Partial Correctness of the Top-Down Solver

Yannick Stade, Sarah Tilscher*, Helmut Seidl

May 26, 2024

Abstract

The top-down solver (TD) is a local and generic fixpoint algorithm used for abstract interpretation. Being local means it only evaluates equations required for the computation of the value of some initially queried unknown, while being generic means that it is applicable for arbitrary equation systems where right-hand sides are considered as black-box functions. To avoid unnecessary evaluations of right-hand sides, the TD collects stable unknowns that need not be re-evaluated. This optimization requires the additional tracking of dependencies between unknowns and a non-local destabilization mechanism to assure the re-evaluation of previously stable unknowns that were affected by a changed value.

Due to the recursive evaluation strategy and the non-local destabilization mechanism of the TD, its correctness is non-obvious. To provide a formal proof of its partial correctness, we employ the insight that the TD can be considered an optimized version of a considerably simpler recursive fixpoint algorithm. Following this insight, we first prove the partial correctness of the simpler recursive fixpoint algorithm, the plain TD. Then, we transfer the statement of partial correctness to the TD by establishing the equivalence of both algorithms concerning both their termination behavior and their computed result.

[^0]
Contents

1 Introduction 3
2 Preliminaries 4
2.1 Strategy Trees 4
2.2 Auxiliary Lemmas for Default Maps 4
2.3 Functions on the Constraint System 6
2.4 Subtrees of Strategy Trees 6
2.5 Dependencies between Unknowns 7
2.6 Set Reach 8
2.7 Partial solution 9
3 The plain Top-Down Solver 10
3.1 Definition of the Solver Algorithm 10
3.2 Refinement of Auto-Generated Rules 11
3.3 Domain Lemmas 12
3.4 Case Rules 12
3.5 Predicate for Valid Input States 13
3.6 Partial Correctness Proofs 14
3.7 Termination of TD_plain for Stable Unknowns 15
3.8 Program Refinement for Code Generation 16
4 The Top-Down Solver 17
4.1 Definition of Destabilize and Proof of its Termination 18
4.2 Definition of the Solver Algorithm 19
4.3 Refinement of Auto-Generated Rules 21
4.4 Domain Lemmas 21
4.5 Case Rules 22
4.6 Description of the Effect of Destabilize 23
4.7 Predicate for Valid Input States 24
4.8 Auxiliary Lemmas for Partial Correctness Proofs 25
4.9 Preservation of the Invariant 26
4.10 TD_plain and TD Equivalence 26
4.11 Partial Correctness of the TD 29
4.12 Program Refinement for Code Generation 29
5 Example 31
5.1 Definition of the Domain 32
5.2 Definition of the Equation System 33
5.3 Solve the Equation System with TD_plain 33
5.4 Solve the Equation System with TD 34

1 Introduction

Static analysis of programs based on abstract interpretation requires efficient and reliable fixpoint engines [1]. In this work, we focus on the topdown solver (TD) [3]-a generic fixpoint algorithm that can handle arbitrary equation systems, even those with infinitely many equations. The latter is achieved by a property called local: When the TD is invoked to compute the value of some unknown, it recursively descends only into those unknowns on which the initially queried unknown depends. In order to avoid redundant re-evaluations of equations, the TD maintains a set of stable unknowns whose re-evaluation can be replaced by a simple lookup. Removing unknowns from the set of stable unknowns when they are possibly affected by changes to other unknowns, requires information about dependencies between unknowns. These dependencies need not be provided beforehand but are detected through self-observation on the fly. This makes the TD suitable also for equation systems where dependencies change dynamically during the solver's computation.
By removing the collecting of stable unknowns and dependency tracking, we obtain a stripped version of the TD, which we call the plain TD. The plain TD is capable of solving the same equation systems as the original TD and also shares the same termination behavior, but also re-evaluates those unknowns that have already been evaluated and whose value could just be looked up. In the first part of this work, we show the partial correctness of the plain TD. We use a mutual induction following its computation trace to establish invariants describing a valid solver state. From this, the partial correctness of the solver's result can be derived. The proof is described in Section 3.

We then recover the original TD from the plain TD and prove the equivalence between the two, i. e., that they share the same termination behavior and return the same result whenever they terminate. This way, the partial correctness statement from the plain TD is shown to carry over to the original TD. The essential part of this proof is twofold: First, we extend the invariants to describe the additional data structures for collecting stable unknowns and the dependencies between unknowns. Second, we show that the destabilization of an unknown preserves those invariants. The corresponding proofs are outlined in Section 4.
We conclude this work with an example in Section 5 showing the application of the TD to a simple equation system derived from a program for the analysis of must-be initialized variables.

2 Preliminaries

Before we define the TD in Isabelle/HOL and start with its partial correctness proof, we define all required data structures, formalize definitions and prove auxiliary lemmas.

```
theory Basics
    imports Main "HOL-Library.Finite_Map"
begin
unbundle lattice_syntax
```


2.1 Strategy Trees

The constraint system is a function mapping each unknown to a right-hand side to compute its value. We require the right-hand sides to be pure functionals [2]. This means that they may query the values of other unknowns and perform additional computations based on those, but they may, e.g., not spy on the solver's data structures. Such pure functions can be expressed as strategy trees.

```
datatype ('a, 'b) strategy_tree = Answer 'b |
    Query 'a "'b = ('a , 'b) strategy_tree"
```

The solver is defined based on a black-box function T describing the constraint system and under the assumption that the special element \perp exists among the values.

```
locale Solver =
    fixes D :: "'d :: bot"
        and T :: "'x = ('x , 'd) strategy_tree"
begin
```


