
Undirected Graph Theory

Chelsea Edmonds

May 26, 2024

Abstract

This entry presents a general library for undirected graph theory -
enabling reasoning on simple graphs and undirected graphs with loops.
It primarily builds off Noschinski’s basic ugraph definition [4], however
generalises it in a number of ways and significantly expands on the
range of basic graph theory definitions formalised. Notably, this li-
brary removes the constraint of vertices being a type synonym with
the natural numbers which causes issues in more complex mathemati-
cal reasoning using graphs, such as the Balog Szemeredi Gowers theo-
rem which this library is used for. Secondly this library also presents
a locale-centric approach, enabling more concise, flexible, and reusable
modelling of different types of graphs. Using this approach enables
easy links to be made with more expansive formalisations of other
combinatorial structures, such as incidence systems, as well as various
types of formal representations of graphs. Further inspiration is also
taken from Noschinski’s [5] Directed Graph library for some proofs and
definitions on walks, paths and cycles, however these are much simpli-
fied using the set based representation of graphs, and also extended on
in this formalisation.

Contents
1 Undirected Graph Theory Basics 3

1.1 Miscellaneous Extras . 3
1.2 Initial Set up . 4
1.3 Graph System Locale . 8
1.4 Undirected Graph with Loops 9
1.5 Edge Density . 17
1.6 Simple Graphs . 19
1.7 Subgraph Basics . 21

2 Walks, Paths and Cycles 24
2.1 Walks . 25
2.2 Paths . 32
2.3 Cycles . 33

1

3 Connectivity 37
3.1 Connecting Walks and Paths 37
3.2 Vertex Connectivity . 41
3.3 Graph Properties on Connectivity 42
3.4 We define a connected graph as a non-empty graph (the empty

set is not usually considered connected by convention), where
the vertex set is connected . 47

4 Girth and Independence 52

5 Triangles in Graph 55
5.1 Preliminaries on Triangles in Graphs 56

6 Bipartite Graphs 60
6.1 Bipartite Set Up . 60
6.2 Bipartite Graph Locale . 62

7 Graph Theory Inheritance 69
7.1 Design Inheritance . 69
7.2 Adjacency Relation Definition 70

Acknowledgements

Chelsea Edmonds is jointly funded by the Cambridge Trust (Cambridge Aus-
tralia Scholarship) and a Cambridge Department of Computer Science and
Technology Premium Research Studentship. The ALEXANDRIA project is
funded by the European Research Council, Advanced Grant GA 742178.

2

This library aims to present a general theory for undirected graphs.
The formalisation approach models edges as sets with two elements, and
is inspired in part by the graph theory basics defined by Lars Noschinski in
[4] which are used in [2, 1]. Crucially this library makes the definition more
flexible by removing the type synonym from vertices to natural numbers.
This is limiting in more advanced mathematical applications, where it is
common for vertices to represent elements of some other set. It additionally
extends significantly on basic graph definitions.

The approach taken in this formalisation is the ”locale-centric” approach
for modelling different graph properties, which has been successfully used in
other combinatorial structure formalisations.

1 Undirected Graph Theory Basics
This first theory focuses on the basics of graph theory (vertices, edges, de-
gree, incidence, neighbours etc), as well as defining a number of different
types of basic graphs. This theory draws inspiration from [4, 2, 1]
theory Undirected-Graph-Basics imports Main HOL−Library.Multiset HOL−Library.Disjoint-Sets

HOL−Library.Extended-Real Girth-Chromatic.Girth-Chromatic-Misc
begin

1.1 Miscellaneous Extras
Useful concepts on lists and sets
lemma distinct-tl-rev:

assumes hd xs = last xs
shows distinct (tl xs) ←→ distinct (tl (rev xs))
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case proof (cases xs = [])

case True
then show ?thesis by simp

next
case False
then have a = last xs

using Cons.prems by auto
then obtain xs ′ where xs = xs ′ @ [last xs]

by (metis False append-butlast-last-id)
then have tleq: tl (rev xs) = rev (xs ′)

by (metis butlast-rev butlast-snoc rev-rev-ident)
have distinct (tl (a # xs)) ←→ distinct xs by simp

3

also have ... ←→ distinct (rev xs ′) ∧ a /∈ set (rev xs ′)
by (metis False Nil-is-rev-conv ‹a = last xs› distinct.simps(2) distinct-rev

hd-rev list.exhaust-sel tleq)
finally show distinct (tl (a # xs)) ←→ distinct (tl (rev (a # xs)))

using tleq by (simp add: False)
qed

qed

lemma last-in-list-set: length xs ≥ 1 =⇒ last xs ∈ set (xs)
using dual-order .strict-trans1 last-in-set by blast

lemma last-in-list-tl-set:
assumes length xs ≥ 2
shows last xs ∈ set (tl xs)
using assms by (induct xs) auto

lemma length-list-decomp-lt: ys 6= [] =⇒ length (xs @zs) < length (xs@ys@zs)
using length-append by simp

lemma obtains-Max:
assumes finite A and A 6= {}
obtains x where x ∈ A and Max A = x
using assms Max-in by blast

lemma obtains-MAX :
assumes finite A and A 6= {}
obtains x where x ∈ A and Max (f ‘ A) = f x
using obtains-Max
by (metis (mono-tags, opaque-lifting) assms(1) assms(2) empty-is-image finite-imageI

image-iff)

lemma obtains-Min:
assumes finite A and A 6= {}
obtains x where x ∈ A and Min A = x
using assms Min-in by blast

lemma obtains-MIN :
assumes finite A and A 6= {}
obtains x where x ∈ A and Min (f ‘ A) = f x
using obtains-Min assms empty-is-image finite-imageI image-iff
by (metis (mono-tags, opaque-lifting))

1.2 Initial Set up
For convenience and readability, some functions and type synonyms are de-
fined outside locale context
fun mk-triangle-set :: (′a × ′a × ′a) ⇒ ′a set

where mk-triangle-set (x, y, z) = {x,y,z}

4

type-synonym ′a edge = ′a set

type-synonym ′a pregraph = (′a set) × (′a edge set)

abbreviation gverts :: ′a pregraph ⇒ ′a set where
gverts H ≡ fst H

abbreviation gedges :: ′a pregraph ⇒ ′a edge set where
gedges H ≡ snd H

fun mk-edge :: ′a × ′a ⇒ ′a edge where
mk-edge (u,v) = {u,v}

All edges is simply the set of subsets of a set S of size 2
definition all-edges S ≡ {e . e ⊆ S ∧ card e = 2}

Note, this is a different definition to Noschinski’s [4] ugraph which uses
the mk-edge function unnecessarily

Basic properties of these functions
lemma all-edges-mono:

vs ⊆ ws =⇒ all-edges vs ⊆ all-edges ws
unfolding all-edges-def by auto

lemma all-edges-alt: all-edges S = {{x, y} | x y . x ∈ S ∧ y ∈ S ∧ x 6= y}
unfolding all-edges-def

proof (intro subset-antisym subsetI)
fix x assume x ∈ {e. e ⊆ S ∧ card e = 2}
then obtain u v where x = {u, v} and card {u, v} = 2 and {u, v} ⊆ S

by (metis (mono-tags, lifting) card-2-iff mem-Collect-eq)
then show x ∈ {{x, y} |x y. x ∈ S ∧ y ∈ S ∧ x 6= y}

by fastforce
next

show
∧

x. x ∈ {{x, y} |x y. x ∈ S ∧ y ∈ S ∧ x 6= y} =⇒ x ∈ {e. e ⊆ S ∧ card
e = 2}

by auto
qed

lemma all-edges-alt-pairs: all-edges S = mk-edge ‘ {uv ∈ S × S . fst uv 6= snd uv}
unfolding all-edges-alt

proof (intro subset-antisym)
have img: mk-edge ‘ {uv ∈ S × S . fst uv 6= snd uv} = {mk-edge (u, v) | u v. (u,

v) ∈ S × S ∧ u 6=v}
by (smt (z3) Collect-cong fst-conv prod.collapse setcompr-eq-image snd-conv)

then show mk-edge ‘ {uv ∈ S × S . fst uv 6= snd uv} ⊆ {{x, y} |x y. x ∈ S ∧ y
∈ S ∧ x 6= y}

by auto

5

show {{x, y} |x y. x ∈ S ∧ y ∈ S ∧ x 6= y} ⊆ mk-edge ‘ {uv ∈ S × S . fst uv
6= snd uv}

using img by simp
qed

lemma all-edges-subset-Pow: all-edges A ⊆ Pow A
by (auto simp: all-edges-def)

lemma all-edges-disjoint: S ∩ T = {} =⇒ all-edges S ∩ all-edges T = {}
by (auto simp add: all-edges-def disjoint-iff subset-eq)

lemma card-all-edges: finite A =⇒ card (all-edges A) = card A choose 2
using all-edges-def by (metis (full-types) n-subsets)

lemma finite-all-edges: finite S =⇒ finite (all-edges S)
by (meson all-edges-subset-Pow finite-Pow-iff finite-subset)

lemma in-mk-edge-img: (a,b) ∈ A ∨ (b,a) ∈ A =⇒ {a,b} ∈ mk-edge ‘ A
by (auto intro: rev-image-eqI)

thm in-mk-edge-img
lemma in-mk-uedge-img-iff : {a,b} ∈ mk-edge ‘ A ←→ (a,b) ∈ A ∨ (b,a) ∈ A

by (auto simp: doubleton-eq-iff intro: rev-image-eqI)

lemma inj-on-mk-edge: X ∩ Y = {} =⇒ inj-on mk-edge (X × Y)
by (auto simp: inj-on-def doubleton-eq-iff)

definition complete-graph :: ′a set ⇒ ′a pregraph where
complete-graph S ≡ (S , all-edges S)

definition all-edges-loops:: ′a set ⇒ ′a edge setwhere
all-edges-loops S ≡ all-edges S ∪ {{v} | v. v ∈ S}

lemma all-edges-loops-alt: all-edges-loops S = {e . e ⊆ S ∧ (card e = 2 ∨ card e
= 1)}
proof −

have 1: {{v} | v. v ∈ S} = {e . e ⊆ S ∧ card e = 1}
by (metis One-nat-def card.empty card-Suc-eq empty-iff empty-subsetI in-

sert-subset is-singleton-altdef is-singleton-the-elem)
have {e . e ⊆ S ∧ (card e = 2 ∨ card e = 1)} = {e . e ⊆ S ∧ card e = 2} ∪ {e

. e ⊆ S ∧ card e = 1}
by auto

then have {e . e ⊆ S ∧ (card e = 2 ∨ card e = 1)} = all-edges S ∪ {{v} | v. v
∈ S}

by (simp add: all-edges-def 1)
then show ?thesis unfolding all-edges-loops-def by simp

qed

lemma loops-disjoint: all-edges S ∩ {{v} | v. v ∈ S} = {}

6

unfolding all-edges-def using card-2-iff
by fastforce

lemma all-edges-loops-ss: all-edges S ⊆ all-edges-loops S {{v} | v. v ∈ S} ⊆
all-edges-loops S

by (simp-all add: all-edges-loops-def)

lemma finite-singletons: finite S =⇒ finite ({{v} | v. v ∈ S})
by (auto)

lemma card-singletons:
assumes finite S shows card {{v} | v. v ∈ S} = card S
using assms

proof (induct S rule: finite-induct)
case empty
then show ?case by simp

next
case (insert x F)
then have disj: {{x}} ∩ {{v} |v. v ∈ F} = {} by auto
have {{v} |v. v ∈ insert x F} = ({{x}} ∪ {{v} |v. v ∈ F}) by auto
then have card {{v} |v. v ∈ insert x F} = card ({{x}} ∪ {{v} |v. v ∈ F}) by

simp
also have ... = card {{x}} + card {{v} |v. v ∈ F} using card-Un-disjoint disj

assms finite-subset
using insert.hyps(1) by force

also have ... = 1 + card {{v} |v. v ∈ F} using is-singleton-altdef by simp
also have ... = 1 + card F using insert.hyps by auto
finally show ?case using insert.hyps(1) insert.hyps(2) by force

qed

lemma finite-all-edges-loops: finite S =⇒ finite (all-edges-loops S)
unfolding all-edges-loops-def using finite-all-edges finite-singletons by auto

lemma card-all-edges-loops:
assumes finite S
shows card (all-edges-loops S) = (card S) choose 2 + card S

proof −
have card (all-edges-loops S) = card (all-edges S ∪ {{v} | v. v ∈ S})

by (simp add: all-edges-loops-def)
also have ... = card (all-edges S) + card {{v} | v. v ∈ S}

using loops-disjoint assms card-Un-disjoint[of all-edges S {{v} | v. v ∈ S}]
all-edges-loops-ss finite-all-edges-loops finite-subset by fastforce

also have ... = (card S) choose 2 + card {{v} | v. v ∈ S} by(simp add:
card-all-edges assms)

finally show ?thesis using assms card-singletons by auto
qed

7

1.3 Graph System Locale
A generic incidence set system re-labeled to graph notation, where repeated
edges are not allowed. All the definitions here do not need the ”edge” size
to be constrained to make sense.
locale graph-system =

fixes vertices :: ′a set (V)
fixes edges :: ′a edge set (E)
assumes wellformed: e ∈ E =⇒ e ⊆ V

begin

abbreviation gorder :: nat where
gorder ≡ card (V)

abbreviation graph-size :: nat where
graph-size ≡ card E

definition vincident :: ′a ⇒ ′a edge ⇒ bool where
vincident v e ≡ v ∈ e

lemma incident-edge-in-wf : e ∈ E =⇒ vincident v e =⇒ v ∈ V
using wellformed vincident-def by auto

definition incident-edges :: ′a ⇒ ′a edge set where
incident-edges v ≡{e . e ∈ E ∧ vincident v e}

lemma incident-edges-empty: ¬ (v ∈ V) =⇒ incident-edges v = {}
using incident-edges-def incident-edge-in-wf by auto

lemma finite-incident-edges: finite E =⇒ finite (incident-edges v)
by (simp add: incident-edges-def)

definition edge-adj :: ′a edge ⇒ ′a edge ⇒ bool where
edge-adj e1 e2 ≡ e1 ∩ e2 6= {} ∧ e1 ∈ E ∧ e2 ∈ E

lemma edge-adj-inE : edge-adj e1 e2 =⇒ e1 ∈ E ∧ e2 ∈ E
using edge-adj-def by auto

lemma edge-adjacent-alt-def : e1 ∈ E =⇒ e2 ∈ E =⇒ ∃ x . x ∈ V ∧ x ∈ e1 ∧ x
∈ e2 =⇒ edge-adj e1 e2

unfolding edge-adj-def by auto

lemma wellformed-alt-fst: {x, y} ∈ E =⇒ x ∈ V
using wellformed by auto

lemma wellformed-alt-snd: {x, y} ∈ E =⇒ y ∈ V
using wellformed by auto

end

8

Simple constraints on a graph system may include finite and non-empty
constraints
locale fin-graph-system = graph-system +

assumes finV : finite V
begin

lemma fin-edges: finite E
using wellformed finV
by (meson PowI finite-Pow-iff finite-subset subsetI)

end

locale ne-graph-system = graph-system +
assumes not-empty: V 6= {}

1.4 Undirected Graph with Loops
This formalisation models a loop by a singleton set. In this case a graph has
the edge size criteria if it has edges of size 1 or 2. Notably this removes the
option for an edge to be empty
locale ulgraph = graph-system +

assumes edge-size: e ∈ E =⇒ card e > 0 ∧ card e ≤ 2

begin

lemma alt-edge-size: e ∈ E =⇒ card e = 1 ∨ card e = 2
using edge-size by fastforce

definition is-loop:: ′a edge ⇒ bool where
is-loop e ≡ card e = 1

definition is-sedge :: ′a edge ⇒ bool where
is-sedge e ≡ card e = 2

lemma is-edge-or-loop: e ∈ E =⇒ is-loop e ∨ is-sedge e
using alt-edge-size is-loop-def is-sedge-def by simp

lemma edges-split-loop: E = {e ∈ E . is-loop e } ∪ {e ∈ E . is-sedge e}
using is-edge-or-loop by auto

lemma edges-split-loop-inter-empty: {} = {e ∈ E . is-loop e } ∩ {e ∈ E . is-sedge
e}

unfolding is-loop-def is-sedge-def by auto

definition vert-adj :: ′a ⇒ ′a ⇒ bool where — Neighbor in graph from Roth [1]
vert-adj v1 v2 ≡ {v1, v2} ∈ E

lemma vert-adj-sym: vert-adj v1 v2 ←→ vert-adj v2 v1

9

unfolding vert-adj-def by (simp-all add: insert-commute)

lemma vert-adj-imp-inV : vert-adj v1 v2 =⇒ v1 ∈ V ∧ v2 ∈ V
using vert-adj-def wellformed by auto

lemma vert-adj-inc-edge-iff : vert-adj v1 v2 ←→ vincident v1 {v1, v2} ∧ vincident
v2 {v1, v2} ∧ {v1, v2} ∈ E

unfolding vert-adj-def vincident-def by auto

lemma not-vert-adj[simp]: ¬ vert-adj v u =⇒ {v, u} /∈ E
by (simp add: vert-adj-def)

definition neighborhood :: ′a ⇒ ′a set where — Neighbors in Roth Development
[1]
neighborhood x ≡ {v ∈ V . vert-adj x v}

lemma neighborhood-incident: u ∈ neighborhood v ←→ {u, v} ∈ incident-edges v
unfolding neighborhood-def incident-edges-def
by (smt (verit) vincident-def insert-commute insert-subset mem-Collect-eq sub-

set-insertI vert-adj-def wellformed)

definition neighbors-ss :: ′a ⇒ ′a set ⇒ ′a set where
neighbors-ss x Y ≡ {y ∈ Y . vert-adj x y}

lemma vert-adj-edge-iff2:
assumes v1 6= v2
shows vert-adj v1 v2 ←→ (∃ e ∈ E . vincident v1 e ∧ vincident v2 e)

proof (intro iffI)
show vert-adj v1 v2 =⇒ ∃ e∈E . vincident v1 e ∧ vincident v2 e using vert-adj-inc-edge-iff

by blast
assume ∃ e∈E . vincident v1 e ∧ vincident v2 e
then obtain e where ein: e ∈ E and vincident v1 e and vincident v2 e
using vert-adj-inc-edge-iff assms alt-edge-size by auto
then have e = {v1, v2} using alt-edge-size assms
by (smt (verit) card-1-singletonE card-2-iff vincident-def insertE insert-commute

singletonD)
then show vert-adj v1 v2 using ein vert-adj-def

by simp
qed

Incident simple edges, i.e. excluding loops
definition incident-sedges :: ′a ⇒ ′a edge set where
incident-sedges v ≡ {e ∈ E . vincident v e ∧ card e = 2}

lemma finite-inc-sedges: finite E =⇒ finite (incident-sedges v)
by (simp add: incident-sedges-def)

lemma incident-sedges-empty[simp]: v /∈ V =⇒ incident-sedges v = {}
unfolding incident-sedges-def using vincident-def wellformed by fastforce

