theory QuotRing
imports RingHom
begin
section ‹Quotient Rings›
subsection ‹Multiplication on Cosets›
definition rcoset_mult :: "[('a, _) ring_scheme, 'a set, 'a set, 'a set] ⇒ 'a set"
("[mod _:] _ ⨂ı _" [81,81,81] 80)
where "rcoset_mult R I A B = (⋃a∈A. ⋃b∈B. I +>⇘R⇙ (a ⊗⇘R⇙ b))"
text ‹@{const "rcoset_mult"} fulfils the properties required by
congruences›
lemma (in ideal) rcoset_mult_add:
"x ∈ carrier R ⟹ y ∈ carrier R ⟹ [mod I:] (I +> x) ⨂ (I +> y) = I +> (x ⊗ y)"
apply rule
apply (rule, simp add: rcoset_mult_def, clarsimp)
defer 1
apply (rule, simp add: rcoset_mult_def)
defer 1
proof -
fix z x' y'
assume carr: "x ∈ carrier R" "y ∈ carrier R"
and x'rcos: "x' ∈ I +> x"
and y'rcos: "y' ∈ I +> y"
and zrcos: "z ∈ I +> x' ⊗ y'"
from x'rcos have "∃h∈I. x' = h ⊕ x"
by (simp add: a_r_coset_def r_coset_def)
then obtain hx where hxI: "hx ∈ I" and x': "x' = hx ⊕ x"
by fast+
from y'rcos have "∃h∈I. y' = h ⊕ y"
by (simp add: a_r_coset_def r_coset_def)
then obtain hy where hyI: "hy ∈ I" and y': "y' = hy ⊕ y"
by fast+
from zrcos have "∃h∈I. z = h ⊕ (x' ⊗ y')"
by (simp add: a_r_coset_def r_coset_def)
then obtain hz where hzI: "hz ∈ I" and z: "z = hz ⊕ (x' ⊗ y')"
by fast+
note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]
from z have "z = hz ⊕ (x' ⊗ y')" .
also from x' y' have "… = hz ⊕ ((hx ⊕ x) ⊗ (hy ⊕ y))" by simp
also from carr have "… = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" by algebra
finally have z2: "z = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" .
from hxI hyI hzI carr have "hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy ∈ I"
by (simp add: I_l_closed I_r_closed)
with z2 have "∃h∈I. z = h ⊕ x ⊗ y" by fast
then show "z ∈ I +> x ⊗ y" by (simp add: a_r_coset_def r_coset_def)
next
fix z
assume xcarr: "x ∈ carrier R"
and ycarr: "y ∈ carrier R"
and zrcos: "z ∈ I +> x ⊗ y"
from xcarr have xself: "x ∈ I +> x" by (intro a_rcos_self)
from ycarr have yself: "y ∈ I +> y" by (intro a_rcos_self)
show "∃a∈I +> x. ∃b∈I +> y. z ∈ I +> a ⊗ b"
using xself and yself and zrcos by fast
qed
subsection ‹Quotient Ring Definition›
definition FactRing :: "[('a,'b) ring_scheme, 'a set] ⇒ ('a set) ring"
(infixl "Quot" 65)
where "FactRing R I =
⦇carrier = a_rcosets⇘R⇙ I, mult = rcoset_mult R I,
one = (I +>⇘R⇙ 𝟭⇘R⇙), zero = I, add = set_add R⦈"
subsection ‹Factorization over General Ideals›
text ‹The quotient is a ring›
lemma (in ideal) quotient_is_ring: "ring (R Quot I)"
apply (rule ringI)
--‹abelian group›
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def)
apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def'])
--‹mult monoid›
apply (rule monoidI)
apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def
a_r_coset_def[symmetric])
--‹mult closed›
apply (clarify)
apply (simp add: rcoset_mult_add, fast)
--‹mult @{text one_closed}›
apply force
--‹mult assoc›
apply clarify
apply (simp add: rcoset_mult_add m_assoc)
--‹mult one›
apply clarify
apply (simp add: rcoset_mult_add)
apply clarify
apply (simp add: rcoset_mult_add)
--‹distr›
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum l_distr)
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
done
text ‹This is a ring homomorphism›
lemma (in ideal) rcos_ring_hom: "(op +> I) ∈ ring_hom R (R Quot I)"
apply (rule ring_hom_memI)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done
lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) (op +> I)"
apply (rule ring_hom_ringI)
apply (rule is_ring, rule quotient_is_ring)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done
text ‹The quotient of a cring is also commutative›
lemma (in ideal) quotient_is_cring:
assumes "cring R"
shows "cring (R Quot I)"
proof -
interpret cring R by fact
show ?thesis
apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
apply (rule quotient_is_ring)
apply (rule ring.axioms[OF quotient_is_ring])
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
apply clarify
apply (simp add: rcoset_mult_add m_comm)
done
qed
text ‹Cosets as a ring homomorphism on crings›
lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring_hom_cring R (R Quot I) (op +> I)"
proof -
interpret cring R by fact
show ?thesis
apply (rule ring_hom_cringI)
apply (rule rcos_ring_hom_ring)
apply (rule is_cring)
apply (rule quotient_is_cring)
apply (rule is_cring)
done
qed
subsection ‹Factorization over Prime Ideals›
text ‹The quotient ring generated by a prime ideal is a domain›
lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"
apply (rule domain.intro)
apply (rule quotient_is_cring, rule is_cring)
apply (rule domain_axioms.intro)
apply (simp add: FactRing_def) defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarify)
apply (simp add: rcoset_mult_add) defer 1
proof (rule ccontr, clarsimp)
assume "I +> 𝟭 = I"
then have "𝟭 ∈ I" by (simp only: a_coset_join1 one_closed a_subgroup)
then have "carrier R ⊆ I" by (subst one_imp_carrier, simp, fast)
with a_subset have "I = carrier R" by fast
with I_notcarr show False by fast
next
fix x y
assume carr: "x ∈ carrier R" "y ∈ carrier R"
and a: "I +> x ⊗ y = I"
and b: "I +> y ≠ I"
have ynI: "y ∉ I"
proof (rule ccontr, simp)
assume "y ∈ I"
then have "I +> y = I" by (rule a_rcos_const)
with b show False by simp
qed
from carr have "x ⊗ y ∈ I +> x ⊗ y" by (simp add: a_rcos_self)
then have xyI: "x ⊗ y ∈ I" by (simp add: a)
from xyI and carr have xI: "x ∈ I ∨ y ∈ I" by (simp add: I_prime)
with ynI have "x ∈ I" by fast
then show "I +> x = I" by (rule a_rcos_const)
qed
text ‹Generating right cosets of a prime ideal is a homomorphism
on commutative rings›
lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot I) (op +> I)"
by (rule rcos_ring_hom_cring) (rule is_cring)
subsection ‹Factorization over Maximal Ideals›
text ‹In a commutative ring, the quotient ring over a maximal ideal
is a field.
