Young's Inequality for Increasing Functions

Lawrence C. Paulson

May 26, 2024

Abstract

Young's inequality states that

$$ab \le \int_0^a f(x)dx + \int_0^b f^{-1}(y)dy$$

where $a \geq 0$, $b \geq 0$ and f is strictly increasing and continuous. Its proof is formalised following the development by Cunningham and Grossman [1]. Their idea is to make the intuitive, geometric folklore proof rigorous by reasoning about step functions. The lack of the Riemann integral makes the development longer than one would like, but their argument is reproduced faithfully.

Contents

1	Young's Inequality for Increasing Functions		
	1.1	Toward Young's inequality	3
	1.2	Regular divisions	3
	1.3	Special cases of Young's inequality	4

Acknowledgements The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

1 Young's Inequality for Increasing Functions

```
From the following paper: Cunningham, F., and Nathaniel Grossman. "On Young's Inequality." The American Mathematical Monthly 78, no. 7 (1971): 781–83. https://doi.org/10.2307/2318018
```

```
theory Youngs imports
HOL-Analysis. Analysis
```

begin

1.1 Toward Young's inequality

```
lemma strict-mono-image-endpoints: fixes f:: 'a::linear-continuum-topology \Rightarrow 'b::linorder-topology assumes strict-mono-on \{a..b\} f and f: continuous-on \{a..b\} f and a \leq b shows f '\{a..b\} = \{f \ a..f \ b\} \langle proof \rangle

Generalisations of the type of f are not obvious lemma strict-mono-continuous-invD: fixes f:: real \Rightarrow real assumes sm: strict-mono-on \{a..\} f and contf: continuous-on \{a..\} f and fim: f '\{a..\} = \{f \ a..\} and g: \bigwedge x. \ x \geq a \Longrightarrow g \ (f \ x) = x shows continuous-on \{f \ a..\} g
```

1.2 Regular divisions

Our lack of the Riemann integral forces us to construct explicitly the step functions mentioned in the text.

```
definition segment \equiv \lambda n \ k. \ \{real \ k \ / \ real \ n...(1 + k) \ / \ real \ n\}

lemma segment\text{-}nonempty: segment \ n \ k \neq \{\}
\langle proof \rangle

lemma segment\text{-}Suc: segment \ n \ \{... < Suc \ k\} = insert \ \{k/n...(1 + real \ k) \ / \ n\}
(segment \ n \ \{... < k\})
\langle proof \rangle

lemma Union\text{-}segment\text{-}image: \bigcup \ (segment \ n \ \{... < k\}) = (if \ k=0 \ then \ \{\} \ else \ \{0...real \ k/real \ n\})
\langle proof \rangle

definition segments \equiv \lambda n. \ segment \ n \ \{... < n\}
lemma card\text{-}segments \ [simp]: \ card \ (segments \ n) = n
\langle proof \rangle
```

```
lemma segments-0 [simp]: segments 0 = \{\}
  \langle proof \rangle
lemma Union-segments: \bigcup (segments n) = (if n=0 then \{\} else \{0...1\})
  \langle proof \rangle
definition regular-division \equiv \lambda a \ b \ n. \ (image \ ((+) \ a \circ (*) \ (b-a))) \ `(segments \ n)
lemma translate-scale-01:
  assumes a \leq b
 shows (\lambda x. \ a + (b - a) * x) ` \{0..1\} = \{a..b::real\}
lemma finite-regular-division [simp]: finite (regular-division a b n)
\mathbf{lemma}\ \mathit{card}\text{-}\mathit{regular}\text{-}\mathit{division}\ [\mathit{simp}]\text{:}
 assumes a < b
 shows card (regular-division \ a \ b \ n) = n
\langle proof \rangle
{\bf lemma}\ {\it Union-regular-division}:
  assumes a \leq b
 shows \bigcup (regular-division a b n) = (if n=0 then \{\} else \{a..b\})
  \langle proof \rangle
lemma regular-division-eqI:
  assumes K: K = \{a + (b-a)*(real \ k \ / \ n) \ .. \ a + (b-a)*((1 + real \ k) \ / \ n)\}
    and a < b \ k < n
  shows K \in regular-division a \ b \ n
  \langle proof \rangle
lemma regular-divisionE:
 assumes K \in regular-division a \ b \ n \ a < b
 obtains k where k < n K = \{a + (b-a)*(real \ k \ / \ n) ... \ a + (b-a)*((1 + real \ k)) \}
/ n)
\langle proof \rangle
lemma regular-division-division-of:
  assumes a < b \ n > 0
  shows (regular-division a b n) division-of \{a..b\}
\langle proof \rangle
1.3
        Special cases of Young's inequality
\mathbf{lemma}\ weighted\text{-}nesting\text{-}sum:
 fixes g :: nat \Rightarrow 'a :: comm - ring - 1
 shows (\sum k < n. (1 + of\text{-}nat \ k) * (g (Suc \ k) - g \ k)) = of\text{-}nat \ n * g \ n - (\sum i < n.
```

```
\langle proof \rangle
theorem Youngs-exact:
  fixes f :: real \Rightarrow real
  assumes sm: strict-mono-on \{0..\} f and cont: continuous-on \{0..\} f and a:
a \ge 0
    and f: f \theta = \theta f a = b
    and g: \Lambda x. \llbracket 0 \leq x; x \leq a \rrbracket \Longrightarrow g(fx) = x
  shows a*b = integral \{0..a\} f + integral \{0..b\} g
\langle proof \rangle
corollary Youngs-strict:
  \mathbf{fixes}\ f :: \mathit{real} \Rightarrow \mathit{real}
  assumes sm: strict-mono-on \{0..\} f and cont: continuous-on \{0..\} f and a>0
    and f: f \theta = \theta f a \neq b and fim: f ` \{\theta..\} = \{\theta..\}
    and g: \land x. \ 0 \le x \Longrightarrow g(fx) = x
  shows a*b < integral \{0..a\} f + integral \{0..b\} g
\langle proof \rangle
corollary Youngs-inequality:
  \mathbf{fixes}\ f::\mathit{real} \Rightarrow \mathit{real}
  assumes sm: strict-mono-on \{0..\} f and cont: continuous-on \{0..\} f and a \ge 0
b \ge 0
    and f: f \theta = \theta and fim: f' \{\theta..\} = \{\theta..\}
    and g: \bigwedge x. 0 \le x \Longrightarrow g(fx) = x
  shows a*b \le integral \{0..a\} f + integral \{0..b\} g
\langle proof \rangle
```

References

end

[1] F. Cunningham and N. Grossman. On Young's inequality. *The American Mathematical Monthly*, 78(7):781–783, 1971.