10

definition has-loop :: ′a ⇒ bool where
has-loop v ≡ {v} ∈ E

lemma has-loop-in-verts: has-loop v =⇒ v ∈ V
using has-loop-def wellformed by auto

lemma is-loop-set-alt: {{v} | v . has-loop v} = {e ∈ E . is-loop e}
proof (intro subset-antisym subsetI)

fix x assume x ∈ {{v} |v. has-loop v}
then obtain v where x = {v} and has-loop v

by blast
then show x ∈ {e ∈ E . is-loop e} using has-loop-def is-loop-def by auto

next
fix x assume a: x ∈{e ∈ E . is-loop e}
then have is-loop x by blast
then obtain v where x = {v} and {v} ∈ E using is-loop-def a

by (metis card-1-singletonE mem-Collect-eq)
thus x ∈ {{v} |v. has-loop v} using has-loop-def by simp

qed

definition incident-loops :: ′a ⇒ ′a edge set where
incident-loops v ≡ {e ∈ E . e = {v}}

lemma card1-incident-imp-vert: vincident v e ∧ card e = 1 =⇒ e = {v}
by (metis card-1-singletonE vincident-def singleton-iff)

lemma incident-loops-alt: incident-loops v = {e ∈ E . vincident v e ∧ card e = 1}
unfolding incident-loops-def using card1-incident-imp-vert vincident-def by

auto

lemma incident-loops-simp: has-loop v =⇒ incident-loops v = {{v}} ¬ has-loop v
=⇒ incident-loops v = {}

unfolding incident-loops-def has-loop-def by auto

lemma incident-loops-union:
⋃

(incident-loops ‘ V) = {e ∈ E . is-loop e}
proof −

have V = {v ∈ V . has-loop v} ∪ {v ∈ V . ¬ has-loop v}
by auto

then have
⋃

(incident-loops ‘ V) =
⋃

(incident-loops ‘ {v ∈ V . has-loop v})
∪ ⋃

(incident-loops ‘ {v ∈ V . ¬ has-loop v}) by auto
also have ... =

⋃
(incident-loops ‘ {v ∈ V . has-loop v}) using incident-loops-simp(2)

by simp
also have ... =

⋃
({{{v}} | v . has-loop v}) using has-loop-in-verts inci-

dent-loops-simp(1) by auto
also have ... = ({{v} | v . has-loop v}) by auto
finally show ?thesis using is-loop-set-alt by simp

qed

11

lemma finite-incident-loops: finite (incident-loops v)
using incident-loops-simp by (cases has-loop v) auto

lemma incident-loops-card: card (incident-loops v) ≤ 1
by (cases has-loop v) (simp-all add: incident-loops-simp)

lemma incident-edges-union: incident-edges v = incident-sedges v ∪ incident-loops
v
unfolding incident-edges-def incident-sedges-def incident-loops-alt using alt-edge-size
by auto

lemma incident-edges-sedges[simp]: ¬ has-loop v =⇒ incident-edges v = inci-
dent-sedges v

using incident-edges-union incident-loops-simp by auto

lemma incident-sedges-union:
⋃

(incident-sedges ‘ V) = {e ∈ E . is-sedge e}
proof (intro subset-antisym subsetI)

fix x assume x ∈
⋃

(incident-sedges ‘ V)
then obtain v where x ∈ incident-sedges v by blast
then show x ∈ {e ∈ E . is-sedge e} using incident-sedges-def is-sedge-def by

auto
next

fix x assume x ∈ {e ∈ E . is-sedge e}
then have xin: x ∈ E and c2: card x = 2 using is-sedge-def by auto
then obtain v where v ∈ x and vin: v ∈ V using wellformed

by (meson card-2-iff ′ subsetD)
then have x ∈ incident-sedges v unfolding incident-sedges-def vincident-def

using xin c2 by auto
then show x ∈

⋃
(incident-sedges ‘ V) using vin by auto

qed

lemma empty-not-edge: {} /∈ E
using edge-size by fastforce

The degree definition is complicated by loops - each loop contributes two
to degree. This is required for basic counting properties on the degree to
hold
definition degree :: ′a ⇒ nat where
degree v ≡ card (incident-sedges v) + 2 ∗ (card (incident-loops v))

lemma degree-no-loops[simp]: ¬ has-loop v =⇒ degree v = card (incident-edges v)
using incident-edges-sedges degree-def incident-loops-simp(2) by auto

lemma degree-none[simp]: ¬ v ∈ V =⇒ degree v = 0
using degree-def degree-no-loops has-loop-in-verts incident-edges-sedges incident-sedges-empty

by auto

lemma degree0-inc-edges-empt-iff :

12

assumes finite E
shows degree v = 0 ←→ incident-edges v = {}

proof (intro iffI)
assume degree v = 0
then have card (incident-sedges v) + 2 ∗ (card (incident-loops v)) = 0 using

degree-def by simp
then have incident-sedges v = {} and incident-loops v = {}
using degree-def incident-edges-union assms finite-incident-edges finite-incident-loops

by auto
thus incident-edges v = {} using incident-edges-union by auto

next
show incident-edges v = {} =⇒ degree v = 0 using incident-edges-union de-

gree-def
by simp

qed

lemma incident-edges-neighbors-img: incident-edges v = (λ u . {v, u}) ‘ (neighborhood
v)
proof (intro subset-antisym subsetI)

fix x assume a: x ∈ incident-edges v
then have xE : x ∈ E and vx: v ∈ x using incident-edges-def vincident-def by

auto
then obtain u where x = {u, v} using alt-edge-size

by (smt (verit, best) card-1-singletonE card-2-iff insertE insert-absorb2 in-
sert-commute singletonD)

then have u ∈ neighborhood v
using a neighborhood-incident by blast

then show x ∈ (λu. {v, u}) ‘ neighborhood v using ‹x = {u, v}› by blast
next

fix x assume x ∈ (λu. {v, u}) ‘ neighborhood v
then obtain u ′ where x = {v, u ′} and u ′ ∈ neighborhood v

by blast
then show x ∈ incident-edges v

by (simp add: insert-commute neighborhood-incident)
qed

lemma card-incident-sedges-neighborhood: card (incident-edges v) = card (neighborhood
v)
proof −

have bij-betw (λ u . {v, u}) (neighborhood v) (incident-edges v)
by(intro bij-betw-imageI inj-onI , simp-all add:incident-edges-neighbors-img)(metis

doubleton-eq-iff)
thus ?thesis

by (metis bij-betw-same-card)
qed

lemma degree0-neighborhood-empt-iff :
assumes finite E
shows degree v = 0 ←→ neighborhood v = {}

13

using degree0-inc-edges-empt-iff incident-edges-neighbors-img
by (simp add: assms)

definition is-isolated-vertex:: ′a ⇒ bool where
is-isolated-vertex v ≡ v ∈ V ∧ (∀ u ∈ V . ¬ vert-adj u v)

lemma is-isolated-vertex-edge: is-isolated-vertex v =⇒ (
∧

e. e ∈ E =⇒¬ (vincident
v e))

unfolding is-isolated-vertex-def
by (metis (full-types) all-not-in-conv vincident-def insert-absorb insert-iff mk-disjoint-insert

vert-adj-def vert-adj-edge-iff2 vert-adj-imp-inV)

lemma is-isolated-vertex-no-loop: is-isolated-vertex v =⇒ ¬ has-loop v
unfolding has-loop-def is-isolated-vertex-def vert-adj-def by auto

lemma is-isolated-vertex-degree0: is-isolated-vertex v =⇒ degree v = 0
proof −

assume assm: is-isolated-vertex v
then have ¬ has-loop v using is-isolated-vertex-no-loop by simp
then have degree v = card (incident-edges v) using degree-no-loops by auto
moreover have

∧
e. e ∈ E =⇒ ¬ (vincident v e)

using is-isolated-vertex-edge assm by auto
then have (incident-edges v) = {} unfolding incident-edges-def by auto
ultimately show degree v = 0 by simp

qed

lemma iso-vertex-empty-neighborhood: is-isolated-vertex v =⇒ neighborhood v =
{}

using is-isolated-vertex-def neighborhood-def
by (metis (mono-tags, lifting) Collect-empty-eq is-isolated-vertex-edge vert-adj-inc-edge-iff)

definition max-degree :: nat where
max-degree ≡ Max {degree v | v. v ∈ V}

definition min-degree :: nat where
min-degree ≡ Min {degree v | v . v ∈ V}

definition is-edge-between :: ′a set ⇒ ′a set ⇒ ′a edge ⇒ bool where
is-edge-between X Y e ≡ ∃ x y. e = {x, y} ∧ x ∈ X ∧ y ∈ Y

All edges between two sets of vertices, X and Y, in a graph, G. Inspired
by Szemeredi development [2] and generalised here
definition all-edges-between :: ′a set ⇒ ′a set ⇒ (′a × ′a) set where
all-edges-between X Y ≡ {(x, y) . x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}

lemma all-edges-betw-D3: (x, y) ∈ all-edges-between X Y =⇒ {x, y} ∈ E
by (simp add: all-edges-between-def)

14

lemma all-edges-betw-I : x ∈ X =⇒ y ∈ Y =⇒ {x, y} ∈ E =⇒ (x, y) ∈ all-edges-between
X Y

by (simp add: all-edges-between-def)

lemma all-edges-between-subset: all-edges-between X Y ⊆ X×Y
by (auto simp: all-edges-between-def)

lemma all-edges-between-E-ss: mk-edge ‘ all-edges-between X Y ⊆ E
by (auto simp add: all-edges-between-def)

lemma all-edges-between-rem-wf : all-edges-between X Y = all-edges-between (X ∩
V) (Y ∩ V)

using wellformed by (simp add: all-edges-between-def) blast

lemma all-edges-between-empty [simp]:
all-edges-between {} Z = {} all-edges-between Z {} = {}
by (auto simp: all-edges-between-def)

lemma all-edges-between-disjnt1: disjnt X Y =⇒ disjnt (all-edges-between X Z)
(all-edges-between Y Z)

by (auto simp: all-edges-between-def disjnt-iff)

lemma all-edges-between-disjnt2: disjnt Y Z =⇒ disjnt (all-edges-between X Y)
(all-edges-between X Z)

by (auto simp: all-edges-between-def disjnt-iff)

lemma max-all-edges-between:
assumes finite X finite Y
shows card (all-edges-between X Y) ≤ card X ∗ card Y
by (metis assms card-mono finite-SigmaI all-edges-between-subset card-cartesian-product)

lemma all-edges-between-Un1:
all-edges-between (X ∪ Y) Z = all-edges-between X Z ∪ all-edges-between Y Z
by (auto simp: all-edges-between-def)

lemma all-edges-between-Un2:
all-edges-between X (Y ∪ Z) = all-edges-between X Y ∪ all-edges-between X Z
by (auto simp: all-edges-between-def)

lemma finite-all-edges-between:
assumes finite X finite Y
shows finite (all-edges-between X Y)
by (meson all-edges-between-subset assms finite-cartesian-product finite-subset)

lemma all-edges-between-Union1:
all-edges-between (Union X) Y = (

⋃
X∈X . all-edges-between X Y)

by (auto simp: all-edges-between-def)

15

lemma all-edges-between-Union2:
all-edges-between X (Union Y) = (

⋃
Y∈Y. all-edges-between X Y)

by (auto simp: all-edges-between-def)

lemma all-edges-between-disjoint1:
assumes disjoint R
shows disjoint ((λX . all-edges-between X Y) ‘ R)
using assms by (auto simp: all-edges-between-def disjoint-def)

lemma all-edges-between-disjoint2:
assumes disjoint R
shows disjoint ((λY . all-edges-between X Y) ‘ R)
using assms by (auto simp: all-edges-between-def disjoint-def)

lemma all-edges-between-disjoint-family-on1:
assumes disjoint R
shows disjoint-family-on (λX . all-edges-between X Y) R
by (metis (no-types, lifting) all-edges-between-disjnt1 assms disjnt-def disjoint-family-on-def

pairwiseD)

lemma all-edges-between-disjoint-family-on2:
assumes disjoint R
shows disjoint-family-on (λY . all-edges-between X Y) R
by (metis (no-types, lifting) all-edges-between-disjnt2 assms disjnt-def disjoint-family-on-def

pairwiseD)

lemma all-edges-between-mono1:
Y ⊆ Z =⇒ all-edges-between Y X ⊆ all-edges-between Z X
by (auto simp: all-edges-between-def)

lemma all-edges-between-mono2:
Y ⊆ Z =⇒ all-edges-between X Y ⊆ all-edges-between X Z
by (auto simp: all-edges-between-def)

lemma inj-on-mk-edge: X ∩ Y = {} =⇒ inj-on mk-edge (all-edges-between X Y)
by (auto simp: inj-on-def doubleton-eq-iff all-edges-between-def)

lemma all-edges-between-subset-times: all-edges-between X Y ⊆ (X ∩
⋃

E) × (Y
∩

⋃
E)

by (auto simp: all-edges-between-def)

lemma all-edges-betw-prod-def-neighbors: all-edges-between X Y = {(x, y) ∈ X ×
Y . vert-adj x y }

by (auto simp: vert-adj-def all-edges-between-def)

lemma all-edges-betw-sigma-neighbor :
all-edges-between X Y = (SIGMA x:X . neighbors-ss x Y)

by (auto simp add: all-edges-between-def neighbors-ss-def vert-adj-def)

16

lemma card-all-edges-betw-neighbor :
assumes finite X finite Y
shows card (all-edges-between X Y) = (

∑
x∈X . card (neighbors-ss x Y))

using all-edges-betw-sigma-neighbor assms by (simp add: neighbors-ss-def)

lemma all-edges-between-swap:
all-edges-between X Y = (λ(x,y). (y,x)) ‘ (all-edges-between Y X)
unfolding all-edges-between-def
by (auto simp add: insert-commute image-iff split: prod.split)

lemma card-all-edges-between-commute:
card (all-edges-between X Y) = card (all-edges-between Y X)

proof −
have inj-on (λ(x, y). (y, x)) A for A :: (nat∗nat)set

by (auto simp: inj-on-def)
then show ?thesis using all-edges-between-swap [of X Y] card-image

by (metis swap-inj-on)
qed

lemma all-edges-between-set: mk-edge ‘ all-edges-between X Y = {{x, y}| x y. x ∈
X ∧ y ∈ Y ∧ {x, y} ∈ E}

unfolding all-edges-between-def
proof (intro subset-antisym subsetI)

fix e assume e ∈ mk-edge ‘ {(x, y). x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}
then obtain x y where e = mk-edge (x, y) and x ∈ X and y ∈ Y and {x, y}
∈ E

by blast
then show e ∈ {{x, y} |x y. x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}

by auto
next

fix e assume e ∈ {{x, y} |x y. x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}
then obtain x y where e ={x, y} and x ∈ X and y ∈ Y and {x, y} ∈ E

by blast
then have e = mk-edge (x, y)

by auto
then show e ∈ mk-edge ‘ {(x, y). x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}

using ‹x ∈ X› ‹y ∈ Y › ‹{x, y} ∈ E› by blast
qed

1.5 Edge Density
The edge density between two sets of vertices, X and Y, in G. This is the
same definition as taken in the Szemeredi development, generalised here [2]
definition edge-density X Y ≡ card (all-edges-between X Y)/(card X ∗ card Y)
lemma edge-density-ge0: edge-density X Y ≥ 0

by (auto simp: edge-density-def)

lemma edge-density-le1: edge-density X Y ≤ 1
proof (cases finite X ∧ finite Y)

17

case True
then show ?thesis

using of-nat-mono [OF max-all-edges-between, of X Y]
by (fastforce simp add: edge-density-def divide-simps)

qed (auto simp: edge-density-def)

lemma edge-density-zero: Y = {} =⇒ edge-density X Y = 0
by (simp add: edge-density-def)

lemma edge-density-commute: edge-density X Y = edge-density Y X
by (simp add: edge-density-def card-all-edges-between-commute mult.commute)

lemma edge-density-Un:
assumes disjnt X1 X2 finite X1 finite X2 finite Y
shows edge-density (X1 ∪ X2) Y = (edge-density X1 Y ∗ card X1 + edge-density

X2 Y ∗ card X2) / (card X1 + card X2)
using assms unfolding edge-density-def
by (simp add: all-edges-between-disjnt1 all-edges-between-Un1 finite-all-edges-between

card-Un-disjnt divide-simps)

lemma edge-density-eq0:
assumes all-edges-between A B = {} and X ⊆ A Y ⊆ B
shows edge-density X Y = 0

proof −
have all-edges-between X Y = {}
by (metis all-edges-between-mono1 all-edges-between-mono2 assms subset-empty)
then show ?thesis

by (auto simp: edge-density-def)
qed

end

A number of lemmas are limited to a finite graph
locale fin-ulgraph = ulgraph + fin-graph-system
begin

lemma card-is-has-loop-eq: card {e ∈ E . is-loop e} = card {v ∈ V . has-loop v}
proof −

have
∧

e . e ∈ E =⇒ is-loop e ←→ (∃ v. e = {v}) using is-loop-def
using is-singleton-altdef is-singleton-def by blast

define f :: ′a ⇒ ′a set where f = (λ v . {v})
have feq: f ‘ {v ∈ V . has-loop v} = {{v} | v . has-loop v} using has-loop-in-verts

f-def by auto
have inj-on f {v ∈ V . has-loop v} by (simp add: f-def)
then have card {v ∈ V . has-loop v} = card (f ‘ {v ∈ V . has-loop v})

using card-image by fastforce
also have ... = card {{v} | v . has-loop v} using feq by simp
finally have card {v ∈ V . has-loop v} = card {e ∈ E . is-loop e} using

is-loop-set-alt by simp

18

thus card {e ∈ E . is-loop e} = card {v ∈ V . has-loop v} by simp
qed

lemma finite-all-edges-between ′: finite (all-edges-between X Y)
using finV wellformed
by (metis all-edges-between-rem-wf finite-Int finite-all-edges-between)

lemma card-all-edges-between:
assumes finite Y
shows card (all-edges-between X Y) = (