The proof follows ``W. Adkins, S. Weintraub: Algebra --
An Approach via Module Theory''›
lemma (in maximalideal) quotient_is_field:
assumes "cring R"
shows "field (R Quot I)"
proof -
interpret cring R by fact
show ?thesis
apply (intro cring.cring_fieldI2)
apply (rule quotient_is_cring, rule is_cring)
defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarsimp)
apply (simp add: rcoset_mult_add) defer 1
proof (rule ccontr, simp)
--‹Quotient is not empty›
assume "𝟬⇘R Quot I⇙ = 𝟭⇘R Quot I⇙"
then have II1: "I = I +> 𝟭" by (simp add: FactRing_def)
from a_rcos_self[OF one_closed] have "𝟭 ∈ I"
by (simp add: II1[symmetric])
then have "I = carrier R" by (rule one_imp_carrier)
with I_notcarr show False by simp
next
--‹Existence of Inverse›
fix a
assume IanI: "I +> a ≠ I" and acarr: "a ∈ carrier R"
--‹Helper ideal @{text "J"}›
def J ≡ "(carrier R #> a) <+> I :: 'a set"
have idealJ: "ideal J R"
apply (unfold J_def, rule add_ideals)
apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal, rule acarr)
apply (rule is_ideal)
done
--‹Showing @{term "J"} not smaller than @{term "I"}›
have IinJ: "I ⊆ J"
proof (rule, simp add: J_def r_coset_def set_add_defs)
fix x
assume xI: "x ∈ I"
have Zcarr: "𝟬 ∈ carrier R" by fast
from xI[THEN a_Hcarr] acarr
have "x = 𝟬 ⊗ a ⊕ x" by algebra
with Zcarr and xI show "∃xa∈carrier R. ∃k∈I. x = xa ⊗ a ⊕ k" by fast
qed
--‹Showing @{term "J ≠ I"}›
have anI: "a ∉ I"
proof (rule ccontr, simp)
assume "a ∈ I"
then have "I +> a = I" by (rule a_rcos_const)
with IanI show False by simp
qed
have aJ: "a ∈ J"
proof (simp add: J_def r_coset_def set_add_defs)
from acarr
have "a = 𝟭 ⊗ a ⊕ 𝟬" by algebra
with one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]
show "∃x∈carrier R. ∃k∈I. a = x ⊗ a ⊕ k" by fast
qed
from aJ and anI have JnI: "J ≠ I" by fast
--‹Deducing @{term "J = carrier R"} because @{term "I"} is maximal›
from idealJ and IinJ have "J = I ∨ J = carrier R"
proof (rule I_maximal, unfold J_def)
have "carrier R #> a ⊆ carrier R"
using subset_refl acarr by (rule r_coset_subset_G)
then show "carrier R #> a <+> I ⊆ carrier R"
using a_subset by (rule set_add_closed)
qed
with JnI have Jcarr: "J = carrier R" by simp
--‹Calculating an inverse for @{term "a"}›
from one_closed[folded Jcarr]
have "∃r∈carrier R. ∃i∈I. 𝟭 = r ⊗ a ⊕ i"
by (simp add: J_def r_coset_def set_add_defs)
then obtain r i where rcarr: "r ∈ carrier R"
and iI: "i ∈ I" and one: "𝟭 = r ⊗ a ⊕ i" by fast
from one and rcarr and acarr and iI[THEN a_Hcarr]
have rai1: "a ⊗ r = ⊖i ⊕ 𝟭" by algebra
--‹Lifting to cosets›
from iI have "⊖i ⊕ 𝟭 ∈ I +> 𝟭"
by (intro a_rcosI, simp, intro a_subset, simp)
with rai1 have "a ⊗ r ∈ I +> 𝟭" by simp
then have "I +> 𝟭 = I +> a ⊗ r"
by (rule a_repr_independence, simp) (rule a_subgroup)
from rcarr and this[symmetric]
show "∃r∈carrier R. I +> a ⊗ r = I +> 𝟭" by fast
qed
qed
end