
With-Type – Poor man’s dependent types

Dominique Unruh
RWTH Aachen, University of Tartu

September 5, 2024

Abstract

The type system of Isabelle/HOL does not support dependent types or arbitrary
quantification over types. We introduce a system to mimic dependent types and
existential quantification over types in limited circumstances at the top level of
theorems.

Contents
1 Introduction 1

2 Misc-With-Type – Some auxiliary definitions and lemmas 3

3 With-Type – Setting up the with-type mechanism 3

4 With-Type-Example – Some contrieved simple examples 9
4.1 Semigroups (class with one parameter) . 9

4.1.1 Example . 11
4.2 Abelian groups (class with several parameters) 13

4.2.1 Example . 14

5 Example-Euclidean-Space – Example: compactness of the sphere 16
5.1 Setting up type class finite for with-type 16
5.2 Vector space over a given basis . 17
5.3 Compactness of the sphere. 19

1 Introduction

The type system of Isabelle/HOL is relatively limited when it comes to the treatment
of types (at least when compared with systems such as Coq or Lean). There is no
support for arbitrary quantification over types, nor can types depend on other values.
Universal quantification over types is implicitly possible at the top level of a theorem

1

because type variables are treated as universally quantified.1 In a very limited way,
we can also mimic existential quantification on the top level: Instead of saying, e.g.,
∃a. card (UNIV :: a set) = 3 (“there exists a type with three elements”), we can
define a type with the desired property (typedef witness = "1,2,3::int") and prove
card (UNIV :: witness set) = 3. This achieves the same thing but it suffers from
several drawbacks:

• We can only use this encoding at the top level of theorems. E.g., we cannot
represent the claim P (∃a. card (UNIV :: a set) = 3) where P is an arbitrary
predicate.

• It only works when we can explicitly construct the type that is claimed to exist
(because we need to describe it in the typedef command).

• The witness we give cannot depend on variables local to the current theorem
or proof because the typedef command can only be given on the top level of a
theory, and can only depend on constants. E.g., it would not be possible to express
something like:

∀n::nat. (n >= 1 –-> (∃a. card (UNIV :: a set) = n)). (1)

In this work, we resolve the third limitation. Concretely, we will be able to define a set
(not a type!) witness n that depends on a natural number n,2 and write:

n >= 1 –-> let ’a::type=witness n in (card (UNIV :: ’a set) = n)

This statement is read as:

If n >= 1, and ’a is defined to be the type described by the set witness n
(imagine a local typedef ’a = "witness n"), then card (UNIV :: a set)
= n holds.

This is nothing else than (1) with an explicitly specified witness.
We call the Isabelle constant implementing this construct with_type, because let
’a::type=witness in P can be read as “with type ’a defined by witness, P holds”.
Since in let ’a::type=spec in ..., the spec can depend on local variables, we essen-
tially have encoded a limited version of dependent types. Limited because our encoding
is not meaningful except at the top level of a theorem (“premises ==> let ’a::type
= ...” is ok, “P (let ’a::type = ...)” for arbitrary P is not).
To be able to actually use this encoding in proofs, we implement three reasoning rules
for introduction, elimination, and modus ponens. These are roughly the following:

1For example, a theorem such as (1::?’a) + 1 = 2 can be interpreted as ∀a. (1::a) + 1 = 2.
2In this example, witness n simply has to be an arbitrary n-element set, e.g., witness n = {..<n}.

2

P (given typedef)
let ’a::type = w in P

Intro

let ’a::type = w in P ’a does not occur in P

P
Elim

let ’a::type = w in P P ==> Q (given typedef)
let ’a::type = w in Q

ModusPonens

Here “(given typedef)” means that the respective premise can be shown in a context
where the local equivalent of a typedef ’a = "w" was declared. (In particular, there
are morphisms rep, abs between ’a and the set w.)
The elimination rule uses the Types_To_Sets extension [1] to get rid of the “unused”
let ’a::type.

The with_type mechanism is not limited to types of type class type (the Isabelle/HOL
type class containing all types). We can also write, e.g., let ’a::ab_group_add =
set with ops in P which would say that ’a is an abelian additive group (type class
ab_group_add) defined via typedef ’a = "set" with group operations ops (which
specifies the addition operation, the neutral element, etc.).

2 Misc-With-Type – Some auxiliary definitions and lemmas
theory Misc-With-Type

imports Main
begin

lemma type-definition-bij-betw-iff : ‹type-definition rep (inv rep) S ←→ bij-betw rep UNIV S›
by (smt (verit, best) UNIV-I bij-betw-def bij-betw-iff-bijections inj-on-def inv-f-eq type-definition.Rep-inject

type-definition.Rep-range type-definition.intro)

inductive rel-unit-itself :: ‹unit ⇒ ′a itself ⇒ bool› where
— A canonical relation between unit and ′a itself. Note that while the latter may not be a
singleton type, in many situations we treat it as one by only using the element TYPE(′a).

‹rel-unit-itself () TYPE(′a)›

lemma Domain-rel-unit-itself [simp]: ‹Domainp rel-unit-itself x›
by (simp add: Domainp-iff rel-unit-itself .simps)

lemma rel-unit-itself-iff [simp]: ‹rel-unit-itself x y ←→ (y = TYPE(′a))›
by (simp add: rel-unit-itself .simps)

end

3 With-Type – Setting up the with-type mechanism
theory With-Type

3

imports HOL−Types-To-Sets.Types-To-Sets Misc-With-Type HOL−Eisbach.Eisbach
keywords with-type-case :: prf-asm % proof

begin

definition with-type-wellformed where
— This states, roughly, that if operations rp satisfy the axioms of the class, then they are in

the domain of the relation between abstract/concrete operations.
‹with-type-wellformed C S R ←→ (∀ r rp. bi-unique r −→ right-total r −→ S = Collect

(Domainp r) −→ C S rp −→ Domainp (R r) rp)›
for C :: ‹ ′rep set ⇒ ′rep-ops ⇒ bool›
and S :: ‹ ′rep set›
and R :: ‹(′rep ⇒ ′abs ⇒ bool) ⇒ (′rep-ops ⇒ ′abs-ops ⇒ bool)›

