Undirected Graph Theory

Chelsea Edmonds

May 26, 2024

Abstract

This entry presents a general library for undirected graph theory enabling reasoning on simple graphs and undirected graphs with loops. It primarily builds off Noschinski's basic ugraph definition [4], however generalises it in a number of ways and significantly expands on the range of basic graph theory definitions formalised. Notably, this library removes the constraint of vertices being a type synonym with the natural numbers which causes issues in more complex mathematical reasoning using graphs, such as the Balog Szemeredi Gowers theorem which this library is used for. Secondly this library also presents a locale-centric approach, enabling more concise, flexible, and reusable modelling of different types of graphs. Using this approach enables easy links to be made with more expansive formalisations of other combinatorial structures, such as incidence systems, as well as various types of formal representations of graphs. Further inspiration is also taken from Noschinski's [5] Directed Graph library for some proofs and definitions on walks, paths and cycles, however these are much simplified using the set based representation of graphs, and also extended on in this formalisation.

Contents

1 Undirected Graph Theory Basics 3
1.1 Miscellaneous Extras 3
1.2 Initial Set up 4
1.3 Graph System Locale 8
1.4 Undirected Graph with Loops 9
1.5 Edge Density 17
1.6 Simple Graphs 19
1.7 Subgraph Basics 21
2 Walks, Paths and Cycles 24
2.1 Walks 25
2.2 Paths 32
2.3 Cycles 33
3 Connectivity 37
3.1 Connecting Walks and Paths 37
3.2 Vertex Connectivity 41
3.3 Graph Properties on Connectivity 42
3.4 We define a connected graph as a non-empty graph (the empty set is not usually considered connected by convention), where the vertex set is connected 47
4 Girth and Independence 52
5 Triangles in Graph 55
5.1 Preliminaries on Triangles in Graphs 56
6 Bipartite Graphs 60
6.1 Bipartite Set Up 60
6.2 Bipartite Graph Locale 62
7 Graph Theory Inheritance 69
7.1 Design Inheritance 69
7.2 Adjacency Relation Definition 70

Acknowledgements

Chelsea Edmonds is jointly funded by the Cambridge Trust (Cambridge Australia Scholarship) and a Cambridge Department of Computer Science and Technology Premium Research Studentship. The ALEXANDRIA project is funded by the European Research Council, Advanced Grant GA 742178.

This library aims to present a general theory for undirected graphs. The formalisation approach models edges as sets with two elements, and is inspired in part by the graph theory basics defined by Lars Noschinski in [4] which are used in $[2,1]$. Crucially this library makes the definition more flexible by removing the type synonym from vertices to natural numbers. This is limiting in more advanced mathematical applications, where it is common for vertices to represent elements of some other set. It additionally extends significantly on basic graph definitions.

The approach taken in this formalisation is the "locale-centric" approach for modelling different graph properties, which has been successfully used in other combinatorial structure formalisations.

1 Undirected Graph Theory Basics

This first theory focuses on the basics of graph theory (vertices, edges, degree, incidence, neighbours etc), as well as defining a number of different types of basic graphs. This theory draws inspiration from [4, 2, 1]
theory Undirected-Graph-Basics imports Main HOL-Library.Multiset HOL-Library.Disjoint-Sets

HOL-Library.Extended-Real Girth-Chromatic.Girth-Chromatic-Misc
 begin

1.1 Miscellaneous Extras

Useful concepts on lists and sets
lemma distinct-tl-rev:
assumes $h d x s=$ last $x s$
shows distinct $(t l x s) \longleftrightarrow$ distinct $(t l(r e v x s))$
using assms
proof (induct xs)
case Nil
then show? case by simp
next
case (Cons a xs)
then show ?case proof (cases xs $=[]$)
case True
then show ?thesis by simp
next
case False
then have $a=$ last $x s$ using Cons.prems by auto then obtain $x s^{\prime}$ where $x s=x s^{\prime}$ @ [last xs] by (metis False append-butlast-last-id) then have tleq: $t l($ rev xs $)=\operatorname{rev}\left(x s^{\prime}\right)$ by (metis butlast-rev butlast-snoc rev-rev-ident) have distinct $(t l(a \# x s)) \longleftrightarrow$ distinct $x s$ by simp

```
    also have ... \longleftrightarrow distinct (rev xs') ^a\not\in set (rev xs')
        by (metis False Nil-is-rev-conv <a = last xs〉 distinct.simps(2) distinct-rev
hd-rev list.exhaust-sel tleq)
    finally show distinct (tl (a#xs)) \longleftrightarrow distinct (tl (rev (a # xs)))
        using tleq by (simp add: False)
    qed
qed
lemma last-in-list-set: length xs \geq1\Longrightarrow last xs \in set (xs)
    using dual-order.strict-trans1 last-in-set by blast
lemma last-in-list-tl-set:
    assumes length xs \geq2
    shows last xs \in set (tl xs)
    using assms by (induct xs) auto
lemma length-list-decomp-lt:ys }\not=[]\Longrightarrow\mathrm{ length (xs @zs) < length (xs@ys@zs)
    using length-append by simp
lemma obtains-Max:
    assumes finite }A\mathrm{ and }A\not={
    obtains }x\mathrm{ where }x\inA\mathrm{ and Max A =x
    using assms Max-in by blast
lemma obtains-MAX:
    assumes finite }A\mathrm{ and }A\not={
    obtains }x\mathrm{ where }x\inA\mathrm{ and Max (f'A) =fx
    using obtains-Max
    by (metis (mono-tags, opaque-lifting) assms(1) assms(2) empty-is-image finite-imageI
image-iff)
lemma obtains-Min:
    assumes finite }A\mathrm{ and }A\not={
    obtains }x\mathrm{ where }x\inA\mathrm{ and Min }A=
    using assms Min-in by blast
lemma obtains-MIN:
    assumes finite }A\mathrm{ and }A\not={
    obtains x where }x\inA\mathrm{ and Min (f'A) =fx
    using obtains-Min assms empty-is-image finite-imageI image-iff
    by (metis (mono-tags, opaque-lifting))
```


1.2 Initial Set up

For convenience and readability, some functions and type synonyms are defined outside locale context

```
fun mk-triangle-set :: ('a > 'a > 'a) =>' 'a set
    where mk-triangle-set (x,y,z)={x,y,z}
```


type-synonym 'a edge $=$ ' a set

type-synonym 'a pregraph $=($ 'a set $) \times\left({ }^{\prime}\right.$ a edge set $)$
abbreviation gverts $::$ 'a pregraph \Rightarrow 'a set where
gverts $H \equiv$ fst H
abbreviation gedges :: 'a pregraph \Rightarrow 'a edge set where
gedges $H \equiv$ snd H
fun $m k$-edge :: ' $a \times{ }^{\prime} a \Rightarrow$ 'a edge where
$m k$-edge $(u, v)=\{u, v\}$
All edges is simply the set of subsets of a set S of size 2
definition all-edges $S \equiv\{e . e \subseteq S \wedge$ card $e=2\}$
Note, this is a different definition to Noschinski's [4] ugraph which uses the $m k$-edge function unnecessarily

Basic properties of these functions
lemma all-edges-mono:
$v s \subseteq w s \Longrightarrow$ all-edges $v s \subseteq$ all-edges ws unfolding all-edges-def by auto
lemma all-edges-alt: all-edges $S=\{\{x, y\} \mid x y . x \in S \wedge y \in S \wedge x \neq y\}$
unfolding all-edges-def
proof (intro subset-antisym subsetI)
fix x assume $x \in\{e . e \subseteq S \wedge$ card $e=2\}$
then obtain $u v$ where $x=\{u, v\}$ and card $\{u, v\}=2$ and $\{u, v\} \subseteq S$
by (metis (mono-tags, lifting) card-2-iff mem-Collect-eq)
then show $x \in\{\{x, y\} \mid x y . x \in S \wedge y \in S \wedge x \neq y\}$
by fastforce
next
show $\wedge x . x \in\{\{x, y\} \mid x y . x \in S \wedge y \in S \wedge x \neq y\} \Longrightarrow x \in\{e . e \subseteq S \wedge$ card $e=2\}$
by auto
qed
lemma all-edges-alt-pairs: all-edges $S=m k$-edge' $\{u v \in S \times S . f s t u v \neq$ snd $u v\}$ unfolding all-edges-alt
proof (intro subset-antisym)
have img: mk-edge' $\{u v \in S \times S . f s t u v \neq s n d u v\}=\{m k$-edge $(u, v) \mid u v .(u$, $v) \in S \times S \wedge u \neq v\}$
by (smt (z3) Collect-cong fst-conv prod.collapse setcompr-eq-image snd-conv)
then show $m k$-edge' $\{u v \in S \times S . f s t u v \neq s n d u v\} \subseteq\{\{x, y\} \mid x y . x \in S \wedge y$
$\in S \wedge x \neq y\}$
by auto
show $\{\{x, y\} \mid x y . x \in S \wedge y \in S \wedge x \neq y\} \subseteq m k$-edge ' $\{u v \in S \times S . f$ ft uv \neq snd $u v\}$
using img by simp

qed

lemma all-edges-subset-Pow: all-edges $A \subseteq$ Pow A
by (auto simp: all-edges-def)
lemma all-edges-disjoint: $S \cap T=\{ \} \Longrightarrow$ all-edges $S \cap$ all-edges $T=\{ \}$
by (auto simp add: all-edges-def disjoint-iff subset-eq)
lemma card-all-edges: finite $A \Longrightarrow$ card (all-edges $A)=$ card A choose 2 using all-edges-def by (metis (full-types) n-subsets)
lemma finite-all-edges: finite $S \Longrightarrow$ finite (all-edges S)
by (meson all-edges-subset-Pow finite-Pow-iff finite-subset)
lemma in-mk-edge-img: $(a, b) \in A \vee(b, a) \in A \Longrightarrow\{a, b\} \in m k$-edge ' A
by (auto intro: rev-image-eqI)
thm in-mk-edge-img
lemma in-mk-uedge-img-iff: $\{a, b\} \in m k$-edge' $A \longleftrightarrow(a, b) \in A \vee(b, a) \in A$ by (auto simp: doubleton-eq-iff intro: rev-image-eqI)
lemma inj-on-mk-edge: $X \cap Y=\{ \} \Longrightarrow$ inj-on mk-edge $(X \times Y)$
by (auto simp: inj-on-def doubleton-eq-iff)
definition complete-graph $::$ ' a set \Rightarrow 'a pregraph where
complete-graph $S \equiv(S$, all-edges $S)$
definition all-edges-loops:: 'a set \Rightarrow 'a edge setwhere
all-edges-loops $S \equiv$ all-edges $S \cup\{\{v\} \mid v . v \in S\}$
lemma all-edges-loops-alt: all-edges-loops $S=\{e \cdot e \subseteq S \wedge($ card $e=2 \vee$ card e $=1)\}$
proof -
have 1: $\{\{v\} \mid v . v \in S\}=\{e . e \subseteq S \wedge$ card $e=1\}$
by (metis One-nat-def card.empty card-Suc-eq empty-iff empty-subsetI in-sert-subset is-singleton-altdef is-singleton-the-elem)
have $\{e \cdot e \subseteq S \wedge($ card $e=2 \vee$ card $e=1)\}=\{e \cdot e \subseteq S \wedge$ card $e=2\} \cup\{e$. $e \subseteq S \wedge \operatorname{card} e=1\}$
by auto
then have $\{e . e \subseteq S \wedge($ card $e=2 \vee$ card $e=1)\}=$ all-edges $S \cup\{\{v\} \mid v . v$ $\in S\}$
by (simp add: all-edges-def 1)
then show ?thesis unfolding all-edges-loops-def by simp qed
lemma loops-disjoint: all-edges $S \cap\{\{v\} \mid v . v \in S\}=\{ \}$
unfolding all-edges-def using card-2-iff by fastforce
lemma all-edges-loops-ss: all-edges $S \subseteq$ all-edges-loops $S\{\{v\} \mid v . v \in S\} \subseteq$ all-edges-loops S
by (simp-all add: all-edges-loops-def)
lemma finite-singletons: finite $S \Longrightarrow$ finite $(\{\{v\} \mid v . v \in S\})$
by (auto)
lemma card-singletons:
assumes finite S shows card $\{\{v\} \mid v . v \in S\}=\operatorname{card} S$
using assms
proof (induct S rule: finite-induct)
case empty
then show ?case by simp
next
case (insert x F)
then have disj: $\{\{x\}\} \cap\{\{v\} \mid v . v \in F\}=\{ \}$ by auto
have $\{\{v\} \mid v . v \in$ insert $x F\}=(\{\{x\}\} \cup\{\{v\} \mid v . v \in F\})$ by auto
then have card $\{\{v\} \mid v . v \in \operatorname{insert} x F\}=\operatorname{card}(\{\{x\}\} \cup\{\{v\} \mid v . v \in F\})$ by simp
also have $\ldots=\operatorname{card}\{\{x\}\}+\operatorname{card}\{\{v\} \mid v . v \in F\}$ using card-Un-disjoint disj assms finite-subset
using insert.hyps(1) by force
also have $\ldots=1+$ card $\{\{v\} \mid v . v \in F\}$ using is-singleton-altdef by simp
also have $\ldots=1+$ card F using insert.hyps by auto
finally show ?case using insert.hyps(1) insert.hyps(2) by force
qed
lemma finite-all-edges-loops: finite $S \Longrightarrow$ finite (all-edges-loops S)
unfolding all-edges-loops-def using finite-all-edges finite-singletons by auto
lemma card-all-edges-loops:
assumes finite S
shows card (all-edges-loops $S)=($ card $S)$ choose $2+$ card S
proof -
have card (all-edges-loops $S)=$ card (all-edges $S \cup\{\{v\} \mid v . v \in S\})$
by (simp add: all-edges-loops-def)
also have $\ldots=\operatorname{card}($ all-edges $S)+\operatorname{card}\{\{v\} \mid v . v \in S\}$
using loops-disjoint assms card-Un-disjoint[of all-edges $S\{\{v\} \mid v . v \in S\}]$
all-edges-loops-ss finite-all-edges-loops finite-subset by fastforce
also have $\ldots=(\operatorname{card} S)$ choose $2+\operatorname{card}\{\{v\} \mid v . v \in S\}$ by $(\operatorname{simp}$ add: card-all-edges assms)
finally show ?thesis using assms card-singletons by auto qed

1.3 Graph System Locale

A generic incidence set system re-labeled to graph notation, where repeated edges are not allowed. All the definitions here do not need the "edge" size to be constrained to make sense.

```
locale graph-system \(=\)
    fixes vertices :: 'a set (V)
    fixes edges :: 'a edge set ( \(E\) )
    assumes wellformed: \(e \in E \Longrightarrow e \subseteq V\)
begin
```

abbreviation gorder :: nat where
gorder \equiv card (V)
abbreviation graph-size :: nat where
graph-size \equiv card E
definition vincident $::$ ' $a \Rightarrow$ ' a edge \Rightarrow bool where
vincident $v e \equiv v \in e$
lemma incident-edge-in-wf: $e \in E \Longrightarrow$ vincident $v e \Longrightarrow v \in V$
using wellformed vincident-def by auto
definition incident-edges :: ' $a \Rightarrow$ ' a edge set where
incident-edges $v \equiv\{e . e \in E \wedge$ vincident $v e\}$
lemma incident-edges-empty: $\neg(v \in V) \Longrightarrow$ incident-edges $v=\{ \}$
using incident-edges-def incident-edge-in-wf by auto
lemma finite-incident-edges: finite $E \Longrightarrow$ finite (incident-edges v)
by (simp add: incident-edges-def)
definition edge-adj :: ' a edge \Rightarrow ' a edge \Rightarrow bool where
edge-adj e1 $e 2 \equiv e 1 \cap e 2 \neq\{ \} \wedge e 1 \in E \wedge e \mathcal{Z} \in E$
lemma edge-adj-inE: edge-adj e1 $\mathrm{e2} \Longrightarrow e 1 \in E \wedge e 2 \in E$
using edge-adj-def by auto
lemma edge-adjacent-alt-def: $e 1 \in E \Longrightarrow e 2 \in E \Longrightarrow \exists x . x \in V \wedge x \in e 1 \wedge x$
$\in e 2 \Longrightarrow$ edge-adj e1 e2
unfolding edge-adj-def by auto
lemma wellformed-alt-fst: $\{x, y\} \in E \Longrightarrow x \in V$
using wellformed by auto
lemma wellformed-alt-snd: $\{x, y\} \in E \Longrightarrow y \in V$
using wellformed by auto
end

Simple constraints on a graph system may include finite and non-empty constraints
locale fin-graph-system $=$ graph-system + assumes fin V : finite V
begin
lemma fin-edges: finite E
using wellformed finV
by (meson PowI finite-Pow-iff finite-subset subsetI)
end
locale ne-graph-system $=$ graph-system +
assumes not-empty: $V \neq\{ \}$

