theory Set_Integral
imports Bochner_Integration Lebesgue_Measure
begin
abbreviation "set_borel_measurable M A f ≡ (λx. indicator A x *⇩R f x) ∈ borel_measurable M"
abbreviation "set_integrable M A f ≡ integrable M (λx. indicator A x *⇩R f x)"
abbreviation "set_lebesgue_integral M A f ≡ lebesgue_integral M (λx. indicator A x *⇩R f x)"
syntax
"_ascii_set_lebesgue_integral" :: "pttrn ⇒ 'a set ⇒ 'a measure ⇒ real ⇒ real"
("(4LINT (_):(_)/|(_)./ _)" [0,60,110,61] 60)
translations
"LINT x:A|M. f" == "CONST set_lebesgue_integral M A (λx. f)"
abbreviation
"set_almost_everywhere A M P ≡ AE x in M. x ∈ A ⟶ P x"
syntax
"_set_almost_everywhere" :: "pttrn ⇒ 'a set ⇒ 'a ⇒ bool ⇒ bool"
("AE _∈_ in _./ _" [0,0,0,10] 10)
translations
"AE x∈A in M. P" == "CONST set_almost_everywhere A M (λx. P)"
syntax
"_lebesgue_borel_integral" :: "pttrn ⇒ real ⇒ real"
("(2LBINT _./ _)" [0,60] 60)
translations
"LBINT x. f" == "CONST lebesgue_integral CONST lborel (λx. f)"
syntax
"_set_lebesgue_borel_integral" :: "pttrn ⇒ real set ⇒ real ⇒ real"
("(3LBINT _:_./ _)" [0,60,61] 60)
translations
"LBINT x:A. f" == "CONST set_lebesgue_integral CONST lborel A (λx. f)"
lemma set_borel_measurable_sets:
fixes f :: "_ ⇒ _::real_normed_vector"
assumes "set_borel_measurable M X f" "B ∈ sets borel" "X ∈ sets M"
shows "f -` B ∩ X ∈ sets M"
proof -
have "f ∈ borel_measurable (restrict_space M X)"
using assms by (subst borel_measurable_restrict_space_iff) auto
then have "f -` B ∩ space (restrict_space M X) ∈ sets (restrict_space M X)"
by (rule measurable_sets) fact
with ‹X ∈ sets M› show ?thesis
by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space)
qed
lemma set_lebesgue_integral_cong:
assumes "A ∈ sets M" and "∀x. x ∈ A ⟶ f x = g x"
shows "(LINT x:A|M. f x) = (LINT x:A|M. g x)"
using assms by (auto intro!: integral_cong split: split_indicator simp add: sets.sets_into_space)
lemma set_lebesgue_integral_cong_AE:
assumes [measurable]: "A ∈ sets M" "f ∈ borel_measurable M" "g ∈ borel_measurable M"
assumes "AE x ∈ A in M. f x = g x"
shows "LINT x:A|M. f x = LINT x:A|M. g x"
proof-
have "AE x in M. indicator A x *⇩R f x = indicator A x *⇩R g x"
using assms by auto
thus ?thesis by (intro integral_cong_AE) auto
qed
lemma set_integrable_cong_AE:
"f ∈ borel_measurable M ⟹ g ∈ borel_measurable M ⟹
AE x ∈ A in M. f x = g x ⟹ A ∈ sets M ⟹
set_integrable M A f = set_integrable M A g"
by (rule integrable_cong_AE) auto
lemma set_integrable_subset:
fixes M A B and f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "set_integrable M A f" "B ∈ sets M" "B ⊆ A"
shows "set_integrable M B f"
proof -
have "set_integrable M B (λx. indicator A x *⇩R f x)"
by (rule integrable_mult_indicator) fact+
with ‹B ⊆ A› show ?thesis
by (simp add: indicator_inter_arith[symmetric] Int_absorb2)
qed
lemma set_integral_scaleR_right [simp]: "LINT t:A|M. a *⇩R f t = a *⇩R (LINT t:A|M. f t)"
by (subst integral_scaleR_right[symmetric]) (auto intro!: integral_cong)
lemma set_integral_mult_right [simp]:
fixes a :: "'a::{real_normed_field, second_countable_topology}"
shows "LINT t:A|M. a * f t = a * (LINT t:A|M. f t)"
by (subst integral_mult_right_zero[symmetric]) (auto intro!: integral_cong)
lemma set_integral_mult_left [simp]:
fixes a :: "'a::{real_normed_field, second_countable_topology}"
shows "LINT t:A|M. f t * a = (LINT t:A|M. f t) * a"