2.2 Auxiliary Lemmas for Default Maps

The solver maintains a solver state to implement optimizations based on self-observation. Among the data structures for the solver state are maps that return a default value for non-existing keys. In the following, we define some helper functions and lemmas for these.

```
definition fmlookup_default where
    "fmlookup_default m d x = (case fmlookup m x of Some v = v | None = =
d)"
abbreviation slookup where
    "slookup infl x \equiv set (fmlookup_default infl [] x)"
definition mlup where
    "mlup \sigma x \equiv case \sigma x of Some v | v | None | \perp"
```

```
definition fminsert where
    "fminsert infl x y = fmupd x (y # (fmlookup_default infl [] x)) infl"
lemma set_fmlookup_default_cases:
    assumes "y \in slookup infl x"
    obtains (1) xs where "fmlookup infl x = Some xs" and "y \in set xs"
    <proof\rangle
lemma notin_fmlookup_default_cases:
    assumes "y & slookup infl x"
    obtains (1) xs where "fmlookup infl x = Some xs" and "y & set xs"
    | (2) "fmlookup infl x = None"
    <proof\rangle
lemma slookup_helper[simp]:
    assumes "fmlookup m x = Some ys"
        and "y \in set ys"
    shows "y \in slookup m x"
    <proof>
lemma lookup_implies_mlup:
    assumes "\sigma x = \sigma' x'"
    shows "mlup \sigmax = mlup \sigma' x'"
    <proof>
lemma fmlookup_fminsert:
    assumes "fmlookup_default infl [] x = xs"
    shows "fmlookup (fminsert infl x y) x = Some (y # xs)"
<proof\rangle
lemma fmlookup_fminsert':
    obtains xs ys
    where "fmlookup (fminsert infl x y) x = Some xs"
        and "fmlookup_default infl [] x = ys" and "xs = y # ys"
    <proof\rangle
lemma fmlookup_default_drop_set:
    "fmlookup_default (fmdrop_set A m) [] x = (if x & A then fmlookup_default
m [] x else [])"
    <proof\rangle
lemma mlup_eq_mupd_set:
    assumes "x & s"
    and "\forally\ins. mlup \sigma y = mlup \sigma' y"
shows "\forally\ins. mlup \sigma y = mlup ( }\mp@subsup{\sigma}{}{\prime}(\textrm{x}\mapsto\textrm{xd})) y
<proof>
```


2.3 Functions on the Constraint System

The function rhs_length computes the length of a specific path in the strategy tree defined by a value assignment for unknowns σ.

```
function (domintros) rhs_length where
    "rhs_length (Answer d) _ = 0" |
    "rhs_length (Query x f) \sigma=1 + rhs_length (f (mlup \sigma x)) \sigma"
    <proof\rangle
termination rhs_length
<proof\rangle
```

The function traverse_rhs traverses a strategy tree and determines the answer when choosing the path through the strategy tree based on a given unknown-value mapping σ

```
function (domintros) traverse_rhs where
    "traverse_rhs (Answer d) _ = d" |
    "traverse_rhs (Query x f) \sigma=traverse_rhs (f (mlup \sigma x)) \sigma"
    <proof\rangle
termination traverse_rhs
    <proof\rangle
```

The function eq evaluates the right-hand side of an unknown x with an unknown-value mapping σ.

```
definition eq :: "'x }=>\mathrm{ ('x, 'd) map }=>\mathrm{ 'd" where
    "eq x \sigma = traverse_rhs (T x) \sigma"
declare eq_def[simp]
```


2.4 Subtrees of Strategy Trees

We define the set of subtrees of a strategy tree for a specific path (defined through σ).

```
inductive__set subt_aux ::
    "('x, 'd) map = ('x, 'd) strategy_tree # ('x, 'd) strategy_tree
set" for \sigma t where
    base: "t \in subt_aux \sigma t"
| step: "t' }\in\mathrm{ subt_aux }\sigmat\Longrightarrowt'= Query y g \Longrightarrow (g (mlup \sigma y)) \in subt_aux
\sigma t"
definition subt where
    "subt \sigma x = subt_aux \sigma (T x)"
lemma subt_of_answer_singleton:
    shows "subt_aux \sigma (Answer d) = {Answer d}"
<proof\rangle
```

```
lemma subt_transitive:
    assumes "t' \in subt_aux \sigma t"
    shows "subt_aux \sigma t'\subseteq subt_aux \sigma t"
\langleproof\rangle
lemma subt_unfold:
    shows "subt_aux \sigma (Query x f) = insert (Query x f) (subt_aux \sigma (f (mlup
\sigma x)))"
\langleproof\rangle
```


2.5 Dependencies between Unknowns

The set $\operatorname{dep} \sigma \mathrm{x}$ collects all unknowns occuring in the right-hand side of x when traversing it with σ.

```
function dep_aux where
    "dep_aux \sigma (Answer d) = {}"
| "dep_aux \sigma (Query y g) = insert y (dep_aux \sigma (g (mlup \sigma y)))"
    <proof\rangle
termination dep_aux
    <proof>
definition dep where
    "dep \sigma x = dep_aux \sigma (T x)"
lemma dep_aux_eq:
    assumes "\forally \in dep_aux \sigma t. mlup \sigma y = mlup \sigma' y"
    shows "dep_aux \sigma t = dep_aux \sigma' t"
    <proof\rangle
lemmas dep_eq = dep_aux_eq[of \sigma "T x" \sigma' for }\sigma\times\mp@subsup{|}{}{\prime
lemma subt_implies_dep:
    assumes "Query y g \in subt_aux \sigma t"
    shows "y \in dep_aux \sigma t"
    <proof>
lemma solution_sufficient:
    assumes "\forally\in\operatorname{dep}\sigma\textrm{x}.mlup \sigma y = mlup \sigma' y"
    shows "eq x }\sigma=\mp@code{eq x }\mp@subsup{\sigma}{}{\prime\prime
\langleproof\rangle
corollary eq_mupd_no_dep:
    assumes "x & dep \sigma y"
    shows "eq y }\sigma=\mathrm{ eq y ( }\sigma(\textrm{x}\mapsto\textrm{xd}))
    <proof\rangle
```