In the following definition, roughly speaking, with-type C R S rep-ops P means that
predicate P holds whenever type ′abs (called the abstract type, and determined by the
type of P) is an instance of the type class described by C,R, and is a stands in 1-1
correspondence to the subset S of some concrete type ′rep (i.e., as if defined by typedef
′abs = S).
S – the carrier set of the representation of the type (concrete type)
rep-ops – operations on the concrete type (i.e., operations like addition or similar)
C – the properties that S and rep-ops are guaranteed to satisfy (basically, the type-class
definition)
R – transfers a relation r between concrete/abstract type to a relation between con-
crete/abstract operations (r is always bi-unique and right-total)
P – the predicate that we claim holds. It can work on the type ′abs (which is type-
classed) but it also gets rep and abs-ops where rep is an embedding of the abstract into
the concrete type, and abs-ops operations on the abstract type.
The intuitive meaning of with-type C R S rep-ops P is that P holds for any type ′t that
that can be represented by a concrete representation (S , rep-ops) and that has a type
class matching the specification (C , R).
definition ‹with-type = (λC R S rep-ops P. S 6={} ∧ C S rep-ops ∧ with-type-wellformed C S R
∧ (∀ rep abs-ops. bij-betw rep UNIV S −→ (R (λx y. x = rep y) rep-ops abs-ops) −→

P rep abs-ops))›
for S :: ‹ ′rep set› and P :: ‹(′abs ⇒ ′rep) ⇒ ′abs-ops ⇒ bool›
and R :: ‹(′rep ⇒ ′abs ⇒ bool) ⇒ (′rep-ops ⇒ ′abs-ops ⇒ bool)›
and C :: ‹ ′rep set ⇒ ′rep-ops ⇒ bool›
and rep-ops :: ‹ ′rep-ops›

For every type class that we want to use with with-type, we need to define two constants
specifying the axioms of the class (WITH-TYPE-CLASS-classname) and specifying how
a relation between concrete/abstract type is lifted to a relation between concrete/ab-
stract operations (WITH-TYPE-REL-classname). Here we give the trivial definitions
for the default type class type
definition ‹WITH-TYPE-CLASS-type S ops = True› for S :: ‹ ′rep set› and ops :: unit
definition ‹WITH-TYPE-REL-type r = ((=) :: unit ⇒ - ⇒ -)› for r :: ‹ ′rep ⇒ ′abs ⇒ bool›

4

named-theorems with-type-intros
— In this named fact collection, we collect introduction rules that are used to automatically

discharge some simple premises in automated methods (currently only with-type-intro).

lemma [with-type-intros]: ‹WITH-TYPE-CLASS-type S ops›
by (simp add: WITH-TYPE-CLASS-type-def)

We need to show that WITH-TYPE-CLASS-classname and WITH-TYPE-REL-classname
are wellbehaved. We do this here for class type. We will need this lemma also for regis-
tering the type class type later.
lemma with-type-wellformed-type[with-type-intros]:

‹with-type-wellformed WITH-TYPE-CLASS-type S WITH-TYPE-REL-type›
by (simp add: WITH-TYPE-REL-type-def WITH-TYPE-CLASS-type-def with-type-wellformed-def

Domainp-iff)

lemma with-type-simple: ‹with-type WITH-TYPE-CLASS-type WITH-TYPE-REL-type S () P
←→ S 6={} ∧ (∀ rep. bij-betw rep UNIV S −→ P rep ())›

— For class type, with-type can be rewritten in a much more compact and simpler way.
by (auto simp: with-type-def WITH-TYPE-REL-type-def WITH-TYPE-CLASS-type-def with-type-wellformed-def)

lemma with-typeI :
assumes ‹S 6= {}›
assumes ‹C S p›
assumes ‹with-type-wellformed C S R›
assumes main: ‹

∧
(rep :: ′abs ⇒ ′rep) abs-ops. bij-betw rep UNIV S =⇒ R (λx y. x = rep y)

p abs-ops =⇒ P rep abs-ops›
shows ‹with-type C R S p P›
using assms
by (auto intro!: simp: with-type-def)

lemma with-type-mp:
assumes ‹with-type C R S p P›
assumes ‹

∧
rep abs-ops. bij-betw rep UNIV S =⇒ C S p =⇒ P rep abs-ops =⇒ Q rep abs-ops›

shows ‹with-type C R S p Q›
using assms by (auto simp add: with-type-def case-prod-beta type-definition-bij-betw-iff)

lemma with-type-nonempty: ‹with-type C R S p P =⇒ S 6= {}›
by (simp add: with-type-def case-prod-beta)

lemma with-type-prepare-cancel:
— Auxiliary lemma used by the implementation of the cancel-with-type-mechanism (see below)
fixes S :: ‹ ′rep set› and P :: bool

and R :: ‹(′rep ⇒ ′abs ⇒ bool) ⇒ (′rep-ops ⇒ ′abs-ops ⇒ bool)›
and C :: ‹ ′rep set ⇒ ′rep-ops ⇒ bool›
and p :: ‹ ′rep-ops›

assumes wt: ‹with-type C R S p (λ(-:: ′abs⇒ ′rep) -. P)›
assumes ex: ‹(∃ (rep:: ′abs⇒ ′rep) abs. type-definition rep abs S)›
shows P