by (subst integral_mult_left_zero[symmetric]) (auto intro!: integral_cong)
lemma set_integral_divide_zero [simp]:
fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
shows "LINT t:A|M. f t / a = (LINT t:A|M. f t) / a"
by (subst integral_divide_zero[symmetric], intro integral_cong)
(auto split: split_indicator)
lemma set_integrable_scaleR_right [simp, intro]:
shows "(a ≠ 0 ⟹ set_integrable M A f) ⟹ set_integrable M A (λt. a *⇩R f t)"
unfolding scaleR_left_commute by (rule integrable_scaleR_right)
lemma set_integrable_scaleR_left [simp, intro]:
fixes a :: "_ :: {banach, second_countable_topology}"
shows "(a ≠ 0 ⟹ set_integrable M A f) ⟹ set_integrable M A (λt. f t *⇩R a)"
using integrable_scaleR_left[of a M "λx. indicator A x *⇩R f x"] by simp
lemma set_integrable_mult_right [simp, intro]:
fixes a :: "'a::{real_normed_field, second_countable_topology}"
shows "(a ≠ 0 ⟹ set_integrable M A f) ⟹ set_integrable M A (λt. a * f t)"
using integrable_mult_right[of a M "λx. indicator A x *⇩R f x"] by simp
lemma set_integrable_mult_left [simp, intro]:
fixes a :: "'a::{real_normed_field, second_countable_topology}"
shows "(a ≠ 0 ⟹ set_integrable M A f) ⟹ set_integrable M A (λt. f t * a)"
using integrable_mult_left[of a M "λx. indicator A x *⇩R f x"] by simp
lemma set_integrable_divide [simp, intro]:
fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
assumes "a ≠ 0 ⟹ set_integrable M A f"
shows "set_integrable M A (λt. f t / a)"
proof -
have "integrable M (λx. indicator A x *⇩R f x / a)"
using assms by (rule integrable_divide_zero)
also have "(λx. indicator A x *⇩R f x / a) = (λx. indicator A x *⇩R (f x / a))"
by (auto split: split_indicator)
finally show ?thesis .
qed
lemma set_integral_add [simp, intro]:
fixes f g :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "set_integrable M A f" "set_integrable M A g"
shows "set_integrable M A (λx. f x + g x)"
and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)"
using assms by (simp_all add: scaleR_add_right)
lemma set_integral_diff [simp, intro]:
assumes "set_integrable M A f" "set_integrable M A g"
shows "set_integrable M A (λx. f x - g x)" and "LINT x:A|M. f x - g x =
(LINT x:A|M. f x) - (LINT x:A|M. g x)"
using assms by (simp_all add: scaleR_diff_right)
lemma set_integral_reflect:
fixes S and f :: "real ⇒ 'a :: {banach, second_countable_topology}"
shows "(LBINT x : S. f x) = (LBINT x : {x. - x ∈ S}. f (- x))"
using assms
by (subst lborel_integral_real_affine[where c="-1" and t=0])
(auto intro!: integral_cong split: split_indicator)
lemma set_integral_uminus: "set_integrable M A f ⟹ LINT x:A|M. - f x = - (LINT x:A|M. f x)"
by (subst integral_minus[symmetric]) simp_all
lemma set_integral_complex_of_real:
"LINT x:A|M. complex_of_real (f x) = of_real (LINT x:A|M. f x)"
by (subst integral_complex_of_real[symmetric])
(auto intro!: integral_cong split: split_indicator)
lemma set_integral_mono:
fixes f g :: "_ ⇒ real"
assumes "set_integrable M A f" "set_integrable M A g"
"⋀x. x ∈ A ⟹ f x ≤ g x"
shows "(LINT x:A|M. f x) ≤ (LINT x:A|M. g x)"
using assms by (auto intro: integral_mono split: split_indicator)
lemma set_integral_mono_AE:
fixes f g :: "_ ⇒ real"
assumes "set_integrable M A f" "set_integrable M A g"
"AE x ∈ A in M. f x ≤ g x"
shows "(LINT x:A|M. f x) ≤ (LINT x:A|M. g x)"
using assms by (auto intro: integral_mono_AE split: split_indicator)