1.4 Undirected Graph with Loops

This formalisation models a loop by a singleton set. In this case a graph has the edge size criteria if it has edges of size 1 or 2 . Notably this removes the option for an edge to be empty

```
locale ulgraph \(=\) graph-system +
    assumes edge-size: \(e \in E \Longrightarrow\) card \(e>0 \wedge\) card \(e \leq 2\)
begin
lemma alt-edge-size: \(e \in E \Longrightarrow\) card \(e=1 \vee\) card \(e=2\)
    using edge-size by fastforce
definition is-loop:: 'a edge \(\Rightarrow\) bool where
is-loop \(e \equiv\) card \(e=1\)
definition is-sedge :: ' \(a\) edge \(\Rightarrow\) bool where
is-sedge \(e \equiv\) card \(e=2\)
lemma is-edge-or-loop: \(e \in E \Longrightarrow\) is-loop \(e \vee\) is-sedge e
    using alt-edge-size is-loop-def is-sedge-def by simp
lemma edges-split-loop: \(E=\{e \in E\). is-loop \(e\} \cup\{e \in E\). is-sedge \(e\}\)
    using is-edge-or-loop by auto
lemma edges-split-loop-inter-empty: \(\}=\{e \in E\). is-loop \(e\} \cap\{e \in E\). is-sedge
e\}
    unfolding is-loop-def is-sedge-def by auto
definition vert-adj :: ' \(a \Rightarrow^{\prime} a \Rightarrow\) bool where - Neighbor in graph from Roth [1]
vert-adj v1 v2 \(\equiv\{v 1, v 2\} \in E\)
lemma vert-adj-sym: vert-adj v1 v2 \(\longleftrightarrow\) vert-adj v2 v1
```

```
    unfolding vert-adj-def by (simp-all add: insert-commute)
lemma vert-adj-imp-inV:vert-adj v1 v2 \Longrightarrowv1\inV \v2 }\in
    using vert-adj-def wellformed by auto
lemma vert-adj-inc-edge-iff: vert-adj v1 v2 \longleftrightarrow vincident v1 {v1,v2} ^ vincident
v2 {v1,v2} ^ {v1,v2} }\in
    unfolding vert-adj-def vincident-def by auto
lemma not-vert-adj[simp]: ᄀ vert-adj v u\Longrightarrow{v,u}\not\inE
    by (simp add: vert-adj-def)
definition neighborhood :: ' }a=>\mathrm{ 'a set where - Neighbors in Roth Development
[1]
neighborhood }x\equiv{v\inV.vert-adj x v
lemma neighborhood-incident: }u\in\mathrm{ neighborhood v}\longleftrightarrow{{u,v}\in\mathrm{ incident-edges v
    unfolding neighborhood-def incident-edges-def
    by (smt (verit) vincident-def insert-commute insert-subset mem-Collect-eq sub-
set-insertI vert-adj-def wellformed)
definition neighbors-ss :: ' }a>>'\mp@code{'a set }=>\mathrm{ 'a set where
neighbors-ss x Y}\equiv{y\inY.vert-adj x y }
lemma vert-adj-edge-iff2:
    assumes v1 = v2
    shows vert-adj v1 v2 \longleftrightarrow(\exists e\inE.vincident v1 e ^ vincident v2 e)
proof (intro iffI)
    show vert-adj v1 v2 \Longrightarrow\existse\inE.vincident v1 e ^ vincident v2 e using vert-adj-inc-edge-iff
by blast
    assume \existse\inE. vincident v1 e ^ vincident v2 e
    then obtain e where ein: e\inE and vincident v1 e and vincident v2 e
    using vert-adj-inc-edge-iff assms alt-edge-size by auto
    then have e ={v1,v2} using alt-edge-size assms
        by (smt (verit) card-1-singletonE card-2-iff vincident-def insertE insert-commute
singletonD)
    then show vert-adj v1 v2 using ein vert-adj-def
        by simp
qed
    Incident simple edges, i.e. excluding loops
definition incident-sedges :: 'a }=\mathrm{ 'a edge set where
incident-sedges v\equiv{e\inE.vincident ve^card e=2}
lemma finite-inc-sedges: finite E\Longrightarrow finite (incident-sedges v)
    by (simp add: incident-sedges-def)
lemma incident-sedges-empty[simp]:v\not\inV\Longrightarrow incident-sedges v={}
    unfolding incident-sedges-def using vincident-def wellformed by fastforce
```

```
definition has-loop :: 'a }\mp@subsup{}{}{\prime}\mathrm{ bool where
has-loop v\equiv{v}\inE
lemma has-loop-in-verts: has-loop v \Longrightarrowv\inV
    using has-loop-def wellformed by auto
lemma is-loop-set-alt: {{v}|v. has-loop v}={e\inE.is-loop e}
proof (intro subset-antisym subsetI)
    fix }x\mathrm{ assume }x\in{{v}|v.has-loop v
    then obtain v}\mathrm{ where }x={v}\mathrm{ and has-loop v
        by blast
    then show }x\in{e\inE.\mathrm{ . is-loop e} using has-loop-def is-loop-def by auto
next
    fix }x\mathrm{ assume a: }x\in{e\inE\mathrm{ . is-loop e}
    then have is-loop x by blast
    then obtain v}\mathrm{ where }x={v}\mathrm{ and {v} }\inE\mathrm{ using is-loop-def a
        by (metis card-1-singletonE mem-Collect-eq)
    thus }x\in{{v}|v.has-loop v} using has-loop-def by sim
qed
definition incident-loops :: ' }a>>'a edge set where
incident-loops v\equiv{e\inE.e={v}}
lemma card1-incident-imp-vert: vincident v e ^ card e=1\Longrightarrowe={v}
    by (metis card-1-singletonE vincident-def singleton-iff)
lemma incident-loops-alt: incident-loops v ={e\inE.vincident ve^card e=1}
    unfolding incident-loops-def using card1-incident-imp-vert vincident-def by
auto
lemma incident-loops-simp: has-loop v\Longrightarrow incident-loops v={{v}} ᄀ has-loop v
\Longrightarrow ~ i n c i d e n t - l o o p s ~ v = \{ \}
    unfolding incident-loops-def has-loop-def by auto
lemma incident-loops-union: \ (incident-loops'V)}={e\inE.is-loop e
proof -
    have }V={v\inV.has-loop v}\cup{v\inV.\neg has-loop v
        by auto
    then have U(incident-loops' V)=\bigcup (incident-loops' {v\inV. has-loop v})
\cup
            U (incident-loops' }{v\inV.\neg has-loop v}) by aut
    also have ... = \ (incident-loops' {v\inV. has-loop v}) using incident-loops-simp(2)
by simp
    also have ... = \bigcup({{{v}}|v. has-loop v}) using has-loop-in-verts inci-
dent-loops-simp (1) by auto
    also have ... = ({{v}|v. has-loop v}) by auto
    finally show ?thesis using is-loop-set-alt by simp
qed
```

```
lemma finite-incident-loops: finite (incident-loops v)
    using incident-loops-simp by (cases has-loop v) auto
lemma incident-loops-card: card (incident-loops v)\leq1
    by (cases has-loop v) (simp-all add: incident-loops-simp)
lemma incident-edges-union: incident-edges v=incident-sedges v U incident-loops
v
    unfolding incident-edges-def incident-sedges-def incident-loops-alt using alt-edge-size
    by auto
lemma incident-edges-sedges[simp]: \neg has-loop v\Longrightarrow incident-edges v = inci-
dent-sedges v
    using incident-edges-union incident-loops-simp by auto
lemma incident-sedges-union: \ (incident-sedges`V)}={e\inE.\mathrm{ is-sedge e}
proof (intro subset-antisym subsetI)
    fix }x\mathrm{ assume }x\in\bigcup\mathrm{ (incident-sedges ' }V\mathrm{ )
    then obtain v}\mathrm{ where }x\in\mathrm{ incident-sedges v}\mathrm{ by blast
    then show }x\in{e\inE.\mathrm{ .is-sedge e} using incident-sedges-def is-sedge-def by
auto
next
    fix }x\mathrm{ assume }x\in{e\inE\mathrm{ . is-sedge e}
    then have xin: x EE and c2: card x=2 using is-sedge-def by auto
    then obtain v}\mathrm{ where v
        by (meson card-2-iff' subsetD)
    then have }x\in\mathrm{ incident-sedges v unfolding incident-sedges-def vincident-def
using xin c2 by auto
    then show }x\in\bigcup\mathrm{ (incident-sedges ' }V\mathrm{ ) using vin by auto
qed
lemma empty-not-edge: {} \not\existsE
    using edge-size by fastforce
```

The degree definition is complicated by loops - each loop contributes two to degree. This is required for basic counting properties on the degree to hold
definition degree : : ' $a \Rightarrow$ nat where
degree $v \equiv$ card (incident-sedges $v)+2 *($ card $($ incident-loops $v))$
lemma degree-no-loops[simp]: \neg has-loop $v \Longrightarrow$ degree $v=$ card (incident-edges v)
using incident-edges-sedges degree-def incident-loops-simp(2) by auto
lemma degree-none $[$ simp $]: \neg v \in V \Longrightarrow$ degree $v=0$
using degree-def degree-no-loops has-loop-in-verts incident-edges-sedges incident-sedges-empty by auto
lemma degree 0 -inc-edges-empt-iff:

```
    assumes finite E
    shows degree v=0\longleftrightarrow incident-edges v={}
proof (intro iffI)
    assume degree v=0
    then have card (incident-sedges v) +2*(card (incident-loops v))}=0\mathrm{ using
degree-def by simp
    then have incident-sedges v}={}\mathrm{ and incident-loops v={}
    using degree-def incident-edges-union assms finite-incident-edges finite-incident-loops
by auto
    thus incident-edges v}={}\mathrm{ using incident-edges-union by auto
next
    show incident-edges v}={}\Longrightarrow\mathrm{ degree }v=0\mathrm{ using incident-edges-union de-
gree-def
    by simp
qed
lemma incident-edges-neighbors-img: incident-edges v=(\lambdau.{v,u})'(neighborhood
v)
proof (intro subset-antisym subsetI)
    fix }x\mathrm{ assume a:x incident-edges v
    then have xE:x\inE and vx:v\inx using incident-edges-def vincident-def by
auto
    then obtain u}\mathrm{ where }x={u,v}\mathrm{ using alt-edge-size
            by (smt (verit, best) card-1-singletonE card-2-iff insertE insert-absorb2 in-
sert-commute singletonD)
    then have }u\in\mathrm{ neighborhood v
            using a neighborhood-incident by blast
    then show }x\in(\lambdau.{v,u})' neighborhood v using <x = {u,v}> by blas
next
    fix }x\mathrm{ assume }x\in(\lambdau.{v,u})' neighborhood 
    then obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }x={v,\mp@subsup{u}{}{\prime}}\mathrm{ and }\mp@subsup{u}{}{\prime}\in\mathrm{ neighborhood v
            by blast
    then show }x\in\mathrm{ incident-edges v
            by (simp add: insert-commute neighborhood-incident)
qed
lemma card-incident-sedges-neighborhood: card (incident-edges v)= card (neighborhood
v)
proof -
    have bij-betw (\lambdau.{v,u}) (neighborhood v) (incident-edges v)
        by(intro bij-betw-imageI inj-onI, simp-all add:incident-edges-neighbors-img)(metis
doubleton-eq-iff)
    thus ?thesis
        by (metis bij-betw-same-card)
qed
lemma degree0-neighborhood-empt-iff:
    assumes finite E
    shows degree v=0 \longleftrightarrow neighborhood v={}
```

using degree0-inc-edges-empt-iff incident-edges-neighbors-img
by (simp add: assms)
definition is-isolated-vertex:: ' $a \Rightarrow$ bool where
is-isolated-vertex $v \equiv v \in V \wedge(\forall u \in V . \neg$ vert-adj $u v)$
lemma is-isolated-vertex-edge: is-isolated-vertex $v \Longrightarrow(\bigwedge e . e \in E \Longrightarrow \neg$ (vincident $v e)$)
unfolding is-isolated-vertex-def
by (metis (full-types) all-not-in-conv vincident-def insert-absorb insert-iff mk-disjoint-insert

```
                vert-adj-def vert-adj-edge-iff2 vert-adj-imp-inV)
```

lemma is-isolated-vertex-no-loop: is-isolated-vertex $v \Longrightarrow \neg$ has-loop v unfolding has-loop-def is-isolated-vertex-def vert-adj-def by auto
lemma is-isolated-vertex-degree0: is-isolated-vertex $v \Longrightarrow$ degree $v=0$
proof -
assume assm: is-isolated-vertex v
then have \neg has-loop v using is-isolated-vertex-no-loop by simp
then have degree $v=$ card (incident-edges v) using degree-no-loops by auto
moreover have $\wedge e . e \in E \Longrightarrow \neg$ (vincident $v e$)
using is-isolated-vertex-edge assm by auto
then have (incident-edges v) $=\{ \}$ unfolding incident-edges-def by auto
ultimately show degree $v=0$ by simp
qed
lemma iso-vertex-empty-neighborhood: is-isolated-vertex $v \Longrightarrow$ neighborhood $v=$ \{\}
using is-isolated-vertex-def neighborhood-def
by (metis (mono-tags, lifting) Collect-empty-eq is-isolated-vertex-edge vert-adj-inc-edge-iff)
definition max-degree :: nat where
max-degree $\equiv \operatorname{Max}\{$ degree $v \mid v . v \in V\}$
definition min-degree :: nat where
min-degree $\equiv \operatorname{Min}\{$ degree $v \mid v . v \in V\}$
definition is-edge-between $::$ 'a set \Rightarrow 'a set $\Rightarrow{ }^{\prime}$ 'a edge \Rightarrow bool where
is-edge-between $X Y e \equiv \exists x y . e=\{x, y\} \wedge x \in X \wedge y \in Y$
All edges between two sets of vertices, X and Y, in a graph, G. Inspired by Szemeredi development [2] and generalised here
definition all-edges-between $::$ ' a set \Rightarrow 'a set $\Rightarrow\left({ }^{\prime} a \times\right.$ 'a) set where all-edges-between $X Y \equiv\{(x, y) . x \in X \wedge y \in Y \wedge\{x, y\} \in E\}$
lemma all-edges-betw-D3: $(x, y) \in$ all-edges-between $X Y \Longrightarrow\{x, y\} \in E$ by (simp add: all-edges-between-def)

```
lemma all-edges-betw- \(I: x \in X \Longrightarrow y \in Y \Longrightarrow\{x, y\} \in E \Longrightarrow(x, y) \in\) all-edges-between
X Y
    by (simp add: all-edges-between-def)
lemma all-edges-between-subset: all-edges-between \(X Y \subseteq X \times Y\)
    by (auto simp: all-edges-between-def)
lemma all-edges-between-E-ss: mk-edge' all-edges-between \(X \quad Y \subseteq E\)
    by (auto simp add: all-edges-between-def)
lemma all-edges-between-rem-wf: all-edges-between \(X \quad Y=\) all-edges-between \((X \cap\)
\(V)(Y \cap V)\)
    using wellformed by (simp add: all-edges-between-def) blast
lemma all-edges-between-empty [simp]:
    all-edges-between \(\} Z=\{ \}\) all-edges-between \(Z\}=\{ \}\)
    by (auto simp: all-edges-between-def)
lemma all-edges-between-disjnt1: disjnt \(X \quad Y \Longrightarrow\) disjnt (all-edges-between \(X Z\) )
(all-edges-between Y Z)
    by (auto simp: all-edges-between-def disjnt-iff)
lemma all-edges-between-disjnt2: disjnt \(Y Z \Longrightarrow\) disjnt (all-edges-between \(X \quad Y\) )
(all-edges-between X Z)
    by (auto simp: all-edges-between-def disjnt-iff)
lemma max-all-edges-between:
    assumes finite \(X\) finite \(Y\)
    shows card (all-edges-between \(X Y\) ) \(\leq\) card \(X *\) card \(Y\)
    by (metis assms card-mono finite-SigmaI all-edges-between-subset card-cartesian-product)
lemma all-edges-between-Un1:
    all-edges-between \((X \cup Y) Z=\) all-edges-between \(X Z \cup\) all-edges-between \(Y Z\)
    by (auto simp: all-edges-between-def)
lemma all-edges-between-Un2:
    all-edges-between \(X(Y \cup Z)=\) all-edges-between \(X Y \cup\) all-edges-between \(X Z\)
    by (auto simp: all-edges-between-def)
lemma finite-all-edges-between:
    assumes finite \(X\) finite \(Y\)
    shows finite (all-edges-between X Y)
    by (meson all-edges-between-subset assms finite-cartesian-product finite-subset)
lemma all-edges-between-Union1:
    all-edges-between (Union \(\mathcal{X}) Y=(\bigcup X \in \mathcal{X}\). all-edges-between \(X \quad Y)\)
    by (auto simp: all-edges-between-def)
```

```
lemma all-edges-between-Union2:
    all-edges-between X (Union \mathcal{Y})=(\bigcupY\in\mathcal{Y}.all-edges-between X Y)
    by (auto simp: all-edges-between-def)
lemma all-edges-between-disjoint1:
    assumes disjoint R
    shows disjoint (( }\lambda\mathrm{ N. all-edges-between X Y)' R)
    using assms by (auto simp: all-edges-between-def disjoint-def)
lemma all-edges-between-disjoint2:
    assumes disjoint R
    shows disjoint (( }\lambda\mathrm{ Y. all-edges-between X Y)' R)
    using assms by (auto simp: all-edges-between-def disjoint-def)
lemma all-edges-between-disjoint-family-on1:
    assumes disjoint R
    shows disjoint-family-on ( }\lambda\mathrm{ . all-edges-between X Y) R
    by (metis (no-types, lifting) all-edges-between-disjnt1 assms disjnt-def disjoint-family-on-def
pairwiseD)
lemma all-edges-between-disjoint-family-on2:
    assumes disjoint R
    shows disjoint-family-on ( }\lambdaY\mathrm{ . all-edges-between X Y) R
    by (metis (no-types, lifting) all-edges-between-disjnt2 assms disjnt-def disjoint-family-on-def
pairwiseD)
lemma all-edges-between-mono1:
    Y\subseteqZ\Longrightarrowall-edges-between Y X\subseteqall-edges-between Z X
    by (auto simp: all-edges-between-def)
lemma all-edges-between-mono2:
    Y\subseteqZ\Longrightarrowall-edges-between X Y\subseteqall-edges-between X Z
    by (auto simp: all-edges-between-def)
lemma inj-on-mk-edge: }X\capY={}\Longrightarrowinj-on mk-edge (all-edges-between X Y
    by (auto simp: inj-on-def doubleton-eq-iff all-edges-between-def)
lemma all-edges-between-subset-times: all-edges-between X Y\subseteq(X\cap\bigcupE)\times(Y
\cap\E)
    by (auto simp: all-edges-between-def)
lemma all-edges-betw-prod-def-neighbors:all-edges-between X Y ={(x,y)\inX\times
Y.vert-adj x y }
    by (auto simp: vert-adj-def all-edges-between-def)
lemma all-edges-betw-sigma-neighbor:
all-edges-between X Y = (SIGMA x:X. neighbors-ss x Y)
    by (auto simp add: all-edges-between-def neighbors-ss-def vert-adj-def)
```

```
lemma card-all-edges-betw-neighbor:
    assumes finite X finite Y
    shows card (all-edges-between X Y) =( \sumx\inX.card (neighbors-ss x Y))
    using all-edges-betw-sigma-neighbor assms by (simp add: neighbors-ss-def)
lemma all-edges-between-swap:
    all-edges-between X Y = (\lambda(x,y). ( }y,x))'(\mathrm{ all-edges-between Y X)
    unfolding all-edges-between-def
    by (auto simp add: insert-commute image-iff split: prod.split)
lemma card-all-edges-between-commute:
    card (all-edges-between X Y) = card (all-edges-between Y X)
proof -
    have inj-on (\lambda(x,y).(y,x)) A for A :: (nat*nat)set
        by (auto simp: inj-on-def)
    then show ?thesis using all-edges-between-swap [of X Y] card-image
        by (metis swap-inj-on)
qed
lemma all-edges-between-set: mk-edge'all-edges-between X Y}={{x,y}|xy.x
X\wedgey\inY\wedge{x,y}\inE}
    unfolding all-edges-between-def
proof (intro subset-antisym subsetI)
    fix e assume e\inmk-edge' {(x,y). x\inX\wedgey\inY\wedge{x,y}\inE}
    then obtain x y where e=mk-edge (x,y) and }x\inX\mathrm{ and }y\inY\mathrm{ and {x,y}
EE
        by blast
    then show e\in{{x,y}|xy.x\inX\wedgey\inY\wedge{x,y}\inE}
        by auto
next
    fix e assume e\in{{x,y}|xy.x\inX\wedgey\inY\wedge{x,y}\inE}
    then obtain x y where e={x,y} and x\inX and y\inY and {x,y}\inE
        by blast
    then have }e=mk\mathrm{ -edge (x,y)
        by auto
```



```
        using \langlex\inX\rangle\langley\inY\rangle\langle{x,y}\inE\rangle by blast
qed
```


1.5 Edge Density

The edge density between two sets of vertices, X and Y, in G. This is the same definition as taken in the Szemeredi development, generalised here [2]
definition edge-density $X Y \equiv$ card (all-edges-between $X Y) /($ card $X *$ card Y)
lemma edge-density-ge0: edge-density $X Y \geq 0$
by (auto simp: edge-density-def)
lemma edge-density-le1: edge-density $X \quad Y \leq 1$
proof (cases finite $X \wedge$ finite Y)

```
    case True
    then show ?thesis
    using of-nat-mono [OF max-all-edges-between, of X Y]
    by (fastforce simp add: edge-density-def divide-simps)
qed (auto simp: edge-density-def)
lemma edge-density-zero: }Y={}\Longrightarrow\mathrm{ edge-density }X\quadY=
    by (simp add: edge-density-def)
lemma edge-density-commute: edge-density X Y = edge-density Y X
    by (simp add: edge-density-def card-all-edges-between-commute mult.commute)
lemma edge-density-Un:
    assumes disjnt X1 X2 finite X1 finite X2 finite Y
    shows edge-density (X1\cupX2) Y = (edge-density X1 Y * card X1 + edge-density
X2 Y * card X2) / (card X1 + card X2)
    using assms unfolding edge-density-def
    by (simp add: all-edges-between-disjnt1 all-edges-between-Un1 finite-all-edges-between
card-Un-disjnt divide-simps)
lemma edge-density-eq0:
    assumes all-edges-between A B={} and }X\subseteqAYY\subseteq
    shows edge-density X Y = 0
proof -
    have all-edges-between X Y = {}
    by (metis all-edges-between-mono1 all-edges-between-mono2 assms subset-empty)
    then show ?thesis
        by (auto simp: edge-density-def)
qed
end
A number of lemmas are limited to a finite graph
locale fin-ulgraph \(=\) ulgraph + fin-graph-system
begin
lemma card-is-has-loop-eq: card {e\inE. is-loop e} = card {v\inV. has-loop v}
proof -
    have }\bigwedgee.e\inE\Longrightarrowis-loop e\longleftrightarrow(\existsv.e={v})\mathrm{ using is-loop-def
        using is-singleton-altdef is-singleton-def by blast
    define f:: 'a=>'a set where f}=(\lambdav.{v}
    have feq:f'{v\inV. has-loop v}={{v}|v.has-loop v} using has-loop-in-verts
f-def by auto
    have inj-on f {v\inV. has-loop v} by (simp add: f-def)
    then have card {v\inV. has-loop v}= card (f'{v\inV.has-loop v})
        using card-image by fastforce
    also have ... = card {{v}|v. has-loop v} using feq by simp
    finally have card {v\inV. has-loop v} = card {e\inE. is-loop e} using
is-loop-set-alt by simp
```

```
    thus card {e\inE. is-loop e} = card {v\inV. has-loop v} by simp
qed
lemma finite-all-edges-between': finite (all-edges-between X Y)
    using finV wellformed
    by (metis all-edges-between-rem-wf finite-Int finite-all-edges-between)
lemma card-all-edges-between:
    assumes finite Y
    shows card (all-edges-between X Y) =( \sumy\inY.card (all-edges-between X {y}))
proof -
    have all-edges-between X Y = ( \bigcupy\inY. all-edges-between X {y})
        by (auto simp: all-edges-between-def)
    moreover have disjoint-family-on ( }\lambday\mathrm{ . all-edges-between X {y}) Y
        unfolding disjoint-family-on-def
        by (auto simp: disjoint-family-on-def all-edges-between-def)
    ultimately show ?thesis
        by (simp add: card-UN-disjoint' assms finite-all-edges-between')
qed
end
```


