Theory Quotient_Product

theory Quotient_Product
imports Quotient_Syntax
(*  Title:      HOL/Library/Quotient_Product.thy
    Author:     Cezary Kaliszyk and Christian Urban
*)

section ‹Quotient infrastructure for the product type›

theory Quotient_Product
imports Quotient_Syntax
begin

subsection ‹Rules for the Quotient package›

lemma map_prod_id [id_simps]:
  shows "map_prod id id = id"
  by (simp add: fun_eq_iff)

lemma rel_prod_eq [id_simps]:
  shows "rel_prod (op =) (op =) = (op =)"
  by (simp add: fun_eq_iff)

lemma prod_equivp [quot_equiv]:
  assumes "equivp R1"
  assumes "equivp R2"
  shows "equivp (rel_prod R1 R2)"
  using assms by (auto intro!: equivpI reflpI sympI transpI elim!: equivpE elim: reflpE sympE transpE)

lemma prod_quotient [quot_thm]:
  assumes "Quotient3 R1 Abs1 Rep1"
  assumes "Quotient3 R2 Abs2 Rep2"
  shows "Quotient3 (rel_prod R1 R2) (map_prod Abs1 Abs2) (map_prod Rep1 Rep2)"
  apply (rule Quotient3I)
  apply (simp add: map_prod.compositionality comp_def map_prod.identity
     Quotient3_abs_rep [OF assms(1)] Quotient3_abs_rep [OF assms(2)])
  apply (simp add: split_paired_all Quotient3_rel_rep [OF assms(1)] Quotient3_rel_rep [OF assms(2)])
  using Quotient3_rel [OF assms(1)] Quotient3_rel [OF assms(2)]
  apply (auto simp add: split_paired_all)
  done

declare [[mapQ3 prod = (rel_prod, prod_quotient)]]

lemma Pair_rsp [quot_respect]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(R1 ===> R2 ===> rel_prod R1 R2) Pair Pair"
  by (rule Pair_transfer)

lemma Pair_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(Rep1 ---> Rep2 ---> (map_prod Abs1 Abs2)) Pair = Pair"
  apply(simp add: fun_eq_iff)
  apply(simp add: Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
  done

lemma fst_rsp [quot_respect]:
  assumes "Quotient3 R1 Abs1 Rep1"
  assumes "Quotient3 R2 Abs2 Rep2"
  shows "(rel_prod R1 R2 ===> R1) fst fst"
  by auto

lemma fst_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(map_prod Rep1 Rep2 ---> Abs1) fst = fst"
  by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1])

lemma snd_rsp [quot_respect]:
  assumes "Quotient3 R1 Abs1 Rep1"
  assumes "Quotient3 R2 Abs2 Rep2"
  shows "(rel_prod R1 R2 ===> R2) snd snd"
  by auto

lemma snd_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(map_prod Rep1 Rep2 ---> Abs2) snd = snd"
  by (simp add: fun_eq_iff Quotient3_abs_rep[OF q2])

lemma case_prod_rsp [quot_respect]:
  shows "((R1 ===> R2 ===> (op =)) ===> (rel_prod R1 R2) ===> (op =)) case_prod case_prod"
  by (rule case_prod_transfer)

lemma split_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  and     q2: "Quotient3 R2 Abs2 Rep2"
  shows "(((Abs1 ---> Abs2 ---> id) ---> map_prod Rep1 Rep2 ---> id) case_prod) = case_prod"
  by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])

lemma [quot_respect]:
  shows "((R2 ===> R2 ===> op =) ===> (R1 ===> R1 ===> op =) ===>
  rel_prod R2 R1 ===> rel_prod R2 R1 ===> op =) rel_prod rel_prod"
  by (rule prod.rel_transfer)

lemma [quot_preserve]:
  assumes q1: "Quotient3 R1 abs1 rep1"
  and     q2: "Quotient3 R2 abs2 rep2"
  shows "((abs1 ---> abs1 ---> id) ---> (abs2 ---> abs2 ---> id) --->
  map_prod rep1 rep2 ---> map_prod rep1 rep2 ---> id) rel_prod = rel_prod"
  by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])

lemma [quot_preserve]:
  shows"(rel_prod ((rep1 ---> rep1 ---> id) R1) ((rep2 ---> rep2 ---> id) R2)
  (l1, l2) (r1, r2)) = (R1 (rep1 l1) (rep1 r1) ∧ R2 (rep2 l2) (rep2 r2))"
  by simp

declare prod.inject[quot_preserve]

end