lemma set_integrable_abs: "set_integrable M A f ⟹ set_integrable M A (λx. ¦f x¦ :: real)"
using integrable_abs[of M "λx. f x * indicator A x"] by (simp add: abs_mult ac_simps)
lemma set_integrable_abs_iff:
fixes f :: "_ ⇒ real"
shows "set_borel_measurable M A f ⟹ set_integrable M A (λx. ¦f x¦) = set_integrable M A f"
by (subst (2) integrable_abs_iff[symmetric]) (simp_all add: abs_mult ac_simps)
lemma set_integrable_abs_iff':
fixes f :: "_ ⇒ real"
shows "f ∈ borel_measurable M ⟹ A ∈ sets M ⟹
set_integrable M A (λx. ¦f x¦) = set_integrable M A f"
by (intro set_integrable_abs_iff) auto
lemma set_integrable_discrete_difference:
fixes f :: "'a ⇒ 'b::{banach, second_countable_topology}"
assumes "countable X"
assumes diff: "(A - B) ∪ (B - A) ⊆ X"
assumes "⋀x. x ∈ X ⟹ emeasure M {x} = 0" "⋀x. x ∈ X ⟹ {x} ∈ sets M"
shows "set_integrable M A f ⟷ set_integrable M B f"
proof (rule integrable_discrete_difference[where X=X])
show "⋀x. x ∈ space M ⟹ x ∉ X ⟹ indicator A x *⇩R f x = indicator B x *⇩R f x"
using diff by (auto split: split_indicator)
qed fact+
lemma set_integral_discrete_difference:
fixes f :: "'a ⇒ 'b::{banach, second_countable_topology}"
assumes "countable X"
assumes diff: "(A - B) ∪ (B - A) ⊆ X"
assumes "⋀x. x ∈ X ⟹ emeasure M {x} = 0" "⋀x. x ∈ X ⟹ {x} ∈ sets M"
shows "set_lebesgue_integral M A f = set_lebesgue_integral M B f"
proof (rule integral_discrete_difference[where X=X])
show "⋀x. x ∈ space M ⟹ x ∉ X ⟹ indicator A x *⇩R f x = indicator B x *⇩R f x"
using diff by (auto split: split_indicator)
qed fact+
lemma set_integrable_Un:
fixes f g :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes f_A: "set_integrable M A f" and f_B: "set_integrable M B f"
and [measurable]: "A ∈ sets M" "B ∈ sets M"
shows "set_integrable M (A ∪ B) f"
proof -
have "set_integrable M (A - B) f"
using f_A by (rule set_integrable_subset) auto
from integrable_add[OF this f_B] show ?thesis
by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator)
qed
lemma set_integrable_UN:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "finite I" "⋀i. i∈I ⟹ set_integrable M (A i) f"
"⋀i. i∈I ⟹ A i ∈ sets M"
shows "set_integrable M (⋃i∈I. A i) f"
using assms by (induct I) (auto intro!: set_integrable_Un)
lemma set_integral_Un:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "A ∩ B = {}"
and "set_integrable M A f"
and "set_integrable M B f"
shows "LINT x:A∪B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric]
scaleR_add_left assms)
lemma set_integral_cong_set:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes [measurable]: "set_borel_measurable M A f" "set_borel_measurable M B f"
and ae: "AE x in M. x ∈ A ⟷ x ∈ B"
shows "LINT x:B|M. f x = LINT x:A|M. f x"
proof (rule integral_cong_AE)
show "AE x in M. indicator B x *⇩R f x = indicator A x *⇩R f x"
using ae by (auto simp: subset_eq split: split_indicator)
qed fact+
lemma set_borel_measurable_subset:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes [measurable]: "set_borel_measurable M A f" "B ∈ sets M" and "B ⊆ A"
shows "set_borel_measurable M B f"
proof -
have "set_borel_measurable M B (λx. indicator A x *⇩R f x)"
by measurable
also have "(λx. indicator B x *⇩R indicator A x *⇩R f x) = (λx. indicator B x *⇩R f x)"
using ‹B ⊆ A› by (auto simp: fun_eq_iff split: split_indicator)
finally show ?thesis .