1.6 Simple Graphs

A simple graph (or sgraph) constrains edges to size of two. This is the classic definition of an undirected graph
locale sgraph $=$ graph-system +
assumes two-edges: $e \in E \Longrightarrow$ card $e=2$
begin
lemma wellformed-all-edges: $E \subseteq$ all-edges V
unfolding all-edges-def using wellformed two-edges by auto
lemma e-in-all-edges: $e \in E \Longrightarrow e \in$ all-edges V
using wellformed-all-edges by auto
lemma e-in-all-edges-ss: $e \in E \Longrightarrow e \subseteq V^{\prime} \Longrightarrow V^{\prime} \subseteq V \Longrightarrow e \in$ all-edges V^{\prime} unfolding all-edges-def using wellformed two-edges by auto
lemma singleton-not-edge: $\{x\} \notin E$ - Suggested by Mantas Baksys using two-edges by fastforce
end
It is easy to proof that sgraph is a sublocale of ulgraph. By using indirect inheritance, we avoid two unneeded cardinality conditions
sublocale sgraph \subseteq ulgraph $V E$
by (unfold-locales) (simp add: two-edges)

```
locale fin-sgraph \(=\) sgraph + fin-graph-system
begin
lemma fin-neighbourhood: finite (neighborhood x)
    unfolding neighborhood-def using finV by simp
lemma fin-all-edges: finite (all-edges V)
    unfolding all-edges-def by (simp add: finV)
lemma max-edges-graph: card \(E \leq(\text { card } V)^{\wedge}\) ~2
proof -
    have card \(E \leq\) card \(V\) choose 2
        by (metis fin-all-edges fin V card-all-edges card-mono wellformed-all-edges)
    thus ?thesis
    by (metis binomial-le-pow le0 neq0-conv order.trans zero-less-binomial-iff)
qed
end
sublocale fin-sgraph \(\subseteq\) fin-ulgraph
    by (unfold-locales)
context sgraph
begin
lemma no-loops: \(v \in V \Longrightarrow \neg\) has-loop \(v\)
    using has-loop-def two-edges by fastforce
    Ideally, we'd redefine degree in the context of a simple graph. However,
this requires a named loop locale, which complicates notation unnecessarily.
This is the lemma that should always be used when unfolding the degree
definition in a simple graph context
lemma alt-degree-def[simp]: degree \(v=\) card (incident-edges \(v\) )
    using no-loops degree-no-loops degree-none incident-edges-empty by (cases \(v \in\)
V) simp-all
lemma alt-deg-neighborhood: degree \(v=\) card (neighborhood \(v\) )
using card-incident-sedges-neighborhood by simp
definition degree-set :: 'a set \(\Rightarrow\) nat where
degree-set vs \(\equiv\) card \(\{e \in E . v s \subseteq e\}\)
definition is-complete-n-graph:: nat \(\Rightarrow\) bool where
is-complete- \(n\)-graph \(n \equiv\) gorder \(=n \wedge E=\) all-edges \(V\)
    The complement of a graph is a basic concept
definition is-complement :: 'a pregraph \(\Rightarrow\) bool where
is-complement \(G \equiv V=\) gverts \(G \wedge\) gedges \(G=\) all-edges \(V-E\)
```

definition complement-edges :: 'a edge set where complement-edges \equiv all-edges $V-E$
lemma is-complement-edges: is-complement $\left(V^{\prime}, E^{\prime}\right) \longleftrightarrow V=V^{\prime} \wedge$ comple-ment-edges $=E^{\prime}$
unfolding is-complement-def complement-edges-def by auto
interpretation G-comp: sgraph V complement-edges
by (unfold-locales)(auto simp add: complement-edges-def all-edges-def)
lemma is-complement-edge-iff: $e \subseteq V \Longrightarrow e \in$ complement-edges $\longleftrightarrow e \notin E \wedge$
card $e=2$
unfolding complement-edges-def all-edges-def by auto
end
A complete graph is a simple graph
lemma complete-sgraph: sgraph S (all-edges S)
unfolding all-edges-def by (unfold-locales) (simp-all)
interpretation comp-sgraph: sgraph S (all-edges S)
using complete-sgraph by auto
lemma complete-fin-sgraph: finite $S \Longrightarrow$ fin-sgraph S (all-edges S)
using complete-sgraph
by (intro-locales) (auto simp add: sgraph.axioms(1) sgraph-def fin-graph-system-axioms-def)

1.7 Subgraph Basics

A subgraph is defined as a graph where the vertex and edge sets are subsets of the original graph. Note that using the locale approach, we require each graph to be wellformed. This is interestingly omitted in a number of other formal definitions.
locale subgraph $=H$: graph-system $V_{H}::$ 'a set $E_{H}+G$: graph-system $V_{G}::$ 'a set E_{G} for $V_{H} E_{H} \quad V_{G} E_{G}+$
assumes verts-ss: $V_{H} \subseteq V_{G}$
assumes edges-ss: $E_{H} \subseteq E_{G}$
lemma is-subgraph $\left[\right.$ [intro]: $V^{\prime} \subseteq V \Longrightarrow E^{\prime} \subseteq E \Longrightarrow$ graph-system $V^{\prime} E^{\prime} \Longrightarrow$ graph-system $V E \Longrightarrow$ subgraph $V^{\prime} E^{\prime} V E$
using graph-system-def by (unfold-locales)
(auto simp add: graph-system.vincident-def graph-system.incident-edge-in-wf)
context subgraph
begin
Note: it could also be useful to have similar rules in ulgraph locale etc with subgraph assumption

```
lemma is-subgraph-ulgraph:
    assumes ulgraph \(V_{G} E_{G}\)
    shows ulgraph \(V_{H} E_{H}\)
    using assms ulgraph.edge-size[ of \(V_{G} E_{G}\) ] edges-ss by (unfold-locales) auto
lemma is-simp-subgraph:
    assumes sgraph \(V_{G} E_{G}\)
    shows sgraph \(V_{H} E_{H}\)
    using assms sgraph.two-edges edges-ss by (unfold-locales) auto
lemma is-finite-subgraph:
    assumes fin-graph-system \(V_{G} E_{G}\)
    shows fin-graph-system \(V_{H} E_{H}\)
    using assms verts-ss
    by (unfold-locales) (simp add: fin-graph-system.finV finite-subset)
lemma (in graph-system) subgraph-refl: subgraph V E V E
    by (simp add: graph-system-axioms is-subgraphI)
lemma subgraph-trans:
    assumes graph-system \(V E\)
    assumes graph-system \(V^{\prime} E^{\prime}\)
    assumes graph-system \(V^{\prime \prime} E^{\prime \prime}\)
    shows subgraph \(V^{\prime \prime} E^{\prime \prime} V^{\prime} E^{\prime} \Longrightarrow\) subgraph \(V^{\prime} E^{\prime} V E \Longrightarrow\) subgraph \(V^{\prime \prime} E^{\prime \prime} V\)
E
    by (meson assms(1) assms(3) is-subgraphI subgraph.edges-ss subgraph.verts-ss
subset-trans)
lemma subgraph-antisym: subgraph \(V^{\prime} E^{\prime} V E \Longrightarrow\) subgraph \(V E V^{\prime} E^{\prime} \Longrightarrow V=\)
\(V^{\prime} \wedge E=E^{\prime}\)
    by (simp add: dual-order.eq-iff subgraph.edges-ss subgraph.verts-ss)
end
lemma (in sgraph) subgraph-complete: subgraph \(V E V\) (all-edges \(V\) )
proof -
    interpret comp: sgraph \(V\) (all-edges \(V\) )
        using complete-sgraph by auto
    show ?thesis by (unfold-locales) (simp-all add: wellformed-all-edges)
qed
```

We are often interested in the set of subgraphs. This is still very possible using locale definitions. Interesting Note - random graphs [3] has a different definition for the well formed constraint to be added in here instead of in the main subgraph definition
definition (in graph-system) subgraphs:: 'a pregraph set where subgraphs $\equiv\{G$. subgraph (gverts G) (gedges $G) V E\}$

Induced subgraph - really only affects edges
definition (in graph-system) induced-edges:: 'a set \Rightarrow ' a edge set where induced-edges $V^{\prime} \equiv\left\{e \in E . e \subseteq V^{\prime}\right\}$
lemma (in sgraph) induced-edges-alt: induced-edges $V^{\prime}=E \cap$ all-edges V^{\prime} unfolding induced-edges-def all-edges-def using two-edges by blast
lemma (in sgraph) induced-edges-self: induced-edges $V=E$ unfolding induced-edges-def by (simp add: subsetI subset-antisym wellformed)

```
context graph-system
begin
lemma induced-edges-ss: V'\subseteqV\Longrightarrow induced-edges }\mp@subsup{V}{}{\prime}\subseteq
    unfolding induced-edges-def by auto
lemma induced-is-graph-sys: graph-system V' (induced-edges V')
    by (unfold-locales) (simp add: induced-edges-def)
interpretation induced-graph: graph-system V' (induced-edges V')
    using induced-is-graph-sys by simp
lemma induced-is-subgraph: V'\subseteqV\Longrightarrow subgraph V V (induced-edges V')}V
    using induced-edges-ss by (unfold-locales) auto
lemma induced-edges-union:
    assumes VH1\subseteqS VH2\subseteqT
    assumes graph-system VH1 EH1 graph-system VH2 EH2
    assumes EH1\cupEH2 \subseteq (induced-edges (S\cupT))
    shows EH1\subseteq(induced-edges S)
proof (intro subsetI, simp add: induced-edges-def, intro conjI)
    show }\x.x\inEH1\Longrightarrowx\inE\mathrm{ using assms(5)
        by (simp add: induced-edges-def subset-iff)
    show }\x.x\inEH1\Longrightarrowx\subseteq
        using assms(1) assms(3) graph-system.wellformed by blast
qed
lemma induced-edges-union-subgraph-single:
    assumes VH1\subseteqS VH2 }\subseteq
    assumes graph-system VH1 EH1 graph-system VH2 EH2
    assumes subgraph (VH1\cupVH2) (EH1\cupEH2) (S\cupT) (induced-edges (S\cup
T))
    shows subgraph VH1 EH1 S (induced-edges S)
proof -
    interpret ug: subgraph (VH1\cupVH2) (EH1\cupEH2) (S\cupT) (induced-edges (S
    U))
    using assms(5) by simp
    show subgraph VH1 EH1 S (induced-edges S)
```

using assms(3) graph-system-def
by (unfold-locales) (blast, simp add: assms(1), meson assms induced-edges-union ug.edges-ss)
qed
lemma induced-union-subgraph:
assumes $V H 1 \subseteq S$ and $V H 2 \subseteq T$
assumes graph-system VH1 EH1 graph-system VH2 EH2
shows subgraph VH1 EH1 $S($ induced-edges S) \wedge subgraph VH2 EH2 T (induced-edges
$T) \longleftrightarrow$
subgraph $(V H 1 \cup V H 2)(E H 1 \cup E H 2)(S \cup T)($ induced-edges $(S \cup T))$
proof (intro iffI conjI, elim conjE)
show subgraph $(V H 1 \cup V H 2)(E H 1 \cup E H 2)(S \cup T)($ induced-edges $(S \cup T))$ \Longrightarrow subgraph VH1 EH1 S (induced-edges S)
using induced-edges-union-subgraph-single assms by simp
show subgraph $(V H 1 \cup V H 2)(E H 1 \cup E H 2)(S \cup T)($ induced-edges $(S \cup T))$ \Longrightarrow subgraph VH2 EH2 T (induced-edges T)
using induced-edges-union-subgraph-single assms by (simp add: Un-commute)
assume a1: subgraph VH1 EH1 S (induced-edges S) and a2: subgraph VH2 EH2 T (induced-edges T)
then interpret h1: subgraph VH1 EH1 S (induced-edges S)
by simp
interpret h2: subgraph VH2 EH2 T (induced-edges T) using a2 by simp
show subgraph $(V H 1 \cup V H 2)(E H 1 \cup E H 2)(S \cup T)($ induced-edges $(S \cup T))$ using h1.H.wellformed h2.H.wellformed h1.verts-ss h2.verts-ss h1.edges-ss
h2.edges-ss
by (unfold-locales) (auto simp add: induced-edges-def)
qed
end
end
theory Undirected-Graph-Walks imports Undirected-Graph-Basics
begin

2 Walks, Paths and Cycles

The definition of walks, paths, cycles, and related concepts are foundations of graph theory, yet there can be some differences in literature between definitions. This formalisation draws inspiration from Noschinski's Graph Library [5], however focuses on an undirected graph context compared to a directed graph context, and extends on some definitions, as required to formalise Balog Szemeredi Gowers theorem.

```
context ulgraph
begin
```


2.1 Walks

This definition is taken from the directed graph library, however edges are undirected

```
fun walk-edges :: 'a list \(\Rightarrow{ }^{\prime} a\) edge list where
    walk-edges []\(=[]\)
    walk-edges \([x]=[]\)
    \(\mid\) walk-edges \((x \# y \# y s)=\{x, y\} \#\) walk-edges \((y \# y s)\)
```

lemma walk-edges-app: walk-edges $(x s @[y, x])=$ walk-edges $(x s @[y]) @[\{y, x\}]$
by (induct xs rule: walk-edges.induct, simp-all)
lemma walk-edges-tl-ss: set (walk-edges $(t l x s)) \subseteq$ set (walk-edges $x s)$
by (induct xs rule: walk-edges.induct) auto
lemma walk-edges-rev: rev (walk-edges xs) = walk-edges (rev xs)
proof (induct xs rule: walk-edges.induct, simp-all)
fix x y ys assume assm: rev (walk-edges ($y \# y s$)) = walk-edges (rev ys @ [y])
then show walk-edges (rev ys @ $[y])$ @ $[\{x, y\}]=$ walk-edges (rev ys @ $[y, x]$)
using walk-edges-app by fastforce
qed
lemma walk-edges-append-ss1: set $($ walk-edges $(y s)) \subseteq$ set $($ walk-edges $(x s @ y s))$
proof (induct xs rule: walk-edges.induct)
case 1
then show? case by simp
next
case (2 x)
then show? case
using walk-edges-tl-ss by fastforce
next
case (3 x y $y s$)
then show? case by (simp add: subset-iff)
qed
lemma walk-edges-append-ss2: set (walk-edges $(x s)) \subseteq$ set (walk-edges (xs@ys)) by (induct xs rule: walk-edges.induct) auto
lemma walk-edges-singleton-app: ys $\neq[] \Longrightarrow$ walk-edges $([x] @ y s)=\{x, h d y s\} \#$ walk-edges ys using list.exhaust-sel walk-edges.simps(3) by (metis Cons-eq-appendI eq-Nil-appendI)
lemma walk-edges-append-union: $x s \neq[] \Longrightarrow y s \neq[] \Longrightarrow$
set $($ walk-edges $(x s @ y s))=$ set $($ walk-edges $(x s)) \cup$ set $($ walk-edges $y s) \cup\{\{$ last $x s, h d y s\}\}$
using walk-edges-singleton-app by (induct xs rule: walk-edges.induct) auto

```
lemma walk-edges-decomp-ss: set \((\) walk-edges \((x s @[y] @ z s)) \subseteq\) set \((\) walk-edges \((x s @[y] @ y s @[y] @ z s)\) )
proof -
    have half-ss: set \((\) walk-edges \((x s @[y])) \subseteq\) set (walk-edges \((x s @[y] @ y s @[y])\) )
        using walk-edges-append-ss2 by fastforce
    thus ? thesis proof (cases zs \(=[]\) )
        case True
        then show ?thesis using half-ss by auto
    next
        case False
        then have decomp1: set (walk-edges \((x s @[y] @ z s))=\) set (walk-edges \((x s @[y])\) )
\(\cup\) set \((\) walk-edges \((z s)) \cup\{\{y, h d z s\}\}\)
            using walk-edges-append-union
            by (metis append-assoc append-is-Nil-conv last-snoc neq-Nil-conv)
    have set \((\) walk-edges \((x s @[y] @ y s @[y] @ z s))=\) set (walk-edges \((x s @[y] @ y s @[y])\) )
\(\cup\) set \((\) walk-edges \((z s)) \cup\{\{y, h d z s\}\}\)
            using walk-edges-append-union False
                by (metis append-assoc append-is-Nil-conv empty-iff empty-set last-snoc
list.set-intros(1))
    then show ?thesis using decomp1 half-ss by auto
    qed
qed
definition walk-length :: 'a list \(\Rightarrow\) nat where
    walk-length \(p \equiv\) length (walk-edges \(p\) )
lemma walk-length-conv: walk-length \(p=\) length \(p-1\)
    by (induct \(p\) rule: walk-edges.induct) (auto simp: walk-length-def)
lemma walk-length-rev: walk-length \(p=\) walk-length (rev \(p\) )
    using walk-edges-rev walk-length-def
    by (metis length-rev)
lemma walk-length-app: \(x s \neq[] \Longrightarrow y s \neq[] \Longrightarrow\) walk-length \((x s @ y s)=\) walk-length
\(x s+\) walk-length ys +1
    apply (induct xs rule: walk-edges.induct)
        apply (simp-all add: walk-length-def)
    using walk-edges-singleton-app by force
lemma walk-length-app-ineq: walk-length (xs @ ys) \(\geq\) walk-length \(x s+\) walk-length
ys \(\wedge\)
    walk-length \((x s @ y s) \leq\) walk-length \(x s+\) walk-length \(y s+1\)
proof (cases xs \(=[] \vee y s=[])\)
    case True
    then show ?thesis using walk-length-def by auto
next
    case False
    then show?thesis
        by (simp add: walk-length-app)
qed
```

