section ‹Divisibility and prime numbers (on integers)›
theory IntPrimes
imports Primes
begin
text ‹
The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
congruences (all on the Integers). Comparable to theory @{text
Primes}, but @{text dvd} is included here as it is not present in
main HOL. Also includes extended GCD and congruences not present in
@{text Primes}.
›
subsection ‹Definitions›
fun xzgcda :: "int ⇒ int ⇒ int ⇒ int ⇒ int ⇒ int ⇒ int ⇒ int => (int * int * int)"
where
"xzgcda m n r' r s' s t' t =
(if r ≤ 0 then (r', s', t')
else xzgcda m n r (r' mod r)
s (s' - (r' div r) * s)
t (t' - (r' div r) * t))"
definition zprime :: "int ⇒ bool"
where "zprime p = (1 < p ∧ (∀m. 0 <= m & m dvd p --> m = 1 ∨ m = p))"
definition xzgcd :: "int => int => int * int * int"
where "xzgcd m n = xzgcda m n m n 1 0 0 1"
definition zcong :: "int => int => int => bool" ("(1[_ = _] '(mod _'))")
where "[a = b] (mod m) = (m dvd (a - b))"
subsection ‹Euclid's Algorithm and GCD›
lemma zrelprime_zdvd_zmult_aux:
"zgcd n k = 1 ==> k dvd m * n ==> 0 ≤ m ==> k dvd m"
by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs mult_1_right)
lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"
apply (case_tac "0 ≤ m")
apply (blast intro: zrelprime_zdvd_zmult_aux)
apply (subgoal_tac "k dvd -m")
apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
done
lemma zgcd_geq_zero: "0 <= zgcd x y"
by (auto simp add: zgcd_def)
text‹This is merely a sanity check on zprime, since the previous version
denoted the empty set.›
lemma "zprime 2"
apply (auto simp add: zprime_def)
apply (frule zdvd_imp_le, simp)
apply (auto simp add: order_le_less dvd_def)
done
lemma zprime_imp_zrelprime:
"zprime p ==> ¬ p dvd n ==> zgcd n p = 1"
apply (auto simp add: zprime_def)
apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)
done
lemma zless_zprime_imp_zrelprime:
"zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"
apply (erule zprime_imp_zrelprime)
apply (erule zdvd_not_zless, assumption)
done
lemma zprime_zdvd_zmult:
"0 ≤ (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m ∨ p dvd n"
by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)
lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"
apply (rule zgcd_eq [THEN trans])
apply (simp add: mod_add_eq)
apply (rule zgcd_eq [symmetric])
done
lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"
by (simp add: zgcd_greatest_iff)
lemma zgcd_zmult_zdvd_zgcd:
"zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"
apply (simp add: zgcd_greatest_iff)
apply (rule_tac n = k in zrelprime_zdvd_zmult)
prefer 2
apply (simp add: mult.commute)
apply (metis zgcd_1 zgcd_commute zgcd_left_commute)
done
lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"
by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
lemma zgcd_zgcd_zmult:
"zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"
by (simp add: zgcd_zmult_cancel)
lemma zdvd_iff_zgcd: "0 < m ==> m dvd n ⟷ zgcd n m = m"
by (metis abs_of_pos dvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)
subsection ‹Congruences›
lemma zcong_1 [simp]: "[a = b] (mod 1)"
by (unfold zcong_def, auto)
lemma zcong_refl [simp]: "[k = k] (mod m)"
by (unfold zcong_def, auto)
lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..