qed
lemma set_integral_Un_AE:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes ae: "AE x in M. ¬ (x ∈ A ∧ x ∈ B)" and [measurable]: "A ∈ sets M" "B ∈ sets M"
and "set_integrable M A f"
and "set_integrable M B f"
shows "LINT x:A∪B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
proof -
have f: "set_integrable M (A ∪ B) f"
by (intro set_integrable_Un assms)
then have f': "set_borel_measurable M (A ∪ B) f"
by (rule borel_measurable_integrable)
have "LINT x:A∪B|M. f x = LINT x:(A - A ∩ B) ∪ (B - A ∩ B)|M. f x"
proof (rule set_integral_cong_set)
show "AE x in M. (x ∈ A - A ∩ B ∪ (B - A ∩ B)) = (x ∈ A ∪ B)"
using ae by auto
show "set_borel_measurable M (A - A ∩ B ∪ (B - A ∩ B)) f"
using f' by (rule set_borel_measurable_subset) auto
qed fact
also have "… = (LINT x:(A - A ∩ B)|M. f x) + (LINT x:(B - A ∩ B)|M. f x)"
by (auto intro!: set_integral_Un set_integrable_subset[OF f])
also have "… = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
using ae
by (intro arg_cong2[where f="op+"] set_integral_cong_set)
(auto intro!: set_borel_measurable_subset[OF f'])
finally show ?thesis .
qed
lemma set_integral_finite_Union:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "finite I" "disjoint_family_on A I"
and "⋀i. i ∈ I ⟹ set_integrable M (A i) f" "⋀i. i ∈ I ⟹ A i ∈ sets M"
shows "(LINT x:(⋃i∈I. A i)|M. f x) = (∑i∈I. LINT x:A i|M. f x)"
using assms
apply induct
apply (auto intro!: set_integral_Un set_integrable_Un set_integrable_UN simp: disjoint_family_on_def)
by (subst set_integral_Un, auto intro: set_integrable_UN)
lemma pos_integrable_to_top:
fixes l::real
assumes "⋀i. A i ∈ sets M" "mono A"
assumes nneg: "⋀x i. x ∈ A i ⟹ 0 ≤ f x"
and intgbl: "⋀i::nat. set_integrable M (A i) f"
and lim: "(λi::nat. LINT x:A i|M. f x) ⇢ l"
shows "set_integrable M (⋃i. A i) f"
apply (rule integrable_monotone_convergence[where f = "λi::nat. λx. indicator (A i) x *⇩R f x" and x = l])
apply (rule intgbl)
prefer 3 apply (rule lim)
apply (rule AE_I2)
using ‹mono A› apply (auto simp: mono_def nneg split: split_indicator) []
proof (rule AE_I2)
{ fix x assume "x ∈ space M"
show "(λi. indicator (A i) x *⇩R f x) ⇢ indicator (⋃i. A i) x *⇩R f x"
proof cases
assume "∃i. x ∈ A i"
then guess i ..
