Theory Complete_Partial_Order2

theory Complete_Partial_Order2
imports Main Lattice_Syntax
(*  Title:      HOL/Library/Complete_Partial_Order2.thy
    Author:     Andreas Lochbihler, ETH Zurich
*)

section ‹Formalisation of chain-complete partial orders, continuity and admissibility›

theory Complete_Partial_Order2 imports 
  Main
  "~~/src/HOL/Library/Lattice_Syntax"
begin

context begin interpretation lifting_syntax .

lemma chain_transfer [transfer_rule]:
  "((A ===> A ===> op =) ===> rel_set A ===> op =) Complete_Partial_Order.chain Complete_Partial_Order.chain"
unfolding chain_def[abs_def] by transfer_prover

end

lemma linorder_chain [simp, intro!]:
  fixes Y :: "_ :: linorder set"
  shows "Complete_Partial_Order.chain op ≤ Y"
by(auto intro: chainI)

lemma fun_lub_apply: "⋀Sup. fun_lub Sup Y x = Sup ((λf. f x) ` Y)"
by(simp add: fun_lub_def image_def)

lemma fun_lub_empty [simp]: "fun_lub lub {} = (λ_. lub {})"
by(rule ext)(simp add: fun_lub_apply)

lemma chain_fun_ordD: 
  assumes "Complete_Partial_Order.chain (fun_ord le) Y"
  shows "Complete_Partial_Order.chain le ((λf. f x) ` Y)"
by(rule chainI)(auto dest: chainD[OF assms] simp add: fun_ord_def)

lemma chain_Diff:
  "Complete_Partial_Order.chain ord A
  ⟹ Complete_Partial_Order.chain ord (A - B)"
by(erule chain_subset) blast

lemma chain_rel_prodD1:
  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
  ⟹ Complete_Partial_Order.chain orda (fst ` Y)"
by(auto 4 3 simp add: chain_def)

lemma chain_rel_prodD2:
  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
  ⟹ Complete_Partial_Order.chain ordb (snd ` Y)"
by(auto 4 3 simp add: chain_def)


context ccpo begin

lemma ccpo_fun: "class.ccpo (fun_lub Sup) (fun_ord op ≤) (mk_less (fun_ord op ≤))"
  by standard (auto 4 3 simp add: mk_less_def fun_ord_def fun_lub_apply
    intro: order.trans antisym chain_imageI ccpo_Sup_upper ccpo_Sup_least)

lemma ccpo_Sup_below_iff: "Complete_Partial_Order.chain op ≤ Y ⟹ Sup Y ≤ x ⟷ (∀y∈Y. y ≤ x)"
by(fast intro: order_trans[OF ccpo_Sup_upper] ccpo_Sup_least)

lemma Sup_minus_bot: 
  assumes chain: "Complete_Partial_Order.chain op ≤ A"
  shows "⨆(A - {⨆{}}) = ⨆A"
apply(rule antisym)
 apply(blast intro: ccpo_Sup_least chain_Diff[OF chain] ccpo_Sup_upper[OF chain])
apply(rule ccpo_Sup_least[OF chain])
apply(case_tac "x = ⨆{}")
by(blast intro: ccpo_Sup_least chain_empty ccpo_Sup_upper[OF chain_Diff[OF chain]])+

lemma mono_lub:
  fixes le_b (infix "⊑" 60)
  assumes chain: "Complete_Partial_Order.chain (fun_ord op ≤) Y"
  and mono: "⋀f. f ∈ Y ⟹ monotone le_b op ≤ f"
  shows "monotone op ⊑ op ≤ (fun_lub Sup Y)"
proof(rule monotoneI)
  fix x y
  assume "x ⊑ y"

  have chain'': "⋀x. Complete_Partial_Order.chain op ≤ ((λf. f x) ` Y)"
    using chain by(rule chain_imageI)(simp add: fun_ord_def)
  then show "fun_lub Sup Y x ≤ fun_lub Sup Y y" unfolding fun_lub_apply
  proof(rule ccpo_Sup_least)
    fix x'
    assume "x' ∈ (λf. f x) ` Y"
    then obtain f where "f ∈ Y" "x' = f x" by blast
    note ‹x' = f x› also
    from ‹f ∈ Y› ‹x ⊑ y› have "f x ≤ f y" by(blast dest: mono monotoneD)
    also have "… ≤ ⨆((λf. f y) ` Y)" using chain''
      by(rule ccpo_Sup_upper)(simp add: ‹f ∈ Y›)
    finally show "x' ≤ ⨆((λf. f y) ` Y)" .
  qed
qed

context
  fixes le_b (infix "⊑" 60) and Y f
  assumes chain: "Complete_Partial_Order.chain le_b Y" 
  and mono1: "⋀y. y ∈ Y ⟹ monotone le_b op ≤ (λx. f x y)"
  and mono2: "⋀x a b. ⟦ x ∈ Y; a ⊑ b; a ∈ Y; b ∈ Y ⟧ ⟹ f x a ≤ f x b"
begin

lemma Sup_mono: 
  assumes le: "x ⊑ y" and x: "x ∈ Y" and y: "y ∈ Y"
  shows "⨆(f x ` Y) ≤ ⨆(f y ` Y)" (is "_ ≤ ?rhs")
proof(rule ccpo_Sup_least)
  from chain show chain': "Complete_Partial_Order.chain op ≤ (f x ` Y)" when "x ∈ Y" for x
    by(rule chain_imageI) (insert that, auto dest: mono2)

  fix x'
  assume "x' ∈ f x ` Y"
  then obtain y' where "y' ∈ Y" "x' = f x y'" by blast note this(2)
  also from mono1[OF ‹y' ∈ Y›] le have "… ≤ f y y'" by(rule monotoneD)
  also have "… ≤ ?rhs" using chain'[OF y]
    by (auto intro!: ccpo_Sup_upper simp add: ‹y' ∈ Y›)
  finally show "x' ≤ ?rhs" .
qed(rule x)

lemma diag_Sup: "⨆((λx. ⨆(f x ` Y)) ` Y) = ⨆((λx. f x x) ` Y)" (is "?lhs = ?rhs")
proof(rule antisym)
  have chain1: "Complete_Partial_Order.chain op ≤ ((λx. ⨆(f x ` Y)) ` Y)"
    using chain by(rule chain_imageI)(rule Sup_mono)
  have chain2: "⋀y'. y' ∈ Y ⟹ Complete_Partial_Order.chain op ≤ (f y' ` Y)" using chain
    by(rule chain_imageI)(auto dest: mono2)
  have chain3: "Complete_Partial_Order.chain op ≤ ((λx. f x x) ` Y)"
    using chain by(rule chain_imageI)(auto intro: monotoneD[OF mono1] mono2 order.trans)

  show "?lhs ≤ ?rhs" using chain1
  proof(rule ccpo_Sup_least)
    fix x'
    assume "x' ∈ (λx. ⨆(f x ` Y)) ` Y"
    then obtain y' where "y' ∈ Y" "x' = ⨆(f y' ` Y)" by blast note this(2)
    also have "… ≤ ?rhs" using chain2[OF ‹y' ∈ Y›]
    proof(rule ccpo_Sup_least)
      fix x
      assume "x ∈ f y' ` Y"
      then obtain y where "y ∈ Y" and x: "x = f y' y" by blast
      def y''  "if y ⊑ y' then y' else y"
      from chain ‹y ∈ Y› ‹y' ∈ Y› have "y ⊑ y' ∨ y' ⊑ y" by(rule chainD)
      hence "f y' y ≤ f y'' y''" using ‹y ∈ Y› ‹y' ∈ Y›
        by(auto simp add: y''_def intro: mono2 monotoneD[OF mono1])
      also from ‹y ∈ Y› ‹y' ∈ Y› have "y'' ∈ Y" by(simp add: y''_def)
      from chain3 have "f y'' y'' ≤ ?rhs" by(rule ccpo_Sup_upper)(simp add: ‹y'' ∈ Y›)
      finally show "x ≤ ?rhs" by(simp add: x)
    qed
    finally show "x' ≤ ?rhs" .
  qed

  show "?rhs ≤ ?lhs" using chain3
  proof(rule ccpo_Sup_least)
    fix y
    assume "y ∈ (λx. f x x) ` Y"
    then obtain x where "x ∈ Y" and "y = f x x" by blast note this(2)
    also from chain2[OF ‹x ∈ Y›] have "… ≤ ⨆(f x ` Y)"
      by(rule ccpo_Sup_upper)(simp add: ‹x ∈ Y›)
    also have "… ≤ ?lhs" by(rule ccpo_Sup_upper[OF chain1])(simp add: ‹x ∈ Y›)
    finally show "y ≤ ?lhs" .
  qed
qed

end

lemma Sup_image_mono_le:
  fixes le_b (infix "⊑" 60) and Sup_b ("⋁_" [900] 900)
  assumes ccpo: "class.ccpo Sup_b op ⊑ lt_b"
  assumes chain: "Complete_Partial_Order.chain op ⊑ Y"
  and mono: "⋀x y. ⟦ x ⊑ y; x ∈ Y ⟧ ⟹ f x ≤ f y"
  shows "Sup (f ` Y) ≤ f (⋁Y)"
proof(rule ccpo_Sup_least)
  show "Complete_Partial_Order.chain op ≤ (f ` Y)"
    using chain by(rule chain_imageI)(rule mono)

  fix x
  assume "x ∈ f ` Y"
  then obtain y where "y ∈ Y" and "x = f y" by blast note this(2)
  also have "y ⊑ ⋁Y" using ccpo chain ‹y ∈ Y› by(rule ccpo.ccpo_Sup_upper)
  hence "f y ≤ f (⋁Y)" using ‹y ∈ Y› by(rule mono)
  finally show "x ≤ …" .
qed

