section ‹Convex sets, functions and related things.›
theory Convex_Euclidean_Space
imports
Topology_Euclidean_Space
"~~/src/HOL/Library/Convex"
"~~/src/HOL/Library/Set_Algebras"
begin
lemma independent_injective_on_span_image:
assumes iS: "independent S"
and lf: "linear f"
and fi: "inj_on f (span S)"
shows "independent (f ` S)"
proof -
{
fix a
assume a: "a ∈ S" "f a ∈ span (f ` S - {f a})"
have eq: "f ` S - {f a} = f ` (S - {a})"
using fi a span_inc by (auto simp add: inj_on_def)
from a have "f a ∈ f ` span (S -{a})"
unfolding eq span_linear_image [OF lf, of "S - {a}"] by blast
moreover have "span (S - {a}) ⊆ span S"
using span_mono[of "S - {a}" S] by auto
ultimately have "a ∈ span (S - {a})"
using fi a span_inc by (auto simp add: inj_on_def)
with a(1) iS have False
by (simp add: dependent_def)
}
then show ?thesis
unfolding dependent_def by blast
qed
lemma dim_image_eq:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes lf: "linear f"
and fi: "inj_on f (span S)"
shows "dim (f ` S) = dim (S::'n::euclidean_space set)"
proof -
obtain B where B: "B ⊆ S" "independent B" "S ⊆ span B" "card B = dim S"
using basis_exists[of S] by auto
then have "span S = span B"
using span_mono[of B S] span_mono[of S "span B"] span_span[of B] by auto
then have "independent (f ` B)"
using independent_injective_on_span_image[of B f] B assms by auto
moreover have "card (f ` B) = card B"
using assms card_image[of f B] subset_inj_on[of f "span S" B] B span_inc by auto
moreover have "(f ` B) ⊆ (f ` S)"
using B by auto
ultimately have "dim (f ` S) ≥ dim S"
using independent_card_le_dim[of "f ` B" "f ` S"] B by auto
then show ?thesis
using dim_image_le[of f S] assms by auto
qed
lemma linear_injective_on_subspace_0:
assumes lf: "linear f"
and "subspace S"
shows "inj_on f S ⟷ (∀x ∈ S. f x = 0 ⟶ x = 0)"
proof -
have "inj_on f S ⟷ (∀x ∈ S. ∀y ∈ S. f x = f y ⟶ x = y)"
by (simp add: inj_on_def)
also have "… ⟷ (∀x ∈ S. ∀y ∈ S. f x - f y = 0 ⟶ x - y = 0)"
by simp
also have "… ⟷ (∀x ∈ S. ∀y ∈ S. f (x - y) = 0 ⟶ x - y = 0)"
by (simp add: linear_sub[OF lf])
also have "… ⟷ (∀x ∈ S. f x = 0 ⟶ x = 0)"
using ‹subspace S› subspace_def[of S] subspace_sub[of S] by auto
finally show ?thesis .
qed
lemma subspace_Inter: "∀s ∈ f. subspace s ⟹ subspace (⋂f)"
unfolding subspace_def by auto
lemma span_eq[simp]: "span s = s ⟷ subspace s"
unfolding span_def by (rule hull_eq) (rule subspace_Inter)
lemma substdbasis_expansion_unique:
assumes d: "d ⊆ Basis"
shows "(∑i∈d. f i *⇩R i) = (x::'a::euclidean_space) ⟷
(∀i∈Basis. (i ∈ d ⟶ f i = x ∙ i) ∧ (i ∉ d ⟶ x ∙ i = 0))"
proof -
have *: "⋀x a b P. x * (if P then a else b) = (if P then x * a else x * b)"
by auto
have **: "finite d"
by (auto intro: finite_subset[OF assms])
have ***: "⋀i. i ∈ Basis ⟹ (∑i∈d. f i *⇩R i) ∙ i = (∑x∈d. if x = i then f x else 0)"
using d
by (auto intro!: setsum.cong simp: inner_Basis inner_setsum_left)
show ?thesis
unfolding euclidean_eq_iff[where 'a='a] by (auto simp: setsum.delta[OF **] ***)
qed
lemma independent_substdbasis: "d ⊆ Basis ⟹ independent d"
by (rule independent_mono[OF independent_Basis])
lemma dim_cball:
assumes "e > 0"
shows "dim (cball (0 :: 'n::euclidean_space) e) = DIM('n)"
proof -
{
fix x :: "'n::euclidean_space"
def y ≡ "(e / norm x) *⇩R x"
then have "y ∈ cball 0 e"
using assms by auto
moreover have *: "x = (norm x / e) *⇩R y"
using y_def assms by simp
moreover from * have "x = (norm x/e) *⇩R y"
by auto
ultimately have "x ∈ span (cball 0 e)"
using span_mul[of y "cball 0 e" "norm x/e"] span_inc[of "cball 0 e"]
by (simp add: span_superset)
}
then have "span (cball 0 e) = (UNIV :: 'n::euclidean_space set)"
by auto
then show ?thesis
using dim_span[of "cball (0 :: 'n::euclidean_space) e"] by (auto simp add: dim_UNIV)
qed
lemma indep_card_eq_dim_span:
fixes B :: "'n::euclidean_space set"
assumes "independent B"
shows "finite B ∧ card B = dim (span B)"
using assms basis_card_eq_dim[of B "span B"] span_inc by auto
lemma setsum_not_0: "setsum f A ≠ 0 ⟹ ∃a ∈ A. f a ≠ 0"
by (rule ccontr) auto
lemma subset_translation_eq [simp]:
fixes a :: "'a::real_vector" shows "op + a ` s ⊆ op + a ` t ⟷ s ⊆ t"
by auto
lemma translate_inj_on:
fixes A :: "'a::ab_group_add set"
shows "inj_on (λx. a + x) A"
unfolding inj_on_def by auto
lemma translation_assoc:
fixes a b :: "'a::ab_group_add"
shows "(λx. b + x) ` ((λx. a + x) ` S) = (λx. (a + b) + x) ` S"
by auto
lemma translation_invert:
fixes a :: "'a::ab_group_add"
assumes "(λx. a + x) ` A = (λx. a + x) ` B"
shows "A = B"
proof -
have "(λx. -a + x) ` ((λx. a + x) ` A) = (λx. - a + x) ` ((λx. a + x) ` B)"
using assms by auto
then show ?thesis
using translation_assoc[of "-a" a A] translation_assoc[of "-a" a B] by auto
qed
lemma translation_galois:
fixes a :: "'a::ab_group_add"
shows "T = ((λx. a + x) ` S) ⟷ S = ((λx. (- a) + x) ` T)"
using translation_assoc[of "-a" a S]
apply auto
using translation_assoc[of a "-a" T]
apply auto
done
lemma convex_translation_eq [simp]: "convex ((λx. a + x) ` s) ⟷ convex s"
by (metis convex_translation translation_galois)
lemma translation_inverse_subset:
assumes "((λx. - a + x) ` V) ≤ (S :: 'n::ab_group_add set)"
shows "V ≤ ((λx. a + x) ` S)"
proof -
{
fix x
assume "x ∈ V"
then have "x-a ∈ S" using assms by auto
then have "x ∈ {a + v |v. v ∈ S}"
apply auto
apply (rule exI[of _ "x-a"])
apply simp
done
then have "x ∈ ((λx. a+x) ` S)" by auto
}
then show ?thesis by auto
qed
lemma convex_linear_image_eq [simp]:
fixes f :: "'a::real_vector ⇒ 'b::real_vector"
shows "⟦linear f; inj f⟧ ⟹ convex (f ` s) ⟷ convex s"
by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq)
lemma basis_to_basis_subspace_isomorphism:
assumes s: "subspace (S:: ('n::euclidean_space) set)"
and t: "subspace (T :: ('m::euclidean_space) set)"
and d: "dim S = dim T"
and B: "B ⊆ S" "independent B" "S ⊆ span B" "card B = dim S"
and C: "C ⊆ T" "independent C" "T ⊆ span C" "card C = dim T"
shows "∃f. linear f ∧ f ` B = C ∧ f ` S = T ∧ inj_on f S"
proof -
from B independent_bound have fB: "finite B"
by blast
from C independent_bound have fC: "finite C"
by blast
from B(4) C(4) card_le_inj[of B C] d obtain f where
f: "f ` B ⊆ C" "inj_on f B" using ‹finite B› ‹finite C› by auto
from linear_independent_extend[OF B(2)] obtain g where
g: "linear g" "∀x ∈ B. g x = f x" by blast
from inj_on_iff_eq_card[OF fB, of f] f(2)
have "card (f ` B) = card B" by simp
with B(4) C(4) have ceq: "card (f ` B) = card C" using d
by simp
have "g ` B = f ` B" using g(2)
by (auto simp add: image_iff)
also have "… = C" using card_subset_eq[OF fC f(1) ceq] .
finally have gBC: "g ` B = C" .
have gi: "inj_on g B" using f(2) g(2)
by (auto simp add: inj_on_def)
note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
{
fix x y
assume x: "x ∈ S" and y: "y ∈ S" and gxy: "g x = g y"
from B(3) x y have x': "x ∈ span B" and y': "y ∈ span B"
by blast+
from gxy have th0: "g (x - y) = 0"
by (simp add: linear_sub[OF g(1)])
have th1: "x - y ∈ span B" using x' y'
by (metis span_sub)
have "x = y" using g0[OF th1 th0] by simp
}
then have giS: "inj_on g S" unfolding inj_on_def by blast
from span_subspace[OF B(1,3) s]
have "g ` S = span (g ` B)"
by (simp add: span_linear_image[OF g(1)])
also have "… = span C"
unfolding gBC ..
also have "… = T"
using span_subspace[OF C(1,3) t] .
finally have gS: "g ` S = T" .
from g(1) gS giS gBC show ?thesis
by blast
qed
lemma closure_bounded_linear_image_subset:
assumes f: "bounded_linear f"
shows "f ` closure S ⊆ closure (f ` S)"
using linear_continuous_on [OF f] closed_closure closure_subset
by (rule image_closure_subset)
lemma closure_linear_image_subset:
fixes f :: "'m::euclidean_space ⇒ 'n::real_normed_vector"
assumes "linear f"
shows "f ` (closure S) ⊆ closure (f ` S)"
using assms unfolding linear_conv_bounded_linear
by (rule closure_bounded_linear_image_subset)
lemma closed_injective_linear_image:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes S: "closed S" and f: "linear f" "inj f"
shows "closed (f ` S)"
proof -
obtain g where g: "linear g" "g ∘ f = id"
using linear_injective_left_inverse [OF f] by blast
then have confg: "continuous_on (range f) g"
using linear_continuous_on linear_conv_bounded_linear by blast
have [simp]: "g ` f ` S = S"
using g by (simp add: image_comp)
have cgf: "closed (g ` f ` S)"
by (simp add: ‹g ∘ f = id› S image_comp)
have [simp]: "{x ∈ range f. g x ∈ S} = f ` S"
using g by (simp add: o_def id_def image_def) metis
show ?thesis
apply (rule closedin_closed_trans [of "range f"])
apply (rule continuous_closedin_preimage [OF confg cgf, simplified])
apply (rule closed_injective_image_subspace)
using f
apply (auto simp: linear_linear linear_injective_0)
done
qed
lemma closed_injective_linear_image_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "linear f" "inj f"
shows "(closed(image f s) ⟷ closed s)"
by (metis closed_injective_linear_image closure_eq closure_linear_image_subset closure_subset_eq f(1) f(2) inj_image_subset_iff)
lemma closure_injective_linear_image:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "⟦linear f; inj f⟧ ⟹ f ` (closure S) = closure (f ` S)"
apply (rule subset_antisym)
apply (simp add: closure_linear_image_subset)
by (simp add: closure_minimal closed_injective_linear_image closure_subset image_mono)
lemma closure_bounded_linear_image:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "⟦linear f; bounded S⟧ ⟹ f ` (closure S) = closure (f ` S)"
apply (rule subset_antisym, simp add: closure_linear_image_subset)
apply (rule closure_minimal, simp add: closure_subset image_mono)
by (meson bounded_closure closed_closure compact_continuous_image compact_eq_bounded_closed linear_continuous_on linear_conv_bounded_linear)
lemma closure_scaleR:
fixes S :: "'a::real_normed_vector set"
shows "(op *⇩R c) ` (closure S) = closure ((op *⇩R c) ` S)"
proof
show "(op *⇩R c) ` (closure S) ⊆ closure ((op *⇩R c) ` S)"
using bounded_linear_scaleR_right
by (rule closure_bounded_linear_image_subset)
show "closure ((op *⇩R c) ` S) ⊆ (op *⇩R c) ` (closure S)"
by (intro closure_minimal image_mono closure_subset closed_scaling closed_closure)
qed
lemma fst_linear: "linear fst"
unfolding linear_iff by (simp add: algebra_simps)
lemma snd_linear: "linear snd"
unfolding linear_iff by (simp add: algebra_simps)
lemma fst_snd_linear: "linear (λ(x,y). x + y)"
unfolding linear_iff by (simp add: algebra_simps)
lemma scaleR_2:
fixes x :: "'a::real_vector"
shows "scaleR 2 x = x + x"
unfolding one_add_one [symmetric] scaleR_left_distrib by simp
lemma scaleR_half_double [simp]:
fixes a :: "'a::real_normed_vector"
shows "(1 / 2) *⇩R (a + a) = a"
proof -
have "⋀r. r *⇩R (a + a) = (r * 2) *⇩R a"
by (metis scaleR_2 scaleR_scaleR)
then show ?thesis
by simp
qed
lemma vector_choose_size:
assumes "0 ≤ c"
obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c"
proof -
obtain a::'a where "a ≠ 0"
using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce
then show ?thesis
by (rule_tac x="scaleR (c / norm a) a" in that) (simp add: assms)
qed
lemma vector_choose_dist:
assumes "0 ≤ c"
obtains y :: "'a::{real_normed_vector, perfect_space}" where "dist x y = c"
by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size)
lemma sphere_eq_empty [simp]:
fixes a :: "'a::{real_normed_vector, perfect_space}"
shows "sphere a r = {} ⟷ r < 0"
by (auto simp: sphere_def dist_norm) (metis dist_norm le_less_linear vector_choose_dist)
lemma setsum_delta_notmem:
assumes "x ∉ s"
shows "setsum (λy. if (y = x) then P x else Q y) s = setsum Q s"
and "setsum (λy. if (x = y) then P x else Q y) s = setsum Q s"
and "setsum (λy. if (y = x) then P y else Q y) s = setsum Q s"
and "setsum (λy. if (x = y) then P y else Q y) s = setsum Q s"
apply (rule_tac [!] setsum.cong)
using assms
apply auto
done
lemma setsum_delta'':
fixes s::"'a::real_vector set"
assumes "finite s"
shows "(∑x∈s. (if y = x then f x else 0) *⇩R x) = (if y∈s then (f y) *⇩R y else 0)"
proof -
have *: "⋀x y. (if y = x then f x else (0::real)) *⇩R x = (if x=y then (f x) *⇩R x else 0)"
by auto
show ?thesis
unfolding * using setsum.delta[OF assms, of y "λx. f x *⇩R x"] by auto
qed
lemma if_smult: "(if P then x else (y::real)) *⇩R v = (if P then x *⇩R v else y *⇩R v)"
by (fact if_distrib)
lemma dist_triangle_eq:
fixes x y z :: "'a::real_inner"
shows "dist x z = dist x y + dist y z ⟷
norm (x - y) *⇩R (y - z) = norm (y - z) *⇩R (x - y)"
proof -
have *: "x - y + (y - z) = x - z" by auto
show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *]
by (auto simp add:norm_minus_commute)
qed
lemma norm_minus_eqI: "x = - y ⟹ norm x = norm y" by auto
lemma Min_grI:
assumes "finite A" "A ≠ {}" "∀a∈A. x < a"
shows "x < Min A"
unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto
lemma norm_lt: "norm x < norm y ⟷ inner x x < inner y y"
unfolding norm_eq_sqrt_inner by simp
lemma norm_le: "norm x ≤ norm y ⟷ inner x x ≤ inner y y"
unfolding norm_eq_sqrt_inner by simp
subsection ‹Affine set and affine hull›
definition affine :: "'a::real_vector set ⇒ bool"
where "affine s ⟷ (∀x∈s. ∀y∈s. ∀u v. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈ s)"
lemma affine_alt: "affine s ⟷ (∀x∈s. ∀y∈s. ∀u::real. (1 - u) *⇩R x + u *⇩R y ∈ s)"
unfolding affine_def by (metis eq_diff_eq')
lemma affine_empty [iff]: "affine {}"
unfolding affine_def by auto
lemma affine_sing [iff]: "affine {x}"
unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric])
lemma affine_UNIV [iff]: "affine UNIV"
unfolding affine_def by auto
lemma affine_Inter[intro]: "(∀s∈f. affine s) ⟹ affine (⋂f)"
unfolding affine_def by auto
lemma affine_Int[intro]: "affine s ⟹ affine t ⟹ affine (s ∩ t)"
unfolding affine_def by auto
lemma affine_affine_hull [simp]: "affine(affine hull s)"
unfolding hull_def
using affine_Inter[of "{t. affine t ∧ s ⊆ t}"] by auto
lemma affine_hull_eq[simp]: "(affine hull s = s) ⟷ affine s"
by (metis affine_affine_hull hull_same)
lemma affine_hyperplane: "affine {x. a ∙ x = b}"
by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral)
subsubsection ‹Some explicit formulations (from Lars Schewe)›
lemma affine:
fixes V::"'a::real_vector set"
shows "affine V ⟷
(∀s u. finite s ∧ s ≠ {} ∧ s ⊆ V ∧ setsum u s = 1 ⟶ (setsum (λx. (u x) *⇩R x)) s ∈ V)"
unfolding affine_def
apply rule
apply(rule, rule, rule)
apply(erule conjE)+
defer
apply (rule, rule, rule, rule, rule)
proof -
fix x y u v
assume as: "x ∈ V" "y ∈ V" "u + v = (1::real)"
"∀s u. finite s ∧ s ≠ {} ∧ s ⊆ V ∧ setsum u s = 1 ⟶ (∑x∈s. u x *⇩R x) ∈ V"
then show "u *⇩R x + v *⇩R y ∈ V"
apply (cases "x = y")
using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="λw. if w = x then u else v"]]
and as(1-3)
apply (auto simp add: scaleR_left_distrib[symmetric])
done
next
fix s u
assume as: "∀x∈V. ∀y∈V. ∀u v. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈ V"
"finite s" "s ≠ {}" "s ⊆ V" "setsum u s = (1::real)"
def n ≡ "card s"
have "card s = 0 ∨ card s = 1 ∨ card s = 2 ∨ card s > 2" by auto
then show "(∑x∈s. u x *⇩R x) ∈ V"
proof (auto simp only: disjE)
assume "card s = 2"
then have "card s = Suc (Suc 0)"
by auto
then obtain a b where "s = {a, b}"
unfolding card_Suc_eq by auto
then show ?thesis
using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)
by (auto simp add: setsum_clauses(2))
next
assume "card s > 2"
then show ?thesis using as and n_def
proof (induct n arbitrary: u s)
case 0
then show ?case by auto
next
case (Suc n)
fix s :: "'a set" and u :: "'a ⇒ real"
assume IA:
"⋀u s. ⟦2 < card s; ∀x∈V. ∀y∈V. ∀u v. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈ V; finite s;
s ≠ {}; s ⊆ V; setsum u s = 1; n = card s ⟧ ⟹ (∑x∈s. u x *⇩R x) ∈ V"
and as:
"Suc n = card s" "2 < card s" "∀x∈V. ∀y∈V. ∀u v. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈ V"
"finite s" "s ≠ {}" "s ⊆ V" "setsum u s = 1"
have "∃x∈s. u x ≠ 1"
proof (rule ccontr)
assume "¬ ?thesis"
then have "setsum u s = real_of_nat (card s)"
unfolding card_eq_setsum by auto
then show False
using as(7) and ‹card s > 2›
by (metis One_nat_def less_Suc0 Zero_not_Suc of_nat_1 of_nat_eq_iff numeral_2_eq_2)
qed
then obtain x where x:"x ∈ s" "u x ≠ 1" by auto
have c: "card (s - {x}) = card s - 1"
apply (rule card_Diff_singleton)
using ‹x∈s› as(4)
apply auto
done
have *: "s = insert x (s - {x})" "finite (s - {x})"
using ‹x∈s› and as(4) by auto
have **: "setsum u (s - {x}) = 1 - u x"
using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[symmetric] as(7)] by auto
have ***: "inverse (1 - u x) * setsum u (s - {x}) = 1"
unfolding ** using ‹u x ≠ 1› by auto
have "(∑xa∈s - {x}. (inverse (1 - u x) * u xa) *⇩R xa) ∈ V"
proof (cases "card (s - {x}) > 2")
case True
then have "s - {x} ≠ {}" "card (s - {x}) = n"
unfolding c and as(1)[symmetric]
proof (rule_tac ccontr)
assume "¬ s - {x} ≠ {}"
then have "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp
then show False using True by auto
qed auto
then show ?thesis
apply (rule_tac IA[of "s - {x}" "λy. (inverse (1 - u x) * u y)"])
unfolding setsum_right_distrib[symmetric]
using as and *** and True
apply auto
done
next
case False
then have "card (s - {x}) = Suc (Suc 0)"
using as(2) and c by auto
then obtain a b where "(s - {x}) = {a, b}" "a≠b"
unfolding card_Suc_eq by auto
then show ?thesis
using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]
using *** *(2) and ‹s ⊆ V›
unfolding setsum_right_distrib
by (auto simp add: setsum_clauses(2))
qed
then have "u x + (1 - u x) = 1 ⟹
u x *⇩R x + (1 - u x) *⇩R ((∑xa∈s - {x}. u xa *⇩R xa) /⇩R (1 - u x)) ∈ V"
apply -
apply (rule as(3)[rule_format])
unfolding Real_Vector_Spaces.scaleR_right.setsum
using x(1) as(6)
apply auto
done
then show "(∑x∈s. u x *⇩R x) ∈ V"
unfolding scaleR_scaleR[symmetric] and scaleR_right.setsum [symmetric]
apply (subst *)
unfolding setsum_clauses(2)[OF *(2)]
using ‹u x ≠ 1›
apply auto
done
qed
next
assume "card s = 1"
then obtain a where "s={a}"
by (auto simp add: card_Suc_eq)
then show ?thesis
using as(4,5) by simp
qed (insert ‹s≠{}› ‹finite s›, auto)
qed
lemma affine_hull_explicit:
"affine hull p =
{y. ∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p ∧ setsum u s = 1 ∧ setsum (λv. (u v) *⇩R v) s = y}"
apply (rule hull_unique)
apply (subst subset_eq)
prefer 3
apply rule
unfolding mem_Collect_eq
apply (erule exE)+
apply (erule conjE)+
prefer 2
apply rule
proof -
fix x
assume "x∈p"
then show "∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = x"
apply (rule_tac x="{x}" in exI)
apply (rule_tac x="λx. 1" in exI)
apply auto
done
next
fix t x s u
assume as: "p ⊆ t" "affine t" "finite s" "s ≠ {}"
"s ⊆ p" "setsum u s = 1" "(∑v∈s. u v *⇩R v) = x"
then show "x ∈ t"
using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]]
by auto
next
show "affine {y. ∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = y}"
unfolding affine_def
apply (rule, rule, rule, rule, rule)
unfolding mem_Collect_eq
proof -
fix u v :: real
assume uv: "u + v = 1"
fix x
assume "∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = x"
then obtain sx ux where
x: "finite sx" "sx ≠ {}" "sx ⊆ p" "setsum ux sx = 1" "(∑v∈sx. ux v *⇩R v) = x"
by auto
fix y
assume "∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = y"
then obtain sy uy where
y: "finite sy" "sy ≠ {}" "sy ⊆ p" "setsum uy sy = 1" "(∑v∈sy. uy v *⇩R v) = y" by auto
have xy: "finite (sx ∪ sy)"
using x(1) y(1) by auto
have **: "(sx ∪ sy) ∩ sx = sx" "(sx ∪ sy) ∩ sy = sy"
by auto
show "∃s ua. finite s ∧ s ≠ {} ∧ s ⊆ p ∧
setsum ua s = 1 ∧ (∑v∈s. ua v *⇩R v) = u *⇩R x + v *⇩R y"
apply (rule_tac x="sx ∪ sy" in exI)
apply (rule_tac x="λa. (if a∈sx then u * ux a else 0) + (if a∈sy then v * uy a else 0)" in exI)
unfolding scaleR_left_distrib setsum.distrib if_smult scaleR_zero_left
** setsum.inter_restrict[OF xy, symmetric]
unfolding scaleR_scaleR[symmetric] Real_Vector_Spaces.scaleR_right.setsum [symmetric]
and setsum_right_distrib[symmetric]
unfolding x y
using x(1-3) y(1-3) uv
apply simp
done
qed
qed
lemma affine_hull_finite:
assumes "finite s"
shows "affine hull s = {y. ∃u. setsum u s = 1 ∧ setsum (λv. u v *⇩R v) s = y}"
unfolding affine_hull_explicit and set_eq_iff and mem_Collect_eq
apply (rule, rule)
apply (erule exE)+
apply (erule conjE)+
defer
apply (erule exE)
apply (erule conjE)
proof -
fix x u
assume "setsum u s = 1" "(∑v∈s. u v *⇩R v) = x"
then show "∃sa u. finite sa ∧
¬ (∀x. (x ∈ sa) = (x ∈ {})) ∧ sa ⊆ s ∧ setsum u sa = 1 ∧ (∑v∈sa. u v *⇩R v) = x"
apply (rule_tac x=s in exI, rule_tac x=u in exI)
using assms
apply auto
done
next
fix x t u
assume "t ⊆ s"
then have *: "s ∩ t = t"
by auto
assume "finite t" "¬ (∀x. (x ∈ t) = (x ∈ {}))" "setsum u t = 1" "(∑v∈t. u v *⇩R v) = x"
then show "∃u. setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = x"
apply (rule_tac x="λx. if x∈t then u x else 0" in exI)
unfolding if_smult scaleR_zero_left and setsum.inter_restrict[OF assms, symmetric] and *
apply auto
done
qed
subsubsection ‹Stepping theorems and hence small special cases›
lemma affine_hull_empty[simp]: "affine hull {} = {}"
by (rule hull_unique) auto
lemma affine_hull_finite_step:
fixes y :: "'a::real_vector"
shows
"(∃u. setsum u {} = w ∧ setsum (λx. u x *⇩R x) {} = y) ⟷ w = 0 ∧ y = 0" (is ?th1)
and
"finite s ⟹
(∃u. setsum u (insert a s) = w ∧ setsum (λx. u x *⇩R x) (insert a s) = y) ⟷
(∃v u. setsum u s = w - v ∧ setsum (λx. u x *⇩R x) s = y - v *⇩R a)" (is "_ ⟹ ?lhs = ?rhs")
proof -
show ?th1 by simp
assume fin: "finite s"
show "?lhs = ?rhs"
proof
assume ?lhs
then obtain u where u: "setsum u (insert a s) = w ∧ (∑x∈insert a s. u x *⇩R x) = y"
by auto
show ?rhs
proof (cases "a ∈ s")
case True
then have *: "insert a s = s" by auto
show ?thesis
using u[unfolded *]
apply(rule_tac x=0 in exI)
apply auto
done
next
case False
then show ?thesis
apply (rule_tac x="u a" in exI)
using u and fin
apply auto
done
qed
next
assume ?rhs
then obtain v u where vu: "setsum u s = w - v" "(∑x∈s. u x *⇩R x) = y - v *⇩R a"
by auto
have *: "⋀x M. (if x = a then v else M) *⇩R x = (if x = a then v *⇩R x else M *⇩R x)"
by auto
show ?lhs
proof (cases "a ∈ s")
case True
then show ?thesis
apply (rule_tac x="λx. (if x=a then v else 0) + u x" in exI)
unfolding setsum_clauses(2)[OF fin]
apply simp
unfolding scaleR_left_distrib and setsum.distrib
unfolding vu and * and scaleR_zero_left
apply (auto simp add: setsum.delta[OF fin])
done
next
case False
then have **:
"⋀x. x ∈ s ⟹ u x = (if x = a then v else u x)"
"⋀x. x ∈ s ⟹ u x *⇩R x = (if x = a then v *⇩R x else u x *⇩R x)" by auto
from False show ?thesis
apply (rule_tac x="λx. if x=a then v else u x" in exI)
unfolding setsum_clauses(2)[OF fin] and * using vu
using setsum.cong [of s _ "λx. u x *⇩R x" "λx. if x = a then v *⇩R x else u x *⇩R x", OF _ **(2)]
using setsum.cong [of s _ u "λx. if x = a then v else u x", OF _ **(1)]
apply auto
done
qed
qed
qed
lemma affine_hull_2:
fixes a b :: "'a::real_vector"
shows "affine hull {a,b} = {u *⇩R a + v *⇩R b| u v. (u + v = 1)}"
(is "?lhs = ?rhs")
proof -
have *:
"⋀x y z. z = x - y ⟷ y + z = (x::real)"
"⋀x y z. z = x - y ⟷ y + z = (x::'a)" by auto
have "?lhs = {y. ∃u. setsum u {a, b} = 1 ∧ (∑v∈{a, b}. u v *⇩R v) = y}"
using affine_hull_finite[of "{a,b}"] by auto
also have "… = {y. ∃v u. u b = 1 - v ∧ u b *⇩R b = y - v *⇩R a}"
by (simp add: affine_hull_finite_step(2)[of "{b}" a])
also have "… = ?rhs" unfolding * by auto
finally show ?thesis by auto
qed
lemma affine_hull_3:
fixes a b c :: "'a::real_vector"
shows "affine hull {a,b,c} = { u *⇩R a + v *⇩R b + w *⇩R c| u v w. u + v + w = 1}"
proof -
have *:
"⋀x y z. z = x - y ⟷ y + z = (x::real)"
"⋀x y z. z = x - y ⟷ y + z = (x::'a)" by auto
show ?thesis
apply (simp add: affine_hull_finite affine_hull_finite_step)
unfolding *
apply auto
apply (rule_tac x=v in exI)
apply (rule_tac x=va in exI)
apply auto
apply (rule_tac x=u in exI)
apply force
done
qed
lemma mem_affine:
assumes "affine S" "x ∈ S" "y ∈ S" "u + v = 1"
shows "u *⇩R x + v *⇩R y ∈ S"
using assms affine_def[of S] by auto
lemma mem_affine_3:
assumes "affine S" "x ∈ S" "y ∈ S" "z ∈ S" "u + v + w = 1"
shows "u *⇩R x + v *⇩R y + w *⇩R z ∈ S"
proof -
have "u *⇩R x + v *⇩R y + w *⇩R z ∈ affine hull {x, y, z}"
using affine_hull_3[of x y z] assms by auto
moreover
have "affine hull {x, y, z} ⊆ affine hull S"
using hull_mono[of "{x, y, z}" "S"] assms by auto
moreover
have "affine hull S = S"
using assms affine_hull_eq[of S] by auto
ultimately show ?thesis by auto
qed
lemma mem_affine_3_minus:
assumes "affine S" "x ∈ S" "y ∈ S" "z ∈ S"
shows "x + v *⇩R (y-z) ∈ S"
using mem_affine_3[of S x y z 1 v "-v"] assms
by (simp add: algebra_simps)
corollary mem_affine_3_minus2:
"⟦affine S; x ∈ S; y ∈ S; z ∈ S⟧ ⟹ x - v *⇩R (y-z) ∈ S"
by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left)
subsubsection ‹Some relations between affine hull and subspaces›
lemma affine_hull_insert_subset_span:
"affine hull (insert a s) ⊆ {a + v| v . v ∈ span {x - a | x . x ∈ s}}"
unfolding subset_eq Ball_def
unfolding affine_hull_explicit span_explicit mem_Collect_eq
apply (rule, rule)
apply (erule exE)+
apply (erule conjE)+
proof -
fix x t u
assume as: "finite t" "t ≠ {}" "t ⊆ insert a s" "setsum u t = 1" "(∑v∈t. u v *⇩R v) = x"
have "(λx. x - a) ` (t - {a}) ⊆ {x - a |x. x ∈ s}"
using as(3) by auto
then show "∃v. x = a + v ∧ (∃S u. finite S ∧ S ⊆ {x - a |x. x ∈ s} ∧ (∑v∈S. u v *⇩R v) = v)"
apply (rule_tac x="x - a" in exI)
apply (rule conjI, simp)
apply (rule_tac x="(λx. x - a) ` (t - {a})" in exI)
apply (rule_tac x="λx. u (x + a)" in exI)
apply (rule conjI) using as(1) apply simp
apply (erule conjI)
using as(1)
apply (simp add: setsum.reindex[unfolded inj_on_def] scaleR_right_diff_distrib
setsum_subtractf scaleR_left.setsum[symmetric] setsum_diff1 scaleR_left_diff_distrib)
unfolding as
apply simp
done
qed
lemma affine_hull_insert_span:
assumes "a ∉ s"
shows "affine hull (insert a s) = {a + v | v . v ∈ span {x - a | x. x ∈ s}}"
apply (rule, rule affine_hull_insert_subset_span)
unfolding subset_eq Ball_def
unfolding affine_hull_explicit and mem_Collect_eq
proof (rule, rule, erule exE, erule conjE)
fix y v
assume "y = a + v" "v ∈ span {x - a |x. x ∈ s}"
then obtain t u where obt: "finite t" "t ⊆ {x - a |x. x ∈ s}" "a + (∑v∈t. u v *⇩R v) = y"
unfolding span_explicit by auto
def f ≡ "(λx. x + a) ` t"
have f: "finite f" "f ⊆ s" "(∑v∈f. u (v - a) *⇩R (v - a)) = y - a"
unfolding f_def using obt by (auto simp add: setsum.reindex[unfolded inj_on_def])
have *: "f ∩ {a} = {}" "f ∩ - {a} = f"
using f(2) assms by auto
show "∃sa u. finite sa ∧ sa ≠ {} ∧ sa ⊆ insert a s ∧ setsum u sa = 1 ∧ (∑v∈sa. u v *⇩R v) = y"
apply (rule_tac x = "insert a f" in exI)
apply (rule_tac x = "λx. if x=a then 1 - setsum (λx. u (x - a)) f else u (x - a)" in exI)
using assms and f
unfolding setsum_clauses(2)[OF f(1)] and if_smult
unfolding setsum.If_cases[OF f(1), of "λx. x = a"]
apply (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps *)
done
qed
lemma affine_hull_span:
assumes "a ∈ s"
shows "affine hull s = {a + v | v. v ∈ span {x - a | x. x ∈ s - {a}}}"
using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
subsubsection ‹Parallel affine sets›
definition affine_parallel :: "'a::real_vector set ⇒ 'a::real_vector set ⇒ bool"
where "affine_parallel S T ⟷ (∃a. T = (λx. a + x) ` S)"
lemma affine_parallel_expl_aux:
fixes S T :: "'a::real_vector set"
assumes "∀x. x ∈ S ⟷ a + x ∈ T"
shows "T = (λx. a + x) ` S"
proof -
{
fix x
assume "x ∈ T"
then have "( - a) + x ∈ S"
using assms by auto
then have "x ∈ ((λx. a + x) ` S)"
using imageI[of "-a+x" S "(λx. a+x)"] by auto
}
moreover have "T ≥ (λx. a + x) ` S"
using assms by auto
ultimately show ?thesis by auto
qed
lemma affine_parallel_expl: "affine_parallel S T ⟷ (∃a. ∀x. x ∈ S ⟷ a + x ∈ T)"
unfolding affine_parallel_def
using affine_parallel_expl_aux[of S _ T] by auto
lemma affine_parallel_reflex: "affine_parallel S S"
unfolding affine_parallel_def
apply (rule exI[of _ "0"])
apply auto
done
lemma affine_parallel_commut:
assumes "affine_parallel A B"
shows "affine_parallel B A"
proof -
from assms obtain a where B: "B = (λx. a + x) ` A"
unfolding affine_parallel_def by auto
have [simp]: "(λx. x - a) = plus (- a)" by (simp add: fun_eq_iff)
from B show ?thesis
using translation_galois [of B a A]
unfolding affine_parallel_def by auto
qed
lemma affine_parallel_assoc:
assumes "affine_parallel A B"
and "affine_parallel B C"
shows "affine_parallel A C"
proof -
from assms obtain ab where "B = (λx. ab + x) ` A"
unfolding affine_parallel_def by auto
moreover
from assms obtain bc where "C = (λx. bc + x) ` B"
unfolding affine_parallel_def by auto
ultimately show ?thesis
using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto
qed
lemma affine_translation_aux:
fixes a :: "'a::real_vector"
assumes "affine ((λx. a + x) ` S)"
shows "affine S"
proof -
{
fix x y u v
assume xy: "x ∈ S" "y ∈ S" "(u :: real) + v = 1"
then have "(a + x) ∈ ((λx. a + x) ` S)" "(a + y) ∈ ((λx. a + x) ` S)"
by auto
then have h1: "u *⇩R (a + x) + v *⇩R (a + y) ∈ (λx. a + x) ` S"
using xy assms unfolding affine_def by auto
have "u *⇩R (a + x) + v *⇩R (a + y) = (u + v) *⇩R a + (u *⇩R x + v *⇩R y)"
by (simp add: algebra_simps)
also have "… = a + (u *⇩R x + v *⇩R y)"
using ‹u + v = 1› by auto
ultimately have "a + (u *⇩R x + v *⇩R y) ∈ (λx. a + x) ` S"
using h1 by auto
then have "u *⇩R x + v *⇩R y : S" by auto
}
then show ?thesis unfolding affine_def by auto
qed
lemma affine_translation:
fixes a :: "'a::real_vector"
shows "affine S ⟷ affine ((λx. a + x) ` S)"
proof -
have "affine S ⟹ affine ((λx. a + x) ` S)"
using affine_translation_aux[of "-a" "((λx. a + x) ` S)"]
using translation_assoc[of "-a" a S] by auto
then show ?thesis using affine_translation_aux by auto
qed
lemma parallel_is_affine:
fixes S T :: "'a::real_vector set"
assumes "affine S" "affine_parallel S T"
shows "affine T"
proof -
from assms obtain a where "T = (λx. a + x) ` S"
unfolding affine_parallel_def by auto
then show ?thesis
using affine_translation assms by auto
qed
lemma subspace_imp_affine: "subspace s ⟹ affine s"
unfolding subspace_def affine_def by auto
subsubsection ‹Subspace parallel to an affine set›
lemma subspace_affine: "subspace S ⟷ affine S ∧ 0 ∈ S"
proof -
have h0: "subspace S ⟹ affine S ∧ 0 ∈ S"
using subspace_imp_affine[of S] subspace_0 by auto
{
assume assm: "affine S ∧ 0 ∈ S"
{
fix c :: real
fix x
assume x: "x ∈ S"
have "c *⇩R x = (1-c) *⇩R 0 + c *⇩R x" by auto
moreover
have "(1 - c) *⇩R 0 + c *⇩R x ∈ S"
using affine_alt[of S] assm x by auto
ultimately have "c *⇩R x ∈ S" by auto
}
then have h1: "∀c. ∀x ∈ S. c *⇩R x ∈ S" by auto
{
fix x y
assume xy: "x ∈ S" "y ∈ S"
def u == "(1 :: real)/2"
have "(1/2) *⇩R (x+y) = (1/2) *⇩R (x+y)"
by auto
moreover
have "(1/2) *⇩R (x+y)=(1/2) *⇩R x + (1-(1/2)) *⇩R y"
by (simp add: algebra_simps)
moreover
have "(1 - u) *⇩R x + u *⇩R y ∈ S"
using affine_alt[of S] assm xy by auto
ultimately
have "(1/2) *⇩R (x+y) ∈ S"
using u_def by auto
moreover
have "x + y = 2 *⇩R ((1/2) *⇩R (x+y))"
by auto
ultimately
have "x + y ∈ S"
using h1[rule_format, of "(1/2) *⇩R (x+y)" "2"] by auto
}
then have "∀x ∈ S. ∀y ∈ S. x + y ∈ S"
by auto
then have "subspace S"
using h1 assm unfolding subspace_def by auto
}
then show ?thesis using h0 by metis
qed
lemma affine_diffs_subspace:
assumes "affine S" "a ∈ S"
shows "subspace ((λx. (-a)+x) ` S)"
proof -
have [simp]: "(λx. x - a) = plus (- a)" by (simp add: fun_eq_iff)
have "affine ((λx. (-a)+x) ` S)"
using affine_translation assms by auto
moreover have "0 : ((λx. (-a)+x) ` S)"
using assms exI[of "(λx. x∈S ∧ -a+x = 0)" a] by auto
ultimately show ?thesis using subspace_affine by auto
qed
lemma parallel_subspace_explicit:
assumes "affine S"
and "a ∈ S"
assumes "L ≡ {y. ∃x ∈ S. (-a) + x = y}"
shows "subspace L ∧ affine_parallel S L"
proof -
from assms have "L = plus (- a) ` S" by auto
then have par: "affine_parallel S L"
unfolding affine_parallel_def ..
then have "affine L" using assms parallel_is_affine by auto
moreover have "0 ∈ L"
using assms by auto
ultimately show ?thesis
using subspace_affine par by auto
qed
lemma parallel_subspace_aux:
assumes "subspace A"
and "subspace B"
and "affine_parallel A B"
shows "A ⊇ B"
proof -
from assms obtain a where a: "∀x. x ∈ A ⟷ a + x ∈ B"
using affine_parallel_expl[of A B] by auto
then have "-a ∈ A"
using assms subspace_0[of B] by auto
then have "a ∈ A"
using assms subspace_neg[of A "-a"] by auto
then show ?thesis
using assms a unfolding subspace_def by auto
qed
lemma parallel_subspace:
assumes "subspace A"
and "subspace B"
and "affine_parallel A B"
shows "A = B"
proof
show "A ⊇ B"
using assms parallel_subspace_aux by auto
show "A ⊆ B"
using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto
qed
lemma affine_parallel_subspace:
assumes "affine S" "S ≠ {}"
shows "∃!L. subspace L ∧ affine_parallel S L"
proof -
have ex: "∃L. subspace L ∧ affine_parallel S L"
using assms parallel_subspace_explicit by auto
{
fix L1 L2
assume ass: "subspace L1 ∧ affine_parallel S L1" "subspace L2 ∧ affine_parallel S L2"
then have "affine_parallel L1 L2"
using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by auto
then have "L1 = L2"
using ass parallel_subspace by auto
}
then show ?thesis using ex by auto
qed
subsection ‹Cones›
definition cone :: "'a::real_vector set ⇒ bool"
where "cone s ⟷ (∀x∈s. ∀c≥0. c *⇩R x ∈ s)"
lemma cone_empty[intro, simp]: "cone {}"
unfolding cone_def by auto
lemma cone_univ[intro, simp]: "cone UNIV"
unfolding cone_def by auto
lemma cone_Inter[intro]: "∀s∈f. cone s ⟹ cone (⋂f)"
unfolding cone_def by auto
subsubsection ‹Conic hull›
lemma cone_cone_hull: "cone (cone hull s)"
unfolding hull_def by auto
lemma cone_hull_eq: "cone hull s = s ⟷ cone s"
apply (rule hull_eq)
using cone_Inter
unfolding subset_eq
apply auto
done
lemma mem_cone:
assumes "cone S" "x ∈ S" "c ≥ 0"
shows "c *⇩R x : S"
using assms cone_def[of S] by auto
lemma cone_contains_0:
assumes "cone S"
shows "S ≠ {} ⟷ 0 ∈ S"
proof -
{
assume "S ≠ {}"
then obtain a where "a ∈ S" by auto
then have "0 ∈ S"
using assms mem_cone[of S a 0] by auto
}
then show ?thesis by auto
qed
lemma cone_0: "cone {0}"
unfolding cone_def by auto
lemma cone_Union[intro]: "(∀s∈f. cone s) ⟶ cone (⋃f)"
unfolding cone_def by blast
lemma cone_iff:
assumes "S ≠ {}"
shows "cone S ⟷ 0 ∈ S ∧ (∀c. c > 0 ⟶ (op *⇩R c) ` S = S)"
proof -
{
assume "cone S"
{
fix c :: real
assume "c > 0"
{
fix x
assume "x ∈ S"
then have "x ∈ (op *⇩R c) ` S"
unfolding image_def
using ‹cone S› ‹c>0› mem_cone[of S x "1/c"]
exI[of "(λt. t ∈ S ∧ x = c *⇩R t)" "(1 / c) *⇩R x"]
by auto
}
moreover
{
fix x
assume "x ∈ (op *⇩R c) ` S"
then have "x ∈ S"
using ‹cone S› ‹c > 0›
unfolding cone_def image_def ‹c > 0› by auto
}
ultimately have "(op *⇩R c) ` S = S" by auto
}
then have "0 ∈ S ∧ (∀c. c > 0 ⟶ (op *⇩R c) ` S = S)"
using ‹cone S› cone_contains_0[of S] assms by auto
}
moreover
{
assume a: "0 ∈ S ∧ (∀c. c > 0 ⟶ (op *⇩R c) ` S = S)"
{
fix x
assume "x ∈ S"
fix c1 :: real
assume "c1 ≥ 0"
then have "c1 = 0 ∨ c1 > 0" by auto
then have "c1 *⇩R x ∈ S" using a ‹x ∈ S› by auto
}
then have "cone S" unfolding cone_def by auto
}
ultimately show ?thesis by blast
qed
lemma cone_hull_empty: "cone hull {} = {}"
by (metis cone_empty cone_hull_eq)
lemma cone_hull_empty_iff: "S = {} ⟷ cone hull S = {}"
by (metis bot_least cone_hull_empty hull_subset xtrans(5))
lemma cone_hull_contains_0: "S ≠ {} ⟷ 0 ∈ cone hull S"
using cone_cone_hull[of S] cone_contains_0[of "cone hull S"] cone_hull_empty_iff[of S]
by auto
lemma mem_cone_hull:
assumes "x ∈ S" "c ≥ 0"
shows "c *⇩R x ∈ cone hull S"
by (metis assms cone_cone_hull hull_inc mem_cone)
lemma cone_hull_expl: "cone hull S = {c *⇩R x | c x. c ≥ 0 ∧ x ∈ S}"
(is "?lhs = ?rhs")
proof -
{
fix x
assume "x ∈ ?rhs"
then obtain cx :: real and xx where x: "x = cx *⇩R xx" "cx ≥ 0" "xx ∈ S"
by auto
fix c :: real
assume c: "c ≥ 0"
then have "c *⇩R x = (c * cx) *⇩R xx"
using x by (simp add: algebra_simps)
moreover
have "c * cx ≥ 0" using c x by auto
ultimately
have "c *⇩R x ∈ ?rhs" using x by auto
}
then have "cone ?rhs"
unfolding cone_def by auto
then have "?rhs ∈ Collect cone"
unfolding mem_Collect_eq by auto
{
fix x
assume "x ∈ S"
then have "1 *⇩R x ∈ ?rhs"
apply auto
apply (rule_tac x = 1 in exI)
apply auto
done
then have "x ∈ ?rhs" by auto
}
then have "S ⊆ ?rhs" by auto
then have "?lhs ⊆ ?rhs"
using ‹?rhs ∈ Collect cone› hull_minimal[of S "?rhs" "cone"] by auto
moreover
{
fix x
assume "x ∈ ?rhs"
then obtain cx :: real and xx where x: "x = cx *⇩R xx" "cx ≥ 0" "xx ∈ S"
by auto
then have "xx ∈ cone hull S"
using hull_subset[of S] by auto
then have "x ∈ ?lhs"
using x cone_cone_hull[of S] cone_def[of "cone hull S"] by auto
}
ultimately show ?thesis by auto
qed
lemma cone_closure:
fixes S :: "'a::real_normed_vector set"
assumes "cone S"
shows "cone (closure S)"
proof (cases "S = {}")
case True
then show ?thesis by auto
next
case False
then have "0 ∈ S ∧ (∀c. c > 0 ⟶ op *⇩R c ` S = S)"
using cone_iff[of S] assms by auto
then have "0 ∈ closure S ∧ (∀c. c > 0 ⟶ op *⇩R c ` closure S = closure S)"
using closure_subset by (auto simp add: closure_scaleR)
then show ?thesis
using False cone_iff[of "closure S"] by auto
qed
subsection ‹Affine dependence and consequential theorems (from Lars Schewe)›
definition affine_dependent :: "'a::real_vector set ⇒ bool"
where "affine_dependent s ⟷ (∃x∈s. x ∈ affine hull (s - {x}))"
lemma affine_dependent_explicit:
"affine_dependent p ⟷
(∃s u. finite s ∧ s ⊆ p ∧ setsum u s = 0 ∧
(∃v∈s. u v ≠ 0) ∧ setsum (λv. u v *⇩R v) s = 0)"
unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq
apply rule
apply (erule bexE, erule exE, erule exE)
apply (erule conjE)+
defer
apply (erule exE, erule exE)
apply (erule conjE)+
apply (erule bexE)
proof -
fix x s u
assume as: "x ∈ p" "finite s" "s ≠ {}" "s ⊆ p - {x}" "setsum u s = 1" "(∑v∈s. u v *⇩R v) = x"
have "x ∉ s" using as(1,4) by auto
show "∃s u. finite s ∧ s ⊆ p ∧ setsum u s = 0 ∧ (∃v∈s. u v ≠ 0) ∧ (∑v∈s. u v *⇩R v) = 0"
apply (rule_tac x="insert x s" in exI, rule_tac x="λv. if v = x then - 1 else u v" in exI)
unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF ‹x∉s›] and as
using as
apply auto
done
next
fix s u v
assume as: "finite s" "s ⊆ p" "setsum u s = 0" "(∑v∈s. u v *⇩R v) = 0" "v ∈ s" "u v ≠ 0"
have "s ≠ {v}"
using as(3,6) by auto
then show "∃x∈p. ∃s u. finite s ∧ s ≠ {} ∧ s ⊆ p - {x} ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = x"
apply (rule_tac x=v in bexI)
apply (rule_tac x="s - {v}" in exI)
apply (rule_tac x="λx. - (1 / u v) * u x" in exI)
unfolding scaleR_scaleR[symmetric] and scaleR_right.setsum [symmetric]
unfolding setsum_right_distrib[symmetric] and setsum_diff1[OF as(1)]
using as
apply auto
done
qed
lemma affine_dependent_explicit_finite:
fixes s :: "'a::real_vector set"
assumes "finite s"
shows "affine_dependent s ⟷
(∃u. setsum u s = 0 ∧ (∃v∈s. u v ≠ 0) ∧ setsum (λv. u v *⇩R v) s = 0)"
(is "?lhs = ?rhs")
proof
have *: "⋀vt u v. (if vt then u v else 0) *⇩R v = (if vt then (u v) *⇩R v else 0::'a)"
by auto
assume ?lhs
then obtain t u v where
"finite t" "t ⊆ s" "setsum u t = 0" "v∈t" "u v ≠ 0" "(∑v∈t. u v *⇩R v) = 0"
unfolding affine_dependent_explicit by auto
then show ?rhs
apply (rule_tac x="λx. if x∈t then u x else 0" in exI)
apply auto unfolding * and setsum.inter_restrict[OF assms, symmetric]
unfolding Int_absorb1[OF ‹t⊆s›]
apply auto
done
next
assume ?rhs
then obtain u v where "setsum u s = 0" "v∈s" "u v ≠ 0" "(∑v∈s. u v *⇩R v) = 0"
by auto
then show ?lhs unfolding affine_dependent_explicit
using assms by auto
qed
subsection ‹Connectedness of convex sets›
lemma connectedD:
"connected S ⟹ open A ⟹ open B ⟹ S ⊆ A ∪ B ⟹ A ∩ B ∩ S = {} ⟹ A ∩ S = {} ∨ B ∩ S = {}"
by (rule Topological_Spaces.topological_space_class.connectedD)
lemma convex_connected:
fixes s :: "'a::real_normed_vector set"
assumes "convex s"
shows "connected s"
proof (rule connectedI)
fix A B
assume "open A" "open B" "A ∩ B ∩ s = {}" "s ⊆ A ∪ B"
moreover
assume "A ∩ s ≠ {}" "B ∩ s ≠ {}"
then obtain a b where a: "a ∈ A" "a ∈ s" and b: "b ∈ B" "b ∈ s" by auto
def f ≡ "λu. u *⇩R a + (1 - u) *⇩R b"
then have "continuous_on {0 .. 1} f"
by (auto intro!: continuous_intros)
then have "connected (f ` {0 .. 1})"
by (auto intro!: connected_continuous_image)
note connectedD[OF this, of A B]
moreover have "a ∈ A ∩ f ` {0 .. 1}"
using a by (auto intro!: image_eqI[of _ _ 1] simp: f_def)
moreover have "b ∈ B ∩ f ` {0 .. 1}"
using b by (auto intro!: image_eqI[of _ _ 0] simp: f_def)
moreover have "f ` {0 .. 1} ⊆ s"
using ‹convex s› a b unfolding convex_def f_def by auto
ultimately show False by auto
qed
corollary connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
by(simp add: convex_connected)
proposition clopen:
fixes s :: "'a :: real_normed_vector set"
shows "closed s ∧ open s ⟷ s = {} ∨ s = UNIV"
apply (rule iffI)
apply (rule connected_UNIV [unfolded connected_clopen, rule_format])
apply (force simp add: open_openin closed_closedin, force)
done
corollary compact_open:
fixes s :: "'a :: euclidean_space set"
shows "compact s ∧ open s ⟷ s = {}"
by (auto simp: compact_eq_bounded_closed clopen)
corollary finite_imp_not_open:
fixes S :: "'a::{real_normed_vector, perfect_space} set"
shows "⟦finite S; open S⟧ ⟹ S={}"
using clopen [of S] finite_imp_closed not_bounded_UNIV by blast
text ‹Balls, being convex, are connected.›
lemma convex_prod:
assumes "⋀i. i ∈ Basis ⟹ convex {x. P i x}"
shows "convex {x. ∀i∈Basis. P i (x∙i)}"
using assms unfolding convex_def
by (auto simp: inner_add_left)
lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (∀i∈Basis. 0 ≤ x∙i)}"
by (rule convex_prod) (simp add: atLeast_def[symmetric] convex_real_interval)
lemma convex_local_global_minimum:
fixes s :: "'a::real_normed_vector set"
assumes "e > 0"
and "convex_on s f"
and "ball x e ⊆ s"
and "∀y∈ball x e. f x ≤ f y"
shows "∀y∈s. f x ≤ f y"
proof (rule ccontr)
have "x ∈ s" using assms(1,3) by auto
assume "¬ ?thesis"
then obtain y where "y∈s" and y: "f x > f y" by auto
then have xy: "0 < dist x y" by auto
then obtain u where "0 < u" "u ≤ 1" and u: "u < e / dist x y"
using real_lbound_gt_zero[of 1 "e / dist x y"] xy ‹e>0› by auto
then have "f ((1-u) *⇩R x + u *⇩R y) ≤ (1-u) * f x + u * f y"
using ‹x∈s› ‹y∈s›
using assms(2)[unfolded convex_on_def,
THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]]
by auto
moreover
have *: "x - ((1 - u) *⇩R x + u *⇩R y) = u *⇩R (x - y)"
by (simp add: algebra_simps)
have "(1 - u) *⇩R x + u *⇩R y ∈ ball x e"
unfolding mem_ball dist_norm
unfolding * and norm_scaleR and abs_of_pos[OF ‹0<u›]
unfolding dist_norm[symmetric]
using u
unfolding pos_less_divide_eq[OF xy]
by auto
then have "f x ≤ f ((1 - u) *⇩R x + u *⇩R y)"
using assms(4) by auto
ultimately show False
using mult_strict_left_mono[OF y ‹u>0›]
unfolding left_diff_distrib
by auto
qed
lemma convex_ball [iff]:
fixes x :: "'a::real_normed_vector"
shows "convex (ball x e)"
proof (auto simp add: convex_def)
fix y z
assume yz: "dist x y < e" "dist x z < e"
fix u v :: real
assume uv: "0 ≤ u" "0 ≤ v" "u + v = 1"
have "dist x (u *⇩R y + v *⇩R z) ≤ u * dist x y + v * dist x z"
using uv yz
using convex_on_dist [of "ball x e" x, unfolded convex_on_def,
THEN bspec[where x=y], THEN bspec[where x=z]]
by auto
then show "dist x (u *⇩R y + v *⇩R z) < e"
using convex_bound_lt[OF yz uv] by auto
qed
lemma convex_cball [iff]:
fixes x :: "'a::real_normed_vector"
shows "convex (cball x e)"
proof -
{
fix y z
assume yz: "dist x y ≤ e" "dist x z ≤ e"
fix u v :: real
assume uv: "0 ≤ u" "0 ≤ v" "u + v = 1"
have "dist x (u *⇩R y + v *⇩R z) ≤ u * dist x y + v * dist x z"
using uv yz
using convex_on_dist [of "cball x e" x, unfolded convex_on_def,
THEN bspec[where x=y], THEN bspec[where x=z]]
by auto
then have "dist x (u *⇩R y + v *⇩R z) ≤ e"
using convex_bound_le[OF yz uv] by auto
}
then show ?thesis by (auto simp add: convex_def Ball_def)
qed
lemma connected_ball [iff]:
fixes x :: "'a::real_normed_vector"
shows "connected (ball x e)"
using convex_connected convex_ball by auto
lemma connected_cball [iff]:
fixes x :: "'a::real_normed_vector"
shows "connected (cball x e)"
using convex_connected convex_cball by auto
subsection ‹Convex hull›
lemma convex_convex_hull [iff]: "convex (convex hull s)"
unfolding hull_def
using convex_Inter[of "{t. convex t ∧ s ⊆ t}"]
by auto
lemma convex_hull_eq: "convex hull s = s ⟷ convex s"
by (metis convex_convex_hull hull_same)
lemma bounded_convex_hull:
fixes s :: "'a::real_normed_vector set"
assumes "bounded s"
shows "bounded (convex hull s)"
proof -
from assms obtain B where B: "∀x∈s. norm x ≤ B"
unfolding bounded_iff by auto
show ?thesis
apply (rule bounded_subset[OF bounded_cball, of _ 0 B])
unfolding subset_hull[of convex, OF convex_cball]
unfolding subset_eq mem_cball dist_norm using B
apply auto
done
qed
lemma finite_imp_bounded_convex_hull:
fixes s :: "'a::real_normed_vector set"
shows "finite s ⟹ bounded (convex hull s)"
using bounded_convex_hull finite_imp_bounded
by auto
subsubsection ‹Convex hull is "preserved" by a linear function›
lemma convex_hull_linear_image:
assumes f: "linear f"
shows "f ` (convex hull s) = convex hull (f ` s)"
proof
show "convex hull (f ` s) ⊆ f ` (convex hull s)"
by (intro hull_minimal image_mono hull_subset convex_linear_image assms convex_convex_hull)
show "f ` (convex hull s) ⊆ convex hull (f ` s)"
proof (unfold image_subset_iff_subset_vimage, rule hull_minimal)
show "s ⊆ f -` (convex hull (f ` s))"
by (fast intro: hull_inc)
show "convex (f -` (convex hull (f ` s)))"
by (intro convex_linear_vimage [OF f] convex_convex_hull)
qed
qed
lemma in_convex_hull_linear_image:
assumes "linear f"
and "x ∈ convex hull s"
shows "f x ∈ convex hull (f ` s)"
using convex_hull_linear_image[OF assms(1)] assms(2) by auto
lemma convex_hull_Times:
"convex hull (s × t) = (convex hull s) × (convex hull t)"
proof
show "convex hull (s × t) ⊆ (convex hull s) × (convex hull t)"
by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull)
have "∀x∈convex hull s. ∀y∈convex hull t. (x, y) ∈ convex hull (s × t)"
proof (intro hull_induct)
fix x y assume "x ∈ s" and "y ∈ t"
then show "(x, y) ∈ convex hull (s × t)"
by (simp add: hull_inc)
next
fix x let ?S = "((λy. (0, y)) -` (λp. (- x, 0) + p) ` (convex hull s × t))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {y. (x, y) ∈ convex hull (s × t)}"
by (auto simp add: image_def Bex_def)
finally show "convex {y. (x, y) ∈ convex hull (s × t)}" .
