section {* A monad with a polymorphic heap and primitive reasoning infrastructure *}
theory Heap_Monad
imports
Heap
"~~/src/HOL/Library/Monad_Syntax"
begin
subsection {* The monad *}
subsubsection {* Monad construction *}
text {* Monadic heap actions either produce values
and transform the heap, or fail *}
datatype 'a Heap = Heap "heap ⇒ ('a × heap) option"
lemma [code, code del]:
"(Code_Evaluation.term_of :: 'a::typerep Heap ⇒ Code_Evaluation.term) = Code_Evaluation.term_of"
..
primrec execute :: "'a Heap ⇒ heap ⇒ ('a × heap) option" where
[code del]: "execute (Heap f) = f"
lemma Heap_cases [case_names succeed fail]:
fixes f and h
assumes succeed: "⋀x h'. execute f h = Some (x, h') ⟹ P"
assumes fail: "execute f h = None ⟹ P"
shows P
using assms by (cases "execute f h") auto
lemma Heap_execute [simp]:
"Heap (execute f) = f" by (cases f) simp_all
lemma Heap_eqI:
"(⋀h. execute f h = execute g h) ⟹ f = g"
by (cases f, cases g) (auto simp: fun_eq_iff)
named_theorems execute_simps "simplification rules for execute"
lemma execute_Let [execute_simps]:
"execute (let x = t in f x) = (let x = t in execute (f x))"
by (simp add: Let_def)
subsubsection {* Specialised lifters *}
definition tap :: "(heap ⇒ 'a) ⇒ 'a Heap" where
[code del]: "tap f = Heap (λh. Some (f h, h))"
lemma execute_tap [execute_simps]:
"execute (tap f) h = Some (f h, h)"
by (simp add: tap_def)
definition heap :: "(heap ⇒ 'a × heap) ⇒ 'a Heap" where
[code del]: "heap f = Heap (Some ∘ f)"
lemma execute_heap [execute_simps]:
"execute (heap f) = Some ∘ f"
by (simp add: heap_def)
definition guard :: "(heap ⇒ bool) ⇒ (heap ⇒ 'a × heap) ⇒ 'a Heap" where
[code del]: "guard P f = Heap (λh. if P h then Some (f h) else None)"
lemma execute_guard [execute_simps]:
"¬ P h ⟹ execute (guard P f) h = None"
"P h ⟹ execute (guard P f) h = Some (f h)"
by (simp_all add: guard_def)
subsubsection {* Predicate classifying successful computations *}
definition success :: "'a Heap ⇒ heap ⇒ bool" where
"success f h ⟷ execute f h ≠ None"
lemma successI:
"execute f h ≠ None ⟹ success f h"
by (simp add: success_def)
lemma successE:
assumes "success f h"
obtains r h' where "execute f h = Some (r, h')"
using assms by (auto simp: success_def)
named_theorems success_intros "introduction rules for success"
lemma success_tapI [success_intros]:
"success (tap f) h"
by (rule successI) (simp add: execute_simps)
lemma success_heapI [success_intros]:
"success (heap f) h"
by (rule successI) (simp add: execute_simps)
lemma success_guardI [success_intros]:
"P h ⟹ success (guard P f) h"
by (rule successI) (simp add: execute_guard)
lemma success_LetI [success_intros]:
"x = t ⟹ success (f x) h ⟹ success (let x = t in f x) h"
by (simp add: Let_def)
lemma success_ifI:
"(c ⟹ success t h) ⟹ (¬ c ⟹ success e h) ⟹
success (if c then t else e) h"
by (simp add: success_def)
subsubsection {* Predicate for a simple relational calculus *}
text {*
The @{text effect} predicate states that when a computation @{text c}
runs with the heap @{text h} will result in return value @{text r}
and a heap @{text "h'"}, i.e.~no exception occurs.