lemma swap_Sup:
  fixes le_b (infix "⊑" 60)
  assumes Y: "Complete_Partial_Order.chain op ⊑ Y"
  and Z: "Complete_Partial_Order.chain (fun_ord op ≤) Z"
  and mono: "⋀f. f ∈ Z ⟹ monotone op ⊑ op ≤ f"
  shows "⨆((λx. ⨆(x ` Y)) ` Z) = ⨆((λx. ⨆((λf. f x) ` Z)) ` Y)"
  (is "?lhs = ?rhs")
proof(cases "Y = {}")
  case True
  then show ?thesis
    by (simp add: image_constant_conv cong del: strong_SUP_cong)
next
  case False
  have chain1: "⋀f. f ∈ Z ⟹ Complete_Partial_Order.chain op ≤ (f ` Y)"
    by(rule chain_imageI[OF Y])(rule monotoneD[OF mono])
  have chain2: "Complete_Partial_Order.chain op ≤ ((λx. ⨆(x ` Y)) ` Z)" using Z
  proof(rule chain_imageI)
    fix f g
    assume "f ∈ Z" "g ∈ Z"
      and "fun_ord op ≤ f g"
    from chain1[OF ‹f ∈ Z›] show "⨆(f ` Y) ≤ ⨆(g ` Y)"
    proof(rule ccpo_Sup_least)
      fix x
      assume "x ∈ f ` Y"
      then obtain y where "y ∈ Y" "x = f y" by blast note this(2)
      also have "… ≤ g y" using ‹fun_ord op ≤ f g› by(simp add: fun_ord_def)
      also have "… ≤ ⨆(g ` Y)" using chain1[OF ‹g ∈ Z›]
        by(rule ccpo_Sup_upper)(simp add: ‹y ∈ Y›)
      finally show "x ≤ ⨆(g ` Y)" .
    qed
  qed
  have chain3: "⋀x. Complete_Partial_Order.chain op ≤ ((λf. f x) ` Z)"
    using Z by(rule chain_imageI)(simp add: fun_ord_def)
  have chain4: "Complete_Partial_Order.chain op ≤ ((λx. ⨆((λf. f x) ` Z)) ` Y)"
    using Y
  proof(rule chain_imageI)
    fix f x y
    assume "x ⊑ y"
    show "⨆((λf. f x) ` Z) ≤ ⨆((λf. f y) ` Z)" (is "_ ≤ ?rhs") using chain3
    proof(rule ccpo_Sup_least)
      fix x'
      assume "x' ∈ (λf. f x) ` Z"
      then obtain f where "f ∈ Z" "x' = f x" by blast note this(2)
      also have "f x ≤ f y" using ‹f ∈ Z› ‹x ⊑ y› by(rule monotoneD[OF mono])
      also have "f y ≤ ?rhs" using chain3
        by(rule ccpo_Sup_upper)(simp add: ‹f ∈ Z›)
      finally show "x' ≤ ?rhs" .
    qed
  qed

  from chain2 have "?lhs ≤ ?rhs"
  proof(rule ccpo_Sup_least)
    fix x
    assume "x ∈ (λx. ⨆(x ` Y)) ` Z"
    then obtain f where "f ∈ Z" "x = ⨆(f ` Y)" by blast note this(2)
    also have "… ≤ ?rhs" using chain1[OF ‹f ∈ Z›]
    proof(rule ccpo_Sup_least)
      fix x'
      assume "x' ∈ f ` Y"
      then obtain y where "y ∈ Y" "x' = f y" by blast note this(2)
      also have "f y ≤ ⨆((λf. f y) ` Z)" using chain3
        by(rule ccpo_Sup_upper)(simp add: ‹f ∈ Z›)
      also have "… ≤ ?rhs" using chain4 by(rule ccpo_Sup_upper)(simp add: ‹y ∈ Y›)
      finally show "x' ≤ ?rhs" .
    qed
    finally show "x ≤ ?rhs" .
  qed
  moreover
  have "?rhs ≤ ?lhs" using chain4
  proof(rule ccpo_Sup_least)
    fix x
    assume "x ∈ (λx. ⨆((λf. f x) ` Z)) ` Y"
    then obtain y where "y ∈ Y" "x = ⨆((λf. f y) ` Z)" by blast note this(2)
    also have "… ≤ ?lhs" using chain3
    proof(rule ccpo_Sup_least)
      fix x'
      assume "x' ∈ (λf. f y) ` Z"
      then obtain f where "f ∈ Z" "x' = f y" by blast note this(2)
      also have "f y ≤ ⨆(f ` Y)" using chain1[OF ‹f ∈ Z›]
        by(rule ccpo_Sup_upper)(simp add: ‹y ∈ Y›)
      also have "… ≤ ?lhs" using chain2
        by(rule ccpo_Sup_upper)(simp add: ‹f ∈ Z›)
      finally show "x' ≤ ?lhs" .
    qed
    finally show "x ≤ ?lhs" .
  qed
  ultimately show "?lhs = ?rhs" by(rule antisym)
qed

lemma fixp_mono:
  assumes fg: "fun_ord op ≤ f g"
  and f: "monotone op ≤ op ≤ f"
  and g: "monotone op ≤ op ≤ g"
  shows "ccpo_class.fixp f ≤ ccpo_class.fixp g"
unfolding fixp_def
proof(rule ccpo_Sup_least)
  fix x
  assume "x ∈ ccpo_class.iterates f"
  thus "x ≤ ⨆ccpo_class.iterates g"
  proof induction
    case (step x)
    from f step.IH have "f x ≤ f (⨆ccpo_class.iterates g)" by(rule monotoneD)
    also have "… ≤ g (⨆ccpo_class.iterates g)" using fg by(simp add: fun_ord_def)
    also have "… = ⨆ccpo_class.iterates g" by(fold fixp_def fixp_unfold[OF g]) simp
    finally show ?case .
  qed(blast intro: ccpo_Sup_least)
qed(rule chain_iterates[OF f])

context fixes ordb :: "'b ⇒ 'b ⇒ bool" (infix "⊑" 60) begin

lemma iterates_mono:
  assumes f: "f ∈ ccpo.iterates (fun_lub Sup) (fun_ord op ≤) F"
  and mono: "⋀f. monotone op ⊑ op ≤ f ⟹ monotone op ⊑ op ≤ (F f)"
  shows "monotone op ⊑ op ≤ f"
using f
by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mono_lub)+

lemma fixp_preserves_mono:
  assumes mono: "⋀x. monotone (fun_ord op ≤) op ≤ (λf. F f x)"
  and mono2: "⋀f. monotone op ⊑ op ≤ f ⟹ monotone op ⊑ op ≤ (F f)"
  shows "monotone op ⊑ op ≤ (ccpo.fixp (fun_lub Sup) (fun_ord op ≤) F)"
  (is "monotone _ _ ?fixp")
proof(rule monotoneI)
  have mono: "monotone (fun_ord op ≤) (fun_ord op ≤) F"
    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord op ≤) F"
  have chain: "⋀x. Complete_Partial_Order.chain op ≤ ((λf. f x) ` ?iter)"
    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)

  fix x y
  assume "x ⊑ y"
  show "?fixp x ≤ ?fixp y"
    unfolding ccpo.fixp_def[OF ccpo_fun] fun_lub_apply using chain
  proof(rule ccpo_Sup_least)
    fix x'
    assume "x' ∈ (λf. f x) ` ?iter"
    then obtain f where "f ∈ ?iter" "x' = f x" by blast note this(2)
    also have "f x ≤ f y"
      by(rule monotoneD[OF iterates_mono[OF ‹f ∈ ?iter› mono2]])(blast intro: ‹x ⊑ y›)+
    also have "f y ≤ ⨆((λf. f y) ` ?iter)" using chain
      by(rule ccpo_Sup_upper)(simp add: ‹f ∈ ?iter›)
    finally show "x' ≤ …" .
  qed
qed

end

end

lemma monotone2monotone:
  assumes 2: "⋀x. monotone ordb ordc (λy. f x y)"
  and t: "monotone orda ordb (λx. t x)"
  and 1: "⋀y. monotone orda ordc (λx. f x y)"
  and trans: "transp ordc"
  shows "monotone orda ordc (λx. f x (t x))"
by(blast intro: monotoneI transpD[OF trans] monotoneD[OF t] monotoneD[OF 2] monotoneD[OF 1])

subsection ‹Continuity›

definition cont :: "('a set ⇒ 'a) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ ('b set ⇒ 'b) ⇒ ('b ⇒ 'b ⇒ bool) ⇒ ('a ⇒ 'b) ⇒ bool"
where
  "cont luba orda lubb ordb f ⟷ 
  (∀Y. Complete_Partial_Order.chain orda Y ⟶ Y ≠ {} ⟶ f (luba Y) = lubb (f ` Y))"

definition mcont :: "('a set ⇒ 'a) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ ('b set ⇒ 'b) ⇒ ('b ⇒ 'b ⇒ bool) ⇒ ('a ⇒ 'b) ⇒ bool"
where
  "mcont luba orda lubb ordb f ⟷
   monotone orda ordb f ∧ cont luba orda lubb ordb f"

subsubsection ‹Theorem collection ‹cont_intro››

named_theorems cont_intro "continuity and admissibility intro rules"
ML ‹
(* apply cont_intro rules as intro and try to solve 
   the remaining of the emerging subgoals with simp *)
fun cont_intro_tac ctxt =
  REPEAT_ALL_NEW (resolve_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cont_intro})))
  THEN_ALL_NEW (SOLVED' (simp_tac ctxt))

fun cont_intro_simproc ctxt ct =
  let
    fun mk_stmt t = t
      |> HOLogic.mk_Trueprop
      |> Thm.cterm_of ctxt
      |> Goal.init
    fun mk_thm t =
      case SINGLE (cont_intro_tac ctxt 1) (mk_stmt t) of
        SOME thm => SOME (Goal.finish ctxt thm RS @{thm Eq_TrueI})
      | NONE => NONE
  in
    case Thm.term_of ct of
      t as Const (@{const_name ccpo.admissible}, _) $ _ $ _ $ _ => mk_thm t
    | t as Const (@{const_name mcont}, _) $ _ $ _ $ _ $ _ $ _ => mk_thm t
    | t as Const (@{const_name monotone}, _) $ _ $ _ $ _ => mk_thm t
    | _ => NONE
  end
  handle THM _ => NONE 
  | TYPE _ => NONE
›

simproc_setup "cont_intro"
  ( "ccpo.admissible lub ord P"
  | "mcont lub ord lub' ord' f"
  | "monotone ord ord' f"
  ) = ‹K cont_intro_simproc›

lemmas [cont_intro] =
  call_mono
  let_mono
  if_mono
  option.const_mono
  tailrec.const_mono
  bind_mono

declare if_mono[simp]

lemma monotone_id' [cont_intro]: "monotone ord ord (λx. x)"
by(simp add: monotone_def)

lemma monotone_applyI:
  "monotone orda ordb F ⟹ monotone (fun_ord orda) ordb (λf. F (f x))"
by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)

lemma monotone_if_fun [partial_function_mono]:
  "⟦ monotone (fun_ord orda) (fun_ord ordb) F; monotone (fun_ord orda) (fun_ord ordb) G ⟧
  ⟹ monotone (fun_ord orda) (fun_ord ordb) (λf n. if c n then F f n else G f n)"
by(simp add: monotone_def fun_ord_def)

lemma monotone_fun_apply_fun [partial_function_mono]: 
  "monotone (fun_ord (fun_ord ord)) (fun_ord ord) (λf n. f t (g n))"
by(rule monotoneI)(simp add: fun_ord_def)

lemma monotone_fun_ord_apply: 
  "monotone orda (fun_ord ordb) f ⟷ (∀x. monotone orda ordb (λy. f y x))"
by(auto simp add: monotone_def fun_ord_def)

context preorder begin

lemma transp_le [simp, cont_intro]: "transp op ≤"
by(rule transpI)(rule order_trans)

lemma monotone_const [simp, cont_intro]: "monotone ord op ≤ (λ_. c)"
by(rule monotoneI) simp

end

lemma transp_le [cont_intro, simp]:
  "class.preorder ord (mk_less ord) ⟹ transp ord"
by(rule preorder.transp_le)

context partial_function_definitions begin

declare const_mono [cont_intro, simp]

lemma transp_le [cont_intro, simp]: "transp leq"
by(rule transpI)(rule leq_trans)

lemma preorder [cont_intro, simp]: "class.preorder leq (mk_less leq)"
by(unfold_locales)(auto simp add: mk_less_def intro: leq_refl leq_trans)

declare ccpo[cont_intro, simp]

end

lemma contI [intro?]:
  "(⋀Y. ⟦ Complete_Partial_Order.chain orda Y; Y ≠ {} ⟧ ⟹ f (luba Y) = lubb (f ` Y)) 
  ⟹ cont luba orda lubb ordb f"
unfolding cont_def by blast

lemma contD:
  "⟦ cont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y ≠ {} ⟧ 
  ⟹ f (luba Y) = lubb (f ` Y)"
unfolding cont_def by blast

lemma cont_id [simp, cont_intro]: "⋀Sup. cont Sup ord Sup ord id"
by(rule contI) simp

lemma cont_id' [simp, cont_intro]: "⋀Sup. cont Sup ord Sup ord (λx. x)"
using cont_id[unfolded id_def] .

