section {* An imperative implementation of Quicksort on arrays *}
theory Imperative_Quicksort
imports
"~~/src/HOL/Imperative_HOL/Imperative_HOL"
Subarray
"~~/src/HOL/Library/Multiset"
"~~/src/HOL/Library/Code_Target_Numeral"
begin
text {* We prove QuickSort correct in the Relational Calculus. *}
definition swap :: "'a::heap array ⇒ nat ⇒ nat ⇒ unit Heap"
where
"swap arr i j =
do {
x ← Array.nth arr i;
y ← Array.nth arr j;
Array.upd i y arr;
Array.upd j x arr;
return ()
}"
lemma effect_swapI [effect_intros]:
assumes "i < Array.length h a" "j < Array.length h a"
"x = Array.get h a ! i" "y = Array.get h a ! j"
"h' = Array.update a j x (Array.update a i y h)"
shows "effect (swap a i j) h h' r"
unfolding swap_def using assms by (auto intro!: effect_intros)
lemma swap_permutes:
assumes "effect (swap a i j) h h' rs"
shows "mset (Array.get h' a)
= mset (Array.get h a)"
using assms
unfolding swap_def
by (auto simp add: Array.length_def mset_swap dest: sym [of _ "h'"] elim!: effect_bindE effect_nthE effect_returnE effect_updE)
function part1 :: "'a::{heap,ord} array ⇒ nat ⇒ nat ⇒ 'a ⇒ nat Heap"
where
"part1 a left right p = (
if (right ≤ left) then return right
else do {
v ← Array.nth a left;
(if (v ≤ p) then (part1 a (left + 1) right p)
else (do { swap a left right;
part1 a left (right - 1) p }))
})"
by pat_completeness auto
termination
by (relation "measure (λ(_,l,r,_). r - l )") auto
declare part1.simps[simp del]
lemma part_permutes:
assumes "effect (part1 a l r p) h h' rs"
shows "mset (Array.get h' a)
= mset (Array.get h a)"
using assms
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
case (1 a l r p h h' rs)
thus ?case
unfolding part1.simps [of a l r p]
by (elim effect_bindE effect_ifE effect_returnE effect_nthE) (auto simp add: swap_permutes)
qed
lemma part_returns_index_in_bounds:
assumes "effect (part1 a l r p) h h' rs"
assumes "l ≤ r"
shows "l ≤ rs ∧ rs ≤ r"
using assms
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
case (1 a l r p h h' rs)
note cr = `effect (part1 a l r p) h h' rs`
show ?case
proof (cases "r ≤ l")
case True
with cr `l ≤ r` show ?thesis
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_ifE effect_returnE effect_nthE) auto
next
case False
note rec_condition = this
let ?v = "Array.get h a ! l"
show ?thesis
proof (cases "?v ≤ p")
case True
with cr False
have rec1: "effect (part1 a (l + 1) r p) h h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from rec_condition have "l + 1 ≤ r" by arith
from 1(1)[OF rec_condition True rec1 `l + 1 ≤ r`]
show ?thesis by simp
next
case False
with rec_condition cr
obtain h1 where swp: "effect (swap a l r) h h1 ()"
and rec2: "effect (part1 a l (r - 1) p) h1 h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from rec_condition have "l ≤ r - 1" by arith
from 1(2) [OF rec_condition False rec2 `l ≤ r - 1`] show ?thesis by fastforce
qed
qed
qed
lemma part_length_remains:
assumes "effect (part1 a l r p) h h' rs"
shows "Array.length h a = Array.length h' a"
using assms
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
case (1 a l r p h h' rs)
note cr = `effect (part1 a l r p) h h' rs`
show ?case
proof (cases "r ≤ l")
case True
with cr show ?thesis
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_ifE effect_returnE effect_nthE) auto
next
case False
with cr 1 show ?thesis
unfolding part1.simps [of a l r p] swap_def
by (auto elim!: effect_bindE effect_ifE effect_nthE effect_returnE effect_updE) fastforce
qed
qed
lemma part_outer_remains:
assumes "effect (part1 a l r p) h h' rs"
shows "∀i. i < l ∨ r < i ⟶ Array.get h (a::'a::{heap,linorder} array) ! i = Array.get h' a ! i"