*}
definition effect :: "'a Heap ⇒ heap ⇒ heap ⇒ 'a ⇒ bool" where
effect_def: "effect c h h' r ⟷ execute c h = Some (r, h')"
lemma effectI:
"execute c h = Some (r, h') ⟹ effect c h h' r"
by (simp add: effect_def)
lemma effectE:
assumes "effect c h h' r"
obtains "r = fst (the (execute c h))"
and "h' = snd (the (execute c h))"
and "success c h"
proof (rule that)
from assms have *: "execute c h = Some (r, h')" by (simp add: effect_def)
then show "success c h" by (simp add: success_def)
from * have "fst (the (execute c h)) = r" and "snd (the (execute c h)) = h'"
by simp_all
then show "r = fst (the (execute c h))"
and "h' = snd (the (execute c h))" by simp_all
qed
lemma effect_success:
"effect c h h' r ⟹ success c h"
by (simp add: effect_def success_def)
lemma success_effectE:
assumes "success c h"
obtains r h' where "effect c h h' r"
using assms by (auto simp add: effect_def success_def)
lemma effect_deterministic:
assumes "effect f h h' a"
and "effect f h h'' b"
shows "a = b" and "h' = h''"
using assms unfolding effect_def by auto
named_theorems effect_intros "introduction rules for effect"
and effect_elims "elimination rules for effect"
lemma effect_LetI [effect_intros]:
assumes "x = t" "effect (f x) h h' r"
shows "effect (let x = t in f x) h h' r"
using assms by simp
lemma effect_LetE [effect_elims]:
assumes "effect (let x = t in f x) h h' r"
obtains "effect (f t) h h' r"
using assms by simp
lemma effect_ifI:
assumes "c ⟹ effect t h h' r"
and "¬ c ⟹ effect e h h' r"
shows "effect (if c then t else e) h h' r"
by (cases c) (simp_all add: assms)
lemma effect_ifE:
assumes "effect (if c then t else e) h h' r"
obtains "c" "effect t h h' r"
| "¬ c" "effect e h h' r"
using assms by (cases c) simp_all
lemma effect_tapI [effect_intros]:
assumes "h' = h" "r = f h"
shows "effect (tap f) h h' r"
by (rule effectI) (simp add: assms execute_simps)
lemma effect_tapE [effect_elims]:
assumes "effect (tap f) h h' r"
obtains "h' = h" and "r = f h"
using assms by (rule effectE) (auto simp add: execute_simps)
lemma effect_heapI [effect_intros]:
assumes "h' = snd (f h)" "r = fst (f h)"
shows "effect (heap f) h h' r"
by (rule effectI) (simp add: assms execute_simps)
lemma effect_heapE [effect_elims]:
assumes "effect (heap f) h h' r"
obtains "h' = snd (f h)" and "r = fst (f h)"
using assms by (rule effectE) (simp add: execute_simps)
lemma effect_guardI [effect_intros]:
assumes "P h" "h' = snd (f h)" "r = fst (f h)"
shows "effect (guard P f) h h' r"
by (rule effectI) (simp add: assms execute_simps)
lemma effect_guardE [effect_elims]:
assumes "effect (guard P f) h h' r"
obtains "h' = snd (f h)" "r = fst (f h)" "P h"
using assms by (rule effectE)
(auto simp add: execute_simps elim!: successE, cases "P h", auto simp add: execute_simps)
subsubsection {* Monad combinators *}
definition return :: "'a ⇒ 'a Heap" where
[code del]: "return x = heap (Pair x)"
lemma execute_return [execute_simps]:
"execute (return x) = Some ∘ Pair x"
by (simp add: return_def execute_simps)
lemma success_returnI [success_intros]:
"success (return x) h"
by (rule successI) (simp add: execute_simps)
lemma effect_returnI [effect_intros]:
"h = h' ⟹ effect (return x) h h' x"
by (rule effectI) (simp add: execute_simps)
lemma effect_returnE [effect_elims]:
assumes "effect (return x) h h' r"
obtains "r = x" "h' = h"
using assms by (rule effectE) (simp add: execute_simps)
definition raise :: "string ⇒ 'a Heap" where -- {* the string is just decoration *}
[code del]: "raise s = Heap (λ_. None)"
lemma execute_raise [execute_simps]:
"execute (raise s) = (λ_. None)"
by (simp add: raise_def)
lemma effect_raiseE [effect_elims]:
assumes "effect (raise x) h h' r"
obtains "False"
using assms by (rule effectE) (simp add: success_def execute_simps)
definition bind :: "'a Heap ⇒ ('a ⇒ 'b Heap) ⇒ 'b Heap" where
[code del]: "bind f g = Heap (λh. case execute f h of
Some (x, h') ⇒ execute (g x) h'
| None ⇒ None)"
adhoc_overloading
Monad_Syntax.bind Heap_Monad.bind
lemma execute_bind [execute_simps]:
"execute f h = Some (x, h') ⟹ execute (f ⤜ g) h = execute (g x) h'"
"execute f h = None ⟹ execute (f ⤜ g) h = None"
by (simp_all add: bind_def)
lemma execute_bind_case:
"execute (f ⤜ g) h = (case (execute f h) of
Some (x, h') ⇒ execute (g x) h' | None ⇒ None)"
by (simp add: bind_def)
lemma execute_bind_success:
"success f h ⟹ execute (f ⤜ g) h = execute (g (fst (the (execute f h)))) (snd (the (execute f h)))"
by (cases f h rule: Heap_cases) (auto elim: successE simp add: bind_def)
lemma success_bind_executeI:
"execute f h = Some (x, h') ⟹ success (g x) h' ⟹ success (f ⤜ g) h"
by (auto intro!: successI elim: successE simp add: bind_def)
lemma success_bind_effectI [success_intros]:
"effect f h h' x ⟹ success (g x) h' ⟹ success (f ⤜ g) h"
by (auto simp add: effect_def success_def bind_def)
lemma effect_bindI [effect_intros]:
assumes "effect f h h' r" "effect (g r) h' h'' r'"
shows "effect (f ⤜ g) h h'' r'"
using assms
apply (auto intro!: effectI elim!: effectE successE)
apply (subst execute_bind, simp_all)
done
lemma effect_bindE [effect_elims]:
assumes "effect (f ⤜ g) h h'' r'"
obtains h' r where "effect f h h' r" "effect (g r) h' h'' r'"
using assms by (auto simp add: effect_def bind_def split: option.split_asm)
lemma execute_bind_eq_SomeI:
assumes "execute f h = Some (x, h')"
and "execute (g x) h' = Some (y, h'')"
shows "execute (f ⤜ g) h = Some (y, h'')"
using assms by (simp add: bind_def)
lemma return_bind [simp]: "return x ⤜ f = f x"
by (rule Heap_eqI) (simp add: execute_simps)
lemma bind_return [simp]: "f ⤜ return = f"
by (rule Heap_eqI) (simp add: bind_def execute_simps split: option.splits)
lemma bind_bind [simp]: "(f ⤜ g) ⤜ k = (f :: 'a Heap) ⤜ (λx. g x ⤜ k)"
by (rule Heap_eqI) (simp add: bind_def execute_simps split: option.splits)
lemma raise_bind [simp]: "raise e ⤜ f = raise e"
by (rule Heap_eqI) (simp add: execute_simps)
subsection {* Generic combinators *}
subsubsection {* Assertions *}
definition assert :: "('a ⇒ bool) ⇒ 'a ⇒ 'a Heap" where
"assert P x = (if P x then return x else raise ''assert'')"
lemma execute_assert [execute_simps]:
"P x ⟹ execute (assert P x) h = Some (x, h)"
"¬ P x ⟹ execute (assert P x) h = None"
by (simp_all add: assert_def execute_simps)
lemma success_assertI [success_intros]:
"P x ⟹ success (assert P x) h"
by (rule successI) (simp add: execute_assert)
lemma effect_assertI [effect_intros]:
"P x ⟹ h' = h ⟹ r = x ⟹ effect (assert P x) h h' r"
by (rule effectI) (simp add: execute_assert)
lemma effect_assertE [effect_elims]:
assumes "effect (assert P x) h h' r"
obtains "P x" "r = x" "h' = h"
using assms by (rule effectE) (cases "P x", simp_all add: execute_assert success_def)
lemma assert_cong [fundef_cong]:
assumes "P = P'"
assumes "⋀x. P' x ⟹ f x = f' x"
shows "(assert P x ⤜ f) = (assert P' x ⤜ f')"
by (rule Heap_eqI) (insert assms, simp add: assert_def)
subsubsection {* Plain lifting *}
definition lift :: "('a ⇒ 'b) ⇒ 'a ⇒ 'b Heap" where
"lift f = return o f"
lemma lift_collapse [simp]:
"lift f x = return (f x)"
by (simp add: lift_def)
lemma bind_lift:
"(f ⤜ lift g) = (f ⤜ (λx. return (g x)))"
by (simp add: lift_def comp_def)
subsubsection {* Iteration -- warning: this is rarely useful! *}
primrec fold_map :: "('a ⇒ 'b Heap) ⇒ 'a list ⇒ 'b list Heap" where
"fold_map f [] = return []"
| "fold_map f (x # xs) = do {
y ← f x;
ys ← fold_map f xs;
return (y # ys)
}"
lemma fold_map_append:
"fold_map f (xs @ ys) = fold_map f xs ⤜ (λxs. fold_map f ys ⤜ (λys. return (xs @ ys)))"
by (induct xs) simp_all
lemma execute_fold_map_unchanged_heap [execute_simps]:
assumes "⋀x. x ∈ set xs ⟹ ∃y. execute (f x) h = Some (y, h)"
shows "execute (fold_map f xs) h =
Some (List.map (λx. fst (the (execute (f x) h))) xs, h)"
using assms proof (induct xs)
case Nil show ?case by (simp add: execute_simps)
next
case (Cons x xs)
from Cons.prems obtain y
where y: "execute (f x) h = Some (y, h)" by auto
moreover from Cons.prems Cons.hyps have "execute (fold_map f xs) h =
Some (map (λx. fst (the (execute (f x) h))) xs, h)" by auto
ultimately show ?case by (simp, simp only: execute_bind(1), simp add: execute_simps)
qed
subsection {* Partial function definition setup *}
definition Heap_ord :: "'a Heap ⇒ 'a Heap ⇒ bool" where
"Heap_ord = img_ord execute (fun_ord option_ord)"
definition Heap_lub :: "'a Heap set ⇒ 'a Heap" where
"Heap_lub = img_lub execute Heap (fun_lub (flat_lub None))"
lemma Heap_lub_empty: "Heap_lub {} = Heap Map.empty"
by(simp add: Heap_lub_def img_lub_def fun_lub_def flat_lub_def)
lemma heap_interpretation: "partial_function_definitions Heap_ord Heap_lub"
proof -
have "partial_function_definitions (fun_ord option_ord) (fun_lub (flat_lub None))"
by (rule partial_function_lift) (rule flat_interpretation)
then have "partial_function_definitions (img_ord execute (fun_ord option_ord))
(img_lub execute Heap (fun_lub (flat_lub None)))"
by (rule partial_function_image) (auto intro: Heap_eqI)
then show "partial_function_definitions Heap_ord Heap_lub"
by (simp only: Heap_ord_def Heap_lub_def)
qed
interpretation heap: partial_function_definitions Heap_ord Heap_lub
rewrites "Heap_lub {} ≡ Heap Map.empty"
by (fact heap_interpretation)(simp add: Heap_lub_empty)
lemma heap_step_admissible:
"option.admissible
(λf:: 'a => ('b * 'c) option. ∀h h' r. f h = Some (r, h') ⟶ P x h h' r)"
proof (rule ccpo.admissibleI)
fix A :: "('a ⇒ ('b * 'c) option) set"
assume ch: "Complete_Partial_Order.chain option.le_fun A"
and IH: "∀f∈A. ∀h h' r. f h = Some (r, h') ⟶ P x h h' r"
from ch have ch': "⋀x. Complete_Partial_Order.chain option_ord {y. ∃f∈A. y = f x}" by (rule chain_fun)
show "∀h h' r. option.lub_fun A h = Some (r, h') ⟶ P x h h' r"
proof (intro allI impI)
fix h h' r assume "option.lub_fun A h = Some (r, h')"