lemma cont_applyI [cont_intro]:
  assumes cont: "cont luba orda lubb ordb g"
  shows "cont (fun_lub luba) (fun_ord orda) lubb ordb (λf. g (f x))"
by(rule contI)(drule chain_fun_ordD[where x=x], simp add: fun_lub_apply image_image contD[OF cont])

lemma call_cont: "cont (fun_lub lub) (fun_ord ord) lub ord (λf. f t)"
by(simp add: cont_def fun_lub_apply)

lemma cont_if [cont_intro]:
  "⟦ cont luba orda lubb ordb f; cont luba orda lubb ordb g ⟧
  ⟹ cont luba orda lubb ordb (λx. if c then f x else g x)"
by(cases c) simp_all

lemma mcontI [intro?]:
   "⟦ monotone orda ordb f; cont luba orda lubb ordb f ⟧ ⟹ mcont luba orda lubb ordb f"
by(simp add: mcont_def)

lemma mcont_mono: "mcont luba orda lubb ordb f ⟹ monotone orda ordb f"
by(simp add: mcont_def)

lemma mcont_cont [simp]: "mcont luba orda lubb ordb f ⟹ cont luba orda lubb ordb f"
by(simp add: mcont_def)

lemma mcont_monoD:
  "⟦ mcont luba orda lubb ordb f; orda x y ⟧ ⟹ ordb (f x) (f y)"
by(auto simp add: mcont_def dest: monotoneD)

lemma mcont_contD:
  "⟦ mcont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y ≠ {} ⟧
  ⟹ f (luba Y) = lubb (f ` Y)"
by(auto simp add: mcont_def dest: contD)

lemma mcont_call [cont_intro, simp]:
  "mcont (fun_lub lub) (fun_ord ord) lub ord (λf. f t)"
by(simp add: mcont_def call_mono call_cont)

lemma mcont_id' [cont_intro, simp]: "mcont lub ord lub ord (λx. x)"
by(simp add: mcont_def monotone_id')

lemma mcont_applyI:
  "mcont luba orda lubb ordb (λx. F x) ⟹ mcont (fun_lub luba) (fun_ord orda) lubb ordb (λf. F (f x))"
by(simp add: mcont_def monotone_applyI cont_applyI)

lemma mcont_if [cont_intro, simp]:
  "⟦ mcont luba orda lubb ordb (λx. f x); mcont luba orda lubb ordb (λx. g x) ⟧
  ⟹ mcont luba orda lubb ordb (λx. if c then f x else g x)"
by(simp add: mcont_def cont_if)

lemma cont_fun_lub_apply: 
  "cont luba orda (fun_lub lubb) (fun_ord ordb) f ⟷ (∀x. cont luba orda lubb ordb (λy. f y x))"
by(simp add: cont_def fun_lub_def fun_eq_iff)(auto simp add: image_def)

lemma mcont_fun_lub_apply: 
  "mcont luba orda (fun_lub lubb) (fun_ord ordb) f ⟷ (∀x. mcont luba orda lubb ordb (λy. f y x))"
by(auto simp add: monotone_fun_ord_apply cont_fun_lub_apply mcont_def)

context ccpo begin

lemma cont_const [simp, cont_intro]: "cont luba orda Sup op ≤ (λx. c)"
by (rule contI) (simp add: image_constant_conv cong del: strong_SUP_cong)

lemma mcont_const [cont_intro, simp]:
  "mcont luba orda Sup op ≤ (λx. c)"
by(simp add: mcont_def)

lemma cont_apply:
  assumes 2: "⋀x. cont lubb ordb Sup op ≤ (λy. f x y)"
  and t: "cont luba orda lubb ordb (λx. t x)"
  and 1: "⋀y. cont luba orda Sup op ≤ (λx. f x y)"
  and mono: "monotone orda ordb (λx. t x)"
  and mono2: "⋀x. monotone ordb op ≤ (λy. f x y)"
  and mono1: "⋀y. monotone orda op ≤ (λx. f x y)"
  shows "cont luba orda Sup op ≤ (λx. f x (t x))"
proof
  fix Y
  assume chain: "Complete_Partial_Order.chain orda Y" and "Y ≠ {}"
  moreover from chain have chain': "Complete_Partial_Order.chain ordb (t ` Y)"
    by(rule chain_imageI)(rule monotoneD[OF mono])
  ultimately show "f (luba Y) (t (luba Y)) = ⨆((λx. f x (t x)) ` Y)"
    by(simp add: contD[OF 1] contD[OF t] contD[OF 2] image_image)
      (rule diag_Sup[OF chain], auto intro: monotone2monotone[OF mono2 mono monotone_const transpI] monotoneD[OF mono1])
qed

lemma mcont2mcont':
  "⟦ ⋀x. mcont lub' ord' Sup op ≤ (λy. f x y);
     ⋀y. mcont lub ord Sup op ≤ (λx. f x y);
     mcont lub ord lub' ord' (λy. t y) ⟧
  ⟹ mcont lub ord Sup op ≤ (λx. f x (t x))"
unfolding mcont_def by(blast intro: transp_le monotone2monotone cont_apply)

lemma mcont2mcont:
  "⟦mcont lub' ord' Sup op ≤ (λx. f x); mcont lub ord lub' ord' (λx. t x)⟧ 
  ⟹ mcont lub ord Sup op ≤ (λx. f (t x))"
by(rule mcont2mcont'[OF _ mcont_const]) 

context
  fixes ord :: "'b ⇒ 'b ⇒ bool" (infix "⊑" 60) 
  and lub :: "'b set ⇒ 'b" ("⋁_" [900] 900)
begin

lemma cont_fun_lub_Sup:
  assumes chainM: "Complete_Partial_Order.chain (fun_ord op ≤) M"
  and mcont [rule_format]: "∀f∈M. mcont lub op ⊑ Sup op ≤ f"
  shows "cont lub op ⊑ Sup op ≤ (fun_lub Sup M)"
proof(rule contI)
  fix Y
  assume chain: "Complete_Partial_Order.chain op ⊑ Y"
    and Y: "Y ≠ {}"
  from swap_Sup[OF chain chainM mcont[THEN mcont_mono]]
  show "fun_lub Sup M (⋁Y) = ⨆(fun_lub Sup M ` Y)"
    by(simp add: mcont_contD[OF mcont chain Y] fun_lub_apply cong: image_cong)
qed

lemma mcont_fun_lub_Sup:
  "⟦ Complete_Partial_Order.chain (fun_ord op ≤) M;
    ∀f∈M. mcont lub ord Sup op ≤ f ⟧
  ⟹ mcont lub op ⊑ Sup op ≤ (fun_lub Sup M)"
by(simp add: mcont_def cont_fun_lub_Sup mono_lub)

lemma iterates_mcont:
  assumes f: "f ∈ ccpo.iterates (fun_lub Sup) (fun_ord op ≤) F"
  and mono: "⋀f. mcont lub op ⊑ Sup op ≤ f ⟹ mcont lub op ⊑ Sup op ≤ (F f)"
  shows "mcont lub op ⊑ Sup op ≤ f"
using f
by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mcont_fun_lub_Sup)+

lemma fixp_preserves_mcont:
  assumes mono: "⋀x. monotone (fun_ord op ≤) op ≤ (λf. F f x)"
  and mcont: "⋀f. mcont lub op ⊑ Sup op ≤ f ⟹ mcont lub op ⊑ Sup op ≤ (F f)"
  shows "mcont lub op ⊑ Sup op ≤ (ccpo.fixp (fun_lub Sup) (fun_ord op ≤) F)"
  (is "mcont _ _ _ _ ?fixp")
unfolding mcont_def
proof(intro conjI monotoneI contI)
  have mono: "monotone (fun_ord op ≤) (fun_ord op ≤) F"
    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord op ≤) F"
  have chain: "⋀x. Complete_Partial_Order.chain op ≤ ((λf. f x) ` ?iter)"
    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)

  {
    fix x y
    assume "x ⊑ y"
    show "?fixp x ≤ ?fixp y"
      unfolding ccpo.fixp_def[OF ccpo_fun] fun_lub_apply using chain
    proof(rule ccpo_Sup_least)
      fix x'
      assume "x' ∈ (λf. f x) ` ?iter"
      then obtain f where "f ∈ ?iter" "x' = f x" by blast note this(2)
      also from _ ‹x ⊑ y› have "f x ≤ f y"
        by(rule mcont_monoD[OF iterates_mcont[OF ‹f ∈ ?iter› mcont]])
      also have "f y ≤ ⨆((λf. f y) ` ?iter)" using chain
        by(rule ccpo_Sup_upper)(simp add: ‹f ∈ ?iter›)
      finally show "x' ≤ …" .
    qed
  next
    fix Y
    assume chain: "Complete_Partial_Order.chain op ⊑ Y"
      and Y: "Y ≠ {}"
    { fix f
      assume "f ∈ ?iter"
      hence "f (⋁Y) = ⨆(f ` Y)"
        using mcont chain Y by(rule mcont_contD[OF iterates_mcont]) }
    moreover have "⨆((λf. ⨆(f ` Y)) ` ?iter) = ⨆((λx. ⨆((λf. f x) ` ?iter)) ` Y)"
      using chain ccpo.chain_iterates[OF ccpo_fun mono]
      by(rule swap_Sup)(rule mcont_mono[OF iterates_mcont[OF _ mcont]])
    ultimately show "?fixp (⋁Y) = ⨆(?fixp ` Y)" unfolding ccpo.fixp_def[OF ccpo_fun]
      by(simp add: fun_lub_apply cong: image_cong)
  }
qed