2.6 Set Reach

Let reach be the set of all unknowns contributing to x (for a given σ). This corresponds to the set of all unknowns on which x transitively depends on when evaluating the necessary right-hand sides with σ.

```
inductive_set reach for \sigma x where
    base: "x \in reach \sigma x"
| step: "y \in reach \sigma x m z \in dep \sigma y # z f reach \sigma x"
```

The solver stops descending when it encounters an unknown whose evaluation it has already started (i.e. an unknown in c). Therefore, reach might collect contributing unknowns which the solver did not descend into. For a predicate, that relates more closely to the solver's history, we define the set reach_cap. Similarly to reach it collects the unknowns on which an unknown transitively depends, but only until an unknown in c is reached.

```
inductive__set reach_cap_tree for \sigma c t where
    base: "x \in dep_aux \sigma t \Longrightarrow x \in reach_cap_tree \sigma c t"
| step: "y f reach_cap_tree \sigma ct \ y }\ddaggerc\Longrightarrowz|\operatorname{dep}\sigmay\Longrightarrowz
reach_cap_tree \sigma c t"
abbreviation "reach_cap \sigma c x
    \equiv insert x (if x f c then {} else reach_cap_tree \sigma (insert x c) (T
x))"
lemma reach_cap_tree_answer_empty[simp]:
    "reach_cap_tree \sigma c (Answer d) = {}"
<proof\rangle
lemma dep_subset_reach_cap_tree:
    "dep_aux \sigma' t\subseteqreach_cap_tree \sigma' c t"
<proof\rangle
lemma reach_cap_tree_subset:
    shows "reach_cap_tree \sigma c t \subseteq reach_cap_tree \sigma (c - {x}) t"
<proof>
lemma reach_empty_capped:
    shows "reach \sigma x = insert x (reach_cap_tree \sigma {x} (T x))"
<proof\rangle
lemma dep_aux_implies_reach_cap_tree:
    assumes "y &c"
            and "y \in dep_aux \sigma t"
    shows "reach_cap_tree \sigma c (T y) \subseteq reach_cap_tree \sigma c t"
<proof\rangle
lemma reach_cap_tree_simp:
    shows "reach_cap_tree \sigma ct
```

```
    = dep_aux \sigma t \cup (\bigcup\xi\indep_aux \sigma t - c. reach_cap_tree \sigma (insert \xi
c) (T \xi))"
\langleproof\rangle
lemma reach_cap_tree_step:
    assumes "mlup \sigma y = yd"
    shows "reach_cap_tree \sigma c (Query y g) = insert y (if y }\inc\mathrm{ then {}
        else reach_cap_tree \sigma (insert y c) (T y)) \cup reach_cap_tree \sigma c (g
yd)"
    <proof\rangle
lemma reach_cap_tree_eq:
    assumes "\forallx\inreach_cap_tree \sigma c t. mlup \sigma x = mlup \sigma' x"
    shows "reach_cap_tree \sigma ct = reach_cap_tree \sigma'c t"
<proof\rangle
lemma reach_cap_tree_simp2:
    shows "insert x (if x f c then {} else reach_cap_tree \sigma c (T x)) =
                insert x (if x f c then {} else reach_cap_tree \sigma (insert x c)
(T x))"
<proof\rangle
lemma dep_closed_implies_reach_cap_tree_closed:
    assumes "x \in s"
        and "\forall\xi\ins - (c - {x}). dep \sigma' \xi\subseteqs"
    shows "reach_cap \sigma' (c - {x}) x \subseteq s"
<proof\rangle
lemma reach_cap_tree_subset2:
    assumes "mlup \sigma y = yd"
    shows "reach_cap_tree \sigma c (g yd) \subseteq reach_cap_tree \sigma c (Query y g)"
    <proof\rangle
lemma reach_cap_tree_subset_subt:
    assumes " }t\mathrm{ ' }\in\mathrm{ subt_aux }\sigma\mathrm{ t"
    shows "reach_cap_tree \sigma ct'\subseteqreach_cap_tree \sigma c t"
    <proof>
lemma reach_cap_tree_singleton:
    assumes "reach_cap_tree \sigma (insert x c) t \subseteq{x}"
    obtains (Answer) d where "t = Answer d"
    | (Query) f where "t = Query x f"
        and "dep_aux \sigma t = {x}"
    <proof\rangle
```


2.7 Partial solution

Finally, we define an unknown-to-value mapping σ to be a partial solution over a set of unknowns vars if for every unknown in vars, the value obtained
from an evaluation of its right-hand side function eq x with σ matches the value stored in σ.

```
abbreviation part_solution where
    "part_solution \sigma vars }\equiv(\forall\textrm{x}\in\operatorname{vars. eq x }\sigma=mlup \sigma x)" 
lemma part_solution_coinciding_sigma_called:
    assumes "part_solution \sigma (s - c)"
        and "\forallx 部. mlup \sigmax=mlup \sigma' x"
        and "\forallx 新 - c. dep \sigma x\subseteqs"
    shows "part_solution \sigma' (s - c)"
    <proof\rangle
end
end
```