∑
y∈Y . card (all-edges-between X {y}))

proof −
have all-edges-between X Y = (

⋃
y∈Y . all-edges-between X {y})

by (auto simp: all-edges-between-def)
moreover have disjoint-family-on (λy. all-edges-between X {y}) Y

unfolding disjoint-family-on-def
by (auto simp: disjoint-family-on-def all-edges-between-def)

ultimately show ?thesis
by (simp add: card-UN-disjoint ′ assms finite-all-edges-between ′)

qed

end

1.6 Simple Graphs
A simple graph (or sgraph) constrains edges to size of two. This is the classic
definition of an undirected graph
locale sgraph = graph-system +

assumes two-edges: e ∈ E =⇒ card e = 2
begin

lemma wellformed-all-edges: E ⊆ all-edges V
unfolding all-edges-def using wellformed two-edges by auto

lemma e-in-all-edges: e ∈ E =⇒ e ∈ all-edges V
using wellformed-all-edges by auto

lemma e-in-all-edges-ss: e ∈ E =⇒ e ⊆ V ′ =⇒ V ′ ⊆ V =⇒ e ∈ all-edges V ′

unfolding all-edges-def using wellformed two-edges by auto

lemma singleton-not-edge: {x} /∈ E — Suggested by Mantas Baksys
using two-edges by fastforce

end

It is easy to proof that sgraph is a sublocale of ulgraph. By using indirect
inheritance, we avoid two unneeded cardinality conditions
sublocale sgraph ⊆ ulgraph V E

by (unfold-locales)(simp add: two-edges)

19

locale fin-sgraph = sgraph + fin-graph-system
begin

lemma fin-neighbourhood: finite (neighborhood x)
unfolding neighborhood-def using finV by simp

lemma fin-all-edges: finite (all-edges V)
unfolding all-edges-def by (simp add: finV)

lemma max-edges-graph: card E ≤ (card V)^2
proof −

have card E ≤ card V choose 2
by (metis fin-all-edges finV card-all-edges card-mono wellformed-all-edges)

thus ?thesis
by (metis binomial-le-pow le0 neq0-conv order .trans zero-less-binomial-iff)

qed

end

sublocale fin-sgraph ⊆ fin-ulgraph
by (unfold-locales)

context sgraph
begin

lemma no-loops: v ∈ V =⇒ ¬ has-loop v
using has-loop-def two-edges by fastforce

Ideally, we’d redefine degree in the context of a simple graph. However,
this requires a named loop locale, which complicates notation unnecessarily.
This is the lemma that should always be used when unfolding the degree
definition in a simple graph context
lemma alt-degree-def [simp]: degree v = card (incident-edges v)

using no-loops degree-no-loops degree-none incident-edges-empty by (cases v ∈
V) simp-all

lemma alt-deg-neighborhood: degree v = card (neighborhood v)
using card-incident-sedges-neighborhood by simp

definition degree-set :: ′a set ⇒ nat where
degree-set vs ≡ card {e ∈ E . vs ⊆ e}

definition is-complete-n-graph:: nat ⇒ bool where
is-complete-n-graph n ≡ gorder = n ∧ E = all-edges V

The complement of a graph is a basic concept
definition is-complement :: ′a pregraph ⇒ bool where
is-complement G ≡ V = gverts G ∧ gedges G = all-edges V − E

20

definition complement-edges :: ′a edge set where
complement-edges ≡ all-edges V − E

lemma is-complement-edges: is-complement (V ′, E ′) ←→ V = V ′ ∧ comple-
ment-edges = E ′

unfolding is-complement-def complement-edges-def by auto

interpretation G-comp: sgraph V complement-edges
by (unfold-locales)(auto simp add: complement-edges-def all-edges-def)

lemma is-complement-edge-iff : e ⊆ V =⇒ e ∈ complement-edges ←→ e /∈ E ∧
card e = 2

unfolding complement-edges-def all-edges-def by auto

end

A complete graph is a simple graph
lemma complete-sgraph: sgraph S (all-edges S)

unfolding all-edges-def by (unfold-locales) (simp-all)

interpretation comp-sgraph: sgraph S (all-edges S)
using complete-sgraph by auto

lemma complete-fin-sgraph: finite S =⇒ fin-sgraph S (all-edges S)
using complete-sgraph
by (intro-locales) (auto simp add: sgraph.axioms(1) sgraph-def fin-graph-system-axioms-def)

1.7 Subgraph Basics
A subgraph is defined as a graph where the vertex and edge sets are subsets
of the original graph. Note that using the locale approach, we require each
graph to be wellformed. This is interestingly omitted in a number of other
formal definitions.
locale subgraph = H : graph-system VH :: ′a set EH + G: graph-system VG :: ′a
set EG for VH EH VG EG +

assumes verts-ss: VH ⊆ VG

assumes edges-ss: EH ⊆ EG

lemma is-subgraphI [intro]: V ′ ⊆ V =⇒ E ′ ⊆ E =⇒ graph-system V ′ E ′ =⇒
graph-system V E =⇒ subgraph V ′ E ′ V E

using graph-system-def by (unfold-locales)
(auto simp add: graph-system.vincident-def graph-system.incident-edge-in-wf)

context subgraph
begin

Note: it could also be useful to have similar rules in ulgraph locale etc
with subgraph assumption

21

lemma is-subgraph-ulgraph:
assumes ulgraph VG EG

shows ulgraph VH EH

using assms ulgraph.edge-size[of VG EG] edges-ss by (unfold-locales) auto

lemma is-simp-subgraph:
assumes sgraph VG EG

shows sgraph VH EH

using assms sgraph.two-edges edges-ss by (unfold-locales) auto

lemma is-finite-subgraph:
assumes fin-graph-system VG EG

shows fin-graph-system VH EH

using assms verts-ss
by (unfold-locales) (simp add: fin-graph-system.finV finite-subset)

lemma (in graph-system) subgraph-refl: subgraph V E V E
by (simp add: graph-system-axioms is-subgraphI)

lemma subgraph-trans:
assumes graph-system V E
assumes graph-system V ′ E ′

assumes graph-system V ′′ E ′′

shows subgraph V ′′ E ′′ V ′ E ′ =⇒ subgraph V ′ E ′ V E =⇒ subgraph V ′′ E ′′ V
E

by (meson assms(1) assms(3) is-subgraphI subgraph.edges-ss subgraph.verts-ss
subset-trans)

lemma subgraph-antisym: subgraph V ′ E ′ V E =⇒ subgraph V E V ′ E ′ =⇒ V =
V ′ ∧ E = E ′

by (simp add: dual-order .eq-iff subgraph.edges-ss subgraph.verts-ss)

end

lemma (in sgraph) subgraph-complete: subgraph V E V (all-edges V)
proof −

interpret comp: sgraph V (all-edges V)
using complete-sgraph by auto

show ?thesis by (unfold-locales) (simp-all add: wellformed-all-edges)
qed

We are often interested in the set of subgraphs. This is still very possible
using locale definitions. Interesting Note - random graphs [3] has a different
definition for the well formed constraint to be added in here instead of in
the main subgraph definition
definition (in graph-system) subgraphs:: ′a pregraph set where
subgraphs ≡ {G . subgraph (gverts G) (gedges G) V E}

Induced subgraph - really only affects edges

22

definition (in graph-system) induced-edges:: ′a set ⇒ ′a edge set where
induced-edges V ′ ≡ {e ∈ E . e ⊆ V ′}

lemma (in sgraph) induced-edges-alt: induced-edges V ′ = E ∩ all-edges V ′

unfolding induced-edges-def all-edges-def using two-edges by blast

lemma (in sgraph) induced-edges-self : induced-edges V = E
unfolding induced-edges-def
by (simp add: subsetI subset-antisym wellformed)

context graph-system
begin

lemma induced-edges-ss: V ′ ⊆ V =⇒ induced-edges V ′ ⊆ E
unfolding induced-edges-def by auto

lemma induced-is-graph-sys: graph-system V ′ (induced-edges V ′)
by (unfold-locales) (simp add: induced-edges-def)

interpretation induced-graph: graph-system V ′ (induced-edges V ′)
using induced-is-graph-sys by simp

lemma induced-is-subgraph: V ′ ⊆ V =⇒ subgraph V ′ (induced-edges V ′) V E
using induced-edges-ss by (unfold-locales) auto

lemma induced-edges-union:
assumes VH1 ⊆ S VH2 ⊆ T
assumes graph-system VH1 EH1 graph-system VH2 EH2
assumes EH1 ∪ EH2 ⊆ (induced-edges (S ∪ T))
shows EH1 ⊆ (induced-edges S)

proof (intro subsetI , simp add: induced-edges-def , intro conjI)
show

∧
x. x ∈ EH1 =⇒ x ∈ E using assms(5)

by (simp add: induced-edges-def subset-iff)
show

∧
x. x ∈ EH1 =⇒ x ⊆ S

using assms(1) assms(3) graph-system.wellformed by blast
qed

lemma induced-edges-union-subgraph-single:
assumes VH1 ⊆ S VH2 ⊆ T
assumes graph-system VH1 EH1 graph-system VH2 EH2
assumes subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪

T))
shows subgraph VH1 EH1 S (induced-edges S)

proof −
interpret ug: subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S
∪ T))

using assms(5) by simp
show subgraph VH1 EH1 S (induced-edges S)

23

using assms(3) graph-system-def
by (unfold-locales) (blast, simp add: assms(1), meson assms induced-edges-union

ug.edges-ss)
qed

lemma induced-union-subgraph:
assumes VH1 ⊆ S and VH2 ⊆ T
assumes graph-system VH1 EH1 graph-system VH2 EH2
shows subgraph VH1 EH1 S (induced-edges S) ∧ subgraph VH2 EH2 T (induced-edges

T) ←→
subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪ T))

proof (intro iffI conjI , elim conjE)
show subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪ T))

=⇒ subgraph VH1 EH1 S (induced-edges S)
using induced-edges-union-subgraph-single assms by simp

show subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪ T))
=⇒ subgraph VH2 EH2 T (induced-edges T)

using induced-edges-union-subgraph-single assms by (simp add: Un-commute)
assume a1: subgraph VH1 EH1 S (induced-edges S) and a2: subgraph VH2 EH2

T (induced-edges T)
then interpret h1: subgraph VH1 EH1 S (induced-edges S)

by simp
interpret h2: subgraph VH2 EH2 T (induced-edges T) using a2 by simp
show subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪ T))

using h1.H .wellformed h2.H .wellformed h1.verts-ss h2.verts-ss h1.edges-ss
h2.edges-ss

by (unfold-locales) (auto simp add: induced-edges-def)
qed

end
end
theory Undirected-Graph-Walks imports Undirected-Graph-Basics
begin

2 Walks, Paths and Cycles
The definition of walks, paths, cycles, and related concepts are foundations
of graph theory, yet there can be some differences in literature between
definitions. This formalisation draws inspiration from Noschinski’s Graph
Library [5], however focuses on an undirected graph context compared to
a directed graph context, and extends on some definitions, as required to
formalise Balog Szemeredi Gowers theorem.
context ulgraph
begin

24

2.1 Walks
This definition is taken from the directed graph library, however edges are
undirected
fun walk-edges :: ′a list ⇒ ′a edge list where

walk-edges [] = []
| walk-edges [x] = []
| walk-edges (x # y # ys) = {x,y} # walk-edges (y # ys)

lemma walk-edges-app: walk-edges (xs @ [y, x]) = walk-edges (xs @ [y]) @ [{y, x}]
by (induct xs rule: walk-edges.induct, simp-all)

lemma walk-edges-tl-ss: set (walk-edges (tl xs)) ⊆ set (walk-edges xs)
by (induct xs rule: walk-edges.induct) auto

lemma walk-edges-rev: rev (walk-edges xs) = walk-edges (rev xs)
proof (induct xs rule: walk-edges.induct, simp-all)

fix x y ys assume assm: rev (walk-edges (y # ys)) = walk-edges (rev ys @ [y])
then show walk-edges (rev ys @ [y]) @ [{x, y}] = walk-edges (rev ys @ [y, x])

using walk-edges-app by fastforce
qed

lemma walk-edges-append-ss1: set (walk-edges (ys)) ⊆ set (walk-edges (xs@ys))
proof (induct xs rule: walk-edges.induct)

case 1
then show ?case by simp

next
case (2 x)
then show ?case

using walk-edges-tl-ss by fastforce
next

case (3 x y ys)
then show ?case by (simp add: subset-iff)

qed

lemma walk-edges-append-ss2: set (walk-edges (xs)) ⊆ set (walk-edges (xs@ys))
by (induct xs rule: walk-edges.induct) auto

lemma walk-edges-singleton-app: ys 6= [] =⇒ walk-edges ([x]@ys) = {x, hd ys} #
walk-edges ys
using list.exhaust-sel walk-edges.simps(3) by (metis Cons-eq-appendI eq-Nil-appendI)

lemma walk-edges-append-union: xs 6= [] =⇒ ys 6= [] =⇒
set (walk-edges (xs@ys)) = set (walk-edges (xs)) ∪ set (walk-edges ys) ∪ {{last

xs, hd ys}}
using walk-edges-singleton-app by (induct xs rule: walk-edges.induct) auto

25

lemma walk-edges-decomp-ss: set (walk-edges (xs@[y]@zs)) ⊆ set (walk-edges (xs@[y]@ys@[y]@zs))
proof −

have half-ss: set (walk-edges (xs@[y])) ⊆ set (walk-edges (xs@[y]@ys@[y]))
using walk-edges-append-ss2 by fastforce

thus ?thesis proof (cases zs = [])
case True
then show ?thesis using half-ss by auto

next
case False
then have decomp1: set (walk-edges (xs@[y]@zs)) = set (walk-edges (xs@[y]))

∪ set (walk-edges (zs)) ∪ {{y, hd zs}}
using walk-edges-append-union
by (metis append-assoc append-is-Nil-conv last-snoc neq-Nil-conv)

have set (walk-edges (xs@[y]@ys@[y]@zs)) = set (walk-edges (xs@[y]@ys@[y]))
∪ set (walk-edges (zs)) ∪ {{y, hd zs}}

using walk-edges-append-union False
by (metis append-assoc append-is-Nil-conv empty-iff empty-set last-snoc

list.set-intros(1))
then show ?thesis using decomp1 half-ss by auto

qed
qed

definition walk-length :: ′a list ⇒ nat where
walk-length p ≡ length (walk-edges p)

lemma walk-length-conv: walk-length p = length p − 1
by (induct p rule: walk-edges.induct) (auto simp: walk-length-def)

lemma walk-length-rev: walk-length p = walk-length (rev p)
using walk-edges-rev walk-length-def
by (metis length-rev)

lemma walk-length-app: xs 6= [] =⇒ ys 6= [] =⇒ walk-length (xs @ ys) = walk-length
xs + walk-length ys + 1

apply (induct xs rule: walk-edges.induct)
apply (simp-all add: walk-length-def)

using walk-edges-singleton-app by force

lemma walk-length-app-ineq: walk-length (xs @ ys) ≥ walk-length xs + walk-length
ys ∧

walk-length (xs @ ys) ≤ walk-length xs + walk-length ys + 1
proof (cases xs = [] ∨ ys = [])

case True
then show ?thesis using walk-length-def by auto

next
case False
then show ?thesis

by (simp add: walk-length-app)
qed

26

Note that while the trivial walk is allowed, the empty walk is not
definition is-walk :: ′a list ⇒ bool where
is-walk xs ≡ set xs ⊆ V ∧ set (walk-edges xs) ⊆ E ∧ xs 6= []

lemma is-walkI : set xs ⊆ V =⇒ set (walk-edges xs) ⊆ E =⇒ xs 6= [] =⇒ is-walk
xs

using is-walk-def by simp

lemma is-walk-wf : is-walk xs =⇒ set xs ⊆ V
by (simp add: is-walk-def)

lemma is-walk-wf-hd: is-walk xs =⇒ hd xs ∈ V
using is-walk-wf hd-in-set is-walk-def by blast

lemma is-walk-wf-last: is-walk xs =⇒ last xs ∈ V
using is-walk-wf last-in-set is-walk-def by blast

lemma is-walk-singleton: u ∈ V =⇒ is-walk [u]
unfolding is-walk-def using walk-edges.simps by simp

lemma is-walk-not-empty: is-walk xs =⇒ xs 6= []
unfolding is-walk-def by simp

lemma is-walk-not-empty2: is-walk [] = False
unfolding is-walk-def by simp

Reasoning on transformations of a walk
lemma is-walk-rev: is-walk xs ←→ is-walk (rev xs)

unfolding is-walk-def using walk-edges-rev
by (metis rev-is-Nil-conv set-rev)

lemma is-walk-tl: length xs ≥ 2 =⇒ is-walk xs =⇒ is-walk (tl xs)
using walk-edges-tl-ss is-walk-def in-mono list.set-sel(2) tl-Nil by fastforce

lemma is-walk-append:
assumes is-walk xs
assumes is-walk ys
assumes last xs = hd ys
shows is-walk (xs @ (tl ys))

proof (intro is-walkI subsetI)
show xs @ tl ys 6= [] using is-walk-def assms by auto
show

∧
x. x ∈ set (xs @ tl ys) =⇒ x ∈ V using assms is-walk-def is-walk-wf

by (metis Un-iff in-mono list-set-tl set-append)
next

fix x assume xin: x ∈ set (walk-edges (xs @ tl ys))
show x ∈ E proof (cases tl ys = [])

case True
then show ?thesis using assms(1) is-walk-def xin by auto

next

27

case False
then have xin2: x ∈ (set (walk-edges xs) ∪ set (walk-edges (tl ys)) ∪ {{last xs,

hd (tl ys)}})
using walk-edges-append-union is-walk-not-empty assms xin by auto

have 1: set (walk-edges xs) ⊆ E using assms(1) is-walk-def
by simp

have 2: set (walk-edges (tl ys)) ⊆ E using assms(2) is-walk-def
by (meson dual-order .trans walk-edges-tl-ss)

have {last xs, hd (tl ys)} ∈ E using is-walk-def assms(2) assms(3)
by (metis False hd-Cons-tl insert-subset list.simps(15) walk-edges.simps(3))

then show ?thesis using 1 2 xin2 by auto
qed

qed

lemma is-walk-decomp:
assumes is-walk (xs@[y]@ys@[y]@zs) (is is-walk ?w)
shows is-walk (xs@[y]@zs)

proof (intro is-walkI)
show set (xs @ [y] @ zs) ⊆ V using assms is-walk-def by simp
show xs @ [y] @ zs 6= [] by simp
show set (walk-edges (xs @ [y] @ zs)) ⊆ E

using walk-edges-decomp-ss assms(1) is-walk-def by blast
qed

lemma is-walk-hd-tl:
assumes is-walk (y # ys)
assumes {x, y} ∈ E
shows is-walk (x # y # ys)

proof (intro is-walkI)
show set (x # y # ys) ⊆ V

using assms by (simp add: is-walk-def wellformed-alt-fst)
show set (walk-edges (x # y # ys)) ⊆ E

using walk-edges.simps assms is-walk-def by simp
show x # y # ys 6= [] by simp

qed

lemma is-walk-drop-hd:
assumes ys 6= []
assumes is-walk (y # ys)
shows is-walk ys

proof (intro is-walkI)
show set ys ⊆ V

using assms is-walk-wf by fastforce
show set (walk-edges ys) ⊆ E

using assms is-walk-def walk-edges-tl-ss by force
show ys 6= [] using assms by simp

qed

lemma walk-edges-index:

28

assumes i ≥ 0 i < walk-length w
assumes is-walk w
shows (walk-edges w) ! i ∈ E
using assms

proof (induct w arbitrary: i rule: walk-edges.induct, simp add: is-walk-not-empty2,

simp add: walk-length-def)
case (3 x y ys)
then show ?case proof (cases i = 0)

case True
then show ?thesis

using 3.prems(3) is-walk-def by fastforce
next

case False
have gt: 0 ≤ i −1 using False by simp
have lt: i − 1 < walk-length (y # ys)

using 3.prems(2) False walk-length-conv by auto
have is-walk (y # ys)

using 3.prems(3) is-walk-def by fastforce
then show ?thesis using 3.hyps[of i −1]
by (metis 3.prems(1) False gt lt le-neq-implies-less nth-Cons-pos walk-edges.simps(3))

qed
qed

lemma is-walk-index:
assumes i ≥ 0 Suc i < (length w)
assumes is-walk w
shows {w ! i, w ! (i + 1)} ∈ E
using assms proof (induct w arbitrary: i rule: walk-edges.induct, simp, simp)
fix x y ys i
assume IH :

∧
j. 0 ≤ j =⇒ Suc j < length (y # ys) =⇒ is-walk (y # ys) =⇒

{(y # ys) ! j, (y # ys) ! (j + 1)} ∈ E
assume 1: 0 ≤ i and 2: Suc i < length (x # y # ys) and 3: is-walk (x # y #

ys)
show {(x # y # ys) ! i, (x # y # ys) ! (i + 1)} ∈ E
proof (cases i = 0)

case True
then show ?thesis using 3 is-walk-def

by simp
next

case False
have is-walk (y # ys) using is-walk-def 3 by fastforce
then show ?thesis using 2 IH [of i − 1]

by (simp add: False nat-less-le)
qed

qed

lemma is-walk-take:

29

assumes is-walk w
assumes n > 0
assumes n ≤ length w
shows is-walk (take n w)
using assms proof (induct w arbitrary: n rule: walk-edges.induct)
case 1
then show ?case by simp

next
case (2 x)
then have n = 1 using 2 by auto
then show ?case by (simp add: 2.prems(1))

next
case (3 x y ys)
then show ?case proof (cases n = 1)

case True
then have take n (x # y # ys) = [x]

by simp
then show ?thesis using is-walk-def 3.prems(1) by simp

next
case False
then have ngt: n ≥ 2 using 3.prems(2) by auto
then have tk-split1: take n (x # y # ys) = x # take (n − 1) (y # ys) using 3

by (simp add: take-Cons ′)
then have tk-split: take n (x # y # ys) = x # y # (take (n − 2) ys)

using 3 ngt take-Cons ′[of n −1 y ys]
by (metis False diff-diff-left less-one nat-neq-iff one-add-one zero-less-diff)

have w: is-walk (y # ys) using is-walk-tl
using 3.prems(1) is-walk-def by force

have n − 1 ≤ length (y # ys) using 3.prems(3) by simp
then have w-tl: is-walk (take (n − 1) (y # ys)) using 3.hyps[of n − 1] w

3.prems ngt
by linarith

have {x, y} ∈ E using is-walk-def walk-edges.simps 3.prems(1) by auto
then show ?thesis using is-walk-hd-tl[of y (take (n − 2) ys) x] tk-split

using tk-split1 w-tl by force
qed

qed

lemma is-walk-drop:
assumes is-walk w
assumes n < length w
shows is-walk (drop n w)
using assms proof (induct w arbitrary: n rule: walk-edges.induct)
case 1
then show ?case by simp

next
case (2 x)
then have n = 0 using 2 by auto
then show ?case by (simp add: 2.prems(1))

30

next
case (3 x y ys)
then show ?case proof (cases n ≥ 2)

case True
then have ngt: n ≥ 2 using 3.prems(2) by auto
then have tk-split1: drop n (x # y # ys) = drop (n − 1) (y # ys) using 3

by (simp add: drop-Cons ′)
then have tk-split: drop n (x # y # ys) = (drop (n − 2) ys)

using 3 ngt drop-Cons ′[of n −1 y ys] True
by (metis Suc-1 Suc-le-eq diff-diff-left less-not-refl nat-1-add-1 zero-less-diff)

have w: is-walk (y # ys) using is-walk-tl
using 3.prems(1) is-walk-def by force

have n − 1 < length (y # ys) using 3.prems(2) by simp
then have w-tl: is-walk (drop (n − 1) (y # ys)) using 3.hyps[of n − 1] w

3.prems ngt
by linarith

have {x, y} ∈ E using is-walk-def walk-edges.simps 3.prems(1) by auto
then show ?thesis using is-walk-hd-tl[of y (take (n − 2) ys) x] tk-split

using tk-split1 w-tl by force
next

case False
then have or : n = 0 ∨ n = 1

by auto
have walk: is-walk (y # ys) using is-walk-drop-hd 3 by blast
have n0: n = 0 =⇒ (drop n (x # y # ys)) = (x # y # ys) by simp
have n = 1 =⇒ (drop n (x # y # ys)) = y # ys by simp
then show ?thesis using n0 3 walk or by auto

qed
qed

definition walks :: ′a list set where
walks ≡ {p. is-walk p}

definition is-open-walk :: ′a list ⇒ bool where
is-open-walk xs ≡ is-walk xs ∧ hd xs 6= last xs

lemma is-open-walk-rev: is-open-walk xs ←→ is-open-walk (rev xs)
unfolding is-open-walk-def using is-walk-rev
by (metis hd-rev last-rev)

definition is-closed-walk :: ′a list ⇒ bool where
is-closed-walk xs ≡ is-walk xs ∧ hd xs = last xs

lemma is-closed-walk-rev: is-closed-walk xs ←→ is-closed-walk (rev xs)
unfolding is-closed-walk-def using is-walk-rev
by (metis hd-rev last-rev)

definition is-trail :: ′a list ⇒ bool where
is-trail xs ≡ is-walk xs ∧ distinct (walk-edges xs)

31

lemma is-trail-rev: is-trail xs ←→ is-trail (rev xs)
unfolding is-trail-def using is-walk-rev
by (metis distinct-rev walk-edges-rev)

2.2 Paths
There are two common definitions of a path. The first, given below, excludes
the case where a path is a cycle. Note this also excludes the trivial path [x]

definition is-path :: ′a list ⇒ bool where
is-path xs ≡ (is-open-walk xs ∧ distinct (xs))

lemma is-path-rev: is-path xs ←→ is-path (rev xs)
unfolding is-path-def using is-open-walk-rev
by (metis distinct-rev)

lemma is-path-walk: is-path xs =⇒ is-walk xs
unfolding is-path-def is-open-walk-def by auto

definition paths :: ′a list set where
paths ≡ {p . is-path p}

lemma paths-ss-walk: paths ⊆ walks
unfolding paths-def walks-def is-path-def is-open-walk-def by auto

A more generic definition of a path - used when a cycle is considered a
path, and therefore includes the trivial path [x]

definition is-gen-path:: ′a list ⇒ bool where
is-gen-path p ≡ is-walk p ∧ ((distinct (tl p) ∧ hd p = last p) ∨ distinct p)

lemma is-path-gen-path: is-path p =⇒ is-gen-path p
unfolding is-path-def is-gen-path-def is-open-walk-def by (auto simp add: dis-

tinct-tl)

lemma is-gen-path-rev: is-gen-path p ←→ is-gen-path (rev p)
unfolding is-gen-path-def using is-walk-rev distinct-tl-rev
by (metis distinct-rev hd-rev last-rev)

lemma is-gen-path-distinct: is-gen-path p =⇒ hd p 6= last p =⇒ distinct p
unfolding is-gen-path-def by auto

lemma is-gen-path-distinct-tl:
assumes is-gen-path p and hd p = last p
shows distinct (tl p)

proof (cases length p > 1)
case True
then show ?thesis

using assms(1) distinct-tl is-gen-path-def by auto
next

32

case False
then show ?thesis

using assms(1) distinct-tl is-gen-path-def by auto
qed

lemma is-gen-path-trivial: x ∈ V =⇒ is-gen-path [x]
unfolding is-gen-path-def is-walk-def by simp

definition gen-paths :: ′a list set where
gen-paths ≡ {p . is-gen-path p}

lemma gen-paths-ss-walks: gen-paths ⊆ walks
unfolding gen-paths-def walks-def is-gen-path-def by auto

2.3 Cycles
Note, a cycle must be non trivial (i.e. have an edge), but as we let a loop
by a cycle we broaden the definition in comparison to Noschinski [5] for a
cycle to be of length greater than 1 rather than 3
definition is-cycle :: ′a list ⇒ bool where
is-cycle xs ≡ is-closed-walk xs ∧ walk-length xs ≥ 1 ∧ distinct (tl xs)

lemma is-gen-path-cycle: is-cycle p =⇒ is-gen-path p
unfolding is-cycle-def is-gen-path-def is-closed-walk-def by auto

lemma is-cycle-alt-gen-path: is-cycle xs ←→ is-gen-path xs ∧ walk-length xs ≥ 1
∧ hd xs = last xs
proof (intro iffI)

show is-cycle xs =⇒ is-gen-path xs ∧ 1 ≤ walk-length xs ∧ hd xs = last xs
using is-gen-path-cycle is-cycle-def is-closed-walk-def
by auto

show is-gen-path xs ∧ 1 ≤ walk-length xs ∧ hd xs = last xs =⇒ is-cycle xs
using distinct-tl is-closed-walk-def is-cycle-def is-gen-path-def by blast

qed

lemma is-cycle-alt: is-cycle xs ←→ is-walk xs ∧ distinct (tl xs) ∧ walk-length xs
≥ 1 ∧ hd xs = last xs
proof (intro iffI)

show is-cycle xs =⇒ is-walk xs ∧ distinct (tl xs) ∧ 1 ≤ walk-length xs ∧ hd xs =
last xs

using is-cycle-alt-gen-path is-cycle-def is-gen-path-def by blast
show is-walk xs ∧ distinct (tl xs) ∧ 1 ≤ walk-length xs ∧ hd xs = last xs =⇒

is-cycle xs
by (simp add: is-cycle-alt-gen-path is-gen-path-def)

qed

lemma is-cycle-rev: is-cycle xs ←→ is-cycle (rev xs)
proof −

have len: 1 ≤ walk-length xs ←→ 1 ≤ walk-length (rev xs)

33

by (metis length-rev walk-edges-rev walk-length-def)
have hd xs = last xs =⇒ distinct (tl xs) ←→ distinct (tl (rev xs))

using distinct-tl-rev by blast
then show ?thesis using len is-cycle-def

using is-closed-walk-def is-closed-walk-rev by auto
qed

lemma cycle-tl-is-path: is-cycle xs ∧ walk-length xs ≥ 3 =⇒ is-path (tl xs)
proof (simp add: is-cycle-def is-path-def is-open-walk-def is-closed-walk-def walk-length-conv,

elim conjE , intro conjI , simp add: is-walk-tl)
assume w: is-walk xs and eq: hd xs = last xs and 3 ≤ length xs − Suc 0 and

dis: distinct (tl xs)
then have len: 4 ≤ length xs

by linarith
then have lentl: 3 ≤ length (tl xs) by simp
then have lentltl: 2 ≤ length (tl (tl xs)) by simp
have last (tl (tl xs)) = last (tl xs)

by (metis One-nat-def Suc-1 ‹3 ≤ length xs − Suc 0› diff-is-0-eq ′ is-walk-def
is-walk-tl last-tl

lentl not-less-eq-eq numeral-le-one-iff one-le-numeral order .trans semir-
ing-norm(70) w)

then have last (tl xs) ∈ set (tl (tl xs))
using last-in-list-tl-set lentltl by (metis last-in-set list.sel(2))

moreover have hd (tl xs) /∈ set (tl (tl xs)) using dis lentltl
by (metis distinct.simps(2) hd-Cons-tl list.sel(2) list.size(3) not-numeral-le-zero)

ultimately show hd (tl xs) 6= last (tl xs) by fastforce
qed

lemma is-gen-path-path:
assumes is-gen-path p and walk-length p > 0 and (¬ is-cycle p)
shows is-path p

proof (simp add: is-gen-path-def is-path-def is-open-walk-def , intro conjI)
show is-walk p using is-gen-path-def assms(1) by simp
show ne: hd p 6= last p

using assms(1) assms(2) assms(3) is-cycle-alt-gen-path by auto
have ((distinct (tl p) ∧ hd p = last p) ∨ distinct p) using is-gen-path-def assms(1)

by auto
thus distinct p using ne by auto

qed

lemma is-gen-path-options: is-gen-path p ←→ is-cycle p ∨ is-path p ∨ (∃ v ∈ V .
p = [v])
proof (intro iffI)

assume a: is-gen-path p
then have p 6= [] unfolding is-gen-path-def is-walk-def by auto
then have (∀ v ∈ V . p 6= [v]) =⇒ walk-length p > 0 using walk-length-def

by (metis a is-gen-path-def is-walk-wf-hd length-greater-0-conv list.collapse

34

list.distinct(1) walk-edges.simps(3))
then show is-cycle p ∨ is-path p ∨ (∃ v ∈ V . p = [v])

using a is-gen-path-path by auto
next

show is-cycle p ∨ is-path p ∨ (∃ v ∈ V . p = [v]) =⇒ is-gen-path p
using is-gen-path-cycle is-path-gen-path is-gen-path-trivial by auto

qed

definition cycles :: ′a list set where
cycles ≡ {p. is-cycle p}

lemma cycles-ss-gen-paths: cycles ⊆ gen-paths
unfolding cycles-def gen-paths-def using is-gen-path-cycle by auto

lemma gen-paths-ss: gen-paths ⊆ cycles ∪ paths ∪ {[v] | v. v ∈ V}
unfolding gen-paths-def cycles-def paths-def using is-gen-path-options by auto

Walk edges are distinct in a path and cycle
lemma distinct-edgesI :

assumes distinct p shows distinct (walk-edges p)
proof −

from assms have ?thesis
∧

u. u /∈ set p =⇒ (
∧

v. u 6= v =⇒ {u,v} /∈ set
(walk-edges p))

by (induct p rule: walk-edges.induct) auto
then show ?thesis by simp

qed

lemma scycles-distinct-edges:
assumes c ∈ cycles 3 ≤ walk-length c shows distinct (walk-edges c)

proof −
from assms have c-props: distinct (tl c) 4 ≤ length c hd c = last c

by (auto simp add: cycles-def is-cycle-def is-closed-walk-def walk-length-conv)
then have {hd c, hd (tl c)} /∈ set (walk-edges (tl c))
proof (induct c rule: walk-edges.induct)

case (3 x y ys)
then have hd ys 6= last ys by (cases ys) auto
moreover
from 3 have walk-edges (y # ys) = {y, hd ys} # walk-edges ys

by (cases ys) auto
moreover
{ fix xs have set (walk-edges xs) ⊆ Pow (set xs)

by (induct xs rule: walk-edges.induct) auto }
ultimately
show ?case using 3 by auto

qed simp-all
moreover
from assms have distinct (walk-edges (tl c))

by (intro distinct-edgesI) (simp add: cycles-def is-cycle-def)
ultimately

35

show ?thesis by(cases c, simp-all)
(metis distinct.simps(1) distinct.simps(2) list.sel(1) list.sel(3) walk-edges.elims)

qed

end

context fin-ulgraph
begin

lemma finite-paths: finite paths
proof −

have ss: paths ⊆ {xs. set xs ⊆ V ∧ length xs ≤ (card (V))}
proof (rule, simp, intro conjI)

show 1:
∧

x. x ∈ paths =⇒ set x ⊆ V
unfolding paths-def is-path-def is-open-walk-def is-walk-def by simp

fix x assume a: x ∈ paths
then have distinct x

using paths-def is-path-def by simp-all
then have eq: length x = card (set x)

by (simp add: distinct-card)
then show length x ≤ gorder using a 1

by (simp add: card-mono finV)
qed
have finite {xs. set xs ⊆ V ∧ length xs ≤ (card (V))}

using finV by (simp add: finite-lists-length-le)
thus ?thesis using ss finite-subset by auto

qed

lemma finite-cycles: finite (cycles)
proof −

have cycles ⊆ {xs. set xs ⊆ V ∧ length xs ≤ Suc (card (V))}
proof (rule, simp)

fix p assume p ∈ cycles
then have distinct (tl p) and set p ⊆ V

unfolding cycles-def walks-def is-cycle-def is-closed-walk-def is-walk-def
by (simp-all)

then have set (tl p) ⊆ V
by (cases p) auto

with finV have card (set (tl p)) ≤ card (V)
by (rule card-mono)

then have length (p) ≤ 1 + card (V)
using distinct-card[OF ‹distinct (tl p)›] by auto

then show set p ⊆ V ∧ length p ≤ Suc (card (V))
by (simp add: ‹set p ⊆ V ›)

qed
moreover
have finite {xs. set xs ⊆ V ∧ length xs ≤ Suc (card (V))}

using finV by (rule finite-lists-length-le)
ultimately

36

show ?thesis by (rule finite-subset)
qed

lemma finite-gen-paths: finite (gen-paths)
proof −

have finite ({[v] | v . v ∈ V}) using finV by auto
thus ?thesis using gen-paths-ss finite-cycles finite-paths finite-subset by auto

qed

end

end

3 Connectivity
This theory defines concepts around the connectivity of a graph and its
vertices, as well as graph properties that depend on connectivity definitions,
such as shortest path, radius, diameter, and eccentricity
theory Connectivity imports Undirected-Graph-Walks
begin

context ulgraph
begin

3.1 Connecting Walks and Paths
definition connecting-walk :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-walk u v xs ≡ is-walk xs ∧ hd xs= u ∧ last xs = v

lemma connecting-walk-rev: connecting-walk u v xs ←→ connecting-walk v u (rev
xs)

unfolding connecting-walk-def using is-walk-rev
by (auto simp add: hd-rev last-rev)

lemma connecting-walk-wf : connecting-walk u v xs =⇒ u ∈ V ∧ v ∈ V
using is-walk-wf-hd is-walk-wf-last by (auto simp add: connecting-walk-def)

lemma connecting-walk-self : u ∈ V =⇒ connecting-walk u u [u] = True
unfolding connecting-walk-def by (simp add: is-walk-singleton)