5

proof −
from ex
obtain rep :: ‹ ′abs ⇒ ′rep› and abs where td: ‹type-definition rep abs S›

by auto
then have bij: ‹bij-betw rep UNIV S›

by (simp add: bij-betw-def inj-on-def type-definition.Rep-inject type-definition.Rep-range)
define r where ‹r = (λx y. x = rep y)›
have [simp]: ‹bi-unique r› ‹right-total r›

using r-def td typedef-bi-unique apply blast
by (simp add: r-def right-totalI)

have aux1 : ‹(
∧

x. rep x ∈ S) =⇒ x ∈ S =⇒ x = rep (abs x)› for x b
using td type-definition.Abs-inverse by fastforce

have Sr : ‹S = Collect (Domainp r)›
using type-definition.Rep[OF td]
by (auto simp: r-def intro!: DomainPI aux1)

from wt have nice: ‹with-type-wellformed C S R› and ‹C S p›
by (simp-all add: with-type-def case-prod-beta)

from nice[unfolded with-type-wellformed-def , rule-format, OF ‹bi-unique r› ‹right-total r› Sr
‹C S p›]

obtain abs-ops where abs-ops: ‹R (λx y. x = rep y) p abs-ops›
apply atomize-elim by (auto simp: r-def)

from bij abs-ops wt
show P

by (auto simp: with-type-def case-prod-beta)
qed

lemma with-type-transfer-class:
— Auxiliary lemma used by ML function cancel-with-type
includes lifting-syntax
fixes Rep :: ‹ ′abs ⇒ ′rep›

and C S
and R :: ‹(′rep⇒ ′abs⇒bool) ⇒ (′rep-ops ⇒ ′abs-ops ⇒ bool)›
and R2 :: ‹(′rep⇒ ′abs2⇒bool) ⇒ (′rep-ops ⇒ ′abs-ops2 ⇒ bool)›

assumes trans: ‹
∧

r :: ′rep ⇒ ′abs2 ⇒ bool. bi-unique r =⇒ right-total r =⇒ (R2 r ===>
(←→)) (C (Collect (Domainp r))) axioms›

assumes nice: ‹with-type-wellformed C S R2 ›
assumes wt: ‹with-type C R S p P›
assumes ex: ‹∃ (Rep :: ′abs2⇒ ′rep) Abs. type-definition Rep Abs S›
shows ‹∃ x:: ′abs-ops2 . axioms x›

proof −
from ex obtain Rep :: ‹ ′abs2⇒ ′rep› and Abs where td: ‹type-definition Rep Abs S›

by auto
define r where ‹r x y = (x = Rep y)› for x y
have bi-unique-r : ‹bi-unique r›

using bi-unique-def td type-definition.Rep-inject r-def by fastforce
have right-total-r : ‹right-total r›

by (simp add: right-totalI r-def)
have right-total-R[transfer-rule]: ‹right-total (r ===> r ===> r)›

by (meson bi-unique-r right-total-r bi-unique-alt-def right-total-fun)

6

note trans = trans[OF bi-unique-r , OF right-total-r , transfer-rule]

from td
have rS : ‹Collect (Domainp r) = S›

by (auto simp: r-def Domainp-iff type-definition.Rep elim!: type-definition.Rep-cases[where
P=‹Ex -›])

from wt have sg: ‹C S p›
by (simp-all add: with-type-def case-prod-beta)

with nice have ‹Domainp (R2 r) p›
by (simp add: bi-unique-r with-type-wellformed-def rS right-total-r)

with sg
have ‹∃ x :: ′abs-ops2 . axioms x›

apply (transfer ′ fixing: R2 S p)
using apply-rsp ′ local.trans rS by fastforce

then obtain abs-plus :: ′abs-ops2
where abs-plus: ‹axioms abs-plus›
apply atomize-elim by auto

then show ?thesis
by auto

qed

lemma with-type-transfer-class2 :
— Auxiliary lemma used by ML function cancel-with-type
includes lifting-syntax
fixes Rep :: ‹ ′abs ⇒ ′rep›

and C S
and R :: ‹(′rep⇒ ′abs⇒bool) ⇒ (′rep-ops ⇒ ′abs itself ⇒ bool)›
and R2 :: ‹(′rep⇒ ′abs2⇒bool) ⇒ (′rep-ops ⇒ ′abs2 itself ⇒ bool)›

assumes trans: ‹
∧

r :: ′rep ⇒ ′abs2 ⇒ bool. bi-unique r =⇒ right-total r =⇒ (R2 r ===>
(←→)) (C (Collect (Domainp r))) axioms›

assumes nice: ‹with-type-wellformed C S R2 ›
assumes rel-itself : ‹

∧
(r :: ′rep ⇒ ′abs2 ⇒ bool) p. bi-unique r =⇒ right-total r =⇒ (R2 r)

p TYPE(′abs2)›
assumes wt: ‹with-type C R S p P›
assumes ex: ‹∃ (Rep :: ′abs2⇒ ′rep) Abs. type-definition Rep Abs S›
shows ‹axioms TYPE(′abs2)›

proof −
from ex obtain Rep :: ‹ ′abs2⇒ ′rep› and Abs where td: ‹type-definition Rep Abs S›

by auto
define r where ‹r x y = (x = Rep y)› for x y
have bi-unique-r : ‹bi-unique r›

using bi-unique-def td type-definition.Rep-inject r-def by fastforce
have right-total-r : ‹right-total r›

by (simp add: right-totalI r-def)

7

have right-total-R[transfer-rule]: ‹right-total (r ===> r ===> r)›
by (meson bi-unique-r right-total-r bi-unique-alt-def right-total-fun)

from td
have rS : ‹Collect (Domainp r) = S›

by (auto simp: r-def Domainp-iff type-definition.Rep elim!: type-definition.Rep-cases[where
P=‹Ex -›])

note trans = trans[OF bi-unique-r , OF right-total-r , unfolded rS , transfer-rule]

note rel-itself = rel-itself [OF bi-unique-r , OF right-total-r , of p, transfer-rule]

from wt have sg: ‹C S p›
by (simp-all add: with-type-def case-prod-beta)

then show ‹axioms TYPE(′abs2)›
by transfer

qed

Syntactic constants for rendering with-type nicely.
syntax -with-type :: type ⇒ ′a => ′b ⇒ ′c (let - = - in - [0 ,0 ,10] 10)
syntax -with-type-with :: type ⇒ ′a => args ⇒ ′b ⇒ ′c (let - = - with - in - [0 ,0 ,10] 10)
syntax (output) -with-type-sort-annotation :: type ⇒ sort ⇒ type (-::-)

— An auxiliary syntactic constant used to enforce the printing of sort constraints in certain
terms.