3 The plain Top-Down Solver

TD__plain is a simplified version of the original TD which only keeps track of already called unknowns to avoid infinite descend in case of recursive dependencies. In contrast to the TD, it does, however, not track stable unknowns and the dependencies between unknowns. Instead, it re-iterates every unknown when queried again.

```
theory TD_plain
    imports Basics
begin
locale TD_plain = Solver D T
    for D :: "'d :: bot"
        and T :: "'x = ('x, 'd) strategy_tree"
begin
```


3.1 Definition of the Solver Algorithm

The recursively descending solver algorithm is defined with three mutual recursive functions. Initially, the function iterate is called from the top-level solve function for the requested unknown. iterate keeps evaluating the right-hand side by calling the function eval and updates the value mapping σ until the value stabilizes. The function eval walks through a strategy tree and chooses the path based on the result for queried unknowns. These queries are delegated to the third mutual recursive function query which checks that the unknown is not already being evaluated and iterates it otherwise. The function keyword is used for the definition, since, without further assumptions, the solver may not terminate.
function (domintros)

```
        query :: "'x = 'x = 'x set }=>\mathrm{ ('x, 'd) map }=>\mathrm{ ( 'd }\times('x, 'd) map"
and
    iterate :: "'x # 'x set }=>\mathrm{ ('x, 'd) map # 'd }\times\mathrm{ ('x, 'd) map" and
        eval :: "'x }=>\mathrm{ ('x, 'd) strategy_tree }=>\mathrm{ ' 'x set }=>\mathrm{ ('x, 'd) map }
'd x ('x, 'd) map" where
    "query x y c \sigma=(
        if y \in c then
            (mlup \sigma y, \sigma)
        else
            iterate y (insert y c) \sigma)"
| "iterate x c \sigma = (
        let (d_new, \sigma) = eval x (T x) c \sigma in
        if d_new = mlup \sigma x then
            (d_new, \sigma)
        else
            iterate x c (\sigma(x \mapsto d_new)))"
| "eval x t c \sigma = (case t of
            Answer d => (d, \sigma)
        | Query y g m (let (yd, \sigma) = query x y c \sigma in eval x (g yd) c \sigma))"
    <proof>
definition solve :: "'x = ('x, 'd) map" where
    "solve x = (let (_, \sigma) = iterate x {x} Map.empty in \sigma)"
definition query_dom where
    "query_dom x y c \sigma = query_iterate_eval_dom (Inl (x, y, c, \sigma))"
declare query_dom_def [simp]
definition iterate_dom where
    "iterate_dom x c \sigma = query_iterate_eval_dom (Inr (Inl (x, c, \sigma)))"
declare iterate_dom_def [simp]
definition eval_dom where
    "eval_dom x t c \sigma = query_iterate_eval_dom (Inr (Inr (x, t, c, \sigma)))"
declare eval_dom_def [simp]
definition solve_dom where
    "solve_dom x = iterate_dom x {x} Map.empty"
lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def
```


3.2 Refinement of Auto-Generated Rules

```
The auto-generated pinduct rule contains a redundant assumption. This lemma removes this redundant assumption for easier instantiation and assigns each case a comprehensible name.
```

```
lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
```

lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
Eval]
Eval]
= query_iterate_eval.pinduct(1)[
= query_iterate_eval.pinduct(1)[
folded query_dom_def iterate_dom_def eval_dom_def,
folded query_dom_def iterate_dom_def eval_dom_def,
of x y c \sigma for x y c \sigma

```
    of x y c \sigma for x y c \sigma
```

```
]
query_iterate_eval.pinduct(2)[
    folded query_dom_def iterate_dom_def eval_dom_def,
    of x c \sigma for x c \sigma
]
query_iterate_eval.pinduct(3)[
    folded query_dom_def iterate_dom_def eval_dom_def,
    of x t c for x t c \sigma
]
```

lemmas iterate_pinduct[consumes 1, case_names Iterate]
= query_iterate_eval_pinduct(2) [where $? P=" \lambda \mathrm{x}$ y $c \sigma$. True" and $? R=" \lambda \mathrm{x}$
t c σ. True",
simplified (no_asm_use), folded query_dom_def iterate_dom_def eval_dom_def]
declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

3.3 Domain Lemmas

```
lemma dom_backwards_pinduct:
    shows "query_dom x y c \sigma
        y #c C iterate_dom y (insert y c) \sigma"
    and "iterate_dom x c \sigma
        "(eval_dom x (T x) c \sigma^
            (eval x (T x) c \sigma = (xd_new, \sigma')
                            mlup \sigma' x = xd_old \longrightarrow xd_new }=|\mathrm{ xd_old }
                iterate_dom x c ( }\mp@subsup{\sigma}{}{\prime}(\textrm{x}\mapsto\textrm{xd_new))))"
    and "eval_dom x (Query y g) c \sigma
        \Longrightarrow(query_dom x y c \sigma ^(query x y c \sigma = (yd, \sigma') }\longrightarrow\mathrm{ eval_dom x
(g yd) c \sigma'))"
<proof\rangle
```


