section ‹Bijections between natural numbers and other types›
theory Nat_Bijection
imports Main
begin
subsection ‹Type @{typ "nat × nat"}›
text "Triangle numbers: 0, 1, 3, 6, 10, 15, ..."
definition triangle :: "nat ⇒ nat"
where "triangle n = (n * Suc n) div 2"
lemma triangle_0 [simp]: "triangle 0 = 0"
unfolding triangle_def by simp
lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n"
unfolding triangle_def by simp
definition prod_encode :: "nat × nat ⇒ nat"
where "prod_encode = (λ(m, n). triangle (m + n) + m)"
text ‹In this auxiliary function, @{term "triangle k + m"} is an invariant.›
fun prod_decode_aux :: "nat ⇒ nat ⇒ nat × nat"
where
"prod_decode_aux k m =
(if m ≤ k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))"
declare prod_decode_aux.simps [simp del]
definition prod_decode :: "nat ⇒ nat × nat"
where "prod_decode = prod_decode_aux 0"
lemma prod_encode_prod_decode_aux:
"prod_encode (prod_decode_aux k m) = triangle k + m"
apply (induct k m rule: prod_decode_aux.induct)
apply (subst prod_decode_aux.simps)
apply (simp add: prod_encode_def)
done
lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n"
unfolding prod_decode_def by (simp add: prod_encode_prod_decode_aux)
lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m"
apply (induct k arbitrary: m)
apply (simp add: prod_decode_def)
apply (simp only: triangle_Suc add.assoc)
apply (subst prod_decode_aux.simps, simp)
done
lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x"
unfolding prod_encode_def
apply (induct x)
apply (simp add: prod_decode_triangle_add)
apply (subst prod_decode_aux.simps, simp)
done
lemma inj_prod_encode: "inj_on prod_encode A"
by (rule inj_on_inverseI, rule prod_encode_inverse)
lemma inj_prod_decode: "inj_on prod_decode A"
by (rule inj_on_inverseI, rule prod_decode_inverse)
lemma surj_prod_encode: "surj prod_encode"
by (rule surjI, rule prod_decode_inverse)
lemma surj_prod_decode: "surj prod_decode"
by (rule surjI, rule prod_encode_inverse)
lemma bij_prod_encode: "bij prod_encode"
by (rule bijI [OF inj_prod_encode surj_prod_encode])
lemma bij_prod_decode: "bij prod_decode"
by (rule bijI [OF inj_prod_decode surj_prod_decode])
lemma prod_encode_eq: "prod_encode x = prod_encode y ⟷ x = y"
by (rule inj_prod_encode [THEN inj_eq])
lemma prod_decode_eq: "prod_decode x = prod_decode y ⟷ x = y"
by (rule inj_prod_decode [THEN inj_eq])
text ‹Ordering properties›
lemma le_prod_encode_1: "a ≤ prod_encode (a, b)"
unfolding prod_encode_def by simp
lemma le_prod_encode_2: "b ≤ prod_encode (a, b)"
unfolding prod_encode_def by (induct b, simp_all)
subsection ‹Type @{typ "nat + nat"}›
definition sum_encode :: "nat + nat ⇒ nat"
where
"sum_encode x = (case x of Inl a ⇒ 2 * a | Inr b ⇒ Suc (2 * b))"
definition sum_decode :: "nat ⇒ nat + nat"
where
"sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))"
lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x"
unfolding sum_decode_def sum_encode_def
by (induct x) simp_all
lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n"
by (simp add: even_two_times_div_two sum_decode_def sum_encode_def)
lemma inj_sum_encode: "inj_on sum_encode A"
by (rule inj_on_inverseI, rule sum_encode_inverse)
lemma inj_sum_decode: "inj_on sum_decode A"
by (rule inj_on_inverseI, rule sum_decode_inverse)
lemma surj_sum_encode: "surj sum_encode"
by (rule surjI, rule sum_decode_inverse)
lemma surj_sum_decode: "surj sum_decode"
by (rule surjI, rule sum_encode_inverse)
lemma bij_sum_encode: "bij sum_encode"
by (rule bijI [OF inj_sum_encode surj_sum_encode])
lemma bij_sum_decode: "bij sum_decode"
