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Abstract

This is a formalisation of the proof of an inequality by Trevor D.
Wooley attesting that when λ > 0,

min
r∈N

(r + λ/r) ≤
√

4λ + 1

with equality if and only if λ = m(m− 1) for some positive integer m.
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1 Wooley’s Discrete Inequality
theory Wooley-Elementary-Discrete-Inequality

imports HOL−Library.Quadratic-Discriminant HOL−Real-Asymp.Real-Asymp

begin

This is a formalisation of the proof of an inequality by Trevor D. Wooley
attesting that when λ > 0,

min
r∈N

(r + λ/r) ≤
√

4λ + 1

with equality if and only if λ = m(m− 1) for some positive integer m. The
source is the note "An Elementary Discrete Inequality" available on Wooley’s
webpage [1]: https://www.math.purdue.edu/~twooley/publ/20230410discineq.
pdf.
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1.1 General elementary technical lemmas
lemma obtains-nat-in-interval:

fixes x::real assumes x≥0
obtains c::nat where c ∈ {x<.. x+1}

proof
show natbx+1 c ∈ {x<..x + 1}

using assms by force
qed

lemma obtains-nat-in-interval-greater-leq:
fixes x::real assumes x≥0
obtains c::nat where c >x and c ≤ x+1
by (meson assms greaterThanAtMost-iff obtains-nat-in-interval)

lemma obtains-nat-in-interval-half :
fixes x::real assumes x≥1/2
obtains c::nat where c > x − (1/2 ) and c ≤ x+1/2
using assms obtains-nat-in-interval-greater-leq [of x−1/2 ]
by (smt (verit) field-sum-of-halves)

1.2 Trivial case, where we minimise over all positive real
values of r

theorem elementary-ineq-Wooley-real:
fixes l::real and g::real ⇒ real
assumes l>0 and ∀ r ∈ R. g r = r+(l/r)

and R={r ::real. r>0}
shows (∀ r ∈ R. g r ≥ 2∗ sqrt(l)) ∧ (∀ r ∈ R. g (sqrt(l)) ≤ g r)

proof−
have ∀ r ∈ R. 2 ∗ sqrt(l)+ (sqrt(r) − (sqrt(l)/sqrt(r)))^2 = r+(l/r)

using assms by (simp add: power-divide power2-diff )
moreover
have ∀ r ∈ R. 2 ∗ sqrt(l)+ (sqrt(r) − (sqrt(l)/sqrt(r)))^2 ≥ 2 ∗(sqrt(l))

using assms by auto
ultimately have ∀ r ∈ R. r+(l/r) ≥ 2∗sqrt(l) by simp
moreover
have g (sqrt(l)) = 2 ∗sqrt(l) using assms by (simp add: real-div-sqrt)
ultimately show ?thesis using assms by auto

qed

1.3 Main result: Inequality for the discrete version
theorem elementary-discrete-ineq-Wooley:

fixes l::real and g::nat ⇒ real
assumes l>0 and R = {r ::nat. r>0} and ∀ r ∈ R. g r = r+ (l/r)
shows (INF r ∈ R. g r) ≤ sqrt(4∗l+1 )

proof−
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We will first show the inequality for a specific choice of ru ∈ R. Then
the assertion of the theorem will be simply shown by transitivity.

define x::real where x = sqrt(l+1/4 )
with assms have x>1/2
by (smt (verit, best) real-sqrt-divide real-sqrt-four real-sqrt-less-iff real-sqrt-one)

obtain r-u::nat where r-u >x −1/2 and r-u ≤ x+1/2
using obtains-nat-in-interval-half ‹x>1/2 › by (metis less-eq-real-def )

have r-u ∈ R using assms ‹1 / 2 < x› ‹x − 1 / 2 < real r-u› by auto
have ru-gt: r-u > sqrt(l+1/4 )−1/2 using ‹r-u >x −1/2 › ‹x =sqrt(l+1/4 )›

by blast
have ru-le: r-u ≤ sqrt(l+1/4 )+1/2 using ‹r-u ≤ x +1/2 › ‹x =sqrt(l+1/4 )›

by blast

Proving the following auxiliary statement is the key part of the whole
proof.