end

context
  fixes F :: "'c ⇒ 'c" and U :: "'c ⇒ 'b ⇒ 'a" and C :: "('b ⇒ 'a) ⇒ 'c" and f
  assumes mono: "⋀x. monotone (fun_ord op ≤) op ≤ (λf. U (F (C f)) x)"
  and eq: "f ≡ C (ccpo.fixp (fun_lub Sup) (fun_ord op ≤) (λf. U (F (C f))))"
  and inverse: "⋀f. U (C f) = f"
begin

lemma fixp_preserves_mono_uc:
  assumes mono2: "⋀f. monotone ord op ≤ (U f) ⟹ monotone ord op ≤ (U (F f))"
  shows "monotone ord op ≤ (U f)"
using fixp_preserves_mono[OF mono mono2] by(subst eq)(simp add: inverse)

lemma fixp_preserves_mcont_uc:
  assumes mcont: "⋀f. mcont lubb ordb Sup op ≤ (U f) ⟹ mcont lubb ordb Sup op ≤ (U (F f))"
  shows "mcont lubb ordb Sup op ≤ (U f)"
using fixp_preserves_mcont[OF mono mcont] by(subst eq)(simp add: inverse)

end

lemmas fixp_preserves_mono1 = fixp_preserves_mono_uc[of "λx. x" _ "λx. x", OF _ _ refl]
lemmas fixp_preserves_mono2 =
  fixp_preserves_mono_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
lemmas fixp_preserves_mono3 =
  fixp_preserves_mono_uc[of "λf. case_prod (case_prod f)" _ "λf. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
lemmas fixp_preserves_mono4 =
  fixp_preserves_mono_uc[of "λf. case_prod (case_prod (case_prod f))" _ "λf. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]

lemmas fixp_preserves_mcont1 = fixp_preserves_mcont_uc[of "λx. x" _ "λx. x", OF _ _ refl]
lemmas fixp_preserves_mcont2 =
  fixp_preserves_mcont_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
lemmas fixp_preserves_mcont3 =
  fixp_preserves_mcont_uc[of "λf. case_prod (case_prod f)" _ "λf. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
lemmas fixp_preserves_mcont4 =
  fixp_preserves_mcont_uc[of "λf. case_prod (case_prod (case_prod f))" _ "λf. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]

end

lemma (in preorder) monotone_if_bot:
  fixes bot
  assumes mono: "⋀x y. ⟦ x ≤ y; ¬ (x ≤ bound) ⟧ ⟹ ord (f x) (f y)"
  and bot: "⋀x. ¬ x ≤ bound ⟹ ord bot (f x)" "ord bot bot"
  shows "monotone op ≤ ord (λx. if x ≤ bound then bot else f x)"
by(rule monotoneI)(auto intro: bot intro: mono order_trans)

lemma (in ccpo) mcont_if_bot:
  fixes bot and lub ("⋁_" [900] 900) and ord (infix "⊑" 60)
  assumes ccpo: "class.ccpo lub op ⊑ lt"
  and mono: "⋀x y. ⟦ x ≤ y; ¬ x ≤ bound ⟧ ⟹ f x ⊑ f y"
  and cont: "⋀Y. ⟦ Complete_Partial_Order.chain op ≤ Y; Y ≠ {}; ⋀x. x ∈ Y ⟹ ¬ x ≤ bound ⟧ ⟹ f (⨆Y) = ⋁(f ` Y)"
  and bot: "⋀x. ¬ x ≤ bound ⟹ bot ⊑ f x"
  shows "mcont Sup op ≤ lub op ⊑ (λx. if x ≤ bound then bot else f x)" (is "mcont _ _ _ _ ?g")
proof(intro mcontI contI)
  interpret c: ccpo lub "op ⊑" lt by(fact ccpo)
  show "monotone op ≤ op ⊑ ?g" by(rule monotone_if_bot)(simp_all add: mono bot)

  fix Y
  assume chain: "Complete_Partial_Order.chain op ≤ Y" and Y: "Y ≠ {}"
  show "?g (⨆Y) = ⋁(?g ` Y)"
  proof(cases "Y ⊆ {x. x ≤ bound}")
    case True
    hence "⨆Y ≤ bound" using chain by(auto intro: ccpo_Sup_least)
    moreover have "Y ∩ {x. ¬ x ≤ bound} = {}" using True by auto
    ultimately show ?thesis using True Y
      by (auto simp add: image_constant_conv cong del: c.strong_SUP_cong)
  next
    case False
    let ?Y = "Y ∩ {x. ¬ x ≤ bound}"
    have chain': "Complete_Partial_Order.chain op ≤ ?Y"
      using chain by(rule chain_subset) simp

    from False obtain y where ybound: "¬ y ≤ bound" and y: "y ∈ Y" by blast
    hence "¬ ⨆Y ≤ bound" by (metis ccpo_Sup_upper chain order.trans)
    hence "?g (⨆Y) = f (⨆Y)" by simp
    also have "⨆Y ≤ ⨆?Y" using chain
    proof(rule ccpo_Sup_least)
      fix x
      assume x: "x ∈ Y"
      show "x ≤ ⨆?Y"
      proof(cases "x ≤ bound")
        case True
        with chainD[OF chain x y] have "x ≤ y" using ybound by(auto intro: order_trans)
        thus ?thesis by(rule order_trans)(auto intro: ccpo_Sup_upper[OF chain'] simp add: y ybound)
      qed(auto intro: ccpo_Sup_upper[OF chain'] simp add: x)
    qed
    hence "⨆Y = ⨆?Y" by(rule antisym)(blast intro: ccpo_Sup_least[OF chain'] ccpo_Sup_upper[OF chain])
    hence "f (⨆Y) = f (⨆?Y)" by simp
    also have "f (⨆?Y) = ⋁(f ` ?Y)" using chain' by(rule cont)(insert y ybound, auto)
    also have "⋁(f ` ?Y) = ⋁(?g ` Y)"
    proof(cases "Y ∩ {x. x ≤ bound} = {}")
      case True
      hence "f ` ?Y = ?g ` Y" by auto
      thus ?thesis by(rule arg_cong)
    next
      case False
      have chain'': "Complete_Partial_Order.chain op ⊑ (insert bot (f ` ?Y))"
        using chain by(auto intro!: chainI bot dest: chainD intro: mono)
      hence chain''': "Complete_Partial_Order.chain op ⊑ (f ` ?Y)" by(rule chain_subset) blast
      have "bot ⊑ ⋁(f ` ?Y)" using y ybound by(blast intro: c.order_trans[OF bot] c.ccpo_Sup_upper[OF chain'''])
      hence "⋁(insert bot (f ` ?Y)) ⊑ ⋁(f ` ?Y)" using chain''
        by(auto intro: c.ccpo_Sup_least c.ccpo_Sup_upper[OF chain''']) 
      with _ have "… = ⋁(insert bot (f ` ?Y))"
        by(rule c.antisym)(blast intro: c.ccpo_Sup_least[OF chain'''] c.ccpo_Sup_upper[OF chain''])
      also have "insert bot (f ` ?Y) = ?g ` Y" using False by auto
      finally show ?thesis .
    qed
    finally show ?thesis .
  qed
qed

context partial_function_definitions begin

lemma mcont_const [cont_intro, simp]:
  "mcont luba orda lub leq (λx. c)"
by(rule ccpo.mcont_const)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])

lemmas [cont_intro, simp] =
  ccpo.cont_const[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]

lemma mono2mono:
  assumes "monotone ordb leq (λy. f y)" "monotone orda ordb (λx. t x)"
  shows "monotone orda leq (λx. f (t x))"
using assms by(rule monotone2monotone) simp_all

lemmas mcont2mcont' = ccpo.mcont2mcont'[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas mcont2mcont = ccpo.mcont2mcont[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]

lemmas fixp_preserves_mono1 = ccpo.fixp_preserves_mono1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mono2 = ccpo.fixp_preserves_mono2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mono3 = ccpo.fixp_preserves_mono3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mono4 = ccpo.fixp_preserves_mono4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mcont1 = ccpo.fixp_preserves_mcont1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mcont2 = ccpo.fixp_preserves_mcont2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mcont3 = ccpo.fixp_preserves_mcont3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
lemmas fixp_preserves_mcont4 = ccpo.fixp_preserves_mcont4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]

lemma monotone_if_bot:
  fixes bot
  assumes g: "⋀x. g x = (if leq x bound then bot else f x)"
  and mono: "⋀x y. ⟦ leq x y; ¬ leq x bound ⟧ ⟹ ord (f x) (f y)"
  and bot: "⋀x. ¬ leq x bound ⟹ ord bot (f x)" "ord bot bot"
  shows "monotone leq ord g"
unfolding g[abs_def] using preorder mono bot by(rule preorder.monotone_if_bot)

lemma mcont_if_bot:
  fixes bot
  assumes ccpo: "class.ccpo lub' ord (mk_less ord)"
  and bot: "⋀x. ¬ leq x bound ⟹ ord bot (f x)"
  and g: "⋀x. g x = (if leq x bound then bot else f x)"
  and mono: "⋀x y. ⟦ leq x y; ¬ leq x bound ⟧ ⟹ ord (f x) (f y)"
  and cont: "⋀Y. ⟦ Complete_Partial_Order.chain leq Y; Y ≠ {}; ⋀x. x ∈ Y ⟹ ¬ leq x bound ⟧ ⟹ f (lub Y) = lub' (f ` Y)"
  shows "mcont lub leq lub' ord g"
unfolding g[abs_def] using ccpo mono cont bot by(rule ccpo.mcont_if_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]])

end

subsection ‹Admissibility›

lemma admissible_subst:
  assumes adm: "ccpo.admissible luba orda (λx. P x)"
  and mcont: "mcont lubb ordb luba orda f"
  shows "ccpo.admissible lubb ordb (λx. P (f x))"
apply(rule ccpo.admissibleI)
apply(frule (1) mcont_contD[OF mcont])
apply(auto intro: ccpo.admissibleD[OF adm] chain_imageI dest: mcont_monoD[OF mcont])
done

lemmas [simp, cont_intro] = 
  admissible_all
  admissible_ball
  admissible_const
  admissible_conj

lemma admissible_disj' [simp, cont_intro]:
  "⟦ class.ccpo lub ord (mk_less ord); ccpo.admissible lub ord P; ccpo.admissible lub ord Q ⟧
  ⟹ ccpo.admissible lub ord (λx. P x ∨ Q x)"
by(rule ccpo.admissible_disj)

lemma admissible_imp' [cont_intro]:
  "⟦ class.ccpo lub ord (mk_less ord);
     ccpo.admissible lub ord (λx. ¬ P x);
     ccpo.admissible lub ord (λx. Q x) ⟧
  ⟹ ccpo.admissible lub ord (λx. P x ⟶ Q x)"
unfolding imp_conv_disj by(rule ccpo.admissible_disj)

lemma admissible_imp [cont_intro]:
  "(Q ⟹ ccpo.admissible lub ord (λx. P x))
  ⟹ ccpo.admissible lub ord (λx. Q ⟶ P x)"
by(rule ccpo.admissibleI)(auto dest: ccpo.admissibleD)