next
show "convex {x. ∀y∈convex hull t. (x, y) ∈ convex hull (s × t)}"
proof (unfold Collect_ball_eq, rule convex_INT [rule_format])
fix y let ?S = "((λx. (x, 0)) -` (λp. (0, - y) + p) ` (convex hull s × t))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {x. (x, y) ∈ convex hull (s × t)}"
by (auto simp add: image_def Bex_def)
finally show "convex {x. (x, y) ∈ convex hull (s × t)}" .
qed
qed
then show "(convex hull s) × (convex hull t) ⊆ convex hull (s × t)"
unfolding subset_eq split_paired_Ball_Sigma .
qed
subsubsection ‹Stepping theorems for convex hulls of finite sets›
lemma convex_hull_empty[simp]: "convex hull {} = {}"
by (rule hull_unique) auto
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
by (rule hull_unique) auto
lemma convex_hull_insert:
fixes s :: "'a::real_vector set"
assumes "s ≠ {}"
shows "convex hull (insert a s) =
{x. ∃u≥0. ∃v≥0. ∃b. (u + v = 1) ∧ b ∈ (convex hull s) ∧ (x = u *⇩R a + v *⇩R b)}"
(is "_ = ?hull")
apply (rule, rule hull_minimal, rule)
unfolding insert_iff
prefer 3
apply rule
proof -
fix x
assume x: "x = a ∨ x ∈ s"
then show "x ∈ ?hull"
apply rule
unfolding mem_Collect_eq
apply (rule_tac x=1 in exI)
defer
apply (rule_tac x=0 in exI)
using assms hull_subset[of s convex]
apply auto
done
next
fix x
assume "x ∈ ?hull"
then obtain u v b where obt: "u≥0" "v≥0" "u + v = 1" "b ∈ convex hull s" "x = u *⇩R a + v *⇩R b"
by auto
have "a ∈ convex hull insert a s" "b ∈ convex hull insert a s"
using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4)
by auto
then show "x ∈ convex hull insert a s"
unfolding obt(5) using obt(1-3)
by (rule convexD [OF convex_convex_hull])
next
show "convex ?hull"
proof (rule convexI)
fix x y u v
assume as: "(0::real) ≤ u" "0 ≤ v" "u + v = 1" "x∈?hull" "y∈?hull"
from as(4) obtain u1 v1 b1 where
obt1: "u1≥0" "v1≥0" "u1 + v1 = 1" "b1 ∈ convex hull s" "x = u1 *⇩R a + v1 *⇩R b1"
by auto
from as(5) obtain u2 v2 b2 where
obt2: "u2≥0" "v2≥0" "u2 + v2 = 1" "b2 ∈ convex hull s" "y = u2 *⇩R a + v2 *⇩R b2"
by auto
have *: "⋀(x::'a) s1 s2. x - s1 *⇩R x - s2 *⇩R x = ((1::real) - (s1 + s2)) *⇩R x"
by (auto simp add: algebra_simps)
have **: "∃b ∈ convex hull s. u *⇩R x + v *⇩R y =
(u * u1) *⇩R a + (v * u2) *⇩R a + (b - (u * u1) *⇩R b - (v * u2) *⇩R b)"
proof (cases "u * v1 + v * v2 = 0")
case True
have *: "⋀(x::'a) s1 s2. x - s1 *⇩R x - s2 *⇩R x = ((1::real) - (s1 + s2)) *⇩R x"
by (auto simp add: algebra_simps)
from True have ***: "u * v1 = 0" "v * v2 = 0"
using mult_nonneg_nonneg[OF ‹u≥0› ‹v1≥0›] mult_nonneg_nonneg[OF ‹v≥0› ‹v2≥0›]
by arith+
then have "u * u1 + v * u2 = 1"
using as(3) obt1(3) obt2(3) by auto
then show ?thesis
unfolding obt1(5) obt2(5) *
using assms hull_subset[of s convex]
by (auto simp add: *** scaleR_right_distrib)
next
case False
have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)"
using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
also have "… = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)"
using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
also have "… = u * v1 + v * v2"
by simp
finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
have "0 ≤ u * v1 + v * v2" "0 ≤ u * v1" "0 ≤ u * v1 + v * v2" "0 ≤ v * v2"
using as(1,2) obt1(1,2) obt2(1,2) by auto
then show ?thesis
unfolding obt1(5) obt2(5)
unfolding * and **
using False
apply (rule_tac
x = "((u * v1) / (u * v1 + v * v2)) *⇩R b1 + ((v * v2) / (u * v1 + v * v2)) *⇩R b2" in bexI)
defer
apply (rule convexD [OF convex_convex_hull])
using obt1(4) obt2(4)
unfolding add_divide_distrib[symmetric] and zero_le_divide_iff
apply (auto simp add: scaleR_left_distrib scaleR_right_distrib)
done
qed
have u1: "u1 ≤ 1"
unfolding obt1(3)[symmetric] and not_le using obt1(2) by auto
have u2: "u2 ≤ 1"
unfolding obt2(3)[symmetric] and not_le using obt2(2) by auto
have "u1 * u + u2 * v ≤ max u1 u2 * u + max u1 u2 * v"
apply (rule add_mono)
apply (rule_tac [!] mult_right_mono)
using as(1,2) obt1(1,2) obt2(1,2)
apply auto
done
also have "… ≤ 1"
unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto
finally show "u *⇩R x + v *⇩R y ∈ ?hull"
unfolding mem_Collect_eq
apply (rule_tac x="u * u1 + v * u2" in exI)
apply (rule conjI)
defer
apply (rule_tac x="1 - u * u1 - v * u2" in exI)
unfolding Bex_def
using as(1,2) obt1(1,2) obt2(1,2) **
apply (auto simp add: algebra_simps)
done
qed
qed
subsubsection ‹Explicit expression for convex hull›
lemma convex_hull_indexed:
fixes s :: "'a::real_vector set"
shows "convex hull s =
{y. ∃k u x.
(∀i∈{1::nat .. k}. 0 ≤ u i ∧ x i ∈ s) ∧
(setsum u {1..k} = 1) ∧ (setsum (λi. u i *⇩R x i) {1..k} = y)}"
(is "?xyz = ?hull")
apply (rule hull_unique)
apply rule
defer
apply (rule convexI)
proof -
fix x
assume "x∈s"
then show "x ∈ ?hull"
unfolding mem_Collect_eq
apply (rule_tac x=1 in exI, rule_tac x="λx. 1" in exI)
apply auto
done
next
fix t
assume as: "s ⊆ t" "convex t"
show "?hull ⊆ t"
apply rule
unfolding mem_Collect_eq
apply (elim exE conjE)
proof -
fix x k u y
assume assm:
"∀i∈{1::nat..k}. 0 ≤ u i ∧ y i ∈ s"
"setsum u {1..k} = 1" "(∑i = 1..k. u i *⇩R y i) = x"
show "x∈t"
unfolding assm(3) [symmetric]
apply (rule as(2)[unfolded convex, rule_format])
using assm(1,2) as(1) apply auto
done
qed
next
fix x y u v
assume uv: "0 ≤ u" "0 ≤ v" "u + v = (1::real)"
assume xy: "x ∈ ?hull" "y ∈ ?hull"
from xy obtain k1 u1 x1 where
x: "∀i∈{1::nat..k1}. 0≤u1 i ∧ x1 i ∈ s" "setsum u1 {Suc 0..k1} = 1" "(∑i = Suc 0..k1. u1 i *⇩R x1 i) = x"
by auto
from xy obtain k2 u2 x2 where
y: "∀i∈{1::nat..k2}. 0≤u2 i ∧ x2 i ∈ s" "setsum u2 {Suc 0..k2} = 1" "(∑i = Suc 0..k2. u2 i *⇩R x2 i) = y"
by auto
have *: "⋀P (x1::'a) x2 s1 s2 i.
(if P i then s1 else s2) *⇩R (if P i then x1 else x2) = (if P i then s1 *⇩R x1 else s2 *⇩R x2)"
"{1..k1 + k2} ∩ {1..k1} = {1..k1}" "{1..k1 + k2} ∩ - {1..k1} = (λi. i + k1) ` {1..k2}"
prefer 3
apply (rule, rule)
unfolding image_iff
apply (rule_tac x = "x - k1" in bexI)
apply (auto simp add: not_le)
done
have inj: "inj_on (λi. i + k1) {1..k2}"
unfolding inj_on_def by auto
show "u *⇩R x + v *⇩R y ∈ ?hull"
apply rule
apply (rule_tac x="k1 + k2" in exI)
apply (rule_tac x="λi. if i ∈ {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
apply (rule_tac x="λi. if i ∈ {1..k1} then x1 i else x2 (i - k1)" in exI)
apply (rule, rule)
defer
apply rule
unfolding * and setsum.If_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and
setsum.reindex[OF inj] and o_def Collect_mem_eq
unfolding scaleR_scaleR[symmetric] scaleR_right.setsum [symmetric] setsum_right_distrib[symmetric]
proof -
fix i
assume i: "i ∈ {1..k1+k2}"
show "0 ≤ (if i ∈ {1..k1} then u * u1 i else v * u2 (i - k1)) ∧
(if i ∈ {1..k1} then x1 i else x2 (i - k1)) ∈ s"
proof (cases "i∈{1..k1}")
case True
then show ?thesis
using uv(1) x(1)[THEN bspec[where x=i]] by auto
next
case False
def j ≡ "i - k1"
from i False have "j ∈ {1..k2}"
unfolding j_def by auto
then show ?thesis
using False uv(2) y(1)[THEN bspec[where x=j]]
by (auto simp: j_def[symmetric])
qed
qed (auto simp add: not_le x(2,3) y(2,3) uv(3))
qed
lemma convex_hull_finite:
fixes s :: "'a::real_vector set"
assumes "finite s"
shows "convex hull s = {y. ∃u. (∀x∈s. 0 ≤ u x) ∧
setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}"
(is "?HULL = ?set")
proof (rule hull_unique, auto simp add: convex_def[of ?set])
fix x
assume "x ∈ s"
then show "∃u. (∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ (∑x∈s. u x *⇩R x) = x"
apply (rule_tac x="λy. if x=y then 1 else 0" in exI)
apply auto
unfolding setsum.delta'[OF assms] and setsum_delta''[OF assms]
apply auto
done
next
fix u v :: real
assume uv: "0 ≤ u" "0 ≤ v" "u + v = 1"
fix ux assume ux: "∀x∈s. 0 ≤ ux x" "setsum ux s = (1::real)"
fix uy assume uy: "∀x∈s. 0 ≤ uy x" "setsum uy s = (1::real)"
{
fix x
assume "x∈s"
then have "0 ≤ u * ux x + v * uy x"
using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2)
by auto
}
moreover
have "(∑x∈s. u * ux x + v * uy x) = 1"
unfolding setsum.distrib and setsum_right_distrib[symmetric] and ux(2) uy(2)
using uv(3) by auto
moreover
have "(∑x∈s. (u * ux x + v * uy x) *⇩R x) = u *⇩R (∑x∈s. ux x *⇩R x) + v *⇩R (∑x∈s. uy x *⇩R x)"
unfolding scaleR_left_distrib and setsum.distrib and scaleR_scaleR[symmetric]
and scaleR_right.setsum [symmetric]
by auto
ultimately
show "∃uc. (∀x∈s. 0 ≤ uc x) ∧ setsum uc s = 1 ∧
(∑x∈s. uc x *⇩R x) = u *⇩R (∑x∈s. ux x *⇩R x) + v *⇩R (∑x∈s. uy x *⇩R x)"
apply (rule_tac x="λx. u * ux x + v * uy x" in exI)
apply auto
done
next
fix t
assume t: "s ⊆ t" "convex t"
fix u
assume u: "∀x∈s. 0 ≤ u x" "setsum u s = (1::real)"
then show "(∑x∈s. u x *⇩R x) ∈ t"
using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
using assms and t(1) by auto
qed
subsubsection ‹Another formulation from Lars Schewe›
lemma convex_hull_explicit:
fixes p :: "'a::real_vector set"
shows "convex hull p =
{y. ∃s u. finite s ∧ s ⊆ p ∧ (∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ setsum (λv. u v *⇩R v) s = y}"
(is "?lhs = ?rhs")
proof -
{
fix x
assume "x∈?lhs"
then obtain k u y where
obt: "∀i∈{1::nat..k}. 0 ≤ u i ∧ y i ∈ p" "setsum u {1..k} = 1" "(∑i = 1..k. u i *⇩R y i) = x"
unfolding convex_hull_indexed by auto
have fin: "finite {1..k}" by auto
have fin': "⋀v. finite {i ∈ {1..k}. y i = v}" by auto
{
fix j
assume "j∈{1..k}"
then have "y j ∈ p" "0 ≤ setsum u {i. Suc 0 ≤ i ∧ i ≤ k ∧ y i = y j}"
using obt(1)[THEN bspec[where x=j]] and obt(2)
apply simp
apply (rule setsum_nonneg)
using obt(1)
apply auto
done
}
moreover
have "(∑v∈y ` {1..k}. setsum u {i ∈ {1..k}. y i = v}) = 1"
unfolding setsum_image_gen[OF fin, symmetric] using obt(2) by auto
moreover have "(∑v∈y ` {1..k}. setsum u {i ∈ {1..k}. y i = v} *⇩R v) = x"
using setsum_image_gen[OF fin, of "λi. u i *⇩R y i" y, symmetric]
unfolding scaleR_left.setsum using obt(3) by auto
ultimately
have "∃s u. finite s ∧ s ⊆ p ∧ (∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = x"
apply (rule_tac x="y ` {1..k}" in exI)
apply (rule_tac x="λv. setsum u {i∈{1..k}. y i = v}" in exI)
apply auto
done
then have "x∈?rhs" by auto
}
moreover
{
fix y
assume "y∈?rhs"
then obtain s u where
obt: "finite s" "s ⊆ p" "∀x∈s. 0 ≤ u x" "setsum u s = 1" "(∑v∈s. u v *⇩R v) = y"
by auto
obtain f where f: "inj_on f {1..card s}" "f ` {1..card s} = s"
using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
{
fix i :: nat
assume "i∈{1..card s}"
then have "f i ∈ s"
apply (subst f(2)[symmetric])
apply auto
done
then have "0 ≤ u (f i)" "f i ∈ p" using obt(2,3) by auto
}
moreover have *: "finite {1..card s}" by auto
{
fix y
assume "y∈s"
then obtain i where "i∈{1..card s}" "f i = y"
using f using image_iff[of y f "{1..card s}"]
by auto
then have "{x. Suc 0 ≤ x ∧ x ≤ card s ∧ f x = y} = {i}"
apply auto
using f(1)[unfolded inj_on_def]
apply(erule_tac x=x in ballE)
apply auto
done
then have "card {x. Suc 0 ≤ x ∧ x ≤ card s ∧ f x = y} = 1" by auto
then have "(∑x∈{x ∈ {1..card s}. f x = y}. u (f x)) = u y"
"(∑x∈{x ∈ {1..card s}. f x = y}. u (f x) *⇩R f x) = u y *⇩R y"
by (auto simp add: setsum_constant_scaleR)
}
then have "(∑x = 1..card s. u (f x)) = 1" "(∑i = 1..card s. u (f i) *⇩R f i) = y"
unfolding setsum_image_gen[OF *(1), of "λx. u (f x) *⇩R f x" f]
and setsum_image_gen[OF *(1), of "λx. u (f x)" f]
unfolding f
using setsum.cong [of s s "λy. (∑x∈{x ∈ {1..card s}. f x = y}. u (f x) *⇩R f x)" "λv. u v *⇩R v"]
using setsum.cong [of s s "λy. (∑x∈{x ∈ {1..card s}. f x = y}. u (f x))" u]
unfolding obt(4,5)
by auto
ultimately
have "∃k u x. (∀i∈{1..k}. 0 ≤ u i ∧ x i ∈ p) ∧ setsum u {1..k} = 1 ∧
(∑i::nat = 1..k. u i *⇩R x i) = y"
apply (rule_tac x="card s" in exI)
apply (rule_tac x="u ∘ f" in exI)
apply (rule_tac x=f in exI)
apply fastforce
done
then have "y ∈ ?lhs"
unfolding convex_hull_indexed by auto
}
ultimately show ?thesis
unfolding set_eq_iff by blast
qed
subsubsection ‹A stepping theorem for that expansion›
lemma convex_hull_finite_step:
fixes s :: "'a::real_vector set"
assumes "finite s"
shows
"(∃u. (∀x∈insert a s. 0 ≤ u x) ∧ setsum u (insert a s) = w ∧ setsum (λx. u x *⇩R x) (insert a s) = y)
⟷ (∃v≥0. ∃u. (∀x∈s. 0 ≤ u x) ∧ setsum u s = w - v ∧ setsum (λx. u x *⇩R x) s = y - v *⇩R a)"
(is "?lhs = ?rhs")
proof (rule, case_tac[!] "a∈s")
assume "a ∈ s"
then have *: "insert a s = s" by auto
assume ?lhs
then show ?rhs
unfolding *
apply (rule_tac x=0 in exI)
apply auto
done
next
assume ?lhs
then obtain u where
u: "∀x∈insert a s. 0 ≤ u x" "setsum u (insert a s) = w" "(∑x∈insert a s. u x *⇩R x) = y"
by auto
assume "a ∉ s"
then show ?rhs
apply (rule_tac x="u a" in exI)
using u(1)[THEN bspec[where x=a]]
apply simp
apply (rule_tac x=u in exI)
using u[unfolded setsum_clauses(2)[OF assms]] and ‹a∉s›
apply auto
done
next
assume "a ∈ s"
then have *: "insert a s = s" by auto
have fin: "finite (insert a s)" using assms by auto
assume ?rhs
then obtain v u where uv: "v≥0" "∀x∈s. 0 ≤ u x" "setsum u s = w - v" "(∑x∈s. u x *⇩R x) = y - v *⇩R a"
by auto
show ?lhs
apply (rule_tac x = "λx. (if a = x then v else 0) + u x" in exI)
unfolding scaleR_left_distrib and setsum.distrib and setsum_delta''[OF fin] and setsum.delta'[OF fin]
unfolding setsum_clauses(2)[OF assms]
using uv and uv(2)[THEN bspec[where x=a]] and ‹a∈s›
apply auto
done
next
assume ?rhs
then obtain v u where
uv: "v≥0" "∀x∈s. 0 ≤ u x" "setsum u s = w - v" "(∑x∈s. u x *⇩R x) = y - v *⇩R a"
by auto
moreover
assume "a ∉ s"
moreover
have "(∑x∈s. if a = x then v else u x) = setsum u s"
and "(∑x∈s. (if a = x then v else u x) *⇩R x) = (∑x∈s. u x *⇩R x)"
apply (rule_tac setsum.cong) apply rule
defer
apply (rule_tac setsum.cong) apply rule
using ‹a ∉ s›
apply auto
done
ultimately show ?lhs
apply (rule_tac x="λx. if a = x then v else u x" in exI)
unfolding setsum_clauses(2)[OF assms]
apply auto
done
qed
subsubsection ‹Hence some special cases›
lemma convex_hull_2:
"convex hull {a,b} = {u *⇩R a + v *⇩R b | u v. 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1}"
proof -
have *: "⋀u. (∀x∈{a, b}. 0 ≤ u x) ⟷ 0 ≤ u a ∧ 0 ≤ u b"
by auto
have **: "finite {b}" by auto
show ?thesis
apply (simp add: convex_hull_finite)
unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
apply auto
apply (rule_tac x=v in exI)
apply (rule_tac x="1 - v" in exI)
apply simp
apply (rule_tac x=u in exI)
apply simp
apply (rule_tac x="λx. v" in exI)
apply simp
done
qed
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *⇩R (b - a) | u. 0 ≤ u ∧ u ≤ 1}"
unfolding convex_hull_2
proof (rule Collect_cong)
have *: "⋀x y ::real. x + y = 1 ⟷ x = 1 - y"
by auto
fix x
show "(∃v u. x = v *⇩R a + u *⇩R b ∧ 0 ≤ v ∧ 0 ≤ u ∧ v + u = 1) ⟷
(∃u. x = a + u *⇩R (b - a) ∧ 0 ≤ u ∧ u ≤ 1)"
unfolding *
apply auto
apply (rule_tac[!] x=u in exI)
apply (auto simp add: algebra_simps)
done
qed
lemma convex_hull_3:
"convex hull {a,b,c} = { u *⇩R a + v *⇩R b + w *⇩R c | u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1}"
proof -
have fin: "finite {a,b,c}" "finite {b,c}" "finite {c}"
by auto
have *: "⋀x y z ::real. x + y + z = 1 ⟷ x = 1 - y - z"
by (auto simp add: field_simps)
show ?thesis
unfolding convex_hull_finite[OF fin(1)] and convex_hull_finite_step[OF fin(2)] and *
unfolding convex_hull_finite_step[OF fin(3)]
apply (rule Collect_cong)
apply simp
apply auto
apply (rule_tac x=va in exI)
apply (rule_tac x="u c" in exI)
apply simp
apply (rule_tac x="1 - v - w" in exI)
apply simp
apply (rule_tac x=v in exI)
apply simp
apply (rule_tac x="λx. w" in exI)
apply simp
done
qed
lemma convex_hull_3_alt:
"convex hull {a,b,c} = {a + u *⇩R (b - a) + v *⇩R (c - a) | u v. 0 ≤ u ∧ 0 ≤ v ∧ u + v ≤ 1}"
proof -
have *: "⋀x y z ::real. x + y + z = 1 ⟷ x = 1 - y - z"
by auto
show ?thesis
unfolding convex_hull_3
apply (auto simp add: *)
apply (rule_tac x=v in exI)
apply (rule_tac x=w in exI)
apply (simp add: algebra_simps)
apply (rule_tac x=u in exI)
apply (rule_tac x=v in exI)
apply (simp add: algebra_simps)
done
qed
subsection ‹Relations among closure notions and corresponding hulls›
lemma affine_imp_convex: "affine s ⟹ convex s"
unfolding affine_def convex_def by auto
lemma subspace_imp_convex: "subspace s ⟹ convex s"
using subspace_imp_affine affine_imp_convex by auto
lemma affine_hull_subset_span: "(affine hull s) ⊆ (span s)"
by (metis hull_minimal span_inc subspace_imp_affine subspace_span)
lemma convex_hull_subset_span: "(convex hull s) ⊆ (span s)"
by (metis hull_minimal span_inc subspace_imp_convex subspace_span)
lemma convex_hull_subset_affine_hull: "(convex hull s) ⊆ (affine hull s)"
by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset)
lemma affine_dependent_imp_dependent: "affine_dependent s ⟹ dependent s"
unfolding affine_dependent_def dependent_def
using affine_hull_subset_span by auto
lemma dependent_imp_affine_dependent:
assumes "dependent {x - a| x . x ∈ s}"
and "a ∉ s"
shows "affine_dependent (insert a s)"
proof -
from assms(1)[unfolded dependent_explicit] obtain S u v
where obt: "finite S" "S ⊆ {x - a |x. x ∈ s}" "v∈S" "u v ≠ 0" "(∑v∈S. u v *⇩R v) = 0"
by auto
def t ≡ "(λx. x + a) ` S"
have inj: "inj_on (λx. x + a) S"
unfolding inj_on_def by auto
have "0 ∉ S"
using obt(2) assms(2) unfolding subset_eq by auto
have fin: "finite t" and "t ⊆ s"
unfolding t_def using obt(1,2) by auto
then have "finite (insert a t)" and "insert a t ⊆ insert a s"
by auto
moreover have *: "⋀P Q. (∑x∈t. (if x = a then P x else Q x)) = (∑x∈t. Q x)"
apply (rule setsum.cong)
using ‹a∉s› ‹t⊆s›
apply auto
done
have "(∑x∈insert a t. if x = a then - (∑x∈t. u (x - a)) else u (x - a)) = 0"
unfolding setsum_clauses(2)[OF fin]
using ‹a∉s› ‹t⊆s›
apply auto
unfolding *
apply auto
done
moreover have "∃v∈insert a t. (if v = a then - (∑x∈t. u (x - a)) else u (v - a)) ≠ 0"
apply (rule_tac x="v + a" in bexI)
using obt(3,4) and ‹0∉S›
unfolding t_def
apply auto
done
moreover have *: "⋀P Q. (∑x∈t. (if x = a then P x else Q x) *⇩R x) = (∑x∈t. Q x *⇩R x)"
apply (rule setsum.cong)
using ‹a∉s› ‹t⊆s›
apply auto
done
have "(∑x∈t. u (x - a)) *⇩R a = (∑v∈t. u (v - a) *⇩R v)"
unfolding scaleR_left.setsum
unfolding t_def and setsum.reindex[OF inj] and o_def
using obt(5)
by (auto simp add: setsum.distrib scaleR_right_distrib)
then have "(∑v∈insert a t. (if v = a then - (∑x∈t. u (x - a)) else u (v - a)) *⇩R v) = 0"
unfolding setsum_clauses(2)[OF fin]
using ‹a∉s› ‹t⊆s›
by (auto simp add: *)
ultimately show ?thesis
unfolding affine_dependent_explicit
apply (rule_tac x="insert a t" in exI)
apply auto
done
qed
lemma convex_cone:
"convex s ∧ cone s ⟷ (∀x∈s. ∀y∈s. (x + y) ∈ s) ∧ (∀x∈s. ∀c≥0. (c *⇩R x) ∈ s)"
(is "?lhs = ?rhs")
proof -
{
fix x y
assume "x∈s" "y∈s" and ?lhs
then have "2 *⇩R x ∈s" "2 *⇩R y ∈ s"
unfolding cone_def by auto
then have "x + y ∈ s"
using ‹?lhs›[unfolded convex_def, THEN conjunct1]
apply (erule_tac x="2*⇩R x" in ballE)
apply (erule_tac x="2*⇩R y" in ballE)
apply (erule_tac x="1/2" in allE)
apply simp
apply (erule_tac x="1/2" in allE)
apply auto
done
}
then show ?thesis
unfolding convex_def cone_def by blast
qed
lemma affine_dependent_biggerset:
fixes s :: "'a::euclidean_space set"
assumes "finite s" "card s ≥ DIM('a) + 2"
shows "affine_dependent s"
proof -
have "s ≠ {}" using assms by auto
then obtain a where "a∈s" by auto
have *: "{x - a |x. x ∈ s - {a}} = (λx. x - a) ` (s - {a})"
by auto
have "card {x - a |x. x ∈ s - {a}} = card (s - {a})"
unfolding *
apply (rule card_image)
unfolding inj_on_def
apply auto
done
also have "… > DIM('a)" using assms(2)
unfolding card_Diff_singleton[OF assms(1) ‹a∈s›] by auto
finally show ?thesis
apply (subst insert_Diff[OF ‹a∈s›, symmetric])
apply (rule dependent_imp_affine_dependent)
apply (rule dependent_biggerset)
apply auto
done
qed
lemma affine_dependent_biggerset_general:
assumes "finite (s :: 'a::euclidean_space set)"
and "card s ≥ dim s + 2"
shows "affine_dependent s"
proof -
from assms(2) have "s ≠ {}" by auto
then obtain a where "a∈s" by auto
have *: "{x - a |x. x ∈ s - {a}} = (λx. x - a) ` (s - {a})"
by auto
have **: "card {x - a |x. x ∈ s - {a}} = card (s - {a})"
unfolding *
apply (rule card_image)
unfolding inj_on_def
apply auto
done
have "dim {x - a |x. x ∈ s - {a}} ≤ dim s"
apply (rule subset_le_dim)
unfolding subset_eq
using ‹a∈s›
apply (auto simp add:span_superset span_sub)
done
also have "… < dim s + 1" by auto
also have "… ≤ card (s - {a})"
using assms
using card_Diff_singleton[OF assms(1) ‹a∈s›]
by auto
finally show ?thesis
apply (subst insert_Diff[OF ‹a∈s›, symmetric])
apply (rule dependent_imp_affine_dependent)
apply (rule dependent_biggerset_general)
unfolding **
apply auto
done
qed
subsection ‹Some Properties of Affine Dependent Sets›
lemma affine_independent_empty: "¬ affine_dependent {}"
by (simp add: affine_dependent_def)
lemma affine_independent_sing: "¬ affine_dependent {a}"
by (simp add: affine_dependent_def)
lemma affine_hull_translation: "affine hull ((λx. a + x) ` S) = (λx. a + x) ` (affine hull S)"
proof -
have "affine ((λx. a + x) ` (affine hull S))"
using affine_translation affine_affine_hull by blast
moreover have "(λx. a + x) ` S ⊆ (λx. a + x) ` (affine hull S)"
using hull_subset[of S] by auto
ultimately have h1: "affine hull ((λx. a + x) ` S) ⊆ (λx. a + x) ` (affine hull S)"
by (metis hull_minimal)
have "affine((λx. -a + x) ` (affine hull ((λx. a + x) ` S)))"
using affine_translation affine_affine_hull by blast
moreover have "(λx. -a + x) ` (λx. a + x) ` S ⊆ (λx. -a + x) ` (affine hull ((λx. a + x) ` S))"
using hull_subset[of "(λx. a + x) ` S"] by auto
moreover have "S = (λx. -a + x) ` (λx. a + x) ` S"
using translation_assoc[of "-a" a] by auto
ultimately have "(λx. -a + x) ` (affine hull ((λx. a + x) ` S)) >= (affine hull S)"
by (metis hull_minimal)
then have "affine hull ((λx. a + x) ` S) >= (λx. a + x) ` (affine hull S)"
by auto
then show ?thesis using h1 by auto
qed
lemma affine_dependent_translation:
assumes "affine_dependent S"
shows "affine_dependent ((λx. a + x) ` S)"
proof -
obtain x where x: "x ∈ S ∧ x ∈ affine hull (S - {x})"
using assms affine_dependent_def by auto
have "op + a ` (S - {x}) = op + a ` S - {a + x}"
by auto
then have "a + x ∈ affine hull ((λx. a + x) ` S - {a + x})"
using affine_hull_translation[of a "S - {x}"] x by auto
moreover have "a + x ∈ (λx. a + x) ` S"
using x by auto
ultimately show ?thesis
unfolding affine_dependent_def by auto
qed
lemma affine_dependent_translation_eq:
"affine_dependent S ⟷ affine_dependent ((λx. a + x) ` S)"
proof -
{
assume "affine_dependent ((λx. a + x) ` S)"
then have "affine_dependent S"
using affine_dependent_translation[of "((λx. a + x) ` S)" "-a"] translation_assoc[of "-a" a]
by auto
}
then show ?thesis
using affine_dependent_translation by auto
qed
lemma affine_hull_0_dependent:
assumes "0 ∈ affine hull S"
shows "dependent S"
proof -
obtain s u where s_u: "finite s ∧ s ≠ {} ∧ s ⊆ S ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = 0"
using assms affine_hull_explicit[of S] by auto
then have "∃v∈s. u v ≠ 0"
using setsum_not_0[of "u" "s"] by auto
then have "finite s ∧ s ⊆ S ∧ (∃v∈s. u v ≠ 0 ∧ (∑v∈s. u v *⇩R v) = 0)"
using s_u by auto
then show ?thesis
unfolding dependent_explicit[of S] by auto
qed
lemma affine_dependent_imp_dependent2:
assumes "affine_dependent (insert 0 S)"
shows "dependent S"
proof -
obtain x where x: "x ∈ insert 0 S ∧ x ∈ affine hull (insert 0 S - {x})"
using affine_dependent_def[of "(insert 0 S)"] assms by blast
then have "x ∈ span (insert 0 S - {x})"
using affine_hull_subset_span by auto
moreover have "span (insert 0 S - {x}) = span (S - {x})"
using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto
ultimately have "x ∈ span (S - {x})" by auto
then have "x ≠ 0 ⟹ dependent S"
using x dependent_def by auto
moreover
{
assume "x = 0"
then have "0 ∈ affine hull S"
using x hull_mono[of "S - {0}" S] by auto
then have "dependent S"
using affine_hull_0_dependent by auto
}
ultimately show ?thesis by auto
qed
lemma affine_dependent_iff_dependent:
assumes "a ∉ S"
shows "affine_dependent (insert a S) ⟷ dependent ((λx. -a + x) ` S)"
proof -
have "(op + (- a) ` S) = {x - a| x . x : S}" by auto
then show ?thesis
using affine_dependent_translation_eq[of "(insert a S)" "-a"]
affine_dependent_imp_dependent2 assms
dependent_imp_affine_dependent[of a S]
by (auto simp del: uminus_add_conv_diff)
qed
lemma affine_dependent_iff_dependent2:
assumes "a ∈ S"
shows "affine_dependent S ⟷ dependent ((λx. -a + x) ` (S-{a}))"
proof -
have "insert a (S - {a}) = S"
using assms by auto
then show ?thesis
using assms affine_dependent_iff_dependent[of a "S-{a}"] by auto
qed
lemma affine_hull_insert_span_gen:
"affine hull (insert a s) = (λx. a + x) ` span ((λx. - a + x) ` s)"
proof -
have h1: "{x - a |x. x ∈ s} = ((λx. -a+x) ` s)"
by auto
{
assume "a ∉ s"
then have ?thesis
using affine_hull_insert_span[of a s] h1 by auto
}
moreover
{
assume a1: "a ∈ s"
have "∃x. x ∈ s ∧ -a+x=0"
apply (rule exI[of _ a])
using a1
apply auto
done
then have "insert 0 ((λx. -a+x) ` (s - {a})) = (λx. -a+x) ` s"
by auto
then have "span ((λx. -a+x) ` (s - {a}))=span ((λx. -a+x) ` s)"
using span_insert_0[of "op + (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff)
moreover have "{x - a |x. x ∈ (s - {a})} = ((λx. -a+x) ` (s - {a}))"
by auto
moreover have "insert a (s - {a}) = insert a s"
using assms by auto
ultimately have ?thesis
using assms affine_hull_insert_span[of "a" "s-{a}"] by auto
}
ultimately show ?thesis by auto
qed
lemma affine_hull_span2:
assumes "a ∈ s"
shows "affine hull s = (λx. a+x) ` span ((λx. -a+x) ` (s-{a}))"
using affine_hull_insert_span_gen[of a "s - {a}", unfolded insert_Diff[OF assms]]
by auto
lemma affine_hull_span_gen:
assumes "a ∈ affine hull s"
shows "affine hull s = (λx. a+x) ` span ((λx. -a+x) ` s)"
proof -
have "affine hull (insert a s) = affine hull s"
using hull_redundant[of a affine s] assms by auto
then show ?thesis
using affine_hull_insert_span_gen[of a "s"] by auto
qed
lemma affine_hull_span_0:
assumes "0 ∈ affine hull S"
shows "affine hull S = span S"
using affine_hull_span_gen[of "0" S] assms by auto
lemma extend_to_affine_basis:
fixes S V :: "'n::euclidean_space set"
assumes "¬ affine_dependent S" "S ⊆ V" "S ≠ {}"
shows "∃T. ¬ affine_dependent T ∧ S ⊆ T ∧ T ⊆ V ∧ affine hull T = affine hull V"
proof -
obtain a where a: "a ∈ S"
using assms by auto
then have h0: "independent ((λx. -a + x) ` (S-{a}))"
using affine_dependent_iff_dependent2 assms by auto
then obtain B where B:
"(λx. -a+x) ` (S - {a}) ⊆ B ∧ B ⊆ (λx. -a+x) ` V ∧ independent B ∧ (λx. -a+x) ` V ⊆ span B"
using maximal_independent_subset_extend[of "(λx. -a+x) ` (S-{a})" "(λx. -a + x) ` V"] assms
by blast
def T ≡ "(λx. a+x) ` insert 0 B"
then have "T = insert a ((λx. a+x) ` B)"
by auto
then have "affine hull T = (λx. a+x) ` span B"
using affine_hull_insert_span_gen[of a "((λx. a+x) ` B)"] translation_assoc[of "-a" a B]
by auto
then have "V ⊆ affine hull T"
using B assms translation_inverse_subset[of a V "span B"]
by auto
moreover have "T ⊆ V"
using T_def B a assms by auto
ultimately have "affine hull T = affine hull V"
by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono)
moreover have "S ⊆ T"
using T_def B translation_inverse_subset[of a "S-{a}" B]
by auto
moreover have "¬ affine_dependent T"
using T_def affine_dependent_translation_eq[of "insert 0 B"]
affine_dependent_imp_dependent2 B
by auto
ultimately show ?thesis using ‹T ⊆ V› by auto
qed
lemma affine_basis_exists:
fixes V :: "'n::euclidean_space set"
shows "∃B. B ⊆ V ∧ ¬ affine_dependent B ∧ affine hull V = affine hull B"
proof (cases "V = {}")
case True
then show ?thesis
using affine_independent_empty by auto
next
case False
then obtain x where "x ∈ V" by auto
then show ?thesis
using affine_dependent_def[of "{x}"] extend_to_affine_basis[of "{x}" V]
by auto
qed
subsection ‹Affine Dimension of a Set›
definition aff_dim :: "('a::euclidean_space) set ⇒ int"
where "aff_dim V =
(SOME d :: int.