We define two definitions of connecting paths. The first uses the gen-path
definition, which allows for trivial paths and cycles, the second uses the
stricter definition of a path which requires it to be an open walk
definition connecting-path :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-path u v xs ≡ is-gen-path xs ∧ hd xs = u ∧ last xs = v

definition connecting-path-str :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-path-str u v xs ≡ is-path xs ∧ hd xs = u ∧ last xs = v

37

lemma connecting-path-rev: connecting-path u v xs ←→ connecting-path v u (rev
xs)

unfolding connecting-path-def using is-gen-path-rev
by (auto simp add: hd-rev last-rev)

lemma connecting-path-walk: connecting-path u v xs =⇒ connecting-walk u v xs
unfolding connecting-path-def connecting-walk-def using is-gen-path-def by auto

lemma connecting-path-str-gen: connecting-path-str u v xs =⇒ connecting-path u
v xs

unfolding connecting-path-def connecting-path-str-def is-gen-path-def is-path-def
by (simp add: is-open-walk-def)

lemma connecting-path-gen-str : connecting-path u v xs =⇒ (¬ is-cycle xs) =⇒
walk-length xs > 0 =⇒ connecting-path-str u v xs

unfolding connecting-path-def connecting-path-str-def using is-gen-path-path by
auto

lemma connecting-path-alt-def : connecting-path u v xs ←→ connecting-walk u v xs
∧ is-gen-path xs
proof −

have is-gen-path xs =⇒ is-walk xs
by (simp add: is-gen-path-def)

then have (is-walk xs ∧ hd xs = u ∧ last xs = v) ∧ is-gen-path xs ←→ (hd xs
= u ∧ last xs = v) ∧ is-gen-path xs

by blast
thus ?thesis

by (auto simp add: connecting-path-def connecting-walk-def)
qed

lemma connecting-path-length-bound: u 6= v =⇒ connecting-path u v p =⇒ walk-length
p ≥ 1

using walk-length-def
by (metis connecting-path-def is-gen-path-def is-walk-not-empty2 last-ConsL le-refl

length-0-conv
less-one list.exhaust-sel nat-less-le nat-neq-iff neq-Nil-conv walk-edges.simps(3))

lemma connecting-path-self : u ∈ V =⇒ connecting-path u u [u] = True
unfolding connecting-path-alt-def using connecting-walk-self
by (simp add: is-gen-path-def is-walk-singleton)

lemma connecting-path-singleton: connecting-path u v xs =⇒ length xs = 1 =⇒ u
= v

by (metis cancel-comm-monoid-add-class.diff-cancel connecting-path-def fact-1
fact-nonzero

last-rev length-0-conv neq-Nil-conv singleton-rev-conv walk-edges.simps(3)
walk-length-conv walk-length-def)

38

lemma connecting-walk-path:
assumes connecting-walk u v xs
shows ∃ ys . connecting-path u v ys ∧ walk-length ys ≤ walk-length xs

proof (cases u = v)
case True
then show ?thesis

using assms connecting-path-self connecting-walk-wf
by (metis bot-nat-0.extremum list.size(3) walk-edges.simps(2) walk-length-def)

next
case False
then have walk-length xs 6= 0 using assms connecting-walk-def is-walk-def
by (metis last-ConsL length-0-conv list.distinct(1) list.exhaust-sel walk-edges.simps(3)

walk-length-def)
then show ?thesis using assms False proof (induct walk-length xs arbitrary: xs

rule: less-induct)
fix xs assume IH : (

∧
xsa. walk-length xsa < walk-length xs =⇒ walk-length xsa

6= 0 =⇒
connecting-walk u v xsa =⇒ u 6= v =⇒ ∃ ys. connecting-path u v ys ∧ walk-length

ys ≤ walk-length xsa)
assume assm: connecting-walk u v xs and ne: u 6= v and n0: walk-length xs 6=

0
then show ∃ ys. connecting-path u v ys ∧ walk-length ys ≤ walk-length xs
proof (cases walk-length xs ≤ 1) — Base Cases

case True
then have walk-length xs = 1

using n0 by auto
then show ?thesis using ne assm cancel-comm-monoid-add-class.diff-cancel

connecting-path-alt-def connecting-walk-def
distinct-length-2-or-more distinct-singleton hd-Cons-tl is-gen-path-def

is-walk-def last-ConsL
last-ConsR length-0-conv length-tl walk-length-conv

by (metis True)
next

case False
then show ?thesis
proof (cases distinct xs)

case True
then show ?thesis

using assm connecting-path-alt-def connecting-walk-def is-gen-path-def by
auto

next
case False
then obtain ws ys zs y where xs-decomp: xs = ws@[y]@ys@[y]@zs using

not-distinct-decomp
by blast

let ?rs = ws@[y]@zs
have hd: hd ?rs = u using xs-decomp assm connecting-walk-def

by (metis hd-append list.distinct(1))

39

have lst: last ?rs = v using xs-decomp assm connecting-walk-def by simp
have wl: walk-length ?rs 6= 0 using hd lst ne walk-length-conv by auto
have set ?rs ⊆ V using assm connecting-walk-def is-walk-def xs-decomp by

auto
have cw: connecting-walk u v ?rs unfolding connecting-walk-def is-walk-decomp

using assm connecting-walk-def hd is-walk-decomp lst xs-decomp by blast
have ys@[y] 6= []by simp
then have length ?rs < length xs using xs-decomp length-list-decomp-lt by

auto
have walk-length ?rs < walk-length xs using walk-length-conv xs-decomp by

force
then show ?thesis using IH [of ?rs] using cw ne wl le-trans less-or-eq-imp-le

by blast
qed

qed
qed

qed

lemma connecting-walk-split:
assumes connecting-walk u v xs assumes connecting-walk v z ys
shows connecting-walk u z (xs @ (tl ys))
using connecting-walk-def is-walk-append
by (metis append.right-neutral assms(1) assms(2) connecting-walk-self connect-

ing-walk-wf hd-append2 is-walk-not-empty last-appendR last-tl list.collapse)

lemma connecting-path-split:
assumes connecting-path u v xs connecting-path v z ys
obtains p where connecting-path u z p and walk-length p ≤ walk-length (xs @

(tl ys))
using connecting-walk-split connecting-walk-path connecting-path-walk assms(1)

assms(2) by blast

lemma connecting-path-split-length:
assumes connecting-path u v xs connecting-path v z ys
obtains p where connecting-path u z p and walk-length p ≤ walk-length xs +

walk-length ys
proof −

have connecting-walk u z (xs @ (tl ys))
using connecting-walk-split assms connecting-path-walk by blast

have walk-length (xs @ (tl ys)) ≤ walk-length xs + walk-length ys
using walk-length-app-ineq
by (simp add: le-diff-conv walk-length-conv)

thus ?thesis using connecting-path-split
by (metis (full-types) assms(1) assms(2) dual-order .trans that)

qed

40

3.2 Vertex Connectivity
Two vertices are defined to be connected if there exists a connecting path.
Note that the more general version of a connecting path is again used as a
vertex should be considered as connected to itself
definition vert-connected :: ′a ⇒ ′a ⇒ bool where
vert-connected u v ≡ ∃ xs . connecting-path u v xs

lemma vert-connected-rev: vert-connected u v ←→ vert-connected v u
unfolding vert-connected-def using connecting-path-rev by auto

lemma vert-connected-id: u ∈ V =⇒ vert-connected u u = True
unfolding vert-connected-def using connecting-path-self by auto

lemma vert-connected-trans: vert-connected u v =⇒ vert-connected v z =⇒ vert-connected
u z

unfolding vert-connected-def using connecting-path-split
by meson

lemma vert-connected-wf : vert-connected u v =⇒ u ∈ V ∧ v ∈ V
using vert-connected-def connecting-path-walk connecting-walk-wf by blast

definition vert-connected-n :: ′a ⇒ ′a ⇒ nat ⇒ bool where
vert-connected-n u v n ≡ ∃ p. connecting-path u v p ∧ walk-length p = n

lemma vert-connected-n-imp: vert-connected-n u v n =⇒ vert-connected u v
by (auto simp add: vert-connected-def vert-connected-n-def)

lemma vert-connected-n-rev: vert-connected-n u v n ←→ vert-connected-n v u n
unfolding vert-connected-n-def using walk-length-rev
by (metis connecting-path-rev)

definition connecting-paths :: ′a ⇒ ′a ⇒ ′a list set where
connecting-paths u v ≡ {xs . connecting-path u v xs}

lemma connecting-paths-self : u ∈ V =⇒ [u] ∈ connecting-paths u u
unfolding connecting-paths-def using connecting-path-self by auto

lemma connecting-paths-empty-iff : vert-connected u v ←→ connecting-paths u v 6=
{}

unfolding connecting-paths-def vert-connected-def by auto

lemma elem-connecting-paths: p ∈ connecting-paths u v =⇒ connecting-path u v p
using connecting-paths-def by blast

lemma connecting-paths-ss-gen: connecting-paths u v ⊆ gen-paths
unfolding connecting-paths-def gen-paths-def connecting-path-def by auto

lemma connecting-paths-sym: xs ∈ connecting-paths u v ←→ rev xs ∈ connect-

41

ing-paths v u
unfolding connecting-paths-def using connecting-path-rev by simp

A set is considered to be connected, if all the vertices within that set are
pairwise connected
definition is-connected-set :: ′a set ⇒ bool where
is-connected-set V ′ ≡ (∀ u v . u ∈ V ′ −→ v ∈ V ′ −→ vert-connected u v)

lemma is-connected-set-empty: is-connected-set {}
unfolding is-connected-set-def by simp

lemma is-connected-set-singleton: x ∈ V =⇒ is-connected-set {x}
unfolding is-connected-set-def by (auto simp add: vert-connected-id)

lemma is-connected-set-wf : is-connected-set V ′ =⇒ V ′ ⊆ V
unfolding is-connected-set-def
by (meson connecting-path-walk connecting-walk-wf subsetI vert-connected-def)

lemma is-connected-setD: is-connected-set V ′=⇒ u ∈ V ′=⇒ v ∈ V ′=⇒ vert-connected
u v

by (simp add: is-connected-set-def)

lemma not-connected-set: ¬ is-connected-set V ′ =⇒ u ∈ V ′ =⇒ ∃ v ∈ V ′ . ¬
vert-connected u v
using is-connected-setD by (meson is-connected-set-def vert-connected-rev vert-connected-trans)

3.3 Graph Properties on Connectivity
The shortest path is defined to be the infinum of the set of connecting path
walk lengths. Drawing inspiration from [4], we use the infinum and enats as
this enables more natural reasoning in a non-finite setting, while also being
useful for proofs of a more probabilistic or analysis nature
definition shortest-path :: ′a ⇒ ′a ⇒ enat where
shortest-path u v ≡ INF p∈ connecting-paths u v. enat (walk-length p)

lemma shortest-path-walk-length: shortest-path u v = n =⇒ p ∈ connecting-paths
u v =⇒ walk-length p ≥ n
using shortest-path-def INF-lower [of p connecting-paths u v λ p . enat (walk-length

p)]
by auto

lemma shortest-path-lte:
∧

p . p ∈ connecting-paths u v =⇒ shortest-path u v ≤
walk-length p

unfolding shortest-path-def by (simp add: Inf-lower)

lemma shortest-path-obtains:
assumes shortest-path u v = n
assumes n 6= top

42

obtains p where p ∈ connecting-paths u v and walk-length p = n
using enat-in-INF shortest-path-def by (metis assms(1) assms(2) the-enat.simps)

lemma shortest-path-intro:
assumes n 6= top
assumes (∃ p ∈ connecting-paths u v . walk-length p = n)
assumes (

∧
p. p ∈ connecting-paths u v =⇒ n ≤ walk-length p)

shows shortest-path u v = n
proof (rule ccontr)

assume a: shortest-path u v 6= enat n
then have shortest-path u v < n

by (metis antisym-conv2 assms(2) shortest-path-lte)
then have ∃ p ∈ connecting-paths u v .walk-length p < n

using shortest-path-def by (simp add: INF-less-iff)
thus False using assms(3)

using le-antisym less-imp-le-nat by blast
qed

lemma shortest-path-self :
assumes u ∈ V
shows shortest-path u u = 0

proof −
have [u] ∈ connecting-paths u u

using connecting-paths-self by (simp add: assms)
then have walk-length [u] = 0

using walk-length-def walk-edges.simps by auto
thus ?thesis using shortest-path-def
by (metis ‹[u] ∈ connecting-paths u u› le-zero-eq shortest-path-lte zero-enat-def)

qed

lemma connecting-paths-sym-length: i ∈ connecting-paths u v =⇒ ∃ j∈connecting-paths
v u. (walk-length j) = (walk-length i)

using connecting-paths-sym by (metis walk-length-rev)

lemma shortest-path-sym: shortest-path u v = shortest-path v u
unfolding shortest-path-def
by (intro INF-eq)(metis add.right-neutral le-iff-add connecting-paths-sym-length)+

lemma shortest-path-inf : ¬ vert-connected u v =⇒ shortest-path u v = ∞
using connecting-paths-empty-iff shortest-path-def by (simp add: top-enat-def)

lemma shortest-path-not-inf :
assumes vert-connected u v
shows shortest-path u v 6= ∞

proof −
have

∧
p. connecting-path u v p =⇒ enat (walk-length p) 6= ∞

43

using connecting-path-def is-gen-path-def by auto
thus ?thesis unfolding shortest-path-def connecting-paths-def
by (metis assms connecting-paths-def infinity-ileE mem-Collect-eq shortest-path-def

shortest-path-lte vert-connected-def)
qed

lemma shortest-path-obtains2:
assumes vert-connected u v
obtains p where p ∈ connecting-paths u v and walk-length p = shortest-path u

v
proof −

have connecting-paths u v 6= {} using assms connecting-paths-empty-iff by auto
have shortest-path u v 6= ∞ using assms shortest-path-not-inf by simp
thus ?thesis using shortest-path-def enat-in-INF

by (metis that top-enat-def)
qed

lemma shortest-path-split: shortest-path x y ≤ shortest-path x z + shortest-path z
y
proof (cases vert-connected x y ∧ vert-connected x z)

case True
show ?thesis
proof (rule ccontr)

assume ¬ shortest-path x y ≤ shortest-path x z + shortest-path z y
then have c: shortest-path x y > shortest-path x z + shortest-path z y by simp
have vert-connected z y using True vert-connected-trans vert-connected-rev by

blast
then obtain p1 p2 where connecting-path x z p1 and connecting-path z y p2

and
s1: shortest-path x z = walk-length p1 and s2: shortest-path z y = walk-length

p2
using True shortest-path-obtains2 connecting-paths-def elem-connecting-paths

by metis
then obtain p3 where cp: connecting-path x y p3 and walk-length p1 +

walk-length p2 ≥ walk-length p3
using connecting-path-split-length by blast

then have shortest-path x z + shortest-path z y ≥ walk-length p3 using s1 s2
by simp

then have lt: shortest-path x y > walk-length p3 using c by auto
have p3 ∈ connecting-paths x y using cp connecting-paths-def by auto
then show False using shortest-path-def shortest-path-obtains2
by (metis True enat-ord-simps(1) enat-ord-simps(2) le-Suc-ex lt not-add-less1

shortest-path-lte)
qed

next
case False
then show ?thesis
by (metis enat-ord-code(3) plus-enat-simps(2) plus-enat-simps(3) shortest-path-inf

vert-connected-trans)

44

qed

lemma shortest-path-invalid-v: v /∈ V ∨ u /∈ V =⇒ shortest-path u v = ∞
using shortest-path-inf vert-connected-wf by blast

lemma shortest-path-lb:
assumes u 6= v
assumes vert-connected u v
shows shortest-path u v > 0

proof −
have

∧
p. connecting-path u v p =⇒ enat (walk-length p) > 0

using connecting-path-length-bound assms by fastforce
thus ?thesis unfolding shortest-path-def
by (metis elem-connecting-paths shortest-path-def shortest-path-obtains2 assms(2))

qed

Eccentricity of a vertex v is the furthest distance between it and a (dif-
ferent) vertex
definition eccentricity :: ′a ⇒ enat where
eccentricity v ≡ SUP u ∈ V − {v}. shortest-path v u

lemma eccentricity-empty-vertices: V = {} =⇒ eccentricity v = 0
V = {v} =⇒ eccentricity v = 0
unfolding eccentricity-def using bot-enat-def by simp-all

lemma eccentricity-bot-iff : eccentricity v = 0 ←→ V = {} ∨ V = {v}
proof (intro iffI)

assume a: eccentricity v = 0
show V = {} ∨ V = {v}
proof (rule ccontr , simp)

assume a2: V 6= {} ∧ V 6= {v}
have eq0: ∀ u ∈ V − {v} . shortest-path v u = 0

using SUP-bot-conv(1)[of λ u. shortest-path v u V − {v}] a eccentricity-def
bot-enat-def by simp

have nc: ∀ u ∈ V − {v} . ¬ vert-connected v u −→ shortest-path v u = ∞
using shortest-path-inf by simp

have ∀ u ∈ V − {v} . vert-connected v u −→ shortest-path v u > 0
using shortest-path-lb by auto

then show False using eq0 a2 nc
by auto

qed
next

show V = {} ∨ V = {v} =⇒ eccentricity v = 0 using eccentricity-empty-vertices
by auto
qed

lemma eccentricity-invalid-v:
assumes v /∈ V
assumes V 6= {}

45

shows eccentricity v = ∞
proof −

have
∧

u. shortest-path v u = ∞ using assms shortest-path-invalid-v by blast
have V − {v} = V using assms by simp
then have eccentricity v = (SUP u ∈ V . shortest-path v u) by (simp add:

eccentricity-def)
thus ?thesis using eccentricity-def shortest-path-invalid-v assms by simp

qed

lemma eccentricity-gt-shortest-path:
assumes u ∈ V
shows eccentricity v ≥ shortest-path v u

proof (cases u ∈ V − {v})
case True
then show ?thesis unfolding eccentricity-def by (simp add: SUP-upper)

next
case f1: False
then have u = v using assms by auto
then have shortest-path u v = 0 using shortest-path-self assms by auto
then show ?thesis by (simp add: ‹u = v›)

qed

lemma eccentricity-disconnected-graph:
assumes ¬ is-connected-set V
assumes v ∈ V
shows eccentricity v = ∞

proof −
obtain u where uin: u ∈ V and nvc: ¬ vert-connected v u

using not-connected-set assms by auto
then have u 6= v using vert-connected-id by auto
then have u ∈ V − {v} using uin by simp
moreover have shortest-path v u = ∞ using nvc shortest-path-inf by auto
thus ?thesis using eccentricity-gt-shortest-path

by (metis enat-ord-simps(5) uin)
qed

The diameter is the largest distance between any two vertices
definition diameter :: enat where
diameter ≡ SUP v ∈ V . eccentricity v

lemma diameter-gt-eccentricity: v ∈ V =⇒ diameter ≥ eccentricity v
using diameter-def by (simp add: SUP-upper)

lemma diameter-disconnected-graph:
assumes ¬ is-connected-set V
shows diameter = ∞
unfolding diameter-def using eccentricity-disconnected-graph
by (metis SUP-eq-const assms is-connected-set-empty)

