets M

shows f ∈ measurable M (measure-of Ω N µ)
proof −

have sets (measure-of Ω N µ) = sigma-sets Ω N
using B by (rule sets-measure-of)

from this assms show ?thesis by (rule measurable-sigma-sets)
qed

lemma measurable-iff-measure-of :
assumes N ⊆ Pow Ω f ∈ space M → Ω
shows f ∈ measurable M (measure-of Ω N µ) ←→ (∀A∈N . f −‘ A ∩ space M
∈ sets M)

by (metis assms in-measure-of measurable-measure-of assms measurable-sets)

lemma measurable-cong-sets:
assumes sets: sets M = sets M ′ sets N = sets N ′

shows measurable M N = measurable M ′ N ′

using sets[THEN sets-eq-imp-space-eq] sets by (simp add : measurable-def)

lemma measurable-cong :
assumes

∧
w . w ∈ space M =⇒ f w = g w

shows f ∈ measurable M M ′←→ g ∈ measurable M M ′

unfolding measurable-def using assms
by (simp cong : vimage-inter-cong Pi-cong)

lemma measurable-cong ′:
assumes

∧
w . w ∈ space M =simp=> f w = g w

shows f ∈ measurable M M ′←→ g ∈ measurable M M ′

unfolding measurable-def using assms
by (simp cong : vimage-inter-cong Pi-cong add : simp-implies-def)

lemma measurable-cong-strong :

THEORY “Sigma-Algebra” 51

M = N =⇒ M ′ = N ′ =⇒ (
∧

w . w ∈ space M =⇒ f w = g w) =⇒
f ∈ measurable M M ′←→ g ∈ measurable N N ′

by (metis measurable-cong)

lemma measurable-compose:
assumes f : f ∈ measurable M N and g : g ∈ measurable N L
shows (λx . g (f x)) ∈ measurable M L

proof −
have

∧
A. (λx . g (f x)) −‘ A ∩ space M = f −‘ (g −‘ A ∩ space N) ∩ space M

using measurable-space[OF f] by auto
with measurable-space[OF f] measurable-space[OF g] show ?thesis

by (auto intro: measurable-sets[OF f] measurable-sets[OF g]
simp del : vimage-Int simp add : measurable-def)

qed

lemma measurable-comp:
f ∈ measurable M N =⇒ g ∈ measurable N L =⇒ g ◦ f ∈ measurable M L
using measurable-compose[of f M N g L] by (simp add : comp-def)

lemma measurable-const :
c ∈ space M ′ =⇒ (λx . c) ∈ measurable M M ′

by (auto simp add : measurable-def)

lemma measurable-ident : id ∈ measurable M M
by (auto simp add : measurable-def)

lemma measurable-id : (λx . x) ∈ measurable M M
by (simp add : measurable-def)

lemma measurable-ident-sets:
assumes eq : sets M = sets M ′ shows (λx . x) ∈ measurable M M ′

using measurable-ident [of M]
unfolding id-def measurable-def eq sets-eq-imp-space-eq [OF eq] .

lemma sets-Least :
assumes meas:

∧
i ::nat . {x∈space M . P i x} ∈ M

shows (λx . LEAST j . P j x) −‘ A ∩ space M ∈ sets M
proof −
{ fix i have (λx . LEAST j . P j x) −‘ {i} ∩ space M ∈ sets M

proof cases
assume i : (LEAST j . False) = i
have (λx . LEAST j . P j x) −‘ {i} ∩ space M =
{x∈space M . P i x} ∩ (space M − (

⋃
j<i . {x∈space M . P j x})) ∪ (space

M − (
⋃

i . {x∈space M . P i x}))
by (simp add : set-eq-iff , safe)

(insert i , auto dest : Least-le intro: LeastI intro!: Least-equality)
with meas show ?thesis

by (auto intro!: sets.Int)
next

THEORY “Sigma-Algebra” 52

assume i : (LEAST j . False) 6= i
then have (λx . LEAST j . P j x) −‘ {i} ∩ space M =
{x∈space M . P i x} ∩ (space M − (

⋃
j<i . {x∈space M . P j x}))

proof (simp add : set-eq-iff , safe)
fix x assume neq : (LEAST j . False) 6= (LEAST j . P j x)
have ∃ j . P j x

by (rule ccontr) (insert neq , auto)
then show P (LEAST j . P j x) x by (rule LeastI-ex)

qed (auto dest : Least-le intro!: Least-equality)
with meas show ?thesis

by auto
qed }

then have (
⋃

i∈A. (λx . LEAST j . P j x) −‘ {i} ∩ space M) ∈ sets M
by (intro sets.countable-UN) auto

moreover have (
⋃

i∈A. (λx . LEAST j . P j x) −‘ {i} ∩ space M) =
(λx . LEAST j . P j x) −‘ A ∩ space M by auto

ultimately show ?thesis by auto
qed

lemma measurable-mono1 :
M ′ ⊆ Pow Ω =⇒ M ⊆ M ′ =⇒

measurable (measure-of Ω M µ) N ⊆ measurable (measure-of Ω M ′ µ ′) N
using measure-of-subset [of M ′ Ω M] by (auto simp add : measurable-def)

2.2.3 Counting space

definition count-space :: ′a set ⇒ ′a measure where
count-space Ω = measure-of Ω (Pow Ω) (λA. if finite A then of-nat (card A) else
∞)

lemma
shows space-count-space[simp]: space (count-space Ω) = Ω

and sets-count-space[simp]: sets (count-space Ω) = Pow Ω
using sigma-sets-into-sp[of Pow Ω Ω]
by (auto simp: count-space-def)

lemma measurable-count-space-eq1 [simp]:
f ∈ measurable (count-space A) M ←→ f ∈ A → space M

unfolding measurable-def by simp

lemma measurable-compose-countable ′:
assumes f :

∧
i . i ∈ I =⇒ (λx . f i x) ∈ measurable M N

and g : g ∈ measurable M (count-space I) and I : countable I
shows (λx . f (g x) x) ∈ measurable M N
unfolding measurable-def

proof safe
fix x assume x ∈ space M then show f (g x) x ∈ space N

using measurable-space[OF f] g [THEN measurable-space] by auto
next

THEORY “Sigma-Algebra” 53

fix A assume A: A ∈ sets N
have (λx . f (g x) x) −‘ A ∩ space M = (

⋃
i∈I . (g −‘ {i} ∩ space M) ∩ (f i −‘

A ∩ space M))
using measurable-space[OF g] by auto

also have . . . ∈ sets M
using f [THEN measurable-sets, OF - A] g [THEN measurable-sets]

by (auto intro!: sets.countable-UN ′ I intro: sets.Int [OF measurable-sets measurable-sets])
finally show (λx . f (g x) x) −‘ A ∩ space M ∈ sets M .

qed

lemma measurable-count-space-eq-countable:
assumes countable A
shows f ∈ measurable M (count-space A) ←→ (f ∈ space M → A ∧ (∀ a∈A. f
−‘ {a} ∩ space M ∈ sets M))
proof −
{ fix X assume X ⊆ A f ∈ space M → A

with 〈countable A〉 have f −‘ X ∩ space M = (
⋃

a∈X . f −‘ {a} ∩ space M)
countable X

by (auto dest : countable-subset)
moreover assume ∀ a∈A. f −‘ {a} ∩ space M ∈ sets M
ultimately have f −‘ X ∩ space M ∈ sets M

using 〈X ⊆ A〉 by (auto intro!: sets.countable-UN ′ simp del : UN-simps) }
then show ?thesis

unfolding measurable-def by auto
qed

lemma measurable-count-space-eq2 :
finite A =⇒ f ∈ measurable M (count-space A)←→ (f ∈ space M → A ∧ (∀ a∈A.

f −‘ {a} ∩ space M ∈ sets M))
by (intro measurable-count-space-eq-countable countable-finite)

lemma measurable-count-space-eq2-countable:
fixes f :: ′a => ′c::countable
shows f ∈ measurable M (count-space A) ←→ (f ∈ space M → A ∧ (∀ a∈A. f
−‘ {a} ∩ space M ∈ sets M))

by (intro measurable-count-space-eq-countable countableI-type)

lemma measurable-compose-countable:
assumes f :

∧
i :: ′i ::countable. (λx . f i x) ∈ measurable M N and g : g ∈ measurable

M (count-space UNIV)
shows (λx . f (g x) x) ∈ measurable M N
by (rule measurable-compose-countable ′[OF assms]) auto

lemma measurable-count-space-const :
(λx . c) ∈ measurable M (count-space UNIV)
by (simp add : measurable-const)

lemma measurable-count-space:
f ∈ measurable (count-space A) (count-space UNIV)

THEORY “Sigma-Algebra” 54

by simp

lemma measurable-compose-rev :
assumes f : f ∈ measurable L N and g : g ∈ measurable M L
shows (λx . f (g x)) ∈ measurable M N
using measurable-compose[OF g f] .

lemma measurable-empty-iff :
space N = {} =⇒ f ∈ measurable M N ←→ space M = {}
by (auto simp add : measurable-def Pi-iff)

2.2.4 Extend measure

definition extend-measure Ω I G µ =
(if (∃µ ′. (∀ i∈I . µ ′ (G i) = µ i) ∧ measure-space Ω (sigma-sets Ω (G‘I)) µ ′) ∧
¬ (∀ i∈I . µ i = 0)

then measure-of Ω (G‘I) (SOME µ ′. (∀ i∈I . µ ′ (G i) = µ i) ∧ measure-space
Ω (sigma-sets Ω (G‘I)) µ ′)

else measure-of Ω (G‘I) (λ-. 0))

lemma space-extend-measure: G ‘ I ⊆ Pow Ω =⇒ space (extend-measure Ω I G
µ) = Ω

unfolding extend-measure-def by simp

lemma sets-extend-measure: G ‘ I ⊆ Pow Ω =⇒ sets (extend-measure Ω I G µ)
= sigma-sets Ω (G‘I)

unfolding extend-measure-def by simp

lemma emeasure-extend-measure:
assumes M : M = extend-measure Ω I G µ

and eq :
∧

i . i ∈ I =⇒ µ ′ (G i) = µ i
and ms: G ‘ I ⊆ Pow Ω positive (sets M) µ ′ countably-additive (sets M) µ ′

and i ∈ I
shows emeasure M (G i) = µ i

proof cases
assume ∗: (∀ i∈I . µ i = 0)
with M have M-eq : M = measure-of Ω (G‘I) (λ-. 0)
by (simp add : extend-measure-def)

from measure-space-0 [OF ms(1)] ms 〈i∈I 〉

have emeasure M (G i) = 0
by (intro emeasure-measure-of [OF M-eq]) (auto simp add : M measure-space-def

sets-extend-measure)
with 〈i∈I 〉 ∗ show ?thesis

by simp
next

def P ≡ λµ ′. (∀ i∈I . µ ′ (G i) = µ i) ∧ measure-space Ω (sigma-sets Ω (G‘I)) µ ′

assume ¬ (∀ i∈I . µ i = 0)
moreover
have measure-space (space M) (sets M) µ ′

THEORY “Sigma-Algebra” 55

using ms unfolding measure-space-def by auto standard
with ms eq have ∃µ ′. P µ ′

unfolding P-def
by (intro exI [of - µ ′]) (auto simp add : M space-extend-measure sets-extend-measure)
ultimately have M-eq : M = measure-of Ω (G‘I) (Eps P)

by (simp add : M extend-measure-def P-def [symmetric])

from 〈∃µ ′. P µ ′〉 have P : P (Eps P) by (rule someI-ex)
show emeasure M (G i) = µ i
proof (subst emeasure-measure-of [OF M-eq])

have sets-M : sets M = sigma-sets Ω (G‘I)
using M-eq ms by (auto simp: sets-extend-measure)

then show G i ∈ sets M using 〈i ∈ I 〉 by auto
show positive (sets M) (Eps P) countably-additive (sets M) (Eps P) Eps P (G

i) = µ i
using P 〈i∈I 〉 by (auto simp add : sets-M measure-space-def P-def)

qed fact
qed

lemma emeasure-extend-measure-Pair :
assumes M : M = extend-measure Ω {(i , j). I i j} (λ(i , j). G i j) (λ(i , j). µ i

j)
and eq :

∧
i j . I i j =⇒ µ ′ (G i j) = µ i j

and ms:
∧

i j . I i j =⇒ G i j ∈ Pow Ω positive (sets M) µ ′ countably-additive
(sets M) µ ′

and I i j
shows emeasure M (G i j) = µ i j
using emeasure-extend-measure[OF M - - ms(2 ,3), of (i ,j)] eq ms(1) 〈I i j 〉

by (auto simp: subset-eq)

2.2.5 Supremum of a set of σ-algebras

definition Sup-sigma M = sigma (
⋃

x∈M . space x) (
⋃

x∈M . sets x)

syntax
-SUP-sigma :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b ((3

⊔
σ -∈-./ -) [0 , 0 , 10] 10)

translations⊔
σ x∈A. B == CONST Sup-sigma ((λx . B) ‘ A)

lemma space-Sup-sigma: space (Sup-sigma M) = (
⋃

x∈M . space x)
unfolding Sup-sigma-def by (rule space-measure-of) (auto dest : sets.sets-into-space)

lemma sets-Sup-sigma: sets (Sup-sigma M) = sigma-sets (
⋃

x∈M . space x) (
⋃

x∈M .
sets x)
unfolding Sup-sigma-def by (rule sets-measure-of) (auto dest : sets.sets-into-space)

lemma in-Sup-sigma: m ∈ M =⇒ A ∈ sets m =⇒ A ∈ sets (Sup-sigma M)
unfolding sets-Sup-sigma by auto

THEORY “Sigma-Algebra” 56

lemma SUP-sigma-cong :
assumes ∗:

∧
i . i ∈ I =⇒ sets (M i) = sets (N i) shows sets (

⊔
σ i∈I . M i) =

sets (
⊔
σ i∈I . N i)

using ∗ sets-eq-imp-space-eq [OF ∗] by (simp add : Sup-sigma-def)

lemma sets-Sup-in-sets:
assumes M 6= {}
assumes

∧
m. m ∈ M =⇒ space m = space N

assumes
∧

m. m ∈ M =⇒ sets m ⊆ sets N
shows sets (Sup-sigma M) ⊆ sets N

proof −
have ∗: UNION M space = space N

using assms by auto
show ?thesis
unfolding sets-Sup-sigma ∗ using assms by (auto intro!: sets.sigma-sets-subset)

qed

lemma measurable-Sup-sigma1 :
assumes m: m ∈ M and f : f ∈ measurable m N

and const-space:
∧

m n. m ∈ M =⇒ n ∈ M =⇒ space m = space n
shows f ∈ measurable (Sup-sigma M) N

proof −
have space (Sup-sigma M) = space m

using m by (auto simp add : space-Sup-sigma dest : const-space)
then show ?thesis

using m f unfolding measurable-def by (auto intro: in-Sup-sigma)
qed

lemma measurable-Sup-sigma2 :
assumes M : M 6= {}
assumes f :

∧
m. m ∈ M =⇒ f ∈ measurable N m

shows f ∈ measurable N (Sup-sigma M)
unfolding Sup-sigma-def

proof (rule measurable-measure-of)
show f ∈ space N → UNION M space

using measurable-space[OF f] M by auto
qed (auto intro: measurable-sets f dest : sets.sets-into-space)

lemma Sup-sigma-sigma:
assumes [simp]: M 6= {} and M :

∧
m. m ∈ M =⇒ m ⊆ Pow Ω

shows (
⊔
σ m∈M . sigma Ω m) = sigma Ω (

⋃
M)

proof (rule measure-eqI)
{ fix a m assume a ∈ sigma-sets Ω m m ∈ M

then have a ∈ sigma-sets Ω (
⋃

M)
by induction (auto intro: sigma-sets.intros) }

then show sets (
⊔
σ m∈M . sigma Ω m) = sets (sigma Ω (

⋃
M))

apply (simp add : sets-Sup-sigma space-measure-of-conv M Union-least)
apply (rule sigma-sets-eqI)

THEORY “Sigma-Algebra” 57

apply auto
done

qed (simp add : Sup-sigma-def emeasure-sigma)

lemma SUP-sigma-sigma:
assumes M : M 6= {}

∧
m. m ∈ M =⇒ f m ⊆ Pow Ω

shows (
⊔
σ m∈M . sigma Ω (f m)) = sigma Ω (

⋃
m∈M . f m)

proof −
have Sup-sigma (sigma Ω ‘ f ‘ M) = sigma Ω (

⋃
(f ‘ M))

using M by (intro Sup-sigma-sigma) auto
then show ?thesis

by (simp add : image-image)
qed

2.3 The smallest σ-algebra regarding a function

definition
vimage-algebra X f M = sigma X {f −‘ A ∩ X | A. A ∈ sets M }

lemma space-vimage-algebra[simp]: space (vimage-algebra X f M) = X
unfolding vimage-algebra-def by (rule space-measure-of) auto

lemma sets-vimage-algebra: sets (vimage-algebra X f M) = sigma-sets X {f −‘ A
∩ X | A. A ∈ sets M }

unfolding vimage-algebra-def by (rule sets-measure-of) auto

lemma sets-vimage-algebra2 :
f ∈ X → space M =⇒ sets (vimage-algebra X f M) = {f −‘ A ∩ X | A. A ∈

sets M }
using sigma-sets-vimage-commute[of f X space M sets M]
unfolding sets-vimage-algebra sets.sigma-sets-eq by simp

lemma sets-vimage-algebra-cong : sets M = sets N =⇒ sets (vimage-algebra X f
M) = sets (vimage-algebra X f N)

by (simp add : sets-vimage-algebra)

lemma vimage-algebra-cong :
assumes X = Y
assumes

∧
x . x ∈ Y =⇒ f x = g x

assumes sets M = sets N
shows vimage-algebra X f M = vimage-algebra Y g N
by (auto simp: vimage-algebra-def assms intro!: arg-cong2 [where f =sigma])

lemma in-vimage-algebra: A ∈ sets M =⇒ f −‘ A ∩ X ∈ sets (vimage-algebra X
f M)

by (auto simp: vimage-algebra-def)

lemma sets-image-in-sets:
assumes N : space N = X

THEORY “Sigma-Algebra” 58

assumes f : f ∈ measurable N M
shows sets (vimage-algebra X f M) ⊆ sets N
unfolding sets-vimage-algebra N [symmetric]
by (rule sets.sigma-sets-subset) (auto intro!: measurable-sets f)

lemma measurable-vimage-algebra1 : f ∈ X → space M =⇒ f ∈ measurable (vimage-algebra
X f M) M

unfolding measurable-def by (auto intro: in-vimage-algebra)

lemma measurable-vimage-algebra2 :
assumes g : g ∈ space N → X and f : (λx . f (g x)) ∈ measurable N M
shows g ∈ measurable N (vimage-algebra X f M)
unfolding vimage-algebra-def

proof (rule measurable-measure-of)
fix A assume A ∈ {f −‘ A ∩ X | A. A ∈ sets M }
then obtain Y where Y : Y ∈ sets M and A: A = f −‘ Y ∩ X

by auto
then have g −‘ A ∩ space N = (λx . f (g x)) −‘ Y ∩ space N

using g by auto
also have . . . ∈ sets N

using f Y by (rule measurable-sets)
finally show g −‘ A ∩ space N ∈ sets N .

qed (insert g , auto)

lemma vimage-algebra-sigma:
assumes X : X ⊆ Pow Ω ′ and f : f ∈ Ω → Ω ′

shows vimage-algebra Ω f (sigma Ω ′ X) = sigma Ω {f −‘ A ∩ Ω | A. A ∈ X }
(is ?V = ?S)
proof (rule measure-eqI)

have Ω: {f −‘ A ∩ Ω |A. A ∈ X } ⊆ Pow Ω by auto
show sets ?V = sets ?S

using sigma-sets-vimage-commute[OF f , of X]
by (simp add : space-measure-of-conv f sets-vimage-algebra2 Ω X)

qed (simp add : vimage-algebra-def emeasure-sigma)

lemma vimage-algebra-vimage-algebra-eq :
assumes ∗: f ∈ X → Y g ∈ Y → space M
shows vimage-algebra X f (vimage-algebra Y g M) = vimage-algebra X (λx . g

(f x)) M
(is ?VV = ?V)

proof (rule measure-eqI)
have (λx . g (f x)) ∈ X → space M

∧
A. A ∩ f −‘ Y ∩ X = A ∩ X

using ∗ by auto
with ∗ show sets ?VV = sets ?V
by (simp add : sets-vimage-algebra2 ex-simps[symmetric] vimage-comp comp-def

del : ex-simps)
qed (simp add : vimage-algebra-def emeasure-sigma)

lemma sets-vimage-Sup-eq :

THEORY “Sigma-Algebra” 59

assumes ∗: M 6= {}
∧

m. m ∈ M =⇒ f ∈ X → space m
shows sets (vimage-algebra X f (Sup-sigma M)) = sets (

⊔
σ m ∈M . vimage-algebra

X f m)
(is ?IS = ?SI)

proof
show ?IS ⊆ ?SI

by (intro sets-image-in-sets measurable-Sup-sigma2 measurable-Sup-sigma1)
(auto simp: space-Sup-sigma measurable-vimage-algebra1 ∗)

{ fix m assume m ∈ M
moreover then have f ∈ X → space (Sup-sigma M) f ∈ X → space m

using ∗ by (auto simp: space-Sup-sigma)
ultimately have f ∈ measurable (vimage-algebra X f (Sup-sigma M)) m

by (auto simp add : measurable-def sets-vimage-algebra2 intro: in-Sup-sigma)
}

then show ?SI ⊆ ?IS
by (auto intro!: sets-image-in-sets sets-Sup-in-sets del : subsetI simp: ∗)

qed

lemma vimage-algebra-Sup-sigma:
assumes [simp]: MM 6= {} and

∧
M . M ∈ MM =⇒ f ∈ X → space M

shows vimage-algebra X f (Sup-sigma MM) = Sup-sigma (vimage-algebra X f ‘
MM)
proof (rule measure-eqI)
show sets (vimage-algebra X f (Sup-sigma MM)) = sets (Sup-sigma (vimage-algebra

X f ‘ MM))
using assms by (rule sets-vimage-Sup-eq)

qed (simp add : vimage-algebra-def Sup-sigma-def emeasure-sigma)

2.3.1 Restricted Space Sigma Algebra

definition restrict-space where
restrict-space M Ω = measure-of (Ω ∩ space M) ((op ∩ Ω) ‘ sets M) (emeasure

M)

lemma space-restrict-space: space (restrict-space M Ω) = Ω ∩ space M
using sets.sets-into-space unfolding restrict-space-def by (subst space-measure-of)

auto

lemma space-restrict-space2 : Ω ∈ sets M =⇒ space (restrict-space M Ω) = Ω
by (simp add : space-restrict-space sets.sets-into-space)

lemma sets-restrict-space: sets (restrict-space M Ω) = (op ∩ Ω) ‘ sets M
unfolding restrict-space-def

proof (subst sets-measure-of)
show op ∩ Ω ‘ sets M ⊆ Pow (Ω ∩ space M)

by (auto dest : sets.sets-into-space)
have sigma-sets (Ω ∩ space M) {((λx . x) −‘ X) ∩ (Ω ∩ space M) | X . X ∈ sets

M } =
(λX . X ∩ (Ω ∩ space M)) ‘ sets M

THEORY “Sigma-Algebra” 60

by (subst sigma-sets-vimage-commute[symmetric, where Ω ′ = space M])
(auto simp add : sets.sigma-sets-eq)

moreover have {((λx . x) −‘ X) ∩ (Ω ∩ space M) | X . X ∈ sets M } = (λX . X
∩ (Ω ∩ space M)) ‘ sets M

by auto
moreover have (λX . X ∩ (Ω ∩ space M)) ‘ sets M = (op ∩ Ω) ‘ sets M

by (intro image-cong) (auto dest : sets.sets-into-space)
ultimately show sigma-sets (Ω ∩ space M) (op ∩ Ω ‘ sets M) = op ∩ Ω ‘ sets

M
by simp

qed

lemma restrict-space-sets-cong :
A = B =⇒ sets M = sets N =⇒ sets (restrict-space M A) = sets (restrict-space

N B)
by (auto simp: sets-restrict-space)

lemma sets-restrict-space-count-space :
sets (restrict-space (count-space A) B) = sets (count-space (A ∩ B))

by(auto simp add : sets-restrict-space)

lemma sets-restrict-UNIV [simp]: sets (restrict-space M UNIV) = sets M
by (auto simp add : sets-restrict-space)

lemma sets-restrict-restrict-space:
sets (restrict-space (restrict-space M A) B) = sets (restrict-space M (A ∩ B))
unfolding sets-restrict-space image-comp by (intro image-cong) auto

lemma sets-restrict-space-iff :
Ω ∩ space M ∈ sets M =⇒ A ∈ sets (restrict-space M Ω) ←→ (A ⊆ Ω ∧ A ∈

sets M)
proof (subst sets-restrict-space, safe)

fix A assume Ω ∩ space M ∈ sets M and A: A ∈ sets M
then have (Ω ∩ space M) ∩ A ∈ sets M

by rule
also have (Ω ∩ space M) ∩ A = Ω ∩ A

using sets.sets-into-space[OF A] by auto
finally show Ω ∩ A ∈ sets M

by auto
qed auto

lemma sets-restrict-space-cong : sets M = sets N =⇒ sets (restrict-space M Ω) =
sets (restrict-space N Ω)

by (simp add : sets-restrict-space)

lemma restrict-space-eq-vimage-algebra:
Ω ⊆ space M =⇒ sets (restrict-space M Ω) = sets (vimage-algebra Ω (λx . x) M)
unfolding restrict-space-def
apply (subst sets-measure-of)

THEORY “Sigma-Algebra” 61

apply (auto simp add : image-subset-iff dest : sets.sets-into-space) []
apply (auto simp add : sets-vimage-algebra intro!: arg-cong2 [where f =sigma-sets])
done

lemma sets-Collect-restrict-space-iff :
assumes S ∈ sets M
shows {x∈space (restrict-space M S). P x} ∈ sets (restrict-space M S) ←→
{x∈space M . x ∈ S ∧ P x} ∈ sets M
proof −

have {x∈S . P x} = {x∈space M . x ∈ S ∧ P x}
using sets.sets-into-space[OF assms] by auto

then show ?thesis
by (subst sets-restrict-space-iff) (auto simp add : space-restrict-space assms)

qed

lemma measurable-restrict-space1 :
assumes f : f ∈ measurable M N
shows f ∈ measurable (restrict-space M Ω) N
unfolding measurable-def

proof (intro CollectI conjI ballI)
show sp: f ∈ space (restrict-space M Ω) → space N

using measurable-space[OF f] by (auto simp: space-restrict-space)

fix A assume A ∈ sets N
have f −‘ A ∩ space (restrict-space M Ω) = (f −‘ A ∩ space M) ∩ (Ω ∩ space

M)
by (auto simp: space-restrict-space)

also have . . . ∈ sets (restrict-space M Ω)
unfolding sets-restrict-space
using measurable-sets[OF f 〈A ∈ sets N 〉] by blast

finally show f −‘ A ∩ space (restrict-space M Ω) ∈ sets (restrict-space M Ω) .
qed

lemma measurable-restrict-space2-iff :
f ∈ measurable M (restrict-space N Ω) ←→ (f ∈ measurable M N ∧ f ∈ space

M → Ω)
proof −

have
∧

A. f ∈ space M → Ω =⇒ f −‘ Ω ∩ f −‘ A ∩ space M = f −‘ A ∩ space
M

by auto
then show ?thesis
by (auto simp: measurable-def space-restrict-space Pi-Int [symmetric] sets-restrict-space)

qed

lemma measurable-restrict-space2 :
f ∈ space M → Ω =⇒ f ∈ measurable M N =⇒ f ∈ measurable M (restrict-space

N Ω)
by (simp add : measurable-restrict-space2-iff)

THEORY “Sigma-Algebra” 62

lemma measurable-piecewise-restrict :
assumes I : countable C

and X :
∧

Ω. Ω ∈ C =⇒ Ω ∩ space M ∈ sets M space M ⊆
⋃

C
and f :

∧
Ω. Ω ∈ C =⇒ f ∈ measurable (restrict-space M Ω) N

shows f ∈ measurable M N
proof (rule measurableI)

fix x assume x ∈ space M
with X obtain Ω where Ω ∈ C x ∈ Ω x ∈ space M by auto
then show f x ∈ space N

by (auto simp: space-restrict-space intro: f measurable-space)
next

fix A assume A: A ∈ sets N
have f −‘ A ∩ space M = (

⋃
Ω∈C . (f −‘ A ∩ (Ω ∩ space M)))

using X by (auto simp: subset-eq)
also have . . . ∈ sets M

using measurable-sets[OF f A] X I
by (intro sets.countable-UN ′) (auto simp: sets-restrict-space-iff space-restrict-space)
finally show f −‘ A ∩ space M ∈ sets M .

qed

lemma measurable-piecewise-restrict-iff :
countable C =⇒ (

∧
Ω. Ω ∈ C =⇒ Ω ∩ space M ∈ sets M) =⇒ space M ⊆ (

⋃
C)

=⇒
f ∈ measurable M N ←→ (∀Ω∈C . f ∈ measurable (restrict-space M Ω) N)

by (auto intro: measurable-piecewise-restrict measurable-restrict-space1)

lemma measurable-If-restrict-space-iff :
{x∈space M . P x} ∈ sets M =⇒

(λx . if P x then f x else g x) ∈ measurable M N ←→
(f ∈ measurable (restrict-space M {x . P x}) N ∧ g ∈ measurable (restrict-space

M {x . ¬ P x}) N)
by (subst measurable-piecewise-restrict-iff [where C ={{x . P x}, {x . ¬ P x}}])

(auto simp: Int-def sets.sets-Collect-neg space-restrict-space conj-commute[of -
x ∈ space M for x]

cong : measurable-cong ′)

lemma measurable-If :
f ∈ measurable M M ′ =⇒ g ∈ measurable M M ′ =⇒ {x∈space M . P x} ∈ sets

M =⇒
(λx . if P x then f x else g x) ∈ measurable M M ′

unfolding measurable-If-restrict-space-iff by (auto intro: measurable-restrict-space1)

lemma measurable-If-set :
assumes measure: f ∈ measurable M M ′ g ∈ measurable M M ′

assumes P : A ∩ space M ∈ sets M
shows (λx . if x ∈ A then f x else g x) ∈ measurable M M ′

proof (rule measurable-If [OF measure])
have {x ∈ space M . x ∈ A} = A ∩ space M by auto
thus {x ∈ space M . x ∈ A} ∈ sets M using 〈A ∩ space M ∈ sets M 〉 by auto

THEORY “Measurable” 63

qed

lemma measurable-restrict-space-iff :
Ω ∩ space M ∈ sets M =⇒ c ∈ space N =⇒

f ∈ measurable (restrict-space M Ω) N ←→ (λx . if x ∈ Ω then f x else c) ∈
measurable M N

by (subst measurable-If-restrict-space-iff)
(simp-all add : Int-def conj-commute measurable-const)

lemma restrict-space-singleton: {x} ∈ sets M =⇒ sets (restrict-space M {x}) =
sets (count-space {x})

using sets-restrict-space-iff [of {x} M]
by (auto simp add : sets-restrict-space-iff dest !: subset-singletonD)

lemma measurable-restrict-countable:
assumes X [intro]: countable X
assumes sets[simp]:

∧
x . x ∈ X =⇒ {x} ∈ sets M

assumes space[simp]:
∧

x . x ∈ X =⇒ f x ∈ space N
assumes f : f ∈ measurable (restrict-space M (− X)) N
shows f ∈ measurable M N
using f sets.countable[OF sets X]
by (intro measurable-piecewise-restrict [where M =M and C ={− X } ∪ ((λx .
{x}) ‘ X)])

(auto simp: Diff-Int-distrib2 Compl-eq-Diff-UNIV Int-insert-left sets.Diff restrict-space-singleton
simp del : sets-count-space cong : measurable-cong-sets)

lemma measurable-discrete-difference:
assumes f : f ∈ measurable M N
assumes X : countable X

∧
x . x ∈ X =⇒ {x} ∈ sets M

∧
x . x ∈ X =⇒ g x ∈

space N
assumes eq :

∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows g ∈ measurable M N
by (rule measurable-restrict-countable[OF X])

(auto simp: eq [symmetric] space-restrict-space cong : measurable-cong ′ intro: f
measurable-restrict-space1)

end

theory Measurable
imports

Sigma-Algebra
∼∼/src/HOL/Library/Order-Continuity

begin

2.4 Measurability prover

lemma (in algebra) sets-Collect-finite-All :
assumes

∧
i . i ∈ S =⇒ {x∈Ω. P i x} ∈ M finite S

shows {x∈Ω. ∀ i∈S . P i x} ∈ M

THEORY “Measurable” 64

proof −
have {x∈Ω. ∀ i∈S . P i x} = (if S = {} then Ω else

⋂
i∈S . {x∈Ω. P i x})

by auto
with assms show ?thesis by (auto intro!: sets-Collect-finite-All ′)

qed

abbreviation pred M P ≡ P ∈ measurable M (count-space (UNIV ::bool set))

lemma pred-def : pred M P ←→ {x∈space M . P x} ∈ sets M
proof

assume pred M P
then have P −‘ {True} ∩ space M ∈ sets M

by (auto simp: measurable-count-space-eq2)
also have P −‘ {True} ∩ space M = {x∈space M . P x} by auto
finally show {x∈space M . P x} ∈ sets M .

next
assume P : {x∈space M . P x} ∈ sets M
moreover
{ fix X

have X ∈ Pow (UNIV :: bool set) by simp
then have P −‘ X ∩ space M = {x∈space M . ((X = {True} −→ P x) ∧ (X

= {False} −→ ¬ P x) ∧ X 6= {})}
unfolding UNIV-bool Pow-insert Pow-empty by auto

then have P −‘ X ∩ space M ∈ sets M
by (auto intro!: sets.sets-Collect-neg sets.sets-Collect-imp sets.sets-Collect-conj

sets.sets-Collect-const P) }
then show pred M P

by (auto simp: measurable-def)
qed

lemma pred-sets1 : {x∈space M . P x} ∈ sets M =⇒ f ∈ measurable N M =⇒
pred N (λx . P (f x))

by (rule measurable-compose[where f =f and N =M]) (auto simp: pred-def)

lemma pred-sets2 : A ∈ sets N =⇒ f ∈ measurable M N =⇒ pred M (λx . f x ∈
A)
by (rule measurable-compose[where f =f and N =N]) (auto simp: pred-def Int-def [symmetric])

ML-file measurable.ML

attribute-setup measurable = 〈

Scan.lift (
(Args.add >> K true || Args.del >> K false || Scan.succeed true) −−
Scan.optional (Args.parens (

Scan.optional (Args.$$$ raw >> K true) false −−
Scan.optional (Args.$$$ generic >> K Measurable.Generic) Measurable.Concrete))
(false, Measurable.Concrete) >>
Measurable.measurable-thm-attr)

〉 declaration of measurability theorems

THEORY “Measurable” 65

attribute-setup measurable-dest = Measurable.dest-thm-attr
add dest rule to measurability prover

attribute-setup measurable-cong = Measurable.cong-thm-attr
add congurence rules to measurability prover

method-setup measurable = 〈 Scan.lift (Scan.succeed (METHOD o Measurable.measurable-tac))
〉

measurability prover

simproc-setup measurable (A ∈ sets M | f ∈ measurable M N) = 〈K Measur-
able.simproc〉

setup 〈

Global-Theory .add-thms-dynamic (@{binding measurable}, Measurable.get-all)
〉

declare
pred-sets1 [measurable-dest]
pred-sets2 [measurable-dest]
sets.sets-into-space[measurable-dest]

declare
sets.top[measurable]
sets.empty-sets[measurable (raw)]
sets.Un[measurable (raw)]
sets.Diff [measurable (raw)]

declare
measurable-count-space[measurable (raw)]
measurable-ident [measurable (raw)]
measurable-id [measurable (raw)]
measurable-const [measurable (raw)]
measurable-If [measurable (raw)]
measurable-comp[measurable (raw)]
measurable-sets[measurable (raw)]

declare measurable-cong-sets[measurable-cong]
declare sets-restrict-space-cong [measurable-cong]
declare sets-restrict-UNIV [measurable-cong]

lemma predE [measurable (raw)]:
pred M P =⇒ {x∈space M . P x} ∈ sets M
unfolding pred-def .

lemma pred-intros-imp ′[measurable (raw)]:
(K =⇒ pred M (λx . P x)) =⇒ pred M (λx . K −→ P x)
by (cases K) auto

THEORY “Measurable” 66

lemma pred-intros-conj1 ′[measurable (raw)]:
(K =⇒ pred M (λx . P x)) =⇒ pred M (λx . K ∧ P x)
by (cases K) auto

lemma pred-intros-conj2 ′[measurable (raw)]:
(K =⇒ pred M (λx . P x)) =⇒ pred M (λx . P x ∧ K)
by (cases K) auto

lemma pred-intros-disj1 ′[measurable (raw)]:
(¬ K =⇒ pred M (λx . P x)) =⇒ pred M (λx . K ∨ P x)
by (cases K) auto

lemma pred-intros-disj2 ′[measurable (raw)]:
(¬ K =⇒ pred M (λx . P x)) =⇒ pred M (λx . P x ∨ K)
by (cases K) auto

lemma pred-intros-logic[measurable (raw)]:
pred M (λx . x ∈ space M)
pred M (λx . P x) =⇒ pred M (λx . ¬ P x)
pred M (λx . Q x) =⇒ pred M (λx . P x) =⇒ pred M (λx . Q x ∧ P x)
pred M (λx . Q x) =⇒ pred M (λx . P x) =⇒ pred M (λx . Q x −→ P x)
pred M (λx . Q x) =⇒ pred M (λx . P x) =⇒ pred M (λx . Q x ∨ P x)
pred M (λx . Q x) =⇒ pred M (λx . P x) =⇒ pred M (λx . Q x = P x)
pred M (λx . f x ∈ UNIV)
pred M (λx . f x ∈ {})
pred M (λx . P ′ (f x) x) =⇒ pred M (λx . f x ∈ {y . P ′ y x})
pred M (λx . f x ∈ (B x)) =⇒ pred M (λx . f x ∈ − (B x))
pred M (λx . f x ∈ (A x)) =⇒ pred M (λx . f x ∈ (B x)) =⇒ pred M (λx . f x ∈

(A x) − (B x))
pred M (λx . f x ∈ (A x)) =⇒ pred M (λx . f x ∈ (B x)) =⇒ pred M (λx . f x ∈

(A x) ∩ (B x))
pred M (λx . f x ∈ (A x)) =⇒ pred M (λx . f x ∈ (B x)) =⇒ pred M (λx . f x ∈

(A x) ∪ (B x))
pred M (λx . g x (f x) ∈ (X x)) =⇒ pred M (λx . f x ∈ (g x) −‘ (X x))
by (auto simp: iff-conv-conj-imp pred-def)

lemma pred-intros-countable[measurable (raw)]:
fixes P :: ′a ⇒ ′i :: countable ⇒ bool
shows

(
∧

i . pred M (λx . P x i)) =⇒ pred M (λx . ∀ i . P x i)
(
∧

i . pred M (λx . P x i)) =⇒ pred M (λx . ∃ i . P x i)
by (auto intro!: sets.sets-Collect-countable-All sets.sets-Collect-countable-Ex simp:

pred-def)

lemma pred-intros-countable-bounded [measurable (raw)]:
fixes X :: ′i :: countable set
shows

(
∧

i . i ∈ X =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (
⋂

i∈X . N x i))

THEORY “Measurable” 67

(
∧

i . i ∈ X =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (
⋃

i∈X . N x i))
(
∧

i . i ∈ X =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∀ i∈X . P x i)
(
∧

i . i ∈ X =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∃ i∈X . P x i)
by simp-all (auto simp: Bex-def Ball-def)

lemma pred-intros-finite[measurable (raw)]:
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋂
i∈I .

N x i))
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . x ∈ N x i)) =⇒ pred M (λx . x ∈ (

⋃
i∈I .

N x i))
finite I =⇒ (

∧
i . i ∈ I =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∀ i∈I . P x i)

finite I =⇒ (
∧

i . i ∈ I =⇒ pred M (λx . P x i)) =⇒ pred M (λx . ∃ i∈I . P x i)
by (auto intro!: sets.sets-Collect-finite-Ex sets.sets-Collect-finite-All simp: iff-conv-conj-imp

pred-def)

lemma countable-Un-Int [measurable (raw)]:
(
∧

i :: ′i :: countable. i ∈ I =⇒ N i ∈ sets M) =⇒ (
⋃

i∈I . N i) ∈ sets M
I 6= {} =⇒ (

∧
i :: ′i :: countable. i ∈ I =⇒ N i ∈ sets M) =⇒ (

⋂
i∈I . N i) ∈

sets M
by auto

declare
finite-UN [measurable (raw)]
finite-INT [measurable (raw)]

lemma sets-Int-pred [measurable (raw)]:
assumes space: A ∩ B ⊆ space M and [measurable]: pred M (λx . x ∈ A) pred

M (λx . x ∈ B)
shows A ∩ B ∈ sets M

proof −
have {x∈space M . x ∈ A ∩ B} ∈ sets M by auto
also have {x∈space M . x ∈ A ∩ B} = A ∩ B

using space by auto
finally show ?thesis .

qed

lemma [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: c ∈ space N =⇒ {c} ∈ sets N
shows pred-eq-const1 : pred M (λx . f x = c)

and pred-eq-const2 : pred M (λx . c = f x)
proof −

show pred M (λx . f x = c)
proof cases

assume c ∈ space N
with measurable-sets[OF f c] show ?thesis

by (auto simp: Int-def conj-commute pred-def)
next

assume c /∈ space N
with f [THEN measurable-space] have {x ∈ space M . f x = c} = {} by auto

THEORY “Measurable” 68

then show ?thesis by (auto simp: pred-def cong : conj-cong)
qed
then show pred M (λx . c = f x)

by (simp add : eq-commute)
qed

lemma pred-count-space-const1 [measurable (raw)]:
f ∈ measurable M (count-space UNIV) =⇒ Measurable.pred M (λx . f x = c)
by (intro pred-eq-const1 [where N =count-space UNIV]) (auto)

lemma pred-count-space-const2 [measurable (raw)]:
f ∈ measurable M (count-space UNIV) =⇒ Measurable.pred M (λx . c = f x)
by (intro pred-eq-const2 [where N =count-space UNIV]) (auto)

lemma pred-le-const [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {.. c} ∈ sets N shows pred M (λx . f x
≤ c)

using measurable-sets[OF f c]
by (auto simp: Int-def conj-commute eq-commute pred-def)

lemma pred-const-le[measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {c ..} ∈ sets N shows pred M (λx . c
≤ f x)

using measurable-sets[OF f c]
by (auto simp: Int-def conj-commute eq-commute pred-def)

lemma pred-less-const [measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {..< c} ∈ sets N shows pred M (λx . f

x < c)
using measurable-sets[OF f c]
by (auto simp: Int-def conj-commute eq-commute pred-def)

lemma pred-const-less[measurable (raw generic)]:
assumes f : f ∈ measurable M N and c: {c <..} ∈ sets N shows pred M (λx .

c < f x)
using measurable-sets[OF f c]
by (auto simp: Int-def conj-commute eq-commute pred-def)

declare
sets.Int [measurable (raw)]

lemma pred-in-If [measurable (raw)]:
(P =⇒ pred M (λx . x ∈ A x)) =⇒ (¬ P =⇒ pred M (λx . x ∈ B x)) =⇒

pred M (λx . x ∈ (if P then A x else B x))
by auto

lemma sets-range[measurable-dest]:
A ‘ I ⊆ sets M =⇒ i ∈ I =⇒ A i ∈ sets M
by auto

THEORY “Measurable” 69

lemma pred-sets-range[measurable-dest]:
A ‘ I ⊆ sets N =⇒ i ∈ I =⇒ f ∈ measurable M N =⇒ pred M (λx . f x ∈ A i)
using pred-sets2 [OF sets-range] by auto

lemma sets-All [measurable-dest]:
∀ i . A i ∈ sets (M i) =⇒ A i ∈ sets (M i)
by auto

lemma pred-sets-All [measurable-dest]:
∀ i . A i ∈ sets (N i) =⇒ f ∈ measurable M (N i) =⇒ pred M (λx . f x ∈ A i)
using pred-sets2 [OF sets-All , of A N f] by auto

lemma sets-Ball [measurable-dest]:
∀ i∈I . A i ∈ sets (M i) =⇒ i∈I =⇒ A i ∈ sets (M i)
by auto

lemma pred-sets-Ball [measurable-dest]:
∀ i∈I . A i ∈ sets (N i) =⇒ i∈I =⇒ f ∈ measurable M (N i) =⇒ pred M (λx . f

x ∈ A i)
using pred-sets2 [OF sets-Ball , of - - - f] by auto

lemma measurable-finite[measurable (raw)]:
fixes S :: ′a ⇒ nat set
assumes [measurable]:

∧
i . {x∈space M . i ∈ S x} ∈ sets M

shows pred M (λx . finite (S x))
unfolding finite-nat-set-iff-bounded by (simp add : Ball-def)

lemma measurable-Least [measurable]:
assumes [measurable]: (

∧
i ::nat . (λx . P i x) ∈ measurable M (count-space UNIV))q

shows (λx . LEAST i . P i x) ∈ measurable M (count-space UNIV)
unfolding measurable-def by (safe intro!: sets-Least) simp-all

lemma measurable-Max-nat [measurable (raw)]:
fixes P :: nat ⇒ ′a ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

shows (λx . Max {i . P i x}) ∈ measurable M (count-space UNIV)
unfolding measurable-count-space-eq2-countable

proof safe
fix n

{ fix x assume ∀ i . ∃n≥i . P n x
then have infinite {i . P i x}

unfolding infinite-nat-iff-unbounded-le by auto
then have Max {i . P i x} = the None

by (rule Max .infinite) }
note 1 = this

{ fix x i j assume P i x ∀n≥j . ¬ P n x

THEORY “Measurable” 70

then have finite {i . P i x}
by (auto simp: subset-eq not-le[symmetric] finite-nat-iff-bounded)

with 〈P i x 〉 have P (Max {i . P i x}) x i ≤ Max {i . P i x} finite {i . P i x}
using Max-in[of {i . P i x}] by auto }

note 2 = this

have (λx . Max {i . P i x}) −‘ {n} ∩ space M = {x∈space M . Max {i . P i x}
= n}

by auto
also have . . . =
{x∈space M . if (∀ i . ∃n≥i . P n x) then the None = n else

if (∃ i . P i x) then P n x ∧ (∀ i>n. ¬ P i x)
else Max {} = n}

by (intro arg-cong [where f =Collect] ext conj-cong)
(auto simp add : 1 2 not-le[symmetric] intro!: Max-eqI)

also have . . . ∈ sets M
by measurable

finally show (λx . Max {i . P i x}) −‘ {n} ∩ space M ∈ sets M .
qed simp

lemma measurable-Min-nat [measurable (raw)]:
fixes P :: nat ⇒ ′a ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

shows (λx . Min {i . P i x}) ∈ measurable M (count-space UNIV)
unfolding measurable-count-space-eq2-countable

proof safe
fix n

{ fix x assume ∀ i . ∃n≥i . P n x
then have infinite {i . P i x}

unfolding infinite-nat-iff-unbounded-le by auto
then have Min {i . P i x} = the None

by (rule Min.infinite) }
note 1 = this

{ fix x i j assume P i x ∀n≥j . ¬ P n x
then have finite {i . P i x}

by (auto simp: subset-eq not-le[symmetric] finite-nat-iff-bounded)
with 〈P i x 〉 have P (Min {i . P i x}) x Min {i . P i x} ≤ i finite {i . P i x}

using Min-in[of {i . P i x}] by auto }
note 2 = this

have (λx . Min {i . P i x}) −‘ {n} ∩ space M = {x∈space M . Min {i . P i x} =
n}

by auto
also have . . . =
{x∈space M . if (∀ i . ∃n≥i . P n x) then the None = n else

if (∃ i . P i x) then P n x ∧ (∀ i<n. ¬ P i x)
else Min {} = n}

THEORY “Measurable” 71

by (intro arg-cong [where f =Collect] ext conj-cong)
(auto simp add : 1 2 not-le[symmetric] intro!: Min-eqI)

also have . . . ∈ sets M
by measurable

finally show (λx . Min {i . P i x}) −‘ {n} ∩ space M ∈ sets M .
qed simp

lemma measurable-count-space-insert [measurable (raw)]:
s ∈ S =⇒ A ∈ sets (count-space S) =⇒ insert s A ∈ sets (count-space S)
by simp

lemma sets-UNIV [measurable (raw)]: A ∈ sets (count-space UNIV)
by simp

lemma measurable-card [measurable]:
fixes S :: ′a ⇒ nat set
assumes [measurable]:

∧
i . {x∈space M . i ∈ S x} ∈ sets M

shows (λx . card (S x)) ∈ measurable M (count-space UNIV)
unfolding measurable-count-space-eq2-countable

proof safe
fix n show (λx . card (S x)) −‘ {n} ∩ space M ∈ sets M
proof (cases n)

case 0
then have (λx . card (S x)) −‘ {n} ∩ space M = {x∈space M . infinite (S x)

∨ (∀ i . i /∈ S x)}
by auto

also have . . . ∈ sets M
by measurable

finally show ?thesis .
next

case (Suc i)
then have (λx . card (S x)) −‘ {n} ∩ space M =

(
⋃

F∈{A∈{A. finite A}. card A = n}. {x∈space M . (∀ i . i ∈ S x ←→ i ∈
F)})

unfolding set-eq-iff [symmetric] Collect-bex-eq [symmetric] by (auto intro:
card-ge-0-finite)

also have . . . ∈ sets M
by (intro sets.countable-UN ′ countable-Collect countable-Collect-finite) auto

finally show ?thesis .
qed

qed rule

lemma measurable-pred-countable[measurable (raw)]:
assumes countable X
shows

(
∧

i . i ∈ X =⇒ Measurable.pred M (λx . P x i)) =⇒ Measurable.pred M (λx .
∀ i∈X . P x i)

(
∧

i . i ∈ X =⇒ Measurable.pred M (λx . P x i)) =⇒ Measurable.pred M (λx .
∃ i∈X . P x i)

THEORY “Measurable” 72

unfolding pred-def
by (auto intro!: sets.sets-Collect-countable-All ′ sets.sets-Collect-countable-Ex ′

assms)

2.5 Measurability for (co)inductive predicates

lemma measurable-bot [measurable]: bot ∈ measurable M (count-space UNIV)
by (simp add : bot-fun-def)

lemma measurable-top[measurable]: top ∈ measurable M (count-space UNIV)
by (simp add : top-fun-def)

lemma measurable-SUP [measurable]:
fixes F :: ′i ⇒ ′a ⇒ ′b::{complete-lattice, countable}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ measurable M (count-space UNIV)

shows (λx . SUP i :I . F i x) ∈ measurable M (count-space UNIV)
unfolding measurable-count-space-eq2-countable

proof (safe intro!: UNIV-I)
fix a
have (λx . SUP i :I . F i x) −‘ {a} ∩ space M =
{x∈space M . (∀ i∈I . F i x ≤ a) ∧ (∀ b. (∀ i∈I . F i x ≤ b) −→ a ≤ b)}
unfolding SUP-le-iff [symmetric] by auto

also have . . . ∈ sets M
by measurable

finally show (λx . SUP i :I . F i x) −‘ {a} ∩ space M ∈ sets M .
qed

lemma measurable-INF [measurable]:
fixes F :: ′i ⇒ ′a ⇒ ′b::{complete-lattice, countable}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ measurable M (count-space UNIV)

shows (λx . INF i :I . F i x) ∈ measurable M (count-space UNIV)
unfolding measurable-count-space-eq2-countable

proof (safe intro!: UNIV-I)
fix a
have (λx . INF i :I . F i x) −‘ {a} ∩ space M =
{x∈space M . (∀ i∈I . a ≤ F i x) ∧ (∀ b. (∀ i∈I . b ≤ F i x) −→ b ≤ a)}
unfolding le-INF-iff [symmetric] by auto

also have . . . ∈ sets M
by measurable

finally show (λx . INF i :I . F i x) −‘ {a} ∩ space M ∈ sets M .
qed

lemma measurable-lfp-coinduct [consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b::{complete-lattice, countable})
assumes P M
assumes F : sup-continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ A ∈ measurable N (count-space

THEORY “Measurable” 73

UNIV)) =⇒ F A ∈ measurable M (count-space UNIV)
shows lfp F ∈ measurable M (count-space UNIV)

proof −
{ fix i from 〈P M 〉 have ((F ˆˆ i) bot) ∈ measurable M (count-space UNIV)

by (induct i arbitrary : M) (auto intro!: ∗) }
then have (λx . SUP i . (F ˆˆ i) bot x) ∈ measurable M (count-space UNIV)

by measurable
also have (λx . SUP i . (F ˆˆ i) bot x) = lfp F

by (subst sup-continuous-lfp) (auto intro: F)
finally show ?thesis .

qed

lemma measurable-lfp:
fixes F :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b::{complete-lattice, countable})
assumes F : sup-continuous F
assumes ∗:

∧
A. A ∈ measurable M (count-space UNIV) =⇒ F A ∈ measurable

M (count-space UNIV)
shows lfp F ∈ measurable M (count-space UNIV)
by (coinduction rule: measurable-lfp-coinduct [OF - F]) (blast intro: ∗)

lemma measurable-gfp-coinduct [consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b::{complete-lattice, countable})
assumes P M
assumes F : inf-continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ A ∈ measurable N (count-space

UNIV)) =⇒ F A ∈ measurable M (count-space UNIV)
shows gfp F ∈ measurable M (count-space UNIV)

proof −
{ fix i from 〈P M 〉 have ((F ˆˆ i) top) ∈ measurable M (count-space UNIV)

by (induct i arbitrary : M) (auto intro!: ∗) }
then have (λx . INF i . (F ˆˆ i) top x) ∈ measurable M (count-space UNIV)

by measurable
also have (λx . INF i . (F ˆˆ i) top x) = gfp F

by (subst inf-continuous-gfp) (auto intro: F)
finally show ?thesis .

qed

lemma measurable-gfp:
fixes F :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b::{complete-lattice, countable})
assumes F : inf-continuous F
assumes ∗:

∧
A. A ∈ measurable M (count-space UNIV) =⇒ F A ∈ measurable

M (count-space UNIV)
shows gfp F ∈ measurable M (count-space UNIV)
by (coinduction rule: measurable-gfp-coinduct [OF - F]) (blast intro: ∗)

lemma measurable-lfp2-coinduct [consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′c ⇒ ′b) ⇒ (′a ⇒ ′c ⇒ ′b::{complete-lattice, countable})
assumes P M s
assumes F : sup-continuous F

THEORY “Measurable” 74

assumes ∗:
∧

M A s. P M s =⇒ (
∧

N t . P N t =⇒ A t ∈ measurable N
(count-space UNIV)) =⇒ F A s ∈ measurable M (count-space UNIV)

shows lfp F s ∈ measurable M (count-space UNIV)
proof −
{ fix i from 〈P M s〉 have (λx . (F ˆˆ i) bot s x) ∈ measurable M (count-space

UNIV)
by (induct i arbitrary : M s) (auto intro!: ∗) }

then have (λx . SUP i . (F ˆˆ i) bot s x) ∈ measurable M (count-space UNIV)
by measurable

also have (λx . SUP i . (F ˆˆ i) bot s x) = lfp F s
by (subst sup-continuous-lfp) (auto simp: F)

finally show ?thesis .
qed

lemma measurable-gfp2-coinduct [consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′c ⇒ ′b) ⇒ (′a ⇒ ′c ⇒ ′b::{complete-lattice, countable})
assumes P M s
assumes F : inf-continuous F
assumes ∗:

∧
M A s. P M s =⇒ (

∧
N t . P N t =⇒ A t ∈ measurable N

(count-space UNIV)) =⇒ F A s ∈ measurable M (count-space UNIV)
shows gfp F s ∈ measurable M (count-space UNIV)

proof −
{ fix i from 〈P M s〉 have (λx . (F ˆˆ i) top s x) ∈ measurable M (count-space

UNIV)
by (induct i arbitrary : M s) (auto intro!: ∗) }

then have (λx . INF i . (F ˆˆ i) top s x) ∈ measurable M (count-space UNIV)
by measurable

also have (λx . INF i . (F ˆˆ i) top s x) = gfp F s
by (subst inf-continuous-gfp) (auto simp: F)

finally show ?thesis .
qed

lemma measurable-enat-coinduct :
fixes f :: ′a ⇒ enat
assumes R f
assumes ∗:

∧
f . R f =⇒ ∃ g h i P . R g ∧ f = (λx . if P x then h x else eSuc (g

(i x))) ∧
Measurable.pred M P ∧
i ∈ measurable M M ∧
h ∈ measurable M (count-space UNIV)

shows f ∈ measurable M (count-space UNIV)
proof (simp add : measurable-count-space-eq2-countable, rule)

fix a :: enat
have f −‘ {a} ∩ space M = {x∈space M . f x = a}

by auto
{ fix i :: nat

from 〈R f 〉 have Measurable.pred M (λx . f x = enat i)
proof (induction i arbitrary : f)

case 0

THEORY “Measurable” 75

from ∗[OF this] obtain g h i P
where f : f = (λx . if P x then h x else eSuc (g (i x))) and

[measurable]: Measurable.pred M P i ∈ measurable M M h ∈ measurable
M (count-space UNIV)

by auto
have Measurable.pred M (λx . P x ∧ h x = 0)

by measurable
also have (λx . P x ∧ h x = 0) = (λx . f x = enat 0)

by (auto simp: f zero-enat-def [symmetric])
finally show ?case .

next
case (Suc n)
from ∗[OF Suc.prems] obtain g h i P

where f : f = (λx . if P x then h x else eSuc (g (i x))) and R g and
M [measurable]: Measurable.pred M P i ∈ measurable M M h ∈ measurable

M (count-space UNIV)
by auto

have (λx . f x = enat (Suc n)) =
(λx . (P x −→ h x = enat (Suc n)) ∧ (¬ P x −→ g (i x) = enat n))
by (auto simp: f zero-enat-def [symmetric] eSuc-enat [symmetric])

also have Measurable.pred M . . .
by (intro pred-intros-logic measurable-compose[OF M (2)] Suc 〈R g〉)

measurable
finally show ?case .

qed
then have f −‘ {enat i} ∩ space M ∈ sets M

by (simp add : pred-def Int-def conj-commute) }
note fin = this
show f −‘ {a} ∩ space M ∈ sets M
proof (cases a)

case infinity
then have f −‘ {a} ∩ space M = space M − (

⋃
n. f −‘ {enat n} ∩ space M)

by auto
also have . . . ∈ sets M

by (intro sets.Diff sets.top sets.Un sets.countable-UN) (auto intro!: fin)
finally show ?thesis .

qed (simp add : fin)
qed

lemma measurable-THE :
fixes P :: ′a ⇒ ′b ⇒ bool
assumes [measurable]:

∧
i . Measurable.pred M (P i)

assumes I [simp]: countable I
∧

i x . x ∈ space M =⇒ P i x =⇒ i ∈ I
assumes unique:

∧
x i j . x ∈ space M =⇒ P i x =⇒ P j x =⇒ i = j

shows (λx . THE i . P i x) ∈ measurable M (count-space UNIV)
unfolding measurable-def

proof safe
fix X
def f ≡ λx . THE i . P i x def undef ≡ THE i :: ′a. False

THEORY “Measurable” 76

{ fix i x assume x ∈ space M P i x then have f x = i
unfolding f-def using unique by auto }

note f-eq = this
{ fix x assume x ∈ space M ∀ i∈I . ¬ P i x

then have
∧

i . ¬ P i x
using I (2)[of x] by auto

then have f x = undef
by (auto simp: undef-def f-def) }

then have f −‘ X ∩ space M = (
⋃

i∈I ∩ X . {x∈space M . P i x}) ∪
(if undef ∈ X then space M − (

⋃
i∈I . {x∈space M . P i x}) else {})

by (auto dest : f-eq)
also have . . . ∈ sets M

by (auto intro!: sets.Diff sets.countable-UN ′)
finally show f −‘ X ∩ space M ∈ sets M .

qed simp

lemma measurable-Ex1 [measurable (raw)]:
assumes [simp]: countable I and [measurable]:

∧
i . i ∈ I =⇒ Measurable.pred

M (P i)
shows Measurable.pred M (λx . ∃ !i∈I . P i x)
unfolding bex1-def by measurable

lemma measurable-Sup-nat [measurable (raw)]:
fixes F :: ′a ⇒ nat set
assumes [measurable]:

∧
i . Measurable.pred M (λx . i ∈ F x)

shows (λx . Sup (F x)) ∈ M →M count-space UNIV
proof (clarsimp simp add : measurable-count-space-eq2-countable)

fix a
have F-empty-iff : F x = {} ←→ (∀ i . i /∈ F x) for x

by auto
have Measurable.pred M (λx . if finite (F x) then if F x = {} then a = Max {}

else a ∈ F x ∧ (∀ j . j ∈ F x −→ j ≤ a) else a = the None)
unfolding finite-nat-set-iff-bounded Ball-def F-empty-iff by measurable

moreover have (λx . Sup (F x)) −‘ {a} ∩ space M =
{x∈space M . if finite (F x) then if F x = {} then a = Max {}

else a ∈ F x ∧ (∀ j . j ∈ F x −→ j ≤ a) else a = the None}
by (intro set-eqI)

(auto simp: Sup-nat-def Max .infinite intro!: Max-in Max-eqI)
ultimately show (λx . Sup (F x)) −‘ {a} ∩ space M ∈ sets M

by auto
qed

lemma measurable-if-split [measurable (raw)]:
(c =⇒ Measurable.pred M f) =⇒ (¬ c =⇒ Measurable.pred M g) =⇒
Measurable.pred M (if c then f else g)

by simp

lemma pred-restrict-space:
assumes S ∈ sets M

THEORY “Measure-Space” 77

shows Measurable.pred (restrict-space M S) P ←→ Measurable.pred M (λx . x ∈
S ∧ P x)

unfolding pred-def sets-Collect-restrict-space-iff [OF assms] ..

lemma measurable-predpow [measurable]:
assumes Measurable.pred M T
assumes

∧
Q . Measurable.pred M Q =⇒ Measurable.pred M (R Q)

shows Measurable.pred M ((R ˆˆ n) T)
by (induct n) (auto intro: assms)

hide-const (open) pred

end

3 Measure spaces and their properties

theory Measure-Space
imports

Measurable ∼∼/src/HOL/Multivariate-Analysis/Multivariate-Analysis
begin

3.1 Relate extended reals and the indicator function

lemma suminf-cmult-indicator :
fixes f :: nat ⇒ ennreal
assumes disjoint-family A x ∈ A i
shows (

∑
n. f n ∗ indicator (A n) x) = f i

proof −
have ∗∗:

∧
n. f n ∗ indicator (A n) x = (if n = i then f n else 0 :: ennreal)

using 〈x ∈ A i 〉 assms unfolding disjoint-family-on-def indicator-def by auto
then have

∧
n. (

∑
j<n. f j ∗ indicator (A j) x) = (if i < n then f i else 0 ::

ennreal)
by (auto simp: setsum.If-cases)

moreover have (SUP n. if i < n then f i else 0) = (f i :: ennreal)
proof (rule SUP-eqI)

fix y :: ennreal assume
∧

n. n ∈ UNIV =⇒ (if i < n then f i else 0) ≤ y
from this[of Suc i] show f i ≤ y by auto

qed (insert assms, simp add : zero-le)
ultimately show ?thesis using assms

by (subst suminf-eq-SUP) (auto simp: indicator-def)
qed

lemma suminf-indicator :
assumes disjoint-family A
shows (

∑
n. indicator (A n) x :: ennreal) = indicator (

⋃
i . A i) x

proof cases
assume ∗: x ∈ (

⋃
i . A i)

then obtain i where x ∈ A i by auto
from suminf-cmult-indicator [OF assms(1), OF 〈x ∈ A i 〉, of λk . 1]

THEORY “Measure-Space” 78

show ?thesis using ∗ by simp
qed simp

lemma setsum-indicator-disjoint-family :
fixes f :: ′d ⇒ ′e::semiring-1
assumes d : disjoint-family-on A P and x ∈ A j and finite P and j ∈ P
shows (

∑
i∈P . f i ∗ indicator (A i) x) = f j

proof −
have P ∩ {i . x ∈ A i} = {j}

using d 〈x ∈ A j 〉 〈j ∈ P 〉 unfolding disjoint-family-on-def
by auto

thus ?thesis
unfolding indicator-def
by (simp add : if-distrib setsum.If-cases[OF 〈finite P 〉])

qed

The type for emeasure spaces is already defined in Sigma-Algebra, as it is
also used to represent sigma algebras (with an arbitrary emeasure).

3.2 Extend binary sets

lemma LIMSEQ-binaryset :
assumes f : f {} = 0
shows (λn.

∑
i<n. f (binaryset A B i)) −−−−→ f A + f B

proof −
have (λn.

∑
i < Suc (Suc n). f (binaryset A B i)) = (λn. f A + f B)

proof
fix n
show (

∑
i < Suc (Suc n). f (binaryset A B i)) = f A + f B

by (induct n) (auto simp add : binaryset-def f)
qed

moreover
have ... −−−−→ f A + f B by (rule tendsto-const)
ultimately
have (λn.

∑
i< Suc (Suc n). f (binaryset A B i)) −−−−→ f A + f B

by metis
hence (λn.

∑
i< n+2 . f (binaryset A B i)) −−−−→ f A + f B

by simp
thus ?thesis by (rule LIMSEQ-offset [where k=2])

qed

lemma binaryset-sums:
assumes f : f {} = 0
shows (λn. f (binaryset A B n)) sums (f A + f B)
by (simp add : sums-def LIMSEQ-binaryset [where f =f , OF f] atLeast0LessThan)

lemma suminf-binaryset-eq :
fixes f :: ′a set ⇒ ′b::{comm-monoid-add , t2-space}
shows f {} = 0 =⇒ (

∑
n. f (binaryset A B n)) = f A + f B

THEORY “Measure-Space” 79

by (metis binaryset-sums sums-unique)

3.3 Properties of a premeasure µ

The definitions for positive and countably-additive should be here, by they
are necessary to define ′a measure in Sigma-Algebra.

definition subadditive where
subadditive M f ←→ (∀ x∈M . ∀ y∈M . x ∩ y = {} −→ f (x ∪ y) ≤ f x + f y)

lemma subadditiveD : subadditive M f =⇒ x ∩ y = {} =⇒ x ∈ M =⇒ y ∈ M =⇒
f (x ∪ y) ≤ f x + f y

by (auto simp add : subadditive-def)

definition countably-subadditive where
countably-subadditive M f ←→

(∀A. range A ⊆ M −→ disjoint-family A −→ (
⋃

i . A i) ∈ M −→ (f (
⋃

i . A
i) ≤ (

∑
i . f (A i))))

lemma (in ring-of-sets) countably-subadditive-subadditive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f and cs: countably-subadditive M f
shows subadditive M f

proof (auto simp add : subadditive-def)
fix x y
assume x : x ∈ M and y : y ∈ M and x ∩ y = {}
hence disjoint-family (binaryset x y)

by (auto simp add : disjoint-family-on-def binaryset-def)
hence range (binaryset x y) ⊆ M −→

(
⋃

i . binaryset x y i) ∈ M −→
f (

⋃
i . binaryset x y i) ≤ (

∑
n. f (binaryset x y n))

using cs by (auto simp add : countably-subadditive-def)
hence {x ,y ,{}} ⊆ M −→ x ∪ y ∈ M −→

f (x ∪ y) ≤ (
∑

n. f (binaryset x y n))
by (simp add : range-binaryset-eq UN-binaryset-eq)

thus f (x ∪ y) ≤ f x + f y using f x y
by (auto simp add : Un o-def suminf-binaryset-eq positive-def)

qed

definition additive where
additive M µ ←→ (∀ x∈M . ∀ y∈M . x ∩ y = {} −→ µ (x ∪ y) = µ x + µ y)

definition increasing where
increasing M µ ←→ (∀ x∈M . ∀ y∈M . x ⊆ y −→ µ x ≤ µ y)

lemma positiveD1 : positive M f =⇒ f {} = 0 by (auto simp: positive-def)

lemma positiveD-empty :
positive M f =⇒ f {} = 0
by (auto simp add : positive-def)

THEORY “Measure-Space” 80

lemma additiveD :
additive M f =⇒ x ∩ y = {} =⇒ x ∈ M =⇒ y ∈ M =⇒ f (x ∪ y) = f x + f y
by (auto simp add : additive-def)

lemma increasingD :
increasing M f =⇒ x ⊆ y =⇒ x∈M =⇒ y∈M =⇒ f x ≤ f y
by (auto simp add : increasing-def)

lemma countably-additiveI [case-names countably]:
(
∧

A. range A ⊆ M =⇒ disjoint-family A =⇒ (
⋃

i . A i) ∈ M =⇒ (
∑

i . f (A
i)) = f (

⋃
i . A i))

=⇒ countably-additive M f
by (simp add : countably-additive-def)

lemma (in ring-of-sets) disjointed-additive:
assumes f : positive M f additive M f and A: range A ⊆ M incseq A
shows (

∑
i≤n. f (disjointed A i)) = f (A n)

proof (induct n)
case (Suc n)
then have (

∑
i≤Suc n. f (disjointed A i)) = f (A n) + f (disjointed A (Suc

n))
by simp

also have . . . = f (A n ∪ disjointed A (Suc n))
using A by (subst f (2)[THEN additiveD]) (auto simp: disjointed-mono)

also have A n ∪ disjointed A (Suc n) = A (Suc n)
using 〈incseq A〉 by (auto dest : incseq-SucD simp: disjointed-mono)

finally show ?case .
qed simp

lemma (in ring-of-sets) additive-sum:
fixes A:: ′i ⇒ ′a set
assumes f : positive M f and ad : additive M f and finite S

and A: A‘S ⊆ M
and disj : disjoint-family-on A S

shows (
∑

i∈S . f (A i)) = f (
⋃

i∈S . A i)
using 〈finite S 〉 disj A

proof induct
case empty show ?case using f by (simp add : positive-def)

next
case (insert s S)
then have A s ∩ (

⋃
i∈S . A i) = {}

by (auto simp add : disjoint-family-on-def neq-iff)
moreover
have A s ∈ M using insert by blast
moreover have (

⋃
i∈S . A i) ∈ M

using insert 〈finite S 〉 by auto
ultimately have f (A s ∪ (

⋃
i∈S . A i)) = f (A s) + f (

⋃
i∈S . A i)

using ad UNION-in-sets A by (auto simp add : additive-def)

THEORY “Measure-Space” 81

with insert show ?case using ad disjoint-family-on-mono[of S insert s S A]
by (auto simp add : additive-def subset-insertI)

qed

lemma (in ring-of-sets) additive-increasing :
fixes f :: ′a set ⇒ ennreal
assumes posf : positive M f and addf : additive M f
shows increasing M f

proof (auto simp add : increasing-def)
fix x y
assume xy : x ∈ M y ∈ M x ⊆ y
then have y − x ∈ M by auto
then have f x + 0 ≤ f x + f (y−x) by (intro add-left-mono zero-le)
also have ... = f (x ∪ (y−x)) using addf
by (auto simp add : additive-def) (metis Diff-disjoint Un-Diff-cancel Diff xy(1 ,2))
also have ... = f y

by (metis Un-Diff-cancel Un-absorb1 xy(3))
finally show f x ≤ f y by simp

qed

lemma (in ring-of-sets) subadditive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f and A: A‘S ⊆ M and S : finite S
shows f (

⋃
i∈S . A i) ≤ (

∑
i∈S . f (A i))

using S A
proof (induct S)

case empty thus ?case using f by (auto simp: positive-def)
next

case (insert x F)
hence in-M : A x ∈ M (

⋃
i∈F . A i) ∈ M (

⋃
i∈F . A i) − A x ∈ M using A

by force+
have subs: (

⋃
i∈F . A i) − A x ⊆ (

⋃
i∈F . A i) by auto

have (
⋃

i∈(insert x F). A i) = A x ∪ ((
⋃

i∈F . A i) − A x) by auto
hence f (

⋃
i∈(insert x F). A i) = f (A x ∪ ((

⋃
i∈F . A i) − A x))

by simp
also have . . . = f (A x) + f ((

⋃
i∈F . A i) − A x)

using f (2) by (rule additiveD) (insert in-M , auto)
also have . . . ≤ f (A x) + f (

⋃
i∈F . A i)

using additive-increasing [OF f] in-M subs by (auto simp: increasing-def intro:
add-left-mono)

also have . . . ≤ f (A x) + (
∑

i∈F . f (A i)) using insert by (auto intro:
add-left-mono)

finally show f (
⋃

i∈(insert x F). A i) ≤ (
∑

i∈(insert x F). f (A i)) using
insert by simp
qed

lemma (in ring-of-sets) countably-additive-additive:
fixes f :: ′a set ⇒ ennreal
assumes posf : positive M f and ca: countably-additive M f

THEORY “Measure-Space” 82

shows additive M f
proof (auto simp add : additive-def)

fix x y
assume x : x ∈ M and y : y ∈ M and x ∩ y = {}
hence disjoint-family (binaryset x y)

by (auto simp add : disjoint-family-on-def binaryset-def)
hence range (binaryset x y) ⊆ M −→

(
⋃

i . binaryset x y i) ∈ M −→
f (

⋃
i . binaryset x y i) = (

∑
n. f (binaryset x y n))

using ca
by (simp add : countably-additive-def)

hence {x ,y ,{}} ⊆ M −→ x ∪ y ∈ M −→
f (x ∪ y) = (

∑
n. f (binaryset x y n))

by (simp add : range-binaryset-eq UN-binaryset-eq)
thus f (x ∪ y) = f x + f y using posf x y

by (auto simp add : Un suminf-binaryset-eq positive-def)
qed

lemma (in algebra) increasing-additive-bound :
fixes A:: nat ⇒ ′a set and f :: ′a set ⇒ ennreal
assumes f : positive M f and ad : additive M f

and inc: increasing M f
and A: range A ⊆ M
and disj : disjoint-family A

shows (
∑

i . f (A i)) ≤ f Ω
proof (safe intro!: suminf-le-const)

fix N
note disj-N = disjoint-family-on-mono[OF - disj , of {..<N }]
have (

∑
i<N . f (A i)) = f (

⋃
i∈{..<N }. A i)

using A by (intro additive-sum [OF f ad - -]) (auto simp: disj-N)
also have ... ≤ f Ω using space-closed A

by (intro increasingD [OF inc] finite-UN) auto
finally show (

∑
i<N . f (A i)) ≤ f Ω by simp

qed (insert f A, auto simp: positive-def)

lemma (in ring-of-sets) countably-additiveI-finite:
fixes µ :: ′a set ⇒ ennreal
assumes finite Ω positive M µ additive M µ
shows countably-additive M µ

proof (rule countably-additiveI)
fix F :: nat ⇒ ′a set assume F : range F ⊆ M (

⋃
i . F i) ∈ M and disj :

disjoint-family F

have ∀ i∈{i . F i 6= {}}. ∃ x . x ∈ F i by auto
from bchoice[OF this] obtain f where f :

∧
i . F i 6= {} =⇒ f i ∈ F i by auto

have inj-f : inj-on f {i . F i 6= {}}
proof (rule inj-onI , simp)

fix i j a b assume ∗: f i = f j F i 6= {} F j 6= {}

THEORY “Measure-Space” 83

then have f i ∈ F i f j ∈ F j using f by force+
with disj ∗ show i = j by (auto simp: disjoint-family-on-def)

qed
have finite (

⋃
i . F i)

by (metis F (2) assms(1) infinite-super sets-into-space)

have F-subset : {i . µ (F i) 6= 0} ⊆ {i . F i 6= {}}
by (auto simp: positiveD-empty [OF 〈positive M µ〉])

moreover have fin-not-empty : finite {i . F i 6= {}}
proof (rule finite-imageD)

from f have f‘{i . F i 6= {}} ⊆ (
⋃

i . F i) by auto
then show finite (f‘{i . F i 6= {}})

by (rule finite-subset) fact
qed fact
ultimately have fin-not-0 : finite {i . µ (F i) 6= 0}

by (rule finite-subset)

have disj-not-empty : disjoint-family-on F {i . F i 6= {}}
using disj by (auto simp: disjoint-family-on-def)

from fin-not-0 have (
∑

i . µ (F i)) = (
∑

i | µ (F i) 6= 0 . µ (F i))
by (rule suminf-finite) auto

also have . . . = (
∑

i | F i 6= {}. µ (F i))
using fin-not-empty F-subset by (rule setsum.mono-neutral-left) auto

also have . . . = µ (
⋃

i∈{i . F i 6= {}}. F i)
using 〈positive M µ〉 〈additive M µ〉 fin-not-empty disj-not-empty F by (intro

additive-sum) auto
also have . . . = µ (

⋃
i . F i)

by (rule arg-cong [where f =µ]) auto
finally show (

∑
i . µ (F i)) = µ (

⋃
i . F i) .

qed

lemma (in ring-of-sets) countably-additive-iff-continuous-from-below :
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f
shows countably-additive M f ←→

(∀A. range A ⊆ M −→ incseq A −→ (
⋃

i . A i) ∈ M −→ (λi . f (A i)) −−−−→
f (

⋃
i . A i))

unfolding countably-additive-def
proof safe

assume count-sum: ∀A. range A ⊆ M −→ disjoint-family A −→ UNION UNIV
A ∈ M −→ (

∑
i . f (A i)) = f (UNION UNIV A)

fix A :: nat ⇒ ′a set assume A: range A ⊆ M incseq A (
⋃

i . A i) ∈ M
then have dA: range (disjointed A) ⊆ M by (auto simp: range-disjointed-sets)
with count-sum[THEN spec, of disjointed A] A(3)
have f-UN : (

∑
i . f (disjointed A i)) = f (

⋃
i . A i)

by (auto simp: UN-disjointed-eq disjoint-family-disjointed)
moreover have (λn. (

∑
i<n. f (disjointed A i))) −−−−→ (

∑
i . f (disjointed A

i))

THEORY “Measure-Space” 84

using f (1)[unfolded positive-def] dA
by (auto intro!: summable-LIMSEQ summableI)

from LIMSEQ-Suc[OF this]
have (λn. (

∑
i≤n. f (disjointed A i))) −−−−→ (

∑
i . f (disjointed A i))

unfolding lessThan-Suc-atMost .
moreover have

∧
n. (

∑
i≤n. f (disjointed A i)) = f (A n)

using disjointed-additive[OF f A(1 ,2)] .
ultimately show (λi . f (A i)) −−−−→ f (

⋃
i . A i) by simp

next
assume cont : ∀A. range A ⊆ M −→ incseq A −→ (

⋃
i . A i) ∈ M −→ (λi . f

(A i)) −−−−→ f (
⋃

i . A i)
fix A :: nat ⇒ ′a set assume A: range A ⊆ M disjoint-family A (

⋃
i . A i) ∈ M

have ∗: (
⋃

n. (
⋃

i<n. A i)) = (
⋃

i . A i) by auto
have (λn. f (

⋃
i<n. A i)) −−−−→ f (

⋃
i . A i)

proof (unfold ∗[symmetric], intro cont [rule-format])
show range (λi .

⋃
i<i . A i) ⊆ M (

⋃
i .

⋃
i<i . A i) ∈ M

using A ∗ by auto
qed (force intro!: incseq-SucI)
moreover have

∧
n. f (

⋃
i<n. A i) = (

∑
i<n. f (A i))

using A
by (intro additive-sum[OF f , of - A, symmetric])

(auto intro: disjoint-family-on-mono[where B=UNIV])
ultimately
have (λi . f (A i)) sums f (

⋃
i . A i)

unfolding sums-def by simp
from sums-unique[OF this]
show (

∑
i . f (A i)) = f (

⋃
i . A i) by simp

qed

lemma (in ring-of-sets) continuous-from-above-iff-empty-continuous:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f
shows (∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) ∈ M −→ (∀ i . f (A i) 6=

∞) −→ (λi . f (A i)) −−−−→ f (
⋂

i . A i))
←→ (∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) = {} −→ (∀ i . f (A i)

6= ∞) −→ (λi . f (A i)) −−−−→ 0)
proof safe

assume cont : (∀A. range A ⊆ M −→ decseq A −→ (
⋂

i . A i) ∈ M −→ (∀ i . f
(A i) 6= ∞) −→ (λi . f (A i)) −−−−→ f (

⋂
i . A i))

fix A :: nat ⇒ ′a set assume A: range A ⊆ M decseq A (
⋂

i . A i) = {} ∀ i . f
(A i) 6= ∞

with cont [THEN spec, of A] show (λi . f (A i)) −−−−→ 0
using 〈positive M f 〉[unfolded positive-def] by auto

next
assume cont : ∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) = {} −→ (∀ i . f

(A i) 6= ∞) −→ (λi . f (A i)) −−−−→ 0
fix A :: nat ⇒ ′a set assume A: range A ⊆ M decseq A (

⋂
i . A i) ∈ M ∀ i . f

(A i) 6= ∞

THEORY “Measure-Space” 85

have f-mono:
∧

a b. a ∈ M =⇒ b ∈ M =⇒ a ⊆ b =⇒ f a ≤ f b
using additive-increasing [OF f] unfolding increasing-def by simp

have decseq-fA: decseq (λi . f (A i))
using A by (auto simp: decseq-def intro!: f-mono)

have decseq : decseq (λi . A i − (
⋂

i . A i))
using A by (auto simp: decseq-def)

then have decseq-f : decseq (λi . f (A i − (
⋂

i . A i)))
using A unfolding decseq-def by (auto intro!: f-mono Diff)

have f (
⋂

x . A x) ≤ f (A 0)
using A by (auto intro!: f-mono)

then have f-Int-fin: f (
⋂

x . A x) 6= ∞
using A by (auto simp: top-unique)
{ fix i

have f (A i − (
⋂

i . A i)) ≤ f (A i) using A by (auto intro!: f-mono)
then have f (A i − (

⋂
i . A i)) 6= ∞

using A by (auto simp: top-unique) }
note f-fin = this
have (λi . f (A i − (

⋂
i . A i))) −−−−→ 0

proof (intro cont [rule-format , OF - decseq - f-fin])
show range (λi . A i − (

⋂
i . A i)) ⊆ M (

⋂
i . A i − (

⋂
i . A i)) = {}

using A by auto
qed
from INF-Lim-ereal [OF decseq-f this]
have (INF n. f (A n − (

⋂
i . A i))) = 0 .

moreover have (INF n. f (
⋂

i . A i)) = f (
⋂

i . A i)
by auto

ultimately have (INF n. f (A n − (
⋂

i . A i)) + f (
⋂

i . A i)) = 0 + f (
⋂

i .
A i)

using A(4) f-fin f-Int-fin
by (subst INF-ennreal-add-const) (auto simp: decseq-f)

moreover {
fix n
have f (A n − (

⋂
i . A i)) + f (

⋂
i . A i) = f ((A n − (

⋂
i . A i)) ∪ (

⋂
i . A

i))
using A by (subst f (2)[THEN additiveD]) auto

also have (A n − (
⋂

i . A i)) ∪ (
⋂

i . A i) = A n
by auto

finally have f (A n − (
⋂

i . A i)) + f (
⋂

i . A i) = f (A n) . }
ultimately have (INF n. f (A n)) = f (

⋂
i . A i)

by simp
with LIMSEQ-INF [OF decseq-fA]
show (λi . f (A i)) −−−−→ f (

⋂
i . A i) by simp

qed

lemma (in ring-of-sets) empty-continuous-imp-continuous-from-below :
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f ∀A∈M . f A 6= ∞
assumes cont : ∀A. range A ⊆ M −→ decseq A −→ (

⋂
i . A i) = {} −→ (λi . f

THEORY “Measure-Space” 86

(A i)) −−−−→ 0
assumes A: range A ⊆ M incseq A (

⋃
i . A i) ∈ M

shows (λi . f (A i)) −−−−→ f (
⋃

i . A i)
proof −

from A have (λi . f ((
⋃

i . A i) − A i)) −−−−→ 0
by (intro cont [rule-format]) (auto simp: decseq-def incseq-def)

moreover
{ fix i

have f ((
⋃

i . A i) − A i ∪ A i) = f ((
⋃

i . A i) − A i) + f (A i)
using A by (intro f (2)[THEN additiveD]) auto

also have ((
⋃

i . A i) − A i) ∪ A i = (
⋃

i . A i)
by auto

finally have f ((
⋃

i . A i) − A i) = f (
⋃

i . A i) − f (A i)
using f (3)[rule-format , of A i] A by (auto simp: ennreal-add-diff-cancel

subset-eq) }
moreover have ∀ F i in sequentially . f (A i) ≤ f (

⋃
i . A i)

using increasingD [OF additive-increasing [OF f (1 , 2)], of A -
⋃

i . A i] A
by (auto intro!: always-eventually simp: subset-eq)

ultimately show (λi . f (A i)) −−−−→ f (
⋃

i . A i)
by (auto intro: ennreal-tendsto-const-minus)

qed

lemma (in ring-of-sets) empty-continuous-imp-countably-additive:
fixes f :: ′a set ⇒ ennreal
assumes f : positive M f additive M f and fin: ∀A∈M . f A 6= ∞
assumes cont :

∧
A. range A ⊆ M =⇒ decseq A =⇒ (

⋂
i . A i) = {} =⇒ (λi . f

(A i)) −−−−→ 0
shows countably-additive M f
using countably-additive-iff-continuous-from-below [OF f]
using empty-continuous-imp-continuous-from-below [OF f fin] cont
by blast

3.4 Properties of emeasure

lemma emeasure-positive: positive (sets M) (emeasure M)
by (cases M) (auto simp: sets-def emeasure-def Abs-measure-inverse measure-space-def)

lemma emeasure-empty [simp, intro]: emeasure M {} = 0
using emeasure-positive[of M] by (simp add : positive-def)

lemma emeasure-single-in-space: emeasure M {x} 6= 0 =⇒ x ∈ space M
using emeasure-notin-sets[of {x}M] by (auto dest : sets.sets-into-space zero-less-iff-neq-zero[THEN

iffD2])

lemma emeasure-countably-additive: countably-additive (sets M) (emeasure M)
by (cases M) (auto simp: sets-def emeasure-def Abs-measure-inverse measure-space-def)

lemma suminf-emeasure:
range A ⊆ sets M =⇒ disjoint-family A =⇒ (

∑
i . emeasure M (A i)) = emeasure

THEORY “Measure-Space” 87

M (
⋃

i . A i)
using sets.countable-UN [of A UNIV M] emeasure-countably-additive[of M]
by (simp add : countably-additive-def)

lemma sums-emeasure:
disjoint-family F =⇒ (

∧
i . F i ∈ sets M) =⇒ (λi . emeasure M (F i)) sums

emeasure M (
⋃

i . F i)
unfolding sums-iff by (intro conjI suminf-emeasure) auto

lemma emeasure-additive: additive (sets M) (emeasure M)
by (metis sets.countably-additive-additive emeasure-positive emeasure-countably-additive)

lemma plus-emeasure:
a ∈ sets M =⇒ b ∈ sets M =⇒ a ∩ b = {} =⇒ emeasure M a + emeasure M b

= emeasure M (a ∪ b)
using additiveD [OF emeasure-additive] ..

lemma setsum-emeasure:
F‘I ⊆ sets M =⇒ disjoint-family-on F I =⇒ finite I =⇒

(
∑

i∈I . emeasure M (F i)) = emeasure M (
⋃

i∈I . F i)
by (metis sets.additive-sum emeasure-positive emeasure-additive)

lemma emeasure-mono:
a ⊆ b =⇒ b ∈ sets M =⇒ emeasure M a ≤ emeasure M b
by (metis zero-le sets.additive-increasing emeasure-additive emeasure-notin-sets

emeasure-positive increasingD)

lemma emeasure-space:
emeasure M A ≤ emeasure M (space M)
by (metis emeasure-mono emeasure-notin-sets sets.sets-into-space sets.top zero-le)

lemma emeasure-Diff :
assumes finite: emeasure M B 6= ∞
and [measurable]: A ∈ sets M B ∈ sets M and B ⊆ A
shows emeasure M (A − B) = emeasure M A − emeasure M B

proof −
have (A − B) ∪ B = A using 〈B ⊆ A〉 by auto
then have emeasure M A = emeasure M ((A − B) ∪ B) by simp
also have . . . = emeasure M (A − B) + emeasure M B

by (subst plus-emeasure[symmetric]) auto
finally show emeasure M (A − B) = emeasure M A − emeasure M B

using finite by simp
qed

lemma emeasure-compl :
s ∈ sets M =⇒ emeasure M s 6= ∞ =⇒ emeasure M (space M − s) = emeasure

M (space M) − emeasure M s
by (rule emeasure-Diff) (auto dest : sets.sets-into-space)

THEORY “Measure-Space” 88

lemma Lim-emeasure-incseq :
range A ⊆ sets M =⇒ incseq A =⇒ (λi . (emeasure M (A i))) −−−−→ emeasure

M (
⋃

i . A i)
using emeasure-countably-additive
by (auto simp add : sets.countably-additive-iff-continuous-from-below emeasure-positive

emeasure-additive)

lemma incseq-emeasure:
assumes range B ⊆ sets M incseq B
shows incseq (λi . emeasure M (B i))
using assms by (auto simp: incseq-def intro!: emeasure-mono)

lemma SUP-emeasure-incseq :
assumes A: range A ⊆ sets M incseq A
shows (SUP n. emeasure M (A n)) = emeasure M (

⋃
i . A i)

using LIMSEQ-SUP [OF incseq-emeasure, OF A] Lim-emeasure-incseq [OF A]
by (simp add : LIMSEQ-unique)

lemma decseq-emeasure:
assumes range B ⊆ sets M decseq B
shows decseq (λi . emeasure M (B i))
using assms by (auto simp: decseq-def intro!: emeasure-mono)

lemma INF-emeasure-decseq :
assumes A: range A ⊆ sets M and decseq A
and finite:

∧
i . emeasure M (A i) 6= ∞

shows (INF n. emeasure M (A n)) = emeasure M (
⋂

i . A i)
proof −

have le-MI : emeasure M (
⋂

i . A i) ≤ emeasure M (A 0)
using A by (auto intro!: emeasure-mono)

hence ∗: emeasure M (
⋂

i . A i) 6=∞ using finite[of 0] by (auto simp: top-unique)

have emeasure M (A 0) − (INF n. emeasure M (A n)) = (SUP n. emeasure M
(A 0) − emeasure M (A n))

by (simp add : ennreal-INF-const-minus)
also have . . . = (SUP n. emeasure M (A 0 − A n))

using A finite 〈decseq A〉[unfolded decseq-def] by (subst emeasure-Diff) auto
also have . . . = emeasure M (

⋃
i . A 0 − A i)

proof (rule SUP-emeasure-incseq)
show range (λn. A 0 − A n) ⊆ sets M

using A by auto
show incseq (λn. A 0 − A n)

using 〈decseq A〉 by (auto simp add : incseq-def decseq-def)
qed
also have . . . = emeasure M (A 0) − emeasure M (

⋂
i . A i)

using A finite ∗ by (simp, subst emeasure-Diff) auto
finally show ?thesis

by (rule ennreal-minus-cancel [rotated 3])
(insert finite A, auto intro: INF-lower emeasure-mono)

THEORY “Measure-Space” 89

qed

lemma emeasure-INT-decseq-subset :
fixes F :: nat ⇒ ′a set
assumes I : I 6= {} and F :

∧
i j . i ∈ I =⇒ j ∈ I =⇒ i ≤ j =⇒ F j ⊆ F i

assumes F-sets[measurable]:
∧

i . i ∈ I =⇒ F i ∈ sets M
and fin:

∧
i . i ∈ I =⇒ emeasure M (F i) 6= ∞

shows emeasure M (
⋂

i∈I . F i) = (INF i :I . emeasure M (F i))
proof cases

assume finite I
have (

⋂
i∈I . F i) = F (Max I)

using I 〈finite I 〉 by (intro antisym INF-lower INF-greatest F) auto
moreover have (INF i :I . emeasure M (F i)) = emeasure M (F (Max I))
using I 〈finite I 〉 by (intro antisym INF-lower INF-greatest F emeasure-mono)

auto
ultimately show ?thesis

by simp
next

assume infinite I
def L ≡ λn. LEAST i . i ∈ I ∧ i ≥ n
have L: L n ∈ I ∧ n ≤ L n for n

unfolding L-def
proof (rule LeastI-ex)

show ∃ x . x ∈ I ∧ n ≤ x
using 〈infinite I 〉 finite-subset [of I {..< n}]
by (rule-tac ccontr) (auto simp: not-le)

qed
have L-eq [simp]: i ∈ I =⇒ L i = i for i

unfolding L-def by (intro Least-equality) auto
have L-mono: i ≤ j =⇒ L i ≤ L j for i j

using L[of j] unfolding L-def by (intro Least-le) (auto simp: L-def)

have emeasure M (
⋂

i . F (L i)) = (INF i . emeasure M (F (L i)))
proof (intro INF-emeasure-decseq [symmetric])

show decseq (λi . F (L i))
using L by (intro antimonoI F L-mono) auto

qed (insert L fin, auto)
also have . . . = (INF i :I . emeasure M (F i))
proof (intro antisym INF-greatest)

show i ∈ I =⇒ (INF i . emeasure M (F (L i))) ≤ emeasure M (F i) for i
by (intro INF-lower2 [of i]) auto

qed (insert L, auto intro: INF-lower)
also have (

⋂
i . F (L i)) = (

⋂
i∈I . F i)

proof (intro antisym INF-greatest)
show i ∈ I =⇒ (

⋂
i . F (L i)) ⊆ F i for i

by (intro INF-lower2 [of i]) auto
qed (insert L, auto)
finally show ?thesis .

qed

THEORY “Measure-Space” 90

lemma Lim-emeasure-decseq :
assumes A: range A ⊆ sets M decseq A and fin:

∧
i . emeasure M (A i) 6= ∞

shows (λi . emeasure M (A i)) −−−−→ emeasure M (
⋂

i . A i)
using LIMSEQ-INF [OF decseq-emeasure, OF A]
using INF-emeasure-decseq [OF A fin] by simp

lemma emeasure-lfp ′[consumes 1 , case-names cont measurable]:
assumes P M
assumes cont : sup-continuous F
assumes ∗:

∧
M A. P M =⇒ (

∧
N . P N =⇒ Measurable.pred N A) =⇒ Mea-

surable.pred M (F A)
shows emeasure M {x∈space M . lfp F x} = (SUP i . emeasure M {x∈space M .

(F ˆˆ i) (λx . False) x})
proof −

have emeasure M {x∈space M . lfp F x} = emeasure M (
⋃

i . {x∈space M . (F
ˆˆ i) (λx . False) x})

using sup-continuous-lfp[OF cont] by (auto simp add : bot-fun-def intro!: arg-cong2 [where
f =emeasure])

moreover { fix i from 〈P M 〉 have {x∈space M . (F ˆˆ i) (λx . False) x} ∈ sets
M

by (induct i arbitrary : M) (auto simp add : pred-def [symmetric] intro: ∗) }
moreover have incseq (λi . {x∈space M . (F ˆˆ i) (λx . False) x})
proof (rule incseq-SucI)

fix i
have (F ˆˆ i) (λx . False) ≤ (F ˆˆ (Suc i)) (λx . False)
proof (induct i)

case 0 show ?case by (simp add : le-fun-def)
next

case Suc thus ?case using monoD [OF sup-continuous-mono[OF cont] Suc]
by auto

qed
then show {x ∈ space M . (F ˆˆ i) (λx . False) x} ⊆ {x ∈ space M . (F ˆˆ Suc

i) (λx . False) x}
by auto

qed
ultimately show ?thesis

by (subst SUP-emeasure-incseq) auto
qed

lemma emeasure-lfp:
assumes [simp]:

∧
s. sets (M s) = sets N

assumes cont : sup-continuous F sup-continuous f
assumes meas:

∧
P . Measurable.pred N P =⇒ Measurable.pred N (F P)

assumes iter :
∧

P s. Measurable.pred N P =⇒ P ≤ lfp F =⇒ emeasure (M s)
{x∈space N . F P x} = f (λs. emeasure (M s) {x∈space N . P x}) s

shows emeasure (M s) {x∈space N . lfp F x} = lfp f s
proof (subst lfp-transfer-bounded [where α=λF s. emeasure (M s) {x∈space N . F
x} and g=f and f =F and P=Measurable.pred N , symmetric])

THEORY “Measure-Space” 91

fix C assume incseq C
∧

i . Measurable.pred N (C i)
then show (λs. emeasure (M s) {x ∈ space N . (SUP i . C i) x}) = (SUP i . (λs.

emeasure (M s) {x ∈ space N . C i x}))
unfolding SUP-apply [abs-def]

by (subst SUP-emeasure-incseq) (auto simp: mono-def fun-eq-iff intro!: arg-cong2 [where
f =emeasure])
qed (auto simp add : iter le-fun-def SUP-apply [abs-def] intro!: meas cont)

lemma emeasure-subadditive-finite:
finite I =⇒ A ‘ I ⊆ sets M =⇒ emeasure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . emeasure

M (A i))
by (rule sets.subadditive[OF emeasure-positive emeasure-additive]) auto

lemma emeasure-subadditive:
A ∈ sets M =⇒ B ∈ sets M =⇒ emeasure M (A ∪ B) ≤ emeasure M A +

emeasure M B
using emeasure-subadditive-finite[of {True, False} λTrue ⇒ A | False ⇒ B M]

by simp

lemma emeasure-subadditive-countably :
assumes range f ⊆ sets M
shows emeasure M (

⋃
i . f i) ≤ (

∑
i . emeasure M (f i))

proof −
have emeasure M (

⋃
i . f i) = emeasure M (

⋃
i . disjointed f i)

unfolding UN-disjointed-eq ..
also have . . . = (

∑
i . emeasure M (disjointed f i))

using sets.range-disjointed-sets[OF assms] suminf-emeasure[of disjointed f]
by (simp add : disjoint-family-disjointed comp-def)

also have . . . ≤ (
∑

i . emeasure M (f i))
using sets.range-disjointed-sets[OF assms] assms
by (auto intro!: suminf-le emeasure-mono disjointed-subset)

finally show ?thesis .
qed

lemma emeasure-insert :
assumes sets: {x} ∈ sets M A ∈ sets M and x /∈ A
shows emeasure M (insert x A) = emeasure M {x} + emeasure M A

proof −
have {x} ∩ A = {} using 〈x /∈ A〉 by auto
from plus-emeasure[OF sets this] show ?thesis by simp

qed

lemma emeasure-insert-ne:
A 6= {} =⇒ {x} ∈ sets M =⇒ A ∈ sets M =⇒ x /∈ A =⇒ emeasure M (insert

x A) = emeasure M {x} + emeasure M A
by (rule emeasure-insert)

lemma emeasure-eq-setsum-singleton:
assumes finite S

∧
x . x ∈ S =⇒ {x} ∈ sets M

THEORY “Measure-Space” 92

shows emeasure M S = (
∑

x∈S . emeasure M {x})
using setsum-emeasure[of λx . {x} S M] assms
by (auto simp: disjoint-family-on-def subset-eq)

lemma setsum-emeasure-cover :
assumes finite S and A ∈ sets M and br-in-M : B ‘ S ⊆ sets M
assumes A: A ⊆ (

⋃
i∈S . B i)

assumes disj : disjoint-family-on B S
shows emeasure M A = (

∑
i∈S . emeasure M (A ∩ (B i)))

proof −
have (

∑
i∈S . emeasure M (A ∩ (B i))) = emeasure M (

⋃
i∈S . A ∩ (B i))

proof (rule setsum-emeasure)
show disjoint-family-on (λi . A ∩ B i) S

using 〈disjoint-family-on B S 〉

unfolding disjoint-family-on-def by auto
qed (insert assms, auto)
also have (

⋃
i∈S . A ∩ (B i)) = A

using A by auto
finally show ?thesis by simp

qed

lemma emeasure-eq-0 :
N ∈ sets M =⇒ emeasure M N = 0 =⇒ K ⊆ N =⇒ emeasure M K = 0
by (metis emeasure-mono order-eq-iff zero-le)

lemma emeasure-UN-eq-0 :
assumes

∧
i ::nat . emeasure M (N i) = 0 and range N ⊆ sets M

shows emeasure M (
⋃

i . N i) = 0
proof −

have emeasure M (
⋃

i . N i) ≤ 0
using emeasure-subadditive-countably [OF assms(2)] assms(1) by simp

then show ?thesis
by (auto intro: antisym zero-le)

qed

lemma measure-eqI-finite:
assumes [simp]: sets M = Pow A sets N = Pow A and finite A
assumes eq :

∧
a. a ∈ A =⇒ emeasure M {a} = emeasure N {a}

shows M = N
proof (rule measure-eqI)

fix X assume X ∈ sets M
then have X : X ⊆ A by auto
then have emeasure M X = (

∑
a∈X . emeasure M {a})

using 〈finite A〉 by (subst emeasure-eq-setsum-singleton) (auto dest : finite-subset)
also have . . . = (

∑
a∈X . emeasure N {a})

using X eq by (auto intro!: setsum.cong)
also have . . . = emeasure N X
using X 〈finite A〉 by (subst emeasure-eq-setsum-singleton) (auto dest : finite-subset)
finally show emeasure M X = emeasure N X .

THEORY “Measure-Space” 93

qed simp

lemma measure-eqI-generator-eq :
fixes M N :: ′a measure and E :: ′a set set and A :: nat ⇒ ′a set
assumes Int-stable E E ⊆ Pow Ω
and eq :

∧
X . X ∈ E =⇒ emeasure M X = emeasure N X

and M : sets M = sigma-sets Ω E
and N : sets N = sigma-sets Ω E
and A: range A ⊆ E (

⋃
i . A i) = Ω

∧
i . emeasure M (A i) 6= ∞

shows M = N
proof −

let ?µ = emeasure M and ?ν = emeasure N
interpret S : sigma-algebra Ω sigma-sets Ω E by (rule sigma-algebra-sigma-sets)

fact
have space M = Ω

using sets.top[of M] sets.space-closed [of M] S .top S .space-closed 〈sets M =
sigma-sets Ω E 〉

by blast

{ fix F D assume F ∈ E and ?µ F 6= ∞
then have [intro]: F ∈ sigma-sets Ω E by auto
have ?ν F 6= ∞ using 〈?µ F 6= ∞〉 〈F ∈ E 〉 eq by simp
assume D ∈ sets M
with 〈Int-stable E 〉 〈E ⊆ Pow Ω〉 have emeasure M (F ∩ D) = emeasure N

(F ∩ D)
unfolding M

proof (induct rule: sigma-sets-induct-disjoint)
case (basic A)

then have F ∩ A ∈ E using 〈Int-stable E 〉 〈F ∈ E 〉 by (auto simp:
Int-stable-def)

then show ?case using eq by auto
next

case empty then show ?case by simp
next

case (compl A)
then have ∗∗: F ∩ (Ω − A) = F − (F ∩ A)

and [intro]: F ∩ A ∈ sigma-sets Ω E
using 〈F ∈ E 〉 S .sets-into-space by (auto simp: M)

have ?ν (F ∩ A) ≤ ?ν F by (auto intro!: emeasure-mono simp: M N)
then have ?ν (F ∩ A) 6= ∞ using 〈?ν F 6= ∞〉 by (auto simp: top-unique)
have ?µ (F ∩ A) ≤ ?µ F by (auto intro!: emeasure-mono simp: M N)
then have ?µ (F ∩ A) 6= ∞ using 〈?µ F 6= ∞〉 by (auto simp: top-unique)
then have ?µ (F ∩ (Ω − A)) = ?µ F − ?µ (F ∩ A) unfolding ∗∗
using 〈F ∩ A ∈ sigma-sets Ω E 〉 by (auto intro!: emeasure-Diff simp: M N)

also have . . . = ?ν F − ?ν (F ∩ A) using eq 〈F ∈ E 〉 compl by simp
also have . . . = ?ν (F ∩ (Ω − A)) unfolding ∗∗

using 〈F ∩ A ∈ sigma-sets Ω E 〉 〈?ν (F ∩ A) 6= ∞〉

by (auto intro!: emeasure-Diff [symmetric] simp: M N)
finally show ?case

THEORY “Measure-Space” 94

using 〈space M = Ω〉 by auto
next

case (union A)
then have ?µ (

⋃
x . F ∩ A x) = ?ν (

⋃
x . F ∩ A x)

by (subst (1 2) suminf-emeasure[symmetric]) (auto simp: disjoint-family-on-def
subset-eq M N)

with A show ?case
by auto

qed }
note ∗ = this
show M = N
proof (rule measure-eqI)

show sets M = sets N
using M N by simp

have [simp, intro]:
∧

i . A i ∈ sets M
using A(1) by (auto simp: subset-eq M)

fix F assume F ∈ sets M
let ?D = disjointed (λi . F ∩ A i)
from 〈space M = Ω〉 have F-eq : F = (

⋃
i . ?D i)

using 〈F ∈ sets M 〉[THEN sets.sets-into-space] A(2)[symmetric] by (auto
simp: UN-disjointed-eq)

have [simp, intro]:
∧

i . ?D i ∈ sets M
using sets.range-disjointed-sets[of λi . F ∩ A i M] 〈F ∈ sets M 〉

by (auto simp: subset-eq)
have disjoint-family ?D

by (auto simp: disjoint-family-disjointed)
moreover
have (

∑
i . emeasure M (?D i)) = (

∑
i . emeasure N (?D i))

proof (intro arg-cong [where f =suminf] ext)
fix i
have A i ∩ ?D i = ?D i

by (auto simp: disjointed-def)
then show emeasure M (?D i) = emeasure N (?D i)

using ∗[of A i ?D i , OF - A(3)] A(1) by auto
qed
ultimately show emeasure M F = emeasure N F
by (simp add : image-subset-iff 〈sets M = sets N 〉[symmetric] F-eq [symmetric]

suminf-emeasure)
qed

qed

lemma measure-of-of-measure: measure-of (space M) (sets M) (emeasure M) =
M
proof (intro measure-eqI emeasure-measure-of-sigma)

show sigma-algebra (space M) (sets M) ..
show positive (sets M) (emeasure M)

by (simp add : positive-def)
show countably-additive (sets M) (emeasure M)

by (simp add : emeasure-countably-additive)

THEORY “Measure-Space” 95

qed simp-all

3.5 µ-null sets

definition null-sets :: ′a measure ⇒ ′a set set where
null-sets M = {N∈sets M . emeasure M N = 0}

lemma null-setsD1 [dest]: A ∈ null-sets M =⇒ emeasure M A = 0
by (simp add : null-sets-def)

lemma null-setsD2 [dest]: A ∈ null-sets M =⇒ A ∈ sets M
unfolding null-sets-def by simp

lemma null-setsI [intro]: emeasure M A = 0 =⇒ A ∈ sets M =⇒ A ∈ null-sets M
unfolding null-sets-def by simp

interpretation null-sets: ring-of-sets space M null-sets M for M
proof (rule ring-of-setsI)

show null-sets M ⊆ Pow (space M)
using sets.sets-into-space by auto

show {} ∈ null-sets M
by auto

fix A B assume null-sets: A ∈ null-sets M B ∈ null-sets M
then have sets: A ∈ sets M B ∈ sets M

by auto
then have ∗: emeasure M (A ∪ B) ≤ emeasure M A + emeasure M B

emeasure M (A − B) ≤ emeasure M A
by (auto intro!: emeasure-subadditive emeasure-mono)

then have emeasure M B = 0 emeasure M A = 0
using null-sets by auto

with sets ∗ show A − B ∈ null-sets M A ∪ B ∈ null-sets M
by (auto intro!: antisym zero-le)

qed

lemma UN-from-nat-into:
assumes I : countable I I 6= {}
shows (

⋃
i∈I . N i) = (

⋃
i . N (from-nat-into I i))

proof −
have (

⋃
i∈I . N i) =

⋃
(N ‘ range (from-nat-into I))

using I by simp
also have . . . = (

⋃
i . (N ◦ from-nat-into I) i)

by simp
finally show ?thesis by simp

qed

lemma null-sets-UN ′:
assumes countable I
assumes

∧
i . i ∈ I =⇒ N i ∈ null-sets M

shows (
⋃

i∈I . N i) ∈ null-sets M

THEORY “Measure-Space” 96

proof cases
assume I = {} then show ?thesis by simp

next
assume I 6= {}
show ?thesis
proof (intro conjI CollectI null-setsI)

show (
⋃

i∈I . N i) ∈ sets M
using assms by (intro sets.countable-UN ′) auto

have emeasure M (
⋃

i∈I . N i) ≤ (
∑

n. emeasure M (N (from-nat-into I n)))
unfolding UN-from-nat-into[OF 〈countable I 〉 〈I 6= {}〉]
using assms 〈I 6= {}〉 by (intro emeasure-subadditive-countably) (auto intro:

from-nat-into)
also have (λn. emeasure M (N (from-nat-into I n))) = (λ-. 0)

using assms 〈I 6= {}〉 by (auto intro: from-nat-into)
finally show emeasure M (

⋃
i∈I . N i) = 0

by (intro antisym zero-le) simp
qed

qed

lemma null-sets-UN [intro]:
(
∧

i :: ′i ::countable. N i ∈ null-sets M) =⇒ (
⋃

i . N i) ∈ null-sets M
by (rule null-sets-UN ′) auto

lemma null-set-Int1 :
assumes B ∈ null-sets M A ∈ sets M shows A ∩ B ∈ null-sets M

proof (intro CollectI conjI null-setsI)
show emeasure M (A ∩ B) = 0 using assms

by (intro emeasure-eq-0 [of B - A ∩ B]) auto
qed (insert assms, auto)

lemma null-set-Int2 :
assumes B ∈ null-sets M A ∈ sets M shows B ∩ A ∈ null-sets M
using assms by (subst Int-commute) (rule null-set-Int1)

lemma emeasure-Diff-null-set :
assumes B ∈ null-sets M A ∈ sets M
shows emeasure M (A − B) = emeasure M A

proof −
have ∗: A − B = (A − (A ∩ B)) by auto
have A ∩ B ∈ null-sets M using assms by (rule null-set-Int1)
then show ?thesis

unfolding ∗ using assms
by (subst emeasure-Diff) auto

qed

lemma null-set-Diff :
assumes B ∈ null-sets M A ∈ sets M shows B − A ∈ null-sets M

proof (intro CollectI conjI null-setsI)
show emeasure M (B − A) = 0 using assms by (intro emeasure-eq-0 [of B - B

THEORY “Measure-Space” 97

− A]) auto
qed (insert assms, auto)

lemma emeasure-Un-null-set :
assumes A ∈ sets M B ∈ null-sets M
shows emeasure M (A ∪ B) = emeasure M A

proof −
have ∗: A ∪ B = A ∪ (B − A) by auto
have B − A ∈ null-sets M using assms(2 ,1) by (rule null-set-Diff)
then show ?thesis

unfolding ∗ using assms
by (subst plus-emeasure[symmetric]) auto

qed

3.6 The almost everywhere filter (i.e. quantifier)

definition ae-filter :: ′a measure ⇒ ′a filter where
ae-filter M = (INF N :null-sets M . principal (space M − N))

abbreviation almost-everywhere :: ′a measure ⇒ (′a ⇒ bool) ⇒ bool where
almost-everywhere M P ≡ eventually P (ae-filter M)

syntax
-almost-everywhere :: pttrn ⇒ ′a ⇒ bool ⇒ bool (AE - in -. - [0 ,0 ,10] 10)

translations
AE x in M . P
 CONST almost-everywhere M (λx . P)

lemma eventually-ae-filter : eventually P (ae-filter M) ←→ (∃N∈null-sets M . {x
∈ space M . ¬ P x} ⊆ N)
unfolding ae-filter-def by (subst eventually-INF-base) (auto simp: eventually-principal

subset-eq)

lemma AE-I ′:
N ∈ null-sets M =⇒ {x∈space M . ¬ P x} ⊆ N =⇒ (AE x in M . P x)
unfolding eventually-ae-filter by auto

lemma AE-iff-null :
assumes {x∈space M . ¬ P x} ∈ sets M (is ?P ∈ sets M)
shows (AE x in M . P x) ←→ {x∈space M . ¬ P x} ∈ null-sets M

proof
assume AE x in M . P x then obtain N where N : N ∈ sets M ?P ⊆ N

emeasure M N = 0
unfolding eventually-ae-filter by auto

have emeasure M ?P ≤ emeasure M N
using assms N (1 ,2) by (auto intro: emeasure-mono)

then have emeasure M ?P = 0
unfolding 〈emeasure M N = 0 〉 by auto

then show ?P ∈ null-sets M using assms by auto

THEORY “Measure-Space” 98

next
assume ?P ∈ null-sets M with assms show AE x in M . P x by (auto intro:

AE-I ′)
qed

lemma AE-iff-null-sets:
N ∈ sets M =⇒ N ∈ null-sets M ←→ (AE x in M . x /∈ N)
using Int-absorb1 [OF sets.sets-into-space, of N M]
by (subst AE-iff-null) (auto simp: Int-def [symmetric])

lemma AE-not-in:
N ∈ null-sets M =⇒ AE x in M . x /∈ N
by (metis AE-iff-null-sets null-setsD2)

lemma AE-iff-measurable:
N ∈ sets M =⇒ {x∈space M . ¬ P x} = N =⇒ (AE x in M . P x) ←→ emeasure

M N = 0
using AE-iff-null [of - P] by auto

lemma AE-E [consumes 1]:
assumes AE x in M . P x
obtains N where {x ∈ space M . ¬ P x} ⊆ N emeasure M N = 0 N ∈ sets M
using assms unfolding eventually-ae-filter by auto

lemma AE-E2 :
assumes AE x in M . P x {x∈space M . P x} ∈ sets M
shows emeasure M {x∈space M . ¬ P x} = 0 (is emeasure M ?P = 0)

proof −
have {x∈space M . ¬ P x} = space M − {x∈space M . P x} by auto
with AE-iff-null [of M P] assms show ?thesis by auto

qed

lemma AE-I :
assumes {x ∈ space M . ¬ P x} ⊆ N emeasure M N = 0 N ∈ sets M
shows AE x in M . P x
using assms unfolding eventually-ae-filter by auto

lemma AE-mp[elim!]:
assumes AE-P : AE x in M . P x and AE-imp: AE x in M . P x −→ Q x
shows AE x in M . Q x

proof −
from AE-P obtain A where P : {x∈space M . ¬ P x} ⊆ A

and A: A ∈ sets M emeasure M A = 0
by (auto elim!: AE-E)

from AE-imp obtain B where imp: {x∈space M . P x ∧ ¬ Q x} ⊆ B
and B : B ∈ sets M emeasure M B = 0
by (auto elim!: AE-E)

THEORY “Measure-Space” 99

show ?thesis
proof (intro AE-I)

have emeasure M (A ∪ B) ≤ 0
using emeasure-subadditive[of A M B] A B by auto

then show A ∪ B ∈ sets M emeasure M (A ∪ B) = 0
using A B by auto

show {x∈space M . ¬ Q x} ⊆ A ∪ B
using P imp by auto

qed
qed

lemma
shows AE-iffI : AE x in M . P x =⇒ AE x in M . P x ←→ Q x =⇒ AE x in M .

Q x
and AE-disjI1 : AE x in M . P x =⇒ AE x in M . P x ∨ Q x
and AE-disjI2 : AE x in M . Q x =⇒ AE x in M . P x ∨ Q x
and AE-conjI : AE x in M . P x =⇒ AE x in M . Q x =⇒ AE x in M . P x ∧

Q x
and AE-conj-iff [simp]: (AE x in M . P x ∧ Q x) ←→ (AE x in M . P x) ∧ (AE

x in M . Q x)
by auto

lemma AE-impI :
(P =⇒ AE x in M . Q x) =⇒ AE x in M . P −→ Q x
by (cases P) auto

lemma AE-measure:
assumes AE : AE x in M . P x and sets: {x∈space M . P x} ∈ sets M (is ?P ∈

sets M)
shows emeasure M {x∈space M . P x} = emeasure M (space M)

proof −
from AE-E [OF AE] guess N . note N = this
with sets have emeasure M (space M) ≤ emeasure M (?P ∪ N)

by (intro emeasure-mono) auto
also have . . . ≤ emeasure M ?P + emeasure M N

using sets N by (intro emeasure-subadditive) auto
also have . . . = emeasure M ?P using N by simp
finally show emeasure M ?P = emeasure M (space M)

using emeasure-space[of M ?P] by auto
qed

lemma AE-space: AE x in M . x ∈ space M
by (rule AE-I [where N ={}]) auto

lemma AE-I2 [simp, intro]:
(
∧

x . x ∈ space M =⇒ P x) =⇒ AE x in M . P x
using AE-space by force

THEORY “Measure-Space” 100

lemma AE-Ball-mp:
∀ x∈space M . P x =⇒ AE x in M . P x −→ Q x =⇒ AE x in M . Q x
by auto

lemma AE-cong [cong]:
(
∧

x . x ∈ space M =⇒ P x ←→ Q x) =⇒ (AE x in M . P x) ←→ (AE x in M .
Q x)

by auto

lemma AE-all-countable:
(AE x in M . ∀ i . P i x) ←→ (∀ i :: ′i ::countable. AE x in M . P i x)

proof
assume ∀ i . AE x in M . P i x
from this[unfolded eventually-ae-filter Bex-def , THEN choice]
obtain N where N :

∧
i . N i ∈ null-sets M

∧
i . {x∈space M . ¬ P i x} ⊆ N i

by auto
have {x∈space M . ¬ (∀ i . P i x)} ⊆ (

⋃
i . {x∈space M . ¬ P i x}) by auto

also have . . . ⊆ (
⋃

i . N i) using N by auto
finally have {x∈space M . ¬ (∀ i . P i x)} ⊆ (

⋃
i . N i) .

moreover from N have (
⋃

i . N i) ∈ null-sets M
by (intro null-sets-UN) auto

ultimately show AE x in M . ∀ i . P i x
unfolding eventually-ae-filter by auto

qed auto

lemma AE-ball-countable:
assumes [intro]: countable X
shows (AE x in M . ∀ y∈X . P x y) ←→ (∀ y∈X . AE x in M . P x y)

proof
assume ∀ y∈X . AE x in M . P x y
from this[unfolded eventually-ae-filter Bex-def , THEN bchoice]
obtain N where N :

∧
y . y ∈ X =⇒ N y ∈ null-sets M

∧
y . y ∈ X =⇒ {x∈space

M . ¬ P x y} ⊆ N y
by auto

have {x∈space M . ¬ (∀ y∈X . P x y)} ⊆ (
⋃

y∈X . {x∈space M . ¬ P x y})
by auto

also have . . . ⊆ (
⋃

y∈X . N y)
using N by auto

finally have {x∈space M . ¬ (∀ y∈X . P x y)} ⊆ (
⋃

y∈X . N y) .
moreover from N have (

⋃
y∈X . N y) ∈ null-sets M

by (intro null-sets-UN ′) auto
ultimately show AE x in M . ∀ y∈X . P x y

unfolding eventually-ae-filter by auto
qed auto

lemma AE-discrete-difference:
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧

x . x ∈ X =⇒ {x} ∈ sets M

THEORY “Measure-Space” 101

shows AE x in M . x /∈ X
proof −

have (
⋃

x∈X . {x}) ∈ null-sets M
using assms by (intro null-sets-UN ′) auto

from AE-not-in[OF this] show AE x in M . x /∈ X
by auto

qed

lemma AE-finite-all :
assumes f : finite S shows (AE x in M . ∀ i∈S . P i x) ←→ (∀ i∈S . AE x in M .

P i x)
using f by induct auto

lemma AE-finite-allI :
assumes finite S
shows (

∧
s. s ∈ S =⇒ AE x in M . Q s x) =⇒ AE x in M . ∀ s∈S . Q s x

using AE-finite-all [OF 〈finite S 〉] by auto

lemma emeasure-mono-AE :
assumes imp: AE x in M . x ∈ A −→ x ∈ B

and B : B ∈ sets M
shows emeasure M A ≤ emeasure M B

proof cases
assume A: A ∈ sets M
from imp obtain N where N : {x∈space M . ¬ (x ∈ A −→ x ∈ B)} ⊆ N N ∈

null-sets M
by (auto simp: eventually-ae-filter)

have emeasure M A = emeasure M (A − N)
using N A by (subst emeasure-Diff-null-set) auto

also have emeasure M (A − N) ≤ emeasure M (B − N)
using N A B sets.sets-into-space by (auto intro!: emeasure-mono)

also have emeasure M (B − N) = emeasure M B
using N B by (subst emeasure-Diff-null-set) auto

finally show ?thesis .
qed (simp add : emeasure-notin-sets)

lemma emeasure-eq-AE :
assumes iff : AE x in M . x ∈ A ←→ x ∈ B
assumes A: A ∈ sets M and B : B ∈ sets M
shows emeasure M A = emeasure M B
using assms by (safe intro!: antisym emeasure-mono-AE) auto

lemma emeasure-Collect-eq-AE :
AE x in M . P x ←→ Q x =⇒ Measurable.pred M Q =⇒ Measurable.pred M P

=⇒
emeasure M {x∈space M . P x} = emeasure M {x∈space M . Q x}
by (intro emeasure-eq-AE) auto

lemma emeasure-eq-0-AE : AE x in M . ¬ P x =⇒ emeasure M {x∈space M . P

THEORY “Measure-Space” 102

x} = 0
using AE-iff-measurable[OF - refl , of M λx . ¬ P x]
by (cases {x∈space M . P x} ∈ sets M) (simp-all add : emeasure-notin-sets)

lemma emeasure-add-AE :
assumes [measurable]: A ∈ sets M B ∈ sets M C ∈ sets M
assumes 1 : AE x in M . x ∈ C ←→ x ∈ A ∨ x ∈ B
assumes 2 : AE x in M . ¬ (x ∈ A ∧ x ∈ B)
shows emeasure M C = emeasure M A + emeasure M B

proof −
have emeasure M C = emeasure M (A ∪ B)

by (rule emeasure-eq-AE) (insert 1 , auto)
also have . . . = emeasure M A + emeasure M (B − A)

by (subst plus-emeasure) auto
also have emeasure M (B − A) = emeasure M B

by (rule emeasure-eq-AE) (insert 2 , auto)
finally show ?thesis .

qed

3.7 σ-finite Measures

locale sigma-finite-measure =
fixes M :: ′a measure
assumes sigma-finite-countable:
∃A:: ′a set set . countable A ∧ A ⊆ sets M ∧ (

⋃
A) = space M ∧ (∀ a∈A.

emeasure M a 6= ∞)

lemma (in sigma-finite-measure) sigma-finite:
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

proof −
obtain A :: ′a set set where

[simp]: countable A and
A: A ⊆ sets M (

⋃
A) = space M

∧
a. a ∈ A =⇒ emeasure M a 6= ∞

using sigma-finite-countable by metis
show thesis
proof cases

assume A = {} with 〈(
⋃

A) = space M 〉 show thesis
by (intro that [of λ-. {}]) auto

next
assume A 6= {}
show thesis
proof

show range (from-nat-into A) ⊆ sets M
using 〈A 6= {}〉 A by auto

have (
⋃

i . from-nat-into A i) =
⋃

A
using range-from-nat-into[OF 〈A 6= {}〉 〈countable A〉] by auto

with A show (
⋃

i . from-nat-into A i) = space M
by auto

THEORY “Measure-Space” 103

qed (intro A from-nat-into 〈A 6= {}〉)
qed

qed

lemma (in sigma-finite-measure) sigma-finite-disjoint :
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

disjoint-family A
proof −

obtain A :: nat ⇒ ′a set where
range: range A ⊆ sets M and
space: (

⋃
i . A i) = space M and

measure:
∧

i . emeasure M (A i) 6= ∞
using sigma-finite by blast

show thesis
proof (rule that [of disjointed A])

show range (disjointed A) ⊆ sets M
by (rule sets.range-disjointed-sets[OF range])

show (
⋃

i . disjointed A i) = space M
and disjoint-family (disjointed A)
using disjoint-family-disjointed UN-disjointed-eq [of A] space range
by auto

show emeasure M (disjointed A i) 6= ∞ for i
proof −

have emeasure M (disjointed A i) ≤ emeasure M (A i)
using range disjointed-subset [of A i] by (auto intro!: emeasure-mono)

then show ?thesis using measure[of i] by (auto simp: top-unique)
qed

qed
qed

lemma (in sigma-finite-measure) sigma-finite-incseq :
obtains A :: nat ⇒ ′a set
where range A ⊆ sets M (

⋃
i . A i) = space M

∧
i . emeasure M (A i) 6= ∞

incseq A
proof −

obtain F :: nat ⇒ ′a set where
F : range F ⊆ sets M (

⋃
i . F i) = space M

∧
i . emeasure M (F i) 6= ∞

using sigma-finite by blast
show thesis
proof (rule that [of λn.

⋃
i≤n. F i])

show range (λn.
⋃

i≤n. F i) ⊆ sets M
using F by (force simp: incseq-def)

show (
⋃

n.
⋃

i≤n. F i) = space M
proof −

from F have
∧

x . x ∈ space M =⇒ ∃ i . x ∈ F i by auto
with F show ?thesis by fastforce

qed
show emeasure M (

⋃
i≤n. F i) 6= ∞ for n

THEORY “Measure-Space” 104

proof −
have emeasure M (

⋃
i≤n. F i) ≤ (

∑
i≤n. emeasure M (F i))

using F by (auto intro!: emeasure-subadditive-finite)
also have . . . < ∞

using F by (auto simp: setsum-Pinfty less-top)
finally show ?thesis by simp

qed
show incseq (λn.

⋃
i≤n. F i)

by (force simp: incseq-def)
qed

qed

3.8 Measure space induced by distribution of op →M -functions

definition distr :: ′a measure ⇒ ′b measure ⇒ (′a ⇒ ′b) ⇒ ′b measure where
distr M N f = measure-of (space N) (sets N) (λA. emeasure M (f −‘ A ∩ space

M))

lemma
shows sets-distr [simp, measurable-cong]: sets (distr M N f) = sets N

and space-distr [simp]: space (distr M N f) = space N
by (auto simp: distr-def)

lemma
shows measurable-distr-eq1 [simp]: measurable (distr Mf Nf f) Mf ′ = measurable

Nf Mf ′

and measurable-distr-eq2 [simp]: measurable Mg ′ (distr Mg Ng g) = measurable
Mg ′ Ng

by (auto simp: measurable-def)

lemma distr-cong :
M = K =⇒ sets N = sets L =⇒ (

∧
x . x ∈ space M =⇒ f x = g x) =⇒ distr M

N f = distr K L g
using sets-eq-imp-space-eq [of N L] by (simp add : distr-def Int-def cong : rev-conj-cong)

lemma emeasure-distr :
fixes f :: ′a ⇒ ′b
assumes f : f ∈ measurable M N and A: A ∈ sets N
shows emeasure (distr M N f) A = emeasure M (f −‘ A ∩ space M) (is - = ?µ

A)
unfolding distr-def

proof (rule emeasure-measure-of-sigma)
show positive (sets N) ?µ

by (auto simp: positive-def)

show countably-additive (sets N) ?µ
proof (intro countably-additiveI)

fix A :: nat ⇒ ′b set assume range A ⊆ sets N disjoint-family A
then have A:

∧
i . A i ∈ sets N (

⋃
i . A i) ∈ sets N by auto

THEORY “Measure-Space” 105

then have ∗: range (λi . f −‘ (A i) ∩ space M) ⊆ sets M
using f by (auto simp: measurable-def)

moreover have (
⋃

i . f −‘ A i ∩ space M) ∈ sets M
using ∗ by blast

moreover have ∗∗: disjoint-family (λi . f −‘ A i ∩ space M)
using 〈disjoint-family A〉 by (auto simp: disjoint-family-on-def)

ultimately show (
∑

i . ?µ (A i)) = ?µ (
⋃

i . A i)
using suminf-emeasure[OF - ∗∗] A f
by (auto simp: comp-def vimage-UN)

qed
show sigma-algebra (space N) (sets N) ..

qed fact

lemma emeasure-Collect-distr :
assumes X [measurable]: X ∈ measurable M N Measurable.pred N P
shows emeasure (distr M N X) {x∈space N . P x} = emeasure M {x∈space M .

P (X x)}
by (subst emeasure-distr)

(auto intro!: arg-cong2 [where f =emeasure] X (1)[THEN measurable-space])

lemma emeasure-lfp2 [consumes 1 , case-names cont f measurable]:
assumes P M
assumes cont : sup-continuous F
assumes f :

∧
M . P M =⇒ f ∈ measurable M ′ M

assumes ∗:
∧

M A. P M =⇒ (
∧

N . P N =⇒ Measurable.pred N A) =⇒ Mea-
surable.pred M (F A)
shows emeasure M ′ {x∈space M ′. lfp F (f x)} = (SUP i . emeasure M ′ {x∈space

M ′. (F ˆˆ i) (λx . False) (f x)})
proof (subst (1 2) emeasure-Collect-distr [symmetric, where X =f])

show f ∈ measurable M ′ M f ∈ measurable M ′ M
using f [OF 〈P M 〉] by auto
{ fix i show Measurable.pred M ((F ˆˆ i) (λx . False))

using 〈P M 〉 by (induction i arbitrary : M) (auto intro!: ∗) }
show Measurable.pred M (lfp F)

using 〈P M 〉 cont ∗ by (rule measurable-lfp-coinduct [of P])

have emeasure (distr M ′ M f) {x ∈ space (distr M ′ M f). lfp F x} =
(SUP i . emeasure (distr M ′ M f) {x ∈ space (distr M ′ M f). (F ˆˆ i) (λx .

False) x})
using 〈P M 〉

proof (coinduction arbitrary : M rule: emeasure-lfp ′)
case (measurable A N) then have

∧
N . P N =⇒ Measurable.pred (distr M ′

N f) A
by metis

then have
∧

N . P N =⇒ Measurable.pred N A
by simp

with 〈P N 〉[THEN ∗] show ?case
by auto

qed fact

THEORY “Measure-Space” 106

then show emeasure (distr M ′ M f) {x ∈ space M . lfp F x} =
(SUP i . emeasure (distr M ′ M f) {x ∈ space M . (F ˆˆ i) (λx . False) x})

by simp
qed

lemma distr-id [simp]: distr N N (λx . x) = N
by (rule measure-eqI) (auto simp: emeasure-distr)

lemma measure-distr :
f ∈ measurable M N =⇒ S ∈ sets N =⇒ measure (distr M N f) S = measure

M (f −‘ S ∩ space M)
by (simp add : emeasure-distr measure-def)

lemma distr-cong-AE :
assumes 1 : M = K sets N = sets L and

2 : (AE x in M . f x = g x) and f ∈ measurable M N and g ∈ measurable K L
shows distr M N f = distr K L g

proof (rule measure-eqI)
fix A assume A ∈ sets (distr M N f)
with assms show emeasure (distr M N f) A = emeasure (distr K L g) A

by (auto simp add : emeasure-distr intro!: emeasure-eq-AE measurable-sets)
qed (insert 1 , simp)

lemma AE-distrD :
assumes f : f ∈ measurable M M ′

and AE : AE x in distr M M ′ f . P x
shows AE x in M . P (f x)

proof −
from AE [THEN AE-E] guess N .
with f show ?thesis

unfolding eventually-ae-filter
by (intro bexI [of - f −‘ N ∩ space M])

(auto simp: emeasure-distr measurable-def)
qed

lemma AE-distr-iff :
assumes f [measurable]: f ∈ measurable M N and P [measurable]: {x ∈ space N .

P x} ∈ sets N
shows (AE x in distr M N f . P x) ←→ (AE x in M . P (f x))

proof (subst (1 2) AE-iff-measurable[OF - refl])
have f −‘ {x∈space N . ¬ P x} ∩ space M = {x ∈ space M . ¬ P (f x)}

using f [THEN measurable-space] by auto
then show (emeasure (distr M N f) {x ∈ space (distr M N f). ¬ P x} = 0) =

(emeasure M {x ∈ space M . ¬ P (f x)} = 0)
by (simp add : emeasure-distr)

qed auto

lemma null-sets-distr-iff :
f ∈ measurable M N =⇒ A ∈ null-sets (distr M N f) ←→ f −‘ A ∩ space M ∈

THEORY “Measure-Space” 107

null-sets M ∧ A ∈ sets N
by (auto simp add : null-sets-def emeasure-distr)

lemma distr-distr :
g ∈ measurable N L =⇒ f ∈ measurable M N =⇒ distr (distr M N f) L g =

distr M L (g ◦ f)
by (auto simp add : emeasure-distr measurable-space

intro!: arg-cong [where f =emeasure M] measure-eqI)

3.9 Real measure values

lemma ring-of-finite-sets: ring-of-sets (space M) {A∈sets M . emeasure M A 6=
top}
proof (rule ring-of-setsI)

show a ∈ {A ∈ sets M . emeasure M A 6= top} =⇒ b ∈ {A ∈ sets M . emeasure
M A 6= top} =⇒

a ∪ b ∈ {A ∈ sets M . emeasure M A 6= top} for a b
using emeasure-subadditive[of a M b] by (auto simp: top-unique)

show a ∈ {A ∈ sets M . emeasure M A 6= top} =⇒ b ∈ {A ∈ sets M . emeasure
M A 6= top} =⇒

a − b ∈ {A ∈ sets M . emeasure M A 6= top} for a b
using emeasure-mono[of a − b a M] by (auto simp: Diff-subset top-unique)

qed (auto dest : sets.sets-into-space)

lemma measure-nonneg [simp]: 0 ≤ measure M A
unfolding measure-def by (auto simp: enn2real-nonneg)

lemma zero-less-measure-iff : 0 < measure M A ←→ measure M A 6= 0
using measure-nonneg [of M A] by (auto simp add : le-less)

lemma measure-le-0-iff : measure M X ≤ 0 ←→ measure M X = 0
using measure-nonneg [of M X] by linarith

lemma measure-empty [simp]: measure M {} = 0
unfolding measure-def by (simp add : zero-ennreal .rep-eq)

lemma emeasure-eq-ennreal-measure:
emeasure M A 6= top =⇒ emeasure M A = ennreal (measure M A)
by (cases emeasure M A rule: ennreal-cases) (auto simp: measure-def)

lemma measure-zero-top: emeasure M A = top =⇒ measure M A = 0
by (simp add : measure-def enn2ereal-top)

lemma measure-eq-emeasure-eq-ennreal : 0 ≤ x =⇒ emeasure M A = ennreal x
=⇒ measure M A = x

using emeasure-eq-ennreal-measure[of M A]
by (cases A ∈ M) (auto simp: measure-notin-sets emeasure-notin-sets)

THEORY “Measure-Space” 108

lemma enn2real-plus:a < top =⇒ b < top =⇒ enn2real (a + b) = enn2real a +
enn2real b
by (simp add : enn2real-def plus-ennreal .rep-eq real-of-ereal-add enn2ereal-nonneg

less-top
del : real-of-ereal-enn2ereal)

lemma measure-Union:
emeasure M A 6= ∞ =⇒ emeasure M B 6= ∞ =⇒ A ∈ sets M =⇒ B ∈ sets M

=⇒ A ∩ B = {} =⇒
measure M (A ∪ B) = measure M A + measure M B

by (simp add : measure-def enn2ereal-nonneg plus-emeasure[symmetric] enn2real-plus
less-top)

lemma disjoint-family-on-insert :
i /∈ I =⇒ disjoint-family-on A (insert i I) ←→ A i ∩ (

⋃
i∈I . A i) = {} ∧

disjoint-family-on A I
by (fastforce simp: disjoint-family-on-def)

lemma measure-finite-Union:
finite S =⇒ A‘S ⊆ sets M =⇒ disjoint-family-on A S =⇒ (

∧
i . i ∈ S =⇒

emeasure M (A i) 6= ∞) =⇒
measure M (

⋃
i∈S . A i) = (

∑
i∈S . measure M (A i))

by (induction S rule: finite-induct)
(auto simp: disjoint-family-on-insert measure-Union setsum-emeasure[symmetric]

sets.countable-UN ′[OF countable-finite])

lemma measure-Diff :
assumes finite: emeasure M A 6= ∞
and measurable: A ∈ sets M B ∈ sets M B ⊆ A
shows measure M (A − B) = measure M A − measure M B

proof −
have emeasure M (A − B) ≤ emeasure M A emeasure M B ≤ emeasure M A

using measurable by (auto intro!: emeasure-mono)
hence measure M ((A − B) ∪ B) = measure M (A − B) + measure M B

using measurable finite by (rule-tac measure-Union) (auto simp: top-unique)
thus ?thesis using 〈B ⊆ A〉 by (auto simp: Un-absorb2)

qed

lemma measure-UNION :
assumes measurable: range A ⊆ sets M disjoint-family A
assumes finite: emeasure M (

⋃
i . A i) 6= ∞

shows (λi . measure M (A i)) sums (measure M (
⋃

i . A i))
proof −

have (λi . emeasure M (A i)) sums (emeasure M (
⋃

i . A i))
unfolding suminf-emeasure[OF measurable, symmetric] by (simp add : summable-sums)
moreover
{ fix i

have emeasure M (A i) ≤ emeasure M (
⋃

i . A i)
using measurable by (auto intro!: emeasure-mono)

THEORY “Measure-Space” 109

then have emeasure M (A i) = ennreal ((measure M (A i)))
using finite by (intro emeasure-eq-ennreal-measure) (auto simp: top-unique)

}
ultimately show ?thesis using finite

by (subst (asm) (2) emeasure-eq-ennreal-measure)
(simp-all add : measure-nonneg)

qed

lemma measure-subadditive:
assumes measurable: A ∈ sets M B ∈ sets M
and fin: emeasure M A 6= ∞ emeasure M B 6= ∞
shows measure M (A ∪ B) ≤ measure M A + measure M B

proof −
have emeasure M (A ∪ B) 6= ∞

using emeasure-subadditive[OF measurable] fin by (auto simp: top-unique)
then show (measure M (A ∪ B)) ≤ (measure M A) + (measure M B)

using emeasure-subadditive[OF measurable] fin
apply simp
apply (subst (asm) (2 3 4) emeasure-eq-ennreal-measure)
apply (auto simp add : ennreal-plus[symmetric] simp del : ennreal-plus)
done

qed

lemma measure-subadditive-finite:
assumes A: finite I A‘I ⊆ sets M and fin:

∧
i . i ∈ I =⇒ emeasure M (A i) 6=

∞
shows measure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . measure M (A i))

proof −
{ have emeasure M (

⋃
i∈I . A i) ≤ (

∑
i∈I . emeasure M (A i))

using emeasure-subadditive-finite[OF A] .
also have . . . < ∞

using fin by (simp add : less-top A)
finally have emeasure M (

⋃
i∈I . A i) 6= top by simp }

note ∗ = this
show ?thesis

using emeasure-subadditive-finite[OF A] fin
unfolding emeasure-eq-ennreal-measure[OF ∗]

by (simp-all add : setsum-ennreal measure-nonneg setsum-nonneg emeasure-eq-ennreal-measure)
qed

lemma measure-subadditive-countably :
assumes A: range A ⊆ sets M and fin: (

∑
i . emeasure M (A i)) 6= ∞

shows measure M (
⋃

i . A i) ≤ (
∑

i . measure M (A i))
proof −

from fin have ∗∗:
∧

i . emeasure M (A i) 6= top
using ennreal-suminf-lessD [of λi . emeasure M (A i)] by (simp add : less-top)
{ have emeasure M (

⋃
i . A i) ≤ (

∑
i . emeasure M (A i))

using emeasure-subadditive-countably [OF A] .
also have . . . < ∞

THEORY “Measure-Space” 110

using fin by (simp add : less-top)
finally have emeasure M (

⋃
i . A i) 6= top by simp }

then have ennreal (measure M (
⋃

i . A i)) = emeasure M (
⋃

i . A i)
by (rule emeasure-eq-ennreal-measure[symmetric])

also have . . . ≤ (
∑

i . emeasure M (A i))
using emeasure-subadditive-countably [OF A] .

also have . . . = ennreal (
∑

i . measure M (A i))
using fin unfolding emeasure-eq-ennreal-measure[OF ∗∗]
by (subst suminf-ennreal) (auto simp: ∗∗)

finally show ?thesis
apply (rule ennreal-le-iff [THEN iffD1 , rotated])
apply (intro suminf-nonneg allI measure-nonneg summable-suminf-not-top)
using fin
apply (simp add : emeasure-eq-ennreal-measure[OF ∗∗])
done

qed

lemma measure-eq-setsum-singleton:
finite S =⇒ (

∧
x . x ∈ S =⇒ {x} ∈ sets M) =⇒ (

∧
x . x ∈ S =⇒ emeasure M

{x} 6= ∞) =⇒
measure M S = (

∑
x∈S . measure M {x})

using emeasure-eq-setsum-singleton[of S M]
by (intro measure-eq-emeasure-eq-ennreal) (auto simp: setsum-nonneg emeasure-eq-ennreal-measure)

lemma Lim-measure-incseq :
assumes A: range A ⊆ sets M incseq A and fin: emeasure M (

⋃
i . A i) 6= ∞

shows (λi . measure M (A i)) −−−−→ measure M (
⋃

i . A i)
proof (rule tendsto-ennrealD)

have ennreal (measure M (
⋃

i . A i)) = emeasure M (
⋃

i . A i)
using fin by (auto simp: emeasure-eq-ennreal-measure)

moreover have ennreal (measure M (A i)) = emeasure M (A i) for i
using assms emeasure-mono[of A -

⋃
i . A i M]

by (intro emeasure-eq-ennreal-measure[symmetric]) (auto simp: less-top UN-upper
intro: le-less-trans)

ultimately show (λx . ennreal (Sigma-Algebra.measure M (A x))) −−−−→ en-
nreal (Sigma-Algebra.measure M (

⋃
i . A i))

using A by (auto intro!: Lim-emeasure-incseq)
qed auto

lemma Lim-measure-decseq :
assumes A: range A ⊆ sets M decseq A and fin:

∧
i . emeasure M (A i) 6= ∞

shows (λn. measure M (A n)) −−−−→ measure M (
⋂

i . A i)
proof (rule tendsto-ennrealD)

have ennreal (measure M (
⋂

i . A i)) = emeasure M (
⋂

i . A i)
using fin[of 0] A emeasure-mono[of

⋂
i . A i A 0 M]

by (auto intro!: emeasure-eq-ennreal-measure[symmetric] simp: INT-lower less-top
intro: le-less-trans)

moreover have ennreal (measure M (A i)) = emeasure M (A i) for i
using A fin[of i] by (intro emeasure-eq-ennreal-measure[symmetric]) auto

THEORY “Measure-Space” 111

ultimately show (λx . ennreal (Sigma-Algebra.measure M (A x))) −−−−→ en-
nreal (Sigma-Algebra.measure M (

⋂
i . A i))

using fin A by (auto intro!: Lim-emeasure-decseq)
qed auto

3.10 Measure spaces with emeasure M (space M) < ∞
locale finite-measure = sigma-finite-measure M for M +

assumes finite-emeasure-space: emeasure M (space M) 6= top

lemma finite-measureI [Pure.intro!]:
emeasure M (space M) 6= ∞ =⇒ finite-measure M
proof qed (auto intro!: exI [of - {space M }])

lemma (in finite-measure) emeasure-finite[simp, intro]: emeasure M A 6= top
using finite-emeasure-space emeasure-space[of M A] by (auto simp: top-unique)

lemma (in finite-measure) emeasure-eq-measure: emeasure M A = ennreal (measure
M A)

by (intro emeasure-eq-ennreal-measure) simp

lemma (in finite-measure) emeasure-real : ∃ r . 0 ≤ r ∧ emeasure M A = ennreal
r

using emeasure-finite[of A] by (cases emeasure M A rule: ennreal-cases) auto

lemma (in finite-measure) bounded-measure: measure M A ≤ measure M (space
M)

using emeasure-space[of M A] emeasure-real [of A] emeasure-real [of space M] by
(auto simp: measure-def)

lemma (in finite-measure) finite-measure-Diff :
assumes sets: A ∈ sets M B ∈ sets M and B ⊆ A
shows measure M (A − B) = measure M A − measure M B
using measure-Diff [OF - assms] by simp

lemma (in finite-measure) finite-measure-Union:
assumes sets: A ∈ sets M B ∈ sets M and A ∩ B = {}
shows measure M (A ∪ B) = measure M A + measure M B
using measure-Union[OF - - assms] by simp

lemma (in finite-measure) finite-measure-finite-Union:
assumes measurable: finite S A‘S ⊆ sets M disjoint-family-on A S
shows measure M (

⋃
i∈S . A i) = (

∑
i∈S . measure M (A i))

using measure-finite-Union[OF assms] by simp

lemma (in finite-measure) finite-measure-UNION :
assumes A: range A ⊆ sets M disjoint-family A
shows (λi . measure M (A i)) sums (measure M (

⋃
i . A i))

using measure-UNION [OF A] by simp

THEORY “Measure-Space” 112

lemma (in finite-measure) finite-measure-mono:
assumes A ⊆ B B ∈ sets M shows measure M A ≤ measure M B
using emeasure-mono[OF assms] emeasure-real [of A] emeasure-real [of B] by

(auto simp: measure-def)

lemma (in finite-measure) finite-measure-subadditive:
assumes m: A ∈ sets M B ∈ sets M
shows measure M (A ∪ B) ≤ measure M A + measure M B
using measure-subadditive[OF m] by simp

lemma (in finite-measure) finite-measure-subadditive-finite:
assumes finite I A‘I ⊆ sets M shows measure M (

⋃
i∈I . A i) ≤ (

∑
i∈I .

measure M (A i))
using measure-subadditive-finite[OF assms] by simp

lemma (in finite-measure) finite-measure-subadditive-countably :
range A ⊆ sets M =⇒ summable (λi . measure M (A i)) =⇒ measure M (

⋃
i .

A i) ≤ (
∑

i . measure M (A i))
by (rule measure-subadditive-countably)

(simp-all add : ennreal-suminf-neq-top emeasure-eq-measure)

lemma (in finite-measure) finite-measure-eq-setsum-singleton:
assumes finite S and ∗:

∧
x . x ∈ S =⇒ {x} ∈ sets M

shows measure M S = (
∑

x∈S . measure M {x})
using measure-eq-setsum-singleton[OF assms] by simp

lemma (in finite-measure) finite-Lim-measure-incseq :
assumes A: range A ⊆ sets M incseq A
shows (λi . measure M (A i)) −−−−→ measure M (

⋃
i . A i)

using Lim-measure-incseq [OF A] by simp

lemma (in finite-measure) finite-Lim-measure-decseq :
assumes A: range A ⊆ sets M decseq A
shows (λn. measure M (A n)) −−−−→ measure M (

⋂
i . A i)

using Lim-measure-decseq [OF A] by simp

lemma (in finite-measure) finite-measure-compl :
assumes S : S ∈ sets M
shows measure M (space M − S) = measure M (space M) − measure M S
using measure-Diff [OF - sets.top S sets.sets-into-space] S by simp

lemma (in finite-measure) finite-measure-mono-AE :
assumes imp: AE x in M . x ∈ A −→ x ∈ B and B : B ∈ sets M
shows measure M A ≤ measure M B
using assms emeasure-mono-AE [OF imp B]
by (simp add : emeasure-eq-measure)

lemma (in finite-measure) finite-measure-eq-AE :

THEORY “Measure-Space” 113

assumes iff : AE x in M . x ∈ A ←→ x ∈ B
assumes A: A ∈ sets M and B : B ∈ sets M
shows measure M A = measure M B
using assms emeasure-eq-AE [OF assms] by (simp add : emeasure-eq-measure)

lemma (in finite-measure) measure-increasing : increasing M (measure M)
by (auto intro!: finite-measure-mono simp: increasing-def)

lemma (in finite-measure) measure-zero-union:
assumes s ∈ sets M t ∈ sets M measure M t = 0
shows measure M (s ∪ t) = measure M s

using assms
proof −

have measure M (s ∪ t) ≤ measure M s
using finite-measure-subadditive[of s t] assms by auto

moreover have measure M (s ∪ t) ≥ measure M s
using assms by (blast intro: finite-measure-mono)

ultimately show ?thesis by simp
qed

lemma (in finite-measure) measure-eq-compl :
assumes s ∈ sets M t ∈ sets M
assumes measure M (space M − s) = measure M (space M − t)
shows measure M s = measure M t
using assms finite-measure-compl by auto

lemma (in finite-measure) measure-eq-bigunion-image:
assumes range f ⊆ sets M range g ⊆ sets M
assumes disjoint-family f disjoint-family g
assumes

∧
n :: nat . measure M (f n) = measure M (g n)

shows measure M (
⋃

i . f i) = measure M (
⋃

i . g i)
using assms
proof −

have a: (λ i . measure M (f i)) sums (measure M (
⋃

i . f i))
by (rule finite-measure-UNION [OF assms(1 ,3)])

have b: (λ i . measure M (g i)) sums (measure M (
⋃

i . g i))
by (rule finite-measure-UNION [OF assms(2 ,4)])

show ?thesis using sums-unique[OF b] sums-unique[OF a] assms by simp
qed

lemma (in finite-measure) measure-countably-zero:
assumes range c ⊆ sets M
assumes

∧
i . measure M (c i) = 0

shows measure M (
⋃

i :: nat . c i) = 0
proof (rule antisym)

show measure M (
⋃

i :: nat . c i) ≤ 0
using finite-measure-subadditive-countably [OF assms(1)] by (simp add : assms(2))

qed simp

THEORY “Measure-Space” 114

lemma (in finite-measure) measure-space-inter :
assumes events:s ∈ sets M t ∈ sets M
assumes measure M t = measure M (space M)
shows measure M (s ∩ t) = measure M s

proof −
have measure M ((space M − s) ∪ (space M − t)) = measure M (space M −

s)
using events assms finite-measure-compl [of t] by (auto intro!: measure-zero-union)
also have (space M − s) ∪ (space M − t) = space M − (s ∩ t)

by blast
finally show measure M (s ∩ t) = measure M s

using events by (auto intro!: measure-eq-compl [of s ∩ t s])
qed

lemma (in finite-measure) measure-equiprobable-finite-unions:
assumes s: finite s

∧
x . x ∈ s =⇒ {x} ∈ sets M

assumes
∧

x y . [[x ∈ s; y ∈ s]] =⇒ measure M {x} = measure M {y}
shows measure M s = real (card s) ∗ measure M {SOME x . x ∈ s}

proof cases
assume s 6= {}
then have ∃ x . x ∈ s by blast
from someI-ex [OF this] assms
have prob-some:

∧
x . x ∈ s =⇒ measure M {x} = measure M {SOME y . y ∈

s} by blast
have measure M s = (

∑
x ∈ s. measure M {x})

using finite-measure-eq-setsum-singleton[OF s] by simp
also have . . . = (

∑
x ∈ s. measure M {SOME y . y ∈ s}) using prob-some by

auto
also have . . . = real (card s) ∗ measure M {(SOME x . x ∈ s)}

using setsum-constant assms by simp
finally show ?thesis by simp

qed simp

lemma (in finite-measure) measure-real-sum-image-fn:
assumes e ∈ sets M
assumes

∧
x . x ∈ s =⇒ e ∩ f x ∈ sets M

assumes finite s
assumes disjoint :

∧
x y . [[x ∈ s ; y ∈ s ; x 6= y]] =⇒ f x ∩ f y = {}

assumes upper : space M ⊆ (
⋃

i ∈ s. f i)
shows measure M e = (

∑
x ∈ s. measure M (e ∩ f x))

proof −
have e ⊆ (

⋃
i∈s. f i)

using 〈e ∈ sets M 〉 sets.sets-into-space upper by blast
then have e: e = (

⋃
i ∈ s. e ∩ f i)

by auto
hence measure M e = measure M (

⋃
i ∈ s. e ∩ f i) by simp

also have . . . = (
∑

x ∈ s. measure M (e ∩ f x))
proof (rule finite-measure-finite-Union)

show finite s by fact

THEORY “Measure-Space” 115

show (λi . e ∩ f i)‘s ⊆ sets M using assms(2) by auto
show disjoint-family-on (λi . e ∩ f i) s

using disjoint by (auto simp: disjoint-family-on-def)
qed
finally show ?thesis .

qed

lemma (in finite-measure) measure-exclude:
assumes A ∈ sets M B ∈ sets M
assumes measure M A = measure M (space M) A ∩ B = {}
shows measure M B = 0
using measure-space-inter [of B A] assms by (auto simp: ac-simps)

lemma (in finite-measure) finite-measure-distr :
assumes f : f ∈ measurable M M ′

shows finite-measure (distr M M ′ f)
proof (rule finite-measureI)
have f −‘ space M ′∩ space M = space M using f by (auto dest : measurable-space)
with f show emeasure (distr M M ′ f) (space (distr M M ′ f)) 6= ∞ by (auto

simp: emeasure-distr)
qed

lemma emeasure-gfp[consumes 1 , case-names cont measurable]:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes
∧

s. finite-measure (M s)
assumes cont : inf-continuous F inf-continuous f
assumes meas:

∧
P . Measurable.pred N P =⇒ Measurable.pred N (F P)

assumes iter :
∧

P s. Measurable.pred N P =⇒ emeasure (M s) {x∈space N . F
P x} = f (λs. emeasure (M s) {x∈space N . P x}) s

assumes bound :
∧

P . f P ≤ f (λs. emeasure (M s) (space (M s)))
shows emeasure (M s) {x∈space N . gfp F x} = gfp f s

proof (subst gfp-transfer-bounded [where α=λF s. emeasure (M s) {x∈space N .
F x} and g=f and f =F and

P=Measurable.pred N , symmetric])
interpret finite-measure M s for s by fact
fix C assume decseq C

∧
i . Measurable.pred N (C i)

then show (λs. emeasure (M s) {x ∈ space N . (INF i . C i) x}) = (INF i . (λs.
emeasure (M s) {x ∈ space N . C i x}))

unfolding INF-apply [abs-def]
by (subst INF-emeasure-decseq) (auto simp: antimono-def fun-eq-iff intro!:

arg-cong2 [where f =emeasure])
next

show f x ≤ (λs. emeasure (M s) {x ∈ space N . F top x}) for x
using bound [of x] sets-eq-imp-space-eq [OF sets] by (simp add : iter)

qed (auto simp add : iter le-fun-def INF-apply [abs-def] intro!: meas cont)

3.11 Counting space

lemma strict-monoI-Suc:
assumes ord [simp]: (

∧
n. f n < f (Suc n)) shows strict-mono f

THEORY “Measure-Space” 116

unfolding strict-mono-def
proof safe

fix n m :: nat assume n < m then show f n < f m
by (induct m) (auto simp: less-Suc-eq intro: less-trans ord)

qed

lemma emeasure-count-space:
assumes X ⊆ A shows emeasure (count-space A) X = (if finite X then of-nat

(card X) else ∞)
(is - = ?M X)

unfolding count-space-def
proof (rule emeasure-measure-of-sigma)

show X ∈ Pow A using 〈X ⊆ A〉 by auto
show sigma-algebra A (Pow A) by (rule sigma-algebra-Pow)
show positive: positive (Pow A) ?M

by (auto simp: positive-def)
have additive: additive (Pow A) ?M

by (auto simp: card-Un-disjoint additive-def)

interpret ring-of-sets A Pow A
by (rule ring-of-setsI) auto

show countably-additive (Pow A) ?M
unfolding countably-additive-iff-continuous-from-below [OF positive additive]

proof safe
fix F :: nat ⇒ ′a set assume incseq F
show (λi . ?M (F i)) −−−−→ ?M (

⋃
i . F i)

proof cases
assume ∃ i . ∀ j≥i . F i = F j
then guess i .. note i = this
{ fix j from i 〈incseq F 〉 have F j ⊆ F i

by (cases i ≤ j) (auto simp: incseq-def) }
then have eq : (

⋃
i . F i) = F i

by auto
with i show ?thesis

by (auto intro!: Lim-eventually eventually-sequentiallyI [where c=i])
next

assume ¬ (∃ i . ∀ j≥i . F i = F j)
then obtain f where f :

∧
i . i ≤ f i

∧
i . F i 6= F (f i) by metis

then have
∧

i . F i ⊆ F (f i) using 〈incseq F 〉 by (auto simp: incseq-def)
with f have ∗:

∧
i . F i ⊂ F (f i) by auto

have incseq (λi . ?M (F i))
using 〈incseq F 〉 unfolding incseq-def by (auto simp: card-mono dest :

finite-subset)
then have (λi . ?M (F i)) −−−−→ (SUP n. ?M (F n))

by (rule LIMSEQ-SUP)

moreover have (SUP n. ?M (F n)) = top
proof (rule ennreal-SUP-eq-top)

THEORY “Measure-Space” 117

fix n :: nat show ∃ k ::nat∈UNIV . of-nat n ≤ ?M (F k)
proof (induct n)

case (Suc n)
then guess k .. note k = this
moreover have finite (F k) =⇒ finite (F (f k)) =⇒ card (F k) < card

(F (f k))
using 〈F k ⊂ F (f k)〉 by (simp add : psubset-card-mono)

moreover have finite (F (f k)) =⇒ finite (F k)
using 〈k ≤ f k 〉 〈incseq F 〉 by (auto simp: incseq-def dest : finite-subset)

ultimately show ?case
by (auto intro!: exI [of - f k] simp del : of-nat-Suc)

qed auto
qed

moreover
have inj (λn. F ((f ˆˆ n) 0))

by (intro strict-mono-imp-inj-on strict-monoI-Suc) (simp add : ∗)
then have 1 : infinite (range (λi . F ((f ˆˆ i) 0)))

by (rule range-inj-infinite)
have infinite (Pow (

⋃
i . F i))

by (rule infinite-super [OF - 1]) auto
then have infinite (

⋃
i . F i)

by auto

ultimately show ?thesis by auto
qed

qed
qed

lemma distr-bij-count-space:
assumes f : bij-betw f A B
shows distr (count-space A) (count-space B) f = count-space B

proof (rule measure-eqI)
have f ′: f ∈ measurable (count-space A) (count-space B)

using f unfolding Pi-def bij-betw-def by auto
fix X assume X ∈ sets (distr (count-space A) (count-space B) f)
then have X : X ∈ sets (count-space B) by auto
moreover then have f −‘ X ∩ A = the-inv-into A f ‘ X

using f by (auto simp: bij-betw-def subset-image-iff image-iff the-inv-into-f-f
intro: the-inv-into-f-f [symmetric])

moreover have inj-on (the-inv-into A f) B
using X f by (auto simp: bij-betw-def inj-on-the-inv-into)

with X have inj-on (the-inv-into A f) X
by (auto intro: subset-inj-on)

ultimately show emeasure (distr (count-space A) (count-space B) f) X = emea-
sure (count-space B) X

using f unfolding emeasure-distr [OF f ′ X]
by (subst (1 2) emeasure-count-space) (auto simp: card-image dest : finite-imageD)

qed simp

THEORY “Measure-Space” 118

lemma emeasure-count-space-finite[simp]:
X ⊆ A =⇒ finite X =⇒ emeasure (count-space A) X = of-nat (card X)
using emeasure-count-space[of X A] by simp

lemma emeasure-count-space-infinite[simp]:
X ⊆ A =⇒ infinite X =⇒ emeasure (count-space A) X = ∞
using emeasure-count-space[of X A] by simp

lemma measure-count-space: measure (count-space A) X = (if X ⊆ A then of-nat
(card X) else 0)

by (cases finite X) (auto simp: measure-notin-sets ennreal-of-nat-eq-real-of-nat
measure-zero-top measure-eq-emeasure-eq-ennreal)

lemma emeasure-count-space-eq-0 :
emeasure (count-space A) X = 0 ←→ (X ⊆ A −→ X = {})

proof cases
assume X : X ⊆ A
then show ?thesis
proof (intro iffI impI)

assume emeasure (count-space A) X = 0
with X show X = {}

by (subst (asm) emeasure-count-space) (auto split : if-split-asm)
qed simp

qed (simp add : emeasure-notin-sets)

lemma space-empty : space M = {} =⇒ M = count-space {}
by (rule measure-eqI) (simp-all add : space-empty-iff)

lemma null-sets-count-space: null-sets (count-space A) = { {} }
unfolding null-sets-def by (auto simp add : emeasure-count-space-eq-0)

lemma AE-count-space: (AE x in count-space A. P x) ←→ (∀ x∈A. P x)
unfolding eventually-ae-filter by (auto simp add : null-sets-count-space)

lemma sigma-finite-measure-count-space-countable:
assumes A: countable A
shows sigma-finite-measure (count-space A)
proof qed (insert A, auto intro!: exI [of - (λa. {a}) ‘ A])

lemma sigma-finite-measure-count-space:
fixes A :: ′a::countable set shows sigma-finite-measure (count-space A)
by (rule sigma-finite-measure-count-space-countable) auto

lemma finite-measure-count-space:
assumes [simp]: finite A
shows finite-measure (count-space A)
by rule simp

THEORY “Measure-Space” 119

lemma sigma-finite-measure-count-space-finite:
assumes A: finite A shows sigma-finite-measure (count-space A)

proof −
interpret finite-measure count-space A using A by (rule finite-measure-count-space)
show sigma-finite-measure (count-space A) ..

qed

3.12 Measure restricted to space

lemma emeasure-restrict-space:
assumes Ω ∩ space M ∈ sets M A ⊆ Ω
shows emeasure (restrict-space M Ω) A = emeasure M A

proof cases
assume A ∈ sets M
show ?thesis
proof (rule emeasure-measure-of [OF restrict-space-def])

show op ∩ Ω ‘ sets M ⊆ Pow (Ω ∩ space M) A ∈ sets (restrict-space M Ω)
using 〈A ⊆ Ω〉 〈A ∈ sets M 〉 sets.space-closed by (auto simp: sets-restrict-space)
show positive (sets (restrict-space M Ω)) (emeasure M)

by (auto simp: positive-def)
show countably-additive (sets (restrict-space M Ω)) (emeasure M)
proof (rule countably-additiveI)
fix A :: nat ⇒ - assume range A ⊆ sets (restrict-space M Ω) disjoint-family

A
with assms have

∧
i . A i ∈ sets M

∧
i . A i ⊆ space M disjoint-family A

by (fastforce simp: sets-restrict-space-iff [OF assms(1)] image-subset-iff
dest : sets.sets-into-space)+

then show (
∑

i . emeasure M (A i)) = emeasure M (
⋃

i . A i)
by (subst suminf-emeasure) (auto simp: disjoint-family-subset)

qed
qed

next
assume A /∈ sets M
moreover with assms have A /∈ sets (restrict-space M Ω)

by (simp add : sets-restrict-space-iff)
ultimately show ?thesis

by (simp add : emeasure-notin-sets)
qed

lemma measure-restrict-space:
assumes Ω ∩ space M ∈ sets M A ⊆ Ω
shows measure (restrict-space M Ω) A = measure M A
using emeasure-restrict-space[OF assms] by (simp add : measure-def)

lemma AE-restrict-space-iff :
assumes Ω ∩ space M ∈ sets M
shows (AE x in restrict-space M Ω. P x) ←→ (AE x in M . x ∈ Ω −→ P x)

proof −
have ex-cong :

∧
P Q f . (

∧
x . P x =⇒ Q x) =⇒ (

∧
x . Q x =⇒ P (f x)) =⇒ (∃ x .

THEORY “Measure-Space” 120

P x) ←→ (∃ x . Q x)
by auto
{ fix X assume X : X ∈ sets M emeasure M X = 0

then have emeasure M (Ω ∩ space M ∩ X) ≤ emeasure M X
by (intro emeasure-mono) auto

then have emeasure M (Ω ∩ space M ∩ X) = 0
using X by (auto intro!: antisym) }

with assms show ?thesis
unfolding eventually-ae-filter
by (auto simp add : space-restrict-space null-sets-def sets-restrict-space-iff

emeasure-restrict-space cong : conj-cong
intro!: ex-cong [where f =λX . (Ω ∩ space M) ∩ X])

qed

lemma restrict-restrict-space:
assumes A ∩ space M ∈ sets M B ∩ space M ∈ sets M
shows restrict-space (restrict-space M A) B = restrict-space M (A ∩ B) (is ?l

= ?r)
proof (rule measure-eqI [symmetric])

show sets ?r = sets ?l
unfolding sets-restrict-space image-comp by (intro image-cong) auto

next
fix X assume X ∈ sets (restrict-space M (A ∩ B))
then obtain Y where Y ∈ sets M X = Y ∩ A ∩ B

by (auto simp: sets-restrict-space)
with assms sets.Int [OF assms] show emeasure ?r X = emeasure ?l X

by (subst (1 2) emeasure-restrict-space)
(auto simp: space-restrict-space sets-restrict-space-iff emeasure-restrict-space

ac-simps)
qed

lemma restrict-count-space: restrict-space (count-space B) A = count-space (A ∩
B)
proof (rule measure-eqI)

show sets (restrict-space (count-space B) A) = sets (count-space (A ∩ B))
by (subst sets-restrict-space) auto

moreover fix X assume X ∈ sets (restrict-space (count-space B) A)
ultimately have X ⊆ A ∩ B by auto
then show emeasure (restrict-space (count-space B) A) X = emeasure (count-space

(A ∩ B)) X
by (cases finite X) (auto simp add : emeasure-restrict-space)

qed

lemma sigma-finite-measure-restrict-space:
assumes sigma-finite-measure M
and A: A ∈ sets M
shows sigma-finite-measure (restrict-space M A)

proof −
interpret sigma-finite-measure M by fact

THEORY “Measure-Space” 121

from sigma-finite-countable obtain C
where C : countable C C ⊆ sets M (

⋃
C) = space M ∀ a∈C . emeasure M a 6=

∞
by blast

let ?C = op ∩ A ‘ C
from C have countable ?C ?C ⊆ sets (restrict-space M A) (

⋃
?C) = space

(restrict-space M A)
by(auto simp add : sets-restrict-space space-restrict-space)

moreover {
fix a
assume a ∈ ?C
then obtain a ′ where a = A ∩ a ′ a ′ ∈ C ..
then have emeasure (restrict-space M A) a ≤ emeasure M a ′

using A C by(auto simp add : emeasure-restrict-space intro: emeasure-mono)
also have . . . < ∞ using C (4)[rule-format , of a ′] 〈a ′ ∈ C 〉 by (simp add :

less-top)
finally have emeasure (restrict-space M A) a 6= ∞ by simp }

ultimately show ?thesis
by unfold-locales (rule exI conjI |assumption|blast)+

qed

lemma finite-measure-restrict-space:
assumes finite-measure M
and A: A ∈ sets M
shows finite-measure (restrict-space M A)

proof −
interpret finite-measure M by fact
show ?thesis
by(rule finite-measureI)(simp add : emeasure-restrict-space A space-restrict-space)

qed

lemma restrict-distr :
assumes [measurable]: f ∈ measurable M N
assumes [simp]: Ω ∩ space N ∈ sets N and restrict : f ∈ space M → Ω
shows restrict-space (distr M N f) Ω = distr M (restrict-space N Ω) f
(is ?l = ?r)

proof (rule measure-eqI)
fix A assume A ∈ sets (restrict-space (distr M N f) Ω)
with restrict show emeasure ?l A = emeasure ?r A

by (subst emeasure-distr)
(auto simp: sets-restrict-space-iff emeasure-restrict-space emeasure-distr

intro!: measurable-restrict-space2)
qed (simp add : sets-restrict-space)

lemma measure-eqI-restrict-generator :
assumes E : Int-stable E E ⊆ Pow Ω

∧
X . X ∈ E =⇒ emeasure M X = emeasure

N X
assumes sets-eq : sets M = sets N and Ω: Ω ∈ sets M
assumes sets (restrict-space M Ω) = sigma-sets Ω E

THEORY “Measure-Space” 122

assumes sets (restrict-space N Ω) = sigma-sets Ω E
assumes ae: AE x in M . x ∈ Ω AE x in N . x ∈ Ω
assumes A: countable A A 6= {} A ⊆ E

⋃
A = Ω

∧
a. a ∈ A =⇒ emeasure M

a 6= ∞
shows M = N

proof (rule measure-eqI)
fix X assume X : X ∈ sets M
then have emeasure M X = emeasure (restrict-space M Ω) (X ∩ Ω)
using ae Ω by (auto simp add : emeasure-restrict-space intro!: emeasure-eq-AE)

also have restrict-space M Ω = restrict-space N Ω
proof (rule measure-eqI-generator-eq)

fix X assume X ∈ E
then show emeasure (restrict-space M Ω) X = emeasure (restrict-space N Ω)

X
using E Ω by (subst (1 2) emeasure-restrict-space) (auto simp: sets-eq

sets-eq [THEN sets-eq-imp-space-eq])
next

show range (from-nat-into A) ⊆ E (
⋃

i . from-nat-into A i) = Ω
using A by (auto cong del : strong-SUP-cong)

next
fix i

have emeasure (restrict-space M Ω) (from-nat-into A i) = emeasure M (from-nat-into
A i)

using A Ω by (subst emeasure-restrict-space)
(auto simp: sets-eq sets-eq [THEN sets-eq-imp-space-eq] intro:

from-nat-into)
with A show emeasure (restrict-space M Ω) (from-nat-into A i) 6= ∞

by (auto intro: from-nat-into)
qed fact+
also have emeasure (restrict-space N Ω) (X ∩ Ω) = emeasure N X
using X ae Ω by (auto simp add : emeasure-restrict-space sets-eq intro!: emeasure-eq-AE)
finally show emeasure M X = emeasure N X .

qed fact

3.13 Null measure

definition null-measure M = sigma (space M) (sets M)

lemma space-null-measure[simp]: space (null-measure M) = space M
by (simp add : null-measure-def)

lemma sets-null-measure[simp, measurable-cong]: sets (null-measure M) = sets M
by (simp add : null-measure-def)

lemma emeasure-null-measure[simp]: emeasure (null-measure M) X = 0
by (cases X ∈ sets M , rule emeasure-measure-of)

(auto simp: positive-def countably-additive-def emeasure-notin-sets null-measure-def
dest : sets.sets-into-space)

THEORY “Measure-Space” 123

lemma measure-null-measure[simp]: measure (null-measure M) X = 0
by (intro measure-eq-emeasure-eq-ennreal) auto

lemma null-measure-idem [simp]: null-measure (null-measure M) = null-measure
M

by(rule measure-eqI) simp-all

3.14 Scaling a measure

definition scale-measure :: ennreal ⇒ ′a measure ⇒ ′a measure
where

scale-measure r M = measure-of (space M) (sets M) (λA. r ∗ emeasure M A)

lemma space-scale-measure: space (scale-measure r M) = space M
by (simp add : scale-measure-def)

lemma sets-scale-measure [simp, measurable-cong]: sets (scale-measure r M) =
sets M

by (simp add : scale-measure-def)

lemma emeasure-scale-measure [simp]:
emeasure (scale-measure r M) A = r ∗ emeasure M A
(is - = ?µ A)

proof(cases A ∈ sets M)
case True
show ?thesis unfolding scale-measure-def
proof(rule emeasure-measure-of-sigma)

show sigma-algebra (space M) (sets M) ..
show positive (sets M) ?µ by (simp add : positive-def)
show countably-additive (sets M) ?µ
proof (rule countably-additiveI)

fix A :: nat ⇒ - assume ∗: range A ⊆ sets M disjoint-family A
have (

∑
i . ?µ (A i)) = r ∗ (

∑
i . emeasure M (A i))

by simp
also have . . . = ?µ (

⋃
i . A i) using ∗ by(simp add : suminf-emeasure)

finally show (
∑

i . ?µ (A i)) = ?µ (
⋃

i . A i) .
qed

qed(fact True)
qed(simp add : emeasure-notin-sets)

lemma scale-measure-1 [simp]: scale-measure 1 M = M
by(rule measure-eqI) simp-all

lemma scale-measure-0 [simp]: scale-measure 0 M = null-measure M
by(rule measure-eqI) simp-all

lemma measure-scale-measure [simp]: 0 ≤ r =⇒ measure (scale-measure r M) A
= r ∗ measure M A

using emeasure-scale-measure[of r M A]

THEORY “Measure-Space” 124

emeasure-eq-ennreal-measure[of M A]
measure-eq-emeasure-eq-ennreal [of - scale-measure r M A]

by (cases emeasure (scale-measure r M) A = top)
(auto simp del : emeasure-scale-measure

simp: ennreal-top-eq-mult-iff ennreal-mult-eq-top-iff measure-zero-top
ennreal-mult [symmetric])

lemma scale-scale-measure [simp]:
scale-measure r (scale-measure r ′ M) = scale-measure (r ∗ r ′) M
by (rule measure-eqI) (simp-all add : max-def mult .assoc)

lemma scale-null-measure [simp]: scale-measure r (null-measure M) = null-measure
M

by (rule measure-eqI) simp-all

3.15 Measures form a chain-complete partial order

instantiation measure :: (type) order-bot
begin

definition bot-measure :: ′a measure where
bot-measure = sigma {} {{}}

lemma space-bot [simp]: space bot = {}
unfolding bot-measure-def by (rule space-measure-of) auto

lemma sets-bot [simp]: sets bot = {{}}
unfolding bot-measure-def by (subst sets-measure-of) auto

lemma emeasure-bot [simp]: emeasure bot = (λx . 0)
unfolding bot-measure-def by (rule emeasure-sigma)

inductive less-eq-measure :: ′a measure ⇒ ′a measure ⇒ bool where
sets N = sets M =⇒ (

∧
A. A ∈ sets M =⇒ emeasure M A ≤ emeasure N A)

=⇒ less-eq-measure M N
| less-eq-measure bot N

definition less-measure :: ′a measure ⇒ ′a measure ⇒ bool where
less-measure M N ←→ (M ≤ N ∧ ¬ N ≤ M)

instance
proof (standard , goal-cases)

case 1 then show ?case
unfolding less-measure-def ..

next
case (2 M) then show ?case

by (intro less-eq-measure.intros) auto
next

case (3 M N L) then show ?case

THEORY “Measure-Space” 125

apply (safe elim!: less-eq-measure.cases)
apply (simp-all add : less-eq-measure.intros)
apply (rule less-eq-measure.intros)
apply simp
apply (blast intro: order-trans) []
unfolding less-eq-measure.simps
apply (rule disjI2)
apply simp
apply (rule measure-eqI)
apply (auto intro!: antisym)
done

next
case (4 M N) then show ?case

apply (safe elim!: less-eq-measure.cases intro!: measure-eqI)
apply simp
apply simp
apply (blast intro: antisym)
apply (simp)
apply simp
done

qed (rule less-eq-measure.intros)
end

lemma le-emeasureD : M ≤ N =⇒ emeasure M A ≤ emeasure N A
by (cases A ∈ sets M) (auto elim!: less-eq-measure.cases simp: emeasure-notin-sets)

lemma le-sets: N ≤ M =⇒ sets N ≤ sets M
unfolding less-eq-measure.simps by auto

instantiation measure :: (type) ccpo
begin

definition Sup-measure :: ′a measure set ⇒ ′a measure where
Sup-measure A = measure-of (SUP a:A. space a) (SUP a:A. sets a) (SUP a:A.

emeasure a)

lemma
assumes A: Complete-Partial-Order .chain op ≤ A and a: a 6= bot a ∈ A
shows space-Sup: space (Sup A) = space a

and sets-Sup: sets (Sup A) = sets a
proof −

have sets: (SUP a:A. sets a) = sets a
proof (intro antisym SUP-least)

fix a ′ show a ′ ∈ A =⇒ sets a ′ ⊆ sets a
using a chainD [OF A, of a a ′] by (auto elim!: less-eq-measure.cases)

qed (insert 〈a∈A〉, auto)
have space: (SUP a:A. space a) = space a
proof (intro antisym SUP-least)

fix a ′ show a ′ ∈ A =⇒ space a ′ ⊆ space a

THEORY “Measure-Space” 126

using a chainD [OF A, of a a ′] by (intro sets-le-imp-space-le) (auto elim!:
less-eq-measure.cases)

qed (insert 〈a∈A〉, auto)
show space (Sup A) = space a

unfolding Sup-measure-def sets space sets.space-measure-of-eq ..
show sets (Sup A) = sets a

unfolding Sup-measure-def sets space sets.sets-measure-of-eq ..
qed

lemma emeasure-Sup:
assumes A: Complete-Partial-Order .chain op ≤ A A 6= {}
assumes X ∈ sets (Sup A)
shows emeasure (Sup A) X = (SUP a:A. emeasure a) X

proof (rule emeasure-measure-of [OF Sup-measure-def])
show countably-additive (sets (Sup A)) (SUP a:A. emeasure a)

unfolding countably-additive-def
proof safe

fix F :: nat ⇒ ′a set assume F : range F ⊆ sets (Sup A) disjoint-family F
show (

∑
i . (SUP a:A. emeasure a) (F i)) = SUPREMUM A emeasure (UNION

UNIV F)
unfolding SUP-apply

proof (subst ennreal-suminf-SUP-eq-directed)
fix N i j assume i ∈ A j ∈ A
with A(1)
show ∃ k∈A. ∀n∈N . emeasure i (F n) ≤ emeasure k (F n) ∧ emeasure j (F

n) ≤ emeasure k (F n)
by (blast elim: chainE dest : le-emeasureD)

next
show (SUP n:A.

∑
i . emeasure n (F i)) = (SUP y :A. emeasure y (UNION

UNIV F))
proof (intro SUP-cong refl)

fix a assume a ∈ A then show (
∑

i . emeasure a (F i)) = emeasure a
(UNION UNIV F)

using sets-Sup[OF A(1), of a] F by (cases a = bot) (auto simp:
suminf-emeasure)

qed
qed

qed
qed (insert 〈A 6= {}〉 〈X ∈ sets (Sup A)〉, auto simp: positive-def dest : sets.sets-into-space
intro: SUP-upper2)

instance
proof
fix A and x :: ′a measure assume A: Complete-Partial-Order .chain op ≤ A and

x : x ∈ A
show x ≤ Sup A
proof cases

assume x 6= bot
show ?thesis

THEORY “Measure-Space” 127

proof
show sets (Sup A) = sets x

using A 〈x 6= bot 〉 x by (rule sets-Sup)
with x show

∧
a. a ∈ sets x =⇒ emeasure x a ≤ emeasure (Sup A) a

by (subst emeasure-Sup[OF A]) (auto intro: SUP-upper)
qed

qed simp
next
fix A and x :: ′a measure assume A: Complete-Partial-Order .chain op ≤ A and

x :
∧

z . z ∈ A =⇒ z ≤ x
consider A = {} | A = {bot} | x where x∈A x 6= bot

by blast
then show Sup A ≤ x
proof cases

assume A = {}
moreover have Sup ({}:: ′a measure set) = bot
by (auto simp add : Sup-measure-def sigma-sets-empty-eq intro!: measure-eqI)

ultimately show ?thesis
by simp

next
assume A = {bot}
moreover have Sup ({bot}:: ′a measure set) = bot
by (auto simp add : Sup-measure-def sigma-sets-empty-eq intro!: measure-eqI)
ultimately show ?thesis
by simp

next
fix a assume a ∈ A a 6= bot
then have a ≤ x x 6= bot a 6= bot

using x [OF 〈a ∈ A〉] by (auto simp: bot-unique)
then have sets x = sets a

by (auto elim: less-eq-measure.cases)

show Sup A ≤ x
proof (rule less-eq-measure.intros)

show sets x = sets (Sup A)
by (subst sets-Sup[OF A 〈a 6= bot 〉 〈a ∈ A〉]) fact

next
fix X assume X ∈ sets (Sup A)
then have emeasure (Sup A) X ≤ (SUP a:A. emeasure a X)

using 〈a∈A〉 by (subst emeasure-Sup[OF A -]) auto
also have . . . ≤ emeasure x X

by (intro SUP-least le-emeasureD x)
finally show emeasure (Sup A) X ≤ emeasure x X .

qed
qed

qed
end

lemma

THEORY “Borel-Space” 128

assumes A: Complete-Partial-Order .chain op ≤ (f ‘ A) and a: a ∈ A f a 6= bot
shows space-SUP : space (SUP M :A. f M) = space (f a)

and sets-SUP : sets (SUP M :A. f M) = sets (f a)
by(rule space-Sup[OF A a(2) imageI [OF a(1)]] sets-Sup[OF A a(2) imageI [OF
a(1)]])+

lemma emeasure-SUP :
assumes A: Complete-Partial-Order .chain op ≤ (f ‘ A) A 6= {}
assumes X ∈ sets (SUP M :A. f M)
shows emeasure (SUP M :A. f M) X = (SUP M :A. emeasure (f M)) X

using 〈X ∈ -〉 by(subst emeasure-Sup[OF A(1)]; simp add : A)

end

4 Borel spaces

theory Borel-Space
imports

Measurable
∼∼/src/HOL/Multivariate-Analysis/Multivariate-Analysis

begin

lemma sets-Collect-eventually-sequentially [measurable]:
(
∧

i . {x∈space M . P x i} ∈ sets M) =⇒ {x∈space M . eventually (P x) sequen-
tially} ∈ sets M

unfolding eventually-sequentially by simp

lemma open-Collect-less:
fixes f g :: ′i ::topological-space ⇒ ′a :: {dense-linorder , linorder-topology}
assumes continuous-on UNIV f
assumes continuous-on UNIV g
shows open {x . f x < g x}

proof −
have open (

⋃
y . {x ∈ UNIV . f x ∈ {..< y}} ∩ {x ∈ UNIV . g x ∈ {y <..}}) (is

open ?X)
by (intro open-UN ballI open-Int continuous-open-preimage assms) auto

also have ?X = {x . f x < g x}
by (auto intro: dense)

finally show ?thesis .
qed

lemma closed-Collect-le:
fixes f g :: ′i ::topological-space ⇒ ′a :: {dense-linorder , linorder-topology}
assumes f : continuous-on UNIV f
assumes g : continuous-on UNIV g
shows closed {x . f x ≤ g x}
using open-Collect-less[OF g f] unfolding not-less[symmetric] Collect-neg-eq

open-closed .

THEORY “Borel-Space” 129

lemma topological-basis-trivial : topological-basis {A. open A}
by (auto simp: topological-basis-def)

lemma open-prod-generated : open = generate-topology {A × B | A B . open A ∧
open B}
proof −

have {A × B :: (′a × ′b) set | A B . open A ∧ open B} = ((λ(a, b). a × b) ‘
({A. open A} × {A. open A}))

by auto
then show ?thesis
by (auto intro: topological-basis-prod topological-basis-trivial topological-basis-imp-subbasis)

qed

definition mono-on f A ≡ ∀ r s. r ∈ A ∧ s ∈ A ∧ r ≤ s −→ f r ≤ f s

lemma mono-onI :
(
∧

r s. r ∈ A =⇒ s ∈ A =⇒ r ≤ s =⇒ f r ≤ f s) =⇒ mono-on f A
unfolding mono-on-def by simp

lemma mono-onD :
[[mono-on f A; r ∈ A; s ∈ A; r ≤ s]] =⇒ f r ≤ f s
unfolding mono-on-def by simp

lemma mono-imp-mono-on: mono f =⇒ mono-on f A
unfolding mono-def mono-on-def by auto

lemma mono-on-subset : mono-on f A =⇒ B ⊆ A =⇒ mono-on f B
unfolding mono-on-def by auto

definition strict-mono-on f A ≡ ∀ r s. r ∈ A ∧ s ∈ A ∧ r < s −→ f r < f s

lemma strict-mono-onI :
(
∧

r s. r ∈ A =⇒ s ∈ A =⇒ r < s =⇒ f r < f s) =⇒ strict-mono-on f A
unfolding strict-mono-on-def by simp

lemma strict-mono-onD :
[[strict-mono-on f A; r ∈ A; s ∈ A; r < s]] =⇒ f r < f s
unfolding strict-mono-on-def by simp

lemma mono-on-greaterD :
assumes mono-on g A x ∈ A y ∈ A g x > (g (y ::-::linorder) :: - :: linorder)
shows x > y

proof (rule ccontr)
assume ¬x > y
hence x ≤ y by (simp add : not-less)
from assms(1−3) and this have g x ≤ g y by (rule mono-onD)
with assms(4) show False by simp

qed

THEORY “Borel-Space” 130

lemma strict-mono-inv :
fixes f :: (′a::linorder) ⇒ (′b::linorder)
assumes strict-mono f and surj f and inv :

∧
x . g (f x) = x

shows strict-mono g
proof

fix x y :: ′b assume x < y
from 〈surj f 〉 obtain x ′ y ′ where [simp]: x = f x ′ y = f y ′ by blast
with 〈x < y〉 and 〈strict-mono f 〉 have x ′ < y ′ by (simp add : strict-mono-less)
with inv show g x < g y by simp

qed

lemma strict-mono-on-imp-inj-on:
assumes strict-mono-on (f :: (- :: linorder) ⇒ (- :: preorder)) A
shows inj-on f A

proof (rule inj-onI)
fix x y assume x ∈ A y ∈ A f x = f y
thus x = y

by (cases x y rule: linorder-cases)
(auto dest : strict-mono-onD [OF assms, of x y] strict-mono-onD [OF assms,

of y x])
qed

lemma strict-mono-on-leD :
assumes strict-mono-on (f :: (- :: linorder) ⇒ - :: preorder) A x ∈ A y ∈ A x
≤ y

shows f x ≤ f y
proof (insert le-less-linear [of y x], elim disjE)

assume x < y
with assms have f x < f y by (rule-tac strict-mono-onD [OF assms(1)]) simp-all
thus ?thesis by (rule less-imp-le)

qed (insert assms, simp)

lemma strict-mono-on-eqD :
fixes f :: (- :: linorder) ⇒ (- :: preorder)
assumes strict-mono-on f A f x = f y x ∈ A y ∈ A
shows y = x
using assms by (rule-tac linorder-cases[of x y]) (auto dest : strict-mono-onD)

lemma mono-on-imp-deriv-nonneg :
assumes mono: mono-on f A and deriv : (f has-real-derivative D) (at x)
assumes x ∈ interior A
shows D ≥ 0

proof (rule tendsto-le-const)
let ?A ′ = (λy . y − x) ‘ interior A
from deriv show ((λh. (f (x + h) − f x) / h) −−−→ D) (at 0)

by (simp add : field-has-derivative-at has-field-derivative-def)
from mono have mono ′: mono-on f (interior A) by (rule mono-on-subset) (rule

interior-subset)

THEORY “Borel-Space” 131

show eventually (λh. (f (x + h) − f x) / h ≥ 0) (at 0)
proof (subst eventually-at-topological , intro exI conjI ballI impI)

have open (interior A) by simp
hence open (op + (−x) ‘ interior A) by (rule open-translation)
also have (op + (−x) ‘ interior A) = ?A ′ by auto
finally show open ?A ′ .

next
from 〈x ∈ interior A〉 show 0 ∈ ?A ′ by auto

next
fix h assume h ∈ ?A ′

hence x + h ∈ interior A by auto
with mono ′ and 〈x ∈ interior A〉 show (f (x + h) − f x) / h ≥ 0

by (cases h rule: linorder-cases[of - 0])
(simp-all add : divide-nonpos-neg divide-nonneg-pos mono-onD field-simps)

qed
qed simp

lemma strict-mono-on-imp-mono-on:
strict-mono-on (f :: (- :: linorder) ⇒ - :: preorder) A =⇒ mono-on f A
by (rule mono-onI , rule strict-mono-on-leD)

lemma mono-on-ctble-discont :
fixes f :: real ⇒ real
fixes A :: real set
assumes mono-on f A
shows countable {a∈A. ¬ continuous (at a within A) f }

proof −
have mono:

∧
x y . x ∈ A =⇒ y ∈ A =⇒ x ≤ y =⇒ f x ≤ f y

using 〈mono-on f A〉 by (simp add : mono-on-def)
have ∀ a ∈ {a∈A. ¬ continuous (at a within A) f }. ∃ q :: nat × rat .

(fst q = 0 ∧ of-rat (snd q) < f a ∧ (∀ x ∈ A. x < a −→ f x < of-rat (snd
q))) ∨

(fst q = 1 ∧ of-rat (snd q) > f a ∧ (∀ x ∈ A. x > a −→ f x > of-rat (snd
q)))

proof (clarsimp simp del : One-nat-def)
fix a assume a ∈ A assume ¬ continuous (at a within A) f
thus ∃ q1 q2 .

q1 = 0 ∧ real-of-rat q2 < f a ∧ (∀ x∈A. x < a −→ f x < real-of-rat q2)
∨

q1 = 1 ∧ f a < real-of-rat q2 ∧ (∀ x∈A. a < x −→ real-of-rat q2 < f x)
proof (auto simp add : continuous-within order-tendsto-iff eventually-at)

fix l assume l < f a
then obtain q2 where q2 : l < of-rat q2 of-rat q2 < f a

using of-rat-dense by blast
assume ∗ [rule-format]: ∀ d>0 . ∃ x∈A. x 6= a ∧ dist x a < d ∧ ¬ l < f x
from q2 have real-of-rat q2 < f a ∧ (∀ x∈A. x < a −→ f x < real-of-rat q2)
proof auto

fix x assume x ∈ A x < a
with q2 ∗[of a − x] show f x < real-of-rat q2

THEORY “Borel-Space” 132

apply (auto simp add : dist-real-def not-less)
apply (subgoal-tac f x ≤ f xa)
by (auto intro: mono)

qed
thus ?thesis by auto

next
fix u assume u > f a
then obtain q2 where q2 : f a < of-rat q2 of-rat q2 < u

using of-rat-dense by blast
assume ∗[rule-format]: ∀ d>0 . ∃ x∈A. x 6= a ∧ dist x a < d ∧ ¬ u > f x
from q2 have real-of-rat q2 > f a ∧ (∀ x∈A. x > a −→ f x > real-of-rat q2)
proof auto

fix x assume x ∈ A x > a
with q2 ∗[of x − a] show f x > real-of-rat q2

apply (auto simp add : dist-real-def)
apply (subgoal-tac f x ≥ f xa)
by (auto intro: mono)

qed
thus ?thesis by auto

qed
qed
hence ∃ g :: real ⇒ nat × rat . ∀ a ∈ {a∈A. ¬ continuous (at a within A) f }.

(fst (g a) = 0 ∧ of-rat (snd (g a)) < f a ∧ (∀ x ∈ A. x < a −→ f x < of-rat
(snd (g a)))) |

(fst (g a) = 1 ∧ of-rat (snd (g a)) > f a ∧ (∀ x ∈ A. x > a −→ f x > of-rat
(snd (g a))))

by (rule bchoice)
then guess g ..
hence g :

∧
a x . a ∈ A =⇒ ¬ continuous (at a within A) f =⇒ x ∈ A =⇒

(fst (g a) = 0 ∧ of-rat (snd (g a)) < f a ∧ (x < a −→ f x < of-rat (snd (g
a)))) |

(fst (g a) = 1 ∧ of-rat (snd (g a)) > f a ∧ (x > a −→ f x > of-rat (snd (g
a))))

by auto
have inj-on g {a∈A. ¬ continuous (at a within A) f }
proof (auto simp add : inj-on-def)

fix w z
assume 1 : w ∈ A and 2 : ¬ continuous (at w within A) f and

3 : z ∈ A and 4 : ¬ continuous (at z within A) f and
5 : g w = g z

from g [OF 1 2 3] g [OF 3 4 1] 5
show w = z by auto

qed
thus ?thesis

by (rule countableI ′)
qed

lemma mono-on-ctble-discont-open:
fixes f :: real ⇒ real

THEORY “Borel-Space” 133

fixes A :: real set
assumes open A mono-on f A
shows countable {a∈A. ¬isCont f a}

proof −
have {a∈A. ¬isCont f a} = {a∈A. ¬(continuous (at a within A) f)}

by (auto simp add : continuous-within-open [OF - 〈open A〉])
thus ?thesis

apply (elim ssubst)
by (rule mono-on-ctble-discont , rule assms)

qed

lemma mono-ctble-discont :
fixes f :: real ⇒ real
assumes mono f
shows countable {a. ¬ isCont f a}

using assms mono-on-ctble-discont [of f UNIV] unfolding mono-on-def mono-def
by auto

lemma has-real-derivative-imp-continuous-on:
assumes

∧
x . x ∈ A =⇒ (f has-real-derivative f ′ x) (at x)

shows continuous-on A f
apply (intro differentiable-imp-continuous-on, unfold differentiable-on-def)
apply (intro ballI Deriv .differentiableI)
apply (rule has-field-derivative-subset [OF assms])
apply simp-all
done

lemma closure-contains-Sup:
fixes S :: real set
assumes S 6= {} bdd-above S
shows Sup S ∈ closure S

proof−
have Inf (uminus ‘ S) ∈ closure (uminus ‘ S)

using assms by (intro closure-contains-Inf) auto
also have Inf (uminus ‘ S) = −Sup S by (simp add : Inf-real-def)
also have closure (uminus ‘ S) = uminus ‘ closure S

by (rule sym, intro closure-injective-linear-image) (auto intro: linearI)
finally show ?thesis by auto

qed

lemma closed-contains-Sup:
fixes S :: real set
shows S 6= {} =⇒ bdd-above S =⇒ closed S =⇒ Sup S ∈ S
by (subst closure-closed [symmetric], assumption, rule closure-contains-Sup)

lemma deriv-nonneg-imp-mono:
assumes deriv :

∧
x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)

assumes nonneg :
∧

x . x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes ab: a ≤ b

THEORY “Borel-Space” 134

shows g a ≤ g b
proof (cases a < b)

assume a < b
from deriv have ∀ x . x ≥ a ∧ x ≤ b −→ (g has-real-derivative g ′ x) (at x) by

simp
from MVT2 [OF 〈a < b〉 this] and deriv

obtain ξ where ξ-ab: ξ > a ξ < b and g-ab: g b − g a = (b − a) ∗ g ′ ξ by
blast

from ξ-ab ab nonneg have (b − a) ∗ g ′ ξ ≥ 0 by simp
with g-ab show ?thesis by simp

qed (insert ab, simp)

lemma continuous-interval-vimage-Int :
assumes continuous-on {a::real ..b} g and mono:

∧
x y . a ≤ x =⇒ x ≤ y =⇒

y ≤ b =⇒ g x ≤ g y
assumes a ≤ b (c::real) ≤ d {c..d} ⊆ {g a..g b}
obtains c ′ d ′ where {a..b} ∩ g −‘ {c..d} = {c ′..d ′} c ′ ≤ d ′ g c ′ = c g d ′ = d

proof−
let ?A = {a..b} ∩ g −‘ {c..d}
from IVT ′[of g a c b, OF - - 〈a ≤ b〉 assms(1)] assms(4 ,5)

obtain c ′′ where c ′′: c ′′ ∈ ?A g c ′′ = c by auto
from IVT ′[of g a d b, OF - - 〈a ≤ b〉 assms(1)] assms(4 ,5)

obtain d ′′ where d ′′: d ′′ ∈ ?A g d ′′ = d by auto
hence [simp]: ?A 6= {} by blast

def c ′ ≡ Inf ?A and d ′ ≡ Sup ?A
have ?A ⊆ {c ′..d ′} unfolding c ′-def d ′-def

by (intro subsetI) (auto intro: cInf-lower cSup-upper)
moreover from assms have closed ?A

using continuous-on-closed-vimage[of {a..b} g] by (subst Int-commute)
simp

hence c ′d ′-in-set : c ′ ∈ ?A d ′ ∈ ?A unfolding c ′-def d ′-def
by ((intro closed-contains-Inf closed-contains-Sup, simp-all)[])+

hence {c ′..d ′} ⊆ ?A using assms
by (intro subsetI)

(auto intro!: order-trans[of c g c ′ g x for x] order-trans[of g x g d ′ d for
x]

intro!: mono)
moreover have c ′ ≤ d ′ using c ′d ′-in-set(2) unfolding c ′-def by (intro

cInf-lower) auto
moreover have g c ′ ≤ c g d ′ ≥ d

apply (insert c ′′ d ′′ c ′d ′-in-set)
apply (subst c ′′(2)[symmetric])
apply (auto simp: c ′-def intro!: mono cInf-lower c ′′) []
apply (subst d ′′(2)[symmetric])
apply (auto simp: d ′-def intro!: mono cSup-upper d ′′) []
done

with c ′d ′-in-set have g c ′ = c g d ′ = d by auto
ultimately show ?thesis using that by blast

THEORY “Borel-Space” 135

qed

4.1 Generic Borel spaces

definition (in topological-space) borel :: ′a measure where
borel = sigma UNIV {S . open S}

abbreviation borel-measurable M ≡ measurable M borel

lemma in-borel-measurable:
f ∈ borel-measurable M ←→
(∀S ∈ sigma-sets UNIV {S . open S}. f −‘ S ∩ space M ∈ sets M)

by (auto simp add : measurable-def borel-def)

lemma in-borel-measurable-borel :
f ∈ borel-measurable M ←→
(∀S ∈ sets borel .

f −‘ S ∩ space M ∈ sets M)
by (auto simp add : measurable-def borel-def)

lemma space-borel [simp]: space borel = UNIV
unfolding borel-def by auto

lemma space-in-borel [measurable]: UNIV ∈ sets borel
unfolding borel-def by auto

lemma sets-borel : sets borel = sigma-sets UNIV {S . open S}
unfolding borel-def by (rule sets-measure-of) simp

lemma measurable-sets-borel :
[[f ∈ measurable borel M ; A ∈ sets M]] =⇒ f −‘ A ∈ sets borel

by (drule (1) measurable-sets) simp

lemma pred-Collect-borel [measurable (raw)]: Measurable.pred borel P =⇒ {x . P
x} ∈ sets borel

unfolding borel-def pred-def by auto

lemma borel-open[measurable (raw generic)]:
assumes open A shows A ∈ sets borel

proof −
have A ∈ {S . open S} unfolding mem-Collect-eq using assms .
thus ?thesis unfolding borel-def by auto

qed

lemma borel-closed [measurable (raw generic)]:
assumes closed A shows A ∈ sets borel

proof −
have space borel − (− A) ∈ sets borel

using assms unfolding closed-def by (blast intro: borel-open)

THEORY “Borel-Space” 136

thus ?thesis by simp
qed

lemma borel-singleton[measurable]:
A ∈ sets borel =⇒ insert x A ∈ sets (borel :: ′a::t1-space measure)
unfolding insert-def by (rule sets.Un) auto

lemma borel-comp[measurable]: A ∈ sets borel =⇒ − A ∈ sets borel
unfolding Compl-eq-Diff-UNIV by simp

lemma borel-measurable-vimage:
fixes f :: ′a ⇒ ′x ::t2-space
assumes borel [measurable]: f ∈ borel-measurable M
shows f −‘ {x} ∩ space M ∈ sets M
by simp

lemma borel-measurableI :
fixes f :: ′a ⇒ ′x ::topological-space
assumes

∧
S . open S =⇒ f −‘ S ∩ space M ∈ sets M

shows f ∈ borel-measurable M
unfolding borel-def

proof (rule measurable-measure-of , simp-all)
fix S :: ′x set assume open S thus f −‘ S ∩ space M ∈ sets M

using assms[of S] by simp
qed

lemma borel-measurable-const :
(λx . c) ∈ borel-measurable M
by auto

lemma borel-measurable-indicator :
assumes A: A ∈ sets M
shows indicator A ∈ borel-measurable M
unfolding indicator-def [abs-def] using A
by (auto intro!: measurable-If-set)

lemma borel-measurable-count-space[measurable (raw)]:
f ∈ borel-measurable (count-space S)
unfolding measurable-def by auto

lemma borel-measurable-indicator ′[measurable (raw)]:
assumes [measurable]: {x∈space M . f x ∈ A x} ∈ sets M
shows (λx . indicator (A x) (f x)) ∈ borel-measurable M
unfolding indicator-def [abs-def]
by (auto intro!: measurable-If)

lemma borel-measurable-indicator-iff :
(indicator A :: ′a ⇒ ′x ::{t1-space, zero-neq-one}) ∈ borel-measurable M ←→ A
∩ space M ∈ sets M

THEORY “Borel-Space” 137

(is ?I ∈ borel-measurable M ←→ -)
proof

assume ?I ∈ borel-measurable M
then have ?I −‘ {1} ∩ space M ∈ sets M

unfolding measurable-def by auto
also have ?I −‘ {1} ∩ space M = A ∩ space M

unfolding indicator-def [abs-def] by auto
finally show A ∩ space M ∈ sets M .

next
assume A ∩ space M ∈ sets M
moreover have ?I ∈ borel-measurable M ←→

(indicator (A ∩ space M) :: ′a ⇒ ′x) ∈ borel-measurable M
by (intro measurable-cong) (auto simp: indicator-def)

ultimately show ?I ∈ borel-measurable M by auto
qed

lemma borel-measurable-subalgebra:
assumes sets N ⊆ sets M space N = space M f ∈ borel-measurable N
shows f ∈ borel-measurable M
using assms unfolding measurable-def by auto

lemma borel-measurable-restrict-space-iff-ereal :
fixes f :: ′a ⇒ ereal
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel-measurable (restrict-space M Ω) ←→

(λx . f x ∗ indicator Ω x) ∈ borel-measurable M
by (subst measurable-restrict-space-iff)

(auto simp: indicator-def if-distrib[where f =λx . a ∗ x for a] cong del : if-cong)

lemma borel-measurable-restrict-space-iff-ennreal :
fixes f :: ′a ⇒ ennreal
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel-measurable (restrict-space M Ω) ←→

(λx . f x ∗ indicator Ω x) ∈ borel-measurable M
by (subst measurable-restrict-space-iff)

(auto simp: indicator-def if-distrib[where f =λx . a ∗ x for a] cong del : if-cong)

lemma borel-measurable-restrict-space-iff :
fixes f :: ′a ⇒ ′b::real-normed-vector
assumes Ω[measurable, simp]: Ω ∩ space M ∈ sets M
shows f ∈ borel-measurable (restrict-space M Ω) ←→

(λx . indicator Ω x ∗R f x) ∈ borel-measurable M
by (subst measurable-restrict-space-iff)

(auto simp: indicator-def if-distrib[where f =λx . x ∗R a for a] ac-simps cong
del : if-cong)

lemma cbox-borel [measurable]: cbox a b ∈ sets borel
by (auto intro: borel-closed)

THEORY “Borel-Space” 138

lemma box-borel [measurable]: box a b ∈ sets borel
by (auto intro: borel-open)

lemma borel-compact : compact (A:: ′a::t2-space set) =⇒ A ∈ sets borel
by (auto intro: borel-closed dest !: compact-imp-closed)

lemma borel-sigma-sets-subset :
A ⊆ sets borel =⇒ sigma-sets UNIV A ⊆ sets borel
using sets.sigma-sets-subset [of A borel] by simp

lemma borel-eq-sigmaI1 :
fixes F :: ′i ⇒ ′a::topological-space set and X :: ′a::topological-space set set
assumes borel-eq : borel = sigma UNIV X
assumes X :

∧
x . x ∈ X =⇒ x ∈ sets (sigma UNIV (F ‘ A))

assumes F :
∧

i . i ∈ A =⇒ F i ∈ sets borel
shows borel = sigma UNIV (F ‘ A)
unfolding borel-def

proof (intro sigma-eqI antisym)
have borel-rev-eq : sigma-sets UNIV {S :: ′a set . open S} = sets borel

unfolding borel-def by simp
also have . . . = sigma-sets UNIV X

unfolding borel-eq by simp
also have . . . ⊆ sigma-sets UNIV (F‘A)
using X by (intro sigma-algebra.sigma-sets-subset [OF sigma-algebra-sigma-sets])

auto
finally show sigma-sets UNIV {S . open S} ⊆ sigma-sets UNIV (F‘A) .
show sigma-sets UNIV (F‘A) ⊆ sigma-sets UNIV {S . open S}

unfolding borel-rev-eq using F by (intro borel-sigma-sets-subset) auto
qed auto

lemma borel-eq-sigmaI2 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological-space set

and G :: ′l ⇒ ′k ⇒ ′a::topological-space set
assumes borel-eq : borel = sigma UNIV ((λ(i , j). G i j)‘B)
assumes X :

∧
i j . (i , j) ∈ B =⇒ G i j ∈ sets (sigma UNIV ((λ(i , j). F i j) ‘

A))
assumes F :

∧
i j . (i , j) ∈ A =⇒ F i j ∈ sets borel

shows borel = sigma UNIV ((λ(i , j). F i j) ‘ A)
using assms
by (intro borel-eq-sigmaI1 [where X =(λ(i , j). G i j) ‘ B and F=(λ(i , j). F i

j)]) auto

lemma borel-eq-sigmaI3 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological-space set and X :: ′a::topological-space set set
assumes borel-eq : borel = sigma UNIV X
assumes X :

∧
x . x ∈ X =⇒ x ∈ sets (sigma UNIV ((λ(i , j). F i j) ‘ A))

assumes F :
∧

i j . (i , j) ∈ A =⇒ F i j ∈ sets borel
shows borel = sigma UNIV ((λ(i , j). F i j) ‘ A)
using assms by (intro borel-eq-sigmaI1 [where X =X and F=(λ(i , j). F i j)])

THEORY “Borel-Space” 139

auto

lemma borel-eq-sigmaI4 :
fixes F :: ′i ⇒ ′a::topological-space set

and G :: ′l ⇒ ′k ⇒ ′a::topological-space set
assumes borel-eq : borel = sigma UNIV ((λ(i , j). G i j)‘A)
assumes X :

∧
i j . (i , j) ∈ A =⇒ G i j ∈ sets (sigma UNIV (range F))

assumes F :
∧

i . F i ∈ sets borel
shows borel = sigma UNIV (range F)
using assms by (intro borel-eq-sigmaI1 [where X =(λ(i , j). G i j) ‘ A and F=F])

auto

lemma borel-eq-sigmaI5 :
fixes F :: ′i ⇒ ′j ⇒ ′a::topological-space set and G :: ′l ⇒ ′a::topological-space

set
assumes borel-eq : borel = sigma UNIV (range G)
assumes X :

∧
i . G i ∈ sets (sigma UNIV (range (λ(i , j). F i j)))

assumes F :
∧

i j . F i j ∈ sets borel
shows borel = sigma UNIV (range (λ(i , j). F i j))
using assms by (intro borel-eq-sigmaI1 [where X =range G and F=(λ(i , j). F

i j)]) auto

lemma second-countable-borel-measurable:
fixes X :: ′a::second-countable-topology set set
assumes eq : open = generate-topology X
shows borel = sigma UNIV X
unfolding borel-def

proof (intro sigma-eqI sigma-sets-eqI)
interpret X : sigma-algebra UNIV sigma-sets UNIV X

by (rule sigma-algebra-sigma-sets) simp

fix S :: ′a set assume S ∈ Collect open
then have generate-topology X S

by (auto simp: eq)
then show S ∈ sigma-sets UNIV X
proof induction

case (UN K)
then have K :

∧
k . k ∈ K =⇒ open k

unfolding eq by auto
from ex-countable-basis obtain B :: ′a set set where
B :

∧
b. b ∈ B =⇒ open b

∧
X . open X =⇒ ∃ b⊆B . (

⋃
b) = X and countable

B
by (auto simp: topological-basis-def)

from B(2)[OF K] obtain m where m:
∧

k . k ∈ K =⇒ m k ⊆ B
∧

k . k ∈ K
=⇒ (

⋃
m k) = k

by metis
def U ≡ (

⋃
k∈K . m k)

with m have countable U
by (intro countable-subset [OF - 〈countable B 〉]) auto

THEORY “Borel-Space” 140

have
⋃

U = (
⋃

A∈U . A) by simp
also have . . . =

⋃
K

unfolding U-def UN-simps by (simp add : m)
finally have

⋃
U =

⋃
K .

have ∀ b∈U . ∃ k∈K . b ⊆ k
using m by (auto simp: U-def)

then obtain u where u:
∧

b. b ∈ U =⇒ u b ∈ K and
∧

b. b ∈ U =⇒ b ⊆ u
b

by metis
then have (

⋃
b∈U . u b) ⊆

⋃
K

⋃
U ⊆ (

⋃
b∈U . u b)

by auto
then have

⋃
K = (

⋃
b∈U . u b)

unfolding 〈
⋃

U =
⋃

K 〉 by auto
also have . . . ∈ sigma-sets UNIV X

using u UN by (intro X .countable-UN ′ 〈countable U 〉) auto
finally show

⋃
K ∈ sigma-sets UNIV X .

qed auto
qed (auto simp: eq intro: generate-topology .Basis)

lemma borel-eq-closed : borel = sigma UNIV (Collect closed)
unfolding borel-def

proof (intro sigma-eqI sigma-sets-eqI , safe)
fix x :: ′a set assume open x
hence x = UNIV − (UNIV − x) by auto
also have . . . ∈ sigma-sets UNIV (Collect closed)

by (force intro: sigma-sets.Compl simp: 〈open x 〉)
finally show x ∈ sigma-sets UNIV (Collect closed) by simp

next
fix x :: ′a set assume closed x
hence x = UNIV − (UNIV − x) by auto
also have . . . ∈ sigma-sets UNIV (Collect open)

by (force intro: sigma-sets.Compl simp: 〈closed x 〉)
finally show x ∈ sigma-sets UNIV (Collect open) by simp

qed simp-all

lemma borel-eq-countable-basis:
fixes B :: ′a::topological-space set set
assumes countable B
assumes topological-basis B
shows borel = sigma UNIV B
unfolding borel-def

proof (intro sigma-eqI sigma-sets-eqI , safe)
interpret countable-basis using assms by unfold-locales
fix X :: ′a set assume open X
from open-countable-basisE [OF this] guess B ′ . note B ′ = this
then show X ∈ sigma-sets UNIV B

by (blast intro: sigma-sets-UNION 〈countable B 〉 countable-subset)
next

THEORY “Borel-Space” 141

fix b assume b ∈ B
hence open b by (rule topological-basis-open[OF assms(2)])
thus b ∈ sigma-sets UNIV (Collect open) by auto

qed simp-all

lemma borel-measurable-continuous-on-restrict :
fixes f :: ′a::topological-space ⇒ ′b::topological-space
assumes f : continuous-on A f
shows f ∈ borel-measurable (restrict-space borel A)

proof (rule borel-measurableI)
fix S :: ′b set assume open S
with f obtain T where f −‘ S ∩ A = T ∩ A open T

by (metis continuous-on-open-invariant)
then show f −‘ S ∩ space (restrict-space borel A) ∈ sets (restrict-space borel A)

by (force simp add : sets-restrict-space space-restrict-space)
qed

lemma borel-measurable-continuous-on1 : continuous-on UNIV f =⇒ f ∈ borel-measurable
borel

by (drule borel-measurable-continuous-on-restrict) simp

lemma borel-measurable-continuous-on-if :
A ∈ sets borel =⇒ continuous-on A f =⇒ continuous-on (− A) g =⇒

(λx . if x ∈ A then f x else g x) ∈ borel-measurable borel
by (auto simp add : measurable-If-restrict-space-iff Collect-neg-eq

intro!: borel-measurable-continuous-on-restrict)

lemma borel-measurable-continuous-countable-exceptions:
fixes f :: ′a::t1-space ⇒ ′b::topological-space
assumes X : countable X
assumes continuous-on (− X) f
shows f ∈ borel-measurable borel

proof (rule measurable-discrete-difference[OF - X])
have X ∈ sets borel

by (rule sets.countable[OF - X]) auto
then show (λx . if x ∈ X then undefined else f x) ∈ borel-measurable borel

by (intro borel-measurable-continuous-on-if assms continuous-intros)
qed auto

lemma borel-measurable-continuous-on:
assumes f : continuous-on UNIV f and g : g ∈ borel-measurable M
shows (λx . f (g x)) ∈ borel-measurable M
using measurable-comp[OF g borel-measurable-continuous-on1 [OF f]] by (simp

add : comp-def)

lemma borel-measurable-continuous-on-indicator :
fixes f g :: ′a::topological-space ⇒ ′b::real-normed-vector
shows A ∈ sets borel =⇒ continuous-on A f =⇒ (λx . indicator A x ∗R f x) ∈

borel-measurable borel

THEORY “Borel-Space” 142

by (subst borel-measurable-restrict-space-iff [symmetric])
(auto intro: borel-measurable-continuous-on-restrict)

lemma borel-measurable-Pair [measurable (raw)]:
fixes f :: ′a ⇒ ′b::second-countable-topology and g :: ′a ⇒ ′c::second-countable-topology
assumes f [measurable]: f ∈ borel-measurable M
assumes g [measurable]: g ∈ borel-measurable M
shows (λx . (f x , g x)) ∈ borel-measurable M

proof (subst borel-eq-countable-basis)
let ?B = SOME B :: ′b set set . countable B ∧ topological-basis B
let ?C = SOME B :: ′c set set . countable B ∧ topological-basis B
let ?P = (λ(b, c). b × c) ‘ (?B × ?C)
show countable ?P topological-basis ?P

by (auto intro!: countable-basis topological-basis-prod is-basis)

show (λx . (f x , g x)) ∈ measurable M (sigma UNIV ?P)
proof (rule measurable-measure-of)

fix S assume S ∈ ?P
then obtain b c where b ∈ ?B c ∈ ?C and S : S = b × c by auto
then have borel : open b open c

by (auto intro: is-basis topological-basis-open)
have (λx . (f x , g x)) −‘ S ∩ space M = (f −‘ b ∩ space M) ∩ (g −‘ c ∩ space

M)
unfolding S by auto

also have . . . ∈ sets M
using borel by simp

finally show (λx . (f x , g x)) −‘ S ∩ space M ∈ sets M .
qed auto

qed

lemma borel-measurable-continuous-Pair :
fixes f :: ′a ⇒ ′b::second-countable-topology and g :: ′a ⇒ ′c::second-countable-topology
assumes [measurable]: f ∈ borel-measurable M
assumes [measurable]: g ∈ borel-measurable M
assumes H : continuous-on UNIV (λx . H (fst x) (snd x))
shows (λx . H (f x) (g x)) ∈ borel-measurable M

proof −
have eq : (λx . H (f x) (g x)) = (λx . (λx . H (fst x) (snd x)) (f x , g x)) by auto
show ?thesis

unfolding eq by (rule borel-measurable-continuous-on[OF H]) auto
qed

4.2 Borel spaces on order topologies

lemma [measurable]:
fixes a b :: ′a::linorder-topology
shows lessThan-borel : {..< a} ∈ sets borel

and greaterThan-borel : {a <..} ∈ sets borel
and greaterThanLessThan-borel : {a<..<b} ∈ sets borel

THEORY “Borel-Space” 143

and atMost-borel : {..a} ∈ sets borel
and atLeast-borel : {a..} ∈ sets borel
and atLeastAtMost-borel : {a..b} ∈ sets borel
and greaterThanAtMost-borel : {a<..b} ∈ sets borel
and atLeastLessThan-borel : {a..<b} ∈ sets borel

unfolding greaterThanAtMost-def atLeastLessThan-def
by (blast intro: borel-open borel-closed open-lessThan open-greaterThan open-greaterThanLessThan

closed-atMost closed-atLeast closed-atLeastAtMost)+

lemma borel-Iio:
borel = sigma UNIV (range lessThan :: ′a::{linorder-topology , second-countable-topology}

set set)
unfolding second-countable-borel-measurable[OF open-generated-order]

proof (intro sigma-eqI sigma-sets-eqI)
from countable-dense-setE guess D :: ′a set . note D = this

interpret L: sigma-algebra UNIV sigma-sets UNIV (range lessThan)
by (rule sigma-algebra-sigma-sets) simp

fix A :: ′a set assume A ∈ range lessThan ∪ range greaterThan
then obtain y where A = {y <..} ∨ A = {..< y}

by blast
then show A ∈ sigma-sets UNIV (range lessThan)
proof

assume A: A = {y <..}
show ?thesis
proof cases

assume ∀ x>y . ∃ d . y < d ∧ d < x
with D(2)[of {y <..< x} for x] have ∀ x>y . ∃ d∈D . y < d ∧ d < x

by (auto simp: set-eq-iff)
then have A = UNIV − (

⋂
d∈{d∈D . y < d}. {..< d})

by (auto simp: A) (metis less-asym)
also have . . . ∈ sigma-sets UNIV (range lessThan)

using D(1) by (intro L.Diff L.top L.countable-INT ′′) auto
finally show ?thesis .

next
assume ¬ (∀ x>y . ∃ d . y < d ∧ d < x)
then obtain x where y < x

∧
d . y < d =⇒ ¬ d < x

by auto
then have A = UNIV − {..< x}

unfolding A by (auto simp: not-less[symmetric])
also have . . . ∈ sigma-sets UNIV (range lessThan)

by auto
finally show ?thesis .

qed
qed auto

qed auto

lemma borel-Ioi :

THEORY “Borel-Space” 144

borel = sigma UNIV (range greaterThan :: ′a::{linorder-topology , second-countable-topology}
set set)

unfolding second-countable-borel-measurable[OF open-generated-order]
proof (intro sigma-eqI sigma-sets-eqI)

from countable-dense-setE guess D :: ′a set . note D = this

interpret L: sigma-algebra UNIV sigma-sets UNIV (range greaterThan)
by (rule sigma-algebra-sigma-sets) simp

fix A :: ′a set assume A ∈ range lessThan ∪ range greaterThan
then obtain y where A = {y <..} ∨ A = {..< y}

by blast
then show A ∈ sigma-sets UNIV (range greaterThan)
proof

assume A: A = {..< y}
show ?thesis
proof cases

assume ∀ x<y . ∃ d . x < d ∧ d < y
with D(2)[of {x <..< y} for x] have ∀ x<y . ∃ d∈D . x < d ∧ d < y

by (auto simp: set-eq-iff)
then have A = UNIV − (

⋂
d∈{d∈D . d < y}. {d <..})

by (auto simp: A) (metis less-asym)
also have . . . ∈ sigma-sets UNIV (range greaterThan)

using D(1) by (intro L.Diff L.top L.countable-INT ′′) auto
finally show ?thesis .

next
assume ¬ (∀ x<y . ∃ d . x < d ∧ d < y)
then obtain x where x < y

∧
d . y > d =⇒ x ≥ d

by (auto simp: not-less[symmetric])
then have A = UNIV − {x <..}

unfolding A Compl-eq-Diff-UNIV [symmetric] by auto
also have . . . ∈ sigma-sets UNIV (range greaterThan)

by auto
finally show ?thesis .

qed
qed auto

qed auto

lemma borel-measurableI-less:
fixes f :: ′a ⇒ ′b::{linorder-topology , second-countable-topology}
shows (

∧
y . {x∈space M . f x < y} ∈ sets M) =⇒ f ∈ borel-measurable M

unfolding borel-Iio
by (rule measurable-measure-of) (auto simp: Int-def conj-commute)

lemma borel-measurableI-greater :
fixes f :: ′a ⇒ ′b::{linorder-topology , second-countable-topology}
shows (

∧
y . {x∈space M . y < f x} ∈ sets M) =⇒ f ∈ borel-measurable M

unfolding borel-Ioi
by (rule measurable-measure-of) (auto simp: Int-def conj-commute)

THEORY “Borel-Space” 145

lemma borel-measurableI-le:
fixes f :: ′a ⇒ ′b::{linorder-topology , second-countable-topology}
shows (

∧
y . {x∈space M . f x ≤ y} ∈ sets M) =⇒ f ∈ borel-measurable M

by (rule borel-measurableI-greater) (auto simp: not-le[symmetric])

lemma borel-measurableI-ge:
fixes f :: ′a ⇒ ′b::{linorder-topology , second-countable-topology}
shows (

∧
y . {x∈space M . y ≤ f x} ∈ sets M) =⇒ f ∈ borel-measurable M

by (rule borel-measurableI-less) (auto simp: not-le[symmetric])

lemma borel-measurable-less[measurable]:
fixes f :: ′a ⇒ ′b::{second-countable-topology , dense-linorder , linorder-topology}
assumes f ∈ borel-measurable M
assumes g ∈ borel-measurable M
shows {w ∈ space M . f w < g w} ∈ sets M

proof −
have {w ∈ space M . f w < g w} = (λx . (f x , g x)) −‘ {x . fst x < snd x} ∩

space M
by auto

also have . . . ∈ sets M
by (intro measurable-sets[OF borel-measurable-Pair borel-open, OF assms open-Collect-less]

continuous-intros)
finally show ?thesis .

qed

lemma
fixes f :: ′a ⇒ ′b::{second-countable-topology , dense-linorder , linorder-topology}
assumes f [measurable]: f ∈ borel-measurable M
assumes g [measurable]: g ∈ borel-measurable M
shows borel-measurable-le[measurable]: {w ∈ space M . f w ≤ g w} ∈ sets M

and borel-measurable-eq [measurable]: {w ∈ space M . f w = g w} ∈ sets M
and borel-measurable-neq : {w ∈ space M . f w 6= g w} ∈ sets M

unfolding eq-iff not-less[symmetric]
by measurable

lemma borel-measurable-SUP [measurable (raw)]:
fixes F :: -⇒ -⇒ -::{complete-linorder , linorder-topology , second-countable-topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel-measurable M

shows (λx . SUP i :I . F i x) ∈ borel-measurable M
by (rule borel-measurableI-greater) (simp add : less-SUP-iff)

lemma borel-measurable-INF [measurable (raw)]:
fixes F :: -⇒ -⇒ -::{complete-linorder , linorder-topology , second-countable-topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel-measurable M

shows (λx . INF i :I . F i x) ∈ borel-measurable M
by (rule borel-measurableI-less) (simp add : INF-less-iff)

THEORY “Borel-Space” 146

lemma borel-measurable-cSUP [measurable (raw)]:
fixes F :: -⇒ -⇒ ′a::{conditionally-complete-linorder , linorder-topology , second-countable-topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel-measurable M

assumes bdd :
∧

x . x ∈ space M =⇒ bdd-above ((λi . F i x) ‘ I)
shows (λx . SUP i :I . F i x) ∈ borel-measurable M

proof cases
assume I = {} then show ?thesis

unfolding 〈I = {}〉 image-empty by simp
next

assume I 6= {}
show ?thesis
proof (rule borel-measurableI-le)

fix y
have {x ∈ space M . ∀ i∈I . F i x ≤ y} ∈ sets M

by measurable
also have {x ∈ space M . ∀ i∈I . F i x ≤ y} = {x ∈ space M . (SUP i :I . F i x)

≤ y}
by (simp add : cSUP-le-iff 〈I 6= {}〉 bdd cong : conj-cong)

finally show {x ∈ space M . (SUP i :I . F i x) ≤ y} ∈ sets M .
qed

qed

lemma borel-measurable-cINF [measurable (raw)]:
fixes F :: -⇒ -⇒ ′a::{conditionally-complete-linorder , linorder-topology , second-countable-topology}
assumes [simp]: countable I
assumes [measurable]:

∧
i . i ∈ I =⇒ F i ∈ borel-measurable M

assumes bdd :
∧

x . x ∈ space M =⇒ bdd-below ((λi . F i x) ‘ I)
shows (λx . INF i :I . F i x) ∈ borel-measurable M

proof cases
assume I = {} then show ?thesis

unfolding 〈I = {}〉 image-empty by simp
next

assume I 6= {}
show ?thesis
proof (rule borel-measurableI-ge)

fix y
have {x ∈ space M . ∀ i∈I . y ≤ F i x} ∈ sets M

by measurable
also have {x ∈ space M . ∀ i∈I . y ≤ F i x} = {x ∈ space M . y ≤ (INF i :I . F

i x)}
by (simp add : le-cINF-iff 〈I 6= {}〉 bdd cong : conj-cong)

finally show {x ∈ space M . y ≤ (INF i :I . F i x)} ∈ sets M .
qed

qed

lemma borel-measurable-lfp[consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′b)⇒ (′a ⇒ ′b::{complete-linorder , linorder-topology , second-countable-topology})

THEORY “Borel-Space” 147

assumes sup-continuous F
assumes ∗:

∧
f . f ∈ borel-measurable M =⇒ F f ∈ borel-measurable M

shows lfp F ∈ borel-measurable M
proof −
{ fix i have ((F ˆˆ i) bot) ∈ borel-measurable M

by (induct i) (auto intro!: ∗) }
then have (λx . SUP i . (F ˆˆ i) bot x) ∈ borel-measurable M

by measurable
also have (λx . SUP i . (F ˆˆ i) bot x) = (SUP i . (F ˆˆ i) bot)

by auto
also have (SUP i . (F ˆˆ i) bot) = lfp F

by (rule sup-continuous-lfp[symmetric]) fact
finally show ?thesis .

qed

lemma borel-measurable-gfp[consumes 1 , case-names continuity step]:
fixes F :: (′a ⇒ ′b)⇒ (′a ⇒ ′b::{complete-linorder , linorder-topology , second-countable-topology})
assumes inf-continuous F
assumes ∗:

∧
f . f ∈ borel-measurable M =⇒ F f ∈ borel-measurable M

shows gfp F ∈ borel-measurable M
proof −
{ fix i have ((F ˆˆ i) top) ∈ borel-measurable M

by (induct i) (auto intro!: ∗ simp: bot-fun-def) }
then have (λx . INF i . (F ˆˆ i) top x) ∈ borel-measurable M

by measurable
also have (λx . INF i . (F ˆˆ i) top x) = (INF i . (F ˆˆ i) top)

by auto
also have . . . = gfp F

by (rule inf-continuous-gfp[symmetric]) fact
finally show ?thesis .

qed

lemma borel-measurable-max [measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (λx . max (g x) (f x) ::
′b::{second-countable-topology , linorder-topology}) ∈ borel-measurable M

by (rule borel-measurableI-less) simp

lemma borel-measurable-min[measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (λx . min (g x) (f x) ::
′b::{second-countable-topology , linorder-topology}) ∈ borel-measurable M

by (rule borel-measurableI-greater) simp

lemma borel-measurable-Min[measurable (raw)]:
finite I =⇒ (

∧
i . i ∈ I =⇒ f i ∈ borel-measurable M) =⇒ (λx . Min ((λi . f i

x)‘I) :: ′b::{second-countable-topology , linorder-topology}) ∈ borel-measurable M
proof (induct I rule: finite-induct)

case (insert i I) then show ?case
by (cases I = {}) auto

qed auto

THEORY “Borel-Space” 148

lemma borel-measurable-Max [measurable (raw)]:
finite I =⇒ (

∧
i . i ∈ I =⇒ f i ∈ borel-measurable M) =⇒ (λx . Max ((λi . f i

x)‘I) :: ′b::{second-countable-topology , linorder-topology}) ∈ borel-measurable M
proof (induct I rule: finite-induct)

case (insert i I) then show ?case
by (cases I = {}) auto

qed auto

lemma borel-measurable-sup[measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (λx . sup (g x) (f x) ::
′b::{lattice, second-countable-topology , linorder-topology}) ∈ borel-measurable M

unfolding sup-max by measurable

lemma borel-measurable-inf [measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (λx . inf (g x) (f x) ::
′b::{lattice, second-countable-topology , linorder-topology}) ∈ borel-measurable M

unfolding inf-min by measurable

lemma [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , linorder-topology}
assumes

∧
i . f i ∈ borel-measurable M

shows borel-measurable-liminf : (λx . liminf (λi . f i x)) ∈ borel-measurable M
and borel-measurable-limsup: (λx . limsup (λi . f i x)) ∈ borel-measurable M

unfolding liminf-SUP-INF limsup-INF-SUP using assms by auto

lemma measurable-convergent [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , dense-linorder ,

linorder-topology}
assumes [measurable]:

∧
i . f i ∈ borel-measurable M

shows Measurable.pred M (λx . convergent (λi . f i x))
unfolding convergent-ereal by measurable

lemma sets-Collect-convergent [measurable]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , dense-linorder ,

linorder-topology}
assumes f [measurable]:

∧
i . f i ∈ borel-measurable M

shows {x∈space M . convergent (λi . f i x)} ∈ sets M
by measurable

lemma borel-measurable-lim[measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , dense-linorder ,

linorder-topology}
assumes [measurable]:

∧
i . f i ∈ borel-measurable M

shows (λx . lim (λi . f i x)) ∈ borel-measurable M
proof −

have
∧

x . lim (λi . f i x) = (if convergent (λi . f i x) then limsup (λi . f i x) else
(THE i . False))

by (simp add : lim-def convergent-def convergent-limsup-cl)

THEORY “Borel-Space” 149

then show ?thesis
by simp

qed

lemma borel-measurable-LIMSEQ-order :
fixes u :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , dense-linorder ,

linorder-topology}
assumes u ′:

∧
x . x ∈ space M =⇒ (λi . u i x) −−−−→ u ′ x

and u:
∧

i . u i ∈ borel-measurable M
shows u ′ ∈ borel-measurable M

proof −
have

∧
x . x ∈ space M =⇒ u ′ x = liminf (λn. u n x)

using u ′ by (simp add : lim-imp-Liminf [symmetric])
with u show ?thesis by (simp cong : measurable-cong)

qed

4.3 Borel spaces on topological monoids

lemma borel-measurable-add [measurable (raw)]:
fixes f g :: ′a ⇒ ′b::{second-countable-topology , topological-monoid-add}
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
shows (λx . f x + g x) ∈ borel-measurable M
using f g by (rule borel-measurable-continuous-Pair) (intro continuous-intros)

lemma borel-measurable-setsum[measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ′b::{second-countable-topology , topological-comm-monoid-add}
assumes

∧
i . i ∈ S =⇒ f i ∈ borel-measurable M

shows (λx .
∑

i∈S . f i x) ∈ borel-measurable M
proof cases

assume finite S
thus ?thesis using assms by induct auto

qed simp

lemma borel-measurable-suminf-order [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{complete-linorder , second-countable-topology , dense-linorder ,

linorder-topology , topological-comm-monoid-add}
assumes f [measurable]:

∧
i . f i ∈ borel-measurable M

shows (λx . suminf (λi . f i x)) ∈ borel-measurable M
unfolding suminf-def sums-def [abs-def] lim-def [symmetric] by simp

4.4 Borel spaces on Euclidean spaces

lemma borel-measurable-inner [measurable (raw)]:
fixes f g :: ′a ⇒ ′b::{second-countable-topology , real-inner}
assumes f ∈ borel-measurable M
assumes g ∈ borel-measurable M
shows (λx . f x · g x) ∈ borel-measurable M
using assms
by (rule borel-measurable-continuous-Pair) (intro continuous-intros)

THEORY “Borel-Space” 150

notation
eucl-less (infix <e 50)

lemma box-oc: {x . a <e x ∧ x ≤ b} = {x . a <e x} ∩ {..b}
and box-co: {x . a ≤ x ∧ x <e b} = {a..} ∩ {x . x <e b}
by auto

lemma eucl-ivals[measurable]:
fixes a b :: ′a::ordered-euclidean-space
shows {x . x <e a} ∈ sets borel

and {x . a <e x} ∈ sets borel
and {..a} ∈ sets borel
and {a..} ∈ sets borel
and {a..b} ∈ sets borel
and {x . a <e x ∧ x ≤ b} ∈ sets borel
and {x . a ≤ x ∧ x <e b} ∈ sets borel

unfolding box-oc box-co
by (auto intro: borel-open borel-closed)

lemma
fixes i :: ′a::{second-countable-topology , real-inner}
shows hafspace-less-borel : {x . a < x · i} ∈ sets borel

and hafspace-greater-borel : {x . x · i < a} ∈ sets borel
and hafspace-less-eq-borel : {x . a ≤ x · i} ∈ sets borel
and hafspace-greater-eq-borel : {x . x · i ≤ a} ∈ sets borel

by simp-all

lemma borel-eq-box :
borel = sigma UNIV (range (λ (a, b). box a b :: ′a :: euclidean-space set))

(is - = ?SIGMA)
proof (rule borel-eq-sigmaI1 [OF borel-def])

fix M :: ′a set assume M ∈ {S . open S}
then have open M by simp
show M ∈ ?SIGMA

apply (subst open-UNION-box [OF 〈open M 〉])
apply (safe intro!: sets.countable-UN ′ countable-PiE countable-Collect)
apply (auto intro: countable-rat)
done

qed (auto simp: box-def)

lemma halfspace-gt-in-halfspace:
assumes i : i ∈ A
shows {x :: ′a. a < x · i} ∈

sigma-sets UNIV ((λ (a, i). {x :: ′a::euclidean-space. x · i < a}) ‘ (UNIV ×
A))

(is ?set ∈ ?SIGMA)
proof −

interpret sigma-algebra UNIV ?SIGMA

THEORY “Borel-Space” 151

by (intro sigma-algebra-sigma-sets) simp-all
have ∗: ?set = (

⋃
n. UNIV − {x :: ′a. x · i < a + 1 / real (Suc n)})

proof (safe, simp-all add : not-less del : of-nat-Suc)
fix x :: ′a assume a < x · i
with reals-Archimedean[of x · i − a]
obtain n where a + 1 / real (Suc n) < x · i

by (auto simp: field-simps)
then show ∃n. a + 1 / real (Suc n) ≤ x · i

by (blast intro: less-imp-le)
next

fix x n
have a < a + 1 / real (Suc n) by auto
also assume . . . ≤ x
finally show a < x .

qed
show ?set ∈ ?SIGMA unfolding ∗

by (auto intro!: Diff sigma-sets-Inter i)
qed

lemma borel-eq-halfspace-less:
borel = sigma UNIV ((λ(a, i). {x :: ′a::euclidean-space. x · i < a}) ‘ (UNIV ×

Basis))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI2 [OF borel-eq-box])
fix a b :: ′a
have box a b = {x∈space ?SIGMA. ∀ i∈Basis. a · i < x · i ∧ x · i < b · i}

by (auto simp: box-def)
also have . . . ∈ sets ?SIGMA
by (intro sets.sets-Collect-conj sets.sets-Collect-finite-All sets.sets-Collect-const)

(auto intro!: halfspace-gt-in-halfspace countable-PiE countable-rat)
finally show box a b ∈ sets ?SIGMA .

qed auto

lemma borel-eq-halfspace-le:
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean-space. x · i ≤ a}) ‘ (UNIV ×

Basis))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI2 [OF borel-eq-halfspace-less])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have ∗: {x :: ′a. x ·i < a} = (

⋃
n. {x . x ·i ≤ a − 1/real (Suc n)})

proof (safe, simp-all del : of-nat-Suc)
fix x :: ′a assume ∗: x ·i < a
with reals-Archimedean[of a − x ·i]
obtain n where x · i < a − 1 / (real (Suc n))

by (auto simp: field-simps)
then show ∃n. x · i ≤ a − 1 / (real (Suc n))

by (blast intro: less-imp-le)
next

THEORY “Borel-Space” 152

fix x :: ′a and n
assume x ·i ≤ a − 1 / real (Suc n)
also have . . . < a by auto
finally show x ·i < a .

qed
show {x . x ·i < a} ∈ ?SIGMA unfolding ∗

by (intro sets.countable-UN) (auto intro: i)
qed auto

lemma borel-eq-halfspace-ge:
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean-space. a ≤ x · i}) ‘ (UNIV ×

Basis))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI2 [OF borel-eq-halfspace-less])
fix a :: real and i :: ′a assume i : (a, i) ∈ UNIV × Basis
have ∗: {x :: ′a. x ·i < a} = space ?SIGMA − {x :: ′a. a ≤ x ·i} by auto
show {x . x ·i < a} ∈ ?SIGMA unfolding ∗

using i by (intro sets.compl-sets) auto
qed auto

lemma borel-eq-halfspace-greater :
borel = sigma UNIV ((λ (a, i). {x :: ′a::euclidean-space. a < x · i}) ‘ (UNIV ×

Basis))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI2 [OF borel-eq-halfspace-le])
fix a :: real and i :: ′a assume (a, i) ∈ (UNIV × Basis)
then have i : i ∈ Basis by auto
have ∗: {x :: ′a. x ·i ≤ a} = space ?SIGMA − {x :: ′a. a < x ·i} by auto
show {x . x ·i ≤ a} ∈ ?SIGMA unfolding ∗

by (intro sets.compl-sets) (auto intro: i)
qed auto

lemma borel-eq-atMost :
borel = sigma UNIV (range (λa. {..a:: ′a::ordered-euclidean-space}))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI4 [OF borel-eq-halfspace-le])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i ∈ Basis by auto
then have ∗: {x :: ′a. x ·i ≤ a} = (

⋃
k ::nat . {.. (

∑
n∈Basis. (if n = i then a else

real k)∗R n)})
proof (safe, simp-all add : eucl-le[where ′a= ′a] split : if-split-asm)

fix x :: ′a
from real-arch-simple[of Max ((λi . x ·i)‘Basis)] guess k ::nat ..
then have

∧
i . i ∈ Basis =⇒ x ·i ≤ real k

by (subst (asm) Max-le-iff) auto
then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ x · ia ≤ real k

by (auto intro!: exI [of - k])
qed
show {x . x ·i ≤ a} ∈ ?SIGMA unfolding ∗

THEORY “Borel-Space” 153

by (intro sets.countable-UN) auto
qed auto

lemma borel-eq-greaterThan:
borel = sigma UNIV (range (λa:: ′a::ordered-euclidean-space. {x . a <e x}))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI4 [OF borel-eq-halfspace-le])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have {x :: ′a. x ·i ≤ a} = UNIV − {x :: ′a. a < x ·i} by auto
also have ∗: {x :: ′a. a < x ·i} =

(
⋃

k ::nat . {x . (
∑

n∈Basis. (if n = i then a else −real k) ∗R n) <e x}) using
i

proof (safe, simp-all add : eucl-less-def split : if-split-asm)
fix x :: ′a
from reals-Archimedean2 [of Max ((λi . −x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis

then have −x ·i < real k
using k by (subst (asm) Max-less-iff) auto

then have − real k < x ·i by simp }
then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ −real k < x · ia

by (auto intro!: exI [of - k])
qed
finally show {x . x ·i ≤ a} ∈ ?SIGMA

apply (simp only :)
apply (intro sets.countable-UN sets.Diff)
apply (auto intro: sigma-sets-top)
done

qed auto

lemma borel-eq-lessThan:
borel = sigma UNIV (range (λa:: ′a::ordered-euclidean-space. {x . x <e a}))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI4 [OF borel-eq-halfspace-ge])
fix a :: real and i :: ′a assume (a, i) ∈ UNIV × Basis
then have i : i ∈ Basis by auto
have {x :: ′a. a ≤ x ·i} = UNIV − {x :: ′a. x ·i < a} by auto
also have ∗: {x :: ′a. x ·i < a} = (

⋃
k ::nat . {x . x <e (

∑
n∈Basis. (if n = i then

a else real k) ∗R n)}) using 〈i∈ Basis〉

proof (safe, simp-all add : eucl-less-def split : if-split-asm)
fix x :: ′a
from reals-Archimedean2 [of Max ((λi . x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis

then have x ·i < real k
using k by (subst (asm) Max-less-iff) auto

then have x ·i < real k by simp }
then show ∃ k ::nat . ∀ ia∈Basis. ia 6= i −→ x · ia < real k

THEORY “Borel-Space” 154

by (auto intro!: exI [of - k])
qed
finally show {x . a ≤ x ·i} ∈ ?SIGMA

apply (simp only :)
apply (intro sets.countable-UN sets.Diff)
apply (auto intro: sigma-sets-top)
done

qed auto

lemma borel-eq-atLeastAtMost :
borel = sigma UNIV (range (λ(a,b). {a..b} :: ′a::ordered-euclidean-space set))
(is - = ?SIGMA)

proof (rule borel-eq-sigmaI5 [OF borel-eq-atMost])
fix a:: ′a
have ∗: {..a} = (

⋃
n::nat . {− real n ∗R One .. a})

proof (safe, simp-all add : eucl-le[where ′a= ′a])
fix x :: ′a
from real-arch-simple[of Max ((λi . − x ·i)‘Basis)]
guess k ::nat .. note k = this
{ fix i :: ′a assume i ∈ Basis

with k have − x ·i ≤ real k
by (subst (asm) Max-le-iff) (auto simp: field-simps)

then have − real k ≤ x ·i by simp }
then show ∃n::nat . ∀ i∈Basis. − real n ≤ x · i

by (auto intro!: exI [of - k])
qed
show {..a} ∈ ?SIGMA unfolding ∗

by (intro sets.countable-UN)
(auto intro!: sigma-sets-top)

qed auto

lemma borel-set-induct [consumes 1 , case-names empty interval compl union]:
assumes A ∈ sets borel
assumes empty : P {} and int :

∧
a b. a ≤ b =⇒ P {a..b} and compl :

∧
A. A ∈

sets borel =⇒ P A =⇒ P (−A) and
un:

∧
f . disjoint-family f =⇒ (

∧
i . f i ∈ sets borel) =⇒ (

∧
i . P (f i)) =⇒

P (
⋃

i ::nat . f i)
shows P (A::real set)

proof−
let ?G = range (λ(a,b). {a..b::real})
have Int-stable ?G ?G ⊆ Pow UNIV A ∈ sigma-sets UNIV ?G

using assms(1) by (auto simp add : borel-eq-atLeastAtMost Int-stable-def)
thus ?thesis
proof (induction rule: sigma-sets-induct-disjoint)

case (union f)
from union.hyps(2) have

∧
i . f i ∈ sets borel by (auto simp: borel-eq-atLeastAtMost)

with union show ?case by (auto intro: un)
next

case (basic A)

THEORY “Borel-Space” 155

then obtain a b where A = {a .. b} by auto
then show ?case

by (cases a ≤ b) (auto intro: int empty)
qed (auto intro: empty compl simp: Compl-eq-Diff-UNIV [symmetric] borel-eq-atLeastAtMost)

qed

lemma borel-sigma-sets-Ioc: borel = sigma UNIV (range (λ(a, b). {a <.. b::real}))
proof (rule borel-eq-sigmaI5 [OF borel-eq-atMost])

fix i :: real
have {..i} = (

⋃
j ::nat . {−j <.. i})

by (auto simp: minus-less-iff reals-Archimedean2)
also have . . . ∈ sets (sigma UNIV (range (λ(i , j). {i<..j})))

by (intro sets.countable-nat-UN) auto
finally show {..i} ∈ sets (sigma UNIV (range (λ(i , j). {i<..j}))) .

qed simp

lemma eucl-lessThan: {x ::real . x <e a} = lessThan a
by (simp add : eucl-less-def lessThan-def)

lemma borel-eq-atLeastLessThan:
borel = sigma UNIV (range (λ(a, b). {a ..< b :: real})) (is - = ?SIGMA)

proof (rule borel-eq-sigmaI5 [OF borel-eq-lessThan])
have move-uminus:

∧
x y ::real . −x ≤ y ←→ −y ≤ x by auto

fix x :: real
have {..<x} = (

⋃
i ::nat . {−real i ..< x})

by (auto simp: move-uminus real-arch-simple)
then show {y . y <e x} ∈ ?SIGMA

by (auto intro: sigma-sets.intros(2−) simp: eucl-lessThan)
qed auto

lemma borel-measurable-halfspacesI :
fixes f :: ′a ⇒ ′c::euclidean-space
assumes F : borel = sigma UNIV (F ‘ (UNIV × Basis))
and S-eq :

∧
a i . S a i = f −‘ F (a,i) ∩ space M

shows f ∈ borel-measurable M = (∀ i∈Basis. ∀ a::real . S a i ∈ sets M)
proof safe

fix a :: real and i :: ′b assume i : i ∈ Basis and f : f ∈ borel-measurable M
then show S a i ∈ sets M unfolding assms

by (auto intro!: measurable-sets simp: assms(1))
next

assume a: ∀ i∈Basis. ∀ a. S a i ∈ sets M
then show f ∈ borel-measurable M

by (auto intro!: measurable-measure-of simp: S-eq F)
qed

lemma borel-measurable-iff-halfspace-le:
fixes f :: ′a ⇒ ′c::euclidean-space
shows f ∈ borel-measurable M = (∀ i∈Basis. ∀ a. {w ∈ space M . f w · i ≤ a}
∈ sets M)

THEORY “Borel-Space” 156

by (rule borel-measurable-halfspacesI [OF borel-eq-halfspace-le]) auto

lemma borel-measurable-iff-halfspace-less:
fixes f :: ′a ⇒ ′c::euclidean-space
shows f ∈ borel-measurable M ←→ (∀ i∈Basis. ∀ a. {w ∈ space M . f w · i < a}
∈ sets M)

by (rule borel-measurable-halfspacesI [OF borel-eq-halfspace-less]) auto

lemma borel-measurable-iff-halfspace-ge:
fixes f :: ′a ⇒ ′c::euclidean-space
shows f ∈ borel-measurable M = (∀ i∈Basis. ∀ a. {w ∈ space M . a ≤ f w · i}
∈ sets M)

by (rule borel-measurable-halfspacesI [OF borel-eq-halfspace-ge]) auto

lemma borel-measurable-iff-halfspace-greater :
fixes f :: ′a ⇒ ′c::euclidean-space
shows f ∈ borel-measurable M ←→ (∀ i∈Basis. ∀ a. {w ∈ space M . a < f w ·

i} ∈ sets M)
by (rule borel-measurable-halfspacesI [OF borel-eq-halfspace-greater]) auto

lemma borel-measurable-iff-le:
(f :: ′a ⇒ real) ∈ borel-measurable M = (∀ a. {w ∈ space M . f w ≤ a} ∈ sets M)
using borel-measurable-iff-halfspace-le[where ′c=real] by simp

lemma borel-measurable-iff-less:
(f :: ′a ⇒ real) ∈ borel-measurable M = (∀ a. {w ∈ space M . f w < a} ∈ sets M)
using borel-measurable-iff-halfspace-less[where ′c=real] by simp

lemma borel-measurable-iff-ge:
(f :: ′a ⇒ real) ∈ borel-measurable M = (∀ a. {w ∈ space M . a ≤ f w} ∈ sets M)
using borel-measurable-iff-halfspace-ge[where ′c=real]
by simp

lemma borel-measurable-iff-greater :
(f :: ′a ⇒ real) ∈ borel-measurable M = (∀ a. {w ∈ space M . a < f w} ∈ sets M)
using borel-measurable-iff-halfspace-greater [where ′c=real] by simp

lemma borel-measurable-euclidean-space:
fixes f :: ′a ⇒ ′c::euclidean-space
shows f ∈ borel-measurable M ←→ (∀ i∈Basis. (λx . f x · i) ∈ borel-measurable

M)
proof safe

assume f : ∀ i∈Basis. (λx . f x · i) ∈ borel-measurable M
then show f ∈ borel-measurable M

by (subst borel-measurable-iff-halfspace-le) auto
qed auto

THEORY “Borel-Space” 157

4.5 Borel measurable operators

lemma borel-measurable-norm[measurable]: norm ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-sgn [measurable]: (sgn:: ′a::real-normed-vector ⇒ ′a) ∈
borel-measurable borel

by (rule borel-measurable-continuous-countable-exceptions[where X ={0}])
(auto intro!: continuous-on-sgn continuous-on-id)

lemma borel-measurable-uminus[measurable (raw)]:
fixes g :: ′a ⇒ ′b::{second-countable-topology , real-normed-vector}
assumes g : g ∈ borel-measurable M
shows (λx . − g x) ∈ borel-measurable M
by (rule borel-measurable-continuous-on[OF - g]) (intro continuous-intros)

lemma borel-measurable-diff [measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second-countable-topology , real-normed-vector}
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
shows (λx . f x − g x) ∈ borel-measurable M
using borel-measurable-add [of f M − g] assms by (simp add : fun-Compl-def)

lemma borel-measurable-times[measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second-countable-topology , real-normed-algebra}
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
shows (λx . f x ∗ g x) ∈ borel-measurable M
using f g by (rule borel-measurable-continuous-Pair) (intro continuous-intros)

lemma borel-measurable-setprod [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ′b::{second-countable-topology , real-normed-field}
assumes

∧
i . i ∈ S =⇒ f i ∈ borel-measurable M

shows (λx .
∏

i∈S . f i x) ∈ borel-measurable M
proof cases

assume finite S
thus ?thesis using assms by induct auto

qed simp

lemma borel-measurable-dist [measurable (raw)]:
fixes g f :: ′a ⇒ ′b::{second-countable-topology , metric-space}
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
shows (λx . dist (f x) (g x)) ∈ borel-measurable M
using f g by (rule borel-measurable-continuous-Pair) (intro continuous-intros)

lemma borel-measurable-scaleR[measurable (raw)]:
fixes g :: ′a ⇒ ′b::{second-countable-topology , real-normed-vector}
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M

THEORY “Borel-Space” 158

shows (λx . f x ∗R g x) ∈ borel-measurable M
using f g by (rule borel-measurable-continuous-Pair) (intro continuous-intros)

lemma affine-borel-measurable-vector :
fixes f :: ′a ⇒ ′x ::real-normed-vector
assumes f ∈ borel-measurable M
shows (λx . a + b ∗R f x) ∈ borel-measurable M

proof (rule borel-measurableI)
fix S :: ′x set assume open S
show (λx . a + b ∗R f x) −‘ S ∩ space M ∈ sets M
proof cases

assume b 6= 0
with 〈open S 〉 have open ((λx . (− a + x) /R b) ‘ S) (is open ?S)

using open-affinity [of S inverse b − a /R b]
by (auto simp: algebra-simps)

hence ?S ∈ sets borel by auto
moreover
from 〈b 6= 0 〉 have (λx . a + b ∗R f x) −‘ S = f −‘ ?S

apply auto by (rule-tac x=a + b ∗R f x in image-eqI , simp-all)
ultimately show ?thesis using assms unfolding in-borel-measurable-borel

by auto
qed simp

qed

lemma borel-measurable-const-scaleR[measurable (raw)]:
f ∈ borel-measurable M =⇒ (λx . b ∗R f x :: ′a::real-normed-vector) ∈ borel-measurable

M
using affine-borel-measurable-vector [of f M 0 b] by simp

lemma borel-measurable-const-add [measurable (raw)]:
f ∈ borel-measurable M =⇒ (λx . a + f x :: ′a::real-normed-vector) ∈ borel-measurable

M
using affine-borel-measurable-vector [of f M a 1] by simp

lemma borel-measurable-inverse[measurable (raw)]:
fixes f :: ′a ⇒ ′b::real-normed-div-algebra
assumes f : f ∈ borel-measurable M
shows (λx . inverse (f x)) ∈ borel-measurable M
apply (rule measurable-compose[OF f])
apply (rule borel-measurable-continuous-countable-exceptions[of {0}])
apply (auto intro!: continuous-on-inverse continuous-on-id)
done

lemma borel-measurable-divide[measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒
(λx . f x / g x :: ′b::{second-countable-topology , real-normed-div-algebra}) ∈ borel-measurable

M
by (simp add : divide-inverse)

THEORY “Borel-Space” 159

lemma borel-measurable-abs[measurable (raw)]:
f ∈ borel-measurable M =⇒ (λx . |f x :: real |) ∈ borel-measurable M
unfolding abs-real-def by simp

lemma borel-measurable-nth[measurable (raw)]:
(λx ::realˆ ′n. x $ i) ∈ borel-measurable borel
by (simp add : cart-eq-inner-axis)

lemma convex-measurable:
fixes A :: ′a :: euclidean-space set
shows X ∈ borel-measurable M =⇒ X ‘ space M ⊆ A =⇒ open A =⇒ convex-on

A q =⇒
(λx . q (X x)) ∈ borel-measurable M

by (rule measurable-compose[where f =X and N =restrict-space borel A])
(auto intro!: borel-measurable-continuous-on-restrict convex-on-continuous measurable-restrict-space2)

lemma borel-measurable-ln[measurable (raw)]:
assumes f : f ∈ borel-measurable M
shows (λx . ln (f x :: real)) ∈ borel-measurable M
apply (rule measurable-compose[OF f])
apply (rule borel-measurable-continuous-countable-exceptions[of {0}])
apply (auto intro!: continuous-on-ln continuous-on-id)
done

lemma borel-measurable-log [measurable (raw)]:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (λx . log (g x) (f x)) ∈

borel-measurable M
unfolding log-def by auto

lemma borel-measurable-exp[measurable]:
(exp:: ′a::{real-normed-field ,banach}⇒ ′a) ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-at-imp-continuous-on ballI

isCont-exp)

lemma measurable-real-floor [measurable]:
(floor :: real ⇒ int) ∈ measurable borel (count-space UNIV)

proof −
have

∧
a x . bxc = a ←→ (real-of-int a ≤ x ∧ x < real-of-int (a + 1))

by (auto intro: floor-eq2)
then show ?thesis

by (auto simp: vimage-def measurable-count-space-eq2-countable)
qed

lemma measurable-real-ceiling [measurable]:
(ceiling :: real ⇒ int) ∈ measurable borel (count-space UNIV)
unfolding ceiling-def [abs-def] by simp

lemma borel-measurable-real-floor : (λx ::real . real-of-int bxc) ∈ borel-measurable
borel

THEORY “Borel-Space” 160

by simp

lemma borel-measurable-root [measurable]: root n ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-sqrt [measurable]: sqrt ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-power [measurable (raw)]:
fixes f :: - ⇒ ′b::{power ,real-normed-algebra}
assumes f : f ∈ borel-measurable M
shows (λx . (f x) ˆ n) ∈ borel-measurable M
by (intro borel-measurable-continuous-on [OF - f] continuous-intros)

lemma borel-measurable-Re [measurable]: Re ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-Im [measurable]: Im ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-of-real [measurable]: (of-real :: -⇒ (-::real-normed-algebra))
∈ borel-measurable borel

by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-sin [measurable]: (sin :: -⇒ (-::{real-normed-field ,banach}))
∈ borel-measurable borel

by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-cos [measurable]: (cos :: -⇒ (-::{real-normed-field ,banach}))
∈ borel-measurable borel

by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-arctan [measurable]: arctan ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-intros)

lemma borel-measurable-complex-iff :
f ∈ borel-measurable M ←→

(λx . Re (f x)) ∈ borel-measurable M ∧ (λx . Im (f x)) ∈ borel-measurable M
apply auto
apply (subst fun-complex-eq)
apply (intro borel-measurable-add)
apply auto
done

4.6 Borel space on the extended reals

lemma borel-measurable-ereal [measurable (raw)]:
assumes f : f ∈ borel-measurable M shows (λx . ereal (f x)) ∈ borel-measurable

M

THEORY “Borel-Space” 161

using continuous-on-ereal f by (rule borel-measurable-continuous-on) (rule continuous-on-id)

lemma borel-measurable-real-of-ereal [measurable (raw)]:
fixes f :: ′a ⇒ ereal
assumes f : f ∈ borel-measurable M
shows (λx . real-of-ereal (f x)) ∈ borel-measurable M
apply (rule measurable-compose[OF f])
apply (rule borel-measurable-continuous-countable-exceptions[of {∞, −∞ }])
apply (auto intro: continuous-on-real simp: Compl-eq-Diff-UNIV)
done

lemma borel-measurable-ereal-cases:
fixes f :: ′a ⇒ ereal
assumes f : f ∈ borel-measurable M
assumes H : (λx . H (ereal (real-of-ereal (f x)))) ∈ borel-measurable M
shows (λx . H (f x)) ∈ borel-measurable M

proof −
let ?F = λx . if f x = ∞ then H ∞ else if f x = − ∞ then H (−∞) else H (ereal

(real-of-ereal (f x)))
{ fix x have H (f x) = ?F x by (cases f x) auto }
with f H show ?thesis by simp

qed

lemma
fixes f :: ′a ⇒ ereal assumes f [measurable]: f ∈ borel-measurable M
shows borel-measurable-ereal-abs[measurable(raw)]: (λx . |f x |) ∈ borel-measurable

M
and borel-measurable-ereal-inverse[measurable(raw)]: (λx . inverse (f x) :: ereal)

∈ borel-measurable M
and borel-measurable-uminus-ereal [measurable(raw)]: (λx . − f x :: ereal) ∈

borel-measurable M
by (auto simp del : abs-real-of-ereal simp: borel-measurable-ereal-cases[OF f] measurable-If)

lemma borel-measurable-uminus-eq-ereal [simp]:
(λx . − f x :: ereal) ∈ borel-measurable M ←→ f ∈ borel-measurable M (is ?l =

?r)
proof

assume ?l from borel-measurable-uminus-ereal [OF this] show ?r by simp
qed auto

lemma set-Collect-ereal2 :
fixes f g :: ′a ⇒ ereal
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
assumes H : {x ∈ space M . H (ereal (real-of-ereal (f x))) (ereal (real-of-ereal (g

x)))} ∈ sets M
{x ∈ space borel . H (−∞) (ereal x)} ∈ sets borel
{x ∈ space borel . H (∞) (ereal x)} ∈ sets borel
{x ∈ space borel . H (ereal x) (−∞)} ∈ sets borel

THEORY “Borel-Space” 162

{x ∈ space borel . H (ereal x) (∞)} ∈ sets borel
shows {x ∈ space M . H (f x) (g x)} ∈ sets M

proof −
let ?G = λy x . if g x = ∞ then H y ∞ else if g x = −∞ then H y (−∞) else

H y (ereal (real-of-ereal (g x)))
let ?F = λx . if f x = ∞ then ?G ∞ x else if f x = −∞ then ?G (−∞) x else

?G (ereal (real-of-ereal (f x))) x
{ fix x have H (f x) (g x) = ?F x by (cases f x g x rule: ereal2-cases) auto }
note ∗ = this
from assms show ?thesis

by (subst ∗) (simp del : space-borel split del : if-split)
qed

lemma borel-measurable-ereal-iff :
shows (λx . ereal (f x)) ∈ borel-measurable M ←→ f ∈ borel-measurable M

proof
assume (λx . ereal (f x)) ∈ borel-measurable M
from borel-measurable-real-of-ereal [OF this]
show f ∈ borel-measurable M by auto

qed auto

lemma borel-measurable-erealD [measurable-dest]:
(λx . ereal (f x)) ∈ borel-measurable M =⇒ g ∈ measurable N M =⇒ (λx . f (g

x)) ∈ borel-measurable N
unfolding borel-measurable-ereal-iff by simp

lemma borel-measurable-ereal-iff-real :
fixes f :: ′a ⇒ ereal
shows f ∈ borel-measurable M ←→

((λx . real-of-ereal (f x)) ∈ borel-measurable M ∧ f −‘ {∞} ∩ space M ∈ sets
M ∧ f −‘ {−∞} ∩ space M ∈ sets M)
proof safe

assume ∗: (λx . real-of-ereal (f x)) ∈ borel-measurable M f −‘ {∞} ∩ space M
∈ sets M f −‘ {−∞} ∩ space M ∈ sets M

have f −‘ {∞} ∩ space M = {x∈space M . f x = ∞} f −‘ {−∞} ∩ space M =
{x∈space M . f x = −∞} by auto

with ∗ have ∗∗: {x∈space M . f x = ∞} ∈ sets M {x∈space M . f x = −∞} ∈
sets M by simp-all
let ?f = λx . if f x =∞ then ∞ else if f x = −∞ then −∞ else ereal (real-of-ereal

(f x))
have ?f ∈ borel-measurable M using ∗ ∗∗ by (intro measurable-If) auto
also have ?f = f by (auto simp: fun-eq-iff ereal-real)
finally show f ∈ borel-measurable M .

qed simp-all

lemma borel-measurable-ereal-iff-Iio:
(f :: ′a ⇒ ereal) ∈ borel-measurable M ←→ (∀ a. f −‘ {..< a} ∩ space M ∈ sets

M)
by (auto simp: borel-Iio measurable-iff-measure-of)

THEORY “Borel-Space” 163

lemma borel-measurable-ereal-iff-Ioi :
(f :: ′a ⇒ ereal) ∈ borel-measurable M ←→ (∀ a. f −‘ {a <..} ∩ space M ∈ sets

M)
by (auto simp: borel-Ioi measurable-iff-measure-of)

lemma vimage-sets-compl-iff :
f −‘ A ∩ space M ∈ sets M ←→ f −‘ (− A) ∩ space M ∈ sets M

proof −
{ fix A assume f −‘ A ∩ space M ∈ sets M

moreover have f −‘ (− A) ∩ space M = space M − f −‘ A ∩ space M by
auto

ultimately have f −‘ (− A) ∩ space M ∈ sets M by auto }
from this[of A] this[of −A] show ?thesis

by (metis double-complement)
qed

lemma borel-measurable-iff-Iic-ereal :
(f :: ′a⇒ereal) ∈ borel-measurable M ←→ (∀ a. f −‘ {..a} ∩ space M ∈ sets M)
unfolding borel-measurable-ereal-iff-Ioi vimage-sets-compl-iff [where A={a <..}

for a] by simp

lemma borel-measurable-iff-Ici-ereal :
(f :: ′a ⇒ ereal) ∈ borel-measurable M ←→ (∀ a. f −‘ {a..} ∩ space M ∈ sets M)
unfolding borel-measurable-ereal-iff-Iio vimage-sets-compl-iff [where A={..< a}

for a] by simp

lemma borel-measurable-ereal2 :
fixes f g :: ′a ⇒ ereal
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
assumes H : (λx . H (ereal (real-of-ereal (f x))) (ereal (real-of-ereal (g x)))) ∈

borel-measurable M
(λx . H (−∞) (ereal (real-of-ereal (g x)))) ∈ borel-measurable M
(λx . H (∞) (ereal (real-of-ereal (g x)))) ∈ borel-measurable M
(λx . H (ereal (real-of-ereal (f x))) (−∞)) ∈ borel-measurable M
(λx . H (ereal (real-of-ereal (f x))) (∞)) ∈ borel-measurable M

shows (λx . H (f x) (g x)) ∈ borel-measurable M
proof −

let ?G = λy x . if g x = ∞ then H y ∞ else if g x = − ∞ then H y (−∞) else
H y (ereal (real-of-ereal (g x)))

let ?F = λx . if f x = ∞ then ?G ∞ x else if f x = − ∞ then ?G (−∞) x else
?G (ereal (real-of-ereal (f x))) x
{ fix x have H (f x) (g x) = ?F x by (cases f x g x rule: ereal2-cases) auto }
note ∗ = this
from assms show ?thesis unfolding ∗ by simp

qed

lemma [measurable(raw)]:

THEORY “Borel-Space” 164

fixes f :: ′a ⇒ ereal
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows borel-measurable-ereal-add : (λx . f x + g x) ∈ borel-measurable M

and borel-measurable-ereal-times: (λx . f x ∗ g x) ∈ borel-measurable M
by (simp-all add : borel-measurable-ereal2)

lemma [measurable(raw)]:
fixes f g :: ′a ⇒ ereal
assumes f ∈ borel-measurable M
assumes g ∈ borel-measurable M
shows borel-measurable-ereal-diff : (λx . f x − g x) ∈ borel-measurable M

and borel-measurable-ereal-divide: (λx . f x / g x) ∈ borel-measurable M
using assms by (simp-all add : minus-ereal-def divide-ereal-def)

lemma borel-measurable-ereal-setsum[measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ereal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel-measurable M

shows (λx .
∑

i∈S . f i x) ∈ borel-measurable M
using assms by (induction S rule: infinite-finite-induct) auto

lemma borel-measurable-ereal-setprod [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ereal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel-measurable M

shows (λx .
∏

i∈S . f i x) ∈ borel-measurable M
using assms by (induction S rule: infinite-finite-induct) auto

lemma borel-measurable-extreal-suminf [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ereal
assumes [measurable]:

∧
i . f i ∈ borel-measurable M

shows (λx . (
∑

i . f i x)) ∈ borel-measurable M
unfolding suminf-def sums-def [abs-def] lim-def [symmetric] by simp

4.7 Borel space on the extended non-negative reals

ennreal is a topological monoid, so no rules for plus are required, also all
order statements are usually done on type classes.

lemma measurable-enn2ereal [measurable]: enn2ereal ∈ borel →M borel
by (intro borel-measurable-continuous-on1 continuous-on-enn2ereal)

lemma measurable-e2ennreal [measurable]: e2ennreal ∈ borel →M borel
by (intro borel-measurable-continuous-on1 continuous-on-e2ennreal)

lemma borel-measurable-enn2real [measurable (raw)]:
f ∈ M →M borel =⇒ (λx . enn2real (f x)) ∈ M →M borel
unfolding enn2real-def [abs-def] by measurable

definition [simp]: is-borel f M ←→ f ∈ borel-measurable M

lemma is-borel-transfer [transfer-rule]: rel-fun (rel-fun op = pcr-ennreal) op =

THEORY “Borel-Space” 165

is-borel is-borel
unfolding is-borel-def [abs-def]

proof (safe intro!: rel-funI ext dest !: rel-fun-eq-pcr-ennreal [THEN iffD1])
fix f and M :: ′a measure
show f ∈ borel-measurable M if f : enn2ereal ◦ f ∈ borel-measurable M

using measurable-compose[OF f measurable-e2ennreal] by simp
qed simp

context
includes ennreal .lifting

begin

lemma measurable-ennreal [measurable]: ennreal ∈ borel →M borel
unfolding is-borel-def [symmetric]
by transfer simp

lemma borel-measurable-ennreal-iff [simp]:
assumes [simp]:

∧
x . x ∈ space M =⇒ 0 ≤ f x

shows (λx . ennreal (f x)) ∈ M →M borel ←→ f ∈ M →M borel
proof safe

assume (λx . ennreal (f x)) ∈ M →M borel
then have (λx . enn2real (ennreal (f x))) ∈ M →M borel

by measurable
then show f ∈ M →M borel

by (rule measurable-cong [THEN iffD1 , rotated]) auto
qed measurable

lemma borel-measurable-times-ennreal [measurable (raw)]:
fixes f g :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x ∗ g x) ∈ M →M

borel
unfolding is-borel-def [symmetric] by transfer simp

lemma borel-measurable-inverse-ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ (λx . inverse (f x)) ∈ M →M borel
unfolding is-borel-def [symmetric] by transfer simp

lemma borel-measurable-divide-ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x / g x) ∈ M →M

borel
unfolding divide-ennreal-def by simp

lemma borel-measurable-minus-ennreal [measurable (raw)]:
fixes f :: ′a ⇒ ennreal
shows f ∈ M →M borel =⇒ g ∈ M →M borel =⇒ (λx . f x − g x) ∈ M →M

borel
unfolding is-borel-def [symmetric] by transfer simp

THEORY “Borel-Space” 166

lemma borel-measurable-setprod-ennreal [measurable (raw)]:
fixes f :: ′c ⇒ ′a ⇒ ennreal
assumes

∧
i . i ∈ S =⇒ f i ∈ borel-measurable M

shows (λx .
∏

i∈S . f i x) ∈ borel-measurable M
using assms by (induction S rule: infinite-finite-induct) auto

end

hide-const (open) is-borel

4.8 LIMSEQ is borel measurable

lemma borel-measurable-LIMSEQ-real :
fixes u :: nat ⇒ ′a ⇒ real
assumes u ′:

∧
x . x ∈ space M =⇒ (λi . u i x) −−−−→ u ′ x

and u:
∧

i . u i ∈ borel-measurable M
shows u ′ ∈ borel-measurable M

proof −
have

∧
x . x ∈ space M =⇒ liminf (λn. ereal (u n x)) = ereal (u ′ x)

using u ′ by (simp add : lim-imp-Liminf)
moreover from u have (λx . liminf (λn. ereal (u n x))) ∈ borel-measurable M

by auto
ultimately show ?thesis by (simp cong : measurable-cong add : borel-measurable-ereal-iff)

qed

lemma borel-measurable-LIMSEQ-metric:
fixes f :: nat ⇒ ′a ⇒ ′b :: metric-space
assumes [measurable]:

∧
i . f i ∈ borel-measurable M

assumes lim:
∧

x . x ∈ space M =⇒ (λi . f i x) −−−−→ g x
shows g ∈ borel-measurable M
unfolding borel-eq-closed

proof (safe intro!: measurable-measure-of)
fix A :: ′b set assume closed A

have [measurable]: (λx . infdist (g x) A) ∈ borel-measurable M
proof (rule borel-measurable-LIMSEQ-real)

show
∧

x . x ∈ space M =⇒ (λi . infdist (f i x) A) −−−−→ infdist (g x) A
by (intro tendsto-infdist lim)

show
∧

i . (λx . infdist (f i x) A) ∈ borel-measurable M
by (intro borel-measurable-continuous-on[where f =λx . infdist x A]

continuous-at-imp-continuous-on ballI continuous-infdist continuous-ident)
auto

qed

show g −‘ A ∩ space M ∈ sets M
proof cases

assume A 6= {}
then have

∧
x . infdist x A = 0 ←→ x ∈ A

THEORY “Borel-Space” 167

using 〈closed A〉 by (simp add : in-closed-iff-infdist-zero)
then have g −‘ A ∩ space M = {x∈space M . infdist (g x) A = 0}

by auto
also have . . . ∈ sets M

by measurable
finally show ?thesis .

qed simp
qed auto

lemma sets-Collect-Cauchy [measurable]:
fixes f :: nat ⇒ ′a => ′b::{metric-space, second-countable-topology}
assumes f [measurable]:

∧
i . f i ∈ borel-measurable M

shows {x∈space M . Cauchy (λi . f i x)} ∈ sets M
unfolding metric-Cauchy-iff2 using f by auto

lemma borel-measurable-lim-metric[measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]:

∧
i . f i ∈ borel-measurable M

shows (λx . lim (λi . f i x)) ∈ borel-measurable M
proof −

def u ′ ≡ λx . lim (λi . if Cauchy (λi . f i x) then f i x else 0)
then have ∗:

∧
x . lim (λi . f i x) = (if Cauchy (λi . f i x) then u ′ x else (THE x .