then have *: "eventually (λi. x ∈ A i) sequentially"
using ‹x ∈ A i› ‹mono A› by (auto simp: eventually_sequentially mono_def)
show ?thesis
apply (intro Lim_eventually)
using *
apply eventually_elim
apply (auto split: split_indicator)
done
qed auto }
then show "(λx. indicator (⋃i. A i) x *⇩R f x) ∈ borel_measurable M"
apply (rule borel_measurable_LIMSEQ_real)
apply assumption
apply (intro borel_measurable_integrable intgbl)
done
qed
lemma lebesgue_integral_countable_add:
fixes f :: "_ ⇒ 'a :: {banach, second_countable_topology}"
assumes meas[intro]: "⋀i::nat. A i ∈ sets M"
and disj: "⋀i j. i ≠ j ⟹ A i ∩ A j = {}"
and intgbl: "set_integrable M (⋃i. A i) f"
shows "LINT x:(⋃i. A i)|M. f x = (∑i. (LINT x:(A i)|M. f x))"
proof (subst integral_suminf[symmetric])
show int_A: "⋀i. set_integrable M (A i) f"
using intgbl by (rule set_integrable_subset) auto
{ fix x assume "x ∈ space M"
have "(λi. indicator (A i) x *⇩R f x) sums (indicator (⋃i. A i) x *⇩R f x)"
by (intro sums_scaleR_left indicator_sums) fact }
note sums = this
have norm_f: "⋀i. set_integrable M (A i) (λx. norm (f x))"
using int_A[THEN integrable_norm] by auto
show "AE x in M. summable (λi. norm (indicator (A i) x *⇩R f x))"
using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums])
show "summable (λi. LINT x|M. norm (indicator (A i) x *⇩R f x))"
proof (rule summableI_nonneg_bounded)
fix n
show "0 ≤ LINT x|M. norm (indicator (A n) x *⇩R f x)"
using norm_f by (auto intro!: integral_nonneg_AE)
have "(∑i<n. LINT x|M. norm (indicator (A i) x *⇩R f x)) =
(∑i<n. set_lebesgue_integral M (A i) (λx. norm (f x)))"
by (simp add: abs_mult)
also have "… = set_lebesgue_integral M (⋃i<n. A i) (λx. norm (f x))"
using norm_f
by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj)
also have "… ≤ set_lebesgue_integral M (⋃i. A i) (λx. norm (f x))"
using intgbl[THEN integrable_norm]
by (intro integral_mono set_integrable_UN[of "{..<n}"] norm_f)
(auto split: split_indicator)
finally show "(∑i<n. LINT x|M. norm (indicator (A i) x *⇩R f x)) ≤
set_lebesgue_integral M (⋃i. A i) (λx. norm (f x))"
by simp
qed
show "set_lebesgue_integral M (UNION UNIV A) f = LINT x|M. (∑i. indicator (A i) x *⇩R f x)"
apply (rule integral_cong[OF refl])
apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric])
using sums_unique[OF indicator_sums[OF disj]]
apply auto
done
qed
lemma set_integral_cont_up:
fixes f :: "_ ⇒ 'a :: {banach, second_countable_topology}"
assumes [measurable]: "⋀i. A i ∈ sets M" and A: "incseq A"
and intgbl: "set_integrable M (⋃i. A i) f"
shows "(λi. LINT x:(A i)|M. f x) ⇢ LINT x:(⋃i. A i)|M. f x"
proof (intro integral_dominated_convergence[where w="λx. indicator (⋃i. A i) x *⇩R norm (f x)"])
have int_A: "⋀i. set_integrable M (A i) f"
using intgbl by (rule set_integrable_subset) auto
then show "⋀i. set_borel_measurable M (A i) f" "set_borel_measurable M (⋃i. A i) f"
"set_integrable M (⋃i. A i) (λx. norm (f x))"
using intgbl integrable_norm[OF intgbl] by auto
{ fix x i assume "x ∈ A i"