∃B. affine hull B = affine hull V ∧ ¬ affine_dependent B ∧ of_nat (card B) = d + 1)"
lemma aff_dim_basis_exists:
fixes V :: "('n::euclidean_space) set"
shows "∃B. affine hull B = affine hull V ∧ ¬ affine_dependent B ∧ of_nat (card B) = aff_dim V + 1"
proof -
obtain B where "¬ affine_dependent B ∧ affine hull B = affine hull V"
using affine_basis_exists[of V] by auto
then show ?thesis
unfolding aff_dim_def
some_eq_ex[of "λd. ∃B. affine hull B = affine hull V ∧ ¬ affine_dependent B ∧ of_nat (card B) = d + 1"]
apply auto
apply (rule exI[of _ "int (card B) - (1 :: int)"])
apply (rule exI[of _ "B"])
apply auto
done
qed
lemma affine_hull_nonempty: "S ≠ {} ⟷ affine hull S ≠ {}"
proof -
have "S = {} ⟹ affine hull S = {}"
using affine_hull_empty by auto
moreover have "affine hull S = {} ⟹ S = {}"
unfolding hull_def by auto
ultimately show ?thesis by blast
qed
lemma aff_dim_parallel_subspace_aux:
fixes B :: "'n::euclidean_space set"
assumes "¬ affine_dependent B" "a ∈ B"
shows "finite B ∧ ((card B) - 1 = dim (span ((λx. -a+x) ` (B-{a}))))"
proof -
have "independent ((λx. -a + x) ` (B-{a}))"
using affine_dependent_iff_dependent2 assms by auto
then have fin: "dim (span ((λx. -a+x) ` (B-{a}))) = card ((λx. -a + x) ` (B-{a}))"
"finite ((λx. -a + x) ` (B - {a}))"
using indep_card_eq_dim_span[of "(λx. -a+x) ` (B-{a})"] by auto
show ?thesis
proof (cases "(λx. -a + x) ` (B - {a}) = {}")
case True
have "B = insert a ((λx. a + x) ` (λx. -a + x) ` (B - {a}))"
using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto
then have "B = {a}" using True by auto
then show ?thesis using assms fin by auto
next
case False
then have "card ((λx. -a + x) ` (B - {a})) > 0"
using fin by auto
moreover have h1: "card ((λx. -a + x) ` (B-{a})) = card (B-{a})"
apply (rule card_image)
using translate_inj_on
apply (auto simp del: uminus_add_conv_diff)
done
ultimately have "card (B-{a}) > 0" by auto
then have *: "finite (B - {a})"
using card_gt_0_iff[of "(B - {a})"] by auto
then have "card (B - {a}) = card B - 1"
using card_Diff_singleton assms by auto
with * show ?thesis using fin h1 by auto
qed
qed
lemma aff_dim_parallel_subspace:
fixes V L :: "'n::euclidean_space set"
assumes "V ≠ {}"
and "subspace L"
and "affine_parallel (affine hull V) L"
shows "aff_dim V = int (dim L)"
proof -
obtain B where
B: "affine hull B = affine hull V ∧ ¬ affine_dependent B ∧ int (card B) = aff_dim V + 1"
using aff_dim_basis_exists by auto
then have "B ≠ {}"
using assms B affine_hull_nonempty[of V] affine_hull_nonempty[of B]
by auto
then obtain a where a: "a ∈ B" by auto
def Lb ≡ "span ((λx. -a+x) ` (B-{a}))"
moreover have "affine_parallel (affine hull B) Lb"
using Lb_def B assms affine_hull_span2[of a B] a
affine_parallel_commut[of "Lb" "(affine hull B)"]
unfolding affine_parallel_def
by auto
moreover have "subspace Lb"
using Lb_def subspace_span by auto
moreover have "affine hull B ≠ {}"
using assms B affine_hull_nonempty[of V] by auto
ultimately have "L = Lb"
using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B
by auto
then have "dim L = dim Lb"
by auto
moreover have "card B - 1 = dim Lb" and "finite B"
using Lb_def aff_dim_parallel_subspace_aux a B by auto
ultimately show ?thesis
using B ‹B ≠ {}› card_gt_0_iff[of B] by auto
qed
lemma aff_independent_finite:
fixes B :: "'n::euclidean_space set"
assumes "¬ affine_dependent B"
shows "finite B"
proof -
{
assume "B ≠ {}"
then obtain a where "a ∈ B" by auto
then have ?thesis
using aff_dim_parallel_subspace_aux assms by auto
}
then show ?thesis by auto
qed
lemma independent_finite:
fixes B :: "'n::euclidean_space set"
assumes "independent B"
shows "finite B"
using affine_dependent_imp_dependent[of B] aff_independent_finite[of B] assms
by auto
lemma subspace_dim_equal:
assumes "subspace (S :: ('n::euclidean_space) set)"
and "subspace T"
and "S ⊆ T"
and "dim S ≥ dim T"
shows "S = T"
proof -
obtain B where B: "B ≤ S" "independent B ∧ S ⊆ span B" "card B = dim S"
using basis_exists[of S] by auto
then have "span B ⊆ S"
using span_mono[of B S] span_eq[of S] assms by metis
then have "span B = S"
using B by auto
have "dim S = dim T"
using assms dim_subset[of S T] by auto
then have "T ⊆ span B"
using card_eq_dim[of B T] B independent_finite assms by auto
then show ?thesis
using assms ‹span B = S› by auto
qed
lemma span_substd_basis:
assumes d: "d ⊆ Basis"
shows "span d = {x. ∀i∈Basis. i ∉ d ⟶ x∙i = 0}"
(is "_ = ?B")
proof -
have "d ⊆ ?B"
using d by (auto simp: inner_Basis)
moreover have s: "subspace ?B"
using subspace_substandard[of "λi. i ∉ d"] .
ultimately have "span d ⊆ ?B"
using span_mono[of d "?B"] span_eq[of "?B"] by blast
moreover have *: "card d ≤ dim (span d)"
using independent_card_le_dim[of d "span d"] independent_substdbasis[OF assms] span_inc[of d]
by auto
moreover from * have "dim ?B ≤ dim (span d)"
using dim_substandard[OF assms] by auto
ultimately show ?thesis
using s subspace_dim_equal[of "span d" "?B"] subspace_span[of d] by auto
qed
lemma basis_to_substdbasis_subspace_isomorphism:
fixes B :: "'a::euclidean_space set"
assumes "independent B"
shows "∃f d::'a set. card d = card B ∧ linear f ∧ f ` B = d ∧
f ` span B = {x. ∀i∈Basis. i ∉ d ⟶ x ∙ i = 0} ∧ inj_on f (span B) ∧ d ⊆ Basis"
proof -
have B: "card B = dim B"
using dim_unique[of B B "card B"] assms span_inc[of B] by auto
have "dim B ≤ card (Basis :: 'a set)"
using dim_subset_UNIV[of B] by simp
from ex_card[OF this] obtain d :: "'a set" where d: "d ⊆ Basis" and t: "card d = dim B"
by auto
let ?t = "{x::'a::euclidean_space. ∀i∈Basis. i ∉ d ⟶ x∙i = 0}"
have "∃f. linear f ∧ f ` B = d ∧ f ` span B = ?t ∧ inj_on f (span B)"
apply (rule basis_to_basis_subspace_isomorphism[of "span B" ?t B "d"])
apply (rule subspace_span)
apply (rule subspace_substandard)
defer
apply (rule span_inc)
apply (rule assms)
defer
unfolding dim_span[of B]
apply(rule B)
unfolding span_substd_basis[OF d, symmetric]
apply (rule span_inc)
apply (rule independent_substdbasis[OF d])
apply rule
apply assumption
unfolding t[symmetric] span_substd_basis[OF d] dim_substandard[OF d]
apply auto
done
with t ‹card B = dim B› d show ?thesis by auto
qed
lemma aff_dim_empty:
fixes S :: "'n::euclidean_space set"
shows "S = {} ⟷ aff_dim S = -1"
proof -
obtain B where *: "affine hull B = affine hull S"
and "¬ affine_dependent B"
and "int (card B) = aff_dim S + 1"
using aff_dim_basis_exists by auto
moreover
from * have "S = {} ⟷ B = {}"
using affine_hull_nonempty[of B] affine_hull_nonempty[of S] by auto
ultimately show ?thesis
using aff_independent_finite[of B] card_gt_0_iff[of B] by auto
qed
lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1"
by (simp add: aff_dim_empty [symmetric])
lemma aff_dim_affine_hull: "aff_dim (affine hull S) = aff_dim S"
unfolding aff_dim_def using hull_hull[of _ S] by auto
lemma aff_dim_affine_hull2:
assumes "affine hull S = affine hull T"
shows "aff_dim S = aff_dim T"
unfolding aff_dim_def using assms by auto
lemma aff_dim_unique:
fixes B V :: "'n::euclidean_space set"
assumes "affine hull B = affine hull V ∧ ¬ affine_dependent B"
shows "of_nat (card B) = aff_dim V + 1"
proof (cases "B = {}")
case True
then have "V = {}"
using affine_hull_nonempty[of V] affine_hull_nonempty[of B] assms
by auto
then have "aff_dim V = (-1::int)"
using aff_dim_empty by auto
then show ?thesis
using ‹B = {}› by auto
next
case False
then obtain a where a: "a ∈ B" by auto
def Lb ≡ "span ((λx. -a+x) ` (B-{a}))"
have "affine_parallel (affine hull B) Lb"
using Lb_def affine_hull_span2[of a B] a
affine_parallel_commut[of "Lb" "(affine hull B)"]
unfolding affine_parallel_def by auto
moreover have "subspace Lb"
using Lb_def subspace_span by auto
ultimately have "aff_dim B = int(dim Lb)"
using aff_dim_parallel_subspace[of B Lb] ‹B ≠ {}› by auto
moreover have "(card B) - 1 = dim Lb" "finite B"
using Lb_def aff_dim_parallel_subspace_aux a assms by auto
ultimately have "of_nat (card B) = aff_dim B + 1"
using ‹B ≠ {}› card_gt_0_iff[of B] by auto
then show ?thesis
using aff_dim_affine_hull2 assms by auto
qed
lemma aff_dim_affine_independent:
fixes B :: "'n::euclidean_space set"
assumes "¬ affine_dependent B"
shows "of_nat (card B) = aff_dim B + 1"
using aff_dim_unique[of B B] assms by auto
lemma affine_independent_iff_card:
fixes s :: "'a::euclidean_space set"
shows "~ affine_dependent s ⟷ finite s ∧ aff_dim s = int(card s) - 1"
apply (rule iffI)
apply (simp add: aff_dim_affine_independent aff_independent_finite)
by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel of_nat_eq_iff)
lemma aff_dim_sing [simp]:
fixes a :: "'n::euclidean_space"
shows "aff_dim {a} = 0"
using aff_dim_affine_independent[of "{a}"] affine_independent_sing by auto
lemma aff_dim_inner_basis_exists:
fixes V :: "('n::euclidean_space) set"
shows "∃B. B ⊆ V ∧ affine hull B = affine hull V ∧
¬ affine_dependent B ∧ of_nat (card B) = aff_dim V + 1"
proof -
obtain B where B: "¬ affine_dependent B" "B ⊆ V" "affine hull B = affine hull V"
using affine_basis_exists[of V] by auto
then have "of_nat(card B) = aff_dim V+1" using aff_dim_unique by auto
with B show ?thesis by auto
qed
lemma aff_dim_le_card:
fixes V :: "'n::euclidean_space set"
assumes "finite V"
shows "aff_dim V ≤ of_nat (card V) - 1"
proof -
obtain B where B: "B ⊆ V" "of_nat (card B) = aff_dim V + 1"
using aff_dim_inner_basis_exists[of V] by auto
then have "card B ≤ card V"
using assms card_mono by auto
with B show ?thesis by auto
qed
lemma aff_dim_parallel_eq:
fixes S T :: "'n::euclidean_space set"
assumes "affine_parallel (affine hull S) (affine hull T)"
shows "aff_dim S = aff_dim T"
proof -
{
assume "T ≠ {}" "S ≠ {}"
then obtain L where L: "subspace L ∧ affine_parallel (affine hull T) L"
using affine_parallel_subspace[of "affine hull T"]
affine_affine_hull[of T] affine_hull_nonempty
by auto
then have "aff_dim T = int (dim L)"
using aff_dim_parallel_subspace ‹T ≠ {}› by auto
moreover have *: "subspace L ∧ affine_parallel (affine hull S) L"
using L affine_parallel_assoc[of "affine hull S" "affine hull T" L] assms by auto
moreover from * have "aff_dim S = int (dim L)"
using aff_dim_parallel_subspace ‹S ≠ {}› by auto
ultimately have ?thesis by auto
}
moreover
{
assume "S = {}"
then have "S = {}" and "T = {}"
using assms affine_hull_nonempty
unfolding affine_parallel_def
by auto
then have ?thesis using aff_dim_empty by auto
}
moreover
{
assume "T = {}"
then have "S = {}" and "T = {}"
using assms affine_hull_nonempty
unfolding affine_parallel_def
by auto
then have ?thesis
using aff_dim_empty by auto
}
ultimately show ?thesis by blast
qed
lemma aff_dim_translation_eq:
fixes a :: "'n::euclidean_space"
shows "aff_dim ((λx. a + x) ` S) = aff_dim S"
proof -
have "affine_parallel (affine hull S) (affine hull ((λx. a + x) ` S))"
unfolding affine_parallel_def
apply (rule exI[of _ "a"])
using affine_hull_translation[of a S]
apply auto
done
then show ?thesis
using aff_dim_parallel_eq[of S "(λx. a + x) ` S"] by auto
qed
lemma aff_dim_affine:
fixes S L :: "'n::euclidean_space set"
assumes "S ≠ {}"
and "affine S"
and "subspace L"
and "affine_parallel S L"
shows "aff_dim S = int (dim L)"
proof -
have *: "affine hull S = S"
using assms affine_hull_eq[of S] by auto
then have "affine_parallel (affine hull S) L"
using assms by (simp add: *)
then show ?thesis
using assms aff_dim_parallel_subspace[of S L] by blast
qed
lemma dim_affine_hull:
fixes S :: "'n::euclidean_space set"
shows "dim (affine hull S) = dim S"
proof -
have "dim (affine hull S) ≥ dim S"
using dim_subset by auto
moreover have "dim (span S) ≥ dim (affine hull S)"
using dim_subset affine_hull_subset_span by blast
moreover have "dim (span S) = dim S"
using dim_span by auto
ultimately show ?thesis by auto
qed
lemma aff_dim_subspace:
fixes S :: "'n::euclidean_space set"
assumes "S ≠ {}"
and "subspace S"
shows "aff_dim S = int (dim S)"
using aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of S]
by auto
lemma aff_dim_zero:
fixes S :: "'n::euclidean_space set"
assumes "0 ∈ affine hull S"
shows "aff_dim S = int (dim S)"
proof -
have "subspace (affine hull S)"
using subspace_affine[of "affine hull S"] affine_affine_hull assms
by auto
then have "aff_dim (affine hull S) = int (dim (affine hull S))"
using assms aff_dim_subspace[of "affine hull S"] by auto
then show ?thesis
using aff_dim_affine_hull[of S] dim_affine_hull[of S]
by auto
qed
lemma aff_dim_univ: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))"
using aff_dim_subspace[of "(UNIV :: 'n::euclidean_space set)"]
dim_UNIV[where 'a="'n::euclidean_space"]
by auto
lemma aff_dim_geq:
fixes V :: "'n::euclidean_space set"
shows "aff_dim V ≥ -1"
proof -
obtain B where "affine hull B = affine hull V"
and "¬ affine_dependent B"
and "int (card B) = aff_dim V + 1"
using aff_dim_basis_exists by auto
then show ?thesis by auto
qed
lemma independent_card_le_aff_dim:
fixes B :: "'n::euclidean_space set"
assumes "B ⊆ V"
assumes "¬ affine_dependent B"
shows "int (card B) ≤ aff_dim V + 1"
proof (cases "B = {}")
case True
then have "-1 ≤ aff_dim V"
using aff_dim_geq by auto
with True show ?thesis by auto
next
case False
then obtain T where T: "¬ affine_dependent T ∧ B ⊆ T ∧ T ⊆ V ∧ affine hull T = affine hull V"
using assms extend_to_affine_basis[of B V] by auto
then have "of_nat (card T) = aff_dim V + 1"
using aff_dim_unique by auto
then show ?thesis
using T card_mono[of T B] aff_independent_finite[of T] by auto
qed
lemma aff_dim_subset:
fixes S T :: "'n::euclidean_space set"
assumes "S ⊆ T"
shows "aff_dim S ≤ aff_dim T"
proof -
obtain B where B: "¬ affine_dependent B" "B ⊆ S" "affine hull B = affine hull S"
"of_nat (card B) = aff_dim S + 1"
using aff_dim_inner_basis_exists[of S] by auto
then have "int (card B) ≤ aff_dim T + 1"
using assms independent_card_le_aff_dim[of B T] by auto
with B show ?thesis by auto
qed
lemma aff_dim_subset_univ:
fixes S :: "'n::euclidean_space set"
shows "aff_dim S ≤ int (DIM('n))"
proof -
have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))"
using aff_dim_univ by auto
then show "aff_dim (S:: 'n::euclidean_space set) ≤ int(DIM('n))"
using assms aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto
qed
lemma affine_dim_equal:
fixes S :: "'n::euclidean_space set"
assumes "affine S" "affine T" "S ≠ {}" "S ⊆ T" "aff_dim S = aff_dim T"
shows "S = T"
proof -
obtain a where "a ∈ S" using assms by auto
then have "a ∈ T" using assms by auto
def LS ≡ "{y. ∃x ∈ S. (-a) + x = y}"
then have ls: "subspace LS" "affine_parallel S LS"
using assms parallel_subspace_explicit[of S a LS] ‹a ∈ S› by auto
then have h1: "int(dim LS) = aff_dim S"
using assms aff_dim_affine[of S LS] by auto
have "T ≠ {}" using assms by auto
def LT ≡ "{y. ∃x ∈ T. (-a) + x = y}"
then have lt: "subspace LT ∧ affine_parallel T LT"
using assms parallel_subspace_explicit[of T a LT] ‹a ∈ T› by auto
then have "int(dim LT) = aff_dim T"
using assms aff_dim_affine[of T LT] ‹T ≠ {}› by auto
then have "dim LS = dim LT"
using h1 assms by auto
moreover have "LS ≤ LT"
using LS_def LT_def assms by auto
ultimately have "LS = LT"
using subspace_dim_equal[of LS LT] ls lt by auto
moreover have "S = {x. ∃y ∈ LS. a+y=x}"
using LS_def by auto
moreover have "T = {x. ∃y ∈ LT. a+y=x}"
using LT_def by auto
ultimately show ?thesis by auto
qed
lemma affine_hull_univ:
fixes S :: "'n::euclidean_space set"
assumes "aff_dim S = int(DIM('n))"
shows "affine hull S = (UNIV :: ('n::euclidean_space) set)"
proof -
have "S ≠ {}"
using assms aff_dim_empty[of S] by auto
have h0: "S ⊆ affine hull S"
using hull_subset[of S _] by auto
have h1: "aff_dim (UNIV :: ('n::euclidean_space) set) = aff_dim S"
using aff_dim_univ assms by auto
then have h2: "aff_dim (affine hull S) ≤ aff_dim (UNIV :: ('n::euclidean_space) set)"
using aff_dim_subset_univ[of "affine hull S"] assms h0 by auto
have h3: "aff_dim S ≤ aff_dim (affine hull S)"
using h0 aff_dim_subset[of S "affine hull S"] assms by auto
then have h4: "aff_dim (affine hull S) = aff_dim (UNIV :: ('n::euclidean_space) set)"
using h0 h1 h2 by auto
then show ?thesis
using affine_dim_equal[of "affine hull S" "(UNIV :: ('n::euclidean_space) set)"]
affine_affine_hull[of S] affine_UNIV assms h4 h0 ‹S ≠ {}›
by auto
qed
lemma aff_dim_convex_hull:
fixes S :: "'n::euclidean_space set"
shows "aff_dim (convex hull S) = aff_dim S"
using aff_dim_affine_hull[of S] convex_hull_subset_affine_hull[of S]
hull_subset[of S "convex"] aff_dim_subset[of S "convex hull S"]
aff_dim_subset[of "convex hull S" "affine hull S"]
by auto
lemma aff_dim_cball:
fixes a :: "'n::euclidean_space"
assumes "e > 0"
shows "aff_dim (cball a e) = int (DIM('n))"
proof -
have "(λx. a + x) ` (cball 0 e) ⊆ cball a e"
unfolding cball_def dist_norm by auto
then have "aff_dim (cball (0 :: 'n::euclidean_space) e) ≤ aff_dim (cball a e)"
using aff_dim_translation_eq[of a "cball 0 e"]
aff_dim_subset[of "op + a ` cball 0 e" "cball a e"]
by auto
moreover have "aff_dim (cball (0 :: 'n::euclidean_space) e) = int (DIM('n))"
using hull_inc[of "(0 :: 'n::euclidean_space)" "cball 0 e"]
centre_in_cball[of "(0 :: 'n::euclidean_space)"] assms
by (simp add: dim_cball[of e] aff_dim_zero[of "cball 0 e"])
ultimately show ?thesis
using aff_dim_subset_univ[of "cball a e"] by auto
qed
lemma aff_dim_open:
fixes S :: "'n::euclidean_space set"
assumes "open S"
and "S ≠ {}"
shows "aff_dim S = int (DIM('n))"
proof -
obtain x where "x ∈ S"
using assms by auto
then obtain e where e: "e > 0" "cball x e ⊆ S"
using open_contains_cball[of S] assms by auto
then have "aff_dim (cball x e) ≤ aff_dim S"
using aff_dim_subset by auto
with e show ?thesis
using aff_dim_cball[of e x] aff_dim_subset_univ[of S] by auto
qed
lemma low_dim_interior:
fixes S :: "'n::euclidean_space set"
assumes "¬ aff_dim S = int (DIM('n))"
shows "interior S = {}"
proof -
have "aff_dim(interior S) ≤ aff_dim S"
using interior_subset aff_dim_subset[of "interior S" S] by auto
then show ?thesis
using aff_dim_open[of "interior S"] aff_dim_subset_univ[of S] assms by auto
qed
corollary empty_interior_lowdim:
fixes S :: "'n::euclidean_space set"
shows "dim S < DIM ('n) ⟹ interior S = {}"
by (metis low_dim_interior affine_hull_univ dim_affine_hull less_not_refl dim_UNIV)
subsection ‹Caratheodory's theorem.›
lemma convex_hull_caratheodory_aff_dim:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p =
{y. ∃s u. finite s ∧ s ⊆ p ∧ card s ≤ aff_dim p + 1 ∧
(∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ setsum (λv. u v *⇩R v) s = y}"
unfolding convex_hull_explicit set_eq_iff mem_Collect_eq
proof (intro allI iffI)
fix y
let ?P = "λn. ∃s u. finite s ∧ card s = n ∧ s ⊆ p ∧ (∀x∈s. 0 ≤ u x) ∧
setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = y"
assume "∃s u. finite s ∧ s ⊆ p ∧ (∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = y"
then obtain N where "?P N" by auto
then have "∃n≤N. (∀k<n. ¬ ?P k) ∧ ?P n"
apply (rule_tac ex_least_nat_le)
apply auto
done
then obtain n where "?P n" and smallest: "∀k<n. ¬ ?P k"
by blast
then obtain s u where obt: "finite s" "card s = n" "s⊆p" "∀x∈s. 0 ≤ u x"
"setsum u s = 1" "(∑v∈s. u v *⇩R v) = y" by auto
have "card s ≤ aff_dim p + 1"
proof (rule ccontr, simp only: not_le)
assume "aff_dim p + 1 < card s"
then have "affine_dependent s"
using affine_dependent_biggerset[OF obt(1)] independent_card_le_aff_dim not_less obt(3)
by blast
then obtain w v where wv: "setsum w s = 0" "v∈s" "w v ≠ 0" "(∑v∈s. w v *⇩R v) = 0"
using affine_dependent_explicit_finite[OF obt(1)] by auto
def i ≡ "(λv. (u v) / (- w v)) ` {v∈s. w v < 0}"
def t ≡ "Min i"
have "∃x∈s. w x < 0"
proof (rule ccontr, simp add: not_less)
assume as:"∀x∈s. 0 ≤ w x"
then have "setsum w (s - {v}) ≥ 0"
apply (rule_tac setsum_nonneg)
apply auto
done
then have "setsum w s > 0"
unfolding setsum.remove[OF obt(1) ‹v∈s›]
using as[THEN bspec[where x=v]] ‹v∈s› ‹w v ≠ 0› by auto
then show False using wv(1) by auto
qed
then have "i ≠ {}" unfolding i_def by auto
then have "t ≥ 0"
using Min_ge_iff[of i 0 ] and obt(1)
unfolding t_def i_def
using obt(4)[unfolded le_less]
by (auto simp: divide_le_0_iff)
have t: "∀v∈s. u v + t * w v ≥ 0"
proof
fix v
assume "v ∈ s"
then have v: "0 ≤ u v"
using obt(4)[THEN bspec[where x=v]] by auto
show "0 ≤ u v + t * w v"
proof (cases "w v < 0")
case False
thus ?thesis using v ‹t≥0› by auto
next
case True
then have "t ≤ u v / (- w v)"
using ‹v∈s› unfolding t_def i_def
apply (rule_tac Min_le)
using obt(1) apply auto
done
then show ?thesis
unfolding real_0_le_add_iff
using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[symmetric]]]
by auto
qed
qed
obtain a where "a ∈ s" and "t = (λv. (u v) / (- w v)) a" and "w a < 0"
using Min_in[OF _ ‹i≠{}›] and obt(1) unfolding i_def t_def by auto
then have a: "a ∈ s" "u a + t * w a = 0" by auto
have *: "⋀f. setsum f (s - {a}) = setsum f s - ((f a)::'b::ab_group_add)"
unfolding setsum.remove[OF obt(1) ‹a∈s›] by auto
have "(∑v∈s. u v + t * w v) = 1"
unfolding setsum.distrib wv(1) setsum_right_distrib[symmetric] obt(5) by auto
moreover have "(∑v∈s. u v *⇩R v + (t * w v) *⇩R v) - (u a *⇩R a + (t * w a) *⇩R a) = y"
unfolding setsum.distrib obt(6) scaleR_scaleR[symmetric] scaleR_right.setsum [symmetric] wv(4)
using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp
ultimately have "?P (n - 1)"
apply (rule_tac x="(s - {a})" in exI)
apply (rule_tac x="λv. u v + t * w v" in exI)
using obt(1-3) and t and a
apply (auto simp add: * scaleR_left_distrib)
done
then show False
using smallest[THEN spec[where x="n - 1"]] by auto
qed
then show "∃s u. finite s ∧ s ⊆ p ∧ card s ≤ aff_dim p + 1 ∧
(∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ (∑v∈s. u v *⇩R v) = y"
using obt by auto
qed auto
lemma caratheodory_aff_dim:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p = {x. ∃s. finite s ∧ s ⊆ p ∧ card s ≤ aff_dim p + 1 ∧ x ∈ convex hull s}"
(is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
apply (subst convex_hull_caratheodory_aff_dim)
apply clarify
apply (rule_tac x="s" in exI)
apply (simp add: hull_subset convex_explicit [THEN iffD1, OF convex_convex_hull])
done
next
show "?rhs ⊆ ?lhs"
using hull_mono by blast
qed
lemma convex_hull_caratheodory:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p =
{y. ∃s u. finite s ∧ s ⊆ p ∧ card s ≤ DIM('a) + 1 ∧
(∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ setsum (λv. u v *⇩R v) s = y}"
(is "?lhs = ?rhs")
proof (intro set_eqI iffI)
fix x
assume "x ∈ ?lhs" then show "x ∈ ?rhs"
apply (simp only: convex_hull_caratheodory_aff_dim Set.mem_Collect_eq)
apply (erule ex_forward)+
using aff_dim_subset_univ [of p]
apply simp
done
next
fix x
assume "x ∈ ?rhs" then show "x ∈ ?lhs"
by (auto simp add: convex_hull_explicit)
qed
theorem caratheodory:
"convex hull p =
{x::'a::euclidean_space. ∃s. finite s ∧ s ⊆ p ∧
card s ≤ DIM('a) + 1 ∧ x ∈ convex hull s}"
proof safe
fix x
assume "x ∈ convex hull p"
then obtain s u where "finite s" "s ⊆ p" "card s ≤ DIM('a) + 1"
"∀x∈s. 0 ≤ u x" "setsum u s = 1" "(∑v∈s. u v *⇩R v) = x"
unfolding convex_hull_caratheodory by auto
then show "∃s. finite s ∧ s ⊆ p ∧ card s ≤ DIM('a) + 1 ∧ x ∈ convex hull s"
apply (rule_tac x=s in exI)
using hull_subset[of s convex]
using convex_convex_hull[unfolded convex_explicit, of s,
THEN spec[where x=s], THEN spec[where x=u]]
apply auto
done
next
fix x s
assume "finite s" "s ⊆ p" "card s ≤ DIM('a) + 1" "x ∈ convex hull s"
then show "x ∈ convex hull p"
using hull_mono[OF ‹s⊆p›] by auto
qed
subsection ‹Relative interior of a set›
definition "rel_interior S =
{x. ∃T. openin (subtopology euclidean (affine hull S)) T ∧ x ∈ T ∧ T ⊆ S}"
lemma rel_interior:
"rel_interior S = {x ∈ S. ∃T. open T ∧ x ∈ T ∧ T ∩ affine hull S ⊆ S}"
unfolding rel_interior_def[of S] openin_open[of "affine hull S"]
apply auto
proof -
fix x T
assume *: "x ∈ S" "open T" "x ∈ T" "T ∩ affine hull S ⊆ S"
then have **: "x ∈ T ∩ affine hull S"
using hull_inc by auto
show "∃Tb. (∃Ta. open Ta ∧ Tb = affine hull S ∩ Ta) ∧ x ∈ Tb ∧ Tb ⊆ S"
apply (rule_tac x = "T ∩ (affine hull S)" in exI)
using * **
apply auto
done
qed
lemma mem_rel_interior: "x ∈ rel_interior S ⟷ (∃T. open T ∧ x ∈ T ∩ S ∧ T ∩ affine hull S ⊆ S)"
by (auto simp add: rel_interior)
lemma mem_rel_interior_ball:
"x ∈ rel_interior S ⟷ x ∈ S ∧ (∃e. e > 0 ∧ ball x e ∩ affine hull S ⊆ S)"
apply (simp add: rel_interior, safe)
apply (force simp add: open_contains_ball)
apply (rule_tac x = "ball x e" in exI)
apply simp
done
lemma rel_interior_ball:
"rel_interior S = {x ∈ S. ∃e. e > 0 ∧ ball x e ∩ affine hull S ⊆ S}"
using mem_rel_interior_ball [of _ S] by auto
lemma mem_rel_interior_cball:
"x ∈ rel_interior S ⟷ x ∈ S ∧ (∃e. e > 0 ∧ cball x e ∩ affine hull S ⊆ S)"
apply (simp add: rel_interior, safe)
apply (force simp add: open_contains_cball)
apply (rule_tac x = "ball x e" in exI)
apply (simp add: subset_trans [OF ball_subset_cball])
apply auto
done
lemma rel_interior_cball:
"rel_interior S = {x ∈ S. ∃e. e > 0 ∧ cball x e ∩ affine hull S ⊆ S}"
using mem_rel_interior_cball [of _ S] by auto
lemma rel_interior_empty [simp]: "rel_interior {} = {}"
by (auto simp add: rel_interior_def)
lemma affine_hull_sing [simp]: "affine hull {a :: 'n::euclidean_space} = {a}"
by (metis affine_hull_eq affine_sing)
lemma rel_interior_sing [simp]: "rel_interior {a :: 'n::euclidean_space} = {a}"
unfolding rel_interior_ball affine_hull_sing
apply auto
apply (rule_tac x = "1 :: real" in exI)
apply simp
done
lemma subset_rel_interior:
fixes S T :: "'n::euclidean_space set"
assumes "S ⊆ T"
and "affine hull S = affine hull T"
shows "rel_interior S ⊆ rel_interior T"
using assms by (auto simp add: rel_interior_def)
lemma rel_interior_subset: "rel_interior S ⊆ S"
by (auto simp add: rel_interior_def)
lemma rel_interior_subset_closure: "rel_interior S ⊆ closure S"
using rel_interior_subset by (auto simp add: closure_def)
lemma interior_subset_rel_interior: "interior S ⊆ rel_interior S"
by (auto simp add: rel_interior interior_def)
lemma interior_rel_interior:
fixes S :: "'n::euclidean_space set"
assumes "aff_dim S = int(DIM('n))"
shows "rel_interior S = interior S"
proof -
have "affine hull S = UNIV"
using assms affine_hull_univ[of S] by auto
then show ?thesis
unfolding rel_interior interior_def by auto
qed
lemma rel_interior_interior:
fixes S :: "'n::euclidean_space set"
assumes "affine hull S = UNIV"
shows "rel_interior S = interior S"
using assms unfolding rel_interior interior_def by auto
lemma rel_interior_open:
fixes S :: "'n::euclidean_space set"
assumes "open S"
shows "rel_interior S = S"
by (metis assms interior_eq interior_subset_rel_interior rel_interior_subset set_eq_subset)
lemma interior_ball [simp]: "interior (ball x e) = ball x e"
by (simp add: interior_open)
lemma interior_rel_interior_gen:
fixes S :: "'n::euclidean_space set"
shows "interior S = (if aff_dim S = int(DIM('n)) then rel_interior S else {})"
by (metis interior_rel_interior low_dim_interior)
lemma rel_interior_univ:
fixes S :: "'n::euclidean_space set"
shows "rel_interior (affine hull S) = affine hull S"
proof -
have *: "rel_interior (affine hull S) ⊆ affine hull S"
using rel_interior_subset by auto
{
fix x
assume x: "x ∈ affine hull S"
def e ≡ "1::real"
then have "e > 0" "ball x e ∩ affine hull (affine hull S) ⊆ affine hull S"
using hull_hull[of _ S] by auto
then have "x ∈ rel_interior (affine hull S)"
using x rel_interior_ball[of "affine hull S"] by auto
}
then show ?thesis using * by auto
qed
lemma rel_interior_univ2: "rel_interior (UNIV :: ('n::euclidean_space) set) = UNIV"
by (metis open_UNIV rel_interior_open)
lemma rel_interior_convex_shrink:
fixes S :: "'a::euclidean_space set"
assumes "convex S"
and "c ∈ rel_interior S"
and "x ∈ S"
and "0 < e"
and "e ≤ 1"
shows "x - e *⇩R (x - c) ∈ rel_interior S"
proof -
obtain d where "d > 0" and d: "ball c d ∩ affine hull S ⊆ S"
using assms(2) unfolding mem_rel_interior_ball by auto
{
fix y
assume as: "dist (x - e *⇩R (x - c)) y < e * d" "y ∈ affine hull S"
have *: "y = (1 - (1 - e)) *⇩R ((1 / e) *⇩R y - ((1 - e) / e) *⇩R x) + (1 - e) *⇩R x"
using ‹e > 0› by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
have "x ∈ affine hull S"
using assms hull_subset[of S] by auto
moreover have "1 / e + - ((1 - e) / e) = 1"
using ‹e > 0› left_diff_distrib[of "1" "(1-e)" "1/e"] by auto
ultimately have **: "(1 / e) *⇩R y - ((1 - e) / e) *⇩R x ∈ affine hull S"
using as affine_affine_hull[of S] mem_affine[of "affine hull S" y x "(1 / e)" "-((1 - e) / e)"]
by (simp add: algebra_simps)
have "dist c ((1 / e) *⇩R y - ((1 - e) / e) *⇩R x) = ¦1/e¦ * norm (e *⇩R c - y + (1 - e) *⇩R x)"
unfolding dist_norm norm_scaleR[symmetric]
apply (rule arg_cong[where f=norm])
using ‹e > 0›
apply (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps)
done
also have "… = ¦1/e¦ * norm (x - e *⇩R (x - c) - y)"
by (auto intro!:arg_cong[where f=norm] simp add: algebra_simps)
also have "… < d"
using as[unfolded dist_norm] and ‹e > 0›
by (auto simp add:pos_divide_less_eq[OF ‹e > 0›] mult.commute)
finally have "y ∈ S"
apply (subst *)
apply (rule assms(1)[unfolded convex_alt,rule_format])
apply (rule d[unfolded subset_eq,rule_format])
unfolding mem_ball
using assms(3-5) **
apply auto
done
}
then have "ball (x - e *⇩R (x - c)) (e*d) ∩ affine hull S ⊆ S"
by auto
moreover have "e * d > 0"
using ‹e > 0› ‹d > 0› by simp
moreover have c: "c ∈ S"
using assms rel_interior_subset by auto
moreover from c have "x - e *⇩R (x - c) ∈ S"
using convexD_alt[of S x c e]
apply (simp add: algebra_simps)
using assms
apply auto
done
ultimately show ?thesis
using mem_rel_interior_ball[of "x - e *⇩R (x - c)" S] ‹e > 0› by auto
qed
lemma interior_real_semiline:
fixes a :: real
shows "interior {a..} = {a<..}"
proof -
{
fix y
assume "a < y"
then have "y ∈ interior {a..}"
apply (simp add: mem_interior)
apply (rule_tac x="(y-a)" in exI)
apply (auto simp add: dist_norm)
done
}
moreover
{
fix y
assume "y ∈ interior {a..}"
then obtain e where e: "e > 0" "cball y e ⊆ {a..}"
using mem_interior_cball[of y "{a..}"] by auto
moreover from e have "y - e ∈ cball y e"
by (auto simp add: cball_def dist_norm)
ultimately have "a ≤ y - e" by blast
then have "a < y" using e by auto
}
ultimately show ?thesis by auto
qed
lemma continuous_ge_on_Ioo:
assumes "continuous_on {c..d} g" "⋀x. x ∈ {c<..<d} ⟹ g x ≥ a" "c < d" "x ∈ {c..d}"
shows "g (x::real) ≥ (a::real)"
proof-
from assms(3) have "{c..d} = closure {c<..<d}" by (rule closure_greaterThanLessThan[symmetric])
also from assms(2) have "{c<..<d} ⊆ (g -` {a..} ∩ {c..d})" by auto
hence "closure {c<..<d} ⊆ closure (g -` {a..} ∩ {c..d})" by (rule closure_mono)
also from assms(1) have "closed (g -` {a..} ∩ {c..d})"
by (auto simp: continuous_on_closed_vimage)
hence "closure (g -` {a..} ∩ {c..d}) = g -` {a..} ∩ {c..d}" by simp
finally show ?thesis using ‹x ∈ {c..d}› by auto
qed
lemma interior_real_semiline':
fixes a :: real
shows "interior {..a} = {..<a}"
proof -
{
fix y
assume "a > y"
then have "y ∈ interior {..a}"
apply (simp add: mem_interior)
apply (rule_tac x="(a-y)" in exI)
apply (auto simp add: dist_norm)
done
}
moreover
{
fix y
assume "y ∈ interior {..a}"
then obtain e where e: "e > 0" "cball y e ⊆ {..a}"
using mem_interior_cball[of y "{..a}"] by auto
moreover from e have "y + e ∈ cball y e"
by (auto simp add: cball_def dist_norm)
ultimately have "a ≥ y + e" by auto
then have "a > y" using e by auto
}
ultimately show ?thesis by auto
qed
lemma interior_atLeastAtMost_real: "interior {a..b} = {a<..<b :: real}"
proof-
have "{a..b} = {a..} ∩ {..b}" by auto
also have "interior ... = {a<..} ∩ {..<b}"
by (simp add: interior_real_semiline interior_real_semiline')
also have "... = {a<..<b}" by auto
finally show ?thesis .
qed
lemma frontier_real_Iic:
fixes a :: real
shows "frontier {..a} = {a}"
unfolding frontier_def by (auto simp add: interior_real_semiline')
lemma rel_interior_real_box:
fixes a b :: real
assumes "a < b"
shows "rel_interior {a .. b} = {a <..< b}"
proof -
have "box a b ≠ {}"
using assms
unfolding set_eq_iff
by (auto intro!: exI[of _ "(a + b) / 2"] simp: box_def)
then show ?thesis
using interior_rel_interior_gen[of "cbox a b", symmetric]
by (simp split: if_split_asm del: box_real add: box_real[symmetric] interior_cbox)
qed
lemma rel_interior_real_semiline:
fixes a :: real
shows "rel_interior {a..} = {a<..}"
proof -
have *: "{a<..} ≠ {}"
unfolding set_eq_iff by (auto intro!: exI[of _ "a + 1"])
then show ?thesis using interior_real_semiline interior_rel_interior_gen[of "{a..}"]
by (auto split: if_split_asm)
qed
subsubsection ‹Relative open sets›
definition "rel_open S ⟷ rel_interior S = S"
lemma rel_open: "rel_open S ⟷ openin (subtopology euclidean (affine hull S)) S"
unfolding rel_open_def rel_interior_def
apply auto
using openin_subopen[of "subtopology euclidean (affine hull S)" S]
apply auto
done
lemma opein_rel_interior: "openin (subtopology euclidean (affine hull S)) (rel_interior S)"
apply (simp add: rel_interior_def)
apply (subst openin_subopen)
apply blast
done
lemma affine_rel_open:
fixes S :: "'n::euclidean_space set"
assumes "affine S"
shows "rel_open S"
unfolding rel_open_def
using assms rel_interior_univ[of S] affine_hull_eq[of S]
by metis
lemma affine_closed:
fixes S :: "'n::euclidean_space set"
assumes "affine S"
shows "closed S"
proof -
{
assume "S ≠ {}"
then obtain L where L: "subspace L" "affine_parallel S L"
using assms affine_parallel_subspace[of S] by auto
then obtain a where a: "S = (op + a ` L)"
using affine_parallel_def[of L S] affine_parallel_commut by auto
from L have "closed L" using closed_subspace by auto
then have "closed S"
using closed_translation a by auto
}
then show ?thesis by auto
qed
lemma closure_affine_hull:
fixes S :: "'n::euclidean_space set"
shows "closure S ⊆ affine hull S"
by (intro closure_minimal hull_subset affine_closed affine_affine_hull)
lemma closure_same_affine_hull [simp]:
fixes S :: "'n::euclidean_space set"
shows "affine hull (closure S) = affine hull S"
proof -
have "affine hull (closure S) ⊆ affine hull S"
using hull_mono[of "closure S" "affine hull S" "affine"]
closure_affine_hull[of S] hull_hull[of "affine" S]
by auto
moreover have "affine hull (closure S) ⊇ affine hull S"
using hull_mono[of "S" "closure S" "affine"] closure_subset by auto
ultimately show ?thesis by auto
qed
lemma closure_aff_dim:
fixes S :: "'n::euclidean_space set"
shows "aff_dim (closure S) = aff_dim S"
proof -
have "aff_dim S ≤ aff_dim (closure S)"
using aff_dim_subset closure_subset by auto
moreover have "aff_dim (closure S) ≤ aff_dim (affine hull S)"
using aff_dim_subset closure_affine_hull by auto
moreover have "aff_dim (affine hull S) = aff_dim S"
using aff_dim_affine_hull by auto
ultimately show ?thesis by auto
qed
lemma rel_interior_closure_convex_shrink:
fixes S :: "_::euclidean_space set"
assumes "convex S"
and "c ∈ rel_interior S"
and "x ∈ closure S"
and "e > 0"
and "e ≤ 1"
shows "x - e *⇩R (x - c) ∈ rel_interior S"
proof -
obtain d where "d > 0" and d: "ball c d ∩ affine hull S ⊆ S"
using assms(2) unfolding mem_rel_interior_ball by auto
have "∃y ∈ S. norm (y - x) * (1 - e) < e * d"
proof (cases "x ∈ S")
case True
then show ?thesis using ‹e > 0› ‹d > 0›
apply (rule_tac bexI[where x=x])
apply (auto)
done
next
case False
then have x: "x islimpt S"
using assms(3)[unfolded closure_def] by auto
show ?thesis
proof (cases "e = 1")
case True
obtain y where "y ∈ S" "y ≠ x" "dist y x < 1"
using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
then show ?thesis
apply (rule_tac x=y in bexI)
unfolding True
using ‹d > 0›
apply auto
done
next
case False
then have "0 < e * d / (1 - e)" and *: "1 - e > 0"
using ‹e ≤ 1› ‹e > 0› ‹d > 0› by (auto)
then obtain y where "y ∈ S" "y ≠ x" "dist y x < e * d / (1 - e)"
using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
then show ?thesis
apply (rule_tac x=y in bexI)
unfolding dist_norm
using pos_less_divide_eq[OF *]
apply auto
done
qed
qed
then obtain y where "y ∈ S" and y: "norm (y - x) * (1 - e) < e * d"
by auto
def z ≡ "c + ((1 - e) / e) *⇩R (x - y)"
have *: "x - e *⇩R (x - c) = y - e *⇩R (y - z)"
unfolding z_def using ‹e > 0›
by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
have zball: "z ∈ ball c d"
using mem_ball z_def dist_norm[of c]
using y and assms(4,5)
by (auto simp add:field_simps norm_minus_commute)
have "x ∈ affine hull S"
using closure_affine_hull assms by auto
moreover have "y ∈ affine hull S"
using ‹y ∈ S› hull_subset[of S] by auto
moreover have "c ∈ affine hull S"
using assms rel_interior_subset hull_subset[of S] by auto
ultimately have "z ∈ affine hull S"
using z_def affine_affine_hull[of S]
mem_affine_3_minus [of "affine hull S" c x y "(1 - e) / e"]
assms
by (auto simp add: field_simps)
then have "z ∈ S" using d zball by auto
obtain d1 where "d1 > 0" and d1: "ball z d1 ≤ ball c d"
using zball open_ball[of c d] openE[of "ball c d" z] by auto
then have "ball z d1 ∩ affine hull S ⊆ ball c d ∩ affine hull S"
by auto
then have "ball z d1 ∩ affine hull S ⊆ S"
using d by auto
then have "z ∈ rel_interior S"
using mem_rel_interior_ball using ‹d1 > 0› ‹z ∈ S› by auto
then have "y - e *⇩R (y - z) ∈ rel_interior S"
using rel_interior_convex_shrink[of S z y e] assms ‹y ∈ S› by auto
then show ?thesis using * by auto
qed
lemma rel_interior_eq:
"rel_interior s = s ⟷ openin(subtopology euclidean (affine hull s)) s"
using rel_open rel_open_def by blast
lemma rel_interior_openin:
"openin(subtopology euclidean (affine hull s)) s ⟹ rel_interior s = s"
by (simp add: rel_interior_eq)
subsubsection‹Relative interior preserves under linear transformations›
lemma rel_interior_translation_aux:
fixes a :: "'n::euclidean_space"
shows "((λx. a + x) ` rel_interior S) ⊆ rel_interior ((λx. a + x) ` S)"
proof -
{
fix x
assume x: "x ∈ rel_interior S"
then obtain T where "open T" "x ∈ T ∩ S" "T ∩ affine hull S ⊆ S"
using mem_rel_interior[of x S] by auto
then have "open ((λx. a + x) ` T)"
and "a + x ∈ ((λx. a + x) ` T) ∩ ((λx. a + x) ` S)"
and "((λx. a + x) ` T) ∩ affine hull ((λx. a + x) ` S) ⊆ (λx. a + x) ` S"
using affine_hull_translation[of a S] open_translation[of T a] x by auto
then have "a + x ∈ rel_interior ((λx. a + x) ` S)"
using mem_rel_interior[of "a+x" "((λx. a + x) ` S)"] by auto
}
then show ?thesis by auto
qed
lemma rel_interior_translation:
fixes a :: "'n::euclidean_space"
shows "rel_interior ((λx. a + x) ` S) = (λx. a + x) ` rel_interior S"
proof -
have "(λx. (-a) + x) ` rel_interior ((λx. a + x) ` S) ⊆ rel_interior S"
using rel_interior_translation_aux[of "-a" "(λx. a + x) ` S"]
translation_assoc[of "-a" "a"]
by auto
then have "((λx. a + x) ` rel_interior S) ⊇ rel_interior ((λx. a + x) ` S)"
using translation_inverse_subset[of a "rel_interior (op + a ` S)" "rel_interior S"]
by auto
then show ?thesis
using rel_interior_translation_aux[of a S] by auto
qed
lemma affine_hull_linear_image:
assumes "bounded_linear f"
shows "f ` (affine hull s) = affine hull f ` s"
apply rule
unfolding subset_eq ball_simps
apply (rule_tac[!] hull_induct, rule hull_inc)
prefer 3
apply (erule imageE)
apply (rule_tac x=xa in image_eqI)
apply assumption
apply (rule hull_subset[unfolded subset_eq, rule_format])
apply assumption
proof -
interpret f: bounded_linear f by fact
show "affine {x. f x ∈ affine hull f ` s}"
unfolding affine_def
by (auto simp add: f.scaleR f.add affine_affine_hull[unfolded affine_def, rule_format])
show "affine {x. x ∈ f ` (affine hull s)}"
using affine_affine_hull[unfolded affine_def, of s]
unfolding affine_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric])
qed auto
lemma rel_interior_injective_on_span_linear_image:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
and S :: "'m::euclidean_space set"
assumes "bounded_linear f"
and "inj_on f (span S)"
shows "rel_interior (f ` S) = f ` (rel_interior S)"
proof -
{
fix z
assume z: "z ∈ rel_interior (f ` S)"
then have "z ∈ f ` S"
using rel_interior_subset[of "f ` S"] by auto
then obtain x where x: "x ∈ S" "f x = z" by auto
obtain e2 where e2: "e2 > 0" "cball z e2 ∩ affine hull (f ` S) ⊆ (f ` S)"
using z rel_interior_cball[of "f ` S"] by auto
obtain K where K: "K > 0" "⋀x. norm (f x) ≤ norm x * K"
using assms Real_Vector_Spaces.bounded_linear.pos_bounded[of f] by auto
def e1 ≡ "1 / K"
then have e1: "e1 > 0" "⋀x. e1 * norm (f x) ≤ norm x"
using K pos_le_divide_eq[of e1] by auto
def e ≡ "e1 * e2"
then have "e > 0" using e1 e2 by auto
{
fix y
assume y: "y ∈ cball x e ∩ affine hull S"
then have h1: "f y ∈ affine hull (f ` S)"
using affine_hull_linear_image[of f S] assms by auto
from y have "norm (x-y) ≤ e1 * e2"
using cball_def[of x e] dist_norm[of x y] e_def by auto
moreover have "f x - f y = f (x - y)"
using assms linear_sub[of f x y] linear_conv_bounded_linear[of f] by auto
moreover have "e1 * norm (f (x-y)) ≤ norm (x - y)"
using e1 by auto
ultimately have "e1 * norm ((f x)-(f y)) ≤ e1 * e2"
by auto
then have "f y ∈ cball z e2"
using cball_def[of "f x" e2] dist_norm[of "f x" "f y"] e1 x by auto
then have "f y ∈ f ` S"
using y e2 h1 by auto
then have "y ∈ S"
using assms y hull_subset[of S] affine_hull_subset_span
inj_on_image_mem_iff [OF ‹inj_on f (span S)›]
by (metis Int_iff span_inc subsetCE)
}
then have "z ∈ f ` (rel_interior S)"
using mem_rel_interior_cball[of x S] ‹e > 0› x by auto
}
moreover
{
fix x
assume x: "x ∈ rel_interior S"
then obtain e2 where e2: "e2 > 0" "cball x e2 ∩ affine hull S ⊆ S"
using rel_interior_cball[of S] by auto
have "x ∈ S" using x rel_interior_subset by auto
then have *: "f x ∈ f ` S" by auto
have "∀x∈span S. f x = 0 ⟶ x = 0"
using assms subspace_span linear_conv_bounded_linear[of f]
linear_injective_on_subspace_0[of f "span S"]
by auto
then obtain e1 where e1: "e1 > 0" "∀x ∈ span S. e1 * norm x ≤ norm (f x)"
using assms injective_imp_isometric[of "span S" f]
subspace_span[of S] closed_subspace[of "span S"]
by auto
def e ≡ "e1 * e2"
hence "e > 0" using e1 e2 by auto
{
fix y
assume y: "y ∈ cball (f x) e ∩ affine hull (f ` S)"
then have "y ∈ f ` (affine hull S)"
using affine_hull_linear_image[of f S] assms by auto
then obtain xy where xy: "xy ∈ affine hull S" "f xy = y" by auto
with y have "norm (f x - f xy) ≤ e1 * e2"
using cball_def[of "f x" e] dist_norm[of "f x" y] e_def by auto
moreover have "f x - f xy = f (x - xy)"
using assms linear_sub[of f x xy] linear_conv_bounded_linear[of f] by auto
moreover have *: "x - xy ∈ span S"
using subspace_sub[of "span S" x xy] subspace_span ‹x ∈ S› xy
affine_hull_subset_span[of S] span_inc
by auto
moreover from * have "e1 * norm (x - xy) ≤ norm (f (x - xy))"
using e1 by auto
ultimately have "e1 * norm (x - xy) ≤ e1 * e2"
by auto
then have "xy ∈ cball x e2"
using cball_def[of x e2] dist_norm[of x xy] e1 by auto
then have "y ∈ f ` S"
using xy e2 by auto
}
then have "f x ∈ rel_interior (f ` S)"
using mem_rel_interior_cball[of "(f x)" "(f ` S)"] * ‹e > 0› by auto
}
ultimately show ?thesis by auto
qed
lemma rel_interior_injective_linear_image:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes "bounded_linear f"
and "inj f"
shows "rel_interior (f ` S) = f ` (rel_interior S)"
using assms rel_interior_injective_on_span_linear_image[of f S]
subset_inj_on[of f "UNIV" "span S"]
by auto
subsection‹Some Properties of subset of standard basis›
lemma affine_hull_substd_basis:
assumes "d ⊆ Basis"
shows "affine hull (insert 0 d) = {x::'a::euclidean_space. ∀i∈Basis. i ∉ d ⟶ x∙i = 0}"
(is "affine hull (insert 0 ?A) = ?B")
proof -
have *: "⋀A. op + (0::'a) ` A = A" "⋀A. op + (- (0::'a)) ` A = A"
by auto
show ?thesis
unfolding affine_hull_insert_span_gen span_substd_basis[OF assms,symmetric] * ..
qed
lemma affine_hull_convex_hull [simp]: "affine hull (convex hull S) = affine hull S"
by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset)
subsection ‹Openness and compactness are preserved by convex hull operation.›
lemma open_convex_hull[intro]:
fixes s :: "'a::real_normed_vector set"
assumes "open s"
shows "open (convex hull s)"
unfolding open_contains_cball convex_hull_explicit
unfolding mem_Collect_eq ball_simps(8)
proof (rule, rule)
fix a
assume "∃sa u. finite sa ∧ sa ⊆ s ∧ (∀x∈sa. 0 ≤ u x) ∧ setsum u sa = 1 ∧ (∑v∈sa. u v *⇩R v) = a"
then obtain t u where obt: "finite t" "t⊆s" "∀x∈t. 0 ≤ u x" "setsum u t = 1" "(∑v∈t. u v *⇩R v) = a"
by auto
from assms[unfolded open_contains_cball] obtain b
where b: "∀x∈s. 0 < b x ∧ cball x (b x) ⊆ s"
using bchoice[of s "λx e. e > 0 ∧ cball x e ⊆ s"] by auto
have "b ` t ≠ {}"
using obt by auto
def i ≡ "b ` t"
show "∃e > 0.
cball a e ⊆ {y. ∃sa u. finite sa ∧ sa ⊆ s ∧ (∀x∈sa. 0 ≤ u x) ∧ setsum u sa = 1 ∧ (∑v∈sa. u v *⇩R v) = y}"
apply (rule_tac x = "Min i" in exI)
unfolding subset_eq
apply rule
defer
apply rule
unfolding mem_Collect_eq
proof -
show "0 < Min i"
unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] ‹b ` t≠{}›]
using b
apply simp
apply rule
apply (erule_tac x=x in ballE)
using ‹t⊆s›
apply auto
done
next
fix y
assume "y ∈ cball a (Min i)"
then have y: "norm (a - y) ≤ Min i"
unfolding dist_norm[symmetric] by auto
{
fix x
assume "x ∈ t"
then have "Min i ≤ b x"
unfolding i_def
apply (rule_tac Min_le)
using obt(1)
apply auto
done
then have "x + (y - a) ∈ cball x (b x)"
using y unfolding mem_cball dist_norm by auto
moreover from ‹x∈t› have "x ∈ s"
using obt(2) by auto
ultimately have "x + (y - a) ∈ s"
using y and b[THEN bspec[where x=x]] unfolding subset_eq by fast
}
moreover
have *: "inj_on (λv. v + (y - a)) t"
unfolding inj_on_def by auto
have "(∑v∈(λv. v + (y - a)) ` t. u (v - (y - a))) = 1"
unfolding setsum.reindex[OF *] o_def using obt(4) by auto
moreover have "(∑v∈(λv. v + (y - a)) ` t. u (v - (y - a)) *⇩R v) = y"
unfolding setsum.reindex[OF *] o_def using obt(4,5)
by (simp add: setsum.distrib setsum_subtractf scaleR_left.setsum[symmetric] scaleR_right_distrib)
ultimately
show "∃sa u. finite sa ∧ (∀x∈sa. x ∈ s) ∧ (∀x∈sa. 0 ≤ u x) ∧ setsum u sa = 1 ∧ (∑v∈sa. u v *⇩R v) = y"
apply (rule_tac x="(λv. v + (y - a)) ` t" in exI)
apply (rule_tac x="λv. u (v - (y - a))" in exI)
using obt(1, 3)
apply auto
done
qed
qed
lemma compact_convex_combinations:
fixes s t :: "'a::real_normed_vector set"
assumes "compact s" "compact t"
shows "compact { (1 - u) *⇩R x + u *⇩R y | x y u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ s ∧ y ∈ t}"
proof -
let ?X = "{0..1} × s × t"
let ?h = "(λz. (1 - fst z) *⇩R fst (snd z) + fst z *⇩R snd (snd z))"
have *: "{ (1 - u) *⇩R x + u *⇩R y | x y u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ s ∧ y ∈ t} = ?h ` ?X"
apply (rule set_eqI)
unfolding image_iff mem_Collect_eq
apply rule
apply auto
apply (rule_tac x=u in rev_bexI)
apply simp
apply (erule rev_bexI)
apply (erule rev_bexI)
apply simp
apply auto
done
have "continuous_on ?X (λz. (1 - fst z) *⇩R fst (snd z) + fst z *⇩R snd (snd z))"
unfolding continuous_on by (rule ballI) (intro tendsto_intros)
then show ?thesis
unfolding *
apply (rule compact_continuous_image)
apply (intro compact_Times compact_Icc assms)
done
qed
lemma finite_imp_compact_convex_hull:
fixes s :: "'a::real_normed_vector set"
assumes "finite s"
shows "compact (convex hull s)"
proof (cases "s = {}")
case True
then show ?thesis by simp
next
case False
with assms show ?thesis
proof (induct rule: finite_ne_induct)
case (singleton x)
show ?case by simp
next
case (insert x A)
let ?f = "λ(u, y::'a). u *⇩R x + (1 - u) *⇩R y"
let ?T = "{0..1::real} × (convex hull A)"
have "continuous_on ?T ?f"
unfolding split_def continuous_on by (intro ballI tendsto_intros)
moreover have "compact ?T"
by (intro compact_Times compact_Icc insert)
ultimately have "compact (?f ` ?T)"
by (rule compact_continuous_image)
also have "?f ` ?T = convex hull (insert x A)"
unfolding convex_hull_insert [OF ‹A ≠ {}›]
apply safe
apply (rule_tac x=a in exI, simp)
apply (rule_tac x="1 - a" in exI, simp)
apply fast
apply (rule_tac x="(u, b)" in image_eqI, simp_all)
done
finally show "compact (convex hull (insert x A))" .
qed
qed
lemma compact_convex_hull:
fixes s :: "'a::euclidean_space set"
assumes "compact s"
shows "compact (convex hull s)"
proof (cases "s = {}")
case True
then show ?thesis using compact_empty by simp
next
case False
then obtain w where "w ∈ s" by auto
show ?thesis
unfolding caratheodory[of s]
proof (induct ("DIM('a) + 1"))
case 0
have *: "{x.∃sa. finite sa ∧ sa ⊆ s ∧ card sa ≤ 0 ∧ x ∈ convex hull sa} = {}"
using compact_empty by auto
from 0 show ?case unfolding * by simp
next
case (Suc n)
show ?case
proof (cases "n = 0")
case True
have "{x. ∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t} = s"
unfolding set_eq_iff and mem_Collect_eq
proof (rule, rule)
fix x
assume "∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t"
then obtain t where t: "finite t" "t ⊆ s" "card t ≤ Suc n" "x ∈ convex hull t"
by auto
show "x ∈ s"
proof (cases "card t = 0")
case True
then show ?thesis
using t(4) unfolding card_0_eq[OF t(1)] by simp
next
case False
then have "card t = Suc 0" using t(3) ‹n=0› by auto
then obtain a where "t = {a}" unfolding card_Suc_eq by auto
then show ?thesis using t(2,4) by simp
qed
next
fix x assume "x∈s"
then show "∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t"
apply (rule_tac x="{x}" in exI)
unfolding convex_hull_singleton
apply auto
done
qed
then show ?thesis using assms by simp
next
case False
have "{x. ∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t} =
{(1 - u) *⇩R x + u *⇩R y | x y u.