ML-file with-type.ML

Register the type class type with the with-type-mechanism. This enables readable syntax,
and contains information needed by various tools such as the cancel-with-type attribute.
setup ‹
With-Type.add-with-type-info-global {

class = class ‹type›,
rep-class = const-name ‹WITH-TYPE-CLASS-type›,
rep-rel = const-name ‹WITH-TYPE-REL-type›,
with-type-wellformed = @{thm with-type-wellformed-type},
param-names = [],
transfer = NONE ,
rep-rel-itself = NONE
}›

Enabling input/output syntax for with-type. This allows to write, e.g., let ′t::type = S
in P, and the various relevant parameters such as WITH-TYPE-CLASS-type etc. are
automatically looked up based on the indicated type class. This only works with type
classes that have been registered beforehand.
Using the syntax when printing can be disabled by declare [[with-type-syntax=false]].
parse-translation ‹[
(syntax-const ‹-with-type›, With-Type.with-type-parse-translation),
(syntax-const ‹-with-type-with›, With-Type.with-type-parse-translation)

8

]›
typed-print-translation ‹[(const-syntax ‹with-type›, With-Type.with-type-print-translation)
]›

Example of input syntax:
term ‹let ′t::type = N in rep-t = rep-t›

Removes a toplevel let ′t=. . . from a proposition let ′t=. . . in P. This only works if P
does not refer to the type ′t.
attribute-setup cancel-with-type =

‹Thm.rule-attribute [] (With-Type.cancel-with-type o Context.proof-of) |> Scan.succeed›
‹Transforms (let ′t=. . . in P) into P›

Convenience method for proving a theorem of the form let ′t=. . . .
method with-type-intro = rule with-typeI ; (intro with-type-intros)?

Method for doing a modus ponens inside let ′t=. . . . Use as: using PREMISE proof
with-type-mp. And inside the proof, use the command with-type-case before proving the
main goal. Try print-theorems after with-type-case to see what it sets up.
method-setup with-type-mp = ‹Scan.succeed () >>
(fn (-) => fn ctxt => CONTEXT-METHOD (fn facts =>

Method.RUNTIME (With-Type.with-type-mp-tac here facts)))›

ML ‹
val - =
Outer-Syntax.command command-keyword ‹with-type-case› Sets up local proof after the method ‹with-type-mp›

method (for the main goal).
(Scan.repeat (Parse.maybe Parse.binding) >> (fn args => Toplevel.proof (With-Type.with-type-case-cmd

args)))
›

end

4 With-Type-Example – Some contrieved simple examples
theory With-Type-Example
imports With-Type HOL−Computational-Algebra.Factorial-Ring Mersenne-Primes.Lucas-Lehmer-Code

begin

unbundle lifting-syntax
no-notation m-inv (invı - [81] 80)

4.1 Semigroups (class with one parameter)
definition ‹WITH-TYPE-CLASS-semigroup-add S plus ←→ (∀ a∈S . ∀ b∈S . plus a b ∈ S) ∧
(∀ a∈S . ∀ b∈S . ∀ c∈S . plus (plus a b) c = plus a (plus b c))›

9

for S :: ‹ ′rep set› and plus :: ‹ ′rep ⇒ ′rep ⇒ ′rep›
definition ‹WITH-TYPE-REL-semigroup-add r = (r ===> r ===> r)›

for r :: ‹ ′rep ⇒ ′abs ⇒ bool› and rep-ops :: ‹ ′rep ⇒ ′rep ⇒ ′rep› and abs-ops :: ‹ ′abs ⇒ ′abs
⇒ ′abs›

lemma with-type-wellformed-semigroup-add[with-type-intros]:
‹with-type-wellformed WITH-TYPE-CLASS-semigroup-add S WITH-TYPE-REL-semigroup-add›
by (simp add: with-type-wellformed-def WITH-TYPE-CLASS-semigroup-add-def WITH-TYPE-REL-semigroup-add-def

fun.Domainp-rel Domainp-pred-fun-eq bi-unique-alt-def)

lemma with-type-transfer-semigroup-add:
assumes [transfer-rule]: ‹bi-unique r› ‹right-total r›
shows ‹(WITH-TYPE-REL-semigroup-add r ===> (←→))

(WITH-TYPE-CLASS-semigroup-add (Collect (Domainp r))) class.semigroup-add›
proof −

define f where ‹f y = (SOME x. r x y)› for y
have rf : ‹r x y ←→ x = f y› for x y

unfolding f-def
apply (rule someI2-ex)
using assms
by (auto intro!: simp: right-total-def bi-unique-def)

have inj: ‹inj f ›
using ‹bi-unique r›
by (auto intro!: injI simp: bi-unique-def rf)

have aux1 : ‹∀ ya yb. x (f ya) (f yb) = f (y ya yb) =⇒
∀ a. (∃ y. a = f y) −→ (∀ b. (∃ y. b = f y) −→ (∀ c. (∃ y. c = f y) −→ x (x a b) c = x a (x

b c))) =⇒
y (y a b) c = y a (y b c)› for x y a b c

by (metis inj injD)
show ?thesis

unfolding WITH-TYPE-REL-semigroup-add-def rel-fun-def
unfolding WITH-TYPE-CLASS-semigroup-add-def Domainp-iff rf
by (auto intro!: simp: class.semigroup-add-def aux1)

qed

setup ‹
With-Type.add-with-type-info-global {

class = class ‹semigroup-add›,
param-names = [plus],
rep-class = const-name ‹WITH-TYPE-CLASS-semigroup-add›,
rep-rel = const-name ‹WITH-TYPE-REL-semigroup-add›,
with-type-wellformed = @{thm with-type-wellformed-semigroup-add},
transfer = SOME @{thm with-type-transfer-semigroup-add},
rep-rel-itself = NONE
}
›

10

4.1.1 Example
definition carrier :: ‹int set› where ‹carrier = {0 ,1 ,2}›
definition carrier-plus :: ‹int ⇒ int ⇒ int› where ‹carrier-plus i j = (i + j) mod 3 ›

lemma carrier-nonempty[iff]: ‹carrier 6= {}›
by (simp add: carrier-def)

lemma carrier-semigroup[with-type-intros]: ‹WITH-TYPE-CLASS-semigroup-add carrier car-
rier-plus›

by (auto simp: WITH-TYPE-CLASS-semigroup-add-def
carrier-def carrier-plus-def)