with A have "(λxa. indicator (A xa) x::real) ⇢ 1 ⟷ (λxa. 1::real) ⇢ 1"
by (intro filterlim_cong refl)
(fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) }
then show "AE x in M. (λi. indicator (A i) x *⇩R f x) ⇢ indicator (⋃i. A i) x *⇩R f x"
by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
qed (auto split: split_indicator)
lemma set_integral_cont_down:
fixes f :: "_ ⇒ 'a :: {banach, second_countable_topology}"
assumes [measurable]: "⋀i. A i ∈ sets M" and A: "decseq A"
and int0: "set_integrable M (A 0) f"
shows "(λi::nat. LINT x:(A i)|M. f x) ⇢ LINT x:(⋂i. A i)|M. f x"
proof (rule integral_dominated_convergence)
have int_A: "⋀i. set_integrable M (A i) f"
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
show "set_integrable M (A 0) (λx. norm (f x))"
using int0[THEN integrable_norm] by simp
have "set_integrable M (⋂i. A i) f"
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
with int_A show "set_borel_measurable M (⋂i. A i) f" "⋀i. set_borel_measurable M (A i) f"
by auto
show "⋀i. AE x in M. norm (indicator (A i) x *⇩R f x) ≤ indicator (A 0) x *⇩R norm (f x)"
using A by (auto split: split_indicator simp: decseq_def)
{ fix x i assume "x ∈ space M" "x ∉ A i"
with A have "(λi. indicator (A i) x::real) ⇢ 0 ⟷ (λi. 0::real) ⇢ 0"
by (intro filterlim_cong refl)
(auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) }
then show "AE x in M. (λi. indicator (A i) x *⇩R f x) ⇢ indicator (⋂i. A i) x *⇩R f x"
by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
qed
lemma set_integral_at_point:
fixes a :: real
assumes "set_integrable M {a} f"
and [simp]: "{a} ∈ sets M" and "(emeasure M) {a} ≠ ∞"
shows "(LINT x:{a} | M. f x) = f a * measure M {a}"
proof-
have "set_lebesgue_integral M {a} f = set_lebesgue_integral M {a} (%x. f a)"
by (intro set_lebesgue_integral_cong) simp_all
then show ?thesis using assms by simp
qed
abbreviation complex_integrable :: "'a measure ⇒ ('a ⇒ complex) ⇒ bool" where
"complex_integrable M f ≡ integrable M f"
abbreviation complex_lebesgue_integral :: "'a measure ⇒ ('a ⇒ complex) ⇒ complex" ("integral⇧C") where
"integral⇧C M f == integral⇧L M f"
syntax
"_complex_lebesgue_integral" :: "pttrn ⇒ complex ⇒ 'a measure ⇒ complex"
("∫⇧C _. _ ∂_" [60,61] 110)
translations
"∫⇧Cx. f ∂M" == "CONST complex_lebesgue_integral M (λx. f)"
syntax
"_ascii_complex_lebesgue_integral" :: "pttrn ⇒ 'a measure ⇒ real ⇒ real"
("(3CLINT _|_. _)" [0,110,60] 60)
translations
"CLINT x|M. f" == "CONST complex_lebesgue_integral M (λx. f)"
lemma complex_integrable_cnj [simp]:
"complex_integrable M (λx. cnj (f x)) ⟷ complex_integrable M f"
proof
assume "complex_integrable M (λx. cnj (f x))"
then have "complex_integrable M (λx. cnj (cnj (f x)))"
by (rule integrable_cnj)
then show "complex_integrable M f"
by simp
qed simp
lemma complex_of_real_integrable_eq:
"complex_integrable M (λx. complex_of_real (f x)) ⟷ integrable M f"
proof
assume "complex_integrable M (λx. complex_of_real (f x))"
then have "integrable M (λx. Re (complex_of_real (f x)))"
by (rule integrable_Re)
then show "integrable M f"