0 ≤ u ∧ u ≤ 1 ∧ x ∈ s ∧ y ∈ {x. ∃t. finite t ∧ t ⊆ s ∧ card t ≤ n ∧ x ∈ convex hull t}}"
unfolding set_eq_iff and mem_Collect_eq
proof (rule, rule)
fix x
assume "∃u v c. x = (1 - c) *⇩R u + c *⇩R v ∧
0 ≤ c ∧ c ≤ 1 ∧ u ∈ s ∧ (∃t. finite t ∧ t ⊆ s ∧ card t ≤ n ∧ v ∈ convex hull t)"
then obtain u v c t where obt: "x = (1 - c) *⇩R u + c *⇩R v"
"0 ≤ c ∧ c ≤ 1" "u ∈ s" "finite t" "t ⊆ s" "card t ≤ n" "v ∈ convex hull t"
by auto
moreover have "(1 - c) *⇩R u + c *⇩R v ∈ convex hull insert u t"
apply (rule convexD_alt)
using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]
using obt(7) and hull_mono[of t "insert u t"]
apply auto
done
ultimately show "∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t"
apply (rule_tac x="insert u t" in exI)
apply (auto simp add: card_insert_if)
done
next
fix x
assume "∃t. finite t ∧ t ⊆ s ∧ card t ≤ Suc n ∧ x ∈ convex hull t"
then obtain t where t: "finite t" "t ⊆ s" "card t ≤ Suc n" "x ∈ convex hull t"
by auto
show "∃u v c. x = (1 - c) *⇩R u + c *⇩R v ∧
0 ≤ c ∧ c ≤ 1 ∧ u ∈ s ∧ (∃t. finite t ∧ t ⊆ s ∧ card t ≤ n ∧ v ∈ convex hull t)"
proof (cases "card t = Suc n")
case False
then have "card t ≤ n" using t(3) by auto
then show ?thesis
apply (rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI)
using ‹w∈s› and t
apply (auto intro!: exI[where x=t])
done
next
case True
then obtain a u where au: "t = insert a u" "a∉u"
apply (drule_tac card_eq_SucD)
apply auto
done
show ?thesis
proof (cases "u = {}")
case True
then have "x = a" using t(4)[unfolded au] by auto
show ?thesis unfolding ‹x = a›
apply (rule_tac x=a in exI)
apply (rule_tac x=a in exI)
apply (rule_tac x=1 in exI)
using t and ‹n ≠ 0›
unfolding au
apply (auto intro!: exI[where x="{a}"])
done
next
case False
obtain ux vx b where obt: "ux≥0" "vx≥0" "ux + vx = 1"
"b ∈ convex hull u" "x = ux *⇩R a + vx *⇩R b"
using t(4)[unfolded au convex_hull_insert[OF False]]
by auto
have *: "1 - vx = ux" using obt(3) by auto
show ?thesis
apply (rule_tac x=a in exI)
apply (rule_tac x=b in exI)
apply (rule_tac x=vx in exI)
using obt and t(1-3)
unfolding au and * using card_insert_disjoint[OF _ au(2)]
apply (auto intro!: exI[where x=u])
done
qed
qed
qed
then show ?thesis
using compact_convex_combinations[OF assms Suc] by simp
qed
qed
qed
subsection ‹Extremal points of a simplex are some vertices.›
lemma dist_increases_online:
fixes a b d :: "'a::real_inner"
assumes "d ≠ 0"
shows "dist a (b + d) > dist a b ∨ dist a (b - d) > dist a b"
proof (cases "inner a d - inner b d > 0")
case True
then have "0 < inner d d + (inner a d * 2 - inner b d * 2)"
apply (rule_tac add_pos_pos)
using assms
apply auto
done
then show ?thesis
apply (rule_tac disjI2)
unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
apply (simp add: algebra_simps inner_commute)
done
next
case False
then have "0 < inner d d + (inner b d * 2 - inner a d * 2)"
apply (rule_tac add_pos_nonneg)
using assms
apply auto
done
then show ?thesis
apply (rule_tac disjI1)
unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
apply (simp add: algebra_simps inner_commute)
done
qed
lemma norm_increases_online:
fixes d :: "'a::real_inner"
shows "d ≠ 0 ⟹ norm (a + d) > norm a ∨ norm(a - d) > norm a"
using dist_increases_online[of d a 0] unfolding dist_norm by auto
lemma simplex_furthest_lt:
fixes s :: "'a::real_inner set"
assumes "finite s"
shows "∀x ∈ convex hull s. x ∉ s ⟶ (∃y ∈ convex hull s. norm (x - a) < norm(y - a))"
using assms
proof induct
fix x s
assume as: "finite s" "x∉s" "∀x∈convex hull s. x ∉ s ⟶ (∃y∈convex hull s. norm (x - a) < norm (y - a))"
show "∀xa∈convex hull insert x s. xa ∉ insert x s ⟶
(∃y∈convex hull insert x s. norm (xa - a) < norm (y - a))"
proof (rule, rule, cases "s = {}")
case False
fix y
assume y: "y ∈ convex hull insert x s" "y ∉ insert x s"
obtain u v b where obt: "u≥0" "v≥0" "u + v = 1" "b ∈ convex hull s" "y = u *⇩R x + v *⇩R b"
using y(1)[unfolded convex_hull_insert[OF False]] by auto
show "∃z∈convex hull insert x s. norm (y - a) < norm (z - a)"
proof (cases "y ∈ convex hull s")
case True
then obtain z where "z ∈ convex hull s" "norm (y - a) < norm (z - a)"
using as(3)[THEN bspec[where x=y]] and y(2) by auto
then show ?thesis
apply (rule_tac x=z in bexI)
unfolding convex_hull_insert[OF False]
apply auto
done
next
case False
show ?thesis
using obt(3)
proof (cases "u = 0", case_tac[!] "v = 0")
assume "u = 0" "v ≠ 0"
then have "y = b" using obt by auto
then show ?thesis using False and obt(4) by auto
next
assume "u ≠ 0" "v = 0"
then have "y = x" using obt by auto
then show ?thesis using y(2) by auto
next
assume "u ≠ 0" "v ≠ 0"
then obtain w where w: "w>0" "w<u" "w<v"
using real_lbound_gt_zero[of u v] and obt(1,2) by auto
have "x ≠ b"
proof
assume "x = b"
then have "y = b" unfolding obt(5)
using obt(3) by (auto simp add: scaleR_left_distrib[symmetric])
then show False using obt(4) and False by simp
qed
then have *: "w *⇩R (x - b) ≠ 0" using w(1) by auto
show ?thesis
using dist_increases_online[OF *, of a y]
proof (elim disjE)
assume "dist a y < dist a (y + w *⇩R (x - b))"
then have "norm (y - a) < norm ((u + w) *⇩R x + (v - w) *⇩R b - a)"
unfolding dist_commute[of a]
unfolding dist_norm obt(5)
by (simp add: algebra_simps)
moreover have "(u + w) *⇩R x + (v - w) *⇩R b ∈ convex hull insert x s"
unfolding convex_hull_insert[OF ‹s≠{}›] and mem_Collect_eq
apply (rule_tac x="u + w" in exI)
apply rule
defer
apply (rule_tac x="v - w" in exI)
using ‹u ≥ 0› and w and obt(3,4)
apply auto
done
ultimately show ?thesis by auto
next
assume "dist a y < dist a (y - w *⇩R (x - b))"
then have "norm (y - a) < norm ((u - w) *⇩R x + (v + w) *⇩R b - a)"
unfolding dist_commute[of a]
unfolding dist_norm obt(5)
by (simp add: algebra_simps)
moreover have "(u - w) *⇩R x + (v + w) *⇩R b ∈ convex hull insert x s"
unfolding convex_hull_insert[OF ‹s≠{}›] and mem_Collect_eq
apply (rule_tac x="u - w" in exI)
apply rule
defer
apply (rule_tac x="v + w" in exI)
using ‹u ≥ 0› and w and obt(3,4)
apply auto
done
ultimately show ?thesis by auto
qed
qed auto
qed
qed auto
qed (auto simp add: assms)
lemma simplex_furthest_le:
fixes s :: "'a::real_inner set"
assumes "finite s"
and "s ≠ {}"
shows "∃y∈s. ∀x∈ convex hull s. norm (x - a) ≤ norm (y - a)"
proof -
have "convex hull s ≠ {}"
using hull_subset[of s convex] and assms(2) by auto
then obtain x where x: "x ∈ convex hull s" "∀y∈convex hull s. norm (y - a) ≤ norm (x - a)"
using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a]
unfolding dist_commute[of a]
unfolding dist_norm
by auto
show ?thesis
proof (cases "x ∈ s")
case False
then obtain y where "y ∈ convex hull s" "norm (x - a) < norm (y - a)"
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1)
by auto
then show ?thesis
using x(2)[THEN bspec[where x=y]] by auto
next
case True
with x show ?thesis by auto
qed
qed
lemma simplex_furthest_le_exists:
fixes s :: "('a::real_inner) set"
shows "finite s ⟹ ∀x∈(convex hull s). ∃y∈s. norm (x - a) ≤ norm (y - a)"
using simplex_furthest_le[of s] by (cases "s = {}") auto
lemma simplex_extremal_le:
fixes s :: "'a::real_inner set"
assumes "finite s"
and "s ≠ {}"
shows "∃u∈s. ∃v∈s. ∀x∈convex hull s. ∀y ∈ convex hull s. norm (x - y) ≤ norm (u - v)"
proof -
have "convex hull s ≠ {}"
using hull_subset[of s convex] and assms(2) by auto
then obtain u v where obt: "u ∈ convex hull s" "v ∈ convex hull s"
"∀x∈convex hull s. ∀y∈convex hull s. norm (x - y) ≤ norm (u - v)"
using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]]
by (auto simp: dist_norm)
then show ?thesis
proof (cases "u∉s ∨ v∉s", elim disjE)
assume "u ∉ s"
then obtain y where "y ∈ convex hull s" "norm (u - v) < norm (y - v)"
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1)
by auto
then show ?thesis
using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2)
by auto
next
assume "v ∉ s"
then obtain y where "y ∈ convex hull s" "norm (v - u) < norm (y - u)"
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2)
by auto
then show ?thesis
using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1)
by (auto simp add: norm_minus_commute)
qed auto
qed
lemma simplex_extremal_le_exists:
fixes s :: "'a::real_inner set"
shows "finite s ⟹ x ∈ convex hull s ⟹ y ∈ convex hull s ⟹
∃u∈s. ∃v∈s. norm (x - y) ≤ norm (u - v)"
using convex_hull_empty simplex_extremal_le[of s]
by(cases "s = {}") auto
subsection ‹Closest point of a convex set is unique, with a continuous projection.›
definition closest_point :: "'a::{real_inner,heine_borel} set ⇒ 'a ⇒ 'a"
where "closest_point s a = (SOME x. x ∈ s ∧ (∀y∈s. dist a x ≤ dist a y))"
lemma closest_point_exists:
assumes "closed s"
and "s ≠ {}"
shows "closest_point s a ∈ s"
and "∀y∈s. dist a (closest_point s a) ≤ dist a y"
unfolding closest_point_def
apply(rule_tac[!] someI2_ex)
apply (auto intro: distance_attains_inf[OF assms(1,2), of a])
done
lemma closest_point_in_set: "closed s ⟹ s ≠ {} ⟹ closest_point s a ∈ s"
by (meson closest_point_exists)
lemma closest_point_le: "closed s ⟹ x ∈ s ⟹ dist a (closest_point s a) ≤ dist a x"
using closest_point_exists[of s] by auto
lemma closest_point_self:
assumes "x ∈ s"
shows "closest_point s x = x"
unfolding closest_point_def
apply (rule some1_equality, rule ex1I[of _ x])
using assms
apply auto
done
lemma closest_point_refl: "closed s ⟹ s ≠ {} ⟹ closest_point s x = x ⟷ x ∈ s"
using closest_point_in_set[of s x] closest_point_self[of x s]
by auto
lemma closer_points_lemma:
assumes "inner y z > 0"
shows "∃u>0. ∀v>0. v ≤ u ⟶ norm(v *⇩R z - y) < norm y"
proof -
have z: "inner z z > 0"
unfolding inner_gt_zero_iff using assms by auto
then show ?thesis
using assms
apply (rule_tac x = "inner y z / inner z z" in exI)
apply rule
defer
proof rule+
fix v
assume "0 < v" and "v ≤ inner y z / inner z z"
then show "norm (v *⇩R z - y) < norm y"
unfolding norm_lt using z and assms
by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ ‹0<v›])
qed auto
qed
lemma closer_point_lemma:
assumes "inner (y - x) (z - x) > 0"
shows "∃u>0. u ≤ 1 ∧ dist (x + u *⇩R (z - x)) y < dist x y"
proof -
obtain u where "u > 0"
and u: "∀v>0. v ≤ u ⟶ norm (v *⇩R (z - x) - (y - x)) < norm (y - x)"
using closer_points_lemma[OF assms] by auto
show ?thesis
apply (rule_tac x="min u 1" in exI)
using u[THEN spec[where x="min u 1"]] and ‹u > 0›
unfolding dist_norm by (auto simp add: norm_minus_commute field_simps)
qed
lemma any_closest_point_dot:
assumes "convex s" "closed s" "x ∈ s" "y ∈ s" "∀z∈s. dist a x ≤ dist a z"
shows "inner (a - x) (y - x) ≤ 0"
proof (rule ccontr)
assume "¬ ?thesis"
then obtain u where u: "u>0" "u≤1" "dist (x + u *⇩R (y - x)) a < dist x a"
using closer_point_lemma[of a x y] by auto
let ?z = "(1 - u) *⇩R x + u *⇩R y"
have "?z ∈ s"
using convexD_alt[OF assms(1,3,4), of u] using u by auto
then show False
using assms(5)[THEN bspec[where x="?z"]] and u(3)
by (auto simp add: dist_commute algebra_simps)
qed
lemma any_closest_point_unique:
fixes x :: "'a::real_inner"
assumes "convex s" "closed s" "x ∈ s" "y ∈ s"
"∀z∈s. dist a x ≤ dist a z" "∀z∈s. dist a y ≤ dist a z"
shows "x = y"
using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]
unfolding norm_pths(1) and norm_le_square
by (auto simp add: algebra_simps)
lemma closest_point_unique:
assumes "convex s" "closed s" "x ∈ s" "∀z∈s. dist a x ≤ dist a z"
shows "x = closest_point s a"
using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"]
using closest_point_exists[OF assms(2)] and assms(3) by auto
lemma closest_point_dot:
assumes "convex s" "closed s" "x ∈ s"
shows "inner (a - closest_point s a) (x - closest_point s a) ≤ 0"
apply (rule any_closest_point_dot[OF assms(1,2) _ assms(3)])
using closest_point_exists[OF assms(2)] and assms(3)
apply auto
done
lemma closest_point_lt:
assumes "convex s" "closed s" "x ∈ s" "x ≠ closest_point s a"
shows "dist a (closest_point s a) < dist a x"
apply (rule ccontr)
apply (rule_tac notE[OF assms(4)])
apply (rule closest_point_unique[OF assms(1-3), of a])
using closest_point_le[OF assms(2), of _ a]
apply fastforce
done
lemma closest_point_lipschitz:
assumes "convex s"
and "closed s" "s ≠ {}"
shows "dist (closest_point s x) (closest_point s y) ≤ dist x y"
proof -
have "inner (x - closest_point s x) (closest_point s y - closest_point s x) ≤ 0"
and "inner (y - closest_point s y) (closest_point s x - closest_point s y) ≤ 0"
apply (rule_tac[!] any_closest_point_dot[OF assms(1-2)])
using closest_point_exists[OF assms(2-3)]
apply auto
done
then show ?thesis unfolding dist_norm and norm_le
using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"]
by (simp add: inner_add inner_diff inner_commute)
qed
lemma continuous_at_closest_point:
assumes "convex s"
and "closed s"
and "s ≠ {}"
shows "continuous (at x) (closest_point s)"
unfolding continuous_at_eps_delta
using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto
lemma continuous_on_closest_point:
assumes "convex s"
and "closed s"
and "s ≠ {}"
shows "continuous_on t (closest_point s)"
by (metis continuous_at_imp_continuous_on continuous_at_closest_point[OF assms])
subsubsection ‹Various point-to-set separating/supporting hyperplane theorems.›
lemma supporting_hyperplane_closed_point:
fixes z :: "'a::{real_inner,heine_borel}"
assumes "convex s"
and "closed s"
and "s ≠ {}"
and "z ∉ s"
shows "∃a b. ∃y∈s. inner a z < b ∧ inner a y = b ∧ (∀x∈s. inner a x ≥ b)"
proof -
obtain y where "y ∈ s" and y: "∀x∈s. dist z y ≤ dist z x"
by (metis distance_attains_inf[OF assms(2-3)])
show ?thesis
apply (rule_tac x="y - z" in exI)
apply (rule_tac x="inner (y - z) y" in exI)
apply (rule_tac x=y in bexI)
apply rule
defer
apply rule
defer
apply rule
apply (rule ccontr)
using ‹y ∈ s›
proof -
show "inner (y - z) z < inner (y - z) y"
apply (subst diff_gt_0_iff_gt [symmetric])
unfolding inner_diff_right[symmetric] and inner_gt_zero_iff
using ‹y∈s› ‹z∉s›
apply auto
done
next
fix x
assume "x ∈ s"
have *: "∀u. 0 ≤ u ∧ u ≤ 1 ⟶ dist z y ≤ dist z ((1 - u) *⇩R y + u *⇩R x)"
using assms(1)[unfolded convex_alt] and y and ‹x∈s› and ‹y∈s› by auto
assume "¬ inner (y - z) y ≤ inner (y - z) x"
then obtain v where "v > 0" "v ≤ 1" "dist (y + v *⇩R (x - y)) z < dist y z"
using closer_point_lemma[of z y x] by (auto simp add: inner_diff)
then show False
using *[THEN spec[where x=v]] by (auto simp add: dist_commute algebra_simps)
qed auto
qed
lemma separating_hyperplane_closed_point:
fixes z :: "'a::{real_inner,heine_borel}"
assumes "convex s"
and "closed s"
and "z ∉ s"
shows "∃a b. inner a z < b ∧ (∀x∈s. inner a x > b)"
proof (cases "s = {}")
case True
then show ?thesis
apply (rule_tac x="-z" in exI)
apply (rule_tac x=1 in exI)
using less_le_trans[OF _ inner_ge_zero[of z]]
apply auto
done
next
case False
obtain y where "y ∈ s" and y: "∀x∈s. dist z y ≤ dist z x"
by (metis distance_attains_inf[OF assms(2) False])
show ?thesis
apply (rule_tac x="y - z" in exI)
apply (rule_tac x="inner (y - z) z + (norm (y - z))⇧2 / 2" in exI)
apply rule
defer
apply rule
proof -
fix x
assume "x ∈ s"
have "¬ 0 < inner (z - y) (x - y)"
apply (rule notI)
apply (drule closer_point_lemma)
proof -
assume "∃u>0. u ≤ 1 ∧ dist (y + u *⇩R (x - y)) z < dist y z"
then obtain u where "u > 0" "u ≤ 1" "dist (y + u *⇩R (x - y)) z < dist y z"
by auto
then show False using y[THEN bspec[where x="y + u *⇩R (x - y)"]]
using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]
using ‹x∈s› ‹y∈s› by (auto simp add: dist_commute algebra_simps)
qed
moreover have "0 < (norm (y - z))⇧2"
using ‹y∈s› ‹z∉s› by auto
then have "0 < inner (y - z) (y - z)"
unfolding power2_norm_eq_inner by simp
ultimately show "inner (y - z) z + (norm (y - z))⇧2 / 2 < inner (y - z) x"
unfolding power2_norm_eq_inner and not_less
by (auto simp add: field_simps inner_commute inner_diff)
qed (insert ‹y∈s› ‹z∉s›, auto)
qed
lemma separating_hyperplane_closed_0:
assumes "convex (s::('a::euclidean_space) set)"
and "closed s"
and "0 ∉ s"
shows "∃a b. a ≠ 0 ∧ 0 < b ∧ (∀x∈s. inner a x > b)"
proof (cases "s = {}")
case True
have "norm ((SOME i. i∈Basis)::'a) = 1" "(SOME i. i∈Basis) ≠ (0::'a)"
defer
apply (subst norm_le_zero_iff[symmetric])
apply (auto simp: SOME_Basis)
done
then show ?thesis
apply (rule_tac x="SOME i. i∈Basis" in exI)
apply (rule_tac x=1 in exI)
using True using DIM_positive[where 'a='a]
apply auto
done
next
case False
then show ?thesis
using False using separating_hyperplane_closed_point[OF assms]
apply (elim exE)
unfolding inner_zero_right
apply (rule_tac x=a in exI)
apply (rule_tac x=b in exI)
apply auto
done
qed
subsubsection ‹Now set-to-set for closed/compact sets›
lemma separating_hyperplane_closed_compact:
fixes s :: "'a::euclidean_space set"
assumes "convex s"
and "closed s"
and "convex t"
and "compact t"
and "t ≠ {}"
and "s ∩ t = {}"
shows "∃a b. (∀x∈s. inner a x < b) ∧ (∀x∈t. inner a x > b)"
proof (cases "s = {}")
case True
obtain b where b: "b > 0" "∀x∈t. norm x ≤ b"
using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
obtain z :: 'a where z: "norm z = b + 1"
using vector_choose_size[of "b + 1"] and b(1) by auto
then have "z ∉ t" using b(2)[THEN bspec[where x=z]] by auto
then obtain a b where ab: "inner a z < b" "∀x∈t. b < inner a x"
using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z]
by auto
then show ?thesis
using True by auto
next
case False
then obtain y where "y ∈ s" by auto
obtain a b where "0 < b" "∀x∈{x - y |x y. x ∈ s ∧ y ∈ t}. b < inner a x"
using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
using closed_compact_differences[OF assms(2,4)]
using assms(6) by auto blast
then have ab: "∀x∈s. ∀y∈t. b + inner a y < inner a x"
apply -
apply rule
apply rule
apply (erule_tac x="x - y" in ballE)
apply (auto simp add: inner_diff)
done
def k ≡ "SUP x:t. a ∙ x"
show ?thesis
apply (rule_tac x="-a" in exI)
apply (rule_tac x="-(k + b / 2)" in exI)
apply (intro conjI ballI)
unfolding inner_minus_left and neg_less_iff_less
proof -
fix x assume "x ∈ t"
then have "inner a x - b / 2 < k"
unfolding k_def
proof (subst less_cSUP_iff)
show "t ≠ {}" by fact
show "bdd_above (op ∙ a ` t)"
using ab[rule_format, of y] ‹y ∈ s›
by (intro bdd_aboveI2[where M="inner a y - b"]) (auto simp: field_simps intro: less_imp_le)
qed (auto intro!: bexI[of _ x] ‹0<b›)
then show "inner a x < k + b / 2"
by auto
next
fix x
assume "x ∈ s"
then have "k ≤ inner a x - b"
unfolding k_def
apply (rule_tac cSUP_least)
using assms(5)
using ab[THEN bspec[where x=x]]
apply auto
done
then show "k + b / 2 < inner a x"
using ‹0 < b› by auto
qed
qed
lemma separating_hyperplane_compact_closed:
fixes s :: "'a::euclidean_space set"
assumes "convex s"
and "compact s"
and "s ≠ {}"
and "convex t"
and "closed t"
and "s ∩ t = {}"
shows "∃a b. (∀x∈s. inner a x < b) ∧ (∀x∈t. inner a x > b)"
proof -
obtain a b where "(∀x∈t. inner a x < b) ∧ (∀x∈s. b < inner a x)"
using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6)
by auto
then show ?thesis
apply (rule_tac x="-a" in exI)
apply (rule_tac x="-b" in exI)
apply auto
done
qed
subsubsection ‹General case without assuming closure and getting non-strict separation›
lemma separating_hyperplane_set_0:
assumes "convex s" "(0::'a::euclidean_space) ∉ s"
shows "∃a. a ≠ 0 ∧ (∀x∈s. 0 ≤ inner a x)"
proof -
let ?k = "λc. {x::'a. 0 ≤ inner c x}"
have *: "frontier (cball 0 1) ∩ ⋂f ≠ {}" if as: "f ⊆ ?k ` s" "finite f" for f
proof -
obtain c where c: "f = ?k ` c" "c ⊆ s" "finite c"
using finite_subset_image[OF as(2,1)] by auto
then obtain a b where ab: "a ≠ 0" "0 < b" "∀x∈convex hull c. b < inner a x"
using separating_hyperplane_closed_0[OF convex_convex_hull, of c]
using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)
using subset_hull[of convex, OF assms(1), symmetric, of c]
by force
then have "∃x. norm x = 1 ∧ (∀y∈c. 0 ≤ inner y x)"
apply (rule_tac x = "inverse(norm a) *⇩R a" in exI)
using hull_subset[of c convex]
unfolding subset_eq and inner_scaleR
by (auto simp add: inner_commute del: ballE elim!: ballE)
then show "frontier (cball 0 1) ∩ ⋂f ≠ {}"
unfolding c(1) frontier_cball sphere_def dist_norm by auto
qed
have "frontier (cball 0 1) ∩ (⋂(?k ` s)) ≠ {}"
apply (rule compact_imp_fip)
apply (rule compact_frontier[OF compact_cball])
using * closed_halfspace_ge
by auto
then obtain x where "norm x = 1" "∀y∈s. x∈?k y"
unfolding frontier_cball dist_norm sphere_def by auto
then show ?thesis
by (metis inner_commute mem_Collect_eq norm_eq_zero zero_neq_one)
qed
lemma separating_hyperplane_sets:
fixes s t :: "'a::euclidean_space set"
assumes "convex s"
and "convex t"
and "s ≠ {}"
and "t ≠ {}"
and "s ∩ t = {}"
shows "∃a b. a ≠ 0 ∧ (∀x∈s. inner a x ≤ b) ∧ (∀x∈t. inner a x ≥ b)"
proof -
from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
obtain a where "a ≠ 0" "∀x∈{x - y |x y. x ∈ t ∧ y ∈ s}. 0 ≤ inner a x"
using assms(3-5) by fastforce
then have *: "⋀x y. x ∈ t ⟹ y ∈ s ⟹ inner a y ≤ inner a x"
by (force simp add: inner_diff)
then have bdd: "bdd_above ((op ∙ a)`s)"
using ‹t ≠ {}› by (auto intro: bdd_aboveI2[OF *])
show ?thesis
using ‹a≠0›
by (intro exI[of _ a] exI[of _ "SUP x:s. a ∙ x"])
(auto intro!: cSUP_upper bdd cSUP_least ‹a ≠ 0› ‹s ≠ {}› *)
qed
subsection ‹More convexity generalities›
lemma convex_closure [intro,simp]:
fixes s :: "'a::real_normed_vector set"
assumes "convex s"
shows "convex (closure s)"
apply (rule convexI)
apply (unfold closure_sequential, elim exE)
apply (rule_tac x="λn. u *⇩R xa n + v *⇩R xb n" in exI)
apply (rule,rule)
apply (rule convexD [OF assms])
apply (auto del: tendsto_const intro!: tendsto_intros)
done
lemma convex_interior [intro,simp]:
fixes s :: "'a::real_normed_vector set"
assumes "convex s"
shows "convex (interior s)"
unfolding convex_alt Ball_def mem_interior
apply (rule,rule,rule,rule,rule,rule)
apply (elim exE conjE)
proof -
fix x y u
assume u: "0 ≤ u" "u ≤ (1::real)"
fix e d
assume ed: "ball x e ⊆ s" "ball y d ⊆ s" "0<d" "0<e"
show "∃e>0. ball ((1 - u) *⇩R x + u *⇩R y) e ⊆ s"
apply (rule_tac x="min d e" in exI)
apply rule
unfolding subset_eq
defer
apply rule
proof -
fix z
assume "z ∈ ball ((1 - u) *⇩R x + u *⇩R y) (min d e)"
then have "(1- u) *⇩R (z - u *⇩R (y - x)) + u *⇩R (z + (1 - u) *⇩R (y - x)) ∈ s"
apply (rule_tac assms[unfolded convex_alt, rule_format])
using ed(1,2) and u
unfolding subset_eq mem_ball Ball_def dist_norm
apply (auto simp add: algebra_simps)
done
then show "z ∈ s"
using u by (auto simp add: algebra_simps)
qed(insert u ed(3-4), auto)
qed
lemma convex_hull_eq_empty[simp]: "convex hull s = {} ⟷ s = {}"
using hull_subset[of s convex] convex_hull_empty by auto
subsection ‹Moving and scaling convex hulls.›
lemma convex_hull_set_plus:
"convex hull (s + t) = convex hull s + convex hull t"
unfolding set_plus_image
apply (subst convex_hull_linear_image [symmetric])
apply (simp add: linear_iff scaleR_right_distrib)
apply (simp add: convex_hull_Times)
done
lemma translation_eq_singleton_plus: "(λx. a + x) ` t = {a} + t"
unfolding set_plus_def by auto
lemma convex_hull_translation:
"convex hull ((λx. a + x) ` s) = (λx. a + x) ` (convex hull s)"
unfolding translation_eq_singleton_plus
by (simp only: convex_hull_set_plus convex_hull_singleton)
lemma convex_hull_scaling:
"convex hull ((λx. c *⇩R x) ` s) = (λx. c *⇩R x) ` (convex hull s)"
using linear_scaleR by (rule convex_hull_linear_image [symmetric])
lemma convex_hull_affinity:
"convex hull ((λx. a + c *⇩R x) ` s) = (λx. a + c *⇩R x) ` (convex hull s)"
by(simp only: image_image[symmetric] convex_hull_scaling convex_hull_translation)
subsection ‹Convexity of cone hulls›
lemma convex_cone_hull:
assumes "convex S"
shows "convex (cone hull S)"
proof (rule convexI)
fix x y
assume xy: "x ∈ cone hull S" "y ∈ cone hull S"
then have "S ≠ {}"
using cone_hull_empty_iff[of S] by auto
fix u v :: real
assume uv: "u ≥ 0" "v ≥ 0" "u + v = 1"
then have *: "u *⇩R x ∈ cone hull S" "v *⇩R y ∈ cone hull S"
using cone_cone_hull[of S] xy cone_def[of "cone hull S"] by auto
from * obtain cx :: real and xx where x: "u *⇩R x = cx *⇩R xx" "cx ≥ 0" "xx ∈ S"
using cone_hull_expl[of S] by auto
from * obtain cy :: real and yy where y: "v *⇩R y = cy *⇩R yy" "cy ≥ 0" "yy ∈ S"
using cone_hull_expl[of S] by auto
{
assume "cx + cy ≤ 0"
then have "u *⇩R x = 0" and "v *⇩R y = 0"
using x y by auto
then have "u *⇩R x + v *⇩R y = 0"
by auto
then have "u *⇩R x + v *⇩R y ∈ cone hull S"
using cone_hull_contains_0[of S] ‹S ≠ {}› by auto
}
moreover
{
assume "cx + cy > 0"
then have "(cx / (cx + cy)) *⇩R xx + (cy / (cx + cy)) *⇩R yy ∈ S"
using assms mem_convex_alt[of S xx yy cx cy] x y by auto
then have "cx *⇩R xx + cy *⇩R yy ∈ cone hull S"
using mem_cone_hull[of "(cx/(cx+cy)) *⇩R xx + (cy/(cx+cy)) *⇩R yy" S "cx+cy"] ‹cx+cy>0›
by (auto simp add: scaleR_right_distrib)
then have "u *⇩R x + v *⇩R y ∈ cone hull S"
using x y by auto
}
moreover have "cx + cy ≤ 0 ∨ cx + cy > 0" by auto
ultimately show "u *⇩R x + v *⇩R y ∈ cone hull S" by blast
qed
lemma cone_convex_hull:
assumes "cone S"
shows "cone (convex hull S)"
proof (cases "S = {}")
case True
then show ?thesis by auto
next
case False
then have *: "0 ∈ S ∧ (∀c. c > 0 ⟶ op *⇩R c ` S = S)"
using cone_iff[of S] assms by auto
{
fix c :: real
assume "c > 0"
then have "op *⇩R c ` (convex hull S) = convex hull (op *⇩R c ` S)"
using convex_hull_scaling[of _ S] by auto
also have "… = convex hull S"
using * ‹c > 0› by auto
finally have "op *⇩R c ` (convex hull S) = convex hull S"
by auto
}
then have "0 ∈ convex hull S" "⋀c. c > 0 ⟹ (op *⇩R c ` (convex hull S)) = (convex hull S)"
using * hull_subset[of S convex] by auto
then show ?thesis
using ‹S ≠ {}› cone_iff[of "convex hull S"] by auto
qed
subsection ‹Convex set as intersection of halfspaces›
lemma convex_halfspace_intersection:
fixes s :: "('a::euclidean_space) set"
assumes "closed s" "convex s"
shows "s = ⋂{h. s ⊆ h ∧ (∃a b. h = {x. inner a x ≤ b})}"
apply (rule set_eqI)
apply rule
unfolding Inter_iff Ball_def mem_Collect_eq
apply (rule,rule,erule conjE)
proof -
fix x
assume "∀xa. s ⊆ xa ∧ (∃a b. xa = {x. inner a x ≤ b}) ⟶ x ∈ xa"
then have "∀a b. s ⊆ {x. inner a x ≤ b} ⟶ x ∈ {x. inner a x ≤ b}"
by blast
then show "x ∈ s"
apply (rule_tac ccontr)
apply (drule separating_hyperplane_closed_point[OF assms(2,1)])
apply (erule exE)+
apply (erule_tac x="-a" in allE)
apply (erule_tac x="-b" in allE)
apply auto
done
qed auto
subsection ‹Radon's theorem (from Lars Schewe)›
lemma radon_ex_lemma:
assumes "finite c" "affine_dependent c"
shows "∃u. setsum u c = 0 ∧ (∃v∈c. u v ≠ 0) ∧ setsum (λv. u v *⇩R v) c = 0"
proof -
from assms(2)[unfolded affine_dependent_explicit]
obtain s u where
"finite s" "s ⊆ c" "setsum u s = 0" "∃v∈s. u v ≠ 0" "(∑v∈s. u v *⇩R v) = 0"
by blast
then show ?thesis
apply (rule_tac x="λv. if v∈s then u v else 0" in exI)
unfolding if_smult scaleR_zero_left and setsum.inter_restrict[OF assms(1), symmetric]
apply (auto simp add: Int_absorb1)
done
qed
lemma radon_s_lemma:
assumes "finite s"
and "setsum f s = (0::real)"
shows "setsum f {x∈s. 0 < f x} = - setsum f {x∈s. f x < 0}"
proof -
have *: "⋀x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x"
by auto
show ?thesis
unfolding add_eq_0_iff[symmetric] and setsum.inter_filter[OF assms(1)]
and setsum.distrib[symmetric] and *
using assms(2)
by assumption
qed
lemma radon_v_lemma:
assumes "finite s"
and "setsum f s = 0"
and "∀x. g x = (0::real) ⟶ f x = (0::'a::euclidean_space)"
shows "(setsum f {x∈s. 0 < g x}) = - setsum f {x∈s. g x < 0}"
proof -
have *: "⋀x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x"
using assms(3) by auto
show ?thesis
unfolding eq_neg_iff_add_eq_0 and setsum.inter_filter[OF assms(1)]
and setsum.distrib[symmetric] and *
using assms(2)
apply assumption
done
qed
lemma radon_partition:
assumes "finite c" "affine_dependent c"
shows "∃m p. m ∩ p = {} ∧ m ∪ p = c ∧ (convex hull m) ∩ (convex hull p) ≠ {}"
proof -
obtain u v where uv: "setsum u c = 0" "v∈c" "u v ≠ 0" "(∑v∈c. u v *⇩R v) = 0"
using radon_ex_lemma[OF assms] by auto
have fin: "finite {x ∈ c. 0 < u x}" "finite {x ∈ c. 0 > u x}"
using assms(1) by auto
def z ≡ "inverse (setsum u {x∈c. u x > 0}) *⇩R setsum (λx. u x *⇩R x) {x∈c. u x > 0}"
have "setsum u {x ∈ c. 0 < u x} ≠ 0"
proof (cases "u v ≥ 0")
case False
then have "u v < 0" by auto
then show ?thesis
proof (cases "∃w∈{x ∈ c. 0 < u x}. u w > 0")
case True
then show ?thesis
using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto
next
case False
then have "setsum u c ≤ setsum (λx. if x=v then u v else 0) c"
apply (rule_tac setsum_mono)
apply auto
done
then show ?thesis
unfolding setsum.delta[OF assms(1)] using uv(2) and ‹u v < 0› and uv(1) by auto
qed
qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
then have *: "setsum u {x∈c. u x > 0} > 0"
unfolding less_le
apply (rule_tac conjI)
apply (rule_tac setsum_nonneg)
apply auto
done
moreover have "setsum u ({x ∈ c. 0 < u x} ∪ {x ∈ c. u x < 0}) = setsum u c"
"(∑x∈{x ∈ c. 0 < u x} ∪ {x ∈ c. u x < 0}. u x *⇩R x) = (∑x∈c. u x *⇩R x)"
using assms(1)
apply (rule_tac[!] setsum.mono_neutral_left)
apply auto
done
then have "setsum u {x ∈ c. 0 < u x} = - setsum u {x ∈ c. 0 > u x}"
"(∑x∈{x ∈ c. 0 < u x}. u x *⇩R x) = - (∑x∈{x ∈ c. 0 > u x}. u x *⇩R x)"
unfolding eq_neg_iff_add_eq_0
using uv(1,4)
by (auto simp add: setsum.union_inter_neutral[OF fin, symmetric])
moreover have "∀x∈{v ∈ c. u v < 0}. 0 ≤ inverse (setsum u {x ∈ c. 0 < u x}) * - u x"
apply rule
apply (rule mult_nonneg_nonneg)
using *
apply auto
done
ultimately have "z ∈ convex hull {v ∈ c. u v ≤ 0}"
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac x="{v ∈ c. u v < 0}" in exI)
apply (rule_tac x="λy. inverse (setsum u {x∈c. u x > 0}) * - u y" in exI)
using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.setsum [symmetric] and z_def
apply (auto simp add: setsum_negf setsum_right_distrib[symmetric])
done
moreover have "∀x∈{v ∈ c. 0 < u v}. 0 ≤ inverse (setsum u {x ∈ c. 0 < u x}) * u x"
apply rule
apply (rule mult_nonneg_nonneg)
using *
apply auto
done
then have "z ∈ convex hull {v ∈ c. u v > 0}"
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac x="{v ∈ c. 0 < u v}" in exI)
apply (rule_tac x="λy. inverse (setsum u {x∈c. u x > 0}) * u y" in exI)
using assms(1)
unfolding scaleR_scaleR[symmetric] scaleR_right.setsum [symmetric] and z_def
using *
apply (auto simp add: setsum_negf setsum_right_distrib[symmetric])
done
ultimately show ?thesis
apply (rule_tac x="{v∈c. u v ≤ 0}" in exI)
apply (rule_tac x="{v∈c. u v > 0}" in exI)
apply auto
done
qed
lemma radon:
assumes "affine_dependent c"
obtains m p where "m ⊆ c" "p ⊆ c" "m ∩ p = {}" "(convex hull m) ∩ (convex hull p) ≠ {}"
proof -
from assms[unfolded affine_dependent_explicit]
obtain s u where
"finite s" "s ⊆ c" "setsum u s = 0" "∃v∈s. u v ≠ 0" "(∑v∈s. u v *⇩R v) = 0"
by blast
then have *: "finite s" "affine_dependent s" and s: "s ⊆ c"
unfolding affine_dependent_explicit by auto
from radon_partition[OF *]
obtain m p where "m ∩ p = {}" "m ∪ p = s" "convex hull m ∩ convex hull p ≠ {}"
by blast
then show ?thesis
apply (rule_tac that[of p m])
using s
apply auto
done
qed
subsection ‹Helly's theorem›
lemma helly_induct:
fixes f :: "'a::euclidean_space set set"
assumes "card f = n"
and "n ≥ DIM('a) + 1"
and "∀s∈f. convex s" "∀t⊆f. card t = DIM('a) + 1 ⟶ ⋂t ≠ {}"
shows "⋂f ≠ {}"
using assms
proof (induct n arbitrary: f)
case 0
then show ?case by auto
next
case (Suc n)
have "finite f"
using ‹card f = Suc n› by (auto intro: card_ge_0_finite)
show "⋂f ≠ {}"
apply (cases "n = DIM('a)")
apply (rule Suc(5)[rule_format])
unfolding ‹card f = Suc n›
proof -
assume ng: "n ≠ DIM('a)"
then have "∃X. ∀s∈f. X s ∈ ⋂(f - {s})"
apply (rule_tac bchoice)
unfolding ex_in_conv
apply (rule, rule Suc(1)[rule_format])
unfolding card_Diff_singleton_if[OF ‹finite f›] ‹card f = Suc n›
defer
defer
apply (rule Suc(4)[rule_format])
defer
apply (rule Suc(5)[rule_format])
using Suc(3) ‹finite f›
apply auto
done
then obtain X where X: "∀s∈f. X s ∈ ⋂(f - {s})" by auto
show ?thesis
proof (cases "inj_on X f")
case False
then obtain s t where st: "s≠t" "s∈f" "t∈f" "X s = X t"
unfolding inj_on_def by auto
then have *: "⋂f = ⋂(f - {s}) ∩ ⋂(f - {t})" by auto
show ?thesis
unfolding *
unfolding ex_in_conv[symmetric]
apply (rule_tac x="X s" in exI)
apply rule
apply (rule X[rule_format])
using X st
apply auto
done
next
case True
then obtain m p where mp: "m ∩ p = {}" "m ∪ p = X ` f" "convex hull m ∩ convex hull p ≠ {}"
using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]
unfolding card_image[OF True] and ‹card f = Suc n›
using Suc(3) ‹finite f› and ng
by auto
have "m ⊆ X ` f" "p ⊆ X ` f"
using mp(2) by auto
then obtain g h where gh:"m = X ` g" "p = X ` h" "g ⊆ f" "h ⊆ f"
unfolding subset_image_iff by auto
then have "f ∪ (g ∪ h) = f" by auto
then have f: "f = g ∪ h"
using inj_on_Un_image_eq_iff[of X f "g ∪ h"] and True
unfolding mp(2)[unfolded image_Un[symmetric] gh]
by auto
have *: "g ∩ h = {}"
using mp(1)
unfolding gh
using inj_on_image_Int[OF True gh(3,4)]
by auto
have "convex hull (X ` h) ⊆ ⋂g" "convex hull (X ` g) ⊆ ⋂h"
apply (rule_tac [!] hull_minimal)
using Suc gh(3-4)
unfolding subset_eq
apply (rule_tac [2] convex_Inter, rule_tac [4] convex_Inter)
apply rule
prefer 3
apply rule
proof -
fix x
assume "x ∈ X ` g"
then obtain y where "y ∈ g" "x = X y"
unfolding image_iff ..
then show "x ∈ ⋂h"
using X[THEN bspec[where x=y]] using * f by auto
next
fix x
assume "x ∈ X ` h"
then obtain y where "y ∈ h" "x = X y"
unfolding image_iff ..
