Theory Mapping

theory Mapping
imports Main
(*  Title:      HOL/Library/Mapping.thy
    Author:     Florian Haftmann and Ondrej Kuncar
*)

section ‹An abstract view on maps for code generation.›

theory Mapping
imports Main
begin

subsection ‹Parametricity transfer rules›

lemma map_of_foldr:  ‹FIXME move›
  "map_of xs = foldr (λ(k, v) m. m(k ↦ v)) xs Map.empty"
  using map_add_map_of_foldr [of Map.empty] by auto

context
begin

interpretation lifting_syntax .

lemma empty_parametric:
  "(A ===> rel_option B) Map.empty Map.empty"
  by transfer_prover

lemma lookup_parametric: "((A ===> B) ===> A ===> B) (λm k. m k) (λm k. m k)"
  by transfer_prover

lemma update_parametric:
  assumes [transfer_rule]: "bi_unique A"
  shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B)
    (λk v m. m(k ↦ v)) (λk v m. m(k ↦ v))"
  by transfer_prover

lemma delete_parametric:
  assumes [transfer_rule]: "bi_unique A"
  shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B) 
    (λk m. m(k := None)) (λk m. m(k := None))"
  by transfer_prover

lemma is_none_parametric [transfer_rule]:
  "(rel_option A ===> HOL.eq) Option.is_none Option.is_none"
  by (auto simp add: Option.is_none_def rel_fun_def rel_option_iff split: option.split)

lemma dom_parametric:
  assumes [transfer_rule]: "bi_total A"
  shows "((A ===> rel_option B) ===> rel_set A) dom dom" 
  unfolding dom_def [abs_def] Option.is_none_def [symmetric] by transfer_prover

lemma map_of_parametric [transfer_rule]:
  assumes [transfer_rule]: "bi_unique R1"
  shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of"
  unfolding map_of_def by transfer_prover

lemma map_entry_parametric [transfer_rule]:
  assumes [transfer_rule]: "bi_unique A"
  shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B) 
    (λk f m. (case m k of None ⇒ m
      | Some v ⇒ m (k ↦ (f v)))) (λk f m. (case m k of None ⇒ m
      | Some v ⇒ m (k ↦ (f v))))"
  by transfer_prover

lemma tabulate_parametric: 
  assumes [transfer_rule]: "bi_unique A"
  shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B) 
    (λks f. (map_of (map (λk. (k, f k)) ks))) (λks f. (map_of (map (λk. (k, f k)) ks)))"
  by transfer_prover

lemma bulkload_parametric: 
  "(list_all2 A ===> HOL.eq ===> rel_option A) 
    (λxs k. if k < length xs then Some (xs ! k) else None) (λxs k. if k < length xs then Some (xs ! k) else None)"
proof
  fix xs ys
  assume "list_all2 A xs ys"
  then show "(HOL.eq ===> rel_option A)
    (λk. if k < length xs then Some (xs ! k) else None)
    (λk. if k < length ys then Some (ys ! k) else None)"
    apply induct
    apply auto
    unfolding rel_fun_def
    apply clarsimp 
    apply (case_tac xa) 
    apply (auto dest: list_all2_lengthD list_all2_nthD)
    done
qed

lemma map_parametric: 
  "((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D) 
     (λf g m. (map_option g ∘ m ∘ f)) (λf g m. (map_option g ∘ m ∘ f))"
  by transfer_prover

end


subsection ‹Type definition and primitive operations›

typedef ('a, 'b) mapping = "UNIV :: ('a ⇀ 'b) set"
  morphisms rep Mapping
  ..

setup_lifting type_definition_mapping

lift_definition empty :: "('a, 'b) mapping"
  is Map.empty parametric empty_parametric .

lift_definition lookup :: "('a, 'b) mapping ⇒ 'a ⇒ 'b option"
  is "λm k. m k" parametric lookup_parametric .

declare [[code drop: Mapping.lookup]]
setup ‹Code.add_default_eqn @{thm Mapping.lookup.abs_eq}›  ‹FIXME lifting›

lift_definition update :: "'a ⇒ 'b ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping"
  is "λk v m. m(k ↦ v)" parametric update_parametric .

lift_definition delete :: "'a ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping"
  is "λk m. m(k := None)" parametric delete_parametric .

lift_definition keys :: "('a, 'b) mapping ⇒ 'a set"
  is dom parametric dom_parametric .

lift_definition tabulate :: "'a list ⇒ ('a ⇒ 'b) ⇒ ('a, 'b) mapping"
  is "λks f. (map_of (List.map (λk. (k, f k)) ks))" parametric tabulate_parametric .

lift_definition bulkload :: "'a list ⇒ (nat, 'a) mapping"
  is "λxs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_parametric .

lift_definition map :: "('c ⇒ 'a) ⇒ ('b ⇒ 'd) ⇒ ('a, 'b) mapping ⇒ ('c, 'd) mapping"
  is "λf g m. (map_option g ∘ m ∘ f)" parametric map_parametric .