from flat_lub_in_chain[OF ch' this[unfolded fun_lub_def]]
have "Some (r, h') ∈ {y. ∃f∈A. y = f h}" by simp
then have "∃f∈A. f h = Some (r, h')" by auto
with IH show "P x h h' r" by auto
qed
qed
lemma admissible_heap:
"heap.admissible (λf. ∀x h h' r. effect (f x) h h' r ⟶ P x h h' r)"
proof (rule admissible_fun[OF heap_interpretation])
fix x
show "ccpo.admissible Heap_lub Heap_ord (λa. ∀h h' r. effect a h h' r ⟶ P x h h' r)"
unfolding Heap_ord_def Heap_lub_def
proof (intro admissible_image partial_function_lift flat_interpretation)
show "option.admissible ((λa. ∀h h' r. effect a h h' r ⟶ P x h h' r) ∘ Heap)"
unfolding comp_def effect_def execute.simps
by (rule heap_step_admissible)
qed (auto simp add: Heap_eqI)
qed
lemma fixp_induct_heap:
fixes F :: "'c ⇒ 'c" and
U :: "'c ⇒ 'b ⇒ 'a Heap" and
C :: "('b ⇒ 'a Heap) ⇒ 'c" and
P :: "'b ⇒ heap ⇒ heap ⇒ 'a ⇒ bool"
assumes mono: "⋀x. monotone (fun_ord Heap_ord) Heap_ord (λf. U (F (C f)) x)"
assumes eq: "f ≡ C (ccpo.fixp (fun_lub Heap_lub) (fun_ord Heap_ord) (λf. U (F (C f))))"
assumes inverse2: "⋀f. U (C f) = f"
assumes step: "⋀f x h h' r. (⋀x h h' r. effect (U f x) h h' r ⟹ P x h h' r)
⟹ effect (U (F f) x) h h' r ⟹ P x h h' r"
assumes defined: "effect (U f x) h h' r"
shows "P x h h' r"
using step defined heap.fixp_induct_uc[of U F C, OF mono eq inverse2 admissible_heap, of P]
unfolding effect_def execute.simps
by blast
declaration {* Partial_Function.init "heap" @{term heap.fixp_fun}
@{term heap.mono_body} @{thm heap.fixp_rule_uc} @{thm heap.fixp_induct_uc}
(SOME @{thm fixp_induct_heap}) *}
abbreviation "mono_Heap ≡ monotone (fun_ord Heap_ord) Heap_ord"
lemma Heap_ordI:
assumes "⋀h. execute x h = None ∨ execute x h = execute y h"
shows "Heap_ord x y"
using assms unfolding Heap_ord_def img_ord_def fun_ord_def flat_ord_def
by blast
lemma Heap_ordE:
assumes "Heap_ord x y"
obtains "execute x h = None" | "execute x h = execute y h"
using assms unfolding Heap_ord_def img_ord_def fun_ord_def flat_ord_def
by atomize_elim blast
lemma bind_mono [partial_function_mono]:
assumes mf: "mono_Heap B" and mg: "⋀y. mono_Heap (λf. C y f)"
shows "mono_Heap (λf. B f ⤜ (λy. C y f))"
proof (rule monotoneI)
fix f g :: "'a ⇒ 'b Heap" assume fg: "fun_ord Heap_ord f g"
from mf
have 1: "Heap_ord (B f) (B g)" by (rule monotoneD) (rule fg)
from mg
have 2: "⋀y'. Heap_ord (C y' f) (C y' g)" by (rule monotoneD) (rule fg)
have "Heap_ord (B f ⤜ (λy. C y f)) (B g ⤜ (λy. C y f))"
(is "Heap_ord ?L ?R")
proof (rule Heap_ordI)
fix h
from 1 show "execute ?L h = None ∨ execute ?L h = execute ?R h"
by (rule Heap_ordE[where h = h]) (auto simp: execute_bind_case)
qed
also
have "Heap_ord (B g ⤜ (λy'. C y' f)) (B g ⤜ (λy'. C y' g))"
(is "Heap_ord ?L ?R")
proof (rule Heap_ordI)
fix h
show "execute ?L h = None ∨ execute ?L h = execute ?R h"
proof (cases "execute (B g) h")
case None
then have "execute ?L h = None" by (auto simp: execute_bind_case)
thus ?thesis ..
next
case Some
then obtain r h' where "execute (B g) h = Some (r, h')"
by (metis surjective_pairing)
then have "execute ?L h = execute (C r f) h'"
"execute ?R h = execute (C r g) h'"
by (auto simp: execute_bind_case)
with 2[of r] show ?thesis by (auto elim: Heap_ordE)
qed
qed
finally (heap.leq_trans)
show "Heap_ord (B f ⤜ (λy. C y f)) (B g ⤜ (λy'. C y' g))" .
