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Abstract

Young’s inequality states that

ab < /Oa f(a:)da:+/obf1(y)dy

where a > 0, b > 0 and f is strictly increasing and continuous. Its proof
is formalised following the development by Cunningham and Gross-
man [1]. Their idea is to make the intuitive, geometric folklore proof
rigorous by reasoning about step functions. The lack of the Riemann
integral makes the development longer than one would like, but their
argument is reproduced faithfully.
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1 Young’s Inequality for Increasing Functions

From the following paper: Cunningham, F., and Nathaniel Grossman. “On
Young’s Inequality.” The American Mathematical Monthly 78, no. 7 (1971):
781-83. https://doi.org/10.2307/2318018

theory Youngs imports
HOL— Analysis. Analysis

begin

1.1 Toward Young’s inequality

lemma strict-mono-image-endpoints:
fixes f :: 'a:linear-continuum-topology = 'b::linorder-topology
assumes strict-mono-on {a..b} f and f: continuous-on {a..b} f and a < b
shows [ ‘ {a..b} = {f a..f b}

(proof)

Generalisations of the type of f are not obvious

lemma strict-mono-continuous-invD:
fixes f :: real = real
assumes sm: strict-mono-on {a..} f and contf: continuous-on {a..} f
and fim: f ‘{a.} = {fa.}and g: Az. 2 > a = g (fz) ==
shows continuous-on {f a..} g
(proof)

1.2 Regular divisions

Our lack of the Riemann integral forces us to construct explicitly the step
functions mentioned in the text.

definition segment = An k. {real k / real n..(1 + k) / real n}

lemma segment-nonempty: segment n k # {}
(proof )

lemma segment-Suc: segment n ¢ {..<Suc k} = insert {k/n..(1 + real k) / n}
(segment n “ {..<k})
(proof )

lemma Union-segment-image: |J (segment n ‘ {.<k}) = (if k=0 then {} else
{0..real k/real n})
(proof)

definition segments = An. segment n ‘ {..<n}

lemma card-segments [simp]: card (segments n) = n
{proof)


https://doi.org/10.2307/2318018

lemma segments-0 [simp]: segments 0 = {}
{proof )

lemma Union-segments: |J (segments n) = (if n=0 then {} else {0..1})
(proof)

definition regular-division = Aa b n. (image ((+) a o (x) (b—a))) * (segments n)

lemma translate-scale-01:
assumes a < b
shows (Az. a + (b — a) x z) ‘{0..1} = {a..b::real}
(proof)

lemma finite-reqular-division [simp]: finite (regular-division a b n)

(proof)

lemma card-reqular-division [simp]:
assumes a<b
shows card (regular-division a b n) = n

(proof)

lemma Union-regular-division:
assumes a < b
shows |J (regular-division a b n) = (if n=0 then {} else {a..b})
(proof )

lemma regular-division-eql:
assumes K: K = {a + (b—a)x(real k / n) .. a + (b—a)*((1 + real k) / n)}
and a<b k < n
shows K € reqular-division a b n

(proof)

lemma regular-divisionE:

assumes K € reqular-division a b n a<b

obtains k where k<n K = {a + (b—a)x(real k / n) .. a + (b—a)x((1 + real k)
/ )}
(proof)

lemma regular-division-division-of:
assumes a < b n>0
shows (reqular-division a b n) division-of {a..b}

(proof)

1.3 Special cases of Young’s inequality

lemma weighted-nesting-sum:

fixes g :: nat = 'a::comm-ring-1

shows (> k<n. (1 + of-nat k) x (g (Suck) — gk)) = of-nat n x gn — (D_ i<n.
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{proof)

theorem Youngs-exact:
fixes f :: real = real
assumes sm: strict-mono-on {0..} f and cont: continuous-on {0..} f and a:
a>0
and f: fO=0fa=10
and g: Az. [0 <2< a] = g (fz) =2
shows axb = integral {0..a} f + integral {0..b} g
(proof)

corollary Youngs-strict:
fixes f :: real = real
assumes sm: strict-mono-on {0..} f and cont: continuous-on {0..} f and a>0
b>0
and f: f0=0fa# band fim: f“{0..} ={0..}
and ¢: A\z. 0 <z = g (fz) =2
shows axb < integral {0..a} f + integral {0..b} g
(proof)

corollary Youngs-inequality:
fixes f :: real = real
assumes sm: strict-mono-on {0..} f and cont: continuous-on {0..} f and a>0
b>0
and f: f0 = 0 and fim: f *{0..} = {0..}
and ¢: Az. 0 <2z = g (fz) =2
shows axb < integral {0..a} f + integral {0..b} g
(proof)

end
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