then show "x ∈ ⋂g"
using X[THEN bspec[where x=y]] using * f by auto
qed auto
then show ?thesis
unfolding f using mp(3)[unfolded gh] by blast
qed
qed auto
qed
lemma helly:
fixes f :: "'a::euclidean_space set set"
assumes "card f ≥ DIM('a) + 1" "∀s∈f. convex s"
and "∀t⊆f. card t = DIM('a) + 1 ⟶ ⋂t ≠ {}"
shows "⋂f ≠ {}"
apply (rule helly_induct)
using assms
apply auto
done
subsection ‹Homeomorphism of all convex compact sets with nonempty interior›
lemma compact_frontier_line_lemma:
fixes s :: "'a::euclidean_space set"
assumes "compact s"
and "0 ∈ s"
and "x ≠ 0"
obtains u where "0 ≤ u" and "(u *⇩R x) ∈ frontier s" "∀v>u. (v *⇩R x) ∉ s"
proof -
obtain b where b: "b > 0" "∀x∈s. norm x ≤ b"
using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto
let ?A = "{y. ∃u. 0 ≤ u ∧ u ≤ b / norm(x) ∧ (y = u *⇩R x)}"
have A: "?A = (λu. u *⇩R x) ` {0 .. b / norm x}"
by auto
have *: "⋀x A B. x∈A ⟹ x∈B ⟹ A∩B ≠ {}" by blast
have "compact ?A"
unfolding A
apply (rule compact_continuous_image)
apply (rule continuous_at_imp_continuous_on)
apply rule
apply (intro continuous_intros)
apply (rule compact_Icc)
done
moreover have "{y. ∃u≥0. u ≤ b / norm x ∧ y = u *⇩R x} ∩ s ≠ {}"
apply(rule *[OF _ assms(2)])
unfolding mem_Collect_eq
using ‹b > 0› assms(3)
apply auto
done
ultimately obtain u y where obt: "u≥0" "u ≤ b / norm x" "y = u *⇩R x"
"y ∈ ?A" "y ∈ s" "∀z∈?A ∩ s. dist 0 z ≤ dist 0 y"
using distance_attains_sup[OF compact_Int[OF _ assms(1), of ?A], of 0] by blast
have "norm x > 0"
using assms(3)[unfolded zero_less_norm_iff[symmetric]] by auto
{
fix v
assume as: "v > u" "v *⇩R x ∈ s"
then have "v ≤ b / norm x"
using b(2)[rule_format, OF as(2)]
using ‹u≥0›
unfolding pos_le_divide_eq[OF ‹norm x > 0›]
by auto
then have "norm (v *⇩R x) ≤ norm y"
apply (rule_tac obt(6)[rule_format, unfolded dist_0_norm])
apply (rule IntI)
defer
apply (rule as(2))
unfolding mem_Collect_eq
apply (rule_tac x=v in exI)
using as(1) ‹u≥0›
apply (auto simp add: field_simps)
done
then have False
unfolding obt(3) using ‹u≥0› ‹norm x > 0› ‹v > u›
by (auto simp add:field_simps)
} note u_max = this
have "u *⇩R x ∈ frontier s"
unfolding frontier_straddle
apply (rule,rule,rule)
apply (rule_tac x="u *⇩R x" in bexI)
unfolding obt(3)[symmetric]
prefer 3
apply (rule_tac x="(u + (e / 2) / norm x) *⇩R x" in exI)
apply (rule, rule)
proof -
fix e
assume "e > 0" and as: "(u + e / 2 / norm x) *⇩R x ∈ s"
then have "u + e / 2 / norm x > u"
using ‹norm x > 0› by (auto simp del:zero_less_norm_iff)
then show False using u_max[OF _ as] by auto
qed (insert ‹y∈s›, auto simp add: dist_norm scaleR_left_distrib obt(3))
then show ?thesis by(metis that[of u] u_max obt(1))
qed
lemma starlike_compact_projective:
assumes "compact s"
and "cball (0::'a::euclidean_space) 1 ⊆ s "
and "∀x∈s. ∀u. 0 ≤ u ∧ u < 1 ⟶ u *⇩R x ∈ s - frontier s"
shows "s homeomorphic (cball (0::'a::euclidean_space) 1)"
proof -
have fs: "frontier s ⊆ s"
apply (rule frontier_subset_closed)
using compact_imp_closed[OF assms(1)]
apply simp
done
def pi ≡ "λx::'a. inverse (norm x) *⇩R x"
have "0 ∉ frontier s"
unfolding frontier_straddle
apply (rule notI)
apply (erule_tac x=1 in allE)
using assms(2)[unfolded subset_eq Ball_def mem_cball]
apply auto
done
have injpi: "⋀x y. pi x = pi y ∧ norm x = norm y ⟷ x = y"
unfolding pi_def by auto
have contpi: "continuous_on (UNIV - {0}) pi"
apply (rule continuous_at_imp_continuous_on)
apply rule unfolding pi_def
apply (intro continuous_intros)
apply simp
done
def sphere ≡ "{x::'a. norm x = 1}"
have pi: "⋀x. x ≠ 0 ⟹ pi x ∈ sphere" "⋀x u. u>0 ⟹ pi (u *⇩R x) = pi x"
unfolding pi_def sphere_def by auto
have "0 ∈ s"
using assms(2) and centre_in_cball[of 0 1] by auto
have front_smul: "∀x∈frontier s. ∀u≥0. u *⇩R x ∈ s ⟷ u ≤ 1"
proof (rule,rule,rule)
fix x and u :: real
assume x: "x ∈ frontier s" and "0 ≤ u"
then have "x ≠ 0"
using ‹0 ∉ frontier s› by auto
obtain v where v: "0 ≤ v" "v *⇩R x ∈ frontier s" "∀w>v. w *⇩R x ∉ s"
using compact_frontier_line_lemma[OF assms(1) ‹0∈s› ‹x≠0›] by auto
have "v = 1"
apply (rule ccontr)
unfolding neq_iff
apply (erule disjE)
proof -
assume "v < 1"
then show False
using v(3)[THEN spec[where x=1]] using x fs by (simp add: pth_1 subset_iff)
next
assume "v > 1"
then show False
using assms(3)[THEN bspec[where x="v *⇩R x"], THEN spec[where x="inverse v"]]
using v and x and fs
unfolding inverse_less_1_iff by auto
qed
show "u *⇩R x ∈ s ⟷ u ≤ 1"
apply rule
using v(3)[unfolded ‹v=1›, THEN spec[where x=u]]
proof -
assume "u ≤ 1"
then show "u *⇩R x ∈ s"
apply (cases "u = 1")
using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]]
using ‹0≤u› and x and fs
by auto
qed auto
qed
have "∃surf. homeomorphism (frontier s) sphere pi surf"
apply (rule homeomorphism_compact)
apply (rule compact_frontier[OF assms(1)])
apply (rule continuous_on_subset[OF contpi])
defer
apply (rule set_eqI)
apply rule
unfolding inj_on_def
prefer 3
apply(rule,rule,rule)
proof -
fix x
assume "x ∈ pi ` frontier s"
then obtain y where "y ∈ frontier s" "x = pi y" by auto
then show "x ∈ sphere"
using pi(1)[of y] and ‹0 ∉ frontier s› by auto
next
fix x
assume "x ∈ sphere"
then have "norm x = 1" "x ≠ 0"
unfolding sphere_def by auto
then obtain u where "0 ≤ u" "u *⇩R x ∈ frontier s" "∀v>u. v *⇩R x ∉ s"
using compact_frontier_line_lemma[OF assms(1) ‹0∈s›, of x] by auto
then show "x ∈ pi ` frontier s"
unfolding image_iff le_less pi_def
apply (rule_tac x="u *⇩R x" in bexI)
using ‹norm x = 1› ‹0 ∉ frontier s›
apply auto
done
next
fix x y
assume as: "x ∈ frontier s" "y ∈ frontier s" "pi x = pi y"
then have xys: "x ∈ s" "y ∈ s"
using fs by auto
from as(1,2) have nor: "norm x ≠ 0" "norm y ≠ 0"
using ‹0∉frontier s› by auto
from nor have x: "x = norm x *⇩R ((inverse (norm y)) *⇩R y)"
unfolding as(3)[unfolded pi_def, symmetric] by auto
from nor have y: "y = norm y *⇩R ((inverse (norm x)) *⇩R x)"
unfolding as(3)[unfolded pi_def] by auto
have "0 ≤ norm y * inverse (norm x)" and "0 ≤ norm x * inverse (norm y)"
using nor
apply auto
done
then have "norm x = norm y"
apply -
apply (rule ccontr)
unfolding neq_iff
using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]]
using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]]
using xys nor
apply (auto simp add: field_simps)
done
then show "x = y"
apply (subst injpi[symmetric])
using as(3)
apply auto
done
qed (insert ‹0 ∉ frontier s›, auto)
then obtain surf where
surf: "∀x∈frontier s. surf (pi x) = x" "pi ` frontier s = sphere" "continuous_on (frontier s) pi"
"∀y∈sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf"
unfolding homeomorphism_def by auto
have cont_surfpi: "continuous_on (UNIV - {0}) (surf ∘ pi)"
apply (rule continuous_on_compose)
apply (rule contpi)
apply (rule continuous_on_subset[of sphere])
apply (rule surf(6))
using pi(1)
apply auto
done
{
fix x
assume as: "x ∈ cball (0::'a) 1"
have "norm x *⇩R surf (pi x) ∈ s"
proof (cases "x=0 ∨ norm x = 1")
case False
then have "pi x ∈ sphere" "norm x < 1"
using pi(1)[of x] as by(auto simp add: dist_norm)
then show ?thesis
apply (rule_tac assms(3)[rule_format, THEN DiffD1])
apply (rule_tac fs[unfolded subset_eq, rule_format])
unfolding surf(5)[symmetric]
apply auto
done
next
case True
then show ?thesis
apply rule
defer
unfolding pi_def
apply (rule fs[unfolded subset_eq, rule_format])
unfolding surf(5)[unfolded sphere_def, symmetric]
using ‹0∈s›
apply auto
done
qed
} note hom = this
{
fix x
assume "x ∈ s"
then have "x ∈ (λx. norm x *⇩R surf (pi x)) ` cball 0 1"
proof (cases "x = 0")
case True
show ?thesis
unfolding image_iff True
apply (rule_tac x=0 in bexI)
apply auto
done
next
let ?a = "inverse (norm (surf (pi x)))"
case False
then have invn: "inverse (norm x) ≠ 0" by auto
from False have pix: "pi x∈sphere" using pi(1) by auto
then have "pi (surf (pi x)) = pi x"
apply (rule_tac surf(4)[rule_format])
apply assumption
done
then have **: "norm x *⇩R (?a *⇩R surf (pi x)) = x"
apply (rule_tac scaleR_left_imp_eq[OF invn])
unfolding pi_def
using invn
apply auto
done
then have *: "?a * norm x > 0" and "?a > 0" "?a ≠ 0"
using surf(5) ‹0∉frontier s›
apply -
apply (rule mult_pos_pos)
using False[unfolded zero_less_norm_iff[symmetric]]
apply auto
done
have "norm (surf (pi x)) ≠ 0"
using ** False by auto
then have "norm x = norm ((?a * norm x) *⇩R surf (pi x))"
unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF ‹?a > 0›] by auto
moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *⇩R surf (pi x))"
unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..
moreover have "surf (pi x) ∈ frontier s"
using surf(5) pix by auto
then have "dist 0 (inverse (norm (surf (pi x))) *⇩R x) ≤ 1"
unfolding dist_norm
using ** and *
using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]
using False ‹x∈s›
by (auto simp add: field_simps)
ultimately show ?thesis
unfolding image_iff
apply (rule_tac x="inverse (norm (surf(pi x))) *⇩R x" in bexI)
apply (subst injpi[symmetric])
unfolding abs_mult abs_norm_cancel abs_of_pos[OF ‹?a > 0›]
unfolding pi(2)[OF ‹?a > 0›]
apply auto
done
qed
} note hom2 = this
show ?thesis
apply (subst homeomorphic_sym)
apply (rule homeomorphic_compact[where f="λx. norm x *⇩R surf (pi x)"])
apply (rule compact_cball)
defer
apply (rule set_eqI)
apply rule
apply (erule imageE)
apply (drule hom)
prefer 4
apply (rule continuous_at_imp_continuous_on)
apply rule
apply (rule_tac [3] hom2)
proof -
fix x :: 'a
assume as: "x ∈ cball 0 1"
then show "continuous (at x) (λx. norm x *⇩R surf (pi x))"
proof (cases "x = 0")
case False
then show ?thesis
apply (intro continuous_intros)
using cont_surfpi
unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def
apply auto
done
next
case True
obtain B where B: "∀x∈s. norm x ≤ B"
using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto
then have "B > 0"
using assms(2)
unfolding subset_eq
apply (erule_tac x="SOME i. i∈Basis" in ballE)
defer
apply (erule_tac x="SOME i. i∈Basis" in ballE)
unfolding Ball_def mem_cball dist_norm
using DIM_positive[where 'a='a]
apply (auto simp: SOME_Basis)
done
show ?thesis
unfolding True continuous_at Lim_at
apply(rule,rule)
apply(rule_tac x="e / B" in exI)
apply rule
apply (rule divide_pos_pos)
prefer 3
apply(rule,rule,erule conjE)
unfolding norm_zero scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel
proof -
fix e and x :: 'a
assume as: "norm x < e / B" "0 < norm x" "e > 0"
then have "surf (pi x) ∈ frontier s"
using pi(1)[of x] unfolding surf(5)[symmetric] by auto
then have "norm (surf (pi x)) ≤ B"
using B fs by auto
then have "norm x * norm (surf (pi x)) ≤ norm x * B"
using as(2) by auto
also have "… < e / B * B"
apply (rule mult_strict_right_mono)
using as(1) ‹B>0›
apply auto
done
also have "… = e" using ‹B > 0› by auto
finally show "norm x * norm (surf (pi x)) < e" .
qed (insert ‹B>0›, auto)
qed
next
{
fix x
assume as: "surf (pi x) = 0"
have "x = 0"
proof (rule ccontr)
assume "x ≠ 0"
then have "pi x ∈ sphere"
using pi(1) by auto
then have "surf (pi x) ∈ frontier s"
using surf(5) by auto
then show False
using ‹0∉frontier s› unfolding as by simp
qed
} note surf_0 = this
show "inj_on (λx. norm x *⇩R surf (pi x)) (cball 0 1)"
unfolding inj_on_def
proof (rule,rule,rule)
fix x y
assume as: "x ∈ cball 0 1" "y ∈ cball 0 1" "norm x *⇩R surf (pi x) = norm y *⇩R surf (pi y)"
then show "x = y"
proof (cases "x=0 ∨ y=0")
case True
then show ?thesis
using as by (auto elim: surf_0)
next
case False
then have "pi (surf (pi x)) = pi (surf (pi y))"
using as(3)
using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"]
by auto
moreover have "pi x ∈ sphere" "pi y ∈ sphere"
using pi(1) False by auto
ultimately have *: "pi x = pi y"
using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]]
by auto
moreover have "norm x = norm y"
using as(3)[unfolded *] using False
by (auto dest:surf_0)
ultimately show ?thesis
using injpi by auto
qed
qed
qed auto
qed
lemma homeomorphic_convex_compact_lemma:
fixes s :: "'a::euclidean_space set"
assumes "convex s"
and "compact s"
and "cball 0 1 ⊆ s"
shows "s homeomorphic (cball (0::'a) 1)"
proof (rule starlike_compact_projective[OF assms(2-3)], clarify)
fix x u
assume "x ∈ s" and "0 ≤ u" and "u < (1::real)"
have "open (ball (u *⇩R x) (1 - u))"
by (rule open_ball)
moreover have "u *⇩R x ∈ ball (u *⇩R x) (1 - u)"
unfolding centre_in_ball using ‹u < 1› by simp
moreover have "ball (u *⇩R x) (1 - u) ⊆ s"
proof
fix y
assume "y ∈ ball (u *⇩R x) (1 - u)"
then have "dist (u *⇩R x) y < 1 - u"
unfolding mem_ball .
with ‹u < 1› have "inverse (1 - u) *⇩R (y - u *⇩R x) ∈ cball 0 1"
by (simp add: dist_norm inverse_eq_divide norm_minus_commute)
with assms(3) have "inverse (1 - u) *⇩R (y - u *⇩R x) ∈ s" ..
with assms(1) have "(1 - u) *⇩R ((y - u *⇩R x) /⇩R (1 - u)) + u *⇩R x ∈ s"
using ‹x ∈ s› ‹0 ≤ u› ‹u < 1› [THEN less_imp_le] by (rule convexD_alt)
then show "y ∈ s" using ‹u < 1›
by simp
qed
ultimately have "u *⇩R x ∈ interior s" ..
then show "u *⇩R x ∈ s - frontier s"
using frontier_def and interior_subset by auto
qed
lemma homeomorphic_convex_compact_cball:
fixes e :: real
and s :: "'a::euclidean_space set"
assumes "convex s"
and "compact s"
and "interior s ≠ {}"
and "e > 0"
shows "s homeomorphic (cball (b::'a) e)"
proof -
obtain a where "a ∈ interior s"
using assms(3) by auto
then obtain d where "d > 0" and d: "cball a d ⊆ s"
unfolding mem_interior_cball by auto
let ?d = "inverse d" and ?n = "0::'a"
have "cball ?n 1 ⊆ (λx. inverse d *⇩R (x - a)) ` s"
apply rule
apply (rule_tac x="d *⇩R x + a" in image_eqI)
defer
apply (rule d[unfolded subset_eq, rule_format])
using ‹d > 0›
unfolding mem_cball dist_norm
apply (auto simp add: mult_right_le_one_le)
done
then have "(λx. inverse d *⇩R (x - a)) ` s homeomorphic cball ?n 1"
using homeomorphic_convex_compact_lemma[of "(λx. ?d *⇩R -a + ?d *⇩R x) ` s",
OF convex_affinity compact_affinity]
using assms(1,2)
by (auto simp add: scaleR_right_diff_distrib)
then show ?thesis
apply (rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])
apply (rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *⇩R -a"]])
using ‹d>0› ‹e>0›
apply (auto simp add: scaleR_right_diff_distrib)
done
qed
lemma homeomorphic_convex_compact:
fixes s :: "'a::euclidean_space set"
and t :: "'a set"
assumes "convex s" "compact s" "interior s ≠ {}"
and "convex t" "compact t" "interior t ≠ {}"
shows "s homeomorphic t"
using assms
by (meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym)
subsection ‹Epigraphs of convex functions›
definition "epigraph s (f :: _ ⇒ real) = {xy. fst xy ∈ s ∧ f (fst xy) ≤ snd xy}"
lemma mem_epigraph: "(x, y) ∈ epigraph s f ⟷ x ∈ s ∧ f x ≤ y"
unfolding epigraph_def by auto
lemma convex_epigraph: "convex (epigraph s f) ⟷ convex_on s f ∧ convex s"
unfolding convex_def convex_on_def
unfolding Ball_def split_paired_All epigraph_def
unfolding mem_Collect_eq fst_conv snd_conv fst_add snd_add fst_scaleR snd_scaleR Ball_def[symmetric]
apply safe
defer
apply (erule_tac x=x in allE)
apply (erule_tac x="f x" in allE)
apply safe
apply (erule_tac x=xa in allE)
apply (erule_tac x="f xa" in allE)
prefer 3
apply (rule_tac y="u * f a + v * f aa" in order_trans)
defer
apply (auto intro!:mult_left_mono add_mono)
done
lemma convex_epigraphI: "convex_on s f ⟹ convex s ⟹ convex (epigraph s f)"
unfolding convex_epigraph by auto
lemma convex_epigraph_convex: "convex s ⟹ convex_on s f ⟷ convex(epigraph s f)"
by (simp add: convex_epigraph)
subsubsection ‹Use this to derive general bound property of convex function›
lemma convex_on:
assumes "convex s"
shows "convex_on s f ⟷
(∀k u x. (∀i∈{1..k::nat}. 0 ≤ u i ∧ x i ∈ s) ∧ setsum u {1..k} = 1 ⟶
f (setsum (λi. u i *⇩R x i) {1..k} ) ≤ setsum (λi. u i * f(x i)) {1..k})"
unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
unfolding fst_setsum snd_setsum fst_scaleR snd_scaleR
apply safe
apply (drule_tac x=k in spec)
apply (drule_tac x=u in spec)
apply (drule_tac x="λi. (x i, f (x i))" in spec)
apply simp
using assms[unfolded convex]
apply simp
apply (rule_tac y="∑i = 1..k. u i * f (fst (x i))" in order_trans)
defer
apply (rule setsum_mono)
apply (erule_tac x=i in allE)
unfolding real_scaleR_def
apply (rule mult_left_mono)
using assms[unfolded convex]
apply auto
done
subsection ‹Convexity of general and special intervals›
lemma is_interval_convex:
fixes s :: "'a::euclidean_space set"
assumes "is_interval s"
shows "convex s"
proof (rule convexI)
fix x y and u v :: real
assume as: "x ∈ s" "y ∈ s" "0 ≤ u" "0 ≤ v" "u + v = 1"
then have *: "u = 1 - v" "1 - v ≥ 0" and **: "v = 1 - u" "1 - u ≥ 0"
by auto
{
fix a b
assume "¬ b ≤ u * a + v * b"
then have "u * a < (1 - v) * b"
unfolding not_le using as(4) by (auto simp add: field_simps)
then have "a < b"
unfolding * using as(4) *(2)
apply (rule_tac mult_left_less_imp_less[of "1 - v"])
apply (auto simp add: field_simps)
done
then have "a ≤ u * a + v * b"
unfolding * using as(4)
by (auto simp add: field_simps intro!:mult_right_mono)
}
moreover
{
fix a b
assume "¬ u * a + v * b ≤ a"
then have "v * b > (1 - u) * a"
unfolding not_le using as(4) by (auto simp add: field_simps)
then have "a < b"
unfolding * using as(4)
apply (rule_tac mult_left_less_imp_less)
apply (auto simp add: field_simps)
done
then have "u * a + v * b ≤ b"
unfolding **
using **(2) as(3)
by (auto simp add: field_simps intro!:mult_right_mono)
}
ultimately show "u *⇩R x + v *⇩R y ∈ s"
apply -
apply (rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
using as(3-) DIM_positive[where 'a='a]
apply (auto simp: inner_simps)
done
qed
lemma is_interval_connected:
fixes s :: "'a::euclidean_space set"
shows "is_interval s ⟹ connected s"
using is_interval_convex convex_connected by auto
lemma convex_box [simp]: "convex (cbox a b)" "convex (box a (b::'a::euclidean_space))"
apply (rule_tac[!] is_interval_convex)+
using is_interval_box is_interval_cbox
apply auto
done
subsection ‹On ‹real›, ‹is_interval›, ‹convex› and ‹connected› are all equivalent.›
lemma is_interval_1:
"is_interval (s::real set) ⟷ (∀a∈s. ∀b∈s. ∀ x. a ≤ x ∧ x ≤ b ⟶ x ∈ s)"
unfolding is_interval_def by auto
lemma is_interval_connected_1:
fixes s :: "real set"
shows "is_interval s ⟷ connected s"
apply rule
apply (rule is_interval_connected, assumption)
unfolding is_interval_1
apply rule
apply rule
apply rule
apply rule
apply (erule conjE)
apply (rule ccontr)
proof -
fix a b x
assume as: "connected s" "a ∈ s" "b ∈ s" "a ≤ x" "x ≤ b" "x ∉ s"
then have *: "a < x" "x < b"
unfolding not_le [symmetric] by auto
let ?halfl = "{..<x} "
let ?halfr = "{x<..}"
{
fix y
assume "y ∈ s"
with ‹x ∉ s› have "x ≠ y" by auto
then have "y ∈ ?halfr ∪ ?halfl" by auto
}
moreover have "a ∈ ?halfl" "b ∈ ?halfr" using * by auto
then have "?halfl ∩ s ≠ {}" "?halfr ∩ s ≠ {}"
using as(2-3) by auto
ultimately show False
apply (rule_tac notE[OF as(1)[unfolded connected_def]])
apply (rule_tac x = ?halfl in exI)
apply (rule_tac x = ?halfr in exI)
apply rule
apply (rule open_lessThan)
apply rule
apply (rule open_greaterThan)
apply auto
done
qed
lemma is_interval_convex_1:
fixes s :: "real set"
shows "is_interval s ⟷ convex s"
by (metis is_interval_convex convex_connected is_interval_connected_1)
lemma connected_convex_1:
fixes s :: "real set"
shows "connected s ⟷ convex s"
by (metis is_interval_convex convex_connected is_interval_connected_1)
lemma connected_convex_1_gen:
fixes s :: "'a :: euclidean_space set"
assumes "DIM('a) = 1"
shows "connected s ⟷ convex s"
proof -
obtain f:: "'a ⇒ real" where linf: "linear f" and "inj f"
using subspace_isomorphism [where 'a = 'a and 'b = real]
by (metis DIM_real dim_UNIV subspace_UNIV assms)
then have "f -` (f ` s) = s"
by (simp add: inj_vimage_image_eq)
then show ?thesis
by (metis connected_convex_1 convex_linear_vimage linf convex_connected connected_linear_image)
qed
subsection ‹Another intermediate value theorem formulation›
lemma ivt_increasing_component_on_1:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "a ≤ b"
and "continuous_on {a..b} f"
and "(f a)∙k ≤ y" "y ≤ (f b)∙k"
shows "∃x∈{a..b}. (f x)∙k = y"
proof -
have "f a ∈ f ` cbox a b" "f b ∈ f ` cbox a b"
apply (rule_tac[!] imageI)
using assms(1)
apply auto
done
then show ?thesis
using connected_ivt_component[of "f ` cbox a b" "f a" "f b" k y]
by (simp add: Topology_Euclidean_Space.connected_continuous_image assms)
qed
lemma ivt_increasing_component_1:
fixes f :: "real ⇒ 'a::euclidean_space"
shows "a ≤ b ⟹ ∀x∈{a..b}. continuous (at x) f ⟹
f a∙k ≤ y ⟹ y ≤ f b∙k ⟹ ∃x∈{a..b}. (f x)∙k = y"
by (rule ivt_increasing_component_on_1) (auto simp add: continuous_at_imp_continuous_on)
lemma ivt_decreasing_component_on_1:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "a ≤ b"
and "continuous_on {a..b} f"
and "(f b)∙k ≤ y"
and "y ≤ (f a)∙k"
shows "∃x∈{a..b}. (f x)∙k = y"
apply (subst neg_equal_iff_equal[symmetric])
using ivt_increasing_component_on_1[of a b "λx. - f x" k "- y"]
using assms using continuous_on_minus
apply auto
done
lemma ivt_decreasing_component_1:
fixes f :: "real ⇒ 'a::euclidean_space"
shows "a ≤ b ⟹ ∀x∈{a..b}. continuous (at x) f ⟹
f b∙k ≤ y ⟹ y ≤ f a∙k ⟹ ∃x∈{a..b}. (f x)∙k = y"
by (rule ivt_decreasing_component_on_1) (auto simp: continuous_at_imp_continuous_on)
subsection ‹A bound within a convex hull, and so an interval›
lemma convex_on_convex_hull_bound:
assumes "convex_on (convex hull s) f"
and "∀x∈s. f x ≤ b"
shows "∀x∈ convex hull s. f x ≤ b"
proof
fix x
assume "x ∈ convex hull s"
then obtain k u v where
obt: "∀i∈{1..k::nat}. 0 ≤ u i ∧ v i ∈ s" "setsum u {1..k} = 1" "(∑i = 1..k. u i *⇩R v i) = x"
unfolding convex_hull_indexed mem_Collect_eq by auto
have "(∑i = 1..k. u i * f (v i)) ≤ b"
using setsum_mono[of "{1..k}" "λi. u i * f (v i)" "λi. u i * b"]
unfolding setsum_left_distrib[symmetric] obt(2) mult_1
apply (drule_tac meta_mp)
apply (rule mult_left_mono)
using assms(2) obt(1)
apply auto
done
then show "f x ≤ b"
using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
unfolding obt(2-3)
using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s]
by auto
qed
lemma inner_setsum_Basis[simp]: "i ∈ Basis ⟹ (∑Basis) ∙ i = 1"
by (simp add: inner_setsum_left setsum.If_cases inner_Basis)
lemma convex_set_plus:
assumes "convex s" and "convex t" shows "convex (s + t)"
proof -
have "convex {x + y |x y. x ∈ s ∧ y ∈ t}"
using assms by (rule convex_sums)
moreover have "{x + y |x y. x ∈ s ∧ y ∈ t} = s + t"
unfolding set_plus_def by auto
finally show "convex (s + t)" .
qed
lemma convex_set_setsum:
assumes "⋀i. i ∈ A ⟹ convex (B i)"
shows "convex (∑i∈A. B i)"
proof (cases "finite A")
case True then show ?thesis using assms
by induct (auto simp: convex_set_plus)
qed auto
lemma finite_set_setsum:
assumes "finite A" and "∀i∈A. finite (B i)" shows "finite (∑i∈A. B i)"
using assms by (induct set: finite, simp, simp add: finite_set_plus)
lemma set_setsum_eq:
"finite A ⟹ (∑i∈A. B i) = {∑i∈A. f i |f. ∀i∈A. f i ∈ B i}"
apply (induct set: finite)
apply simp
apply simp
apply (safe elim!: set_plus_elim)
apply (rule_tac x="fun_upd f x a" in exI)
apply simp
apply (rule_tac f="λx. a + x" in arg_cong)
apply (rule setsum.cong [OF refl])
apply clarsimp
apply fast
done
lemma box_eq_set_setsum_Basis:
shows "{x. ∀i∈Basis. x∙i ∈ B i} = (∑i∈Basis. image (λx. x *⇩R i) (B i))"
apply (subst set_setsum_eq [OF finite_Basis])
apply safe
apply (fast intro: euclidean_representation [symmetric])
apply (subst inner_setsum_left)
apply (subgoal_tac "(∑x∈Basis. f x ∙ i) = f i ∙ i")
apply (drule (1) bspec)
apply clarsimp
apply (frule setsum.remove [OF finite_Basis])
apply (erule trans)
apply simp
apply (rule setsum.neutral)
apply clarsimp
apply (frule_tac x=i in bspec, assumption)
apply (drule_tac x=x in bspec, assumption)
apply clarsimp
apply (cut_tac u=x and v=i in inner_Basis, assumption+)
apply (rule ccontr)
apply simp
done
lemma convex_hull_set_setsum:
"convex hull (∑i∈A. B i) = (∑i∈A. convex hull (B i))"
proof (cases "finite A")
assume "finite A" then show ?thesis
by (induct set: finite, simp, simp add: convex_hull_set_plus)
qed simp
lemma convex_hull_eq_real_cbox:
fixes x y :: real assumes "x ≤ y"
shows "convex hull {x, y} = cbox x y"
proof (rule hull_unique)
show "{x, y} ⊆ cbox x y" using ‹x ≤ y› by auto
show "convex (cbox x y)"
by (rule convex_box)
next
fix s assume "{x, y} ⊆ s" and "convex s"
then show "cbox x y ⊆ s"
unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def
by - (clarify, simp (no_asm_use), fast)
qed
lemma unit_interval_convex_hull:
"cbox (0::'a::euclidean_space) One = convex hull {x. ∀i∈Basis. (x∙i = 0) ∨ (x∙i = 1)}"
(is "?int = convex hull ?points")
proof -
have One[simp]: "⋀i. i ∈ Basis ⟹ One ∙ i = 1"
by (simp add: inner_setsum_left setsum.If_cases inner_Basis)
have "?int = {x. ∀i∈Basis. x ∙ i ∈ cbox 0 1}"
by (auto simp: cbox_def)
also have "… = (∑i∈Basis. (λx. x *⇩R i) ` cbox 0 1)"
by (simp only: box_eq_set_setsum_Basis)
also have "… = (∑i∈Basis. (λx. x *⇩R i) ` (convex hull {0, 1}))"
by (simp only: convex_hull_eq_real_cbox zero_le_one)
also have "… = (∑i∈Basis. convex hull ((λx. x *⇩R i) ` {0, 1}))"
by (simp only: convex_hull_linear_image linear_scaleR_left)
also have "… = convex hull (∑i∈Basis. (λx. x *⇩R i) ` {0, 1})"
by (simp only: convex_hull_set_setsum)
also have "… = convex hull {x. ∀i∈Basis. x∙i ∈ {0, 1}}"
by (simp only: box_eq_set_setsum_Basis)
also have "convex hull {x. ∀i∈Basis. x∙i ∈ {0, 1}} = convex hull ?points"
by simp
finally show ?thesis .
qed
text ‹And this is a finite set of vertices.›
lemma unit_cube_convex_hull:
obtains s :: "'a::euclidean_space set"
where "finite s" and "cbox 0 (∑Basis) = convex hull s"
apply (rule that[of "{x::'a. ∀i∈Basis. x∙i=0 ∨ x∙i=1}"])
apply (rule finite_subset[of _ "(λs. (∑i∈Basis. (if i∈s then 1 else 0) *⇩R i)::'a) ` Pow Basis"])
prefer 3
apply (rule unit_interval_convex_hull)
apply rule
unfolding mem_Collect_eq
proof -
fix x :: 'a
assume as: "∀i∈Basis. x ∙ i = 0 ∨ x ∙ i = 1"
show "x ∈ (λs. ∑i∈Basis. (if i∈s then 1 else 0) *⇩R i) ` Pow Basis"
apply (rule image_eqI[where x="{i. i∈Basis ∧ x∙i = 1}"])
using as
apply (subst euclidean_eq_iff)
apply auto
done
qed auto
text ‹Hence any cube (could do any nonempty interval).›
lemma cube_convex_hull:
assumes "d > 0"
obtains s :: "'a::euclidean_space set" where
"finite s" and "cbox (x - (∑i∈Basis. d*⇩Ri)) (x + (∑i∈Basis. d*⇩Ri)) = convex hull s"
proof -
let ?d = "(∑i∈Basis. d*⇩Ri)::'a"
have *: "cbox (x - ?d) (x + ?d) = (λy. x - ?d + (2 * d) *⇩R y) ` cbox 0 (∑Basis)"
apply (rule set_eqI, rule)
unfolding image_iff
defer
apply (erule bexE)
proof -
fix y
assume as: "y∈cbox (x - ?d) (x + ?d)"
then have "inverse (2 * d) *⇩R (y - (x - ?d)) ∈ cbox 0 (∑Basis)"
using assms by (simp add: mem_box field_simps inner_simps)
with ‹0 < d› show "∃z∈cbox 0 (∑Basis). y = x - ?d + (2 * d) *⇩R z"
by (intro bexI[of _ "inverse (2 * d) *⇩R (y - (x - ?d))"]) auto
next
fix y z
assume as: "z∈cbox 0 (∑Basis)" "y = x - ?d + (2*d) *⇩R z"
have "⋀i. i∈Basis ⟹ 0 ≤ d * (z ∙ i) ∧ d * (z ∙ i) ≤ d"
using assms as(1)[unfolded mem_box]
apply (erule_tac x=i in ballE)
apply rule
prefer 2
apply (rule mult_right_le_one_le)
using assms
apply auto
done
then show "y ∈ cbox (x - ?d) (x + ?d)"
unfolding as(2) mem_box
apply -
apply rule
using as(1)[unfolded mem_box]
apply (erule_tac x=i in ballE)
using assms
apply (auto simp: inner_simps)
done
qed
obtain s where "finite s" "cbox 0 (∑Basis::'a) = convex hull s"
using unit_cube_convex_hull by auto
then show ?thesis
apply (rule_tac that[of "(λy. x - ?d + (2 * d) *⇩R y)` s"])
unfolding * and convex_hull_affinity
apply auto
done
qed
subsection ‹Bounded convex function on open set is continuous›
lemma convex_on_bounded_continuous:
fixes s :: "('a::real_normed_vector) set"
assumes "open s"
and "convex_on s f"
and "∀x∈s. ¦f x¦ ≤ b"
shows "continuous_on s f"
apply (rule continuous_at_imp_continuous_on)
unfolding continuous_at_real_range
proof (rule,rule,rule)
fix x and e :: real
assume "x ∈ s" "e > 0"
def B ≡ "¦b¦ + 1"
have B: "0 < B" "⋀x. x∈s ⟹ ¦f x¦ ≤ B"
unfolding B_def
defer
apply (drule assms(3)[rule_format])
apply auto
done
obtain k where "k > 0" and k: "cball x k ⊆ s"
using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]]
using ‹x∈s› by auto
show "∃d>0. ∀x'. norm (x' - x) < d ⟶ ¦f x' - f x¦ < e"
apply (rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI)
apply rule
defer
proof (rule, rule)
fix y
assume as: "norm (y - x) < min (k / 2) (e / (2 * B) * k)"
show "¦f y - f x¦ < e"
proof (cases "y = x")
case False
def t ≡ "k / norm (y - x)"
have "2 < t" "0<t"
unfolding t_def using as False and ‹k>0›
by (auto simp add:field_simps)
have "y ∈ s"
apply (rule k[unfolded subset_eq,rule_format])
unfolding mem_cball dist_norm
apply (rule order_trans[of _ "2 * norm (x - y)"])
using as
by (auto simp add: field_simps norm_minus_commute)
{
def w ≡ "x + t *⇩R (y - x)"
have "w ∈ s"
unfolding w_def
apply (rule k[unfolded subset_eq,rule_format])
unfolding mem_cball dist_norm
unfolding t_def
using ‹k>0›
apply auto
done
have "(1 / t) *⇩R x + - x + ((t - 1) / t) *⇩R x = (1 / t - 1 + (t - 1) / t) *⇩R x"
by (auto simp add: algebra_simps)
also have "… = 0"
using ‹t > 0› by (auto simp add:field_simps)
finally have w: "(1 / t) *⇩R w + ((t - 1) / t) *⇩R x = y"
unfolding w_def using False and ‹t > 0›
by (auto simp add: algebra_simps)
have "2 * B < e * t"
unfolding t_def using ‹0 < e› ‹0 < k› ‹B > 0› and as and False
by (auto simp add:field_simps)
then have "(f w - f x) / t < e"
using B(2)[OF ‹w∈s›] and B(2)[OF ‹x∈s›]
using ‹t > 0› by (auto simp add:field_simps)
then have th1: "f y - f x < e"
apply -
apply (rule le_less_trans)
defer
apply assumption
using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]
using ‹0 < t› ‹2 < t› and ‹x ∈ s› ‹w ∈ s›
by (auto simp add:field_simps)
}
moreover
{
def w ≡ "x - t *⇩R (y - x)"
have "w ∈ s"
unfolding w_def
apply (rule k[unfolded subset_eq,rule_format])
unfolding mem_cball dist_norm
unfolding t_def
using ‹k > 0›
apply auto
done
have "(1 / (1 + t)) *⇩R x + (t / (1 + t)) *⇩R x = (1 / (1 + t) + t / (1 + t)) *⇩R x"
by (auto simp add: algebra_simps)
also have "… = x"
using ‹t > 0› by (auto simp add:field_simps)
finally have w: "(1 / (1+t)) *⇩R w + (t / (1 + t)) *⇩R y = x"
unfolding w_def using False and ‹t > 0›
by (auto simp add: algebra_simps)
have "2 * B < e * t"
unfolding t_def
using ‹0 < e› ‹0 < k› ‹B > 0› and as and False
by (auto simp add:field_simps)
then have *: "(f w - f y) / t < e"
using B(2)[OF ‹w∈s›] and B(2)[OF ‹y∈s›]
using ‹t > 0›
by (auto simp add:field_simps)
have "f x ≤ 1 / (1 + t) * f w + (t / (1 + t)) * f y"
using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w]
using ‹0 < t› ‹2 < t› and ‹y ∈ s› ‹w ∈ s›
by (auto simp add:field_simps)
also have "… = (f w + t * f y) / (1 + t)"
using ‹t > 0› by (auto simp add: divide_simps)
also have "… < e + f y"
using ‹t > 0› * ‹e > 0› by (auto simp add: field_simps)
finally have "f x - f y < e" by auto
}
ultimately show ?thesis by auto
qed (insert ‹0<e›, auto)
qed (insert ‹0<e› ‹0<k› ‹0<B›, auto simp: field_simps)
qed
subsection ‹Upper bound on a ball implies upper and lower bounds›
lemma convex_bounds_lemma:
fixes x :: "'a::real_normed_vector"
assumes "convex_on (cball x e) f"
and "∀y ∈ cball x e. f y ≤ b"
shows "∀y ∈ cball x e. ¦f y¦ ≤ b + 2 * ¦f x¦"
apply rule
proof (cases "0 ≤ e")
case True
fix y
assume y: "y ∈ cball x e"
def z ≡ "2 *⇩R x - y"
have *: "x - (2 *⇩R x - y) = y - x"
by (simp add: scaleR_2)
have z: "z ∈ cball x e"
using y unfolding z_def mem_cball dist_norm * by (auto simp add: norm_minus_commute)
have "(1 / 2) *⇩R y + (1 / 2) *⇩R z = x"
unfolding z_def by (auto simp add: algebra_simps)
then show "¦f y¦ ≤ b + 2 * ¦f x¦"
using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]
using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z]
by (auto simp add:field_simps)
next
case False
fix y
assume "y ∈ cball x e"
then have "dist x y < 0"
using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero)
then show "¦f y¦ ≤ b + 2 * ¦f x¦"
using zero_le_dist[of x y] by auto
qed
subsubsection ‹Hence a convex function on an open set is continuous›
lemma real_of_nat_ge_one_iff: "1 ≤ real (n::nat) ⟷ 1 ≤ n"
by auto
lemma convex_on_continuous:
assumes "open (s::('a::euclidean_space) set)" "convex_on s f"
shows "continuous_on s f"
unfolding continuous_on_eq_continuous_at[OF assms(1)]
proof
note dimge1 = DIM_positive[where 'a='a]
fix x
assume "x ∈ s"
then obtain e where e: "cball x e ⊆ s" "e > 0"
using assms(1) unfolding open_contains_cball by auto
def d ≡ "e / real DIM('a)"
have "0 < d"
unfolding d_def using ‹e > 0› dimge1 by auto
let ?d = "(∑i∈Basis. d *⇩R i)::'a"
obtain c
where c: "finite c"
and c1: "convex hull c ⊆ cball x e"
and c2: "cball x d ⊆ convex hull c"
proof
def c ≡ "∑i∈Basis. (λa. a *⇩R i) ` {x∙i - d, x∙i + d}"
show "finite c"
unfolding c_def by (simp add: finite_set_setsum)
have 1: "convex hull c = {a. ∀i∈Basis. a ∙ i ∈ cbox (x ∙ i - d) (x ∙ i + d)}"
unfolding box_eq_set_setsum_Basis
unfolding c_def convex_hull_set_setsum
apply (subst convex_hull_linear_image [symmetric])
apply (simp add: linear_iff scaleR_add_left)
apply (rule setsum.cong [OF refl])
apply (rule image_cong [OF _ refl])
apply (rule convex_hull_eq_real_cbox)
apply (cut_tac ‹0 < d›, simp)
done
then have 2: "convex hull c = {a. ∀i∈Basis. a ∙ i ∈ cball (x ∙ i) d}"
by (simp add: dist_norm abs_le_iff algebra_simps)
show "cball x d ⊆ convex hull c"
unfolding 2
apply clarsimp
apply (simp only: dist_norm)
apply (subst inner_diff_left [symmetric])
apply simp
apply (erule (1) order_trans [OF Basis_le_norm])
done
have e': "e = (∑(i::'a)∈Basis. d)"
by (simp add: d_def DIM_positive)
show "convex hull c ⊆ cball x e"
unfolding 2
apply clarsimp
apply (subst euclidean_dist_l2)
apply (rule order_trans [OF setL2_le_setsum])
apply (rule zero_le_dist)
unfolding e'
apply (rule setsum_mono)
apply simp
done
qed
def k ≡ "Max (f ` c)"
have "convex_on (convex hull c) f"
apply(rule convex_on_subset[OF assms(2)])
apply(rule subset_trans[OF _ e(1)])
apply(rule c1)
done
then have k: "∀y∈convex hull c. f y ≤ k"
apply (rule_tac convex_on_convex_hull_bound)
apply assumption
unfolding k_def
apply (rule, rule Max_ge)
using c(1)
apply auto
done
have "d ≤ e"
unfolding d_def
apply (rule mult_imp_div_pos_le)
using ‹e > 0›
unfolding mult_le_cancel_left1
apply (auto simp: real_of_nat_ge_one_iff Suc_le_eq DIM_positive)
done
then have dsube: "cball x d ⊆ cball x e"
by (rule subset_cball)
have conv: "convex_on (cball x d) f"
apply (rule convex_on_subset)
apply (rule convex_on_subset[OF assms(2)])
apply (rule e(1))
apply (rule dsube)
done
then have "∀y∈cball x d. ¦f y¦ ≤ k + 2 * ¦f x¦"
apply (rule convex_bounds_lemma)
apply (rule ballI)
apply (rule k [rule_format])
apply (erule rev_subsetD)
apply (rule c2)
done
then have "continuous_on (ball x d) f"
apply (rule_tac convex_on_bounded_continuous)
apply (rule open_ball, rule convex_on_subset[OF conv])
apply (rule ball_subset_cball)
apply force
done
then show "continuous (at x) f"
unfolding continuous_on_eq_continuous_at[OF open_ball]
using ‹d > 0› by auto
qed
subsection ‹Line segments, Starlike Sets, etc.›
definition midpoint :: "'a::real_vector ⇒ 'a ⇒ 'a"
where "midpoint a b = (inverse (2::real)) *⇩R (a + b)"
definition closed_segment :: "'a::real_vector ⇒ 'a ⇒ 'a set"
where "closed_segment a b = {(1 - u) *⇩R a + u *⇩R b | u::real. 0 ≤ u ∧ u ≤ 1}"
definition open_segment :: "'a::real_vector ⇒ 'a ⇒ 'a set" where
"open_segment a b ≡ closed_segment a b - {a,b}"
lemmas segment = open_segment_def closed_segment_def
lemma in_segment:
"x ∈ closed_segment a b ⟷ (∃u. 0 ≤ u ∧ u ≤ 1 ∧ x = (1 - u) *⇩R a + u *⇩R b)"
"x ∈ open_segment a b ⟷ a ≠ b ∧ (∃u. 0 < u ∧ u < 1 ∧ x = (1 - u) *⇩R a + u *⇩R b)"
using less_eq_real_def by (auto simp: segment algebra_simps)
definition "between = (λ(a,b) x. x ∈ closed_segment a b)"
definition "starlike s ⟷ (∃a∈s. ∀x∈s. closed_segment a x ⊆ s)"
lemma starlike_UNIV [simp]: "starlike UNIV"
by (simp add: starlike_def)
lemma midpoint_refl: "midpoint x x = x"
unfolding midpoint_def
unfolding scaleR_right_distrib
unfolding scaleR_left_distrib[symmetric]
by auto
lemma midpoint_sym: "midpoint a b = midpoint b a"
unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
lemma midpoint_eq_iff: "midpoint a b = c ⟷ a + b = c + c"
proof -
have "midpoint a b = c ⟷ scaleR 2 (midpoint a b) = scaleR 2 c"
by simp
then show ?thesis
unfolding midpoint_def scaleR_2 [symmetric] by simp
qed
lemma dist_midpoint:
fixes a b :: "'a::real_normed_vector" shows
"dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
"dist b (midpoint a b) = (dist a b) / 2" (is ?t2)
"dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
"dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
proof -
have *: "⋀x y::'a. 2 *⇩R x = - y ⟹ norm x = (norm y) / 2"
unfolding equation_minus_iff by auto
have **: "⋀x y::'a. 2 *⇩R x = y ⟹ norm x = (norm y) / 2"
by auto
note scaleR_right_distrib [simp]
show ?t1
unfolding midpoint_def dist_norm
apply (rule **)
apply (simp add: scaleR_right_diff_distrib)
apply (simp add: scaleR_2)
done
show ?t2
unfolding midpoint_def dist_norm
apply (rule *)
apply (simp add: scaleR_right_diff_distrib)
apply (simp add: scaleR_2)
done
show ?t3
unfolding midpoint_def dist_norm
apply (rule *)
apply (simp add: scaleR_right_diff_distrib)
apply (simp add: scaleR_2)
done
show ?t4
unfolding midpoint_def dist_norm
apply (rule **)
apply (simp add: scaleR_right_diff_distrib)
apply (simp add: scaleR_2)
done
qed
lemma midpoint_eq_endpoint:
"midpoint a b = a ⟷ a = b"
"midpoint a b = b ⟷ a = b"
unfolding midpoint_eq_iff by auto
lemma convex_contains_segment:
"convex s ⟷ (∀a∈s. ∀b∈s. closed_segment a b ⊆ s)"
unfolding convex_alt closed_segment_def by auto
lemma closed_segment_subset: "⟦x ∈ s; y ∈ s; convex s⟧ ⟹ closed_segment x y ⊆ s"
by (simp add: convex_contains_segment)
lemma closed_segment_subset_convex_hull:
"⟦x ∈ convex hull s; y ∈ convex hull s⟧ ⟹ closed_segment x y ⊆ convex hull s"
using convex_contains_segment by blast
lemma convex_imp_starlike:
"convex s ⟹ s ≠ {} ⟹ starlike s"
unfolding convex_contains_segment starlike_def by auto
lemma segment_convex_hull:
"closed_segment a b = convex hull {a,b}"
proof -
have *: "⋀x. {x} ≠ {}" by auto
show ?thesis
unfolding segment convex_hull_insert[OF *] convex_hull_singleton
by (safe; rule_tac x="1 - u" in exI; force)
qed
lemma open_closed_segment: "u ∈ open_segment w z ⟹ u ∈ closed_segment w z"
by (auto simp add: closed_segment_def open_segment_def)
lemma segment_open_subset_closed:
"open_segment a b ⊆ closed_segment a b"
by (auto simp: closed_segment_def open_segment_def)
lemma bounded_closed_segment:
fixes a :: "'a::euclidean_space" shows "bounded (closed_segment a b)"
by (simp add: segment_convex_hull compact_convex_hull compact_imp_bounded)
lemma bounded_open_segment:
fixes a :: "'a::euclidean_space" shows "bounded (open_segment a b)"
by (rule bounded_subset [OF bounded_closed_segment segment_open_subset_closed])
lemmas bounded_segment = bounded_closed_segment open_closed_segment
lemma ends_in_segment [iff]: "a ∈ closed_segment a b" "b ∈ closed_segment a b"
unfolding segment_convex_hull
by (auto intro!: hull_subset[unfolded subset_eq, rule_format])
lemma segment_furthest_le:
fixes a b x y :: "'a::euclidean_space"
assumes "x ∈ closed_segment a b"
shows "norm (y - x) ≤ norm (y - a) ∨ norm (y - x) ≤ norm (y - b)"
proof -
obtain z where "z ∈ {a, b}" "norm (x - y) ≤ norm (z - y)"
using simplex_furthest_le[of "{a, b}" y]
using assms[unfolded segment_convex_hull]
by auto
then show ?thesis
by (auto simp add:norm_minus_commute)
qed
lemma closed_segment_commute: "closed_segment a b = closed_segment b a"
proof -
have "{a, b} = {b, a}" by auto
thus ?thesis
by (simp add: segment_convex_hull)
qed
lemma segment_bound1:
assumes "x ∈ closed_segment a b"
shows "norm (x - a) ≤ norm (b - a)"
proof -
obtain u where "x = (1 - u) *⇩R a + u *⇩R b" "0 ≤ u" "u ≤ 1"
using assms by (auto simp add: closed_segment_def)
then show "norm (x - a) ≤ norm (b - a)"
apply clarify
apply (auto simp: algebra_simps)
apply (simp add: scaleR_diff_right [symmetric] mult_left_le_one_le)
done
qed
lemma segment_bound:
assumes "x ∈ closed_segment a b"
shows "norm (x - a) ≤ norm (b - a)" "norm (x - b) ≤ norm (b - a)"
apply (simp add: assms segment_bound1)
by (metis assms closed_segment_commute dist_commute dist_norm segment_bound1)
lemma open_segment_commute: "open_segment a b = open_segment b a"
proof -
have "{a, b} = {b, a}" by auto
thus ?thesis
by (simp add: closed_segment_commute open_segment_def)
qed
lemma closed_segment_idem [simp]: "closed_segment a a = {a}"
unfolding segment by (auto simp add: algebra_simps)
lemma open_segment_idem [simp]: "open_segment a a = {}"
by (simp add: open_segment_def)
lemma closed_segment_eq_open: "closed_segment a b = open_segment a b ∪ {a,b}"
using open_segment_def by auto
lemma closed_segment_eq_real_ivl:
fixes a b::real
shows "closed_segment a b = (if a ≤ b then {a .. b} else {b .. a})"
proof -
have "b ≤ a ⟹ closed_segment b a = {b .. a}"
and "a ≤ b ⟹ closed_segment a b = {a .. b}"
by (auto simp: convex_hull_eq_real_cbox segment_convex_hull)
thus ?thesis
by (auto simp: closed_segment_commute)
qed
lemma closed_segment_real_eq:
fixes u::real shows "closed_segment u v = (λx. (v - u) * x + u) ` {0..1}"
by (simp add: add.commute [of u] image_affinity_atLeastAtMost [where c=u] closed_segment_eq_real_ivl)
subsubsection‹More lemmas, especially for working with the underlying formula›
lemma segment_eq_compose:
fixes a :: "'a :: real_vector"
shows "(λu. (1 - u) *⇩R a + u *⇩R b) = (λx. a + x) o (λu. u *⇩R (b - a))"
by (simp add: o_def algebra_simps)
lemma segment_degen_1:
fixes a :: "'a :: real_vector"
shows "(1 - u) *⇩R a + u *⇩R b = b ⟷ a=b ∨ u=1"
proof -
{ assume "(1 - u) *⇩R a + u *⇩R b = b"
then have "(1 - u) *⇩R a = (1 - u) *⇩R b"
by (simp add: algebra_simps)
then have "a=b ∨ u=1"
by simp
} then show ?thesis
by (auto simp: algebra_simps)
qed
lemma segment_degen_0:
fixes a :: "'a :: real_vector"
shows "(1 - u) *⇩R a + u *⇩R b = a ⟷ a=b ∨ u=0"
using segment_degen_1 [of "1-u" b a]
by (auto simp: algebra_simps)
lemma closed_segment_image_interval:
"closed_segment a b = (λu. (1 - u) *⇩R a + u *⇩R b) ` {0..1}"
by (auto simp: set_eq_iff image_iff closed_segment_def)
lemma open_segment_image_interval:
"open_segment a b = (if a=b then {} else (λu. (1 - u) *⇩R a + u *⇩R b) ` {0<..<1})"
by (auto simp: open_segment_def closed_segment_def segment_degen_0 segment_degen_1)
lemmas segment_image_interval = closed_segment_image_interval open_segment_image_interval
lemma open_segment_bound1:
assumes "x ∈ open_segment a b"
shows "norm (x - a) < norm (b - a)"
proof -
obtain u where "x = (1 - u) *⇩R a + u *⇩R b" "0 < u" "u < 1" "a ≠ b"
using assms by (auto simp add: open_segment_image_interval split: if_split_asm)
then show "norm (x - a) < norm (b - a)"
apply clarify
apply (auto simp: algebra_simps)
apply (simp add: scaleR_diff_right [symmetric])
done
qed
lemma compact_segment [simp]:
fixes a :: "'a::real_normed_vector"
shows "compact (closed_segment a b)"
by (auto simp: segment_image_interval intro!: compact_continuous_image continuous_intros)
lemma closed_segment [simp]:
fixes a :: "'a::real_normed_vector"
shows "closed (closed_segment a b)"
by (simp add: compact_imp_closed)
lemma closure_closed_segment [simp]:
fixes a :: "'a::real_normed_vector"
shows "closure(closed_segment a b) = closed_segment a b"
by simp
lemma open_segment_bound:
assumes "x ∈ open_segment a b"
shows "norm (x - a) < norm (b - a)" "norm (x - b) < norm (b - a)"
apply (simp add: assms open_segment_bound1)
by (metis assms norm_minus_commute open_segment_bound1 open_segment_commute)
lemma closure_open_segment [simp]:
fixes a :: "'a::euclidean_space"
shows "closure(open_segment a b) = (if a = b then {} else closed_segment a b)"
proof -
have "closure ((λu. u *⇩R (b - a)) ` {0<..<1}) = (λu. u *⇩R (b - a)) ` closure {0<..<1}" if "a ≠ b"
apply (rule closure_injective_linear_image [symmetric])
apply (simp add:)
using that by (simp add: inj_on_def)
then show ?thesis
by (simp add: segment_image_interval segment_eq_compose closure_greaterThanLessThan [symmetric]
closure_translation image_comp [symmetric] del: closure_greaterThanLessThan)
qed
lemma closed_open_segment_iff [simp]:
fixes a :: "'a::euclidean_space" shows "closed(open_segment a b) ⟷ a = b"
by (metis open_segment_def DiffE closure_eq closure_open_segment ends_in_segment(1) insert_iff segment_image_interval(2))
lemma compact_open_segment_iff [simp]:
fixes a :: "'a::euclidean_space" shows "compact(open_segment a b) ⟷ a = b"
by (simp add: bounded_open_segment compact_eq_bounded_closed)
lemma convex_closed_segment [iff]: "convex (closed_segment a b)"
unfolding segment_convex_hull by(rule convex_convex_hull)
lemma convex_open_segment [iff]: "convex(open_segment a b)"
proof -
have "convex ((λu. u *⇩R (b-a)) ` {0<..<1})"
by (rule convex_linear_image) auto
then show ?thesis
apply (simp add: open_segment_image_interval segment_eq_compose)
by (metis image_comp convex_translation)
qed
lemmas convex_segment = convex_closed_segment convex_open_segment
lemma connected_segment [iff]:
fixes x :: "'a :: real_normed_vector"
shows "connected (closed_segment x y)"
by (simp add: convex_connected)
lemma affine_hull_closed_segment [simp]:
"affine hull (closed_segment a b) = affine hull {a,b}"
by (simp add: segment_convex_hull)
lemma affine_hull_open_segment [simp]:
fixes a :: "'a::euclidean_space"
shows "affine hull (open_segment a b) = (if a = b then {} else affine hull {a,b})"
by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull segment_convex_hull)
lemma rel_interior_closure_convex_segment:
fixes S :: "_::euclidean_space set"
assumes "convex S" "a ∈ rel_interior S" "b ∈ closure S"
shows "open_segment a b ⊆ rel_interior S"
proof
fix x
have [simp]: "(1 - u) *⇩R a + u *⇩R b = b - (1 - u) *⇩R (b - a)" for u
by (simp add: algebra_simps)
assume "x ∈ open_segment a b"
then show "x ∈ rel_interior S"
unfolding closed_segment_def open_segment_def using assms
by (auto intro: rel_interior_closure_convex_shrink)
qed
subsection‹More results about segments›
lemma dist_half_times2:
fixes a :: "'a :: real_normed_vector"
shows "dist ((1 / 2) *⇩R (a + b)) x * 2 = dist (a+b) (2 *⇩R x)"
proof -
have "norm ((1 / 2) *⇩R (a + b) - x) * 2 = norm (2 *⇩R ((1 / 2) *⇩R (a + b) - x))"
by simp
also have "... = norm ((a + b) - 2 *⇩R x)"
by (simp add: real_vector.scale_right_diff_distrib)
finally show ?thesis
by (simp only: dist_norm)
qed
lemma closed_segment_as_ball:
"closed_segment a b = affine hull {a,b} ∩ cball(inverse 2 *⇩R (a + b))(norm(b - a) / 2)"
proof (cases "b = a")
case True then show ?thesis by (auto simp: hull_inc)
next
case False
then have *: "((∃u v. x = u *⇩R a + v *⇩R b ∧ u + v = 1) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 ≤ norm (b - a)) =
(∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ 0 ≤ u ∧ u ≤ 1)" for x
proof -
have "((∃u v. x = u *⇩R a + v *⇩R b ∧ u + v = 1) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 ≤ norm (b - a)) =
((∃u. x = (1 - u) *⇩R a + u *⇩R b) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 ≤ norm (b - a))"
unfolding eq_diff_eq [symmetric] by simp
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((a+b) - (2 *⇩R x)) ≤ norm (b - a))"
by (simp add: dist_half_times2) (simp add: dist_norm)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((a+b) - (2 *⇩R ((1 - u) *⇩R a + u *⇩R b))) ≤ norm (b - a))"
by auto
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((1 - u * 2) *⇩R (b - a)) ≤ norm (b - a))"
by (simp add: algebra_simps scaleR_2)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
¦1 - u * 2¦ * norm (b - a) ≤ norm (b - a))"
by simp
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ ¦1 - u * 2¦ ≤ 1)"
by (simp add: mult_le_cancel_right2 False)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ 0 ≤ u ∧ u ≤ 1)"
by auto
finally show ?thesis .