lemma zcong_zadd:
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
apply (unfold zcong_def)
apply (rule_tac s = "(a - b) + (c - d)" in subst)
apply (rule_tac [2] dvd_add, auto)
done
lemma zcong_zdiff:
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
apply (unfold zcong_def)
apply (rule_tac s = "(a - b) - (c - d)" in subst)
apply (rule_tac [2] dvd_diff, auto)
done
lemma zcong_trans:
"[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)
lemma zcong_zmult:
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
apply (rule_tac b = "b * c" in zcong_trans)
apply (unfold zcong_def)
apply (metis right_diff_distrib dvd_mult mult.commute)
apply (metis right_diff_distrib dvd_mult)
done
lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
by (rule zcong_zmult, simp_all)
lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
by (rule zcong_zmult, simp_all)
lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
apply (unfold zcong_def)
apply (rule dvd_diff, simp_all)
done
lemma zcong_square:
"[| zprime p; 0 < a; [a * a = 1] (mod p)|]
==> [a = 1] (mod p) ∨ [a = p - 1] (mod p)"
apply (unfold zcong_def)
apply (rule zprime_zdvd_zmult)
apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
prefer 4
apply (simp add: zdvd_reduce)
apply (simp_all add: left_diff_distrib mult.commute right_diff_distrib)
done
lemma zcong_cancel:
"0 ≤ m ==>
zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
apply safe
prefer 2
apply (blast intro: zcong_scalar)
apply (case_tac "b < a")
prefer 2
apply (subst zcong_sym)
apply (unfold zcong_def)
apply (rule_tac [!] zrelprime_zdvd_zmult)
apply (simp_all add: left_diff_distrib)
apply (subgoal_tac "m dvd (-(a * k - b * k))")
apply simp
apply (subst dvd_minus_iff, assumption)
done
lemma zcong_cancel2:
"0 ≤ m ==>
zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
by (simp add: mult.commute zcong_cancel)
lemma zcong_zgcd_zmult_zmod:
"[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1
==> [a = b] (mod m * n)"
apply (auto simp add: zcong_def dvd_def)
apply (subgoal_tac "m dvd n * ka")
apply (subgoal_tac "m dvd ka")
apply (case_tac [2] "0 ≤ ka")
apply (metis dvd_mult_div_cancel dvd_refl dvd_mult_left mult.commute zrelprime_zdvd_zmult)
apply (metis abs_dvd_iff abs_of_nonneg add_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs mult_1_right mult.commute)
apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff order_antisym linorder_linear order_refl mult.commute zrelprime_zdvd_zmult)
apply (metis dvd_triv_left)
done
lemma zcong_zless_imp_eq:
"0 ≤ a ==>
a < m ==> 0 ≤ b ==> b < m ==> [a = b] (mod m) ==> a = b"
apply (unfold zcong_def dvd_def, auto)
apply (drule_tac f = "λz. z mod m" in arg_cong)
apply (metis diff_add_cancel mod_pos_pos_trivial add_0 add.commute zmod_eq_0_iff mod_add_right_eq)
done
lemma zcong_square_zless:
"zprime p ==> 0 < a ==> a < p ==>
[a * a = 1] (mod p) ==> a = 1 ∨ a = p - 1"
apply (cut_tac p = p and a = a in zcong_square)
apply (simp add: zprime_def)
apply (auto intro: zcong_zless_imp_eq)
done
lemma zcong_not:
"0 < a ==> a < m ==> 0 < b ==> b < a ==> ¬ [a = b] (mod m)"
apply (unfold zcong_def)
apply (rule zdvd_not_zless, auto)
done
lemma zcong_zless_0:
"0 ≤ a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
apply (unfold zcong_def dvd_def, auto)
apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)
done
lemma zcong_zless_unique:
"0 < m ==> (∃!b. 0 ≤ b ∧ b < m ∧ [a = b] (mod m))"
apply auto
prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)
apply (unfold zcong_def dvd_def)
apply (rule_tac x = "a mod m" in exI, auto)
apply (metis zmult_div_cancel)
done
lemma zcong_iff_lin: "([a = b] (mod m)) = (∃k. b = a + m * k)"
unfolding zcong_def
apply (auto elim!: dvdE simp add: algebra_simps)
apply (rule_tac x = "-k" in exI) apply simp
done
lemma zgcd_zcong_zgcd:
"0 < m ==>
zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"
by (auto simp add: zcong_iff_lin)
lemma zcong_zmod_aux:
"a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
by(simp add: right_diff_distrib add_diff_eq eq_diff_eq ac_simps)
lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
apply (unfold zcong_def)
apply (rule_tac t = "a - b" in ssubst)
apply (rule_tac m = m in zcong_zmod_aux)
apply (rule trans)
apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