lemma admissible_not_mem' [THEN admissible_subst, cont_intro, simp]:
  shows admissible_not_mem: "ccpo.admissible Union op ⊆ (λA. x ∉ A)"
by(rule ccpo.admissibleI) auto

lemma admissible_eqI:
  assumes f: "cont luba orda lub ord (λx. f x)"
  and g: "cont luba orda lub ord (λx. g x)"
  shows "ccpo.admissible luba orda (λx. f x = g x)"
apply(rule ccpo.admissibleI)
apply(simp_all add: contD[OF f] contD[OF g] cong: image_cong)
done

corollary admissible_eq_mcontI [cont_intro]:
  "⟦ mcont luba orda lub ord (λx. f x); 
    mcont luba orda lub ord (λx. g x) ⟧
  ⟹ ccpo.admissible luba orda (λx. f x = g x)"
by(rule admissible_eqI)(auto simp add: mcont_def)

lemma admissible_iff [cont_intro, simp]:
  "⟦ ccpo.admissible lub ord (λx. P x ⟶ Q x); ccpo.admissible lub ord (λx. Q x ⟶ P x) ⟧
  ⟹ ccpo.admissible lub ord (λx. P x ⟷ Q x)"
by(subst iff_conv_conj_imp)(rule admissible_conj)

context ccpo begin

lemma admissible_leI:
  assumes f: "mcont luba orda Sup op ≤ (λx. f x)"
  and g: "mcont luba orda Sup op ≤ (λx. g x)"
  shows "ccpo.admissible luba orda (λx. f x ≤ g x)"
proof(rule ccpo.admissibleI)
  fix A
  assume chain: "Complete_Partial_Order.chain orda A"
    and le: "∀x∈A. f x ≤ g x"
    and False: "A ≠ {}"
  have "f (luba A) = ⨆(f ` A)" by(simp add: mcont_contD[OF f] chain False)
  also have "… ≤ ⨆(g ` A)"
  proof(rule ccpo_Sup_least)
    from chain show "Complete_Partial_Order.chain op ≤ (f ` A)"
      by(rule chain_imageI)(rule mcont_monoD[OF f])
    
    fix x
    assume "x ∈ f ` A"
    then obtain y where "y ∈ A" "x = f y" by blast note this(2)
    also have "f y ≤ g y" using le ‹y ∈ A› by simp
    also have "Complete_Partial_Order.chain op ≤ (g ` A)"
      using chain by(rule chain_imageI)(rule mcont_monoD[OF g])
    hence "g y ≤ ⨆(g ` A)" by(rule ccpo_Sup_upper)(simp add: ‹y ∈ A›)
    finally show "x ≤ …" .
  qed
  also have "… = g (luba A)" by(simp add: mcont_contD[OF g] chain False)
  finally show "f (luba A) ≤ g (luba A)" .
qed

end

lemma admissible_leI:
  fixes ord (infix "⊑" 60) and lub ("⋁_" [900] 900)
  assumes "class.ccpo lub op ⊑ (mk_less op ⊑)"
  and "mcont luba orda lub op ⊑ (λx. f x)"
  and "mcont luba orda lub op ⊑ (λx. g x)"
  shows "ccpo.admissible luba orda (λx. f x ⊑ g x)"
using assms by(rule ccpo.admissible_leI)

declare ccpo_class.admissible_leI[cont_intro]

context ccpo begin

lemma admissible_not_below: "ccpo.admissible Sup op ≤ (λx. ¬ op ≤ x y)"
by(rule ccpo.admissibleI)(simp add: ccpo_Sup_below_iff)

end

lemma (in preorder) preorder [cont_intro, simp]: "class.preorder op ≤ (mk_less op ≤)"
by(unfold_locales)(auto simp add: mk_less_def intro: order_trans)

context partial_function_definitions begin

lemmas [cont_intro, simp] =
  admissible_leI[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
  ccpo.admissible_not_below[THEN admissible_subst, OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]

end


inductive compact :: "('a set ⇒ 'a) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ bool"
  for lub ord x 
where compact:
  "⟦ ccpo.admissible lub ord (λy. ¬ ord x y);
     ccpo.admissible lub ord (λy. x ≠ y) ⟧
  ⟹ compact lub ord x"

hide_fact (open) compact

context ccpo begin

lemma compactI:
  assumes "ccpo.admissible Sup op ≤ (λy. ¬ x ≤ y)"
  shows "compact Sup op ≤ x"
using assms
proof(rule compact.intros)
  have neq: "(λy. x ≠ y) = (λy. ¬ x ≤ y ∨ ¬ y ≤ x)" by(auto)
  show "ccpo.admissible Sup op ≤ (λy. x ≠ y)"
    by(subst neq)(rule admissible_disj admissible_not_below assms)+
qed

lemma compact_bot:
  assumes "x = Sup {}"
  shows "compact Sup op ≤ x"
proof(rule compactI)
  show "ccpo.admissible Sup op ≤ (λy. ¬ x ≤ y)" using assms
    by(auto intro!: ccpo.admissibleI intro: ccpo_Sup_least chain_empty)
qed

end

lemma admissible_compact_neq' [THEN admissible_subst, cont_intro, simp]:
  shows admissible_compact_neq: "compact lub ord k ⟹ ccpo.admissible lub ord (λx. k ≠ x)"
by(simp add: compact.simps)

lemma admissible_neq_compact' [THEN admissible_subst, cont_intro, simp]:
  shows admissible_neq_compact: "compact lub ord k ⟹ ccpo.admissible lub ord (λx. x ≠ k)"
by(subst eq_commute)(rule admissible_compact_neq)

context partial_function_definitions begin

lemmas [cont_intro, simp] = ccpo.compact_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]

end

context ccpo begin

lemma fixp_strong_induct:
  assumes [cont_intro]: "ccpo.admissible Sup op ≤ P"
  and mono: "monotone op ≤ op ≤ f"
  and bot: "P (⨆{})"
  and step: "⋀x. ⟦ x ≤ ccpo_class.fixp f; P x ⟧ ⟹ P (f x)"
  shows "P (ccpo_class.fixp f)"
proof(rule fixp_induct[where P="λx. x ≤ ccpo_class.fixp f ∧ P x", THEN conjunct2])
  note [cont_intro] = admissible_leI
  show "ccpo.admissible Sup op ≤ (λx. x ≤ ccpo_class.fixp f ∧ P x)" by simp
next
  show "⨆{} ≤ ccpo_class.fixp f ∧ P (⨆{})"
    by(auto simp add: bot intro: ccpo_Sup_least chain_empty)
next
  fix x
  assume "x ≤ ccpo_class.fixp f ∧ P x"
  thus "f x ≤ ccpo_class.fixp f ∧ P (f x)"
    by(subst fixp_unfold[OF mono])(auto dest: monotoneD[OF mono] intro: step)
qed(rule mono)

end

context partial_function_definitions begin

lemma fixp_strong_induct_uc:
  fixes F :: "'c ⇒ 'c"
    and U :: "'c ⇒ 'b ⇒ 'a"
    and C :: "('b ⇒ 'a) ⇒ 'c"
    and P :: "('b ⇒ 'a) ⇒ bool"
  assumes mono: "⋀x. mono_body (λf. U (F (C f)) x)"
    and eq: "f ≡ C (fixp_fun (λf. U (F (C f))))"
    and inverse: "⋀f. U (C f) = f"
    and adm: "ccpo.admissible lub_fun le_fun P"
    and bot: "P (λ_. lub {})"
    and step: "⋀f'. ⟦ P (U f'); le_fun (U f') (U f) ⟧ ⟹ P (U (F f'))"
  shows "P (U f)"
unfolding eq inverse
apply (rule ccpo.fixp_strong_induct[OF ccpo adm])
apply (insert mono, auto simp: monotone_def fun_ord_def bot fun_lub_def)[2]
apply (rule_tac f'5="C x" in step)
apply (simp_all add: inverse eq)
done

end

subsection ‹@{term "op ="} as order›

definition lub_singleton :: "('a set ⇒ 'a) ⇒ bool"
where "lub_singleton lub ⟷ (∀a. lub {a} = a)"

definition the_Sup :: "'a set ⇒ 'a"
where "the_Sup A = (THE a. a ∈ A)"

lemma lub_singleton_the_Sup [cont_intro, simp]: "lub_singleton the_Sup"
by(simp add: lub_singleton_def the_Sup_def)

lemma (in ccpo) lub_singleton: "lub_singleton Sup"
by(simp add: lub_singleton_def)

lemma (in partial_function_definitions) lub_singleton [cont_intro, simp]: "lub_singleton lub"
by(rule ccpo.lub_singleton)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])

lemma preorder_eq [cont_intro, simp]:
  "class.preorder op = (mk_less op =)"
by(unfold_locales)(simp_all add: mk_less_def)

lemma monotone_eqI [cont_intro]:
  assumes "class.preorder ord (mk_less ord)"
  shows "monotone op = ord f"
proof -
  interpret preorder ord "mk_less ord" by fact
  show ?thesis by(simp add: monotone_def)
qed

lemma cont_eqI [cont_intro]: 
  fixes f :: "'a ⇒ 'b"
  assumes "lub_singleton lub"
  shows "cont the_Sup op = lub ord f"
proof(rule contI)
  fix Y :: "'a set"
  assume "Complete_Partial_Order.chain op = Y" "Y ≠ {}"
  then obtain a where "Y = {a}" by(auto simp add: chain_def)
  thus "f (the_Sup Y) = lub (f ` Y)" using assms
    by(simp add: the_Sup_def lub_singleton_def)
qed

lemma mcont_eqI [cont_intro, simp]:
  "⟦ class.preorder ord (mk_less ord); lub_singleton lub ⟧
  ⟹ mcont the_Sup op = lub ord f"
by(simp add: mcont_def cont_eqI monotone_eqI)

subsection ‹ccpo for products›

definition prod_lub :: "('a set ⇒ 'a) ⇒ ('b set ⇒ 'b) ⇒ ('a × 'b) set ⇒ 'a × 'b"
where "prod_lub Sup_a Sup_b Y = (Sup_a (fst ` Y), Sup_b (snd ` Y))"

lemma lub_singleton_prod_lub [cont_intro, simp]:
  "⟦ lub_singleton luba; lub_singleton lubb ⟧ ⟹ lub_singleton (prod_lub luba lubb)"
by(simp add: lub_singleton_def prod_lub_def)

lemma prod_lub_empty [simp]: "prod_lub luba lubb {} = (luba {}, lubb {})"
by(simp add: prod_lub_def)

lemma preorder_rel_prodI [cont_intro, simp]:
  assumes "class.preorder orda (mk_less orda)"
  and "class.preorder ordb (mk_less ordb)"
  shows "class.preorder (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
proof -
  interpret a: preorder orda "mk_less orda" by fact
  interpret b: preorder ordb "mk_less ordb" by fact
  show ?thesis by(unfold_locales)(auto simp add: mk_less_def intro: a.order_trans b.order_trans)
qed