46

lemma diameter-empty: V = {} =⇒ diameter = 0
unfolding diameter-def using Sup-empty bot-enat-def by simp

lemma diameter-singleton: V = {v} =⇒ diameter = eccentricity v
unfolding diameter-def by simp

The radius is the smallest ”shortest” distance between any two vertices
definition radius :: enat where
radius ≡ INF v ∈ V . eccentricity v

lemma radius-lt-eccentricity: v ∈ V =⇒ radius ≤ eccentricity v
using radius-def by (simp add: INF-lower)

lemma radius-disconnected-graph: ¬ is-connected-set V =⇒ radius = ∞
unfolding radius-def using eccentricity-disconnected-graph
by (metis INF-eq-const is-connected-set-empty)

lemma radius-empty: V = {} =⇒ radius = ∞
unfolding radius-def using Inf-empty top-enat-def by simp

lemma radius-singleton: V = {v} =⇒ radius = eccentricity v
unfolding radius-def by simp

The centre of the graph is all vertices whose eccentricity equals the radius
definition centre :: ′a set where
centre ≡ {v ∈ V . eccentricity v = radius }

lemma centre-disconnected-graph: ¬ is-connected-set V =⇒ centre = V
unfolding centre-def using radius-disconnected-graph eccentricity-disconnected-graph

by auto

end

lemma (in fin-ulgraph) fin-connecting-paths: finite (connecting-paths u v)
using connecting-paths-ss-gen finite-gen-paths finite-subset by fastforce

3.4 We define a connected graph as a non-empty graph (the
empty set is not usually considered connected by con-
vention), where the vertex set is connected

locale connected-ulgraph = ulgraph + ne-graph-system +
assumes connected: is-connected-set V

begin

lemma vertices-connected: u ∈ V =⇒ v ∈ V =⇒ vert-connected u v
using is-connected-set-def connected by auto

lemma vertices-connected-path: u ∈ V =⇒ v ∈ V =⇒ ∃ p. connecting-path u v p
using vertices-connected by (simp add: vert-connected-def)

47

lemma connecting-paths-not-empty: u ∈ V =⇒ v ∈ V =⇒ connecting-paths u v
6= {}

using connected not-empty connecting-paths-empty-iff is-connected-setD by blast

lemma min-shortest-path: assumes u ∈ V v ∈ V u 6= v
shows shortest-path u v > 0
using shortest-path-lb assms vertices-connected by auto

The eccentricity, diameter, radius, and centre definitions tend to be only
used in a connected context, as otherwise they are the INF/SUP value. In
these contexts, we can obtain the vertex responsible
lemma eccentricity-obtains-inf :

assumes V 6= {v}
shows eccentricity v = ∞ ∨ (∃ u ∈ (V − {v}) . shortest-path v u = eccentricity

v)
proof (cases finite ((λ u. shortest-path v u) ‘ (V − {v})))

case True
then have e: eccentricity v = Max ((λ u. shortest-path v u) ‘ (V − {v}))

unfolding eccentricity-def using Sup-enat-def
using assms not-empty by auto

have (V − {v}) 6= {} using assms not-empty by auto
then have ((λ u. shortest-path v u) ‘ (V − {v})) 6= {} by simp
then obtain n where n ∈ ((λ u. shortest-path v u) ‘ (V − {v})) and n =

eccentricity v
using Max-in e True by auto

then obtain u where u ∈ (V − {v}) and shortest-path v u = eccentricity v
by blast

then show ?thesis by auto
next

case False
then have eccentricity v = ∞ unfolding eccentricity-def using Sup-enat-def

by (metis (mono-tags, lifting) cSup-singleton empty-iff finite-insert insert-iff)
then show ?thesis by simp

qed

lemma diameter-obtains: diameter = ∞ ∨ (∃ v ∈ V . eccentricity v = diameter)
proof (cases is-singleton V)

case True
then obtain v where V = {v}

using is-singletonE by auto
then show ?thesis using diameter-singleton

by simp
next

case f1: False
then show ?thesis proof (cases finite ((λ v. eccentricity v) ‘ V))

case True
then have diameter = Max ((λ v. eccentricity v) ‘ V) unfolding diameter-def

48

using Sup-enat-def not-empty
by simp

then obtain n where n ∈((λ v. eccentricity v) ‘ V) and diameter = n using
Max-in True

using not-empty by auto
then obtain u where u ∈ V and eccentricity u = diameter

by fastforce
then show ?thesis by auto

next
case False
then have diameter =∞ unfolding diameter-def using Sup-enat-def by auto
then show ?thesis by simp

qed
qed

lemma radius-diameter-singleton-eq: assumes card V = 1 shows radius = diam-
eter
proof −

obtain v where V = {v} using assms card-1-singletonE by auto
thus ?thesis unfolding radius-def diameter-def by auto

qed

end

locale fin-connected-ulgraph = connected-ulgraph + fin-ulgraph
begin

In a finite context the supremum/infinum are equivalent to the Max/Min
of the sets respectively. This can make reasoning easier
lemma shortest-path-Min-alt:

assumes u ∈ V v ∈ V
shows shortest-path u v = Min ((λ p. enat (walk-length p)) ‘ (connecting-paths

u v)) (is shortest-path u v = Min ?A)
proof −

have ne: ?A 6= {}
using connecting-paths-not-empty assms by auto

have finite (connecting-paths u v)
by (simp add: fin-connecting-paths)

then have fin: finite ?A
by simp

have shortest-path u v = Inf ?A unfolding shortest-path-def by simp
thus ?thesis using Min-Inf ne

by (metis fin)
qed

lemma eccentricity-Max-alt:
assumes v ∈ V
assumes V 6= {v}
shows eccentricity v = Max ((λ u. shortest-path v u) ‘ (V − {v}))

49

unfolding eccentricity-def using assms Sup-enat-def finV not-empty
by auto

lemma diameter-Max-alt: diameter = Max ((λ v. eccentricity v) ‘ V)
unfolding diameter-def using Sup-enat-def finV not-empty by auto

lemma radius-Min-alt: radius = Min ((λ v. eccentricity v) ‘ V)
unfolding radius-def using Min-Inf finV not-empty
by (metis (no-types, opaque-lifting) empty-is-image finite-imageI)

lemma eccentricity-obtains:
assumes v ∈ V
assumes V 6= {v}
obtains u where u ∈ V and u 6= v and shortest-path u v = eccentricity v

proof −
have ni:

∧
u. u ∈ V − {v} =⇒ u 6= v ∧ u ∈ V by auto

have ne: V − {v} 6= {} using assms not-empty by auto
have eccentricity v = Max ((λ u. shortest-path v u) ‘ (V − {v})) using eccen-

tricity-Max-alt assms by simp
then obtain u where ui: u ∈ V − {v} and eq: shortest-path v u = eccentricity

v
using obtains-MAX assms finV ne by (metis finite-Diff)

then have neq: u 6= v by blast
have uin: u ∈ V using ui by auto
thus ?thesis using neq eq that[of u] shortest-path-sym by simp

qed

lemma radius-obtains:
obtains v where v ∈ V and radius = eccentricity v

proof −
have radius = Min ((λ v. eccentricity v) ‘ V) using radius-Min-alt by simp
then obtain v where v ∈ V and radius = eccentricity v

using obtains-MIN [of V (λ v . eccentricity v)] not-empty finV by auto
thus ?thesis

by (simp add: that)
qed

lemma radius-obtains-path-vertices:
assumes card V ≥ 2
obtains u v where u ∈ V and v ∈ V and u 6= v and radius = shortest-path u

v
proof −

obtain v where vin: v ∈ V and e: radius = eccentricity v
using radius-obtains by blast

then have V 6= {v} using assms by auto
then obtain u where u ∈ V and u 6= v and shortest-path u v = radius

using eccentricity-obtains vin e by auto
thus ?thesis using vin

by (simp add: that)

50

qed

lemma diameter-obtains:
obtains v where v ∈ V and diameter = eccentricity v

proof −
have diameter = Max ((λ v. eccentricity v) ‘ V) using diameter-Max-alt by

simp
then obtain v where v ∈ V and diameter = eccentricity v

using obtains-MAX [of V (λ v . eccentricity v)] not-empty finV by auto
thus ?thesis

by (simp add: that)
qed

lemma diameter-obtains-path-vertices:
assumes card V ≥ 2
obtains u v where u ∈ V and v ∈ V and u 6= v and diameter = shortest-path

u v
proof −

obtain v where vin: v ∈ V and e: diameter = eccentricity v
using diameter-obtains by blast

then have V 6= {v} using assms by auto
then obtain u where u ∈ V and u 6= v and shortest-path u v = diameter

using eccentricity-obtains vin e by auto
thus ?thesis using vin

by (simp add: that)
qed

lemma radius-diameter-bounds:
shows radius ≤ diameter diameter ≤ 2 ∗ radius

proof −
show radius ≤ diameter unfolding radius-def diameter-def

by (simp add: INF-le-SUP not-empty)
next

show diameter ≤ 2 ∗ radius
proof (cases card V ≥ 2)

case True
then obtain x y where xin: x ∈ V and yin: y ∈ V and d: shortest-path x y

= diameter
using diameter-obtains-path-vertices by metis

obtain z where zin: z ∈ V and e: eccentricity z = radius using radius-obtains
by metis

have shortest-path x z ≤ eccentricity z
using eccentricity-gt-shortest-path xin shortest-path-sym by simp

have shortest-path x y ≤ shortest-path x z + shortest-path z y using short-
est-path-split by simp

also have ... ≤ eccentricity z + eccentricity z
using eccentricity-gt-shortest-path shortest-path-sym zin xin yin by (simp add:

add-mono)
also have ... ≤ radius + radius using e by simp

51

finally show ?thesis using d by (simp add: mult-2)
next

case False
have card V 6= 0 using not-empty finV by auto
then have card V = 1 using False by simp
then show ?thesis using radius-diameter-singleton-eq by (simp add: mult-2)

qed
qed

end

We define various subclasses of the general connected graph, using the
functor locale pattern
locale connected-sgraph = sgraph + ne-graph-system +

assumes connected: is-connected-set V

sublocale connected-sgraph ⊆ connected-ulgraph
by (unfold-locales) (simp add: connected)

locale fin-connected-sgraph = connected-sgraph + fin-sgraph

sublocale fin-connected-sgraph ⊆ fin-connected-ulgraph
by (unfold-locales)

end
theory Girth-Independence imports Connectivity
begin

4 Girth and Independence
We translate and extend on a number of definitions and lemmas on girth
and independence from Noschinski’s ugraph representation [4].
context sgraph
begin

definition girth :: enat where
girth ≡ INF p∈ cycles. enat (walk-length p)

lemma girth-acyclic: cycles = {} =⇒ girth = ∞
unfolding girth-def using top-enat-def by simp

lemma girth-lte: c ∈ cycles =⇒ girth ≤ walk-length c
using girth-def INF-lower by auto

lemma girth-obtains:
assumes girth 6= top
obtains c where c ∈ cycles and walk-length c = girth
using enat-in-INF girth-def assms by (metis (full-types) the-enat.simps)

52

lemma girthI :
assumes c ′ ∈ cycles
assumes

∧
c . c ∈ cycles =⇒ walk-length c ′ ≤ walk-length c

shows girth = walk-length c ′

proof (rule ccontr)
assume girth 6= walk-length c ′

then have girth < walk-length c ′

using assms girth-lte by fastforce
then obtain c where c ∈ cycles and walk-length c < walk-length c ′

using girth-def by (metis enat-ord-simps(2) girth-obtains infinity-ilessE top-enat-def)

thus False using assms(2) less-imp-le-nat le-antisym
by fastforce

qed

lemma (in fin-sgraph) girth-min-alt:
assumes cycles 6= {}
shows girth = Min ((λ c . enat (walk-length c)) ‘ cycles) (is girth = Min ?A)
unfolding girth-def using finite-cycles assms Min-Inf
by (metis (full-types) INF-le-SUP bot-enat-def ccInf-empty ccSup-empty enat-ord-code(5)

finite-imageI top-enat-def zero-enat-def)

definition is-independent-set :: ′a set ⇒ bool where
is-independent-set vs ≡ vs ⊆ V ∧ (all-edges vs) ∩ E = {}

A More mathematical way of thinking about it
lemma is-independent-alt: is-independent-set vs ←→ vs ⊆ V ∧ (∀ v ∈ vs. ∀ u ∈
vs. ¬ vert-adj v u)

unfolding is-independent-set-def
proof (auto)

fix v u assume ss: vs ⊆ V and inter : all-edges vs ∩ E = {} and vin: v ∈ vs
and uin: u ∈ vs and adj: vert-adj v u

then have inE : {v, u} ∈ E using vert-adj-def by simp
then have imp: {v, u} ∈ all-edges vs using vin uin e-in-all-edges-ss vin uin

by (simp add: ss)
then show False

using inE inter by blast
next

fix x assume vs ⊆ V ∀ v∈vs. ∀ u∈vs. ¬ vert-adj v u x ∈ all-edges vs x ∈ E
then have

∧
u v. {u, v} ⊆ vs =⇒ {u, v} /∈ E by (simp add: vert-adj-def)

then have
∧

x . x ⊆ vs =⇒ card x = 2 =⇒ x /∈ E by (metis card-2-iff)
then show False using all-edges-def

by (metis (mono-tags, lifting) ‹x ∈ E› ‹x ∈ all-edges vs› mem-Collect-eq)
qed

lemma singleton-independent-set: v ∈ V =⇒ is-independent-set {v}
by (metis empty-subsetI insert-absorb2 insert-subset is-independent-alt

singletonD singleton-not-edge vert-adj-def)

53

definition independent-sets :: ′a set set where
independent-sets ≡ {vs. is-independent-set vs}

definition independence-number :: enat where
independence-number ≡ SUP vs ∈ independent-sets. enat (card vs)

abbreviation α ≡ independence-number

lemma independent-sets-mono:
vs ∈ independent-sets =⇒ us ⊆ vs =⇒ us ∈ independent-sets
using Int-mono[OF all-edges-mono, of us vs E E]
unfolding independent-sets-def is-independent-set-def by auto

lemma le-independence-iff :
assumes 0 < k
shows k ≤ α ←→ k ∈ card ‘ independent-sets (is ?L ←→ ?R)

proof
assume ?L
then obtain vs where vs ∈ independent-sets and klt: k ≤ card vs

using assms unfolding independence-number-def enat-le-Sup-iff by auto
moreover
obtain us where us ⊆ vs and k = card us

using card-Ex-subset klt by auto
ultimately
have us ∈ independent-sets by (auto intro: independent-sets-mono)
then show ?R using ‹k = card us› by auto

qed (auto intro: SUP-upper simp: independence-number-def)

lemma zero-less-independence:
assumes V 6= {}
shows 0 < α

proof −
from assms obtain a where a ∈ V by auto
then have 0 < enat (card {a}) {a} ∈ independent-sets
using independent-sets-def is-independent-set-def all-edges-def singleton-independent-set

by simp-all
then show ?thesis unfolding independence-number-def less-SUP-iff ..

qed

end

context fin-sgraph
begin
lemma fin-independent-sets: finite (independent-sets)

unfolding independent-sets-def is-independent-set-def using finV by auto

lemma independence-le-card:
shows α ≤ card V

54

proof −
{ fix x assume x ∈ independent-sets

then have x ⊆ V by (auto simp: independent-sets-def is-independent-set-def)
}

with finV show ?thesis unfolding independence-number-def
by (intro SUP-least) (auto intro: card-mono)

qed

lemma independence-fin: α 6= ∞
using independence-le-card by (cases α) auto

lemma independence-max-alt: V 6= {} =⇒ α = Max ((λ vs . enat (card vs)) ‘
independent-sets)

unfolding independence-number-def using Sup-enat-def zero-less-independence
by (metis i0-less independence-fin independence-number-def)

lemma independent-sets-ne:
assumes V 6= {}
shows independent-sets 6= {}

proof −
from assms obtain a where a ∈ V by auto
then have {a} ∈ independent-sets using independent-sets-def singleton-independent-set

by simp
thus ?thesis by blast

qed

lemma independence-obtains:
assumes V 6= {}
obtains vs where is-independent-set vs and card vs = α

proof −
have α = Max ((λ vs . enat (card vs)) ‘ independent-sets) using indepen-

dence-max-alt assms by simp
then obtain vs where vs ∈ independent-sets and enat (card vs) = α
using obtains-MIN [of independent-sets λ vs . enat (card vs)] assms fin-independent-sets

independent-sets-ne
by (metis (no-types, lifting) Max-in finite-imageI imageE image-is-empty)

thus ?thesis using independent-sets-def that by simp
qed
end
end

5 Triangles in Graph
Triangles are an important tool in graph theory. This theory presents a
number of basic definitions/lemmas which are useful for general reasoning
using triangles. The definitions and lemmas in this theory are adapted from
previous less general work in [2] and [1]
theory Graph-Triangles imports Undirected-Graph-Basics

55

HOL−Combinatorics.Multiset-Permutations
begin

Triangles don’t make as much sense in a loop context, hence we restrict
this to simple graphs
context sgraph
begin

definition triangle-in-graph :: ′a ⇒ ′a ⇒ ′a ⇒ bool where
triangle-in-graph x y z ≡ ({x,y} ∈ E) ∧ ({y,z} ∈ E) ∧ ({x,z} ∈E)

lemma triangle-in-graph-edge-empty: E = {} =⇒ ¬ triangle-in-graph x y z
using triangle-in-graph-def by auto

definition triangle-triples where
triangle-triples X Y Z ≡ {(x,y,z) ∈ X × Y × Z . triangle-in-graph x y z }

definition
unique-triangles
≡ ∀ e ∈ E . ∃ !T . ∃ x y z. T = {x,y,z} ∧ triangle-in-graph x y z ∧ e ⊆ T

definition triangle-set :: ′a set set
where triangle-set ≡ { {x,y,z} | x y z. triangle-in-graph x y z}