False))
by (auto simp: lim-def convergent-eq-cauchy [symmetric])

have u ′ ∈ borel-measurable M
proof (rule borel-measurable-LIMSEQ-metric)

fix x
have convergent (λi . if Cauchy (λi . f i x) then f i x else 0)

by (cases Cauchy (λi . f i x))
(auto simp add : convergent-eq-cauchy [symmetric] convergent-def)

then show (λi . if Cauchy (λi . f i x) then f i x else 0) −−−−→ u ′ x
unfolding u ′-def
by (rule convergent-LIMSEQ-iff [THEN iffD1])

qed measurable
then show ?thesis

unfolding ∗ by measurable
qed

lemma borel-measurable-suminf [measurable (raw)]:
fixes f :: nat ⇒ ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]:

∧
i . f i ∈ borel-measurable M

shows (λx . suminf (λi . f i x)) ∈ borel-measurable M
unfolding suminf-def sums-def [abs-def] lim-def [symmetric] by simp

lemma isCont-borel :
fixes f :: ′b::metric-space ⇒ ′a::metric-space
shows {x . isCont f x} ∈ sets borel

proof −

THEORY “Borel-Space” 168

let ?I = λj . inverse(real (Suc j))

{ fix x
have isCont f x = (∀ i . ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f

y) (f z) ≤ ?I i)
unfolding continuous-at-eps-delta

proof safe
fix i assume ∀ e>0 . ∃ d>0 . ∀ y . dist y x < d −→ dist (f y) (f x) < e
moreover have 0 < ?I i / 2

by simp
ultimately obtain d where d : 0 < d

∧
y . dist x y < d =⇒ dist (f y) (f x)

< ?I i / 2
by (metis dist-commute)

then obtain j where j : ?I j < d
by (metis reals-Archimedean)

show ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f y) (f z) ≤ ?I i
proof (safe intro!: exI [where x=j])

fix y z assume ∗: dist x y < ?I j dist x z < ?I j
have dist (f y) (f z) ≤ dist (f y) (f x) + dist (f z) (f x)

by (rule dist-triangle2)
also have . . . < ?I i / 2 + ?I i / 2

by (intro add-strict-mono d less-trans[OF - j] ∗)
also have . . . ≤ ?I i

by (simp add : field-simps of-nat-Suc)
finally show dist (f y) (f z) ≤ ?I i

by simp
qed

next
fix e::real assume 0 < e
then obtain n where n: ?I n < e

by (metis reals-Archimedean)
assume ∀ i . ∃ j . ∀ y z . dist x y < ?I j ∧ dist x z < ?I j −→ dist (f y) (f z)

≤ ?I i
from this[THEN spec, of Suc n]
obtain j where j :

∧
y z . dist x y < ?I j =⇒ dist x z < ?I j =⇒ dist (f y) (f

z) ≤ ?I (Suc n)
by auto

show ∃ d>0 . ∀ y . dist y x < d −→ dist (f y) (f x) < e
proof (safe intro!: exI [of - ?I j])

fix y assume dist y x < ?I j
then have dist (f y) (f x) ≤ ?I (Suc n)

by (intro j) (auto simp: dist-commute)
also have ?I (Suc n) < ?I n

by simp
also note n
finally show dist (f y) (f x) < e .

qed simp

THEORY “Borel-Space” 169

qed }
note ∗ = this

have ∗∗:
∧

e y . open {x . dist x y < e}
using open-ball by (simp-all add : ball-def dist-commute)

have {x∈space borel . isCont f x} ∈ sets borel
unfolding ∗
apply (intro sets.sets-Collect-countable-All sets.sets-Collect-countable-Ex)
apply (simp add : Collect-all-eq)
apply (intro borel-closed closed-INT ballI closed-Collect-imp open-Collect-conj

∗∗)
apply auto
done

then show ?thesis
by simp

qed

lemma isCont-borel-pred [measurable]:
fixes f :: ′b::metric-space ⇒ ′a::metric-space
shows Measurable.pred borel (isCont f)
unfolding pred-def by (simp add : isCont-borel)

lemma is-real-interval :
assumes S : is-interval S
shows ∃ a b::real . S = {} ∨ S = UNIV ∨ S = {..<b} ∨ S = {..b} ∨ S = {a<..}
∨ S = {a..} ∨

S = {a<..<b} ∨ S = {a<..b} ∨ S = {a..<b} ∨ S = {a..b}
using S unfolding is-interval-1 by (blast intro: interval-cases)

lemma real-interval-borel-measurable:
assumes is-interval (S ::real set)
shows S ∈ sets borel

proof −
from assms is-real-interval have ∃ a b::real . S = {} ∨ S = UNIV ∨ S = {..<b}
∨ S = {..b} ∨

S = {a<..} ∨ S = {a..} ∨ S = {a<..<b} ∨ S = {a<..b} ∨ S = {a..<b} ∨ S
= {a..b} by auto

then guess a ..
then guess b ..
thus ?thesis

by auto
qed

lemma borel-measurable-mono-on-fnc:
fixes f :: real ⇒ real and A :: real set
assumes mono-on f A
shows f ∈ borel-measurable (restrict-space borel A)
apply (rule measurable-restrict-countable[OF mono-on-ctble-discont [OF assms]])

THEORY “Nonnegative-Lebesgue-Integration” 170

apply (auto intro!: image-eqI [where x={x} for x] simp: sets-restrict-space)
apply (auto simp add : sets-restrict-restrict-space continuous-on-eq-continuous-within

cong : measurable-cong-sets
intro!: borel-measurable-continuous-on-restrict intro: continuous-within-subset)

done

lemma borel-measurable-mono:
fixes f :: real ⇒ real
shows mono f =⇒ f ∈ borel-measurable borel
using borel-measurable-mono-on-fnc[of f UNIV] by (simp add : mono-def mono-on-def)

no-notation
eucl-less (infix <e 50)

end

5 Lebesgue Integration for Nonnegative Functions

theory Nonnegative-Lebesgue-Integration
imports Measure-Space Borel-Space

begin

5.1 Simple function

Our simple functions are not restricted to nonnegative real numbers. Instead
they are just functions with a finite range and are measurable when singleton
sets are measurable.

definition simple-function M g ←→
finite (g ‘ space M) ∧
(∀ x ∈ g ‘ space M . g −‘ {x} ∩ space M ∈ sets M)

lemma simple-functionD :
assumes simple-function M g
shows finite (g ‘ space M) and g −‘ X ∩ space M ∈ sets M

proof −
show finite (g ‘ space M)

using assms unfolding simple-function-def by auto
have g −‘ X ∩ space M = g −‘ (X ∩ g‘space M) ∩ space M by auto
also have . . . = (

⋃
x∈X ∩ g‘space M . g−‘{x} ∩ space M) by auto

finally show g −‘ X ∩ space M ∈ sets M using assms
by (auto simp del : UN-simps simp: simple-function-def)

qed

lemma measurable-simple-function[measurable-dest]:
simple-function M f =⇒ f ∈ measurable M (count-space UNIV)
unfolding simple-function-def measurable-def

proof safe

THEORY “Nonnegative-Lebesgue-Integration” 171

fix A assume finite (f ‘ space M) ∀ x∈f ‘ space M . f −‘ {x} ∩ space M ∈ sets
M

then have (
⋃

x∈f ‘ space M . if x ∈ A then f −‘ {x} ∩ space M else {}) ∈ sets
M

by (intro sets.finite-UN) auto
also have (

⋃
x∈f ‘ space M . if x ∈ A then f −‘ {x} ∩ space M else {}) = f −‘

A ∩ space M
by (auto split : if-split-asm)

finally show f −‘ A ∩ space M ∈ sets M .
qed simp

lemma borel-measurable-simple-function:
simple-function M f =⇒ f ∈ borel-measurable M
by (auto dest !: measurable-simple-function simp: measurable-def)

lemma simple-function-measurable2 [intro]:
assumes simple-function M f simple-function M g
shows f −‘ A ∩ g −‘ B ∩ space M ∈ sets M

proof −
have f −‘ A ∩ g −‘ B ∩ space M = (f −‘ A ∩ space M) ∩ (g −‘ B ∩ space M)

by auto
then show ?thesis using assms[THEN simple-functionD(2)] by auto

qed

lemma simple-function-indicator-representation:
fixes f :: ′a ⇒ ennreal
assumes f : simple-function M f and x : x ∈ space M
shows f x = (

∑
y ∈ f ‘ space M . y ∗ indicator (f −‘ {y} ∩ space M) x)

(is ?l = ?r)
proof −

have ?r = (
∑

y ∈ f ‘ space M .
(if y = f x then y ∗ indicator (f −‘ {y} ∩ space M) x else 0))
by (auto intro!: setsum.cong)

also have ... = f x ∗ indicator (f −‘ {f x} ∩ space M) x
using assms by (auto dest : simple-functionD simp: setsum.delta)

also have ... = f x using x by (auto simp: indicator-def)
finally show ?thesis by auto

qed

lemma simple-function-notspace:
simple-function M (λx . h x ∗ indicator (− space M) x ::ennreal) (is simple-function

M ?h)
proof −

have ?h ‘ space M ⊆ {0} unfolding indicator-def by auto
hence [simp, intro]: finite (?h ‘ space M) by (auto intro: finite-subset)
have ?h −‘ {0} ∩ space M = space M by auto
thus ?thesis unfolding simple-function-def by auto

qed

THEORY “Nonnegative-Lebesgue-Integration” 172

lemma simple-function-cong :
assumes

∧
t . t ∈ space M =⇒ f t = g t

shows simple-function M f ←→ simple-function M g
proof −

have
∧

x . f −‘ {x} ∩ space M = g −‘ {x} ∩ space M
using assms by auto

with assms show ?thesis
by (simp add : simple-function-def cong : image-cong)

qed

lemma simple-function-cong-algebra:
assumes sets N = sets M space N = space M
shows simple-function M f ←→ simple-function N f
unfolding simple-function-def assms ..

lemma simple-function-borel-measurable:
fixes f :: ′a ⇒ ′x ::{t2-space}
assumes f ∈ borel-measurable M and finite (f ‘ space M)
shows simple-function M f
using assms unfolding simple-function-def
by (auto intro: borel-measurable-vimage)

lemma simple-function-iff-borel-measurable:
fixes f :: ′a ⇒ ′x ::{t2-space}
shows simple-function M f ←→ finite (f ‘ space M) ∧ f ∈ borel-measurable M
by (metis borel-measurable-simple-function simple-functionD(1) simple-function-borel-measurable)

lemma simple-function-eq-measurable:
simple-function M f ←→ finite (f‘space M) ∧ f ∈ measurable M (count-space

UNIV)
using measurable-simple-function[of M f] by (fastforce simp: simple-function-def)

lemma simple-function-const [intro, simp]:
simple-function M (λx . c)
by (auto intro: finite-subset simp: simple-function-def)

lemma simple-function-compose[intro, simp]:
assumes simple-function M f
shows simple-function M (g ◦ f)
unfolding simple-function-def

proof safe
show finite ((g ◦ f) ‘ space M)
using assms unfolding simple-function-def by (auto simp: image-comp [symmetric])

next
fix x assume x ∈ space M
let ?G = g −‘ {g (f x)} ∩ (f‘space M)
have ∗: (g ◦ f) −‘ {(g ◦ f) x} ∩ space M =

(
⋃

x∈?G . f −‘ {x} ∩ space M) by auto
show (g ◦ f) −‘ {(g ◦ f) x} ∩ space M ∈ sets M

using assms unfolding simple-function-def ∗

THEORY “Nonnegative-Lebesgue-Integration” 173

by (rule-tac sets.finite-UN) auto
qed

lemma simple-function-indicator [intro, simp]:
assumes A ∈ sets M
shows simple-function M (indicator A)

proof −
have indicator A ‘ space M ⊆ {0 , 1} (is ?S ⊆ -)

by (auto simp: indicator-def)
hence finite ?S by (rule finite-subset) simp
moreover have − A ∩ space M = space M − A by auto
ultimately show ?thesis unfolding simple-function-def

using assms by (auto simp: indicator-def [abs-def])
qed

lemma simple-function-Pair [intro, simp]:
assumes simple-function M f
assumes simple-function M g
shows simple-function M (λx . (f x , g x)) (is simple-function M ?p)
unfolding simple-function-def

proof safe
show finite (?p ‘ space M)

using assms unfolding simple-function-def
by (rule-tac finite-subset [of - f‘space M × g‘space M]) auto

next
fix x assume x ∈ space M
have (λx . (f x , g x)) −‘ {(f x , g x)} ∩ space M =

(f −‘ {f x} ∩ space M) ∩ (g −‘ {g x} ∩ space M)
by auto

with 〈x ∈ space M 〉 show (λx . (f x , g x)) −‘ {(f x , g x)} ∩ space M ∈ sets M
using assms unfolding simple-function-def by auto

qed

lemma simple-function-compose1 :
assumes simple-function M f
shows simple-function M (λx . g (f x))
using simple-function-compose[OF assms, of g]
by (simp add : comp-def)

lemma simple-function-compose2 :
assumes simple-function M f and simple-function M g
shows simple-function M (λx . h (f x) (g x))

proof −
have simple-function M ((λ(x , y). h x y) ◦ (λx . (f x , g x)))

using assms by auto
thus ?thesis by (simp-all add : comp-def)

qed

lemmas simple-function-add [intro, simp] = simple-function-compose2 [where h=op

THEORY “Nonnegative-Lebesgue-Integration” 174

+]
and simple-function-diff [intro, simp] = simple-function-compose2 [where h=op
−]
and simple-function-uminus[intro, simp] = simple-function-compose[where g=uminus]
and simple-function-mult [intro, simp] = simple-function-compose2 [where h=op
∗]

and simple-function-div [intro, simp] = simple-function-compose2 [where h=op
/]
and simple-function-inverse[intro, simp] = simple-function-compose[where g=inverse]
and simple-function-max [intro, simp] = simple-function-compose2 [where h=max]

lemma simple-function-setsum[intro, simp]:
assumes

∧
i . i ∈ P =⇒ simple-function M (f i)

shows simple-function M (λx .
∑

i∈P . f i x)
proof cases

assume finite P from this assms show ?thesis by induct auto
qed auto

lemma simple-function-ennreal [intro, simp]:
fixes f g :: ′a ⇒ real assumes sf : simple-function M f
shows simple-function M (λx . ennreal (f x))
by (rule simple-function-compose1 [OF sf])

lemma simple-function-real-of-nat [intro, simp]:
fixes f g :: ′a ⇒ nat assumes sf : simple-function M f
shows simple-function M (λx . real (f x))
by (rule simple-function-compose1 [OF sf])

lemma borel-measurable-implies-simple-function-sequence:
fixes u :: ′a ⇒ ennreal
assumes u[measurable]: u ∈ borel-measurable M
shows ∃ f . incseq f ∧ (∀ i . (∀ x . f i x < top) ∧ simple-function M (f i)) ∧ u =

(SUP i . f i)
proof −

def f ≡ λi x . real-of-int (floor (enn2real (min i (u x)) ∗ 2ˆi)) / 2ˆi

have [simp]: 0 ≤ f i x for i x
by (auto simp: f-def intro!: divide-nonneg-nonneg mult-nonneg-nonneg enn2real-nonneg)

have ∗: 2ˆn ∗ real-of-int x = real-of-int (2ˆn ∗ x) for n x
by simp

have real-of-int breal i ∗ 2 ˆ ic = real-of-int bi ∗ 2 ˆ ic for i
by (intro arg-cong [where f =real-of-int]) simp

then have [simp]: real-of-int breal i ∗ 2 ˆ ic = i ∗ 2 ˆ i for i
unfolding floor-of-nat by simp

have incseq f
proof (intro monoI le-funI)

THEORY “Nonnegative-Lebesgue-Integration” 175

fix m n :: nat and x assume m ≤ n
moreover
{ fix d :: nat

have b2ˆd ::realc ∗ b2ˆm ∗ enn2real (min (of-nat m) (u x))c ≤
b2ˆd ∗ (2ˆm ∗ enn2real (min (of-nat m) (u x)))c
by (rule le-mult-floor) (auto simp: enn2real-nonneg)

also have . . . ≤ b2ˆd ∗ (2ˆm ∗ enn2real (min (of-nat d + of-nat m) (u x)))c
by (intro floor-mono mult-mono enn2real-mono min.mono)

(auto simp: enn2real-nonneg min-less-iff-disj of-nat-less-top)
finally have f m x ≤ f (m + d) x

unfolding f-def
by (auto simp: field-simps power-add ∗ simp del : of-int-mult) }

ultimately show f m x ≤ f n x
by (auto simp add : le-iff-add)

qed
then have inc-f : incseq (λi . ennreal (f i x)) for x

by (auto simp: incseq-def le-fun-def)
then have incseq (λi x . ennreal (f i x))

by (auto simp: incseq-def le-fun-def)
moreover
have simple-function M (f i) for i
proof (rule simple-function-borel-measurable)

have benn2real (min (of-nat i) (u x)) ∗ 2 ˆ ic ≤ bint i ∗ 2 ˆ ic for x
by (cases u x rule: ennreal-cases)

(auto split : split-min intro!: floor-mono)
then have f i ‘ space M ⊆ (λn. real-of-int n / 2ˆi) ‘ {0 .. of-nat i ∗ 2ˆi}

unfolding floor-of-int by (auto simp: f-def enn2real-nonneg intro!: imageI)
then show finite (f i ‘ space M)

by (rule finite-subset) auto
show f i ∈ borel-measurable M

unfolding f-def enn2real-def by measurable
qed
moreover
{ fix x

have (SUP i . ennreal (f i x)) = u x
proof (cases u x rule: ennreal-cases)

case top then show ?thesis
by (simp add : f-def inf-min[symmetric] ennreal-of-nat-eq-real-of-nat [symmetric]

ennreal-SUP-of-nat-eq-top)
next

case (real r)
obtain n where r ≤ of-nat n using real-arch-simple by auto
then have min-eq-r : ∀ F x in sequentially . min (real x) r = r

by (auto simp: eventually-sequentially intro!: exI [of - n] split : split-min)

have (λi . real-of-int bmin (real i) r ∗ 2ˆic / 2ˆi) −−−−→ r
proof (rule tendsto-sandwich)

show (λn. r − (1/2)ˆn) −−−−→ r
by (auto intro!: tendsto-eq-intros LIMSEQ-power-zero)

THEORY “Nonnegative-Lebesgue-Integration” 176

show ∀ F n in sequentially . real-of-int bmin (real n) r ∗ 2 ˆ nc / 2 ˆ n ≤ r
using min-eq-r by eventually-elim (auto simp: field-simps)

have ∗: r ∗ (2 ˆ n ∗ 2 ˆ n) ≤ 2ˆn + 2ˆn ∗ real-of-int br ∗ 2 ˆ nc for n
using real-of-int-floor-ge-diff-one[of r ∗ 2ˆn, THEN mult-left-mono, of

2ˆn]
by (auto simp: field-simps)

show ∀ F n in sequentially . r − (1/2)ˆn ≤ real-of-int bmin (real n) r ∗ 2
ˆ nc / 2 ˆ n

using min-eq-r by eventually-elim (insert ∗, auto simp: field-simps)
qed auto
then have (λi . ennreal (f i x)) −−−−→ ennreal r

by (simp add : real f-def ennreal-of-nat-eq-real-of-nat min-ennreal)
from LIMSEQ-unique[OF LIMSEQ-SUP [OF inc-f] this]
show ?thesis

by (simp add : real)
qed }

ultimately show ?thesis
by (intro exI [of - λi x . ennreal (f i x)]) auto

qed

lemma borel-measurable-implies-simple-function-sequence ′:
fixes u :: ′a ⇒ ennreal
assumes u: u ∈ borel-measurable M
obtains f where∧

i . simple-function M (f i) incseq f
∧

i x . f i x < top
∧

x . (SUP i . f i x) = u x
using borel-measurable-implies-simple-function-sequence[OF u] by (auto simp:

fun-eq-iff) blast

lemma simple-function-induct [consumes 1 , case-names cong set mult add , induct
set : simple-function]:

fixes u :: ′a ⇒ ennreal
assumes u: simple-function M u
assumes cong :

∧
f g . simple-function M f =⇒ simple-function M g =⇒ (AE x

in M . f x = g x) =⇒ P f =⇒ P g
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧

u c. P u =⇒ P (λx . c ∗ u x)
assumes add :

∧
u v . P u =⇒ P v =⇒ P (λx . v x + u x)

shows P u
proof (rule cong)

from AE-space show AE x in M . (
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y}
∩ space M) x) = u x

proof eventually-elim
fix x assume x : x ∈ space M
from simple-function-indicator-representation[OF u x]
show (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M) x) = u x ..

qed
next

from u have finite (u ‘ space M)
unfolding simple-function-def by auto

THEORY “Nonnegative-Lebesgue-Integration” 177

then show P (λx .
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M) x)
proof induct

case empty show ?case
using set [of {}] by (simp add : indicator-def [abs-def])

qed (auto intro!: add mult set simple-functionD u)
next

show simple-function M (λx . (
∑

y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩
space M) x))

apply (subst simple-function-cong)
apply (rule simple-function-indicator-representation[symmetric])
apply (auto intro: u)
done

qed fact

lemma simple-function-induct-nn[consumes 1 , case-names cong set mult add]:
fixes u :: ′a ⇒ ennreal
assumes u: simple-function M u
assumes cong :

∧
f g . simple-function M f =⇒ simple-function M g =⇒ (

∧
x . x

∈ space M =⇒ f x = g x) =⇒ P f =⇒ P g
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult :
∧

u c. simple-function M u =⇒ P u =⇒ P (λx . c ∗ u x)
assumes add :

∧
u v . simple-function M u =⇒ P u =⇒ simple-function M v =⇒

(
∧

x . x ∈ space M =⇒ u x = 0 ∨ v x = 0) =⇒ P v =⇒ P (λx . v x + u x)
shows P u

proof −
show ?thesis
proof (rule cong)

fix x assume x : x ∈ space M
from simple-function-indicator-representation[OF u x]
show (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M) x) = u x ..

next
show simple-function M (λx . (

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩

space M) x))
apply (subst simple-function-cong)
apply (rule simple-function-indicator-representation[symmetric])
apply (auto intro: u)
done

next
from u have finite (u ‘ space M)

unfolding simple-function-def by auto
then show P (λx .

∑
y∈u ‘ space M . y ∗ indicator (u −‘ {y} ∩ space M) x)

proof induct
case empty show ?case

using set [of {}] by (simp add : indicator-def [abs-def])
next

case (insert x S)
{ fix z have (

∑
y∈S . y ∗ indicator (u −‘ {y} ∩ space M) z) = 0 ∨

x ∗ indicator (u −‘ {x} ∩ space M) z = 0
using insert by (subst setsum-eq-0-iff) (auto simp: indicator-def) }

THEORY “Nonnegative-Lebesgue-Integration” 178

note disj = this
from insert show ?case

by (auto intro!: add mult set simple-functionD u simple-function-setsum
disj)

qed
qed fact

qed

lemma borel-measurable-induct [consumes 1 , case-names cong set mult add seq ,
induct set : borel-measurable]:

fixes u :: ′a ⇒ ennreal
assumes u: u ∈ borel-measurable M
assumes cong :

∧
f g . f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒

(
∧

x . x ∈ space M =⇒ f x = g x) =⇒ P g =⇒ P f
assumes set :

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult ′:
∧

u c. c < top =⇒ u ∈ borel-measurable M =⇒ (
∧

x . x ∈ space
M =⇒ u x < top) =⇒ P u =⇒ P (λx . c ∗ u x)

assumes add :
∧

u v . u ∈ borel-measurable M =⇒ (
∧

x . x ∈ space M =⇒ u x <
top) =⇒ P u =⇒ v ∈ borel-measurable M =⇒ (

∧
x . x ∈ space M =⇒ v x < top)

=⇒ (
∧

x . x ∈ space M =⇒ u x = 0 ∨ v x = 0) =⇒ P v =⇒ P (λx . v x + u x)
assumes seq :

∧
U . (

∧
i . U i ∈ borel-measurable M) =⇒ (

∧
i x . x ∈ space M =⇒

U i x < top) =⇒ (
∧

i . P (U i)) =⇒ incseq U =⇒ u = (SUP i . U i) =⇒ P (SUP
i . U i)

shows P u
using u

proof (induct rule: borel-measurable-implies-simple-function-sequence ′)
fix U assume U :

∧
i . simple-function M (U i) incseq U

∧
i x . U i x < top and

sup:
∧

x . (SUP i . U i x) = u x
have u-eq : u = (SUP i . U i)

using u sup by auto

have not-inf :
∧

x i . x ∈ space M =⇒ U i x < top
using U by (auto simp: image-iff eq-commute)

from U have
∧

i . U i ∈ borel-measurable M
by (simp add : borel-measurable-simple-function)

show P u
unfolding u-eq

proof (rule seq)
fix i show P (U i)

using 〈simple-function M (U i)〉 not-inf [of - i]
proof (induct rule: simple-function-induct-nn)

case (mult u c)
show ?case
proof cases

assume c = 0 ∨ space M = {} ∨ (∀ x∈space M . u x = 0)
with mult(1) show ?thesis

by (intro cong [of λx . c ∗ u x indicator {}] set)

THEORY “Nonnegative-Lebesgue-Integration” 179

(auto dest !: borel-measurable-simple-function)
next

assume ¬ (c = 0 ∨ space M = {} ∨ (∀ x∈space M . u x = 0))
then obtain x where space M 6= {} and x : x ∈ space M u x 6= 0 c 6= 0

by auto
with mult(3)[of x] have c < top

by (auto simp: ennreal-mult-less-top)
then have u-fin: x ′ ∈ space M =⇒ u x ′ < top for x ′

using mult(3)[of x ′] 〈c 6= 0 〉 by (auto simp: ennreal-mult-less-top)
then have P u

by (rule mult)
with u-fin 〈c < top〉 mult(1) show ?thesis

by (intro mult ′) (auto dest !: borel-measurable-simple-function)
qed

qed (auto intro: cong intro!: set add dest !: borel-measurable-simple-function)
qed fact+

qed

lemma simple-function-If-set :
assumes sf : simple-function M f simple-function M g and A: A ∩ space M ∈

sets M
shows simple-function M (λx . if x ∈ A then f x else g x) (is simple-function M

?IF)
proof −

def F ≡ λx . f −‘ {x} ∩ space M and G ≡ λx . g −‘ {x} ∩ space M
show ?thesis unfolding simple-function-def
proof safe

have ?IF ‘ space M ⊆ f ‘ space M ∪ g ‘ space M by auto
from finite-subset [OF this] assms
show finite (?IF ‘ space M) unfolding simple-function-def by auto

next
fix x assume x ∈ space M
then have ∗: ?IF −‘ {?IF x} ∩ space M = (if x ∈ A

then ((F (f x) ∩ (A ∩ space M)) ∪ (G (f x) − (G (f x) ∩ (A ∩ space M))))
else ((F (g x) ∩ (A ∩ space M)) ∪ (G (g x) − (G (g x) ∩ (A ∩ space M)))))

using sets.sets-into-space[OF A] by (auto split : if-split-asm simp: G-def F-def)
have [intro]:

∧
x . F x ∈ sets M

∧
x . G x ∈ sets M

unfolding F-def G-def using sf [THEN simple-functionD(2)] by auto
show ?IF −‘ {?IF x} ∩ space M ∈ sets M unfolding ∗ using A by auto

qed
qed

lemma simple-function-If :
assumes sf : simple-function M f simple-function M g and P : {x∈space M . P

x} ∈ sets M
shows simple-function M (λx . if P x then f x else g x)

proof −
have {x∈space M . P x} = {x . P x} ∩ space M by auto
with simple-function-If-set [OF sf , of {x . P x}] P show ?thesis by simp

THEORY “Nonnegative-Lebesgue-Integration” 180

qed

lemma simple-function-subalgebra:
assumes simple-function N f
and N-subalgebra: sets N ⊆ sets M space N = space M
shows simple-function M f
using assms unfolding simple-function-def by auto

lemma simple-function-comp:
assumes T : T ∈ measurable M M ′

and f : simple-function M ′ f
shows simple-function M (λx . f (T x))

proof (intro simple-function-def [THEN iffD2] conjI ballI)
have (λx . f (T x)) ‘ space M ⊆ f ‘ space M ′

using T unfolding measurable-def by auto
then show finite ((λx . f (T x)) ‘ space M)

using f unfolding simple-function-def by (auto intro: finite-subset)
fix i assume i : i ∈ (λx . f (T x)) ‘ space M
then have i ∈ f ‘ space M ′

using T unfolding measurable-def by auto
then have f −‘ {i} ∩ space M ′ ∈ sets M ′

using f unfolding simple-function-def by auto
then have T −‘ (f −‘ {i} ∩ space M ′) ∩ space M ∈ sets M

using T unfolding measurable-def by auto
also have T −‘ (f −‘ {i} ∩ space M ′) ∩ space M = (λx . f (T x)) −‘ {i} ∩

space M
using T unfolding measurable-def by auto

finally show (λx . f (T x)) −‘ {i} ∩ space M ∈ sets M .
qed

5.2 Simple integral

definition simple-integral :: ′a measure ⇒ (′a ⇒ ennreal) ⇒ ennreal (integralS)
where

integralS M f = (
∑

x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M))

syntax
-simple-integral :: pttrn ⇒ ennreal ⇒ ′a measure ⇒ ennreal (

∫
S -. - ∂- [60 ,61]

110)

translations∫
S x . f ∂M == CONST simple-integral M (%x . f)

lemma simple-integral-cong :
assumes

∧
t . t ∈ space M =⇒ f t = g t

shows integralS M f = integralS M g
proof −

have f ‘ space M = g ‘ space M∧
x . f −‘ {x} ∩ space M = g −‘ {x} ∩ space M

THEORY “Nonnegative-Lebesgue-Integration” 181

using assms by (auto intro!: image-eqI)
thus ?thesis unfolding simple-integral-def by simp

qed

lemma simple-integral-const [simp]:
(
∫
Sx . c ∂M) = c ∗ (emeasure M) (space M)

proof (cases space M = {})
case True thus ?thesis unfolding simple-integral-def by simp

next
case False hence (λx . c) ‘ space M = {c} by auto
thus ?thesis unfolding simple-integral-def by simp

qed

lemma simple-function-partition:
assumes f : simple-function M f and g : simple-function M g
assumes sub:

∧
x y . x ∈ space M =⇒ y ∈ space M =⇒ g x = g y =⇒ f x = f y

assumes v :
∧

x . x ∈ space M =⇒ f x = v (g x)
shows integralS M f = (

∑
y∈g ‘ space M . v y ∗ emeasure M {x∈space M . g x

= y})
(is - = ?r)

proof −
from f g have [simp]: finite (f‘space M) finite (g‘space M)

by (auto simp: simple-function-def)
from f g have [measurable]: f ∈ measurable M (count-space UNIV) g ∈ mea-

surable M (count-space UNIV)
by (auto intro: measurable-simple-function)

{ fix y assume y ∈ space M
then have f ‘ space M ∩ {i . ∃ x∈space M . i = f x ∧ g y = g x} = {v (g y)}

by (auto cong : sub simp: v [symmetric]) }
note eq = this

have integralS M f =
(
∑

y∈f‘space M . y ∗ (
∑

z∈g‘space M .
if ∃ x∈space M . y = f x ∧ z = g x then emeasure M {x∈space M . g x = z}

else 0))
unfolding simple-integral-def

proof (safe intro!: setsum.cong ennreal-mult-left-cong)
fix y assume y : y ∈ space M f y 6= 0
have [simp]: g ‘ space M ∩ {z . ∃ x∈space M . f y = f x ∧ z = g x} =
{z . ∃ x∈space M . f y = f x ∧ z = g x}

by auto
have eq :(

⋃
i∈{z . ∃ x∈space M . f y = f x ∧ z = g x}. {x ∈ space M . g x = i})

=
f −‘ {f y} ∩ space M

by (auto simp: eq-commute cong : sub rev-conj-cong)
have finite (g‘space M) by simp
then have finite {z . ∃ x∈space M . f y = f x ∧ z = g x}

by (rule rev-finite-subset) auto

THEORY “Nonnegative-Lebesgue-Integration” 182

then show emeasure M (f −‘ {f y} ∩ space M) =
(
∑

z∈g ‘ space M . if ∃ x∈space M . f y = f x ∧ z = g x then emeasure M {x
∈ space M . g x = z} else 0)

apply (simp add : setsum.If-cases)
apply (subst setsum-emeasure)
apply (auto simp: disjoint-family-on-def eq)
done

qed
also have . . . = (

∑
y∈f‘space M . (

∑
z∈g‘space M .

if ∃ x∈space M . y = f x ∧ z = g x then y ∗ emeasure M {x∈space M . g x =
z} else 0))

by (auto intro!: setsum.cong simp: setsum-right-distrib)
also have . . . = ?r

by (subst setsum.commute)
(auto intro!: setsum.cong simp: setsum.If-cases scaleR-setsum-right [symmetric]

eq)
finally show integralS M f = ?r .

qed

lemma simple-integral-add [simp]:
assumes f : simple-function M f and

∧
x . 0 ≤ f x and g : simple-function M g

and
∧

x . 0 ≤ g x
shows (

∫
Sx . f x + g x ∂M) = integralS M f + integralS M g

proof −
have (

∫
Sx . f x + g x ∂M) =

(
∑

y∈(λx . (f x , g x))‘space M . (fst y + snd y) ∗ emeasure M {x∈space M . (f
x , g x) = y})

by (intro simple-function-partition) (auto intro: f g)
also have . . . = (

∑
y∈(λx . (f x , g x))‘space M . fst y ∗ emeasure M {x∈space

M . (f x , g x) = y}) +
(
∑

y∈(λx . (f x , g x))‘space M . snd y ∗ emeasure M {x∈space M . (f x , g x) =
y})

using assms(2 ,4) by (auto intro!: setsum.cong distrib-right simp: setsum.distrib[symmetric])
also have (

∑
y∈(λx . (f x , g x))‘space M . fst y ∗ emeasure M {x∈space M . (f

x , g x) = y}) = (
∫
Sx . f x ∂M)

by (intro simple-function-partition[symmetric]) (auto intro: f g)
also have (

∑
y∈(λx . (f x , g x))‘space M . snd y ∗ emeasure M {x∈space M . (f

x , g x) = y}) = (
∫
Sx . g x ∂M)

by (intro simple-function-partition[symmetric]) (auto intro: f g)
finally show ?thesis .

qed

lemma simple-integral-setsum[simp]:
assumes

∧
i x . i ∈ P =⇒ 0 ≤ f i x

assumes
∧

i . i ∈ P =⇒ simple-function M (f i)
shows (

∫
Sx . (

∑
i∈P . f i x) ∂M) = (

∑
i∈P . integralS M (f i))

proof cases
assume finite P
from this assms show ?thesis

THEORY “Nonnegative-Lebesgue-Integration” 183

by induct (auto simp: simple-function-setsum simple-integral-add setsum-nonneg)
qed auto

lemma simple-integral-mult [simp]:
assumes f : simple-function M f
shows (

∫
Sx . c ∗ f x ∂M) = c ∗ integralS M f

proof −
have (

∫
Sx . c ∗ f x ∂M) = (

∑
y∈f ‘ space M . (c ∗ y) ∗ emeasure M {x∈space

M . f x = y})
using f by (intro simple-function-partition) auto

also have . . . = c ∗ integralS M f
using f unfolding simple-integral-def
by (subst setsum-right-distrib) (auto simp: mult .assoc Int-def conj-commute)

finally show ?thesis .
qed

lemma simple-integral-mono-AE :
assumes f [measurable]: simple-function M f and g [measurable]: simple-function

M g
and mono: AE x in M . f x ≤ g x
shows integralS M f ≤ integralS M g

proof −
let ?µ = λP . emeasure M {x∈space M . P x}
have integralS M f = (

∑
y∈(λx . (f x , g x))‘space M . fst y ∗ ?µ (λx . (f x , g x)

= y))
using f g by (intro simple-function-partition) auto

also have . . . ≤ (
∑

y∈(λx . (f x , g x))‘space M . snd y ∗ ?µ (λx . (f x , g x) =
y))

proof (clarsimp intro!: setsum-mono)
fix x assume x ∈ space M
let ?M = ?µ (λy . f y = f x ∧ g y = g x)
show f x ∗ ?M ≤ g x ∗ ?M
proof cases

assume ?M 6= 0
then have 0 < ?M

by (simp add : less-le)
also have . . . ≤ ?µ (λy . f x ≤ g x)

using mono by (intro emeasure-mono-AE) auto
finally have ¬ ¬ f x ≤ g x

by (intro notI) auto
then show ?thesis

by (intro mult-right-mono) auto
qed simp

qed
also have . . . = integralS M g

using f g by (intro simple-function-partition[symmetric]) auto
finally show ?thesis .

qed

THEORY “Nonnegative-Lebesgue-Integration” 184

lemma simple-integral-mono:
assumes simple-function M f and simple-function M g
and mono:

∧
x . x ∈ space M =⇒ f x ≤ g x

shows integralS M f ≤ integralS M g
using assms by (intro simple-integral-mono-AE) auto

lemma simple-integral-cong-AE :
assumes simple-function M f and simple-function M g
and AE x in M . f x = g x
shows integralS M f = integralS M g
using assms by (auto simp: eq-iff intro!: simple-integral-mono-AE)

lemma simple-integral-cong ′:
assumes sf : simple-function M f simple-function M g
and mea: (emeasure M) {x∈space M . f x 6= g x} = 0
shows integralS M f = integralS M g

proof (intro simple-integral-cong-AE sf AE-I)
show (emeasure M) {x∈space M . f x 6= g x} = 0 by fact
show {x ∈ space M . f x 6= g x} ∈ sets M

using sf [THEN borel-measurable-simple-function] by auto
qed simp

lemma simple-integral-indicator :
assumes A: A ∈ sets M
assumes f : simple-function M f
shows (

∫
Sx . f x ∗ indicator A x ∂M) =

(
∑

x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ∩ A))
proof −

have eq : (λx . (f x , indicator A x)) ‘ space M ∩ {x . snd x = 1} = (λx . (f x ,
1 ::ennreal))‘A

using A[THEN sets.sets-into-space] by (auto simp: indicator-def image-iff split :
if-split-asm)

have eq2 :
∧

x . f x /∈ f ‘ A =⇒ f −‘ {f x} ∩ space M ∩ A = {}
by (auto simp: image-iff)

have (
∫
Sx . f x ∗ indicator A x ∂M) =

(
∑

y∈(λx . (f x , indicator A x))‘space M . (fst y ∗ snd y) ∗ emeasure M {x∈space
M . (f x , indicator A x) = y})

using assms by (intro simple-function-partition) auto
also have . . . = (

∑
y∈(λx . (f x , indicator A x ::ennreal))‘space M .

if snd y = 1 then fst y ∗ emeasure M (f −‘ {fst y} ∩ space M ∩ A) else 0)
by (auto simp: indicator-def split : if-split-asm intro!: arg-cong2 [where f =op

∗] arg-cong2 [where f =emeasure] setsum.cong)
also have . . . = (

∑
y∈(λx . (f x , 1 ::ennreal))‘A. fst y ∗ emeasure M (f −‘ {fst

y} ∩ space M ∩ A))
using assms by (subst setsum.If-cases) (auto intro!: simple-functionD(1) simp:

eq)
also have . . . = (

∑
y∈fst‘ (λx . (f x , 1 ::ennreal))‘A. y ∗ emeasure M (f −‘ {y}

∩ space M ∩ A))

THEORY “Nonnegative-Lebesgue-Integration” 185

by (subst setsum.reindex [of fst]) (auto simp: inj-on-def)
also have . . . = (

∑
x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ∩

A))
using A[THEN sets.sets-into-space]

by (intro setsum.mono-neutral-cong-left simple-functionD f) (auto simp: image-comp
comp-def eq2)

finally show ?thesis .
qed

lemma simple-integral-indicator-only [simp]:
assumes A ∈ sets M
shows integralS M (indicator A) = emeasure M A
using simple-integral-indicator [OF assms, of λx . 1] sets.sets-into-space[OF assms]
by (simp-all add : image-constant-conv Int-absorb1 split : if-split-asm)

lemma simple-integral-null-set :
assumes simple-function M u

∧
x . 0 ≤ u x and N ∈ null-sets M

shows (
∫
Sx . u x ∗ indicator N x ∂M) = 0

proof −
have AE x in M . indicator N x = (0 :: ennreal)

using 〈N ∈ null-sets M 〉 by (auto simp: indicator-def intro!: AE-I [of - - N])
then have (

∫
Sx . u x ∗ indicator N x ∂M) = (

∫
Sx . 0 ∂M)

using assms apply (intro simple-integral-cong-AE) by auto
then show ?thesis by simp

qed

lemma simple-integral-cong-AE-mult-indicator :
assumes sf : simple-function M f and eq : AE x in M . x ∈ S and S ∈ sets M
shows integralS M f = (

∫
Sx . f x ∗ indicator S x ∂M)

using assms by (intro simple-integral-cong-AE) auto

lemma simple-integral-cmult-indicator :
assumes A: A ∈ sets M
shows (

∫
Sx . c ∗ indicator A x ∂M) = c ∗ emeasure M A

using simple-integral-mult [OF simple-function-indicator [OF A]]
unfolding simple-integral-indicator-only [OF A] by simp

lemma simple-integral-nonneg :
assumes f : simple-function M f and ae: AE x in M . 0 ≤ f x
shows 0 ≤ integralS M f

proof −
have integralS M (λx . 0) ≤ integralS M f

using simple-integral-mono-AE [OF - f ae] by auto
then show ?thesis by simp

qed

THEORY “Nonnegative-Lebesgue-Integration” 186

5.3 Integral on nonnegative functions

definition nn-integral :: ′a measure ⇒ (′a ⇒ ennreal) ⇒ ennreal (integralN)
where

integralN M f = (SUP g : {g . simple-function M g ∧ g ≤ f }. integralS M g)

syntax
-nn-integral :: pttrn ⇒ ennreal ⇒ ′a measure ⇒ ennreal (

∫
+((2 -./ -)/ ∂-)

[60 ,61] 110)

translations∫
+x . f ∂M == CONST nn-integral M (λx . f)

lemma nn-integral-def-finite:
integralN M f = (SUP g : {g . simple-function M g ∧ g ≤ f ∧ (∀ x . g x < top)}.

integralS M g)
(is - = SUPREMUM ?A ?f)

unfolding nn-integral-def
proof (safe intro!: antisym SUP-least)

fix g assume g [measurable]: simple-function M g g ≤ f

show integralS M g ≤ SUPREMUM ?A ?f
proof cases

assume ae: AE x in M . g x 6= top
let ?G = {x ∈ space M . g x 6= top}
have integralS M g = integralS M (λx . g x ∗ indicator ?G x)
proof (rule simple-integral-cong-AE)

show AE x in M . g x = g x ∗ indicator ?G x
using ae AE-space by eventually-elim auto

qed (insert g , auto)
also have . . . ≤ SUPREMUM ?A ?f
using g by (intro SUP-upper) (auto simp: le-fun-def less-top split : split-indicator)
finally show ?thesis .

next
assume nAE : ¬ (AE x in M . g x 6= top)
then have emeasure M {x∈space M . g x = top} 6= 0 (is emeasure M ?G 6=

0)
by (subst (asm) AE-iff-measurable[OF - refl]) auto

then have top = (SUP n. (
∫
Sx . of-nat n ∗ indicator ?G x ∂M))

by (simp add : ennreal-SUP-of-nat-eq-top ennreal-top-eq-mult-iff SUP-mult-right-ennreal [symmetric])
also have . . . ≤ SUPREMUM ?A ?f

using g
by (safe intro!: SUP-least SUP-upper)
(auto simp: le-fun-def of-nat-less-top top-unique[symmetric] split : split-indicator

intro: order-trans[of - g x f x for x , OF order-trans[of - top]])
finally show ?thesis

by (simp add : top-unique del : SUP-eq-top-iff Sup-eq-top-iff)
qed

qed (auto intro: SUP-upper)

THEORY “Nonnegative-Lebesgue-Integration” 187

lemma nn-integral-mono-AE :
assumes ae: AE x in M . u x ≤ v x shows integralN M u ≤ integralN M v
unfolding nn-integral-def

proof (safe intro!: SUP-mono)
fix n assume n: simple-function M n n ≤ u
from ae[THEN AE-E] guess N . note N = this
then have ae-N : AE x in M . x /∈ N by (auto intro: AE-not-in)
let ?n = λx . n x ∗ indicator (space M − N) x
have AE x in M . n x ≤ ?n x simple-function M ?n

using n N ae-N by auto
moreover
{ fix x have ?n x ≤ v x

proof cases
assume x : x ∈ space M − N
with N have u x ≤ v x by auto
with n(2)[THEN le-funD , of x] x show ?thesis

by (auto simp: max-def split : if-split-asm)
qed simp }

then have ?n ≤ v by (auto simp: le-funI)
moreover have integralS M n ≤ integralS M ?n

using ae-N N n by (auto intro!: simple-integral-mono-AE)
ultimately show ∃m∈{g . simple-function M g ∧ g ≤ v}. integralS M n ≤

integralS M m
by force

qed

lemma nn-integral-mono:
(
∧

x . x ∈ space M =⇒ u x ≤ v x) =⇒ integralN M u ≤ integralN M v
by (auto intro: nn-integral-mono-AE)

lemma mono-nn-integral : mono F =⇒ mono (λx . integralN M (F x))
by (auto simp add : mono-def le-fun-def intro!: nn-integral-mono)

lemma nn-integral-cong-AE :
AE x in M . u x = v x =⇒ integralN M u = integralN M v
by (auto simp: eq-iff intro!: nn-integral-mono-AE)

lemma nn-integral-cong :
(
∧

x . x ∈ space M =⇒ u x = v x) =⇒ integralN M u = integralN M v
by (auto intro: nn-integral-cong-AE)

lemma nn-integral-cong-simp:
(
∧

x . x ∈ space M =simp=> u x = v x) =⇒ integralN M u = integralN M v
by (auto intro: nn-integral-cong simp: simp-implies-def)

lemma nn-integral-cong-strong :
M = N =⇒ (

∧
x . x ∈ space M =⇒ u x = v x) =⇒ integralN M u = integralN

N v
by (auto intro: nn-integral-cong)

THEORY “Nonnegative-Lebesgue-Integration” 188

lemma incseq-nn-integral :
assumes incseq f shows incseq (λi . integralN M (f i))

proof −
have

∧
i x . f i x ≤ f (Suc i) x

using assms by (auto dest !: incseq-SucD simp: le-fun-def)
then show ?thesis

by (auto intro!: incseq-SucI nn-integral-mono)
qed

lemma nn-integral-eq-simple-integral :
assumes f : simple-function M f shows integralN M f = integralS M f

proof −
let ?f = λx . f x ∗ indicator (space M) x
have f ′: simple-function M ?f using f by auto
have integralN M ?f ≤ integralS M ?f using f ′

by (force intro!: SUP-least simple-integral-mono simp: le-fun-def nn-integral-def)
moreover have integralS M ?f ≤ integralN M ?f

unfolding nn-integral-def
using f ′ by (auto intro!: SUP-upper)

ultimately show ?thesis
by (simp cong : nn-integral-cong simple-integral-cong)

qed

Beppo-Levi monotone convergence theorem

lemma nn-integral-monotone-convergence-SUP :
assumes f : incseq f and [measurable]:

∧
i . f i ∈ borel-measurable M

shows (
∫

+ x . (SUP i . f i x) ∂M) = (SUP i . integralN M (f i))
proof (rule antisym)

show (
∫

+ x . (SUP i . f i x) ∂M) ≤ (SUP i . (
∫

+ x . f i x ∂M))
unfolding nn-integral-def-finite[of - λx . SUP i . f i x]

proof (safe intro!: SUP-least)
fix u assume sf-u[simp]: simple-function M u and

u: u ≤ (λx . SUP i . f i x) and u-range: ∀ x . u x < top
note sf-u[THEN borel-measurable-simple-function, measurable]
show integralS M u ≤ (SUP j .

∫
+x . f j x ∂M)

proof (rule ennreal-approx-unit)
fix a :: ennreal assume a < 1
let ?au = λx . a ∗ u x

let ?B = λc i . {x∈space M . ?au x = c ∧ c ≤ f i x}
have integralS M ?au = (

∑
c∈?au‘space M . c ∗ (SUP i . emeasure M (?B c

i)))
unfolding simple-integral-def

proof (intro setsum.cong ennreal-mult-left-cong refl)
fix c assume c ∈ ?au ‘ space M c 6= 0
{ fix x ′ assume x ′: x ′ ∈ space M ?au x ′ = c

with 〈c 6= 0 〉 u-range have ?au x ′ < 1 ∗ u x ′

by (intro ennreal-mult-strict-right-mono 〈a < 1 〉) (auto simp: less-le)

THEORY “Nonnegative-Lebesgue-Integration” 189

also have . . . ≤ (SUP i . f i x ′)
using u by (auto simp: le-fun-def)

finally have ∃ i . ?au x ′ ≤ f i x ′

by (auto simp: less-SUP-iff intro: less-imp-le) }
then have ∗: ?au −‘ {c} ∩ space M = (

⋃
i . ?B c i)

by auto
show emeasure M (?au −‘ {c} ∩ space M) = (SUP i . emeasure M (?B c

i))
unfolding ∗ using f
by (intro SUP-emeasure-incseq [symmetric])

(auto simp: incseq-def le-fun-def intro: order-trans)
qed
also have . . . = (SUP i .

∑
c∈?au‘space M . c ∗ emeasure M (?B c i))

unfolding SUP-mult-left-ennreal using f
by (intro ennreal-SUP-setsum[symmetric])

(auto intro!: mult-mono emeasure-mono simp: incseq-def le-fun-def intro:
order-trans)

also have . . . ≤ (SUP i . integralN M (f i))
proof (intro SUP-subset-mono order-refl)

fix i
have (

∑
c∈?au‘space M . c ∗ emeasure M (?B c i)) =

(
∫
Sx . (a ∗ u x) ∗ indicator {x∈space M . a ∗ u x ≤ f i x} x ∂M)

by (subst simple-integral-indicator)
(auto intro!: setsum.cong ennreal-mult-left-cong arg-cong2 [where

f =emeasure])
also have . . . = (

∫
+x . (a ∗ u x) ∗ indicator {x∈space M . a ∗ u x ≤ f i x}

x ∂M)
by (rule nn-integral-eq-simple-integral [symmetric]) simp

also have . . . ≤ (
∫

+x . f i x ∂M)
by (intro nn-integral-mono) (auto split : split-indicator)

finally show (
∑

c∈?au‘space M . c ∗ emeasure M (?B c i)) ≤ (
∫

+x . f i x
∂M) .

qed
finally show a ∗ integralS M u ≤ (SUP i . integralN M (f i))

by simp
qed

qed
qed (auto intro!: SUP-least SUP-upper nn-integral-mono)

lemma sup-continuous-nn-integral [order-continuous-intros]:
assumes f :

∧
y . sup-continuous (f y)

assumes [measurable]:
∧

x . (λy . f y x) ∈ borel-measurable M
shows sup-continuous (λx . (

∫
+y . f y x ∂M))

unfolding sup-continuous-def
proof safe

fix C :: nat ⇒ ′b assume C : incseq C
with sup-continuous-mono[OF f] show (

∫
+ y . f y (SUPREMUM UNIV C)

∂M) = (SUP i .
∫

+ y . f y (C i) ∂M)
unfolding sup-continuousD [OF f C]

THEORY “Nonnegative-Lebesgue-Integration” 190

by (subst nn-integral-monotone-convergence-SUP) (auto simp: mono-def le-fun-def)
qed

lemma nn-integral-monotone-convergence-SUP-AE :
assumes f :

∧
i . AE x in M . f i x ≤ f (Suc i) x

∧
i . f i ∈ borel-measurable M

shows (
∫

+ x . (SUP i . f i x) ∂M) = (SUP i . integralN M (f i))
proof −

from f have AE x in M . ∀ i . f i x ≤ f (Suc i) x
by (simp add : AE-all-countable)

from this[THEN AE-E] guess N . note N = this
let ?f = λi x . if x ∈ space M − N then f i x else 0
have f-eq : AE x in M . ∀ i . ?f i x = f i x using N by (auto intro!: AE-I [of - -

N])
then have (

∫
+ x . (SUP i . f i x) ∂M) = (

∫
+ x . (SUP i . ?f i x) ∂M)

by (auto intro!: nn-integral-cong-AE)
also have . . . = (SUP i . (

∫
+ x . ?f i x ∂M))

proof (rule nn-integral-monotone-convergence-SUP)
show incseq ?f using N (1) by (force intro!: incseq-SucI le-funI)
{ fix i show (λx . if x ∈ space M − N then f i x else 0) ∈ borel-measurable M

using f N (3) by (intro measurable-If-set) auto }
qed
also have . . . = (SUP i . (

∫
+ x . f i x ∂M))

using f-eq by (force intro!: arg-cong [where f =SUPREMUM UNIV] nn-integral-cong-AE
ext)

finally show ?thesis .
qed

lemma nn-integral-monotone-convergence-simple:
incseq f =⇒ (

∧
i . simple-function M (f i)) =⇒ (SUP i .

∫
S x . f i x ∂M) = (

∫
+x .

(SUP i . f i x) ∂M)
using assms nn-integral-monotone-convergence-SUP [of f M]
by (simp add : nn-integral-eq-simple-integral [symmetric] borel-measurable-simple-function)

lemma SUP-simple-integral-sequences:
assumes f : incseq f

∧
i . simple-function M (f i)

and g : incseq g
∧

i . simple-function M (g i)
and eq : AE x in M . (SUP i . f i x) = (SUP i . g i x)
shows (SUP i . integralS M (f i)) = (SUP i . integralS M (g i))

(is SUPREMUM - ?F = SUPREMUM - ?G)
proof −

have (SUP i . integralS M (f i)) = (
∫

+x . (SUP i . f i x) ∂M)
using f by (rule nn-integral-monotone-convergence-simple)

also have . . . = (
∫

+x . (SUP i . g i x) ∂M)
unfolding eq [THEN nn-integral-cong-AE] ..

also have . . . = (SUP i . ?G i)
using g by (rule nn-integral-monotone-convergence-simple[symmetric])

finally show ?thesis by simp
qed

THEORY “Nonnegative-Lebesgue-Integration” 191

lemma nn-integral-const [simp]: (
∫

+ x . c ∂M) = c ∗ emeasure M (space M)
by (subst nn-integral-eq-simple-integral) auto

lemma nn-integral-linear :
assumes f : f ∈ borel-measurable M and g : g ∈ borel-measurable M
shows (

∫
+ x . a ∗ f x + g x ∂M) = a ∗ integralN M f + integralN M g

(is integralN M ?L = -)
proof −

from borel-measurable-implies-simple-function-sequence ′[OF f (1)] guess u .
note u = nn-integral-monotone-convergence-simple[OF this(2 ,1)] this
from borel-measurable-implies-simple-function-sequence ′[OF g(1)] guess v .
note v = nn-integral-monotone-convergence-simple[OF this(2 ,1)] this
let ?L ′ = λi x . a ∗ u i x + v i x

have ?L ∈ borel-measurable M using assms by auto
from borel-measurable-implies-simple-function-sequence ′[OF this] guess l .
note l = nn-integral-monotone-convergence-simple[OF this(2 ,1)] this

have inc: incseq (λi . a ∗ integralS M (u i)) incseq (λi . integralS M (v i))
using u v by (auto simp: incseq-Suc-iff le-fun-def intro!: add-mono mult-left-mono

simple-integral-mono)

have l ′: (SUP i . integralS M (l i)) = (SUP i . integralS M (?L ′ i))
proof (rule SUP-simple-integral-sequences[OF l(3 ,2)])

show incseq ?L ′
∧

i . simple-function M (?L ′ i)
using u v unfolding incseq-Suc-iff le-fun-def
by (auto intro!: add-mono mult-left-mono)
{ fix x

have (SUP i . a ∗ u i x + v i x) = a ∗ (SUP i . u i x) + (SUP i . v i x)
using u(3) v(3) u(4)[of - x] v(4)[of - x] unfolding SUP-mult-left-ennreal
by (auto intro!: ennreal-SUP-add simp: incseq-Suc-iff le-fun-def add-mono

mult-left-mono) }
then show AE x in M . (SUP i . l i x) = (SUP i . ?L ′ i x)

unfolding l(5) using u(5) v(5) by (intro AE-I2) auto
qed
also have . . . = (SUP i . a ∗ integralS M (u i) + integralS M (v i))

using u(2) v(2) by auto
finally show ?thesis

unfolding l(5)[symmetric] l(1)[symmetric]
by (simp add : ennreal-SUP-add [OF inc] v u SUP-mult-left-ennreal [symmetric])

qed

lemma nn-integral-cmult : f ∈ borel-measurable M =⇒ (
∫

+ x . c ∗ f x ∂M) = c ∗
integralN M f

using nn-integral-linear [of f M λx . 0 c] by simp

lemma nn-integral-multc: f ∈ borel-measurable M =⇒ (
∫

+ x . f x ∗ c ∂M) =
integralN M f ∗ c

unfolding mult .commute[of - c] nn-integral-cmult [OF assms] by simp

THEORY “Nonnegative-Lebesgue-Integration” 192

lemma nn-integral-divide: f ∈ borel-measurable M =⇒ (
∫

+ x . f x / c ∂M) =
(
∫

+ x . f x ∂M) / c
unfolding divide-ennreal-def by (rule nn-integral-multc)

lemma nn-integral-indicator [simp]: A ∈ sets M =⇒ (
∫

+ x . indicator A x∂M) =
(emeasure M) A

by (subst nn-integral-eq-simple-integral) (auto simp: simple-integral-indicator)

lemma nn-integral-cmult-indicator : A ∈ sets M =⇒ (
∫

+ x . c ∗ indicator A x
∂M) = c ∗ emeasure M A

by (subst nn-integral-eq-simple-integral)
(auto simp: simple-function-indicator simple-integral-indicator)

lemma nn-integral-indicator ′:
assumes [measurable]: A ∩ space M ∈ sets M
shows (

∫
+ x . indicator A x ∂M) = emeasure M (A ∩ space M)

proof −
have (

∫
+ x . indicator A x ∂M) = (

∫
+ x . indicator (A ∩ space M) x ∂M)

by (intro nn-integral-cong) (simp split : split-indicator)
also have . . . = emeasure M (A ∩ space M)

by simp
finally show ?thesis .

qed

lemma nn-integral-indicator-singleton[simp]:
assumes [measurable]: {y} ∈ sets M shows (

∫
+x . f x ∗ indicator {y} x ∂M)

= f y ∗ emeasure M {y}
proof −

have (
∫

+x . f x ∗ indicator {y} x ∂M) = (
∫

+x . f y ∗ indicator {y} x ∂M)
by (auto intro!: nn-integral-cong split : split-indicator)

then show ?thesis
by (simp add : nn-integral-cmult)

qed

lemma nn-integral-set-ennreal :
(
∫

+x . ennreal (f x) ∗ indicator A x ∂M) = (
∫

+x . ennreal (f x ∗ indicator A x)
∂M)

by (rule nn-integral-cong) (simp split : split-indicator)

lemma nn-integral-indicator-singleton ′[simp]:
assumes [measurable]: {y} ∈ sets M
shows (

∫
+x . ennreal (f x ∗ indicator {y} x) ∂M) = f y ∗ emeasure M {y}

by (subst nn-integral-set-ennreal [symmetric]) (simp add : nn-integral-indicator-singleton)

lemma nn-integral-add :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (

∫
+ x . f x + g x ∂M)

= integralN M f + integralN M g
using nn-integral-linear [of f M g 1] by simp

THEORY “Nonnegative-Lebesgue-Integration” 193

lemma nn-integral-setsum:
(
∧

i . i ∈ P =⇒ f i ∈ borel-measurable M) =⇒ (
∫

+ x . (
∑

i∈P . f i x) ∂M) =
(
∑

i∈P . integralN M (f i))
by (induction P rule: infinite-finite-induct) (auto simp: nn-integral-add)

lemma nn-integral-suminf :
assumes f :

∧
i . f i ∈ borel-measurable M

shows (
∫

+ x . (
∑

i . f i x) ∂M) = (
∑

i . integralN M (f i))
proof −

have all-pos: AE x in M . ∀ i . 0 ≤ f i x
using assms by (auto simp: AE-all-countable)

have (
∑

i . integralN M (f i)) = (SUP n.
∑

i<n. integralN M (f i))
by (rule suminf-eq-SUP)

also have . . . = (SUP n.
∫

+x . (
∑

i<n. f i x) ∂M)
unfolding nn-integral-setsum[OF f] ..

also have . . . =
∫

+x . (SUP n.
∑

i<n. f i x) ∂M using f all-pos
by (intro nn-integral-monotone-convergence-SUP-AE [symmetric])
(elim AE-mp, auto simp: setsum-nonneg simp del : setsum-lessThan-Suc intro!:

AE-I2 setsum-mono3)
also have . . . =

∫
+x . (

∑
i . f i x) ∂M using all-pos

by (intro nn-integral-cong-AE) (auto simp: suminf-eq-SUP)
finally show ?thesis by simp

qed

lemma nn-integral-bound-simple-function:
assumes bnd :

∧
x . x ∈ space M =⇒ f x < ∞

assumes f [measurable]: simple-function M f
assumes supp: emeasure M {x∈space M . f x 6= 0} < ∞
shows nn-integral M f < ∞

proof cases
assume space M = {}
then have nn-integral M f = (

∫
+x . 0 ∂M)

by (intro nn-integral-cong) auto
then show ?thesis by simp

next
assume space M 6= {}
with simple-functionD(1)[OF f] bnd have bnd : 0 ≤ Max (f‘space M) ∧ Max

(f‘space M) < ∞
by (subst Max-less-iff) (auto simp: Max-ge-iff)

have nn-integral M f ≤ (
∫

+x . Max (f‘space M) ∗ indicator {x∈space M . f x 6=
0} x ∂M)

proof (rule nn-integral-mono)
fix x assume x ∈ space M
with f show f x ≤ Max (f ‘ space M) ∗ indicator {x ∈ space M . f x 6= 0} x

by (auto split : split-indicator intro!: Max-ge simple-functionD)
qed
also have . . . < ∞

THEORY “Nonnegative-Lebesgue-Integration” 194

using bnd supp by (subst nn-integral-cmult) (auto simp: ennreal-mult-less-top)
finally show ?thesis .

qed

lemma nn-integral-Markov-inequality :
assumes u: u ∈ borel-measurable M and A ∈ sets M
shows (emeasure M) ({x∈space M . 1 ≤ c ∗ u x} ∩ A) ≤ c ∗ (

∫
+ x . u x ∗

indicator A x ∂M)
(is (emeasure M) ?A ≤ - ∗ ?PI)

proof −
have ?A ∈ sets M

using 〈A ∈ sets M 〉 u by auto
hence (emeasure M) ?A = (

∫
+ x . indicator ?A x ∂M)

using nn-integral-indicator by simp
also have . . . ≤ (

∫
+ x . c ∗ (u x ∗ indicator A x) ∂M)

using u by (auto intro!: nn-integral-mono-AE simp: indicator-def)
also have . . . = c ∗ (

∫
+ x . u x ∗ indicator A x ∂M)

using assms by (auto intro!: nn-integral-cmult)
finally show ?thesis .

qed

lemma nn-integral-noteq-infinite:
assumes g : g ∈ borel-measurable M and integralN M g 6= ∞
shows AE x in M . g x 6= ∞

proof (rule ccontr)
assume c: ¬ (AE x in M . g x 6= ∞)
have (emeasure M) {x∈space M . g x = ∞} 6= 0

using c g by (auto simp add : AE-iff-null)
then have 0 < (emeasure M) {x∈space M . g x = ∞}

by (auto simp: zero-less-iff-neq-zero)
then have ∞ = ∞ ∗ (emeasure M) {x∈space M . g x = ∞}

by (auto simp: ennreal-top-eq-mult-iff)
also have . . . ≤ (

∫
+x . ∞ ∗ indicator {x∈space M . g x = ∞} x ∂M)

using g by (subst nn-integral-cmult-indicator) auto
also have . . . ≤ integralN M g

using assms by (auto intro!: nn-integral-mono-AE simp: indicator-def)
finally show False

using 〈integralN M g 6= ∞〉 by (auto simp: top-unique)
qed

lemma nn-integral-PInf :
assumes f : f ∈ borel-measurable M and not-Inf : integralN M f 6= ∞
shows emeasure M (f −‘ {∞} ∩ space M) = 0

proof −
have ∞ ∗ emeasure M (f −‘ {∞} ∩ space M) = (

∫
+ x . ∞ ∗ indicator (f −‘

{∞} ∩ space M) x ∂M)
using f by (subst nn-integral-cmult-indicator) (auto simp: measurable-sets)

also have . . . ≤ integralN M f
by (auto intro!: nn-integral-mono simp: indicator-def)

THEORY “Nonnegative-Lebesgue-Integration” 195

finally have ∞ ∗ (emeasure M) (f −‘ {∞} ∩ space M) ≤ integralN M f
by simp

then show ?thesis
using assms by (auto simp: ennreal-top-mult top-unique split : if-split-asm)

qed

lemma simple-integral-PInf :
simple-function M f =⇒ integralS M f 6= ∞ =⇒ emeasure M (f −‘ {∞} ∩ space

M) = 0
by (rule nn-integral-PInf) (auto simp: nn-integral-eq-simple-integral borel-measurable-simple-function)

lemma nn-integral-PInf-AE :
assumes f ∈ borel-measurable M integralN M f 6= ∞ shows AE x in M . f x 6=
∞
proof (rule AE-I)

show (emeasure M) (f −‘ {∞} ∩ space M) = 0
by (rule nn-integral-PInf [OF assms])

show f −‘ {∞} ∩ space M ∈ sets M
using assms by (auto intro: borel-measurable-vimage)

qed auto

lemma nn-integral-diff :
assumes f : f ∈ borel-measurable M
and g : g ∈ borel-measurable M
and fin: integralN M g 6= ∞
and mono: AE x in M . g x ≤ f x
shows (

∫
+ x . f x − g x ∂M) = integralN M f − integralN M g

proof −
have diff : (λx . f x − g x) ∈ borel-measurable M

using assms by auto
have AE x in M . f x = f x − g x + g x

using diff-add-cancel-ennreal mono nn-integral-noteq-infinite[OF g fin] assms
by auto

then have ∗∗: integralN M f = (
∫

+x . f x − g x ∂M) + integralN M g
unfolding nn-integral-add [OF diff g , symmetric]
by (rule nn-integral-cong-AE)

show ?thesis unfolding ∗∗
using fin
by (cases rule: ennreal2-cases[of

∫
+ x . f x − g x ∂M integralN M g]) auto

qed

lemma nn-integral-mult-bounded-inf :
assumes f : f ∈ borel-measurable M (

∫
+x . f x ∂M) < ∞ and c: c 6= ∞ and

ae: AE x in M . g x ≤ c ∗ f x
shows (

∫
+x . g x ∂M) < ∞

proof −
have (

∫
+x . g x ∂M) ≤ (

∫
+x . c ∗ f x ∂M)

by (intro nn-integral-mono-AE ae)
also have (

∫
+x . c ∗ f x ∂M) < ∞

THEORY “Nonnegative-Lebesgue-Integration” 196

using c f by (subst nn-integral-cmult) (auto simp: ennreal-mult-less-top top-unique
not-less)

finally show ?thesis .
qed

Fatou’s lemma: convergence theorem on limes inferior

lemma nn-integral-monotone-convergence-INF-AE ′:
assumes f :

∧
i . AE x in M . f (Suc i) x ≤ f i x and [measurable]:

∧
i . f i ∈

borel-measurable M
and ∗: (

∫
+ x . f 0 x ∂M) < ∞

shows (
∫

+ x . (INF i . f i x) ∂M) = (INF i . integralN M (f i))
proof (rule ennreal-minus-cancel)

have integralN M (f 0) − (
∫

+ x . (INF i . f i x) ∂M) = (
∫

+x . f 0 x − (INF i .
f i x) ∂M)

proof (rule nn-integral-diff [symmetric])
have (

∫
+ x . (INF i . f i x) ∂M) ≤ (

∫
+ x . f 0 x ∂M)

by (intro nn-integral-mono INF-lower) simp
with ∗ show (

∫
+ x . (INF i . f i x) ∂M) 6= ∞

by simp
qed (auto intro: INF-lower)
also have . . . = (

∫
+x . (SUP i . f 0 x − f i x) ∂M)

by (simp add : ennreal-INF-const-minus)
also have . . . = (SUP i . (

∫
+x . f 0 x − f i x ∂M))

proof (intro nn-integral-monotone-convergence-SUP-AE)
show AE x in M . f 0 x − f i x ≤ f 0 x − f (Suc i) x for i

using f [of i] by eventually-elim (auto simp: ennreal-mono-minus)
qed simp
also have . . . = (SUP i . nn-integral M (f 0) − (

∫
+x . f i x ∂M))

proof (subst nn-integral-diff [symmetric])
fix i
have dec: AE x in M . ∀ i . f (Suc i) x ≤ f i x

unfolding AE-all-countable using f by auto
then show AE x in M . f i x ≤ f 0 x
using dec by eventually-elim (auto intro: lift-Suc-antimono-le[of λi . f i x 0 i

for x])
then have (

∫
+ x . f i x ∂M) ≤ (

∫
+ x . f 0 x ∂M)

by (rule nn-integral-mono-AE)
with ∗ show (

∫
+ x . f i x ∂M) 6= ∞

by simp
qed (insert f , auto simp: decseq-def le-fun-def)
finally show integralN M (f 0) − (

∫
+ x . (INF i . f i x) ∂M) =

integralN M (f 0) − (INF i .
∫

+ x . f i x ∂M)
by (simp add : ennreal-INF-const-minus)

qed (insert ∗, auto intro!: nn-integral-mono intro: INF-lower)

lemma nn-integral-monotone-convergence-INF-AE :
fixes f :: nat ⇒ ′a ⇒ ennreal
assumes f :

∧
i . AE x in M . f (Suc i) x ≤ f i x

and [measurable]:
∧

i . f i ∈ borel-measurable M

THEORY “Nonnegative-Lebesgue-Integration” 197

and fin: (
∫

+ x . f i x ∂M) < ∞
shows (

∫
+ x . (INF i . f i x) ∂M) = (INF i . integralN M (f i))

proof −
{ fix f :: nat ⇒ ennreal and j assume decseq f

then have (INF i . f i) = (INF i . f (i + j))
apply (intro INF-eq)
apply (rule-tac x=i in bexI)
apply (auto simp: decseq-def le-fun-def)
done }

note INF-shift = this
have mono: AE x in M . ∀ i . f (Suc i) x ≤ f i x

using f by (auto simp: AE-all-countable)
then have AE x in M . (INF i . f i x) = (INF n. f (n + i) x)

by eventually-elim (auto intro!: decseq-SucI INF-shift)
then have (

∫
+ x . (INF i . f i x) ∂M) = (

∫
+ x . (INF n. f (n + i) x) ∂M)

by (rule nn-integral-cong-AE)
also have . . . = (INF n. (

∫
+ x . f (n + i) x ∂M))

by (rule nn-integral-monotone-convergence-INF-AE ′) (insert assms, auto)
also have . . . = (INF n. (

∫
+ x . f n x ∂M))

by (intro INF-shift [symmetric] decseq-SucI nn-integral-mono-AE f)
finally show ?thesis .

qed

lemma nn-integral-monotone-convergence-INF-decseq :
assumes f : decseq f and ∗:

∧
i . f i ∈ borel-measurable M (

∫
+ x . f i x ∂M) <

∞
shows (

∫
+ x . (INF i . f i x) ∂M) = (INF i . integralN M (f i))

using nn-integral-monotone-convergence-INF-AE [of f M i , OF - ∗] f by (auto
simp: decseq-Suc-iff le-fun-def)

lemma nn-integral-liminf :
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes u:

∧
i . u i ∈ borel-measurable M

shows (
∫

+ x . liminf (λn. u n x) ∂M) ≤ liminf (λn. integralN M (u n))
proof −
have (

∫
+ x . liminf (λn. u n x) ∂M) = (SUP n.

∫
+ x . (INF i :{n..}. u i x) ∂M)

unfolding liminf-SUP-INF using u
by (intro nn-integral-monotone-convergence-SUP-AE)

(auto intro!: AE-I2 intro: INF-greatest INF-superset-mono)
also have . . . ≤ liminf (λn. integralN M (u n))
by (auto simp: liminf-SUP-INF intro!: SUP-mono INF-greatest nn-integral-mono

INF-lower)
finally show ?thesis .

qed

lemma nn-integral-limsup:
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes [measurable]:

∧
i . u i ∈ borel-measurable M w ∈ borel-measurable M

assumes bounds:
∧

i . AE x in M . u i x ≤ w x and w : (
∫

+x . w x ∂M) < ∞

THEORY “Nonnegative-Lebesgue-Integration” 198

shows limsup (λn. integralN M (u n)) ≤ (
∫

+ x . limsup (λn. u n x) ∂M)
proof −

have bnd : AE x in M . ∀ i . u i x ≤ w x
using bounds by (auto simp: AE-all-countable)

then have (
∫

+ x . (SUP n. u n x) ∂M) ≤ (
∫

+ x . w x ∂M)
by (auto intro!: nn-integral-mono-AE elim: eventually-mono intro: SUP-least)

then have (
∫

+ x . limsup (λn. u n x) ∂M) = (INF n.
∫

+ x . (SUP i :{n..}. u i
x) ∂M)

unfolding limsup-INF-SUP using bnd w
by (intro nn-integral-monotone-convergence-INF-AE ′)

(auto intro!: AE-I2 intro: SUP-least SUP-subset-mono)
also have . . . ≥ limsup (λn. integralN M (u n))
by (auto simp: limsup-INF-SUP intro!: INF-mono SUP-least exI nn-integral-mono

SUP-upper)
finally (xtrans) show ?thesis .

qed

lemma nn-integral-LIMSEQ :
assumes f : incseq f

∧
i . f i ∈ borel-measurable M

and u:
∧

x . (λi . f i x) −−−−→ u x
shows (λn. integralN M (f n)) −−−−→ integralN M u

proof −
have (λn. integralN M (f n)) −−−−→ (SUP n. integralN M (f n))
using f by (intro LIMSEQ-SUP [of λn. integralN M (f n)] incseq-nn-integral)

also have (SUP n. integralN M (f n)) = integralN M (λx . SUP n. f n x)
using f by (intro nn-integral-monotone-convergence-SUP [symmetric])

also have integralN M (λx . SUP n. f n x) = integralN M (λx . u x)
using f by (subst LIMSEQ-SUP [THEN LIMSEQ-unique, OF - u]) (auto simp:

incseq-def le-fun-def)
finally show ?thesis .

qed

lemma nn-integral-dominated-convergence:
assumes [measurable]:∧

i . u i ∈ borel-measurable M u ′ ∈ borel-measurable M w ∈ borel-measurable
M

and bound :
∧

j . AE x in M . u j x ≤ w x
and w : (

∫
+x . w x ∂M) < ∞

and u ′: AE x in M . (λi . u i x) −−−−→ u ′ x
shows (λi . (

∫
+x . u i x ∂M)) −−−−→ (

∫
+x . u ′ x ∂M)

proof −
have limsup (λn. integralN M (u n)) ≤ (

∫
+ x . limsup (λn. u n x) ∂M)

by (intro nn-integral-limsup[OF - - bound w]) auto
moreover have (

∫
+ x . limsup (λn. u n x) ∂M) = (

∫
+ x . u ′ x ∂M)

using u ′ by (intro nn-integral-cong-AE , eventually-elim) (metis tendsto-iff-Liminf-eq-Limsup
sequentially-bot)

moreover have (
∫

+ x . liminf (λn. u n x) ∂M) = (
∫

+ x . u ′ x ∂M)
using u ′ by (intro nn-integral-cong-AE , eventually-elim) (metis tendsto-iff-Liminf-eq-Limsup

sequentially-bot)

THEORY “Nonnegative-Lebesgue-Integration” 199

moreover have (
∫

+x . liminf (λn. u n x) ∂M) ≤ liminf (λn. integralN M (u
n))

by (intro nn-integral-liminf) auto
moreover have liminf (λn. integralN M (u n)) ≤ limsup (λn. integralN M (u

n))
by (intro Liminf-le-Limsup sequentially-bot)

ultimately show ?thesis
by (intro Liminf-eq-Limsup) auto

qed

lemma inf-continuous-nn-integral [order-continuous-intros]:
assumes f :

∧
y . inf-continuous (f y)

assumes [measurable]:
∧

x . (λy . f y x) ∈ borel-measurable M
assumes bnd :

∧
x . (

∫
+ y . f y x ∂M) 6= ∞

shows inf-continuous (λx . (
∫

+y . f y x ∂M))
unfolding inf-continuous-def

proof safe
fix C :: nat ⇒ ′b assume C : decseq C
then show (

∫
+ y . f y (INFIMUM UNIV C) ∂M) = (INF i .

∫
+ y . f y (C i)

∂M)
using inf-continuous-mono[OF f] bnd
by (auto simp add : inf-continuousD [OF f C] fun-eq-iff antimono-def mono-def

le-fun-def less-top
intro!: nn-integral-monotone-convergence-INF-decseq)

qed

lemma nn-integral-null-set :
assumes N ∈ null-sets M shows (

∫
+ x . u x ∗ indicator N x ∂M) = 0

proof −
have (

∫
+ x . u x ∗ indicator N x ∂M) = (

∫
+ x . 0 ∂M)

proof (intro nn-integral-cong-AE AE-I)
show {x ∈ space M . u x ∗ indicator N x 6= 0} ⊆ N

by (auto simp: indicator-def)
show (emeasure M) N = 0 N ∈ sets M

using assms by auto
qed
then show ?thesis by simp

qed

lemma nn-integral-0-iff :
assumes u: u ∈ borel-measurable M
shows integralN M u = 0 ←→ emeasure M {x∈space M . u x 6= 0} = 0

(is - ←→ (emeasure M) ?A = 0)
proof −

have u-eq : (
∫

+ x . u x ∗ indicator ?A x ∂M) = integralN M u
by (auto intro!: nn-integral-cong simp: indicator-def)

show ?thesis
proof

assume (emeasure M) ?A = 0

THEORY “Nonnegative-Lebesgue-Integration” 200

with nn-integral-null-set [of ?A M u] u
show integralN M u = 0 by (simp add : u-eq null-sets-def)

next
assume ∗: integralN M u = 0
let ?M = λn. {x ∈ space M . 1 ≤ real (n::nat) ∗ u x}
have 0 = (SUP n. (emeasure M) (?M n ∩ ?A))
proof −
{ fix n :: nat

from nn-integral-Markov-inequality [OF u, of ?A of-nat n] u
have (emeasure M) (?M n ∩ ?A) ≤ 0

by (simp add : ennreal-of-nat-eq-real-of-nat u-eq ∗)
moreover have 0 ≤ (emeasure M) (?M n ∩ ?A) using u by auto
ultimately have (emeasure M) (?M n ∩ ?A) = 0 by auto }

thus ?thesis by simp
qed
also have . . . = (emeasure M) (

⋃
n. ?M n ∩ ?A)

proof (safe intro!: SUP-emeasure-incseq)
fix n show ?M n ∩ ?A ∈ sets M

using u by (auto intro!: sets.Int)
next

show incseq (λn. {x ∈ space M . 1 ≤ real n ∗ u x} ∩ {x ∈ space M . u x 6=
0})

proof (safe intro!: incseq-SucI)
fix n :: nat and x
assume ∗: 1 ≤ real n ∗ u x
also have real n ∗ u x ≤ real (Suc n) ∗ u x

by (auto intro!: mult-right-mono)
finally show 1 ≤ real (Suc n) ∗ u x by auto

qed
qed
also have . . . = (emeasure M) {x∈space M . 0 < u x}
proof (safe intro!: arg-cong [where f =(emeasure M)])

fix x assume 0 < u x and [simp, intro]: x ∈ space M
show x ∈ (

⋃
n. ?M n ∩ ?A)

proof (cases u x rule: ennreal-cases)
case (real r) with 〈0 < u x 〉 have 0 < r by auto
obtain j :: nat where 1 / r ≤ real j using real-arch-simple ..
hence 1 / r ∗ r ≤ real j ∗ r unfolding mult-le-cancel-right using 〈0 < r 〉

by auto
hence 1 ≤ real j ∗ r using real 〈0 < r 〉 by auto
thus ?thesis using 〈0 < r 〉 real
by (auto simp: ennreal-of-nat-eq-real-of-nat ennreal-1 [symmetric] ennreal-mult [symmetric]

simp del : ennreal-1)
qed (insert 〈0 < u x 〉, auto simp: ennreal-mult-top)

qed (auto simp: zero-less-iff-neq-zero)
finally show emeasure M ?A = 0

by (simp add : zero-less-iff-neq-zero)
qed

qed

THEORY “Nonnegative-Lebesgue-Integration” 201

lemma nn-integral-0-iff-AE :
assumes u: u ∈ borel-measurable M
shows integralN M u = 0 ←→ (AE x in M . u x = 0)

proof −
have sets: {x∈space M . u x 6= 0} ∈ sets M

using u by auto
show integralN M u = 0 ←→ (AE x in M . u x = 0)

using nn-integral-0-iff [of u] AE-iff-null [OF sets] u by auto
qed

lemma AE-iff-nn-integral :
{x∈space M . P x} ∈ sets M =⇒ (AE x in M . P x) ←→ integralN M (indicator
{x . ¬ P x}) = 0

by (subst nn-integral-0-iff-AE) (auto simp: indicator-def [abs-def])

lemma nn-integral-less:
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
assumes f : (

∫
+x . f x ∂M) 6= ∞

assumes ord : AE x in M . f x ≤ g x ¬ (AE x in M . g x ≤ f x)
shows (

∫
+x . f x ∂M) < (

∫
+x . g x ∂M)

proof −
have 0 < (

∫
+x . g x − f x ∂M)

proof (intro order-le-neq-trans notI)
assume 0 = (

∫
+x . g x − f x ∂M)

then have AE x in M . g x − f x = 0
using nn-integral-0-iff-AE [of λx . g x − f x M] by simp

with ord(1) have AE x in M . g x ≤ f x
by eventually-elim (auto simp: ennreal-minus-eq-0)

with ord show False
by simp

qed simp
also have . . . = (

∫
+x . g x ∂M) − (

∫
+x . f x ∂M)

using f by (subst nn-integral-diff) (auto simp: ord)
finally show ?thesis

using f by (auto dest !: ennreal-minus-pos-iff [rotated] simp: less-top)
qed

lemma nn-integral-subalgebra:
assumes f : f ∈ borel-measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integralN N f = integralN M f

proof −
have [simp]:

∧
f :: ′a ⇒ ennreal . f ∈ borel-measurable N =⇒ f ∈ borel-measurable

M
using N by (auto simp: measurable-def)

have [simp]:
∧

P . (AE x in N . P x) =⇒ (AE x in M . P x)
using N by (auto simp add : eventually-ae-filter null-sets-def subset-eq)

THEORY “Nonnegative-Lebesgue-Integration” 202

have [simp]:
∧

A. A ∈ sets N =⇒ A ∈ sets M
using N by auto

from f show ?thesis
apply induct

apply (simp-all add : nn-integral-add nn-integral-cmult nn-integral-monotone-convergence-SUP
N)

apply (auto intro!: nn-integral-cong cong : nn-integral-cong simp: N (2)[symmetric])
done

qed

lemma nn-integral-nat-function:
fixes f :: ′a ⇒ nat
assumes f ∈ measurable M (count-space UNIV)
shows (

∫
+x . of-nat (f x) ∂M) = (

∑
t . emeasure M {x∈space M . t < f x})

proof −
def F ≡ λi . {x∈space M . i < f x}
with assms have [measurable]:

∧
i . F i ∈ sets M

by auto

{ fix x assume x ∈ space M
have (λi . if i < f x then 1 else 0) sums (of-nat (f x)::real)

using sums-If-finite[of λi . i < f x λ-. 1 ::real] by simp
then have (λi . ennreal (if i < f x then 1 else 0)) sums of-nat(f x)

unfolding ennreal-of-nat-eq-real-of-nat
by (subst sums-ennreal) auto

moreover have
∧

i . ennreal (if i < f x then 1 else 0) = indicator (F i) x
using 〈x ∈ space M 〉 by (simp add : one-ennreal-def F-def)

ultimately have of-nat (f x) = (
∑

i . indicator (F i) x :: ennreal)
by (simp add : sums-iff) }

then have (
∫

+x . of-nat (f x) ∂M) = (
∫

+x . (
∑

i . indicator (F i) x) ∂M)
by (simp cong : nn-integral-cong)

also have . . . = (
∑

i . emeasure M (F i))
by (simp add : nn-integral-suminf)

finally show ?thesis
by (simp add : F-def)

qed

lemma nn-integral-lfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : sup-continuous f
assumes g : sup-continuous g
assumes meas:

∧
F . F ∈ borel-measurable N =⇒ f F ∈ borel-measurable N

assumes step:
∧

F s. F ∈ borel-measurable N =⇒ integralN (M s) (f F) = g
(λs. integralN (M s) F) s

shows (
∫

+ω. lfp f ω ∂M s) = lfp g s
proof (subst lfp-transfer-bounded [where α=λF s.

∫
+x . F x ∂M s and g=g and

f =f and P=λf . f ∈ borel-measurable N , symmetric])
fix C :: nat ⇒ ′b ⇒ ennreal assume incseq C

∧
i . C i ∈ borel-measurable N

then show (λs.
∫

+x . (SUP i . C i) x ∂M s) = (SUP i . (λs.
∫

+x . C i x ∂M s))

THEORY “Nonnegative-Lebesgue-Integration” 203

unfolding SUP-apply [abs-def]
by (subst nn-integral-monotone-convergence-SUP)

(auto simp: mono-def fun-eq-iff intro!: arg-cong2 [where f =emeasure] cong :
measurable-cong-sets)
qed (auto simp add : step le-fun-def SUP-apply [abs-def] bot-fun-def bot-ennreal in-
tro!: meas f g)

lemma nn-integral-gfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : inf-continuous f and g : inf-continuous g
assumes meas:

∧
F . F ∈ borel-measurable N =⇒ f F ∈ borel-measurable N

assumes bound :
∧

F s. F ∈ borel-measurable N =⇒ (
∫

+x . f F x ∂M s) < ∞
assumes non-zero:

∧
s. emeasure (M s) (space (M s)) 6= 0

assumes step:
∧

F s. F ∈ borel-measurable N =⇒ integralN (M s) (f F) = g
(λs. integralN (M s) F) s

shows (
∫

+ω. gfp f ω ∂M s) = gfp g s
proof (subst gfp-transfer-bounded [where α=λF s.

∫
+x . F x ∂M s and g=g and

f =f
and P=λF . F ∈ borel-measurable N ∧ (∀ s. (

∫
+x . F x ∂M s) <∞), symmetric])

fix C :: nat ⇒ ′b ⇒ ennreal assume decseq C
∧

i . C i ∈ borel-measurable N ∧
(∀ s. integralN (M s) (C i) < ∞)

then show (λs.
∫

+x . (INF i . C i) x ∂M s) = (INF i . (λs.
∫

+x . C i x ∂M s))
unfolding INF-apply [abs-def]
by (subst nn-integral-monotone-convergence-INF-decseq)

(auto simp: mono-def fun-eq-iff intro!: arg-cong2 [where f =emeasure] cong :
measurable-cong-sets)
next

show
∧

x . g x ≤ (λs. integralN (M s) (f top))
by (subst step)

(auto simp add : top-fun-def less-le non-zero le-fun-def ennreal-top-mult
cong del : if-cong intro!: monoD [OF inf-continuous-mono[OF g], THEN

le-funD])
next

fix C assume
∧

i ::nat . C i ∈ borel-measurable N ∧ (∀ s. integralN (M s) (C i)
< ∞) decseq C

with bound show INFIMUM UNIV C ∈ borel-measurable N ∧ (∀ s. integralN

(M s) (INFIMUM UNIV C) < ∞)
unfolding INF-apply [abs-def]
by (subst nn-integral-monotone-convergence-INF-decseq)
(auto simp: INF-less-iff cong : measurable-cong-sets intro!: borel-measurable-INF)

next
show

∧
x . x ∈ borel-measurable N ∧ (∀ s. integralN (M s) x < ∞) =⇒

(λs. integralN (M s) (f x)) = g (λs. integralN (M s) x)
by (subst step) auto

qed (insert bound , auto simp add : le-fun-def INF-apply [abs-def] top-fun-def intro!:
meas f g)

THEORY “Nonnegative-Lebesgue-Integration” 204

5.4 Integral under concrete measures

lemma nn-integral-empty :
assumes space M = {}
shows nn-integral M f = 0

proof −
have (

∫
+ x . f x ∂M) = (

∫
+ x . 0 ∂M)

by(rule nn-integral-cong)(simp add : assms)
thus ?thesis by simp

qed

5.4.1 Distributions

lemma nn-integral-distr :
assumes T : T ∈ measurable M M ′ and f : f ∈ borel-measurable (distr M M ′ T)
shows integralN (distr M M ′ T) f = (

∫
+ x . f (T x) ∂M)

using f
proof induct

case (cong f g)
with T show ?case

apply (subst nn-integral-cong [of - f g])
apply simp
apply (subst nn-integral-cong [of - λx . f (T x) λx . g (T x)])
apply (simp add : measurable-def Pi-iff)
apply simp
done

next
case (set A)
then have eq :

∧
x . x ∈ space M =⇒ indicator A (T x) = indicator (T −‘ A ∩

space M) x
by (auto simp: indicator-def)

from set T show ?case
by (subst nn-integral-cong [OF eq])

(auto simp add : emeasure-distr intro!: nn-integral-indicator [symmetric]
measurable-sets)
qed (simp-all add : measurable-compose[OF T] T nn-integral-cmult nn-integral-add

nn-integral-monotone-convergence-SUP le-fun-def incseq-def)

5.4.2 Counting space

lemma simple-function-count-space[simp]:
simple-function (count-space A) f ←→ finite (f ‘ A)
unfolding simple-function-def by simp

lemma nn-integral-count-space:
assumes A: finite {a∈A. 0 < f a}
shows integralN (count-space A) f = (

∑
a|a∈A ∧ 0 < f a. f a)

proof −
have ∗: (

∫
+x . max 0 (f x) ∂count-space A) =

(
∫

+ x . (
∑

a|a∈A ∧ 0 < f a. f a ∗ indicator {a} x) ∂count-space A)

THEORY “Nonnegative-Lebesgue-Integration” 205

by (auto intro!: nn-integral-cong
simp add : indicator-def if-distrib setsum.If-cases[OF A] max-def le-less)

also have . . . = (
∑

a|a∈A ∧ 0 < f a.
∫

+ x . f a ∗ indicator {a} x ∂count-space
A)

by (subst nn-integral-setsum) (simp-all add : AE-count-space less-imp-le)
also have . . . = (

∑
a|a∈A ∧ 0 < f a. f a)

by (auto intro!: setsum.cong simp: one-ennreal-def [symmetric] max-def)
finally show ?thesis by (simp add : max .absorb2)

qed

lemma nn-integral-count-space-finite:
finite A =⇒ (

∫
+x . f x ∂count-space A) = (

∑
a∈A. f a)

by (auto intro!: setsum.mono-neutral-left simp: nn-integral-count-space less-le)

lemma nn-integral-count-space ′:
assumes finite A

∧
x . x ∈ B =⇒ x /∈ A =⇒ f x = 0 A ⊆ B

shows (
∫

+x . f x ∂count-space B) = (
∑

x∈A. f x)
proof −

have (
∫

+x . f x ∂count-space B) = (
∑

a | a ∈ B ∧ 0 < f a. f a)
using assms(2 ,3)
by (intro nn-integral-count-space finite-subset [OF - 〈finite A〉]) (auto simp:

less-le)
also have . . . = (

∑
a∈A. f a)

using assms by (intro setsum.mono-neutral-cong-left) (auto simp: less-le)
finally show ?thesis .

qed

lemma nn-integral-bij-count-space:
assumes g : bij-betw g A B
shows (

∫
+x . f (g x) ∂count-space A) = (

∫
+x . f x ∂count-space B)

using g [THEN bij-betw-imp-funcset]
by (subst distr-bij-count-space[OF g , symmetric])

(auto intro!: nn-integral-distr [symmetric])

lemma nn-integral-indicator-finite:
fixes f :: ′a ⇒ ennreal
assumes f : finite A and [measurable]:

∧
a. a ∈ A =⇒ {a} ∈ sets M

shows (
∫

+x . f x ∗ indicator A x ∂M) = (
∑

x∈A. f x ∗ emeasure M {x})
proof −

from f have (
∫

+x . f x ∗ indicator A x ∂M) = (
∫

+x . (
∑

a∈A. f a ∗ indicator
{a} x) ∂M)

by (intro nn-integral-cong) (auto simp: indicator-def if-distrib[where f =λa. x
∗ a for x] setsum.If-cases)

also have . . . = (
∑

a∈A. f a ∗ emeasure M {a})
by (subst nn-integral-setsum) auto

finally show ?thesis .
qed

lemma nn-integral-count-space-nat :

THEORY “Nonnegative-Lebesgue-Integration” 206

fixes f :: nat ⇒ ennreal
shows (

∫
+i . f i ∂count-space UNIV) = (

∑
i . f i)

proof −
have (

∫
+i . f i ∂count-space UNIV) =

(
∫

+i . (
∑

j . f j ∗ indicator {j} i) ∂count-space UNIV)
proof (intro nn-integral-cong)

fix i
have f i = (

∑
j∈{i}. f j ∗ indicator {j} i)

by simp
also have . . . = (

∑
j . f j ∗ indicator {j} i)

by (rule suminf-finite[symmetric]) auto
finally show f i = (

∑
j . f j ∗ indicator {j} i) .

qed
also have . . . = (

∑
j . (

∫
+i . f j ∗ indicator {j} i ∂count-space UNIV))

by (rule nn-integral-suminf) auto
finally show ?thesis

by simp
qed

lemma nn-integral-enat-function:
assumes f : f ∈ measurable M (count-space UNIV)
shows (

∫
+ x . ennreal-of-enat (f x) ∂M) = (

∑
t . emeasure M {x ∈ space M . t

< f x})
proof −

def F ≡ λi ::nat . {x∈space M . i < f x}
with assms have [measurable]:

∧
i . F i ∈ sets M

by auto

{ fix x assume x ∈ space M
have (λi ::nat . if i < f x then 1 else 0) sums ennreal-of-enat (f x)

using sums-If-finite[of λr . r < f x λ-. 1 :: ennreal]
by (cases f x) (simp-all add : sums-def of-nat-tendsto-top-ennreal)

also have (λi . (if i < f x then 1 else 0)) = (λi . indicator (F i) x)
using 〈x ∈ space M 〉 by (simp add : one-ennreal-def F-def fun-eq-iff)

finally have ennreal-of-enat (f x) = (
∑

i . indicator (F i) x)
by (simp add : sums-iff) }

then have (
∫

+x . ennreal-of-enat (f x) ∂M) = (
∫

+x . (
∑

i . indicator (F i) x)
∂M)

by (simp cong : nn-integral-cong)
also have . . . = (

∑
i . emeasure M (F i))

by (simp add : nn-integral-suminf)
finally show ?thesis

by (simp add : F-def)
qed

lemma nn-integral-count-space-nn-integral :
fixes f :: ′i ⇒ ′a ⇒ ennreal
assumes countable I and [measurable]:

∧
i . i ∈ I =⇒ f i ∈ borel-measurable M

shows (
∫

+x .
∫

+i . f i x ∂count-space I ∂M) = (
∫

+i .
∫

+x . f i x ∂M ∂count-space

THEORY “Nonnegative-Lebesgue-Integration” 207

I)
proof cases

assume finite I then show ?thesis
by (simp add : nn-integral-count-space-finite nn-integral-setsum)

next
assume infinite I
then have [simp]: I 6= {}

by auto
note ∗ = bij-betw-from-nat-into[OF 〈countable I 〉 〈infinite I 〉]
have ∗∗:

∧
f . (

∧
i . 0 ≤ f i) =⇒ (

∫
+i . f i ∂count-space I) = (

∑
n. f (from-nat-into

I n))
by (simp add : nn-integral-bij-count-space[symmetric, OF ∗] nn-integral-count-space-nat)
show ?thesis

by (simp add : ∗∗ nn-integral-suminf from-nat-into)
qed

lemma emeasure-UN-countable:
assumes sets[measurable]:

∧
i . i ∈ I =⇒ X i ∈ sets M and I [simp]: countable I

assumes disj : disjoint-family-on X I
shows emeasure M (UNION I X) = (

∫
+i . emeasure M (X i) ∂count-space I)

proof −
have eq :

∧
x . indicator (UNION I X) x =

∫
+ i . indicator (X i) x ∂count-space

I
proof cases

fix x assume x : x ∈ UNION I X
then obtain j where j : x ∈ X j j ∈ I

by auto
with disj have

∧
i . i ∈ I =⇒ indicator (X i) x = (indicator {j} i ::ennreal)

by (auto simp: disjoint-family-on-def split : split-indicator)
with x j show ?thesis x

by (simp cong : nn-integral-cong-simp)
qed (auto simp: nn-integral-0-iff-AE)

note sets.countable-UN ′[unfolded subset-eq , measurable]
have emeasure M (UNION I X) = (

∫
+x . indicator (UNION I X) x ∂M)

by simp
also have . . . = (

∫
+i .

∫
+x . indicator (X i) x ∂M ∂count-space I)

by (simp add : eq nn-integral-count-space-nn-integral)
finally show ?thesis

by (simp cong : nn-integral-cong-simp)
qed

lemma emeasure-countable-singleton:
assumes sets:

∧
x . x ∈ X =⇒ {x} ∈ sets M and X : countable X

shows emeasure M X = (
∫

+x . emeasure M {x} ∂count-space X)
proof −

have emeasure M (
⋃

i∈X . {i}) = (
∫

+x . emeasure M {x} ∂count-space X)
using assms by (intro emeasure-UN-countable) (auto simp: disjoint-family-on-def)
also have (

⋃
i∈X . {i}) = X by auto

THEORY “Nonnegative-Lebesgue-Integration” 208

finally show ?thesis .
qed

lemma measure-eqI-countable:
assumes [simp]: sets M = Pow A sets N = Pow A and A: countable A
assumes eq :

∧
a. a ∈ A =⇒ emeasure M {a} = emeasure N {a}

shows M = N
proof (rule measure-eqI)

fix X assume X ∈ sets M
then have X : X ⊆ A by auto
moreover with A have countable X by (auto dest : countable-subset)
ultimately have

emeasure M X = (
∫

+a. emeasure M {a} ∂count-space X)
emeasure N X = (

∫
+a. emeasure N {a} ∂count-space X)

by (auto intro!: emeasure-countable-singleton)
moreover have (

∫
+a. emeasure M {a} ∂count-space X) = (

∫
+a. emeasure N

{a} ∂count-space X)
using X by (intro nn-integral-cong eq) auto

ultimately show emeasure M X = emeasure N X
by simp

qed simp

lemma measure-eqI-countable-AE :
assumes [simp]: sets M = UNIV sets N = UNIV
assumes ae: AE x in M . x ∈ Ω AE x in N . x ∈ Ω and [simp]: countable Ω
assumes eq :

∧
x . x ∈ Ω =⇒ emeasure M {x} = emeasure N {x}

shows M = N
proof (rule measure-eqI)

fix A
have emeasure N A = emeasure N {x∈Ω. x ∈ A}

using ae by (intro emeasure-eq-AE) auto
also have . . . = (

∫
+x . emeasure N {x} ∂count-space {x∈Ω. x ∈ A})

by (intro emeasure-countable-singleton) auto
also have . . . = (

∫
+x . emeasure M {x} ∂count-space {x∈Ω. x ∈ A})

by (intro nn-integral-cong eq [symmetric]) auto
also have . . . = emeasure M {x∈Ω. x ∈ A}

by (intro emeasure-countable-singleton[symmetric]) auto
also have . . . = emeasure M A

using ae by (intro emeasure-eq-AE) auto
finally show emeasure M A = emeasure N A ..

qed simp

lemma nn-integral-monotone-convergence-SUP-nat :
fixes f :: ′a ⇒ nat ⇒ ennreal
assumes chain: Complete-Partial-Order .chain op ≤ (f ‘ Y)
and nonempty : Y 6= {}
shows (

∫
+ x . (SUP i :Y . f i x) ∂count-space UNIV) = (SUP i :Y . (

∫
+ x . f i x

∂count-space UNIV))
(is ?lhs = ?rhs is integralN ?M - = -)

THEORY “Nonnegative-Lebesgue-Integration” 209

proof (rule order-class.order .antisym)
show ?rhs ≤ ?lhs

by (auto intro!: SUP-least SUP-upper nn-integral-mono)
next

have ∃ g . incseq g ∧ range g ⊆ (λi . f i x) ‘ Y ∧ (SUP i :Y . f i x) = (SUP i . g
i) for x

by (rule ennreal-Sup-countable-SUP) (simp add : nonempty)
then obtain g where incseq :

∧
x . incseq (g x)

and range:
∧

x . range (g x) ⊆ (λi . f i x) ‘ Y
and sup:

∧
x . (SUP i :Y . f i x) = (SUP i . g x i) by moura

from incseq have incseq ′: incseq (λi x . g x i)
by(blast intro: incseq-SucI le-funI dest : incseq-SucD)

have ?lhs =
∫

+ x . (SUP i . g x i) ∂?M by(simp add : sup)
also have . . . = (SUP i .

∫
+ x . g x i ∂?M) using incseq ′

by(rule nn-integral-monotone-convergence-SUP) simp
also have . . . ≤ (SUP i :Y .

∫
+ x . f i x ∂?M)

proof(rule SUP-least)
fix n
have

∧
x . ∃ i . g x n = f i x ∧ i ∈ Y using range by blast

then obtain I where I :
∧

x . g x n = f (I x) x
∧

x . I x ∈ Y by moura

have (
∫

+ x . g x n ∂count-space UNIV) = (
∑

x . g x n)
by(rule nn-integral-count-space-nat)

also have . . . = (SUP m.
∑

x<m. g x n)
by(rule suminf-eq-SUP)

also have . . . ≤ (SUP i :Y .
∫

+ x . f i x ∂?M)
proof(rule SUP-mono)

fix m
show ∃m ′∈Y . (

∑
x<m. g x n) ≤ (

∫
+ x . f m ′ x ∂?M)

proof(cases m > 0)
case False
thus ?thesis using nonempty by auto

next
case True
let ?Y = I ‘ {..<m}
have f ‘ ?Y ⊆ f ‘ Y using I by auto

with chain have chain ′: Complete-Partial-Order .chain op ≤ (f ‘ ?Y) by(rule
chain-subset)

hence Sup (f ‘ ?Y) ∈ f ‘ ?Y
by(rule ccpo-class.in-chain-finite)(auto simp add : True lessThan-empty-iff)
then obtain m ′ where m ′ < m and m ′: (SUP i :?Y . f i) = f (I m ′) by

auto
have I m ′ ∈ Y using I by blast
have (

∑
x<m. g x n) ≤ (

∑
x<m. f (I m ′) x)

proof(rule setsum-mono)
fix x
assume x ∈ {..<m}
hence x < m by simp

THEORY “Nonnegative-Lebesgue-Integration” 210

have g x n = f (I x) x by(simp add : I)
also have . . . ≤ (SUP i :?Y . f i) x unfolding Sup-fun-def image-image

using 〈x ∈ {..<m}〉 by (rule Sup-upper [OF imageI])
also have . . . = f (I m ′) x unfolding m ′ by simp
finally show g x n ≤ f (I m ′) x .

qed
also have . . . ≤ (SUP m. (

∑
x<m. f (I m ′) x))

by(rule SUP-upper) simp
also have . . . = (

∑
x . f (I m ′) x)

by(rule suminf-eq-SUP [symmetric])
also have . . . = (

∫
+ x . f (I m ′) x ∂?M)

by(rule nn-integral-count-space-nat [symmetric])
finally show ?thesis using 〈I m ′ ∈ Y 〉 by blast

qed
qed
finally show (

∫
+ x . g x n ∂count-space UNIV) ≤

qed
finally show ?lhs ≤ ?rhs .

qed

lemma power-series-tendsto-at-left :
assumes nonneg :

∧
i . 0 ≤ f i and summable:

∧
z . 0 ≤ z =⇒ z < 1 =⇒ summable

(λn. f n ∗ zˆn)
shows ((λz . ennreal (

∑
n. f n ∗ zˆn)) −−−→ (

∑
n. ennreal (f n))) (at-left

(1 ::real))
proof (intro tendsto-at-left-sequentially)

show 0 < (1 ::real) by simp
fix S :: nat ⇒ real assume S :

∧
n. S n < 1

∧
n. 0 < S n S −−−−→ 1 incseq S

then have S-nonneg :
∧

i . 0 ≤ S i by (auto intro: less-imp-le)

have (λi . (
∫

+n. f n ∗ S iˆn ∂count-space UNIV)) −−−−→ (
∫

+n. ennreal (f n)
∂count-space UNIV)

proof (rule nn-integral-LIMSEQ)
show incseq (λi n. ennreal (f n ∗ S iˆn))

using S by (auto intro!: mult-mono power-mono nonneg ennreal-leI
simp: incseq-def le-fun-def less-imp-le)

fix n have (λi . ennreal (f n ∗ S iˆn)) −−−−→ ennreal (f n ∗ 1ˆn)
by (intro tendsto-intros tendsto-ennrealI S)

then show (λi . ennreal (f n ∗ S iˆn)) −−−−→ ennreal (f n)
by simp

qed (auto simp: S-nonneg intro!: mult-nonneg-nonneg nonneg)
also have (λi . (

∫
+n. f n ∗ S iˆn ∂count-space UNIV)) = (λi .

∑
n. f n ∗ S iˆn)

by (subst nn-integral-count-space-nat)
(intro ext suminf-ennreal2 mult-nonneg-nonneg nonneg S-nonneg

zero-le-power summable S)+
also have (

∫
+n. ennreal (f n) ∂count-space UNIV) = (

∑
n. ennreal (f n))

by (simp add : nn-integral-count-space-nat nonneg)
finally show (λn. ennreal (

∑
na. f na ∗ S n ˆ na)) −−−−→ (

∑
n. ennreal (f n))

.

THEORY “Nonnegative-Lebesgue-Integration” 211

qed

5.4.3 Measures with Restricted Space

lemma simple-function-restrict-space-ennreal :
fixes f :: ′a ⇒ ennreal
assumes Ω ∩ space M ∈ sets M
shows simple-function (restrict-space M Ω) f ←→ simple-function M (λx . f x ∗

indicator Ω x)
proof −
{ assume finite (f ‘ space (restrict-space M Ω))

then have finite (f ‘ space (restrict-space M Ω) ∪ {0}) by simp
then have finite ((λx . f x ∗ indicator Ω x) ‘ space M)
by (rule rev-finite-subset) (auto split : split-indicator simp: space-restrict-space)

}
moreover
{ assume finite ((λx . f x ∗ indicator Ω x) ‘ space M)

then have finite (f ‘ space (restrict-space M Ω))
by (rule rev-finite-subset) (auto split : split-indicator simp: space-restrict-space)

}
ultimately show ?thesis

unfolding
simple-function-iff-borel-measurable borel-measurable-restrict-space-iff-ennreal [OF

assms]
by auto

qed

lemma simple-function-restrict-space:
fixes f :: ′a ⇒ ′b::real-normed-vector
assumes Ω ∩ space M ∈ sets M
shows simple-function (restrict-space M Ω) f ←→ simple-function M (λx . indi-

cator Ω x ∗R f x)
proof −
{ assume finite (f ‘ space (restrict-space M Ω))

then have finite (f ‘ space (restrict-space M Ω) ∪ {0}) by simp
then have finite ((λx . indicator Ω x ∗R f x) ‘ space M)
by (rule rev-finite-subset) (auto split : split-indicator simp: space-restrict-space)

}
moreover
{ assume finite ((λx . indicator Ω x ∗R f x) ‘ space M)

then have finite (f ‘ space (restrict-space M Ω))
by (rule rev-finite-subset) (auto split : split-indicator simp: space-restrict-space)

}
ultimately show ?thesis

unfolding simple-function-iff-borel-measurable
borel-measurable-restrict-space-iff [OF assms]

by auto
qed

THEORY “Nonnegative-Lebesgue-Integration” 212

lemma simple-integral-restrict-space:
assumes Ω: Ω ∩ space M ∈ sets M simple-function (restrict-space M Ω) f
shows simple-integral (restrict-space M Ω) f = simple-integral M (λx . f x ∗

indicator Ω x)
using simple-function-restrict-space-ennreal [THEN iffD1 , OF Ω, THEN simple-functionD(1)]
by (auto simp add : space-restrict-space emeasure-restrict-space[OF Ω(1)] le-infI2

simple-integral-def
split : split-indicator split-indicator-asm

intro!: setsum.mono-neutral-cong-left ennreal-mult-left-cong arg-cong2 [where
f =emeasure])

lemma nn-integral-restrict-space:
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows nn-integral (restrict-space M Ω) f = nn-integral M (λx . f x ∗ indicator

Ω x)
proof −

let ?R = restrict-space M Ω and ?X = λM f . {s. simple-function M s ∧ s ≤ f
∧ (∀ x . s x < top)}

have integralS ?R ‘ ?X ?R f = integralS M ‘ ?X M (λx . f x ∗ indicator Ω x)
proof (safe intro!: image-eqI)

fix s assume s: simple-function ?R s s ≤ f ∀ x . s x < top
from s show integralS (restrict-space M Ω) s = integralS M (λx . s x ∗ indicator

Ω x)
by (intro simple-integral-restrict-space) auto

from s show simple-function M (λx . s x ∗ indicator Ω x)
by (simp add : simple-function-restrict-space-ennreal)

from s show (λx . s x ∗ indicator Ω x) ≤ (λx . f x ∗ indicator Ω x)∧
x . s x ∗ indicator Ω x < top

by (auto split : split-indicator simp: le-fun-def image-subset-iff)
next

fix s assume s: simple-function M s s ≤ (λx . f x ∗ indicator Ω x) ∀ x . s x <
top

then have simple-function M (λx . s x ∗ indicator (Ω ∩ space M) x) (is ?s ′)
by (intro simple-function-mult simple-function-indicator) auto

also have ?s ′←→ simple-function M (λx . s x ∗ indicator Ω x)
by (rule simple-function-cong) (auto split : split-indicator)

finally show sf : simple-function (restrict-space M Ω) s
by (simp add : simple-function-restrict-space-ennreal)

from s have s-eq : s = (λx . s x ∗ indicator Ω x)
by (auto simp add : fun-eq-iff le-fun-def image-subset-iff

split : split-indicator split-indicator-asm
intro: antisym)

show integralS M s = integralS (restrict-space M Ω) s
by (subst s-eq) (rule simple-integral-restrict-space[symmetric, OF Ω sf])

show
∧

x . s x < top
using s by (auto simp: image-subset-iff)

from s show s ≤ f

THEORY “Nonnegative-Lebesgue-Integration” 213

by (subst s-eq) (auto simp: image-subset-iff le-fun-def split : split-indicator
split-indicator-asm)

qed
then show ?thesis

unfolding nn-integral-def-finite by (simp cong del : strong-SUP-cong)
qed

lemma nn-integral-count-space-indicator :
assumes NO-MATCH (UNIV :: ′a set) (X :: ′a set)
shows (

∫
+x . f x ∂count-space X) = (

∫
+x . f x ∗ indicator X x ∂count-space

UNIV)
by (simp add : nn-integral-restrict-space[symmetric] restrict-count-space)

lemma nn-integral-count-space-eq :
(
∧

x . x ∈ A − B =⇒ f x = 0) =⇒ (
∧

x . x ∈ B − A =⇒ f x = 0) =⇒
(
∫

+x . f x ∂count-space A) = (
∫

+x . f x ∂count-space B)
by (auto simp: nn-integral-count-space-indicator intro!: nn-integral-cong split :

split-indicator)

lemma nn-integral-ge-point :
assumes x ∈ A
shows p x ≤

∫
+ x . p x ∂count-space A

proof −
from assms have p x ≤

∫
+ x . p x ∂count-space {x}

by(auto simp add : nn-integral-count-space-finite max-def)
also have . . . =

∫
+ x ′. p x ′ ∗ indicator {x} x ′ ∂count-space A

using assms by(auto simp add : nn-integral-count-space-indicator indicator-def
intro!: nn-integral-cong)

also have . . . ≤
∫

+ x . p x ∂count-space A
by(rule nn-integral-mono)(simp add : indicator-def)

finally show ?thesis .
qed

5.4.4 Measure spaces with an associated density

definition density :: ′a measure ⇒ (′a ⇒ ennreal) ⇒ ′a measure where
density M f = measure-of (space M) (sets M) (λA.

∫
+ x . f x ∗ indicator A x

∂M)

lemma
shows sets-density [simp, measurable-cong]: sets (density M f) = sets M

and space-density [simp]: space (density M f) = space M
by (auto simp: density-def)

lemma space-density-imp[measurable-dest]:∧
x M f . x ∈ space (density M f) =⇒ x ∈ space M by auto

lemma

THEORY “Nonnegative-Lebesgue-Integration” 214

shows measurable-density-eq1 [simp]: g ∈ measurable (density Mg f) Mg ′←→ g
∈ measurable Mg Mg ′

and measurable-density-eq2 [simp]: h ∈ measurable Mh (density Mh ′ f) ←→ h
∈ measurable Mh Mh ′

and simple-function-density-eq [simp]: simple-function (density Mu f) u ←→
simple-function Mu u

unfolding measurable-def simple-function-def by simp-all

lemma density-cong : f ∈ borel-measurable M =⇒ f ′ ∈ borel-measurable M =⇒
(AE x in M . f x = f ′ x) =⇒ density M f = density M f ′

unfolding density-def by (auto intro!: measure-of-eq nn-integral-cong-AE sets.space-closed)

lemma emeasure-density :
assumes f [measurable]: f ∈ borel-measurable M and A[measurable]: A ∈ sets M
shows emeasure (density M f) A = (

∫
+ x . f x ∗ indicator A x ∂M)

(is - = ?µ A)
unfolding density-def

proof (rule emeasure-measure-of-sigma)
show sigma-algebra (space M) (sets M) ..
show positive (sets M) ?µ

using f by (auto simp: positive-def)
show countably-additive (sets M) ?µ
proof (intro countably-additiveI)

fix A :: nat ⇒ ′a set assume range A ⊆ sets M
then have

∧
i . A i ∈ sets M by auto

then have ∗:
∧

i . (λx . f x ∗ indicator (A i) x) ∈ borel-measurable M
by auto

assume disj : disjoint-family A
then have (

∑
n. ?µ (A n)) = (

∫
+ x . (

∑
n. f x ∗ indicator (A n) x) ∂M)

using f ∗ by (subst nn-integral-suminf) auto
also have (

∫
+ x . (

∑
n. f x ∗ indicator (A n) x) ∂M) = (

∫
+ x . f x ∗ (

∑
n.

indicator (A n) x) ∂M)
using f by (auto intro!: ennreal-suminf-cmult nn-integral-cong-AE)

also have . . . = (
∫

+ x . f x ∗ indicator (
⋃

n. A n) x ∂M)
unfolding suminf-indicator [OF disj] ..

finally show (
∑

i .
∫

+ x . f x ∗ indicator (A i) x ∂M) =
∫

+ x . f x ∗ indicator
(
⋃

i . A i) x ∂M .
qed

qed fact

lemma null-sets-density-iff :
assumes f : f ∈ borel-measurable M
shows A ∈ null-sets (density M f) ←→ A ∈ sets M ∧ (AE x in M . x ∈ A −→

f x = 0)
proof −
{ assume A ∈ sets M

have (
∫

+x . f x ∗ indicator A x ∂M) = 0 ←→ emeasure M {x ∈ space M . f x
∗ indicator A x 6= 0} = 0

using f 〈A ∈ sets M 〉 by (intro nn-integral-0-iff) auto

THEORY “Nonnegative-Lebesgue-Integration” 215

also have . . . ←→ (AE x in M . f x ∗ indicator A x = 0)
using f 〈A ∈ sets M 〉 by (intro AE-iff-measurable[OF - refl , symmetric]) auto

also have (AE x in M . f x ∗ indicator A x = 0) ←→ (AE x in M . x ∈ A −→
f x ≤ 0)

by (auto simp add : indicator-def max-def split : if-split-asm)
finally have (

∫
+x . f x ∗ indicator A x ∂M) = 0 ←→ (AE x in M . x ∈ A −→

f x ≤ 0) . }
with f show ?thesis

by (simp add : null-sets-def emeasure-density cong : conj-cong)
qed

lemma AE-density :
assumes f : f ∈ borel-measurable M
shows (AE x in density M f . P x) ←→ (AE x in M . 0 < f x −→ P x)

proof
assume AE x in density M f . P x
with f obtain N where {x ∈ space M . ¬ P x} ⊆ N N ∈ sets M and ae: AE

x in M . x ∈ N −→ f x = 0
by (auto simp: eventually-ae-filter null-sets-density-iff)

then have AE x in M . x /∈ N −→ P x by auto
with ae show AE x in M . 0 < f x −→ P x

by (rule eventually-elim2) auto
next

fix N assume ae: AE x in M . 0 < f x −→ P x
then obtain N where {x ∈ space M . ¬ (0 < f x −→ P x)} ⊆ N N ∈ null-sets

M
by (auto simp: eventually-ae-filter)

then have ∗: {x ∈ space (density M f). ¬ P x} ⊆ N ∪ {x∈space M . f x = 0}
N ∪ {x∈space M . f x = 0} ∈ sets M and ae2 : AE x in M . x /∈ N
using f by (auto simp: subset-eq zero-less-iff-neq-zero intro!: AE-not-in)

show AE x in density M f . P x
using ae2
unfolding eventually-ae-filter [of - density M f] Bex-def null-sets-density-iff [OF

f]
by (intro exI [of - N ∪ {x∈space M . f x = 0}] conjI ∗) (auto elim: eventually-elim2)

qed

lemma nn-integral-density :
assumes f : f ∈ borel-measurable M
assumes g : g ∈ borel-measurable M
shows integralN (density M f) g = (

∫
+ x . f x ∗ g x ∂M)

using g proof induct
case (cong u v)
then show ?case

apply (subst nn-integral-cong [OF cong(3)])
apply (simp-all cong : nn-integral-cong)
done

next
case (set A) then show ?case

THEORY “Nonnegative-Lebesgue-Integration” 216

by (simp add : emeasure-density f)
next

case (mult u c)
moreover have

∧
x . f x ∗ (c ∗ u x) = c ∗ (f x ∗ u x) by (simp add : field-simps)

ultimately show ?case
using f by (simp add : nn-integral-cmult)

next
case (add u v)
then have

∧
x . f x ∗ (v x + u x) = f x ∗ v x + f x ∗ u x

by (simp add : distrib-left)
with add f show ?case

by (auto simp add : nn-integral-add intro!: nn-integral-add [symmetric])
next

case (seq U)
have eq : AE x in M . f x ∗ (SUP i . U i x) = (SUP i . f x ∗ U i x)

by eventually-elim (simp add : SUP-mult-left-ennreal seq)
from seq f show ?case

apply (simp add : nn-integral-monotone-convergence-SUP)
apply (subst nn-integral-cong-AE [OF eq])
apply (subst nn-integral-monotone-convergence-SUP-AE)
apply (auto simp: incseq-def le-fun-def intro!: mult-left-mono)
done

qed

lemma density-distr :
assumes [measurable]: f ∈ borel-measurable N X ∈ measurable M N
shows density (distr M N X) f = distr (density M (λx . f (X x))) N X
by (intro measure-eqI)

(auto simp add : emeasure-density nn-integral-distr emeasure-distr
split : split-indicator intro!: nn-integral-cong)

lemma emeasure-restricted :
assumes S : S ∈ sets M and X : X ∈ sets M
shows emeasure (density M (indicator S)) X = emeasure M (S ∩ X)

proof −
have emeasure (density M (indicator S)) X = (

∫
+x . indicator S x ∗ indicator

X x ∂M)
using S X by (simp add : emeasure-density)

also have . . . = (
∫

+x . indicator (S ∩ X) x ∂M)
by (auto intro!: nn-integral-cong simp: indicator-def)

also have . . . = emeasure M (S ∩ X)
using S X by (simp add : sets.Int)

finally show ?thesis .
qed

lemma measure-restricted :
S ∈ sets M =⇒ X ∈ sets M =⇒ measure (density M (indicator S)) X = measure

M (S ∩ X)
by (simp add : emeasure-restricted measure-def)

THEORY “Nonnegative-Lebesgue-Integration” 217

lemma (in finite-measure) finite-measure-restricted :
S ∈ sets M =⇒ finite-measure (density M (indicator S))
by standard (simp add : emeasure-restricted)

lemma emeasure-density-const :
A ∈ sets M =⇒ emeasure (density M (λ-. c)) A = c ∗ emeasure M A
by (auto simp: nn-integral-cmult-indicator emeasure-density)

lemma measure-density-const :
A ∈ sets M =⇒ c 6= ∞ =⇒ measure (density M (λ-. c)) A = enn2real c ∗

measure M A
by (auto simp: emeasure-density-const measure-def enn2real-mult)

lemma density-density-eq :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒
density (density M f) g = density M (λx . f x ∗ g x)

by (auto intro!: measure-eqI simp: emeasure-density nn-integral-density ac-simps)

lemma distr-density-distr :
assumes T : T ∈ measurable M M ′ and T ′: T ′ ∈ measurable M ′ M

and inv : ∀ x∈space M . T ′ (T x) = x
assumes f : f ∈ borel-measurable M ′

shows distr (density (distr M M ′ T) f) M T ′ = density M (f ◦ T) (is ?R =
?L)
proof (rule measure-eqI)

fix A assume A: A ∈ sets ?R
{ fix x assume x ∈ space M

with sets.sets-into-space[OF A]
have indicator (T ′ −‘ A ∩ space M ′) (T x) = (indicator A x :: ennreal)

using T inv by (auto simp: indicator-def measurable-space) }
with A T T ′ f show emeasure ?R A = emeasure ?L A

by (simp add : measurable-comp emeasure-density emeasure-distr
nn-integral-distr measurable-sets cong : nn-integral-cong)

qed simp

lemma density-density-divide:
fixes f g :: ′a ⇒ real
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x
assumes g : g ∈ borel-measurable M AE x in M . 0 ≤ g x
assumes ac: AE x in M . f x = 0 −→ g x = 0
shows density (density M f) (λx . g x / f x) = density M g

proof −
have density M g = density M (λx . ennreal (f x) ∗ ennreal (g x / f x))
using f g ac by (auto intro!: density-cong measurable-If simp: ennreal-mult [symmetric])
then show ?thesis

using f g by (subst density-density-eq) auto
qed

THEORY “Nonnegative-Lebesgue-Integration” 218

lemma density-1 : density M (λ-. 1) = M
by (intro measure-eqI) (auto simp: emeasure-density)

lemma emeasure-density-add :
assumes X : X ∈ sets M
assumes Mf [measurable]: f ∈ borel-measurable M
assumes Mg [measurable]: g ∈ borel-measurable M
shows emeasure (density M f) X + emeasure (density M g) X =

emeasure (density M (λx . f x + g x)) X
using assms
apply (subst (1 2 3) emeasure-density , simp-all) []
apply (subst nn-integral-add [symmetric], simp-all) []
apply (intro nn-integral-cong , simp split : split-indicator)
done

5.4.5 Point measure

definition point-measure :: ′a set ⇒ (′a ⇒ ennreal) ⇒ ′a measure where
point-measure A f = density (count-space A) f

lemma
shows space-point-measure: space (point-measure A f) = A

and sets-point-measure: sets (point-measure A f) = Pow A
by (auto simp: point-measure-def)

lemma sets-point-measure-count-space[measurable-cong]: sets (point-measure A f)
= sets (count-space A)

by (simp add : sets-point-measure)

lemma measurable-point-measure-eq1 [simp]:
g ∈ measurable (point-measure A f) M ←→ g ∈ A → space M
unfolding point-measure-def by simp

lemma measurable-point-measure-eq2-finite[simp]:
finite A =⇒
g ∈ measurable M (point-measure A f) ←→
(g ∈ space M → A ∧ (∀ a∈A. g −‘ {a} ∩ space M ∈ sets M))

unfolding point-measure-def by (simp add : measurable-count-space-eq2)

lemma simple-function-point-measure[simp]:
simple-function (point-measure A f) g ←→ finite (g ‘ A)
by (simp add : point-measure-def)

lemma emeasure-point-measure:
assumes A: finite {a∈X . 0 < f a} X ⊆ A
shows emeasure (point-measure A f) X = (

∑
a|a∈X ∧ 0 < f a. f a)

proof −
have {a. (a ∈ X −→ a ∈ A ∧ 0 < f a) ∧ a ∈ X } = {a∈X . 0 < f a}

using 〈X ⊆ A〉 by auto

THEORY “Nonnegative-Lebesgue-Integration” 219

with A show ?thesis
by (simp add : emeasure-density nn-integral-count-space point-measure-def indicator-def)

qed

lemma emeasure-point-measure-finite:
finite A =⇒ X ⊆ A =⇒ emeasure (point-measure A f) X = (

∑
a∈X . f a)

by (subst emeasure-point-measure) (auto dest : finite-subset intro!: setsum.mono-neutral-left
simp: less-le)

lemma emeasure-point-measure-finite2 :
X ⊆ A =⇒ finite X =⇒ emeasure (point-measure A f) X = (

∑
a∈X . f a)

by (subst emeasure-point-measure)
(auto dest : finite-subset intro!: setsum.mono-neutral-left simp: less-le)

lemma null-sets-point-measure-iff :
X ∈ null-sets (point-measure A f) ←→ X ⊆ A ∧ (∀ x∈X . f x = 0)

by (auto simp: AE-count-space null-sets-density-iff point-measure-def)

lemma AE-point-measure:
(AE x in point-measure A f . P x) ←→ (∀ x∈A. 0 < f x −→ P x)
unfolding point-measure-def
by (subst AE-density) (auto simp: AE-density AE-count-space point-measure-def)

lemma nn-integral-point-measure:
finite {a∈A. 0 < f a ∧ 0 < g a} =⇒

integralN (point-measure A f) g = (
∑

a|a∈A ∧ 0 < f a ∧ 0 < g a. f a ∗ g a)
unfolding point-measure-def
by (subst nn-integral-density)

(simp-all add : nn-integral-density nn-integral-count-space ennreal-zero-less-mult-iff)

lemma nn-integral-point-measure-finite:
finite A =⇒ integralN (point-measure A f) g = (

∑
a∈A. f a ∗ g a)

by (subst nn-integral-point-measure) (auto intro!: setsum.mono-neutral-left simp:
less-le)

5.4.6 Uniform measure

definition uniform-measure M A = density M (λx . indicator A x / emeasure M
A)

lemma
shows sets-uniform-measure[simp, measurable-cong]: sets (uniform-measure M

A) = sets M
and space-uniform-measure[simp]: space (uniform-measure M A) = space M

by (auto simp: uniform-measure-def)

lemma emeasure-uniform-measure[simp]:
assumes A: A ∈ sets M and B : B ∈ sets M
shows emeasure (uniform-measure M A) B = emeasure M (A ∩ B) / emeasure

THEORY “Nonnegative-Lebesgue-Integration” 220

M A
proof −

from A B have emeasure (uniform-measure M A) B = (
∫

+x . (1 / emeasure M
A) ∗ indicator (A ∩ B) x ∂M)

by (auto simp add : uniform-measure-def emeasure-density divide-ennreal-def
split : split-indicator

intro!: nn-integral-cong)
also have . . . = emeasure M (A ∩ B) / emeasure M A

using A B
by (subst nn-integral-cmult-indicator) (simp-all add : sets.Int divide-ennreal-def

mult .commute)
finally show ?thesis .

qed

lemma measure-uniform-measure[simp]:
assumes A: emeasure M A 6= 0 emeasure M A 6= ∞ and B : B ∈ sets M
shows measure (uniform-measure M A) B = measure M (A ∩ B) / measure M

A
using emeasure-uniform-measure[OF emeasure-neq-0-sets[OF A(1)] B] A
by (cases emeasure M A emeasure M (A ∩ B) rule: ennreal2-cases)

(simp-all add : measure-def divide-ennreal top-ennreal .rep-eq top-ereal-def ennreal-top-divide)

lemma AE-uniform-measureI :
A ∈ sets M =⇒ (AE x in M . x ∈ A −→ P x) =⇒ (AE x in uniform-measure M

A. P x)
unfolding uniform-measure-def by (auto simp: AE-density divide-ennreal-def)

lemma emeasure-uniform-measure-1 :
emeasure M S 6= 0 =⇒ emeasure M S 6= ∞ =⇒ emeasure (uniform-measure M

S) S = 1
by (subst emeasure-uniform-measure)

(simp-all add : emeasure-neq-0-sets emeasure-eq-ennreal-measure divide-ennreal
zero-less-iff-neq-zero[symmetric])

lemma nn-integral-uniform-measure:
assumes f [measurable]: f ∈ borel-measurable M and S [measurable]: S ∈ sets M
shows (

∫
+x . f x ∂uniform-measure M S) = (

∫
+x . f x ∗ indicator S x ∂M) /

emeasure M S
proof −
{ assume emeasure M S = ∞

then have ?thesis
by (simp add : uniform-measure-def nn-integral-density f) }

moreover
{ assume [simp]: emeasure M S = 0

then have ae: AE x in M . x /∈ S
using sets.sets-into-space[OF S]

by (subst AE-iff-measurable[OF - refl]) (simp-all add : subset-eq cong : rev-conj-cong)
from ae have (

∫
+ x . indicator S x / 0 ∗ f x ∂M) = 0

by (subst nn-integral-0-iff-AE) auto

THEORY “Nonnegative-Lebesgue-Integration” 221

moreover from ae have (
∫

+ x . f x ∗ indicator S x ∂M) = 0
by (subst nn-integral-0-iff-AE) auto

ultimately have ?thesis
by (simp add : uniform-measure-def nn-integral-density f) }

moreover have emeasure M S 6= 0 =⇒ emeasure M S 6= ∞ =⇒ ?thesis
unfolding uniform-measure-def
by (subst nn-integral-density)
(auto simp: ennreal-times-divide f nn-integral-divide[symmetric] mult .commute)

ultimately show ?thesis by blast
qed

lemma AE-uniform-measure:
assumes emeasure M A 6= 0 emeasure M A < ∞
shows (AE x in uniform-measure M A. P x) ←→ (AE x in M . x ∈ A −→ P x)

proof −
have A ∈ sets M

using 〈emeasure M A 6= 0 〉 by (metis emeasure-notin-sets)
moreover have

∧
x . 0 < indicator A x / emeasure M A ←→ x ∈ A

using assms
by (cases emeasure M A) (auto split : split-indicator simp: ennreal-zero-less-divide)
ultimately show ?thesis

unfolding uniform-measure-def by (simp add : AE-density)
qed

5.4.7 Null measure

lemma null-measure-eq-density : null-measure M = density M (λ-. 0)
by (intro measure-eqI) (simp-all add : emeasure-density)

lemma nn-integral-null-measure[simp]: (
∫

+x . f x ∂null-measure M) = 0
by (auto simp add : nn-integral-def simple-integral-def SUP-constant bot-ennreal-def

le-fun-def
intro!: exI [of - λx . 0])

lemma density-null-measure[simp]: density (null-measure M) f = null-measure M
proof (intro measure-eqI)

fix A show emeasure (density (null-measure M) f) A = emeasure (null-measure
M) A

by (simp add : density-def) (simp only : null-measure-def [symmetric] emeasure-null-measure)
qed simp

5.4.8 Uniform count measure

definition uniform-count-measure A = point-measure A (λx . 1 / card A)

lemma
shows space-uniform-count-measure: space (uniform-count-measure A) = A

and sets-uniform-count-measure: sets (uniform-count-measure A) = Pow A
unfolding uniform-count-measure-def by (auto simp: space-point-measure

sets-point-measure)

THEORY “Nonnegative-Lebesgue-Integration” 222

lemma sets-uniform-count-measure-count-space[measurable-cong]:
sets (uniform-count-measure A) = sets (count-space A)
by (simp add : sets-uniform-count-measure)

lemma emeasure-uniform-count-measure:
finite A =⇒ X ⊆ A =⇒ emeasure (uniform-count-measure A) X = card X /

card A
by (simp add : emeasure-point-measure-finite uniform-count-measure-def divide-inverse

ennreal-mult
ennreal-of-nat-eq-real-of-nat)

lemma measure-uniform-count-measure:
finite A =⇒ X ⊆ A =⇒ measure (uniform-count-measure A) X = card X / card

A
by (simp add : emeasure-point-measure-finite uniform-count-measure-def measure-def

enn2real-mult)

lemma space-uniform-count-measure-empty-iff [simp]:
space (uniform-count-measure X) = {} ←→ X = {}

by(simp add : space-uniform-count-measure)

lemma sets-uniform-count-measure-eq-UNIV [simp]:
sets (uniform-count-measure UNIV) = UNIV ←→ True
UNIV = sets (uniform-count-measure UNIV) ←→ True

by(simp-all add : sets-uniform-count-measure)

5.4.9 Scaled measure

lemma nn-integral-scale-measure:
assumes f : f ∈ borel-measurable M
shows nn-integral (scale-measure r M) f = r ∗ nn-integral M f
using f

proof induction
case (cong f g)
thus ?case

by(simp add : cong .hyps space-scale-measure cong : nn-integral-cong-simp)
next

case (mult f c)
thus ?case

by(simp add : nn-integral-cmult max-def mult .assoc mult .left-commute)
next

case (add f g)
thus ?case

by(simp add : nn-integral-add distrib-left)
next

case (seq U)
thus ?case

by(simp add : nn-integral-monotone-convergence-SUP SUP-mult-left-ennreal)

THEORY “Binary-Product-Measure” 223

qed simp

end

6 Binary product measures

theory Binary-Product-Measure
imports Nonnegative-Lebesgue-Integration
begin

lemma Pair-vimage-times[simp]: Pair x −‘ (A × B) = (if x ∈ A then B else {})
by auto

lemma rev-Pair-vimage-times[simp]: (λx . (x , y)) −‘ (A × B) = (if y ∈ B then A
else {})

by auto

6.1 Binary products

definition pair-measure (infixr
⊗

M 80) where
A

⊗
M B = measure-of (space A × space B)
{a × b | a b. a ∈ sets A ∧ b ∈ sets B}
(λX .

∫
+x . (

∫
+y . indicator X (x ,y) ∂B) ∂A)

lemma pair-measure-closed : {a × b | a b. a ∈ sets A ∧ b ∈ sets B} ⊆ Pow (space
A × space B)

using sets.space-closed [of A] sets.space-closed [of B] by auto

lemma space-pair-measure:
space (A

⊗
M B) = space A × space B

unfolding pair-measure-def using pair-measure-closed [of A B]
by (rule space-measure-of)

lemma SIGMA-Collect-eq : (SIGMA x :space M . {y∈space N . P x y}) = {x∈space
(M

⊗
M N). P (fst x) (snd x)}

by (auto simp: space-pair-measure)

lemma sets-pair-measure:
sets (A

⊗
M B) = sigma-sets (space A × space B) {a × b | a b. a ∈ sets A ∧ b

∈ sets B}
unfolding pair-measure-def using pair-measure-closed [of A B]
by (rule sets-measure-of)

lemma sets-pair-in-sets:
assumes N : space A × space B = space N
assumes

∧
a b. a ∈ sets A =⇒ b ∈ sets B =⇒ a × b ∈ sets N

shows sets (A
⊗

M B) ⊆ sets N
using assms by (auto intro!: sets.sigma-sets-subset simp: sets-pair-measure N)

THEORY “Binary-Product-Measure” 224

lemma sets-pair-measure-cong [measurable-cong , cong]:
sets M1 = sets M1 ′ =⇒ sets M2 = sets M2 ′ =⇒ sets (M1

⊗
M M2) = sets

(M1 ′
⊗

M M2 ′)
unfolding sets-pair-measure by (simp cong : sets-eq-imp-space-eq)

lemma pair-measureI [intro, simp, measurable]:
x ∈ sets A =⇒ y ∈ sets B =⇒ x × y ∈ sets (A

⊗
M B)

by (auto simp: sets-pair-measure)

lemma sets-Pair : {x} ∈ sets M1 =⇒ {y} ∈ sets M2 =⇒ {(x , y)} ∈ sets (M1⊗
M M2)

using pair-measureI [of {x} M1 {y} M2] by simp

lemma measurable-pair-measureI :
assumes 1 : f ∈ space M → space M1 × space M2
assumes 2 :

∧
A B . A ∈ sets M1 =⇒ B ∈ sets M2 =⇒ f −‘ (A × B) ∩ space

M ∈ sets M
shows f ∈ measurable M (M1

⊗
M M2)

unfolding pair-measure-def using 1 2
by (intro measurable-measure-of) (auto dest : sets.sets-into-space)

lemma measurable-split-replace[measurable (raw)]:
(λx . f x (fst (g x)) (snd (g x))) ∈ measurable M N =⇒ (λx . case-prod (f x) (g

x)) ∈ measurable M N
unfolding split-beta ′ .

lemma measurable-Pair [measurable (raw)]:
assumes f : f ∈ measurable M M1 and g : g ∈ measurable M M2
shows (λx . (f x , g x)) ∈ measurable M (M1

⊗
M M2)

proof (rule measurable-pair-measureI)
show (λx . (f x , g x)) ∈ space M → space M1 × space M2

using f g by (auto simp: measurable-def)
fix A B assume ∗: A ∈ sets M1 B ∈ sets M2
have (λx . (f x , g x)) −‘ (A × B) ∩ space M = (f −‘ A ∩ space M) ∩ (g −‘ B
∩ space M)

by auto
also have . . . ∈ sets M

by (rule sets.Int) (auto intro!: measurable-sets ∗ f g)
finally show (λx . (f x , g x)) −‘ (A × B) ∩ space M ∈ sets M .

qed

lemma measurable-fst [intro!, simp, measurable]: fst ∈ measurable (M1
⊗

M M2)
M1
by (auto simp: fst-vimage-eq-Times space-pair-measure sets.sets-into-space times-Int-times

measurable-def)

lemma measurable-snd [intro!, simp, measurable]: snd ∈ measurable (M1
⊗

M

M2) M2
by (auto simp: snd-vimage-eq-Times space-pair-measure sets.sets-into-space times-Int-times

THEORY “Binary-Product-Measure” 225

measurable-def)

lemma measurable-Pair-compose-split [measurable-dest]:
assumes f : case-prod f ∈ measurable (M1

⊗
M M2) N

assumes g : g ∈ measurable M M1 and h: h ∈ measurable M M2
shows (λx . f (g x) (h x)) ∈ measurable M N
using measurable-compose[OF measurable-Pair f , OF g h] by simp

lemma measurable-Pair1-compose[measurable-dest]:
assumes f : (λx . (f x , g x)) ∈ measurable M (M1

⊗
M M2)

assumes [measurable]: h ∈ measurable N M
shows (λx . f (h x)) ∈ measurable N M1
using measurable-compose[OF f measurable-fst] by simp

lemma measurable-Pair2-compose[measurable-dest]:
assumes f : (λx . (f x , g x)) ∈ measurable M (M1

⊗
M M2)

assumes [measurable]: h ∈ measurable N M
shows (λx . g (h x)) ∈ measurable N M2
using measurable-compose[OF f measurable-snd] by simp

lemma measurable-pair :
assumes (fst ◦ f) ∈ measurable M M1 (snd ◦ f) ∈ measurable M M2
shows f ∈ measurable M (M1

⊗
M M2)

using measurable-Pair [OF assms] by simp

lemma
assumes f [measurable]: f ∈ measurable M (N

⊗
M P)

shows measurable-fst ′: (λx . fst (f x)) ∈ measurable M N
and measurable-snd ′: (λx . snd (f x)) ∈ measurable M P

by simp-all

lemma
assumes f [measurable]: f ∈ measurable M N
shows measurable-fst ′′: (λx . f (fst x)) ∈ measurable (M

⊗
M P) N

and measurable-snd ′′: (λx . f (snd x)) ∈ measurable (P
⊗

M M) N
by simp-all

lemma sets-pair-eq-sets-fst-snd :
sets (A

⊗
M B) = sets (Sup-sigma {vimage-algebra (space A × space B) fst A,

vimage-algebra (space A × space B) snd B})
(is ?P = sets (Sup-sigma {?fst , ?snd}))

proof −
{ fix a b assume ab: a ∈ sets A b ∈ sets B

then have a × b = (fst −‘ a ∩ (space A × space B)) ∩ (snd −‘ b ∩ (space A
× space B))

by (auto dest : sets.sets-into-space)
also have . . . ∈ sets (Sup-sigma {?fst , ?snd})

using ab by (auto intro: in-Sup-sigma in-vimage-algebra)
finally have a × b ∈ sets (Sup-sigma {?fst , ?snd}) . }

THEORY “Binary-Product-Measure” 226

moreover have sets ?fst ⊆ sets (A
⊗

M B)
by (rule sets-image-in-sets) (auto simp: space-pair-measure[symmetric])

moreover have sets ?snd ⊆ sets (A
⊗

M B)
by (rule sets-image-in-sets) (auto simp: space-pair-measure)

ultimately show ?thesis
by (intro antisym[of sets A for A] sets-Sup-in-sets sets-pair-in-sets)

(auto simp add : space-Sup-sigma space-pair-measure)
qed

lemma measurable-pair-iff :
f ∈ measurable M (M1

⊗
M M2) ←→ (fst ◦ f) ∈ measurable M M1 ∧ (snd ◦

f) ∈ measurable M M2
by (auto intro: measurable-pair [of f M M1 M2])

lemma measurable-split-conv :
(λ(x , y). f x y) ∈ measurable A B ←→ (λx . f (fst x) (snd x)) ∈ measurable A B
by (intro arg-cong2 [where f =op ∈]) auto

lemma measurable-pair-swap ′: (λ(x ,y). (y , x)) ∈ measurable (M1
⊗

M M2) (M2⊗
M M1)

by (auto intro!: measurable-Pair simp: measurable-split-conv)

lemma measurable-pair-swap:
assumes f : f ∈ measurable (M1

⊗
M M2) M shows (λ(x ,y). f (y , x)) ∈

measurable (M2
⊗

M M1) M
using measurable-comp[OF measurable-Pair f] by (auto simp: measurable-split-conv

comp-def)

lemma measurable-pair-swap-iff :
f ∈ measurable (M2

⊗
M M1) M ←→ (λ(x ,y). f (y ,x)) ∈ measurable (M1

⊗
M

M2) M
by (auto dest : measurable-pair-swap)

lemma measurable-Pair1 ′: x ∈ space M1 =⇒ Pair x ∈ measurable M2 (M1
⊗

M

M2)
by simp

lemma sets-Pair1 [measurable (raw)]:
assumes A: A ∈ sets (M1

⊗
M M2) shows Pair x −‘ A ∈ sets M2

proof −
have Pair x −‘ A = (if x ∈ space M1 then Pair x −‘ A ∩ space M2 else {})

using A[THEN sets.sets-into-space] by (auto simp: space-pair-measure)
also have . . . ∈ sets M2

using A by (auto simp add : measurable-Pair1 ′ intro!: measurable-sets split :
if-split-asm)

finally show ?thesis .
qed

lemma measurable-Pair2 ′: y ∈ space M2 =⇒ (λx . (x , y)) ∈ measurable M1 (M1

THEORY “Binary-Product-Measure” 227

⊗
M M2)

by (auto intro!: measurable-Pair)

lemma sets-Pair2 : assumes A: A ∈ sets (M1
⊗

M M2) shows (λx . (x , y)) −‘
A ∈ sets M1
proof −

have (λx . (x , y)) −‘ A = (if y ∈ space M2 then (λx . (x , y)) −‘ A ∩ space M1
else {})

using A[THEN sets.sets-into-space] by (auto simp: space-pair-measure)
also have . . . ∈ sets M1

using A by (auto simp add : measurable-Pair2 ′ intro!: measurable-sets split :
if-split-asm)

finally show ?thesis .
qed

lemma measurable-Pair2 :
assumes f : f ∈ measurable (M1

⊗
M M2) M and x : x ∈ space M1

shows (λy . f (x , y)) ∈ measurable M2 M
using measurable-comp[OF measurable-Pair1 ′ f , OF x]
by (simp add : comp-def)

lemma measurable-Pair1 :
assumes f : f ∈ measurable (M1

⊗
M M2) M and y : y ∈ space M2

shows (λx . f (x , y)) ∈ measurable M1 M
using measurable-comp[OF measurable-Pair2 ′ f , OF y]
by (simp add : comp-def)

lemma Int-stable-pair-measure-generator : Int-stable {a × b | a b. a ∈ sets A ∧ b
∈ sets B}

unfolding Int-stable-def
by safe (auto simp add : times-Int-times)

lemma (in finite-measure) finite-measure-cut-measurable:
assumes [measurable]: Q ∈ sets (N

⊗
M M)

shows (λx . emeasure M (Pair x −‘ Q)) ∈ borel-measurable N
(is ?s Q ∈ -)

using Int-stable-pair-measure-generator pair-measure-closed assms
unfolding sets-pair-measure

proof (induct rule: sigma-sets-induct-disjoint)
case (compl A)
with sets.sets-into-space have

∧
x . emeasure M (Pair x −‘ ((space N × space

M) − A)) =
(if x ∈ space N then emeasure M (space M) − ?s A x else 0)

unfolding sets-pair-measure[symmetric]
by (auto intro!: emeasure-compl simp: vimage-Diff sets-Pair1)

with compl sets.top show ?case
by (auto intro!: measurable-If simp: space-pair-measure)

next
case (union F)

THEORY “Binary-Product-Measure” 228

then have
∧

x . emeasure M (Pair x −‘ (
⋃

i . F i)) = (
∑

i . ?s (F i) x)
by (simp add : suminf-emeasure disjoint-family-on-vimageI subset-eq vimage-UN

sets-pair-measure[symmetric])
with union show ?case

unfolding sets-pair-measure[symmetric] by simp
qed (auto simp add : if-distrib Int-def [symmetric] intro!: measurable-If)

lemma (in sigma-finite-measure) measurable-emeasure-Pair :
assumes Q : Q ∈ sets (N

⊗
M M) shows (λx . emeasure M (Pair x −‘ Q)) ∈

borel-measurable N (is ?s Q ∈ -)
proof −

from sigma-finite-disjoint guess F . note F = this
then have F-sets:

∧
i . F i ∈ sets M by auto

let ?C = λx i . F i ∩ Pair x −‘ Q
{ fix i

have [simp]: space N × F i ∩ space N × space M = space N × F i
using F sets.sets-into-space by auto

let ?R = density M (indicator (F i))
have finite-measure ?R
using F by (intro finite-measureI) (auto simp: emeasure-restricted subset-eq)
then have (λx . emeasure ?R (Pair x −‘ (space N × space ?R ∩ Q))) ∈

borel-measurable N
by (rule finite-measure.finite-measure-cut-measurable) (auto intro: Q)

moreover have
∧

x . emeasure ?R (Pair x −‘ (space N × space ?R ∩ Q))
= emeasure M (F i ∩ Pair x −‘ (space N × space ?R ∩ Q))

using Q F-sets by (intro emeasure-restricted) (auto intro: sets-Pair1)
moreover have

∧
x . F i ∩ Pair x −‘ (space N × space ?R ∩ Q) = ?C x i

using sets.sets-into-space[OF Q] by (auto simp: space-pair-measure)
ultimately have (λx . emeasure M (?C x i)) ∈ borel-measurable N

by simp }
moreover
{ fix x

have (
∑

i . emeasure M (?C x i)) = emeasure M (
⋃

i . ?C x i)
proof (intro suminf-emeasure)

show range (?C x) ⊆ sets M
using F 〈Q ∈ sets (N

⊗
M M)〉 by (auto intro!: sets-Pair1)

have disjoint-family F using F by auto
show disjoint-family (?C x)

by (rule disjoint-family-on-bisimulation[OF 〈disjoint-family F 〉]) auto
qed
also have (

⋃
i . ?C x i) = Pair x −‘ Q

using F sets.sets-into-space[OF 〈Q ∈ sets (N
⊗

M M)〉]
by (auto simp: space-pair-measure)

finally have emeasure M (Pair x −‘ Q) = (
∑

i . emeasure M (?C x i))
by simp }

ultimately show ?thesis using 〈Q ∈ sets (N
⊗

M M)〉 F-sets
by auto

qed

THEORY “Binary-Product-Measure” 229

lemma (in sigma-finite-measure) measurable-emeasure[measurable (raw)]:
assumes space:

∧
x . x ∈ space N =⇒ A x ⊆ space M

assumes A: {x∈space (N
⊗

M M). snd x ∈ A (fst x)} ∈ sets (N
⊗

M M)
shows (λx . emeasure M (A x)) ∈ borel-measurable N

proof −
from space have

∧
x . x ∈ space N =⇒ Pair x −‘ {x ∈ space (N

⊗
M M). snd

x ∈ A (fst x)} = A x
by (auto simp: space-pair-measure)

with measurable-emeasure-Pair [OF A] show ?thesis
by (auto cong : measurable-cong)

qed

lemma (in sigma-finite-measure) emeasure-pair-measure:
assumes X ∈ sets (N

⊗
M M)

shows emeasure (N
⊗

M M) X = (
∫

+ x .
∫

+ y . indicator X (x , y) ∂M ∂N)
(is - = ?µ X)
proof (rule emeasure-measure-of [OF pair-measure-def])

show positive (sets (N
⊗

M M)) ?µ
by (auto simp: positive-def)

have eq [simp]:
∧

A x y . indicator A (x , y) = indicator (Pair x −‘ A) y
by (auto simp: indicator-def)

show countably-additive (sets (N
⊗

M M)) ?µ
proof (rule countably-additiveI)

fix F :: nat ⇒ (′b × ′a) set assume F : range F ⊆ sets (N
⊗

M M)
disjoint-family F

from F have ∗:
∧

i . F i ∈ sets (N
⊗

M M) by auto
moreover have

∧
x . disjoint-family (λi . Pair x −‘ F i)

by (intro disjoint-family-on-bisimulation[OF F (2)]) auto
moreover have

∧
x . range (λi . Pair x −‘ F i) ⊆ sets M

using F by (auto simp: sets-Pair1)
ultimately show (

∑
n. ?µ (F n)) = ?µ (

⋃
i . F i)

by (auto simp add : nn-integral-suminf [symmetric] vimage-UN suminf-emeasure
intro!: nn-integral-cong nn-integral-indicator [symmetric])

qed
show {a × b |a b. a ∈ sets N ∧ b ∈ sets M } ⊆ Pow (space N × space M)

using sets.space-closed [of N] sets.space-closed [of M] by auto
qed fact

lemma (in sigma-finite-measure) emeasure-pair-measure-alt :
assumes X : X ∈ sets (N

⊗
M M)

shows emeasure (N
⊗

M M) X = (
∫

+x . emeasure M (Pair x −‘ X) ∂N)
proof −

have [simp]:
∧

x y . indicator X (x , y) = indicator (Pair x −‘ X) y
by (auto simp: indicator-def)

show ?thesis
using X by (auto intro!: nn-integral-cong simp: emeasure-pair-measure sets-Pair1)

qed

lemma (in sigma-finite-measure) emeasure-pair-measure-Times:

THEORY “Binary-Product-Measure” 230

assumes A: A ∈ sets N and B : B ∈ sets M
shows emeasure (N

⊗
M M) (A × B) = emeasure N A ∗ emeasure M B

proof −
have emeasure (N

⊗
M M) (A × B) = (

∫
+x . emeasure M B ∗ indicator A x

∂N)
using A B by (auto intro!: nn-integral-cong simp: emeasure-pair-measure-alt)

also have . . . = emeasure M B ∗ emeasure N A
using A by (simp add : nn-integral-cmult-indicator)

finally show ?thesis
by (simp add : ac-simps)

qed

6.2 Binary products of σ-finite emeasure spaces

locale pair-sigma-finite = M1? : sigma-finite-measure M1 + M2? : sigma-finite-measure
M2

for M1 :: ′a measure and M2 :: ′b measure

lemma (in pair-sigma-finite) measurable-emeasure-Pair1 :
Q ∈ sets (M1

⊗
M M2) =⇒ (λx . emeasure M2 (Pair x −‘ Q)) ∈ borel-measurable

M1
using M2 .measurable-emeasure-Pair .

lemma (in pair-sigma-finite) measurable-emeasure-Pair2 :
assumes Q : Q ∈ sets (M1

⊗
M M2) shows (λy . emeasure M1 ((λx . (x , y))

−‘ Q)) ∈ borel-measurable M2
proof −

have (λ(x , y). (y , x)) −‘ Q ∩ space (M2
⊗

M M1) ∈ sets (M2
⊗

M M1)
using Q measurable-pair-swap ′ by (auto intro: measurable-sets)

note M1 .measurable-emeasure-Pair [OF this]
moreover have

∧
y . Pair y −‘ ((λ(x , y). (y , x)) −‘ Q ∩ space (M2

⊗
M M1))

= (λx . (x , y)) −‘ Q
using Q [THEN sets.sets-into-space] by (auto simp: space-pair-measure)

ultimately show ?thesis by simp
qed

lemma (in pair-sigma-finite) sigma-finite-up-in-pair-measure-generator :
defines E ≡ {A × B | A B . A ∈ sets M1 ∧ B ∈ sets M2}
shows ∃F ::nat ⇒ (′a × ′b) set . range F ⊆ E ∧ incseq F ∧ (

⋃
i . F i) = space

M1 × space M2 ∧
(∀ i . emeasure (M1

⊗
M M2) (F i) 6= ∞)

proof −
from M1 .sigma-finite-incseq guess F1 . note F1 = this
from M2 .sigma-finite-incseq guess F2 . note F2 = this
from F1 F2 have space: space M1 = (

⋃
i . F1 i) space M2 = (

⋃
i . F2 i) by

auto
let ?F = λi . F1 i × F2 i
show ?thesis
proof (intro exI [of - ?F] conjI allI)

THEORY “Binary-Product-Measure” 231

show range ?F ⊆ E using F1 F2 by (auto simp: E-def) (metis range-subsetD)
next

have space M1 × space M2 ⊆ (
⋃

i . ?F i)
proof (intro subsetI)

fix x assume x ∈ space M1 × space M2
then obtain i j where fst x ∈ F1 i snd x ∈ F2 j

by (auto simp: space)
then have fst x ∈ F1 (max i j) snd x ∈ F2 (max j i)

using 〈incseq F1 〉 〈incseq F2 〉 unfolding incseq-def
by (force split : split-max)+

then have (fst x , snd x) ∈ F1 (max i j) × F2 (max i j)
by (intro SigmaI) (auto simp add : max .commute)

then show x ∈ (
⋃

i . ?F i) by auto
qed
then show (

⋃
i . ?F i) = space M1 × space M2

using space by (auto simp: space)
next

fix i show incseq (λi . F1 i × F2 i)
using 〈incseq F1 〉 〈incseq F2 〉 unfolding incseq-Suc-iff by auto

next
fix i
from F1 F2 have F1 i ∈ sets M1 F2 i ∈ sets M2 by auto
with F1 F2 show emeasure (M1

⊗
M M2) (F1 i × F2 i) 6= ∞

by (auto simp add : emeasure-pair-measure-Times ennreal-mult-eq-top-iff)
qed

qed

sublocale pair-sigma-finite ⊆ P? : sigma-finite-measure M1
⊗

M M2
proof

from M1 .sigma-finite-countable guess F1 ..
moreover from M2 .sigma-finite-countable guess F2 ..
ultimately show
∃A. countable A ∧ A ⊆ sets (M1

⊗
M M2) ∧

⋃
A = space (M1

⊗
M M2) ∧

(∀ a∈A. emeasure (M1
⊗

M M2) a 6= ∞)
by (intro exI [of - (λ(a, b). a × b) ‘ (F1 × F2)] conjI)

(auto simp: M2 .emeasure-pair-measure-Times space-pair-measure set-eq-iff
subset-eq ennreal-mult-eq-top-iff)
qed

lemma sigma-finite-pair-measure:
assumes A: sigma-finite-measure A and B : sigma-finite-measure B
shows sigma-finite-measure (A

⊗
M B)

proof −
interpret A: sigma-finite-measure A by fact
interpret B : sigma-finite-measure B by fact
interpret AB : pair-sigma-finite A B ..
show ?thesis ..

qed

THEORY “Binary-Product-Measure” 232

lemma sets-pair-swap:
assumes A ∈ sets (M1

⊗
M M2)

shows (λ(x , y). (y , x)) −‘ A ∩ space (M2
⊗

M M1) ∈ sets (M2
⊗

M M1)
using measurable-pair-swap ′ assms by (rule measurable-sets)

lemma (in pair-sigma-finite) distr-pair-swap:
M1

⊗
M M2 = distr (M2

⊗
M M1) (M1

⊗
M M2) (λ(x , y). (y , x)) (is ?P =

?D)
proof −

from sigma-finite-up-in-pair-measure-generator guess F :: nat ⇒ (′a × ′b) set
.. note F = this

let ?E = {a × b |a b. a ∈ sets M1 ∧ b ∈ sets M2}
show ?thesis
proof (rule measure-eqI-generator-eq [OF Int-stable-pair-measure-generator [of M1

M2]])
show ?E ⊆ Pow (space ?P)
using sets.space-closed [of M1] sets.space-closed [of M2] by (auto simp: space-pair-measure)
show sets ?P = sigma-sets (space ?P) ?E

by (simp add : sets-pair-measure space-pair-measure)
then show sets ?D = sigma-sets (space ?P) ?E

by simp
next

show range F ⊆ ?E (
⋃

i . F i) = space ?P
∧

i . emeasure ?P (F i) 6= ∞
using F by (auto simp: space-pair-measure)

next
fix X assume X ∈ ?E
then obtain A B where X [simp]: X = A × B and A: A ∈ sets M1 and B :

B ∈ sets M2 by auto
have (λ(y , x). (x , y)) −‘ X ∩ space (M2

⊗
M M1) = B × A

using sets.sets-into-space[OF A] sets.sets-into-space[OF B] by (auto simp:
space-pair-measure)

with A B show emeasure (M1
⊗

M M2) X = emeasure ?D X
by (simp add : M2 .emeasure-pair-measure-Times M1 .emeasure-pair-measure-Times

emeasure-distr
measurable-pair-swap ′ ac-simps)

qed
qed

lemma (in pair-sigma-finite) emeasure-pair-measure-alt2 :
assumes A: A ∈ sets (M1

⊗
M M2)

shows emeasure (M1
⊗

M M2) A = (
∫

+y . emeasure M1 ((λx . (x , y)) −‘ A)
∂M2)

(is - = ?ν A)
proof −

have [simp]:
∧

y . (Pair y −‘ ((λ(x , y). (y , x)) −‘ A ∩ space (M2
⊗

M M1)))
= (λx . (x , y)) −‘ A

using sets.sets-into-space[OF A] by (auto simp: space-pair-measure)
show ?thesis using A

by (subst distr-pair-swap)

THEORY “Binary-Product-Measure” 233

(simp-all del : vimage-Int add : measurable-sets[OF measurable-pair-swap ′]
M1 .emeasure-pair-measure-alt emeasure-distr [OF measurable-pair-swap ′

A])
qed

lemma (in pair-sigma-finite) AE-pair :
assumes AE x in (M1

⊗
M M2). Q x

shows AE x in M1 . (AE y in M2 . Q (x , y))
proof −

obtain N where N : N ∈ sets (M1
⊗

M M2) emeasure (M1
⊗

M M2) N = 0
{x∈space (M1

⊗
M M2). ¬ Q x} ⊆ N

using assms unfolding eventually-ae-filter by auto
show ?thesis
proof (rule AE-I)

from N measurable-emeasure-Pair1 [OF 〈N ∈ sets (M1
⊗

M M2)〉]
show emeasure M1 {x∈space M1 . emeasure M2 (Pair x −‘ N) 6= 0} = 0

by (auto simp: M2 .emeasure-pair-measure-alt nn-integral-0-iff)
show {x ∈ space M1 . emeasure M2 (Pair x −‘ N) 6= 0} ∈ sets M1
by (intro borel-measurable-eq measurable-emeasure-Pair1 N sets.sets-Collect-neg

N) simp
{ fix x assume x ∈ space M1 emeasure M2 (Pair x −‘ N) = 0

have AE y in M2 . Q (x , y)
proof (rule AE-I)

show emeasure M2 (Pair x −‘ N) = 0 by fact
show Pair x −‘ N ∈ sets M2 using N (1) by (rule sets-Pair1)
show {y ∈ space M2 . ¬ Q (x , y)} ⊆ Pair x −‘ N

using N 〈x ∈ space M1 〉 unfolding space-pair-measure by auto
qed }

then show {x ∈ space M1 . ¬ (AE y in M2 . Q (x , y))} ⊆ {x ∈ space M1 .
emeasure M2 (Pair x −‘ N) 6= 0}

by auto
qed

qed

lemma (in pair-sigma-finite) AE-pair-measure:
assumes {x∈space (M1

⊗
M M2). P x} ∈ sets (M1

⊗
M M2)

assumes ae: AE x in M1 . AE y in M2 . P (x , y)
shows AE x in M1

⊗
M M2 . P x

proof (subst AE-iff-measurable[OF - refl])
show {x∈space (M1

⊗
M M2). ¬ P x} ∈ sets (M1

⊗
M M2)

by (rule sets.sets-Collect) fact
then have emeasure (M1

⊗
M M2) {x ∈ space (M1

⊗
M M2). ¬ P x} =

(
∫

+ x .
∫

+ y . indicator {x ∈ space (M1
⊗

M M2). ¬ P x} (x , y) ∂M2 ∂M1)
by (simp add : M2 .emeasure-pair-measure)

also have . . . = (
∫

+ x .
∫

+ y . 0 ∂M2 ∂M1)
using ae
apply (safe intro!: nn-integral-cong-AE)
apply (intro AE-I2)
apply (safe intro!: nn-integral-cong-AE)

THEORY “Binary-Product-Measure” 234

apply auto
done

finally show emeasure (M1
⊗

M M2) {x ∈ space (M1
⊗

M M2). ¬ P x} = 0
by simp
qed

lemma (in pair-sigma-finite) AE-pair-iff :
{x∈space (M1

⊗
M M2). P (fst x) (snd x)} ∈ sets (M1

⊗
M M2) =⇒

(AE x in M1 . AE y in M2 . P x y) ←→ (AE x in (M1
⊗

M M2). P (fst x)
(snd x))

using AE-pair [of λx . P (fst x) (snd x)] AE-pair-measure[of λx . P (fst x) (snd
x)] by auto

lemma (in pair-sigma-finite) AE-commute:
assumes P : {x∈space (M1

⊗
M M2). P (fst x) (snd x)} ∈ sets (M1

⊗
M M2)

shows (AE x in M1 . AE y in M2 . P x y) ←→ (AE y in M2 . AE x in M1 . P x
y)
proof −

interpret Q : pair-sigma-finite M2 M1 ..
have [simp]:

∧
x . (fst (case x of (x , y) ⇒ (y , x))) = snd x

∧
x . (snd (case x of

(x , y) ⇒ (y , x))) = fst x
by auto

have {x ∈ space (M2
⊗

M M1). P (snd x) (fst x)} =
(λ(x , y). (y , x)) −‘ {x ∈ space (M1

⊗
M M2). P (fst x) (snd x)} ∩ space (M2⊗

M M1)
by (auto simp: space-pair-measure)

also have . . . ∈ sets (M2
⊗

M M1)
by (intro sets-pair-swap P)

finally show ?thesis
apply (subst AE-pair-iff [OF P])
apply (subst distr-pair-swap)
apply (subst AE-distr-iff [OF measurable-pair-swap ′ P])
apply (subst Q .AE-pair-iff)
apply simp-all
done

qed

6.3 Fubinis theorem

lemma measurable-compose-Pair1 :
x ∈ space M1 =⇒ g ∈ measurable (M1

⊗
M M2) L =⇒ (λy . g (x , y)) ∈

measurable M2 L
by simp

lemma (in sigma-finite-measure) borel-measurable-nn-integral-fst :
assumes f : f ∈ borel-measurable (M1

⊗
M M)

shows (λx .
∫

+ y . f (x , y) ∂M) ∈ borel-measurable M1
using f proof induct

case (cong u v)

THEORY “Binary-Product-Measure” 235

then have
∧

w x . w ∈ space M1 =⇒ x ∈ space M =⇒ u (w , x) = v (w , x)
by (auto simp: space-pair-measure)

show ?case
apply (subst measurable-cong)
apply (rule nn-integral-cong)
apply fact+
done

next
case (set Q)
have [simp]:

∧
x y . indicator Q (x , y) = indicator (Pair x −‘ Q) y

by (auto simp: indicator-def)
have

∧
x . x ∈ space M1 =⇒ emeasure M (Pair x −‘ Q) =

∫
+ y . indicator Q

(x , y) ∂M
by (simp add : sets-Pair1 [OF set])

from this measurable-emeasure-Pair [OF set] show ?case
by (rule measurable-cong [THEN iffD1])

qed (simp-all add : nn-integral-add nn-integral-cmult measurable-compose-Pair1
nn-integral-monotone-convergence-SUP incseq-def le-fun-def

cong : measurable-cong)

lemma (in sigma-finite-measure) nn-integral-fst :
assumes f : f ∈ borel-measurable (M1

⊗
M M)

shows (
∫

+ x .
∫

+ y . f (x , y) ∂M ∂M1) = integralN (M1
⊗

M M) f (is ?I f
= -)
using f proof induct

case (cong u v)
then have ?I u = ?I v

by (intro nn-integral-cong) (auto simp: space-pair-measure)
with cong show ?case

by (simp cong : nn-integral-cong)
qed (simp-all add : emeasure-pair-measure nn-integral-cmult nn-integral-add

nn-integral-monotone-convergence-SUP measurable-compose-Pair1
borel-measurable-nn-integral-fst nn-integral-mono incseq-def le-fun-def

cong : nn-integral-cong)

lemma (in sigma-finite-measure) borel-measurable-nn-integral [measurable (raw)]:
case-prod f ∈ borel-measurable (N

⊗
M M) =⇒ (λx .

∫
+ y . f x y ∂M) ∈

borel-measurable N
using borel-measurable-nn-integral-fst [of case-prod f N] by simp

lemma (in pair-sigma-finite) nn-integral-snd :
assumes f [measurable]: f ∈ borel-measurable (M1

⊗
M M2)

shows (
∫

+ y . (
∫

+ x . f (x , y) ∂M1) ∂M2) = integralN (M1
⊗

M M2) f
proof −

note measurable-pair-swap[OF f]
from M1 .nn-integral-fst [OF this]
have (

∫
+ y . (

∫
+ x . f (x , y) ∂M1) ∂M2) = (

∫
+ (x , y). f (y , x) ∂(M2

⊗
M

M1))
by simp

THEORY “Binary-Product-Measure” 236

also have (
∫

+ (x , y). f (y , x) ∂(M2
⊗

M M1)) = integralN (M1
⊗

M M2) f
by (subst distr-pair-swap) (auto simp add : nn-integral-distr intro!: nn-integral-cong)
finally show ?thesis .

qed

lemma (in pair-sigma-finite) Fubini :
assumes f : f ∈ borel-measurable (M1

⊗
M M2)

shows (
∫

+ y . (
∫

+ x . f (x , y) ∂M1) ∂M2) = (
∫

+ x . (
∫

+ y . f (x , y) ∂M2)
∂M1)

unfolding nn-integral-snd [OF assms] M2 .nn-integral-fst [OF assms] ..

lemma (in pair-sigma-finite) Fubini ′:
assumes f : case-prod f ∈ borel-measurable (M1

⊗
M M2)

shows (
∫

+ y . (
∫

+ x . f x y ∂M1) ∂M2) = (
∫

+ x . (
∫

+ y . f x y ∂M2) ∂M1)
using Fubini [OF f] by simp

6.4 Products on counting spaces, densities and distributions

lemma sigma-prod :
assumes X-cover : ∃E⊆A. countable E ∧ X =

⋃
E and A: A ⊆ Pow X

assumes Y-cover : ∃E⊆B . countable E ∧ Y =
⋃

E and B : B ⊆ Pow Y
shows sigma X A

⊗
M sigma Y B = sigma (X × Y) {a × b | a b. a ∈ A ∧ b

∈ B}
(is ?P = ?S)

proof (rule measure-eqI)
have [simp]: snd ∈ X × Y → Y fst ∈ X × Y → X

by auto
let ?XY = {{fst −‘ a ∩ X × Y | a. a ∈ A}, {snd −‘ b ∩ X × Y | b. b ∈ B}}
have sets ?P =

sets (
⊔
σ xy∈?XY . sigma (X × Y) xy)

by (simp add : vimage-algebra-sigma sets-pair-eq-sets-fst-snd A B)
also have . . . = sets (sigma (X × Y) (

⋃
?XY))

by (intro Sup-sigma-sigma arg-cong [where f =sets]) auto
also have . . . = sets ?S
proof (intro arg-cong [where f =sets] sigma-eqI sigma-sets-eqI)
show

⋃
?XY ⊆ Pow (X × Y) {a × b |a b. a ∈ A ∧ b ∈ B} ⊆ Pow (X × Y)

using A B by auto
next

interpret XY : sigma-algebra X × Y sigma-sets (X × Y) {a × b |a b. a ∈ A
∧ b ∈ B}

using A B by (intro sigma-algebra-sigma-sets) auto
fix Z assume Z ∈

⋃
?XY

then show Z ∈ sigma-sets (X × Y) {a × b |a b. a ∈ A ∧ b ∈ B}
proof safe

fix a assume a ∈ A
from Y-cover obtain E where E : E ⊆ B countable E and Y =

⋃
E

by auto
with 〈a ∈ A〉 A have eq : fst −‘ a ∩ X × Y = (

⋃
e∈E . a × e)

by auto

THEORY “Binary-Product-Measure” 237

show fst −‘ a ∩ X × Y ∈ sigma-sets (X × Y) {a × b |a b. a ∈ A ∧ b ∈ B}
using 〈a ∈ A〉 E unfolding eq by (auto intro!: XY .countable-UN ′)

next
fix b assume b ∈ B
from X-cover obtain E where E : E ⊆ A countable E and X =

⋃
E

by auto
with 〈b ∈ B 〉 B have eq : snd −‘ b ∩ X × Y = (

⋃
e∈E . e × b)

by auto
show snd −‘ b ∩ X × Y ∈ sigma-sets (X × Y) {a × b |a b. a ∈ A ∧ b ∈

B}
using 〈b ∈ B 〉 E unfolding eq by (auto intro!: XY .countable-UN ′)

qed
next

fix Z assume Z ∈ {a × b |a b. a ∈ A ∧ b ∈ B}
then obtain a b where Z = a × b and ab: a ∈ A b ∈ B

by auto
then have Z : Z = (fst −‘ a ∩ X × Y) ∩ (snd −‘ b ∩ X × Y)

using A B by auto
interpret XY : sigma-algebra X × Y sigma-sets (X × Y) (

⋃
?XY)

by (intro sigma-algebra-sigma-sets) auto
show Z ∈ sigma-sets (X × Y) (

⋃
?XY)

unfolding Z by (rule XY .Int) (blast intro: ab)+
qed
finally show sets ?P = sets ?S .

next
interpret finite-measure sigma X A for X A

proof qed (simp add : emeasure-sigma)
fix A assume A ∈ sets ?P then show emeasure ?P A = emeasure ?S A

by (simp add : emeasure-pair-measure-alt emeasure-sigma)
qed

lemma sigma-sets-pair-measure-generator-finite:
assumes finite A and finite B
shows sigma-sets (A × B) { a × b | a b. a ⊆ A ∧ b ⊆ B} = Pow (A × B)
(is sigma-sets ?prod ?sets = -)

proof safe
have fin: finite (A × B) using assms by (rule finite-cartesian-product)
fix x assume subset : x ⊆ A × B
hence finite x using fin by (rule finite-subset)
from this subset show x ∈ sigma-sets ?prod ?sets
proof (induct x)

case empty show ?case by (rule sigma-sets.Empty)
next

case (insert a x)
hence {a} ∈ sigma-sets ?prod ?sets by auto
moreover have x ∈ sigma-sets ?prod ?sets using insert by auto
ultimately show ?case unfolding insert-is-Un[of a x] by (rule sigma-sets-Un)

qed
next

THEORY “Binary-Product-Measure” 238

fix x a b
assume x ∈ sigma-sets ?prod ?sets and (a, b) ∈ x
from sigma-sets-into-sp[OF - this(1)] this(2)
show a ∈ A and b ∈ B by auto

qed

lemma borel-prod :
(borel

⊗
M borel) = (borel :: (′a::second-countable-topology × ′b::second-countable-topology)

measure)
(is ?P = ?B)

proof −
have ?B = sigma UNIV {A × B | A B . open A ∧ open B}

by (rule second-countable-borel-measurable[OF open-prod-generated])
also have . . . = ?P

unfolding borel-def
by (subst sigma-prod) (auto intro!: exI [of - {UNIV }])

finally show ?thesis ..
qed

lemma pair-measure-count-space:
assumes A: finite A and B : finite B
shows count-space A

⊗
M count-space B = count-space (A × B) (is ?P = ?C)

proof (rule measure-eqI)
interpret A: finite-measure count-space A by (rule finite-measure-count-space)

fact
interpret B : finite-measure count-space B by (rule finite-measure-count-space)

fact
interpret P : pair-sigma-finite count-space A count-space B ..
show eq : sets ?P = sets ?C

by (simp add : sets-pair-measure sigma-sets-pair-measure-generator-finite A B)
fix X assume X : X ∈ sets ?P
with eq have X-subset : X ⊆ A × B by simp
with A B have fin-Pair :

∧
x . finite (Pair x −‘ X)

by (intro finite-subset [OF - B]) auto
have fin-X : finite X using X-subset by (rule finite-subset) (auto simp: A B)
have pos-card : (0 ::ennreal) < of-nat (card (Pair x −‘ X)) ←→ Pair x −‘ X 6=
{} for x

by (auto simp: card-eq-0-iff fin-Pair) blast

show emeasure ?P X = emeasure ?C X
using X-subset A fin-Pair fin-X
apply (subst B .emeasure-pair-measure-alt [OF X])
apply (subst emeasure-count-space)
apply (auto simp add : emeasure-count-space nn-integral-count-space

pos-card of-nat-setsum[symmetric] card-SigmaI [symmetric]
simp del : of-nat-setsum card-SigmaI
intro!: arg-cong [where f =card])

done
qed

THEORY “Binary-Product-Measure” 239

lemma emeasure-prod-count-space:
assumes A: A ∈ sets (count-space UNIV

⊗
M M) (is A ∈ sets (?A

⊗
M ?B))

shows emeasure (?A
⊗

M ?B) A = (
∫

+ x .
∫

+ y . indicator A (x , y) ∂?B ∂?A)
by (rule emeasure-measure-of [OF pair-measure-def])

(auto simp: countably-additive-def positive-def suminf-indicator A
nn-integral-suminf [symmetric] dest : sets.sets-into-space)

lemma emeasure-prod-count-space-single[simp]: emeasure (count-space UNIV
⊗

M

count-space UNIV) {x} = 1
proof −

have [simp]:
∧

a b x y . indicator {(a, b)} (x , y) = (indicator {a} x ∗ indicator
{b} y ::ennreal)

by (auto split : split-indicator)
show ?thesis
by (cases x) (auto simp: emeasure-prod-count-space nn-integral-cmult sets-Pair)

qed

lemma emeasure-count-space-prod-eq :
fixes A :: (′a × ′b) set
assumes A: A ∈ sets (count-space UNIV

⊗
M count-space UNIV) (is A ∈ sets

(?A
⊗

M ?B))
shows emeasure (?A

⊗
M ?B) A = emeasure (count-space UNIV) A

proof −
{ fix A :: (′a × ′b) set assume countable A
then have emeasure (?A

⊗
M ?B) (

⋃
a∈A. {a}) = (

∫
+a. emeasure (?A

⊗
M

?B) {a} ∂count-space A)
by (intro emeasure-UN-countable) (auto simp: sets-Pair disjoint-family-on-def)
also have . . . = (

∫
+a. indicator A a ∂count-space UNIV)

by (subst nn-integral-count-space-indicator) auto
finally have emeasure (?A

⊗
M ?B) A = emeasure (count-space UNIV) A

by simp }
note ∗ = this

show ?thesis
proof cases

assume finite A then show ?thesis
by (intro ∗ countable-finite)

next
assume infinite A
then obtain C where countable C and infinite C and C ⊆ A

by (auto dest : infinite-countable-subset ′)
with A have emeasure (?A

⊗
M ?B) C ≤ emeasure (?A

⊗
M ?B) A

by (intro emeasure-mono) auto
also have emeasure (?A

⊗
M ?B) C = emeasure (count-space UNIV) C

using 〈countable C 〉 by (rule ∗)
finally show ?thesis

using 〈infinite C 〉 〈infinite A〉 by (simp add : top-unique)

THEORY “Binary-Product-Measure” 240

qed
qed

lemma nn-integral-count-space-prod-eq :
nn-integral (count-space UNIV

⊗
M count-space UNIV) f = nn-integral (count-space

UNIV) f
(is nn-integral ?P f = -)

proof cases
assume cntbl : countable {x . f x 6= 0}
have [simp]:

∧
x . card ({x} ∩ {x . f x 6= 0}) = (indicator {x . f x 6= 0} x ::ennreal)

by (auto split : split-indicator)
have [measurable]:

∧
y . (λx . indicator {y} x) ∈ borel-measurable ?P

by (rule measurable-discrete-difference[of λx . 0 - borel {y} λx . indicator {y}
x for y])

(auto intro: sets-Pair)

have (
∫

+x . f x ∂?P) = (
∫

+x .
∫

+x ′. f x ∗ indicator {x} x ′ ∂count-space {x . f
x 6= 0} ∂?P)

by (auto simp add : nn-integral-cmult nn-integral-indicator ′ intro!: nn-integral-cong
split : split-indicator)

also have . . . = (
∫

+x .
∫

+x ′. f x ′ ∗ indicator {x ′} x ∂count-space {x . f x 6= 0}
∂?P)

by (auto intro!: nn-integral-cong split : split-indicator)
also have . . . = (

∫
+x ′.

∫
+x . f x ′ ∗ indicator {x ′} x ∂?P ∂count-space {x . f x

6= 0})
by (intro nn-integral-count-space-nn-integral cntbl) auto

also have . . . = (
∫

+x ′. f x ′ ∂count-space {x . f x 6= 0})
by (intro nn-integral-cong) (auto simp: nn-integral-cmult sets-Pair)

finally show ?thesis
by (auto simp add : nn-integral-count-space-indicator intro!: nn-integral-cong

split : split-indicator)
next
{ fix x assume f x 6= 0

then have (∃ r≥0 . 0 < r ∧ f x = ennreal r) ∨ f x = ∞
by (cases f x rule: ennreal-cases) (auto simp: less-le)

then have ∃n. ennreal (1 / real (Suc n)) ≤ f x
by (auto elim!: nat-approx-posE intro!: less-imp-le) }

note ∗ = this

assume cntbl : uncountable {x . f x 6= 0}
also have {x . f x 6= 0} = (

⋃
n. {x . 1/Suc n ≤ f x})

using ∗ by auto
finally obtain n where infinite {x . 1/Suc n ≤ f x}

by (meson countableI-type countable-UN uncountable-infinite)
then obtain C where C : C ⊆ {x . 1/Suc n ≤ f x} and countable C infinite C

by (metis infinite-countable-subset ′)

have [measurable]: C ∈ sets ?P
using sets.countable[OF - 〈countable C 〉, of ?P] by (auto simp: sets-Pair)

THEORY “Binary-Product-Measure” 241

have (
∫

+x . ennreal (1/Suc n) ∗ indicator C x ∂?P) ≤ nn-integral ?P f
using C by (intro nn-integral-mono) (auto split : split-indicator simp: zero-ereal-def [symmetric])
moreover have (

∫
+x . ennreal (1/Suc n) ∗ indicator C x ∂?P) = ∞

using 〈infinite C 〉 by (simp add : nn-integral-cmult emeasure-count-space-prod-eq
ennreal-mult-top)

moreover have (
∫

+x . ennreal (1/Suc n) ∗ indicator C x ∂count-space UNIV)
≤ nn-integral (count-space UNIV) f

using C by (intro nn-integral-mono) (auto split : split-indicator simp: zero-ereal-def [symmetric])
moreover have (

∫
+x . ennreal (1/Suc n) ∗ indicator C x ∂count-space UNIV)

= ∞
using 〈infinite C 〉 by (simp add : nn-integral-cmult ennreal-mult-top)

ultimately show ?thesis
by (simp add : top-unique)

qed

lemma pair-measure-density :
assumes f : f ∈ borel-measurable M1
assumes g : g ∈ borel-measurable M2
assumes sigma-finite-measure M2 sigma-finite-measure (density M2 g)
shows density M1 f

⊗
M density M2 g = density (M1

⊗
M M2) (λ(x ,y). f x ∗

g y) (is ?L = ?R)
proof (rule measure-eqI)

interpret M2 : sigma-finite-measure M2 by fact
interpret D2 : sigma-finite-measure density M2 g by fact

fix A assume A: A ∈ sets ?L
with f g have (

∫
+ x . f x ∗

∫
+ y . g y ∗ indicator A (x , y) ∂M2 ∂M1) =

(
∫

+ x .
∫

+ y . f x ∗ g y ∗ indicator A (x , y) ∂M2 ∂M1)
by (intro nn-integral-cong-AE)

(auto simp add : nn-integral-cmult [symmetric] ac-simps)
with A f g show emeasure ?L A = emeasure ?R A

by (simp add : D2 .emeasure-pair-measure emeasure-density nn-integral-density
M2 .nn-integral-fst [symmetric]

cong : nn-integral-cong)
qed simp

lemma sigma-finite-measure-distr :
assumes sigma-finite-measure (distr M N f) and f : f ∈ measurable M N
shows sigma-finite-measure M

proof −
interpret sigma-finite-measure distr M N f by fact
from sigma-finite-countable guess A .. note A = this
show ?thesis
proof

show ∃A. countable A ∧ A ⊆ sets M ∧
⋃

A = space M ∧ (∀ a∈A. emeasure
M a 6= ∞)

using A f
by (intro exI [of - (λa. f −‘ a ∩ space M) ‘ A])

THEORY “Binary-Product-Measure” 242

(auto simp: emeasure-distr set-eq-iff subset-eq intro: measurable-space)
qed

qed

lemma pair-measure-distr :
assumes f : f ∈ measurable M S and g : g ∈ measurable N T
assumes sigma-finite-measure (distr N T g)
shows distr M S f

⊗
M distr N T g = distr (M

⊗
M N) (S

⊗
M T) (λ(x , y).

(f x , g y)) (is ?P = ?D)
proof (rule measure-eqI)

interpret T : sigma-finite-measure distr N T g by fact
interpret N : sigma-finite-measure N by (rule sigma-finite-measure-distr) fact+

fix A assume A: A ∈ sets ?P
with f g show emeasure ?P A = emeasure ?D A
by (auto simp add : N .emeasure-pair-measure-alt space-pair-measure emeasure-distr

T .emeasure-pair-measure-alt nn-integral-distr
intro!: nn-integral-cong arg-cong [where f =emeasure N])

qed simp

lemma pair-measure-eqI :
assumes sigma-finite-measure M1 sigma-finite-measure M2
assumes sets: sets (M1

⊗
M M2) = sets M

assumes emeasure:
∧

A B . A ∈ sets M1 =⇒ B ∈ sets M2 =⇒ emeasure M1 A
∗ emeasure M2 B = emeasure M (A × B)

shows M1
⊗

M M2 = M
proof −

interpret M1 : sigma-finite-measure M1 by fact
interpret M2 : sigma-finite-measure M2 by fact
interpret pair-sigma-finite M1 M2 ..
from sigma-finite-up-in-pair-measure-generator guess F :: nat ⇒ (′a × ′b) set

.. note F = this
let ?E = {a × b |a b. a ∈ sets M1 ∧ b ∈ sets M2}
let ?P = M1

⊗
M M2

show ?thesis
proof (rule measure-eqI-generator-eq [OF Int-stable-pair-measure-generator [of M1

M2]])
show ?E ⊆ Pow (space ?P)
using sets.space-closed [of M1] sets.space-closed [of M2] by (auto simp: space-pair-measure)
show sets ?P = sigma-sets (space ?P) ?E

by (simp add : sets-pair-measure space-pair-measure)
then show sets M = sigma-sets (space ?P) ?E

using sets[symmetric] by simp
next

show range F ⊆ ?E (
⋃

i . F i) = space ?P
∧

i . emeasure ?P (F i) 6= ∞
using F by (auto simp: space-pair-measure)

next
fix X assume X ∈ ?E
then obtain A B where X [simp]: X = A × B and A: A ∈ sets M1 and B :

THEORY “Binary-Product-Measure” 243

B ∈ sets M2 by auto
then have emeasure ?P X = emeasure M1 A ∗ emeasure M2 B

by (simp add : M2 .emeasure-pair-measure-Times)
also have . . . = emeasure M (A × B)

using A B emeasure by auto
finally show emeasure ?P X = emeasure M X

by simp
qed

qed

lemma sets-pair-countable:
assumes countable S1 countable S2
assumes M : sets M = Pow S1 and N : sets N = Pow S2
shows sets (M

⊗
M N) = Pow (S1 × S2)

proof auto
fix x a b assume x : x ∈ sets (M

⊗
M N) (a, b) ∈ x

from sets.sets-into-space[OF x (1)] x (2)
sets-eq-imp-space-eq [of N count-space S2] sets-eq-imp-space-eq [of M count-space

S1] M N
show a ∈ S1 b ∈ S2

by (auto simp: space-pair-measure)
next

fix X assume X : X ⊆ S1 × S2
then have countable X

by (metis countable-subset 〈countable S1 〉 〈countable S2 〉 countable-SIGMA)
have X = (

⋃
(a, b)∈X . {a} × {b}) by auto

also have . . . ∈ sets (M
⊗

M N)
using X
by (safe intro!: sets.countable-UN ′ 〈countable X 〉 subsetI pair-measureI) (auto

simp: M N)
finally show X ∈ sets (M

⊗
M N) .

qed

lemma pair-measure-countable:
assumes countable S1 countable S2
shows count-space S1

⊗
M count-space S2 = count-space (S1 × S2)

proof (rule pair-measure-eqI)
show sigma-finite-measure (count-space S1) sigma-finite-measure (count-space

S2)
using assms by (auto intro!: sigma-finite-measure-count-space-countable)

show sets (count-space S1
⊗

M count-space S2) = sets (count-space (S1 × S2))
by (subst sets-pair-countable[OF assms]) auto

next
fix A B assume A ∈ sets (count-space S1) B ∈ sets (count-space S2)
then show emeasure (count-space S1) A ∗ emeasure (count-space S2) B =

emeasure (count-space (S1 × S2)) (A × B)
by (subst (1 2 3) emeasure-count-space) (auto simp: finite-cartesian-product-iff

ennreal-mult-top ennreal-top-mult)
qed

THEORY “Binary-Product-Measure” 244

lemma nn-integral-fst-count-space:
(
∫

+ x .
∫

+ y . f (x , y) ∂count-space UNIV ∂count-space UNIV) = integralN

(count-space UNIV) f
(is ?lhs = ?rhs)

proof(cases)
assume ∗: countable {xy . f xy 6= 0}
let ?A = fst ‘ {xy . f xy 6= 0}
let ?B = snd ‘ {xy . f xy 6= 0}
from ∗ have [simp]: countable ?A countable ?B by(rule countable-image)+
have ?lhs = (

∫
+ x .

∫
+ y . f (x , y) ∂count-space UNIV ∂count-space ?A)

by(rule nn-integral-count-space-eq)
(auto simp add : nn-integral-0-iff-AE AE-count-space not-le intro: rev-image-eqI)

also have . . . = (
∫

+ x .
∫

+ y . f (x , y) ∂count-space ?B ∂count-space ?A)
by(intro nn-integral-count-space-eq nn-integral-cong)(auto intro: rev-image-eqI)

also have . . . = (
∫

+ xy . f xy ∂count-space (?A × ?B))
by(subst sigma-finite-measure.nn-integral-fst)
(simp-all add : sigma-finite-measure-count-space-countable pair-measure-countable)

also have . . . = ?rhs
by(rule nn-integral-count-space-eq)(auto intro: rev-image-eqI)

finally show ?thesis .
next
{ fix xy assume f xy 6= 0

then have (∃ r≥0 . 0 < r ∧ f xy = ennreal r) ∨ f xy = ∞
by (cases f xy rule: ennreal-cases) (auto simp: less-le)

then have ∃n. ennreal (1 / real (Suc n)) ≤ f xy
by (auto elim!: nat-approx-posE intro!: less-imp-le) }

note ∗ = this

assume cntbl : uncountable {xy . f xy 6= 0}
also have {xy . f xy 6= 0} = (

⋃
n. {xy . 1/Suc n ≤ f xy})

using ∗ by auto
finally obtain n where infinite {xy . 1/Suc n ≤ f xy}

by (meson countableI-type countable-UN uncountable-infinite)
then obtain C where C : C ⊆ {xy . 1/Suc n ≤ f xy} and countable C infinite

C
by (metis infinite-countable-subset ′)

have ∞ = (
∫

+ xy . ennreal (1 / Suc n) ∗ indicator C xy ∂count-space UNIV)
using 〈infinite C 〉 by(simp add : nn-integral-cmult ennreal-mult-top)

also have . . . ≤ ?rhs using C
by(intro nn-integral-mono)(auto split : split-indicator)

finally have ?rhs = ∞ by (simp add : top-unique)
moreover have ?lhs = ∞
proof(cases finite (fst ‘ C))

case True
then obtain x C ′ where x : x ∈ fst ‘ C

and C ′: C ′ = fst −‘ {x} ∩ C
and infinite C ′

THEORY “Binary-Product-Measure” 245

using 〈infinite C 〉 by(auto elim!: inf-img-fin-domE ′)
from x C C ′ have ∗∗: C ′ ⊆ {xy . 1 / Suc n ≤ f xy} by auto

from C ′ 〈infinite C ′〉 have infinite (snd ‘ C ′)
by(auto dest !: finite-imageD simp add : inj-on-def)
then have ∞ = (

∫
+ y . ennreal (1 / Suc n) ∗ indicator (snd ‘ C ′) y

∂count-space UNIV)
by(simp add : nn-integral-cmult ennreal-mult-top)

also have . . . = (
∫

+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y) ∂count-space
UNIV)

by(rule nn-integral-cong)(force split : split-indicator intro: rev-image-eqI simp
add : C ′)

also have . . . = (
∫

+ x ′. (
∫

+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y)
∂count-space UNIV) ∗ indicator {x} x ′ ∂count-space UNIV)

by(simp add : one-ereal-def [symmetric])
also have . . . ≤ (

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C ′ (x , y)

∂count-space UNIV ∂count-space UNIV)
by(rule nn-integral-mono)(simp split : split-indicator)

also have . . . ≤ ?lhs using ∗∗
by(intro nn-integral-mono)(auto split : split-indicator)

finally show ?thesis by (simp add : top-unique)
next

case False
def C ′ ≡ fst ‘ C
have ∞ =

∫
+ x . ennreal (1 / Suc n) ∗ indicator C ′ x ∂count-space UNIV

using C ′-def False by(simp add : nn-integral-cmult ennreal-mult-top)
also have . . . =

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C ′ x ∗ indicator

{SOME y . (x , y) ∈ C} y ∂count-space UNIV ∂count-space UNIV
by(auto simp add : one-ereal-def [symmetric] max-def intro: nn-integral-cong)
also have . . . ≤

∫
+ x .

∫
+ y . ennreal (1 / Suc n) ∗ indicator C (x , y)

∂count-space UNIV ∂count-space UNIV
by(intro nn-integral-mono)(auto simp add : C ′-def split : split-indicator intro:

someI)
also have . . . ≤ ?lhs using C

by(intro nn-integral-mono)(auto split : split-indicator)
finally show ?thesis by (simp add : top-unique)

qed
ultimately show ?thesis by simp

qed

lemma nn-integral-snd-count-space:
(
∫

+ y .
∫

+ x . f (x , y) ∂count-space UNIV ∂count-space UNIV) = integralN

(count-space UNIV) f
(is ?lhs = ?rhs)

proof −
have ?lhs = (

∫
+ y .

∫
+ x . (λ(y , x). f (x , y)) (y , x) ∂count-space UNIV

∂count-space UNIV)
by(simp)

also have . . . =
∫

+ yx . (λ(y , x). f (x , y)) yx ∂count-space UNIV

THEORY “Binary-Product-Measure” 246

by(rule nn-integral-fst-count-space)
also have . . . =

∫
+ xy . f xy ∂count-space ((λ(x , y). (y , x)) ‘ UNIV)

by(subst nn-integral-bij-count-space[OF inj-on-imp-bij-betw , symmetric])
(simp-all add : inj-on-def split-def)

also have . . . = ?rhs by(rule nn-integral-count-space-eq) auto
finally show ?thesis .

qed

lemma measurable-pair-measure-countable1 :
assumes countable A
and [measurable]:

∧
x . x ∈ A =⇒ (λy . f (x , y)) ∈ measurable N K

shows f ∈ measurable (count-space A
⊗

M N) K
using - - assms(1)
by(rule measurable-compose-countable ′[where f =λa b. f (a, snd b) and g=fst
and I =A, simplified])simp-all

6.5 Product of Borel spaces

lemma borel-Times:
fixes A :: ′a::topological-space set and B :: ′b::topological-space set
assumes A: A ∈ sets borel and B : B ∈ sets borel
shows A × B ∈ sets borel

proof −
have A × B = (A×UNIV) ∩ (UNIV × B)

by auto
moreover
{ have A ∈ sigma-sets UNIV {S . open S} using A by (simp add : sets-borel)

then have A×UNIV ∈ sets borel
proof (induct A)

case (Basic S) then show ?case
by (auto intro!: borel-open open-Times)

next
case (Compl A)
moreover have ∗: (UNIV − A) × UNIV = UNIV − (A × UNIV)

by auto
ultimately show ?case

unfolding ∗ by auto
next

case (Union A)
moreover have ∗: (UNION UNIV A) × UNIV = UNION UNIV (λi . A i ×

UNIV)
by auto

ultimately show ?case
unfolding ∗ by auto

qed simp }
moreover
{ have B ∈ sigma-sets UNIV {S . open S} using B by (simp add : sets-borel)

then have UNIV×B ∈ sets borel
proof (induct B)

THEORY “Finite-Product-Measure” 247

case (Basic S) then show ?case
by (auto intro!: borel-open open-Times)

next
case (Compl B)
moreover have ∗: UNIV × (UNIV − B) = UNIV − (UNIV × B)

by auto
ultimately show ?case

unfolding ∗ by auto
next

case (Union B)
moreover have ∗: UNIV × (UNION UNIV B) = UNION UNIV (λi . UNIV

× B i)
by auto

ultimately show ?case
unfolding ∗ by auto

qed simp }
ultimately show ?thesis

by auto
qed

lemma finite-measure-pair-measure:
assumes finite-measure M finite-measure N
shows finite-measure (N

⊗
M M)

proof (rule finite-measureI)
interpret M : finite-measure M by fact
interpret N : finite-measure N by fact
show emeasure (N

⊗
M M) (space (N

⊗
M M)) 6= ∞

by (auto simp: space-pair-measure M .emeasure-pair-measure-Times ennreal-mult-eq-top-iff)
qed

end

7 Finite product measures

theory Finite-Product-Measure
imports Binary-Product-Measure
begin

lemma PiE-choice: (∃ f ∈PiE I F . ∀ i∈I . P i (f i)) ←→ (∀ i∈I . ∃ x∈F i . P i x)
by (auto simp: Bex-def PiE-iff Ball-def dest !: choice-iff ′[THEN iffD1])

(force intro: exI [of - restrict f I for f])

lemma case-prod-const : (λ(i , j). c) = (λ-. c)
by auto

7.0.1 More about Function restricted by extensional

definition
merge I J = (λ(x , y) i . if i ∈ I then x i else if i ∈ J then y i else undefined)

THEORY “Finite-Product-Measure” 248

lemma merge-apply [simp]:
I ∩ J = {} =⇒ i ∈ I =⇒ merge I J (x , y) i = x i
I ∩ J = {} =⇒ i ∈ J =⇒ merge I J (x , y) i = y i
J ∩ I = {} =⇒ i ∈ I =⇒ merge I J (x , y) i = x i
J ∩ I = {} =⇒ i ∈ J =⇒ merge I J (x , y) i = y i
i /∈ I =⇒ i /∈ J =⇒ merge I J (x , y) i = undefined
unfolding merge-def by auto

lemma merge-commute:
I ∩ J = {} =⇒ merge I J (x , y) = merge J I (y , x)
by (force simp: merge-def)

lemma Pi-cancel-merge-range[simp]:
I ∩ J = {} =⇒ x ∈ Pi I (merge I J (A, B)) ←→ x ∈ Pi I A
I ∩ J = {} =⇒ x ∈ Pi I (merge J I (B , A)) ←→ x ∈ Pi I A
J ∩ I = {} =⇒ x ∈ Pi I (merge I J (A, B)) ←→ x ∈ Pi I A
J ∩ I = {} =⇒ x ∈ Pi I (merge J I (B , A)) ←→ x ∈ Pi I A
by (auto simp: Pi-def)

lemma Pi-cancel-merge[simp]:
I ∩ J = {} =⇒ merge I J (x , y) ∈ Pi I B ←→ x ∈ Pi I B
J ∩ I = {} =⇒ merge I J (x , y) ∈ Pi I B ←→ x ∈ Pi I B
I ∩ J = {} =⇒ merge I J (x , y) ∈ Pi J B ←→ y ∈ Pi J B
J ∩ I = {} =⇒ merge I J (x , y) ∈ Pi J B ←→ y ∈ Pi J B
by (auto simp: Pi-def)

lemma extensional-merge[simp]: merge I J (x , y) ∈ extensional (I ∪ J)
by (auto simp: extensional-def)

lemma restrict-merge[simp]:
I ∩ J = {} =⇒ restrict (merge I J (x , y)) I = restrict x I
I ∩ J = {} =⇒ restrict (merge I J (x , y)) J = restrict y J
J ∩ I = {} =⇒ restrict (merge I J (x , y)) I = restrict x I
J ∩ I = {} =⇒ restrict (merge I J (x , y)) J = restrict y J
by (auto simp: restrict-def)

lemma split-merge: P (merge I J (x ,y) i) ←→ (i ∈ I −→ P (x i)) ∧ (i ∈ J − I
−→ P (y i)) ∧ (i /∈ I ∪ J −→ P undefined)

unfolding merge-def by auto

lemma PiE-cancel-merge[simp]:
I ∩ J = {} =⇒

merge I J (x , y) ∈ PiE (I ∪ J) B ←→ x ∈ Pi I B ∧ y ∈ Pi J B
by (auto simp: PiE-def restrict-Pi-cancel)

lemma merge-singleton[simp]: i /∈ I =⇒ merge I {i} (x ,y) = restrict (x (i := y
i)) (insert i I)

unfolding merge-def by (auto simp: fun-eq-iff)

THEORY “Finite-Product-Measure” 249

lemma extensional-merge-sub: I ∪ J ⊆ K =⇒ merge I J (x , y) ∈ extensional K
unfolding merge-def extensional-def by auto

lemma merge-restrict [simp]:
merge I J (restrict x I , y) = merge I J (x , y)
merge I J (x , restrict y J) = merge I J (x , y)
unfolding merge-def by auto

lemma merge-x-x-eq-restrict [simp]:
merge I J (x , x) = restrict x (I ∪ J)
unfolding merge-def by auto

lemma injective-vimage-restrict :
assumes J : J ⊆ I
and sets: A ⊆ (ΠE i∈J . S i) B ⊆ (ΠE i∈J . S i) and ne: (ΠE i∈I . S i) 6= {}
and eq : (λx . restrict x J) −‘ A ∩ (ΠE i∈I . S i) = (λx . restrict x J) −‘ B ∩

(ΠE i∈I . S i)
shows A = B

proof (intro set-eqI)
fix x
from ne obtain y where y :

∧
i . i ∈ I =⇒ y i ∈ S i by auto

have J ∩ (I − J) = {} by auto
show x ∈ A ←→ x ∈ B
proof cases

assume x : x ∈ (ΠE i∈J . S i)
have x ∈ A ←→ merge J (I − J) (x ,y) ∈ (λx . restrict x J) −‘ A ∩ (ΠE i∈I .

S i)
using y x 〈J ⊆ I 〉 PiE-cancel-merge[of J I − J x y S]
by (auto simp del : PiE-cancel-merge simp add : Un-absorb1)

then show x ∈ A ←→ x ∈ B
using y x 〈J ⊆ I 〉 PiE-cancel-merge[of J I − J x y S]
by (auto simp del : PiE-cancel-merge simp add : Un-absorb1 eq)

qed (insert sets, auto)
qed

lemma restrict-vimage:
I ∩ J = {} =⇒

(λx . (restrict x I , restrict x J)) −‘ (PiE I E × PiE J F) = Pi (I ∪ J) (merge
I J (E , F))

by (auto simp: restrict-Pi-cancel PiE-def)

lemma merge-vimage:
I ∩ J = {} =⇒ merge I J −‘ PiE (I ∪ J) E = Pi I E × Pi J E
by (auto simp: restrict-Pi-cancel PiE-def)

THEORY “Finite-Product-Measure” 250

7.1 Finite product spaces

7.1.1 Products

definition prod-emb where
prod-emb I M K X = (λx . restrict x K) −‘ X ∩ (PIE i :I . space (M i))

lemma prod-emb-iff :
f ∈ prod-emb I M K X ←→ f ∈ extensional I ∧ (restrict f K ∈ X) ∧ (∀ i∈I . f i
∈ space (M i))

unfolding prod-emb-def PiE-def by auto

lemma
shows prod-emb-empty [simp]: prod-emb M L K {} = {}

and prod-emb-Un[simp]: prod-emb M L K (A ∪ B) = prod-emb M L K A ∪
prod-emb M L K B

and prod-emb-Int : prod-emb M L K (A ∩ B) = prod-emb M L K A ∩ prod-emb
M L K B

and prod-emb-UN [simp]: prod-emb M L K (
⋃

i∈I . F i) = (
⋃

i∈I . prod-emb M
L K (F i))

and prod-emb-INT [simp]: I 6= {} =⇒ prod-emb M L K (
⋂

i∈I . F i) = (
⋂

i∈I .
prod-emb M L K (F i))

and prod-emb-Diff [simp]: prod-emb M L K (A − B) = prod-emb M L K A −
prod-emb M L K B

by (auto simp: prod-emb-def)

lemma prod-emb-PiE : J ⊆ I =⇒ (
∧

i . i ∈ J =⇒ E i ⊆ space (M i)) =⇒
prod-emb I M J (ΠE i∈J . E i) = (ΠE i∈I . if i ∈ J then E i else space (M i))

by (force simp: prod-emb-def PiE-iff if-split-mem2)

lemma prod-emb-PiE-same-index [simp]:
(
∧

i . i ∈ I =⇒ E i ⊆ space (M i)) =⇒ prod-emb I M I (PiE I E) = PiE I E
by (auto simp: prod-emb-def PiE-iff)

lemma prod-emb-trans[simp]:
J ⊆ K =⇒ K ⊆ L =⇒ prod-emb L M K (prod-emb K M J X) = prod-emb L M

J X
by (auto simp add : Int-absorb1 prod-emb-def PiE-def)

lemma prod-emb-Pi :
assumes X ∈ (Π j∈J . sets (M j)) J ⊆ K
shows prod-emb K M J (PiE J X) = (ΠE i∈K . if i ∈ J then X i else space (M

i))
using assms sets.space-closed
by (auto simp: prod-emb-def PiE-iff split : if-split-asm) blast+

lemma prod-emb-id :
B ⊆ (ΠE i∈L. space (M i)) =⇒ prod-emb L M L B = B
by (auto simp: prod-emb-def subset-eq extensional-restrict)

THEORY “Finite-Product-Measure” 251

lemma prod-emb-mono:
F ⊆ G =⇒ prod-emb A M B F ⊆ prod-emb A M B G
by (auto simp: prod-emb-def)

definition PiM :: ′i set ⇒ (′i ⇒ ′a measure) ⇒ (′i ⇒ ′a) measure where
PiM I M = extend-measure (ΠE i∈I . space (M i))
{(J , X). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j))}
(λ(J , X). prod-emb I M J (ΠE j∈J . X j))
(λ(J , X).

∏
j∈J ∪ {i∈I . emeasure (M i) (space (M i)) 6= 1}. if j ∈ J then

emeasure (M j) (X j) else emeasure (M j) (space (M j)))

definition prod-algebra :: ′i set ⇒ (′i ⇒ ′a measure) ⇒ (′i ⇒ ′a) set set where
prod-algebra I M = (λ(J , X). prod-emb I M J (ΠE j∈J . X j)) ‘
{(J , X). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j))}

abbreviation
PiM I M ≡ PiM I M

syntax
-PiM :: pttrn ⇒ ′i set ⇒ ′a measure ⇒ (′i => ′a) measure ((3 ΠM -∈-./ -) 10)

translations
ΠM x∈I . M == CONST PiM I (%x . M)

lemma extend-measure-cong :
assumes Ω = Ω ′ I = I ′ G = G ′

∧
i . i ∈ I ′ =⇒ µ i = µ ′ i

shows extend-measure Ω I G µ = extend-measure Ω ′ I ′ G ′ µ ′

unfolding extend-measure-def by (auto simp add : assms)

lemma Pi-cong-sets:
[[I = J ;

∧
x . x ∈ I =⇒ M x = N x]] =⇒ Pi I M = Pi J N

unfolding Pi-def by auto

lemma PiM-cong :
assumes I = J

∧
x . x ∈ I =⇒ M x = N x

shows PiM I M = PiM J N
unfolding PiM-def

proof (rule extend-measure-cong , goal-cases)
case 1
show ?case using assms

by (subst assms(1), intro PiE-cong [of J λi . space (M i) λi . space (N i)])
simp-all
next

case 2
have

∧
K . K ⊆ J =⇒ (Π j∈K . sets (M j)) = (Π j∈K . sets (N j))

using assms by (intro Pi-cong-sets) auto
thus ?case by (auto simp: assms)

next
case 3
show ?case using assms

THEORY “Finite-Product-Measure” 252

by (intro ext) (auto simp: prod-emb-def dest : PiE-mem)
next

case (4 x)
thus ?case using assms

by (auto intro!: setprod .cong split : if-split-asm)
qed

lemma prod-algebra-sets-into-space:
prod-algebra I M ⊆ Pow (ΠE i∈I . space (M i))
by (auto simp: prod-emb-def prod-algebra-def)

lemma prod-algebra-eq-finite:
assumes I : finite I
shows prod-algebra I M = {(ΠE i∈I . X i) |X . X ∈ (Π j∈I . sets (M j))} (is ?L

= ?R)
proof (intro iffI set-eqI)

fix A assume A ∈ ?L
then obtain J E where J : J 6= {} ∨ I = {} finite J J ⊆ I ∀ i∈J . E i ∈ sets

(M i)
and A: A = prod-emb I M J (PIE j :J . E j)
by (auto simp: prod-algebra-def)

let ?A = ΠE i∈I . if i ∈ J then E i else space (M i)
have A: A = ?A

unfolding A using J by (intro prod-emb-PiE sets.sets-into-space) auto
show A ∈ ?R unfolding A using J sets.top

by (intro CollectI exI [of - λi . if i ∈ J then E i else space (M i)]) simp
next

fix A assume A ∈ ?R
then obtain X where A: A = (ΠE i∈I . X i) and X : X ∈ (Π j∈I . sets (M j))

by auto
then have A: A = prod-emb I M I (ΠE i∈I . X i)

by (simp add : prod-emb-PiE-same-index [OF sets.sets-into-space] Pi-iff)
from X I show A ∈ ?L unfolding A

by (auto simp: prod-algebra-def)
qed

lemma prod-algebraI :
finite J =⇒ (J 6= {} ∨ I = {}) =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J =⇒ E i ∈ sets (M i))

=⇒ prod-emb I M J (PIE j :J . E j) ∈ prod-algebra I M
by (auto simp: prod-algebra-def)

lemma prod-algebraI-finite:
finite I =⇒ (∀ i∈I . E i ∈ sets (M i)) =⇒ (PiE I E) ∈ prod-algebra I M
using prod-algebraI [of I I E M] prod-emb-PiE-same-index [of I E M , OF sets.sets-into-space]

by simp

lemma Int-stable-PiE : Int-stable {PiE J E | E . ∀ i∈I . E i ∈ sets (M i)}
proof (safe intro!: Int-stableI)

THEORY “Finite-Product-Measure” 253

fix E F assume ∀ i∈I . E i ∈ sets (M i) ∀ i∈I . F i ∈ sets (M i)
then show ∃G . PiE J E ∩ PiE J F = PiE J G ∧ (∀ i∈I . G i ∈ sets (M i))

by (auto intro!: exI [of - λi . E i ∩ F i] simp: PiE-Int)
qed

lemma prod-algebraE :
assumes A: A ∈ prod-algebra I M
obtains J E where A = prod-emb I M J (PIE j :J . E j)

finite J J 6= {} ∨ I = {} J ⊆ I
∧

i . i ∈ J =⇒ E i ∈ sets (M i)
using A by (auto simp: prod-algebra-def)

lemma prod-algebraE-all :
assumes A: A ∈ prod-algebra I M
obtains E where A = PiE I E E ∈ (Π i∈I . sets (M i))

proof −
from A obtain E J where A: A = prod-emb I M J (PiE J E)

and J : J ⊆ I and E : E ∈ (Π i∈J . sets (M i))
by (auto simp: prod-algebra-def)

from E have
∧

i . i ∈ J =⇒ E i ⊆ space (M i)
using sets.sets-into-space by auto

then have A = (ΠE i∈I . if i∈J then E i else space (M i))
using A J by (auto simp: prod-emb-PiE)

moreover have (λi . if i∈J then E i else space (M i)) ∈ (Π i∈I . sets (M i))
using sets.top E by auto

ultimately show ?thesis using that by auto
qed

lemma Int-stable-prod-algebra: Int-stable (prod-algebra I M)
proof (unfold Int-stable-def , safe)

fix A assume A ∈ prod-algebra I M
from prod-algebraE [OF this] guess J E . note A = this
fix B assume B ∈ prod-algebra I M
from prod-algebraE [OF this] guess K F . note B = this
have A ∩ B = prod-emb I M (J ∪ K) (ΠE i∈J ∪ K . (if i ∈ J then E i else

space (M i)) ∩
(if i ∈ K then F i else space (M i)))

unfolding A B using A(2 ,3 ,4) A(5)[THEN sets.sets-into-space] B(2 ,3 ,4)
B(5)[THEN sets.sets-into-space]

apply (subst (1 2 3) prod-emb-PiE)
apply (simp-all add : subset-eq PiE-Int)
apply blast
apply (intro PiE-cong)
apply auto
done

also have . . . ∈ prod-algebra I M
using A B by (auto intro!: prod-algebraI)

finally show A ∩ B ∈ prod-algebra I M .
qed

THEORY “Finite-Product-Measure” 254

lemma prod-algebra-mono:
assumes space:

∧
i . i ∈ I =⇒ space (E i) = space (F i)

assumes sets:
∧

i . i ∈ I =⇒ sets (E i) ⊆ sets (F i)
shows prod-algebra I E ⊆ prod-algebra I F

proof
fix A assume A ∈ prod-algebra I E
then obtain J G where J : J 6= {} ∨ I = {} finite J J ⊆ I

and A: A = prod-emb I E J (ΠE i∈J . G i)
and G :

∧
i . i ∈ J =⇒ G i ∈ sets (E i)

by (auto simp: prod-algebra-def)
moreover
from space have (ΠE i∈I . space (E i)) = (ΠE i∈I . space (F i))

by (rule PiE-cong)
with A have A = prod-emb I F J (ΠE i∈J . G i)

by (simp add : prod-emb-def)
moreover
from sets G J have

∧
i . i ∈ J =⇒ G i ∈ sets (F i)

by auto
ultimately show A ∈ prod-algebra I F

apply (simp add : prod-algebra-def image-iff)
apply (intro exI [of - J] exI [of - G] conjI)
apply auto
done

qed

lemma prod-algebra-cong :
assumes I = J and sets: (

∧
i . i ∈ I =⇒ sets (M i) = sets (N i))

shows prod-algebra I M = prod-algebra J N
proof −

have space:
∧

i . i ∈ I =⇒ space (M i) = space (N i)
using sets-eq-imp-space-eq [OF sets] by auto

with sets show ?thesis unfolding 〈I = J 〉

by (intro antisym prod-algebra-mono) auto
qed

lemma space-in-prod-algebra:
(ΠE i∈I . space (M i)) ∈ prod-algebra I M

proof cases
assume I = {} then show ?thesis

by (auto simp add : prod-algebra-def image-iff prod-emb-def)
next

assume I 6= {}
then obtain i where i ∈ I by auto
then have (ΠE i∈I . space (M i)) = prod-emb I M {i} (ΠE i∈{i}. space (M i))

by (auto simp: prod-emb-def)
also have . . . ∈ prod-algebra I M

using 〈i ∈ I 〉 by (intro prod-algebraI) auto
finally show ?thesis .

qed

THEORY “Finite-Product-Measure” 255

lemma space-PiM : space (ΠM i∈I . M i) = (ΠE i∈I . space (M i))
using prod-algebra-sets-into-space unfolding PiM-def prod-algebra-def by (intro

space-extend-measure) simp

lemma prod-emb-subset-PiM [simp]: prod-emb I M K X ⊆ space (PiM I M)
by (auto simp: prod-emb-def space-PiM)

lemma space-PiM-empty-iff [simp]: space (PiM I M) = {} ←→ (∃ i∈I . space (M
i) = {})

by (auto simp: space-PiM PiE-eq-empty-iff)

lemma undefined-in-PiM-empty [simp]: (λx . undefined) ∈ space (PiM {} M)
by (auto simp: space-PiM)

lemma sets-PiM : sets (ΠM i∈I . M i) = sigma-sets (ΠE i∈I . space (M i)) (prod-algebra
I M)
using prod-algebra-sets-into-space unfolding PiM-def prod-algebra-def by (intro

sets-extend-measure) simp

lemma sets-PiM-single: sets (PiM I M) =
sigma-sets (ΠE i∈I . space (M i)) {{f ∈ΠE i∈I . space (M i). f i ∈ A} | i A. i

∈ I ∧ A ∈ sets (M i)}
(is - = sigma-sets ?Ω ?R)

unfolding sets-PiM
proof (rule sigma-sets-eqI)
interpret R: sigma-algebra ?Ω sigma-sets ?Ω ?R by (rule sigma-algebra-sigma-sets)

auto
fix A assume A ∈ prod-algebra I M
from prod-algebraE [OF this] guess J X . note X = this
show A ∈ sigma-sets ?Ω ?R
proof cases

assume I = {}
with X have A = {λx . undefined} by (auto simp: prod-emb-def)
with 〈I = {}〉 show ?thesis by (auto intro!: sigma-sets-top)

next
assume I 6= {}
with X have A = (

⋂
j∈J . {f ∈(ΠE i∈I . space (M i)). f j ∈ X j})

by (auto simp: prod-emb-def)
also have . . . ∈ sigma-sets ?Ω ?R

using X 〈I 6= {}〉 by (intro R.finite-INT sigma-sets.Basic) auto
finally show A ∈ sigma-sets ?Ω ?R .

qed
next

fix A assume A ∈ ?R
then obtain i B where A: A = {f ∈ΠE i∈I . space (M i). f i ∈ B} i ∈ I B ∈

sets (M i)
by auto

then have A = prod-emb I M {i} (ΠE i∈{i}. B)

THEORY “Finite-Product-Measure” 256

by (auto simp: prod-emb-def)
also have . . . ∈ sigma-sets ?Ω (prod-algebra I M)

using A by (intro sigma-sets.Basic prod-algebraI) auto
finally show A ∈ sigma-sets ?Ω (prod-algebra I M) .

qed

lemma sets-PiM-eq-proj :
I 6= {} =⇒ sets (PiM I M) = sets (

⊔
σ i∈I . vimage-algebra (ΠE i∈I . space (M

i)) (λx . x i) (M i))
apply (simp add : sets-PiM-single sets-Sup-sigma)
apply (subst SUP-cong [OF refl])
apply (rule sets-vimage-algebra2)
apply auto []
apply (auto intro!: arg-cong2 [where f =sigma-sets])
done

lemma
shows space-PiM-empty : space (PiM {} M) = {λk . undefined}

and sets-PiM-empty : sets (PiM {} M) = { {}, {λk . undefined} }
by (simp-all add : space-PiM sets-PiM-single image-constant sigma-sets-empty-eq)

lemma sets-PiM-sigma:
assumes Ω-cover :

∧
i . i ∈ I =⇒ ∃S⊆E i . countable S ∧ Ω i =

⋃
S

assumes E :
∧

i . i ∈ I =⇒ E i ⊆ Pow (Ω i)
assumes J :

∧
j . j ∈ J =⇒ finite j

⋃
J = I

defines P ≡ {{f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A i} | A j . j ∈ J ∧ A ∈ Pi j E}
shows sets (ΠM i∈I . sigma (Ω i) (E i)) = sets (sigma (ΠE i∈I . Ω i) P)

proof cases
assume I = {}
with 〈

⋃
J = I 〉 have P = {{λ-. undefined}} ∨ P = {}

by (auto simp: P-def)
with 〈I = {}〉 show ?thesis

by (auto simp add : sets-PiM-empty sigma-sets-empty-eq)
next

let ?F = λi . {(λx . x i) −‘ A ∩ PiE I Ω |A. A ∈ E i}
assume I 6= {}
then have sets (PiM I (λi . sigma (Ω i) (E i))) =

sets (
⊔
σ i∈I . vimage-algebra (ΠE i∈I . Ω i) (λx . x i) (sigma (Ω i) (E i)))

by (subst sets-PiM-eq-proj) (auto simp: space-measure-of-conv)
also have . . . = sets (

⊔
σ i∈I . sigma (PiE I Ω) (?F i))

using E by (intro SUP-sigma-cong arg-cong [where f =sets] vimage-algebra-sigma)
auto

also have . . . = sets (sigma (PiE I Ω) (
⋃

i∈I . ?F i))
using 〈I 6= {}〉 by (intro arg-cong [where f =sets] SUP-sigma-sigma) auto

also have . . . = sets (sigma (PiE I Ω) P)
proof (intro arg-cong [where f =sets] sigma-eqI sigma-sets-eqI)

show (
⋃

i∈I . ?F i) ⊆ Pow (PiE I Ω) P ⊆ Pow (PiE I Ω)
by (auto simp: P-def)

next

THEORY “Finite-Product-Measure” 257

interpret P : sigma-algebra ΠE i∈I . Ω i sigma-sets (ΠE i∈I . Ω i) P
by (auto intro!: sigma-algebra-sigma-sets simp: P-def)

fix Z assume Z ∈ (
⋃

i∈I . ?F i)
then obtain i A where i : i ∈ I A ∈ E i and Z-def : Z = (λx . x i) −‘ A ∩

PiE I Ω
by auto

from 〈i ∈ I 〉 J obtain j where j : i ∈ j j ∈ J j ⊆ I finite j
by auto

obtain S where S :
∧

i . i ∈ j =⇒ S i ⊆ E i
∧

i . i ∈ j =⇒ countable (S i)∧
i . i ∈ j =⇒ Ω i =

⋃
(S i)

by (metis subset-eq Ω-cover 〈j ⊆ I 〉)
def A ′ ≡ λn. n(i := A)
then have A ′-i :

∧
n. A ′ n i = A

by simp
{ fix n assume n ∈ PiE (j − {i}) S

then have A ′ n ∈ Pi j E
unfolding PiE-def Pi-def using S (1) by (auto simp: A ′-def 〈A ∈ E i 〉)

with 〈j ∈ J 〉 have {f ∈ PiE I Ω. ∀ i∈j . f i ∈ A ′ n i} ∈ P
by (auto simp: P-def) }

note A ′-in-P = this

{ fix x assume x i ∈ A x ∈ PiE I Ω
with S (3) 〈j ⊆ I 〉 have ∀ i∈j . ∃ s∈S i . x i ∈ s

by (auto simp: PiE-def Pi-def)
then obtain s where s:

∧
i . i ∈ j =⇒ s i ∈ S i

∧
i . i ∈ j =⇒ x i ∈ s i

by metis
with 〈x i ∈ A〉 have ∃n∈PiE (j−{i}) S . ∀ i∈j . x i ∈ A ′ n i

by (intro bexI [of - restrict (s(i := A)) (j−{i})]) (auto simp: A ′-def split :
if-splits) }

then have Z = (
⋃

n∈PiE (j−{i}) S . {f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A ′ n i})
unfolding Z-def
by (auto simp add : set-eq-iff ball-conj-distrib 〈i∈j 〉 A ′-i dest : bspec[OF - 〈i∈j 〉]

cong : conj-cong)
also have . . . ∈ sigma-sets (ΠE i∈I . Ω i) P

using 〈finite j 〉 S (2)
by (intro P .countable-UN ′ countable-PiE) (simp-all add : image-subset-iff

A ′-in-P)
finally show Z ∈ sigma-sets (ΠE i∈I . Ω i) P .

next
interpret F : sigma-algebra ΠE i∈I . Ω i sigma-sets (ΠE i∈I . Ω i) (

⋃
i∈I . ?F

i)
by (auto intro!: sigma-algebra-sigma-sets)

fix b assume b ∈ P
then obtain A j where b: b = {f ∈(ΠE i∈I . Ω i). ∀ i∈j . f i ∈ A i} j ∈ J A

∈ Pi j E
by (auto simp: P-def)

show b ∈ sigma-sets (PiE I Ω) (
⋃

i∈I . ?F i)

THEORY “Finite-Product-Measure” 258

proof cases
assume j = {}
with b have b = (ΠE i∈I . Ω i)

by auto
then show ?thesis

by blast
next

assume j 6= {}
with J b(2 ,3) have eq : b = (

⋂
i∈j . ((λx . x i) −‘ A i ∩ PiE I Ω))

unfolding b(1)
by (auto simp: PiE-def Pi-def)

show ?thesis
unfolding eq using 〈A ∈ Pi j E 〉 〈j ∈ J 〉 J (2)
by (intro F .finite-INT J 〈j ∈ J 〉 〈j 6= {}〉 sigma-sets.Basic) blast

qed
qed
finally show ?thesis .

qed

lemma sets-PiM-in-sets:
assumes space: space N = (ΠE i∈I . space (M i))
assumes sets:

∧
i A. i ∈ I =⇒ A ∈ sets (M i) =⇒ {x∈space N . x i ∈ A} ∈ sets

N
shows sets (ΠM i ∈ I . M i) ⊆ sets N
unfolding sets-PiM-single space[symmetric]
by (intro sets.sigma-sets-subset subsetI) (auto intro: sets)

lemma sets-PiM-cong [measurable-cong]:
assumes I = J

∧
i . i ∈ J =⇒ sets (M i) = sets (N i) shows sets (PiM I M)

= sets (PiM J N)
using assms sets-eq-imp-space-eq [OF assms(2)] by (simp add : sets-PiM-single

cong : PiE-cong conj-cong)

lemma sets-PiM-I :
assumes finite J J ⊆ I ∀ i∈J . E i ∈ sets (M i)
shows prod-emb I M J (PIE j :J . E j) ∈ sets (ΠM i∈I . M i)

proof cases
assume J = {}
then have prod-emb I M J (PIE j :J . E j) = (PIE j :I . space (M j))

by (auto simp: prod-emb-def)
then show ?thesis

by (auto simp add : sets-PiM intro!: sigma-sets-top)
next

assume J 6= {} with assms show ?thesis
by (force simp add : sets-PiM prod-algebra-def)

qed

lemma measurable-PiM :
assumes space: f ∈ space N → (ΠE i∈I . space (M i))

THEORY “Finite-Product-Measure” 259

assumes sets:
∧

X J . J 6= {} ∨ I = {} =⇒ finite J =⇒ J ⊆ I =⇒ (
∧

i . i ∈ J
=⇒ X i ∈ sets (M i)) =⇒

f −‘ prod-emb I M J (PiE J X) ∩ space N ∈ sets N
shows f ∈ measurable N (PiM I M)
using sets-PiM prod-algebra-sets-into-space space

proof (rule measurable-sigma-sets)
fix A assume A ∈ prod-algebra I M
from prod-algebraE [OF this] guess J X .
with sets[of J X] show f −‘ A ∩ space N ∈ sets N by auto

qed

lemma measurable-PiM-Collect :
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
X J . J 6= {} ∨ I = {} =⇒ finite J =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J

=⇒ X i ∈ sets (M i)) =⇒
{ω∈space N . ∀ i∈J . f ω i ∈ X i} ∈ sets N

shows f ∈ measurable N (PiM I M)
using sets-PiM prod-algebra-sets-into-space space

proof (rule measurable-sigma-sets)
fix A assume A ∈ prod-algebra I M
from prod-algebraE [OF this] guess J X . note X = this
then have f −‘ A ∩ space N = {ω ∈ space N . ∀ i∈J . f ω i ∈ X i}

using space by (auto simp: prod-emb-def del : PiE-I)
also have . . . ∈ sets N using X (3 ,2 ,4 ,5) by (rule sets)
finally show f −‘ A ∩ space N ∈ sets N .

qed

lemma measurable-PiM-single:
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
A i . i ∈ I =⇒ A ∈ sets (M i) =⇒ {ω ∈ space N . f ω i ∈ A}

∈ sets N
shows f ∈ measurable N (PiM I M)
using sets-PiM-single

proof (rule measurable-sigma-sets)
fix A assume A ∈ {{f ∈ ΠE i∈I . space (M i). f i ∈ A} |i A. i ∈ I ∧ A ∈ sets

(M i)}
then obtain B i where A = {f ∈ ΠE i∈I . space (M i). f i ∈ B} and B : i ∈ I

B ∈ sets (M i)
by auto

with space have f −‘ A ∩ space N = {ω ∈ space N . f ω i ∈ B} by auto
also have . . . ∈ sets N using B by (rule sets)
finally show f −‘ A ∩ space N ∈ sets N .

qed (auto simp: space)

lemma measurable-PiM-single ′:
assumes f :

∧
i . i ∈ I =⇒ f i ∈ measurable N (M i)

and (λω i . f i ω) ∈ space N → (ΠE i∈I . space (M i))
shows (λω i . f i ω) ∈ measurable N (PiM I M)

proof (rule measurable-PiM-single)

THEORY “Finite-Product-Measure” 260

fix A i assume A: i ∈ I A ∈ sets (M i)
then have {ω ∈ space N . f i ω ∈ A} = f i −‘ A ∩ space N

by auto
then show {ω ∈ space N . f i ω ∈ A} ∈ sets N

using A f by (auto intro!: measurable-sets)
qed fact

lemma sets-PiM-I-finite[measurable]:
assumes finite I and sets: (

∧
i . i ∈ I =⇒ E i ∈ sets (M i))

shows (PIE j :I . E j) ∈ sets (ΠM i∈I . M i)
using sets-PiM-I [of I I E M] sets.sets-into-space[OF sets] 〈finite I 〉 sets by auto

lemma measurable-component-singleton[measurable (raw)]:
assumes i ∈ I shows (λx . x i) ∈ measurable (PiM I M) (M i)

proof (unfold measurable-def , intro CollectI conjI ballI)
fix A assume A ∈ sets (M i)
then have (λx . x i) −‘ A ∩ space (PiM I M) = prod-emb I M {i} (ΠE j∈{i}.