lemma order_rel_prodI:
  assumes a: "class.order orda (mk_less orda)"
  and b: "class.order ordb (mk_less ordb)"
  shows "class.order (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
  (is "class.order ?ord ?ord'")
proof(intro class.order.intro class.order_axioms.intro)
  interpret a: order orda "mk_less orda" by(fact a)
  interpret b: order ordb "mk_less ordb" by(fact b)
  show "class.preorder ?ord ?ord'" by(rule preorder_rel_prodI) unfold_locales

  fix x y
  assume "?ord x y" "?ord y x"
  thus "x = y" by(cases x y rule: prod.exhaust[case_product prod.exhaust]) auto
qed

lemma monotone_rel_prodI:
  assumes mono2: "⋀a. monotone ordb ordc (λb. f (a, b))"
  and mono1: "⋀b. monotone orda ordc (λa. f (a, b))"
  and a: "class.preorder orda (mk_less orda)"
  and b: "class.preorder ordb (mk_less ordb)"
  and c: "class.preorder ordc (mk_less ordc)"
  shows "monotone (rel_prod orda ordb) ordc f"
proof -
  interpret a: preorder orda "mk_less orda" by(rule a)
  interpret b: preorder ordb "mk_less ordb" by(rule b)
  interpret c: preorder ordc "mk_less ordc" by(rule c)
  show ?thesis using mono2 mono1
    by(auto 7 2 simp add: monotone_def intro: c.order_trans)
qed

lemma monotone_rel_prodD1:
  assumes mono: "monotone (rel_prod orda ordb) ordc f"
  and preorder: "class.preorder ordb (mk_less ordb)"
  shows "monotone orda ordc (λa. f (a, b))"
proof -
  interpret preorder ordb "mk_less ordb" by(rule preorder)
  show ?thesis using mono by(simp add: monotone_def)
qed

lemma monotone_rel_prodD2:
  assumes mono: "monotone (rel_prod orda ordb) ordc f"
  and preorder: "class.preorder orda (mk_less orda)"
  shows "monotone ordb ordc (λb. f (a, b))"
proof -
  interpret preorder orda "mk_less orda" by(rule preorder)
  show ?thesis using mono by(simp add: monotone_def)
qed

lemma monotone_case_prodI:
  "⟦ ⋀a. monotone ordb ordc (f a); ⋀b. monotone orda ordc (λa. f a b);
    class.preorder orda (mk_less orda); class.preorder ordb (mk_less ordb);
    class.preorder ordc (mk_less ordc) ⟧
  ⟹ monotone (rel_prod orda ordb) ordc (case_prod f)"
by(rule monotone_rel_prodI) simp_all

lemma monotone_case_prodD1:
  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
  and preorder: "class.preorder ordb (mk_less ordb)"
  shows "monotone orda ordc (λa. f a b)"
using monotone_rel_prodD1[OF assms] by simp

lemma monotone_case_prodD2:
  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
  and preorder: "class.preorder orda (mk_less orda)"
  shows "monotone ordb ordc (f a)"
using monotone_rel_prodD2[OF assms] by simp

context 
  fixes orda ordb ordc
  assumes a: "class.preorder orda (mk_less orda)"
  and b: "class.preorder ordb (mk_less ordb)"
  and c: "class.preorder ordc (mk_less ordc)"
begin

lemma monotone_rel_prod_iff:
  "monotone (rel_prod orda ordb) ordc f ⟷
   (∀a. monotone ordb ordc (λb. f (a, b))) ∧ 
   (∀b. monotone orda ordc (λa. f (a, b)))"
using a b c by(blast intro: monotone_rel_prodI dest: monotone_rel_prodD1 monotone_rel_prodD2)

lemma monotone_case_prod_iff [simp]:
  "monotone (rel_prod orda ordb) ordc (case_prod f) ⟷
   (∀a. monotone ordb ordc (f a)) ∧ (∀b. monotone orda ordc (λa. f a b))"
by(simp add: monotone_rel_prod_iff)

end

lemma monotone_case_prod_apply_iff:
  "monotone orda ordb (λx. (case_prod f x) y) ⟷ monotone orda ordb (case_prod (λa b. f a b y))"
by(simp add: monotone_def)

lemma monotone_case_prod_applyD:
  "monotone orda ordb (λx. (case_prod f x) y)
  ⟹ monotone orda ordb (case_prod (λa b. f a b y))"
by(simp add: monotone_case_prod_apply_iff)

lemma monotone_case_prod_applyI:
  "monotone orda ordb (case_prod (λa b. f a b y))
  ⟹ monotone orda ordb (λx. (case_prod f x) y)"
by(simp add: monotone_case_prod_apply_iff)


lemma cont_case_prod_apply_iff:
  "cont luba orda lubb ordb (λx. (case_prod f x) y) ⟷ cont luba orda lubb ordb (case_prod (λa b. f a b y))"
by(simp add: cont_def split_def)

lemma cont_case_prod_applyI:
  "cont luba orda lubb ordb (case_prod (λa b. f a b y))
  ⟹ cont luba orda lubb ordb (λx. (case_prod f x) y)"
by(simp add: cont_case_prod_apply_iff)

lemma cont_case_prod_applyD:
  "cont luba orda lubb ordb (λx. (case_prod f x) y)
  ⟹ cont luba orda lubb ordb (case_prod (λa b. f a b y))"
by(simp add: cont_case_prod_apply_iff)

lemma mcont_case_prod_apply_iff [simp]:
  "mcont luba orda lubb ordb (λx. (case_prod f x) y) ⟷ 
   mcont luba orda lubb ordb (case_prod (λa b. f a b y))"
by(simp add: mcont_def monotone_case_prod_apply_iff cont_case_prod_apply_iff)

lemma cont_prodD1: 
  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
  and "class.preorder orda (mk_less orda)"
  and luba: "lub_singleton luba"
  shows "cont lubb ordb lubc ordc (λy. f (x, y))"
proof(rule contI)
  interpret preorder orda "mk_less orda" by fact

  fix Y :: "'b set"
  let ?Y = "{x} × Y"
  assume "Complete_Partial_Order.chain ordb Y" "Y ≠ {}"
  hence "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y ≠ {}" 
    by(simp_all add: chain_def)
  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
  moreover have "f ` ?Y = (λy. f (x, y)) ` Y" by auto
  ultimately show "f (x, lubb Y) = lubc ((λy. f (x, y)) ` Y)" using luba
    by(simp add: prod_lub_def ‹Y ≠ {}› lub_singleton_def)
qed

lemma cont_prodD2: 
  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
  and "class.preorder ordb (mk_less ordb)"
  and lubb: "lub_singleton lubb"
  shows "cont luba orda lubc ordc (λx. f (x, y))"
proof(rule contI)
  interpret preorder ordb "mk_less ordb" by fact

  fix Y
  assume Y: "Complete_Partial_Order.chain orda Y" "Y ≠ {}"
  let ?Y = "Y × {y}"
  have "f (luba Y, y) = f (prod_lub luba lubb ?Y)"
    using lubb by(simp add: prod_lub_def Y lub_singleton_def)
  also from Y have "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y ≠ {}"
    by(simp_all add: chain_def)
  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
  also have "f ` ?Y = (λx. f (x, y)) ` Y" by auto
  finally show "f (luba Y, y) = lubc …" .
qed

lemma cont_case_prodD1:
  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
  and "class.preorder orda (mk_less orda)"
  and "lub_singleton luba"
  shows "cont lubb ordb lubc ordc (f x)"
using cont_prodD1[OF assms] by simp

lemma cont_case_prodD2:
  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
  and "class.preorder ordb (mk_less ordb)"
  and "lub_singleton lubb"
  shows "cont luba orda lubc ordc (λx. f x y)"
using cont_prodD2[OF assms] by simp

context ccpo begin

lemma cont_prodI: 
  assumes mono: "monotone (rel_prod orda ordb) op ≤ f"
  and cont1: "⋀x. cont lubb ordb Sup op ≤ (λy. f (x, y))"
  and cont2: "⋀y. cont luba orda Sup op ≤ (λx. f (x, y))"
  and "class.preorder orda (mk_less orda)"
  and "class.preorder ordb (mk_less ordb)"
  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op ≤ f"
proof(rule contI)
  interpret a: preorder orda "mk_less orda" by fact 
  interpret b: preorder ordb "mk_less ordb" by fact
  
  fix Y
  assume chain: "Complete_Partial_Order.chain (rel_prod orda ordb) Y"
    and "Y ≠ {}"
  have "f (prod_lub luba lubb Y) = f (luba (fst ` Y), lubb (snd ` Y))"
    by(simp add: prod_lub_def)
  also from cont2 have "f (luba (fst ` Y), lubb (snd ` Y)) = ⨆((λx. f (x, lubb (snd ` Y))) ` fst ` Y)"
    by(rule contD)(simp_all add: chain_rel_prodD1[OF chain] ‹Y ≠ {}›)
  also from cont1 have "⋀x. f (x, lubb (snd ` Y)) = ⨆((λy. f (x, y)) ` snd ` Y)"
    by(rule contD)(simp_all add: chain_rel_prodD2[OF chain] ‹Y ≠ {}›)
  hence "⨆((λx. f (x, lubb (snd ` Y))) ` fst ` Y) = ⨆((λx. … x) ` fst ` Y)" by simp
  also have "… = ⨆((λx. f (fst x, snd x)) ` Y)"
    unfolding image_image split_def using chain
    apply(rule diag_Sup)
    using monotoneD[OF mono]
    by(auto intro: monotoneI)
  finally show "f (prod_lub luba lubb Y) = ⨆(f ` Y)" by simp
qed

lemma cont_case_prodI:
  assumes "monotone (rel_prod orda ordb) op ≤ (case_prod f)"
  and "⋀x. cont lubb ordb Sup op ≤ (λy. f x y)"
  and "⋀y. cont luba orda Sup op ≤ (λx. f x y)"
  and "class.preorder orda (mk_less orda)"
  and "class.preorder ordb (mk_less ordb)"
  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op ≤ (case_prod f)"
by(rule cont_prodI)(simp_all add: assms)

lemma cont_case_prod_iff:
  "⟦ monotone (rel_prod orda ordb) op ≤ (case_prod f);
     class.preorder orda (mk_less orda); lub_singleton luba;
     class.preorder ordb (mk_less ordb); lub_singleton lubb ⟧
  ⟹ cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op ≤ (case_prod f) ⟷
   (∀x. cont lubb ordb Sup op ≤ (λy. f x y)) ∧ (∀y. cont luba orda Sup op ≤ (λx. f x y))"
by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)

end

context partial_function_definitions begin

lemma mono2mono2:
  assumes f: "monotone (rel_prod ordb ordc) leq (λ(x, y). f x y)"
  and t: "monotone orda ordb (λx. t x)"
  and t': "monotone orda ordc (λx. t' x)"
  shows "monotone orda leq (λx. f (t x) (t' x))"
proof(rule monotoneI)
  fix x y
  assume "orda x y"
  hence "rel_prod ordb ordc (t x, t' x) (t y, t' y)"
    using t t' by(auto dest: monotoneD)
  from monotoneD[OF f this] show "leq (f (t x) (t' x)) (f (t y) (t' y))" by simp
qed