using assms
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
case (1 a l r p h h' rs)
note cr = `effect (part1 a l r p) h h' rs`
show ?case
proof (cases "r ≤ l")
case True
with cr show ?thesis
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_ifE effect_returnE effect_nthE) auto
next
case False
note rec_condition = this
let ?v = "Array.get h a ! l"
show ?thesis
proof (cases "?v ≤ p")
case True
with cr False
have rec1: "effect (part1 a (l + 1) r p) h h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from 1(1)[OF rec_condition True rec1]
show ?thesis by fastforce
next
case False
with rec_condition cr
obtain h1 where swp: "effect (swap a l r) h h1 ()"
and rec2: "effect (part1 a l (r - 1) p) h1 h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from swp rec_condition have
"∀i. i < l ∨ r < i ⟶ Array.get h a ! i = Array.get h1 a ! i"
unfolding swap_def
by (elim effect_bindE effect_nthE effect_updE effect_returnE) auto
with 1(2) [OF rec_condition False rec2] show ?thesis by fastforce
qed
qed
qed
lemma part_partitions:
assumes "effect (part1 a l r p) h h' rs"
shows "(∀i. l ≤ i ∧ i < rs ⟶ Array.get h' (a::'a::{heap,linorder} array) ! i ≤ p)
∧ (∀i. rs < i ∧ i ≤ r ⟶ Array.get h' a ! i ≥ p)"
using assms
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
case (1 a l r p h h' rs)
note cr = `effect (part1 a l r p) h h' rs`
show ?case
proof (cases "r ≤ l")
case True
with cr have "rs = r"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_ifE effect_returnE effect_nthE) auto
with True
show ?thesis by auto
next
case False
note lr = this
let ?v = "Array.get h a ! l"
show ?thesis
proof (cases "?v ≤ p")
case True
with lr cr
have rec1: "effect (part1 a (l + 1) r p) h h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from True part_outer_remains[OF rec1] have a_l: "Array.get h' a ! l ≤ p"
by fastforce
have "∀i. (l ≤ i = (l = i ∨ Suc l ≤ i))" by arith
with 1(1)[OF False True rec1] a_l show ?thesis
by auto
next
case False
with lr cr
obtain h1 where swp: "effect (swap a l r) h h1 ()"
and rec2: "effect (part1 a l (r - 1) p) h1 h' rs"
unfolding part1.simps[of a l r p]
by (elim effect_bindE effect_nthE effect_ifE effect_returnE) auto
from swp False have "Array.get h1 a ! r ≥ p"
unfolding swap_def
by (auto simp add: Array.length_def elim!: effect_bindE effect_nthE effect_updE effect_returnE)
with part_outer_remains [OF rec2] lr have a_r: "Array.get h' a ! r ≥ p"
by fastforce
have "∀i. (i ≤ r = (i = r ∨ i ≤ r - 1))" by arith
with 1(2)[OF lr False rec2] a_r show ?thesis
by auto
qed
qed
qed
fun partition :: "'a::{heap,linorder} array ⇒ nat ⇒ nat ⇒ nat Heap"
where
"partition a left right = do {
pivot ← Array.nth a right;
middle ← part1 a left (right - 1) pivot;
v ← Array.nth a middle;
m ← return (if (v ≤ pivot) then (middle + 1) else middle);
swap a m right;
return m
}"
declare partition.simps[simp del]
lemma partition_permutes:
assumes "effect (partition a l r) h h' rs"
shows "mset (Array.get h' a)
= mset (Array.get h a)"
proof -
from assms part_permutes swap_permutes show ?thesis
unfolding partition.simps
by (elim effect_bindE effect_returnE effect_nthE effect_ifE effect_updE) fastforce
qed
lemma partition_length_remains:
assumes "effect (partition a l r) h h' rs"
shows "Array.length h a = Array.length h' a"
proof -
from assms part_length_remains show ?thesis
unfolding partition.simps swap_def
by (elim effect_bindE effect_returnE effect_nthE effect_ifE effect_updE) auto
qed
lemma partition_outer_remains:
assumes "effect (partition a l r) h h' rs"
assumes "l < r"
shows "∀i. i < l ∨ r < i ⟶ Array.get h (a::'a::{heap,linorder} array) ! i = Array.get h' a ! i"