qed
show ?thesis
by (simp add: affine_hull_2 Set.set_eq_iff closed_segment_def *)
qed
lemma open_segment_as_ball:
"open_segment a b =
affine hull {a,b} ∩ ball(inverse 2 *⇩R (a + b))(norm(b - a) / 2)"
proof (cases "b = a")
case True then show ?thesis by (auto simp: hull_inc)
next
case False
then have *: "((∃u v. x = u *⇩R a + v *⇩R b ∧ u + v = 1) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 < norm (b - a)) =
(∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ 0 < u ∧ u < 1)" for x
proof -
have "((∃u v. x = u *⇩R a + v *⇩R b ∧ u + v = 1) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 < norm (b - a)) =
((∃u. x = (1 - u) *⇩R a + u *⇩R b) ∧
dist ((1 / 2) *⇩R (a + b)) x * 2 < norm (b - a))"
unfolding eq_diff_eq [symmetric] by simp
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((a+b) - (2 *⇩R x)) < norm (b - a))"
by (simp add: dist_half_times2) (simp add: dist_norm)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((a+b) - (2 *⇩R ((1 - u) *⇩R a + u *⇩R b))) < norm (b - a))"
by auto
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
norm ((1 - u * 2) *⇩R (b - a)) < norm (b - a))"
by (simp add: algebra_simps scaleR_2)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧
¦1 - u * 2¦ * norm (b - a) < norm (b - a))"
by simp
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ ¦1 - u * 2¦ < 1)"
by (simp add: mult_le_cancel_right2 False)
also have "... = (∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ 0 < u ∧ u < 1)"
by auto
finally show ?thesis .
qed
show ?thesis
using False by (force simp: affine_hull_2 Set.set_eq_iff open_segment_image_interval *)
qed
lemmas segment_as_ball = closed_segment_as_ball open_segment_as_ball
lemma closed_segment_neq_empty [simp]: "closed_segment a b ≠ {}"
by auto
lemma open_segment_eq_empty [simp]: "open_segment a b = {} ⟷ a = b"
proof -
{ assume a1: "open_segment a b = {}"
have "{} ≠ {0::real<..<1}"
by simp
then have "a = b"
using a1 open_segment_image_interval by fastforce
} then show ?thesis by auto
qed
lemma open_segment_eq_empty' [simp]: "{} = open_segment a b ⟷ a = b"
using open_segment_eq_empty by blast
lemmas segment_eq_empty = closed_segment_neq_empty open_segment_eq_empty
lemma inj_segment:
fixes a :: "'a :: real_vector"
assumes "a ≠ b"
shows "inj_on (λu. (1 - u) *⇩R a + u *⇩R b) I"
proof
fix x y
assume "(1 - x) *⇩R a + x *⇩R b = (1 - y) *⇩R a + y *⇩R b"
then have "x *⇩R (b - a) = y *⇩R (b - a)"
by (simp add: algebra_simps)
with assms show "x = y"
by (simp add: real_vector.scale_right_imp_eq)
qed
lemma finite_closed_segment [simp]: "finite(closed_segment a b) ⟷ a = b"
apply auto
apply (rule ccontr)
apply (simp add: segment_image_interval)
using infinite_Icc [OF zero_less_one] finite_imageD [OF _ inj_segment] apply blast
done
lemma finite_open_segment [simp]: "finite(open_segment a b) ⟷ a = b"
by (auto simp: open_segment_def)
lemmas finite_segment = finite_closed_segment finite_open_segment
lemma closed_segment_eq_sing: "closed_segment a b = {c} ⟷ a = c ∧ b = c"
by auto
lemma open_segment_eq_sing: "open_segment a b ≠ {c}"
by (metis finite_insert finite_open_segment insert_not_empty open_segment_image_interval)
lemmas segment_eq_sing = closed_segment_eq_sing open_segment_eq_sing
lemma subset_closed_segment:
"closed_segment a b ⊆ closed_segment c d ⟷
a ∈ closed_segment c d ∧ b ∈ closed_segment c d"
by auto (meson contra_subsetD convex_closed_segment convex_contains_segment)
lemma subset_co_segment:
"closed_segment a b ⊆ open_segment c d ⟷
a ∈ open_segment c d ∧ b ∈ open_segment c d"
using closed_segment_subset by blast
lemma subset_open_segment:
fixes a :: "'a::euclidean_space"
shows "open_segment a b ⊆ open_segment c d ⟷
a = b ∨ a ∈ closed_segment c d ∧ b ∈ closed_segment c d"
(is "?lhs = ?rhs")
proof (cases "a = b")
case True then show ?thesis by simp
next
case False show ?thesis
proof
assume rhs: ?rhs
with ‹a ≠ b› have "c ≠ d"
using closed_segment_idem singleton_iff by auto
have "∃uc. (1 - u) *⇩R ((1 - ua) *⇩R c + ua *⇩R d) + u *⇩R ((1 - ub) *⇩R c + ub *⇩R d) =
(1 - uc) *⇩R c + uc *⇩R d ∧ 0 < uc ∧ uc < 1"
if neq: "(1 - ua) *⇩R c + ua *⇩R d ≠ (1 - ub) *⇩R c + ub *⇩R d" "c ≠ d"
and "a = (1 - ua) *⇩R c + ua *⇩R d" "b = (1 - ub) *⇩R c + ub *⇩R d"
and u: "0 < u" "u < 1" and uab: "0 ≤ ua" "ua ≤ 1" "0 ≤ ub" "ub ≤ 1"
for u ua ub
proof -
have "ua ≠ ub"
using neq by auto
moreover have "(u - 1) * ua ≤ 0" using u uab
by (simp add: mult_nonpos_nonneg)
ultimately have lt: "(u - 1) * ua < u * ub" using u uab
by (metis antisym_conv diff_ge_0_iff_ge le_less_trans mult_eq_0_iff mult_le_0_iff not_less)
have "p * ua + q * ub < p+q" if p: "0 < p" and q: "0 < q" for p q
proof -
have "¬ p ≤ 0" "¬ q ≤ 0"
using p q not_less by blast+
then show ?thesis
by (metis ‹ua ≠ ub› add_less_cancel_left add_less_cancel_right add_mono_thms_linordered_field(5)
less_eq_real_def mult_cancel_left1 mult_less_cancel_left2 uab(2) uab(4))
qed
then have "(1 - u) * ua + u * ub < 1" using u ‹ua ≠ ub›
by (metis diff_add_cancel diff_gt_0_iff_gt)
with lt show ?thesis
by (rule_tac x="ua + u*(ub-ua)" in exI) (simp add: algebra_simps)
qed
with rhs ‹a ≠ b› ‹c ≠ d› show ?lhs
unfolding open_segment_image_interval closed_segment_def
by (fastforce simp add:)
next
assume lhs: ?lhs
with ‹a ≠ b› have "c ≠ d"
by (meson finite_open_segment rev_finite_subset)
have "closure (open_segment a b) ⊆ closure (open_segment c d)"
using lhs closure_mono by blast
then have "closed_segment a b ⊆ closed_segment c d"
by (simp add: ‹a ≠ b› ‹c ≠ d›)
then show ?rhs
by (force simp: ‹a ≠ b›)
qed
qed
lemma subset_oc_segment:
fixes a :: "'a::euclidean_space"
shows "open_segment a b ⊆ closed_segment c d ⟷
a = b ∨ a ∈ closed_segment c d ∧ b ∈ closed_segment c d"
apply (simp add: subset_open_segment [symmetric])
apply (rule iffI)
apply (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment subset_open_segment)
apply (meson dual_order.trans segment_open_subset_closed)
done
lemmas subset_segment = subset_closed_segment subset_co_segment subset_oc_segment subset_open_segment
subsection‹Betweenness›
lemma between_mem_segment: "between (a,b) x ⟷ x ∈ closed_segment a b"
unfolding between_def by auto
lemma between: "between (a, b) (x::'a::euclidean_space) ⟷ dist a b = (dist a x) + (dist x b)"
proof (cases "a = b")
case True
then show ?thesis
unfolding between_def split_conv
by (auto simp add: dist_commute)
next
case False
then have Fal: "norm (a - b) ≠ 0" and Fal2: "norm (a - b) > 0"
by auto
have *: "⋀u. a - ((1 - u) *⇩R a + u *⇩R b) = u *⇩R (a - b)"
by (auto simp add: algebra_simps)
show ?thesis
unfolding between_def split_conv closed_segment_def mem_Collect_eq
apply rule
apply (elim exE conjE)
apply (subst dist_triangle_eq)
proof -
fix u
assume as: "x = (1 - u) *⇩R a + u *⇩R b" "0 ≤ u" "u ≤ 1"
then have *: "a - x = u *⇩R (a - b)" "x - b = (1 - u) *⇩R (a - b)"
unfolding as(1) by (auto simp add:algebra_simps)
show "norm (a - x) *⇩R (x - b) = norm (x - b) *⇩R (a - x)"
unfolding norm_minus_commute[of x a] * using as(2,3)
by (auto simp add: field_simps)
next
assume as: "dist a b = dist a x + dist x b"
have "norm (a - x) / norm (a - b) ≤ 1"
using Fal2 unfolding as[unfolded dist_norm] norm_ge_zero by auto
then show "∃u. x = (1 - u) *⇩R a + u *⇩R b ∧ 0 ≤ u ∧ u ≤ 1"
apply (rule_tac x="dist a x / dist a b" in exI)
unfolding dist_norm
apply (subst euclidean_eq_iff)
apply rule
defer
apply rule
prefer 3
apply rule
proof -
fix i :: 'a
assume i: "i ∈ Basis"
have "((1 - norm (a - x) / norm (a - b)) *⇩R a + (norm (a - x) / norm (a - b)) *⇩R b) ∙ i =
((norm (a - b) - norm (a - x)) * (a ∙ i) + norm (a - x) * (b ∙ i)) / norm (a - b)"
using Fal by (auto simp add: field_simps inner_simps)
also have "… = x∙i"
apply (rule divide_eq_imp[OF Fal])
unfolding as[unfolded dist_norm]
using as[unfolded dist_triangle_eq]
apply -
apply (subst (asm) euclidean_eq_iff)
using i
apply (erule_tac x=i in ballE)
apply (auto simp add: field_simps inner_simps)
done
finally show "x ∙ i =
((1 - norm (a - x) / norm (a - b)) *⇩R a + (norm (a - x) / norm (a - b)) *⇩R b) ∙ i"
by auto
qed (insert Fal2, auto)
qed
qed
lemma between_midpoint:
fixes a :: "'a::euclidean_space"
shows "between (a,b) (midpoint a b)" (is ?t1)
and "between (b,a) (midpoint a b)" (is ?t2)
proof -
have *: "⋀x y z. x = (1/2::real) *⇩R z ⟹ y = (1/2) *⇩R z ⟹ norm z = norm x + norm y"
by auto
show ?t1 ?t2
unfolding between midpoint_def dist_norm
apply(rule_tac[!] *)
unfolding euclidean_eq_iff[where 'a='a]
apply (auto simp add: field_simps inner_simps)
done
qed
lemma between_mem_convex_hull:
"between (a,b) x ⟷ x ∈ convex hull {a,b}"
unfolding between_mem_segment segment_convex_hull ..
subsection ‹Shrinking towards the interior of a convex set›
lemma mem_interior_convex_shrink:
fixes s :: "'a::euclidean_space set"
assumes "convex s"
and "c ∈ interior s"
and "x ∈ s"
and "0 < e"
and "e ≤ 1"
shows "x - e *⇩R (x - c) ∈ interior s"
proof -
obtain d where "d > 0" and d: "ball c d ⊆ s"
using assms(2) unfolding mem_interior by auto
show ?thesis
unfolding mem_interior
apply (rule_tac x="e*d" in exI)
apply rule
defer
unfolding subset_eq Ball_def mem_ball
proof (rule, rule)
fix y
assume as: "dist (x - e *⇩R (x - c)) y < e * d"
have *: "y = (1 - (1 - e)) *⇩R ((1 / e) *⇩R y - ((1 - e) / e) *⇩R x) + (1 - e) *⇩R x"
using ‹e > 0› by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
have "dist c ((1 / e) *⇩R y - ((1 - e) / e) *⇩R x) = ¦1/e¦ * norm (e *⇩R c - y + (1 - e) *⇩R x)"
unfolding dist_norm
unfolding norm_scaleR[symmetric]
apply (rule arg_cong[where f=norm])
using ‹e > 0›
by (auto simp add: euclidean_eq_iff[where 'a='a] field_simps inner_simps)
also have "… = ¦1/e¦ * norm (x - e *⇩R (x - c) - y)"
by (auto intro!:arg_cong[where f=norm] simp add: algebra_simps)
also have "… < d"
using as[unfolded dist_norm] and ‹e > 0›
by (auto simp add:pos_divide_less_eq[OF ‹e > 0›] mult.commute)
finally show "y ∈ s"
apply (subst *)
apply (rule assms(1)[unfolded convex_alt,rule_format])
apply (rule d[unfolded subset_eq,rule_format])
unfolding mem_ball
using assms(3-5)
apply auto
done
qed (insert ‹e>0› ‹d>0›, auto)
qed
lemma mem_interior_closure_convex_shrink:
fixes s :: "'a::euclidean_space set"
assumes "convex s"
and "c ∈ interior s"
and "x ∈ closure s"
and "0 < e"
and "e ≤ 1"
shows "x - e *⇩R (x - c) ∈ interior s"
proof -
obtain d where "d > 0" and d: "ball c d ⊆ s"
using assms(2) unfolding mem_interior by auto
have "∃y∈s. norm (y - x) * (1 - e) < e * d"
proof (cases "x ∈ s")
case True
then show ?thesis
using ‹e > 0› ‹d > 0›
apply (rule_tac bexI[where x=x])
apply (auto)
done
next
case False
then have x: "x islimpt s"
using assms(3)[unfolded closure_def] by auto
show ?thesis
proof (cases "e = 1")
case True
obtain y where "y ∈ s" "y ≠ x" "dist y x < 1"
using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
then show ?thesis
apply (rule_tac x=y in bexI)
unfolding True
using ‹d > 0›
apply auto
done
next
case False
then have "0 < e * d / (1 - e)" and *: "1 - e > 0"
using ‹e ≤ 1› ‹e > 0› ‹d > 0› by auto
then obtain y where "y ∈ s" "y ≠ x" "dist y x < e * d / (1 - e)"
using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
then show ?thesis
apply (rule_tac x=y in bexI)
unfolding dist_norm
using pos_less_divide_eq[OF *]
apply auto
done
qed
qed
then obtain y where "y ∈ s" and y: "norm (y - x) * (1 - e) < e * d"
by auto
def z ≡ "c + ((1 - e) / e) *⇩R (x - y)"
have *: "x - e *⇩R (x - c) = y - e *⇩R (y - z)"
unfolding z_def using ‹e > 0›
by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
have "z ∈ interior s"
apply (rule interior_mono[OF d,unfolded subset_eq,rule_format])
unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5)
apply (auto simp add:field_simps norm_minus_commute)
done
then show ?thesis
unfolding *
apply -
apply (rule mem_interior_convex_shrink)
using assms(1,4-5) ‹y∈s›
apply auto
done
qed
subsection ‹Some obvious but surprisingly hard simplex lemmas›
lemma simplex:
assumes "finite s"
and "0 ∉ s"
shows "convex hull (insert 0 s) =
{y. (∃u. (∀x∈s. 0 ≤ u x) ∧ setsum u s ≤ 1 ∧ setsum (λx. u x *⇩R x) s = y)}"
unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]]
apply (rule set_eqI, rule)
unfolding mem_Collect_eq
apply (erule_tac[!] exE)
apply (erule_tac[!] conjE)+
unfolding setsum_clauses(2)[OF assms(1)]
apply (rule_tac x=u in exI)
defer
apply (rule_tac x="λx. if x = 0 then 1 - setsum u s else u x" in exI)
using assms(2)
unfolding if_smult and setsum_delta_notmem[OF assms(2)]
apply auto
done
lemma substd_simplex:
assumes d: "d ⊆ Basis"
shows "convex hull (insert 0 d) =
{x. (∀i∈Basis. 0 ≤ x∙i) ∧ (∑i∈d. x∙i) ≤ 1 ∧ (∀i∈Basis. i ∉ d ⟶ x∙i = 0)}"
(is "convex hull (insert 0 ?p) = ?s")
proof -
let ?D = d
have "0 ∉ ?p"
using assms by (auto simp: image_def)
from d have "finite d"
by (blast intro: finite_subset finite_Basis)
show ?thesis
unfolding simplex[OF ‹finite d› ‹0 ∉ ?p›]
apply (rule set_eqI)
unfolding mem_Collect_eq
apply rule
apply (elim exE conjE)
apply (erule_tac[2] conjE)+
proof -
fix x :: "'a::euclidean_space"
fix u
assume as: "∀x∈?D. 0 ≤ u x" "setsum u ?D ≤ 1" "(∑x∈?D. u x *⇩R x) = x"
have *: "∀i∈Basis. i:d ⟶ u i = x∙i"
and "(∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)"
using as(3)
unfolding substdbasis_expansion_unique[OF assms]
by auto
then have **: "setsum u ?D = setsum (op ∙ x) ?D"
apply -
apply (rule setsum.cong)
using assms
apply auto
done
have "(∀i∈Basis. 0 ≤ x∙i) ∧ setsum (op ∙ x) ?D ≤ 1"
proof (rule,rule)
fix i :: 'a
assume i: "i ∈ Basis"
have "i ∈ d ⟹ 0 ≤ x∙i"
unfolding *[rule_format,OF i,symmetric]
apply (rule_tac as(1)[rule_format])
apply auto
done
moreover have "i ∉ d ⟹ 0 ≤ x∙i"
using ‹(∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)›[rule_format, OF i] by auto
ultimately show "0 ≤ x∙i" by auto
qed (insert as(2)[unfolded **], auto)
then show "(∀i∈Basis. 0 ≤ x∙i) ∧ setsum (op ∙ x) ?D ≤ 1 ∧ (∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)"
using ‹(∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)› by auto
next
fix x :: "'a::euclidean_space"
assume as: "∀i∈Basis. 0 ≤ x ∙ i" "setsum (op ∙ x) ?D ≤ 1" "(∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)"
show "∃u. (∀x∈?D. 0 ≤ u x) ∧ setsum u ?D ≤ 1 ∧ (∑x∈?D. u x *⇩R x) = x"
using as d
unfolding substdbasis_expansion_unique[OF assms]
apply (rule_tac x="inner x" in exI)
apply auto
done
qed
qed
lemma std_simplex:
"convex hull (insert 0 Basis) =
{x::'a::euclidean_space. (∀i∈Basis. 0 ≤ x∙i) ∧ setsum (λi. x∙i) Basis ≤ 1}"
using substd_simplex[of Basis] by auto
lemma interior_std_simplex:
"interior (convex hull (insert 0 Basis)) =
{x::'a::euclidean_space. (∀i∈Basis. 0 < x∙i) ∧ setsum (λi. x∙i) Basis < 1}"
apply (rule set_eqI)
unfolding mem_interior std_simplex
unfolding subset_eq mem_Collect_eq Ball_def mem_ball
unfolding Ball_def[symmetric]
apply rule
apply (elim exE conjE)
defer
apply (erule conjE)
proof -
fix x :: 'a
fix e
assume "e > 0" and as: "∀xa. dist x xa < e ⟶ (∀x∈Basis. 0 ≤ xa ∙ x) ∧ setsum (op ∙ xa) Basis ≤ 1"
show "(∀xa∈Basis. 0 < x ∙ xa) ∧ setsum (op ∙ x) Basis < 1"
apply safe
proof -
fix i :: 'a
assume i: "i ∈ Basis"
then show "0 < x ∙ i"
using as[THEN spec[where x="x - (e / 2) *⇩R i"]] and ‹e > 0›
unfolding dist_norm
by (auto elim!: ballE[where x=i] simp: inner_simps)
next
have **: "dist x (x + (e / 2) *⇩R (SOME i. i∈Basis)) < e" using ‹e > 0›
unfolding dist_norm
by (auto intro!: mult_strict_left_mono simp: SOME_Basis)
have "⋀i. i ∈ Basis ⟹ (x + (e / 2) *⇩R (SOME i. i∈Basis)) ∙ i =
x∙i + (if i = (SOME i. i∈Basis) then e/2 else 0)"
by (auto simp: SOME_Basis inner_Basis inner_simps)
then have *: "setsum (op ∙ (x + (e / 2) *⇩R (SOME i. i∈Basis))) Basis =
setsum (λi. x∙i + (if (SOME i. i∈Basis) = i then e/2 else 0)) Basis"
apply (rule_tac setsum.cong)
apply auto
done
have "setsum (op ∙ x) Basis < setsum (op ∙ (x + (e / 2) *⇩R (SOME i. i∈Basis))) Basis"
unfolding * setsum.distrib
using ‹e > 0› DIM_positive[where 'a='a]
apply (subst setsum.delta')
apply (auto simp: SOME_Basis)
done
also have "… ≤ 1"
using **
apply (drule_tac as[rule_format])
apply auto
done
finally show "setsum (op ∙ x) Basis < 1" by auto
qed
next
fix x :: 'a
assume as: "∀i∈Basis. 0 < x ∙ i" "setsum (op ∙ x) Basis < 1"
obtain a :: 'b where "a ∈ UNIV" using UNIV_witness ..
let ?d = "(1 - setsum (op ∙ x) Basis) / real (DIM('a))"
have "Min ((op ∙ x) ` Basis) > 0"
apply (rule Min_grI)
using as(1)
apply auto
done
moreover have "?d > 0"
using as(2) by (auto simp: Suc_le_eq DIM_positive)
ultimately show "∃e>0. ∀y. dist x y < e ⟶ (∀i∈Basis. 0 ≤ y ∙ i) ∧ setsum (op ∙ y) Basis ≤ 1"
apply (rule_tac x="min (Min ((op ∙ x) ` Basis)) D" for D in exI)
apply rule
defer
apply (rule, rule)
proof -
fix y
assume y: "dist x y < min (Min (op ∙ x ` Basis)) ?d"
have "setsum (op ∙ y) Basis ≤ setsum (λi. x∙i + ?d) Basis"
proof (rule setsum_mono)
fix i :: 'a
assume i: "i ∈ Basis"
then have "¦y∙i - x∙i¦ < ?d"
apply -
apply (rule le_less_trans)
using Basis_le_norm[OF i, of "y - x"]
using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2]
apply (auto simp add: norm_minus_commute inner_diff_left)
done
then show "y ∙ i ≤ x ∙ i + ?d" by auto
qed
also have "… ≤ 1"
unfolding setsum.distrib setsum_constant
by (auto simp add: Suc_le_eq)
finally show "(∀i∈Basis. 0 ≤ y ∙ i) ∧ setsum (op ∙ y) Basis ≤ 1"
proof safe
fix i :: 'a
assume i: "i ∈ Basis"
have "norm (x - y) < x∙i"
apply (rule less_le_trans)
apply (rule y[unfolded min_less_iff_conj dist_norm, THEN conjunct1])
using i
apply auto
done
then show "0 ≤ y∙i"
using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format, OF i]
by (auto simp: inner_simps)
qed
qed auto
qed
lemma interior_std_simplex_nonempty:
obtains a :: "'a::euclidean_space" where
"a ∈ interior(convex hull (insert 0 Basis))"
proof -
let ?D = "Basis :: 'a set"
let ?a = "setsum (λb::'a. inverse (2 * real DIM('a)) *⇩R b) Basis"
{
fix i :: 'a
assume i: "i ∈ Basis"
have "?a ∙ i = inverse (2 * real DIM('a))"
by (rule trans[of _ "setsum (λj. if i = j then inverse (2 * real DIM('a)) else 0) ?D"])
(simp_all add: setsum.If_cases i) }
note ** = this
show ?thesis
apply (rule that[of ?a])
unfolding interior_std_simplex mem_Collect_eq
proof safe
fix i :: 'a
assume i: "i ∈ Basis"
show "0 < ?a ∙ i"
unfolding **[OF i] by (auto simp add: Suc_le_eq DIM_positive)
next
have "setsum (op ∙ ?a) ?D = setsum (λi. inverse (2 * real DIM('a))) ?D"
apply (rule setsum.cong)
apply rule
apply auto
done
also have "… < 1"
unfolding setsum_constant divide_inverse[symmetric]
by (auto simp add: field_simps)
finally show "setsum (op ∙ ?a) ?D < 1" by auto
qed
qed
lemma rel_interior_substd_simplex:
assumes d: "d ⊆ Basis"
shows "rel_interior (convex hull (insert 0 d)) =
{x::'a::euclidean_space. (∀i∈d. 0 < x∙i) ∧ (∑i∈d. x∙i) < 1 ∧ (∀i∈Basis. i ∉ d ⟶ x∙i = 0)}"
(is "rel_interior (convex hull (insert 0 ?p)) = ?s")
proof -
have "finite d"
apply (rule finite_subset)
using assms
apply auto
done
show ?thesis
proof (cases "d = {}")
case True
then show ?thesis
using rel_interior_sing using euclidean_eq_iff[of _ 0] by auto
next
case False
have h0: "affine hull (convex hull (insert 0 ?p)) =
{x::'a::euclidean_space. (∀i∈Basis. i ∉ d ⟶ x∙i = 0)}"
using affine_hull_convex_hull affine_hull_substd_basis assms by auto
have aux: "⋀x::'a. ∀i∈Basis. (∀i∈d. 0 ≤ x∙i) ∧ (∀i∈Basis. i ∉ d ⟶ x∙i = 0) ⟶ 0 ≤ x∙i"
by auto
{
fix x :: "'a::euclidean_space"
assume x: "x ∈ rel_interior (convex hull (insert 0 ?p))"
then obtain e where e0: "e > 0" and
"ball x e ∩ {xa. (∀i∈Basis. i ∉ d ⟶ xa∙i = 0)} ⊆ convex hull (insert 0 ?p)"
using mem_rel_interior_ball[of x "convex hull (insert 0 ?p)"] h0 by auto
then have as: "∀xa. dist x xa < e ∧ (∀i∈Basis. i ∉ d ⟶ xa∙i = 0) ⟶
(∀i∈d. 0 ≤ xa ∙ i) ∧ setsum (op ∙ xa) d ≤ 1"
unfolding ball_def unfolding substd_simplex[OF assms] using assms by auto
have x0: "(∀i∈Basis. i ∉ d ⟶ x∙i = 0)"
using x rel_interior_subset substd_simplex[OF assms] by auto
have "(∀i∈d. 0 < x ∙ i) ∧ setsum (op ∙ x) d < 1 ∧ (∀i∈Basis. i ∉ d ⟶ x∙i = 0)"
apply rule
apply rule
proof -
fix i :: 'a
assume "i ∈ d"
then have "∀ia∈d. 0 ≤ (x - (e / 2) *⇩R i) ∙ ia"
apply -
apply (rule as[rule_format,THEN conjunct1])
unfolding dist_norm
using d ‹e > 0› x0
apply (auto simp: inner_simps inner_Basis)
done
then show "0 < x ∙ i"
apply (erule_tac x=i in ballE)
using ‹e > 0› ‹i ∈ d› d
apply (auto simp: inner_simps inner_Basis)
done
next
obtain a where a: "a ∈ d"
using ‹d ≠ {}› by auto
then have **: "dist x (x + (e / 2) *⇩R a) < e"
using ‹e > 0› norm_Basis[of a] d
unfolding dist_norm
by auto
have "⋀i. i ∈ Basis ⟹ (x + (e / 2) *⇩R a) ∙ i = x∙i + (if i = a then e/2 else 0)"
using a d by (auto simp: inner_simps inner_Basis)
then have *: "setsum (op ∙ (x + (e / 2) *⇩R a)) d =
setsum (λi. x∙i + (if a = i then e/2 else 0)) d"
using d by (intro setsum.cong) auto
have "a ∈ Basis"
using ‹a ∈ d› d by auto
then have h1: "(∀i∈Basis. i ∉ d ⟶ (x + (e / 2) *⇩R a) ∙ i = 0)"
using x0 d ‹a∈d› by (auto simp add: inner_add_left inner_Basis)
have "setsum (op ∙ x) d < setsum (op ∙ (x + (e / 2) *⇩R a)) d"
unfolding * setsum.distrib
using ‹e > 0› ‹a ∈ d›
using ‹finite d›
by (auto simp add: setsum.delta')
also have "… ≤ 1"
using ** h1 as[rule_format, of "x + (e / 2) *⇩R a"]
by auto
finally show "setsum (op ∙ x) d < 1 ∧ (∀i∈Basis. i ∉ d ⟶ x∙i = 0)"
using x0 by auto
qed
}
moreover
{
fix x :: "'a::euclidean_space"
assume as: "x ∈ ?s"
have "∀i. 0 < x∙i ∨ 0 = x∙i ⟶ 0 ≤ x∙i"
by auto
moreover have "∀i. i ∈ d ∨ i ∉ d" by auto
ultimately
have "∀i. (∀i∈d. 0 < x∙i) ∧ (∀i. i ∉ d ⟶ x∙i = 0) ⟶ 0 ≤ x∙i"
by metis
then have h2: "x ∈ convex hull (insert 0 ?p)"
using as assms
unfolding substd_simplex[OF assms] by fastforce
obtain a where a: "a ∈ d"
using ‹d ≠ {}› by auto
let ?d = "(1 - setsum (op ∙ x) d) / real (card d)"
have "0 < card d" using ‹d ≠ {}› ‹finite d›
by (simp add: card_gt_0_iff)
have "Min ((op ∙ x) ` d) > 0"
using as ‹d ≠ {}› ‹finite d› by (simp add: Min_grI)
moreover have "?d > 0" using as using ‹0 < card d› by auto
ultimately have h3: "min (Min ((op ∙ x) ` d)) ?d > 0"
by auto
have "x ∈ rel_interior (convex hull (insert 0 ?p))"
unfolding rel_interior_ball mem_Collect_eq h0
apply (rule,rule h2)
unfolding substd_simplex[OF assms]
apply (rule_tac x="min (Min ((op ∙ x) ` d)) ?d" in exI)
apply (rule, rule h3)
apply safe
unfolding mem_ball
proof -
fix y :: 'a
assume y: "dist x y < min (Min (op ∙ x ` d)) ?d"
assume y2: "∀i∈Basis. i ∉ d ⟶ y∙i = 0"
have "setsum (op ∙ y) d ≤ setsum (λi. x∙i + ?d) d"
proof (rule setsum_mono)
fix i
assume "i ∈ d"
with d have i: "i ∈ Basis"
by auto
have "¦y∙i - x∙i¦ < ?d"
apply (rule le_less_trans)
using Basis_le_norm[OF i, of "y - x"]
using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2]
apply (auto simp add: norm_minus_commute inner_simps)
done
then show "y ∙ i ≤ x ∙ i + ?d" by auto
qed
also have "… ≤ 1"
unfolding setsum.distrib setsum_constant using ‹0 < card d›
by auto
finally show "setsum (op ∙ y) d ≤ 1" .
fix i :: 'a
assume i: "i ∈ Basis"
then show "0 ≤ y∙i"
proof (cases "i∈d")
case True
have "norm (x - y) < x∙i"
using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1]
using Min_gr_iff[of "op ∙ x ` d" "norm (x - y)"] ‹0 < card d› ‹i:d›
by (simp add: card_gt_0_iff)
then show "0 ≤ y∙i"
using Basis_le_norm[OF i, of "x - y"] and as(1)[rule_format]
by (auto simp: inner_simps)
qed (insert y2, auto)
qed
}
ultimately have
"⋀x. x ∈ rel_interior (convex hull insert 0 d) ⟷
x ∈ {x. (∀i∈d. 0 < x ∙ i) ∧ setsum (op ∙ x) d < 1 ∧ (∀i∈Basis. i ∉ d ⟶ x ∙ i = 0)}"
by blast
then show ?thesis by (rule set_eqI)
qed
qed
lemma rel_interior_substd_simplex_nonempty:
assumes "d ≠ {}"
and "d ⊆ Basis"
obtains a :: "'a::euclidean_space"
where "a ∈ rel_interior (convex hull (insert 0 d))"
proof -
let ?D = d
let ?a = "setsum (λb::'a::euclidean_space. inverse (2 * real (card d)) *⇩R b) ?D"
have "finite d"
apply (rule finite_subset)
using assms(2)
apply auto
done
then have d1: "0 < real (card d)"
using ‹d ≠ {}› by auto
{
fix i
assume "i ∈ d"
have "?a ∙ i = inverse (2 * real (card d))"
apply (rule trans[of _ "setsum (λj. if i = j then inverse (2 * real (card d)) else 0) ?D"])
unfolding inner_setsum_left
apply (rule setsum.cong)
using ‹i ∈ d› ‹finite d› setsum.delta'[of d i "(λk. inverse (2 * real (card d)))"]
d1 assms(2)
by (auto simp: inner_Basis set_rev_mp[OF _ assms(2)])
}
note ** = this
show ?thesis
apply (rule that[of ?a])
unfolding rel_interior_substd_simplex[OF assms(2)] mem_Collect_eq
proof safe
fix i
assume "i ∈ d"
have "0 < inverse (2 * real (card d))"
using d1 by auto
also have "… = ?a ∙ i" using **[of i] ‹i ∈ d›
by auto
finally show "0 < ?a ∙ i" by auto
next
have "setsum (op ∙ ?a) ?D = setsum (λi. inverse (2 * real (card d))) ?D"
by (rule setsum.cong) (rule refl, rule **)
also have "… < 1"
unfolding setsum_constant divide_real_def[symmetric]
by (auto simp add: field_simps)
finally show "setsum (op ∙ ?a) ?D < 1" by auto
next
fix i
assume "i ∈ Basis" and "i ∉ d"
have "?a ∈ span d"
proof (rule span_setsum[of d "(λb. b /⇩R (2 * real (card d)))" d])
{
fix x :: "'a::euclidean_space"
assume "x ∈ d"
then have "x ∈ span d"
using span_superset[of _ "d"] by auto
then have "x /⇩R (2 * real (card d)) ∈ span d"
using span_mul[of x "d" "(inverse (real (card d)) / 2)"] by auto
}
then show "∀x∈d. x /⇩R (2 * real (card d)) ∈ span d"
by auto
qed
then show "?a ∙ i = 0 "
using ‹i ∉ d› unfolding span_substd_basis[OF assms(2)] using ‹i ∈ Basis› by auto
qed
qed
subsection ‹Relative interior of convex set›
lemma rel_interior_convex_nonempty_aux:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "0 ∈ S"
shows "rel_interior S ≠ {}"
proof (cases "S = {0}")
case True
then show ?thesis using rel_interior_sing by auto
next
case False
obtain B where B: "independent B ∧ B ≤ S ∧ S ≤ span B ∧ card B = dim S"
using basis_exists[of S] by auto
then have "B ≠ {}"
using B assms ‹S ≠ {0}› span_empty by auto
have "insert 0 B ≤ span B"
using subspace_span[of B] subspace_0[of "span B"] span_inc by auto
then have "span (insert 0 B) ≤ span B"
using span_span[of B] span_mono[of "insert 0 B" "span B"] by blast
then have "convex hull insert 0 B ≤ span B"
using convex_hull_subset_span[of "insert 0 B"] by auto
then have "span (convex hull insert 0 B) ≤ span B"
using span_span[of B] span_mono[of "convex hull insert 0 B" "span B"] by blast
then have *: "span (convex hull insert 0 B) = span B"
using span_mono[of B "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto
then have "span (convex hull insert 0 B) = span S"
using B span_mono[of B S] span_mono[of S "span B"] span_span[of B] by auto
moreover have "0 ∈ affine hull (convex hull insert 0 B)"
using hull_subset[of "convex hull insert 0 B"] hull_subset[of "insert 0 B"] by auto
ultimately have **: "affine hull (convex hull insert 0 B) = affine hull S"
using affine_hull_span_0[of "convex hull insert 0 B"] affine_hull_span_0[of "S"]
assms hull_subset[of S]
by auto
obtain d and f :: "'n ⇒ 'n" where
fd: "card d = card B" "linear f" "f ` B = d"
"f ` span B = {x. ∀i∈Basis. i ∉ d ⟶ x ∙ i = (0::real)} ∧ inj_on f (span B)"
and d: "d ⊆ Basis"
using basis_to_substdbasis_subspace_isomorphism[of B,OF _ ] B by auto
then have "bounded_linear f"
using linear_conv_bounded_linear by auto
have "d ≠ {}"
using fd B ‹B ≠ {}› by auto
have "insert 0 d = f ` (insert 0 B)"
using fd linear_0 by auto
then have "(convex hull (insert 0 d)) = f ` (convex hull (insert 0 B))"
using convex_hull_linear_image[of f "(insert 0 d)"]
convex_hull_linear_image[of f "(insert 0 B)"] ‹linear f›
by auto
moreover have "rel_interior (f ` (convex hull insert 0 B)) =
f ` rel_interior (convex hull insert 0 B)"
apply (rule rel_interior_injective_on_span_linear_image[of f "(convex hull insert 0 B)"])
using ‹bounded_linear f› fd *
apply auto
done
ultimately have "rel_interior (convex hull insert 0 B) ≠ {}"
using rel_interior_substd_simplex_nonempty[OF ‹d ≠ {}› d]
apply auto
apply blast
done
moreover have "convex hull (insert 0 B) ⊆ S"
using B assms hull_mono[of "insert 0 B" "S" "convex"] convex_hull_eq
by auto
ultimately show ?thesis
using subset_rel_interior[of "convex hull insert 0 B" S] ** by auto
qed
lemma rel_interior_eq_empty:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "rel_interior S = {} ⟷ S = {}"
proof -
{
assume "S ≠ {}"
then obtain a where "a ∈ S" by auto
then have "0 ∈ op + (-a) ` S"
using assms exI[of "(λx. x ∈ S ∧ - a + x = 0)" a] by auto
then have "rel_interior (op + (-a) ` S) ≠ {}"
using rel_interior_convex_nonempty_aux[of "op + (-a) ` S"]
convex_translation[of S "-a"] assms
by auto
then have "rel_interior S ≠ {}"
using rel_interior_translation by auto
}
then show ?thesis
using rel_interior_empty by auto
qed
lemma convex_rel_interior:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "convex (rel_interior S)"
proof -
{
fix x y and u :: real
assume assm: "x ∈ rel_interior S" "y ∈ rel_interior S" "0 ≤ u" "u ≤ 1"
then have "x ∈ S"
using rel_interior_subset by auto
have "x - u *⇩R (x-y) ∈ rel_interior S"
proof (cases "0 = u")
case False
then have "0 < u" using assm by auto
then show ?thesis
using assm rel_interior_convex_shrink[of S y x u] assms ‹x ∈ S› by auto
next
case True
then show ?thesis using assm by auto
qed
then have "(1 - u) *⇩R x + u *⇩R y ∈ rel_interior S"
by (simp add: algebra_simps)
}
then show ?thesis
unfolding convex_alt by auto
qed
lemma convex_closure_rel_interior:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "closure (rel_interior S) = closure S"
proof -
have h1: "closure (rel_interior S) ≤ closure S"
using closure_mono[of "rel_interior S" S] rel_interior_subset[of S] by auto
show ?thesis
proof (cases "S = {}")
case False
then obtain a where a: "a ∈ rel_interior S"
using rel_interior_eq_empty assms by auto
{ fix x
assume x: "x ∈ closure S"
{
assume "x = a"
then have "x ∈ closure (rel_interior S)"
using a unfolding closure_def by auto
}
moreover
{
assume "x ≠ a"
{
fix e :: real
assume "e > 0"
def e1 ≡ "min 1 (e/norm (x - a))"
then have e1: "e1 > 0" "e1 ≤ 1" "e1 * norm (x - a) ≤ e"
using ‹x ≠ a› ‹e > 0› le_divide_eq[of e1 e "norm (x - a)"]
by simp_all
then have *: "x - e1 *⇩R (x - a) : rel_interior S"
using rel_interior_closure_convex_shrink[of S a x e1] assms x a e1_def
by auto
have "∃y. y ∈ rel_interior S ∧ y ≠ x ∧ dist y x ≤ e"
apply (rule_tac x="x - e1 *⇩R (x - a)" in exI)
using * e1 dist_norm[of "x - e1 *⇩R (x - a)" x] ‹x ≠ a›
apply simp
done
}
then have "x islimpt rel_interior S"
unfolding islimpt_approachable_le by auto
then have "x ∈ closure(rel_interior S)"
unfolding closure_def by auto
}
ultimately have "x ∈ closure(rel_interior S)" by auto
}
then show ?thesis using h1 by auto
next
case True
then have "rel_interior S = {}"
using rel_interior_empty by auto
then have "closure (rel_interior S) = {}"
using closure_empty by auto
with True show ?thesis by auto
qed
qed
lemma rel_interior_same_affine_hull:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "affine hull (rel_interior S) = affine hull S"
by (metis assms closure_same_affine_hull convex_closure_rel_interior)
lemma rel_interior_aff_dim:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "aff_dim (rel_interior S) = aff_dim S"
by (metis aff_dim_affine_hull2 assms rel_interior_same_affine_hull)
lemma rel_interior_rel_interior:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "rel_interior (rel_interior S) = rel_interior S"
proof -
have "openin (subtopology euclidean (affine hull (rel_interior S))) (rel_interior S)"
using opein_rel_interior[of S] rel_interior_same_affine_hull[of S] assms by auto
then show ?thesis
using rel_interior_def by auto
qed
lemma rel_interior_rel_open:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "rel_open (rel_interior S)"
unfolding rel_open_def using rel_interior_rel_interior assms by auto
lemma convex_rel_interior_closure_aux:
fixes x y z :: "'n::euclidean_space"
assumes "0 < a" "0 < b" "(a + b) *⇩R z = a *⇩R x + b *⇩R y"
obtains e where "0 < e" "e ≤ 1" "z = y - e *⇩R (y - x)"
proof -
def e ≡ "a / (a + b)"
have "z = (1 / (a + b)) *⇩R ((a + b) *⇩R z)"
apply auto
using assms
apply simp
done
also have "… = (1 / (a + b)) *⇩R (a *⇩R x + b *⇩R y)"
using assms scaleR_cancel_left[of "1/(a+b)" "(a + b) *⇩R z" "a *⇩R x + b *⇩R y"]
by auto
also have "… = y - e *⇩R (y-x)"
using e_def
apply (simp add: algebra_simps)
using scaleR_left_distrib[of "a/(a+b)" "b/(a+b)" y] assms add_divide_distrib[of a b "a+b"]
apply auto
done
finally have "z = y - e *⇩R (y-x)"
by auto
moreover have "e > 0" using e_def assms by auto
moreover have "e ≤ 1" using e_def assms by auto
ultimately show ?thesis using that[of e] by auto
qed
lemma convex_rel_interior_closure:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "rel_interior (closure S) = rel_interior S"
proof (cases "S = {}")
case True
then show ?thesis
using assms rel_interior_eq_empty by auto
next
case False
have "rel_interior (closure S) ⊇ rel_interior S"
using subset_rel_interior[of S "closure S"] closure_same_affine_hull closure_subset
by auto
moreover
{
fix z
assume z: "z ∈ rel_interior (closure S)"
obtain x where x: "x ∈ rel_interior S"
using ‹S ≠ {}› assms rel_interior_eq_empty by auto
have "z ∈ rel_interior S"
proof (cases "x = z")
case True
then show ?thesis using x by auto
next
case False
obtain e where e: "e > 0" "cball z e ∩ affine hull closure S ≤ closure S"
using z rel_interior_cball[of "closure S"] by auto
hence *: "0 < e/norm(z-x)" using e False by auto
def y ≡ "z + (e/norm(z-x)) *⇩R (z-x)"
have yball: "y ∈ cball z e"
using mem_cball y_def dist_norm[of z y] e by auto
have "x ∈ affine hull closure S"
using x rel_interior_subset_closure hull_inc[of x "closure S"] by blast
moreover have "z ∈ affine hull closure S"
using z rel_interior_subset hull_subset[of "closure S"] by blast
ultimately have "y ∈ affine hull closure S"
using y_def affine_affine_hull[of "closure S"]
mem_affine_3_minus [of "affine hull closure S" z z x "e/norm(z-x)"] by auto
then have "y ∈ closure S" using e yball by auto
have "(1 + (e/norm(z-x))) *⇩R z = (e/norm(z-x)) *⇩R x + y"
using y_def by (simp add: algebra_simps)
then obtain e1 where "0 < e1" "e1 ≤ 1" "z = y - e1 *⇩R (y - x)"
using * convex_rel_interior_closure_aux[of "e / norm (z - x)" 1 z x y]
by (auto simp add: algebra_simps)
then show ?thesis
using rel_interior_closure_convex_shrink assms x ‹y ∈ closure S›
by auto
qed
}
ultimately show ?thesis by auto
qed
lemma convex_interior_closure:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "interior (closure S) = interior S"
using closure_aff_dim[of S] interior_rel_interior_gen[of S]
interior_rel_interior_gen[of "closure S"]
convex_rel_interior_closure[of S] assms
by auto
lemma closure_eq_rel_interior_eq:
fixes S1 S2 :: "'n::euclidean_space set"
assumes "convex S1"
and "convex S2"
shows "closure S1 = closure S2 ⟷ rel_interior S1 = rel_interior S2"
by (metis convex_rel_interior_closure convex_closure_rel_interior assms)
lemma closure_eq_between:
fixes S1 S2 :: "'n::euclidean_space set"
assumes "convex S1"
and "convex S2"
shows "closure S1 = closure S2 ⟷ rel_interior S1 ≤ S2 ∧ S2 ⊆ closure S1"
(is "?A ⟷ ?B")
proof
assume ?A
then show ?B
by (metis assms closure_subset convex_rel_interior_closure rel_interior_subset)
next
assume ?B
then have "closure S1 ⊆ closure S2"
by (metis assms(1) convex_closure_rel_interior closure_mono)
moreover from ‹?B› have "closure S1 ⊇ closure S2"
by (metis closed_closure closure_minimal)
ultimately show ?A ..