lemma cont_case_prodI [cont_intro]:
  "⟦ monotone (rel_prod orda ordb) leq (case_prod f);
    ⋀x. cont lubb ordb lub leq (λy. f x y);
    ⋀y. cont luba orda lub leq (λx. f x y);
    class.preorder orda (mk_less orda);
    class.preorder ordb (mk_less ordb) ⟧
  ⟹ cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f)"
by(rule ccpo.cont_case_prodI)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])

lemma cont_case_prod_iff:
  "⟦ monotone (rel_prod orda ordb) leq (case_prod f);
     class.preorder orda (mk_less orda); lub_singleton luba;
     class.preorder ordb (mk_less ordb); lub_singleton lubb ⟧
  ⟹ cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) ⟷
   (∀x. cont lubb ordb lub leq (λy. f x y)) ∧ (∀y. cont luba orda lub leq (λx. f x y))"
by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)

lemma mcont_case_prod_iff [simp]:
  "⟦ class.preorder orda (mk_less orda); lub_singleton luba;
     class.preorder ordb (mk_less ordb); lub_singleton lubb ⟧
  ⟹ mcont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) ⟷
   (∀x. mcont lubb ordb lub leq (λy. f x y)) ∧ (∀y. mcont luba orda lub leq (λx. f x y))"
unfolding mcont_def by(auto simp add: cont_case_prod_iff)

end

lemma mono2mono_case_prod [cont_intro]:
  assumes "⋀x y. monotone orda ordb (λf. pair f x y)"
  shows "monotone orda ordb (λf. case_prod (pair f) x)"
by(rule monotoneI)(auto split: prod.split dest: monotoneD[OF assms])

subsection ‹Complete lattices as ccpo›

context complete_lattice begin

lemma complete_lattice_ccpo: "class.ccpo Sup op ≤ op <"
by(unfold_locales)(fast intro: Sup_upper Sup_least)+

lemma complete_lattice_ccpo': "class.ccpo Sup op ≤ (mk_less op ≤)"
by(unfold_locales)(auto simp add: mk_less_def intro: Sup_upper Sup_least)

lemma complete_lattice_partial_function_definitions: 
  "partial_function_definitions op ≤ Sup"
by(unfold_locales)(auto intro: Sup_least Sup_upper)

lemma complete_lattice_partial_function_definitions_dual:
  "partial_function_definitions op ≥ Inf"
by(unfold_locales)(auto intro: Inf_lower Inf_greatest)

lemmas [cont_intro, simp] =
  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions]
  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions_dual]

lemma mono2mono_inf:
  assumes f: "monotone ord op ≤ (λx. f x)" 
  and g: "monotone ord op ≤ (λx. g x)"
  shows "monotone ord op ≤ (λx. f x ⊓ g x)"
by(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] intro: le_infI1 le_infI2 intro!: monotoneI)

lemma mcont_const [simp]: "mcont lub ord Sup op ≤ (λ_. c)"
by(rule ccpo.mcont_const[OF complete_lattice_ccpo])

lemma mono2mono_sup:
  assumes f: "monotone ord op ≤ (λx. f x)"
  and g: "monotone ord op ≤ (λx. g x)"
  shows "monotone ord op ≤ (λx. f x ⊔ g x)"
by(auto 4 3 intro!: monotoneI intro: sup.coboundedI1 sup.coboundedI2 dest: monotoneD[OF f] monotoneD[OF g])

lemma Sup_image_sup: 
  assumes "Y ≠ {}"
  shows "⨆(op ⊔ x ` Y) = x ⊔ ⨆Y"
proof(rule Sup_eqI)
  fix y
  assume "y ∈ op ⊔ x ` Y"
  then obtain z where "y = x ⊔ z" and "z ∈ Y" by blast
  from ‹z ∈ Y› have "z ≤ ⨆Y" by(rule Sup_upper)
  with _ show "y ≤ x ⊔ ⨆Y" unfolding ‹y = x ⊔ z› by(rule sup_mono) simp
next
  fix y
  assume upper: "⋀z. z ∈ op ⊔ x ` Y ⟹ z ≤ y"
  show "x ⊔ ⨆Y ≤ y" unfolding Sup_insert[symmetric]
  proof(rule Sup_least)
    fix z
    assume "z ∈ insert x Y"
    from assms obtain z' where "z' ∈ Y" by blast
    let ?z = "if z ∈ Y then x ⊔ z else x ⊔ z'"
    have "z ≤ x ⊔ ?z" using ‹z' ∈ Y› ‹z ∈ insert x Y› by auto
    also have "… ≤ y" by(rule upper)(auto split: if_split_asm intro: ‹z' ∈ Y›)
    finally show "z ≤ y" .
  qed
qed

lemma mcont_sup1: "mcont Sup op ≤ Sup op ≤ (λy. x ⊔ y)"
by(auto 4 3 simp add: mcont_def sup.coboundedI1 sup.coboundedI2 intro!: monotoneI contI intro: Sup_image_sup[symmetric])

lemma mcont_sup2: "mcont Sup op ≤ Sup op ≤ (λx. x ⊔ y)"
by(subst sup_commute)(rule mcont_sup1)

lemma mcont2mcont_sup [cont_intro, simp]:
  "⟦ mcont lub ord Sup op ≤ (λx. f x);
     mcont lub ord Sup op ≤ (λx. g x) ⟧
  ⟹ mcont lub ord Sup op ≤ (λx. f x ⊔ g x)"
by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_sup1 mcont_sup2 ccpo.mcont_const[OF complete_lattice_ccpo])

end

lemmas [cont_intro] = admissible_leI[OF complete_lattice_ccpo']

context complete_distrib_lattice begin

lemma mcont_inf1: "mcont Sup op ≤ Sup op ≤ (λy. x ⊓ y)"
by(auto intro: monotoneI contI simp add: le_infI2 inf_Sup mcont_def)

lemma mcont_inf2: "mcont Sup op ≤ Sup op ≤ (λx. x ⊓ y)"
by(auto intro: monotoneI contI simp add: le_infI1 Sup_inf mcont_def)

lemma mcont2mcont_inf [cont_intro, simp]:
  "⟦ mcont lub ord Sup op ≤ (λx. f x);
    mcont lub ord Sup op ≤ (λx. g x) ⟧
  ⟹ mcont lub ord Sup op ≤ (λx. f x ⊓ g x)"
by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_inf1 mcont_inf2 ccpo.mcont_const[OF complete_lattice_ccpo])

end

interpretation lfp: partial_function_definitions "op ≤ :: _ :: complete_lattice ⇒ _" Sup
by(rule complete_lattice_partial_function_definitions)

declaration ‹Partial_Function.init "lfp" @{term lfp.fixp_fun} @{term lfp.mono_body}
  @{thm lfp.fixp_rule_uc} @{thm lfp.fixp_induct_uc} NONE›

interpretation gfp: partial_function_definitions "op ≥ :: _ :: complete_lattice ⇒ _" Inf
by(rule complete_lattice_partial_function_definitions_dual)

declaration ‹Partial_Function.init "gfp" @{term gfp.fixp_fun} @{term gfp.mono_body}
  @{thm gfp.fixp_rule_uc} @{thm gfp.fixp_induct_uc} NONE›

lemma insert_mono [partial_function_mono]:
   "monotone (fun_ord op ⊆) op ⊆ A ⟹ monotone (fun_ord op ⊆) op ⊆ (λy. insert x (A y))"
by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)

lemma mono2mono_insert [THEN lfp.mono2mono, cont_intro, simp]:
  shows monotone_insert: "monotone op ⊆ op ⊆ (insert x)"
by(rule monotoneI) blast

lemma mcont2mcont_insert[THEN lfp.mcont2mcont, cont_intro, simp]:
  shows mcont_insert: "mcont Union op ⊆ Union op ⊆ (insert x)"
by(blast intro: mcontI contI monotone_insert)

lemma mono2mono_image [THEN lfp.mono2mono, cont_intro, simp]:
  shows monotone_image: "monotone op ⊆ op ⊆ (op ` f)"
by(rule monotoneI) blast

lemma cont_image: "cont Union op ⊆ Union op ⊆ (op ` f)"
by(rule contI)(auto)

lemma mcont2mcont_image [THEN lfp.mcont2mcont, cont_intro, simp]:
  shows mcont_image: "mcont Union op ⊆ Union op ⊆ (op ` f)"
by(blast intro: mcontI monotone_image cont_image)

context complete_lattice begin

lemma monotone_Sup [cont_intro, simp]:
  "monotone ord op ⊆ f ⟹ monotone ord op ≤ (λx. ⨆f x)"
by(blast intro: monotoneI Sup_least Sup_upper dest: monotoneD)

lemma cont_Sup:
  assumes "cont lub ord Union op ⊆ f"
  shows "cont lub ord Sup op ≤ (λx. ⨆f x)"
apply(rule contI)
apply(simp add: contD[OF assms])
apply(blast intro: Sup_least Sup_upper order_trans antisym)
done

lemma mcont_Sup: "mcont lub ord Union op ⊆ f ⟹ mcont lub ord Sup op ≤ (λx. ⨆f x)"
unfolding mcont_def by(blast intro: monotone_Sup cont_Sup)

lemma monotone_SUP:
  "⟦ monotone ord op ⊆ f; ⋀y. monotone ord op ≤ (λx. g x y) ⟧ ⟹ monotone ord op ≤ (λx. ⨆y∈f x. g x y)"
by(rule monotoneI)(blast dest: monotoneD intro: Sup_upper order_trans intro!: Sup_least)

lemma monotone_SUP2:
  "(⋀y. y ∈ A ⟹ monotone ord op ≤ (λx. g x y)) ⟹ monotone ord op ≤ (λx. ⨆y∈A. g x y)"
by(rule monotoneI)(blast intro: Sup_upper order_trans dest: monotoneD intro!: Sup_least)