proof -
from assms part_outer_remains part_returns_index_in_bounds show ?thesis
unfolding partition.simps swap_def
by (elim effect_bindE effect_returnE effect_nthE effect_ifE effect_updE) fastforce
qed
lemma partition_returns_index_in_bounds:
assumes effect: "effect (partition a l r) h h' rs"
assumes "l < r"
shows "l ≤ rs ∧ rs ≤ r"
proof -
from effect obtain middle h'' p where part: "effect (part1 a l (r - 1) p) h h'' middle"
and rs_equals: "rs = (if Array.get h'' a ! middle ≤ Array.get h a ! r then middle + 1
else middle)"
unfolding partition.simps
by (elim effect_bindE effect_returnE effect_nthE effect_ifE effect_updE) simp
from `l < r` have "l ≤ r - 1" by arith
from part_returns_index_in_bounds[OF part this] rs_equals `l < r` show ?thesis by auto
qed
lemma partition_partitions:
assumes effect: "effect (partition a l r) h h' rs"
assumes "l < r"
shows "(∀i. l ≤ i ∧ i < rs ⟶ Array.get h' (a::'a::{heap,linorder} array) ! i ≤ Array.get h' a ! rs) ∧
(∀i. rs < i ∧ i ≤ r ⟶ Array.get h' a ! rs ≤ Array.get h' a ! i)"
proof -
let ?pivot = "Array.get h a ! r"
from effect obtain middle h1 where part: "effect (part1 a l (r - 1) ?pivot) h h1 middle"
and swap: "effect (swap a rs r) h1 h' ()"
and rs_equals: "rs = (if Array.get h1 a ! middle ≤ ?pivot then middle + 1
else middle)"
unfolding partition.simps
by (elim effect_bindE effect_returnE effect_nthE effect_ifE effect_updE) simp
from swap have h'_def: "h' = Array.update a r (Array.get h1 a ! rs)
(Array.update a rs (Array.get h1 a ! r) h1)"
unfolding swap_def
by (elim effect_bindE effect_returnE effect_nthE effect_updE) simp
from swap have in_bounds: "r < Array.length h1 a ∧ rs < Array.length h1 a"
unfolding swap_def
by (elim effect_bindE effect_returnE effect_nthE effect_updE) simp
from swap have swap_length_remains: "Array.length h1 a = Array.length h' a"
unfolding swap_def by (elim effect_bindE effect_returnE effect_nthE effect_updE) auto
from `l < r` have "l ≤ r - 1" by simp
note middle_in_bounds = part_returns_index_in_bounds[OF part this]
from part_outer_remains[OF part] `l < r`
have "Array.get h a ! r = Array.get h1 a ! r"
by fastforce
with swap
have right_remains: "Array.get h a ! r = Array.get h' a ! rs"
unfolding swap_def
by (auto simp add: Array.length_def elim!: effect_bindE effect_returnE effect_nthE effect_updE) (cases "r = rs", auto)
from part_partitions [OF part]
show ?thesis
proof (cases "Array.get h1 a ! middle ≤ ?pivot")
case True
with rs_equals have rs_equals: "rs = middle + 1" by simp
{
fix i
assume i_is_left: "l ≤ i ∧ i < rs"
with swap_length_remains in_bounds middle_in_bounds rs_equals `l < r`
have i_props: "i < Array.length h' a" "i ≠ r" "i ≠ rs" by auto
from i_is_left rs_equals have "l ≤ i ∧ i < middle ∨ i = middle" by arith
with part_partitions[OF part] right_remains True
have "Array.get h1 a ! i ≤ Array.get h' a ! rs" by fastforce
with i_props h'_def in_bounds have "Array.get h' a ! i ≤ Array.get h' a ! rs"
unfolding Array.update_def Array.length_def by simp
}
moreover
{
fix i
assume "rs < i ∧ i ≤ r"
hence "(rs < i ∧ i ≤ r - 1) ∨ (rs < i ∧ i = r)" by arith
hence "Array.get h' a ! rs ≤ Array.get h' a ! i"
proof
assume i_is: "rs < i ∧ i ≤ r - 1"
with swap_length_remains in_bounds middle_in_bounds rs_equals
have i_props: "i < Array.length h' a" "i ≠ r" "i ≠ rs" by auto
from part_partitions[OF part] rs_equals right_remains i_is
have "Array.get h' a ! rs ≤ Array.get h1 a ! i"
by fastforce
with i_props h'_def show ?thesis by fastforce
next
assume i_is: "rs < i ∧ i = r"
with rs_equals have "Suc middle ≠ r" by arith