3.4 Case Rules

```
lemma iterate_continue_fixpoint_cases[consumes 3]:
    assumes "iterate_dom x c \sigma"
        and "iterate x c \sigma = (xd, \sigma')"
        and "x \in c"
    obtains (Fixpoint) "eval_dom x (T x) c \sigma"
        and "eval x (T x) c \sigma = (xd, \sigma')"
        and "mlup \sigma' x = xd"
    | (Continue) \sigma1 xd_new
    where "eval_dom x (T x) c \sigma"
        and "eval x (T x) c \sigma = (xd_new, \sigma1)"
        and "mlup \sigma1 x f= xd_new"
        and "iterate_dom x c (\sigma1(x \mapsto xd_new))"
        and "iterate x c (\sigma1(x\mapsto xd_new)) = (xd, \sigma')"
\langleproof\rangle
```

```
lemma iterate_fmlookup:
    assumes "iterate_dom x c \sigma"
        and "iterate x c \sigma = (xd, \sigma')"
        and "x \in c"
    shows "mlup \sigma' x = xd"
    <proof>
corollary query_fmlookup:
    assumes "query_dom x y c \sigma"
        and "query x y c \sigma = (yd, \sigma')"
    shows "mlup \sigma' y = yd"
    \langleproof\rangle
lemma query_iterate_lookup_cases [consumes 2]:
    assumes "query_dom x y c \sigma"
        and "query x y c \sigma = (yd, \sigma')"
    obtains (Iterate)
            "iterate_dom y (insert y c) \sigma"
        and "iterate y (insert y c) \sigma = (yd, \sigma')"
        and "mlup \sigma' y = yd"
        and "y & c"
    | (Lookup) "mlup \sigma y = yd"
        and "\sigma=\sigma""
        and "y \inc"
    \langleproof\rangle
lemma eval_query_answer_cases [consumes 2]:
    assumes "eval_dom x t c \sigma"
        and "eval x t c \sigma=(d, \sigma')"
    obtains (Query) y g yd \sigma1
    where "t = Query y g"
        and "query_dom x y c \sigma"
        and "query x y c \sigma = (yd, \sigma1)"
        and "eval_dom x (g yd) c \sigma1"
        and "eval x (g yd) c \sigma1 = (d, \sigma')"
        and "mlup \sigma1 y = yd"
    | (Answer) "t = Answer d"
        and "\sigma = \sigma'"
    <proof\rangle
```


3.5 Predicate for Valid Input States

We define a predicate for valid input solver states. c is the set of called unknowns, i.e., the unknowns currently being evaluated and σ is an unknown-to-value mapping. Both are data structures maintained by the solver. In contrast, the parameter s describing a set of unknowns, for which a partial solution has already been computed or which are currently being evaluated,
is introduced for the proof. Although it is similar to the set stabl maintained by the original TD, it is only an under-approximation of it. A valid solver state is one, where σ is a partial solution for all truly stable unknowns, i.e., unknowns in $s-c$, and where these truly stable unknowns only depend on unknowns which are also truly stable or currently being evaluated. A substantial part of the partial correctness proof is to show that this property about the solver's state is preserved during a solver's run.

```
definition invariant where
    "invariant s c \sigma\equiv(\forall\xi\ins - c. dep \sigma \xi\subseteqs) ^ part_solution \sigma (s -
c)"
lemma invariant_simp:
    assumes "x \in c"
        and "invariant s (c - {x}) \sigma"
    shows "invariant (insert x s) c \sigma"
    <proof>
lemma invariant_continue:
    assumes "x & s"
        and "invariant s c \sigma"
        and "\forally\ins. mlup \sigma y = mlup \sigma1 y"
    shows "invariant s c ( }\sigma1(\textrm{x}\mapsto\textrm{xd}))
<proof\rangle
```


3.6 Partial Correctness Proofs

```
lemma x_not_stable:
    assumes "eq x \sigma f=mlup \sigma x"
        and "part_solution \sigma s"
    shows "x # s"
    <proof\rangle
```

With the following lemma we establish, that whenever the solver is called for an unknown in s and where the solver state and s fulfill the invariant, the output value mapping is unchanged compared to the input value mapping.

```
lemma already_solution:
    shows "query_dom x y c \sigma
        "query x y c \sigma = (yd, \sigma')
        y}\in
         invariant s c \sigma
        \Longrightarrow \sigma = \sigma , " '
        and "iterate_dom x c \sigma
        "iterate x c \sigma = (xd, \sigma')
        # x G c
        # x \in s
        # invariant s (c - {x}) \sigma
        \Longrightarrow= 生"
        and "eval_dom x t c \sigma
```

```
    \(\Longrightarrow\) eval \(x t c \sigma=\left(x d, \sigma^{\prime}\right)\)
    \(\Longrightarrow d e p \_a u x \sigma t \subseteq s\)
    \(\Longrightarrow\) invariant s c \(\sigma\)
    \(\Longrightarrow\) traverse_rhs \(t \sigma^{\prime}=x d \wedge \sigma=\sigma^{\prime \prime}\)
\(\langle p r o o f\rangle\)
```

Furthermore, we show that whenever the solver is called with a valid solver state, the valid solver state invariant also holds for its output state and the set of stable unknowns increases by the set reach_cap of the current unknown.

```
lemma partial_correctness_ind:
    shows "query_dom x y c \sigma
        \Longrightarrowquery x y c \sigma = (yd, \sigma')
         invariant s c \sigma
        " invariant (s \cup reach_cap \sigma' c y) c \sigma'
        \wedge ( }\forall\xi\in\textrm{s}.\operatorname{mlup}\sigma\xi=mlup \sigma' \xi)"
    and "iterate_dom x c \sigma
    "iterate x c \sigma = (xd, \sigma')
    "x}\in
    \Longrightarrow ~ i n v a r i a n t ~ s ~ ( c ~ - ~ \{ x \} ) ~ \sigma ~
    \Longrightarrow invariant (s \cup (reach_cap \sigma' (c - {x}) x)) (c - {x}) \sigma'
        \wedge }\forall\xi\ins.mlup \sigma \xi=mlup \sigma' \xi)"
    and "eval_dom x t c \sigma
    eval x t c \sigma = (xd, \sigma')
    lnvariant s c \sigma
    " invariant (s U reach_cap_tree \sigma' c t) c \sigma'
        \wedge (\forall\xi\ins.mlup \sigma \xi= mlup \sigma' \xi)
        ^ traverse_rhs t \sigma' = xd"
<proof\rangle
```