have auxiliary: |r-u − (l/r-u)| ≤ 1
proof−

define δ::real where δ = r-u − sqrt(l+1/4 )
with assms ru-gt δ-def ru-le
have δ: δ > −1/2 δ ≤ 1/2

by auto

have a: |r-u − l/r-u| = | ((sqrt(l+1/4 ) + δ)^2 −l)/(sqrt(l+1/4 ) + δ)|
using δ-def
by (smt (verit, ccfv-SIG) ‹1 / 2 < x› ‹x − 1 / 2 < real r-u›

add-divide-distrib nonzero-mult-div-cancel-right power2-eq-square)

have b:| ((sqrt(l+1/4 ) + δ)^2 −l)/(sqrt(l+1/4 ) + δ)| =
|2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ ))|

proof−
have |((sqrt(l+1/4 ) + δ)^2 −l)/(sqrt(l+1/4 ) + δ) | =

|(1/4 + 2∗(sqrt(l+1/4 ))∗ δ+ δ2)/(sqrt(l+1/4 ) + δ) |
by (smt (verit, best) assms(1 ) divide-nonneg-nonneg power2-sum real-sqrt-pow2 )
also have . . . = | ( 2∗ δ∗ (sqrt(l+1/4 ))+ 2∗ δ2 + 1/4 −δ2 )/(sqrt(l+1/4 )

+ δ)|
by (smt (verit) power2-sum)

also have . . . = | ( 2∗ δ∗ (sqrt(l+1/4 )+ δ) + 1/4 −δ2 )/(sqrt(l+1/4 ) +
δ)|

by (smt (verit, ccfv-SIG) power2-diff power2-sum)
also have . . . = | ( 2∗ δ∗ (sqrt(l+1/4 )+ δ))/(sqrt(l+1/4 ) + δ)

+ ((1/4 −δ2 )/(sqrt(l+1/4 ) + δ)) |
by (metis add-diff-eq add-divide-distrib)

also have . . . = | 2∗ δ + ((1/4 −δ2 )/(sqrt(l+1/4 ) + δ)) |
using ‹δ = real r-u − sqrt (l + 1 / 4 )› ‹r-u ∈ R› assms by force

finally show ?thesis .
qed

show ?thesis
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We distinguish the cases δ > 0 and δ ≤ 0:
proof (cases δ > 0 )

case True
define t::real where t = 1/2 − δ
have c: 0 ≤ 2∗ δ +(( 1/4 − δ2)/(sqrt(l+1/4 ) + δ ))
proof−

have δ2 ≤ 1/4 using δ ‹δ > 0 ›
by (metis less-eq-real-def plus-or-minus-sqrt real-sqrt-divide real-sqrt-four

real-sqrt-le-iff real-sqrt-one real-sqrt-power)
then have 1/4 −δ2 ≥ 0

by simp
then show ?thesis using ‹δ > 0 › assms by simp

qed

have d: 2∗ δ +( (1/4 − δ2)/(sqrt(l+1/4 ) + δ )) ≤ 1 −2∗t + ((t−t2)/
(1−t))

proof−
have δ = 1/2 − t using t-def by simp
then have 2∗ δ +( (1/4 − δ2)/(sqrt(l+1/4 ) + δ )) =

2∗(1/2 − t ) +( (1/4 − ( 1/2 − t)^2 )/(sqrt(l+1/4 ) + 1/2 − t
))

by simp
also have . . . = 1 − 2∗t + ( (1/4 − ( 1/4 −2∗(1/2 )∗ t+ t2))/(sqrt(l+1/4 )