A)
using sets.sets-into-space 〈i ∈ I 〉

by (fastforce dest : Pi-mem simp: prod-emb-def space-PiM split : if-split-asm)
then show (λx . x i) −‘ A ∩ space (PiM I M) ∈ sets (PiM I M)

using 〈A ∈ sets (M i)〉 〈i ∈ I 〉 by (auto intro!: sets-PiM-I)
qed (insert 〈i ∈ I 〉, auto simp: space-PiM)

lemma measurable-component-singleton ′[measurable-dest]:
assumes f : f ∈ measurable N (PiM I M)
assumes g : g ∈ measurable L N
assumes i : i ∈ I
shows (λx . (f (g x)) i) ∈ measurable L (M i)
using measurable-compose[OF measurable-compose[OF g f] measurable-component-singleton,

OF i] .

lemma measurable-PiM-component-rev :
i ∈ I =⇒ f ∈ measurable (M i) N =⇒ (λx . f (x i)) ∈ measurable (PiM I M) N
by simp

lemma measurable-case-nat [measurable (raw)]:
assumes [measurable (raw)]: i = 0 =⇒ f ∈ measurable M N∧

j . i = Suc j =⇒ (λx . g x j) ∈ measurable M N
shows (λx . case-nat (f x) (g x) i) ∈ measurable M N
by (cases i) simp-all

lemma measurable-case-nat ′[measurable (raw)]:
assumes fg [measurable]: f ∈ measurable N M g ∈ measurable N (ΠM i∈UNIV .

M)
shows (λx . case-nat (f x) (g x)) ∈ measurable N (ΠM i∈UNIV . M)
using fg [THEN measurable-space]
by (auto intro!: measurable-PiM-single ′ simp add : space-PiM PiE-iff split : nat .split)

THEORY “Finite-Product-Measure” 261

lemma measurable-add-dim[measurable]:
(λ(f , y). f (i := y)) ∈ measurable (PiM I M

⊗
M M i) (PiM (insert i I) M)

(is ?f ∈ measurable ?P ?I)
proof (rule measurable-PiM-single)

fix j A assume j : j ∈ insert i I and A: A ∈ sets (M j)
have {ω ∈ space ?P . (λ(f , x). fun-upd f i x) ω j ∈ A} =

(if j = i then space (PiM I M) × A else ((λx . x j) ◦ fst) −‘ A ∩ space ?P)
using sets.sets-into-space[OF A] by (auto simp add : space-pair-measure space-PiM)
also have . . . ∈ sets ?P

using A j
by (auto intro!: measurable-sets[OF measurable-comp, OF - measurable-component-singleton])
finally show {ω ∈ space ?P . case-prod (λf . fun-upd f i) ω j ∈ A} ∈ sets ?P .

qed (auto simp: space-pair-measure space-PiM PiE-def)

lemma measurable-fun-upd :
assumes I : I = J ∪ {i}
assumes f [measurable]: f ∈ measurable N (PiM J M)
assumes h[measurable]: h ∈ measurable N (M i)
shows (λx . (f x) (i := h x)) ∈ measurable N (PiM I M)

proof (intro measurable-PiM-single ′)
fix j assume j ∈ I then show (λω. ((f ω)(i := h ω)) j) ∈ measurable N (M j)

unfolding I by (cases j = i) auto
next

show (λx . (f x)(i := h x)) ∈ space N → (ΠE i∈I . space (M i))
using I f [THEN measurable-space] h[THEN measurable-space]
by (auto simp: space-PiM PiE-iff extensional-def)

qed

lemma measurable-component-update:
x ∈ space (PiM I M) =⇒ i /∈ I =⇒ (λv . x (i := v)) ∈ measurable (M i) (PiM

(insert i I) M)
by simp

lemma measurable-merge[measurable]:
merge I J ∈ measurable (PiM I M

⊗
M PiM J M) (PiM (I ∪ J) M)

(is ?f ∈ measurable ?P ?U)
proof (rule measurable-PiM-single)

fix i A assume A: A ∈ sets (M i) i ∈ I ∪ J
then have {ω ∈ space ?P . merge I J ω i ∈ A} =

(if i ∈ I then ((λx . x i) ◦ fst) −‘ A ∩ space ?P else ((λx . x i) ◦ snd) −‘ A ∩
space ?P)

by (auto simp: merge-def)
also have . . . ∈ sets ?P

using A
by (auto intro!: measurable-sets[OF measurable-comp, OF - measurable-component-singleton])
finally show {ω ∈ space ?P . merge I J ω i ∈ A} ∈ sets ?P .

qed (auto simp: space-pair-measure space-PiM PiE-iff merge-def extensional-def)

lemma measurable-restrict [measurable (raw)]:

THEORY “Finite-Product-Measure” 262

assumes X :
∧

i . i ∈ I =⇒ X i ∈ measurable N (M i)
shows (λx . λi∈I . X i x) ∈ measurable N (PiM I M)

proof (rule measurable-PiM-single)
fix A i assume A: i ∈ I A ∈ sets (M i)
then have {ω ∈ space N . (λi∈I . X i ω) i ∈ A} = X i −‘ A ∩ space N

by auto
then show {ω ∈ space N . (λi∈I . X i ω) i ∈ A} ∈ sets N

using A X by (auto intro!: measurable-sets)
qed (insert X , auto simp add : PiE-def dest : measurable-space)

lemma measurable-abs-UNIV :
(
∧

n. (λω. f n ω) ∈ measurable M (N n)) =⇒ (λω n. f n ω) ∈ measurable M
(PiM UNIV N)

by (intro measurable-PiM-single) (auto dest : measurable-space)

lemma measurable-restrict-subset : J ⊆ L =⇒ (λf . restrict f J) ∈ measurable (PiM
L M) (PiM J M)

by (intro measurable-restrict measurable-component-singleton) auto

lemma measurable-restrict-subset ′:
assumes J ⊆ L

∧
x . x ∈ J =⇒ sets (M x) = sets (N x)

shows (λf . restrict f J) ∈ measurable (PiM L M) (PiM J N)
proof−

from assms(1) have (λf . restrict f J) ∈ measurable (PiM L M) (PiM J M)
by (rule measurable-restrict-subset)

also from assms(2) have measurable (PiM L M) (PiM J M) = measurable
(PiM L M) (PiM J N)

by (intro sets-PiM-cong measurable-cong-sets) simp-all
finally show ?thesis .

qed

lemma measurable-prod-emb[intro, simp]:
J ⊆ L =⇒ X ∈ sets (PiM J M) =⇒ prod-emb L M J X ∈ sets (PiM L M)
unfolding prod-emb-def space-PiM [symmetric]
by (auto intro!: measurable-sets measurable-restrict measurable-component-singleton)

lemma merge-in-prod-emb:
assumes y ∈ space (PiM I M) x ∈ X and X : X ∈ sets (PiM J M) and J ⊆ I
shows merge J I (x , y) ∈ prod-emb I M J X
using assms sets.sets-into-space[OF X]
by (simp add : merge-def prod-emb-def subset-eq space-PiM PiE-def extensional-restrict

Pi-iff
cong : if-cong restrict-cong)

(simp add : extensional-def)

lemma prod-emb-eq-emptyD :
assumes J : J ⊆ I and ne: space (PiM I M) 6= {} and X : X ∈ sets (PiM J

M)
and ∗: prod-emb I M J X = {}

THEORY “Finite-Product-Measure” 263

shows X = {}
proof safe

fix x assume x ∈ X
obtain ω where ω ∈ space (PiM I M)

using ne by blast
from merge-in-prod-emb[OF this 〈x∈X 〉 X J] ∗ show x ∈ {} by auto

qed

lemma sets-in-Pi-aux :
finite I =⇒ (

∧
j . j ∈ I =⇒ {x∈space (M j). x ∈ F j} ∈ sets (M j)) =⇒

{x∈space (PiM I M). x ∈ Pi I F} ∈ sets (PiM I M)
by (simp add : subset-eq Pi-iff)

lemma sets-in-Pi [measurable (raw)]:
finite I =⇒ f ∈ measurable N (PiM I M) =⇒
(
∧

j . j ∈ I =⇒ {x∈space (M j). x ∈ F j} ∈ sets (M j)) =⇒
Measurable.pred N (λx . f x ∈ Pi I F)
unfolding pred-def
by (rule measurable-sets-Collect [of f N PiM I M , OF - sets-in-Pi-aux]) auto

lemma sets-in-extensional-aux :
{x∈space (PiM I M). x ∈ extensional I } ∈ sets (PiM I M)

proof −
have {x∈space (PiM I M). x ∈ extensional I } = space (PiM I M)

by (auto simp add : extensional-def space-PiM)
then show ?thesis by simp

qed

lemma sets-in-extensional [measurable (raw)]:
f ∈ measurable N (PiM I M) =⇒ Measurable.pred N (λx . f x ∈ extensional I)
unfolding pred-def
by (rule measurable-sets-Collect [of f N PiM I M , OF - sets-in-extensional-aux])

auto

lemma sets-PiM-I-countable:
assumes I : countable I and E :

∧
i . i ∈ I =⇒ E i ∈ sets (M i) shows PiE I E

∈ sets (PiM I M)
proof cases

assume I 6= {}
then have PiE I E = (

⋂
i∈I . prod-emb I M {i} (PiE {i} E))

using E [THEN sets.sets-into-space] by (auto simp: PiE-iff prod-emb-def fun-eq-iff)
also have . . . ∈ sets (PiM I M)

using I 〈I 6= {}〉 by (safe intro!: sets.countable-INT ′ measurable-prod-emb
sets-PiM-I-finite E)

finally show ?thesis .
qed (simp add : sets-PiM-empty)

lemma sets-PiM-D-countable:
assumes A: A ∈ PiM I M

THEORY “Finite-Product-Measure” 264

shows ∃ J⊆I . ∃X∈PiM J M . countable J ∧ A = prod-emb I M J X
using A[unfolded sets-PiM-single]

proof induction
case (Basic A)
then obtain i X where ∗: i ∈ I X ∈ sets (M i) and A = {f ∈ ΠE i∈I . space

(M i). f i ∈ X }
by auto

then have A: A = prod-emb I M {i} (ΠE -∈{i}. X)
by (auto simp: prod-emb-def)

then show ?case
by (intro exI [of - {i}] conjI bexI [of - ΠE -∈{i}. X])

(auto intro: countable-finite ∗ sets-PiM-I-finite)
next

case Empty then show ?case
by (intro exI [of - {}] conjI bexI [of - {}]) auto

next
case (Compl A)
then obtain J X where J ⊆ I X ∈ sets (PiM J M) countable J A = prod-emb

I M J X
by auto

then show ?case
by (intro exI [of - J] bexI [of - space (PiM J M) − X] conjI)

(auto simp add : space-PiM prod-emb-PiE intro!: sets-PiM-I-countable)
next

case (Union K)
obtain J X where J :

∧
i . J i ⊆ I

∧
i . countable (J i) and X :

∧
i . X i ∈ sets

(PiM (J i) M)
and K :

∧
i . K i = prod-emb I M (J i) (X i)

by (metis Union.IH)
show ?case
proof (intro exI [of -

⋃
i . J i] bexI [of -

⋃
i . prod-emb (

⋃
i . J i) M (J i) (X i)]

conjI)
show (

⋃
i . J i) ⊆ I countable (

⋃
i . J i) using J by auto

with J show UNION UNIV K = prod-emb I M (
⋃

i . J i) (
⋃

i . prod-emb (
⋃

i .
J i) M (J i) (X i))

by (simp add : K [abs-def] SUP-upper)
qed(auto intro: X)

qed

lemma measure-eqI-PiM-finite:
assumes [simp]: finite I sets P = PiM I M sets Q = PiM I M
assumes eq :

∧
A. (

∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ P (PiE I A) = Q (PiE

I A)
assumes A: range A ⊆ prod-algebra I M (

⋃
i . A i) = space (PiM I M)

∧
i ::nat .

P (A i) 6= ∞
shows P = Q

proof (rule measure-eqI-generator-eq [OF Int-stable-prod-algebra prod-algebra-sets-into-space])
show range A ⊆ prod-algebra I M (

⋃
i . A i) = (ΠE i∈I . space (M i))

∧
i . P (A

i) 6= ∞

THEORY “Finite-Product-Measure” 265

unfolding space-PiM [symmetric] by fact+
fix X assume X ∈ prod-algebra I M
then obtain J E where X : X = prod-emb I M J (PIE j :J . E j)

and J : finite J J ⊆ I
∧

j . j ∈ J =⇒ E j ∈ sets (M j)
by (force elim!: prod-algebraE)

then show emeasure P X = emeasure Q X
unfolding X by (subst (1 2) prod-emb-Pi) (auto simp: eq)

qed (simp-all add : sets-PiM)

lemma measure-eqI-PiM-infinite:
assumes [simp]: sets P = PiM I M sets Q = PiM I M
assumes eq :

∧
A J . finite J =⇒ J ⊆ I =⇒ (

∧
i . i ∈ J =⇒ A i ∈ sets (M i))

=⇒
P (prod-emb I M J (PiE J A)) = Q (prod-emb I M J (PiE J A))

assumes A: finite-measure P
shows P = Q

proof (rule measure-eqI-generator-eq [OF Int-stable-prod-algebra prod-algebra-sets-into-space])
interpret finite-measure P by fact
def i ≡ SOME i . i ∈ I
have i : I 6= {} =⇒ i ∈ I

unfolding i-def by (rule someI-ex) auto
def A ≡ λn::nat . if I = {} then prod-emb I M {} (ΠE i∈{}. {}) else prod-emb

I M {i} (ΠE i∈{i}. space (M i))
then show range A ⊆ prod-algebra I M

using prod-algebraI [of {} I λi . space (M i) M] by (auto intro!: prod-algebraI
i)

have
∧

i . A i = space (PiM I M)
by (auto simp: prod-emb-def space-PiM PiE-iff A-def i ex-in-conv [symmetric]

exI)
then show (

⋃
i . A i) = (ΠE i∈I . space (M i))

∧
i . emeasure P (A i) 6= ∞

by (auto simp: space-PiM)
next

fix X assume X : X ∈ prod-algebra I M
then obtain J E where X : X = prod-emb I M J (PIE j :J . E j)

and J : finite J J ⊆ I
∧

j . j ∈ J =⇒ E j ∈ sets (M j)
by (force elim!: prod-algebraE)

then show emeasure P X = emeasure Q X
by (auto intro!: eq)

qed (auto simp: sets-PiM)

locale product-sigma-finite =
fixes M :: ′i ⇒ ′a measure
assumes sigma-finite-measures:

∧
i . sigma-finite-measure (M i)

sublocale product-sigma-finite ⊆ M? : sigma-finite-measure M i for i
by (rule sigma-finite-measures)

locale finite-product-sigma-finite = product-sigma-finite M for M :: ′i ⇒ ′a mea-
sure +

THEORY “Finite-Product-Measure” 266

fixes I :: ′i set
assumes finite-index : finite I

lemma (in finite-product-sigma-finite) sigma-finite-pairs:
∃F :: ′i ⇒ nat ⇒ ′a set .

(∀ i∈I . range (F i) ⊆ sets (M i)) ∧
(∀ k . ∀ i∈I . emeasure (M i) (F i k) 6= ∞) ∧ incseq (λk . ΠE i∈I . F i k) ∧
(
⋃

k . ΠE i∈I . F i k) = space (PiM I M)
proof −

have ∀ i :: ′i . ∃F ::nat ⇒ ′a set . range F ⊆ sets (M i) ∧ incseq F ∧ (
⋃

i . F i) =
space (M i) ∧ (∀ k . emeasure (M i) (F k) 6= ∞)

using M .sigma-finite-incseq by metis
from choice[OF this] guess F :: ′i ⇒ nat ⇒ ′a set ..
then have F :

∧
i . range (F i) ⊆ sets (M i)

∧
i . incseq (F i)

∧
i . (

⋃
j . F i j) =

space (M i)
∧

i k . emeasure (M i) (F i k) 6= ∞
by auto

let ?F = λk . ΠE i∈I . F i k
note space-PiM [simp]
show ?thesis
proof (intro exI [of - F] conjI allI incseq-SucI set-eqI iffI ballI)

fix i show range (F i) ⊆ sets (M i) by fact
next

fix i k show emeasure (M i) (F i k) 6= ∞ by fact
next

fix x assume x ∈ (
⋃

i . ?F i) with F (1) show x ∈ space (PiM I M)
by (auto simp: PiE-def dest !: sets.sets-into-space)

next
fix f assume f ∈ space (PiM I M)
with Pi-UN [OF finite-index , of λk i . F i k] F
show f ∈ (

⋃
i . ?F i) by (auto simp: incseq-def PiE-def)

next
fix i show ?F i ⊆ ?F (Suc i)

using 〈
∧

i . incseq (F i)〉[THEN incseq-SucD] by auto
qed

qed

lemma emeasure-PiM-empty [simp]: emeasure (PiM {} M) {λ-. undefined} = 1
proof −

let ?µ = λA. if A = {} then 0 else (1 ::ennreal)
have emeasure (PiM {} M) (prod-emb {} M {} (ΠE i∈{}. {})) = 1
proof (subst emeasure-extend-measure-Pair [OF PiM-def])

show positive (PiM {} M) ?µ
by (auto simp: positive-def)

show countably-additive (PiM {} M) ?µ
by (rule sets.countably-additiveI-finite)
(auto simp: additive-def positive-def sets-PiM-empty space-PiM-empty intro!:

)
qed (auto simp: prod-emb-def)
also have (prod-emb {} M {} (ΠE i∈{}. {})) = {λ-. undefined}

THEORY “Finite-Product-Measure” 267

by (auto simp: prod-emb-def)
finally show ?thesis

by simp
qed

lemma PiM-empty : PiM {} M = count-space {λ-. undefined}
by (rule measure-eqI) (auto simp add : sets-PiM-empty)

lemma (in product-sigma-finite) emeasure-PiM :
finite I =⇒ (

∧
i . i∈I =⇒ A i ∈ sets (M i)) =⇒ emeasure (PiM I M) (PiE I A)

= (
∏

i∈I . emeasure (M i) (A i))
proof (induct I arbitrary : A rule: finite-induct)

case (insert i I)
interpret finite-product-sigma-finite M I by standard fact
have finite (insert i I) using 〈finite I 〉 by auto
interpret I ′: finite-product-sigma-finite M insert i I by standard fact
let ?h = (λ(f , y). f (i := y))

let ?P = distr (PiM I M
⊗

M M i) (PiM (insert i I) M) ?h
let ?µ = emeasure ?P
let ?I = {j ∈ insert i I . emeasure (M j) (space (M j)) 6= 1}
let ?f = λJ E j . if j ∈ J then emeasure (M j) (E j) else emeasure (M j) (space

(M j))

have emeasure (PiM (insert i I) M) (prod-emb (insert i I) M (insert i I) (PiE
(insert i I) A)) =

(
∏

i∈insert i I . emeasure (M i) (A i))
proof (subst emeasure-extend-measure-Pair [OF PiM-def])

fix J E assume (J 6= {} ∨ insert i I = {}) ∧ finite J ∧ J ⊆ insert i I ∧ E ∈
(Π j∈J . sets (M j))

then have J : J 6= {} finite J J ⊆ insert i I and E : ∀ j∈J . E j ∈ sets (M j)
by auto

let ?p = prod-emb (insert i I) M J (PiE J E)
let ?p ′ = prod-emb I M (J − {i}) (ΠE j∈J−{i}. E j)
have ?µ ?p =

emeasure (PiM I M
⊗

M (M i)) (?h −‘ ?p ∩ space (PiM I M
⊗

M M i))
by (intro emeasure-distr measurable-add-dim sets-PiM-I) fact+

also have ?h −‘ ?p ∩ space (PiM I M
⊗

M M i) = ?p ′ × (if i ∈ J then E i
else space (M i))

using J E [rule-format , THEN sets.sets-into-space]
by (force simp: space-pair-measure space-PiM prod-emb-iff PiE-def Pi-iff split :

if-split-asm)
also have emeasure (PiM I M

⊗
M (M i)) (?p ′ × (if i ∈ J then E i else space

(M i))) =
emeasure (PiM I M) ?p ′ ∗ emeasure (M i) (if i ∈ J then (E i) else space (M

i))
using J E by (intro M .emeasure-pair-measure-Times sets-PiM-I) auto

also have ?p ′ = (ΠE j∈I . if j ∈ J−{i} then E j else space (M j))
using J E [rule-format , THEN sets.sets-into-space]

THEORY “Finite-Product-Measure” 268

by (auto simp: prod-emb-iff PiE-def Pi-iff split : if-split-asm) blast+
also have emeasure (PiM I M) (ΠE j∈I . if j ∈ J−{i} then E j else space (M

j)) =
(
∏

j∈I . if j ∈ J−{i} then emeasure (M j) (E j) else emeasure (M j) (space
(M j)))

using E by (subst insert) (auto intro!: setprod .cong)
also have (

∏
j∈I . if j ∈ J − {i} then emeasure (M j) (E j) else emeasure (M

j) (space (M j))) ∗
emeasure (M i) (if i ∈ J then E i else space (M i)) = (

∏
j∈insert i I . ?f J

E j)
using insert by (auto simp: mult .commute intro!: arg-cong2 [where f =op ∗]

setprod .cong)
also have . . . = (

∏
j∈J ∪ ?I . ?f J E j)

using insert(1 ,2) J E by (intro setprod .mono-neutral-right) auto
finally show ?µ ?p =

show prod-emb (insert i I) M J (PiE J E) ∈ Pow (ΠE i∈insert i I . space (M
i))

using J E [rule-format , THEN sets.sets-into-space] by (auto simp: prod-emb-iff
PiE-def)

next
show positive (sets (PiM (insert i I) M)) ?µ countably-additive (sets (PiM

(insert i I) M)) ?µ
using emeasure-positive[of ?P] emeasure-countably-additive[of ?P] by simp-all

next
show (insert i I 6= {} ∨ insert i I = {}) ∧ finite (insert i I) ∧

insert i I ⊆ insert i I ∧ A ∈ (Π j∈insert i I . sets (M j))
using insert by auto

qed (auto intro!: setprod .cong)
with insert show ?case

by (subst (asm) prod-emb-PiE-same-index) (auto intro!: sets.sets-into-space)
qed simp

lemma (in product-sigma-finite) PiM-eqI :
assumes I [simp]: finite I and P : sets P = PiM I M
assumes eq :

∧
A. (

∧
i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ P (PiE I A) = (

∏
i∈I .

emeasure (M i) (A i))
shows P = PiM I M

proof −
interpret finite-product-sigma-finite M I

proof qed fact
from sigma-finite-pairs guess C .. note C = this
show ?thesis
proof (rule measure-eqI-PiM-finite[OF I refl P , symmetric])

show (
∧

i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ (PiM I M) (PiE I A) = P (PiE
I A) for A

by (simp add : eq emeasure-PiM)
def A ≡ λn. ΠE i∈I . C i n
with C show range A ⊆ prod-algebra I M

∧
i . emeasure (PiM I M) (A i) 6=

THEORY “Finite-Product-Measure” 269

∞ (
⋃

i . A i) = space (PiM I M)
by (auto intro!: prod-algebraI-finite simp: emeasure-PiM subset-eq ennreal-setprod-eq-top)

qed
qed

lemma (in product-sigma-finite) sigma-finite:
assumes finite I
shows sigma-finite-measure (PiM I M)

proof
interpret finite-product-sigma-finite M I by standard fact

obtain F where F :
∧

j . countable (F j)
∧

j f . f ∈ F j =⇒ f ∈ sets (M j)∧
j f . f ∈ F j =⇒ emeasure (M j) f 6= ∞ and

in-space:
∧

j . space (M j) = (
⋃

F j)
using sigma-finite-countable by (metis subset-eq)

moreover have (
⋃

(PiE I ‘ PiE I F)) = space (PiM I M)
using in-space by (auto simp: space-PiM PiE-iff intro!: PiE-choice[THEN

iffD2])
ultimately show ∃A. countable A ∧ A ⊆ sets (PiM I M) ∧

⋃
A = space (PiM

I M) ∧ (∀ a∈A. emeasure (PiM I M) a 6= ∞)
by (intro exI [of - PiE I ‘ PiE I F])

(auto intro!: countable-PiE sets-PiM-I-finite
simp: PiE-iff emeasure-PiM finite-index ennreal-setprod-eq-top)

qed

sublocale finite-product-sigma-finite ⊆ sigma-finite-measure PiM I M
using sigma-finite[OF finite-index] .

lemma (in finite-product-sigma-finite) measure-times:
(
∧

i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ emeasure (PiM I M) (PiE I A) = (
∏

i∈I .
emeasure (M i) (A i))

using emeasure-PiM [OF finite-index] by auto

lemma (in product-sigma-finite) nn-integral-empty :
0 ≤ f (λk . undefined) =⇒ integralN (PiM {} M) f = f (λk . undefined)
by (simp add : PiM-empty nn-integral-count-space-finite max .absorb2)

lemma (in product-sigma-finite) distr-merge:
assumes IJ [simp]: I ∩ J = {} and fin: finite I finite J
shows distr (PiM I M

⊗
M PiM J M) (PiM (I ∪ J) M) (merge I J) = PiM

(I ∪ J) M
(is ?D = ?P)

proof (rule PiM-eqI)
interpret I : finite-product-sigma-finite M I by standard fact
interpret J : finite-product-sigma-finite M J by standard fact
fix A assume A:

∧
i . i ∈ I ∪ J =⇒ A i ∈ sets (M i)

have ∗: (merge I J −‘ PiE (I ∪ J) A ∩ space (PiM I M
⊗

M PiM J M)) =
PiE I A × PiE J A

using A[THEN sets.sets-into-space] by (auto simp: space-PiM space-pair-measure)

THEORY “Finite-Product-Measure” 270

from A fin show emeasure (distr (PiM I M
⊗

M PiM J M) (PiM (I ∪ J) M)
(merge I J)) (PiE (I ∪ J) A) =

(
∏

i∈I ∪ J . emeasure (M i) (A i))
by (subst emeasure-distr)
(auto simp: ∗ J .emeasure-pair-measure-Times I .measure-times J .measure-times

setprod .union-disjoint)
qed (insert fin, simp-all)

lemma (in product-sigma-finite) product-nn-integral-fold :
assumes IJ : I ∩ J = {} finite I finite J
and f [measurable]: f ∈ borel-measurable (PiM (I ∪ J) M)
shows integralN (PiM (I ∪ J) M) f =

(
∫

+ x . (
∫

+ y . f (merge I J (x , y)) ∂(PiM J M)) ∂(PiM I M))
proof −

interpret I : finite-product-sigma-finite M I by standard fact
interpret J : finite-product-sigma-finite M J by standard fact
interpret P : pair-sigma-finite PiM I M PiM J M by standard
have P-borel : (λx . f (merge I J x)) ∈ borel-measurable (PiM I M

⊗
M PiM J

M)
using measurable-comp[OF measurable-merge f] by (simp add : comp-def)

show ?thesis
apply (subst distr-merge[OF IJ , symmetric])
apply (subst nn-integral-distr [OF measurable-merge])
apply measurable []
apply (subst J .nn-integral-fst [symmetric, OF P-borel])
apply simp
done

qed

lemma (in product-sigma-finite) distr-singleton:
distr (PiM {i} M) (M i) (λx . x i) = M i (is ?D = -)

proof (intro measure-eqI [symmetric])
interpret I : finite-product-sigma-finite M {i} by standard simp
fix A assume A: A ∈ sets (M i)
then have (λx . x i) −‘ A ∩ space (PiM {i} M) = (ΠE i∈{i}. A)

using sets.sets-into-space by (auto simp: space-PiM)
then show emeasure (M i) A = emeasure ?D A

using A I .measure-times[of λ-. A]
by (simp add : emeasure-distr measurable-component-singleton)

qed simp

lemma (in product-sigma-finite) product-nn-integral-singleton:
assumes f : f ∈ borel-measurable (M i)
shows integralN (PiM {i} M) (λx . f (x i)) = integralN (M i) f

proof −
interpret I : finite-product-sigma-finite M {i} by standard simp
from f show ?thesis

apply (subst distr-singleton[symmetric])
apply (subst nn-integral-distr [OF measurable-component-singleton])

THEORY “Finite-Product-Measure” 271

apply simp-all
done

qed

lemma (in product-sigma-finite) product-nn-integral-insert :
assumes I [simp]: finite I i /∈ I

and f : f ∈ borel-measurable (PiM (insert i I) M)
shows integralN (PiM (insert i I) M) f = (

∫
+ x . (

∫
+ y . f (x (i := y)) ∂(M i))

∂(PiM I M))
proof −

interpret I : finite-product-sigma-finite M I by standard auto
interpret i : finite-product-sigma-finite M {i} by standard auto
have IJ : I ∩ {i} = {} and insert : I ∪ {i} = insert i I

using f by auto
show ?thesis
unfolding product-nn-integral-fold [OF IJ , unfolded insert , OF I (1) i .finite-index

f]
proof (rule nn-integral-cong , subst product-nn-integral-singleton[symmetric])

fix x assume x : x ∈ space (PiM I M)
let ?f = λy . f (x (i := y))
show ?f ∈ borel-measurable (M i)

using measurable-comp[OF measurable-component-update f , OF x 〈i /∈ I 〉]
unfolding comp-def .

show (
∫

+ y . f (merge I {i} (x , y)) ∂PiM {i} M) = (
∫

+ y . f (x (i := y i))
∂PiM {i} M)

using x
by (auto intro!: nn-integral-cong arg-cong [where f =f]

simp add : space-PiM extensional-def PiE-def)
qed

qed

lemma (in product-sigma-finite) product-nn-integral-insert-rev :
assumes I [simp]: finite I i /∈ I

and [measurable]: f ∈ borel-measurable (PiM (insert i I) M)
shows integralN (PiM (insert i I) M) f = (

∫
+ y . (

∫
+ x . f (x (i := y)) ∂(PiM

I M)) ∂(M i))
apply (subst product-nn-integral-insert [OF assms])
apply (rule pair-sigma-finite.Fubini ′)
apply intro-locales []
apply (rule sigma-finite[OF I (1)])
apply measurable
done

lemma (in product-sigma-finite) product-nn-integral-setprod :
assumes finite I

∧
i . i ∈ I =⇒ f i ∈ borel-measurable (M i)

shows (
∫

+ x . (
∏

i∈I . f i (x i)) ∂PiM I M) = (
∏

i∈I . integralN (M i) (f i))
using assms proof (induction I)

case (insert i I)
note insert .prems[measurable]

THEORY “Finite-Product-Measure” 272

note 〈finite I 〉[intro, simp]
interpret I : finite-product-sigma-finite M I by standard auto
have ∗:

∧
x y . (

∏
j∈I . f j (if j = i then y else x j)) = (

∏
j∈I . f j (x j))

using insert by (auto intro!: setprod .cong)
have prod :

∧
J . J ⊆ insert i I =⇒ (λx . (

∏
i∈J . f i (x i))) ∈ borel-measurable

(PiM J M)
using sets.sets-into-space insert
by (intro borel-measurable-setprod-ennreal

measurable-comp[OF measurable-component-singleton, unfolded comp-def])
auto

then show ?case
apply (simp add : product-nn-integral-insert [OF insert(1 ,2)])
apply (simp add : insert(2−) ∗ nn-integral-multc)
apply (subst nn-integral-cmult)
apply (auto simp add : insert(2−))
done

qed (simp add : space-PiM)

lemma (in product-sigma-finite) product-nn-integral-pair :
assumes [measurable]: case-prod f ∈ borel-measurable (M x

⊗
M M y)

assumes xy : x 6= y
shows (

∫
+σ. f (σ x) (σ y) ∂PiM {x , y} M) = (

∫
+z . f (fst z) (snd z) ∂(M x⊗

M M y))
proof−

interpret psm: pair-sigma-finite M x M y
unfolding pair-sigma-finite-def using sigma-finite-measures by simp-all

have {x , y} = {y , x} by auto
also have (

∫
+σ. f (σ x) (σ y) ∂PiM {y , x} M) = (

∫
+y .

∫
+σ. f (σ x) y ∂PiM

{x} M ∂M y)
using xy by (subst product-nn-integral-insert-rev) simp-all

also have ... = (
∫

+y .
∫

+x . f x y ∂M x ∂M y)
by (intro nn-integral-cong , subst product-nn-integral-singleton) simp-all

also have ... = (
∫

+z . f (fst z) (snd z) ∂(M x
⊗

M M y))
by (subst psm.nn-integral-snd [symmetric]) simp-all

finally show ?thesis .
qed

lemma (in product-sigma-finite) distr-component :
distr (M i) (PiM {i} M) (λx . λi∈{i}. x) = PiM {i} M (is ?D = ?P)

proof (intro PiM-eqI)
fix A assume

∧
ia. ia ∈ {i} =⇒ A ia ∈ sets (M ia)

moreover then have (λx . λi∈{i}. x) −‘ PiE {i} A ∩ space (M i) = A i
by (auto dest : sets.sets-into-space)

ultimately show emeasure (distr (M i) (PiM {i} M) (λx . λi∈{i}. x)) (PiE
{i} A) = (

∏
i∈{i}. emeasure (M i) (A i))

by (subst emeasure-distr) (auto intro!: sets-PiM-I-finite measurable-restrict)
qed simp-all

lemma (in product-sigma-finite)

THEORY “Finite-Product-Measure” 273

assumes IJ : I ∩ J = {} finite I finite J and A: A ∈ sets (PiM (I ∪ J) M)
shows emeasure-fold-integral :

emeasure (PiM (I ∪ J) M) A = (
∫

+x . emeasure (PiM J M) ((λy . merge I J
(x , y)) −‘ A ∩ space (PiM J M)) ∂PiM I M) (is ?I)

and emeasure-fold-measurable:
(λx . emeasure (PiM J M) ((λy . merge I J (x , y)) −‘ A ∩ space (PiM J M)))

∈ borel-measurable (PiM I M) (is ?B)
proof −

interpret I : finite-product-sigma-finite M I by standard fact
interpret J : finite-product-sigma-finite M J by standard fact
interpret IJ : pair-sigma-finite PiM I M PiM J M ..
have merge: merge I J −‘ A ∩ space (PiM I M

⊗
M PiM J M) ∈ sets (PiM I

M
⊗

M PiM J M)
by (intro measurable-sets[OF - A] measurable-merge assms)

show ?I
apply (subst distr-merge[symmetric, OF IJ])
apply (subst emeasure-distr [OF measurable-merge A])
apply (subst J .emeasure-pair-measure-alt [OF merge])

apply (auto intro!: nn-integral-cong arg-cong2 [where f =emeasure] simp: space-pair-measure)
done

show ?B
using IJ .measurable-emeasure-Pair1 [OF merge]

by (simp add : vimage-comp comp-def space-pair-measure cong : measurable-cong)
qed

lemma sets-Collect-single:
i ∈ I =⇒ A ∈ sets (M i) =⇒ { x ∈ space (PiM I M). x i ∈ A } ∈ sets (PiM I

M)
by simp

lemma pair-measure-eq-distr-PiM :
fixes M1 :: ′a measure and M2 :: ′a measure
assumes sigma-finite-measure M1 sigma-finite-measure M2
shows (M1

⊗
M M2) = distr (PiM UNIV (case-bool M1 M2)) (M1

⊗
M M2)

(λx . (x True, x False))
(is ?P = ?D)

proof (rule pair-measure-eqI [OF assms])
interpret B : product-sigma-finite case-bool M1 M2

unfolding product-sigma-finite-def using assms by (auto split : bool .split)
let ?B = PiM UNIV (case-bool M1 M2)

have [simp]: fst ◦ (λx . (x True, x False)) = (λx . x True) snd ◦ (λx . (x True, x
False)) = (λx . x False)

by auto
fix A B assume A: A ∈ sets M1 and B : B ∈ sets M2
have emeasure M1 A ∗ emeasure M2 B = (

∏
i∈UNIV . emeasure (case-bool M1

M2 i) (case-bool A B i))

THEORY “Bochner-Integration” 274

by (simp add : UNIV-bool ac-simps)
also have . . . = emeasure ?B (PiE UNIV (case-bool A B))

using A B by (subst B .emeasure-PiM) (auto split : bool .split)
also have PiE UNIV (case-bool A B) = (λx . (x True, x False)) −‘ (A × B) ∩

space ?B
using A[THEN sets.sets-into-space] B [THEN sets.sets-into-space]
by (auto simp: PiE-iff all-bool-eq space-PiM split : bool .split)

finally show emeasure M1 A ∗ emeasure M2 B = emeasure ?D (A × B)
using A B

measurable-component-singleton[of True UNIV case-bool M1 M2]
measurable-component-singleton[of False UNIV case-bool M1 M2]

by (subst emeasure-distr) (auto simp: measurable-pair-iff)
qed simp

end

8 Bochner Integration for Vector-Valued Functions

theory Bochner-Integration
imports Finite-Product-Measure

begin

In the following development of the Bochner integral we use second countable
topologies instead of separable spaces. A second countable topology is also
separable.

lemma borel-measurable-implies-sequence-metric:
fixes f :: ′a ⇒ ′b :: {metric-space, second-countable-topology}
assumes [measurable]: f ∈ borel-measurable M
shows ∃F . (∀ i . simple-function M (F i)) ∧ (∀ x∈space M . (λi . F i x) −−−−→ f

x) ∧
(∀ i . ∀ x∈space M . dist (F i x) z ≤ 2 ∗ dist (f x) z)

proof −
obtain D :: ′b set where countable D and D :

∧
X . open X =⇒ X 6= {} =⇒

∃ d∈D . d ∈ X
by (erule countable-dense-setE)

def e ≡ from-nat-into D
{ fix n x

obtain d where d ∈ D and d : d ∈ ball x (1 / Suc n)
using D [of ball x (1 / Suc n)] by auto

from 〈d ∈ D 〉 D [of UNIV] 〈countable D 〉 obtain i where d = e i
unfolding e-def by (auto dest : from-nat-into-surj)

with d have ∃ i . dist x (e i) < 1 / Suc n
by auto }

note e = this

def A ≡ λm n. {x∈space M . dist (f x) (e n) < 1 / (Suc m) ∧ 1 / (Suc m) ≤
dist (f x) z}

THEORY “Bochner-Integration” 275

def B ≡ λm. disjointed (A m)

def m ≡ λN x . Max {m::nat . m ≤ N ∧ x ∈ (
⋃

n≤N . B m n)}
def F ≡ λN ::nat . λx . if (∃m≤N . x ∈ (

⋃
n≤N . B m n)) ∧ (∃n≤N . x ∈ B (m

N x) n)
then e (LEAST n. x ∈ B (m N x) n) else z

have B-imp-A[intro, simp]:
∧

x m n. x ∈ B m n =⇒ x ∈ A m n
using disjointed-subset [of A m for m] unfolding B-def by auto

{ fix m
have

∧
n. A m n ∈ sets M

by (auto simp: A-def)
then have

∧
n. B m n ∈ sets M

using sets.range-disjointed-sets[of A m M] by (auto simp: B-def) }
note this[measurable]

{ fix N i x assume ∃m≤N . x ∈ (
⋃

n≤N . B m n)
then have m N x ∈ {m::nat . m ≤ N ∧ x ∈ (

⋃
n≤N . B m n)}

unfolding m-def by (intro Max-in) auto
then have m N x ≤ N ∃n≤N . x ∈ B (m N x) n

by auto }
note m = this

{ fix j N i x assume j ≤ N i ≤ N x ∈ B j i
then have j ≤ m N x

unfolding m-def by (intro Max-ge) auto }
note m-upper = this

show ?thesis
unfolding simple-function-def

proof (safe intro!: exI [of - F])
have [measurable]:

∧
i . F i ∈ borel-measurable M

unfolding F-def m-def by measurable
show

∧
x i . F i −‘ {x} ∩ space M ∈ sets M

by measurable

{ fix i
{ fix n x assume x ∈ B (m i x) n

then have (LEAST n. x ∈ B (m i x) n) ≤ n
by (intro Least-le)

also assume n ≤ i
finally have (LEAST n. x ∈ B (m i x) n) ≤ i . }

then have F i ‘ space M ⊆ {z} ∪ e ‘ {.. i}
by (auto simp: F-def)

then show finite (F i ‘ space M)
by (rule finite-subset) auto }

{ fix N i n x assume i ≤ N n ≤ N x ∈ B i n

THEORY “Bochner-Integration” 276

then have 1 : ∃m≤N . x ∈ (
⋃

n≤N . B m n) by auto
from m[OF this] obtain n where n: m N x ≤ N n ≤ N x ∈ B (m N x) n

by auto
moreover
def L ≡ LEAST n. x ∈ B (m N x) n
have dist (f x) (e L) < 1 / Suc (m N x)
proof −

have x ∈ B (m N x) L
using n(3) unfolding L-def by (rule LeastI)

then have x ∈ A (m N x) L
by auto

then show ?thesis
unfolding A-def by simp

qed
ultimately have dist (f x) (F N x) < 1 / Suc (m N x)

by (auto simp add : F-def L-def) }
note ∗ = this

fix x assume x ∈ space M
show (λi . F i x) −−−−→ f x
proof cases

assume f x = z
then have

∧
i n. x /∈ A i n

unfolding A-def by auto
then have

∧
i . F i x = z

by (auto simp: F-def)
then show ?thesis

using 〈f x = z 〉 by auto
next

assume f x 6= z

show ?thesis
proof (rule tendstoI)

fix e :: real assume 0 < e
with 〈f x 6= z 〉 obtain n where 1 / Suc n < e 1 / Suc n < dist (f x) z

by (metis dist-nz order-less-trans neq-iff nat-approx-posE)
with 〈x∈space M 〉 〈f x 6= z 〉 have x ∈ (

⋃
i . B n i)

unfolding A-def B-def UN-disjointed-eq using e by auto
then obtain i where i : x ∈ B n i by auto

show eventually (λi . dist (F i x) (f x) < e) sequentially
using eventually-ge-at-top[of max n i]

proof eventually-elim
fix j assume j : max n i ≤ j
with i have dist (f x) (F j x) < 1 / Suc (m j x)

by (intro ∗[OF - - i]) auto
also have . . . ≤ 1 / Suc n

using j m-upper [OF - - i]
by (auto simp: field-simps)

THEORY “Bochner-Integration” 277

also note 〈1 / Suc n < e〉

finally show dist (F j x) (f x) < e
by (simp add : less-imp-le dist-commute)

qed
qed

qed
fix i
{ fix n m assume x ∈ A n m

then have dist (e m) (f x) + dist (f x) z ≤ 2 ∗ dist (f x) z
unfolding A-def by (auto simp: dist-commute)

also have dist (e m) z ≤ dist (e m) (f x) + dist (f x) z
by (rule dist-triangle)

finally (xtrans) have dist (e m) z ≤ 2 ∗ dist (f x) z . }
then show dist (F i x) z ≤ 2 ∗ dist (f x) z

unfolding F-def
apply auto
apply (rule LeastI2)
apply auto
done

qed
qed

lemma
fixes f :: ′a ⇒ ′b::semiring-1 assumes finite A
shows setsum-mult-indicator [simp]: (

∑
x ∈ A. f x ∗ indicator (B x) (g x)) =

(
∑

x∈{x∈A. g x ∈ B x}. f x)
and setsum-indicator-mult [simp]: (

∑
x ∈ A. indicator (B x) (g x) ∗ f x) =

(
∑

x∈{x∈A. g x ∈ B x}. f x)
unfolding indicator-def
using assms by (auto intro!: setsum.mono-neutral-cong-right split : if-split-asm)

lemma borel-measurable-induct-real [consumes 2 , case-names set mult add seq]:
fixes P :: (′a ⇒ real) ⇒ bool
assumes u: u ∈ borel-measurable M

∧
x . 0 ≤ u x

assumes set :
∧

A. A ∈ sets M =⇒ P (indicator A)
assumes mult :

∧
u c. 0 ≤ c =⇒ u ∈ borel-measurable M =⇒ (

∧
x . 0 ≤ u x)

=⇒ P u =⇒ P (λx . c ∗ u x)
assumes add :

∧
u v . u ∈ borel-measurable M =⇒ (

∧
x . 0 ≤ u x) =⇒ P u =⇒ v

∈ borel-measurable M =⇒ (
∧

x . 0 ≤ v x) =⇒ (
∧

x . x ∈ space M =⇒ u x = 0 ∨
v x = 0) =⇒ P v =⇒ P (λx . v x + u x)

assumes seq :
∧

U . (
∧

i . U i ∈ borel-measurable M) =⇒ (
∧

i x . 0 ≤ U i x) =⇒
(
∧

i . P (U i)) =⇒ incseq U =⇒ (
∧

x . x ∈ space M =⇒ (λi . U i x) −−−−→ u x)
=⇒ P u

shows P u
proof −

have (λx . ennreal (u x)) ∈ borel-measurable M using u by auto
from borel-measurable-implies-simple-function-sequence ′[OF this]
obtain U where U :

∧
i . simple-function M (U i) incseq U

∧
i x . U i x < top

and

THEORY “Bochner-Integration” 278

sup:
∧

x . (SUP i . U i x) = ennreal (u x)
by blast

def U ′ ≡ λi x . indicator (space M) x ∗ enn2real (U i x)
then have U ′-sf [measurable]:

∧
i . simple-function M (U ′ i)

using U by (auto intro!: simple-function-compose1 [where g=enn2real])

show P u
proof (rule seq)

show U ′: U ′ i ∈ borel-measurable M
∧

x . 0 ≤ U ′ i x for i
using U by (auto

intro: borel-measurable-simple-function
intro!: borel-measurable-enn2real borel-measurable-times
simp: U ′-def zero-le-mult-iff enn2real-nonneg)

show incseq U ′

using U (2 ,3)
by (auto simp: incseq-def le-fun-def image-iff eq-commute U ′-def indicator-def

enn2real-mono)

fix x assume x : x ∈ space M
have (λi . U i x) −−−−→ (SUP i . U i x)

using U (2) by (intro LIMSEQ-SUP) (auto simp: incseq-def le-fun-def)
moreover have (λi . U i x) = (λi . ennreal (U ′ i x))

using x U (3) by (auto simp: fun-eq-iff U ′-def image-iff eq-commute)
moreover have (SUP i . U i x) = ennreal (u x)

using sup u(2) by (simp add : max-def)
ultimately show (λi . U ′ i x) −−−−→ u x

using u U ′ by simp
next

fix i
have U ′ i ‘ space M ⊆ enn2real ‘ (U i ‘ space M) finite (U i ‘ space M)

unfolding U ′-def using U (1) by (auto dest : simple-functionD)
then have fin: finite (U ′ i ‘ space M)

by (metis finite-subset finite-imageI)
moreover have

∧
z . {y . U ′ i z = y ∧ y ∈ U ′ i ‘ space M ∧ z ∈ space M } =

(if z ∈ space M then {U ′ i z} else {})
by auto

ultimately have U ′: (λz .
∑

y∈U ′ i‘space M . y ∗ indicator {x∈space M . U ′

i x = y} z) = U ′ i
by (simp add : U ′-def fun-eq-iff)

have
∧

x . x ∈ U ′ i ‘ space M =⇒ 0 ≤ x
by (auto simp: U ′-def enn2real-nonneg)

with fin have P (λz .
∑

y∈U ′ i‘space M . y ∗ indicator {x∈space M . U ′ i x =
y} z)

proof induct
case empty from set [of {}] show ?case

by (simp add : indicator-def [abs-def])
next

case (insert x F)

THEORY “Bochner-Integration” 279

then show ?case
by (auto intro!: add mult set setsum-nonneg split : split-indicator split-indicator-asm

simp del : setsum-mult-indicator simp: setsum-nonneg-eq-0-iff)
qed
with U ′ show P (U ′ i) by simp

qed
qed

lemma scaleR-cong-right :
fixes x :: ′a :: real-vector
shows (x 6= 0 =⇒ r = p) =⇒ r ∗R x = p ∗R x
by (cases x = 0) auto

inductive simple-bochner-integrable :: ′a measure ⇒ (′a ⇒ ′b::real-vector) ⇒ bool
for M f where

simple-function M f =⇒ emeasure M {y∈space M . f y 6= 0} 6= ∞ =⇒
simple-bochner-integrable M f

lemma simple-bochner-integrable-compose2 :
assumes p-0 : p 0 0 = 0
shows simple-bochner-integrable M f =⇒ simple-bochner-integrable M g =⇒

simple-bochner-integrable M (λx . p (f x) (g x))
proof (safe intro!: simple-bochner-integrable.intros elim!: simple-bochner-integrable.cases
del : notI)

assume sf : simple-function M f simple-function M g
then show simple-function M (λx . p (f x) (g x))

by (rule simple-function-compose2)

from sf have [measurable]:
f ∈ measurable M (count-space UNIV)
g ∈ measurable M (count-space UNIV)

by (auto intro: measurable-simple-function)

assume fin: emeasure M {y ∈ space M . f y 6= 0} 6= ∞ emeasure M {y ∈ space
M . g y 6= 0} 6= ∞

have emeasure M {x∈space M . p (f x) (g x) 6= 0} ≤
emeasure M ({x∈space M . f x 6= 0} ∪ {x∈space M . g x 6= 0})

by (intro emeasure-mono) (auto simp: p-0)
also have . . . ≤ emeasure M {x∈space M . f x 6= 0} + emeasure M {x∈space

M . g x 6= 0}
by (intro emeasure-subadditive) auto

finally show emeasure M {y ∈ space M . p (f y) (g y) 6= 0} 6= ∞
using fin by (auto simp: top-unique)

qed

lemma simple-function-finite-support :
assumes f : simple-function M f and fin: (

∫
+x . f x ∂M) < ∞ and nn:

∧
x . 0

≤ f x

THEORY “Bochner-Integration” 280

shows emeasure M {x∈space M . f x 6= 0} 6= ∞
proof cases

from f have meas[measurable]: f ∈ borel-measurable M
by (rule borel-measurable-simple-function)

assume non-empty : ∃ x∈space M . f x 6= 0

def m ≡ Min (f‘space M − {0})
have m ∈ f‘space M − {0}
unfolding m-def using f non-empty by (intro Min-in) (auto simp: simple-function-def)
then have m: 0 < m

using nn by (auto simp: less-le)

from m have m ∗ emeasure M {x∈space M . 0 6= f x} =
(
∫

+x . m ∗ indicator {x∈space M . 0 6= f x} x ∂M)
using f by (intro nn-integral-cmult-indicator [symmetric]) auto

also have . . . ≤ (
∫

+x . f x ∂M)
using AE-space

proof (intro nn-integral-mono-AE , eventually-elim)
fix x assume x ∈ space M
with nn show m ∗ indicator {x ∈ space M . 0 6= f x} x ≤ f x

using f by (auto split : split-indicator simp: simple-function-def m-def)
qed
also note 〈. . . < ∞〉

finally show ?thesis
using m by (auto simp: ennreal-mult-less-top)

next
assume ¬ (∃ x∈space M . f x 6= 0)
with nn have ∗: {x∈space M . f x 6= 0} = {}

by auto
show ?thesis unfolding ∗ by simp

qed

lemma simple-bochner-integrableI-bounded :
assumes f : simple-function M f and fin: (

∫
+x . norm (f x) ∂M) < ∞

shows simple-bochner-integrable M f
proof

have emeasure M {y ∈ space M . ennreal (norm (f y)) 6= 0} 6= ∞
proof (rule simple-function-finite-support)

show simple-function M (λx . ennreal (norm (f x)))
using f by (rule simple-function-compose1)

show (
∫

+ y . ennreal (norm (f y)) ∂M) < ∞ by fact
qed simp
then show emeasure M {y ∈ space M . f y 6= 0} 6= ∞ by simp

qed fact

definition simple-bochner-integral :: ′a measure ⇒ (′a ⇒ ′b::real-vector) ⇒ ′b
where

simple-bochner-integral M f = (
∑

y∈f‘space M . measure M {x∈space M . f x =

THEORY “Bochner-Integration” 281

y} ∗R y)

lemma simple-bochner-integral-partition:
assumes f : simple-bochner-integrable M f and g : simple-function M g
assumes sub:

∧
x y . x ∈ space M =⇒ y ∈ space M =⇒ g x = g y =⇒ f x = f y

assumes v :
∧

x . x ∈ space M =⇒ f x = v (g x)
shows simple-bochner-integral M f = (

∑
y∈g ‘ space M . measure M {x∈space

M . g x = y} ∗R v y)
(is - = ?r)

proof −
from f g have [simp]: finite (f‘space M) finite (g‘space M)

by (auto simp: simple-function-def elim: simple-bochner-integrable.cases)

from f have [measurable]: f ∈ measurable M (count-space UNIV)
by (auto intro: measurable-simple-function elim: simple-bochner-integrable.cases)

from g have [measurable]: g ∈ measurable M (count-space UNIV)
by (auto intro: measurable-simple-function elim: simple-bochner-integrable.cases)

{ fix y assume y ∈ space M
then have f ‘ space M ∩ {i . ∃ x∈space M . i = f x ∧ g y = g x} = {v (g y)}

by (auto cong : sub simp: v [symmetric]) }
note eq = this

have simple-bochner-integral M f =
(
∑

y∈f‘space M . (
∑

z∈g‘space M .
if ∃ x∈space M . y = f x ∧ z = g x then measure M {x∈space M . g x = z}

else 0) ∗R y)
unfolding simple-bochner-integral-def

proof (safe intro!: setsum.cong scaleR-cong-right)
fix y assume y : y ∈ space M f y 6= 0
have [simp]: g ‘ space M ∩ {z . ∃ x∈space M . f y = f x ∧ z = g x} =
{z . ∃ x∈space M . f y = f x ∧ z = g x}

by auto
have eq :{x ∈ space M . f x = f y} =

(
⋃

i∈{z . ∃ x∈space M . f y = f x ∧ z = g x}. {x ∈ space M . g x = i})
by (auto simp: eq-commute cong : sub rev-conj-cong)

have finite (g‘space M) by simp
then have finite {z . ∃ x∈space M . f y = f x ∧ z = g x}

by (rule rev-finite-subset) auto
moreover
{ fix x assume x ∈ space M f x = f y

then have x ∈ space M f x 6= 0
using y by auto

then have emeasure M {y ∈ space M . g y = g x} ≤ emeasure M {y ∈ space
M . f y 6= 0}

by (auto intro!: emeasure-mono cong : sub)
then have emeasure M {xa ∈ space M . g xa = g x} < ∞

using f by (auto simp: simple-bochner-integrable.simps less-top) }

THEORY “Bochner-Integration” 282

ultimately
show measure M {x ∈ space M . f x = f y} =

(
∑

z∈g ‘ space M . if ∃ x∈space M . f y = f x ∧ z = g x then measure M {x
∈ space M . g x = z} else 0)

apply (simp add : setsum.If-cases eq)
apply (subst measure-finite-Union[symmetric])
apply (auto simp: disjoint-family-on-def less-top)
done

qed
also have . . . = (

∑
y∈f‘space M . (

∑
z∈g‘space M .

if ∃ x∈space M . y = f x ∧ z = g x then measure M {x∈space M . g x = z}
∗R y else 0))

by (auto intro!: setsum.cong simp: scaleR-setsum-left)
also have . . . = ?r

by (subst setsum.commute)
(auto intro!: setsum.cong simp: setsum.If-cases scaleR-setsum-right [symmetric]

eq)
finally show simple-bochner-integral M f = ?r .

qed

lemma simple-bochner-integral-add :
assumes f : simple-bochner-integrable M f and g : simple-bochner-integrable M g
shows simple-bochner-integral M (λx . f x + g x) =

simple-bochner-integral M f + simple-bochner-integral M g
proof −

from f g have simple-bochner-integral M (λx . f x + g x) =
(
∑

y∈(λx . (f x , g x)) ‘ space M . measure M {x ∈ space M . (f x , g x) = y} ∗R
(fst y + snd y))

by (intro simple-bochner-integral-partition)
(auto simp: simple-bochner-integrable-compose2 elim: simple-bochner-integrable.cases)

moreover from f g have simple-bochner-integral M f =
(
∑

y∈(λx . (f x , g x)) ‘ space M . measure M {x ∈ space M . (f x , g x) = y} ∗R
fst y)

by (intro simple-bochner-integral-partition)
(auto simp: simple-bochner-integrable-compose2 elim: simple-bochner-integrable.cases)

moreover from f g have simple-bochner-integral M g =
(
∑

y∈(λx . (f x , g x)) ‘ space M . measure M {x ∈ space M . (f x , g x) = y} ∗R
snd y)

by (intro simple-bochner-integral-partition)
(auto simp: simple-bochner-integrable-compose2 elim: simple-bochner-integrable.cases)

ultimately show ?thesis
by (simp add : setsum.distrib[symmetric] scaleR-add-right)

qed

lemma (in linear) simple-bochner-integral-linear :
assumes g : simple-bochner-integrable M g
shows simple-bochner-integral M (λx . f (g x)) = f (simple-bochner-integral M

g)
proof −

THEORY “Bochner-Integration” 283

from g have simple-bochner-integral M (λx . f (g x)) =
(
∑

y∈g ‘ space M . measure M {x ∈ space M . g x = y} ∗R f y)
by (intro simple-bochner-integral-partition)

(auto simp: simple-bochner-integrable-compose2 [where p=λx y . f x] zero
elim: simple-bochner-integrable.cases)

also have . . . = f (simple-bochner-integral M g)
by (simp add : simple-bochner-integral-def setsum scaleR)

finally show ?thesis .
qed

lemma simple-bochner-integral-minus:
assumes f : simple-bochner-integrable M f
shows simple-bochner-integral M (λx . − f x) = − simple-bochner-integral M f

proof −
interpret linear uminus by unfold-locales auto
from f show ?thesis

by (rule simple-bochner-integral-linear)
qed

lemma simple-bochner-integral-diff :
assumes f : simple-bochner-integrable M f and g : simple-bochner-integrable M g
shows simple-bochner-integral M (λx . f x − g x) =

simple-bochner-integral M f − simple-bochner-integral M g
unfolding diff-conv-add-uminus using f g
by (subst simple-bochner-integral-add)

(auto simp: simple-bochner-integral-minus simple-bochner-integrable-compose2 [where
p=λx y . − y])

lemma simple-bochner-integral-norm-bound :
assumes f : simple-bochner-integrable M f
shows norm (simple-bochner-integral M f) ≤ simple-bochner-integral M (λx .

norm (f x))
proof −

have norm (simple-bochner-integral M f) ≤
(
∑

y∈f ‘ space M . norm (measure M {x ∈ space M . f x = y} ∗R y))
unfolding simple-bochner-integral-def by (rule norm-setsum)

also have . . . = (
∑

y∈f ‘ space M . measure M {x ∈ space M . f x = y} ∗R norm
y)

by simp
also have . . . = simple-bochner-integral M (λx . norm (f x))

using f
by (intro simple-bochner-integral-partition[symmetric])
(auto intro: f simple-bochner-integrable-compose2 elim: simple-bochner-integrable.cases)

finally show ?thesis .
qed

lemma simple-bochner-integral-nonneg [simp]:
fixes f :: ′a ⇒ real
shows (

∧
x . 0 ≤ f x) =⇒ 0 ≤ simple-bochner-integral M f

THEORY “Bochner-Integration” 284

by (simp add : setsum-nonneg simple-bochner-integral-def)

lemma simple-bochner-integral-eq-nn-integral :
assumes f : simple-bochner-integrable M f

∧
x . 0 ≤ f x

shows simple-bochner-integral M f = (
∫

+x . f x ∂M)
proof −
{ fix x y z have (x 6= 0 =⇒ y = z) =⇒ ennreal x ∗ y = ennreal x ∗ z

by (cases x = 0) (auto simp: zero-ennreal-def [symmetric]) }
note ennreal-cong-mult = this

have [measurable]: f ∈ borel-measurable M
using f (1) by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)

{ fix y assume y : y ∈ space M f y 6= 0
have ennreal (measure M {x ∈ space M . f x = f y}) = emeasure M {x ∈ space

M . f x = f y}
proof (rule emeasure-eq-ennreal-measure[symmetric])

have emeasure M {x ∈ space M . f x = f y} ≤ emeasure M {x ∈ space M . f
x 6= 0}

using y by (intro emeasure-mono) auto
with f show emeasure M {x ∈ space M . f x = f y} 6= top

by (auto simp: simple-bochner-integrable.simps top-unique)
qed
moreover have {x ∈ space M . f x = f y} = (λx . ennreal (f x)) −‘ {ennreal

(f y)} ∩ space M
using f by auto

ultimately have ennreal (measure M {x ∈ space M . f x = f y}) =
emeasure M ((λx . ennreal (f x)) −‘ {ennreal (f y)} ∩ space M) by simp }

with f have simple-bochner-integral M f = (
∫
Sx . f x ∂M)

unfolding simple-integral-def
by (subst simple-bochner-integral-partition[OF f (1), where g=λx . ennreal (f

x) and v=enn2real])
(auto intro: f simple-function-compose1 elim: simple-bochner-integrable.cases

intro!: setsum.cong ennreal-cong-mult
simp: setsum-ennreal [symmetric] ac-simps ennreal-mult
simp del : setsum-ennreal)

also have . . . = (
∫

+x . f x ∂M)
using f
by (intro nn-integral-eq-simple-integral [symmetric])

(auto simp: simple-function-compose1 simple-bochner-integrable.simps)
finally show ?thesis .

qed

lemma simple-bochner-integral-bounded :
fixes f :: ′a ⇒ ′b::{real-normed-vector , second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable M
assumes s: simple-bochner-integrable M s and t : simple-bochner-integrable M t
shows ennreal (norm (simple-bochner-integral M s − simple-bochner-integral M

t)) ≤

THEORY “Bochner-Integration” 285

(
∫

+ x . norm (f x − s x) ∂M) + (
∫

+ x . norm (f x − t x) ∂M)
(is ennreal (norm (?s − ?t)) ≤ ?S + ?T)

proof −
have [measurable]: s ∈ borel-measurable M t ∈ borel-measurable M
using s t by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)

have ennreal (norm (?s − ?t)) = norm (simple-bochner-integral M (λx . s x −
t x))

using s t by (subst simple-bochner-integral-diff) auto
also have . . . ≤ simple-bochner-integral M (λx . norm (s x − t x))

using simple-bochner-integrable-compose2 [of op − M s t] s t
by (auto intro!: simple-bochner-integral-norm-bound)

also have . . . = (
∫

+x . norm (s x − t x) ∂M)
using simple-bochner-integrable-compose2 [of λx y . norm (x − y) M s t] s t
by (auto intro!: simple-bochner-integral-eq-nn-integral)

also have . . . ≤ (
∫

+x . ennreal (norm (f x − s x)) + ennreal (norm (f x − t
x)) ∂M)

by (auto intro!: nn-integral-mono simp: ennreal-plus[symmetric] simp del :
ennreal-plus)

(metis (erased , hide-lams) add-diff-cancel-left add-diff-eq diff-add-eq order-trans
norm-minus-commute norm-triangle-ineq4 order-refl)

also have . . . = ?S + ?T
by (rule nn-integral-add) auto

finally show ?thesis .
qed

inductive has-bochner-integral :: ′a measure ⇒ (′a ⇒ ′b)⇒ ′b::{real-normed-vector ,
second-countable-topology} ⇒ bool

for M f x where
f ∈ borel-measurable M =⇒

(
∧

i . simple-bochner-integrable M (s i)) =⇒
(λi .

∫
+x . norm (f x − s i x) ∂M) −−−−→ 0 =⇒

(λi . simple-bochner-integral M (s i)) −−−−→ x =⇒
has-bochner-integral M f x

lemma has-bochner-integral-cong :
assumes M = N

∧
x . x ∈ space N =⇒ f x = g x x = y

shows has-bochner-integral M f x ←→ has-bochner-integral N g y
unfolding has-bochner-integral .simps assms(1 ,3)
using assms(2) by (simp cong : measurable-cong-strong nn-integral-cong-strong)

lemma has-bochner-integral-cong-AE :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (AE x in M . f x = g

x) =⇒
has-bochner-integral M f x ←→ has-bochner-integral M g x

unfolding has-bochner-integral .simps
by (intro arg-cong [where f =Ex] ext conj-cong rev-conj-cong refl arg-cong [where

f =λx . x −−−−→ 0]
nn-integral-cong-AE)

THEORY “Bochner-Integration” 286

auto

lemma borel-measurable-has-bochner-integral :
has-bochner-integral M f x =⇒ f ∈ borel-measurable M
by (rule has-bochner-integral .cases)

lemma borel-measurable-has-bochner-integral ′[measurable-dest]:
has-bochner-integral M f x =⇒ g ∈ measurable N M =⇒ (λx . f (g x)) ∈

borel-measurable N
using borel-measurable-has-bochner-integral [measurable] by measurable

lemma has-bochner-integral-simple-bochner-integrable:
simple-bochner-integrable M f =⇒ has-bochner-integral M f (simple-bochner-integral

M f)
by (rule has-bochner-integral .intros[where s=λ-. f])

(auto intro: borel-measurable-simple-function
elim: simple-bochner-integrable.cases
simp: zero-ennreal-def [symmetric])

lemma has-bochner-integral-real-indicator :
assumes [measurable]: A ∈ sets M and A: emeasure M A < ∞
shows has-bochner-integral M (indicator A) (measure M A)

proof −
have sbi : simple-bochner-integrable M (indicator A:: ′a ⇒ real)
proof

have {y ∈ space M . (indicator A y ::real) 6= 0} = A
using sets.sets-into-space[OF 〈A∈sets M 〉] by (auto split : split-indicator)

then show emeasure M {y ∈ space M . (indicator A y ::real) 6= 0} 6= ∞
using A by auto

qed (rule simple-function-indicator assms)+
moreover have simple-bochner-integral M (indicator A) = measure M A

using simple-bochner-integral-eq-nn-integral [OF sbi] A
by (simp add : ennreal-indicator emeasure-eq-ennreal-measure)

ultimately show ?thesis
by (metis has-bochner-integral-simple-bochner-integrable)

qed

lemma has-bochner-integral-add [intro]:
has-bochner-integral M f x =⇒ has-bochner-integral M g y =⇒

has-bochner-integral M (λx . f x + g x) (x + y)
proof (safe intro!: has-bochner-integral .intros elim!: has-bochner-integral .cases)

fix sf sg
assume f-sf : (λi .

∫
+ x . norm (f x − sf i x) ∂M) −−−−→ 0

assume g-sg : (λi .
∫

+ x . norm (g x − sg i x) ∂M) −−−−→ 0

assume sf : ∀ i . simple-bochner-integrable M (sf i)
and sg : ∀ i . simple-bochner-integrable M (sg i)

then have [measurable]:
∧

i . sf i ∈ borel-measurable M
∧

i . sg i ∈ borel-measurable
M

THEORY “Bochner-Integration” 287

by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)
assume [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M

show
∧

i . simple-bochner-integrable M (λx . sf i x + sg i x)
using sf sg by (simp add : simple-bochner-integrable-compose2)

show (λi .
∫

+ x . (norm (f x + g x − (sf i x + sg i x))) ∂M) −−−−→ 0
(is ?f −−−−→ 0)

proof (rule tendsto-sandwich)
show eventually (λn. 0 ≤ ?f n) sequentially (λ-. 0) −−−−→ 0

by auto
show eventually (λi . ?f i ≤ (

∫
+ x . (norm (f x − sf i x)) ∂M) +

∫
+ x . (norm

(g x − sg i x)) ∂M) sequentially
(is eventually (λi . ?f i ≤ ?g i) sequentially)

proof (intro always-eventually allI)
fix i have ?f i ≤ (

∫
+ x . (norm (f x − sf i x)) + ennreal (norm (g x − sg i

x)) ∂M)
by (auto intro!: nn-integral-mono norm-diff-triangle-ineq

simp del : ennreal-plus simp add : ennreal-plus[symmetric])
also have . . . = ?g i

by (intro nn-integral-add) auto
finally show ?f i ≤ ?g i .

qed
show ?g −−−−→ 0

using tendsto-add [OF f-sf g-sg] by simp
qed

qed (auto simp: simple-bochner-integral-add tendsto-add)

lemma has-bochner-integral-bounded-linear :
assumes bounded-linear T
shows has-bochner-integral M f x =⇒ has-bochner-integral M (λx . T (f x)) (T

x)
proof (safe intro!: has-bochner-integral .intros elim!: has-bochner-integral .cases)

interpret T : bounded-linear T by fact
have [measurable]: T ∈ borel-measurable borel

by (intro borel-measurable-continuous-on1 T .continuous-on continuous-on-id)
assume [measurable]: f ∈ borel-measurable M
then show (λx . T (f x)) ∈ borel-measurable M

by auto

fix s assume f-s: (λi .
∫

+ x . norm (f x − s i x) ∂M) −−−−→ 0
assume s: ∀ i . simple-bochner-integrable M (s i)
then show

∧
i . simple-bochner-integrable M (λx . T (s i x))

by (auto intro: simple-bochner-integrable-compose2 T .zero)

have [measurable]:
∧

i . s i ∈ borel-measurable M
using s by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)

obtain K where K : K > 0
∧

x i . norm (T (f x) − T (s i x)) ≤ norm (f x −

THEORY “Bochner-Integration” 288

s i x) ∗ K
using T .pos-bounded by (auto simp: T .diff [symmetric])

show (λi .
∫

+ x . norm (T (f x) − T (s i x)) ∂M) −−−−→ 0
(is ?f −−−−→ 0)

proof (rule tendsto-sandwich)
show eventually (λn. 0 ≤ ?f n) sequentially (λ-. 0) −−−−→ 0

by auto

show eventually (λi . ?f i ≤ K ∗ (
∫

+ x . norm (f x − s i x) ∂M)) sequentially
(is eventually (λi . ?f i ≤ ?g i) sequentially)

proof (intro always-eventually allI)
fix i have ?f i ≤ (

∫
+ x . ennreal K ∗ norm (f x − s i x) ∂M)

using K by (intro nn-integral-mono) (auto simp: ac-simps ennreal-mult [symmetric])
also have . . . = ?g i

using K by (intro nn-integral-cmult) auto
finally show ?f i ≤ ?g i .

qed
show ?g −−−−→ 0

using ennreal-tendsto-cmult [OF - f-s] by simp
qed

assume (λi . simple-bochner-integral M (s i)) −−−−→ x
with s show (λi . simple-bochner-integral M (λx . T (s i x))) −−−−→ T x

by (auto intro!: T .tendsto simp: T .simple-bochner-integral-linear)
qed

lemma has-bochner-integral-zero[intro]: has-bochner-integral M (λx . 0) 0
by (auto intro!: has-bochner-integral .intros[where s=λ- -. 0]

simp: zero-ennreal-def [symmetric] simple-bochner-integrable.simps
simple-bochner-integral-def image-constant-conv)

lemma has-bochner-integral-scaleR-left [intro]:
(c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx . f x ∗R

c) (x ∗R c)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-scaleR-left])

lemma has-bochner-integral-scaleR-right [intro]:
(c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx . c ∗R f

x) (c ∗R x)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-scaleR-right])

lemma has-bochner-integral-mult-left [intro]:
fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx .

f x ∗ c) (x ∗ c)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-mult-left])

lemma has-bochner-integral-mult-right [intro]:

THEORY “Bochner-Integration” 289

fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx .

c ∗ f x) (c ∗ x)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-mult-right])

lemmas has-bochner-integral-divide =
has-bochner-integral-bounded-linear [OF bounded-linear-divide]

lemma has-bochner-integral-divide-zero[intro]:
fixes c :: -::{real-normed-field , field , second-countable-topology}
shows (c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx .

f x / c) (x / c)
using has-bochner-integral-divide by (cases c = 0) auto

lemma has-bochner-integral-inner-left [intro]:
(c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx . f x · c)

(x · c)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-inner-left])

lemma has-bochner-integral-inner-right [intro]:
(c 6= 0 =⇒ has-bochner-integral M f x) =⇒ has-bochner-integral M (λx . c · f x)

(c · x)
by (cases c = 0) (auto simp add : has-bochner-integral-bounded-linear [OF bounded-linear-inner-right])

lemmas has-bochner-integral-minus =
has-bochner-integral-bounded-linear [OF bounded-linear-minus[OF bounded-linear-ident]]

lemmas has-bochner-integral-Re =
has-bochner-integral-bounded-linear [OF bounded-linear-Re]

lemmas has-bochner-integral-Im =
has-bochner-integral-bounded-linear [OF bounded-linear-Im]

lemmas has-bochner-integral-cnj =
has-bochner-integral-bounded-linear [OF bounded-linear-cnj]

lemmas has-bochner-integral-of-real =
has-bochner-integral-bounded-linear [OF bounded-linear-of-real]

lemmas has-bochner-integral-fst =
has-bochner-integral-bounded-linear [OF bounded-linear-fst]

lemmas has-bochner-integral-snd =
has-bochner-integral-bounded-linear [OF bounded-linear-snd]

lemma has-bochner-integral-indicator :
A ∈ sets M =⇒ emeasure M A < ∞ =⇒

has-bochner-integral M (λx . indicator A x ∗R c) (measure M A ∗R c)
by (intro has-bochner-integral-scaleR-left has-bochner-integral-real-indicator)

lemma has-bochner-integral-diff :
has-bochner-integral M f x =⇒ has-bochner-integral M g y =⇒

has-bochner-integral M (λx . f x − g x) (x − y)
unfolding diff-conv-add-uminus
by (intro has-bochner-integral-add has-bochner-integral-minus)

THEORY “Bochner-Integration” 290

lemma has-bochner-integral-setsum:
(
∧

i . i ∈ I =⇒ has-bochner-integral M (f i) (x i)) =⇒
has-bochner-integral M (λx .

∑
i∈I . f i x) (

∑
i∈I . x i)

by (induct I rule: infinite-finite-induct) auto

lemma has-bochner-integral-implies-finite-norm:
has-bochner-integral M f x =⇒ (

∫
+x . norm (f x) ∂M) < ∞

proof (elim has-bochner-integral .cases)
fix s v
assume [measurable]: f ∈ borel-measurable M and s:

∧
i . simple-bochner-integrable

M (s i) and
lim-0 : (λi .

∫
+ x . ennreal (norm (f x − s i x)) ∂M) −−−−→ 0

from order-tendstoD [OF lim-0 , of ∞]
obtain i where f-s-fin: (

∫
+ x . ennreal (norm (f x − s i x)) ∂M) < ∞

by (auto simp: eventually-sequentially)

have [measurable]:
∧

i . s i ∈ borel-measurable M
using s by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)

def m ≡ if space M = {} then 0 else Max ((λx . norm (s i x))‘space M)
have finite (s i ‘ space M)

using s by (auto simp: simple-function-def simple-bochner-integrable.simps)
then have finite (norm ‘ s i ‘ space M)

by (rule finite-imageI)
then have

∧
x . x ∈ space M =⇒ norm (s i x) ≤ m 0 ≤ m

by (auto simp: m-def image-comp comp-def Max-ge-iff)
then have (

∫
+x . norm (s i x) ∂M) ≤ (

∫
+x . ennreal m ∗ indicator {x∈space

M . s i x 6= 0} x ∂M)
by (auto split : split-indicator intro!: Max-ge nn-integral-mono simp:)

also have . . . < ∞
using s by (subst nn-integral-cmult-indicator) (auto simp: 〈0 ≤ m〉 simple-bochner-integrable.simps

ennreal-mult-less-top less-top)
finally have s-fin: (

∫
+x . norm (s i x) ∂M) < ∞ .

have (
∫

+ x . norm (f x) ∂M) ≤ (
∫

+ x . ennreal (norm (f x − s i x)) + ennreal
(norm (s i x)) ∂M)

by (auto intro!: nn-integral-mono simp del : ennreal-plus simp add : ennreal-plus[symmetric])
(metis add .commute norm-triangle-sub)

also have . . . = (
∫

+x . norm (f x − s i x) ∂M) + (
∫

+x . norm (s i x) ∂M)
by (rule nn-integral-add) auto

also have . . . < ∞
using s-fin f-s-fin by auto

finally show (
∫

+ x . ennreal (norm (f x)) ∂M) < ∞ .
qed

lemma has-bochner-integral-norm-bound :
assumes i : has-bochner-integral M f x
shows norm x ≤ (

∫
+x . norm (f x) ∂M)

THEORY “Bochner-Integration” 291

using assms proof
fix s assume

x : (λi . simple-bochner-integral M (s i)) −−−−→ x (is ?s −−−−→ x) and
s[simp]:

∧
i . simple-bochner-integrable M (s i) and

lim: (λi .
∫

+ x . ennreal (norm (f x − s i x)) ∂M) −−−−→ 0 and
f [measurable]: f ∈ borel-measurable M

have [measurable]:
∧

i . s i ∈ borel-measurable M
using s by (auto simp: simple-bochner-integrable.simps intro: borel-measurable-simple-function)

show norm x ≤ (
∫

+x . norm (f x) ∂M)
proof (rule LIMSEQ-le)

show (λi . ennreal (norm (?s i))) −−−−→ norm x
using x by (auto simp: tendsto-ennreal-iff intro: tendsto-intros)

show ∃N . ∀n≥N . norm (?s n) ≤ (
∫

+x . norm (f x − s n x) ∂M) + (
∫

+x .
norm (f x) ∂M)

(is ∃N . ∀n≥N . - ≤ ?t n)
proof (intro exI allI impI)

fix n
have ennreal (norm (?s n)) ≤ simple-bochner-integral M (λx . norm (s n x))

by (auto intro!: simple-bochner-integral-norm-bound)
also have . . . = (

∫
+x . norm (s n x) ∂M)

by (intro simple-bochner-integral-eq-nn-integral)
(auto intro: s simple-bochner-integrable-compose2)

also have . . . ≤ (
∫

+x . ennreal (norm (f x − s n x)) + norm (f x) ∂M)
by (auto intro!: nn-integral-mono simp del : ennreal-plus simp add : ennreal-plus[symmetric])

(metis add .commute norm-minus-commute norm-triangle-sub)
also have . . . = ?t n

by (rule nn-integral-add) auto
finally show norm (?s n) ≤ ?t n .

qed
have ?t −−−−→ 0 + (

∫
+ x . ennreal (norm (f x)) ∂M)

using has-bochner-integral-implies-finite-norm[OF i]
by (intro tendsto-add tendsto-const lim)

then show ?t −−−−→
∫

+ x . ennreal (norm (f x)) ∂M
by simp

qed
qed

lemma has-bochner-integral-eq :
has-bochner-integral M f x =⇒ has-bochner-integral M f y =⇒ x = y

proof (elim has-bochner-integral .cases)
assume f [measurable]: f ∈ borel-measurable M

fix s t
assume (λi .

∫
+ x . norm (f x − s i x) ∂M) −−−−→ 0 (is ?S −−−−→ 0)

assume (λi .
∫

+ x . norm (f x − t i x) ∂M) −−−−→ 0 (is ?T −−−−→ 0)
assume s:

∧
i . simple-bochner-integrable M (s i)

assume t :
∧

i . simple-bochner-integrable M (t i)

THEORY “Bochner-Integration” 292

have [measurable]:
∧

i . s i ∈ borel-measurable M
∧

i . t i ∈ borel-measurable M
using s t by (auto intro: borel-measurable-simple-function elim: simple-bochner-integrable.cases)

let ?s = λi . simple-bochner-integral M (s i)
let ?t = λi . simple-bochner-integral M (t i)
assume ?s −−−−→ x ?t −−−−→ y
then have (λi . norm (?s i − ?t i)) −−−−→ norm (x − y)

by (intro tendsto-intros)
moreover
have (λi . ennreal (norm (?s i − ?t i))) −−−−→ ennreal 0
proof (rule tendsto-sandwich)

show eventually (λi . 0 ≤ ennreal (norm (?s i − ?t i))) sequentially (λ-. 0)
−−−−→ ennreal 0

by auto

show eventually (λi . norm (?s i − ?t i) ≤ ?S i + ?T i) sequentially
by (intro always-eventually allI simple-bochner-integral-bounded s t f)

show (λi . ?S i + ?T i) −−−−→ ennreal 0
using tendsto-add [OF 〈?S −−−−→ 0 〉 〈?T −−−−→ 0 〉] by simp

qed
then have (λi . norm (?s i − ?t i)) −−−−→ 0

by (simp add : ennreal-0 [symmetric] del : ennreal-0)
ultimately have norm (x − y) = 0

by (rule LIMSEQ-unique)
then show x = y by simp

qed

lemma has-bochner-integralI-AE :
assumes f : has-bochner-integral M f x

and g : g ∈ borel-measurable M
and ae: AE x in M . f x = g x

shows has-bochner-integral M g x
using f

proof (safe intro!: has-bochner-integral .intros elim!: has-bochner-integral .cases)
fix s assume (λi .

∫
+ x . ennreal (norm (f x − s i x)) ∂M) −−−−→ 0

also have (λi .
∫

+ x . ennreal (norm (f x − s i x)) ∂M) = (λi .
∫

+ x . ennreal
(norm (g x − s i x)) ∂M)

using ae
by (intro ext nn-integral-cong-AE , eventually-elim) simp

finally show (λi .
∫

+ x . ennreal (norm (g x − s i x)) ∂M) −−−−→ 0 .
qed (auto intro: g)

lemma has-bochner-integral-eq-AE :
assumes f : has-bochner-integral M f x

and g : has-bochner-integral M g y
and ae: AE x in M . f x = g x

shows x = y
proof −

THEORY “Bochner-Integration” 293

from assms have has-bochner-integral M g x
by (auto intro: has-bochner-integralI-AE)

from this g show x = y
by (rule has-bochner-integral-eq)

qed

lemma simple-bochner-integrable-restrict-space:
fixes f :: - ⇒ ′b::real-normed-vector
assumes Ω: Ω ∩ space M ∈ sets M
shows simple-bochner-integrable (restrict-space M Ω) f ←→

simple-bochner-integrable M (λx . indicator Ω x ∗R f x)
by (simp add : simple-bochner-integrable.simps space-restrict-space
simple-function-restrict-space[OF Ω] emeasure-restrict-space[OF Ω] Collect-restrict
indicator-eq-0-iff conj-ac)

lemma simple-bochner-integral-restrict-space:
fixes f :: - ⇒ ′b::real-normed-vector
assumes Ω: Ω ∩ space M ∈ sets M
assumes f : simple-bochner-integrable (restrict-space M Ω) f
shows simple-bochner-integral (restrict-space M Ω) f =

simple-bochner-integral M (λx . indicator Ω x ∗R f x)
proof −

have finite ((λx . indicator Ω x ∗R f x)‘space M)
using f simple-bochner-integrable-restrict-space[OF Ω, of f]
by (simp add : simple-bochner-integrable.simps simple-function-def)

then show ?thesis
by (auto simp: space-restrict-space measure-restrict-space[OF Ω(1)] le-infI2

simple-bochner-integral-def Collect-restrict
split : split-indicator split-indicator-asm
intro!: setsum.mono-neutral-cong-left arg-cong2 [where f =measure])

qed

context
notes [[inductive-internals]]

begin

inductive integrable for M f where
has-bochner-integral M f x =⇒ integrable M f

end

definition lebesgue-integral (integralL) where
integralL M f = (if ∃ x . has-bochner-integral M f x then THE x . has-bochner-integral

M f x else 0)

syntax
-lebesgue-integral :: pttrn ⇒ real ⇒ ′a measure ⇒ real (

∫
((2 -./ -)/ ∂-) [60 ,61]

110)

THEORY “Bochner-Integration” 294

translations∫
x . f ∂M == CONST lebesgue-integral M (λx . f)

syntax
-ascii-lebesgue-integral :: pttrn ⇒ ′a measure ⇒ real ⇒ real ((3LINT (1-)/|(-)./

-) [0 ,110 ,60] 60)

translations
LINT x |M . f == CONST lebesgue-integral M (λx . f)

lemma has-bochner-integral-integral-eq : has-bochner-integral M f x =⇒ integralL

M f = x
by (metis the-equality has-bochner-integral-eq lebesgue-integral-def)

lemma has-bochner-integral-integrable:
integrable M f =⇒ has-bochner-integral M f (integralL M f)
by (auto simp: has-bochner-integral-integral-eq integrable.simps)

lemma has-bochner-integral-iff :
has-bochner-integral M f x ←→ integrable M f ∧ integralL M f = x
by (metis has-bochner-integral-integrable has-bochner-integral-integral-eq integrable.intros)

lemma simple-bochner-integrable-eq-integral :
simple-bochner-integrable M f =⇒ simple-bochner-integral M f = integralL M f
using has-bochner-integral-simple-bochner-integrable[of M f]
by (simp add : has-bochner-integral-integral-eq)

lemma not-integrable-integral-eq : ¬ integrable M f =⇒ integralL M f = 0
unfolding integrable.simps lebesgue-integral-def by (auto intro!: arg-cong [where

f =The])

lemma integral-eq-cases:
integrable M f ←→ integrable N g =⇒

(integrable M f =⇒ integrable N g =⇒ integralL M f = integralL N g) =⇒
integralL M f = integralL N g

by (metis not-integrable-integral-eq)

lemma borel-measurable-integrable[measurable-dest]: integrable M f =⇒ f ∈ borel-measurable
M

by (auto elim: integrable.cases has-bochner-integral .cases)

lemma borel-measurable-integrable ′[measurable-dest]:
integrable M f =⇒ g ∈ measurable N M =⇒ (λx . f (g x)) ∈ borel-measurable N
using borel-measurable-integrable[measurable] by measurable

lemma integrable-cong :
M = N =⇒ (

∧
x . x ∈ space N =⇒ f x = g x) =⇒ integrable M f ←→ integrable

N g
using assms by (simp cong : has-bochner-integral-cong add : integrable.simps)

THEORY “Bochner-Integration” 295

lemma integrable-cong-AE :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ AE x in M . f x = g x

=⇒
integrable M f ←→ integrable M g

unfolding integrable.simps
by (intro has-bochner-integral-cong-AE arg-cong [where f =Ex] ext)

lemma integral-cong :
M = N =⇒ (

∧
x . x ∈ space N =⇒ f x = g x) =⇒ integralL M f = integralL N

g
using assms by (simp cong : has-bochner-integral-cong cong del : if-cong add :

lebesgue-integral-def)

lemma integral-cong-AE :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ AE x in M . f x = g x

=⇒
integralL M f = integralL M g

unfolding lebesgue-integral-def
by (rule arg-cong [where x=has-bochner-integral M f]) (intro has-bochner-integral-cong-AE

ext)

lemma integrable-add [simp, intro]: integrable M f =⇒ integrable M g =⇒ inte-
grable M (λx . f x + g x)

by (auto simp: integrable.simps)

lemma integrable-zero[simp, intro]: integrable M (λx . 0)
by (metis has-bochner-integral-zero integrable.simps)

lemma integrable-setsum[simp, intro]: (
∧

i . i ∈ I =⇒ integrable M (f i)) =⇒
integrable M (λx .

∑
i∈I . f i x)

by (metis has-bochner-integral-setsum integrable.simps)

lemma integrable-indicator [simp, intro]: A ∈ sets M =⇒ emeasure M A < ∞ =⇒
integrable M (λx . indicator A x ∗R c)
by (metis has-bochner-integral-indicator integrable.simps)

lemma integrable-real-indicator [simp, intro]: A ∈ sets M =⇒ emeasure M A < ∞
=⇒

integrable M (indicator A :: ′a ⇒ real)
by (metis has-bochner-integral-real-indicator integrable.simps)

lemma integrable-diff [simp, intro]: integrable M f =⇒ integrable M g =⇒ inte-
grable M (λx . f x − g x)

by (auto simp: integrable.simps intro: has-bochner-integral-diff)

lemma integrable-bounded-linear : bounded-linear T =⇒ integrable M f =⇒ inte-
grable M (λx . T (f x))

by (auto simp: integrable.simps intro: has-bochner-integral-bounded-linear)

THEORY “Bochner-Integration” 296

lemma integrable-scaleR-left [simp, intro]: (c 6= 0 =⇒ integrable M f) =⇒ inte-
grable M (λx . f x ∗R c)

unfolding integrable.simps by fastforce

lemma integrable-scaleR-right [simp, intro]: (c 6= 0 =⇒ integrable M f) =⇒ inte-
grable M (λx . c ∗R f x)

unfolding integrable.simps by fastforce

lemma integrable-mult-left [simp, intro]:
fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ integrable M f) =⇒ integrable M (λx . f x ∗ c)
unfolding integrable.simps by fastforce

lemma integrable-mult-right [simp, intro]:
fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ integrable M f) =⇒ integrable M (λx . c ∗ f x)
unfolding integrable.simps by fastforce

lemma integrable-divide-zero[simp, intro]:
fixes c :: -::{real-normed-field , field , second-countable-topology}
shows (c 6= 0 =⇒ integrable M f) =⇒ integrable M (λx . f x / c)
unfolding integrable.simps by fastforce

lemma integrable-inner-left [simp, intro]:
(c 6= 0 =⇒ integrable M f) =⇒ integrable M (λx . f x · c)
unfolding integrable.simps by fastforce

lemma integrable-inner-right [simp, intro]:
(c 6= 0 =⇒ integrable M f) =⇒ integrable M (λx . c · f x)
unfolding integrable.simps by fastforce

lemmas integrable-minus[simp, intro] =
integrable-bounded-linear [OF bounded-linear-minus[OF bounded-linear-ident]]

lemmas integrable-divide[simp, intro] =
integrable-bounded-linear [OF bounded-linear-divide]

lemmas integrable-Re[simp, intro] =
integrable-bounded-linear [OF bounded-linear-Re]

lemmas integrable-Im[simp, intro] =
integrable-bounded-linear [OF bounded-linear-Im]

lemmas integrable-cnj [simp, intro] =
integrable-bounded-linear [OF bounded-linear-cnj]

lemmas integrable-of-real [simp, intro] =
integrable-bounded-linear [OF bounded-linear-of-real]

lemmas integrable-fst [simp, intro] =
integrable-bounded-linear [OF bounded-linear-fst]

lemmas integrable-snd [simp, intro] =
integrable-bounded-linear [OF bounded-linear-snd]

THEORY “Bochner-Integration” 297

lemma integral-zero[simp]: integralL M (λx . 0) = 0
by (intro has-bochner-integral-integral-eq has-bochner-integral-zero)

lemma integral-add [simp]: integrable M f =⇒ integrable M g =⇒
integralL M (λx . f x + g x) = integralL M f + integralL M g

by (intro has-bochner-integral-integral-eq has-bochner-integral-add has-bochner-integral-integrable)

lemma integral-diff [simp]: integrable M f =⇒ integrable M g =⇒
integralL M (λx . f x − g x) = integralL M f − integralL M g

by (intro has-bochner-integral-integral-eq has-bochner-integral-diff has-bochner-integral-integrable)

lemma integral-setsum: (
∧

i . i ∈ I =⇒ integrable M (f i)) =⇒
integralL M (λx .

∑
i∈I . f i x) = (

∑
i∈I . integralL M (f i))

by (intro has-bochner-integral-integral-eq has-bochner-integral-setsum has-bochner-integral-integrable)

lemma integral-setsum ′[simp]: (
∧

i . i ∈ I =simp=> integrable M (f i)) =⇒
integralL M (λx .

∑
i∈I . f i x) = (

∑
i∈I . integralL M (f i))

unfolding simp-implies-def by (rule integral-setsum)

lemma integral-bounded-linear : bounded-linear T =⇒ integrable M f =⇒
integralL M (λx . T (f x)) = T (integralL M f)

by (metis has-bochner-integral-bounded-linear has-bochner-integral-integrable has-bochner-integral-integral-eq)

lemma integral-bounded-linear ′:
assumes T : bounded-linear T and T ′: bounded-linear T ′

assumes ∗: ¬ (∀ x . T x = 0) =⇒ (∀ x . T ′ (T x) = x)
shows integralL M (λx . T (f x)) = T (integralL M f)

proof cases
assume (∀ x . T x = 0) then show ?thesis

by simp
next

assume ∗∗: ¬ (∀ x . T x = 0)
show ?thesis
proof cases

assume integrable M f with T show ?thesis
by (rule integral-bounded-linear)

next
assume not : ¬ integrable M f
moreover have ¬ integrable M (λx . T (f x))
proof

assume integrable M (λx . T (f x))
from integrable-bounded-linear [OF T ′ this] not ∗[OF ∗∗]
show False

by auto
qed
ultimately show ?thesis

using T by (simp add : not-integrable-integral-eq linear-simps)
qed

qed

THEORY “Bochner-Integration” 298

lemma integral-scaleR-left [simp]: (c 6= 0 =⇒ integrable M f) =⇒ (
∫

x . f x ∗R c
∂M) = integralL M f ∗R c
by (intro has-bochner-integral-integral-eq has-bochner-integral-integrable has-bochner-integral-scaleR-left)

lemma integral-scaleR-right [simp]: (
∫

x . c ∗R f x ∂M) = c ∗R integralL M f
by (rule integral-bounded-linear ′[OF bounded-linear-scaleR-right bounded-linear-scaleR-right [of

1 / c]]) simp

lemma integral-mult-left [simp]:
fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ integrable M f) =⇒ (

∫
x . f x ∗ c ∂M) = integralL M f ∗ c

by (intro has-bochner-integral-integral-eq has-bochner-integral-integrable has-bochner-integral-mult-left)

lemma integral-mult-right [simp]:
fixes c :: -::{real-normed-algebra,second-countable-topology}
shows (c 6= 0 =⇒ integrable M f) =⇒ (

∫
x . c ∗ f x ∂M) = c ∗ integralL M f

by (intro has-bochner-integral-integral-eq has-bochner-integral-integrable has-bochner-integral-mult-right)

lemma integral-mult-left-zero[simp]:
fixes c :: -::{real-normed-field ,second-countable-topology}
shows (

∫
x . f x ∗ c ∂M) = integralL M f ∗ c

by (rule integral-bounded-linear ′[OF bounded-linear-mult-left bounded-linear-mult-left [of
1 / c]]) simp

lemma integral-mult-right-zero[simp]:
fixes c :: -::{real-normed-field ,second-countable-topology}
shows (

∫
x . c ∗ f x ∂M) = c ∗ integralL M f

by (rule integral-bounded-linear ′[OF bounded-linear-mult-right bounded-linear-mult-right [of
1 / c]]) simp

lemma integral-inner-left [simp]: (c 6= 0 =⇒ integrable M f) =⇒ (
∫

x . f x · c ∂M)
= integralL M f · c
by (intro has-bochner-integral-integral-eq has-bochner-integral-integrable has-bochner-integral-inner-left)

lemma integral-inner-right [simp]: (c 6= 0 =⇒ integrable M f) =⇒ (
∫

x . c · f x
∂M) = c · integralL M f
by (intro has-bochner-integral-integral-eq has-bochner-integral-integrable has-bochner-integral-inner-right)

lemma integral-divide-zero[simp]:
fixes c :: -::{real-normed-field , field , second-countable-topology}
shows integralL M (λx . f x / c) = integralL M f / c
by (rule integral-bounded-linear ′[OF bounded-linear-divide bounded-linear-mult-left [of

c]]) simp

lemma integral-minus[simp]: integralL M (λx . − f x) = − integralL M f
by (rule integral-bounded-linear ′[OF bounded-linear-minus[OF bounded-linear-ident]

bounded-linear-minus[OF bounded-linear-ident]]) simp

THEORY “Bochner-Integration” 299

lemma integral-complex-of-real [simp]: integralL M (λx . complex-of-real (f x)) =
of-real (integralL M f)

by (rule integral-bounded-linear ′[OF bounded-linear-of-real bounded-linear-Re])
simp

lemma integral-cnj [simp]: integralL M (λx . cnj (f x)) = cnj (integralL M f)
by (rule integral-bounded-linear ′[OF bounded-linear-cnj bounded-linear-cnj]) simp

lemmas integral-divide[simp] =
integral-bounded-linear [OF bounded-linear-divide]

lemmas integral-Re[simp] =
integral-bounded-linear [OF bounded-linear-Re]

lemmas integral-Im[simp] =
integral-bounded-linear [OF bounded-linear-Im]

lemmas integral-of-real [simp] =
integral-bounded-linear [OF bounded-linear-of-real]

lemmas integral-fst [simp] =
integral-bounded-linear [OF bounded-linear-fst]

lemmas integral-snd [simp] =
integral-bounded-linear [OF bounded-linear-snd]

lemma integral-norm-bound-ennreal :
integrable M f =⇒ norm (integralL M f) ≤ (

∫
+x . norm (f x) ∂M)

by (metis has-bochner-integral-integrable has-bochner-integral-norm-bound)

lemma integrableI-sequence:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable M
assumes s:

∧
i . simple-bochner-integrable M (s i)

assumes lim: (λi .
∫

+x . norm (f x − s i x) ∂M) −−−−→ 0 (is ?S −−−−→ 0)
shows integrable M f

proof −
let ?s = λn. simple-bochner-integral M (s n)

have ∃ x . ?s −−−−→ x
unfolding convergent-eq-cauchy

proof (rule metric-CauchyI)
fix e :: real assume 0 < e
then have 0 < ennreal (e / 2) by auto
from order-tendstoD(2)[OF lim this]
obtain M where M :

∧
n. M ≤ n =⇒ ?S n < e / 2

by (auto simp: eventually-sequentially)
show ∃M . ∀m≥M . ∀n≥M . dist (?s m) (?s n) < e
proof (intro exI allI impI)

fix m n assume m: M ≤ m and n: M ≤ n
have ?S n 6= ∞

using M [OF n] by auto
have norm (?s n − ?s m) ≤ ?S n + ?S m

by (intro simple-bochner-integral-bounded s f)

THEORY “Bochner-Integration” 300

also have . . . < ennreal (e / 2) + e / 2
by (intro add-strict-mono M n m)

also have . . . = e using 〈0<e〉 by (simp del : ennreal-plus add : ennreal-plus[symmetric])
finally show dist (?s n) (?s m) < e

using 〈0<e〉 by (simp add : dist-norm ennreal-less-iff)
qed

qed
then obtain x where ?s −−−−→ x ..
show ?thesis

by (rule, rule) fact+
qed

lemma nn-integral-dominated-convergence-norm:
fixes u ′ :: - ⇒ -::{real-normed-vector , second-countable-topology}
assumes [measurable]:∧

i . u i ∈ borel-measurable M u ′ ∈ borel-measurable M w ∈ borel-measurable
M

and bound :
∧

j . AE x in M . norm (u j x) ≤ w x
and w : (

∫
+x . w x ∂M) < ∞

and u ′: AE x in M . (λi . u i x) −−−−→ u ′ x
shows (λi . (

∫
+x . norm (u ′ x − u i x) ∂M)) −−−−→ 0

proof −
have AE x in M . ∀ j . norm (u j x) ≤ w x

unfolding AE-all-countable by rule fact
with u ′ have bnd : AE x in M . ∀ j . norm (u ′ x − u j x) ≤ 2 ∗ w x
proof (eventually-elim, intro allI)

fix i x assume (λi . u i x) −−−−→ u ′ x ∀ j . norm (u j x) ≤ w x ∀ j . norm (u j
x) ≤ w x

then have norm (u ′ x) ≤ w x norm (u i x) ≤ w x
by (auto intro: LIMSEQ-le-const2 tendsto-norm)

then have norm (u ′ x) + norm (u i x) ≤ 2 ∗ w x
by simp

also have norm (u ′ x − u i x) ≤ norm (u ′ x) + norm (u i x)
by (rule norm-triangle-ineq4)

finally (xtrans) show norm (u ′ x − u i x) ≤ 2 ∗ w x .
qed
have w-nonneg : AE x in M . 0 ≤ w x

using bound [of 0] by (auto intro: order-trans[OF norm-ge-zero])

have (λi . (
∫

+x . norm (u ′ x − u i x) ∂M)) −−−−→ (
∫

+x . 0 ∂M)
proof (rule nn-integral-dominated-convergence)

show (
∫

+x . 2 ∗ w x ∂M) < ∞
by (rule nn-integral-mult-bounded-inf [OF - w , of 2]) (insert w-nonneg , auto

simp: ennreal-mult)
show AE x in M . (λi . ennreal (norm (u ′ x − u i x))) −−−−→ 0

using u ′

proof eventually-elim
fix x assume (λi . u i x) −−−−→ u ′ x
from tendsto-diff [OF tendsto-const [of u ′ x] this]

THEORY “Bochner-Integration” 301

show (λi . ennreal (norm (u ′ x − u i x))) −−−−→ 0
by (simp add : tendsto-norm-zero-iff ennreal-0 [symmetric] del : ennreal-0)

qed
qed (insert bnd w-nonneg , auto)
then show ?thesis by simp

qed

lemma integrableI-bounded :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable M and fin: (

∫
+x . norm (f x) ∂M)

< ∞
shows integrable M f

proof −
from borel-measurable-implies-sequence-metric[OF f , of 0] obtain s where

s:
∧

i . simple-function M (s i) and
pointwise:

∧
x . x ∈ space M =⇒ (λi . s i x) −−−−→ f x and

bound :
∧

i x . x ∈ space M =⇒ norm (s i x) ≤ 2 ∗ norm (f x)
by simp metis

show ?thesis
proof (rule integrableI-sequence)
{ fix i

have (
∫

+x . norm (s i x) ∂M) ≤ (
∫

+x . ennreal (2 ∗ norm (f x)) ∂M)
by (intro nn-integral-mono) (simp add : bound)

also have . . . = 2 ∗ (
∫

+x . ennreal (norm (f x)) ∂M)
by (simp add : ennreal-mult nn-integral-cmult)

also have . . . < top
using fin by (simp add : ennreal-mult-less-top)

finally have (
∫

+x . norm (s i x) ∂M) < ∞
by simp }

note fin-s = this

show
∧

i . simple-bochner-integrable M (s i)
by (rule simple-bochner-integrableI-bounded) fact+

show (λi .
∫

+ x . ennreal (norm (f x − s i x)) ∂M) −−−−→ 0
proof (rule nn-integral-dominated-convergence-norm)

show
∧

j . AE x in M . norm (s j x) ≤ 2 ∗ norm (f x)
using bound by auto

show
∧

i . s i ∈ borel-measurable M (λx . 2 ∗ norm (f x)) ∈ borel-measurable
M

using s by (auto intro: borel-measurable-simple-function)
show (

∫
+ x . ennreal (2 ∗ norm (f x)) ∂M) < ∞

using fin by (simp add : nn-integral-cmult ennreal-mult ennreal-mult-less-top)
show AE x in M . (λi . s i x) −−−−→ f x

using pointwise by auto
qed fact

qed fact
qed

THEORY “Bochner-Integration” 302

lemma integrableI-bounded-set :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: A ∈ sets M f ∈ borel-measurable M
assumes finite: emeasure M A < ∞

and bnd : AE x in M . x ∈ A −→ norm (f x) ≤ B
and null : AE x in M . x /∈ A −→ f x = 0

shows integrable M f
proof (rule integrableI-bounded)
{ fix x :: ′b have norm x ≤ B =⇒ 0 ≤ B

using norm-ge-zero[of x] by arith }
with bnd null have (

∫
+ x . ennreal (norm (f x)) ∂M) ≤ (

∫
+ x . ennreal (max

0 B) ∗ indicator A x ∂M)
by (intro nn-integral-mono-AE) (auto split : split-indicator split-max)

also have . . . < ∞
using finite by (subst nn-integral-cmult-indicator) (auto simp: ennreal-mult-less-top)
finally show (

∫
+ x . ennreal (norm (f x)) ∂M) < ∞ .

qed simp

lemma integrableI-bounded-set-indicator :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows A ∈ sets M =⇒ f ∈ borel-measurable M =⇒

emeasure M A < ∞ =⇒ (AE x in M . x ∈ A −→ norm (f x) ≤ B) =⇒
integrable M (λx . indicator A x ∗R f x)

by (rule integrableI-bounded-set [where A=A]) auto

lemma integrableI-nonneg :
fixes f :: ′a ⇒ real
assumes f ∈ borel-measurable M AE x in M . 0 ≤ f x (

∫
+x . f x ∂M) < ∞

shows integrable M f
proof −

have (
∫

+x . norm (f x) ∂M) = (
∫

+x . f x ∂M)
using assms by (intro nn-integral-cong-AE) auto

then show ?thesis
using assms by (intro integrableI-bounded) auto

qed

lemma integrable-iff-bounded :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integrable M f ←→ f ∈ borel-measurable M ∧ (

∫
+x . norm (f x) ∂M) <

∞
using integrableI-bounded [of f M] has-bochner-integral-implies-finite-norm[of M

f]
unfolding integrable.simps has-bochner-integral .simps[abs-def] by auto

lemma integrable-bound :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}

and g :: ′a ⇒ ′c::{banach, second-countable-topology}
shows integrable M f =⇒ g ∈ borel-measurable M =⇒ (AE x in M . norm (g x)

THEORY “Bochner-Integration” 303

≤ norm (f x)) =⇒
integrable M g

unfolding integrable-iff-bounded
proof safe

assume f ∈ borel-measurable M g ∈ borel-measurable M
assume AE x in M . norm (g x) ≤ norm (f x)
then have (

∫
+ x . ennreal (norm (g x)) ∂M) ≤ (

∫
+ x . ennreal (norm (f x))

∂M)
by (intro nn-integral-mono-AE) auto

also assume (
∫

+ x . ennreal (norm (f x)) ∂M) < ∞
finally show (

∫
+ x . ennreal (norm (g x)) ∂M) < ∞ .

qed

lemma integrable-mult-indicator :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows A ∈ sets M =⇒ integrable M f =⇒ integrable M (λx . indicator A x ∗R f

x)
by (rule integrable-bound [of M f]) (auto split : split-indicator)

lemma integrable-real-mult-indicator :
fixes f :: ′a ⇒ real
shows A ∈ sets M =⇒ integrable M f =⇒ integrable M (λx . f x ∗ indicator A

x)
using integrable-mult-indicator [of A M f] by (simp add : mult-ac)

lemma integrable-abs[simp, intro]:
fixes f :: ′a ⇒ real
assumes [measurable]: integrable M f shows integrable M (λx . |f x |)
using assms by (rule integrable-bound) auto

lemma integrable-norm[simp, intro]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: integrable M f shows integrable M (λx . norm (f x))
using assms by (rule integrable-bound) auto

lemma integrable-norm-cancel :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: integrable M (λx . norm (f x)) f ∈ borel-measurable M

shows integrable M f
using assms by (rule integrable-bound) auto

lemma integrable-norm-iff :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows f ∈ borel-measurable M =⇒ integrable M (λx . norm (f x)) ←→ integrable

M f
by (auto intro: integrable-norm-cancel)

lemma integrable-abs-cancel :
fixes f :: ′a ⇒ real

THEORY “Bochner-Integration” 304

assumes [measurable]: integrable M (λx . |f x |) f ∈ borel-measurable M shows
integrable M f

using assms by (rule integrable-bound) auto

lemma integrable-abs-iff :
fixes f :: ′a ⇒ real
shows f ∈ borel-measurable M =⇒ integrable M (λx . |f x |) ←→ integrable M f
by (auto intro: integrable-abs-cancel)

lemma integrable-max [simp, intro]:
fixes f :: ′a ⇒ real
assumes fg [measurable]: integrable M f integrable M g
shows integrable M (λx . max (f x) (g x))
using integrable-add [OF integrable-norm[OF fg(1)] integrable-norm[OF fg(2)]]
by (rule integrable-bound) auto

lemma integrable-min[simp, intro]:
fixes f :: ′a ⇒ real
assumes fg [measurable]: integrable M f integrable M g
shows integrable M (λx . min (f x) (g x))
using integrable-add [OF integrable-norm[OF fg(1)] integrable-norm[OF fg(2)]]
by (rule integrable-bound) auto

lemma integral-minus-iff [simp]:
integrable M (λx . − f x :: ′a::{banach, second-countable-topology}) ←→ integrable

M f
unfolding integrable-iff-bounded
by (auto intro: borel-measurable-uminus[of λx . − f x M , simplified])

lemma integrable-indicator-iff :
integrable M (indicator A::- ⇒ real) ←→ A ∩ space M ∈ sets M ∧ emeasure M

(A ∩ space M) < ∞
by (simp add : integrable-iff-bounded borel-measurable-indicator-iff ennreal-indicator

nn-integral-indicator ′

cong : conj-cong)

lemma integral-indicator [simp]: integralL M (indicator A) = measure M (A ∩
space M)
proof cases

assume ∗: A ∩ space M ∈ sets M ∧ emeasure M (A ∩ space M) < ∞
have integralL M (indicator A) = integralL M (indicator (A ∩ space M))

by (intro integral-cong) (auto split : split-indicator)
also have . . . = measure M (A ∩ space M)
using ∗ by (intro has-bochner-integral-integral-eq has-bochner-integral-real-indicator)

auto
finally show ?thesis .

next
assume ∗: ¬ (A ∩ space M ∈ sets M ∧ emeasure M (A ∩ space M) < ∞)
have integralL M (indicator A) = integralL M (indicator (A ∩ space M) :: - ⇒

THEORY “Bochner-Integration” 305

real)
by (intro integral-cong) (auto split : split-indicator)

also have . . . = 0
using ∗ by (subst not-integrable-integral-eq) (auto simp: integrable-indicator-iff)

also have . . . = measure M (A ∩ space M)
using ∗ by (auto simp: measure-def emeasure-notin-sets not-less top-unique)

finally show ?thesis .
qed

lemma integrable-discrete-difference:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧

x . x ∈ X =⇒ {x} ∈ sets M
assumes eq :

∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows integrable M f ←→ integrable M g
unfolding integrable-iff-bounded

proof (rule conj-cong)
{ assume f ∈ borel-measurable M then have g ∈ borel-measurable M

by (rule measurable-discrete-difference[where X =X]) (auto simp: assms) }
moreover
{ assume g ∈ borel-measurable M then have f ∈ borel-measurable M

by (rule measurable-discrete-difference[where X =X]) (auto simp: assms) }
ultimately show f ∈ borel-measurable M ←→ g ∈ borel-measurable M ..

next
have AE x in M . x /∈ X

by (rule AE-discrete-difference) fact+
then have (

∫
+ x . norm (f x) ∂M) = (

∫
+ x . norm (g x) ∂M)

by (intro nn-integral-cong-AE) (auto simp: eq)
then show (

∫
+ x . norm (f x) ∂M) < ∞ ←→ (

∫
+ x . norm (g x) ∂M) < ∞

by simp
qed

lemma integral-discrete-difference:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧

x . x ∈ X =⇒ {x} ∈ sets M
assumes eq :

∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows integralL M f = integralL M g
proof (rule integral-eq-cases)

show eq : integrable M f ←→ integrable M g
by (rule integrable-discrete-difference[where X =X]) fact+

assume f : integrable M f
show integralL M f = integralL M g
proof (rule integral-cong-AE)

show f ∈ borel-measurable M g ∈ borel-measurable M
using f eq by (auto intro: borel-measurable-integrable)

THEORY “Bochner-Integration” 306

have AE x in M . x /∈ X
by (rule AE-discrete-difference) fact+

with AE-space show AE x in M . f x = g x
by eventually-elim fact

qed
qed

lemma has-bochner-integral-discrete-difference:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes X : countable X
assumes null :

∧
x . x ∈ X =⇒ emeasure M {x} = 0

assumes sets:
∧

x . x ∈ X =⇒ {x} ∈ sets M
assumes eq :

∧
x . x ∈ space M =⇒ x /∈ X =⇒ f x = g x

shows has-bochner-integral M f x ←→ has-bochner-integral M g x
using integrable-discrete-difference[of X M f g , OF assms]
using integral-discrete-difference[of X M f g , OF assms]
by (metis has-bochner-integral-iff)

lemma
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology} and w :: ′a ⇒ real
assumes f ∈ borel-measurable M

∧
i . s i ∈ borel-measurable M integrable M w

assumes lim: AE x in M . (λi . s i x) −−−−→ f x
assumes bound :

∧
i . AE x in M . norm (s i x) ≤ w x

shows integrable-dominated-convergence: integrable M f
and integrable-dominated-convergence2 :

∧
i . integrable M (s i)

and integral-dominated-convergence: (λi . integralL M (s i)) −−−−→ integralL

M f
proof −

have w-nonneg : AE x in M . 0 ≤ w x
using bound [of 0] by eventually-elim (auto intro: norm-ge-zero order-trans)

then have (
∫

+x . w x ∂M) = (
∫

+x . norm (w x) ∂M)
by (intro nn-integral-cong-AE) auto

with 〈integrable M w 〉 have w : w ∈ borel-measurable M (
∫

+x . w x ∂M) < ∞
unfolding integrable-iff-bounded by auto

show int-s:
∧

i . integrable M (s i)
unfolding integrable-iff-bounded

proof
fix i
have (

∫
+ x . ennreal (norm (s i x)) ∂M) ≤ (

∫
+x . w x ∂M)

using bound [of i] w-nonneg by (intro nn-integral-mono-AE) auto
with w show (

∫
+ x . ennreal (norm (s i x)) ∂M) < ∞ by auto

qed fact

have all-bound : AE x in M . ∀ i . norm (s i x) ≤ w x
using bound unfolding AE-all-countable by auto

show int-f : integrable M f

THEORY “Bochner-Integration” 307

unfolding integrable-iff-bounded
proof

have (
∫

+ x . ennreal (norm (f x)) ∂M) ≤ (
∫

+x . w x ∂M)
using all-bound lim w-nonneg

proof (intro nn-integral-mono-AE , eventually-elim)
fix x assume ∀ i . norm (s i x) ≤ w x (λi . s i x) −−−−→ f x 0 ≤ w x
then show ennreal (norm (f x)) ≤ ennreal (w x)

by (intro LIMSEQ-le-const2 [where X =λi . ennreal (norm (s i x))]) (auto
intro: tendsto-intros)

qed
with w show (

∫
+ x . ennreal (norm (f x)) ∂M) < ∞ by auto

qed fact

have (λn. ennreal (norm (integralL M (s n) − integralL M f))) −−−−→ ennreal
0 (is ?d −−−−→ ennreal 0)

proof (rule tendsto-sandwich)
show eventually (λn. ennreal 0 ≤ ?d n) sequentially (λ-. ennreal 0) −−−−→

ennreal 0 by auto
show eventually (λn. ?d n ≤ (

∫
+x . norm (s n x − f x) ∂M)) sequentially

proof (intro always-eventually allI)
fix n
have ?d n = norm (integralL M (λx . s n x − f x))

using int-f int-s by simp
also have . . . ≤ (

∫
+x . norm (s n x − f x) ∂M)

by (intro int-f int-s integrable-diff integral-norm-bound-ennreal)
finally show ?d n ≤ (

∫
+x . norm (s n x − f x) ∂M) .

qed
show (λn.

∫
+x . norm (s n x − f x) ∂M) −−−−→ ennreal 0

unfolding ennreal-0
apply (subst norm-minus-commute)

proof (rule nn-integral-dominated-convergence-norm[where w=w])
show

∧
n. s n ∈ borel-measurable M

using int-s unfolding integrable-iff-bounded by auto
qed fact+

qed
then have (λn. integralL M (s n) − integralL M f) −−−−→ 0

by (simp add : tendsto-norm-zero-iff del : ennreal-0)
from tendsto-add [OF this tendsto-const [of integralL M f]]
show (λi . integralL M (s i)) −−−−→ integralL M f by simp

qed

context
fixes s :: real ⇒ ′a ⇒ ′b::{banach, second-countable-topology} and w :: ′a ⇒

real
and f :: ′a ⇒ ′b and M

assumes f ∈ borel-measurable M
∧

t . s t ∈ borel-measurable M integrable M w
assumes lim: AE x in M . ((λi . s i x) −−−→ f x) at-top
assumes bound : ∀ F i in at-top. AE x in M . norm (s i x) ≤ w x

begin

THEORY “Bochner-Integration” 308

lemma integral-dominated-convergence-at-top: ((λt . integralL M (s t)) −−−→ in-
tegralL M f) at-top
proof (rule tendsto-at-topI-sequentially)

fix X :: nat ⇒ real assume X : filterlim X at-top sequentially
from filterlim-iff [THEN iffD1 , OF this, rule-format , OF bound]
obtain N where w :

∧
n. N ≤ n =⇒ AE x in M . norm (s (X n) x) ≤ w x

by (auto simp: eventually-sequentially)

show (λn. integralL M (s (X n))) −−−−→ integralL M f
proof (rule LIMSEQ-offset , rule integral-dominated-convergence)

show AE x in M . norm (s (X (n + N)) x) ≤ w x for n
by (rule w) auto

show AE x in M . (λn. s (X (n + N)) x) −−−−→ f x
using lim

proof eventually-elim
fix x assume ((λi . s i x) −−−→ f x) at-top
then show (λn. s (X (n + N)) x) −−−−→ f x

by (intro LIMSEQ-ignore-initial-segment filterlim-compose[OF - X])
qed

qed fact+
qed

lemma integrable-dominated-convergence-at-top: integrable M f
proof −

from bound obtain N where w :
∧

n. N ≤ n =⇒ AE x in M . norm (s n x) ≤
w x

by (auto simp: eventually-at-top-linorder)
show ?thesis
proof (rule integrable-dominated-convergence)

show AE x in M . norm (s (N + i) x) ≤ w x for i :: nat
by (intro w) auto

show AE x in M . (λi . s (N + real i) x) −−−−→ f x
using lim

proof eventually-elim
fix x assume ((λi . s i x) −−−→ f x) at-top
then show (λn. s (N + n) x) −−−−→ f x

by (rule filterlim-compose)
(auto intro!: filterlim-tendsto-add-at-top filterlim-real-sequentially)

qed
qed fact+

qed

end

lemma integrable-mult-left-iff :
fixes f :: ′a ⇒ real
shows integrable M (λx . c ∗ f x) ←→ c = 0 ∨ integrable M f
using integrable-mult-left [of c M f] integrable-mult-left [of 1 / c M λx . c ∗ f x]

THEORY “Bochner-Integration” 309

by (cases c = 0) auto

lemma integrableI-nn-integral-finite:
assumes [measurable]: f ∈ borel-measurable M

and nonneg : AE x in M . 0 ≤ f x
and finite: (

∫
+x . f x ∂M) = ennreal x

shows integrable M f
proof (rule integrableI-bounded)

have (
∫

+ x . ennreal (norm (f x)) ∂M) = (
∫

+ x . ennreal (f x) ∂M)
using nonneg by (intro nn-integral-cong-AE) auto

with finite show (
∫

+ x . ennreal (norm (f x)) ∂M) < ∞
by auto

qed simp

lemma integral-nonneg-AE :
fixes f :: ′a ⇒ real
assumes nonneg : AE x in M . 0 ≤ f x
shows 0 ≤ integralL M f

proof cases
assume f : integrable M f
then have [measurable]: f ∈ M →M borel

by auto
have (λx . max 0 (f x)) ∈ M →M borel

∧
x . 0 ≤ max 0 (f x) integrable M (λx .

max 0 (f x))
using f by auto

from this have 0 ≤ integralL M (λx . max 0 (f x))
proof (induction rule: borel-measurable-induct-real)

case (add f g)
then have integrable M f integrable M g

by (auto intro!: integrable-bound [OF add .prems])
with add show ?case

by (simp add : nn-integral-add)
next

case (seq U)
show ?case
proof (rule LIMSEQ-le-const)

have U-le: x ∈ space M =⇒ U i x ≤ max 0 (f x) for x i
using seq by (intro incseq-le) (auto simp: incseq-def le-fun-def)

with seq nonneg show (λi . integralL M (U i)) −−−−→ LINT x |M . max 0 (f
x)

by (intro integral-dominated-convergence) auto
have integrable M (U i) for i

using seq .prems by (rule integrable-bound) (insert U-le seq , auto)
with seq show ∃N . ∀n≥N . 0 ≤ integralL M (U n)

by auto
qed

qed (auto simp: measure-nonneg integrable-mult-left-iff)
also have . . . = integralL M f

using nonneg by (auto intro!: integral-cong-AE)

THEORY “Bochner-Integration” 310

finally show ?thesis .
qed (simp add : not-integrable-integral-eq)

lemma integral-nonneg [simp]:
fixes f :: ′a ⇒ real
shows (

∧
x . x ∈ space M =⇒ 0 ≤ f x) =⇒ 0 ≤ integralL M f

by (intro integral-nonneg-AE) auto

lemma nn-integral-eq-integral :
assumes f : integrable M f
assumes nonneg : AE x in M . 0 ≤ f x
shows (

∫
+ x . f x ∂M) = integralL M f

proof −
{ fix f :: ′a ⇒ real assume f : f ∈ borel-measurable M

∧
x . 0 ≤ f x integrable

M f
then have (

∫
+ x . f x ∂M) = integralL M f

proof (induct rule: borel-measurable-induct-real)
case (set A) then show ?case
by (simp add : integrable-indicator-iff ennreal-indicator emeasure-eq-ennreal-measure)

next
case (mult f c) then show ?case

by (auto simp add : integrable-mult-left-iff nn-integral-cmult ennreal-mult
integral-nonneg-AE)

next
case (add g f)
then have integrable M f integrable M g

by (auto intro!: integrable-bound [OF add .prems])
with add show ?case

by (simp add : nn-integral-add integral-nonneg-AE)
next

case (seq U)
show ?case
proof (rule LIMSEQ-unique)

have U-le-f : x ∈ space M =⇒ U i x ≤ f x for x i
using seq by (intro incseq-le) (auto simp: incseq-def le-fun-def)

have int-U :
∧

i . integrable M (U i)
using seq f U-le-f by (intro integrable-bound [OF f (3)]) auto

from U-le-f seq have (λi . integralL M (U i)) −−−−→ integralL M f
by (intro integral-dominated-convergence) auto

then show (λi . ennreal (integralL M (U i))) −−−−→ ennreal (integralL M
f)

using seq f int-U by (simp add : f integral-nonneg-AE)
have (λi .

∫
+ x . U i x ∂M) −−−−→

∫
+ x . f x ∂M

using seq U-le-f f
by (intro nn-integral-dominated-convergence[where w=f]) (auto simp:

integrable-iff-bounded)
then show (λi .

∫
x . U i x ∂M) −−−−→

∫
+x . f x ∂M

using seq int-U by simp
qed

THEORY “Bochner-Integration” 311

qed }
from this[of λx . max 0 (f x)] assms have (

∫
+ x . max 0 (f x) ∂M) = integralL

M (λx . max 0 (f x))
by simp

also have . . . = integralL M f
using assms by (auto intro!: integral-cong-AE simp: integral-nonneg-AE)

also have (
∫

+ x . max 0 (f x) ∂M) = (
∫

+ x . f x ∂M)
using assms by (auto intro!: nn-integral-cong-AE simp: max-def)

finally show ?thesis .
qed

lemma
fixes f :: - ⇒ - ⇒ ′a :: {banach, second-countable-topology}
assumes integrable[measurable]:

∧
i . integrable M (f i)

and summable: AE x in M . summable (λi . norm (f i x))
and sums: summable (λi . (

∫
x . norm (f i x) ∂M))

shows integrable-suminf : integrable M (λx . (
∑

i . f i x)) (is integrable M ?S)
and sums-integral : (λi . integralL M (f i)) sums (

∫
x . (

∑
i . f i x) ∂M) (is ?f

sums ?x)
and integral-suminf : (

∫
x . (

∑
i . f i x) ∂M) = (

∑
i . integralL M (f i))

and summable-integral : summable (λi . integralL M (f i))
proof −

have 1 : integrable M (λx .
∑

i . norm (f i x))
proof (rule integrableI-bounded)

have (
∫

+ x . ennreal (norm (
∑

i . norm (f i x))) ∂M) = (
∫

+ x . (
∑

i . ennreal
(norm (f i x))) ∂M)

apply (intro nn-integral-cong-AE)
using summable
apply eventually-elim
apply (simp add : suminf-nonneg ennreal-suminf-neq-top)
done

also have . . . = (
∑

i .
∫

+ x . norm (f i x) ∂M)
by (intro nn-integral-suminf) auto

also have . . . = (
∑

i . ennreal (
∫

x . norm (f i x) ∂M))
by (intro arg-cong [where f =suminf] ext nn-integral-eq-integral integrable-norm

integrable) auto
finally show (

∫
+ x . ennreal (norm (

∑
i . norm (f i x))) ∂M) < ∞

by (simp add : sums ennreal-suminf-neq-top less-top[symmetric] integral-nonneg-AE)
qed simp

have 2 : AE x in M . (λn.
∑

i<n. f i x) −−−−→ (
∑

i . f i x)
using summable by eventually-elim (auto intro: summable-LIMSEQ summable-norm-cancel)

have 3 :
∧

j . AE x in M . norm (
∑

i<j . f i x) ≤ (
∑

i . norm (f i x))
using summable

proof eventually-elim
fix j x assume [simp]: summable (λi . norm (f i x))
have norm (

∑
i<j . f i x) ≤ (

∑
i<j . norm (f i x)) by (rule norm-setsum)

also have . . . ≤ (
∑

i . norm (f i x))

THEORY “Bochner-Integration” 312

using setsum-le-suminf [of λi . norm (f i x)] unfolding sums-iff by auto
finally show norm (

∑
i<j . f i x) ≤ (

∑
i . norm (f i x)) by simp

qed

note ibl = integrable-dominated-convergence[OF - - 1 2 3]
note int = integral-dominated-convergence[OF - - 1 2 3]

show integrable M ?S
by (rule ibl) measurable

show ?f sums ?x unfolding sums-def
using int by (simp add : integrable)

then show ?x = suminf ?f summable ?f
unfolding sums-iff by auto

qed

lemma integral-norm-bound :
fixes f :: - ⇒ ′a :: {banach, second-countable-topology}
shows integrable M f =⇒ norm (integralL M f) ≤ (

∫
x . norm (f x) ∂M)

using nn-integral-eq-integral [of M λx . norm (f x)]
using integral-norm-bound-ennreal [of M f] by (simp add : integral-nonneg-AE)

lemma integral-eq-nn-integral :
assumes [measurable]: f ∈ borel-measurable M
assumes nonneg : AE x in M . 0 ≤ f x
shows integralL M f = enn2real (

∫
+ x . ennreal (f x) ∂M)

proof cases
assume ∗: (

∫
+ x . ennreal (f x) ∂M) = ∞

also have (
∫

+ x . ennreal (f x) ∂M) = (
∫

+ x . ennreal (norm (f x)) ∂M)
using nonneg by (intro nn-integral-cong-AE) auto

finally have ¬ integrable M f
by (auto simp: integrable-iff-bounded)

then show ?thesis
by (simp add : ∗ not-integrable-integral-eq)

next
assume (

∫
+ x . ennreal (f x) ∂M) 6= ∞

then have integrable M f
by (cases

∫
+ x . ennreal (f x) ∂M rule: ennreal-cases)

(auto intro!: integrableI-nn-integral-finite assms)
from nn-integral-eq-integral [OF this] nonneg show ?thesis

by (simp add : integral-nonneg-AE)
qed

lemma enn2real-nn-integral-eq-integral :
assumes eq : AE x in M . f x = ennreal (g x) and nn: AE x in M . 0 ≤ g x

and fin: (
∫

+x . f x ∂M) < top
and [measurable]: g ∈ M →M borel

shows enn2real (
∫

+x . f x ∂M) = (
∫

x . g x ∂M)
proof −

THEORY “Bochner-Integration” 313

have ennreal (enn2real (
∫

+x . f x ∂M)) = (
∫

+x . f x ∂M)
using fin by (intro ennreal-enn2real) auto

also have . . . = (
∫

+x . g x ∂M)
using eq by (rule nn-integral-cong-AE)

also have . . . = (
∫

x . g x ∂M)
proof (rule nn-integral-eq-integral)

show integrable M g
proof (rule integrableI-bounded)

have (
∫

+ x . ennreal (norm (g x)) ∂M) = (
∫

+ x . f x ∂M)
using eq nn by (auto intro!: nn-integral-cong-AE elim!: eventually-elim2)

also note fin
finally show (

∫
+ x . ennreal (norm (g x)) ∂M) < ∞

by simp
qed simp

qed fact
finally show ?thesis

using nn by (simp add : integral-nonneg-AE)
qed

lemma has-bochner-integral-nn-integral :
assumes f ∈ borel-measurable M AE x in M . 0 ≤ f x 0 ≤ x
assumes (

∫
+x . f x ∂M) = ennreal x

shows has-bochner-integral M f x
unfolding has-bochner-integral-iff
using assms by (auto simp: assms integral-eq-nn-integral intro: integrableI-nn-integral-finite)

lemma integrableI-simple-bochner-integrable:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows simple-bochner-integrable M f =⇒ integrable M f
by (intro integrableI-sequence[where s=λ-. f] borel-measurable-simple-function)

(auto simp: zero-ennreal-def [symmetric] simple-bochner-integrable.simps)

lemma integrable-induct [consumes 1 , case-names base add lim, induct pred : inte-
grable]:

fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes integrable M f
assumes base:

∧
A c. A ∈ sets M =⇒ emeasure M A < ∞ =⇒ P (λx . indicator

A x ∗R c)
assumes add :

∧
f g . integrable M f =⇒ P f =⇒ integrable M g =⇒ P g =⇒ P

(λx . f x + g x)
assumes lim:

∧
f s. (

∧
i . integrable M (s i)) =⇒ (

∧
i . P (s i)) =⇒

(
∧

x . x ∈ space M =⇒ (λi . s i x) −−−−→ f x) =⇒
(
∧

i x . x ∈ space M =⇒ norm (s i x) ≤ 2 ∗ norm (f x)) =⇒ integrable M f =⇒
P f

shows P f
proof −

from 〈integrable M f 〉 have f : f ∈ borel-measurable M (
∫

+x . norm (f x) ∂M)
< ∞

unfolding integrable-iff-bounded by auto

THEORY “Bochner-Integration” 314

from borel-measurable-implies-sequence-metric[OF f (1)]
obtain s where s:

∧
i . simple-function M (s i)

∧
x . x ∈ space M =⇒ (λi . s i

x) −−−−→ f x∧
i x . x ∈ space M =⇒ norm (s i x) ≤ 2 ∗ norm (f x)

unfolding norm-conv-dist by metis

{ fix f A
have [simp]: P (λx . 0)

using base[of {} undefined] by simp
have (

∧
i :: ′b. i ∈ A =⇒ integrable M (f i :: ′a ⇒ ′b)) =⇒

(
∧

i . i ∈ A =⇒ P (f i)) =⇒ P (λx .
∑

i∈A. f i x)
by (induct A rule: infinite-finite-induct) (auto intro!: add) }

note setsum = this

def s ′ ≡ λi z . indicator (space M) z ∗R s i z
then have s ′-eq-s:

∧
i x . x ∈ space M =⇒ s ′ i x = s i x

by simp

have sf [measurable]:
∧

i . simple-function M (s ′ i)
unfolding s ′-def using s(1)

by (intro simple-function-compose2 [where h=op ∗R] simple-function-indicator)
auto

{ fix i
have

∧
z . {y . s ′ i z = y ∧ y ∈ s ′ i ‘ space M ∧ y 6= 0 ∧ z ∈ space M } =

(if z ∈ space M ∧ s ′ i z 6= 0 then {s ′ i z} else {})
by (auto simp add : s ′-def split : split-indicator)

then have
∧

z . s ′ i = (λz .
∑

y∈s ′ i‘space M − {0}. indicator {x∈space M .
s ′ i x = y} z ∗R y)

using sf by (auto simp: fun-eq-iff simple-function-def s ′-def) }
note s ′-eq = this

show P f
proof (rule lim)

fix i

have (
∫

+x . norm (s ′ i x) ∂M) ≤ (
∫

+x . ennreal (2 ∗ norm (f x)) ∂M)
using s by (intro nn-integral-mono) (auto simp: s ′-eq-s)

also have . . . < ∞
using f by (simp add : nn-integral-cmult ennreal-mult-less-top ennreal-mult)

finally have sbi : simple-bochner-integrable M (s ′ i)
using sf by (intro simple-bochner-integrableI-bounded) auto

then show integrable M (s ′ i)
by (rule integrableI-simple-bochner-integrable)

{ fix x assumex ∈ space M s ′ i x 6= 0
then have emeasure M {y ∈ space M . s ′ i y = s ′ i x} ≤ emeasure M {y ∈

space M . s ′ i y 6= 0}
by (intro emeasure-mono) auto

THEORY “Bochner-Integration” 315

also have . . . < ∞
using sbi by (auto elim: simple-bochner-integrable.cases simp: less-top)

finally have emeasure M {y ∈ space M . s ′ i y = s ′ i x} 6= ∞ by simp }
then show P (s ′ i)

by (subst s ′-eq) (auto intro!: setsum base simp: less-top)

fix x assume x ∈ space M with s show (λi . s ′ i x) −−−−→ f x
by (simp add : s ′-eq-s)

show norm (s ′ i x) ≤ 2 ∗ norm (f x)
using 〈x ∈ space M 〉 s by (simp add : s ′-eq-s)

qed fact
qed

lemma integral-eq-zero-AE :
(AE x in M . f x = 0) =⇒ integralL M f = 0
using integral-cong-AE [of f M λ-. 0]
by (cases integrable M f) (simp-all add : not-integrable-integral-eq)

lemma integral-nonneg-eq-0-iff-AE :
fixes f :: - ⇒ real
assumes f [measurable]: integrable M f and nonneg : AE x in M . 0 ≤ f x
shows integralL M f = 0 ←→ (AE x in M . f x = 0)

proof
assume integralL M f = 0
then have integralN M f = 0

using nn-integral-eq-integral [OF f nonneg] by simp
then have AE x in M . ennreal (f x) ≤ 0

by (simp add : nn-integral-0-iff-AE)
with nonneg show AE x in M . f x = 0

by auto
qed (auto simp add : integral-eq-zero-AE)

lemma integral-mono-AE :
fixes f :: ′a ⇒ real
assumes integrable M f integrable M g AE x in M . f x ≤ g x
shows integralL M f ≤ integralL M g

proof −
have 0 ≤ integralL M (λx . g x − f x)

using assms by (intro integral-nonneg-AE integrable-diff assms) auto
also have . . . = integralL M g − integralL M f

by (intro integral-diff assms)
finally show ?thesis by simp

qed

lemma integral-mono:
fixes f :: ′a ⇒ real
shows integrable M f =⇒ integrable M g =⇒ (

∧
x . x ∈ space M =⇒ f x ≤ g x)

=⇒
integralL M f ≤ integralL M g

THEORY “Bochner-Integration” 316

by (intro integral-mono-AE) auto

lemma (in finite-measure) integrable-measure:
assumes I : disjoint-family-on X I countable I
shows integrable (count-space I) (λi . measure M (X i))

proof −
have (

∫
+i . measure M (X i) ∂count-space I) = (

∫
+i . measure M (if X i ∈ sets

M then X i else {}) ∂count-space I)
by (auto intro!: nn-integral-cong measure-notin-sets)

also have . . . = measure M (
⋃

i∈I . if X i ∈ sets M then X i else {})
using I unfolding emeasure-eq-measure[symmetric]
by (subst emeasure-UN-countable) (auto simp: disjoint-family-on-def)

finally show ?thesis
by (auto intro!: integrableI-bounded)

qed

lemma integrableI-real-bounded :
assumes f : f ∈ borel-measurable M and ae: AE x in M . 0 ≤ f x and fin:

integralN M f < ∞
shows integrable M f

proof (rule integrableI-bounded)
have (

∫
+ x . ennreal (norm (f x)) ∂M) =

∫
+ x . ennreal (f x) ∂M

using ae by (auto intro: nn-integral-cong-AE)
also note fin
finally show (

∫
+ x . ennreal (norm (f x)) ∂M) < ∞ .

qed fact

lemma integral-real-bounded :
assumes 0 ≤ r integralN M f ≤ ennreal r
shows integralL M f ≤ r

proof cases
assume [simp]: integrable M f

have integralL M (λx . max 0 (f x)) = integralN M (λx . max 0 (f x))
by (intro nn-integral-eq-integral [symmetric]) auto

also have . . . = integralN M f
by (intro nn-integral-cong) (simp add : max-def ennreal-neg)

also have . . . ≤ r
by fact

finally have integralL M (λx . max 0 (f x)) ≤ r
using 〈0 ≤ r 〉 by simp

moreover have integralL M f ≤ integralL M (λx . max 0 (f x))
by (rule integral-mono-AE) auto

ultimately show ?thesis
by simp

next
assume ¬ integrable M f then show ?thesis

using 〈0 ≤ r 〉 by (simp add : not-integrable-integral-eq)

THEORY “Bochner-Integration” 317

qed

8.1 Restricted measure spaces

lemma integrable-restrict-space:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows integrable (restrict-space M Ω) f ←→ integrable M (λx . indicator Ω x ∗R

f x)
unfolding integrable-iff-bounded

borel-measurable-restrict-space-iff [OF Ω]
nn-integral-restrict-space[OF Ω]

by (simp add : ac-simps ennreal-indicator ennreal-mult)

lemma integral-restrict-space:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes Ω[simp]: Ω ∩ space M ∈ sets M
shows integralL (restrict-space M Ω) f = integralL M (λx . indicator Ω x ∗R f

x)
proof (rule integral-eq-cases)

assume integrable (restrict-space M Ω) f
then show ?thesis
proof induct

case (base A c) then show ?case
by (simp add : indicator-inter-arith[symmetric] sets-restrict-space-iff

emeasure-restrict-space Int-absorb1 measure-restrict-space)
next

case (add g f) then show ?case
by (simp add : scaleR-add-right integrable-restrict-space)

next
case (lim f s)
show ?case
proof (rule LIMSEQ-unique)
show (λi . integralL (restrict-space M Ω) (s i)) −−−−→ integralL (restrict-space

M Ω) f
using lim by (intro integral-dominated-convergence[where w=λx . 2 ∗ norm

(f x)]) simp-all

show (λi . integralL (restrict-space M Ω) (s i)) −−−−→ (
∫

x . indicator Ω x
∗R f x ∂M)

unfolding lim
using lim

by (intro integral-dominated-convergence[where w=λx . 2 ∗ norm (indicator
Ω x ∗R f x)])

(auto simp add : space-restrict-space integrable-restrict-space simp del :
norm-scaleR

split : split-indicator)
qed

qed

THEORY “Bochner-Integration” 318

qed (simp add : integrable-restrict-space)

lemma integral-empty :
assumes space M = {}
shows integralL M f = 0

proof −
have (

∫
x . f x ∂M) = (

∫
x . 0 ∂M)

by(rule integral-cong)(simp-all add : assms)
thus ?thesis by simp

qed

8.2 Measure spaces with an associated density

lemma integrable-density :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology} and g :: ′a ⇒ real
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M

and nn: AE x in M . 0 ≤ g x
shows integrable (density M g) f ←→ integrable M (λx . g x ∗R f x)
unfolding integrable-iff-bounded using nn
apply (simp add : nn-integral-density less-top[symmetric])
apply (intro arg-cong2 [where f =op =] refl nn-integral-cong-AE)
apply (auto simp: ennreal-mult)
done

lemma integral-density :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology} and g :: ′a ⇒ real
assumes f : f ∈ borel-measurable M

and g [measurable]: g ∈ borel-measurable M AE x in M . 0 ≤ g x
shows integralL (density M g) f = integralL M (λx . g x ∗R f x)

proof (rule integral-eq-cases)
assume integrable (density M g) f
then show ?thesis
proof induct

case (base A c)
then have [measurable]: A ∈ sets M by auto

have int : integrable M (λx . g x ∗ indicator A x)
using g base integrable-density [of indicator A :: ′a ⇒ real M g] by simp

then have integralL M (λx . g x ∗ indicator A x) = (
∫

+ x . ennreal (g x ∗
indicator A x) ∂M)

using g by (subst nn-integral-eq-integral) auto
also have . . . = (

∫
+ x . ennreal (g x) ∗ indicator A x ∂M)

by (intro nn-integral-cong) (auto split : split-indicator)
also have . . . = emeasure (density M g) A

by (rule emeasure-density [symmetric]) auto
also have . . . = ennreal (measure (density M g) A)

using base by (auto intro: emeasure-eq-ennreal-measure)
also have . . . = integralL (density M g) (indicator A)

using base by simp

THEORY “Bochner-Integration” 319

finally show ?case
using base g
apply (simp add : int integral-nonneg-AE)
apply (subst (asm) ennreal-inj)
apply (auto intro!: integral-nonneg-AE)
done

next
case (add f h)
then have [measurable]: f ∈ borel-measurable M h ∈ borel-measurable M

by (auto dest !: borel-measurable-integrable)
from add g show ?case

by (simp add : scaleR-add-right integrable-density)
next

case (lim f s)
have [measurable]: f ∈ borel-measurable M

∧
i . s i ∈ borel-measurable M

using lim(1 ,5)[THEN borel-measurable-integrable] by auto

show ?case
proof (rule LIMSEQ-unique)

show (λi . integralL M (λx . g x ∗R s i x)) −−−−→ integralL M (λx . g x ∗R f
x)

proof (rule integral-dominated-convergence)
show integrable M (λx . 2 ∗ norm (g x ∗R f x))

by (intro integrable-mult-right integrable-norm integrable-density [THEN
iffD1] lim g) auto

show AE x in M . (λi . g x ∗R s i x) −−−−→ g x ∗R f x
using lim(3) by (auto intro!: tendsto-scaleR AE-I2 [of M])

show
∧

i . AE x in M . norm (g x ∗R s i x) ≤ 2 ∗ norm (g x ∗R f x)
using lim(4) g by (auto intro!: AE-I2 [of M] mult-left-mono simp:

field-simps)
qed auto
show (λi . integralL M (λx . g x ∗R s i x)) −−−−→ integralL (density M g) f

unfolding lim(2)[symmetric]
by (rule integral-dominated-convergence[where w=λx . 2 ∗ norm (f x)])

(insert lim(3−5), auto)
qed

qed
qed (simp add : f g integrable-density)

lemma
fixes g :: ′a ⇒ real
assumes f ∈ borel-measurable M AE x in M . 0 ≤ f x g ∈ borel-measurable M
shows integral-real-density : integralL (density M f) g = (

∫
x . f x ∗ g x ∂M)

and integrable-real-density : integrable (density M f) g ←→ integrable M (λx . f
x ∗ g x)

using assms integral-density [of g M f] integrable-density [of g M f] by auto

lemma has-bochner-integral-density :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology} and g :: ′a ⇒ real

THEORY “Bochner-Integration” 320

shows f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ (AE x in M . 0
≤ g x) =⇒

has-bochner-integral M (λx . g x ∗R f x) x =⇒ has-bochner-integral (density M
g) f x

by (simp add : has-bochner-integral-iff integrable-density integral-density)

8.3 Distributions

lemma integrable-distr-eq :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: g ∈ measurable M N f ∈ borel-measurable N
shows integrable (distr M N g) f ←→ integrable M (λx . f (g x))
unfolding integrable-iff-bounded by (simp-all add : nn-integral-distr)

lemma integrable-distr :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows T ∈ measurable M M ′ =⇒ integrable (distr M M ′ T) f =⇒ integrable M

(λx . f (T x))
by (subst integrable-distr-eq [symmetric, where g=T])

(auto dest : borel-measurable-integrable)

lemma integral-distr :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes g [measurable]: g ∈ measurable M N and f : f ∈ borel-measurable N
shows integralL (distr M N g) f = integralL M (λx . f (g x))

proof (rule integral-eq-cases)
assume integrable (distr M N g) f
then show ?thesis
proof induct

case (base A c)
then have [measurable]: A ∈ sets N by auto
from base have int : integrable (distr M N g) (λa. indicator A a ∗R c)

by (intro integrable-indicator)

have integralL (distr M N g) (λa. indicator A a ∗R c) = measure (distr M N
g) A ∗R c

using base by auto
also have . . . = measure M (g −‘ A ∩ space M) ∗R c

by (subst measure-distr) auto
also have . . . = integralL M (λa. indicator (g −‘ A ∩ space M) a ∗R c)

using base by (auto simp: emeasure-distr)
also have . . . = integralL M (λa. indicator A (g a) ∗R c)

using int base by (intro integral-cong-AE) (auto simp: emeasure-distr split :
split-indicator)

finally show ?case .
next

case (add f h)
then have [measurable]: f ∈ borel-measurable N h ∈ borel-measurable N

by (auto dest !: borel-measurable-integrable)

THEORY “Bochner-Integration” 321

from add g show ?case
by (simp add : scaleR-add-right integrable-distr-eq)

next
case (lim f s)
have [measurable]: f ∈ borel-measurable N

∧
i . s i ∈ borel-measurable N

using lim(1 ,5)[THEN borel-measurable-integrable] by auto

show ?case
proof (rule LIMSEQ-unique)

show (λi . integralL M (λx . s i (g x))) −−−−→ integralL M (λx . f (g x))
proof (rule integral-dominated-convergence)

show integrable M (λx . 2 ∗ norm (f (g x)))
using lim by (auto simp: integrable-distr-eq)

show AE x in M . (λi . s i (g x)) −−−−→ f (g x)
using lim(3) g [THEN measurable-space] by auto

show
∧

i . AE x in M . norm (s i (g x)) ≤ 2 ∗ norm (f (g x))
using lim(4) g [THEN measurable-space] by auto

qed auto
show (λi . integralL M (λx . s i (g x))) −−−−→ integralL (distr M N g) f

unfolding lim(2)[symmetric]
by (rule integral-dominated-convergence[where w=λx . 2 ∗ norm (f x)])

(insert lim(3−5), auto)
qed

qed
qed (simp add : f g integrable-distr-eq)

lemma has-bochner-integral-distr :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows f ∈ borel-measurable N =⇒ g ∈ measurable M N =⇒

has-bochner-integral M (λx . f (g x)) x =⇒ has-bochner-integral (distr M N g)
f x

by (simp add : has-bochner-integral-iff integrable-distr-eq integral-distr)

8.4 Lebesgue integration on count-space

lemma integrable-count-space:
fixes f :: ′a ⇒ ′b::{banach,second-countable-topology}
shows finite X =⇒ integrable (count-space X) f
by (auto simp: nn-integral-count-space integrable-iff-bounded)

lemma measure-count-space[simp]:
B ⊆ A =⇒ finite B =⇒ measure (count-space A) B = card B
unfolding measure-def by (subst emeasure-count-space) auto

lemma lebesgue-integral-count-space-finite-support :
assumes f : finite {a∈A. f a 6= 0}
shows (

∫
x . f x ∂count-space A) = (

∑
a | a ∈ A ∧ f a 6= 0 . f a)

proof −
have eq :

∧
x . x ∈ A =⇒ (

∑
a | x = a ∧ a ∈ A ∧ f a 6= 0 . f a) = (

∑
x∈{x}. f

THEORY “Bochner-Integration” 322

x)
by (intro setsum.mono-neutral-cong-left) auto

have (
∫

x . f x ∂count-space A) = (
∫

x . (
∑

a | a ∈ A ∧ f a 6= 0 . indicator {a}
x ∗R f a) ∂count-space A)

by (intro integral-cong refl) (simp add : f eq)
also have . . . = (

∑
a | a ∈ A ∧ f a 6= 0 . measure (count-space A) {a} ∗R f a)

by (subst integral-setsum) (auto intro!: setsum.cong)
finally show ?thesis

by auto
qed

lemma lebesgue-integral-count-space-finite: finite A =⇒ (
∫

x . f x ∂count-space A)
= (

∑
a∈A. f a)

by (subst lebesgue-integral-count-space-finite-support)
(auto intro!: setsum.mono-neutral-cong-left)

lemma integrable-count-space-nat-iff :
fixes f :: nat ⇒ -::{banach,second-countable-topology}
shows integrable (count-space UNIV) f ←→ summable (λx . norm (f x))
by (auto simp add : integrable-iff-bounded nn-integral-count-space-nat ennreal-suminf-neq-top

intro: summable-suminf-not-top)

lemma sums-integral-count-space-nat :
fixes f :: nat ⇒ -::{banach,second-countable-topology}
assumes ∗: integrable (count-space UNIV) f
shows f sums (integralL (count-space UNIV) f)

proof −
let ?f = λn i . indicator {n} i ∗R f i
have f ′:

∧
n i . ?f n i = indicator {n} i ∗R f n

by (auto simp: fun-eq-iff split : split-indicator)

have (λi .
∫

n. ?f i n ∂count-space UNIV) sums
∫

n. (
∑

i . ?f i n) ∂count-space
UNIV

proof (rule sums-integral)
show

∧
i . integrable (count-space UNIV) (?f i)

using ∗ by (intro integrable-mult-indicator) auto
show AE n in count-space UNIV . summable (λi . norm (?f i n))

using summable-finite[of {n} λi . norm (?f i n) for n] by simp
show summable (λi .

∫
n. norm (?f i n) ∂count-space UNIV)

using ∗ by (subst f ′) (simp add : integrable-count-space-nat-iff)
qed
also have (

∫
n. (

∑
i . ?f i n) ∂count-space UNIV) = (

∫
n. f n ∂count-space

UNIV)
using suminf-finite[of {n} λi . ?f i n for n] by (auto intro!: integral-cong)

also have (λi .
∫

n. ?f i n ∂count-space UNIV) = f
by (subst f ′) simp

finally show ?thesis .
qed

THEORY “Bochner-Integration” 323

lemma integral-count-space-nat :
fixes f :: nat ⇒ -::{banach,second-countable-topology}
shows integrable (count-space UNIV) f =⇒ integralL (count-space UNIV) f =

(
∑

x . f x)
using sums-integral-count-space-nat by (rule sums-unique)

8.5 Point measure

lemma lebesgue-integral-point-measure-finite:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite A =⇒ (

∧
a. a ∈ A =⇒ 0 ≤ f a) =⇒

integralL (point-measure A f) g = (
∑

a∈A. f a ∗R g a)
by (simp add : lebesgue-integral-count-space-finite AE-count-space integral-density

point-measure-def)

lemma integrable-point-measure-finite:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology} and f :: ′a ⇒ real
shows finite A =⇒ integrable (point-measure A f) g
unfolding point-measure-def
apply (subst density-cong [where f ′=λx . ennreal (max 0 (f x))])
apply (auto split : split-max simp: ennreal-neg)
apply (subst integrable-density)
apply (auto simp: AE-count-space integrable-count-space)
done

8.6 Lebesgue integration on null-measure

lemma has-bochner-integral-null-measure-iff [iff]:
has-bochner-integral (null-measure M) f 0 ←→ f ∈ borel-measurable M
by (auto simp add : has-bochner-integral .simps simple-bochner-integral-def [abs-def]

intro!: exI [of - λn x . 0] simple-bochner-integrable.intros)

lemma integrable-null-measure-iff [iff]: integrable (null-measure M) f ←→ f ∈
borel-measurable M

by (auto simp add : integrable.simps)

lemma integral-null-measure[simp]: integralL (null-measure M) f = 0
by (cases integrable (null-measure M) f)

(auto simp add : not-integrable-integral-eq has-bochner-integral-integral-eq)

8.7 Legacy lemmas for the real-valued Lebesgue integral

lemma real-lebesgue-integral-def :
assumes f [measurable]: integrable M f
shows integralL M f = enn2real (

∫
+x . f x ∂M) − enn2real (

∫
+x . ennreal (−

f x) ∂M)
proof −

have integralL M f = integralL M (λx . max 0 (f x) − max 0 (− f x))
by (auto intro!: arg-cong [where f =integralL M])

THEORY “Bochner-Integration” 324

also have . . . = integralL M (λx . max 0 (f x)) − integralL M (λx . max 0 (− f
x))

by (intro integral-diff integrable-max integrable-minus integrable-zero f)
also have integralL M (λx . max 0 (f x)) = enn2real (

∫
+x . ennreal (f x) ∂M)

by (subst integral-eq-nn-integral) (auto intro!: arg-cong [where f =enn2real]
nn-integral-cong simp: max-def ennreal-neg)

also have integralL M (λx . max 0 (− f x)) = enn2real (
∫

+x . ennreal (− f x)
∂M)

by (subst integral-eq-nn-integral) (auto intro!: arg-cong [where f =enn2real]
nn-integral-cong simp: max-def ennreal-neg)

finally show ?thesis .
qed

lemma real-integrable-def :
integrable M f ←→ f ∈ borel-measurable M ∧

(
∫

+ x . ennreal (f x) ∂M) 6= ∞ ∧ (
∫

+ x . ennreal (− f x) ∂M) 6= ∞
unfolding integrable-iff-bounded

proof (safe del : notI)
assume ∗: (

∫
+ x . ennreal (norm (f x)) ∂M) < ∞

have (
∫

+ x . ennreal (f x) ∂M) ≤ (
∫

+ x . ennreal (norm (f x)) ∂M)
by (intro nn-integral-mono) auto

also note ∗
finally show (

∫
+ x . ennreal (f x) ∂M) 6= ∞

by simp
have (

∫
+ x . ennreal (− f x) ∂M) ≤ (

∫
+ x . ennreal (norm (f x)) ∂M)

by (intro nn-integral-mono) auto
also note ∗
finally show (

∫
+ x . ennreal (− f x) ∂M) 6= ∞

by simp
next

assume [measurable]: f ∈ borel-measurable M
assume fin: (

∫
+ x . ennreal (f x) ∂M) 6= ∞ (

∫
+ x . ennreal (− f x) ∂M) 6= ∞

have (
∫

+ x . norm (f x) ∂M) = (
∫

+ x . ennreal (f x) + ennreal (− f x) ∂M)
by (intro nn-integral-cong) (auto simp: abs-real-def ennreal-neg)

also have. . . = (
∫

+ x . ennreal (f x) ∂M) + (
∫

+ x . ennreal (− f x) ∂M)
by (intro nn-integral-add) auto

also have . . . < ∞
using fin by (auto simp: less-top)

finally show (
∫

+ x . norm (f x) ∂M) < ∞ .
qed

lemma integrableD [dest]:
assumes integrable M f
shows f ∈ borel-measurable M (

∫
+ x . ennreal (f x) ∂M) 6= ∞ (

∫
+ x . ennreal

(− f x) ∂M) 6= ∞
using assms unfolding real-integrable-def by auto

lemma integrableE :
assumes integrable M f

THEORY “Bochner-Integration” 325

obtains r q where
(
∫

+x . ennreal (f x)∂M) = ennreal r
(
∫

+x . ennreal (−f x)∂M) = ennreal q
f ∈ borel-measurable M integralL M f = r − q

using assms unfolding real-integrable-def real-lebesgue-integral-def [OF assms]
by (cases rule: ennreal2-cases[of (

∫
+x . ennreal (−f x)∂M) (

∫
+x . ennreal (f

x)∂M)]) auto

lemma integral-monotone-convergence-nonneg :
fixes f :: nat ⇒ ′a ⇒ real
assumes i :

∧
i . integrable M (f i) and mono: AE x in M . mono (λn. f n x)

and pos:
∧

i . AE x in M . 0 ≤ f i x
and lim: AE x in M . (λi . f i x) −−−−→ u x
and ilim: (λi . integralL M (f i)) −−−−→ x
and u: u ∈ borel-measurable M

shows integrable M u
and integralL M u = x

proof −
have nn: AE x in M . ∀ i . 0 ≤ f i x

using pos unfolding AE-all-countable by auto
with lim have u-nn: AE x in M . 0 ≤ u x

by eventually-elim (auto intro: LIMSEQ-le-const)
have [simp]: 0 ≤ x

by (intro LIMSEQ-le-const [OF ilim] allI exI impI integral-nonneg-AE pos)
have (

∫
+ x . ennreal (u x) ∂M) = (SUP n. (

∫
+ x . ennreal (f n x) ∂M))

proof (subst nn-integral-monotone-convergence-SUP-AE [symmetric])
fix i
from mono nn show AE x in M . ennreal (f i x) ≤ ennreal (f (Suc i) x)

by eventually-elim (auto simp: mono-def)
show (λx . ennreal (f i x)) ∈ borel-measurable M

using i by auto
next

show (
∫

+ x . ennreal (u x) ∂M) =
∫

+ x . (SUP i . ennreal (f i x)) ∂M
apply (rule nn-integral-cong-AE)
using lim mono nn u-nn
apply eventually-elim
apply (simp add : LIMSEQ-unique[OF - LIMSEQ-SUP] incseq-def)
done

qed
also have . . . = ennreal x

using mono i nn unfolding nn-integral-eq-integral [OF i pos]
by (subst LIMSEQ-unique[OF LIMSEQ-SUP]) (auto simp: mono-def integral-nonneg-AE

pos intro!: integral-mono-AE ilim)
finally have (

∫
+ x . ennreal (u x) ∂M) = ennreal x .

moreover have (
∫

+ x . ennreal (− u x) ∂M) = 0
using u u-nn by (subst nn-integral-0-iff-AE) (auto simp add : ennreal-neg)

ultimately show integrable M u integralL M u = x
by (auto simp: real-integrable-def real-lebesgue-integral-def u)

qed

THEORY “Bochner-Integration” 326

lemma
fixes f :: nat ⇒ ′a ⇒ real
assumes f :

∧
i . integrable M (f i) and mono: AE x in M . mono (λn. f n x)

and lim: AE x in M . (λi . f i x) −−−−→ u x
and ilim: (λi . integralL M (f i)) −−−−→ x
and u: u ∈ borel-measurable M
shows integrable-monotone-convergence: integrable M u

and integral-monotone-convergence: integralL M u = x
and has-bochner-integral-monotone-convergence: has-bochner-integral M u x

proof −
have 1 :

∧
i . integrable M (λx . f i x − f 0 x)

using f by auto
have 2 : AE x in M . mono (λn. f n x − f 0 x)

using mono by (auto simp: mono-def le-fun-def)
have 3 :

∧
n. AE x in M . 0 ≤ f n x − f 0 x

using mono by (auto simp: field-simps mono-def le-fun-def)
have 4 : AE x in M . (λi . f i x − f 0 x) −−−−→ u x − f 0 x

using lim by (auto intro!: tendsto-diff)
have 5 : (λi . (

∫
x . f i x − f 0 x ∂M)) −−−−→ x − integralL M (f 0)

using f ilim by (auto intro!: tendsto-diff)
have 6 : (λx . u x − f 0 x) ∈ borel-measurable M

using f [of 0] u by auto
note diff = integral-monotone-convergence-nonneg [OF 1 2 3 4 5 6]
have integrable M (λx . (u x − f 0 x) + f 0 x)

using diff (1) f by (rule integrable-add)
with diff (2) f show integrable M u integralL M u = x

by auto
then show has-bochner-integral M u x

by (metis has-bochner-integral-integrable)
qed

lemma integral-norm-eq-0-iff :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: integrable M f
shows (

∫
x . norm (f x) ∂M) = 0 ←→ emeasure M {x∈space M . f x 6= 0} = 0

proof −
have (

∫
+x . norm (f x) ∂M) = (

∫
x . norm (f x) ∂M)

using f by (intro nn-integral-eq-integral integrable-norm) auto
then have (

∫
x . norm (f x) ∂M) = 0 ←→ (

∫
+x . norm (f x) ∂M) = 0

by simp
also have . . . ←→ emeasure M {x∈space M . ennreal (norm (f x)) 6= 0} = 0

by (intro nn-integral-0-iff) auto
finally show ?thesis

by simp
qed

lemma integral-0-iff :
fixes f :: ′a ⇒ real

THEORY “Bochner-Integration” 327

shows integrable M f =⇒ (
∫

x . |f x | ∂M) = 0 ←→ emeasure M {x∈space M . f
x 6= 0} = 0

using integral-norm-eq-0-iff [of M f] by simp

lemma (in finite-measure) integrable-const [intro!, simp]: integrable M (λx . a)
using integrable-indicator [of space M M a] by (simp cong : integrable-cong add :

less-top[symmetric])

lemma lebesgue-integral-const [simp]:
fixes a :: ′a :: {banach, second-countable-topology}
shows (

∫
x . a ∂M) = measure M (space M) ∗R a

proof −
{ assume emeasure M (space M) = ∞ a 6= 0

then have ?thesis
by (auto simp add : not-integrable-integral-eq ennreal-mult-less-top measure-def

integrable-iff-bounded) }
moreover
{ assume a = 0 then have ?thesis by simp }
moreover
{ assume emeasure M (space M) 6= ∞

interpret finite-measure M
proof qed fact

have (
∫

x . a ∂M) = (
∫

x . indicator (space M) x ∗R a ∂M)
by (intro integral-cong) auto

also have . . . = measure M (space M) ∗R a
by (simp add : less-top[symmetric])

finally have ?thesis . }
ultimately show ?thesis by blast

qed

lemma (in finite-measure) integrable-const-bound :
fixes f :: ′a ⇒ ′b::{banach,second-countable-topology}
shows AE x in M . norm (f x) ≤ B =⇒ f ∈ borel-measurable M =⇒ integrable

M f
apply (rule integrable-bound [OF integrable-const [of B], of f])
apply assumption
apply (cases 0 ≤ B)
apply auto
done

lemma integral-indicator-finite-real :
fixes f :: ′a ⇒ real
assumes [simp]: finite A
assumes [measurable]:

∧
a. a ∈ A =⇒ {a} ∈ sets M

assumes finite:
∧

a. a ∈ A =⇒ emeasure M {a} < ∞
shows (

∫
x . f x ∗ indicator A x ∂M) = (

∑
a∈A. f a ∗ measure M {a})

proof −
have (

∫
x . f x ∗ indicator A x ∂M) = (

∫
x . (

∑
a∈A. f a ∗ indicator {a} x) ∂M)

proof (intro integral-cong refl)

THEORY “Bochner-Integration” 328

fix x show f x ∗ indicator A x = (
∑

a∈A. f a ∗ indicator {a} x)
by (auto split : split-indicator simp: eq-commute[of x] cong : conj-cong)

qed
also have . . . = (

∑
a∈A. f a ∗ measure M {a})

using finite by (subst integral-setsum) (auto simp add : integrable-mult-left-iff)
finally show ?thesis .

qed

lemma (in finite-measure) ennreal-integral-real :
assumes [measurable]: f ∈ borel-measurable M
assumes ae: AE x in M . f x ≤ ennreal B 0 ≤ B
shows ennreal (

∫
x . enn2real (f x) ∂M) = (

∫
+x . f x ∂M)

proof (subst nn-integral-eq-integral [symmetric])
show integrable M (λx . enn2real (f x))
using ae by (intro integrable-const-bound [where B=B]) (auto simp: enn2real-leI

enn2real-nonneg)
show (

∫
+ x . ennreal (enn2real (f x)) ∂M) = integralN M f

using ae by (intro nn-integral-cong-AE) (auto simp: le-less-trans[OF - ennreal-less-top])
qed (auto simp: enn2real-nonneg)

lemma (in finite-measure) integral-less-AE :
fixes X Y :: ′a ⇒ real
assumes int : integrable M X integrable M Y
assumes A: (emeasure M) A 6= 0 A ∈ sets M AE x in M . x ∈ A −→ X x 6= Y x
assumes gt : AE x in M . X x ≤ Y x
shows integralL M X < integralL M Y

proof −
have integralL M X ≤ integralL M Y

using gt int by (intro integral-mono-AE) auto
moreover
have integralL M X 6= integralL M Y
proof

assume eq : integralL M X = integralL M Y
have integralL M (λx . |Y x − X x |) = integralL M (λx . Y x − X x)

using gt int by (intro integral-cong-AE) auto
also have . . . = 0

using eq int by simp
finally have (emeasure M) {x ∈ space M . Y x − X x 6= 0} = 0

using int by (simp add : integral-0-iff)
moreover
have (

∫
+x . indicator A x ∂M) ≤ (

∫
+x . indicator {x ∈ space M . Y x − X x

6= 0} x ∂M)
using A by (intro nn-integral-mono-AE) auto

then have (emeasure M) A ≤ (emeasure M) {x ∈ space M . Y x − X x 6= 0}
using int A by (simp add : integrable-def)

ultimately have emeasure M A = 0
by simp

with 〈(emeasure M) A 6= 0 〉 show False by auto
qed

THEORY “Bochner-Integration” 329

ultimately show ?thesis by auto
qed

lemma (in finite-measure) integral-less-AE-space:
fixes X Y :: ′a ⇒ real
assumes int : integrable M X integrable M Y
assumes gt : AE x in M . X x < Y x emeasure M (space M) 6= 0
shows integralL M X < integralL M Y
using gt by (intro integral-less-AE [OF int , where A=space M]) auto

lemma tendsto-integral-at-top:
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes [measurable-cong]: sets M = sets borel and f [measurable]: integrable M

f
shows ((λy .

∫
x . indicator {.. y} x ∗R f x ∂M) −−−→

∫
x . f x ∂M) at-top

proof (rule tendsto-at-topI-sequentially)
fix X :: nat ⇒ real assume filterlim X at-top sequentially
show (λn.

∫
x . indicator {..X n} x ∗R f x ∂M) −−−−→ integralL M f

proof (rule integral-dominated-convergence)
show integrable M (λx . norm (f x))

by (rule integrable-norm) fact
show AE x in M . (λn. indicator {..X n} x ∗R f x) −−−−→ f x
proof

fix x
from 〈filterlim X at-top sequentially〉

have eventually (λn. x ≤ X n) sequentially
unfolding filterlim-at-top-ge[where c=x] by auto

then show (λn. indicator {..X n} x ∗R f x) −−−−→ f x
by (intro Lim-eventually) (auto split : split-indicator elim!: eventually-mono)

qed
fix n show AE x in M . norm (indicator {..X n} x ∗R f x) ≤ norm (f x)

by (auto split : split-indicator)
qed auto

qed

lemma
fixes f :: real ⇒ real
assumes M : sets M = sets borel
assumes nonneg : AE x in M . 0 ≤ f x
assumes borel : f ∈ borel-measurable borel
assumes int :

∧
y . integrable M (λx . f x ∗ indicator {.. y} x)

assumes conv : ((λy .
∫

x . f x ∗ indicator {.. y} x ∂M) −−−→ x) at-top
shows has-bochner-integral-monotone-convergence-at-top: has-bochner-integral M

f x
and integrable-monotone-convergence-at-top: integrable M f
and integral-monotone-convergence-at-top:integralL M f = x

proof −
from nonneg have AE x in M . mono (λn::nat . f x ∗ indicator {..real n} x)

by (auto split : split-indicator intro!: monoI)

THEORY “Bochner-Integration” 330

{ fix x have eventually (λn. f x ∗ indicator {..real n} x = f x) sequentially
by (rule eventually-sequentiallyI [of nat dxe])

(auto split : split-indicator simp: nat-le-iff ceiling-le-iff) }
from filterlim-cong [OF refl refl this]
have AE x in M . (λi . f x ∗ indicator {..real i} x) −−−−→ f x

by simp
have (λi .

∫
x . f x ∗ indicator {..real i} x ∂M) −−−−→ x

using conv filterlim-real-sequentially by (rule filterlim-compose)
have M-measure[simp]: borel-measurable M = borel-measurable borel

using M by (simp add : sets-eq-imp-space-eq measurable-def)
have f ∈ borel-measurable M

using borel by simp
show has-bochner-integral M f x

by (rule has-bochner-integral-monotone-convergence) fact+
then show integrable M f integralL M f = x

by (auto simp: -has-bochner-integral-iff)
qed

8.8 Product measure

lemma (in sigma-finite-measure) borel-measurable-lebesgue-integrable[measurable
(raw)]:

fixes f :: - ⇒ - ⇒ -::{banach, second-countable-topology}
assumes [measurable]: case-prod f ∈ borel-measurable (N

⊗
M M)

shows Measurable.pred N (λx . integrable M (f x))
proof −

have [simp]:
∧

x . x ∈ space N =⇒ integrable M (f x) ←→ (
∫

+y . norm (f x y)
∂M) < ∞

unfolding integrable-iff-bounded by simp
show ?thesis

by (simp cong : measurable-cong)
qed

lemma Collect-subset [simp]: {x∈A. P x} ⊆ A by auto

lemma (in sigma-finite-measure) measurable-measure[measurable (raw)]:
(
∧

x . x ∈ space N =⇒ A x ⊆ space M) =⇒
{x ∈ space (N

⊗
M M). snd x ∈ A (fst x)} ∈ sets (N

⊗
M M) =⇒

(λx . measure M (A x)) ∈ borel-measurable N
unfolding measure-def by (intro measurable-emeasure borel-measurable-enn2real)

auto

lemma (in sigma-finite-measure) borel-measurable-lebesgue-integral [measurable (raw)]:
fixes f :: - ⇒ - ⇒ -::{banach, second-countable-topology}
assumes f [measurable]: case-prod f ∈ borel-measurable (N

⊗
M M)

shows (λx .
∫

y . f x y ∂M) ∈ borel-measurable N
proof −

from borel-measurable-implies-sequence-metric[OF f , of 0] guess s ..
then have s:

∧
i . simple-function (N

⊗
M M) (s i)

THEORY “Bochner-Integration” 331

∧
x y . x ∈ space N =⇒ y ∈ space M =⇒ (λi . s i (x , y)) −−−−→ f x y∧
i x y . x ∈ space N =⇒ y ∈ space M =⇒ norm (s i (x , y)) ≤ 2 ∗ norm (f x

y)
by (auto simp: space-pair-measure)

have [measurable]:
∧

i . s i ∈ borel-measurable (N
⊗

M M)
by (rule borel-measurable-simple-function) fact

have
∧

i . s i ∈ measurable (N
⊗

M M) (count-space UNIV)
by (rule measurable-simple-function) fact

def f ′ ≡ λi x . if integrable M (f x) then simple-bochner-integral M (λy . s i (x ,
y)) else 0

{ fix i x assume x ∈ space N
then have simple-bochner-integral M (λy . s i (x , y)) =

(
∑

z∈s i ‘ (space N × space M). measure M {y ∈ space M . s i (x , y) = z}
∗R z)

using s(1)[THEN simple-functionD(1)]
unfolding simple-bochner-integral-def
by (intro setsum.mono-neutral-cong-left)

(auto simp: eq-commute space-pair-measure image-iff cong : conj-cong) }
note eq = this

show ?thesis
proof (rule borel-measurable-LIMSEQ-metric)

fix i show f ′ i ∈ borel-measurable N
unfolding f ′-def by (simp-all add : eq cong : measurable-cong if-cong)

next
fix x assume x : x ∈ space N
{ assume int-f : integrable M (f x)

have int-2f : integrable M (λy . 2 ∗ norm (f x y))
by (intro integrable-norm integrable-mult-right int-f)

have (λi . integralL M (λy . s i (x , y))) −−−−→ integralL M (f x)
proof (rule integral-dominated-convergence)

from int-f show f x ∈ borel-measurable M by auto
show

∧
i . (λy . s i (x , y)) ∈ borel-measurable M

using x by simp
show AE xa in M . (λi . s i (x , xa)) −−−−→ f x xa

using x s(2) by auto
show

∧
i . AE xa in M . norm (s i (x , xa)) ≤ 2 ∗ norm (f x xa)

using x s(3) by auto
qed fact
moreover
{ fix i

have simple-bochner-integrable M (λy . s i (x , y))
proof (rule simple-bochner-integrableI-bounded)

have (λy . s i (x , y)) ‘ space M ⊆ s i ‘ (space N × space M)
using x by auto

THEORY “Bochner-Integration” 332

then show simple-function M (λy . s i (x , y))
using simple-functionD(1)[OF s(1), of i] x
by (intro simple-function-borel-measurable)

(auto simp: space-pair-measure dest : finite-subset)
have (

∫
+ y . ennreal (norm (s i (x , y))) ∂M) ≤ (

∫
+ y . 2 ∗ norm (f x y)

∂M)
using x s by (intro nn-integral-mono) auto

also have (
∫

+ y . 2 ∗ norm (f x y) ∂M) < ∞
using int-2f by (simp add : integrable-iff-bounded)

finally show (
∫

+ xa. ennreal (norm (s i (x , xa))) ∂M) < ∞ .
qed
then have integralL M (λy . s i (x , y)) = simple-bochner-integral M (λy . s

i (x , y))
by (rule simple-bochner-integrable-eq-integral [symmetric]) }

ultimately have (λi . simple-bochner-integral M (λy . s i (x , y))) −−−−→
integralL M (f x)

by simp }
then
show (λi . f ′ i x) −−−−→ integralL M (f x)

unfolding f ′-def
by (cases integrable M (f x)) (simp-all add : not-integrable-integral-eq)

qed
qed

lemma (in pair-sigma-finite) integrable-product-swap:
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes integrable (M1

⊗
M M2) f

shows integrable (M2
⊗

M M1) (λ(x ,y). f (y ,x))
proof −

interpret Q : pair-sigma-finite M2 M1 ..
have ∗: (λ(x ,y). f (y ,x)) = (λx . f (case x of (x ,y)⇒(y ,x))) by (auto simp:

fun-eq-iff)
show ?thesis unfolding ∗

by (rule integrable-distr [OF measurable-pair-swap ′])
(simp add : distr-pair-swap[symmetric] assms)

qed

lemma (in pair-sigma-finite) integrable-product-swap-iff :
fixes f :: - ⇒ -::{banach, second-countable-topology}
shows integrable (M2

⊗
M M1) (λ(x ,y). f (y ,x))←→ integrable (M1

⊗
M M2)

f
proof −

interpret Q : pair-sigma-finite M2 M1 ..
from Q .integrable-product-swap[of λ(x ,y). f (y ,x)] integrable-product-swap[of f]
show ?thesis by auto

qed

lemma (in pair-sigma-finite) integral-product-swap:
fixes f :: - ⇒ -::{banach, second-countable-topology}

THEORY “Bochner-Integration” 333

assumes f : f ∈ borel-measurable (M1
⊗

M M2)
shows (

∫
(x ,y). f (y ,x) ∂(M2

⊗
M M1)) = integralL (M1

⊗
M M2) f

proof −
have ∗: (λ(x ,y). f (y ,x)) = (λx . f (case x of (x ,y)⇒(y ,x))) by (auto simp:

fun-eq-iff)
show ?thesis unfolding ∗
by (simp add : integral-distr [symmetric, OF measurable-pair-swap ′ f] distr-pair-swap[symmetric])

qed

lemma (in pair-sigma-finite) Fubini-integrable:
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable (M1

⊗
M M2)

and integ1 : integrable M1 (λx .
∫

y . norm (f (x , y)) ∂M2)
and integ2 : AE x in M1 . integrable M2 (λy . f (x , y))

shows integrable (M1
⊗

M M2) f
proof (rule integrableI-bounded)

have (
∫

+ p. norm (f p) ∂(M1
⊗

M M2)) = (
∫

+ x . (
∫

+ y . norm (f (x , y))
∂M2) ∂M1)

by (simp add : M2 .nn-integral-fst [symmetric])
also have . . . = (

∫
+ x . |

∫
y . norm (f (x , y)) ∂M2 | ∂M1)

apply (intro nn-integral-cong-AE)
using integ2

proof eventually-elim
fix x assume integrable M2 (λy . f (x , y))
then have f : integrable M2 (λy . norm (f (x , y)))

by simp
then have (

∫
+y . ennreal (norm (f (x , y))) ∂M2) = ennreal (LINT y |M2 .

norm (f (x , y)))
by (rule nn-integral-eq-integral) simp

also have . . . = ennreal |LINT y |M2 . norm (f (x , y))|
using f by simp

finally show (
∫

+y . ennreal (norm (f (x , y))) ∂M2) = ennreal |LINT y |M2 .
norm (f (x , y))| .

qed
also have . . . < ∞

using integ1 by (simp add : integrable-iff-bounded integral-nonneg-AE)
finally show (

∫
+ p. norm (f p) ∂(M1

⊗
M M2)) < ∞ .

qed fact

lemma (in pair-sigma-finite) emeasure-pair-measure-finite:
assumes A: A ∈ sets (M1

⊗
M M2) and finite: emeasure (M1

⊗
M M2) A <

∞
shows AE x in M1 . emeasure M2 {y∈space M2 . (x , y) ∈ A} < ∞

proof −
from M2 .emeasure-pair-measure-alt [OF A] finite
have (

∫
+ x . emeasure M2 (Pair x −‘ A) ∂M1) 6= ∞

by simp
then have AE x in M1 . emeasure M2 (Pair x −‘ A) 6= ∞
by (rule nn-integral-PInf-AE [rotated]) (intro M2 .measurable-emeasure-Pair A)

THEORY “Bochner-Integration” 334

moreover have
∧

x . x ∈ space M1 =⇒ Pair x −‘ A = {y∈space M2 . (x , y) ∈
A}

using sets.sets-into-space[OF A] by (auto simp: space-pair-measure)
ultimately show ?thesis by (auto simp: less-top)

qed

lemma (in pair-sigma-finite) AE-integrable-fst ′:
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes f [measurable]: integrable (M1

⊗
M M2) f

shows AE x in M1 . integrable M2 (λy . f (x , y))
proof −
have (

∫
+x . (

∫
+y . norm (f (x , y)) ∂M2) ∂M1) = (

∫
+x . norm (f x) ∂(M1

⊗
M

M2))
by (rule M2 .nn-integral-fst) simp

also have (
∫

+x . norm (f x) ∂(M1
⊗

M M2)) 6= ∞
using f unfolding integrable-iff-bounded by simp

finally have AE x in M1 . (
∫

+y . norm (f (x , y)) ∂M2) 6= ∞
by (intro nn-integral-PInf-AE M2 .borel-measurable-nn-integral)

(auto simp: measurable-split-conv)
with AE-space show ?thesis

by eventually-elim
(auto simp: integrable-iff-bounded measurable-compose[OF - borel-measurable-integrable[OF

f]] less-top)
qed

lemma (in pair-sigma-finite) integrable-fst ′:
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes f [measurable]: integrable (M1

⊗
M M2) f

shows integrable M1 (λx .
∫

y . f (x , y) ∂M2)
unfolding integrable-iff-bounded

proof
show (λx .

∫
y . f (x , y) ∂M2) ∈ borel-measurable M1

by (rule M2 .borel-measurable-lebesgue-integral) simp
have (

∫
+ x . ennreal (norm (

∫
y . f (x , y) ∂M2)) ∂M1) ≤ (

∫
+x . (

∫
+y . norm

(f (x , y)) ∂M2) ∂M1)
using AE-integrable-fst ′[OF f] by (auto intro!: nn-integral-mono-AE integral-norm-bound-ennreal)

also have (
∫

+x . (
∫

+y . norm (f (x , y)) ∂M2) ∂M1) = (
∫

+x . norm (f x) ∂(M1⊗
M M2))
by (rule M2 .nn-integral-fst) simp

also have (
∫

+x . norm (f x) ∂(M1
⊗

M M2)) < ∞
using f unfolding integrable-iff-bounded by simp

finally show (
∫

+ x . ennreal (norm (
∫

y . f (x , y) ∂M2)) ∂M1) < ∞ .
qed

lemma (in pair-sigma-finite) integral-fst ′:
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes f : integrable (M1

⊗
M M2) f

shows (
∫

x . (
∫

y . f (x , y) ∂M2) ∂M1) = integralL (M1
⊗

M M2) f
using f proof induct

THEORY “Bochner-Integration” 335

case (base A c)
have A[measurable]: A ∈ sets (M1

⊗
M M2) by fact

have eq :
∧

x y . x ∈ space M1 =⇒ indicator A (x , y) = indicator {y∈space M2 .
(x , y) ∈ A} y

using sets.sets-into-space[OF A] by (auto split : split-indicator simp: space-pair-measure)

have int-A: integrable (M1
⊗

M M2) (indicator A :: - ⇒ real)
using base by (rule integrable-real-indicator)

have (
∫

x .
∫

y . indicator A (x , y) ∗R c ∂M2 ∂M1) = (
∫

x . measure M2
{y∈space M2 . (x , y) ∈ A} ∗R c ∂M1)

proof (intro integral-cong-AE , simp, simp)
from AE-integrable-fst ′[OF int-A] AE-space
show AE x in M1 . (

∫
y . indicator A (x , y) ∗R c ∂M2) = measure M2 {y∈space

M2 . (x , y) ∈ A} ∗R c
by eventually-elim (simp add : eq integrable-indicator-iff)

qed
also have . . . = measure (M1

⊗
M M2) A ∗R c

proof (subst integral-scaleR-left)
have (

∫
+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A}) ∂M1) =

(
∫

+x . emeasure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1)
using emeasure-pair-measure-finite[OF base]

by (intro nn-integral-cong-AE , eventually-elim) (simp add : emeasure-eq-ennreal-measure)
also have . . . = emeasure (M1

⊗
M M2) A

using sets.sets-into-space[OF A]
by (subst M2 .emeasure-pair-measure-alt)

(auto intro!: nn-integral-cong arg-cong [where f =emeasure M2] simp:
space-pair-measure)

finally have ∗: (
∫

+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A})
∂M1) = emeasure (M1

⊗
M M2) A .

from base ∗ show integrable M1 (λx . measure M2 {y ∈ space M2 . (x , y) ∈
A})

by (simp add : integrable-iff-bounded)
then have (

∫
x . measure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1) =

(
∫

+x . ennreal (measure M2 {y ∈ space M2 . (x , y) ∈ A}) ∂M1)
by (rule nn-integral-eq-integral [symmetric]) simp

also note ∗
finally show (

∫
x . measure M2 {y ∈ space M2 . (x , y) ∈ A} ∂M1) ∗R c =

measure (M1
⊗

M M2) A ∗R c
using base by (simp add : emeasure-eq-ennreal-measure)

qed
also have . . . = (

∫
a. indicator A a ∗R c ∂(M1

⊗
M M2))

using base by simp
finally show ?case .

next
case (add f g)
then have [measurable]: f ∈ borel-measurable (M1

⊗
M M2) g ∈ borel-measurable

THEORY “Bochner-Integration” 336

(M1
⊗

M M2)
by auto

have (
∫

x .
∫

y . f (x , y) + g (x , y) ∂M2 ∂M1) =
(
∫

x . (
∫

y . f (x , y) ∂M2) + (
∫

y . g (x , y) ∂M2) ∂M1)
apply (rule integral-cong-AE)
apply simp-all
using AE-integrable-fst ′[OF add(1)] AE-integrable-fst ′[OF add(3)]
apply eventually-elim
apply simp
done

also have . . . = (
∫

x . f x ∂(M1
⊗

M M2)) + (
∫

x . g x ∂(M1
⊗

M M2))
using integrable-fst ′[OF add(1)] integrable-fst ′[OF add(3)] add(2 ,4) by simp

finally show ?case
using add by simp

next
case (lim f s)
then have [measurable]: f ∈ borel-measurable (M1

⊗
M M2)

∧
i . s i ∈ borel-measurable

(M1
⊗

M M2)
by auto

show ?case
proof (rule LIMSEQ-unique)

show (λi . integralL (M1
⊗

M M2) (s i)) −−−−→ integralL (M1
⊗

M M2) f
proof (rule integral-dominated-convergence)

show integrable (M1
⊗

M M2) (λx . 2 ∗ norm (f x))
using lim(5) by auto

qed (insert lim, auto)
have (λi .

∫
x .

∫
y . s i (x , y) ∂M2 ∂M1) −−−−→

∫
x .

∫
y . f (x , y) ∂M2

∂M1
proof (rule integral-dominated-convergence)

have AE x in M1 . ∀ i . integrable M2 (λy . s i (x , y))
unfolding AE-all-countable using AE-integrable-fst ′[OF lim(1)] ..

with AE-space AE-integrable-fst ′[OF lim(5)]
show AE x in M1 . (λi .

∫
y . s i (x , y) ∂M2) −−−−→

∫
y . f (x , y) ∂M2

proof eventually-elim
fix x assume x : x ∈ space M1 and

s: ∀ i . integrable M2 (λy . s i (x , y)) and f : integrable M2 (λy . f (x , y))
show (λi .

∫
y . s i (x , y) ∂M2) −−−−→

∫
y . f (x , y) ∂M2

proof (rule integral-dominated-convergence)
show integrable M2 (λy . 2 ∗ norm (f (x , y)))

using f by auto
show AE xa in M2 . (λi . s i (x , xa)) −−−−→ f (x , xa)

using x lim(3) by (auto simp: space-pair-measure)
show

∧
i . AE xa in M2 . norm (s i (x , xa)) ≤ 2 ∗ norm (f (x , xa))

using x lim(4) by (auto simp: space-pair-measure)
qed (insert x , measurable)

qed
show integrable M1 (λx . (

∫
y . 2 ∗ norm (f (x , y)) ∂M2))

by (intro integrable-mult-right integrable-norm integrable-fst ′ lim)

THEORY “Bochner-Integration” 337

fix i show AE x in M1 . norm (
∫

y . s i (x , y) ∂M2) ≤ (
∫

y . 2 ∗ norm (f
(x , y)) ∂M2)

using AE-space AE-integrable-fst ′[OF lim(1), of i] AE-integrable-fst ′[OF
lim(5)]

proof eventually-elim
fix x assume x : x ∈ space M1

and s: integrable M2 (λy . s i (x , y)) and f : integrable M2 (λy . f (x , y))
from s have norm (

∫
y . s i (x , y) ∂M2) ≤ (

∫
+y . norm (s i (x , y)) ∂M2)

by (rule integral-norm-bound-ennreal)
also have . . . ≤ (

∫
+y . 2 ∗ norm (f (x , y)) ∂M2)

using x lim by (auto intro!: nn-integral-mono simp: space-pair-measure)
also have . . . = (

∫
y . 2 ∗ norm (f (x , y)) ∂M2)

using f by (intro nn-integral-eq-integral) auto
finally show norm (

∫
y . s i (x , y) ∂M2) ≤ (

∫
y . 2 ∗ norm (f (x , y))

∂M2)
by simp

qed
qed simp-all
then show (λi . integralL (M1

⊗
M M2) (s i)) −−−−→

∫
x .

∫
y . f (x , y) ∂M2

∂M1
using lim by simp

qed
qed

lemma (in pair-sigma-finite)
fixes f :: - ⇒ - ⇒ -::{banach, second-countable-topology}
assumes f : integrable (M1

⊗
M M2) (case-prod f)

shows AE-integrable-fst : AE x in M1 . integrable M2 (λy . f x y) (is ?AE)
and integrable-fst : integrable M1 (λx .

∫
y . f x y ∂M2) (is ?INT)

and integral-fst : (
∫

x . (
∫

y . f x y ∂M2) ∂M1) = integralL (M1
⊗

M M2) (λ(x ,
y). f x y) (is ?EQ)

using AE-integrable-fst ′[OF f] integrable-fst ′[OF f] integral-fst ′[OF f] by auto

lemma (in pair-sigma-finite)
fixes f :: - ⇒ - ⇒ -::{banach, second-countable-topology}
assumes f [measurable]: integrable (M1

⊗
M M2) (case-prod f)

shows AE-integrable-snd : AE y in M2 . integrable M1 (λx . f x y) (is ?AE)
and integrable-snd : integrable M2 (λy .

∫
x . f x y ∂M1) (is ?INT)

and integral-snd : (
∫

y . (
∫

x . f x y ∂M1) ∂M2) = integralL (M1
⊗

M M2)
(case-prod f) (is ?EQ)
proof −

interpret Q : pair-sigma-finite M2 M1 ..
have Q-int : integrable (M2

⊗
M M1) (λ(x , y). f y x)

using f unfolding integrable-product-swap-iff [symmetric] by simp
show ?AE using Q .AE-integrable-fst ′[OF Q-int] by simp
show ?INT using Q .integrable-fst ′[OF Q-int] by simp
show ?EQ using Q .integral-fst ′[OF Q-int]

using integral-product-swap[of case-prod f] by simp
qed

THEORY “Bochner-Integration” 338

lemma (in pair-sigma-finite) Fubini-integral :
fixes f :: - ⇒ - ⇒ - :: {banach, second-countable-topology}
assumes f : integrable (M1

⊗
M M2) (case-prod f)

shows (
∫

y . (
∫

x . f x y ∂M1) ∂M2) = (
∫

x . (
∫

y . f x y ∂M2) ∂M1)
unfolding integral-snd [OF assms] integral-fst [OF assms] ..

lemma (in product-sigma-finite) product-integral-singleton:
fixes f :: - ⇒ -::{banach, second-countable-topology}
shows f ∈ borel-measurable (M i) =⇒ (

∫
x . f (x i) ∂PiM {i} M) = integralL

(M i) f
apply (subst distr-singleton[symmetric])
apply (subst integral-distr)
apply simp-all
done

lemma (in product-sigma-finite) product-integral-fold :
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes IJ [simp]: I ∩ J = {} and fin: finite I finite J
and f : integrable (PiM (I ∪ J) M) f
shows integralL (PiM (I ∪ J) M) f = (

∫
x . (

∫
y . f (merge I J (x , y)) ∂PiM J

M) ∂PiM I M)
proof −

interpret I : finite-product-sigma-finite M I by standard fact
interpret J : finite-product-sigma-finite M J by standard fact
have finite (I ∪ J) using fin by auto
interpret IJ : finite-product-sigma-finite M I ∪ J by standard fact
interpret P : pair-sigma-finite PiM I M PiM J M ..
let ?M = merge I J
let ?f = λx . f (?M x)
from f have f-borel : f ∈ borel-measurable (PiM (I ∪ J) M)

by auto
have P-borel : (λx . f (merge I J x)) ∈ borel-measurable (PiM I M

⊗
M PiM J

M)
using measurable-comp[OF measurable-merge f-borel] by (simp add : comp-def)

have f-int : integrable (PiM I M
⊗

M PiM J M) ?f
by (rule integrable-distr [OF measurable-merge]) (simp add : distr-merge[OF IJ

fin] f)
show ?thesis

apply (subst distr-merge[symmetric, OF IJ fin])
apply (subst integral-distr [OF measurable-merge f-borel])
apply (subst P .integral-fst ′[symmetric, OF f-int])
apply simp
done

qed

lemma (in product-sigma-finite) product-integral-insert :
fixes f :: - ⇒ -::{banach, second-countable-topology}
assumes I : finite I i /∈ I

THEORY “Bochner-Integration” 339

and f : integrable (PiM (insert i I) M) f
shows integralL (PiM (insert i I) M) f = (

∫
x . (

∫
y . f (x (i :=y)) ∂M i) ∂PiM

I M)
proof −

have integralL (PiM (insert i I) M) f = integralL (PiM (I ∪ {i}) M) f
by simp

also have . . . = (
∫

x . (
∫

y . f (merge I {i} (x ,y)) ∂PiM {i} M) ∂PiM I M)
using f I by (intro product-integral-fold) auto

also have . . . = (
∫

x . (
∫

y . f (x (i := y)) ∂M i) ∂PiM I M)
proof (rule integral-cong [OF refl], subst product-integral-singleton[symmetric])

fix x assume x : x ∈ space (PiM I M)
have f-borel : f ∈ borel-measurable (PiM (insert i I) M)

using f by auto
show (λy . f (x (i := y))) ∈ borel-measurable (M i)

using measurable-comp[OF measurable-component-update f-borel , OF x 〈i /∈
I 〉]

unfolding comp-def .
from x I show (

∫
y . f (merge I {i} (x ,y)) ∂PiM {i} M) = (

∫
xa. f (x (i :=

xa i)) ∂PiM {i} M)
by (auto intro!: integral-cong arg-cong [where f =f] simp: merge-def space-PiM

extensional-def PiE-def)
qed
finally show ?thesis .

qed

lemma (in product-sigma-finite) product-integrable-setprod :
fixes f :: ′i ⇒ ′a ⇒ -::{real-normed-field ,banach,second-countable-topology}
assumes [simp]: finite I and integrable:

∧
i . i ∈ I =⇒ integrable (M i) (f i)

shows integrable (PiM I M) (λx . (
∏

i∈I . f i (x i))) (is integrable - ?f)
proof (unfold integrable-iff-bounded , intro conjI)

interpret finite-product-sigma-finite M I by standard fact

show ?f ∈ borel-measurable (PiM I M)
using assms by simp

have (
∫

+ x . ennreal (norm (
∏

i∈I . f i (x i))) ∂PiM I M) =
(
∫

+ x . (
∏

i∈I . ennreal (norm (f i (x i)))) ∂PiM I M)
by (simp add : setprod-norm setprod-ennreal)

also have . . . = (
∏

i∈I .
∫

+ x . ennreal (norm (f i x)) ∂M i)
using assms by (intro product-nn-integral-setprod) auto

also have . . . < ∞
using integrable by (simp add : less-top[symmetric] ennreal-setprod-eq-top integrable-iff-bounded)
finally show (

∫
+ x . ennreal (norm (

∏
i∈I . f i (x i))) ∂PiM I M) < ∞ .

qed

lemma (in product-sigma-finite) product-integral-setprod :
fixes f :: ′i ⇒ ′a ⇒ -::{real-normed-field ,banach,second-countable-topology}
assumes finite I and integrable:

∧
i . i ∈ I =⇒ integrable (M i) (f i)

shows (
∫

x . (
∏

i∈I . f i (x i)) ∂PiM I M) = (
∏

i∈I . integralL (M i) (f i))
using assms proof induct

THEORY “Bochner-Integration” 340

case empty
interpret finite-measure PiM {} M

by rule (simp add : space-PiM)
show ?case by (simp add : space-PiM measure-def)

next
case (insert i I)
then have iI : finite (insert i I) by auto
then have prod :

∧
J . J ⊆ insert i I =⇒

integrable (PiM J M) (λx . (
∏

i∈J . f i (x i)))
by (intro product-integrable-setprod insert(4)) (auto intro: finite-subset)

interpret I : finite-product-sigma-finite M I by standard fact
have ∗:

∧
x y . (

∏
j∈I . f j (if j = i then y else x j)) = (

∏
j∈I . f j (x j))

using 〈i /∈ I 〉 by (auto intro!: setprod .cong)
show ?case

unfolding product-integral-insert [OF insert(1 ,2) prod [OF subset-refl]]
by (simp add : ∗ insert prod subset-insertI)

qed

lemma integrable-subalgebra:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes borel : f ∈ borel-measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integrable N f ←→ integrable M f (is ?P)

proof −
have f ∈ borel-measurable M

using assms by (auto simp: measurable-def)
with assms show ?thesis

using assms by (auto simp: integrable-iff-bounded nn-integral-subalgebra)
qed

lemma integral-subalgebra:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes borel : f ∈ borel-measurable N
and N : sets N ⊆ sets M space N = space M

∧
A. A ∈ sets N =⇒ emeasure N

A = emeasure M A
shows integralL N f = integralL M f

proof cases
assume integrable N f
then show ?thesis
proof induct

case base with assms show ?case by (auto simp: subset-eq measure-def)
next

case (add f g)
then have (

∫
a. f a + g a ∂N) = integralL M f + integralL M g

by simp
also have . . . = (

∫
a. f a + g a ∂M)

using add integrable-subalgebra[OF - N , of f] integrable-subalgebra[OF - N ,
of g] by simp

THEORY “Caratheodory” 341

finally show ?case .
next

case (lim f s)
then have M :

∧
i . integrable M (s i) integrable M f

using integrable-subalgebra[OF - N , of f] integrable-subalgebra[OF - N , of s i
for i] by simp-all

show ?case
proof (intro LIMSEQ-unique)

show (λi . integralL N (s i)) −−−−→ integralL N f
apply (rule integral-dominated-convergence[where w=λx . 2 ∗ norm (f x)])
using lim
apply auto
done

show (λi . integralL N (s i)) −−−−→ integralL M f
unfolding lim
apply (rule integral-dominated-convergence[where w=λx . 2 ∗ norm (f x)])
using lim M N (2)
apply auto
done

qed
qed

qed (simp add : not-integrable-integral-eq integrable-subalgebra[OF assms])

hide-const (open) simple-bochner-integral
hide-const (open) simple-bochner-integrable

end

9 Caratheodory Extension Theorem

theory Caratheodory
imports Measure-Space

begin

Originally from the Hurd/Coble measure theory development, translated by
Lawrence Paulson.

lemma suminf-ennreal-2dimen:
fixes f :: nat × nat ⇒ ennreal
assumes

∧
m. g m = (

∑
n. f (m,n))

shows (
∑

i . f (prod-decode i)) = suminf g
proof −

have g-def : g = (λm. (
∑

n. f (m,n)))
using assms by (simp add : fun-eq-iff)

have reindex :
∧

B . (
∑

x∈B . f (prod-decode x)) = setsum f (prod-decode ‘ B)
by (simp add : setsum.reindex [OF inj-prod-decode] comp-def)

have (SUP n.
∑

i<n. f (prod-decode i)) = (SUP p : UNIV × UNIV .
∑

i<fst
p.

∑
n<snd p. f (i , n))

proof (intro SUP-eq ; clarsimp simp: setsum.cartesian-product reindex)
fix n

THEORY “Caratheodory” 342

let ?M = λf . Suc (Max (f ‘ prod-decode ‘ {..<n}))
{ fix a b x assume x < n and [symmetric]: (a, b) = prod-decode x

then have a < ?M fst b < ?M snd
by (auto intro!: Max-ge le-imp-less-Suc image-eqI) }

then have setsum f (prod-decode ‘ {..<n}) ≤ setsum f ({..<?M fst} × {..<?M
snd})

by (auto intro!: setsum-mono3)
then show ∃ a b. setsum f (prod-decode ‘ {..<n}) ≤ setsum f ({..<a} × {..<b})

by auto
next

fix a b
let ?M = prod-decode ‘ {..<Suc (Max (prod-encode ‘ ({..<a} × {..<b})))}
{ fix a ′ b ′ assume a ′ < a b ′ < b then have (a ′, b ′) ∈ ?M

by (auto intro!: Max-ge le-imp-less-Suc image-eqI [where x=prod-encode
(a ′, b ′)]) }

then have setsum f ({..<a} × {..<b}) ≤ setsum f ?M
by (auto intro!: setsum-mono3)

then show ∃n. setsum f ({..<a} × {..<b}) ≤ setsum f (prod-decode ‘ {..<n})
by auto

qed
also have . . . = (SUP p.

∑
i<p.

∑
n. f (i , n))

unfolding suminf-setsum[OF summableI , symmetric]
by (simp add : suminf-eq-SUP SUP-pair setsum.commute[of - {..< fst -}])

finally show ?thesis unfolding g-def
by (simp add : suminf-eq-SUP)

qed

9.1 Characterizations of Measures

definition outer-measure-space where
outer-measure-space M f ←→ positive M f ∧ increasing M f ∧ countably-subadditive

M f

9.1.1 Lambda Systems

definition lambda-system :: ′a set ⇒ ′a set set ⇒ (′a set ⇒ ennreal) ⇒ ′a set set
where

lambda-system Ω M f = {l ∈ M . ∀ x ∈ M . f (l ∩ x) + f ((Ω − l) ∩ x) = f x}

lemma (in algebra) lambda-system-eq :
lambda-system Ω M f = {l ∈ M . ∀ x ∈ M . f (x ∩ l) + f (x − l) = f x}

proof −
have [simp]:

∧
l x . l ∈ M =⇒ x ∈ M =⇒ (Ω − l) ∩ x = x − l

by (metis Int-Diff Int-absorb1 Int-commute sets-into-space)
show ?thesis

by (auto simp add : lambda-system-def) (metis Int-commute)+
qed

lemma (in algebra) lambda-system-empty : positive M f =⇒ {} ∈ lambda-system
Ω M f

THEORY “Caratheodory” 343

by (auto simp add : positive-def lambda-system-eq)

lemma lambda-system-sets: x ∈ lambda-system Ω M f =⇒ x ∈ M
by (simp add : lambda-system-def)

lemma (in algebra) lambda-system-Compl :
fixes f :: ′a set ⇒ ennreal
assumes x : x ∈ lambda-system Ω M f
shows Ω − x ∈ lambda-system Ω M f

proof −
have x ⊆ Ω

by (metis sets-into-space lambda-system-sets x)
hence Ω − (Ω − x) = x

by (metis double-diff equalityE)
with x show ?thesis

by (force simp add : lambda-system-def ac-simps)
qed

lemma (in algebra) lambda-system-Int :
fixes f :: ′a set ⇒ ennreal
assumes xl : x ∈ lambda-system Ω M f and yl : y ∈ lambda-system Ω M f
shows x ∩ y ∈ lambda-system Ω M f

proof −
from xl yl show ?thesis
proof (auto simp add : positive-def lambda-system-eq Int)

fix u
assume x : x ∈ M and y : y ∈ M and u: u ∈ M

and fx : ∀ z∈M . f (z ∩ x) + f (z − x) = f z
and fy : ∀ z∈M . f (z ∩ y) + f (z − y) = f z

have u − x ∩ y ∈ M
by (metis Diff Diff-Int Un u x y)

moreover
have (u − (x ∩ y)) ∩ y = u ∩ y − x by blast
moreover
have u − x ∩ y − y = u − y by blast
ultimately
have ey : f (u − x ∩ y) = f (u ∩ y − x) + f (u − y) using fy

by force
have f (u ∩ (x ∩ y)) + f (u − x ∩ y)

= (f (u ∩ (x ∩ y)) + f (u ∩ y − x)) + f (u − y)
by (simp add : ey ac-simps)

also have ... = (f ((u ∩ y) ∩ x) + f (u ∩ y − x)) + f (u − y)
by (simp add : Int-ac)

also have ... = f (u ∩ y) + f (u − y)
using fx [THEN bspec, of u ∩ y] Int y u
by force

also have ... = f u
by (metis fy u)

finally show f (u ∩ (x ∩ y)) + f (u − x ∩ y) = f u .

THEORY “Caratheodory” 344

qed
qed

lemma (in algebra) lambda-system-Un:
fixes f :: ′a set ⇒ ennreal
assumes xl : x ∈ lambda-system Ω M f and yl : y ∈ lambda-system Ω M f
shows x ∪ y ∈ lambda-system Ω M f

proof −
have (Ω − x) ∩ (Ω − y) ∈ M

by (metis Diff-Un Un compl-sets lambda-system-sets xl yl)
moreover
have x ∪ y = Ω − ((Ω − x) ∩ (Ω − y))

by auto (metis subsetD lambda-system-sets sets-into-space xl yl)+
ultimately show ?thesis

by (metis lambda-system-Compl lambda-system-Int xl yl)
qed

lemma (in algebra) lambda-system-algebra:
positive M f =⇒ algebra Ω (lambda-system Ω M f)
apply (auto simp add : algebra-iff-Un)
apply (metis lambda-system-sets set-mp sets-into-space)
apply (metis lambda-system-empty)
apply (metis lambda-system-Compl)
apply (metis lambda-system-Un)
done

lemma (in algebra) lambda-system-strong-additive:
assumes z : z ∈ M and disj : x ∩ y = {}

and xl : x ∈ lambda-system Ω M f and yl : y ∈ lambda-system Ω M f
shows f (z ∩ (x ∪ y)) = f (z ∩ x) + f (z ∩ y)

proof −
have z ∩ x = (z ∩ (x ∪ y)) ∩ x using disj by blast
moreover
have z ∩ y = (z ∩ (x ∪ y)) − x using disj by blast
moreover
have (z ∩ (x ∪ y)) ∈ M

by (metis Int Un lambda-system-sets xl yl z)
ultimately show ?thesis using xl yl

by (simp add : lambda-system-eq)
qed

lemma (in algebra) lambda-system-additive: additive (lambda-system Ω M f) f
proof (auto simp add : additive-def)

fix x and y
assume disj : x ∩ y = {}

and xl : x ∈ lambda-system Ω M f and yl : y ∈ lambda-system Ω M f
hence x ∈ M y ∈ M by (blast intro: lambda-system-sets)+
thus f (x ∪ y) = f x + f y

using lambda-system-strong-additive [OF top disj xl yl]

THEORY “Caratheodory” 345

by (simp add : Un)
qed

lemma lambda-system-increasing : increasing M f =⇒ increasing (lambda-system
Ω M f) f

by (simp add : increasing-def lambda-system-def)

lemma lambda-system-positive: positive M f =⇒ positive (lambda-system Ω M f)
f

by (simp add : positive-def lambda-system-def)

lemma (in algebra) lambda-system-strong-sum:
fixes A:: nat ⇒ ′a set and f :: ′a set ⇒ ennreal
assumes f : positive M f and a: a ∈ M

and A: range A ⊆ lambda-system Ω M f
and disj : disjoint-family A

shows (
∑

i = 0 ..<n. f (a ∩A i)) = f (a ∩ (
⋃

i∈{0 ..<n}. A i))
proof (induct n)

case 0 show ?case using f by (simp add : positive-def)
next

case (Suc n)
have 2 : A n ∩ UNION {0 ..<n} A = {} using disj

by (force simp add : disjoint-family-on-def neq-iff)
have 3 : A n ∈ lambda-system Ω M f using A

by blast
interpret l : algebra Ω lambda-system Ω M f

using f by (rule lambda-system-algebra)
have 4 : UNION {0 ..<n} A ∈ lambda-system Ω M f

using A l .UNION-in-sets by simp
from Suc.hyps show ?case
by (simp add : atLeastLessThanSuc lambda-system-strong-additive [OF a 2 3 4])

qed

lemma (in sigma-algebra) lambda-system-caratheodory :
assumes oms: outer-measure-space M f

and A: range A ⊆ lambda-system Ω M f
and disj : disjoint-family A

shows (
⋃

i . A i) ∈ lambda-system Ω M f ∧ (
∑

i . f (A i)) = f (
⋃

i . A i)
proof −

have pos: positive M f and inc: increasing M f
and csa: countably-subadditive M f
by (metis oms outer-measure-space-def)+

have sa: subadditive M f
by (metis countably-subadditive-subadditive csa pos)

have A ′:
∧

S . A‘S ⊆ (lambda-system Ω M f) using A
by auto

interpret ls: algebra Ω lambda-system Ω M f
using pos by (rule lambda-system-algebra)

have A ′′: range A ⊆ M

THEORY “Caratheodory” 346

by (metis A image-subset-iff lambda-system-sets)

have U-in: (
⋃

i . A i) ∈ M
by (metis A ′′ countable-UN)

have U-eq : f (
⋃

i . A i) = (
∑

i . f (A i))
proof (rule antisym)

show f (
⋃

i . A i) ≤ (
∑

i . f (A i))
using csa[unfolded countably-subadditive-def] A ′′ disj U-in by auto

have dis:
∧

N . disjoint-family-on A {..<N } by (intro disjoint-family-on-mono[OF
- disj]) auto

show (
∑

i . f (A i)) ≤ f (
⋃

i . A i)
using ls.additive-sum [OF lambda-system-positive[OF pos] lambda-system-additive

- A ′ dis] A ′′

by (intro suminf-le-const [OF summableI]) (auto intro!: increasingD [OF inc]
countable-UN)

qed
have f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i)) = f a

if a [iff]: a ∈ M for a
proof (rule antisym)

have range (λi . a ∩ A i) ⊆ M using A ′′

by blast
moreover
have disjoint-family (λi . a ∩ A i) using disj

by (auto simp add : disjoint-family-on-def)
moreover
have a ∩ (

⋃
i . A i) ∈ M

by (metis Int U-in a)
ultimately
have f (a ∩ (

⋃
i . A i)) ≤ (

∑
i . f (a ∩ A i))

using csa[unfolded countably-subadditive-def , rule-format , of (λi . a ∩ A i)]
by (simp add : o-def)

hence f (a ∩ (
⋃

i . A i)) + f (a − (
⋃

i . A i)) ≤ (
∑

i . f (a ∩ A i)) + f (a −
(
⋃

i . A i))
by (rule add-right-mono)

also have . . . ≤ f a
proof (intro ennreal-suminf-bound-add)

fix n
have UNION-in: (

⋃
i∈{0 ..<n}. A i) ∈ M

by (metis A ′′ UNION-in-sets)
have le-fa: f (UNION {0 ..<n} A ∩ a) ≤ f a using A ′′

by (blast intro: increasingD [OF inc] A ′′ UNION-in-sets)
have ls: (

⋃
i∈{0 ..<n}. A i) ∈ lambda-system Ω M f

using ls.UNION-in-sets by (simp add : A)
hence eq-fa: f a = f (a ∩ (

⋃
i∈{0 ..<n}. A i)) + f (a − (

⋃
i∈{0 ..<n}. A

i))
by (simp add : lambda-system-eq UNION-in)

have f (a − (
⋃

i . A i)) ≤ f (a − (
⋃

i∈{0 ..<n}. A i))
by (blast intro: increasingD [OF inc] UNION-in U-in)

thus (
∑

i<n. f (a ∩ A i)) + f (a − (
⋃

i . A i)) ≤ f a

THEORY “Caratheodory” 347

by (simp add : lambda-system-strong-sum pos A disj eq-fa add-left-mono
atLeast0LessThan[symmetric])

qed
finally show f (a ∩ (

⋃
i . A i)) + f (a − (

⋃
i . A i)) ≤ f a

by simp
next

have f a ≤ f (a ∩ (
⋃

i . A i) ∪ (a − (
⋃

i . A i)))
by (blast intro: increasingD [OF inc] U-in)

also have ... ≤ f (a ∩ (
⋃

i . A i)) + f (a − (
⋃

i . A i))
by (blast intro: subadditiveD [OF sa] U-in)

finally show f a ≤ f (a ∩ (
⋃

i . A i)) + f (a − (
⋃

i . A i)) .
qed
thus ?thesis

by (simp add : lambda-system-eq sums-iff U-eq U-in)
qed

lemma (in sigma-algebra) caratheodory-lemma:
assumes oms: outer-measure-space M f
defines L ≡ lambda-system Ω M f
shows measure-space Ω L f

proof −
have pos: positive M f

by (metis oms outer-measure-space-def)
have alg : algebra Ω L

using lambda-system-algebra [of f , OF pos]
by (simp add : algebra-iff-Un L-def)

then
have sigma-algebra Ω L

using lambda-system-caratheodory [OF oms]
by (simp add : sigma-algebra-disjoint-iff L-def)

moreover
have countably-additive L f positive L f

using pos lambda-system-caratheodory [OF oms]
by (auto simp add : lambda-system-sets L-def countably-additive-def positive-def)

ultimately
show ?thesis

using pos by (simp add : measure-space-def)
qed

definition outer-measure :: ′a set set ⇒ (′a set ⇒ ennreal) ⇒ ′a set ⇒ ennreal
where

outer-measure M f X =
(INF A:{A. range A ⊆ M ∧ disjoint-family A ∧ X ⊆ (

⋃
i . A i)}.

∑
i . f (A

i))

lemma (in ring-of-sets) outer-measure-agrees:
assumes posf : positive M f and ca: countably-additive M f and s: s ∈ M
shows outer-measure M f s = f s
unfolding outer-measure-def

THEORY “Caratheodory” 348

proof (safe intro!: antisym INF-greatest)
fix A :: nat ⇒ ′a set assume A: range A ⊆ M and dA: disjoint-family A and

sA: s ⊆ (
⋃

x . A x)
have inc: increasing M f

by (metis additive-increasing ca countably-additive-additive posf)
have f s = f (

⋃
i . A i ∩ s)

using sA by (auto simp: Int-absorb1)
also have . . . = (

∑
i . f (A i ∩ s))

using sA dA A s
by (intro ca[unfolded countably-additive-def , rule-format , symmetric])

(auto simp: Int-absorb1 disjoint-family-on-def)
also have ... ≤ (

∑
i . f (A i))

using A s by (auto intro!: suminf-le increasingD [OF inc])
finally show f s ≤ (

∑
i . f (A i)) .

next
have (

∑
i . f (if i = 0 then s else {})) ≤ f s

using positiveD1 [OF posf] by (subst suminf-finite[of {0}]) auto
with s show (INF A:{A. range A ⊆ M ∧ disjoint-family A ∧ s ⊆ UNION UNIV

A}.
∑

i . f (A i)) ≤ f s
by (intro INF-lower2 [of λi . if i = 0 then s else {}])

(auto simp: disjoint-family-on-def)
qed

lemma outer-measure-empty :
positive M f =⇒ {} ∈ M =⇒ outer-measure M f {} = 0
unfolding outer-measure-def
by (intro antisym INF-lower2 [of λ-. {}]) (auto simp: disjoint-family-on-def

positive-def)

lemma (in ring-of-sets) positive-outer-measure:
assumes positive M f shows positive (Pow Ω) (outer-measure M f)
unfolding positive-def by (auto simp: assms outer-measure-empty)

lemma (in ring-of-sets) increasing-outer-measure: increasing (Pow Ω) (outer-measure
M f)
by (force simp: increasing-def outer-measure-def intro!: INF-greatest intro: INF-lower)

lemma (in ring-of-sets) outer-measure-le:
assumes pos: positive M f and inc: increasing M f and A: range A ⊆ M and

X : X ⊆ (
⋃

i . A i)
shows outer-measure M f X ≤ (

∑
i . f (A i))

unfolding outer-measure-def
proof (safe intro!: INF-lower2 [of disjointed A] del : subsetI)

show dA: range (disjointed A) ⊆ M
by (auto intro!: A range-disjointed-sets)

have ∀n. f (disjointed A n) ≤ f (A n)
by (metis increasingD [OF inc] UNIV-I dA image-subset-iff disjointed-subset

A)
then show (

∑
i . f (disjointed A i)) ≤ (

∑
i . f (A i))

THEORY “Caratheodory” 349

by (blast intro!: suminf-le)
qed (auto simp: X UN-disjointed-eq disjoint-family-disjointed)

lemma (in ring-of-sets) outer-measure-close:
outer-measure M f X < e =⇒ ∃A. range A ⊆ M ∧ disjoint-family A ∧ X ⊆

(
⋃

i . A i) ∧ (
∑

i . f (A i)) < e
unfolding outer-measure-def INF-less-iff by auto

lemma (in ring-of-sets) countably-subadditive-outer-measure:
assumes posf : positive M f and inc: increasing M f
shows countably-subadditive (Pow Ω) (outer-measure M f)

proof (simp add : countably-subadditive-def , safe)
fix A :: nat ⇒ - assume A: range A ⊆ Pow (Ω) and sb: (

⋃
i . A i) ⊆ Ω

let ?O = outer-measure M f
show ?O (

⋃
i . A i) ≤ (

∑
n. ?O (A n))

proof (rule ennreal-le-epsilon)
fix b and e :: real assume 0 < e (

∑
n. outer-measure M f (A n)) < top

then have ∗:
∧

n. outer-measure M f (A n) < outer-measure M f (A n) + e
∗ (1/2)ˆSuc n

by (auto simp add : less-top dest !: ennreal-suminf-lessD)
obtain B

where B :
∧

n. range (B n) ⊆ M
and sbB :

∧
n. A n ⊆ (

⋃
i . B n i)

and Ble:
∧

n. (
∑

i . f (B n i)) ≤ ?O (A n) + e ∗ (1/2)ˆ(Suc n)
by (metis less-imp-le outer-measure-close[OF ∗])

def C ≡ case-prod B o prod-decode
from B have B-in-M :

∧
i j . B i j ∈ M

by (rule range-subsetD)
then have C : range C ⊆ M

by (auto simp add : C-def split-def)
have A-C : (

⋃
i . A i) ⊆ (

⋃
i . C i)

using sbB by (auto simp add : C-def subset-eq) (metis prod .case prod-encode-inverse)

have ?O (
⋃

i . A i) ≤ ?O (
⋃

i . C i)
using A-C A C by (intro increasing-outer-measure[THEN increasingD]) (auto

dest !: sets-into-space)
also have . . . ≤ (

∑
i . f (C i))

using C by (intro outer-measure-le[OF posf inc]) auto
also have . . . = (

∑
n.

∑
i . f (B n i))

using B-in-M unfolding C-def comp-def by (intro suminf-ennreal-2dimen)
auto

also have . . . ≤ (
∑

n. ?O (A n) + e ∗ (1/2) ˆ Suc n)
using B-in-M by (intro suminf-le suminf-nonneg allI Ble) auto

also have ... = (
∑

n. ?O (A n)) + (
∑

n. ennreal e ∗ ennreal ((1/2) ˆ Suc
n))

using 〈0 < e〉 by (subst suminf-add [symmetric])
(auto simp del : ennreal-suminf-cmult simp add : ennreal-mult [symmetric])

also have . . . = (
∑

n. ?O (A n)) + e

THEORY “Caratheodory” 350

unfolding ennreal-suminf-cmult
by (subst suminf-ennreal-eq [OF zero-le-power power-half-series]) auto

finally show ?O (
⋃

i . A i) ≤ (
∑

n. ?O (A n)) + e .
qed

qed

lemma (in ring-of-sets) outer-measure-space-outer-measure:
positive M f =⇒ increasing M f =⇒ outer-measure-space (Pow Ω) (outer-measure

M f)
by (simp add : outer-measure-space-def
positive-outer-measure increasing-outer-measure countably-subadditive-outer-measure)

lemma (in ring-of-sets) algebra-subset-lambda-system:
assumes posf : positive M f and inc: increasing M f

and add : additive M f
shows M ⊆ lambda-system Ω (Pow Ω) (outer-measure M f)

proof (auto dest : sets-into-space
simp add : algebra.lambda-system-eq [OF algebra-Pow])

fix x s assume x : x ∈ M and s: s ⊆ Ω
have [simp]:

∧
x . x ∈ M =⇒ s ∩ (Ω − x) = s − x using s

by blast
have outer-measure M f (s ∩ x) + outer-measure M f (s − x) ≤ outer-measure

M f s
unfolding outer-measure-def [of M f s]

proof (safe intro!: INF-greatest)
fix A :: nat ⇒ ′a set assume A: disjoint-family A range A ⊆ M s ⊆ (

⋃
i . A i)

have outer-measure M f (s ∩ x) ≤ (
∑

i . f (A i ∩ x))
unfolding outer-measure-def

proof (safe intro!: INF-lower2 [of λi . A i ∩ x])
from A(1) show disjoint-family (λi . A i ∩ x)

by (rule disjoint-family-on-bisimulation) auto
qed (insert x A, auto)
moreover
have outer-measure M f (s − x) ≤ (

∑
i . f (A i − x))

unfolding outer-measure-def
proof (safe intro!: INF-lower2 [of λi . A i − x])

from A(1) show disjoint-family (λi . A i − x)
by (rule disjoint-family-on-bisimulation) auto

qed (insert x A, auto)
ultimately have outer-measure M f (s ∩ x) + outer-measure M f (s − x) ≤

(
∑

i . f (A i ∩ x)) + (
∑

i . f (A i − x)) by (rule add-mono)
also have . . . = (

∑
i . f (A i ∩ x) + f (A i − x))

using A(2) x posf by (subst suminf-add) (auto simp: positive-def)
also have . . . = (

∑
i . f (A i))

using A x
by (subst add [THEN additiveD , symmetric])

(auto intro!: arg-cong [where f =suminf] arg-cong [where f =f])
finally show outer-measure M f (s ∩ x) + outer-measure M f (s − x) ≤ (

∑
i .

f (A i)) .

THEORY “Caratheodory” 351

qed
moreover
have outer-measure M f s ≤ outer-measure M f (s ∩ x) + outer-measure M f (s
− x)

proof −
have outer-measure M f s = outer-measure M f ((s ∩ x) ∪ (s − x))

by (metis Un-Diff-Int Un-commute)
also have ... ≤ outer-measure M f (s ∩ x) + outer-measure M f (s − x)

apply (rule subadditiveD)
apply (rule ring-of-sets.countably-subadditive-subadditive [OF ring-of-sets-Pow])
apply (simp add : positive-def outer-measure-empty [OF posf])
apply (rule countably-subadditive-outer-measure)
using s by (auto intro!: posf inc)

finally show ?thesis .
qed
ultimately
show outer-measure M f (s ∩ x) + outer-measure M f (s − x) = outer-measure

M f s
by (rule order-antisym)

qed

lemma measure-down: measure-space Ω N µ =⇒ sigma-algebra Ω M =⇒ M ⊆ N
=⇒ measure-space Ω M µ
by (auto simp add : measure-space-def positive-def countably-additive-def subset-eq)

9.2 Caratheodory’s theorem

theorem (in ring-of-sets) caratheodory ′:
assumes posf : positive M f and ca: countably-additive M f
shows ∃µ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ s = f s) ∧ measure-space Ω (sigma-sets

Ω M) µ
proof −

have inc: increasing M f
by (metis additive-increasing ca countably-additive-additive posf)

let ?O = outer-measure M f
def ls ≡ lambda-system Ω (Pow Ω) ?O
have mls: measure-space Ω ls ?O

using sigma-algebra.caratheodory-lemma
[OF sigma-algebra-Pow outer-measure-space-outer-measure [OF posf inc]]

by (simp add : ls-def)
hence sls: sigma-algebra Ω ls

by (simp add : measure-space-def)
have M ⊆ ls

by (simp add : ls-def)
(metis ca posf inc countably-additive-additive algebra-subset-lambda-system)

hence sgs-sb: sigma-sets (Ω) (M) ⊆ ls
using sigma-algebra.sigma-sets-subset [OF sls, of M]
by simp

have measure-space Ω (sigma-sets Ω M) ?O

THEORY “Caratheodory” 352

by (rule measure-down [OF mls], rule sigma-algebra-sigma-sets)
(simp-all add : sgs-sb space-closed)

thus ?thesis using outer-measure-agrees [OF posf ca]
by (intro exI [of - ?O]) auto

qed

lemma (in ring-of-sets) caratheodory-empty-continuous:
assumes f : positive M f additive M f and fin:

∧
A. A ∈ M =⇒ f A 6= ∞

assumes cont :
∧

A. range A ⊆ M =⇒ decseq A =⇒ (
⋂

i . A i) = {} =⇒ (λi . f
(A i)) −−−−→ 0
shows ∃µ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ s = f s) ∧ measure-space Ω (sigma-sets

Ω M) µ
proof (intro caratheodory ′ empty-continuous-imp-countably-additive f)

show ∀A∈M . f A 6= ∞ using fin by auto
qed (rule cont)

9.3 Volumes

definition volume :: ′a set set ⇒ (′a set ⇒ ennreal) ⇒ bool where
volume M f ←→
(f {} = 0) ∧ (∀ a∈M . 0 ≤ f a) ∧
(∀C⊆M . disjoint C −→ finite C −→

⋃
C ∈ M −→ f (

⋃
C) = (

∑
c∈C . f c))

lemma volumeI :
assumes f {} = 0
assumes

∧
a. a ∈ M =⇒ 0 ≤ f a

assumes
∧

C . C ⊆ M =⇒ disjoint C =⇒ finite C =⇒
⋃

C ∈ M =⇒ f (
⋃

C)
= (

∑
c∈C . f c)

shows volume M f
using assms by (auto simp: volume-def)

lemma volume-positive:
volume M f =⇒ a ∈ M =⇒ 0 ≤ f a
by (auto simp: volume-def)

lemma volume-empty :
volume M f =⇒ f {} = 0
by (auto simp: volume-def)

lemma volume-finite-additive:
assumes volume M f
assumes A:

∧
i . i ∈ I =⇒ A i ∈ M disjoint-family-on A I finite I UNION I A

∈ M
shows f (UNION I A) = (

∑
i∈I . f (A i))

proof −
have A‘I ⊆ M disjoint (A‘I) finite (A‘I)

⋃
(A‘I) ∈ M

using A by (auto simp: disjoint-family-on-disjoint-image)
with 〈volume M f 〉 have f (

⋃
(A‘I)) = (

∑
a∈A‘I . f a)

unfolding volume-def by blast

THEORY “Caratheodory” 353

also have . . . = (
∑

i∈I . f (A i))
proof (subst setsum.reindex-nontrivial)

fix i j assume i ∈ I j ∈ I i 6= j A i = A j
with 〈disjoint-family-on A I 〉 have A i = {}

by (auto simp: disjoint-family-on-def)
then show f (A i) = 0

using volume-empty [OF 〈volume M f 〉] by simp
qed (auto intro: 〈finite I 〉)
finally show f (UNION I A) = (

∑
i∈I . f (A i))

by simp
qed

lemma (in ring-of-sets) volume-additiveI :
assumes pos:

∧
a. a ∈ M =⇒ 0 ≤ µ a

assumes [simp]: µ {} = 0
assumes add :

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∩ b = {} =⇒ µ (a ∪ b) = µ a

+ µ b
shows volume M µ

proof (unfold volume-def , safe)
fix C assume finite C C ⊆ M disjoint C
then show µ (

⋃
C) = setsum µ C

proof (induct C)
case (insert c C)
from insert(1 ,2 ,4 ,5) have µ (

⋃
insert c C) = µ c + µ (

⋃
C)

by (auto intro!: add simp: disjoint-def)
with insert show ?case

by (simp add : disjoint-def)
qed simp

qed fact+

lemma (in semiring-of-sets) extend-volume:
assumes volume M µ
shows ∃µ ′. volume generated-ring µ ′ ∧ (∀ a∈M . µ ′ a = µ a)

proof −
let ?R = generated-ring
have ∀ a∈?R. ∃m. ∃C⊆M . a =

⋃
C ∧ finite C ∧ disjoint C ∧ m = (

∑
c∈C .

µ c)
by (auto simp: generated-ring-def)

from bchoice[OF this] guess µ ′ .. note µ ′-spec = this

{ fix C assume C : C ⊆ M finite C disjoint C
fix D assume D : D ⊆ M finite D disjoint D
assume

⋃
C =

⋃
D

have (
∑

d∈D . µ d) = (
∑

d∈D .
∑

c∈C . µ (c ∩ d))
proof (intro setsum.cong refl)

fix d assume d ∈ D
have Un-eq-d : (

⋃
c∈C . c ∩ d) = d

using 〈d ∈ D 〉 〈
⋃

C =
⋃

D 〉 by auto
moreover have µ (

⋃
c∈C . c ∩ d) = (

∑
c∈C . µ (c ∩ d))

THEORY “Caratheodory” 354

proof (rule volume-finite-additive)
{ fix c assume c ∈ C then show c ∩ d ∈ M

using C D 〈d ∈ D 〉 by auto }
show (

⋃
a∈C . a ∩ d) ∈ M

unfolding Un-eq-d using 〈d ∈ D 〉 D by auto
show disjoint-family-on (λa. a ∩ d) C

using 〈disjoint C 〉 by (auto simp: disjoint-family-on-def disjoint-def)
qed fact+
ultimately show µ d = (

∑
c∈C . µ (c ∩ d)) by simp

qed }
note split-sum = this

{ fix C assume C : C ⊆ M finite C disjoint C
fix D assume D : D ⊆ M finite D disjoint D
assume

⋃
C =

⋃
D

with split-sum[OF C D] split-sum[OF D C]
have (

∑
d∈D . µ d) = (

∑
c∈C . µ c)

by (simp, subst setsum.commute, simp add : ac-simps) }
note sum-eq = this

{ fix C assume C : C ⊆ M finite C disjoint C
then have

⋃
C ∈ ?R by (auto simp: generated-ring-def)

with µ ′-spec[THEN bspec, of
⋃

C]
obtain D where

D : D ⊆ M finite D disjoint D
⋃

C =
⋃

D and µ ′ (
⋃

C) = (
∑

d∈D . µ d)
by auto

with sum-eq [OF C D] have µ ′ (
⋃

C) = (
∑

c∈C . µ c) by simp }
note µ ′ = this

show ?thesis
proof (intro exI conjI ring-of-sets.volume-additiveI [OF generating-ring] ballI)

fix a assume a ∈ M with µ ′[of {a}] show µ ′ a = µ a
by (simp add : disjoint-def)

next
fix a assume a ∈ ?R then guess Ca .. note Ca = this
with µ ′[of Ca] 〈volume M µ〉[THEN volume-positive]
show 0 ≤ µ ′ a

by (auto intro!: setsum-nonneg)
next

show µ ′ {} = 0 using µ ′[of {}] by auto
next

fix a assume a ∈ ?R then guess Ca .. note Ca = this
fix b assume b ∈ ?R then guess Cb .. note Cb = this
assume a ∩ b = {}
with Ca Cb have Ca ∩ Cb ⊆ {{}} by auto
then have C-Int-cases: Ca ∩ Cb = {{}} ∨ Ca ∩ Cb = {} by auto

from 〈a ∩ b = {}〉 have µ ′ (
⋃

(Ca ∪ Cb)) = (
∑

c∈Ca ∪ Cb. µ c)
using Ca Cb by (intro µ ′) (auto intro!: disjoint-union)

THEORY “Caratheodory” 355

also have . . . = (
∑

c∈Ca ∪ Cb. µ c) + (
∑

c∈Ca ∩ Cb. µ c)
using C-Int-cases volume-empty [OF 〈volume M µ〉] by (elim disjE) simp-all

also have . . . = (
∑

c∈Ca. µ c) + (
∑

c∈Cb. µ c)
using Ca Cb by (simp add : setsum.union-inter)

also have . . . = µ ′ a + µ ′ b
using Ca Cb by (simp add : µ ′)

finally show µ ′ (a ∪ b) = µ ′ a + µ ′ b
using Ca Cb by simp

qed
qed

9.3.1 Caratheodory on semirings

theorem (in semiring-of-sets) caratheodory :
assumes pos: positive M µ and ca: countably-additive M µ
shows ∃µ ′ :: ′a set ⇒ ennreal . (∀ s ∈ M . µ ′ s = µ s) ∧ measure-space Ω

(sigma-sets Ω M) µ ′

proof −
have volume M µ
proof (rule volumeI)
{ fix a assume a ∈ M then show 0 ≤ µ a

using pos unfolding positive-def by auto }
note p = this

fix C assume sets-C : C ⊆ M
⋃

C ∈ M and disjoint C finite C
have ∃F ′. bij-betw F ′ {..<card C} C

by (rule finite-same-card-bij [OF - 〈finite C 〉]) auto
then guess F ′ .. note F ′ = this
then have F ′: C = F ′ ‘ {..< card C} inj-on F ′ {..< card C}

by (auto simp: bij-betw-def)
{ fix i j assume ∗: i < card C j < card C i 6= j

with F ′ have F ′ i ∈ C F ′ j ∈ C F ′ i 6= F ′ j
unfolding inj-on-def by auto

with 〈disjoint C 〉[THEN disjointD]
have F ′ i ∩ F ′ j = {}

by auto }
note F ′-disj = this
def F ≡ λi . if i < card C then F ′ i else {}
then have disjoint-family F

using F ′-disj by (auto simp: disjoint-family-on-def)
moreover from F ′ have (

⋃
i . F i) =

⋃
C

by (auto simp add : F-def split : if-split-asm) blast
moreover have sets-F :

∧
i . F i ∈ M

using F ′ sets-C by (auto simp: F-def)
moreover note sets-C
ultimately have µ (

⋃
C) = (

∑
i . µ (F i))

using ca[unfolded countably-additive-def , THEN spec, of F] by auto
also have . . . = (

∑
i<card C . µ (F ′ i))

proof −

THEORY “Caratheodory” 356

have (λi . if i ∈ {..< card C} then µ (F ′ i) else 0) sums (
∑

i<card C . µ (F ′

i))
by (rule sums-If-finite-set) auto

also have (λi . if i ∈ {..< card C} then µ (F ′ i) else 0) = (λi . µ (F i))
using pos by (auto simp: positive-def F-def)

finally show (
∑

i . µ (F i)) = (
∑

i<card C . µ (F ′ i))
by (simp add : sums-iff)

qed
also have . . . = (

∑
c∈C . µ c)

using F ′(2) by (subst (2) F ′) (simp add : setsum.reindex)
finally show µ (

⋃
C) = (

∑
c∈C . µ c) .

next
show µ {} = 0

using 〈positive M µ〉 by (rule positiveD1)
qed
from extend-volume[OF this] obtain µ-r where

V : volume generated-ring µ-r
∧

a. a ∈ M =⇒ µ a = µ-r a
by auto

interpret G : ring-of-sets Ω generated-ring
by (rule generating-ring)

have pos: positive generated-ring µ-r
using V unfolding positive-def by (auto simp: positive-def intro!: volume-positive

volume-empty)

have countably-additive generated-ring µ-r
proof (rule countably-additiveI)
fix A ′ :: nat ⇒ ′a set assume A ′: range A ′ ⊆ generated-ring disjoint-family A ′

and Un-A: (
⋃

i . A ′ i) ∈ generated-ring

from generated-ringE [OF Un-A] guess C ′ . note C ′ = this

{ fix c assume c ∈ C ′

moreover def A ≡ λi . A ′ i ∩ c
ultimately have A: range A ⊆ generated-ring disjoint-family A

and Un-A: (
⋃

i . A i) ∈ generated-ring
using A ′ C ′

by (auto intro!: G .Int G .finite-Union intro: generated-ringI-Basic simp:
disjoint-family-on-def)

from A C ′ 〈c ∈ C ′〉 have UN-eq : (
⋃

i . A i) = c
by (auto simp: A-def)

have ∀ i ::nat . ∃ f ::nat ⇒ ′a set . µ-r (A i) = (
∑

j . µ-r (f j)) ∧ disjoint-family
f ∧

⋃
range f = A i ∧ (∀ j . f j ∈ M)
(is ∀ i . ?P i)

proof
fix i
from A have Ai : A i ∈ generated-ring by auto

THEORY “Caratheodory” 357

from generated-ringE [OF this] guess C . note C = this

have ∃F ′. bij-betw F ′ {..<card C} C
by (rule finite-same-card-bij [OF - 〈finite C 〉]) auto

then guess F .. note F = this
def f ≡ λi . if i < card C then F i else {}
then have f : bij-betw f {..< card C} C

by (intro bij-betw-cong [THEN iffD1 , OF - F]) auto
with C have ∀ j . f j ∈ M

by (auto simp: Pi-iff f-def dest !: bij-betw-imp-funcset)
moreover
from f C have d-f : disjoint-family-on f {..<card C}

by (intro disjoint-image-disjoint-family-on) (auto simp: bij-betw-def)
then have disjoint-family f

by (auto simp: disjoint-family-on-def f-def)
moreover
have Ai-eq : A i = (

⋃
x<card C . f x)

using f C Ai unfolding bij-betw-def by auto
then have

⋃
range f = A i

using f C Ai unfolding bij-betw-def
by (auto simp add : f-def cong del : strong-SUP-cong)

moreover
{ have (

∑
j . µ-r (f j)) = (

∑
j . if j ∈ {..< card C} then µ-r (f j) else 0)

using volume-empty [OF V (1)] by (auto intro!: arg-cong [where f =suminf]
simp: f-def)

also have . . . = (
∑

j<card C . µ-r (f j))
by (rule sums-If-finite-set [THEN sums-unique, symmetric]) simp

also have . . . = µ-r (A i)
using C f [THEN bij-betw-imp-funcset] unfolding Ai-eq
by (intro volume-finite-additive[OF V (1) - d-f , symmetric])

(auto simp: Pi-iff Ai-eq intro: generated-ringI-Basic)
finally have µ-r (A i) = (

∑
j . µ-r (f j)) .. }

ultimately show ?P i
by blast

qed
from choice[OF this] guess f .. note f = this
then have UN-f-eq : (

⋃
i . case-prod f (prod-decode i)) = (

⋃
i . A i)

unfolding UN-extend-simps surj-prod-decode by (auto simp: set-eq-iff)

have d : disjoint-family (λi . case-prod f (prod-decode i))
unfolding disjoint-family-on-def

proof (intro ballI impI)
fix m n :: nat assume m 6= n
then have neq : prod-decode m 6= prod-decode n

using inj-prod-decode[of UNIV] by (auto simp: inj-on-def)
show case-prod f (prod-decode m) ∩ case-prod f (prod-decode n) = {}
proof cases

assume fst (prod-decode m) = fst (prod-decode n)
then show ?thesis

THEORY “Caratheodory” 358

using neq f by (fastforce simp: disjoint-family-on-def)
next

assume neq : fst (prod-decode m) 6= fst (prod-decode n)
have case-prod f (prod-decode m) ⊆ A (fst (prod-decode m))

case-prod f (prod-decode n) ⊆ A (fst (prod-decode n))
using f [THEN spec, of fst (prod-decode m)]
using f [THEN spec, of fst (prod-decode n)]
by (auto simp: set-eq-iff)

with f A neq show ?thesis
by (fastforce simp: disjoint-family-on-def subset-eq set-eq-iff)

qed
qed
from f have (

∑
n. µ-r (A n)) = (

∑
n. µ-r (case-prod f (prod-decode n)))

by (intro suminf-ennreal-2dimen[symmetric] generated-ringI-Basic)
(auto split : prod .split)

also have . . . = (
∑

n. µ (case-prod f (prod-decode n)))
using f V (2) by (auto intro!: arg-cong [where f =suminf] split : prod .split)

also have . . . = µ (
⋃

i . case-prod f (prod-decode i))
using f 〈c ∈ C ′〉 C ′

by (intro ca[unfolded countably-additive-def , rule-format])
(auto split : prod .split simp: UN-f-eq d UN-eq)

finally have (
∑

n. µ-r (A ′ n ∩ c)) = µ c
using UN-f-eq UN-eq by (simp add : A-def) }

note eq = this

have (
∑

n. µ-r (A ′ n)) = (
∑

n.
∑

c∈C ′. µ-r (A ′ n ∩ c))
using C ′ A ′

by (subst volume-finite-additive[symmetric, OF V (1)])
(auto simp: disjoint-def disjoint-family-on-def

intro!: G .Int G .finite-Union arg-cong [where f =λX . suminf (λi . µ-r
(X i))] ext

intro: generated-ringI-Basic)
also have . . . = (

∑
c∈C ′.

∑
n. µ-r (A ′ n ∩ c))

using C ′ A ′

by (intro suminf-setsum G .Int G .finite-Union) (auto intro: generated-ringI-Basic)
also have . . . = (

∑
c∈C ′. µ-r c)

using eq V C ′ by (auto intro!: setsum.cong)
also have . . . = µ-r (

⋃
C ′)

using C ′ Un-A
by (subst volume-finite-additive[symmetric, OF V (1)])

(auto simp: disjoint-family-on-def disjoint-def
intro: generated-ringI-Basic)

finally show (
∑

n. µ-r (A ′ n)) = µ-r (
⋃

i . A ′ i)
using C ′ by simp

qed
from G .caratheodory ′[OF 〈positive generated-ring µ-r 〉 〈countably-additive generated-ring
µ-r 〉]

guess µ ′ ..
with V show ?thesis

THEORY “Caratheodory” 359

unfolding sigma-sets-generated-ring-eq
by (intro exI [of - µ ′]) (auto intro: generated-ringI-Basic)

qed

lemma extend-measure-caratheodory :
fixes G :: ′i ⇒ ′a set
assumes M : M = extend-measure Ω I G µ
assumes i ∈ I
assumes semiring-of-sets Ω (G ‘ I)
assumes empty :

∧
i . i ∈ I =⇒ G i = {} =⇒ µ i = 0

assumes inj :
∧

i j . i ∈ I =⇒ j ∈ I =⇒ G i = G j =⇒ µ i = µ j
assumes nonneg :

∧
i . i ∈ I =⇒ 0 ≤ µ i

assumes add :
∧

A::nat ⇒ ′i .
∧

j . A ∈ UNIV → I =⇒ j ∈ I =⇒ disjoint-family
(G ◦ A) =⇒

(
⋃

i . G (A i)) = G j =⇒ (
∑

n. µ (A n)) = µ j
shows emeasure M (G i) = µ i

proof −
interpret semiring-of-sets Ω G ‘ I

by fact
have ∀ g∈G‘I . ∃ i∈I . g = G i

by auto
then obtain sel where sel :

∧
g . g ∈ G ‘ I =⇒ sel g ∈ I

∧
g . g ∈ G ‘ I =⇒ G

(sel g) = g
by metis

have ∃µ ′. (∀ s∈G ‘ I . µ ′ s = µ (sel s)) ∧ measure-space Ω (sigma-sets Ω (G ‘
I)) µ ′

proof (rule caratheodory)
show positive (G ‘ I) (λs. µ (sel s))

by (auto simp: positive-def intro!: empty sel nonneg)
show countably-additive (G ‘ I) (λs. µ (sel s))
proof (rule countably-additiveI)
fix A :: nat ⇒ ′a set assume range A ⊆ G ‘ I disjoint-family A (

⋃
i . A i) ∈

G ‘ I
then show (

∑
i . µ (sel (A i))) = µ (sel (

⋃
i . A i))

by (intro add) (auto simp: sel image-subset-iff-funcset comp-def Pi-iff intro!:
sel)

qed
qed
then obtain µ ′where µ ′: ∀ s∈G ‘ I . µ ′ s = µ (sel s) measure-space Ω (sigma-sets

Ω (G ‘ I)) µ ′

by metis

show ?thesis
proof (rule emeasure-extend-measure[OF M])
{ fix i assume i ∈ I then show µ ′ (G i) = µ i

using µ ′ by (auto intro!: inj sel) }
show G ‘ I ⊆ Pow Ω

by fact

THEORY “Lebesgue-Measure” 360

then show positive (sets M) µ ′ countably-additive (sets M) µ ′

using µ ′ by (simp-all add : M sets-extend-measure measure-space-def)
qed fact

qed

lemma extend-measure-caratheodory-pair :
fixes G :: ′i ⇒ ′j ⇒ ′a set
assumes M : M = extend-measure Ω {(a, b). P a b} (λ(a, b). G a b) (λ(a, b).