by (rule bijI [OF inj_sum_decode surj_sum_decode])
lemma sum_encode_eq: "sum_encode x = sum_encode y ⟷ x = y"
by (rule inj_sum_encode [THEN inj_eq])
lemma sum_decode_eq: "sum_decode x = sum_decode y ⟷ x = y"
by (rule inj_sum_decode [THEN inj_eq])
subsection ‹Type @{typ "int"}›
definition int_encode :: "int ⇒ nat"
where
"int_encode i = sum_encode (if 0 ≤ i then Inl (nat i) else Inr (nat (- i - 1)))"
definition int_decode :: "nat ⇒ int"
where
"int_decode n = (case sum_decode n of Inl a ⇒ int a | Inr b ⇒ - int b - 1)"
lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x"
unfolding int_decode_def int_encode_def by simp
lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n"
unfolding int_decode_def int_encode_def using sum_decode_inverse [of n]
by (cases "sum_decode n", simp_all)
lemma inj_int_encode: "inj_on int_encode A"
by (rule inj_on_inverseI, rule int_encode_inverse)
lemma inj_int_decode: "inj_on int_decode A"
by (rule inj_on_inverseI, rule int_decode_inverse)
lemma surj_int_encode: "surj int_encode"
by (rule surjI, rule int_decode_inverse)
lemma surj_int_decode: "surj int_decode"
by (rule surjI, rule int_encode_inverse)
lemma bij_int_encode: "bij int_encode"
by (rule bijI [OF inj_int_encode surj_int_encode])
lemma bij_int_decode: "bij int_decode"
by (rule bijI [OF inj_int_decode surj_int_decode])
lemma int_encode_eq: "int_encode x = int_encode y ⟷ x = y"
by (rule inj_int_encode [THEN inj_eq])
lemma int_decode_eq: "int_decode x = int_decode y ⟷ x = y"
by (rule inj_int_decode [THEN inj_eq])
subsection ‹Type @{typ "nat list"}›
fun list_encode :: "nat list ⇒ nat"
where
"list_encode [] = 0"
| "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))"
function list_decode :: "nat ⇒ nat list"
where
"list_decode 0 = []"
| "list_decode (Suc n) = (case prod_decode n of (x, y) ⇒ x # list_decode y)"
by pat_completeness auto
termination list_decode
apply (relation "measure id", simp_all)
apply (drule arg_cong [where f="prod_encode"])
apply (drule sym)
apply (simp add: le_imp_less_Suc le_prod_encode_2)
done
lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x"
by (induct x rule: list_encode.induct) simp_all
lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n"
apply (induct n rule: list_decode.induct, simp)
apply (simp split: prod.split)
apply (simp add: prod_decode_eq [symmetric])
done
lemma inj_list_encode: "inj_on list_encode A"
by (rule inj_on_inverseI, rule list_encode_inverse)
lemma inj_list_decode: "inj_on list_decode A"
by (rule inj_on_inverseI, rule list_decode_inverse)
lemma surj_list_encode: "surj list_encode"
by (rule surjI, rule list_decode_inverse)
lemma surj_list_decode: "surj list_decode"
by (rule surjI, rule list_encode_inverse)
lemma bij_list_encode: "bij list_encode"
by (rule bijI [OF inj_list_encode surj_list_encode])
lemma bij_list_decode: "bij list_decode"
by (rule bijI [OF inj_list_decode surj_list_decode])
lemma list_encode_eq: "list_encode x = list_encode y ⟷ x = y"
by (rule inj_list_encode [THEN inj_eq])
lemma list_decode_eq: "list_decode x = list_decode y ⟷ x = y"
by (rule inj_list_decode [THEN inj_eq])
subsection ‹Finite sets of naturals›
subsubsection ‹Preliminaries›
lemma finite_vimage_Suc_iff: "finite (Suc -` F) ⟷ finite F"
apply (safe intro!: finite_vimageI inj_Suc)
apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"])
apply (rule subsetI, case_tac x, simp, simp)
apply (rule finite_insert [THEN iffD2])
apply (erule finite_imageI)
done
lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
by auto
lemma vimage_Suc_insert_Suc:
"Suc -` insert (Suc n) A = insert n (Suc -` A)"
by auto