Note that while the trivial walk is allowed, the empty walk is not

```
definition is-walk :: 'a list }=>\mathrm{ bool where
is-walk xs \equiv set xs}\subseteqV\wedge set (walk-edges xs)\subseteqE\wedgexs\not=[
lemma is-walkI: set xs\subseteqV\Longrightarrow set (walk-edges xs)\subseteqE\Longrightarrowxs }\subseteq=[]\Longrightarrowis\mathrm{ -walk
xs
    using is-walk-def by simp
lemma is-walk-wf:is-walk xs \Longrightarrow set xs \subseteq}
    by (simp add: is-walk-def)
lemma is-walk-wf-hd: is-walk xs \Longrightarrow hd xs \inV
    using is-walk-wf hd-in-set is-walk-def by blast
lemma is-walk-wf-last:is-walk xs \Longrightarrow last xs }\in
    using is-walk-wf last-in-set is-walk-def by blast
lemma is-walk-singleton: }u\inV\Longrightarrowis-walk [u
    unfolding is-walk-def using walk-edges.simps by simp
lemma is-walk-not-empty: is-walk xs \Longrightarrow xs \not= []
    unfolding is-walk-def by simp
lemma is-walk-not-empty2: is-walk [] = False
    unfolding is-walk-def by simp
        Reasoning on transformations of a walk
lemma is-walk-rev:is-walk xs \longleftrightarrow is-walk (rev xs)
    unfolding is-walk-def using walk-edges-rev
    by (metis rev-is-Nil-conv set-rev)
lemma is-walk-tl:length xs \geq2 \Longrightarrow is-walk xs \Longrightarrow is-walk (tl xs)
    using walk-edges-tl-ss is-walk-def in-mono list.set-sel(2) tl-Nil by fastforce
lemma is-walk-append:
    assumes is-walk xs
    assumes is-walk ys
    assumes last xs = hd ys
    shows is-walk (xs @ (tl ys))
proof (intro is-walkI subsetI)
    show xs @ tl ys }=[]\mathrm{ using is-walk-def assms by auto
    show \x. x set (xs @ tl ys) \Longrightarrowx\inV using assms is-walk-def is-walk-wf
    by (metis Un-iff in-mono list-set-tl set-append)
next
    fix x assume xin: x \in set (walk-edges (xs @ tl ys))
    show }x\inE\mathrm{ proof (cases tl ys =[])
        case True
        then show ?thesis using assms(1) is-walk-def xin by auto
    next
```

```
    case False
    then have xin2: x ( set (walk-edges xs) \cup set (walk-edges (tl ys)) \cup {{last xs,
hd (tl ys)}})
    using walk-edges-append-union is-walk-not-empty assms xin by auto
    have 1: set (walk-edges xs)\subseteqE using assms(1) is-walk-def
        by simp
    have 2: set (walk-edges (tl ys))\subseteqE using assms(2) is-walk-def
    by (meson dual-order.trans walk-edges-tl-ss)
    have {last xs, hd (tl ys)} \inE using is-walk-def assms(2) assms(3)
    by (metis False hd-Cons-tl insert-subset list.simps(15) walk-edges.simps(3))
    then show ?thesis using 12 xin2 by auto
    qed
qed
lemma is-walk-decomp:
    assumes is-walk(xs@[y]@ys@[y]@zs) (is is-walk ?w)
    shows is-walk(xs@[y]@zs)
proof (intro is-walkI)
    show set (xs@ [y]@zs)\subseteqV using assms is-walk-def by simp
    show xs@ @ y]@zs =[] by simp
    show set (walk-edges (xs @ [y] @ zs))\subseteqE
        using walk-edges-decomp-ss assms(1) is-walk-def by blast
qed
lemma is-walk-hd-tl:
    assumes is-walk (y # ys)
    assumes {x,y}\inE
    shows is-walk (x # y # ys)
proof (intro is-walkI)
    show set (x#y#ys)\subseteqV
        using assms by (simp add: is-walk-def wellformed-alt-fst)
    show set (walk-edges (x# y # ys)) \subseteqE
        using walk-edges.simps assms is-walk-def by simp
    show }x#y#ys\not=[] by sim
qed
lemma is-walk-drop-hd:
    assumes ys \not= []
    assumes is-walk (y # ys)
    shows is-walk ys
proof (intro is-walkI)
    show set ys \subseteqV
        using assms is-walk-wf by fastforce
    show set (walk-edges ys)\subseteqE
    using assms is-walk-def walk-edges-tl-ss by force
    show ys \not= [] using assms by simp
qed
lemma walk-edges-index:
```

assumes $i \geq 0 i<$ walk-length w
assumes is-walk w
shows (walk-edges w) $!i \in E$
using assms
proof (induct w arbitrary: i rule: walk-edges.induct, simp add: is-walk-not-empty2,

```
    simp add: walk-length-def)
    case (3x y ys)
    then show ?case proof (cases i=0)
    case True
    then show ?thesis
        using 3.prems(3) is-walk-def by fastforce
    next
    case False
    have gt: 0\leqi-1 using False by simp
    have lt: i-1< walk-length (y # ys)
        using 3.prems(2) False walk-length-conv by auto
    have is-walk (y # ys)
        using 3.prems(3) is-walk-def by fastforce
    then show ?thesis using 3.hyps[of i-1]
    by (metis 3.prems(1) False gt lt le-neq-implies-less nth-Cons-pos walk-edges.simps(3))
    qed
qed
lemma is-walk-index:
    assumes i\geq0 Suc i< (length w)
    assumes is-walk w
    shows {w!i,w!(i+1)}\inE
    using assms proof (induct w arbitrary: i rule: walk-edges.induct, simp, simp)
    fix x y ys i
    assume IH: \j. 0 \leqj\LongrightarrowSuc j< length (y# ys)\Longrightarrowis-walk (y # ys)\Longrightarrow
{(y# ys)!j,(y# ys)!(j+1)}\inE
    assume 1: 0 \leqi and 2: Suc i< length (x#y# ys) and 3:is-walk (x#y #
ys)
    show {(x#y#ys)!i,(x#y#ys)!(i+1)}\inE
    proof (cases i=0)
        case True
        then show ?thesis using 3 is-walk-def
            by simp
    next
        case False
        have is-walk (y # ys) using is-walk-def 3 by fastforce
        then show ?thesis using 2 IH[of i - 1]
            by (simp add: False nat-less-le)
    qed
qed
lemma is-walk-take:
```

```
    assumes is-walk w
    assumes n>0
    assumes n\leq length w
    shows is-walk (take n w)
    using assms proof (induct w arbitrary: n rule: walk-edges.induct)
    case 1
    then show ?case by simp
next
    case (2 x)
    then have }n=1\mathrm{ using 2 by auto
    then show ?case by (simp add: 2.prems(1))
next
    case (3 x y ys)
    then show ?case proof (cases n=1)
        case True
        then have take n (x#y#ys) = [x]
        by simp
        then show ?thesis using is-walk-def 3.prems(1) by simp
    next
        case False
    then have ngt: n \geq2 using 3.prems(2) by auto
    then have tk-split1: take n (x#y # ys) = x # take (n - 1) (y# ys) using 3
        by (simp add: take-Cons')
    then have tk-split: take n (x#y#ys)=x#y# (take (n-2) ys)
        using 3 ngt take-Cons'[of n -1 y ys]
        by (metis False diff-diff-left less-one nat-neq-iff one-add-one zero-less-diff)
    have w: is-walk (y # ys) using is-walk-tl
        using 3.prems(1) is-walk-def by force
    have n-1\leqlength (y# ys) using 3.prems(3) by simp
        then have w-tl: is-walk (take (n-1) (y# ys)) using 3.hyps[of n - 1] w
3.prems ngt
        by linarith
    have {x,y}\inE using is-walk-def walk-edges.simps 3.prems(1) by auto
    then show ?thesis using is-walk-hd-tl[of y (take (n - 2) ys) x] tk-split
        using tk-split1 w-tl by force
    qed
qed
lemma is-walk-drop:
    assumes is-walk w
    assumes n<length w
    shows is-walk (drop n w)
    using assms proof (induct w arbitrary: n rule: walk-edges.induct)
    case 1
    then show ?case by simp
next
    case (2 x)
    then have }n=0\mathrm{ using 2 by auto
    then show ?case by (simp add: 2.prems(1))
```

```
next
    case (3 x y ys)
    then show ?case proof (cases n \geq 2)
        case True
        then have ngt: n\geq2 using 3.prems(2) by auto
    then have tk-split1:drop n (x#y # ys) = drop (n - 1) (y# ys) using 3
        by (simp add: drop-Cons')
    then have tk-split: drop n (x#y# ys)=(drop (n-2) ys)
                using 3 ngt drop-Cons'[of n-1 y ys] True
                by (metis Suc-1 Suc-le-eq diff-diff-left less-not-refl nat-1-add-1 zero-less-diff)
    have w: is-walk (y # ys) using is-walk-tl
        using 3.prems(1) is-walk-def by force
    have n-1< length (y#ys) using 3.prems(2) by simp
        then have w-tl: is-walk (drop (n-1) (y # ys)) using 3.hyps[of n - 1] w
3.prems ngt
                by linarith
    have {x,y}\inE using is-walk-def walk-edges.simps 3.prems(1) by auto
    then show ?thesis using is-walk-hd-tl[of y (take (n - 2) ys) x] tk-split
        using tk-split1 w-tl by force
    next
        case False
        then have or: n=0\vee n=1
                by auto
    have walk: is-walk (y # ys) using is-walk-drop-hd 3 by blast
    have n0: n=0\Longrightarrow(drop n (x#y#ys))=(x#y# ys) by simp
    have }n=1\Longrightarrow(drop n(x#y#ys))=y#ys by sim
    then show ?thesis using n0 3 walk or by auto
    qed
qed
definition walks :: 'a list set where
    walks \equiv{p.is-walk p}
definition is-open-walk :: 'a list }=>\mathrm{ bool where
is-open-walk xs \equivis-walk xs ^hd xs \not= last xs
lemma is-open-walk-rev: is-open-walk xs \longleftrightarrow is-open-walk (rev xs)
    unfolding is-open-walk-def using is-walk-rev
    by (metis hd-rev last-rev)
definition is-closed-walk :: 'a list }=>\mathrm{ bool where
is-closed-walk xs \equivis-walk xs ^hd xs = last xs
lemma is-closed-walk-rev: is-closed-walk xs \longleftrightarrow is-closed-walk (rev xs)
    unfolding is-closed-walk-def using is-walk-rev
    by (metis hd-rev last-rev)
definition is-trail :: 'a list => bool where
is-trail xs \equiv is-walk xs ^ distinct (walk-edges xs)
```

```
lemma is-trail-rev: is-trail xs \longleftrightarrow is-trail (rev xs)
    unfolding is-trail-def using is-walk-rev
    by (metis distinct-rev walk-edges-rev)
```


2.2 Paths

There are two common definitions of a path. The first, given below, excludes the case where a path is a cycle. Note this also excludes the trivial path $[x]$

```
definition is-path :: 'a list \(\Rightarrow\) bool where
is-path \(x s \equiv\) (is-open-walk xs \(\wedge\) distinct (xs))
```

lemma is-path-rev: is-path $x s \longleftrightarrow$ is-path (rev xs)
unfolding is-path-def using is-open-walk-rev
by (metis distinct-rev)
lemma is-path-walk: is-path $x s \Longrightarrow$ is-walk xs
unfolding is-path-def is-open-walk-def by auto
definition paths :: 'a list set where
paths $\equiv\{p$. is-path $p\}$
lemma paths-ss-walk: paths \subseteq walks
unfolding paths-def walks-def is-path-def is-open-walk-def by auto

A more generic definition of a path - used when a cycle is considered a path, and therefore includes the trivial path $[x]$
definition is-gen-path:: 'a list \Rightarrow bool where
is-gen-path $p \equiv$ is-walk $p \wedge((\operatorname{distinct}(t l p) \wedge h d p=$ last $p) \vee$ distinct $p)$
lemma is-path-gen-path: is-path $p \Longrightarrow$ is-gen-path p
unfolding is-path-def is-gen-path-def is-open-walk-def by (auto simp add: dis-
tinct-tl)
lemma is-gen-path-rev: is-gen-path $p \longleftrightarrow$ is-gen-path (rev p)
unfolding is-gen-path-def using is-walk-rev distinct-tl-rev
by (metis distinct-rev hd-rev last-rev)
lemma is-gen-path-distinct: is-gen-path $p \Longrightarrow h d p \neq$ last $p \Longrightarrow$ distinct p
unfolding is-gen-path-def by auto
lemma is-gen-path-distinct-tl:
assumes $i s$-gen-path p and $h d p=$ last p
shows distinct ($t l p$)
proof (cases length $p>1$)
case True
then show ?thesis
using assms(1) distinct-tl is-gen-path-def by auto
next

```
    case False
    then show ?thesis
    using assms(1) distinct-tl is-gen-path-def by auto
qed
lemma is-gen-path-trivial: }x\inV\Longrightarrow\mathrm{ is-gen-path [x]
    unfolding is-gen-path-def is-walk-def by simp
definition gen-paths :: 'a list set where
gen-paths }\equiv{p.is-gen-path p
lemma gen-paths-ss-walks: gen-paths }\subseteq\mathrm{ walks
    unfolding gen-paths-def walks-def is-gen-path-def by auto
```


2.3 Cycles

Note, a cycle must be non trivial (i.e. have an edge), but as we let a loop by a cycle we broaden the definition in comparison to Noschinski [5] for a cycle to be of length greater than 1 rather than 3
definition is-cycle :: 'a list \Rightarrow bool where
is-cycle $x s \equiv$ is-closed-walk $x s \wedge$ walk-length $x s \geq 1 \wedge$ distinct (tl xs)
lemma is-gen-path-cycle: is-cycle $p \Longrightarrow$ is-gen-path p
unfolding is-cycle-def is-gen-path-def is-closed-walk-def by auto
lemma is-cycle-alt-gen-path: is-cycle $x s \longleftrightarrow$ is-gen-path $x s \wedge$ walk-length $x s \geq 1$ $\wedge h d x s=$ last $x s$ proof (intro iffI)
show is-cycle $x s \Longrightarrow$ is-gen-path $x s \wedge 1 \leq$ walk-length $x s \wedge h d x s=$ last $x s$
using is-gen-path-cycle is-cycle-def is-closed-walk-def
by auto
show is-gen-path $x s \wedge 1 \leq$ walk-length $x s \wedge h d x s=$ last $x s \Longrightarrow$ is-cycle $x s$
using distinct-tl is-closed-walk-def is-cycle-def is-gen-path-def by blast
qed
lemma is-cycle-alt: is-cycle $x s \longleftrightarrow$ is-walk $x s \wedge$ distinct $(t l x s) \wedge$ walk-length $x s$ $\geq 1 \wedge h d x s=$ last $x s$
proof (intro iffI)
show is-cycle $x s \Longrightarrow$ is-walk $x s \wedge$ distinct $(t l x s) \wedge 1 \leq$ walk-length $x s \wedge h d x s=$ last xs
using is-cycle-alt-gen-path is-cycle-def is-gen-path-def by blast
show is-walk xs \wedge distinct $(t l x s) \wedge 1 \leq$ walk-length $x s \wedge h d x s=$ last $x s \Longrightarrow$ is-cycle xs
by (simp add: is-cycle-alt-gen-path is-gen-path-def)
qed
lemma is-cycle-rev: is-cycle $x s \longleftrightarrow$ is-cycle (rev xs)
proof -
have len: $1 \leq$ walk-length $x s \longleftrightarrow 1 \leq$ walk-length (rev xs)

```
    by (metis length-rev walk-edges-rev walk-length-def)
    have hd xs = last xs \Longrightarrow distinct (tl xs) \longleftrightarrow distinct (tl (rev xs))
    using distinct-tl-rev by blast
    then show ?thesis using len is-cycle-def
    using is-closed-walk-def is-closed-walk-rev by auto
qed
lemma cycle-tl-is-path: is-cycle xs ^ walk-length xs \geq 3 \Longrightarrow is-path (tl xs)
proof (simp add: is-cycle-def is-path-def is-open-walk-def is-closed-walk-def walk-length-conv,
    elim conjE, intro conjI, simp add: is-walk-tl)
    assume w: is-walk xs and eq: hd xs = last xs and 3 length xs - Suc 0 and
    dis: distinct (tl xs)
    then have len: 4\leq length xs
        by linarith
    then have lentl: 3 < length (tl xs) by simp
    then have lentltl: 2 \leq length (tl (tl xs)) by simp
    have last (tl (tl xs)) = last (tl xs)
    by (metis One-nat-def Suc-1〈3 \leqlength xs - Suc 0`diff-is-0-eq' is-walk-def
is-walk-tl last-tl
                            lentl not-less-eq-eq numeral-le-one-iff one-le-numeral order.trans semir-
ing-norm(70) w)
    then have last (tl xs) \in set (tl (tl xs))
        using last-in-list-tl-set lentltl by (metis last-in-set list.sel(2))
    moreover have hd (tl xs) & set (tl (tl xs)) using dis lentltl
    by (metis distinct.simps(2) hd-Cons-tl list.sel(2) list.size(3) not-numeral-le-zero)
    ultimately show hd (tl xs) f last (tl xs) by fastforce
qed
lemma is-gen-path-path:
    assumes is-gen-path p and walk-length p>0 and (\negis-cycle p)
    shows is-path p
proof (simp add: is-gen-path-def is-path-def is-open-walk-def, intro conjI)
    show is-walk p using is-gen-path-def assms(1) by simp
    show ne: hd p\not= last p
    using assms(1) assms(2) assms(3) is-cycle-alt-gen-path by auto
    have ((distinct (tl p)^hd p=last p)\vee distinct p) using is-gen-path-def assms(1)
by auto
    thus distinct p using ne by auto
qed
lemma is-gen-path-options: is-gen-path p}\longleftrightarrow>\mathrm{ is-cycle p }\vee\mathrm{ is-path p}\vee(\existsv\inV
p=[v])
proof (intro iffI)
    assume a: is-gen-path p
    then have p}\not=[] unfolding is-gen-path-def is-walk-def by aut
    then have (\forallv\inV.p\not=[v])\Longrightarrow walk-length p>0 using walk-length-def
        by (metis a is-gen-path-def is-walk-wf-hd length-greater-0-conv list.collapse
```

```
list.distinct(1) walk-edges.simps(3))
    then show is-cycle p\vee is-path p\vee(\existsv\inV.p=[v])
        using a is-gen-path-path by auto
next
    show is-cycle p\vee is-path p}\vee(\existsv\inV.p=[v])\Longrightarrow is-gen-path 
    using is-gen-path-cycle is-path-gen-path is-gen-path-trivial by auto
qed
definition cycles :: 'a list set where
    cycles }\equiv{p.is-cycle p
lemma cycles-ss-gen-paths:cycles }\subseteq\mathrm{ gen-paths
    unfolding cycles-def gen-paths-def using is-gen-path-cycle by auto
lemma gen-paths-ss: gen-paths\subseteqcycles \cup paths \cup{[v]|v.v\inV}
    unfolding gen-paths-def cycles-def paths-def using is-gen-path-options by auto
        Walk edges are distinct in a path and cycle
lemma distinct-edgesI:
    assumes distinct p shows distinct (walk-edges p)
proof -
    from assms have ?thesis }\bigwedgeu.u\not\in set p\Longrightarrow(\v.u\not=v\Longrightarrow{u,v}\not\in se
(walk-edges p))
        by (induct p rule: walk-edges.induct) auto
    then show ?thesis by simp
qed
lemma scycles-distinct-edges:
    assumes c\in cycles 3 \leq walk-length c shows distinct (walk-edges c)
proof -
    from assms have c-props: distinct (tl c) 4 \leqlength c hd c= last c
        by (auto simp add: cycles-def is-cycle-def is-closed-walk-def walk-length-conv)
    then have {hd c,hd (tl c)}\not\in set (walk-edges (tl c))
    proof (induct c rule: walk-edges.induct)
        case (3 x y ys)
        then have hd ys \not= last ys by (cases ys) auto
        moreover
        from 3 have walk-edges (y # ys) = {y,hd ys} # walk-edges ys
            by (cases ys) auto
        moreover
        { fix xs have set (walk-edges xs)\subseteq Pow (set xs)
            by (induct xs rule: walk-edges.induct) auto }
        ultimately
        show ?case using 3 by auto
    qed simp-all
    moreover
    from assms have distinct (walk-edges (tl c))
    by (intro distinct-edgesI) (simp add: cycles-def is-cycle-def)
    ultimately
```

```
    show ?thesis by(cases c, simp-all)
    (metis distinct.simps(1) distinct.simps(2) list.sel(1) list.sel(3) walk-edges.elims)
qed
end
context fin-ulgraph
begin
lemma finite-paths: finite paths
proof -
    have ss: paths\subseteq{xs. set xs\subseteqV ^ length xs \leq (card (V))}
    proof (rule, simp, intro conjI)
        show 1: \bigwedgex. x\in paths \Longrightarrow set x\subseteqV
        unfolding paths-def is-path-def is-open-walk-def is-walk-def by simp
    fix }x\mathrm{ assume a: x f paths
    then have distinct x
        using paths-def is-path-def by simp-all
    then have eq: length x = card (set x)
        by (simp add: distinct-card)
    then show length }x\leq\mathrm{ gorder using a 1
        by (simp add: card-mono finV)
    qed
    have finite {xs. set xs\subseteqV ^ length xs \leq (card (V))}
    using finV by (simp add: finite-lists-length-le)
    thus ?thesis using ss finite-subset by auto
qed
lemma finite-cycles: finite (cycles)
proof -
    have cycles \subseteq{xs. set xs \subseteqV ^length xs \leqSuc (card (V))}
    proof (rule, simp)
    fix p assume p\in cycles
    then have distinct (tl p) and set p\subseteqV
        unfolding cycles-def walks-def is-cycle-def is-closed-walk-def is-walk-def
        by (simp-all)
    then have set (tl p)\subseteqV
        by (cases p) auto
    with finV have card (set (tl p)) \leq card (V)
        by (rule card-mono)
    then have length (p)\leq1+\operatorname{card}(V)
        using distinct-card[OF <distinct (tl p)>] by auto
    then show set p\subseteqV\wedge length p\leqSuc (card (V))
        by (simp add: <set p\subseteqV〉)
    qed
    moreover
    have finite {xs. set xs\subseteqV \ length xs \leqSuc (card (V))}
    using finV by (rule finite-lists-length-le)
    ultimately
```

```
    show ?thesis by (rule finite-subset)
qed
lemma finite-gen-paths: finite (gen-paths)
proof -
    have finite ({[v]|v.v\inV}) using finV by auto
    thus ?thesis using gen-paths-ss finite-cycles finite-paths finite-subset by auto
qed
end
end
```


3 Connectivity

This theory defines concepts around the connectivity of a graph and its vertices, as well as graph properties that depend on connectivity definitions, such as shortest path, radius, diameter, and eccentricity
theory Connectivity imports Undirected-Graph-Walks
begin
context ulgraph
begin