5.1 Preliminaries on Triangles in Graphs
lemma card-triangle-triples-rotate: card (triangle-triples X Y Z) = card (triangle-triples
Y Z X)
proof −

have triangle-triples Y Z X = (λ(x,y,z). (y,z,x)) ‘ triangle-triples X Y Z
by (auto simp: triangle-triples-def case-prod-unfold image-iff insert-commute

triangle-in-graph-def)
moreover have inj-on (λ(x, y, z). (y, z, x)) (triangle-triples X Y Z)

by (auto simp: inj-on-def)
ultimately show ?thesis

by (simp add: card-image)
qed

lemma triangle-commu1:
assumes triangle-in-graph x y z
shows triangle-in-graph y x z
using assms triangle-in-graph-def by (auto simp add: insert-commute)

lemma triangle-vertices-distinct1:
assumes tri: triangle-in-graph x y z
shows x 6= y

proof (rule ccontr)
assume a: ¬ x 6= y
have card {x, y} = 2 using tri triangle-in-graph-def

56

using wellformed by (simp add: two-edges)
thus False using a by simp

qed

lemma triangle-vertices-distinct2:
assumes triangle-in-graph x y z
shows y 6= z
by (metis assms triangle-vertices-distinct1 triangle-in-graph-def)

lemma triangle-vertices-distinct3:
assumes triangle-in-graph x y z
shows z 6= x
by (metis assms triangle-vertices-distinct1 triangle-in-graph-def)

lemma triangle-in-graph-edge-point: triangle-in-graph x y z ←→ {y, z} ∈ E ∧
vert-adj x y ∧ vert-adj x z

by (auto simp add: triangle-in-graph-def vert-adj-def)

lemma edge-vertices-not-equal:
assumes {x,y} ∈ E
shows x 6= y
using assms two-edges by fastforce

lemma edge-btw-vertices-not-equal:
assumes (x, y) ∈ all-edges-between X Y
shows x 6= y
using edge-vertices-not-equal all-edges-between-def
by (metis all-edges-betw-D3 assms)

lemma mk-triangle-from-ss-edges:
assumes (x, y) ∈ all-edges-between X Y and (x, z) ∈ all-edges-between X Z and
(y, z) ∈ all-edges-between Y Z
shows (triangle-in-graph x y z)

by (meson all-edges-betw-D3 assms triangle-in-graph-def)

lemma triangle-in-graph-verts:
assumes triangle-in-graph x y z
shows x ∈ V y ∈ V z∈ V

proof −
show x ∈ V using triangle-in-graph-def wellformed-alt-fst assms by blast
show y ∈ V using triangle-in-graph-def wellformed-alt-snd assms by blast
show z ∈ V using triangle-in-graph-def wellformed-alt-snd assms by blast

qed

lemma convert-triangle-rep-ss:
assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows mk-triangle-set ‘ {(x, y, z) ∈ X × Y × Z . (triangle-in-graph x y z)} ⊆

triangle-set
by (auto simp add: subsetI triangle-set-def) (auto)

57

lemma (in fin-sgraph) finite-triangle-set: finite (triangle-set)
proof −

have triangle-set ⊆ Pow V
using insert-iff wellformed triangle-in-graph-def triangle-set-def by auto
then show ?thesis

by (meson finV finite-Pow-iff infinite-super)
qed

lemma card-triangle-3:
assumes t ∈ triangle-set
shows card t = 3
using assms by (auto simp: triangle-set-def edge-vertices-not-equal triangle-in-graph-def)

lemma triangle-set-power-set-ss: triangle-set ⊆ Pow V
by (auto simp add: triangle-set-def triangle-in-graph-def wellformed-alt-fst well-

formed-alt-snd)

lemma triangle-in-graph-ss:
assumes E ′ ⊆ E
assumes sgraph.triangle-in-graph E ′ x y z
shows triangle-in-graph x y z

proof −
interpret gnew: sgraph V E ′

apply (unfold-locales)
using assms wellformed two-edges by auto

have {x, y} ∈ E using assms gnew.triangle-in-graph-def by auto
have {y, z} ∈ E using assms gnew.triangle-in-graph-def by auto
have {x, z} ∈ E using assms gnew.triangle-in-graph-def by auto
thus ?thesis

by (simp add: ‹{x, y} ∈ E› ‹{y, z} ∈ E› triangle-in-graph-def)
qed

lemma triangle-set-graph-edge-ss:
assumes E ′ ⊆ E
shows (sgraph.triangle-set E ′) ⊆ (triangle-set)

proof (intro subsetI)
interpret gnew: sgraph V E ′

using assms wellformed two-edges by (unfold-locales) auto
fix t assume t ∈ gnew.triangle-set
then obtain x y z where t = {x,y,z} and gnew.triangle-in-graph x y z

using gnew.triangle-set-def assms mem-Collect-eq by auto
then have triangle-in-graph x y z using assms triangle-in-graph-ss by simp
thus t ∈ triangle-set using triangle-set-def assms

using ‹t = {x,y,z}› by auto
qed

lemma (in fin-sgraph) triangle-set-graph-edge-ss-bound:
assumes E ′ ⊆ E

58

shows card (triangle-set) ≥ card (sgraph.triangle-set E ′)
using triangle-set-graph-edge-ss finite-triangle-set
by (simp add: assms card-mono)

end

locale triangle-free-graph = sgraph +
assumes tri-free: ¬(∃ x y z. triangle-in-graph x y z)

lemma triangle-free-graph-empty: E = {} =⇒ triangle-free-graph V E
apply (unfold-locales, simp-all)
using sgraph.triangle-in-graph-edge-empty
by (metis Int-absorb all-edges-disjoint complete-sgraph)

context fin-sgraph
begin

Converting between ordered and unordered triples for reasoning on car-
dinality
lemma card-convert-triangle-rep:

assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows card (triangle-set) ≥ 1/6 ∗ card {(x, y, z) ∈ X × Y × Z . (triangle-in-graph

x y z)}
(is - ≥ 1/6 ∗ card ?TT)

proof −
define tofl where tofl ≡ λl:: ′a list. (hd l, hd(tl l), hd(tl(tl l)))
have in-tofl: (x, y, z) ∈ tofl ‘ permutations-of-set {x,y,z} if x 6=y y 6=z x 6=z for x

y z
proof −

have distinct[x,y,z]
using that by simp

then show ?thesis
unfolding tofl-def image-iff
by (smt (verit, best) list.sel(1) list.sel(3) list.simps(15) permutations-of-setI

set-empty)
qed
have ?TT ⊆ {(x, y, z). (triangle-in-graph x y z)}

by auto
also have . . . ⊆ (

⋃
t ∈ triangle-set. tofl ‘ permutations-of-set t)

proof (clarsimp simp: triangle-set-def)
fix u v w
assume t: triangle-in-graph u v w
then have (u, v, w) ∈ tofl ‘ permutations-of-set {u,v,w}
by (metis in-tofl triangle-commu1 triangle-vertices-distinct1 triangle-vertices-distinct2)
with t show ∃ t. (∃ x y z. t = {x, y, z} ∧ triangle-in-graph x y z) ∧ (u, v, w)

∈ tofl ‘ permutations-of-set t
by blast

qed
finally have ?TT ⊆ (

⋃
t ∈ triangle-set. tofl ‘ permutations-of-set t) .

59

then have card ?TT ≤ card(
⋃

t ∈ triangle-set. tofl ‘ permutations-of-set t)
by (intro card-mono finite-UN-I finite-triangle-set) (auto simp: assms)

also have . . . ≤ (
∑

t ∈ triangle-set. card (tofl ‘ permutations-of-set t))
using card-UN-le finV finite-triangle-set wellformed by blast

also have . . . ≤ (
∑

t ∈ triangle-set. card (permutations-of-set t))
by (meson card-image-le finite-permutations-of-set sum-mono)

also have . . . ≤ (
∑

t ∈ triangle-set. fact 3)
by(rule sum-mono) (metis card.infinite card-permutations-of-set card-triangle-3

eq-refl nat.simps(3) numeral-3-eq-3)
also have . . . = 6 ∗ card (triangle-set)

by (simp add: eval-nat-numeral)
finally have card ?TT ≤ 6 ∗ card (triangle-set) .
then show ?thesis

by (simp add: divide-simps)
qed

lemma card-convert-triangle-rep-bound:
fixes t :: real
assumes card {(x, y, z) ∈ X × Y × Z . (triangle-in-graph x y z)} ≥ t
assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows card (triangle-set) ≥ 1/6 ∗t

proof −
define t ′ where t ′ ≡ card {(x, y, z) ∈ X × Y × Z . (triangle-in-graph x y z)}
have t ′ ≥ t using assms t ′-def by simp
then have tgt: 1/6 ∗ t ′ ≥ 1/6 ∗ t by simp
have card (triangle-set) ≥ 1/6 ∗t ′ using t ′-def card-convert-triangle-rep assms

by simp
thus ?thesis using tgt by linarith

qed
end
end
theory Bipartite-Graphs imports Undirected-Graph-Walks
begin

6 Bipartite Graphs
An introductory library for reasoning on bipartite graphs.

6.1 Bipartite Set Up
All ”edges”, i.e. pairs, between any two sets
definition all-bi-edges :: ′a set ⇒ ′a set ⇒ ′a edge set where
all-bi-edges X Y ≡ mk-edge ‘ (X × Y)

lemma all-bi-edges-alt:
assumes X ∩ Y = {}
shows all-bi-edges X Y = {e . card e = 2 ∧ e ∩ X 6= {} ∧ e ∩ Y 6= {}}
unfolding all-bi-edges-def

60

proof (intro subset-antisym subsetI)
fix e assume e ∈ mk-edge ‘ (X × Y)
then obtain v1 v2 where e = { v1, v2} and v1 ∈ X and v2 ∈ Y

by auto
then show e ∈ {e. card e = 2 ∧ e ∩ X 6= {} ∧ e ∩ Y 6= {}} using assms

using card-2-iff by blast
next

fix e ′ assume assm: e ′ ∈ {e. card e = 2 ∧ e ∩ X 6= {} ∧ e ∩ Y 6= {}}
then obtain v1 where v1in: v1 ∈ e ′ and v1 ∈ X

by blast
moreover obtain v2 where v2in: v2 ∈ e ′ and v2 ∈ Y using assm by blast
then have ne: v1 6= v2

using assms calculation(2) by blast
have card e ′ = 2 using assm by blast
have {v1, v2} ⊆ e ′ using v1in v2in by blast
then have e ′ = {v1, v2} using assm v1in v2in

by (metis (no-types, opaque-lifting) ‹card e ′ = 2› card-2-iff ′ insertCI ne subsetI
subset-antisym)

then show e ′ ∈ mk-edge ‘ (X × Y)
by (simp add: ‹v2 ∈ Y › calculation(2) in-mk-edge-img)

qed

lemma all-bi-edges-alt2: all-bi-edges X Y = {{x, y} | x y. x ∈ X ∧ y ∈ Y }
unfolding all-bi-edges-def

proof (intro subset-antisym subsetI)
fix x assume x ∈ mk-edge ‘ (X × Y)
then obtain a b where (a, b) ∈ (X × Y) and xeq: x = mk-edge (a, b) by blast
then show x ∈ {{x, y} |x y. x ∈ X ∧ y ∈ Y }

by auto
next

fix x assume x ∈ {{x, y} |x y. x ∈ X ∧ y ∈ Y }
then obtain a b where xeq: x = {a, b} and a ∈ X and b ∈ Y

by blast
then have (a, b) ∈ (X × Y) by auto
then show x ∈ mk-edge ‘ (X × Y) using in-mk-edge-img xeq by metis

qed

lemma all-bi-edges-wf : e ∈ all-bi-edges X Y =⇒ e ⊆ X ∪ Y
by (auto simp add: all-bi-edges-alt2)

lemma all-bi-edges-2: X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ card e = 2
using card-2-iff by (auto simp add: all-bi-edges-alt2)

lemma all-bi-edges-main: X ∩ Y = {} =⇒ all-bi-edges X Y ⊆ all-edges (X ∪ Y)
unfolding all-edges-def using all-bi-edges-wf all-bi-edges-2 by blast

lemma all-bi-edges-finite: finite X =⇒ finite Y =⇒ finite (all-bi-edges X Y)
by (simp add: all-bi-edges-def)

61

lemma all-bi-edges-not-ssX : X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ ¬ e ⊆ X
by (auto simp add: all-bi-edges-alt)

lemma all-bi-edges-sym: all-bi-edges X Y = all-bi-edges Y X
by (auto simp add: all-bi-edges-alt2)

lemma all-bi-edges-not-ssY : X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ ¬ e ⊆ Y
by (auto simp add: all-bi-edges-alt)

lemma card-all-bi-edges:
assumes finite X finite Y
assumes X ∩ Y = {}
shows card (all-bi-edges X Y) = card X ∗ card Y

proof −
have card (all-bi-edges X Y) = card (X × Y)

unfolding all-bi-edges-def using inj-on-mk-edge assms card-image by blast
thus ?thesis using card-cartesian-product by auto

qed

lemma (in sgraph) all-edges-between-bi-subset: mk-edge ‘ all-edges-between X Y ⊆
all-bi-edges X Y

by (auto simp: all-edges-between-def all-bi-edges-def)

6.2 Bipartite Graph Locale
For reasoning purposes, it is useful to explicitly label the two sets of vertices
as X and Y. These are parameters in the locale
locale bipartite-graph = graph-system +

fixes X Y :: ′a set
assumes partition: partition-on V {X , Y }
assumes ne: X 6= Y
assumes edge-betw: e ∈ E =⇒ e ∈ all-bi-edges X Y

begin

lemma part-intersect-empty: X ∩ Y = {}
using partition-onD2 partition disjointD ne
by blast

lemma X-not-empty: X 6= {}
using partition partition-onD3 by auto

lemma Y-not-empty: Y 6= {}
using partition partition-onD3 by auto

lemma XY-union: X ∪ Y = V
using partition partition-onD1 by auto

lemma card-edges-two: e ∈ E =⇒ card e = 2
using edge-betw all-bi-edges-alt part-intersect-empty by auto

62

lemma partitions-ss: X ⊆ V Y ⊆ V
using XY-union by auto

end

By definition, we say an edge must be between X and Y, i.e. contains
two vertices
sublocale bipartite-graph ⊆ sgraph

using card-edges-two by (unfold-locales)

context bipartite-graph
begin

abbreviation density ≡ edge-density X Y

lemma bipartite-sym: bipartite-graph V E Y X
using partition ne edge-betw all-bi-edges-sym
by (unfold-locales) (auto simp add: insert-commute)

lemma X-verts-not-adj:
assumes x1 ∈ X x2 ∈ X
shows ¬ vert-adj x1 x2

proof (rule ccontr , simp add: vert-adj-def)
assume {x1, x2} ∈ E
then have ¬ {x1, x2} ⊆ X

using all-bi-edges-not-ssX edge-betw part-intersect-empty by auto
then show False using assms by auto

qed

lemma Y-verts-not-adj:
assumes y1 ∈ Y y2 ∈ Y
shows ¬ vert-adj y1 y2

proof −
interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
show ?thesis using sym.X-verts-not-adj

by (simp add: assms(1) assms(2))
qed

lemma X-vert-adj-Y : x ∈X =⇒ vert-adj x y =⇒ y ∈ Y
using X-verts-not-adj XY-union vert-adj-imp-inV by blast

lemma Y-vert-adj-X : y ∈Y =⇒ vert-adj y x =⇒ x ∈ X
using Y-verts-not-adj XY-union vert-adj-imp-inV by blast

lemma neighbors-ss-eq-neighborhoodX : v ∈ X =⇒ neighborhood v = neighbors-ss
v Y

unfolding neighborhood-def neighbors-ss-def
by(auto simp add: X-vert-adj-Y vert-adj-imp-inV)

63

lemma neighbors-ss-eq-neighborhoodY : v ∈ Y =⇒ neighborhood v = neighbors-ss
v X

unfolding neighborhood-def neighbors-ss-def
by(auto simp add: Y-vert-adj-X vert-adj-imp-inV)

lemma neighborhood-subset-oppX : v ∈ X =⇒ neighborhood v ⊆ Y
using neighbors-ss-eq-neighborhoodX neighbors-ss-def by auto

lemma neighborhood-subset-oppY : v ∈ Y =⇒ neighborhood v ⊆ X
using neighbors-ss-eq-neighborhoodY neighbors-ss-def by auto

lemma degree-neighbors-ssX : v ∈ X =⇒ degree v = card (neighbors-ss v Y)
using neighbors-ss-eq-neighborhoodX alt-deg-neighborhood by auto

lemma degree-neighbors-ssY : v ∈ Y =⇒ degree v = card (neighbors-ss v X)
using neighbors-ss-eq-neighborhoodY alt-deg-neighborhood by auto

definition is-bicomplete:: bool where
is-bicomplete ≡ E = all-bi-edges X Y

lemma edge-betw-indiv:
assumes e ∈ E
obtains x y where x ∈ X ∧ y ∈ Y ∧ e = {x, y}

proof −
have e ∈ {{x, y} | x y. x ∈ X ∧ y ∈ Y }

using edge-betw all-bi-edges-alt2 assms by blast
thus ?thesis

using that by auto
qed

lemma edges-between-equals-edge-set: mk-edge ‘ (all-edges-between X Y) = E
by (simp add: all-edges-between-set, intro subset-antisym subsetI , auto) (metis

edge-betw-indiv)

Lemmas for reasoning on walks and paths in a bipartite graph
lemma walk-alternates:

assumes is-walk w
assumes Suc i < length w i ≥ 0
shows w ! i ∈ X ←→ w ! (i + 1) ∈ Y

proof −
have {w ! i, w ! (i +1)} ∈ E using is-walk-index assms by auto
then show ?thesis

using X-vert-adj-Y not-vert-adj Y-vert-adj-X vert-adj-sym by blast
qed

A useful reasoning pattern to mimic ”wlog” statements for properties
that are symmetric is to interpret the symmetric bipartite graph and then
directly apply the lemma proven earlier

64

lemma walk-alternates-sym:
assumes is-walk w
assumes Suc i < length w i ≥ 0
shows w ! i ∈ Y ←→ w ! (i + 1) ∈ X

proof −
interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
show ?thesis using sym.walk-alternates assms by simp

qed

lemma walk-length-even:
assumes is-walk w
assumes hd w ∈ X and last w ∈ X
shows even (walk-length w)
using assms

proof (induct length w arbitrary: w rule: nat-induct2)
case 0
then show ?case by (auto simp add: is-walk-def)

next
case 1
then have walk-length w = 0 using walk-length-conv by auto
then show ?case by simp

next
case (step n)
then show ?case proof (cases n = 0)

case True
then have length w = 2 using step by simp

then have hd w ∈ X =⇒ last w ∈ Y using walk-alternates hd-conv-nth
last-conv-nth

by (metis add-0 add-diff-cancel-right ′ less-2-cases-iff list.size(3) nat-1-add-1
step.prems(1)

zero-le zero-neq-numeral)
then show ?thesis

using part-intersect-empty step.prems(2) step.prems(3) by blast
next

case False
have IH : (

∧
w. n = length w =⇒ is-walk w =⇒ hd w ∈ X =⇒ last w ∈ X =⇒

even (walk-length w))
using step by simp

obtain w1 w2 where weq: w = w1@w2 and w1: w1 = take n w and w2: w2
= drop n w

by simp
then have ne: w1 6= [] using False is-walk-not-empty2 step.prems(1) by fastforce

then have w1-walk: is-walk w1 using w1 is-walk-take False
by (metis nat-le-linear neq0-conv step.prems(1) take-all)

have hdw1: hd w1 ∈ X using step ne weq by auto
then have w1n: length w1 = n using step length-take w1 by auto
then have length w2 = 2 using step length-drop

by (simp add: w2)