apply (simp add: add.commute)
done
lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
apply auto
apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)
apply (metis zcong_refl zcong_zmod)
done
lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
by (auto simp add: zcong_def)
lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
by (auto simp add: zcong_def)
lemma "[a = b] (mod m) = (a mod m = b mod m)"
apply (cases "m = 0", simp)
apply (simp add: linorder_neq_iff)
apply (erule disjE)
prefer 2 apply (simp add: zcong_zmod_eq)
txt‹Remainding case: @{term "m<0"}›
apply (rule_tac t = m in minus_minus [THEN subst])
apply (subst zcong_zminus)
apply (subst zcong_zmod_eq, arith)
apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b])
apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
done
subsection ‹Modulo›
lemma zmod_zdvd_zmod:
"0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
by (rule mod_mod_cancel)
subsection ‹Extended GCD›
declare xzgcda.simps [simp del]
lemma xzgcd_correct_aux1:
"zgcd r' r = k --> 0 < r -->
(∃sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn))"
apply (induct m n r' r s' s t' t rule: xzgcda.induct)
apply (subst zgcd_eq)
apply (subst xzgcda.simps, auto)
apply (case_tac "r' mod r = 0")
prefer 2
apply (frule_tac a = "r'" in pos_mod_sign, auto)
apply (rule exI)
apply (rule exI)
apply (subst xzgcda.simps, auto)
done
lemma xzgcd_correct_aux2:
"(∃sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn)) --> 0 < r -->
zgcd r' r = k"
apply (induct m n r' r s' s t' t rule: xzgcda.induct)
apply (subst zgcd_eq)
apply (subst xzgcda.simps)
apply (auto simp add: linorder_not_le)
apply (case_tac "r' mod r = 0")
prefer 2
apply (frule_tac a = "r'" in pos_mod_sign, auto)
apply (metis prod.inject xzgcda.simps order_refl)
done
lemma xzgcd_correct:
"0 < n ==> (zgcd m n = k) = (∃s t. xzgcd m n = (k, s, t))"
apply (unfold xzgcd_def)
apply (rule iffI)
apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
done
text ‹\medskip @{term xzgcd} linear›
lemma xzgcda_linear_aux1:
"(a - r * b) * m + (c - r * d) * (n::int) =
(a * m + c * n) - r * (b * m + d * n)"
by (simp add: left_diff_distrib distrib_left mult.assoc)
lemma xzgcda_linear_aux2:
"r' = s' * m + t' * n ==> r = s * m + t * n
==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
apply (rule trans)
apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
apply (simp add: eq_diff_eq mult.commute)
done
lemma order_le_neq_implies_less: "(x::'a::order) ≤ y ==> x ≠ y ==> x < y"
by (rule iffD2 [OF order_less_le conjI])
lemma xzgcda_linear [rule_format]:
"0 < r --> xzgcda m n r' r s' s t' t = (rn, sn, tn) -->
r' = s' * m + t' * n --> r = s * m + t * n --> rn = sn * m + tn * n"
apply (induct m n r' r s' s t' t rule: xzgcda.induct)
apply (subst xzgcda.simps)
apply (simp (no_asm))
apply (rule impI)+
apply (case_tac "r' mod r = 0")
apply (simp add: xzgcda.simps, clarify)
apply (subgoal_tac "0 < r' mod r")
apply (rule_tac [2] order_le_neq_implies_less)
apply (rule_tac [2] pos_mod_sign)
apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
done
lemma xzgcd_linear:
"0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
apply (unfold xzgcd_def)
apply (erule xzgcda_linear, assumption, auto)
done
lemma zgcd_ex_linear:
"0 < n ==> zgcd m n = k ==> (∃s t. k = s * m + t * n)"
apply (simp add: xzgcd_correct, safe)
apply (rule exI)+
apply (erule xzgcd_linear, auto)
done
lemma zcong_lineq_ex:
"0 < n ==> zgcd a n = 1 ==> ∃x. [a * x = 1] (mod n)"
apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
apply (rule_tac x = s in exI)
apply (rule_tac b = "s * a + t * n" in zcong_trans)
prefer 2
apply simp
apply (unfold zcong_def)
apply (simp (no_asm) add: mult.commute)
done
lemma zcong_lineq_unique:
"0 < n ==>
zgcd a n = 1 ==> ∃!x. 0 ≤ x ∧ x < n ∧ [a * x = b] (mod n)"
apply auto
apply (rule_tac [2] zcong_zless_imp_eq)
apply (tactic ‹stac @{context} (@{thm zcong_cancel2} RS sym) 6›)
apply (rule_tac [8] zcong_trans)
apply (simp_all (no_asm_simp))
prefer 2
apply (simp add: zcong_sym)
apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
apply (rule_tac x = "x * b mod n" in exI, safe)
apply (simp_all (no_asm_simp))
apply (metis zcong_scalar zcong_zmod mod_mult_right_eq mult_1 mult.assoc)
done
end