+ 1/2 − t ))
by (simp add: power2-diff power-divide)

also have . . . = 1 − 2∗t + ((t− t2)/(sqrt(l+1/4 ) + 1/2 − t )) by simp
also have . . . ≤ 1 −2∗t + ((t−t2)/ (1−t))
proof−

have sqrt(l+1/4 ) + 1/2 ≥ 1
using ‹1/2 < x› x-def by linarith

then have ∗: sqrt(l+1/4 ) + 1/2 −t ≥ 1 −t by simp
have 1−t 6= 0 using ‹t = 1/2 − δ› ‹δ >0 › by linarith
have sqrt(l+1/4 ) + 1/2 −t 6= 0

using δ-def ‹t = 1/2 − δ› ‹δ >0 › assms(1 ) by force
then have (1/(sqrt(l+1/4 ) + 1/2 − t ))≤ (1/ (1−t))

using ∗ ‹1−t 6= 0 › by (smt (verit) True ‹δ = 1/2 − t› frac-le
le-divide-eq-1-pos)

have t−t2 ≥0 using ‹δ = 1/2 − t› ‹δ >0 ›
by (smt (verit, best) ‹δ ≤ 1 / 2 › field-sum-of-halves le-add-same-cancel1

nat-1-add-1
power-decreasing-iff

power-one-right real-sqrt-pow2-iff real-sqrt-zero zero-less-one-class.zero-le-one)
then have ((t−t2) /(sqrt(l+1/4 ) + 1/2 − t ))≤ ((t−t2)/ (1−t))

by (smt (verit) ∗ True ‹t = 1/2 − δ› frac-le le-divide-eq-1-pos)
then show ?thesis by force

qed
finally show ?thesis .

qed
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have e: 1 −2∗t + ((t−t2)/ (1−t)) ≤ 1
proof−

have 1 −2∗t + ((t−t2)/ (1−t)) = 1−2∗t + ((1−t)∗t /(1−t)) by algebra
also have . . . = 1− t

using c d by fastforce
finally show ?thesis

using δ t-def by linarith
qed

show ?thesis using a b c d e by linarith

next
case False
define t::real where t = 1/2 + δ
then have δ = t−1/2by simp
have δ ≤ 0 using False by auto

have −( 2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ ))) =
− ( 2∗ (t−1/2 ) +( ((1/4 ) − (t−1/2 )^2 )/(sqrt(l+1/4 ) + t − 1/2 )))

using ‹δ = t−1/2 › by auto

also have . . . =−( 2∗t− 1 +( ( t−t2)/(sqrt(l+1/4 ) + t − 1/2 )))
by (simp add: power2-diff power-divide)

finally have ∗∗∗: −( 2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ ))) =
−( 2∗t− 1 +( ( t−t2)/(sqrt(l+1/4 ) + t − 1/2 ))) .

have c:−( 2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ ))) ≤ 1 −2∗t − ((t−t2)/
(sqrt(l+1/4 )))

proof−
have c1 : sqrt(l+1/4 ) + t − 1/2 ≤ sqrt(l+1/4 )

using ‹δ = t − 1 / 2 › ‹δ ≤ 0 › by simp

have (sqrt(l+1/4 ) + t − 1/2 ) 6= 0 sqrt(l+1/4 ) 6= 0
using assms δ-def ‹δ = t − 1/2 › ‹r-u ∈ R› by auto

then
have c2 : (t−t2)/(sqrt(l+1/4 ) + t − 1/2 ) ≥(t−t2)/ sqrt(l+1/4 )

using c1 assms
by (smt (verit, best) δ-def ru-gt ‹t = 1/2 + δ›

field-sum-of-halves frac-le le-add-same-cancel1 nat-1-add-1 of-nat-0-le-iff

power-decreasing-iff power-one-right zero-less-one-class.zero-le-one)

have c3 : − (t−t2)/(sqrt(l+1/4 ) + t − 1/2 ) ≤ − (t−t2)/ sqrt(l+1/4 )
using c2 by linarith