Since the initial solver state fulfills the valid solver state predicate, we can conclude from the above lemma, that the solve function returns a partial solution for the queried unknown x and all unknowns on which it transitively depends.
corollary partial_correctness:
assumes "solve_dom x"
and "solve $x=\sigma$ "
shows "part_solution σ (reach σ x)"
$\langle p r o o f\rangle$

3.7 Termination of TD__plain for Stable Unknowns

In the equivalence proof of the TD and the TD_plain, we need to show that when the TD trivially terminates because the queried unknown is already stable and its value is only looked up, the evaluation of this unknown x with TD_plain also terminates. For this, we exploit that the set of stable unknowns is always finite during a terminating solver's run and provide the following lemma:

```
lemma td1_terminates_for_stabl:
    assumes "x \in s"
        and "invariant s (c - {x}) \sigma"
        and "mlup \sigma x = xd"
        and "finite s"
        and "x \in c"
    shows "iterate_dom x c \sigma" and "iterate x c \sigma = (xd, \sigma)"
<proof\rangle
```


3.8 Program Refinement for Code Generation

For code generation, we define a refined version of the solver function using the partial_function keyword with the option attribute.

```
datatype ('a,'b) state = Q "'a }\times 'a < 'a set > ('a, 'b) map"
    | I "'a x 'a set }\times('a, 'b) map" | E "'a × ('a,'b) strategy_tre
\times 'a set }\times('a,'b) map"
partial_function (option)
    solve_rec_c :: "('x, 'd) state # ('d x ('x, 'd) map) option"
    where
        "solve_rec_c s = (case s of Q (x, y, c, \sigma) =>
        if y \in c then
            Some (mlup \sigma y, \sigma)
        else
            solve_rec_c (I (y, (insert y c), \sigma))
        | I (x, c, \sigma) =>
        Option.bind (solve_rec_c (E (x, (T x), c, \sigma))) (\lambda(d_new, \sigma).
        if d_new = mlup \sigma x then
            Some (d_new, \sigma)
                else
                solve_rec_c (I (x, c, (\sigma(x \mapsto d_new)))))
        | E (x, t, c, \sigma) =>
            (case t of
                        Answer d => Some (d, \sigma)
            | Query y g m Option.bind (solve_rec_c (Q (x, y, c, \sigma)))
                (\lambda(yd, \sigma). solve_rec_c (E (x, (g yd), c, \sigma)))))"
declare solve_rec_c.simps[simp,code]
definition solve_rec_c_dom where "solve_rec_c_dom p \equiv\exists |. solve_rec_c
p = Some \sigma"
definition solve_c :: "'x = (('x, 'd) map) option" where
    "solve_c x = Option.bind (solve_rec_c (I (x, {x}, Map.empty))) (\lambda(_,
\sigma). Some \sigma)"
definition solve_c_dom :: "'x = bool" where "solve_c_dom x \equiv \exists | . solve_c
x = Some }\mp@subsup{\sigma}{}{\prime\prime
```

We proof the equivalence between the refined solver function for code generation and the initial version used for the partial correctness proof.

```
lemma query_iterate_eval_solve_rec_c_equiv:
    shows "query_dom x y c \sigma\Longrightarrow solve_rec_c_dom (Q (x,y,c,\sigma))
        ^ query x y c \sigma = the (solve_rec_c (Q (x,y,c,\sigma)))"
    and "iterate_dom x c \sigma \Longrightarrow solve_rec_c_dom (I (x,c,\sigma))
        ^ iterate x c \sigma = the (solve_rec_c (I (x,c,\sigma)))"
    and "eval_dom x t c \sigma\Longrightarrow solve_rec_c_dom (E (x,t,c,\sigma))
        ^ eval x t c \sigma = the (solve_rec_c (E (x,t,c,\sigma)))"
\langleproof\rangle
lemma solve_rec_c_query_iterate_eval_equiv:
    shows "solve_rec_c s = Some r \Longrightarrow (case s of
        Q (x,y,c,\sigma) => query_dom x y c \sigma ^ query x y c \sigma=r
        | I (x,c,\sigma) => iterate_dom x c \sigma ^ iterate x c \sigma = r
        | E (x,t,c,\sigma) => eval_dom x t c \sigma^ eval x t c \sigma = r)"
<proof\rangle
theorem term_equivalence: "solve_dom x \longleftrightarrow solve_c_dom x"
    <proof\rangle
theorem value_equivalence:
    "solve_dom x \Longrightarrow \exists |. solve_c x = Some \sigma ^ solve x = \sigma"
<proof\rangle
```

Then, we can define the code equation for solve based on the refined solver program solve_c.

```
lemma solve_code_equation [code]:
    "solve x = (case solve_c x of Some r m r
    | None = Code.abort (String.implode ''Input not in domain'') ( }\mp@subsup{\lambda}{_}{\prime}. solv
x))"
\langleproof\rangle
```

end

To setup the code generation for the solver locale we use a dedicated rewrite definition.
global_interpretation TD_plain_Interp: TD_plain $D T$ for $D T$
defines TD_plain_Interp_solve = TD_plain_Interp.solve
$\langle p r o o f\rangle$
end