3.1 Connecting Walks and Paths

definition connecting-walk :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ 'a list \Rightarrow bool where
connecting-walk $u v x s \equiv$ is-walk $x s \wedge h d x s=u \wedge$ last $x s=v$
lemma connecting-walk-rev: connecting-walk $u v x s \longleftrightarrow$ connecting-walk $v u$ (rev $x s)$
unfolding connecting-walk-def using is-walk-rev
by (auto simp add: hd-rev last-rev)
lemma connecting-walk-wf: connecting-walk $u v x s \Longrightarrow u \in V \wedge v \in V$
using is-walk-wf-hd is-walk-wf-last by (auto simp add: connecting-walk-def)
lemma connecting-walk-self: $u \in V \Longrightarrow$ connecting-walk $u u[u]=$ True
unfolding connecting-walk-def by (simp add: is-walk-singleton)
We define two definitions of connecting paths. The first uses the gen-path definition, which allows for trivial paths and cycles, the second uses the stricter definition of a path which requires it to be an open walk
definition connecting-path $::$ ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ ' a list \Rightarrow bool where connecting-path $u v x s \equiv i s-g e n-p a t h ~ x s ~ \wedge h d x s=u \wedge$ last $x s=v$
definition connecting-path-str :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ list \Rightarrow bool where connecting-path-str $u v x s \equiv$ is-path $x s \wedge h d x s=u \wedge$ last $x s=v$
lemma connecting-path-rev: connecting-path $u v x s \longleftrightarrow$ connecting-path $v u$ (rev xs)
unfolding connecting-path-def using is-gen-path-rev
by (auto simp add: hd-rev last-rev)
lemma connecting-path-walk: connecting-path $u v x s \Longrightarrow$ connecting-walk $u v x s$ unfolding connecting-path-def connecting-walk-def using is-gen-path-def by auto
lemma connecting-path-str-gen: connecting-path-str $u v x s \Longrightarrow$ connecting-path u $v x s$
unfolding connecting-path-def connecting-path-str-def is-gen-path-def is-path-def by (simp add: is-open-walk-def)
lemma connecting-path-gen-str: connecting-path u vxs $\Longrightarrow(\neg$ is-cycle $x s) \Longrightarrow$ walk-length $x s>0 \Longrightarrow$ connecting-path-str $u v x s$
unfolding connecting-path-def connecting-path-str-def using is-gen-path-path by auto
lemma connecting-path-alt-def: connecting-path $u v x s \longleftrightarrow$ connecting-walk $u v x s$ \wedge is-gen-path xs
proof -
have is-gen-path $x s \Longrightarrow i s$-walk $x s$
by (simp add: is-gen-path-def)
then have (is-walk $x s \wedge h d x s=u \wedge$ last $x s=v) \wedge$ is-gen-path $x s \longleftrightarrow(h d x s$
$=u \wedge$ last $x s=v) \wedge$ is-gen-path $x s$
by blast
thus ?thesis
by (auto simp add: connecting-path-def connecting-walk-def)
qed
lemma connecting-path-length-bound: $u \neq v \Longrightarrow$ connecting-path $u v p \Longrightarrow$ walk-length $p \geq 1$
using walk-length-def
by (metis connecting-path-def is-gen-path-def is-walk-not-empty2 last-ConsL le-refl length-0-conv
less-one list.exhaust-sel nat-less-le nat-neq-iff neq-Nil-conv walk-edges.simps(3))
lemma connecting-path-self: $u \in V \Longrightarrow$ connecting-path $u u[u]=$ True unfolding connecting-path-alt-def using connecting-walk-self
by (simp add: is-gen-path-def is-walk-singleton)
lemma connecting-path-singleton: connecting-path $u v x s \Longrightarrow$ length $x s=1 \Longrightarrow u$ $=v$
by (metis cancel-comm-monoid-add-class.diff-cancel connecting-path-def fact-1 fact-nonzero
last-rev length-0-conv neq-Nil-conv singleton-rev-conv walk-edges.simps(3) walk-length-conv walk-length-def)

```
lemma connecting-walk-path:
    assumes connecting-walk uvxs
    shows \exists ys . connecting-path u v ys ^ walk-length ys \leq walk-length xs
proof (cases u=v)
    case True
    then show ?thesis
        using assms connecting-path-self connecting-walk-wf
    by (metis bot-nat-0.extremum list.size(3) walk-edges.simps(2) walk-length-def)
next
    case False
    then have walk-length xs }=0\mathrm{ using assms connecting-walk-def is-walk-def
    by (metis last-ConsL length-0-conv list.distinct(1) list.exhaust-sel walk-edges.simps(3)
walk-length-def)
    then show ?thesis using assms False proof (induct walk-length xs arbitrary: xs
rule:less-induct)
    fix xs assume IH: (\bigwedgexsa. walk-length xsa < walk-length xs \Longrightarrow walk-length xsa
\not=0\Longrightarrow
    connecting-walk uvxsa\Longrightarrowu\not=v\Longrightarrow\existsys.connecting-path uvys ^ walk-length
ys}\leq\mathrm{ walk-length xsa)
    assume assm: connecting-walk }uvxs\mathrm{ and ne: }u\not=v\mathrm{ and n0: walk-length xs }\not
0
    then show \existsys. connecting-path uv ys ^ walk-length ys \leq walk-length xs
    proof (cases walk-length xs \leq1) - Base Cases
        case True
        then have walk-length xs=1
            using n0 by auto
        then show ?thesis using ne assm cancel-comm-monoid-add-class.diff-cancel
connecting-path-alt-def connecting-walk-def
                    distinct-length-2-or-more distinct-singleton hd-Cons-tl is-gen-path-def
is-walk-def last-ConsL
            last-ConsR length-0-conv length-tl walk-length-conv
            by (metis True)
    next
            case False
            then show ?thesis
            proof (cases distinct xs)
                case True
                then show ?thesis
                using assm connecting-path-alt-def connecting-walk-def is-gen-path-def by
auto
    next
                case False
                then obtain ws ys zs y where xs-decomp: xs =ws@[y]@ys@[y]@zs using
not-distinct-decomp
                by blast
                let ?rs = ws@[y]@zs
                have hd: hd ?rs = u using xs-decomp assm connecting-walk-def
                    by (metis hd-append list.distinct(1))
```

```
            have lst: last ?rs = v using xs-decomp assm connecting-walk-def by simp
            have wl: walk-length ?rs }\not=0\mathrm{ using hd lst ne walk-length-conv by auto
            have set ?rs \subseteqV using assm connecting-walk-def is-walk-def xs-decomp by
auto
            have cw: connecting-walk uv ?rs unfolding connecting-walk-def is-walk-decomp
                    using assm connecting-walk-def hd is-walk-decomp lst xs-decomp by blast
                    have ys@[y]\not=[]\mathbf{by simp}
                            then have length ?rs < length xs using xs-decomp length-list-decomp-lt by
auto
            have walk-length ?rs < walk-length xs using walk-length-conv xs-decomp by
force
            then show ?thesis using IH[of ?rs] using cw ne wl le-trans less-or-eq-imp-le
by blast
            qed
            qed
    qed
qed
lemma connecting-walk-split:
    assumes connecting-walk u v xs assumes connecting-walk v z ys
    shows connecting-walk uz (xs @ (tl ys))
    using connecting-walk-def is-walk-append
    by (metis append.right-neutral assms(1) assms(2) connecting-walk-self connect-
ing-walk-wf hd-append2 is-walk-not-empty last-appendR last-tl list.collapse)
lemma connecting-path-split:
    assumes connecting-path uv xs connecting-path vz ys
    obtains p where connecting-path uz p and walk-length p\leqwalk-length (xs @
(tl ys))
    using connecting-walk-split connecting-walk-path connecting-path-walk assms(1)
assms(2) by blast
lemma connecting-path-split-length:
    assumes connecting-path uv xs connecting-path vz ys
    obtains p where connecting-path uzp}\mathrm{ and walk-length p}\leq\mathrm{ walk-length xs +
walk-length ys
proof -
    have connecting-walk uz (xs@ (tl ys))
        using connecting-walk-split assms connecting-path-walk by blast
    have walk-length (xs @ (tl ys)) \leqwalk-length xs + walk-length ys
        using walk-length-app-ineq
        by (simp add: le-diff-conv walk-length-conv)
    thus ?thesis using connecting-path-split
        by (metis (full-types) assms(1) assms(2) dual-order.trans that)
qed
```


3.2 Vertex Connectivity

Two vertices are defined to be connected if there exists a connecting path. Note that the more general version of a connecting path is again used as a vertex should be considered as connected to itself
definition vert-connected $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where vert-connected $u v \equiv \exists x s$. connecting-path $u v x s$
lemma vert-connected-rev: vert-connected $u v \longleftrightarrow$ vert-connected $v u$ unfolding vert-connected-def using connecting-path-rev by auto
lemma vert-connected-id: $u \in V \Longrightarrow$ vert-connected $u u=$ True
unfolding vert-connected-def using connecting-path-self by auto
lemma vert-connected-trans: vert-connected $u v \Longrightarrow$ vert-connected $v z \Longrightarrow$ vert-connected $u z$
unfolding vert-connected-def using connecting-path-split
by meson
lemma vert-connected-wf: vert-connected $u v \Longrightarrow u \in V \wedge v \in V$
using vert-connected-def connecting-path-walk connecting-walk-wf by blast
definition vert-connected- $n::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow n a t \Rightarrow$ bool where
vert-connected- n uvn $\equiv \exists$. connecting-path $u v p \wedge$ walk-length $p=n$
lemma vert-connected- n-imp: vert-connected- $n u v n \Longrightarrow$ vert-connected $u v$
by (auto simp add: vert-connected-def vert-connected- n-def)
lemma vert-connected-n-rev: vert-connected-n $u v n \longleftrightarrow$ vert-connected- $n v u n$
unfolding vert-connected-n-def using walk-length-rev
by (metis connecting-path-rev)
definition connecting-paths :: ' $a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$ list set where
connecting-paths $u v \equiv\{x s$. connecting-path $u v x s\}$
lemma connecting-paths-self: $u \in V \Longrightarrow[u] \in$ connecting-paths $u \quad u$
unfolding connecting-paths-def using connecting-path-self by auto
lemma connecting-paths-empty-iff: vert-connected $u v \longleftrightarrow$ connecting-paths $u v \neq$ \{\}
unfolding connecting-paths-def vert-connected-def by auto
lemma elem-connecting-paths: $p \in$ connecting-paths $u v \Longrightarrow$ connecting-path $u v p$ using connecting-paths-def by blast
lemma connecting-paths-ss-gen: connecting-paths $u v \subseteq$ gen-paths
unfolding connecting-paths-def gen-paths-def connecting-path-def by auto
lemma connecting-paths-sym: xs \in connecting-paths $u v \longleftrightarrow$ rev $x s \in$ connect-
ing-paths $v u$
unfolding connecting-paths-def using connecting-path-rev by simp
A set is considered to be connected, if all the vertices within that set are pairwise connected
definition is-connected-set :: ' a set \Rightarrow bool where
is-connected-set $V^{\prime} \equiv\left(\forall u v . u \in V^{\prime} \longrightarrow v \in V^{\prime} \longrightarrow\right.$ vert-connected $\left.u v\right)$
lemma is-connected-set-empty: is-connected-set \{\}
unfolding is-connected-set-def by simp
lemma is-connected-set-singleton: $x \in V \Longrightarrow$ is-connected-set $\{x\}$
unfolding is-connected-set-def by (auto simp add: vert-connected-id)
lemma is-connected-set-wf: is-connected-set $V^{\prime} \Longrightarrow V^{\prime} \subseteq V$
unfolding is-connected-set-def
by (meson connecting-path-walk connecting-walk-wf subsetI vert-connected-def)
lemma is-connected-setD: is-connected-set $V^{\prime} \Longrightarrow u \in V^{\prime} \Longrightarrow v \in V^{\prime} \Longrightarrow$ vert-connected $u v$
by (simp add: is-connected-set-def)
lemma not-connected-set: \neg is-connected-set $V^{\prime} \Longrightarrow u \in V^{\prime} \Longrightarrow \exists v \in V^{\prime} . \neg$ vert-connected $u v$
using is-connected-setD by (meson is-connected-set-def vert-connected-rev vert-connected-trans)

3.3 Graph Properties on Connectivity

The shortest path is defined to be the infinum of the set of connecting path walk lengths. Drawing inspiration from [4], we use the infinum and enats as this enables more natural reasoning in a non-finite setting, while also being useful for proofs of a more probabilistic or analysis nature
definition shortest-path $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ enat where
shortest-path $u v \equiv I N F p \in$ connecting-paths $u v$. enat (walk-length p)
lemma shortest-path-walk-length: shortest-path $u v=n \Longrightarrow p \in$ connecting-paths $u v \Longrightarrow$ walk-length $p \geq n$
using shortest-path-def INF-lower[of p connecting-paths uv λ p. enat (walk-length p)]
by auto
lemma shortest-path-lte: $\wedge p . p \in$ connecting-paths $u v \Longrightarrow$ shortest-path $u v \leq$ walk-length p
unfolding shortest-path-def by (simp add: Inf-lower)
lemma shortest-path-obtains:
assumes shortest-path $u v=n$
assumes $n \neq t o p$
obtains p where $p \in$ connecting-paths $u v$ and walk-length $p=n$
using enat-in-INF shortest-path-def by (metis assms(1) assms(2) the-enat.simps)

```
lemma shortest-path-intro:
    assumes n\not= top
    assumes (\exists p\in connecting-paths u v . walk-length p = n)
    assumes (\bigwedgep.p\in connecting-paths }uv\Longrightarrown\leqwalk-length p
    shows shortest-path uv=n
proof (rule ccontr)
    assume a: shortest-path u v}\not=\mathrm{ enat n
    then have shortest-path uv<n
    by (metis antisym-conv2 assms(2) shortest-path-lte)
    then have }\exists>\mp@code{connecting-paths u v .walk-length p<n
    using shortest-path-def by (simp add: INF-less-iff)
    thus False using assms(3)
    using le-antisym less-imp-le-nat by blast
qed
lemma shortest-path-self:
    assumes }u\in
    shows shortest-path u u=0
proof -
    have [u] \in connecting-paths u u
    using connecting-paths-self by (simp add: assms)
    then have walk-length [u]=0
        using walk-length-def walk-edges.simps by auto
    thus ?thesis using shortest-path-def
    by (metis }<[u]\in\mathrm{ connecting-paths u u> le-zero-eq shortest-path-lte zero-enat-def)
```

qed
lemma connecting-paths-sym-length: $i \in$ connecting-paths $u v \Longrightarrow \exists j \in$ connecting-paths
$v u .($ walk-length $j)=($ walk-length $i)$
using connecting-paths-sym by (metis walk-length-rev)
lemma shortest-path-sym: shortest-path $u v=$ shortest-path $v u$
unfolding shortest-path-def
by (intro INF-eq)(metis add.right-neutral le-iff-add connecting-paths-sym-length)+
lemma shortest-path-inf: ᄀ vert-connected $u v \Longrightarrow$ shortest-path $u v=\infty$
using connecting-paths-empty-iff shortest-path-def by (simp add: top-enat-def)
lemma shortest-path-not-inf:
assumes vert-connected $u v$
shows shortest-path $u v \neq \infty$
proof -
have $\bigwedge p$. connecting-path u v $p \Longrightarrow$ enat (walk-length $p) \neq \infty$
using connecting-path-def is-gen-path-def by auto
thus ?thesis unfolding shortest-path-def connecting-paths-def
by (metis assms connecting-paths-def infinity-ileE mem-Collect-eq shortest-path-def shortest-path-lte vert-connected-def)
qed
lemma shortest-path-obtains2:
assumes vert-connected $u v$
obtains p where $p \in$ connecting-paths $u v$ and walk-length $p=$ shortest-path u v
proof -
have connecting-paths $u v \neq\{ \}$ using assms connecting-paths-empty-iff by auto
have shortest-path $u v \neq \infty$ using assms shortest-path-not-inf by simp
thus ?thesis using shortest-path-def enat-in-INF
by (metis that top-enat-def)
qed
lemma shortest-path-split: shortest-path $x y \leq$ shortest-path $x z+$ shortest-path z y
proof (cases vert-connected $x y \wedge$ vert-connected $x z$)
case True
show ?thesis
proof (rule ccontr)
assume \neg shortest-path $x y \leq$ shortest-path $x z+$ shortest-path $z y$
then have c : shortest-path $x y>$ shortest-path $x z+$ shortest-path $z y$ by simp
have vert-connected $z y$ using True vert-connected-trans vert-connected-rev by blast
then obtain $p 1$ p2 where connecting-path $x z p 1$ and connecting-path z y $p 2$ and
s1: shortest-path $x z=$ walk-length $p 1$ and s2: shortest-path $z y=$ walk-length p2
using True shortest-path-obtains2 connecting-paths-def elem-connecting-paths by metis
then obtain $p 3$ where cp: connecting-path x y $p 3$ and walk-length p1 + walk-length p2 \geq walk-length p3
using connecting-path-split-length by blast
then have shortest-path $x z+$ shortest-path $z y \geq$ walk-length p3 using s1 s2 by simp
then have lt: shortest-path $x y>$ walk-length $p 3$ using c by auto
have $p 3 \in$ connecting-paths $x y$ using cp connecting-paths-def by auto
then show False using shortest-path-def shortest-path-obtains2
by (metis True enat-ord-simps(1) enat-ord-simps(2) le-Suc-ex lt not-add-less1 shortest-path-lte)
qed
next
case False
then show?thesis
by (metis enat-ord-code(3) plus-enat-simps(2) plus-enat-simps(3) shortest-path-inf vert-connected-trans)

qed

lemma shortest-path-invalid-v: $v \notin V \vee u \notin V \Longrightarrow$ shortest-path $u v=\infty$
using shortest-path-inf vert-connected-wf by blast
lemma shortest-path-lb:
assumes $u \neq v$
assumes vert-connected $u v$
shows shortest-path $u v>0$
proof -
have $\wedge p$. connecting-path $u v p \Longrightarrow$ enat (walk-length p) >0
using connecting-path-length-bound assms by fastforce
thus ?thesis unfolding shortest-path-def
by (metis elem-connecting-paths shortest-path-def shortest-path-obtains2 assms(2))
qed
Eccentricity of a vertex v is the furthest distance between it and a (different) vertex
definition eccentricity $::$ ' $a \Rightarrow$ enat where
eccentricity $v \equiv S U P u \in V-\{v\}$. shortest-path $v u$
lemma eccentricity-empty-vertices: $V=\{ \} \Longrightarrow$ eccentricity $v=0$
$V=\{v\} \Longrightarrow$ eccentricity $v=0$
unfolding eccentricity-def using bot-enat-def by simp-all

```
lemma eccentricity-bot-iff: eccentricity \(v=0 \longleftrightarrow V=\{ \} \vee V=\{v\}\)
proof (intro iffI)
    assume \(a\) : eccentricity \(v=0\)
    show \(V=\{ \} \vee V=\{v\}\)
    proof (rule ccontr, simp)
        assume \(a 2: V \neq\{ \} \wedge V \neq\{v\}\)
    have eq0: \(\forall u \in V-\{v\}\). shortest-path \(v u=0\)
        using SUP-bot-conv(1)[of \(\lambda u\). shortest-path \(v u V-\{v\}]\) a eccentricity-def
bot-enat-def by simp
    have \(n c: \forall u \in V-\{v\} . \neg\) vert-connected \(v u \longrightarrow\) shortest-path \(v u=\infty\)
        using shortest-path-inf by simp
    have \(\forall u \in V-\{v\}\). vert-connected \(v u \longrightarrow\) shortest-path \(v u>0\)
            using shortest-path-lb by auto
    then show False using eq0 a2 nc
        by auto
    qed
next
    show \(V=\{ \} \vee V=\{v\} \Longrightarrow\) eccentricity \(v=0\) using eccentricity-empty-vertices
by auto
qed
lemma eccentricity-invalid-v:
    assumes \(v \notin V\)
    assumes \(V \neq\{ \}\)
```

```
    shows eccentricity v=\infty
proof -
    have \u. shortest-path vu=\infty using assms shortest-path-invalid-v by blast
    have V-{v}=V using assms by simp
    then have eccentricity v = (SUP u G V . shortest-path v u) by (simp add:
eccentricity-def)
    thus ?thesis using eccentricity-def shortest-path-invalid-v assms by simp
qed
lemma eccentricity-gt-shortest-path:
    assumes }u\in
    shows eccentricity v\geq shortest-path vu
proof (cases u\inV - {v})
    case True
    then show ?thesis unfolding eccentricity-def by (simp add: SUP-upper)
next
    case f1: False
    then have u=v using assms by auto
    then have shortest-path uv=0 using shortest-path-self assms by auto
    then show ?thesis by (simp add: <u=v`)
qed
lemma eccentricity-disconnected-graph:
    assumes \negis-connected-set V
    assumes v\inV
    shows eccentricity v}=
proof -
    obtain }u\mathrm{ where uin: u}\inV\mathrm{ and nvc: ᄀ vert-connected vu
    using not-connected-set assms by auto
    then have }u\not=v\mathrm{ using vert-connected-id by auto
    then have }u\inV-{v}\mathrm{ using uin by simp
    moreover have shortest-path v u=\infty using nvc shortest-path-inf by auto
    thus ?thesis using eccentricity-gt-shortest-path
    by (metis enat-ord-simps(5) uin)
qed
```