show ?thesis using ∗∗∗ c3 by linarith

qed
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have d: 1 −2∗t − ((t−t2)/ (sqrt(l+1/4 ))) ≤ 1
proof−

have ∗: t >0 using ‹δ > −1/2 › ‹t = 1/2 + δ› by simp
have ∗∗: t ≤ 1 using ‹δ ≤ 0 › ‹t = 1/2 + δ› by simp
show ?thesis using ∗ ∗∗

by (smt (verit) assms(1 ) divide-nonneg-nonneg mult-le-cancel-right2
power2-eq-square real-sqrt-ge-0-iff )

qed

have e: −( 2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ ))) ≥ 1 −2∗t − ((t−t2)/t)

proof−
have −( 2∗ δ +( ((1/4 ) − δ2)/(sqrt(l+1/4 ) + δ )))

= −( 2∗t− 1 +((t−t2)/(sqrt(l+1/4 ) + t − 1/2 )))
using ∗∗∗ by simp

have ( ( t−t2)/(sqrt(l+1/4 ) + t − 1/2 )) ≤ (t−t2)/ t
proof−

have †: (sqrt(l+1/4 ) + t − 1/2 ) ≥ t using assms
by (smt (verit, best) one-power2 power-divide real-sqrt-four real-sqrt-pow2

sqrt-le-D)
moreover have t >0 using ‹ δ > −1/2 › ‹t = 1/2 + δ› by simp
ultimately have (sqrt(l+1/4 ) + t − 1/2 ) >0

by auto
show ?thesis using † ‹(sqrt(l+1/4 ) + t − 1/2 ) >0 ›

‹0 < t›
by (smt (verit, best) ‹δ ≤ 0 › ‹t = 1/2 + δ›
frac-le le-add-same-cancel1 le-divide-eq-1-pos nat-1-add-1 power-decreasing-iff

power-one-right zero-less-one-class.zero-le-one)
qed
with ∗∗∗ show ?thesis by linarith

qed
have f : 1 −2∗t − ((t−t2)/t) ≥ −1/2
proof−

have t >0 using ‹ δ > −1/2 › ‹t = 1/2 + δ› by simp
then have 1 −2∗t − ((t−t2)/t) = 1−2∗t −(1 −t)

by (metis divide-diff-eq-iff less-irrefl one-eq-divide-iff power2-eq-square)
also have . . . = −t by auto
finally show ?thesis

using ‹δ ≤ 0 › ‹t = 1/2 + δ› by linarith
qed
show ?thesis using a b c d e f by linarith

qed
qed

The next step is to show that by the statement named "auxiliary" shown
above, we can directly show the desired inequality for the specific ru ∈ R:
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have (r-u − l/r-u)^2 ≤1
using auxiliary abs-square-le-1 by blast

then have (r-u^2 − 2∗r-u∗ (l/r-u) + l^2/r-u^2 ≤1 )
using power2-diff power-divide assms
by (smt (verit) mult-2 of-nat-add of-nat-eq-of-nat-power-cancel-iff )

then have r-u^2 − 2∗l + l^2/r-u^2 ≤1 using assms ‹r-u ∈ R› by force
then have r-u^2 + 2∗l + l^2/r-u^2 ≤ ( 4∗l+1 ) by argo
then have r-u^2 + 2∗r-u∗(l/r-u) + l^2/r-u^2 ≤ ( 4∗l+1 ) using assms by

simp
then have (r-u+ (l/r-u))^2 ≤ ( 4∗l+1 )
by (smt (verit, best) mult-2 of-nat-add of-nat-power-eq-of-nat-cancel-iff power2-sum

power-divide)
then have (r-u+ (l/r-u)) ≤ sqrt(4∗l+1 ) using real-le-rsqrt by blast
moreover

The following shows that it is enough that we showed the inequality for
the specific ru ∈ R, as the statement of the theorem will then simply hold
by transitivity.

have (INF r ∈ R. g r) ≤ g r-u
proof−

have bdd-below (g ‘ R) unfolding bdd-below-def
using assms image-iff

by (metis add-increasing assms(1 ) divide-nonneg-nonneg image-iff less-eq-real-def
of-nat-0-le-iff )

show ?thesis
by (simp add: ‹bdd-below (g ‘ R)› ‹r-u ∈ R› cINF-lower)

qed
ultimately show ?thesis using assms ‹r-u ∈ R› by force

qed

1.4 Special case: Equality for the discrete version
We will now show a special case of the main result where equality holds
instead of inequality.

