section ‹Pointwise order on product types›
theory Product_Order
imports Product_plus Conditionally_Complete_Lattices
begin
subsection ‹Pointwise ordering›
instantiation prod :: (ord, ord) ord
begin
definition
"x ≤ y ⟷ fst x ≤ fst y ∧ snd x ≤ snd y"
definition
"(x::'a × 'b) < y ⟷ x ≤ y ∧ ¬ y ≤ x"
instance ..
end
lemma fst_mono: "x ≤ y ⟹ fst x ≤ fst y"
unfolding less_eq_prod_def by simp
lemma snd_mono: "x ≤ y ⟹ snd x ≤ snd y"
unfolding less_eq_prod_def by simp
lemma Pair_mono: "x ≤ x' ⟹ y ≤ y' ⟹ (x, y) ≤ (x', y')"
unfolding less_eq_prod_def by simp
lemma Pair_le [simp]: "(a, b) ≤ (c, d) ⟷ a ≤ c ∧ b ≤ d"
unfolding less_eq_prod_def by simp
instance prod :: (preorder, preorder) preorder
proof
fix x y z :: "'a × 'b"
show "x < y ⟷ x ≤ y ∧ ¬ y ≤ x"
by (rule less_prod_def)
show "x ≤ x"
unfolding less_eq_prod_def
by fast
assume "x ≤ y" and "y ≤ z" thus "x ≤ z"
unfolding less_eq_prod_def
by (fast elim: order_trans)
qed
instance prod :: (order, order) order
by standard auto
subsection ‹Binary infimum and supremum›
instantiation prod :: (inf, inf) inf
begin
definition "inf x y = (inf (fst x) (fst y), inf (snd x) (snd y))"
lemma inf_Pair_Pair [simp]: "inf (a, b) (c, d) = (inf a c, inf b d)"
unfolding inf_prod_def by simp
lemma fst_inf [simp]: "fst (inf x y) = inf (fst x) (fst y)"
unfolding inf_prod_def by simp
lemma snd_inf [simp]: "snd (inf x y) = inf (snd x) (snd y)"
unfolding inf_prod_def by simp
instance ..
end
instance prod :: (semilattice_inf, semilattice_inf) semilattice_inf
by standard auto
instantiation prod :: (sup, sup) sup
begin
definition
"sup x y = (sup (fst x) (fst y), sup (snd x) (snd y))"
lemma sup_Pair_Pair [simp]: "sup (a, b) (c, d) = (sup a c, sup b d)"
unfolding sup_prod_def by simp
lemma fst_sup [simp]: "fst (sup x y) = sup (fst x) (fst y)"
unfolding sup_prod_def by simp
lemma snd_sup [simp]: "snd (sup x y) = sup (snd x) (snd y)"
unfolding sup_prod_def by simp
instance ..
end
instance prod :: (semilattice_sup, semilattice_sup) semilattice_sup
by standard auto
instance prod :: (lattice, lattice) lattice ..
instance prod :: (distrib_lattice, distrib_lattice) distrib_lattice
by standard (auto simp add: sup_inf_distrib1)
subsection ‹Top and bottom elements›
instantiation prod :: (top, top) top
begin
definition
"top = (top, top)"
instance ..
end
lemma fst_top [simp]: "fst top = top"
unfolding top_prod_def by simp
lemma snd_top [simp]: "snd top = top"
unfolding top_prod_def by simp
lemma Pair_top_top: "(top, top) = top"
unfolding top_prod_def by simp
instance prod :: (order_top, order_top) order_top
by standard (auto simp add: top_prod_def)
instantiation prod :: (bot, bot) bot
begin
definition
"bot = (bot, bot)"
instance ..