The diameter is the largest distance between any two vertices
definition diameter :: enat where
diameter $\equiv S U P v \in V$. eccentricity v
lemma diameter-gt-eccentricity: $v \in V \Longrightarrow$ diameter \geq eccentricity v
using diameter-def by (simp add: SUP-upper)
lemma diameter-disconnected-graph:
assumes \neg is-connected-set V
shows diameter $=\infty$
unfolding diameter-def using eccentricity-disconnected-graph
by (metis SUP-eq-const assms is-connected-set-empty)

```
lemma diameter-empty: V ={}\Longrightarrow diameter =0
    unfolding diameter-def using Sup-empty bot-enat-def by simp
lemma diameter-singleton: V ={v}\Longrightarrow diameter = eccentricity v
    unfolding diameter-def by simp
```

 The radius is the smallest "shortest" distance between any two vertices
 definition radius :: enat where
radius $\equiv I N F v \in V$. eccentricity v
lemma radius-lt-eccentricity: $v \in V \Longrightarrow$ radius \leq eccentricity v
using radius-def by (simp add: INF-lower)
lemma radius-disconnected-graph: \neg is-connected-set $V \Longrightarrow$ radius $=\infty$
unfolding radius-def using eccentricity-disconnected-graph
by (metis INF-eq-const is-connected-set-empty)
lemma radius-empty: $V=\{ \} \Longrightarrow$ radius $=\infty$
unfolding radius-def using Inf-empty top-enat-def by simp
lemma radius-singleton: $V=\{v\} \Longrightarrow$ radius $=$ eccentricity v
unfolding radius-def by simp

The centre of the graph is all vertices whose eccentricity equals the radius
definition centre :: 'a set where
centre $\equiv\{v \in V$. eccentricity $v=$ radius $\}$
lemma centre-disconnected-graph: \neg is-connected-set $V \Longrightarrow$ centre $=V$
unfolding centre-def using radius-disconnected-graph eccentricity-disconnected-graph
by auto
end
lemma (in fin-ulgraph) fin-connecting-paths: finite (connecting-paths u v)
using connecting-paths-ss-gen finite-gen-paths finite-subset by fastforce

3.4 We define a connected graph as a non-empty graph (the empty set is not usually considered connected by convention), where the vertex set is connected

locale connected-ulgraph $=$ ulgraph + ne-graph-system + assumes connected: is-connected-set V
begin
lemma vertices-connected: $u \in V \Longrightarrow v \in V \Longrightarrow$ vert-connected $u v$ using is-connected-set-def connected by auto
lemma vertices-connected-path: $u \in V \Longrightarrow v \in V \Longrightarrow \exists$ p. connecting-path uvp using vertices-connected by (simp add: vert-connected-def)
lemma connecting-paths-not-empty: $u \in V \Longrightarrow v \in V \Longrightarrow$ connecting-paths $u v$ $\neq\{ \}$
using connected not-empty connecting-paths-empty-iff is-connected-setD by blast

```
lemma min-shortest-path: assumes \(u \in V v \in V u \neq v\)
    shows shortest-path \(u v>0\)
    using shortest-path-lb assms vertices-connected by auto
```

The eccentricity, diameter, radius, and centre definitions tend to be only used in a connected context, as otherwise they are the INF/SUP value. In these contexts, we can obtain the vertex responsible

```
lemma eccentricity-obtains-inf:
    assumes V\not={v}
    shows eccentricity v=\infty\vee (\existsu\in(V-{v}).shortest-path vu=eccentricity
v)
proof (cases finite ((\lambdau. shortest-path v u)'(V - {v})))
    case True
    then have e: eccentricity v = Max ((\lambda u. shortest-path v u)'(V - {v}))
unfolding eccentricity-def using Sup-enat-def
        using assms not-empty by auto
    have (V-{v})\not={} using assms not-empty by auto
    then have ((\lambdau. shortest-path vu)'(V - {v}))\not={} by simp
    then obtain n where n \in((\lambdau. shortest-path vu)'(V - {v})) and n=
eccentricity v
    using Max-in e True by auto
    then obtain u where u\in(V-{v}) and shortest-path vu=eccentricity v
        by blast
    then show ?thesis by auto
next
    case False
    then have eccentricity v}=\infty\mathrm{ unfolding eccentricity-def using Sup-enat-def
        by (metis (mono-tags, lifting) cSup-singleton empty-iff finite-insert insert-iff)
    then show?thesis by simp
qed
lemma diameter-obtains: diameter }=\infty\vee(\existsv\inV. eccentricity v = diameter
proof (cases is-singleton V)
    case True
    then obtain v}\mathrm{ where V={v}
        using is-singletonE by auto
    then show ?thesis using diameter-singleton
        by simp
next
    case f1: False
    then show ?thesis proof (cases finite ((\lambda v. eccentricity v)'V))
        case True
        then have diameter = Max ((\lambda v. eccentricity v)'V) unfolding diameter-def
```

```
using Sup-enat-def not-empty
```

 by simp
 then obtain \(n\) where \(n \in\left((\lambda v \text {. eccentricity } v)^{\prime} V\right)\) and diameter \(=n\) using
 Max-in True
using not-empty by auto
then obtain u where $u \in V$ and eccentricity $u=$ diameter
by fastforce
then show ?thesis by auto
next
case False
then have diameter $=\infty$ unfolding diameter-def using Sup-enat-def by auto
then show ?thesis by simp
qed
qed
lemma radius-diameter-singleton-eq: assumes card $V=1$ shows radius $=$ diam-
eter
proof -
obtain v where $V=\{v\}$ using assms card-1-singletonE by auto
thus ?thesis unfolding radius-def diameter-def by auto
qed
end
locale fin-connected-ulgraph $=$ connected-ulgraph + fin-ulgraph
begin

In a finite context the supremum/infinum are equivalent to the Max/Min of the sets respectively. This can make reasoning easier
lemma shortest-path-Min-alt:
assumes $u \in V v \in V$
shows shortest-path $u v=\operatorname{Min}((\lambda$ p. enat (walk-length $p))$ ' (connecting-paths $u v)$) (is shortest-path $u v=\operatorname{Min}$?A)
proof -
have $n e: ~ ? A \neq\{ \}$
using connecting-paths-not-empty assms by auto
have finite (connecting-paths $u v$)
by (simp add: fin-connecting-paths)
then have fin: finite? A
by simp
have shortest-path $u v=\operatorname{Inf}$?A unfolding shortest-path-def by simp
thus ?thesis using Min-Inf ne
by (metis fin)
qed
lemma eccentricity-Max-alt:
assumes $v \in V$
assumes $V \neq\{v\}$
shows eccentricity $v=\operatorname{Max}\left((\lambda u \text {. shortest-path } v u)^{\prime}(V-\{v\})\right)$
unfolding eccentricity-def using assms Sup-enat-def fin V not-empty by auto
lemma diameter-Max-alt: diameter $=\operatorname{Max}((\lambda v$. eccentricity $v)$ ' $V)$ unfolding diameter-def using Sup-enat-def finV not-empty by auto
lemma radius-Min-alt: radius $=\operatorname{Min}\left((\lambda v\right.$. eccentricity $\left.v){ }^{\prime} V\right)$ unfolding radius-def using Min-Inf finV not-empty by (metis (no-types, opaque-lifting) empty-is-image finite-imageI)
lemma eccentricity-obtains:
assumes $v \in V$
assumes $V \neq\{v\}$
obtains u where $u \in V$ and $u \neq v$ and shortest-path $u v=$ eccentricity v proof -
have $n i: \bigwedge u . u \in V-\{v\} \Longrightarrow u \neq v \wedge u \in V$ by auto
have $n e: V-\{v\} \neq\{ \}$ using assms not-empty by auto
have eccentricity $v=\operatorname{Max}((\lambda u$. shortest-path $v u)$ ' $(V-\{v\}))$ using eccen-tricity-Max-alt assms by simp
then obtain u where $u i: u \in V-\{v\}$ and eq: shortest-path $v u=$ eccentricity v
using obtains-MAX assms finV ne by (metis finite-Diff)
then have neq: $u \neq v$ by blast
have uin: $u \in V$ using ui by auto
thus ?thesis using neq eq that[of u] shortest-path-sym by simp
qed
lemma radius-obtains:
obtains v where $v \in V$ and radius $=$ eccentricity v proof -
have radius $=\operatorname{Min}\left((\lambda v \text {. eccentricity } v)^{\prime} V\right)$ using radius-Min-alt by simp
then obtain v where $v \in V$ and radius $=$ eccentricity v
using obtains-MIN $[$ of $V(\lambda v$. eccentricity $v)]$ not-empty fin V by auto
thus ?thesis
by (simp add: that)
qed
lemma radius-obtains-path-vertices:
assumes card $V \geq 2$
obtains $u v$ where $u \in V$ and $v \in V$ and $u \neq v$ and radius $=$ shortest-path u v
proof -
obtain v where vin: $v \in V$ and e : radius $=$ eccentricity v
using radius-obtains by blast
then have $V \neq\{v\}$ using assms by auto
then obtain u where $u \in V$ and $u \neq v$ and shortest-path $u v=$ radius using eccentricity-obtains vin e by auto
thus ?thesis using vin
by (simp add: that)
lemma diameter-obtains:
obtains v where $v \in V$ and diameter $=$ eccentricity v
proof -
have diameter $=\operatorname{Max}\left((\lambda v . \text { eccentricity } v)^{\prime} V\right)$ using diameter-Max-alt by simp
then obtain v where $v \in V$ and diameter $=$ eccentricity v
using obtains-MAX[of $V(\lambda v$. eccentricity $v)]$ not-empty fin V by auto
thus ?thesis
by (simp add: that)
qed
lemma diameter-obtains-path-vertices:
assumes card $V \geq 2$
obtains $u v$ where $u \in V$ and $v \in V$ and $u \neq v$ and diameter $=$ shortest-path $u v$
proof -
obtain v where vin: $v \in V$ and e : diameter $=$ eccentricity v using diameter-obtains by blast
then have $V \neq\{v\}$ using assms by auto
then obtain u where $u \in V$ and $u \neq v$ and shortest-path $u v=$ diameter using eccentricity-obtains vin e by auto
thus ?thesis using vin
by (simp add: that)
qed
lemma radius-diameter-bounds:
shows radius \leq diameter diameter $\leq 2 *$ radius
proof -
show radius \leq diameter unfolding radius-def diameter-def
by (simp add: INF-le-SUP not-empty)
next
show diameter $\leq 2 *$ radius
proof (cases card $V \geq 2$)
case True
then obtain $x y$ where xin: $x \in V$ and yin: $y \in V$ and d : shortest-path $x y$ $=$ diameter
using diameter-obtains-path-vertices by metis
obtain z where zin: $z \in V$ and e: eccentricity $z=$ radius using radius-obtains by metis
have shortest-path $x z \leq$ eccentricity z
using eccentricity-gt-shortest-path xin shortest-path-sym by simp
have shortest-path $x y \leq$ shortest-path $x z+$ shortest-path $z y$ using short-
est-path-split by simp
also have $\ldots \leq$ eccentricity $z+$ eccentricity z
using eccentricity-gt-shortest-path shortest-path-sym zin xin yin by (simp add: add-mono)
also have $\ldots \leq$ radius + radius using e by simp

```
    finally show ?thesis using d by (simp add: mult-2)
    next
        case False
        have card V\not=0 using not-empty finV by auto
        then have card V=1 using False by simp
        then show ?thesis using radius-diameter-singleton-eq by (simp add: mult-2)
    qed
qed
end
```

We define various subclasses of the general connected graph, using the functor locale pattern
locale connected-sgraph $=$ sgraph + ne-graph-system + assumes connected: is-connected-set V
sublocale connected-sgraph \subseteq connected-ulgraph
by (unfold-locales) (simp add: connected)
locale fin-connected-sgraph $=$ connected-sgraph + fin-sgraph
sublocale fin-connected-sgraph \subseteq fin-connected-ulgraph
by (unfold-locales)
end
theory Girth-Independence imports Connectivity
begin

4 Girth and Independence

We translate and extend on a number of definitions and lemmas on girth and independence from Noschinski's ugraph representation [4].

```
context sgraph
begin
definition girth :: enat where
    girth \equivINF p\in cycles. enat (walk-length p)
lemma girth-acyclic:cycles ={}\Longrightarrow girth = \infty
    unfolding girth-def using top-enat-def by simp
lemma girth-lte: c \in cycles \Longrightarrow girth \leq walk-length c
    using girth-def INF-lower by auto
lemma girth-obtains:
    assumes girth }\not=\mathrm{ top
    obtains c where c\incycles and walk-length c= girth
    using enat-in-INF girth-def assms by (metis (full-types) the-enat.simps)
```

```
lemma girthI:
    assumes c}\mp@subsup{c}{}{\prime}\in\mathrm{ cycles
    assumes \ c.c\in cycles \Longrightarrow walk-length c'}\leq\mathrm{ walk-length c
    shows girth = walk-length c'
proof (rule ccontr)
    assume girth }\not=\mathrm{ walk-length c'
    then have girth < walk-length c'
        using assms girth-lte by fastforce
    then obtain c where c\in cycles and walk-length c<walk-length c'
    using girth-def by (metis enat-ord-simps(2) girth-obtains infinity-ilessE top-enat-def)
    thus False using assms(2) less-imp-le-nat le-antisym
        by fastforce
qed
lemma (in fin-sgraph) girth-min-alt:
    assumes cycles }\not={
    shows girth = Min ((\lambdac.enat (walk-length c))'cycles) (is girth = Min ?A)
    unfolding girth-def using finite-cycles assms Min-Inf
    by (metis (full-types) INF-le-SUP bot-enat-def ccInf-empty ccSup-empty enat-ord-code(5)
finite-imageI top-enat-def zero-enat-def)
definition is-independent-set :: 'a set \(\Rightarrow\) bool where
is-independent-set vs \equivvs\subseteqV\wedge(all-edges vs) \capE={}
A More mathematical way of thinking about it
lemma is-independent-alt: is-independent-set vs \(\longleftrightarrow v s \subseteq V \wedge(\forall v \in v s . \forall u \in\) vs. \(\neg\) vert-adj \(v u\) )
unfolding is-independent-set-def
proof (auto)
fix \(v u\) assume ss: vs \(\subseteq V\) and inter: all-edges vs \(\cap E=\{ \}\) and vin: \(v \in v s\) and uin: \(u \in v s\) and adj: vert-adj \(v u\)
then have inE: \(\{v, u\} \in E\) using vert-adj-def by \(\operatorname{simp}\)
then have imp: \(\{v, u\} \in\) all-edges vs using vin uin e-in-all-edges-ss vin uin by (simp add: ss)
then show False
using inE inter by blast
next
fix \(x\) assume \(v s \subseteq V \forall v \in v s . \forall u \in v s\). \(\neg\) vert-adj \(v u \quad x \in\) all-edges vs \(x \in E\)
then have \(\wedge u v .\{u, v\} \subseteq v s \Longrightarrow\{u, v\} \notin E\) by (simp add: vert-adj-def)
then have \(\wedge x . x \subseteq v s \Longrightarrow\) card \(x=2 \Longrightarrow x \notin E\) by (metis card-2-iff)
then show False using all-edges-def
by (metis (mono-tags, lifting) \(\langle x \in E\rangle\langle x \in\) all-edges vs \(\rangle\) mem-Collect-eq)
qed
lemma singleton-independent-set: \(v \in V \Longrightarrow\) is-independent-set \(\{v\}\)
by (metis empty-subsetI insert-absorb2 insert-subset is-independent-alt singletonD singleton-not-edge vert-adj-def)
```

```
definition independent-sets :: ' }a\mathrm{ set set where
    independent-sets \equiv{vs. is-independent-set vs}
definition independence-number :: enat where
    independence-number \equivSUP vs }\in\mathrm{ independent-sets. enat (card vs)
abbreviation \alpha \equiv independence-number
lemma independent-sets-mono:
    vs}\in\mathrm{ independent-sets }\Longrightarrowus\subseteqvs\Longrightarrowus\inindependent-set
    using Int-mono[OF all-edges-mono, of us vs E E]
    unfolding independent-sets-def is-independent-set-def by auto
lemma le-independence-iff:
    assumes 0<k
    shows }k\leq\alpha\longleftrightarrowk\in\mathrm{ card ' independent-sets (is ?L }\longleftrightarrow\mathrm{ ?R)
proof
    assume ?L
    then obtain vs where vs \in independent-sets and klt:k\leqcard vs
        using assms unfolding independence-number-def enat-le-Sup-iff by auto
    moreover
    obtain us where us\subseteqvs and k= card us
        using card-Ex-subset klt by auto
    ultimately
    have us\in independent-sets by (auto intro: independent-sets-mono)
    then show ?R using < k= card us` by auto
qed (auto intro: SUP-upper simp: independence-number-def)
lemma zero-less-independence:
    assumes }V\not={
    shows 0<\alpha
proof -
    from assms obtain }a\mathrm{ where }a\inV\mathrm{ by auto
    then have 0< enat (card {a}) {a}\in independent-sets
    using independent-sets-def is-independent-set-def all-edges-def singleton-independent-set
by simp-all
    then show ?thesis unfolding independence-number-def less-SUP-iff ..
qed
end
context fin-sgraph
begin
lemma fin-independent-sets: finite (independent-sets)
    unfolding independent-sets-def is-independent-set-def using finV by auto
lemma independence-le-card:
    shows }\alpha<card
```

```
proof -
    { fix x assume }x\in\mathrm{ independent-sets
    then have }x\subseteqV\mathrm{ by (auto simp: independent-sets-def is-independent-set-def)
}
    with finV show ?thesis unfolding independence-number-def
        by (intro SUP-least) (auto intro: card-mono)
qed
lemma independence-fin: }\alpha\not=
    using independence-le-card by (cases \alpha) auto
lemma independence-max-alt: V }={}\Longrightarrow\alpha=\operatorname{Max ((\lambda vs . enat (card vs))'
independent-sets)
    unfolding independence-number-def using Sup-enat-def zero-less-independence
    by (metis i0-less independence-fin independence-number-def)
lemma independent-sets-ne:
    assumes V\not={}
    shows independent-sets }\not={
proof -
    from assms obtain a where }a\inV\mathrm{ by auto
    then have {a}\in independent-sets using independent-sets-def singleton-independent-set
by simp
    thus ?thesis by blast
qed
lemma independence-obtains:
    assumes V\not={}
    obtains vs where is-independent-set vs and card vs =\alpha
proof -
    have \alpha=Max ((\lambda vs . enat (card vs))' independent-sets) using indepen-
dence-max-alt assms by simp
    then obtain vs where vs \in independent-sets and enat (card vs) =\alpha
    using obtains-MIN[of independent-sets \lambda vs . enat (card vs)] assms fin-independent-sets
independent-sets-ne
    by (metis (no-types, lifting) Max-in finite-imageI imageE image-is-empty)
    thus ?thesis using independent-sets-def that by simp
qed
end
end
```


5 Triangles in Graph

Triangles are an important tool in graph theory. This theory presents a number of basic definitions/lemmas which are useful for general reasoning using triangles. The definitions and lemmas in this theory are adapted from previous less general work in [2] and [1]
theory Graph-Triangles imports Undirected-Graph-Basics

Triangles don't make as much sense in a loop context, hence we restrict this to simple graphs

context sgraph

begin
definition triangle-in-graph $::{ }^{\prime} a{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
triangle-in-graph x y $z \equiv(\{x, y\} \in E) \wedge(\{y, z\} \in E) \wedge(\{x, z\} \in E)$
lemma triangle-in-graph-edge-empty: $E=\{ \} \Longrightarrow \neg$ triangle-in-graph x y z using triangle-in-graph-def by auto
definition triangle-triples where
triangle-triples $X Y Z \equiv\{(x, y, z) \in X \times Y \times Z$. triangle-in-graph x y $z\}$

definition

```
unique-triangles
\[
\equiv \forall e \in E . \exists!T . \exists x \text { y } z . T=\{x, y, z\} \wedge \text { triangle-in-graph } x \text { y } z \wedge e \subseteq T
\]
```

definition triangle-set :: 'a set set
where triangle-set $\equiv\{\{x, y, z\} \mid x y z$. triangle-in-graph $x y z\}$