qed
lemma open_inter_closure_rel_interior:
fixes S A :: "'n::euclidean_space set"
assumes "convex S"
and "open A"
shows "A ∩ closure S = {} ⟷ A ∩ rel_interior S = {}"
by (metis assms convex_closure_rel_interior open_Int_closure_eq_empty)
lemma rel_interior_open_segment:
fixes a :: "'a :: euclidean_space"
shows "rel_interior(open_segment a b) = open_segment a b"
proof (cases "a = b")
case True then show ?thesis by auto
next
case False then show ?thesis
apply (simp add: rel_interior_eq openin_open)
apply (rule_tac x="ball (inverse 2 *⇩R (a + b)) (norm(b - a) / 2)" in exI)
apply (simp add: open_segment_as_ball)
done
qed
lemma rel_interior_closed_segment:
fixes a :: "'a :: euclidean_space"
shows "rel_interior(closed_segment a b) =
(if a = b then {a} else open_segment a b)"
proof (cases "a = b")
case True then show ?thesis by auto
next
case False then show ?thesis
by simp
(metis closure_open_segment convex_open_segment convex_rel_interior_closure
rel_interior_open_segment)
qed
lemmas rel_interior_segment = rel_interior_closed_segment rel_interior_open_segment
lemma starlike_convex_tweak_boundary_points:
fixes S :: "'a::euclidean_space set"
assumes "convex S" "S ≠ {}" and ST: "rel_interior S ⊆ T" and TS: "T ⊆ closure S"
shows "starlike T"
proof -
have "rel_interior S ≠ {}"
by (simp add: assms rel_interior_eq_empty)
then obtain a where a: "a ∈ rel_interior S" by blast
with ST have "a ∈ T" by blast
have *: "⋀x. x ∈ T ⟹ open_segment a x ⊆ rel_interior S"
apply (rule rel_interior_closure_convex_segment [OF ‹convex S› a])
using assms by blast
show ?thesis
unfolding starlike_def
apply (rule bexI [OF _ ‹a ∈ T›])
apply (simp add: closed_segment_eq_open)
apply (intro conjI ballI a ‹a ∈ T› rel_interior_closure_convex_segment [OF ‹convex S› a])
apply (simp add: order_trans [OF * ST])
done
qed
subsection‹The relative frontier of a set›
definition "rel_frontier S = closure S - rel_interior S"
lemma closed_affine_hull:
fixes S :: "'n::euclidean_space set"
shows "closed (affine hull S)"
by (metis affine_affine_hull affine_closed)
lemma closed_rel_frontier:
fixes S :: "'n::euclidean_space set"
shows "closed (rel_frontier S)"
proof -
have *: "closedin (subtopology euclidean (affine hull S)) (closure S - rel_interior S)"
apply (rule closedin_diff[of "subtopology euclidean (affine hull S)""closure S" "rel_interior S"])
using closed_closedin_trans[of "affine hull S" "closure S"] closed_affine_hull[of S]
closure_affine_hull[of S] opein_rel_interior[of S]
apply auto
done
show ?thesis
apply (rule closedin_closed_trans[of "affine hull S" "rel_frontier S"])
unfolding rel_frontier_def
using * closed_affine_hull
apply auto
done
qed
lemma convex_rel_frontier_aff_dim:
fixes S1 S2 :: "'n::euclidean_space set"
assumes "convex S1"
and "convex S2"
and "S2 ≠ {}"
and "S1 ≤ rel_frontier S2"
shows "aff_dim S1 < aff_dim S2"
proof -
have "S1 ⊆ closure S2"
using assms unfolding rel_frontier_def by auto
then have *: "affine hull S1 ⊆ affine hull S2"
using hull_mono[of "S1" "closure S2"] closure_same_affine_hull[of S2] by blast
then have "aff_dim S1 ≤ aff_dim S2"
using * aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2]
aff_dim_subset[of "affine hull S1" "affine hull S2"]
by auto
moreover
{
assume eq: "aff_dim S1 = aff_dim S2"
then have "S1 ≠ {}"
using aff_dim_empty[of S1] aff_dim_empty[of S2] ‹S2 ≠ {}› by auto
have **: "affine hull S1 = affine hull S2"
apply (rule affine_dim_equal)
using * affine_affine_hull
apply auto
using ‹S1 ≠ {}› hull_subset[of S1]
apply auto
using eq aff_dim_affine_hull[of S1] aff_dim_affine_hull[of S2]
apply auto
done
obtain a where a: "a ∈ rel_interior S1"
using ‹S1 ≠ {}› rel_interior_eq_empty assms by auto
obtain T where T: "open T" "a ∈ T ∩ S1" "T ∩ affine hull S1 ⊆ S1"
using mem_rel_interior[of a S1] a by auto
then have "a ∈ T ∩ closure S2"
using a assms unfolding rel_frontier_def by auto
then obtain b where b: "b ∈ T ∩ rel_interior S2"
using open_inter_closure_rel_interior[of S2 T] assms T by auto
then have "b ∈ affine hull S1"
using rel_interior_subset hull_subset[of S2] ** by auto
then have "b ∈ S1"
using T b by auto
then have False
using b assms unfolding rel_frontier_def by auto
}
ultimately show ?thesis
using less_le by auto
qed
lemma convex_rel_interior_if:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "z ∈ rel_interior S"
shows "∀x∈affine hull S. ∃m. m > 1 ∧ (∀e. e > 1 ∧ e ≤ m ⟶ (1 - e) *⇩R x + e *⇩R z ∈ S)"
proof -
obtain e1 where e1: "e1 > 0 ∧ cball z e1 ∩ affine hull S ⊆ S"
using mem_rel_interior_cball[of z S] assms by auto
{
fix x
assume x: "x ∈ affine hull S"
{
assume "x ≠ z"
def m ≡ "1 + e1/norm(x-z)"
hence "m > 1" using e1 ‹x ≠ z› by auto
{
fix e
assume e: "e > 1 ∧ e ≤ m"
have "z ∈ affine hull S"
using assms rel_interior_subset hull_subset[of S] by auto
then have *: "(1 - e)*⇩R x + e *⇩R z ∈ affine hull S"
using mem_affine[of "affine hull S" x z "(1-e)" e] affine_affine_hull[of S] x
by auto
have "norm (z + e *⇩R x - (x + e *⇩R z)) = norm ((e - 1) *⇩R (x - z))"
by (simp add: algebra_simps)
also have "… = (e - 1) * norm (x-z)"
using norm_scaleR e by auto
also have "… ≤ (m - 1) * norm (x - z)"
using e mult_right_mono[of _ _ "norm(x-z)"] by auto
also have "… = (e1 / norm (x - z)) * norm (x - z)"
using m_def by auto
also have "… = e1"
using ‹x ≠ z› e1 by simp
finally have **: "norm (z + e *⇩R x - (x + e *⇩R z)) ≤ e1"
by auto
have "(1 - e)*⇩R x+ e *⇩R z ∈ cball z e1"
using m_def **
unfolding cball_def dist_norm
by (auto simp add: algebra_simps)
then have "(1 - e) *⇩R x+ e *⇩R z ∈ S"
using e * e1 by auto
}
then have "∃m. m > 1 ∧ (∀e. e > 1 ∧ e ≤ m ⟶ (1 - e) *⇩R x + e *⇩R z ∈ S )"
using ‹m> 1 › by auto
}
moreover
{
assume "x = z"
def m ≡ "1 + e1"
then have "m > 1"
using e1 by auto
{
fix e
assume e: "e > 1 ∧ e ≤ m"
then have "(1 - e) *⇩R x + e *⇩R z ∈ S"
using e1 x ‹x = z› by (auto simp add: algebra_simps)
then have "(1 - e) *⇩R x + e *⇩R z ∈ S"
using e by auto
}
then have "∃m. m > 1 ∧ (∀e. e > 1 ∧ e ≤ m ⟶ (1 - e) *⇩R x + e *⇩R z ∈ S)"
using ‹m > 1› by auto
}
ultimately have "∃m. m > 1 ∧ (∀e. e > 1 ∧ e ≤ m ⟶ (1 - e) *⇩R x + e *⇩R z ∈ S )"
by blast
}
then show ?thesis by auto
qed
lemma convex_rel_interior_if2:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
assumes "z ∈ rel_interior S"
shows "∀x∈affine hull S. ∃e. e > 1 ∧ (1 - e)*⇩R x + e *⇩R z ∈ S"
using convex_rel_interior_if[of S z] assms by auto
lemma convex_rel_interior_only_if:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "S ≠ {}"
assumes "∀x∈S. ∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S"
shows "z ∈ rel_interior S"
proof -
obtain x where x: "x ∈ rel_interior S"
using rel_interior_eq_empty assms by auto
then have "x ∈ S"
using rel_interior_subset by auto
then obtain e where e: "e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S"
using assms by auto
def y ≡ "(1 - e) *⇩R x + e *⇩R z"
then have "y ∈ S" using e by auto
def e1 ≡ "1/e"
then have "0 < e1 ∧ e1 < 1" using e by auto
then have "z =y - (1 - e1) *⇩R (y - x)"
using e1_def y_def by (auto simp add: algebra_simps)
then show ?thesis
using rel_interior_convex_shrink[of S x y "1-e1"] ‹0 < e1 ∧ e1 < 1› ‹y ∈ S› x assms
by auto
qed
lemma convex_rel_interior_iff:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "S ≠ {}"
shows "z ∈ rel_interior S ⟷ (∀x∈S. ∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S)"
using assms hull_subset[of S "affine"]
convex_rel_interior_if[of S z] convex_rel_interior_only_if[of S z]
by auto
lemma convex_rel_interior_iff2:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "S ≠ {}"
shows "z ∈ rel_interior S ⟷ (∀x∈affine hull S. ∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S)"
using assms hull_subset[of S] convex_rel_interior_if2[of S z] convex_rel_interior_only_if[of S z]
by auto
lemma convex_interior_iff:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "z ∈ interior S ⟷ (∀x. ∃e. e > 0 ∧ z + e *⇩R x ∈ S)"
proof (cases "aff_dim S = int DIM('n)")
case False
{
assume "z ∈ interior S"
then have False
using False interior_rel_interior_gen[of S] by auto
}
moreover
{
assume r: "∀x. ∃e. e > 0 ∧ z + e *⇩R x ∈ S"
{
fix x
obtain e1 where e1: "e1 > 0 ∧ z + e1 *⇩R (x - z) ∈ S"
using r by auto
obtain e2 where e2: "e2 > 0 ∧ z + e2 *⇩R (z - x) ∈ S"
using r by auto
def x1 ≡ "z + e1 *⇩R (x - z)"
then have x1: "x1 ∈ affine hull S"
using e1 hull_subset[of S] by auto
def x2 ≡ "z + e2 *⇩R (z - x)"
then have x2: "x2 ∈ affine hull S"
using e2 hull_subset[of S] by auto
have *: "e1/(e1+e2) + e2/(e1+e2) = 1"
using add_divide_distrib[of e1 e2 "e1+e2"] e1 e2 by simp
then have "z = (e2/(e1+e2)) *⇩R x1 + (e1/(e1+e2)) *⇩R x2"
using x1_def x2_def
apply (auto simp add: algebra_simps)
using scaleR_left_distrib[of "e1/(e1+e2)" "e2/(e1+e2)" z]
apply auto
done
then have z: "z ∈ affine hull S"
using mem_affine[of "affine hull S" x1 x2 "e2/(e1+e2)" "e1/(e1+e2)"]
x1 x2 affine_affine_hull[of S] *
by auto
have "x1 - x2 = (e1 + e2) *⇩R (x - z)"
using x1_def x2_def by (auto simp add: algebra_simps)
then have "x = z+(1/(e1+e2)) *⇩R (x1-x2)"
using e1 e2 by simp
then have "x ∈ affine hull S"
using mem_affine_3_minus[of "affine hull S" z x1 x2 "1/(e1+e2)"]
x1 x2 z affine_affine_hull[of S]
by auto
}
then have "affine hull S = UNIV"
by auto
then have "aff_dim S = int DIM('n)"
using aff_dim_affine_hull[of S] by (simp add: aff_dim_univ)
then have False
using False by auto
}
ultimately show ?thesis by auto
next
case True
then have "S ≠ {}"
using aff_dim_empty[of S] by auto
have *: "affine hull S = UNIV"
using True affine_hull_univ by auto
{
assume "z ∈ interior S"
then have "z ∈ rel_interior S"
using True interior_rel_interior_gen[of S] by auto
then have **: "∀x. ∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S"
using convex_rel_interior_iff2[of S z] assms ‹S ≠ {}› * by auto
fix x
obtain e1 where e1: "e1 > 1" "(1 - e1) *⇩R (z - x) + e1 *⇩R z ∈ S"
using **[rule_format, of "z-x"] by auto
def e ≡ "e1 - 1"
then have "(1 - e1) *⇩R (z - x) + e1 *⇩R z = z + e *⇩R x"
by (simp add: algebra_simps)
then have "e > 0" "z + e *⇩R x ∈ S"
using e1 e_def by auto
then have "∃e. e > 0 ∧ z + e *⇩R x ∈ S"
by auto
}
moreover
{
assume r: "∀x. ∃e. e > 0 ∧ z + e *⇩R x ∈ S"
{
fix x
obtain e1 where e1: "e1 > 0" "z + e1 *⇩R (z - x) ∈ S"
using r[rule_format, of "z-x"] by auto
def e ≡ "e1 + 1"
then have "z + e1 *⇩R (z - x) = (1 - e) *⇩R x + e *⇩R z"
by (simp add: algebra_simps)
then have "e > 1" "(1 - e)*⇩R x + e *⇩R z ∈ S"
using e1 e_def by auto
then have "∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ S" by auto
}
then have "z ∈ rel_interior S"
using convex_rel_interior_iff2[of S z] assms ‹S ≠ {}› by auto
then have "z ∈ interior S"
using True interior_rel_interior_gen[of S] by auto
}
ultimately show ?thesis by auto
qed
subsubsection ‹Relative interior and closure under common operations›
lemma rel_interior_inter_aux: "⋂{rel_interior S |S. S : I} ⊆ ⋂I"
proof -
{
fix y
assume "y ∈ ⋂{rel_interior S |S. S : I}"
then have y: "∀S ∈ I. y ∈ rel_interior S"
by auto
{
fix S
assume "S ∈ I"
then have "y ∈ S"
using rel_interior_subset y by auto
}
then have "y ∈ ⋂I" by auto
}
then show ?thesis by auto
qed
lemma closure_inter: "closure (⋂I) ≤ ⋂{closure S |S. S ∈ I}"
proof -
{
fix y
assume "y ∈ ⋂I"
then have y: "∀S ∈ I. y ∈ S" by auto
{
fix S
assume "S ∈ I"
then have "y ∈ closure S"
using closure_subset y by auto
}
then have "y ∈ ⋂{closure S |S. S ∈ I}"
by auto
}
then have "⋂I ⊆ ⋂{closure S |S. S ∈ I}"
by auto
moreover have "closed (⋂{closure S |S. S ∈ I})"
unfolding closed_Inter closed_closure by auto
ultimately show ?thesis using closure_hull[of "⋂I"]
hull_minimal[of "⋂I" "⋂{closure S |S. S ∈ I}" "closed"] by auto
qed
lemma convex_closure_rel_interior_inter:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set)"
and "⋂{rel_interior S |S. S ∈ I} ≠ {}"
shows "⋂{closure S |S. S ∈ I} ≤ closure (⋂{rel_interior S |S. S ∈ I})"
proof -
obtain x where x: "∀S∈I. x ∈ rel_interior S"
using assms by auto
{
fix y
assume "y ∈ ⋂{closure S |S. S ∈ I}"
then have y: "∀S ∈ I. y ∈ closure S"
by auto
{
assume "y = x"
then have "y ∈ closure (⋂{rel_interior S |S. S ∈ I})"
using x closure_subset[of "⋂{rel_interior S |S. S ∈ I}"] by auto
}
moreover
{
assume "y ≠ x"
{ fix e :: real
assume e: "e > 0"
def e1 ≡ "min 1 (e/norm (y - x))"
then have e1: "e1 > 0" "e1 ≤ 1" "e1 * norm (y - x) ≤ e"
using ‹y ≠ x› ‹e > 0› le_divide_eq[of e1 e "norm (y - x)"]
by simp_all
def z ≡ "y - e1 *⇩R (y - x)"
{
fix S
assume "S ∈ I"
then have "z ∈ rel_interior S"
using rel_interior_closure_convex_shrink[of S x y e1] assms x y e1 z_def
by auto
}
then have *: "z ∈ ⋂{rel_interior S |S. S ∈ I}"
by auto
have "∃z. z ∈ ⋂{rel_interior S |S. S ∈ I} ∧ z ≠ y ∧ dist z y ≤ e"
apply (rule_tac x="z" in exI)
using ‹y ≠ x› z_def * e1 e dist_norm[of z y]
apply simp
done
}
then have "y islimpt ⋂{rel_interior S |S. S ∈ I}"
unfolding islimpt_approachable_le by blast
then have "y ∈ closure (⋂{rel_interior S |S. S ∈ I})"
unfolding closure_def by auto
}
ultimately have "y ∈ closure (⋂{rel_interior S |S. S ∈ I})"
by auto
}
then show ?thesis by auto
qed
lemma convex_closure_inter:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set)"
and "⋂{rel_interior S |S. S ∈ I} ≠ {}"
shows "closure (⋂I) = ⋂{closure S |S. S ∈ I}"
proof -
have "⋂{closure S |S. S ∈ I} ≤ closure (⋂{rel_interior S |S. S ∈ I})"
using convex_closure_rel_interior_inter assms by auto
moreover
have "closure (⋂{rel_interior S |S. S ∈ I}) ≤ closure (⋂I)"
using rel_interior_inter_aux closure_mono[of "⋂{rel_interior S |S. S ∈ I}" "⋂I"]
by auto
ultimately show ?thesis
using closure_inter[of I] by auto
qed
lemma convex_inter_rel_interior_same_closure:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set)"
and "⋂{rel_interior S |S. S ∈ I} ≠ {}"
shows "closure (⋂{rel_interior S |S. S ∈ I}) = closure (⋂I)"
proof -
have "⋂{closure S |S. S ∈ I} ≤ closure (⋂{rel_interior S |S. S ∈ I})"
using convex_closure_rel_interior_inter assms by auto
moreover
have "closure (⋂{rel_interior S |S. S ∈ I}) ≤ closure (⋂I)"
using rel_interior_inter_aux closure_mono[of "⋂{rel_interior S |S. S ∈ I}" "⋂I"]
by auto
ultimately show ?thesis
using closure_inter[of I] by auto
qed
lemma convex_rel_interior_inter:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set)"
and "⋂{rel_interior S |S. S ∈ I} ≠ {}"
shows "rel_interior (⋂I) ⊆ ⋂{rel_interior S |S. S ∈ I}"
proof -
have "convex (⋂I)"
using assms convex_Inter by auto
moreover
have "convex (⋂{rel_interior S |S. S ∈ I})"
apply (rule convex_Inter)
using assms convex_rel_interior
apply auto
done
ultimately
have "rel_interior (⋂{rel_interior S |S. S ∈ I}) = rel_interior (⋂I)"
using convex_inter_rel_interior_same_closure assms
closure_eq_rel_interior_eq[of "⋂{rel_interior S |S. S ∈ I}" "⋂I"]
by blast
then show ?thesis
using rel_interior_subset[of "⋂{rel_interior S |S. S ∈ I}"] by auto
qed
lemma convex_rel_interior_finite_inter:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set)"
and "⋂{rel_interior S |S. S ∈ I} ≠ {}"
and "finite I"
shows "rel_interior (⋂I) = ⋂{rel_interior S |S. S ∈ I}"
proof -
have "⋂I ≠ {}"
using assms rel_interior_inter_aux[of I] by auto
have "convex (⋂I)"
using convex_Inter assms by auto
show ?thesis
proof (cases "I = {}")
case True
then show ?thesis
using Inter_empty rel_interior_univ2 by auto
next
case False
{
fix z
assume z: "z ∈ ⋂{rel_interior S |S. S ∈ I}"
{
fix x
assume x: "x ∈ ⋂I"
{
fix S
assume S: "S ∈ I"
then have "z ∈ rel_interior S" "x ∈ S"
using z x by auto
then have "∃m. m > 1 ∧ (∀e. e > 1 ∧ e ≤ m ⟶ (1 - e)*⇩R x + e *⇩R z ∈ S)"
using convex_rel_interior_if[of S z] S assms hull_subset[of S] by auto
}
then obtain mS where
mS: "∀S∈I. mS S > 1 ∧ (∀e. e > 1 ∧ e ≤ mS S ⟶ (1 - e) *⇩R x + e *⇩R z ∈ S)" by metis
def e ≡ "Min (mS ` I)"
then have "e ∈ mS ` I" using assms ‹I ≠ {}› by simp
then have "e > 1" using mS by auto
moreover have "∀S∈I. e ≤ mS S"
using e_def assms by auto
ultimately have "∃e > 1. (1 - e) *⇩R x + e *⇩R z ∈ ⋂I"
using mS by auto
}
then have "z ∈ rel_interior (⋂I)"
using convex_rel_interior_iff[of "⋂I" z] ‹⋂I ≠ {}› ‹convex (⋂I)› by auto
}
then show ?thesis
using convex_rel_interior_inter[of I] assms by auto
qed
qed
lemma convex_closure_inter_two:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "convex T"
assumes "rel_interior S ∩ rel_interior T ≠ {}"
shows "closure (S ∩ T) = closure S ∩ closure T"
using convex_closure_inter[of "{S,T}"] assms by auto
lemma convex_rel_interior_inter_two:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "convex T"
and "rel_interior S ∩ rel_interior T ≠ {}"
shows "rel_interior (S ∩ T) = rel_interior S ∩ rel_interior T"
using convex_rel_interior_finite_inter[of "{S,T}"] assms by auto
lemma convex_affine_closure_inter:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "affine T"
and "rel_interior S ∩ T ≠ {}"
shows "closure (S ∩ T) = closure S ∩ T"
proof -
have "affine hull T = T"
using assms by auto
then have "rel_interior T = T"
using rel_interior_univ[of T] by metis
moreover have "closure T = T"
using assms affine_closed[of T] by auto
ultimately show ?thesis
using convex_closure_inter_two[of S T] assms affine_imp_convex by auto
qed
lemma connected_component_1_gen:
fixes S :: "'a :: euclidean_space set"
assumes "DIM('a) = 1"
shows "connected_component S a b ⟷ closed_segment a b ⊆ S"
unfolding connected_component_def
by (metis (no_types, lifting) assms subsetD subsetI convex_contains_segment convex_segment(1)
ends_in_segment connected_convex_1_gen)
lemma connected_component_1:
fixes S :: "real set"
shows "connected_component S a b ⟷ closed_segment a b ⊆ S"
by (simp add: connected_component_1_gen)
lemma convex_affine_rel_interior_inter:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "affine T"
and "rel_interior S ∩ T ≠ {}"
shows "rel_interior (S ∩ T) = rel_interior S ∩ T"
proof -
have "affine hull T = T"
using assms by auto
then have "rel_interior T = T"
using rel_interior_univ[of T] by metis
moreover have "closure T = T"
using assms affine_closed[of T] by auto
ultimately show ?thesis
using convex_rel_interior_inter_two[of S T] assms affine_imp_convex by auto
qed
lemma subset_rel_interior_convex:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "convex T"
and "S ≤ closure T"
and "¬ S ⊆ rel_frontier T"
shows "rel_interior S ⊆ rel_interior T"
proof -
have *: "S ∩ closure T = S"
using assms by auto
have "¬ rel_interior S ⊆ rel_frontier T"
using closure_mono[of "rel_interior S" "rel_frontier T"] closed_rel_frontier[of T]
closure_closed[of S] convex_closure_rel_interior[of S] closure_subset[of S] assms
by auto
then have "rel_interior S ∩ rel_interior (closure T) ≠ {}"
using assms rel_frontier_def[of T] rel_interior_subset convex_rel_interior_closure[of T]
by auto
then have "rel_interior S ∩ rel_interior T = rel_interior (S ∩ closure T)"
using assms convex_closure convex_rel_interior_inter_two[of S "closure T"]
convex_rel_interior_closure[of T]
by auto
also have "… = rel_interior S"
using * by auto
finally show ?thesis
by auto
qed
lemma rel_interior_convex_linear_image:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes "linear f"
and "convex S"
shows "f ` (rel_interior S) = rel_interior (f ` S)"
proof (cases "S = {}")
case True
then show ?thesis
using assms rel_interior_empty rel_interior_eq_empty by auto
next
case False
have *: "f ` (rel_interior S) ⊆ f ` S"
unfolding image_mono using rel_interior_subset by auto
have "f ` S ⊆ f ` (closure S)"
unfolding image_mono using closure_subset by auto
also have "… = f ` (closure (rel_interior S))"
using convex_closure_rel_interior assms by auto
also have "… ⊆ closure (f ` (rel_interior S))"
using closure_linear_image_subset assms by auto
finally have "closure (f ` S) = closure (f ` rel_interior S)"
using closure_mono[of "f ` S" "closure (f ` rel_interior S)"] closure_closure
closure_mono[of "f ` rel_interior S" "f ` S"] *
by auto
then have "rel_interior (f ` S) = rel_interior (f ` rel_interior S)"
using assms convex_rel_interior
linear_conv_bounded_linear[of f] convex_linear_image[of _ S]
convex_linear_image[of _ "rel_interior S"]
closure_eq_rel_interior_eq[of "f ` S" "f ` rel_interior S"]
by auto
then have "rel_interior (f ` S) ⊆ f ` rel_interior S"
using rel_interior_subset by auto
moreover
{
fix z
assume "z ∈ f ` rel_interior S"
then obtain z1 where z1: "z1 ∈ rel_interior S" "f z1 = z" by auto
{
fix x
assume "x ∈ f ` S"
then obtain x1 where x1: "x1 ∈ S" "f x1 = x" by auto
then obtain e where e: "e > 1" "(1 - e) *⇩R x1 + e *⇩R z1 : S"
using convex_rel_interior_iff[of S z1] ‹convex S› x1 z1 by auto
moreover have "f ((1 - e) *⇩R x1 + e *⇩R z1) = (1 - e) *⇩R x + e *⇩R z"
using x1 z1 ‹linear f› by (simp add: linear_add_cmul)
ultimately have "(1 - e) *⇩R x + e *⇩R z : f ` S"
using imageI[of "(1 - e) *⇩R x1 + e *⇩R z1" S f] by auto
then have "∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z : f ` S"
using e by auto
}
then have "z ∈ rel_interior (f ` S)"
using convex_rel_interior_iff[of "f ` S" z] ‹convex S›
‹linear f› ‹S ≠ {}› convex_linear_image[of f S] linear_conv_bounded_linear[of f]
by auto
}
ultimately show ?thesis by auto
qed
lemma rel_interior_convex_linear_preimage:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes "linear f"
and "convex S"
and "f -` (rel_interior S) ≠ {}"
shows "rel_interior (f -` S) = f -` (rel_interior S)"
proof -
have "S ≠ {}"
using assms rel_interior_empty by auto
have nonemp: "f -` S ≠ {}"
by (metis assms(3) rel_interior_subset subset_empty vimage_mono)
then have "S ∩ (range f) ≠ {}"
by auto
have conv: "convex (f -` S)"
using convex_linear_vimage assms by auto
then have "convex (S ∩ range f)"
by (metis assms(1) assms(2) convex_Int subspace_UNIV subspace_imp_convex subspace_linear_image)
{
fix z
assume "z ∈ f -` (rel_interior S)"
then have z: "f z : rel_interior S"
by auto
{
fix x
assume "x ∈ f -` S"
then have "f x ∈ S" by auto
then obtain e where e: "e > 1" "(1 - e) *⇩R f x + e *⇩R f z ∈ S"
using convex_rel_interior_iff[of S "f z"] z assms ‹S ≠ {}› by auto
moreover have "(1 - e) *⇩R f x + e *⇩R f z = f ((1 - e) *⇩R x + e *⇩R z)"
using ‹linear f› by (simp add: linear_iff)
ultimately have "∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R z ∈ f -` S"
using e by auto
}
then have "z ∈ rel_interior (f -` S)"
using convex_rel_interior_iff[of "f -` S" z] conv nonemp by auto
}
moreover
{
fix z
assume z: "z ∈ rel_interior (f -` S)"
{
fix x
assume "x ∈ S ∩ range f"
then obtain y where y: "f y = x" "y ∈ f -` S" by auto
then obtain e where e: "e > 1" "(1 - e) *⇩R y + e *⇩R z ∈ f -` S"
using convex_rel_interior_iff[of "f -` S" z] z conv by auto
moreover have "(1 - e) *⇩R x + e *⇩R f z = f ((1 - e) *⇩R y + e *⇩R z)"
using ‹linear f› y by (simp add: linear_iff)
ultimately have "∃e. e > 1 ∧ (1 - e) *⇩R x + e *⇩R f z ∈ S ∩ range f"
using e by auto
}
then have "f z ∈ rel_interior (S ∩ range f)"
using ‹convex (S ∩ (range f))› ‹S ∩ range f ≠ {}›
convex_rel_interior_iff[of "S ∩ (range f)" "f z"]
by auto
moreover have "affine (range f)"
by (metis assms(1) subspace_UNIV subspace_imp_affine subspace_linear_image)
ultimately have "f z ∈ rel_interior S"
using convex_affine_rel_interior_inter[of S "range f"] assms by auto
then have "z ∈ f -` (rel_interior S)"
by auto
}
ultimately show ?thesis by auto
qed
lemma rel_interior_direct_sum:
fixes S :: "'n::euclidean_space set"
and T :: "'m::euclidean_space set"
assumes "convex S"
and "convex T"
shows "rel_interior (S × T) = rel_interior S × rel_interior T"
proof -
{ assume "S = {}"
then have ?thesis
by auto
}
moreover
{ assume "T = {}"
then have ?thesis
by auto
}
moreover
{
assume "S ≠ {}" "T ≠ {}"
then have ri: "rel_interior S ≠ {}" "rel_interior T ≠ {}"
using rel_interior_eq_empty assms by auto
then have "fst -` rel_interior S ≠ {}"
using fst_vimage_eq_Times[of "rel_interior S"] by auto
then have "rel_interior ((fst :: 'n * 'm ⇒ 'n) -` S) = fst -` rel_interior S"
using fst_linear ‹convex S› rel_interior_convex_linear_preimage[of fst S] by auto
then have s: "rel_interior (S × (UNIV :: 'm set)) = rel_interior S × UNIV"
by (simp add: fst_vimage_eq_Times)
from ri have "snd -` rel_interior T ≠ {}"
using snd_vimage_eq_Times[of "rel_interior T"] by auto
then have "rel_interior ((snd :: 'n * 'm ⇒ 'm) -` T) = snd -` rel_interior T"
using snd_linear ‹convex T› rel_interior_convex_linear_preimage[of snd T] by auto
then have t: "rel_interior ((UNIV :: 'n set) × T) = UNIV × rel_interior T"
by (simp add: snd_vimage_eq_Times)
from s t have *: "rel_interior (S × (UNIV :: 'm set)) ∩ rel_interior ((UNIV :: 'n set) × T) =
rel_interior S × rel_interior T" by auto
have "S × T = S × (UNIV :: 'm set) ∩ (UNIV :: 'n set) × T"
by auto
then have "rel_interior (S × T) = rel_interior ((S × (UNIV :: 'm set)) ∩ ((UNIV :: 'n set) × T))"
by auto
also have "… = rel_interior (S × (UNIV :: 'm set)) ∩ rel_interior ((UNIV :: 'n set) × T)"
apply (subst convex_rel_interior_inter_two[of "S × (UNIV :: 'm set)" "(UNIV :: 'n set) × T"])
using * ri assms convex_Times
apply auto
done
finally have ?thesis using * by auto
}
ultimately show ?thesis by blast
qed
lemma rel_interior_scaleR:
fixes S :: "'n::euclidean_space set"
assumes "c ≠ 0"
shows "(op *⇩R c) ` (rel_interior S) = rel_interior ((op *⇩R c) ` S)"
using rel_interior_injective_linear_image[of "(op *⇩R c)" S]
linear_conv_bounded_linear[of "op *⇩R c"] linear_scaleR injective_scaleR[of c] assms
by auto
lemma rel_interior_convex_scaleR:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "(op *⇩R c) ` (rel_interior S) = rel_interior ((op *⇩R c) ` S)"
by (metis assms linear_scaleR rel_interior_convex_linear_image)
lemma convex_rel_open_scaleR:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
and "rel_open S"
shows "convex ((op *⇩R c) ` S) ∧ rel_open ((op *⇩R c) ` S)"
by (metis assms convex_scaling rel_interior_convex_scaleR rel_open_def)
lemma convex_rel_open_finite_inter:
assumes "∀S∈I. convex (S :: 'n::euclidean_space set) ∧ rel_open S"
and "finite I"
shows "convex (⋂I) ∧ rel_open (⋂I)"
proof (cases "⋂{rel_interior S |S. S ∈ I} = {}")
case True
then have "⋂I = {}"
using assms unfolding rel_open_def by auto
then show ?thesis
unfolding rel_open_def using rel_interior_empty by auto
next
case False
then have "rel_open (⋂I)"
using assms unfolding rel_open_def
using convex_rel_interior_finite_inter[of I]
by auto
then show ?thesis
using convex_Inter assms by auto
qed
lemma convex_rel_open_linear_image:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes "linear f"
and "convex S"
and "rel_open S"
shows "convex (f ` S) ∧ rel_open (f ` S)"
by (metis assms convex_linear_image rel_interior_convex_linear_image rel_open_def)
lemma convex_rel_open_linear_preimage:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes "linear f"
and "convex S"
and "rel_open S"
shows "convex (f -` S) ∧ rel_open (f -` S)"
proof (cases "f -` (rel_interior S) = {}")
case True
then have "f -` S = {}"
using assms unfolding rel_open_def by auto
then show ?thesis
unfolding rel_open_def using rel_interior_empty by auto
next
case False
then have "rel_open (f -` S)"
using assms unfolding rel_open_def
using rel_interior_convex_linear_preimage[of f S]
by auto
then show ?thesis
using convex_linear_vimage assms
by auto
qed
lemma rel_interior_projection:
fixes S :: "('m::euclidean_space × 'n::euclidean_space) set"
and f :: "'m::euclidean_space ⇒ 'n::euclidean_space set"
assumes "convex S"
and "f = (λy. {z. (y, z) ∈ S})"
shows "(y, z) ∈ rel_interior S ⟷ (y ∈ rel_interior {y. (f y ≠ {})} ∧ z ∈ rel_interior (f y))"
proof -
{
fix y
assume "y ∈ {y. f y ≠ {}}"
then obtain z where "(y, z) ∈ S"
using assms by auto
then have "∃x. x ∈ S ∧ y = fst x"
apply (rule_tac x="(y, z)" in exI)
apply auto
done
then obtain x where "x ∈ S" "y = fst x"
by blast
then have "y ∈ fst ` S"
unfolding image_def by auto
}
then have "fst ` S = {y. f y ≠ {}}"
unfolding fst_def using assms by auto
then have h1: "fst ` rel_interior S = rel_interior {y. f y ≠ {}}"
using rel_interior_convex_linear_image[of fst S] assms fst_linear by auto
{
fix y
assume "y ∈ rel_interior {y. f y ≠ {}}"
then have "y ∈ fst ` rel_interior S"
using h1 by auto
then have *: "rel_interior S ∩ fst -` {y} ≠ {}"
by auto
moreover have aff: "affine (fst -` {y})"
unfolding affine_alt by (simp add: algebra_simps)
ultimately have **: "rel_interior (S ∩ fst -` {y}) = rel_interior S ∩ fst -` {y}"
using convex_affine_rel_interior_inter[of S "fst -` {y}"] assms by auto
have conv: "convex (S ∩ fst -` {y})"
using convex_Int assms aff affine_imp_convex by auto
{
fix x
assume "x ∈ f y"
then have "(y, x) ∈ S ∩ (fst -` {y})"
using assms by auto
moreover have "x = snd (y, x)" by auto
ultimately have "x ∈ snd ` (S ∩ fst -` {y})"
by blast
}
then have "snd ` (S ∩ fst -` {y}) = f y"
using assms by auto
then have ***: "rel_interior (f y) = snd ` rel_interior (S ∩ fst -` {y})"
using rel_interior_convex_linear_image[of snd "S ∩ fst -` {y}"] snd_linear conv
by auto
{
fix z
assume "z ∈ rel_interior (f y)"
then have "z ∈ snd ` rel_interior (S ∩ fst -` {y})"
using *** by auto
moreover have "{y} = fst ` rel_interior (S ∩ fst -` {y})"
using * ** rel_interior_subset by auto
ultimately have "(y, z) ∈ rel_interior (S ∩ fst -` {y})"
by force
then have "(y,z) ∈ rel_interior S"
using ** by auto
}
moreover
{
fix z
assume "(y, z) ∈ rel_interior S"
then have "(y, z) ∈ rel_interior (S ∩ fst -` {y})"
using ** by auto
then have "z ∈ snd ` rel_interior (S ∩ fst -` {y})"
by (metis Range_iff snd_eq_Range)
then have "z ∈ rel_interior (f y)"
using *** by auto
}
ultimately have "⋀z. (y, z) ∈ rel_interior S ⟷ z ∈ rel_interior (f y)"
by auto
}
then have h2: "⋀y z. y ∈ rel_interior {t. f t ≠ {}} ⟹
(y, z) ∈ rel_interior S ⟷ z ∈ rel_interior (f y)"
by auto
{
fix y z
assume asm: "(y, z) ∈ rel_interior S"
then have "y ∈ fst ` rel_interior S"
by (metis Domain_iff fst_eq_Domain)
then have "y ∈ rel_interior {t. f t ≠ {}}"
using h1 by auto
then have "y ∈ rel_interior {t. f t ≠ {}}" and "(z : rel_interior (f y))"
using h2 asm by auto
}
then show ?thesis using h2 by blast
qed
subsubsection ‹Relative interior of convex cone›
lemma cone_rel_interior:
fixes S :: "'m::euclidean_space set"
assumes "cone S"
shows "cone ({0} ∪ rel_interior S)"
proof (cases "S = {}")
case True
then show ?thesis
by (simp add: rel_interior_empty cone_0)
next
case False
then have *: "0 ∈ S ∧ (∀c. c > 0 ⟶ op *⇩R c ` S = S)"
using cone_iff[of S] assms by auto
then have *: "0 ∈ ({0} ∪ rel_interior S)"
and "∀c. c > 0 ⟶ op *⇩R c ` ({0} ∪ rel_interior S) = ({0} ∪ rel_interior S)"
by (auto simp add: rel_interior_scaleR)
then show ?thesis
using cone_iff[of "{0} ∪ rel_interior S"] by auto
qed
lemma rel_interior_convex_cone_aux:
fixes S :: "'m::euclidean_space set"
assumes "convex S"
shows "(c, x) ∈ rel_interior (cone hull ({(1 :: real)} × S)) ⟷
c > 0 ∧ x ∈ ((op *⇩R c) ` (rel_interior S))"
proof (cases "S = {}")
case True
then show ?thesis
by (simp add: rel_interior_empty cone_hull_empty)
next
case False
then obtain s where "s ∈ S" by auto
have conv: "convex ({(1 :: real)} × S)"
using convex_Times[of "{(1 :: real)}" S] assms convex_singleton[of "1 :: real"]
by auto
def f ≡ "λy. {z. (y, z) ∈ cone hull ({1 :: real} × S)}"
then have *: "(c, x) ∈ rel_interior (cone hull ({(1 :: real)} × S)) =
(c ∈ rel_interior {y. f y ≠ {}} ∧ x ∈ rel_interior (f c))"
apply (subst rel_interior_projection[of "cone hull ({(1 :: real)} × S)" f c x])
using convex_cone_hull[of "{(1 :: real)} × S"] conv
apply auto
done
{
fix y :: real
assume "y ≥ 0"
then have "y *⇩R (1,s) ∈ cone hull ({1 :: real} × S)"
using cone_hull_expl[of "{(1 :: real)} × S"] ‹s ∈ S› by auto
then have "f y ≠ {}"
using f_def by auto
}
then have "{y. f y ≠ {}} = {0..}"
using f_def cone_hull_expl[of "{1 :: real} × S"] by auto
then have **: "rel_interior {y. f y ≠ {}} = {0<..}"
using rel_interior_real_semiline by auto
{
fix c :: real
assume "c > 0"
then have "f c = (op *⇩R c ` S)"
using f_def cone_hull_expl[of "{1 :: real} × S"] by auto
then have "rel_interior (f c) = op *⇩R c ` rel_interior S"
using rel_interior_convex_scaleR[of S c] assms by auto
}
then show ?thesis using * ** by auto
qed
lemma rel_interior_convex_cone:
fixes S :: "'m::euclidean_space set"
assumes "convex S"
shows "rel_interior (cone hull ({1 :: real} × S)) =
{(c, c *⇩R x) | c x. c > 0 ∧ x ∈ rel_interior S}"
(is "?lhs = ?rhs")
proof -
{
fix z
assume "z ∈ ?lhs"
have *: "z = (fst z, snd z)"
by auto
have "z ∈ ?rhs"
using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms ‹z ∈ ?lhs›
apply auto
apply (rule_tac x = "fst z" in exI)
apply (rule_tac x = x in exI)
using *
apply auto
done
}
moreover
{
fix z
assume "z ∈ ?rhs"
then have "z ∈ ?lhs"
using rel_interior_convex_cone_aux[of S "fst z" "snd z"] assms
by auto
}
ultimately show ?thesis by blast
qed
lemma convex_hull_finite_union:
assumes "finite I"
assumes "∀i∈I. convex (S i) ∧ (S i) ≠ {}"
shows "convex hull (⋃(S ` I)) =
{setsum (λi. c i *⇩R s i) I | c s. (∀i∈I. c i ≥ 0) ∧ setsum c I = 1 ∧ (∀i∈I. s i ∈ S i)}"
(is "?lhs = ?rhs")
proof -
have "?lhs ⊇ ?rhs"
proof
fix x
assume "x : ?rhs"
then obtain c s where *: "setsum (λi. c i *⇩R s i) I = x" "setsum c I = 1"
"(∀i∈I. c i ≥ 0) ∧ (∀i∈I. s i ∈ S i)" by auto
then have "∀i∈I. s i ∈ convex hull (⋃(S ` I))"
using hull_subset[of "⋃(S ` I)" convex] by auto
then show "x ∈ ?lhs"
unfolding *(1)[symmetric]
apply (subst convex_setsum[of I "convex hull ⋃(S ` I)" c s])
using * assms convex_convex_hull
apply auto
done
qed
{
fix i
assume "i ∈ I"
with assms have "∃p. p ∈ S i" by auto
}
then obtain p where p: "∀i∈I. p i ∈ S i" by metis
{
fix i
assume "i ∈ I"
{
fix x
assume "x ∈ S i"
def c ≡ "λj. if j = i then 1::real else 0"
then have *: "setsum c I = 1"
using ‹finite I› ‹i ∈ I› setsum.delta[of I i "λj::'a. 1::real"]
by auto
def s ≡ "λj. if j = i then x else p j"
then have "∀j. c j *⇩R s j = (if j = i then x else 0)"
using c_def by (auto simp add: algebra_simps)
then have "x = setsum (λi. c i *⇩R s i) I"
using s_def c_def ‹finite I› ‹i ∈ I› setsum.delta[of I i "λj::'a. x"]
by auto
then have "x ∈ ?rhs"
apply auto
apply (rule_tac x = c in exI)
apply (rule_tac x = s in exI)
using * c_def s_def p ‹x ∈ S i›
apply auto
done
}
then have "?rhs ⊇ S i" by auto
}
then have *: "?rhs ⊇ ⋃(S ` I)" by auto
{
fix u v :: real
assume uv: "u ≥ 0 ∧ v ≥ 0 ∧ u + v = 1"
fix x y
assume xy: "x ∈ ?rhs ∧ y ∈ ?rhs"
from xy obtain c s where
xc: "x = setsum (λi. c i *⇩R s i) I ∧ (∀i∈I. c i ≥ 0) ∧ setsum c I = 1 ∧ (∀i∈I. s i ∈ S i)"
by auto
from xy obtain d t where
yc: "y = setsum (λi. d i *⇩R t i) I ∧ (∀i∈I. d i ≥ 0) ∧ setsum d I = 1 ∧ (∀i∈I. t i ∈ S i)"
by auto
def e ≡ "λi. u * c i + v * d i"
have ge0: "∀i∈I. e i ≥ 0"
using e_def xc yc uv by simp
have "setsum (λi. u * c i) I = u * setsum c I"
by (simp add: setsum_right_distrib)
moreover have "setsum (λi. v * d i) I = v * setsum d I"
by (simp add: setsum_right_distrib)
ultimately have sum1: "setsum e I = 1"
using e_def xc yc uv by (simp add: setsum.distrib)
def q ≡ "λi. if e i = 0 then p i else (u * c i / e i) *⇩R s i + (v * d i / e i) *⇩R t i"
{
fix i
assume i: "i ∈ I"
have "q i ∈ S i"
proof (cases "e i = 0")
case True
then show ?thesis using i p q_def by auto
next
case False
then show ?thesis
using mem_convex_alt[of "S i" "s i" "t i" "u * (c i)" "v * (d i)"]
mult_nonneg_nonneg[of u "c i"] mult_nonneg_nonneg[of v "d i"]
assms q_def e_def i False xc yc uv
by (auto simp del: mult_nonneg_nonneg)
qed
}
then have qs: "∀i∈I. q i ∈ S i" by auto
{
fix i
assume i: "i ∈ I"
have "(u * c i) *⇩R s i + (v * d i) *⇩R t i = e i *⇩R q i"
proof (cases "e i = 0")
case True
have ge: "u * (c i) ≥ 0 ∧ v * d i ≥ 0"
using xc yc uv i by simp
moreover from ge have "u * c i ≤ 0 ∧ v * d i ≤ 0"
using True e_def i by simp
ultimately have "u * c i = 0 ∧ v * d i = 0" by auto
with True show ?thesis by auto
next
case False
then have "(u * (c i)/(e i))*⇩R (s i)+(v * (d i)/(e i))*⇩R (t i) = q i"
using q_def by auto
then have "e i *⇩R ((u * (c i)/(e i))*⇩R (s i)+(v * (d i)/(e i))*⇩R (t i))
= (e i) *⇩R (q i)" by auto
with False show ?thesis by (simp add: algebra_simps)
qed
}
then have *: "∀i∈I. (u * c i) *⇩R s i + (v * d i) *⇩R t i = e i *⇩R q i"
by auto
have "u *⇩R x + v *⇩R y = setsum (λi. (u * c i) *⇩R s i + (v * d i) *⇩R t i) I"
using xc yc by (simp add: algebra_simps scaleR_right.setsum setsum.distrib)
also have "… = setsum (λi. e i *⇩R q i) I"
using * by auto
finally have "u *⇩R x + v *⇩R y = setsum (λi. (e i) *⇩R (q i)) I"
by auto
then have "u *⇩R x + v *⇩R y ∈ ?rhs"
using ge0 sum1 qs by auto
}
then have "convex ?rhs" unfolding convex_def by auto
then show ?thesis
using ‹?lhs ⊇ ?rhs› * hull_minimal[of "⋃(S ` I)" ?rhs convex]
by blast
qed
lemma convex_hull_union_two:
fixes S T :: "'m::euclidean_space set"
assumes "convex S"
and "S ≠ {}"
and "convex T"
and "T ≠ {}"
shows "convex hull (S ∪ T) =
{u *⇩R s + v *⇩R t | u v s t. u ≥ 0 ∧ v ≥ 0 ∧ u + v = 1 ∧ s ∈ S ∧ t ∈ T}"
(is "?lhs = ?rhs")
proof
def I ≡ "{1::nat, 2}"
def s ≡ "λi. if i = (1::nat) then S else T"
have "⋃(s ` I) = S ∪ T"
using s_def I_def by auto
then have "convex hull (⋃(s ` I)) = convex hull (S ∪ T)"
by auto
moreover have "convex hull ⋃(s ` I) =
{∑ i∈I. c i *⇩R sa i | c sa. (∀i∈I. 0 ≤ c i) ∧ setsum c I = 1 ∧ (∀i∈I. sa i ∈ s i)}"
apply (subst convex_hull_finite_union[of I s])
using assms s_def I_def
apply auto
done
moreover have
"{∑i∈I. c i *⇩R sa i | c sa. (∀i∈I. 0 ≤ c i) ∧ setsum c I = 1 ∧ (∀i∈I. sa i ∈ s i)} ≤ ?rhs"
using s_def I_def by auto
ultimately show "?lhs ⊆ ?rhs" by auto
{
fix x
assume "x ∈ ?rhs"
then obtain u v s t where *: "x = u *⇩R s + v *⇩R t ∧ u ≥ 0 ∧ v ≥ 0 ∧ u + v = 1 ∧ s ∈ S ∧ t ∈ T"
by auto
then have "x ∈ convex hull {s, t}"
using convex_hull_2[of s t] by auto
then have "x ∈ convex hull (S ∪ T)"
using * hull_mono[of "{s, t}" "S ∪ T"] by auto
}
then show "?lhs ⊇ ?rhs" by blast
qed
subsection ‹Convexity on direct sums›
lemma closure_sum:
fixes S T :: "'a::real_normed_vector set"
shows "closure S + closure T ⊆ closure (S + T)"
unfolding set_plus_image closure_Times [symmetric] split_def
by (intro closure_bounded_linear_image_subset bounded_linear_add
bounded_linear_fst bounded_linear_snd)
lemma rel_interior_sum:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "convex T"
shows "rel_interior (S + T) = rel_interior S + rel_interior T"
proof -
have "rel_interior S + rel_interior T = (λ(x,y). x + y) ` (rel_interior S × rel_interior T)"
by (simp add: set_plus_image)
also have "… = (λ(x,y). x + y) ` rel_interior (S × T)"
using rel_interior_direct_sum assms by auto
also have "… = rel_interior (S + T)"
using fst_snd_linear convex_Times assms
rel_interior_convex_linear_image[of "(λ(x,y). x + y)" "S × T"]
by (auto simp add: set_plus_image)
finally show ?thesis ..