end
lemma fst_bot [simp]: "fst bot = bot"
unfolding bot_prod_def by simp
lemma snd_bot [simp]: "snd bot = bot"
unfolding bot_prod_def by simp
lemma Pair_bot_bot: "(bot, bot) = bot"
unfolding bot_prod_def by simp
instance prod :: (order_bot, order_bot) order_bot
by standard (auto simp add: bot_prod_def)
instance prod :: (bounded_lattice, bounded_lattice) bounded_lattice ..
instance prod :: (boolean_algebra, boolean_algebra) boolean_algebra
by standard (auto simp add: prod_eqI diff_eq)
subsection ‹Complete lattice operations›
instantiation prod :: (Inf, Inf) Inf
begin
definition "Inf A = (INF x:A. fst x, INF x:A. snd x)"
instance ..
end
instantiation prod :: (Sup, Sup) Sup
begin
definition "Sup A = (SUP x:A. fst x, SUP x:A. snd x)"
instance ..
end
instance prod :: (conditionally_complete_lattice, conditionally_complete_lattice)
conditionally_complete_lattice
by standard (force simp: less_eq_prod_def Inf_prod_def Sup_prod_def bdd_below_def bdd_above_def
intro!: cInf_lower cSup_upper cInf_greatest cSup_least)+
instance prod :: (complete_lattice, complete_lattice) complete_lattice
by standard (simp_all add: less_eq_prod_def Inf_prod_def Sup_prod_def
INF_lower SUP_upper le_INF_iff SUP_le_iff bot_prod_def top_prod_def)
lemma fst_Sup: "fst (Sup A) = (SUP x:A. fst x)"
unfolding Sup_prod_def by simp
lemma snd_Sup: "snd (Sup A) = (SUP x:A. snd x)"
unfolding Sup_prod_def by simp
lemma fst_Inf: "fst (Inf A) = (INF x:A. fst x)"
unfolding Inf_prod_def by simp
lemma snd_Inf: "snd (Inf A) = (INF x:A. snd x)"
unfolding Inf_prod_def by simp
lemma fst_SUP: "fst (SUP x:A. f x) = (SUP x:A. fst (f x))"
using fst_Sup [of "f ` A", symmetric] by (simp add: comp_def)
lemma snd_SUP: "snd (SUP x:A. f x) = (SUP x:A. snd (f x))"
using snd_Sup [of "f ` A", symmetric] by (simp add: comp_def)
lemma fst_INF: "fst (INF x:A. f x) = (INF x:A. fst (f x))"
using fst_Inf [of "f ` A", symmetric] by (simp add: comp_def)
lemma snd_INF: "snd (INF x:A. f x) = (INF x:A. snd (f x))"
using snd_Inf [of "f ` A", symmetric] by (simp add: comp_def)
lemma SUP_Pair: "(SUP x:A. (f x, g x)) = (SUP x:A. f x, SUP x:A. g x)"
unfolding Sup_prod_def by (simp add: comp_def)
lemma INF_Pair: "(INF x:A. (f x, g x)) = (INF x:A. f x, INF x:A. g x)"
unfolding Inf_prod_def by (simp add: comp_def)
text ‹Alternative formulations for set infima and suprema over the product
of two complete lattices:›
lemma INF_prod_alt_def:
"INFIMUM A f = (INFIMUM A (fst o f), INFIMUM A (snd o f))"
unfolding Inf_prod_def by simp
lemma SUP_prod_alt_def:
"SUPREMUM A f = (SUPREMUM A (fst o f), SUPREMUM A (snd o f))"
unfolding Sup_prod_def by simp
subsection ‹Complete distributive lattices›
instance prod :: (complete_distrib_lattice, complete_distrib_lattice) complete_distrib_lattice
proof (standard, goal_cases)
case 1
then show ?case
by (auto simp: sup_prod_def Inf_prod_def INF_prod_alt_def sup_Inf sup_INF comp_def)
next
case 2
then show ?case
by (auto simp: inf_prod_def Sup_prod_def SUP_prod_alt_def inf_Sup inf_SUP comp_def)
qed
end