We will need to make use of the following technical lemma, which will be
used so as to guarantee that there exists a p ∈ R for which the INF of g(r)
equals to g(p). To this end, we will show that here the infimum INF can
be identified with the minimum Min by restricting to a finite set. As the
operator Min in Isabelle is used for finite sets and R is infinite, we used INF
in the original formulation, however here Min and INF can be identified.

The following technical lemma is by Larry Paulson:
lemma restrict-to-min:

fixes l::real and g::nat ⇒ real
assumes l>0 and R-def : R={r ::nat. r>0} and g-def : ∀ r . g r = r + (l/r)
obtains F where finite F F ⊆ R (INF r ∈ R. g r) = Min (g ‘ F) F 6= {}

7



proof −
have ge0 : g r ≥ 0 for r

using ‹l>0 › R-def g-def by (auto simp: g-def )
then have bdd: bdd-below (g ‘ R)

by (auto simp add: g-def R-def bdd-below-def )
have ∀ F n in sequentially. g 1 < g n

by (simp add: g-def ) real-asymp
then obtain N where N>0 and N :

∧
r . r≥N =⇒ g 1 < g r

by (metis Suc-leD eventually-sequentially less-Suc-eq-0-disj)
define F where F = R ∩ {..N}
have F : finite F F ⊆ R

by (auto simp add: F-def )
have F 6= {}

using F-def R-def ‹0 < N › by blast
have (INF r ∈ R. g r) = (INF r ∈ F . g r)
proof (intro order .antisym cInf-mono bdd)

show bdd-below (g ‘ F)
by (meson ge0 bdd-belowI2 )

next
fix b
assume b ∈ g ‘ R
then show ∃ a∈g ‘ F . a ≤ b

unfolding image-iff F-def R-def Bex-def
by (metis N linorder-not-less IntI atMost-iff mem-Collect-eq nle-le zero-less-one)

qed (use ‹F⊆R› ‹0 < N › in ‹auto simp: R-def F-def ›)
also have . . . = Min (g ‘ F)

using ‹F 6= {}› by (simp add: ‹finite F› cInf-eq-Min)
finally have (INF r ∈ R. g r) = Min (g ‘ F) .
with F show thesis

using that ‹F 6= {}› by blast
qed

We will make use of the following calculation, which is convenient to
formulate separately as a lemma.
lemma elementary-discrete-ineq-Wooley-quadratic-eq-sol:

fixes l::real and g::nat ⇒ real
assumes l>0 and ∀ r . g r =r+ (l/r) and g r = sqrt(4∗l+1 )
shows (r = 1/2 + (1/2 )∗ sqrt( 4∗l +1 )) ∨ (r = − 1/2 + (1/2 )∗ sqrt(4∗l

+1 ))
proof−

have eq0 : r^2 − r∗(sqrt( 4∗l+1 )) + l = 0
proof−

have r∗( r + l/r) = r∗(sqrt(4∗l+1 )) using assms by simp
then have r^2 + r∗(l/r) = r∗(sqrt(4∗l+1 ))

by (simp add: distrib-left power2-eq-square)
then show ?thesis
by (smt (verit, ccfv-threshold) assms divide-eq-eq mult.commute real-sqrt-gt-1-iff )

qed

Solving the above quadratic equation gives the following two roots:
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have roots:(r = 1/2 + (1/2 )∗sqrt( 4∗l +1 ))∨(r = − 1/2 + (1/2 )∗sqrt(4∗l+1 ))
proof−

