section ‹Finite-Dimensional Inner Product Spaces›
theory Euclidean_Space
imports
L2_Norm
"~~/src/HOL/Library/Inner_Product"
"~~/src/HOL/Library/Product_Vector"
begin
subsection ‹Type class of Euclidean spaces›
class euclidean_space = real_inner +
fixes Basis :: "'a set"
assumes nonempty_Basis [simp]: "Basis ≠ {}"
assumes finite_Basis [simp]: "finite Basis"
assumes inner_Basis:
"⟦u ∈ Basis; v ∈ Basis⟧ ⟹ inner u v = (if u = v then 1 else 0)"
assumes euclidean_all_zero_iff:
"(∀u∈Basis. inner x u = 0) ⟷ (x = 0)"
abbreviation dimension :: "('a::euclidean_space) itself ⇒ nat" where
"dimension TYPE('a) ≡ card (Basis :: 'a set)"
syntax "_type_dimension" :: "type => nat" ("(1DIM/(1'(_')))")
translations "DIM('t)" == "CONST dimension (TYPE('t))"
lemma (in euclidean_space) norm_Basis[simp]: "u ∈ Basis ⟹ norm u = 1"
unfolding norm_eq_sqrt_inner by (simp add: inner_Basis)
lemma (in euclidean_space) inner_same_Basis[simp]: "u ∈ Basis ⟹ inner u u = 1"
by (simp add: inner_Basis)
lemma (in euclidean_space) inner_not_same_Basis: "u ∈ Basis ⟹ v ∈ Basis ⟹ u ≠ v ⟹ inner u v = 0"
by (simp add: inner_Basis)
lemma (in euclidean_space) sgn_Basis: "u ∈ Basis ⟹ sgn u = u"
unfolding sgn_div_norm by (simp add: scaleR_one)
lemma (in euclidean_space) Basis_zero [simp]: "0 ∉ Basis"
proof
assume "0 ∈ Basis" thus "False"
using inner_Basis [of 0 0] by simp
qed
lemma (in euclidean_space) nonzero_Basis: "u ∈ Basis ⟹ u ≠ 0"
by clarsimp
lemma (in euclidean_space) SOME_Basis: "(SOME i. i ∈ Basis) ∈ Basis"
by (metis ex_in_conv nonempty_Basis someI_ex)
lemma (in euclidean_space) inner_setsum_left_Basis[simp]:
"b ∈ Basis ⟹ inner (∑i∈Basis. f i *⇩R i) b = f b"
by (simp add: inner_setsum_left inner_Basis if_distrib comm_monoid_add_class.setsum.If_cases)
lemma (in euclidean_space) euclidean_eqI:
assumes b: "⋀b. b ∈ Basis ⟹ inner x b = inner y b" shows "x = y"
proof -
from b have "∀b∈Basis. inner (x - y) b = 0"
by (simp add: inner_diff_left)
then show "x = y"
by (simp add: euclidean_all_zero_iff)
qed
lemma (in euclidean_space) euclidean_eq_iff:
"x = y ⟷ (∀b∈Basis. inner x b = inner y b)"
by (auto intro: euclidean_eqI)
lemma (in euclidean_space) euclidean_representation_setsum:
"(∑i∈Basis. f i *⇩R i) = b ⟷ (∀i∈Basis. f i = inner b i)"
by (subst euclidean_eq_iff) simp
lemma (in euclidean_space) euclidean_representation_setsum':
"b = (∑i∈Basis. f i *⇩R i) ⟷ (∀i∈Basis. f i = inner b i)"
by (auto simp add: euclidean_representation_setsum[symmetric])
lemma (in euclidean_space) euclidean_representation: "(∑b∈Basis. inner x b *⇩R b) = x"
unfolding euclidean_representation_setsum by simp
lemma (in euclidean_space) choice_Basis_iff:
fixes P :: "'a ⇒ real ⇒ bool"
shows "(∀i∈Basis. ∃x. P i x) ⟷ (∃x. ∀i∈Basis. P i (inner x i))"
unfolding bchoice_iff
proof safe
fix f assume "∀i∈Basis. P i (f i)"
then show "∃x. ∀i∈Basis. P i (inner x i)"