µ a b)
assumes P i j
assumes semiring : semiring-of-sets Ω {G a b | a b. P a b}
assumes empty :

∧
i j . P i j =⇒ G i j = {} =⇒ µ i j = 0

assumes inj :
∧

i j k l . P i j =⇒ P k l =⇒ G i j = G k l =⇒ µ i j = µ k l
assumes nonneg :

∧
i j . P i j =⇒ 0 ≤ µ i j

assumes add :
∧

A::nat ⇒ ′i .
∧

B ::nat ⇒ ′j .
∧

j k .
(
∧

n. P (A n) (B n)) =⇒ P j k =⇒ disjoint-family (λn. G (A n) (B n)) =⇒
(
⋃

i . G (A i) (B i)) = G j k =⇒ (
∑

n. µ (A n) (B n)) = µ j k
shows emeasure M (G i j) = µ i j

proof −
have emeasure M ((λ(a, b). G a b) (i , j)) = (λ(a, b). µ a b) (i , j)
proof (rule extend-measure-caratheodory [OF M])

show semiring-of-sets Ω ((λ(a, b). G a b) ‘ {(a, b). P a b})
using semiring by (simp add : image-def conj-commute)

next
fix A :: nat ⇒ (′i × ′j) and j assume A ∈ UNIV → {(a, b). P a b} j ∈ {(a,

b). P a b}
disjoint-family ((λ(a, b). G a b) ◦ A)
(
⋃

i . case A i of (a, b) ⇒ G a b) = (case j of (a, b) ⇒ G a b)
then show (

∑
n. case A n of (a, b) ⇒ µ a b) = (case j of (a, b) ⇒ µ a b)

using add [of λi . fst (A i) λi . snd (A i) fst j snd j]
by (simp add : split-beta ′ comp-def Pi-iff)

qed (auto split : prod .splits intro: assms)
then show ?thesis by simp

qed

end

10 Lebesgue measure

theory Lebesgue-Measure
imports Finite-Product-Measure Bochner-Integration Caratheodory

begin

10.1 Every right continuous and nondecreasing function gives
rise to a measure

definition interval-measure :: (real ⇒ real) ⇒ real measure where
interval-measure F = extend-measure UNIV {(a, b). a ≤ b} (λ(a, b). {a <.. b})

(λ(a, b). ennreal (F b − F a))

THEORY “Lebesgue-Measure” 361

lemma emeasure-interval-measure-Ioc:
assumes a ≤ b
assumes mono-F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes right-cont-F :
∧

a. continuous (at-right a) F
shows emeasure (interval-measure F) {a <.. b} = F b − F a

proof (rule extend-measure-caratheodory-pair [OF interval-measure-def 〈a ≤ b〉])
show semiring-of-sets UNIV {{a<..b} |a b :: real . a ≤ b}
proof (unfold-locales, safe)

fix a b c d :: real assume ∗: a ≤ b c ≤ d
then show ∃C⊆{{a<..b} |a b. a ≤ b}. finite C ∧ disjoint C ∧ {a<..b} −

{c<..d} =
⋃

C
proof cases

let ?C = {{a<..b}}
assume b < c ∨ d ≤ a ∨ d ≤ c

with ∗ have ?C ⊆ {{a<..b} |a b. a ≤ b} ∧ finite ?C ∧ disjoint ?C ∧ {a<..b}
− {c<..d} =

⋃
?C

by (auto simp add : disjoint-def)
thus ?thesis ..

next
let ?C = {{a<..c}, {d<..b}}
assume ¬ (b < c ∨ d ≤ a ∨ d ≤ c)

with ∗ have ?C ⊆ {{a<..b} |a b. a ≤ b} ∧ finite ?C ∧ disjoint ?C ∧ {a<..b}
− {c<..d} =

⋃
?C

by (auto simp add : disjoint-def Ioc-inj) (metis linear)+
thus ?thesis ..

qed
qed (auto simp: Ioc-inj , metis linear)

next
fix l r :: nat ⇒ real and a b :: real
assume l-r [simp]:

∧
n. l n ≤ r n and a ≤ b and disj : disjoint-family (λn. {l

n<..r n})
assume lr-eq-ab: (

⋃
i . {l i<..r i}) = {a<..b}

have [intro, simp]:
∧

a b. a ≤ b =⇒ F a ≤ F b
by (auto intro!: l-r mono-F)

{ fix S :: nat set assume finite S
moreover note 〈a ≤ b〉

moreover have
∧

i . i ∈ S =⇒ {l i <.. r i} ⊆ {a <.. b}
unfolding lr-eq-ab[symmetric] by auto

ultimately have (
∑

i∈S . F (r i) − F (l i)) ≤ F b − F a
proof (induction S arbitrary : a rule: finite-psubset-induct)

case (psubset S)
show ?case
proof cases

assume ∃ i∈S . l i < r i
with 〈finite S 〉 have Min (l ‘ {i∈S . l i < r i}) ∈ l ‘ {i∈S . l i < r i}

by (intro Min-in) auto

THEORY “Lebesgue-Measure” 362

then obtain m where m: m ∈ S l m < r m l m = Min (l ‘ {i∈S . l i < r
i})

by fastforce

have (
∑

i∈S . F (r i) − F (l i)) = (F (r m) − F (l m)) + (
∑

i∈S − {m}.
F (r i) − F (l i))

using m psubset by (intro setsum.remove) auto
also have (

∑
i∈S − {m}. F (r i) − F (l i)) ≤ F b − F (r m)

proof (intro psubset .IH)
show S − {m} ⊂ S

using 〈m∈S 〉 by auto
show r m ≤ b

using psubset .prems(2)[OF 〈m∈S 〉] 〈l m < r m〉 by auto
next

fix i assume i ∈ S − {m}
then have i : i ∈ S i 6= m by auto
{ assume i ′: l i < r i l i < r m

moreover with 〈finite S 〉 i m have l m ≤ l i
by auto

ultimately have {l i <.. r i} ∩ {l m <.. r m} 6= {}
by auto

then have False
using disjoint-family-onD [OF disj , of i m] i by auto }

then have l i 6= r i =⇒ r m ≤ l i
unfolding not-less[symmetric] using l-r [of i] by auto

then show {l i <.. r i} ⊆ {r m <.. b}
using psubset .prems(2)[OF 〈i∈S 〉] by auto

qed
also have F (r m) − F (l m) ≤ F (r m) − F a

using psubset .prems(2)[OF 〈m ∈ S 〉] 〈l m < r m〉

by (auto simp add : Ioc-subset-iff intro!: mono-F)
finally show ?case

by (auto intro: add-mono)
qed (auto simp add : 〈a ≤ b〉 less-le)

qed }
note claim1 = this

{ fix S u v and l r :: nat ⇒ real
assume finite S

∧
i . i∈S =⇒ l i < r i {u..v} ⊆ (

⋃
i∈S . {l i<..< r i})

then have F v − F u ≤ (
∑

i∈S . F (r i) − F (l i))
proof (induction arbitrary : v u rule: finite-psubset-induct)

case (psubset S)
show ?case
proof cases

assume S = {} then show ?case
using psubset by (simp add : mono-F)

next

THEORY “Lebesgue-Measure” 363

assume S 6= {}
then obtain j where j ∈ S

by auto

let ?R = r j < u ∨ l j > v ∨ (∃ i∈S−{j}. l i ≤ l j ∧ r j ≤ r i)
show ?case
proof cases

assume ?R
with 〈j ∈ S 〉 psubset .prems have {u..v} ⊆ (

⋃
i∈S−{j}. {l i<..< r i})

apply (auto simp: subset-eq Ball-def)
apply (metis Diff-iff less-le-trans leD linear singletonD)
apply (metis Diff-iff less-le-trans leD linear singletonD)
apply (metis order-trans less-le-not-le linear)
done

with 〈j ∈ S 〉 have F v − F u ≤ (
∑

i∈S − {j}. F (r i) − F (l i))
by (intro psubset) auto

also have . . . ≤ (
∑

i∈S . F (r i) − F (l i))
using psubset .prems
by (intro setsum-mono2 psubset) (auto intro: less-imp-le)

finally show ?thesis .
next

assume ¬ ?R
then have j : u ≤ r j l j ≤ v

∧
i . i ∈ S − {j} =⇒ r i < r j ∨ l i > l j

by (auto simp: not-less)
let ?S1 = {i ∈ S . l i < l j}
let ?S2 = {i ∈ S . r i > r j}

have (
∑

i∈S . F (r i) − F (l i)) ≥ (
∑

i∈?S1 ∪ ?S2 ∪ {j}. F (r i) − F
(l i))

using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j
by (intro setsum-mono2) (auto intro: less-imp-le)

also have (
∑

i∈?S1 ∪ ?S2 ∪ {j}. F (r i) − F (l i)) =
(
∑

i∈?S1 . F (r i) − F (l i)) + (
∑

i∈?S2 . F (r i) − F (l i)) + (F (r
j) − F (l j))

using psubset(1) psubset .prems(1) j
apply (subst setsum.union-disjoint)
apply simp-all
apply (subst setsum.union-disjoint)
apply auto
apply (metis less-le-not-le)
done

also (xtrans) have (
∑

i∈?S1 . F (r i) − F (l i)) ≥ F (l j) − F u
using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j
apply (intro psubset .IH psubset)
apply (auto simp: subset-eq Ball-def)
apply (metis less-le-trans not-le)
done

also (xtrans) have (
∑

i∈?S2 . F (r i) − F (l i)) ≥ F v − F (r j)
using 〈j ∈ S 〉 〈finite S 〉 psubset .prems j

THEORY “Lebesgue-Measure” 364

apply (intro psubset .IH psubset)
apply (auto simp: subset-eq Ball-def)
apply (metis le-less-trans not-le)
done

finally (xtrans) show ?case
by (auto simp: add-mono)

qed
qed

qed }
note claim2 = this

have ennreal (F b − F a) ≤ (
∑

i . ennreal (F (r i) − F (l i)))
proof (rule ennreal-le-epsilon)

fix epsilon :: real assume egt0 : epsilon > 0
have ∀ i . ∃ d>0 . F (r i + d) < F (r i) + epsilon / 2ˆ(i+2)
proof

fix i
note right-cont-F [of r i]
thus ∃ d>0 . F (r i + d) < F (r i) + epsilon / 2ˆ(i+2)

apply −
apply (subst (asm) continuous-at-right-real-increasing)
apply (rule mono-F , assumption)
apply (drule-tac x = epsilon / 2 ˆ (i + 2) in spec)
apply (erule impE)
using egt0 by (auto simp add : field-simps)

qed
then obtain delta where

deltai-gt0 :
∧

i . delta i > 0 and
deltai-prop:

∧
i . F (r i + delta i) < F (r i) + epsilon / 2ˆ(i+2)

by metis
have ∃ a ′ > a. F a ′ − F a < epsilon / 2

apply (insert right-cont-F [of a])
apply (subst (asm) continuous-at-right-real-increasing)
using mono-F apply force
apply (drule-tac x = epsilon / 2 in spec)
using egt0 unfolding mult .commute [of 2] by force

then obtain a ′ where a ′lea [arith]: a ′ > a and
a-prop: F a ′ − F a < epsilon / 2
by auto

def S ′ ≡ {i . l i < r i}
obtain S :: nat set where

S ⊆ S ′ and finS : finite S and
Sprop: {a ′..b} ⊆ (

⋃
i ∈ S . {l i<..<r i + delta i})

proof (rule compactE-image)
show compact {a ′..b}

by (rule compact-Icc)
show ∀ i ∈ S ′. open ({l i<..<r i + delta i}) by auto
have {a ′..b} ⊆ {a <.. b}

THEORY “Lebesgue-Measure” 365

by auto
also have {a <.. b} = (

⋃
i∈S ′. {l i<..r i})

unfolding lr-eq-ab[symmetric] by (fastforce simp add : S ′-def intro: less-le-trans)
also have . . . ⊆ (

⋃
i ∈ S ′. {l i<..<r i + delta i})

apply (intro UN-mono)
apply (auto simp: S ′-def)
apply (cut-tac i=i in deltai-gt0)
apply simp
done

finally show {a ′..b} ⊆ (
⋃

i ∈ S ′. {l i<..<r i + delta i}) .
qed
with S ′-def have Sprop2 :

∧
i . i ∈ S =⇒ l i < r i by auto

from finS have ∃n. ∀ i ∈ S . i ≤ n
by (subst finite-nat-set-iff-bounded-le [symmetric])

then obtain n where Sbound [rule-format]: ∀ i ∈ S . i ≤ n ..
have F b − F a ′ ≤ (

∑
i∈S . F (r i + delta i) − F (l i))

apply (rule claim2 [rule-format])
using finS Sprop apply auto
apply (frule Sprop2)
apply (subgoal-tac delta i > 0)
apply arith
by (rule deltai-gt0)

also have ... ≤ (
∑

i ∈ S . F (r i) − F (l i) + epsilon / 2ˆ(i+2))
apply (rule setsum-mono)
apply simp
apply (rule order-trans)
apply (rule less-imp-le)
apply (rule deltai-prop)
by auto

also have ... = (
∑

i ∈ S . F (r i) − F (l i)) +
(epsilon / 4) ∗ (

∑
i ∈ S . (1 / 2)ˆi) (is - = ?t + -)

by (subst setsum.distrib) (simp add : field-simps setsum-right-distrib)
also have ... ≤ ?t + (epsilon / 4) ∗ (

∑
i < Suc n. (1 / 2)ˆi)

apply (rule add-left-mono)
apply (rule mult-left-mono)
apply (rule setsum-mono2)
using egt0 apply auto
by (frule Sbound , auto)

also have ... ≤ ?t + (epsilon / 2)
apply (rule add-left-mono)
apply (subst geometric-sum)
apply auto
apply (rule mult-left-mono)
using egt0 apply auto
done

finally have aux2 : F b − F a ′ ≤ (
∑

i∈S . F (r i) − F (l i)) + epsilon / 2
by simp

have F b − F a = (F b − F a ′) + (F a ′ − F a)

THEORY “Lebesgue-Measure” 366

by auto
also have ... ≤ (F b − F a ′) + epsilon / 2

using a-prop by (intro add-left-mono) simp
also have ... ≤ (

∑
i∈S . F (r i) − F (l i)) + epsilon / 2 + epsilon / 2

apply (intro add-right-mono)
apply (rule aux2)
done

also have ... = (
∑

i∈S . F (r i) − F (l i)) + epsilon
by auto

also have ... ≤ (
∑

i≤n. F (r i) − F (l i)) + epsilon
using finS Sbound Sprop by (auto intro!: add-right-mono setsum-mono3)

finally have ennreal (F b − F a) ≤ (
∑

i≤n. ennreal (F (r i) − F (l i))) +
epsilon

using egt0 by (simp add : ennreal-plus[symmetric] setsum-nonneg del : ennreal-plus)
then show ennreal (F b − F a) ≤ (

∑
i . ennreal (F (r i) − F (l i))) + (epsilon

:: real)
by (rule order-trans) (auto intro!: add-mono setsum-le-suminf simp del :

setsum-ennreal)
qed
moreover have (

∑
i . ennreal (F (r i) − F (l i))) ≤ ennreal (F b − F a)

using 〈a ≤ b〉 by (auto intro!: suminf-le-const ennreal-le-iff [THEN iffD2]
claim1)

ultimately show (
∑

n. ennreal (F (r n) − F (l n))) = ennreal (F b − F a)
by (rule antisym[rotated])

qed (auto simp: Ioc-inj mono-F)

lemma measure-interval-measure-Ioc:
assumes a ≤ b
assumes mono-F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes right-cont-F :
∧

a. continuous (at-right a) F
shows measure (interval-measure F) {a <.. b} = F b − F a
unfolding measure-def
apply (subst emeasure-interval-measure-Ioc)
apply fact+
apply (simp add : assms)
done

lemma emeasure-interval-measure-Ioc-eq :
(
∧

x y . x ≤ y =⇒ F x ≤ F y) =⇒ (
∧

a. continuous (at-right a) F) =⇒
emeasure (interval-measure F) {a <.. b} = (if a ≤ b then F b − F a else 0)

using emeasure-interval-measure-Ioc[of a b F] by auto

lemma sets-interval-measure [simp, measurable-cong]: sets (interval-measure F)
= sets borel

apply (simp add : sets-extend-measure interval-measure-def borel-sigma-sets-Ioc)
apply (rule sigma-sets-eqI)
apply auto
apply (case-tac a ≤ ba)
apply (auto intro: sigma-sets.Empty)

THEORY “Lebesgue-Measure” 367

done

lemma space-interval-measure [simp]: space (interval-measure F) = UNIV
by (simp add : interval-measure-def space-extend-measure)

lemma emeasure-interval-measure-Icc:
assumes a ≤ b
assumes mono-F :

∧
x y . x ≤ y =⇒ F x ≤ F y

assumes cont-F : continuous-on UNIV F
shows emeasure (interval-measure F) {a .. b} = F b − F a

proof (rule tendsto-unique)
{ fix a b :: real assume a ≤ b then have emeasure (interval-measure F) {a <..

b} = F b − F a
using cont-F
by (subst emeasure-interval-measure-Ioc)
(auto intro: mono-F continuous-within-subset simp: continuous-on-eq-continuous-within)

}
note ∗ = this

let ?F = interval-measure F
show ((λa. F b − F a) −−−→ emeasure ?F {a..b}) (at-left a)
proof (rule tendsto-at-left-sequentially)

show a − 1 < a by simp
fix X assume

∧
n. X n < a incseq X X −−−−→ a

with 〈a ≤ b〉 have (λn. emeasure ?F {X n<..b}) −−−−→ emeasure ?F (
⋂

n.
{X n <..b})

apply (intro Lim-emeasure-decseq)
apply (auto simp: decseq-def incseq-def emeasure-interval-measure-Ioc ∗)
apply force
apply (subst (asm) ∗)
apply (auto intro: less-le-trans less-imp-le)
done

also have (
⋂

n. {X n <..b}) = {a..b}
using 〈

∧
n. X n < a〉

apply auto
apply (rule LIMSEQ-le-const2 [OF 〈X −−−−→ a〉])
apply (auto intro: less-imp-le)
apply (auto intro: less-le-trans)
done

also have (λn. emeasure ?F {X n<..b}) = (λn. F b − F (X n))
using 〈

∧
n. X n < a〉 〈a ≤ b〉 by (subst ∗) (auto intro: less-imp-le less-le-trans)

finally show (λn. F b − F (X n)) −−−−→ emeasure ?F {a..b} .
qed
show ((λa. ennreal (F b − F a)) −−−→ F b − F a) (at-left a)

by (rule continuous-on-tendsto-compose[where g=λx . x and s=UNIV])
(auto simp: continuous-on-ennreal continuous-on-diff cont-F continuous-on-const)

qed (rule trivial-limit-at-left-real)

lemma sigma-finite-interval-measure:

THEORY “Lebesgue-Measure” 368

assumes mono-F :
∧

x y . x ≤ y =⇒ F x ≤ F y
assumes right-cont-F :

∧
a. continuous (at-right a) F

shows sigma-finite-measure (interval-measure F)
apply unfold-locales
apply (intro exI [of - (λ(a, b). {a <.. b}) ‘ (Q × Q)])
apply (auto intro!: Rats-no-top-le Rats-no-bot-less countable-rat simp: emeasure-interval-measure-Ioc-eq [OF

assms])
done

10.2 Lebesgue-Borel measure

definition lborel :: (′a :: euclidean-space) measure where
lborel = distr (ΠM b∈Basis. interval-measure (λx . x)) borel (λf .

∑
b∈Basis. f

b ∗R b)

lemma
shows sets-lborel [simp, measurable-cong]: sets lborel = sets borel

and space-lborel [simp]: space lborel = space borel
and measurable-lborel1 [simp]: measurable M lborel = measurable M borel
and measurable-lborel2 [simp]: measurable lborel M = measurable borel M

by (simp-all add : lborel-def)

context
begin

interpretation sigma-finite-measure interval-measure (λx . x)
by (rule sigma-finite-interval-measure) auto

interpretation finite-product-sigma-finite λ-. interval-measure (λx . x) Basis
proof qed simp

lemma lborel-eq-real : lborel = interval-measure (λx . x)
unfolding lborel-def Basis-real-def
using distr-id [of interval-measure (λx . x)]
by (subst distr-component [symmetric])

(simp-all add : distr-distr comp-def del : distr-id cong : distr-cong)

lemma lborel-eq : lborel = distr (ΠM b∈Basis. lborel) borel (λf .
∑

b∈Basis. f b
∗R b)

by (subst lborel-def) (simp add : lborel-eq-real)

lemma nn-integral-lborel-setprod :
assumes [measurable]:

∧
b. b ∈ Basis =⇒ f b ∈ borel-measurable borel

assumes nn[simp]:
∧

b x . b ∈ Basis =⇒ 0 ≤ f b x
shows (

∫
+x . (

∏
b∈Basis. f b (x · b)) ∂lborel) = (

∏
b∈Basis. (

∫
+x . f b x

∂lborel))
by (simp add : lborel-def nn-integral-distr product-nn-integral-setprod

product-nn-integral-singleton)

lemma emeasure-lborel-Icc[simp]:

THEORY “Lebesgue-Measure” 369

fixes l u :: real
assumes [simp]: l ≤ u
shows emeasure lborel {l .. u} = u − l

proof −
have ((λf . f 1) −‘ {l ..u} ∩ space (PiM {1} (λb. interval-measure (λx . x)))) =
{1 ::real} →E {l ..u}

by (auto simp: space-PiM)
then show ?thesis
by (simp add : lborel-def emeasure-distr emeasure-PiM emeasure-interval-measure-Icc

continuous-on-id)
qed

lemma emeasure-lborel-Icc-eq : emeasure lborel {l .. u} = ennreal (if l ≤ u then u
− l else 0)

by simp

lemma emeasure-lborel-cbox [simp]:
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows emeasure lborel (cbox l u) = (
∏

b∈Basis. (u − l) · b)
proof −

have (λx .
∏

b∈Basis. indicator {l ·b .. u·b} (x · b) :: ennreal) = indicator (cbox
l u)

by (auto simp: fun-eq-iff cbox-def split : split-indicator)
then have emeasure lborel (cbox l u) = (

∫
+x . (

∏
b∈Basis. indicator {l ·b .. u·b}

(x · b)) ∂lborel)
by simp

also have . . . = (
∏

b∈Basis. (u − l) · b)
by (subst nn-integral-lborel-setprod) (simp-all add : setprod-ennreal inner-diff-left)
finally show ?thesis .

qed

lemma AE-lborel-singleton: AE x in lborel :: ′a::euclidean-space measure. x 6= c
using SOME-Basis AE-discrete-difference [of {c} lborel] emeasure-lborel-cbox [of

c c]
by (auto simp add : cbox-sing setprod-constant power-0-left)

lemma emeasure-lborel-Ioo[simp]:
assumes [simp]: l ≤ u
shows emeasure lborel {l <..< u} = ennreal (u − l)

proof −
have emeasure lborel {l <..< u} = emeasure lborel {l .. u}
using AE-lborel-singleton[of u] AE-lborel-singleton[of l] by (intro emeasure-eq-AE)

auto
then show ?thesis

by simp
qed

lemma emeasure-lborel-Ioc[simp]:
assumes [simp]: l ≤ u

THEORY “Lebesgue-Measure” 370

shows emeasure lborel {l <.. u} = ennreal (u − l)
proof −

have emeasure lborel {l <.. u} = emeasure lborel {l .. u}
using AE-lborel-singleton[of u] AE-lborel-singleton[of l] by (intro emeasure-eq-AE)

auto
then show ?thesis

by simp
qed

lemma emeasure-lborel-Ico[simp]:
assumes [simp]: l ≤ u
shows emeasure lborel {l ..< u} = ennreal (u − l)

proof −
have emeasure lborel {l ..< u} = emeasure lborel {l .. u}
using AE-lborel-singleton[of u] AE-lborel-singleton[of l] by (intro emeasure-eq-AE)

auto
then show ?thesis

by simp
qed

lemma emeasure-lborel-box [simp]:
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows emeasure lborel (box l u) = (
∏

b∈Basis. (u − l) · b)
proof −

have (λx .
∏

b∈Basis. indicator {l ·b <..< u·b} (x · b) :: ennreal) = indicator
(box l u)

by (auto simp: fun-eq-iff box-def split : split-indicator)
then have emeasure lborel (box l u) = (

∫
+x . (

∏
b∈Basis. indicator {l ·b <..<

u·b} (x · b)) ∂lborel)
by simp

also have . . . = (
∏

b∈Basis. (u − l) · b)
by (subst nn-integral-lborel-setprod) (simp-all add : setprod-ennreal inner-diff-left)
finally show ?thesis .

qed

lemma emeasure-lborel-cbox-eq :
emeasure lborel (cbox l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u −

l) · b else 0)
using box-eq-empty(2)[THEN iffD2 , of u l] by (auto simp: not-le)

lemma emeasure-lborel-box-eq :
emeasure lborel (box l u) = (if ∀ b∈Basis. l · b ≤ u · b then

∏
b∈Basis. (u − l)

· b else 0)
using box-eq-empty(1)[THEN iffD2 , of u l] by (auto simp: not-le dest !: less-imp-le)

force

lemma
fixes l u :: real
assumes [simp]: l ≤ u

THEORY “Lebesgue-Measure” 371

shows measure-lborel-Icc[simp]: measure lborel {l .. u} = u − l
and measure-lborel-Ico[simp]: measure lborel {l ..< u} = u − l
and measure-lborel-Ioc[simp]: measure lborel {l <.. u} = u − l
and measure-lborel-Ioo[simp]: measure lborel {l <..< u} = u − l

by (simp-all add : measure-def)

lemma
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows measure-lborel-box [simp]: measure lborel (box l u) = (
∏

b∈Basis. (u − l)
· b)

and measure-lborel-cbox [simp]: measure lborel (cbox l u) = (
∏

b∈Basis. (u −
l) · b)

by (simp-all add : measure-def inner-diff-left setprod-nonneg)

lemma sigma-finite-lborel : sigma-finite-measure lborel
proof

show ∃A:: ′a set set . countable A ∧ A ⊆ sets lborel ∧
⋃

A = space lborel ∧
(∀ a∈A. emeasure lborel a 6= ∞)

by (intro exI [of - range (λn::nat . box (− real n ∗R One) (real n ∗R One))])
(auto simp: emeasure-lborel-cbox-eq UN-box-eq-UNIV)

qed

end

lemma emeasure-lborel-UNIV : emeasure lborel (UNIV :: ′a::euclidean-space set) =
∞
proof −
{ fix n::nat

let ?Ba = Basis :: ′a set
have real n ≤ (2 ::real) ˆ card ?Ba ∗ real n

by (simp add : mult-le-cancel-right1)
also
have ... ≤ (2 ::real) ˆ card ?Ba ∗ real (Suc n) ˆ card ?Ba

apply (rule mult-left-mono)
apply (metis DIM-positive One-nat-def less-eq-Suc-le less-imp-le of-nat-le-iff

of-nat-power self-le-power zero-less-Suc)
apply (simp add : DIM-positive)
done

finally have real n ≤ (2 ::real) ˆ card ?Ba ∗ real (Suc n) ˆ card ?Ba .
} note [intro!] = this
show ?thesis

unfolding UN-box-eq-UNIV [symmetric]
apply (subst SUP-emeasure-incseq [symmetric])
apply (auto simp: incseq-def subset-box inner-add-left setprod-constant

simp del : Sup-eq-top-iff SUP-eq-top-iff
intro!: ennreal-SUP-eq-top)

done
qed

THEORY “Lebesgue-Measure” 372

lemma emeasure-lborel-singleton[simp]: emeasure lborel {x} = 0
using emeasure-lborel-cbox [of x x] nonempty-Basis
by (auto simp del : emeasure-lborel-cbox nonempty-Basis simp add : cbox-sing

setprod-constant)

lemma emeasure-lborel-countable:
fixes A :: ′a::euclidean-space set
assumes countable A
shows emeasure lborel A = 0

proof −
have A ⊆ (

⋃
i . {from-nat-into A i}) using from-nat-into-surj assms by force

moreover have emeasure lborel (
⋃

i . {from-nat-into A i}) = 0
by (rule emeasure-UN-eq-0) auto

ultimately have emeasure lborel A ≤ 0 using emeasure-mono
by (smt UN-E emeasure-empty equalityI from-nat-into order-refl singletonD

subsetI)
thus ?thesis by (auto simp add :)

qed

lemma countable-imp-null-set-lborel : countable A =⇒ A ∈ null-sets lborel
by (simp add : null-sets-def emeasure-lborel-countable sets.countable)

lemma finite-imp-null-set-lborel : finite A =⇒ A ∈ null-sets lborel
by (intro countable-imp-null-set-lborel countable-finite)

lemma lborel-neq-count-space[simp]: lborel 6= count-space (A::(′a::ordered-euclidean-space)
set)
proof

assume asm: lborel = count-space A
have space lborel = UNIV by simp
hence [simp]: A = UNIV by (subst (asm) asm) (simp only : space-count-space)
have emeasure lborel {undefined :: ′a} = 1

by (subst asm, subst emeasure-count-space-finite) auto
moreover have emeasure lborel {undefined} 6= 1 by simp
ultimately show False by contradiction

qed

10.3 Affine transformation on the Lebesgue-Borel

lemma lborel-eqI :
fixes M :: ′a::euclidean-space measure
assumes emeasure-eq :

∧
l u. (

∧
b. b ∈ Basis =⇒ l · b ≤ u · b) =⇒ emeasure M

(box l u) = (
∏

b∈Basis. (u − l) · b)
assumes sets-eq : sets M = sets borel
shows lborel = M

proof (rule measure-eqI-generator-eq)
let ?E = range (λ(a, b). box a b:: ′a set)
show Int-stable ?E

by (auto simp: Int-stable-def box-Int-box)

THEORY “Lebesgue-Measure” 373

show ?E ⊆ Pow UNIV sets lborel = sigma-sets UNIV ?E sets M = sigma-sets
UNIV ?E

by (simp-all add : borel-eq-box sets-eq)

let ?A = λn::nat . box (− (real n ∗R One)) (real n ∗R One) :: ′a set
show range ?A ⊆ ?E (

⋃
i . ?A i) = UNIV

unfolding UN-box-eq-UNIV by auto

{ fix i show emeasure lborel (?A i) 6= ∞ by auto }
{ fix X assume X ∈ ?E then show emeasure lborel X = emeasure M X

apply (auto simp: emeasure-eq emeasure-lborel-box-eq)
apply (subst box-eq-empty(1)[THEN iffD2])
apply (auto intro: less-imp-le simp: not-le)
done }

qed

lemma lborel-affine:
fixes t :: ′a::euclidean-space assumes c 6= 0
shows lborel = density (distr lborel borel (λx . t + c ∗R x)) (λ-. |c|ˆDIM (′a))

(is - = ?D)
proof (rule lborel-eqI)

let ?B = Basis :: ′a set
fix l u assume le:

∧
b. b ∈ ?B =⇒ l · b ≤ u · b

show emeasure ?D (box l u) = (
∏

b∈?B . (u − l) · b)
proof cases

assume 0 < c
then have (λx . t + c ∗R x) −‘ box l u = box ((l − t) /R c) ((u − t) /R c)

by (auto simp: field-simps box-def inner-simps)
with 〈0 < c〉 show ?thesis

using le
by (auto simp: field-simps inner-simps setprod-dividef setprod-constant setprod-nonneg

ennreal-mult [symmetric] emeasure-density nn-integral-distr
emeasure-distr

nn-integral-cmult emeasure-lborel-box-eq borel-measurable-indicator ′)
next

assume ¬ 0 < c with 〈c 6= 0 〉 have c < 0 by auto
then have box ((u − t) /R c) ((l − t) /R c) = (λx . t + c ∗R x) −‘ box l u

by (auto simp: field-simps box-def inner-simps)
then have ∗:

∧
x . indicator (box l u) (t + c ∗R x) = (indicator (box ((u − t)

/R c) ((l − t) /R c)) x :: ennreal)
by (auto split : split-indicator)

have ∗∗: (
∏

x∈Basis. (l · x − u · x) / c) = (
∏

x∈Basis. u · x − l · x) / (−c)
ˆ card (Basis:: ′a set)

using 〈c < 0 〉

by (auto simp add : field-simps setprod-dividef [symmetric] setprod-constant [symmetric]
intro!: setprod .cong)

show ?thesis
using 〈c < 0 〉 le

THEORY “Lebesgue-Measure” 374

by (auto simp: ∗ ∗∗ field-simps emeasure-density nn-integral-distr nn-integral-cmult
emeasure-lborel-box-eq inner-simps setprod-nonneg ennreal-mult [symmetric]

borel-measurable-indicator ′)
qed

qed simp

lemma lborel-real-affine:
c 6= 0 =⇒ lborel = density (distr lborel borel (λx . t + c ∗ x)) (λ-. ennreal (abs

c))
using lborel-affine[of c t] by simp

lemma AE-borel-affine:
fixes P :: real ⇒ bool
shows c 6= 0 =⇒ Measurable.pred borel P =⇒ AE x in lborel . P x =⇒ AE x in

lborel . P (t + c ∗ x)
by (subst lborel-real-affine[where t=− t / c and c=1 / c])

(simp-all add : AE-density AE-distr-iff field-simps)

lemma nn-integral-real-affine:
fixes c :: real assumes [measurable]: f ∈ borel-measurable borel and c: c 6= 0
shows (

∫
+x . f x ∂lborel) = |c| ∗ (

∫
+x . f (t + c ∗ x) ∂lborel)

by (subst lborel-real-affine[OF c, of t])
(simp add : nn-integral-density nn-integral-distr nn-integral-cmult)

lemma lborel-integrable-real-affine:
fixes f :: real ⇒ ′a :: {banach, second-countable-topology}
assumes f : integrable lborel f
shows c 6= 0 =⇒ integrable lborel (λx . f (t + c ∗ x))
using f f [THEN borel-measurable-integrable] unfolding integrable-iff-bounded
by (subst (asm) nn-integral-real-affine[where c=c and t=t]) (auto simp: ennreal-mult-less-top)

lemma lborel-integrable-real-affine-iff :
fixes f :: real ⇒ ′a :: {banach, second-countable-topology}
shows c 6= 0 =⇒ integrable lborel (λx . f (t + c ∗ x)) ←→ integrable lborel f
using

lborel-integrable-real-affine[of f c t]
lborel-integrable-real-affine[of λx . f (t + c ∗ x) 1/c −t/c]

by (auto simp add : field-simps)

lemma lborel-integral-real-affine:
fixes f :: real ⇒ ′a :: {banach, second-countable-topology} and c :: real
assumes c: c 6= 0 shows (

∫
x . f x ∂ lborel) = |c| ∗R (

∫
x . f (t + c ∗ x) ∂lborel)

proof cases
assume f [measurable]: integrable lborel f then show ?thesis
using c f f [THEN borel-measurable-integrable] f [THEN lborel-integrable-real-affine,

of c t]
by (subst lborel-real-affine[OF c, of t])

(simp add : integral-density integral-distr)
next

THEORY “Lebesgue-Measure” 375

assume ¬ integrable lborel f with c show ?thesis
by (simp add : lborel-integrable-real-affine-iff not-integrable-integral-eq)

qed

lemma divideR-right :
fixes x y :: ′a::real-normed-vector
shows r 6= 0 =⇒ y = x /R r ←→ r ∗R y = x
using scaleR-cancel-left [of r y x /R r] by simp

lemma lborel-has-bochner-integral-real-affine-iff :
fixes x :: ′a :: {banach, second-countable-topology}
shows c 6= 0 =⇒

has-bochner-integral lborel f x ←→
has-bochner-integral lborel (λx . f (t + c ∗ x)) (x /R |c|)

unfolding has-bochner-integral-iff lborel-integrable-real-affine-iff
by (simp-all add : lborel-integral-real-affine[symmetric] divideR-right cong : conj-cong)

lemma lborel-distr-uminus: distr lborel borel uminus = (lborel :: real measure)
by (subst lborel-real-affine[of −1 0])

(auto simp: density-1 one-ennreal-def [symmetric])

lemma lborel-distr-mult :
assumes (c::real) 6= 0
shows distr lborel borel (op ∗ c) = density lborel (λ-. inverse |c|)

proof−
have distr lborel borel (op ∗ c) = distr lborel lborel (op ∗ c) by (simp cong :

distr-cong)
also from assms have ... = density lborel (λ-. inverse |c|)
by (subst lborel-real-affine[of inverse c 0]) (auto simp: o-def distr-density-distr)

finally show ?thesis .
qed

lemma lborel-distr-mult ′:
assumes (c::real) 6= 0
shows lborel = density (distr lborel borel (op ∗ c)) (λ-. |c|)

proof−
have lborel = density lborel (λ-. 1) by (rule density-1 [symmetric])
also from assms have (λ-. 1 :: ennreal) = (λ-. inverse |c| ∗ |c|) by (intro ext)

simp
also have density lborel ... = density (density lborel (λ-. inverse |c|)) (λ-. |c|)

by (subst density-density-eq) (auto simp: ennreal-mult)
also from assms have density lborel (λ-. inverse |c|) = distr lborel borel (op ∗

c)
by (rule lborel-distr-mult [symmetric])

finally show ?thesis .
qed

lemma lborel-distr-plus: distr lborel borel (op + c) = (lborel :: real measure)
by (subst lborel-real-affine[of 1 c]) (auto simp: density-1 one-ennreal-def [symmetric])

THEORY “Lebesgue-Measure” 376

interpretation lborel : sigma-finite-measure lborel
by (rule sigma-finite-lborel)

interpretation lborel-pair : pair-sigma-finite lborel lborel ..

lemma lborel-prod :
lborel

⊗
M lborel = (lborel :: (′a::euclidean-space × ′b::euclidean-space) measure)

proof (rule lborel-eqI [symmetric], clarify)
fix la ua :: ′a and lb ub :: ′b
assume lu:

∧
a b. (a, b) ∈ Basis =⇒ (la, lb) · (a, b) ≤ (ua, ub) · (a, b)

have [simp]:∧
b. b ∈ Basis =⇒ la · b ≤ ua · b∧
b. b ∈ Basis =⇒ lb · b ≤ ub · b

inj-on (λu. (u, 0)) Basis inj-on (λu. (0 , u)) Basis
(λu. (u, 0)) ‘ Basis ∩ (λu. (0 , u)) ‘ Basis = {}
box (la, lb) (ua, ub) = box la ua × box lb ub
using lu[of - 0] lu[of 0] by (auto intro!: inj-onI simp add : Basis-prod-def ball-Un

box-def)
show emeasure (lborel

⊗
M lborel) (box (la, lb) (ua, ub)) =

ennreal (setprod (op · ((ua, ub) − (la, lb))) Basis)
by (simp add : lborel .emeasure-pair-measure-Times Basis-prod-def setprod .union-disjoint

setprod .reindex ennreal-mult inner-diff-left setprod-nonneg)
qed (simp add : borel-prod [symmetric])

lemma lborelD-Collect [measurable (raw)]: {x∈space borel . P x} ∈ sets borel =⇒
{x∈space lborel . P x} ∈ sets lborel by simp
lemma lborelD [measurable (raw)]: A ∈ sets borel =⇒ A ∈ sets lborel by simp

10.4 Equivalence Lebesgue integral on lborel and HK-integral

lemma has-integral-measure-lborel :
fixes A :: ′a::euclidean-space set
assumes A[measurable]: A ∈ sets borel and finite: emeasure lborel A < ∞
shows ((λx . 1) has-integral measure lborel A) A

proof −
{ fix l u :: ′a

have ((λx . 1) has-integral measure lborel (box l u)) (box l u)
proof cases

assume ∀ b∈Basis. l · b ≤ u · b
then show ?thesis

apply simp
apply (subst has-integral-restrict [symmetric, OF box-subset-cbox])
apply (subst has-integral-spike-interior-eq [where g=λ-. 1])
using has-integral-const [of 1 ::real l u]
apply (simp-all add : inner-diff-left [symmetric] content-cbox-cases)
done

next

THEORY “Lebesgue-Measure” 377

assume ¬ (∀ b∈Basis. l · b ≤ u · b)
then have box l u = {}

unfolding box-eq-empty by (auto simp: not-le intro: less-imp-le)
then show ?thesis

by simp
qed }

note has-integral-box = this

{ fix a b :: ′a let ?M = λA. measure lborel (A ∩ box a b)
have Int-stable (range (λ(a, b). box a b))

by (auto simp: Int-stable-def box-Int-box)
moreover have (range (λ(a, b). box a b)) ⊆ Pow UNIV

by auto
moreover have A ∈ sigma-sets UNIV (range (λ(a, b). box a b))

using A unfolding borel-eq-box by simp
ultimately have ((λx . 1) has-integral ?M A) (A ∩ box a b)
proof (induction rule: sigma-sets-induct-disjoint)

case (basic A) then show ?case
by (auto simp: box-Int-box has-integral-box)

next
case empty then show ?case

by simp
next

case (compl A)
then have [measurable]: A ∈ sets borel

by (simp add : borel-eq-box)

have ((λx . 1) has-integral ?M (box a b)) (box a b)
by (simp add : has-integral-box)

moreover have ((λx . if x ∈ A ∩ box a b then 1 else 0) has-integral ?M A)
(box a b)

by (subst has-integral-restrict) (auto intro: compl)
ultimately have ((λx . 1 − (if x ∈ A ∩ box a b then 1 else 0)) has-integral

?M (box a b) − ?M A) (box a b)
by (rule has-integral-sub)

then have ((λx . (if x ∈ (UNIV − A) ∩ box a b then 1 else 0)) has-integral
?M (box a b) − ?M A) (box a b)

by (rule has-integral-cong [THEN iffD1 , rotated 1]) auto
then have ((λx . 1) has-integral ?M (box a b) − ?M A) ((UNIV − A) ∩ box

a b)
by (subst (asm) has-integral-restrict) auto

also have ?M (box a b) − ?M A = ?M (UNIV − A)
by (subst measure-Diff [symmetric]) (auto simp: emeasure-lborel-box-eq

Diff-Int-distrib2)
finally show ?case .

next
case (union F)
then have [measurable]:

∧
i . F i ∈ sets borel

by (simp add : borel-eq-box subset-eq)

THEORY “Lebesgue-Measure” 378

have ((λx . if x ∈ UNION UNIV F ∩ box a b then 1 else 0) has-integral ?M
(
⋃

i . F i)) (box a b)
proof (rule has-integral-monotone-convergence-increasing)

let ?f = λk x .
∑

i<k . if x ∈ F i ∩ box a b then 1 else 0 :: real
show

∧
k . (?f k has-integral (

∑
i<k . ?M (F i))) (box a b)

using union.IH by (auto intro!: has-integral-setsum simp del : Int-iff)
show

∧
k x . ?f k x ≤ ?f (Suc k) x

by (intro setsum-mono2) auto
from union(1) have ∗:

∧
x i j . x ∈ F i =⇒ x ∈ F j ←→ j = i

by (auto simp add : disjoint-family-on-def)
show

∧
x . (λk . ?f k x) −−−−→ (if x ∈ UNION UNIV F ∩ box a b then 1

else 0)
apply (auto simp: ∗ setsum.If-cases Iio-Int-singleton)
apply (rule-tac k=Suc xa in LIMSEQ-offset)
apply simp
done

have ∗: emeasure lborel ((
⋃

x . F x) ∩ box a b) ≤ emeasure lborel (box a b)
by (intro emeasure-mono) auto

with union(1) show (λk .
∑

i<k . ?M (F i)) −−−−→ ?M (
⋃

i . F i)
unfolding sums-def [symmetric] UN-extend-simps

by (intro measure-UNION) (auto simp: disjoint-family-on-def emeasure-lborel-box-eq
top-unique)

qed
then show ?case

by (subst (asm) has-integral-restrict) auto
qed }

note ∗ = this

show ?thesis
proof (rule has-integral-monotone-convergence-increasing)

let ?B = λn::nat . box (− real n ∗R One) (real n ∗R One) :: ′a set
let ?f = λn::nat . λx . if x ∈ A ∩ ?B n then 1 else 0 :: real
let ?M = λn. measure lborel (A ∩ ?B n)

show
∧

n::nat . (?f n has-integral ?M n) A
using ∗ by (subst has-integral-restrict) simp-all

show
∧

k x . ?f k x ≤ ?f (Suc k) x
by (auto simp: box-def)
{ fix x assume x ∈ A

moreover have (λk . indicator (A ∩ ?B k) x :: real) −−−−→ indicator
(
⋃

k ::nat . A ∩ ?B k) x
by (intro LIMSEQ-indicator-incseq) (auto simp: incseq-def box-def)

ultimately show (λk . if x ∈ A ∩ ?B k then 1 else 0 ::real) −−−−→ 1
by (simp add : indicator-def UN-box-eq-UNIV) }

have (λn. emeasure lborel (A ∩ ?B n)) −−−−→ emeasure lborel (
⋃

n::nat . A ∩
?B n)

by (intro Lim-emeasure-incseq) (auto simp: incseq-def box-def)

THEORY “Lebesgue-Measure” 379

also have (λn. emeasure lborel (A ∩ ?B n)) = (λn. measure lborel (A ∩ ?B
n))

proof (intro ext emeasure-eq-ennreal-measure)
fix n have emeasure lborel (A ∩ ?B n) ≤ emeasure lborel (?B n)

by (intro emeasure-mono) auto
then show emeasure lborel (A ∩ ?B n) 6= top

by (auto simp: top-unique)
qed
finally show (λn. measure lborel (A ∩ ?B n)) −−−−→ measure lborel A

using emeasure-eq-ennreal-measure[of lborel A] finite
by (simp add : UN-box-eq-UNIV less-top)

qed
qed

lemma nn-integral-has-integral :
fixes f :: ′a::euclidean-space ⇒ real
assumes f : f ∈ borel-measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) = ennreal

r 0 ≤ r
shows (f has-integral r) UNIV

using f proof (induct f arbitrary : r rule: borel-measurable-induct-real)
case (set A)
moreover then have ((λx . 1) has-integral measure lborel A) A

by (intro has-integral-measure-lborel) (auto simp: ennreal-indicator)
ultimately show ?case

by (simp add : ennreal-indicator measure-def) (simp add : indicator-def)
next

case (mult g c)
then have ennreal c ∗ (

∫
+ x . g x ∂lborel) = ennreal r

by (subst nn-integral-cmult [symmetric]) (auto simp: ennreal-mult)
with 〈0 ≤ r 〉 〈0 ≤ c〉

obtain r ′ where (c = 0 ∧ r = 0) ∨ (0 ≤ r ′ ∧ (
∫

+ x . ennreal (g x) ∂lborel) =
ennreal r ′ ∧ r = c ∗ r ′)

by (cases
∫

+ x . ennreal (g x) ∂lborel rule: ennreal-cases)
(auto split : if-split-asm simp: ennreal-mult-top ennreal-mult [symmetric])

with mult show ?case
by (auto intro!: has-integral-cmult-real)

next
case (add g h)
moreover
then have (

∫
+ x . h x + g x ∂lborel) = (

∫
+ x . h x ∂lborel) + (

∫
+ x . g x

∂lborel)
by (simp add : nn-integral-add)

with add obtain a b where 0 ≤ a 0 ≤ b (
∫

+ x . h x ∂lborel) = ennreal a (
∫

+

x . g x ∂lborel) = ennreal b r = a + b
by (cases

∫
+ x . h x ∂lborel

∫
+ x . g x ∂lborel rule: ennreal2-cases)

(auto simp: add-top nn-integral-add top-add ennreal-plus[symmetric] simp del :
ennreal-plus)

ultimately show ?case
by (auto intro!: has-integral-add)

THEORY “Lebesgue-Measure” 380

next
case (seq U)
note seq(1)[measurable] and f [measurable]

{ fix i x
have U i x ≤ f x

using seq(5)
apply (rule LIMSEQ-le-const)
using seq(4)
apply (auto intro!: exI [of - i] simp: incseq-def le-fun-def)
done }

note U-le-f = this

{ fix i
have (

∫
+x . U i x ∂lborel) ≤ (

∫
+x . f x ∂lborel)

using seq(2) f (2) U-le-f by (intro nn-integral-mono) simp
then obtain p where (

∫
+x . U i x ∂lborel) = ennreal p p ≤ r 0 ≤ p

using seq(6) 〈0≤r 〉 by (cases
∫

+x . U i x ∂lborel rule: ennreal-cases) (auto
simp: top-unique)

moreover note seq
ultimately have ∃ p. (

∫
+x . U i x ∂lborel) = ennreal p ∧ 0 ≤ p ∧ p ≤ r ∧

(U i has-integral p) UNIV
by auto }

then obtain p where p:
∧

i . (
∫

+x . ennreal (U i x) ∂lborel) = ennreal (p i)
and bnd :

∧
i . p i ≤ r

∧
i . 0 ≤ p i

and U-int :
∧

i .(U i has-integral (p i)) UNIV by metis

have int-eq :
∧

i . integral UNIV (U i) = p i using U-int by (rule integral-unique)

have ∗: f integrable-on UNIV ∧ (λk . integral UNIV (U k)) −−−−→ integral UNIV
f

proof (rule monotone-convergence-increasing)
show ∀ k . U k integrable-on UNIV using U-int by auto
show ∀ k . ∀ x∈UNIV . U k x ≤ U (Suc k) x using 〈incseq U 〉 by (auto simp:

incseq-def le-fun-def)
then show bounded {integral UNIV (U k) |k . True}

using bnd int-eq by (auto simp: bounded-real intro!: exI [of - r])
show ∀ x∈UNIV . (λk . U k x) −−−−→ f x

using seq by auto
qed
moreover have (λi . (

∫
+x . U i x ∂lborel)) −−−−→ (

∫
+x . f x ∂lborel)

using seq f (2) U-le-f by (intro nn-integral-dominated-convergence[where
w=f]) auto

ultimately have integral UNIV f = r
by (auto simp add : bnd int-eq p seq intro: LIMSEQ-unique)

with ∗ show ?case
by (simp add : has-integral-integral)

qed

THEORY “Lebesgue-Measure” 381

lemma nn-integral-lborel-eq-integral :
fixes f :: ′a::euclidean-space ⇒ real
assumes f : f ∈ borel-measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) < ∞

shows (
∫

+x . f x ∂lborel) = integral UNIV f
proof −

from f (3) obtain r where r : (
∫

+x . f x ∂lborel) = ennreal r 0 ≤ r
by (cases

∫
+x . f x ∂lborel rule: ennreal-cases) auto

then show ?thesis
using nn-integral-has-integral [OF f (1 ,2) r] by (simp add : integral-unique)

qed

lemma nn-integral-integrable-on:
fixes f :: ′a::euclidean-space ⇒ real
assumes f : f ∈ borel-measurable borel

∧
x . 0 ≤ f x (

∫
+x . f x ∂lborel) < ∞

shows f integrable-on UNIV
proof −

from f (3) obtain r where r : (
∫

+x . f x ∂lborel) = ennreal r 0 ≤ r
by (cases

∫
+x . f x ∂lborel rule: ennreal-cases) auto

then show ?thesis
by (intro has-integral-integrable[where i=r] nn-integral-has-integral [where

r=r] f)
qed

lemma nn-integral-has-integral-lborel :
fixes f :: ′a::euclidean-space ⇒ real
assumes f-borel : f ∈ borel-measurable borel and nonneg :

∧
x . 0 ≤ f x

assumes I : (f has-integral I) UNIV
shows integralN lborel f = I

proof −
from f-borel have (λx . ennreal (f x)) ∈ borel-measurable lborel by auto
from borel-measurable-implies-simple-function-sequence ′[OF this] guess F . note

F = this
let ?B = λi ::nat . box (− (real i ∗R One)) (real i ∗R One) :: ′a set

note F (1)[THEN borel-measurable-simple-function, measurable]

have 0 ≤ I
using I by (rule has-integral-nonneg) (simp add : nonneg)

have F-le-f : enn2real (F i x) ≤ f x for i x
using F (3 ,4)[where x=x] nonneg SUP-upper [of i UNIV λi . F i x]
by (cases F i x rule: ennreal-cases) auto

let ?F = λi x . F i x ∗ indicator (?B i) x
have (

∫
+ x . ennreal (f x) ∂lborel) = (SUP i . integralN lborel (λx . ?F i x))

proof (subst nn-integral-monotone-convergence-SUP [symmetric])
{ fix x

obtain j where j : x ∈ ?B j
using UN-box-eq-UNIV by auto

THEORY “Lebesgue-Measure” 382

have ennreal (f x) = (SUP i . F i x)
using F (4)[of x] nonneg [of x] by (simp add : max-def)

also have . . . = (SUP i . ?F i x)
proof (rule SUP-eq)

fix i show ∃ j∈UNIV . F i x ≤ ?F j x
using j F (2)
by (intro bexI [of - max i j])

(auto split : split-max split-indicator simp: incseq-def le-fun-def box-def)
qed (auto intro!: F split : split-indicator)
finally have ennreal (f x) = (SUP i . ?F i x) . }

then show (
∫

+ x . ennreal (f x) ∂lborel) = (
∫

+ x . (SUP i . ?F i x) ∂lborel)
by simp

qed (insert F , auto simp: incseq-def le-fun-def box-def split : split-indicator)
also have . . . ≤ ennreal I
proof (rule SUP-least)

fix i :: nat
have finite-F : (

∫
+ x . ennreal (enn2real (F i x) ∗ indicator (?B i) x) ∂lborel)

< ∞
proof (rule nn-integral-bound-simple-function)

have emeasure lborel {x ∈ space lborel . ennreal (enn2real (F i x) ∗ indicator
(?B i) x) 6= 0} ≤

emeasure lborel (?B i)
by (intro emeasure-mono) (auto split : split-indicator)
then show emeasure lborel {x ∈ space lborel . ennreal (enn2real (F i x) ∗

indicator (?B i) x) 6= 0} < ∞
by (auto simp: less-top[symmetric] top-unique)

qed (auto split : split-indicator
intro!: F simple-function-compose1 [where g=enn2real] simple-function-ennreal)

have int-F : (λx . enn2real (F i x) ∗ indicator (?B i) x) integrable-on UNIV
using F (4) finite-F

by (intro nn-integral-integrable-on) (auto split : split-indicator simp: enn2real-nonneg)

have (
∫

+ x . F i x ∗ indicator (?B i) x ∂lborel) =
(
∫

+ x . ennreal (enn2real (F i x) ∗ indicator (?B i) x) ∂lborel)
using F (3 ,4)

by (intro nn-integral-cong) (auto simp: image-iff eq-commute split : split-indicator)
also have . . . = ennreal (integral UNIV (λx . enn2real (F i x) ∗ indicator (?B

i) x))
using F
by (intro nn-integral-lborel-eq-integral [OF - - finite-F])

(auto split : split-indicator intro: enn2real-nonneg)
also have . . . ≤ ennreal I

by (auto intro!: has-integral-le[OF integrable-integral [OF int-F] I] nonneg
F-le-f

simp: 〈0 ≤ I 〉 split : split-indicator)
finally show (

∫
+ x . F i x ∗ indicator (?B i) x ∂lborel) ≤ ennreal I .

qed
finally have (

∫
+ x . ennreal (f x) ∂lborel) < ∞

THEORY “Lebesgue-Measure” 383

by (auto simp: less-top[symmetric] top-unique)
from nn-integral-lborel-eq-integral [OF assms(1 ,2) this] I show ?thesis

by (simp add : integral-unique)
qed

lemma has-integral-iff-emeasure-lborel :
fixes A :: ′a::euclidean-space set
assumes A[measurable]: A ∈ sets borel and [simp]: 0 ≤ r
shows ((λx . 1) has-integral r) A ←→ emeasure lborel A = ennreal r

proof cases
assume emeasure-A: emeasure lborel A = ∞
have ¬ (λx . 1 ::real) integrable-on A
proof

assume int : (λx . 1 ::real) integrable-on A
then have (indicator A:: ′a ⇒ real) integrable-on UNIV

unfolding indicator-def [abs-def] integrable-restrict-univ .
then obtain r where ((indicator A:: ′a⇒real) has-integral r) UNIV

by auto
from nn-integral-has-integral-lborel [OF - - this] emeasure-A show False

by (simp add : ennreal-indicator)
qed
with emeasure-A show ?thesis

by auto
next

assume emeasure lborel A 6= ∞
moreover then have ((λx . 1) has-integral measure lborel A) A

by (simp add : has-integral-measure-lborel less-top)
ultimately show ?thesis

by (auto simp: emeasure-eq-ennreal-measure has-integral-unique)
qed

lemma has-integral-integral-real :
fixes f :: ′a::euclidean-space ⇒ real
assumes f : integrable lborel f
shows (f has-integral (integralL lborel f)) UNIV

using f proof induct
case (base A c) then show ?case

by (auto intro!: has-integral-mult-left simp:)
(simp add : emeasure-eq-ennreal-measure indicator-def has-integral-measure-lborel)

next
case (add f g) then show ?case

by (auto intro!: has-integral-add)
next

case (lim f s)
show ?case
proof (rule has-integral-dominated-convergence)

show
∧

i . (s i has-integral integralL lborel (s i)) UNIV by fact
show (λx . norm (2 ∗ f x)) integrable-on UNIV

using 〈integrable lborel f 〉

THEORY “Lebesgue-Measure” 384

by (intro nn-integral-integrable-on)
(auto simp: integrable-iff-bounded abs-mult nn-integral-cmult ennreal-mult

ennreal-mult-less-top)
show

∧
k . ∀ x∈UNIV . norm (s k x) ≤ norm (2 ∗ f x)

using lim by (auto simp add : abs-mult)
show ∀ x∈UNIV . (λk . s k x) −−−−→ f x

using lim by auto
show (λk . integralL lborel (s k)) −−−−→ integralL lborel f

using lim lim(1)[THEN borel-measurable-integrable]
by (intro integral-dominated-convergence[where w=λx . 2 ∗ norm (f x)]) auto

qed
qed

context
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space

begin

lemma has-integral-integral-lborel :
assumes f : integrable lborel f
shows (f has-integral (integralL lborel f)) UNIV

proof −
have ((λx .

∑
b∈Basis. (f x · b) ∗R b) has-integral (

∑
b∈Basis. integralL lborel

(λx . f x · b) ∗R b)) UNIV
using f by (intro has-integral-setsum finite-Basis ballI has-integral-scaleR-left

has-integral-integral-real) auto
also have eq-f : (λx .

∑
b∈Basis. (f x · b) ∗R b) = f

by (simp add : fun-eq-iff euclidean-representation)
also have (

∑
b∈Basis. integralL lborel (λx . f x · b) ∗R b) = integralL lborel f

using f by (subst (2) eq-f [symmetric]) simp
finally show ?thesis .

qed

lemma integrable-on-lborel : integrable lborel f =⇒ f integrable-on UNIV
using has-integral-integral-lborel by auto

lemma integral-lborel : integrable lborel f =⇒ integral UNIV f = (
∫

x . f x ∂lborel)
using has-integral-integral-lborel by auto

end

10.5 Fundamental Theorem of Calculus for the Lebesgue in-
tegral

lemma emeasure-bounded-finite:
assumes bounded A shows emeasure lborel A < ∞

proof −
from bounded-subset-cbox [OF 〈bounded A〉] obtain a b where A ⊆ cbox a b

by auto
then have emeasure lborel A ≤ emeasure lborel (cbox a b)

THEORY “Lebesgue-Measure” 385

by (intro emeasure-mono) auto
then show ?thesis
by (auto simp: emeasure-lborel-cbox-eq setprod-nonneg less-top[symmetric] top-unique

split : if-split-asm)
qed

lemma emeasure-compact-finite: compact A =⇒ emeasure lborel A < ∞
using emeasure-bounded-finite[of A] by (auto intro: compact-imp-bounded)

lemma borel-integrable-compact :
fixes f :: ′a::euclidean-space ⇒ ′b::{banach, second-countable-topology}
assumes compact S continuous-on S f
shows integrable lborel (λx . indicator S x ∗R f x)

proof cases
assume S 6= {}
have continuous-on S (λx . norm (f x))

using assms by (intro continuous-intros)
from continuous-attains-sup[OF 〈compact S 〉 〈S 6= {}〉 this]
obtain M where M :

∧
x . x ∈ S =⇒ norm (f x) ≤ M

by auto

show ?thesis
proof (rule integrable-bound)

show integrable lborel (λx . indicator S x ∗ M)
using assms by (auto intro!: emeasure-compact-finite borel-compact integrable-mult-left)
show (λx . indicator S x ∗R f x) ∈ borel-measurable lborel
using assms by (auto intro!: borel-measurable-continuous-on-indicator borel-compact)
show AE x in lborel . norm (indicator S x ∗R f x) ≤ norm (indicator S x ∗ M)

by (auto split : split-indicator simp: abs-real-def dest !: M)
qed

qed simp

lemma borel-integrable-atLeastAtMost :
fixes f :: real ⇒ real
assumes f :

∧
x . a ≤ x =⇒ x ≤ b =⇒ isCont f x

shows integrable lborel (λx . f x ∗ indicator {a .. b} x) (is integrable - ?f)
proof −

have integrable lborel (λx . indicator {a .. b} x ∗R f x)
proof (rule borel-integrable-compact)

from f show continuous-on {a..b} f
by (auto intro: continuous-at-imp-continuous-on)

qed simp
then show ?thesis

by (auto simp: mult .commute)
qed

For the positive integral we replace continuity with Borel-measurability.

lemma
fixes f :: real ⇒ real

THEORY “Lebesgue-Measure” 386

assumes [measurable]: f ∈ borel-measurable borel
assumes f :

∧
x . x ∈ {a..b} =⇒ DERIV F x :> f x

∧
x . x ∈ {a..b} =⇒ 0 ≤ f x

and a ≤ b
shows nn-integral-FTC-Icc: (

∫
+x . ennreal (f x) ∗ indicator {a .. b} x ∂lborel)

= F b − F a (is ?nn)
and has-bochner-integral-FTC-Icc-nonneg :

has-bochner-integral lborel (λx . f x ∗ indicator {a .. b} x) (F b − F a) (is
?has)

and integral-FTC-Icc-nonneg : (
∫

x . f x ∗ indicator {a .. b} x ∂lborel) = F b −
F a (is ?eq)

and integrable-FTC-Icc-nonneg : integrable lborel (λx . f x ∗ indicator {a .. b}
x) (is ?int)
proof −

have ∗: (λx . f x ∗ indicator {a..b} x) ∈ borel-measurable borel
∧

x . 0 ≤ f x ∗
indicator {a..b} x

using f (2) by (auto split : split-indicator)

have F-mono: a ≤ x =⇒ x ≤ y =⇒ y ≤ b=⇒ F x ≤ F y for x y
using f by (intro DERIV-nonneg-imp-nondecreasing [of x y F]) (auto intro:

order-trans)

have (f has-integral F b − F a) {a..b}
by (intro fundamental-theorem-of-calculus)

(auto simp: has-field-derivative-iff-has-vector-derivative[symmetric]
intro: has-field-derivative-subset [OF f (1)] 〈a ≤ b〉)

then have i : ((λx . f x ∗ indicator {a .. b} x) has-integral F b − F a) UNIV
unfolding indicator-def if-distrib[where f =λx . a ∗ x for a]
by (simp cong del : if-cong del : atLeastAtMost-iff)

then have nn: (
∫

+x . f x ∗ indicator {a .. b} x ∂lborel) = F b − F a
by (rule nn-integral-has-integral-lborel [OF ∗])

then show ?has
by (rule has-bochner-integral-nn-integral [rotated 3]) (simp-all add : ∗ F-mono 〈a

≤ b〉)
then show ?eq ?int

unfolding has-bochner-integral-iff by auto
show ?nn

by (subst nn[symmetric])
(auto intro!: nn-integral-cong simp add : ennreal-mult f split : split-indicator)

qed

lemma
fixes f :: real ⇒ ′a :: euclidean-space
assumes a ≤ b
assumes

∧
x . a ≤ x =⇒ x ≤ b =⇒ (F has-vector-derivative f x) (at x within {a

.. b})
assumes cont : continuous-on {a .. b} f
shows has-bochner-integral-FTC-Icc:

has-bochner-integral lborel (λx . indicator {a .. b} x ∗R f x) (F b − F a) (is
?has)

THEORY “Lebesgue-Measure” 387

and integral-FTC-Icc: (
∫

x . indicator {a .. b} x ∗R f x ∂lborel) = F b − F a
(is ?eq)
proof −

let ?f = λx . indicator {a .. b} x ∗R f x
have int : integrable lborel ?f

using borel-integrable-compact [OF - cont] by auto
have (f has-integral F b − F a) {a..b}

using assms(1 ,2) by (intro fundamental-theorem-of-calculus) auto
moreover
have (f has-integral integralL lborel ?f) {a..b}

using has-integral-integral-lborel [OF int]
unfolding indicator-def if-distrib[where f =λx . x ∗R a for a]
by (simp cong del : if-cong del : atLeastAtMost-iff)

ultimately show ?eq
by (auto dest : has-integral-unique)

then show ?has
using int by (auto simp: has-bochner-integral-iff)

qed

lemma
fixes f :: real ⇒ real
assumes a ≤ b
assumes deriv :

∧
x . a ≤ x =⇒ x ≤ b =⇒ DERIV F x :> f x

assumes cont :
∧

x . a ≤ x =⇒ x ≤ b =⇒ isCont f x
shows has-bochner-integral-FTC-Icc-real :

has-bochner-integral lborel (λx . f x ∗ indicator {a .. b} x) (F b − F a) (is
?has)

and integral-FTC-Icc-real : (
∫

x . f x ∗ indicator {a .. b} x ∂lborel) = F b − F
a (is ?eq)
proof −

have 1 :
∧

x . a ≤ x =⇒ x ≤ b =⇒ (F has-vector-derivative f x) (at x within {a
.. b})

unfolding has-field-derivative-iff-has-vector-derivative[symmetric]
using deriv by (auto intro: DERIV-subset)

have 2 : continuous-on {a .. b} f
using cont by (intro continuous-at-imp-continuous-on) auto

show ?has ?eq
using has-bochner-integral-FTC-Icc[OF 〈a ≤ b〉 1 2] integral-FTC-Icc[OF 〈a

≤ b〉 1 2]
by (auto simp: mult .commute)

qed

lemma nn-integral-FTC-atLeast :
fixes f :: real ⇒ real
assumes f-borel : f ∈ borel-measurable borel
assumes f :

∧
x . a ≤ x =⇒ DERIV F x :> f x

assumes nonneg :
∧

x . a ≤ x =⇒ 0 ≤ f x
assumes lim: (F −−−→ T) at-top
shows (

∫
+x . ennreal (f x) ∗ indicator {a ..} x ∂lborel) = T − F a

THEORY “Lebesgue-Measure” 388

proof −
let ?f = λ(i ::nat) (x ::real). ennreal (f x) ∗ indicator {a..a + real i} x
let ?fR = λx . ennreal (f x) ∗ indicator {a ..} x

have F-mono: a ≤ x =⇒ x ≤ y =⇒ F x ≤ F y for x y
using f nonneg by (intro DERIV-nonneg-imp-nondecreasing [of x y F]) (auto

intro: order-trans)
then have F-le-T : a ≤ x =⇒ F x ≤ T for x

by (intro tendsto-le-const [OF - lim])
(auto simp: trivial-limit-at-top-linorder eventually-at-top-linorder)

have (SUP i ::nat . ?f i x) = ?fR x for x
proof (rule LIMSEQ-unique[OF LIMSEQ-SUP])

from reals-Archimedean2 [of x − a] guess n ..
then have eventually (λn. ?f n x = ?fR x) sequentially

by (auto intro!: eventually-sequentiallyI [where c=n] split : split-indicator)
then show (λn. ?f n x) −−−−→ ?fR x

by (rule Lim-eventually)
qed (auto simp: nonneg incseq-def le-fun-def split : split-indicator)
then have integralN lborel ?fR = (

∫
+ x . (SUP i ::nat . ?f i x) ∂lborel)

by simp
also have . . . = (SUP i ::nat . (

∫
+ x . ?f i x ∂lborel))

proof (rule nn-integral-monotone-convergence-SUP)
show incseq ?f

using nonneg by (auto simp: incseq-def le-fun-def split : split-indicator)
show

∧
i . (?f i) ∈ borel-measurable lborel

using f-borel by auto
qed
also have . . . = (SUP i ::nat . ennreal (F (a + real i) − F a))

by (subst nn-integral-FTC-Icc[OF f-borel f nonneg]) auto
also have . . . = T − F a
proof (rule LIMSEQ-unique[OF LIMSEQ-SUP])

have (λx . F (a + real x)) −−−−→ T
apply (rule filterlim-compose[OF lim filterlim-tendsto-add-at-top])
apply (rule LIMSEQ-const-iff [THEN iffD2 , OF refl])
apply (rule filterlim-real-sequentially)
done

then show (λn. ennreal (F (a + real n) − F a)) −−−−→ ennreal (T − F a)
by (simp add : F-mono F-le-T tendsto-diff)

qed (auto simp: incseq-def intro!: ennreal-le-iff [THEN iffD2] F-mono)
finally show ?thesis .

qed

lemma integral-power :
a ≤ b =⇒ (

∫
x . xˆk ∗ indicator {a..b} x ∂lborel) = (bˆSuc k − aˆSuc k) / Suc

k
proof (subst integral-FTC-Icc-real)

fix x show DERIV (λx . xˆSuc k / Suc k) x :> xˆk
by (intro derivative-eq-intros) auto

THEORY “Lebesgue-Measure” 389

qed (auto simp: field-simps simp del : of-nat-Suc)

10.6 Integration by parts

lemma integral-by-parts-integrable:
fixes f g F G ::real ⇒ real
assumes a ≤ b
assumes cont-f [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes cont-g [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes [intro]: !!x . DERIV F x :> f x
assumes [intro]: !!x . DERIV G x :> g x
shows integrable lborel (λx .((F x) ∗ (g x) + (f x) ∗ (G x)) ∗ indicator {a .. b}

x)
by (auto intro!: borel-integrable-atLeastAtMost continuous-intros) (auto intro!:

DERIV-isCont)

lemma integral-by-parts:
fixes f g F G ::real ⇒ real
assumes [arith]: a ≤ b
assumes cont-f [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes cont-g [intro]: !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes [intro]: !!x . DERIV F x :> f x
assumes [intro]: !!x . DERIV G x :> g x
shows (

∫
x . (F x ∗ g x) ∗ indicator {a .. b} x ∂lborel)

= F b ∗ G b − F a ∗ G a −
∫

x . (f x ∗ G x) ∗ indicator {a .. b} x
∂lborel
proof−

have 0 : (
∫

x . (F x ∗ g x + f x ∗ G x) ∗ indicator {a .. b} x ∂lborel) = F b ∗ G
b − F a ∗ G a

by (rule integral-FTC-Icc-real , auto intro!: derivative-eq-intros continuous-intros)
(auto intro!: DERIV-isCont)

have (
∫

x . (F x ∗ g x + f x ∗ G x) ∗ indicator {a .. b} x ∂lborel) =
(
∫

x . (F x ∗ g x) ∗ indicator {a .. b} x ∂lborel) +
∫

x . (f x ∗ G x) ∗ indicator
{a .. b} x ∂lborel

apply (subst integral-add [symmetric])
apply (auto intro!: borel-integrable-atLeastAtMost continuous-intros)
by (auto intro!: DERIV-isCont integral-cong split :split-indicator)

thus ?thesis using 0 by auto
qed

lemma integral-by-parts ′:
fixes f g F G ::real ⇒ real
assumes a ≤ b
assumes !!x . a ≤x =⇒ x≤b =⇒ isCont f x
assumes !!x . a ≤x =⇒ x≤b =⇒ isCont g x
assumes !!x . DERIV F x :> f x
assumes !!x . DERIV G x :> g x

THEORY “Lebesgue-Measure” 390

shows (
∫

x . indicator {a .. b} x ∗R (F x ∗ g x) ∂lborel)
= F b ∗ G b − F a ∗ G a −

∫
x . indicator {a .. b} x ∗R (f x ∗ G x)

∂lborel
using integral-by-parts[OF assms] by (simp add : ac-simps)

lemma has-bochner-integral-even-function:
fixes f :: real ⇒ ′a :: {banach, second-countable-topology}
assumes f : has-bochner-integral lborel (λx . indicator {0 ..} x ∗R f x) x
assumes even:

∧
x . f (− x) = f x

shows has-bochner-integral lborel f (2 ∗R x)
proof −

have indicator :
∧

x ::real . indicator {..0} (− x) = indicator {0 ..} x
by (auto split : split-indicator)

have has-bochner-integral lborel (λx . indicator {.. 0} x ∗R f x) x
by (subst lborel-has-bochner-integral-real-affine-iff [where c=−1 and t=0])

(auto simp: indicator even f)
with f have has-bochner-integral lborel (λx . indicator {0 ..} x ∗R f x + indicator
{.. 0} x ∗R f x) (x + x)

by (rule has-bochner-integral-add)
then have has-bochner-integral lborel f (x + x)

by (rule has-bochner-integral-discrete-difference[where X ={0}, THEN iffD1 ,
rotated 4])

(auto split : split-indicator)
then show ?thesis

by (simp add : scaleR-2)
qed

lemma has-bochner-integral-odd-function:
fixes f :: real ⇒ ′a :: {banach, second-countable-topology}
assumes f : has-bochner-integral lborel (λx . indicator {0 ..} x ∗R f x) x
assumes odd :

∧
x . f (− x) = − f x

shows has-bochner-integral lborel f 0
proof −

have indicator :
∧

x ::real . indicator {..0} (− x) = indicator {0 ..} x
by (auto split : split-indicator)

have has-bochner-integral lborel (λx . − indicator {.. 0} x ∗R f x) x
by (subst lborel-has-bochner-integral-real-affine-iff [where c=−1 and t=0])

(auto simp: indicator odd f)
from has-bochner-integral-minus[OF this]
have has-bochner-integral lborel (λx . indicator {.. 0} x ∗R f x) (− x)

by simp
with f have has-bochner-integral lborel (λx . indicator {0 ..} x ∗R f x + indicator
{.. 0} x ∗R f x) (x + − x)

by (rule has-bochner-integral-add)
then have has-bochner-integral lborel f (x + − x)

by (rule has-bochner-integral-discrete-difference[where X ={0}, THEN iffD1 ,
rotated 4])

(auto split : split-indicator)
then show ?thesis

THEORY “Radon-Nikodym” 391

by simp
qed

end

11 Radon-Nikodým derivative

theory Radon-Nikodym
imports Bochner-Integration
begin

definition diff-measure M N =
measure-of (space M) (sets M) (λA. emeasure M A − emeasure N A)

lemma
shows space-diff-measure[simp]: space (diff-measure M N) = space M

and sets-diff-measure[simp]: sets (diff-measure M N) = sets M
by (auto simp: diff-measure-def)

lemma emeasure-diff-measure:
assumes fin: finite-measure M finite-measure N and sets-eq : sets M = sets N
assumes pos:

∧
A. A ∈ sets M =⇒ emeasure N A ≤ emeasure M A and A: A

∈ sets M
shows emeasure (diff-measure M N) A = emeasure M A − emeasure N A (is -

= ?µ A)
unfolding diff-measure-def

proof (rule emeasure-measure-of-sigma)
show sigma-algebra (space M) (sets M) ..
show positive (sets M) ?µ

using pos by (simp add : positive-def)
show countably-additive (sets M) ?µ
proof (rule countably-additiveI)

fix A :: nat ⇒ - assume A: range A ⊆ sets M and disjoint-family A
then have suminf :

(
∑

i . emeasure M (A i)) = emeasure M (
⋃

i . A i)
(
∑

i . emeasure N (A i)) = emeasure N (
⋃

i . A i)
by (simp-all add : suminf-emeasure sets-eq)

with A have (
∑

i . emeasure M (A i) − emeasure N (A i)) =
(
∑

i . emeasure M (A i)) − (
∑

i . emeasure N (A i))
using fin pos[of A -]
by (intro ennreal-suminf-minus)

(auto simp: sets-eq finite-measure.emeasure-eq-measure suminf-emeasure
measure-nonneg)

then show (
∑

i . emeasure M (A i) − emeasure N (A i)) =
emeasure M (

⋃
i . A i) − emeasure N (

⋃
i . A i)

by (simp add : suminf)
qed

qed fact

THEORY “Radon-Nikodym” 392

lemma (in sigma-finite-measure) Ex-finite-integrable-function:
∃ h∈borel-measurable M . integralN M h 6= ∞ ∧ (∀ x∈space M . 0 < h x ∧ h x <
∞)
proof −

obtain A :: nat ⇒ ′a set where
range[measurable]: range A ⊆ sets M and
space: (

⋃
i . A i) = space M and

measure:
∧

i . emeasure M (A i) 6= ∞ and
disjoint : disjoint-family A
using sigma-finite-disjoint by blast

let ?B = λi . 2ˆSuc i ∗ emeasure M (A i)
have ∀ i . ∃ x . 0 < x ∧ x < inverse (?B i)
proof

fix i show ∃ x . 0 < x ∧ x < inverse (?B i)
using measure[of i]
by (auto intro!: dense simp: ennreal-inverse-positive ennreal-mult-eq-top-iff

power-eq-top-ennreal)
qed
from choice[OF this] obtain n where n:

∧
i . 0 < n i∧

i . n i < inverse (2ˆSuc i ∗ emeasure M (A i)) by auto
{ fix i have 0 ≤ n i using n(1)[of i] by auto } note pos = this
let ?h = λx .

∑
i . n i ∗ indicator (A i) x

show ?thesis
proof (safe intro!: bexI [of - ?h] del : notI)

have
∧

i . A i ∈ sets M
using range by fastforce+

then have integralN M ?h = (
∑

i . n i ∗ emeasure M (A i)) using pos
by (simp add : nn-integral-suminf nn-integral-cmult-indicator)

also have . . . ≤ (
∑

i . ennreal ((1/2)ˆSuc i))
proof (intro suminf-le allI)

fix N
have n N ∗ emeasure M (A N) ≤ inverse (2ˆSuc N ∗ emeasure M (A N))

∗ emeasure M (A N)
using n[of N] by (intro mult-right-mono) auto

also have . . . = (1/2)ˆSuc N ∗ (inverse (emeasure M (A N)) ∗ emeasure
M (A N))

using measure[of N]
by (simp add : ennreal-inverse-power divide-ennreal-def ennreal-inverse-mult

power-eq-top-ennreal less-top[symmetric] mult-ac
del : power-Suc)

also have . . . ≤ inverse (ennreal 2) ˆ Suc N
using measure[of N]
apply (cases emeasure M (A N) rule: ennreal-cases)
apply (cases emeasure M (A N) = 0)

apply (auto simp: inverse-ennreal ennreal-mult [symmetric] divide-ennreal-def
simp del : power-Suc)

done
also have . . . = ennreal (inverse 2 ˆ Suc N)

by (subst ennreal-power [symmetric], simp) (simp add : inverse-ennreal)

THEORY “Radon-Nikodym” 393

finally show n N ∗ emeasure M (A N) ≤ ennreal ((1/2)ˆSuc N)
by simp

qed auto
also have . . . < top

unfolding less-top[symmetric]
apply (rule ennreal-suminf-neq-top)
apply (subst summable-Suc-iff)
apply (subst summable-geometric)
apply auto
done

finally show integralN M ?h 6= ∞
by (auto simp: top-unique)

next
{ fix x assume x ∈ space M

then obtain i where x ∈ A i using space[symmetric] by auto
with disjoint n have ?h x = n i

by (auto intro!: suminf-cmult-indicator intro: less-imp-le)
then show 0 < ?h x and ?h x < ∞ using n[of i] by (auto simp:

less-top[symmetric]) }
note pos = this

qed measurable
qed

11.1 Absolutely continuous

definition absolutely-continuous :: ′a measure ⇒ ′a measure ⇒ bool where
absolutely-continuous M N ←→ null-sets M ⊆ null-sets N

lemma absolutely-continuousI-count-space: absolutely-continuous (count-space A)
M

unfolding absolutely-continuous-def by (auto simp: null-sets-count-space)

lemma absolutely-continuousI-density :
f ∈ borel-measurable M =⇒ absolutely-continuous M (density M f)
by (force simp add : absolutely-continuous-def null-sets-density-iff dest : AE-not-in)

lemma absolutely-continuousI-point-measure-finite:
(
∧

x . [[x ∈ A ; f x ≤ 0]] =⇒ g x ≤ 0) =⇒ absolutely-continuous (point-measure
A f) (point-measure A g)
unfolding absolutely-continuous-def by (force simp: null-sets-point-measure-iff)

lemma absolutely-continuous-AE :
assumes sets-eq : sets M ′ = sets M

and absolutely-continuous M M ′ AE x in M . P x
shows AE x in M ′. P x

proof −
from 〈AE x in M . P x 〉 obtain N where N : N ∈ null-sets M {x∈space M . ¬

P x} ⊆ N
unfolding eventually-ae-filter by auto

THEORY “Radon-Nikodym” 394

show AE x in M ′. P x
proof (rule AE-I ′)

show {x∈space M ′. ¬ P x} ⊆ N using sets-eq-imp-space-eq [OF sets-eq] N (2)
by simp

from 〈absolutely-continuous M M ′〉 show N ∈ null-sets M ′

using N unfolding absolutely-continuous-def sets-eq null-sets-def by auto
qed

qed

11.2 Existence of the Radon-Nikodym derivative

lemma (in finite-measure) Radon-Nikodym-aux-epsilon:
fixes e :: real assumes 0 < e
assumes finite-measure N and sets-eq : sets N = sets M
shows ∃A∈sets M . measure M (space M) − measure N (space M) ≤ measure

M A − measure N A ∧
(∀B∈sets M . B ⊆ A −→ − e < measure M B − measure N B)

proof −
interpret M ′: finite-measure N by fact
let ?d = λA. measure M A − measure N A
let ?A = λA. if (∀B∈sets M . B ⊆ space M − A −→ −e < ?d B)

then {}
else (SOME B . B ∈ sets M ∧ B ⊆ space M − A ∧ ?d B ≤ −e)

def A ≡ λn. ((λB . B ∪ ?A B) ˆˆ n) {}
have A-simps[simp]:

A 0 = {}∧
n. A (Suc n) = (A n ∪ ?A (A n)) unfolding A-def by simp-all

{ fix A assume A ∈ sets M
have ?A A ∈ sets M

by (auto intro!: someI2 [of - - λA. A ∈ sets M] simp: not-less) }
note A ′-in-sets = this
{ fix n have A n ∈ sets M

proof (induct n)
case (Suc n) thus A (Suc n) ∈ sets M

using A ′-in-sets[of A n] by (auto split : if-split-asm)
qed (simp add : A-def) }

note A-in-sets = this
hence range A ⊆ sets M by auto
{ fix n B

assume Ex : ∃B . B ∈ sets M ∧ B ⊆ space M − A n ∧ ?d B ≤ −e
hence False: ¬ (∀B∈sets M . B ⊆ space M − A n −→ −e < ?d B) by (auto

simp: not-less)
have ?d (A (Suc n)) ≤ ?d (A n) − e unfolding A-simps if-not-P [OF False]
proof (rule someI2-ex [OF Ex])

fix B assume B ∈ sets M ∧ B ⊆ space M − A n ∧ ?d B ≤ − e
hence A n ∩ B = {} B ∈ sets M and dB : ?d B ≤ −e by auto
hence ?d (A n ∪ B) = ?d (A n) + ?d B

using 〈A n ∈ sets M 〉 finite-measure-Union M ′.finite-measure-Union by
(simp add : sets-eq)

THEORY “Radon-Nikodym” 395

also have . . . ≤ ?d (A n) − e using dB by simp
finally show ?d (A n ∪ B) ≤ ?d (A n) − e .

qed }
note dA-epsilon = this
{ fix n have ?d (A (Suc n)) ≤ ?d (A n)

proof (cases ∃B . B∈sets M ∧ B ⊆ space M − A n ∧ ?d B ≤ − e)
case True from dA-epsilon[OF this] show ?thesis using 〈0 < e〉 by simp

next
case False
hence ∀B∈sets M . B ⊆ space M − A n −→ −e < ?d B by (auto simp:

not-le)
thus ?thesis by simp

qed }
note dA-mono = this
show ?thesis
proof (cases ∃n. ∀B∈sets M . B ⊆ space M − A n −→ −e < ?d B)

case True then obtain n where B :
∧

B . [[B ∈ sets M ; B ⊆ space M − A
n]] =⇒ −e < ?d B by blast

show ?thesis
proof (safe intro!: bexI [of - space M − A n])

fix B assume B ∈ sets M B ⊆ space M − A n
from B [OF this] show −e < ?d B .

next
show space M − A n ∈ sets M by (rule sets.compl-sets) fact

next
show ?d (space M) ≤ ?d (space M − A n)
proof (induct n)

fix n assume ?d (space M) ≤ ?d (space M − A n)
also have . . . ≤ ?d (space M − A (Suc n))

using A-in-sets sets.sets-into-space dA-mono[of n] finite-measure-compl
M ′.finite-measure-compl

by (simp del : A-simps add : sets-eq sets-eq-imp-space-eq [OF sets-eq])
finally show ?d (space M) ≤ ?d (space M − A (Suc n)) .

qed simp
qed

next
case False hence B :

∧
n. ∃B . B∈sets M ∧ B ⊆ space M − A n ∧ ?d B ≤ −

e
by (auto simp add : not-less)
{ fix n have ?d (A n) ≤ − real n ∗ e

proof (induct n)
case (Suc n) with dA-epsilon[of n, OF B] show ?case by (simp del :

A-simps add : of-nat-Suc field-simps)
next

case 0 with measure-empty show ?case by (simp add : zero-ennreal-def)
qed } note dA-less = this

have decseq : decseq (λn. ?d (A n)) unfolding decseq-eq-incseq
proof (rule incseq-SucI)

fix n show − ?d (A n) ≤ − ?d (A (Suc n)) using dA-mono[of n] by auto

THEORY “Radon-Nikodym” 396

qed
have A: incseq A by (auto intro!: incseq-SucI)
from finite-Lim-measure-incseq [OF - A] 〈range A ⊆ sets M 〉

M ′.finite-Lim-measure-incseq [OF - A]
have convergent : (λi . ?d (A i)) −−−−→ ?d (

⋃
i . A i)

by (auto intro!: tendsto-diff simp: sets-eq)
obtain n :: nat where − ?d (

⋃
i . A i) / e < real n using reals-Archimedean2

by auto
moreover from order-trans[OF decseq-le[OF decseq convergent] dA-less]
have real n ≤ − ?d (

⋃
i . A i) / e using 〈0<e〉 by (simp add : field-simps)

ultimately show ?thesis by auto
qed

qed

lemma (in finite-measure) Radon-Nikodym-aux :
assumes finite-measure N and sets-eq : sets N = sets M
shows ∃A∈sets M . measure M (space M) − measure N (space M) ≤

measure M A − measure N A ∧
(∀B∈sets M . B ⊆ A −→ 0 ≤ measure M B − measure N B)

proof −
interpret N : finite-measure N by fact
let ?d = λA. measure M A − measure N A
let ?P = λA n. if n = 0 then A = space M else (∀C∈sets M . C ⊆ A −→ − 1

/ real (Suc n) < ?d C)
let ?Q = λA B . A ⊆ B ∧ ?d B ≤ ?d A

have ∃A. ∀n. (A n ∈ sets M ∧ ?P (A n) n) ∧ ?Q (A (Suc n)) (A n)
proof (rule dependent-nat-choice)

show ∃A. A ∈ sets M ∧ ?P A 0
by auto

next
fix A n assume A ∈ sets M ∧ ?P A n
then have A: A ∈ sets M by auto
then have finite-measure (density M (indicator A)) 0 < 1 / real (Suc (Suc

n))
finite-measure (density N (indicator A)) sets (density N (indicator A)) =

sets (density M (indicator A))
by (auto simp: finite-measure-restricted N .finite-measure-restricted sets-eq)

from finite-measure.Radon-Nikodym-aux-epsilon[OF this] guess X .. note X
= this

with A have A ∩ X ∈ sets M ∧ ?P (A ∩ X) (Suc n) ∧ ?Q (A ∩ X) A
by (simp add : measure-restricted sets-eq sets.Int) (metis inf-absorb2)

then show ∃B . (B ∈ sets M ∧ ?P B (Suc n)) ∧ ?Q B A
by blast

qed
then obtain A where A:

∧
n. A n ∈ sets M

∧
n. ?P (A n) n

∧
n. ?Q (A (Suc

n)) (A n)
by metis

then have mono-dA: mono (λi . ?d (A i)) and A-0 [simp]: A 0 = space M

THEORY “Radon-Nikodym” 397

by (auto simp add : mono-iff-le-Suc)
show ?thesis
proof (safe intro!: bexI [of -

⋂
i . A i])

show (
⋂

i . A i) ∈ sets M using 〈
∧

n. A n ∈ sets M 〉 by auto
have decseq A using A by (auto intro!: decseq-SucI)

from A(1) finite-Lim-measure-decseq [OF - this] N .finite-Lim-measure-decseq [OF
- this]

have (λi . ?d (A i)) −−−−→ ?d (
⋂

i . A i) by (auto intro!: tendsto-diff simp:
sets-eq)

thus ?d (space M) ≤ ?d (
⋂

i . A i) using mono-dA[THEN monoD , of 0 -]
by (rule-tac LIMSEQ-le-const) auto

next
fix B assume B : B ∈ sets M B ⊆ (

⋂
i . A i)

show 0 ≤ ?d B
proof (rule ccontr)

assume ¬ 0 ≤ ?d B
hence 0 < − ?d B by auto
from reals-Archimedean[OF this]
obtain n where ∗: ?d B < − 1 / real (Suc n)

by (auto simp: field-simps)
also have . . . ≤ − 1 / real (Suc (Suc n))

by (auto simp: field-simps)
finally show False

using ∗ A(2)[of Suc n] B by (auto elim!: ballE [of - - B])
qed

qed
qed

lemma (in finite-measure) Radon-Nikodym-finite-measure:
assumes finite-measure N and sets-eq : sets N = sets M
assumes absolutely-continuous M N
shows ∃ f ∈ borel-measurable M . (∀ x . 0 ≤ f x) ∧ density M f = N

proof −
interpret N : finite-measure N by fact
def G ≡ {g ∈ borel-measurable M . (∀ x . 0 ≤ g x) ∧ (∀A∈sets M . (

∫
+x . g x ∗

indicator A x ∂M) ≤ N A)}
{ fix f have f ∈ G =⇒ f ∈ borel-measurable M by (auto simp: G-def) }
note this[measurable-dest]
have (λx . 0) ∈ G unfolding G-def by auto
hence G 6= {} by auto
{ fix f g assume f : f ∈ G and g : g ∈ G

have (λx . max (g x) (f x)) ∈ G (is ?max ∈ G) unfolding G-def
proof safe

show ?max ∈ borel-measurable M using f g unfolding G-def by auto
let ?A = {x ∈ space M . f x ≤ g x}
have ?A ∈ sets M using f g unfolding G-def by auto
fix A assume A ∈ sets M
hence sets: ?A ∩ A ∈ sets M (space M − ?A) ∩ A ∈ sets M using 〈?A ∈

sets M 〉 by auto

THEORY “Radon-Nikodym” 398

hence sets ′: ?A ∩ A ∈ sets N (space M − ?A) ∩ A ∈ sets N by (auto simp:
sets-eq)

have union: ((?A ∩ A) ∪ ((space M − ?A) ∩ A)) = A
using sets.sets-into-space[OF 〈A ∈ sets M 〉] by auto

have
∧

x . x ∈ space M =⇒ max (g x) (f x) ∗ indicator A x =
g x ∗ indicator (?A ∩ A) x + f x ∗ indicator ((space M − ?A) ∩ A) x
by (auto simp: indicator-def max-def)

hence (
∫

+x . max (g x) (f x) ∗ indicator A x ∂M) =
(
∫

+x . g x ∗ indicator (?A ∩ A) x ∂M) +
(
∫

+x . f x ∗ indicator ((space M − ?A) ∩ A) x ∂M)
using f g sets unfolding G-def
by (auto cong : nn-integral-cong intro!: nn-integral-add)

also have . . . ≤ N (?A ∩ A) + N ((space M − ?A) ∩ A)
using f g sets unfolding G-def by (auto intro!: add-mono)

also have . . . = N A
using plus-emeasure[OF sets ′] union by auto

finally show (
∫

+x . max (g x) (f x) ∗ indicator A x ∂M) ≤ N A .
next

fix x show 0 ≤ max (g x) (f x) using f g by (auto simp: G-def split :
split-max)

qed }
note max-in-G = this
{ fix f assume incseq f and f :

∧
i . f i ∈ G

then have [measurable]:
∧

i . f i ∈ borel-measurable M by (auto simp: G-def)
have (λx . SUP i . f i x) ∈ G unfolding G-def
proof safe

show (λx . SUP i . f i x) ∈ borel-measurable M by measurable
{ fix x show 0 ≤ (SUP i . f i x)

using f by (auto simp: G-def intro: SUP-upper2) }
next

fix A assume A ∈ sets M
have (

∫
+x . (SUP i . f i x) ∗ indicator A x ∂M) =

(
∫

+x . (SUP i . f i x ∗ indicator A x) ∂M)
by (intro nn-integral-cong) (simp split : split-indicator)

also have . . . = (SUP i . (
∫

+x . f i x ∗ indicator A x ∂M))
using 〈incseq f 〉 f 〈A ∈ sets M 〉

by (intro nn-integral-monotone-convergence-SUP)
(auto simp: G-def incseq-Suc-iff le-fun-def split : split-indicator)

finally show (
∫

+x . (SUP i . f i x) ∗ indicator A x ∂M) ≤ N A
using f 〈A ∈ sets M 〉 by (auto intro!: SUP-least simp: G-def)

qed }
note SUP-in-G = this
let ?y = SUP g : G . integralN M g
have y-le: ?y ≤ N (space M) unfolding G-def
proof (safe intro!: SUP-least)

fix g assume ∀A∈sets M . (
∫

+x . g x ∗ indicator A x ∂M) ≤ N A
from this[THEN bspec, OF sets.top] show integralN M g ≤ N (space M)

by (simp cong : nn-integral-cong)
qed

THEORY “Radon-Nikodym” 399

from ennreal-SUP-countable-SUP [OF 〈G 6= {}〉, of integralN M] guess ys ..
note ys = this

then have ∀n. ∃ g . g∈G ∧ integralN M g = ys n
proof safe

fix n assume range ys ⊆ integralN M ‘ G
hence ys n ∈ integralN M ‘ G by auto
thus ∃ g . g∈G ∧ integralN M g = ys n by auto

qed
from choice[OF this] obtain gs where

∧
i . gs i ∈ G

∧
n. integralN M (gs n)

= ys n by auto
hence y-eq : ?y = (SUP i . integralN M (gs i)) using ys by auto
let ?g = λi x . Max ((λn. gs n x) ‘ {..i})
def f ≡ λx . SUP i . ?g i x
let ?F = λA x . f x ∗ indicator A x
have gs-not-empty :

∧
i x . (λn. gs n x) ‘ {..i} 6= {} by auto

{ fix i have ?g i ∈ G
proof (induct i)

case 0 thus ?case by simp fact
next

case (Suc i)
with Suc gs-not-empty 〈gs (Suc i) ∈ G〉 show ?case

by (auto simp add : atMost-Suc intro!: max-in-G)
qed }

note g-in-G = this
have incseq ?g using gs-not-empty

by (auto intro!: incseq-SucI le-funI simp add : atMost-Suc)
from SUP-in-G [OF this g-in-G] have [measurable]: f ∈ G unfolding f-def .
then have [simp, intro]: f ∈ borel-measurable M unfolding G-def by auto
have integralN M f = (SUP i . integralN M (?g i)) unfolding f-def

using g-in-G 〈incseq ?g〉

by (auto intro!: nn-integral-monotone-convergence-SUP simp: G-def)
also have . . . = ?y
proof (rule antisym)

show (SUP i . integralN M (?g i)) ≤ ?y
using g-in-G by (auto intro: SUP-mono)

show ?y ≤ (SUP i . integralN M (?g i)) unfolding y-eq
by (auto intro!: SUP-mono nn-integral-mono Max-ge)

qed
finally have int-f-eq-y : integralN M f = ?y .
have

∧
x . 0 ≤ f x

unfolding f-def using 〈
∧

i . gs i ∈ G〉

by (auto intro!: SUP-upper2 Max-ge-iff [THEN iffD2] simp: G-def)
let ?t = λA. N A − (

∫
+x . ?F A x ∂M)

let ?M = diff-measure N (density M f)
have f-le-N :

∧
A. A ∈ sets M =⇒ (

∫
+x . ?F A x ∂M) ≤ N A

using 〈f ∈ G〉 unfolding G-def by auto
have emeasure-M :

∧
A. A ∈ sets M =⇒ emeasure ?M A = ?t A

proof (subst emeasure-diff-measure)
from f-le-N [of space M] show finite-measure N finite-measure (density M f)

THEORY “Radon-Nikodym” 400

by (auto intro!: finite-measureI simp: emeasure-density top-unique cong :
nn-integral-cong)

next
fix B assume B ∈ sets N with f-le-N [of B] show emeasure (density M f) B

≤ emeasure N B
by (auto simp: sets-eq emeasure-density cong : nn-integral-cong)

qed (auto simp: sets-eq emeasure-density)
from emeasure-M [of space M] N .finite-emeasure-space
interpret M ′: finite-measure ?M
by (auto intro!: finite-measureI simp: sets-eq-imp-space-eq [OF sets-eq] N .emeasure-eq-measure

)

have ac: absolutely-continuous M ?M unfolding absolutely-continuous-def
proof

fix A assume A-M : A ∈ null-sets M
with 〈absolutely-continuous M N 〉 have A-N : A ∈ null-sets N

unfolding absolutely-continuous-def by auto
moreover from A-M A-N have (

∫
+ x . ?F A x ∂M) ≤ N A using 〈f ∈ G〉

by (auto simp: G-def)
ultimately have N A − (

∫
+ x . ?F A x ∂M) = 0

by (auto intro!: antisym)
then show A ∈ null-sets ?M

using A-M by (simp add : emeasure-M null-sets-def sets-eq)
qed
have upper-bound : ∀A∈sets M . ?M A ≤ 0
proof (rule ccontr)

assume ¬ ?thesis
then obtain A where A: A ∈ sets M and pos: 0 < ?M A

by (auto simp: zero-less-iff-neq-zero)
note pos
also have ?M A ≤ ?M (space M)
using emeasure-space[of ?M A] by (simp add : sets-eq [THEN sets-eq-imp-space-eq])
finally have pos-t : 0 < ?M (space M) by simp
moreover
from pos-t have emeasure M (space M) 6= 0

using ac unfolding absolutely-continuous-def by (auto simp: null-sets-def)
then have pos-M : 0 < emeasure M (space M)

by (simp add : zero-less-iff-neq-zero)
moreover
have (

∫
+x . f x ∗ indicator (space M) x ∂M) ≤ N (space M)

using 〈f ∈ G〉 unfolding G-def by auto
hence (

∫
+x . f x ∗ indicator (space M) x ∂M) 6= ∞

using M ′.finite-emeasure-space by (auto simp: top-unique)
moreover
def b ≡ ?M (space M) / emeasure M (space M) / 2
ultimately have b: b 6= 0 ∧ 0 ≤ b ∧ b 6= ∞

by (auto simp: ennreal-divide-eq-top-iff)
then have b: b 6= 0 0 ≤ b 0 < b b 6= ∞

by (auto simp: less-le)

THEORY “Radon-Nikodym” 401

let ?Mb = density M (λ-. b)
have Mb: finite-measure ?Mb sets ?Mb = sets ?M

using b by (auto simp: emeasure-density-const sets-eq ennreal-mult-eq-top-iff
intro!: finite-measureI)

from M ′.Radon-Nikodym-aux [OF this] guess A0 ..
then have A0 ∈ sets M

and space-le-A0 : measure ?M (space M) − enn2real b ∗ measure M (space
M) ≤ measure ?M A0 − enn2real b ∗ measure M A0

and ∗:
∧

B . B ∈ sets M =⇒ B ⊆ A0 =⇒ 0 ≤ measure ?M B − enn2real b
∗ measure M B

using b by (simp-all add : measure-density-const sets-eq-imp-space-eq [OF
sets-eq] sets-eq)
{ fix B assume B : B ∈ sets M B ⊆ A0

with ∗[OF this] have b ∗ emeasure M B ≤ ?M B
using b unfolding M ′.emeasure-eq-measure emeasure-eq-measure

by (cases b rule: ennreal-cases) (auto simp: ennreal-mult [symmetric]
measure-nonneg) }

note bM-le-t = this
let ?f0 = λx . f x + b ∗ indicator A0 x
{ fix A assume A: A ∈ sets M

hence A ∩ A0 ∈ sets M using 〈A0 ∈ sets M 〉 by auto
have (

∫
+x . ?f0 x ∗ indicator A x ∂M) =

(
∫

+x . f x ∗ indicator A x + b ∗ indicator (A ∩ A0) x ∂M)
by (auto intro!: nn-integral-cong split : split-indicator)

hence (
∫

+x . ?f0 x ∗ indicator A x ∂M) =
(
∫

+x . f x ∗ indicator A x ∂M) + b ∗ emeasure M (A ∩ A0)
using 〈A0 ∈ sets M 〉 〈A ∩ A0 ∈ sets M 〉 A b 〈f ∈ G〉

by (simp add : nn-integral-add nn-integral-cmult-indicator G-def) }
note f0-eq = this
{ fix A assume A: A ∈ sets M

hence A ∩ A0 ∈ sets M using 〈A0 ∈ sets M 〉 by auto
have f-le-v : (

∫
+x . ?F A x ∂M) ≤ N A using 〈f ∈ G〉 A unfolding G-def

by auto
note f0-eq [OF A]
also have (

∫
+x . ?F A x ∂M) + b ∗ emeasure M (A ∩ A0) ≤ (

∫
+x . ?F A

x ∂M) + ?M (A ∩ A0)
using bM-le-t [OF 〈A ∩ A0 ∈ sets M 〉] 〈A ∈ sets M 〉 〈A0 ∈ sets M 〉

by (auto intro!: add-left-mono)
also have . . . ≤ (

∫
+x . f x ∗ indicator A x ∂M) + ?M A

using emeasure-mono[of A ∩ A0 A ?M] 〈A ∈ sets M 〉 〈A0 ∈ sets M 〉

by (auto intro!: add-left-mono simp: sets-eq)
also have . . . ≤ N A

unfolding emeasure-M [OF 〈A ∈ sets M 〉]
using f-le-v N .emeasure-eq-measure[of A]
by (cases

∫
+x . ?F A x ∂M N A rule: ennreal2-cases)

(auto simp: top-unique measure-nonneg ennreal-minus ennreal-plus[symmetric]
simp del : ennreal-plus)

finally have (
∫

+x . ?f0 x ∗ indicator A x ∂M) ≤ N A . }
hence ?f0 ∈ G using 〈A0 ∈ sets M 〉 b 〈f ∈ G〉 by (auto simp: G-def)

THEORY “Radon-Nikodym” 402

have int-f-finite: integralN M f 6= ∞
by (metis top-unique infinity-ennreal-def int-f-eq-y y-le N .emeasure-finite)

have pos: 0 < measure ?M (space M) − enn2real b ∗ measure M (space M)
using pos-t pos-M

by (simp add : M ′.emeasure-eq-measure emeasure-eq-measure b-def divide-ennreal
ennreal-divide-numeral)

also have . . . ≤ measure ?M A0 − enn2real b ∗ measure M A0
by (rule space-le-A0)

finally have enn2real b ∗ measure M A0 < measure ?M A0
by simp

with b have ?M A0 6= 0
by (cases b rule: ennreal-cases)
(auto simp: M ′.emeasure-eq-measure measure-nonneg mult-less-0-iff not-le[symmetric])

then have emeasure M A0 6= 0
using ac 〈A0 ∈ sets M 〉 by (auto simp: absolutely-continuous-def null-sets-def)
then have 0 < emeasure M A0

by (auto simp: zero-less-iff-neq-zero)
hence 0 < b ∗ emeasure M A0

using b by (auto simp: ennreal-zero-less-mult-iff)
with int-f-finite have ?y < integralN M f + b ∗ emeasure M A0

unfolding int-f-eq-y by auto
also have . . . = integralN M ?f0

using f0-eq [OF sets.top] 〈A0 ∈ sets M 〉 sets.sets-into-space by (simp cong :
nn-integral-cong)

finally have ?y < integralN M ?f0
by simp

moreover have integralN M ?f0 ≤ ?y
using 〈?f0 ∈ G〉 by (auto intro!: SUP-upper)

ultimately show False by auto
qed
show ?thesis
proof (intro bexI [of - f] measure-eqI conjI)

show sets (density M f) = sets N
by (simp add : sets-eq)

fix A assume A: A∈sets (density M f)
then show emeasure (density M f) A = emeasure N A

using 〈f ∈ G〉 A upper-bound [THEN bspec, of A] N .emeasure-eq-measure[of
A]

by (cases integralN M (?F A))
(auto intro!: antisym simp: emeasure-density G-def emeasure-M ennreal-minus-eq-0

top-unique
simp del : measure-nonneg)

qed auto
qed

lemma (in finite-measure) split-space-into-finite-sets-and-rest :
assumes ac: absolutely-continuous M N and sets-eq : sets N = sets M
shows ∃A0∈sets M . ∃B ::nat⇒ ′a set . disjoint-family B ∧ range B ⊆ sets M ∧

A0 = space M − (
⋃

i . B i) ∧

THEORY “Radon-Nikodym” 403

(∀A∈sets M . A ⊆ A0 −→ (emeasure M A = 0 ∧ N A = 0) ∨ (emeasure M A
> 0 ∧ N A = ∞)) ∧

(∀ i . N (B i) 6= ∞)
proof −

let ?Q = {Q∈sets M . N Q 6= ∞}
let ?a = SUP Q :?Q . emeasure M Q
have {} ∈ ?Q by auto
then have Q-not-empty : ?Q 6= {} by blast
have ?a ≤ emeasure M (space M) using sets.sets-into-space

by (auto intro!: SUP-least emeasure-mono)
then have ?a 6= ∞

using finite-emeasure-space
by (auto simp: less-top[symmetric] top-unique simp del : SUP-eq-top-iff Sup-eq-top-iff)
from ennreal-SUP-countable-SUP [OF Q-not-empty , of emeasure M]
obtain Q ′′ where range Q ′′ ⊆ emeasure M ‘ ?Q and a: ?a = (SUP i ::nat . Q ′′

i)
by auto

then have ∀ i . ∃Q ′. Q ′′ i = emeasure M Q ′ ∧ Q ′ ∈ ?Q by auto
from choice[OF this] obtain Q ′ where Q ′:

∧
i . Q ′′ i = emeasure M (Q ′ i)

∧
i .

Q ′ i ∈ ?Q
by auto

then have a-Lim: ?a = (SUP i ::nat . emeasure M (Q ′ i)) using a by simp
let ?O = λn.

⋃
i≤n. Q ′ i

have Union: (SUP i . emeasure M (?O i)) = emeasure M (
⋃

i . ?O i)
proof (rule SUP-emeasure-incseq [of ?O])

show range ?O ⊆ sets M using Q ′ by auto
show incseq ?O by (fastforce intro!: incseq-SucI)

qed
have Q ′-sets:

∧
i . Q ′ i ∈ sets M using Q ′ by auto

have O-sets:
∧

i . ?O i ∈ sets M using Q ′ by auto
then have O-in-G :

∧
i . ?O i ∈ ?Q

proof (safe del : notI)
fix i have Q ′ ‘ {..i} ⊆ sets M using Q ′ by auto
then have N (?O i) ≤ (

∑
i≤i . N (Q ′ i))

by (simp add : sets-eq emeasure-subadditive-finite)
also have . . . < ∞ using Q ′ by (simp add : less-top)
finally show N (?O i) 6= ∞ by simp

qed auto
have O-mono:

∧
n. ?O n ⊆ ?O (Suc n) by fastforce

have a-eq : ?a = emeasure M (
⋃

i . ?O i) unfolding Union[symmetric]
proof (rule antisym)

show ?a ≤ (SUP i . emeasure M (?O i)) unfolding a-Lim
using Q ′ by (auto intro!: SUP-mono emeasure-mono)

show (SUP i . emeasure M (?O i)) ≤ ?a
proof (safe intro!: Sup-mono, unfold bex-simps)

fix i
have ∗: (

⋃
(Q ′ ‘ {..i})) = ?O i by auto

then show ∃ x . (x ∈ sets M ∧ N x 6= ∞) ∧
emeasure M (

⋃
(Q ′ ‘ {..i})) ≤ emeasure M x

THEORY “Radon-Nikodym” 404

using O-in-G [of i] by (auto intro!: exI [of - ?O i])
qed

qed
let ?O-0 = (

⋃
i . ?O i)

have ?O-0 ∈ sets M using Q ′ by auto
def Q ≡ λi . case i of 0 ⇒ Q ′ 0 | Suc n ⇒ ?O (Suc n) − ?O n
{ fix i have Q i ∈ sets M unfolding Q-def using Q ′[of 0] by (cases i) (auto

intro: O-sets) }
note Q-sets = this
show ?thesis
proof (intro bexI exI conjI ballI impI allI)

show disjoint-family Q
by (fastforce simp: disjoint-family-on-def Q-def

split : nat .split-asm)
show range Q ⊆ sets M

using Q-sets by auto
{ fix A assume A: A ∈ sets M A ⊆ space M − ?O-0

show emeasure M A = 0 ∧ N A = 0 ∨ 0 < emeasure M A ∧ N A = ∞
proof (rule disjCI , simp)

assume ∗: emeasure M A = 0 ∨ N A 6= top
show emeasure M A = 0 ∧ N A = 0
proof (cases emeasure M A = 0)

case True
with ac A have N A = 0

unfolding absolutely-continuous-def by auto
with True show ?thesis by simp

next
case False
with ∗ have N A 6= ∞ by auto
with A have emeasure M ?O-0 + emeasure M A = emeasure M (?O-0 ∪

A)
using Q ′ by (auto intro!: plus-emeasure sets.countable-UN)

also have . . . = (SUP i . emeasure M (?O i ∪ A))
proof (rule SUP-emeasure-incseq [of λi . ?O i ∪ A, symmetric, simplified])

show range (λi . ?O i ∪ A) ⊆ sets M
using 〈N A 6= ∞〉 O-sets A by auto

qed (fastforce intro!: incseq-SucI)
also have . . . ≤ ?a
proof (safe intro!: SUP-least)

fix i have ?O i ∪ A ∈ ?Q
proof (safe del : notI)

show ?O i ∪ A ∈ sets M using O-sets A by auto
from O-in-G [of i] have N (?O i ∪ A) ≤ N (?O i) + N A

using emeasure-subadditive[of ?O i N A] A O-sets by (auto simp:
sets-eq)

with O-in-G [of i] show N (?O i ∪ A) 6= ∞
using 〈N A 6= ∞〉 by (auto simp: top-unique)

qed
then show emeasure M (?O i ∪ A) ≤ ?a by (rule SUP-upper)

THEORY “Radon-Nikodym” 405

qed
finally have emeasure M A = 0

unfolding a-eq using measure-nonneg [of M A] by (simp add : emeasure-eq-measure)
with 〈emeasure M A 6= 0 〉 show ?thesis by auto

qed
qed }
{ fix i show N (Q i) 6= ∞

proof (cases i)
case 0 then show ?thesis

unfolding Q-def using Q ′[of 0] by simp
next

case (Suc n)
with 〈?O n ∈ ?Q 〉 〈?O (Suc n) ∈ ?Q 〉 emeasure-Diff [OF - - - O-mono, of

N n]
show ?thesis

by (auto simp: sets-eq Q-def)
qed }

show space M − ?O-0 ∈ sets M using Q ′-sets by auto
{ fix j have (

⋃
i≤j . ?O i) = (

⋃
i≤j . Q i)

proof (induct j)
case 0 then show ?case by (simp add : Q-def)

next
case (Suc j)
have eq :

∧
j . (

⋃
i≤j . ?O i) = (

⋃
i≤j . Q ′ i) by fastforce

have {..j} ∪ {..Suc j} = {..Suc j} by auto
then have (

⋃
i≤Suc j . Q ′ i) = (

⋃
i≤j . Q ′ i) ∪ Q (Suc j)

by (simp add : UN-Un[symmetric] Q-def del : UN-Un)
then show ?case using Suc by (auto simp add : eq atMost-Suc)

qed }
then have (

⋃
j . (

⋃
i≤j . ?O i)) = (

⋃
j . (

⋃
i≤j . Q i)) by simp

then show space M − ?O-0 = space M − (
⋃

i . Q i) by fastforce
qed

qed

lemma (in finite-measure) Radon-Nikodym-finite-measure-infinite:
assumes absolutely-continuous M N and sets-eq : sets N = sets M
shows ∃ f ∈borel-measurable M . (∀ x . 0 ≤ f x) ∧ density M f = N

proof −
from split-space-into-finite-sets-and-rest [OF assms]
obtain Q0 and Q :: nat ⇒ ′a set

where Q : disjoint-family Q range Q ⊆ sets M
and Q0 : Q0 ∈ sets M Q0 = space M − (

⋃
i . Q i)

and in-Q0 :
∧

A. A ∈ sets M =⇒ A ⊆ Q0 =⇒ emeasure M A = 0 ∧ N A = 0
∨ 0 < emeasure M A ∧ N A = ∞

and Q-fin:
∧

i . N (Q i) 6= ∞ by force
from Q have Q-sets:

∧
i . Q i ∈ sets M by auto

let ?N = λi . density N (indicator (Q i)) and ?M = λi . density M (indicator
(Q i))

have ∀ i . ∃ f ∈borel-measurable (?M i). (∀ x . 0 ≤ f x) ∧ density (?M i) f = ?N i

THEORY “Radon-Nikodym” 406

proof (intro allI finite-measure.Radon-Nikodym-finite-measure)
fix i
from Q show finite-measure (?M i)

by (auto intro!: finite-measureI cong : nn-integral-cong
simp add : emeasure-density subset-eq sets-eq)

from Q have emeasure (?N i) (space N) = emeasure N (Q i)
by (simp add : sets-eq [symmetric] emeasure-density subset-eq cong : nn-integral-cong)
with Q-fin show finite-measure (?N i)

by (auto intro!: finite-measureI)
show sets (?N i) = sets (?M i) by (simp add : sets-eq)
have [measurable]:

∧
A. A ∈ sets M =⇒ A ∈ sets N by (simp add : sets-eq)

show absolutely-continuous (?M i) (?N i)
using 〈absolutely-continuous M N 〉 〈Q i ∈ sets M 〉

by (auto simp: absolutely-continuous-def null-sets-density-iff sets-eq
intro!: absolutely-continuous-AE [OF sets-eq])

qed
from choice[OF this[unfolded Bex-def]]
obtain f where borel :

∧
i . f i ∈ borel-measurable M

∧
i x . 0 ≤ f i x

and f-density :
∧

i . density (?M i) (f i) = ?N i
by force
{ fix A i assume A: A ∈ sets M

with Q borel have (
∫

+x . f i x ∗ indicator (Q i ∩ A) x ∂M) = emeasure
(density (?M i) (f i)) A

by (auto simp add : emeasure-density nn-integral-density subset-eq
intro!: nn-integral-cong split : split-indicator)

also have . . . = emeasure N (Q i ∩ A)
using A Q by (simp add : f-density emeasure-restricted subset-eq sets-eq)

finally have emeasure N (Q i ∩ A) = (
∫

+x . f i x ∗ indicator (Q i ∩ A) x
∂M) .. }

note integral-eq = this
let ?f = λx . (

∑
i . f i x ∗ indicator (Q i) x) + ∞ ∗ indicator Q0 x

show ?thesis
proof (safe intro!: bexI [of - ?f])

show ?f ∈ borel-measurable M using Q0 borel Q-sets
by (auto intro!: measurable-If)

show
∧

x . 0 ≤ ?f x using borel by (auto intro!: suminf-0-le simp: indicator-def)
show density M ?f = N
proof (rule measure-eqI)

fix A assume A ∈ sets (density M ?f)
then have A ∈ sets M by simp
have Qi :

∧
i . Q i ∈ sets M using Q by auto

have [intro,simp]:
∧

i . (λx . f i x ∗ indicator (Q i ∩ A) x) ∈ borel-measurable
M ∧

i . AE x in M . 0 ≤ f i x ∗ indicator (Q i ∩ A) x
using borel Qi Q0 (1) 〈A ∈ sets M 〉 by auto

have (
∫

+x . ?f x ∗ indicator A x ∂M) = (
∫

+x . (
∑

i . f i x ∗ indicator (Q i
∩ A) x) + ∞ ∗ indicator (Q0 ∩ A) x ∂M)

using borel by (intro nn-integral-cong) (auto simp: indicator-def)
also have . . . = (

∫
+x . (

∑
i . f i x ∗ indicator (Q i ∩ A) x) ∂M) + ∞ ∗

THEORY “Radon-Nikodym” 407

emeasure M (Q0 ∩ A)
using borel Qi Q0 (1) 〈A ∈ sets M 〉

by (subst nn-integral-add)
(auto simp add : nn-integral-cmult-indicator sets.Int intro!: suminf-0-le)

also have . . . = (
∑

i . N (Q i ∩ A)) + ∞ ∗ emeasure M (Q0 ∩ A)
by (subst integral-eq [OF 〈A ∈ sets M 〉], subst nn-integral-suminf) auto

finally have (
∫

+x . ?f x ∗ indicator A x ∂M) = (
∑

i . N (Q i ∩ A)) + ∞ ∗
emeasure M (Q0 ∩ A) .

moreover have (
∑

i . N (Q i ∩ A)) = N ((
⋃

i . Q i) ∩ A)
using Q Q-sets 〈A ∈ sets M 〉

by (subst suminf-emeasure) (auto simp: disjoint-family-on-def sets-eq)
moreover have ∞ ∗ emeasure M (Q0 ∩ A) = N (Q0 ∩ A)
proof −

have Q0 ∩ A ∈ sets M using Q0 (1) 〈A ∈ sets M 〉 by blast
from in-Q0 [OF this] show ?thesis by (auto simp: ennreal-top-mult)

qed
moreover have Q0 ∩ A ∈ sets M ((

⋃
i . Q i) ∩ A) ∈ sets M

using Q-sets 〈A ∈ sets M 〉 Q0 (1) by auto
moreover have ((

⋃
i . Q i) ∩ A) ∪ (Q0 ∩ A) = A ((

⋃
i . Q i) ∩ A) ∩ (Q0

∩ A) = {}
using 〈A ∈ sets M 〉 sets.sets-into-space Q0 by auto

ultimately have N A = (
∫

+x . ?f x ∗ indicator A x ∂M)
using plus-emeasure[of (

⋃
i . Q i) ∩ A N Q0 ∩ A] by (simp add : sets-eq)

with 〈A ∈ sets M 〉 borel Q Q0 (1) show emeasure (density M ?f) A = N A
by (auto simp: subset-eq emeasure-density)

qed (simp add : sets-eq)
qed

qed

lemma (in sigma-finite-measure) Radon-Nikodym:
assumes ac: absolutely-continuous M N assumes sets-eq : sets N = sets M
shows ∃ f ∈ borel-measurable M . (∀ x . 0 ≤ f x) ∧ density M f = N

proof −
from Ex-finite-integrable-function
obtain h where finite: integralN M h 6= ∞ and

borel : h ∈ borel-measurable M and
nn:

∧
x . 0 ≤ h x and

pos:
∧

x . x ∈ space M =⇒ 0 < h x and∧
x . x ∈ space M =⇒ h x < ∞ by auto

let ?T = λA. (
∫

+x . h x ∗ indicator A x ∂M)
let ?MT = density M h
from borel finite nn interpret T : finite-measure ?MT

by (auto intro!: finite-measureI cong : nn-integral-cong simp: emeasure-density)
have absolutely-continuous ?MT N sets N = sets ?MT
proof (unfold absolutely-continuous-def , safe)

fix A assume A ∈ null-sets ?MT
with borel have A ∈ sets M AE x in M . x ∈ A −→ h x ≤ 0

by (auto simp add : null-sets-density-iff)
with pos sets.sets-into-space have AE x in M . x /∈ A

THEORY “Radon-Nikodym” 408

by (elim eventually-mono) (auto simp: not-le[symmetric])
then have A ∈ null-sets M

using 〈A ∈ sets M 〉 by (simp add : AE-iff-null-sets)
with ac show A ∈ null-sets N

by (auto simp: absolutely-continuous-def)
qed (auto simp add : sets-eq)
from T .Radon-Nikodym-finite-measure-infinite[OF this]
obtain f where f-borel : f ∈ borel-measurable M

∧
x . 0 ≤ f x density ?MT f =

N by auto
with nn borel show ?thesis

by (auto intro!: bexI [of - λx . h x ∗ f x] simp: density-density-eq)
qed

11.3 Uniqueness of densities

lemma finite-density-unique:
assumes borel : f ∈ borel-measurable M g ∈ borel-measurable M
assumes pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ g x
and fin: integralN M f 6= ∞
shows density M f = density M g ←→ (AE x in M . f x = g x)

proof (intro iffI ballI)
fix A assume eq : AE x in M . f x = g x
with borel show density M f = density M g

by (auto intro: density-cong)
next

let ?P = λf A.
∫

+ x . f x ∗ indicator A x ∂M
assume density M f = density M g
with borel have eq : ∀A∈sets M . ?P f A = ?P g A

by (simp add : emeasure-density [symmetric])
from this[THEN bspec, OF sets.top] fin
have g-fin: integralN M g 6= ∞ by (simp cong : nn-integral-cong)
{ fix f g assume borel : f ∈ borel-measurable M g ∈ borel-measurable M

and pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ g x
and g-fin: integralN M g 6= ∞ and eq : ∀A∈sets M . ?P f A = ?P g A

let ?N = {x∈space M . g x < f x}
have N : ?N ∈ sets M using borel by simp
have ?P g ?N ≤ integralN M g using pos

by (intro nn-integral-mono-AE) (auto split : split-indicator)
then have Pg-fin: ?P g ?N 6= ∞ using g-fin by (auto simp: top-unique)
have ?P (λx . (f x − g x)) ?N = (

∫
+x . f x ∗ indicator ?N x − g x ∗ indicator

?N x ∂M)
by (auto intro!: nn-integral-cong simp: indicator-def)

also have . . . = ?P f ?N − ?P g ?N
proof (rule nn-integral-diff)

show (λx . f x ∗ indicator ?N x) ∈ borel-measurable M (λx . g x ∗ indicator
?N x) ∈ borel-measurable M

using borel N by auto
show AE x in M . g x ∗ indicator ?N x ≤ f x ∗ indicator ?N x

using pos by (auto split : split-indicator)

THEORY “Radon-Nikodym” 409

qed fact
also have . . . = 0

unfolding eq [THEN bspec, OF N] using Pg-fin by auto
finally have AE x in M . f x ≤ g x

using pos borel nn-integral-PInf-AE [OF borel(2) g-fin]
by (subst (asm) nn-integral-0-iff-AE)

(auto split : split-indicator simp: not-less ennreal-minus-eq-0) }
from this[OF borel pos g-fin eq] this[OF borel(2 ,1) pos(2 ,1) fin] eq
show AE x in M . f x = g x by auto

qed

lemma (in finite-measure) density-unique-finite-measure:
assumes borel : f ∈ borel-measurable M f ′ ∈ borel-measurable M
assumes pos: AE x in M . 0 ≤ f x AE x in M . 0 ≤ f ′ x
assumes f :

∧
A. A ∈ sets M =⇒ (

∫
+x . f x ∗ indicator A x ∂M) = (

∫
+x . f ′ x

∗ indicator A x ∂M)
(is

∧
A. A ∈ sets M =⇒ ?P f A = ?P f ′ A)

shows AE x in M . f x = f ′ x
proof −

let ?D = λf . density M f
let ?N = λA. ?P f A and ?N ′ = λA. ?P f ′ A
let ?f = λA x . f x ∗ indicator A x and ?f ′ = λA x . f ′ x ∗ indicator A x

have ac: absolutely-continuous M (density M f) sets (density M f) = sets M
using borel by (auto intro!: absolutely-continuousI-density)

from split-space-into-finite-sets-and-rest [OF this]
obtain Q0 and Q :: nat ⇒ ′a set

where Q : disjoint-family Q range Q ⊆ sets M
and Q0 : Q0 ∈ sets M Q0 = space M − (

⋃
i . Q i)

and in-Q0 :
∧

A. A ∈ sets M =⇒ A ⊆ Q0 =⇒ emeasure M A = 0 ∧ ?D f A
= 0 ∨ 0 < emeasure M A ∧ ?D f A = ∞

and Q-fin:
∧

i . ?D f (Q i) 6= ∞ by force
with borel pos have in-Q0 :

∧
A. A ∈ sets M =⇒ A ⊆ Q0 =⇒ emeasure M A

= 0 ∧ ?N A = 0 ∨ 0 < emeasure M A ∧ ?N A = ∞
and Q-fin:

∧
i . ?N (Q i) 6= ∞ by (auto simp: emeasure-density subset-eq)

from Q have Q-sets:
∧

i . Q i ∈ sets M by auto
let ?D = {x∈space M . f x 6= f ′ x}
have ?D ∈ sets M using borel by auto
have ∗:

∧
i x A.

∧
y ::ennreal . y ∗ indicator (Q i) x ∗ indicator A x = y ∗ indicator

(Q i ∩ A) x
unfolding indicator-def by auto

have ∀ i . AE x in M . ?f (Q i) x = ?f ′ (Q i) x using borel Q-fin Q pos
by (intro finite-density-unique[THEN iffD1] allI)

(auto intro!: f measure-eqI simp: emeasure-density ∗ subset-eq)
moreover have AE x in M . ?f Q0 x = ?f ′ Q0 x
proof (rule AE-I ′)
{ fix f :: ′a ⇒ ennreal assume borel : f ∈ borel-measurable M

and eq :
∧

A. A ∈ sets M =⇒ ?N A = (
∫

+x . f x ∗ indicator A x ∂M)

THEORY “Radon-Nikodym” 410

let ?A = λi . Q0 ∩ {x ∈ space M . f x < (i ::nat)}
have (

⋃
i . ?A i) ∈ null-sets M

proof (rule null-sets-UN)
fix i ::nat have ?A i ∈ sets M

using borel Q0 (1) by auto
have ?N (?A i) ≤ (

∫
+x . (i ::ennreal) ∗ indicator (?A i) x ∂M)

unfolding eq [OF 〈?A i ∈ sets M 〉]
by (auto intro!: nn-integral-mono simp: indicator-def)

also have . . . = i ∗ emeasure M (?A i)
using 〈?A i ∈ sets M 〉 by (auto intro!: nn-integral-cmult-indicator)

also have . . . <∞ using emeasure-real [of ?A i] by (auto simp: ennreal-mult-less-top
of-nat-less-top)

finally have ?N (?A i) 6= ∞ by simp
then show ?A i ∈ null-sets M using in-Q0 [OF 〈?A i ∈ sets M 〉] 〈?A i ∈

sets M 〉 by auto
qed
also have (

⋃
i . ?A i) = Q0 ∩ {x∈space M . f x 6= ∞}

by (auto simp: ennreal-Ex-less-of-nat less-top[symmetric])
finally have Q0 ∩ {x∈space M . f x 6= ∞} ∈ null-sets M by simp }

from this[OF borel(1) refl] this[OF borel(2) f]
have Q0 ∩ {x∈space M . f x 6= ∞} ∈ null-sets M Q0 ∩ {x∈space M . f ′ x 6=

∞} ∈ null-sets M by simp-all
then show (Q0 ∩ {x∈space M . f x 6= ∞}) ∪ (Q0 ∩ {x∈space M . f ′ x 6= ∞})

∈ null-sets M by (rule null-sets.Un)
show {x ∈ space M . ?f Q0 x 6= ?f ′ Q0 x} ⊆

(Q0 ∩ {x∈space M . f x 6= ∞}) ∪ (Q0 ∩ {x∈space M . f ′ x 6= ∞}) by (auto
simp: indicator-def)

qed
moreover have AE x in M . (?f Q0 x = ?f ′ Q0 x) −→ (∀ i . ?f (Q i) x = ?f ′

(Q i) x) −→
?f (space M) x = ?f ′ (space M) x
by (auto simp: indicator-def Q0)

ultimately have AE x in M . ?f (space M) x = ?f ′ (space M) x
unfolding AE-all-countable[symmetric]
by eventually-elim (auto intro!: AE-I2 split : if-split-asm simp: indicator-def)

then show AE x in M . f x = f ′ x by auto
qed

lemma (in sigma-finite-measure) density-unique:
assumes f : f ∈ borel-measurable M
assumes f ′: f ′ ∈ borel-measurable M
assumes density-eq : density M f = density M f ′

shows AE x in M . f x = f ′ x
proof −

obtain h where h-borel : h ∈ borel-measurable M
and fin: integralN M h 6= ∞ and pos:

∧
x . x ∈ space M =⇒ 0 < h x ∧ h x <

∞
∧

x . 0 ≤ h x
using Ex-finite-integrable-function by auto

then have h-nn: AE x in M . 0 ≤ h x by auto

THEORY “Radon-Nikodym” 411

let ?H = density M h
interpret h: finite-measure ?H

using fin h-borel pos
by (intro finite-measureI) (simp cong : nn-integral-cong emeasure-density add :

fin)
let ?fM = density M f
let ?f ′M = density M f ′

{ fix A assume A ∈ sets M
then have {x ∈ space M . h x ∗ indicator A x 6= 0} = A

using pos(1) sets.sets-into-space by (force simp: indicator-def)
then have (

∫
+x . h x ∗ indicator A x ∂M) = 0 ←→ A ∈ null-sets M

using h-borel 〈A ∈ sets M 〉 h-nn by (subst nn-integral-0-iff) auto }
note h-null-sets = this
{ fix A assume A ∈ sets M

have (
∫

+x . f x ∗ (h x ∗ indicator A x) ∂M) = (
∫

+x . h x ∗ indicator A x
∂?fM)

using 〈A ∈ sets M 〉 h-borel h-nn f f ′

by (intro nn-integral-density [symmetric]) auto
also have . . . = (

∫
+x . h x ∗ indicator A x ∂?f ′M)

by (simp-all add : density-eq)
also have . . . = (

∫
+x . f ′ x ∗ (h x ∗ indicator A x) ∂M)

using 〈A ∈ sets M 〉 h-borel h-nn f f ′

by (intro nn-integral-density) auto
finally have (

∫
+x . h x ∗ (f x ∗ indicator A x) ∂M) = (

∫
+x . h x ∗ (f ′ x ∗

indicator A x) ∂M)
by (simp add : ac-simps)

then have (
∫

+x . (f x ∗ indicator A x) ∂?H) = (
∫

+x . (f ′ x ∗ indicator A x)
∂?H)

using 〈A ∈ sets M 〉 h-borel h-nn f f ′

by (subst (asm) (1 2) nn-integral-density [symmetric]) auto }
then have AE x in ?H . f x = f ′ x using h-borel h-nn f f ′

by (intro h.density-unique-finite-measure absolutely-continuous-AE [of M]) auto
with AE-space[of M] pos show AE x in M . f x = f ′ x

unfolding AE-density [OF h-borel] by auto
qed

lemma (in sigma-finite-measure) density-unique-iff :
assumes f : f ∈ borel-measurable M and f ′: f ′ ∈ borel-measurable M
shows density M f = density M f ′←→ (AE x in M . f x = f ′ x)
using density-unique[OF assms] density-cong [OF f f ′] by auto

lemma sigma-finite-density-unique:
assumes borel : f ∈ borel-measurable M g ∈ borel-measurable M
and fin: sigma-finite-measure (density M f)
shows density M f = density M g ←→ (AE x in M . f x = g x)

proof
assume AE x in M . f x = g x with borel show density M f = density M g

by (auto intro: density-cong)
next

THEORY “Radon-Nikodym” 412

assume eq : density M f = density M g
interpret f : sigma-finite-measure density M f by fact
from f .sigma-finite-incseq guess A . note cover = this

have AE x in M . ∀ i . x ∈ A i −→ f x = g x
unfolding AE-all-countable

proof
fix i
have density (density M f) (indicator (A i)) = density (density M g) (indicator

(A i))
unfolding eq ..

moreover have (
∫

+x . f x ∗ indicator (A i) x ∂M) 6= ∞
using cover(1) cover(3)[of i] borel by (auto simp: emeasure-density subset-eq)

ultimately have AE x in M . f x ∗ indicator (A i) x = g x ∗ indicator (A i) x
using borel cover(1)
by (intro finite-density-unique[THEN iffD1]) (auto simp: density-density-eq

subset-eq)
then show AE x in M . x ∈ A i −→ f x = g x

by auto
qed
with AE-space show AE x in M . f x = g x

apply eventually-elim
using cover(2)[symmetric]
apply auto
done

qed

lemma (in sigma-finite-measure) sigma-finite-iff-density-finite ′:
assumes f : f ∈ borel-measurable M
shows sigma-finite-measure (density M f) ←→ (AE x in M . f x 6= ∞)

(is sigma-finite-measure ?N ←→ -)
proof

assume sigma-finite-measure ?N
then interpret N : sigma-finite-measure ?N .
from N .Ex-finite-integrable-function obtain h where

h: h ∈ borel-measurable M integralN ?N h 6= ∞ and
fin: ∀ x∈space M . 0 < h x ∧ h x < ∞
by auto

have AE x in M . f x ∗ h x 6= ∞
proof (rule AE-I ′)

have integralN ?N h = (
∫

+x . f x ∗ h x ∂M)
using f h by (auto intro!: nn-integral-density)

then have (
∫

+x . f x ∗ h x ∂M) 6= ∞
using h(2) by simp

then show (λx . f x ∗ h x) −‘ {∞} ∩ space M ∈ null-sets M
using f h(1) by (auto intro!: nn-integral-PInf [unfolded infinity-ennreal-def]

borel-measurable-vimage)
qed auto
then show AE x in M . f x 6= ∞

THEORY “Radon-Nikodym” 413

using fin by (auto elim!: AE-Ball-mp simp: less-top ennreal-mult-less-top)
next

assume AE : AE x in M . f x 6= ∞
from sigma-finite guess Q . note Q = this
def A ≡ λi . f −‘ (case i of 0 ⇒ {∞} | Suc n ⇒ {.. ennreal(of-nat (Suc n))})
∩ space M
{ fix i j have A i ∩ Q j ∈ sets M

unfolding A-def using f Q
apply (rule-tac sets.Int)
by (cases i) (auto intro: measurable-sets[OF f (1)]) }

note A-in-sets = this

show sigma-finite-measure ?N
proof (standard , intro exI conjI ballI)

show countable (range (λ(i , j). A i ∩ Q j))
by auto

show range (λ(i , j). A i ∩ Q j) ⊆ sets (density M f)
using A-in-sets by auto

next
have

⋃
range (λ(i , j). A i ∩ Q j) = (

⋃
i j . A i ∩ Q j)

by auto
also have . . . = (

⋃
i . A i) ∩ space M using Q by auto

also have (
⋃

i . A i) = space M
proof safe

fix x assume x : x ∈ space M
show x ∈ (

⋃
i . A i)

proof (cases f x rule: ennreal-cases)
case top with x show ?thesis unfolding A-def by (auto intro: exI [of - 0])

next
case (real r)
with ennreal-Ex-less-of-nat [of f x] obtain n :: nat where f x < n

by auto
also have n < (Suc n :: ennreal)

by simp
finally show ?thesis

using x real by (auto simp: A-def ennreal-of-nat-eq-real-of-nat intro!:
exI [of - Suc n])

qed
qed (auto simp: A-def)
finally show

⋃
range (λ(i , j). A i ∩ Q j) = space ?N by simp

next
fix X assume X ∈ range (λ(i , j). A i ∩ Q j)
then obtain i j where [simp]:X = A i ∩ Q j by auto
have (

∫
+x . f x ∗ indicator (A i ∩ Q j) x ∂M) 6= ∞

proof (cases i)
case 0
have AE x in M . f x ∗ indicator (A i ∩ Q j) x = 0

using AE by (auto simp: A-def 〈i = 0 〉)
from nn-integral-cong-AE [OF this] show ?thesis by simp

THEORY “Radon-Nikodym” 414

next
case (Suc n)
then have (

∫
+x . f x ∗ indicator (A i ∩ Q j) x ∂M) ≤

(
∫

+x . (Suc n :: ennreal) ∗ indicator (Q j) x ∂M)
by (auto intro!: nn-integral-mono simp: indicator-def A-def ennreal-of-nat-eq-real-of-nat)
also have . . . = Suc n ∗ emeasure M (Q j)

using Q by (auto intro!: nn-integral-cmult-indicator)
also have . . . < ∞

using Q by (auto simp: ennreal-mult-less-top less-top of-nat-less-top)
finally show ?thesis by simp

qed
then show emeasure ?N X 6= ∞

using A-in-sets Q f by (auto simp: emeasure-density)
qed

qed

lemma (in sigma-finite-measure) sigma-finite-iff-density-finite:
f ∈ borel-measurable M =⇒ sigma-finite-measure (density M f) ←→ (AE x in

M . f x 6= ∞)
by (subst sigma-finite-iff-density-finite ′)

(auto simp: max-def intro!: measurable-If)

11.4 Radon-Nikodym derivative

definition RN-deriv :: ′a measure ⇒ ′a measure ⇒ ′a ⇒ ennreal where
RN-deriv M N =

(if ∃ f . f ∈ borel-measurable M ∧ density M f = N
then SOME f . f ∈ borel-measurable M ∧ density M f = N
else (λ-. 0))

lemma RN-derivI :
assumes f ∈ borel-measurable M density M f = N
shows density M (RN-deriv M N) = N

proof −
have ∃ f . f ∈ borel-measurable M ∧ density M f = N

using assms by auto
moreover then have density M (SOME f . f ∈ borel-measurable M ∧ density

M f = N) = N
by (rule someI2-ex) auto

ultimately show ?thesis
by (auto simp: RN-deriv-def)

qed

lemma borel-measurable-RN-deriv [measurable]: RN-deriv M N ∈ borel-measurable
M
proof −
{ assume ex : ∃ f . f ∈ borel-measurable M ∧ density M f = N
have 1 : (SOME f . f ∈ borel-measurable M ∧ density M f = N) ∈ borel-measurable

M

THEORY “Radon-Nikodym” 415

using ex by (rule someI2-ex) auto }
from this show ?thesis

by (auto simp: RN-deriv-def)
qed

lemma density-RN-deriv-density :
assumes f : f ∈ borel-measurable M
shows density M (RN-deriv M (density M f)) = density M f
by (rule RN-derivI [OF f]) simp

lemma (in sigma-finite-measure) density-RN-deriv :
absolutely-continuous M N =⇒ sets N = sets M =⇒ density M (RN-deriv M N)

= N
by (metis RN-derivI Radon-Nikodym)

lemma (in sigma-finite-measure) RN-deriv-nn-integral :
assumes N : absolutely-continuous M N sets N = sets M

and f : f ∈ borel-measurable M
shows integralN N f = (

∫
+x . RN-deriv M N x ∗ f x ∂M)

proof −
have integralN N f = integralN (density M (RN-deriv M N)) f

using N by (simp add : density-RN-deriv)
also have . . . = (

∫
+x . RN-deriv M N x ∗ f x ∂M)

using f by (simp add : nn-integral-density)
finally show ?thesis by simp

qed

lemma null-setsD-AE : N ∈ null-sets M =⇒ AE x in M . x /∈ N
using AE-iff-null-sets[of N M] by auto

lemma (in sigma-finite-measure) RN-deriv-unique:
assumes f : f ∈ borel-measurable M
and eq : density M f = N
shows AE x in M . f x = RN-deriv M N x
unfolding eq [symmetric]
by (intro density-unique-iff [THEN iffD1] f borel-measurable-RN-deriv

density-RN-deriv-density [symmetric])

lemma RN-deriv-unique-sigma-finite:
assumes f : f ∈ borel-measurable M
and eq : density M f = N and fin: sigma-finite-measure N
shows AE x in M . f x = RN-deriv M N x
using fin unfolding eq [symmetric]
by (intro sigma-finite-density-unique[THEN iffD1] f borel-measurable-RN-deriv

density-RN-deriv-density [symmetric])

lemma (in sigma-finite-measure) RN-deriv-distr :
fixes T :: ′a ⇒ ′b
assumes T : T ∈ measurable M M ′ and T ′: T ′ ∈ measurable M ′ M

THEORY “Radon-Nikodym” 416

and inv : ∀ x∈space M . T ′ (T x) = x
and ac[simp]: absolutely-continuous (distr M M ′ T) (distr N M ′ T)
and N : sets N = sets M
shows AE x in M . RN-deriv (distr M M ′ T) (distr N M ′ T) (T x) = RN-deriv

M N x
proof (rule RN-deriv-unique)

have [simp]: sets N = sets M by fact
note sets-eq-imp-space-eq [OF N , simp]
have measurable-N [simp]:

∧
M ′. measurable N M ′ = measurable M M ′ by (auto

simp: measurable-def)
{ fix A assume A ∈ sets M

with inv T T ′ sets.sets-into-space[OF this]
have T −‘ T ′ −‘ A ∩ T −‘ space M ′ ∩ space M = A

by (auto simp: measurable-def) }
note eq = this[simp]
{ fix A assume A ∈ sets M

with inv T T ′ sets.sets-into-space[OF this]
have (T ′ ◦ T) −‘ A ∩ space M = A

by (auto simp: measurable-def) }
note eq2 = this[simp]
let ?M ′ = distr M M ′ T and ?N ′ = distr N M ′ T
interpret M ′: sigma-finite-measure ?M ′

proof
from sigma-finite-countable guess F .. note F = this
show ∃A. countable A ∧ A ⊆ sets (distr M M ′ T) ∧

⋃
A = space (distr M M ′

T) ∧ (∀ a∈A. emeasure (distr M M ′ T) a 6= ∞)
proof (intro exI conjI ballI)

show ∗: (λA. T ′ −‘ A ∩ space ?M ′) ‘ F ⊆ sets ?M ′

using F T ′ by (auto simp: measurable-def)
show

⋃
((λA. T ′ −‘ A ∩ space ?M ′)‘F) = space ?M ′

using F T ′[THEN measurable-space] by (auto simp: set-eq-iff)
next

fix X assume X ∈ (λA. T ′ −‘ A ∩ space ?M ′)‘F
then obtain A where [simp]: X = T ′ −‘ A ∩ space ?M ′ and A ∈ F by

auto
have X ∈ sets M ′ using F T ′ 〈A∈F 〉 by auto
moreover
have Fi : A ∈ sets M using F 〈A∈F 〉 by auto
ultimately show emeasure ?M ′ X 6= ∞

using F T T ′ 〈A∈F 〉 by (simp add : emeasure-distr)
qed (insert F , auto)

qed
have (RN-deriv ?M ′ ?N ′) ◦ T ∈ borel-measurable M

using T ac by measurable
then show (λx . RN-deriv ?M ′ ?N ′ (T x)) ∈ borel-measurable M

by (simp add : comp-def)

have N = distr N M (T ′ ◦ T)
by (subst measure-of-of-measure[of N , symmetric])

THEORY “Radon-Nikodym” 417

(auto simp add : distr-def sets.sigma-sets-eq intro!: measure-of-eq sets.space-closed)
also have . . . = distr (distr N M ′ T) M T ′

using T T ′ by (simp add : distr-distr)
also have . . . = distr (density (distr M M ′ T) (RN-deriv (distr M M ′ T) (distr

N M ′ T))) M T ′

using ac by (simp add : M ′.density-RN-deriv)
also have . . . = density M (RN-deriv (distr M M ′ T) (distr N M ′ T) ◦ T)

by (simp add : distr-density-distr [OF T T ′, OF inv])
finally show density M (λx . RN-deriv (distr M M ′ T) (distr N M ′ T) (T x))

= N
by (simp add : comp-def)

qed

lemma (in sigma-finite-measure) RN-deriv-finite:
assumes N : sigma-finite-measure N and ac: absolutely-continuous M N sets N

= sets M
shows AE x in M . RN-deriv M N x 6= ∞

proof −
interpret N : sigma-finite-measure N by fact
from N show ?thesis
using sigma-finite-iff-density-finite[OF borel-measurable-RN-deriv , of N] density-RN-deriv [OF

ac]
by simp

qed

lemma (in sigma-finite-measure)
assumes N : sigma-finite-measure N and ac: absolutely-continuous M N sets N

= sets M
and f : f ∈ borel-measurable M

shows RN-deriv-integrable: integrable N f ←→
integrable M (λx . enn2real (RN-deriv M N x) ∗ f x) (is ?integrable)

and RN-deriv-integral : integralL N f = (
∫

x . enn2real (RN-deriv M N x) ∗ f x
∂M) (is ?integral)
proof −

note ac(2)[simp] and sets-eq-imp-space-eq [OF ac(2), simp]
interpret N : sigma-finite-measure N by fact

have eq : density M (RN-deriv M N) = density M (λx . enn2real (RN-deriv M N
x))

proof (rule density-cong)
from RN-deriv-finite[OF assms(1 ,2 ,3)]
show AE x in M . RN-deriv M N x = ennreal (enn2real (RN-deriv M N x))

by eventually-elim (auto simp: less-top)
qed (insert ac, auto)

show ?integrable
apply (subst density-RN-deriv [OF ac, symmetric])
unfolding eq
apply (intro integrable-real-density f AE-I2 enn2real-nonneg)

THEORY “Radon-Nikodym” 418

apply (insert ac, auto)
done

show ?integral
apply (subst density-RN-deriv [OF ac, symmetric])
unfolding eq
apply (intro integral-real-density f AE-I2 enn2real-nonneg)
apply (insert ac, auto)
done

qed

lemma (in sigma-finite-measure) real-RN-deriv :
assumes finite-measure N
assumes ac: absolutely-continuous M N sets N = sets M
obtains D where D ∈ borel-measurable M

and AE x in M . RN-deriv M N x = ennreal (D x)
and AE x in N . 0 < D x
and

∧
x . 0 ≤ D x

proof
interpret N : finite-measure N by fact

note RN = borel-measurable-RN-deriv density-RN-deriv [OF ac]

let ?RN = λt . {x ∈ space M . RN-deriv M N x = t}

show (λx . enn2real (RN-deriv M N x)) ∈ borel-measurable M
using RN by auto

have N (?RN ∞) = (
∫

+ x . RN-deriv M N x ∗ indicator (?RN ∞) x ∂M)
using RN (1) by (subst RN (2)[symmetric]) (auto simp: emeasure-density)

also have . . . = (
∫

+ x . ∞ ∗ indicator (?RN ∞) x ∂M)
by (intro nn-integral-cong) (auto simp: indicator-def)

also have . . . = ∞ ∗ emeasure M (?RN ∞)
using RN by (intro nn-integral-cmult-indicator) auto

finally have eq : N (?RN ∞) = ∞ ∗ emeasure M (?RN ∞) .
moreover
have emeasure M (?RN ∞) = 0
proof (rule ccontr)

assume emeasure M {x ∈ space M . RN-deriv M N x = ∞} 6= 0
then have 0 < emeasure M {x ∈ space M . RN-deriv M N x = ∞}

by (auto simp: zero-less-iff-neq-zero)
with eq have N (?RN ∞) = ∞ by (simp add : ennreal-mult-eq-top-iff)
with N .emeasure-finite[of ?RN ∞] RN show False by auto

qed
ultimately have AE x in M . RN-deriv M N x < ∞
using RN by (intro AE-iff-measurable[THEN iffD2]) (auto simp: less-top[symmetric])
then show AE x in M . RN-deriv M N x = ennreal (enn2real (RN-deriv M N

x))
by auto

THEORY “Probability-Measure” 419

then have eq : AE x in N . RN-deriv M N x = ennreal (enn2real (RN-deriv M
N x))

using ac absolutely-continuous-AE by auto

have N (?RN 0) = (
∫

+ x . RN-deriv M N x ∗ indicator (?RN 0) x ∂M)
by (subst RN (2)[symmetric]) (auto simp: emeasure-density)

also have . . . = (
∫

+ x . 0 ∂M)
by (intro nn-integral-cong) (auto simp: indicator-def)

finally have AE x in N . RN-deriv M N x 6= 0
using RN by (subst AE-iff-measurable[OF - refl]) (auto simp: ac cong : sets-eq-imp-space-eq)
with eq show AE x in N . 0 < enn2real (RN-deriv M N x)

by (auto simp: enn2real-positive-iff less-top[symmetric] zero-less-iff-neq-zero)
qed (rule enn2real-nonneg)

lemma (in sigma-finite-measure) RN-deriv-singleton:
assumes ac: absolutely-continuous M N sets N = sets M
and x : {x} ∈ sets M
shows N {x} = RN-deriv M N x ∗ emeasure M {x}

proof −
from 〈{x} ∈ sets M 〉

have density M (RN-deriv M N) {x} = (
∫

+w . RN-deriv M N x ∗ indicator {x}
w ∂M)

by (auto simp: indicator-def emeasure-density intro!: nn-integral-cong)
with x density-RN-deriv [OF ac] show ?thesis

by (auto simp: max-def)
qed

end

12 Probability measure

theory Probability-Measure
imports Lebesgue-Measure Radon-Nikodym

begin

lemma (in finite-measure) countable-support :
countable {x . measure M {x} 6= 0}

proof cases
assume measure M (space M) = 0
with bounded-measure measure-le-0-iff have {x . measure M {x} 6= 0} = {}

by auto
then show ?thesis

by simp
next

let ?M = measure M (space M) and ?m = λx . measure M {x}
assume ?M 6= 0
then have ∗: {x . ?m x 6= 0} = (

⋃
n. {x . ?M / Suc n < ?m x})

using reals-Archimedean[of ?m x / ?M for x]

THEORY “Probability-Measure” 420

by (auto simp: field-simps not-le[symmetric] measure-nonneg divide-le-0-iff
measure-le-0-iff)

have ∗∗:
∧

n. finite {x . ?M / Suc n < ?m x}
proof (rule ccontr)

fix n assume infinite {x . ?M / Suc n < ?m x} (is infinite ?X)
then obtain X where finite X card X = Suc (Suc n) X ⊆ ?X

by (metis infinite-arbitrarily-large)
from this(3) have ∗:

∧
x . x ∈ X =⇒ ?M / Suc n ≤ ?m x

by auto
{ fix x assume x ∈ X

from 〈?M 6= 0 〉 ∗[OF this] have ?m x 6= 0 by (auto simp: field-simps
measure-le-0-iff)

then have {x} ∈ sets M by (auto dest : measure-notin-sets) }
note singleton-sets = this
have ?M < (

∑
x∈X . ?M / Suc n)

using 〈?M 6= 0 〉

by (simp add : 〈card X = Suc (Suc n)〉 of-nat-Suc field-simps less-le measure-nonneg)
also have . . . ≤ (

∑
x∈X . ?m x)

by (rule setsum-mono) fact
also have . . . = measure M (

⋃
x∈X . {x})

using singleton-sets 〈finite X 〉

by (intro finite-measure-finite-Union[symmetric]) (auto simp: disjoint-family-on-def)
finally have ?M < measure M (

⋃
x∈X . {x}) .

moreover have measure M (
⋃

x∈X . {x}) ≤ ?M
using singleton-sets[THEN sets.sets-into-space] by (intro finite-measure-mono)

auto
ultimately show False by simp

qed
show ?thesis

unfolding ∗ by (intro countable-UN countableI-type countable-finite[OF ∗∗])
qed

locale prob-space = finite-measure +
assumes emeasure-space-1 : emeasure M (space M) = 1

lemma prob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M) = 1
shows prob-space M

proof −
interpret finite-measure M
proof

show emeasure M (space M) 6= ∞ using ∗ by simp
qed
show prob-space M by standard fact

qed

lemma prob-space-imp-sigma-finite: prob-space M =⇒ sigma-finite-measure M
unfolding prob-space-def finite-measure-def by simp

THEORY “Probability-Measure” 421

abbreviation (in prob-space) events ≡ sets M
abbreviation (in prob-space) prob ≡ measure M
abbreviation (in prob-space) random-variable M ′ X ≡ X ∈ measurable M M ′

abbreviation (in prob-space) expectation ≡ integralL M
abbreviation (in prob-space) variance X ≡ integralL M (λx . (X x − expectation
X)2)

lemma (in prob-space) finite-measure [simp]: finite-measure M
by unfold-locales

lemma (in prob-space) prob-space-distr :
assumes f : f ∈ measurable M M ′ shows prob-space (distr M M ′ f)

proof (rule prob-spaceI)
have f −‘ space M ′∩ space M = space M using f by (auto dest : measurable-space)
with f show emeasure (distr M M ′ f) (space (distr M M ′ f)) = 1

by (auto simp: emeasure-distr emeasure-space-1)
qed

lemma prob-space-distrD :
assumes f : f ∈ measurable M N and M : prob-space (distr M N f) shows

prob-space M
proof

interpret M : prob-space distr M N f by fact
have f −‘ space N ∩ space M = space M

using f [THEN measurable-space] by auto
then show emeasure M (space M) = 1

using M .emeasure-space-1 by (simp add : emeasure-distr [OF f])
qed

lemma (in prob-space) prob-space: prob (space M) = 1
using emeasure-space-1 unfolding measure-def by (simp add : one-ennreal .rep-eq)

lemma (in prob-space) prob-le-1 [simp, intro]: prob A ≤ 1
using bounded-measure[of A] by (simp add : prob-space)

lemma (in prob-space) not-empty : space M 6= {}
using prob-space by auto

lemma (in prob-space) emeasure-eq-1-AE :
S ∈ sets M =⇒ AE x in M . x ∈ S =⇒ emeasure M S = 1
by (subst emeasure-eq-AE [where B=space M]) (auto simp: emeasure-space-1)

lemma (in prob-space) emeasure-le-1 : emeasure M S ≤ 1
unfolding ennreal-1 [symmetric] emeasure-eq-measure by (subst ennreal-le-iff)

auto

lemma (in prob-space) AE-iff-emeasure-eq-1 :
assumes [measurable]: Measurable.pred M P
shows (AE x in M . P x) ←→ emeasure M {x∈space M . P x} = 1

THEORY “Probability-Measure” 422

proof −
have ∗: {x ∈ space M . ¬ P x} = space M − {x∈space M . P x}

by auto
show ?thesis

by (auto simp add : ennreal-minus-eq-0 ∗ emeasure-compl emeasure-space-1
AE-iff-measurable[OF - refl]

intro: antisym emeasure-le-1)
qed

lemma (in prob-space) measure-le-1 : emeasure M X ≤ 1
using emeasure-space[of M X] by (simp add : emeasure-space-1)

lemma (in prob-space) AE-I-eq-1 :
assumes emeasure M {x∈space M . P x} = 1 {x∈space M . P x} ∈ sets M
shows AE x in M . P x

proof (rule AE-I)
show emeasure M (space M − {x ∈ space M . P x}) = 0

using assms emeasure-space-1 by (simp add : emeasure-compl)
qed (insert assms, auto)

lemma prob-space-restrict-space:
S ∈ sets M =⇒ emeasure M S = 1 =⇒ prob-space (restrict-space M S)
by (intro prob-spaceI)

(simp add : emeasure-restrict-space space-restrict-space)

lemma (in prob-space) prob-compl :
assumes A: A ∈ events
shows prob (space M − A) = 1 − prob A
using finite-measure-compl [OF A] by (simp add : prob-space)

lemma (in prob-space) AE-in-set-eq-1 :
assumes A[measurable]: A ∈ events shows (AE x in M . x ∈ A) ←→ prob A =

1
proof −

have ∗: {x∈space M . x ∈ A} = A
using A[THEN sets.sets-into-space] by auto

show ?thesis
by (subst AE-iff-emeasure-eq-1) (auto simp: emeasure-eq-measure ∗)

qed

lemma (in prob-space) AE-False: (AE x in M . False) ←→ False
proof

assume AE x in M . False
then have AE x in M . x ∈ {} by simp
then show False

by (subst (asm) AE-in-set-eq-1) auto
qed simp

lemma (in prob-space) AE-prob-1 :

THEORY “Probability-Measure” 423

assumes prob A = 1 shows AE x in M . x ∈ A
proof −

from 〈prob A = 1 〉 have A ∈ events
by (metis measure-notin-sets zero-neq-one)

with AE-in-set-eq-1 assms show ?thesis by simp
qed

lemma (in prob-space) AE-const [simp]: (AE x in M . P) ←→ P
by (cases P) (auto simp: AE-False)

lemma (in prob-space) ae-filter-bot : ae-filter M 6= bot
by (simp add : trivial-limit-def)

lemma (in prob-space) AE-contr :
assumes ae: AE ω in M . P ω AE ω in M . ¬ P ω
shows False

proof −
from ae have AE ω in M . False by eventually-elim auto
then show False by auto

qed

lemma (in prob-space) integral-ge-const :
fixes c :: real
shows integrable M f =⇒ (AE x in M . c ≤ f x) =⇒ c ≤ (

∫
x . f x ∂M)

using integral-mono-AE [of M λx . c f] prob-space by simp

lemma (in prob-space) integral-le-const :
fixes c :: real
shows integrable M f =⇒ (AE x in M . f x ≤ c) =⇒ (

∫
x . f x ∂M) ≤ c

using integral-mono-AE [of M f λx . c] prob-space by simp

lemma (in prob-space) nn-integral-ge-const :
(AE x in M . c ≤ f x) =⇒ c ≤ (

∫
+x . f x ∂M)

using nn-integral-mono-AE [of λx . c f M] emeasure-space-1
by (simp split : if-split-asm)

lemma (in prob-space) expectation-less:
fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt : AE x in M . X x < b
shows expectation X < b

proof −
have expectation X < expectation (λx . b)

using gt emeasure-space-1
by (intro integral-less-AE-space) auto

then show ?thesis using prob-space by simp
qed

lemma (in prob-space) expectation-greater :

THEORY “Probability-Measure” 424

fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt : AE x in M . a < X x
shows a < expectation X

proof −
have expectation (λx . a) < expectation X

using gt emeasure-space-1
by (intro integral-less-AE-space) auto

then show ?thesis using prob-space by simp
qed

lemma (in prob-space) jensens-inequality :
fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q : integrable M (λx . q (X x)) convex-on I q
shows q (expectation X) ≤ expectation (λx . q (X x))

proof −
let ?F = λx . Inf ((λt . (q x − q t) / (x − t)) ‘ ({x<..} ∩ I))
from X (2) AE-False have I 6= {} by auto

from I have open I by auto

note I
moreover
{ assume I ⊆ {a <..}

with X have a < expectation X
by (intro expectation-greater) auto }

moreover
{ assume I ⊆ {..< b}

with X have expectation X < b
by (intro expectation-less) auto }

ultimately have expectation X ∈ I
by (elim disjE) (auto simp: subset-eq)

moreover
{ fix y assume y : y ∈ I

with q(2) 〈open I 〉 have Sup ((λx . q x + ?F x ∗ (y − x)) ‘ I) = q y
by (auto intro!: cSup-eq-maximum convex-le-Inf-differential image-eqI [OF -

y] simp: interior-open) }
ultimately have q (expectation X) = Sup ((λx . q x + ?F x ∗ (expectation X −

x)) ‘ I)
by simp

also have . . . ≤ expectation (λw . q (X w))
proof (rule cSup-least)

show (λx . q x + ?F x ∗ (expectation X − x)) ‘ I 6= {}
using 〈I 6= {}〉 by auto

next
fix k assume k ∈ (λx . q x + ?F x ∗ (expectation X − x)) ‘ I
then guess x .. note x = this

THEORY “Probability-Measure” 425

have q x + ?F x ∗ (expectation X − x) = expectation (λw . q x + ?F x ∗ (X
w − x))

using prob-space by (simp add : X)
also have . . . ≤ expectation (λw . q (X w))

using 〈x ∈ I 〉 〈open I 〉 X (2)
apply (intro integral-mono-AE integrable-add integrable-mult-right integrable-diff

integrable-const X q)
apply (elim eventually-mono)
apply (intro convex-le-Inf-differential)
apply (auto simp: interior-open q)
done

finally show k ≤ expectation (λw . q (X w)) using x by auto
qed
finally show q (expectation X) ≤ expectation (λx . q (X x)) .

qed

12.1 Introduce binder for probability

syntax
-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic ((′P ′((/- in -./ -) ′)))

translations
P(x in M . P) => CONST measure M {x ∈ CONST space M . P}

print-translation 〈

let
fun to-pattern (Const (@{const-syntax Pair}, -) $ l $ r) =

Syntax .const @{const-syntax Pair} :: to-pattern l @ to-pattern r
| to-pattern (t as (Const (@{syntax-const -bound}, -)) $ -) = [t]

fun mk-pattern ((t , n) :: xs) = mk-patterns n xs |>> curry list-comb t
and mk-patterns 0 xs = ([], xs)
| mk-patterns n xs =

let
val (t , xs ′) = mk-pattern xs
val (ts, xs ′′) = mk-patterns (n − 1) xs ′

in
(t :: ts, xs ′′)

end

fun unnest-tuples
(Const (@{syntax-const -pattern}, -) $

t1 $
(t as (Const (@{syntax-const -pattern}, -) $ - $ -)))

= let
val (- $ t2 $ t3) = unnest-tuples t

in
Syntax .const @{syntax-const -pattern} $

unnest-tuples t1 $

THEORY “Probability-Measure” 426

(Syntax .const @{syntax-const -patterns} $ t2 $ t3)
end
| unnest-tuples pat = pat

fun tr ′ [sig-alg , Const (@{const-syntax Collect}, -) $ t] =
let

val bound-dummyT = Const (@{syntax-const -bound}, dummyT)

fun go pattern elem
(Const (@{const-syntax conj}, -) $
(Const (@{const-syntax Set .member}, -) $ elem ′ $ (Const (@{const-syntax

space}, -) $ sig-alg ′)) $
u)

= let
val - = if sig-alg aconv sig-alg ′ andalso to-pattern elem ′ = rev elem then

() else raise Match;
val (pat , rest) = mk-pattern (rev pattern);
val - = case rest of [] => () | - => raise Match

in
Syntax .const @{syntax-const -prob} $ unnest-tuples pat $ sig-alg $ u

end
| go pattern elem (Abs abs) =

let
val (x as (- $ tx), t) = Syntax-Trans.atomic-abs-tr ′ abs

in
go ((x , 0) :: pattern) (bound-dummyT $ tx :: elem) t

end
| go pattern elem (Const (@{const-syntax case-prod}, -) $ t) =

go
((Syntax .const @{syntax-const -pattern}, 2) :: pattern)
(Syntax .const @{const-syntax Pair} :: elem)
t

in
go [] [] t

end
in

[(@{const-syntax Sigma-Algebra.measure}, K tr ′)]
end

〉

definition
cond-prob M P Q = P(ω in M . P ω ∧ Q ω) / P(ω in M . Q ω)

syntax
-conditional-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic ⇒ logic ((′P ′(- in -. - |/ - ′)))

translations
P(x in M . P | Q) => CONST cond-prob M (λx . P) (λx . Q)

THEORY “Probability-Measure” 427

lemma (in prob-space) AE-E-prob:
assumes ae: AE x in M . P x
obtains S where S ⊆ {x ∈ space M . P x} S ∈ events prob S = 1

proof −
from ae[THEN AE-E] guess N .
then show thesis

by (intro that [of space M − N])
(auto simp: prob-compl prob-space emeasure-eq-measure measure-nonneg)

qed

lemma (in prob-space) prob-neg : {x∈space M . P x} ∈ events =⇒ P(x in M . ¬ P
x) = 1 − P(x in M . P x)

by (auto intro!: arg-cong [where f =prob] simp add : prob-compl [symmetric])

lemma (in prob-space) prob-eq-AE :
(AE x in M . P x ←→ Q x) =⇒ {x∈space M . P x} ∈ events =⇒ {x∈space M .

Q x} ∈ events =⇒ P(x in M . P x) = P(x in M . Q x)
by (rule finite-measure-eq-AE) auto

lemma (in prob-space) prob-eq-0-AE :
assumes not : AE x in M . ¬ P x shows P(x in M . P x) = 0

proof cases
assume {x∈space M . P x} ∈ events
with not have P(x in M . P x) = P(x in M . False)

by (intro prob-eq-AE) auto
then show ?thesis by simp

qed (simp add : measure-notin-sets)

lemma (in prob-space) prob-Collect-eq-0 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 0 ←→ (AE x in M . ¬ P x)
using AE-iff-measurable[OF - refl , of M λx . ¬ P x] by (simp add : emeasure-eq-measure

measure-nonneg)

lemma (in prob-space) prob-Collect-eq-1 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 1 ←→ (AE x in M . P x)
using AE-in-set-eq-1 [of {x∈space M . P x}] by simp

lemma (in prob-space) prob-eq-0 :
A ∈ sets M =⇒ prob A = 0 ←→ (AE x in M . x /∈ A)
using AE-iff-measurable[OF - refl , of M λx . x /∈ A]
by (auto simp add : emeasure-eq-measure Int-def [symmetric] measure-nonneg)

lemma (in prob-space) prob-eq-1 :
A ∈ sets M =⇒ prob A = 1 ←→ (AE x in M . x ∈ A)
using AE-in-set-eq-1 [of A] by simp

lemma (in prob-space) prob-sums:
assumes P :

∧
n. {x∈space M . P n x} ∈ events

assumes Q : {x∈space M . Q x} ∈ events

THEORY “Probability-Measure” 428

assumes ae: AE x in M . (∀n. P n x −→ Q x) ∧ (Q x −→ (∃ !n. P n x))
shows (λn. P(x in M . P n x)) sums P(x in M . Q x)

proof −
from ae[THEN AE-E-prob] guess S . note S = this
then have disj : disjoint-family (λn. {x∈space M . P n x} ∩ S)

by (auto simp: disjoint-family-on-def)
from S have ae-S :

AE x in M . x ∈ {x∈space M . Q x} ←→ x ∈ (
⋃

n. {x∈space M . P n x} ∩ S)∧
n. AE x in M . x ∈ {x∈space M . P n x} ←→ x ∈ {x∈space M . P n x} ∩ S

using ae by (auto dest !: AE-prob-1)
from ae-S have ∗:
P(x in M . Q x) = prob (

⋃
n. {x∈space M . P n x} ∩ S)

using P Q S by (intro finite-measure-eq-AE) auto
from ae-S have ∗∗:∧

n. P(x in M . P n x) = prob ({x∈space M . P n x} ∩ S)
using P Q S by (intro finite-measure-eq-AE) auto

show ?thesis
unfolding ∗ ∗∗ using S P disj
by (intro finite-measure-UNION) auto

qed

lemma (in prob-space) prob-setsum:
assumes [simp, intro]: finite I
assumes P :

∧
n. n ∈ I =⇒ {x∈space M . P n x} ∈ events

assumes Q : {x∈space M . Q x} ∈ events
assumes ae: AE x in M . (∀n∈I . P n x −→ Q x) ∧ (Q x −→ (∃ !n∈I . P n x))
shows P(x in M . Q x) = (

∑
n∈I . P(x in M . P n x))

proof −
from ae[THEN AE-E-prob] guess S . note S = this
then have disj : disjoint-family-on (λn. {x∈space M . P n x} ∩ S) I

by (auto simp: disjoint-family-on-def)
from S have ae-S :

AE x in M . x ∈ {x∈space M . Q x} ←→ x ∈ (
⋃

n∈I . {x∈space M . P n x} ∩
S) ∧

n. n ∈ I =⇒ AE x in M . x ∈ {x∈space M . P n x} ←→ x ∈ {x∈space M . P
n x} ∩ S

using ae by (auto dest !: AE-prob-1)
from ae-S have ∗:
P(x in M . Q x) = prob (

⋃
n∈I . {x∈space M . P n x} ∩ S)

using P Q S by (intro finite-measure-eq-AE) (auto intro!: sets.Int)
from ae-S have ∗∗:∧

n. n ∈ I =⇒ P(x in M . P n x) = prob ({x∈space M . P n x} ∩ S)
using P Q S by (intro finite-measure-eq-AE) auto

show ?thesis
using S P disj
by (auto simp add : ∗ ∗∗ simp del : UN-simps intro!: finite-measure-finite-Union)

qed

lemma (in prob-space) prob-EX-countable:

THEORY “Probability-Measure” 429

assumes sets:
∧

i . i ∈ I =⇒ {x∈space M . P i x} ∈ sets M and I : countable I
assumes disj : AE x in M . ∀ i∈I . ∀ j∈I . P i x −→ P j x −→ i = j
shows P(x in M . ∃ i∈I . P i x) = (

∫
+i . P(x in M . P i x) ∂count-space I)

proof −
let ?N = λx . ∃ !i∈I . P i x
have ennreal (P(x in M . ∃ i∈I . P i x)) = P(x in M . (∃ i∈I . P i x ∧ ?N x))

unfolding ennreal-inj [OF measure-nonneg measure-nonneg]
proof (rule prob-eq-AE)

show AE x in M . (∃ i∈I . P i x) = (∃ i∈I . P i x ∧ ?N x)
using disj by eventually-elim blast

qed (auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets)+
also have P(x in M . (∃ i∈I . P i x ∧ ?N x)) = emeasure M (

⋃
i∈I . {x∈space

M . P i x ∧ ?N x})
unfolding emeasure-eq-measure by (auto intro!: arg-cong [where f =prob] simp:

measure-nonneg)
also have . . . = (

∫
+i . emeasure M {x∈space M . P i x ∧ ?N x} ∂count-space

I)
by (rule emeasure-UN-countable)
(auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets
simp: disjoint-family-on-def)

also have . . . = (
∫

+i . P(x in M . P i x) ∂count-space I)
unfolding emeasure-eq-measure using disj
by (intro nn-integral-cong ennreal-inj [THEN iffD2] prob-eq-AE)
(auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets measure-nonneg)+
finally show ?thesis .

qed

lemma (in prob-space) cond-prob-eq-AE :
assumes P : AE x in M . Q x −→ P x ←→ P ′ x {x∈space M . P x} ∈ events
{x∈space M . P ′ x} ∈ events

assumes Q : AE x in M . Q x ←→ Q ′ x {x∈space M . Q x} ∈ events {x∈space
M . Q ′ x} ∈ events

shows cond-prob M P Q = cond-prob M P ′ Q ′

using P Q
by (auto simp: cond-prob-def intro!: arg-cong2 [where f =op /] prob-eq-AE sets.sets-Collect-conj)

lemma (in prob-space) joint-distribution-Times-le-fst :
random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈

sets MY
=⇒ emeasure (distr M (MX

⊗
M MY) (λx . (X x , Y x))) (A × B) ≤ emeasure

(distr M MX X) A
by (auto simp: emeasure-distr measurable-pair-iff comp-def intro!: emeasure-mono

measurable-sets)

lemma (in prob-space) joint-distribution-Times-le-snd :

THEORY “Probability-Measure” 430

random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈
sets MY

=⇒ emeasure (distr M (MX
⊗

M MY) (λx . (X x , Y x))) (A × B) ≤ emeasure
(distr M MY Y) B
by (auto simp: emeasure-distr measurable-pair-iff comp-def intro!: emeasure-mono

measurable-sets)

lemma (in prob-space) variance-eq :
fixes X :: ′a ⇒ real
assumes [simp]: integrable M X
assumes [simp]: integrable M (λx . (X x)2)
shows variance X = expectation (λx . (X x)2) − (expectation X)2

by (simp add : field-simps prob-space power2-diff power2-eq-square[symmetric])

lemma (in prob-space) variance-positive: 0 ≤ variance (X :: ′a ⇒ real)
by (intro integral-nonneg-AE) (auto intro!: integral-nonneg-AE)

lemma (in prob-space) variance-mean-zero:
expectation X = 0 =⇒ variance X = expectation (λx . (X x)ˆ2)
by simp

locale pair-prob-space = pair-sigma-finite M1 M2 + M1 : prob-space M1 + M2 :
prob-space M2 for M1 M2

sublocale pair-prob-space ⊆ P? : prob-space M1
⊗

M M2
proof

show emeasure (M1
⊗

M M2) (space (M1
⊗

M M2)) = 1
by (simp add : M2 .emeasure-pair-measure-Times M1 .emeasure-space-1 M2 .emeasure-space-1

space-pair-measure)
qed

locale product-prob-space = product-sigma-finite M for M :: ′i ⇒ ′a measure +
fixes I :: ′i set
assumes prob-space:

∧
i . prob-space (M i)

sublocale product-prob-space ⊆ M? : prob-space M i for i
by (rule prob-space)

locale finite-product-prob-space = finite-product-sigma-finite M I + product-prob-space
M I for M I

sublocale finite-product-prob-space ⊆ prob-space ΠM i∈I . M i
proof

show emeasure (ΠM i∈I . M i) (space (ΠM i∈I . M i)) = 1
by (simp add : measure-times M .emeasure-space-1 setprod .neutral-const space-PiM)

qed

lemma (in finite-product-prob-space) prob-times:
assumes X :

∧
i . i ∈ I =⇒ X i ∈ sets (M i)

THEORY “Probability-Measure” 431

shows prob (ΠE i∈I . X i) = (
∏

i∈I . M .prob i (X i))
proof −

have ennreal (measure (ΠM i∈I . M i) (ΠE i∈I . X i)) = emeasure (ΠM i∈I . M
i) (ΠE i∈I . X i)

using X by (simp add : emeasure-eq-measure)
also have . . . = (

∏
i∈I . emeasure (M i) (X i))

using measure-times X by simp
also have . . . = ennreal (

∏
i∈I . measure (M i) (X i))

using X by (simp add : M .emeasure-eq-measure setprod-ennreal measure-nonneg)
finally show ?thesis by (simp add : measure-nonneg setprod-nonneg)

qed

12.2 Distributions

definition distributed :: ′a measure ⇒ ′b measure ⇒ (′a ⇒ ′b) ⇒ (′b ⇒ ennreal)
⇒ bool
where

distributed M N X f ←→
distr M N X = density N f ∧ f ∈ borel-measurable N ∧ X ∈ measurable M N

term distributed

lemma
assumes distributed M N X f
shows distributed-distr-eq-density : distr M N X = density N f

and distributed-measurable: X ∈ measurable M N
and distributed-borel-measurable: f ∈ borel-measurable N

using assms by (simp-all add : distributed-def)

lemma
assumes D : distributed M N X f
shows distributed-measurable ′[measurable-dest]:

g ∈ measurable L M =⇒ (λx . X (g x)) ∈ measurable L N
and distributed-borel-measurable ′[measurable-dest]:

h ∈ measurable L N =⇒ (λx . f (h x)) ∈ borel-measurable L
using distributed-measurable[OF D] distributed-borel-measurable[OF D]
by simp-all

lemma distributed-real-measurable:
(
∧

x . x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx . ennreal (f x)) =⇒
f ∈ borel-measurable N

by (simp-all add : distributed-def)

lemma distributed-real-measurable ′:
(
∧

x . x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx . ennreal (f x)) =⇒
h ∈ measurable L N =⇒ (λx . f (h x)) ∈ borel-measurable L

using distributed-real-measurable[measurable] by simp

lemma joint-distributed-measurable1 :

THEORY “Probability-Measure” 432

distributed M (S
⊗

M T) (λx . (X x , Y x)) f =⇒ h1 ∈ measurable N M =⇒
(λx . X (h1 x)) ∈ measurable N S

by simp

lemma joint-distributed-measurable2 :
distributed M (S

⊗
M T) (λx . (X x , Y x)) f =⇒ h2 ∈ measurable N M =⇒

(λx . Y (h2 x)) ∈ measurable N T
by simp

lemma distributed-count-space:
assumes X : distributed M (count-space A) X P and a: a ∈ A and A: finite A
shows P a = emeasure M (X −‘ {a} ∩ space M)

proof −
have emeasure M (X −‘ {a} ∩ space M) = emeasure (distr M (count-space A)

X) {a}
using X a A by (simp add : emeasure-distr)

also have . . . = emeasure (density (count-space A) P) {a}
using X by (simp add : distributed-distr-eq-density)

also have . . . = (
∫

+x . P a ∗ indicator {a} x ∂count-space A)
using X a by (auto simp add : emeasure-density distributed-def indicator-def

intro!: nn-integral-cong)
also have . . . = P a

using X a by (subst nn-integral-cmult-indicator) (auto simp: distributed-def
one-ennreal-def [symmetric] AE-count-space)

finally show ?thesis ..
qed

lemma distributed-cong-density :
(AE x in N . f x = g x) =⇒ g ∈ borel-measurable N =⇒ f ∈ borel-measurable N

=⇒
distributed M N X f ←→ distributed M N X g

by (auto simp: distributed-def intro!: density-cong)

lemma (in prob-space) distributed-imp-emeasure-nonzero:
assumes X : distributed M MX X Px
shows emeasure MX {x ∈ space MX . Px x 6= 0} 6= 0

proof
note Px = distributed-borel-measurable[OF X]
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

assume emeasure MX {x ∈ space MX . Px x 6= 0} = 0
with Px have AE x in MX . Px x = 0

by (intro AE-I [OF subset-refl]) (auto simp: borel-measurable-ennreal-iff)
moreover
from X .emeasure-space-1 have (

∫
+x . Px x ∂MX) = 1

unfolding distributed-distr-eq-density [OF X] using Px
by (subst (asm) emeasure-density)
(auto simp: borel-measurable-ennreal-iff intro!: integral-cong cong : nn-integral-cong)

THEORY “Probability-Measure” 433

ultimately show False
by (simp add : nn-integral-cong-AE)

qed

lemma subdensity :
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g : distributed M Q Y g
assumes Y : Y = T ◦ X
shows AE x in P . g (T x) = 0 −→ f x = 0

proof −
have {x∈space Q . g x = 0} ∈ null-sets (distr M Q (T ◦ X))

using g Y by (auto simp: null-sets-density-iff distributed-def)
also have distr M Q (T ◦ X) = distr (distr M P X) Q T

using T f [THEN distributed-measurable] by (rule distr-distr [symmetric])
finally have T −‘ {x∈space Q . g x = 0} ∩ space P ∈ null-sets (distr M P X)

using T by (subst (asm) null-sets-distr-iff) auto
also have T −‘ {x∈space Q . g x = 0} ∩ space P = {x∈space P . g (T x) = 0}

using T by (auto dest : measurable-space)
finally show ?thesis

using f g by (auto simp add : null-sets-density-iff distributed-def)
qed

lemma subdensity-real :
fixes g :: ′a ⇒ real and f :: ′b ⇒ real
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g : distributed M Q Y g
assumes Y : Y = T ◦ X
shows (AE x in P . 0 ≤ g (T x)) =⇒ (AE x in P . 0 ≤ f x) =⇒ AE x in P . g

(T x) = 0 −→ f x = 0
using subdensity [OF T , of M X λx . ennreal (f x) Y λx . ennreal (g x)] assms
by auto

lemma distributed-emeasure:
distributed M N X f =⇒ A ∈ sets N =⇒ emeasure M (X −‘ A ∩ space M) =

(
∫

+x . f x ∗ indicator A x ∂N)
by (auto simp: distributed-distr-eq-density [symmetric] emeasure-density [symmetric]

emeasure-distr)

lemma distributed-nn-integral :
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∫
+x . f x ∗ g x ∂N) =

(
∫

+x . g (X x) ∂M)
by (auto simp: distributed-distr-eq-density [symmetric] nn-integral-density [symmetric]

nn-integral-distr)

lemma distributed-integral :
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x . x ∈ space N =⇒ 0

≤ f x) =⇒

THEORY “Probability-Measure” 434

(
∫

x . f x ∗ g x ∂N) = (
∫

x . g (X x) ∂M)
supply distributed-real-measurable[measurable]
by (auto simp: distributed-distr-eq-density [symmetric] integral-real-density [symmetric]

integral-distr)

lemma distributed-transform-integral :
assumes Px : distributed M N X Px

∧
x . x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x . x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = T ◦ X and T : T ∈ measurable N P and f : f ∈ borel-measurable

P
shows (

∫
x . Py x ∗ f x ∂P) = (

∫
x . Px x ∗ f (T x) ∂N)

proof −
have (

∫
x . Py x ∗ f x ∂P) = (

∫
x . f (Y x) ∂M)

by (rule distributed-integral) fact+
also have . . . = (

∫
x . f (T (X x)) ∂M)

using Y by simp
also have . . . = (

∫
x . Px x ∗ f (T x) ∂N)

using measurable-comp[OF T f] Px by (intro distributed-integral [symmetric])
(auto simp: comp-def)

finally show ?thesis .
qed

lemma (in prob-space) distributed-unique:
assumes Px : distributed M S X Px
assumes Py : distributed M S X Py
shows AE x in S . Px x = Py x

proof −
interpret X : prob-space distr M S X

using Px by (intro prob-space-distr) simp
have sigma-finite-measure (distr M S X) ..
with sigma-finite-density-unique[of Px S Py] Px Py
show ?thesis

by (auto simp: distributed-def)
qed

lemma (in prob-space) distributed-jointI :
assumes sigma-finite-measure S sigma-finite-measure T
assumes X [measurable]: X ∈ measurable M S and Y [measurable]: Y ∈ mea-

surable M T
assumes [measurable]: f ∈ borel-measurable (S

⊗
M T) and f : AE x in S

⊗
M

T . 0 ≤ f x
assumes eq :

∧
A B . A ∈ sets S =⇒ B ∈ sets T =⇒

emeasure M {x ∈ space M . X x ∈ A ∧ Y x ∈ B} = (
∫

+x . (
∫

+y . f (x , y) ∗
indicator B y ∂T) ∗ indicator A x ∂S)

shows distributed M (S
⊗

M T) (λx . (X x , Y x)) f
unfolding distributed-def

proof safe
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact

THEORY “Probability-Measure” 435

interpret ST : pair-sigma-finite S T ..

from ST .sigma-finite-up-in-pair-measure-generator guess F :: nat ⇒ (′b × ′c)
set .. note F = this

let ?E = {a × b |a b. a ∈ sets S ∧ b ∈ sets T}
let ?P = S

⊗
M T

show distr M ?P (λx . (X x , Y x)) = density ?P f (is ?L = ?R)
proof (rule measure-eqI-generator-eq [OF Int-stable-pair-measure-generator [of S

T]])
show ?E ⊆ Pow (space ?P)
using sets.space-closed [of S] sets.space-closed [of T] by (auto simp: space-pair-measure)
show sets ?L = sigma-sets (space ?P) ?E

by (simp add : sets-pair-measure space-pair-measure)
then show sets ?R = sigma-sets (space ?P) ?E

by simp
next

interpret L: prob-space ?L
by (rule prob-space-distr) (auto intro!: measurable-Pair)

show range F ⊆ ?E (
⋃

i . F i) = space ?P
∧

i . emeasure ?L (F i) 6= ∞
using F by (auto simp: space-pair-measure)

next
fix E assume E ∈ ?E
then obtain A B where E [simp]: E = A × B

and A[measurable]: A ∈ sets S and B [measurable]: B ∈ sets T by auto
have emeasure ?L E = emeasure M {x ∈ space M . X x ∈ A ∧ Y x ∈ B}

by (auto intro!: arg-cong [where f =emeasure M] simp add : emeasure-distr
measurable-Pair)

also have . . . = (
∫

+x . (
∫

+y . (f (x , y) ∗ indicator B y) ∗ indicator A x ∂T)
∂S)

using f by (auto simp add : eq nn-integral-multc intro!: nn-integral-cong)
also have . . . = emeasure ?R E

by (auto simp add : emeasure-density T .nn-integral-fst [symmetric]
intro!: nn-integral-cong split : split-indicator)

finally show emeasure ?L E = emeasure ?R E .
qed

qed (auto simp: f)

lemma (in prob-space) distributed-swap:
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

shows distributed M (T
⊗

M S) (λx . (Y x , X x)) (λ(x , y). Pxy (y , x))
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
interpret TS : pair-sigma-finite T S ..

note Pxy [measurable]
show ?thesis

THEORY “Probability-Measure” 436

apply (subst TS .distr-pair-swap)
unfolding distributed-def

proof safe
let ?D = distr (S

⊗
M T) (T

⊗
M S) (λ(x , y). (y , x))

show 1 : (λ(x , y). Pxy (y , x)) ∈ borel-measurable ?D
by auto

show 2 : random-variable (distr (S
⊗

M T) (T
⊗

M S) (λ(x , y). (y , x))) (λx .
(Y x , X x))

using Pxy by auto
{ fix A assume A: A ∈ sets (T

⊗
M S)

let ?B = (λ(x , y). (y , x)) −‘ A ∩ space (S
⊗

M T)
from sets.sets-into-space[OF A]
have emeasure M ((λx . (Y x , X x)) −‘ A ∩ space M) =

emeasure M ((λx . (X x , Y x)) −‘ ?B ∩ space M)
by (auto intro!: arg-cong2 [where f =emeasure] simp: space-pair-measure)

also have . . . = (
∫

+ x . Pxy x ∗ indicator ?B x ∂(S
⊗

M T))
using Pxy A by (intro distributed-emeasure) auto

finally have emeasure M ((λx . (Y x , X x)) −‘ A ∩ space M) =
(
∫

+ x . Pxy x ∗ indicator A (snd x , fst x) ∂(S
⊗

M T))
by (auto intro!: nn-integral-cong split : split-indicator) }

note ∗ = this
show distr M ?D (λx . (Y x , X x)) = density ?D (λ(x , y). Pxy (y , x))

apply (intro measure-eqI)
apply (simp-all add : emeasure-distr [OF 2] emeasure-density [OF 1])
apply (subst nn-integral-distr)
apply (auto intro!: ∗ simp: comp-def split-beta)
done

qed
qed

lemma (in prob-space) distr-marginal1 :
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

defines Px ≡ λx . (
∫

+z . Pxy (x , z) ∂T)
shows distributed M S X Px
unfolding distributed-def

proof safe
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

note Pxy [measurable]
show X : X ∈ measurable M S by simp

show borel : Px ∈ borel-measurable S
by (auto intro!: T .nn-integral-fst simp: Px-def)

interpret Pxy : prob-space distr M (S
⊗

M T) (λx . (X x , Y x))
by (intro prob-space-distr) simp

THEORY “Probability-Measure” 437

show distr M S X = density S Px
proof (rule measure-eqI)

fix A assume A: A ∈ sets (distr M S X)
with X measurable-space[of Y M T]
have emeasure (distr M S X) A = emeasure (distr M (S

⊗
M T) (λx . (X x ,

Y x))) (A × space T)
by (auto simp add : emeasure-distr intro!: arg-cong [where f =emeasure M])

also have . . . = emeasure (density (S
⊗

M T) Pxy) (A × space T)
using Pxy by (simp add : distributed-def)

also have . . . =
∫

+ x .
∫

+ y . Pxy (x , y) ∗ indicator (A × space T) (x , y) ∂T
∂S

using A borel Pxy
by (simp add : emeasure-density T .nn-integral-fst [symmetric])

also have . . . =
∫

+ x . Px x ∗ indicator A x ∂S
proof (rule nn-integral-cong)

fix x assume x ∈ space S
moreover have eq :

∧
y . y ∈ space T =⇒ indicator (A × space T) (x , y) =

indicator A x
by (auto simp: indicator-def)

ultimately have (
∫

+ y . Pxy (x , y) ∗ indicator (A × space T) (x , y) ∂T)
= (

∫
+ y . Pxy (x , y) ∂T) ∗ indicator A x
by (simp add : eq nn-integral-multc cong : nn-integral-cong)

also have (
∫

+ y . Pxy (x , y) ∂T) = Px x
by (simp add : Px-def)

finally show (
∫

+ y . Pxy (x , y) ∗ indicator (A × space T) (x , y) ∂T) = Px
x ∗ indicator A x .

qed
finally show emeasure (distr M S X) A = emeasure (density S Px) A

using A borel Pxy by (simp add : emeasure-density)
qed simp

qed

lemma (in prob-space) distr-marginal2 :
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

shows distributed M T Y (λy . (
∫

+x . Pxy (x , y) ∂S))
using distr-marginal1 [OF T S distributed-swap[OF S T]] Pxy by simp

lemma (in prob-space) distributed-marginal-eq-joint1 :
assumes T : sigma-finite-measure T
assumes S : sigma-finite-measure S
assumes Px : distributed M S X Px
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

shows AE x in S . Px x = (
∫

+y . Pxy (x , y) ∂T)
using Px distr-marginal1 [OF S T Pxy] by (rule distributed-unique)

lemma (in prob-space) distributed-marginal-eq-joint2 :
assumes T : sigma-finite-measure T

THEORY “Probability-Measure” 438

assumes S : sigma-finite-measure S
assumes Py : distributed M T Y Py
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

shows AE y in T . Py y = (
∫

+x . Pxy (x , y) ∂S)
using Py distr-marginal2 [OF S T Pxy] by (rule distributed-unique)

lemma (in prob-space) distributed-joint-indep ′:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X [measurable]: distributed M S X Px and Y [measurable]: distributed

M T Y Py
assumes indep: distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T) (λx . (X

x , Y x))
shows distributed M (S

⊗
M T) (λx . (X x , Y x)) (λ(x , y). Px x ∗ Py y)

unfolding distributed-def
proof safe

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

interpret X : prob-space density S Px
unfolding distributed-distr-eq-density [OF X , symmetric]
by (rule prob-space-distr) simp

have sf-X : sigma-finite-measure (density S Px) ..

interpret Y : prob-space density T Py
unfolding distributed-distr-eq-density [OF Y , symmetric]
by (rule prob-space-distr) simp

have sf-Y : sigma-finite-measure (density T Py) ..

show distr M (S
⊗

M T) (λx . (X x , Y x)) = density (S
⊗

M T) (λ(x , y). Px
x ∗ Py y)

unfolding indep[symmetric] distributed-distr-eq-density [OF X] distributed-distr-eq-density [OF
Y]

using distributed-borel-measurable[OF X]
using distributed-borel-measurable[OF Y]
by (rule pair-measure-density [OF - - T sf-Y])

show random-variable (S
⊗

M T) (λx . (X x , Y x)) by auto

show Pxy : (λ(x , y). Px x ∗ Py y) ∈ borel-measurable (S
⊗

M T) by auto
qed

lemma distributed-integrable:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x . x ∈ space N =⇒ 0

≤ f x) =⇒
integrable N (λx . f x ∗ g x) ←→ integrable M (λx . g (X x))

supply distributed-real-measurable[measurable]
by (auto simp: distributed-distr-eq-density [symmetric] integrable-real-density [symmetric]

integrable-distr-eq)

THEORY “Probability-Measure” 439

lemma distributed-transform-integrable:
assumes Px : distributed M N X Px

∧
x . x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x . x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = (λx . T (X x)) and T : T ∈ measurable N P and f : f ∈

borel-measurable P
shows integrable P (λx . Py x ∗ f x) ←→ integrable N (λx . Px x ∗ f (T x))

proof −
have integrable P (λx . Py x ∗ f x) ←→ integrable M (λx . f (Y x))

by (rule distributed-integrable) fact+
also have . . . ←→ integrable M (λx . f (T (X x)))

using Y by simp
also have . . . ←→ integrable N (λx . Px x ∗ f (T x))
using measurable-comp[OF T f] Px by (intro distributed-integrable[symmetric])

(auto simp: comp-def)
finally show ?thesis .

qed

lemma distributed-integrable-var :
fixes X :: ′a ⇒ real
shows distributed M lborel X (λx . ennreal (f x)) =⇒ (

∧
x . 0 ≤ f x) =⇒

integrable lborel (λx . f x ∗ x) =⇒ integrable M X
using distributed-integrable[of M lborel X f λx . x] by simp

lemma (in prob-space) distributed-variance:
fixes f ::real ⇒ real
assumes D : distributed M lborel X f and [simp]:

∧
x . 0 ≤ f x

shows variance X = (
∫

x . x 2 ∗ f (x + expectation X) ∂lborel)
proof (subst distributed-integral [OF D , symmetric])

show (
∫

x . f x ∗ (x − expectation X)2 ∂lborel) = (
∫

x . x 2 ∗ f (x + expectation
X) ∂lborel)

by (subst lborel-integral-real-affine[where c=1 and t=expectation X]) (auto
simp: ac-simps)
qed simp-all

lemma (in prob-space) variance-affine:
fixes f ::real ⇒ real
assumes [arith]: b 6= 0
assumes D [intro]: distributed M lborel X f
assumes [simp]: prob-space (density lborel f)
assumes I [simp]: integrable M X
assumes I2 [simp]: integrable M (λx . (X x)2)
shows variance (λx . a + b ∗ X x) = b2 ∗ variance X
by (subst variance-eq)

(auto simp: power2-sum power-mult-distrib prob-space variance-eq right-diff-distrib)

definition
simple-distributed M X f ←→

(∀ x . 0 ≤ f x) ∧

THEORY “Probability-Measure” 440

distributed M (count-space (X‘space M)) X (λx . ennreal (f x)) ∧
finite (X‘space M)

lemma simple-distributed-nonneg [dest]: simple-distributed M X f =⇒ 0 ≤ f x
by (auto simp: simple-distributed-def)

lemma simple-distributed :
simple-distributed M X Px =⇒ distributed M (count-space (X‘space M)) X Px
unfolding simple-distributed-def by auto

lemma simple-distributed-finite[dest]: simple-distributed M X P =⇒ finite (X‘space
M)

by (simp add : simple-distributed-def)

lemma (in prob-space) distributed-simple-function-superset :
assumes X : simple-function M X

∧
x . x ∈ X ‘ space M =⇒ P x = measure M

(X −‘ {x} ∩ space M)
assumes A: X‘space M ⊆ A finite A
defines S ≡ count-space A and P ′ ≡ (λx . if x ∈ X‘space M then P x else 0)
shows distributed M S X P ′

unfolding distributed-def
proof safe

show (λx . ennreal (P ′ x)) ∈ borel-measurable S unfolding S-def by simp
show distr M S X = density S P ′

proof (rule measure-eqI-finite)
show sets (distr M S X) = Pow A sets (density S P ′) = Pow A

using A unfolding S-def by auto
show finite A by fact
fix a assume a: a ∈ A
then have a /∈ X‘space M =⇒ X −‘ {a} ∩ space M = {} by auto
with A a X have emeasure (distr M S X) {a} = P ′ a

by (subst emeasure-distr)
(auto simp add : S-def P ′-def simple-functionD emeasure-eq-measure measurable-count-space-eq2

intro!: arg-cong [where f =prob])
also have . . . = (

∫
+x . ennreal (P ′ a) ∗ indicator {a} x ∂S)

using A X a
by (subst nn-integral-cmult-indicator)
(auto simp: S-def P ′-def simple-distributed-def simple-functionD measure-nonneg)

also have . . . = (
∫

+x . ennreal (P ′ x) ∗ indicator {a} x ∂S)
by (auto simp: indicator-def intro!: nn-integral-cong)

also have . . . = emeasure (density S P ′) {a}
using a A by (intro emeasure-density [symmetric]) (auto simp: S-def)

finally show emeasure (distr M S X) {a} = emeasure (density S P ′) {a} .
qed
show random-variable S X

using X (1) A by (auto simp: measurable-def simple-functionD S-def)
qed

lemma (in prob-space) simple-distributedI :

THEORY “Probability-Measure” 441

assumes X : simple-function M X∧
x . 0 ≤ P x∧
x . x ∈ X ‘ space M =⇒ P x = measure M (X −‘ {x} ∩ space M)

shows simple-distributed M X P
unfolding simple-distributed-def

proof (safe intro!: X)
have distributed M (count-space (X ‘ space M)) X (λx . ennreal (if x ∈ X‘space

M then P x else 0))
(is ?A)

using simple-functionD [OF X (1)] by (intro distributed-simple-function-superset [OF
X (1 ,3)]) auto

also have ?A ←→ distributed M (count-space (X ‘ space M)) X (λx . ennreal (P
x))

by (rule distributed-cong-density) auto
finally show

qed (rule simple-functionD [OF X (1)])

lemma simple-distributed-joint-finite:
assumes X : simple-distributed M (λx . (X x , Y x)) Px
shows finite (X ‘ space M) finite (Y ‘ space M)

proof −
have finite ((λx . (X x , Y x)) ‘ space M)

using X by (auto simp: simple-distributed-def simple-functionD)
then have finite (fst ‘ (λx . (X x , Y x)) ‘ space M) finite (snd ‘ (λx . (X x , Y

x)) ‘ space M)
by auto

then show fin: finite (X ‘ space M) finite (Y ‘ space M)
by (auto simp: image-image)

qed

lemma simple-distributed-joint2-finite:
assumes X : simple-distributed M (λx . (X x , Y x , Z x)) Px
shows finite (X ‘ space M) finite (Y ‘ space M) finite (Z ‘ space M)

proof −
have finite ((λx . (X x , Y x , Z x)) ‘ space M)

using X by (auto simp: simple-distributed-def simple-functionD)
then have finite (fst ‘ (λx . (X x , Y x , Z x)) ‘ space M)

finite ((fst ◦ snd) ‘ (λx . (X x , Y x , Z x)) ‘ space M)
finite ((snd ◦ snd) ‘ (λx . (X x , Y x , Z x)) ‘ space M)
by auto

then show fin: finite (X ‘ space M) finite (Y ‘ space M) finite (Z ‘ space M)
by (auto simp: image-image)

qed

lemma simple-distributed-simple-function:
simple-distributed M X Px =⇒ simple-function M X
unfolding simple-distributed-def distributed-def
by (auto simp: simple-function-def measurable-count-space-eq2)

THEORY “Probability-Measure” 442

lemma simple-distributed-measure:
simple-distributed M X P =⇒ a ∈ X‘space M =⇒ P a = measure M (X −‘ {a}
∩ space M)

using distributed-count-space[of M X‘space M X P a, symmetric]
by (auto simp: simple-distributed-def measure-def)

lemma (in prob-space) simple-distributed-joint :
assumes X : simple-distributed M (λx . (X x , Y x)) Px
defines S ≡ count-space (X‘space M)

⊗
M count-space (Y‘space M)

defines P ≡ (λx . if x ∈ (λx . (X x , Y x))‘space M then Px x else 0)
shows distributed M S (λx . (X x , Y x)) P

proof −
from simple-distributed-joint-finite[OF X , simp]
have S-eq : S = count-space (X‘space M × Y‘space M)

by (simp add : S-def pair-measure-count-space)
show ?thesis

unfolding S-eq P-def
proof (rule distributed-simple-function-superset)

show simple-function M (λx . (X x , Y x))
using X by (rule simple-distributed-simple-function)

fix x assume x ∈ (λx . (X x , Y x)) ‘ space M
from simple-distributed-measure[OF X this]
show Px x = prob ((λx . (X x , Y x)) −‘ {x} ∩ space M) .

qed auto
qed

lemma (in prob-space) simple-distributed-joint2 :
assumes X : simple-distributed M (λx . (X x , Y x , Z x)) Px
defines S ≡ count-space (X‘space M)

⊗
M count-space (Y‘space M)

⊗
M

count-space (Z‘space M)
defines P ≡ (λx . if x ∈ (λx . (X x , Y x , Z x))‘space M then Px x else 0)
shows distributed M S (λx . (X x , Y x , Z x)) P

proof −
from simple-distributed-joint2-finite[OF X , simp]
have S-eq : S = count-space (X‘space M × Y‘space M × Z‘space M)

by (simp add : S-def pair-measure-count-space)
show ?thesis

unfolding S-eq P-def
proof (rule distributed-simple-function-superset)

show simple-function M (λx . (X x , Y x , Z x))
using X by (rule simple-distributed-simple-function)

fix x assume x ∈ (λx . (X x , Y x , Z x)) ‘ space M
from simple-distributed-measure[OF X this]
show Px x = prob ((λx . (X x , Y x , Z x)) −‘ {x} ∩ space M) .

qed auto
qed

lemma (in prob-space) simple-distributed-setsum-space:
assumes X : simple-distributed M X f

THEORY “Probability-Measure” 443

shows setsum f (X‘space M) = 1
proof −

from X have setsum f (X‘space M) = prob (
⋃

i∈X‘space M . X −‘ {i} ∩ space
M)

by (subst finite-measure-finite-Union)
(auto simp add : disjoint-family-on-def simple-distributed-measure simple-distributed-simple-function

simple-functionD
intro!: setsum.cong arg-cong [where f =prob])

also have . . . = prob (space M)
by (auto intro!: arg-cong [where f =prob])

finally show ?thesis
using emeasure-space-1 by (simp add : emeasure-eq-measure)

qed

lemma (in prob-space) distributed-marginal-eq-joint-simple:
assumes Px : simple-function M X
assumes Py : simple-distributed M Y Py
assumes Pxy : simple-distributed M (λx . (X x , Y x)) Pxy
assumes y : y ∈ Y‘space M
shows Py y = (

∑
x∈X‘space M . if (x , y) ∈ (λx . (X x , Y x)) ‘ space M then

Pxy (x , y) else 0)
proof −

note Px = simple-distributedI [OF Px measure-nonneg refl]
have AE y in count-space (Y ‘ space M). ennreal (Py y) =∫

+ x . ennreal (if (x , y) ∈ (λx . (X x , Y x)) ‘ space M then Pxy (x , y) else
0) ∂count-space (X ‘ space M)

using sigma-finite-measure-count-space-finite sigma-finite-measure-count-space-finite
simple-distributed [OF Py] simple-distributed-joint [OF Pxy]

by (rule distributed-marginal-eq-joint2)
(auto intro: Py Px simple-distributed-finite)

then have ennreal (Py y) =
(
∑

x∈X‘space M . ennreal (if (x , y) ∈ (λx . (X x , Y x)) ‘ space M then Pxy (x ,
y) else 0))

using y Px [THEN simple-distributed-finite]
by (auto simp: AE-count-space nn-integral-count-space-finite)

also have . . . = (
∑

x∈X‘space M . if (x , y) ∈ (λx . (X x , Y x)) ‘ space M then
Pxy (x , y) else 0)

using Pxy by (intro setsum-ennreal) auto
finally show ?thesis

using simple-distributed-nonneg [OF Py] simple-distributed-nonneg [OF Pxy]
by (subst (asm) ennreal-inj) (auto intro!: setsum-nonneg)

qed

lemma distributedI-real :
fixes f :: ′a ⇒ real
assumes gen: sets M1 = sigma-sets (space M1) E and Int-stable E

and A: range A ⊆ E (
⋃

i ::nat . A i) = space M1
∧

i . emeasure (distr M M1
X) (A i) 6= ∞

and X : X ∈ measurable M M1

THEORY “Probability-Measure” 444

and f : f ∈ borel-measurable M1 AE x in M1 . 0 ≤ f x
and eq :

∧
A. A ∈ E =⇒ emeasure M (X −‘ A ∩ space M) = (

∫
+ x . f x ∗

indicator A x ∂M1)
shows distributed M M1 X f
unfolding distributed-def

proof (intro conjI)
show distr M M1 X = density M1 f
proof (rule measure-eqI-generator-eq [where A=A])
{ fix A assume A: A ∈ E

then have A ∈ sigma-sets (space M1) E by auto
then have A ∈ sets M1

using gen by simp
with f A eq [of A] X show emeasure (distr M M1 X) A = emeasure (density

M1 f) A
by (auto simp add : emeasure-distr emeasure-density ennreal-indicator

intro!: nn-integral-cong split : split-indicator) }
note eq-E = this
show Int-stable E by fact
{ fix e assume e ∈ E

then have e ∈ sigma-sets (space M1) E by auto
then have e ∈ sets M1 unfolding gen .
then have e ⊆ space M1 by (rule sets.sets-into-space) }

then show E ⊆ Pow (space M1) by auto
show sets (distr M M1 X) = sigma-sets (space M1) E

sets (density M1 (λx . ennreal (f x))) = sigma-sets (space M1) E
unfolding gen[symmetric] by auto

qed fact+
qed (insert X f , auto)

lemma distributedI-borel-atMost :
fixes f :: real ⇒ real
assumes [measurable]: X ∈ borel-measurable M

and [measurable]: f ∈ borel-measurable borel and f [simp]: AE x in lborel . 0 ≤
f x

and g-eq :
∧

a. (
∫

+x . f x ∗ indicator {..a} x ∂lborel) = ennreal (g a)
and M-eq :

∧
a. emeasure M {x∈space M . X x ≤ a} = ennreal (g a)

shows distributed M lborel X f
proof (rule distributedI-real)

show sets (lborel ::real measure) = sigma-sets (space lborel) (range atMost)
by (simp add : borel-eq-atMost)

show Int-stable (range atMost :: real set set)
by (auto simp: Int-stable-def)

have vimage-eq :
∧

a. (X −‘ {..a} ∩ space M) = {x∈space M . X x ≤ a} by auto
def A ≡ λi ::nat . {.. real i}
then show range A ⊆ range atMost (

⋃
i . A i) = space lborel∧

i . emeasure (distr M lborel X) (A i) 6= ∞
by (auto simp: real-arch-simple emeasure-distr vimage-eq M-eq)

fix A :: real set assume A ∈ range atMost

THEORY “Probability-Measure” 445

then obtain a where A: A = {..a} by auto
show emeasure M (X −‘ A ∩ space M) = (

∫
+x . f x ∗ indicator A x ∂lborel)

unfolding vimage-eq A M-eq g-eq ..
qed auto

lemma (in prob-space) uniform-distributed-params:
assumes X : distributed M MX X (λx . indicator A x / measure MX A)
shows A ∈ sets MX measure MX A 6= 0

proof −
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

show measure MX A 6= 0
proof

assume measure MX A = 0
with X .emeasure-space-1 X .prob-space distributed-distr-eq-density [OF X]
show False

by (simp add : emeasure-density zero-ennreal-def [symmetric])
qed
with measure-notin-sets[of A MX] show A ∈ sets MX

by blast
qed

lemma prob-space-uniform-measure:
assumes A: emeasure M A 6= 0 emeasure M A 6= ∞
shows prob-space (uniform-measure M A)

proof
show emeasure (uniform-measure M A) (space (uniform-measure M A)) = 1

using emeasure-uniform-measure[OF emeasure-neq-0-sets[OF A(1)], of space
M]

using sets.sets-into-space[OF emeasure-neq-0-sets[OF A(1)]] A
by (simp add : Int-absorb2 less-top)

qed

lemma prob-space-uniform-count-measure: finite A =⇒ A 6= {} =⇒ prob-space
(uniform-count-measure A)
by standard (auto simp: emeasure-uniform-count-measure space-uniform-count-measure

one-ennreal-def)

lemma (in prob-space) measure-uniform-measure-eq-cond-prob:
assumes [measurable]: Measurable.pred M P Measurable.pred M Q
shows P(x in uniform-measure M {x∈space M . Q x}. P x) = P(x in M . P x |

Q x)
proof cases

assume Q : measure M {x∈space M . Q x} = 0
then have ∗: AE x in M . ¬ Q x

by (simp add : prob-eq-0)
then have density M (λx . indicator {x ∈ space M . Q x} x / emeasure M {x ∈

space M . Q x}) = density M (λx . 0)

THEORY “Probability-Measure” 446

by (intro density-cong) auto
with ∗ show ?thesis

unfolding uniform-measure-def
by (simp add : emeasure-density measure-def cond-prob-def emeasure-eq-0-AE)

next
assume Q : measure M {x∈space M . Q x} 6= 0
then show P(x in uniform-measure M {x ∈ space M . Q x}. P x) = cond-prob

M P Q
by (subst measure-uniform-measure)
(auto simp: emeasure-eq-measure cond-prob-def measure-nonneg intro!: arg-cong [where

f =prob])
qed

lemma prob-space-point-measure:
finite S =⇒ (

∧
s. s ∈ S =⇒ 0 ≤ p s) =⇒ (

∑
s∈S . p s) = 1 =⇒ prob-space

(point-measure S p)
by (rule prob-spaceI) (simp add : space-point-measure emeasure-point-measure-finite)

lemma (in prob-space) distr-pair-fst : distr (N
⊗

M M) N fst = N
proof (intro measure-eqI)

fix A assume A: A ∈ sets (distr (N
⊗

M M) N fst)
from A have emeasure (distr (N

⊗
M M) N fst) A = emeasure (N

⊗
M M)

(A × space M)
by (auto simp add : emeasure-distr space-pair-measure dest : sets.sets-into-space

intro!: arg-cong2 [where f =emeasure])
with A show emeasure (distr (N

⊗
M M) N fst) A = emeasure N A

by (simp add : emeasure-pair-measure-Times emeasure-space-1)
qed simp

lemma (in product-prob-space) distr-reorder :
assumes inj-on t J t ∈ J → K finite K
shows distr (PiM K M) (PiM J (λx . M (t x))) (λω. λn∈J . ω (t n)) = PiM J

(λx . M (t x))
proof (rule product-sigma-finite.PiM-eqI)

show product-sigma-finite (λx . M (t x)) ..
have t‘J ⊆ K using assms by auto
then show [simp]: finite J

by (rule finite-imageD [OF finite-subset]) fact+
fix A assume A:

∧
i . i ∈ J =⇒ A i ∈ sets (M (t i))

moreover have ((λω. λn∈J . ω (t n)) −‘ PiE J A ∩ space (PiM K M)) =
(ΠE i∈K . if i ∈ t‘J then A (the-inv-into J t i) else space (M i))
using A A[THEN sets.sets-into-space] 〈t ∈ J → K 〉 〈inj-on t J 〉

by (subst prod-emb-Pi [symmetric]) (auto simp: space-PiM PiE-iff the-inv-into-f-f
prod-emb-def)

ultimately show distr (PiM K M) (PiM J (λx . M (t x))) (λω. λn∈J . ω (t n))
(PiE J A) = (

∏
i∈J . M (t i) (A i))

using assms
apply (subst emeasure-distr)
apply (auto intro!: sets-PiM-I-finite simp: Pi-iff)

THEORY “Complete-Measure” 447

apply (subst emeasure-PiM)
apply (auto simp: the-inv-into-f-f 〈inj-on t J 〉 setprod .reindex [OF 〈inj-on t J 〉]
if-distrib[where f =emeasure (M -)] setprod .If-cases emeasure-space-1 Int-absorb1

〈t‘J ⊆ K 〉)
done

qed simp

lemma (in product-prob-space) distr-restrict :
J ⊆ K =⇒ finite K =⇒ (ΠM i∈J . M i) = distr (ΠM i∈K . M i) (ΠM i∈J . M

i) (λf . restrict f J)
using distr-reorder [of λx . x J K] by (simp add : Pi-iff subset-eq)

lemma (in product-prob-space) emeasure-prod-emb[simp]:
assumes L: J ⊆ L finite L and X : X ∈ sets (PiM J M)
shows emeasure (PiM L M) (prod-emb L M J X) = emeasure (PiM J M) X
by (subst distr-restrict [OF L])

(simp add : prod-emb-def space-PiM emeasure-distr measurable-restrict-subset
L X)

lemma emeasure-distr-restrict :
assumes I ⊆ K and Q [measurable-cong]: sets Q = sets (PiM K M) and

A[measurable]: A ∈ sets (PiM I M)
shows emeasure (distr Q (PiM I M) (λω. restrict ω I)) A = emeasure Q

(prod-emb K M I A)
using 〈I⊆K 〉 sets-eq-imp-space-eq [OF Q]
by (subst emeasure-distr)

(auto simp: measurable-cong-sets[OF Q] prod-emb-def space-PiM [symmetric]
intro!: measurable-restrict)

end

theory Complete-Measure
imports Bochner-Integration Probability-Measure

begin

definition
split-completion M A p = (if A ∈ sets M then p = (A, {}) else
∃N ′. A = fst p ∪ snd p ∧ fst p ∩ snd p = {} ∧ fst p ∈ sets M ∧ snd p ⊆ N ′

∧ N ′ ∈ null-sets M)

definition
main-part M A = fst (Eps (split-completion M A))

definition
null-part M A = snd (Eps (split-completion M A))

definition completion :: ′a measure ⇒ ′a measure where
completion M = measure-of (space M) { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈

THEORY “Complete-Measure” 448

null-sets M ∧ N ⊆ N ′ }
(emeasure M ◦ main-part M)

lemma completion-into-space:
{ S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N ⊆ N ′ } ⊆ Pow (space

M)
using sets.sets-into-space by auto

lemma space-completion[simp]: space (completion M) = space M
unfolding completion-def using space-measure-of [OF completion-into-space] by

simp

lemma completionI :
assumes A = S ∪ N N ⊆ N ′ N ′ ∈ null-sets M S ∈ sets M
shows A ∈ { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N ⊆ N ′ }
using assms by auto

lemma completionE :
assumes A ∈ { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N ⊆ N ′ }
obtains S N N ′ where A = S ∪ N N ⊆ N ′ N ′ ∈ null-sets M S ∈ sets M
using assms by auto

lemma sigma-algebra-completion:
sigma-algebra (space M) { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N
⊆ N ′ }

(is sigma-algebra - ?A)
unfolding sigma-algebra-iff2

proof (intro conjI ballI allI impI)
show ?A ⊆ Pow (space M)

using sets.sets-into-space by auto
next

show {} ∈ ?A by auto
next

let ?C = space M
fix A assume A ∈ ?A from completionE [OF this] guess S N N ′ .
then show space M − A ∈ ?A

by (intro completionI [of - (?C − S) ∩ (?C − N ′) (?C − S) ∩ N ′ ∩ (?C −
N)]) auto
next

fix A :: nat ⇒ ′a set assume A: range A ⊆ ?A
then have ∀n. ∃S N N ′. A n = S ∪ N ∧ S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N
⊆ N ′

by (auto simp: image-subset-iff)
from choice[OF this] guess S ..
from choice[OF this] guess N ..
from choice[OF this] guess N ′ ..
then show UNION UNIV A ∈ ?A

using null-sets-UN [of N ′]
by (intro completionI [of - UNION UNIV S UNION UNIV N UNION UNIV

THEORY “Complete-Measure” 449

N ′]) auto
qed

lemma sets-completion:
sets (completion M) = { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null-sets M ∧ N
⊆ N ′ }

using sigma-algebra.sets-measure-of-eq [OF sigma-algebra-completion] by (simp
add : completion-def)

lemma sets-completionE :
assumes A ∈ sets (completion M)
obtains S N N ′ where A = S ∪ N N ⊆ N ′ N ′ ∈ null-sets M S ∈ sets M
using assms unfolding sets-completion by auto

lemma sets-completionI :
assumes A = S ∪ N N ⊆ N ′ N ′ ∈ null-sets M S ∈ sets M
shows A ∈ sets (completion M)
using assms unfolding sets-completion by auto

lemma sets-completionI-sets[intro, simp]:
A ∈ sets M =⇒ A ∈ sets (completion M)
unfolding sets-completion by force

lemma null-sets-completion:
assumes N ′ ∈ null-sets M N ⊆ N ′ shows N ∈ sets (completion M)
using assms by (intro sets-completionI [of N {} N N ′]) auto

lemma split-completion:
assumes A ∈ sets (completion M)
shows split-completion M A (main-part M A, null-part M A)

proof cases
assume A ∈ sets M then show ?thesis

by (simp add : split-completion-def [abs-def] main-part-def null-part-def)
next

assume nA: A /∈ sets M
show ?thesis

unfolding main-part-def null-part-def if-not-P [OF nA]
proof (rule someI2-ex)

from assms[THEN sets-completionE] guess S N N ′ . note A = this
let ?P = (S , N − S)
show ∃ p. split-completion M A p

unfolding split-completion-def if-not-P [OF nA] using A
proof (intro exI conjI)

show A = fst ?P ∪ snd ?P using A by auto
show snd ?P ⊆ N ′ using A by auto

qed auto
qed auto

qed

THEORY “Complete-Measure” 450

lemma
assumes S ∈ sets (completion M)
shows main-part-sets[intro, simp]: main-part M S ∈ sets M

and main-part-null-part-Un[simp]: main-part M S ∪ null-part M S = S
and main-part-null-part-Int [simp]: main-part M S ∩ null-part M S = {}

using split-completion[OF assms]
by (auto simp: split-completion-def split : if-split-asm)

lemma main-part [simp]: S ∈ sets M =⇒ main-part M S = S
using split-completion[of S M]
by (auto simp: split-completion-def split : if-split-asm)

lemma null-part :
assumes S ∈ sets (completion M) shows ∃N . N∈null-sets M ∧ null-part M S
⊆ N
using split-completion[OF assms] by (auto simp: split-completion-def split : if-split-asm)

lemma null-part-sets[intro, simp]:
assumes S ∈ sets M shows null-part M S ∈ sets M emeasure M (null-part M

S) = 0
proof −

have S : S ∈ sets (completion M) using assms by auto
have S − main-part M S ∈ sets M using assms by auto
moreover
from main-part-null-part-Un[OF S] main-part-null-part-Int [OF S]
have S − main-part M S = null-part M S by auto
ultimately show sets: null-part M S ∈ sets M by auto
from null-part [OF S] guess N ..
with emeasure-eq-0 [of N - null-part M S] sets
show emeasure M (null-part M S) = 0 by auto

qed

lemma emeasure-main-part-UN :
fixes S :: nat ⇒ ′a set
assumes range S ⊆ sets (completion M)
shows emeasure M (main-part M (

⋃
i . (S i))) = emeasure M (

⋃
i . main-part

M (S i))
proof −

have S :
∧

i . S i ∈ sets (completion M) using assms by auto
then have UN : (

⋃
i . S i) ∈ sets (completion M) by auto

have ∀ i . ∃N . N ∈ null-sets M ∧ null-part M (S i) ⊆ N
using null-part [OF S] by auto

from choice[OF this] guess N .. note N = this
then have UN-N : (

⋃
i . N i) ∈ null-sets M by (intro null-sets-UN) auto

have (
⋃

i . S i) ∈ sets (completion M) using S by auto
from null-part [OF this] guess N ′ .. note N ′ = this
let ?N = (

⋃
i . N i) ∪ N ′

have null-set : ?N ∈ null-sets M using N ′ UN-N by (intro null-sets.Un) auto
have main-part M (

⋃
i . S i) ∪ ?N = (main-part M (

⋃
i . S i) ∪ null-part M

THEORY “Complete-Measure” 451

(
⋃

i . S i)) ∪ ?N
using N ′ by auto

also have . . . = (
⋃

i . main-part M (S i) ∪ null-part M (S i)) ∪ ?N
unfolding main-part-null-part-Un[OF S] main-part-null-part-Un[OF UN] by

auto
also have . . . = (

⋃
i . main-part M (S i)) ∪ ?N

using N by auto
finally have ∗: main-part M (

⋃
i . S i) ∪ ?N = (

⋃
i . main-part M (S i)) ∪ ?N

.
have emeasure M (main-part M (

⋃
i . S i)) = emeasure M (main-part M (

⋃
i .

S i) ∪ ?N)
using null-set UN by (intro emeasure-Un-null-set [symmetric]) auto

also have . . . = emeasure M ((
⋃

i . main-part M (S i)) ∪ ?N)
unfolding ∗ ..

also have . . . = emeasure M (
⋃

i . main-part M (S i))
using null-set S by (intro emeasure-Un-null-set) auto

finally show ?thesis .
qed

lemma emeasure-completion[simp]:
assumes S : S ∈ sets (completion M) shows emeasure (completion M) S =

emeasure M (main-part M S)
proof (subst emeasure-measure-of [OF completion-def completion-into-space])

let ?µ = emeasure M ◦ main-part M
show S ∈ sets (completion M) ?µ S = emeasure M (main-part M S) using S

by simp-all
show positive (sets (completion M)) ?µ

by (simp add : positive-def)
show countably-additive (sets (completion M)) ?µ
proof (intro countably-additiveI)
fix A :: nat ⇒ ′a set assume A: range A ⊆ sets (completion M) disjoint-family

A
have disjoint-family (λi . main-part M (A i))
proof (intro disjoint-family-on-bisimulation[OF A(2)])

fix n m assume A n ∩ A m = {}
then have (main-part M (A n) ∪ null-part M (A n)) ∩ (main-part M (A

m) ∪ null-part M (A m)) = {}
using A by (subst (1 2) main-part-null-part-Un) auto

then show main-part M (A n) ∩ main-part M (A m) = {} by auto
qed
then have (

∑
n. emeasure M (main-part M (A n))) = emeasure M (

⋃
i .

main-part M (A i))
using A by (auto intro!: suminf-emeasure)

then show (
∑

n. ?µ (A n)) = ?µ (UNION UNIV A)
by (simp add : completion-def emeasure-main-part-UN [OF A(1)])

qed
qed

lemma emeasure-completion-UN :

THEORY “Complete-Measure” 452

range S ⊆ sets (completion M) =⇒
emeasure (completion M) (

⋃
i ::nat . (S i)) = emeasure M (

⋃
i . main-part M

(S i))
by (subst emeasure-completion) (auto simp add : emeasure-main-part-UN)

lemma emeasure-completion-Un:
assumes S : S ∈ sets (completion M) and T : T ∈ sets (completion M)
shows emeasure (completion M) (S ∪ T) = emeasure M (main-part M S ∪

main-part M T)
proof (subst emeasure-completion)

have UN : (
⋃

i . binary (main-part M S) (main-part M T) i) = (
⋃

i . main-part
M (binary S T i))

unfolding binary-def by (auto split : if-split-asm)
show emeasure M (main-part M (S ∪ T)) = emeasure M (main-part M S ∪

main-part M T)
using emeasure-main-part-UN [of binary S T M] assms
by (simp add : range-binary-eq , simp add : Un-range-binary UN)

qed (auto intro: S T)

lemma sets-completionI-sub:
assumes N : N ′ ∈ null-sets M N ⊆ N ′

shows N ∈ sets (completion M)
using assms by (intro sets-completionI [of - {} N N ′]) auto

lemma completion-ex-simple-function:
assumes f : simple-function (completion M) f
shows ∃ f ′. simple-function M f ′ ∧ (AE x in M . f x = f ′ x)

proof −
let ?F = λx . f −‘ {x} ∩ space M
have F :

∧
x . ?F x ∈ sets (completion M) and fin: finite (f‘space M)

using simple-functionD [OF f] simple-functionD [OF f] by simp-all
have ∀ x . ∃N . N ∈ null-sets M ∧ null-part M (?F x) ⊆ N

using F null-part by auto
from choice[OF this] obtain N where

N :
∧

x . null-part M (?F x) ⊆ N x
∧

x . N x ∈ null-sets M by auto
let ?N =

⋃
x∈f‘space M . N x

let ?f ′ = λx . if x ∈ ?N then undefined else f x
have sets: ?N ∈ null-sets M using N fin by (intro null-sets.finite-UN) auto
show ?thesis unfolding simple-function-def
proof (safe intro!: exI [of - ?f ′])

have ?f ′ ‘ space M ⊆ f‘space M ∪ {undefined} by auto
from finite-subset [OF this] simple-functionD(1)[OF f]
show finite (?f ′ ‘ space M) by auto

next
fix x assume x ∈ space M
have ?f ′ −‘ {?f ′ x} ∩ space M =

(if x ∈ ?N then ?F undefined ∪ ?N
else if f x = undefined then ?F (f x) ∪ ?N
else ?F (f x) − ?N)

THEORY “Complete-Measure” 453

using N (2) sets.sets-into-space by (auto split : if-split-asm simp: null-sets-def)
moreover { fix y have ?F y ∪ ?N ∈ sets M

proof cases
assume y : y ∈ f‘space M
have ?F y ∪ ?N = (main-part M (?F y) ∪ null-part M (?F y)) ∪ ?N

using main-part-null-part-Un[OF F] by auto
also have . . . = main-part M (?F y) ∪ ?N

using y N by auto
finally show ?thesis

using F sets by auto
next

assume y /∈ f‘space M then have ?F y = {} by auto
then show ?thesis using sets by auto

qed }
moreover {

have ?F (f x) − ?N = main-part M (?F (f x)) ∪ null-part M (?F (f x)) −
?N

using main-part-null-part-Un[OF F] by auto
also have . . . = main-part M (?F (f x)) − ?N

using N 〈x ∈ space M 〉 by auto
finally have ?F (f x) − ?N ∈ sets M

using F sets by auto }
ultimately show ?f ′ −‘ {?f ′ x} ∩ space M ∈ sets M by auto

next
show AE x in M . f x = ?f ′ x

by (rule AE-I ′, rule sets) auto
qed

qed

lemma completion-ex-borel-measurable:
fixes g :: ′a ⇒ ennreal
assumes g : g ∈ borel-measurable (completion M)
shows ∃ g ′∈borel-measurable M . (AE x in M . g x = g ′ x)

proof −
from g [THEN borel-measurable-implies-simple-function-sequence ′] guess f . note

f = this
from this(1)[THEN completion-ex-simple-function]
have ∀ i . ∃ f ′. simple-function M f ′ ∧ (AE x in M . f i x = f ′ x) ..
from this[THEN choice] obtain f ′ where

sf :
∧

i . simple-function M (f ′ i) and
AE : ∀ i . AE x in M . f i x = f ′ i x by auto

show ?thesis
proof (intro bexI)

from AE [unfolded AE-all-countable[symmetric]]
show AE x in M . g x = (SUP i . f ′ i x) (is AE x in M . g x = ?f x)
proof (elim AE-mp, safe intro!: AE-I2)

fix x assume eq : ∀ i . f i x = f ′ i x
moreover have g x = (SUP i . f i x)

unfolding f by (auto split : split-max)

THEORY “Fin-Map” 454

ultimately show g x = ?f x by auto
qed
show ?f ∈ borel-measurable M

using sf [THEN borel-measurable-simple-function] by auto
qed

qed

lemma (in prob-space) prob-space-completion: prob-space (completion M)
by (rule prob-spaceI) (simp add : emeasure-space-1)

lemma null-sets-completionI : N ∈ null-sets M =⇒ N ∈ null-sets (completion M)
by (auto simp: null-sets-def)

lemma AE-completion: (AE x in M . P x) =⇒ (AE x in completion M . P x)
unfolding eventually-ae-filter by (auto intro: null-sets-completionI)

lemma null-sets-completion-iff : N ∈ sets M =⇒ N ∈ null-sets (completion M)
←→ N ∈ null-sets M

by (auto simp: null-sets-def)

lemma AE-completion-iff : {x∈space M . P x} ∈ sets M =⇒ (AE x in M . P x)
←→ (AE x in completion M . P x)

by (simp add : AE-iff-null null-sets-completion-iff)

end

13 Finite Maps

theory Fin-Map
imports Finite-Product-Measure
begin

Auxiliary type that is instantiated to polish-space, needed for the proof of
projective limit. extensional functions are used for the representation in
order to stay close to the developments of (finite) products PiE and their
sigma-algebra PiM .

typedef (′i , ′a) finmap ((- ⇒F /-) [22 , 21] 21) =
{(I :: ′i set , f :: ′i ⇒ ′a). finite I ∧ f ∈ extensional I } by auto

13.1 Domain and Application

definition domain where domain P = fst (Rep-finmap P)

lemma finite-domain[simp, intro]: finite (domain P)
by (cases P) (auto simp: domain-def Abs-finmap-inverse)

definition proj (′((-) ′)F [0] 1000) where proj P i = snd (Rep-finmap P) i

THEORY “Fin-Map” 455

declare [[coercion proj]]

lemma extensional-proj [simp, intro]: (P)F ∈ extensional (domain P)
by (cases P) (auto simp: domain-def Abs-finmap-inverse proj-def [abs-def])

lemma proj-undefined [simp, intro]: i /∈ domain P =⇒ P i = undefined
using extensional-proj [of P] unfolding extensional-def by auto

lemma finmap-eq-iff : P = Q ←→ (domain P = domain Q ∧ (∀ i∈domain P . P i
= Q i))

by (cases P , cases Q)
(auto simp add : Abs-finmap-inject extensional-def domain-def proj-def Abs-finmap-inverse

intro: extensionalityI)

13.2 Countable Finite Maps

instance finmap :: (countable, countable) countable
proof

obtain mapper where mapper :
∧

fm :: ′a ⇒F
′b. set (mapper fm) = domain fm

by (metis finite-list [OF finite-domain])
have inj (λfm. map (λi . (i , (fm)F i)) (mapper fm)) (is inj ?F)
proof (rule inj-onI)

fix f1 f2 assume ?F f1 = ?F f2
then have map fst (?F f1) = map fst (?F f2) by simp
then have mapper f1 = mapper f2 by (simp add : comp-def)
then have domain f1 = domain f2 by (simp add : mapper [symmetric])
with 〈?F f1 = ?F f2 〉 show f1 = f2

unfolding 〈mapper f1 = mapper f2 〉 map-eq-conv mapper
by (simp add : finmap-eq-iff)

qed
then show ∃ to-nat :: ′a ⇒F

′b ⇒ nat . inj to-nat
by (intro exI [of - to-nat ◦ ?F] inj-comp) auto

qed

13.3 Constructor of Finite Maps

definition finmap-of inds f = Abs-finmap (inds, restrict f inds)

lemma proj-finmap-of [simp]:
assumes finite inds
shows (finmap-of inds f)F = restrict f inds
using assms
by (auto simp: Abs-finmap-inverse finmap-of-def proj-def)

lemma domain-finmap-of [simp]:
assumes finite inds
shows domain (finmap-of inds f) = inds
using assms
by (auto simp: Abs-finmap-inverse finmap-of-def domain-def)

THEORY “Fin-Map” 456

lemma finmap-of-eq-iff [simp]:
assumes finite i finite j
shows finmap-of i m = finmap-of j n ←→ i = j ∧ (∀ k∈i . m k= n k)
using assms by (auto simp: finmap-eq-iff)

lemma finmap-of-inj-on-extensional-finite:
assumes finite K
assumes S ⊆ extensional K
shows inj-on (finmap-of K) S

proof (rule inj-onI)
fix x y :: ′a ⇒ ′b
assume finmap-of K x = finmap-of K y
hence (finmap-of K x)F = (finmap-of K y)F by simp
moreover
assume x ∈ S y ∈ S hence x ∈ extensional K y ∈ extensional K using assms

by auto
ultimately
show x = y using assms by (simp add : extensional-restrict)

qed

13.4 Product set of Finite Maps

This is Pi for Finite Maps, most of this is copied

definition Pi ′ :: ′i set ⇒ (′i ⇒ ′a set) ⇒ (′i ⇒F
′a) set where

Pi ′ I A = { P . domain P = I ∧ (∀ i . i ∈ I −→ (P)F i ∈ A i) }

syntax
-Pi ′ :: [pttrn, ′a set , ′b set] => (′a => ′b) set ((3 Π ′ -∈-./ -) 10)

translations
Π ′ x∈A. B == CONST Pi ′ A (λx . B)

13.4.1 Basic Properties of Pi ′

lemma Pi ′-I [intro!]: domain f = A =⇒ (
∧

x . x ∈ A =⇒ f x ∈ B x) =⇒ f ∈ Pi ′

A B
by (simp add : Pi ′-def)

lemma Pi ′-I ′[simp]: domain f = A =⇒ (
∧

x . x ∈ A −→ f x ∈ B x) =⇒ f ∈ Pi ′

A B
by (simp add :Pi ′-def)

lemma Pi ′-mem: f ∈ Pi ′ A B =⇒ x ∈ A =⇒ f x ∈ B x
by (simp add : Pi ′-def)

lemma Pi ′-iff : f ∈ Pi ′ I X ←→ domain f = I ∧ (∀ i∈I . f i ∈ X i)
unfolding Pi ′-def by auto

lemma Pi ′E [elim]:

THEORY “Fin-Map” 457

f ∈ Pi ′ A B =⇒ (f x ∈ B x =⇒ domain f = A =⇒ Q) =⇒ (x /∈ A =⇒ Q) =⇒
Q

by(auto simp: Pi ′-def)

lemma in-Pi ′-cong :
domain f = domain g =⇒ (

∧
w . w ∈ A =⇒ f w = g w) =⇒ f ∈ Pi ′ A B ←→

g ∈ Pi ′ A B
by (auto simp: Pi ′-def)

lemma Pi ′-eq-empty [simp]:
assumes finite A shows (Pi ′ A B) = {} ←→ (∃ x∈A. B x = {})
using assms
apply (simp add : Pi ′-def , auto)
apply (drule-tac x = finmap-of A (λu. SOME y . y ∈ B u) in spec, auto)
apply (cut-tac P= %y . y ∈ B i in some-eq-ex , auto)
done

lemma Pi ′-mono: (
∧

x . x ∈ A =⇒ B x ⊆ C x) =⇒ Pi ′ A B ⊆ Pi ′ A C
by (auto simp: Pi ′-def)

lemma Pi-Pi ′: finite A =⇒ (PiE A B) = proj ‘ Pi ′ A B
apply (auto simp: Pi ′-def Pi-def extensional-def)
apply (rule-tac x = finmap-of A (restrict x A) in image-eqI)
apply auto
done

13.5 Topological Space of Finite Maps

instantiation finmap :: (type, topological-space) topological-space
begin

definition open-finmap :: (′a ⇒F
′b) set ⇒ bool where

[code del]: open-finmap = generate-topology {Pi ′ a b|a b. ∀ i∈a. open (b i)}

lemma open-Pi ′I : (
∧

i . i ∈ I =⇒ open (A i)) =⇒ open (Pi ′ I A)
by (auto intro: generate-topology .Basis simp: open-finmap-def)

instance using topological-space-generate-topology
by intro-classes (auto simp: open-finmap-def class.topological-space-def)

end

lemma open-restricted-space:
shows open {m. P (domain m)}

proof −
have {m. P (domain m)} = (

⋃
i ∈ Collect P . {m. domain m = i}) by auto

also have open . . .
proof (rule, safe, cases)

fix i :: ′a set

THEORY “Fin-Map” 458

assume finite i
hence {m. domain m = i} = Pi ′ i (λ-. UNIV) by (auto simp: Pi ′-def)
also have open . . . by (auto intro: open-Pi ′I simp: 〈finite i 〉)
finally show open {m. domain m = i} .

next
fix i :: ′a set
assume ¬ finite i hence {m. domain m = i} = {} by auto
also have open . . . by simp
finally show open {m. domain m = i} .

qed
finally show ?thesis .

qed

lemma closed-restricted-space:
shows closed {m. P (domain m)}
using open-restricted-space[of λx . ¬ P x]
unfolding closed-def by (rule back-subst) auto

lemma tendsto-proj : ((λx . x) −−−→ a) F =⇒ ((λx . (x)F i) −−−→ (a)F i) F
unfolding tendsto-def

proof safe
fix S :: ′b set
let ?S = Pi ′ (domain a) (λx . if x = i then S else UNIV)
assume open S hence open ?S by (auto intro!: open-Pi ′I)
moreover assume ∀S . open S −→ a ∈ S −→ eventually (λx . x ∈ S) F a i ∈ S
ultimately have eventually (λx . x ∈ ?S) F by auto
thus eventually (λx . (x)F i ∈ S) F

by eventually-elim (insert 〈a i ∈ S 〉, force simp: Pi ′-iff split : if-split-asm)
qed

lemma continuous-proj :
shows continuous-on s (λx . (x)F i)
unfolding continuous-on-def by (safe intro!: tendsto-proj tendsto-ident-at)

instance finmap :: (type, first-countable-topology) first-countable-topology
proof

fix x :: ′a⇒F
′b

have ∀ i . ∃A. countable A ∧ (∀ a∈A. x i ∈ a) ∧ (∀ a∈A. open a) ∧
(∀S . open S ∧ x i ∈ S −→ (∃ a∈A. a ⊆ S)) ∧ (∀ a b. a ∈ A −→ b ∈ A −→ a

∩ b ∈ A) (is ∀ i . ?th i)
proof

fix i from first-countable-basis-Int-stableE [of x i] guess A .
thus ?th i by (intro exI [where x=A]) simp

qed
then guess A unfolding choice-iff .. note A = this
hence open-sub:

∧
i S . i∈domain x =⇒ open (S i) =⇒ x i∈(S i) =⇒ (∃ a∈A i .

a⊆(S i)) by auto
have A-notempty :

∧
i . i ∈ domain x =⇒ A i 6= {} using open-sub[of - λ-. UNIV]

by auto

THEORY “Fin-Map” 459

let ?A = (λf . Pi ′ (domain x) f) ‘ (PiE (domain x) A)
show ∃A::nat ⇒ (′a⇒F

′b) set . (∀ i . x ∈ (A i) ∧ open (A i)) ∧ (∀S . open S ∧
x ∈ S −→ (∃ i . A i ⊆ S))

proof (rule first-countableI [where A=?A], safe)
show countable ?A using A by (simp add : countable-PiE)

next
fix S ::(′a ⇒F

′b) set assume open S x ∈ S
thus ∃ a∈?A. a ⊆ S unfolding open-finmap-def
proof (induct rule: generate-topology .induct)

case UNIV thus ?case by (auto simp add : ex-in-conv PiE-eq-empty-iff
A-notempty)

next
case (Int a b)
then obtain f g where

f ∈ PiE (domain x) A Pi ′ (domain x) f ⊆ a g ∈ PiE (domain x) A Pi ′

(domain x) g ⊆ b
by auto

thus ?case using A
by (auto simp: Pi ′-iff PiE-iff extensional-def Int-stable-def

intro!: bexI [where x=λi . f i ∩ g i])
next

case (UN B)
then obtain b where x ∈ b b ∈ B by auto
hence ∃ a∈?A. a ⊆ b using UN by simp
thus ?case using 〈b ∈ B 〉 by blast

next
case (Basis s)
then obtain a b where xs: x∈ Pi ′ a b s = Pi ′ a b

∧
i . i∈a =⇒ open (b i)

by auto
have ∀ i . ∃ a. (i ∈ domain x ∧ open (b i) ∧ (x)F i ∈ b i) −→ (a∈A i ∧ a ⊆

b i)
using open-sub[of - b] by auto

then obtain b ′

where
∧

i . i ∈ domain x =⇒ open (b i) =⇒ (x)F i ∈ b i =⇒ (b ′ i ∈A i ∧
b ′ i ⊆ b i)

unfolding choice-iff by auto
with xs have

∧
i . i ∈ a =⇒ (b ′ i ∈A i ∧ b ′ i ⊆ b i) Pi ′ a b ′ ⊆ Pi ′ a b

by (auto simp: Pi ′-iff intro!: Pi ′-mono)
thus ?case using xs

by (intro bexI [where x=Pi ′ a b ′])
(auto simp: Pi ′-iff intro!: image-eqI [where x=restrict b ′ (domain x)])

qed
qed (insert A,auto simp: PiE-iff intro!: open-Pi ′I)

qed

13.6 Metric Space of Finite Maps

instantiation finmap :: (type, metric-space) dist
begin

THEORY “Fin-Map” 460

definition dist-finmap where
dist P Q = Max (range (λi . dist ((P)F i) ((Q)F i))) + (if domain P = domain

Q then 0 else 1)

instance ..
end

instantiation finmap :: (type, metric-space) uniformity-dist
begin

definition [code del]:
(uniformity :: ((′a, ′b) finmap × (′a, ′b) finmap) filter) =

(INF e:{0 <..}. principal {(x , y). dist x y < e})

instance
by standard (rule uniformity-finmap-def)

end

declare uniformity-Abort [where ′a=(′a, ′b::metric-space) finmap, code]

instantiation finmap :: (type, metric-space) metric-space
begin

lemma finite-proj-image ′: x /∈ domain P =⇒ finite ((P)F ‘ S)
by (rule finite-subset [of - proj P ‘ (domain P ∩ S ∪ {x})]) auto

lemma finite-proj-image: finite ((P)F ‘ S)
by (cases ∃ x . x /∈ domain P) (auto intro: finite-proj-image ′ finite-subset [where

B=domain P])

lemma finite-proj-diag : finite ((λi . d ((P)F i) ((Q)F i)) ‘ S)
proof −

have (λi . d ((P)F i) ((Q)F i)) ‘ S = (λ(i , j). d i j) ‘ ((λi . ((P)F i , (Q)F i)) ‘
S) by auto

moreover have ((λi . ((P)F i , (Q)F i)) ‘ S) ⊆ (λi . (P)F i) ‘ S × (λi . (Q)F i)
‘ S by auto

moreover have finite . . . using finite-proj-image[of P S] finite-proj-image[of Q
S]

by (intro finite-cartesian-product) simp-all
ultimately show ?thesis by (simp add : finite-subset)

qed

lemma dist-le-1-imp-domain-eq :
shows dist P Q < 1 =⇒ domain P = domain Q
by (simp add : dist-finmap-def finite-proj-diag split : if-split-asm)

lemma dist-proj :
shows dist ((x)F i) ((y)F i) ≤ dist x y

THEORY “Fin-Map” 461

proof −
have dist (x i) (y i) ≤ Max (range (λi . dist (x i) (y i)))

by (simp add : Max-ge-iff finite-proj-diag)
also have . . . ≤ dist x y by (simp add : dist-finmap-def)
finally show ?thesis .

qed

lemma dist-finmap-lessI :
assumes domain P = domain Q
assumes 0 < e
assumes

∧
i . i ∈ domain P =⇒ dist (P i) (Q i) < e

shows dist P Q < e
proof −

have dist P Q = Max (range (λi . dist (P i) (Q i)))
using assms by (simp add : dist-finmap-def finite-proj-diag)

also have . . . < e
proof (subst Max-less-iff , safe)

fix i
show dist ((P)F i) ((Q)F i) < e using assms

by (cases i ∈ domain P) simp-all
qed (simp add : finite-proj-diag)
finally show ?thesis .

qed

instance
proof

fix S ::(′a ⇒F
′b) set

have ∗: open S = (∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S) (is - = ?od)
proof

assume open S
thus ?od

unfolding open-finmap-def
proof (induct rule: generate-topology .induct)

case UNIV thus ?case by (auto intro: zero-less-one)
next

case (Int a b)
show ?case
proof safe

fix x assume x : x ∈ a x ∈ b
with Int x obtain e1 e2 where

e1>0 ∀ y . dist y x < e1 −→ y ∈ a e2>0 ∀ y . dist y x < e2 −→ y ∈ b by
force

thus ∃ e>0 . ∀ y . dist y x < e −→ y ∈ a ∩ b
by (auto intro!: exI [where x=min e1 e2])

qed
next

case (UN K)
show ?case
proof safe

THEORY “Fin-Map” 462

fix x X assume x ∈ X and X : X ∈ K
with UN obtain e where e>0

∧
y . dist y x < e −→ y ∈ X by force

with X show ∃ e>0 . ∀ y . dist y x < e −→ y ∈
⋃

K by auto
qed

next
case (Basis s) then obtain a b where s: s = Pi ′ a b and b:

∧
i . i∈a =⇒

open (b i) by auto
show ?case
proof safe

fix x assume x ∈ s
hence [simp]: finite a and a-dom: a = domain x using s by (auto simp:

Pi ′-iff)
obtain es where es: ∀ i ∈ a. es i > 0 ∧ (∀ y . dist y (proj x i) < es i −→

y ∈ b i)
using b 〈x ∈ s〉 by atomize-elim (intro bchoice, auto simp: open-dist s)

hence in-b:
∧

i y . i ∈ a =⇒ dist y (proj x i) < es i =⇒ y ∈ b i by auto
show ∃ e>0 . ∀ y . dist y x < e −→ y ∈ s
proof (cases, rule, safe)

assume a 6= {}
show 0 < min 1 (Min (es ‘ a)) using es by (auto simp: 〈a 6= {}〉)
fix y assume d : dist y x < min 1 (Min (es ‘ a))
show y ∈ s unfolding s
proof

show domain y = a using d s 〈a 6= {}〉 by (auto simp: dist-le-1-imp-domain-eq
a-dom)

fix i assume i : i ∈ a
hence dist ((y)F i) ((x)F i) < es i using d

by (auto simp: dist-finmap-def 〈a 6= {}〉 intro!: le-less-trans[OF dist-proj])
with i show y i ∈ b i by (rule in-b)

qed
next

assume ¬a 6= {}
thus ∃ e>0 . ∀ y . dist y x < e −→ y ∈ s

using s 〈x ∈ s〉 by (auto simp: Pi ′-def dist-le-1-imp-domain-eq intro!:
exI [where x=1])

qed
qed

qed
next

assume ∀ x∈S . ∃ e>0 . ∀ y . dist y x < e −→ y ∈ S
then obtain e where e-pos:

∧
x . x ∈ S =⇒ e x > 0 and

e-in:
∧

x y . x ∈ S =⇒ dist y x < e x =⇒ y ∈ S
unfolding bchoice-iff
by auto

have S-eq : S =
⋃
{Pi ′ a b| a b. ∃ x∈S . domain x = a ∧ b = (λi . ball (x i) (e

x))}
proof safe

fix x assume x ∈ S
thus x ∈

⋃
{Pi ′ a b| a b. ∃ x∈S . domain x = a ∧ b = (λi . ball (x i) (e x))}

THEORY “Fin-Map” 463

using e-pos by (auto intro!: exI [where x=Pi ′ (domain x) (λi . ball (x i) (e
x))])

next
fix x y
assume y ∈ S
moreover
assume x ∈ (Π ′ i∈domain y . ball (y i) (e y))
hence dist x y < e y using e-pos 〈y ∈ S 〉

by (auto simp: dist-finmap-def Pi ′-iff finite-proj-diag dist-commute)
ultimately show x ∈ S by (rule e-in)

qed
also have open . . .

unfolding open-finmap-def
by (intro generate-topology .UN) (auto intro: generate-topology .Basis)

finally show open S .
qed
show open S = (∀ x∈S . ∀ F (x ′, y) in uniformity . x ′ = x −→ y ∈ S)

unfolding ∗ eventually-uniformity-metric
by (simp del : split-paired-All add : dist-finmap-def dist-commute eq-commute)

next
fix P Q :: ′a ⇒F

′b
have Max-eq-iff :

∧
A m. finite A =⇒ A 6= {} =⇒ (Max A = m) = (m ∈ A ∧

(∀ a∈A. a ≤ m))
by (auto intro: Max-in Max-eqI)

show dist P Q = 0 ←→ P = Q
by (auto simp: finmap-eq-iff dist-finmap-def Max-ge-iff finite-proj-diag Max-eq-iff

add-nonneg-eq-0-iff
intro!: Max-eqI image-eqI [where x=undefined])

next
fix P Q R:: ′a ⇒F

′b
let ?dists = λP Q i . dist ((P)F i) ((Q)F i)
let ?dpq = ?dists P Q and ?dpr = ?dists P R and ?dqr = ?dists Q R
let ?dom = λP Q . (if domain P = domain Q then 0 else 1 ::real)
have dist P Q = Max (range ?dpq) + ?dom P Q

by (simp add : dist-finmap-def)
also obtain t where t ∈ range ?dpq t = Max (range ?dpq) by (simp add :

finite-proj-diag)
then obtain i where Max (range ?dpq) = ?dpq i by auto
also have ?dpq i ≤ ?dpr i + ?dqr i by (rule dist-triangle2)
also have ?dpr i ≤ Max (range ?dpr) by (simp add : finite-proj-diag)
also have ?dqr i ≤ Max (range ?dqr) by (simp add : finite-proj-diag)
also have ?dom P Q ≤ ?dom P R + ?dom Q R by simp
finally show dist P Q ≤ dist P R + dist Q R by (simp add : dist-finmap-def

ac-simps)
qed

end

THEORY “Fin-Map” 464

13.7 Complete Space of Finite Maps

lemma tendsto-finmap:
fixes f ::nat ⇒ (′i ⇒F (′a::metric-space))
assumes ind-f :

∧
n. domain (f n) = domain g

assumes proj-g :
∧

i . i ∈ domain g =⇒ (λn. (f n) i) −−−−→ g i
shows f −−−−→ g
unfolding tendsto-iff

proof safe
fix e::real assume 0 < e
let ?dists = λx i . dist ((f x)F i) ((g)F i)
have eventually (λx . ∀ i∈domain g . ?dists x i < e) sequentially

using finite-domain[of g] proj-g
proof induct

case (insert i G)
with 〈0 < e〉 have eventually (λx . ?dists x i < e) sequentially by (auto simp

add : tendsto-iff)
moreover
from insert have eventually (λx . ∀ i∈G . dist ((f x)F i) ((g)F i) < e) sequen-

tially by simp
ultimately show ?case by eventually-elim auto

qed simp
thus eventually (λx . dist (f x) g < e) sequentially

by eventually-elim (auto simp add : dist-finmap-def finite-proj-diag ind-f 〈0 <
e〉)
qed

instance finmap :: (type, complete-space) complete-space
proof

fix P ::nat ⇒ ′a ⇒F
′b

assume Cauchy P
then obtain Nd where Nd :

∧
n. n ≥ Nd =⇒ dist (P n) (P Nd) < 1

by (force simp: cauchy)
def d ≡ domain (P Nd)
with Nd have dim:

∧
n. n ≥ Nd =⇒ domain (P n) = d using dist-le-1-imp-domain-eq

by auto
have [simp]: finite d unfolding d-def by simp
def p ≡ λi n. (P n) i
def q ≡ λi . lim (p i)
def Q ≡ finmap-of d q
have q :

∧
i . i ∈ d =⇒ q i = Q i by (auto simp add : Q-def Abs-finmap-inverse)

{
fix i assume i ∈ d
have Cauchy (p i) unfolding cauchy p-def
proof safe

fix e::real assume 0 < e
with 〈Cauchy P 〉 obtain N where N :

∧
n. n≥N =⇒ dist (P n) (P N) <

min e 1
by (force simp: cauchy min-def)

hence
∧

n. n ≥ N =⇒ domain (P n) = domain (P N) using dist-le-1-imp-domain-eq

THEORY “Fin-Map” 465

by auto
with dim have dim:

∧
n. n ≥ N =⇒ domain (P n) = d by (metis

nat-le-linear)
show ∃N . ∀n≥N . dist ((P n) i) ((P N) i) < e
proof (safe intro!: exI [where x=N])

fix n assume N ≤ n have N ≤ N by simp
have dist ((P n) i) ((P N) i) ≤ dist (P n) (P N)

using dim[OF 〈N ≤ n〉] dim[OF 〈N ≤ N 〉] 〈i ∈ d 〉

by (auto intro!: dist-proj)
also have . . . < e using N [OF 〈N ≤ n〉] by simp
finally show dist ((P n) i) ((P N) i) < e .

qed
qed
hence convergent (p i) by (metis Cauchy-convergent-iff)
hence p i −−−−→ q i unfolding q-def convergent-def by (metis limI)
} note p = this
have P −−−−→ Q
proof (rule metric-LIMSEQ-I)

fix e::real assume 0 < e
have ∃ni . ∀ i∈d . ∀n≥ni i . dist (p i n) (q i) < e
proof (safe intro!: bchoice)

fix i assume i ∈ d
from p[OF 〈i ∈ d 〉, THEN metric-LIMSEQ-D , OF 〈0 < e〉]
show ∃no. ∀n≥no. dist (p i n) (q i) < e .

qed then guess ni .. note ni = this
def N ≡ max Nd (Max (ni ‘ d))
show ∃N . ∀n≥N . dist (P n) Q < e
proof (safe intro!: exI [where x=N])

fix n assume N ≤ n
hence dom: domain (P n) = d domain Q = d domain (P n) = domain Q

using dim by (simp-all add : N-def Q-def dim-def Abs-finmap-inverse)
show dist (P n) Q < e
proof (rule dist-finmap-lessI [OF dom(3) 〈0 < e〉])

fix i
assume i ∈ domain (P n)
hence ni i ≤ Max (ni ‘ d) using dom by simp
also have . . . ≤ N by (simp add : N-def)
finally show dist ((P n)F i) ((Q)F i) < e using ni 〈i ∈ domain (P n)〉 〈N

≤ n〉 dom
by (auto simp: p-def q N-def less-imp-le)

qed
qed

qed
thus convergent P by (auto simp: convergent-def)

qed

13.8 Second Countable Space of Finite Maps

instantiation finmap :: (countable, second-countable-topology) second-countable-topology

THEORY “Fin-Map” 466

begin

definition basis-proj :: ′b set set
where basis-proj = (SOME B . countable B ∧ topological-basis B)

lemma countable-basis-proj : countable basis-proj and basis-proj : topological-basis
basis-proj

unfolding basis-proj-def by (intro is-basis countable-basis)+

definition basis-finmap::(′a ⇒F
′b) set set

where basis-finmap = {Pi ′ I S |I S . finite I ∧ (∀ i ∈ I . S i ∈ basis-proj)}

lemma in-basis-finmapI :
assumes finite I assumes

∧
i . i ∈ I =⇒ S i ∈ basis-proj

shows Pi ′ I S ∈ basis-finmap
using assms unfolding basis-finmap-def by auto

lemma basis-finmap-eq :
assumes basis-proj 6= {}
shows basis-finmap = (λf . Pi ′ (domain f) (λi . from-nat-into basis-proj ((f)F

i))) ‘
(UNIV ::(′a ⇒F nat) set) (is - = ?f ‘ -)

unfolding basis-finmap-def
proof safe

fix I :: ′a set and S :: ′a ⇒ ′b set
assume finite I ∀ i∈I . S i ∈ basis-proj
hence Pi ′ I S = ?f (finmap-of I (λx . to-nat-on basis-proj (S x)))

by (force simp: Pi ′-def countable-basis-proj)
thus Pi ′ I S ∈ range ?f by simp

next
fix x and f :: ′a ⇒F nat
show ∃ I S . (Π ′ i∈domain f . from-nat-into basis-proj ((f)F i)) = Pi ′ I S ∧

finite I ∧ (∀ i∈I . S i ∈ basis-proj)
using assms by (auto intro: from-nat-into)

qed

lemma basis-finmap-eq-empty : basis-proj = {} =⇒ basis-finmap = {Pi ′ {} unde-
fined}

by (auto simp: Pi ′-iff basis-finmap-def)

lemma countable-basis-finmap: countable basis-finmap
by (cases basis-proj = {}) (auto simp: basis-finmap-eq basis-finmap-eq-empty)

lemma finmap-topological-basis:
topological-basis basis-finmap

proof (subst topological-basis-iff , safe)
fix B ′ assume B ′ ∈ basis-finmap
thus open B ′

by (auto intro!: open-Pi ′I topological-basis-open[OF basis-proj]

THEORY “Fin-Map” 467

simp: topological-basis-def basis-finmap-def Let-def)
next

fix O ′::(′a ⇒F
′b) set and x

assume O ′: open O ′ x ∈ O ′

then obtain a where a:
x ∈ Pi ′ (domain x) a Pi ′ (domain x) a ⊆ O ′

∧
i . i∈domain x =⇒ open (a i)

unfolding open-finmap-def
proof (atomize-elim, induct rule: generate-topology .induct)

case (Int a b)
let ?p=λa f . x ∈ Pi ′ (domain x) f ∧ Pi ′ (domain x) f ⊆ a ∧ (∀ i . i ∈ domain

x −→ open (f i))
from Int obtain f g where ?p a f ?p b g by auto
thus ?case by (force intro!: exI [where x=λi . f i ∩ g i] simp: Pi ′-def)

next
case (UN k)
then obtain kk a where x ∈ kk kk ∈ k x ∈ Pi ′ (domain x) a Pi ′ (domain x)

a ⊆ kk∧
i . i∈domain x =⇒ open (a i)

by force
thus ?case by blast

qed (auto simp: Pi ′-def)
have ∃B .