declare [[code drop: map]]


subsection ‹Functorial structure›

functor map: map
  by (transfer, auto simp add: fun_eq_iff option.map_comp option.map_id)+


subsection ‹Derived operations›

definition ordered_keys :: "('a::linorder, 'b) mapping ⇒ 'a list"
where
  "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])"

definition is_empty :: "('a, 'b) mapping ⇒ bool"
where
  "is_empty m ⟷ keys m = {}"

definition size :: "('a, 'b) mapping ⇒ nat"
where
  "size m = (if finite (keys m) then card (keys m) else 0)"

definition replace :: "'a ⇒ 'b ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping"
where
  "replace k v m = (if k ∈ keys m then update k v m else m)"

definition default :: "'a ⇒ 'b ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping"
where
  "default k v m = (if k ∈ keys m then m else update k v m)"

text ‹Manual derivation of transfer rule is non-trivial›

lift_definition map_entry :: "'a ⇒ ('b ⇒ 'b) ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping" is
  "λk f m. (case m k of None ⇒ m
    | Some v ⇒ m (k ↦ (f v)))" parametric map_entry_parametric .

lemma map_entry_code [code]:
  "map_entry k f m = (case lookup m k of None ⇒ m
    | Some v ⇒ update k (f v) m)"
  by transfer rule

definition map_default :: "'a ⇒ 'b ⇒ ('b ⇒ 'b) ⇒ ('a, 'b) mapping ⇒ ('a, 'b) mapping"
where
  "map_default k v f m = map_entry k f (default k v m)" 

definition of_alist :: "('k × 'v) list ⇒ ('k, 'v) mapping"
where
  "of_alist xs = foldr (λ(k, v) m. update k v m) xs empty"

instantiation mapping :: (type, type) equal
begin

definition
  "HOL.equal m1 m2 ⟷ (∀k. lookup m1 k = lookup m2 k)"

instance
  by standard (unfold equal_mapping_def, transfer, auto)

end

context
begin

interpretation lifting_syntax .

lemma [transfer_rule]:
  assumes [transfer_rule]: "bi_total A"
  assumes [transfer_rule]: "bi_unique B"
  shows "(pcr_mapping A B ===> pcr_mapping A B ===> op=) HOL.eq HOL.equal"
  by (unfold equal) transfer_prover

lemma of_alist_transfer [transfer_rule]:
  assumes [transfer_rule]: "bi_unique R1"
  shows "(list_all2 (rel_prod R1 R2) ===> pcr_mapping R1 R2) map_of of_alist"
  unfolding of_alist_def [abs_def] map_of_foldr [abs_def] by transfer_prover

end


subsection ‹Properties›

lemma lookup_update:
  "lookup (update k v m) k = Some v" 
  by transfer simp

lemma lookup_update_neq:
  "k ≠ k' ⟹ lookup (update k v m) k' = lookup m k'" 
  by transfer simp

lemma lookup_empty:
  "lookup empty k = None" 
  by transfer simp

lemma keys_is_none_rep [code_unfold]:
  "k ∈ keys m ⟷ ¬ (Option.is_none (lookup m k))"
  by transfer (auto simp add: Option.is_none_def)

lemma update_update:
  "update k v (update k w m) = update k v m"
  "k ≠ l ⟹ update k v (update l w m) = update l w (update k v m)"
  by (transfer, simp add: fun_upd_twist)+

lemma update_delete [simp]:
  "update k v (delete k m) = update k v m"
  by transfer simp

lemma delete_update:
  "delete k (update k v m) = delete k m"
  "k ≠ l ⟹ delete k (update l v m) = update l v (delete k m)"
  by (transfer, simp add: fun_upd_twist)+

lemma delete_empty [simp]:
  "delete k empty = empty"
  by transfer simp

lemma replace_update:
  "k ∉ keys m ⟹ replace k v m = m"
  "k ∈ keys m ⟹ replace k v m = update k v m"
  by (transfer, auto simp add: replace_def fun_upd_twist)+

lemma size_empty [simp]:
  "size empty = 0"
  unfolding size_def by transfer simp

lemma size_update:
  "finite (keys m) ⟹ size (update k v m) =
    (if k ∈ keys m then size m else Suc (size m))"
  unfolding size_def by transfer (auto simp add: insert_dom)

lemma size_delete:
  "size (delete k m) = (if k ∈ keys m then size m - 1 else size m)"
  unfolding size_def by transfer simp

lemma size_tabulate [simp]:
  "size (tabulate ks f) = length (remdups ks)"
  unfolding size_def by transfer (auto simp add: map_of_map_restrict  card_set comp_def)

lemma bulkload_tabulate:
  "bulkload xs = tabulate [0..<length xs] (nth xs)"
  by transfer (auto simp add: map_of_map_restrict)

lemma is_empty_empty [simp]:
  "is_empty empty"
  unfolding is_empty_def by transfer simp 

lemma is_empty_update [simp]:
  "¬ is_empty (update k v m)"
  unfolding is_empty_def by transfer simp

lemma is_empty_delete:
  "is_empty (delete k m) ⟷ is_empty m ∨ keys m = {k}"
  unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv)