define a::real where a = 1
define b::real where b = − sqrt(4∗l+1 )
define c::real where c = l
have a∗r^2 + b∗ r + c =0 using eq0 by (simp add: mult.commute a-def b-def

c-def )
then have A: (r = (−b + sqrt( discrim a b c))/ 2∗a) ∨ (r = (−b −sqrt(

discrim a b c))/ 2∗a)
using discriminant-iff [of a r ] a-def by simp

have discrim a b c = b^2 −4∗a∗c
using discrim-def by simp

then have B: (r = (−b + sqrt(b^2 −4∗a∗c))/ 2∗a) ∨ (r = (−b −sqrt(b^2
−4∗a∗c))/ 2∗a)

using A by auto
then have C : (r = (−b + sqrt(b^2 −4∗c))/ 2 ) ∨ (r = (−b −sqrt(b^2 −4∗c))/

2 )
using a-def by simp

have b^2 −4∗c = 1 using b-def c-def assms(1 ) by auto
then have (r = (−b + 1 )/ 2 ) ∨ (r = (−b − 1 )/ 2 )

using C by auto
then show ?thesis using b-def by auto

qed
show ?thesis using roots by simp

qed

The special case with equality involves a double implication (iff), and we
start by showing one direction.
theorem elementary-discrete-ineq-Wooley-special-case-1 :

fixes l::real and g::nat ⇒ real assumes l>0 and R={r ::nat. r>0} and ∀ r . g
r = r + (l/r)

and (INF r ∈ R. g r) = sqrt(4∗l+1 )
shows ∃ m::nat. l =m∗(m−1 )

proof−
have ∃ p ∈ R. (INF r ∈ R. g r) = g p
proof−

obtain F where ∗:‹(INF r ∈ R. g r) = Min (g ‘ F)› and ‹finite F› and ‹F
⊆ R› ‹F 6= {}›

using assms restrict-to-min by metis
then obtain p::nat where Min (g ‘ F) = g p p ∈ R

by (smt (verit) Min-in finite-imageI image-iff image-is-empty subsetD)
with ∗ show ?thesis by metis

qed
with assms
obtain r-u::nat where g r-u = sqrt(4∗l+1 ) and r-u ∈ R

by metis
then have ru: (r-u + (l/r-u)) = sqrt( 4∗l+1 )

using assms by auto
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have (r-u = 1/2 + (1/2 )∗ sqrt( 4∗l +1 )) =⇒ (l = r-u^2 − r-u)
proof−

assume r-u = 1/2 + (1/2 )∗ (sqrt( 4∗l +1 ))
then have 2∗ r-u = 1 + sqrt( 4∗l +1 ) by simp
then have (2∗ real(r-u) −1 )^2 = ( 4∗l +1 ) using assms by auto
then have (2∗real(r-u))^2 −2∗(2∗real( r-u)) +1 = ( 4∗l +1 )

by (simp add: power2-diff )
then have 4∗real(r-u)^2−4∗(r-u) = 4∗l by fastforce
then show (l = r-u^2 − r-u )

by (simp add: of-nat-diff power2-eq-square)
qed
moreover
have (r-u = − 1/2 + (1/2 )∗ sqrt( 4∗l +1 ))=⇒ (l =r-u^2 + r-u)
proof−

assume r-u = − 1/2 + (1/2 )∗ sqrt(4∗l +1 )
then have 2 ∗ r-u +1 = sqrt(4∗l+1 ) by simp
then have (2∗r-u +1 )^2 = (4∗l+1 ) using assms by auto
then have 4∗(r-u)^2 +4∗r-u +1 = 4∗l+1

by (simp add: power2-eq-square)
then show (l =r-u^2 + r-u )

by (simp add: of-nat-diff power2-eq-square)
qed
moreover
have (r-u = 1/2 + (1/2 )∗ sqrt( 4∗l +1 )) ∨ (r-u = − 1/2 + (1/2 )∗ sqrt(4∗l