4 The Top-Down Solver

In this theory we proof the partial correctness of the original TD by establishing its equivalence with the TD_plain. Compared to the TD_plain, it
additionally tracks a set of currently stable unknowns stabl, and a map infl collecting for each unknown x a list of unknowns influenced by it. This allows for the optimization that skips the re-evaluation of unknowns which are already stable. It does, however, also require a destabilization mechanism triggering re-evaluation of all unknowns possibly affected by an unknown whose value has changed.

```
theory TD_equiv
    imports Main "HOL-Library.Finite_Map" Basics TD_plain
begin
declare fun_upd_apply[simp del]
locale TD = Solver D T
    for D :: "'d::bot"
        and T :: "'x }=>\mathrm{ ('x, 'd) strategy_tree"
begin
```


4.1 Definition of Destabilize and Proof of its Termination

The destabilization function is called by the solver before continuing iteration because the value of an unknown changed. In this case, also the values of unknowns whose last evaluation was based on the outdated value, need to be re-evaluated again. This re-evaluation of influenced unknowns is enforced by following the entries for directly influenced unknowns in the map infl and removing all transitively influenced unknowns from stabl. This way, influenced unknowns are not re-evaluated immediately, but instead will be re-evaluated whenever they are queried again.

```
function (domintros)
destab_iter :: "'x list }=>\mathrm{ ('x, 'x list) fmap }=>\mathrm{ ' 'x set }=>\mathrm{ ('x, 'x list)
fmap X 'x set"
and destab :: "'x # ('x, 'x list) fmap }=>\mathrm{ ' 'x set }=>\mathrm{ ('x, 'x list) fmap
x 'x set" where
    "destab_iter [] infl stabl = (infl, stabl)"
| "destab_iter (y # ys) infl stabl = (
        let (infl, stabl) = destab y infl (stabl - {y}) in
        destab_iter ys infl stabl)"
| "destab x infl stabl = destab_iter (fmlookup_default infl [] x) (fmdrop
x infl) stabl"
    \langleproof>
definition destab_iter_dom where
    "destab_iter_dom ls infl stabl = destab_iter_destab_dom (Inl (ls, infl,
stabl))"
declare destab_iter_dom_def[simp]
definition destab_dom where
    "destab_dom y infl stabl = destab_iter_destab_dom (Inr (y, infl, stabl))"
```

```
declare destab_dom_def[simp]
lemma destab_domintros:
    "destab_iter_dom [] infl stabl"
    "destab_dom y infl (stabl - {y}) \Longrightarrow
        destab y infl (stabl - {y}) = (infl', stabl') \Longrightarrow
        destab_iter_dom ys infl' stabl' \Longrightarrow
        destab_iter_dom (y # ys) infl stabl"
    "destab_iter_dom (fmlookup_default infl [] x) (fmdrop x infl) stabl
"destab_dom x infl stabl"
    <proof\rangle
definition count_non_empty :: "('a, 'b list) fmap # nat" where
    "count_non_empty m = fcard (ffilter ((#) [] ○ snd) (fset_of_fmap m))"
lemma count_non_empty_dec_fmdrop:
    assumes "fmlookup_default m [] x \not= []"
    shows "Suc (count_non_empty (fmdrop x m)) = count_non_empty m"
<proof\rangle
lemma count_non_empty_eq_fmdrop:
    assumes "fmlookup_default m [] x = []"
    shows "count_non_empty (fmdrop x m) = count_non_empty m"
<proof\rangle
termination
\langleproof\rangle
```


4.2 Definition of the Solver Algorithm

Apart from passing the additional arguments for the solver state, the iterate function contains, compared to the TD__plain, an additional check to skip iteration of already stable unknowns. Furthermore, the helper function destabilize is called whenever the newly evalauated value of an unknown changed compared to the value tracked in σ. Lastly, a dependency is recorded whenever returning from a query call for unknown x within the evaluation of right-hand side of unknown y.

function (domintros)

query : : "' $x \Rightarrow$ ' $x \Rightarrow$ ' x set \Rightarrow (' $x,{ }^{\prime} x$ list) fmap \Rightarrow ' x set \Rightarrow (' x,
'd) map

$$
\Rightarrow \text { 'd } \times(' x, \text { ' } x \text { list) } f m a p \times \text { 'x set } \times(\prime x, \quad \text { 'd) map" and }
$$ iterate : : "'x \Rightarrow 'x set \Rightarrow ('x, 'x list) fmap \Rightarrow ' x set \Rightarrow ('x, 'd) map