by (auto intro!: exI[of _ "∑i∈Basis. f i *⇩R i"])
qed auto
lemma (in euclidean_space) euclidean_representation_setsum_fun:
"(λx. ∑b∈Basis. inner (f x) b *⇩R b) = f"
by (rule ext) (simp add: euclidean_representation_setsum)
lemma euclidean_isCont:
assumes "⋀b. b ∈ Basis ⟹ isCont (λx. (inner (f x) b) *⇩R b) x"
shows "isCont f x"
apply (subst euclidean_representation_setsum_fun [symmetric])
apply (rule isCont_setsum)
apply (blast intro: assms)
done
lemma DIM_positive: "0 < DIM('a::euclidean_space)"
by (simp add: card_gt_0_iff)
subsection ‹Subclass relationships›
instance euclidean_space ⊆ perfect_space
proof
fix x :: 'a show "¬ open {x}"
proof
assume "open {x}"
then obtain e where "0 < e" and e: "∀y. dist y x < e ⟶ y = x"
unfolding open_dist by fast
def y ≡ "x + scaleR (e/2) (SOME b. b ∈ Basis)"
have [simp]: "(SOME b. b ∈ Basis) ∈ Basis"
by (rule someI_ex) (auto simp: ex_in_conv)
from ‹0 < e› have "y ≠ x"
unfolding y_def by (auto intro!: nonzero_Basis)
from ‹0 < e› have "dist y x < e"
unfolding y_def by (simp add: dist_norm)
from ‹y ≠ x› and ‹dist y x < e› show "False"
using e by simp
qed
qed
subsection ‹Class instances›
subsubsection ‹Type @{typ real}›
instantiation real :: euclidean_space
begin
definition
[simp]: "Basis = {1::real}"
instance
by standard auto
end
lemma DIM_real[simp]: "DIM(real) = 1"
by simp
subsubsection ‹Type @{typ complex}›
instantiation complex :: euclidean_space
begin
definition Basis_complex_def:
"Basis = {1, ii}"
instance
by standard (auto simp add: Basis_complex_def intro: complex_eqI split: if_split_asm)
end
lemma DIM_complex[simp]: "DIM(complex) = 2"
unfolding Basis_complex_def by simp
subsubsection ‹Type @{typ "'a × 'b"}›
instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
begin
definition
"Basis = (λu. (u, 0)) ` Basis ∪ (λv. (0, v)) ` Basis"
lemma setsum_Basis_prod_eq:
fixes f::"('a*'b)⇒('a*'b)"
shows "setsum f Basis = setsum (λi. f (i, 0)) Basis + setsum (λi. f (0, i)) Basis"
proof -
have "inj_on (λu. (u::'a, 0::'b)) Basis" "inj_on (λu. (0::'a, u::'b)) Basis"
by (auto intro!: inj_onI Pair_inject)
thus ?thesis
unfolding Basis_prod_def
by (subst setsum.union_disjoint) (auto simp: Basis_prod_def setsum.reindex)
qed
instance proof
show "(Basis :: ('a × 'b) set) ≠ {}"
unfolding Basis_prod_def by simp
next
show "finite (Basis :: ('a × 'b) set)"
unfolding Basis_prod_def by simp
next
fix u v :: "'a × 'b"
assume "u ∈ Basis" and "v ∈ Basis"
thus "inner u v = (if u = v then 1 else 0)"
unfolding Basis_prod_def inner_prod_def
by (auto simp add: inner_Basis split: if_split_asm)
next
fix x :: "'a × 'b"
show "(∀u∈Basis. inner x u = 0) ⟷ x = 0"
unfolding Basis_prod_def ball_Un ball_simps
by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff)
qed
lemma DIM_prod[simp]: "DIM('a × 'b) = DIM('a) + DIM('b)"
unfolding Basis_prod_def
by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f="op +"] inj_onI)
end
end