65

have last w = w ! (n + 1) using step last-conv-nth is-walk-not-empty
by (metis add.left-commute diff-add-inverse nat-1-add-1)

then have w ! n ∈ Y using step by (simp add: walk-alternates-sym)
then have w ! (n − 1) ∈ X using False walk-alternates step by simp
then have last w1 ∈ X using step last-conv-nth[of w1] ne w1n

by (metis last-list-update list-update-id take-update-swap w1)
then have even (walk-length w1) using w1-walk w1n hdw1 IH [of w1] by simp
then have even (walk-length w1 + 2) by simp
then show ?thesis using walk-length-conv weq step

by (simp add: False w1n)
qed

qed

lemma walk-length-even-sym:
assumes is-walk w
assumes hd w ∈ Y
assumes last w ∈ Y
shows even (walk-length w)

proof −
interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
show ?thesis using sym.walk-length-even assms by auto

qed

lemma walk-length-odd:
assumes is-walk w
assumes hd w ∈ X and last w ∈ Y
shows odd (walk-length w)
using assms

proof (cases length w ≥ 2)
case True
then have hdin: hd (tl w) ∈ Y using walk-alternates hd-conv-nth
by (metis (mono-tags, lifting) Suc-1 Suc-less-eq2 assms(1) assms(2) is-walk-not-empty2

is-walk-tl
le-neq-implies-less le-numeral-extra(3) length-greater-0-conv less-Suc-eq nth-tl

numeral-1-eq-Suc-0 numerals(1) plus-nat.add-0)
have w: is-walk (tl w) using assms True is-walk-tl by auto
have last: last (tl w) ∈ Y using assms(3) by (simp add: is-walk-not-empty last-tl

w)
then have ev: even (walk-length (tl w)) using hdin w walk-length-even-sym[of

tl w] by auto
then have walk-length w = walk-length (tl w) + 1 using True walk-length-conv

by auto
then show ?thesis using ev by simp

next
case False
have length w 6= 0 using is-walk-not-empty assms by simp
then have length w = 1 using False by linarith
then have hd w = last w

66

using ‹length w 6= 0› hd-conv-nth last-conv-nth by fastforce
then have hd w ∈ X =⇒ last w /∈ Y using part-intersect-empty by auto
then show ?thesis using assms by simp

qed

lemma walk-length-odd-sym:
assumes is-walk w
assumes hd w ∈ Y and last w ∈ X
shows odd (walk-length w)

proof −
interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
show ?thesis using assms sym.walk-length-odd by simp

qed

lemma walk-length-even-iff :
assumes is-walk w
shows even (walk-length w) ←→ (hd w ∈ X ∧ last w ∈ X) ∨ (hd w ∈ Y ∧ last

w ∈ Y)
proof (intro iffI)

assume ev: even (walk-length w)
show hd w ∈ X ∧ last w ∈ X ∨ hd w ∈ Y ∧ last w ∈ Y
proof (rule ccontr)

assume ¬ ((hd w ∈ X ∧ last w ∈ X) ∨ (hd w ∈ Y ∧ last w ∈ Y))
then have (hd w /∈ X ∨ last w /∈ X) ∧ (hd w /∈ Y ∨ last w /∈ Y) by simp
then have (hd w ∈ Y ∨ last w ∈ Y) ∧ (hd w ∈ X ∨ last w ∈ X) using

part-intersect-empty
using XY-union assms is-walk-wf-hd is-walk-wf-last by auto

then have split: (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last w ∈ X)
using part-intersect-empty by auto

have o1: (hd w ∈ X ∧ last w ∈ Y) =⇒ odd (walk-length w) using walk-length-odd
assms by auto

have (hd w ∈ Y ∧ last w ∈ X) =⇒ odd (walk-length w) using walk-length-odd-sym
assms by auto

then show False using split ev o1 by auto
qed

next
show (hd w ∈ X ∧ last w ∈ X) ∨ (hd w ∈ Y ∧ last w ∈ Y) =⇒ even (walk-length

w)
using walk-length-even walk-length-even-sym assms by auto

qed

lemma walk-length-odd-iff :
assumes is-walk w
shows odd (walk-length w) ←→ (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last

w ∈ X)
proof (intro iffI)

assume o: odd (walk-length w)
show (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last w ∈ X)
proof (rule ccontr)

67

assume ¬ ((hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last w ∈ X))
then have (hd w /∈ X ∨ last w /∈ Y) ∧ (hd w /∈ Y ∨ last w /∈ X) by simp
then have (hd w ∈ Y ∨ last w ∈ X) ∧ (hd w ∈ X ∨ last w ∈ Y) using

part-intersect-empty
using XY-union assms is-walk-wf-hd is-walk-wf-last by auto

then have split: (hd w ∈ X ∧ last w ∈ X) ∨ (hd w ∈ Y ∧ last w ∈ Y)
using part-intersect-empty by auto

have e1: (hd w ∈ X ∧ last w ∈ X) =⇒ even (walk-length w) using walk-length-even
assms by auto

have (hd w ∈ Y ∧ last w ∈ Y) =⇒ even (walk-length w) using walk-length-even-sym
assms by auto

then show False using split o e1 by auto
qed

next
show (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last w ∈ X) =⇒ odd (walk-length

w)
using walk-length-odd walk-length-odd-sym assms by auto

qed

Classic basic theorem that a bipartite graph must not have any cycles
with an odd length
lemma no-odd-cycles:

assumes is-walk w
assumes odd (walk-length w)
shows ¬ is-cycle w

proof −
have (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last w ∈ X) using assms

walk-length-odd-iff by auto
then have hd w 6= last w using part-intersect-empty by auto
thus ?thesis using is-cycle-def is-closed-walk-def by simp

qed

end

A few properties rely on cardinality definitions that require the vertex
sets to be finite
locale fin-bipartite-graph = bipartite-graph + fin-graph-system
begin

lemma fin-bipartite-sym: fin-bipartite-graph V E Y X
by (intro-locales) (simp add: bipartite-sym bipartite-graph.axioms(2))

lemma partitions-finite: finite X finite Y
using partitions-ss finite-subset finV by auto

lemma card-edges-between-set: card (all-edges-between X Y) = card E
proof −

have card (all-edges-between X Y) = card (mk-edge ‘ (all-edges-between X Y))
using inj-on-mk-edge using partitions-finite card-image

68

by (metis inj-on-mk-edge part-intersect-empty)
then show ?thesis by (simp add: edges-between-equals-edge-set)

qed

lemma density-simp: density = card (E) / ((card X) ∗ (card Y))
unfolding edge-density-def using card-edges-between-set by auto

lemma edge-size-degree-sumY : card E = (
∑

y ∈ Y . degree y)
proof −

have (
∑

y ∈ Y . degree y) = (
∑

y ∈ Y . card(neighbors-ss y X))
using degree-neighbors-ssY by (simp)

also have ... = card (all-edges-between X Y)
using card-all-edges-betw-neighbor

by (metis card-all-edges-between-commute partitions-finite(1) partitions-finite(2))

finally show ?thesis
by (simp add: card-edges-between-set)

qed

lemma edge-size-degree-sumX : card E = (
∑

y ∈ X . degree y)
proof −

interpret sym: fin-bipartite-graph V E Y X
using fin-bipartite-sym by simp

show ?thesis using sym.edge-size-degree-sumY by simp
qed

end
end

7 Graph Theory Inheritance
This theory aims to demonstrate the use of locales to transfer theorems
between different graph/combinatorial structure representations
theory Graph-Theory-Relations imports Undirected-Graph-Basics Bipartite-Graphs

Design-Theory.Block-Designs Design-Theory.Group-Divisible-Designs
begin

7.1 Design Inheritance
A graph is a type of incidence system, and more specifically a type of com-
binatorial design. This section demonstrates the correspondence between
designs and graphs
sublocale graph-system ⊆ inc: incidence-system V mset-set E
by (unfold-locales) (metis wellformed elem-mset-set ex-in-conv infinite-set-mset-mset-set)

69

sublocale fin-graph-system ⊆ finc: finite-incidence-system V mset-set E
using finV by unfold-locales

sublocale fin-ulgraph ⊆ d: design V mset-set E
using edge-size empty-not-edge fin-edges by unfold-locales auto

sublocale fin-ulgraph ⊆ d: simple-design V mset-set E
by unfold-locales (simp add: fin-edges)

locale graph-has-edges = graph-system +
assumes edges-nempty: E 6= {}

locale fin-sgraph-wedges = fin-sgraph + graph-has-edges

The simple graph definition of degree overlaps with the definition of a
point replication number
sublocale fin-sgraph-wedges ⊆ bd: block-design V mset-set E 2

rewrites point-replication-number (mset-set E) x = degree x
and points-index (mset-set E) vs = degree-set vs

proof (unfold-locales)
show inc.b 6= 0 by (simp add: edges-nempty fin-edges)
show

∧
bl. bl ∈# mset-set E =⇒ card bl = 2 by (simp add: fin-edges two-edges)

show mset-set E index vs = degree-set vs
unfolding degree-set-def points-index-def by (simp add: fin-edges)

next
have size {#b ∈# (mset-set E) . x ∈ b#} = card (incident-edges x)

unfolding incident-edges-def vincident-def
by (simp add: fin-edges)

then show mset-set E rep x = degree x using alt-degree-def point-replication-number-def
by metis

qed

locale fin-bipartite-graph-wedges = fin-bipartite-graph + fin-sgraph-wedges

sublocale fin-bipartite-graph-wedges ⊆ group-design V mset-set E {X , Y }
by unfold-locales (simp-all add: partition ne)

7.2 Adjacency Relation Definition
Another common formal representation of graphs is as a vertex set and an
adjacency relation This is a useful representation in some contexts - we use
locales to enable the transfer of results between the two representations,
specifically the mutual sublocales approach
locale graph-rel =

fixes vertices :: ′a set (V)
fixes adj-rel :: ′a rel
assumes wf :

∧
u v. (u, v) ∈ adj-rel =⇒ u ∈ V ∧ v ∈ V

begin

70

abbreviation adj u v ≡ (u, v) ∈ adj-rel

lemma wf-alt: adj u v =⇒ (u, v) ∈ V × V
using wf by blast

end

locale ulgraph-rel = graph-rel +
assumes sym-adj: sym adj-rel

begin

This definition makes sense in the context of an undirected graph
definition edge-set:: ′a edge set where
edge-set ≡ {{u, v} | u v. adj u v}

lemma obtain-edge-pair-adj:
assumes e ∈ edge-set
obtains u v where e = {u, v} and adj u v
using assms edge-set-def mem-Collect-eq
by fastforce

lemma adj-to-edge-set-card:
assumes e ∈ edge-set
shows card e = 1 ∨ card e = 2

proof −
obtain u v where e = {u, v} and adj u v using obtain-edge-pair-adj assms by

blast
then show ?thesis by (cases u = v, simp-all)

qed

lemma adj-to-edge-set-card-lim:
assumes e ∈ edge-set
shows card e > 0 ∧ card e ≤ 2

proof −
obtain u v where e = {u, v} and adj u v using obtain-edge-pair-adj assms by

blast
then show ?thesis by (cases u = v, simp-all)

qed

lemma edge-set-wf : e ∈ edge-set =⇒ e ⊆ V
using obtain-edge-pair-adj wf by (metis insert-iff singletonD subsetI)

lemma is-graph-system: graph-system V edge-set
by (unfold-locales) (simp add: edge-set-wf)

lemma sym-alt: adj u v ←→ adj v u
using sym-adj by (meson symE)

71

lemma is-ulgraph: ulgraph V edge-set
using ulgraph-axioms-def is-graph-system adj-to-edge-set-card-lim
by (intro-locales) auto

end

context ulgraph
begin

definition adj-relation :: ′a rel where
adj-relation ≡ {(u, v) | u v . vert-adj u v}

lemma adj-relation-wf : (u, v) ∈ adj-relation =⇒ {u, v} ⊆ V
unfolding adj-relation-def using vert-adj-imp-inV by auto

lemma adj-relation-sym: sym adj-relation
unfolding adj-relation-def sym-def using vert-adj-sym by auto

lemma is-ulgraph-rel: ulgraph-rel V adj-relation
using adj-relation-wf adj-relation-sym by (unfold-locales) auto

Temporary interpretation - mutual sublocale setup
interpretation ulgraph-rel V adj-relation by (rule is-ulgraph-rel)

lemma vert-adj-rel-iff :
assumes u ∈ V v ∈ V
shows vert-adj u v ←→ adj u v
using adj-relation-def by auto

lemma edges-rel-is: E = edge-set
proof −

have E = {{u, v} | u v . vert-adj u v}
proof (intro subset-antisym subsetI)

show
∧

x. x ∈ {{u, v} |u v. vert-adj u v} =⇒ x ∈ E
using vert-adj-def by fastforce

next
fix x assume x ∈ E
then have x ⊆ V and card x > 0 and card x ≤ 2 using wellformed edge-size

by auto
then obtain u v where x = {u, v} and {u, v} ∈ E

by (metis ‹x ∈ E› alt-edge-size card-1-singletonE card-2-iff insert-absorb2)
then show x ∈ {{u, v} |u v. vert-adj u v} unfolding vert-adj-def by blast

qed
then have E = {{u, v} | u v . adj u v} using vert-adj-rel-iff Collect-cong

by (smt (verit) local.wf vert-adj-imp-inV)
thus ?thesis using edge-set-def by simp

qed

72

end

context ulgraph-rel
begin

Temporary interpretation - mutual sublocale setup
interpretation ulgraph V edge-set by (rule is-ulgraph)

lemma rel-vert-adj-iff : vert-adj u v ←→ adj u v
proof (intro iffI)

assume vert-adj u v
then have {u, v} ∈ edge-set by (simp add: vert-adj-def)
then show adj u v using edge-set-def

by (metis (no-types, lifting) doubleton-eq-iff obtain-edge-pair-adj sym-alt)
next

assume adj u v
then have {u, v} ∈ edge-set using edge-set-def by auto
then show vert-adj u v by (simp add: vert-adj-def)

qed

lemma rel-item-is: (u, v) ∈ adj-rel ←→ (u, v) ∈ adj-relation
unfolding adj-relation-def using rel-vert-adj-iff by auto

lemma rel-edges-is: adj-rel = adj-relation
using rel-item-is by auto

end

sublocale ulgraph-rel ⊆ ulgraph V edge-set
rewrites ulgraph.adj-relation edge-set = adj-rel
using local.is-ulgraph rel-edges-is by simp-all

sublocale ulgraph ⊆ ulgraph-rel V adj-relation
rewrites ulgraph-rel.edge-set adj-relation = E
using is-ulgraph-rel edges-rel-is by simp-all

locale sgraph-rel = ulgraph-rel +
assumes irrefl-adj: irrefl adj-rel

begin

lemma irrefl-alt: adj u v =⇒ u 6= v
using irrefl-adj irrefl-def by fastforce

lemma edge-is-card2:
assumes e ∈ edge-set
shows card e = 2

proof −
obtain u v where eq: e = {u, v} and adj u v using assms edge-set-def by blast
then have u 6= v using irrefl-alt by simp

73

thus ?thesis using eq by simp
qed

lemma is-sgraph: sgraph V edge-set
using is-graph-system edge-is-card2 sgraph-axioms-def by (intro-locales) auto

end

context sgraph
begin

lemma is-rel-irrefl-alt:
assumes (u, v) ∈ adj-relation
shows u 6= v

proof −
have vert-adj u v using adj-relation-def assms by blast
then have {u, v} ∈ E using vert-adj-def by simp
then have card {u, v} = 2 using two-edges by simp
thus ?thesis by auto

qed

lemma is-rel-irrefl: irrefl adj-relation
using irrefl-def is-rel-irrefl-alt by auto

lemma is-sgraph-rel: sgraph-rel V adj-relation
by (unfold-locales) (simp add: is-rel-irrefl)

end

sublocale sgraph-rel ⊆ sgraph V edge-set
rewrites ulgraph.adj-relation edge-set = adj-rel
using is-sgraph rel-edges-is by simp-all

sublocale sgraph ⊆ sgraph-rel V adj-relation
rewrites ulgraph-rel.edge-set adj-relation = E
using is-sgraph-rel edges-rel-is by simp-all

end
theory Undirected-Graphs-Root imports

Undirected-Graph-Basics
Undirected-Graph-Walks
Connectivity
Girth-Independence
Graph-Triangles
Bipartite-Graphs
Graph-Theory-Relations

begin
end

74

References
[1] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Roth’s The-

orem on Arithmetic Progressions. Archive of Formal Proofs, Dec. 2021.

[2] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Szemerédi’s
Regularity Lemma. Archive of Formal Proofs, Nov. 2021.

[3] L. Hupel. Properties of random graphs – subgraph containment. Archive
of Formal Proofs, February 2014. https://isa-afp.org/entries/Random_
Graph_Subgraph_Threshold.html, Formal proof development.

[4] L. Noschinski. Proof Pearl: A Probabilistic Proof for the Girth-
Chromatic Number Theorem. In Interactive Theorem Proving. ITP
2012., volume 7406 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012.

[5] L. Noschinski. A Graph Library for Isabelle. Math-
ematics in Computer Science, 9(1):23–39, Mar. 2015.
http://link.springer.com/10.1007/s11786-014-0183-z.

75

https://isa-afp.org/entries/Random_Graph_Subgraph_Threshold.html
https://isa-afp.org/entries/Random_Graph_Subgraph_Threshold.html

	Undirected Graph Theory Basics
	Miscellaneous Extras
	Initial Set up
	Graph System Locale
	Undirected Graph with Loops
	Edge Density
	Simple Graphs
	Subgraph Basics

	Walks, Paths and Cycles
	Walks
	Paths
	Cycles

	Connectivity
	Connecting Walks and Paths
	Vertex Connectivity
	Graph Properties on Connectivity
	We define a connected graph as a non-empty graph (the empty set is not usually considered connected by convention), where the vertex set is connected

	Girth and Independence
	Triangles in Graph
	Preliminaries on Triangles in Graphs

	Bipartite Graphs
	Bipartite Set Up
	Bipartite Graph Locale

	Graph Theory Inheritance
	Design Inheritance
	Adjacency Relation Definition