lemma is_empty_replace [simp]:
  "is_empty (replace k v m) ⟷ is_empty m"
  unfolding is_empty_def replace_def by transfer auto

lemma is_empty_default [simp]:
  "¬ is_empty (default k v m)"
  unfolding is_empty_def default_def by transfer auto

lemma is_empty_map_entry [simp]:
  "is_empty (map_entry k f m) ⟷ is_empty m"
  unfolding is_empty_def by transfer (auto split: option.split)

lemma is_empty_map_default [simp]:
  "¬ is_empty (map_default k v f m)"
  by (simp add: map_default_def)

lemma keys_dom_lookup:
  "keys m = dom (Mapping.lookup m)"
  by transfer rule

lemma keys_empty [simp]:
  "keys empty = {}"
  by transfer simp

lemma keys_update [simp]:
  "keys (update k v m) = insert k (keys m)"
  by transfer simp

lemma keys_delete [simp]:
  "keys (delete k m) = keys m - {k}"
  by transfer simp

lemma keys_replace [simp]:
  "keys (replace k v m) = keys m"
  unfolding replace_def by transfer (simp add: insert_absorb)

lemma keys_default [simp]:
  "keys (default k v m) = insert k (keys m)"
  unfolding default_def by transfer (simp add: insert_absorb)

lemma keys_map_entry [simp]:
  "keys (map_entry k f m) = keys m"
  by transfer (auto split: option.split)

lemma keys_map_default [simp]:
  "keys (map_default k v f m) = insert k (keys m)"
  by (simp add: map_default_def)

lemma keys_tabulate [simp]:
  "keys (tabulate ks f) = set ks"
  by transfer (simp add: map_of_map_restrict o_def)

lemma keys_bulkload [simp]:
  "keys (bulkload xs) = {0..<length xs}"
  by (simp add: bulkload_tabulate)

lemma distinct_ordered_keys [simp]:
  "distinct (ordered_keys m)"
  by (simp add: ordered_keys_def)

lemma ordered_keys_infinite [simp]:
  "¬ finite (keys m) ⟹ ordered_keys m = []"
  by (simp add: ordered_keys_def)

lemma ordered_keys_empty [simp]:
  "ordered_keys empty = []"
  by (simp add: ordered_keys_def)

lemma ordered_keys_update [simp]:
  "k ∈ keys m ⟹ ordered_keys (update k v m) = ordered_keys m"
  "finite (keys m) ⟹ k ∉ keys m ⟹ ordered_keys (update k v m) = insort k (ordered_keys m)"
  by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb)

lemma ordered_keys_delete [simp]:
  "ordered_keys (delete k m) = remove1 k (ordered_keys m)"
proof (cases "finite (keys m)")
  case False then show ?thesis by simp
next
  case True note fin = True
  show ?thesis
  proof (cases "k ∈ keys m")
    case False with fin have "k ∉ set (sorted_list_of_set (keys m))" by simp
    with False show ?thesis by (simp add: ordered_keys_def remove1_idem)
  next
    case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove)
  qed
qed

lemma ordered_keys_replace [simp]:
  "ordered_keys (replace k v m) = ordered_keys m"
  by (simp add: replace_def)

lemma ordered_keys_default [simp]:
  "k ∈ keys m ⟹ ordered_keys (default k v m) = ordered_keys m"
  "finite (keys m) ⟹ k ∉ keys m ⟹ ordered_keys (default k v m) = insort k (ordered_keys m)"
  by (simp_all add: default_def)

lemma ordered_keys_map_entry [simp]:
  "ordered_keys (map_entry k f m) = ordered_keys m"
  by (simp add: ordered_keys_def)

lemma ordered_keys_map_default [simp]:
  "k ∈ keys m ⟹ ordered_keys (map_default k v f m) = ordered_keys m"
  "finite (keys m) ⟹ k ∉ keys m ⟹ ordered_keys (map_default k v f m) = insort k (ordered_keys m)"
  by (simp_all add: map_default_def)

lemma ordered_keys_tabulate [simp]:
  "ordered_keys (tabulate ks f) = sort (remdups ks)"
  by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups)

lemma ordered_keys_bulkload [simp]:
  "ordered_keys (bulkload ks) = [0..<length ks]"
  by (simp add: ordered_keys_def)

lemma tabulate_fold:
  "tabulate xs f = fold (λk m. update k (f k) m) xs empty"
proof transfer
  fix f :: "'a ⇒ 'b" and xs
  have "map_of (List.map (λk. (k, f k)) xs) = foldr (λk m. m(k ↦ f k)) xs Map.empty"
    by (simp add: foldr_map comp_def map_of_foldr)
  also have "foldr (λk m. m(k ↦ f k)) xs = fold (λk m. m(k ↦ f k)) xs"
    by (rule foldr_fold) (simp add: fun_eq_iff)
  ultimately show "map_of (List.map (λk. (k, f k)) xs) = fold (λk m. m(k ↦ f k)) xs Map.empty"
    by simp
qed


subsection ‹Code generator setup›

hide_const (open) empty is_empty rep lookup update delete ordered_keys keys size
  replace default map_entry map_default tabulate bulkload map of_alist

end