(∀ i∈domain x . x i ∈ B i ∧ B i ⊆ a i ∧ B i ∈ basis-proj)
proof (rule bchoice, safe)

fix i assume i ∈ domain x
hence open (a i) x i ∈ a i using a by auto
from topological-basisE [OF basis-proj this] guess b ′ .
thus ∃ y . x i ∈ y ∧ y ⊆ a i ∧ y ∈ basis-proj by auto

qed
then guess B .. note B = this
def B ′ ≡ Pi ′ (domain x) (λi . (B i):: ′b set)
have B ′ ⊆ Pi ′ (domain x) a using B by (auto intro!: Pi ′-mono simp: B ′-def)
also note 〈. . . ⊆ O ′〉

finally show ∃B ′∈basis-finmap. x ∈ B ′ ∧ B ′ ⊆ O ′ using B
by (auto intro!: bexI [where x=B ′] Pi ′-mono in-basis-finmapI simp: B ′-def)

qed

lemma range-enum-basis-finmap-imp-open:
assumes x ∈ basis-finmap
shows open x
using finmap-topological-basis assms by (auto simp: topological-basis-def)

instance proof qed (blast intro: finmap-topological-basis countable-basis-finmap
topological-basis-imp-subbasis)

end

THEORY “Fin-Map” 468

13.9 Polish Space of Finite Maps

instance finmap :: (countable, polish-space) polish-space proof qed

13.10 Product Measurable Space of Finite Maps

definition PiF I M ≡
sigma (

⋃
J ∈ I . (Π ′ j∈J . space (M j))) {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π

j∈J . sets (M j))}

abbreviation
PiF I M ≡ PiF I M

syntax
-PiF :: pttrn ⇒ ′i set ⇒ ′a measure ⇒ (′i => ′a) measure ((3 ΠF -∈-./ -) 10)

translations
ΠF x∈I . M == CONST PiF I (%x . M)

lemma PiF-gen-subset : {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}
⊆

Pow (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
by (auto simp: Pi ′-def) (blast dest : sets.sets-into-space)

lemma space-PiF : space (PiF I M) = (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
unfolding PiF-def using PiF-gen-subset by (rule space-measure-of)

lemma sets-PiF :
sets (PiF I M) = sigma-sets (

⋃
J ∈ I . (Π ′ j∈J . space (M j)))

{(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}
unfolding PiF-def using PiF-gen-subset by (rule sets-measure-of)

lemma sets-PiF-singleton:
sets (PiF {I } M) = sigma-sets (Π ′ j∈I . space (M j))
{(Π ′ j∈I . X j) |X . X ∈ (Π j∈I . sets (M j))}

unfolding sets-PiF by simp

lemma in-sets-PiFI :
assumes X = (Pi ′ J S) J ∈ I

∧
i . i∈J =⇒ S i ∈ sets (M i)

shows X ∈ sets (PiF I M)
unfolding sets-PiF
using assms by blast

lemma product-in-sets-PiFI :
assumes J ∈ I

∧
i . i∈J =⇒ S i ∈ sets (M i)

shows (Pi ′ J S) ∈ sets (PiF I M)
unfolding sets-PiF
using assms by blast

lemma singleton-space-subset-in-sets:
fixes J

THEORY “Fin-Map” 469

assumes J ∈ I
assumes finite J
shows space (PiF {J} M) ∈ sets (PiF I M)
using assms
by (intro in-sets-PiFI [where J =J and S=λi . space (M i)])

(auto simp: product-def space-PiF)

lemma singleton-subspace-set-in-sets:
assumes A: A ∈ sets (PiF {J} M)
assumes finite J
assumes J ∈ I
shows A ∈ sets (PiF I M)
using A[unfolded sets-PiF]
apply (induct A)
unfolding sets-PiF [symmetric] unfolding space-PiF [symmetric]
using assms
by (auto intro: in-sets-PiFI intro!: singleton-space-subset-in-sets)

lemma finite-measurable-singletonI :
assumes finite I
assumes

∧
J . J ∈ I =⇒ finite J

assumes MN :
∧

J . J ∈ I =⇒ A ∈ measurable (PiF {J} M) N
shows A ∈ measurable (PiF I M) N
unfolding measurable-def

proof safe
fix y assume y ∈ sets N
have A −‘ y ∩ space (PiF I M) = (

⋃
J∈I . A −‘ y ∩ space (PiF {J} M))

by (auto simp: space-PiF)
also have . . . ∈ sets (PiF I M)
proof (rule sets.finite-UN)

show finite I by fact
fix J assume J ∈ I
with assms have finite J by simp
show A −‘ y ∩ space (PiF {J} M) ∈ sets (PiF I M)

by (rule singleton-subspace-set-in-sets[OF measurable-sets[OF assms(3)]])
fact+

qed
finally show A −‘ y ∩ space (PiF I M) ∈ sets (PiF I M) .

next
fix x assume x ∈ space (PiF I M) thus A x ∈ space N

using MN [of domain x]
by (auto simp: space-PiF measurable-space Pi ′-def)

qed

lemma countable-finite-comprehension:
fixes f :: ′a::countable set ⇒ -
assumes

∧
s. P s =⇒ finite s

assumes
∧

s. P s =⇒ f s ∈ sets M
shows

⋃
{f s|s. P s} ∈ sets M

THEORY “Fin-Map” 470

proof −
have

⋃
{f s|s. P s} = (

⋃
n::nat . let s = set (from-nat n) in if P s then f s else

{})
proof safe

fix x X s assume ∗: x ∈ f s P s
with assms obtain l where s = set l using finite-list by blast
with ∗ show x ∈ (

⋃
n. let s = set (from-nat n) in if P s then f s else {})

using 〈P s〉

by (auto intro!: exI [where x=to-nat l])
next

fix x n assume x ∈ (let s = set (from-nat n) in if P s then f s else {})
thus x ∈

⋃
{f s|s. P s} using assms by (auto simp: Let-def split : if-split-asm)

qed
hence

⋃
{f s|s. P s} = (

⋃
n. let s = set (from-nat n) in if P s then f s else {})

by simp
also have . . . ∈ sets M using assms by (auto simp: Let-def)
finally show ?thesis .

qed

lemma space-subset-in-sets:
fixes J :: ′a::countable set set
assumes J ⊆ I
assumes

∧
j . j ∈ J =⇒ finite j

shows space (PiF J M) ∈ sets (PiF I M)
proof −

have space (PiF J M) =
⋃
{space (PiF {j} M)|j . j ∈ J}

unfolding space-PiF by blast
also have . . . ∈ sets (PiF I M) using assms
by (intro countable-finite-comprehension) (auto simp: singleton-space-subset-in-sets)
finally show ?thesis .

qed

lemma subspace-set-in-sets:
fixes J :: ′a::countable set set
assumes A: A ∈ sets (PiF J M)
assumes J ⊆ I
assumes

∧
j . j ∈ J =⇒ finite j

shows A ∈ sets (PiF I M)
using A[unfolded sets-PiF]
apply (induct A)
unfolding sets-PiF [symmetric] unfolding space-PiF [symmetric]
using assms
by (auto intro: in-sets-PiFI intro!: space-subset-in-sets)

lemma countable-measurable-PiFI :
fixes I :: ′a::countable set set
assumes MN :

∧
J . J ∈ I =⇒ finite J =⇒ A ∈ measurable (PiF {J} M) N

shows A ∈ measurable (PiF I M) N
unfolding measurable-def

THEORY “Fin-Map” 471

proof safe
fix y assume y ∈ sets N
have A −‘ y = (

⋃
{A −‘ y ∩ {x . domain x = J}|J . finite J}) by auto

{ fix x :: ′a ⇒F
′b

from finite-list [of domain x] obtain xs where set xs = domain x by auto
hence ∃n. domain x = set (from-nat n)

by (intro exI [where x=to-nat xs]) auto }
hence A −‘ y ∩ space (PiF I M) = (

⋃
n. A −‘ y ∩ space (PiF ({set (from-nat

n)}∩I) M))
by (auto simp: space-PiF Pi ′-def)

also have . . . ∈ sets (PiF I M)
apply (intro sets.Int sets.countable-nat-UN subsetI , safe)
apply (case-tac set (from-nat i) ∈ I)
apply simp-all
apply (rule singleton-subspace-set-in-sets[OF measurable-sets[OF MN]])
using assms 〈y ∈ sets N 〉

apply (auto simp: space-PiF)
done

finally show A −‘ y ∩ space (PiF I M) ∈ sets (PiF I M) .
next

fix x assume x ∈ space (PiF I M) thus A x ∈ space N
using MN [of domain x] by (auto simp: space-PiF measurable-space Pi ′-def)

qed

lemma measurable-PiF :
assumes f :

∧
x . x ∈ space N =⇒ domain (f x) ∈ I ∧ (∀ i∈domain (f x). (f x) i

∈ space (M i))
assumes S :

∧
J S . J ∈ I =⇒ (

∧
i . i ∈ J =⇒ S i ∈ sets (M i)) =⇒

f −‘ (Pi ′ J S) ∩ space N ∈ sets N
shows f ∈ measurable N (PiF I M)
unfolding PiF-def
using PiF-gen-subset
apply (rule measurable-measure-of)
using f apply force
apply (insert S , auto)
done

lemma restrict-sets-measurable:
assumes A: A ∈ sets (PiF I M) and J ⊆ I
shows A ∩ {m. domain m ∈ J} ∈ sets (PiF J M)
using A[unfolded sets-PiF]

proof (induct A)
case (Basic a)
then obtain K S where S : a = Pi ′ K S K ∈ I (∀ i∈K . S i ∈ sets (M i))

by auto
show ?case
proof cases

assume K ∈ J
hence a ∩ {m. domain m ∈ J} ∈ {Pi ′ K X |X K . K ∈ J ∧ X ∈ (Π j∈K .

THEORY “Fin-Map” 472

sets (M j))} using S
by (auto intro!: exI [where x=K] exI [where x=S] simp: Pi ′-def)

also have . . . ⊆ sets (PiF J M) unfolding sets-PiF by auto
finally show ?thesis .

next
assume K /∈ J
hence a ∩ {m. domain m ∈ J} = {} using S by (auto simp: Pi ′-def)
also have . . . ∈ sets (PiF J M) by simp
finally show ?thesis .

qed
next

case (Union a)
have UNION UNIV a ∩ {m. domain m ∈ J} = (

⋃
i . (a i ∩ {m. domain m ∈

J}))
by simp

also have . . . ∈ sets (PiF J M) using Union by (intro sets.countable-nat-UN)
auto

finally show ?case .
next

case (Compl a)
have (space (PiF I M) − a) ∩ {m. domain m ∈ J} = (space (PiF J M) − (a
∩ {m. domain m ∈ J}))

using 〈J ⊆ I 〉 by (auto simp: space-PiF Pi ′-def)
also have . . . ∈ sets (PiF J M) using Compl by auto
finally show ?case by (simp add : space-PiF)

qed simp

lemma measurable-finmap-of :
assumes f :

∧
i . (∃ x ∈ space N . i ∈ J x) =⇒ (λx . f x i) ∈ measurable N (M i)

assumes J :
∧

x . x ∈ space N =⇒ J x ∈ I
∧

x . x ∈ space N =⇒ finite (J x)
assumes JN :

∧
S . {x . J x = S} ∩ space N ∈ sets N

shows (λx . finmap-of (J x) (f x)) ∈ measurable N (PiF I M)
proof (rule measurable-PiF)

fix x assume x ∈ space N
with J [of x] measurable-space[OF f]
show domain (finmap-of (J x) (f x)) ∈ I ∧

(∀ i∈domain (finmap-of (J x) (f x)). (finmap-of (J x) (f x)) i ∈ space (M
i))

by auto
next

fix K S assume K ∈ I and ∗:
∧

i . i ∈ K =⇒ S i ∈ sets (M i)
with J have eq : (λx . finmap-of (J x) (f x)) −‘ Pi ′ K S ∩ space N =

(if ∃ x ∈ space N . K = J x ∧ finite K then if K = {} then {x ∈ space N . J x
= K}

else (
⋂

i∈K . (λx . f x i) −‘ S i ∩ {x ∈ space N . J x = K}) else {})
by (auto simp: Pi ′-def)

have r : {x ∈ space N . J x = K} = space N ∩ ({x . J x = K} ∩ space N) by
auto

show (λx . finmap-of (J x) (f x)) −‘ Pi ′ K S ∩ space N ∈ sets N

THEORY “Fin-Map” 473

unfolding eq r
apply (simp del : INT-simps add :)
apply (intro conjI impI sets.finite-INT JN sets.Int [OF sets.top])
apply simp apply assumption
apply (subst Int-assoc[symmetric])
apply (rule sets.Int)
apply (intro measurable-sets[OF f] ∗) apply force apply assumption
apply (intro JN)
done

qed

lemma measurable-PiM-finmap-of :
assumes finite J
shows finmap-of J ∈ measurable (PiM J M) (PiF {J} M)
apply (rule measurable-finmap-of)
apply (rule measurable-component-singleton)
apply simp
apply rule
apply (rule 〈finite J 〉)
apply simp
done

lemma proj-measurable-singleton:
assumes A ∈ sets (M i)
shows (λx . (x)F i) −‘ A ∩ space (PiF {I } M) ∈ sets (PiF {I } M)

proof cases
assume i ∈ I
hence (λx . (x)F i) −‘ A ∩ space (PiF {I } M) =

Pi ′ I (λx . if x = i then A else space (M x))
using sets.sets-into-space[OF] 〈A ∈ sets (M i)〉 assms
by (auto simp: space-PiF Pi ′-def)

thus ?thesis using assms 〈A ∈ sets (M i)〉

by (intro in-sets-PiFI) auto
next

assume i /∈ I
hence (λx . (x)F i) −‘ A ∩ space (PiF {I } M) =

(if undefined ∈ A then space (PiF {I } M) else {}) by (auto simp: space-PiF
Pi ′-def)

thus ?thesis by simp
qed

lemma measurable-proj-singleton:
assumes i ∈ I
shows (λx . (x)F i) ∈ measurable (PiF {I } M) (M i)
by (unfold measurable-def , intro CollectI conjI ballI proj-measurable-singleton

assms)
(insert 〈i ∈ I 〉, auto simp: space-PiF)

lemma measurable-proj-countable:

THEORY “Fin-Map” 474

fixes I :: ′a::countable set set
assumes y ∈ space (M i)
shows (λx . if i ∈ domain x then (x)F i else y) ∈ measurable (PiF I M) (M i)

proof (rule countable-measurable-PiFI)
fix J assume J ∈ I finite J
show (λx . if i ∈ domain x then x i else y) ∈ measurable (PiF {J} M) (M i)

unfolding measurable-def
proof safe

fix z assume z ∈ sets (M i)
have (λx . if i ∈ domain x then x i else y) −‘ z ∩ space (PiF {J} M) =

(λx . if i ∈ J then (x)F i else y) −‘ z ∩ space (PiF {J} M)
by (auto simp: space-PiF Pi ′-def)

also have . . . ∈ sets (PiF {J} M) using 〈z ∈ sets (M i)〉 〈finite J 〉

by (cases i ∈ J) (auto intro!: measurable-sets[OF measurable-proj-singleton])
finally show (λx . if i ∈ domain x then x i else y) −‘ z ∩ space (PiF {J} M)

∈
sets (PiF {J} M) .

qed (insert 〈y ∈ space (M i)〉, auto simp: space-PiF Pi ′-def)
qed

lemma measurable-restrict-proj :
assumes J ∈ II finite J
shows finmap-of J ∈ measurable (PiM J M) (PiF II M)
using assms
by (intro measurable-finmap-of measurable-component-singleton) auto

lemma measurable-proj-PiM :
fixes J K :: ′a::countable set and I :: ′a set set
assumes finite J J ∈ I
assumes x ∈ space (PiM J M)
shows proj ∈ measurable (PiF {J} M) (PiM J M)

proof (rule measurable-PiM-single)
show proj ∈ space (PiF {J} M) → (ΠE i ∈ J . space (M i))

using assms by (auto simp add : space-PiM space-PiF extensional-def sets-PiF
Pi ′-def)
next

fix A i assume A: i ∈ J A ∈ sets (M i)
show {ω ∈ space (PiF {J} M). (ω)F i ∈ A} ∈ sets (PiF {J} M)
proof

have {ω ∈ space (PiF {J} M). (ω)F i ∈ A} =
(λω. (ω)F i) −‘ A ∩ space (PiF {J} M) by auto

also have . . . ∈ sets (PiF {J} M)
using assms A by (auto intro: measurable-sets[OF measurable-proj-singleton]

simp: space-PiM)
finally show ?thesis .

qed simp
qed

lemma space-PiF-singleton-eq-product :

THEORY “Fin-Map” 475

assumes finite I
shows space (PiF {I } M) = (Π ′ i∈I . space (M i))
by (auto simp: product-def space-PiF assms)

adapted from sets (PiM ?I ?M) = sigma-sets (ΠE i∈?I . space (?M i)) {{f
∈ ΠE i∈?I . space (?M i). f i ∈ A} |i A. i ∈ ?I ∧ A ∈ sets (?M i)}
lemma sets-PiF-single:

assumes finite I I 6= {}
shows sets (PiF {I } M) =

sigma-sets (Π ′ i∈I . space (M i))
{{f ∈Π ′ i∈I . space (M i). f i ∈ A} | i A. i ∈ I ∧ A ∈ sets (M i)}

(is - = sigma-sets ?Ω ?R)
unfolding sets-PiF-singleton

proof (rule sigma-sets-eqI)
interpret R: sigma-algebra ?Ω sigma-sets ?Ω ?R by (rule sigma-algebra-sigma-sets)

auto
fix A assume A ∈ {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))}
then obtain X where X : A = Pi ′ I X X ∈ (Π j∈I . sets (M j)) by auto
show A ∈ sigma-sets ?Ω ?R
proof −

from 〈I 6= {}〉 X have A = (
⋂

j∈I . {f ∈space (PiF {I } M). f j ∈ X j})
using sets.sets-into-space
by (auto simp: space-PiF product-def) blast

also have . . . ∈ sigma-sets ?Ω ?R
using X 〈I 6= {}〉 assms by (intro R.finite-INT) (auto simp: space-PiF)

finally show A ∈ sigma-sets ?Ω ?R .
qed

next
fix A assume A ∈ ?R
then obtain i B where A: A = {f ∈Π ′ i∈I . space (M i). f i ∈ B} i ∈ I B ∈

sets (M i)
by auto

then have A = (Π ′ j ∈ I . if j = i then B else space (M j))
using sets.sets-into-space[OF A(3)]
apply (auto simp: Pi ′-iff split : if-split-asm)
apply blast
done

also have . . . ∈ sigma-sets ?Ω {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))}
using A
by (intro sigma-sets.Basic)

(auto intro: exI [where x=λj . if j = i then B else space (M j)])
finally show A ∈ sigma-sets ?Ω {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))} .

qed

adapted from (
∧

i . i ∈ ?I =⇒ ?A i = ?B i) =⇒ PiE ?I ?A = PiE ?I ?B

lemma Pi ′-cong :
assumes finite I
assumes

∧
i . i ∈ I =⇒ f i = g i

shows Pi ′ I f = Pi ′ I g

THEORY “Fin-Map” 476

using assms by (auto simp: Pi ′-def)

adapted from [[finite ?I ;
∧

i n m. [[i ∈ ?I ; n ≤ m]] =⇒ ?A n i ⊆ ?A m i]]
=⇒ (

⋃
n Pi ?I (?A n)) = (Π i∈?I .

⋃
n ?A n i)

lemma Pi ′-UN :
fixes A :: nat ⇒ ′i ⇒ ′a set
assumes finite I
assumes mono:

∧
i n m. i ∈ I =⇒ n ≤ m =⇒ A n i ⊆ A m i

shows (
⋃

n. Pi ′ I (A n)) = Pi ′ I (λi .
⋃

n. A n i)
proof (intro set-eqI iffI)

fix f assume f ∈ Pi ′ I (λi .
⋃

n. A n i)
then have ∀ i∈I . ∃n. f i ∈ A n i domain f = I by (auto simp: 〈finite I 〉 Pi ′-def)
from bchoice[OF this(1)] obtain n where n:

∧
i . i ∈ I =⇒ f i ∈ (A (n i) i)

by auto
obtain k where k :

∧
i . i ∈ I =⇒ n i ≤ k

using 〈finite I 〉 finite-nat-set-iff-bounded-le[of n‘I] by auto
have f ∈ Pi ′ I (λi . A k i)
proof

fix i assume i ∈ I
from mono[OF this, of n i k] k [OF this] n[OF this] 〈domain f = I 〉 〈i ∈ I 〉

show f i ∈ A k i by (auto simp: 〈finite I 〉)
qed (simp add : 〈domain f = I 〉 〈finite I 〉)
then show f ∈ (

⋃
n. Pi ′ I (A n)) by auto

qed (auto simp: Pi ′-def 〈finite I 〉)

adapted from [[
∧

i . i ∈ ?I =⇒ ∃S⊆?E i . countable S ∧ ?Ω i =
⋃

S ;
∧

i .
i ∈ ?I =⇒ ?E i ⊆ Pow (?Ω i);

∧
j . j ∈ ?J =⇒ finite j ;

⋃
?J = ?I]] =⇒

sets (PiM ?I (λi . sigma (?Ω i) (?E i))) = sets (sigma (PiE ?I ?Ω) {{f ∈
PiE ?I ?Ω. ∀ i∈j . f i ∈ A i} |A j . j ∈ ?J ∧ A ∈ Pi j ?E})
lemma sigma-fprod-algebra-sigma-eq :

fixes E :: ′i ⇒ ′a set set and S :: ′i ⇒ nat ⇒ ′a set
assumes [simp]: finite I I 6= {}

and S-union:
∧

i . i ∈ I =⇒ (
⋃

j . S i j) = space (M i)
and S-in-E :

∧
i . i ∈ I =⇒ range (S i) ⊆ E i

assumes E-closed :
∧

i . i ∈ I =⇒ E i ⊆ Pow (space (M i))
and E-generates:

∧
i . i ∈ I =⇒ sets (M i) = sigma-sets (space (M i)) (E i)

defines P == { Pi ′ I F | F . ∀ i∈I . F i ∈ E i }
shows sets (PiF {I } M) = sigma-sets (space (PiF {I } M)) P

proof
let ?P = sigma (space (PiF {I } M)) P
from 〈finite I 〉[THEN ex-bij-betw-finite-nat] guess T ..
then have T :

∧
i . i ∈ I =⇒ T i < card I

∧
i . i∈I =⇒ the-inv-into I T (T i)

= i
by (auto simp add : bij-betw-def set-eq-iff image-iff the-inv-into-f-f simp del :

〈finite I 〉)
have P-closed : P ⊆ Pow (space (PiF {I } M))

using E-closed by (auto simp: space-PiF P-def Pi ′-iff subset-eq)
then have space-P : space ?P = (Π ′ i∈I . space (M i))

by (simp add : space-PiF)

THEORY “Fin-Map” 477

have sets (PiF {I } M) =
sigma-sets (space ?P) {{f ∈ Π ′ i∈I . space (M i). f i ∈ A} |i A. i ∈ I ∧ A ∈

sets (M i)}
using sets-PiF-single[of I M] by (simp add : space-P)

also have . . . ⊆ sets (sigma (space (PiF {I } M)) P)
proof (safe intro!: sets.sigma-sets-subset)

fix i A assume i ∈ I and A: A ∈ sets (M i)
have (λx . (x)F i) ∈ measurable ?P (sigma (space (M i)) (E i))
proof (subst measurable-iff-measure-of)

show E i ⊆ Pow (space (M i)) using 〈i ∈ I 〉 by fact
from space-P 〈i ∈ I 〉 show (λx . (x)F i) ∈ space ?P → space (M i)

by auto
show ∀A∈E i . (λx . (x)F i) −‘ A ∩ space ?P ∈ sets ?P
proof

fix A assume A: A ∈ E i
then have (λx . (x)F i) −‘ A ∩ space ?P = (Π ′ j∈I . if i = j then A else

space (M j))
using E-closed 〈i ∈ I 〉 by (auto simp: space-P Pi-iff subset-eq split :

if-split-asm)
also have . . . = (Π ′ j∈I .

⋃
n. if i = j then A else S j n)

by (intro Pi ′-cong) (simp-all add : S-union)
also have . . . = (

⋃
xs∈{xs. length xs = card I }. Π ′ j∈I . if i = j then A

else S j (xs ! T j))
using T
apply (auto simp del : Union-iff)
apply (simp-all add : Pi ′-iff bchoice-iff del : Union-iff)
apply (erule conjE exE)+
apply (rule-tac x=map (λn. f (the-inv-into I T n)) [0 ..<card I] in exI)
apply (auto simp: bij-betw-def)
done

also have . . . ∈ sets ?P
proof (safe intro!: sets.countable-UN)

fix xs show (Π ′ j∈I . if i = j then A else S j (xs ! T j)) ∈ sets ?P
using A S-in-E
by (simp add : P-closed)

(auto simp: P-def subset-eq intro!: exI [of - λj . if i = j then A else S j
(xs ! T j)])

qed
finally show (λx . (x)F i) −‘ A ∩ space ?P ∈ sets ?P

using P-closed by simp
qed

qed
from measurable-sets[OF this, of A] A 〈i ∈ I 〉 E-closed
have (λx . (x)F i) −‘ A ∩ space ?P ∈ sets ?P

by (simp add : E-generates)
also have (λx . (x)F i) −‘ A ∩ space ?P = {f ∈ Π ′ i∈I . space (M i). f i ∈ A}

using P-closed by (auto simp: space-PiF)
finally show . . . ∈ sets ?P .

qed

THEORY “Fin-Map” 478

finally show sets (PiF {I } M) ⊆ sigma-sets (space (PiF {I } M)) P
by (simp add : P-closed)

show sigma-sets (space (PiF {I } M)) P ⊆ sets (PiF {I } M)
using 〈finite I 〉 〈I 6= {}〉
by (auto intro!: sets.sigma-sets-subset product-in-sets-PiFI simp: E-generates

P-def)
qed

lemma product-open-generates-sets-PiF-single:
assumes I 6= {}
assumes [simp]: finite I
shows sets (PiF {I } (λ-. borel :: ′b::second-countable-topology measure)) =

sigma-sets (space (PiF {I } (λ-. borel))) {Pi ′ I F |F . (∀ i∈I . F i ∈ Collect
open)}
proof −

from open-countable-basisE [OF open-UNIV] guess S :: ′b set set . note S = this
show ?thesis
proof (rule sigma-fprod-algebra-sigma-eq)

show finite I by simp
show I 6= {} by fact
def S ′≡from-nat-into S
show (

⋃
j . S ′ j) = space borel

using S
apply (auto simp add : from-nat-into countable-basis-proj S ′-def basis-proj-def)
apply (metis (lifting , mono-tags) UNIV-I UnionE basis-proj-def countable-basis-proj

countable-subset from-nat-into-surj)
done

show range S ′ ⊆ Collect open
using S
apply (auto simp add : from-nat-into countable-basis-proj S ′-def)

apply (metis UNIV-not-empty Union-empty from-nat-into set-mp topological-basis-open[OF
basis-proj] basis-proj-def)

done
show Collect open ⊆ Pow (space borel) by simp
show sets borel = sigma-sets (space borel) (Collect open)

by (simp add : borel-def)
qed

qed

lemma finmap-UNIV [simp]: (
⋃

J∈Collect finite. Π ′ j∈J . UNIV) = UNIV by
auto

lemma borel-eq-PiF-borel :
shows (borel :: (′i ::countable ⇒F

′a::polish-space) measure) =
PiF (Collect finite) (λ-. borel :: ′a measure)

unfolding borel-def PiF-def
proof (rule measure-eqI , clarsimp, rule sigma-sets-eqI)

fix a::(′i ⇒F
′a) set assume a ∈ Collect open hence open a by simp

then obtain B ′ where B ′: B ′⊆basis-finmap a =
⋃

B ′

THEORY “Fin-Map” 479

using finmap-topological-basis by (force simp add : topological-basis-def)
have a ∈ sigma UNIV {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV

(Collect open)}
unfolding 〈a =

⋃
B ′〉

proof (rule sets.countable-Union)
from B ′ countable-basis-finmap show countable B ′ by (metis countable-subset)

next
show B ′ ⊆ sets (sigma UNIV
{Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV (Collect open)}) (is -

⊆ sets ?s)
proof

fix x assume x ∈ B ′ with B ′ have x ∈ basis-finmap by auto
then obtain J X where x = Pi ′ J X finite J X ∈ J → sigma-sets UNIV

(Collect open)
by (auto simp: basis-finmap-def topological-basis-open[OF basis-proj])

thus x ∈ sets ?s by auto
qed

qed
thus a ∈ sigma-sets UNIV {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV

(Collect open)}
by simp

next
fix b::(′i ⇒F

′a) set
assume b ∈ {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV (Collect

open)}
hence b ′: b ∈ sets (PiF (Collect finite) (λ-. borel)) by (auto simp: sets-PiF

borel-def)
let ?b = λJ . b ∩ {x . domain x = J}
have b =

⋃
((λJ . ?b J) ‘ Collect finite) by auto

also have . . . ∈ sets borel
proof (rule sets.countable-Union, safe)

fix J :: ′i set assume finite J
{ assume ef : J = {}

have ?b J ∈ sets borel
proof cases

assume ?b J 6= {}
then obtain f where f ∈ b domain f = {} using ef by auto
hence ?b J = {f } using 〈J = {}〉

by (auto simp: finmap-eq-iff)
also have {f } ∈ sets borel by simp
finally show ?thesis .

qed simp
} moreover {

assume J 6= ({}:: ′i set)
have (?b J) = b ∩ {m. domain m ∈ {J}} by auto
also have . . . ∈ sets (PiF {J} (λ-. borel))

using b ′ by (rule restrict-sets-measurable) (auto simp: 〈finite J 〉)
also have . . . = sigma-sets (space (PiF {J} (λ-. borel)))
{Pi ′ (J) F |F . (∀ j∈J . F j ∈ Collect open)}

THEORY “Fin-Map” 480

(is - = sigma-sets - ?P)
by (rule product-open-generates-sets-PiF-single[OF 〈J 6= {}〉 〈finite J 〉])

also have . . . ⊆ sigma-sets UNIV (Collect open)
by (intro sigma-sets-mono ′′) (auto intro!: open-Pi ′I simp: space-PiF)

finally have (?b J) ∈ sets borel by (simp add : borel-def)
} ultimately show (?b J) ∈ sets borel by blast

qed (simp add : countable-Collect-finite)
finally show b ∈ sigma-sets UNIV (Collect open) by (simp add : borel-def)

qed (simp add : emeasure-sigma borel-def PiF-def)

13.11 Isomorphism between Functions and Finite Maps

lemma measurable-finmap-compose:
shows (λm. compose J m f) ∈ measurable (PiM (f ‘ J) (λ-. M)) (PiM J (λ-.

M))
unfolding compose-def by measurable

lemma measurable-compose-inv :
assumes inj :

∧
j . j ∈ J =⇒ f ′ (f j) = j

shows (λm. compose (f ‘ J) m f ′) ∈ measurable (PiM J (λ-. M)) (PiM (f ‘ J)
(λ-. M))

unfolding compose-def by (rule measurable-restrict) (auto simp: inj)

locale function-to-finmap =
fixes J :: ′a set and f :: ′a ⇒ ′b::countable and f ′

assumes [simp]: finite J
assumes inv : i ∈ J =⇒ f ′ (f i) = i

begin

to measure finmaps

definition fm = (finmap-of (f ‘ J)) o (λg . compose (f ‘ J) g f ′)

lemma domain-fm[simp]: domain (fm x) = f ‘ J
unfolding fm-def by simp

lemma fm-restrict [simp]: fm (restrict y J) = fm y
unfolding fm-def by (auto simp: compose-def inv intro: restrict-ext)

lemma fm-product :
assumes

∧
i . space (M i) = UNIV

shows fm −‘ Pi ′ (f ‘ J) S ∩ space (PiM J M) = (ΠE j ∈ J . S (f j))
using assms
by (auto simp: inv fm-def compose-def space-PiM Pi ′-def)

lemma fm-measurable:
assumes f ‘ J ∈ N
shows fm ∈ measurable (PiM J (λ-. M)) (PiF N (λ-. M))
unfolding fm-def

proof (rule measurable-comp, rule measurable-compose-inv)

THEORY “Fin-Map” 481

show finmap-of (f ‘ J) ∈ measurable (PiM (f ‘ J) (λ-. M)) (PiF N (λ-. M))
using assms by (intro measurable-finmap-of measurable-component-singleton)

auto
qed (simp-all add : inv)

lemma proj-fm:
assumes x ∈ J
shows fm m (f x) = m x
using assms by (auto simp: fm-def compose-def o-def inv)

lemma inj-on-compose-f ′: inj-on (λg . compose (f ‘ J) g f ′) (extensional J)
proof (rule inj-on-inverseI)

fix x :: ′a ⇒ ′c assume x ∈ extensional J
thus (λx . compose J x f) (compose (f ‘ J) x f ′) = x

by (auto simp: compose-def inv extensional-def)
qed

lemma inj-on-fm:
assumes

∧
i . space (M i) = UNIV

shows inj-on fm (space (PiM J M))
using assms
apply (auto simp: fm-def space-PiM PiE-def)
apply (rule comp-inj-on)
apply (rule inj-on-compose-f ′)
apply (rule finmap-of-inj-on-extensional-finite)
apply simp
apply (auto)
done

to measure functions

definition mf = (λg . compose J g f) o proj

lemma mf-fm:
assumes x ∈ space (PiM J (λ-. M))
shows mf (fm x) = x

proof −
have mf (fm x) ∈ extensional J

by (auto simp: mf-def extensional-def compose-def)
moreover
have x ∈ extensional J using assms sets.sets-into-space

by (force simp: space-PiM PiE-def)
moreover
{ fix i assume i ∈ J

hence mf (fm x) i = x i
by (auto simp: inv mf-def compose-def fm-def)

}
ultimately
show ?thesis by (rule extensionalityI)

qed

THEORY “Fin-Map” 482

lemma mf-measurable:
assumes space M = UNIV
shows mf ∈ measurable (PiF {f ‘ J} (λ-. M)) (PiM J (λ-. M))
unfolding mf-def

proof (rule measurable-comp, rule measurable-proj-PiM)
show (λg . compose J g f) ∈ measurable (PiM (f ‘ J) (λx . M)) (PiM J (λ-. M))

by (rule measurable-finmap-compose)
qed (auto simp add : space-PiM extensional-def assms)

lemma fm-image-measurable:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M))
shows fm ‘ X ∈ sets (PiF {f ‘ J} (λ-. M))

proof −
have fm ‘ X = (mf) −‘ X ∩ space (PiF {f ‘ J} (λ-. M))
proof safe

fix x assume x ∈ X
with mf-fm[of x] sets.sets-into-space[OF assms(2)] show fm x ∈ mf −‘ X by

auto
show fm x ∈ space (PiF {f ‘ J} (λ-. M)) by (simp add : space-PiF assms)

next
fix y x
assume x : mf y ∈ X
assume y : y ∈ space (PiF {f ‘ J} (λ-. M))
thus y ∈ fm ‘ X

by (intro image-eqI [OF - x], unfold finmap-eq-iff)
(auto simp: space-PiF fm-def mf-def compose-def inv Pi ′-def)

qed
also have . . . ∈ sets (PiF {f ‘ J} (λ-. M))

using assms
by (intro measurable-sets[OF mf-measurable]) auto

finally show ?thesis .
qed

lemma fm-image-measurable-finite:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M :: ′c measure))
shows fm ‘ X ∈ sets (PiF (Collect finite) (λ-. M :: ′c measure))
using fm-image-measurable[OF assms]
by (rule subspace-set-in-sets) (auto simp: finite-subset)

measure on finmaps

definition mapmeasure M N = distr M (PiF (Collect finite) N) (fm)

lemma sets-mapmeasure[simp]: sets (mapmeasure M N) = sets (PiF (Collect fi-
nite) N)

unfolding mapmeasure-def by simp

THEORY “Regularity” 483

lemma space-mapmeasure[simp]: space (mapmeasure M N) = space (PiF (Collect
finite) N)

unfolding mapmeasure-def by simp

lemma mapmeasure-PiF :
assumes s1 : space M = space (PiM J (λ-. N))
assumes s2 : sets M = sets (PiM J (λ-. N))
assumes space N = UNIV
assumes X ∈ sets (PiF (Collect finite) (λ-. N))
shows emeasure (mapmeasure M (λ-. N)) X = emeasure M ((fm −‘ X ∩

extensional J))
using assms
by (auto simp: measurable-cong-sets[OF s2 refl] mapmeasure-def emeasure-distr

fm-measurable space-PiM PiE-def)

lemma mapmeasure-PiM :
fixes N :: ′c measure
assumes s1 : space M = space (PiM J (λ-. N))
assumes s2 : sets M = (PiM J (λ-. N))
assumes N : space N = UNIV
assumes X : X ∈ sets M
shows emeasure M X = emeasure (mapmeasure M (λ-. N)) (fm ‘ X)
unfolding mapmeasure-def

proof (subst emeasure-distr , subst measurable-cong-sets[OF s2 refl], rule fm-measurable)
have X ⊆ space (PiM J (λ-. N)) using assms by (simp add : sets.sets-into-space)
from assms inj-on-fm[of λ-. N] set-mp[OF this] have fm −‘ fm ‘ X ∩ space

(PiM J (λ-. N)) = X
by (auto simp: vimage-image-eq inj-on-def)

thus emeasure M X = emeasure M (fm −‘ fm ‘ X ∩ space M) using s1
by simp

show fm ‘ X ∈ sets (PiF (Collect finite) (λ-. N))
by (rule fm-image-measurable-finite[OF N X [simplified s2]])

qed simp

end

end

14 Regularity of Measures

theory Regularity
imports Measure-Space Borel-Space
begin

lemma
fixes M :: ′a::{second-countable-topology , complete-space} measure
assumes sb: sets M = sets borel
assumes emeasure M (space M) 6= ∞
assumes B ∈ sets borel

THEORY “Regularity” 484

shows inner-regular : emeasure M B =
(SUP K : {K . K ⊆ B ∧ compact K}. emeasure M K) (is ?inner B)

and outer-regular : emeasure M B =
(INF U : {U . B ⊆ U ∧ open U }. emeasure M U) (is ?outer B)

proof −
have Us: UNIV = space M by (metis assms(1) sets-eq-imp-space-eq space-borel)
hence sU : space M = UNIV by simp
interpret finite-measure M by rule fact
have approx-inner :

∧
A. A ∈ sets M =⇒

(
∧

e. e > 0 =⇒ ∃K . K ⊆ A ∧ compact K ∧ emeasure M A ≤ emeasure M K
+ ennreal e) =⇒ ?inner A

by (rule ennreal-approx-SUP)
(force intro!: emeasure-mono simp: compact-imp-closed emeasure-eq-measure)+

have approx-outer :
∧

A. A ∈ sets M =⇒
(
∧

e. e > 0 =⇒ ∃B . A ⊆ B ∧ open B ∧ emeasure M B ≤ emeasure M A +
ennreal e) =⇒ ?outer A

by (rule ennreal-approx-INF)
(force intro!: emeasure-mono simp: emeasure-eq-measure sb)+

from countable-dense-setE guess X :: ′a set . note X = this
{
fix r ::real assume r > 0 hence

∧
y . open (ball y r)

∧
y . ball y r 6= {} by auto

with X (2)[OF this]
have x : space M = (

⋃
x∈X . cball x r)

by (auto simp add : sU) (metis dist-commute order-less-imp-le)
let ?U =

⋃
k . (

⋃
n∈{0 ..k}. cball (from-nat-into X n) r)

have (λk . emeasure M (
⋃

n∈{0 ..k}. cball (from-nat-into X n) r)) −−−−→ M
?U

by (rule Lim-emeasure-incseq) (auto intro!: borel-closed bexI simp: incseq-def
Us sb)

also have ?U = space M
proof safe

fix x from X (2)[OF open-ball [of x r]] 〈r > 0 〉 obtain d where d : d∈X d ∈
ball x r by auto

show x ∈ ?U
using X (1) d
by simp (auto intro!: exI [where x = to-nat-on X d] simp: dist-commute

Bex-def)
qed (simp add : sU)
finally have (λk . M (

⋃
n∈{0 ..k}. cball (from-nat-into X n) r)) −−−−→ M

(space M) .
} note M-space = this
{

fix e ::real and n :: nat assume e > 0 n > 0
hence 1/n > 0 e ∗ 2 powr − n > 0 by (auto)
from M-space[OF 〈1/n>0 〉]

have (λk . measure M (
⋃

i∈{0 ..k}. cball (from-nat-into X i) (1/real n))) −−−−→
measure M (space M)

unfolding emeasure-eq-measure by (auto simp: measure-nonneg)
from metric-LIMSEQ-D [OF this 〈0 < e ∗ 2 powr −n〉]

THEORY “Regularity” 485

obtain k where dist (measure M (
⋃

i∈{0 ..k}. cball (from-nat-into X i) (1/real
n))) (measure M (space M)) <

e ∗ 2 powr −n
by auto

hence measure M (
⋃

i∈{0 ..k}. cball (from-nat-into X i) (1/real n)) ≥
measure M (space M) − e ∗ 2 powr −real n
by (auto simp: dist-real-def)

hence ∃ k . measure M (
⋃

i∈{0 ..k}. cball (from-nat-into X i) (1/real n)) ≥
measure M (space M) − e ∗ 2 powr − real n ..

} note k=this
hence ∀ e∈{0<..}. ∀ (n::nat)∈{0<..}. ∃ k .

measure M (
⋃

i∈{0 ..k}. cball (from-nat-into X i) (1/real n)) ≥ measure M
(space M) − e ∗ 2 powr − real n

by blast
then obtain k where k : ∀ e∈{0<..}. ∀n∈{0<..}. measure M (space M) − e ∗

2 powr − real (n::nat)
≤ measure M (

⋃
i∈{0 ..k e n}. cball (from-nat-into X i) (1 / n))

by metis
hence k :

∧
e n. e > 0 =⇒ n > 0 =⇒ measure M (space M) − e ∗ 2 powr − n

≤ measure M (
⋃

i∈{0 ..k e n}. cball (from-nat-into X i) (1 / n))
unfolding Ball-def by blast

have approx-space:
∃K ∈ {K . K ⊆ space M ∧ compact K}. emeasure M (space M) ≤ emeasure

M K + ennreal e
(is ?thesis e) if 0 < e for e :: real

proof −
def B ≡ λn.

⋃
i∈{0 ..k e (Suc n)}. cball (from-nat-into X i) (1 / Suc n)

have
∧

n. closed (B n) by (auto simp: B-def)
hence [simp]:

∧
n. B n ∈ sets M by (simp add : sb)

from k [OF 〈e > 0 〉 zero-less-Suc]
have

∧
n. measure M (space M) − measure M (B n) ≤ e ∗ 2 powr − real (Suc

n)
by (simp add : algebra-simps B-def finite-measure-compl)

hence B-compl-le:
∧

n::nat . measure M (space M − B n) ≤ e ∗ 2 powr − real
(Suc n)

by (simp add : finite-measure-compl)
def K ≡

⋂
n. B n

from 〈closed (B -)〉 have closed K by (auto simp: K-def)
hence [simp]: K ∈ sets M by (simp add : sb)
have measure M (space M) − measure M K = measure M (space M − K)

by (simp add : finite-measure-compl)
also have . . . = emeasure M (

⋃
n. space M − B n) by (auto simp: K-def

emeasure-eq-measure)
also have . . . ≤ (

∑
n. emeasure M (space M − B n))

by (rule emeasure-subadditive-countably) (auto simp: summable-def)
also have . . . ≤ (

∑
n. ennreal (e∗2 powr − real (Suc n)))

using B-compl-le by (intro suminf-le) (simp-all add : measure-nonneg emeasure-eq-measure
ennreal-leI)

also have . . . ≤ (
∑

n. ennreal (e ∗ (1 / 2) ˆ Suc n))

THEORY “Regularity” 486

by (simp add : powr-minus powr-realpow field-simps del : of-nat-Suc)
also have . . . = ennreal e ∗ (

∑
n. ennreal ((1 / 2) ˆ Suc n))

unfolding ennreal-power [symmetric]
using 〈0 < e〉

by (simp add : ac-simps ennreal-mult ′ divide-ennreal [symmetric] divide-ennreal-def
ennreal-power [symmetric])

also have . . . = e
by (subst suminf-ennreal-eq [OF zero-le-power power-half-series]) auto

finally have measure M (space M) ≤ measure M K + e
using 〈0 < e〉 by simp

hence emeasure M (space M) ≤ emeasure M K + e
using 〈0 < e〉 by (simp add : emeasure-eq-measure measure-nonneg ennreal-plus[symmetric]

del : ennreal-plus)
moreover have compact K

unfolding compact-eq-totally-bounded
proof safe

show complete K using 〈closed K 〉 by (simp add : complete-eq-closed)
fix e ′::real assume 0 < e ′

from nat-approx-posE [OF this] guess n . note n = this
let ?k = from-nat-into X ‘ {0 ..k e (Suc n)}
have finite ?k by simp
moreover have K ⊆ (

⋃
x∈?k . ball x e ′) unfolding K-def B-def using n by

force
ultimately show ∃ k . finite k ∧ K ⊆ (

⋃
x∈k . ball x e ′) by blast

qed
ultimately
show ?thesis by (auto simp: sU)

qed
{ fix A:: ′a set assume closed A hence A ∈ sets borel by (simp add : compact-imp-closed)

hence [simp]: A ∈ sets M by (simp add : sb)
have ?inner A
proof (rule approx-inner)

fix e::real assume e > 0
from approx-space[OF this] obtain K where

K : K ⊆ space M compact K emeasure M (space M) ≤ emeasure M K + e
by (auto simp: emeasure-eq-measure)

hence [simp]: K ∈ sets M by (simp add : sb compact-imp-closed)
have measure M A − measure M (A ∩ K) = measure M (A − A ∩ K)

by (subst finite-measure-Diff) auto
also have A − A ∩ K = A ∪ K − K by auto
also have measure M . . . = measure M (A ∪ K) − measure M K

by (subst finite-measure-Diff) auto
also have . . . ≤ measure M (space M) − measure M K

by (simp add : emeasure-eq-measure sU sb finite-measure-mono)
also have . . . ≤ e
using K 〈0 < e〉 by (simp add : emeasure-eq-measure ennreal-plus[symmetric]

measure-nonneg del : ennreal-plus)
finally have emeasure M A ≤ emeasure M (A ∩ K) + ennreal e
using 〈0<e〉 by (simp add : emeasure-eq-measure algebra-simps ennreal-plus[symmetric]

THEORY “Regularity” 487

measure-nonneg del : ennreal-plus)
moreover have A ∩ K ⊆ A compact (A ∩ K) using 〈closed A〉 〈compact K 〉

by auto
ultimately show ∃K ⊆ A. compact K ∧ emeasure M A ≤ emeasure M K

+ ennreal e
by blast

qed simp
have ?outer A
proof cases

assume A 6= {}
let ?G = λd . {x . infdist x A < d}
{

fix d
have ?G d = (λx . infdist x A) −‘ {..<d} by auto
also have open . . .
by (intro continuous-open-vimage) (auto intro!: continuous-infdist continuous-ident)
finally have open (?G d) .
} note open-G = this
from in-closed-iff-infdist-zero[OF 〈closed A〉 〈A 6= {}〉]
have A = {x . infdist x A = 0} by auto
also have . . . = (

⋂
i . ?G (1/real (Suc i)))

proof (auto simp del : of-nat-Suc, rule ccontr)
fix x
assume infdist x A 6= 0
hence pos: infdist x A > 0 using infdist-nonneg [of x A] by simp
from nat-approx-posE [OF this] guess n .
moreover
assume ∀ i . infdist x A < 1 / real (Suc i)
hence infdist x A < 1 / real (Suc n) by auto
ultimately show False by simp

qed
also have M . . . = (INF n. emeasure M (?G (1 / real (Suc n))))
proof (rule INF-emeasure-decseq [symmetric], safe)

fix i ::nat
from open-G [of 1 / real (Suc i)]
show ?G (1 / real (Suc i)) ∈ sets M by (simp add : sb borel-open)

next
show decseq (λi . {x . infdist x A < 1 / real (Suc i)})

by (auto intro: less-trans intro!: divide-strict-left-mono
simp: decseq-def le-eq-less-or-eq)

qed simp
finally
have emeasure M A = (INF n. emeasure M {x . infdist x A < 1 / real (Suc

n)}) .
moreover
have . . . ≥ (INF U :{U . A ⊆ U ∧ open U }. emeasure M U)
proof (intro INF-mono)

fix m
have ?G (1 / real (Suc m)) ∈ {U . A ⊆ U ∧ open U } using open-G by

THEORY “Regularity” 488

auto
moreover have M (?G (1 / real (Suc m))) ≤ M (?G (1 / real (Suc m)))

by simp
ultimately show ∃U∈{U . A ⊆ U ∧ open U }.

emeasure M U ≤ emeasure M {x . infdist x A < 1 / real (Suc m)}
by blast

qed
moreover
have emeasure M A ≤ (INF U :{U . A ⊆ U ∧ open U }. emeasure M U)

by (rule INF-greatest) (auto intro!: emeasure-mono simp: sb)
ultimately show ?thesis by simp

qed (auto intro!: INF-eqI)
note 〈?inner A〉 〈?outer A〉 }

note closed-in-D = this
from 〈B ∈ sets borel 〉

have Int-stable (Collect closed) Collect closed ⊆ Pow UNIV B ∈ sigma-sets
UNIV (Collect closed)

by (auto simp: Int-stable-def borel-eq-closed)
then show ?inner B ?outer B
proof (induct B rule: sigma-sets-induct-disjoint)

case empty
{ case 1 show ?case by (intro SUP-eqI [symmetric]) auto }
{ case 2 show ?case by (intro INF-eqI [symmetric]) (auto elim!: meta-allE [of

- {}]) }
next

case (basic B)
{ case 1 from basic closed-in-D show ?case by auto }
{ case 2 from basic closed-in-D show ?case by auto }

next
case (compl B)
note inner = compl(2) and outer = compl(3)
from compl have [simp]: B ∈ sets M by (auto simp: sb borel-eq-closed)
case 2
have M (space M − B) = M (space M) − emeasure M B by (auto simp:

emeasure-compl)
also have . . . = (INF K :{K . K ⊆ B ∧ compact K}. M (space M) − M K)

by (subst ennreal-SUP-const-minus) (auto simp: less-top[symmetric] inner)
also have . . . = (INF U :{U . U ⊆ B ∧ compact U }. M (space M − U))

by (rule INF-cong) (auto simp add : emeasure-compl sb compact-imp-closed)
also have . . . ≥ (INF U :{U . U ⊆ B ∧ closed U }. M (space M − U))

by (rule INF-superset-mono) (auto simp add : compact-imp-closed)
also have (INF U :{U . U ⊆ B ∧ closed U }. M (space M − U)) =

(INF U :{U . space M − B ⊆ U ∧ open U }. emeasure M U)
unfolding INF-image [of - λu. space M − u -, symmetric, unfolded comp-def]

by (rule INF-cong) (auto simp add : sU Compl-eq-Diff-UNIV [symmetric,
simp])

finally have
(INF U :{U . space M − B ⊆ U ∧ open U }. emeasure M U) ≤ emeasure M

(space M − B) .

THEORY “Regularity” 489

moreover have
(INF U :{U . space M − B ⊆ U ∧ open U }. emeasure M U) ≥ emeasure M

(space M − B)
by (auto simp: sb sU intro!: INF-greatest emeasure-mono)

ultimately show ?case by (auto intro!: antisym simp: sets-eq-imp-space-eq [OF
sb])

case 1
have M (space M − B) = M (space M) − emeasure M B by (auto simp:

emeasure-compl)
also have . . . = (SUP U : {U . B ⊆ U ∧ open U }. M (space M) − M U)

unfolding outer by (subst ennreal-INF-const-minus) auto
also have . . . = (SUP U :{U . B ⊆ U ∧ open U }. M (space M − U))

by (rule SUP-cong) (auto simp add : emeasure-compl sb compact-imp-closed)
also have . . . = (SUP K :{K . K ⊆ space M − B ∧ closed K}. emeasure M K)
unfolding SUP-image [of - λu. space M − u -, symmetric, unfolded comp-def]

by (rule SUP-cong) (auto simp add : sU)
also have . . . = (SUP K :{K . K ⊆ space M − B ∧ compact K}. emeasure M

K)
proof (safe intro!: antisym SUP-least)

fix K assume closed K K ⊆ space M − B
from closed-in-D [OF 〈closed K 〉]
have K-inner : emeasure M K = (SUP K :{Ka. Ka ⊆ K ∧ compact Ka}.

emeasure M K) by simp
show emeasure M K ≤ (SUP K :{K . K ⊆ space M − B ∧ compact K}.

emeasure M K)
unfolding K-inner using 〈K ⊆ space M − B 〉

by (auto intro!: SUP-upper SUP-least)
qed (fastforce intro!: SUP-least SUP-upper simp: compact-imp-closed)
finally show ?case by (auto intro!: antisym simp: sets-eq-imp-space-eq [OF sb])

next
case (union D)
then have range D ⊆ sets M by (auto simp: sb borel-eq-closed)
with union have M [symmetric]: (

∑
i . M (D i)) = M (

⋃
i . D i) by (intro

suminf-emeasure)
also have (λn.

∑
i<n. M (D i)) −−−−→ (

∑
i . M (D i))

by (intro summable-LIMSEQ) auto
finally have measure-LIMSEQ : (λn.

∑
i<n. measure M (D i)) −−−−→ measure

M (
⋃

i . D i)
by (simp add : emeasure-eq-measure measure-nonneg setsum-nonneg)

have (
⋃

i . D i) ∈ sets M using 〈range D ⊆ sets M 〉 by auto

case 1
show ?case
proof (rule approx-inner)

fix e::real assume e > 0
with measure-LIMSEQ
have ∃no. ∀n≥no. |(

∑
i<n. measure M (D i)) −measure M (

⋃
x . D x)| <

e/2

THEORY “Regularity” 490

by (auto simp: lim-sequentially dist-real-def simp del : less-divide-eq-numeral1)
hence ∃n0 . |(

∑
i<n0 . measure M (D i)) − measure M (

⋃
x . D x)| < e/2

by auto
then obtain n0 where n0 : |(

∑
i<n0 . measure M (D i)) − measure M (

⋃
i .

D i)| < e/2
unfolding choice-iff by blast

have ennreal (
∑

i<n0 . measure M (D i)) = (
∑

i<n0 . M (D i))
by (auto simp add : emeasure-eq-measure setsum-nonneg measure-nonneg)

also have . . . ≤ (
∑

i . M (D i)) by (rule setsum-le-suminf) auto
also have . . . = M (

⋃
i . D i) by (simp add : M)

also have . . . = measure M (
⋃

i . D i) by (simp add : emeasure-eq-measure)
finally have n0 : measure M (

⋃
i . D i) − (

∑
i<n0 . measure M (D i)) < e/2

using n0 by (auto simp: measure-nonneg setsum-nonneg)
have ∀ i . ∃K . K ⊆ D i ∧ compact K ∧ emeasure M (D i) ≤ emeasure M K

+ e/(2∗Suc n0)
proof

fix i
from 〈0 < e〉 have 0 < e/(2∗Suc n0) by simp

have emeasure M (D i) = (SUP K :{K . K ⊆ (D i) ∧ compact K}. emeasure
M K)

using union by blast
from SUP-approx-ennreal [OF 〈0 < e/(2∗Suc n0)〉 - this]
show ∃K . K ⊆ D i ∧ compact K ∧ emeasure M (D i) ≤ emeasure M K +

e/(2∗Suc n0)
by (auto simp: emeasure-eq-measure intro: less-imp-le compact-empty)

qed
then obtain K where K :

∧
i . K i ⊆ D i

∧
i . compact (K i)∧

i . emeasure M (D i) ≤ emeasure M (K i) + e/(2∗Suc n0)
unfolding choice-iff by blast

let ?K =
⋃

i∈{..<n0}. K i
have disjoint-family-on K {..<n0} using K 〈disjoint-family D 〉

unfolding disjoint-family-on-def by blast
hence mK : measure M ?K = (

∑
i<n0 . measure M (K i)) using K

by (intro finite-measure-finite-Union) (auto simp: sb compact-imp-closed)
have measure M (

⋃
i . D i) < (

∑
i<n0 . measure M (D i)) + e/2 using n0

by simp
also have (

∑
i<n0 . measure M (D i)) ≤ (

∑
i<n0 . measure M (K i) +

e/(2∗Suc n0))
using K 〈0 < e〉

by (auto intro: setsum-mono simp: emeasure-eq-measure measure-nonneg
ennreal-plus[symmetric] simp del : ennreal-plus)

also have . . . = (
∑

i<n0 . measure M (K i)) + (
∑

i<n0 . e/(2∗Suc n0))
by (simp add : setsum.distrib)

also have . . . ≤ (
∑

i<n0 . measure M (K i)) + e / 2 using 〈0 < e〉

by (auto simp: field-simps intro!: mult-left-mono)
finally
have measure M (

⋃
i . D i) < (

∑
i<n0 . measure M (K i)) + e / 2 + e / 2

by auto
hence M (

⋃
i . D i) < M ?K + e

THEORY “Regularity” 491

using 〈0<e〉 by (auto simp: mK emeasure-eq-measure measure-nonneg
setsum-nonneg ennreal-less-iff ennreal-plus[symmetric] simp del : ennreal-plus)

moreover
have ?K ⊆ (

⋃
i . D i) using K by auto

moreover
have compact ?K using K by auto
ultimately
have ?K⊆(

⋃
i . D i) ∧ compact ?K ∧ emeasure M (

⋃
i . D i) ≤ emeasure M

?K + ennreal e by simp
thus ∃K⊆

⋃
i . D i . compact K ∧ emeasure M (

⋃
i . D i) ≤ emeasure M K

+ ennreal e ..
qed fact
case 2
show ?case
proof (rule approx-outer [OF 〈(

⋃
i . D i) ∈ sets M 〉])

fix e::real assume e > 0
have ∀ i ::nat . ∃U . D i ⊆ U ∧ open U ∧ e/(2 powr Suc i) > emeasure M U

− emeasure M (D i)
proof

fix i ::nat
from 〈0 < e〉 have 0 < e/(2 powr Suc i) by simp
have emeasure M (D i) = (INF U :{U . (D i) ⊆ U ∧ open U }. emeasure M

U)
using union by blast

from INF-approx-ennreal [OF 〈0 < e/(2 powr Suc i)〉 this]
show ∃U . D i ⊆ U ∧ open U ∧ e/(2 powr Suc i) > emeasure M U −

emeasure M (D i)
using 〈0<e〉

by (auto simp: emeasure-eq-measure measure-nonneg setsum-nonneg
ennreal-less-iff ennreal-plus[symmetric] ennreal-minus

finite-measure-mono sb
simp del : ennreal-plus)

qed
then obtain U where U :

∧
i . D i ⊆ U i

∧
i . open (U i)∧

i . e/(2 powr Suc i) > emeasure M (U i) − emeasure M (D i)
unfolding choice-iff by blast

let ?U =
⋃

i . U i
have ennreal (measure M ?U − measure M (

⋃
i . D i)) = M ?U − M (

⋃
i .

D i)
using U (1 ,2)
by (subst ennreal-minus[symmetric])
(auto intro!: finite-measure-mono simp: sb measure-nonneg emeasure-eq-measure)

also have . . . = M (?U − (
⋃

i . D i)) using U 〈(
⋃

i . D i) ∈ sets M 〉

by (subst emeasure-Diff) (auto simp: sb)
also have . . . ≤ M (

⋃
i . U i − D i) using U 〈range D ⊆ sets M 〉

by (intro emeasure-mono) (auto simp: sb intro!: sets.countable-nat-UN
sets.Diff)

also have . . . ≤ (
∑

i . M (U i − D i)) using U 〈range D ⊆ sets M 〉

by (intro emeasure-subadditive-countably) (auto intro!: sets.Diff simp: sb)

THEORY “Set-Integral” 492

also have . . . ≤ (
∑

i . ennreal e/(2 powr Suc i)) using U 〈range D ⊆ sets
M 〉

using 〈0<e〉

by (intro suminf-le, subst emeasure-Diff)
(auto simp: emeasure-Diff emeasure-eq-measure sb measure-nonneg

ennreal-minus
finite-measure-mono divide-ennreal ennreal-less-iff

intro: less-imp-le)
also have . . . ≤ (

∑
n. ennreal (e ∗ (1 / 2) ˆ Suc n))

using 〈0<e〉

by (simp add : powr-minus powr-realpow field-simps divide-ennreal del :
of-nat-Suc)

also have . . . = ennreal e ∗ (
∑

n. ennreal ((1 / 2) ˆ Suc n))
unfolding ennreal-power [symmetric]
using 〈0 < e〉

by (simp add : ac-simps ennreal-mult ′ divide-ennreal [symmetric] divide-ennreal-def
ennreal-power [symmetric])

also have . . . = ennreal e
by (subst suminf-ennreal-eq [OF zero-le-power power-half-series]) auto

finally have emeasure M ?U ≤ emeasure M (
⋃

i . D i) + ennreal e
using 〈0<e〉 by (simp add : emeasure-eq-measure ennreal-plus[symmetric]

measure-nonneg del : ennreal-plus)
moreover
have (

⋃
i . D i) ⊆ ?U using U by auto

moreover
have open ?U using U by auto
ultimately
have (

⋃
i . D i) ⊆ ?U ∧ open ?U ∧ emeasure M ?U ≤ emeasure M (

⋃
i . D

i) + ennreal e by simp
thus ∃B . (

⋃
i . D i) ⊆ B ∧ open B ∧ emeasure M B ≤ emeasure M (

⋃
i . D

i) + ennreal e ..
qed

qed
qed

end

theory Set-Integral
imports Bochner-Integration Lebesgue-Measure

begin

abbreviation set-borel-measurable M A f ≡ (λx . indicator A x ∗R f x) ∈ borel-measurable
M

abbreviation set-integrable M A f ≡ integrable M (λx . indicator A x ∗R f x)

THEORY “Set-Integral” 493

abbreviation set-lebesgue-integral M A f ≡ lebesgue-integral M (λx . indicator A
x ∗R f x)

syntax
-ascii-set-lebesgue-integral :: pttrn ⇒ ′a set ⇒ ′a measure ⇒ real ⇒ real
((4LINT (-):(-)/|(-)./ -) [0 ,60 ,110 ,61] 60)

translations
LINT x :A|M . f == CONST set-lebesgue-integral M A (λx . f)

abbreviation
set-almost-everywhere A M P ≡ AE x in M . x ∈ A −→ P x

syntax
-set-almost-everywhere :: pttrn ⇒ ′a set ⇒ ′a ⇒ bool ⇒ bool

(AE -∈- in -./ - [0 ,0 ,0 ,10] 10)

translations
AE x∈A in M . P == CONST set-almost-everywhere A M (λx . P)

syntax
-lebesgue-borel-integral :: pttrn ⇒ real ⇒ real
((2LBINT -./ -) [0 ,60] 60)

translations
LBINT x . f == CONST lebesgue-integral CONST lborel (λx . f)

syntax
-set-lebesgue-borel-integral :: pttrn ⇒ real set ⇒ real ⇒ real
((3LBINT -:-./ -) [0 ,60 ,61] 60)

translations
LBINT x :A. f == CONST set-lebesgue-integral CONST lborel A (λx . f)

lemma set-borel-measurable-sets:
fixes f :: - ⇒ -::real-normed-vector
assumes set-borel-measurable M X f B ∈ sets borel X ∈ sets M
shows f −‘ B ∩ X ∈ sets M

proof −
have f ∈ borel-measurable (restrict-space M X)

using assms by (subst borel-measurable-restrict-space-iff) auto
then have f −‘ B ∩ space (restrict-space M X) ∈ sets (restrict-space M X)

by (rule measurable-sets) fact

THEORY “Set-Integral” 494

with 〈X ∈ sets M 〉 show ?thesis
by (subst (asm) sets-restrict-space-iff) (auto simp: space-restrict-space)

qed

lemma set-lebesgue-integral-cong :
assumes A ∈ sets M and ∀ x . x ∈ A −→ f x = g x
shows (LINT x :A|M . f x) = (LINT x :A|M . g x)
using assms by (auto intro!: integral-cong split : split-indicator simp add : sets.sets-into-space)

lemma set-lebesgue-integral-cong-AE :
assumes [measurable]: A ∈ sets M f ∈ borel-measurable M g ∈ borel-measurable

M
assumes AE x ∈ A in M . f x = g x
shows LINT x :A|M . f x = LINT x :A|M . g x

proof−
have AE x in M . indicator A x ∗R f x = indicator A x ∗R g x

using assms by auto
thus ?thesis by (intro integral-cong-AE) auto

qed

lemma set-integrable-cong-AE :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒
AE x ∈ A in M . f x = g x =⇒ A ∈ sets M =⇒
set-integrable M A f = set-integrable M A g

by (rule integrable-cong-AE) auto

lemma set-integrable-subset :
fixes M A B and f :: - ⇒ - :: {banach, second-countable-topology}
assumes set-integrable M A f B ∈ sets M B ⊆ A
shows set-integrable M B f

proof −
have set-integrable M B (λx . indicator A x ∗R f x)

by (rule integrable-mult-indicator) fact+
with 〈B ⊆ A〉 show ?thesis

by (simp add : indicator-inter-arith[symmetric] Int-absorb2)
qed

lemma set-integral-scaleR-right [simp]: LINT t :A|M . a ∗R f t = a ∗R (LINT
t :A|M . f t)

by (subst integral-scaleR-right [symmetric]) (auto intro!: integral-cong)

lemma set-integral-mult-right [simp]:
fixes a :: ′a::{real-normed-field , second-countable-topology}
shows LINT t :A|M . a ∗ f t = a ∗ (LINT t :A|M . f t)
by (subst integral-mult-right-zero[symmetric]) (auto intro!: integral-cong)

THEORY “Set-Integral” 495

lemma set-integral-mult-left [simp]:
fixes a :: ′a::{real-normed-field , second-countable-topology}
shows LINT t :A|M . f t ∗ a = (LINT t :A|M . f t) ∗ a
by (subst integral-mult-left-zero[symmetric]) (auto intro!: integral-cong)

lemma set-integral-divide-zero [simp]:
fixes a :: ′a::{real-normed-field , field , second-countable-topology}
shows LINT t :A|M . f t / a = (LINT t :A|M . f t) / a
by (subst integral-divide-zero[symmetric], intro integral-cong)

(auto split : split-indicator)

lemma set-integrable-scaleR-right [simp, intro]:
shows (a 6= 0 =⇒ set-integrable M A f) =⇒ set-integrable M A (λt . a ∗R f t)
unfolding scaleR-left-commute by (rule integrable-scaleR-right)

lemma set-integrable-scaleR-left [simp, intro]:
fixes a :: - :: {banach, second-countable-topology}
shows (a 6= 0 =⇒ set-integrable M A f) =⇒ set-integrable M A (λt . f t ∗R a)
using integrable-scaleR-left [of a M λx . indicator A x ∗R f x] by simp

lemma set-integrable-mult-right [simp, intro]:
fixes a :: ′a::{real-normed-field , second-countable-topology}
shows (a 6= 0 =⇒ set-integrable M A f) =⇒ set-integrable M A (λt . a ∗ f t)
using integrable-mult-right [of a M λx . indicator A x ∗R f x] by simp

lemma set-integrable-mult-left [simp, intro]:
fixes a :: ′a::{real-normed-field , second-countable-topology}
shows (a 6= 0 =⇒ set-integrable M A f) =⇒ set-integrable M A (λt . f t ∗ a)
using integrable-mult-left [of a M λx . indicator A x ∗R f x] by simp

lemma set-integrable-divide [simp, intro]:
fixes a :: ′a::{real-normed-field , field , second-countable-topology}
assumes a 6= 0 =⇒ set-integrable M A f
shows set-integrable M A (λt . f t / a)

proof −
have integrable M (λx . indicator A x ∗R f x / a)

using assms by (rule integrable-divide-zero)
also have (λx . indicator A x ∗R f x / a) = (λx . indicator A x ∗R (f x / a))

by (auto split : split-indicator)
finally show ?thesis .

qed

lemma set-integral-add [simp, intro]:
fixes f g :: - ⇒ - :: {banach, second-countable-topology}
assumes set-integrable M A f set-integrable M A g
shows set-integrable M A (λx . f x + g x)

and LINT x :A|M . f x + g x = (LINT x :A|M . f x) + (LINT x :A|M . g x)
using assms by (simp-all add : scaleR-add-right)

THEORY “Set-Integral” 496

lemma set-integral-diff [simp, intro]:
assumes set-integrable M A f set-integrable M A g
shows set-integrable M A (λx . f x − g x) and LINT x :A|M . f x − g x =

(LINT x :A|M . f x) − (LINT x :A|M . g x)
using assms by (simp-all add : scaleR-diff-right)

lemma set-integral-reflect :
fixes S and f :: real ⇒ ′a :: {banach, second-countable-topology}
shows (LBINT x : S . f x) = (LBINT x : {x . − x ∈ S}. f (− x))
using assms
by (subst lborel-integral-real-affine[where c=−1 and t=0])

(auto intro!: integral-cong split : split-indicator)

lemma set-integral-uminus: set-integrable M A f =⇒ LINT x :A|M . − f x = −
(LINT x :A|M . f x)

by (subst integral-minus[symmetric]) simp-all

lemma set-integral-complex-of-real :
LINT x :A|M . complex-of-real (f x) = of-real (LINT x :A|M . f x)
by (subst integral-complex-of-real [symmetric])

(auto intro!: integral-cong split : split-indicator)

lemma set-integral-mono:
fixes f g :: - ⇒ real
assumes set-integrable M A f set-integrable M A g∧

x . x ∈ A =⇒ f x ≤ g x
shows (LINT x :A|M . f x) ≤ (LINT x :A|M . g x)

using assms by (auto intro: integral-mono split : split-indicator)

lemma set-integral-mono-AE :
fixes f g :: - ⇒ real
assumes set-integrable M A f set-integrable M A g

AE x ∈ A in M . f x ≤ g x
shows (LINT x :A|M . f x) ≤ (LINT x :A|M . g x)

using assms by (auto intro: integral-mono-AE split : split-indicator)

lemma set-integrable-abs: set-integrable M A f =⇒ set-integrable M A (λx . |f x | ::
real)

using integrable-abs[of M λx . f x ∗ indicator A x] by (simp add : abs-mult
ac-simps)

lemma set-integrable-abs-iff :
fixes f :: - ⇒ real
shows set-borel-measurable M A f =⇒ set-integrable M A (λx . |f x |) = set-integrable

M A f
by (subst (2) integrable-abs-iff [symmetric]) (simp-all add : abs-mult ac-simps)

lemma set-integrable-abs-iff ′:

THEORY “Set-Integral” 497

fixes f :: - ⇒ real
shows f ∈ borel-measurable M =⇒ A ∈ sets M =⇒

set-integrable M A (λx . |f x |) = set-integrable M A f
by (intro set-integrable-abs-iff) auto

lemma set-integrable-discrete-difference:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes countable X
assumes diff : (A − B) ∪ (B − A) ⊆ X
assumes

∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows set-integrable M A f ←→ set-integrable M B f
proof (rule integrable-discrete-difference[where X =X])

show
∧

x . x ∈ space M =⇒ x /∈ X =⇒ indicator A x ∗R f x = indicator B x ∗R
f x

using diff by (auto split : split-indicator)
qed fact+

lemma set-integral-discrete-difference:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes countable X
assumes diff : (A − B) ∪ (B − A) ⊆ X
assumes

∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows set-lebesgue-integral M A f = set-lebesgue-integral M B f
proof (rule integral-discrete-difference[where X =X])

show
∧

x . x ∈ space M =⇒ x /∈ X =⇒ indicator A x ∗R f x = indicator B x ∗R
f x

using diff by (auto split : split-indicator)
qed fact+

lemma set-integrable-Un:
fixes f g :: - ⇒ - :: {banach, second-countable-topology}
assumes f-A: set-integrable M A f and f-B : set-integrable M B f

and [measurable]: A ∈ sets M B ∈ sets M
shows set-integrable M (A ∪ B) f

proof −
have set-integrable M (A − B) f

using f-A by (rule set-integrable-subset) auto
from integrable-add [OF this f-B] show ?thesis

by (rule integrable-cong [THEN iffD1 , rotated 2]) (auto split : split-indicator)
qed

lemma set-integrable-UN :
fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes finite I

∧
i . i∈I =⇒ set-integrable M (A i) f∧

i . i∈I =⇒ A i ∈ sets M
shows set-integrable M (

⋃
i∈I . A i) f

using assms by (induct I) (auto intro!: set-integrable-Un)

lemma set-integral-Un:

THEORY “Set-Integral” 498

fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes A ∩ B = {}
and set-integrable M A f
and set-integrable M B f
shows LINT x :A∪B |M . f x = (LINT x :A|M . f x) + (LINT x :B |M . f x)

by (auto simp add : indicator-union-arith indicator-inter-arith[symmetric]
scaleR-add-left assms)

lemma set-integral-cong-set :
fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes [measurable]: set-borel-measurable M A f set-borel-measurable M B f

and ae: AE x in M . x ∈ A ←→ x ∈ B
shows LINT x :B |M . f x = LINT x :A|M . f x

proof (rule integral-cong-AE)
show AE x in M . indicator B x ∗R f x = indicator A x ∗R f x

using ae by (auto simp: subset-eq split : split-indicator)
qed fact+

lemma set-borel-measurable-subset :
fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes [measurable]: set-borel-measurable M A f B ∈ sets M and B ⊆ A
shows set-borel-measurable M B f

proof −
have set-borel-measurable M B (λx . indicator A x ∗R f x)

by measurable
also have (λx . indicator B x ∗R indicator A x ∗R f x) = (λx . indicator B x ∗R

f x)
using 〈B ⊆ A〉 by (auto simp: fun-eq-iff split : split-indicator)

finally show ?thesis .
qed

lemma set-integral-Un-AE :
fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes ae: AE x in M . ¬ (x ∈ A ∧ x ∈ B) and [measurable]: A ∈ sets M B
∈ sets M

and set-integrable M A f
and set-integrable M B f
shows LINT x :A∪B |M . f x = (LINT x :A|M . f x) + (LINT x :B |M . f x)

proof −
have f : set-integrable M (A ∪ B) f

by (intro set-integrable-Un assms)
then have f ′: set-borel-measurable M (A ∪ B) f

by (rule borel-measurable-integrable)
have LINT x :A∪B |M . f x = LINT x :(A − A ∩ B) ∪ (B − A ∩ B)|M . f x
proof (rule set-integral-cong-set)

show AE x in M . (x ∈ A − A ∩ B ∪ (B − A ∩ B)) = (x ∈ A ∪ B)
using ae by auto

show set-borel-measurable M (A − A ∩ B ∪ (B − A ∩ B)) f
using f ′ by (rule set-borel-measurable-subset) auto

THEORY “Set-Integral” 499

qed fact
also have . . . = (LINT x :(A − A ∩ B)|M . f x) + (LINT x :(B − A ∩ B)|M . f

x)
by (auto intro!: set-integral-Un set-integrable-subset [OF f])

also have . . . = (LINT x :A|M . f x) + (LINT x :B |M . f x)
using ae
by (intro arg-cong2 [where f =op+] set-integral-cong-set)

(auto intro!: set-borel-measurable-subset [OF f ′])
finally show ?thesis .

qed

lemma set-integral-finite-Union:
fixes f :: - ⇒ - :: {banach, second-countable-topology}
assumes finite I disjoint-family-on A I

and
∧

i . i ∈ I =⇒ set-integrable M (A i) f
∧

i . i ∈ I =⇒ A i ∈ sets M
shows (LINT x :(

⋃
i∈I . A i)|M . f x) = (

∑
i∈I . LINT x :A i |M . f x)

using assms
apply induct
apply (auto intro!: set-integral-Un set-integrable-Un set-integrable-UN simp: disjoint-family-on-def)

by (subst set-integral-Un, auto intro: set-integrable-UN)

lemma pos-integrable-to-top:
fixes l ::real
assumes

∧
i . A i ∈ sets M mono A

assumes nneg :
∧

x i . x ∈ A i =⇒ 0 ≤ f x
and intgbl :

∧
i ::nat . set-integrable M (A i) f

and lim: (λi ::nat . LINT x :A i |M . f x) −−−−→ l
shows set-integrable M (

⋃
i . A i) f

apply (rule integrable-monotone-convergence[where f = λi ::nat . λx . indicator
(A i) x ∗R f x and x = l])

apply (rule intgbl)
prefer 3 apply (rule lim)
apply (rule AE-I2)
using 〈mono A〉 apply (auto simp: mono-def nneg split : split-indicator) []

proof (rule AE-I2)
{ fix x assume x ∈ space M

show (λi . indicator (A i) x ∗R f x) −−−−→ indicator (
⋃

i . A i) x ∗R f x
proof cases

assume ∃ i . x ∈ A i
then guess i ..
then have ∗: eventually (λi . x ∈ A i) sequentially
using 〈x ∈ A i 〉 〈mono A〉 by (auto simp: eventually-sequentially mono-def)

show ?thesis
apply (intro Lim-eventually)
using ∗
apply eventually-elim
apply (auto split : split-indicator)
done

THEORY “Set-Integral” 500

qed auto }
then show (λx . indicator (

⋃
i . A i) x ∗R f x) ∈ borel-measurable M

apply (rule borel-measurable-LIMSEQ-real)
apply assumption
apply (intro borel-measurable-integrable intgbl)
done

qed

lemma lebesgue-integral-countable-add :
fixes f :: - ⇒ ′a :: {banach, second-countable-topology}
assumes meas[intro]:

∧
i ::nat . A i ∈ sets M

and disj :
∧

i j . i 6= j =⇒ A i ∩ A j = {}
and intgbl : set-integrable M (

⋃
i . A i) f

shows LINT x :(
⋃

i . A i)|M . f x = (
∑

i . (LINT x :(A i)|M . f x))
proof (subst integral-suminf [symmetric])

show int-A:
∧

i . set-integrable M (A i) f
using intgbl by (rule set-integrable-subset) auto
{ fix x assume x ∈ space M

have (λi . indicator (A i) x ∗R f x) sums (indicator (
⋃

i . A i) x ∗R f x)
by (intro sums-scaleR-left indicator-sums) fact }

note sums = this

have norm-f :
∧

i . set-integrable M (A i) (λx . norm (f x))
using int-A[THEN integrable-norm] by auto

show AE x in M . summable (λi . norm (indicator (A i) x ∗R f x))
using disj by (intro AE-I2) (auto intro!: summable-mult2 sums-summable[OF

indicator-sums])

show summable (λi . LINT x |M . norm (indicator (A i) x ∗R f x))
proof (rule summableI-nonneg-bounded)

fix n
show 0 ≤ LINT x |M . norm (indicator (A n) x ∗R f x)

using norm-f by (auto intro!: integral-nonneg-AE)

have (
∑

i<n. LINT x |M . norm (indicator (A i) x ∗R f x)) =
(
∑

i<n. set-lebesgue-integral M (A i) (λx . norm (f x)))
by (simp add : abs-mult)

also have . . . = set-lebesgue-integral M (
⋃

i<n. A i) (λx . norm (f x))
using norm-f
by (subst set-integral-finite-Union) (auto simp: disjoint-family-on-def disj)

also have . . . ≤ set-lebesgue-integral M (
⋃

i . A i) (λx . norm (f x))
using intgbl [THEN integrable-norm]
by (intro integral-mono set-integrable-UN [of {..<n}] norm-f)

(auto split : split-indicator)
finally show (

∑
i<n. LINT x |M . norm (indicator (A i) x ∗R f x)) ≤

set-lebesgue-integral M (
⋃

i . A i) (λx . norm (f x))
by simp

THEORY “Set-Integral” 501

qed
show set-lebesgue-integral M (UNION UNIV A) f = LINT x |M . (

∑
i . indicator

(A i) x ∗R f x)
apply (rule integral-cong [OF refl])
apply (subst suminf-scaleR-left [OF sums-summable[OF indicator-sums, OF

disj], symmetric])
using sums-unique[OF indicator-sums[OF disj]]
apply auto
done

qed

lemma set-integral-cont-up:
fixes f :: - ⇒ ′a :: {banach, second-countable-topology}
assumes [measurable]:

∧
i . A i ∈ sets M and A: incseq A

and intgbl : set-integrable M (
⋃

i . A i) f
shows (λi . LINT x :(A i)|M . f x) −−−−→ LINT x :(

⋃
i . A i)|M . f x

proof (intro integral-dominated-convergence[where w=λx . indicator (
⋃

i . A i) x
∗R norm (f x)])

have int-A:
∧

i . set-integrable M (A i) f
using intgbl by (rule set-integrable-subset) auto

then show
∧

i . set-borel-measurable M (A i) f set-borel-measurable M (
⋃

i . A
i) f

set-integrable M (
⋃

i . A i) (λx . norm (f x))
using intgbl integrable-norm[OF intgbl] by auto

{ fix x i assume x ∈ A i
with A have (λxa. indicator (A xa) x ::real) −−−−→ 1 ←→ (λxa. 1 ::real)

−−−−→ 1
by (intro filterlim-cong refl)

(fastforce simp: eventually-sequentially incseq-def subset-eq intro!: exI [of -
i]) }

then show AE x in M . (λi . indicator (A i) x ∗R f x) −−−−→ indicator (
⋃

i . A
i) x ∗R f x

by (intro AE-I2 tendsto-intros) (auto split : split-indicator)
qed (auto split : split-indicator)

lemma set-integral-cont-down:
fixes f :: - ⇒ ′a :: {banach, second-countable-topology}
assumes [measurable]:

∧
i . A i ∈ sets M and A: decseq A

and int0 : set-integrable M (A 0) f
shows (λi ::nat . LINT x :(A i)|M . f x) −−−−→ LINT x :(

⋂
i . A i)|M . f x

proof (rule integral-dominated-convergence)
have int-A:

∧
i . set-integrable M (A i) f

using int0 by (rule set-integrable-subset) (insert A, auto simp: decseq-def)
show set-integrable M (A 0) (λx . norm (f x))

using int0 [THEN integrable-norm] by simp
have set-integrable M (

⋂
i . A i) f

using int0 by (rule set-integrable-subset) (insert A, auto simp: decseq-def)

THEORY “Set-Integral” 502

with int-A show set-borel-measurable M (
⋂

i . A i) f
∧

i . set-borel-measurable
M (A i) f

by auto
show

∧
i . AE x in M . norm (indicator (A i) x ∗R f x) ≤ indicator (A 0) x ∗R

norm (f x)
using A by (auto split : split-indicator simp: decseq-def)
{ fix x i assume x ∈ space M x /∈ A i
with A have (λi . indicator (A i) x ::real) −−−−→ 0 ←→ (λi . 0 ::real) −−−−→ 0

by (intro filterlim-cong refl)
(auto split : split-indicator simp: eventually-sequentially decseq-def intro!:

exI [of - i]) }
then show AE x in M . (λi . indicator (A i) x ∗R f x) −−−−→ indicator (

⋂
i . A

i) x ∗R f x
by (intro AE-I2 tendsto-intros) (auto split : split-indicator)

qed

lemma set-integral-at-point :
fixes a :: real
assumes set-integrable M {a} f
and [simp]: {a} ∈ sets M and (emeasure M) {a} 6= ∞
shows (LINT x :{a} | M . f x) = f a ∗ measure M {a}

proof−
have set-lebesgue-integral M {a} f = set-lebesgue-integral M {a} (%x . f a)

by (intro set-lebesgue-integral-cong) simp-all
then show ?thesis using assms by simp

qed

abbreviation complex-integrable :: ′a measure ⇒ (′a ⇒ complex) ⇒ bool where
complex-integrable M f ≡ integrable M f

abbreviation complex-lebesgue-integral :: ′a measure ⇒ (′a ⇒ complex) ⇒ com-
plex (integralC) where

integralC M f == integralL M f

syntax
-complex-lebesgue-integral :: pttrn ⇒ complex ⇒ ′a measure ⇒ complex

(
∫
C -. - ∂- [60 ,61] 110)

translations∫
Cx . f ∂M == CONST complex-lebesgue-integral M (λx . f)

syntax
-ascii-complex-lebesgue-integral :: pttrn ⇒ ′a measure ⇒ real ⇒ real
((3CLINT -|-. -) [0 ,110 ,60] 60)

translations
CLINT x |M . f == CONST complex-lebesgue-integral M (λx . f)

THEORY “Set-Integral” 503

lemma complex-integrable-cnj [simp]:
complex-integrable M (λx . cnj (f x)) ←→ complex-integrable M f

proof
assume complex-integrable M (λx . cnj (f x))
then have complex-integrable M (λx . cnj (cnj (f x)))

by (rule integrable-cnj)
then show complex-integrable M f

by simp
qed simp

lemma complex-of-real-integrable-eq :
complex-integrable M (λx . complex-of-real (f x)) ←→ integrable M f

proof
assume complex-integrable M (λx . complex-of-real (f x))
then have integrable M (λx . Re (complex-of-real (f x)))

by (rule integrable-Re)
then show integrable M f

by simp
qed simp

abbreviation complex-set-integrable :: ′a measure ⇒ ′a set ⇒ (′a ⇒ complex) ⇒
bool where

complex-set-integrable M A f ≡ set-integrable M A f

abbreviation complex-set-lebesgue-integral :: ′a measure ⇒ ′a set ⇒ (′a ⇒ com-
plex) ⇒ complex where

complex-set-lebesgue-integral M A f ≡ set-lebesgue-integral M A f

syntax
-ascii-complex-set-lebesgue-integral :: pttrn ⇒ ′a set ⇒ ′a measure ⇒ real ⇒ real
((4CLINT -:-|-. -) [0 ,60 ,110 ,61] 60)

translations
CLINT x :A|M . f == CONST complex-set-lebesgue-integral M A (λx . f)

lemma borel-integrable-atLeastAtMost ′:
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes f : continuous-on {a..b} f
shows set-integrable lborel {a..b} f (is integrable - ?f)
by (intro borel-integrable-compact compact-Icc f)

lemma integral-FTC-atLeastAtMost :
fixes f :: real ⇒ ′a :: euclidean-space
assumes a ≤ b

and F :
∧

x . a ≤ x =⇒ x ≤ b =⇒ (F has-vector-derivative f x) (at x within {a
.. b})

THEORY “Set-Integral” 504

and f : continuous-on {a .. b} f
shows integralL lborel (λx . indicator {a .. b} x ∗R f x) = F b − F a

proof −
let ?f = λx . indicator {a .. b} x ∗R f x
have (?f has-integral (

∫
x . ?f x ∂lborel)) UNIV

using borel-integrable-atLeastAtMost ′[OF f] by (rule has-integral-integral-lborel)
moreover
have (f has-integral F b − F a) {a .. b}

by (intro fundamental-theorem-of-calculus ballI assms) auto
then have (?f has-integral F b − F a) {a .. b}

by (subst has-integral-cong [where g=f]) auto
then have (?f has-integral F b − F a) UNIV

by (intro has-integral-on-superset [where t=UNIV and s={a..b}]) auto
ultimately show integralL lborel ?f = F b − F a

by (rule has-integral-unique)
qed

lemma set-borel-integral-eq-integral :
fixes f :: real ⇒ ′a::euclidean-space
assumes set-integrable lborel S f
shows f integrable-on S LINT x : S | lborel . f x = integral S f

proof −
let ?f = λx . indicator S x ∗R f x
have (?f has-integral LINT x : S | lborel . f x) UNIV

by (rule has-integral-integral-lborel) fact
hence 1 : (f has-integral (set-lebesgue-integral lborel S f)) S

apply (subst has-integral-restrict-univ [symmetric])
apply (rule has-integral-eq)
by auto

thus f integrable-on S
by (auto simp add : integrable-on-def)

with 1 have (f has-integral (integral S f)) S
by (intro integrable-integral , auto simp add : integrable-on-def)

thus LINT x : S | lborel . f x = integral S f
by (intro has-integral-unique [OF 1])

qed

lemma set-borel-measurable-continuous:
fixes f :: - ⇒ -::real-normed-vector
assumes S ∈ sets borel continuous-on S f
shows set-borel-measurable borel S f

proof −
have (λx . if x ∈ S then f x else 0) ∈ borel-measurable borel

by (intro assms borel-measurable-continuous-on-if continuous-on-const)
also have (λx . if x ∈ S then f x else 0) = (λx . indicator S x ∗R f x)

by auto
finally show ?thesis .

qed

THEORY “Interval-Integral” 505

lemma set-measurable-continuous-on-ivl :
assumes continuous-on {a..b} (f :: real ⇒ real)
shows set-borel-measurable borel {a..b} f
by (rule set-borel-measurable-continuous[OF - assms]) simp

end

theory Interval-Integral
imports Set-Integral

begin

lemma continuous-on-vector-derivative:
(
∧

x . x ∈ S =⇒ (f has-vector-derivative f ′ x) (at x within S)) =⇒ continuous-on
S f
by (auto simp: continuous-on-eq-continuous-within intro!: has-vector-derivative-continuous)

lemma has-vector-derivative-weaken:
fixes x D and f g s t
assumes f : (f has-vector-derivative D) (at x within t)

and x ∈ s s ⊆ t
and

∧
x . x ∈ s =⇒ f x = g x

shows (g has-vector-derivative D) (at x within s)
proof −

have (f has-vector-derivative D) (at x within s) ←→ (g has-vector-derivative D)
(at x within s)

unfolding has-vector-derivative-def has-derivative-iff-norm
using assms by (intro conj-cong Lim-cong-within refl) auto

then show ?thesis
using has-vector-derivative-within-subset [OF f 〈s ⊆ t 〉] by simp

qed

definition einterval a b = {x . a < ereal x ∧ ereal x < b}

lemma einterval-eq [simp]:
shows einterval-eq-Icc: einterval (ereal a) (ereal b) = {a <..< b}

and einterval-eq-Ici : einterval (ereal a) ∞ = {a <..}
and einterval-eq-Iic: einterval (− ∞) (ereal b) = {..< b}
and einterval-eq-UNIV : einterval (− ∞) ∞ = UNIV

by (auto simp: einterval-def)

lemma einterval-same: einterval a a = {}
by (auto simp add : einterval-def)

lemma einterval-iff : x ∈ einterval a b ←→ a < ereal x ∧ ereal x < b
by (simp add : einterval-def)

lemma einterval-nonempty : a < b =⇒ ∃ c. c ∈ einterval a b
by (cases a b rule: ereal2-cases, auto simp: einterval-def intro!: dense gt-ex lt-ex)

THEORY “Interval-Integral” 506

lemma open-einterval [simp]: open (einterval a b)
by (cases a b rule: ereal2-cases)

(auto simp: einterval-def intro!: open-Collect-conj open-Collect-less continuous-intros)

lemma borel-einterval [measurable]: einterval a b ∈ sets borel
unfolding einterval-def by measurable

lemma filterlim-sup1 : (LIM x F . f x :> G1) =⇒ (LIM x F . f x :> (sup G1 G2))
unfolding filterlim-def by (auto intro: le-supI1)

lemma ereal-incseq-approx :
fixes a b :: ereal
assumes a < b
obtains X :: nat ⇒ real where

incseq X
∧

i . a < X i
∧

i . X i < b X −−−−→ b
proof (cases b)

case PInf
with 〈a < b〉 have a = −∞ ∨ (∃ r . a = ereal r)

by (cases a) auto
moreover have (λx . ereal (real (Suc x))) −−−−→ ∞

apply (subst LIMSEQ-Suc-iff)
apply (simp add : Lim-PInfty)
using nat-ceiling-le-eq by blast

moreover have
∧

r . (λx . ereal (r + real (Suc x))) −−−−→ ∞
apply (subst LIMSEQ-Suc-iff)
apply (subst Lim-PInfty)
apply (metis add .commute diff-le-eq nat-ceiling-le-eq ereal-less-eq(3))
done

ultimately show thesis
by (intro that [of λi . real-of-ereal a + Suc i])

(auto simp: incseq-def PInf)
next

case (real b ′)
def d ≡ b ′ − (if a = −∞ then b ′ − 1 else real-of-ereal a)
with 〈a < b〉 have a ′: 0 < d

by (cases a) (auto simp: real)
moreover
have

∧
i r . r < b ′ =⇒ (b ′ − r) ∗ 1 < (b ′ − r) ∗ real (Suc (Suc i))

by (intro mult-strict-left-mono) auto
with 〈a < b〉 a ′ have

∧
i . a < ereal (b ′ − d / real (Suc (Suc i)))

by (cases a) (auto simp: real d-def field-simps)
moreover have (λi . b ′ − d / Suc (Suc i)) −−−−→ b ′

apply (subst filterlim-sequentially-Suc)
apply (subst filterlim-sequentially-Suc)
apply (rule tendsto-eq-intros)
apply (auto intro!: tendsto-divide-0 [OF tendsto-const] filterlim-sup1

THEORY “Interval-Integral” 507

simp: at-infinity-eq-at-top-bot filterlim-real-sequentially)
done

ultimately show thesis
by (intro that [of λi . b ′ − d / Suc (Suc i)])

(auto simp add : real incseq-def intro!: divide-left-mono)
qed (insert 〈a < b〉, auto)

lemma ereal-decseq-approx :
fixes a b :: ereal
assumes a < b
obtains X :: nat ⇒ real where

decseq X
∧

i . a < X i
∧

i . X i < b X −−−−→ a
proof −

have −b < −a using 〈a < b〉 by simp
from ereal-incseq-approx [OF this] guess X .
then show thesis

apply (intro that [of λi . − X i])
apply (auto simp add : uminus-ereal .simps[symmetric] decseq-def incseq-def

simp del : uminus-ereal .simps)
apply (metis ereal-minus-less-minus ereal-uminus-uminus ereal-Lim-uminus)+
done

qed

lemma einterval-Icc-approximation:
fixes a b :: ereal
assumes a < b
obtains u l :: nat ⇒ real where

einterval a b = (
⋃

i . {l i .. u i})
incseq u decseq l

∧
i . l i < u i

∧
i . a < l i

∧
i . u i < b

l −−−−→ a u −−−−→ b
proof −

from dense[OF 〈a < b〉] obtain c where a < c c < b by safe
from ereal-incseq-approx [OF 〈c < b〉] guess u . note u = this
from ereal-decseq-approx [OF 〈a < c〉] guess l . note l = this
{ fix i from less-trans[OF 〈l i < c〉 〈c < u i 〉] have l i < u i by simp }
have einterval a b = (

⋃
i . {l i .. u i})

proof (auto simp: einterval-iff)
fix x assume a < ereal x ereal x < b
have eventually (λi . ereal (l i) < ereal x) sequentially

using l(4) 〈a < ereal x 〉 by (rule order-tendstoD)
moreover
have eventually (λi . ereal x < ereal (u i)) sequentially

using u(4) 〈ereal x< b〉 by (rule order-tendstoD)
ultimately have eventually (λi . l i < x ∧ x < u i) sequentially

by eventually-elim auto
then show ∃ i . l i ≤ x ∧ x ≤ u i

by (auto intro: less-imp-le simp: eventually-sequentially)
next

fix x i assume l i ≤ x x ≤ u i

THEORY “Interval-Integral” 508

with 〈a < ereal (l i)〉 〈ereal (u i) < b〉

show a < ereal x ereal x < b
by (auto simp del : ereal-less-eq(3) simp add : ereal-less-eq(3)[symmetric])

qed
show thesis

by (intro that) fact+
qed

definition interval-lebesgue-integral :: real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒
′a) ⇒ ′a::{banach, second-countable-topology} where

interval-lebesgue-integral M a b f =
(if a ≤ b then (LINT x :einterval a b|M . f x) else − (LINT x :einterval b a|M .

f x))

syntax
-ascii-interval-lebesgue-integral :: pttrn ⇒ real ⇒ real ⇒ real measure ⇒ real ⇒

real
((5LINT -=-..-|-. -) [0 ,60 ,60 ,61 ,100] 60)

translations
LINT x=a..b|M . f == CONST interval-lebesgue-integral M a b (λx . f)

definition interval-lebesgue-integrable :: real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒
′a::{banach, second-countable-topology}) ⇒ bool where

interval-lebesgue-integrable M a b f =
(if a ≤ b then set-integrable M (einterval a b) f else set-integrable M (einterval

b a) f)

syntax
-ascii-interval-lebesgue-borel-integral :: pttrn ⇒ real ⇒ real ⇒ real ⇒ real
((4LBINT -=-..-. -) [0 ,60 ,60 ,61] 60)

translations
LBINT x=a..b. f == CONST interval-lebesgue-integral CONST lborel a b (λx .

f)

lemma interval-lebesgue-integral-cong :
a ≤ b =⇒ (

∧
x . x ∈ einterval a b =⇒ f x = g x) =⇒ einterval a b ∈ sets M =⇒

interval-lebesgue-integral M a b f = interval-lebesgue-integral M a b g
by (auto intro: set-lebesgue-integral-cong simp: interval-lebesgue-integral-def)

lemma interval-lebesgue-integral-cong-AE :
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒

a ≤ b =⇒ AE x ∈ einterval a b in M . f x = g x =⇒ einterval a b ∈ sets M
=⇒

interval-lebesgue-integral M a b f = interval-lebesgue-integral M a b g

THEORY “Interval-Integral” 509

by (auto intro: set-lebesgue-integral-cong-AE simp: interval-lebesgue-integral-def)

lemma interval-integrable-mirror :
shows interval-lebesgue-integrable lborel a b (λx . f (−x)) ←→

interval-lebesgue-integrable lborel (−b) (−a) f
proof −

have ∗: indicator (einterval a b) (− x) = (indicator (einterval (−b) (−a)) x ::
real)

for a b :: ereal and x :: real
by (cases a b rule: ereal2-cases) (auto simp: einterval-def split : split-indicator)

show ?thesis
unfolding interval-lebesgue-integrable-def
using lborel-integrable-real-affine-iff [symmetric, of −1 λx . indicator (einterval

- -) x ∗R f x 0]
by (simp add : ∗)

qed

lemma interval-lebesgue-integral-add [intro, simp]:
fixes M a b f
assumes interval-lebesgue-integrable M a b f interval-lebesgue-integrable M a b g
shows interval-lebesgue-integrable M a b (λx . f x + g x) and

interval-lebesgue-integral M a b (λx . f x + g x) =
interval-lebesgue-integral M a b f + interval-lebesgue-integral M a b g

using assms by (auto simp add : interval-lebesgue-integral-def interval-lebesgue-integrable-def

field-simps)

lemma interval-lebesgue-integral-diff [intro, simp]:
fixes M a b f
assumes interval-lebesgue-integrable M a b f

interval-lebesgue-integrable M a b g
shows interval-lebesgue-integrable M a b (λx . f x − g x) and

interval-lebesgue-integral M a b (λx . f x − g x) =
interval-lebesgue-integral M a b f − interval-lebesgue-integral M a b g

using assms by (auto simp add : interval-lebesgue-integral-def interval-lebesgue-integrable-def

field-simps)

lemma interval-lebesgue-integrable-mult-right [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , second-countable-topology}
shows (c 6= 0 =⇒ interval-lebesgue-integrable M a b f) =⇒

interval-lebesgue-integrable M a b (λx . c ∗ f x)
by (simp add : interval-lebesgue-integrable-def)

lemma interval-lebesgue-integrable-mult-left [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , second-countable-topology}
shows (c 6= 0 =⇒ interval-lebesgue-integrable M a b f) =⇒

interval-lebesgue-integrable M a b (λx . f x ∗ c)
by (simp add : interval-lebesgue-integrable-def)

THEORY “Interval-Integral” 510

lemma interval-lebesgue-integrable-divide [intro, simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , field , second-countable-topology}
shows (c 6= 0 =⇒ interval-lebesgue-integrable M a b f) =⇒

interval-lebesgue-integrable M a b (λx . f x / c)
by (simp add : interval-lebesgue-integrable-def)

lemma interval-lebesgue-integral-mult-right [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , second-countable-topology}
shows interval-lebesgue-integral M a b (λx . c ∗ f x) =

c ∗ interval-lebesgue-integral M a b f
by (simp add : interval-lebesgue-integral-def)

lemma interval-lebesgue-integral-mult-left [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , second-countable-topology}
shows interval-lebesgue-integral M a b (λx . f x ∗ c) =

interval-lebesgue-integral M a b f ∗ c
by (simp add : interval-lebesgue-integral-def)

lemma interval-lebesgue-integral-divide [simp]:
fixes M a b c and f :: real ⇒ ′a::{banach, real-normed-field , field , second-countable-topology}
shows interval-lebesgue-integral M a b (λx . f x / c) =

interval-lebesgue-integral M a b f / c
by (simp add : interval-lebesgue-integral-def)

lemma interval-lebesgue-integral-uminus:
interval-lebesgue-integral M a b (λx . − f x) = − interval-lebesgue-integral M a b

f
by (auto simp add : interval-lebesgue-integral-def interval-lebesgue-integrable-def)

lemma interval-lebesgue-integral-of-real :
interval-lebesgue-integral M a b (λx . complex-of-real (f x)) =

of-real (interval-lebesgue-integral M a b f)
unfolding interval-lebesgue-integral-def
by (auto simp add : interval-lebesgue-integral-def set-integral-complex-of-real)

lemma interval-lebesgue-integral-le-eq :
fixes a b f
assumes a ≤ b
shows interval-lebesgue-integral M a b f = (LINT x : einterval a b | M . f x)

using assms by (auto simp add : interval-lebesgue-integral-def)

lemma interval-lebesgue-integral-gt-eq :
fixes a b f
assumes a > b
shows interval-lebesgue-integral M a b f = −(LINT x : einterval b a | M . f x)

using assms by (auto simp add : interval-lebesgue-integral-def less-imp-le einterval-def)

lemma interval-lebesgue-integral-gt-eq ′:

THEORY “Interval-Integral” 511

fixes a b f
assumes a > b
shows interval-lebesgue-integral M a b f = − interval-lebesgue-integral M b a f

using assms by (auto simp add : interval-lebesgue-integral-def less-imp-le einterval-def)

lemma interval-integral-endpoints-same [simp]: (LBINT x=a..a. f x) = 0
by (simp add : interval-lebesgue-integral-def einterval-same)

lemma interval-integral-endpoints-reverse: (LBINT x=a..b. f x) = −(LBINT x=b..a.
f x)
by (cases a b rule: linorder-cases) (auto simp: interval-lebesgue-integral-def einterval-same)

lemma interval-integrable-endpoints-reverse:
interval-lebesgue-integrable lborel a b f ←→

interval-lebesgue-integrable lborel b a f
by (cases a b rule: linorder-cases) (auto simp: interval-lebesgue-integrable-def

einterval-same)

lemma interval-integral-reflect :
(LBINT x=a..b. f x) = (LBINT x=−b..−a. f (−x))

proof (induct a b rule: linorder-wlog)
case (sym a b) then show ?case
by (auto simp add : interval-lebesgue-integral-def interval-integrable-endpoints-reverse

split : if-split-asm)
next

case (le a b) then show ?case
unfolding interval-lebesgue-integral-def
by (subst set-integral-reflect)

(auto simp: interval-lebesgue-integrable-def einterval-iff
ereal-uminus-le-reorder ereal-uminus-less-reorder not-less
uminus-ereal .simps[symmetric]

simp del : uminus-ereal .simps
intro!: integral-cong
split : split-indicator)

qed

lemma interval-lebesgue-integral-0-infty :
interval-lebesgue-integrable M 0 ∞ f ←→ set-integrable M {0<..} f
interval-lebesgue-integral M 0 ∞ f = (LINT x :{0<..}|M . f x)
unfolding zero-ereal-def
by (auto simp: interval-lebesgue-integral-le-eq interval-lebesgue-integrable-def)

lemma interval-integral-to-infinity-eq : (LINT x=ereal a..∞ | M . f x) = (LINT x
: {a<..} | M . f x)

unfolding interval-lebesgue-integral-def by auto

lemma interval-integrable-to-infinity-eq : (interval-lebesgue-integrable M a ∞ f) =

(set-integrable M {a<..} f)

THEORY “Interval-Integral” 512

unfolding interval-lebesgue-integrable-def by auto

lemma interval-integral-zero [simp]:
fixes a b :: ereal
showsLBINT x=a..b. 0 = 0

using assms unfolding interval-lebesgue-integral-def einterval-eq
by simp

lemma interval-integral-const [intro, simp]:
fixes a b c :: real
shows interval-lebesgue-integrable lborel a b (λx . c) and LBINT x=a..b. c = c
∗ (b − a)
using assms unfolding interval-lebesgue-integral-def interval-lebesgue-integrable-def
einterval-eq
by (auto simp add : less-imp-le field-simps measure-def)

lemma interval-integral-cong-AE :
assumes [measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
assumes AE x ∈ einterval (min a b) (max a b) in lborel . f x = g x
shows interval-lebesgue-integral lborel a b f = interval-lebesgue-integral lborel a b

g
using assms

proof (induct a b rule: linorder-wlog)
case (sym a b) then show ?case
by (simp add : min.commute max .commute interval-integral-endpoints-reverse[of

a b])
next

case (le a b) then show ?case
by (auto simp: interval-lebesgue-integral-def max-def min-def

intro!: set-lebesgue-integral-cong-AE)
qed

lemma interval-integral-cong :
assumes

∧
x . x ∈ einterval (min a b) (max a b) =⇒ f x = g x

shows interval-lebesgue-integral lborel a b f = interval-lebesgue-integral lborel a b
g

using assms
proof (induct a b rule: linorder-wlog)

case (sym a b) then show ?case
by (simp add : min.commute max .commute interval-integral-endpoints-reverse[of

a b])
next

case (le a b) then show ?case
by (auto simp: interval-lebesgue-integral-def max-def min-def

intro!: set-lebesgue-integral-cong)
qed

THEORY “Interval-Integral” 513

lemma interval-lebesgue-integrable-cong-AE :
f ∈ borel-measurable lborel =⇒ g ∈ borel-measurable lborel =⇒
AE x ∈ einterval (min a b) (max a b) in lborel . f x = g x =⇒
interval-lebesgue-integrable lborel a b f = interval-lebesgue-integrable lborel a b g

apply (simp add : interval-lebesgue-integrable-def)
apply (intro conjI impI set-integrable-cong-AE)
apply (auto simp: min-def max-def)
done

lemma interval-integrable-abs-iff :
fixes f :: real ⇒ real
shows f ∈ borel-measurable lborel =⇒

interval-lebesgue-integrable lborel a b (λx . |f x |) = interval-lebesgue-integrable
lborel a b f

unfolding interval-lebesgue-integrable-def
by (subst (1 2) set-integrable-abs-iff ′) simp-all

lemma interval-integral-Icc:
fixes a b :: real
shows a ≤ b =⇒ (LBINT x=a..b. f x) = (LBINT x : {a..b}. f x)
by (auto intro!: set-integral-discrete-difference[where X ={a, b}]

simp add : interval-lebesgue-integral-def)

lemma interval-integral-Icc ′:
a ≤ b =⇒ (LBINT x=a..b. f x) = (LBINT x : {x . a ≤ ereal x ∧ ereal x ≤ b}. f

x)
by (auto intro!: set-integral-discrete-difference[where X ={real-of-ereal a, real-of-ereal

b}]
simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-Ioc:
a ≤ b =⇒ (LBINT x=a..b. f x) = (LBINT x : {a<..b}. f x)
by (auto intro!: set-integral-discrete-difference[where X ={a, b}]

simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-Ioc ′:
a ≤ b =⇒ (LBINT x=a..b. f x) = (LBINT x : {x . a < ereal x ∧ ereal x ≤ b}. f

x)
by (auto intro!: set-integral-discrete-difference[where X ={real-of-ereal a, real-of-ereal

b}]
simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-Ico:
a ≤ b =⇒ (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)
by (auto intro!: set-integral-discrete-difference[where X ={a, b}]

simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-Ioi :

THEORY “Interval-Integral” 514

|a| < ∞ =⇒ (LBINT x=a..∞. f x) = (LBINT x : {real-of-ereal a <..}. f x)
by (auto simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-Ioo:
a ≤ b =⇒ |a| < ∞ ==> |b| < ∞ =⇒ (LBINT x=a..b. f x) = (LBINT x :
{real-of-ereal a <..< real-of-ereal b}. f x)

by (auto simp add : interval-lebesgue-integral-def einterval-iff)

lemma interval-integral-discrete-difference:
fixes f :: real ⇒ ′b::{banach, second-countable-topology} and a b :: ereal
assumes countable X
and eq :

∧
x . a ≤ b =⇒ a < x =⇒ x < b =⇒ x /∈ X =⇒ f x = g x

and anti-eq :
∧

x . b ≤ a =⇒ b < x =⇒ x < a =⇒ x /∈ X =⇒ f x = g x
assumes

∧
x . x ∈ X =⇒ emeasure M {x} = 0

∧
x . x ∈ X =⇒ {x} ∈ sets M

shows interval-lebesgue-integral M a b f = interval-lebesgue-integral M a b g
unfolding interval-lebesgue-integral-def
apply (intro if-cong refl arg-cong [where f =λx . − x] integral-discrete-difference[of

X] assms)
apply (auto simp: eq anti-eq einterval-iff split : split-indicator)
done

lemma interval-integral-sum:
fixes a b c :: ereal
assumes integrable: interval-lebesgue-integrable lborel (min a (min b c)) (max a

(max b c)) f
shows (LBINT x=a..b. f x) + (LBINT x=b..c. f x) = (LBINT x=a..c. f x)

proof −
let ?I = λa b. LBINT x=a..b. f x
{ fix a b c :: ereal assume interval-lebesgue-integrable lborel a c f a ≤ b b ≤ c
then have ord : a ≤ b b ≤ c a ≤ c and f ′: set-integrable lborel (einterval a c) f

by (auto simp: interval-lebesgue-integrable-def)
then have f : set-borel-measurable borel (einterval a c) f

by (drule-tac borel-measurable-integrable) simp
have (LBINT x :einterval a c. f x) = (LBINT x :einterval a b ∪ einterval b c. f

x)
proof (rule set-integral-cong-set)
show AE x in lborel . (x ∈ einterval a b ∪ einterval b c) = (x ∈ einterval a c)

using AE-lborel-singleton[of real-of-ereal b] ord
by (cases a b c rule: ereal3-cases) (auto simp: einterval-iff)

qed (insert ord , auto intro!: set-borel-measurable-subset [OF f] simp: einterval-iff)
also have . . . = (LBINT x :einterval a b. f x) + (LBINT x :einterval b c. f x)

using ord
by (intro set-integral-Un-AE) (auto intro!: set-integrable-subset [OF f ′] simp:

einterval-iff not-less)
finally have ?I a b + ?I b c = ?I a c

using ord by (simp add : interval-lebesgue-integral-def)
} note 1 = this
{ fix a b c :: ereal assume interval-lebesgue-integrable lborel a c f a ≤ b b ≤ c

from 1 [OF this] have ?I b c + ?I a b = ?I a c

THEORY “Interval-Integral” 515

by (metis add .commute)
} note 2 = this
have 3 :

∧
a b. b ≤ a =⇒ (LBINT x=a..b. f x) = − (LBINT x=b..a. f x)

by (rule interval-integral-endpoints-reverse)
show ?thesis

using integrable
by (cases a b b c a c rule: linorder-le-cases[case-product linorder-le-cases

linorder-cases])
(simp-all add : min-absorb1 min-absorb2 max-absorb1 max-absorb2 field-simps

1 2 3)
qed

lemma interval-integrable-isCont :
fixes a b and f :: real ⇒ ′a::{banach, second-countable-topology}
shows (

∧
x . min a b ≤ x =⇒ x ≤ max a b =⇒ isCont f x) =⇒

interval-lebesgue-integrable lborel a b f
proof (induct a b rule: linorder-wlog)

case (le a b) then show ?case
by (auto simp: interval-lebesgue-integrable-def

intro!: set-integrable-subset [OF borel-integrable-compact [of {a .. b}]]
continuous-at-imp-continuous-on)

qed (auto intro: interval-integrable-endpoints-reverse[THEN iffD1])

lemma interval-integrable-continuous-on:
fixes a b :: real and f
assumes a ≤ b and continuous-on {a..b} f
shows interval-lebesgue-integrable lborel a b f

using assms unfolding interval-lebesgue-integrable-def apply simp
by (rule set-integrable-subset , rule borel-integrable-atLeastAtMost ′ [of a b], auto)

lemma interval-integral-eq-integral :
fixes f :: real ⇒ ′a::euclidean-space
shows a ≤ b =⇒ set-integrable lborel {a..b} f =⇒ LBINT x=a..b. f x = integral
{a..b} f

by (subst interval-integral-Icc, simp) (rule set-borel-integral-eq-integral)

lemma interval-integral-eq-integral ′:
fixes f :: real ⇒ ′a::euclidean-space
shows a ≤ b =⇒ set-integrable lborel (einterval a b) f =⇒ LBINT x=a..b. f x

= integral (einterval a b) f
by (subst interval-lebesgue-integral-le-eq , simp) (rule set-borel-integral-eq-integral)

lemma interval-integral-Icc-approx-nonneg :
fixes a b :: ereal
assumes a < b
fixes u l :: nat ⇒ real
assumes approx : einterval a b = (

⋃
i . {l i .. u i})

THEORY “Interval-Integral” 516

incseq u decseq l
∧

i . l i < u i
∧

i . a < l i
∧

i . u i < b
l −−−−→ a u −−−−→ b

fixes f :: real ⇒ real
assumes f-integrable:

∧
i . set-integrable lborel {l i ..u i} f

assumes f-nonneg : AE x in lborel . a < ereal x −→ ereal x < b −→ 0 ≤ f x
assumes f-measurable: set-borel-measurable lborel (einterval a b) f
assumes lbint-lim: (λi . LBINT x=l i .. u i . f x) −−−−→ C
shows

set-integrable lborel (einterval a b) f
(LBINT x=a..b. f x) = C

proof −
have 1 :

∧
i . set-integrable lborel {l i ..u i} f by (rule f-integrable)

have 2 : AE x in lborel . mono (λn. indicator {l n..u n} x ∗R f x)
proof −

from f-nonneg have AE x in lborel . ∀ i . l i ≤ x −→ x ≤ u i −→ 0 ≤ f x
by eventually-elim
(metis approx (5) approx (6) dual-order .strict-trans1 ereal-less-eq(3) le-less-trans)

then show ?thesis
apply eventually-elim
apply (auto simp: mono-def split : split-indicator)
apply (metis approx (3) decseqD order-trans)
apply (metis approx (2) incseqD order-trans)
done

qed
have 3 : AE x in lborel . (λi . indicator {l i ..u i} x ∗R f x) −−−−→ indicator

(einterval a b) x ∗R f x
proof −
{ fix x i assume l i ≤ x x ≤ u i

then have eventually (λi . l i ≤ x ∧ x ≤ u i) sequentially
apply (auto simp: eventually-sequentially intro!: exI [of - i])
apply (metis approx (3) decseqD order-trans)
apply (metis approx (2) incseqD order-trans)
done

then have eventually (λi . f x ∗ indicator {l i ..u i} x = f x) sequentially
by eventually-elim auto }

then show ?thesis
unfolding approx (1) by (auto intro!: AE-I2 Lim-eventually split : split-indicator)

qed
have 4 : (λi .

∫
x . indicator {l i ..u i} x ∗R f x ∂lborel) −−−−→ C

using lbint-lim by (simp add : interval-integral-Icc approx less-imp-le)
have 5 : set-borel-measurable lborel (einterval a b) f by (rule assms)
have (LBINT x=a..b. f x) = lebesgue-integral lborel (λx . indicator (einterval a

b) x ∗R f x)
using assms by (simp add : interval-lebesgue-integral-def less-imp-le)

also have ... = C by (rule integral-monotone-convergence [OF 1 2 3 4 5])
finally show (LBINT x=a..b. f x) = C .

show set-integrable lborel (einterval a b) f
by (rule integrable-monotone-convergence[OF 1 2 3 4 5])

THEORY “Interval-Integral” 517

qed

lemma interval-integral-Icc-approx-integrable:
fixes u l :: nat ⇒ real and a b :: ereal
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes a < b
assumes approx : einterval a b = (

⋃
i . {l i .. u i})

incseq u decseq l
∧

i . l i < u i
∧

i . a < l i
∧

i . u i < b
l −−−−→ a u −−−−→ b

assumes f-integrable: set-integrable lborel (einterval a b) f
shows (λi . LBINT x=l i .. u i . f x) −−−−→ (LBINT x=a..b. f x)

proof −
have (λi . LBINT x :{l i .. u i}. f x) −−−−→ (LBINT x :einterval a b. f x)
proof (rule integral-dominated-convergence)

show integrable lborel (λx . norm (indicator (einterval a b) x ∗R f x))
by (rule integrable-norm) fact

show set-borel-measurable lborel (einterval a b) f
using f-integrable by (rule borel-measurable-integrable)

then show
∧

i . set-borel-measurable lborel {l i ..u i} f
by (rule set-borel-measurable-subset) (auto simp: approx)

show
∧

i . AE x in lborel . norm (indicator {l i ..u i} x ∗R f x) ≤ norm (indicator
(einterval a b) x ∗R f x)

by (intro AE-I2) (auto simp: approx split : split-indicator)
show AE x in lborel . (λi . indicator {l i ..u i} x ∗R f x) −−−−→ indicator

(einterval a b) x ∗R f x
proof (intro AE-I2 tendsto-intros Lim-eventually)

fix x
{ fix i assume l i ≤ x x ≤ u i

with 〈incseq u〉[THEN incseqD , of i] 〈decseq l 〉[THEN decseqD , of i]
have eventually (λi . l i ≤ x ∧ x ≤ u i) sequentially
by (auto simp: eventually-sequentially decseq-def incseq-def intro: order-trans)

}
then show eventually (λxa. indicator {l xa..u xa} x = (indicator (einterval

a b) x ::real)) sequentially
using approx order-tendstoD(2)[OF 〈l −−−−→ a〉, of x] order-tendstoD(1)[OF

〈u −−−−→ b〉, of x]
by (auto split : split-indicator)

qed
qed
with 〈a < b〉 〈

∧
i . l i < u i 〉 show ?thesis

by (simp add : interval-lebesgue-integral-le-eq [symmetric] interval-integral-Icc
less-imp-le)
qed

THEORY “Interval-Integral” 518

lemma interval-integral-FTC-finite:
fixes f F :: real ⇒ ′a::euclidean-space and a b :: real
assumes f : continuous-on {min a b..max a b} f
assumes F :

∧
x . min a b ≤ x =⇒ x ≤ max a b =⇒ (F has-vector-derivative (f

x)) (at x within
{min a b..max a b})

shows (LBINT x=a..b. f x) = F b − F a
apply (case-tac a ≤ b)
apply (subst interval-integral-Icc, simp)
apply (rule integral-FTC-atLeastAtMost , assumption)
apply (metis F max-def min-def)
using f apply (simp add : min-absorb1 max-absorb2)
apply (subst interval-integral-endpoints-reverse)
apply (subst interval-integral-Icc, simp)
apply (subst integral-FTC-atLeastAtMost , auto)
apply (metis F max-def min-def)

using f by (simp add : min-absorb2 max-absorb1)

lemma interval-integral-FTC-nonneg :
fixes f F :: real ⇒ real and a b :: ereal
assumes a < b
assumes F :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV F x :> f x

assumes f :
∧

x . a < ereal x =⇒ ereal x < b =⇒ isCont f x
assumes f-nonneg : AE x in lborel . a < ereal x −→ ereal x < b −→ 0 ≤ f x
assumes A: ((F ◦ real-of-ereal) −−−→ A) (at-right a)
assumes B : ((F ◦ real-of-ereal) −−−→ B) (at-left b)
shows

set-integrable lborel (einterval a b) f
(LBINT x=a..b. f x) = B − A

proof −
from einterval-Icc-approximation[OF 〈a < b〉] guess u l . note approx = this
have [simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order-less-le-trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order-le-less-trans, subst ereal-less-eq(3), assumption, rule approx)
have FTCi :

∧
i . (LBINT x=l i ..u i . f x) = F (u i) − F (l i)

using assms approx apply (intro interval-integral-FTC-finite)
apply (auto simp add : less-imp-le min-def max-def

has-field-derivative-iff-has-vector-derivative[symmetric])
apply (rule continuous-at-imp-continuous-on, auto intro!: f)
by (rule DERIV-subset [OF F], auto)

have 1 :
∧

i . set-integrable lborel {l i ..u i} f
proof −

fix i show set-integrable lborel {l i .. u i} f
using 〈a < l i 〉 〈u i < b〉

by (intro borel-integrable-compact f continuous-at-imp-continuous-on compact-Icc
ballI)

(auto simp del : ereal-less-eq simp add : ereal-less-eq(3)[symmetric])

THEORY “Interval-Integral” 519

qed
have 2 : set-borel-measurable lborel (einterval a b) f

by (auto simp del : real-scaleR-def intro!: set-borel-measurable-continuous
simp: continuous-on-eq-continuous-at einterval-iff f)

have 3 : (λi . LBINT x=l i ..u i . f x) −−−−→ B − A
apply (subst FTCi)
apply (intro tendsto-intros)
using B approx unfolding tendsto-at-iff-sequentially comp-def
using tendsto-at-iff-sequentially [where ′a=real]
apply (elim allE [of - λi . ereal (u i)], auto)
using A approx unfolding tendsto-at-iff-sequentially comp-def
by (elim allE [of - λi . ereal (l i)], auto)

show (LBINT x=a..b. f x) = B − A
by (rule interval-integral-Icc-approx-nonneg [OF 〈a < b〉 approx 1 f-nonneg 2

3])
show set-integrable lborel (einterval a b) f

by (rule interval-integral-Icc-approx-nonneg [OF 〈a < b〉 approx 1 f-nonneg 2
3])
qed

lemma interval-integral-FTC-integrable:
fixes f F :: real ⇒ ′a::euclidean-space and a b :: ereal
assumes a < b
assumes F :

∧
x . a < ereal x =⇒ ereal x < b =⇒ (F has-vector-derivative f x)

(at x)
assumes f :

∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont f x

assumes f-integrable: set-integrable lborel (einterval a b) f
assumes A: ((F ◦ real-of-ereal) −−−→ A) (at-right a)
assumes B : ((F ◦ real-of-ereal) −−−→ B) (at-left b)
shows (LBINT x=a..b. f x) = B − A

proof −
from einterval-Icc-approximation[OF 〈a < b〉] guess u l . note approx = this
have [simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order-less-le-trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order-le-less-trans, subst ereal-less-eq(3), assumption, rule approx)
have FTCi :

∧
i . (LBINT x=l i ..u i . f x) = F (u i) − F (l i)

using assms approx
by (auto simp add : less-imp-le min-def max-def

intro!: f continuous-at-imp-continuous-on interval-integral-FTC-finite
intro: has-vector-derivative-at-within)

have (λi . LBINT x=l i ..u i . f x) −−−−→ B − A
apply (subst FTCi)
apply (intro tendsto-intros)
using B approx unfolding tendsto-at-iff-sequentially comp-def
apply (elim allE [of - λi . ereal (u i)], auto)
using A approx unfolding tendsto-at-iff-sequentially comp-def
by (elim allE [of - λi . ereal (l i)], auto)

moreover have (λi . LBINT x=l i ..u i . f x) −−−−→ (LBINT x=a..b. f x)

THEORY “Interval-Integral” 520

by (rule interval-integral-Icc-approx-integrable [OF 〈a < b〉 approx f-integrable])
ultimately show ?thesis

by (elim LIMSEQ-unique)
qed

lemma interval-integral-FTC2 :
fixes a b c :: real and f :: real ⇒ ′a::euclidean-space
assumes a ≤ c c ≤ b
and contf : continuous-on {a..b} f
fixes x :: real
assumes a ≤ x and x ≤ b
shows ((λu. LBINT y=c..u. f y) has-vector-derivative (f x)) (at x within {a..b})

proof −
let ?F = (λu. LBINT y=a..u. f y)
have intf : set-integrable lborel {a..b} f

by (rule borel-integrable-atLeastAtMost ′, rule contf)
have ((λu. integral {a..u} f) has-vector-derivative f x) (at x within {a..b})

apply (intro integral-has-vector-derivative)
using 〈a ≤ x 〉 〈x ≤ b〉 by (intro continuous-on-subset [OF contf], auto)

then have ((λu. integral {a..u} f) has-vector-derivative (f x)) (at x within {a..b})
by simp

then have (?F has-vector-derivative (f x)) (at x within {a..b})
by (rule has-vector-derivative-weaken)
(auto intro!: assms interval-integral-eq-integral [symmetric] set-integrable-subset

[OF intf])
then have ((λx . (LBINT y=c..a. f y) + ?F x) has-vector-derivative (f x)) (at x

within {a..b})
by (auto intro!: derivative-eq-intros)

then show ?thesis
proof (rule has-vector-derivative-weaken)

fix u assume u ∈ {a .. b}
then show (LBINT y=c..a. f y) + (LBINT y=a..u. f y) = (LBINT y=c..u. f

y)
using assms
apply (intro interval-integral-sum)

apply (auto simp add : interval-lebesgue-integrable-def simp del : real-scaleR-def)
by (rule set-integrable-subset [OF intf], auto simp add : min-def max-def)

qed (insert assms, auto)
qed

lemma einterval-antiderivative:
fixes a b :: ereal and f :: real ⇒ ′a::euclidean-space
assumes a < b and contf :

∧
x :: real . a < x =⇒ x < b =⇒ isCont f x

shows ∃F . ∀ x :: real . a < x −→ x < b −→ (F has-vector-derivative f x) (at x)
proof −

from einterval-nonempty [OF 〈a < b〉] obtain c :: real where [simp]: a < c c
< b

THEORY “Interval-Integral” 521

by (auto simp add : einterval-def)
let ?F = (λu. LBINT y=c..u. f y)
show ?thesis
proof (rule exI , clarsimp)

fix x :: real
assume [simp]: a < x x < b
have 1 : a < min c x by simp
from einterval-nonempty [OF 1] obtain d :: real where [simp]: a < d d < c

d < x
by (auto simp add : einterval-def)

have 2 : max c x < b by simp
from einterval-nonempty [OF 2] obtain e :: real where [simp]: c < e x < e

e < b
by (auto simp add : einterval-def)

show (?F has-vector-derivative f x) (at x)

unfolding has-vector-derivative-def
apply (subst has-derivative-within-open [of - {d<..<e}, symmetric], auto)
apply (subst has-vector-derivative-def [symmetric])
apply (rule has-vector-derivative-within-subset [of - - - {d ..e}])
apply (rule interval-integral-FTC2 , auto simp add : less-imp-le)
apply (rule continuous-at-imp-continuous-on)
apply (auto intro!: contf)
apply (rule order-less-le-trans, rule 〈a < d 〉, auto)
apply (rule order-le-less-trans) prefer 2
by (rule 〈e < b〉, auto)

qed
qed

lemma interval-integral-substitution-finite:
fixes a b :: real and f :: real ⇒ ′a::euclidean-space
assumes a ≤ b
and derivg :

∧
x . a ≤ x =⇒ x ≤ b =⇒ (g has-real-derivative (g ′ x)) (at x within

{a..b})
and contf : continuous-on (g ‘ {a..b}) f
and contg ′: continuous-on {a..b} g ′

shows LBINT x=a..b. g ′ x ∗R f (g x) = LBINT y=g a..g b. f y
proof−

have v-derivg :
∧

x . a ≤ x =⇒ x ≤ b =⇒ (g has-vector-derivative (g ′ x)) (at x
within {a..b})

using derivg unfolding has-field-derivative-iff-has-vector-derivative .
then have contg [simp]: continuous-on {a..b} g

by (rule continuous-on-vector-derivative) auto
have 1 :

∧
u. min (g a) (g b) ≤ u =⇒ u ≤ max (g a) (g b) =⇒

∃ x∈{a..b}. u = g x
apply (case-tac g a ≤ g b)
apply (auto simp add : min-def max-def less-imp-le)

THEORY “Interval-Integral” 522

apply (frule (1) IVT ′ [of g], auto simp add : assms)
by (frule (1) IVT2 ′ [of g], auto simp add : assms)

from contg 〈a ≤ b〉 have ∃ c d . g ‘ {a..b} = {c..d} ∧ c ≤ d
by (elim continuous-image-closed-interval)

then obtain c d where g-im: g ‘ {a..b} = {c..d} and c ≤ d by auto
have ∃F . ∀ x∈{a..b}. (F has-vector-derivative (f (g x))) (at (g x) within (g ‘
{a..b}))

apply (rule exI , auto, subst g-im)
apply (rule interval-integral-FTC2 [of c c d])
using 〈c ≤ d 〉 apply auto
apply (rule continuous-on-subset [OF contf])
using g-im by auto

then guess F ..
then have derivF :

∧
x . a ≤ x =⇒ x ≤ b =⇒

(F has-vector-derivative (f (g x))) (at (g x) within (g ‘ {a..b})) by auto
have contf2 : continuous-on {min (g a) (g b)..max (g a) (g b)} f

apply (rule continuous-on-subset [OF contf])
apply (auto simp add : image-def)
by (erule 1)

have contfg : continuous-on {a..b} (λx . f (g x))
by (blast intro: continuous-on-compose2 contf contg)

have LBINT x=a..b. g ′ x ∗R f (g x) = F (g b) − F (g a)
apply (subst interval-integral-Icc, simp add : assms)
apply (rule integral-FTC-atLeastAtMost [of a b λx . F (g x), OF 〈a ≤ b〉])
apply (rule vector-diff-chain-within[OF v-derivg derivF , unfolded comp-def])
apply (auto intro!: continuous-on-scaleR contg ′ contfg)
done

moreover have LBINT y=(g a)..(g b). f y = F (g b) − F (g a)
apply (rule interval-integral-FTC-finite)
apply (rule contf2)
apply (frule (1) 1 , auto)
apply (rule has-vector-derivative-within-subset [OF derivF])
apply (auto simp add : image-def)
by (rule 1 , auto)

ultimately show ?thesis by simp
qed

lemma interval-integral-substitution-integrable:
fixes f :: real ⇒ ′a::euclidean-space and a b u v :: ereal
assumes a < b
and deriv-g :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧

x . a < ereal x =⇒ ereal x < b =⇒ isCont f (g x)
and contg ′:

∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

and g ′-nonneg :
∧

x . a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x
and A: ((ereal ◦ g ◦ real-of-ereal) −−−→ A) (at-right a)
and B : ((ereal ◦ g ◦ real-of-ereal) −−−→ B) (at-left b)
and integrable: set-integrable lborel (einterval a b) (λx . g ′ x ∗R f (g x))

THEORY “Interval-Integral” 523

and integrable2 : set-integrable lborel (einterval A B) (λx . f x)
shows (LBINT x=A..B . f x) = (LBINT x=a..b. g ′ x ∗R f (g x))

proof −
from einterval-Icc-approximation[OF 〈a < b〉] guess u l . note approx [simp]

= this
note less-imp-le [simp]
have [simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order-less-le-trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order-le-less-trans, subst ereal-less-eq(3), assumption, rule approx)
have [simp]:

∧
i . l i < b

apply (rule order-less-trans) prefer 2
by (rule approx , auto, rule approx)

have [simp]:
∧

i . a < u i
by (rule order-less-trans, rule approx , auto, rule approx)

have [simp]:
∧

i j . i ≤ j =⇒ l j ≤ l i by (rule decseqD , rule approx)
have [simp]:

∧
i j . i ≤ j =⇒ u i ≤ u j by (rule incseqD , rule approx)

have g-nondec [simp]:
∧

x y . a < x =⇒ x ≤ y =⇒ y < b =⇒ g x ≤ g y
apply (erule DERIV-nonneg-imp-nondecreasing , auto)
apply (rule exI , rule conjI , rule deriv-g)
apply (erule order-less-le-trans, auto)
apply (rule order-le-less-trans, subst ereal-less-eq(3), assumption, auto)
apply (rule g ′-nonneg)
apply (rule less-imp-le, erule order-less-le-trans, auto)
by (rule less-imp-le, rule le-less-trans, subst ereal-less-eq(3), assumption, auto)

have A ≤ B and un: einterval A B = (
⋃

i . {g(l i)<..<g(u i)})
proof −

have A2 : (λi . g (l i)) −−−−→ A
using A apply (auto simp add : einterval-def tendsto-at-iff-sequentially comp-def)
by (drule-tac x = λi . ereal (l i) in spec, auto)

hence A3 :
∧

i . g (l i) ≥ A
by (intro decseq-le, auto simp add : decseq-def)

have B2 : (λi . g (u i)) −−−−→ B
using B apply (auto simp add : einterval-def tendsto-at-iff-sequentially

comp-def)
by (drule-tac x = λi . ereal (u i) in spec, auto)

hence B3 :
∧

i . g (u i) ≤ B
by (intro incseq-le, auto simp add : incseq-def)

show A ≤ B
apply (rule order-trans [OF A3 [of 0]])
apply (rule order-trans [OF - B3 [of 0]])
by auto
{ fix x :: real

assume A < x and x < B
then have eventually (λi . ereal (g (l i)) < x ∧ x < ereal (g (u i))) sequentially

apply (intro eventually-conj order-tendstoD)
by (rule A2 , assumption, rule B2 , assumption)

hence ∃ i . g (l i) < x ∧ x < g (u i)
by (simp add : eventually-sequentially , auto)

THEORY “Interval-Integral” 524

} note AB = this
show einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

apply (auto simp add : einterval-def)
apply (erule (1) AB)
apply (rule order-le-less-trans, rule A3 , simp)
apply (rule order-less-le-trans) prefer 2
by (rule B3 , simp)

qed

{
fix i
have (LBINT x=l i .. u i . g ′ x ∗R f (g x)) = (LBINT y=g (l i)..g (u i). f y)

apply (rule interval-integral-substitution-finite, auto)
apply (rule DERIV-subset)
unfolding has-field-derivative-iff-has-vector-derivative[symmetric]
apply (rule deriv-g)
apply (auto intro!: continuous-at-imp-continuous-on contf contg ′)
done

} note eq1 = this
have (λi . LBINT x=l i ..u i . g ′ x ∗R f (g x)) −−−−→ (LBINT x=a..b. g ′ x ∗R f

(g x))
apply (rule interval-integral-Icc-approx-integrable [OF 〈a < b〉 approx])
by (rule assms)

hence 2 : (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ (LBINT x=a..b. g ′ x ∗R
f (g x))

by (simp add : eq1)
have incseq : incseq (λi . {g (l i)<..<g (u i)})

apply (auto simp add : incseq-def)
apply (rule order-le-less-trans)
prefer 2 apply (assumption, auto)
by (erule order-less-le-trans, rule g-nondec, auto)

have (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ (LBINT x = A..B . f x)
apply (subst interval-lebesgue-integral-le-eq , auto simp del : real-scaleR-def)
apply (subst interval-lebesgue-integral-le-eq , rule 〈A ≤ B 〉)
apply (subst un, rule set-integral-cont-up, auto simp del : real-scaleR-def)
apply (rule incseq)
apply (subst un [symmetric])
by (rule integrable2)

thus ?thesis by (intro LIMSEQ-unique [OF - 2])
qed

lemma interval-integral-substitution-nonneg :
fixes f g g ′:: real ⇒ real and a b u v :: ereal
assumes a < b
and deriv-g :

∧
x . a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧

x . a < ereal x =⇒ ereal x < b =⇒ isCont f (g x)
and contg ′:

∧
x . a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

THEORY “Interval-Integral” 525

and f-nonneg :
∧

x . a < ereal x =⇒ ereal x < b =⇒ 0 ≤ f (g x)
and g ′-nonneg :

∧
x . a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x

and A: ((ereal ◦ g ◦ real-of-ereal) −−−→ A) (at-right a)
and B : ((ereal ◦ g ◦ real-of-ereal) −−−→ B) (at-left b)
and integrable-fg : set-integrable lborel (einterval a b) (λx . f (g x) ∗ g ′ x)
shows

set-integrable lborel (einterval A B) f
(LBINT x=A..B . f x) = (LBINT x=a..b. (f (g x) ∗ g ′ x))

proof −
from einterval-Icc-approximation[OF 〈a < b〉] guess u l . note approx [simp]

= this
note less-imp-le [simp]
have [simp]:

∧
x i . l i ≤ x =⇒ a < ereal x

by (rule order-less-le-trans, rule approx , force)
have [simp]:

∧
x i . x ≤ u i =⇒ ereal x < b

by (rule order-le-less-trans, subst ereal-less-eq(3), assumption, rule approx)
have [simp]:

∧
i . l i < b

apply (rule order-less-trans) prefer 2
by (rule approx , auto, rule approx)

have [simp]:
∧

i . a < u i
by (rule order-less-trans, rule approx , auto, rule approx)

have [simp]:
∧

i j . i ≤ j =⇒ l j ≤ l i by (rule decseqD , rule approx)
have [simp]:

∧
i j . i ≤ j =⇒ u i ≤ u j by (rule incseqD , rule approx)

have g-nondec [simp]:
∧

x y . a < x =⇒ x ≤ y =⇒ y < b =⇒ g x ≤ g y
apply (erule DERIV-nonneg-imp-nondecreasing , auto)
apply (rule exI , rule conjI , rule deriv-g)
apply (erule order-less-le-trans, auto)
apply (rule order-le-less-trans, subst ereal-less-eq(3), assumption, auto)
apply (rule g ′-nonneg)
apply (rule less-imp-le, erule order-less-le-trans, auto)
by (rule less-imp-le, rule le-less-trans, subst ereal-less-eq(3), assumption, auto)

have A ≤ B and un: einterval A B = (
⋃

i . {g(l i)<..<g(u i)})
proof −

have A2 : (λi . g (l i)) −−−−→ A
using A apply (auto simp add : einterval-def tendsto-at-iff-sequentially comp-def)
by (drule-tac x = λi . ereal (l i) in spec, auto)

hence A3 :
∧

i . g (l i) ≥ A
by (intro decseq-le, auto simp add : decseq-def)

have B2 : (λi . g (u i)) −−−−→ B
using B apply (auto simp add : einterval-def tendsto-at-iff-sequentially

comp-def)
by (drule-tac x = λi . ereal (u i) in spec, auto)

hence B3 :
∧

i . g (u i) ≤ B
by (intro incseq-le, auto simp add : incseq-def)

show A ≤ B
apply (rule order-trans [OF A3 [of 0]])
apply (rule order-trans [OF - B3 [of 0]])
by auto
{ fix x :: real

THEORY “Interval-Integral” 526

assume A < x and x < B
then have eventually (λi . ereal (g (l i)) < x ∧ x < ereal (g (u i))) sequentially

apply (intro eventually-conj order-tendstoD)
by (rule A2 , assumption, rule B2 , assumption)

hence ∃ i . g (l i) < x ∧ x < g (u i)
by (simp add : eventually-sequentially , auto)

} note AB = this
show einterval A B = (

⋃
i . {g(l i)<..<g(u i)})

apply (auto simp add : einterval-def)
apply (erule (1) AB)
apply (rule order-le-less-trans, rule A3 , simp)
apply (rule order-less-le-trans) prefer 2
by (rule B3 , simp)

qed

{
fix i
have (LBINT x=l i .. u i . g ′ x ∗R f (g x)) = (LBINT y=g (l i)..g (u i). f y)

apply (rule interval-integral-substitution-finite, auto)
apply (rule DERIV-subset , rule deriv-g , auto)
apply (rule continuous-at-imp-continuous-on, auto, rule contf , auto)
by (rule continuous-at-imp-continuous-on, auto, rule contg ′, auto)

then have (LBINT x=l i .. u i . (f (g x) ∗ g ′ x)) = (LBINT y=g (l i)..g (u
i). f y)

by (simp add : ac-simps)
} note eq1 = this
have (λi . LBINT x=l i ..u i . f (g x) ∗ g ′ x)
−−−−→ (LBINT x=a..b. f (g x) ∗ g ′ x)

apply (rule interval-integral-Icc-approx-integrable [OF 〈a < b〉 approx])
by (rule assms)

hence 2 : (λi . (LBINT y=g (l i)..g (u i). f y)) −−−−→ (LBINT x=a..b. f (g x)
∗ g ′ x)

by (simp add : eq1)
have incseq : incseq (λi . {g (l i)<..<g (u i)})

apply (auto simp add : incseq-def)
apply (rule order-le-less-trans)
prefer 2 apply assumption
apply (rule g-nondec, auto)
by (erule order-less-le-trans, rule g-nondec, auto)

have img :
∧

x i . g (l i) ≤ x =⇒ x ≤ g (u i) =⇒ ∃ c ≥ l i . c ≤ u i ∧ x = g c
apply (frule (1) IVT ′ [of g], auto)
apply (rule continuous-at-imp-continuous-on, auto)
by (rule DERIV-isCont , rule deriv-g , auto)

have nonneg-f2 :
∧

x i . g (l i) ≤ x =⇒ x ≤ g (u i) =⇒ 0 ≤ f x
by (frule (1) img , auto, rule f-nonneg , auto)

have contf-2 :
∧

x i . g (l i) ≤ x =⇒ x ≤ g (u i) =⇒ isCont f x
by (frule (1) img , auto, rule contf , auto)

have integrable: set-integrable lborel (
⋃

i . {g (l i)<..<g (u i)}) f
apply (rule pos-integrable-to-top, auto simp del : real-scaleR-def)

THEORY “Interval-Integral” 527

apply (rule incseq)
apply (rule nonneg-f2 , erule less-imp-le, erule less-imp-le)
apply (rule set-integrable-subset)
apply (rule borel-integrable-atLeastAtMost ′)
apply (rule continuous-at-imp-continuous-on)
apply (clarsimp, erule (1) contf-2 , auto)
apply (erule less-imp-le)+
using 2 unfolding interval-lebesgue-integral-def
by auto

thus set-integrable lborel (einterval A B) f
by (simp add : un)

have (LBINT x=A..B . f x) = (LBINT x=a..b. g ′ x ∗R f (g x))
proof (rule interval-integral-substitution-integrable)

show set-integrable lborel (einterval a b) (λx . g ′ x ∗R f (g x))
using integrable-fg by (simp add : ac-simps)

qed fact+
then show (LBINT x=A..B . f x) = (LBINT x=a..b. (f (g x) ∗ g ′ x))

by (simp add : ac-simps)
qed

syntax
-complex-lebesgue-borel-integral :: pttrn ⇒ real ⇒ complex
((2CLBINT -. -) [0 ,60] 60)

translations
CLBINT x . f == CONST complex-lebesgue-integral CONST lborel (λx . f)

syntax
-complex-set-lebesgue-borel-integral :: pttrn ⇒ real set ⇒ real ⇒ complex
((3CLBINT -:-. -) [0 ,60 ,61] 60)

translations
CLBINT x :A. f == CONST complex-set-lebesgue-integral CONST lborel A (λx . f)

abbreviation complex-interval-lebesgue-integral ::
real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒ complex) ⇒ complex where

complex-interval-lebesgue-integral M a b f ≡ interval-lebesgue-integral M a b f

abbreviation complex-interval-lebesgue-integrable ::
real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒ complex) ⇒ bool where
complex-interval-lebesgue-integrable M a b f ≡ interval-lebesgue-integrable M a b

f

syntax
-ascii-complex-interval-lebesgue-borel-integral :: pttrn ⇒ ereal ⇒ ereal ⇒ real ⇒

complex
((4CLBINT -=-..-. -) [0 ,60 ,60 ,61] 60)

THEORY “Lebesgue-Integral-Substitution” 528

translations
CLBINT x=a..b. f == CONST complex-interval-lebesgue-integral CONST lborel

a b (λx . f)

lemma interval-integral-norm:
fixes f :: real ⇒ ′a :: {banach, second-countable-topology}
shows interval-lebesgue-integrable lborel a b f =⇒ a ≤ b =⇒

norm (LBINT t=a..b. f t) ≤ LBINT t=a..b. norm (f t)
using integral-norm-bound [of lborel λx . indicator (einterval a b) x ∗R f x]
by (auto simp add : interval-lebesgue-integral-def interval-lebesgue-integrable-def)

lemma interval-integral-norm2 :
interval-lebesgue-integrable lborel a b f =⇒

norm (LBINT t=a..b. f t) ≤ |LBINT t=a..b. norm (f t)|
proof (induct a b rule: linorder-wlog)

case (sym a b) then show ?case
by (simp add : interval-integral-endpoints-reverse[of a b] interval-integrable-endpoints-reverse[of

a b])
next

case (le a b)
then have |LBINT t=a..b. norm (f t)| = LBINT t=a..b. norm (f t)

using integrable-norm[of lborel λx . indicator (einterval a b) x ∗R f x]
by (auto simp add : interval-lebesgue-integral-def interval-lebesgue-integrable-def

intro!: integral-nonneg-AE abs-of-nonneg)
then show ?case

using le by (simp add : interval-integral-norm)
qed

lemma integral-cos: t 6= 0 =⇒ LBINT x=a..b. cos (t ∗ x) = sin (t ∗ b) / t −
sin (t ∗ a) / t

apply (intro interval-integral-FTC-finite continuous-intros)
by (auto intro!: derivative-eq-intros simp: has-field-derivative-iff-has-vector-derivative[symmetric])

end

15 Integration by Substition

theory Lebesgue-Integral-Substitution
imports Interval-Integral
begin

lemma nn-integral-substitution-aux :
fixes f :: real ⇒ ennreal
assumes Mf : f ∈ borel-measurable borel
assumes nonnegf :

∧
x . f x ≥ 0

assumes derivg :
∧

x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)

THEORY “Lebesgue-Integral-Substitution” 529

assumes contg ′: continuous-on {a..b} g ′

assumes derivg-nonneg :
∧

x . x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a < b
shows (

∫
+x . f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . f (g x) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)
proof−

from 〈a < b〉 have [simp]: a ≤ b by simp
from derivg have contg : continuous-on {a..b} g by (rule has-real-derivative-imp-continuous-on)
from this and contg ′ have Mg : set-borel-measurable borel {a..b} g and

Mg ′: set-borel-measurable borel {a..b} g ′

by (simp-all only : set-measurable-continuous-on-ivl)
from derivg have derivg ′:

∧
x . x ∈ {a..b} =⇒ (g has-vector-derivative g ′ x) (at

x)
by (simp only : has-field-derivative-iff-has-vector-derivative)

have real-ind [simp]:
∧

A x . enn2real (indicator A x) = indicator A x
by (auto split : split-indicator)

have ennreal-ind [simp]:
∧

A x . ennreal (indicator A x) = indicator A x
by (auto split : split-indicator)

have [simp]:
∧

x A. indicator A (g x) = indicator (g −‘ A) x
by (auto split : split-indicator)

from derivg derivg-nonneg have monog :
∧

x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒
g x ≤ g y

by (rule deriv-nonneg-imp-mono) simp-all
with monog have [simp]: g a ≤ g b by (auto intro: mono-onD)

show ?thesis
proof (induction rule: borel-measurable-induct [OF Mf , case-names cong set mult

add sup])
case (cong f1 f2)
from cong .hyps(3) have f1 = f2 by auto
with cong show ?case by simp

next
case (set A)
from set .hyps show ?case
proof (induction rule: borel-set-induct)

case empty
thus ?case by simp

next
case (interval c d)
{

fix u v :: real assume asm: {u..v} ⊆ {g a..g b} u ≤ v

obtain u ′ v ′ where u ′v ′: {a..b} ∩ g−‘{u..v} = {u ′..v ′} u ′ ≤ v ′ g u ′ = u g
v ′ = v

using asm by (rule-tac continuous-interval-vimage-Int [OF contg monog ,
of u v]) simp-all

hence {u ′..v ′} ⊆ {a..b} {u ′..v ′} ⊆ g −‘ {u..v} by blast+

THEORY “Lebesgue-Integral-Substitution” 530

with u ′v ′(2) have u ′ ∈ g −‘ {u..v} v ′ ∈ g −‘ {u..v} by auto
from u ′v ′(1) have [simp]: {a..b} ∩ g −‘ {u..v} ∈ sets borel by simp

have A: continuous-on {min u ′ v ′..max u ′ v ′} g ′

by (simp only : u ′v ′ max-absorb2 min-absorb1)
(intro continuous-on-subset [OF contg ′], insert u ′v ′, auto)

have
∧

x . x ∈ {u ′..v ′} =⇒ (g has-real-derivative g ′ x) (at x within {u ′..v ′})
using asm by (intro has-field-derivative-subset [OF derivg] set-mp[OF

〈{u ′..v ′} ⊆ {a..b}〉]) auto
hence B :

∧
x . min u ′ v ′ ≤ x =⇒ x ≤ max u ′ v ′ =⇒

(g has-vector-derivative g ′ x) (at x within {min u ′ v ′..max u ′ v ′})
by (simp only : u ′v ′ max-absorb2 min-absorb1)

(auto simp: has-field-derivative-iff-has-vector-derivative)
have integrable lborel (λx . indicator ({a..b} ∩ g −‘ {u..v}) x ∗R g ′ x)

by (rule set-integrable-subset [OF borel-integrable-atLeastAtMost ′[OF
contg ′]]) simp-all

hence (
∫

+x . ennreal (g ′ x) ∗ indicator ({a..b} ∩ g−‘ {u..v}) x ∂lborel) =
LBINT x :{a..b} ∩ g−‘{u..v}. g ′ x

by (subst nn-integral-eq-integral [symmetric])
(auto intro!: derivg-nonneg nn-integral-cong split : split-indicator)

also from interval-integral-FTC-finite[OF A B]
have LBINT x :{a..b} ∩ g−‘{u..v}. g ′ x = v − u

by (simp add : u ′v ′ interval-integral-Icc 〈u ≤ v 〉)
finally have (

∫
+ x . ennreal (g ′ x) ∗ indicator ({a..b} ∩ g −‘ {u..v}) x

∂lborel) =
ennreal (v − u) .

} note A = this

have (
∫

+x . indicator {c..d} (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x
∂lborel) =

(
∫

+ x . ennreal (g ′ x) ∗ indicator ({a..b} ∩ g −‘ {c..d}) x ∂lborel)
by (intro nn-integral-cong) (simp split : split-indicator)

also have {a..b} ∩ g−‘{c..d} = {a..b} ∩ g−‘{max (g a) c..min (g b) d}
using 〈a ≤ b〉 〈c ≤ d 〉

by (auto intro!: monog intro: order .trans)
also have (

∫
+ x . ennreal (g ′ x) ∗ indicator ... x ∂lborel) =

(if max (g a) c ≤ min (g b) d then min (g b) d − max (g a) c else 0)
using 〈c ≤ d 〉 by (simp add : A)

also have ... = (
∫

+ x . indicator ({g a..g b} ∩ {c..d}) x ∂lborel)
by (subst nn-integral-indicator) (auto intro!: measurable-sets Mg simp:)

also have ... = (
∫

+ x . indicator {c..d} x ∗ indicator {g a..g b} x ∂lborel)
by (intro nn-integral-cong) (auto split : split-indicator)

finally show ?case ..

next

case (compl A)
note 〈A ∈ sets borel 〉[measurable]
from emeasure-mono[of A ∩ {g a..g b} {g a..g b} lborel]

THEORY “Lebesgue-Integral-Substitution” 531

have [simp]: emeasure lborel (A ∩ {g a..g b}) 6= top by (auto simp: top-unique)
have [simp]: g −‘ A ∩ {a..b} ∈ sets borel

by (rule set-borel-measurable-sets[OF Mg]) auto
have [simp]: g −‘ (−A) ∩ {a..b} ∈ sets borel

by (rule set-borel-measurable-sets[OF Mg]) auto

have (
∫

+x . indicator (−A) x ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+x . indicator (−A ∩ {g a..g b}) x ∂lborel)
by (rule nn-integral-cong) (simp split : split-indicator)
also from compl have ... = emeasure lborel ({g a..g b} − A) using

derivg-nonneg
by (simp add : vimage-Compl diff-eq Int-commute[of −A])

also have {g a..g b} − A = {g a..g b} − A ∩ {g a..g b} by blast
also have emeasure lborel ... = g b − g a − emeasure lborel (A ∩ {g a..g b})

using 〈A ∈ sets borel 〉 by (subst emeasure-Diff) (auto simp:)
also have emeasure lborel (A ∩ {g a..g b}) =∫

+x . indicator A x ∗ indicator {g a..g b} x ∂lborel
using 〈A ∈ sets borel 〉

by (subst nn-integral-indicator [symmetric], simp, intro nn-integral-cong)
(simp split : split-indicator)

also have ... =
∫

+ x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator
{a..b} x) ∂lborel (is - = ?I)

by (subst compl .IH , intro nn-integral-cong) (simp split : split-indicator)
also have g b − g a = LBINT x :{a..b}. g ′ x using derivg ′

by (intro integral-FTC-atLeastAtMost [symmetric])
(auto intro: continuous-on-subset [OF contg ′] has-field-derivative-subset [OF

derivg]
has-vector-derivative-at-within)

also have ennreal ... =
∫

+ x . g ′ x ∗ indicator {a..b} x ∂lborel
using borel-integrable-atLeastAtMost ′[OF contg ′]
by (subst nn-integral-eq-integral)

(simp-all add : mult .commute derivg-nonneg split : split-indicator)
also have Mg ′′: (λx . indicator (g −‘ A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator

{a..b} x))
∈ borel-measurable borel using Mg ′

by (intro borel-measurable-times-ennreal borel-measurable-indicator)
(simp-all add : mult .commute)

have le: (
∫

+x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator {a..b}
x) ∂lborel) ≤

(
∫

+x . ennreal (g ′ x) ∗ indicator {a..b} x ∂lborel)
by (intro nn-integral-mono) (simp split : split-indicator add : derivg-nonneg)

note integrable = borel-integrable-atLeastAtMost ′[OF contg ′]
with le have notinf : (

∫
+x . indicator (g−‘A ∩ {a..b}) x ∗ ennreal (g ′ x ∗

indicator {a..b} x) ∂lborel) 6= top
by (auto simp: real-integrable-def nn-integral-set-ennreal mult .commute

top-unique)
have (

∫
+ x . g ′ x ∗ indicator {a..b} x ∂lborel) − ?I =∫

+ x . ennreal (g ′ x ∗ indicator {a..b} x) −
indicator (g −‘ A ∩ {a..b}) x ∗ ennreal (g ′ x ∗ indicator {a..b}

THEORY “Lebesgue-Integral-Substitution” 532

x) ∂lborel
apply (intro nn-integral-diff [symmetric])
apply (insert Mg ′, simp add : mult .commute) []
apply (insert Mg ′′, simp) []
apply (simp split : split-indicator add : derivg-nonneg)
apply (rule notinf)
apply (simp split : split-indicator add : derivg-nonneg)
done

also have ... =
∫

+ x . indicator (−A) (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b}
x ∂lborel

by (intro nn-integral-cong) (simp split : split-indicator)
finally show ?case .

next
case (union f)
then have [simp]:

∧
i . {a..b} ∩ g −‘ f i ∈ sets borel

by (subst Int-commute, intro set-borel-measurable-sets[OF Mg]) auto
have g −‘ (

⋃
i . f i) ∩ {a..b} = (

⋃
i . {a..b} ∩ g −‘ f i) by auto

hence g −‘ (
⋃

i . f i) ∩ {a..b} ∈ sets borel by (auto simp del : UN-simps)

have (
∫

+x . indicator (
⋃

i . f i) x ∗ indicator {g a..g b} x ∂lborel) =∫
+x . indicator (

⋃
i . {g a..g b} ∩ f i) x ∂lborel

by (intro nn-integral-cong) (simp split : split-indicator)
also from union have ... = emeasure lborel (

⋃
i . {g a..g b} ∩ f i) by simp

also from union have ... = (
∑

i . emeasure lborel ({g a..g b} ∩ f i))
by (intro suminf-emeasure[symmetric]) (auto simp: disjoint-family-on-def)

also from union have ... = (
∑

i .
∫

+x . indicator ({g a..g b} ∩ f i) x ∂lborel)
by simp

also have (λi .
∫

+x . indicator ({g a..g b} ∩ f i) x ∂lborel) =
(λi .

∫
+x . indicator (f i) x ∗ indicator {g a..g b} x ∂lborel)

by (intro ext nn-integral-cong) (simp split : split-indicator)
also from union.IH have (

∑
i .

∫
+x . indicator (f i) x ∗ indicator {g a..g b}

x ∂lborel) =
(
∑

i .
∫

+ x . indicator (f i) (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x
∂lborel) by simp

also have (λi .
∫

+ x . indicator (f i) (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b}
x ∂lborel) =

(λi .
∫

+ x . ennreal (g ′ x ∗ indicator {a..b} x) ∗ indicator
({a..b} ∩ g −‘ f i) x ∂lborel)

by (intro ext nn-integral-cong) (simp split : split-indicator)
also have (

∑
i i) =

∫
+ x . (

∑
i . ennreal (g ′ x ∗ indicator {a..b} x) ∗

indicator ({a..b} ∩ g −‘ f i) x) ∂lborel
using Mg ′

apply (intro nn-integral-suminf [symmetric])
apply (rule borel-measurable-times-ennreal , simp add : mult .commute)
apply (rule borel-measurable-indicator , subst sets-lborel)
apply (simp-all split : split-indicator add : derivg-nonneg)
done

also have (λx i . ennreal (g ′ x ∗ indicator {a..b} x) ∗ indicator ({a..b} ∩ g

THEORY “Lebesgue-Integral-Substitution” 533

−‘ f i) x) =
(λx i . ennreal (g ′ x ∗ indicator {a..b} x) ∗ indicator (g −‘ f i) x)

by (intro ext) (simp split : split-indicator)
also have (

∫
+ x . (

∑
i . ennreal (g ′ x ∗ indicator {a..b} x) ∗ indicator (g −‘

f i) x) ∂lborel) =∫
+ x . ennreal (g ′ x ∗ indicator {a..b} x) ∗ (

∑
i . indicator (g −‘

f i) x) ∂lborel
by (intro nn-integral-cong) (auto split : split-indicator simp: derivg-nonneg)

also from union have (λx .
∑

i . indicator (g −‘ f i) x :: ennreal) = (λx .
indicator (

⋃
i . g −‘ f i) x)

by (intro ext suminf-indicator) (auto simp: disjoint-family-on-def)
also have (

∫
+x . ennreal (g ′ x ∗ indicator {a..b} x) ∗ ... x ∂lborel) =

(
∫

+x . indicator (
⋃

i . f i) (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b}
x ∂lborel)

by (intro nn-integral-cong) (simp split : split-indicator)
finally show ?case .

qed

next
case (mult f c)

note Mf [measurable] = 〈f ∈ borel-measurable borel 〉

let ?I = indicator {a..b}
have (λx . f (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) ∈ borel-measurable borel using

Mg Mg ′

by (intro borel-measurable-times-ennreal measurable-compose[OF - Mf])
(simp-all add : mult .commute)

also have (λx . f (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) = (λx . f (g x) ∗ ennreal
(g ′ x) ∗ ?I x)

by (intro ext) (simp split : split-indicator)
finally have Mf ′: (λx . f (g x) ∗ ennreal (g ′ x) ∗ ?I x) ∈ borel-measurable borel

.
with mult show ?case

by (subst (1 2 3) mult-ac, subst (1 2) nn-integral-cmult) (simp-all add :
mult-ac)

next
case (add f2 f1)

let ?I = indicator {a..b}
{

fix f :: real ⇒ ennreal assume Mf : f ∈ borel-measurable borel
have (λx . f (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) ∈ borel-measurable borel

using Mg Mg ′

by (intro borel-measurable-times-ennreal measurable-compose[OF - Mf])
(simp-all add : mult .commute)

also have (λx . f (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) = (λx . f (g x) ∗ ennreal
(g ′ x) ∗ ?I x)

by (intro ext) (simp split : split-indicator)
finally have (λx . f (g x) ∗ ennreal (g ′ x) ∗ ?I x) ∈ borel-measurable borel .
} note Mf ′= this[OF 〈f1 ∈ borel-measurable borel 〉] this[OF 〈f2 ∈ borel-measurable

THEORY “Lebesgue-Integral-Substitution” 534

borel 〉]

have (
∫

+ x . (f1 x + f2 x) ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+ x . f1 x ∗ indicator {g a..g b} x + f2 x ∗ indicator {g a..g b} x
∂lborel)

by (intro nn-integral-cong) (simp split : split-indicator)
also from add have ... = (

∫
+ x . f1 (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b}

x ∂lborel) +
(
∫

+ x . f2 (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x
∂lborel)

by (simp-all add : nn-integral-add)
also from add have ... = (

∫
+ x . f1 (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b}

x +
f2 (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x ∂lborel)

by (intro nn-integral-add [symmetric])
(auto simp add : Mf ′ derivg-nonneg split : split-indicator)

also have ... =
∫

+ x . (f1 (g x) + f2 (g x)) ∗ ennreal (g ′ x) ∗ indicator {a..b}
x ∂lborel

by (intro nn-integral-cong) (simp split : split-indicator add : distrib-right)
finally show ?case .

next
case (sup F)
{

fix i
let ?I = indicator {a..b}
have (λx . F i (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) ∈ borel-measurable borel

using Mg Mg ′

by (rule-tac borel-measurable-times-ennreal , rule-tac measurable-compose[OF
- sup.hyps(1)])

(simp-all add : mult .commute)
also have (λx . F i (g x ∗ ?I x) ∗ ennreal (g ′ x ∗ ?I x)) = (λx . F i (g x) ∗

ennreal (g ′ x) ∗ ?I x)
by (intro ext) (simp split : split-indicator)

finally have ... ∈ borel-measurable borel .
} note Mf ′ = this

have (
∫

+x . (SUP i . F i x) ∗ indicator {g a..g b} x ∂lborel) =∫
+x . (SUP i . F i x∗ indicator {g a..g b} x) ∂lborel

by (intro nn-integral-cong) (simp split : split-indicator)
also from sup have ... = (SUP i .

∫
+x . F i x∗ indicator {g a..g b} x ∂lborel)

by (intro nn-integral-monotone-convergence-SUP)
(auto simp: incseq-def le-fun-def split : split-indicator)

also from sup have ... = (SUP i .
∫

+x . F i (g x) ∗ ennreal (g ′ x) ∗ indicator
{a..b} x ∂lborel)

by simp
also from sup have ... =

∫
+x . (SUP i . F i (g x) ∗ ennreal (g ′ x) ∗ indicator

{a..b} x) ∂lborel
by (intro nn-integral-monotone-convergence-SUP [symmetric])

THEORY “Lebesgue-Integral-Substitution” 535

(auto simp: incseq-def le-fun-def derivg-nonneg Mf ′ split : split-indicator
intro!: mult-right-mono)

also from sup have ... =
∫

+x . (SUP i . F i (g x)) ∗ ennreal (g ′ x) ∗ indicator
{a..b} x ∂lborel

by (subst mult .assoc, subst mult .commute, subst SUP-mult-left-ennreal)
(auto split : split-indicator simp: derivg-nonneg mult-ac)

finally show ?case by simp
qed

qed

lemma nn-integral-substitution:
fixes f :: real ⇒ real
assumes Mf [measurable]: set-borel-measurable borel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)

assumes contg ′: continuous-on {a..b} g ′

assumes derivg-nonneg :
∧

x . x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows (

∫
+x . f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . f (g x) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)
proof (cases a = b)

assume a 6= b
with 〈a ≤ b〉 have a < b by auto
let ?f ′ = λx . f x ∗ indicator {g a..g b} x

from derivg derivg-nonneg have monog :
∧

x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒
g x ≤ g y

by (rule deriv-nonneg-imp-mono) simp-all
have bounds:

∧
x . x ≥ a =⇒ x ≤ b =⇒ g x ≥ g a

∧
x . x ≥ a =⇒ x ≤ b =⇒ g

x ≤ g b
by (auto intro: monog)

from derivg-nonneg have nonneg :∧
f x . x ≥ a =⇒ x ≤ b =⇒ g ′ x 6= 0 =⇒ f x ∗ ennreal (g ′ x) ≥ 0 =⇒ f x ≥ 0

by (force simp: field-simps)
have nonneg ′:

∧
x . a ≤ x =⇒ x ≤ b =⇒ ¬ 0 ≤ f (g x) =⇒ 0 ≤ f (g x) ∗ g ′ x

=⇒ g ′ x = 0
by (metis atLeastAtMost-iff derivg-nonneg eq-iff mult-eq-0-iff mult-le-0-iff)

have (
∫

+x . f x ∗ indicator {g a..g b} x ∂lborel) =
(
∫

+x . ennreal (?f ′ x) ∗ indicator {g a..g b} x ∂lborel)
by (intro nn-integral-cong)

(auto split : split-indicator split-max simp: zero-ennreal .rep-eq ennreal-neg)
also have ... =

∫
+ x . ?f ′ (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x ∂lborel

using Mf
by (subst nn-integral-substitution-aux [OF - - derivg contg ′ derivg-nonneg 〈a <

b〉])
(auto simp add : mult .commute)

also have ... =
∫

+ x . f (g x) ∗ ennreal (g ′ x) ∗ indicator {a..b} x ∂lborel
by (intro nn-integral-cong) (auto split : split-indicator simp: max-def dest :

THEORY “Lebesgue-Integral-Substitution” 536

bounds)
also have ... =

∫
+x . ennreal (f (g x) ∗ g ′ x ∗ indicator {a..b} x) ∂lborel

by (intro nn-integral-cong) (auto simp: mult .commute derivg-nonneg ennreal-mult ′

split : split-indicator)
finally show ?thesis .

qed auto

lemma integral-substitution:
assumes integrable: set-integrable lborel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)

assumes contg ′: continuous-on {a..b} g ′

assumes derivg-nonneg :
∧

x . x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows set-integrable lborel {a..b} (λx . f (g x) ∗ g ′ x)

and (LBINT x . f x ∗ indicator {g a..g b} x) = (LBINT x . f (g x) ∗ g ′ x ∗
indicator {a..b} x)
proof−
from derivg have contg : continuous-on {a..b} g by (rule has-real-derivative-imp-continuous-on)
from this and contg ′ have Mg : set-borel-measurable borel {a..b} g and

Mg ′: set-borel-measurable borel {a..b} g ′

by (simp-all only : set-measurable-continuous-on-ivl)
from derivg derivg-nonneg have monog :

∧
x y . a ≤ x =⇒ x ≤ y =⇒ y ≤ b =⇒

g x ≤ g y
by (rule deriv-nonneg-imp-mono) simp-all

have (λx . ennreal (f x) ∗ indicator {g a..g b} x) =
(λx . ennreal (f x ∗ indicator {g a..g b} x))

by (intro ext) (simp split : split-indicator)
with integrable have M1 : (λx . f x ∗ indicator {g a..g b} x) ∈ borel-measurable

borel
unfolding real-integrable-def by (force simp: mult .commute)

from integrable have M2 : (λx . −f x ∗ indicator {g a..g b} x) ∈ borel-measurable
borel

unfolding real-integrable-def by (force simp: mult .commute)

have LBINT x . (f x :: real) ∗ indicator {g a..g b} x =
enn2real (

∫
+ x . ennreal (f x) ∗ indicator {g a..g b} x ∂lborel) −

enn2real (
∫

+ x . ennreal (− (f x)) ∗ indicator {g a..g b} x ∂lborel) using
integrable

by (subst real-lebesgue-integral-def) (simp-all add : nn-integral-set-ennreal mult .commute)
also have (

∫
+x . ennreal (f x) ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . ennreal (f x ∗ indicator {g a..g b} x) ∂lborel)
by (intro nn-integral-cong) (simp split : split-indicator)

also with M1 have A: (
∫

+ x . ennreal (f x ∗ indicator {g a..g b} x) ∂lborel) =
(
∫

+ x . ennreal (f (g x) ∗ g ′ x ∗ indicator {a..b} x) ∂lborel)
by (subst nn-integral-substitution[OF - derivg contg ′ derivg-nonneg 〈a ≤ b〉])

(auto simp: nn-integral-set-ennreal mult .commute)
also have (

∫
+ x . ennreal (− (f x)) ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+ x . ennreal (− (f x) ∗ indicator {g a..g b} x) ∂lborel)

THEORY “Lebesgue-Integral-Substitution” 537

by (intro nn-integral-cong) (simp split : split-indicator)
also with M2 have B : (

∫
+ x . ennreal (− (f x) ∗ indicator {g a..g b} x) ∂lborel)

=
(
∫

+ x . ennreal (− (f (g x)) ∗ g ′ x ∗ indicator {a..b} x)
∂lborel)

by (subst nn-integral-substitution[OF - derivg contg ′ derivg-nonneg 〈a ≤ b〉])
(auto simp: nn-integral-set-ennreal mult .commute)

also {
from integrable have Mf : set-borel-measurable borel {g a..g b} f

unfolding real-integrable-def by simp
from borel-measurable-times[OF measurable-compose[OF Mg Mf] Mg ′]

have (λx . f (g x ∗ indicator {a..b} x) ∗ indicator {g a..g b} (g x ∗ indicator
{a..b} x) ∗

(g ′ x ∗ indicator {a..b} x)) ∈ borel-measurable borel (is ?f ∈ -)
by (simp add : mult .commute)

also have ?f = (λx . f (g x) ∗ g ′ x ∗ indicator {a..b} x)
using monog by (intro ext) (auto split : split-indicator)

finally show set-integrable lborel {a..b} (λx . f (g x) ∗ g ′ x)
using A B integrable unfolding real-integrable-def
by (simp-all add : nn-integral-set-ennreal mult .commute)

} note integrable ′ = this

have enn2real (
∫

+ x . ennreal (f (g x) ∗ g ′ x ∗ indicator {a..b} x) ∂lborel) −
enn2real (

∫
+ x . ennreal (−f (g x) ∗ g ′ x ∗ indicator {a..b} x)

∂lborel) =
(LBINT x . f (g x) ∗ g ′ x ∗ indicator {a..b} x) using integrable ′

by (subst real-lebesgue-integral-def) (simp-all add : field-simps)
finally show (LBINT x . f x ∗ indicator {g a..g b} x) =

(LBINT x . f (g x) ∗ g ′ x ∗ indicator {a..b} x) .
qed

lemma interval-integral-substitution:
assumes integrable: set-integrable lborel {g a..g b} f
assumes derivg :

∧
x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)

assumes contg ′: continuous-on {a..b} g ′

assumes derivg-nonneg :
∧

x . x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows set-integrable lborel {a..b} (λx . f (g x) ∗ g ′ x)

and (LBINT x=g a..g b. f x) = (LBINT x=a..b. f (g x) ∗ g ′ x)
apply (rule integral-substitution[OF assms], simp, simp)
apply (subst (1 2) interval-integral-Icc, fact)
apply (rule deriv-nonneg-imp-mono[OF derivg derivg-nonneg], simp, simp, fact)
using integral-substitution(2)[OF assms]
apply (simp add : mult .commute)
done

lemma set-borel-integrable-singleton[simp]:
set-integrable lborel {x} (f :: real ⇒ real)

THEORY “Adhoc-Overloading” 538

by (subst integrable-discrete-difference[where X ={x} and g=λ-. 0]) auto

end

16 Adhoc overloading of constants based on their
types

theory Adhoc-Overloading
imports Pure
keywords adhoc-overloading :: thy-decl and no-adhoc-overloading :: thy-decl
begin

ML-file adhoc-overloading .ML

end

17 Monad notation for arbitrary types

theory Monad-Syntax
imports Main ∼∼/src/Tools/Adhoc-Overloading
begin

We provide a convenient do-notation for monadic expressions well-known
from Haskell. Let is printed specially in do-expressions.

consts
bind :: [′a, ′b ⇒ ′c] ⇒ ′d (infixr >>= 54)

notation (ASCII)
bind (infixr >>= 54)

abbreviation (do-notation)
bind-do :: [′a, ′b ⇒ ′c] ⇒ ′d
where bind-do ≡ bind

notation (output)
bind-do (infixr >>= 54)

notation (ASCII output)
bind-do (infixr >>= 54)

nonterminal do-binds and do-bind
syntax

-do-block :: do-binds ⇒ ′a (do {//(2 -)//} [12] 62)
-do-bind :: [pttrn, ′a] ⇒ do-bind ((2- ←/ -) 13)
-do-let :: [pttrn, ′a] ⇒ do-bind ((2let - =/ -) [1000 , 13] 13)

THEORY “Giry-Monad” 539

-do-then :: ′a ⇒ do-bind (- [14] 13)
-do-final :: ′a ⇒ do-binds (-)
-do-cons :: [do-bind , do-binds] ⇒ do-binds (-;//- [13 , 12] 12)
-thenM :: [′a, ′b] ⇒ ′c (infixr >> 54)

syntax (ASCII)
-do-bind :: [pttrn, ′a] ⇒ do-bind ((2- <−/ -) 13)
-thenM :: [′a, ′b] ⇒ ′c (infixr >> 54)

translations
-do-block (-do-cons (-do-then t) (-do-final e))

 CONST bind-do t (λ-. e)

-do-block (-do-cons (-do-bind p t) (-do-final e))

 CONST bind-do t (λp. e)

-do-block (-do-cons (-do-let p t) bs)

 let p = t in -do-block bs

-do-block (-do-cons b (-do-cons c cs))

 -do-block (-do-cons b (-do-final (-do-block (-do-cons c cs))))

-do-cons (-do-let p t) (-do-final s)

 -do-final (let p = t in s)

-do-block (-do-final e) ⇀ e
(m >> n) ⇀ (m >>= (λ-. n))

adhoc-overloading
bind Set .bind Predicate.bind Option.bind List .bind

end

theory Giry-Monad
imports Probability-Measure Lebesgue-Integral-Substitution ∼∼/src/HOL/Library/Monad-Syntax

begin

18 Sub-probability spaces

locale subprob-space = finite-measure +
assumes emeasure-space-le-1 : emeasure M (space M) ≤ 1
assumes subprob-not-empty : space M 6= {}

lemma subprob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M) ≤ 1
assumes space M 6= {}
shows subprob-space M

proof −
interpret finite-measure M
proof

show emeasure M (space M) 6= ∞ using ∗ by (auto simp: top-unique)
qed
show subprob-space M by standard fact+

THEORY “Giry-Monad” 540

qed

lemma prob-space-imp-subprob-space:
prob-space M =⇒ subprob-space M
by (rule subprob-spaceI) (simp-all add : prob-space.emeasure-space-1 prob-space.not-empty)

lemma subprob-space-imp-sigma-finite: subprob-space M =⇒ sigma-finite-measure
M

unfolding subprob-space-def finite-measure-def by simp

sublocale prob-space ⊆ subprob-space
by (rule subprob-spaceI) (simp-all add : emeasure-space-1 not-empty)

lemma subprob-space-sigma [simp]: Ω 6= {} =⇒ subprob-space (sigma Ω X)
by(rule subprob-spaceI)(simp-all add : emeasure-sigma space-measure-of-conv)

lemma subprob-space-null-measure: space M 6= {} =⇒ subprob-space (null-measure
M)
by(simp add : null-measure-def)

lemma (in subprob-space) subprob-space-distr :
assumes f : f ∈ measurable M M ′ and space M ′ 6= {} shows subprob-space (distr

M M ′ f)
proof (rule subprob-spaceI)
have f −‘ space M ′∩ space M = space M using f by (auto dest : measurable-space)
with f show emeasure (distr M M ′ f) (space (distr M M ′ f)) ≤ 1

by (auto simp: emeasure-distr emeasure-space-le-1)
show space (distr M M ′ f) 6= {} by (simp add : assms)

qed

lemma (in subprob-space) subprob-emeasure-le-1 : emeasure M X ≤ 1
by (rule order .trans[OF emeasure-space emeasure-space-le-1])

lemma (in subprob-space) subprob-measure-le-1 : measure M X ≤ 1
using subprob-emeasure-le-1 [of X] by (simp add : emeasure-eq-measure)

lemma (in subprob-space) nn-integral-le-const :
assumes 0 ≤ c AE x in M . f x ≤ c
shows (

∫
+x . f x ∂M) ≤ c

proof −
have (

∫
+ x . f x ∂M) ≤ (

∫
+ x . c ∂M)

by(rule nn-integral-mono-AE) fact
also have . . . ≤ c ∗ emeasure M (space M)

using 〈0 ≤ c〉 by simp
also have . . . ≤ c ∗ 1 using emeasure-space-le-1 〈0 ≤ c〉 by(rule mult-left-mono)
finally show ?thesis by simp

qed

lemma emeasure-density-distr-interval :

THEORY “Giry-Monad” 541

fixes h :: real ⇒ real and g :: real ⇒ real and g ′ :: real ⇒ real
assumes [simp]: a ≤ b
assumes Mf [measurable]: f ∈ borel-measurable borel
assumes Mg [measurable]: g ∈ borel-measurable borel
assumes Mg ′[measurable]: g ′ ∈ borel-measurable borel
assumes Mh[measurable]: h ∈ borel-measurable borel
assumes prob: subprob-space (density lborel f)
assumes nonnegf :

∧
x . f x ≥ 0

assumes derivg :
∧

x . x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)
assumes contg ′: continuous-on {a..b} g ′

assumes mono: strict-mono-on g {a..b} and inv :
∧

x . h x ∈ {a..b} =⇒ g (h x)
= x

assumes range: {a..b} ⊆ range h
shows emeasure (distr (density lborel f) lborel h) {a..b} =

emeasure (density lborel (λx . f (g x) ∗ g ′ x)) {a..b}
proof (cases a < b)

assume a < b
from mono have inj : inj-on g {a..b} by (rule strict-mono-on-imp-inj-on)
from mono have mono ′: mono-on g {a..b} by (rule strict-mono-on-imp-mono-on)
from mono ′ derivg have

∧
x . x ∈ {a<..<b} =⇒ g ′ x ≥ 0

by (rule mono-on-imp-deriv-nonneg) auto
from contg ′ this have derivg-nonneg :

∧
x . x ∈ {a..b} =⇒ g ′ x ≥ 0

by (rule continuous-ge-on-Ioo) (simp-all add : 〈a < b〉)

from derivg have contg : continuous-on {a..b} g by (rule has-real-derivative-imp-continuous-on)
have A: h −‘ {a..b} = {g a..g b}
proof (intro equalityI subsetI)

fix x assume x : x ∈ h −‘ {a..b}
hence g (h x) ∈ {g a..g b} by (auto intro: mono-onD [OF mono ′])
with inv and x show x ∈ {g a..g b} by simp

next
fix y assume y : y ∈ {g a..g b}
with IVT ′[OF - - - contg , of y] obtain x where x ∈ {a..b} y = g x by auto
with range and inv show y ∈ h −‘ {a..b} by auto

qed

have prob ′: subprob-space (distr (density lborel f) lborel h)
by (rule subprob-space.subprob-space-distr [OF prob]) (simp-all add : Mh)

have B : emeasure (distr (density lborel f) lborel h) {a..b} =∫
+x . f x ∗ indicator (h −‘ {a..b}) x ∂lborel

by (subst emeasure-distr) (simp-all add : emeasure-density Mf Mh measurable-sets-borel [OF
Mh])

also note A
also have emeasure (distr (density lborel f) lborel h) {a..b} ≤ 1

by (rule subprob-space.subprob-emeasure-le-1) (rule prob ′)
hence emeasure (distr (density lborel f) lborel h) {a..b} 6= ∞ by (auto simp:

top-unique)
with assms have (

∫
+x . f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x . f (g x) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)

THEORY “Giry-Monad” 542

by (intro nn-integral-substitution-aux)
(auto simp: derivg-nonneg A B emeasure-density mult .commute 〈a < b〉)

also have ... = emeasure (density lborel (λx . f (g x) ∗ g ′ x)) {a..b}
by (simp add : emeasure-density)

finally show ?thesis .
next

assume ¬a < b
with 〈a ≤ b〉 have [simp]: b = a by (simp add : not-less del : 〈a ≤ b〉)
from inv and range have h −‘ {a} = {g a} by auto
thus ?thesis by (simp-all add : emeasure-distr emeasure-density measurable-sets-borel [OF

Mh])
qed

locale pair-subprob-space =
pair-sigma-finite M1 M2 + M1 : subprob-space M1 + M2 : subprob-space M2 for

M1 M2

sublocale pair-subprob-space ⊆ P? : subprob-space M1
⊗

M M2
proof

from mult-le-one[OF M1 .emeasure-space-le-1 - M2 .emeasure-space-le-1]
show emeasure (M1

⊗
M M2) (space (M1

⊗
M M2)) ≤ 1

by (simp add : M2 .emeasure-pair-measure-Times space-pair-measure)
from M1 .subprob-not-empty and M2 .subprob-not-empty show space (M1

⊗
M

M2) 6= {}
by (simp add : space-pair-measure)

qed

lemma subprob-space-null-measure-iff :
subprob-space (null-measure M) ←→ space M 6= {}

by (auto intro!: subprob-spaceI dest : subprob-space.subprob-not-empty)

lemma subprob-space-restrict-space:
assumes M : subprob-space M
and A: A ∩ space M ∈ sets M A ∩ space M 6= {}
shows subprob-space (restrict-space M A)

proof(rule subprob-spaceI)
have emeasure (restrict-space M A) (space (restrict-space M A)) = emeasure M

(A ∩ space M)
using A by(simp add : emeasure-restrict-space space-restrict-space)

also have . . . ≤ 1 by(rule subprob-space.subprob-emeasure-le-1)(rule M)
finally show emeasure (restrict-space M A) (space (restrict-space M A)) ≤ 1 .

next
show space (restrict-space M A) 6= {}

using A by(simp add : space-restrict-space)
qed

definition subprob-algebra :: ′a measure ⇒ ′a measure measure where
subprob-algebra K =
(
⊔
σ A∈sets K . vimage-algebra {M . subprob-space M ∧ sets M = sets K} (λM .

THEORY “Giry-Monad” 543

emeasure M A) borel)

lemma space-subprob-algebra: space (subprob-algebra A) = {M . subprob-space M
∧ sets M = sets A}

by (auto simp add : subprob-algebra-def space-Sup-sigma)

lemma subprob-algebra-cong : sets M = sets N =⇒ subprob-algebra M = subprob-algebra
N

by (simp add : subprob-algebra-def)

lemma measurable-emeasure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . emeasure M a) ∈ borel-measurable (subprob-algebra A)
by (auto intro!: measurable-Sup-sigma1 measurable-vimage-algebra1 simp: subprob-algebra-def)

lemma measurable-measure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . measure M a) ∈ borel-measurable (subprob-algebra A)
unfolding measure-def by measurable

lemma subprob-measurableD :
assumes N : N ∈ measurable M (subprob-algebra S) and x : x ∈ space M
shows space (N x) = space S

and sets (N x) = sets S
and measurable (N x) K = measurable S K
and measurable K (N x) = measurable K S

using measurable-space[OF N x]
by (auto simp: space-subprob-algebra intro!: measurable-cong-sets dest : sets-eq-imp-space-eq)

ML 〈

fun subprob-cong thm ctxt = (
let

val thm ′ = Thm.transfer (Proof-Context .theory-of ctxt) thm
val free = thm ′ |> Thm.concl-of |> HOLogic.dest-Trueprop |> dest-comb |>

fst |>
dest-comb |> snd |> strip-abs-body |> head-of |> is-Free

in
if free then ([], Measurable.add-local-cong (thm ′RS @{thm subprob-measurableD(2)})

ctxt)
else ([], ctxt)

end
handle THM - => ([], ctxt) | TERM - => ([], ctxt))

〉

setup 〈

Context .theory-map (Measurable.add-preprocessor subprob-cong subprob-cong)
〉

context

THEORY “Giry-Monad” 544

fixes K M N assumes K : K ∈ measurable M (subprob-algebra N)
begin

lemma subprob-space-kernel : a ∈ space M =⇒ subprob-space (K a)
using measurable-space[OF K] by (simp add : space-subprob-algebra)

lemma sets-kernel : a ∈ space M =⇒ sets (K a) = sets N
using measurable-space[OF K] by (simp add : space-subprob-algebra)

lemma measurable-emeasure-kernel [measurable]:
A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

using measurable-compose[OF K measurable-emeasure-subprob-algebra] .

end

lemma measurable-subprob-algebra:
(
∧

a. a ∈ space M =⇒ subprob-space (K a)) =⇒
(
∧

a. a ∈ space M =⇒ sets (K a) = sets N) =⇒
(
∧

A. A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M) =⇒
K ∈ measurable M (subprob-algebra N)
by (auto intro!: measurable-Sup-sigma2 measurable-vimage-algebra2 simp: subprob-algebra-def)

lemma measurable-submarkov :
K ∈ measurable M (subprob-algebra M) ←→

(∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧
(∀A∈sets M . (λx . emeasure (K x) A) ∈ measurable M borel)

proof
assume (∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧

(∀A∈sets M . (λx . emeasure (K x) A) ∈ borel-measurable M)
then show K ∈ measurable M (subprob-algebra M)

by (intro measurable-subprob-algebra) auto
next

assume K ∈ measurable M (subprob-algebra M)
then show (∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧

(∀A∈sets M . (λx . emeasure (K x) A) ∈ borel-measurable M)
by (auto dest : subprob-space-kernel sets-kernel)

qed

lemma space-subprob-algebra-empty-iff :
space (subprob-algebra N) = {} ←→ space N = {}

proof
have

∧
x . x ∈ space N =⇒ density N (λ-. 0) ∈ space (subprob-algebra N)

by (auto simp: space-subprob-algebra emeasure-density intro!: subprob-spaceI)
then show space (subprob-algebra N) = {} =⇒ space N = {}

by auto
next

assume space N = {}
hence sets N = {{}} by (simp add : space-empty-iff)
moreover have

∧
M . subprob-space M =⇒ sets M 6= {{}}

THEORY “Giry-Monad” 545

by (simp add : subprob-space.subprob-not-empty space-empty-iff [symmetric])
ultimately show space (subprob-algebra N) = {} by (auto simp: space-subprob-algebra)

qed

lemma nn-integral-measurable-subprob-algebra[measurable]:
assumes f : f ∈ borel-measurable N
shows (λM . integralN M f) ∈ borel-measurable (subprob-algebra N) (is - ∈ ?B)
using f

proof induct
case (cong f g)
moreover have (λM ′.

∫
+M ′′. f M ′′ ∂M ′) ∈ ?B ←→ (λM ′.

∫
+M ′′. g M ′′ ∂M ′)

∈ ?B
by (intro measurable-cong nn-integral-cong cong)

(auto simp: space-subprob-algebra dest !: sets-eq-imp-space-eq)
ultimately show ?case by simp

next
case (set B)
moreover then have (λM ′.

∫
+M ′′. indicator B M ′′ ∂M ′) ∈ ?B ←→ (λM ′.

emeasure M ′ B) ∈ ?B
by (intro measurable-cong nn-integral-indicator) (simp add : space-subprob-algebra)
ultimately show ?case

by (simp add : measurable-emeasure-subprob-algebra)
next

case (mult f c)
moreover then have (λM ′.

∫
+M ′′. c ∗ f M ′′ ∂M ′) ∈ ?B ←→ (λM ′. c ∗∫

+M ′′. f M ′′ ∂M ′) ∈ ?B
by (intro measurable-cong nn-integral-cmult) (auto simp add : space-subprob-algebra)
ultimately show ?case

by simp
next

case (add f g)
moreover then have (λM ′.

∫
+M ′′. f M ′′ + g M ′′ ∂M ′) ∈ ?B ←→ (λM ′.

(
∫

+M ′′. f M ′′ ∂M ′) + (
∫

+M ′′. g M ′′ ∂M ′)) ∈ ?B
by (intro measurable-cong nn-integral-add) (auto simp add : space-subprob-algebra)
ultimately show ?case

by (simp add : ac-simps)
next

case (seq F)
moreover then have (λM ′.

∫
+M ′′. (SUP i . F i) M ′′ ∂M ′) ∈ ?B ←→ (λM ′.

SUP i . (
∫

+M ′′. F i M ′′ ∂M ′)) ∈ ?B
unfolding SUP-apply
by (intro measurable-cong nn-integral-monotone-convergence-SUP) (auto simp

add : space-subprob-algebra)
ultimately show ?case

by (simp add : ac-simps)
qed

lemma measurable-distr :
assumes [measurable]: f ∈ measurable M N

THEORY “Giry-Monad” 546

shows (λM ′. distr M ′ N f) ∈ measurable (subprob-algebra M) (subprob-algebra
N)
proof (cases space N = {})

assume not-empty : space N 6= {}
show ?thesis
proof (rule measurable-subprob-algebra)

fix A assume A: A ∈ sets N
then have (λM ′. emeasure (distr M ′N f) A) ∈ borel-measurable (subprob-algebra

M) ←→
(λM ′. emeasure M ′ (f −‘ A ∩ space M)) ∈ borel-measurable (subprob-algebra

M)
by (intro measurable-cong)

(auto simp: emeasure-distr space-subprob-algebra
intro!: arg-cong2 [where f =emeasure] sets-eq-imp-space-eq arg-cong2 [where

f =op ∩])
also have . . .

using A by (intro measurable-emeasure-subprob-algebra) simp
finally show (λM ′. emeasure (distr M ′N f) A) ∈ borel-measurable (subprob-algebra

M) .
qed (auto intro!: subprob-space.subprob-space-distr simp: space-subprob-algebra

not-empty cong : measurable-cong-sets)
qed (insert assms, auto simp: measurable-empty-iff space-subprob-algebra-empty-iff)

lemma emeasure-space-subprob-algebra[measurable]:
(λa. emeasure a (space a)) ∈ borel-measurable (subprob-algebra N)

proof−
have (λa. emeasure a (space N)) ∈ borel-measurable (subprob-algebra N) (is ?f
∈ ?M)

by (rule measurable-emeasure-subprob-algebra) simp
also have ?f ∈ ?M ←→ (λa. emeasure a (space a)) ∈ ?M
by (rule measurable-cong) (auto simp: space-subprob-algebra dest : sets-eq-imp-space-eq)
finally show ?thesis .

qed

lemma integrable-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: f ∈ borel-measurable N
shows Measurable.pred (subprob-algebra N) (λM . integrable M f)

proof (rule measurable-cong [THEN iffD2])
show M ∈ space (subprob-algebra N) =⇒ integrable M f ←→ (

∫
+x . norm (f x)

∂M) < ∞ for M
by (auto simp: space-subprob-algebra integrable-iff-bounded)

qed measurable

lemma integral-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable N
shows (λM . integralL M f) ∈ subprob-algebra N →M borel

proof −

THEORY “Giry-Monad” 547

from borel-measurable-implies-sequence-metric[OF f , of 0]
obtain F where F :

∧
i . simple-function N (F i)∧

x . x ∈ space N =⇒ (λi . F i x) −−−−→ f x∧
i x . x ∈ space N =⇒ norm (F i x) ≤ 2 ∗ norm (f x)

unfolding norm-conv-dist by blast

have [measurable]: F i ∈ N →M count-space UNIV for i
using F (1) by (rule measurable-simple-function)

def F ′ ≡ λM i . if integrable M f then integralL M (F i) else 0

have (λM . F ′ M i) ∈ subprob-algebra N →M borel for i
proof (rule measurable-cong [THEN iffD2])

fix M assume M ∈ space (subprob-algebra N)
then have [simp]: sets M = sets N space M = space N subprob-space M

by (auto simp: space-subprob-algebra intro!: sets-eq-imp-space-eq)
interpret subprob-space M by fact

have F ′M i = (if integrable M f then Bochner-Integration.simple-bochner-integral
M (F i) else 0)

using F (1)
by (subst simple-bochner-integrable-eq-integral)

(auto simp: simple-bochner-integrable.simps simple-function-def F ′-def)
then show F ′ M i = (if integrable M f then

∑
y∈F i ‘ space N . measure M

{x∈space N . F i x = y} ∗R y else 0)
unfolding simple-bochner-integral-def by simp

qed measurable
moreover
have F ′ M −−−−→ integralL M f if M : M ∈ space (subprob-algebra N) for M
proof cases

from M have [simp]: sets M = sets N space M = space N
by (auto simp: space-subprob-algebra intro!: sets-eq-imp-space-eq)

assume integrable M f then show ?thesis
unfolding F ′-def using F (1)[THEN borel-measurable-simple-function] F
by (auto intro!: integral-dominated-convergence[where w=λx . 2 ∗ norm (f

x)]
cong : measurable-cong-sets)

qed (auto simp: F ′-def not-integrable-integral-eq)
ultimately show ?thesis

by (rule borel-measurable-LIMSEQ-metric)
qed

lemma measurable-pair-measure:
assumes f : f ∈ measurable M (subprob-algebra N)
assumes g : g ∈ measurable M (subprob-algebra L)
shows (λx . f x

⊗
M g x) ∈ measurable M (subprob-algebra (N

⊗
M L))

proof (rule measurable-subprob-algebra)
{ fix x assume x ∈ space M

with measurable-space[OF f] measurable-space[OF g]

THEORY “Giry-Monad” 548

have fx : f x ∈ space (subprob-algebra N) and gx : g x ∈ space (subprob-algebra
L)

by auto
interpret F : subprob-space f x

using fx by (simp add : space-subprob-algebra)
interpret G : subprob-space g x

using gx by (simp add : space-subprob-algebra)

interpret pair-subprob-space f x g x ..
show subprob-space (f x

⊗
M g x) by unfold-locales

show sets-eq : sets (f x
⊗

M g x) = sets (N
⊗

M L)
using fx gx by (simp add : space-subprob-algebra)

have 1 :
∧

A B . A ∈ sets N =⇒ B ∈ sets L =⇒ emeasure (f x
⊗

M g x) (A ×
B) = emeasure (f x) A ∗ emeasure (g x) B

using fx gx by (intro G .emeasure-pair-measure-Times) (auto simp: space-subprob-algebra)
have emeasure (f x

⊗
M g x) (space (f x

⊗
M g x)) =

emeasure (f x) (space (f x)) ∗ emeasure (g x) (space (g x))
by (subst G .emeasure-pair-measure-Times[symmetric]) (simp-all add : space-pair-measure)
hence 2 :

∧
A. A ∈ sets (N

⊗
M L) =⇒ emeasure (f x

⊗
M g x) (space N ×

space L − A) =
... − emeasure (f x

⊗
M g x) A

using emeasure-compl [simplified , OF - P .emeasure-finite]
unfolding sets-eq
unfolding sets-eq-imp-space-eq [OF sets-eq]
by (simp add : space-pair-measure G .emeasure-pair-measure-Times)

note 1 2 sets-eq }
note Times = this(1) and Compl = this(2) and sets-eq = this(3)

fix A assume A: A ∈ sets (N
⊗

M L)
show (λa. emeasure (f a

⊗
M g a) A) ∈ borel-measurable M

using Int-stable-pair-measure-generator pair-measure-closed A
unfolding sets-pair-measure

proof (induct A rule: sigma-sets-induct-disjoint)
case (basic A) then show ?case
by (auto intro!: borel-measurable-times-ennreal simp: Times cong : measurable-cong)

(auto intro!: measurable-emeasure-kernel f g)
next

case (compl A)
then have A: A ∈ sets (N

⊗
M L)

by (auto simp: sets-pair-measure)
have (λx . emeasure (f x) (space (f x)) ∗ emeasure (g x) (space (g x)) −

emeasure (f x
⊗

M g x) A) ∈ borel-measurable M (is ?f ∈ ?M)
using compl(2) f g by measurable

thus ?case by (simp add : Compl A cong : measurable-cong)
next

case (union A)
then have range A ⊆ sets (N

⊗
M L) disjoint-family A

by (auto simp: sets-pair-measure)

THEORY “Giry-Monad” 549

then have (λa. emeasure (f a
⊗

M g a) (
⋃

i . A i)) ∈ borel-measurable M ←→
(λa.

∑
i . emeasure (f a

⊗
M g a) (A i)) ∈ borel-measurable M

by (intro measurable-cong suminf-emeasure[symmetric])
(auto simp: sets-eq)

also have . . .
using union by auto

finally show ?case .
qed simp

qed

lemma restrict-space-measurable:
assumes X : X 6= {} X ∈ sets K
assumes N : N ∈ measurable M (subprob-algebra K)
shows (λx . restrict-space (N x) X) ∈ measurable M (subprob-algebra (restrict-space

K X))
proof (rule measurable-subprob-algebra)

fix a assume a: a ∈ space M
from N [THEN measurable-space, OF this]
have subprob-space (N a) and [simp]: sets (N a) = sets K space (N a) = space

K
by (auto simp add : space-subprob-algebra dest : sets-eq-imp-space-eq)

then interpret subprob-space N a
by simp

show subprob-space (restrict-space (N a) X)
proof

show space (restrict-space (N a) X) 6= {}
using X by (auto simp add : space-restrict-space)

show emeasure (restrict-space (N a) X) (space (restrict-space (N a) X)) ≤ 1
using X by (simp add : emeasure-restrict-space space-restrict-space subprob-emeasure-le-1)

qed
show sets (restrict-space (N a) X) = sets (restrict-space K X)

by (intro sets-restrict-space-cong) fact
next

fix A assume A: A ∈ sets (restrict-space K X)
show (λa. emeasure (restrict-space (N a) X) A) ∈ borel-measurable M
proof (subst measurable-cong)

fix a assume a ∈ space M
from N [THEN measurable-space, OF this]
have [simp]: sets (N a) = sets K space (N a) = space K

by (auto simp add : space-subprob-algebra dest : sets-eq-imp-space-eq)
show emeasure (restrict-space (N a) X) A = emeasure (N a) (A ∩ X)
using X A by (subst emeasure-restrict-space) (auto simp add : sets-restrict-space

ac-simps)
next

show (λw . emeasure (N w) (A ∩ X)) ∈ borel-measurable M
using A X
by (intro measurable-compose[OF N measurable-emeasure-subprob-algebra])

(auto simp: sets-restrict-space)
qed

THEORY “Giry-Monad” 550

qed

19 Properties of return

definition return :: ′a measure ⇒ ′a ⇒ ′a measure where
return R x = measure-of (space R) (sets R) (λA. indicator A x)

lemma space-return[simp]: space (return M x) = space M
by (simp add : return-def)

lemma sets-return[simp]: sets (return M x) = sets M
by (simp add : return-def)

lemma measurable-return1 [simp]: measurable (return N x) L = measurable N L
by (simp cong : measurable-cong-sets)

lemma measurable-return2 [simp]: measurable L (return N x) = measurable L N
by (simp cong : measurable-cong-sets)

lemma return-sets-cong : sets M = sets N =⇒ return M = return N
by (auto dest : sets-eq-imp-space-eq simp: fun-eq-iff return-def)

lemma return-cong : sets A = sets B =⇒ return A x = return B x
by (auto simp add : return-def dest : sets-eq-imp-space-eq)

lemma emeasure-return[simp]:
assumes A ∈ sets M
shows emeasure (return M x) A = indicator A x

proof (rule emeasure-measure-of [OF return-def])
show sets M ⊆ Pow (space M) by (rule sets.space-closed)
show positive (sets (return M x)) (λA. indicator A x) by (simp add : positive-def)
from assms show A ∈ sets (return M x) unfolding return-def by simp
show countably-additive (sets (return M x)) (λA. indicator A x)

by (auto intro!: countably-additiveI suminf-indicator)
qed

lemma prob-space-return: x ∈ space M =⇒ prob-space (return M x)
by rule simp

lemma subprob-space-return: x ∈ space M =⇒ subprob-space (return M x)
by (intro prob-space-return prob-space-imp-subprob-space)

lemma subprob-space-return-ne:
assumes space M 6= {} shows subprob-space (return M x)

proof
show emeasure (return M x) (space (return M x)) ≤ 1

by (subst emeasure-return) (auto split : split-indicator)
qed (simp, fact)

THEORY “Giry-Monad” 551

lemma measure-return: assumes X : X ∈ sets M shows measure (return M x)
X = indicator X x
unfolding measure-def emeasure-return[OF X , of x] by (simp split : split-indicator)

lemma AE-return:
assumes [simp]: x ∈ space M and [measurable]: Measurable.pred M P
shows (AE y in return M x . P y) ←→ P x

proof −
have (AE y in return M x . y /∈ {x∈space M . ¬ P x}) ←→ P x
by (subst AE-iff-null-sets[symmetric]) (simp-all add : null-sets-def split : split-indicator)

also have (AE y in return M x . y /∈ {x∈space M . ¬ P x}) ←→ (AE y in return
M x . P y)

by (rule AE-cong) auto
finally show ?thesis .

qed

lemma nn-integral-return:
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
+ a. g a ∂return M x) = g x

proof−
interpret prob-space return M x by (rule prob-space-return[OF 〈x ∈ space M 〉])
have (

∫
+ a. g a ∂return M x) = (

∫
+ a. g x ∂return M x) using assms

by (intro nn-integral-cong-AE) (auto simp: AE-return)
also have ... = g x

using nn-integral-const [of return M x] emeasure-space-1 by simp
finally show ?thesis .

qed

lemma integral-return:
fixes g :: - ⇒ ′a :: {banach, second-countable-topology}
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
a. g a ∂return M x) = g x

proof−
interpret prob-space return M x by (rule prob-space-return[OF 〈x ∈ space M 〉])
have (

∫
a. g a ∂return M x) = (

∫
a. g x ∂return M x) using assms

by (intro integral-cong-AE) (auto simp: AE-return)
then show ?thesis

using prob-space by simp
qed

lemma return-measurable[measurable]: return N ∈ measurable N (subprob-algebra
N)

by (rule measurable-subprob-algebra) (auto simp: subprob-space-return)

lemma distr-return:
assumes f ∈ measurable M N and x ∈ space M
shows distr (return M x) N f = return N (f x)
using assms by (intro measure-eqI) (simp-all add : indicator-def emeasure-distr)

THEORY “Giry-Monad” 552

lemma return-restrict-space:
Ω ∈ sets M =⇒ return (restrict-space M Ω) x = restrict-space (return M x) Ω
by (auto intro!: measure-eqI simp: sets-restrict-space emeasure-restrict-space)

lemma measurable-distr2 :
assumes f [measurable]: case-prod f ∈ measurable (L

⊗
M M) N

assumes g [measurable]: g ∈ measurable L (subprob-algebra M)
shows (λx . distr (g x) N (f x)) ∈ measurable L (subprob-algebra N)

proof −
have (λx . distr (g x) N (f x)) ∈ measurable L (subprob-algebra N)
←→ (λx . distr (return L x

⊗
M g x) N (case-prod f)) ∈ measurable L

(subprob-algebra N)
proof (rule measurable-cong)

fix x assume x : x ∈ space L
have gx : g x ∈ space (subprob-algebra M)

using measurable-space[OF g x] .
then have [simp]: sets (g x) = sets M

by (simp add : space-subprob-algebra)
then have [simp]: space (g x) = space M

by (rule sets-eq-imp-space-eq)
let ?R = return L x
from measurable-compose-Pair1 [OF x f] have f-M ′: f x ∈ measurable M N

by simp
interpret subprob-space g x

using gx by (simp add : space-subprob-algebra)
have space-pair-M ′[simp]:

∧
X . space (X

⊗
M g x) = space (X

⊗
M M)

by (simp add : space-pair-measure)
show distr (g x) N (f x) = distr (?R

⊗
M g x) N (case-prod f) (is ?l = ?r)

proof (rule measure-eqI)
show sets ?l = sets ?r

by simp
next

fix A assume A ∈ sets ?l
then have A[measurable]: A ∈ sets N

by simp
then have emeasure ?r A = emeasure (?R

⊗
M g x) ((λ(x , y). f x y) −‘ A

∩ space (?R
⊗

M g x))
by (auto simp add : emeasure-distr f-M ′ cong : measurable-cong-sets)

also have . . . = (
∫

+M ′′. emeasure (g x) (f M ′′ −‘ A ∩ space M) ∂?R)
apply (subst emeasure-pair-measure-alt)
apply (rule measurable-sets[OF - A])
apply (auto simp add : f-M ′ cong : measurable-cong-sets)
apply (intro nn-integral-cong arg-cong [where f =emeasure (g x)])
apply (auto simp: space-subprob-algebra space-pair-measure)
done

also have . . . = emeasure (g x) (f x −‘ A ∩ space M)
by (subst nn-integral-return)

(auto simp: x intro!: measurable-emeasure)
also have . . . = emeasure ?l A

THEORY “Giry-Monad” 553

by (simp add : emeasure-distr f-M ′ cong : measurable-cong-sets)
finally show emeasure ?l A = emeasure ?r A ..

qed
qed
also have . . .
apply (intro measurable-compose[OF measurable-pair-measure measurable-distr])
apply (rule return-measurable)
apply measurable
done

finally show ?thesis .
qed

lemma nn-integral-measurable-subprob-algebra2 :
assumes f [measurable]: (λ(x , y). f x y) ∈ borel-measurable (M

⊗
M N)

assumes N [measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx . integralN (L x) (f x)) ∈ borel-measurable M

proof −
note nn-integral-measurable-subprob-algebra[measurable]
note measurable-distr2 [measurable]
have (λx . integralN (distr (L x) (M

⊗
M N) (λy . (x , y))) (λ(x , y). f x y)) ∈

borel-measurable M
by measurable

then show (λx . integralN (L x) (f x)) ∈ borel-measurable M
by (rule measurable-cong [THEN iffD1 , rotated])

(simp add : nn-integral-distr)
qed

lemma emeasure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x :space M . A x) ∈ sets (M

⊗
M N)

assumes L[measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx . emeasure (L x) (A x)) ∈ borel-measurable M

proof −
{ fix x assume x ∈ space M

then have Pair x −‘ Sigma (space M) A = A x
by auto

with sets-Pair1 [OF A, of x] have A x ∈ sets N
by auto }

note ∗∗ = this

have ∗:
∧

x . fst x ∈ space M =⇒ snd x ∈ A (fst x) ←→ x ∈ (SIGMA x :space
M . A x)

by (auto simp: fun-eq-iff)
have (λ(x , y). indicator (A x) y ::ennreal) ∈ borel-measurable (M

⊗
M N)

apply measurable
apply (subst measurable-cong)
apply (rule ∗)
apply (auto simp: space-pair-measure)
done

then have (λx . integralN (L x) (indicator (A x))) ∈ borel-measurable M

THEORY “Giry-Monad” 554

by (intro nn-integral-measurable-subprob-algebra2 [where N =N] L)
then show (λx . emeasure (L x) (A x)) ∈ borel-measurable M

apply (rule measurable-cong [THEN iffD1 , rotated])
apply (rule nn-integral-indicator)
apply (simp add : subprob-measurableD [OF L] ∗∗)
done

qed

lemma measure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x :space M . A x) ∈ sets (M

⊗
M N)

assumes L[measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx . measure (L x) (A x)) ∈ borel-measurable M
unfolding measure-def
by (intro borel-measurable-enn2real emeasure-measurable-subprob-algebra2 [OF assms])

definition select-sets M = (SOME N . sets M = sets (subprob-algebra N))

lemma select-sets1 :
sets M = sets (subprob-algebra N) =⇒ sets M = sets (subprob-algebra (select-sets

M))
unfolding select-sets-def by (rule someI)

lemma sets-select-sets[simp]:
assumes sets: sets M = sets (subprob-algebra N)
shows sets (select-sets M) = sets N
unfolding select-sets-def

proof (rule someI2)
show sets M = sets (subprob-algebra N)

by fact
next

fix L assume sets M = sets (subprob-algebra L)
with sets have eq : space (subprob-algebra N) = space (subprob-algebra L)

by (intro sets-eq-imp-space-eq) simp
show sets L = sets N
proof cases

assume space (subprob-algebra N) = {}
with space-subprob-algebra-empty-iff [of N] space-subprob-algebra-empty-iff [of

L]
show ?thesis

by (simp add : eq space-empty-iff)
next

assume space (subprob-algebra N) 6= {}
with eq show ?thesis

by (fastforce simp add : space-subprob-algebra)
qed

qed

lemma space-select-sets[simp]:
sets M = sets (subprob-algebra N) =⇒ space (select-sets M) = space N

THEORY “Giry-Monad” 555

by (intro sets-eq-imp-space-eq sets-select-sets)

20 Join

definition join :: ′a measure measure ⇒ ′a measure where
join M = measure-of (space (select-sets M)) (sets (select-sets M)) (λB .

∫
+ M ′.

emeasure M ′ B ∂M)

lemma
shows space-join[simp]: space (join M) = space (select-sets M)

and sets-join[simp]: sets (join M) = sets (select-sets M)
by (simp-all add : join-def)

lemma emeasure-join:
assumes M [simp, measurable-cong]: sets M = sets (subprob-algebra N) and A:

A ∈ sets N
shows emeasure (join M) A = (

∫
+ M ′. emeasure M ′ A ∂M)

proof (rule emeasure-measure-of [OF join-def])
show countably-additive (sets (join M)) (λB .

∫
+ M ′. emeasure M ′ B ∂M)

proof (rule countably-additiveI)
fix A :: nat ⇒ ′a set assume A: range A ⊆ sets (join M) disjoint-family A
have (

∑
i .

∫
+ M ′. emeasure M ′ (A i) ∂M) = (

∫
+M ′. (

∑
i . emeasure M ′ (A

i)) ∂M)
using A by (subst nn-integral-suminf) (auto simp: measurable-emeasure-subprob-algebra)
also have . . . = (

∫
+M ′. emeasure M ′ (

⋃
i . A i) ∂M)

proof (rule nn-integral-cong)
fix M ′ assume M ′ ∈ space M
then show (

∑
i . emeasure M ′ (A i)) = emeasure M ′ (

⋃
i . A i)

using A sets-eq-imp-space-eq [OF M] by (simp add : suminf-emeasure
space-subprob-algebra)

qed
finally show (

∑
i .

∫
+M ′. emeasure M ′ (A i) ∂M) = (

∫
+M ′. emeasure M ′

(
⋃

i . A i) ∂M) .
qed

qed (auto simp: A sets.space-closed positive-def)

lemma measurable-join:
join ∈ measurable (subprob-algebra (subprob-algebra N)) (subprob-algebra N)

proof (cases space N 6= {}, rule measurable-subprob-algebra)
fix A assume A ∈ sets N
let ?B = borel-measurable (subprob-algebra (subprob-algebra N))
have (λM ′. emeasure (join M ′) A) ∈ ?B ←→ (λM ′. (

∫
+ M ′′. emeasure M ′′ A

∂M ′)) ∈ ?B
proof (rule measurable-cong)

fix M ′ assume M ′ ∈ space (subprob-algebra (subprob-algebra N))
then show emeasure (join M ′) A = (

∫
+ M ′′. emeasure M ′′ A ∂M ′)

by (intro emeasure-join) (auto simp: space-subprob-algebra 〈A∈sets N 〉)
qed
also have (λM ′.

∫
+M ′′. emeasure M ′′ A ∂M ′) ∈ ?B

THEORY “Giry-Monad” 556

using measurable-emeasure-subprob-algebra[OF 〈A∈sets N 〉]
by (rule nn-integral-measurable-subprob-algebra)

finally show (λM ′. emeasure (join M ′) A) ∈ borel-measurable (subprob-algebra
(subprob-algebra N)) .
next

assume [simp]: space N 6= {}
fix M assume M : M ∈ space (subprob-algebra (subprob-algebra N))
then have (

∫
+M ′. emeasure M ′ (space N) ∂M) ≤ (

∫
+M ′. 1 ∂M)

apply (intro nn-integral-mono)
apply (auto simp: space-subprob-algebra

dest !: sets-eq-imp-space-eq subprob-space.emeasure-space-le-1)
done

with M show subprob-space (join M)
by (intro subprob-spaceI)
(auto simp: emeasure-join space-subprob-algebra M assms dest : subprob-space.emeasure-space-le-1)

next
assume ¬(space N 6= {})
thus ?thesis by (simp add : measurable-empty-iff space-subprob-algebra-empty-iff)

qed (auto simp: space-subprob-algebra)

lemma nn-integral-join:
assumes f : f ∈ borel-measurable N

and M [measurable-cong]: sets M = sets (subprob-algebra N)
shows (

∫
+x . f x ∂join M) = (

∫
+M ′.

∫
+x . f x ∂M ′ ∂M)

using f
proof induct

case (cong f g)
moreover have integralN (join M) f = integralN (join M) g

by (intro nn-integral-cong cong) (simp add : M)
moreover from M have (

∫
+ M ′. integralN M ′ f ∂M) = (

∫
+ M ′. integralN

M ′ g ∂M)
by (intro nn-integral-cong cong)

(auto simp add : space-subprob-algebra dest !: sets-eq-imp-space-eq)
ultimately show ?case

by simp
next

case (set A)
moreover with M have (

∫
+ M ′. integralN M ′ (indicator A) ∂M) = (

∫
+ M ′.

emeasure M ′ A ∂M)
by (intro nn-integral-cong nn-integral-indicator)

(auto simp: space-subprob-algebra dest !: sets-eq-imp-space-eq)
ultimately show ?case

using M by (simp add : emeasure-join)
next

case (mult f c)
have (

∫
+ M ′.

∫
+ x . c ∗ f x ∂M ′ ∂M) = (

∫
+ M ′. c ∗

∫
+ x . f x ∂M ′ ∂M)

using mult M M [THEN sets-eq-imp-space-eq]
by (intro nn-integral-cong nn-integral-cmult) (auto simp add : space-subprob-algebra)
also have . . . = c ∗ (

∫
+ M ′.

∫
+ x . f x ∂M ′ ∂M)

THEORY “Giry-Monad” 557

using nn-integral-measurable-subprob-algebra[OF mult(2)]
by (intro nn-integral-cmult mult) (simp add : M)

also have . . . = c ∗ (integralN (join M) f)
by (simp add : mult)

also have . . . = (
∫

+ x . c ∗ f x ∂join M)
using mult(2 ,3) by (intro nn-integral-cmult [symmetric] mult) (simp add : M

cong : measurable-cong-sets)
finally show ?case by simp

next
case (add f g)
have (

∫
+ M ′.

∫
+ x . f x + g x ∂M ′ ∂M) = (

∫
+ M ′. (

∫
+ x . f x ∂M ′) + (

∫
+

x . g x ∂M ′) ∂M)
using add M M [THEN sets-eq-imp-space-eq]

by (intro nn-integral-cong nn-integral-add) (auto simp add : space-subprob-algebra)
also have . . . = (

∫
+ M ′.

∫
+ x . f x ∂M ′ ∂M) + (

∫
+ M ′.

∫
+ x . g x ∂M ′ ∂M)

using nn-integral-measurable-subprob-algebra[OF add(1)]
using nn-integral-measurable-subprob-algebra[OF add(4)]
by (intro nn-integral-add add) (simp-all add : M)

also have . . . = (integralN (join M) f) + (integralN (join M) g)
by (simp add : add)

also have . . . = (
∫

+ x . f x + g x ∂join M)
using add by (intro nn-integral-add [symmetric] add) (simp-all add : M cong :

measurable-cong-sets)
finally show ?case by (simp add : ac-simps)

next
case (seq F)
have (

∫
+ M ′.

∫
+ x . (SUP i . F i) x ∂M ′ ∂M) = (

∫
+ M ′. (SUP i .

∫
+ x . F i

x ∂M ′) ∂M)
using seq M M [THEN sets-eq-imp-space-eq] unfolding SUP-apply
by (intro nn-integral-cong nn-integral-monotone-convergence-SUP)

(auto simp add : space-subprob-algebra)
also have . . . = (SUP i .

∫
+ M ′.

∫
+ x . F i x ∂M ′ ∂M)

using nn-integral-measurable-subprob-algebra[OF seq(1)] seq
by (intro nn-integral-monotone-convergence-SUP)

(simp-all add : M incseq-nn-integral incseq-def le-fun-def nn-integral-mono)
also have . . . = (SUP i . integralN (join M) (F i))

by (simp add : seq)
also have . . . = (

∫
+ x . (SUP i . F i x) ∂join M)

using seq by (intro nn-integral-monotone-convergence-SUP [symmetric] seq)
(simp-all add : M cong : measurable-cong-sets)

finally show ?case by (simp add : ac-simps)
qed

lemma measurable-join1 :
[[f ∈ measurable N K ; sets M = sets (subprob-algebra N)]]
=⇒ f ∈ measurable (join M) K

by(simp add : measurable-def)

lemma

THEORY “Giry-Monad” 558

fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable N
and f-bounded :

∧
x . x ∈ space N =⇒ |f x | ≤ B

and M [measurable-cong]: sets M = sets (subprob-algebra N)
and fin: finite-measure M
and M-bounded : AE M ′ in M . emeasure M ′ (space M ′) ≤ ennreal B ′

shows integrable-join: integrable (join M) f (is ?integrable)
and integral-join: integralL (join M) f =

∫
M ′. integralL M ′ f ∂M (is ?integral)

proof(case-tac [!] space N = {})
assume ∗: space N = {}
show ?integrable

using M ∗ by(simp add : real-integrable-def measurable-def nn-integral-empty)
have (

∫
M ′. integralL M ′ f ∂M) = (

∫
M ′. 0 ∂M)

proof(rule integral-cong)
fix M ′

assume M ′ ∈ space M
with sets-eq-imp-space-eq [OF M] have space M ′ = space N

by(auto simp add : space-subprob-algebra dest : sets-eq-imp-space-eq)
with ∗ show (

∫
x . f x ∂M ′) = 0 by(simp add : integral-empty)

qed simp
then show ?integral

using M ∗ by(simp add : integral-empty)
next

assume ∗: space N 6= {}

from ∗ have B [simp]: 0 ≤ B by(auto dest : f-bounded)

have [measurable]: f ∈ borel-measurable (join M) using f-measurable M
by(rule measurable-join1)

{ fix f M ′

assume [measurable]: f ∈ borel-measurable N
and f-bounded :

∧
x . x ∈ space N =⇒ f x ≤ B

and M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

have AE x in M ′. ennreal (f x) ≤ ennreal B
proof(rule AE-I2)

fix x
assume x ∈ space M ′

with 〈M ′ ∈ space M 〉 sets-eq-imp-space-eq [OF M]
have x ∈ space N by(auto simp add : space-subprob-algebra dest : sets-eq-imp-space-eq)
from f-bounded [OF this] show ennreal (f x) ≤ ennreal B by simp

qed
then have (

∫
+ x . ennreal (f x) ∂M ′) ≤ (

∫
+ x . ennreal B ∂M ′)

by(rule nn-integral-mono-AE)
also have . . . = ennreal B ∗ emeasure M ′ (space M ′) by(simp)
also have . . . ≤ ennreal B ∗ ennreal B ′ by(rule mult-left-mono)(fact , simp)
also have . . . ≤ ennreal B ∗ ennreal |B ′| by(rule mult-left-mono)(simp-all)
finally have (

∫
+ x . ennreal (f x) ∂M ′) ≤ ennreal (B ∗ |B ′|) by (simp add :

ennreal-mult) }

THEORY “Giry-Monad” 559

note bounded1 = this

have bounded :∧
f . [[f ∈ borel-measurable N ;

∧
x . x ∈ space N =⇒ f x ≤ B]]

=⇒ (
∫

+ x . ennreal (f x) ∂join M) 6= top
proof −

fix f
assume [measurable]: f ∈ borel-measurable N

and f-bounded :
∧

x . x ∈ space N =⇒ f x ≤ B
have (

∫
+ x . ennreal (f x) ∂join M) = (

∫
+ M ′.

∫
+ x . ennreal (f x) ∂M ′ ∂M)

by(rule nn-integral-join[OF - M]) simp
also have . . . ≤

∫
+ M ′. B ∗ |B ′| ∂M

using bounded1 [OF 〈f ∈ borel-measurable N 〉 f-bounded]
by(rule nn-integral-mono-AE [OF AE-mp[OF M-bounded AE-I2], rule-format])
also have . . . = B ∗ |B ′| ∗ emeasure M (space M) by simp
also have . . . < ∞

using finite-measure.finite-emeasure-space[OF fin]
by(simp add : ennreal-mult-less-top less-top)

finally show ?thesis f by simp
qed
have f-pos: (

∫
+ x . ennreal (f x) ∂join M) 6= ∞

and f-neg : (
∫

+ x . ennreal (− f x) ∂join M) 6= ∞
using f-bounded by(auto del : notI intro!: bounded simp add : abs-le-iff)

show ?integrable using f-pos f-neg by(simp add : real-integrable-def)

note [measurable] = nn-integral-measurable-subprob-algebra

have int-f : (
∫

+ x . f x ∂join M) =
∫

+ M ′.
∫

+ x . f x ∂M ′ ∂M
by(simp add : nn-integral-join[OF - M])

have int-mf : (
∫

+ x . − f x ∂join M) = (
∫

+ M ′.
∫

+ x . − f x ∂M ′ ∂M)
by(simp add : nn-integral-join[OF - M])

have pos-finite: AE M ′ in M . (
∫

+ x . f x ∂M ′) 6= ∞
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

then have (
∫

+ x . ennreal (f x) ∂M ′) ≤ ennreal (B ∗ |B ′|)
using f-measurable by(auto intro!: bounded1 dest : f-bounded)

then show (
∫

+ x . ennreal (f x) ∂M ′) 6= ∞
by (auto simp: top-unique)

qed
hence [simp]: (

∫
+ M ′. ennreal (enn2real (

∫
+ x . f x ∂M ′)) ∂M) = (

∫
+ M ′.∫

+ x . f x ∂M ′ ∂M)
by (rule nn-integral-cong-AE [OF AE-mp]) (simp add : less-top)

from f-pos have [simp]: integrable M (λM ′. enn2real (
∫

+ x . f x ∂M ′))
by(simp add : int-f real-integrable-def nn-integral-0-iff-AE [THEN iffD2] ennreal-neg

enn2real-nonneg)

THEORY “Giry-Monad” 560

have neg-finite: AE M ′ in M . (
∫

+ x . − f x ∂M ′) 6= ∞
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

then have (
∫

+ x . ennreal (− f x) ∂M ′) ≤ ennreal (B ∗ |B ′|)
using f-measurable by(auto intro!: bounded1 dest : f-bounded)

then show (
∫

+ x . ennreal (− f x) ∂M ′) 6= ∞
by (auto simp: top-unique)

qed
hence [simp]: (

∫
+ M ′. ennreal (enn2real (

∫
+ x . − f x ∂M ′)) ∂M) = (

∫
+ M ′.∫

+ x . − f x ∂M ′ ∂M)
by (rule nn-integral-cong-AE [OF AE-mp]) (simp add : less-top)

from f-neg have [simp]: integrable M (λM ′. enn2real (
∫

+ x . − f x ∂M ′))
by(simp add : int-mf real-integrable-def nn-integral-0-iff-AE [THEN iffD2] ennreal-neg

enn2real-nonneg)

have (
∫

x . f x ∂join M) = enn2real (
∫

+ N .
∫

+x . f x ∂N ∂M) − enn2real (
∫

+

N .
∫

+x . − f x ∂N ∂M)
unfolding real-lebesgue-integral-def [OF 〈?integrable〉] by (simp add : nn-integral-join[OF

- M])
also have . . . = (

∫
N . enn2real (

∫
+x . f x ∂N) ∂M) − (

∫
N . enn2real (

∫
+x .

− f x ∂N) ∂M)
using pos-finite neg-finite by (subst (1 2) integral-eq-nn-integral) (auto simp:

enn2real-nonneg)
also have . . . = (

∫
N . enn2real (

∫
+x . f x ∂N) − enn2real (

∫
+x . − f x ∂N)

∂M)
by simp

also have . . . =
∫

M ′.
∫

x . f x ∂M ′ ∂M
proof (rule integral-cong-AE)

show AE x in M .
enn2real (

∫
+ x . ennreal (f x) ∂x) − enn2real (

∫
+ x . ennreal (− f x) ∂x)

= integralL x f
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ B ′

then interpret subprob-space M ′

by (auto simp: M [THEN sets-eq-imp-space-eq] space-subprob-algebra)

from 〈M ′ ∈ space M 〉 sets-eq-imp-space-eq [OF M]
have [measurable-cong]: sets M ′= sets N by(simp add : space-subprob-algebra)
hence [simp]: space M ′ = space N by(rule sets-eq-imp-space-eq)
have integrable M ′ f

by(rule integrable-const-bound [where B=B])(auto simp add : f-bounded)
then show enn2real (

∫
+ x . f x ∂M ′) − enn2real (

∫
+ x . − f x ∂M ′) =

∫
x . f x ∂M ′

by(simp add : real-lebesgue-integral-def)
qed

qed simp-all
finally show ?integral by simp

THEORY “Giry-Monad” 561

qed

lemma join-assoc:
assumes M [measurable-cong]: sets M = sets (subprob-algebra (subprob-algebra

N))
shows join (distr M (subprob-algebra N) join) = join (join M)

proof (rule measure-eqI)
fix A assume A ∈ sets (join (distr M (subprob-algebra N) join))
then have A: A ∈ sets N by simp
show emeasure (join (distr M (subprob-algebra N) join)) A = emeasure (join

(join M)) A
using measurable-join[of N]

by (auto simp: M A nn-integral-distr emeasure-join measurable-emeasure-subprob-algebra
sets-eq-imp-space-eq [OF M] space-subprob-algebra nn-integral-join[OF

- M]
intro!: nn-integral-cong emeasure-join)

qed (simp add : M)

lemma join-return:
assumes sets M = sets N and subprob-space M
shows join (return (subprob-algebra N) M) = M
by (rule measure-eqI)

(simp-all add : emeasure-join space-subprob-algebra
measurable-emeasure-subprob-algebra nn-integral-return assms)

lemma join-return ′:
assumes sets N = sets M
shows join (distr M (subprob-algebra N) (return N)) = M

apply (rule measure-eqI)
apply (simp add : assms)
apply (subgoal-tac return N ∈ measurable M (subprob-algebra N))
apply (simp add : emeasure-join nn-integral-distr measurable-emeasure-subprob-algebra
assms)
apply (subst measurable-cong-sets, rule assms[symmetric], rule refl , rule return-measurable)
done

lemma join-distr-distr :
fixes f :: ′a ⇒ ′b and M :: ′a measure measure and N :: ′b measure
assumes sets M = sets (subprob-algebra R) and f ∈ measurable R N
shows join (distr M (subprob-algebra N) (λM . distr M N f)) = distr (join M)

N f (is ?r = ?l)
proof (rule measure-eqI)

fix A assume A ∈ sets ?r
hence A-in-N : A ∈ sets N by simp

from assms have f ∈ measurable (join M) N
by (simp cong : measurable-cong-sets)

moreover from assms and A-in-N have f−‘A ∩ space R ∈ sets R
by (intro measurable-sets) simp-all

THEORY “Giry-Monad” 562

ultimately have emeasure (distr (join M) N f) A =
∫

+M ′. emeasure M ′ (f−‘A
∩ space R) ∂M

by (simp-all add : A-in-N emeasure-distr emeasure-join assms)

also have ... =
∫

+ x . emeasure (distr x N f) A ∂M using A-in-N
proof (intro nn-integral-cong , subst emeasure-distr)

fix M ′ assume M ′ ∈ space M
from assms have space M = space (subprob-algebra R)

using sets-eq-imp-space-eq by blast
with 〈M ′ ∈ space M 〉 have [simp]: sets M ′= sets R using space-subprob-algebra

by blast
show f ∈ measurable M ′ N by (simp cong : measurable-cong-sets add : assms)
have space M ′ = space R by (rule sets-eq-imp-space-eq) simp
thus emeasure M ′ (f −‘ A ∩ space R) = emeasure M ′ (f −‘ A ∩ space M ′)

by simp
qed

also have (λM . distr M N f) ∈ measurable M (subprob-algebra N)
by (simp cong : measurable-cong-sets add : assms measurable-distr)

hence (
∫

+ x . emeasure (distr x N f) A ∂M) =
emeasure (join (distr M (subprob-algebra N) (λM . distr M N f))) A

by (simp-all add : emeasure-join assms A-in-N nn-integral-distr measurable-emeasure-subprob-algebra)
finally show emeasure ?r A = emeasure ?l A ..

qed simp

definition bind :: ′a measure ⇒ (′a ⇒ ′b measure) ⇒ ′b measure where
bind M f = (if space M = {} then count-space {} else

join (distr M (subprob-algebra (f (SOME x . x ∈ space M))) f))

adhoc-overloading Monad-Syntax .bind bind

lemma bind-empty :
space M = {} =⇒ bind M f = count-space {}
by (simp add : bind-def)

lemma bind-nonempty :
space M 6= {} =⇒ bind M f = join (distr M (subprob-algebra (f (SOME x . x ∈

space M))) f)
by (simp add : bind-def)

lemma sets-bind-empty : sets M = {} =⇒ sets (bind M f) = {{}}
by (auto simp: bind-def)

lemma space-bind-empty : space M = {} =⇒ space (bind M f) = {}
by (simp add : bind-def)

lemma sets-bind [simp, measurable-cong]:
assumes f :

∧
x . x ∈ space M =⇒ sets (f x) = sets N and M : space M 6= {}

shows sets (bind M f) = sets N

THEORY “Giry-Monad” 563

using f [of SOME x . x ∈ space M] by (simp add : bind-nonempty M some-in-eq)

lemma space-bind [simp]:
assumes

∧
x . x ∈ space M =⇒ sets (f x) = sets N and space M 6= {}

shows space (bind M f) = space N
using assms by (intro sets-eq-imp-space-eq sets-bind)

lemma bind-cong :
assumes ∀ x ∈ space M . f x = g x
shows bind M f = bind M g

proof (cases space M = {})
assume space M 6= {}
hence (SOME x . x ∈ space M) ∈ space M by (rule-tac someI-ex) blast
with assms have f (SOME x . x ∈ space M) = g (SOME x . x ∈ space M) by

blast
with 〈space M 6= {}〉 and assms show ?thesis by (simp add : bind-nonempty

cong : distr-cong)
qed (simp add : bind-empty)

lemma bind-nonempty ′:
assumes f ∈ measurable M (subprob-algebra N) x ∈ space M
shows bind M f = join (distr M (subprob-algebra N) f)
using assms
apply (subst bind-nonempty , blast)
apply (subst subprob-algebra-cong [OF sets-kernel [OF assms(1) someI-ex]], blast)
apply (simp add : subprob-algebra-cong [OF sets-kernel [OF assms]])
done

lemma bind-nonempty ′′:
assumes f ∈ measurable M (subprob-algebra N) space M 6= {}
shows bind M f = join (distr M (subprob-algebra N) f)
using assms by (auto intro: bind-nonempty ′)

lemma emeasure-bind :
[[space M 6= {}; f ∈ measurable M (subprob-algebra N);X ∈ sets N]]

=⇒ emeasure (M >>= f) X =
∫

+x . emeasure (f x) X ∂M
by (simp add : bind-nonempty ′′ emeasure-join nn-integral-distr measurable-emeasure-subprob-algebra)

lemma nn-integral-bind :
assumes f : f ∈ borel-measurable B
assumes N : N ∈ measurable M (subprob-algebra B)
shows (

∫
+x . f x ∂(M >>= N)) = (

∫
+x .

∫
+y . f y ∂N x ∂M)

proof cases
assume M : space M 6= {} show ?thesis

unfolding bind-nonempty ′′[OF N M] nn-integral-join[OF f sets-distr]
by (rule nn-integral-distr [OF N])

(simp add : f nn-integral-measurable-subprob-algebra)
qed (simp add : bind-empty space-empty [of M] nn-integral-count-space)

THEORY “Giry-Monad” 564

lemma AE-bind :
assumes P [measurable]: Measurable.pred B P
assumes N [measurable]: N ∈ measurable M (subprob-algebra B)
shows (AE x in M >>= N . P x) ←→ (AE x in M . AE y in N x . P y)

proof cases
assume M : space M = {} show ?thesis

unfolding bind-empty [OF M] unfolding space-empty [OF M] by (simp add :
AE-count-space)
next

assume M : space M 6= {}
note sets-kernel [OF N , simp]
have ∗: (

∫
+x . indicator {x . ¬ P x} x ∂(M >>= N)) = (

∫
+x . indicator {x∈space

B . ¬ P x} x ∂(M >>= N))
by (intro nn-integral-cong) (simp add : space-bind [OF - M] split : split-indicator)

have (AE x in M >>= N . P x) ←→ (
∫

+ x . integralN (N x) (indicator {x ∈ space
B . ¬ P x}) ∂M) = 0

by (simp add : AE-iff-nn-integral sets-bind [OF - M] space-bind [OF - M] ∗
nn-integral-bind [where B=B]

del : nn-integral-indicator)
also have . . . = (AE x in M . AE y in N x . P y)

apply (subst nn-integral-0-iff-AE)
apply (rule measurable-compose[OF N nn-integral-measurable-subprob-algebra])
apply measurable
apply (intro eventually-subst AE-I2)
apply (auto simp add : subprob-measurableD(1)[OF N]

intro!: AE-iff-measurable[symmetric])
done

finally show ?thesis .
qed

lemma measurable-bind ′:
assumes M1 : f ∈ measurable M (subprob-algebra N) and

M2 : case-prod g ∈ measurable (M
⊗

M N) (subprob-algebra R)
shows (λx . bind (f x) (g x)) ∈ measurable M (subprob-algebra R)

proof (subst measurable-cong)
fix x assume x-in-M : x ∈ space M
with assms have space (f x) 6= {}

by (blast dest : subprob-space-kernel subprob-space.subprob-not-empty)
moreover from M2 x-in-M have g x ∈ measurable (f x) (subprob-algebra R)

by (subst measurable-cong-sets[OF sets-kernel [OF M1 x-in-M] refl])
(auto dest : measurable-Pair2)

ultimately show bind (f x) (g x) = join (distr (f x) (subprob-algebra R) (g x))
by (simp-all add : bind-nonempty ′′)

next
show (λw . join (distr (f w) (subprob-algebra R) (g w))) ∈ measurable M (subprob-algebra

R)
apply (rule measurable-compose[OF - measurable-join])
apply (rule measurable-distr2 [OF M2 M1])

THEORY “Giry-Monad” 565

done
qed

lemma measurable-bind [measurable (raw)]:
assumes M1 : f ∈ measurable M (subprob-algebra N) and

M2 : (λx . g (fst x) (snd x)) ∈ measurable (M
⊗

M N) (subprob-algebra R)
shows (λx . bind (f x) (g x)) ∈ measurable M (subprob-algebra R)
using assms by (auto intro: measurable-bind ′ simp: measurable-split-conv)

lemma measurable-bind2 :
assumes f ∈ measurable M (subprob-algebra N) and g ∈ measurable N (subprob-algebra

R)
shows (λx . bind (f x) g) ∈ measurable M (subprob-algebra R)

using assms by (intro measurable-bind ′ measurable-const) auto

lemma subprob-space-bind :
assumes subprob-space M f ∈ measurable M (subprob-algebra N)
shows subprob-space (M >>= f)

proof (rule subprob-space-kernel [of λx . x >>= f])
show (λx . x >>= f) ∈ measurable (subprob-algebra M) (subprob-algebra N)

by (rule measurable-bind , rule measurable-ident-sets, rule refl ,
rule measurable-compose[OF measurable-snd assms(2)])

from assms(1) show M ∈ space (subprob-algebra M)
by (simp add : space-subprob-algebra)

qed

lemma
fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable K
and f-bounded :

∧
x . x ∈ space K =⇒ |f x | ≤ B

and N [measurable]: N ∈ measurable M (subprob-algebra K)
and fin: finite-measure M
and M-bounded : AE x in M . emeasure (N x) (space (N x)) ≤ ennreal B ′

shows integrable-bind : integrable (bind M N) f (is ?integrable)
and integral-bind : integralL (bind M N) f =

∫
x . integralL (N x) f ∂M (is

?integral)
proof(case-tac [!] space M = {})

assume [simp]: space M 6= {}
interpret finite-measure M by(rule fin)

have integrable (join (distr M (subprob-algebra K) N)) f
using f-measurable f-bounded

by(rule integrable-join[where B ′=B ′])(simp-all add : finite-measure-distr AE-distr-iff
M-bounded)

then show ?integrable by(simp add : bind-nonempty ′′[where N =K])

have integralL (join (distr M (subprob-algebra K) N)) f =
∫

M ′. integralL M ′

f ∂distr M (subprob-algebra K) N
using f-measurable f-bounded

THEORY “Giry-Monad” 566

by(rule integral-join[where B ′=B ′])(simp-all add : finite-measure-distr AE-distr-iff
M-bounded)

also have . . . =
∫

x . integralL (N x) f ∂M
by(rule integral-distr)(simp-all add : integral-measurable-subprob-algebra[OF -])

finally show ?integral by(simp add : bind-nonempty ′′[where N =K])
qed(simp-all add : bind-def integrable-count-space lebesgue-integral-count-space-finite
integral-empty)

lemma (in prob-space) prob-space-bind :
assumes ae: AE x in M . prob-space (N x)

and N [measurable]: N ∈ measurable M (subprob-algebra S)
shows prob-space (M >>= N)

proof
have emeasure (M >>= N) (space (M >>= N)) = (

∫
+x . emeasure (N x) (space

(N x)) ∂M)
by (subst emeasure-bind [where N =S])

(auto simp: not-empty space-bind [OF sets-kernel] subprob-measurableD [OF
N] intro!: nn-integral-cong)

also have . . . = (
∫

+x . 1 ∂M)
using ae by (intro nn-integral-cong-AE , eventually-elim) (rule prob-space.emeasure-space-1)
finally show emeasure (M >>= N) (space (M >>= N)) = 1

by (simp add : emeasure-space-1)
qed

lemma (in subprob-space) bind-in-space:
A ∈ measurable M (subprob-algebra N) =⇒ (M >>= A) ∈ space (subprob-algebra

N)
by (auto simp add : space-subprob-algebra subprob-not-empty sets-kernel intro!:

subprob-space-bind)
unfold-locales

lemma (in subprob-space) measure-bind :
assumes f : f ∈ measurable M (subprob-algebra N) and X : X ∈ sets N
shows measure (M >>= f) X =

∫
x . measure (f x) X ∂M

proof −
interpret Mf : subprob-space M >>= f

by (rule subprob-space-bind [OF - f]) unfold-locales

{ fix x assume x ∈ space M
from f [THEN measurable-space, OF this] interpret subprob-space f x

by (simp add : space-subprob-algebra)
have emeasure (f x) X = ennreal (measure (f x) X) measure (f x) X ≤ 1

by (auto simp: emeasure-eq-measure subprob-measure-le-1) }
note this[simp]

have emeasure (M >>= f) X =
∫

+x . emeasure (f x) X ∂M
using subprob-not-empty f X by (rule emeasure-bind)

also have . . . =
∫

+x . ennreal (measure (f x) X) ∂M
by (intro nn-integral-cong) simp

THEORY “Giry-Monad” 567

also have . . . =
∫

x . measure (f x) X ∂M
by (intro nn-integral-eq-integral integrable-const-bound [where B=1]

measure-measurable-subprob-algebra2 [OF - f] pair-measureI X)
(auto simp: measure-nonneg)

finally show ?thesis
by (simp add : Mf .emeasure-eq-measure measure-nonneg integral-nonneg)

qed

lemma emeasure-bind-const :
space M 6= {} =⇒ X ∈ sets N =⇒ subprob-space N =⇒

emeasure (M >>= (λx . N)) X = emeasure N X ∗ emeasure M (space M)
by (simp add : bind-nonempty emeasure-join nn-integral-distr

space-subprob-algebra measurable-emeasure-subprob-algebra)

lemma emeasure-bind-const ′:
assumes subprob-space M subprob-space N
shows emeasure (M >>= (λx . N)) X = emeasure N X ∗ emeasure M (space M)

using assms
proof (case-tac X ∈ sets N)

fix X assume X ∈ sets N
thus emeasure (M >>= (λx . N)) X = emeasure N X ∗ emeasure M (space M)

using assms
by (subst emeasure-bind-const)
(simp-all add : subprob-space.subprob-not-empty subprob-space.emeasure-space-le-1)

next
fix X assume X /∈ sets N
with assms show emeasure (M >>= (λx . N)) X = emeasure N X ∗ emeasure

M (space M)
by (simp add : sets-bind [of - - N] subprob-space.subprob-not-empty

space-subprob-algebra emeasure-notin-sets)
qed

lemma emeasure-bind-const-prob-space:
assumes prob-space M subprob-space N
shows emeasure (M >>= (λx . N)) X = emeasure N X
using assms by (simp add : emeasure-bind-const ′ prob-space-imp-subprob-space

prob-space.emeasure-space-1)

lemma bind-return:
assumes f ∈ measurable M (subprob-algebra N) and x ∈ space M
shows bind (return M x) f = f x
using sets-kernel [OF assms] assms
by (simp-all add : distr-return join-return subprob-space-kernel bind-nonempty ′

cong : subprob-algebra-cong)

lemma bind-return ′:
shows bind M (return M) = M
by (cases space M = {})

(simp-all add : bind-empty space-empty [symmetric] bind-nonempty join-return ′

THEORY “Giry-Monad” 568

cong : subprob-algebra-cong)

lemma distr-bind :
assumes N : N ∈ measurable M (subprob-algebra K) space M 6= {}
assumes f : f ∈ measurable K R
shows distr (M >>= N) R f = (M >>= (λx . distr (N x) R f))
unfolding bind-nonempty ′′[OF N]
apply (subst bind-nonempty ′′[OF measurable-compose[OF N (1) measurable-distr]

N (2)])
apply (rule f)
apply (simp add : join-distr-distr [OF - f , symmetric])
apply (subst distr-distr [OF measurable-distr , OF f N (1)])
apply (simp add : comp-def)
done

lemma bind-distr :
assumes f [measurable]: f ∈ measurable M X
assumes N [measurable]: N ∈ measurable X (subprob-algebra K) and space M
6= {}

shows (distr M X f >>= N) = (M >>= (λx . N (f x)))
proof −

have space X 6= {} space M 6= {}
using 〈space M 6= {}〉 f [THEN measurable-space] by auto

then show ?thesis
by (simp add : bind-nonempty ′′[where N =K] distr-distr comp-def)

qed

lemma bind-count-space-singleton:
assumes subprob-space (f x)
shows count-space {x} >>= f = f x

proof−
have A:

∧
A. A ⊆ {x} =⇒ A = {} ∨ A = {x} by auto

have count-space {x} = return (count-space {x}) x
by (intro measure-eqI) (auto dest : A)

also have ... >>= f = f x
by (subst bind-return[of - - f x]) (auto simp: space-subprob-algebra assms)

finally show ?thesis .
qed

lemma restrict-space-bind :
assumes N : N ∈ measurable M (subprob-algebra K)
assumes space M 6= {}
assumes X [simp]: X ∈ sets K X 6= {}
shows restrict-space (bind M N) X = bind M (λx . restrict-space (N x) X)

proof (rule measure-eqI)
note N-sets = sets-bind [OF sets-kernel [OF N] assms(2), simp]
note N-space = sets-eq-imp-space-eq [OF N-sets, simp]
show sets (restrict-space (bind M N) X) = sets (bind M (λx . restrict-space (N

x) X))

THEORY “Giry-Monad” 569

by (simp add : sets-restrict-space assms(2) sets-bind [OF sets-kernel [OF restrict-space-measurable[OF
assms(4 ,3 ,1)]]])

fix A assume A ∈ sets (restrict-space (M >>= N) X)
with X have A ∈ sets K A ⊆ X

by (auto simp: sets-restrict-space)
then show emeasure (restrict-space (M >>= N) X) A = emeasure (M >>= (λx .

restrict-space (N x) X)) A
using assms
apply (subst emeasure-restrict-space)
apply (simp-all add : emeasure-bind [OF assms(2 ,1)])
apply (subst emeasure-bind [OF - restrict-space-measurable[OF - - N]])

apply (auto simp: sets-restrict-space emeasure-restrict-space space-subprob-algebra
intro!: nn-integral-cong dest !: measurable-space)

done
qed

lemma bind-restrict-space:
assumes A: A ∩ space M 6= {} A ∩ space M ∈ sets M
and f : f ∈ measurable (restrict-space M A) (subprob-algebra N)
shows restrict-space M A >>= f = M >>= (λx . if x ∈ A then f x else null-measure

(f (SOME x . x ∈ A ∧ x ∈ space M)))
(is ?lhs = ?rhs is - = M >>= ?f)

proof −
let ?P = λx . x ∈ A ∧ x ∈ space M
let ?x = Eps ?P
let ?c = null-measure (f ?x)
from A have ?P ?x by−(rule someI-ex , blast)
hence ?x ∈ space (restrict-space M A) by(simp add : space-restrict-space)
with f have f ?x ∈ space (subprob-algebra N) by(rule measurable-space)
hence sps: subprob-space (f ?x)

and sets: sets (f ?x) = sets N
by(simp-all add : space-subprob-algebra)

have space (f ?x) 6= {} using sps by(rule subprob-space.subprob-not-empty)
moreover have sets ?c = sets N by(simp add : null-measure-def)(simp add :

sets)
ultimately have c: ?c ∈ space (subprob-algebra N)

by(simp add : space-subprob-algebra subprob-space-null-measure)
from f A c have f ′: ?f ∈ measurable M (subprob-algebra N)

by(simp add : measurable-restrict-space-iff)

from A have [simp]: space M 6= {} by blast

have ?lhs = join (distr (restrict-space M A) (subprob-algebra N) f)
using assms by(simp add : space-restrict-space bind-nonempty ′′)

also have . . . = join (distr M (subprob-algebra N) ?f)
by(rule measure-eqI)(auto simp add : emeasure-join nn-integral-distr nn-integral-restrict-space

f f ′ A intro: nn-integral-cong)
also have . . . = ?rhs using f ′ by(simp add : bind-nonempty ′′)
finally show ?thesis .