5.1 Preliminaries on Triangles in Graphs

lemma card-triangle-triples-rotate: card (triangle-triples X Y Z) $=$ card (triangle-triples $Y Z X)$
proof -
have triangle-triples $Y Z X=(\lambda(x, y, z) .(y, z, x))$ 'triangle-triples $X Y Z$
by (auto simp: triangle-triples-def case-prod-unfold image-iff insert-commute triangle-in-graph-def)
moreover have inj-on $(\lambda(x, y, z) .(y, z, x))$ (triangle-triples $X Y Z)$
by (auto simp: inj-on-def)
ultimately show ?thesis
by (simp add: card-image)
qed
lemma triangle-commu1:
assumes triangle-in-graph $x y z$
shows triangle-in-graph y $x z$
using assms triangle-in-graph-def by (auto simp add: insert-commute)
lemma triangle-vertices-distinct1:
assumes tri: triangle-in-graph $x y z$
shows $x \neq y$
proof (rule ccontr)
assume $a: \neg x \neq y$
have card $\{x, y\}=2$ using tri triangle-in-graph-def

```
    using wellformed by (simp add: two-edges)
    thus False using a by simp
qed
lemma triangle-vertices-distinct2:
    assumes triangle-in-graph x y z
    shows }y\not=
    by (metis assms triangle-vertices-distinct1 triangle-in-graph-def)
lemma triangle-vertices-distinct3:
    assumes triangle-in-graph x y z
    shows z}=
    by (metis assms triangle-vertices-distinct1 triangle-in-graph-def)
lemma triangle-in-graph-edge-point: triangle-in-graph x y z \longleftrightarrow {y,z}\inE^
vert-adj x y ^ vert-adj x z
    by (auto simp add: triangle-in-graph-def vert-adj-def)
lemma edge-vertices-not-equal:
    assumes {x,y}\inE
    shows }x\not=
    using assms two-edges by fastforce
lemma edge-btw-vertices-not-equal:
    assumes (x,y)\inall-edges-between X Y
    shows }x\not=
    using edge-vertices-not-equal all-edges-between-def
    by (metis all-edges-betw-D3 assms)
lemma mk-triangle-from-ss-edges:
assumes (x,y)\inall-edges-between X Y and (x,z)\inall-edges-between X Z and
(y,z)\inall-edges-between Y Z
shows (triangle-in-graph x y z)
    by (meson all-edges-betw-D3 assms triangle-in-graph-def)
lemma triangle-in-graph-verts:
    assumes triangle-in-graph x y z
    shows }x\inVy\inVz\in
proof -
    show }x\inV\mathrm{ using triangle-in-graph-def wellformed-alt-fst assms by blast
    show }y\inV\mathrm{ using triangle-in-graph-def wellformed-alt-snd assms by blast
    show z\inV using triangle-in-graph-def wellformed-alt-snd assms by blast
qed
lemma convert-triangle-rep-ss:
    assumes }X\subseteqV\mathrm{ and }Y\subseteqV and Z\subseteq
    shows mk-triangle-set' {(x,y,z)\inX\timesY\timesZ.(triangle-in-graph x y z)}\subseteq
triangle-set
    by (auto simp add: subsetI triangle-set-def) (auto)
```

```
lemma (in fin-sgraph) finite-triangle-set: finite (triangle-set)
proof -
    have triangle-set \subseteq Pow V
    using insert-iff wellformed triangle-in-graph-def triangle-set-def by auto
    then show ?thesis
        by (meson finV finite-Pow-iff infinite-super)
qed
lemma card-triangle-3:
    assumes t\in triangle-set
    shows card t=3
    using assms by (auto simp: triangle-set-def edge-vertices-not-equal triangle-in-graph-def)
lemma triangle-set-power-set-ss: triangle-set \subseteqPow V
    by (auto simp add: triangle-set-def triangle-in-graph-def wellformed-alt-fst well-
formed-alt-snd)
lemma triangle-in-graph-ss:
    assumes }\mp@subsup{E}{}{\prime}\subseteq
    assumes sgraph.triangle-in-graph E' x y z
    shows triangle-in-graph x y z
proof -
    interpret gnew: sgraph V E'
        apply (unfold-locales)
        using assms wellformed two-edges by auto
    have {x,y}\inE using assms gnew.triangle-in-graph-def by auto
    have {y,z}\inE using assms gnew.triangle-in-graph-def by auto
    have {x,z}\inE using assms gnew.triangle-in-graph-def by auto
    thus ?thesis
        by (simp add: <{x,y}\inE\rangle<{y,z} \inE> triangle-in-graph-def)
qed
lemma triangle-set-graph-edge-ss:
    assumes }\mp@subsup{E}{}{\prime}\subseteq
    shows (sgraph.triangle-set E')\subseteq(triangle-set)
proof (intro subsetI)
    interpret gnew: sgraph V E'
        using assms wellformed two-edges by (unfold-locales) auto
    fix }t\mathrm{ assume }t\in\mathrm{ gnew.triangle-set
    then obtain x y z where t={x,y,z} and gnew.triangle-in-graph x y z
        using gnew.triangle-set-def assms mem-Collect-eq by auto
    then have triangle-in-graph x y z using assms triangle-in-graph-ss by simp
    thus t\in triangle-set using triangle-set-def assms
        using <t = {x,y,z}> by auto
qed
lemma (in fin-sgraph) triangle-set-graph-edge-ss-bound:
    assumes }\mp@subsup{E}{}{\prime}\subseteq
```

```
    shows card (triangle-set) \geq card (sgraph.triangle-set E')
    using triangle-set-graph-edge-ss finite-triangle-set
    by (simp add: assms card-mono)
end
locale triangle-free-graph = sgraph +
    assumes tri-free:}\neg(\existsxyz.triangle-in-graph x y z
lemma triangle-free-graph-empty: E={}\Longrightarrow triangle-free-graph V E
    apply (unfold-locales, simp-all)
    using sgraph.triangle-in-graph-edge-empty
    by (metis Int-absorb all-edges-disjoint complete-sgraph)
context fin-sgraph
begin
Converting between ordered and unordered triples for reasoning on cardinality
```

```
lemma card-convert-triangle-rep:
```

lemma card-convert-triangle-rep:
assumes $X \subseteq V$ and $Y \subseteq V$ and $Z \subseteq V$
assumes $X \subseteq V$ and $Y \subseteq V$ and $Z \subseteq V$
shows card (triangle-set) $\geq 1 / 6 *$ card $\{(x, y, z) \in X \times Y \times Z$. (triangle-in-graph
shows card (triangle-set) $\geq 1 / 6 *$ card $\{(x, y, z) \in X \times Y \times Z$. (triangle-in-graph
$x y z)\}$
$x y z)\}$
(is $-\geq 1 / 6 * \operatorname{card} ? T T)$
(is $-\geq 1 / 6 * \operatorname{card} ? T T)$
proof -
proof -
define tofl where tofl $\equiv \lambda l::^{\prime}$ 'a list. $(h d l, h d(t l l), h d(t l(t l l)))$
define tofl where tofl $\equiv \lambda l::^{\prime}$ 'a list. $(h d l, h d(t l l), h d(t l(t l l)))$
have in-tofl: $(x, y, z) \in$ tofl' permutations-of-set $\{x, y, z\}$ if $x \neq y y \neq z x \neq z$ for x
have in-tofl: $(x, y, z) \in$ tofl' permutations-of-set $\{x, y, z\}$ if $x \neq y y \neq z x \neq z$ for x
$y z$
$y z$
proof -
proof -
have distinct $[x, y, z]$
have distinct $[x, y, z]$
using that by simp
using that by simp
then show?thesis
then show?thesis
unfolding tofl-def image-iff
unfolding tofl-def image-iff
by (smt (verit, best) list.sel(1) list.sel(3) list.simps(15) permutations-of-setI
by (smt (verit, best) list.sel(1) list.sel(3) list.simps(15) permutations-of-setI
set-empty)
set-empty)
qed
qed
have ?TT $\subseteq\{(x, y, z) .($ triangle-in-graph $x y z)\}$
have ?TT $\subseteq\{(x, y, z) .($ triangle-in-graph $x y z)\}$
by auto
by auto
also have $\ldots \subseteq(\bigcup t \in$ triangle-set. tofl' permutations-of-set $t)$
also have $\ldots \subseteq(\bigcup t \in$ triangle-set. tofl' permutations-of-set $t)$
proof (clarsimp simp: triangle-set-def)
proof (clarsimp simp: triangle-set-def)
fix $u v w$
fix $u v w$
assume t : triangle-in-graph $u v w$
assume t : triangle-in-graph $u v w$
then have $(u, v, w) \in$ tofl' permutations-of-set $\{u, v, w\}$
then have $(u, v, w) \in$ tofl' permutations-of-set $\{u, v, w\}$
by (metis in-tofl triangle-commu1 triangle-vertices-distinct1 triangle-vertices-distinct2)
by (metis in-tofl triangle-commu1 triangle-vertices-distinct1 triangle-vertices-distinct2)
with t show $\exists t .(\exists x y z . t=\{x, y, z\} \wedge$ triangle-in-graph $x y z) \wedge(u, v, w)$
with t show $\exists t .(\exists x y z . t=\{x, y, z\} \wedge$ triangle-in-graph $x y z) \wedge(u, v, w)$
\in tofl' permutations-of-set t
\in tofl' permutations-of-set t
by blast
by blast
qed
qed
finally have ? $T T \subseteq(\bigcup t \in$ triangle-set. tofl'permutations-of-set $t)$.

```
    finally have ? \(T T \subseteq(\bigcup t \in\) triangle-set. tofl'permutations-of-set \(t)\).
```

```
    then have card ?TT \leq card(\bigcupt t triangle-set. tofl' permutations-of-set t)
    by (intro card-mono finite-UN-I finite-triangle-set) (auto simp: assms)
    also have ...\leq (\sumt\in triangle-set.card (tofl'permutations-of-set t))
    using card-UN-le finV finite-triangle-set wellformed by blast
    also have .. \leq (\sumt\in triangle-set. card (permutations-of-set t))
    by (meson card-image-le finite-permutations-of-set sum-mono)
    also have ...\leq(\sumt\in triangle-set. fact 3)
    by(rule sum-mono) (metis card.infinite card-permutations-of-set card-triangle-3
eq-refl nat.simps(3) numeral-3-eq-3)
    also have ... = 6* card (triangle-set)
        by (simp add: eval-nat-numeral)
    finally have card?TT \leq 6* card (triangle-set).
    then show ?thesis
        by (simp add: divide-simps)
qed
lemma card-convert-triangle-rep-bound:
    fixes }t\mathrm{ :: real
    assumes card {(x,y,z)\inX\timesY\timesZ.(triangle-in-graph x y z)} \geqt
    assumes }X\subseteqV\mathrm{ and Y}\subseteqV\mathrm{ and Z}\subseteq
    shows card (triangle-set)\geq1/6*t
proof -
```



```
    have }\mp@subsup{t}{}{\prime}\geqt\mathrm{ using assms t'-def by simp
    then have tgt: 1/6*\mp@subsup{t}{}{\prime}\geq1/6*t by simp
    have card (triangle-set)\geq1/6*t' using t'-def card-convert-triangle-rep assms
by simp
    thus ?thesis using tgt by linarith
qed
end
end
theory Bipartite-Graphs imports Undirected-Graph-Walks
begin
```


6 Bipartite Graphs

An introductory library for reasoning on bipartite graphs.

6.1 Bipartite Set Up

All "edges", i.e. pairs, between any two sets
definition all-bi-edges :: 'a set \Rightarrow 'a set \Rightarrow ' a edge set where
all-bi-edges $X Y \equiv m k$-edge' $(X \times Y)$
lemma all-bi-edges-alt:
assumes $X \cap Y=\{ \}$
shows all-bi-edges $X Y=\{e$. card $e=2 \wedge e \cap X \neq\{ \} \wedge e \cap Y \neq\{ \}\}$
unfolding all-bi-edges-def

```
proof (intro subset-antisym subsetI)
    fix \(e\) assume \(e \in m k\)-edge' \((X \times Y)\)
    then obtain \(v 1 v 2\) where \(e=\{v 1, v 2\}\) and \(v 1 \in X\) and \(v 2 \in Y\)
        by auto
    then show \(e \in\{e\). card \(e=2 \wedge e \cap X \neq\{ \} \wedge e \cap Y \neq\{ \}\}\) using assms
        using card-2-iff by blast
next
    fix \(e^{\prime}\) assume assm: \(e^{\prime} \in\{e\). card \(e=2 \wedge e \cap X \neq\{ \} \wedge e \cap Y \neq\{ \}\}\)
    then obtain \(v 1\) where \(v 1 i n: v 1 \in e^{\prime}\) and \(v 1 \in X\)
        by blast
    moreover obtain \(v 2\) where \(v 2 i n: v 2 \in e^{\prime}\) and \(v 2 \in Y\) using assm by blast
    then have \(n e: v 1 \neq v 2\)
        using assms calculation(2) by blast
    have card \(e^{\prime}=2\) using assm by blast
    have \(\{v 1, v 2\} \subseteq e^{\prime}\) using v1in v2in by blast
    then have \(e^{\prime}=\{v 1, v 2\}\) using assm v1in v2in
        by (metis (no-types, opaque-lifting) 〈card \(\left.e^{\prime}=2\right\rangle\) card-2-iff' insertCI ne subsetI
subset-antisym)
    then show \(e^{\prime} \in m k\)-edge ' \((X \times Y)\)
        by (simp add: \(\langle v 2 \in Y\rangle\) calculation(2) in-mk-edge-img)
qed
lemma all-bi-edges-alt2: all-bi-edges \(X Y=\{\{x, y\} \mid x y . x \in X \wedge y \in Y\}\)
    unfolding all-bi-edges-def
proof (intro subset-antisym subsetI)
    fix \(x\) assume \(x \in m k\)-edge ' \((X \times Y)\)
    then obtain \(a b\) where \((a, b) \in(X \times Y)\) and xeq: \(x=m k\)-edge \((a, b)\) by blast
    then show \(x \in\{\{x, y\} \mid x y . x \in X \wedge y \in Y\}\)
        by auto
next
    fix \(x\) assume \(x \in\{\{x, y\} \mid x y . x \in X \wedge y \in Y\}\)
    then obtain \(a b\) where xeq: \(x=\{a, b\}\) and \(a \in X\) and \(b \in Y\)
        by blast
    then have \((a, b) \in(X \times Y)\) by auto
    then show \(x \in m k\)-edge' \((X \times Y)\) using in-mk-edge-img xeq by metis
qed
lemma all-bi-edges-wf: \(e \in\) all-bi-edges \(X Y \Longrightarrow e \subseteq X \cup Y\)
    by (auto simp add: all-bi-edges-alt2)
lemma all-bi-edges-2: \(X \cap Y=\{ \} \Longrightarrow e \in\) all-bi-edges \(X Y \Longrightarrow\) card \(e=2\)
    using card-2-iff by (auto simp add: all-bi-edges-alt2)
lemma all-bi-edges-main: \(X \cap Y=\{ \} \Longrightarrow\) all-bi-edges \(X Y \subseteq\) all-edges \((X \cup Y)\)
    unfolding all-edges-def using all-bi-edges-wf all-bi-edges-2 by blast
lemma all-bi-edges-finite: finite \(X \Longrightarrow\) finite \(Y \Longrightarrow\) finite (all-bi-edges \(X\) )
    by (simp add: all-bi-edges-def)
```

lemma all-bi-edges-not-ss $X: X \cap Y=\{ \} \Longrightarrow e \in$ all-bi-edges $X Y \Longrightarrow \neg e \subseteq$ by (auto simp add: all-bi-edges-alt)
lemma all-bi-edges-sym: all-bi-edges $X \quad Y=$ all-bi-edges $Y X$
by (auto simp add: all-bi-edges-alt2)
lemma all-bi-edges-not-ss $Y: X \cap Y=\{ \} \Longrightarrow e \in$ all-bi-edges $X Y \Longrightarrow \neg e \subseteq Y$ by (auto simp add: all-bi-edges-alt)
lemma card-all-bi-edges:
assumes finite X finite Y
assumes $X \cap Y=\{ \}$
shows card (all-bi-edges $X \quad Y$) $=$ card $X *$ card Y
proof -
have card (all-bi-edges $X Y)=\operatorname{card}(X \times Y)$
unfolding all-bi-edges-def using inj-on-mk-edge assms card-image by blast
thus ?thesis using card-cartesian-product by auto
qed
lemma (in sgraph) all-edges-between-bi-subset: mk-edge' all-edges-between $X \quad Y \subseteq$ all-bi-edges X Y
by (auto simp: all-edges-between-def all-bi-edges-def)

6.2 Bipartite Graph Locale

For reasoning purposes, it is useful to explicitly label the two sets of vertices as X and Y. These are parameters in the locale

```
locale bipartite-graph = graph-system +
    fixes X Y :: 'a set
    assumes partition: partition-on V {X,Y}
    assumes ne: X\not=Y
    assumes edge-betw: }e\inE\Longrightarrowe\in\mathrm{ all-bi-edges X Y
begin
lemma part-intersect-empty: X \capY={}
    using partition-onD2 partition disjointD ne
    by blast
lemma X-not-empty: }X\not={
    using partition partition-onD3 by auto
lemma }Y\mathrm{ -not-empty: }Y\not={
    using partition partition-onD3 by auto
lemma XY-union: X \cup Y = V
    using partition partition-onD1 by auto
lemma card-edges-two: e\inE\Longrightarrow card e=2
    using edge-betw all-bi-edges-alt part-intersect-empty by auto
```

```
lemma partitions-ss: X\subseteqVY\subseteqV
    using XY-union by auto
end
```

By definition, we say an edge must be between X and Y , i.e. contains two vertices
sublocale bipartite-graph \subseteq sgraph
using card-edges-two by (unfold-locales)
context bipartite-graph
begin
abbreviation density \equiv edge-density $X Y$
lemma bipartite-sym: bipartite-graph V E Y X
using partition ne edge-betw all-bi-edges-sym
by (unfold-locales) (auto simp add: insert-commute)
lemma X-verts-not-adj:
assumes $x 1 \in X x \mathcal{Z} \in X$
shows \neg vert-adj $x 1$ x2
proof (rule ccontr, simp add: vert-adj-def)
assume $\left\{x 1, x_{2}\right\} \in E$
then have $\neg\{x 1, x 2\} \subseteq X$
using all-bi-edges-not-ssX edge-betw part-intersect-empty by auto
then show False using assms by auto
qed
lemma Y-verts-not-adj:
assumes $y 1 \in Y y 2 \in Y$
shows \neg vert-adj y1 y2
proof -
interpret sym: bipartite-graph VE Y X using bipartite-sym by simp
show ?thesis using sym.X-verts-not-adj
by (simp add: assms(1) assms(2))
qed
lemma X-vert-adj- $Y: x \in X \Longrightarrow$ vert-adj $x y \Longrightarrow y \in Y$
using X-verts-not-adj $X Y$-union vert-adj-imp-in V by blast
lemma Y-vert-adj-X: $y \in Y \Longrightarrow$ vert-adj $y x \Longrightarrow x \in X$
using Y-verts-not-adj $X Y$-union vert-adj-imp-in V by blast
lemma neighbors-ss-eq-neighborhood $X: v \in X \Longrightarrow$ neighborhood $v=$ neighbors-ss
$v Y$
unfolding neighborhood-def neighbors-ss-def
by (auto simp add: X-vert-adj-Y vert-adj-imp-in V)

```
lemma neighbors-ss-eq-neighborhood }Y:v\inY\Longrightarrow neighborhood v=neighbors-s
v X
    unfolding neighborhood-def neighbors-ss-def
    by(auto simp add: Y-vert-adj-X vert-adj-imp-in V)
lemma neighborhood-subset-opp X: v\inX\Longrightarrow neighborhood v\subseteqY
    using neighbors-ss-eq-neighborhoodX neighbors-ss-def by auto
lemma neighborhood-subset-opp Y:v\inY\Longrightarrow neighborhood v\subseteqX
    using neighbors-ss-eq-neighborhoodY neighbors-ss-def by auto
lemma degree-neighbors-ssX:v\inX\Longrightarrow degree v=card (neighbors-ss v Y)
    using neighbors-ss-eq-neighborhoodX alt-deg-neighborhood by auto
lemma degree-neighbors-ss Y:v\inY\Longrightarrow degree v = card (neighbors-ss v X)
    using neighbors-ss-eq-neighborhoodY alt-deg-neighborhood by auto
definition is-bicomplete:: bool where
is-bicomplete \equivE=all-bi-edges X Y
lemma edge-betw-indiv:
    assumes e\inE
    obtains }xy\mathrm{ where }x\inX\wedgey\inY\wedgee={x,y
proof -
    have e}\in{{x,y}|xy.x\inX\wedgey\inY
        using edge-betw all-bi-edges-alt2 assms by blast
    thus ?thesis
        using that by auto
qed
lemma edges-between-equals-edge-set: mk-edge'(all-edges-between X Y) = E
    by (simp add: all-edges-between-set, intro subset-antisym subsetI, auto) (metis
edge-betw-indiv)
```