with middle_in_bounds `l < r` have "Suc middle ≤ r - 1" by arith
with part_partitions[OF part] right_remains
have "Array.get h' a ! rs ≤ Array.get h1 a ! (Suc middle)"
by fastforce
with i_is True rs_equals right_remains h'_def
show ?thesis using in_bounds
unfolding Array.update_def Array.length_def
by auto
qed
}
ultimately show ?thesis by auto
next
case False
with rs_equals have rs_equals: "middle = rs" by simp
{
fix i
assume i_is_left: "l ≤ i ∧ i < rs"
with swap_length_remains in_bounds middle_in_bounds rs_equals
have i_props: "i < Array.length h' a" "i ≠ r" "i ≠ rs" by auto
from part_partitions[OF part] rs_equals right_remains i_is_left
have "Array.get h1 a ! i ≤ Array.get h' a ! rs" by fastforce
with i_props h'_def have "Array.get h' a ! i ≤ Array.get h' a ! rs"
unfolding Array.update_def by simp
}
moreover
{
fix i
assume "rs < i ∧ i ≤ r"
hence "(rs < i ∧ i ≤ r - 1) ∨ i = r" by arith
hence "Array.get h' a ! rs ≤ Array.get h' a ! i"
proof
assume i_is: "rs < i ∧ i ≤ r - 1"
with swap_length_remains in_bounds middle_in_bounds rs_equals
have i_props: "i < Array.length h' a" "i ≠ r" "i ≠ rs" by auto
from part_partitions[OF part] rs_equals right_remains i_is
have "Array.get h' a ! rs ≤ Array.get h1 a ! i"
by fastforce
with i_props h'_def show ?thesis by fastforce
next
assume i_is: "i = r"
from i_is False rs_equals right_remains h'_def
show ?thesis using in_bounds
unfolding Array.update_def Array.length_def
by auto
qed
}
ultimately
show ?thesis by auto
qed
qed
function quicksort :: "'a::{heap,linorder} array ⇒ nat ⇒ nat ⇒ unit Heap"
where
"quicksort arr left right =
(if (right > left) then
do {
pivotNewIndex ← partition arr left right;
pivotNewIndex ← assert (λx. left ≤ x ∧ x ≤ right) pivotNewIndex;
quicksort arr left (pivotNewIndex - 1);
quicksort arr (pivotNewIndex + 1) right
}
else return ())"
by pat_completeness auto
termination
by (relation "measure (λ(a, l, r). (r - l))") auto
declare quicksort.simps[simp del]
lemma quicksort_permutes:
assumes "effect (quicksort a l r) h h' rs"
shows "mset (Array.get h' a)
= mset (Array.get h a)"
using assms
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
case (1 a l r h h' rs)
with partition_permutes show ?case
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_bindE effect_assertE effect_returnE) auto
qed
lemma length_remains:
assumes "effect (quicksort a l r) h h' rs"
shows "Array.length h a = Array.length h' a"
using assms
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
case (1 a l r h h' rs)
with partition_length_remains show ?case
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_bindE effect_assertE effect_returnE) fastforce+
qed
lemma quicksort_outer_remains:
assumes "effect (quicksort a l r) h h' rs"
shows "∀i. i < l ∨ r < i ⟶ Array.get h (a::'a::{heap,linorder} array) ! i = Array.get h' a ! i"
using assms
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
case (1 a l r h h' rs)
note cr = `effect (quicksort a l r) h h' rs`
thus ?case
proof (cases "r > l")
case False
with cr have "h' = h"
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_returnE) auto
thus ?thesis by simp
next
case True
{
fix h1 h2 p ret1 ret2 i
assume part: "effect (partition a l r) h h1 p"
assume qs1: "effect (quicksort a l (p - 1)) h1 h2 ret1"
assume qs2: "effect (quicksort a (p + 1) r) h2 h' ret2"
assume pivot: "l ≤ p ∧ p ≤ r"
assume i_outer: "i < l ∨ r < i"
from partition_outer_remains [OF part True] i_outer
have 2: "Array.get h a !i = Array.get h1 a ! i" by fastforce
moreover
from 1(1) [OF True pivot qs1] pivot i_outer 2
have 3: "Array.get h1 a ! i = Array.get h2 a ! i" by auto
moreover