qed
subsection {* Code generator setup *}
subsubsection {* Logical intermediate layer *}
definition raise' :: "String.literal ⇒ 'a Heap" where
[code del]: "raise' s = raise (String.explode s)"
lemma [code_abbrev]: "raise' (STR s) = raise s"
unfolding raise'_def by (simp add: STR_inverse)
lemma raise_raise':
"raise s = raise' (STR s)"
unfolding raise'_def by (simp add: STR_inverse)
code_datatype raise' -- {* avoid @{const "Heap"} formally *}
subsubsection {* SML and OCaml *}
code_printing type_constructor Heap ⇀ (SML) "(unit/ ->/ _)"
code_printing constant bind ⇀ (SML) "!(fn/ f'_/ =>/ fn/ ()/ =>/ f'_/ (_/ ())/ ())"
code_printing constant return ⇀ (SML) "!(fn/ ()/ =>/ _)"
code_printing constant Heap_Monad.raise' ⇀ (SML) "!(raise/ Fail/ _)"
code_printing type_constructor Heap ⇀ (OCaml) "(unit/ ->/ _)"
code_printing constant bind ⇀ (OCaml) "!(fun/ f'_/ ()/ ->/ f'_/ (_/ ())/ ())"
code_printing constant return ⇀ (OCaml) "!(fun/ ()/ ->/ _)"
code_printing constant Heap_Monad.raise' ⇀ (OCaml) "failwith"
subsubsection {* Haskell *}
text {* Adaption layer *}
code_printing code_module "Heap" ⇀ (Haskell)
{*import qualified Control.Monad;
import qualified Control.Monad.ST;
import qualified Data.STRef;
import qualified Data.Array.ST;
type RealWorld = Control.Monad.ST.RealWorld;
type ST s a = Control.Monad.ST.ST s a;
type STRef s a = Data.STRef.STRef s a;
type STArray s a = Data.Array.ST.STArray s Integer a;
newSTRef = Data.STRef.newSTRef;
readSTRef = Data.STRef.readSTRef;
writeSTRef = Data.STRef.writeSTRef;
newArray :: Integer -> a -> ST s (STArray s a);
newArray k = Data.Array.ST.newArray (0, k - 1);
newListArray :: [a] -> ST s (STArray s a);
newListArray xs = Data.Array.ST.newListArray (0, (fromInteger . toInteger . length) xs - 1) xs;
newFunArray :: Integer -> (Integer -> a) -> ST s (STArray s a);
newFunArray k f = Data.Array.ST.newListArray (0, k - 1) (map f [0..k-1]);
lengthArray :: STArray s a -> ST s Integer;
lengthArray a = Control.Monad.liftM (\(_, l) -> l + 1) (Data.Array.ST.getBounds a);
readArray :: STArray s a -> Integer -> ST s a;
readArray = Data.Array.ST.readArray;
writeArray :: STArray s a -> Integer -> a -> ST s ();
writeArray = Data.Array.ST.writeArray;*}
code_reserved Haskell Heap
text {* Monad *}
code_printing type_constructor Heap ⇀ (Haskell) "Heap.ST/ Heap.RealWorld/ _"
code_monad bind Haskell
code_printing constant return ⇀ (Haskell) "return"
code_printing constant Heap_Monad.raise' ⇀ (Haskell) "error"
subsubsection {* Scala *}
code_printing code_module "Heap" ⇀ (Scala)
{*object Heap {
def bind[A, B](f: Unit => A, g: A => Unit => B): Unit => B = (_: Unit) => g (f ()) ()
}
class Ref[A](x: A) {
var value = x
}
object Ref {
def apply[A](x: A): Ref[A] =
new Ref[A](x)
def lookup[A](r: Ref[A]): A =
r.value
def update[A](r: Ref[A], x: A): Unit =
{ r.value = x }
}
object Array {
import collection.mutable.ArraySeq
def alloc[A](n: BigInt)(x: A): ArraySeq[A] =
ArraySeq.fill(n.toInt)(x)
def make[A](n: BigInt)(f: BigInt => A): ArraySeq[A] =
ArraySeq.tabulate(n.toInt)((k: Int) => f(BigInt(k)))
def len[A](a: ArraySeq[A]): BigInt =
BigInt(a.length)