This proof uses both properties of the specific carrier (existence of two different elements)
and of semigroups in general (associativity)
lemma example-semigroup:

shows ‹let ′t::semigroup-add = carrier with carrier-plus in ∀ x y.
(plus-t x y = plus-t y x ∧ plus-t x (plus-t x x) = plus-t (plus-t x x) x)›

proof (with-type-intro)
show ‹carrier 6= {}› by simp
fix Rep :: ‹ ′t ⇒ int› and T and plus-t
assume ‹bij-betw Rep UNIV carrier›
then interpret type-definition Rep ‹inv Rep› carrier

using type-definition-bij-betw-iff by blast
define r where ‹r = (λx y. x = Rep y)›
have [transfer-rule]: ‹bi-unique r›

by (simp add: Rep-inject bi-unique-def r-def)
have [transfer-rule]: ‹right-total r›

by (simp add: r-def right-total-def)
assume ‹WITH-TYPE-REL-semigroup-add (λx y. x = Rep y) carrier-plus plus-t›
then have transfer-carrier [transfer-rule]: ‹(r ===> r ===> r) carrier-plus plus-t›

by (simp add: r-def WITH-TYPE-REL-semigroup-add-def)
have [transfer-rule]: ‹((r ===> r ===> r) ===> (←→)) (WITH-TYPE-CLASS-semigroup-add

(Collect (Domainp r))) class.semigroup-add›
proof (intro rel-funI)

fix x y
assume xy[transfer-rule]: ‹(r ===> r ===> r) x y›
have aux1 : ‹∀ a. Domainp r a −→ (∀ b. Domainp r b −→ (∀ c. Domainp r c −→ x (x a b) c

= x a (x b c))) =⇒
r a b =⇒ r ba bb =⇒ r c bc =⇒ x (x a ba) c = x a (x ba c)› for a b ba bb c bc

by blast
have aux2 : ‹r a b =⇒ r ba bb =⇒ Domainp r (x a ba)› for a b ba bb

by (metis DomainPI rel-funD xy)
show ‹WITH-TYPE-CLASS-semigroup-add (Collect (Domainp r)) x ←→ class.semigroup-add

y›
unfolding class.semigroup-add-def
apply transfer
by (auto intro!: aux1 aux2 simp: WITH-TYPE-CLASS-semigroup-add-def)

qed

11

have dom-r : ‹Collect (Domainp r) = carrier›
by (auto elim!: Rep-cases simp: Rep r-def Domainp-iff)

interpret semigroup-add plus-t
apply transfer
using carrier-semigroup dom-r by auto

have 1 : ‹plus-t x y = plus-t y x› for x y
apply transfer
apply (simp add: carrier-plus-def)
by presburger

have 2 : ‹plus-t x (plus-t x x) = plus-t (plus-t x x) x› for x
by (simp add: add-assoc)

from 1 2
show ‹∀ x y. plus-t x y = plus-t y x ∧ plus-t x (plus-t x x) = plus-t (plus-t x x) x›

by simp
qed

Some hypothetical lemma where we use the existence of a commutative semigroup to
derive that 2147483647 is prime. (The lemma is true since 2147483647 is prime, but
otherwise this is completely fictional.)
lemma artificial-lemma: ‹(∃ p (x::-::semigroup-add) y. p x y = p y x) =⇒ prime (2147483647
:: nat)›
proof − — This proof can be ignored. We just didn’t want to have a "sorry" in the theory file

have prime (2 ^ 31 − 1 :: nat)
by (subst lucas-lehmer-correct ′) eval

also have ‹. . . = 2147483647 ›
by eval

finally show ‹prime (2147483647 :: nat)›
by −

qed

lemma prime-2147483647 : ‹prime (2147483647 :: nat)›
proof −

from example-semigroup
have ‹let ′t::semigroup-add = carrier with carrier-plus in

prime (2147483647 :: nat)›
proof with-type-mp

with-type-case
show ‹prime (2147483647 :: nat)›

apply (rule artificial-lemma)
using with-type-mp.premise by auto

qed
from this[cancel-with-type]
show ?thesis

by −
qed

12

4.2 Abelian groups (class with several parameters)

Here we do exactly the same as for semigroups, except that now we use an abelian
group. This shows the additional subtleties that arise when a class has more than one
parameter.
notation rel-prod (infixr ‹∗∗∗› 80)

definition ‹WITH-TYPE-CLASS-ab-group-add S = (λ(plus,zero,minus,uminus). zero ∈ S
∧ (∀ a∈S . ∀ b∈S . plus a b ∈ S) ∧ (∀ a∈S . ∀ b∈S . minus a b ∈ S) ∧ (∀ a∈S . uminus a ∈ S)
∧ (∀ a∈S . ∀ b∈S . ∀ c∈S . plus (plus a b) c= plus a (plus b c)) ∧ (∀ a∈S . ∀ b∈S . plus a b = plus

b a)
∧ (∀ a∈S . plus zero a = a) ∧ (∀ a∈S . plus (uminus a) a = zero) ∧ (∀ a∈S . ∀ b∈S . minus a b =

plus a (uminus b)))›
for S :: ‹ ′rep set›

definition ‹WITH-TYPE-REL-ab-group-add r = (r ===> r ===> r) ∗∗∗ r ∗∗∗ (r ===>
r ===> r) ∗∗∗ (r ===> r)›

for r :: ‹ ′rep ⇒ ′abs ⇒ bool› and rep-ops :: ‹ ′rep ⇒ ′rep ⇒ ′rep› and abs-ops :: ‹ ′abs ⇒ ′abs
⇒ ′abs›

lemma with-type-wellformed-ab-group-add[with-type-intros]:
‹with-type-wellformed WITH-TYPE-CLASS-ab-group-add S WITH-TYPE-REL-ab-group-add›
by (simp add: with-type-wellformed-def WITH-TYPE-CLASS-ab-group-add-def WITH-TYPE-REL-ab-group-add-def

fun.Domainp-rel Domainp-pred-fun-eq bi-unique-alt-def prod.Domainp-rel DomainPI)

lemma with-type-transfer-ab-group-add:
assumes [transfer-rule]: ‹bi-unique r› ‹right-total r›
shows ‹(WITH-TYPE-REL-ab-group-add r ===> (←→))