by simp
qed simp
abbreviation complex_set_integrable :: "'a measure ⇒ 'a set ⇒ ('a ⇒ complex) ⇒ bool" where
"complex_set_integrable M A f ≡ set_integrable M A f"
abbreviation complex_set_lebesgue_integral :: "'a measure ⇒ 'a set ⇒ ('a ⇒ complex) ⇒ complex" where
"complex_set_lebesgue_integral M A f ≡ set_lebesgue_integral M A f"
syntax
"_ascii_complex_set_lebesgue_integral" :: "pttrn ⇒ 'a set ⇒ 'a measure ⇒ real ⇒ real"
("(4CLINT _:_|_. _)" [0,60,110,61] 60)
translations
"CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (λx. f)"
lemma borel_integrable_atLeastAtMost':
fixes f :: "real ⇒ 'a::{banach, second_countable_topology}"
assumes f: "continuous_on {a..b} f"
shows "set_integrable lborel {a..b} f" (is "integrable _ ?f")
by (intro borel_integrable_compact compact_Icc f)
lemma integral_FTC_atLeastAtMost:
fixes f :: "real ⇒ 'a :: euclidean_space"
assumes "a ≤ b"
and F: "⋀x. a ≤ x ⟹ x ≤ b ⟹ (F has_vector_derivative f x) (at x within {a .. b})"
and f: "continuous_on {a .. b} f"
shows "integral⇧L lborel (λx. indicator {a .. b} x *⇩R f x) = F b - F a"
proof -
let ?f = "λx. indicator {a .. b} x *⇩R f x"
have "(?f has_integral (∫x. ?f x ∂lborel)) UNIV"
using borel_integrable_atLeastAtMost'[OF f] by (rule has_integral_integral_lborel)
moreover
have "(f has_integral F b - F a) {a .. b}"
by (intro fundamental_theorem_of_calculus ballI assms) auto
then have "(?f has_integral F b - F a) {a .. b}"
by (subst has_integral_cong[where g=f]) auto
then have "(?f has_integral F b - F a) UNIV"
by (intro has_integral_on_superset[where t=UNIV and s="{a..b}"]) auto
ultimately show "integral⇧L lborel ?f = F b - F a"
by (rule has_integral_unique)
qed
lemma set_borel_integral_eq_integral:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "set_integrable lborel S f"
shows "f integrable_on S" "LINT x : S | lborel. f x = integral S f"
proof -
let ?f = "λx. indicator S x *⇩R f x"
have "(?f has_integral LINT x : S | lborel. f x) UNIV"
by (rule has_integral_integral_lborel) fact
hence 1: "(f has_integral (set_lebesgue_integral lborel S f)) S"
apply (subst has_integral_restrict_univ [symmetric])
apply (rule has_integral_eq)
by auto
thus "f integrable_on S"
by (auto simp add: integrable_on_def)
with 1 have "(f has_integral (integral S f)) S"
by (intro integrable_integral, auto simp add: integrable_on_def)
thus "LINT x : S | lborel. f x = integral S f"
by (intro has_integral_unique [OF 1])
qed
lemma set_borel_measurable_continuous:
fixes f :: "_ ⇒ _::real_normed_vector"
assumes "S ∈ sets borel" "continuous_on S f"
shows "set_borel_measurable borel S f"
proof -
have "(λx. if x ∈ S then f x else 0) ∈ borel_measurable borel"
by (intro assms borel_measurable_continuous_on_if continuous_on_const)
also have "(λx. if x ∈ S then f x else 0) = (λx. indicator S x *⇩R f x)"
by auto
finally show ?thesis .
qed
lemma set_measurable_continuous_on_ivl:
assumes "continuous_on {a..b} (f :: real ⇒ real)"
shows "set_borel_measurable borel {a..b} f"
by (rule set_borel_measurable_continuous[OF _ assms]) simp
end