lemma cont_SUP:
  assumes f: "mcont lub ord Union op ⊆ f"
  and g: "⋀y. mcont lub ord Sup op ≤ (λx. g x y)"
  shows "cont lub ord Sup op ≤ (λx. ⨆y∈f x. g x y)"
proof(rule contI)
  fix Y
  assume chain: "Complete_Partial_Order.chain ord Y"
    and Y: "Y ≠ {}"
  show "⨆(g (lub Y) ` f (lub Y)) = ⨆((λx. ⨆(g x ` f x)) ` Y)" (is "?lhs = ?rhs")
  proof(rule antisym)
    show "?lhs ≤ ?rhs"
    proof(rule Sup_least)
      fix x
      assume "x ∈ g (lub Y) ` f (lub Y)"
      with mcont_contD[OF f chain Y] mcont_contD[OF g chain Y]
      obtain y z where "y ∈ Y" "z ∈ f y"
        and x: "x = ⨆((λx. g x z) ` Y)" by auto
      show "x ≤ ?rhs" unfolding x
      proof(rule Sup_least)
        fix u
        assume "u ∈ (λx. g x z) ` Y"
        then obtain y' where "u = g y' z" "y' ∈ Y" by auto
        from chain ‹y ∈ Y› ‹y' ∈ Y› have "ord y y' ∨ ord y' y" by(rule chainD)
        thus "u ≤ ?rhs"
        proof
          note ‹u = g y' z› also
          assume "ord y y'"
          with f have "f y ⊆ f y'" by(rule mcont_monoD)
          with ‹z ∈ f y›
          have "g y' z ≤ ⨆(g y' ` f y')" by(auto intro: Sup_upper)
          also have "… ≤ ?rhs" using ‹y' ∈ Y› by(auto intro: Sup_upper)
          finally show ?thesis .
        next
          note ‹u = g y' z› also
          assume "ord y' y"
          with g have "g y' z ≤ g y z" by(rule mcont_monoD)
          also have "… ≤ ⨆(g y ` f y)" using ‹z ∈ f y›
            by(auto intro: Sup_upper)
          also have "… ≤ ?rhs" using ‹y ∈ Y› by(auto intro: Sup_upper)
          finally show ?thesis .
        qed
      qed
    qed
  next
    show "?rhs ≤ ?lhs"
    proof(rule Sup_least)
      fix x
      assume "x ∈ (λx. ⨆(g x ` f x)) ` Y"
      then obtain y where x: "x = ⨆(g y ` f y)" and "y ∈ Y" by auto
      show "x ≤ ?lhs" unfolding x
      proof(rule Sup_least)
        fix u
        assume "u ∈ g y ` f y"
        then obtain z where "u = g y z" "z ∈ f y" by auto
        note ‹u = g y z›
        also have "g y z ≤ ⨆((λx. g x z) ` Y)"
          using ‹y ∈ Y› by(auto intro: Sup_upper)
        also have "… = g (lub Y) z" by(simp add: mcont_contD[OF g chain Y])
        also have "… ≤ ?lhs" using ‹z ∈ f y› ‹y ∈ Y›
          by(auto intro: Sup_upper simp add: mcont_contD[OF f chain Y])
        finally show "u ≤ ?lhs" .
      qed
    qed
  qed
qed

lemma mcont_SUP [cont_intro, simp]:
  "⟦ mcont lub ord Union op ⊆ f; ⋀y. mcont lub ord Sup op ≤ (λx. g x y) ⟧
  ⟹ mcont lub ord Sup op ≤ (λx. ⨆y∈f x. g x y)"
by(blast intro: mcontI cont_SUP[OF assms] monotone_SUP mcont_mono)

end

lemma admissible_Ball [cont_intro, simp]:
  "⟦ ⋀x. ccpo.admissible lub ord (λA. P A x);
     mcont lub ord Union op ⊆ f;
     class.ccpo lub ord (mk_less ord) ⟧
  ⟹ ccpo.admissible lub ord (λA. ∀x∈f A. P A x)"
unfolding Ball_def by simp

lemma admissible_Bex'[THEN admissible_subst, cont_intro, simp]:
  shows admissible_Bex: "ccpo.admissible Union op ⊆ (λA. ∃x∈A. P x)"
by(rule ccpo.admissibleI)(auto)

subsection ‹Parallel fixpoint induction›

context
  fixes luba :: "'a set ⇒ 'a"
  and orda :: "'a ⇒ 'a ⇒ bool"
  and lubb :: "'b set ⇒ 'b"
  and ordb :: "'b ⇒ 'b ⇒ bool"
  assumes a: "class.ccpo luba orda (mk_less orda)"
  and b: "class.ccpo lubb ordb (mk_less ordb)"
begin

interpretation a: ccpo luba orda "mk_less orda" by(rule a)
interpretation b: ccpo lubb ordb "mk_less ordb" by(rule b)

lemma ccpo_rel_prodI:
  "class.ccpo (prod_lub luba lubb) (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
  (is "class.ccpo ?lub ?ord ?ord'")
proof(intro class.ccpo.intro class.ccpo_axioms.intro)
  show "class.order ?ord ?ord'" by(rule order_rel_prodI) intro_locales
qed(auto 4 4 simp add: prod_lub_def intro: a.ccpo_Sup_upper b.ccpo_Sup_upper a.ccpo_Sup_least b.ccpo_Sup_least rev_image_eqI dest: chain_rel_prodD1 chain_rel_prodD2)

interpretation ab: ccpo "prod_lub luba lubb" "rel_prod orda ordb" "mk_less (rel_prod orda ordb)"
by(rule ccpo_rel_prodI)

lemma monotone_map_prod [simp]:
  "monotone (rel_prod orda ordb) (rel_prod ordc ordd) (map_prod f g) ⟷
   monotone orda ordc f ∧ monotone ordb ordd g"
by(auto simp add: monotone_def)

lemma parallel_fixp_induct:
  assumes adm: "ccpo.admissible (prod_lub luba lubb) (rel_prod orda ordb) (λx. P (fst x) (snd x))"
  and f: "monotone orda orda f"
  and g: "monotone ordb ordb g"
  and bot: "P (luba {}) (lubb {})"
  and step: "⋀x y. P x y ⟹ P (f x) (g y)"
  shows "P (ccpo.fixp luba orda f) (ccpo.fixp lubb ordb g)"
proof -
  let ?lub = "prod_lub luba lubb"
    and ?ord = "rel_prod orda ordb"
    and ?P = "λ(x, y). P x y"
  from adm have adm': "ccpo.admissible ?lub ?ord ?P" by(simp add: split_def)
  hence "?P (ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g))"
    by(rule ab.fixp_induct)(auto simp add: f g step bot)
  also have "ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g) = 
            (ccpo.fixp luba orda f, ccpo.fixp lubb ordb g)" (is "?lhs = (?rhs1, ?rhs2)")
  proof(rule ab.antisym)
    have "ccpo.admissible ?lub ?ord (λxy. ?ord xy (?rhs1, ?rhs2))"
      by(rule admissible_leI[OF ccpo_rel_prodI])(auto simp add: prod_lub_def chain_empty intro: a.ccpo_Sup_least b.ccpo_Sup_least)
    thus "?ord ?lhs (?rhs1, ?rhs2)"
      by(rule ab.fixp_induct)(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] simp add: b.fixp_unfold[OF g, symmetric] a.fixp_unfold[OF f, symmetric] f g intro: a.ccpo_Sup_least b.ccpo_Sup_least chain_empty)
  next
    have "ccpo.admissible luba orda (λx. orda x (fst ?lhs))"
      by(rule admissible_leI[OF a])(auto intro: a.ccpo_Sup_least simp add: chain_empty)
    hence "orda ?rhs1 (fst ?lhs)" using f
    proof(rule a.fixp_induct)
      fix x
      assume "orda x (fst ?lhs)"
      thus "orda (f x) (fst ?lhs)"
        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF f])
    qed(auto intro: a.ccpo_Sup_least chain_empty)
    moreover
    have "ccpo.admissible lubb ordb (λy. ordb y (snd ?lhs))"
      by(rule admissible_leI[OF b])(auto intro: b.ccpo_Sup_least simp add: chain_empty)
    hence "ordb ?rhs2 (snd ?lhs)" using g
    proof(rule b.fixp_induct)
      fix y
      assume "ordb y (snd ?lhs)"
      thus "ordb (g y) (snd ?lhs)"
        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF g])
    qed(auto intro: b.ccpo_Sup_least chain_empty)
    ultimately show "?ord (?rhs1, ?rhs2) ?lhs"
      by(simp add: rel_prod_conv split_beta)
  qed
  finally show ?thesis by simp
qed

end

lemma parallel_fixp_induct_uc:
  assumes a: "partial_function_definitions orda luba"
  and b: "partial_function_definitions ordb lubb"
  and F: "⋀x. monotone (fun_ord orda) orda (λf. U1 (F (C1 f)) x)"
  and G: "⋀y. monotone (fun_ord ordb) ordb (λg. U2 (G (C2 g)) y)"
  and eq1: "f ≡ C1 (ccpo.fixp (fun_lub luba) (fun_ord orda) (λf. U1 (F (C1 f))))"
  and eq2: "g ≡ C2 (ccpo.fixp (fun_lub lubb) (fun_ord ordb) (λg. U2 (G (C2 g))))"
  and inverse: "⋀f. U1 (C1 f) = f"
  and inverse2: "⋀g. U2 (C2 g) = g"
  and adm: "ccpo.admissible (prod_lub (fun_lub luba) (fun_lub lubb)) (rel_prod (fun_ord orda) (fun_ord ordb)) (λx. P (fst x) (snd x))"
  and bot: "P (λ_. luba {}) (λ_. lubb {})"
  and step: "⋀f g. P (U1 f) (U2 g) ⟹ P (U1 (F f)) (U2 (G g))"
  shows "P (U1 f) (U2 g)"
apply(unfold eq1 eq2 inverse inverse2)
apply(rule parallel_fixp_induct[OF partial_function_definitions.ccpo[OF a] partial_function_definitions.ccpo[OF b] adm])
using F apply(simp add: monotone_def fun_ord_def)
using G apply(simp add: monotone_def fun_ord_def)
apply(simp add: fun_lub_def bot)
apply(rule step, simp add: inverse inverse2)
done

lemmas parallel_fixp_induct_1_1 = parallel_fixp_induct_uc[
  of _ _ _ _ "λx. x" _ "λx. x" "λx. x" _ "λx. x",
  OF _ _ _ _ _ _ refl refl]

lemmas parallel_fixp_induct_2_2 = parallel_fixp_induct_uc[
  of _ _ _ _ "case_prod" _ "curry" "case_prod" _ "curry",
  where P="λf g. P (curry f) (curry g)",
  unfolded case_prod_curry curry_case_prod curry_K,
  OF _ _ _ _ _ _ refl refl]
  for P

lemma monotone_fst: "monotone (rel_prod orda ordb) orda fst"
by(auto intro: monotoneI)

lemma mcont_fst: "mcont (prod_lub luba lubb) (rel_prod orda ordb) luba orda fst"
by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)

lemma mcont2mcont_fst [cont_intro, simp]:
  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
  ⟹ mcont lub ord luba orda (λx. fst (t x))"
by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)

lemma monotone_snd: "monotone (rel_prod orda ordb) ordb snd"
by(auto intro: monotoneI)

lemma mcont_snd: "mcont (prod_lub luba lubb) (rel_prod orda ordb) lubb ordb snd"
by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)

lemma mcont2mcont_snd [cont_intro, simp]:
  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
  ⟹ mcont lub ord lubb ordb (λx. snd (t x))"
by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)

context partial_function_definitions begin
text ‹Specialised versions of @{thm [source] mcont_call} for admissibility proofs for parallel fixpoint inductions›
lemmas mcont_call_fst [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_fst]
lemmas mcont_call_snd [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_snd]
end

end