+1 ))
using assms ru elementary-discrete-ineq-Wooley-quadratic-eq-sol

assms by auto
ultimately have (l =r-u^2 + r-u) ∨ (l = r-u^2 − r-u)

by blast
then show ?thesis
by (metis add-implies-diff distrib-left mult.commute mult.right-neutral power2-eq-square

right-diff-distrib ′)

(Interestingly, the above use of metis finished the proof in a simple step
guaranteeing the existence of a witness with the desired property).
qed

Now we show the other direction.
theorem elementary-discrete-ineq-Wooley-special-case-2 :

fixes l::real and g::nat ⇒ real
assumes l>0 and R={r ::nat. r>0} and ∀ r . g r =r+ (l/r) and ∃ m::nat. l

=m∗(m−1 )
shows (INF r ∈ R. g r) = sqrt(4∗l+1 )

proof−

obtain r-u::nat where (l =r-u^2 + r-u) using assms
by (metis add.commute add-cancel-left-right mult-eq-if power2-eq-square)
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then have sqrt( 4∗l +1 )= sqrt(4∗r-u^2 +4∗ r-u +1 ) by simp
moreover have 4∗r-u^2 +4∗ r-u +1 =(2∗r-u +1 )^2

by (simp add: Groups.mult-ac(2 ) distrib-left power2-eq-square)
ultimately have 4 : sqrt( 4∗l +1 )= sqrt((2∗r-u +1 )^2 ) by metis
then have ru: r-u = −1/2 + 1/2∗sqrt( 4∗l +1 ) by (simp add: add-divide-distrib)

To prove the conclusion of the theorem, we will follow a proof by con-
tradiction.

show ?thesis
proof (rule ccontr)

assume Inf (g ‘ R) 6= sqrt (4 ∗ l + 1 )
then have inf : (INF r ∈ R. g r) < sqrt(4∗l+1 )

using assms less-eq-real-def elementary-discrete-ineq-Wooley by blast

have ∃ p ∈ R. (INF r ∈ R. g r) = g p
proof−

obtain F where ∗:‹(INF r ∈ R. g r) = Min (g ‘ F)› and ‹finite F› ‹F ⊆
R› ‹F 6= {}›

using assms restrict-to-min by metis
then obtain p::nat where Min (g ‘ F) = g p p ∈ R

by (meson Min-in finite-imageI imageE image-is-empty subsetD)
with ∗ show ?thesis by metis

qed

obtain p::nat where p ∈ R and (INF r ∈ R. g r) = g p using assms
‹∃ p ∈ R. (INF r ∈ R. g r) = g p› by blast

then have (p+ l/p < sqrt( 4∗l+1 ))
using inf assms(3 ) by auto

have p∗(p+ l/p) < p∗(sqrt( 4∗l+1 ))
using ‹p ∈ R› ‹(p+ l/p < sqrt( 4∗l+1 ))› assms by simp

then have p^2 − p∗(sqrt( 4∗l+1 ))+ l<0
by (smt (verit) ‹p ∈ R› assms(2 ) distrib-left mem-Collect-eq nonzero-mult-div-cancel-left

of-nat-0-less-iff of-nat-mult power2-eq-square times-divide-eq-right)

We now need to find the possible values of this hypothetical p ∈ R, i.e.
the roots of the above quadratic inequality. (These will be in-between the
roots of the corresponding quadratic equation which were given in lemma [[0
< ?l; ∀ r . ?g r = real r + ?l / real r ; ?g ?r = sqrt (4 ∗ ?l + 1 )]] =⇒ real
?r = 1 / 2 + 1 / 2 ∗ sqrt (4 ∗ ?l + 1 ) ∨ real ?r = − 1 / 2 + 1 / 2 ∗
sqrt (4 ∗ ?l + 1 )). Here we show that the roots of the quadratic inequality
lie in the following interval via a direct calculation:

have p: (p < (sqrt(4∗l+1 ) + 1 ) / 2 ) ∧ (p >(sqrt(4∗l+1 ) − 1 ) / 2 )
proof−

have p^2 − p∗(sqrt(4∗l+1 ))+ l +1/4 < 1/4
using ‹p^2 − p∗(sqrt(4∗l+1 ))+ l<0 › by simp

moreover
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have − (2∗(p∗ sqrt(4∗l +1 ))/2 ) + (4∗ l +1 )/4 = − p∗(sqrt(4∗l+1 ))+ l
+1/4

by force
ultimately have ∗∗∗: p^2 − (2∗(p∗ sqrt(4∗l +1 ))/2 ) + (4∗ l +1 )/4 <1/4

by linarith
have ∗∗∗∗: (p −(sqrt(4∗l +1 ))/2 )^2 = p^2 −2 ∗ p∗ (sqrt(4∗l +1 ))/2+ (

(sqrt(4∗l +1 ))/2 )^2
by (simp add: power2-diff )

then have p^2 −2 ∗ p∗ (sqrt(4∗l+1 ))/2+ ((sqrt(4∗l +1 ))/2 )^2 = p^2 −2
∗ p∗ (sqrt(4∗l +1 ))/2+ (4∗l +1 )/4

by (smt (verit) assms(1 ) power-divide real-sqrt-four real-sqrt-pow2 )
then have (p −(sqrt(4∗l +1 ))/2 )^2 <1/4 using ∗∗∗ ∗∗∗∗ by linarith
then have |(p −(sqrt(4∗l +1 ))/2 ) | <1/2

by (metis real-sqrt-abs real-sqrt-divide real-sqrt-four real-sqrt-less-mono
real-sqrt-one)

then have ((p −(sqrt(4∗l +1 ))/2 ) ) <1/2 ((p −(sqrt(4∗l +1 ))/2 ) ) >
−1/2 by linarith+

then show ?thesis
by force

qed

So p lies in an interval of length strictly less than 1 between two positive
integers, but this means that p cannot be a positive integer, which yields
the desired contradiction, thus completing the proof:

obtain A::nat where A: real A = − 1/2 + (1/2 )∗ sqrt(4∗l +1 )
using ru by blast

then show False
using 4 p by fastforce

qed
qed

Finally, for convenience and completeness, we state the special case where
equality holds formulated with the double implication and moreover includ-
ing the values for which the INF (i.e. minimum here as we have seen) is
attained as previously calculated.
theorem elementary-discrete-ineq-Wooley-special-case-iff :

fixes l::real and g::nat ⇒ real
assumes l>0 and R={r ::nat. r>0} and ∀ r . g r = r+ (l/r)
shows ((INF r ∈ R. g r) = sqrt(4∗l+1 )) ←→ (∃ m::nat. l =m∗(m−1 ))

and
g p =sqrt(4∗l+1 ) −→ (p = 1/2 + (1/2 )∗ sqrt( 4∗l +1 )) ∨ (p = −1/2 +

(1/2 )∗ sqrt(4∗l +1 ))
using assms elementary-discrete-ineq-Wooley-special-case-1

elementary-discrete-ineq-Wooley-special-case-2
apply blast
using assms(1 ) assms(3 ) elementary-discrete-ineq-Wooley-quadratic-eq-sol re-

strict-to-min
by auto
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end

References
[1] T. D. Wooley. An elementary discrete inequality. https://www.math.

purdue.edu/~twooley/publ/20230410discineq.pdf.

13

https://www.math.purdue.edu/~twooley/publ/20230410discineq.pdf
https://www.math.purdue.edu/~twooley/publ/20230410discineq.pdf

	Wooley's Discrete Inequality
	General elementary technical lemmas
	Trivial case, where we minimise over all positive real values of r
	Main result: Inequality for the discrete version
	Special case: Equality for the discrete version