lemma div2_even_ext_nat:
fixes x y :: nat
assumes "x div 2 = y div 2"
and "even x ⟷ even y"
shows "x = y"
proof -
from ‹even x ⟷ even y› have "x mod 2 = y mod 2"
by (simp only: even_iff_mod_2_eq_zero) auto
with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2"
by simp
then show ?thesis
by simp
qed
subsubsection ‹From sets to naturals›
definition set_encode :: "nat set ⇒ nat"
where "set_encode = setsum (op ^ 2)"
lemma set_encode_empty [simp]: "set_encode {} = 0"
by (simp add: set_encode_def)
lemma set_encode_inf: "~ finite A ⟹ set_encode A = 0"
by (simp add: set_encode_def)
lemma set_encode_insert [simp]:
"⟦finite A; n ∉ A⟧ ⟹ set_encode (insert n A) = 2^n + set_encode A"
by (simp add: set_encode_def)
lemma even_set_encode_iff: "finite A ⟹ even (set_encode A) ⟷ 0 ∉ A"
unfolding set_encode_def by (induct set: finite, auto)
lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2"
apply (cases "finite A")
apply (erule finite_induct, simp)
apply (case_tac x)
apply (simp add: even_set_encode_iff vimage_Suc_insert_0)
apply (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc)
apply (simp add: set_encode_def finite_vimage_Suc_iff)
done
lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric]
subsubsection ‹From naturals to sets›
definition set_decode :: "nat ⇒ nat set"
where "set_decode x = {n. odd (x div 2 ^ n)}"
lemma set_decode_0 [simp]: "0 ∈ set_decode x ⟷ odd x"
by (simp add: set_decode_def)
lemma set_decode_Suc [simp]:
"Suc n ∈ set_decode x ⟷ n ∈ set_decode (x div 2)"
by (simp add: set_decode_def div_mult2_eq)
lemma set_decode_zero [simp]: "set_decode 0 = {}"
by (simp add: set_decode_def)
lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x"
by auto
lemma set_decode_plus_power_2:
"n ∉ set_decode z ⟹ set_decode (2 ^ n + z) = insert n (set_decode z)"
proof (induct n arbitrary: z)
case 0 show ?case
proof (rule set_eqI)
fix q show "q ∈ set_decode (2 ^ 0 + z) ⟷ q ∈ insert 0 (set_decode z)"
by (induct q) (insert 0, simp_all)
qed
next
case (Suc n) show ?case
proof (rule set_eqI)
fix q show "q ∈ set_decode (2 ^ Suc n + z) ⟷ q ∈ insert (Suc n) (set_decode z)"
by (induct q) (insert Suc, simp_all)
qed
qed
lemma finite_set_decode [simp]: "finite (set_decode n)"
apply (induct n rule: nat_less_induct)
apply (case_tac "n = 0", simp)
apply (drule_tac x="n div 2" in spec, simp)
apply (simp add: set_decode_div_2)
apply (simp add: finite_vimage_Suc_iff)
done
subsubsection ‹Proof of isomorphism›
lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n"
apply (induct n rule: nat_less_induct)
apply (case_tac "n = 0", simp)
apply (drule_tac x="n div 2" in spec, simp)
apply (simp add: set_decode_div_2 set_encode_vimage_Suc)
apply (erule div2_even_ext_nat)
apply (simp add: even_set_encode_iff)
done
lemma set_encode_inverse [simp]: "finite A ⟹ set_decode (set_encode A) = A"
apply (erule finite_induct, simp_all)
apply (simp add: set_decode_plus_power_2)
done
lemma inj_on_set_encode: "inj_on set_encode (Collect finite)"
by (rule inj_on_inverseI [where g="set_decode"], simp)
lemma set_encode_eq:
"⟦finite A; finite B⟧ ⟹ set_encode A = set_encode B ⟷ A = B"
by (rule iffI, simp add: inj_onD [OF inj_on_set_encode], simp)
lemma subset_decode_imp_le:
assumes "set_decode m ⊆ set_decode n"
shows "m ≤ n"
proof -
have "n = m + set_encode (set_decode n - set_decode m)"
proof -
obtain A B where "m = set_encode A" "finite A"
"n = set_encode B" "finite B"
by (metis finite_set_decode set_decode_inverse)
thus ?thesis using assms
apply auto
apply (simp add: set_encode_def add.commute setsum.subset_diff)
done
qed
thus ?thesis
by (metis le_add1)
qed
end