THEORY “Giry-Monad” 570

qed

lemma bind-const ′: [[prob-space M ; subprob-space N]] =⇒ M >>= (λx . N) = N
by (intro measure-eqI)

(simp-all add : space-subprob-algebra prob-space.not-empty emeasure-bind-const-prob-space)

lemma bind-return-distr :
space M 6= {} =⇒ f ∈ measurable M N =⇒ bind M (return N ◦ f) = distr M

N f
apply (simp add : bind-nonempty)
apply (subst subprob-algebra-cong)
apply (rule sets-return)
apply (subst distr-distr [symmetric])
apply (auto intro!: return-measurable simp: distr-distr [symmetric] join-return ′)
done

lemma bind-return-distr ′:
space M 6= {} =⇒ f ∈ measurable M N =⇒ bind M (λx . return N (f x)) = distr

M N f
using bind-return-distr [of M f N] by (simp add : comp-def)

lemma bind-assoc:
fixes f :: ′a ⇒ ′b measure and g :: ′b ⇒ ′c measure
assumes M1 : f ∈ measurable M (subprob-algebra N) and M2 : g ∈ measurable

N (subprob-algebra R)
shows bind (bind M f) g = bind M (λx . bind (f x) g)

proof (cases space M = {})
assume [simp]: space M 6= {}
from assms have [simp]: space N 6= {} space R 6= {}

by (auto simp: measurable-empty-iff space-subprob-algebra-empty-iff)
from assms have sets-fx [simp]:

∧
x . x ∈ space M =⇒ sets (f x) = sets N

by (simp add : sets-kernel)
have ex-in:

∧
A. A 6= {} =⇒ ∃ x . x ∈ A by blast

note sets-some[simp] = sets-kernel [OF M1 someI-ex [OF ex-in[OF 〈space M 6=
{}〉]]]

sets-kernel [OF M2 someI-ex [OF ex-in[OF 〈space N 6= {}〉]]]
note space-some[simp] = sets-eq-imp-space-eq [OF this(1)] sets-eq-imp-space-eq [OF

this(2)]

have bind M (λx . bind (f x) g) =
join (distr M (subprob-algebra R) (join ◦ (λx . (distr x (subprob-algebra R)

g)) ◦ f))
by (simp add : sets-eq-imp-space-eq [OF sets-fx] bind-nonempty o-def

cong : subprob-algebra-cong distr-cong)
also have distr M (subprob-algebra R) (join ◦ (λx . (distr x (subprob-algebra R)

g)) ◦ f) =
distr (distr (distr M (subprob-algebra N) f)

(subprob-algebra (subprob-algebra R))
(λx . distr x (subprob-algebra R) g))

THEORY “Giry-Monad” 571

(subprob-algebra R) join
apply (subst distr-distr ,

(blast intro: measurable-comp measurable-distr measurable-join M1
M2)+)+

apply (simp add : o-assoc)
done

also have join ... = bind (bind M f) g
by (simp add : join-assoc join-distr-distr M2 bind-nonempty cong : subprob-algebra-cong)

finally show ?thesis ..
qed (simp add : bind-empty)

lemma double-bind-assoc:
assumes Mg : g ∈ measurable N (subprob-algebra N ′)
assumes Mf : f ∈ measurable M (subprob-algebra M ′)
assumes Mh: case-prod h ∈ measurable (M

⊗
M M ′) N

shows do {x ← M ; y ← f x ; g (h x y)} = do {x ← M ; y ← f x ; return N (h x
y)} >>= g
proof−

have do {x ← M ; y ← f x ; return N (h x y)} >>= g =
do {x ← M ; do {y ← f x ; return N (h x y)} >>= g}

using Mh by (auto intro!: bind-assoc measurable-bind ′[OF Mf] Mf Mg
measurable-compose[OF - return-measurable] simp: measurable-split-conv)

also from Mh have
∧

x . x ∈ space M =⇒ h x ∈ measurable M ′ N by measurable
hence do {x ← M ; do {y ← f x ; return N (h x y)} >>= g} =

do {x ← M ; y ← f x ; return N (h x y) >>= g}
apply (intro ballI bind-cong bind-assoc)
apply (subst measurable-cong-sets[OF sets-kernel [OF Mf] refl], simp)
apply (rule measurable-compose[OF - return-measurable], auto intro: Mg)
done

also have
∧

x . x ∈ space M =⇒ space (f x) = space M ′

by (intro sets-eq-imp-space-eq sets-kernel [OF Mf])
with measurable-space[OF Mh]

have do {x ← M ; y ← f x ; return N (h x y) >>= g} = do {x ← M ; y ← f x ;
g (h x y)}

by (intro ballI bind-cong bind-return[OF Mg]) (auto simp: space-pair-measure)
finally show ?thesis ..

qed

lemma (in prob-space) M-in-subprob[measurable (raw)]: M ∈ space (subprob-algebra
M)

by (simp add : space-subprob-algebra) unfold-locales

lemma (in pair-prob-space) pair-measure-eq-bind :
(M1

⊗
M M2) = (M1 >>= (λx . M2 >>= (λy . return (M1

⊗
M M2) (x , y))))

proof (rule measure-eqI)
have ps-M2 : prob-space M2 by unfold-locales
note return-measurable[measurable]
show sets (M1

⊗
M M2) = sets (M1 >>= (λx . M2 >>= (λy . return (M1

⊗
M

M2) (x , y))))

THEORY “Giry-Monad” 572

by (simp-all add : M1 .not-empty M2 .not-empty)
fix A assume [measurable]: A ∈ sets (M1

⊗
M M2)

show emeasure (M1
⊗

M M2) A = emeasure (M1 >>= (λx . M2 >>= (λy . return
(M1

⊗
M M2) (x , y)))) A

by (auto simp: M2 .emeasure-pair-measure M1 .not-empty M2 .not-empty emeasure-bind [where
N =M1

⊗
M M2]
intro!: nn-integral-cong)

qed

lemma (in pair-prob-space) bind-rotate:
assumes C [measurable]: (λ(x , y). C x y) ∈ measurable (M1

⊗
M M2) (subprob-algebra

N)
shows (M1 >>= (λx . M2 >>= (λy . C x y))) = (M2 >>= (λy . M1 >>= (λx . C x

y)))
proof −

interpret swap: pair-prob-space M2 M1 by unfold-locales
note measurable-bind [where N =M2 , measurable]
note measurable-bind [where N =M1 , measurable]
have [simp]: M1 ∈ space (subprob-algebra M1) M2 ∈ space (subprob-algebra M2)

by (auto simp: space-subprob-algebra) unfold-locales
have (M1 >>= (λx . M2 >>= (λy . C x y))) =

(M1 >>= (λx . M2 >>= (λy . return (M1
⊗

M M2) (x , y)))) >>= (λ(x , y). C x
y)

by (auto intro!: bind-cong simp: bind-return[where N =N] space-pair-measure
bind-assoc[where N =M1

⊗
M M2 and R=N])

also have . . . = (distr (M2
⊗

M M1) (M1
⊗

M M2) (λ(x , y). (y , x))) >>=
(λ(x , y). C x y)

unfolding pair-measure-eq-bind [symmetric] distr-pair-swap[symmetric] ..
also have . . . = (M2 >>= (λx . M1 >>= (λy . return (M2

⊗
M M1) (x , y)))) >>=

(λ(y , x). C x y)
unfolding swap.pair-measure-eq-bind [symmetric]

by (auto simp add : space-pair-measure M1 .not-empty M2 .not-empty bind-distr [OF
- C] intro!: bind-cong)

also have . . . = (M2 >>= (λy . M1 >>= (λx . C x y)))
by (auto intro!: bind-cong simp: bind-return[where N =N] space-pair-measure

bind-assoc[where N =M2
⊗

M M1 and R=N])
finally show ?thesis .

qed

21 Measures form a ω-chain complete partial or-
der

definition SUP-measure :: (nat ⇒ ′a measure) ⇒ ′a measure where
SUP-measure M = measure-of (

⋃
i . space (M i)) (

⋃
i . sets (M i)) (λA. SUP i .

emeasure (M i) A)

lemma
assumes const :

∧
i j . sets (M i) = sets (M j)

THEORY “Giry-Monad” 573

shows space-SUP-measure: space (SUP-measure M) = space (M i) (is ?sp)
and sets-SUP-measure: sets (SUP-measure M) = sets (M i) (is ?st)

proof −
have (

⋃
i . sets (M i)) = sets (M i)

using const by auto
moreover have (

⋃
i . space (M i)) = space (M i)

using const [THEN sets-eq-imp-space-eq] by auto
moreover have

∧
i . sets (M i) ⊆ Pow (space (M i))

by (auto dest : sets.sets-into-space)
ultimately show ?sp ?st

by (simp-all add : SUP-measure-def)
qed

lemma emeasure-SUP-measure:
assumes const :

∧
i j . sets (M i) = sets (M j)

and mono: mono (λi . emeasure (M i))
shows emeasure (SUP-measure M) A = (SUP i . emeasure (M i) A)

proof cases
assume A ∈ sets (SUP-measure M)
show ?thesis
proof (rule emeasure-measure-of [OF SUP-measure-def])
show countably-additive (sets (SUP-measure M)) (λA. SUP i . emeasure (M i)

A)
proof (rule countably-additiveI)

fix A :: nat ⇒ ′a set assume range A ⊆ sets (SUP-measure M)
then have

∧
i j . A i ∈ sets (M j)

using sets-SUP-measure[of M , OF const] by simp
moreover assume disjoint-family A
ultimately show (

∑
i . SUP ia. emeasure (M ia) (A i)) = (SUP i . emeasure

(M i) (
⋃

i . A i))
using suminf-SUP-eq

using mono by (subst ennreal-suminf-SUP-eq) (auto simp: mono-def
le-fun-def intro!: SUP-cong suminf-emeasure)

qed
show positive (sets (SUP-measure M)) (λA. SUP i . emeasure (M i) A)

by (auto simp: positive-def intro: SUP-upper2)
show (

⋃
i . sets (M i)) ⊆ Pow (

⋃
i . space (M i))

using sets.sets-into-space by auto
qed fact

next
assume A /∈ sets (SUP-measure M)
with sets-SUP-measure[of M , OF const] show ?thesis

by (simp add : emeasure-notin-sets)
qed

lemma bind-return ′′: sets M = sets N =⇒ M >>= return N = M
by (cases space M = {})

(simp-all add : bind-empty space-empty [symmetric] bind-nonempty join-return ′

cong : subprob-algebra-cong)

THEORY “Projective-Family” 574

lemma (in prob-space) distr-const [simp]:
c ∈ space N =⇒ distr M N (λx . c) = return N c
by (rule measure-eqI) (auto simp: emeasure-distr emeasure-space-1)

lemma return-count-space-eq-density :
return (count-space M) x = density (count-space M) (indicator {x})

by (rule measure-eqI)
(auto simp: indicator-inter-arith[symmetric] emeasure-density split : split-indicator)

lemma null-measure-in-space-subprob-algebra [simp]:
null-measure M ∈ space (subprob-algebra M) ←→ space M 6= {}

by(simp add : space-subprob-algebra subprob-space-null-measure-iff)

end

22 Projective Family

theory Projective-Family
imports Finite-Product-Measure Giry-Monad
begin

lemma vimage-restrict-preseve-mono:
assumes J : J ⊆ I
and sets: A ⊆ (ΠE i∈J . S i) B ⊆ (ΠE i∈J . S i) and ne: (ΠE i∈I . S i) 6= {}
and eq : (λx . restrict x J) −‘ A ∩ (ΠE i∈I . S i) ⊆ (λx . restrict x J) −‘ B ∩

(ΠE i∈I . S i)
shows A ⊆ B

proof (intro subsetI)
fix x assume x ∈ A
from ne obtain y where y :

∧
i . i ∈ I =⇒ y i ∈ S i by auto

have J ∩ (I − J) = {} by auto
show x ∈ B
proof cases

assume x : x ∈ (ΠE i∈J . S i)
have merge J (I − J) (x ,y) ∈ (λx . restrict x J) −‘ A ∩ (ΠE i∈I . S i)

using y x 〈J ⊆ I 〉 PiE-cancel-merge[of J I − J x y S] 〈x∈A〉

by (auto simp del : PiE-cancel-merge simp add : Un-absorb1)
also have . . . ⊆ (λx . restrict x J) −‘ B ∩ (ΠE i∈I . S i) by fact
finally show x ∈ B

using y x 〈J ⊆ I 〉 PiE-cancel-merge[of J I − J x y S] 〈x∈A〉 eq
by (auto simp del : PiE-cancel-merge simp add : Un-absorb1)

qed (insert 〈x∈A〉 sets, auto)
qed

locale projective-family =
fixes I :: ′i set and P :: ′i set ⇒ (′i ⇒ ′a) measure and M :: ′i ⇒ ′a measure
assumes P :

∧
J H . J ⊆ H =⇒ finite H =⇒ H ⊆ I =⇒ P J = distr (P H)

(PiM J M) (λf . restrict f J)

THEORY “Projective-Family” 575

assumes prob-space-P :
∧

J . finite J =⇒ J ⊆ I =⇒ prob-space (P J)
begin

lemma sets-P : finite J =⇒ J ⊆ I =⇒ sets (P J) = sets (PiM J M)
by (subst P [of J J]) simp-all

lemma space-P : finite J =⇒ J ⊆ I =⇒ space (P J) = space (PiM J M)
using sets-P by (rule sets-eq-imp-space-eq)

lemma not-empty-M : i ∈ I =⇒ space (M i) 6= {}
using prob-space-P [THEN prob-space.not-empty] by (auto simp: space-PiM space-P)

lemma not-empty : space (PiM I M) 6= {}
by (simp add : not-empty-M)

abbreviation
emb L K ≡ prod-emb L M K

lemma emb-preserve-mono:
assumes J ⊆ L L ⊆ I and sets: X ∈ sets (PiM J M) Y ∈ sets (PiM J M)
assumes emb L J X ⊆ emb L J Y
shows X ⊆ Y

proof (rule vimage-restrict-preseve-mono)
show X ⊆ (ΠE i∈J . space (M i)) Y ⊆ (ΠE i∈J . space (M i))

using sets[THEN sets.sets-into-space] by (auto simp: space-PiM)
show (ΠE i∈L. space (M i)) 6= {}

using 〈L ⊆ I 〉 by (auto simp add : not-empty-M space-PiM [symmetric])
show (λx . restrict x J) −‘ X ∩ (ΠE i∈L. space (M i)) ⊆ (λx . restrict x J) −‘

Y ∩ (ΠE i∈L. space (M i))
using 〈prod-emb L M J X ⊆ prod-emb L M J Y 〉 by (simp add : prod-emb-def)

qed fact

lemma emb-injective:
assumes L: J ⊆ L L ⊆ I and X : X ∈ sets (PiM J M) and Y : Y ∈ sets (PiM

J M)
shows emb L J X = emb L J Y =⇒ X = Y
by (intro antisym emb-preserve-mono[OF L X Y] emb-preserve-mono[OF L Y

X]) auto

lemma emeasure-P : J ⊆ K =⇒ finite K =⇒ K ⊆ I =⇒ X ∈ sets (PiM J M)
=⇒ P K (emb K J X) = P J X

by (auto intro!: emeasure-distr-restrict [symmetric] simp: P sets-P)

inductive-set generator :: (′i ⇒ ′a) set set where
finite J =⇒ J ⊆ I =⇒ X ∈ sets (PiM J M) =⇒ emb I J X ∈ generator

lemma algebra-generator : algebra (space (PiM I M)) generator
unfolding algebra-iff-Int

proof (safe elim!: generator .cases)

THEORY “Projective-Family” 576

fix J X assume J : finite J J ⊆ I and X : X ∈ sets (PiM J M)

from X [THEN sets.sets-into-space] J show x ∈ emb I J X =⇒ x ∈ space (PiM
I M) for x

by (auto simp: prod-emb-def space-PiM)

have emb I J (space (PiM J M) − X) ∈ generator
by (intro generator .intros J sets.Diff sets.top X)

with J show space (PiM I M) − emb I J X ∈ generator
by (simp add : space-PiM prod-emb-PiE)

fix K Y assume K : finite K K ⊆ I and Y : Y ∈ sets (PiM K M)
have emb I (J ∪ K) (emb (J ∪ K) J X) ∩ emb I (J ∪ K) (emb (J ∪ K) K

Y) ∈ generator
unfolding prod-emb-Int [symmetric]
by (intro generator .intros sets.Int measurable-prod-emb) (auto intro!: J K X

Y)
with J K X Y show emb I J X ∩ emb I K Y ∈ generator

by simp
qed (force simp: generator .simps prod-emb-empty [symmetric])

interpretation generator : algebra space (PiM I M) generator
by (rule algebra-generator)

lemma sets-PiM-generator : sets (PiM I M) = sigma-sets (space (PiM I M))
generator
proof (intro antisym sets.sigma-sets-subset)

show sets (PiM I M) ⊆ sigma-sets (space (PiM I M)) generator
unfolding sets-PiM-single space-PiM [symmetric]

proof (intro sigma-sets-mono ′, safe)
fix i A assume i ∈ I and A: A ∈ sets (M i)
then have {f ∈ space (PiM I M). f i ∈ A} = emb I {i} (ΠE j∈{i}. A)
by (auto simp: prod-emb-def space-PiM restrict-def Pi-iff PiE-iff extensional-def)
with 〈i∈I 〉 A show {f ∈ space (PiM I M). f i ∈ A} ∈ generator

by (auto intro!: generator .intros sets-PiM-I-finite)
qed

qed (auto elim!: generator .cases)

definition mu-G (µG) where
µG A = (THE x . ∀ J⊆I . finite J −→ (∀X∈sets (PiM J M). A = emb I J X
−→ x = emeasure (P J) X))

definition lim :: (′i ⇒ ′a) measure where
lim = extend-measure (space (PiM I M)) generator (λx . x) µG

lemma space-lim[simp]: space lim = space (PiM I M)
using generator .space-closed
unfolding lim-def by (intro space-extend-measure) simp

THEORY “Projective-Family” 577

lemma sets-lim[simp, measurable]: sets lim = sets (PiM I M)
using generator .space-closed by (simp add : lim-def sets-PiM-generator sets-extend-measure)

lemma mu-G-spec:
assumes J : finite J J ⊆ I X ∈ sets (PiM J M)
shows µG (emb I J X) = emeasure (P J) X
unfolding mu-G-def

proof (intro the-equality allI impI ballI)
fix K Y assume K : finite K K ⊆ I Y ∈ sets (PiM K M)

and [simp]: emb I J X = emb I K Y
have emeasure (P K) Y = emeasure (P (K ∪ J)) (emb (K ∪ J) K Y)

using K J by (simp add : emeasure-P)
also have emb (K ∪ J) K Y = emb (K ∪ J) J X

using K J by (simp add : emb-injective[of K ∪ J I])
also have emeasure (P (K ∪ J)) (emb (K ∪ J) J X) = emeasure (P J) X

using K J by (subst emeasure-P) simp-all
finally show emeasure (P J) X = emeasure (P K) Y ..

qed (insert J , force)

lemma positive-mu-G : positive generator µG
proof −

show ?thesis
proof (safe intro!: positive-def [THEN iffD2])

obtain J where finite J J ⊆ I by auto
then have µG (emb I J {}) = 0

by (subst mu-G-spec) auto
then show µG {} = 0 by simp

qed
qed

lemma additive-mu-G : additive generator µG
proof (safe intro!: additive-def [THEN iffD2] elim!: generator .cases)

fix J X K Y assume J : finite J J ⊆ I X ∈ sets (PiM J M)
and K : finite K K ⊆ I Y ∈ sets (PiM K M)
and emb I J X ∩ emb I K Y = {}

then have JK-disj : emb (J ∪ K) J X ∩ emb (J ∪ K) K Y = {}
by (intro emb-injective[of J ∪ K I - {}]) (auto simp: sets.Int prod-emb-Int)

have µG (emb I J X ∪ emb I K Y) = µG (emb I (J ∪ K) (emb (J ∪ K) J X
∪ emb (J ∪ K) K Y))

using J K by simp
also have . . . = emeasure (P (J ∪ K)) (emb (J ∪ K) J X ∪ emb (J ∪ K) K

Y)
using J K by (simp add : mu-G-spec sets.Un del : prod-emb-Un)

also have . . . = µG (emb I J X) + µG (emb I K Y)
using J K JK-disj by (simp add : plus-emeasure[symmetric] mu-G-spec emeasure-P

sets-P)
finally show µG (emb I J X ∪ emb I K Y) = µG (emb I J X) + µG (emb I

K Y) .
qed

THEORY “Projective-Family” 578

lemma emeasure-lim:
assumes JX : finite J J ⊆ I X ∈ sets (PiM J M)
assumes cont :

∧
J X . (

∧
i . J i ⊆ I) =⇒ incseq J =⇒ (

∧
i . finite (J i)) =⇒ (

∧
i .

X i ∈ sets (PiM (J i) M)) =⇒
decseq (λi . emb I (J i) (X i)) =⇒ 0 < (INF i . P (J i) (X i)) =⇒ (

⋂
i . emb I

(J i) (X i)) 6= {}
shows emeasure lim (emb I J X) = P J X

proof −
have ∃µ. (∀ s∈generator . µ s = µG s) ∧

measure-space (space (PiM I M)) (sigma-sets (space (PiM I M)) generator) µ
proof (rule generator .caratheodory-empty-continuous[OF positive-mu-G additive-mu-G])

show
∧

A. A ∈ generator =⇒ µG A 6= ∞
proof (clarsimp elim!: generator .cases simp: mu-G-spec del : notI)

fix J assume finite J J ⊆ I
then interpret prob-space P J by (rule prob-space-P)
show

∧
X . X ∈ sets (PiM J M) =⇒ emeasure (P J) X 6= top

by simp
qed

next
fix A assume range A ⊆ generator and decseq A (

⋂
i . A i) = {}

then have ∀ i . ∃ J X . A i = emb I J X ∧ finite J ∧ J ⊆ I ∧ X ∈ sets (PiM
J M)

unfolding image-subset-iff generator .simps by blast
then obtain J X where A:

∧
i . A i = emb I (J i) (X i)

and ∗:
∧

i . finite (J i)
∧

i . J i ⊆ I
∧

i . X i ∈ sets (PiM (J i) M)
by metis

have (INF i . P (J i) (X i)) = 0
proof (rule ccontr)

assume INF-P : (INF i . P (J i) (X i)) 6= 0
have (

⋂
i . emb I (

⋃
n≤i . J n) (emb (

⋃
n≤i . J n) (J i) (X i))) 6= {}

proof (rule cont)
show decseq (λi . emb I (

⋃
n≤i . J n) (emb (

⋃
n≤i . J n) (J i) (X i)))

using ∗ 〈decseq A〉 by (subst prod-emb-trans) (auto simp: A[abs-def])
show 0 < (INF i . P (

⋃
n≤i . J n) (emb (

⋃
n≤i . J n) (J i) (X i)))

using ∗ INF-P by (subst emeasure-P) (auto simp: less-le intro!:
INF-greatest)

show incseq (λi .
⋃

n≤i . J n)
by (force simp: incseq-def)

qed (insert ∗, auto)
with 〈(

⋂
i . A i) = {}〉 ∗ show False

by (subst (asm) prod-emb-trans) (auto simp: A[abs-def])
qed
moreover have (λi . P (J i) (X i)) −−−−→ (INF i . P (J i) (X i))
proof (intro LIMSEQ-INF antimonoI)

fix x y :: nat assume x ≤ y
have P (J y ∪ J x) (emb (J y ∪ J x) (J y) (X y)) ≤ P (J y ∪ J x) (emb (J

y ∪ J x) (J x) (X x))
using 〈decseq A〉[THEN decseqD , OF 〈x≤y〉] ∗

THEORY “Projective-Family” 579

by (auto simp: A sets-P del : subsetI intro!: emeasure-mono 〈x ≤ y〉

emb-preserve-mono[of J y ∪ J x I , where X =emb (J y ∪ J x) (J y)
(X y)])

then show P (J y) (X y) ≤ P (J x) (X x)
using ∗ by (simp add : emeasure-P)

qed
ultimately show (λi . µG (A i)) −−−−→ 0

by (auto simp: A[abs-def] mu-G-spec ∗)
qed
then obtain µ where eq : ∀ s∈generator . µ s = µG s

and ms: measure-space (space (PiM I M)) (sets (PiM I M)) µ
by (metis sets-PiM-generator)

show ?thesis
proof (subst emeasure-extend-measure[OF lim-def])

show A ∈ generator =⇒ µ A = µG A for A
using eq by simp

show positive (sets lim) µ countably-additive (sets lim) µ
using ms by (auto simp add : measure-space-def)

show (λx . x) ‘ generator ⊆ Pow (space (PiM I M))
using generator .space-closed by simp

show emb I J X ∈ generator µG (emb I J X) = emeasure (P J) X
using JX by (auto intro: generator .intros simp: mu-G-spec)

qed
qed

end

sublocale product-prob-space ⊆ projective-family I λJ . PiM J M M
unfolding projective-family-def

proof (intro conjI allI impI distr-restrict)
show

∧
J . finite J =⇒ prob-space (PiM J M)

by (intro prob-spaceI) (simp add : space-PiM emeasure-PiM emeasure-space-1)
qed auto

Proof due to Ionescu Tulcea.

locale Ionescu-Tulcea =
fixes P :: nat ⇒ (nat ⇒ ′a) ⇒ ′a measure and M :: nat ⇒ ′a measure
assumes P [measurable]:

∧
i . P i ∈ measurable (PiM {0 ..<i}M) (subprob-algebra

(M i))
assumes prob-space-P :

∧
i x . x ∈ space (PiM {0 ..<i} M) =⇒ prob-space (P i

x)
begin

lemma non-empty [simp]: space (M i) 6= {}
proof (induction i rule: less-induct)

case (less i)
then obtain x where

∧
j . j < i =⇒ x j ∈ space (M j)

unfolding ex-in-conv [symmetric] by metis
then have ∗: restrict x {0 ..<i} ∈ space (PiM {0 ..<i} M)

THEORY “Projective-Family” 580

by (auto simp: space-PiM PiE-iff)
then interpret prob-space P i (restrict x {0 ..<i})

by (rule prob-space-P)
show ?case

using not-empty subprob-measurableD(1)[OF P , OF ∗] by simp
qed

lemma space-PiM-not-empty [simp]: space (PiM UNIV M) 6= {}
unfolding space-PiM-empty-iff by auto

lemma space-P : x ∈ space (PiM {0 ..<n} M) =⇒ space (P n x) = space (M n)
by (simp add : P [THEN subprob-measurableD(1)])

lemma sets-P [measurable-cong]: x ∈ space (PiM {0 ..<n} M) =⇒ sets (P n x) =
sets (M n)

by (simp add : P [THEN subprob-measurableD(2)])

definition eP :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
eP n ω = distr (P n ω) (PiM {0 ..<Suc n} M) (fun-upd ω n)

lemma measurable-eP [measurable]:
eP n ∈ measurable (PiM {0 ..< n} M) (subprob-algebra (PiM {0 ..<Suc n} M))
by (auto simp: eP-def [abs-def] measurable-split-conv

intro!: measurable-fun-upd [where J ={0 ..<n}] measurable-distr2 [OF - P])

lemma space-eP :
x ∈ space (PiM {0 ..<n} M) =⇒ space (eP n x) = space (PiM {0 ..<Suc n} M)
by (simp add : measurable-eP [THEN subprob-measurableD(1)])

lemma sets-eP [measurable]:
x ∈ space (PiM {0 ..<n} M) =⇒ sets (eP n x) = sets (PiM {0 ..<Suc n} M)
by (simp add : measurable-eP [THEN subprob-measurableD(2)])

lemma prob-space-eP : x ∈ space (PiM {0 ..<n} M) =⇒ prob-space (eP n x)
unfolding eP-def
by (intro prob-space.prob-space-distr prob-space-P measurable-fun-upd [where J ={0 ..<n}])

auto

lemma nn-integral-eP :
ω ∈ space (PiM {0 ..<n} M) =⇒ f ∈ borel-measurable (PiM {0 ..<Suc n} M)

=⇒
(
∫

+x . f x ∂eP n ω) = (
∫

+x . f (ω(n := x)) ∂P n ω)
unfolding eP-def
by (subst nn-integral-distr) (auto intro!: measurable-fun-upd [where J ={0 ..<n}]

simp: space-PiM PiE-iff)

lemma emeasure-eP :
assumes ω[simp]: ω ∈ space (PiM {0 ..<n} M) and A[measurable]: A ∈ sets

(PiM {0 ..<Suc n} M)

THEORY “Projective-Family” 581

shows eP n ω A = P n ω ((λx . ω(n := x)) −‘ A ∩ space (M n))
using nn-integral-eP [of ω n indicator A]
apply (simp add : sets-eP nn-integral-indicator [symmetric] sets-P del : nn-integral-indicator)
apply (subst nn-integral-indicator [symmetric])
using measurable-sets[OF measurable-fun-upd [OF - measurable-const [OF ω] measurable-id]

A, of n]
apply (auto simp add : sets-P atLeastLessThanSuc space-P simp del : nn-integral-indicator

intro!: nn-integral-cong split : split-indicator)
done

primrec C :: nat ⇒ nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
C n 0 ω = return (PiM {0 ..<n} M) ω
| C n (Suc m) ω = C n m ω >>= eP (n + m)

lemma measurable-C [measurable]:
C n m ∈ measurable (PiM {0 ..<n} M) (subprob-algebra (PiM {0 ..<n + m}

M))
by (induction m) auto

lemma space-C :
x ∈ space (PiM {0 ..<n} M) =⇒ space (C n m x) = space (PiM {0 ..<n + m}

M)
by (simp add : measurable-C [THEN subprob-measurableD(1)])

lemma sets-C [measurable-cong]:
x ∈ space (PiM {0 ..<n} M) =⇒ sets (C n m x) = sets (PiM {0 ..<n + m} M)
by (simp add : measurable-C [THEN subprob-measurableD(2)])

lemma prob-space-C : x ∈ space (PiM {0 ..<n} M) =⇒ prob-space (C n m x)
proof (induction m)

case (Suc m) then show ?case
by (auto intro!: prob-space.prob-space-bind [where S=PiM {0 ..<Suc (n + m)}

M]
simp: space-C prob-space-eP)

qed (auto intro!: prob-space-return simp: space-PiM)

lemma split-C :
assumes ω: ω ∈ space (PiM {0 ..<n} M) shows (C n m ω >>= C (n + m) l)

= C n (m + l) ω
proof (induction l)

case 0
with ω show ?case

by (simp add : bind-return-distr ′ prob-space-C [THEN prob-space.not-empty]
distr-cong [OF refl sets-C [symmetric, OF ω]])

next
case (Suc l) with ω show ?case
by (simp add : bind-assoc[symmetric, OF - measurable-eP]) (simp add : ac-simps)

qed

THEORY “Projective-Family” 582

lemma nn-integral-C :
assumes m ≤ m ′ and f [measurable]: f ∈ borel-measurable (PiM {0 ..<n+m}

M)
and nonneg :

∧
x . x ∈ space (PiM {0 ..<n+m} M) =⇒ 0 ≤ f x

and x : x ∈ space (PiM {0 ..<n} M)
shows (

∫
+x . f x ∂C n m x) = (

∫
+x . f (restrict x {0 ..<n+m}) ∂C n m ′ x)

using 〈m ≤ m ′〉

proof (induction rule: dec-induct)
case (step i)
let ?E = λx . f (restrict x {0 ..<n + m}) and ?C = λi f .

∫
+x . f x ∂C n i x

from 〈m≤i 〉 x have ?C i ?E = ?C (Suc i) ?E
by (auto simp: nn-integral-bind [where B=PiM {0 ..< Suc (n + i)} M] space-C

nn-integral-eP
intro!: nn-integral-cong)

(simp add : space-PiM PiE-iff nonneg prob-space.emeasure-space-1 [OF
prob-space-P])

with step show ?case by (simp del : restrict-apply)
qed (auto simp: space-PiM space-C [OF x] simp del : restrict-apply intro!: nn-integral-cong)

lemma emeasure-C :
assumes m ≤ m ′ and A[measurable]: A ∈ sets (PiM {0 ..<n+m} M) and

[simp]: x ∈ space (PiM {0 ..<n} M)
shows emeasure (C n m ′ x) (prod-emb {0 ..<n + m ′} M {0 ..<n+m} A) =

emeasure (C n m x) A
using assms
by (subst (1 2) nn-integral-indicator [symmetric])

(auto intro!: nn-integral-cong split : split-indicator simp del : nn-integral-indicator
simp: nn-integral-C [of m m ′ - n] prod-emb-iff space-PiM PiE-iff sets-C

space-C)

lemma distr-C :
assumes m ≤ m ′ and [simp]: x ∈ space (PiM {0 ..<n} M)
shows C n m x = distr (C n m ′ x) (PiM {0 ..<n+m} M) (λx . restrict x

{0 ..<n+m})
proof (rule measure-eqI)

fix A assume A ∈ sets (C n m x)
with 〈m ≤ m ′〉 show emeasure (C n m x) A = emeasure (distr (C n m ′ x) (PiM
{0 ..<n + m} M) (λx . restrict x {0 ..<n + m})) A

by (subst emeasure-C [symmetric, OF 〈m ≤ m ′〉]) (auto intro!: emeasure-distr-restrict [symmetric]
simp: sets-C)
qed (simp add : sets-C)

definition up-to :: nat set ⇒ nat where
up-to J = (LEAST n. ∀ i≥n. i /∈ J)

lemma up-to-less: finite J =⇒ i ∈ J =⇒ i < up-to J
unfolding up-to-def
by (rule LeastI2 [of - Suc (Max J)]) (auto simp: Suc-le-eq not-le[symmetric])

THEORY “Projective-Family” 583

lemma up-to-iff : finite J =⇒ up-to J ≤ n ←→ (∀ i∈J . i < n)
proof safe

show finite J =⇒ up-to J ≤ n =⇒ i ∈ J =⇒ i < n for i
using up-to-less[of J i] by auto

qed (auto simp: up-to-def intro!: Least-le)

lemma up-to-iff-Ico: finite J =⇒ up-to J ≤ n ←→ J ⊆ {0 ..<n}
by (auto simp: up-to-iff)

lemma up-to: finite J =⇒ J ⊆ {0 ..< up-to J}
by (auto simp: up-to-less)

lemma up-to-mono: J ⊆ H =⇒ finite H =⇒ up-to J ≤ up-to H
by (auto simp add : up-to-iff finite-subset up-to-less)

definition CI :: nat set ⇒ (nat ⇒ ′a) measure where
CI J = distr (C 0 (up-to J) (λx . undefined)) (PiM J M) (λf . restrict f J)

sublocale PF : projective-family UNIV CI
unfolding projective-family-def

proof safe
show finite J =⇒ prob-space (CI J) for J

using up-to[of J] unfolding CI-def
by (intro prob-space.prob-space-distr prob-space-C measurable-restrict) auto

note measurable-cong-sets[OF sets-C , simp]
have [simp]: J ⊆ H =⇒ (λf . restrict f J) ∈ measurable (PiM H M) (PiM J M)

for H J
by (auto intro!: measurable-restrict)

show J ⊆ H =⇒ finite H =⇒ CI J = distr (CI H) (PiM J M) (λf . restrict f
J) for J H

by (simp add : CI-def distr-C [OF up-to-mono[of J H]] up-to up-to-mono distr-distr
comp-def

inf .absorb2 finite-subset)
qed

lemma emeasure-CI ′:
finite J =⇒ X ∈ sets (PiM J M) =⇒ CI J X = C 0 (up-to J) (λ-. undefined)

(PF .emb {0 ..<up-to J} J X)
unfolding CI-def using up-to[of J] by (rule emeasure-distr-restrict) (auto simp:

sets-C)

lemma emeasure-CI :
J ⊆ {0 ..<n} =⇒ X ∈ sets (PiM J M) =⇒ CI J X = C 0 n (λ-. undefined)

(PF .emb {0 ..<n} J X)
apply (subst emeasure-CI ′, simp-all add : finite-subset)
apply (subst emeasure-C [symmetric, of up-to J n])
apply (auto simp: finite-subset up-to-iff-Ico up-to-less)

THEORY “Projective-Family” 584

apply (subst prod-emb-trans)
apply (auto simp: up-to-less finite-subset up-to-iff-Ico)
done

lemma lim:
assumes J : finite J and X : X ∈ sets (PiM J M)
shows emeasure PF .lim (PF .emb UNIV J X) = emeasure (CI J) X

proof (rule PF .emeasure-lim[OF J subset-UNIV X])
fix J X ′ assume J [simp]:

∧
i . finite (J i) and X ′[measurable]:

∧
i . X ′ i ∈ sets

(PiM (J i) M)
and dec: decseq (λi . PF .emb UNIV (J i) (X ′ i))

def X ≡ λn. (
⋂

i∈{i . J i ⊆ {0 ..< n}}. PF .emb {0 ..<n} (J i) (X ′ i)) ∩ space
(PiM {0 ..<n} M)

have sets-X [measurable]: X n ∈ sets (PiM {0 ..<n} M) for n
by (cases {i . J i ⊆ {0 ..< n}} = {})

(simp-all add : X-def , auto intro!: sets.countable-INT ′ sets.Int)

have dec-X : n ≤ m =⇒ X m ⊆ PF .emb {0 ..<m} {0 ..<n} (X n) for n m
unfolding X-def using ivl-subset [of 0 n 0 m]
by (cases {i . J i ⊆ {0 ..< n}} = {})

(auto simp add : prod-emb-Int prod-emb-PiE space-PiM simp del : ivl-subset)

have dec-X ′: PF .emb {0 ..<n} (J j) (X ′ j) ⊆ PF .emb {0 ..<n} (J i) (X ′ i)
if [simp]: J i ⊆ {0 ..<n} J j ⊆ {0 ..<n} i ≤ j for n i j
by (rule PF .emb-preserve-mono[of {0 ..<n} UNIV]) (auto del : subsetI intro:

dec[THEN antimonoD])

assume 0 < (INF i . CI (J i) (X ′ i))
also have . . . ≤ (INF i . C 0 i (λx . undefined) (X i))
proof (intro INF-greatest)

fix n
interpret C : prob-space C 0 n (λx . undefined)

by (rule prob-space-C) simp
show (INF i . CI (J i) (X ′ i)) ≤ C 0 n (λx . undefined) (X n)
proof cases

assume {i . J i ⊆ {0 ..< n}} = {} with C .emeasure-space-1 show ?thesis
by (auto simp add : X-def space-C intro!: INF-lower2 [of 0] prob-space.measure-le-1

PF .prob-space-P)
next

assume ∗: {i . J i ⊆ {0 ..< n}} 6= {}
have (INF i . CI (J i) (X ′ i)) ≤

(INF i :{i . J i ⊆ {0 ..<n}}. C 0 n (λ-. undefined) (PF .emb {0 ..<n} (J i)
(X ′ i)))

by (intro INF-superset-mono) (auto simp: emeasure-CI)
also have . . . = C 0 n (λ-. undefined) (

⋂
i∈{i . J i ⊆ {0 ..<n}}. (PF .emb

{0 ..<n} (J i) (X ′ i)))
using ∗ by (intro emeasure-INT-decseq-subset [symmetric]) (auto intro!:

dec-X ′ del : subsetI simp: sets-C)

THEORY “Projective-Family” 585

also have . . . = C 0 n (λ-. undefined) (X n)
using ∗ by (auto simp add : X-def INT-extend-simps)

finally show (INF i . CI (J i) (X ′ i)) ≤ C 0 n (λ-. undefined) (X n) .
qed

qed
finally have pos: 0 < (INF i . C 0 i (λx . undefined) (X i)) .
from less-INF-D [OF this, of 0] have X 0 6= {}

by auto

{ fix ω n assume ω: ω ∈ space (PiM {0 ..<n} M)
let ?C = λi . emeasure (C n i ω) (X (n + i))
let ?C ′ = λi x . emeasure (C (Suc n) i (ω(n:=x))) (X (Suc n + i))
have M :

∧
i . ?C ′ i ∈ borel-measurable (P n ω)

using ω[measurable, simp] measurable-fun-upd [where J ={0 ..<n}] by mea-
surable auto

assume 0 < (INF i . ?C i)
also have . . . ≤ (INF i . emeasure (C n (1 + i) ω) (X (n + (1 + i))))

by (intro INF-greatest INF-lower) auto
also have . . . = (INF i .

∫
+x . ?C ′ i x ∂P n ω)

using ω measurable-C [of Suc n]
apply (intro INF-cong refl)
apply (subst split-C [symmetric, OF ω])
apply (subst emeasure-bind [OF - - sets-X])
apply (simp-all del : C .simps add : space-C)
apply measurable
apply simp
apply (simp add : bind-return[OF measurable-eP] nn-integral-eP)
done

also have . . . = (
∫

+x . (INF i . ?C ′ i x) ∂P n ω)
proof (rule nn-integral-monotone-convergence-INF-AE [symmetric])

have (
∫

+x . ?C ′ 0 x ∂P n ω) ≤ (
∫

+x . 1 ∂P n ω)
by (intro nn-integral-mono) (auto split : split-indicator)

also have . . . < ∞
using prob-space-P [OF ω, THEN prob-space.emeasure-space-1] by simp

finally show (
∫

+x . ?C ′ 0 x ∂P n ω) < ∞ .
next

show AE x in P n ω. ?C ′ (Suc i) x ≤ ?C ′ i x for i
proof (rule AE-I2)

fix x assume x ∈ space (P n ω)
with ω have ω ′: ω(n := x) ∈ space (PiM {0 ..<Suc n} M)

by (auto simp: space-P [OF ω] space-PiM PiE-iff extensional-def)
with ω show ?C ′ (Suc i) x ≤ ?C ′ i x

apply (subst emeasure-C [symmetric, of i Suc i])
apply (auto intro!: emeasure-mono[OF dec-X] del : subsetI

simp: sets-C space-P)
apply (subst sets-bind [OF sets-eP])
apply (simp-all add : space-C space-P)
done

THEORY “Projective-Family” 586

qed
qed fact
finally have (

∫
+x . (INF i . ?C ′ i x) ∂P n ω) 6= 0

by simp
with M have ∃ F x in ae-filter (P n ω). 0 < (INF i . ?C ′ i x)

by (subst (asm) nn-integral-0-iff-AE)
(auto intro!: borel-measurable-INF simp: Filter .not-eventually not-le

zero-less-iff-neq-zero)
then have ∃ F x in ae-filter (P n ω). x ∈ space (M n) ∧ 0 < (INF i . ?C ′ i x)

by (rule frequently-mp[rotated]) (auto simp: space-P ω)
then obtain x where x ∈ space (M n) 0 < (INF i . ?C ′ i x)

by (auto dest : frequently-ex)
from this(2)[THEN less-INF-D , of 0] this(2)
have ∃ x . ω(n := x) ∈ X (Suc n) ∧ 0 < (INF i . ?C ′ i x)

by (intro exI [of - x]) (simp split : split-indicator-asm) }
note step = this

let ?ω = λω n x . (restrict ω {0 ..<n})(n := x)
let ?L = λω n r . INF i . emeasure (C (Suc n) i (?ω ω n r)) (X (Suc n + i))
have ∗: (

∧
i . i < n =⇒ ?ω ω i (ω i) ∈ X (Suc i)) =⇒

restrict ω {0 ..<n} ∈ space (PiM {0 ..<n} M) for ω n
using sets.sets-into-space[OF sets-X , of n]
by (cases n) (auto simp: atLeastLessThanSuc restrict-def [of - {}])

have ∃ω. ∀n. ?ω ω n (ω n) ∈ X (Suc n) ∧ 0 < ?L ω n (ω n)
proof (rule dependent-wellorder-choice)

fix n ω assume IH :
∧

i . i < n =⇒ ?ω ω i (ω i) ∈ X (Suc i) ∧ 0 < ?L ω i
(ω i)

show ∃ r . ?ω ω n r ∈ X (Suc n) ∧ 0 < ?L ω n r
proof (rule step)

show restrict ω {0 ..<n} ∈ space (PiM {0 ..<n} M)
using IH [THEN conjunct1] by (rule ∗)

show 0 < (INF i . emeasure (C n i (restrict ω {0 ..<n})) (X (n + i)))
proof (cases n)

case 0 with pos show ?thesis
by (simp add : CI-def restrict-def)

next
case (Suc i) then show ?thesis

using IH [of i , THEN conjunct2] by (simp add : atLeastLessThanSuc)
qed

qed
qed (simp cong : restrict-cong)
then obtain ω where ω:

∧
n. ?ω ω n (ω n) ∈ X (Suc n)

by auto
from this[THEN ∗] have ω-space: ω ∈ space (PiM UNIV M)

by (auto simp: space-PiM PiE-iff Ball-def)
have ∗: ω ∈ PF .emb UNIV {0 ..<n} (X n) for n
proof (cases n)

case 0 with ω-space 〈X 0 6= {}〉 sets.sets-into-space[OF sets-X , of 0] show
?thesis

THEORY “Projective-Family” 587

by (auto simp add : space-PiM prod-emb-def restrict-def PiE-iff)
next

case (Suc i) then show ?thesis
using ω[of i] ω-space by (auto simp: prod-emb-def space-PiM PiE-iff atLeast-

LessThanSuc)
qed
have ∗∗: {i . J i ⊆ {0 ..<up-to (J n)}} 6= {} for n

by (auto intro!: exI [of - n] up-to J)
have ω ∈ PF .emb UNIV (J n) (X ′ n) for n
using ∗[of up-to (J n)] up-to[of J n] by (simp add : X-def prod-emb-Int prod-emb-INT [OF

∗∗])
then show (

⋂
i . PF .emb UNIV (J i) (X ′ i)) 6= {}

by auto
qed

lemma distr-lim: assumes J [simp]: finite J shows distr PF .lim (PiM J M) (λx .
restrict x J) = CI J

apply (rule measure-eqI)
apply (simp add : CI-def)
apply (simp add : emeasure-distr measurable-cong-sets[OF PF .sets-lim] lim[symmetric]

prod-emb-def space-PiM)
done

end

lemma (in product-prob-space) emeasure-lim-emb:
assumes ∗: finite J J ⊆ I X ∈ sets (PiM J M)
shows emeasure lim (emb I J X) = emeasure (PiM J M) X

proof (rule emeasure-lim[OF ∗], goal-cases)
case (1 J X)

have ∃Q . (∀ i . sets Q = PiM (
⋃

i . J i) M ∧ distr Q (PiM (J i) M) (λx . restrict
x (J i)) = PiM (J i) M)

proof cases
assume finite (

⋃
i . J i)

then have distr (PiM (
⋃

i . J i) M) (PiM (J i) M) (λx . restrict x (J i)) =
PiM (J i) M for i

by (intro distr-restrict [symmetric]) auto
then show ?thesis

by auto
next

assume inf : infinite (
⋃

i . J i)
moreover have count : countable (

⋃
i . J i)

using 1 (3) by (auto intro: countable-finite)
def f ≡ from-nat-into (

⋃
i . J i) and t ≡ to-nat-on (

⋃
i . J i)

have ft [simp]: x ∈ J i =⇒ f (t x) = x for x i
unfolding f-def t-def using inf count by (intro from-nat-into-to-nat-on) auto

have tf [simp]: t (f i) = i for i
unfolding t-def f-def by (intro to-nat-on-from-nat-into-infinite inf count)

THEORY “Projective-Family” 588

have inj-t : inj-on t (
⋃

i . J i)
using count by (auto simp: t-def)

then have inj-t-J : inj-on t (J i) for i
by (rule subset-inj-on) auto

interpret IT : Ionescu-Tulcea λi ω. M (f i) λi . M (f i)
by standard auto

interpret Mf : product-prob-space λx . M (f x) UNIV
by standard

have C-eq-PiM : IT .C 0 n (λ-. undefined) = PiM {0 ..<n} (λx . M (f x)) for n
proof (induction n)

case 0 then show ?case
by (auto simp: PiM-empty intro!: measure-eqI dest !: subset-singletonD)

next
case (Suc n) then show ?case
apply (auto intro!: measure-eqI simp: sets-bind [OF IT .sets-eP] emeasure-bind [OF

- IT .measurable-eP])
apply (auto simp: Mf .product-nn-integral-insert nn-integral-indicator [symmetric]

atLeastLessThanSuc IT .emeasure-eP space-PiM
split : split-indicator simp del : nn-integral-indicator intro!:

nn-integral-cong)
done

qed
have CI-eq-PiM : IT .CI X = PiM X (λx . M (f x)) if X : finite X for X
by (auto simp: IT .up-to-less X IT .CI-def C-eq-PiM intro!: Mf .distr-restrict [symmetric])

let ?Q = distr IT .PF .lim (PiM (
⋃

i . J i) M) (λω. λx∈
⋃

i . J i . ω (t x))
{ fix i

have distr ?Q (PiM (J i) M) (λx . restrict x (J i)) =
distr IT .PF .lim (PiM (J i) M) ((λω. λn∈J i . ω (t n)) ◦ (λω. restrict ω (t‘J

i)))
proof (subst distr-distr)

have (λω. ω (t x)) ∈ measurable (PiM UNIV (λx . M (f x))) (M x) if x : x
∈ J i for x i

using measurable-component-singleton[of t x UNIV λx . M (f x)] unfolding
ft [OF x] by simp

then show (λω. λx∈
⋃

i . J i . ω (t x)) ∈ measurable IT .PF .lim (PiM
(UNION UNIV J) M)

by (auto intro!: measurable-restrict simp: measurable-cong-sets[OF IT .PF .sets-lim
refl])

qed (auto intro!: distr-cong measurable-restrict measurable-component-singleton)
also have . . . = distr (distr IT .PF .lim (PiM (t‘J i) (λx . M (f x))) (λω.

restrict ω (t‘J i))) (PiM (J i) M) (λω. λn∈J i . ω (t n))
proof (intro distr-distr [symmetric])

have (λω. ω (t x)) ∈ measurable (PiM (t‘J i) (λx . M (f x))) (M x) if x : x
∈ J i for x

using measurable-component-singleton[of t x t‘J i λx . M (f x)] x unfolding
ft [OF x] by auto

then show (λω. λn∈J i . ω (t n)) ∈ measurable (PiM (t ‘ J i) (λx . M (f
x))) (PiM (J i) M)

THEORY “Infinite-Product-Measure” 589

by (auto intro!: measurable-restrict)
qed (auto intro!: measurable-restrict simp: measurable-cong-sets[OF IT .PF .sets-lim

refl])
also have . . . = distr (PiM (t‘J i) (λx . M (f x))) (PiM (J i) M) (λω. λn∈J

i . ω (t n))
using 〈finite (J i)〉 by (subst IT .distr-lim) (auto simp: CI-eq-PiM)

also have . . . = PiM (J i) M
using Mf .distr-reorder [of t J i] by (simp add : 1 inj-t-J cong : PiM-cong)

finally have distr ?Q (PiM (J i) M) (λx . restrict x (J i)) = PiM (J i) M .
}

then show ∃Q . ∀ i . sets Q = PiM (
⋃

i . J i) M ∧ distr Q (PiM (J i) M) (λx .
restrict x (J i)) = PiM (J i) M

by (intro exI [of - ?Q]) auto
qed
then obtain Q where sets-Q : sets Q = PiM (

⋃
i . J i) M

and Q :
∧

i . distr Q (PiM (J i) M) (λx . restrict x (J i)) = PiM (J i) M by
blast

from 1 interpret Q : prob-space Q
by (intro prob-space-distrD [of λx . restrict x (J 0) Q PiM (J 0) M])

(auto simp: Q measurable-cong-sets[OF sets-Q]
intro!: prob-space-P measurable-restrict measurable-component-singleton)

have 0 < (INF i . emeasure (PiM (J i) M) (X i)) by fact
also have . . . = (INF i . emeasure Q (emb (

⋃
i . J i) (J i) (X i)))

by (simp add : emeasure-distr-restrict [OF - sets-Q 1 (4), symmetric] SUP-upper
Q)

also have . . . = emeasure Q (
⋂

i . emb (
⋃

i . J i) (J i) (X i))
proof (rule INF-emeasure-decseq)

from 1 show decseq (λn. emb (
⋃

i . J i) (J n) (X n))
by (intro antimonoI emb-preserve-mono[where X =emb (

⋃
i . J i) (J n) (X

n) and L=I and J =
⋃

i . J i for n]
measurable-prod-emb)
(auto simp: SUP-least SUP-upper antimono-def)

qed (insert 1 , auto simp: sets-Q)
finally have (

⋂
i . emb (

⋃
i . J i) (J i) (X i)) 6= {}

by auto
moreover have (

⋂
i . emb I (J i) (X i)) = {} =⇒ (

⋂
i . emb (

⋃
i . J i) (J i) (X

i)) = {}
using 1 by (intro emb-injective[of

⋃
i . J i I - {}] sets.countable-INT) (auto

simp: SUP-least SUP-upper)
ultimately show ?case by auto

qed

end

23 Infinite Product Measure

theory Infinite-Product-Measure

THEORY “Infinite-Product-Measure” 590

imports Probability-Measure Caratheodory Projective-Family
begin

lemma (in product-prob-space) distr-PiM-restrict-finite:
assumes finite J J ⊆ I
shows distr (PiM I M) (PiM J M) (λx . restrict x J) = PiM J M

proof (rule PiM-eqI)
fix X assume X :

∧
i . i ∈ J =⇒ X i ∈ sets (M i)

{ fix J X assume J : J 6= {} ∨ I = {} finite J J ⊆ I and X :
∧

i . i ∈ J =⇒ X
i ∈ sets (M i)

have emeasure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . M i (X i))
proof (subst emeasure-extend-measure-Pair [OF PiM-def , where µ ′=lim],

goal-cases)
case 1 then show ?case

by (simp add : M .emeasure-space-1 emeasure-PiM Pi-iff sets-PiM-I-finite
emeasure-lim-emb)

next
case (2 J X)
then have emb I J (PiE J X) ∈ sets (PiM I M)

by (intro measurable-prod-emb sets-PiM-I-finite) auto
from this[THEN sets.sets-into-space] show ?case

by (simp add : space-PiM)
qed (insert assms J X , simp-all del : sets-lim

add : M .emeasure-space-1 sets-lim[symmetric] emeasure-countably-additive
emeasure-positive) }

note ∗ = this

have emeasure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . M i (X i))
proof cases

assume ¬ (J 6= {} ∨ I = {})
then obtain i where J = {} i ∈ I by auto
moreover then have emb I {} {λx . undefined} = emb I {i} (ΠE i∈{i}. space

(M i))
by (auto simp: space-PiM prod-emb-def)

ultimately show ?thesis
by (simp add : ∗ M .emeasure-space-1)

qed (simp add : ∗[OF - assms X])
with assms show emeasure (distr (PiM I M) (PiM J M) (λx . restrict x J))

(PiE J X) = (
∏

i∈J . emeasure (M i) (X i))
by (subst emeasure-distr-restrict [OF - refl]) (auto intro!: sets-PiM-I-finite X)

qed (insert assms, auto)

lemma (in product-prob-space) emeasure-PiM-emb ′:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (PiM J M) =⇒ emeasure (PiM I M) (emb I J

X) = PiM J M X
by (subst distr-PiM-restrict-finite[symmetric, of J])

(auto intro!: emeasure-distr-restrict [symmetric])

lemma (in product-prob-space) emeasure-PiM-emb:

THEORY “Infinite-Product-Measure” 591

J ⊆ I =⇒ finite J =⇒ (
∧

i . i ∈ J =⇒ X i ∈ sets (M i)) =⇒
emeasure (PiM I M) (emb I J (PiE J X)) = (

∏
i∈J . emeasure (M i) (X i))

by (subst emeasure-PiM-emb ′) (auto intro!: emeasure-PiM)

sublocale product-prob-space ⊆ P? : prob-space PiM I M
proof

have ∗: emb I {} {λx . undefined} = space (PiM I M)
by (auto simp: prod-emb-def space-PiM)

show emeasure (PiM I M) (space (PiM I M)) = 1
using emeasure-PiM-emb[of {} λ-. {}] by (simp add : ∗)

qed

lemma (in product-prob-space) emeasure-PiM-Collect :
assumes X : J ⊆ I finite J

∧
i . i ∈ J =⇒ X i ∈ sets (M i)

shows emeasure (PiM I M) {x∈space (PiM I M). ∀ i∈J . x i ∈ X i} = (
∏

i∈J .
emeasure (M i) (X i))
proof −

have {x∈space (PiM I M). ∀ i∈J . x i ∈ X i} = emb I J (PiE J X)
unfolding prod-emb-def using assms by (auto simp: space-PiM Pi-iff)

with emeasure-PiM-emb[OF assms] show ?thesis by simp
qed

lemma (in product-prob-space) emeasure-PiM-Collect-single:
assumes X : i ∈ I A ∈ sets (M i)
shows emeasure (PiM I M) {x∈space (PiM I M). x i ∈ A} = emeasure (M i)

A
using emeasure-PiM-Collect [of {i} λi . A] assms
by simp

lemma (in product-prob-space) measure-PiM-emb:
assumes J ⊆ I finite J

∧
i . i ∈ J =⇒ X i ∈ sets (M i)

shows measure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . measure (M i) (X
i))

using emeasure-PiM-emb[OF assms]
unfolding emeasure-eq-measure M .emeasure-eq-measure
by (simp add : setprod-ennreal measure-nonneg setprod-nonneg)

lemma sets-Collect-single ′:
i ∈ I =⇒ {x∈space (M i). P x} ∈ sets (M i) =⇒ {x∈space (PiM I M). P (x

i)} ∈ sets (PiM I M)
using sets-Collect-single[of i I {x∈space (M i). P x} M]
by (simp add : space-PiM PiE-iff cong : conj-cong)

lemma (in finite-product-prob-space) finite-measure-PiM-emb:
(
∧

i . i ∈ I =⇒ A i ∈ sets (M i)) =⇒ measure (PiM I M) (PiE I A) = (
∏

i∈I .
measure (M i) (A i))
using measure-PiM-emb[of I A] finite-index prod-emb-PiE-same-index [OF sets.sets-into-space,

of I A M]
by auto

THEORY “Infinite-Product-Measure” 592

lemma (in product-prob-space) PiM-component :
assumes i ∈ I
shows distr (PiM I M) (M i) (λω. ω i) = M i

proof (rule measure-eqI [symmetric])
fix A assume A ∈ sets (M i)
moreover have ((λω. ω i) −‘ A ∩ space (PiM I M)) = {x∈space (PiM I M).

x i ∈ A}
by auto

ultimately show emeasure (M i) A = emeasure (distr (PiM I M) (M i) (λω.
ω i)) A

by (auto simp: 〈i∈I 〉 emeasure-distr measurable-component-singleton emeasure-PiM-Collect-single)
qed simp

lemma (in product-prob-space) PiM-eq :
assumes M ′: sets M ′ = sets (PiM I M)
assumes eq :

∧
J F . finite J =⇒ J ⊆ I =⇒ (

∧
j . j ∈ J =⇒ F j ∈ sets (M j))

=⇒
emeasure M ′ (prod-emb I M J (ΠE j∈J . F j)) = (

∏
j∈J . emeasure (M j) (F

j))
shows M ′ = (PiM I M)

proof (rule measure-eqI-PiM-infinite[symmetric, OF refl M ′])
show finite-measure (PiM I M)

by standard (simp add : P .emeasure-space-1)
qed (simp add : eq emeasure-PiM-emb)

lemma (in product-prob-space) AE-component : i ∈ I =⇒ AE x in M i . P x =⇒
AE x in PiM I M . P (x i)

apply (rule AE-distrD [of λω. ω i PiM I M M i P])
apply simp
apply (subst PiM-component)
apply simp-all
done

23.1 Sequence space

definition comb-seq :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) where
comb-seq i ω ω ′ j = (if j < i then ω j else ω ′ (j − i))

lemma split-comb-seq : P (comb-seq i ω ω ′ j) ←→ (j < i −→ P (ω j)) ∧ (∀ k . j
= i + k −→ P (ω ′ k))

by (auto simp: comb-seq-def not-less)

lemma split-comb-seq-asm: P (comb-seq i ω ω ′ j) ←→ ¬ ((j < i ∧ ¬ P (ω j)) ∨
(∃ k . j = i + k ∧ ¬ P (ω ′ k)))

by (auto simp: comb-seq-def)

lemma measurable-comb-seq :
(λ(ω, ω ′). comb-seq i ω ω ′) ∈ measurable ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV .

THEORY “Infinite-Product-Measure” 593

M)) (ΠM i∈UNIV . M)
proof (rule measurable-PiM-single)

show (λ(ω, ω ′). comb-seq i ω ω ′) ∈ space ((ΠM i∈UNIV . M)
⊗

M (ΠM

i∈UNIV . M)) → (UNIV →E space M)
by (auto simp: space-pair-measure space-PiM PiE-iff split : split-comb-seq)

fix j :: nat and A assume A: A ∈ sets M
then have ∗: {ω ∈ space ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV . M)). case-prod

(comb-seq i) ω j ∈ A} =
(if j < i then {ω ∈ space (ΠM i∈UNIV . M). ω j ∈ A} × space (ΠM i∈UNIV .

M)
else space (ΠM i∈UNIV . M) × {ω ∈ space (ΠM i∈UNIV . M). ω (j

− i) ∈ A})
by (auto simp: space-PiM space-pair-measure comb-seq-def dest : sets.sets-into-space)
show {ω ∈ space ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV . M)). case-prod

(comb-seq i) ω j ∈ A} ∈ sets ((ΠM i∈UNIV . M)
⊗

M (ΠM i∈UNIV . M))
unfolding ∗ by (auto simp: A intro!: sets-Collect-single)

qed

lemma measurable-comb-seq ′[measurable (raw)]:
assumes f : f ∈ measurable N (ΠM i∈UNIV . M) and g : g ∈ measurable N (ΠM

i∈UNIV . M)
shows (λx . comb-seq i (f x) (g x)) ∈ measurable N (ΠM i∈UNIV . M)
using measurable-compose[OF measurable-Pair [OF f g] measurable-comb-seq] by

simp

lemma comb-seq-0 : comb-seq 0 ω ω ′ = ω ′

by (auto simp add : comb-seq-def)

lemma comb-seq-Suc: comb-seq (Suc n) ω ω ′ = comb-seq n ω (case-nat (ω n) ω ′)
by (auto simp add : comb-seq-def not-less less-Suc-eq le-imp-diff-is-add intro!: ext

split : nat .split)

lemma comb-seq-Suc-0 [simp]: comb-seq (Suc 0) ω = case-nat (ω 0)
by (intro ext) (simp add : comb-seq-Suc comb-seq-0)

lemma comb-seq-less: i < n =⇒ comb-seq n ω ω ′ i = ω i
by (auto split : split-comb-seq)

lemma comb-seq-add : comb-seq n ω ω ′ (i + n) = ω ′ i
by (auto split : nat .split split-comb-seq)

lemma case-nat-comb-seq : case-nat s ′ (comb-seq n ω ω ′) (i + n) = case-nat
(case-nat s ′ ω n) ω ′ i

by (auto split : nat .split split-comb-seq)

lemma case-nat-comb-seq ′:
case-nat s (comb-seq i ω ω ′) = comb-seq (Suc i) (case-nat s ω) ω ′

by (auto split : split-comb-seq nat .split)

THEORY “Infinite-Product-Measure” 594

locale sequence-space = product-prob-space λi . M UNIV :: nat set for M
begin

abbreviation S ≡ ΠM i∈UNIV ::nat set . M

lemma infprod-in-sets[intro]:
fixes E :: nat ⇒ ′a set assumes E :

∧
i . E i ∈ sets M

shows Pi UNIV E ∈ sets S
proof −

have Pi UNIV E = (
⋂

i . emb UNIV {..i} (ΠE j∈{..i}. E j))
using E E [THEN sets.sets-into-space]
by (auto simp: prod-emb-def Pi-iff extensional-def)

with E show ?thesis by auto
qed

lemma measure-PiM-countable:
fixes E :: nat ⇒ ′a set assumes E :

∧
i . E i ∈ sets M

shows (λn.
∏

i≤n. measure M (E i)) −−−−→ measure S (Pi UNIV E)
proof −

let ?E = λn. emb UNIV {..n} (PiE {.. n} E)
have

∧
n. (

∏
i≤n. measure M (E i)) = measure S (?E n)

using E by (simp add : measure-PiM-emb)
moreover have Pi UNIV E = (

⋂
n. ?E n)

using E E [THEN sets.sets-into-space]
by (auto simp: prod-emb-def extensional-def Pi-iff)

moreover have range ?E ⊆ sets S
using E by auto

moreover have decseq ?E
by (auto simp: prod-emb-def Pi-iff decseq-def)

ultimately show ?thesis
by (simp add : finite-Lim-measure-decseq)

qed

lemma nat-eq-diff-eq :
fixes a b c :: nat
shows c ≤ b =⇒ a = b − c ←→ a + c = b
by auto

lemma PiM-comb-seq :
distr (S

⊗
M S) S (λ(ω, ω ′). comb-seq i ω ω ′) = S (is ?D = -)

proof (rule PiM-eq)
let ?I = UNIV ::nat set and ?M = λn. M
let distr - - ?f = ?D

fix J E assume J : finite J J ⊆ ?I
∧

j . j ∈ J =⇒ E j ∈ sets M
let ?X = prod-emb ?I ?M J (ΠE j∈J . E j)
have

∧
j x . j ∈ J =⇒ x ∈ E j =⇒ x ∈ space M

using J (3)[THEN sets.sets-into-space] by (auto simp: space-PiM Pi-iff subset-eq)
with J have ?f −‘ ?X ∩ space (S

⊗
M S) =

THEORY “Infinite-Product-Measure” 595

(prod-emb ?I ?M (J ∩ {..<i}) (PIE j :J ∩ {..<i}. E j)) ×
(prod-emb ?I ?M ((op + i) −‘ J) (PIE j :(op + i) −‘ J . E (i + j))) (is - =

?E × ?F)
by (auto simp: space-pair-measure space-PiM prod-emb-def all-conj-distrib PiE-iff

split : split-comb-seq split-comb-seq-asm)
then have emeasure ?D ?X = emeasure (S

⊗
M S) (?E × ?F)

by (subst emeasure-distr [OF measurable-comb-seq])
(auto intro!: sets-PiM-I simp: split-beta ′ J)

also have . . . = emeasure S ?E ∗ emeasure S ?F
using J by (intro P .emeasure-pair-measure-Times) (auto intro!: sets-PiM-I

finite-vimageI simp: inj-on-def)
also have emeasure S ?F = (

∏
j∈(op + i) −‘ J . emeasure M (E (i + j)))

using J by (intro emeasure-PiM-emb) (simp-all add : finite-vimageI inj-on-def)
also have . . . = (

∏
j∈J − (J ∩ {..<i}). emeasure M (E j))

by (rule setprod .reindex-cong [of λx . x − i])
(auto simp: image-iff Bex-def not-less nat-eq-diff-eq ac-simps cong : conj-cong

intro!: inj-onI)
also have emeasure S ?E = (

∏
j∈J ∩ {..<i}. emeasure M (E j))

using J by (intro emeasure-PiM-emb) simp-all
also have (

∏
j∈J ∩ {..<i}. emeasure M (E j)) ∗ (

∏
j∈J − (J ∩ {..<i}).

emeasure M (E j)) = (
∏

j∈J . emeasure M (E j))
by (subst mult .commute) (auto simp: J setprod .subset-diff [symmetric])

finally show emeasure ?D ?X = (
∏

j∈J . emeasure M (E j)) .
qed simp-all

lemma PiM-iter :
distr (M

⊗
M S) S (λ(s, ω). case-nat s ω) = S (is ?D = -)

proof (rule PiM-eq)
let ?I = UNIV ::nat set and ?M = λn. M
let distr - - ?f = ?D

fix J E assume J : finite J J ⊆ ?I
∧

j . j ∈ J =⇒ E j ∈ sets M
let ?X = prod-emb ?I ?M J (PIE j :J . E j)
have

∧
j x . j ∈ J =⇒ x ∈ E j =⇒ x ∈ space M

using J (3)[THEN sets.sets-into-space] by (auto simp: space-PiM Pi-iff subset-eq)
with J have ?f −‘ ?X ∩ space (M

⊗
M S) = (if 0 ∈ J then E 0 else space M)

×
(prod-emb ?I ?M (Suc −‘ J) (PIE j :Suc −‘ J . E (Suc j))) (is - = ?E × ?F)

by (auto simp: space-pair-measure space-PiM PiE-iff prod-emb-def all-conj-distrib
split : nat .split nat .split-asm)

then have emeasure ?D ?X = emeasure (M
⊗

M S) (?E × ?F)
by (subst emeasure-distr)

(auto intro!: sets-PiM-I simp: split-beta ′ J)
also have . . . = emeasure M ?E ∗ emeasure S ?F

using J by (intro P .emeasure-pair-measure-Times) (auto intro!: sets-PiM-I
finite-vimageI)

also have emeasure S ?F = (
∏

j∈Suc −‘ J . emeasure M (E (Suc j)))
using J by (intro emeasure-PiM-emb) (simp-all add : finite-vimageI)

also have . . . = (
∏

j∈J − {0}. emeasure M (E j))

THEORY “Projective-Limit” 596

by (rule setprod .reindex-cong [of λx . x − 1])
(auto simp: image-iff Bex-def not-less nat-eq-diff-eq ac-simps cong : conj-cong

intro!: inj-onI)
also have emeasure M ?E ∗ (

∏
j∈J − {0}. emeasure M (E j)) = (

∏
j∈J .

emeasure M (E j))
by (auto simp: M .emeasure-space-1 setprod .remove J)

finally show emeasure ?D ?X = (
∏

j∈J . emeasure M (E j)) .
qed simp-all

end

end

24 Projective Limit

theory Projective-Limit
imports

Caratheodory
Fin-Map
Regularity
Projective-Family
Infinite-Product-Measure
∼∼/src/HOL/Library/Diagonal-Subsequence

begin

24.1 Sequences of Finite Maps in Compact Sets

locale finmap-seqs-into-compact =
fixes K ::nat ⇒ (nat ⇒F

′a::metric-space) set and f ::nat ⇒ (nat ⇒F
′a) and

M
assumes compact :

∧
n. compact (K n)

assumes f-in-K :
∧

n. K n 6= {}
assumes domain-K :

∧
n. k ∈ K n =⇒ domain k = domain (f n)

assumes proj-in-K :∧
t n m. m ≥ n =⇒ t ∈ domain (f n) =⇒ (f m)F t ∈ (λk . (k)F t) ‘ K n

begin

lemma proj-in-K ′: (∃n. ∀m ≥ n. (f m)F t ∈ (λk . (k)F t) ‘ K n)
using proj-in-K f-in-K

proof cases
obtain k where k ∈ K (Suc 0) using f-in-K by auto
assume ∀n. t /∈ domain (f n)
thus ?thesis

by (auto intro!: exI [where x=1] image-eqI [OF - 〈k ∈ K (Suc 0)〉]
simp: domain-K [OF 〈k ∈ K (Suc 0)〉])

qed blast

lemma proj-in-KE :
obtains n where

∧
m. m ≥ n =⇒ (f m)F t ∈ (λk . (k)F t) ‘ K n

THEORY “Projective-Limit” 597

using proj-in-K ′ by blast

lemma compact-projset :
shows compact ((λk . (k)F i) ‘ K n)
using continuous-proj compact by (rule compact-continuous-image)

end

lemma compactE ′:
fixes S :: ′a :: metric-space set
assumes compact S ∀n≥m. f n ∈ S
obtains l r where l ∈ S subseq r ((f ◦ r) −−−→ l) sequentially

proof atomize-elim
have subseq (op + m) by (simp add : subseq-def)
have ∀n. (f o (λi . m + i)) n ∈ S using assms by auto
from seq-compactE [OF 〈compact S 〉[unfolded compact-eq-seq-compact-metric] this]

guess l r .
hence l ∈ S subseq ((λi . m + i) o r) ∧ (f ◦ ((λi . m + i) o r)) −−−−→ l

using subseq-o[OF 〈subseq (op + m)〉 〈subseq r 〉] by (auto simp: o-def)
thus ∃ l r . l ∈ S ∧ subseq r ∧ (f ◦ r) −−−−→ l by blast

qed

sublocale finmap-seqs-into-compact ⊆ subseqs λn s. (∃ l . (λi . ((f o s) i)F n)
−−−−→ l)
proof

fix n s
assume subseq s
from proj-in-KE [of n] guess n0 . note n0 = this
have ∀ i ≥ n0 . ((f ◦ s) i)F n ∈ (λk . (k)F n) ‘ K n0
proof safe

fix i assume n0 ≤ i
also have . . . ≤ s i by (rule seq-suble) fact
finally have n0 ≤ s i .
with n0 show ((f ◦ s) i)F n ∈ (λk . (k)F n) ‘ K n0

by auto
qed
from compactE ′[OF compact-projset this] guess ls rs .
thus ∃ r ′. subseq r ′ ∧ (∃ l . (λi . ((f ◦ (s ◦ r ′)) i)F n) −−−−→ l) by (auto simp:

o-def)
qed

lemma (in finmap-seqs-into-compact) diagonal-tendsto: ∃ l . (λi . (f (diagseq i))F
n) −−−−→ l
proof −

obtain l where (λi . ((f o (diagseq o op + (Suc n))) i)F n) −−−−→ l
proof (atomize-elim, rule diagseq-holds)

fix r s n
assume subseq r
assume ∃ l . (λi . ((f ◦ s) i)F n) −−−−→ l

THEORY “Projective-Limit” 598

then obtain l where ((λi . (f i)F n) o s) −−−−→ l
by (auto simp: o-def)

hence ((λi . (f i)F n) o s o r) −−−−→ l using 〈subseq r 〉

by (rule LIMSEQ-subseq-LIMSEQ)
thus ∃ l . (λi . ((f ◦ (s ◦ r)) i)F n) −−−−→ l by (auto simp add : o-def)

qed
hence (λi . ((f (diagseq (i + Suc n))))F n) −−−−→ l by (simp add : ac-simps)
hence (λi . (f (diagseq i))F n) −−−−→ l by (rule LIMSEQ-offset)
thus ?thesis ..

qed

24.2 Daniell-Kolmogorov Theorem

Existence of Projective Limit

locale polish-projective = projective-family I P λ-. borel :: ′a::polish-space measure
for I :: ′i set and P

begin

lemma emeasure-lim-emb:
assumes X : J ⊆ I finite J X ∈ sets (ΠM i∈J . borel)
shows lim (emb I J X) = P J X

proof (rule emeasure-lim)
write mu-G (µG)
interpret generator : algebra space (PiM I (λi . borel)) generator

by (rule algebra-generator)

fix J and B :: nat ⇒ (′i ⇒ ′a) set
assume J :

∧
n. finite (J n)

∧
n. J n ⊆ I

∧
n. B n ∈ sets (ΠM i∈J n. borel)

incseq J
and B : decseq (λn. emb I (J n) (B n))
and 0 < (INF i . P (J i) (B i)) (is 0 < ?a)

moreover have ?a ≤ 1
using J by (auto intro!: INF-lower2 [of 0] prob-space-P [THEN prob-space.measure-le-1])
ultimately obtain r where r : ?a = ennreal r 0 < r r ≤ 1

by (cases ?a) (auto simp: top-unique)
def Z ≡ λn. emb I (J n) (B n)
have Z-mono: n ≤ m =⇒ Z m ⊆ Z n for n m

unfolding Z-def using B [THEN antimonoD , of n m] .
have J-mono:

∧
n m. n ≤ m =⇒ J n ⊆ J m

using 〈incseq J 〉 by (force simp: incseq-def)
note [simp] = 〈

∧
n. finite (J n)〉

interpret prob-space P (J i) for i using J prob-space-P by simp

have P-eq [simp]:
sets (P (J i)) = sets (ΠM i∈J i . borel) space (P (J i)) = space (ΠM i∈J i .

borel) for i
using J by (auto simp: sets-P space-P)

have Z i ∈ generator for i

THEORY “Projective-Limit” 599

unfolding Z-def by (auto intro!: generator .intros J)

have countable-UN-J : countable (
⋃

n. J n) by (simp add : countable-finite)
def Utn ≡ to-nat-on (

⋃
n. J n)

interpret function-to-finmap J n Utn from-nat-into (
⋃

n. J n) for n
by unfold-locales (auto simp: Utn-def intro: from-nat-into-to-nat-on[OF countable-UN-J])
have inj-on-Utn: inj-on Utn (

⋃
n. J n)

unfolding Utn-def using countable-UN-J by (rule inj-on-to-nat-on)
hence inj-on-Utn-J :

∧
n. inj-on Utn (J n) by (rule subset-inj-on) auto

def P ′ ≡ λn. mapmeasure n (P (J n)) (λ-. borel)
interpret P ′: prob-space P ′ n for n

unfolding P ′-def mapmeasure-def using J
by (auto intro!: prob-space-distr fm-measurable simp: measurable-cong-sets[OF

sets-P])

let ?SUP = λn. SUP K : {K . K ⊆ fm n ‘ (B n) ∧ compact K}. emeasure (P ′

n) K
{ fix n

have emeasure (P (J n)) (B n) = emeasure (P ′ n) (fm n ‘ (B n))
using J by (auto simp: P ′-def mapmeasure-PiM space-P sets-P)

also
have . . . = ?SUP n
proof (rule inner-regular)

show sets (P ′ n) = sets borel by (simp add : borel-eq-PiF-borel P ′-def)
next

show fm n ‘ B n ∈ sets borel
unfolding borel-eq-PiF-borel by (auto simp: P ′-def fm-image-measurable-finite

sets-P J (3))
qed simp
finally have ∗: emeasure (P (J n)) (B n) = ?SUP n .
have ?SUP n 6= ∞

unfolding ∗[symmetric] by simp
note ∗ this
} note R = this
have ∀n. ∃K . emeasure (P (J n)) (B n) − emeasure (P ′ n) K ≤ 2 powr (−n)
∗ ?a ∧ compact K ∧ K ⊆ fm n ‘ B n

proof
fix n show ∃K . emeasure (P (J n)) (B n) − emeasure (P ′ n) K ≤ ennreal (2

powr − real n) ∗ ?a ∧
compact K ∧ K ⊆ fm n ‘ B n

unfolding R[of n]
proof (rule ccontr)

assume H : @K ′. ?SUP n − emeasure (P ′ n) K ′ ≤ ennreal (2 powr − real
n) ∗ ?a ∧

compact K ′ ∧ K ′ ⊆ fm n ‘ B n
have ?SUP n + 0 < ?SUP n + 2 powr (−n) ∗ ?a
using R[of n] unfolding ennreal-add-left-cancel-less ennreal-zero-less-mult-iff

by (auto intro: 〈0 < ?a〉)
also have . . . = (SUP K :{K . K ⊆ fm n ‘ B n ∧ compact K}. emeasure (P ′

THEORY “Projective-Limit” 600

n) K + 2 powr (−n) ∗ ?a)
by (rule ennreal-SUP-add-left [symmetric]) auto

also have . . . ≤ ?SUP n
proof (intro SUP-least)

fix K assume K ∈ {K . K ⊆ fm n ‘ B n ∧ compact K}
with H have 2 powr (−n) ∗ ?a < ?SUP n − emeasure (P ′ n) K

by auto
then show emeasure (P ′ n) K + (2 powr (−n)) ∗ ?a ≤ ?SUP n

by (subst (asm) less-diff-eq-ennreal) (auto simp: less-top[symmetric]
R(1)[symmetric] ac-simps)

qed
finally show False by simp

qed
qed
then obtain K ′ where K ′:∧

n. emeasure (P (J n)) (B n) − emeasure (P ′ n) (K ′ n) ≤ ennreal (2 powr
− real n) ∗ ?a∧

n. compact (K ′ n)
∧

n. K ′ n ⊆ fm n ‘ B n
unfolding choice-iff by blast

def K ≡ λn. fm n −‘ K ′ n ∩ space (PiM (J n) (λ-. borel))
have K-sets:

∧
n. K n ∈ sets (PiM (J n) (λ-. borel))

unfolding K-def
using compact-imp-closed [OF 〈compact (K ′ -)〉]
by (intro measurable-sets[OF fm-measurable, of - Collect finite])

(auto simp: borel-eq-PiF-borel [symmetric])
have K-B :

∧
n. K n ⊆ B n

proof
fix x n assume x ∈ K n
then have fm-in: fm n x ∈ fm n ‘ B n

using K ′ by (force simp: K-def)
show x ∈ B n
using 〈x ∈ K n〉 K-sets sets.sets-into-space J (1 ,2 ,3)[of n] inj-on-image-mem-iff [OF

inj-on-fm]
by (metis (no-types) Int-iff K-def fm-in space-borel)

qed
def Z ′ ≡ λn. emb I (J n) (K n)
have Z ′:

∧
n. Z ′ n ⊆ Z n

unfolding Z ′-def Z-def
proof (rule prod-emb-mono, safe)

fix n x assume x ∈ K n
hence fm n x ∈ K ′ n x ∈ space (PiM (J n) (λ-. borel))

by (simp-all add : K-def space-P)
note this(1)
also have K ′ n ⊆ fm n ‘ B n by (simp add : K ′)
finally have fm n x ∈ fm n ‘ B n .
thus x ∈ B n
proof safe

fix y assume y : y ∈ B n
hence y ∈ space (PiM (J n) (λ-. borel)) using J sets.sets-into-space[of B n

THEORY “Projective-Limit” 601

P (J n)]
by (auto simp add : space-P sets-P)

assume fm n x = fm n y
note inj-onD [OF inj-on-fm[OF space-borel],

OF 〈fm n x = fm n y〉 〈x ∈ space -〉 〈y ∈ space -〉]
with y show x ∈ B n by simp

qed
qed
have

∧
n. Z ′ n ∈ generator using J K ′(2) unfolding Z ′-def

by (auto intro!: generator .intros measurable-sets[OF fm-measurable[of - Collect
finite]]

simp: K-def borel-eq-PiF-borel [symmetric] compact-imp-closed)
def Y ≡ λn.

⋂
i∈{1 ..n}. Z ′ i

hence
∧

n k . Y (n + k) ⊆ Y n by (induct-tac k) (auto simp: Y-def)
hence Y-mono:

∧
n m. n ≤ m =⇒ Y m ⊆ Y n by (auto simp: le-iff-add)

have Y-Z ′:
∧

n. n ≥ 1 =⇒ Y n ⊆ Z ′ n by (auto simp: Y-def)
hence Y-Z :

∧
n. n ≥ 1 =⇒ Y n ⊆ Z n using Z ′ by auto

have Y-notempty :
∧

n. n ≥ 1 =⇒ (Y n) 6= {}
proof −

fix n::nat assume n ≥ 1 hence Y n ⊆ Z n by fact
have Y n = (

⋂
i∈{1 ..n}. emb I (J n) (emb (J n) (J i) (K i))) using J J-mono

by (auto simp: Y-def Z ′-def)
also have . . . = prod-emb I (λ-. borel) (J n) (

⋂
i∈{1 ..n}. emb (J n) (J i) (K

i))
using 〈n ≥ 1 〉

by (subst prod-emb-INT) auto
finally
have Y-emb:

Y n = prod-emb I (λ-. borel) (J n) (
⋂

i∈{1 ..n}. prod-emb (J n) (λ-. borel)
(J i) (K i)) .

hence Y n ∈ generator using J J-mono K-sets 〈n ≥ 1 〉

by (auto simp del : prod-emb-INT intro!: generator .intros)
have ∗: µG (Z n) = P (J n) (B n)

unfolding Z-def using J by (intro mu-G-spec) auto
then have µG (Z n) 6= ∞ by auto
note ∗
moreover have ∗: µG (Y n) = P (J n) (

⋂
i∈{Suc 0 ..n}. prod-emb (J n) (λ-.

borel) (J i) (K i))
unfolding Y-emb using J J-mono K-sets 〈n ≥ 1 〉 by (subst mu-G-spec) auto

then have µG (Y n) 6= ∞ by auto
note ∗
moreover have µG (Z n − Y n) =

P (J n) (B n − (
⋂

i∈{Suc 0 ..n}. prod-emb (J n) (λ-. borel) (J i) (K i)))
unfolding Z-def Y-emb prod-emb-Diff [symmetric] using J J-mono K-sets 〈n

≥ 1 〉

by (subst mu-G-spec) (auto intro!: sets.Diff)
ultimately
have µG (Z n) − µG (Y n) = µG (Z n − Y n)

THEORY “Projective-Limit” 602

using J J-mono K-sets 〈n ≥ 1 〉

by (simp only : emeasure-eq-measure Z-def)
(auto dest !: bspec[where x=n] intro!: measure-Diff [symmetric] set-mp[OF

K-B]
intro!: arg-cong [where f =ennreal]

simp: extensional-restrict emeasure-eq-measure prod-emb-iff sets-P
space-P

ennreal-minus measure-nonneg)
also have subs: Z n − Y n ⊆ (

⋃
i∈{1 ..n}. (Z i − Z ′ i))

using 〈n ≥ 1 〉 unfolding Y-def UN-extend-simps(7) by (intro UN-mono
Diff-mono Z-mono order-refl) auto

have Z n − Y n ∈ generator (
⋃

i∈{1 ..n}. (Z i − Z ′ i)) ∈ generator
using 〈Z ′ - ∈ generator 〉 〈Z - ∈ generator 〉 〈Y - ∈ generator 〉 by auto

hence µG (Z n − Y n) ≤ µG (
⋃

i∈{1 ..n}. (Z i − Z ′ i))
using subs generator .additive-increasing [OF positive-mu-G additive-mu-G]
unfolding increasing-def by auto

also have . . . ≤ (
∑

i∈{1 ..n}. µG (Z i − Z ′ i)) using 〈Z - ∈ generator 〉 〈Z ′

- ∈ generator 〉

by (intro generator .subadditive[OF positive-mu-G additive-mu-G]) auto
also have . . . ≤ (

∑
i∈{1 ..n}. 2 powr −real i ∗ ?a)

proof (rule setsum-mono)
fix i assume i ∈ {1 ..n} hence i ≤ n by simp
have µG (Z i − Z ′ i) = µG (prod-emb I (λ-. borel) (J i) (B i − K i))

unfolding Z ′-def Z-def by simp
also have . . . = P (J i) (B i − K i)

using J K-sets by (subst mu-G-spec) auto
also have . . . = P (J i) (B i) − P (J i) (K i)

using K-sets J 〈K - ⊆ B -〉 by (simp add : emeasure-Diff)
also have . . . = P (J i) (B i) − P ′ i (K ′ i)

unfolding K-def P ′-def
by (auto simp: mapmeasure-PiF borel-eq-PiF-borel [symmetric]

compact-imp-closed [OF 〈compact (K ′ -)〉] space-PiM PiE-def)
also have . . . ≤ ennreal (2 powr − real i) ∗ ?a using K ′(1)[of i] .
finally show µG (Z i − Z ′ i) ≤ (2 powr − real i) ∗ ?a .

qed
also have . . . = ennreal ((

∑
i∈{1 ..n}. (2 powr −enn2real i)) ∗ enn2real ?a)

using r by (simp add : setsum-left-distrib ennreal-mult [symmetric])
also have . . . < ennreal (1 ∗ enn2real ?a)
proof (intro ennreal-lessI mult-strict-right-mono)

have (
∑

i = 1 ..n. 2 powr − real i) = (
∑

i = 1 ..<Suc n. (1/2) ˆ i)
by (rule setsum.cong) (auto simp: powr-realpow powr-divide power-divide

powr-minus-divide)
also have {1 ..<Suc n} = {..<Suc n} − {0} by auto
also have setsum (op ˆ (1 / 2 ::real)) ({..<Suc n} − {0}) =

setsum (op ˆ (1 / 2)) ({..<Suc n}) − 1 by (auto simp: setsum-diff1)
also have . . . < 1 by (subst geometric-sum) auto
finally show (

∑
i = 1 ..n. 2 powr − enn2real i) < 1 by simp

qed (auto simp: r enn2real-positive-iff)
also have . . . = ?a by (auto simp: r)

THEORY “Projective-Limit” 603

also have . . . ≤ µG (Z n)
using J by (auto intro: INF-lower simp: Z-def mu-G-spec)

finally have µG (Z n) − µG (Y n) < µG (Z n) .
hence R: µG (Z n) < µG (Z n) + µG (Y n)

using 〈µG (Y n) 6= ∞〉 by (auto simp: zero-less-iff-neq-zero)
then have µG (Y n) > 0

by simp
thus Y n 6= {} using positive-mu-G by (auto simp add : positive-def)

qed
hence ∀n∈{1 ..}. ∃ y . y ∈ Y n by auto
then obtain y where y :

∧
n. n ≥ 1 =⇒ y n ∈ Y n unfolding bchoice-iff by

force
{

fix t and n m::nat
assume 1 ≤ n n ≤ m hence 1 ≤ m by simp
from Y-mono[OF 〈m ≥ n〉] y [OF 〈1 ≤ m〉] have y m ∈ Y n by auto
also have . . . ⊆ Z ′ n using Y-Z ′[OF 〈1 ≤ n〉] .
finally
have fm n (restrict (y m) (J n)) ∈ K ′ n
unfolding Z ′-def K-def prod-emb-iff by (simp add : Z ′-def K-def prod-emb-iff)
moreover have finmap-of (J n) (restrict (y m) (J n)) = finmap-of (J n) (y

m)
using J by (simp add : fm-def)

ultimately have fm n (y m) ∈ K ′ n by simp
} note fm-in-K ′ = this
interpret finmap-seqs-into-compact λn. K ′ (Suc n) λk . fm (Suc k) (y (Suc k))

borel
proof

fix n show compact (K ′ n) by fact
next

fix n
from Y-mono[of n Suc n] y [of Suc n] have y (Suc n) ∈ Y (Suc n) by auto
also have . . . ⊆ Z ′ (Suc n) using Y-Z ′ by auto
finally
have fm (Suc n) (restrict (y (Suc n)) (J (Suc n))) ∈ K ′ (Suc n)
unfolding Z ′-def K-def prod-emb-iff by (simp add : Z ′-def K-def prod-emb-iff)
thus K ′ (Suc n) 6= {} by auto
fix k
assume k ∈ K ′ (Suc n)
with K ′[of Suc n] sets.sets-into-space have k ∈ fm (Suc n) ‘ B (Suc n) by

auto
then obtain b where k = fm (Suc n) b by auto
thus domain k = domain (fm (Suc n) (y (Suc n)))

by (simp-all add : fm-def)
next

fix t and n m::nat
assume n ≤ m hence Suc n ≤ Suc m by simp
assume t ∈ domain (fm (Suc n) (y (Suc n)))
then obtain j where j : t = Utn j j ∈ J (Suc n) by auto

THEORY “Projective-Limit” 604

hence j ∈ J (Suc m) using J-mono[OF 〈Suc n ≤ Suc m〉] by auto
have img : fm (Suc n) (y (Suc m)) ∈ K ′ (Suc n) using 〈n ≤ m〉

by (intro fm-in-K ′) simp-all
show (fm (Suc m) (y (Suc m)))F t ∈ (λk . (k)F t) ‘ K ′ (Suc n)

apply (rule image-eqI [OF - img])
using 〈j ∈ J (Suc n)〉 〈j ∈ J (Suc m)〉

unfolding j by (subst proj-fm, auto)+
qed
have ∀ t . ∃ z . (λi . (fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) −−−−→ z

using diagonal-tendsto ..
then obtain z where z :∧

t . (λi . (fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) −−−−→ z t
unfolding choice-iff by blast
{

fix n :: nat assume n ≥ 1
have

∧
i . domain (fm n (y (Suc (diagseq i)))) = domain (finmap-of (Utn ‘ J

n) z)
by simp

moreover
{

fix t
assume t : t ∈ domain (finmap-of (Utn ‘ J n) z)
hence t ∈ Utn ‘ J n by simp
then obtain j where j : t = Utn j j ∈ J n by auto
have (λi . (fm n (y (Suc (diagseq i))))F t) −−−−→ z t

apply (subst (2) tendsto-iff , subst eventually-sequentially)
proof safe

fix e :: real assume 0 < e
{ fix i and x :: ′i ⇒ ′a assume i : i ≥ n

assume t ∈ domain (fm n x)
hence t ∈ domain (fm i x) using J-mono[OF 〈i ≥ n〉] by auto
with i have (fm i x)F t = (fm n x)F t

using j by (auto simp: proj-fm dest !: inj-onD [OF inj-on-Utn])
} note index-shift = this
have I :

∧
i . i ≥ n =⇒ Suc (diagseq i) ≥ n

apply (rule le-SucI)
apply (rule order-trans) apply simp
apply (rule seq-suble[OF subseq-diagseq])
done

from z
have ∃N . ∀ i≥N . dist ((fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) (z

t) < e
unfolding tendsto-iff eventually-sequentially using 〈0 < e〉 by auto

then obtain N where N :
∧

i . i ≥ N =⇒
dist ((fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) (z t) < e by auto

show ∃N . ∀na≥N . dist ((fm n (y (Suc (diagseq na))))F t) (z t) < e
proof (rule exI [where x=max N n], safe)

fix na assume max N n ≤ na
hence dist ((fm n (y (Suc (diagseq na))))F t) (z t) =

THEORY “Projective-Limit” 605

dist ((fm (Suc (diagseq na)) (y (Suc (diagseq na))))F t) (z t) using
t

by (subst index-shift [OF I]) auto
also have . . . < e using 〈max N n ≤ na〉 by (intro N) simp
finally show dist ((fm n (y (Suc (diagseq na))))F t) (z t) < e .

qed
qed
hence (λi . (fm n (y (Suc (diagseq i))))F t) −−−−→ (finmap-of (Utn ‘ J n)

z)F t
by (simp add : tendsto-intros)

} ultimately
have (λi . fm n (y (Suc (diagseq i)))) −−−−→ finmap-of (Utn ‘ J n) z

by (rule tendsto-finmap)
hence ((λi . fm n (y (Suc (diagseq i)))) o (λi . i + n)) −−−−→ finmap-of (Utn

‘ J n) z
by (rule LIMSEQ-subseq-LIMSEQ) (simp add : subseq-def)

moreover
have (∀ i . ((λi . fm n (y (Suc (diagseq i)))) o (λi . i + n)) i ∈ K ′ n)

apply (auto simp add : o-def intro!: fm-in-K ′ 〈1 ≤ n〉 le-SucI)
apply (rule le-trans)
apply (rule le-add2)
using seq-suble[OF subseq-diagseq]
apply auto
done

moreover
from 〈compact (K ′ n)〉 have closed (K ′ n) by (rule compact-imp-closed)
ultimately
have finmap-of (Utn ‘ J n) z ∈ K ′ n

unfolding closed-sequential-limits by blast
also have finmap-of (Utn ‘ J n) z = fm n (λi . z (Utn i))

unfolding finmap-eq-iff
proof clarsimp

fix i assume i : i ∈ J n
hence from-nat-into (

⋃
n. J n) (Utn i) = i

unfolding Utn-def
by (subst from-nat-into-to-nat-on[OF countable-UN-J]) auto

with i show z (Utn i) = (fm n (λi . z (Utn i)))F (Utn i)
by (simp add : finmap-eq-iff fm-def compose-def)

qed
finally have fm n (λi . z (Utn i)) ∈ K ′ n .
moreover
let ?J =

⋃
n. J n

have (?J ∩ J n) = J n by auto
ultimately have restrict (λi . z (Utn i)) (?J ∩ J n) ∈ K n

unfolding K-def by (auto simp: space-P space-PiM)
hence restrict (λi . z (Utn i)) ?J ∈ Z ′ n unfolding Z ′-def

using J by (auto simp: prod-emb-def PiE-def extensional-def)
also have . . . ⊆ Z n using Z ′ by simp
finally have restrict (λi . z (Utn i)) ?J ∈ Z n .

THEORY “Probability-Mass-Function” 606

} note in-Z = this
hence (

⋂
i∈{1 ..}. Z i) 6= {} by auto

thus (
⋂

i . Z i) 6= {}
using INT-decseq-offset [OF antimonoI [OF Z-mono]] by simp

qed fact+

lemma measure-lim-emb:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (ΠM i∈J . borel) =⇒ measure lim (emb I J X)

= measure (P J) X
unfolding measure-def by (subst emeasure-lim-emb) auto

end

hide-const (open) PiF
hide-const (open) PiF
hide-const (open) Pi ′

hide-const (open) Abs-finmap
hide-const (open) Rep-finmap
hide-const (open) finmap-of
hide-const (open) proj
hide-const (open) domain
hide-const (open) basis-finmap

sublocale polish-projective ⊆ P : prob-space lim
proof

have ∗: emb I {} {λx . undefined} = space (ΠM i∈I . borel)
by (auto simp: prod-emb-def space-PiM)

interpret prob-space P {}
using prob-space-P by simp

show emeasure lim (space lim) = 1
using emeasure-lim-emb[of {} {λx . undefined}] emeasure-space-1
by (simp add : ∗ PiM-empty space-P)

qed

locale polish-product-prob-space =
product-prob-space λ-. borel ::(′a::polish-space) measure I for I :: ′i set

sublocale polish-product-prob-space ⊆ P : polish-projective I λJ . PiM J (λ-. borel ::(′a)
measure)
proof qed

lemma (in polish-product-prob-space) limP-eq-PiM : lim = PiM I (λ-. borel)
by (rule PiM-eq) (auto simp: emeasure-PiM emeasure-lim-emb)

end

25 Probability mass function

theory Probability-Mass-Function

THEORY “Probability-Mass-Function” 607

imports
Giry-Monad
∼∼/src/HOL/Library/Multiset

begin

lemma AE-emeasure-singleton:
assumes x : emeasure M {x} 6= 0 and ae: AE x in M . P x shows P x

proof −
from x have x-M : {x} ∈ sets M

by (auto intro: emeasure-notin-sets)
from ae obtain N where N : {x∈space M . ¬ P x} ⊆ N emeasure M N = 0 N
∈ sets M

by (auto elim: AE-E)
{ assume ¬ P x
with x-M [THEN sets.sets-into-space] N have emeasure M {x} ≤ emeasure M

N
by (intro emeasure-mono) auto

with x N have False
by (auto simp:) }

then show P x by auto
qed

lemma AE-measure-singleton: measure M {x} 6= 0 =⇒ AE x in M . P x =⇒ P x
by (metis AE-emeasure-singleton measure-def emeasure-empty measure-empty)

lemma (in finite-measure) AE-support-countable:
assumes [simp]: sets M = UNIV
shows (AE x in M . measure M {x} 6= 0) ←→ (∃S . countable S ∧ (AE x in M .

x ∈ S))
proof

assume ∃S . countable S ∧ (AE x in M . x ∈ S)
then obtain S where S [intro]: countable S and ae: AE x in M . x ∈ S

by auto
then have emeasure M (

⋃
x∈{x∈S . emeasure M {x} 6= 0}. {x}) =

(
∫

+ x . emeasure M {x} ∗ indicator {x∈S . emeasure M {x} 6= 0} x ∂count-space
UNIV)

by (subst emeasure-UN-countable)
(auto simp: disjoint-family-on-def nn-integral-restrict-space[symmetric] restrict-count-space)

also have . . . = (
∫

+ x . emeasure M {x} ∗ indicator S x ∂count-space UNIV)
by (auto intro!: nn-integral-cong split : split-indicator)

also have . . . = emeasure M (
⋃

x∈S . {x})
by (subst emeasure-UN-countable)
(auto simp: disjoint-family-on-def nn-integral-restrict-space[symmetric] restrict-count-space)

also have . . . = emeasure M (space M)
using ae by (intro emeasure-eq-AE) auto

finally have emeasure M {x ∈ space M . x∈S ∧ emeasure M {x} 6= 0} =
emeasure M (space M)

by (simp add : emeasure-single-in-space cong : rev-conj-cong)
with finite-measure-compl [of {x ∈ space M . x∈S ∧ emeasure M {x} 6= 0}]

THEORY “Probability-Mass-Function” 608

have AE x in M . x ∈ S ∧ emeasure M {x} 6= 0
by (intro AE-I [OF order-refl]) (auto simp: emeasure-eq-measure measure-nonneg

set-diff-eq cong : conj-cong)
then show AE x in M . measure M {x} 6= 0

by (auto simp: emeasure-eq-measure)
qed (auto intro!: exI [of - {x . measure M {x} 6= 0}] countable-support)

25.1 PMF as measure

typedef ′a pmf = {M :: ′a measure. prob-space M ∧ sets M = UNIV ∧ (AE x
in M . measure M {x} 6= 0)}

morphisms measure-pmf Abs-pmf
by (intro exI [of - uniform-measure (count-space UNIV) {undefined}])

(auto intro!: prob-space-uniform-measure AE-uniform-measureI)

declare [[coercion measure-pmf]]

lemma prob-space-measure-pmf : prob-space (measure-pmf p)
using pmf .measure-pmf [of p] by auto

interpretation measure-pmf : prob-space measure-pmf M for M
by (rule prob-space-measure-pmf)

interpretation measure-pmf : subprob-space measure-pmf M for M
by (rule prob-space-imp-subprob-space) unfold-locales

lemma subprob-space-measure-pmf : subprob-space (measure-pmf x)
by unfold-locales

locale pmf-as-measure
begin

setup-lifting type-definition-pmf

end

context
begin

interpretation pmf-as-measure .

lemma sets-measure-pmf [simp]: sets (measure-pmf p) = UNIV
by transfer blast

lemma sets-measure-pmf-count-space[measurable-cong]:
sets (measure-pmf M) = sets (count-space UNIV)
by simp

lemma space-measure-pmf [simp]: space (measure-pmf p) = UNIV

THEORY “Probability-Mass-Function” 609

using sets-eq-imp-space-eq [of measure-pmf p count-space UNIV] by simp

lemma measure-pmf-UNIV [simp]: measure (measure-pmf p) UNIV = 1
using measure-pmf .prob-space[of p] by simp

lemma measure-pmf-in-subprob-algebra[measurable (raw)]: measure-pmf x ∈ space
(subprob-algebra (count-space UNIV))

by (simp add : space-subprob-algebra subprob-space-measure-pmf)

lemma measurable-pmf-measure1 [simp]: measurable (M :: ′a pmf) N = UNIV →
space N

by (auto simp: measurable-def)

lemma measurable-pmf-measure2 [simp]: measurable N (M :: ′a pmf) = measur-
able N (count-space UNIV)

by (intro measurable-cong-sets) simp-all

lemma measurable-pair-restrict-pmf2 :
assumes countable A
assumes [measurable]:

∧
y . y ∈ A =⇒ (λx . f (x , y)) ∈ measurable M L

shows f ∈ measurable (M
⊗

M restrict-space (measure-pmf N) A) L (is f ∈
measurable ?M -)
proof −
have [measurable-cong]: sets (restrict-space (count-space UNIV) A) = sets (count-space

A)
by (simp add : restrict-count-space)

show ?thesis
by (intro measurable-compose-countable ′[where f =λa b. f (fst b, a) and g=snd

and I =A,
unfolded prod .collapse] assms)

measurable
qed

lemma measurable-pair-restrict-pmf1 :
assumes countable A
assumes [measurable]:

∧
x . x ∈ A =⇒ (λy . f (x , y)) ∈ measurable N L

shows f ∈ measurable (restrict-space (measure-pmf M) A
⊗

M N) L
proof −
have [measurable-cong]: sets (restrict-space (count-space UNIV) A) = sets (count-space

A)
by (simp add : restrict-count-space)

show ?thesis
by (intro measurable-compose-countable ′[where f =λa b. f (a, snd b) and g=fst

and I =A,
unfolded prod .collapse] assms)

measurable
qed

THEORY “Probability-Mass-Function” 610

lift-definition pmf :: ′a pmf ⇒ ′a ⇒ real is λM x . measure M {x} .

lift-definition set-pmf :: ′a pmf ⇒ ′a set is λM . {x . measure M {x} 6= 0} .
declare [[coercion set-pmf]]

lemma AE-measure-pmf : AE x in (M :: ′a pmf). x ∈ M
by transfer simp

lemma emeasure-pmf-single-eq-zero-iff :
fixes M :: ′a pmf
shows emeasure M {y} = 0 ←→ y /∈ M
unfolding set-pmf .rep-eq by (simp add : measure-pmf .emeasure-eq-measure)

lemma AE-measure-pmf-iff : (AE x in measure-pmf M . P x) ←→ (∀ y∈M . P y)
using AE-measure-singleton[of M] AE-measure-pmf [of M]
by (auto simp: set-pmf .rep-eq)

lemma AE-pmfI : (
∧

y . y ∈ set-pmf M =⇒ P y) =⇒ almost-everywhere (measure-pmf
M) P
by(simp add : AE-measure-pmf-iff)

lemma countable-set-pmf [simp]: countable (set-pmf p)
by transfer (metis prob-space.finite-measure finite-measure.countable-support)

lemma pmf-positive: x ∈ set-pmf p =⇒ 0 < pmf p x
by transfer (simp add : less-le)

lemma pmf-nonneg [simp]: 0 ≤ pmf p x
by transfer simp

lemma pmf-le-1 : pmf p x ≤ 1
by (simp add : pmf .rep-eq)

lemma set-pmf-not-empty : set-pmf M 6= {}
using AE-measure-pmf [of M] by (intro notI) simp

lemma set-pmf-iff : x ∈ set-pmf M ←→ pmf M x 6= 0
by transfer simp

lemma pmf-positive-iff : 0 < pmf p x ←→ x ∈ set-pmf p
unfolding less-le by (simp add : set-pmf-iff)

lemma set-pmf-eq : set-pmf M = {x . pmf M x 6= 0}
by (auto simp: set-pmf-iff)

lemma emeasure-pmf-single:
fixes M :: ′a pmf
shows emeasure M {x} = pmf M x

THEORY “Probability-Mass-Function” 611

by transfer (simp add : finite-measure.emeasure-eq-measure[OF prob-space.finite-measure])

lemma measure-pmf-single: measure (measure-pmf M) {x} = pmf M x
using emeasure-pmf-single[of M x] by(simp add : measure-pmf .emeasure-eq-measure

pmf-nonneg measure-nonneg)

lemma emeasure-measure-pmf-finite: finite S =⇒ emeasure (measure-pmf M) S
= (

∑
s∈S . pmf M s)

by (subst emeasure-eq-setsum-singleton) (auto simp: emeasure-pmf-single pmf-nonneg)

lemma measure-measure-pmf-finite: finite S =⇒ measure (measure-pmf M) S =
setsum (pmf M) S

using emeasure-measure-pmf-finite[of S M]
by (simp add : measure-pmf .emeasure-eq-measure measure-nonneg setsum-nonneg

pmf-nonneg)

lemma nn-integral-measure-pmf-support :
fixes f :: ′a ⇒ ennreal
assumes f : finite A and nn:

∧
x . x ∈ A =⇒ 0 ≤ f x

∧
x . x ∈ set-pmf M =⇒ x

/∈ A =⇒ f x = 0
shows (

∫
+x . f x ∂measure-pmf M) = (

∑
x∈A. f x ∗ pmf M x)

proof −
have (

∫
+x . f x ∂M) = (

∫
+x . f x ∗ indicator A x ∂M)

using nn by (intro nn-integral-cong-AE) (auto simp: AE-measure-pmf-iff split :
split-indicator)

also have . . . = (
∑

x∈A. f x ∗ emeasure M {x})
using assms by (intro nn-integral-indicator-finite) auto

finally show ?thesis
by (simp add : emeasure-measure-pmf-finite)

qed

lemma nn-integral-measure-pmf-finite:
fixes f :: ′a ⇒ ennreal
assumes f : finite (set-pmf M) and nn:

∧
x . x ∈ set-pmf M =⇒ 0 ≤ f x

shows (
∫

+x . f x ∂measure-pmf M) = (
∑

x∈set-pmf M . f x ∗ pmf M x)
using assms by (intro nn-integral-measure-pmf-support) auto

lemma integrable-measure-pmf-finite:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite (set-pmf M) =⇒ integrable M f
by (auto intro!: integrableI-bounded simp: nn-integral-measure-pmf-finite ennreal-mult-less-top)

lemma integral-measure-pmf :
assumes [simp]: finite A and

∧
a. a ∈ set-pmf M =⇒ f a 6= 0 =⇒ a ∈ A

shows (
∫

x . f x ∂measure-pmf M) = (
∑

a∈A. f a ∗ pmf M a)
proof −

have (
∫

x . f x ∂measure-pmf M) = (
∫

x . f x ∗ indicator A x ∂measure-pmf M)
using assms(2) by (intro integral-cong-AE) (auto split : split-indicator simp:

AE-measure-pmf-iff)

THEORY “Probability-Mass-Function” 612

also have . . . = (
∑

a∈A. f a ∗ pmf M a)
by (subst integral-indicator-finite-real)

(auto simp: measure-def emeasure-measure-pmf-finite pmf-nonneg)
finally show ?thesis .

qed

lemma integrable-pmf : integrable (count-space X) (pmf M)
proof −

have (
∫

+ x . pmf M x ∂count-space X) = (
∫

+ x . pmf M x ∂count-space (M ∩
X))

by (auto simp add : nn-integral-count-space-indicator set-pmf-iff intro!: nn-integral-cong
split : split-indicator)

then have integrable (count-space X) (pmf M) = integrable (count-space (M ∩
X)) (pmf M)

by (simp add : integrable-iff-bounded pmf-nonneg)
then show ?thesis
by (simp add : pmf .rep-eq measure-pmf .integrable-measure disjoint-family-on-def)

qed

lemma integral-pmf : (
∫

x . pmf M x ∂count-space X) = measure M X
proof −

have (
∫

x . pmf M x ∂count-space X) = (
∫

+x . pmf M x ∂count-space X)
by (simp add : pmf-nonneg integrable-pmf nn-integral-eq-integral)

also have . . . = (
∫

+x . emeasure M {x} ∂count-space (X ∩ M))
by (auto intro!: nn-integral-cong-AE split : split-indicator

simp: pmf .rep-eq measure-pmf .emeasure-eq-measure nn-integral-count-space-indicator
AE-count-space set-pmf-iff)

also have . . . = emeasure M (X ∩ M)
by (rule emeasure-countable-singleton[symmetric]) (auto intro: countable-set-pmf)
also have . . . = emeasure M X

by (auto intro!: emeasure-eq-AE simp: AE-measure-pmf-iff)
finally show ?thesis
by (simp add : measure-pmf .emeasure-eq-measure measure-nonneg integral-nonneg

pmf-nonneg)
qed

lemma integral-pmf-restrict :
(f :: ′a ⇒ ′b::{banach, second-countable-topology}) ∈ borel-measurable (count-space

UNIV) =⇒
(
∫

x . f x ∂measure-pmf M) = (
∫

x . f x ∂restrict-space M M)
by (auto intro!: integral-cong-AE simp add : integral-restrict-space AE-measure-pmf-iff)

lemma emeasure-pmf : emeasure (M :: ′a pmf) M = 1
proof −

have emeasure (M :: ′a pmf) M = emeasure (M :: ′a pmf) (space M)
by (intro emeasure-eq-AE) (simp-all add : AE-measure-pmf)

then show ?thesis
using measure-pmf .emeasure-space-1 by simp

qed

THEORY “Probability-Mass-Function” 613

lemma emeasure-pmf-UNIV [simp]: emeasure (measure-pmf M) UNIV = 1
using measure-pmf .emeasure-space-1 [of M] by simp

lemma in-null-sets-measure-pmfI :
A ∩ set-pmf p = {} =⇒ A ∈ null-sets (measure-pmf p)

using emeasure-eq-0-AE [where ?P=λx . x ∈ A and M =measure-pmf p]
by(auto simp add : null-sets-def AE-measure-pmf-iff)

lemma measure-subprob: measure-pmf M ∈ space (subprob-algebra (count-space
UNIV))

by (simp add : space-subprob-algebra subprob-space-measure-pmf)

25.2 Monad Interpretation

lemma measurable-measure-pmf [measurable]:
(λx . measure-pmf (M x)) ∈ measurable (count-space UNIV) (subprob-algebra

(count-space UNIV))
by (auto simp: space-subprob-algebra intro!: prob-space-imp-subprob-space) unfold-locales

lemma bind-measure-pmf-cong :
assumes

∧
x . A x ∈ space (subprob-algebra N)

∧
x . B x ∈ space (subprob-algebra

N)
assumes

∧
i . i ∈ set-pmf x =⇒ A i = B i

shows bind (measure-pmf x) A = bind (measure-pmf x) B
proof (rule measure-eqI)

show sets (measure-pmf x >>= A) = sets (measure-pmf x >>= B)
using assms by (subst (1 2) sets-bind) (auto simp: space-subprob-algebra)

next
fix X assume X ∈ sets (measure-pmf x >>= A)
then have X : X ∈ sets N

using assms by (subst (asm) sets-bind) (auto simp: space-subprob-algebra)
show emeasure (measure-pmf x >>= A) X = emeasure (measure-pmf x >>= B) X

using assms
by (subst (1 2) emeasure-bind [where N =N , OF - - X])

(auto intro!: nn-integral-cong-AE simp: AE-measure-pmf-iff)
qed

lift-definition bind-pmf :: ′a pmf ⇒ (′a ⇒ ′b pmf) ⇒ ′b pmf is bind
proof (clarify , intro conjI)

fix f :: ′a measure and g :: ′a ⇒ ′b measure
assume prob-space f
then interpret f : prob-space f .
assume sets f = UNIV and ae-f : AE x in f . measure f {x} 6= 0
then have s-f [simp]: sets f = sets (count-space UNIV)

by simp
assume g :

∧
x . prob-space (g x) ∧ sets (g x) = UNIV ∧ (AE y in g x . measure

(g x) {y} 6= 0)
then have g :

∧
x . prob-space (g x) and s-g [simp]:

∧
x . sets (g x) = sets (count-space

THEORY “Probability-Mass-Function” 614

UNIV)
and ae-g :

∧
x . AE y in g x . measure (g x) {y} 6= 0

by auto

have [measurable]: g ∈ measurable f (subprob-algebra (count-space UNIV))
by (auto simp: measurable-def space-subprob-algebra prob-space-imp-subprob-space

g)

show prob-space (f >>= g)
using g by (intro f .prob-space-bind [where S=count-space UNIV]) auto

then interpret fg : prob-space f >>= g .
show [simp]: sets (f >>= g) = UNIV

using sets-eq-imp-space-eq [OF s-f]
by (subst sets-bind [where N =count-space UNIV]) auto

show AE x in f >>= g . measure (f >>= g) {x} 6= 0
apply (simp add : fg .prob-eq-0 AE-bind [where B=count-space UNIV])
using ae-f
apply eventually-elim
using ae-g
apply eventually-elim
apply (auto dest : AE-measure-singleton)
done

qed

lemma ennreal-pmf-bind : pmf (bind-pmf N f) i = (
∫

+x . pmf (f x) i ∂measure-pmf
N)

unfolding pmf .rep-eq bind-pmf .rep-eq
by (auto simp: measure-pmf .measure-bind [where N =count-space UNIV] measure-subprob

measure-nonneg
intro!: nn-integral-eq-integral [symmetric] measure-pmf .integrable-const-bound [where

B=1])

lemma pmf-bind : pmf (bind-pmf N f) i = (
∫

x . pmf (f x) i ∂measure-pmf N)
using ennreal-pmf-bind [of N f i]
by (subst (asm) nn-integral-eq-integral)

(auto simp: pmf-nonneg pmf-le-1 pmf-nonneg integral-nonneg
intro!: nn-integral-eq-integral [symmetric] measure-pmf .integrable-const-bound [where

B=1])

lemma bind-pmf-const [simp]: bind-pmf M (λx . c) = c
by transfer (simp add : bind-const ′ prob-space-imp-subprob-space)

lemma set-bind-pmf [simp]: set-pmf (bind-pmf M N) = (
⋃

M∈set-pmf M . set-pmf
(N M))
proof −

have set-pmf (bind-pmf M N) = {x . ennreal (pmf (bind-pmf M N) x) 6= 0}
by (simp add : set-pmf-eq pmf-nonneg)

also have . . . = (
⋃

M∈set-pmf M . set-pmf (N M))
unfolding ennreal-pmf-bind

THEORY “Probability-Mass-Function” 615

by (subst nn-integral-0-iff-AE) (auto simp: AE-measure-pmf-iff pmf-nonneg
set-pmf-eq)

finally show ?thesis .
qed

lemma bind-pmf-cong :
assumes p = q
shows (

∧
x . x ∈ set-pmf q =⇒ f x = g x) =⇒ bind-pmf p f = bind-pmf q g

unfolding 〈p = q〉[symmetric] measure-pmf-inject [symmetric] bind-pmf .rep-eq
by (auto simp: AE-measure-pmf-iff Pi-iff space-subprob-algebra subprob-space-measure-pmf

sets-bind [where N =count-space UNIV] emeasure-bind [where
N =count-space UNIV]

intro!: nn-integral-cong-AE measure-eqI)

lemma bind-pmf-cong-simp:
p = q =⇒ (

∧
x . x ∈ set-pmf q =simp=> f x = g x) =⇒ bind-pmf p f = bind-pmf

q g
by (simp add : simp-implies-def cong : bind-pmf-cong)

lemma measure-pmf-bind : measure-pmf (bind-pmf M f) = (measure-pmf M >>=
(λx . measure-pmf (f x)))

by transfer simp

lemma nn-integral-bind-pmf [simp]: (
∫

+x . f x ∂bind-pmf M N) = (
∫

+x .
∫

+y . f
y ∂N x ∂M)

using measurable-measure-pmf [of N]
unfolding measure-pmf-bind
apply (intro nn-integral-bind [where B=count-space UNIV])
apply auto
done

lemma emeasure-bind-pmf [simp]: emeasure (bind-pmf M N) X = (
∫

+x . emeasure
(N x) X ∂M)

using measurable-measure-pmf [of N]
unfolding measure-pmf-bind
by (subst emeasure-bind [where N =count-space UNIV]) auto

lift-definition return-pmf :: ′a ⇒ ′a pmf is return (count-space UNIV)
by (auto intro!: prob-space-return simp: AE-return measure-return)

lemma bind-return-pmf : bind-pmf (return-pmf x) f = f x
by transfer

(auto intro!: prob-space-imp-subprob-space bind-return[where N =count-space
UNIV]

simp: space-subprob-algebra)

lemma set-return-pmf [simp]: set-pmf (return-pmf x) = {x}
by transfer (auto simp add : measure-return split : split-indicator)

THEORY “Probability-Mass-Function” 616

lemma bind-return-pmf ′: bind-pmf N return-pmf = N
proof (transfer , clarify)
fix N :: ′a measure assume sets N = UNIV then show N >>= return (count-space

UNIV) = N
by (subst return-sets-cong [where N =N]) (simp-all add : bind-return ′)

qed

lemma bind-assoc-pmf : bind-pmf (bind-pmf A B) C = bind-pmf A (λx . bind-pmf
(B x) C)

by transfer
(auto intro!: bind-assoc[where N =count-space UNIV and R=count-space

UNIV]
simp: measurable-def space-subprob-algebra prob-space-imp-subprob-space)

definition map-pmf f M = bind-pmf M (λx . return-pmf (f x))

lemma map-bind-pmf : map-pmf f (bind-pmf M g) = bind-pmf M (λx . map-pmf f
(g x))

by (simp add : map-pmf-def bind-assoc-pmf)

lemma bind-map-pmf : bind-pmf (map-pmf f M) g = bind-pmf M (λx . g (f x))
by (simp add : map-pmf-def bind-assoc-pmf bind-return-pmf)

lemma map-pmf-transfer [transfer-rule]:
rel-fun op = (rel-fun cr-pmf cr-pmf) (λf M . distr M (count-space UNIV) f)

map-pmf
proof −

have rel-fun op = (rel-fun pmf-as-measure.cr-pmf pmf-as-measure.cr-pmf)
(λf M . M >>= (return (count-space UNIV) o f)) map-pmf

unfolding map-pmf-def [abs-def] comp-def by transfer-prover
then show ?thesis

by (force simp: rel-fun-def cr-pmf-def bind-return-distr)
qed

lemma map-pmf-rep-eq :
measure-pmf (map-pmf f M) = distr (measure-pmf M) (count-space UNIV) f
unfolding map-pmf-def bind-pmf .rep-eq comp-def return-pmf .rep-eq
using bind-return-distr [of M f count-space UNIV] by (simp add : comp-def)

lemma map-pmf-id [simp]: map-pmf id = id
by (rule, transfer) (auto simp: emeasure-distr measurable-def intro!: measure-eqI)

lemma map-pmf-ident [simp]: map-pmf (λx . x) = (λx . x)
using map-pmf-id unfolding id-def .

lemma map-pmf-compose: map-pmf (f ◦ g) = map-pmf f ◦ map-pmf g
by (rule, transfer) (simp add : distr-distr [symmetric, where N =count-space

UNIV] measurable-def)

THEORY “Probability-Mass-Function” 617

lemma map-pmf-comp: map-pmf f (map-pmf g M) = map-pmf (λx . f (g x)) M
using map-pmf-compose[of f g] by (simp add : comp-def)

lemma map-pmf-cong : p = q =⇒ (
∧

x . x ∈ set-pmf q =⇒ f x = g x) =⇒ map-pmf
f p = map-pmf g q

unfolding map-pmf-def by (rule bind-pmf-cong) auto

lemma pmf-set-map: set-pmf ◦ map-pmf f = op ‘ f ◦ set-pmf
by (auto simp add : comp-def fun-eq-iff map-pmf-def)

lemma set-map-pmf [simp]: set-pmf (map-pmf f M) = f‘set-pmf M
using pmf-set-map[of f] by (auto simp: comp-def fun-eq-iff)

lemma emeasure-map-pmf [simp]: emeasure (map-pmf f M) X = emeasure M (f
−‘ X)

unfolding map-pmf-rep-eq by (subst emeasure-distr) auto

lemma measure-map-pmf [simp]: measure (map-pmf f M) X = measure M (f −‘
X)
using emeasure-map-pmf [of f M X] by(simp add : measure-pmf .emeasure-eq-measure
measure-nonneg)

lemma nn-integral-map-pmf [simp]: (
∫

+x . f x ∂map-pmf g M) = (
∫

+x . f (g x)
∂M)

unfolding map-pmf-rep-eq by (intro nn-integral-distr) auto

lemma ennreal-pmf-map: pmf (map-pmf f p) x = (
∫

+ y . indicator (f −‘ {x}) y
∂measure-pmf p)
proof (transfer fixing : f x)

fix p :: ′b measure
presume prob-space p
then interpret prob-space p .
presume sets p = UNIV
then show ennreal (measure (distr p (count-space UNIV) f) {x}) = integralN

p (indicator (f −‘ {x}))
by(simp add : measure-distr measurable-def emeasure-eq-measure)

qed simp-all

lemma pmf-map: pmf (map-pmf f p) x = measure p (f −‘ {x})
proof (transfer fixing : f x)

fix p :: ′b measure
presume prob-space p
then interpret prob-space p .
presume sets p = UNIV
then show measure (distr p (count-space UNIV) f) {x} = measure p (f −‘ {x})

by(simp add : measure-distr measurable-def emeasure-eq-measure)
qed simp-all

lemma nn-integral-pmf : (
∫

+ x . pmf p x ∂count-space A) = emeasure (measure-pmf

THEORY “Probability-Mass-Function” 618

p) A
proof −

have (
∫

+ x . pmf p x ∂count-space A) = (
∫

+ x . pmf p x ∂count-space (A ∩
set-pmf p))

by(auto simp add : nn-integral-count-space-indicator indicator-def set-pmf-iff
intro: nn-integral-cong)

also have . . . = emeasure (measure-pmf p) (
⋃

x∈A ∩ set-pmf p. {x})
by(subst emeasure-UN-countable)(auto simp add : emeasure-pmf-single disjoint-family-on-def)
also have . . . = emeasure (measure-pmf p) ((

⋃
x∈A ∩ set-pmf p. {x}) ∪ {x . x

∈ A ∧ x /∈ set-pmf p})
by(rule emeasure-Un-null-set [symmetric])(auto intro: in-null-sets-measure-pmfI)
also have . . . = emeasure (measure-pmf p) A

by(auto intro: arg-cong2 [where f =emeasure])
finally show ?thesis .

qed

lemma integral-map-pmf [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integralL (map-pmf g p) f = integralL p (λx . f (g x))
by (simp add : integral-distr map-pmf-rep-eq)

lemma map-return-pmf [simp]: map-pmf f (return-pmf x) = return-pmf (f x)
by transfer (simp add : distr-return)

lemma map-pmf-const [simp]: map-pmf (λ-. c) M = return-pmf c
by transfer (auto simp: prob-space.distr-const)

lemma pmf-return [simp]: pmf (return-pmf x) y = indicator {y} x
by transfer (simp add : measure-return)

lemma nn-integral-return-pmf [simp]: 0 ≤ f x =⇒ (
∫

+x . f x ∂return-pmf x) = f
x

unfolding return-pmf .rep-eq by (intro nn-integral-return) auto

lemma emeasure-return-pmf [simp]: emeasure (return-pmf x) X = indicator X x
unfolding return-pmf .rep-eq by (intro emeasure-return) auto

lemma return-pmf-inj [simp]: return-pmf x = return-pmf y ←→ x = y
by (metis insertI1 set-return-pmf singletonD)

lemma map-pmf-eq-return-pmf-iff :
map-pmf f p = return-pmf x ←→ (∀ y ∈ set-pmf p. f y = x)

proof
assume map-pmf f p = return-pmf x
then have set-pmf (map-pmf f p) = set-pmf (return-pmf x) by simp
then show ∀ y ∈ set-pmf p. f y = x by auto

next
assume ∀ y ∈ set-pmf p. f y = x
then show map-pmf f p = return-pmf x

THEORY “Probability-Mass-Function” 619

unfolding map-pmf-const [symmetric, of - p] by (intro map-pmf-cong) auto
qed

definition pair-pmf A B = bind-pmf A (λx . bind-pmf B (λy . return-pmf (x , y)))

lemma pmf-pair : pmf (pair-pmf M N) (a, b) = pmf M a ∗ pmf N b
unfolding pair-pmf-def pmf-bind pmf-return
apply (subst integral-measure-pmf [where A={b}])
apply (auto simp: indicator-eq-0-iff)
apply (subst integral-measure-pmf [where A={a}])
apply (auto simp: indicator-eq-0-iff setsum-nonneg-eq-0-iff pmf-nonneg)
done

lemma set-pair-pmf [simp]: set-pmf (pair-pmf A B) = set-pmf A × set-pmf B
unfolding pair-pmf-def set-bind-pmf set-return-pmf by auto

lemma measure-pmf-in-subprob-space[measurable (raw)]:
measure-pmf M ∈ space (subprob-algebra (count-space UNIV))
by (simp add : space-subprob-algebra) intro-locales

lemma nn-integral-pair-pmf ′: (
∫

+x . f x ∂pair-pmf A B) = (
∫

+a.
∫

+b. f (a, b)
∂B ∂A)
proof −

have (
∫

+x . f x ∂pair-pmf A B) = (
∫

+x . f x ∗ indicator (A × B) x ∂pair-pmf
A B)

by (auto simp: AE-measure-pmf-iff intro!: nn-integral-cong-AE)
also have . . . = (

∫
+a.

∫
+b. f (a, b) ∗ indicator (A × B) (a, b) ∂B ∂A)

by (simp add : pair-pmf-def)
also have . . . = (

∫
+a.

∫
+b. f (a, b) ∂B ∂A)

by (auto intro!: nn-integral-cong-AE simp: AE-measure-pmf-iff)
finally show ?thesis .

qed

lemma bind-pair-pmf :
assumes M [measurable]: M ∈ measurable (count-space UNIV

⊗
M count-space

UNIV) (subprob-algebra N)
shows measure-pmf (pair-pmf A B) >>= M = (measure-pmf A >>= (λx . measure-pmf

B >>= (λy . M (x , y))))
(is ?L = ?R)

proof (rule measure-eqI)
have M ′[measurable]: M ∈ measurable (pair-pmf A B) (subprob-algebra N)

using M [THEN measurable-space] by (simp-all add : space-pair-measure)

note measurable-bind [where N =count-space UNIV , measurable]
note measure-pmf-in-subprob-space[simp]

have sets-eq-N : sets ?L = N
by (subst sets-bind [OF sets-kernel [OF M ′]]) auto

show sets ?L = sets ?R

THEORY “Probability-Mass-Function” 620

using measurable-space[OF M]
by (simp add : sets-eq-N space-pair-measure space-subprob-algebra)

fix X assume X ∈ sets ?L
then have X [measurable]: X ∈ sets N

unfolding sets-eq-N .
then show emeasure ?L X = emeasure ?R X

apply (simp add : emeasure-bind [OF - M ′ X])
apply (simp add : nn-integral-bind [where B=count-space UNIV] pair-pmf-def

measure-pmf-bind [of A]
nn-integral-measure-pmf-finite)

apply (subst emeasure-bind [OF - - X])
apply measurable
apply (subst emeasure-bind [OF - - X])
apply measurable
done

qed

lemma map-fst-pair-pmf : map-pmf fst (pair-pmf A B) = A
by (simp add : pair-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

lemma map-snd-pair-pmf : map-pmf snd (pair-pmf A B) = B
by (simp add : pair-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

lemma nn-integral-pmf ′:
inj-on f A =⇒ (

∫
+x . pmf p (f x) ∂count-space A) = emeasure p (f ‘ A)

by (subst nn-integral-bij-count-space[where g=f and B=f‘A])
(auto simp: bij-betw-def nn-integral-pmf)

lemma pmf-le-0-iff [simp]: pmf M p ≤ 0 ←→ pmf M p = 0
using pmf-nonneg [of M p] by arith

lemma min-pmf-0 [simp]: min (pmf M p) 0 = 0 min 0 (pmf M p) = 0
using pmf-nonneg [of M p] by arith+

lemma pmf-eq-0-set-pmf : pmf M p = 0 ←→ p /∈ set-pmf M
unfolding set-pmf-iff by simp

lemma pmf-map-inj : inj-on f (set-pmf M) =⇒ x ∈ set-pmf M =⇒ pmf (map-pmf
f M) (f x) = pmf M x

by (auto simp: pmf .rep-eq map-pmf-rep-eq measure-distr AE-measure-pmf-iff
inj-onD

intro!: measure-pmf .finite-measure-eq-AE)

lemma pmf-map-inj ′: inj f =⇒ pmf (map-pmf f M) (f x) = pmf M x
apply(cases x ∈ set-pmf M)
apply(simp add : pmf-map-inj [OF subset-inj-on])

apply(simp add : pmf-eq-0-set-pmf [symmetric])
apply(auto simp add : pmf-eq-0-set-pmf dest : injD)
done

THEORY “Probability-Mass-Function” 621

lemma pmf-map-outside: x /∈ f ‘ set-pmf M =⇒ pmf (map-pmf f M) x = 0
unfolding pmf-eq-0-set-pmf by simp

25.3 PMFs as function

context
fixes f :: ′a ⇒ real
assumes nonneg :

∧
x . 0 ≤ f x

assumes prob: (
∫

+x . f x ∂count-space UNIV) = 1
begin

lift-definition embed-pmf :: ′a pmf is density (count-space UNIV) (ennreal ◦ f)
proof (intro conjI)

have ∗[simp]:
∧

x y . ennreal (f y) ∗ indicator {x} y = ennreal (f x) ∗ indicator
{x} y

by (simp split : split-indicator)
show AE x in density (count-space UNIV) (ennreal ◦ f).

measure (density (count-space UNIV) (ennreal ◦ f)) {x} 6= 0
by (simp add : AE-density nonneg measure-def emeasure-density max-def)

show prob-space (density (count-space UNIV) (ennreal ◦ f))
by standard (simp add : emeasure-density prob)

qed simp

lemma pmf-embed-pmf : pmf embed-pmf x = f x
proof transfer

have ∗[simp]:
∧

x y . ennreal (f y) ∗ indicator {x} y = ennreal (f x) ∗ indicator
{x} y

by (simp split : split-indicator)
fix x show measure (density (count-space UNIV) (ennreal ◦ f)) {x} = f x

by transfer (simp add : measure-def emeasure-density nonneg max-def)
qed

lemma set-embed-pmf : set-pmf embed-pmf = {x . f x 6= 0}
by(auto simp add : set-pmf-eq assms pmf-embed-pmf)

end

lemma embed-pmf-transfer :
rel-fun (eq-onp (λf . (∀ x . 0 ≤ f x) ∧ (

∫
+x . ennreal (f x) ∂count-space UNIV)

= 1)) pmf-as-measure.cr-pmf (λf . density (count-space UNIV) (ennreal ◦ f))
embed-pmf

by (auto simp: rel-fun-def eq-onp-def embed-pmf .transfer)

lemma measure-pmf-eq-density : measure-pmf p = density (count-space UNIV)
(pmf p)
proof (transfer , elim conjE)
fix M :: ′a measure assume [simp]: sets M = UNIV and ae: AE x in M . measure

M {x} 6= 0

THEORY “Probability-Mass-Function” 622

assume prob-space M then interpret prob-space M .
show M = density (count-space UNIV) (λx . ennreal (measure M {x}))
proof (rule measure-eqI)

fix A :: ′a set
have (

∫
+ x . ennreal (measure M {x}) ∗ indicator A x ∂count-space UNIV) =

(
∫

+ x . emeasure M {x} ∗ indicator (A ∩ {x . measure M {x} 6= 0}) x
∂count-space UNIV)

by (auto intro!: nn-integral-cong simp: emeasure-eq-measure split : split-indicator)
also have . . . = (

∫
+ x . emeasure M {x} ∂count-space (A ∩ {x . measure M

{x} 6= 0}))
by (subst nn-integral-restrict-space[symmetric]) (auto simp: restrict-count-space)
also have . . . = emeasure M (

⋃
x∈(A ∩ {x . measure M {x} 6= 0}). {x})

by (intro emeasure-UN-countable[symmetric] countable-Int2 countable-support)
(auto simp: disjoint-family-on-def)

also have . . . = emeasure M A
using ae by (intro emeasure-eq-AE) auto

finally show emeasure M A = emeasure (density (count-space UNIV) (λx .
ennreal (measure M {x}))) A

using emeasure-space-1 by (simp add : emeasure-density)
qed simp

qed

lemma td-pmf-embed-pmf :
type-definition pmf embed-pmf {f :: ′a ⇒ real . (∀ x . 0 ≤ f x) ∧ (

∫
+x . ennreal (f

x) ∂count-space UNIV) = 1}
unfolding type-definition-def

proof safe
fix p :: ′a pmf
have (

∫
+ x . 1 ∂measure-pmf p) = 1

using measure-pmf .emeasure-space-1 [of p] by simp
then show ∗: (

∫
+ x . ennreal (pmf p x) ∂count-space UNIV) = 1

by (simp add : measure-pmf-eq-density nn-integral-density pmf-nonneg del :
nn-integral-const)

show embed-pmf (pmf p) = p
by (intro measure-pmf-inject [THEN iffD1])

(simp add : ∗ embed-pmf .rep-eq pmf-nonneg measure-pmf-eq-density [of p]
comp-def)
next

fix f :: ′a ⇒ real assume ∀ x . 0 ≤ f x (
∫

+x . f x ∂count-space UNIV) = 1
then show pmf (embed-pmf f) = f

by (auto intro!: pmf-embed-pmf)
qed (rule pmf-nonneg)

end

lemma nn-integral-measure-pmf : (
∫

+ x . f x ∂measure-pmf p) =
∫

+ x . ennreal
(pmf p x) ∗ f x ∂count-space UNIV
by(simp add : measure-pmf-eq-density nn-integral-density pmf-nonneg)

THEORY “Probability-Mass-Function” 623

locale pmf-as-function
begin

setup-lifting td-pmf-embed-pmf

lemma set-pmf-transfer [transfer-rule]:
assumes bi-total A
shows rel-fun (pcr-pmf A) (rel-set A) (λf . {x . f x 6= 0}) set-pmf
using 〈bi-total A〉

by (auto simp: pcr-pmf-def cr-pmf-def rel-fun-def rel-set-def bi-total-def Bex-def
set-pmf-iff)

metis+

end

context
begin

interpretation pmf-as-function .

lemma pmf-eqI : (
∧

i . pmf M i = pmf N i) =⇒ M = N
by transfer auto

lemma pmf-eq-iff : M = N ←→ (∀ i . pmf M i = pmf N i)
by (auto intro: pmf-eqI)

lemma bind-commute-pmf : bind-pmf A (λx . bind-pmf B (C x)) = bind-pmf B (λy .
bind-pmf A (λx . C x y))

unfolding pmf-eq-iff pmf-bind
proof

fix i
interpret B : prob-space restrict-space B B

by (intro prob-space-restrict-space measure-pmf .emeasure-eq-1-AE)
(auto simp: AE-measure-pmf-iff)

interpret A: prob-space restrict-space A A
by (intro prob-space-restrict-space measure-pmf .emeasure-eq-1-AE)

(auto simp: AE-measure-pmf-iff)

interpret AB : pair-prob-space restrict-space A A restrict-space B B
by unfold-locales

have (
∫

x .
∫

y . pmf (C x y) i ∂B ∂A) = (
∫

x . (
∫

y . pmf (C x y) i
∂restrict-space B B) ∂A)

by (rule integral-cong) (auto intro!: integral-pmf-restrict)
also have . . . = (

∫
x . (

∫
y . pmf (C x y) i ∂restrict-space B B) ∂restrict-space

A A)
by (intro integral-pmf-restrict B .borel-measurable-lebesgue-integral measurable-pair-restrict-pmf2

countable-set-pmf borel-measurable-count-space)

THEORY “Probability-Mass-Function” 624

also have . . . = (
∫

y .
∫

x . pmf (C x y) i ∂restrict-space A A ∂restrict-space B
B)

by (rule AB .Fubini-integral [symmetric])
(auto intro!: AB .integrable-const-bound [where B=1] measurable-pair-restrict-pmf2

simp: pmf-nonneg pmf-le-1 measurable-restrict-space1)
also have . . . = (

∫
y .

∫
x . pmf (C x y) i ∂restrict-space A A ∂B)

by (intro integral-pmf-restrict [symmetric] A.borel-measurable-lebesgue-integral
measurable-pair-restrict-pmf2

countable-set-pmf borel-measurable-count-space)
also have . . . = (

∫
y .

∫
x . pmf (C x y) i ∂A ∂B)

by (rule integral-cong) (auto intro!: integral-pmf-restrict [symmetric])
finally show (

∫
x .

∫
y . pmf (C x y) i ∂B ∂A) = (

∫
y .

∫
x . pmf (C x y) i

∂A ∂B) .
qed

lemma pair-map-pmf1 : pair-pmf (map-pmf f A) B = map-pmf (apfst f) (pair-pmf
A B)
proof (safe intro!: pmf-eqI)

fix a :: ′a and b :: ′b
have [simp]:

∧
c d . indicator (apfst f −‘ {(a, b)}) (c, d) = indicator (f −‘ {a})

c ∗ (indicator {b} d ::ennreal)
by (auto split : split-indicator)

have ennreal (pmf (pair-pmf (map-pmf f A) B) (a, b)) =
ennreal (pmf (map-pmf (apfst f) (pair-pmf A B)) (a, b))

unfolding pmf-pair ennreal-pmf-map
by (simp add : nn-integral-pair-pmf ′max-def emeasure-pmf-single nn-integral-multc

pmf-nonneg
emeasure-map-pmf [symmetric] ennreal-mult del : emeasure-map-pmf)

then show pmf (pair-pmf (map-pmf f A) B) (a, b) = pmf (map-pmf (apfst f)
(pair-pmf A B)) (a, b)

by (simp add : pmf-nonneg)
qed

lemma pair-map-pmf2 : pair-pmf A (map-pmf f B) = map-pmf (apsnd f) (pair-pmf
A B)
proof (safe intro!: pmf-eqI)

fix a :: ′a and b :: ′b
have [simp]:

∧
c d . indicator (apsnd f −‘ {(a, b)}) (c, d) = indicator {a} c ∗

(indicator (f −‘ {b}) d ::ennreal)
by (auto split : split-indicator)

have ennreal (pmf (pair-pmf A (map-pmf f B)) (a, b)) =
ennreal (pmf (map-pmf (apsnd f) (pair-pmf A B)) (a, b))

unfolding pmf-pair ennreal-pmf-map
by (simp add : nn-integral-pair-pmf ′max-def emeasure-pmf-single nn-integral-cmult

nn-integral-multc pmf-nonneg
emeasure-map-pmf [symmetric] ennreal-mult del : emeasure-map-pmf)

then show pmf (pair-pmf A (map-pmf f B)) (a, b) = pmf (map-pmf (apsnd f)

THEORY “Probability-Mass-Function” 625

(pair-pmf A B)) (a, b)
by (simp add : pmf-nonneg)

qed

lemma map-pair : map-pmf (λ(a, b). (f a, g b)) (pair-pmf A B) = pair-pmf
(map-pmf f A) (map-pmf g B)

by (simp add : pair-map-pmf2 pair-map-pmf1 map-pmf-comp split-beta ′)

end

lemma pair-return-pmf1 : pair-pmf (return-pmf x) y = map-pmf (Pair x) y
by(simp add : pair-pmf-def bind-return-pmf map-pmf-def)

lemma pair-return-pmf2 : pair-pmf x (return-pmf y) = map-pmf (λx . (x , y)) x
by(simp add : pair-pmf-def bind-return-pmf map-pmf-def)

lemma pair-pair-pmf : pair-pmf (pair-pmf u v) w = map-pmf (λ(x , (y , z)). ((x ,
y), z)) (pair-pmf u (pair-pmf v w))
by(simp add : pair-pmf-def bind-return-pmf map-pmf-def bind-assoc-pmf)

lemma pair-commute-pmf : pair-pmf x y = map-pmf (λ(x , y). (y , x)) (pair-pmf y
x)
unfolding pair-pmf-def by(subst bind-commute-pmf)(simp add : map-pmf-def bind-assoc-pmf
bind-return-pmf)

lemma set-pmf-subset-singleton: set-pmf p ⊆ {x} ←→ p = return-pmf x
proof(intro iffI pmf-eqI)

fix i
assume x : set-pmf p ⊆ {x}
hence ∗: set-pmf p = {x} using set-pmf-not-empty [of p] by auto
have ennreal (pmf p x) =

∫
+ i . indicator {x} i ∂p by(simp add : emeasure-pmf-single)

also have . . . =
∫

+ i . 1 ∂p by(rule nn-integral-cong-AE)(simp add : AE-measure-pmf-iff
∗)

also have . . . = 1 by simp
finally show pmf p i = pmf (return-pmf x) i using x

by(auto split : split-indicator simp add : pmf-eq-0-set-pmf)
qed auto

lemma bind-eq-return-pmf :
bind-pmf p f = return-pmf x ←→ (∀ y∈set-pmf p. f y = return-pmf x)
(is ?lhs ←→ ?rhs)

proof(intro iffI strip)
fix y
assume y : y ∈ set-pmf p
assume ?lhs
hence set-pmf (bind-pmf p f) = {x} by simp
hence (

⋃
y∈set-pmf p. set-pmf (f y)) = {x} by simp

hence set-pmf (f y) ⊆ {x} using y by auto
thus f y = return-pmf x by(simp add : set-pmf-subset-singleton)

THEORY “Probability-Mass-Function” 626

next
assume ∗: ?rhs
show ?lhs
proof(rule pmf-eqI)

fix i
have ennreal (pmf (bind-pmf p f) i) =

∫
+ y . ennreal (pmf (f y) i) ∂p

by (simp add : ennreal-pmf-bind)
also have . . . =

∫
+ y . ennreal (pmf (return-pmf x) i) ∂p

by(rule nn-integral-cong-AE)(simp add : AE-measure-pmf-iff ∗)
also have . . . = ennreal (pmf (return-pmf x) i)

by simp
finally show pmf (bind-pmf p f) i = pmf (return-pmf x) i

by (simp add : pmf-nonneg)
qed

qed

lemma pmf-False-conv-True: pmf p False = 1 − pmf p True
proof −

have pmf p False + pmf p True = measure p {False} + measure p {True}
by(simp add : measure-pmf-single)

also have . . . = measure p ({False} ∪ {True})
by(subst measure-pmf .finite-measure-Union) simp-all

also have {False} ∪ {True} = space p by auto
finally show ?thesis by simp

qed

lemma pmf-True-conv-False: pmf p True = 1 − pmf p False
by(simp add : pmf-False-conv-True)

25.4 Conditional Probabilities

lemma measure-pmf-zero-iff : measure (measure-pmf p) s = 0 ←→ set-pmf p ∩ s
= {}

by (subst measure-pmf .prob-eq-0) (auto simp: AE-measure-pmf-iff)

context
fixes p :: ′a pmf and s :: ′a set
assumes not-empty : set-pmf p ∩ s 6= {}

begin

interpretation pmf-as-measure .

lemma emeasure-measure-pmf-not-zero: emeasure (measure-pmf p) s 6= 0
proof

assume emeasure (measure-pmf p) s = 0
then have AE x in measure-pmf p. x /∈ s

by (rule AE-I [rotated]) auto
with not-empty show False

by (auto simp: AE-measure-pmf-iff)

THEORY “Probability-Mass-Function” 627

qed

lemma measure-measure-pmf-not-zero: measure (measure-pmf p) s 6= 0
using emeasure-measure-pmf-not-zero by (simp add : measure-pmf .emeasure-eq-measure

measure-nonneg)

lift-definition cond-pmf :: ′a pmf is
uniform-measure (measure-pmf p) s

proof (intro conjI)
show prob-space (uniform-measure (measure-pmf p) s)
by (intro prob-space-uniform-measure) (auto simp: emeasure-measure-pmf-not-zero)
show AE x in uniform-measure (measure-pmf p) s. measure (uniform-measure

(measure-pmf p) s) {x} 6= 0
by (simp add : emeasure-measure-pmf-not-zero measure-measure-pmf-not-zero

AE-uniform-measure
AE-measure-pmf-iff set-pmf .rep-eq less-top[symmetric])

qed simp

lemma pmf-cond : pmf cond-pmf x = (if x ∈ s then pmf p x / measure p s else 0)
by transfer (simp add : emeasure-measure-pmf-not-zero pmf .rep-eq)

lemma set-cond-pmf [simp]: set-pmf cond-pmf = set-pmf p ∩ s
by (auto simp add : set-pmf-iff pmf-cond measure-measure-pmf-not-zero split :

if-split-asm)

end

lemma cond-map-pmf :
assumes set-pmf p ∩ f −‘ s 6= {}
shows cond-pmf (map-pmf f p) s = map-pmf f (cond-pmf p (f −‘ s))

proof −
have ∗: set-pmf (map-pmf f p) ∩ s 6= {}

using assms by auto
{ fix x

have ennreal (pmf (map-pmf f (cond-pmf p (f −‘ s))) x) =
emeasure p (f −‘ s ∩ f −‘ {x}) / emeasure p (f −‘ s)

unfolding ennreal-pmf-map cond-pmf .rep-eq [OF assms] by (simp add : nn-integral-uniform-measure)
also have f −‘ s ∩ f −‘ {x} = (if x ∈ s then f −‘ {x} else {})

by auto
also have emeasure p (if x ∈ s then f −‘ {x} else {}) / emeasure p (f −‘ s)

=
ennreal (pmf (cond-pmf (map-pmf f p) s) x)
using measure-measure-pmf-not-zero[OF ∗]

by (simp add : pmf-cond [OF ∗] ennreal-pmf-map measure-pmf .emeasure-eq-measure
divide-ennreal pmf-nonneg measure-nonneg zero-less-measure-iff

pmf-map)
finally have ennreal (pmf (cond-pmf (map-pmf f p) s) x) = ennreal (pmf

(map-pmf f (cond-pmf p (f −‘ s))) x)
by simp }

THEORY “Probability-Mass-Function” 628

then show ?thesis
by (intro pmf-eqI) (simp add : pmf-nonneg)

qed

lemma bind-cond-pmf-cancel :
assumes [simp]:

∧
x . x ∈ set-pmf p =⇒ set-pmf q ∩ {y . R x y} 6= {}

assumes [simp]:
∧

y . y ∈ set-pmf q =⇒ set-pmf p ∩ {x . R x y} 6= {}
assumes [simp]:

∧
x y . x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒ measure

q {y . R x y} = measure p {x . R x y}
shows bind-pmf p (λx . cond-pmf q {y . R x y}) = q

proof (rule pmf-eqI)
fix i
have ennreal (pmf (bind-pmf p (λx . cond-pmf q {y . R x y})) i) =

(
∫

+x . ennreal (pmf q i / measure p {x . R x i}) ∗ ennreal (indicator {x . R x
i} x) ∂p)

by (auto simp add : ennreal-pmf-bind AE-measure-pmf-iff pmf-cond pmf-eq-0-set-pmf
pmf-nonneg measure-nonneg

intro!: nn-integral-cong-AE)
also have . . . = (pmf q i ∗ measure p {x . R x i}) / measure p {x . R x i}
by (simp add : pmf-nonneg measure-nonneg zero-ennreal-def [symmetric] ennreal-indicator

nn-integral-cmult measure-pmf .emeasure-eq-measure ennreal-mult [symmetric])
also have . . . = pmf q i

by (cases pmf q i = 0)
(simp-all add : pmf-eq-0-set-pmf measure-measure-pmf-not-zero pmf-nonneg)

finally show pmf (bind-pmf p (λx . cond-pmf q {y . R x y})) i = pmf q i
by (simp add : pmf-nonneg)

qed

25.5 Relator

inductive rel-pmf :: (′a ⇒ ′b ⇒ bool) ⇒ ′a pmf ⇒ ′b pmf ⇒ bool
for R p q
where

[[
∧

x y . (x , y) ∈ set-pmf pq =⇒ R x y ;
map-pmf fst pq = p; map-pmf snd pq = q]]

=⇒ rel-pmf R p q

lemma rel-pmfI :
assumes R: rel-set R (set-pmf p) (set-pmf q)
assumes eq :

∧
x y . x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒

measure p {x . R x y} = measure q {y . R x y}
shows rel-pmf R p q

proof
let ?pq = bind-pmf p (λx . bind-pmf (cond-pmf q {y . R x y}) (λy . return-pmf

(x , y)))
have

∧
x . x ∈ set-pmf p =⇒ set-pmf q ∩ {y . R x y} 6= {}

using R by (auto simp: rel-set-def)
then show

∧
x y . (x , y) ∈ set-pmf ?pq =⇒ R x y

by auto

THEORY “Probability-Mass-Function” 629

show map-pmf fst ?pq = p
by (simp add : map-bind-pmf bind-return-pmf ′)

show map-pmf snd ?pq = q
using R eq
apply (simp add : bind-cond-pmf-cancel map-bind-pmf bind-return-pmf ′)
apply (rule bind-cond-pmf-cancel)
apply (auto simp: rel-set-def)
done

qed

lemma rel-pmf-imp-rel-set : rel-pmf R p q =⇒ rel-set R (set-pmf p) (set-pmf q)
by (force simp add : rel-pmf .simps rel-set-def)

lemma rel-pmfD-measure:
assumes rel-R: rel-pmf R p q and R:

∧
a b. R a b =⇒ R a y ←→ R x b

assumes x ∈ set-pmf p y ∈ set-pmf q
shows measure p {x . R x y} = measure q {y . R x y}

proof −
from rel-R obtain pq where pq :

∧
x y . (x , y) ∈ set-pmf pq =⇒ R x y

and eq : p = map-pmf fst pq q = map-pmf snd pq
by (auto elim: rel-pmf .cases)

have measure p {x . R x y} = measure pq {x . R (fst x) y}
by (simp add : eq map-pmf-rep-eq measure-distr)

also have . . . = measure pq {y . R x (snd y)}
by (intro measure-pmf .finite-measure-eq-AE)

(auto simp: AE-measure-pmf-iff R dest !: pq)
also have . . . = measure q {y . R x y}

by (simp add : eq map-pmf-rep-eq measure-distr)
finally show measure p {x . R x y} = measure q {y . R x y} .

qed

lemma rel-pmf-measureD :
assumes rel-pmf R p q
shows measure (measure-pmf p) A ≤ measure (measure-pmf q) {y . ∃ x∈A. R x

y} (is ?lhs ≤ ?rhs)
using assms
proof cases

fix pq
assume R:

∧
x y . (x , y) ∈ set-pmf pq =⇒ R x y

and p[symmetric]: map-pmf fst pq = p
and q [symmetric]: map-pmf snd pq = q

have ?lhs = measure (measure-pmf pq) (fst −‘ A) by(simp add : p)
also have . . . ≤ measure (measure-pmf pq) {y . ∃ x∈A. R x (snd y)}
by(rule measure-pmf .finite-measure-mono-AE)(auto 4 3 simp add : AE-measure-pmf-iff

dest : R)
also have . . . = ?rhs by(simp add : q)
finally show ?thesis .

qed

THEORY “Probability-Mass-Function” 630

lemma rel-pmf-iff-measure:
assumes symp R transp R
shows rel-pmf R p q ←→

rel-set R (set-pmf p) (set-pmf q) ∧
(∀ x∈set-pmf p. ∀ y∈set-pmf q . R x y −→ measure p {x . R x y} = measure q

{y . R x y})
by (safe intro!: rel-pmf-imp-rel-set rel-pmfI)

(auto intro!: rel-pmfD-measure dest : sympD [OF 〈symp R〉] transpD [OF 〈transp
R〉])

lemma quotient-rel-set-disjoint :
equivp R =⇒ C ∈ UNIV // {(x , y). R x y} =⇒ rel-set R A B =⇒ A ∩ C = {}
←→ B ∩ C = {}

using in-quotient-imp-closed [of UNIV {(x , y). R x y} C]
by (auto 0 0 simp: equivp-equiv rel-set-def set-eq-iff elim: equivpE)

(blast dest : equivp-symp)+

lemma quotientD : equiv X R =⇒ A ∈ X // R =⇒ x ∈ A =⇒ A = R ‘‘ {x}
by (metis Image-singleton-iff equiv-class-eq-iff quotientE)

lemma rel-pmf-iff-equivp:
assumes equivp R
shows rel-pmf R p q ←→ (∀C∈UNIV // {(x , y). R x y}. measure p C = measure

q C)
(is - ←→ (∀C∈-//?R. -))

proof (subst rel-pmf-iff-measure, safe)
show symp R transp R

using assms by (auto simp: equivp-reflp-symp-transp)
next

fix C assume C : C ∈ UNIV // ?R and R: rel-set R (set-pmf p) (set-pmf q)
assume eq : ∀ x∈set-pmf p. ∀ y∈set-pmf q . R x y −→ measure p {x . R x y} =

measure q {y . R x y}

show measure p C = measure q C
proof cases

assume p ∩ C = {}
moreover then have q ∩ C = {}

using quotient-rel-set-disjoint [OF assms C R] by simp
ultimately show ?thesis

unfolding measure-pmf-zero-iff [symmetric] by simp
next

assume p ∩ C 6= {}
moreover then have q ∩ C 6= {}

using quotient-rel-set-disjoint [OF assms C R] by simp
ultimately obtain x y where in-set : x ∈ set-pmf p y ∈ set-pmf q and in-C :

x ∈ C y ∈ C
by auto

then have R x y

THEORY “Probability-Mass-Function” 631

using in-quotient-imp-in-rel [of UNIV ?R C x y] C assms
by (simp add : equivp-equiv)

with in-set eq have measure p {x . R x y} = measure q {y . R x y}
by auto

moreover have {y . R x y} = C
using assms 〈x ∈ C 〉 C quotientD [of UNIV ?R C x] by (simp add : equivp-equiv)
moreover have {x . R x y} = C

using assms 〈y ∈ C 〉 C quotientD [of UNIV ?R C y] sympD [of R]
by (auto simp add : equivp-equiv elim: equivpE)

ultimately show ?thesis
by auto

qed
next

assume eq : ∀C∈UNIV // ?R. measure p C = measure q C
show rel-set R (set-pmf p) (set-pmf q)

unfolding rel-set-def
proof safe

fix x assume x : x ∈ set-pmf p
have {y . R x y} ∈ UNIV // ?R

by (auto simp: quotient-def)
with eq have ∗: measure q {y . R x y} = measure p {y . R x y}

by auto
have measure q {y . R x y} 6= 0

using x assms unfolding ∗ by (auto simp: measure-pmf-zero-iff set-eq-iff
dest : equivp-reflp)

then show ∃ y∈set-pmf q . R x y
unfolding measure-pmf-zero-iff by auto

next
fix y assume y : y ∈ set-pmf q
have {x . R x y} ∈ UNIV // ?R

using assms by (auto simp: quotient-def dest : equivp-symp)
with eq have ∗: measure p {x . R x y} = measure q {x . R x y}

by auto
have measure p {x . R x y} 6= 0

using y assms unfolding ∗ by (auto simp: measure-pmf-zero-iff set-eq-iff
dest : equivp-reflp)

then show ∃ x∈set-pmf p. R x y
unfolding measure-pmf-zero-iff by auto

qed

fix x y assume x ∈ set-pmf p y ∈ set-pmf q R x y
have {y . R x y} ∈ UNIV // ?R {x . R x y} = {y . R x y}
using assms 〈R x y〉 by (auto simp: quotient-def dest : equivp-symp equivp-transp)
with eq show measure p {x . R x y} = measure q {y . R x y}

by auto
qed

bnf pmf : ′a pmf map: map-pmf sets: set-pmf bd : natLeq rel : rel-pmf
proof −

THEORY “Probability-Mass-Function” 632

show map-pmf id = id by (rule map-pmf-id)
show

∧
f g . map-pmf (f ◦ g) = map-pmf f ◦ map-pmf g by (rule map-pmf-compose)

show
∧

f g :: ′a ⇒ ′b.
∧

p. (
∧

x . x ∈ set-pmf p =⇒ f x = g x) =⇒ map-pmf f p =
map-pmf g p

by (intro map-pmf-cong refl)

show
∧

f :: ′a ⇒ ′b. set-pmf ◦ map-pmf f = op ‘ f ◦ set-pmf
by (rule pmf-set-map)

show (card-of (set-pmf p), natLeq) ∈ ordLeq for p :: ′s pmf
proof −

have (card-of (set-pmf p), card-of (UNIV :: nat set)) ∈ ordLeq
by (rule card-of-ordLeqI [where f =to-nat-on (set-pmf p)])

(auto intro: countable-set-pmf)
also have (card-of (UNIV :: nat set), natLeq) ∈ ordLeq

by (metis Field-natLeq card-of-least natLeq-Well-order)
finally show ?thesis .

qed

show
∧

R. rel-pmf R = (λx y . ∃ z . set-pmf z ⊆ {(x , y). R x y} ∧
map-pmf fst z = x ∧ map-pmf snd z = y)
by (auto simp add : fun-eq-iff rel-pmf .simps)

show rel-pmf R OO rel-pmf S ≤ rel-pmf (R OO S)
for R :: ′a ⇒ ′b ⇒ bool and S :: ′b ⇒ ′c ⇒ bool

proof −
{ fix p q r

assume pq : rel-pmf R p q
and qr :rel-pmf S q r

from pq obtain pq where pq :
∧

x y . (x , y) ∈ set-pmf pq =⇒ R x y
and p: p = map-pmf fst pq and q : q = map-pmf snd pq by cases auto

from qr obtain qr where qr :
∧

y z . (y , z) ∈ set-pmf qr =⇒ S y z
and q ′: q = map-pmf fst qr and r : r = map-pmf snd qr by cases auto

def pr ≡ bind-pmf pq (λxy . bind-pmf (cond-pmf qr {yz . fst yz = snd xy})
(λyz . return-pmf (fst xy , snd yz)))

have pr-welldefined :
∧

y . y ∈ q =⇒ qr ∩ {yz . fst yz = y} 6= {}
by (force simp: q ′)

have rel-pmf (R OO S) p r
proof (rule rel-pmf .intros)

fix x z assume (x , z) ∈ pr
then have ∃ y . (x , y) ∈ pq ∧ (y , z) ∈ qr

by (auto simp: q pr-welldefined pr-def split-beta)
with pq qr show (R OO S) x z

by blast
next

have map-pmf snd pr = map-pmf snd (bind-pmf q (λy . cond-pmf qr {yz .
fst yz = y}))

THEORY “Probability-Mass-Function” 633

by (simp add : pr-def q split-beta bind-map-pmf map-pmf-def [symmetric]
map-bind-pmf map-pmf-comp)

then show map-pmf snd pr = r
unfolding r q ′ bind-map-pmf by (subst (asm) bind-cond-pmf-cancel) (auto

simp: eq-commute)
qed (simp add : pr-def map-bind-pmf split-beta map-pmf-def [symmetric] p

map-pmf-comp)
}
then show ?thesis

by(auto simp add : le-fun-def)
qed

qed (fact natLeq-card-order natLeq-cinfinite)+

lemma map-pmf-idI : (
∧

x . x ∈ set-pmf p =⇒ f x = x) =⇒ map-pmf f p = p
by(simp cong : pmf .map-cong)

lemma rel-pmf-conj [simp]:
rel-pmf (λx y . P ∧ Q x y) x y ←→ P ∧ rel-pmf Q x y
rel-pmf (λx y . Q x y ∧ P) x y ←→ P ∧ rel-pmf Q x y
using set-pmf-not-empty by (fastforce simp: pmf .in-rel subset-eq)+

lemma rel-pmf-top[simp]: rel-pmf top = top
by (auto simp: pmf .in-rel [abs-def] fun-eq-iff map-fst-pair-pmf map-snd-pair-pmf

intro: exI [of - pair-pmf x y for x y])

lemma rel-pmf-return-pmf1 : rel-pmf R (return-pmf x) M ←→ (∀ a∈M . R x a)
proof safe

fix a assume a ∈ M rel-pmf R (return-pmf x) M
then obtain pq where ∗:

∧
a b. (a, b) ∈ set-pmf pq =⇒ R a b

and eq : return-pmf x = map-pmf fst pq M = map-pmf snd pq
by (force elim: rel-pmf .cases)

moreover have set-pmf (return-pmf x) = {x}
by simp

with 〈a ∈ M 〉 have (x , a) ∈ pq
by (force simp: eq)

with ∗ show R x a
by auto

qed (auto intro!: rel-pmf .intros[where pq=pair-pmf (return-pmf x) M]
simp: map-fst-pair-pmf map-snd-pair-pmf)

lemma rel-pmf-return-pmf2 : rel-pmf R M (return-pmf x) ←→ (∀ a∈M . R a x)
by (subst pmf .rel-flip[symmetric]) (simp add : rel-pmf-return-pmf1)

lemma rel-return-pmf [simp]: rel-pmf R (return-pmf x1) (return-pmf x2) = R x1
x2

unfolding rel-pmf-return-pmf2 set-return-pmf by simp

lemma rel-pmf-False[simp]: rel-pmf (λx y . False) x y = False
unfolding pmf .in-rel fun-eq-iff using set-pmf-not-empty by fastforce

THEORY “Probability-Mass-Function” 634

lemma rel-pmf-rel-prod :
rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′) ←→ rel-pmf R A B ∧

rel-pmf S A ′ B ′

proof safe
assume rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′)
then obtain pq where pq :

∧
a b c d . ((a, c), (b, d)) ∈ set-pmf pq =⇒ R a b ∧

S c d
and eq : map-pmf fst pq = pair-pmf A A ′ map-pmf snd pq = pair-pmf B B ′

by (force elim: rel-pmf .cases)
show rel-pmf R A B
proof (rule rel-pmf .intros)

let ?f = λ(a, b). (fst a, fst b)
have [simp]: (λx . fst (?f x)) = fst o fst (λx . snd (?f x)) = fst o snd

by auto

show map-pmf fst (map-pmf ?f pq) = A
by (simp add : map-pmf-comp pmf .map-comp[symmetric] eq map-fst-pair-pmf)
show map-pmf snd (map-pmf ?f pq) = B
by (simp add : map-pmf-comp pmf .map-comp[symmetric] eq map-fst-pair-pmf)

fix a b assume (a, b) ∈ set-pmf (map-pmf ?f pq)
then obtain c d where ((a, c), (b, d)) ∈ set-pmf pq

by auto
from pq [OF this] show R a b ..

qed
show rel-pmf S A ′ B ′

proof (rule rel-pmf .intros)
let ?f = λ(a, b). (snd a, snd b)
have [simp]: (λx . fst (?f x)) = snd o fst (λx . snd (?f x)) = snd o snd

by auto

show map-pmf fst (map-pmf ?f pq) = A ′

by (simp add : map-pmf-comp pmf .map-comp[symmetric] eq map-snd-pair-pmf)
show map-pmf snd (map-pmf ?f pq) = B ′

by (simp add : map-pmf-comp pmf .map-comp[symmetric] eq map-snd-pair-pmf)

fix c d assume (c, d) ∈ set-pmf (map-pmf ?f pq)
then obtain a b where ((a, c), (b, d)) ∈ set-pmf pq

by auto
from pq [OF this] show S c d ..

qed
next

assume rel-pmf R A B rel-pmf S A ′ B ′

then obtain Rpq Spq
where Rpq :

∧
a b. (a, b) ∈ set-pmf Rpq =⇒ R a b

map-pmf fst Rpq = A map-pmf snd Rpq = B
and Spq :

∧
a b. (a, b) ∈ set-pmf Spq =⇒ S a b

map-pmf fst Spq = A ′ map-pmf snd Spq = B ′

THEORY “Probability-Mass-Function” 635

by (force elim: rel-pmf .cases)

let ?f = (λ((a, c), (b, d)). ((a, b), (c, d)))
let ?pq = map-pmf ?f (pair-pmf Rpq Spq)
have [simp]: (λx . fst (?f x)) = (λ(a, b). (fst a, fst b)) (λx . snd (?f x)) = (λ(a,

b). (snd a, snd b))
by auto

show rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′)
by (rule rel-pmf .intros[where pq=?pq])

(auto simp: map-snd-pair-pmf map-fst-pair-pmf map-pmf-comp Rpq Spq
map-pair)

qed

lemma rel-pmf-reflI :
assumes

∧
x . x ∈ set-pmf p =⇒ P x x

shows rel-pmf P p p
by (rule rel-pmf .intros[where pq=map-pmf (λx . (x , x)) p])

(auto simp add : pmf .map-comp o-def assms)

lemma rel-pmf-bij-betw :
assumes f : bij-betw f (set-pmf p) (set-pmf q)
and eq :

∧
x . x ∈ set-pmf p =⇒ pmf p x = pmf q (f x)

shows rel-pmf (λx y . f x = y) p q
proof(rule rel-pmf .intros)

let ?pq = map-pmf (λx . (x , f x)) p
show map-pmf fst ?pq = p by(simp add : pmf .map-comp o-def)

have map-pmf f p = q
proof(rule pmf-eqI)

fix i
show pmf (map-pmf f p) i = pmf q i
proof(cases i ∈ set-pmf q)

case True
with f obtain j where i = f j j ∈ set-pmf p

by(auto simp add : bij-betw-def image-iff)
thus ?thesis using f by(simp add : bij-betw-def pmf-map-inj eq)

next
case False thus ?thesis

by(subst pmf-map-outside)(auto simp add : set-pmf-iff eq [symmetric])
qed

qed
then show map-pmf snd ?pq = q by(simp add : pmf .map-comp o-def)

qed auto

context
begin

interpretation pmf-as-measure .

THEORY “Probability-Mass-Function” 636

definition join-pmf M = bind-pmf M (λx . x)

lemma bind-eq-join-pmf : bind-pmf M f = join-pmf (map-pmf f M)
unfolding join-pmf-def bind-map-pmf ..

lemma join-eq-bind-pmf : join-pmf M = bind-pmf M id
by (simp add : join-pmf-def id-def)

lemma pmf-join: pmf (join-pmf N) i = (
∫

M . pmf M i ∂measure-pmf N)
unfolding join-pmf-def pmf-bind ..

lemma ennreal-pmf-join: ennreal (pmf (join-pmf N) i) = (
∫

+M . pmf M i ∂measure-pmf
N)

unfolding join-pmf-def ennreal-pmf-bind ..

lemma set-pmf-join-pmf [simp]: set-pmf (join-pmf f) = (
⋃

p∈set-pmf f . set-pmf
p)

by (simp add : join-pmf-def)

lemma join-return-pmf : join-pmf (return-pmf M) = M
by (simp add : integral-return pmf-eq-iff pmf-join return-pmf .rep-eq)

lemma map-join-pmf : map-pmf f (join-pmf AA) = join-pmf (map-pmf (map-pmf
f) AA)

by (simp add : join-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf)

lemma join-map-return-pmf : join-pmf (map-pmf return-pmf A) = A
by (simp add : join-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

end

lemma rel-pmf-joinI :
assumes rel-pmf (rel-pmf P) p q
shows rel-pmf P (join-pmf p) (join-pmf q)

proof −
from assms obtain pq where p: p = map-pmf fst pq

and q : q = map-pmf snd pq
and P :

∧
x y . (x , y) ∈ set-pmf pq =⇒ rel-pmf P x y

by cases auto
from P obtain PQ

where PQ :
∧

x y a b. [[(x , y) ∈ set-pmf pq ; (a, b) ∈ set-pmf (PQ x y)]] =⇒
P a b

and x :
∧

x y . (x , y) ∈ set-pmf pq =⇒ map-pmf fst (PQ x y) = x
and y :

∧
x y . (x , y) ∈ set-pmf pq =⇒ map-pmf snd (PQ x y) = y

by(metis rel-pmf .simps)

let ?r = bind-pmf pq (λ(x , y). PQ x y)
have

∧
a b. (a, b) ∈ set-pmf ?r =⇒ P a b by (auto intro: PQ)

THEORY “Probability-Mass-Function” 637

moreover have map-pmf fst ?r = join-pmf p map-pmf snd ?r = join-pmf q
by (simp-all add : p q x y join-pmf-def map-bind-pmf bind-map-pmf split-def

cong : bind-pmf-cong)
ultimately show ?thesis ..

qed

lemma rel-pmf-bindI :
assumes pq : rel-pmf R p q
and fg :

∧
x y . R x y =⇒ rel-pmf P (f x) (g y)

shows rel-pmf P (bind-pmf p f) (bind-pmf q g)
unfolding bind-eq-join-pmf
by (rule rel-pmf-joinI)

(auto simp add : pmf .rel-map intro: pmf .rel-mono[THEN le-funD , THEN
le-funD , THEN le-boolD , THEN mp, OF - pq] fg)

Proof that rel-pmf preserves orders. Antisymmetry proof follows Thm. 1
in N. Saheb-Djahromi, Cpo’s of measures for nondeterminism, Theoretical
Computer Science 12(1):19–37, 1980, http://dx.doi.org/10.1016/0304-3975(80)
90003-1

lemma
assumes ∗: rel-pmf R p q
and refl : reflp R and trans: transp R
shows measure-Ici : measure p {y . R x y} ≤ measure q {y . R x y} (is ?thesis1)
and measure-Ioi : measure p {y . R x y ∧ ¬ R y x} ≤ measure q {y . R x y ∧ ¬

R y x} (is ?thesis2)
proof −

from ∗ obtain pq
where pq :

∧
x y . (x , y) ∈ set-pmf pq =⇒ R x y

and p: p = map-pmf fst pq
and q : q = map-pmf snd pq
by cases auto

show ?thesis1 ?thesis2 unfolding p q map-pmf-rep-eq using refl trans
by(auto 4 3 simp add : measure-distr reflpD AE-measure-pmf-iff intro!: measure-pmf .finite-measure-mono-AE

dest !: pq elim: transpE)
qed

lemma rel-pmf-inf :
fixes p q :: ′a pmf
assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl : reflp R and trans: transp R
shows rel-pmf (inf R R−1−1) p q

proof (subst rel-pmf-iff-equivp, safe)
show equivp (inf R R−1−1)

using trans refl by (auto simp: equivp-reflp-symp-transp intro: sympI transpI
reflpI dest : transpD reflpD)

fix C assume C ∈ UNIV // {(x , y). inf R R−1−1 x y}
then obtain x where C : C = {y . R x y ∧ R y x}

http://dx.doi.org/10.1016/0304-3975(80)90003-1
http://dx.doi.org/10.1016/0304-3975(80)90003-1

THEORY “Probability-Mass-Function” 638

by (auto elim: quotientE)

let ?R = λx y . R x y ∧ R y x
let ?µR = λy . measure q {x . ?R x y}
have measure p {y . ?R x y} = measure p ({y . R x y} − {y . R x y ∧ ¬ R y x})

by(auto intro!: arg-cong [where f =measure p])
also have . . . = measure p {y . R x y} − measure p {y . R x y ∧ ¬ R y x}

by (rule measure-pmf .finite-measure-Diff) auto
also have measure p {y . R x y ∧ ¬ R y x} = measure q {y . R x y ∧ ¬ R y x}

using 1 2 refl trans by(auto intro!: Orderings.antisym measure-Ioi)
also have measure p {y . R x y} = measure q {y . R x y}

using 1 2 refl trans by(auto intro!: Orderings.antisym measure-Ici)
also have measure q {y . R x y} − measure q {y . R x y ∧ ¬ R y x} =

measure q ({y . R x y} − {y . R x y ∧ ¬ R y x})
by(rule measure-pmf .finite-measure-Diff [symmetric]) auto

also have . . . = ?µR x
by(auto intro!: arg-cong [where f =measure q])

finally show measure p C = measure q C
by (simp add : C conj-commute)

qed

lemma rel-pmf-antisym:
fixes p q :: ′a pmf
assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl : reflp R and trans: transp R and antisym: antisymP R
shows p = q

proof −
from 1 2 refl trans have rel-pmf (inf R R−1−1) p q by(rule rel-pmf-inf)
also have inf R R−1−1 = op =

using refl antisym by (auto intro!: ext simp add : reflpD dest : antisymD)
finally show ?thesis unfolding pmf .rel-eq .

qed

lemma reflp-rel-pmf : reflp R =⇒ reflp (rel-pmf R)
by(blast intro: reflpI rel-pmf-reflI reflpD)

lemma antisymP-rel-pmf :
[[reflp R; transp R; antisymP R]]
=⇒ antisymP (rel-pmf R)

by(rule antisymI)(blast intro: rel-pmf-antisym)

lemma transp-rel-pmf :
assumes transp R
shows transp (rel-pmf R)

proof (rule transpI)
fix x y z
assume rel-pmf R x y and rel-pmf R y z
hence rel-pmf (R OO R) x z by (simp add : pmf .rel-compp relcompp.relcompI)

THEORY “Probability-Mass-Function” 639

thus rel-pmf R x z
using assms by (metis (no-types) pmf .rel-mono rev-predicate2D transp-relcompp-less-eq)

qed

25.6 Distributions

context
begin

interpretation pmf-as-function .

25.6.1 Bernoulli Distribution

lift-definition bernoulli-pmf :: real ⇒ bool pmf is
λp b. ((λp. if b then p else 1 − p) ◦ min 1 ◦ max 0) p
by (auto simp: nn-integral-count-space-finite[where A={False, True}] UNIV-bool

split : split-max split-min)

lemma pmf-bernoulli-True[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
True = p

by transfer simp

lemma pmf-bernoulli-False[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
False = 1 − p

by transfer simp

lemma set-pmf-bernoulli [simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (bernoulli-pmf p)
= UNIV

by (auto simp add : set-pmf-iff UNIV-bool)

lemma nn-integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1

∧
x . 0 ≤ f x

shows (
∫

+x . f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)
by (subst nn-integral-measure-pmf-support [of UNIV])

(auto simp: UNIV-bool field-simps)

lemma integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1
shows (

∫
x . f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)

by (subst integral-measure-pmf [of UNIV]) (auto simp: UNIV-bool)

lemma pmf-bernoulli-half [simp]: pmf (bernoulli-pmf (1 / 2)) x = 1 / 2
by(cases x) simp-all

lemma measure-pmf-bernoulli-half : measure-pmf (bernoulli-pmf (1 / 2)) = uniform-count-measure
UNIV

by (rule measure-eqI)
(simp-all add : nn-integral-pmf [symmetric] emeasure-uniform-count-measure

ennreal-divide-numeral [symmetric]

THEORY “Probability-Mass-Function” 640

nn-integral-count-space-finite sets-uniform-count-measure
divide-ennreal-def mult-ac

ennreal-of-nat-eq-real-of-nat)

25.6.2 Geometric Distribution

context
fixes p :: real assumes p[arith]: 0 < p p ≤ 1

begin

lift-definition geometric-pmf :: nat pmf is λn. (1 − p)ˆn ∗ p
proof

have (
∑

i . ennreal (p ∗ (1 − p) ˆ i)) = ennreal (p ∗ (1 / (1 − (1 − p))))
by (intro suminf-ennreal-eq sums-mult geometric-sums) auto

then show (
∫

+ x . ennreal ((1 − p)ˆx ∗ p) ∂count-space UNIV) = 1
by (simp add : nn-integral-count-space-nat field-simps)

qed simp

lemma pmf-geometric[simp]: pmf geometric-pmf n = (1 − p)ˆn ∗ p
by transfer rule

end

lemma set-pmf-geometric: 0 < p =⇒ p < 1 =⇒ set-pmf (geometric-pmf p) =
UNIV

by (auto simp: set-pmf-iff)

25.6.3 Uniform Multiset Distribution

context
fixes M :: ′a multiset assumes M-not-empty : M 6= {#}

begin

lift-definition pmf-of-multiset :: ′a pmf is λx . count M x / size M
proof

show (
∫

+ x . ennreal (real (count M x) / real (size M)) ∂count-space UNIV) =
1

using M-not-empty
by (simp add : zero-less-divide-iff nn-integral-count-space nonempty-has-size

setsum-divide-distrib[symmetric])
(auto simp: size-multiset-overloaded-eq intro!: setsum.cong)

qed simp

lemma pmf-of-multiset [simp]: pmf pmf-of-multiset x = count M x / size M
by transfer rule

lemma set-pmf-of-multiset [simp]: set-pmf pmf-of-multiset = set-mset M
by (auto simp: set-pmf-iff)

end

THEORY “Probability-Mass-Function” 641

25.6.4 Uniform Distribution

context
fixes S :: ′a set assumes S-not-empty : S 6= {} and S-finite: finite S

begin

lift-definition pmf-of-set :: ′a pmf is λx . indicator S x / card S
proof

show (
∫

+ x . ennreal (indicator S x / real (card S)) ∂count-space UNIV) = 1
using S-not-empty S-finite
by (subst nn-integral-count-space ′[of S])

(auto simp: ennreal-of-nat-eq-real-of-nat ennreal-mult [symmetric])
qed simp

lemma pmf-of-set [simp]: pmf pmf-of-set x = indicator S x / card S
by transfer rule

lemma set-pmf-of-set [simp]: set-pmf pmf-of-set = S
using S-finite S-not-empty by (auto simp: set-pmf-iff)

lemma emeasure-pmf-of-set-space[simp]: emeasure pmf-of-set S = 1
by (rule measure-pmf .emeasure-eq-1-AE) (auto simp: AE-measure-pmf-iff)

lemma nn-integral-pmf-of-set : nn-integral (measure-pmf pmf-of-set) f = setsum f
S / card S

by (subst nn-integral-measure-pmf-finite)
(simp-all add : setsum-left-distrib[symmetric] card-gt-0-iff S-not-empty S-finite

divide-ennreal-def
divide-ennreal [symmetric] ennreal-of-nat-eq-real-of-nat [symmetric]

ennreal-times-divide)

lemma integral-pmf-of-set : integralL (measure-pmf pmf-of-set) f = setsum f S /
card S

by (subst integral-measure-pmf [of S]) (auto simp: S-finite setsum-divide-distrib)

lemma emeasure-pmf-of-set : emeasure (measure-pmf pmf-of-set) A = card (S ∩
A) / card S

by (subst nn-integral-indicator [symmetric], simp)
(simp add : S-finite S-not-empty card-gt-0-iff indicator-def setsum.If-cases

divide-ennreal
ennreal-of-nat-eq-real-of-nat nn-integral-pmf-of-set)

lemma measure-pmf-of-set : measure (measure-pmf pmf-of-set) A = card (S ∩ A)
/ card S

using emeasure-pmf-of-set [OF assms, of A]
by (simp add : measure-nonneg measure-pmf .emeasure-eq-measure)

end

lemma pmf-of-set-singleton: pmf-of-set {x} = return-pmf x

THEORY “Probability-Mass-Function” 642

by(rule pmf-eqI)(simp add : indicator-def)

lemma map-pmf-of-set-inj :
assumes f : inj-on f A
and [simp]: A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set (f ‘ A) (is ?lhs = ?rhs)

proof(rule pmf-eqI)
fix i
show pmf ?lhs i = pmf ?rhs i
proof(cases i ∈ f ‘ A)

case True
then obtain i ′ where i = f i ′ i ′ ∈ A by auto
thus ?thesis using f by(simp add : card-image pmf-map-inj)

next
case False
hence pmf ?lhs i = 0 by(simp add : pmf-eq-0-set-pmf set-map-pmf)
moreover have pmf ?rhs i = 0 using False by simp
ultimately show ?thesis by simp

qed
qed

lemma bernoulli-pmf-half-conv-pmf-of-set : bernoulli-pmf (1 / 2) = pmf-of-set UNIV
by (rule pmf-eqI) simp-all

25.6.5 Poisson Distribution

context
fixes rate :: real assumes rate-pos: 0 < rate

begin

lift-definition poisson-pmf :: nat pmf is λk . rate ˆ k / fact k ∗ exp (−rate)
proof

have summable: summable (λx ::nat . rate ˆ x / fact x) using summable-exp
by (simp add : field-simps divide-inverse [symmetric])

have (
∫

+(x ::nat). rate ˆ x / fact x ∗ exp (−rate) ∂count-space UNIV) =
exp (−rate) ∗ (

∫
+(x ::nat). rate ˆ x / fact x ∂count-space UNIV)

by (simp add : field-simps nn-integral-cmult [symmetric] ennreal-mult ′[symmetric])
also from rate-pos have (

∫
+(x ::nat). rate ˆ x / fact x ∂count-space UNIV) =

(
∑

x . rate ˆ x / fact x)
by (simp-all add : nn-integral-count-space-nat suminf-ennreal summable ennreal-suminf-neq-top)
also have ... = exp rate unfolding exp-def

by (simp add : field-simps divide-inverse [symmetric])
also have ennreal (exp (−rate)) ∗ ennreal (exp rate) = 1

by (simp add : mult-exp-exp ennreal-mult [symmetric])
finally show (

∫
+ x . ennreal (rate ˆ x / (fact x) ∗ exp (− rate)) ∂count-space

UNIV) = 1 .
qed (simp add : rate-pos[THEN less-imp-le])

lemma pmf-poisson[simp]: pmf poisson-pmf k = rate ˆ k / fact k ∗ exp (−rate)

THEORY “Probability-Mass-Function” 643

by transfer rule

lemma set-pmf-poisson[simp]: set-pmf poisson-pmf = UNIV
using rate-pos by (auto simp: set-pmf-iff)

end

25.6.6 Binomial Distribution

context
fixes n :: nat and p :: real assumes p-nonneg : 0 ≤ p and p-le-1 : p ≤ 1

begin

lift-definition binomial-pmf :: nat pmf is λk . (n choose k) ∗ pˆk ∗ (1 − p)ˆ(n
− k)
proof
have (

∫
+k . ennreal (real (n choose k) ∗ p ˆ k ∗ (1 − p) ˆ (n − k)) ∂count-space

UNIV) =
ennreal (

∑
k≤n. real (n choose k) ∗ p ˆ k ∗ (1 − p) ˆ (n − k))

using p-le-1 p-nonneg by (subst nn-integral-count-space ′) auto
also have (

∑
k≤n. real (n choose k) ∗ p ˆ k ∗ (1 − p) ˆ (n − k)) = (p + (1

− p)) ˆ n
by (subst binomial-ring) (simp add : atLeast0AtMost)

finally show (
∫

+ x . ennreal (real (n choose x) ∗ p ˆ x ∗ (1 − p) ˆ (n − x))
∂count-space UNIV) = 1

by simp
qed (insert p-nonneg p-le-1 , simp)

lemma pmf-binomial [simp]: pmf binomial-pmf k = (n choose k) ∗ pˆk ∗ (1 −
p)ˆ(n − k)

by transfer rule

lemma set-pmf-binomial-eq : set-pmf binomial-pmf = (if p = 0 then {0} else if p
= 1 then {n} else {.. n})

using p-nonneg p-le-1 unfolding set-eq-iff set-pmf-iff pmf-binomial by (auto
simp: set-pmf-iff)

end

end

lemma set-pmf-binomial-0 [simp]: set-pmf (binomial-pmf n 0) = {0}
by (simp add : set-pmf-binomial-eq)

lemma set-pmf-binomial-1 [simp]: set-pmf (binomial-pmf n 1) = {n}
by (simp add : set-pmf-binomial-eq)

lemma set-pmf-binomial [simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (binomial-pmf n
p) = {..n}

THEORY “Stream” 644

by (simp add : set-pmf-binomial-eq)

context begin interpretation lifting-syntax .

lemma bind-pmf-parametric [transfer-rule]:
(rel-pmf A ===> (A ===> rel-pmf B) ===> rel-pmf B) bind-pmf bind-pmf

by(blast intro: rel-pmf-bindI dest : rel-funD)

lemma return-pmf-parametric [transfer-rule]: (A ===> rel-pmf A) return-pmf
return-pmf
by(rule rel-funI) simp

end

end

26 Infinite Streams

theory Stream
imports ∼∼/src/HOL/Library/Nat-Bijection
begin

codatatype (sset : ′a) stream =
SCons (shd : ′a) (stl : ′a stream) (infixr ## 65)

for
map: smap
rel : stream-all2

context
begin

qualified definition smember :: ′a ⇒ ′a stream ⇒ bool where
[code-abbrev]: smember x s ←→ x ∈ sset s

lemma smember-code[code, simp]: smember x (y ## s) = (if x = y then True
else smember x s)

unfolding smember-def by auto

end

lemmas smap-simps[simp] = stream.map-sel
lemmas shd-sset = stream.set-sel(1)
lemmas stl-sset = stream.set-sel(2)

theorem sset-induct [consumes 1 , case-names shd stl , induct set : sset]:
assumes y ∈ sset s and

∧
s. P (shd s) s and

∧
s y . [[y ∈ sset (stl s); P y (stl

s)]] =⇒ P y s
shows P y s

THEORY “Stream” 645

using assms by induct (metis stream.sel(1), auto)

lemma smap-ctr : smap f s = x ## s ′←→ f (shd s) = x ∧ smap f (stl s) = s ′

by (cases s) simp

26.1 prepend list to stream

primrec shift :: ′a list ⇒ ′a stream ⇒ ′a stream (infixr @− 65) where
shift [] s = s
| shift (x # xs) s = x ## shift xs s

lemma smap-shift [simp]: smap f (xs @− s) = map f xs @− smap f s
by (induct xs) auto

lemma shift-append [simp]: (xs @ ys) @− s = xs @− ys @− s
by (induct xs) auto

lemma shift-simps[simp]:
shd (xs @− s) = (if xs = [] then shd s else hd xs)
stl (xs @− s) = (if xs = [] then stl s else tl xs @− s)

by (induct xs) auto

lemma sset-shift [simp]: sset (xs @− s) = set xs ∪ sset s
by (induct xs) auto

lemma shift-left-inj [simp]: xs @− s1 = xs @− s2 ←→ s1 = s2
by (induct xs) auto

26.2 set of streams with elements in some fixed set

context
notes [[inductive-internals]]

begin

coinductive-set
streams :: ′a set ⇒ ′a stream set
for A :: ′a set

where
Stream[intro!, simp, no-atp]: [[a ∈ A; s ∈ streams A]] =⇒ a ## s ∈ streams A

end

lemma in-streams: stl s ∈ streams S =⇒ shd s ∈ S =⇒ s ∈ streams S
by (cases s) auto

lemma streamsE : s ∈ streams A =⇒ (shd s ∈ A =⇒ stl s ∈ streams A =⇒ P)
=⇒ P

by (erule streams.cases) simp-all

lemma Stream-image: x ## y ∈ (op ## x ′) ‘ Y ←→ x = x ′ ∧ y ∈ Y

THEORY “Stream” 646

by auto

lemma shift-streams: [[w ∈ lists A; s ∈ streams A]] =⇒ w @− s ∈ streams A
by (induct w) auto

lemma streams-Stream: x ## s ∈ streams A ←→ x ∈ A ∧ s ∈ streams A
by (auto elim: streams.cases)

lemma streams-stl : s ∈ streams A =⇒ stl s ∈ streams A
by (cases s) (auto simp: streams-Stream)

lemma streams-shd : s ∈ streams A =⇒ shd s ∈ A
by (cases s) (auto simp: streams-Stream)

lemma sset-streams:
assumes sset s ⊆ A
shows s ∈ streams A

using assms proof (coinduction arbitrary : s)
case streams then show ?case by (cases s) simp

qed

lemma streams-sset :
assumes s ∈ streams A
shows sset s ⊆ A

proof
fix x assume x ∈ sset s from this 〈s ∈ streams A〉 show x ∈ A

by (induct s) (auto intro: streams-shd streams-stl)
qed

lemma streams-iff-sset : s ∈ streams A ←→ sset s ⊆ A
by (metis sset-streams streams-sset)

lemma streams-mono: s ∈ streams A =⇒ A ⊆ B =⇒ s ∈ streams B
unfolding streams-iff-sset by auto

lemma streams-mono2 : S ⊆ T =⇒ streams S ⊆ streams T
by (auto intro: streams-mono)

lemma smap-streams: s ∈ streams A =⇒ (
∧

x . x ∈ A =⇒ f x ∈ B) =⇒ smap f s
∈ streams B

unfolding streams-iff-sset stream.set-map by auto

lemma streams-empty : streams {} = {}
by (auto elim: streams.cases)

lemma streams-UNIV [simp]: streams UNIV = UNIV
by (auto simp: streams-iff-sset)

THEORY “Stream” 647

26.3 nth, take, drop for streams

primrec snth :: ′a stream ⇒ nat ⇒ ′a (infixl !! 100) where
s !! 0 = shd s
| s !! Suc n = stl s !! n

lemma snth-Stream: (x ## s) !! Suc i = s !! i
by simp

lemma snth-smap[simp]: smap f s !! n = f (s !! n)
by (induct n arbitrary : s) auto

lemma shift-snth-less[simp]: p < length xs =⇒ (xs @− s) !! p = xs ! p
by (induct p arbitrary : xs) (auto simp: hd-conv-nth nth-tl)

lemma shift-snth-ge[simp]: p ≥ length xs =⇒ (xs @− s) !! p = s !! (p − length
xs)

by (induct p arbitrary : xs) (auto simp: Suc-diff-eq-diff-pred)

lemma shift-snth: (xs @− s) !! n = (if n < length xs then xs ! n else s !! (n −
length xs))

by auto

lemma snth-sset [simp]: s !! n ∈ sset s
by (induct n arbitrary : s) (auto intro: shd-sset stl-sset)

lemma sset-range: sset s = range (snth s)
proof (intro equalityI subsetI)

fix x assume x ∈ sset s
thus x ∈ range (snth s)
proof (induct s)

case (stl s x)
then obtain n where x = stl s !! n by auto
thus ?case by (auto intro: range-eqI [of - - Suc n])

qed (auto intro: range-eqI [of - - 0])
qed auto

lemma streams-iff-snth: s ∈ streams X ←→ (∀n. s !! n ∈ X)
by (force simp: streams-iff-sset sset-range)

lemma snth-in: s ∈ streams X =⇒ s !! n ∈ X
by (simp add : streams-iff-snth)

primrec stake :: nat ⇒ ′a stream ⇒ ′a list where
stake 0 s = []
| stake (Suc n) s = shd s # stake n (stl s)

lemma length-stake[simp]: length (stake n s) = n
by (induct n arbitrary : s) auto

THEORY “Stream” 648

lemma stake-smap[simp]: stake n (smap f s) = map f (stake n s)
by (induct n arbitrary : s) auto

lemma take-stake: take n (stake m s) = stake (min n m) s
proof (induct m arbitrary : s n)

case (Suc m) thus ?case by (cases n) auto
qed simp

primrec sdrop :: nat ⇒ ′a stream ⇒ ′a stream where
sdrop 0 s = s
| sdrop (Suc n) s = sdrop n (stl s)

lemma sdrop-simps[simp]:
shd (sdrop n s) = s !! n stl (sdrop n s) = sdrop (Suc n) s
by (induct n arbitrary : s) auto

lemma sdrop-smap[simp]: sdrop n (smap f s) = smap f (sdrop n s)
by (induct n arbitrary : s) auto

lemma sdrop-stl : sdrop n (stl s) = stl (sdrop n s)
by (induct n) auto

lemma drop-stake: drop n (stake m s) = stake (m − n) (sdrop n s)
proof (induct m arbitrary : s n)

case (Suc m) thus ?case by (cases n) auto
qed simp

lemma stake-sdrop: stake n s @− sdrop n s = s
by (induct n arbitrary : s) auto

lemma id-stake-snth-sdrop:
s = stake i s @− s !! i ## sdrop (Suc i) s
by (subst stake-sdrop[symmetric, of - i]) (metis sdrop-simps stream.collapse)

lemma smap-alt : smap f s = s ′←→ (∀n. f (s !! n) = s ′ !! n) (is ?L = ?R)
proof

assume ?R
then have

∧
n. smap f (sdrop n s) = sdrop n s ′

by coinduction (auto intro: exI [of - 0] simp del : sdrop.simps(2))
then show ?L using sdrop.simps(1) by metis

qed auto

lemma stake-invert-Nil [iff]: stake n s = [] ←→ n = 0
by (induct n) auto

lemma sdrop-shift : sdrop i (w @− s) = drop i w @− sdrop (i − length w) s
by (induct i arbitrary : w s) (auto simp: drop-tl drop-Suc neq-Nil-conv)

lemma stake-shift : stake i (w @− s) = take i w @ stake (i − length w) s

THEORY “Stream” 649

by (induct i arbitrary : w s) (auto simp: neq-Nil-conv)

lemma stake-add [simp]: stake m s @ stake n (sdrop m s) = stake (m + n) s
by (induct m arbitrary : s) auto

lemma sdrop-add [simp]: sdrop n (sdrop m s) = sdrop (m + n) s
by (induct m arbitrary : s) auto

lemma sdrop-snth: sdrop n s !! m = s !! (n + m)
by (induct n arbitrary : m s) auto

partial-function (tailrec) sdrop-while :: (′a ⇒ bool) ⇒ ′a stream ⇒ ′a stream
where

sdrop-while P s = (if P (shd s) then sdrop-while P (stl s) else s)

lemma sdrop-while-SCons[code]:
sdrop-while P (a ## s) = (if P a then sdrop-while P s else a ## s)
by (subst sdrop-while.simps) simp

lemma sdrop-while-sdrop-LEAST :
assumes ∃n. P (s !! n)
shows sdrop-while (Not o P) s = sdrop (LEAST n. P (s !! n)) s

proof −
from assms obtain m where P (s !! m)

∧
n. P (s !! n) =⇒ m ≤ n

and ∗: (LEAST n. P (s !! n)) = m by atomize-elim (auto intro: LeastI Least-le)
thus ?thesis unfolding ∗
proof (induct m arbitrary : s)

case (Suc m)
hence sdrop-while (Not ◦ P) (stl s) = sdrop m (stl s)

by (metis (full-types) not-less-eq-eq snth.simps(2))
moreover from Suc(3) have ¬ (P (s !! 0)) by blast
ultimately show ?case by (subst sdrop-while.simps) simp

qed (metis comp-apply sdrop.simps(1) sdrop-while.simps snth.simps(1))
qed

primcorec sfilter where
shd (sfilter P s) = shd (sdrop-while (Not o P) s)
| stl (sfilter P s) = sfilter P (stl (sdrop-while (Not o P) s))

lemma sfilter-Stream: sfilter P (x ## s) = (if P x then x ## sfilter P s else
sfilter P s)
proof (cases P x)

case True thus ?thesis by (subst sfilter .ctr) (simp add : sdrop-while-SCons)
next
case False thus ?thesis by (subst (1 2) sfilter .ctr) (simp add : sdrop-while-SCons)

qed

THEORY “Stream” 650

26.4 unary predicates lifted to streams

definition stream-all P s = (∀ p. P (s !! p))

lemma stream-all-iff [iff]: stream-all P s ←→ Ball (sset s) P
unfolding stream-all-def sset-range by auto

lemma stream-all-shift [simp]: stream-all P (xs @− s) = (list-all P xs ∧ stream-all
P s)

unfolding stream-all-iff list-all-iff by auto

lemma stream-all-Stream: stream-all P (x ## X) ←→ P x ∧ stream-all P X
by simp

26.5 recurring stream out of a list

primcorec cycle :: ′a list ⇒ ′a stream where
shd (cycle xs) = hd xs
| stl (cycle xs) = cycle (tl xs @ [hd xs])

lemma cycle-decomp: u 6= [] =⇒ cycle u = u @− cycle u
proof (coinduction arbitrary : u)

case Eq-stream then show ?case using stream.collapse[of cycle u]
by (auto intro!: exI [of - tl u @ [hd u]])

qed

lemma cycle-Cons[code]: cycle (x # xs) = x ## cycle (xs @ [x])
by (subst cycle.ctr) simp

lemma cycle-rotated : [[v 6= []; cycle u = v @− s]] =⇒ cycle (tl u @ [hd u]) = tl v
@− s

by (auto dest : arg-cong [of - - stl])

lemma stake-append : stake n (u @− s) = take (min (length u) n) u @ stake (n
− length u) s
proof (induct n arbitrary : u)

case (Suc n) thus ?case by (cases u) auto
qed auto

lemma stake-cycle-le[simp]:
assumes u 6= [] n < length u
shows stake n (cycle u) = take n u

using min-absorb2 [OF less-imp-le-nat [OF assms(2)]]
by (subst cycle-decomp[OF assms(1)], subst stake-append) auto

lemma stake-cycle-eq [simp]: u 6= [] =⇒ stake (length u) (cycle u) = u
by (subst cycle-decomp) (auto simp: stake-shift)

lemma sdrop-cycle-eq [simp]: u 6= [] =⇒ sdrop (length u) (cycle u) = cycle u
by (subst cycle-decomp) (auto simp: sdrop-shift)

THEORY “Stream” 651

lemma stake-cycle-eq-mod-0 [simp]: [[u 6= []; n mod length u = 0]] =⇒
stake n (cycle u) = concat (replicate (n div length u) u)

by (induct n div length u arbitrary : n u) (auto simp: stake-add [symmetric])

lemma sdrop-cycle-eq-mod-0 [simp]: [[u 6= []; n mod length u = 0]] =⇒
sdrop n (cycle u) = cycle u

by (induct n div length u arbitrary : n u) (auto simp: sdrop-add [symmetric])

lemma stake-cycle: u 6= [] =⇒
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length

u) u
by (subst mod-div-equality [of n length u, symmetric], unfold stake-add [symmetric])

auto

lemma sdrop-cycle: u 6= [] =⇒ sdrop n (cycle u) = cycle (rotate (n mod length u)
u)
by (induct n arbitrary : u) (auto simp: rotate1-rotate-swap rotate1-hd-tl rotate-conv-mod [symmetric])

26.6 iterated application of a function

primcorec siterate where
shd (siterate f x) = x
| stl (siterate f x) = siterate f (f x)

lemma stake-Suc: stake (Suc n) s = stake n s @ [s !! n]
by (induct n arbitrary : s) auto

lemma snth-siterate[simp]: siterate f x !! n = (fˆˆn) x
by (induct n arbitrary : x) (auto simp: funpow-swap1)

lemma sdrop-siterate[simp]: sdrop n (siterate f x) = siterate f ((fˆˆn) x)
by (induct n arbitrary : x) (auto simp: funpow-swap1)

lemma stake-siterate[simp]: stake n (siterate f x) = map (λn. (fˆˆn) x) [0 ..< n]
by (induct n arbitrary : x) (auto simp del : stake.simps(2) simp: stake-Suc)

lemma sset-siterate: sset (siterate f x) = {(fˆˆn) x | n. True}
by (auto simp: sset-range)

lemma smap-siterate: smap f (siterate f x) = siterate f (f x)
by (coinduction arbitrary : x) auto

26.7 stream repeating a single element

abbreviation sconst ≡ siterate id

lemma shift-replicate-sconst [simp]: replicate n x @− sconst x = sconst x
by (subst (3) stake-sdrop[symmetric]) (simp add : map-replicate-trivial)

THEORY “Stream” 652

lemma sset-sconst [simp]: sset (sconst x) = {x}
by (simp add : sset-siterate)

lemma sconst-alt : s = sconst x ←→ sset s = {x}
proof

assume sset s = {x}
then show s = sconst x
proof (coinduction arbitrary : s)

case Eq-stream
then have shd s = x sset (stl s) ⊆ {x} by (case-tac [!] s) auto
then have sset (stl s) = {x} by (cases stl s) auto
with 〈shd s = x 〉 show ?case by auto

qed
qed simp

lemma sconst-cycle: sconst x = cycle [x]
by coinduction auto

lemma smap-sconst : smap f (sconst x) = sconst (f x)
by coinduction auto

lemma sconst-streams: x ∈ A =⇒ sconst x ∈ streams A
by (simp add : streams-iff-sset)

26.8 stream of natural numbers

abbreviation fromN ≡ siterate Suc

abbreviation nats ≡ fromN 0

lemma sset-fromN [simp]: sset (fromN n) = {n ..}
by (auto simp add : sset-siterate le-iff-add)

lemma stream-smap-fromN : s = smap (λj . let i = j − n in s !! i) (fromN n)
by (coinduction arbitrary : s n)

(force simp: neq-Nil-conv Let-def snth.simps(2)[symmetric] Suc-diff-Suc
intro: stream.map-cong split : if-splits simp del : snth.simps(2))

lemma stream-smap-nats: s = smap (snth s) nats
using stream-smap-fromN [where n = 0] by simp

26.9 flatten a stream of lists

primcorec flat where
shd (flat ws) = hd (shd ws)
| stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)

lemma flat-Cons[simp, code]: flat ((x # xs) ## ws) = x ## flat (if xs = [] then
ws else xs ## ws)

by (subst flat .ctr) simp

THEORY “Stream” 653

lemma flat-Stream[simp]: xs 6= [] =⇒ flat (xs ## ws) = xs @− flat ws
by (induct xs) auto

lemma flat-unfold : shd ws 6= [] =⇒ flat ws = shd ws @− flat (stl ws)
by (cases ws) auto

lemma flat-snth: ∀ xs ∈ sset s. xs 6= [] =⇒ flat s !! n = (if n < length (shd s)
then

shd s ! n else flat (stl s) !! (n − length (shd s)))
by (metis flat-unfold not-less shd-sset shift-snth-ge shift-snth-less)

lemma sset-flat [simp]: ∀ xs ∈ sset s. xs 6= [] =⇒
sset (flat s) = (

⋃
xs ∈ sset s. set xs) (is ?P =⇒ ?L = ?R)

proof safe
fix x assume ?P x : ?L
then obtain m where x = flat s !! m by (metis image-iff sset-range)
with 〈?P 〉 obtain n m ′ where x = s !! n ! m ′ m ′ < length (s !! n)
proof (atomize-elim, induct m arbitrary : s rule: less-induct)

case (less y)
thus ?case
proof (cases y < length (shd s))

case True thus ?thesis by (metis flat-snth less(2 ,3) snth.simps(1))
next

case False
hence x = flat (stl s) !! (y − length (shd s)) by (metis less(2 ,3) flat-snth)
moreover
{ from less(2) have ∗: length (shd s) > 0 by (cases s) simp-all

with False have y > 0 by (cases y) simp-all
with ∗ have y − length (shd s) < y by simp
}
moreover have ∀ xs ∈ sset (stl s). xs 6= [] using less(2) by (cases s) auto
ultimately have ∃n m ′. x = stl s !! n ! m ′ ∧ m ′ < length (stl s !! n) by

(intro less(1)) auto
thus ?thesis by (metis snth.simps(2))

qed
qed
thus x ∈ ?R by (auto simp: sset-range dest !: nth-mem)

next
fix x xs assume xs ∈ sset s ?P x ∈ set xs thus x ∈ ?L

by (induct rule: sset-induct)
(metis UnI1 flat-unfold shift .simps(1) sset-shift ,
metis UnI2 flat-unfold shd-sset stl-sset sset-shift)

qed

26.10 merge a stream of streams

definition smerge :: ′a stream stream ⇒ ′a stream where
smerge ss = flat (smap (λn. map (λs. s !! n) (stake (Suc n) ss) @ stake n (ss !!

THEORY “Stream” 654

n)) nats)

lemma stake-nth[simp]: m < n =⇒ stake n s ! m = s !! m
by (induct n arbitrary : s m) (auto simp: nth-Cons ′, metis Suc-pred snth.simps(2))

lemma snth-sset-smerge: ss !! n !! m ∈ sset (smerge ss)
proof (cases n ≤ m)

case False thus ?thesis unfolding smerge-def
by (subst sset-flat)

(auto simp: stream.set-map in-set-conv-nth simp del : stake.simps
intro!: exI [of - n, OF disjI2] exI [of - m, OF mp])

next
case True thus ?thesis unfolding smerge-def

by (subst sset-flat)
(auto simp: stream.set-map in-set-conv-nth image-iff simp del : stake.simps

snth.simps
intro!: exI [of - m, OF disjI1] bexI [of - ss !! n] exI [of - n, OF mp])

qed

lemma sset-smerge: sset (smerge ss) = UNION (sset ss) sset
proof safe

fix x assume x ∈ sset (smerge ss)
thus x ∈ UNION (sset ss) sset

unfolding smerge-def by (subst (asm) sset-flat)
(auto simp: stream.set-map in-set-conv-nth sset-range simp del : stake.simps,

fast+)
next

fix s x assume s ∈ sset ss x ∈ sset s
thus x ∈ sset (smerge ss) using snth-sset-smerge by (auto simp: sset-range)

qed

26.11 product of two streams

definition sproduct :: ′a stream ⇒ ′b stream ⇒ (′a × ′b) stream where
sproduct s1 s2 = smerge (smap (λx . smap (Pair x) s2) s1)

lemma sset-sproduct : sset (sproduct s1 s2) = sset s1 × sset s2
unfolding sproduct-def sset-smerge by (auto simp: stream.set-map)

26.12 interleave two streams

primcorec sinterleave where
shd (sinterleave s1 s2) = shd s1
| stl (sinterleave s1 s2) = sinterleave s2 (stl s1)

lemma sinterleave-code[code]:
sinterleave (x ## s1) s2 = x ## sinterleave s2 s1
by (subst sinterleave.ctr) simp

lemma sinterleave-snth[simp]:

THEORY “Stream” 655

even n =⇒ sinterleave s1 s2 !! n = s1 !! (n div 2)
odd n =⇒ sinterleave s1 s2 !! n = s2 !! (n div 2)
by (induct n arbitrary : s1 s2) simp-all

lemma sset-sinterleave: sset (sinterleave s1 s2) = sset s1 ∪ sset s2
proof (intro equalityI subsetI)

fix x assume x ∈ sset (sinterleave s1 s2)
then obtain n where x = sinterleave s1 s2 !! n unfolding sset-range by blast
thus x ∈ sset s1 ∪ sset s2 by (cases even n) auto

next
fix x assume x ∈ sset s1 ∪ sset s2
thus x ∈ sset (sinterleave s1 s2)
proof

assume x ∈ sset s1
then obtain n where x = s1 !! n unfolding sset-range by blast
hence sinterleave s1 s2 !! (2 ∗ n) = x by simp
thus ?thesis unfolding sset-range by blast

next
assume x ∈ sset s2
then obtain n where x = s2 !! n unfolding sset-range by blast
hence sinterleave s1 s2 !! (2 ∗ n + 1) = x by simp
thus ?thesis unfolding sset-range by blast

qed
qed

26.13 zip

primcorec szip where
shd (szip s1 s2) = (shd s1 , shd s2)
| stl (szip s1 s2) = szip (stl s1) (stl s2)

lemma szip-unfold [code]: szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)
by (subst szip.ctr) simp

lemma snth-szip[simp]: szip s1 s2 !! n = (s1 !! n, s2 !! n)
by (induct n arbitrary : s1 s2) auto

lemma stake-szip[simp]:
stake n (szip s1 s2) = zip (stake n s1) (stake n s2)
by (induct n arbitrary : s1 s2) auto

lemma sdrop-szip[simp]: sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)
by (induct n arbitrary : s1 s2) auto

lemma smap-szip-fst :
smap (λx . f (fst x)) (szip s1 s2) = smap f s1
by (coinduction arbitrary : s1 s2) auto

lemma smap-szip-snd :

THEORY “Sublist” 656

smap (λx . g (snd x)) (szip s1 s2) = smap g s2
by (coinduction arbitrary : s1 s2) auto

26.14 zip via function

primcorec smap2 where
shd (smap2 f s1 s2) = f (shd s1) (shd s2)
| stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)

lemma smap2-unfold [code]:
smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)
by (subst smap2 .ctr) simp

lemma smap2-szip:
smap2 f s1 s2 = smap (case-prod f) (szip s1 s2)
by (coinduction arbitrary : s1 s2) auto

lemma smap-smap2 [simp]:
smap f (smap2 g s1 s2) = smap2 (λx y . f (g x y)) s1 s2
unfolding smap2-szip stream.map-comp o-def split-def ..

lemma smap2-alt :
(smap2 f s1 s2 = s) = (∀n. f (s1 !! n) (s2 !! n) = s !! n)
unfolding smap2-szip smap-alt by auto

lemma snth-smap2 [simp]:
smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)
by (induct n arbitrary : s1 s2) auto

lemma stake-smap2 [simp]:
stake n (smap2 f s1 s2) = map (case-prod f) (zip (stake n s1) (stake n s2))
by (induct n arbitrary : s1 s2) auto

lemma sdrop-smap2 [simp]:
sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)
by (induct n arbitrary : s1 s2) auto

end

27 List prefixes, suffixes, and homeomorphic em-
bedding

theory Sublist
imports Main
begin

27.1 Prefix order on lists

definition prefixeq :: ′a list ⇒ ′a list ⇒ bool

THEORY “Sublist” 657

where prefixeq xs ys ←→ (∃ zs. ys = xs @ zs)

definition prefix :: ′a list ⇒ ′a list ⇒ bool
where prefix xs ys ←→ prefixeq xs ys ∧ xs 6= ys

interpretation prefix-order : order prefixeq prefix
by standard (auto simp: prefixeq-def prefix-def)

interpretation prefix-bot : order-bot Nil prefixeq prefix
by standard (simp add : prefixeq-def)

lemma prefixeqI [intro?]: ys = xs @ zs =⇒ prefixeq xs ys
unfolding prefixeq-def by blast

lemma prefixeqE [elim?]:
assumes prefixeq xs ys
obtains zs where ys = xs @ zs
using assms unfolding prefixeq-def by blast

lemma prefixI ′ [intro?]: ys = xs @ z # zs =⇒ prefix xs ys
unfolding prefix-def prefixeq-def by blast

lemma prefixE ′ [elim?]:
assumes prefix xs ys
obtains z zs where ys = xs @ z # zs

proof −
from 〈prefix xs ys〉 obtain us where ys = xs @ us and xs 6= ys

unfolding prefix-def prefixeq-def by blast
with that show ?thesis by (auto simp add : neq-Nil-conv)

qed

lemma prefixI [intro?]: prefixeq xs ys =⇒ xs 6= ys =⇒ prefix xs ys
unfolding prefix-def by blast

lemma prefixE [elim?]:
fixes xs ys :: ′a list
assumes prefix xs ys
obtains prefixeq xs ys and xs 6= ys
using assms unfolding prefix-def by blast

27.2 Basic properties of prefixes

theorem Nil-prefixeq [iff]: prefixeq [] xs
by (simp add : prefixeq-def)

theorem prefixeq-Nil [simp]: (prefixeq xs []) = (xs = [])
by (induct xs) (simp-all add : prefixeq-def)

lemma prefixeq-snoc [simp]: prefixeq xs (ys @ [y]) ←→ xs = ys @ [y] ∨ prefixeq

THEORY “Sublist” 658

xs ys
proof

assume prefixeq xs (ys @ [y])
then obtain zs where zs: ys @ [y] = xs @ zs ..
show xs = ys @ [y] ∨ prefixeq xs ys

by (metis append-Nil2 butlast-append butlast-snoc prefixeqI zs)
next

assume xs = ys @ [y] ∨ prefixeq xs ys
then show prefixeq xs (ys @ [y])

by (metis prefix-order .eq-iff prefix-order .order-trans prefixeqI)
qed

lemma Cons-prefixeq-Cons [simp]: prefixeq (x # xs) (y # ys) = (x = y ∧ prefixeq
xs ys)

by (auto simp add : prefixeq-def)

lemma prefixeq-code [code]:
prefixeq [] xs ←→ True
prefixeq (x # xs) [] ←→ False
prefixeq (x # xs) (y # ys) ←→ x = y ∧ prefixeq xs ys
by simp-all

lemma same-prefixeq-prefixeq [simp]: prefixeq (xs @ ys) (xs @ zs) = prefixeq ys zs
by (induct xs) simp-all

lemma same-prefixeq-nil [iff]: prefixeq (xs @ ys) xs = (ys = [])
by (metis append-Nil2 append-self-conv prefix-order .eq-iff prefixeqI)

lemma prefixeq-prefixeq [simp]: prefixeq xs ys =⇒ prefixeq xs (ys @ zs)
by (metis prefix-order .le-less-trans prefixeqI prefixE prefixI)

lemma append-prefixeqD : prefixeq (xs @ ys) zs =⇒ prefixeq xs zs
by (auto simp add : prefixeq-def)

theorem prefixeq-Cons: prefixeq xs (y # ys) = (xs = [] ∨ (∃ zs. xs = y # zs ∧
prefixeq zs ys))

by (cases xs) (auto simp add : prefixeq-def)

theorem prefixeq-append :
prefixeq xs (ys @ zs) = (prefixeq xs ys ∨ (∃ us. xs = ys @ us ∧ prefixeq us zs))
apply (induct zs rule: rev-induct)
apply force

apply (simp del : append-assoc add : append-assoc [symmetric])
apply (metis append-eq-appendI)
done

lemma append-one-prefixeq :
prefixeq xs ys =⇒ length xs < length ys =⇒ prefixeq (xs @ [ys ! length xs]) ys
proof (unfold prefixeq-def)

THEORY “Sublist” 659

assume a1 : ∃ zs. ys = xs @ zs
then obtain sk :: ′a list where sk : ys = xs @ sk by fastforce
assume a2 : length xs < length ys
have f1 :

∧
v . ([]:: ′a list) @ v = v using append-Nil2 by simp

have [] 6= sk using a1 a2 sk less-not-refl by force
hence ∃ v . xs @ hd sk # v = ys using sk by (metis hd-Cons-tl)
thus ∃ zs. ys = (xs @ [ys ! length xs]) @ zs using f1 by fastforce

qed

theorem prefixeq-length-le: prefixeq xs ys =⇒ length xs ≤ length ys
by (auto simp add : prefixeq-def)

lemma prefixeq-same-cases:
prefixeq (xs1:: ′a list) ys =⇒ prefixeq xs2 ys =⇒ prefixeq xs1 xs2 ∨ prefixeq xs2

xs1
unfolding prefixeq-def by (force simp: append-eq-append-conv2)

lemma set-mono-prefixeq : prefixeq xs ys =⇒ set xs ⊆ set ys
by (auto simp add : prefixeq-def)

lemma take-is-prefixeq : prefixeq (take n xs) xs
unfolding prefixeq-def by (metis append-take-drop-id)

lemma map-prefixeqI : prefixeq xs ys =⇒ prefixeq (map f xs) (map f ys)
by (auto simp: prefixeq-def)

lemma prefixeq-length-less: prefix xs ys =⇒ length xs < length ys
by (auto simp: prefix-def prefixeq-def)

lemma prefix-simps [simp, code]:
prefix xs [] ←→ False
prefix [] (x # xs) ←→ True
prefix (x # xs) (y # ys) ←→ x = y ∧ prefix xs ys
by (simp-all add : prefix-def cong : conj-cong)

lemma take-prefix : prefix xs ys =⇒ prefix (take n xs) ys
apply (induct n arbitrary : xs ys)
apply (case-tac ys; simp)

apply (metis prefix-order .less-trans prefixI take-is-prefixeq)
done

lemma not-prefixeq-cases:
assumes pfx : ¬ prefixeq ps ls
obtains

(c1) ps 6= [] and ls = []
| (c2) a as x xs where ps = a#as and ls = x#xs and x = a and ¬ prefixeq

as xs
| (c3) a as x xs where ps = a#as and ls = x#xs and x 6= a

proof (cases ps)

THEORY “Sublist” 660

case Nil
then show ?thesis using pfx by simp

next
case (Cons a as)
note c = 〈ps = a#as〉

show ?thesis
proof (cases ls)

case Nil then show ?thesis by (metis append-Nil2 pfx c1 same-prefixeq-nil)
next

case (Cons x xs)
show ?thesis
proof (cases x = a)

case True
have ¬ prefixeq as xs using pfx c Cons True by simp
with c Cons True show ?thesis by (rule c2)

next
case False
with c Cons show ?thesis by (rule c3)

qed
qed

qed

lemma not-prefixeq-induct [consumes 1 , case-names Nil Neq Eq]:
assumes np: ¬ prefixeq ps ls

and base:
∧

x xs. P (x#xs) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (x#xs) (y#ys)

and r2 :
∧

x xs y ys. [[x = y ; ¬ prefixeq xs ys; P xs ys]] =⇒ P (x#xs) (y#ys)
shows P ps ls using np

proof (induct ls arbitrary : ps)
case Nil then show ?case

by (auto simp: neq-Nil-conv elim!: not-prefixeq-cases intro!: base)
next

case (Cons y ys)
then have npfx : ¬ prefixeq ps (y # ys) by simp
then obtain x xs where pv : ps = x # xs

by (rule not-prefixeq-cases) auto
show ?case by (metis Cons.hyps Cons-prefixeq-Cons npfx pv r1 r2)

qed

27.3 Parallel lists

definition parallel :: ′a list ⇒ ′a list ⇒ bool (infixl ‖ 50)
where (xs ‖ ys) = (¬ prefixeq xs ys ∧ ¬ prefixeq ys xs)

lemma parallelI [intro]: ¬ prefixeq xs ys =⇒ ¬ prefixeq ys xs =⇒ xs ‖ ys
unfolding parallel-def by blast

lemma parallelE [elim]:
assumes xs ‖ ys

THEORY “Sublist” 661

obtains ¬ prefixeq xs ys ∧ ¬ prefixeq ys xs
using assms unfolding parallel-def by blast

theorem prefixeq-cases:
obtains prefixeq xs ys | prefix ys xs | xs ‖ ys
unfolding parallel-def prefix-def by blast

theorem parallel-decomp:
xs ‖ ys =⇒ ∃ as b bs c cs. b 6= c ∧ xs = as @ b # bs ∧ ys = as @ c # cs

proof (induct xs rule: rev-induct)
case Nil
then have False by auto
then show ?case ..

next
case (snoc x xs)
show ?case
proof (rule prefixeq-cases)

assume le: prefixeq xs ys
then obtain ys ′ where ys: ys = xs @ ys ′ ..
show ?thesis
proof (cases ys ′)

assume ys ′ = []
then show ?thesis by (metis append-Nil2 parallelE prefixeqI snoc.prems ys)

next
fix c cs assume ys ′: ys ′ = c # cs
have x 6= c using snoc.prems ys ys ′ by fastforce
thus ∃ as b bs c cs. b 6= c ∧ xs @ [x] = as @ b # bs ∧ ys = as @ c # cs

using ys ys ′ by blast
qed

next
assume prefix ys xs
then have prefixeq ys (xs @ [x]) by (simp add : prefix-def)
with snoc have False by blast
then show ?thesis ..

next
assume xs ‖ ys
with snoc obtain as b bs c cs where neq : (b:: ′a) 6= c

and xs: xs = as @ b # bs and ys: ys = as @ c # cs
by blast

from xs have xs @ [x] = as @ b # (bs @ [x]) by simp
with neq ys show ?thesis by blast

qed
qed

lemma parallel-append : a ‖ b =⇒ a @ c ‖ b @ d
apply (rule parallelI)

apply (erule parallelE , erule conjE ,
induct rule: not-prefixeq-induct , simp+)+

done

THEORY “Sublist” 662

lemma parallel-appendI : xs ‖ ys =⇒ x = xs @ xs ′ =⇒ y = ys @ ys ′ =⇒ x ‖ y
by (simp add : parallel-append)

lemma parallel-commute: a ‖ b ←→ b ‖ a
unfolding parallel-def by auto

27.4 Suffix order on lists

definition suffixeq :: ′a list ⇒ ′a list ⇒ bool
where suffixeq xs ys = (∃ zs. ys = zs @ xs)

definition suffix :: ′a list ⇒ ′a list ⇒ bool
where suffix xs ys ←→ (∃ us. ys = us @ xs ∧ us 6= [])

lemma suffix-imp-suffixeq :
suffix xs ys =⇒ suffixeq xs ys
by (auto simp: suffixeq-def suffix-def)

lemma suffixeqI [intro?]: ys = zs @ xs =⇒ suffixeq xs ys
unfolding suffixeq-def by blast

lemma suffixeqE [elim?]:
assumes suffixeq xs ys
obtains zs where ys = zs @ xs
using assms unfolding suffixeq-def by blast

lemma suffixeq-refl [iff]: suffixeq xs xs
by (auto simp add : suffixeq-def)

lemma suffix-trans:
suffix xs ys =⇒ suffix ys zs =⇒ suffix xs zs
by (auto simp: suffix-def)

lemma suffixeq-trans: [[suffixeq xs ys; suffixeq ys zs]] =⇒ suffixeq xs zs
by (auto simp add : suffixeq-def)

lemma suffixeq-antisym: [[suffixeq xs ys; suffixeq ys xs]] =⇒ xs = ys
by (auto simp add : suffixeq-def)

lemma suffixeq-tl [simp]: suffixeq (tl xs) xs
by (induct xs) (auto simp: suffixeq-def)

lemma suffix-tl [simp]: xs 6= [] =⇒ suffix (tl xs) xs
by (induct xs) (auto simp: suffix-def)

lemma Nil-suffixeq [iff]: suffixeq [] xs
by (simp add : suffixeq-def)

lemma suffixeq-Nil [simp]: (suffixeq xs []) = (xs = [])
by (auto simp add : suffixeq-def)

lemma suffixeq-ConsI : suffixeq xs ys =⇒ suffixeq xs (y # ys)

THEORY “Sublist” 663

by (auto simp add : suffixeq-def)
lemma suffixeq-ConsD : suffixeq (x # xs) ys =⇒ suffixeq xs ys

by (auto simp add : suffixeq-def)

lemma suffixeq-appendI : suffixeq xs ys =⇒ suffixeq xs (zs @ ys)
by (auto simp add : suffixeq-def)

lemma suffixeq-appendD : suffixeq (zs @ xs) ys =⇒ suffixeq xs ys
by (auto simp add : suffixeq-def)

lemma suffix-set-subset :
suffix xs ys =⇒ set xs ⊆ set ys by (auto simp: suffix-def)

lemma suffixeq-set-subset :
suffixeq xs ys =⇒ set xs ⊆ set ys by (auto simp: suffixeq-def)

lemma suffixeq-ConsD2 : suffixeq (x # xs) (y # ys) =⇒ suffixeq xs ys
proof −

assume suffixeq (x # xs) (y # ys)
then obtain zs where y # ys = zs @ x # xs ..
then show ?thesis

by (induct zs) (auto intro!: suffixeq-appendI suffixeq-ConsI)
qed

lemma suffixeq-to-prefixeq [code]: suffixeq xs ys ←→ prefixeq (rev xs) (rev ys)
proof

assume suffixeq xs ys
then obtain zs where ys = zs @ xs ..
then have rev ys = rev xs @ rev zs by simp
then show prefixeq (rev xs) (rev ys) ..

next
assume prefixeq (rev xs) (rev ys)
then obtain zs where rev ys = rev xs @ zs ..
then have rev (rev ys) = rev zs @ rev (rev xs) by simp
then have ys = rev zs @ xs by simp
then show suffixeq xs ys ..

qed

lemma distinct-suffixeq : distinct ys =⇒ suffixeq xs ys =⇒ distinct xs
by (clarsimp elim!: suffixeqE)

lemma suffixeq-map: suffixeq xs ys =⇒ suffixeq (map f xs) (map f ys)
by (auto elim!: suffixeqE intro: suffixeqI)

lemma suffixeq-drop: suffixeq (drop n as) as
unfolding suffixeq-def
apply (rule exI [where x = take n as])
apply simp
done

THEORY “Sublist” 664

lemma suffixeq-take: suffixeq xs ys =⇒ ys = take (length ys − length xs) ys @ xs
by (auto elim!: suffixeqE)

lemma suffixeq-suffix-reflclp-conv : suffixeq = suffix==

proof (intro ext iffI)
fix xs ys :: ′a list
assume suffixeq xs ys
show suffix== xs ys
proof

assume xs 6= ys
with 〈suffixeq xs ys〉 show suffix xs ys

by (auto simp: suffixeq-def suffix-def)
qed

next
fix xs ys :: ′a list
assume suffix== xs ys
then show suffixeq xs ys
proof

assume suffix xs ys then show suffixeq xs ys
by (rule suffix-imp-suffixeq)

next
assume xs = ys then show suffixeq xs ys

by (auto simp: suffixeq-def)
qed

qed

lemma parallelD1 : x ‖ y =⇒ ¬ prefixeq x y
by blast

lemma parallelD2 : x ‖ y =⇒ ¬ prefixeq y x
by blast

lemma parallel-Nil1 [simp]: ¬ x ‖ []
unfolding parallel-def by simp

lemma parallel-Nil2 [simp]: ¬ [] ‖ x
unfolding parallel-def by simp

lemma Cons-parallelI1 : a 6= b =⇒ a # as ‖ b # bs
by auto

lemma Cons-parallelI2 : [[a = b; as ‖ bs]] =⇒ a # as ‖ b # bs
by (metis Cons-prefixeq-Cons parallelE parallelI)

lemma not-equal-is-parallel :
assumes neq : xs 6= ys

and len: length xs = length ys
shows xs ‖ ys
using len neq

THEORY “Sublist” 665

proof (induct rule: list-induct2)
case Nil
then show ?case by simp

next
case (Cons a as b bs)
have ih: as 6= bs =⇒ as ‖ bs by fact
show ?case
proof (cases a = b)

case True
then have as 6= bs using Cons by simp
then show ?thesis by (rule Cons-parallelI2 [OF True ih])

next
case False
then show ?thesis by (rule Cons-parallelI1)

qed
qed

lemma suffix-reflclp-conv : suffix== = suffixeq
by (intro ext) (auto simp: suffixeq-def suffix-def)

lemma suffix-lists: suffix xs ys =⇒ ys ∈ lists A =⇒ xs ∈ lists A
unfolding suffix-def by auto

27.5 Homeomorphic embedding on lists

inductive list-emb :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ bool
for P :: (′a ⇒ ′a ⇒ bool)

where
list-emb-Nil [intro, simp]: list-emb P [] ys
| list-emb-Cons [intro] : list-emb P xs ys =⇒ list-emb P xs (y#ys)
| list-emb-Cons2 [intro]: P x y =⇒ list-emb P xs ys =⇒ list-emb P (x#xs) (y#ys)

lemma list-emb-mono:
assumes

∧
x y . P x y −→ Q x y

shows list-emb P xs ys −→ list-emb Q xs ys
proof

assume list-emb P xs ys
then show list-emb Q xs ys by (induct) (auto simp: assms)

qed

lemma list-emb-Nil2 [simp]:
assumes list-emb P xs [] shows xs = []
using assms by (cases rule: list-emb.cases) auto

lemma list-emb-refl :
assumes

∧
x . x ∈ set xs =⇒ P x x

shows list-emb P xs xs
using assms by (induct xs) auto

THEORY “Sublist” 666

lemma list-emb-Cons-Nil [simp]: list-emb P (x#xs) [] = False
proof −
{ assume list-emb P (x#xs) []

from list-emb-Nil2 [OF this] have False by simp
} moreover {

assume False
then have list-emb P (x#xs) [] by simp
} ultimately show ?thesis by blast

qed

lemma list-emb-append2 [intro]: list-emb P xs ys =⇒ list-emb P xs (zs @ ys)
by (induct zs) auto

lemma list-emb-prefix [intro]:
assumes list-emb P xs ys shows list-emb P xs (ys @ zs)
using assms
by (induct arbitrary : zs) auto

lemma list-emb-ConsD :
assumes list-emb P (x#xs) ys
shows ∃ us v vs. ys = us @ v # vs ∧ P x v ∧ list-emb P xs vs

using assms
proof (induct x ≡ x # xs ys arbitrary : x xs)

case list-emb-Cons
then show ?case by (metis append-Cons)

next
case (list-emb-Cons2 x y xs ys)
then show ?case by blast

qed

lemma list-emb-appendD :
assumes list-emb P (xs @ ys) zs
shows ∃ us vs. zs = us @ vs ∧ list-emb P xs us ∧ list-emb P ys vs

using assms
proof (induction xs arbitrary : ys zs)

case Nil then show ?case by auto
next

case (Cons x xs)
then obtain us v vs where

zs: zs = us @ v # vs and p: P x v and lh: list-emb P (xs @ ys) vs
by (auto dest : list-emb-ConsD)

obtain sk0 :: ′a list ⇒ ′a list ⇒ ′a list and sk1 :: ′a list ⇒ ′a list ⇒ ′a list
where

sk : ∀ x 0 x 1. ¬ list-emb P (xs @ x 0) x 1 ∨ sk0 x 0 x 1 @ sk1 x 0 x 1 = x 1 ∧ list-emb
P xs (sk0 x 0 x 1) ∧ list-emb P x 0 (sk1 x 0 x 1)

using Cons(1) by (metis (no-types))
hence ∀ x 2. list-emb P (x # xs) (x 2 @ v # sk0 ys vs) using p lh by auto
thus ?case using lh zs sk by (metis (no-types) append-Cons append-assoc)

qed

THEORY “Sublist” 667

lemma list-emb-suffix :
assumes list-emb P xs ys and suffix ys zs
shows list-emb P xs zs
using assms(2) and list-emb-append2 [OF assms(1)] by (auto simp: suffix-def)

lemma list-emb-suffixeq :
assumes list-emb P xs ys and suffixeq ys zs
shows list-emb P xs zs
using assms and list-emb-suffix unfolding suffixeq-suffix-reflclp-conv by auto

lemma list-emb-length: list-emb P xs ys =⇒ length xs ≤ length ys
by (induct rule: list-emb.induct) auto

lemma list-emb-trans:
assumes

∧
x y z . [[x ∈ set xs; y ∈ set ys; z ∈ set zs; P x y ; P y z]] =⇒ P x z

shows [[list-emb P xs ys; list-emb P ys zs]] =⇒ list-emb P xs zs
proof −

assume list-emb P xs ys and list-emb P ys zs
then show list-emb P xs zs using assms
proof (induction arbitrary : zs)

case list-emb-Nil show ?case by blast
next

case (list-emb-Cons xs ys y)
from list-emb-ConsD [OF 〈list-emb P (y#ys) zs〉] obtain us v vs

where zs: zs = us @ v # vs and P== y v and list-emb P ys vs by blast
then have list-emb P ys (v#vs) by blast
then have list-emb P ys zs unfolding zs by (rule list-emb-append2)
from list-emb-Cons.IH [OF this] and list-emb-Cons.prems show ?case by

auto
next

case (list-emb-Cons2 x y xs ys)
from list-emb-ConsD [OF 〈list-emb P (y#ys) zs〉] obtain us v vs

where zs: zs = us @ v # vs and P y v and list-emb P ys vs by blast
with list-emb-Cons2 have list-emb P xs vs by auto
moreover have P x v
proof −

from zs have v ∈ set zs by auto
moreover have x ∈ set (x#xs) and y ∈ set (y#ys) by simp-all
ultimately show ?thesis

using 〈P x y〉 and 〈P y v 〉 and list-emb-Cons2
by blast

qed
ultimately have list-emb P (x#xs) (v#vs) by blast
then show ?case unfolding zs by (rule list-emb-append2)

qed
qed

lemma list-emb-set :

THEORY “Sublist” 668

assumes list-emb P xs ys and x ∈ set xs
obtains y where y ∈ set ys and P x y
using assms by (induct) auto

27.6 Sublists (special case of homeomorphic embedding)

abbreviation sublisteq :: ′a list ⇒ ′a list ⇒ bool
where sublisteq xs ys ≡ list-emb (op =) xs ys

lemma sublisteq-Cons2 : sublisteq xs ys =⇒ sublisteq (x#xs) (x#ys) by auto

lemma sublisteq-same-length:
assumes sublisteq xs ys and length xs = length ys shows xs = ys
using assms by (induct) (auto dest : list-emb-length)

lemma not-sublisteq-length [simp]: length ys < length xs =⇒ ¬ sublisteq xs ys
by (metis list-emb-length linorder-not-less)

lemma [code]:
list-emb P [] ys ←→ True
list-emb P (x#xs) [] ←→ False
by (simp-all)

lemma sublisteq-Cons ′: sublisteq (x#xs) ys =⇒ sublisteq xs ys
by (induct xs, simp, blast dest : list-emb-ConsD)

lemma sublisteq-Cons2 ′:
assumes sublisteq (x#xs) (x#ys) shows sublisteq xs ys
using assms by (cases) (rule sublisteq-Cons ′)

lemma sublisteq-Cons2-neq :
assumes sublisteq (x#xs) (y#ys)
shows x 6= y =⇒ sublisteq (x#xs) ys
using assms by (cases) auto

lemma sublisteq-Cons2-iff [simp, code]:
sublisteq (x#xs) (y#ys) = (if x = y then sublisteq xs ys else sublisteq (x#xs) ys)
by (metis list-emb-Cons sublisteq-Cons2 sublisteq-Cons2 ′ sublisteq-Cons2-neq)

lemma sublisteq-append ′: sublisteq (zs @ xs) (zs @ ys) ←→ sublisteq xs ys
by (induct zs) simp-all

lemma sublisteq-refl [simp, intro!]: sublisteq xs xs by (induct xs) simp-all

lemma sublisteq-antisym:
assumes sublisteq xs ys and sublisteq ys xs
shows xs = ys

using assms
proof (induct)

THEORY “Sublist” 669

case list-emb-Nil
from list-emb-Nil2 [OF this] show ?case by simp

next
case list-emb-Cons2
thus ?case by simp

next
case list-emb-Cons
hence False using sublisteq-Cons ′ by fastforce
thus ?case ..

qed

lemma sublisteq-trans: sublisteq xs ys =⇒ sublisteq ys zs =⇒ sublisteq xs zs
by (rule list-emb-trans [of - - - op =]) auto

lemma sublisteq-append-le-same-iff : sublisteq (xs @ ys) ys ←→ xs = []
by (auto dest : list-emb-length)

lemma list-emb-append-mono:
[[list-emb P xs xs ′; list-emb P ys ys ′]] =⇒ list-emb P (xs@ys) (xs ′@ys ′)
apply (induct rule: list-emb.induct)

apply (metis eq-Nil-appendI list-emb-append2)
apply (metis append-Cons list-emb-Cons)

apply (metis append-Cons list-emb-Cons2)
done

27.7 Appending elements

lemma sublisteq-append [simp]:
sublisteq (xs @ zs) (ys @ zs) ←→ sublisteq xs ys (is ?l = ?r)

proof
{ fix xs ′ ys ′ xs ys zs :: ′a list assume sublisteq xs ′ ys ′

then have xs ′ = xs @ zs & ys ′ = ys @ zs −→ sublisteq xs ys
proof (induct arbitrary : xs ys zs)

case list-emb-Nil show ?case by simp
next

case (list-emb-Cons xs ′ ys ′ x)
{ assume ys=[] then have ?case using list-emb-Cons(1) by auto }
moreover
{ fix us assume ys = x#us
then have ?case using list-emb-Cons(2) by(simp add : list-emb.list-emb-Cons)

}
ultimately show ?case by (auto simp:Cons-eq-append-conv)

next
case (list-emb-Cons2 x y xs ′ ys ′)
{ assume xs=[] then have ?case using list-emb-Cons2 (1) by auto }
moreover
{ fix us vs assume xs=x#us ys=x#vs then have ?case using list-emb-Cons2

by auto}
moreover

THEORY “Sublist” 670

{ fix us assume xs=x#us ys=[] then have ?case using list-emb-Cons2 (2)
by bestsimp }

ultimately show ?case using 〈op = x y〉 by (auto simp: Cons-eq-append-conv)
qed }

moreover assume ?l
ultimately show ?r by blast

next
assume ?r then show ?l by (metis list-emb-append-mono sublisteq-refl)

qed

lemma sublisteq-drop-many : sublisteq xs ys =⇒ sublisteq xs (zs @ ys)
by (induct zs) auto

lemma sublisteq-rev-drop-many : sublisteq xs ys =⇒ sublisteq xs (ys @ zs)
by (metis append-Nil2 list-emb-Nil list-emb-append-mono)

27.8 Relation to standard list operations

lemma sublisteq-map:
assumes sublisteq xs ys shows sublisteq (map f xs) (map f ys)
using assms by (induct) auto

lemma sublisteq-filter-left [simp]: sublisteq (filter P xs) xs
by (induct xs) auto

lemma sublisteq-filter [simp]:
assumes sublisteq xs ys shows sublisteq (filter P xs) (filter P ys)
using assms by induct auto

lemma sublisteq xs ys ←→ (∃N . xs = sublist ys N) (is ?L = ?R)
proof

assume ?L
then show ?R
proof (induct)

case list-emb-Nil show ?case by (metis sublist-empty)
next

case (list-emb-Cons xs ys x)
then obtain N where xs = sublist ys N by blast
then have xs = sublist (x#ys) (Suc ‘ N)

by (clarsimp simp add :sublist-Cons inj-image-mem-iff)
then show ?case by blast

next
case (list-emb-Cons2 x y xs ys)
then obtain N where xs = sublist ys N by blast
then have x#xs = sublist (x#ys) (insert 0 (Suc ‘ N))

by (clarsimp simp add :sublist-Cons inj-image-mem-iff)
moreover from list-emb-Cons2 have x = y by simp
ultimately show ?case by blast

qed

THEORY “Linear-Temporal-Logic-on-Streams” 671

next
assume ?R
then obtain N where xs = sublist ys N ..
moreover have sublisteq (sublist ys N) ys
proof (induct ys arbitrary : N)

case Nil show ?case by simp
next

case Cons then show ?case by (auto simp: sublist-Cons)
qed
ultimately show ?L by simp

qed

end

28 Linear Temporal Logic on Streams

theory Linear-Temporal-Logic-on-Streams
imports Stream Sublist Extended-Nat Infinite-Set

begin

29 Preliminaries

lemma shift-prefix :
assumes xl @− xs = yl @− ys and length xl ≤ length yl
shows prefixeq xl yl
using assms proof(induct xl arbitrary : yl xs ys)

case (Cons x xl yl xs ys)
thus ?case by (cases yl) auto

qed auto

lemma shift-prefix-cases:
assumes xl @− xs = yl @− ys
shows prefixeq xl yl ∨ prefixeq yl xl
using shift-prefix [OF assms]
by (cases length xl ≤ length yl) (metis, metis assms nat-le-linear shift-prefix)

30 Linear temporal logic

abbreviation (input) IMPL (infix impl 60)
where ϕ impl ψ ≡ λ xs. ϕ xs −→ ψ xs

abbreviation (input) OR (infix or 60)
where ϕ or ψ ≡ λ xs. ϕ xs ∨ ψ xs

abbreviation (input) AND (infix aand 60)
where ϕ aand ψ ≡ λ xs. ϕ xs ∧ ψ xs

abbreviation (input) not ϕ ≡ λ xs. ¬ ϕ xs

THEORY “Linear-Temporal-Logic-on-Streams” 672

abbreviation (input) true ≡ λ xs. True

abbreviation (input) false ≡ λ xs. False

lemma impl-not-or : ϕ impl ψ = (not ϕ) or ψ
by blast

lemma not-or : not (ϕ or ψ) = (not ϕ) aand (not ψ)
by blast

lemma not-aand : not (ϕ aand ψ) = (not ϕ) or (not ψ)
by blast

lemma non-not [simp]: not (not ϕ) = ϕ by simp

fun holds where holds P xs ←→ P (shd xs)
fun nxt where nxt ϕ xs = ϕ (stl xs)

definition HLD s = holds (λx . x ∈ s)

abbreviation HLD-nxt (infixr · 65) where
s · P ≡ HLD s aand nxt P

context
notes [[inductive-internals]]

begin

inductive ev for ϕ where
base: ϕ xs =⇒ ev ϕ xs
|
step: ev ϕ (stl xs) =⇒ ev ϕ xs

coinductive alw for ϕ where
alw : [[ϕ xs; alw ϕ (stl xs)]] =⇒ alw ϕ xs

coinductive UNTIL (infix until 60) for ϕ ψ where
base: ψ xs =⇒ (ϕ until ψ) xs
|
step: [[ϕ xs; (ϕ until ψ) (stl xs)]] =⇒ (ϕ until ψ) xs

end

lemma holds-mono:
assumes holds: holds P xs and 0 :

∧
x . P x =⇒ Q x

shows holds Q xs
using assms by auto

THEORY “Linear-Temporal-Logic-on-Streams” 673

lemma holds-aand :
(holds P aand holds Q) steps ←→ holds (λ step. P step ∧ Q step) steps by auto

lemma HLD-iff : HLD s ω ←→ shd ω ∈ s
by (simp add : HLD-def)

lemma HLD-Stream[simp]: HLD X (x ## ω) ←→ x ∈ X
by (simp add : HLD-iff)

lemma nxt-mono:
assumes nxt : nxt ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows nxt ψ xs
using assms by auto

declare ev .intros[intro]
declare alw .cases[elim]

lemma ev-induct-strong [consumes 1 , case-names base step]:
ev ϕ x =⇒ (

∧
xs. ϕ xs =⇒ P xs) =⇒ (

∧
xs. ev ϕ (stl xs) =⇒ ¬ ϕ xs =⇒ P (stl

xs) =⇒ P xs) =⇒ P x
by (induct rule: ev .induct) auto

lemma alw-coinduct [consumes 1 , case-names alw stl]:
X x =⇒ (

∧
x . X x =⇒ ϕ x) =⇒ (

∧
x . X x =⇒ ¬ alw ϕ (stl x) =⇒ X (stl x))

=⇒ alw ϕ x
using alw .coinduct [of X x ϕ] by auto

lemma ev-mono:
assumes ev : ev ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows ev ψ xs
using ev by induct (auto simp: 0)

lemma alw-mono:
assumes alw : alw ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows alw ψ xs
using alw by coinduct (auto simp: 0)

lemma until-monoL:
assumes until : (ϕ1 until ψ) xs and 0 :

∧
xs. ϕ1 xs =⇒ ϕ2 xs

shows (ϕ2 until ψ) xs
using until by coinduct (auto elim: UNTIL.cases simp: 0)

lemma until-monoR:
assumes until : (ϕ until ψ1) xs and 0 :

∧
xs. ψ1 xs =⇒ ψ2 xs

shows (ϕ until ψ2) xs
using until by coinduct (auto elim: UNTIL.cases simp: 0)

lemma until-mono:

THEORY “Linear-Temporal-Logic-on-Streams” 674

assumes until : (ϕ1 until ψ1) xs and
0 :

∧
xs. ϕ1 xs =⇒ ϕ2 xs

∧
xs. ψ1 xs =⇒ ψ2 xs

shows (ϕ2 until ψ2) xs
using until by coinduct (auto elim: UNTIL.cases simp: 0)

lemma until-false: ϕ until false = alw ϕ
proof−
{fix xs assume (ϕ until false) xs hence alw ϕ xs
by coinduct (auto elim: UNTIL.cases)
}
moreover
{fix xs assume alw ϕ xs hence (ϕ until false) xs
by coinduct auto
}
ultimately show ?thesis by blast

qed

lemma ev-nxt : ev ϕ = (ϕ or nxt (ev ϕ))
by (rule ext) (metis ev .simps nxt .simps)

lemma alw-nxt : alw ϕ = (ϕ aand nxt (alw ϕ))
by (rule ext) (metis alw .simps nxt .simps)

lemma ev-ev [simp]: ev (ev ϕ) = ev ϕ
proof−
{fix xs
assume ev (ev ϕ) xs hence ev ϕ xs
by induct auto
}
thus ?thesis by auto

qed

lemma alw-alw [simp]: alw (alw ϕ) = alw ϕ
proof−
{fix xs
assume alw ϕ xs hence alw (alw ϕ) xs
by coinduct auto
}
thus ?thesis by auto

qed

lemma ev-shift :
assumes ev ϕ xs
shows ev ϕ (xl @− xs)
using assms by (induct xl) auto

lemma ev-imp-shift :
assumes ev ϕ xs shows ∃ xl xs2 . xs = xl @− xs2 ∧ ϕ xs2
using assms by induct (metis shift .simps(1), metis shift .simps(2) stream.collapse)+

THEORY “Linear-Temporal-Logic-on-Streams” 675

lemma alw-ev-shift : alw ϕ xs1 =⇒ ev (alw ϕ) (xl @− xs1)
by (auto intro: ev-shift)

lemma alw-shift :
assumes alw ϕ (xl @− xs)
shows alw ϕ xs
using assms by (induct xl) auto

lemma ev-ex-nxt :
assumes ev ϕ xs
shows ∃ n. (nxt ˆˆ n) ϕ xs
using assms proof induct

case (base xs) thus ?case by (intro exI [of - 0]) auto
next

case (step xs)
then obtain n where (nxt ˆˆ n) ϕ (stl xs) by blast
thus ?case by (intro exI [of - Suc n]) (metis funpow .simps(2) nxt .simps o-def)

qed

lemma alw-sdrop:
assumes alw ϕ xs shows alw ϕ (sdrop n xs)
by (metis alw-shift assms stake-sdrop)

lemma nxt-sdrop: (nxt ˆˆ n) ϕ xs ←→ ϕ (sdrop n xs)
by (induct n arbitrary : xs) auto

definition wait ϕ xs ≡ LEAST n. (nxt ˆˆ n) ϕ xs

lemma nxt-wait :
assumes ev ϕ xs shows (nxt ˆˆ (wait ϕ xs)) ϕ xs
unfolding wait-def using ev-ex-nxt [OF assms] by(rule LeastI-ex)

lemma nxt-wait-least :
assumes ev : ev ϕ xs and nxt : (nxt ˆˆ n) ϕ xs shows wait ϕ xs ≤ n
unfolding wait-def using ev-ex-nxt [OF ev] by (metis Least-le nxt)

lemma sdrop-wait :
assumes ev ϕ xs shows ϕ (sdrop (wait ϕ xs) xs)
using nxt-wait [OF assms] unfolding nxt-sdrop .

lemma sdrop-wait-least :
assumes ev : ev ϕ xs and nxt : ϕ (sdrop n xs) shows wait ϕ xs ≤ n
using assms nxt-wait-least unfolding nxt-sdrop by auto

lemma nxt-ev : (nxt ˆˆ n) ϕ xs =⇒ ev ϕ xs
by (induct n arbitrary : xs) auto

lemma not-ev : not (ev ϕ) = alw (not ϕ)

THEORY “Linear-Temporal-Logic-on-Streams” 676

proof(rule ext , safe)
fix xs assume not (ev ϕ) xs thus alw (not ϕ) xs
by (coinduct) auto

next
fix xs assume ev ϕ xs and alw (not ϕ) xs thus False
by (induct) auto

qed

lemma not-alw : not (alw ϕ) = ev (not ϕ)
proof−

have not (alw ϕ) = not (alw (not (not ϕ))) by simp
also have ... = ev (not ϕ) unfolding not-ev [symmetric] by simp
finally show ?thesis .

qed

lemma not-ev-not [simp]: not (ev (not ϕ)) = alw ϕ
unfolding not-ev by simp

lemma not-alw-not [simp]: not (alw (not ϕ)) = ev ϕ
unfolding not-alw by simp

lemma alw-ev-sdrop:
assumes alw (ev ϕ) (sdrop m xs)
shows alw (ev ϕ) xs
using assms
by coinduct (metis alw-nxt ev-shift funpow-swap1 nxt .simps nxt-sdrop stake-sdrop)

lemma ev-alw-imp-alw-ev :
assumes ev (alw ϕ) xs shows alw (ev ϕ) xs
using assms by induct (metis (full-types) alw-mono ev .base, metis alw alw-nxt
ev .step)

lemma alw-aand : alw (ϕ aand ψ) = alw ϕ aand alw ψ
proof−
{fix xs assume alw (ϕ aand ψ) xs hence (alw ϕ aand alw ψ) xs
by (auto elim: alw-mono)
}
moreover
{fix xs assume (alw ϕ aand alw ψ) xs hence alw (ϕ aand ψ) xs
by coinduct auto
}
ultimately show ?thesis by blast

qed

lemma ev-or : ev (ϕ or ψ) = ev ϕ or ev ψ
proof−
{fix xs assume (ev ϕ or ev ψ) xs hence ev (ϕ or ψ) xs
by (auto elim: ev-mono)
}

THEORY “Linear-Temporal-Logic-on-Streams” 677

moreover
{fix xs assume ev (ϕ or ψ) xs hence (ev ϕ or ev ψ) xs
by induct auto
}
ultimately show ?thesis by blast

qed

lemma ev-alw-aand :
assumes ϕ: ev (alw ϕ) xs and ψ: ev (alw ψ) xs
shows ev (alw (ϕ aand ψ)) xs
proof−

obtain xl xs1 where xs1 : xs = xl @− xs1 and ϕϕ: alw ϕ xs1
using ϕ by (metis ev-imp-shift)
moreover obtain yl ys1 where xs2 : xs = yl @− ys1 and ψψ: alw ψ ys1
using ψ by (metis ev-imp-shift)
ultimately have 0 : xl @− xs1 = yl @− ys1 by auto
hence prefixeq xl yl ∨ prefixeq yl xl using shift-prefix-cases by auto
thus ?thesis proof

assume prefixeq xl yl
then obtain yl1 where yl : yl = xl @ yl1 by (elim prefixeqE)
have xs1 ′: xs1 = yl1 @− ys1 using 0 unfolding yl by simp
have alw ϕ ys1 using ϕϕ unfolding xs1 ′ by (metis alw-shift)
hence alw (ϕ aand ψ) ys1 using ψψ unfolding alw-aand by auto
thus ?thesis unfolding xs2 by (auto intro: alw-ev-shift)

next
assume prefixeq yl xl
then obtain xl1 where xl : xl = yl @ xl1 by (elim prefixeqE)
have ys1 ′: ys1 = xl1 @− xs1 using 0 unfolding xl by simp
have alw ψ xs1 using ψψ unfolding ys1 ′ by (metis alw-shift)
hence alw (ϕ aand ψ) xs1 using ϕϕ unfolding alw-aand by auto
thus ?thesis unfolding xs1 by (auto intro: alw-ev-shift)

qed
qed

lemma ev-alw-alw-impl :
assumes ev (alw ϕ) xs and alw (alw ϕ impl ev ψ) xs
shows ev ψ xs
using assms by induct auto

lemma ev-alw-stl [simp]: ev (alw ϕ) (stl x) ←→ ev (alw ϕ) x
by (metis (full-types) alw-nxt ev-nxt nxt .simps)

lemma alw-alw-impl-ev :
alw (alw ϕ impl ev ψ) = (ev (alw ϕ) impl alw (ev ψ)) (is ?A = ?B)
proof−
{fix xs assume ?A xs ∧ ev (alw ϕ) xs hence alw (ev ψ) xs

by coinduct (auto elim: ev-alw-alw-impl)
}
moreover

THEORY “Linear-Temporal-Logic-on-Streams” 678

{fix xs assume ?B xs hence ?A xs
by coinduct auto
}
ultimately show ?thesis by blast

qed

lemma ev-alw-impl :
assumes ev ϕ xs and alw (ϕ impl ψ) xs shows ev ψ xs
using assms by induct auto

lemma ev-alw-impl-ev :
assumes ev ϕ xs and alw (ϕ impl ev ψ) xs shows ev ψ xs
using ev-alw-impl [OF assms] by simp

lemma alw-mp:
assumes alw ϕ xs and alw (ϕ impl ψ) xs
shows alw ψ xs
proof−
{assume alw ϕ xs ∧ alw (ϕ impl ψ) xs hence ?thesis
by coinduct auto
}
thus ?thesis using assms by auto

qed

lemma all-imp-alw :
assumes

∧
xs. ϕ xs shows alw ϕ xs

proof−
{assume ∀ xs. ϕ xs
hence ?thesis by coinduct auto
}
thus ?thesis using assms by auto

qed

lemma alw-impl-ev-alw :
assumes alw (ϕ impl ev ψ) xs
shows alw (ev ϕ impl ev ψ) xs
using assms by coinduct (auto dest : ev-alw-impl)

lemma ev-holds-sset :
ev (holds P) xs ←→ (∃ x ∈ sset xs. P x) (is ?L ←→ ?R)
proof safe
assume ?L thus ?R by induct (metis holds.simps stream.set-sel(1), metis stl-sset)

next
fix x assume x ∈ sset xs P x
thus ?L by (induct rule: sset-induct) (simp-all add : ev .base ev .step)

qed

lemma alw-invar :

THEORY “Linear-Temporal-Logic-on-Streams” 679

assumes ϕ xs and alw (ϕ impl nxt ϕ) xs
shows alw ϕ xs
proof−
{assume ϕ xs ∧ alw (ϕ impl nxt ϕ) xs hence ?thesis
by coinduct auto
}
thus ?thesis using assms by auto

qed

lemma variance:
assumes 1 : ϕ xs and 2 : alw (ϕ impl (ψ or nxt ϕ)) xs
shows (alw ϕ or ev ψ) xs
proof−
{assume ¬ ev ψ xs hence alw (not ψ) xs unfolding not-ev [symmetric] .
moreover have alw (not ψ impl (ϕ impl nxt ϕ)) xs
using 2 by coinduct auto
ultimately have alw (ϕ impl nxt ϕ) xs by(auto dest : alw-mp)
with 1 have alw ϕ xs by(rule alw-invar)
}
thus ?thesis by blast

qed

lemma ev-alw-imp-nxt :
assumes e: ev ϕ xs and a: alw (ϕ impl (nxt ϕ)) xs
shows ev (alw ϕ) xs
proof−

obtain xl xs1 where xs: xs = xl @− xs1 and ϕ: ϕ xs1
using e by (metis ev-imp-shift)
have ϕ xs1 ∧ alw (ϕ impl (nxt ϕ)) xs1 using a ϕ unfolding xs by (metis

alw-shift)
hence alw ϕ xs1 by(coinduct xs1 rule: alw .coinduct) auto
thus ?thesis unfolding xs by (auto intro: alw-ev-shift)

qed

inductive ev-at :: (′a stream ⇒ bool) ⇒ nat ⇒ ′a stream ⇒ bool for P :: ′a
stream ⇒ bool where

base: P ω =⇒ ev-at P 0 ω
| step:¬ P ω =⇒ ev-at P n (stl ω) =⇒ ev-at P (Suc n) ω

inductive-simps ev-at-0 [simp]: ev-at P 0 ω
inductive-simps ev-at-Suc[simp]: ev-at P (Suc n) ω

lemma ev-at-imp-snth: ev-at P n ω =⇒ P (sdrop n ω)
by (induction n arbitrary : ω) auto

lemma ev-at-HLD-imp-snth: ev-at (HLD X) n ω =⇒ ω !! n ∈ X
by (auto dest !: ev-at-imp-snth simp: HLD-iff)

THEORY “Linear-Temporal-Logic-on-Streams” 680

lemma ev-at-HLD-single-imp-snth: ev-at (HLD {x}) n ω =⇒ ω !! n = x
by (drule ev-at-HLD-imp-snth) simp

lemma ev-at-unique: ev-at P n ω =⇒ ev-at P m ω =⇒ n = m
proof (induction arbitrary : m rule: ev-at .induct)

case (base ω) then show ?case
by (simp add : ev-at .simps[of - - ω])

next
case (step ω n) from step.prems step.hyps step.IH [of m − 1] show ?case

by (auto simp add : ev-at .simps[of - - ω])
qed

lemma ev-iff-ev-at : ev P ω ←→ (∃n. ev-at P n ω)
proof

assume ev P ω then show ∃n. ev-at P n ω
by (induction rule: ev-induct-strong) (auto intro: ev-at .intros)

next
assume ∃n. ev-at P n ω
then obtain n where ev-at P n ω

by auto
then show ev P ω

by induction auto
qed

lemma ev-at-shift : ev-at (HLD X) i (stake (Suc i) ω @− ω ′ :: ′s stream) ←→
ev-at (HLD X) i ω

by (induction i arbitrary : ω) (auto simp: HLD-iff)

lemma ev-iff-ev-at-unqiue: ev P ω ←→ (∃ !n. ev-at P n ω)
by (auto intro: ev-at-unique simp: ev-iff-ev-at)

lemma alw-HLD-iff-streams: alw (HLD X) ω ←→ ω ∈ streams X
proof

assume alw (HLD X) ω then show ω ∈ streams X
proof (coinduction arbitrary : ω)

case (streams ω) then show ?case by (cases ω) auto
qed

next
assume ω ∈ streams X then show alw (HLD X) ω
proof (coinduction arbitrary : ω)

case (alw ω) then show ?case by (cases ω) auto
qed

qed

lemma not-HLD : not (HLD X) = HLD (− X)
by (auto simp: HLD-iff)

lemma not-alw-iff : ¬ (alw P ω) ←→ ev (not P) ω
using not-alw [of P] by (simp add : fun-eq-iff)

THEORY “Linear-Temporal-Logic-on-Streams” 681

lemma not-ev-iff : ¬ (ev P ω) ←→ alw (not P) ω
using not-alw-iff [of not P ω, symmetric] by simp

lemma ev-Stream: ev P (x ## s) ←→ P (x ## s) ∨ ev P s
by (auto elim: ev .cases)

lemma alw-ev-imp-ev-alw :
assumes alw (ev P) ω shows ev (P aand alw (ev P)) ω

proof −
have ev P ω using assms by auto
from this assms show ?thesis

by induct auto
qed

lemma ev-False: ev (λx . False) ω ←→ False
proof

assume ev (λx . False) ω then show False
by induct auto

qed auto

lemma alw-False: alw (λx . False) ω ←→ False
by auto

lemma ev-iff-sdrop: ev P ω ←→ (∃m. P (sdrop m ω))
proof safe

assume ev P ω then show ∃m. P (sdrop m ω)
by (induct rule: ev-induct-strong) (auto intro: exI [of - 0] exI [of - Suc n for n])

next
fix m assume P (sdrop m ω) then show ev P ω

by (induct m arbitrary : ω) auto
qed

lemma alw-iff-sdrop: alw P ω ←→ (∀m. P (sdrop m ω))
proof safe

fix m assume alw P ω then show P (sdrop m ω)
by (induct m arbitrary : ω) auto

next
assume ∀m. P (sdrop m ω) then show alw P ω

by (coinduction arbitrary : ω) (auto elim: allE [of - 0] allE [of - Suc n for n])
qed

lemma infinite-iff-alw-ev : infinite {m. P (sdrop m ω)} ←→ alw (ev P) ω
unfolding infinite-nat-iff-unbounded-le alw-iff-sdrop ev-iff-sdrop
by simp (metis le-Suc-ex le-add1)

lemma alw-inv :
assumes stl :

∧
s. f (stl s) = stl (f s)

shows alw P (f s) ←→ alw (λx . P (f x)) s

THEORY “Linear-Temporal-Logic-on-Streams” 682

proof
assume alw P (f s) then show alw (λx . P (f x)) s

by (coinduction arbitrary : s rule: alw-coinduct)
(auto simp: stl)

next
assume alw (λx . P (f x)) s then show alw P (f s)

by (coinduction arbitrary : s rule: alw-coinduct) (auto simp: stl [symmetric])
qed

lemma ev-inv :
assumes stl :

∧
s. f (stl s) = stl (f s)

shows ev P (f s) ←→ ev (λx . P (f x)) s
proof

assume ev P (f s) then show ev (λx . P (f x)) s
by (induction f s arbitrary : s) (auto simp: stl)

next
assume ev (λx . P (f x)) s then show ev P (f s)

by induction (auto simp: stl [symmetric])
qed

lemma alw-smap: alw P (smap f s) ←→ alw (λx . P (smap f x)) s
by (rule alw-inv) simp

lemma ev-smap: ev P (smap f s) ←→ ev (λx . P (smap f x)) s
by (rule ev-inv) simp

lemma alw-cong :
assumes P : alw P ω and eq :

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω

shows alw Q1 ω ←→ alw Q2 ω
proof −

from eq have (alw P aand Q1) = (alw P aand Q2) by auto
then have alw (alw P aand Q1) ω = alw (alw P aand Q2) ω by auto
with P show alw Q1 ω ←→ alw Q2 ω

by (simp add : alw-aand)
qed

lemma ev-cong :
assumes P : alw P ω and eq :

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω

shows ev Q1 ω ←→ ev Q2 ω
proof −

from P have alw (λxs. Q1 xs −→ Q2 xs) ω by (rule alw-mono) (simp add : eq)
moreover from P have alw (λxs. Q2 xs −→ Q1 xs) ω by (rule alw-mono)

(simp add : eq)
moreover note ev-alw-impl [of Q1 ω Q2] ev-alw-impl [of Q2 ω Q1]
ultimately show ev Q1 ω ←→ ev Q2 ω

by auto
qed

lemma alwD : alw P x =⇒ P x

THEORY “Linear-Temporal-Logic-on-Streams” 683

by auto

lemma alw-alwD : alw P ω =⇒ alw (alw P) ω
by simp

lemma alw-ev-stl : alw (ev P) (stl ω) ←→ alw (ev P) ω
by (auto intro: alw .intros)

lemma holds-Stream: holds P (x ## s) ←→ P x
by simp

lemma holds-eq1 [simp]: holds (op = x) = HLD {x}
by rule (auto simp: HLD-iff)

lemma holds-eq2 [simp]: holds (λy . y = x) = HLD {x}
by rule (auto simp: HLD-iff)

lemma not-holds-eq [simp]: holds (− op = x) = not (HLD {x})
by rule (auto simp: HLD-iff)

Strong until

context
notes [[inductive-internals]]

begin

inductive suntil (infix suntil 60) for ϕ ψ where
base: ψ ω =⇒ (ϕ suntil ψ) ω
| step: ϕ ω =⇒ (ϕ suntil ψ) (stl ω) =⇒ (ϕ suntil ψ) ω

inductive-simps suntil-Stream: (ϕ suntil ψ) (x ## s)

end

lemma suntil-induct-strong [consumes 1 , case-names base step]:
(ϕ suntil ψ) x =⇒

(
∧
ω. ψ ω =⇒ P ω) =⇒

(
∧
ω. ϕ ω =⇒ ¬ ψ ω =⇒ (ϕ suntil ψ) (stl ω) =⇒ P (stl ω) =⇒ P ω) =⇒ P x

using suntil .induct [of ϕ ψ x P] by blast

lemma ev-suntil : (ϕ suntil ψ) ω =⇒ ev ψ ω
by (induct rule: suntil .induct) auto

lemma suntil-inv :
assumes stl :

∧
s. f (stl s) = stl (f s)

shows (P suntil Q) (f s) ←→ ((λx . P (f x)) suntil (λx . Q (f x))) s
proof

assume (P suntil Q) (f s) then show ((λx . P (f x)) suntil (λx . Q (f x))) s
by (induction f s arbitrary : s) (auto simp: stl intro: suntil .intros)

next

THEORY “Linear-Temporal-Logic-on-Streams” 684

assume ((λx . P (f x)) suntil (λx . Q (f x))) s then show (P suntil Q) (f s)
by induction (auto simp: stl [symmetric] intro: suntil .intros)

qed

lemma suntil-smap: (P suntil Q) (smap f s) ←→ ((λx . P (smap f x)) suntil (λx .
Q (smap f x))) s

by (rule suntil-inv) simp

lemma hld-smap: HLD x (smap f s) = holds (λy . f y ∈ x) s
by (simp add : HLD-def)

lemma suntil-mono:
assumes eq :

∧
ω. P ω =⇒ Q1 ω =⇒ Q2 ω

∧
ω. P ω =⇒ R1 ω =⇒ R2 ω

assumes ∗: (Q1 suntil R1) ω alw P ω shows (Q2 suntil R2) ω
using ∗ by induct (auto intro: eq suntil .intros)

lemma suntil-cong :
alw P ω =⇒ (

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω) =⇒ (

∧
ω. P ω =⇒ R1 ω ←→ R2

ω) =⇒
(Q1 suntil R1) ω ←→ (Q2 suntil R2) ω

using suntil-mono[of P Q1 Q2 R1 R2 ω] suntil-mono[of P Q2 Q1 R2 R1 ω] by
auto

lemma ev-suntil-iff : ev (P suntil Q) ω ←→ ev Q ω
proof

assume ev (P suntil Q) ω then show ev Q ω
by induct (auto dest : ev-suntil)

next
assume ev Q ω then show ev (P suntil Q) ω

by induct (auto intro: suntil .intros)
qed

lemma true-suntil : ((λ-. True) suntil P) = ev P
by (simp add : suntil-def ev-def)

lemma suntil-lfp: (ϕ suntil ψ) = lfp (λP s. ψ s ∨ (ϕ s ∧ P (stl s)))
by (simp add : suntil-def)

lemma sfilter-P [simp]: P (shd s) =⇒ sfilter P s = shd s ## sfilter P (stl s)
using sfilter-Stream[of P shd s stl s] by simp

lemma sfilter-not-P [simp]: ¬ P (shd s) =⇒ sfilter P s = sfilter P (stl s)
using sfilter-Stream[of P shd s stl s] by simp

lemma sfilter-eq :
assumes ev (holds P) s
shows sfilter P s = x ## s ′←→

P x ∧ (not (holds P) suntil (HLD {x} aand nxt (λs. sfilter P s = s ′))) s
using assms

THEORY “Linear-Temporal-Logic-on-Streams” 685

by (induct rule: ev-induct-strong)
(auto simp add : HLD-iff intro: suntil .intros elim: suntil .cases)

lemma sfilter-streams:
alw (ev (holds P)) ω =⇒ ω ∈ streams A =⇒ sfilter P ω ∈ streams {x∈A. P x}

proof (coinduction arbitrary : ω)
case (streams ω)
then have ev (holds P) ω by blast
from this streams show ?case

by (induct rule: ev-induct-strong) (auto elim: streamsE)
qed

lemma alw-sfilter :
assumes ∗: alw (ev (holds P)) s
shows alw Q (sfilter P s) ←→ alw (λx . Q (sfilter P x)) s

proof
assume alw Q (sfilter P s) with ∗ show alw (λx . Q (sfilter P x)) s
proof (coinduction arbitrary : s rule: alw-coinduct)

case (stl s)
then have ev (holds P) s

by blast
from this stl show ?case

by (induct rule: ev-induct-strong) auto
qed auto

next
assume alw (λx . Q (sfilter P x)) s with ∗ show alw Q (sfilter P s)
proof (coinduction arbitrary : s rule: alw-coinduct)

case (stl s)
then have ev (holds P) s

by blast
from this stl show ?case

by (induct rule: ev-induct-strong) auto
qed auto

qed

lemma ev-sfilter :
assumes ∗: alw (ev (holds P)) s
shows ev Q (sfilter P s) ←→ ev (λx . Q (sfilter P x)) s

proof
assume ev Q (sfilter P s) from this ∗ show ev (λx . Q (sfilter P x)) s
proof (induction sfilter P s arbitrary : s rule: ev-induct-strong)

case (step s)
then have ev (holds P) s

by blast
from this step show ?case

by (induct rule: ev-induct-strong) auto
qed auto

next
assume ev (λx . Q (sfilter P x)) s then show ev Q (sfilter P s)

THEORY “Linear-Temporal-Logic-on-Streams” 686

proof (induction rule: ev-induct-strong)
case (step s) then show ?case

by (cases P (shd s)) auto
qed auto

qed

lemma holds-sfilter :
assumes ev (holds Q) s shows holds P (sfilter Q s) ←→ (not (holds Q) suntil

(holds (Q aand P))) s
proof

assume holds P (sfilter Q s) with assms show (not (holds Q) suntil (holds (Q
aand P))) s

by (induct rule: ev-induct-strong) (auto intro: suntil .intros)
next

assume (not (holds Q) suntil (holds (Q aand P))) s then show holds P (sfilter
Q s)

by induct auto
qed

lemma suntil-aand-nxt :
(ϕ suntil (ϕ aand nxt ψ)) ω ←→ (ϕ aand nxt (ϕ suntil ψ)) ω

proof
assume (ϕ suntil (ϕ aand nxt ψ)) ω then show (ϕ aand nxt (ϕ suntil ψ)) ω

by induction (auto intro: suntil .intros)
next

assume (ϕ aand nxt (ϕ suntil ψ)) ω
then have (ϕ suntil ψ) (stl ω) ϕ ω

by auto
then show (ϕ suntil (ϕ aand nxt ψ)) ω

by (induction stl ω arbitrary : ω)
(auto elim: suntil .cases intro: suntil .intros)

qed

lemma alw-sconst : alw P (sconst x) ←→ P (sconst x)
proof

assume P (sconst x) then show alw P (sconst x)
by coinduction auto

qed auto

lemma ev-sconst : ev P (sconst x) ←→ P (sconst x)
proof

assume ev P (sconst x) then show P (sconst x)
by (induction sconst x) auto

qed auto

lemma suntil-sconst : (ϕ suntil ψ) (sconst x) ←→ ψ (sconst x)
proof

assume (ϕ suntil ψ) (sconst x) then show ψ (sconst x)
by (induction sconst x) auto

THEORY “Stream-Space” 687

qed (auto intro: suntil .intros)

lemma hld-smap ′: HLD x (smap f s) = HLD (f −‘ x) s
by (simp add : HLD-def)

end

theory Stream-Space
imports

Infinite-Product-Measure
∼∼/src/HOL/Library/Stream
∼∼/src/HOL/Library/Linear-Temporal-Logic-on-Streams

begin

lemma stream-eq-Stream-iff : s = x ## t ←→ (shd s = x ∧ stl s = t)
by (cases s) simp

lemma Stream-snth: (x ## s) !! n = (case n of 0 ⇒ x | Suc n ⇒ s !! n)
by (cases n) simp-all

definition to-stream :: (nat ⇒ ′a) ⇒ ′a stream where
to-stream X = smap X nats

lemma to-stream-nat-case: to-stream (case-nat x X) = x ## to-stream X
unfolding to-stream-def
by (subst siterate.ctr) (simp add : smap-siterate[symmetric] stream.map-comp

comp-def)

lemma to-stream-in-streams: to-stream X ∈ streams S ←→ (∀n. X n ∈ S)
by (simp add : to-stream-def streams-iff-snth)

definition stream-space :: ′a measure ⇒ ′a stream measure where
stream-space M =
distr (ΠM i∈UNIV . M) (vimage-algebra (streams (space M)) snth (ΠM i∈UNIV .