def nth[A](a: ArraySeq[A], n: BigInt): A =
a(n.toInt)
def upd[A](a: ArraySeq[A], n: BigInt, x: A): Unit =
a.update(n.toInt, x)
def freeze[A](a: ArraySeq[A]): List[A] =
a.toList
}
*}
code_reserved Scala Heap Ref Array
code_printing type_constructor Heap ⇀ (Scala) "(Unit/ =>/ _)"
code_printing constant bind ⇀ (Scala) "Heap.bind"
code_printing constant return ⇀ (Scala) "('_: Unit)/ =>/ _"
code_printing constant Heap_Monad.raise' ⇀ (Scala) "!sys.error((_))"
subsubsection {* Target variants with less units *}
setup {*
let
open Code_Thingol;
val imp_program =
let
val is_bind = curry (op =) @{const_name bind};
val is_return = curry (op =) @{const_name return};
val dummy_name = "";
val dummy_case_term = IVar NONE;
(*assumption: dummy values are not relevant for serialization*)
val unitT = @{type_name unit} `%% [];
val unitt =
IConst { sym = Code_Symbol.Constant @{const_name Unity}, typargs = [], dicts = [], dom = [],
annotation = NONE };
fun dest_abs ((v, ty) `|=> t, _) = ((v, ty), t)
| dest_abs (t, ty) =
let
val vs = fold_varnames cons t [];
val v = singleton (Name.variant_list vs) "x";
val ty' = (hd o fst o unfold_fun) ty;
in ((SOME v, ty'), t `$ IVar (SOME v)) end;
fun force (t as IConst { sym = Code_Symbol.Constant c, ... } `$ t') = if is_return c
then t' else t `$ unitt
| force t = t `$ unitt;
fun tr_bind'' [(t1, _), (t2, ty2)] =
let
val ((v, ty), t) = dest_abs (t2, ty2);
in ICase { term = force t1, typ = ty, clauses = [(IVar v, tr_bind' t)], primitive = dummy_case_term } end
and tr_bind' t = case unfold_app t
of (IConst { sym = Code_Symbol.Constant c, dom = ty1 :: ty2 :: _, ... }, [x1, x2]) => if is_bind c
then tr_bind'' [(x1, ty1), (x2, ty2)]
else force t
| _ => force t;
fun imp_monad_bind'' ts = (SOME dummy_name, unitT) `|=>
ICase { term = IVar (SOME dummy_name), typ = unitT, clauses = [(unitt, tr_bind'' ts)], primitive = dummy_case_term }
fun imp_monad_bind' (const as { sym = Code_Symbol.Constant c, dom = dom, ... }) ts = if is_bind c then case (ts, dom)
of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)]
| ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)] `$ t3
| (ts, _) => imp_monad_bind (eta_expand 2 (const, ts))
else IConst const `$$ map imp_monad_bind ts
and imp_monad_bind (IConst const) = imp_monad_bind' const []
| imp_monad_bind (t as IVar _) = t
| imp_monad_bind (t as _ `$ _) = (case unfold_app t
of (IConst const, ts) => imp_monad_bind' const ts
| (t, ts) => imp_monad_bind t `$$ map imp_monad_bind ts)
| imp_monad_bind (v_ty `|=> t) = v_ty `|=> imp_monad_bind t
| imp_monad_bind (ICase { term = t, typ = ty, clauses = clauses, primitive = t0 }) =
ICase { term = imp_monad_bind t, typ = ty,
clauses = (map o apply2) imp_monad_bind clauses, primitive = imp_monad_bind t0 };
in (Code_Symbol.Graph.map o K o map_terms_stmt) imp_monad_bind end;
in
Code_Target.add_derived_target ("SML_imp", [("SML", imp_program)])
#> Code_Target.add_derived_target ("OCaml_imp", [("OCaml", imp_program)])
#> Code_Target.add_derived_target ("Scala_imp", [("Scala", imp_program)])
end
*}
hide_const (open) Heap heap guard raise' fold_map
end