(WITH-TYPE-CLASS-ab-group-add (Collect (Domainp r))) (λ(p,z,m,u). class.ab-group-add
p z m u)›
proof −

define f where ‹f y = (SOME x. r x y)› for y
have rf : ‹r x y ←→ x = f y› for x y

unfolding f-def
apply (rule someI2-ex)
using assms
by (auto intro!: simp: right-total-def bi-unique-def)

have inj: ‹inj f ›
using ‹bi-unique r›
by (auto intro!: injI simp: bi-unique-def rf)

show ?thesis
unfolding WITH-TYPE-REL-ab-group-add-def rel-fun-def
unfolding WITH-TYPE-CLASS-ab-group-add-def
unfolding Domainp-iff rf
using inj
apply (simp add: class.ab-group-add-def class.comm-monoid-add-def

class.ab-semigroup-add-def class.semigroup-add-def class.ab-semigroup-add-axioms-def
class.comm-monoid-add-axioms-def class.ab-group-add-axioms-def inj-def)

apply safe

13

by metis+
qed

setup ‹
With-Type.add-with-type-info-global {

class = class ‹ab-group-add›,
param-names = [plus, zero, minus, uminus],
rep-class = const-name ‹WITH-TYPE-CLASS-ab-group-add›,
rep-rel = const-name ‹WITH-TYPE-REL-ab-group-add›,
with-type-wellformed = @{thm with-type-wellformed-ab-group-add},
transfer = SOME @{thm with-type-transfer-ab-group-add},
rep-rel-itself = NONE
}
›

4.2.1 Example
definition carrier-group where ‹carrier-group = (carrier-plus, 0 ::int, (λ i j. (i − j) mod 3),
(λi. (− i) mod 3))›

lemma carrier-ab-group-add[with-type-intros]: ‹WITH-TYPE-CLASS-ab-group-add carrier car-
rier-group›

by (auto simp: WITH-TYPE-CLASS-ab-group-add-def carrier-plus-def
carrier-def carrier-group-def)

declare [[show-sorts=false]]
lemma example-ab-group:

shows ‹let ′t::ab-group-add = carrier with carrier-group in ∀ x y.
(plus-t x y = plus-t y x ∧ plus-t x (plus-t x x) = plus-t (plus-t x x) x)›

proof with-type-intro
show ‹carrier 6= {}› by simp
fix Rep :: ‹ ′t ⇒ int› and t-ops
assume wt: ‹WITH-TYPE-REL-ab-group-add (λx y. x = Rep y) carrier-group t-ops›
define plus zero minus uminus where ‹plus = fst t-ops›

and ‹zero = fst (snd t-ops)›
and ‹minus = fst (snd (snd t-ops))›
and ‹uminus = snd (snd (snd t-ops))›

assume ‹bij-betw Rep UNIV carrier›
then interpret type-definition Rep ‹inv Rep› carrier

by (simp add: type-definition-bij-betw-iff)

define r where ‹r = (λx y. x = Rep y)›
have [transfer-rule]: ‹bi-unique r›

by (simp add: Rep-inject bi-unique-def r-def)
have [transfer-rule]: ‹right-total r›

by (simp add: r-def right-total-def)
from wt have transfer-carrier [transfer-rule]: ‹((r ===> r ===> r) ∗∗∗ r ∗∗∗ (r ===> r

14

===> r) ∗∗∗ (r ===> r)) carrier-group t-ops›
by (simp add: r-def WITH-TYPE-REL-ab-group-add-def)

have transfer-plus[transfer-rule]: ‹(r ===> r ===> r) carrier-plus plus›
apply (subst asm-rl[of ‹carrier-plus = fst (carrier-group)›])
apply (simp add: carrier-group-def)

unfolding plus-def
by transfer-prover

have dom-r : ‹Collect (Domainp r) = carrier›
by (auto elim!: Rep-cases simp: Rep r-def Domainp-iff)

from with-type-transfer-ab-group-add[OF ‹bi-unique r› ‹right-total r›]
have [transfer-rule]: ‹((r ===> r ===> r) ===> r ===> (r ===> r ===> r) ===>

(r ===> r) ===> (←→))
(λp z m u. WITH-TYPE-CLASS-ab-group-add carrier (p,z,m,u))

class.ab-group-add›
unfolding dom-r WITH-TYPE-REL-ab-group-add-def
by (auto intro!: simp: rel-fun-def)

interpret ab-group-add plus zero minus uminus
unfolding zero-def plus-def minus-def uminus-def
apply transfer
using carrier-ab-group-add dom-r
by (auto intro!: simp: Let-def case-prod-beta)

have 1 : ‹plus x y = plus y x› for x y
— We could prove this simply with by (simp add: add-commute), but we use the approach of

going to the concrete type for demonstration.
apply transfer
apply (simp add: carrier-plus-def)
by presburger

have 2 : ‹plus x (plus x x) = plus (plus x x) x› for x
by (simp add: add-assoc)

from 1 2
show ‹∀ x y. plus x y = plus y x ∧ plus x (plus x x) = plus (plus x x) x›

by (simp add: plus-def case-prod-beta)
qed

lemma artificial-lemma ′: ‹(∃ p (x::-::group-add) y. p x y = p y x) =⇒ prime (2305843009213693951
:: nat)›
proof − — This proof can be ignored. We just didn’t want to have a "sorry" in the theory file

have prime (2 ^ 61 − 1 :: nat)
by (subst lucas-lehmer-correct ′) eval

also have ‹. . . = 2305843009213693951 ›
by eval

finally show ‹prime (2305843009213693951 :: nat)›
by −

qed

15

lemma prime-2305843009213693951 : ‹prime (2305843009213693951 :: nat)›
proof −

from example-ab-group
have ‹let ′t::ab-group-add = carrier with carrier-group in prime (2305843009213693951 ::