M)) to-stream

lemma space-stream-space: space (stream-space M) = streams (space M)
by (simp add : stream-space-def)

lemma streams-stream-space[intro]: streams (space M) ∈ sets (stream-space M)
using sets.top[of stream-space M] by (simp add : space-stream-space)

lemma stream-space-Stream:
x ## ω ∈ space (stream-space M) ←→ x ∈ space M ∧ ω ∈ space (stream-space

M)
by (simp add : space-stream-space streams-Stream)

lemma stream-space-eq-distr : stream-space M = distr (ΠM i∈UNIV . M) (stream-space

THEORY “Stream-Space” 688

M) to-stream
unfolding stream-space-def by (rule distr-cong) auto

lemma sets-stream-space-cong [measurable-cong]:
sets M = sets N =⇒ sets (stream-space M) = sets (stream-space N)
using sets-eq-imp-space-eq [of M N] by (simp add : stream-space-def vimage-algebra-def

cong : sets-PiM-cong)

lemma measurable-snth-PiM : (λω n. ω !! n) ∈ measurable (stream-space M) (ΠM

i∈UNIV . M)
by (auto intro!: measurable-vimage-algebra1

simp: space-PiM streams-iff-sset sset-range image-subset-iff stream-space-def)

lemma measurable-snth[measurable]: (λω. ω !! n) ∈ measurable (stream-space M)
M
using measurable-snth-PiM measurable-component-singleton by (rule measurable-compose)

simp

lemma measurable-shd [measurable]: shd ∈ measurable (stream-space M) M
using measurable-snth[of 0] by simp

lemma measurable-stream-space2 :
assumes f-snth:

∧
n. (λx . f x !! n) ∈ measurable N M

shows f ∈ measurable N (stream-space M)
unfolding stream-space-def measurable-distr-eq2

proof (rule measurable-vimage-algebra2)
show f ∈ space N → streams (space M)

using f-snth[THEN measurable-space] by (auto simp add : streams-iff-sset
sset-range)

show (λx . op !! (f x)) ∈ measurable N (PiM UNIV (λi . M))
proof (rule measurable-PiM-single ′)

show (λx . op !! (f x)) ∈ space N → UNIV →E space M
using f-snth[THEN measurable-space] by auto

qed (rule f-snth)
qed

lemma measurable-stream-coinduct [consumes 1 , case-names shd stl , coinduct set :
measurable]:

assumes F f
assumes h:

∧
f . F f =⇒ (λx . shd (f x)) ∈ measurable N M

assumes t :
∧

f . F f =⇒ F (λx . stl (f x))
shows f ∈ measurable N (stream-space M)

proof (rule measurable-stream-space2)
fix n show (λx . f x !! n) ∈ measurable N M

using 〈F f 〉 by (induction n arbitrary : f) (auto intro: h t)
qed

lemma measurable-sdrop[measurable]: sdrop n ∈ measurable (stream-space M)
(stream-space M)

THEORY “Stream-Space” 689

by (rule measurable-stream-space2) (simp add : sdrop-snth)

lemma measurable-stl [measurable]: (λω. stl ω) ∈ measurable (stream-space M)
(stream-space M)
by (rule measurable-stream-space2) (simp del : snth.simps add : snth.simps[symmetric])

lemma measurable-to-stream[measurable]: to-stream ∈ measurable (ΠM i∈UNIV .
M) (stream-space M)

by (rule measurable-stream-space2) (simp add : to-stream-def)

lemma measurable-Stream[measurable (raw)]:
assumes f [measurable]: f ∈ measurable N M
assumes g [measurable]: g ∈ measurable N (stream-space M)
shows (λx . f x ## g x) ∈ measurable N (stream-space M)
by (rule measurable-stream-space2) (simp add : Stream-snth)

lemma measurable-smap[measurable]:
assumes X [measurable]: X ∈ measurable N M
shows smap X ∈ measurable (stream-space N) (stream-space M)
by (rule measurable-stream-space2) simp

lemma measurable-stake[measurable]:
stake i ∈ measurable (stream-space (count-space UNIV)) (count-space (UNIV ::
′a::countable list set))

by (induct i) auto

lemma measurable-shift [measurable]:
assumes f : f ∈ measurable N (stream-space M)
assumes [measurable]: g ∈ measurable N (stream-space M)
shows (λx . stake n (f x) @− g x) ∈ measurable N (stream-space M)
using f by (induction n arbitrary : f) simp-all

lemma measurable-ev-at [measurable]:
assumes [measurable]: Measurable.pred (stream-space M) P
shows Measurable.pred (stream-space M) (ev-at P n)
by (induction n) auto

lemma measurable-alw [measurable]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (alw

P)
unfolding alw-def
by (coinduction rule: measurable-gfp-coinduct) (auto simp: inf-continuous-def)

lemma measurable-ev [measurable]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (ev

P)
unfolding ev-def
by (coinduction rule: measurable-lfp-coinduct) (auto simp: sup-continuous-def)

THEORY “Stream-Space” 690

lemma measurable-until :
assumes [measurable]: Measurable.pred (stream-space M) ϕ Measurable.pred

(stream-space M) ψ
shows Measurable.pred (stream-space M) (ϕ until ψ)
unfolding UNTIL-def
by (coinduction rule: measurable-gfp-coinduct) (simp-all add : inf-continuous-def

fun-eq-iff)

lemma measurable-holds [measurable]: Measurable.pred M P =⇒ Measurable.pred
(stream-space M) (holds P)

unfolding holds.simps[abs-def]
by (rule measurable-compose[OF measurable-shd]) simp

lemma measurable-hld [measurable]: assumes [measurable]: t ∈ sets M shows
Measurable.pred (stream-space M) (HLD t)

unfolding HLD-def by measurable

lemma measurable-nxt [measurable (raw)]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (nxt

P)
unfolding nxt .simps[abs-def] by simp

lemma measurable-suntil [measurable]:
assumes [measurable]: Measurable.pred (stream-space M) Q Measurable.pred

(stream-space M) P
shows Measurable.pred (stream-space M) (Q suntil P)
unfolding suntil-def by (coinduction rule: measurable-lfp-coinduct) (auto simp:

sup-continuous-def)

lemma measurable-szip:
(λ(ω1 , ω2). szip ω1 ω2) ∈ measurable (stream-space M

⊗
M stream-space N)

(stream-space (M
⊗

M N))
proof (rule measurable-stream-space2)

fix n
have (λx . (case x of (ω1 , ω2) ⇒ szip ω1 ω2) !! n) = (λ(ω1 , ω2). (ω1 !! n, ω2

!! n))
by auto

also have . . . ∈ measurable (stream-space M
⊗

M stream-space N) (M
⊗

M

N)
by measurable

finally show (λx . (case x of (ω1 , ω2) ⇒ szip ω1 ω2) !! n) ∈ measurable
(stream-space M

⊗
M stream-space N) (M

⊗
M N)

.
qed

lemma (in prob-space) prob-space-stream-space: prob-space (stream-space M)
proof −

interpret product-prob-space λ-. M UNIV ..
show ?thesis

THEORY “Stream-Space” 691

by (subst stream-space-eq-distr) (auto intro!: P .prob-space-distr)
qed

lemma (in prob-space) nn-integral-stream-space:
assumes [measurable]: f ∈ borel-measurable (stream-space M)
shows (

∫
+X . f X ∂stream-space M) = (

∫
+x . (

∫
+X . f (x ## X) ∂stream-space

M) ∂M)
proof −

interpret S : sequence-space M ..
interpret P : pair-sigma-finite M ΠM i ::nat∈UNIV . M ..

have (
∫

+X . f X ∂stream-space M) = (
∫

+X . f (to-stream X) ∂S .S)
by (subst stream-space-eq-distr) (simp add : nn-integral-distr)

also have . . . = (
∫

+X . f (to-stream ((λ(s, ω). case-nat s ω) X)) ∂(M
⊗

M

S .S))
by (subst S .PiM-iter [symmetric]) (simp add : nn-integral-distr)

also have . . . = (
∫

+x .
∫

+X . f (to-stream ((λ(s, ω). case-nat s ω) (x , X)))
∂S .S ∂M)

by (subst S .nn-integral-fst) simp-all
also have . . . = (

∫
+x .

∫
+X . f (x ## to-stream X) ∂S .S ∂M)

by (auto intro!: nn-integral-cong simp: to-stream-nat-case)
also have . . . = (

∫
+x .

∫
+X . f (x ## X) ∂stream-space M ∂M)

by (subst stream-space-eq-distr)
(simp add : nn-integral-distr cong : nn-integral-cong)

finally show ?thesis .
qed

lemma (in prob-space) emeasure-stream-space:
assumes X [measurable]: X ∈ sets (stream-space M)
shows emeasure (stream-space M) X = (

∫
+t . emeasure (stream-space M) {x∈space

(stream-space M). t ## x ∈ X } ∂M)
proof −

have eq :
∧

x xs. xs ∈ space (stream-space M) =⇒ x ∈ space M =⇒
indicator X (x ## xs) = indicator {xs∈space (stream-space M). x ## xs ∈

X } xs
by (auto split : split-indicator)

show ?thesis
using nn-integral-stream-space[of indicator X]
apply (auto intro!: nn-integral-cong)
apply (subst nn-integral-cong)
apply (rule eq)
apply simp-all
done

qed

lemma (in prob-space) prob-stream-space:
assumes P [measurable]: {x∈space (stream-space M). P x} ∈ sets (stream-space

M)
shows P(x in stream-space M . P x) = (

∫
+t . P(x in stream-space M . P (t ##

THEORY “Stream-Space” 692

x)) ∂M)
proof −

interpret S : prob-space stream-space M
by (rule prob-space-stream-space)

show ?thesis
unfolding S .emeasure-eq-measure[symmetric]

by (subst emeasure-stream-space) (auto simp: stream-space-Stream intro!: nn-integral-cong)
qed

lemma (in prob-space) AE-stream-space:
assumes [measurable]: Measurable.pred (stream-space M) P
shows (AE X in stream-space M . P X) = (AE x in M . AE X in stream-space

M . P (x ## X))
proof −

interpret stream: prob-space stream-space M
by (rule prob-space-stream-space)

have eq :
∧

x X . indicator {x . ¬ P x} (x ## X) = indicator {X . ¬ P (x ##
X)} X

by (auto split : split-indicator)
show ?thesis

apply (subst AE-iff-nn-integral , simp)
apply (subst nn-integral-stream-space, simp)
apply (subst eq)
apply (subst nn-integral-0-iff-AE , simp)
apply (simp add : AE-iff-nn-integral [symmetric])
done

qed

lemma (in prob-space) AE-stream-all :
assumes [measurable]: Measurable.pred M P and P : AE x in M . P x
shows AE x in stream-space M . stream-all P x

proof −
{ fix n have AE x in stream-space M . P (x !! n)

proof (induct n)
case 0 with P show ?case

by (subst AE-stream-space) (auto elim!: eventually-mono)
next

case (Suc n) then show ?case
by (subst AE-stream-space) auto

qed }
then show ?thesis

unfolding stream-all-def by (simp add : AE-all-countable)
qed

lemma streams-sets:
assumes X [measurable]: X ∈ sets M shows streams X ∈ sets (stream-space M)

proof −
have streams X = {x∈space (stream-space M). x ∈ streams X }

THEORY “Stream-Space” 693

using streams-mono[OF - sets.sets-into-space[OF X]] by (auto simp: space-stream-space)
also have . . . = {x∈space (stream-space M). gfp (λp x . shd x ∈ X ∧ p (stl x))

x}
apply (simp add : set-eq-iff streams-def streamsp-def)
apply (intro allI conj-cong refl arg-cong2 [where f =gfp] ext)
apply (case-tac xa)
apply auto
done

also have . . . ∈ sets (stream-space M)
apply (intro predE)
apply (coinduction rule: measurable-gfp-coinduct)
apply (auto simp: inf-continuous-def)
done

finally show ?thesis .
qed

lemma sets-stream-space-in-sets:
assumes space: space N = streams (space M)
assumes sets:

∧
i . (λx . x !! i) ∈ measurable N M

shows sets (stream-space M) ⊆ sets N
unfolding stream-space-def sets-distr
by (auto intro!: sets-image-in-sets measurable-Sup-sigma2 measurable-vimage-algebra2

del : subsetI equalityI
simp add : sets-PiM-eq-proj snth-in space sets cong : measurable-cong-sets)

lemma sets-stream-space-eq : sets (stream-space M) =
sets (

⊔
σ i∈UNIV . vimage-algebra (streams (space M)) (λs. s !! i) M)

by (auto intro!: sets-stream-space-in-sets sets-Sup-in-sets sets-image-in-sets
measurable-Sup-sigma1 snth-in measurable-vimage-algebra1 del :

subsetI
simp: space-Sup-sigma space-stream-space)

lemma sets-restrict-stream-space:
assumes S [measurable]: S ∈ sets M
shows sets (restrict-space (stream-space M) (streams S)) = sets (stream-space

(restrict-space M S))
using S [THEN sets.sets-into-space]
apply (subst restrict-space-eq-vimage-algebra)
apply (simp add : space-stream-space streams-mono2)
apply (subst vimage-algebra-cong [OF refl refl sets-stream-space-eq])
apply (subst sets-stream-space-eq)
apply (subst sets-vimage-Sup-eq)
apply simp
apply (auto intro: streams-mono) []
apply (simp add : image-image space-restrict-space)
apply (intro SUP-sigma-cong)
apply (simp add : vimage-algebra-cong [OF refl refl restrict-space-eq-vimage-algebra])
apply (subst (1 2) vimage-algebra-vimage-algebra-eq)
apply (auto simp: streams-mono snth-in)

THEORY “Stream-Space” 694

done

primrec sstart :: ′a set ⇒ ′a list ⇒ ′a stream set where
sstart S [] = streams S
| [simp del]: sstart S (x # xs) = op ## x ‘ sstart S xs

lemma in-sstart [simp]: s ∈ sstart S (x # xs) ←→ shd s = x ∧ stl s ∈ sstart S xs
by (cases s) (auto simp: sstart .simps(2))

lemma sstart-in-streams: xs ∈ lists S =⇒ sstart S xs ⊆ streams S
by (induction xs) (auto simp: sstart .simps(2))

lemma sstart-eq : x ∈ streams S =⇒ x ∈ sstart S xs = (∀ i<length xs. x !! i = xs
! i)

by (induction xs arbitrary : x) (auto simp: nth-Cons streams-stl split : nat .splits)

lemma sstart-sets: sstart S xs ∈ sets (stream-space (count-space UNIV))
proof (induction xs)

case (Cons x xs)
note Cons[measurable]
have sstart S (x # xs) =
{s∈space (stream-space (count-space UNIV)). shd s = x ∧ stl s ∈ sstart S xs}
by (simp add : set-eq-iff space-stream-space)

also have . . . ∈ sets (stream-space (count-space UNIV))
by measurable

finally show ?case .
qed (simp add : streams-sets)

lemma sigma-sets-singletons:
assumes countable S
shows sigma-sets S ((λs. {s})‘S) = Pow S

proof safe
interpret sigma-algebra S sigma-sets S ((λs. {s})‘S)

by (rule sigma-algebra-sigma-sets) auto
fix A assume A ⊆ S
with assms have (

⋃
a∈A. {a}) ∈ sigma-sets S ((λs. {s})‘S)

by (intro countable-UN ′) (auto dest : countable-subset)
then show A ∈ sigma-sets S ((λs. {s})‘S)

by simp
qed (auto dest : sigma-sets-into-sp[rotated])

lemma sets-count-space-eq-sigma:
countable S =⇒ sets (count-space S) = sets (sigma S ((λs. {s})‘S))
by (subst sets-measure-of) (auto simp: sigma-sets-singletons)

lemma sets-stream-space-sstart :
assumes S [simp]: countable S
shows sets (stream-space (count-space S)) = sets (sigma (streams S) (sstart

THEORY “Stream-Space” 695

S‘lists S ∪ {{}}))
proof

have [simp]: sstart S ‘ lists S ⊆ Pow (streams S)
by (simp add : image-subset-iff sstart-in-streams)

let ?S = sigma (streams S) (sstart S ‘ lists S ∪ {{}})
{ fix i a assume a ∈ S
{ fix x have (x !! i = a ∧ x ∈ streams S) ←→ (∃ xs∈lists S . length xs = i ∧

x ∈ sstart S (xs @ [a]))
proof (induction i arbitrary : x)

case (Suc i) from this[of stl x] show ?case
by (simp add : length-Suc-conv Bex-def ex-simps[symmetric] del : ex-simps)

(metis stream.collapse streams-Stream)
qed (insert 〈a ∈ S 〉, auto intro: streams-stl in-streams) }

then have (λx . x !! i) −‘ {a} ∩ streams S = (
⋃

xs∈{xs∈lists S . length xs =
i}. sstart S (xs @ [a]))

by (auto simp add : set-eq-iff)
also have . . . ∈ sets ?S

using 〈a∈S 〉 by (intro sets.countable-UN ′) (auto intro!: sigma-sets.Basic
image-eqI)

finally have (λx . x !! i) −‘ {a} ∩ streams S ∈ sets ?S . }
then show sets (stream-space (count-space S)) ⊆ sets (sigma (streams S) (sstart

S‘lists S ∪ {{}}))
by (intro sets-stream-space-in-sets) (auto simp: measurable-count-space-eq-countable

snth-in)

have sigma-sets (space (stream-space (count-space S))) (sstart S‘lists S ∪ {{}})
⊆ sets (stream-space (count-space S))

proof (safe intro!: sets.sigma-sets-subset)
fix xs assume ∀ x∈set xs. x ∈ S
then have sstart S xs = {x∈space (stream-space (count-space S)). ∀ i<length

xs. x !! i = xs ! i}
by (induction xs)

(auto simp: space-stream-space nth-Cons split : nat .split intro: in-streams
streams-stl)

also have . . . ∈ sets (stream-space (count-space S))
by measurable

finally show sstart S xs ∈ sets (stream-space (count-space S)) .
qed
then show sets (sigma (streams S) (sstart S‘lists S ∪ {{}})) ⊆ sets (stream-space

(count-space S))
by (simp add : space-stream-space)

qed

lemma Int-stable-sstart : Int-stable (sstart S‘lists S ∪ {{}})
proof −
{ fix xs ys assume xs ∈ lists S ys ∈ lists S

then have sstart S xs ∩ sstart S ys ∈ sstart S ‘ lists S ∪ {{}}
proof (induction xs ys rule: list-induct2 ′)

THEORY “Stream-Space” 696

case (4 x xs y ys)
show ?case
proof cases

assume x = y
then have sstart S (x # xs) ∩ sstart S (y # ys) = op ## x ‘ (sstart S xs

∩ sstart S ys)
by (auto simp: image-iff intro!: stream.collapse[symmetric])

also have . . . ∈ sstart S ‘ lists S ∪ {{}}
using 4 by (auto simp: sstart .simps(2)[symmetric] del : in-listsD)

finally show ?case .
qed auto

qed (simp-all add : sstart-in-streams inf .absorb1 inf .absorb2 image-eqI [where
x=[]]) }

then show ?thesis
by (auto simp: Int-stable-def)

qed

lemma stream-space-eq-sstart :
assumes S [simp]: countable S
assumes P : prob-space M prob-space N
assumes ae: AE x in M . x ∈ streams S AE x in N . x ∈ streams S
assumes sets-M : sets M = sets (stream-space (count-space UNIV))
assumes sets-N : sets N = sets (stream-space (count-space UNIV))
assumes ∗:

∧
xs. xs 6= [] =⇒ xs ∈ lists S =⇒ emeasure M (sstart S xs) =

emeasure N (sstart S xs)
shows M = N

proof (rule measure-eqI-restrict-generator [OF Int-stable-sstart])
have [simp]: sstart S ‘ lists S ⊆ Pow (streams S)

by (simp add : image-subset-iff sstart-in-streams)

interpret M : prob-space M by fact

show sstart S ‘ lists S ∪ {{}} ⊆ Pow (streams S)
by (auto dest : sstart-in-streams del : in-listsD)

{ fix M :: ′a stream measure assume M : sets M = sets (stream-space (count-space
UNIV))

have sets (restrict-space M (streams S)) = sigma-sets (streams S) (sstart S ‘
lists S ∪ {{}})

by (subst sets-restrict-space-cong [OF M])
(simp add : sets-restrict-stream-space restrict-count-space sets-stream-space-sstart)

}
from this[OF sets-M] this[OF sets-N]
show sets (restrict-space M (streams S)) = sigma-sets (streams S) (sstart S ‘

lists S ∪ {{}})
sets (restrict-space N (streams S)) = sigma-sets (streams S) (sstart S ‘ lists

S ∪ {{}})
by auto

show {streams S} ⊆ sstart S ‘ lists S ∪ {{}}

THEORY “Embed-Measure” 697

⋃
{streams S} = streams S

∧
s. s ∈ {streams S} =⇒ emeasure M s 6= ∞

using M .emeasure-space-1 space-stream-space[of count-space S] sets-eq-imp-space-eq [OF
sets-M]

by (auto simp add : image-eqI [where x=[]])
show sets M = sets N

by (simp add : sets-M sets-N)
next

fix X assume X ∈ sstart S ‘ lists S ∪ {{}}
then obtain xs where X = {} ∨ (xs ∈ lists S ∧ X = sstart S xs)

by auto
moreover have emeasure M (streams S) = 1
using ae by (intro prob-space.emeasure-eq-1-AE [OF P(1)]) (auto simp: sets-M

streams-sets)
moreover have emeasure N (streams S) = 1
using ae by (intro prob-space.emeasure-eq-1-AE [OF P(2)]) (auto simp: sets-N

streams-sets)
ultimately show emeasure M X = emeasure N X

using P [THEN prob-space.emeasure-space-1]
by (cases xs = []) (auto simp: ∗ space-stream-space del : in-listsD)

qed (auto simp: ∗ ae sets-M del : in-listsD intro!: streams-sets)

end

31 Embed Measure Spaces with a Function

theory Embed-Measure
imports Binary-Product-Measure
begin

definition embed-measure :: ′a measure ⇒ (′a ⇒ ′b) ⇒ ′b measure where
embed-measure M f = measure-of (f ‘ space M) {f ‘ A |A. A ∈ sets M }

(λA. emeasure M (f −‘ A ∩ space M))

lemma space-embed-measure: space (embed-measure M f) = f ‘ space M
unfolding embed-measure-def
by (subst space-measure-of) (auto dest : sets.sets-into-space)

lemma sets-embed-measure ′:
assumes inj : inj-on f (space M)
shows sets (embed-measure M f) = {f ‘ A |A. A ∈ sets M }
unfolding embed-measure-def

proof (intro sigma-algebra.sets-measure-of-eq sigma-algebra-iff2 [THEN iffD2] conjI
allI ballI impI)

fix s assume s ∈ {f ‘ A |A. A ∈ sets M }
then obtain s ′ where s ′-props: s = f ‘ s ′ s ′ ∈ sets M by auto
hence f ‘ space M − s = f ‘ (space M − s ′) using inj

by (auto dest : inj-onD sets.sets-into-space)
also have ... ∈ {f ‘ A |A. A ∈ sets M } using s ′-props by auto
finally show f ‘ space M − s ∈ {f ‘ A |A. A ∈ sets M } .

THEORY “Embed-Measure” 698

next
fix A :: nat ⇒ - assume range A ⊆ {f ‘ A |A. A ∈ sets M }
then obtain A ′ where

∧
i . A i = f ‘ A ′ i

∧
i . A ′ i ∈ sets M

by (auto simp: subset-eq choice-iff)
moreover from this have (

⋃
x . f ‘ A ′ x) = f ‘ (

⋃
x . A ′ x) by blast

ultimately show (
⋃

i . A i) ∈ {f ‘ A |A. A ∈ sets M }
by simp blast

qed (auto dest : sets.sets-into-space)

lemma the-inv-into-vimage:
inj-on f X =⇒ A ⊆ X =⇒ the-inv-into X f −‘ A ∩ (f‘X) = f ‘ A
by (auto simp: the-inv-into-f-f)

lemma sets-embed-eq-vimage-algebra:
assumes inj-on f (space M)
shows sets (embed-measure M f) = sets (vimage-algebra (f‘space M) (the-inv-into

(space M) f) M)
by (auto simp: sets-embed-measure ′[OF assms] Pi-iff the-inv-into-f-f assms sets-vimage-algebra2

simple-image
dest : sets.sets-into-space
intro!: image-cong the-inv-into-vimage[symmetric])

lemma sets-embed-measure:
assumes inj : inj f
shows sets (embed-measure M f) = {f ‘ A |A. A ∈ sets M }
using assms by (subst sets-embed-measure ′) (auto intro!: inj-onI dest : injD)

lemma in-sets-embed-measure: A ∈ sets M =⇒ f ‘ A ∈ sets (embed-measure M f)
unfolding embed-measure-def
by (intro in-measure-of) (auto dest : sets.sets-into-space)

lemma measurable-embed-measure1 :
assumes g : (λx . g (f x)) ∈ measurable M N
shows g ∈ measurable (embed-measure M f) N
unfolding measurable-def

proof safe
fix A assume A ∈ sets N
with g have (λx . g (f x)) −‘ A ∩ space M ∈ sets M

by (rule measurable-sets)
then have f ‘ ((λx . g (f x)) −‘ A ∩ space M) ∈ sets (embed-measure M f)

by (rule in-sets-embed-measure)
also have f ‘ ((λx . g (f x)) −‘ A ∩ space M) = g −‘ A ∩ space (embed-measure

M f)
by (auto simp: space-embed-measure)

finally show g −‘ A ∩ space (embed-measure M f) ∈ sets (embed-measure M f)
.
qed (insert measurable-space[OF assms], auto simp: space-embed-measure)

lemma measurable-embed-measure2 ′:

THEORY “Embed-Measure” 699

assumes inj-on f (space M)
shows f ∈ measurable M (embed-measure M f)

proof−
{

fix A assume A: A ∈ sets M
also from this have A = A ∩ space M by auto
also have ... = f −‘ f ‘ A ∩ space M using A assms

by (auto dest : inj-onD sets.sets-into-space)
finally have f −‘ f ‘ A ∩ space M ∈ sets M .
}
thus ?thesis using assms unfolding embed-measure-def

by (intro measurable-measure-of) (auto dest : sets.sets-into-space)
qed

lemma measurable-embed-measure2 :
assumes [simp]: inj f shows f ∈ measurable M (embed-measure M f)
by (auto simp: inj-vimage-image-eq embed-measure-def

intro!: measurable-measure-of dest : sets.sets-into-space)

lemma embed-measure-eq-distr ′:
assumes inj-on f (space M)
shows embed-measure M f = distr M (embed-measure M f) f

proof−
have distr M (embed-measure M f) f =

measure-of (f ‘ space M) {f ‘ A |A. A ∈ sets M }
(λA. emeasure M (f −‘ A ∩ space M)) unfolding distr-def

by (simp add : space-embed-measure sets-embed-measure ′[OF assms])
also have ... = embed-measure M f unfolding embed-measure-def ..
finally show ?thesis ..

qed

lemma embed-measure-eq-distr :
inj f =⇒ embed-measure M f = distr M (embed-measure M f) f

by (rule embed-measure-eq-distr ′) (auto intro!: inj-onI dest : injD)

lemma nn-integral-embed-measure ′:
inj-on f (space M) =⇒ g ∈ borel-measurable (embed-measure M f) =⇒
nn-integral (embed-measure M f) g = nn-integral M (λx . g (f x))
apply (subst embed-measure-eq-distr ′, simp)
apply (subst nn-integral-distr)
apply (simp-all add : measurable-embed-measure2 ′)
done

lemma nn-integral-embed-measure:
inj f =⇒ g ∈ borel-measurable (embed-measure M f) =⇒
nn-integral (embed-measure M f) g = nn-integral M (λx . g (f x))
by(erule nn-integral-embed-measure ′[OF subset-inj-on]) simp

lemma emeasure-embed-measure ′:

THEORY “Embed-Measure” 700

assumes inj-on f (space M) A ∈ sets (embed-measure M f)
shows emeasure (embed-measure M f) A = emeasure M (f −‘ A ∩ space M)

by (subst embed-measure-eq-distr ′[OF assms(1)])
(simp add : emeasure-distr [OF measurable-embed-measure2 ′[OF assms(1)] assms(2)])

lemma emeasure-embed-measure:
assumes inj f A ∈ sets (embed-measure M f)
shows emeasure (embed-measure M f) A = emeasure M (f −‘ A ∩ space M)

using assms by (intro emeasure-embed-measure ′) (auto intro!: inj-onI dest : injD)

lemma embed-measure-comp:
assumes [simp]: inj f inj g
shows embed-measure (embed-measure M f) g = embed-measure M (g ◦ f)

proof−
have [simp]: inj (λx . g (f x)) by (subst o-def [symmetric]) (auto intro: inj-comp)
note measurable-embed-measure2 [measurable]
have embed-measure (embed-measure M f) g =

distr M (embed-measure (embed-measure M f) g) (g ◦ f)
by (subst (1 2) embed-measure-eq-distr)

(simp-all add : distr-distr sets-embed-measure cong : distr-cong)
also have ... = embed-measure M (g ◦ f)

by (subst (3) embed-measure-eq-distr , simp add : o-def , rule distr-cong)
(auto simp: sets-embed-measure o-def image-image[symmetric]

intro: inj-comp cong : distr-cong)
finally show ?thesis .

qed

lemma sigma-finite-embed-measure:
assumes sigma-finite-measure M and inj : inj f
shows sigma-finite-measure (embed-measure M f)

proof −
from assms(1) interpret sigma-finite-measure M .
from sigma-finite-countable obtain A where

A-props: countable A A ⊆ sets M
⋃

A = space M
∧

X . X∈A =⇒ emeasure
M X 6= ∞ by blast

from A-props have countable (op ‘ f‘A) by auto
moreover
from inj and A-props have op ‘ f‘A ⊆ sets (embed-measure M f)

by (auto simp: sets-embed-measure)
moreover
from A-props and inj have

⋃
(op ‘ f‘A) = space (embed-measure M f)

by (auto simp: space-embed-measure intro!: imageI)
moreover
from A-props and inj have ∀ a∈op ‘ f ‘ A. emeasure (embed-measure M f) a 6=
∞

by (intro ballI , subst emeasure-embed-measure)
(auto simp: inj-vimage-image-eq intro: in-sets-embed-measure)

ultimately show ?thesis by − (standard , blast)
qed

THEORY “Embed-Measure” 701

lemma embed-measure-count-space ′:
inj-on f A =⇒ embed-measure (count-space A) f = count-space (f‘A)

apply (subst distr-bij-count-space[of f A f‘A, symmetric])
apply (simp add : inj-on-def bij-betw-def)
apply (subst embed-measure-eq-distr ′)
apply simp
apply(auto 4 3 intro!: measure-eqI imageI simp add : sets-embed-measure ′ subset-image-iff)
apply (subst (1 2) emeasure-distr)
apply (auto simp: space-embed-measure sets-embed-measure ′)
done

lemma embed-measure-count-space:
inj f =⇒ embed-measure (count-space A) f = count-space (f‘A)

by(rule embed-measure-count-space ′)(erule subset-inj-on, simp)

lemma sets-embed-measure-alt :
inj f =⇒ sets (embed-measure M f) = (op‘f) ‘ sets M

by (auto simp: sets-embed-measure)

lemma emeasure-embed-measure-image ′:
assumes inj-on f (space M) X ∈ sets M
shows emeasure (embed-measure M f) (f‘X) = emeasure M X

proof−
from assms have emeasure (embed-measure M f) (f‘X) = emeasure M (f −‘ f

‘ X ∩ space M)
by (subst emeasure-embed-measure ′) (auto simp: sets-embed-measure ′)

also from assms have f −‘ f ‘ X ∩ space M = X by (auto dest : inj-onD
sets.sets-into-space)

finally show ?thesis .
qed

lemma emeasure-embed-measure-image:
inj f =⇒ X ∈ sets M =⇒ emeasure (embed-measure M f) (f‘X) = emeasure

M X
by (simp-all add : emeasure-embed-measure in-sets-embed-measure inj-vimage-image-eq)

lemma embed-measure-eq-iff :
assumes inj f
shows embed-measure A f = embed-measure B f ←→ A = B (is ?M = ?N ←→

-)
proof

from assms have I : inj (op‘ f) by (auto intro: injI dest : injD)
assume asm: ?M = ?N
hence sets (embed-measure A f) = sets (embed-measure B f) by simp
with assms have sets A = sets B by (simp only : I inj-image-eq-iff sets-embed-measure-alt)
moreover {

fix X assume X ∈ sets A
from asm have emeasure ?M (f‘X) = emeasure ?N (f‘X) by simp

THEORY “Embed-Measure” 702

with 〈X ∈ sets A〉 and 〈sets A = sets B 〉 and assms
have emeasure A X = emeasure B X by (simp add : emeasure-embed-measure-image)

}
ultimately show A = B by (rule measure-eqI)

qed simp

lemma the-inv-into-in-Pi : inj-on f A =⇒ the-inv-into A f ∈ f ‘ A → A
by (auto simp: the-inv-into-f-f)

lemma map-prod-image: map-prod f g ‘ (A × B) = (f‘A) × (g‘B)
using map-prod-surj-on[OF refl refl] .

lemma map-prod-vimage: map-prod f g −‘ (A × B) = (f−‘A) × (g−‘B)
by auto

lemma embed-measure-prod :
assumes f : inj f and g : inj g and [simp]: sigma-finite-measure M sigma-finite-measure

N
shows embed-measure M f

⊗
M embed-measure N g = embed-measure (M

⊗
M

N) (λ(x , y). (f x , g y))
(is ?L = -)

unfolding map-prod-def [symmetric]
proof (rule pair-measure-eqI)

have fg [simp]:
∧

A. inj-on (map-prod f g) A
∧

A. inj-on f A
∧

A. inj-on g A
using f g by (auto simp: inj-on-def)

show sets: sets ?L = sets (embed-measure (M
⊗

M N) (map-prod f g))
unfolding map-prod-def [symmetric]
apply (simp add : sets-pair-eq-sets-fst-snd sets-embed-eq-vimage-algebra

cong : vimage-algebra-cong)
apply (subst vimage-algebra-Sup-sigma)
apply (simp-all add : space-pair-measure[symmetric])
apply (auto simp add : the-inv-into-f-f

simp del : map-prod-simp
del : prod-fun-imageE) []

apply (subst (1 2 3 4) vimage-algebra-vimage-algebra-eq)
apply (simp-all add : the-inv-into-in-Pi Pi-iff [of snd] Pi-iff [of fst] space-pair-measure)
apply (simp-all add : Pi-iff [of snd] Pi-iff [of fst] the-inv-into-in-Pi vimage-algebra-vimage-algebra-eq

space-pair-measure[symmetric] map-prod-image[symmetric])
apply (intro arg-cong [where f =sets] arg-cong [where f =Sup-sigma] arg-cong2 [where

f =insert] vimage-algebra-cong)
apply (auto simp: map-prod-image the-inv-into-f-f

simp del : map-prod-simp del : prod-fun-imageE)
apply (simp-all add : the-inv-into-f-f space-pair-measure)
done

note measurable-embed-measure2 [measurable]
fix A B assume AB : A ∈ sets (embed-measure M f) B ∈ sets (embed-measure

N g)

THEORY “Embed-Measure” 703

moreover have f −‘ A × g −‘ B ∩ space (M
⊗

M N) = (f −‘ A ∩ space M)
× (g −‘ B ∩ space N)

by (auto simp: space-pair-measure)
ultimately show emeasure (embed-measure M f) A ∗ emeasure (embed-measure

N g) B =
emeasure (embed-measure (M

⊗
M N) (map-prod f g)) (A × B)

by (simp add : map-prod-vimage sets[symmetric] emeasure-embed-measure
sigma-finite-measure.emeasure-pair-measure-Times)

qed (insert assms, simp-all add : sigma-finite-embed-measure)

lemma density-embed-measure:
assumes inj : inj f and Mg [measurable]: g ∈ borel-measurable (embed-measure

M f)
shows density (embed-measure M f) g = embed-measure (density M (g ◦ f)) f

(is ?M1 = ?M2)
proof (rule measure-eqI)

fix X assume X : X ∈ sets ?M1
from inj have Mf [measurable]: f ∈ measurable M (embed-measure M f)

by (rule measurable-embed-measure2)
from Mg and X have emeasure ?M1 X =

∫
+ x . g x ∗ indicator X x ∂embed-measure

M f
by (subst emeasure-density) simp-all

also from X have ... =
∫

+ x . g (f x) ∗ indicator X (f x) ∂M
by (subst embed-measure-eq-distr [OF inj], subst nn-integral-distr) auto

also have ... =
∫

+ x . g (f x) ∗ indicator (f −‘ X ∩ space M) x ∂M
by (intro nn-integral-cong) (auto split : split-indicator)

also from X have ... = emeasure (density M (g ◦ f)) (f −‘ X ∩ space M)
by (subst emeasure-density) (simp-all add : measurable-comp[OF Mf Mg] measurable-sets[OF

Mf])
also from X and inj have ... = emeasure ?M2 X

by (subst emeasure-embed-measure) (simp-all add : sets-embed-measure)
finally show emeasure ?M1 X = emeasure ?M2 X .

qed (simp-all add : sets-embed-measure inj)

lemma density-embed-measure ′:
assumes inj : inj f and inv :

∧
x . f ′ (f x) = x and Mg [measurable]: g ∈ borel-measurable

M
shows density (embed-measure M f) (g ◦ f ′) = embed-measure (density M g) f

proof−
have density (embed-measure M f) (g ◦ f ′) = embed-measure (density M (g ◦

f ′ ◦ f)) f
by (rule density-embed-measure[OF inj])
(rule measurable-comp, rule measurable-embed-measure1 , subst measurable-cong ,

rule inv , rule measurable-ident-sets, simp, rule Mg)
also have density M (g ◦ f ′ ◦ f) = density M g

by (intro density-cong) (subst measurable-cong , simp add : o-def inv , simp-all
add : Mg inv)

finally show ?thesis .
qed

THEORY “Embed-Measure” 704

lemma inj-on-image-subset-iff :
assumes inj-on f C A ⊆ C B ⊆ C
shows f ‘ A ⊆ f ‘ B ←→ A ⊆ B

proof (intro iffI subsetI)
fix x assume A: f ‘ A ⊆ f ‘ B and B : x ∈ A
from B have f x ∈ f ‘ A by blast
with A have f x ∈ f ‘ B by blast
then obtain y where f x = f y and y ∈ B by blast
with assms and B have x = y by (auto dest : inj-onD)
with 〈y ∈ B 〉 show x ∈ B by simp

qed auto

lemma AE-embed-measure ′:
assumes inj : inj-on f (space M)
shows (AE x in embed-measure M f . P x) ←→ (AE x in M . P (f x))

proof
let ?M = embed-measure M f
assume AE x in ?M . P x
then obtain A where A-props: A ∈ sets ?M emeasure ?M A = 0 {x∈space ?M .
¬P x} ⊆ A

by (force elim: AE-E)
then obtain A ′ where A ′-props: A = f ‘ A ′ A ′ ∈ sets M by (auto simp:

sets-embed-measure ′ inj)
moreover have B : {x∈space ?M . ¬P x} = f ‘ {x∈space M . ¬P (f x)}

by (auto simp: inj space-embed-measure)
from A-props(3) have {x∈space M . ¬P (f x)} ⊆ A ′

by (subst (asm) B , subst (asm) A ′-props, subst (asm) inj-on-image-subset-iff [OF
inj])

(insert A ′-props, auto dest : sets.sets-into-space)
moreover from A-props A ′-props have emeasure M A ′ = 0

by (simp add : emeasure-embed-measure-image ′ inj)
ultimately show AE x in M . P (f x) by (intro AE-I)

next
let ?M = embed-measure M f
assume AE x in M . P (f x)
then obtain A where A-props: A ∈ sets M emeasure M A = 0 {x∈space M .
¬P (f x)} ⊆ A

by (force elim: AE-E)
hence f‘A ∈ sets ?M emeasure ?M (f‘A) = 0 {x∈space ?M . ¬P x} ⊆ f‘A
by (auto simp: space-embed-measure emeasure-embed-measure-image ′ sets-embed-measure ′

inj)
thus AE x in ?M . P x by (intro AE-I)

qed

lemma AE-embed-measure:
assumes inj : inj f
shows (AE x in embed-measure M f . P x) ←→ (AE x in M . P (f x))

THEORY “ContNotDenum” 705

using assms by (intro AE-embed-measure ′) (auto intro!: inj-onI dest : injD)

lemma nn-integral-monotone-convergence-SUP-countable:
fixes f :: ′a ⇒ ′b ⇒ ennreal
assumes nonempty : Y 6= {}
and chain: Complete-Partial-Order .chain op ≤ (f ‘ Y)
and countable: countable B
shows (

∫
+ x . (SUP i :Y . f i x) ∂count-space B) = (SUP i :Y . (

∫
+ x . f i x

∂count-space B))
(is ?lhs = ?rhs)

proof −
let ?f = (λi x . f i (from-nat-into B x) ∗ indicator (to-nat-on B ‘ B) x)
have ?lhs =

∫
+ x . (SUP i :Y . f i (from-nat-into B (to-nat-on B x))) ∂count-space

B
by(rule nn-integral-cong)(simp add : countable)

also have . . . =
∫

+ x . (SUP i :Y . f i (from-nat-into B x)) ∂count-space (to-nat-on
B ‘ B)

by(simp add : embed-measure-count-space ′[symmetric] inj-on-to-nat-on countable
nn-integral-embed-measure ′ measurable-embed-measure1)

also have . . . =
∫

+ x . (SUP i :Y . ?f i x) ∂count-space UNIV
by(simp add : nn-integral-count-space-indicator ennreal-indicator [symmetric]

SUP-mult-right-ennreal nonempty)
also have . . . = (SUP i :Y .

∫
+ x . ?f i x ∂count-space UNIV)

proof(rule nn-integral-monotone-convergence-SUP-nat)
show Complete-Partial-Order .chain op ≤ (?f ‘ Y)

by(rule chain-imageI [OF chain, unfolded image-image])(auto intro!: le-funI
split : split-indicator dest : le-funD)

qed fact
also have . . . = (SUP i :Y .

∫
+ x . f i (from-nat-into B x) ∂count-space (to-nat-on

B ‘ B))
by(simp add : nn-integral-count-space-indicator)

also have . . . = (SUP i :Y .
∫

+ x . f i (from-nat-into B (to-nat-on B x)) ∂count-space
B)

by(simp add : embed-measure-count-space ′[symmetric] inj-on-to-nat-on countable
nn-integral-embed-measure ′ measurable-embed-measure1)

also have . . . = ?rhs
by(intro arg-cong2 [where f =SUPREMUM] ext nn-integral-cong-AE)(simp-all

add : AE-count-space countable)
finally show ?thesis .

qed

end

32 Non-denumerability of the Continuum.

theory ContNotDenum
imports Complex-Main Countable-Set
begin

THEORY “ContNotDenum” 706

32.1 Abstract

The following document presents a proof that the Continuum is uncountable.
It is formalised in the Isabelle/Isar theorem proving system.

Theorem: The Continuum IR is not denumerable. In other words, there does
not exist a function f : IN ⇒ IR such that f is surjective.

Outline: An elegant informal proof of this result uses Cantor’s Diagonalisa-
tion argument. The proof presented here is not this one. First we formalise
some properties of closed intervals, then we prove the Nested Interval Prop-
erty. This property relies on the completeness of the Real numbers and is
the foundation for our argument. Informally it states that an intersection
of countable closed intervals (where each successive interval is a subset of
the last) is non-empty. We then assume a surjective function f : IN ⇒ IR
exists and find a real x such that x is not in the range of f by generating a
sequence of closed intervals then using the NIP.

theorem real-non-denum: ¬ (∃ f :: nat ⇒ real . surj f)
proof

assume ∃ f ::nat ⇒ real . surj f
then obtain f :: nat ⇒ real where surj f ..

First we construct a sequence of nested intervals, ignoring range f.

have ∀ a b c::real . a < b −→ (∃ ka kb. ka < kb ∧ {ka..kb} ⊆ {a..b} ∧ c /∈
{ka..kb})

using assms
by (auto simp add : not-le cong : conj-cong)

(metis dense le-less-linear less-linear less-trans order-refl)
then obtain i j where ij :∧

a b c::real . a < b =⇒ i a b c < j a b c∧
a b c. a < b =⇒ {i a b c .. j a b c} ⊆ {a .. b}∧
a b c. a < b =⇒ c /∈ {i a b c .. j a b c}

by metis

def ivl ≡ rec-nat (f 0 + 1 , f 0 + 2) (λn x . (i (fst x) (snd x) (f n), j (fst x) (snd
x) (f n)))

def I ≡ λn. {fst (ivl n) .. snd (ivl n)}

have ivl [simp]:
ivl 0 = (f 0 + 1 , f 0 + 2)∧

n. ivl (Suc n) = (i (fst (ivl n)) (snd (ivl n)) (f n), j (fst (ivl n)) (snd (ivl
n)) (f n))

unfolding ivl-def by simp-all

This is a decreasing sequence of non-empty intervals.

{ fix n have fst (ivl n) < snd (ivl n)
by (induct n) (auto intro!: ij) }

note less = this

THEORY “ContNotDenum” 707

have decseq I
unfolding I-def decseq-Suc-iff ivl fst-conv snd-conv by (intro ij allI less)

Now we apply the finite intersection property of compact sets.

have I 0 ∩ (
⋂

i . I i) 6= {}
proof (rule compact-imp-fip-image)

fix S :: nat set assume fin: finite S
have {} ⊂ I (Max (insert 0 S))

unfolding I-def using less[of Max (insert 0 S)] by auto
also have I (Max (insert 0 S)) ⊆ (

⋂
i∈insert 0 S . I i)

using fin decseqD [OF 〈decseq I 〉, of - Max (insert 0 S)] by (auto simp:
Max-ge-iff)

also have (
⋂

i∈insert 0 S . I i) = I 0 ∩ (
⋂

i∈S . I i)
by auto

finally show I 0 ∩ (
⋂

i∈S . I i) 6= {}
by auto

qed (auto simp: I-def)
then obtain x where

∧
n. x ∈ I n

by blast
moreover from 〈surj f 〉 obtain j where x = f j

by blast
ultimately have f j ∈ I (Suc j)

by blast
with ij (3)[OF less] show False

unfolding I-def ivl fst-conv snd-conv by auto
qed

lemma uncountable-UNIV-real : uncountable (UNIV ::real set)
using real-non-denum unfolding uncountable-def by auto

lemma bij-betw-open-intervals:
fixes a b c d :: real
assumes a < b c < d
shows ∃ f . bij-betw f {a<..<b} {c<..<d}

proof −
def f ≡ λa b c d x ::real . (d − c)/(b − a) ∗ (x − a) + c
{ fix a b c d x :: real assume ∗: a < b c < d a < x x < b

moreover from ∗ have (d − c) ∗ (x − a) < (d − c) ∗ (b − a)
by (intro mult-strict-left-mono) simp-all

moreover from ∗ have 0 < (d − c) ∗ (x − a) / (b − a)
by simp

ultimately have f a b c d x < d c < f a b c d x
by (simp-all add : f-def field-simps) }

with assms have bij-betw (f a b c d) {a<..<b} {c<..<d}
by (intro bij-betw-byWitness[where f ′=f c d a b]) (auto simp: f-def)

thus ?thesis by auto
qed

lemma bij-betw-tan: bij-betw tan {−pi/2<..<pi/2} UNIV

THEORY “ContNotDenum” 708

using arctan-ubound by (intro bij-betw-byWitness[where f ′=arctan]) (auto simp:
arctan arctan-tan)

lemma uncountable-open-interval :
fixes a b :: real
shows uncountable {a<..<b} ←→ a < b

proof
assume uncountable {a<..<b}
then show a < b

using uncountable-def by force
next

assume a < b
show uncountable {a<..<b}
proof −

obtain f where bij-betw f {a <..< b} {−pi/2<..<pi/2}
using bij-betw-open-intervals[OF 〈a < b〉, of −pi/2 pi/2] by auto

then show ?thesis
by (metis bij-betw-tan uncountable-bij-betw uncountable-UNIV-real)

qed
qed

lemma uncountable-half-open-interval-1 :
fixes a :: real shows uncountable {a..<b} ←→ a<b
apply auto
using atLeastLessThan-empty-iff apply fastforce
using uncountable-open-interval [of a b]
by (metis countable-Un-iff ivl-disj-un-singleton(3))

lemma uncountable-half-open-interval-2 :
fixes a :: real shows uncountable {a<..b} ←→ a<b
apply auto
using atLeastLessThan-empty-iff apply fastforce
using uncountable-open-interval [of a b]
by (metis countable-Un-iff ivl-disj-un-singleton(4))

lemma real-interval-avoid-countable-set :
fixes a b :: real and A :: real set
assumes a < b and countable A
shows ∃ x∈{a<..<b}. x /∈ A

proof −
from 〈countable A〉 have countable (A ∩ {a<..<b}) by auto
moreover with 〈a < b〉 have ¬ countable {a<..<b}

by (simp add : uncountable-open-interval)
ultimately have A ∩ {a<..<b} 6= {a<..<b} by auto
hence A ∩ {a<..<b} ⊂ {a<..<b}

by (intro psubsetI , auto)
hence ∃ x . x ∈ {a<..<b} − A ∩ {a<..<b}

by (rule psubset-imp-ex-mem)
thus ?thesis by auto

THEORY “Distribution-Functions” 709

qed

lemma open-minus-countable:
fixes S A :: real set assumes countable A S 6= {} open S
shows ∃ x∈S . x /∈ A

proof −
obtain x where x ∈ S

using 〈S 6= {}〉 by auto
then obtain e where 0 < e {y . dist y x < e} ⊆ S

using 〈open S 〉 by (auto simp: open-dist subset-eq)
moreover have {y . dist y x < e} = {x − e <..< x + e}

by (auto simp: dist-real-def)
ultimately have uncountable (S − A)

using uncountable-open-interval [of x − e x + e] 〈countable A〉

by (intro uncountable-minus-countable) (auto dest : countable-subset)
then show ?thesis

unfolding uncountable-def by auto
qed

end

33 Distribution Functions

Shows that the cumulative distribution function (cdf) of a distribution (a
measure on the reals) is nondecreasing and right continuous, which tends to
0 and 1 in either direction.

Conversely, every such function is the cdf of a unique distribution. This
direction defines the measure in the obvious way on half-open intervals, and
then applies the Caratheodory extension theorem.

theory Distribution-Functions
imports Probability-Measure ∼∼/src/HOL/Library/ContNotDenum

begin

lemma UN-Ioc-eq-UNIV : (
⋃

n. { −real n <.. real n}) = UNIV
by auto

(metis le-less-trans minus-minus neg-less-iff-less not-le real-arch-simple
of-nat-0-le-iff reals-Archimedean2)

33.1 Properties of cdf’s

definition
cdf :: real measure ⇒ real ⇒ real

where
cdf M ≡ λx . measure M {..x}

lemma cdf-def2 : cdf M x = measure M {..x}
by (simp add : cdf-def)

THEORY “Distribution-Functions” 710

locale finite-borel-measure = finite-measure M for M :: real measure +
assumes M-super-borel : sets borel ⊆ sets M

begin

lemma sets-M [intro]: a ∈ sets borel =⇒ a ∈ sets M
using M-super-borel by auto

lemma cdf-diff-eq :
assumes x < y
shows cdf M y − cdf M x = measure M {x<..y}

proof −
from assms have ∗: {..x} ∪ {x<..y} = {..y} by auto
have measure M {..y} = measure M {..x} + measure M {x<..y}

by (subst finite-measure-Union [symmetric], auto simp add : ∗)
thus ?thesis

unfolding cdf-def by auto
qed

lemma cdf-nondecreasing : x ≤ y =⇒ cdf M x ≤ cdf M y
unfolding cdf-def by (auto intro!: finite-measure-mono)

lemma borel-UNIV : space M = UNIV
by (metis in-mono sets.sets-into-space space-in-borel top-le M-super-borel)

lemma cdf-nonneg : cdf M x ≥ 0
unfolding cdf-def by (rule measure-nonneg)

lemma cdf-bounded : cdf M x ≤ measure M (space M)
unfolding cdf-def using assms by (intro bounded-measure)

lemma cdf-lim-infty :
((λi . cdf M (real i)) −−−−→ measure M (space M))

proof −
have (λi . cdf M (real i)) −−−−→ measure M (

⋃
i ::nat . {..real i})

unfolding cdf-def by (rule finite-Lim-measure-incseq) (auto simp: incseq-def)
also have (

⋃
i ::nat . {..real i}) = space M

by (auto simp: borel-UNIV intro: real-arch-simple)
finally show ?thesis .

qed

lemma cdf-lim-at-top: (cdf M −−−→ measure M (space M)) at-top
by (rule tendsto-at-topI-sequentially-real)

(simp-all add : mono-def cdf-nondecreasing cdf-lim-infty)

lemma cdf-lim-neg-infty : ((λi . cdf M (− real i)) −−−−→ 0)
proof −

have (λi . cdf M (− real i)) −−−−→ measure M (
⋂

i ::nat . {.. − real i })
unfolding cdf-def by (rule finite-Lim-measure-decseq) (auto simp: decseq-def)

THEORY “Distribution-Functions” 711

also have (
⋂

i ::nat . {..− real i}) = {}
by auto (metis leD le-minus-iff reals-Archimedean2)

finally show ?thesis
by simp

qed

lemma cdf-lim-at-bot : (cdf M −−−→ 0) at-bot
proof −

have ∗: ((λx :: real . − cdf M (− x)) −−−→ 0) at-top
by (intro tendsto-at-topI-sequentially-real monoI)
(auto simp: cdf-nondecreasing cdf-lim-neg-infty tendsto-minus-cancel-left [symmetric])

from filterlim-compose [OF ∗, OF filterlim-uminus-at-top-at-bot]
show ?thesis

unfolding tendsto-minus-cancel-left [symmetric] by simp
qed

lemma cdf-is-right-cont : continuous (at-right a) (cdf M)
unfolding continuous-within

proof (rule tendsto-at-right-sequentially [where b=a + 1])
fix f :: nat ⇒ real and x assume f : decseq f f −−−−→ a
then have (λn. cdf M (f n)) −−−−→ measure M (

⋂
i . {.. f i})

using 〈decseq f 〉 unfolding cdf-def
by (intro finite-Lim-measure-decseq) (auto simp: decseq-def)

also have (
⋂

i . {.. f i}) = {.. a}
using decseq-le[OF f] by (auto intro: order-trans LIMSEQ-le-const [OF f (2)])

finally show (λn. cdf M (f n)) −−−−→ cdf M a
by (simp add : cdf-def)

qed simp

lemma cdf-at-left : (cdf M −−−→ measure M {..<a}) (at-left a)
proof (rule tendsto-at-left-sequentially [of a − 1])

fix f :: nat ⇒ real and x assume f : incseq f f −−−−→ a
∧

x . f x < a
∧

x . a −
1 < f x

then have (λn. cdf M (f n)) −−−−→ measure M (
⋃

i . {.. f i})
using 〈incseq f 〉 unfolding cdf-def
by (intro finite-Lim-measure-incseq) (auto simp: incseq-def)

also have (
⋃

i . {.. f i}) = {..<a}
by (auto dest !: order-tendstoD(1)[OF f (2)] eventually-happens ′[OF sequentially-bot]

intro: less-imp-le le-less-trans f (3))
finally show (λn. cdf M (f n)) −−−−→ measure M {..<a}

by (simp add : cdf-def)
qed auto

lemma isCont-cdf : isCont (cdf M) x ←→ measure M {x} = 0
proof −

have isCont (cdf M) x ←→ cdf M x = measure M {..<x}
by (auto simp: continuous-at-split cdf-is-right-cont continuous-within[where

s={..< -}]
cdf-at-left tendsto-unique[OF - cdf-at-left])

THEORY “Distribution-Functions” 712

also have cdf M x = measure M {..<x} ←→ measure M {x} = 0
unfolding cdf-def ivl-disj-un(2)[symmetric]
by (subst finite-measure-Union) auto

finally show ?thesis .
qed

lemma countable-atoms: countable {x . measure M {x} > 0}
using countable-support unfolding zero-less-measure-iff .

end

locale real-distribution = prob-space M for M :: real measure +
assumes events-eq-borel [simp, measurable-cong]: sets M = sets borel and space-eq-univ

[simp]: space M = UNIV
begin

sublocale finite-borel-measure M
by standard auto

lemma cdf-bounded-prob:
∧

x . cdf M x ≤ 1
by (subst prob-space [symmetric], rule cdf-bounded)

lemma cdf-lim-infty-prob: (λi . cdf M (real i)) −−−−→ 1
by (subst prob-space [symmetric], rule cdf-lim-infty)

lemma cdf-lim-at-top-prob: (cdf M −−−→ 1) at-top
by (subst prob-space [symmetric], rule cdf-lim-at-top)

lemma measurable-finite-borel [simp]:
f ∈ borel-measurable borel =⇒ f ∈ borel-measurable M
by (rule borel-measurable-subalgebra[where N =borel]) auto

end

lemma (in prob-space) real-distribution-distr [intro, simp]:
random-variable borel X =⇒ real-distribution (distr M borel X)
unfolding real-distribution-def real-distribution-axioms-def by (auto intro!: prob-space-distr)

33.2 uniqueness

lemma (in real-distribution) emeasure-Ioc:
assumes a ≤ b shows emeasure M {a <.. b} = cdf M b − cdf M a

proof −
have {a <.. b} = {..b} − {..a}

by auto
with 〈a ≤ b〉 show ?thesis

by (simp add : emeasure-eq-measure finite-measure-Diff cdf-def)
qed

THEORY “Distribution-Functions” 713

lemma cdf-unique:
fixes M1 M2
assumes real-distribution M1 and real-distribution M2
assumes cdf M1 = cdf M2
shows M1 = M2

proof (rule measure-eqI-generator-eq [where Ω=UNIV])
fix X assume X ∈ range (λ(a, b). {a<..b::real})
then obtain a b where Xeq : X = {a<..b} by auto
then show emeasure M1 X = emeasure M2 X

by (cases a ≤ b)
(simp-all add : assms(1 ,2)[THEN real-distribution.emeasure-Ioc] assms(3))

next
show (

⋃
i . {− real (i ::nat)<..real i}) = UNIV

by (rule UN-Ioc-eq-UNIV)
qed (auto simp: real-distribution.emeasure-Ioc[OF assms(1)]

assms(1 ,2)[THEN real-distribution.events-eq-borel] borel-sigma-sets-Ioc
Int-stable-def)

lemma real-distribution-interval-measure:
fixes F :: real ⇒ real
assumes nondecF :

∧
x y . x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0) at-bot and
lim-F-at-top : (F −−−→ 1) at-top

shows real-distribution (interval-measure F)
proof −

let ?F = interval-measure F
interpret prob-space ?F
proof

have ennreal (1 − 0) = (SUP i ::nat . ennreal (F (real i) − F (− real i)))
by (intro LIMSEQ-unique[OF - LIMSEQ-SUP] tendsto-ennrealI tendsto-intros

lim-F-at-bot [THEN filterlim-compose] lim-F-at-top[THEN filterlim-compose]
lim-F-at-bot [THEN filterlim-compose] filterlim-real-sequentially
filterlim-uminus-at-top[THEN iffD1])

(auto simp: incseq-def nondecF intro!: diff-mono)
also have . . . = (SUP i ::nat . emeasure ?F {− real i<..real i})
by (subst emeasure-interval-measure-Ioc) (simp-all add : nondecF right-cont-F)
also have . . . = emeasure ?F (

⋃
i ::nat . {− real i<..real i})

by (rule SUP-emeasure-incseq) (auto simp: incseq-def)
also have (

⋃
i . {− real (i ::nat)<..real i}) = space ?F

by (simp add : UN-Ioc-eq-UNIV)
finally show emeasure ?F (space ?F) = 1

by (simp add : one-ereal-def)
qed
show ?thesis

proof qed simp-all
qed

lemma cdf-interval-measure:

THEORY “Weak-Convergence” 714

fixes F :: real ⇒ real
assumes nondecF :

∧
x y . x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0) at-bot and
lim-F-at-top : (F −−−→ 1) at-top

shows cdf (interval-measure F) = F
unfolding cdf-def

proof (intro ext)
interpret real-distribution interval-measure F

by (rule real-distribution-interval-measure) fact+
fix x
have F x − 0 = measure (interval-measure F) (

⋃
i ::nat . {−real i <.. x})

proof (intro LIMSEQ-unique[OF - finite-Lim-measure-incseq])
have (λi . F x − F (− real i)) −−−−→ F x − 0
by (intro tendsto-intros lim-F-at-bot [THEN filterlim-compose] filterlim-real-sequentially

filterlim-uminus-at-top[THEN iffD1])
then show (λi . measure (interval-measure F) {− real i<..x}) −−−−→ F x − 0

apply (rule filterlim-cong [OF refl refl , THEN iffD1 , rotated])
apply (rule eventually-sequentiallyI [where c=nat (ceiling (− x))])
apply (simp add : measure-interval-measure-Ioc right-cont-F nondecF)
done

qed (auto simp: incseq-def)
also have (

⋃
i ::nat . {−real i <.. x}) = {..x}

by auto (metis minus-minus neg-less-iff-less reals-Archimedean2)
finally show measure (interval-measure F) {..x} = F x

by simp
qed

end

34 Weak Convergence of Functions and Distribu-
tions

Properties of weak convergence of functions and measures, including the
portmanteau theorem.

theory Weak-Convergence
imports Distribution-Functions

begin

35 Weak Convergence of Functions

definition
weak-conv :: (nat ⇒ (real ⇒ real)) ⇒ (real ⇒ real) ⇒ bool

where
weak-conv F-seq F ≡ ∀ x . isCont F x −→ (λn. F-seq n x) −−−−→ F x

THEORY “Weak-Convergence” 715

36 Weak Convergence of Distributions

definition
weak-conv-m :: (nat ⇒ real measure) ⇒ real measure ⇒ bool

where
weak-conv-m M-seq M ≡ weak-conv (λn. cdf (M-seq n)) (cdf M)

37 Skorohod’s theorem

locale right-continuous-mono =
fixes f :: real ⇒ real and a b :: real
assumes cont :

∧
x . continuous (at-right x) f

assumes mono: mono f
assumes bot : (f −−−→ a) at-bot
assumes top: (f −−−→ b) at-top

begin

abbreviation I :: real ⇒ real where
I ω ≡ Inf {x . ω ≤ f x}

lemma pseudoinverse: assumes a < ω ω < b shows ω ≤ f x ←→ I ω ≤ x
proof

let ?F = {x . ω ≤ f x}
obtain y where f y < ω
by (metis eventually-happens ′ trivial-limit-at-bot-linorder order-tendstoD(2) bot

〈a < ω〉)
with mono have bdd : bdd-below ?F

by (auto intro!: bdd-belowI [of - y] elim: mono-invE [OF - less-le-trans])

have ne: ?F 6= {}
using order-tendstoD(1)[OF top 〈ω < b〉]

by (auto dest !: eventually-happens ′[OF trivial-limit-at-top-linorder] intro: less-imp-le)

show ω ≤ f x =⇒ I ω ≤ x
by (auto intro!: cInf-lower bdd)

{ assume ∗: I ω ≤ x
have ω ≤ (INF s:{x . ω ≤ f x}. f s)

by (rule cINF-greatest [OF ne]) auto
also have . . . = f (I ω)

using continuous-at-Inf-mono[OF mono cont ne bdd] ..
also have . . . ≤ f x

using ∗ by (rule monoD [OF 〈mono f 〉])
finally show ω ≤ f x . }

qed

lemma pseudoinverse ′: ∀ω∈{a<..<b}. ∀ x . ω ≤ f x ←→ I ω ≤ x
by (intro ballI allI impI pseudoinverse) auto

THEORY “Weak-Convergence” 716

lemma mono-I : mono-on I {a <..< b}
unfolding mono-on-def by (metis order .trans order .refl pseudoinverse ′)

end

locale cdf-distribution = real-distribution
begin

abbreviation C ≡ cdf M

sublocale right-continuous-mono C 0 1
by standard

(auto intro: cdf-nondecreasing cdf-is-right-cont cdf-lim-at-top-prob cdf-lim-at-bot
monoI)

lemma measurable-C [measurable]: C ∈ borel-measurable borel
by (intro borel-measurable-mono mono)

lemma measurable-CI [measurable]: I ∈ borel-measurable (restrict-space borel {0<..<1})
by (intro borel-measurable-mono-on-fnc mono-I)

lemma emeasure-distr-I : emeasure (distr (restrict-space lborel {0<..<1 ::real})
borel I) UNIV = 1

by (simp add : emeasure-distr space-restrict-space emeasure-restrict-space)

lemma distr-I-eq-M : distr (restrict-space lborel {0<..<1 ::real}) borel I = M (is
?I = -)
proof (intro cdf-unique ext)

let ?Ω = restrict-space lborel {0<..<1}::real measure
interpret Ω: prob-space ?Ω
by (auto simp add : emeasure-restrict-space space-restrict-space intro!: prob-spaceI)
show real-distribution ?I

by auto

fix x
have cdf ?I x = measure lborel {ω∈{0<..<1}. ω ≤ C x}

by (subst cdf-def)
(auto simp: pseudoinverse[symmetric] measure-distr space-restrict-space

measure-restrict-space
intro!: arg-cong2 [where f =measure])

also have . . . = measure lborel {0 <..< C x}
using cdf-bounded-prob[of x] AE-lborel-singleton[of C x]

by (auto intro!: arg-cong [where f =enn2real] emeasure-eq-AE simp: measure-def)
also have . . . = C x

by (simp add : cdf-nonneg)
finally show cdf (distr ?Ω borel I) x = C x .

qed standard

end

THEORY “Weak-Convergence” 717

context
fixes µ :: nat ⇒ real measure

and M :: real measure
assumes µ:

∧
n. real-distribution (µ n)

assumes M : real-distribution M
assumes µ-to-M : weak-conv-m µ M

begin

theorem Skorohod :
∃ (Ω :: real measure) (Y-seq :: nat ⇒ real ⇒ real) (Y :: real ⇒ real).

prob-space Ω ∧
(∀n. Y-seq n ∈ measurable Ω borel) ∧
(∀n. distr Ω borel (Y-seq n) = µ n) ∧
Y ∈ measurable Ω lborel ∧
distr Ω borel Y = M ∧
(∀ x ∈ space Ω. (λn. Y-seq n x) −−−−→ Y x)

proof −
interpret µ: cdf-distribution µ n for n

unfolding cdf-distribution-def by (rule µ)
interpret M : cdf-distribution M

unfolding cdf-distribution-def by (rule M)

have conv : measure M {x} = 0 =⇒ (λn. µ.C n x) −−−−→ M .C x for x
using µ-to-M M .isCont-cdf by (auto simp: weak-conv-m-def weak-conv-def)

let ?Ω = restrict-space lborel {0<..<1} :: real measure
have prob-space ?Ω

by (auto simp: space-restrict-space emeasure-restrict-space intro!: prob-spaceI)
interpret Ω: prob-space ?Ω

by fact

have Y-distr : distr ?Ω borel M .I = M
by (rule M .distr-I-eq-M)

have Y-cts-cnv : (λn. µ.I n ω) −−−−→ M .I ω
if ω: ω ∈ {0<..<1} isCont M .I ω for ω :: real

proof (intro limsup-le-liminf-real)
show liminf (λn. µ.I n ω) ≥ M .I ω

unfolding le-Liminf-iff
proof safe

fix B :: ereal assume B : B < M .I ω
then show ∀ F n in sequentially . B < µ.I n ω
proof (cases B)

case (real r)
with B have r : r < M .I ω

by simp
then obtain x where x : r < x x < M .I ω measure M {x} = 0

THEORY “Weak-Convergence” 718

using open-minus-countable[OF M .countable-support , of {r<..<M .I ω}]
by auto

then have Fx-less: M .C x < ω
using M .pseudoinverse ′ ω not-less by blast

have ∀ F n in sequentially . µ.C n x < ω
using order-tendstoD(2)[OF conv [OF x (3)] Fx-less] .

then have ∀ F n in sequentially . x < µ.I n ω
by eventually-elim (insert ω µ.pseudoinverse[symmetric], simp add :

not-le[symmetric])
then show ?thesis

by eventually-elim (insert x (1), simp add : real)
qed auto

qed

have ∗: limsup (λn. µ.I n ω) ≤ M .I ω ′

if ω ′: 0 < ω ′ ω ′ < 1 ω < ω ′ for ω ′ :: real
proof (rule dense-ge-bounded)

fix B ′ assume ereal (M .I ω ′) < B ′ B ′ < ereal (M .I ω ′ + 1)
then obtain B where M .I ω ′ < B and [simp]: B ′ = ereal B

by (cases B ′) auto
then obtain y where y : M .I ω ′ < y y < B measure M {y} = 0

using open-minus-countable[OF M .countable-support , of {M .I ω ′<..<B}]
by auto

then have ω ′ ≤ M .C (M .I ω ′)
using M .pseudoinverse ′ ω ′ by (metis greaterThanLessThan-iff order-refl)

also have ... ≤ M .C y
using M .mono y unfolding mono-def by auto

finally have Fy-gt : ω < M .C y
using ω ′(3) by simp

have ∀ F n in sequentially . ω ≤ µ.C n y
using order-tendstoD(1)[OF conv [OF y(3)] Fy-gt] by eventually-elim (rule

less-imp-le)
then have 2 : ∀ F n in sequentially . µ.I n ω ≤ ereal y

by simp (subst µ.pseudoinverse ′[rule-format , OF ω(1), symmetric])
then show limsup (λn. µ.I n ω) ≤ B ′

using 〈y < B 〉

by (intro Limsup-bounded [rotated]) (auto intro: le-less-trans elim: eventually-mono)
qed simp

have ∗∗: (M .I −−−→ ereal (M .I ω)) (at-right ω)
using ω(2) by (auto intro: tendsto-within-subset simp: continuous-at)

show limsup (λn. µ.I n ω) ≤ M .I ω
using ω
by (intro tendsto-le-const [OF trivial-limit-at-right-real ∗∗])

(auto intro!: exI [of - 1] ∗ simp: eventually-at-right [of - 1])
qed

THEORY “Weak-Convergence” 719

let ?D = {ω∈{0<..<1}. ¬ isCont M .I ω}
have D-countable: countable ?D

using mono-on-ctble-discont [OF M .mono-I] by (simp add : at-within-open[of -
{0 <..< 1}] cong : conj-cong)

hence D : emeasure ?Ω ?D = 0
using emeasure-lborel-countable[OF D-countable]
by (subst emeasure-restrict-space) auto

def Y ′ ≡ λω. if ω ∈ ?D then 0 else M .I ω
have Y ′-AE : AE ω in ?Ω. Y ′ ω = M .I ω

by (rule AE-I [OF - D]) (auto simp: space-restrict-space sets-restrict-space-iff
Y ′-def)

def Y-seq ′ ≡ λn ω. if ω ∈ ?D then 0 else µ.I n ω
have Y-seq ′-AE :

∧
n. AE ω in ?Ω. Y-seq ′ n ω = µ.I n ω

by (rule AE-I [OF - D]) (auto simp: space-restrict-space sets-restrict-space-iff
Y-seq ′-def)

have Y ′-cnv : ∀ω∈{0<..<1}. (λn. Y-seq ′ n ω) −−−−→ Y ′ ω
by (auto simp: Y ′-def Y-seq ′-def Y-cts-cnv)

have [simp]: Y-seq ′ n ∈ borel-measurable ?Ω for n
by (rule measurable-discrete-difference[of µ.I n - - ?D])

(insert µ.measurable-CI [of n] D-countable, auto simp: sets-restrict-space
Y-seq ′-def)

moreover have distr ?Ω borel (Y-seq ′ n) = µ n for n
using µ.distr-I-eq-M [of n] Y-seq ′-AE [of n]
by (subst distr-cong-AE [where f = Y-seq ′ n and g = µ.I n], auto)

moreover have [simp]: Y ′ ∈ borel-measurable ?Ω
by (rule measurable-discrete-difference[of M .I - - ?D])

(insert M .measurable-CI D-countable, auto simp: sets-restrict-space Y ′-def)
moreover have distr ?Ω borel Y ′ = M

using M .distr-I-eq-M Y ′-AE
by (subst distr-cong-AE [where f = Y ′ and g = M .I], auto)

ultimately have prob-space ?Ω ∧ (∀n. Y-seq ′ n ∈ borel-measurable ?Ω) ∧
(∀n. distr ?Ω borel (Y-seq ′ n) = µ n) ∧ Y ′ ∈ measurable ?Ω lborel ∧ distr ?Ω

borel Y ′ = M ∧
(∀ x∈space ?Ω. (λn. Y-seq ′ n x) −−−−→ Y ′ x)
using Y ′-cnv 〈prob-space ?Ω〉 by (auto simp: space-restrict-space)

thus ?thesis by metis
qed

The Portmanteau theorem, that is, the equivalence of various definitions of
weak convergence.

theorem weak-conv-imp-bdd-ae-continuous-conv :
fixes

f :: real ⇒ ′a::{banach, second-countable-topology}
assumes

discont-null : M ({x . ¬ isCont f x}) = 0 and

THEORY “Weak-Convergence” 720

f-bdd :
∧

x . norm (f x) ≤ B and
[measurable]: f ∈ borel-measurable borel

shows
(λ n. integralL (µ n) f) −−−−→ integralL M f

proof −
have 0 ≤ B

using norm-ge-zero f-bdd by (rule order-trans)
note Skorohod
then obtain Omega Y-seq Y where

ps-Omega [simp]: prob-space Omega and
Y-seq-measurable [measurable]:

∧
n. Y-seq n ∈ borel-measurable Omega and

distr-Y-seq :
∧

n. distr Omega borel (Y-seq n) = µ n and
Y-measurable [measurable]: Y ∈ borel-measurable Omega and
distr-Y : distr Omega borel Y = M and
YnY :

∧
x :: real . x ∈ space Omega =⇒ (λn. Y-seq n x) −−−−→ Y x by force

interpret prob-space Omega by fact
have ∗: emeasure Omega (Y −‘ {x . ¬ isCont f x} ∩ space Omega) = 0

by (subst emeasure-distr [symmetric, where N =borel]) (auto simp: distr-Y
discont-null)

have ∗: AE x in Omega. (λn. f (Y-seq n x)) −−−−→ f (Y x)
by (rule AE-I [OF - ∗]) (auto intro: isCont-tendsto-compose YnY)

show ?thesis
by (auto intro!: integral-dominated-convergence[where w=λx . B]

simp: f-bdd ∗ integral-distr distr-Y-seq [symmetric] distr-Y [symmetric])
qed

theorem weak-conv-imp-integral-bdd-continuous-conv :
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes∧

x . isCont f x and∧
x . norm (f x) ≤ B

shows
(λ n. integralL (µ n) f) −−−−→ integralL M f

using assms
by (intro weak-conv-imp-bdd-ae-continuous-conv)

(auto intro!: borel-measurable-continuous-on1 continuous-at-imp-continuous-on)

theorem weak-conv-imp-continuity-set-conv :
fixes f :: real ⇒ real
assumes [measurable]: A ∈ sets borel and M (frontier A) = 0
shows (λn. measure (µ n) A) −−−−→ measure M A

proof −
interpret M : real-distribution M by fact
interpret µ: real-distribution µ n for n by fact

have (λn. (
∫

x . indicator A x ∂µ n) :: real) −−−−→ (
∫

x . indicator A x ∂M)
by (intro weak-conv-imp-bdd-ae-continuous-conv [where B=1])

(auto intro: assms simp: isCont-indicator)
then show ?thesis

THEORY “Weak-Convergence” 721

by simp
qed

end

definition
cts-step :: real ⇒ real ⇒ real ⇒ real

where
cts-step a b x ≡ if x ≤ a then 1 else if x ≥ b then 0 else (b − x) / (b − a)

lemma cts-step-uniformly-continuous:
assumes [arith]: a < b
shows uniformly-continuous-on UNIV (cts-step a b)
unfolding uniformly-continuous-on-def

proof clarsimp
fix e :: real assume [arith]: 0 < e
let ?d = min (e ∗ (b − a)) (b − a)
have ?d > 0

by (auto simp add : field-simps)
moreover have dist x ′ x < ?d =⇒ dist (cts-step a b x ′) (cts-step a b x) < e

for x x ′

by (auto simp: dist-real-def divide-simps cts-step-def)
ultimately show ∃ d > 0 . ∀ x x ′. dist x ′ x < d −→ dist (cts-step a b x ′) (cts-step

a b x) < e
by blast

qed

lemma (in real-distribution) integrable-cts-step: a < b =⇒ integrable M (cts-step
a b)

by (rule integrable-const-bound [of - 1]) (auto simp: cts-step-def [abs-def])

lemma (in real-distribution) cdf-cts-step:
assumes [arith]: x < y
shows cdf M x ≤ integralL M (cts-step x y) and integralL M (cts-step x y) ≤

cdf M y
proof −

have cdf M x = integralL M (indicator {..x})
by (simp add : cdf-def)

also have . . . ≤ expectation (cts-step x y)
by (intro integral-mono integrable-cts-step)

(auto simp: cts-step-def less-top[symmetric] split : split-indicator)
finally show cdf M x ≤ expectation (cts-step x y) .

next
have expectation (cts-step x y) ≤ integralL M (indicator {..y})

by (intro integral-mono integrable-cts-step)
(auto simp: cts-step-def less-top[symmetric] split : split-indicator)

also have . . . = cdf M y
by (simp add : cdf-def)

finally show expectation (cts-step x y) ≤ cdf M y .

THEORY “Weak-Convergence” 722

qed

context
fixes M-seq :: nat ⇒ real measure

and M :: real measure
assumes distr-M-seq [simp]:

∧
n. real-distribution (M-seq n)

assumes distr-M [simp]: real-distribution M
begin

theorem continuity-set-conv-imp-weak-conv :
fixes f :: real ⇒ real
assumes ∗:

∧
A. A ∈ sets borel =⇒ M (frontier A) = 0 =⇒ (λ n. (measure

(M-seq n) A)) −−−−→ measure M A
shows weak-conv-m M-seq M

proof −
interpret real-distribution M by simp
show ?thesis
by (auto intro!: ∗ simp: frontier-real-Iic isCont-cdf emeasure-eq-measure weak-conv-m-def

weak-conv-def cdf-def2)
qed

theorem integral-cts-step-conv-imp-weak-conv :
assumes integral-conv :

∧
x y . x < y =⇒ (λn. integralL (M-seq n) (cts-step x y))

−−−−→ integralL M (cts-step x y)
shows weak-conv-m M-seq M
unfolding weak-conv-m-def weak-conv-def

proof (clarsimp)
interpret real-distribution M by (rule distr-M)
fix x assume isCont (cdf M) x
hence left-cont : continuous (at-left x) (cdf M)

unfolding continuous-at-split ..
{ fix y :: real assume [arith]: x < y
have limsup (λn. cdf (M-seq n) x) ≤ limsup (λn. integralL (M-seq n) (cts-step

x y))
by (auto intro!: Limsup-mono always-eventually real-distribution.cdf-cts-step)

also have . . . = integralL M (cts-step x y)
by (intro lim-imp-Limsup) (auto intro: integral-conv)

also have . . . ≤ cdf M y
by (simp add : cdf-cts-step)

finally have limsup (λn. cdf (M-seq n) x) ≤ cdf M y .
} note ∗ = this
{ fix y :: real assume [arith]: x > y

have cdf M y ≤ ereal (integralL M (cts-step y x))
by (simp add : cdf-cts-step)

also have . . . = liminf (λn. integralL (M-seq n) (cts-step y x))
by (intro lim-imp-Liminf [symmetric]) (auto intro: integral-conv)

also have . . . ≤ liminf (λn. cdf (M-seq n) x)
by (auto intro!: Liminf-mono always-eventually real-distribution.cdf-cts-step)

finally have liminf (λn. cdf (M-seq n) x) ≥ cdf M y .

THEORY “Independent-Family” 723

} note ∗∗ = this

have limsup (λn. cdf (M-seq n) x) ≤ cdf M x
proof (rule tendsto-le-const)

show ∀ F i in at-right x . limsup (λxa. ereal (cdf (M-seq xa) x)) ≤ ereal (cdf
M i)

by (subst eventually-at-right [of - x + 1]) (auto simp: ∗ intro: exI [of - x+1])
qed (insert cdf-is-right-cont , auto simp: continuous-within)
moreover have cdf M x ≤ liminf (λn. cdf (M-seq n) x)
proof (rule tendsto-ge-const)

show ∀ F i in at-left x . ereal (cdf M i) ≤ liminf (λxa. ereal (cdf (M-seq xa)
x))

by (subst eventually-at-left [of x − 1]) (auto simp: ∗∗ intro: exI [of - x−1])
qed (insert left-cont , auto simp: continuous-within)
ultimately show (λn. cdf (M-seq n) x) −−−−→ cdf M x

by (elim limsup-le-liminf-real)
qed

theorem integral-bdd-continuous-conv-imp-weak-conv :
assumes∧

f . (
∧

x . isCont f x) =⇒ (
∧

x . abs (f x) ≤ 1) =⇒ (λn. integralL (M-seq n)
f ::real) −−−−→ integralL M f

shows
weak-conv-m M-seq M

apply (rule integral-cts-step-conv-imp-weak-conv [OF assms])
apply (rule continuous-on-interior)
apply (rule uniformly-continuous-imp-continuous)
apply (rule cts-step-uniformly-continuous)
apply (auto simp: cts-step-def)
done

end

end

38 Independent families of events, event sets, and
random variables

theory Independent-Family
imports Probability-Measure Infinite-Product-Measure

begin

definition (in prob-space)
indep-sets F I ←→ (∀ i∈I . F i ⊆ events) ∧

(∀ J⊆I . J 6= {} −→ finite J −→ (∀A∈Pi J F . prob (
⋂

j∈J . A j) = (
∏

j∈J .
prob (A j))))

definition (in prob-space)

THEORY “Independent-Family” 724

indep-set A B ←→ indep-sets (case-bool A B) UNIV

definition (in prob-space)
indep-events-def-alt : indep-events A I ←→ indep-sets (λi . {A i}) I

lemma (in prob-space) indep-events-def :
indep-events A I ←→ (A‘I ⊆ events) ∧

(∀ J⊆I . J 6= {} −→ finite J −→ prob (
⋂

j∈J . A j) = (
∏

j∈J . prob (A j)))
unfolding indep-events-def-alt indep-sets-def
apply (simp add : Ball-def Pi-iff image-subset-iff-funcset)
apply (intro conj-cong refl arg-cong [where f =All] ext imp-cong)
apply auto
done

lemma (in prob-space) indep-eventsI :
(
∧

i . i ∈ I =⇒ F i ∈ sets M) =⇒ (
∧

J . J ⊆ I =⇒ finite J =⇒ J 6= {} =⇒ prob
(
⋂

i∈J . F i) = (
∏

i∈J . prob (F i))) =⇒ indep-events F I
by (auto simp: indep-events-def)

definition (in prob-space)
indep-event A B ←→ indep-events (case-bool A B) UNIV

lemma (in prob-space) indep-sets-cong :
I = J =⇒ (

∧
i . i ∈ I =⇒ F i = G i) =⇒ indep-sets F I ←→ indep-sets G J

by (simp add : indep-sets-def , intro conj-cong all-cong imp-cong ball-cong) blast+

lemma (in prob-space) indep-events-finite-index-events:
indep-events F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-events F J)
by (auto simp: indep-events-def)

lemma (in prob-space) indep-sets-finite-index-sets:
indep-sets F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-sets F J)

proof (intro iffI allI impI)
assume ∗: ∀ J⊆I . J 6= {} −→ finite J −→ indep-sets F J
show indep-sets F I unfolding indep-sets-def
proof (intro conjI ballI allI impI)

fix i assume i ∈ I
with ∗[THEN spec, of {i}] show F i ⊆ events

by (auto simp: indep-sets-def)
qed (insert ∗, auto simp: indep-sets-def)

qed (auto simp: indep-sets-def)

lemma (in prob-space) indep-sets-mono-index :
J ⊆ I =⇒ indep-sets F I =⇒ indep-sets F J
unfolding indep-sets-def by auto

lemma (in prob-space) indep-sets-mono-sets:
assumes indep: indep-sets F I
assumes mono:

∧
i . i∈I =⇒ G i ⊆ F i

THEORY “Independent-Family” 725

shows indep-sets G I
proof −

have (∀ i∈I . F i ⊆ events) =⇒ (∀ i∈I . G i ⊆ events)
using mono by auto

moreover have
∧

A J . J ⊆ I =⇒ A ∈ (Π j∈J . G j) =⇒ A ∈ (Π j∈J . F j)
using mono by (auto simp: Pi-iff)

ultimately show ?thesis
using indep by (auto simp: indep-sets-def)

qed

lemma (in prob-space) indep-sets-mono:
assumes indep: indep-sets F I
assumes mono: J ⊆ I

∧
i . i∈J =⇒ G i ⊆ F i

shows indep-sets G J
apply (rule indep-sets-mono-sets)
apply (rule indep-sets-mono-index)
apply (fact +)
done

lemma (in prob-space) indep-setsI :
assumes

∧
i . i ∈ I =⇒ F i ⊆ events

and
∧

A J . J 6= {} =⇒ J ⊆ I =⇒ finite J =⇒ (∀ j∈J . A j ∈ F j) =⇒ prob
(
⋂

j∈J . A j) = (
∏

j∈J . prob (A j))
shows indep-sets F I
using assms unfolding indep-sets-def by (auto simp: Pi-iff)

lemma (in prob-space) indep-setsD :
assumes indep-sets F I and J ⊆ I J 6= {} finite J ∀ j∈J . A j ∈ F j
shows prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

using assms unfolding indep-sets-def by auto

lemma (in prob-space) indep-setI :
assumes ev : A ⊆ events B ⊆ events

and indep:
∧

a b. a ∈ A =⇒ b ∈ B =⇒ prob (a ∩ b) = prob a ∗ prob b
shows indep-set A B
unfolding indep-set-def

proof (rule indep-setsI)
fix F J assume J 6= {} J ⊆ UNIV

and F : ∀ j∈J . F j ∈ (case j of True ⇒ A | False ⇒ B)
have J ∈ Pow UNIV by auto
with F 〈J 6= {}〉 indep[of F True F False]
show prob (

⋂
j∈J . F j) = (

∏
j∈J . prob (F j))

unfolding UNIV-bool Pow-insert by (auto simp: ac-simps)
qed (auto split : bool .split simp: ev)

lemma (in prob-space) indep-setD :
assumes indep: indep-set A B and ev : a ∈ A b ∈ B
shows prob (a ∩ b) = prob a ∗ prob b
using indep[unfolded indep-set-def , THEN indep-setsD , of UNIV case-bool a b]

THEORY “Independent-Family” 726

ev
by (simp add : ac-simps UNIV-bool)

lemma (in prob-space)
assumes indep: indep-set A B
shows indep-setD-ev1 : A ⊆ events

and indep-setD-ev2 : B ⊆ events
using indep unfolding indep-set-def indep-sets-def UNIV-bool by auto

lemma (in prob-space) indep-sets-dynkin:
assumes indep: indep-sets F I
shows indep-sets (λi . dynkin (space M) (F i)) I

(is indep-sets ?F I)
proof (subst indep-sets-finite-index-sets, intro allI impI ballI)

fix J assume finite J J ⊆ I J 6= {}
with indep have indep-sets F J

by (subst (asm) indep-sets-finite-index-sets) auto
{ fix J K assume indep-sets F K

let ?G = λS i . if i ∈ S then ?F i else F i
assume finite J J ⊆ K
then have indep-sets (?G J) K
proof induct

case (insert j J)
moreover def G ≡ ?G J
ultimately have G : indep-sets G K

∧
i . i ∈ K =⇒ G i ⊆ events and j ∈ K

by (auto simp: indep-sets-def)
let ?D = {E∈events. indep-sets (G(j := {E})) K }
{ fix X assume X : X ∈ events
assume indep:

∧
J A. J 6= {} =⇒ J ⊆ K =⇒ finite J =⇒ j /∈ J =⇒ (∀ i∈J .

A i ∈ G i)
=⇒ prob ((

⋂
i∈J . A i) ∩ X) = prob X ∗ (

∏
i∈J . prob (A i))

have indep-sets (G(j := {X })) K
proof (rule indep-setsI)

fix i assume i ∈ K then show (G(j :={X })) i ⊆ events
using G X by auto

next
fix A J assume J : J 6= {} J ⊆ K finite J ∀ i∈J . A i ∈ (G(j := {X })) i
show prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

proof cases
assume j ∈ J
with J have A j = X by auto
show ?thesis
proof cases

assume J = {j} then show ?thesis by simp
next

assume J 6= {j}
have prob (

⋂
i∈J . A i) = prob ((

⋂
i∈J−{j}. A i) ∩ X)

using 〈j ∈ J 〉 〈A j = X 〉 by (auto intro!: arg-cong [where f =prob]
split : if-split-asm)

THEORY “Independent-Family” 727

also have . . . = prob X ∗ (
∏

i∈J−{j}. prob (A i))
proof (rule indep)

show J − {j} 6= {} J − {j} ⊆ K finite (J − {j}) j /∈ J − {j}
using J 〈J 6= {j}〉 〈j ∈ J 〉 by auto

show ∀ i∈J − {j}. A i ∈ G i
using J by auto

qed
also have . . . = prob (A j) ∗ (

∏
i∈J−{j}. prob (A i))

using 〈A j = X 〉 by simp
also have . . . = (

∏
i∈J . prob (A i))

unfolding setprod .insert-remove[OF 〈finite J 〉, symmetric, of λi .
prob (A i)]

using 〈j ∈ J 〉 by (simp add : insert-absorb)
finally show ?thesis .

qed
next

assume j /∈ J
with J have ∀ i∈J . A i ∈ G i by (auto split : if-split-asm)
with J show ?thesis

by (intro indep-setsD [OF G(1)]) auto
qed

qed }
note indep-sets-insert = this
have dynkin-system (space M) ?D
proof (rule dynkin-systemI ′, simp-all cong del : indep-sets-cong , safe)

show indep-sets (G(j := {{}})) K
by (rule indep-sets-insert) auto

next
fix X assume X : X ∈ events and G ′: indep-sets (G(j := {X })) K
show indep-sets (G(j := {space M − X })) K
proof (rule indep-sets-insert)
fix J A assume J : J 6= {} J ⊆ K finite J j /∈ J and A: ∀ i∈J . A i ∈ G i
then have A-sets:

∧
i . i∈J =⇒ A i ∈ events

using G by auto
have prob ((

⋂
j∈J . A j) ∩ (space M − X)) =

prob ((
⋂

j∈J . A j) − (
⋂

i∈insert j J . (A(j := X)) i))
using A-sets sets.sets-into-space[of - M] X 〈J 6= {}〉
by (auto intro!: arg-cong [where f =prob] split : if-split-asm)

also have . . . = prob (
⋂

j∈J . A j) − prob (
⋂

i∈insert j J . (A(j := X)) i)
using J 〈J 6= {}〉 〈j /∈ J 〉 A-sets X sets.sets-into-space
by (auto intro!: finite-measure-Diff sets.finite-INT split : if-split-asm)

finally have prob ((
⋂

j∈J . A j) ∩ (space M − X)) =
prob (

⋂
j∈J . A j) − prob (

⋂
i∈insert j J . (A(j := X)) i) .

moreover {
have prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

using J A 〈finite J 〉 by (intro indep-setsD [OF G(1)]) auto
then have prob (

⋂
j∈J . A j) = prob (space M) ∗ (

∏
i∈J . prob (A i))

using prob-space by simp }
moreover {

THEORY “Independent-Family” 728

have prob (
⋂

i∈insert j J . (A(j := X)) i) = (
∏

i∈insert j J . prob ((A(j
:= X)) i))

using J A 〈j ∈ K 〉 by (intro indep-setsD [OF G ′]) auto
then have prob (

⋂
i∈insert j J . (A(j := X)) i) = prob X ∗ (

∏
i∈J .

prob (A i))
using 〈finite J 〉 〈j /∈ J 〉 by (auto intro!: setprod .cong) }

ultimately have prob ((
⋂

j∈J . A j) ∩ (space M − X)) = (prob (space
M) − prob X) ∗ (

∏
i∈J . prob (A i))

by (simp add : field-simps)
also have . . . = prob (space M − X) ∗ (

∏
i∈J . prob (A i))

using X A by (simp add : finite-measure-compl)
finally show prob ((

⋂
j∈J . A j) ∩ (space M − X)) = prob (space M −

X) ∗ (
∏

i∈J . prob (A i)) .
qed (insert X , auto)

next
fix F :: nat ⇒ ′a set assume disj : disjoint-family F and range F ⊆ ?D
then have F :

∧
i . F i ∈ events

∧
i . indep-sets (G(j :={F i})) K by auto

show indep-sets (G(j := {
⋃

k . F k})) K
proof (rule indep-sets-insert)
fix J A assume J : j /∈ J J 6= {} J ⊆ K finite J and A: ∀ i∈J . A i ∈ G i
then have A-sets:

∧
i . i∈J =⇒ A i ∈ events

using G by auto
have prob ((

⋂
j∈J . A j) ∩ (

⋃
k . F k)) = prob (

⋃
k . (

⋂
i∈insert j J . (A(j

:= F k)) i))
using 〈J 6= {}〉 〈j /∈ J 〉 〈j ∈ K 〉 by (auto intro!: arg-cong [where f =prob]

split : if-split-asm)
moreover have (λk . prob (

⋂
i∈insert j J . (A(j := F k)) i)) sums prob

(
⋃

k . (
⋂

i∈insert j J . (A(j := F k)) i))
proof (rule finite-measure-UNION)

show disjoint-family (λk .
⋂

i∈insert j J . (A(j := F k)) i)
using disj by (rule disjoint-family-on-bisimulation) auto

show range (λk .
⋂

i∈insert j J . (A(j := F k)) i) ⊆ events
using A-sets F 〈finite J 〉 〈J 6= {}〉 〈j /∈ J 〉 by (auto intro!: sets.Int)

qed
moreover { fix k

from J A 〈j ∈ K 〉 have prob (
⋂

i∈insert j J . (A(j := F k)) i) = prob
(F k) ∗ (

∏
i∈J . prob (A i))

by (subst indep-setsD [OF F (2)]) (auto intro!: setprod .cong split :
if-split-asm)

also have . . . = prob (F k) ∗ prob (
⋂

i∈J . A i)
using J A 〈j ∈ K 〉 by (subst indep-setsD [OF G(1)]) auto

finally have prob (
⋂

i∈insert j J . (A(j := F k)) i) = prob (F k) ∗ prob
(
⋂

i∈J . A i) . }
ultimately have (λk . prob (F k) ∗ prob (

⋂
i∈J . A i)) sums (prob ((

⋂
j∈J .

A j) ∩ (
⋃

k . F k)))
by simp

moreover
have (λk . prob (F k) ∗ prob (

⋂
i∈J . A i)) sums (prob (

⋃
k . F k) ∗ prob

(
⋂

i∈J . A i))

THEORY “Independent-Family” 729

using disj F (1) by (intro finite-measure-UNION sums-mult2) auto
then have (λk . prob (F k) ∗ prob (

⋂
i∈J . A i)) sums (prob (

⋃
k . F k) ∗

(
∏

i∈J . prob (A i)))
using J A 〈j ∈ K 〉 by (subst indep-setsD [OF G(1), symmetric]) auto

ultimately
show prob ((

⋂
j∈J . A j) ∩ (

⋃
k . F k)) = prob (

⋃
k . F k) ∗ (

∏
j∈J . prob

(A j))
by (auto dest !: sums-unique)

qed (insert F , auto)
qed (insert sets.sets-into-space, auto)
then have mono: dynkin (space M) (G j) ⊆ {E ∈ events. indep-sets (G(j

:= {E})) K}
proof (rule dynkin-system.dynkin-subset , safe)

fix X assume X ∈ G j
then show X ∈ events using G 〈j ∈ K 〉 by auto
from 〈indep-sets G K 〉

show indep-sets (G(j := {X })) K
by (rule indep-sets-mono-sets) (insert 〈X ∈ G j 〉, auto)

qed
have indep-sets (G(j :=?D)) K
proof (rule indep-setsI)

fix i assume i ∈ K then show (G(j := ?D)) i ⊆ events
using G(2) by auto

next
fix A J assume J : J 6={} J ⊆ K finite J and A: ∀ i∈J . A i ∈ (G(j :=

?D)) i
show prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

proof cases
assume j ∈ J
with A have indep: indep-sets (G(j := {A j})) K by auto
from J A show ?thesis

by (intro indep-setsD [OF indep]) auto
next

assume j /∈ J
with J A have ∀ i∈J . A i ∈ G i by (auto split : if-split-asm)
with J show ?thesis

by (intro indep-setsD [OF G(1)]) auto
qed

qed
then have indep-sets (G(j := dynkin (space M) (G j))) K

by (rule indep-sets-mono-sets) (insert mono, auto)
then show ?case

by (rule indep-sets-mono-sets) (insert 〈j ∈ K 〉 〈j /∈ J 〉, auto simp: G-def)
qed (insert 〈indep-sets F K 〉, simp) }

from this[OF 〈indep-sets F J 〉 〈finite J 〉 subset-refl]
show indep-sets ?F J

by (rule indep-sets-mono-sets) auto
qed

THEORY “Independent-Family” 730

lemma (in prob-space) indep-sets-sigma:
assumes indep: indep-sets F I
assumes stable:

∧
i . i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi . sigma-sets (space M) (F i)) I
proof −

from indep-sets-dynkin[OF indep]
show ?thesis
proof (rule indep-sets-mono-sets, subst sigma-eq-dynkin, simp-all add : stable)

fix i assume i ∈ I
with indep have F i ⊆ events by (auto simp: indep-sets-def)
with sets.sets-into-space show F i ⊆ Pow (space M) by auto

qed
qed

lemma (in prob-space) indep-sets-sigma-sets-iff :
assumes

∧
i . i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi . sigma-sets (space M) (F i)) I ←→ indep-sets F I
proof

assume indep-sets F I then show indep-sets (λi . sigma-sets (space M) (F i)) I
by (rule indep-sets-sigma) fact

next
assume indep-sets (λi . sigma-sets (space M) (F i)) I then show indep-sets F I

by (rule indep-sets-mono-sets) (intro subsetI sigma-sets.Basic)
qed

definition (in prob-space)
indep-vars-def2 : indep-vars M ′ X I ←→

(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi . { X i −‘ A ∩ space M | A. A ∈ sets (M ′ i)}) I

definition (in prob-space)
indep-var Ma A Mb B ←→ indep-vars (case-bool Ma Mb) (case-bool A B) UNIV

lemma (in prob-space) indep-vars-def :
indep-vars M ′ X I ←→

(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi . sigma-sets (space M) { X i −‘ A ∩ space M | A. A ∈ sets (M ′

i)}) I
unfolding indep-vars-def2
apply (rule conj-cong [OF refl])
apply (rule indep-sets-sigma-sets-iff [symmetric])
apply (auto simp: Int-stable-def)
apply (rule-tac x=A ∩ Aa in exI)
apply auto
done

lemma (in prob-space) indep-var-eq :
indep-var S X T Y ←→

(random-variable S X ∧ random-variable T Y) ∧

THEORY “Independent-Family” 731

indep-set
(sigma-sets (space M) { X −‘ A ∩ space M | A. A ∈ sets S})
(sigma-sets (space M) { Y −‘ A ∩ space M | A. A ∈ sets T})

unfolding indep-var-def indep-vars-def indep-set-def UNIV-bool
by (intro arg-cong2 [where f =op ∧] arg-cong2 [where f =indep-sets] ext)

(auto split : bool .split)

lemma (in prob-space) indep-sets2-eq :
indep-set A B ←→ A ⊆ events ∧ B ⊆ events ∧ (∀ a∈A. ∀ b∈B . prob (a ∩ b) =

prob a ∗ prob b)
unfolding indep-set-def

proof (intro iffI ballI conjI)
assume indep: indep-sets (case-bool A B) UNIV
{ fix a b assume a ∈ A b ∈ B

with indep-setsD [OF indep, of UNIV case-bool a b]
show prob (a ∩ b) = prob a ∗ prob b

unfolding UNIV-bool by (simp add : ac-simps) }
from indep show A ⊆ events B ⊆ events

unfolding indep-sets-def UNIV-bool by auto
next

assume ∗: A ⊆ events ∧ B ⊆ events ∧ (∀ a∈A. ∀ b∈B . prob (a ∩ b) = prob a
∗ prob b)

show indep-sets (case-bool A B) UNIV
proof (rule indep-setsI)

fix i show (case i of True ⇒ A | False ⇒ B) ⊆ events
using ∗ by (auto split : bool .split)

next
fix J X assume J 6= {} J ⊆ UNIV and X : ∀ j∈J . X j ∈ (case j of True ⇒

A | False ⇒ B)
then have J = {True} ∨ J = {False} ∨ J = {True,False}

by (auto simp: UNIV-bool)
then show prob (

⋂
j∈J . X j) = (

∏
j∈J . prob (X j))

using X ∗ by auto
qed

qed

lemma (in prob-space) indep-set-sigma-sets:
assumes indep-set A B
assumes A: Int-stable A and B : Int-stable B
shows indep-set (sigma-sets (space M) A) (sigma-sets (space M) B)

proof −
have indep-sets (λi . sigma-sets (space M) (case i of True ⇒ A | False ⇒ B))

UNIV
proof (rule indep-sets-sigma)

show indep-sets (case-bool A B) UNIV
by (rule 〈indep-set A B 〉[unfolded indep-set-def])

fix i show Int-stable (case i of True ⇒ A | False ⇒ B)
using A B by (cases i) auto

qed

THEORY “Independent-Family” 732

then show ?thesis
unfolding indep-set-def
by (rule indep-sets-mono-sets) (auto split : bool .split)

qed

lemma (in prob-space) indep-eventsI-indep-vars:
assumes indep: indep-vars N X I
assumes P :

∧
i . i ∈ I =⇒ {x∈space (N i). P i x} ∈ sets (N i)

shows indep-events (λi . {x∈space M . P i (X i x)}) I
proof −

have indep-sets (λi . {X i −‘ A ∩ space M |A. A ∈ sets (N i)}) I
using indep unfolding indep-vars-def2 by auto

then show ?thesis
unfolding indep-events-def-alt

proof (rule indep-sets-mono-sets)
fix i assume i ∈ I
then have {{x ∈ space M . P i (X i x)}} = {X i −‘ {x∈space (N i). P i x}

∩ space M }
using indep by (auto simp: indep-vars-def dest : measurable-space)

also have . . . ⊆ {X i −‘ A ∩ space M |A. A ∈ sets (N i)}
using P [OF 〈i ∈ I 〉] by blast

finally show {{x ∈ space M . P i (X i x)}} ⊆ {X i −‘ A ∩ space M |A. A ∈
sets (N i)} .

qed
qed

lemma (in prob-space) indep-sets-collect-sigma:
fixes I :: ′j ⇒ ′i set and J :: ′j set and E :: ′i ⇒ ′a set set
assumes indep: indep-sets E (

⋃
j∈J . I j)

assumes Int-stable:
∧

i j . j ∈ J =⇒ i ∈ I j =⇒ Int-stable (E i)
assumes disjoint : disjoint-family-on I J
shows indep-sets (λj . sigma-sets (space M) (

⋃
i∈I j . E i)) J

proof −
let ?E = λj . {

⋂
k∈K . E ′ k | E ′ K . finite K ∧ K 6= {} ∧ K ⊆ I j ∧ (∀ k∈K . E ′

k ∈ E k) }

from indep have E :
∧

j i . j ∈ J =⇒ i ∈ I j =⇒ E i ⊆ events
unfolding indep-sets-def by auto
{ fix j

let ?S = sigma-sets (space M) (
⋃

i∈I j . E i)
assume j ∈ J
from E [OF this] interpret S : sigma-algebra space M ?S

using sets.sets-into-space[of - M] by (intro sigma-algebra-sigma-sets) auto

have sigma-sets (space M) (
⋃

i∈I j . E i) = sigma-sets (space M) (?E j)
proof (rule sigma-sets-eqI)

fix A assume A ∈ (
⋃

i∈I j . E i)
then guess i ..
then show A ∈ sigma-sets (space M) (?E j)

THEORY “Independent-Family” 733

by (auto intro!: sigma-sets.intros(2−) exI [of - {i}] exI [of - λi . A])
next

fix A assume A ∈ ?E j
then obtain E ′ K where finite K K 6= {} K ⊆ I j

∧
k . k ∈ K =⇒ E ′ k ∈

E k
and A: A = (

⋂
k∈K . E ′ k)

by auto
then have A ∈ ?S unfolding A

by (safe intro!: S .finite-INT) auto
then show A ∈ sigma-sets (space M) (

⋃
i∈I j . E i)

by simp
qed }

moreover have indep-sets (λj . sigma-sets (space M) (?E j)) J
proof (rule indep-sets-sigma)

show indep-sets ?E J
proof (intro indep-setsI)

fix j assume j ∈ J with E show ?E j ⊆ events by (force intro!:
sets.finite-INT)

next
fix K A assume K : K 6= {} K ⊆ J finite K

and ∀ j∈K . A j ∈ ?E j
then have ∀ j∈K . ∃E ′ L. A j = (

⋂
l∈L. E ′ l) ∧ finite L ∧ L 6= {} ∧ L ⊆ I

j ∧ (∀ l∈L. E ′ l ∈ E l)
by simp

from bchoice[OF this] guess E ′ ..
from bchoice[OF this] obtain L

where A:
∧

j . j∈K =⇒ A j = (
⋂

l∈L j . E ′ j l)
and L:

∧
j . j∈K =⇒ finite (L j)

∧
j . j∈K =⇒ L j 6= {}

∧
j . j∈K =⇒ L j

⊆ I j
and E ′:

∧
j l . j∈K =⇒ l ∈ L j =⇒ E ′ j l ∈ E l

by auto

{ fix k l j assume k ∈ K j ∈ K l ∈ L j l ∈ L k
have k = j
proof (rule ccontr)

assume k 6= j
with disjoint 〈K ⊆ J 〉 〈k ∈ K 〉 〈j ∈ K 〉 have I k ∩ I j = {}

unfolding disjoint-family-on-def by auto
with L(2 ,3)[OF 〈j ∈ K 〉] L(2 ,3)[OF 〈k ∈ K 〉]
show False using 〈l ∈ L k 〉 〈l ∈ L j 〉 by auto

qed }
note L-inj = this

def k ≡ λl . (SOME k . k ∈ K ∧ l ∈ L k)
{ fix x j l assume ∗: j ∈ K l ∈ L j

have k l = j unfolding k-def
proof (rule some-equality)

fix k assume k ∈ K ∧ l ∈ L k
with ∗ L-inj show k = j by auto

THEORY “Independent-Family” 734

qed (insert ∗, simp) }
note k-simp[simp] = this
let ?E ′ = λl . E ′ (k l) l
have prob (

⋂
j∈K . A j) = prob (

⋂
l∈(

⋃
k∈K . L k). ?E ′ l)

by (auto simp: A intro!: arg-cong [where f =prob])
also have . . . = (

∏
l∈(

⋃
k∈K . L k). prob (?E ′ l))

using L K E ′ by (intro indep-setsD [OF indep]) (simp-all add : UN-mono)
also have . . . = (

∏
j∈K .

∏
l∈L j . prob (E ′ j l))

using K L L-inj by (subst setprod .UNION-disjoint) auto
also have . . . = (

∏
j∈K . prob (A j))

using K L E ′ by (auto simp add : A intro!: setprod .cong indep-setsD [OF
indep, symmetric]) blast

finally show prob (
⋂

j∈K . A j) = (
∏

j∈K . prob (A j)) .
qed

next
fix j assume j ∈ J
show Int-stable (?E j)
proof (rule Int-stableI)

fix a assume a ∈ ?E j then obtain Ka Ea
where a: a = (

⋂
k∈Ka. Ea k) finite Ka Ka 6= {} Ka ⊆ I j

∧
k . k∈Ka =⇒

Ea k ∈ E k by auto
fix b assume b ∈ ?E j then obtain Kb Eb

where b: b = (
⋂

k∈Kb. Eb k) finite Kb Kb 6= {} Kb ⊆ I j
∧

k . k∈Kb =⇒
Eb k ∈ E k by auto

let ?f = λk . (if k ∈ Ka ∩ Kb then Ea k ∩ Eb k else if k ∈ Kb then Eb k else
if k ∈ Ka then Ea k else {})

have Ka ∪ Kb = (Ka ∩ Kb) ∪ (Kb − Ka) ∪ (Ka − Kb)
by blast

moreover have (
⋂

x∈Ka ∩ Kb. Ea x ∩ Eb x) ∩
(
⋂

x∈Kb − Ka. Eb x) ∩ (
⋂

x∈Ka − Kb. Ea x) = (
⋂

k∈Ka. Ea k) ∩
(
⋂

k∈Kb. Eb k)
by auto

ultimately have (
⋂

k∈Ka ∪ Kb. ?f k) = (
⋂

k∈Ka. Ea k) ∩ (
⋂

k∈Kb. Eb
k) (is ?lhs = ?rhs)

by (simp only : image-Un Inter-Un-distrib) simp
then have a ∩ b = (

⋂
k∈Ka ∪ Kb. ?f k)

by (simp only : a(1) b(1))
with a b 〈j ∈ J 〉 Int-stableD [OF Int-stable] show a ∩ b ∈ ?E j

by (intro CollectI exI [of - Ka ∪ Kb] exI [of - ?f]) auto
qed

qed
ultimately show ?thesis

by (simp cong : indep-sets-cong)
qed

lemma (in prob-space) indep-vars-restrict :
assumes ind : indep-vars M ′ X I and K :

∧
j . j ∈ L =⇒ K j ⊆ I and J :

disjoint-family-on K L
shows indep-vars (λj . PiM (K j) M ′) (λj ω. restrict (λi . X i ω) (K j)) L

THEORY “Independent-Family” 735

unfolding indep-vars-def
proof safe

fix j assume j ∈ L then show random-variable (PiM (K j) M ′) (λω. λi∈K j .
X i ω)

using K ind by (auto simp: indep-vars-def intro!: measurable-restrict)
next

have X :
∧

i . i ∈ I =⇒ X i ∈ measurable M (M ′ i)
using ind by (auto simp: indep-vars-def)

let ?proj = λj S . {(λω. λi∈K j . X i ω) −‘ A ∩ space M |A. A ∈ S}
let ?UN = λj . sigma-sets (space M) (

⋃
i∈K j . { X i −‘ A ∩ space M | A. A ∈

sets (M ′ i) })
show indep-sets (λi . sigma-sets (space M) (?proj i (sets (PiM (K i) M ′)))) L
proof (rule indep-sets-mono-sets)

fix j assume j : j ∈ L
have sigma-sets (space M) (?proj j (sets (PiM (K j) M ′))) =
sigma-sets (space M) (sigma-sets (space M) (?proj j (prod-algebra (K j) M ′)))
using j K X [THEN measurable-space] unfolding sets-PiM
by (subst sigma-sets-vimage-commute) (auto simp add : Pi-iff)

also have . . . = sigma-sets (space M) (?proj j (prod-algebra (K j) M ′))
by (rule sigma-sets-sigma-sets-eq) auto

also have . . . ⊆ ?UN j
proof (rule sigma-sets-mono, safe del : disjE elim!: prod-algebraE)

fix J E assume J : finite J J 6= {} ∨ K j = {} J ⊆ K j and E : ∀ i . i ∈ J
−→ E i ∈ sets (M ′ i)

show (λω. λi∈K j . X i ω) −‘ prod-emb (K j) M ′ J (PiE J E) ∩ space M ∈
?UN j

proof cases
assume K j = {} with J show ?thesis

by (auto simp add : sigma-sets-empty-eq prod-emb-def)
next

assume K j 6= {} with J have J 6= {}
by auto
{ interpret sigma-algebra space M ?UN j

by (rule sigma-algebra-sigma-sets) auto
have

∧
A. (

∧
i . i ∈ J =⇒ A i ∈ ?UN j) =⇒ INTER J A ∈ ?UN j

using 〈finite J 〉 〈J 6= {}〉 by (rule finite-INT) blast }
note INT = this

from 〈J 6= {}〉 J K E [rule-format , THEN sets.sets-into-space] j
have (λω. λi∈K j . X i ω) −‘ prod-emb (K j) M ′ J (PiE J E) ∩ space M

= (
⋂

i∈J . X i −‘ E i ∩ space M)
apply (subst prod-emb-PiE [OF -])
apply auto []
apply auto []
apply (auto simp add : Pi-iff intro!: X [THEN measurable-space])
apply (erule-tac x=i in ballE)
apply auto
done

also have . . . ∈ ?UN j

THEORY “Independent-Family” 736

apply (rule INT)
apply (rule sigma-sets.Basic)
using 〈J ⊆ K j 〉 E
apply auto
done

finally show ?thesis .
qed

qed
finally show sigma-sets (space M) (?proj j (sets (PiM (K j) M ′))) ⊆ ?UN j .

next
show indep-sets ?UN L
proof (rule indep-sets-collect-sigma)

show indep-sets (λi . {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}) (
⋃

j∈L. K
j)

proof (rule indep-sets-mono-index)
show indep-sets (λi . {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}) I

using ind unfolding indep-vars-def2 by auto
show (

⋃
l∈L. K l) ⊆ I

using K by auto
qed

next
fix l i assume l ∈ L i ∈ K l
show Int-stable {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}

apply (auto simp: Int-stable-def)
apply (rule-tac x=A ∩ Aa in exI)
apply auto
done

qed fact
qed

qed

lemma (in prob-space) indep-var-restrict :
assumes ind : indep-vars M ′ X I and AB : A ∩ B = {} A ⊆ I B ⊆ I
shows indep-var (PiM A M ′) (λω. restrict (λi . X i ω) A) (PiM B M ′) (λω.

restrict (λi . X i ω) B)
proof −

have ∗:
case-bool (PiM A M ′) (PiM B M ′) = (λb. PiM (case-bool A B b) M ′)
case-bool (λω. λi∈A. X i ω) (λω. λi∈B . X i ω) = (λb ω. λi∈case-bool A B b.

X i ω)
by (simp-all add : fun-eq-iff split : bool .split)

show ?thesis
unfolding indep-var-def ∗ using AB
by (intro indep-vars-restrict [OF ind]) (auto simp: disjoint-family-on-def split :

bool .split)
qed

lemma (in prob-space) indep-vars-subset :
assumes indep-vars M ′ X I J ⊆ I

THEORY “Independent-Family” 737

shows indep-vars M ′ X J
using assms unfolding indep-vars-def indep-sets-def
by auto

lemma (in prob-space) indep-vars-cong :
I = J =⇒ (

∧
i . i ∈ I =⇒ X i = Y i) =⇒ (

∧
i . i ∈ I =⇒ M ′ i = N ′ i) =⇒

indep-vars M ′ X I ←→ indep-vars N ′ Y J
unfolding indep-vars-def2 by (intro conj-cong indep-sets-cong) auto

definition (in prob-space) tail-events where
tail-events A = (

⋂
n. sigma-sets (space M) (UNION {n..} A))

lemma (in prob-space) tail-events-sets:
assumes A:

∧
i ::nat . A i ⊆ events

shows tail-events A ⊆ events
proof

fix X assume X : X ∈ tail-events A
let ?A = (

⋂
n. sigma-sets (space M) (UNION {n..} A))

from X have
∧

n::nat . X ∈ sigma-sets (space M) (UNION {n..} A) by (auto
simp: tail-events-def)

from this[of 0] have X ∈ sigma-sets (space M) (UNION UNIV A) by simp
then show X ∈ events

by induct (insert A, auto)
qed

lemma (in prob-space) sigma-algebra-tail-events:
assumes

∧
i ::nat . sigma-algebra (space M) (A i)

shows sigma-algebra (space M) (tail-events A)
unfolding tail-events-def

proof (simp add : sigma-algebra-iff2 , safe)
let ?A = (

⋂
n. sigma-sets (space M) (UNION {n..} A))

interpret A: sigma-algebra space M A i for i by fact
{ fix X x assume X ∈ ?A x ∈ X

then have
∧

n. X ∈ sigma-sets (space M) (UNION {n..} A) by auto
from this[of 0] have X ∈ sigma-sets (space M) (UNION UNIV A) by simp
then have X ⊆ space M

by induct (insert A.sets-into-space, auto)
with 〈x ∈ X 〉 show x ∈ space M by auto }
{ fix F :: nat ⇒ ′a set and n assume range F ⊆ ?A

then show (UNION UNIV F) ∈ sigma-sets (space M) (UNION {n..} A)
by (intro sigma-sets.Union) auto }

qed (auto intro!: sigma-sets.Compl sigma-sets.Empty)

lemma (in prob-space) kolmogorov-0-1-law :
fixes A :: nat ⇒ ′a set set
assumes

∧
i ::nat . sigma-algebra (space M) (A i)

assumes indep: indep-sets A UNIV
and X : X ∈ tail-events A
shows prob X = 0 ∨ prob X = 1

THEORY “Independent-Family” 738

proof −
have A:

∧
i . A i ⊆ events

using indep unfolding indep-sets-def by simp

let ?D = {D ∈ events. prob (X ∩ D) = prob X ∗ prob D}
interpret A: sigma-algebra space M A i for i by fact
interpret T : sigma-algebra space M tail-events A

by (rule sigma-algebra-tail-events) fact
have X ⊆ space M using T .space-closed X by auto

have X-in: X ∈ events
using tail-events-sets A X by auto

interpret D : dynkin-system space M ?D
proof (rule dynkin-systemI)

fix D assume D ∈ ?D then show D ⊆ space M
using sets.sets-into-space by auto

next
show space M ∈ ?D

using prob-space 〈X ⊆ space M 〉 by (simp add : Int-absorb2)
next

fix A assume A: A ∈ ?D
have prob (X ∩ (space M − A)) = prob (X − (X ∩ A))

using 〈X ⊆ space M 〉 by (auto intro!: arg-cong [where f =prob])
also have . . . = prob X − prob (X ∩ A)

using X-in A by (intro finite-measure-Diff) auto
also have . . . = prob X ∗ prob (space M) − prob X ∗ prob A

using A prob-space by auto
also have . . . = prob X ∗ prob (space M − A)

using X-in A sets.sets-into-space
by (subst finite-measure-Diff) (auto simp: field-simps)

finally show space M − A ∈ ?D
using A 〈X ⊆ space M 〉 by auto

next
fix F :: nat ⇒ ′a set assume dis: disjoint-family F and range F ⊆ ?D
then have F : range F ⊆ events

∧
i . prob (X ∩ F i) = prob X ∗ prob (F i)

by auto
have (λi . prob (X ∩ F i)) sums prob (

⋃
i . X ∩ F i)

proof (rule finite-measure-UNION)
show range (λi . X ∩ F i) ⊆ events

using F X-in by auto
show disjoint-family (λi . X ∩ F i)

using dis by (rule disjoint-family-on-bisimulation) auto
qed
with F have (λi . prob X ∗ prob (F i)) sums prob (X ∩ (

⋃
i . F i))

by simp
moreover have (λi . prob X ∗ prob (F i)) sums (prob X ∗ prob (

⋃
i . F i))

by (intro sums-mult finite-measure-UNION F dis)
ultimately have prob (X ∩ (

⋃
i . F i)) = prob X ∗ prob (

⋃
i . F i)

THEORY “Independent-Family” 739

by (auto dest !: sums-unique)
with F show (

⋃
i . F i) ∈ ?D

by auto
qed

{ fix n
have indep-sets (λb. sigma-sets (space M) (

⋃
m∈case-bool {..n} {Suc n..} b.

A m)) UNIV
proof (rule indep-sets-collect-sigma)

have ∗: (
⋃

b. case b of True ⇒ {..n} | False ⇒ {Suc n..}) = UNIV (is ?U
= -)

by (simp split : bool .split add : set-eq-iff) (metis not-less-eq-eq)
with indep show indep-sets A ?U by simp
show disjoint-family (case-bool {..n} {Suc n..})

unfolding disjoint-family-on-def by (auto split : bool .split)
fix m
show Int-stable (A m)

unfolding Int-stable-def using A.Int by auto
qed
also have (λb. sigma-sets (space M) (

⋃
m∈case-bool {..n} {Suc n..} b. A m))

=
case-bool (sigma-sets (space M) (

⋃
m∈{..n}. A m)) (sigma-sets (space M)

(
⋃

m∈{Suc n..}. A m))
by (auto intro!: ext split : bool .split)
finally have indep: indep-set (sigma-sets (space M) (

⋃
m∈{..n}. A m))

(sigma-sets (space M) (
⋃

m∈{Suc n..}. A m))
unfolding indep-set-def by simp

have sigma-sets (space M) (
⋃

m∈{..n}. A m) ⊆ ?D
proof (simp add : subset-eq , rule)

fix D assume D : D ∈ sigma-sets (space M) (
⋃

m∈{..n}. A m)
have X ∈ sigma-sets (space M) (

⋃
m∈{Suc n..}. A m)

using X unfolding tail-events-def by simp
from indep-setD [OF indep D this] indep-setD-ev1 [OF indep] D
show D ∈ events ∧ prob (X ∩ D) = prob X ∗ prob D

by (auto simp add : ac-simps)
qed }

then have (
⋃

n. sigma-sets (space M) (
⋃

m∈{..n}. A m)) ⊆ ?D (is ?A ⊆ -)
by auto

note 〈X ∈ tail-events A〉

also {
have

∧
n. sigma-sets (space M) (

⋃
i∈{n..}. A i) ⊆ sigma-sets (space M) ?A

by (intro sigma-sets-subseteq UN-mono) auto
then have tail-events A ⊆ sigma-sets (space M) ?A

unfolding tail-events-def by auto }
also have sigma-sets (space M) ?A = dynkin (space M) ?A
proof (rule sigma-eq-dynkin)
{ fix B n assume B ∈ sigma-sets (space M) (

⋃
m∈{..n}. A m)

THEORY “Independent-Family” 740

then have B ⊆ space M
by induct (insert A sets.sets-into-space[of - M], auto) }

then show ?A ⊆ Pow (space M) by auto
show Int-stable ?A
proof (rule Int-stableI)

fix a assume a ∈ ?A then guess n .. note a = this
fix b assume b ∈ ?A then guess m .. note b = this
interpret Amn: sigma-algebra space M sigma-sets (space M) (

⋃
i∈{..max m

n}. A i)
using A sets.sets-into-space[of - M] by (intro sigma-algebra-sigma-sets)

auto
have sigma-sets (space M) (

⋃
i∈{..n}. A i) ⊆ sigma-sets (space M) (

⋃
i∈{..max

m n}. A i)
by (intro sigma-sets-subseteq UN-mono) auto

with a have a ∈ sigma-sets (space M) (
⋃

i∈{..max m n}. A i) by auto
moreover

have sigma-sets (space M) (
⋃

i∈{..m}. A i) ⊆ sigma-sets (space M) (
⋃

i∈{..max
m n}. A i)

by (intro sigma-sets-subseteq UN-mono) auto
with b have b ∈ sigma-sets (space M) (

⋃
i∈{..max m n}. A i) by auto

ultimately have a ∩ b ∈ sigma-sets (space M) (
⋃

i∈{..max m n}. A i)
using Amn.Int [of a b] by simp

then show a ∩ b ∈ (
⋃

n. sigma-sets (space M) (
⋃

i∈{..n}. A i)) by auto
qed

qed
also have dynkin (space M) ?A ⊆ ?D

using 〈?A ⊆ ?D 〉 by (auto intro!: D .dynkin-subset)
finally show ?thesis by auto

qed

lemma (in prob-space) borel-0-1-law :
fixes F :: nat ⇒ ′a set
assumes F2 : indep-events F UNIV
shows prob (

⋂
n.

⋃
m∈{n..}. F m) = 0 ∨ prob (

⋂
n.

⋃
m∈{n..}. F m) = 1

proof (rule kolmogorov-0-1-law [of λi . sigma-sets (space M) { F i }])
have F1 : range F ⊆ events

using F2 by (simp add : indep-events-def subset-eq)
{ fix i show sigma-algebra (space M) (sigma-sets (space M) {F i})

using sigma-algebra-sigma-sets[of {F i} space M] F1 sets.sets-into-space
by auto }

show indep-sets (λi . sigma-sets (space M) {F i}) UNIV
proof (rule indep-sets-sigma)

show indep-sets (λi . {F i}) UNIV
unfolding indep-events-def-alt [symmetric] by fact

fix i show Int-stable {F i}
unfolding Int-stable-def by simp

qed
let ?Q = λn.

⋃
i∈{n..}. F i

show (
⋂

n.
⋃

m∈{n..}. F m) ∈ tail-events (λi . sigma-sets (space M) {F i})

THEORY “Independent-Family” 741

unfolding tail-events-def
proof

fix j
interpret S : sigma-algebra space M sigma-sets (space M) (

⋃
i∈{j ..}. sigma-sets

(space M) {F i})
using order-trans[OF F1 sets.space-closed]
by (intro sigma-algebra-sigma-sets) (simp add : sigma-sets-singleton subset-eq)

have (
⋂

n. ?Q n) = (
⋂

n∈{j ..}. ?Q n)
by (intro decseq-SucI INT-decseq-offset UN-mono) auto

also have . . . ∈ sigma-sets (space M) (
⋃

i∈{j ..}. sigma-sets (space M) {F i})
using order-trans[OF F1 sets.space-closed]
by (safe intro!: S .countable-INT S .countable-UN)

(auto simp: sigma-sets-singleton intro!: sigma-sets.Basic bexI)
finally show (

⋂
n. ?Q n) ∈ sigma-sets (space M) (

⋃
i∈{j ..}. sigma-sets (space

M) {F i})
by simp

qed
qed

lemma (in prob-space) borel-0-1-law-AE :
fixes P :: nat ⇒ ′a ⇒ bool
assumes indep-events (λm. {x∈space M . P m x}) UNIV (is indep-events ?P -)
shows (AE x in M . infinite {m. P m x}) ∨ (AE x in M . finite {m. P m x})

proof −
have [measurable]:

∧
m. {x∈space M . P m x} ∈ sets M

using assms by (auto simp: indep-events-def)
have ∗: (

⋂
n.

⋃
m∈{n..}. {x ∈ space M . P m x}) ∈ events

by simp
from assms have prob (

⋂
n.

⋃
m∈{n..}. ?P m) = 0 ∨ prob (

⋂
n.

⋃
m∈{n..}.

?P m) = 1
by (rule borel-0-1-law)

also have prob (
⋂

n.
⋃

m∈{n..}. ?P m) = 1 ←→ (AE x in M . infinite {m. P
m x})

using ∗ by (simp add : prob-eq-1)
(simp add : Bex-def infinite-nat-iff-unbounded-le)

also have prob (
⋂

n.
⋃

m∈{n..}. ?P m) = 0 ←→ (AE x in M . finite {m. P m
x})

using ∗ by (simp add : prob-eq-0)
(auto simp add : Ball-def finite-nat-iff-bounded not-less [symmetric])

finally show ?thesis
by blast

qed

lemma (in prob-space) indep-sets-finite:
assumes I : I 6= {} finite I

and F :
∧

i . i ∈ I =⇒ F i ⊆ events
∧

i . i ∈ I =⇒ space M ∈ F i
shows indep-sets F I ←→ (∀A∈Pi I F . prob (

⋂
j∈I . A j) = (

∏
j∈I . prob (A

j)))
proof

THEORY “Independent-Family” 742

assume ∗: indep-sets F I
from I show ∀A∈Pi I F . prob (

⋂
j∈I . A j) = (

∏
j∈I . prob (A j))

by (intro indep-setsD [OF ∗] ballI) auto
next

assume indep: ∀A∈Pi I F . prob (
⋂

j∈I . A j) = (
∏

j∈I . prob (A j))
show indep-sets F I
proof (rule indep-setsI [OF F (1)])

fix A J assume J : J 6= {} J ⊆ I finite J
assume A: ∀ j∈J . A j ∈ F j
let ?A = λj . if j ∈ J then A j else space M
have prob (

⋂
j∈I . ?A j) = prob (

⋂
j∈J . A j)

using subset-trans[OF F (1) sets.space-closed] J A
by (auto intro!: arg-cong [where f =prob] split : if-split-asm) blast

also
from A F have (λj . if j ∈ J then A j else space M) ∈ Pi I F (is ?A ∈ -)

by (auto split : if-split-asm)
with indep have prob (

⋂
j∈I . ?A j) = (

∏
j∈I . prob (?A j))

by auto
also have . . . = (

∏
j∈J . prob (A j))

unfolding if-distrib setprod .If-cases[OF 〈finite I 〉]
using prob-space 〈J ⊆ I 〉 by (simp add : Int-absorb1 setprod .neutral-const)

finally show prob (
⋂

j∈J . A j) = (
∏

j∈J . prob (A j)) ..
qed

qed

lemma (in prob-space) indep-vars-finite:
fixes I :: ′i set
assumes I : I 6= {} finite I

and M ′:
∧

i . i ∈ I =⇒ sets (M ′ i) = sigma-sets (space (M ′ i)) (E i)
and rv :

∧
i . i ∈ I =⇒ random-variable (M ′ i) (X i)

and Int-stable:
∧

i . i ∈ I =⇒ Int-stable (E i)
and space:

∧
i . i ∈ I =⇒ space (M ′ i) ∈ E i and closed :

∧
i . i ∈ I =⇒ E i ⊆

Pow (space (M ′ i))
shows indep-vars M ′ X I ←→

(∀A∈(Π i∈I . E i). prob (
⋂

j∈I . X j −‘ A j ∩ space M) = (
∏

j∈I . prob (X j
−‘ A j ∩ space M)))
proof −

from rv have X :
∧

i . i ∈ I =⇒ X i ∈ space M → space (M ′ i)
unfolding measurable-def by simp

{ fix i assume i∈I
from closed [OF 〈i ∈ I 〉]
have sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}

= sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ E i}
unfolding sigma-sets-vimage-commute[OF X , OF 〈i ∈ I 〉, symmetric] M ′[OF

〈i ∈ I 〉]
by (subst sigma-sets-sigma-sets-eq) auto }

note sigma-sets-X = this

THEORY “Independent-Family” 743

{ fix i assume i∈I
have Int-stable {X i −‘ A ∩ space M |A. A ∈ E i}
proof (rule Int-stableI)

fix a assume a ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
then obtain A where a = X i −‘ A ∩ space M A ∈ E i by auto
moreover
fix b assume b ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
then obtain B where b = X i −‘ B ∩ space M B ∈ E i by auto
moreover
have (X i −‘ A ∩ space M) ∩ (X i −‘ B ∩ space M) = X i −‘ (A ∩ B) ∩

space M by auto
moreover note Int-stable[OF 〈i ∈ I 〉]
ultimately
show a ∩ b ∈ {X i −‘ A ∩ space M |A. A ∈ E i}

by (auto simp del : vimage-Int intro!: exI [of - A ∩ B] dest : Int-stableD)
qed }

note indep-sets-X = indep-sets-sigma-sets-iff [OF this]

{ fix i assume i ∈ I
{ fix A assume A ∈ E i

with M ′[OF 〈i ∈ I 〉] have A ∈ sets (M ′ i) by auto
moreover
from rv [OF 〈i∈I 〉] have X i ∈ measurable M (M ′ i) by auto
ultimately
have X i −‘ A ∩ space M ∈ sets M by (auto intro: measurable-sets) }

with X [OF 〈i∈I 〉] space[OF 〈i∈I 〉]
have {X i −‘ A ∩ space M |A. A ∈ E i} ⊆ events

space M ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
by (auto intro!: exI [of - space (M ′ i)]) }

note indep-sets-finite-X = indep-sets-finite[OF I this]

have (∀A∈Π i∈I . {X i −‘ A ∩ space M |A. A ∈ E i}. prob (INTER I A) =
(
∏

j∈I . prob (A j))) =
(∀A∈Π i∈I . E i . prob ((

⋂
j∈I . X j −‘ A j) ∩ space M) = (

∏
x∈I . prob (X x

−‘ A x ∩ space M)))
(is ?L = ?R)

proof safe
fix A assume ?L and A: A ∈ (Π i∈I . E i)
from 〈?L〉[THEN bspec, of λi . X i −‘ A i ∩ space M] A 〈I 6= {}〉
show prob ((

⋂
j∈I . X j −‘ A j) ∩ space M) = (

∏
x∈I . prob (X x −‘ A x ∩

space M))
by (auto simp add : Pi-iff)

next
fix A assume ?R and A: A ∈ (Π i∈I . {X i −‘ A ∩ space M |A. A ∈ E i})
from A have ∀ i∈I . ∃B . A i = X i −‘ B ∩ space M ∧ B ∈ E i by auto
from bchoice[OF this] obtain B where B : ∀ i∈I . A i = X i −‘ B i ∩ space M

B ∈ (Π i∈I . E i) by auto
from 〈?R〉[THEN bspec, OF B(2)] B(1) 〈I 6= {}〉
show prob (INTER I A) = (

∏
j∈I . prob (A j))

THEORY “Independent-Family” 744

by simp
qed
then show ?thesis using 〈I 6= {}〉

by (simp add : rv indep-vars-def indep-sets-X sigma-sets-X indep-sets-finite-X
cong : indep-sets-cong)
qed

lemma (in prob-space) indep-vars-compose:
assumes indep-vars M ′ X I
assumes rv :

∧
i . i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi . Y i ◦ X i) I
unfolding indep-vars-def

proof
from rv 〈indep-vars M ′ X I 〉

show ∀ i∈I . random-variable (N i) (Y i ◦ X i)
by (auto simp: indep-vars-def)

have indep-sets (λi . sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using 〈indep-vars M ′ X I 〉 by (simp add : indep-vars-def)
then show indep-sets (λi . sigma-sets (space M) {(Y i ◦ X i) −‘ A ∩ space M
|A. A ∈ sets (N i)}) I

proof (rule indep-sets-mono-sets)
fix i assume i ∈ I
with 〈indep-vars M ′ X I 〉 have X : X i ∈ space M → space (M ′ i)

unfolding indep-vars-def measurable-def by auto
{ fix A assume A ∈ sets (N i)

then have ∃B . (Y i ◦ X i) −‘ A ∩ space M = X i −‘ B ∩ space M ∧ B ∈
sets (M ′ i)

by (intro exI [of - Y i −‘ A ∩ space (M ′ i)])
(auto simp: vimage-comp intro!: measurable-sets rv 〈i ∈ I 〉 funcset-mem[OF

X]) }
then show sigma-sets (space M) {(Y i ◦ X i) −‘ A ∩ space M |A. A ∈ sets

(N i)} ⊆
sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}
by (intro sigma-sets-subseteq) (auto simp: vimage-comp)

qed
qed

lemma (in prob-space) indep-vars-compose2 :
assumes indep-vars M ′ X I
assumes rv :

∧
i . i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi x . Y i (X i x)) I
using indep-vars-compose [OF assms] by (simp add : comp-def)

lemma (in prob-space) indep-var-compose:
assumes indep-var M1 X1 M2 X2 Y1 ∈ measurable M1 N1 Y2 ∈ measurable

M2 N2
shows indep-var N1 (Y1 ◦ X1) N2 (Y2 ◦ X2)

THEORY “Independent-Family” 745

proof −
have indep-vars (case-bool N1 N2) (λb. case-bool Y1 Y2 b ◦ case-bool X1 X2 b)

UNIV
using assms
by (intro indep-vars-compose[where M ′=case-bool M1 M2])

(auto simp: indep-var-def split : bool .split)
also have (λb. case-bool Y1 Y2 b ◦ case-bool X1 X2 b) = case-bool (Y1 ◦ X1)

(Y2 ◦ X2)
by (simp add : fun-eq-iff split : bool .split)

finally show ?thesis
unfolding indep-var-def .

qed

lemma (in prob-space) indep-vars-Min:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω. Min ((λi . X i ω)‘I))

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i}))
borel ((λf . Min (f‘I)) ◦ (λω. restrict (λi . X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict [OF indep]] borel-measurable-Min)
auto

also have ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i})) = X i
by auto

also have ((λf . Min (f‘I)) ◦ (λω. restrict (λi . X i ω) I)) = (λω. Min ((λi . X i
ω)‘I))

by (auto cong : rev-conj-cong)
finally show ?thesis

unfolding indep-var-def .
qed

lemma (in prob-space) indep-vars-setsum:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω.

∑
i∈I . X i ω)

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i}))
borel ((λf .

∑
i∈I . f i) ◦ (λω. restrict (λi . X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict [OF indep]]) auto
also have ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i})) = X i

by auto
also have ((λf .

∑
i∈I . f i) ◦ (λω. restrict (λi . X i ω) I)) = (λω.

∑
i∈I . X i

ω)
by (auto cong : rev-conj-cong)

finally show ?thesis .
qed

THEORY “Independent-Family” 746

lemma (in prob-space) indep-vars-setprod :
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω.

∏
i∈I . X i ω)

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i}))
borel ((λf .

∏
i∈I . f i) ◦ (λω. restrict (λi . X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict [OF indep]]) auto
also have ((λf . f i) ◦ (λω. restrict (λi . X i ω) {i})) = X i

by auto
also have ((λf .

∏
i∈I . f i) ◦ (λω. restrict (λi . X i ω) I)) = (λω.

∏
i∈I . X i ω)

by (auto cong : rev-conj-cong)
finally show ?thesis .

qed

lemma (in prob-space) indep-varsD-finite:
assumes X : indep-vars M ′ X I
assumes I : I 6= {} finite I

∧
i . i ∈ I =⇒ A i ∈ sets (M ′ i)

shows prob (
⋂

i∈I . X i −‘ A i ∩ space M) = (
∏

i∈I . prob (X i −‘ A i ∩ space
M))
proof (rule indep-setsD)

show indep-sets (λi . sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using X by (auto simp: indep-vars-def)
show I ⊆ I I 6= {} finite I using I by auto
show ∀ i∈I . X i −‘ A i ∩ space M ∈ sigma-sets (space M) {X i −‘ A ∩ space

M |A. A ∈ sets (M ′ i)}
using I by auto

qed

lemma (in prob-space) indep-varsD :
assumes X : indep-vars M ′ X I
assumes I : J 6= {} finite J J ⊆ I

∧
i . i ∈ J =⇒ A i ∈ sets (M ′ i)

shows prob (
⋂

i∈J . X i −‘ A i ∩ space M) = (
∏

i∈J . prob (X i −‘ A i ∩ space
M))
proof (rule indep-setsD)

show indep-sets (λi . sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using X by (auto simp: indep-vars-def)
show ∀ i∈J . X i −‘ A i ∩ space M ∈ sigma-sets (space M) {X i −‘ A ∩ space

M |A. A ∈ sets (M ′ i)}
using I by auto

qed fact+

lemma (in prob-space) indep-vars-iff-distr-eq-PiM :
fixes I :: ′i set and X :: ′i ⇒ ′a ⇒ ′b
assumes I 6= {}
assumes rv :

∧
i . random-variable (M ′ i) (X i)

THEORY “Independent-Family” 747

shows indep-vars M ′ X I ←→
distr M (ΠM i∈I . M ′ i) (λx . λi∈I . X i x) = (ΠM i∈I . distr M (M ′ i) (X i))

proof −
let ?P = ΠM i∈I . M ′ i
let ?X = λx . λi∈I . X i x
let ?D = distr M ?P ?X
have X : random-variable ?P ?X by (intro measurable-restrict rv)
interpret D : prob-space ?D by (intro prob-space-distr X)

let ?D ′ = λi . distr M (M ′ i) (X i)
let ?P ′ = ΠM i∈I . distr M (M ′ i) (X i)
interpret D ′: prob-space ?D ′ i for i by (intro prob-space-distr rv)
interpret P : product-prob-space ?D ′ I ..

show ?thesis
proof

assume indep-vars M ′ X I
show ?D = ?P ′

proof (rule measure-eqI-generator-eq)
show Int-stable (prod-algebra I M ′)

by (rule Int-stable-prod-algebra)
show prod-algebra I M ′ ⊆ Pow (space ?P)

using prod-algebra-sets-into-space by (simp add : space-PiM)
show sets ?D = sigma-sets (space ?P) (prod-algebra I M ′)

by (simp add : sets-PiM space-PiM)
show sets ?P ′ = sigma-sets (space ?P) (prod-algebra I M ′)

by (simp add : sets-PiM space-PiM cong : prod-algebra-cong)
let ?A = λi . ΠE i∈I . space (M ′ i)
show range ?A ⊆ prod-algebra I M ′ (

⋃
i . ?A i) = space (PiM I M ′)

by (auto simp: space-PiM intro!: space-in-prod-algebra cong : prod-algebra-cong)
{ fix i show emeasure ?D (ΠE i∈I . space (M ′ i)) 6= ∞ by auto }

next
fix E assume E : E ∈ prod-algebra I M ′

from prod-algebraE [OF E] guess J Y . note J = this

from E have E ∈ sets ?P by (auto simp: sets-PiM)
then have emeasure ?D E = emeasure M (?X −‘ E ∩ space M)

by (simp add : emeasure-distr X)
also have ?X −‘ E ∩ space M = (

⋂
i∈J . X i −‘ Y i ∩ space M)

using J 〈I 6= {}〉 measurable-space[OF rv] by (auto simp: prod-emb-def
PiE-iff split : if-split-asm)

also have emeasure M (
⋂

i∈J . X i −‘ Y i ∩ space M) = (
∏

i∈J . emeasure
M (X i −‘ Y i ∩ space M))

using 〈indep-vars M ′ X I 〉 J 〈I 6= {}〉 using indep-varsD [of M ′ X I J]
by (auto simp: emeasure-eq-measure setprod-ennreal measure-nonneg setprod-nonneg)
also have . . . = (

∏
i∈J . emeasure (?D ′ i) (Y i))

using rv J by (simp add : emeasure-distr)
also have . . . = emeasure ?P ′ E

using P .emeasure-PiM-emb[of J Y] J by (simp add : prod-emb-def)

THEORY “Independent-Family” 748

finally show emeasure ?D E = emeasure ?P ′ E .
qed

next
assume ?D = ?P ′

show indep-vars M ′ X I unfolding indep-vars-def
proof (intro conjI indep-setsI ballI rv)

fix i show sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}
⊆ events

by (auto intro!: sets.sigma-sets-subset measurable-sets rv)
next

fix J Y ′ assume J : J 6= {} J ⊆ I finite J
assume Y ′: ∀ j∈J . Y ′ j ∈ sigma-sets (space M) {X j −‘ A ∩ space M |A.

A ∈ sets (M ′ j)}
have ∀ j∈J . ∃Y . Y ′ j = X j −‘ Y ∩ space M ∧ Y ∈ sets (M ′ j)
proof

fix j assume j ∈ J
from Y ′[rule-format , OF this] rv [of j]
show ∃Y . Y ′ j = X j −‘ Y ∩ space M ∧ Y ∈ sets (M ′ j)

by (subst (asm) sigma-sets-vimage-commute[symmetric, of - - space (M ′

j)])
(auto dest : measurable-space simp: sets.sigma-sets-eq)

qed
from bchoice[OF this] obtain Y where

Y :
∧

j . j ∈ J =⇒ Y ′ j = X j −‘ Y j ∩ space M
∧

j . j ∈ J =⇒ Y j ∈ sets
(M ′ j) by auto

let ?E = prod-emb I M ′ J (PiE J Y)
from Y have (

⋂
j∈J . Y ′ j) = ?X −‘ ?E ∩ space M

using J 〈I 6= {}〉 measurable-space[OF rv] by (auto simp: prod-emb-def
PiE-iff split : if-split-asm)

then have emeasure M (
⋂

j∈J . Y ′ j) = emeasure M (?X −‘ ?E ∩ space
M)

by simp
also have . . . = emeasure ?D ?E

using Y J by (intro emeasure-distr [symmetric] X sets-PiM-I) auto
also have . . . = emeasure ?P ′ ?E

using 〈?D = ?P ′〉 by simp
also have . . . = (

∏
i∈J . emeasure (?D ′ i) (Y i))

using P .emeasure-PiM-emb[of J Y] J Y by (simp add : prod-emb-def)
also have . . . = (

∏
i∈J . emeasure M (Y ′ i))

using rv J Y by (simp add : emeasure-distr)
finally have emeasure M (

⋂
j∈J . Y ′ j) = (

∏
i∈J . emeasure M (Y ′ i)) .

then show prob (
⋂

j∈J . Y ′ j) = (
∏

i∈J . prob (Y ′ i))
by (auto simp: emeasure-eq-measure setprod-ennreal measure-nonneg setprod-nonneg)

qed
qed

qed

lemma (in prob-space) indep-varD :
assumes indep: indep-var Ma A Mb B

THEORY “Independent-Family” 749

assumes sets: Xa ∈ sets Ma Xb ∈ sets Mb
shows prob ((λx . (A x , B x)) −‘ (Xa × Xb) ∩ space M) =

prob (A −‘ Xa ∩ space M) ∗ prob (B −‘ Xb ∩ space M)
proof −

have prob ((λx . (A x , B x)) −‘ (Xa × Xb) ∩ space M) =
prob (

⋂
i∈UNIV . (case-bool A B i −‘ case-bool Xa Xb i ∩ space M))

by (auto intro!: arg-cong [where f =prob] simp: UNIV-bool)
also have . . . = (

∏
i∈UNIV . prob (case-bool A B i −‘ case-bool Xa Xb i ∩ space

M))
using indep unfolding indep-var-def
by (rule indep-varsD) (auto split : bool .split intro: sets)

also have . . . = prob (A −‘ Xa ∩ space M) ∗ prob (B −‘ Xb ∩ space M)
unfolding UNIV-bool by simp

finally show ?thesis .
qed

lemma (in prob-space) prob-indep-random-variable:
assumes ind [simp]: indep-var N X N Y
assumes [simp]: A ∈ sets N B ∈ sets N
shows P(x in M . X x ∈ A ∧ Y x ∈ B) = P(x in M . X x ∈ A) ∗ P(x in M . Y

x ∈ B)
proof−

have P(x in M . (X x)∈A ∧ (Y x)∈ B) = prob ((λx . (X x , Y x)) −‘ (A ×
B) ∩ space M)

by (auto intro!: arg-cong [where f = prob])
also have ...= prob (X −‘ A ∩ space M) ∗ prob (Y −‘ B ∩ space M)

by (auto intro!: indep-varD [where Ma=N and Mb=N])
also have ... = P(x in M . X x ∈ A) ∗ P(x in M . Y x ∈ B)

by (auto intro!: arg-cong2 [where f = op ∗] arg-cong [where f = prob])
finally show ?thesis .

qed

lemma (in prob-space)
assumes indep-var S X T Y
shows indep-var-rv1 : random-variable S X

and indep-var-rv2 : random-variable T Y
proof −

have ∀ i∈UNIV . random-variable (case-bool S T i) (case-bool X Y i)
using assms unfolding indep-var-def indep-vars-def by auto

then show random-variable S X random-variable T Y
unfolding UNIV-bool by auto

qed

lemma (in prob-space) indep-var-distribution-eq :
indep-var S X T Y ←→ random-variable S X ∧ random-variable T Y ∧

distr M S X
⊗

M distr M T Y = distr M (S
⊗

M T) (λx . (X x , Y x)) (is -
←→ - ∧ - ∧ ?S

⊗
M ?T = ?J)

proof safe
assume indep-var S X T Y

THEORY “Independent-Family” 750

then show rvs: random-variable S X random-variable T Y
by (blast dest : indep-var-rv1 indep-var-rv2)+

then have XY : random-variable (S
⊗

M T) (λx . (X x , Y x))
by (rule measurable-Pair)

interpret X : prob-space ?S by (rule prob-space-distr) fact
interpret Y : prob-space ?T by (rule prob-space-distr) fact
interpret XY : pair-prob-space ?S ?T ..
show ?S

⊗
M ?T = ?J

proof (rule pair-measure-eqI)
show sigma-finite-measure ?S ..
show sigma-finite-measure ?T ..

fix A B assume A: A ∈ sets ?S and B : B ∈ sets ?T
have emeasure ?J (A × B) = emeasure M ((λx . (X x , Y x)) −‘ (A × B) ∩

space M)
using A B by (intro emeasure-distr [OF XY]) auto

also have . . . = emeasure M (X −‘ A ∩ space M) ∗ emeasure M (Y −‘ B ∩
space M)

using indep-varD [OF 〈indep-var S X T Y 〉, of A B] A B
by (simp add : emeasure-eq-measure measure-nonneg ennreal-mult)

also have . . . = emeasure ?S A ∗ emeasure ?T B
using rvs A B by (simp add : emeasure-distr)

finally show emeasure ?S A ∗ emeasure ?T B = emeasure ?J (A × B) by
simp

qed simp
next

assume rvs: random-variable S X random-variable T Y
then have XY : random-variable (S

⊗
M T) (λx . (X x , Y x))

by (rule measurable-Pair)

let ?S = distr M S X and ?T = distr M T Y
interpret X : prob-space ?S by (rule prob-space-distr) fact
interpret Y : prob-space ?T by (rule prob-space-distr) fact
interpret XY : pair-prob-space ?S ?T ..

assume ?S
⊗

M ?T = ?J

{ fix S and X
have Int-stable {X −‘ A ∩ space M |A. A ∈ sets S}
proof (safe intro!: Int-stableI)

fix A B assume A ∈ sets S B ∈ sets S
then show ∃C . (X −‘ A ∩ space M) ∩ (X −‘ B ∩ space M) = (X −‘ C ∩

space M) ∧ C ∈ sets S
by (intro exI [of - A ∩ B]) auto

qed }
note Int-stable = this

show indep-var S X T Y unfolding indep-var-eq

THEORY “Independent-Family” 751

proof (intro conjI indep-set-sigma-sets Int-stable rvs)
show indep-set {X −‘ A ∩ space M |A. A ∈ sets S} {Y −‘ A ∩ space M |A.

A ∈ sets T}
proof (safe intro!: indep-setI)
{ fix A assume A ∈ sets S then show X −‘ A ∩ space M ∈ sets M

using 〈X ∈ measurable M S 〉 by (auto intro: measurable-sets) }
{ fix A assume A ∈ sets T then show Y −‘ A ∩ space M ∈ sets M

using 〈Y ∈ measurable M T 〉 by (auto intro: measurable-sets) }
next

fix A B assume ab: A ∈ sets S B ∈ sets T
then have prob ((X −‘ A ∩ space M) ∩ (Y −‘ B ∩ space M)) = emeasure

?J (A × B)
using XY by (auto simp add : emeasure-distr emeasure-eq-measure measure-nonneg

intro!: arg-cong [where f =prob])
also have . . . = emeasure (?S

⊗
M ?T) (A × B)

unfolding 〈?S
⊗

M ?T = ?J 〉 ..
also have . . . = emeasure ?S A ∗ emeasure ?T B

using ab by (simp add : Y .emeasure-pair-measure-Times)
finally show prob ((X −‘ A ∩ space M) ∩ (Y −‘ B ∩ space M)) =

prob (X −‘ A ∩ space M) ∗ prob (Y −‘ B ∩ space M)
using rvs ab by (simp add : emeasure-eq-measure emeasure-distr measure-nonneg

ennreal-mult [symmetric])
qed

qed
qed

lemma (in prob-space) distributed-joint-indep:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X : distributed M S X Px and Y : distributed M T Y Py
assumes indep: indep-var S X T Y
shows distributed M (S

⊗
M T) (λx . (X x , Y x)) (λ(x , y). Px x ∗ Py y)

using indep-var-distribution-eq [of S X T Y] indep
by (intro distributed-joint-indep ′[OF S T X Y]) auto

lemma (in prob-space) indep-vars-nn-integral :
assumes I : finite I indep-vars (λ-. borel) X I

∧
i ω. i ∈ I =⇒ 0 ≤ X i ω

shows (
∫

+ω. (
∏

i∈I . X i ω) ∂M) = (
∏

i∈I .
∫

+ω. X i ω ∂M)
proof cases

assume I 6= {}
def Y ≡ λi ω. if i ∈ I then X i ω else 0
{ fix i have i ∈ I =⇒ random-variable borel (X i)

using I (2) by (cases i∈I) (auto simp: indep-vars-def) }
note rv-X = this

{ fix i have random-variable borel (Y i)
using I (2) by (cases i∈I) (auto simp: Y-def rv-X) }

note rv-Y = this[measurable]

interpret Y : prob-space distr M borel (Y i) for i

THEORY “Independent-Family” 752

using I (2) by (cases i ∈ I) (auto intro!: prob-space-distr simp: indep-vars-def
prob-space-return)

interpret product-sigma-finite λi . distr M borel (Y i)
..

have indep-Y : indep-vars (λi . borel) Y I
by (rule indep-vars-cong [THEN iffD1 , OF - - - I (2)]) (auto simp: Y-def)

have (
∫

+ω. (
∏

i∈I . X i ω) ∂M) = (
∫

+ω. (
∏

i∈I . Y i ω) ∂M)
using I (3) by (auto intro!: nn-integral-cong setprod .cong simp add : Y-def

max-def)
also have . . . = (

∫
+ω. (

∏
i∈I . ω i) ∂distr M (PiM I (λi . borel)) (λx . λi∈I .

Y i x))
by (subst nn-integral-distr) auto

also have . . . = (
∫

+ω. (
∏

i∈I . ω i) ∂PiM I (λi . distr M borel (Y i)))
unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF 〈I 6= {}〉 rv-Y indep-Y]

..
also have . . . = (

∏
i∈I . (

∫
+ω. ω ∂distr M borel (Y i)))

by (rule product-nn-integral-setprod) (auto intro: 〈finite I 〉)
also have . . . = (

∏
i∈I .

∫
+ω. X i ω ∂M)

by (intro setprod .cong nn-integral-cong) (auto simp: nn-integral-distr Y-def
rv-X)

finally show ?thesis .
qed (simp add : emeasure-space-1)

lemma (in prob-space)
fixes X :: ′i ⇒ ′a ⇒ ′b::{real-normed-field , banach, second-countable-topology}
assumes I : finite I indep-vars (λ-. borel) X I

∧
i . i ∈ I =⇒ integrable M (X i)

shows indep-vars-lebesgue-integral : (
∫
ω. (

∏
i∈I . X i ω) ∂M) = (

∏
i∈I .

∫
ω. X

i ω ∂M) (is ?eq)
and indep-vars-integrable: integrable M (λω. (

∏
i∈I . X i ω)) (is ?int)

proof (induct rule: case-split)
assume I 6= {}
def Y ≡ λi ω. if i ∈ I then X i ω else 0
{ fix i have i ∈ I =⇒ random-variable borel (X i)

using I (2) by (cases i∈I) (auto simp: indep-vars-def) }
note rv-X = this[measurable]

{ fix i have random-variable borel (Y i)
using I (2) by (cases i∈I) (auto simp: Y-def rv-X) }

note rv-Y = this[measurable]

{ fix i have integrable M (Y i)
using I (3) by (cases i∈I) (auto simp: Y-def) }

note int-Y = this

interpret Y : prob-space distr M borel (Y i) for i
using I (2) by (cases i ∈ I) (auto intro!: prob-space-distr simp: indep-vars-def

prob-space-return)

THEORY “Independent-Family” 753

interpret product-sigma-finite λi . distr M borel (Y i)
..

have indep-Y : indep-vars (λi . borel) Y I
by (rule indep-vars-cong [THEN iffD1 , OF - - - I (2)]) (auto simp: Y-def)

have (
∫
ω. (

∏
i∈I . X i ω) ∂M) = (

∫
ω. (

∏
i∈I . Y i ω) ∂M)

using I (3) by (simp add : Y-def)
also have . . . = (

∫
ω. (

∏
i∈I . ω i) ∂distr M (PiM I (λi . borel)) (λx . λi∈I . Y

i x))
by (subst integral-distr) auto

also have . . . = (
∫
ω. (

∏
i∈I . ω i) ∂PiM I (λi . distr M borel (Y i)))

unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF 〈I 6= {}〉 rv-Y indep-Y]
..

also have . . . = (
∏

i∈I . (
∫
ω. ω ∂distr M borel (Y i)))

by (rule product-integral-setprod) (auto intro: 〈finite I 〉 simp: integrable-distr-eq
int-Y)

also have . . . = (
∏

i∈I .
∫
ω. X i ω ∂M)

by (intro setprod .cong integral-cong)
(auto simp: integral-distr Y-def rv-X)

finally show ?eq .

have integrable (distr M (PiM I (λi . borel)) (λx . λi∈I . Y i x)) (λω. (
∏

i∈I . ω
i))

unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF 〈I 6= {}〉 rv-Y indep-Y]
by (intro product-integrable-setprod [OF 〈finite I 〉])

(simp add : integrable-distr-eq int-Y)
then show ?int

by (simp add : integrable-distr-eq Y-def)
qed (simp-all add : prob-space)

lemma (in prob-space)
fixes X1 X2 :: ′a ⇒ ′b::{real-normed-field , banach, second-countable-topology}
assumes indep-var borel X1 borel X2 integrable M X1 integrable M X2
shows indep-var-lebesgue-integral : (

∫
ω. X1 ω ∗ X2 ω ∂M) = (

∫
ω. X1 ω ∂M)

∗ (
∫
ω. X2 ω ∂M) (is ?eq)

and indep-var-integrable: integrable M (λω. X1 ω ∗ X2 ω) (is ?int)
unfolding indep-var-def
proof −

have ∗: (λω. X1 ω ∗ X2 ω) = (λω.
∏

i∈UNIV . (case-bool X1 X2 i ω))
by (simp add : UNIV-bool mult .commute)

have ∗∗: (λ -. borel) = case-bool borel borel
by (rule ext , metis (full-types) bool .simps(3) bool .simps(4))

show ?eq
apply (subst ∗)
apply (subst indep-vars-lebesgue-integral)
apply (auto)
apply (subst ∗∗, subst indep-var-def [symmetric], rule assms)
apply (simp split : bool .split add : assms)

THEORY “Convolution” 754

by (simp add : UNIV-bool mult .commute)
show ?int

apply (subst ∗)
apply (rule indep-vars-integrable)
apply auto
apply (subst ∗∗, subst indep-var-def [symmetric], rule assms)
by (simp split : bool .split add : assms)

qed

end

39 Convolution Measure

theory Convolution
imports Independent-Family

begin

lemma (in finite-measure) sigma-finite-measure: sigma-finite-measure M
..

definition convolution :: (′a :: ordered-euclidean-space) measure ⇒ ′a measure ⇒
′a measure (infix ? 50) where

convolution M N = distr (M
⊗

M N) borel (λ(x , y). x + y)

lemma
shows space-convolution[simp]: space (convolution M N) = space borel

and sets-convolution[simp]: sets (convolution M N) = sets borel
and measurable-convolution1 [simp]: measurable A (convolution M N) = mea-

surable A borel
and measurable-convolution2 [simp]: measurable (convolution M N) B = mea-

surable borel B
by (simp-all add : convolution-def)

lemma nn-integral-convolution:
assumes finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
assumes [measurable]: f ∈ borel-measurable borel
shows (

∫
+x . f x ∂convolution M N) = (

∫
+x .

∫
+y . f (x + y) ∂N ∂M)

proof −
interpret M : finite-measure M by fact
interpret N : finite-measure N by fact
interpret pair-sigma-finite M N ..
show ?thesis

unfolding convolution-def
by (simp add : nn-integral-distr N .nn-integral-fst [symmetric])

qed

lemma convolution-emeasure:
assumes A ∈ sets borel finite-measure M finite-measure N

THEORY “Convolution” 755

assumes [simp]: sets N = sets borel sets M = sets borel
assumes [simp]: space M = space N space N = space borel
shows emeasure (M ? N) A =

∫
+x . (emeasure N {a. a + x ∈ A}) ∂M

using assms by (auto intro!: nn-integral-cong simp del : nn-integral-indicator
simp: nn-integral-convolution

nn-integral-indicator [symmetric] ac-simps split :split-indicator)

lemma convolution-emeasure ′:
assumes [simp]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
shows emeasure (M ? N) A =

∫
+x .

∫
+y . (indicator A (x + y)) ∂N ∂M

by (auto simp del : nn-integral-indicator simp: nn-integral-convolution
nn-integral-indicator [symmetric] borel-measurable-indicator)

lemma convolution-finite:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
shows finite-measure (M ? N)
unfolding convolution-def
by (intro finite-measure-pair-measure finite-measure.finite-measure-distr) auto

lemma convolution-emeasure-3 :
assumes [simp, measurable]: A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows emeasure (L ? (M ? N)) A =

∫
+x .

∫
+y .

∫
+z . indicator A (x + y +

z) ∂N ∂M ∂L
apply (subst nn-integral-indicator [symmetric], simp)
apply (subst nn-integral-convolution,

auto intro!: borel-measurable-indicator borel-measurable-indicator ′ convolution-finite)+
by (rule nn-integral-cong)+ (auto simp: semigroup-add-class.add .assoc)

lemma convolution-emeasure-3 ′:
assumes [simp, measurable]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [measurable-cong , simp]: sets N = sets borel sets M = sets borel sets L

= sets borel
shows emeasure ((L ? M) ? N) A =

∫
+x .

∫
+y .

∫
+z . indicator A (x + y +

z) ∂N ∂M ∂L
apply (subst nn-integral-indicator [symmetric], simp)+
apply (subst nn-integral-convolution)
apply (simp-all add : convolution-finite)
apply (subst nn-integral-convolution)
apply (simp-all add : finite-measure.sigma-finite-measure sigma-finite-measure.borel-measurable-nn-integral)
done

lemma convolution-commutative:
assumes [simp]: finite-measure M finite-measure N

THEORY “Convolution” 756

assumes [measurable-cong , simp]: sets N = sets borel sets M = sets borel
shows (M ? N) = (N ? M)

proof (rule measure-eqI)
interpret M : finite-measure M by fact
interpret N : finite-measure N by fact
interpret pair-sigma-finite M N ..

show sets (M ? N) = sets (N ? M) by simp

fix A assume A ∈ sets (M ? N)
then have 1 [measurable]:A ∈ sets borel by simp
have emeasure (M ? N) A =

∫
+x .

∫
+y . indicator A (x + y) ∂N ∂M by (auto

intro!: convolution-emeasure ′)
also have ... =

∫
+x .

∫
+y . (λ(x ,y). indicator A (x + y)) (x , y) ∂N ∂M by

(auto intro!: nn-integral-cong)
also have ... =

∫
+y .

∫
+x . (λ(x ,y). indicator A (x + y)) (x , y) ∂M ∂N by

(rule Fubini [symmetric]) simp
also have ... = emeasure (N ? M) A by (auto intro!: nn-integral-cong simp:

add .commute convolution-emeasure ′)
finally show emeasure (M ? N) A = emeasure (N ? M) A by simp

qed

lemma convolution-associative:
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows (L ? (M ? N)) = ((L ? M) ? N)
by (auto intro!: measure-eqI simp: convolution-emeasure-3 convolution-emeasure-3 ′)

lemma (in prob-space) sum-indep-random-variable:
assumes ind : indep-var borel X borel Y
assumes [simp, measurable]: random-variable borel X
assumes [simp, measurable]: random-variable borel Y
shows distr M borel (λx . X x + Y x) = convolution (distr M borel X) (distr M

borel Y)
using ind unfolding indep-var-distribution-eq convolution-def
by (auto simp: distr-distr intro!:arg-cong [where f = distr M borel])

lemma (in prob-space) sum-indep-random-variable-lborel :
assumes ind : indep-var borel X borel Y
assumes [simp, measurable]: random-variable lborel X
assumes [simp, measurable]:random-variable lborel Y
shows distr M lborel (λx . X x + Y x) = convolution (distr M lborel X) (distr

M lborel Y)
using ind unfolding indep-var-distribution-eq convolution-def
by (auto simp: distr-distr o-def intro!: arg-cong [where f = distr M borel] cong :

distr-cong)

lemma convolution-density :
fixes f g :: real ⇒ ennreal

THEORY “Convolution” 757

assumes [measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
assumes [simp]:finite-measure (density lborel f) finite-measure (density lborel g)
shows density lborel f ? density lborel g = density lborel (λx .

∫
+y . f (x − y) ∗

g y ∂lborel)
(is ?l = ?r)

proof (intro measure-eqI)
fix A assume A ∈ sets ?l
then have [measurable]: A ∈ sets borel

by simp

have (
∫

+x . f x ∗ (
∫

+y . g y ∗ indicator A (x + y) ∂lborel) ∂lborel) =
(
∫

+x . (
∫

+y . g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) ∂lborel)
proof (intro nn-integral-cong-AE , eventually-elim)

fix x
have f x ∗ (

∫
+ y . g y ∗ indicator A (x + y) ∂lborel) =

(
∫

+ y . f x ∗ (g y ∗ indicator A (x + y)) ∂lborel)
by (intro nn-integral-cmult [symmetric]) auto

then show f x ∗ (
∫

+ y . g y ∗ indicator A (x + y) ∂lborel) =
(
∫

+ y . g y ∗ (f x ∗ indicator A (x + y)) ∂lborel)
by (simp add : ac-simps)

qed
also have . . . = (

∫
+y . (

∫
+x . g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) ∂lborel)

by (intro lborel-pair .Fubini ′) simp
also have . . . = (

∫
+y . (

∫
+x . f (x − y) ∗ g y ∗ indicator A x ∂lborel) ∂lborel)

proof (intro nn-integral-cong-AE , eventually-elim)
fix y
have (

∫
+x . g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) =

g y ∗ (
∫

+x . f x ∗ indicator A (x + y) ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = g y ∗ (
∫

+x . f (x − y) ∗ indicator A x ∂lborel)
by (subst nn-integral-real-affine[where c=1 and t=−y])

(auto simp add : one-ennreal-def [symmetric])
also have . . . = (

∫
+x . g y ∗ (f (x − y) ∗ indicator A x) ∂lborel)

by (intro nn-integral-cmult [symmetric]) auto
finally show (

∫
+ x . g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) =

(
∫

+ x . f (x − y) ∗ g y ∗ indicator A x ∂lborel)
by (simp add : ac-simps)

qed
also have . . . = (

∫
+x . (

∫
+y . f (x − y) ∗ g y ∗ indicator A x ∂lborel) ∂lborel)

by (intro lborel-pair .Fubini ′) simp
finally show emeasure ?l A = emeasure ?r A

by (auto simp: convolution-emeasure ′ nn-integral-density emeasure-density
nn-integral-multc)

qed simp

lemma (in prob-space) distributed-finite-measure-density :
distributed M N X f =⇒ finite-measure (density N f)
using finite-measure-distr [of X N] distributed-distr-eq-density [of M N X f] by

simp

THEORY “Convolution” 758

lemma (in prob-space) distributed-convolution:
fixes f :: real ⇒ -
fixes g :: real ⇒ -
assumes indep: indep-var borel X borel Y
assumes X : distributed M lborel X f
assumes Y : distributed M lborel Y g
shows distributed M lborel (λx . X x + Y x) (λx .

∫
+y . f (x − y) ∗ g y ∂lborel)

unfolding distributed-def
proof safe

have fg [measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
using distributed-borel-measurable[OF X] distributed-borel-measurable[OF Y]

by simp-all

show (λx .
∫

+ xa. f (x − xa) ∗ g xa ∂lborel) ∈ borel-measurable lborel
by measurable

have distr M borel (λx . X x + Y x) = (distr M borel X ? distr M borel Y)
using distributed-measurable[OF X] distributed-measurable[OF Y]
by (intro sum-indep-random-variable) (auto simp: indep)

also have . . . = (density lborel f ? density lborel g)
using distributed-distr-eq-density [OF X] distributed-distr-eq-density [OF Y]
by (simp cong : distr-cong)

also have . . . = density lborel (λx .
∫

+ y . f (x − y) ∗ g y ∂lborel)
proof (rule convolution-density)

show finite-measure (density lborel f)
using X by (rule distributed-finite-measure-density)

show finite-measure (density lborel g)
using Y by (rule distributed-finite-measure-density)

qed fact+
finally show distr M lborel (λx . X x + Y x) = density lborel (λx .

∫
+ y . f (x

− y) ∗ g y ∂lborel)
by (simp cong : distr-cong)

show random-variable lborel (λx . X x + Y x)
using distributed-measurable[OF X] distributed-measurable[OF Y] by simp

qed

lemma prob-space-convolution-density :
fixes f :: real ⇒ -
fixes g :: real ⇒ -
assumes [measurable]: f ∈ borel-measurable borel
assumes [measurable]: g∈ borel-measurable borel
assumes gt-0 [simp]:

∧
x . 0 ≤ f x

∧
x . 0 ≤ g x

assumes prob-space (density lborel f) (is prob-space ?F)
assumes prob-space (density lborel g) (is prob-space ?G)
shows prob-space (density lborel (λx .

∫
+y . f (x − y) ∗ g y ∂lborel)) (is prob-space

?D)
proof (subst convolution-density [symmetric])

THEORY “Information” 759

interpret F : prob-space ?F by fact
show finite-measure ?F by unfold-locales
interpret G : prob-space ?G by fact
show finite-measure ?G by unfold-locales
interpret FG : pair-prob-space ?F ?G ..

show prob-space (density lborel f ? density lborel g)
unfolding convolution-def by (rule FG .prob-space-distr) simp

qed simp-all

end

40 Information theory

theory Information
imports

Independent-Family
∼∼/src/HOL/Library/Convex

begin

lemma log-le: 1 < a =⇒ 0 < x =⇒ x ≤ y =⇒ log a x ≤ log a y
by (subst log-le-cancel-iff) auto

lemma log-less: 1 < a =⇒ 0 < x =⇒ x < y =⇒ log a x < log a y
by (subst log-less-cancel-iff) auto

lemma setsum-cartesian-product ′:
(
∑

x∈A × B . f x) = (
∑

x∈A. setsum (λy . f (x , y)) B)
unfolding setsum.cartesian-product by simp

lemma split-pairs:
((A, B) = X) ←→ (fst X = A ∧ snd X = B) and
(X = (A, B)) ←→ (fst X = A ∧ snd X = B) by auto

40.1 Information theory

locale information-space = prob-space +
fixes b :: real assumes b-gt-1 : 1 < b

context information-space
begin

Introduce some simplification rules for logarithm of base b.

lemma log-neg-const :
assumes x ≤ 0
shows log b x = log b 0

proof −
{ fix u :: real

have x ≤ 0 by fact

THEORY “Information” 760

also have 0 < exp u
using exp-gt-zero .

finally have exp u 6= x
by auto }

then show log b x = log b 0
by (simp add : log-def ln-real-def)

qed

lemma log-mult-eq :
log b (A ∗ B) = (if 0 < A ∗ B then log b |A| + log b |B | else log b 0)
using log-mult [of b |A| |B |] b-gt-1 log-neg-const [of A ∗ B]
by (auto simp: zero-less-mult-iff mult-le-0-iff)

lemma log-inverse-eq :
log b (inverse B) = (if 0 < B then − log b B else log b 0)
using log-inverse[of b B] log-neg-const [of inverse B] b-gt-1 by simp

lemma log-divide-eq :
log b (A / B) = (if 0 < A ∗ B then log b |A| − log b |B | else log b 0)
unfolding divide-inverse log-mult-eq log-inverse-eq abs-inverse
by (auto simp: zero-less-mult-iff mult-le-0-iff)

lemmas log-simps = log-mult-eq log-inverse-eq log-divide-eq

end

40.2 Kullback−Leibler divergence

The Kullback−Leibler divergence is also known as relative entropy or Kullback−Leibler
distance.

definition
entropy-density b M N = log b ◦ enn2real ◦ RN-deriv M N

definition
KL-divergence b M N = integralL N (entropy-density b M N)

lemma measurable-entropy-density [measurable]: entropy-density b M N ∈ borel-measurable
M

unfolding entropy-density-def by auto

lemma (in sigma-finite-measure) KL-density :
fixes f :: ′a ⇒ real
assumes 1 < b
assumes f [measurable]: f ∈ borel-measurable M and nn: AE x in M . 0 ≤ f x
shows KL-divergence b M (density M f) = (

∫
x . f x ∗ log b (f x) ∂M)

unfolding KL-divergence-def
proof (subst integral-real-density)

show [measurable]: entropy-density b M (density M (λx . ennreal (f x))) ∈
borel-measurable M

THEORY “Information” 761

using f
by (auto simp: comp-def entropy-density-def)

have density M (RN-deriv M (density M f)) = density M f
using f nn by (intro density-RN-deriv-density) auto

then have eq : AE x in M . RN-deriv M (density M f) x = f x
using f nn by (intro density-unique) auto

show (
∫

x . f x ∗ entropy-density b M (density M (λx . ennreal (f x))) x ∂M) =
(
∫

x . f x ∗ log b (f x) ∂M)
apply (intro integral-cong-AE)
apply measurable
using eq nn
apply eventually-elim
apply (auto simp: entropy-density-def)
done

qed fact+

lemma (in sigma-finite-measure) KL-density-density :
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x
assumes g : g ∈ borel-measurable M AE x in M . 0 ≤ g x
assumes ac: AE x in M . f x = 0 −→ g x = 0
shows KL-divergence b (density M f) (density M g) = (

∫
x . g x ∗ log b (g x / f

x) ∂M)
proof −

interpret Mf : sigma-finite-measure density M f
using f by (subst sigma-finite-iff-density-finite) auto

have KL-divergence b (density M f) (density M g) =
KL-divergence b (density M f) (density (density M f) (λx . g x / f x))
using f g ac by (subst density-density-divide) simp-all

also have . . . = (
∫

x . (g x / f x) ∗ log b (g x / f x) ∂density M f)
using f g 〈1 < b〉 by (intro Mf .KL-density) (auto simp: AE-density)

also have . . . = (
∫

x . g x ∗ log b (g x / f x) ∂M)
using ac f g 〈1 < b〉 by (subst integral-density) (auto intro!: integral-cong-AE)

finally show ?thesis .
qed

lemma (in information-space) KL-gt-0 :
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D : D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int : integrable M (λx . D x ∗ log b (D x))
assumes A: density M D 6= M
shows 0 < KL-divergence b M (density M D)

proof −
interpret N : prob-space density M D by fact

obtain A where A ∈ sets M emeasure (density M D) A 6= emeasure M A
using measure-eqI [of density M D M] 〈density M D 6= M 〉 by auto

THEORY “Information” 762

let ?D-set = {x∈space M . D x 6= 0}
have [simp, intro]: ?D-set ∈ sets M

using D by auto

have D-neg : (
∫

+ x . ennreal (− D x) ∂M) = 0
using D by (subst nn-integral-0-iff-AE) (auto simp: ennreal-neg)

have (
∫

+ x . ennreal (D x) ∂M) = emeasure (density M D) (space M)
using D by (simp add : emeasure-density cong : nn-integral-cong)

then have D-pos: (
∫

+ x . ennreal (D x) ∂M) = 1
using N .emeasure-space-1 by simp

have integrable M D
using D D-pos D-neg unfolding real-integrable-def real-lebesgue-integral-def

by simp-all
then have integralL M D = 1

using D D-pos D-neg by (simp add : real-lebesgue-integral-def)

have 0 ≤ 1 − measure M ?D-set
using prob-le-1 by (auto simp: field-simps)

also have . . . = (
∫

x . D x − indicator ?D-set x ∂M)
using 〈integrable M D 〉 〈integralL M D = 1 〉

by (simp add : emeasure-eq-measure)
also have . . . < (

∫
x . D x ∗ (ln b ∗ log b (D x)) ∂M)

proof (rule integral-less-AE)
show integrable M (λx . D x − indicator ?D-set x)

using 〈integrable M D 〉 by (auto simp: less-top[symmetric])
next

from integrable-mult-left(1)[OF int , of ln b]
show integrable M (λx . D x ∗ (ln b ∗ log b (D x)))

by (simp add : ac-simps)
next

show emeasure M {x∈space M . D x 6= 1 ∧ D x 6= 0} 6= 0
proof

assume eq-0 : emeasure M {x∈space M . D x 6= 1 ∧ D x 6= 0} = 0
then have disj : AE x in M . D x = 1 ∨ D x = 0

using D(1) by (auto intro!: AE-I [OF subset-refl] sets.sets-Collect)

have emeasure M {x∈space M . D x = 1} = (
∫

+ x . indicator {x∈space M .
D x = 1} x ∂M)

using D(1) by auto
also have . . . = (

∫
+ x . ennreal (D x) ∂M)

using disj by (auto intro!: nn-integral-cong-AE simp: indicator-def one-ennreal-def)
finally have AE x in M . D x = 1

using D D-pos by (intro AE-I-eq-1) auto
then have (

∫
+x . indicator A x∂M) = (

∫
+x . ennreal (D x) ∗ indicator A

x∂M)
by (intro nn-integral-cong-AE) (auto simp: one-ennreal-def [symmetric])

THEORY “Information” 763

also have . . . = density M D A
using 〈A ∈ sets M 〉 D by (simp add : emeasure-density)

finally show False using 〈A ∈ sets M 〉 〈emeasure (density M D) A 6= emeasure
M A〉 by simp

qed
show {x∈space M . D x 6= 1 ∧ D x 6= 0} ∈ sets M

using D(1) by (auto intro: sets.sets-Collect-conj)

show AE t in M . t ∈ {x∈space M . D x 6= 1 ∧ D x 6= 0} −→
D t − indicator ?D-set t 6= D t ∗ (ln b ∗ log b (D t))
using D(2)

proof (eventually-elim, safe)
fix t assume Dt : t ∈ space M D t 6= 1 D t 6= 0 0 ≤ D t

and eq : D t − indicator ?D-set t = D t ∗ (ln b ∗ log b (D t))

have D t − 1 = D t − indicator ?D-set t
using Dt by simp

also note eq
also have D t ∗ (ln b ∗ log b (D t)) = − D t ∗ ln (1 / D t)

using b-gt-1 〈D t 6= 0 〉 〈0 ≤ D t 〉

by (simp add : log-def ln-div less-le)
finally have ln (1 / D t) = 1 / D t − 1

using 〈D t 6= 0 〉 by (auto simp: field-simps)
from ln-eq-minus-one[OF - this] 〈D t 6= 0 〉 〈0 ≤ D t 〉 〈D t 6= 1 〉

show False by auto
qed

show AE t in M . D t − indicator ?D-set t ≤ D t ∗ (ln b ∗ log b (D t))
using D(2) AE-space

proof eventually-elim
fix t assume t ∈ space M 0 ≤ D t
show D t − indicator ?D-set t ≤ D t ∗ (ln b ∗ log b (D t))
proof cases

assume asm: D t 6= 0
then have 0 < D t using 〈0 ≤ D t 〉 by auto
then have 0 < 1 / D t by auto
have D t − indicator ?D-set t ≤ − D t ∗ (1 / D t − 1)

using asm 〈t ∈ space M 〉 by (simp add : field-simps)
also have − D t ∗ (1 / D t − 1) ≤ − D t ∗ ln (1 / D t)

using ln-le-minus-one 〈0 < 1 / D t 〉 by (intro mult-left-mono-neg) auto
also have . . . = D t ∗ (ln b ∗ log b (D t))

using 〈0 < D t 〉 b-gt-1
by (simp-all add : log-def ln-div)

finally show ?thesis by simp
qed simp

qed
qed
also have . . . = (

∫
x . ln b ∗ (D x ∗ log b (D x)) ∂M)

by (simp add : ac-simps)

THEORY “Information” 764

also have . . . = ln b ∗ (
∫

x . D x ∗ log b (D x) ∂M)
using int by simp

finally show ?thesis
using b-gt-1 D by (subst KL-density) (auto simp: zero-less-mult-iff)

qed

lemma (in sigma-finite-measure) KL-same-eq-0 : KL-divergence b M M = 0
proof −

have AE x in M . 1 = RN-deriv M M x
proof (rule RN-deriv-unique)

show density M (λx . 1) = M
apply (auto intro!: measure-eqI emeasure-density)
apply (subst emeasure-density)
apply auto
done

qed auto
then have AE x in M . log b (enn2real (RN-deriv M M x)) = 0

by (elim AE-mp) simp
from integral-cong-AE [OF - - this]
have integralL M (entropy-density b M M) = 0

by (simp add : entropy-density-def comp-def)
then show KL-divergence b M M = 0

unfolding KL-divergence-def
by auto

qed

lemma (in information-space) KL-eq-0-iff-eq :
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D : D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int : integrable M (λx . D x ∗ log b (D x))
shows KL-divergence b M (density M D) = 0 ←→ density M D = M
using KL-same-eq-0 [of b] KL-gt-0 [OF assms]
by (auto simp: less-le)

lemma (in information-space) KL-eq-0-iff-eq-ac:
fixes D :: ′a ⇒ real
assumes prob-space N
assumes ac: absolutely-continuous M N sets N = sets M
assumes int : integrable N (entropy-density b M N)
shows KL-divergence b M N = 0 ←→ N = M

proof −
interpret N : prob-space N by fact
have finite-measure N by unfold-locales
from real-RN-deriv [OF this ac] guess D . note D = this

have N = density M (RN-deriv M N)
using ac by (rule density-RN-deriv [symmetric])

also have . . . = density M D

THEORY “Information” 765

using D by (auto intro!: density-cong)
finally have N : N = density M D .

from absolutely-continuous-AE [OF ac(2 ,1) D(2)] D b-gt-1 ac measurable-entropy-density
have integrable N (λx . log b (D x))

by (intro integrable-cong-AE [THEN iffD2 , OF - - - int])
(auto simp: N entropy-density-def)

with D b-gt-1 have integrable M (λx . D x ∗ log b (D x))
by (subst integrable-real-density [symmetric]) (auto simp: N [symmetric] comp-def)
with 〈prob-space N 〉 D show ?thesis

unfolding N
by (intro KL-eq-0-iff-eq) auto

qed

lemma (in information-space) KL-nonneg :
assumes prob-space (density M D)
assumes D : D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int : integrable M (λx . D x ∗ log b (D x))
shows 0 ≤ KL-divergence b M (density M D)
using KL-gt-0 [OF assms] by (cases density M D = M) (auto simp: KL-same-eq-0)

lemma (in sigma-finite-measure) KL-density-density-nonneg :
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x prob-space (density M

f)
assumes g : g ∈ borel-measurable M AE x in M . 0 ≤ g x prob-space (density M

g)
assumes ac: AE x in M . f x = 0 −→ g x = 0
assumes int : integrable M (λx . g x ∗ log b (g x / f x))
shows 0 ≤ KL-divergence b (density M f) (density M g)

proof −
interpret Mf : prob-space density M f by fact
interpret Mf : information-space density M f b by standard fact
have eq : density (density M f) (λx . g x / f x) = density M g (is ?DD = -)

using f g ac by (subst density-density-divide) simp-all

have 0 ≤ KL-divergence b (density M f) (density (density M f) (λx . g x / f x))
proof (rule Mf .KL-nonneg)

show prob-space ?DD unfolding eq by fact
from f g show (λx . g x / f x) ∈ borel-measurable (density M f)

by auto
show AE x in density M f . 0 ≤ g x / f x

using f g by (auto simp: AE-density)
show integrable (density M f) (λx . g x / f x ∗ log b (g x / f x))

using 〈1 < b〉 f g ac
by (subst integrable-density)

(auto intro!: integrable-cong-AE [THEN iffD2 , OF - - - int] measurable-If)
qed

THEORY “Information” 766

also have . . . = KL-divergence b (density M f) (density M g)
using f g ac by (subst density-density-divide) simp-all

finally show ?thesis .
qed

40.3 Finite Entropy

definition (in information-space) finite-entropy :: ′b measure ⇒ (′a ⇒ ′b) ⇒ (′b
⇒ real) ⇒ bool
where

finite-entropy S X f ←→
distributed M S X f ∧
integrable S (λx . f x ∗ log b (f x)) ∧
(∀ x∈space S . 0 ≤ f x)

lemma (in information-space) finite-entropy-simple-function:
assumes X : simple-function M X
shows finite-entropy (count-space (X‘space M)) X (λa. measure M {x ∈ space

M . X x = a})
unfolding finite-entropy-def

proof safe
have [simp]: finite (X ‘ space M)

using X by (auto simp: simple-function-def)
then show integrable (count-space (X ‘ space M))

(λx . prob {xa ∈ space M . X xa = x} ∗ log b (prob {xa ∈ space M . X xa =
x}))

by (rule integrable-count-space)
have d : distributed M (count-space (X ‘ space M)) X (λx . ennreal (if x ∈ X‘space

M then prob {xa ∈ space M . X xa = x} else 0))
by (rule distributed-simple-function-superset [OF X]) (auto intro!: arg-cong [where

f =prob])
show distributed M (count-space (X ‘ space M)) X (λx . ennreal (prob {xa ∈

space M . X xa = x}))
by (rule distributed-cong-density [THEN iffD1 , OF - - - d]) auto

qed (rule measure-nonneg)

lemma ac-fst :
assumes sigma-finite-measure T
shows absolutely-continuous S (distr (S

⊗
M T) S fst)

proof −
interpret sigma-finite-measure T by fact
{ fix A assume A: A ∈ sets S emeasure S A = 0

then have fst −‘ A ∩ space (S
⊗

M T) = A × space T
by (auto simp: space-pair-measure dest !: sets.sets-into-space)

with A have emeasure (S
⊗

M T) (fst −‘ A ∩ space (S
⊗

M T)) = 0
by (simp add : emeasure-pair-measure-Times) }

then show ?thesis
unfolding absolutely-continuous-def
apply (auto simp: null-sets-distr-iff)

THEORY “Information” 767

apply (auto simp: null-sets-def intro!: measurable-sets)
done

qed

lemma ac-snd :
assumes sigma-finite-measure T
shows absolutely-continuous T (distr (S

⊗
M T) T snd)

proof −
interpret sigma-finite-measure T by fact
{ fix A assume A: A ∈ sets T emeasure T A = 0

then have snd −‘ A ∩ space (S
⊗

M T) = space S × A
by (auto simp: space-pair-measure dest !: sets.sets-into-space)

with A have emeasure (S
⊗

M T) (snd −‘ A ∩ space (S
⊗

M T)) = 0
by (simp add : emeasure-pair-measure-Times) }

then show ?thesis
unfolding absolutely-continuous-def
apply (auto simp: null-sets-distr-iff)
apply (auto simp: null-sets-def intro!: measurable-sets)
done

qed

lemma integrable-cong-AE-imp:
integrable M g =⇒ f ∈ borel-measurable M =⇒ (AE x in M . g x = f x) =⇒

integrable M f
using integrable-cong-AE [of f M g] by (auto simp: eq-commute)

lemma (in information-space) finite-entropy-integrable:
finite-entropy S X Px =⇒ integrable S (λx . Px x ∗ log b (Px x))
unfolding finite-entropy-def by auto

lemma (in information-space) finite-entropy-distributed :
finite-entropy S X Px =⇒ distributed M S X Px
unfolding finite-entropy-def by auto

lemma (in information-space) finite-entropy-nn:
finite-entropy S X Px =⇒ x ∈ space S =⇒ 0 ≤ Px x
by (auto simp: finite-entropy-def)

lemma (in information-space) finite-entropy-measurable:
finite-entropy S X Px =⇒ Px ∈ S →M borel
using distributed-real-measurable[of S Px M X]

finite-entropy-nn[of S X Px] finite-entropy-distributed [of S X Px] by auto

lemma (in information-space) subdensity-finite-entropy :
fixes g :: ′b ⇒ real and f :: ′c ⇒ real
assumes T : T ∈ measurable P Q
assumes f : finite-entropy P X f
assumes g : finite-entropy Q Y g
assumes Y : Y = T ◦ X

THEORY “Information” 768

shows AE x in P . g (T x) = 0 −→ f x = 0
using subdensity [OF T , of M X λx . ennreal (f x) Y λx . ennreal (g x)]

finite-entropy-distributed [OF f] finite-entropy-distributed [OF g]
finite-entropy-nn[OF f] finite-entropy-nn[OF g]
assms

by auto

lemma (in information-space) finite-entropy-integrable-transform:
finite-entropy S X Px =⇒ distributed M T Y Py =⇒ (

∧
x . x ∈ space T =⇒ 0 ≤

Py x) =⇒
X = (λx . f (Y x)) =⇒ f ∈ measurable T S =⇒ integrable T (λx . Py x ∗ log b

(Px (f x)))
using distributed-transform-integrable[of M T Y Py S X Px f λx . log b (Px x)]
using distributed-real-measurable[of S Px M X]
by (auto simp: finite-entropy-def)

40.4 Mutual Information

definition (in prob-space)
mutual-information b S T X Y =

KL-divergence b (distr M S X
⊗

M distr M T Y) (distr M (S
⊗

M T) (λx .
(X x , Y x)))

lemma (in information-space) mutual-information-indep-vars:
fixes S T X Y
defines P ≡ distr M S X

⊗
M distr M T Y

defines Q ≡ distr M (S
⊗

M T) (λx . (X x , Y x))
shows indep-var S X T Y ←→

(random-variable S X ∧ random-variable T Y ∧
absolutely-continuous P Q ∧ integrable Q (entropy-density b P Q) ∧
mutual-information b S T X Y = 0)

unfolding indep-var-distribution-eq
proof safe

assume rv [measurable]: random-variable S X random-variable T Y

interpret X : prob-space distr M S X
by (rule prob-space-distr) fact

interpret Y : prob-space distr M T Y
by (rule prob-space-distr) fact

interpret XY : pair-prob-space distr M S X distr M T Y by standard
interpret P : information-space P b unfolding P-def by standard (rule b-gt-1)

interpret Q : prob-space Q unfolding Q-def
by (rule prob-space-distr) simp

{ assume distr M S X
⊗

M distr M T Y = distr M (S
⊗

M T) (λx . (X x , Y
x))

then have [simp]: Q = P unfolding Q-def P-def by simp

THEORY “Information” 769

show ac: absolutely-continuous P Q by (simp add : absolutely-continuous-def)
then have ed : entropy-density b P Q ∈ borel-measurable P

by simp

have AE x in P . 1 = RN-deriv P Q x
proof (rule P .RN-deriv-unique)

show density P (λx . 1) = Q
unfolding 〈Q = P 〉 by (intro measure-eqI) (auto simp: emeasure-density)

qed auto
then have ae-0 : AE x in P . entropy-density b P Q x = 0

by eventually-elim (auto simp: entropy-density-def)
then have integrable P (entropy-density b P Q) ←→ integrable Q (λx . 0 ::real)

using ed unfolding 〈Q = P 〉 by (intro integrable-cong-AE) auto
then show integrable Q (entropy-density b P Q) by simp

from ae-0 have mutual-information b S T X Y = (
∫

x . 0 ∂P)
unfolding mutual-information-def KL-divergence-def P-def [symmetric] Q-def [symmetric]

〈Q = P 〉

by (intro integral-cong-AE) auto
then show mutual-information b S T X Y = 0

by simp }

{ assume ac: absolutely-continuous P Q
assume int : integrable Q (entropy-density b P Q)
assume I-eq-0 : mutual-information b S T X Y = 0

have eq : Q = P
proof (rule P .KL-eq-0-iff-eq-ac[THEN iffD1])

show prob-space Q by unfold-locales
show absolutely-continuous P Q by fact
show integrable Q (entropy-density b P Q) by fact
show sets Q = sets P by (simp add : P-def Q-def sets-pair-measure)
show KL-divergence b P Q = 0
using I-eq-0 unfolding mutual-information-def by (simp add : P-def Q-def)

qed
then show distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T) (λx . (X x ,

Y x))
unfolding P-def Q-def .. }

qed

abbreviation (in information-space)
mutual-information-Pow (I ′(- ; - ′)) where
I(X ; Y) ≡ mutual-information b (count-space (X‘space M)) (count-space (Y‘space

M)) X Y

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Fx : finite-entropy S X Px and Fy : finite-entropy T Y Py

THEORY “Information” 770

assumes Fxy : finite-entropy (S
⊗

M T) (λx . (X x , Y x)) Pxy
defines f ≡ λx . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr ′: mutual-information b S T X Y = integralL (S⊗
M T) f (is ?M = ?R)
and mutual-information-nonneg ′: 0 ≤ mutual-information b S T X Y

proof −
have Px : distributed M S X Px and Px-nn:

∧
x . x ∈ space S =⇒ 0 ≤ Px x

using Fx by (auto simp: finite-entropy-def)
have Py : distributed M T Y Py and Py-nn:

∧
x . x ∈ space T =⇒ 0 ≤ Py x

using Fy by (auto simp: finite-entropy-def)
have Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

and Pxy-nn:
∧

x . x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x∧
x y . x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x , y)

using Fxy by (auto simp: finite-entropy-def space-pair-measure)

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy [measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have X [measurable]: random-variable S X
using Px by auto

have Y [measurable]: random-variable T Y
using Py by auto

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
interpret X : prob-space distr M S X using X by (rule prob-space-distr)
interpret Y : prob-space distr M T Y using Y by (rule prob-space-distr)
interpret XY : pair-prob-space distr M S X distr M T Y ..
let ?P = S

⊗
M T

let ?D = distr M ?P (λx . (X x , Y x))

{ fix A assume A ∈ sets S
with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M S X) A = emeasure ?D (A × space T)

by (auto simp: emeasure-distr intro!: arg-cong [where f =emeasure M]) }
note marginal-eq1 = this
{ fix A assume A ∈ sets T

with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M T Y) A = emeasure ?D (space S × A)

by (auto simp: emeasure-distr intro!: arg-cong [where f =emeasure M]) }
note marginal-eq2 = this

have distr-eq : distr M S X
⊗

M distr M T Y = density ?P (λx . ennreal (Px
(fst x) ∗ Py (snd x)))

unfolding Px (1)[THEN distributed-distr-eq-density] Py(1)[THEN distributed-distr-eq-density]

THEORY “Information” 771

proof (subst pair-measure-density)
show (λx . ennreal (Px x)) ∈ borel-measurable S (λy . ennreal (Py y)) ∈

borel-measurable T
using Px Py by (auto simp: distributed-def)

show sigma-finite-measure (density T Py) unfolding Py(1)[THEN distributed-distr-eq-density ,
symmetric] ..

show density (S
⊗

M T) (λ(x , y). ennreal (Px x) ∗ ennreal (Py y)) =
density (S

⊗
M T) (λx . ennreal (Px (fst x) ∗ Py (snd x)))

using Px-nn Py-nn by (auto intro!: density-cong simp: distributed-def ennreal-mult
space-pair-measure)

qed fact

have M : ?M = KL-divergence b (density ?P (λx . ennreal (Px (fst x) ∗ Py (snd
x)))) (density ?P (λx . ennreal (Pxy x)))

unfolding mutual-information-def distr-eq Pxy(1)[THEN distributed-distr-eq-density]
..

from Px Py have f : (λx . Px (fst x) ∗ Py (snd x)) ∈ borel-measurable ?P
by (intro borel-measurable-times) (auto intro: distributed-real-measurable measurable-fst ′′

measurable-snd ′′)
have PxPy-nonneg : AE x in ?P . 0 ≤ Px (fst x) ∗ Py (snd x)

using Px-nn Py-nn by (auto simp: space-pair-measure)

have A: (AE x in ?P . Px (fst x) = 0 −→ Pxy x = 0)
by (rule subdensity-real [OF measurable-fst Pxy Px]) (insert Px-nn Pxy-nn, auto

simp: space-pair-measure)
moreover
have B : (AE x in ?P . Py (snd x) = 0 −→ Pxy x = 0)

by (rule subdensity-real [OF measurable-snd Pxy Py]) (insert Py-nn Pxy-nn,
auto simp: space-pair-measure)

ultimately have ac: AE x in ?P . Px (fst x) ∗ Py (snd x) = 0 −→ Pxy x = 0
by eventually-elim auto

show ?M = ?R
unfolding M f-def using Pxy-nn Px-nn Py-nn

by (intro ST .KL-density-density b-gt-1 f PxPy-nonneg ac) (auto simp: space-pair-measure)

have X : X = fst ◦ (λx . (X x , Y x)) and Y : Y = snd ◦ (λx . (X x , Y x))
by auto

have integrable (S
⊗

M T) (λx . Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Px (fst
x)) − Pxy x ∗ log b (Py (snd x)))

using finite-entropy-integrable[OF Fxy]
using finite-entropy-integrable-transform[OF Fx Pxy , of fst]
using finite-entropy-integrable-transform[OF Fy Pxy , of snd]
by (simp add : Pxy-nn)

moreover have f ∈ borel-measurable (S
⊗

M T)
unfolding f-def using Px Py Pxy
by (auto intro: distributed-real-measurable measurable-fst ′′ measurable-snd ′′

THEORY “Information” 772

intro!: borel-measurable-times borel-measurable-log borel-measurable-divide)
ultimately have int : integrable (S

⊗
M T) f

apply (rule integrable-cong-AE-imp)
using A B AE-space
by eventually-elim
(auto simp: f-def log-divide-eq log-mult-eq field-simps space-pair-measure Px-nn

Py-nn Pxy-nn
less-le)

show 0 ≤ ?M unfolding M
proof (intro ST .KL-density-density-nonneg)

show prob-space (density (S
⊗

M T) (λx . ennreal (Pxy x)))
unfolding distributed-distr-eq-density [OF Pxy , symmetric]
using distributed-measurable[OF Pxy] by (rule prob-space-distr)

show prob-space (density (S
⊗

M T) (λx . ennreal (Px (fst x) ∗ Py (snd x))))
unfolding distr-eq [symmetric] by unfold-locales

show integrable (S
⊗

M T) (λx . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd
x))))

using int unfolding f-def .
qed (insert ac, auto simp: b-gt-1 Px-nn Py-nn Pxy-nn space-pair-measure)

qed

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px : distributed M S X Px and Px-nn:

∧
x . x ∈ space S =⇒ 0 ≤ Px x

and Py : distributed M T Y Py and Py-nn:
∧

y . y ∈ space T =⇒ 0 ≤ Py y
and Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

and Pxy-nn:
∧

x y . x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x , y)
defines f ≡ λx . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr : mutual-information b S T X Y = integralL (S⊗
M T) f (is ?M = ?R)
and mutual-information-nonneg : integrable (S

⊗
M T) f =⇒ 0 ≤ mutual-information

b S T X Y
proof −

have X [measurable]: random-variable S X
using Px by (auto simp: distributed-def)

have Y [measurable]: random-variable T Y
using Py by (auto simp: distributed-def)

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy [measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

THEORY “Information” 773

interpret X : prob-space distr M S X using X by (rule prob-space-distr)
interpret Y : prob-space distr M T Y using Y by (rule prob-space-distr)
interpret XY : pair-prob-space distr M S X distr M T Y ..
let ?P = S

⊗
M T

let ?D = distr M ?P (λx . (X x , Y x))

{ fix A assume A ∈ sets S
with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M S X) A = emeasure ?D (A × space T)

by (auto simp: emeasure-distr intro!: arg-cong [where f =emeasure M]) }
note marginal-eq1 = this
{ fix A assume A ∈ sets T

with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M T Y) A = emeasure ?D (space S × A)

by (auto simp: emeasure-distr intro!: arg-cong [where f =emeasure M]) }
note marginal-eq2 = this

have distr-eq : distr M S X
⊗

M distr M T Y = density ?P (λx . ennreal (Px
(fst x) ∗ Py (snd x)))

unfolding Px (1)[THEN distributed-distr-eq-density] Py(1)[THEN distributed-distr-eq-density]
proof (subst pair-measure-density)

show (λx . ennreal (Px x)) ∈ borel-measurable S (λy . ennreal (Py y)) ∈
borel-measurable T

using Px Py by (auto simp: distributed-def)
show sigma-finite-measure (density T Py) unfolding Py(1)[THEN distributed-distr-eq-density ,

symmetric] ..
show density (S

⊗
M T) (λ(x , y). ennreal (Px x) ∗ ennreal (Py y)) =

density (S
⊗

M T) (λx . ennreal (Px (fst x) ∗ Py (snd x)))
using Px-nn Py-nn by (auto intro!: density-cong simp: distributed-def ennreal-mult

space-pair-measure)
qed fact

have M : ?M = KL-divergence b (density ?P (λx . ennreal (Px (fst x) ∗ Py (snd
x)))) (density ?P (λx . ennreal (Pxy x)))

unfolding mutual-information-def distr-eq Pxy(1)[THEN distributed-distr-eq-density]
..

from Px Py have f : (λx . Px (fst x) ∗ Py (snd x)) ∈ borel-measurable ?P
by (intro borel-measurable-times) (auto intro: distributed-real-measurable measurable-fst ′′

measurable-snd ′′)
have PxPy-nonneg : AE x in ?P . 0 ≤ Px (fst x) ∗ Py (snd x)

using Px-nn Py-nn by (auto simp: space-pair-measure)

have (AE x in ?P . Px (fst x) = 0 −→ Pxy x = 0)
by (rule subdensity-real [OF measurable-fst Pxy Px]) (insert Px-nn Pxy-nn, auto

simp: space-pair-measure)
moreover
have (AE x in ?P . Py (snd x) = 0 −→ Pxy x = 0)

by (rule subdensity-real [OF measurable-snd Pxy Py]) (insert Py-nn Pxy-nn,

THEORY “Information” 774

auto simp: space-pair-measure)
ultimately have ac: AE x in ?P . Px (fst x) ∗ Py (snd x) = 0 −→ Pxy x = 0

by eventually-elim auto

show ?M = ?R
unfolding M f-def
using b-gt-1 f PxPy-nonneg ac Pxy-nn
by (intro ST .KL-density-density) (auto simp: space-pair-measure)

assume int : integrable (S
⊗

M T) f
show 0 ≤ ?M unfolding M
proof (intro ST .KL-density-density-nonneg)

show prob-space (density (S
⊗

M T) (λx . ennreal (Pxy x)))
unfolding distributed-distr-eq-density [OF Pxy , symmetric]
using distributed-measurable[OF Pxy] by (rule prob-space-distr)

show prob-space (density (S
⊗

M T) (λx . ennreal (Px (fst x) ∗ Py (snd x))))
unfolding distr-eq [symmetric] by unfold-locales

show integrable (S
⊗

M T) (λx . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd
x))))

using int unfolding f-def .
qed (insert ac, auto simp: b-gt-1 Px-nn Py-nn Pxy-nn space-pair-measure)

qed

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px [measurable]: distributed M S X Px and Px-nn:

∧
x . x ∈ space S

=⇒ 0 ≤ Px x
and Py [measurable]: distributed M T Y Py and Py-nn:

∧
x . x ∈ space T =⇒

0 ≤ Py x
and Pxy [measurable]: distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

and Pxy-nn:
∧

x . x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
assumes ae: AE x in S . AE y in T . Pxy (x , y) = Px x ∗ Py y
shows mutual-information-eq-0 : mutual-information b S T X Y = 0

proof −
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
note

distributed-real-measurable[OF Px-nn Px , measurable]
distributed-real-measurable[OF Py-nn Py , measurable]
distributed-real-measurable[OF Pxy-nn Pxy , measurable]

have AE x in S
⊗

M T . Px (fst x) = 0 −→ Pxy x = 0
by (rule subdensity-real [OF measurable-fst Pxy Px]) (auto simp: Px-nn Pxy-nn

space-pair-measure)
moreover
have AE x in S

⊗
M T . Py (snd x) = 0 −→ Pxy x = 0

by (rule subdensity-real [OF measurable-snd Pxy Py]) (auto simp: Py-nn Pxy-nn

THEORY “Information” 775

space-pair-measure)
moreover
have AE x in S

⊗
M T . Pxy x = Px (fst x) ∗ Py (snd x)

by (intro ST .AE-pair-measure) (auto simp: ae intro!: measurable-snd ′′measurable-fst ′′)
ultimately have AE x in S

⊗
M T . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py

(snd x))) = 0
by eventually-elim simp

then have (
∫

x . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x))) ∂(S
⊗

M

T)) = (
∫

x . 0 ∂(S
⊗

M T))
by (intro integral-cong-AE) auto

then show ?thesis
by (subst mutual-information-distr [OF assms(1−8)]) (auto simp add : space-pair-measure)

qed

lemma (in information-space) mutual-information-simple-distributed :
assumes X : simple-distributed M X Px and Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx . (X x , Y x)) Pxy
shows I(X ; Y) = (

∑
(x , y)∈(λx . (X x , Y x))‘space M . Pxy (x , y) ∗ log b (Pxy

(x , y) / (Px x ∗ Py y)))
proof (subst mutual-information-distr [OF - - simple-distributed [OF X] - simple-distributed [OF
Y] - simple-distributed-joint [OF XY]])

note fin = simple-distributed-joint-finite[OF XY , simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
let ?Pxy = λx . (if x ∈ (λx . (X x , Y x)) ‘ space M then Pxy x else 0)
let ?f = λx . ?Pxy x ∗ log b (?Pxy x / (Px (fst x) ∗ Py (snd x)))
have

∧
x . ?f x = (if x ∈ (λx . (X x , Y x)) ‘ space M then Pxy x ∗ log b (Pxy x

/ (Px (fst x) ∗ Py (snd x))) else 0)
by auto

with fin show (
∫

x . ?f x ∂(count-space (X ‘ space M)
⊗

M count-space (Y ‘
space M))) =

(
∑

(x , y)∈(λx . (X x , Y x)) ‘ space M . Pxy (x , y) ∗ log b (Pxy (x , y) / (Px x
∗ Py y)))

by (auto simp add : pair-measure-count-space lebesgue-integral-count-space-finite
setsum.If-cases split-beta ′

intro!: setsum.cong)
qed (insert X Y XY , auto simp: simple-distributed-def)

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes Px : simple-distributed M X Px and Py : simple-distributed M Y Py
assumes Pxy : simple-distributed M (λx . (X x , Y x)) Pxy
assumes ae: ∀ x∈space M . Pxy (X x , Y x) = Px (X x) ∗ Py (Y x)
shows mutual-information-eq-0-simple: I(X ; Y) = 0

proof (subst mutual-information-simple-distributed [OF Px Py Pxy])
have (

∑
(x , y)∈(λx . (X x , Y x)) ‘ space M . Pxy (x , y) ∗ log b (Pxy (x , y) /

(Px x ∗ Py y))) =

THEORY “Information” 776

(
∑

(x , y)∈(λx . (X x , Y x)) ‘ space M . 0)
by (intro setsum.cong) (auto simp: ae)

then show (
∑

(x , y)∈(λx . (X x , Y x)) ‘ space M .
Pxy (x , y) ∗ log b (Pxy (x , y) / (Px x ∗ Py y))) = 0 by simp

qed

40.5 Entropy

definition (in prob-space) entropy :: real ⇒ ′b measure ⇒ (′a ⇒ ′b)⇒ real where
entropy b S X = − KL-divergence b S (distr M S X)

abbreviation (in information-space)
entropy-Pow (H ′(- ′)) where
H(X) ≡ entropy b (count-space (X‘space M)) X

lemma (in prob-space) distributed-RN-deriv :
assumes X : distributed M S X Px
shows AE x in S . RN-deriv S (density S Px) x = Px x

proof −
note D = distributed-measurable[OF X] distributed-borel-measurable[OF X]
interpret X : prob-space distr M S X

using D(1) by (rule prob-space-distr)

have sf : sigma-finite-measure (distr M S X) by standard
show ?thesis

using D
apply (subst eq-commute)
apply (intro RN-deriv-unique-sigma-finite)
apply (auto simp: distributed-distr-eq-density [symmetric, OF X] sf)
done

qed

lemma (in information-space)
fixes X :: ′a ⇒ ′b
assumes X [measurable]: distributed M MX X f and nn:

∧
x . x ∈ space MX =⇒

0 ≤ f x
shows entropy-distr : entropy b MX X = − (

∫
x . f x ∗ log b (f x) ∂MX) (is ?eq)

proof −
note D = distributed-measurable[OF X] distributed-borel-measurable[OF X]
note ae = distributed-RN-deriv [OF X]
note distributed-real-measurable[OF nn X , measurable]

have ae-eq : AE x in distr M MX X . log b (enn2real (RN-deriv MX (distr M MX
X) x)) =

log b (f x)
unfolding distributed-distr-eq-density [OF X]
apply (subst AE-density)
using D apply simp
using ae apply eventually-elim

THEORY “Information” 777

apply auto
done

have int-eq : (
∫

x . f x ∗ log b (f x) ∂MX) = (
∫

x . log b (f x) ∂distr M MX X)
unfolding distributed-distr-eq-density [OF X]
using D
by (subst integral-density) (auto simp: nn)

show ?eq
unfolding entropy-def KL-divergence-def entropy-density-def comp-def int-eq

neg-equal-iff-equal
using ae-eq by (intro integral-cong-AE) (auto simp: nn)

qed

lemma (in information-space) entropy-le:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X [measurable]: distributed M MX X Px and Px-nn[simp]:

∧
x . x ∈

space MX =⇒ 0 ≤ Px x
and fin: emeasure MX {x ∈ space MX . Px x 6= 0} 6= top
and int : integrable MX (λx . − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX {x ∈ space MX . Px x 6= 0})

proof −
note Px = distributed-borel-measurable[OF X]
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

have − log b (measure MX {x ∈ space MX . Px x 6= 0}) =
− log b (

∫
x . indicator {x ∈ space MX . Px x 6= 0} x ∂MX)

using Px Px-nn fin by (auto simp: measure-def)
also have − log b (

∫
x . indicator {x ∈ space MX . Px x 6= 0} x ∂MX) = − log

b (
∫

x . 1 / Px x ∂distr M MX X)
unfolding distributed-distr-eq-density [OF X] using Px Px-nn
apply (intro arg-cong [where f =log b] arg-cong [where f =uminus])

by (subst integral-density) (auto simp del : integral-indicator intro!: integral-cong)
also have . . . ≤ (

∫
x . − log b (1 / Px x) ∂distr M MX X)

proof (rule X .jensens-inequality [of λx . 1 / Px x {0<..} 0 1 λx . − log b x])
show AE x in distr M MX X . 1 / Px x ∈ {0<..}

unfolding distributed-distr-eq-density [OF X]
using Px by (auto simp: AE-density)

have [simp]:
∧

x . x ∈ space MX =⇒ ennreal (if Px x = 0 then 0 else 1) =
indicator {x ∈ space MX . Px x 6= 0} x

by (auto simp: one-ennreal-def)
have (

∫
+ x . ennreal (− (if Px x = 0 then 0 else 1)) ∂MX) = (

∫
+ x . 0 ∂MX)

by (intro nn-integral-cong) (auto simp: ennreal-neg)
then show integrable (distr M MX X) (λx . 1 / Px x)

unfolding distributed-distr-eq-density [OF X] using Px
by (auto simp: nn-integral-density real-integrable-def fin ennreal-neg ennreal-mult [symmetric]

cong : nn-integral-cong)
have integrable MX (λx . Px x ∗ log b (1 / Px x)) =

THEORY “Information” 778

integrable MX (λx . − Px x ∗ log b (Px x))
using Px
by (intro integrable-cong-AE) (auto simp: log-divide-eq less-le)

then show integrable (distr M MX X) (λx . − log b (1 / Px x))
unfolding distributed-distr-eq-density [OF X]
using Px int
by (subst integrable-real-density) auto

qed (auto simp: minus-log-convex [OF b-gt-1])
also have . . . = (

∫
x . log b (Px x) ∂distr M MX X)

unfolding distributed-distr-eq-density [OF X] using Px
by (intro integral-cong-AE) (auto simp: AE-density log-divide-eq)

also have . . . = − entropy b MX X
unfolding distributed-distr-eq-density [OF X] using Px
by (subst entropy-distr [OF X]) (auto simp: integral-density)

finally show ?thesis
by simp

qed

lemma (in information-space) entropy-le-space:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X : distributed M MX X Px and Px-nn[simp]:

∧
x . x ∈ space MX =⇒

0 ≤ Px x
and fin: finite-measure MX
and int : integrable MX (λx . − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX (space MX))

proof −
note Px = distributed-borel-measurable[OF X]
interpret finite-measure MX by fact
have entropy b MX X ≤ log b (measure MX {x ∈ space MX . Px x 6= 0})

using int X by (intro entropy-le) auto
also have . . . ≤ log b (measure MX (space MX))

using Px distributed-imp-emeasure-nonzero[OF X]
by (intro log-le)

(auto intro!: finite-measure-mono b-gt-1 less-le[THEN iffD2]
simp: emeasure-eq-measure cong : conj-cong)

finally show ?thesis .
qed

lemma (in information-space) entropy-uniform:
assumes X : distributed M MX X (λx . indicator A x / measure MX A) (is

distributed - - - ?f)
shows entropy b MX X = log b (measure MX A)

proof (subst entropy-distr [OF X])
have [simp]: emeasure MX A 6= ∞

using uniform-distributed-params[OF X] by (auto simp add : measure-def)
have eq : (

∫
x . indicator A x / measure MX A ∗ log b (indicator A x / measure

MX A) ∂MX) =
(
∫

x . (− log b (measure MX A) / measure MX A) ∗ indicator A x ∂MX)
using uniform-distributed-params[OF X]

THEORY “Information” 779

by (intro integral-cong) (auto split : split-indicator simp: log-divide-eq zero-less-measure-iff)
show − (

∫
x . indicator A x / measure MX A ∗ log b (indicator A x / measure

MX A) ∂MX) =
log b (measure MX A)
unfolding eq using uniform-distributed-params[OF X]

by (subst integral-mult-right) (auto simp: measure-def less-top[symmetric] intro!:
integrable-real-indicator)
qed simp

lemma (in information-space) entropy-simple-distributed :
simple-distributed M X f =⇒ H(X) = − (

∑
x∈X‘space M . f x ∗ log b (f x))

by (subst entropy-distr [OF simple-distributed])
(auto simp add : lebesgue-integral-count-space-finite)

lemma (in information-space) entropy-le-card-not-0 :
assumes X : simple-distributed M X f
shows H(X) ≤ log b (card (X ‘ space M ∩ {x . f x 6= 0}))

proof −
let ?X = count-space (X‘space M)
have H(X) ≤ log b (measure ?X {x ∈ space ?X . f x 6= 0})

by (rule entropy-le[OF simple-distributed [OF X]])
(insert X , auto simp: simple-distributed-finite[OF X] subset-eq integrable-count-space

emeasure-count-space)
also have measure ?X {x ∈ space ?X . f x 6= 0} = card (X ‘ space M ∩ {x . f x
6= 0})

by (simp-all add : simple-distributed-finite[OF X] subset-eq emeasure-count-space
measure-def Int-def)

finally show ?thesis .
qed

lemma (in information-space) entropy-le-card :
assumes X : simple-distributed M X f
shows H(X) ≤ log b (real (card (X ‘ space M)))

proof −
let ?X = count-space (X‘space M)
have H(X) ≤ log b (measure ?X (space ?X))

by (rule entropy-le-space[OF simple-distributed [OF X]])
(insert X , auto simp: simple-distributed-finite[OF X] subset-eq integrable-count-space

emeasure-count-space finite-measure-count-space)
also have measure ?X (space ?X) = card (X ‘ space M)
by (simp-all add : simple-distributed-finite[OF X] subset-eq emeasure-count-space

measure-def)
finally show ?thesis .

qed

40.6 Conditional Mutual Information

definition (in prob-space)
conditional-mutual-information b MX MY MZ X Y Z ≡

THEORY “Information” 780

mutual-information b MX (MY
⊗

M MZ) X (λx . (Y x , Z x)) −
mutual-information b MX MZ X Z

abbreviation (in information-space)
conditional-mutual-information-Pow (I ′(- ; - | - ′)) where
I(X ; Y | Z) ≡ conditional-mutual-information b
(count-space (X ‘ space M)) (count-space (Y ‘ space M)) (count-space (Z ‘ space

M)) X Y Z

lemma (in information-space)
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P :

sigma-finite-measure P
assumes Px [measurable]: distributed M S X Px

and Px-nn[simp]:
∧

x . x ∈ space S =⇒ 0 ≤ Px x
assumes Pz [measurable]: distributed M P Z Pz

and Pz-nn[simp]:
∧

z . z ∈ space P =⇒ 0 ≤ Pz z
assumes Pyz [measurable]: distributed M (T

⊗
M P) (λx . (Y x , Z x)) Pyz

and Pyz-nn[simp]:
∧

y z . y ∈ space T =⇒ z ∈ space P =⇒ 0 ≤ Pyz (y , z)
assumes Pxz [measurable]: distributed M (S

⊗
M P) (λx . (X x , Z x)) Pxz

and Pxz-nn[simp]:
∧

x z . x ∈ space S =⇒ z ∈ space P =⇒ 0 ≤ Pxz (x , z)
assumes Pxyz [measurable]: distributed M (S

⊗
M T

⊗
M P) (λx . (X x , Y x ,

Z x)) Pxyz
and Pxyz-nn[simp]:

∧
x y z . x ∈ space S =⇒ y ∈ space T =⇒ z ∈ space P =⇒

0 ≤ Pxyz (x , y , z)
assumes I1 : integrable (S

⊗
M T

⊗
M P) (λ(x , y , z). Pxyz (x , y , z) ∗ log b

(Pxyz (x , y , z) / (Px x ∗ Pyz (y , z))))
assumes I2 : integrable (S

⊗
M T

⊗
M P) (λ(x , y , z). Pxyz (x , y , z) ∗ log b

(Pxz (x , z) / (Px x ∗ Pz z)))
shows conditional-mutual-information-generic-eq : conditional-mutual-information

b S T P X Y Z
= (

∫
(x , y , z). Pxyz (x , y , z) ∗ log b (Pxyz (x , y , z) / (Pxz (x , z) ∗ (Pyz (y ,z)

/ Pz z))) ∂(S
⊗

M T
⊗

M P)) (is ?eq)
and conditional-mutual-information-generic-nonneg : 0 ≤ conditional-mutual-information

b S T P X Y Z (is ?nonneg)
proof −

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Pz ∈ P →M borel
using Pz Pz-nn by (intro distributed-real-measurable)

have measurable-Pyz [measurable]: Pyz ∈ (T
⊗

M P) →M borel
using Pyz Pyz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)
have measurable-Pxz [measurable]: Pxz ∈ (S

⊗
M P) →M borel

using Pxz Pxz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)
have measurable-Pxyz [measurable]: Pxyz ∈ (S

⊗
M T

⊗
M P) →M borel

using Pxyz Pxyz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret P : sigma-finite-measure P by fact

THEORY “Information” 781

interpret TP : pair-sigma-finite T P ..
interpret SP : pair-sigma-finite S P ..
interpret ST : pair-sigma-finite S T ..
interpret SPT : pair-sigma-finite S

⊗
M P T ..

interpret STP : pair-sigma-finite S T
⊗

M P ..
interpret TPS : pair-sigma-finite T

⊗
M P S ..

have TP : sigma-finite-measure (T
⊗

M P) ..
have SP : sigma-finite-measure (S

⊗
M P) ..

have YZ : random-variable (T
⊗

M P) (λx . (Y x , Z x))
using Pyz by (simp add : distributed-measurable)

from Pxz Pxyz have distr-eq : distr M (S
⊗

M P) (λx . (X x , Z x)) =
distr (distr M (S

⊗
M T

⊗
M P) (λx . (X x , Y x , Z x))) (S

⊗
M P) (λ(x , y ,

z). (x , z))
by (simp add : comp-def distr-distr)

have mutual-information b S P X Z =
(
∫

x . Pxz x ∗ log b (Pxz x / (Px (fst x) ∗ Pz (snd x))) ∂(S
⊗

M P))
by (rule mutual-information-distr [OF S P Px Px-nn Pz Pz-nn Pxz Pxz-nn])

also have . . . = (
∫

(x ,y ,z). Pxyz (x ,y ,z) ∗ log b (Pxz (x ,z) / (Px x ∗ Pz z)) ∂(S⊗
M T

⊗
M P))

using b-gt-1 Pxz Px Pz
by (subst distributed-transform-integral [OF Pxyz - Pxz -, where T=λ(x , y , z).

(x , z)])
(auto simp: split-beta ′ space-pair-measure)

finally have mi-eq :
mutual-information b S P X Z = (

∫
(x ,y ,z). Pxyz (x ,y ,z) ∗ log b (Pxz (x ,z) /

(Px x ∗ Pz z)) ∂(S
⊗

M T
⊗

M P)) .

have ae1 : AE x in S
⊗

M T
⊗

M P . Px (fst x) = 0 −→ Pxyz x = 0
by (intro subdensity-real [of fst , OF - Pxyz Px]) (auto simp: space-pair-measure)

moreover have ae2 : AE x in S
⊗

M T
⊗

M P . Pz (snd (snd x)) = 0 −→
Pxyz x = 0

by (intro subdensity-real [of λx . snd (snd x), OF - Pxyz Pz]) (auto simp:
space-pair-measure)

moreover have ae3 : AE x in S
⊗

M T
⊗

M P . Pxz (fst x , snd (snd x)) = 0
−→ Pxyz x = 0

by (intro subdensity-real [of λx . (fst x , snd (snd x)), OF - Pxyz Pxz]) (auto
simp: space-pair-measure)

moreover have ae4 : AE x in S
⊗

M T
⊗

M P . Pyz (snd x) = 0 −→ Pxyz x
= 0

by (intro subdensity-real [of snd , OF - Pxyz Pyz]) (auto simp: space-pair-measure)
ultimately have ae: AE x in S

⊗
M T

⊗
M P .

Pxyz x ∗ log b (Pxyz x / (Px (fst x) ∗ Pyz (snd x))) −
Pxyz x ∗ log b (Pxz (fst x , snd (snd x)) / (Px (fst x) ∗ Pz (snd (snd x)))) =
Pxyz x ∗ log b (Pxyz x ∗ Pz (snd (snd x)) / (Pxz (fst x , snd (snd x)) ∗ Pyz

(snd x)))
using AE-space

proof eventually-elim

THEORY “Information” 782

case (elim x)
show ?case
proof cases

assume Pxyz x 6= 0
with elim have 0 < Px (fst x) 0 < Pz (snd (snd x)) 0 < Pxz (fst x , snd

(snd x))
0 < Pyz (snd x) 0 < Pxyz x
by (auto simp: space-pair-measure less-le)

then show ?thesis
using b-gt-1 by (simp add : log-simps less-imp-le field-simps)

qed simp
qed
with I1 I2 show ?eq

unfolding conditional-mutual-information-def
apply (subst mi-eq)
apply (subst mutual-information-distr [OF S TP Px Px-nn Pyz - Pxyz])
apply (auto simp: space-pair-measure)
apply (subst integral-diff [symmetric])
apply (auto intro!: integral-cong-AE simp: split-beta ′ simp del : integral-diff)
done

let ?P = density (S
⊗

M T
⊗

M P) Pxyz
interpret P : prob-space ?P

unfolding distributed-distr-eq-density [OF Pxyz , symmetric]
by (rule prob-space-distr) simp

let ?Q = density (T
⊗

M P) Pyz
interpret Q : prob-space ?Q

unfolding distributed-distr-eq-density [OF Pyz , symmetric]
by (rule prob-space-distr) simp

let ?f = λ(x , y , z). Pxz (x , z) ∗ (Pyz (y , z) / Pz z) / Pxyz (x , y , z)

from subdensity-real [of snd , OF - Pyz Pz - AE-I2 AE-I2]
have aeX1 : AE x in T

⊗
M P . Pz (snd x) = 0 −→ Pyz x = 0

by (auto simp: comp-def space-pair-measure)
have aeX2 : AE x in T

⊗
M P . 0 ≤ Pz (snd x)

using Pz by (intro TP .AE-pair-measure) (auto simp: comp-def)

have aeX3 : AE y in T
⊗

M P . (
∫

+ x . ennreal (Pxz (x , snd y)) ∂S) = ennreal
(Pz (snd y))

using Pz distributed-marginal-eq-joint2 [OF P S Pz Pxz]
by (intro TP .AE-pair-measure) auto

have (
∫

+ x . ?f x ∂?P) ≤ (
∫

+ (x , y , z). Pxz (x , z) ∗ (Pyz (y , z) / Pz z) ∂(S⊗
M T

⊗
M P))

by (subst nn-integral-density)
(auto intro!: nn-integral-mono simp: space-pair-measure ennreal-mult [symmetric])

also have . . . = (
∫

+(y , z). (
∫

+ x . ennreal (Pxz (x , z)) ∗ ennreal (Pyz (y , z)

THEORY “Information” 783

/ Pz z) ∂S) ∂(T
⊗

M P))
by (subst STP .nn-integral-snd [symmetric])

(auto simp add : split-beta ′ ennreal-mult [symmetric] space-pair-measure intro!:
nn-integral-cong)

also have . . . = (
∫

+x . ennreal (Pyz x) ∗ 1 ∂T
⊗

M P)
apply (rule nn-integral-cong-AE)
using aeX1 aeX2 aeX3 AE-space
apply eventually-elim

proof (case-tac x , simp add : space-pair-measure)
fix a b assume Pz b = 0 −→ Pyz (a, b) = 0 a ∈ space T ∧ b ∈ space P

(
∫

+ x . ennreal (Pxz (x , b)) ∂S) = ennreal (Pz b)
then show (

∫
+ x . ennreal (Pxz (x , b)) ∗ ennreal (Pyz (a, b) / Pz b) ∂S) =

ennreal (Pyz (a, b))
by (subst nn-integral-multc) (auto split : prod .split simp: ennreal-mult [symmetric])

qed
also have . . . = 1

using Q .emeasure-space-1 distributed-distr-eq-density [OF Pyz]
by (subst nn-integral-density [symmetric]) auto

finally have le1 : (
∫

+ x . ?f x ∂?P) ≤ 1 .
also have . . . < ∞ by simp
finally have fin: (

∫
+ x . ?f x ∂?P) 6= ∞ by simp

have pos: (
∫

+x . ?f x ∂?P) 6= 0
apply (subst nn-integral-density)
apply (simp-all add : split-beta ′)

proof
let ?g = λx . ennreal (Pxyz x) ∗ (Pxz (fst x , snd (snd x)) ∗ Pyz (snd x) / (Pz

(snd (snd x)) ∗ Pxyz x))
assume (

∫
+x . ?g x ∂(S

⊗
M T

⊗
M P)) = 0

then have AE x in S
⊗

M T
⊗

M P . ?g x = 0
by (intro nn-integral-0-iff-AE [THEN iffD1]) auto

then have AE x in S
⊗

M T
⊗

M P . Pxyz x = 0
using ae1 ae2 ae3 ae4 AE-space
by eventually-elim (auto split : if-split-asm simp: mult-le-0-iff divide-le-0-iff

space-pair-measure)
then have (

∫
+ x . ennreal (Pxyz x) ∂S

⊗
M T

⊗
M P) = 0

by (subst nn-integral-cong-AE [of - λx . 0]) auto
with P .emeasure-space-1 show False

by (subst (asm) emeasure-density) (auto cong : nn-integral-cong)
qed

have neg : (
∫

+ x . − ?f x ∂?P) = 0
apply (rule nn-integral-0-iff-AE [THEN iffD2])
apply simp
apply (subst AE-density)
apply (auto simp: space-pair-measure ennreal-neg)
done

have I3 : integrable (S
⊗

M T
⊗

M P) (λ(x , y , z). Pxyz (x , y , z) ∗ log b (Pxyz

THEORY “Information” 784

(x , y , z) / (Pxz (x , z) ∗ (Pyz (y ,z) / Pz z))))
apply (rule integrable-cong-AE [THEN iffD1 , OF - - - integrable-diff [OF I1

I2]])
using ae
apply (auto simp: split-beta ′)
done

have − log b 1 ≤ − log b (integralL ?P ?f)
proof (intro le-imp-neg-le log-le[OF b-gt-1])

have If : integrable ?P ?f
unfolding real-integrable-def

proof (intro conjI)
from neg show (

∫
+ x . − ?f x ∂?P) 6= ∞

by simp
from fin show (

∫
+ x . ?f x ∂?P) 6= ∞

by simp
qed simp
then have (

∫
+ x . ?f x ∂?P) = (

∫
x . ?f x ∂?P)

apply (rule nn-integral-eq-integral)
apply (subst AE-density)
apply simp
apply (auto simp: space-pair-measure ennreal-neg)
done

with pos le1
show 0 < (

∫
x . ?f x ∂?P) (

∫
x . ?f x ∂?P) ≤ 1

by (simp-all add : one-ennreal .rep-eq zero-less-iff-neq-zero[symmetric])
qed
also have − log b (integralL ?P ?f) ≤ (

∫
x . − log b (?f x) ∂?P)

proof (rule P .jensens-inequality [where a=0 and b=1 and I ={0<..}])
show AE x in ?P . ?f x ∈ {0<..}

unfolding AE-density [OF distributed-borel-measurable[OF Pxyz]]
using ae1 ae2 ae3 ae4 AE-space
by eventually-elim (auto simp: space-pair-measure less-le)

show integrable ?P ?f
unfolding real-integrable-def
using fin neg by (auto simp: split-beta ′)

show integrable ?P (λx . − log b (?f x))
apply (subst integrable-real-density)
apply simp
apply (auto simp: space-pair-measure) []
apply simp
apply (rule integrable-cong-AE [THEN iffD1 , OF - - - I3])
apply simp
apply simp
using ae1 ae2 ae3 ae4 AE-space
apply eventually-elim
apply (auto simp: log-divide-eq log-mult-eq zero-le-mult-iff zero-less-mult-iff

zero-less-divide-iff field-simps
less-le space-pair-measure)

THEORY “Information” 785

done
qed (auto simp: b-gt-1 minus-log-convex)
also have . . . = conditional-mutual-information b S T P X Y Z

unfolding 〈?eq〉

apply (subst integral-real-density)
apply simp
apply (auto simp: space-pair-measure) []
apply simp
apply (intro integral-cong-AE)
using ae1 ae2 ae3 ae4
apply (auto simp: log-divide-eq zero-less-mult-iff zero-less-divide-iff field-simps

space-pair-measure less-le)
done

finally show ?nonneg
by simp

qed

lemma (in information-space)
fixes Px :: - ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P :

sigma-finite-measure P
assumes Fx : finite-entropy S X Px
assumes Fz : finite-entropy P Z Pz
assumes Fyz : finite-entropy (T

⊗
M P) (λx . (Y x , Z x)) Pyz

assumes Fxz : finite-entropy (S
⊗

M P) (λx . (X x , Z x)) Pxz
assumes Fxyz : finite-entropy (S

⊗
M T

⊗
M P) (λx . (X x , Y x , Z x)) Pxyz

shows conditional-mutual-information-generic-eq ′: conditional-mutual-information
b S T P X Y Z

= (
∫

(x , y , z). Pxyz (x , y , z) ∗ log b (Pxyz (x , y , z) / (Pxz (x , z) ∗ (Pyz (y ,z)
/ Pz z))) ∂(S

⊗
M T

⊗
M P)) (is ?eq)

and conditional-mutual-information-generic-nonneg ′: 0 ≤ conditional-mutual-information
b S T P X Y Z (is ?nonneg)
proof −

note Px = Fx [THEN finite-entropy-distributed , measurable]
note Pz = Fz [THEN finite-entropy-distributed , measurable]
note Pyz = Fyz [THEN finite-entropy-distributed , measurable]
note Pxz = Fxz [THEN finite-entropy-distributed , measurable]
note Pxyz = Fxyz [THEN finite-entropy-distributed , measurable]

note Px-nn = Fx [THEN finite-entropy-nn]
note Pz-nn = Fz [THEN finite-entropy-nn]
note Pyz-nn = Fyz [THEN finite-entropy-nn]
note Pxz-nn = Fxz [THEN finite-entropy-nn]
note Pxyz-nn = Fxyz [THEN finite-entropy-nn]

note Px ′ = Fx [THEN finite-entropy-measurable, measurable]
note Pz ′ = Fz [THEN finite-entropy-measurable, measurable]
note Pyz ′ = Fyz [THEN finite-entropy-measurable, measurable]
note Pxz ′ = Fxz [THEN finite-entropy-measurable, measurable]

THEORY “Information” 786

note Pxyz ′ = Fxyz [THEN finite-entropy-measurable, measurable]

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret P : sigma-finite-measure P by fact
interpret TP : pair-sigma-finite T P ..
interpret SP : pair-sigma-finite S P ..
interpret ST : pair-sigma-finite S T ..
interpret SPT : pair-sigma-finite S

⊗
M P T ..

interpret STP : pair-sigma-finite S T
⊗

M P ..
interpret TPS : pair-sigma-finite T

⊗
M P S ..

have TP : sigma-finite-measure (T
⊗

M P) ..
have SP : sigma-finite-measure (S

⊗
M P) ..

from Pxz Pxyz have distr-eq : distr M (S
⊗

M P) (λx . (X x , Z x)) =
distr (distr M (S

⊗
M T

⊗
M P) (λx . (X x , Y x , Z x))) (S

⊗
M P) (λ(x , y ,

z). (x , z))
by (simp add : distr-distr comp-def)

have mutual-information b S P X Z =
(
∫

x . Pxz x ∗ log b (Pxz x / (Px (fst x) ∗ Pz (snd x))) ∂(S
⊗

M P))
using Px Px-nn Pz Pz-nn Pxz Pxz-nn
by (rule mutual-information-distr [OF S P]) (auto simp: space-pair-measure)

also have . . . = (
∫

(x ,y ,z). Pxyz (x ,y ,z) ∗ log b (Pxz (x ,z) / (Px x ∗ Pz z)) ∂(S⊗
M T

⊗
M P))

using b-gt-1 Pxz Pxz-nn Pxyz Pxyz-nn
by (subst distributed-transform-integral [OF Pxyz - Pxz , where T=λ(x , y , z).