from qs2 1(2) [of p h2 h' ret2] True pivot i_outer 3
have "Array.get h2 a ! i = Array.get h' a ! i" by auto
ultimately have "Array.get h a ! i= Array.get h' a ! i" by simp
}
with cr show ?thesis
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_bindE effect_assertE effect_returnE) auto
qed
qed
lemma quicksort_is_skip:
assumes "effect (quicksort a l r) h h' rs"
shows "r ≤ l ⟶ h = h'"
using assms
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_returnE) auto
lemma quicksort_sorts:
assumes "effect (quicksort a l r) h h' rs"
assumes l_r_length: "l < Array.length h a" "r < Array.length h a"
shows "sorted (subarray l (r + 1) a h')"
using assms
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
case (1 a l r h h' rs)
note cr = `effect (quicksort a l r) h h' rs`
thus ?case
proof (cases "r > l")
case False
hence "l ≥ r + 1 ∨ l = r" by arith
with length_remains[OF cr] 1(5) show ?thesis
by (auto simp add: subarray_Nil subarray_single)
next
case True
{
fix h1 h2 p
assume part: "effect (partition a l r) h h1 p"
assume qs1: "effect (quicksort a l (p - 1)) h1 h2 ()"
assume qs2: "effect (quicksort a (p + 1) r) h2 h' ()"
from partition_returns_index_in_bounds [OF part True]
have pivot: "l≤ p ∧ p ≤ r" .
note length_remains = length_remains[OF qs2] length_remains[OF qs1] partition_length_remains[OF part]
from quicksort_outer_remains [OF qs2] quicksort_outer_remains [OF qs1] pivot quicksort_is_skip[OF qs1]
have pivot_unchanged: "Array.get h1 a ! p = Array.get h' a ! p" by (cases p, auto)
from 1(1)[OF True pivot qs1] length_remains pivot 1(5)
have IH1: "sorted (subarray l p a h2)" by (cases p, auto simp add: subarray_Nil)
from quicksort_outer_remains [OF qs2] length_remains
have left_subarray_remains: "subarray l p a h2 = subarray l p a h'"
by (simp add: subarray_eq_samelength_iff)
with IH1 have IH1': "sorted (subarray l p a h')" by simp
from 1(2)[OF True pivot qs2] pivot 1(5) length_remains
have IH2: "sorted (subarray (p + 1) (r + 1) a h')"
by (cases "Suc p ≤ r", auto simp add: subarray_Nil)
from partition_partitions[OF part True]
have part_conds1: "∀j. j ∈ set (subarray l p a h1) ⟶ j ≤ Array.get h1 a ! p "
and part_conds2: "∀j. j ∈ set (subarray (p + 1) (r + 1) a h1) ⟶ Array.get h1 a ! p ≤ j"
by (auto simp add: all_in_set_subarray_conv)
from quicksort_outer_remains [OF qs1] quicksort_permutes [OF qs1] True
length_remains 1(5) pivot mset_sublist [of l p "Array.get h1 a" "Array.get h2 a"]
have multiset_partconds1: "mset (subarray l p a h2) = mset (subarray l p a h1)"
unfolding Array.length_def subarray_def by (cases p, auto)
with left_subarray_remains part_conds1 pivot_unchanged
have part_conds2': "∀j. j ∈ set (subarray l p a h') ⟶ j ≤ Array.get h' a ! p"
by (simp, subst set_mset_mset[symmetric], simp)
from quicksort_outer_remains [OF qs1] length_remains
have right_subarray_remains: "subarray (p + 1) (r + 1) a h1 = subarray (p + 1) (r + 1) a h2"
by (auto simp add: subarray_eq_samelength_iff)
from quicksort_outer_remains [OF qs2] quicksort_permutes [OF qs2] True
length_remains 1(5) pivot mset_sublist [of "p + 1" "r + 1" "Array.get h2 a" "Array.get h' a"]
have multiset_partconds2: "mset (subarray (p + 1) (r + 1) a h') = mset (subarray (p + 1) (r + 1) a h2)"
unfolding Array.length_def subarray_def by auto
with right_subarray_remains part_conds2 pivot_unchanged
have part_conds1': "∀j. j ∈ set (subarray (p + 1) (r + 1) a h') ⟶ Array.get h' a ! p ≤ j"
by (simp, subst set_mset_mset[symmetric], simp)
from True pivot 1(5) length_remains have "subarray l (r + 1) a h' = subarray l p a h' @ [Array.get h' a ! p] @ subarray (p + 1) (r + 1) a h'"