nat)›
proof with-type-mp

with-type-case
show ‹prime (2305843009213693951 :: nat)›

apply (rule artificial-lemma ′)
using with-type-mp.premise by auto

qed
from this[cancel-with-type]
show ?thesis

by −
qed

end

5 Example-Euclidean-Space – Example: compactness of the
sphere

theory Example-Euclidean-Space
imports With-Type HOL−Analysis.Euclidean-Space HOL−Analysis.Topology-Euclidean-Space

begin

5.1 Setting up type class finite for with-type
definition ‹WITH-TYPE-CLASS-finite S u ←→ finite S›

for S :: ‹ ′rep set› and u :: unit
definition ‹WITH-TYPE-REL-finite r = (rel-unit-itself :: - ⇒ ′abs itself ⇒ -)›

for r :: ‹ ′rep ⇒ ′abs ⇒ bool›

lemma [with-type-intros]: ‹finite S =⇒ WITH-TYPE-CLASS-finite S x›
using WITH-TYPE-CLASS-finite-def by blast

lemma with-type-wellformed-finite[with-type-intros]:
‹with-type-wellformed WITH-TYPE-CLASS-finite S WITH-TYPE-REL-finite›
by (simp add: with-type-wellformed-def WITH-TYPE-REL-finite-def)

lemma with-type-transfer-finite:
includes lifting-syntax
fixes r :: ‹ ′rep ⇒ ′abs ⇒ bool›
assumes [transfer-rule]: ‹bi-unique r› ‹right-total r›
shows ‹(WITH-TYPE-REL-finite r ===> (←→))

(WITH-TYPE-CLASS-finite (Collect (Domainp r))) class.finite›
unfolding WITH-TYPE-REL-finite-def

16

proof (rule rel-funI)
fix x :: unit and y :: ‹ ′abs itself ›
assume ‹rel-unit-itself x y›
then have [simp]: ‹y = TYPE(′abs)›

by simp
note right-total-UNIV-transfer [transfer-rule]
show ‹WITH-TYPE-CLASS-finite (Collect (Domainp r)) x ←→ class.finite y›

apply (simp add: WITH-TYPE-CLASS-finite-def class.finite-def)
apply transfer
by simp

qed

setup ‹
With-Type.add-with-type-info-global {

class = class ‹finite›,
param-names = [],
rep-class = const-name ‹WITH-TYPE-CLASS-finite›,
rep-rel = const-name ‹WITH-TYPE-REL-finite›,
with-type-wellformed = @{thm with-type-wellformed-finite},
transfer = SOME @{thm with-type-transfer-finite},
rep-rel-itself = SOME @{lemma ‹bi-unique r =⇒ right-total r =⇒ (WITH-TYPE-REL-finite

r) p TYPE(′abs2)›
by (simp add: WITH-TYPE-REL-finite-def rel-unit-itself .simps Transfer .Rel-def)}

}
›

5.2 Vector space over a given basis
′a vs-over is defined to be the vector space with an orthonormal basis enumerated by
elements of ′a, in other words R′a. We require ′a to be finite.
typedef ′a vs-over = ‹UNIV :: (′a::finite⇒real) set›

by (rule exI [of - ‹λ-. 0 ›], auto)
setup-lifting type-definition-vs-over

instantiation vs-over :: (finite) real-vector begin
lift-definition plus-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over ⇒ ′a vs-over› is ‹λx y a. x a + y a›.
lift-definition minus-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over ⇒ ′a vs-over› is ‹λx y a. x a − y a›.
lift-definition uminus-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over› is ‹λx a. − x a›.
lift-definition zero-vs-over :: ‹ ′a vs-over› is ‹λ-. 0 ›.
lift-definition scaleR-vs-over :: ‹real ⇒ ′a vs-over ⇒ ′a vs-over› is ‹λr x a. r ∗ x a›.
instance

apply (intro-classes; transfer)
by (auto intro!: ext simp: distrib-right distrib-left)

end

instantiation vs-over :: (finite) real-normed-vector begin
lift-definition norm-vs-over :: ‹ ′a vs-over ⇒ real› is ‹λx. L2-set x UNIV ›.

17

definition dist-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over ⇒ real› where ‹dist-vs-over x y = norm (x
− y)›
definition uniformity-vs-over :: ‹(′a vs-over × ′a vs-over) filter› where ‹uniformity-vs-over =
(INF e∈{0<..}. principal {(x, y). dist x y < e})›
definition sgn-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over› where ‹sgn-vs-over x = x /R norm x›
definition open-vs-over :: ‹ ′a vs-over set ⇒ bool› where ‹open-vs-over U = (∀ x∈U . ∀ F (x ′,
y) in uniformity. x ′ = x −→ y ∈ U)›
instance
proof intro-classes

fix x y :: ‹ ′a vs-over›
show ‹dist x y = norm (x − y)›
using dist-vs-over-def by presburger
show ‹sgn x = x /R norm x›
using sgn-vs-over-def by blast
show ‹(uniformity :: (′a vs-over × ′a vs-over) filter) = (INF e∈{0<..}. principal {(x, y). dist

x y < e})›
using uniformity-vs-over-def by blast
show ‹(norm x = 0) = (x = 0)›

apply transfer
by (auto simp: L2-set-eq-0-iff)

show ‹norm (x + y) ≤ norm x + norm y›
apply transfer
by (rule L2-set-triangle-ineq)

show ‹norm (a ∗R x) = |a| ∗ norm x› for a
apply transfer
by (simp add: L2-set-def power-mult-distrib real-sqrt-mult flip: sum-distrib-left)

show ‹open U = (∀ x∈U . ∀ F (x ′, y) in uniformity. x ′ = x −→ y ∈ U)› for U :: ‹ ′a vs-over
set›

by (simp add: open-vs-over-def)
qed
end

instantiation vs-over :: (finite) real-inner begin
lift-definition inner-vs-over :: ‹ ′a vs-over ⇒ ′a vs-over ⇒ real› is ‹λx y.