(x , z)])
(auto simp: split-beta ′)

finally have mi-eq :
mutual-information b S P X Z = (

∫
(x ,y ,z). Pxyz (x ,y ,z) ∗ log b (Pxz (x ,z) /

(Px x ∗ Pz z)) ∂(S
⊗

M T
⊗

M P)) .

have ae1 : AE x in S
⊗

M T
⊗

M P . Px (fst x) = 0 −→ Pxyz x = 0
by (intro subdensity-finite-entropy [of fst , OF - Fxyz Fx]) auto

moreover have ae2 : AE x in S
⊗

M T
⊗

M P . Pz (snd (snd x)) = 0 −→
Pxyz x = 0

by (intro subdensity-finite-entropy [of λx . snd (snd x), OF - Fxyz Fz]) auto
moreover have ae3 : AE x in S

⊗
M T

⊗
M P . Pxz (fst x , snd (snd x)) = 0

−→ Pxyz x = 0
by (intro subdensity-finite-entropy [of λx . (fst x , snd (snd x)), OF - Fxyz Fxz])

auto
moreover have ae4 : AE x in S

⊗
M T

⊗
M P . Pyz (snd x) = 0 −→ Pxyz x

= 0
by (intro subdensity-finite-entropy [of snd , OF - Fxyz Fyz]) auto

ultimately have ae: AE x in S
⊗

M T
⊗

M P .
Pxyz x ∗ log b (Pxyz x / (Px (fst x) ∗ Pyz (snd x))) −
Pxyz x ∗ log b (Pxz (fst x , snd (snd x)) / (Px (fst x) ∗ Pz (snd (snd x)))) =
Pxyz x ∗ log b (Pxyz x ∗ Pz (snd (snd x)) / (Pxz (fst x , snd (snd x)) ∗ Pyz

THEORY “Information” 787

(snd x)))
using AE-space

proof eventually-elim
case (elim x)
show ?case
proof cases

assume Pxyz x 6= 0
with elim have 0 < Px (fst x) 0 < Pz (snd (snd x)) 0 < Pxz (fst x , snd

(snd x))
0 < Pyz (snd x) 0 < Pxyz x
using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (auto simp: space-pair-measure less-le)

then show ?thesis
using b-gt-1 by (simp add : log-simps less-imp-le field-simps)

qed simp
qed

have integrable (S
⊗

M T
⊗

M P)
(λx . Pxyz x ∗ log b (Pxyz x) − Pxyz x ∗ log b (Px (fst x)) − Pxyz x ∗ log b

(Pyz (snd x)))
using finite-entropy-integrable[OF Fxyz]
using finite-entropy-integrable-transform[OF Fx Pxyz Pxyz-nn, of fst]
using finite-entropy-integrable-transform[OF Fyz Pxyz Pxyz-nn, of snd]
by simp

moreover have (λ(x , y , z). Pxyz (x , y , z) ∗ log b (Pxyz (x , y , z) / (Px x ∗ Pyz
(y , z)))) ∈ borel-measurable (S

⊗
M T

⊗
M P)

using Pxyz Px Pyz by simp
ultimately have I1 : integrable (S

⊗
M T

⊗
M P) (λ(x , y , z). Pxyz (x , y , z)

∗ log b (Pxyz (x , y , z) / (Px x ∗ Pyz (y , z))))
apply (rule integrable-cong-AE-imp)
using ae1 ae4 AE-space
by eventually-elim

(insert Px-nn Pyz-nn Pxyz-nn,
auto simp: log-divide-eq log-mult-eq field-simps zero-less-mult-iff space-pair-measure

less-le)

have integrable (S
⊗

M T
⊗

M P)
(λx . Pxyz x ∗ log b (Pxz (fst x , snd (snd x))) − Pxyz x ∗ log b (Px (fst x)) −

Pxyz x ∗ log b (Pz (snd (snd x))))
using finite-entropy-integrable-transform[OF Fxz Pxyz Pxyz-nn, of λx . (fst x ,

snd (snd x))]
using finite-entropy-integrable-transform[OF Fx Pxyz Pxyz-nn, of fst]
using finite-entropy-integrable-transform[OF Fz Pxyz Pxyz-nn, of snd ◦ snd]
by simp

moreover have (λ(x , y , z). Pxyz (x , y , z) ∗ log b (Pxz (x , z) / (Px x ∗ Pz z)))
∈ borel-measurable (S

⊗
M T

⊗
M P)

using Pxyz Px Pz
by auto

ultimately have I2 : integrable (S
⊗

M T
⊗

M P) (λ(x , y , z). Pxyz (x , y , z)

THEORY “Information” 788

∗ log b (Pxz (x , z) / (Px x ∗ Pz z)))
apply (rule integrable-cong-AE-imp)
using ae1 ae2 ae3 ae4 AE-space
by eventually-elim

(insert Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn,
auto simp: log-divide-eq log-mult-eq field-simps zero-less-mult-iff less-le

space-pair-measure)

from ae I1 I2 show ?eq
unfolding conditional-mutual-information-def
apply (subst mi-eq)
apply (subst mutual-information-distr [OF S TP Px Px-nn Pyz Pyz-nn Pxyz

Pxyz-nn])
apply simp
apply simp
apply (simp add : space-pair-measure)
apply (subst integral-diff [symmetric])
apply (auto intro!: integral-cong-AE simp: split-beta ′ simp del : integral-diff)
done

let ?P = density (S
⊗

M T
⊗

M P) Pxyz
interpret P : prob-space ?P
unfolding distributed-distr-eq-density [OF Pxyz , symmetric] by (rule prob-space-distr)

simp

let ?Q = density (T
⊗

M P) Pyz
interpret Q : prob-space ?Q
unfolding distributed-distr-eq-density [OF Pyz , symmetric] by (rule prob-space-distr)

simp

let ?f = λ(x , y , z). Pxz (x , z) ∗ (Pyz (y , z) / Pz z) / Pxyz (x , y , z)

from subdensity-finite-entropy [of snd , OF - Fyz Fz]
have aeX1 : AE x in T

⊗
M P . Pz (snd x) = 0 −→ Pyz x = 0 by (auto simp:

comp-def)
have aeX2 : AE x in T

⊗
M P . 0 ≤ Pz (snd x)

using Pz by (intro TP .AE-pair-measure) (auto intro: Pz-nn)

have aeX3 : AE y in T
⊗

M P . (
∫

+ x . ennreal (Pxz (x , snd y)) ∂S) = ennreal
(Pz (snd y))

using Pz distributed-marginal-eq-joint2 [OF P S Pz Pxz]
by (intro TP .AE-pair-measure) (auto)

have (
∫

+ x . ?f x ∂?P) ≤ (
∫

+ (x , y , z). Pxz (x , z) ∗ (Pyz (y , z) / Pz z) ∂(S⊗
M T

⊗
M P))

using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (subst nn-integral-density)
(auto intro!: nn-integral-mono simp: space-pair-measure ennreal-mult [symmetric])

also have . . . = (
∫

+(y , z).
∫

+ x . ennreal (Pxz (x , z)) ∗ ennreal (Pyz (y , z) /
Pz z) ∂S ∂T

⊗
M P)

THEORY “Information” 789

using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (subst STP .nn-integral-snd [symmetric])

(auto simp add : split-beta ′ ennreal-mult [symmetric] space-pair-measure intro!:
nn-integral-cong)

also have . . . = (
∫

+x . ennreal (Pyz x) ∗ 1 ∂T
⊗

M P)
apply (rule nn-integral-cong-AE)
using aeX1 aeX2 aeX3 AE-space
apply eventually-elim

proof (case-tac x , simp add : space-pair-measure)
fix a b assume Pz b = 0 −→ Pyz (a, b) = 0 0 ≤ Pz b a ∈ space T ∧ b ∈

space P
(
∫

+ x . ennreal (Pxz (x , b)) ∂S) = ennreal (Pz b)
then show (

∫
+ x . ennreal (Pxz (x , b)) ∗ ennreal (Pyz (a, b) / Pz b) ∂S) =

ennreal (Pyz (a, b))
using Pyz-nn[of (a,b)]

by (subst nn-integral-multc) (auto simp: space-pair-measure ennreal-mult [symmetric])
qed
also have . . . = 1

using Q .emeasure-space-1 Pyz-nn distributed-distr-eq-density [OF Pyz]
by (subst nn-integral-density [symmetric]) auto

finally have le1 : (
∫

+ x . ?f x ∂?P) ≤ 1 .
also have . . . < ∞ by simp
finally have fin: (

∫
+ x . ?f x ∂?P) 6= ∞ by simp

have (
∫

+ x . ?f x ∂?P) 6= 0
using Pxyz-nn
apply (subst nn-integral-density)

apply (simp-all add : split-beta ′ ennreal-mult ′[symmetric] cong : nn-integral-cong)
proof

let ?g = λx . ennreal (if Pxyz x = 0 then 0 else Pxz (fst x , snd (snd x)) ∗ Pyz
(snd x) / Pz (snd (snd x)))

assume (
∫

+ x . ?g x ∂(S
⊗

M T
⊗

M P)) = 0
then have AE x in S

⊗
M T

⊗
M P . ?g x = 0

by (intro nn-integral-0-iff-AE [THEN iffD1]) auto
then have AE x in S

⊗
M T

⊗
M P . Pxyz x = 0

using ae1 ae2 ae3 ae4 AE-space
by eventually-elim

(insert Px-nn Pz-nn Pxz-nn Pyz-nn,
auto split : if-split-asm simp: mult-le-0-iff divide-le-0-iff space-pair-measure)

then have (
∫

+ x . ennreal (Pxyz x) ∂S
⊗

M T
⊗

M P) = 0
by (subst nn-integral-cong-AE [of - λx . 0]) auto

with P .emeasure-space-1 show False
by (subst (asm) emeasure-density) (auto cong : nn-integral-cong)

qed
then have pos: 0 < (

∫
+ x . ?f x ∂?P)

by (simp add : zero-less-iff-neq-zero)

have neg : (
∫

+ x . − ?f x ∂?P) = 0
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn

THEORY “Information” 790

by (intro nn-integral-0-iff-AE [THEN iffD2])
(auto simp: split-beta ′AE-density space-pair-measure intro!: AE-I2 ennreal-neg)

have I3 : integrable (S
⊗

M T
⊗

M P) (λ(x , y , z). Pxyz (x , y , z) ∗ log b (Pxyz
(x , y , z) / (Pxz (x , z) ∗ (Pyz (y ,z) / Pz z))))

apply (rule integrable-cong-AE [THEN iffD1 , OF - - - integrable-diff [OF I1
I2]])

using ae
apply (auto simp: split-beta ′)
done

have − log b 1 ≤ − log b (integralL ?P ?f)
proof (intro le-imp-neg-le log-le[OF b-gt-1])

have If : integrable ?P ?f
unfolding real-integrable-def

proof (intro conjI)
from neg show (

∫
+ x . − ?f x ∂?P) 6= ∞

by simp
from fin show (

∫
+ x . ?f x ∂?P) 6= ∞

by simp
qed simp
then have (

∫
+ x . ?f x ∂?P) = (

∫
x . ?f x ∂?P)

using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (intro nn-integral-eq-integral)

(auto simp: AE-density space-pair-measure)
with pos le1
show 0 < (

∫
x . ?f x ∂?P) (

∫
x . ?f x ∂?P) ≤ 1

by (simp-all add :)
qed
also have − log b (integralL ?P ?f) ≤ (

∫
x . − log b (?f x) ∂?P)

proof (rule P .jensens-inequality [where a=0 and b=1 and I ={0<..}])
show AE x in ?P . ?f x ∈ {0<..}

unfolding AE-density [OF distributed-borel-measurable[OF Pxyz]]
using ae1 ae2 ae3 ae4 AE-space

by eventually-elim (insert Pxyz-nn Pyz-nn Pz-nn Pxz-nn, auto simp: space-pair-measure
less-le)

show integrable ?P ?f
unfolding real-integrable-def
using fin neg by (auto simp: split-beta ′)

show integrable ?P (λx . − log b (?f x))
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
apply (subst integrable-real-density)
apply simp
apply simp
apply simp
apply (rule integrable-cong-AE [THEN iffD1 , OF - - - I3])
apply simp
apply simp
using ae1 ae2 ae3 ae4 AE-space

THEORY “Information” 791

apply eventually-elim
apply (auto simp: log-divide-eq log-mult-eq zero-le-mult-iff zero-less-mult-iff

zero-less-divide-iff field-simps space-pair-measure less-le)
done

qed (auto simp: b-gt-1 minus-log-convex)
also have . . . = conditional-mutual-information b S T P X Y Z

unfolding 〈?eq〉

using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
apply (subst integral-real-density)
apply simp
apply simp
apply simp
apply (intro integral-cong-AE)
using ae1 ae2 ae3 ae4 AE-space
apply (auto simp: log-divide-eq zero-less-mult-iff zero-less-divide-iff

field-simps space-pair-measure less-le)
done

finally show ?nonneg
by simp

qed

lemma (in information-space) conditional-mutual-information-eq :
assumes Pz : simple-distributed M Z Pz
assumes Pyz : simple-distributed M (λx . (Y x , Z x)) Pyz
assumes Pxz : simple-distributed M (λx . (X x , Z x)) Pxz
assumes Pxyz : simple-distributed M (λx . (X x , Y x , Z x)) Pxyz
shows I(X ; Y | Z) =
(
∑

(x , y , z)∈(λx . (X x , Y x , Z x))‘space M . Pxyz (x , y , z) ∗ log b (Pxyz (x , y ,
z) / (Pxz (x , z) ∗ (Pyz (y ,z) / Pz z))))
proof (subst conditional-mutual-information-generic-eq [OF - - - - -

simple-distributed [OF Pz] - simple-distributed-joint [OF Pyz] - simple-distributed-joint [OF
Pxz] -

simple-distributed-joint2 [OF Pxyz]])
note simple-distributed-joint2-finite[OF Pxyz , simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Z ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
have count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M)

⊗
M count-space

(Z ‘ space M) =
count-space (X‘space M × Y‘space M × Z‘space M)

(is ?P = ?C)
by (simp add : pair-measure-count-space)

let ?Px = λx . measure M (X −‘ {x} ∩ space M)
have (λx . (X x , Z x)) ∈ measurable M (count-space (X ‘ space M)

⊗
M

count-space (Z ‘ space M))

THEORY “Information” 792

using simple-distributed-joint [OF Pxz] by (rule distributed-measurable)
from measurable-comp[OF this measurable-fst]
have random-variable (count-space (X ‘ space M)) X

by (simp add : comp-def)
then have simple-function M X

unfolding simple-function-def by (auto simp: measurable-count-space-eq2)
then have simple-distributed M X ?Px

by (rule simple-distributedI) (auto simp: measure-nonneg)
then show distributed M (count-space (X ‘ space M)) X ?Px

by (rule simple-distributed)

let ?f = (λx . if x ∈ (λx . (X x , Y x , Z x)) ‘ space M then Pxyz x else 0)
let ?g = (λx . if x ∈ (λx . (Y x , Z x)) ‘ space M then Pyz x else 0)
let ?h = (λx . if x ∈ (λx . (X x , Z x)) ‘ space M then Pxz x else 0)
show

integrable ?P (λ(x , y , z). ?f (x , y , z) ∗ log b (?f (x , y , z) / (?Px x ∗ ?g (y ,
z))))

integrable ?P (λ(x , y , z). ?f (x , y , z) ∗ log b (?h (x , z) / (?Px x ∗ Pz z)))
by (auto intro!: integrable-count-space simp: pair-measure-count-space)

let ?i = λx y z . ?f (x , y , z) ∗ log b (?f (x , y , z) / (?h (x , z) ∗ (?g (y , z) / Pz
z)))

let ?j = λx y z . Pxyz (x , y , z) ∗ log b (Pxyz (x , y , z) / (Pxz (x , z) ∗ (Pyz (y ,z)
/ Pz z)))

have (λ(x , y , z). ?i x y z) = (λx . if x ∈ (λx . (X x , Y x , Z x)) ‘ space M then
?j (fst x) (fst (snd x)) (snd (snd x)) else 0)

by (auto intro!: ext)
then show (

∫
(x , y , z). ?i x y z ∂?P) = (

∑
(x , y , z)∈(λx . (X x , Y x , Z x)) ‘

space M . ?j x y z)
by (auto intro!: setsum.cong simp add : 〈?P = ?C 〉 lebesgue-integral-count-space-finite

simple-distributed-finite setsum.If-cases split-beta ′)
qed (insert Pz Pyz Pxz Pxyz , auto intro: measure-nonneg)

lemma (in information-space) conditional-mutual-information-nonneg :
assumes X : simple-function M X and Y : simple-function M Y and Z : simple-function

M Z
shows 0 ≤ I(X ; Y | Z)

proof −
have [simp]: count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M)

⊗
M

count-space (Z ‘ space M) =
count-space (X‘space M × Y‘space M × Z‘space M)

by (simp add : pair-measure-count-space X Y Z simple-functionD)
note sf = sigma-finite-measure-count-space-finite[OF simple-functionD(1)]
note sd = simple-distributedI [OF - - refl]
note sp = simple-function-Pair
show ?thesis
apply (rule conditional-mutual-information-generic-nonneg [OF sf [OF X] sf [OF

Y] sf [OF Z]])
apply (rule simple-distributed [OF sd [OF X]])
apply simp

THEORY “Information” 793

apply simp
apply (rule simple-distributed [OF sd [OF Z]])
apply simp
apply simp
apply (rule simple-distributed-joint [OF sd [OF sp[OF Y Z]]])
apply simp
apply simp
apply (rule simple-distributed-joint [OF sd [OF sp[OF X Z]]])
apply simp
apply simp
apply (rule simple-distributed-joint2 [OF sd [OF sp[OF X sp[OF Y Z]]]])
apply simp
apply simp
apply (auto intro!: integrable-count-space simp: X Y Z simple-functionD)
done

qed

40.7 Conditional Entropy

definition (in prob-space)
conditional-entropy b S T X Y = − (

∫
(x , y). log b (enn2real (RN-deriv (S

⊗
M

T) (distr M (S
⊗

M T) (λx . (X x , Y x))) (x , y)) /
enn2real (RN-deriv T (distr M T Y) y)) ∂distr M (S

⊗
M T) (λx . (X x , Y

x)))

abbreviation (in information-space)
conditional-entropy-Pow (H ′(- | - ′)) where
H(X | Y) ≡ conditional-entropy b (count-space (X‘space M)) (count-space (Y‘space

M)) X Y

lemma (in information-space) conditional-entropy-generic-eq :
fixes Pxy :: - ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Py [measurable]: distributed M T Y Py and Py-nn[simp]:

∧
x . x ∈ space

T =⇒ 0 ≤ Py x
assumes Pxy [measurable]: distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

and Pxy-nn[simp]:
∧

x y . x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x , y)
shows conditional-entropy b S T X Y = − (

∫
(x , y). Pxy (x , y) ∗ log b (Pxy (x ,

y) / Py y) ∂(S
⊗

M T))
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy [measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

THEORY “Information” 794

have AE x in density (S
⊗

M T) (λx . ennreal (Pxy x)). Pxy x = enn2real
(RN-deriv (S

⊗
M T) (distr M (S

⊗
M T) (λx . (X x , Y x))) x)

unfolding AE-density [OF distributed-borel-measurable, OF Pxy]
unfolding distributed-distr-eq-density [OF Pxy]
using distributed-RN-deriv [OF Pxy]
by auto

moreover
have AE x in density (S

⊗
M T) (λx . ennreal (Pxy x)). Py (snd x) = enn2real

(RN-deriv T (distr M T Y) (snd x))
unfolding AE-density [OF distributed-borel-measurable, OF Pxy]
unfolding distributed-distr-eq-density [OF Py]
apply (rule ST .AE-pair-measure)
apply auto
using distributed-RN-deriv [OF Py]
apply auto
done

ultimately
have conditional-entropy b S T X Y = − (

∫
x . Pxy x ∗ log b (Pxy x / Py (snd

x)) ∂(S
⊗

M T))
unfolding conditional-entropy-def neg-equal-iff-equal
apply (subst integral-real-density [symmetric])
apply (auto simp: distributed-distr-eq-density [OF Pxy] space-pair-measure

intro!: integral-cong-AE)
done

then show ?thesis by (simp add : split-beta ′)
qed

lemma (in information-space) conditional-entropy-eq-entropy :
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Py [measurable]: distributed M T Y Py

and Py-nn[simp]:
∧

x . x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy [measurable]: distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy

and Pxy-nn[simp]:
∧

x y . x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x , y)
assumes I1 : integrable (S

⊗
M T) (λx . Pxy x ∗ log b (Pxy x))

assumes I2 : integrable (S
⊗

M T) (λx . Pxy x ∗ log b (Py (snd x)))
shows conditional-entropy b S T X Y = entropy b (S

⊗
M T) (λx . (X x , Y x))

− entropy b T Y
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy [measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have entropy b T Y = − (
∫

y . Py y ∗ log b (Py y) ∂T)

THEORY “Information” 795

by (rule entropy-distr [OF Py Py-nn])
also have . . . = − (

∫
(x ,y). Pxy (x ,y) ∗ log b (Py y) ∂(S

⊗
M T))

using b-gt-1
by (subst distributed-transform-integral [OF Pxy - Py , where T=snd])

(auto intro!: integral-cong simp: space-pair-measure)
finally have e-eq : entropy b T Y = − (

∫
(x ,y). Pxy (x ,y) ∗ log b (Py y) ∂(S⊗

M T)) .

have ∗∗:
∧

x . x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
by (auto simp: space-pair-measure)

have ae2 : AE x in S
⊗

M T . Py (snd x) = 0 −→ Pxy x = 0
by (intro subdensity-real [of snd , OF - Pxy Py])

(auto intro: measurable-Pair simp: space-pair-measure)
moreover have ae4 : AE x in S

⊗
M T . 0 ≤ Py (snd x)

using Py by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measurable-snd ′′)
ultimately have AE x in S

⊗
M T . 0 ≤ Pxy x ∧ 0 ≤ Py (snd x) ∧

(Pxy x = 0 ∨ (Pxy x 6= 0 −→ 0 < Pxy x ∧ 0 < Py (snd x)))
using AE-space by eventually-elim (auto simp: space-pair-measure less-le)

then have ae: AE x in S
⊗

M T .
Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Py (snd x)) = Pxy x ∗ log b (Pxy x /

Py (snd x))
by eventually-elim (auto simp: log-simps field-simps b-gt-1)

have conditional-entropy b S T X Y =
− (

∫
x . Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Py (snd x)) ∂(S

⊗
M T))

unfolding conditional-entropy-generic-eq [OF S T Py Py-nn Pxy Pxy-nn, sim-
plified] neg-equal-iff-equal

apply (intro integral-cong-AE)
using ae
apply auto
done

also have . . . = − (
∫

x . Pxy x ∗ log b (Pxy x) ∂(S
⊗

M T)) − − (
∫

x . Pxy x
∗ log b (Py (snd x)) ∂(S

⊗
M T))

by (simp add : integral-diff [OF I1 I2])
finally show ?thesis
using conditional-entropy-generic-eq [OF S T Py Py-nn Pxy Pxy-nn, simplified]

entropy-distr [OF Pxy ∗∗, simplified] e-eq
by (simp add : split-beta ′)

qed

lemma (in information-space) conditional-entropy-eq-entropy-simple:
assumes X : simple-function M X and Y : simple-function M Y
shows H(X | Y) = entropy b (count-space (X‘space M)

⊗
M count-space

(Y‘space M)) (λx . (X x , Y x)) − H(Y)
proof −

have count-space (X ‘ space M)
⊗

M count-space (Y ‘ space M) = count-space
(X‘space M × Y‘space M)

(is ?P = ?C) using X Y by (simp add : simple-functionD pair-measure-count-space)
show ?thesis

THEORY “Information” 796

by (rule conditional-entropy-eq-entropy sigma-finite-measure-count-space-finite
simple-functionD X Y simple-distributed simple-distributedI [OF - - refl]

simple-distributed-joint simple-function-Pair integrable-count-space
measure-nonneg)+

(auto simp: 〈?P = ?C 〉 measure-nonneg intro!: integrable-count-space simple-functionD
X Y)
qed

lemma (in information-space) conditional-entropy-eq :
assumes Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx . (X x , Y x)) Pxy

shows H(X | Y) = − (
∑

(x , y)∈(λx . (X x , Y x)) ‘ space M . Pxy (x , y) ∗ log
b (Pxy (x , y) / Py y))
proof (subst conditional-entropy-generic-eq [OF - -

simple-distributed [OF Y] - simple-distributed-joint [OF XY]])
have finite ((λx . (X x , Y x))‘space M)

using XY unfolding simple-distributed-def by auto
from finite-imageI [OF this, of fst]
have [simp]: finite (X‘space M)

by (simp add : image-comp comp-def)
note Y [THEN simple-distributed-finite, simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add : sigma-finite-measure-count-space-finite)
let ?f = (λx . if x ∈ (λx . (X x , Y x)) ‘ space M then Pxy x else 0)
have count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X‘space M × Y‘space M)
(is ?P = ?C)
using Y by (simp add : simple-distributed-finite pair-measure-count-space)

have eq : (λ(x , y). ?f (x , y) ∗ log b (?f (x , y) / Py y)) =
(λx . if x ∈ (λx . (X x , Y x)) ‘ space M then Pxy x ∗ log b (Pxy x / Py (snd x))

else 0)
by auto

from Y show − (
∫

(x , y). ?f (x , y) ∗ log b (?f (x , y) / Py y) ∂?P) =
− (

∑
(x , y)∈(λx . (X x , Y x)) ‘ space M . Pxy (x , y) ∗ log b (Pxy (x , y) / Py

y))
by (auto intro!: setsum.cong simp add : 〈?P = ?C 〉 lebesgue-integral-count-space-finite

simple-distributed-finite eq setsum.If-cases split-beta ′)
qed (insert Y XY , auto)

lemma (in information-space) conditional-mutual-information-eq-conditional-entropy :
assumes X : simple-function M X and Y : simple-function M Y
shows I(X ; X | Y) = H(X | Y)

proof −
def Py ≡ λx . if x ∈ Y‘space M then measure M (Y −‘ {x} ∩ space M) else 0
def Pxy ≡ λx . if x ∈ (λx . (X x , Y x))‘space M then measure M ((λx . (X x , Y

x)) −‘ {x} ∩ space M) else 0
def Pxxy ≡ λx . if x ∈ (λx . (X x , X x , Y x))‘space M then measure M ((λx . (X

THEORY “Information” 797

x , X x , Y x)) −‘ {x} ∩ space M) else 0
let ?M = X‘space M × X‘space M × Y‘space M

note XY = simple-function-Pair [OF X Y]
note XXY = simple-function-Pair [OF X XY]
have Py : simple-distributed M Y Py

using Y by (rule simple-distributedI) (auto simp: Py-def measure-nonneg)
have Pxy : simple-distributed M (λx . (X x , Y x)) Pxy

using XY by (rule simple-distributedI) (auto simp: Pxy-def measure-nonneg)
have Pxxy : simple-distributed M (λx . (X x , X x , Y x)) Pxxy
using XXY by (rule simple-distributedI) (auto simp: Pxxy-def measure-nonneg)

have eq : (λx . (X x , X x , Y x)) ‘ space M = (λ(x , y). (x , x , y)) ‘ (λx . (X x , Y
x)) ‘ space M

by auto
have inj :

∧
A. inj-on (λ(x , y). (x , x , y)) A

by (auto simp: inj-on-def)
have Pxxy-eq :

∧
x y . Pxxy (x , x , y) = Pxy (x , y)

by (auto simp: Pxxy-def Pxy-def intro!: arg-cong [where f =prob])
have AE x in count-space ((λx . (X x , Y x))‘space M). Py (snd x) = 0 −→ Pxy

x = 0
using Py Pxy
by (intro subdensity-real [of snd , OF - Pxy [THEN simple-distributed] Py [THEN

simple-distributed]])
(auto intro: measurable-Pair simp: AE-count-space)

then show ?thesis
apply (subst conditional-mutual-information-eq [OF Py Pxy Pxy Pxxy])
apply (subst conditional-entropy-eq [OF Py Pxy])
apply (auto intro!: setsum.cong simp: Pxxy-eq setsum-negf [symmetric] eq set-

sum.reindex [OF inj]
log-simps zero-less-mult-iff zero-le-mult-iff field-simps mult-less-0-iff

AE-count-space)
using Py [THEN simple-distributed] Pxy [THEN simple-distributed]
apply (auto simp add : not-le AE-count-space less-le antisym

simple-distributed-nonneg [OF Py] simple-distributed-nonneg [OF Pxy])
done

qed

lemma (in information-space) conditional-entropy-nonneg :
assumes X : simple-function M X and Y : simple-function M Y shows 0 ≤
H(X | Y)
using conditional-mutual-information-eq-conditional-entropy [OF X Y] conditional-mutual-information-nonneg [OF

X X Y]
by simp

40.8 Equalities

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy-distr :
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T

THEORY “Information” 798

assumes Px [measurable]: distributed M S X Px
and Px-nn[simp]:

∧
x . x ∈ space S =⇒ 0 ≤ Px x

and Py [measurable]: distributed M T Y Py
and Py-nn[simp]:

∧
x . x ∈ space T =⇒ 0 ≤ Py x

and Pxy [measurable]: distributed M (S
⊗

M T) (λx . (X x , Y x)) Pxy
and Pxy-nn[simp]:

∧
x y . x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x , y)

assumes Ix : integrable(S
⊗

M T) (λx . Pxy x ∗ log b (Px (fst x)))
assumes Iy : integrable(S

⊗
M T) (λx . Pxy x ∗ log b (Py (snd x)))

assumes Ixy : integrable(S
⊗

M T) (λx . Pxy x ∗ log b (Pxy x))
shows mutual-information b S T X Y = entropy b S X + entropy b T Y −

entropy b (S
⊗

M T) (λx . (X x , Y x))
proof −

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy [measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have X : entropy b S X = − (
∫

x . Pxy x ∗ log b (Px (fst x)) ∂(S
⊗

M T))
using b-gt-1
apply (subst entropy-distr [OF Px Px-nn], simp)
apply (subst distributed-transform-integral [OF Pxy - Px , where T=fst])
apply (auto intro!: integral-cong simp: space-pair-measure)
done

have Y : entropy b T Y = − (
∫

x . Pxy x ∗ log b (Py (snd x)) ∂(S
⊗

M T))
using b-gt-1
apply (subst entropy-distr [OF Py Py-nn], simp)
apply (subst distributed-transform-integral [OF Pxy - Py , where T=snd])
apply (auto intro!: integral-cong simp: space-pair-measure)
done

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
have ST : sigma-finite-measure (S

⊗
M T) ..

have XY : entropy b (S
⊗

M T) (λx . (X x , Y x)) = − (
∫

x . Pxy x ∗ log b (Pxy
x) ∂(S

⊗
M T))

by (subst entropy-distr [OF Pxy]) (auto intro!: integral-cong simp: space-pair-measure)

have AE x in S
⊗

M T . Px (fst x) = 0 −→ Pxy x = 0
by (intro subdensity-real [of fst , OF - Pxy Px]) (auto intro: measurable-Pair

simp: space-pair-measure)
moreover have AE x in S

⊗
M T . Py (snd x) = 0 −→ Pxy x = 0

by (intro subdensity-real [of snd , OF - Pxy Py]) (auto intro: measurable-Pair
simp: space-pair-measure)

moreover have AE x in S
⊗

M T . 0 ≤ Px (fst x)

THEORY “Information” 799

using Px by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measurable-fst ′′)
moreover have AE x in S

⊗
M T . 0 ≤ Py (snd x)

using Py by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measurable-snd ′′)
ultimately have AE x in S

⊗
M T . Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Px

(fst x)) − Pxy x ∗ log b (Py (snd x)) =
Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
(is AE x in -. ?f x = ?g x)
using AE-space

proof eventually-elim
case (elim x)
show ?case
proof cases

assume Pxy x 6= 0
with elim have 0 < Px (fst x) 0 < Py (snd x) 0 < Pxy x

by (auto simp: space-pair-measure less-le)
then show ?thesis

using b-gt-1 by (simp add : log-simps less-imp-le field-simps)
qed simp

qed

have entropy b S X + entropy b T Y − entropy b (S
⊗

M T) (λx . (X x , Y x))
= integralL (S

⊗
M T) ?f

unfolding X Y XY
apply (subst integral-diff)
apply (intro integrable-diff Ixy Ix Iy)+
apply (subst integral-diff)
apply (intro Ixy Ix Iy)+
apply (simp add : field-simps)
done

also have . . . = integralL (S
⊗

M T) ?g
using 〈AE x in -. ?f x = ?g x 〉 by (intro integral-cong-AE) auto

also have . . . = mutual-information b S T X Y
by (rule mutual-information-distr [OF S T Px - Py - Pxy - , symmetric])

(auto simp: space-pair-measure)
finally show ?thesis ..

qed

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy ′:
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px : distributed M S X Px

∧
x . x ∈ space S =⇒ 0 ≤ Px x

and Py : distributed M T Y Py
∧

x . x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy : distributed M (S

⊗
M T) (λx . (X x , Y x)) Pxy∧

x . x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
assumes Ix : integrable(S

⊗
M T) (λx . Pxy x ∗ log b (Px (fst x)))

assumes Iy : integrable(S
⊗

M T) (λx . Pxy x ∗ log b (Py (snd x)))
assumes Ixy : integrable(S

⊗
M T) (λx . Pxy x ∗ log b (Pxy x))

shows mutual-information b S T X Y = entropy b S X − conditional-entropy
b S T X Y

THEORY “Information” 800

using
mutual-information-eq-entropy-conditional-entropy-distr [OF S T Px Py Pxy Ix

Iy Ixy]
conditional-entropy-eq-entropy [OF S T Py Pxy Ixy Iy]

by (simp add : space-pair-measure)

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy :
assumes sf-X : simple-function M X and sf-Y : simple-function M Y
shows I(X ; Y) = H(X) − H(X | Y)

proof −
have X : simple-distributed M X (λx . measure M (X −‘ {x} ∩ space M))

using sf-X by (rule simple-distributedI) (auto simp: measure-nonneg)
have Y : simple-distributed M Y (λx . measure M (Y −‘ {x} ∩ space M))

using sf-Y by (rule simple-distributedI) (auto simp: measure-nonneg)
have sf-XY : simple-function M (λx . (X x , Y x))

using sf-X sf-Y by (rule simple-function-Pair)
then have XY : simple-distributed M (λx . (X x , Y x)) (λx . measure M ((λx . (X

x , Y x)) −‘ {x} ∩ space M))
by (rule simple-distributedI) (auto simp: measure-nonneg)

from simple-distributed-joint-finite[OF this, simp]
have eq : count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X ‘ space M × Y ‘ space M)
by (simp add : pair-measure-count-space)

have I(X ; Y) = H(X) + H(Y) − entropy b (count-space (X‘space M)
⊗

M

count-space (Y‘space M)) (λx . (X x , Y x))
using sigma-finite-measure-count-space-finite

sigma-finite-measure-count-space-finite
simple-distributed [OF X] measure-nonneg simple-distributed [OF Y] measure-nonneg

simple-distributed-joint [OF XY]
by (rule mutual-information-eq-entropy-conditional-entropy-distr)

(auto simp: eq integrable-count-space measure-nonneg)
then show ?thesis

unfolding conditional-entropy-eq-entropy-simple[OF sf-X sf-Y] by simp
qed

lemma (in information-space) mutual-information-nonneg-simple:
assumes sf-X : simple-function M X and sf-Y : simple-function M Y
shows 0 ≤ I(X ; Y)

proof −
have X : simple-distributed M X (λx . measure M (X −‘ {x} ∩ space M))

using sf-X by (rule simple-distributedI) (auto simp: measure-nonneg)
have Y : simple-distributed M Y (λx . measure M (Y −‘ {x} ∩ space M))

using sf-Y by (rule simple-distributedI) (auto simp: measure-nonneg)

have sf-XY : simple-function M (λx . (X x , Y x))
using sf-X sf-Y by (rule simple-function-Pair)

then have XY : simple-distributed M (λx . (X x , Y x)) (λx . measure M ((λx . (X
x , Y x)) −‘ {x} ∩ space M))

THEORY “Information” 801

by (rule simple-distributedI) (auto simp: measure-nonneg)

from simple-distributed-joint-finite[OF this, simp]
have eq : count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X ‘ space M × Y ‘ space M)
by (simp add : pair-measure-count-space)

show ?thesis
by (rule mutual-information-nonneg [OF - - simple-distributed [OF X] - simple-distributed [OF

Y] - simple-distributed-joint [OF XY]])
(simp-all add : eq integrable-count-space sigma-finite-measure-count-space-finite

measure-nonneg)
qed

lemma (in information-space) conditional-entropy-less-eq-entropy :
assumes X : simple-function M X and Z : simple-function M Z
shows H(X | Z) ≤ H(X)

proof −
have 0 ≤ I(X ; Z) using X Z by (rule mutual-information-nonneg-simple)
also have I(X ; Z) = H(X) − H(X | Z) using mutual-information-eq-entropy-conditional-entropy [OF

assms] .
finally show ?thesis by auto

qed

lemma (in information-space)
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px : finite-entropy S X Px and Py : finite-entropy T Y Py
assumes Pxy : finite-entropy (S

⊗
M T) (λx . (X x , Y x)) Pxy

shows conditional-entropy b S T X Y ≤ entropy b S X
proof −

have 0 ≤ mutual-information b S T X Y
by (rule mutual-information-nonneg ′) fact+

also have . . . = entropy b S X − conditional-entropy b S T X Y
apply (rule mutual-information-eq-entropy-conditional-entropy ′)
using assms
by (auto intro!: finite-entropy-integrable finite-entropy-distributed

finite-entropy-integrable-transform[OF Px]
finite-entropy-integrable-transform[OF Py]
intro: finite-entropy-nn)

finally show ?thesis by auto
qed

lemma (in information-space) entropy-chain-rule:
assumes X : simple-function M X and Y : simple-function M Y
shows H(λx . (X x , Y x)) = H(X) + H(Y |X)

proof −
note XY = simple-distributedI [OF simple-function-Pair [OF X Y] measure-nonneg

THEORY “Information” 802

refl]
note YX = simple-distributedI [OF simple-function-Pair [OF Y X] measure-nonneg

refl]
note simple-distributed-joint-finite[OF this, simp]
let ?f = λx . prob ((λx . (X x , Y x)) −‘ {x} ∩ space M)
let ?g = λx . prob ((λx . (Y x , X x)) −‘ {x} ∩ space M)
let ?h = λx . if x ∈ (λx . (Y x , X x)) ‘ space M then prob ((λx . (Y x , X x)) −‘
{x} ∩ space M) else 0

have H(λx . (X x , Y x)) = − (
∑

x∈(λx . (X x , Y x)) ‘ space M . ?f x ∗ log b (?f
x))

using XY by (rule entropy-simple-distributed)
also have . . . = − (

∑
x∈(λ(x , y). (y , x)) ‘ (λx . (X x , Y x)) ‘ space M . ?g x ∗

log b (?g x))
by (subst (2) setsum.reindex) (auto simp: inj-on-def intro!: setsum.cong arg-cong [where

f =λA. prob A ∗ log b (prob A)])
also have . . . = − (

∑
x∈(λx . (Y x , X x)) ‘ space M . ?h x ∗ log b (?h x))

by (auto intro!: setsum.cong)
also have . . . = entropy b (count-space (Y ‘ space M)

⊗
M count-space (X ‘

space M)) (λx . (Y x , X x))
by (subst entropy-distr [OF simple-distributed-joint [OF YX]])

(auto simp: pair-measure-count-space sigma-finite-measure-count-space-finite
lebesgue-integral-count-space-finite

cong del : setsum.cong intro!: setsum.mono-neutral-left measure-nonneg)
finally have H(λx . (X x , Y x)) = entropy b (count-space (Y ‘ space M)

⊗
M

count-space (X ‘ space M)) (λx . (Y x , X x)) .
then show ?thesis

unfolding conditional-entropy-eq-entropy-simple[OF Y X] by simp
qed

lemma (in information-space) entropy-partition:
assumes X : simple-function M X
shows H(X) = H(f ◦ X) + H(X |f ◦ X)

proof −
note fX = simple-function-compose[OF X , of f]
have eq : (λx . ((f ◦ X) x , X x)) ‘ space M = (λx . (f x , x)) ‘ X ‘ space M by

auto
have inj :

∧
A. inj-on (λx . (f x , x)) A

by (auto simp: inj-on-def)
show ?thesis

apply (subst entropy-chain-rule[symmetric, OF fX X])
apply (subst entropy-simple-distributed [OF simple-distributedI [OF simple-function-Pair [OF

fX X] measure-nonneg refl]])
apply (subst entropy-simple-distributed [OF simple-distributedI [OF X measure-nonneg

refl]])
unfolding eq
apply (subst setsum.reindex [OF inj])
apply (auto intro!: setsum.cong arg-cong [where f =λA. prob A ∗ log b (prob

A)])
done

THEORY “Distributions” 803

qed

corollary (in information-space) entropy-data-processing :
assumes X : simple-function M X shows H(f ◦ X) ≤ H(X)

proof −
note fX = simple-function-compose[OF X , of f]
from X have H(X) = H(f ◦X) + H(X |f ◦X) by (rule entropy-partition)
then show H(f ◦ X) ≤ H(X)

by (auto intro: conditional-entropy-nonneg [OF X fX])
qed

corollary (in information-space) entropy-of-inj :
assumes X : simple-function M X and inj : inj-on f (X‘space M)
shows H(f ◦ X) = H(X)

proof (rule antisym)
show H(f ◦ X) ≤ H(X) using entropy-data-processing [OF X] .

next
have sf : simple-function M (f ◦ X)

using X by auto
have H(X) = H(the-inv-into (X‘space M) f ◦ (f ◦ X))

unfolding o-assoc
apply (subst entropy-simple-distributed [OF simple-distributedI [OF X measure-nonneg

refl]])
apply (subst entropy-simple-distributed [OF simple-distributedI [OF simple-function-compose[OF

X]], where f =λx . prob (X −‘ {x} ∩ space M)])
apply (auto intro!: setsum.cong arg-cong [where f =prob] image-eqI simp:

the-inv-into-f-f [OF inj] comp-def measure-nonneg)
done

also have ... ≤ H(f ◦ X)
using entropy-data-processing [OF sf] .

finally show H(X) ≤ H(f ◦ X) .
qed

end

41 Properties of Various Distributions

theory Distributions
imports Convolution Information

begin

lemma (in prob-space) distributed-affine:
fixes f :: real ⇒ ennreal
assumes f : distributed M lborel X f
assumes c: c 6= 0
shows distributed M lborel (λx . t + c ∗ X x) (λx . f ((x − t) / c) / |c|)
unfolding distributed-def

proof safe
have [measurable]: f ∈ borel-measurable borel

THEORY “Distributions” 804

using f by (simp add : distributed-def)
have [measurable]: X ∈ borel-measurable M

using f by (simp add : distributed-def)

show (λx . f ((x − t) / c) / |c|) ∈ borel-measurable lborel
by simp

show random-variable lborel (λx . t + c ∗ X x)
by simp

have eq : ennreal |c| ∗ (f x / ennreal |c|) = f x for x
using c
by (cases f x)
(auto simp: divide-ennreal ennreal-mult [symmetric] ennreal-top-divide ennreal-mult-top)

have density lborel f = distr M lborel X
using f by (simp add : distributed-def)

with c show distr M lborel (λx . t + c ∗ X x) = density lborel (λx . f ((x − t)
/ c) / ennreal |c|)

by (subst (2) lborel-real-affine[where c=c and t=t])
(simp-all add : density-density-eq density-distr distr-distr field-simps eq cong :

distr-cong)
qed

lemma (in prob-space) distributed-affineI :
fixes f :: real ⇒ ennreal and c :: real
assumes f : distributed M lborel (λx . (X x − t) / c) (λx . |c| ∗ f (x ∗ c + t))
assumes c: c 6= 0
shows distributed M lborel X f

proof −
have eq : f x ∗ ennreal |c| / ennreal |c| = f x for x

using c by (simp add : ennreal-times-divide[symmetric])

show ?thesis
using distributed-affine[OF f c, where t=t] c
by (simp add : field-simps eq)

qed

lemma (in prob-space) distributed-AE2 :
assumes [measurable]: distributed M N X f Measurable.pred N P
shows (AE x in M . P (X x)) ←→ (AE x in N . 0 < f x −→ P x)

proof −
have (AE x in M . P (X x)) ←→ (AE x in distr M N X . P x)

by (simp add : AE-distr-iff)
also have . . . ←→ (AE x in density N f . P x)

unfolding distributed-distr-eq-density [OF assms(1)] ..
also have . . . ←→ (AE x in N . 0 < f x −→ P x)

by (rule AE-density) simp
finally show ?thesis .

qed

THEORY “Distributions” 805

41.1 Erlang

lemma nn-intergal-power-times-exp-Icc:
assumes [arith]: 0 ≤ a
shows (

∫
+x . ennreal (xˆk ∗ exp (−x)) ∗ indicator {0 .. a} x ∂lborel) =

(1 − (
∑

n≤k . (aˆn ∗ exp (−a)) / fact n)) ∗ fact k (is ?I = -)
proof −

let ?f = λk x . xˆk ∗ exp (−x) / fact k
let ?F = λk x . − (

∑
n≤k . (xˆn ∗ exp (−x)) / fact n)

have ?I ∗ (inverse (real-of-nat (fact k))) =
(
∫

+x . ennreal (xˆk ∗ exp (−x)) ∗ indicator {0 .. a} x ∗ (inverse (real-of-nat
(fact k))) ∂lborel)

by (intro nn-integral-multc[symmetric]) auto
also have . . . = (

∫
+x . ennreal (?f k x) ∗ indicator {0 .. a} x ∂lborel)

by (intro nn-integral-cong)
(simp add : field-simps ennreal-mult ′[symmetric] indicator-mult-ennreal)

also have . . . = ennreal (?F k a − ?F k 0)
proof (rule nn-integral-FTC-Icc)

fix x assume x ∈ {0 ..a}
show DERIV (?F k) x :> ?f k x
proof(induction k)

case 0 show ?case by (auto intro!: derivative-eq-intros)
next

case (Suc k)
have DERIV (λx . ?F k x − (xˆSuc k ∗ exp (−x)) / fact (Suc k)) x :>

?f k x − ((real (Suc k) − x) ∗ x ˆ k ∗ exp (− x)) / (fact (Suc k))
by (intro DERIV-diff Suc)

(auto intro!: derivative-eq-intros simp del : fact-Suc power-Suc
simp add : field-simps power-Suc[symmetric])

also have (λx . ?F k x − (xˆSuc k ∗ exp (−x)) / fact (Suc k)) = ?F (Suc k)
by simp

also have ?f k x − ((real (Suc k) − x) ∗ x ˆ k ∗ exp (− x)) / (fact (Suc k))
= ?f (Suc k) x

by (auto simp: field-simps simp del : fact-Suc)
(simp-all add : of-nat-Suc field-simps)

finally show ?case .
qed

qed auto
also have . . . = ennreal (1 − (

∑
n≤k . (aˆn ∗ exp (−a)) / fact n))

by (auto simp: power-0-left if-distrib[where f =λx . x / a for a] setsum.If-cases)
also have . . . = ennreal ((1 − (

∑
n≤k . (aˆn ∗ exp (−a)) / fact n)) ∗ fact k)

∗ ennreal (inverse (fact k))
by (subst ennreal-mult ′′[symmetric]) (auto intro!: arg-cong [where f =ennreal])

finally show ?thesis
by (auto simp add : mult-right-ennreal-cancel le-less)

qed

lemma nn-intergal-power-times-exp-Ici :
shows (

∫
+x . ennreal (xˆk ∗ exp (−x)) ∗ indicator {0 ..} x ∂lborel) = real-of-nat

(fact k)

THEORY “Distributions” 806

proof (rule LIMSEQ-unique)
let ?X = λn.

∫
+ x . ennreal (xˆk ∗ exp (−x)) ∗ indicator {0 .. real n} x ∂lborel

show ?X −−−−→ (
∫

+x . ennreal (xˆk ∗ exp (−x)) ∗ indicator {0 ..} x ∂lborel)
apply (intro nn-integral-LIMSEQ)
apply (auto simp: incseq-def le-fun-def eventually-sequentially

split : split-indicator intro!: Lim-eventually)
apply (metis nat-ceiling-le-eq)
done

have ((λx ::real . (1 − (
∑

n≤k . (x ˆ n / exp x) / (fact n))) ∗ fact k) −−−→
(1 − (

∑
n≤k . 0 / (fact n))) ∗ fact k) at-top

by (intro tendsto-intros tendsto-power-div-exp-0) simp
then show ?X −−−−→ real-of-nat (fact k)

by (subst nn-intergal-power-times-exp-Icc)
(auto simp: exp-minus field-simps intro!: filterlim-compose[OF - filterlim-real-sequentially])

qed

definition erlang-density :: nat ⇒ real ⇒ real ⇒ real where
erlang-density k l x = (if x < 0 then 0 else (lˆ(Suc k) ∗ xˆk ∗ exp (− l ∗ x)) /

fact k)

definition erlang-CDF :: nat ⇒ real ⇒ real ⇒ real where
erlang-CDF k l x = (if x < 0 then 0 else 1 − (

∑
n≤k . ((l ∗ x)ˆn ∗ exp (− l ∗

x) / fact n)))

lemma erlang-density-nonneg [simp]: 0 ≤ l =⇒ 0 ≤ erlang-density k l x
by (simp add : erlang-density-def)

lemma borel-measurable-erlang-density [measurable]: erlang-density k l ∈ borel-measurable
borel

by (auto simp add : erlang-density-def [abs-def])

lemma erlang-CDF-transform: 0 < l =⇒ erlang-CDF k l a = erlang-CDF k 1 (l
∗ a)

by (auto simp add : erlang-CDF-def mult-less-0-iff)

lemma erlang-CDF-nonneg [simp]: assumes 0 < l shows 0 ≤ erlang-CDF k l x
unfolding erlang-CDF-def

proof (clarsimp simp: not-less)
assume 0 ≤ x
have (

∑
n≤k . (l ∗ x) ˆ n ∗ exp (− (l ∗ x)) / fact n) =

exp (− (l ∗ x)) ∗ (
∑

n≤k . (l ∗ x) ˆ n / fact n)
unfolding setsum-right-distrib by (intro setsum.cong) (auto simp: field-simps)

also have . . . = (
∑

n≤k . (l ∗ x) ˆ n / fact n) / exp (l ∗ x)
by (simp add : exp-minus field-simps)

also have . . . ≤ 1
proof (subst divide-le-eq-1-pos)

show (
∑

n≤k . (l ∗ x) ˆ n / fact n) ≤ exp (l ∗ x)
using 〈0 < l 〉 〈0 ≤ x 〉 summable-exp-generic[of l ∗ x]

THEORY “Distributions” 807

by (auto simp: exp-def divide-inverse ac-simps intro!: setsum-le-suminf)
qed simp
finally show (

∑
n≤k . (l ∗ x) ˆ n ∗ exp (− (l ∗ x)) / fact n) ≤ 1 .

qed

lemma nn-integral-erlang-density :
assumes [arith]: 0 < l
shows (

∫
+ x . ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

erlang-CDF k l a
proof cases

assume [arith]: 0 ≤ a
have eq :

∧
x . indicator {0 ..a} (x / l) = indicator {0 ..a∗l} x

by (simp add : field-simps split : split-indicator)
have (

∫
+x . ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

(
∫

+x . (l/fact k) ∗ (ennreal ((l∗x)ˆk ∗ exp (− (l∗x))) ∗ indicator {0 .. a} x)
∂lborel)

by (intro nn-integral-cong)
(auto simp: erlang-density-def power-mult-distrib ennreal-mult [symmetric]

split : split-indicator)
also have . . . = (l/fact k) ∗ (

∫
+x . ennreal ((l∗x)ˆk ∗ exp (− (l∗x))) ∗ indicator

{0 .. a} x ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = ennreal (l/fact k) ∗ ((1/l) ∗ (
∫

+x . ennreal (xˆk ∗ exp (− x))
∗ indicator {0 .. l ∗ a} x ∂lborel))

by (subst nn-integral-real-affine[where c=1 / l and t=0]) (auto simp: field-simps
eq)

also have . . . = (1 − (
∑

n≤k . ((l ∗ a)ˆn ∗ exp (−(l ∗ a))) / fact n))
by (subst nn-intergal-power-times-exp-Icc) (auto simp: ennreal-mult ′[symmetric])
also have . . . = erlang-CDF k l a

by (auto simp: erlang-CDF-def)
finally show ?thesis .

next
assume ¬ 0 ≤ a
moreover then have (

∫
+ x . ennreal (erlang-density k l x) ∗ indicator {.. a} x

∂lborel) = (
∫

+x . 0 ∂(lborel ::real measure))
by (intro nn-integral-cong) (auto simp: erlang-density-def)

ultimately show ?thesis
by (simp add : erlang-CDF-def)

qed

lemma emeasure-erlang-density :
0 < l =⇒ emeasure (density lborel (erlang-density k l)) {.. a} = erlang-CDF k l

a
by (simp add : emeasure-density nn-integral-erlang-density)

lemma nn-integral-erlang-ith-moment :
fixes k i :: nat and l :: real
assumes [arith]: 0 < l
shows (

∫
+ x . ennreal (erlang-density k l x ∗ x ˆ i) ∂lborel) = fact (k + i) /

THEORY “Distributions” 808

(fact k ∗ l ˆ i)
proof −

have eq :
∧

x . indicator {0 ..} (x / l) = indicator {0 ..} x
by (simp add : field-simps split : split-indicator)

have (
∫

+ x . ennreal (erlang-density k l x ∗ xˆi) ∂lborel) =
(
∫

+x . (l/(fact k ∗ lˆi)) ∗ (ennreal ((l∗x)ˆ(k+i) ∗ exp (− (l∗x))) ∗ indicator
{0 ..} x) ∂lborel)

by (intro nn-integral-cong)
(auto simp: erlang-density-def power-mult-distrib power-add ennreal-mult ′[symmetric]

split : split-indicator)
also have . . . = (l/(fact k ∗ lˆi)) ∗ (

∫
+x . ennreal ((l∗x)ˆ(k+i) ∗ exp (− (l∗x)))

∗ indicator {0 ..} x ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = ennreal (l/(fact k ∗ lˆi)) ∗ ((1/l) ∗ (
∫

+x . ennreal (xˆ(k+i) ∗
exp (− x)) ∗ indicator {0 ..} x ∂lborel))

by (subst nn-integral-real-affine[where c=1 / l and t=0]) (auto simp: field-simps
eq)

also have . . . = fact (k + i) / (fact k ∗ l ˆ i)
by (subst nn-intergal-power-times-exp-Ici) (auto simp: ennreal-mult ′[symmetric])
finally show ?thesis .

qed

lemma prob-space-erlang-density :
assumes l [arith]: 0 < l
shows prob-space (density lborel (erlang-density k l)) (is prob-space ?D)

proof
show emeasure ?D (space ?D) = 1

using nn-integral-erlang-ith-moment [OF l , where k=k and i=0] by (simp
add : emeasure-density)
qed

lemma (in prob-space) erlang-distributed-le:
assumes D : distributed M lborel X (erlang-density k l)
assumes [simp, arith]: 0 < l 0 ≤ a
shows P(x in M . X x ≤ a) = erlang-CDF k l a

proof −
have emeasure M {x ∈ space M . X x ≤ a } = emeasure (distr M lborel X) {..

a}
using distributed-measurable[OF D]
by (subst emeasure-distr) (auto intro!: arg-cong2 [where f =emeasure])

also have . . . = emeasure (density lborel (erlang-density k l)) {.. a}
unfolding distributed-distr-eq-density [OF D] ..

also have . . . = erlang-CDF k l a
by (auto intro!: emeasure-erlang-density)

finally show ?thesis
by (auto simp: emeasure-eq-measure measure-nonneg)

qed

lemma (in prob-space) erlang-distributed-gt :

THEORY “Distributions” 809

assumes D [simp]: distributed M lborel X (erlang-density k l)
assumes [arith]: 0 < l 0 ≤ a
shows P(x in M . a < X x) = 1 − (erlang-CDF k l a)

proof −
have 1 − (erlang-CDF k l a) = 1 − P(x in M . X x ≤ a) by (subst erlang-distributed-le)

auto
also have . . . = prob (space M − {x ∈ space M . X x ≤ a })

using distributed-measurable[OF D] by (auto simp: prob-compl)
also have . . . = P(x in M . a < X x) by (auto intro!: arg-cong [where f =prob]

simp: not-le)
finally show ?thesis by simp

qed

lemma erlang-CDF-at0 : erlang-CDF k l 0 = 0
by (induction k) (auto simp: erlang-CDF-def)

lemma erlang-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l
and X-distr :

∧
a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = erlang-CDF

k l a
shows distributed M lborel X (erlang-density k l)

proof (rule distributedI-borel-atMost)
fix a :: real
{ assume a ≤ 0

with X have emeasure M {x∈space M . X x ≤ a} ≤ emeasure M {x∈space
M . X x ≤ 0}

by (intro emeasure-mono) auto
also have ... = 0 by (auto intro!: erlang-CDF-at0 simp: X-distr [of 0])
finally have emeasure M {x∈space M . X x ≤ a} ≤ 0 by simp
then have emeasure M {x∈space M . X x ≤ a} = 0 by simp
}
note eq-0 = this

show (
∫

+ x . erlang-density k l x ∗ indicator {..a} x ∂lborel) = ennreal (erlang-CDF
k l a)

using nn-integral-erlang-density [of l k a]
by (simp add : ennreal-indicator ennreal-mult)

show emeasure M {x∈space M . X x ≤ a} = ennreal (erlang-CDF k l a)
using X-distr [of a] eq-0 by (auto simp: one-ennreal-def erlang-CDF-def)

qed simp-all

lemma (in prob-space) erlang-distributed-iff :
assumes [arith]: 0<l
shows distributed M lborel X (erlang-density k l) ←→
(X ∈ borel-measurable M ∧ 0 < l ∧ (∀ a≥0 . P(x in M . X x ≤ a) = erlang-CDF

k l a))
using

distributed-measurable[of M lborel X erlang-density k l]

THEORY “Distributions” 810

emeasure-erlang-density [of l]
erlang-distributed-le[of X k l]

by (auto intro!: erlang-distributedI simp: one-ennreal-def emeasure-eq-measure)

lemma (in prob-space) erlang-distributed-mult-const :
assumes erlX : distributed M lborel X (erlang-density k l)
assumes a-pos[arith]: 0 < α 0 < l
shows distributed M lborel (λx . α ∗ X x) (erlang-density k (l / α))

proof (subst erlang-distributed-iff , safe)
have [measurable]: random-variable borel X and [arith]: 0 < l
and [simp]:

∧
a. 0 ≤ a =⇒ prob {x ∈ space M . X x ≤ a} = erlang-CDF k l a

by(insert erlX , auto simp: erlang-distributed-iff)

show random-variable borel (λx . α ∗ X x) 0 < l / α 0 < l / α
by (auto simp:field-simps)

fix a:: real assume [arith]: 0 ≤ a
obtain b:: real where [simp, arith]: b = a/ α by blast

have [arith]: 0 ≤ b by (auto simp: divide-nonneg-pos)

have prob {x ∈ space M . α ∗ X x ≤ a} = prob {x ∈ space M . X x ≤ b}
by (rule arg-cong [where f = prob]) (auto simp:field-simps)

moreover have prob {x ∈ space M . X x ≤ b} = erlang-CDF k l b by auto
moreover have erlang-CDF k (l / α) a = erlang-CDF k l b unfolding erlang-CDF-def

by auto
ultimately show prob {x ∈ space M . α ∗ X x ≤ a} = erlang-CDF k (l / α) a

by fastforce
qed

lemma (in prob-space) has-bochner-integral-erlang-ith-moment :
fixes k i :: nat and l :: real
assumes [arith]: 0 < l and D : distributed M lborel X (erlang-density k l)
shows has-bochner-integral M (λx . X x ˆ i) (fact (k + i) / (fact k ∗ l ˆ i))

proof (rule has-bochner-integral-nn-integral)
show AE x in M . 0 ≤ X x ˆ i

by (subst distributed-AE2 [OF D]) (auto simp: erlang-density-def)
show (

∫
+ x . ennreal (X x ˆ i) ∂M) = ennreal (fact (k + i) / (fact k ∗ l ˆ i))

using nn-integral-erlang-ith-moment [of l k i]
by (subst distributed-nn-integral [symmetric, OF D]) (auto simp: ennreal-mult ′)

qed (insert distributed-measurable[OF D], auto)

lemma (in prob-space) erlang-ith-moment-integrable:
0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒ integrable M (λx . X x

ˆ i)
by rule (rule has-bochner-integral-erlang-ith-moment)

lemma (in prob-space) erlang-ith-moment :

THEORY “Distributions” 811

0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒
expectation (λx . X x ˆ i) = fact (k + i) / (fact k ∗ l ˆ i)

by (rule has-bochner-integral-integral-eq) (rule has-bochner-integral-erlang-ith-moment)

lemma (in prob-space) erlang-distributed-variance:
assumes [arith]: 0 < l and distributed M lborel X (erlang-density k l)
shows variance X = (k + 1) / l2

proof (subst variance-eq)
show integrable M X integrable M (λx . (X x)2)
using erlang-ith-moment-integrable[OF assms, of 1] erlang-ith-moment-integrable[OF

assms, of 2]
by auto

show expectation (λx . (X x)2) − (expectation X)2 = real (k + 1) / l2

using erlang-ith-moment [OF assms, of 1] erlang-ith-moment [OF assms, of 2]
by simp (auto simp: power2-eq-square field-simps of-nat-Suc)

qed

41.2 Exponential distribution

abbreviation exponential-density :: real ⇒ real ⇒ real where
exponential-density ≡ erlang-density 0

lemma exponential-density-def :
exponential-density l x = (if x < 0 then 0 else l ∗ exp (− x ∗ l))
by (simp add : fun-eq-iff erlang-density-def)

lemma erlang-CDF-0 : erlang-CDF 0 l a = (if 0 ≤ a then 1 − exp (− l ∗ a) else
0)

by (simp add : erlang-CDF-def)

lemma prob-space-exponential-density : 0 < l =⇒ prob-space (density lborel (exponential-density
l))

by (rule prob-space-erlang-density)

lemma (in prob-space) exponential-distributedD-le:
assumes D : distributed M lborel X (exponential-density l) and a: 0 ≤ a and l :

0 < l
shows P(x in M . X x ≤ a) = 1 − exp (− a ∗ l)
using erlang-distributed-le[OF D l a] a by (simp add : erlang-CDF-def)

lemma (in prob-space) exponential-distributedD-gt :
assumes D : distributed M lborel X (exponential-density l) and a: 0 ≤ a and l :

0 < l
shows P(x in M . a < X x) = exp (− a ∗ l)
using erlang-distributed-gt [OF D l a] a by (simp add : erlang-CDF-def)

lemma (in prob-space) exponential-distributed-memoryless:
assumes D : distributed M lborel X (exponential-density l) and a: 0 ≤ a and l :

THEORY “Distributions” 812

0 < l and t : 0 ≤ t
shows P(x in M . a + t < X x | a < X x) = P(x in M . t < X x)

proof −
have P(x in M . a + t < X x | a < X x) = P(x in M . a + t < X x) / P(x in

M . a < X x)
using 〈0 ≤ t 〉 by (auto simp: cond-prob-def intro!: arg-cong [where f =prob]

arg-cong2 [where f =op /])
also have . . . = exp (− (a + t) ∗ l) / exp (− a ∗ l)

using a t by (simp add : exponential-distributedD-gt [OF D - l])
also have . . . = exp (− t ∗ l)

using l by (auto simp: field-simps exp-add [symmetric])
finally show ?thesis

using t by (simp add : exponential-distributedD-gt [OF D - l])
qed

lemma exponential-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l

and X-distr :
∧

a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = 1 − exp
(− a ∗ l)

shows distributed M lborel X (exponential-density l)
proof (rule erlang-distributedI)

fix a :: real assume 0 ≤ a then show emeasure M {x ∈ space M . X x ≤ a}
= ennreal (erlang-CDF 0 l a)

using X-distr [of a] by (simp add : erlang-CDF-def ennreal-minus ennreal-1 [symmetric]
del : ennreal-1)
qed fact+

lemma (in prob-space) exponential-distributed-iff :
assumes 0 < l
shows distributed M lborel X (exponential-density l) ←→

(X ∈ borel-measurable M ∧ (∀ a≥0 . P(x in M . X x ≤ a) = 1 − exp (− a ∗
l)))

using assms erlang-distributed-iff [of l X 0] by (auto simp: erlang-CDF-0)

lemma (in prob-space) exponential-distributed-expectation:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ expectation X = 1

/ l
using erlang-ith-moment [of l X 0 1] by simp

lemma exponential-density-nonneg : 0 < l =⇒ 0 ≤ exponential-density l x
by (auto simp: exponential-density-def)

lemma (in prob-space) exponential-distributed-min:
assumes 0 < l 0 < u
assumes expX : distributed M lborel X (exponential-density l)
assumes expY : distributed M lborel Y (exponential-density u)
assumes ind : indep-var borel X borel Y
shows distributed M lborel (λx . min (X x) (Y x)) (exponential-density (l + u))

THEORY “Distributions” 813

proof (subst exponential-distributed-iff , safe)
have randX : random-variable borel X

using expX 〈0 < l 〉 by (simp add : exponential-distributed-iff)
moreover have randY : random-variable borel Y

using expY 〈0 < u〉 by (simp add : exponential-distributed-iff)
ultimately show random-variable borel (λx . min (X x) (Y x)) by auto

show 0 < l + u
using 〈0 < l 〉 〈0 < u〉 by auto

fix a::real assume a[arith]: 0 ≤ a
have gt1 [simp]: P(x in M . a < X x) = exp (− a ∗ l)

by (rule exponential-distributedD-gt [OF expX a]) fact
have gt2 [simp]: P(x in M . a < Y x) = exp (− a ∗ u)

by (rule exponential-distributedD-gt [OF expY a]) fact

have P(x in M . a < (min (X x) (Y x))) = P(x in M . a < (X x) ∧ a < (Y
x)) by (auto intro!:arg-cong [where f =prob])

also have ... = P(x in M . a < (X x)) ∗ P(x in M . a< (Y x))
using prob-indep-random-variable[OF ind , of {a <..} {a <..}] by simp

also have ... = exp (− a ∗ (l + u)) by (auto simp:field-simps mult-exp-exp)
finally have indep-prob: P(x in M . a < (min (X x) (Y x))) = exp (− a ∗ (l +

u)) .

have {x ∈ space M . (min (X x) (Y x)) ≤a } = (space M − {x ∈ space M .
a<(min (X x) (Y x)) })

by auto
then have 1 − prob {x ∈ space M . a < (min (X x) (Y x))} = prob {x ∈ space

M . (min (X x) (Y x)) ≤ a}
using randX randY by (auto simp: prob-compl)

then show prob {x ∈ space M . (min (X x) (Y x)) ≤ a} = 1 − exp (− a ∗ (l
+ u))

using indep-prob by auto
qed

lemma (in prob-space) exponential-distributed-Min:
assumes finI : finite I
assumes A: I 6= {}
assumes l :

∧
i . i ∈ I =⇒ 0 < l i

assumes expX :
∧

i . i ∈ I =⇒ distributed M lborel (X i) (exponential-density (l
i))

assumes ind : indep-vars (λi . borel) X I
shows distributed M lborel (λx . Min ((λi . X i x)‘I)) (exponential-density (

∑
i∈I .

l i))
using assms
proof (induct rule: finite-ne-induct)

case (singleton i) then show ?case by simp
next

THEORY “Distributions” 814

case (insert i I)
then have distributed M lborel (λx . min (X i x) (Min ((λi . X i x)‘I))) (exponential-density

(l i + (
∑

i∈I . l i)))
by (intro exponential-distributed-min indep-vars-Min insert)

(auto intro: indep-vars-subset setsum-pos)
then show ?case

using insert by simp
qed

lemma (in prob-space) exponential-distributed-variance:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ variance X = 1 /

l2

using erlang-distributed-variance[of l X 0] by simp

lemma nn-integral-zero ′: AE x in M . f x = 0 =⇒ (
∫

+x . f x ∂M) = 0
by (simp cong : nn-integral-cong-AE)

lemma convolution-erlang-density :
fixes k1 k2 :: nat
assumes [simp, arith]: 0 < l
shows (λx .

∫
+y . ennreal (erlang-density k1 l (x − y)) ∗ ennreal (erlang-density

k2 l y) ∂lborel) =
(erlang-density (Suc k1 + Suc k2 − 1) l)

(is ?LHS = ?RHS)
proof

fix x :: real
have x ≤ 0 ∨ 0 < x

by arith
then show ?LHS x = ?RHS x
proof

assume x ≤ 0 then show ?thesis
apply (subst nn-integral-zero ′)
apply (rule AE-I [where N ={0}])
apply (auto simp add : erlang-density-def not-less)
done

next
note zero-le-mult-iff [simp] zero-le-divide-iff [simp]

have I-eq1 : integralN lborel (erlang-density (Suc k1 + Suc k2 − 1) l) = 1
using nn-integral-erlang-ith-moment [of l Suc k1 + Suc k2 − 1 0] by (simp

del : fact-Suc)

have 1 : (
∫

+ x . ennreal (erlang-density (Suc k1 + Suc k2 − 1) l x ∗ indicator
{0<..} x) ∂lborel) = 1

apply (subst I-eq1 [symmetric])
unfolding erlang-density-def
by (auto intro!: nn-integral-cong split :split-indicator)

have prob-space (density lborel ?LHS)

THEORY “Distributions” 815

by (intro prob-space-convolution-density)
(auto intro!: prob-space-erlang-density erlang-density-nonneg)

then have 2 : integralN lborel ?LHS = 1
by (auto dest !: prob-space.emeasure-space-1 simp: emeasure-density)

let ?I = (integralN lborel (λy . ennreal ((1 − y)ˆ k1 ∗ yˆk2 ∗ indicator {0 ..1}
y)))

let ?C = (fact (Suc (k1 + k2))) / ((fact k1) ∗ (fact k2))
let ?s = Suc k1 + Suc k2 − 1
let ?L = (λx .

∫
+y . ennreal (erlang-density k1 l (x− y) ∗ erlang-density k2 l y

∗ indicator {0 ..x} y) ∂lborel)

{ fix x :: real assume [arith]: 0 < x
have ∗:

∧
x y n. (x − y ∗ x ::real)ˆn = xˆn ∗ (1 − y)ˆn

unfolding power-mult-distrib[symmetric] by (simp add : field-simps)

have ?LHS x = ?L x
unfolding erlang-density-def
by (auto intro!: nn-integral-cong simp: ennreal-mult split :split-indicator)

also have ... = (λx . ennreal ?C ∗ ?I ∗ erlang-density ?s l x) x
apply (subst nn-integral-real-affine[where c=x and t = 0])

apply (simp-all add : nn-integral-cmult [symmetric] nn-integral-multc[symmetric]
del : fact-Suc)

apply (intro nn-integral-cong)
apply (auto simp add : erlang-density-def mult-less-0-iff exp-minus field-simps

exp-diff power-add ∗
ennreal-mult [symmetric]

simp del : fact-Suc split : split-indicator)
done

finally have (
∫

+y . ennreal (erlang-density k1 l (x − y) ∗ erlang-density k2

l y) ∂lborel) =
(λx . ennreal ?C ∗ ?I ∗ erlang-density ?s l x) x
by (simp add : ennreal-mult) }

note ∗ = this

assume [arith]: 0 < x
have 3 : 1 = integralN lborel (λxa. ?LHS xa ∗ indicator {0<..} xa)

by (subst 2 [symmetric])
(auto intro!: nn-integral-cong-AE AE-I [where N ={0}]

simp: erlang-density-def nn-integral-multc[symmetric] indicator-def
split : if-split-asm)

also have ... = integralN lborel (λx . (ennreal (?C) ∗ ?I) ∗ ((erlang-density ?s
l x) ∗ indicator {0<..} x))

by (auto intro!: nn-integral-cong simp: ennreal-mult [symmetric] ∗ split :
split-indicator)

also have ... = ennreal (?C) ∗ ?I
using 1
by (auto simp: nn-integral-cmult)

finally have ennreal (?C) ∗ ?I = 1 by presburger

THEORY “Distributions” 816

then show ?thesis
using ∗ by (simp add : ennreal-mult)

qed
qed

lemma (in prob-space) sum-indep-erlang :
assumes indep: indep-var borel X borel Y
assumes [simp, arith]: 0 < l
assumes erlX : distributed M lborel X (erlang-density k1 l)
assumes erlY : distributed M lborel Y (erlang-density k2 l)
shows distributed M lborel (λx . X x + Y x) (erlang-density (Suc k1 + Suc k2 −

1) l)
using assms
apply (subst convolution-erlang-density [symmetric, OF 〈0<l 〉])
apply (intro distributed-convolution)
apply auto
done

lemma (in prob-space) erlang-distributed-setsum:
assumes finI : finite I
assumes A: I 6= {}
assumes [simp, arith]: 0 < l
assumes expX :

∧
i . i ∈ I =⇒ distributed M lborel (X i) (erlang-density (k i) l)

assumes ind : indep-vars (λi . borel) X I
shows distributed M lborel (λx .

∑
i∈I . X i x) (erlang-density ((

∑
i∈I . Suc (k

i)) − 1) l)
using assms
proof (induct rule: finite-ne-induct)

case (singleton i) then show ?case by auto
next

case (insert i I)
then have distributed M lborel (λx . (X i x) + (

∑
i∈ I . X i x)) (erlang-density

(Suc (k i) + Suc ((
∑

i∈I . Suc (k i)) − 1) − 1) l)
by(intro sum-indep-erlang indep-vars-setsum) (auto intro!: indep-vars-subset)

also have (λx . (X i x) + (
∑

i∈ I . X i x)) = (λx .
∑

i∈insert i I . X i x)
using insert by auto

also have Suc(k i) + Suc ((
∑

i∈I . Suc (k i)) − 1) − 1 = (
∑

i∈insert i I .
Suc (k i)) − 1

using insert by (auto intro!: Suc-pred simp: ac-simps)
finally show ?case by fast

qed

lemma (in prob-space) exponential-distributed-setsum:
assumes finI : finite I
assumes A: I 6= {}
assumes l : 0 < l
assumes expX :

∧
i . i ∈ I =⇒ distributed M lborel (X i) (exponential-density l)

assumes ind : indep-vars (λi . borel) X I

THEORY “Distributions” 817

shows distributed M lborel (λx .
∑

i∈I . X i x) (erlang-density ((card I) − 1) l)
using erlang-distributed-setsum[OF assms] by simp

lemma (in information-space) entropy-exponential :
assumes l [simp, arith]: 0 < l
assumes D : distributed M lborel X (exponential-density l)
shows entropy b lborel X = log b (exp 1 / l)

proof −
have [simp]: integrable lborel (exponential-density l)

using distributed-integrable[OF D , of λ-. 1] by simp

have [simp]: integralL lborel (exponential-density l) = 1
using distributed-integral [OF D , of λ-. 1] by (simp add : prob-space)

have [simp]: integrable lborel (λx . exponential-density l x ∗ x)
using erlang-ith-moment-integrable[OF l D , of 1] distributed-integrable[OF D ,

of λx . x] by simp

have [simp]: integralL lborel (λx . exponential-density l x ∗ x) = 1 / l
using erlang-ith-moment [OF l D , of 1] distributed-integral [OF D , of λx . x] by

simp

have entropy b lborel X = − (
∫

x . exponential-density l x ∗ log b (exponential-density
l x) ∂lborel)

using D by (rule entropy-distr) simp
also have (

∫
x . exponential-density l x ∗ log b (exponential-density l x) ∂lborel)

=
(
∫

x . (ln l ∗ exponential-density l x − l ∗ (exponential-density l x ∗ x)) / ln b
∂lborel)

by (intro integral-cong) (auto simp: log-def ln-mult exponential-density-def
field-simps)

also have . . . = (ln l − 1) / ln b
by simp

finally show ?thesis
by (simp add : log-def divide-simps ln-div)

qed

41.3 Uniform distribution

lemma uniform-distrI :
assumes X : X ∈ measurable M M ′

and A: A ∈ sets M ′ emeasure M ′ A 6= ∞ emeasure M ′ A 6= 0
assumes distr :

∧
B . B ∈ sets M ′ =⇒ emeasure M (X −‘ B ∩ space M) =

emeasure M ′ (A ∩ B) / emeasure M ′ A
shows distr M M ′ X = uniform-measure M ′ A
unfolding uniform-measure-def

proof (intro measure-eqI)
let ?f = λx . indicator A x / emeasure M ′ A
fix B assume B : B ∈ sets (distr M M ′ X)

THEORY “Distributions” 818

with X have emeasure M (X −‘ B ∩ space M) = emeasure M ′ (A ∩ B) /
emeasure M ′ A

by (simp add : distr [of B] measurable-sets)
also have . . . = (1 / emeasure M ′ A) ∗ emeasure M ′ (A ∩ B)

by (simp add : divide-ennreal-def ac-simps)
also have . . . = (

∫
+ x . (1 / emeasure M ′ A) ∗ indicator (A ∩ B) x ∂M ′)

using A B
by (intro nn-integral-cmult-indicator [symmetric]) (auto intro!:)

also have . . . = (
∫

+ x . ?f x ∗ indicator B x ∂M ′)
by (rule nn-integral-cong) (auto split : split-indicator)

finally show emeasure (distr M M ′ X) B = emeasure (density M ′ ?f) B
using A B X by (auto simp add : emeasure-distr emeasure-density)

qed simp

lemma uniform-distrI-borel :
fixes A :: real set
assumes X [measurable]: X ∈ borel-measurable M and A: emeasure lborel A =

ennreal r 0 < r
and [measurable]: A ∈ sets borel

assumes distr :
∧

a. emeasure M {x∈space M . X x ≤ a} = emeasure lborel (A
∩ {.. a}) / r

shows distributed M lborel X (λx . indicator A x / measure lborel A)
proof (rule distributedI-borel-atMost)

let ?f = λx . 1 / r ∗ indicator A x
fix a
have emeasure lborel (A ∩ {..a}) ≤ emeasure lborel A

using A by (intro emeasure-mono) auto
also have . . . < ∞

using A by simp
finally have fin: emeasure lborel (A ∩ {..a}) 6= top

by simp
from emeasure-eq-ennreal-measure[OF this]
have fin-eq : emeasure lborel (A ∩ {..a}) / r = ennreal (measure lborel (A ∩
{..a}) / r)

using A by (simp add : divide-ennreal measure-nonneg)
then show emeasure M {x∈space M . X x ≤ a} = ennreal (measure lborel (A
∩ {..a}) / r)

using distr by simp

have (
∫

+ x . ennreal (indicator A x / measure lborel A ∗ indicator {..a} x)
∂lborel) =

(
∫

+ x . ennreal (1 / measure lborel A) ∗ indicator (A ∩ {..a}) x ∂lborel)
by (auto intro!: nn-integral-cong split : split-indicator)

also have . . . = ennreal (1 / measure lborel A) ∗ emeasure lborel (A ∩ {..a})
using 〈A ∈ sets borel 〉

by (intro nn-integral-cmult-indicator) (auto simp: measure-nonneg)
also have . . . = ennreal (measure lborel (A ∩ {..a}) / r)

unfolding emeasure-eq-ennreal-measure[OF fin] using A
by (simp add : measure-def ennreal-mult ′[symmetric])

THEORY “Distributions” 819

finally show (
∫

+ x . ennreal (indicator A x / measure lborel A ∗ indicator {..a}
x) ∂lborel) =

ennreal (measure lborel (A ∩ {..a}) / r) .
qed (auto simp: measure-nonneg)

lemma (in prob-space) uniform-distrI-borel-atLeastAtMost :
fixes a b :: real
assumes X : X ∈ borel-measurable M and a < b
assumes distr :

∧
t . a ≤ t =⇒ t ≤ b =⇒ P(x in M . X x ≤ t) = (t − a) / (b −

a)
shows distributed M lborel X (λx . indicator {a..b} x / measure lborel {a..b})

proof (rule uniform-distrI-borel)
fix t
have t < a ∨ (a ≤ t ∧ t ≤ b) ∨ b < t

by auto
then show emeasure M {x∈space M . X x ≤ t} = emeasure lborel ({a .. b} ∩
{..t}) / (b − a)

proof (elim disjE conjE)
assume t < a
then have emeasure M {x∈space M . X x ≤ t} ≤ emeasure M {x∈space M .

X x ≤ a}
using X by (auto intro!: emeasure-mono measurable-sets)

also have . . . = 0
using distr [of a] 〈a < b〉 by (simp add : emeasure-eq-measure)

finally have emeasure M {x∈space M . X x ≤ t} = 0
by (simp add : antisym measure-nonneg)

with 〈t < a〉 show ?thesis by simp
next

assume bnds: a ≤ t t ≤ b
have {a..b} ∩ {..t} = {a..t}

using bnds by auto
then show ?thesis using 〈a ≤ t 〉 〈a < b〉

using distr [OF bnds] by (simp add : emeasure-eq-measure divide-ennreal)
next

assume b < t
have 1 = emeasure M {x∈space M . X x ≤ b}
using distr [of b] 〈a < b〉 by (simp add : one-ennreal-def emeasure-eq-measure)

also have . . . ≤ emeasure M {x∈space M . X x ≤ t}
using X 〈b < t 〉 by (auto intro!: emeasure-mono measurable-sets)

finally have emeasure M {x∈space M . X x ≤ t} = 1
by (simp add : antisym emeasure-eq-measure)

with 〈b < t 〉 〈a < b〉 show ?thesis by (simp add : measure-def divide-ennreal)
qed

qed (insert X 〈a < b〉, auto)

lemma (in prob-space) uniform-distributed-measure:
fixes a b :: real
assumes D : distributed M lborel X (λx . indicator {a .. b} x / measure lborel {a

.. b})

THEORY “Distributions” 820

assumes t : a ≤ t t ≤ b
shows P(x in M . X x ≤ t) = (t − a) / (b − a)

proof −
have emeasure M {x ∈ space M . X x ≤ t} = emeasure (distr M lborel X) {.. t}

using distributed-measurable[OF D]
by (subst emeasure-distr) (auto intro!: arg-cong2 [where f =emeasure])

also have . . . = (
∫

+x . ennreal (1 / (b − a)) ∗ indicator {a .. t} x ∂lborel)
using distributed-borel-measurable[OF D] 〈a ≤ t 〉 〈t ≤ b〉

unfolding distributed-distr-eq-density [OF D]
by (subst emeasure-density)

(auto intro!: nn-integral-cong simp: measure-def split : split-indicator)
also have . . . = ennreal (1 / (b − a)) ∗ (t − a)

using 〈a ≤ t 〉 〈t ≤ b〉

by (subst nn-integral-cmult-indicator) auto
finally show ?thesis
using t by (simp add : emeasure-eq-measure ennreal-mult ′′[symmetric] measure-nonneg)

qed

lemma (in prob-space) uniform-distributed-bounds:
fixes a b :: real
assumes D : distributed M lborel X (λx . indicator {a .. b} x / measure lborel {a

.. b})
shows a < b

proof (rule ccontr)
assume ¬ a < b
then have {a .. b} = {} ∨ {a .. b} = {a .. a} by simp
with uniform-distributed-params[OF D] show False

by (auto simp: measure-def)
qed

lemma (in prob-space) uniform-distributed-iff :
fixes a b :: real
shows distributed M lborel X (λx . indicator {a..b} x / measure lborel {a..b})
←→

(X ∈ borel-measurable M ∧ a < b ∧ (∀ t∈{a .. b}. P(x in M . X x ≤ t)= (t −
a) / (b − a)))

using
uniform-distributed-bounds[of X a b]
uniform-distributed-measure[of X a b]
distributed-measurable[of M lborel X]

by (auto intro!: uniform-distrI-borel-atLeastAtMost)

lemma (in prob-space) uniform-distributed-expectation:
fixes a b :: real
assumes D : distributed M lborel X (λx . indicator {a .. b} x / measure lborel {a

.. b})
shows expectation X = (a + b) / 2

proof (subst distributed-integral [OF D , of λx . x , symmetric])
have a < b

THEORY “Distributions” 821

using uniform-distributed-bounds[OF D] .

have (
∫

x . indicator {a .. b} x / measure lborel {a .. b} ∗ x ∂lborel) =
(
∫

x . (x / measure lborel {a .. b}) ∗ indicator {a .. b} x ∂lborel)
by (intro integral-cong) auto

also have (
∫

x . (x / measure lborel {a .. b}) ∗ indicator {a .. b} x ∂lborel) =
(a + b) / 2

proof (subst integral-FTC-Icc-real)
fix x
show DERIV (λx . x 2 / (2 ∗ measure lborel {a..b})) x :> x / measure lborel

{a..b}
using uniform-distributed-params[OF D]
by (auto intro!: derivative-eq-intros)

show isCont (λx . x / Sigma-Algebra.measure lborel {a..b}) x
using uniform-distributed-params[OF D]
by (auto intro!: isCont-divide)

have ∗: b2 / (2 ∗ measure lborel {a..b}) − a2 / (2 ∗ measure lborel {a..b}) =
(b∗b − a ∗ a) / (2 ∗ (b − a))
using 〈a < b〉

by (auto simp: measure-def power2-eq-square diff-divide-distrib[symmetric])
show b2 / (2 ∗ measure lborel {a..b}) − a2 / (2 ∗ measure lborel {a..b}) = (a

+ b) / 2
using 〈a < b〉

unfolding ∗ square-diff-square-factored by (auto simp: field-simps)
qed (insert 〈a < b〉, simp)
finally show (

∫
x . indicator {a .. b} x / measure lborel {a .. b} ∗ x ∂lborel) =

(a + b) / 2 .
qed (auto simp: measure-nonneg)

lemma (in prob-space) uniform-distributed-variance:
fixes a b :: real
assumes D : distributed M lborel X (λx . indicator {a .. b} x / measure lborel {a

.. b})
shows variance X = (b − a)2 / 12

proof (subst distributed-variance)
have [arith]: a < b using uniform-distributed-bounds[OF D] .
let ?µ = expectation X let ?D = λx . indicator {a..b} (x + ?µ) / measure lborel
{a..b}

have (
∫

x . x 2 ∗ (?D x) ∂lborel) = (
∫

x . x 2 ∗ (indicator {a − ?µ .. b − ?µ} x)
/ measure lborel {a .. b} ∂lborel)

by (intro integral-cong) (auto split : split-indicator)
also have . . . = (b − a)2 / 12

by (simp add : integral-power uniform-distributed-expectation[OF D])
(simp add : eval-nat-numeral field-simps)

finally show (
∫

x . x 2 ∗ ?D x ∂lborel) = (b − a)2 / 12 .
qed (auto intro: D simp: measure-nonneg)

THEORY “Distributions” 822

41.4 Normal distribution

definition normal-density :: real ⇒ real ⇒ real ⇒ real where
normal-density µ σ x = 1 / sqrt (2 ∗ pi ∗ σ2) ∗ exp (−(x − µ)2/ (2 ∗ σ2))

abbreviation std-normal-density :: real ⇒ real where
std-normal-density ≡ normal-density 0 1

lemma std-normal-density-def : std-normal-density x = (1 / sqrt (2 ∗ pi)) ∗ exp
(− x 2 / 2)

unfolding normal-density-def by simp

lemma normal-density-nonneg [simp]: 0 ≤ normal-density µ σ x
by (auto simp: normal-density-def)

lemma normal-density-pos: 0 < σ =⇒ 0 < normal-density µ σ x
by (auto simp: normal-density-def)

lemma borel-measurable-normal-density [measurable]: normal-density µ σ ∈ borel-measurable
borel

by (auto simp: normal-density-def [abs-def])

lemma gaussian-moment-0 :
has-bochner-integral lborel (λx . indicator {0 ..} x ∗R exp (− x 2)) (sqrt pi / 2)

proof −
let ?pI = λf . (

∫
+s. f (s::real) ∗ indicator {0 ..} s ∂lborel)

let ?gauss = λx . exp (− x 2)

let ?I = indicator {0<..} :: real ⇒ real
let ?ff = λx s. x ∗ exp (− x 2 ∗ (1 + s2)) :: real

have ∗: ?pI ?gauss = (
∫

+x . ?gauss x ∗ ?I x ∂lborel)
by (intro nn-integral-cong-AE AE-I [where N ={0}]) (auto split : split-indicator)

have ?pI ?gauss ∗ ?pI ?gauss = (
∫

+x .
∫

+s. ?gauss x ∗ ?gauss s ∗ ?I s ∗ ?I x
∂lborel ∂lborel)

by (auto simp: nn-integral-cmult [symmetric] nn-integral-multc[symmetric] ∗
ennreal-mult [symmetric]

intro!: nn-integral-cong split : split-indicator)
also have . . . = (

∫
+x .

∫
+s. ?ff x s ∗ ?I s ∗ ?I x ∂lborel ∂lborel)

proof (rule nn-integral-cong , cases)
fix x :: real assume x 6= 0
then show (

∫
+s. ?gauss x ∗ ?gauss s ∗ ?I s ∗ ?I x ∂lborel) = (

∫
+s. ?ff x s

∗ ?I s ∗ ?I x ∂lborel)
by (subst nn-integral-real-affine[where t=0 and c=x])
(auto simp: mult-exp-exp nn-integral-cmult [symmetric] field-simps zero-less-mult-iff

ennreal-mult [symmetric]
intro!: nn-integral-cong split : split-indicator)

qed simp
also have ... =

∫
+s.

∫
+x . ?ff x s ∗ ?I s ∗ ?I x ∂lborel ∂lborel

THEORY “Distributions” 823

by (rule lborel-pair .Fubini ′[symmetric]) auto
also have ... = ?pI (λs. ?pI (λx . ?ff x s))

by (rule nn-integral-cong-AE)
(auto intro!: nn-integral-cong-AE AE-I [where N ={0}] split : split-indicator-asm)

also have . . . = ?pI (λs. ennreal (1 / (2 ∗ (1 + s2))))
proof (intro nn-integral-cong ennreal-mult-right-cong)

fix s :: real show ?pI (λx . ?ff x s) = ennreal (1 / (2 ∗ (1 + s2)))
proof (subst nn-integral-FTC-atLeast)
have ((λa. − (exp (− (a2 ∗ (1 + s2))) / (2 + 2 ∗ s2))) −−−→ (− (0 / (2 +

2 ∗ s2)))) at-top
apply (intro tendsto-intros filterlim-compose[OF exp-at-bot] filterlim-compose[OF

filterlim-uminus-at-bot-at-top])
apply (subst mult .commute)
apply (auto intro!: filterlim-tendsto-pos-mult-at-top

filterlim-at-top-mult-at-top[OF filterlim-ident filterlim-ident]
simp: add-pos-nonneg power2-eq-square add-nonneg-eq-0-iff)

done
then show ((λa. − (exp (− a2 − s2 ∗ a2) / (2 + 2 ∗ s2))) −−−→ 0) at-top

by (simp add : field-simps)
qed (auto intro!: derivative-eq-intros simp: field-simps add-nonneg-eq-0-iff)

qed
also have ... = ennreal (pi / 4)
proof (subst nn-integral-FTC-atLeast)

show ((λa. arctan a / 2) −−−→ (pi / 2) / 2) at-top
by (intro tendsto-intros) (simp-all add : tendsto-arctan-at-top)

qed (auto intro!: derivative-eq-intros simp: add-nonneg-eq-0-iff field-simps power2-eq-square)
finally have ?pI ?gaussˆ2 = pi / 4

by (simp add : power2-eq-square)
then have ?pI ?gauss = sqrt (pi / 4)

using power-eq-iff-eq-base[of 2 enn2real (?pI ?gauss) sqrt (pi / 4)]
by (cases ?pI ?gauss) (auto simp: power2-eq-square ennreal-mult [symmetric]

ennreal-top-mult)
also have ?pI ?gauss = (

∫
+x . indicator {0 ..} x ∗R exp (− x 2) ∂lborel)

by (intro nn-integral-cong) (simp split : split-indicator)
also have sqrt (pi / 4) = sqrt pi / 2

by (simp add : real-sqrt-divide)
finally show ?thesis

by (rule has-bochner-integral-nn-integral [rotated 3])
auto

qed

lemma gaussian-moment-1 :
has-bochner-integral lborel (λx ::real . indicator {0 ..} x ∗R (exp (− x 2) ∗ x)) (1 /

2)
proof −

have (
∫

+x . indicator {0 ..} x ∗R (exp (− x 2) ∗ x) ∂lborel) =
(
∫

+x . ennreal (x ∗ exp (− x 2)) ∗ indicator {0 ..} x ∂lborel)
by (intro nn-integral-cong)

(auto simp: ac-simps split : split-indicator)

THEORY “Distributions” 824

also have . . . = ennreal (0 − (− exp (− 0 2) / 2))
proof (rule nn-integral-FTC-atLeast)

have ((λx ::real . − exp (− x 2) / 2) −−−→ − 0 / 2) at-top
by (intro tendsto-divide tendsto-minus filterlim-compose[OF exp-at-bot]

filterlim-compose[OF filterlim-uminus-at-bot-at-top]
filterlim-pow-at-top filterlim-ident)

auto
then show ((λa::real . − exp (− a2) / 2) −−−→ 0) at-top

by simp
qed (auto intro!: derivative-eq-intros)
also have . . . = ennreal (1 / 2)

by simp
finally show ?thesis

by (rule has-bochner-integral-nn-integral [rotated 3])
(auto split : split-indicator)

qed

lemma
fixes k :: nat
shows gaussian-moment-even-pos:

has-bochner-integral lborel (λx ::real . indicator {0 ..} x ∗R (exp (−x 2)∗xˆ(2 ∗
k)))

((sqrt pi / 2) ∗ (fact (2 ∗ k) / (2 ˆ (2 ∗ k) ∗ fact k)))
(is ?even)

and gaussian-moment-odd-pos:
has-bochner-integral lborel (λx ::real . indicator {0 ..} x ∗R (exp (−x 2)∗xˆ(2 ∗

k + 1))) (fact k / 2)
(is ?odd)

proof −
let ?M = λk x . exp (− x 2) ∗ xˆk :: real

{ fix k I assume Mk : has-bochner-integral lborel (λx . indicator {0 ..} x ∗R ?M
k x) I

have 2 6= (0 ::real)
by linarith

let ?f = λb.
∫

x . indicator {0 ..} x ∗R ?M (k + 2) x ∗ indicator {..b} x ∂lborel
have ((λb. (k + 1) / 2 ∗ (

∫
x . indicator {..b} x ∗R (indicator {0 ..} x ∗R ?M

k x) ∂lborel) − ?M (k + 1) b / 2) −−−→
(k + 1) / 2 ∗ (

∫
x . indicator {0 ..} x ∗R ?M k x ∂lborel) − 0 / 2) at-top

(is ?tendsto)
proof (intro tendsto-intros 〈2 6= 0 〉 tendsto-integral-at-top sets-lborel Mk [THEN

integrable.intros])
show (?M (k + 1) −−−→ 0) at-top
proof cases

assume even k
have ((λx . ((x 2)ˆ(k div 2 + 1) / exp (x 2)) ∗ (1 / x) :: real) −−−→ 0 ∗ 0)

at-top
by (intro tendsto-intros tendsto-divide-0 [OF tendsto-const] filterlim-compose[OF

tendsto-power-div-exp-0]

THEORY “Distributions” 825

filterlim-at-top-imp-at-infinity filterlim-ident filterlim-pow-at-top
filterlim-ident)

auto
also have (λx . ((x 2)ˆ(k div 2 + 1) / exp (x 2)) ∗ (1 / x) :: real) = ?M (k

+ 1)
using 〈even k 〉 by (auto simp: fun-eq-iff exp-minus field-simps power2-eq-square

power-mult elim: evenE)
finally show ?thesis by simp

next
assume odd k
have ((λx . ((x 2)ˆ((k − 1) div 2 + 1) / exp (x 2)) :: real) −−−→ 0) at-top
by (intro filterlim-compose[OF tendsto-power-div-exp-0] filterlim-at-top-imp-at-infinity

filterlim-ident filterlim-pow-at-top)
auto

also have (λx . ((x 2)ˆ((k − 1) div 2 + 1) / exp (x 2)) :: real) = ?M (k +
1)

using 〈odd k 〉 by (auto simp: fun-eq-iff exp-minus field-simps power2-eq-square
power-mult elim: oddE)

finally show ?thesis by simp
qed

qed
also have ?tendsto ←→ ((?f −−−→ (k + 1) / 2 ∗ (

∫
x . indicator {0 ..} x ∗R

?M k x ∂lborel) − 0 / 2) at-top)
proof (intro filterlim-cong refl eventually-at-top-linorder [THEN iffD2] exI [of -

0] allI impI)
fix b :: real assume b: 0 ≤ b
have Suc k ∗ (

∫
x . indicator {0 ..b} x ∗R ?M k x ∂lborel) = (

∫
x . indicator

{0 ..b} x ∗R (exp (− x 2) ∗ ((Suc k) ∗ x ˆ k)) ∂lborel)
unfolding integral-mult-right-zero[symmetric] by (intro integral-cong) auto

also have . . . = exp (− b2) ∗ b ˆ (Suc k) − exp (− 0 2) ∗ 0 ˆ (Suc k) −
(
∫

x . indicator {0 ..b} x ∗R (− 2 ∗ x ∗ exp (− x 2) ∗ x ˆ (Suc k)) ∂lborel)
by (rule integral-by-parts ′)

(auto intro!: derivative-eq-intros b
simp: diff-Suc of-nat-Suc field-simps split : nat .split)

also have (
∫

x . indicator {0 ..b} x ∗R (− 2 ∗ x ∗ exp (− x 2) ∗ x ˆ (Suc k))
∂lborel) =

(
∫

x . indicator {0 ..b} x ∗R (− 2 ∗ (exp (− x 2) ∗ x ˆ (k + 2))) ∂lborel)
by (intro integral-cong) auto

finally have Suc k ∗ (
∫

x . indicator {0 ..b} x ∗R ?M k x ∂lborel) =
exp (− b2) ∗ b ˆ (Suc k) + 2 ∗ (

∫
x . indicator {0 ..b} x ∗R ?M (k + 2) x

∂lborel)
by (simp del : real-scaleR-def integral-mult-right add : integral-mult-right [symmetric])
then show (k + 1) / 2 ∗ (

∫
x . indicator {..b} x ∗R (indicator {0 ..} x ∗R

?M k x)∂lborel) − exp (− b2) ∗ b ˆ (k + 1) / 2 = ?f b
by (simp add : field-simps atLeastAtMost-def indicator-inter-arith)

qed
finally have int-M-at-top: ((?f −−−→ (k + 1) / 2 ∗ (

∫
x . indicator {0 ..} x ∗R

?M k x ∂lborel)) at-top)
by simp

THEORY “Distributions” 826

have has-bochner-integral lborel (λx . indicator {0 ..} x ∗R ?M (k + 2) x) ((k
+ 1) / 2 ∗ I)

proof (rule has-bochner-integral-monotone-convergence-at-top)
fix y :: real
have ∗: (λx . indicator {0 ..} x ∗R ?M (k + 2) x ∗ indicator {..y} x ::real) =

(λx . indicator {0 ..y} x ∗R ?M (k + 2) x)
by rule (simp split : split-indicator)

show integrable lborel (λx . indicator {0 ..} x ∗R (?M (k + 2) x) ∗ indicator
{..y} x ::real)

unfolding ∗ by (rule borel-integrable-compact) (auto intro!: continuous-intros)
show ((?f −−−→ (k + 1) / 2 ∗ I) at-top)

using int-M-at-top has-bochner-integral-integral-eq [OF Mk] by simp
qed (auto split : split-indicator) }

note step = this

show ?even
proof (induct k)

case (Suc k)
note step[OF this]

also have (real (2 ∗ k + 1) / 2 ∗ (sqrt pi / 2 ∗ ((fact (2 ∗ k)) / ((2 ::real)ˆ(2∗k)
∗ fact k)))) =

sqrt pi / 2 ∗ ((fact (2 ∗ Suc k)) / ((2 ::real)ˆ(2 ∗ Suc k) ∗ fact (Suc k)))
apply (simp add : field-simps del : fact-Suc)
apply (simp add : of-nat-mult field-simps)
done

finally show ?case
by simp

qed (insert gaussian-moment-0 , simp)

show ?odd
proof (induct k)

case (Suc k)
note step[OF this]
also have (real (2 ∗ k + 1 + 1) / (2 ::real) ∗ ((fact k) / 2)) = (fact (Suc k))

/ 2
by (simp add : field-simps of-nat-Suc divide-simps del : fact-Suc) (simp add :

field-simps)
finally show ?case

by simp
qed (insert gaussian-moment-1 , simp)

qed

context
fixes k :: nat and µ σ :: real assumes [arith]: 0 < σ

begin

lemma normal-moment-even:
has-bochner-integral lborel (λx . normal-density µ σ x ∗ (x − µ) ˆ (2 ∗ k)) (fact

THEORY “Distributions” 827

(2 ∗ k) / ((2 / σ2)ˆk ∗ fact k))
proof −

have eq :
∧

x ::real . x 2ˆk = (xˆk)2

by (simp add : power-mult [symmetric] ac-simps)

have has-bochner-integral lborel (λx . exp (−x 2)∗xˆ(2 ∗ k))
(sqrt pi ∗ (fact (2 ∗ k) / (2 ˆ (2 ∗ k) ∗ fact k)))

using has-bochner-integral-even-function[OF gaussian-moment-even-pos[where
k=k]] by simp

then have has-bochner-integral lborel (λx . (exp (−x 2)∗xˆ(2 ∗ k)) ∗ ((2∗σ2)ˆk /
sqrt (2 ∗ pi ∗ σ2)))

((sqrt pi ∗ (fact (2 ∗ k) / (2 ˆ (2 ∗ k) ∗ fact k))) ∗ ((2∗σ2)ˆk / sqrt (2 ∗ pi
∗ σ2)))

by (rule has-bochner-integral-mult-left)
also have (λx . (exp (−x 2)∗xˆ(2 ∗ k)) ∗ ((2∗σ2)ˆk / sqrt (2 ∗ pi ∗ σ2))) =

(λx . exp (− ((sqrt 2 ∗ σ) ∗ x)2 / (2∗σ2)) ∗ ((sqrt 2 ∗ σ) ∗ x) ˆ (2 ∗ k) / sqrt
(2 ∗ pi ∗ σ2))

by (auto simp: fun-eq-iff field-simps real-sqrt-power [symmetric] real-sqrt-mult
real-sqrt-divide power-mult eq)

also have ((sqrt pi ∗ (fact (2 ∗ k) / (2 ˆ (2 ∗ k) ∗ fact k))) ∗ ((2∗σ2)ˆk / sqrt
(2 ∗ pi ∗ σ2))) =

(inverse (sqrt 2 ∗ σ) ∗ ((fact (2 ∗ k))) / ((2/σ2) ˆ k ∗ (fact k)))
by (auto simp: fun-eq-iff power-mult field-simps real-sqrt-power [symmetric]

real-sqrt-mult
power2-eq-square)

finally show ?thesis
unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ]) simp-all
qed

lemma normal-moment-abs-odd :
has-bochner-integral lborel (λx . normal-density µ σ x ∗ |x − µ|ˆ(2 ∗ k + 1))

(2ˆk ∗ σˆ(2 ∗ k + 1) ∗ fact k ∗ sqrt (2 / pi))
proof −
have has-bochner-integral lborel (λx ::real . indicator {0 ..} x ∗R (exp (−x 2)∗|x |ˆ(2
∗ k + 1))) (fact k / 2)

by (rule has-bochner-integral-cong [THEN iffD1 , OF - - - gaussian-moment-odd-pos[of
k]]) auto

from has-bochner-integral-even-function[OF this]
have has-bochner-integral lborel (λx ::real . exp (−x 2)∗|x |ˆ(2 ∗ k + 1)) (fact k)

by simp
then have has-bochner-integral lborel (λx . (exp (−x 2)∗|x |ˆ(2 ∗ k + 1)) ∗ (2ˆk
∗ σˆ(2 ∗ k + 1) / sqrt (pi ∗ σ2)))

(fact k ∗ (2ˆk ∗ σˆ(2 ∗ k + 1) / sqrt (pi ∗ σ2)))
by (rule has-bochner-integral-mult-left)

also have (λx . (exp (−x 2)∗|x |ˆ(2 ∗ k + 1)) ∗ (2ˆk ∗ σˆ(2 ∗ k + 1) / sqrt (pi
∗ σ2))) =

(λx . exp (− (((sqrt 2 ∗ σ) ∗ x)2 / (2 ∗ σ2))) ∗ |sqrt 2 ∗ σ ∗ x | ˆ (2 ∗ k + 1)

THEORY “Distributions” 828

/ sqrt (2 ∗ pi ∗ σ2))
by (simp add : field-simps abs-mult real-sqrt-power [symmetric] power-mult real-sqrt-mult)
also have (fact k ∗ (2ˆk ∗ σˆ(2 ∗ k + 1) / sqrt (pi ∗ σ2))) =

(inverse (sqrt 2) ∗ inverse σ ∗ (2 ˆ k ∗ (σ ∗ σ ˆ (2 ∗ k)) ∗ (fact k) ∗ sqrt (2
/ pi)))

by (auto simp: fun-eq-iff power-mult field-simps real-sqrt-power [symmetric]
real-sqrt-divide

real-sqrt-mult)
finally show ?thesis

unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ])
simp-all

qed

lemma normal-moment-odd :
has-bochner-integral lborel (λx . normal-density µ σ x ∗ (x − µ)ˆ(2 ∗ k + 1)) 0

proof −
have has-bochner-integral lborel (λx . exp (− x 2) ∗ xˆ(2 ∗ k + 1)::real) 0

using gaussian-moment-odd-pos by (rule has-bochner-integral-odd-function)
simp
then have has-bochner-integral lborel (λx . (exp (−x 2)∗xˆ(2 ∗ k + 1)) ∗ (2ˆk∗σˆ(2∗k)/sqrt

pi))
(0 ∗ (2ˆk∗σˆ(2∗k)/sqrt pi))

by (rule has-bochner-integral-mult-left)
also have (λx . (exp (−x 2)∗xˆ(2 ∗ k + 1)) ∗ (2ˆk∗σˆ(2∗k)/sqrt pi)) =

(λx . exp (− ((sqrt 2 ∗ σ ∗ x)2 / (2 ∗ σ2))) ∗
(sqrt 2 ∗ σ ∗ x ∗ (sqrt 2 ∗ σ ∗ x) ˆ (2 ∗ k)) /
sqrt (2 ∗ pi ∗ σ2))

unfolding real-sqrt-mult
by (simp add : field-simps abs-mult real-sqrt-power [symmetric] power-mult fun-eq-iff)
finally show ?thesis

unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ]) simp-all
qed

lemma integral-normal-moment-even:
integralL lborel (λx . normal-density µ σ x ∗ (x − µ)ˆ(2 ∗ k)) = fact (2 ∗ k) /

((2 / σ2)ˆk ∗ fact k)
using normal-moment-even by (rule has-bochner-integral-integral-eq)

lemma integral-normal-moment-abs-odd :
integralL lborel (λx . normal-density µ σ x ∗ |x − µ|ˆ(2 ∗ k + 1)) = 2 ˆ k ∗ σ

ˆ (2 ∗ k + 1) ∗ fact k ∗ sqrt (2 / pi)
using normal-moment-abs-odd by (rule has-bochner-integral-integral-eq)

lemma integral-normal-moment-odd :
integralL lborel (λx . normal-density µ σ x ∗ (x − µ)ˆ(2 ∗ k + 1)) = 0

THEORY “Distributions” 829

using normal-moment-odd by (rule has-bochner-integral-integral-eq)

end

context
fixes σ :: real
assumes σ-pos[arith]: 0 < σ

begin

lemma normal-moment-nz-1 : has-bochner-integral lborel (λx . normal-density µ σ
x ∗ x) µ
proof −

note normal-moment-even[OF σ-pos, of µ 0]
note normal-moment-odd [OF σ-pos, of µ 0] has-bochner-integral-mult-left [of µ,

OF this]
note has-bochner-integral-add [OF this]
then show ?thesis

by (simp add : power2-eq-square field-simps)
qed

lemma integral-normal-moment-nz-1 :
integralL lborel (λx . normal-density µ σ x ∗ x) = µ
using normal-moment-nz-1 by (rule has-bochner-integral-integral-eq)

lemma integrable-normal-moment-nz-1 : integrable lborel (λx . normal-density µ σ
x ∗ x)

using normal-moment-nz-1 by rule

lemma integrable-normal-moment : integrable lborel (λx . normal-density µ σ x ∗
(x − µ)ˆk)
proof cases

assume even k then show ?thesis
using integrable.intros[OF normal-moment-even] by (auto elim: evenE)

next
assume odd k then show ?thesis

using integrable.intros[OF normal-moment-odd] by (auto elim: oddE)
qed

lemma integrable-normal-moment-abs: integrable lborel (λx . normal-density µ σ x
∗ |x − µ|ˆk)
proof cases

assume even k then show ?thesis
using integrable.intros[OF normal-moment-even] by (auto simp add : power-even-abs

elim: evenE)
next

assume odd k then show ?thesis
using integrable.intros[OF normal-moment-abs-odd] by (auto elim: oddE)

qed

THEORY “Distributions” 830

lemma integrable-normal-density [simp, intro]: integrable lborel (normal-density µ
σ)

using integrable-normal-moment [of µ 0] by simp

lemma integral-normal-density [simp]: (
∫

x . normal-density µ σ x ∂lborel) = 1
using integral-normal-moment-even[of σ µ 0] by simp

lemma prob-space-normal-density :
prob-space (density lborel (normal-density µ σ))
proof qed (simp add : emeasure-density nn-integral-eq-integral normal-density-nonneg)

end

context
fixes k :: nat

begin

lemma std-normal-moment-even:
has-bochner-integral lborel (λx . std-normal-density x ∗ x ˆ (2 ∗ k)) (fact (2 ∗ k)

/ (2ˆk ∗ fact k))
using normal-moment-even[of 1 0 k] by simp

lemma std-normal-moment-abs-odd :
has-bochner-integral lborel (λx . std-normal-density x ∗ |x |ˆ(2 ∗ k + 1)) (sqrt

(2/pi) ∗ 2ˆk ∗ fact k)
using normal-moment-abs-odd [of 1 0 k] by (simp add : ac-simps)

lemma std-normal-moment-odd :
has-bochner-integral lborel (λx . std-normal-density x ∗ xˆ(2 ∗ k + 1)) 0
using normal-moment-odd [of 1 0 k] by simp

lemma integral-std-normal-moment-even:
integralL lborel (λx . std-normal-density x ∗ xˆ(2∗k)) = fact (2 ∗ k) / (2ˆk ∗

fact k)
using std-normal-moment-even by (rule has-bochner-integral-integral-eq)

lemma integral-std-normal-moment-abs-odd :
integralL lborel (λx . std-normal-density x ∗ |x |ˆ(2 ∗ k + 1)) = sqrt (2 / pi) ∗

2ˆk ∗ fact k
using std-normal-moment-abs-odd by (rule has-bochner-integral-integral-eq)

lemma integral-std-normal-moment-odd :
integralL lborel (λx . std-normal-density x ∗ xˆ(2 ∗ k + 1)) = 0
using std-normal-moment-odd by (rule has-bochner-integral-integral-eq)

lemma integrable-std-normal-moment-abs: integrable lborel (λx . std-normal-density

THEORY “Distributions” 831

x ∗ |x |ˆk)
using integrable-normal-moment-abs[of 1 0 k] by simp

lemma integrable-std-normal-moment : integrable lborel (λx . std-normal-density x
∗ xˆk)

using integrable-normal-moment [of 1 0 k] by simp

end

lemma (in prob-space) normal-density-affine:
assumes X : distributed M lborel X (normal-density µ σ)
assumes [simp, arith]: 0 < σ α 6= 0
shows distributed M lborel (λx . β + α ∗ X x) (normal-density (β + α ∗ µ) (|α|
∗ σ))
proof −

have eq :
∧

x . |α| ∗ normal-density (β + α ∗ µ) (|α| ∗ σ) (x ∗ α + β) =
normal-density µ σ x
by (simp add : normal-density-def real-sqrt-mult field-simps)

(simp add : power2-eq-square field-simps)
show ?thesis

by (rule distributed-affineI [OF - 〈α 6= 0 〉, where t=β])
(simp-all add : eq X ennreal-mult ′[symmetric])

qed

lemma (in prob-space) normal-standard-normal-convert :
assumes pos-var [simp, arith]: 0 < σ
shows distributed M lborel X (normal-density µ σ) = distributed M lborel (λx .

(X x − µ) / σ) std-normal-density
proof auto

assume distributed M lborel X (λx . ennreal (normal-density µ σ x))
then have distributed M lborel (λx . −µ / σ + (1/σ) ∗ X x) (λx . ennreal

(normal-density (−µ / σ + (1/σ)∗ µ) (|1/σ| ∗ σ) x))
by(rule normal-density-affine) auto

then show distributed M lborel (λx . (X x − µ) / σ) (λx . ennreal (std-normal-density
x))

by (simp add : diff-divide-distrib[symmetric] field-simps)
next
assume ∗: distributed M lborel (λx . (X x − µ) / σ) (λx . ennreal (std-normal-density

x))
have distributed M lborel (λx . µ + σ ∗ ((X x − µ) / σ)) (λx . ennreal (normal-density
µ |σ| x))

using normal-density-affine[OF ∗, of σ µ] by simp
then show distributed M lborel X (λx . ennreal (normal-density µ σ x)) by simp

qed

lemma conv-normal-density-zero-mean:
assumes [simp, arith]: 0 < σ 0 < τ
shows (λx .

∫
+y . ennreal (normal-density 0 σ (x − y) ∗ normal-density 0 τ y)

THEORY “Distributions” 832

∂lborel) =
normal-density 0 (sqrt (σ2 + τ2)) (is ?LHS = ?RHS)

proof −
def σ ′ ≡ σ2 and τ ′ ≡ τ2

then have [simp, arith]: 0 < σ ′ 0 < τ ′

by simp-all
let ?σ = sqrt ((σ ′ ∗ τ ′) / (σ ′ + τ ′))
have sqrt : (sqrt (2 ∗ pi ∗ (σ ′ + τ ′)) ∗ sqrt (2 ∗ pi ∗ (σ ′ ∗ τ ′) / (σ ′ + τ ′))) =

(sqrt (2 ∗ pi ∗ σ ′) ∗ sqrt (2 ∗ pi ∗ τ ′))
by (subst power-eq-iff-eq-base[symmetric, where n=2])

(simp-all add : real-sqrt-mult [symmetric] power2-eq-square)
have ?LHS =

(λx .
∫

+y . ennreal((normal-density 0 (sqrt (σ ′ + τ ′)) x) ∗ normal-density (τ ′

∗ x / (σ ′ + τ ′)) ?σ y) ∂lborel)
apply (intro ext nn-integral-cong)
apply (simp add : normal-density-def σ ′-def [symmetric] τ ′-def [symmetric] sqrt

mult-exp-exp)
apply (simp add : divide-simps power2-eq-square)
apply (simp add : field-simps)
done

also have ... =
(λx . (normal-density 0 (sqrt (σ2 + τ2)) x) ∗

∫
+y . ennreal(normal-density

(τ2∗ x / (σ2 + τ2)) ?σ y) ∂lborel)
by (subst nn-integral-cmult [symmetric])

(auto simp: σ ′-def τ ′-def normal-density-def ennreal-mult ′[symmetric])

also have ... = (λx . (normal-density 0 (sqrt (σ2 + τ2)) x))
by (subst nn-integral-eq-integral) (auto simp: normal-density-nonneg)

finally show ?thesis by fast
qed

lemma conv-std-normal-density :
(λx .

∫
+y . ennreal (std-normal-density (x − y) ∗ std-normal-density y) ∂lborel)

=
(normal-density 0 (sqrt 2))
by (subst conv-normal-density-zero-mean) simp-all

lemma (in prob-space) sum-indep-normal :
assumes indep: indep-var borel X borel Y
assumes pos-var [arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx . X x + Y x) (normal-density (µ + ν) (sqrt (σ2

+ τ2)))
proof −

have ind [simp]: indep-var borel (λx . − µ + X x) borel (λx . − ν + Y x)
proof −

THEORY “Distributions” 833

have indep-var borel ((λx . −µ + x) o X) borel ((λx . − ν + x) o Y)
by (auto intro!: indep-var-compose assms)

then show ?thesis by (simp add : o-def)
qed

have distributed M lborel (λx . −µ + 1 ∗ X x) (normal-density (− µ + 1 ∗ µ)
(|1 | ∗ σ))

by(rule normal-density-affine[OF normalX pos-var(1), of 1 −µ]) simp
then have 1 [simp]: distributed M lborel (λx . − µ + X x) (normal-density 0 σ)

by simp

have distributed M lborel (λx . −ν + 1 ∗ Y x) (normal-density (− ν + 1 ∗ ν)
(|1 | ∗ τ))

by(rule normal-density-affine[OF normalY pos-var(2), of 1 −ν]) simp
then have 2 [simp]: distributed M lborel (λx . − ν + Y x) (normal-density 0 τ)

by simp

have ∗: distributed M lborel (λx . (− µ + X x) + (− ν + Y x)) (λx . ennreal
(normal-density 0 (sqrt (σ2 + τ2)) x))

using distributed-convolution[OF ind 1 2] conv-normal-density-zero-mean[OF
pos-var]

by (simp add : ennreal-mult ′[symmetric] normal-density-nonneg)

have distributed M lborel (λx . µ + ν + 1 ∗ (− µ + X x + (− ν + Y x)))
(λx . ennreal (normal-density (µ + ν + 1 ∗ 0) (|1 | ∗ sqrt (σ2 + τ2)) x))

by (rule normal-density-affine[OF ∗, of 1 µ + ν]) (auto simp: add-pos-pos)

then show ?thesis by auto
qed

lemma (in prob-space) diff-indep-normal :
assumes indep[simp]: indep-var borel X borel Y
assumes [simp, arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx . X x − Y x) (normal-density (µ − ν) (sqrt (σ2

+ τ2)))
proof −

have distributed M lborel (λx . 0 + − 1 ∗ Y x) (λx . ennreal (normal-density (0
+ − 1 ∗ ν) (|− 1 | ∗ τ) x))

by(rule normal-density-affine, auto)
then have [simp]:distributed M lborel (λx . − Y x) (λx . ennreal (normal-density

(− ν) τ x)) by simp

have distributed M lborel (λx . X x + (− Y x)) (normal-density (µ + − ν) (sqrt
(σ2 + τ2)))

apply (rule sum-indep-normal)
apply (rule indep-var-compose[unfolded comp-def , of borel - borel - λx . x - λx .

− x])

THEORY “Distributions” 834

apply simp-all
done

then show ?thesis by simp
qed

lemma (in prob-space) setsum-indep-normal :
assumes finite I I 6= {} indep-vars (λi . borel) X I
assumes

∧
i . i ∈ I =⇒ 0 < σ i

assumes normal :
∧

i . i ∈ I =⇒ distributed M lborel (X i) (normal-density (µ i)
(σ i))
shows distributed M lborel (λx .

∑
i∈I . X i x) (normal-density (

∑
i∈I . µ i) (sqrt

(
∑

i∈I . (σ i)2)))
using assms

proof (induct I rule: finite-ne-induct)
case (singleton i) then show ?case by (simp add : abs-of-pos)

next
case (insert i I)

then have 1 : distributed M lborel (λx . (X i x) + (
∑

i∈I . X i x))
(normal-density (µ i + setsum µ I) (sqrt ((σ i)2 + (sqrt (

∑
i∈I .

(σ i)2))2)))
apply (intro sum-indep-normal indep-vars-setsum insert real-sqrt-gt-zero)
apply (auto intro: indep-vars-subset intro!: setsum-pos)
apply fastforce
done

have 2 : (λx . (X i x)+ (
∑

i∈I . X i x)) = (λx . (
∑

j∈insert i I . X j x))
µ i + setsum µ I = setsum µ (insert i I)

using insert by auto

have 3 : (sqrt ((σ i)2 + (sqrt (
∑

i∈I . (σ i)2))2)) = (sqrt (
∑

i∈insert i I . (σ
i)2))

using insert by (simp add : setsum-nonneg)

show ?case using 1 2 3 by simp
qed

lemma (in prob-space) standard-normal-distributed-expectation:
assumes D : distributed M lborel X std-normal-density
shows expectation X = 0
using integral-std-normal-moment-odd [of 0]

distributed-integral [OF D , of λx . x , symmetric]
by (auto simp:)

lemma (in prob-space) normal-distributed-expectation:
assumes σ[arith]: 0 < σ
assumes D : distributed M lborel X (normal-density µ σ)
shows expectation X = µ
using integral-normal-moment-nz-1 [OF σ, of µ] distributed-integral [OF D , of

λx . x , symmetric]
by (auto simp: field-simps)

THEORY “Characteristic-Functions” 835

lemma (in prob-space) normal-distributed-variance:
fixes a b :: real
assumes [simp, arith]: 0 < σ
assumes D : distributed M lborel X (normal-density µ σ)
shows variance X = σ2

using integral-normal-moment-even[of σ µ 1]
by (subst distributed-integral [OF D , symmetric])

(simp-all add : eval-nat-numeral normal-distributed-expectation[OF assms])

lemma (in prob-space) standard-normal-distributed-variance:
distributed M lborel X std-normal-density =⇒ variance X = 1
using normal-distributed-variance[of 1 X 0] by simp

lemma (in information-space) entropy-normal-density :
assumes [arith]: 0 < σ
assumes D : distributed M lborel X (normal-density µ σ)
shows entropy b lborel X = log b (2 ∗ pi ∗ exp 1 ∗ σ2) / 2

proof −
have entropy b lborel X = − (

∫
x . normal-density µ σ x ∗ log b (normal-density

µ σ x) ∂lborel)
using D by (rule entropy-distr) simp

also have . . . = − (
∫

x . normal-density µ σ x ∗ (− ln (2 ∗ pi ∗ σ2) − (x −
µ)2 / σ2) / (2 ∗ ln b) ∂lborel)

by (intro arg-cong [where f =uminus] integral-cong)
(auto simp: normal-density-def field-simps ln-mult log-def ln-div ln-sqrt)

also have . . . = − (
∫

x . − (normal-density µ σ x ∗ (ln (2 ∗ pi ∗ σ2)) +
(normal-density µ σ x ∗ (x − µ)2) / σ2) / (2 ∗ ln b) ∂lborel)

by (intro arg-cong [where f =uminus] integral-cong) (auto simp: divide-simps
field-simps)
also have . . . = (

∫
x . normal-density µ σ x ∗ (ln (2 ∗ pi ∗ σ2)) + (normal-density

µ σ x ∗ (x − µ)2) / σ2 ∂lborel) / (2 ∗ ln b)
by (simp del : minus-add-distrib)

also have . . . = (ln (2 ∗ pi ∗ σ2) + 1) / (2 ∗ ln b)
using integral-normal-moment-even[of σ µ 1] by (simp add : integrable-normal-moment

fact-numeral)
also have . . . = log b (2 ∗ pi ∗ exp 1 ∗ σ2) / 2

by (simp add : log-def field-simps ln-mult)
finally show ?thesis .

qed

end

42 Characteristic Functions

theory Characteristic-Functions
imports Weak-Convergence Interval-Integral Independent-Family Distributions

begin

THEORY “Characteristic-Functions” 836

lemma mult-min-right : a ≥ 0 =⇒ (a :: real) ∗ min b c = min (a ∗ b) (a ∗ c)
by (metis min.absorb-iff2 min-def mult-left-mono)

lemma sequentially-even-odd :
assumes E : eventually (λn. P (2 ∗ n)) sequentially and O : eventually (λn. P

(2 ∗ n + 1)) sequentially
shows eventually P sequentially

proof −
from E obtain n-e where [intro]:

∧
n. n ≥ n-e =⇒ P (2 ∗ n)

by (auto simp: eventually-sequentially)
moreover
from O obtain n-o where [intro]:

∧
n. n ≥ n-o =⇒ P (Suc (2 ∗ n))

by (auto simp: eventually-sequentially)
show ?thesis

unfolding eventually-sequentially
proof (intro exI allI impI)

fix n assume max (2 ∗ n-e) (2 ∗ n-o + 1) ≤ n then show P n
by (cases even n) (auto elim!: evenE oddE)

qed
qed

lemma limseq-even-odd :
assumes (λn. f (2 ∗ n)) −−−−→ (l :: ′a :: topological-space)

and (λn. f (2 ∗ n + 1)) −−−−→ l
shows f −−−−→ l
using assms by (auto simp: filterlim-iff intro: sequentially-even-odd)

42.1 Application of the FTC: integrating eix

abbreviation iexp :: real ⇒ complex where
iexp ≡ (λx . exp (i ∗ complex-of-real x))

lemma isCont-iexp [simp]: isCont iexp x
by (intro continuous-intros)

lemma has-vector-derivative-iexp[derivative-intros]:
(iexp has-vector-derivative i ∗ iexp x) (at x within s)
by (auto intro!: derivative-eq-intros simp: Re-exp Im-exp has-vector-derivative-complex-iff)

lemma interval-integral-iexp:
fixes a b :: real
shows (CLBINT x=a..b. iexp x) = ii ∗ iexp a − ii ∗ iexp b
by (subst interval-integral-FTC-finite [where F = λx . −ii ∗ iexp x])

(auto intro!: derivative-eq-intros continuous-intros)

42.2 The Characteristic Function of a Real Measure.

definition
char :: real measure ⇒ real ⇒ complex

where

THEORY “Characteristic-Functions” 837

char M t = CLINT x |M . iexp (t ∗ x)

lemma (in real-distribution) char-zero: char M 0 = 1
unfolding char-def by (simp del : space-eq-univ add : prob-space)

lemma (in prob-space) integrable-iexp:
assumes f : f ∈ borel-measurable M

∧
x . Im (f x) = 0

shows integrable M (λx . exp (ii ∗ (f x)))
proof (intro integrable-const-bound [of - 1])

from f have
∧

x . of-real (Re (f x)) = f x
by (simp add : complex-eq-iff)

then show AE x in M . cmod (exp (i ∗ f x)) ≤ 1
using norm-exp-ii-times[of Re (f x) for x] by simp

qed (insert f , simp)

lemma (in real-distribution) cmod-char-le-1 : norm (char M t) ≤ 1
proof −

have norm (char M t) ≤ (
∫

x . norm (iexp (t ∗ x)) ∂M)
unfolding char-def by (intro integral-norm-bound integrable-iexp) auto

also have . . . ≤ 1
by (simp del : of-real-mult)

finally show ?thesis .
qed

lemma (in real-distribution) isCont-char : isCont (char M) t
unfolding continuous-at-sequentially

proof safe
fix X assume X : X −−−−→ t
show (char M ◦ X) −−−−→ char M t

unfolding comp-def char-def
by (rule integral-dominated-convergence[where w=λ-. 1]) (auto intro!: tendsto-intros

X)
qed

lemma (in real-distribution) char-measurable [measurable]: char M ∈ borel-measurable
borel
by (auto intro!: borel-measurable-continuous-on1 continuous-at-imp-continuous-on

isCont-char)

42.3 Independence

lemma (in prob-space) char-distr-sum:
fixes X1 X2 :: ′a ⇒ real and t :: real
assumes indep-var borel X1 borel X2
shows char (distr M borel (λω. X1 ω + X2 ω)) t =

char (distr M borel X1) t ∗ char (distr M borel X2) t
proof −
from assms have [measurable]: random-variable borel X1 by (elim indep-var-rv1)
from assms have [measurable]: random-variable borel X2 by (elim indep-var-rv2)

THEORY “Characteristic-Functions” 838

have char (distr M borel (λω. X1 ω + X2 ω)) t = (CLINT x |M . iexp (t ∗ (X1
x + X2 x)))

by (simp add : char-def integral-distr)
also have . . . = (CLINT x |M . iexp (t ∗ (X1 x)) ∗ iexp (t ∗ (X2 x)))

by (simp add : field-simps exp-add)
also have . . . = (CLINT x |M . iexp (t ∗ (X1 x))) ∗ (CLINT x |M . iexp (t ∗ (X2

x)))
by (intro indep-var-lebesgue-integral indep-var-compose[unfolded comp-def , OF

assms])
(auto intro!: integrable-iexp)

also have . . . = char (distr M borel X1) t ∗ char (distr M borel X2) t
by (simp add : char-def integral-distr)

finally show ?thesis .
qed

lemma (in prob-space) char-distr-setsum:
indep-vars (λi . borel) X A =⇒

char (distr M borel (λω.
∑

i∈A. X i ω)) t = (
∏

i∈A. char (distr M borel (X
i)) t)
proof (induct A rule: infinite-finite-induct)
case (insert x F) with indep-vars-subset [of λ-. borel X insert x F F] show ?case

by (auto simp add : char-distr-sum indep-vars-setsum)
qed (simp-all add : char-def integral-distr prob-space del : distr-const)

42.4 Approximations to eix

Proofs from Billingsley, page 343.

lemma CLBINT-I0c-power-mirror-iexp:
fixes x :: real and n :: nat
defines f s m ≡ complex-of-real ((x − s) ˆ m)
shows (CLBINT s=0 ..x . f s n ∗ iexp s) =

xˆSuc n / Suc n + (ii / Suc n) ∗ (CLBINT s=0 ..x . f s (Suc n) ∗ iexp s)
proof −

have 1 :
((λs. complex-of-real(−((x − s) ˆ (Suc n) / (Suc n))) ∗ iexp s)

has-vector-derivative complex-of-real((x − s)ˆn) ∗ iexp s + (ii ∗ iexp s) ∗
complex-of-real(−((x − s) ˆ (Suc n) / (Suc n))))

(at s within A) for s A
by (intro derivative-eq-intros) auto

let ?F = λs. complex-of-real(−((x − s) ˆ (Suc n) / (Suc n))) ∗ iexp s
have xˆ(Suc n) / (Suc n) = (CLBINT s=0 ..x . (f s n ∗ iexp s + (ii ∗ iexp s) ∗
−(f s (Suc n) / (Suc n)))) (is ?LHS = ?RHS)

proof −
have ?RHS = (CLBINT s=0 ..x . (f s n ∗ iexp s + (ii ∗ iexp s) ∗

complex-of-real(−((x − s) ˆ (Suc n) / (Suc n)))))
by (cases 0 ≤ x) (auto intro!: simp: f-def [abs-def])

also have ... = ?F x − ?F 0

THEORY “Characteristic-Functions” 839

unfolding zero-ereal-def using 1
by (intro interval-integral-FTC-finite)

(auto simp: f-def add-nonneg-eq-0-iff complex-eq-iff
intro!: continuous-at-imp-continuous-on continuous-intros)

finally show ?thesis
by auto

qed
show ?thesis
unfolding 〈?LHS = ?RHS 〉 f-def interval-lebesgue-integral-mult-right [symmetric]
by (subst interval-lebesgue-integral-add(2) [symmetric])

(auto intro!: interval-integrable-isCont continuous-intros simp: zero-ereal-def
complex-eq-iff)
qed

lemma iexp-eq1 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ˆ m)
shows iexp x =

(
∑

k ≤ n. (ii ∗ x)ˆk / (fact k)) + ((ii ˆ (Suc n)) / (fact n)) ∗ (CLBINT
s=0 ..x . (f s n) ∗ (iexp s)) (is ?P n)
proof (induction n)

show ?P 0
by (auto simp add : field-simps interval-integral-iexp f-def zero-ereal-def)

next
fix n assume ih: ?P n
have ∗∗:

∧
a b :: real . a = −b ←→ a + b = 0

by linarith
have ∗: of-nat n ∗ of-nat (fact n) 6= − (of-nat (fact n)::complex)

unfolding of-nat-mult [symmetric]
by (simp add : complex-eq-iff ∗∗ of-nat-add [symmetric] del : of-nat-mult of-nat-fact

of-nat-add)
show ?P (Suc n)

unfolding setsum-atMost-Suc ih f-def CLBINT-I0c-power-mirror-iexp[of - n]
by (simp add : divide-simps add-eq-0-iff ∗) (simp add : field-simps)

qed

lemma iexp-eq2 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ˆ m)
shows iexp x = (

∑
k≤Suc n. (ii∗x)ˆk/fact k) + iiˆSuc n/fact n ∗ (CLBINT

s=0 ..x . f s n∗(iexp s − 1))
proof −

have isCont-f : isCont (λs. f s n) x for n x
by (auto simp: f-def)

let ?F = λs. complex-of-real (−((x − s) ˆ (Suc n) / real (Suc n)))
have calc1 : (CLBINT s=0 ..x . f s n ∗ (iexp s − 1)) =

(CLBINT s=0 ..x . f s n ∗ iexp s) − (CLBINT s=0 ..x . f s n)
unfolding zero-ereal-def
by (subst interval-lebesgue-integral-diff (2) [symmetric])

THEORY “Characteristic-Functions” 840

(simp-all add : interval-integrable-isCont isCont-f field-simps)

have calc2 : (CLBINT s=0 ..x . f s n) = xˆSuc n / Suc n
unfolding zero-ereal-def

proof (subst interval-integral-FTC-finite [where a = 0 and b = x and f = λs.
f s n and F = ?F])

show (?F has-vector-derivative f y n) (at y within {min 0 x ..max 0 x}) for y
unfolding f-def
by (intro has-vector-derivative-of-real)
(auto intro!: derivative-eq-intros simp del : power-Suc simp add : add-nonneg-eq-0-iff)

qed (auto intro: continuous-at-imp-continuous-on isCont-f)

have calc3 : ii ˆ (Suc (Suc n)) / (fact (Suc n)) = (ii ˆ (Suc n) / (fact n)) ∗ (ii
/ (Suc n))

by (simp add : field-simps)

show ?thesis
unfolding iexp-eq1 [where n = Suc n and x=x] calc1 calc2 calc3 unfolding

f-def
by (subst CLBINT-I0c-power-mirror-iexp [where n = n]) auto

qed

lemma abs-LBINT-I0c-abs-power-diff :
|LBINT s=0 ..x . |(x − s)ˆn|| = |x ˆ (Suc n) / (Suc n)|

proof −
have |LBINT s=0 ..x . |(x − s)ˆn|| = |LBINT s=0 ..x . (x − s)ˆn|
proof cases

assume 0 ≤ x ∨ even n
then have (LBINT s=0 ..x . |(x − s)ˆn|) = LBINT s=0 ..x . (x − s)ˆn

by (auto simp add : zero-ereal-def power-even-abs power-abs min-absorb1
max-absorb2

intro!: interval-integral-cong)
then show ?thesis by simp

next
assume ¬ (0 ≤ x ∨ even n)
then have (LBINT s=0 ..x . |(x − s)ˆn|) = LBINT s=0 ..x . −((x − s)ˆn)

by (auto simp add : zero-ereal-def power-abs min-absorb1 max-absorb2
ereal-min[symmetric] ereal-max [symmetric] power-minus-odd [symmetric]

simp del : ereal-min ereal-max intro!: interval-integral-cong)
also have . . . = − (LBINT s=0 ..x . (x − s)ˆn)

by (subst interval-lebesgue-integral-uminus, rule refl)
finally show ?thesis by simp

qed
also have LBINT s=0 ..x . (x − s)ˆn = xˆSuc n / Suc n
proof −

let ?F = λt . − ((x − t)ˆ(Suc n) / Suc n)
have LBINT s=0 ..x . (x − s)ˆn = ?F x − ?F 0

unfolding zero-ereal-def
by (intro interval-integral-FTC-finite continuous-at-imp-continuous-on

THEORY “Characteristic-Functions” 841

has-field-derivative-iff-has-vector-derivative[THEN iffD1])
(auto simp del : power-Suc intro!: derivative-eq-intros simp add : add-nonneg-eq-0-iff)

also have . . . = x ˆ (Suc n) / (Suc n) by simp
finally show ?thesis .

qed
finally show ?thesis .

qed

lemma iexp-approx1 : cmod (iexp x − (
∑

k ≤ n. (ii ∗ x)ˆk / fact k)) ≤ |x |ˆ(Suc
n) / fact (Suc n)
proof −

have iexp x − (
∑

k ≤ n. (ii ∗ x)ˆk / fact k) =
((ii ˆ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x . (x − s)ˆn ∗ (iexp s)) (is ?t1

= ?t2)
by (subst iexp-eq1 [of - n], simp add : field-simps)

then have cmod (?t1) = cmod (?t2)
by simp

also have . . . = (1 / of-nat (fact n)) ∗ cmod (CLBINT s=0 ..x . (x − s)ˆn ∗
(iexp s))

by (simp add : norm-mult norm-divide norm-power)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |LBINT s=0 ..x . cmod ((x − s)ˆn ∗

(iexp s))|
by (intro mult-left-mono interval-integral-norm2)

(auto simp: zero-ereal-def intro: interval-integrable-isCont)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |LBINT s=0 ..x . |(x − s)ˆn||

by (simp add : norm-mult del : of-real-diff of-real-power)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |x ˆ (Suc n) / (Suc n)|

by (simp add : abs-LBINT-I0c-abs-power-diff)
also have 1 / real-of-nat (fact n::nat) ∗ |x ˆ Suc n / real (Suc n)| =
|x | ˆ Suc n / fact (Suc n)

by (simp add : abs-mult power-abs)
finally show ?thesis .

qed

lemma iexp-approx2 : cmod (iexp x − (
∑

k ≤ n. (ii ∗ x)ˆk / fact k)) ≤ 2 ∗ |x |ˆn
/ fact n
proof (induction n) — really cases

case (Suc n)
have ∗:

∧
a b. interval-lebesgue-integrable lborel a b f =⇒ interval-lebesgue-integrable

lborel a b g =⇒
|LBINT s=a..b. f s| ≤ |LBINT s=a..b. g s|

if f :
∧

s. 0 ≤ f s and g :
∧

s. f s ≤ g s for f g :: - ⇒ real
using order-trans[OF f g] f g unfolding interval-lebesgue-integral-def interval-lebesgue-integrable-def
by (auto simp: integral-nonneg-AE [OF AE-I2] intro!: integral-mono mult-mono)

have iexp x − (
∑

k ≤ Suc n. (ii ∗ x)ˆk / fact k) =
((ii ˆ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x . (x − s)ˆn ∗ (iexp s − 1)) (is

?t1 = ?t2)
unfolding iexp-eq2 [of x n] by (simp add : field-simps)

THEORY “Characteristic-Functions” 842

then have cmod (?t1) = cmod (?t2)
by simp

also have . . . = (1 / (fact n)) ∗ cmod (CLBINT s=0 ..x . (x − s)ˆn ∗ (iexp s
− 1))

by (simp add : norm-mult norm-divide norm-power)
also have . . . ≤ (1 / (fact n)) ∗ |LBINT s=0 ..x . cmod ((x − s)ˆn ∗ (iexp s −

1))|
by (intro mult-left-mono interval-integral-norm2)

(auto intro!: interval-integrable-isCont simp: zero-ereal-def)
also have . . . = (1 / (fact n)) ∗ |LBINT s=0 ..x . abs ((x − s)ˆn) ∗ cmod((iexp

s − 1))|
by (simp add : norm-mult del : of-real-diff of-real-power)

also have . . . ≤ (1 / (fact n)) ∗ |LBINT s=0 ..x . abs ((x − s)ˆn) ∗ 2 |
by (intro mult-left-mono ∗ order-trans [OF norm-triangle-ineq4])

(auto simp: mult-ac zero-ereal-def intro!: interval-integrable-isCont)
also have . . . = (2 / (fact n)) ∗ |x ˆ (Suc n) / (Suc n)|
by (simp add : abs-LBINT-I0c-abs-power-diff abs-mult)

also have 2 / fact n ∗ |x ˆ Suc n / real (Suc n)| = 2 ∗ |x | ˆ Suc n / (fact (Suc
n))

by (simp add : abs-mult power-abs)
finally show ?case .

qed (insert norm-triangle-ineq4 [of iexp x 1], simp)

lemma (in real-distribution) char-approx1 :
assumes integrable-moments:

∧
k . k ≤ n =⇒ integrable M (λx . xˆk)

shows cmod (char M t − (
∑

k ≤ n. ((ii ∗ t)ˆk / fact k) ∗ expectation (λx .
xˆk))) ≤

(2∗|t |ˆn / fact n) ∗ expectation (λx . |x |ˆn) (is cmod (char M t − ?t1) ≤ -)
proof −

have integ-iexp: integrable M (λx . iexp (t ∗ x))
by (intro integrable-const-bound) auto

def c ≡ λk x . (ii ∗ t)ˆk / fact k ∗ complex-of-real (xˆk)
have integ-c:

∧
k . k ≤ n =⇒ integrable M (λx . c k x)

unfolding c-def by (intro integrable-mult-right integrable-of-real integrable-moments)

have k ≤ n =⇒ expectation (c k) = (i∗t) ˆ k ∗ (expectation (λx . x ˆ k)) / fact
k for k

unfolding c-def integral-mult-right-zero integral-complex-of-real by simp
then have norm (char M t − ?t1) = norm (char M t − (CLINT x | M . (

∑
k

≤ n. c k x)))
by (simp add : integ-c)

also have . . . = norm ((CLINT x | M . iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
unfolding char-def by (subst integral-diff [OF integ-iexp]) (auto intro!: integ-c)

also have . . . ≤ expectation (λx . cmod (iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
by (intro integral-norm-bound integrable-diff integ-iexp integrable-setsum integ-c)

simp
also have . . . ≤ expectation (λx . 2 ∗ |t | ˆ n / fact n ∗ |x | ˆ n)
proof (rule integral-mono)

THEORY “Characteristic-Functions” 843

show integrable M (λx . cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)))
by (intro integrable-norm integrable-diff integ-iexp integrable-setsum integ-c)

simp
show integrable M (λx . 2 ∗ |t | ˆ n / fact n ∗ |x | ˆ n)

unfolding power-abs[symmetric]
by (intro integrable-mult-right integrable-abs integrable-moments) simp

show cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)) ≤ 2 ∗ |t | ˆ n / fact n ∗ |x | ˆ n
for x

using iexp-approx2 [of t ∗ x n] by (auto simp add : abs-mult field-simps c-def)
qed
finally show ?thesis

unfolding integral-mult-right-zero .
qed

lemma (in real-distribution) char-approx2 :
assumes integrable-moments:

∧
k . k ≤ n =⇒ integrable M (λx . x ˆ k)

shows cmod (char M t − (
∑

k ≤ n. ((ii ∗ t)ˆk / fact k) ∗ expectation (λx .
xˆk))) ≤

(|t |ˆn / fact (Suc n)) ∗ expectation (λx . min (2 ∗ |x |ˆn ∗ Suc n) (|t | ∗ |x |ˆSuc
n))

(is cmod (char M t − ?t1) ≤ -)
proof −

have integ-iexp: integrable M (λx . iexp (t ∗ x))
by (intro integrable-const-bound) auto

def c ≡ λk x . (ii ∗ t)ˆk / fact k ∗ complex-of-real (xˆk)
have integ-c:

∧
k . k ≤ n =⇒ integrable M (λx . c k x)

unfolding c-def by (intro integrable-mult-right integrable-of-real integrable-moments)

have ∗: min (2 ∗ |t ∗ x |ˆn / fact n) (|t ∗ x |ˆSuc n / fact (Suc n)) =
|t |ˆn / fact (Suc n) ∗ min (2 ∗ |x |ˆn ∗ real (Suc n)) (|t | ∗ |x |ˆ(Suc n)) for x

apply (subst mult-min-right)
apply simp
apply (rule arg-cong2 [where f =min])
apply (simp-all add : field-simps abs-mult del : fact-Suc)
apply (simp-all add : field-simps)
done

have k ≤ n =⇒ expectation (c k) = (i∗t) ˆ k ∗ (expectation (λx . x ˆ k)) / fact
k for k

unfolding c-def integral-mult-right-zero integral-complex-of-real by simp
then have norm (char M t − ?t1) = norm (char M t − (CLINT x | M . (

∑
k

≤ n. c k x)))
by (simp add : integ-c)

also have . . . = norm ((CLINT x | M . iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
unfolding char-def by (subst integral-diff [OF integ-iexp]) (auto intro!: integ-c)

also have . . . ≤ expectation (λx . cmod (iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
by (intro integral-norm-bound integrable-diff integ-iexp integrable-setsum integ-c)

simp

THEORY “Characteristic-Functions” 844

also have . . . ≤ expectation (λx . min (2 ∗ |t ∗ x |ˆn / fact n) (|t ∗ x |ˆ(Suc n)
/ fact (Suc n)))

(is - ≤ expectation ?f)
proof (rule integral-mono)

show integrable M (λx . cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)))
by (intro integrable-norm integrable-diff integ-iexp integrable-setsum integ-c)

simp
show integrable M ?f

by (rule integrable-bound [where f =λx . 2 ∗ |t ∗ x | ˆ n / fact n])
(auto simp: integrable-moments power-abs[symmetric] power-mult-distrib)

show cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)) ≤ ?f x for x
using iexp-approx1 [of t ∗ x n] iexp-approx2 [of t ∗ x n]
by (auto simp add : abs-mult field-simps c-def intro!: min.boundedI)

qed
also have . . . = (|t |ˆn / fact (Suc n)) ∗ expectation (λx . min (2 ∗ |x |ˆn ∗ Suc

n) (|t | ∗ |x |ˆSuc n))
unfolding ∗

proof (rule integral-mult-right)
show integrable M (λx . min (2 ∗ |x | ˆ n ∗ real (Suc n)) (|t | ∗ |x | ˆ Suc n))

by (rule integrable-bound [where f =λx . 2 ∗ |x | ˆ n ∗ real (Suc n)])
(auto simp: integrable-moments power-abs[symmetric] power-mult-distrib)

qed
finally show ?thesis

unfolding integral-mult-right-zero .
qed

lemma (in real-distribution) char-approx3 :
fixes t
assumes

integrable-1 : integrable M (λx . x) and
integral-1 : expectation (λx . x) = 0 and
integrable-2 : integrable M (λx . xˆ2) and
integral-2 : variance (λx . x) = σ2

shows cmod (char M t − (1 − tˆ2 ∗ σ2 / 2)) ≤
(tˆ2 / 6) ∗ expectation (λx . min (6 ∗ xˆ2) (abs t ∗ (abs x)ˆ3))

proof −
note real-distribution.char-approx2 [of M 2 t , simplified]
have [simp]: prob UNIV = 1 by (metis prob-space space-eq-univ)
from integral-2 have [simp]: expectation (λx . x ∗ x) = σ2

by (simp add : integral-1 numeral-eq-Suc)
have 1 : k ≤ 2 =⇒ integrable M (λx . xˆk) for k

using assms by (auto simp: eval-nat-numeral le-Suc-eq)
note char-approx1
note 2 = char-approx1 [of 2 t , OF 1 , simplified]
have cmod (char M t − (

∑
k≤2 . (i ∗ t) ˆ k ∗ (expectation (λx . x ˆ k)) / (fact

k))) ≤
t2 ∗ expectation (λx . min (6 ∗ x 2) (|t | ∗ |x | ˆ 3)) / fact (3 ::nat)

using char-approx2 [of 2 t , OF 1] by simp
also have (

∑
k≤2 . (i ∗ t) ˆ k ∗ expectation (λx . x ˆ k) / (fact k)) = 1 − tˆ2

THEORY “Characteristic-Functions” 845

∗ σ2 / 2
by (simp add : complex-eq-iff numeral-eq-Suc integral-1 Re-divide Im-divide)

also have fact 3 = 6 by (simp add : eval-nat-numeral)
also have t2 ∗ expectation (λx . min (6 ∗ x 2) (|t | ∗ |x | ˆ 3)) / 6 =

t2 / 6 ∗ expectation (λx . min (6 ∗ x 2) (|t | ∗ |x | ˆ 3)) by (simp add : field-simps)
finally show ?thesis .

qed

This is a more familiar textbook formulation in terms of random variables,
but we will use the previous version for the CLT.

lemma (in prob-space) char-approx3 ′:
fixes µ :: real measure and X
assumes rv-X [simp]: random-variable borel X

and [simp]: integrable M X integrable M (λx . (X x)ˆ2) expectation X = 0
and var-X : variance X = σ2
and µ-def : µ = distr M borel X

shows cmod (char µ t − (1 − tˆ2 ∗ σ2 / 2)) ≤
(tˆ2 / 6) ∗ expectation (λx . min (6 ∗ (X x)ˆ2) (|t | ∗ |X x |ˆ3))

using var-X unfolding µ-def
apply (subst integral-distr [symmetric, OF rv-X], simp)
apply (intro real-distribution.char-approx3)
apply (auto simp add : integrable-distr-eq integral-distr)
done

this is the formulation in the book – in terms of a random variable *with*
the distribution, rather the distribution itself. I don’t know which is more
useful, though in principal we can go back and forth between them.

lemma (in prob-space) char-approx1 ′:
fixes µ :: real measure and X
assumes integrable-moments :

∧
k . k ≤ n =⇒ integrable M (λx . X x ˆ k)

and rv-X [measurable]: random-variable borel X
and µ-distr : distr M borel X = µ

shows cmod (char µ t − (
∑

k ≤ n. ((ii ∗ t)ˆk / fact k) ∗ expectation (λx . (X
x)ˆk))) ≤

(2 ∗ |t |ˆn / fact n) ∗ expectation (λx . |X x |ˆn)
unfolding µ-distr [symmetric]
apply (subst (1 2) integral-distr [symmetric, OF rv-X], simp, simp)
apply (intro real-distribution.char-approx1 [of distr M borel X n t] real-distribution-distr

rv-X)
apply (auto simp: integrable-distr-eq integrable-moments)
done

42.5 Calculation of the Characteristic Function of the Stan-
dard Distribution

abbreviation
std-normal-distribution ≡ density lborel std-normal-density

THEORY “Characteristic-Functions” 846

lemma real-dist-normal-dist : real-distribution std-normal-distribution
using prob-space-normal-density by (auto simp: real-distribution-def real-distribution-axioms-def)

lemma std-normal-distribution-even-moments:
fixes k :: nat
shows (LINT x |std-normal-distribution. xˆ(2 ∗ k)) = fact (2 ∗ k) / (2ˆk ∗ fact

k)
and integrable std-normal-distribution (λx . xˆ(2 ∗ k))

using integral-std-normal-moment-even[of k]
by (subst integral-density)

(auto simp: normal-density-nonneg integrable-density
intro: integrable.intros std-normal-moment-even)

lemma integrable-std-normal-distribution-moment : integrable std-normal-distribution
(λx . xˆk)
by (auto simp: normal-density-nonneg integrable-std-normal-moment integrable-density)

lemma integral-std-normal-distribution-moment-odd :
odd k =⇒ integralL std-normal-distribution (λx . xˆk) = 0
using integral-std-normal-moment-odd [of (k − 1) div 2]
by (auto simp: integral-density normal-density-nonneg elim: oddE)

lemma std-normal-distribution-even-moments-abs:
fixes k :: nat
shows (LINT x |std-normal-distribution. |x |ˆ(2 ∗ k)) = fact (2 ∗ k) / (2ˆk ∗

fact k)
using integral-std-normal-moment-even[of k]
by (subst integral-density) (auto simp: normal-density-nonneg power-even-abs)

lemma std-normal-distribution-odd-moments-abs:
fixes k :: nat
shows (LINT x |std-normal-distribution. |x |ˆ(2 ∗ k + 1)) = sqrt (2 / pi) ∗ 2 ˆ

k ∗ fact k
using integral-std-normal-moment-abs-odd [of k]
by (subst integral-density) (auto simp: normal-density-nonneg)

theorem char-std-normal-distribution:
char std-normal-distribution = (λt . complex-of-real (exp (− (tˆ2) / 2)))

proof (intro ext LIMSEQ-unique)
fix t :: real
let ?f ′ = λk . (ii ∗ t)ˆk / fact k ∗ (LINT x | std-normal-distribution. xˆk)
let ?f = λn. (

∑
k ≤ n. ?f ′ k)

show ?f −−−−→ exp (−(tˆ2) / 2)
proof (rule limseq-even-odd)
have (i ∗ complex-of-real t) ˆ (2 ∗ a) / (2 ˆ a ∗ fact a) = (− ((complex-of-real

t)2 / 2)) ˆ a / fact a for a
by (subst power-mult) (simp add : field-simps uminus-power-if power-mult)

then have ∗: ?f (2 ∗ n) = complex-of-real (
∑

k < Suc n. (1 / fact k) ∗ (−
(tˆ2) / 2)ˆk) for n :: nat

THEORY “Characteristic-Functions” 847

unfolding of-real-setsum
by (intro setsum.reindex-bij-witness-not-neutral [symmetric, where

i=λn. n div 2 and j =λn. 2 ∗ n and T ′={i . i ≤ 2 ∗ n ∧ odd i} and
S ′={}])

(auto simp: integral-std-normal-distribution-moment-odd std-normal-distribution-even-moments)
show (λn. ?f (2 ∗ n)) −−−−→ exp (−(tˆ2) / 2)

unfolding ∗ using exp-converges[where ′a=real]
by (intro tendsto-of-real LIMSEQ-Suc) (auto simp: inverse-eq-divide sums-def

[symmetric])
have ∗∗: ?f (2 ∗ n + 1) = ?f (2 ∗ n) for n
proof −

have ?f (2 ∗ n + 1) = ?f (2 ∗ n) + ?f ′ (2 ∗ n + 1)
by simp

also have ?f ′ (2 ∗ n + 1) = 0
by (subst integral-std-normal-distribution-moment-odd) simp-all

finally show ?f (2 ∗ n + 1) = ?f (2 ∗ n)
by simp

qed
show (λn. ?f (2 ∗ n + 1)) −−−−→ exp (−(tˆ2) / 2)

unfolding ∗∗ by fact
qed

have ∗∗: (λn. x ˆ n / fact n) −−−−→ 0 for x :: real
using summable-LIMSEQ-zero [OF summable-exp] by (auto simp add : inverse-eq-divide)

let ?F = λn. 2 ∗ |t | ˆ n / fact n ∗ (LINT x |std-normal-distribution. |x | ˆ n)

show ?f −−−−→ char std-normal-distribution t
proof (rule metric-tendsto-imp-tendsto[OF limseq-even-odd])

show (λn. ?F (2 ∗ n)) −−−−→ 0
proof (rule Lim-transform-eventually)

show ∀ F n in sequentially . 2 ∗ ((tˆ2 / 2)ˆn / fact n) = ?F (2 ∗ n)
unfolding std-normal-distribution-even-moments-abs by (simp add : power-mult

power-divide)
qed (intro tendsto-mult-right-zero ∗∗)

have ∗: ?F (2 ∗ n + 1) = (2 ∗ |t | ∗ sqrt (2 / pi)) ∗ ((2 ∗ tˆ2)ˆn ∗ fact n /
fact (2 ∗ n + 1)) for n

unfolding std-normal-distribution-odd-moments-abs
by (simp add : field-simps power-mult [symmetric] power-even-abs)

have norm ((2 ∗ t2) ˆ n ∗ fact n / fact (2 ∗ n + 1)) ≤ (2 ∗ t2) ˆ n / fact n
for n

using mult-mono[OF - square-fact-le-2-fact , of 1 1 + 2 ∗ real n n]
by (auto simp add : divide-simps intro!: mult-left-mono)

then show (λn. ?F (2 ∗ n + 1)) −−−−→ 0
unfolding ∗ by (intro tendsto-mult-right-zero Lim-null-comparison [OF - ∗∗

[of 2 ∗ t2]]) auto

show ∀ F n in sequentially . dist (?f n) (char std-normal-distribution t) ≤ dist

THEORY “Helly-Selection” 848

(?F n) 0
using real-distribution.char-approx1 [OF real-dist-normal-dist integrable-std-normal-distribution-moment]
by (auto simp: dist-norm integral-nonneg-AE norm-minus-commute)

qed
qed

end

43 Helly’s selection theorem

The set of bounded, monotone, right continuous functions is sequentially
compact

theory Helly-Selection
imports ∼∼/src/HOL/Library/Diagonal-Subsequence Weak-Convergence

begin

lemma minus-one-less: x − 1 < (x ::real)
by simp

theorem Helly-selection:
fixes f :: nat ⇒ real ⇒ real
assumes rcont :

∧
n x . continuous (at-right x) (f n)

assumes mono:
∧

n. mono (f n)
assumes bdd :

∧
n x . |f n x | ≤ M

shows ∃ s. subseq s ∧ (∃F . (∀ x . continuous (at-right x) F) ∧ mono F ∧ (∀ x .
|F x | ≤ M) ∧

(∀ x . continuous (at x) F −→ (λn. f (s n) x) −−−−→ F x))
proof −

obtain m :: real ⇒ nat where bij-betw m Q UNIV
using countable-rat Rats-infinite by (erule countableE-infinite)

then obtain r :: nat ⇒ real where bij : bij-betw r UNIV Q
using bij-betw-inv by blast

have dense-r :
∧

x y . x < y =⇒ ∃n. x < r n ∧ r n < y
by (metis Rats-dense-in-real bij f-the-inv-into-f bij-betw-def)

let ?P = λn. λs. convergent (λk . f (s k) (r n))
interpret nat : subseqs ?P
proof (unfold convergent-def , unfold subseqs-def , auto)

fix n :: nat and s :: nat ⇒ nat assume s: subseq s
have bounded {−M ..M }

using bounded-closed-interval by auto
moreover have

∧
k . f (s k) (r n) ∈ {−M ..M }

using bdd by (simp add : abs-le-iff minus-le-iff)
ultimately have ∃ l s ′. subseq s ′ ∧ ((λk . f (s k) (r n)) ◦ s ′) −−−−→ l

using compact-Icc compact-imp-seq-compact seq-compactE by metis
thus ∃ s ′. subseq s ′ ∧ (∃ l . (λk . f (s (s ′ k)) (r n)) −−−−→ l)

by (auto simp: comp-def)

THEORY “Helly-Selection” 849

qed
def d ≡ nat .diagseq
have subseq : subseq d

unfolding d-def using nat .subseq-diagseq by auto
have rat-cnv : ?P n d for n
proof −

have Pn-seqseq : ?P n (nat .seqseq (Suc n))
by (rule nat .seqseq-holds)

have 1 : (λk . f ((nat .seqseq (Suc n) ◦ (λk . nat .fold-reduce (Suc n) k
(Suc n + k))) k) (r n)) = (λk . f (nat .seqseq (Suc n) k) (r n)) ◦
(λk . nat .fold-reduce (Suc n) k (Suc n + k))
by auto

have 2 : ?P n (d ◦ (op + (Suc n)))
unfolding d-def nat .diagseq-seqseq 1
by (intro convergent-subseq-convergent Pn-seqseq nat .subseq-diagonal-rest)

then obtain L where 3 : (λna. f (d (na + Suc n)) (r n)) −−−−→ L
by (auto simp: add .commute dest : convergentD)

then have (λk . f (d k) (r n)) −−−−→ L
by (rule LIMSEQ-offset)

then show ?thesis
by (auto simp: convergent-def)

qed
let ?f = λn. λk . f (d k) (r n)
have lim-f : ?f n −−−−→ lim (?f n) for n

using rat-cnv convergent-LIMSEQ-iff by auto
have lim-bdd : lim (?f n) ∈ {−M ..M } for n
proof −

have closed {−M ..M } using closed-real-atLeastAtMost by auto
hence (∀ i . ?f n i ∈ {−M ..M }) ∧ ?f n −−−−→ lim (?f n) −→ lim (?f n) ∈

{−M ..M }
unfolding closed-sequential-limits by (drule-tac x = λk . f (d k) (r n) in

spec) blast
moreover have ∀ i . ?f n i ∈ {−M ..M }

using bdd by (simp add : abs-le-iff minus-le-iff)
ultimately show lim (?f n) ∈ {−M ..M }

using lim-f by auto
qed
then have limset-bdd :

∧
x . {lim (?f n) |n. x < r n} ⊆ {−M ..M }

by auto
then have bdd-below : bdd-below {lim (?f n) |n. x < r n} for x

by (metis (mono-tags) bdd-below-Icc bdd-below-mono)
have r-unbdd : ∃n. x < r n for x

using dense-r [OF less-add-one, of x] by auto
then have nonempty : {lim (?f n) |n. x < r n} 6= {} for x

by auto

def F ≡ λx . Inf {lim (?f n) |n. x < r n}
have F-eq : ereal (F x) = (INF n:{n. x < r n}. ereal (lim (?f n))) for x

unfolding F-def by (subst ereal-Inf ′[OF bdd-below nonempty]) (simp add :

THEORY “Helly-Selection” 850

setcompr-eq-image)
have mono-F : mono F

using nonempty by (auto intro!: cInf-superset-mono simp: F-def bdd-below
mono-def)

moreover have
∧

x . continuous (at-right x) F
unfolding continuous-within order-tendsto-iff eventually-at-right [OF less-add-one]
proof safe

show F x < u =⇒ ∃ b>x . ∀ y>x . y < b −→ F y < u for x u
unfolding F-def cInf-less-iff [OF nonempty bdd-below] by auto

next
show ∃ b>x . ∀ y>x . y < b −→ l < F y if l : l < F x for x l

using less-le-trans[OF l mono-F [THEN monoD , of x]] by (auto intro:
less-add-one)

qed
moreover
{ fix x

have F x ∈ {−M ..M }
unfolding F-def using limset-bdd bdd-below r-unbdd by (intro closed-subset-contains-Inf)

auto
then have |F x | ≤ M by auto }

moreover have (λn. f (d n) x) −−−−→ F x if cts: continuous (at x) F for x
proof (rule limsup-le-liminf-real)

show limsup (λn. f (d n) x) ≤ F x
proof (rule tendsto-le-const)

show (F −−−→ ereal (F x)) (at-right x)
using cts unfolding continuous-at-split by (auto simp: continuous-within)

show ∀ F i in at-right x . limsup (λn. f (d n) x) ≤ F i
unfolding eventually-at-right [OF less-add-one]

proof (rule, rule, rule less-add-one, safe)
fix y assume y : x < y
with dense-r obtain N where x < r N r N < y by auto
have ∗: y < r n ′ =⇒ lim (?f N) ≤ lim (?f n ′) for n ′

using 〈r N < y〉 by (intro LIMSEQ-le[OF lim-f lim-f]) (auto intro!:
mono[THEN monoD])

have limsup (λn. f (d n) x) ≤ limsup (?f N)
using 〈x < r N 〉 by (auto intro!: Limsup-mono always-eventually

mono[THEN monoD])
also have . . . = lim (λn. ereal (?f N n))
using rat-cnv [of N] by (force intro!: convergent-limsup-cl simp: convergent-def)
also have . . . ≤ F y
by (auto intro!: INF-greatest ∗ simp: convergent-real-imp-convergent-ereal

rat-cnv F-eq)
finally show limsup (λn. f (d n) x) ≤ F y .

qed
qed simp
show F x ≤ liminf (λn. f (d n) x)
proof (rule tendsto-ge-const)

show (F −−−→ ereal (F x)) (at-left x)
using cts unfolding continuous-at-split by (auto simp: continuous-within)

THEORY “Helly-Selection” 851

show ∀ F i in at-left x . F i ≤ liminf (λn. f (d n) x)
unfolding eventually-at-left [OF minus-one-less]

proof (rule, rule, rule minus-one-less, safe)
fix y assume y : y < x
with dense-r obtain N where y < r N r N < x by auto
have F y ≤ liminf (?f N)
using 〈y < r N 〉 by (auto simp: F-eq convergent-real-imp-convergent-ereal

rat-cnv convergent-liminf-cl intro!: INF-lower2)
also have . . . ≤ liminf (λn. f (d n) x)

using 〈r N < x 〉 by (auto intro!: Liminf-mono monoD [OF mono]
always-eventually)

finally show F y ≤ liminf (λn. f (d n) x) .
qed

qed simp
qed
ultimately show ?thesis using subseq by auto

qed

definition
tight :: (nat ⇒ real measure) ⇒ bool

where
tight µ ≡ (∀n. real-distribution (µ n)) ∧ (∀ (ε::real)>0 . ∃ a b::real . a < b ∧ (∀n.

measure (µ n) {a<..b} > 1 − ε))

theorem tight-imp-convergent-subsubsequence:
assumes µ: tight µ subseq s
shows ∃ r M . subseq r ∧ real-distribution M ∧ weak-conv-m (µ ◦ s ◦ r) M

proof −
def f ≡ λk . cdf (µ (s k))
interpret µ: real-distribution µ k for k

using µ unfolding tight-def by auto

have rcont :
∧

x . continuous (at-right x) (f k)
and mono: mono (f k)
and top: (f k −−−→ 1) at-top
and bot : (f k −−−→ 0) at-bot for k
unfolding f-def mono-def

using µ.cdf-nondecreasing µ.cdf-is-right-cont µ.cdf-lim-at-top-prob µ.cdf-lim-at-bot
by auto

have bdd : |f k x | ≤ 1 for k x
by (auto simp add : abs-le-iff minus-le-iff f-def µ.cdf-nonneg µ.cdf-bounded-prob)

from Helly-selection[OF rcont mono bdd , of λx . x] obtain r F
where F : subseq r

∧
x . continuous (at-right x) F mono F

∧
x . |F x | ≤ 1

and lim-F :
∧

x . continuous (at x) F =⇒ (λn. f (r n) x) −−−−→ F x
by blast

THEORY “Helly-Selection” 852

have 0 ≤ f n x for n x
unfolding f-def by (rule µ.cdf-nonneg)

have F-nonneg : 0 ≤ F x for x
proof −

obtain y where y < x isCont F y
using open-minus-countable[OF mono-ctble-discont [OF 〈mono F 〉], of {..<

x}] by auto
then have 0 ≤ F y

by (intro LIMSEQ-le-const [OF lim-F]) (auto simp: f-def µ.cdf-nonneg)
also have . . . ≤ F x

using 〈y < x 〉 by (auto intro!: monoD [OF 〈mono F 〉])
finally show 0 ≤ F x .

qed

have Fab: ∃ a b. (∀ x≥b. F x ≥ 1 − ε) ∧ (∀ x≤a. F x ≤ ε) if ε: 0 < ε for ε
proof auto

obtain a ′ b ′ where a ′b ′: a ′ < b ′
∧

k . measure (µ k) {a ′<..b ′} > 1 − ε
using ε µ by (auto simp: tight-def)

obtain a where a: a < a ′ isCont F a
using open-minus-countable[OF mono-ctble-discont [OF 〈mono F 〉], of {..<

a ′}] by auto
obtain b where b: b ′ < b isCont F b

using open-minus-countable[OF mono-ctble-discont [OF 〈mono F 〉], of {b ′
<..}] by auto

have a < b
using a b a ′b ′ by simp

let ?µ = λk . measure (µ (s (r k)))
have ab: ?µ k {a<..b} > 1 − ε for k
proof −

have ?µ k {a ′<..b ′} ≤ ?µ k {a<..b}
using a b by (intro µ.finite-measure-mono) auto

then show ?thesis
using a ′b ′(2) by (metis less-eq-real-def less-trans)

qed

have (λk . ?µ k {..b}) −−−−→ F b
using b(2) lim-F unfolding f-def cdf-def o-def by auto

then have 1 − ε ≤ F b
proof (rule tendsto-le-const [OF sequentially-bot], intro always-eventually allI)

fix k
have 1 − ε < ?µ k {a<..b}

using ab by auto
also have . . . ≤ ?µ k {..b}

by (auto intro!: µ.finite-measure-mono)
finally show 1 − ε ≤ ?µ k {..b}

by (rule less-imp-le)
qed

THEORY “Helly-Selection” 853

then show ∃ b. ∀ x≥b. 1 − ε ≤ F x
using F unfolding mono-def by (metis order .trans)

have (λk . ?µ k {..a}) −−−−→ F a
using a(2) lim-F unfolding f-def cdf-def o-def by auto

then have Fa: F a ≤ ε
proof (rule tendsto-ge-const [OF sequentially-bot], intro always-eventually allI)

fix k
have ?µ k {..a} + ?µ k {a<..b} ≤ 1

by (subst µ.finite-measure-Union[symmetric]) auto
then show ?µ k {..a} ≤ ε

using ab[of k] by simp
qed
then show ∃ a. ∀ x≤a. F x ≤ ε

using F unfolding mono-def by (metis order .trans)
qed

have (F −−−→ 1) at-top
proof (rule order-tendstoI)

show 1 < y =⇒ ∀ F x in at-top. F x < y for y
using 〈

∧
x . |F x | ≤ 1 〉 〈

∧
x . 0 ≤ F x 〉 by (auto intro: le-less-trans always-eventually)

fix y :: real assume y < 1
then obtain z where y < z z < 1

using dense[of y 1] by auto
with Fab[of 1 − z] show ∀ F x in at-top. y < F x

by (auto simp: eventually-at-top-linorder intro: less-le-trans)
qed
moreover
have (F −−−→ 0) at-bot
proof (rule order-tendstoI)

show y < 0 =⇒ ∀ F x in at-bot . y < F x for y
using 〈

∧
x . 0 ≤ F x 〉 by (auto intro: less-le-trans always-eventually)

fix y :: real assume 0 < y
then obtain z where 0 < z z < y

using dense[of 0 y] by auto
with Fab[of z] show ∀ F x in at-bot . F x < y

by (auto simp: eventually-at-bot-linorder intro: le-less-trans)
qed
ultimately have M : real-distribution (interval-measure F) cdf (interval-measure

F) = F
using F by (auto intro!: real-distribution-interval-measure cdf-interval-measure

simp: mono-def)
with lim-F LIMSEQ-subseq-LIMSEQ M have weak-conv-m (µ ◦ s ◦ r) (interval-measure

F)
by (auto simp: weak-conv-def weak-conv-m-def f-def comp-def)

then show ∃ r M . subseq r ∧ (real-distribution M ∧ weak-conv-m (µ ◦ s ◦ r)
M)

using F M by auto
qed

THEORY “Sinc-Integral” 854

corollary tight-subseq-weak-converge:
fixes µ :: nat ⇒ real measure and M :: real measure
assumes

∧
n. real-distribution (µ n) real-distribution M and tight : tight µ and

subseq :
∧

s ν. subseq s =⇒ real-distribution ν =⇒ weak-conv-m (µ ◦ s) ν =⇒
weak-conv-m (µ ◦ s) M

shows weak-conv-m µ M
proof (rule ccontr)

def f ≡ λn. cdf (µ n) and F ≡ cdf M

assume ¬ weak-conv-m µ M
then obtain x where x : isCont F x ¬ (λn. f n x) −−−−→ F x

by (auto simp: weak-conv-m-def weak-conv-def f-def F-def)
then obtain ε where ε > 0 and infinite {n. ¬ dist (f n x) (F x) < ε}
by (auto simp: tendsto-iff not-eventually INFM-iff-infinite cofinite-eq-sequentially [symmetric])
then obtain s where s:

∧
n. ¬ dist (f (s n) x) (F x) < ε and subseq s

using enumerate-in-set enumerate-mono by (fastforce simp: subseq-def)
then obtain r ν where r : subseq r real-distribution ν weak-conv-m (µ ◦ s ◦ r)

ν
using tight-imp-convergent-subsubsequence[OF tight] by blast

then have weak-conv-m (µ ◦ (s ◦ r)) M
using 〈subseq s〉 r by (intro subseq subseq-o) (auto simp: comp-assoc)

then have (λn. f (s (r n)) x) −−−−→ F x
using x by (auto simp: weak-conv-m-def weak-conv-def F-def f-def)

then show False
using s 〈ε > 0 〉 by (auto dest : tendstoD)

qed

end

44 Integral of sinc

theory Sinc-Integral
imports Distributions

begin

44.1 Various preparatory integrals

Naming convention The theorem name consists of the following parts:

• Kind of integral: has-bochner-integral / integrable / LBINT

• Interval: Interval (0 / infinity / open / closed) (infinity / open / closed)

• Name of the occurring constants: power, exp, m (for minus), scale, sin,
. . .

lemma has-bochner-integral-I0i-power-exp-m ′:

THEORY “Sinc-Integral” 855

has-bochner-integral lborel (λx . xˆk ∗ exp (−x) ∗ indicator {0 ..} x ::real) (fact
k)

using nn-intergal-power-times-exp-Ici [of k]
by (intro has-bochner-integral-nn-integral)

(auto simp: nn-integral-set-ennreal split : split-indicator)

lemma has-bochner-integral-I0i-power-exp-m:
has-bochner-integral lborel (λx . xˆk ∗ exp (−x) ∗ indicator {0 <..} x ::real) (fact

k)
using AE-lborel-singleton[of 0]
by (intro has-bochner-integral-cong-AE [THEN iffD1 , OF - - - has-bochner-integral-I0i-power-exp-m ′])

(auto split : split-indicator)

lemma integrable-I0i-exp-mscale: 0 < (u::real) =⇒ set-integrable lborel {0 <..}
(λx . exp (−(x ∗ u)))

using lborel-integrable-real-affine-iff [of u λx . indicator {0 <..} x ∗R exp (− x)
0]

has-bochner-integral-I0i-power-exp-m[of 0]
by (simp add : indicator-def zero-less-mult-iff mult-ac integrable.intros)

lemma LBINT-I0i-exp-mscale: 0 < (u::real) =⇒ LBINT x=0 ..∞. exp (−(x ∗ u))
= 1 / u

using lborel-integral-real-affine[of u λx . indicator {0<..} x ∗R exp (− x) 0]
has-bochner-integral-I0i-power-exp-m[of 0]

by (auto simp: indicator-def zero-less-mult-iff interval-lebesgue-integral-0-infty
field-simps

dest !: has-bochner-integral-integral-eq)

lemma LBINT-I0c-exp-mscale-sin:
LBINT x=0 ..t . exp (−(u ∗ x)) ∗ sin x =

(1 / (1 + uˆ2)) ∗ (1 − exp (−(u ∗ t)) ∗ (u ∗ sin t + cos t)) (is - = ?F t)
unfolding zero-ereal-def

proof (subst interval-integral-FTC-finite)
show (?F has-vector-derivative exp (− (u ∗ x)) ∗ sin x) (at x within {min 0

t ..max 0 t}) for x
by (auto intro!: derivative-eq-intros

simp: has-field-derivative-iff-has-vector-derivative[symmetric] power2-eq-square)
(simp-all add : field-simps add-nonneg-eq-0-iff)

qed (auto intro: continuous-at-imp-continuous-on)

lemma LBINT-I0i-exp-mscale-sin:
assumes 0 < x
shows LBINT u=0 ..∞. |exp (−u ∗ x) ∗ sin x | = |sin x | / x

proof (subst interval-integral-FTC-nonneg)
let ?F = λu. 1 / x ∗ (1 − exp (− u ∗ x)) ∗ |sin x |
show

∧
t . (?F has-real-derivative |exp (− t ∗ x) ∗ sin x |) (at t)

using 〈0 < x 〉 by (auto intro!: derivative-eq-intros simp: abs-mult)
show ((?F ◦ real-of-ereal) −−−→ 0) (at-right 0)
using 〈0 < x 〉 by (auto simp: zero-ereal-def ereal-tendsto-simps intro!: tendsto-eq-intros)

THEORY “Sinc-Integral” 856

have ∗: ((λt . exp (− t ∗ x)) −−−→ 0) at-top
using 〈0 < x 〉

by (auto intro!: exp-at-bot [THEN filterlim-compose] filterlim-tendsto-pos-mult-at-top
filterlim-ident

simp: filterlim-uminus-at-bot mult .commute[of - x])
show ((?F ◦ real-of-ereal) −−−→ |sin x | / x) (at-left ∞)

using 〈0 < x 〉 unfolding ereal-tendsto-simps
by (intro filterlim-compose[OF - ∗]) (auto intro!: tendsto-eq-intros filterlim-ident)

qed auto

lemma
shows integrable-inverse-1-plus-square:

set-integrable lborel (einterval (−∞) ∞) (λx . inverse (1 + xˆ2))
and LBINT-inverse-1-plus-square:

LBINT x=−∞..∞. inverse (1 + xˆ2) = pi
proof −

have 1 : − (pi / 2) < x =⇒ x ∗ 2 < pi =⇒ (tan has-real-derivative 1 + (tan
x)2) (at x) for x

using cos-gt-zero-pi [of x] by (subst tan-sec) (auto intro!: DERIV-tan simp:
power-inverse)

have 2 : − (pi / 2) < x =⇒ x ∗ 2 < pi =⇒ isCont (λx . 1 + (tan x)2) x for x
using cos-gt-zero-pi [of x] by auto

show LBINT x=−∞..∞. inverse (1 + xˆ2) = pi
by (subst interval-integral-substitution-nonneg [of −pi/2 pi/2 tan λx . 1 + (tan

x)ˆ2])
(auto intro: derivative-eq-intros 1 2 filterlim-tan-at-right

simp add : ereal-tendsto-simps filterlim-tan-at-left add-nonneg-eq-0-iff)
show set-integrable lborel (einterval (−∞) ∞) (λx . inverse (1 + xˆ2))
by (subst interval-integral-substitution-nonneg [of −pi/2 pi/2 tan λx . 1 + (tan

x)ˆ2])
(auto intro: derivative-eq-intros 1 2 filterlim-tan-at-right

simp add : ereal-tendsto-simps filterlim-tan-at-left add-nonneg-eq-0-iff)
qed

lemma
shows integrable-I0i-1-div-plus-square:

interval-lebesgue-integrable lborel 0 ∞ (λx . 1 / (1 + xˆ2))
and LBINT-I0i-1-div-plus-square:

LBINT x=0 ..∞. 1 / (1 + xˆ2) = pi / 2
proof −

have 1 : 0 < x =⇒ x ∗ 2 < pi =⇒ (tan has-real-derivative 1 + (tan x)2) (at x)
for x

using cos-gt-zero-pi [of x] by (subst tan-sec) (auto intro!: DERIV-tan simp:
power-inverse)

have 2 : 0 < x =⇒ x ∗ 2 < pi =⇒ isCont (λx . 1 + (tan x)2) x for x
using cos-gt-zero-pi [of x] by auto

show LBINT x=0 ..∞. 1 / (1 + xˆ2) = pi / 2
by (subst interval-integral-substitution-nonneg [of 0 pi/2 tan λx . 1 + (tan x)ˆ2])

(auto intro: derivative-eq-intros 1 2 tendsto-eq-intros

THEORY “Sinc-Integral” 857

simp add : ereal-tendsto-simps filterlim-tan-at-left zero-ereal-def add-nonneg-eq-0-iff)
show interval-lebesgue-integrable lborel 0 ∞ (λx . 1 / (1 + xˆ2))

unfolding interval-lebesgue-integrable-def
by (subst interval-integral-substitution-nonneg [of 0 pi/2 tan λx . 1 + (tan x)ˆ2])

(auto intro: derivative-eq-intros 1 2 tendsto-eq-intros
simp add : ereal-tendsto-simps filterlim-tan-at-left zero-ereal-def add-nonneg-eq-0-iff)

qed

45 The sinc function, and the sine integral (Si)

abbreviation sinc :: real ⇒ real where
sinc ≡ (λx . if x = 0 then 1 else sin x / x)

lemma sinc-at-0 : ((λx . sin x / x ::real) −−−→ 1) (at 0)
using DERIV-sin [of 0] by (auto simp add : has-field-derivative-def field-has-derivative-at)

lemma isCont-sinc: isCont sinc x
proof cases

assume x = 0 then show ?thesis
using LIM-equal [where g = λx . sin x / x and a=0 and f =sinc and l=1]
by (auto simp: isCont-def sinc-at-0)

next
assume x 6= 0 show ?thesis

by (rule continuous-transform-within [where d = abs x and f = λx . sin x /
x])

(auto simp add : dist-real-def 〈x 6= 0 〉)
qed

lemma continuous-on-sinc[continuous-intros]:
continuous-on S f =⇒ continuous-on S (λx . sinc (f x))
using continuous-on-compose[of S f sinc, OF - continuous-at-imp-continuous-on]
by (auto simp: isCont-sinc)

lemma borel-measurable-sinc[measurable]: sinc ∈ borel-measurable borel
by (intro borel-measurable-continuous-on1 continuous-at-imp-continuous-on ballI

isCont-sinc)

lemma sinc-AE : AE x in lborel . sin x / x = sinc x
by (rule AE-I [where N = {0}], auto)

definition Si :: real ⇒ real where Si t ≡ LBINT x=0 ..t . sin x / x

lemma sinc-neg [simp]: sinc (− x) = sinc x
by auto

lemma Si-alt-def : Si t = LBINT x=0 ..t . sinc x
proof cases

assume 0 ≤ t then show ?thesis

THEORY “Sinc-Integral” 858

using AE-lborel-singleton[of 0]
by (auto simp: Si-def intro!: interval-lebesgue-integral-cong-AE)

next
assume ¬ 0 ≤ t then show ?thesis

unfolding Si-def using AE-lborel-singleton[of 0]
by (subst (1 2) interval-integral-endpoints-reverse)

(auto simp: Si-def intro!: interval-lebesgue-integral-cong-AE)
qed

lemma Si-neg :
assumes T ≥ 0 shows Si (− T) = − Si T

proof −
have LBINT x=ereal 0 ..T . −1 ∗R sinc (− x) = LBINT y= ereal (− 0)..ereal

(− T). sinc y
by (rule interval-integral-substitution-finite [OF assms])

(auto intro: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have (LBINT x=ereal 0 ..T . −1 ∗R sinc (− x)) = −(LBINT x=ereal 0 ..T .

sinc x)
by (subst sinc-neg) (simp-all add : interval-lebesgue-integral-uminus)

finally have ∗: −(LBINT x=ereal 0 ..T . sinc x) = LBINT y= ereal 0 ..ereal (−
T). sinc y

by simp
show ?thesis

using assms unfolding Si-alt-def
by (subst zero-ereal-def)+ (auto simp add : ∗ [symmetric])

qed

lemma integrable-sinc ′:
interval-lebesgue-integrable lborel (ereal 0) (ereal T) (λt . sin (t ∗ ϑ) / t)

proof −
have ∗: interval-lebesgue-integrable lborel (ereal 0) (ereal T) (λt . ϑ ∗ sinc (t ∗

ϑ))
by (intro interval-lebesgue-integrable-mult-right interval-integrable-isCont continuous-within-compose3

[OF isCont-sinc])
auto

show ?thesis
by (rule interval-lebesgue-integrable-cong-AE [THEN iffD1 , OF - - - ∗])

(insert AE-lborel-singleton[of 0], auto)
qed

lemma DERIV-Si : (Si has-real-derivative sinc x) (at x)
proof −

have (at x within {min 0 (x − 1)..max 0 (x + 1)}) = at x
by (intro at-within-interior) auto

moreover have min 0 (x − 1) ≤ x x ≤ max 0 (x + 1)
by auto

ultimately show ?thesis
using interval-integral-FTC2 [of min 0 (x − 1) 0 max 0 (x + 1) sinc x]

THEORY “Sinc-Integral” 859

by (auto simp: continuous-at-imp-continuous-on isCont-sinc Si-alt-def [abs-def]
zero-ereal-def

has-field-derivative-iff-has-vector-derivative
split del : if-split)

qed

lemma isCont-Si : isCont Si x
using DERIV-Si by (rule DERIV-isCont)

lemma borel-measurable-Si [measurable]: Si ∈ borel-measurable borel
by (auto intro: isCont-Si continuous-at-imp-continuous-on borel-measurable-continuous-on1)

lemma Si-at-top-LBINT :
((λt . (LBINT x=0 ..∞. exp (−(x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + xˆ2))) −−−→

0) at-top
proof −

let ?F = λx t . exp (− (x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x 2) :: real
have int : set-integrable lborel {0<..} (λx . exp (− x) ∗ (x + 1) :: real)

unfolding distrib-left
using has-bochner-integral-I0i-power-exp-m[of 0] has-bochner-integral-I0i-power-exp-m[of

1]
by (intro set-integral-add) (auto dest !: integrable.intros simp: ac-simps)

have ((λt ::real . LBINT x :{0<..}. ?F x t) −−−→ LBINT x ::real :{0<..}. 0) at-top
proof (rule integral-dominated-convergence-at-top[OF - - int], simp-all del : abs-divide

split : split-indicator)
have ∗: 0 < x =⇒ |x ∗ sin t + cos t | / (1 + x 2) ≤ (x ∗ 1 + 1) / 1 for x t ::

real
by (intro frac-le abs-triangle-ineq [THEN order-trans] add-mono)

(auto simp add : abs-mult simp del : mult-1-right intro!: mult-mono)
then have ∗∗: 1 ≤ t =⇒ 0 < x =⇒ |?F x t | ≤ exp (− x) ∗ (x + 1) for x t ::

real
by (auto simp add : abs-mult times-divide-eq-right [symmetric] simp del :

times-divide-eq-right
intro!: mult-mono)

show ∀ F i in at-top. AE x in lborel . 0 < x −→ |?F x i | ≤ exp (− x) ∗ (x + 1)
using eventually-ge-at-top[of 1 ::real] ∗∗ by (auto elim: eventually-mono)

show AE x in lborel . 0 < x −→ (?F x −−−→ 0) at-top
proof (intro always-eventually impI allI)

fix x :: real assume 0 < x
show ((λt . exp (− (x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x 2)) −−−→ 0) at-top
proof (rule Lim-null-comparison)

show ∀ F t in at-top. norm (?F x t) ≤ exp (− (x ∗ t)) ∗ (x + 1)
using eventually-ge-at-top[of 1 ::real] ∗ 〈0 < x 〉

by (auto simp add : abs-mult times-divide-eq-right [symmetric] simp del :
times-divide-eq-right

intro!: mult-mono elim: eventually-mono)
show ((λt . exp (− (x ∗ t)) ∗ (x + 1)) −−−→ 0) at-top

THEORY “Sinc-Integral” 860

by (auto simp: filterlim-uminus-at-top [symmetric]
intro!: filterlim-tendsto-pos-mult-at-top[OF tendsto-const] 〈0<x 〉

filterlim-ident
tendsto-mult-left-zero filterlim-compose[OF exp-at-bot])

qed
qed

qed
then show ((λt . (LBINT x=0 ..∞. exp (−(x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 +

xˆ2))) −−−→ 0) at-top
by (simp add : interval-lebesgue-integral-0-infty)

qed

lemma Si-at-top-integrable:
assumes t ≥ 0
shows interval-lebesgue-integrable lborel 0 ∞ (λx . exp (− (x ∗ t)) ∗ (x ∗ sin t +

cos t) / (1 + x 2))
using 〈0 ≤ t 〉 unfolding le-less

proof
assume 0 = t then show ?thesis

using integrable-I0i-1-div-plus-square by simp
next

assume [arith]: 0 < t
have ∗: 0 ≤ a =⇒ 0 < x =⇒ a / (1 + x 2) ≤ a for a x :: real

using zero-le-power2 [of x , arith] using divide-left-mono[of 1 1 +x 2 a] by auto
have set-integrable lborel {0<..} (λx . (exp (− x) ∗ x) ∗ (sin t/t) + exp (− x) ∗

cos t)
using has-bochner-integral-I0i-power-exp-m[of 0] has-bochner-integral-I0i-power-exp-m[of

1]
by (intro set-integral-add set-integrable-mult-left)

(auto dest !: integrable.intros simp: ac-simps)
from lborel-integrable-real-affine[OF this, of t 0]
show ?thesis

unfolding interval-lebesgue-integral-0-infty
by (rule integrable-bound) (auto simp: field-simps ∗ split : split-indicator)

qed

lemma Si-at-top: (Si −−−→ pi / 2) at-top
proof −

have ∀ F t in at-top. pi / 2 − (LBINT u=0 ..∞. exp (−(u ∗ t)) ∗ (u ∗ sin t +
cos t) / (1 + uˆ2)) = Si t

using eventually-ge-at-top[of 0]
proof eventually-elim

fix t :: real assume t ≥ 0
have Si t = LBINT x=0 ..t . sin x ∗ (LBINT u=0 ..∞. exp (−(u ∗ x)))

unfolding Si-def using 〈0 ≤ t 〉

by (intro interval-integral-discrete-difference[where X ={0}]) (auto simp:
LBINT-I0i-exp-mscale)

also have . . . = LBINT x . (LBINT u=ereal 0 ..∞. indicator {0 <..< t} x ∗R
sin x ∗ exp (−(u ∗ x)))

THEORY “Sinc-Integral” 861

using 〈0≤t 〉 by (simp add : zero-ereal-def interval-lebesgue-integral-le-eq
mult-ac)

also have . . . = LBINT x . (LBINT u. indicator ({0<..} × {0 <..< t}) (u, x)
∗R (sin x ∗ exp (−(u ∗ x))))

by (subst interval-integral-Ioi) (simp-all add : indicator-times ac-simps)
also have . . . = LBINT u. (LBINT x . indicator ({0<..} × {0 <..< t}) (u, x)

∗R (sin x ∗ exp (−(u ∗ x))))
proof (intro lborel-pair .Fubini-integral [symmetric] lborel-pair .Fubini-integrable)

show (λ(x , y). indicator ({0<..} × {0<..<t}) (y , x) ∗R (sin x ∗ exp (− (y
∗ x))))

∈ borel-measurable (lborel
⊗

M lborel) (is ?f ∈ borel-measurable -)
by measurable

have AE x in lborel . indicator {0 ..t} x ∗R abs (sinc x) = LBINT y . norm
(?f (x , y))

using AE-lborel-singleton[of 0] AE-lborel-singleton[of t]
proof eventually-elim

fix x :: real assume x : x 6= 0 x 6= t
have LBINT y . |indicator ({0<..} × {0<..<t}) (y , x) ∗R (sin x ∗ exp (−

(y ∗ x)))| =
LBINT y . |sin x | ∗ exp (− (y ∗ x)) ∗ indicator {0<..} y ∗ indicator

{0<..<t} x
by (intro integral-cong) (auto split : split-indicator simp: abs-mult)

also have . . . = |sin x | ∗ indicator {0<..<t} x ∗ (LBINT y=0 ..∞. exp
(− (y ∗ x)))

by (cases x > 0)
(auto simp: field-simps interval-lebesgue-integral-0-infty split : split-indicator)

also have . . . = |sin x | ∗ indicator {0<..<t} x ∗ (1 / x)
by (cases x > 0) (auto simp add : LBINT-I0i-exp-mscale)

also have . . . = indicator {0 ..t} x ∗R |sinc x |
using x by (simp add : field-simps split : split-indicator)

finally show indicator {0 ..t} x ∗R abs (sinc x) = LBINT y . norm (?f (x ,
y))

by simp
qed
moreover have set-integrable lborel {0 .. t} (λx . abs (sinc x))
by (auto intro!: borel-integrable-compact continuous-intros simp del : real-scaleR-def)
ultimately show integrable lborel (λx . LBINT y . norm (?f (x , y)))

by (rule integrable-cong-AE-imp[rotated 2]) simp

have 0 < x =⇒ set-integrable lborel {0<..} (λy . sin x ∗ exp (− (y ∗ x))) for
x :: real

by (intro set-integrable-mult-right integrable-I0i-exp-mscale)
then show AE x in lborel . integrable lborel (λy . ?f (x , y))

by (intro AE-I2) (auto simp: indicator-times split : split-indicator)
qed
also have ... = LBINT u=0 ..∞. (LBINT x=0 ..t . exp (−(u ∗ x)) ∗ sin x)

using 〈0≤t 〉

by (auto simp: interval-lebesgue-integral-def zero-ereal-def ac-simps

THEORY “Sinc-Integral” 862

split : split-indicator intro!: integral-cong)
also have . . . = LBINT u=0 ..∞. 1 / (1 + u2) − 1 / (1 + u2) ∗ (exp (− (u

∗ t)) ∗ (u ∗ sin t + cos t))
by (auto simp: divide-simps LBINT-I0c-exp-mscale-sin intro!: interval-integral-cong)
also have ... = pi / 2 − (LBINT u=0 ..∞. exp (− (u ∗ t)) ∗ (u ∗ sin t + cos

t) / (1 + uˆ2))
using Si-at-top-integrable[OF 〈0≤t 〉] by (simp add : integrable-I0i-1-div-plus-square

LBINT-I0i-1-div-plus-square)
finally show pi / 2 − (LBINT u=0 ..∞. exp (−(u ∗ t)) ∗ (u ∗ sin t + cos t)

/ (1 + uˆ2)) = Si t ..
qed
then show ?thesis

by (rule Lim-transform-eventually)
(auto intro!: tendsto-eq-intros Si-at-top-LBINT)

qed

45.1 The final theorems: boundedness and scalability

lemma bounded-Si : ∃B . ∀T . |Si T | ≤ B
proof −

have ∗: 0 ≤ y =⇒ dist x y < z =⇒ abs x ≤ y + z for x y z :: real
by (simp add : dist-real-def)

have eventually (λT . dist (Si T) (pi / 2) < 1) at-top
using Si-at-top by (elim tendstoD) simp

then have eventually (λT . 0 ≤ T ∧ |Si T | ≤ pi / 2 + 1) at-top
using eventually-ge-at-top[of 0] by eventually-elim (insert ∗[of pi/2 Si - 1],

auto)
then have ∃T . 0 ≤ T ∧ (∀ t ≥ T . |Si t | ≤ pi / 2 + 1)

by (auto simp add : eventually-at-top-linorder)
then obtain T where T : 0 ≤ T

∧
t . t ≥ T =⇒ |Si t | ≤ pi / 2 + 1

by auto
moreover have t ≤ − T =⇒ |Si t | ≤ pi / 2 + 1 for t

using T (1) T (2)[of −t] Si-neg [of − t] by simp
moreover have ∃M . ∀ t . −T ≤ t ∧ t ≤ T −→ |Si t | ≤ M

by (rule isCont-bounded) (auto intro!: isCont-Si continuous-intros 〈0 ≤ T 〉)
then obtain M where M :

∧
t . −T ≤ t ∧ t ≤ T =⇒ |Si t | ≤ M

by auto
ultimately show ?thesis

by (intro exI [of - max M (pi/2 + 1)]) (meson le-max-iff-disj linorder-not-le
order-le-less)
qed

lemma LBINT-I0c-sin-scale-divide:
assumes T ≥ 0
shows LBINT t=0 ..T . sin (t ∗ ϑ) / t = sgn ϑ ∗ Si (T ∗ |ϑ|)

proof −
{ assume 0 < ϑ
have (LBINT t=ereal 0 ..T . sin (t ∗ ϑ) / t) = (LBINT t=ereal 0 ..T . ϑ ∗R sinc

THEORY “Sinc-Integral” 863

(t ∗ ϑ))
by (rule interval-integral-discrete-difference[of {0}]) auto

also have . . . = (LBINT t=ereal (0 ∗ ϑ)..T ∗ ϑ. sinc t)
apply (rule interval-integral-substitution-finite [OF assms])
apply (subst mult .commute, rule DERIV-subset)

by (auto intro!: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have . . . = (LBINT t=ereal (0 ∗ ϑ)..T ∗ ϑ. sin t / t)

by (rule interval-integral-discrete-difference[of {0}]) auto
finally have (LBINT t=ereal 0 ..T . sin (t ∗ ϑ) / t) = (LBINT t=ereal 0 ..T ∗

ϑ. sin t / t)
by simp

hence LBINT x . indicator {0<..<T} x ∗ sin (x ∗ ϑ) / x =
LBINT x . indicator {0<..<T ∗ ϑ} x ∗ sin x / x
using assms 〈0 < ϑ〉 unfolding interval-lebesgue-integral-def einterval-eq

zero-ereal-def
by (auto simp: ac-simps)

} note aux1 = this
{ assume 0 > ϑ

have [simp]: integrable lborel (λx . sin (x ∗ ϑ) ∗ indicator {0<..<T} x / x)
using integrable-sinc ′ [of T ϑ] assms
by (simp add : interval-lebesgue-integrable-def ac-simps)

have (LBINT t=ereal 0 ..T . sin (t ∗ −ϑ) / t) = (LBINT t=ereal 0 ..T . −ϑ ∗R
sinc (t ∗ −ϑ))

by (rule interval-integral-discrete-difference[of {0}]) auto
also have . . . = (LBINT t=ereal (0 ∗ −ϑ)..T ∗ −ϑ. sinc t)

apply (rule interval-integral-substitution-finite [OF assms])
apply (subst mult .commute, rule DERIV-subset)

by (auto intro!: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have . . . = (LBINT t=ereal (0 ∗ −ϑ)..T ∗ −ϑ. sin t / t)

by (rule interval-integral-discrete-difference[of {0}]) auto
finally have (LBINT t=ereal 0 ..T . sin (t ∗ −ϑ) / t) = (LBINT t=ereal 0 ..T

∗ −ϑ. sin t / t)
by simp

hence LBINT x . indicator {0<..<T} x ∗ sin (x ∗ ϑ) / x =
− (LBINT x . indicator {0<..<− (T ∗ ϑ)} x ∗ sin x / x)
using assms 〈0 > ϑ〉 unfolding interval-lebesgue-integral-def einterval-eq

zero-ereal-def
by (auto simp add : field-simps mult-le-0-iff split : if-split-asm)

} note aux2 = this
show ?thesis
using assms unfolding Si-def interval-lebesgue-integral-def sgn-real-def einterval-eq

zero-ereal-def
apply auto
apply (erule aux1)
apply (rule aux2)
apply auto
done

qed

THEORY “Levy” 864

end

46 The Levy inversion theorem, and the Levy con-
tinuity theorem.

theory Levy
imports Characteristic-Functions Helly-Selection Sinc-Integral

begin

lemma LIM-zero-cancel :
fixes f :: - ⇒ ′b::real-normed-vector
shows ((λx . f x − l) −−−→ 0) F =⇒ (f −−−→ l) F

unfolding tendsto-iff dist-norm by simp

46.1 The Levy inversion theorem

lemma Levy-Inversion-aux1 :
fixes a b :: real
assumes a ≤ b
shows ((λt . (iexp (−(t ∗ a)) − iexp (−(t ∗ b))) / (ii ∗ t)) −−−→ b − a) (at 0)

(is (?F −−−→ -) (at -))
proof −

have 1 : cmod (?F t − (b − a)) ≤ aˆ2 / 2 ∗ abs t + bˆ2 / 2 ∗ abs t if t 6= 0
for t

proof −
have cmod (?F t − (b − a)) = cmod (

(iexp (−(t ∗ a)) − (1 + ii ∗ −(t ∗ a))) / (ii ∗ t) −
(iexp (−(t ∗ b)) − (1 + ii ∗ −(t ∗ b))) / (ii ∗ t))

(is - = cmod (?one / (ii ∗ t) − ?two / (ii ∗ t)))
using 〈t 6= 0 〉 by (intro arg-cong [where f =norm]) (simp add : field-simps)

also have . . . ≤ cmod (?one / (ii ∗ t)) + cmod (?two / (ii ∗ t))
by (rule norm-triangle-ineq4)

also have cmod (?one / (ii ∗ t)) = cmod ?one / abs t
by (simp add : norm-divide norm-mult)

also have cmod (?two / (ii ∗ t)) = cmod ?two / abs t
by (simp add : norm-divide norm-mult)

also have cmod ?one / abs t + cmod ?two / abs t ≤
((− (a ∗ t))ˆ2 / 2) / abs t + ((− (b ∗ t))ˆ2 / 2) / abs t

apply (rule add-mono)
apply (rule divide-right-mono)

using iexp-approx1 [of −(t ∗ a) 1] apply (simp add : field-simps eval-nat-numeral)
apply force
apply (rule divide-right-mono)

using iexp-approx1 [of −(t ∗ b) 1] apply (simp add : field-simps eval-nat-numeral)
by force

also have . . . = aˆ2 / 2 ∗ abs t + bˆ2 / 2 ∗ abs t
using 〈t 6= 0 〉 apply (case-tac t ≥ 0 , simp add : field-simps power2-eq-square)

using 〈t 6= 0 〉 by (subst (1 2) abs-of-neg , auto simp add : field-simps power2-eq-square)

THEORY “Levy” 865

finally show cmod (?F t − (b − a)) ≤ aˆ2 / 2 ∗ abs t + bˆ2 / 2 ∗ abs t .
qed
show ?thesis

apply (rule LIM-zero-cancel)
apply (rule tendsto-norm-zero-cancel)
apply (rule real-LIM-sandwich-zero [OF - - 1])
apply (auto intro!: tendsto-eq-intros)
done

qed

lemma Levy-Inversion-aux2 :
fixes a b t :: real
assumes a ≤ b and t 6= 0
shows cmod ((iexp (t ∗ b) − iexp (t ∗ a)) / (ii ∗ t)) ≤ b − a (is ?F ≤ -)

proof −
have ?F = cmod (iexp (t ∗ a) ∗ (iexp (t ∗ (b − a)) − 1) / (ii ∗ t))

using 〈t 6= 0 〉 by (intro arg-cong [where f =norm]) (simp add : field-simps
exp-diff exp-minus)

also have . . . = cmod (iexp (t ∗ (b − a)) − 1) / abs t
unfolding norm-divide norm-mult norm-exp-ii-times using 〈t 6= 0 〉

by (simp add : complex-eq-iff norm-mult)
also have . . . ≤ abs (t ∗ (b − a)) / abs t

using iexp-approx1 [of t ∗ (b − a) 0]
by (intro divide-right-mono) (auto simp add : field-simps eval-nat-numeral)

also have . . . = b − a
using assms by (auto simp add : abs-mult)

finally show ?thesis .
qed

theorem (in real-distribution) Levy-Inversion:
fixes a b :: real
assumes a ≤ b
defines µ ≡ measure M and ϕ ≡ char M
assumes µ {a} = 0 and µ {b} = 0
shows (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . (iexp (−(t ∗ a)) − iexp (−(t ∗

b))) / (ii ∗ t) ∗ ϕ t))
−−−−→ µ {a<..b}
(is (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . ?F t ∗ ϕ t)) −−−−→ of-real (µ

{a<..b}))
proof −

interpret P : pair-sigma-finite lborel M ..
from bounded-Si obtain B where Bprop:

∧
T . abs (Si T) ≤ B by auto

from Bprop [of 0] have [simp]: B ≥ 0 by auto
let ?f = λt x :: real . (iexp (t ∗ (x − a)) − iexp(t ∗ (x − b))) / (ii ∗ t)
{ fix T :: real

assume T ≥ 0
let ?f ′ = λ(t , x). indicator {−T<..<T} t ∗R ?f t x
{ fix x

THEORY “Levy” 866

have 1 : complex-interval-lebesgue-integrable lborel u v (λt . ?f t x) for u v ::
real

using Levy-Inversion-aux2 [of x − b x − a]
apply (simp add : interval-lebesgue-integrable-def del : times-divide-eq-left)

apply (intro integrableI-bounded-set-indicator [where B=b − a] conjI impI)
apply (auto intro!: AE-I [of - - {0}] simp: assms)
done

have (CLBINT t . ?f ′ (t , x)) = (CLBINT t=−T ..T . ?f t x)
using 〈T ≥ 0 〉 by (simp add : interval-lebesgue-integral-def)

also have . . . = (CLBINT t=−T ..(0 :: real). ?f t x) + (CLBINT t=(0 ::
real)..T . ?f t x)

(is - = - + ?t)
using 1 by (intro interval-integral-sum[symmetric]) (simp add : min-absorb1

max-absorb2 〈T ≥ 0 〉)
also have (CLBINT t=−T ..(0 :: real). ?f t x) = (CLBINT t=(0 ::real)..T .

?f (−t) x)
by (subst interval-integral-reflect) auto

also have . . . + ?t = (CLBINT t=(0 ::real)..T . ?f (−t) x + ?f t x)
using 1

by (intro interval-lebesgue-integral-add(2) [symmetric] interval-integrable-mirror [THEN
iffD2]) simp-all

also have . . . = (CLBINT t=(0 ::real)..T . ((iexp(t ∗ (x − a)) − iexp (−(t ∗
(x − a)))) −

(iexp(t ∗ (x − b)) − iexp (−(t ∗ (x − b))))) / (ii ∗ t))
using 〈T ≥ 0 〉 by (intro interval-integral-cong) (auto simp add : divide-simps)
also have . . . = (CLBINT t=(0 ::real)..T . complex-of-real(

2 ∗ (sin (t ∗ (x − a)) / t) − 2 ∗ (sin (t ∗ (x − b)) / t)))
using 〈T ≥ 0 〉

apply (intro interval-integral-cong)
apply (simp add : field-simps cis.ctr Im-divide Re-divide Im-exp Re-exp

complex-eq-iff)
unfolding minus-diff-eq [symmetric, of y ∗ x y ∗ a for y a] sin-minus

cos-minus
apply (simp add : field-simps power2-eq-square)
done

also have . . . = complex-of-real (LBINT t=(0 ::real)..T .
2 ∗ (sin (t ∗ (x − a)) / t) − 2 ∗ (sin (t ∗ (x − b)) / t))

by (rule interval-lebesgue-integral-of-real)
also have . . . = complex-of-real (2 ∗ (sgn (x − a) ∗ Si (T ∗ abs (x − a)) −

sgn (x − b) ∗ Si (T ∗ abs (x − b))))
apply (subst interval-lebesgue-integral-diff)
apply (rule interval-lebesgue-integrable-mult-right , rule integrable-sinc ′)+
apply (subst interval-lebesgue-integral-mult-right)+
apply (simp add : zero-ereal-def [symmetric] LBINT-I0c-sin-scale-divide[OF

〈T ≥ 0 〉])
done

finally have (CLBINT t . ?f ′ (t , x)) =
2 ∗ (sgn (x − a) ∗ Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x

− b))) .

THEORY “Levy” 867

} note main-eq = this
have (CLBINT t=−T ..T . ?F t ∗ ϕ t) =

(CLBINT t . (CLINT x | M . ?F t ∗ iexp (t ∗ x) ∗ indicator {−T<..<T} t))
using 〈T ≥ 0 〉 unfolding ϕ-def char-def interval-lebesgue-integral-def
by (auto split : split-indicator intro!: integral-cong)

also have . . . = (CLBINT t . (CLINT x | M . ?f ′ (t , x)))
by (auto intro!: integral-cong simp: field-simps exp-diff exp-minus split :

split-indicator)
also have . . . = (CLINT x | M . (CLBINT t . ?f ′ (t , x)))
proof (intro P .Fubini-integral [symmetric] integrableI-bounded-set [where B=b

− a])
show emeasure (lborel

⊗
M M) ({− T<..<T} × space M) < ∞

using 〈T ≥ 0 〉

by (subst emeasure-pair-measure-Times)
(auto simp: ennreal-mult-less-top not-less top-unique)

show AE x∈{− T<..<T} × space M in lborel
⊗

M M . cmod (case x of (t ,
x) ⇒ ?f ′ (t , x)) ≤ b − a

using Levy-Inversion-aux2 [of x − b x − a for x] 〈a ≤ b〉

by (intro AE-I [of - - {0} × UNIV]) (force simp: emeasure-pair-measure-Times)+
qed (auto split : split-indicator split-indicator-asm)
also have . . . = (CLINT x | M . (complex-of-real (2 ∗ (sgn (x − a) ∗

Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))))
using main-eq by (intro integral-cong , auto)

also have . . . = complex-of-real (LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b)))))

by (rule integral-complex-of-real)
finally have (CLBINT t=−T ..T . ?F t ∗ ϕ t) =

complex-of-real (LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) .

} note main-eq2 = this

have (λT :: nat . LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) −−−−→

(LINT x | M . 2 ∗ pi ∗ indicator {a<..b} x)
proof (rule integral-dominated-convergence [where w=λx . 4 ∗ B])

show integrable M (λx . 4 ∗ B)
by (rule integrable-const-bound [of - 4 ∗ B]) auto

next
let ?S = λn::nat . λx . sgn (x − a) ∗ Si (n ∗ |x − a|) − sgn (x − b) ∗ Si (n ∗

|x − b|)
{ fix n x

have norm (?S n x) ≤ norm (sgn (x − a) ∗ Si (n ∗ |x − a|)) + norm (sgn
(x − b) ∗ Si (n ∗ |x − b|))

by (rule norm-triangle-ineq4)
also have . . . ≤ B + B

using Bprop by (intro add-mono) (auto simp: abs-mult abs-sgn-eq)
finally have norm (2 ∗ ?S n x) ≤ 4 ∗ B

by simp }
then show

∧
n. AE x in M . norm (2 ∗ ?S n x) ≤ 4 ∗ B

THEORY “Levy” 868

by auto
have AE x in M . x 6= a AE x in M . x 6= b

using prob-eq-0 [of {a}] prob-eq-0 [of {b}] 〈µ {a} = 0 〉 〈µ {b} = 0 〉 by (auto
simp: µ-def)

then show AE x in M . (λn. 2 ∗ ?S n x) −−−−→ 2 ∗ pi ∗ indicator {a<..b} x
proof eventually-elim

fix x assume x : x 6= a x 6= b
then have (λn. 2 ∗ (sgn (x − a) ∗ Si (|x − a| ∗ n) − sgn (x − b) ∗ Si (|x

− b| ∗ n)))
−−−−→ 2 ∗ (sgn (x − a) ∗ (pi / 2) − sgn (x − b) ∗ (pi / 2))

by (intro tendsto-intros filterlim-compose[OF Si-at-top]
filterlim-tendsto-pos-mult-at-top[OF tendsto-const] filterlim-real-sequentially)

auto
also have (λn. 2 ∗ (sgn (x − a) ∗ Si (|x − a| ∗ n) − sgn (x − b) ∗ Si (|x

− b| ∗ n))) = (λn. 2 ∗ ?S n x)
by (auto simp: ac-simps)

also have 2 ∗ (sgn (x − a) ∗ (pi / 2) − sgn (x − b) ∗ (pi / 2)) = 2 ∗ pi ∗
indicator {a<..b} x

using x 〈a ≤ b〉 by (auto split : split-indicator)
finally show (λn. 2 ∗ ?S n x) −−−−→ 2 ∗ pi ∗ indicator {a<..b} x .

qed
qed simp-all
also have (LINT x | M . 2 ∗ pi ∗ indicator {a<..b} x) = 2 ∗ pi ∗ µ {a<..b}

by (simp add : µ-def)
finally have (λT . LINT x | M . (2 ∗ (sgn (x − a) ∗

Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) −−−−→
2 ∗ pi ∗ µ {a<..b} .

with main-eq2 show ?thesis
by (auto intro!: tendsto-eq-intros)

qed

theorem Levy-uniqueness:
fixes M1 M2 :: real measure
assumes real-distribution M1 real-distribution M2 and

char M1 = char M2
shows M1 = M2

proof −
interpret M1 : real-distribution M1 by (rule assms)
interpret M2 : real-distribution M2 by (rule assms)
have countable ({x . measure M1 {x} 6= 0} ∪ {x . measure M2 {x} 6= 0})

by (intro countable-Un M2 .countable-support M1 .countable-support)
then have count : countable {x . measure M1 {x} 6= 0 ∨ measure M2 {x} 6= 0}

by (simp add : Un-def)

have cdf M1 = cdf M2
proof (rule ext)

fix x
from M1 .cdf-is-right-cont [of x] have (cdf M1 −−−→ cdf M1 x) (at-right x)

by (simp add : continuous-within)

THEORY “Levy” 869

from M2 .cdf-is-right-cont [of x] have (cdf M2 −−−→ cdf M2 x) (at-right x)
by (simp add : continuous-within)

{ fix ε :: real
assume ε > 0
from 〈ε > 0 〉 〈(cdf M1 −−−→ 0) at-bot 〉 〈(cdf M2 −−−→ 0) at-bot 〉

have eventually (λy . |cdf M1 y | < ε / 4 ∧ |cdf M2 y | < ε / 4 ∧ y ≤ x) at-bot
by (simp only : tendsto-iff dist-real-def diff-0-right eventually-conj eventually-le-at-bot)
then obtain M where

∧
y . y ≤ M =⇒ |cdf M1 y | < ε / 4

∧
y . y ≤ M =⇒

|cdf M2 y | < ε / 4 M ≤ x
unfolding eventually-at-bot-linorder by auto

with open-minus-countable[OF count , of {..< M }] obtain a where
measure M1 {a} = 0 measure M2 {a} = 0 a < M a ≤ x |cdf M1 a| < ε /

4 |cdf M2 a| < ε / 4
by auto

from 〈ε > 0 〉 〈(cdf M1 −−−→ cdf M1 x) (at-right x)〉 〈(cdf M2 −−−→ cdf M2
x) (at-right x)〉

have eventually (λy . |cdf M1 y − cdf M1 x | < ε / 4 ∧ |cdf M2 y − cdf M2
x | < ε / 4 ∧ x < y) (at-right x)

by (simp only : tendsto-iff dist-real-def eventually-conj eventually-at-right-less)
then obtain N where N > x

∧
y . x < y =⇒ y < N =⇒ |cdf M1 y − cdf

M1 x | < ε / 4∧
y . x < y =⇒ y < N =⇒ |cdf M2 y − cdf M2 x | < ε / 4

∧
y . x < y =⇒

y < N =⇒ x < y
by (auto simp add : eventually-at-right [OF less-add-one])

with open-minus-countable[OF count , of {x <..< N }] obtain b where x <
b b < N

measure M1 {b} = 0 measure M2 {b} = 0 |cdf M2 x − cdf M2 b| < ε /
4 |cdf M1 x − cdf M1 b| < ε / 4

by (auto simp: abs-minus-commute)
from 〈a ≤ x 〉 〈x < b〉 have a < b a ≤ b by auto

from 〈char M1 = char M2 〉

M1 .Levy-Inversion [OF 〈a ≤ b〉 〈measure M1 {a} = 0 〉 〈measure M1 {b}
= 0 〉]

M2 .Levy-Inversion [OF 〈a ≤ b〉 〈measure M2 {a} = 0 〉 〈measure M2 {b} =
0 〉]

have complex-of-real (measure M1 {a<..b}) = complex-of-real (measure M2
{a<..b})

by (intro LIMSEQ-unique) auto
then have measure M1 {a<..b} = measure M2 {a<..b} by auto
then have ∗: cdf M1 b − cdf M1 a = cdf M2 b − cdf M2 a

unfolding M1 .cdf-diff-eq [OF 〈a < b〉] M2 .cdf-diff-eq [OF 〈a < b〉] .

have abs (cdf M1 x − (cdf M1 b − cdf M1 a)) = abs (cdf M1 x − cdf M1 b
+ cdf M1 a)

by simp
also have . . . ≤ abs (cdf M1 x − cdf M1 b) + abs (cdf M1 a)

THEORY “Levy” 870

by (rule abs-triangle-ineq)
also have . . . ≤ ε / 4 + ε / 4
by (intro add-mono less-imp-le 〈|cdf M1 a| < ε / 4 〉 〈|cdf M1 x − cdf M1 b|

< ε / 4 〉)
finally have 1 : abs (cdf M1 x − (cdf M1 b − cdf M1 a)) ≤ ε / 2 by simp

have abs (cdf M2 x − (cdf M2 b − cdf M2 a)) = abs (cdf M2 x − cdf M2 b
+ cdf M2 a)

by simp
also have . . . ≤ abs (cdf M2 x − cdf M2 b) + abs (cdf M2 a)

by (rule abs-triangle-ineq)
also have . . . ≤ ε / 4 + ε / 4
by (intro add-mono less-imp-le 〈|cdf M2 x − cdf M2 b| < ε / 4 〉 〈|cdf M2 a|

< ε / 4 〉)
finally have 2 : abs (cdf M2 x − (cdf M2 b − cdf M2 a)) ≤ ε / 2 by simp

have abs (cdf M1 x − cdf M2 x) = abs ((cdf M1 x − (cdf M1 b − cdf M1 a))
−

(cdf M2 x − (cdf M2 b − cdf M2 a))) by (subst ∗, simp)
also have . . . ≤ abs (cdf M1 x − (cdf M1 b − cdf M1 a)) +

abs (cdf M2 x − (cdf M2 b − cdf M2 a)) by (rule abs-triangle-ineq4)
also have . . . ≤ ε / 2 + ε / 2 by (rule add-mono [OF 1 2])
finally have abs (cdf M1 x − cdf M2 x) ≤ ε by simp }

then show cdf M1 x = cdf M2 x
by (metis abs-le-zero-iff dense-ge eq-iff-diff-eq-0)

qed
thus ?thesis

by (rule cdf-unique [OF 〈real-distribution M1 〉 〈real-distribution M2 〉])
qed

46.2 The Levy continuity theorem

theorem levy-continuity1 :
fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes

∧
n. real-distribution (M n) real-distribution M ′ weak-conv-m M M ′

shows (λn. char (M n) t) −−−−→ char M ′ t
unfolding char-def using assms by (rule weak-conv-imp-integral-bdd-continuous-conv)

auto

theorem levy-continuity :
fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes real-distr-M :

∧
n. real-distribution (M n)

and real-distr-M ′: real-distribution M ′

and char-conv :
∧

t . (λn. char (M n) t) −−−−→ char M ′ t
shows weak-conv-m M M ′

proof −
interpret Mn: real-distribution M n for n by fact
interpret M ′: real-distribution M ′ by fact

THEORY “Levy” 871

have ∗:
∧

u x . u > 0 =⇒ x 6= 0 =⇒ (CLBINT t :{−u..u}. 1 − iexp (t ∗ x)) =
2 ∗ (u − sin (u ∗ x) / x)

proof −
fix u :: real and x :: real
assume u > 0 and x 6= 0
hence (CLBINT t :{−u..u}. 1 − iexp (t ∗ x)) = (CLBINT t=−u..u. 1 − iexp

(t ∗ x))
by (subst interval-integral-Icc, auto)

also have . . . = (CLBINT t=−u..0 . 1 − iexp (t ∗ x)) + (CLBINT t=0 ..u. 1
− iexp (t ∗ x))

using 〈u > 0 〉

apply (subst interval-integral-sum)
apply (simp add : min-absorb1 min-absorb2 max-absorb1 max-absorb2)
apply (rule interval-integrable-isCont)
apply auto
done
also have . . . = (CLBINT t=ereal 0 ..u. 1 − iexp (t ∗ −x)) + (CLBINT

t=ereal 0 ..u. 1 − iexp (t ∗ x))
apply (subgoal-tac 0 = ereal 0 , erule ssubst)
by (subst interval-integral-reflect , auto)

also have . . . = (LBINT t=ereal 0 ..u. 2 − 2 ∗ cos (t ∗ x))
apply (subst interval-lebesgue-integral-add (2) [symmetric])
apply ((rule interval-integrable-isCont , auto)+) [2]
unfolding exp-Euler cos-of-real
apply (simp add : of-real-mult interval-lebesgue-integral-of-real [symmetric])
done

also have . . . = 2 ∗ u − 2 ∗ sin (u ∗ x) / x
by (subst interval-lebesgue-integral-diff)

(auto intro!: interval-integrable-isCont
simp: interval-lebesgue-integral-of-real integral-cos [OF 〈x 6= 0 〉]

mult .commute[of - x])
finally show (CLBINT t :{−u..u}. 1 − iexp (t ∗ x)) = 2 ∗ (u − sin (u ∗ x)

/ x)
by (simp add : field-simps)

qed
have main-bound :

∧
u n. u > 0 =⇒ Re (CLBINT t :{−u..u}. 1 − char (M n)

t) ≥
u ∗ measure (M n) {x . abs x ≥ 2 / u}

proof −
fix u :: real and n
assume u > 0
interpret P : pair-sigma-finite M n lborel ..

have Mn1 [simp]: measure (M n) UNIV = 1 by (metis Mn.prob-space Mn.space-eq-univ)

have Mn2 [simp]:
∧

x . complex-integrable (M n) (λt . exp (i ∗ complex-of-real
(x ∗ t)))

by (rule Mn.integrable-const-bound [where B = 1], auto)
have Mn3 : set-integrable (M n

⊗
M lborel) (UNIV × {− u..u}) (λa. 1 − exp

THEORY “Levy” 872

(i ∗ complex-of-real (snd a ∗ fst a)))
using 〈0 < u〉

by (intro integrableI-bounded-set-indicator [where B=2])
(auto simp: lborel .emeasure-pair-measure-Times ennreal-mult-less-top not-less

top-unique
split : split-indicator
intro!: order-trans [OF norm-triangle-ineq4])

have (CLBINT t :{−u..u}. 1 − char (M n) t) =
(CLBINT t :{−u..u}. (CLINT x | M n. 1 − iexp (t ∗ x)))

unfolding char-def by (rule set-lebesgue-integral-cong , auto simp del : of-real-mult)
also have . . . = (CLBINT t . (CLINT x | M n. indicator {−u..u} t ∗R (1 −

iexp (t ∗ x))))
by (rule integral-cong) (auto split : split-indicator)

also have . . . = (CLINT x | M n. (CLBINT t :{−u..u}. 1 − iexp (t ∗ x)))
using Mn3 by (subst P .Fubini-integral) (auto simp: indicator-times split-beta ′)
also have . . . = (CLINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x)

/ x)))
using 〈u > 0 〉 by (intro integral-cong , auto simp add : ∗ simp del : of-real-mult)

also have . . . = (LINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) /
x)))

by (rule integral-complex-of-real)
finally have Re (CLBINT t :{−u..u}. 1 − char (M n) t) =

(LINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) / x))) by simp
also have . . . ≥ (LINT x : {x . abs x ≥ 2 / u} | M n. u)
proof −

have complex-integrable (M n) (λx . CLBINT t :{−u..u}. 1 − iexp (snd (x ,
t) ∗ fst (x , t)))

using Mn3 by (intro P .integrable-fst) (simp add : indicator-times split-beta ′)
hence complex-integrable (M n) (λx . if x = 0 then 0 else 2 ∗ (u − sin (u ∗

x) / x))
using 〈u > 0 〉 by (subst integrable-cong) (auto simp add : ∗ simp del :

of-real-mult)
hence ∗∗: integrable (M n) (λx . if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) /

x))
unfolding complex-of-real-integrable-eq .

have 2 ∗ sin x ≤ x if 2 ≤ x for x :: real
by (rule order-trans[OF - 〈2 ≤ x 〉]) auto

moreover have x ≤ 2 ∗ sin x if x ≤ − 2 for x :: real
by (rule order-trans[OF 〈x ≤ − 2 〉]) auto

moreover have x < 0 =⇒ x ≤ sin x for x :: real
using sin-x-le-x [of −x] by simp

ultimately show ?thesis
using 〈u > 0 〉

by (intro integral-mono [OF - ∗∗])
(auto simp: divide-simps sin-x-le-x mult .commute[of u] mult-neg-pos

top-unique less-top[symmetric]
split : split-indicator)

qed
also (xtrans) have (LINT x : {x . abs x ≥ 2 / u} | M n. u) =

THEORY “Levy” 873

u ∗ measure (M n) {x . abs x ≥ 2 / u}
by (simp add : Mn.emeasure-eq-measure)

finally show Re (CLBINT t :{−u..u}. 1 − char (M n) t) ≥ u ∗ measure (M
n) {x . abs x ≥ 2 / u} .

qed

have tight-aux :
∧
ε. ε > 0 =⇒ ∃ a b. a < b ∧ (∀n. 1 − ε < measure (M n)

{a<..b})
proof −

fix ε :: real
assume ε > 0
note M ′.isCont-char [of 0]
hence ∃ d>0 . ∀ t . abs t < d −→ cmod (char M ′ t − 1) < ε / 4

apply (subst (asm) continuous-at-eps-delta)
apply (drule-tac x = ε / 4 in spec)
using 〈ε > 0 〉 by (auto simp add : dist-real-def dist-complex-def M ′.char-zero)

then obtain d where d > 0 ∧ (∀ t . (abs t < d −→ cmod (char M ′ t − 1) <
ε / 4)) ..

hence d0 : d > 0 and d1 :
∧

t . abs t < d =⇒ cmod (char M ′ t − 1) < ε / 4
by auto

have 1 :
∧

x . cmod (1 − char M ′ x) ≤ 2
by (rule order-trans [OF norm-triangle-ineq4], auto simp add : M ′.cmod-char-le-1)
then have 2 :

∧
u v . complex-set-integrable lborel {u..v} (λx . 1 − char M ′ x)

by (intro integrableI-bounded-set-indicator [where B=2]) (auto simp: emeasure-lborel-Icc-eq)
have 3 :

∧
u v . set-integrable lborel {u..v} (λx . cmod (1 − char M ′ x))

by (intro borel-integrable-compact [OF compact-Icc] continuous-at-imp-continuous-on
continuous-intros ballI M ′.isCont-char continuous-intros)

have cmod (CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t) ≤ LBINT t :{−d/2 ..d/2}.
cmod (1 − char M ′ t)

using integral-norm-bound [OF 2] by simp
also have . . . ≤ LBINT t :{−d/2 ..d/2}. ε / 4

apply (rule integral-mono [OF 3])
apply (simp add : emeasure-lborel-Icc-eq)
apply (case-tac x ∈ {−d/2 ..d/2}, auto)
apply (subst norm-minus-commute)
apply (rule less-imp-le)
apply (rule d1 [simplified])
using d0 by auto

also with d0 have . . . = d ∗ ε / 4
by simp

finally have bound : cmod (CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t) ≤ d ∗ ε
/ 4 .
{ fix n x

have cmod (1 − char (M n) x) ≤ 2
by (rule order-trans [OF norm-triangle-ineq4], auto simp add : Mn.cmod-char-le-1)
} note bd1 = this
have (λn. CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) −−−−→ (CLBINT

t :{−d/2 ..d/2}. 1 − char M ′ t)
using bd1

THEORY “Levy” 874

apply (intro integral-dominated-convergence[where w=λx . indicator {−d/2 ..d/2}
x ∗R 2])

apply (auto intro!: char-conv tendsto-intros
simp: emeasure-lborel-Icc-eq
split : split-indicator)

done
hence eventually (λn. cmod ((CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) −

(CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4) sequentially
using d0 〈ε > 0 〉 apply (subst (asm) tendsto-iff)
by (subst (asm) dist-complex-def , drule spec, erule mp, auto)

hence ∃N . ∀n ≥ N . cmod ((CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) −
(CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4 by (simp add :

eventually-sequentially)
then guess N ..
hence N :

∧
n. n ≥ N =⇒ cmod ((CLBINT t :{−d/2 ..d/2}. 1 − char (M n)

t) −
(CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4 by auto

{ fix n
assume n ≥ N
have cmod (CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) =
cmod ((CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) − (CLBINT t :{−d/2 ..d/2}.

1 − char M ′ t)
+ (CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t)) by simp

also have . . . ≤ cmod ((CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) −
(CLBINT t :{−d/2 ..d/2}. 1 − char M ′ t)) + cmod(CLBINT t :{−d/2 ..d/2}.

1 − char M ′ t)
by (rule norm-triangle-ineq)

also have . . . < d ∗ ε / 4 + d ∗ ε / 4
by (rule add-less-le-mono [OF N [OF 〈n ≥ N 〉] bound])

also have . . . = d ∗ ε / 2 by auto
finally have cmod (CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t) < d ∗ ε /

2 .
hence d ∗ ε / 2 > Re (CLBINT t :{−d/2 ..d/2}. 1 − char (M n) t)

by (rule order-le-less-trans [OF complex-Re-le-cmod])
hence d ∗ ε / 2 > Re (CLBINT t :{−(d/2)..d/2}. 1 − char (M n) t) (is -

> ?lhs) by simp
also have ?lhs ≥ (d / 2) ∗ measure (M n) {x . abs x ≥ 2 / (d / 2)}

using d0 by (intro main-bound , simp)
finally (xtrans) have d ∗ ε / 2 > (d / 2) ∗ measure (M n) {x . abs x ≥ 2 /

(d / 2)} .
with d0 〈ε > 0 〉 have ε > measure (M n) {x . abs x ≥ 2 / (d / 2)} by (simp

add : field-simps)
hence ε > 1 − measure (M n) (UNIV − {x . abs x ≥ 2 / (d / 2)})

apply (subst Mn.borel-UNIV [symmetric])
by (subst Mn.prob-compl , auto)

also have UNIV − {x . abs x ≥ 2 / (d / 2)} = {x . −(4 / d) < x ∧ x < (4
/ d)}

using d0 apply (auto simp add : field-simps)

THEORY “Levy” 875

apply (case-tac x ≥ 0 , auto simp add : field-simps)
apply (subgoal-tac 0 ≤ x ∗ d , arith, rule mult-nonneg-nonneg , auto)
apply (case-tac x ≥ 0 , auto simp add : field-simps)
apply (subgoal-tac x ∗ d ≤ 0 , arith)
apply (rule mult-nonpos-nonneg , auto)
by (case-tac x ≥ 0 , auto simp add : field-simps)

finally have measure (M n) {x . −(4 / d) < x ∧ x < (4 / d)} > 1 − ε
by auto

} note 6 = this
{ fix n :: nat

have ∗: (UN (k :: nat). {− real k<..real k}) = UNIV
by (auto, metis leI le-less-trans less-imp-le minus-less-iff reals-Archimedean2)
have (λk . measure (M n) {− real k<..real k}) −−−−→

measure (M n) (UN (k :: nat). {− real k<..real k})
by (rule Mn.finite-Lim-measure-incseq , auto simp add : incseq-def)

hence (λk . measure (M n) {− real k<..real k}) −−−−→ 1
using Mn.prob-space unfolding ∗ Mn.borel-UNIV by simp

hence eventually (λk . measure (M n) {− real k<..real k} > 1 − ε) sequentially
apply (elim order-tendstoD (1))
using 〈ε > 0 〉 by auto

} note 7 = this
{ fix n :: nat

have eventually (λk . ∀m < n. measure (M m) {− real k<..real k} > 1 − ε)
sequentially

(is ?P n)
proof (induct n)

case (Suc n) with 7 [of n] show ?case
by eventually-elim (auto simp add : less-Suc-eq)

qed simp
} note 8 = this
from 8 [of N] have ∃K :: nat . ∀ k ≥ K . ∀m<N . 1 − ε <

Sigma-Algebra.measure (M m) {− real k<..real k}
by (auto simp add : eventually-sequentially)

hence ∃K :: nat . ∀m<N . 1 − ε < Sigma-Algebra.measure (M m) {− real
K<..real K} by auto

then obtain K :: nat where
∀m<N . 1 − ε < Sigma-Algebra.measure (M m) {− real K<..real K} ..

hence K :
∧

m. m < N =⇒ 1 − ε < Sigma-Algebra.measure (M m) {− real
K<..real K}

by auto
let ?K ′ = max K (4 / d)
have −?K ′ < ?K ′ ∧ (∀n. 1 − ε < measure (M n) {−?K ′<..?K ′})

using d0 apply auto
apply (rule max .strict-coboundedI2 , auto)

proof −
fix n
show 1 − ε < measure (M n) {− max (real K) (4 / d)<..max (real K) (4

/ d)}
apply (case-tac n < N)

THEORY “Central-Limit-Theorem” 876

apply (rule order-less-le-trans)
apply (erule K)
apply (rule Mn.finite-measure-mono, auto)
apply (rule order-less-le-trans)
apply (rule 6 , erule leI)
by (rule Mn.finite-measure-mono, auto)

qed
thus ∃ a b. a < b ∧ (∀n. 1 − ε < measure (M n) {a<..b}) by (intro exI)

qed
have tight : tight M

by (auto simp: tight-def intro: assms tight-aux)
show ?thesis
proof (rule tight-subseq-weak-converge [OF real-distr-M real-distr-M ′ tight])

fix s ν
assume s: subseq s
assume nu: weak-conv-m (M ◦ s) ν
assume ∗: real-distribution ν
have 2 :

∧
n. real-distribution ((M ◦ s) n) unfolding comp-def by (rule assms)

have 3 :
∧

t . (λn. char ((M ◦ s) n) t) −−−−→ char ν t by (intro levy-continuity1
[OF 2 ∗ nu])

have 4 :
∧

t . (λn. char ((M ◦ s) n) t) = ((λn. char (M n) t) ◦ s) by (rule ext ,
simp)

have 5 :
∧

t . (λn. char ((M ◦ s) n) t) −−−−→ char M ′ t
by (subst 4 , rule LIMSEQ-subseq-LIMSEQ [OF - s], rule assms)

hence char ν = char M ′ by (intro ext , intro LIMSEQ-unique [OF 3 5])
hence ν = M ′ by (rule Levy-uniqueness [OF ∗ 〈real-distribution M ′〉])
thus weak-conv-m (M ◦ s) M ′

by (elim subst) (rule nu)
qed

qed

end

47 The Central Limit Theorem

theory Central-Limit-Theorem
imports Levy

begin

theorem (in prob-space) central-limit-theorem:
fixes X :: nat ⇒ ′a ⇒ real

and µ :: real measure
and σ :: real
and S :: nat ⇒ ′a ⇒ real

assumes X-indep: indep-vars (λi . borel) X UNIV
and X-integrable:

∧
n. integrable M (X n)

and X-mean-0 :
∧

n. expectation (X n) = 0
and σ-pos: σ > 0
and X-square-integrable:

∧
n. integrable M (λx . (X n x)2)

THEORY “Central-Limit-Theorem” 877

and X-variance:
∧

n. variance (X n) = σ2

and X-distrib:
∧

n. distr M borel (X n) = µ
defines S n ≡ λx .

∑
i<n. X i x

shows weak-conv-m (λn. distr M borel (λx . S n x / sqrt (n ∗ σ2))) std-normal-distribution
proof −

let ?S ′ = λn x . S n x / sqrt (real n ∗ σ2)
def ϕ ≡ λn. char (distr M borel (?S ′ n))
def ψ ≡ λn t . char µ (t / sqrt (σ2 ∗ n))

have X-rv [simp, measurable]:
∧

n. random-variable borel (X n)
using X-indep unfolding indep-vars-def2 by simp

interpret µ: real-distribution µ
by (subst X-distrib [symmetric, of 0], rule real-distribution-distr , simp)

have µ-integrable [simp]: integrable µ (λx . x)
and µ-mean-integrable [simp]: µ.expectation (λx . x) = 0
and µ-square-integrable [simp]: integrable µ (λx . xˆ2)
and µ-variance [simp]: µ.expectation (λx . xˆ2) = σ2

using assms by (simp-all add : X-distrib [symmetric, of 0] integrable-distr-eq
integral-distr)

have main: ∀ F n in sequentially .
cmod (ϕ n t − (1 + (−(tˆ2) / 2) / n)ˆn) ≤
t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x 2) (|t / sqrt (σ2 ∗ n)| ∗ |x | ˆ 3)) for t

proof (rule eventually-sequentiallyI)
fix n :: nat
assume n ≥ nat (ceiling (tˆ2 / 4))
hence n: n ≥ tˆ2 / 4 by (subst nat-ceiling-le-eq [symmetric])
let ?t = t / sqrt (σ2 ∗ n)

def ψ ′ ≡ λn i . char (distr M borel (λx . X i x / sqrt (σ2 ∗ n)))
have ∗:

∧
n i t . ψ ′ n i t = ψ n t

unfolding ψ-def ψ ′-def char-def
by (subst X-distrib [symmetric]) (auto simp: integral-distr)

have ϕ n t = char (distr M borel (λx .
∑

i<n. X i x / sqrt (σ2 ∗ real n))) t
by (auto simp: ϕ-def S-def setsum-divide-distrib ac-simps)

also have . . . = (
∏

i < n. ψ ′ n i t)
unfolding ψ ′-def
apply (rule char-distr-setsum)
apply (rule indep-vars-compose2 [where X =X])
apply (rule indep-vars-subset)
apply (rule X-indep)
apply auto
done

also have . . . = (ψ n t)ˆn
by (auto simp add : ∗ setprod-constant)

finally have ϕ-eq : ϕ n t =(ψ n t)ˆn .

THEORY “Central-Limit-Theorem” 878

have norm (ψ n t − (1 − ?tˆ2 ∗ σ2 / 2)) ≤ ?t2 / 6 ∗ (LINT x |µ. min (6 ∗
x 2) (|?t | ∗ |x | ˆ 3))

unfolding ψ-def by (rule µ.char-approx3 , auto)
also have ?tˆ2 ∗ σ2 = tˆ2 / n

using σ-pos by (simp add : power-divide)
also have tˆ2 / n / 2 = (tˆ2 / 2) / n

by simp
finally have ∗∗: norm (ψ n t − (1 + (−(tˆ2) / 2) / n)) ≤

?t2 / 6 ∗ (LINT x |µ. min (6 ∗ x 2) (|?t | ∗ |x | ˆ 3)) by simp

have norm (ϕ n t − (complex-of-real (1 + (−(tˆ2) / 2) / n))ˆn) ≤
n ∗ norm (ψ n t − (complex-of-real (1 + (−(tˆ2) / 2) / n)))

using n
by (auto intro!: norm-power-diff µ.cmod-char-le-1 abs-leI

simp del : of-real-diff simp: of-real-diff [symmetric] divide-le-eq ϕ-eq
ψ-def)

also have . . . ≤ n ∗ (?t2 / 6 ∗ (LINT x |µ. min (6 ∗ x 2) (|?t | ∗ |x | ˆ 3)))
by (rule mult-left-mono [OF ∗∗], simp)

also have . . . = (t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x 2) (|?t | ∗ |x | ˆ 3)))
using σ-pos by (simp add : field-simps min-absorb2)

finally show norm (ϕ n t − (1 + (−(tˆ2) / 2) / n)ˆn) ≤
(t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x 2) (|?t | ∗ |x | ˆ 3)))

by simp
qed

show ?thesis
proof (rule levy-continuity)

fix t
let ?t = λn. t / sqrt (σ2 ∗ n)
have

∧
x . (λn. min (6 ∗ x 2) (|t | ∗ |x | ˆ 3 / |sqrt (σ2 ∗ real n)|)) −−−−→ 0

using σ-pos
by (auto simp: real-sqrt-mult min-absorb2

intro!: tendsto-min[THEN tendsto-eq-rhs] sqrt-at-top[THEN filterlim-compose]
filterlim-tendsto-pos-mult-at-top filterlim-at-top-imp-at-infinity
tendsto-divide-0 filterlim-real-sequentially)

then have (λn. LINT x |µ. min (6 ∗ x 2) (|?t n| ∗ |x | ˆ 3)) −−−−→ (LINT x |µ.
0)

by (intro integral-dominated-convergence [where w = λx . 6 ∗ xˆ2]) auto
then have ∗: (λn. t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x 2) (|?t n| ∗ |x | ˆ 3)))

−−−−→ 0
by (simp only : integral-zero tendsto-mult-right-zero)

have (λn. complex-of-real ((1 + (−(tˆ2) / 2) / n)ˆn)) −−−−→ complex-of-real
(exp (−(tˆ2) / 2))

by (rule isCont-tendsto-compose [OF - tendsto-exp-limit-sequentially]) auto
then have (λn. ϕ n t) −−−−→ complex-of-real (exp (−(tˆ2) / 2))

by (rule Lim-transform) (rule Lim-null-comparison [OF main ∗])
then show (λn. char (distr M borel (?S ′ n)) t) −−−−→ char std-normal-distribution

THEORY “Probability” 879

t
by (simp add : ϕ-def char-std-normal-distribution)

qed (auto intro!: real-dist-normal-dist simp: S-def)
qed

end

theory Probability
imports

Discrete-Topology
Complete-Measure
Projective-Limit
Probability-Mass-Function
Stream-Space
Embed-Measure
Central-Limit-Theorem

begin

end

	Handling Disjoint Sets
	Set of Disjoint Sets
	Family of Disjoint Sets

	Construct Disjoint Sequences

	Describing measurable sets
	Families of sets
	Semiring of sets
	Restricted algebras
	Sigma Algebras
	Binary Unions
	Initial Sigma Algebra
	Ring generated by a semiring
	A Two-Element Series
	Closed CDI
	Dynkin systems
	Intersection sets systems
	Smallest Dynkin systems
	Induction rule for intersection-stable generators

	Measure type
	Constructing simple 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua measure
	Measurable functions
	Counting space
	Extend measure
	Supremum of a set of -algebras

	The smallest -algebra regarding a function
	Restricted Space Sigma Algebra

	Measurability prover
	Measurability for (co)inductive predicates

	Measure spaces and their properties
	Relate extended reals and the indicator function
	Extend binary sets
	Properties of a premeasure 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 emeasure
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -null sets
	The almost everywhere filter (i.e. quantifier)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -finite Measures
	Measure space induced by distribution of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 op M-functions
	Real measure values
	Measure spaces with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 emeasure M (space M) <
	Counting space
	Measure restricted to space
	Null measure
	Scaling a measure
	Measures form a chain-complete partial order

	Borel spaces
	Generic Borel spaces
	Borel spaces on order topologies
	Borel spaces on topological monoids
	Borel spaces on Euclidean spaces
	Borel measurable operators
	Borel space on the extended reals
	Borel space on the extended non-negative reals
	LIMSEQ is borel measurable

	Lebesgue Integration for Nonnegative Functions
	Simple function
	Simple integral
	Integral on nonnegative functions
	Integral under concrete measures
	Distributions
	Counting space
	Measures with Restricted Space
	Measure spaces with an associated density
	Point measure
	Uniform measure
	Null measure
	Uniform count measure
	Scaled measure

	Binary product measures
	Binary products
	Binary products of -finite emeasure spaces
	Fubinis theorem
	Products on counting spaces, densities and distributions
	Product of Borel spaces

	Finite product measures
	More about Function restricted by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extensional
	Finite product spaces
	Products

	Bochner Integration for Vector-Valued Functions
	Restricted measure spaces
	Measure spaces with an associated density
	Distributions
	Lebesgue integration on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count-space
	Point measure
	Lebesgue integration on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 null-measure
	Legacy lemmas for the real-valued Lebesgue integral
	Product measure

	Caratheodory Extension Theorem
	Characterizations of Measures
	Lambda Systems

	Caratheodory's theorem
	Volumes
	Caratheodory on semirings

	Lebesgue measure
	Every right continuous and nondecreasing function gives rise to a measure
	Lebesgue-Borel measure
	Affine transformation on the Lebesgue-Borel
	Equivalence Lebesgue integral on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lborel and HK-integral
	Fundamental Theorem of Calculus for the Lebesgue integral
	Integration by parts

	Radon-Nikodým derivative
	Absolutely continuous
	Existence of the Radon-Nikodym derivative
	Uniqueness of densities
	Radon-Nikodym derivative

	Probability measure
	Introduce binder for probability
	Distributions

	Finite Maps
	Domain and Application
	Countable Finite Maps
	Constructor of Finite Maps
	Product set of Finite Maps
	Basic Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Pi2mu'-2mu

	Topological Space of Finite Maps
	Metric Space of Finite Maps
	Complete Space of Finite Maps
	Second Countable Space of Finite Maps
	Polish Space of Finite Maps
	Product Measurable Space of Finite Maps
	Isomorphism between Functions and Finite Maps

	Regularity of Measures
	Integration by Substition
	Adhoc overloading of constants based on their types
	Monad notation for arbitrary types
	Sub-probability spaces
	Properties of return
	Join
	Measures form a -chain complete partial order
	Projective Family
	Infinite Product Measure
	Sequence space

	Projective Limit
	Sequences of Finite Maps in Compact Sets
	Daniell-Kolmogorov Theorem

	Probability mass function
	PMF as measure
	Monad Interpretation
	PMFs as function
	Conditional Probabilities
	Relator
	Distributions
	Bernoulli Distribution
	Geometric Distribution
	Uniform Multiset Distribution
	Uniform Distribution
	Poisson Distribution
	Binomial Distribution

	Infinite Streams
	prepend list to stream
	set of streams with elements in some fixed set
	nth, take, drop for streams
	unary predicates lifted to streams
	recurring stream out of a list
	iterated application of a function
	stream repeating a single element
	stream of natural numbers
	flatten a stream of lists
	merge a stream of streams
	product of two streams
	interleave two streams
	zip
	zip via function

	List prefixes, suffixes, and homeomorphic embedding
	Prefix order on lists
	Basic properties of prefixes
	Parallel lists
	Suffix order on lists
	Homeomorphic embedding on lists
	Sublists (special case of homeomorphic embedding)
	Appending elements
	Relation to standard list operations

	Linear Temporal Logic on Streams
	Preliminaries
	Linear temporal logic
	Embed Measure Spaces with a Function
	Non-denumerability of the Continuum.
	Abstract

	Distribution Functions
	Properties of cdf's
	uniqueness

	Weak Convergence of Functions and Distributions
	Weak Convergence of Functions
	Weak Convergence of Distributions
	Skorohod's theorem
	Independent families of events, event sets, and random variables
	Convolution Measure
	Information theory
	Information theory
	Kullback-Leibler divergence
	Finite Entropy
	Mutual Information
	Entropy
	Conditional Mutual Information
	Conditional Entropy
	Equalities

	Properties of Various Distributions
	Erlang
	Exponential distribution
	Uniform distribution
	Normal distribution

	Characteristic Functions
	Application of the FTC: integrating eix
	The Characteristic Function of a Real Measure.
	Independence
	Approximations to eix
	Calculation of the Characteristic Function of the Standard Distribution

	Helly's selection theorem
	Integral of sinc
	Various preparatory integrals

	The sinc function, and the sine integral (Si)
	The final theorems: boundedness and scalability

	The Levy inversion theorem, and the Levy continuity theorem.
	The Levy inversion theorem
	The Levy continuity theorem

	The Central Limit Theorem