by (simp add: subarray_nth_array_Cons, cases "l < p") (auto simp add: subarray_append subarray_Nil)
with IH1' IH2 part_conds1' part_conds2' pivot have ?thesis
unfolding subarray_def
apply (auto simp add: sorted_append sorted_Cons all_in_set_sublist'_conv)
by (auto simp add: set_sublist' dest: order.trans [of _ "Array.get h' a ! p"])
}
with True cr show ?thesis
unfolding quicksort.simps [of a l r]
by (elim effect_ifE effect_returnE effect_bindE effect_assertE) auto
qed
qed
lemma quicksort_is_sort:
assumes effect: "effect (quicksort a 0 (Array.length h a - 1)) h h' rs"
shows "Array.get h' a = sort (Array.get h a)"
proof (cases "Array.get h a = []")
case True
with quicksort_is_skip[OF effect] show ?thesis
unfolding Array.length_def by simp
next
case False
from quicksort_sorts [OF effect] False have "sorted (sublist' 0 (List.length (Array.get h a)) (Array.get h' a))"
unfolding Array.length_def subarray_def by auto
with length_remains[OF effect] have "sorted (Array.get h' a)"
unfolding Array.length_def by simp
with quicksort_permutes [OF effect] properties_for_sort show ?thesis by fastforce
qed
subsection {* No Errors in quicksort *}
text {* We have proved that quicksort sorts (if no exceptions occur).
We will now show that exceptions do not occur. *}
lemma success_part1I:
assumes "l < Array.length h a" "r < Array.length h a"
shows "success (part1 a l r p) h"
using assms
proof (induct a l r p arbitrary: h rule: part1.induct)
case (1 a l r p)
thus ?case unfolding part1.simps [of a l r]
apply (auto intro!: success_intros simp add: not_le)
apply (auto intro!: effect_intros)
done
qed
lemma success_bindI' [success_intros]:
assumes "success f h"
assumes "⋀h' r. effect f h h' r ⟹ success (g r) h'"
shows "success (f ⤜ g) h"
using assms(1) proof (rule success_effectE)
fix h' r
assume *: "effect f h h' r"
with assms(2) have "success (g r) h'" .
with * show "success (f ⤜ g) h" by (rule success_bind_effectI)
qed
lemma success_partitionI:
assumes "l < r" "l < Array.length h a" "r < Array.length h a"
shows "success (partition a l r) h"
using assms unfolding partition.simps swap_def
apply (auto intro!: success_bindI' success_ifI success_returnI success_nthI success_updI success_part1I elim!: effect_bindE effect_updE effect_nthE effect_returnE simp add:)
apply (frule part_length_remains)
apply (frule part_returns_index_in_bounds)
apply auto
apply (frule part_length_remains)
apply (frule part_returns_index_in_bounds)
apply auto
apply (frule part_length_remains)
apply auto
done
lemma success_quicksortI:
assumes "l < Array.length h a" "r < Array.length h a"
shows "success (quicksort a l r) h"
using assms
proof (induct a l r arbitrary: h rule: quicksort.induct)
case (1 a l ri h)
thus ?case
unfolding quicksort.simps [of a l ri]
apply (auto intro!: success_ifI success_bindI' success_returnI success_nthI success_updI success_assertI success_partitionI)
apply (frule partition_returns_index_in_bounds)
apply auto
apply (frule partition_returns_index_in_bounds)
apply auto
apply (auto elim!: effect_assertE dest!: partition_length_remains length_remains)
apply (subgoal_tac "Suc r ≤ ri ∨ r = ri")
apply (erule disjE)
apply auto
unfolding quicksort.simps [of a "Suc ri" ri]
apply (auto intro!: success_ifI success_returnI)
done
qed
subsection {* Example *}
definition "qsort a = do {
k ← Array.len a;
quicksort a 0 (k - 1);
return a
}"
code_reserved SML upto
definition "example = do {
a ← Array.of_list ([42, 2, 3, 5, 0, 1705, 8, 3, 15] :: nat list);
qsort a
}"
ML_val {* @{code example} () *}
export_code qsort checking SML SML_imp OCaml? OCaml_imp? Haskell? Scala Scala_imp
end