qed
lemma rel_interior_sum_gen:
fixes S :: "'a ⇒ 'n::euclidean_space set"
assumes "∀i∈I. convex (S i)"
shows "rel_interior (setsum S I) = setsum (λi. rel_interior (S i)) I"
apply (subst setsum_set_cond_linear[of convex])
using rel_interior_sum rel_interior_sing[of "0"] assms
apply (auto simp add: convex_set_plus)
done
lemma convex_rel_open_direct_sum:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "rel_open S"
and "convex T"
and "rel_open T"
shows "convex (S × T) ∧ rel_open (S × T)"
by (metis assms convex_Times rel_interior_direct_sum rel_open_def)
lemma convex_rel_open_sum:
fixes S T :: "'n::euclidean_space set"
assumes "convex S"
and "rel_open S"
and "convex T"
and "rel_open T"
shows "convex (S + T) ∧ rel_open (S + T)"
by (metis assms convex_set_plus rel_interior_sum rel_open_def)
lemma convex_hull_finite_union_cones:
assumes "finite I"
and "I ≠ {}"
assumes "∀i∈I. convex (S i) ∧ cone (S i) ∧ S i ≠ {}"
shows "convex hull (⋃(S ` I)) = setsum S I"
(is "?lhs = ?rhs")
proof -
{
fix x
assume "x ∈ ?lhs"
then obtain c xs where
x: "x = setsum (λi. c i *⇩R xs i) I ∧ (∀i∈I. c i ≥ 0) ∧ setsum c I = 1 ∧ (∀i∈I. xs i ∈ S i)"
using convex_hull_finite_union[of I S] assms by auto
def s ≡ "λi. c i *⇩R xs i"
{
fix i
assume "i ∈ I"
then have "s i ∈ S i"
using s_def x assms mem_cone[of "S i" "xs i" "c i"] by auto
}
then have "∀i∈I. s i ∈ S i" by auto
moreover have "x = setsum s I" using x s_def by auto
ultimately have "x ∈ ?rhs"
using set_setsum_alt[of I S] assms by auto
}
moreover
{
fix x
assume "x ∈ ?rhs"
then obtain s where x: "x = setsum s I ∧ (∀i∈I. s i ∈ S i)"
using set_setsum_alt[of I S] assms by auto
def xs ≡ "λi. of_nat(card I) *⇩R s i"
then have "x = setsum (λi. ((1 :: real) / of_nat(card I)) *⇩R xs i) I"
using x assms by auto
moreover have "∀i∈I. xs i ∈ S i"
using x xs_def assms by (simp add: cone_def)
moreover have "∀i∈I. (1 :: real) / of_nat (card I) ≥ 0"
by auto
moreover have "setsum (λi. (1 :: real) / of_nat (card I)) I = 1"
using assms by auto
ultimately have "x ∈ ?lhs"
apply (subst convex_hull_finite_union[of I S])
using assms
apply blast
using assms
apply blast
apply rule
apply (rule_tac x = "(λi. (1 :: real) / of_nat (card I))" in exI)
apply auto
done
}
ultimately show ?thesis by auto
qed
lemma convex_hull_union_cones_two:
fixes S T :: "'m::euclidean_space set"
assumes "convex S"
and "cone S"
and "S ≠ {}"
assumes "convex T"
and "cone T"
and "T ≠ {}"
shows "convex hull (S ∪ T) = S + T"
proof -
def I ≡ "{1::nat, 2}"
def A ≡ "(λi. if i = (1::nat) then S else T)"
have "⋃(A ` I) = S ∪ T"
using A_def I_def by auto
then have "convex hull (⋃(A ` I)) = convex hull (S ∪ T)"
by auto
moreover have "convex hull ⋃(A ` I) = setsum A I"
apply (subst convex_hull_finite_union_cones[of I A])
using assms A_def I_def
apply auto
done
moreover have "setsum A I = S + T"
using A_def I_def
unfolding set_plus_def
apply auto
unfolding set_plus_def
apply auto
done
ultimately show ?thesis by auto
qed
lemma rel_interior_convex_hull_union:
fixes S :: "'a ⇒ 'n::euclidean_space set"
assumes "finite I"
and "∀i∈I. convex (S i) ∧ S i ≠ {}"
shows "rel_interior (convex hull (⋃(S ` I))) =
{setsum (λi. c i *⇩R s i) I | c s. (∀i∈I. c i > 0) ∧ setsum c I = 1 ∧
(∀i∈I. s i ∈ rel_interior(S i))}"
(is "?lhs = ?rhs")
proof (cases "I = {}")
case True
then show ?thesis
using convex_hull_empty rel_interior_empty by auto
next
case False
def C0 ≡ "convex hull (⋃(S ` I))"
have "∀i∈I. C0 ≥ S i"
unfolding C0_def using hull_subset[of "⋃(S ` I)"] by auto
def K0 ≡ "cone hull ({1 :: real} × C0)"
def K ≡ "λi. cone hull ({1 :: real} × S i)"
have "∀i∈I. K i ≠ {}"
unfolding K_def using assms
by (simp add: cone_hull_empty_iff[symmetric])
{
fix i
assume "i ∈ I"
then have "convex (K i)"
unfolding K_def
apply (subst convex_cone_hull)
apply (subst convex_Times)
using assms
apply auto
done
}
then have convK: "∀i∈I. convex (K i)"
by auto
{
fix i
assume "i ∈ I"
then have "K0 ⊇ K i"
unfolding K0_def K_def
apply (subst hull_mono)
using ‹∀i∈I. C0 ≥ S i›
apply auto
done
}
then have "K0 ⊇ ⋃(K ` I)" by auto
moreover have "convex K0"
unfolding K0_def
apply (subst convex_cone_hull)
apply (subst convex_Times)
unfolding C0_def
using convex_convex_hull
apply auto
done
ultimately have geq: "K0 ⊇ convex hull (⋃(K ` I))"
using hull_minimal[of _ "K0" "convex"] by blast
have "∀i∈I. K i ⊇ {1 :: real} × S i"
using K_def by (simp add: hull_subset)
then have "⋃(K ` I) ⊇ {1 :: real} × ⋃(S ` I)"
by auto
then have "convex hull ⋃(K ` I) ⊇ convex hull ({1 :: real} × ⋃(S ` I))"
by (simp add: hull_mono)
then have "convex hull ⋃(K ` I) ⊇ {1 :: real} × C0"
unfolding C0_def
using convex_hull_Times[of "{(1 :: real)}" "⋃(S ` I)"] convex_hull_singleton
by auto
moreover have "cone (convex hull (⋃(K ` I)))"
apply (subst cone_convex_hull)
using cone_Union[of "K ` I"]
apply auto
unfolding K_def
using cone_cone_hull
apply auto
done
ultimately have "convex hull (⋃(K ` I)) ⊇ K0"
unfolding K0_def
using hull_minimal[of _ "convex hull (⋃(K ` I))" "cone"]
by blast
then have "K0 = convex hull (⋃(K ` I))"
using geq by auto
also have "… = setsum K I"
apply (subst convex_hull_finite_union_cones[of I K])
using assms
apply blast
using False
apply blast
unfolding K_def
apply rule
apply (subst convex_cone_hull)
apply (subst convex_Times)
using assms cone_cone_hull ‹∀i∈I. K i ≠ {}› K_def
apply auto
done
finally have "K0 = setsum K I" by auto
then have *: "rel_interior K0 = setsum (λi. (rel_interior (K i))) I"
using rel_interior_sum_gen[of I K] convK by auto
{
fix x
assume "x ∈ ?lhs"
then have "(1::real, x) ∈ rel_interior K0"
using K0_def C0_def rel_interior_convex_cone_aux[of C0 "1::real" x] convex_convex_hull
by auto
then obtain k where k: "(1::real, x) = setsum k I ∧ (∀i∈I. k i ∈ rel_interior (K i))"
using ‹finite I› * set_setsum_alt[of I "λi. rel_interior (K i)"] by auto
{
fix i
assume "i ∈ I"
then have "convex (S i) ∧ k i ∈ rel_interior (cone hull {1} × S i)"
using k K_def assms by auto
then have "∃ci si. k i = (ci, ci *⇩R si) ∧ 0 < ci ∧ si ∈ rel_interior (S i)"
using rel_interior_convex_cone[of "S i"] by auto
}
then obtain c s where
cs: "∀i∈I. k i = (c i, c i *⇩R s i) ∧ 0 < c i ∧ s i ∈ rel_interior (S i)"
by metis
then have "x = (∑i∈I. c i *⇩R s i) ∧ setsum c I = 1"
using k by (simp add: setsum_prod)
then have "x ∈ ?rhs"
using k
apply auto
apply (rule_tac x = c in exI)
apply (rule_tac x = s in exI)
using cs
apply auto
done
}
moreover
{
fix x
assume "x ∈ ?rhs"
then obtain c s where cs: "x = setsum (λi. c i *⇩R s i) I ∧
(∀i∈I. c i > 0) ∧ setsum c I = 1 ∧ (∀i∈I. s i ∈ rel_interior (S i))"
by auto
def k ≡ "λi. (c i, c i *⇩R s i)"
{
fix i assume "i:I"
then have "k i ∈ rel_interior (K i)"
using k_def K_def assms cs rel_interior_convex_cone[of "S i"]
by auto
}
then have "(1::real, x) ∈ rel_interior K0"
using K0_def * set_setsum_alt[of I "(λi. rel_interior (K i))"] assms k_def cs
apply auto
apply (rule_tac x = k in exI)
apply (simp add: setsum_prod)
done
then have "x ∈ ?lhs"
using K0_def C0_def rel_interior_convex_cone_aux[of C0 1 x]
by (auto simp add: convex_convex_hull)
}
ultimately show ?thesis by blast
qed
lemma convex_le_Inf_differential:
fixes f :: "real ⇒ real"
assumes "convex_on I f"
and "x ∈ interior I"
and "y ∈ I"
shows "f y ≥ f x + Inf ((λt. (f x - f t) / (x - t)) ` ({x<..} ∩ I)) * (y - x)"
(is "_ ≥ _ + Inf (?F x) * (y - x)")
proof (cases rule: linorder_cases)
assume "x < y"
moreover
have "open (interior I)" by auto
from openE[OF this ‹x ∈ interior I›]
obtain e where e: "0 < e" "ball x e ⊆ interior I" .
moreover def t ≡ "min (x + e / 2) ((x + y) / 2)"
ultimately have "x < t" "t < y" "t ∈ ball x e"
by (auto simp: dist_real_def field_simps split: split_min)
with ‹x ∈ interior I› e interior_subset[of I] have "t ∈ I" "x ∈ I" by auto
have "open (interior I)" by auto
from openE[OF this ‹x ∈ interior I›]
obtain e where "0 < e" "ball x e ⊆ interior I" .
moreover def K ≡ "x - e / 2"
with ‹0 < e› have "K ∈ ball x e" "K < x"
by (auto simp: dist_real_def)
ultimately have "K ∈ I" "K < x" "x ∈ I"
using interior_subset[of I] ‹x ∈ interior I› by auto
have "Inf (?F x) ≤ (f x - f y) / (x - y)"
proof (intro bdd_belowI cInf_lower2)
show "(f x - f t) / (x - t) ∈ ?F x"
using ‹t ∈ I› ‹x < t› by auto
show "(f x - f t) / (x - t) ≤ (f x - f y) / (x - y)"
using ‹convex_on I f› ‹x ∈ I› ‹y ∈ I› ‹x < t› ‹t < y›
by (rule convex_on_diff)
next
fix y
assume "y ∈ ?F x"
with order_trans[OF convex_on_diff[OF ‹convex_on I f› ‹K ∈ I› _ ‹K < x› _]]
show "(f K - f x) / (K - x) ≤ y" by auto
qed
then show ?thesis
using ‹x < y› by (simp add: field_simps)
next
assume "y < x"
moreover
have "open (interior I)" by auto
from openE[OF this ‹x ∈ interior I›]
obtain e where e: "0 < e" "ball x e ⊆ interior I" .
moreover def t ≡ "x + e / 2"
ultimately have "x < t" "t ∈ ball x e"
by (auto simp: dist_real_def field_simps)
with ‹x ∈ interior I› e interior_subset[of I] have "t ∈ I" "x ∈ I" by auto
have "(f x - f y) / (x - y) ≤ Inf (?F x)"
proof (rule cInf_greatest)
have "(f x - f y) / (x - y) = (f y - f x) / (y - x)"
using ‹y < x› by (auto simp: field_simps)
also
fix z
assume "z ∈ ?F x"
with order_trans[OF convex_on_diff[OF ‹convex_on I f› ‹y ∈ I› _ ‹y < x›]]
have "(f y - f x) / (y - x) ≤ z"
by auto
finally show "(f x - f y) / (x - y) ≤ z" .
next
have "open (interior I)" by auto
from openE[OF this ‹x ∈ interior I›]
obtain e where e: "0 < e" "ball x e ⊆ interior I" .
then have "x + e / 2 ∈ ball x e"
by (auto simp: dist_real_def)
with e interior_subset[of I] have "x + e / 2 ∈ {x<..} ∩ I"
by auto
then show "?F x ≠ {}"
by blast
qed
then show ?thesis
using ‹y < x› by (simp add: field_simps)
qed simp
subsection‹Explicit formulas for interior and relative interior of convex hull›
lemma interior_atLeastAtMost [simp]:
fixes a::real shows "interior {a..b} = {a<..<b}"
using interior_cbox [of a b] by auto
lemma interior_atLeastLessThan [simp]:
fixes a::real shows "interior {a..<b} = {a<..<b}"
by (metis atLeastLessThan_def greaterThanLessThan_def interior_atLeastAtMost interior_Int interior_interior interior_real_semiline)
lemma interior_lessThanAtMost [simp]:
fixes a::real shows "interior {a<..b} = {a<..<b}"
by (metis atLeastAtMost_def greaterThanAtMost_def interior_atLeastAtMost interior_Int
interior_interior interior_real_semiline)
lemma at_within_closed_interval:
fixes x::real
shows "a < x ⟹ x < b ⟹ (at x within {a..b}) = at x"
by (metis at_within_interior greaterThanLessThan_iff interior_atLeastAtMost)
lemma affine_independent_convex_affine_hull:
fixes s :: "'a::euclidean_space set"
assumes "~affine_dependent s" "t ⊆ s"
shows "convex hull t = affine hull t ∩ convex hull s"
proof -
have fin: "finite s" "finite t" using assms aff_independent_finite finite_subset by auto
{ fix u v x
assume uv: "setsum u t = 1" "∀x∈s. 0 ≤ v x" "setsum v s = 1"
"(∑x∈s. v x *⇩R x) = (∑v∈t. u v *⇩R v)" "x ∈ t"
then have s: "s = (s - t) ∪ t" ―‹split into separate cases›
using assms by auto
have [simp]: "(∑x∈t. v x *⇩R x) + (∑x∈s - t. v x *⇩R x) = (∑x∈t. u x *⇩R x)"
"setsum v t + setsum v (s - t) = 1"
using uv fin s
by (auto simp: setsum.union_disjoint [symmetric] Un_commute)
have "(∑x∈s. if x ∈ t then v x - u x else v x) = 0"
"(∑x∈s. (if x ∈ t then v x - u x else v x) *⇩R x) = 0"
using uv fin
by (subst s, subst setsum.union_disjoint, auto simp: algebra_simps setsum_subtractf)+
} note [simp] = this
have "convex hull t ⊆ affine hull t"
using convex_hull_subset_affine_hull by blast
moreover have "convex hull t ⊆ convex hull s"
using assms hull_mono by blast
moreover have "affine hull t ∩ convex hull s ⊆ convex hull t"
using assms
apply (simp add: convex_hull_finite affine_hull_finite fin affine_dependent_explicit)
apply (drule_tac x=s in spec)
apply (auto simp: fin)
apply (rule_tac x=u in exI)
apply (rename_tac v)
apply (drule_tac x="λx. if x ∈ t then v x - u x else v x" in spec)
apply (force)+
done
ultimately show ?thesis
by blast
qed
lemma affine_independent_span_eq:
fixes s :: "'a::euclidean_space set"
assumes "~affine_dependent s" "card s = Suc (DIM ('a))"
shows "affine hull s = UNIV"
proof (cases "s = {}")
case True then show ?thesis
using assms by simp
next
case False
then obtain a t where t: "a ∉ t" "s = insert a t"
by blast
then have fin: "finite t" using assms
by (metis finite_insert aff_independent_finite)
show ?thesis
using assms t fin
apply (simp add: affine_dependent_iff_dependent affine_hull_insert_span_gen)
apply (rule subset_antisym)
apply force
apply (rule Fun.vimage_subsetD)
apply (metis add.commute diff_add_cancel surj_def)
apply (rule card_ge_dim_independent)
apply (auto simp: card_image inj_on_def dim_subset_UNIV)
done
qed
lemma affine_independent_span_gt:
fixes s :: "'a::euclidean_space set"
assumes ind: "~ affine_dependent s" and dim: "DIM ('a) < card s"
shows "affine hull s = UNIV"
apply (rule affine_independent_span_eq [OF ind])
apply (rule antisym)
using assms
apply auto
apply (metis add_2_eq_Suc' not_less_eq_eq affine_dependent_biggerset aff_independent_finite)
done
lemma empty_interior_affine_hull:
fixes s :: "'a::euclidean_space set"
assumes "finite s" and dim: "card s ≤ DIM ('a)"
shows "interior(affine hull s) = {}"
using assms
apply (induct s rule: finite_induct)
apply (simp_all add: affine_dependent_iff_dependent affine_hull_insert_span_gen interior_translation)
apply (rule empty_interior_lowdim)
apply (simp add: affine_dependent_iff_dependent affine_hull_insert_span_gen)
apply (metis Suc_le_lessD not_less order_trans card_image_le finite_imageI dim_le_card)
done
lemma empty_interior_convex_hull:
fixes s :: "'a::euclidean_space set"
assumes "finite s" and dim: "card s ≤ DIM ('a)"
shows "interior(convex hull s) = {}"
by (metis Diff_empty Diff_eq_empty_iff convex_hull_subset_affine_hull
interior_mono empty_interior_affine_hull [OF assms])
lemma explicit_subset_rel_interior_convex_hull:
fixes s :: "'a::euclidean_space set"
shows "finite s
⟹ {y. ∃u. (∀x ∈ s. 0 < u x ∧ u x < 1) ∧ setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}
⊆ rel_interior (convex hull s)"
by (force simp add: rel_interior_convex_hull_union [where S="λx. {x}" and I=s, simplified])
lemma explicit_subset_rel_interior_convex_hull_minimal:
fixes s :: "'a::euclidean_space set"
shows "finite s
⟹ {y. ∃u. (∀x ∈ s. 0 < u x) ∧ setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}
⊆ rel_interior (convex hull s)"
by (force simp add: rel_interior_convex_hull_union [where S="λx. {x}" and I=s, simplified])
lemma rel_interior_convex_hull_explicit:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "rel_interior(convex hull s) =
{y. ∃u. (∀x ∈ s. 0 < u x) ∧ setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}"
(is "?lhs = ?rhs")
proof
show "?rhs ≤ ?lhs"
by (simp add: aff_independent_finite explicit_subset_rel_interior_convex_hull_minimal assms)
next
show "?lhs ≤ ?rhs"
proof (cases "∃a. s = {a}")
case True then show "?lhs ≤ ?rhs"
by force
next
case False
have fs: "finite s"
using assms by (simp add: aff_independent_finite)
{ fix a b and d::real
assume ab: "a ∈ s" "b ∈ s" "a ≠ b"
then have s: "s = (s - {a,b}) ∪ {a,b}" ―‹split into separate cases›
by auto
have "(∑x∈s. if x = a then - d else if x = b then d else 0) = 0"
"(∑x∈s. (if x = a then - d else if x = b then d else 0) *⇩R x) = d *⇩R b - d *⇩R a"
using ab fs
by (subst s, subst setsum.union_disjoint, auto)+
} note [simp] = this
{ fix y
assume y: "y ∈ convex hull s" "y ∉ ?rhs"
{ fix u T a
assume ua: "∀x∈s. 0 ≤ u x" "setsum u s = 1" "¬ 0 < u a" "a ∈ s"
and yT: "y = (∑x∈s. u x *⇩R x)" "y ∈ T" "open T"
and sb: "T ∩ affine hull s ⊆ {w. ∃u. (∀x∈s. 0 ≤ u x) ∧ setsum u s = 1 ∧ (∑x∈s. u x *⇩R x) = w}"
have ua0: "u a = 0"
using ua by auto
obtain b where b: "b∈s" "a ≠ b"
using ua False by auto
obtain e where e: "0 < e" "ball (∑x∈s. u x *⇩R x) e ⊆ T"
using yT by (auto elim: openE)
with b obtain d where d: "0 < d" "norm(d *⇩R (a-b)) < e"
by (auto intro: that [of "e / 2 / norm(a-b)"])
have "(∑x∈s. u x *⇩R x) ∈ affine hull s"
using yT y by (metis affine_hull_convex_hull hull_redundant_eq)
then have "(∑x∈s. u x *⇩R x) - d *⇩R (a - b) ∈ affine hull s"
using ua b by (auto simp: hull_inc intro: mem_affine_3_minus2)
then have "y - d *⇩R (a - b) ∈ T ∩ affine hull s"
using d e yT by auto
then obtain v where "∀x∈s. 0 ≤ v x"
"setsum v s = 1"
"(∑x∈s. v x *⇩R x) = (∑x∈s. u x *⇩R x) - d *⇩R (a - b)"
using subsetD [OF sb] yT
by auto
then have False
using assms
apply (simp add: affine_dependent_explicit_finite fs)
apply (drule_tac x="λx. (v x - u x) - (if x = a then -d else if x = b then d else 0)" in spec)
using ua b d
apply (auto simp: algebra_simps setsum_subtractf setsum.distrib)
done
} note * = this
have "y ∉ rel_interior (convex hull s)"
using y
apply (simp add: mem_rel_interior affine_hull_convex_hull)
apply (auto simp: convex_hull_finite [OF fs])
apply (drule_tac x=u in spec)
apply (auto intro: *)
done
} with rel_interior_subset show "?lhs ≤ ?rhs"
by blast
qed
qed
lemma interior_convex_hull_explicit_minimal:
fixes s :: "'a::euclidean_space set"
shows
"~ affine_dependent s
==> interior(convex hull s) =
(if card(s) ≤ DIM('a) then {}
else {y. ∃u. (∀x ∈ s. 0 < u x) ∧ setsum u s = 1 ∧ (∑x∈s. u x *⇩R x) = y})"
apply (simp add: aff_independent_finite empty_interior_convex_hull, clarify)
apply (rule trans [of _ "rel_interior(convex hull s)"])
apply (simp add: affine_hull_convex_hull affine_independent_span_gt rel_interior_interior)
by (simp add: rel_interior_convex_hull_explicit)
lemma interior_convex_hull_explicit:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows
"interior(convex hull s) =
(if card(s) ≤ DIM('a) then {}
else {y. ∃u. (∀x ∈ s. 0 < u x ∧ u x < 1) ∧ setsum u s = 1 ∧ (∑x∈s. u x *⇩R x) = y})"
proof -
{ fix u :: "'a ⇒ real" and a
assume "card Basis < card s" and u: "⋀x. x∈s ⟹ 0 < u x" "setsum u s = 1" and a: "a ∈ s"
then have cs: "Suc 0 < card s"
by (metis DIM_positive less_trans_Suc)
obtain b where b: "b ∈ s" "a ≠ b"
proof (cases "s ≤ {a}")
case True
then show thesis
using cs subset_singletonD by fastforce
next
case False
then show thesis
by (blast intro: that)
qed
have "u a + u b ≤ setsum u {a,b}"
using a b by simp
also have "... ≤ setsum u s"
apply (rule Groups_Big.setsum_mono2)
using a b u
apply (auto simp: less_imp_le aff_independent_finite assms)
done
finally have "u a < 1"
using ‹b ∈ s› u by fastforce
} note [simp] = this
show ?thesis
using assms
apply (auto simp: interior_convex_hull_explicit_minimal)
apply (rule_tac x=u in exI)
apply (auto simp: not_le)
done
qed
lemma interior_closed_segment_ge2:
fixes a :: "'a::euclidean_space"
assumes "2 ≤ DIM('a)"
shows "interior(closed_segment a b) = {}"
using assms unfolding segment_convex_hull
proof -
have "card {a, b} ≤ DIM('a)"
using assms
by (simp add: card_insert_if linear not_less_eq_eq numeral_2_eq_2)
then show "interior (convex hull {a, b}) = {}"
by (metis empty_interior_convex_hull finite.insertI finite.emptyI)
qed
lemma interior_open_segment:
fixes a :: "'a::euclidean_space"
shows "interior(open_segment a b) =
(if 2 ≤ DIM('a) then {} else open_segment a b)"
proof (simp add: not_le, intro conjI impI)
assume "2 ≤ DIM('a)"
then show "interior (open_segment a b) = {}"
apply (simp add: segment_convex_hull open_segment_def)
apply (metis Diff_subset interior_mono segment_convex_hull subset_empty interior_closed_segment_ge2)
done
next
assume le2: "DIM('a) < 2"
show "interior (open_segment a b) = open_segment a b"
proof (cases "a = b")
case True then show ?thesis by auto
next
case False
with le2 have "affine hull (open_segment a b) = UNIV"
apply simp
apply (rule affine_independent_span_gt)
apply (simp_all add: affine_dependent_def insert_Diff_if)
done
then show "interior (open_segment a b) = open_segment a b"
using rel_interior_interior rel_interior_open_segment by blast
qed
qed
lemma interior_closed_segment:
fixes a :: "'a::euclidean_space"
shows "interior(closed_segment a b) =
(if 2 ≤ DIM('a) then {} else open_segment a b)"
proof (cases "a = b")
case True then show ?thesis by simp
next
case False
then have "closure (open_segment a b) = closed_segment a b"
by simp
then show ?thesis
by (metis (no_types) convex_interior_closure convex_open_segment interior_open_segment)
qed
lemmas interior_segment = interior_closed_segment interior_open_segment
lemma closed_segment_eq [simp]:
fixes a :: "'a::euclidean_space"
shows "closed_segment a b = closed_segment c d ⟷ {a,b} = {c,d}"
proof
assume abcd: "closed_segment a b = closed_segment c d"
show "{a,b} = {c,d}"
proof (cases "a=b ∨ c=d")
case True with abcd show ?thesis by force
next
case False
then have neq: "a ≠ b ∧ c ≠ d" by force
have *: "closed_segment c d - {a, b} = rel_interior (closed_segment c d)"
using neq abcd by (metis (no_types) open_segment_def rel_interior_closed_segment)
have "b ∈ {c, d}"
proof -
have "insert b (closed_segment c d) = closed_segment c d"
using abcd by blast
then show ?thesis
by (metis DiffD2 Diff_insert2 False * insertI1 insert_Diff_if open_segment_def rel_interior_closed_segment)
qed
moreover have "a ∈ {c, d}"
by (metis Diff_iff False * abcd ends_in_segment(1) insertI1 open_segment_def rel_interior_closed_segment)
ultimately show "{a, b} = {c, d}"
using neq by fastforce
qed
next
assume "{a,b} = {c,d}"
then show "closed_segment a b = closed_segment c d"
by (simp add: segment_convex_hull)
qed
lemma closed_open_segment_eq [simp]:
fixes a :: "'a::euclidean_space"
shows "closed_segment a b ≠ open_segment c d"
by (metis DiffE closed_segment_neq_empty closure_closed_segment closure_open_segment ends_in_segment(1) insertI1 open_segment_def)
lemma open_closed_segment_eq [simp]:
fixes a :: "'a::euclidean_space"
shows "open_segment a b ≠ closed_segment c d"
using closed_open_segment_eq by blast
lemma open_segment_eq [simp]:
fixes a :: "'a::euclidean_space"
shows "open_segment a b = open_segment c d ⟷ a = b ∧ c = d ∨ {a,b} = {c,d}"
(is "?lhs = ?rhs")
proof
assume abcd: ?lhs
show ?rhs
proof (cases "a=b ∨ c=d")
case True with abcd show ?thesis
using finite_open_segment by fastforce
next
case False
then have a2: "a ≠ b ∧ c ≠ d" by force
with abcd show ?rhs
unfolding open_segment_def
by (metis (no_types) abcd closed_segment_eq closure_open_segment)
qed
next
assume ?rhs
then show ?lhs
by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def segment_convex_hull)
qed
subsection‹Similar results for closure and (relative or absolute) frontier.›
lemma closure_convex_hull [simp]:
fixes s :: "'a::euclidean_space set"
shows "compact s ==> closure(convex hull s) = convex hull s"
by (simp add: compact_imp_closed compact_convex_hull)
lemma rel_frontier_convex_hull_explicit:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "rel_frontier(convex hull s) =
{y. ∃u. (∀x ∈ s. 0 ≤ u x) ∧ (∃x ∈ s. u x = 0) ∧ setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}"
proof -
have fs: "finite s"
using assms by (simp add: aff_independent_finite)
show ?thesis
apply (simp add: rel_frontier_def finite_imp_compact rel_interior_convex_hull_explicit assms fs)
apply (auto simp: convex_hull_finite fs)
apply (drule_tac x=u in spec)
apply (rule_tac x=u in exI)
apply force
apply (rename_tac v)
apply (rule notE [OF assms])
apply (simp add: affine_dependent_explicit)
apply (rule_tac x=s in exI)
apply (auto simp: fs)
apply (rule_tac x = "λx. u x - v x" in exI)
apply (force simp: setsum_subtractf scaleR_diff_left)
done
qed
lemma frontier_convex_hull_explicit:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "frontier(convex hull s) =
{y. ∃u. (∀x ∈ s. 0 ≤ u x) ∧ (DIM ('a) < card s ⟶ (∃x ∈ s. u x = 0)) ∧
setsum u s = 1 ∧ setsum (λx. u x *⇩R x) s = y}"
proof -
have fs: "finite s"
using assms by (simp add: aff_independent_finite)
show ?thesis
proof (cases "DIM ('a) < card s")
case True
with assms fs show ?thesis
by (simp add: rel_frontier_def frontier_def rel_frontier_convex_hull_explicit [symmetric]
interior_convex_hull_explicit_minimal rel_interior_convex_hull_explicit)
next
case False
then have "card s ≤ DIM ('a)"
by linarith
then show ?thesis
using assms fs
apply (simp add: frontier_def interior_convex_hull_explicit finite_imp_compact)
apply (simp add: convex_hull_finite)
done
qed
qed
lemma rel_frontier_convex_hull_cases:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "rel_frontier(convex hull s) = ⋃{convex hull (s - {x}) |x. x ∈ s}"
proof -
have fs: "finite s"
using assms by (simp add: aff_independent_finite)
{ fix u a
have "∀x∈s. 0 ≤ u x ⟹ a ∈ s ⟹ u a = 0 ⟹ setsum u s = 1 ⟹
∃x v. x ∈ s ∧
(∀x∈s - {x}. 0 ≤ v x) ∧
setsum v (s - {x}) = 1 ∧ (∑x∈s - {x}. v x *⇩R x) = (∑x∈s. u x *⇩R x)"
apply (rule_tac x=a in exI)
apply (rule_tac x=u in exI)
apply (simp add: Groups_Big.setsum_diff1 fs)
done }
moreover
{ fix a u
have "a ∈ s ⟹ ∀x∈s - {a}. 0 ≤ u x ⟹ setsum u (s - {a}) = 1 ⟹
∃v. (∀x∈s. 0 ≤ v x) ∧
(∃x∈s. v x = 0) ∧ setsum v s = 1 ∧ (∑x∈s. v x *⇩R x) = (∑x∈s - {a}. u x *⇩R x)"
apply (rule_tac x="λx. if x = a then 0 else u x" in exI)
apply (auto simp: setsum.If_cases Diff_eq if_smult fs)
done }
ultimately show ?thesis
using assms
apply (simp add: rel_frontier_convex_hull_explicit)
apply (simp add: convex_hull_finite fs Union_SetCompr_eq, auto)
done
qed
lemma frontier_convex_hull_eq_rel_frontier:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "frontier(convex hull s) =
(if card s ≤ DIM ('a) then convex hull s else rel_frontier(convex hull s))"
using assms
unfolding rel_frontier_def frontier_def
by (simp add: affine_independent_span_gt rel_interior_interior
finite_imp_compact empty_interior_convex_hull aff_independent_finite)
lemma frontier_convex_hull_cases:
fixes s :: "'a::euclidean_space set"
assumes "~ affine_dependent s"
shows "frontier(convex hull s) =
(if card s ≤ DIM ('a) then convex hull s else ⋃{convex hull (s - {x}) |x. x ∈ s})"
by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases)
lemma in_frontier_convex_hull:
fixes s :: "'a::euclidean_space set"
assumes "finite s" "card s ≤ Suc (DIM ('a))" "x ∈ s"
shows "x ∈ frontier(convex hull s)"
proof (cases "affine_dependent s")
case True
with assms show ?thesis
apply (auto simp: affine_dependent_def frontier_def finite_imp_compact hull_inc)
by (metis card.insert_remove convex_hull_subset_affine_hull empty_interior_affine_hull finite_Diff hull_redundant insert_Diff insert_Diff_single insert_not_empty interior_mono not_less_eq_eq subset_empty)
next
case False
{ assume "card s = Suc (card Basis)"
then have cs: "Suc 0 < card s"
by (simp add: DIM_positive)
with subset_singletonD have "∃y ∈ s. y ≠ x"
by (cases "s ≤ {x}") fastforce+
} note [dest!] = this
show ?thesis using assms
unfolding frontier_convex_hull_cases [OF False] Union_SetCompr_eq
by (auto simp: le_Suc_eq hull_inc)
qed
lemma not_in_interior_convex_hull:
fixes s :: "'a::euclidean_space set"
assumes "finite s" "card s ≤ Suc (DIM ('a))" "x ∈ s"
shows "x ∉ interior(convex hull s)"
using in_frontier_convex_hull [OF assms]
by (metis Diff_iff frontier_def)
lemma interior_convex_hull_eq_empty:
fixes s :: "'a::euclidean_space set"
assumes "card s = Suc (DIM ('a))"
shows "interior(convex hull s) = {} ⟷ affine_dependent s"
proof -
{ fix a b
assume ab: "a ∈ interior (convex hull s)" "b ∈ s" "b ∈ affine hull (s - {b})"
then have "interior(affine hull s) = {}" using assms
by (metis DIM_positive One_nat_def Suc_mono card.remove card_infinite empty_interior_affine_hull eq_iff hull_redundant insert_Diff not_less zero_le_one)
then have False using ab
by (metis convex_hull_subset_affine_hull equals0D interior_mono subset_eq)
} then
show ?thesis
using assms
apply auto
apply (metis UNIV_I affine_hull_convex_hull affine_hull_empty affine_independent_span_eq convex_convex_hull empty_iff rel_interior_interior rel_interior_same_affine_hull)
apply (auto simp: affine_dependent_def)
done
qed
subsection ‹Coplanarity, and collinearity in terms of affine hull›
definition coplanar where
"coplanar s ≡ ∃u v w. s ⊆ affine hull {u,v,w}"
lemma collinear_affine_hull:
"collinear s ⟷ (∃u v. s ⊆ affine hull {u,v})"
proof (cases "s={}")
case True then show ?thesis
by simp
next
case False
then obtain x where x: "x ∈ s" by auto
{ fix u
assume *: "⋀x y. ⟦x∈s; y∈s⟧ ⟹ ∃c. x - y = c *⇩R u"
have "∃u v. s ⊆ {a *⇩R u + b *⇩R v |a b. a + b = 1}"
apply (rule_tac x=x in exI)
apply (rule_tac x="x+u" in exI, clarify)
apply (erule exE [OF * [OF x]])
apply (rename_tac c)
apply (rule_tac x="1+c" in exI)
apply (rule_tac x="-c" in exI)
apply (simp add: algebra_simps)
done
} moreover
{ fix u v x y
assume *: "s ⊆ {a *⇩R u + b *⇩R v |a b. a + b = 1}"
have "x∈s ⟹ y∈s ⟹ ∃c. x - y = c *⇩R (v-u)"
apply (drule subsetD [OF *])+
apply simp
apply clarify
apply (rename_tac r1 r2)
apply (rule_tac x="r1-r2" in exI)
apply (simp add: algebra_simps)
apply (metis scaleR_left.add)
done
} ultimately
show ?thesis
unfolding collinear_def affine_hull_2
by blast
qed
lemma collinear_closed_segment [simp]: "collinear (closed_segment a b)"
by (metis affine_hull_convex_hull collinear_affine_hull hull_subset segment_convex_hull)
lemma collinear_open_segment [simp]: "collinear (open_segment a b)"
unfolding open_segment_def
by (metis convex_hull_subset_affine_hull segment_convex_hull dual_order.trans
convex_hull_subset_affine_hull Diff_subset collinear_affine_hull)
lemma subset_continuous_image_segment_1:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "continuous_on (closed_segment a b) f"
shows "closed_segment (f a) (f b) ⊆ image f (closed_segment a b)"
by (metis connected_segment convex_contains_segment ends_in_segment imageI
is_interval_connected_1 is_interval_convex connected_continuous_image [OF assms])
lemma collinear_imp_coplanar:
"collinear s ==> coplanar s"
by (metis collinear_affine_hull coplanar_def insert_absorb2)
lemma collinear_small:
assumes "finite s" "card s ≤ 2"
shows "collinear s"
proof -
have "card s = 0 ∨ card s = 1 ∨ card s = 2"
using assms by linarith
then show ?thesis using assms
using card_eq_SucD
by auto (metis collinear_2 numeral_2_eq_2)
qed
lemma coplanar_small:
assumes "finite s" "card s ≤ 3"
shows "coplanar s"
proof -
have "card s ≤ 2 ∨ card s = Suc (Suc (Suc 0))"
using assms by linarith
then show ?thesis using assms
apply safe
apply (simp add: collinear_small collinear_imp_coplanar)
apply (safe dest!: card_eq_SucD)
apply (auto simp: coplanar_def)
apply (metis hull_subset insert_subset)
done
qed
lemma coplanar_empty: "coplanar {}"
by (simp add: coplanar_small)
lemma coplanar_sing: "coplanar {a}"
by (simp add: coplanar_small)
lemma coplanar_2: "coplanar {a,b}"
by (auto simp: card_insert_if coplanar_small)
lemma coplanar_3: "coplanar {a,b,c}"
by (auto simp: card_insert_if coplanar_small)
lemma collinear_affine_hull_collinear: "collinear(affine hull s) ⟷ collinear s"
unfolding collinear_affine_hull
by (metis affine_affine_hull subset_hull hull_hull hull_mono)
lemma coplanar_affine_hull_coplanar: "coplanar(affine hull s) ⟷ coplanar s"
unfolding coplanar_def
by (metis affine_affine_hull subset_hull hull_hull hull_mono)
lemma coplanar_linear_image:
fixes f :: "'a::euclidean_space ⇒ 'b::real_normed_vector"
assumes "coplanar s" "linear f" shows "coplanar(f ` s)"
proof -
{ fix u v w
assume "s ⊆ affine hull {u, v, w}"
then have "f ` s ⊆ f ` (affine hull {u, v, w})"
by (simp add: image_mono)
then have "f ` s ⊆ affine hull (f ` {u, v, w})"
by (metis assms(2) linear_conv_bounded_linear affine_hull_linear_image)
} then
show ?thesis
by auto (meson assms(1) coplanar_def)
qed
lemma coplanar_translation_imp: "coplanar s ⟹ coplanar ((λx. a + x) ` s)"
unfolding coplanar_def
apply clarify
apply (rule_tac x="u+a" in exI)
apply (rule_tac x="v+a" in exI)
apply (rule_tac x="w+a" in exI)
using affine_hull_translation [of a "{u,v,w}" for u v w]
apply (force simp: add.commute)
done
lemma coplanar_translation_eq: "coplanar((λx. a + x) ` s) ⟷ coplanar s"
by (metis (no_types) coplanar_translation_imp translation_galois)
lemma coplanar_linear_image_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f" shows "coplanar(f ` s) = coplanar s"
proof
assume "coplanar s"
then show "coplanar (f ` s)"
unfolding coplanar_def
using affine_hull_linear_image [of f "{u,v,w}" for u v w] assms
by (meson coplanar_def coplanar_linear_image)
next
obtain g where g: "linear g" "g ∘ f = id"
using linear_injective_left_inverse [OF assms]
by blast
assume "coplanar (f ` s)"
then obtain u v w where "f ` s ⊆ affine hull {u, v, w}"
by (auto simp: coplanar_def)
then have "g ` f ` s ⊆ g ` (affine hull {u, v, w})"
by blast
then have "s ⊆ g ` (affine hull {u, v, w})"
using g by (simp add: Fun.image_comp)
then show "coplanar s"
unfolding coplanar_def
using affine_hull_linear_image [of g "{u,v,w}" for u v w] ‹linear g› linear_conv_bounded_linear
by fastforce
qed
lemma coplanar_subset: "⟦coplanar t; s ⊆ t⟧ ⟹ coplanar s"
by (meson coplanar_def order_trans)
lemma affine_hull_3_imp_collinear: "c ∈ affine hull {a,b} ⟹ collinear {a,b,c}"
by (metis collinear_2 collinear_affine_hull_collinear hull_redundant insert_commute)
lemma collinear_3_imp_in_affine_hull: "⟦collinear {a,b,c}; a ≠ b⟧ ⟹ c ∈ affine hull {a,b}"
unfolding collinear_def
apply clarify
apply (frule_tac x=b in bspec, blast, drule_tac x=a in bspec, blast, erule exE)
apply (drule_tac x=c in bspec, blast, drule_tac x=a in bspec, blast, erule exE)
apply (rename_tac y x)
apply (simp add: affine_hull_2)
apply (rule_tac x="1 - x/y" in exI)
apply (simp add: algebra_simps)
done
lemma collinear_3_affine_hull:
assumes "a ≠ b"
shows "collinear {a,b,c} ⟷ c ∈ affine hull {a,b}"
using affine_hull_3_imp_collinear assms collinear_3_imp_in_affine_hull by blast
lemma collinear_3_eq_affine_dependent:
"collinear{a,b,c} ⟷ a = b ∨ a = c ∨ b = c ∨ affine_dependent {a,b,c}"
apply (case_tac "a=b", simp)
apply (case_tac "a=c")
apply (simp add: insert_commute)
apply (case_tac "b=c")
apply (simp add: insert_commute)
apply (auto simp: affine_dependent_def collinear_3_affine_hull insert_Diff_if)
apply (metis collinear_3_affine_hull insert_commute)+
done
lemma affine_dependent_imp_collinear_3:
"affine_dependent {a,b,c} ⟹ collinear{a,b,c}"
by (simp add: collinear_3_eq_affine_dependent)
lemma collinear_3: "NO_MATCH 0 x ⟹ collinear {x,y,z} ⟷ collinear {0, x-y, z-y}"
by (auto simp add: collinear_def)
thm affine_hull_nonempty
corollary affine_hull_eq_empty [simp]: "affine hull S = {} ⟷ S = {}"
using affine_hull_nonempty by blast
lemma affine_hull_2_alt:
fixes a b :: "'a::real_vector"
shows "affine hull {a,b} = range (λu. a + u *⇩R (b - a))"
apply (simp add: affine_hull_2, safe)
apply (rule_tac x=v in image_eqI)
apply (simp add: algebra_simps)
apply (metis scaleR_add_left scaleR_one, simp)
apply (rule_tac x="1-u" in exI)
apply (simp add: algebra_simps)
done
lemma interior_convex_hull_3_minimal:
fixes a :: "'a::euclidean_space"
shows "⟦~ collinear{a,b,c}; DIM('a) = 2⟧
⟹ interior(convex hull {a,b,c}) =
{v. ∃x y z. 0 < x ∧ 0 < y ∧ 0 < z ∧ x + y + z = 1 ∧
x *⇩R a + y *⇩R b + z *⇩R c = v}"
apply (simp add: collinear_3_eq_affine_dependent interior_convex_hull_explicit_minimal, safe)
apply (rule_tac x="u a" in exI, simp)
apply (rule_tac x="u b" in exI, simp)
apply (rule_tac x="u c" in exI, simp)
apply (rename_tac uu x y z)
apply (rule_tac x="λr. (if r=a then x else if r=b then y else if r=c then z else 0)" in exI)
apply simp
done
subsection‹The infimum of the distance between two sets›
definition setdist :: "'a::metric_space set ⇒ 'a set ⇒ real" where
"setdist s t ≡
(if s = {} ∨ t = {} then 0
else Inf {dist x y| x y. x ∈ s ∧ y ∈ t})"
lemma setdist_empty1 [simp]: "setdist {} t = 0"
by (simp add: setdist_def)
lemma setdist_empty2 [simp]: "setdist t {} = 0"
by (simp add: setdist_def)
lemma setdist_pos_le: "0 ≤ setdist s t"
by (auto simp: setdist_def ex_in_conv [symmetric] intro: cInf_greatest)
lemma le_setdistI:
assumes "s ≠ {}" "t ≠ {}" "⋀x y. ⟦x ∈ s; y ∈ t⟧ ⟹ d ≤ dist x y"
shows "d ≤ setdist s t"
using assms
by (auto simp: setdist_def Set.ex_in_conv [symmetric] intro: cInf_greatest)
lemma setdist_le_dist: "⟦x ∈ s; y ∈ t⟧ ⟹ setdist s t ≤ dist x y"
unfolding setdist_def
by (auto intro!: bdd_belowI [where m=0] cInf_lower)
lemma le_setdist_iff:
"d ≤ setdist s t ⟷
(∀x ∈ s. ∀y ∈ t. d ≤ dist x y) ∧ (s = {} ∨ t = {} ⟶ d ≤ 0)"
apply (cases "s = {} ∨ t = {}")
apply (force simp add: setdist_def)
apply (intro iffI conjI)
using setdist_le_dist apply fastforce
apply (auto simp: intro: le_setdistI)
done
lemma setdist_ltE:
assumes "setdist s t < b" "s ≠ {}" "t ≠ {}"
obtains x y where "x ∈ s" "y ∈ t" "dist x y < b"
using assms
by (auto simp: not_le [symmetric] le_setdist_iff)
lemma setdist_refl: "setdist s s = 0"
apply (cases "s = {}")
apply (force simp add: setdist_def)
apply (rule antisym [OF _ setdist_pos_le])
apply (metis all_not_in_conv dist_self setdist_le_dist)
done
lemma setdist_sym: "setdist s t = setdist t s"
by (force simp: setdist_def dist_commute intro!: arg_cong [where f=Inf])
lemma setdist_triangle: "setdist s t ≤ setdist s {a} + setdist {a} t"
proof (cases "s = {} ∨ t = {}")
case True then show ?thesis
using setdist_pos_le by fastforce
next
case False
have "⋀x. x ∈ s ⟹ setdist s t - dist x a ≤ setdist {a} t"
apply (rule le_setdistI, blast)
using False apply (fastforce intro: le_setdistI)
apply (simp add: algebra_simps)
apply (metis dist_commute dist_triangle3 order_trans [OF setdist_le_dist])
done
then have "setdist s t - setdist {a} t ≤ setdist s {a}"
using False by (fastforce intro: le_setdistI)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma setdist_singletons [simp]: "setdist {x} {y} = dist x y"
by (simp add: setdist_def)
lemma setdist_Lipschitz: "¦setdist {x} s - setdist {y} s¦ ≤ dist x y"
apply (subst setdist_singletons [symmetric])
by (metis abs_diff_le_iff diff_le_eq setdist_triangle setdist_sym)
lemma continuous_at_setdist: "continuous (at x) (λy. (setdist {y} s))"
by (force simp: continuous_at_eps_delta dist_real_def intro: le_less_trans [OF setdist_Lipschitz])
lemma continuous_on_setdist: "continuous_on t (λy. (setdist {y} s))"
by (metis continuous_at_setdist continuous_at_imp_continuous_on)
lemma uniformly_continuous_on_setdist: "uniformly_continuous_on t (λy. (setdist {y} s))"
by (force simp: uniformly_continuous_on_def dist_real_def intro: le_less_trans [OF setdist_Lipschitz])
lemma setdist_subset_right: "⟦t ≠ {}; t ⊆ u⟧ ⟹ setdist s u ≤ setdist s t"
apply (cases "s = {} ∨ u = {}", force)
apply (auto simp: setdist_def intro!: bdd_belowI [where m=0] cInf_superset_mono)
done
lemma setdist_subset_left: "⟦s ≠ {}; s ⊆ t⟧ ⟹ setdist t u ≤ setdist s u"
by (metis setdist_subset_right setdist_sym)
lemma setdist_closure_1 [simp]: "setdist (closure s) t = setdist s t"
proof (cases "s = {} ∨ t = {}")
case True then show ?thesis by force
next
case False
{ fix y
assume "y ∈ t"
have "continuous_on (closure s) (λa. dist a y)"
by (auto simp: continuous_intros dist_norm)
then have *: "⋀x. x ∈ closure s ⟹ setdist s t ≤ dist x y"
apply (rule continuous_ge_on_closure)
apply assumption
apply (blast intro: setdist_le_dist ‹y ∈ t› )
done
} note * = this
show ?thesis
apply (rule antisym)
using False closure_subset apply (blast intro: setdist_subset_left)
using False *
apply (force simp add: closure_eq_empty intro!: le_setdistI)
done
qed
lemma setdist_closure_2 [simp]: "setdist t (closure s) = setdist t s"
by (metis setdist_closure_1 setdist_sym)
lemma setdist_compact_closed:
fixes s :: "'a::euclidean_space set"
assumes s: "compact s" and t: "closed t"
and "s ≠ {}" "t ≠ {}"
shows "∃x ∈ s. ∃y ∈ t. dist x y = setdist s t"
proof -
have "{x - y |x y. x ∈ s ∧ y ∈ t} ≠ {}"
using assms by blast
then
have "∃x ∈ s. ∃y ∈ t. dist x y ≤ setdist s t"
apply (rule distance_attains_inf [where a=0, OF compact_closed_differences [OF s t]])
apply (simp add: dist_norm le_setdist_iff)
apply blast
done
then show ?thesis
by (blast intro!: antisym [OF _ setdist_le_dist] )
qed
lemma setdist_closed_compact:
fixes s :: "'a::euclidean_space set"
assumes s: "closed s" and t: "compact t"
and "s ≠ {}" "t ≠ {}"
shows "∃x ∈ s. ∃y ∈ t. dist x y = setdist s t"
using setdist_compact_closed [OF t s ‹t ≠ {}› ‹s ≠ {}›]
by (metis dist_commute setdist_sym)
lemma setdist_eq_0I: "⟦x ∈ s; x ∈ t⟧ ⟹ setdist s t = 0"
by (metis antisym dist_self setdist_le_dist setdist_pos_le)
lemma setdist_eq_0_compact_closed:
fixes s :: "'a::euclidean_space set"
assumes s: "compact s" and t: "closed t"
shows "setdist s t = 0 ⟷ s = {} ∨ t = {} ∨ s ∩ t ≠ {}"
apply (cases "s = {} ∨ t = {}", force)
using setdist_compact_closed [OF s t]
apply (force intro: setdist_eq_0I )
done
corollary setdist_gt_0_compact_closed:
fixes s :: "'a::euclidean_space set"
assumes s: "compact s" and t: "closed t"
shows "setdist s t > 0 ⟷ (s ≠ {} ∧ t ≠ {} ∧ s ∩ t = {})"
using setdist_pos_le [of s t] setdist_eq_0_compact_closed [OF assms]
by linarith
lemma setdist_eq_0_closed_compact:
fixes s :: "'a::euclidean_space set"
assumes s: "closed s" and t: "compact t"
shows "setdist s t = 0 ⟷ s = {} ∨ t = {} ∨ s ∩ t ≠ {}"
using setdist_eq_0_compact_closed [OF t s]
by (metis Int_commute setdist_sym)
lemma setdist_eq_0_bounded:
fixes s :: "'a::euclidean_space set"
assumes "bounded s ∨ bounded t"
shows "setdist s t = 0 ⟷ s = {} ∨ t = {} ∨ closure s ∩ closure t ≠ {}"
apply (cases "s = {} ∨ t = {}", force)
using setdist_eq_0_compact_closed [of "closure s" "closure t"]
setdist_eq_0_closed_compact [of "closure s" "closure t"] assms
apply (force simp add: bounded_closure compact_eq_bounded_closed)
done
lemma setdist_unique:
"⟦a ∈ s; b ∈ t; ⋀x y. x ∈ s ∧ y ∈ t ==> dist a b ≤ dist x y⟧
⟹ setdist s t = dist a b"
by (force simp add: setdist_le_dist le_setdist_iff intro: antisym)
lemma setdist_closest_point:
"⟦closed s; s ≠ {}⟧ ⟹ setdist {a} s = dist a (closest_point s a)"
apply (rule setdist_unique)
using closest_point_le
apply (auto simp: closest_point_in_set)
done
lemma setdist_eq_0_sing_1 [simp]:
fixes s :: "'a::euclidean_space set"
shows "setdist {x} s = 0 ⟷ s = {} ∨ x ∈ closure s"
by (auto simp: setdist_eq_0_bounded)
lemma setdist_eq_0_sing_2 [simp]:
fixes s :: "'a::euclidean_space set"
shows "setdist s {x} = 0 ⟷ s = {} ∨ x ∈ closure s"
by (auto simp: setdist_eq_0_bounded)
lemma setdist_sing_in_set:
fixes s :: "'a::euclidean_space set"
shows "x ∈ s ⟹ setdist {x} s = 0"
using closure_subset by force
lemma setdist_le_sing: "x ∈ s ==> setdist s t ≤ setdist {x} t"
using setdist_subset_left by auto
end