∑
a∈UNIV . x a ∗ y

a›.
instance

apply (intro-classes; transfer)
by (auto intro!: sum-nonneg sum.cong simp: mult.commute sum-nonneg-eq-0-iff L2-set-def

power2-eq-square sum-distrib-left mult-ac distrib-left simp flip: sum.distrib)
end

instantiation vs-over :: (finite) euclidean-space begin

Returns the basis vector corresponding to ′a.
lift-definition basis-vec :: ‹ ′a ⇒ ′a vs-over› is ‹λa:: ′a. indicator {a}›.
definition Basis-vs-over :: ‹ ′a vs-over set› where ‹Basis = range basis-vec›
instance

apply (intro-classes; unfold Basis-vs-over-def ; transfer)
by (auto intro!: simp: indicator-def)

18

end

5.3 Compactness of the sphere.

compact (sphere ?a ?r) shows that a sphere in an Euclidean vector space (type class
euclidean-space) is compact. We wish to transfer this result to any space with a finite
orthonormal basis. Mathematically, this is the same statement, but the conversion be-
tween a statement based on type classes and one based on predicates about bases is
non-trivial in Isabelle.
lemma compact-sphere-onb:

fixes B :: ‹ ′a::real-inner set›
assumes ‹finite B› and ‹span B = UNIV › and onb: ‹∀ b∈B. ∀ c∈B. inner b c = of-bool

(b=c)›
shows ‹compact (sphere (0 :: ′a) r)›

proof (cases ‹B = {}›)
case True
with assms have all-0 : ‹(x :: ′a) = 0 › for x

by auto
then have ‹sphere (0 :: ′a) r = {0} ∨ sphere (0 :: ′a) r = {}›

by (auto simp add: sphere-def)
then show ?thesis

by fastforce
next

case False
have ‹let ′t::finite = B in compact (sphere (0 :: ′t vs-over) r)›
proof with-type-intro

from False show ‹B 6= {}› by −
from assms show ‹finite B› by −
fix rep :: ‹ ′t ⇒ -›
assume ‹bij-betw rep UNIV B›
from compact-sphere[where ′a=‹ ′t vs-over›]
show ‹compact (sphere (0 :: ′t vs-over) r)›

by simp
qed
then have ‹let ′t::finite = B in compact (sphere (0 :: ′a) r)›
proof with-type-mp

with-type-case

define f :: ‹ ′t vs-over ⇒ ′a› where ‹f x = (
∑

t∈UNIV . Rep-vs-over x t ∗R rep-t t)› for x
have ‹linear f ›

by (auto intro!: linearI sum.distrib simp: f-def plus-vs-over .rep-eq scaleR-vs-over .rep-eq
scaleR-add-left scaleR-right.sum simp flip: scaleR-scaleR)

then have ‹continuous-on X f › for X
using linear-continuous-on linear-linear by blast

moreover from with-type-mp.premise have ‹compact (sphere (0 :: ′t vs-over) r)›
by −

ultimately have compact-fsphere: ‹compact (f ‘ sphere 0 r)›
using compact-continuous-image by blast

19

have ‹surj f ›
proof (unfold surj-def , rule allI)

fix y :: ′a
from assms have ‹y ∈ span B›

by auto
then show ‹∃ x. y = f x›
proof (induction rule: span-induct-alt)

case base
then show ?case

by (auto intro!: exI [of - 0] simp: f-def zero-vs-over .rep-eq)
next

case (step c b y)
from step.IH
obtain x where yfx: ‹y = f x›

by auto
have ‹b = f (basis-vec (inv rep-t b))›

by (simp add: f-def basis-vec.rep-eq step.hyps type-definition-t.Abs-inverse)
then have ‹c ∗R b + y = f (c ∗R basis-vec (inv rep-t b) + x)›

using ‹linear f ›
by (simp add: linear-add linear-scale yfx)

then show ?case
by auto

qed
qed
have ‹norm (f x) = norm x› for x
proof −

have aux1 : ‹(a, b) /∈ range (λt. (t, t)) =⇒ rep-t a · rep-t b 6= 0 =⇒ Rep-vs-over x b = 0 ›
for a b

by (metis (mono-tags, lifting) of-bool-eq(1) onb range-eqI type-definition-t.Rep type-definition-t.Rep-inverse)
have rep-inner : ‹inner (rep-t t) (rep-t u) = of-bool (t=u)› for t u

by (simp add: onb type-definition-t.Rep type-definition-t.Rep-inject)
have ‹(norm (f x))2 = inner (f x) (f x)›

by (simp add: dot-square-norm)
also have ‹. . . = (

∑
(t,t ′)∈UNIV . (Rep-vs-over x t ∗ Rep-vs-over x t ′) ∗ inner (rep-t t)

(rep-t t ′))›
by (auto intro!: simp: f-def inner-sum-right inner-sum-left sum-distrib-left sum.cartesian-product

case-prod-beta inner-commute mult-ac)
also have ‹. . . = (

∑
(t,t ′)∈(λt. (t,t))‘UNIV . (Rep-vs-over x t ∗ Rep-vs-over x t ′) ∗ inner

(rep-t t) (rep-t t ′))›
by (auto intro!: sum.mono-neutral-cong-right simp: aux1)

also have ‹. . . = (
∑

t∈UNIV . (Rep-vs-over x t)2)›
apply (subst sum.reindex)
by (auto intro!: injI simp: rep-inner power2-eq-square)

also have ‹. . . = (norm x)2›
by (simp add: norm-vs-over-def L2-set-def sum-nonneg)

finally show ?thesis
by simp

qed
then have ‹f ‘ sphere 0 r = sphere 0 r›

20

using ‹surj f ›
by (fastforce simp: sphere-def)

with compact-fsphere
show ‹compact (sphere (0 :: ′a) r)›

by simp
qed
from this[cancel-with-type]
show ‹compact (sphere (0 :: ′a) r)›

by −
qed

end

References

[1] O. Kunar and A. Popescu. From types to sets by local type definition in higher-order
logic. Journal of Automated Reasoning, 62(2):237260, June 2018.

21

	Introduction
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Misc-With-Type – Some auxiliary definitions and lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 With-Type – Setting up the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 with-type mechanism
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 With-Type-Example – Some contrieved simple examples
	Semigroups (class with one parameter)
	Example

	Abelian groups (class with several parameters)
	Example

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Example-Euclidean-Space – Example: compactness of the sphere
	Setting up type class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 finite for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 with-type
	Vector space over a given basis
	Compactness of the sphere.