Lemmas for reasoning on walks and paths in a bipartite graph
lemma walk-alternates:
assumes is-walk w
assumes Suc $i<$ length $w i \geq 0$
shows $w!i \in X \longleftrightarrow w!(i+1) \in Y$
proof -
have $\{w!i, w!(i+1)\} \in E$ using is-walk-index assms by auto
then show ?thesis
using X-vert-adj- Y not-vert-adj Y-vert-adj-X vert-adj-sym by blast
qed

A useful reasoning pattern to mimic "wlog" statements for properties that are symmetric is to interpret the symmetric bipartite graph and then directly apply the lemma proven earlier

```
lemma walk-alternates-sym:
    assumes is-walk w
    assumes Suc i< length wi\geq0
    shows w!i\inY\longleftrightarroww!(i+1)\inX
proof -
    interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
    show ?thesis using sym.walk-alternates assms by simp
qed
lemma walk-length-even:
    assumes is-walk w
    assumes hd w\inX and last w\inX
    shows even (walk-length w)
    using assms
proof (induct length w arbitrary: w rule: nat-induct2)
    case 0
    then show ?case by (auto simp add: is-walk-def)
next
    case 1
    then have walk-length w=0 using walk-length-conv by auto
    then show ?case by simp
next
    case (step n)
    then show ?case proof (cases n=0)
        case True
    then have length w=2 using step by simp
            then have hd w\inX\Longrightarrow last w\inY using walk-alternates hd-conv-nth
last-conv-nth
            by (metis add-0 add-diff-cancel-right' less-2-cases-iff list.size(3) nat-1-add-1
step.prems(1)
                zero-le zero-neq-numeral)
            then show ?thesis
            using part-intersect-empty step.prems(2) step.prems(3) by blast
    next
    case False
    have IH:(\bigwedgew.n= length w\Longrightarrow is-walk w\Longrightarrow hd w\inX\Longrightarrow last w\inX\Longrightarrow
even (walk-length w))
            using step by simp
            obtain w1 w2 where weq: w = w1@w2 and w1: w1 = take n w and w2:w2
= drop n w
            by simp
    then have ne: w1\not=[] using False is-walk-not-empty2 step.prems(1) by fastforce
    then have w1-walk: is-walk w1 using w1 is-walk-take False
            by (metis nat-le-linear neq0-conv step.prems(1) take-all)
    have hdw1: hd w1\inX using step ne weq by auto
    then have w1n: length w1 = n using step length-take w1 by auto
    then have length w2 = 2 using step length-drop
            by (simp add: w2)
```

```
    have last w = w!(n+1) using step last-conv-nth is-walk-not-empty
    by (metis add.left-commute diff-add-inverse nat-1-add-1)
    then have w!n\inY using step by (simp add: walk-alternates-sym)
    then have w!(n-1)\inX using False walk-alternates step by simp
    then have last w1\inX using step last-conv-nth[of w1] ne w1n
    by (metis last-list-update list-update-id take-update-swap w1)
    then have even (walk-length w1) using w1-walk w1n hdw1 IH[of w1] by simp
    then have even (walk-length w1 + 2) by simp
    then show ?thesis using walk-length-conv weq step
    by (simp add: False w1n)
    qed
qed
lemma walk-length-even-sym:
    assumes is-walk w
    assumes hd w\inY
    assumes last w\inY
    shows even (walk-length w)
proof -
    interpret sym: bipartite-graph V E Y X using bipartite-sym by simp
    show ?thesis using sym.walk-length-even assms by auto
qed
lemma walk-length-odd:
    assumes is-walk w
    assumes hd w\inX and last w\inY
    shows odd (walk-length w)
    using assms
proof (cases length w\geq2)
    case True
    then have hdin: hd (tl w)\inY using walk-alternates hd-conv-nth
    by (metis (mono-tags, lifting) Suc-1 Suc-less-eq2 assms(1) assms(2) is-walk-not-empty2
is-walk-tl
            le-neq-implies-less le-numeral-extra(3) length-greater-0-conv less-Suc-eq nth-tl
                numeral-1-eq-Suc-0 numerals(1) plus-nat.add-0)
    have w: is-walk (tl w) using assms True is-walk-tl by auto
    have last: last (tl w) \inY using assms(3) by (simp add: is-walk-not-empty last-tl
w)
    then have ev: even (walk-length (tl w)) using hdin w walk-length-even-sym[of
tl w] by auto
    then have walk-length w = walk-length (tl w) + 1 using True walk-length-conv
by auto
    then show ?thesis using ev by simp
next
    case False
    have length w\not=0 using is-walk-not-empty assms by simp
    then have length w=1 using False by linarith
    then have hd w= last w
```

using 〈length $w \neq 0\rangle h d$-conv-nth last-conv-nth by fastforce
then have $h d w \in X \Longrightarrow$ last $w \notin Y$ using part-intersect-empty by auto then show ?thesis using assms by simp
qed
lemma walk-length-odd-sym:
assumes is-walk w
assumes $h d w \in Y$ and last $w \in X$
shows odd (walk-length w)
proof -
interpret sym: bipartite-graph $V E Y X$ using bipartite-sym by simp
show ?thesis using assms sym.walk-length-odd by simp
qed
lemma walk-length-even-iff:
assumes is-walk w
shows even $($ walk-length $w) \longleftrightarrow(h d w \in X \wedge$ last $w \in X) \vee(h d w \in Y \wedge$ last $w \in Y$)
proof (intro iffI)
assume ev: even (walk-length w)
show $h d w \in X \wedge$ last $w \in X \vee h d w \in Y \wedge$ last $w \in Y$
proof (rule ccontr)
assume $\neg((h d w \in X \wedge$ last $w \in X) \vee(h d w \in Y \wedge$ last $w \in Y))$
then have $(h d w \notin X \vee$ last $w \notin X) \wedge(h d w \notin Y \vee$ last $w \notin Y)$ by simp
then have $(h d w \in Y \vee$ last $w \in Y) \wedge(h d w \in X \vee$ last $w \in X)$ using part-intersect-empty
using $X Y$-union assms is-walk-wf-hd is-walk-wf-last by auto
then have split: $(h d w \in X \wedge$ last $w \in Y) \vee(h d w \in Y \wedge$ last $w \in X)$
using part-intersect-empty by auto
have o1: $(h d w \in X \wedge$ last $w \in Y) \Longrightarrow$ odd (walk-length w) using walk-length-odd assms by auto
have $(h d w \in Y \wedge$ last $w \in X) \Longrightarrow$ odd (walk-length w) using walk-length-odd-sym assms by auto
then show False using split ev o1 by auto
qed
next
show (hd $w \in X \wedge$ last $w \in X) \vee(h d w \in Y \wedge$ last $w \in Y) \Longrightarrow$ even (walk-length w)
using walk-length-even walk-length-even-sym assms by auto
qed
lemma walk-length-odd-iff:
assumes is-walk w
shows odd (walk-length $w) \longleftrightarrow(h d w \in X \wedge$ last $w \in Y) \vee(h d w \in Y \wedge$ last $w \in X)$
proof (intro iffI)
assume o: odd (walk-length w)
show $(h d w \in X \wedge$ last $w \in Y) \vee(h d w \in Y \wedge$ last $w \in X)$
proof (rule ccontr)

```
    assume \neg ((hd w\inX ^ last w\inY)\vee (hd w\inY\wedge last w\inX))
    then have (hd w\not\inX\vee last w\not\inY)\wedge(hd w\not\inY\vee last w\not\inX) by simp
        then have (hd w\inY\vee last w\inX)^(hdw\inX\vee last w\inY) using
part-intersect-empty
        using XY-union assms is-walk-wf-hd is-walk-wf-last by auto
    then have split: (hd w\inX\wedge last w\inX)\vee (hdw\inY\wedge last w\inY)
        using part-intersect-empty by auto
    have e1: (hd w\inX\wedge last w\inX)\Longrightarrow even (walk-length w) using walk-length-even
assms by auto
    have (hd w\inY^last w\inY)\Longrightarrow even (walk-length w) using walk-length-even-sym
assms by auto
    then show False using split o e1 by auto
    qed
next
    show (hd w\inX\wedge last w\inY)\vee (hd w\inY\wedge last w\inX)\Longrightarrow odd (walk-length
w)
    using walk-length-odd walk-length-odd-sym assms by auto
qed
```

Classic basic theorem that a bipartite graph must not have any cycles with an odd length
lemma no-odd-cycles:
assumes is-walk w
assumes odd (walk-length w)
shows $\neg i s$-cycle w
proof -
have $(h d w \in X \wedge$ last $w \in Y) \vee(h d w \in Y \wedge$ last $w \in X)$ using assms walk-length-odd-iff by auto
then have $h d w \neq$ last w using part-intersect-empty by auto
thus ?thesis using is-cycle-def is-closed-walk-def by simp
qed
end
A few properties rely on cardinality definitions that require the vertex sets to be finite
locale fin-bipartite-graph $=$ bipartite-graph + fin-graph-system
begin
lemma fin-bipartite-sym: fin-bipartite-graph $V E Y X$
by (intro-locales) (simp add: bipartite-sym bipartite-graph.axioms(2))
lemma partitions-finite: finite X finite Y
using partitions-ss finite-subset finV by auto
lemma card-edges-between-set: card (all-edges-between $X Y$) $=$ card E proof -
have card (all-edges-between $X \quad Y)=$ card $(m k$-edge' (all-edges-between $X Y)$) using inj-on-mk-edge using partitions-finite card-image

```
    by (metis inj-on-mk-edge part-intersect-empty)
    then show ?thesis by (simp add: edges-between-equals-edge-set)
qed
lemma density-simp: density = card (E) / ((card X) * (card Y))
    unfolding edge-density-def using card-edges-between-set by auto
lemma edge-size-degree-sum Y: card E = (\sumy\inY. degree y)
proof -
    have }(\sumy\inY.degree y)=(\sumy\inY.card(neighbors-ss y X)
    using degree-neighbors-ss Y by (simp)
    also have ... = card (all-edges-between X Y)
    using card-all-edges-betw-neighbor
    by (metis card-all-edges-between-commute partitions-finite(1) partitions-finite(2))
    finally show ?thesis
    by (simp add: card-edges-between-set)
qed
lemma edge-size-degree-sumX: card E = (\sumy\inX. degree y)
proof -
    interpret sym: fin-bipartite-graph V E Y X
    using fin-bipartite-sym by simp
    show ?thesis using sym.edge-size-degree-sumY by simp
qed
end
end
```


7 Graph Theory Inheritance

This theory aims to demonstrate the use of locales to transfer theorems between different graph/combinatorial structure representations
theory Graph-Theory-Relations imports Undirected-Graph-Basics Bipartite-Graphs
Design-Theory.Block-Designs Design-Theory.Group-Divisible-Designs
begin

7.1 Design Inheritance

A graph is a type of incidence system, and more specifically a type of combinatorial design. This section demonstrates the correspondence between designs and graphs
sublocale graph-system \subseteq inc: incidence-system V mset-set E
by (unfold-locales) (metis wellformed elem-mset-set ex-in-conv infinite-set-mset-mset-set)
sublocale fin-graph-system \subseteq finc: finite-incidence-system V mset-set E
using fin V by unfold-locales
sublocale fin-ulgraph $\subseteq d:$ design V mset-set E
using edge-size empty-not-edge fin-edges by unfold-locales auto
sublocale fin-ulgraph $\subseteq d$: simple-design V mset-set E
by unfold-locales (simp add: fin-edges)
locale graph-has-edges $=$ graph-system +
assumes edges-nempty: $E \neq\{ \}$
locale fin-sgraph-wedges $=$ fin-sgraph + graph-has-edges
The simple graph definition of degree overlaps with the definition of a point replication number
sublocale fin-sgraph-wedges $\subseteq b d:$ block-design V mset-set $E 2$
rewrites point-replication-number (mset-set E) $x=$ degree x
and points-index (mset-set E) vs $=$ degree-set vs
proof (unfold-locales)
show inc. $\mathrm{b} \neq 0$ by (simp add: edges-nempty fin-edges)
show $\bigwedge b l . b l \in \#$ mset-set $E \Longrightarrow$ card $b l=2$ by (simp add: fin-edges two-edges)
show mset-set E index vs $=$ degree-set vs
unfolding degree-set-def points-index-def by (simp add: fin-edges)
next
have size $\{\# b \in \#($ mset-set $E) . x \in b \#\}=$ card (incident-edges $x)$
unfolding incident-edges-def vincident-def
by (simp add: fin-edges)
then show mset-set E rep $x=$ degree x using alt-degree-def point-replication-number-def by metis
qed
locale fin-bipartite-graph-wedges $=$ fin-bipartite-graph + fin-sgraph-wedges
sublocale fin-bipartite-graph-wedges \subseteq group-design V mset-set $E\{X, Y\}$
by unfold-locales (simp-all add: partition ne)

7.2 Adjacency Relation Definition

Another common formal representation of graphs is as a vertex set and an adjacency relation This is a useful representation in some contexts - we use locales to enable the transfer of results between the two representations, specifically the mutual sublocales approach

```
locale graph-rel \(=\)
    fixes vertices :: 'a set (V)
    fixes adj-rel :: 'a rel
    assumes \(w f: \bigwedge u v .(u, v) \in a d j-r e l \Longrightarrow u \in V \wedge v \in V\)
begin
```

```
abbreviation adj u v\equiv(u,v)\inadj-rel
lemma wf-alt: adj u v\Longrightarrow(u,v)\inV 
    using wf by blast
end
locale ulgraph-rel = graph-rel +
    assumes sym-adj: sym adj-rel
begin
This definition makes sense in the context of an undirected graph
definition edge-set:: 'a edge set where
edge-set }\equiv{{u,v}|uv.adj uv
lemma obtain-edge-pair-adj:
    assumes e\inedge-set
    obtains uv where e={u,v} and adj uv
    using assms edge-set-def mem-Collect-eq
    by fastforce
lemma adj-to-edge-set-card:
    assumes e\in edge-set
    shows card e=1\vee card e=2
proof -
    obtain }uv\mathrm{ where }e={u,v}\mathrm{ and adj uv using obtain-edge-pair-adj assms by
blast
    then show ?thesis by (cases u=v, simp-all)
qed
lemma adj-to-edge-set-card-lim:
    assumes e\inedge-set
    shows card e>0^ card e\leq2
proof -
    obtain }uv\mathrm{ where }e={u,v}\mathrm{ and adj uv using obtain-edge-pair-adj assms by
blast
    then show ?thesis by (cases u=v, simp-all)
qed
lemma edge-set-wf:e\in edge-set \Longrightarrowe\subseteqV
    using obtain-edge-pair-adj wf by (metis insert-iff singletonD subsetI)
lemma is-graph-system: graph-system V edge-set
    by (unfold-locales) (simp add: edge-set-wf)
lemma sym-alt: adj }uv\longleftrightarrowadj v
    using sym-adj by (meson symE)
```

```
lemma is-ulgraph: ulgraph V edge-set
    using ulgraph-axioms-def is-graph-system adj-to-edge-set-card-lim
    by (intro-locales) auto
end
context ulgraph
begin
definition adj-relation :: 'a rel where
adj-relation \equiv{(u,v)|uv.vert-adj uv}
lemma adj-relation-wf: (u,v) \in adj-relation \Longrightarrow{u,v}\subseteqV
    unfolding adj-relation-def using vert-adj-imp-inV by auto
lemma adj-relation-sym: sym adj-relation
    unfolding adj-relation-def sym-def using vert-adj-sym by auto
lemma is-ulgraph-rel: ulgraph-rel V adj-relation
    using adj-relation-wf adj-relation-sym by (unfold-locales) auto
        Temporary interpretation - mutual sublocale setup
interpretation ulgraph-rel V adj-relation by (rule is-ulgraph-rel)
lemma vert-adj-rel-iff:
    assumes }u\inVv\in
    shows vert-adj u v \longleftrightarrowadj uv
    using adj-relation-def by auto
lemma edges-rel-is: E = edge-set
proof -
    have E = {{u,v}|uv.vert-adj uv}
    proof (intro subset-antisym subsetI)
        show }\x.x\in{{u,v}|uv.vert-adj uv}\Longrightarrowx\in
            using vert-adj-def by fastforce
    next
        fix }x\mathrm{ assume }x\in
        then have }x\subseteqV\mathrm{ and card x>0 and card x < 2 using wellformed edge-size
by auto
```



```
                by (metis }\langlex\inE\rangle\mathrm{ alt-edge-size card-1-singletonE card-2-iff insert-absorb2)
    then show }x\in{{u,v}|uv.vert-adj u v} unfolding vert-adj-def by blas
    qed
    then have E={{u,v}|uv.adj uv} using vert-adj-rel-iff Collect-cong
    by (smt (verit) local.wf vert-adj-imp-inV)
    thus ?thesis using edge-set-def by simp
qed
```


end

context ulgraph-rel

begin
Temporary interpretation - mutual sublocale setup
interpretation ulgraph V edge-set by (rule is-ulgraph)
lemma rel-vert-adj-iff: vert-adj $u v \longleftrightarrow a d j u v$
proof (intro iffI)
assume vert-adj $u v$
then have $\{u, v\} \in$ edge-set by (simp add: vert-adj-def)
then show adj $u v$ using edge-set-def
by (metis (no-types, lifting) doubleton-eq-iff obtain-edge-pair-adj sym-alt)
next
assume adj $u v$
then have $\{u, v\} \in$ edge-set using edge-set-def by auto
then show vert-adj $u v$ by (simp add: vert-adj-def)
qed
lemma rel-item-is: $(u, v) \in$ adj-rel $\longleftrightarrow(u, v) \in$ adj-relation
unfolding adj-relation-def using rel-vert-adj-iff by auto
lemma rel-edges-is: adj-rel = adj-relation
using rel-item-is by auto
end
sublocale ulgraph-rel \subseteq ulgraph V edge-set
rewrites ulgraph.adj-relation edge-set $=$ adj-rel
using local.is-ulgraph rel-edges-is by simp-all
sublocale ulgraph \subseteq ulgraph-rel V adj-relation
rewrites ulgraph-rel.edge-set adj-relation $=E$
using is-ulgraph-rel edges-rel-is by simp-all
locale sgraph-rel $=$ ulgraph-rel +
assumes irrefl-adj: irrefl adj-rel
begin
lemma irrefl-alt: adj $u v \Longrightarrow u \neq v$ using irrefl-adj irrefl-def by fastforce
lemma edge-is-card2:
assumes $e \in$ edge-set
shows card $e=2$
proof -
obtain $u v$ where eq: $e=\{u, v\}$ and $a d j u v$ using assms edge-set-def by blast then have $u \neq v$ using irrefl-alt by simp

```
    thus ?thesis using eq by simp
qed
lemma is-sgraph: sgraph V edge-set
    using is-graph-system edge-is-card2 sgraph-axioms-def by (intro-locales) auto
end
context sgraph
begin
lemma is-rel-irrefl-alt:
    assumes (u,v)\inadj-relation
    shows }u\not=
proof -
    have vert-adj u v using adj-relation-def assms by blast
    then have {u,v}\inE using vert-adj-def by simp
    then have card {u,v} =2 using two-edges by simp
    thus ?thesis by auto
qed
lemma is-rel-irrefl: irrefl adj-relation
    using irrefl-def is-rel-irrefl-alt by auto
lemma is-sgraph-rel: sgraph-rel V adj-relation
    by (unfold-locales) (simp add: is-rel-irrefl)
end
sublocale sgraph-rel }\subseteq\mathrm{ sgraph V edge-set
    rewrites ulgraph.adj-relation edge-set = adj-rel
    using is-sgraph rel-edges-is by simp-all
sublocale sgraph \subseteq sgraph-rel V adj-relation
    rewrites ulgraph-rel.edge-set adj-relation =E
    using is-sgraph-rel edges-rel-is by simp-all
end
theory Undirected-Graphs-Root imports
    Undirected-Graph-Basics
    Undirected-Graph-Walks
    Connectivity
    Girth-Independence
    Graph-Triangles
    Bipartite-Graphs
    Graph-Theory-Relations
begin
end
```


References

[1] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Roth's Theorem on Arithmetic Progressions. Archive of Formal Proofs, Dec. 2021.
[2] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Szemerédi's Regularity Lemma. Archive of Formal Proofs, Nov. 2021.
[3] L. Hupel. Properties of random graphs - subgraph containment. Archive of Formal Proofs, February 2014. https://isa-afp.org/entries/Random Graph_Subgraph_Threshold.html, Formal proof development.
[4] L. Noschinski. Proof Pearl: A Probabilistic Proof for the GirthChromatic Number Theorem. In Interactive Theorem Proving. ITP 2012., volume 7406 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.
[5] L. Noschinski. A Graph Library for Isabelle. Mathematics in Computer Science, 9(1):23-39, Mar. 2015. http://link.springer.com/10.1007/s11786-014-0183-z.