\Rightarrow 'd $\times\left({ }^{\prime} x,{ }^{\prime} x\right.$ list) fmap \times ' x set $\times\left(' x,{ }^{\prime} d\right)$ map" and
eval :: "' $x \Rightarrow$ (' $x,{ }^{\prime} d$) strategy_tree \Rightarrow ' x set \Rightarrow (' x, ' x list)
fmap \Rightarrow 'x set
\Rightarrow ('x, 'd) map \Rightarrow 'd $\times(' x$, ' x list) $f m a p ~ \times ~ ' x$ set \times
('x, 'd) map" where

```
    "query y x c infl stabl \sigma=(
    let (xd, infl, stabl, \sigma) =
        if }x\inc\mathrm{ then
            (mlup \sigma x, infl, stabl, \sigma)
            else
                    iterate x (insert x c) infl stabl \sigma
    in (xd, fminsert infl x y, stabl, \sigma))"
| "iterate x c infl stabl \sigma = (
        if x & stabl then
            let (d_new, infl, stabl, \sigma) = eval x (T x) c infl (insert x stabl)
\sigma ~ i n
            if mlup \sigma x = d_new then
                    (d_new, infl, stabl, \sigma)
            else
                let (infl, stabl) = destab x infl stabl in
                iterate x c infl stabl ( }\sigma(\textrm{x}\mapsto\mp@subsup{d}{_}{\prime}new)
    else
            (mlup \sigma x, infl, stabl, \sigma))"
| "eval x t c infl stabl \sigma= (case t of
            Answer d # (d, infl, stabl, \sigma)
            | Query y g = (
                let (yd, infl, stabl, \sigma) = query x y c infl stabl \sigma in eval x
(g yd) c infl stabl \sigma))"
    <proof>
definition solve :: "'x = 'x set }\times\mathrm{ ('x, 'd) map" where
    "solve x = (let (_, _, stabl, \sigma) = iterate x {x} fmempty {} Map.empty
in (stabl, \sigma))"
definition query_dom where
    "query_dom x y c infl stabl \sigma = query_iterate_eval_dom (Inl (x, y, c,
infl, stabl, \sigma))"
declare query_dom_def [simp]
definition iterate_dom where
    "iterate_dom x c infl stabl \sigma = query_iterate_eval_dom (Inr (Inl (x,
c, infl, stabl, \sigma)))"
declare iterate_dom_def [simp]
definition eval_dom where
    "eval_dom x t c infl stabl \sigma = query_iterate_eval_dom (Inr (Inr (x,
t, c, infl, stabl, \sigma)))"
declare eval_dom_def [simp]
definition solve_dom where
    "solve_dom x = iterate_dom x {x} fmempty {} Map.empty"
lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def
```


4.3 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This lemma removes this redundant assumption such that the rule is easier to instantiate and gives comprehensible names to the cases.

```
lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
Eval]
    = query_iterate_eval.pinduct(1)[
        folded query_dom_def iterate_dom_def eval_dom_def,
        of x y c infl stabl \sigma for x y c infl stabl }
    ]
    query_iterate_eval.pinduct(2)[
        folded query_dom_def iterate_dom_def eval_dom_def,
    of x c infl stabl \sigma for x c infl stabl }
    ]
    query_iterate_eval.pinduct(3)[
    folded query_dom_def iterate_dom_def eval_dom_def,
    of x t c infl stabl \sigma for x t c infl stabl \sigma
    ]
lemmas iterate_pinduct[consumes 1, case_names Iterate]
    = query_iterate_eval_pinduct(2)[where ?P="\lambdax y c infl stabl \sigma. True"
    and ?R="\lambdax t c infl stabl \sigma. True", simplified (no_asm_use),
    folded query_dom_def iterate_dom_def eval_dom_def]
declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]
```


4.4 Domain Lemmas

```
lemma dom_backwards_pinduct:
shows "query_dom x y c infl stabl \(\sigma\) \(\Longrightarrow \mathrm{y} \notin c \Longrightarrow\) iterate_dom y (insert y c) infl stabl \(\sigma^{\prime \prime}\)
and "iterate_dom x c infl stabl \(\sigma\)
\(\Longrightarrow \mathrm{x} \notin\) stabl \(\Longrightarrow\) (eval_dom x ( \(T \mathrm{x}\) ) \(c\) infl (insert x stabl) \(\sigma \wedge\) ((xd_new, infl1, stabl1, \(\sigma^{\prime}\) ) = eval \(x(T \mathrm{x}) \mathrm{c}\) infl (insert x stabl)
\(\sigma\)
```

```
                Mlup \sigma' x \not= xd_new \longrightarrow (infl2, stabl2) = destab x infl1
```

 Mlup \sigma' x \not= xd_new \longrightarrow (infl2, stabl2) = destab x infl1
 stabl1 \longrightarrow
stabl1 \longrightarrow
iterate_dom x c infl2 stabl2 (\sigma'(x \mapsto xd_new))))"
iterate_dom x c infl2 stabl2 (\sigma'(x \mapsto xd_new))))"
and "eval_dom x (Query y g) c infl stabl \sigma
and "eval_dom x (Query y g) c infl stabl \sigma
"(query_dom x y c infl stabl \sigma ^
"(query_dom x y c infl stabl \sigma ^
((yd, infl', stabl', \sigma') = query x y c infl stabl \sigma \longrightarrow
((yd, infl', stabl', \sigma') = query x y c infl stabl \sigma \longrightarrow
eval_dom x (g yd) c infl' stabl' 的))"
eval_dom x (g yd) c infl' stabl' 的))"
<proof\rangle

```
<proof\rangle
```


4.5 Case Rules

```
lemma iterate_continue_fixpoint_cases[consumes 3]:
    assumes "iterate_dom x c infl stabl \sigma"
        and "(xd, infl', stabl', \sigma') = iterate x c infl stabl \sigma"
        and "x \in c"
    obtains (Stable) "infl' = infl"
        and "stabl' = stabl"
        and " }\sigma\mathrm{ ' = }\sigma\mathrm{ "
        and "mlup \sigma x = xd"
        and "x \in stabl"
    | (Fixpoint) "eval_dom x (T x) c infl (insert x stabl) \sigma"
        and "(xd, infl', stabl', \sigma') = eval x (T x) c infl (insert x stabl)
\sigma"
        and "mlup \sigma' x = xd"
        and "x & stabl"
    | (Continue) stabl1 infl1 \sigma1 xd_new stabl2 infl2
    where "eval_dom x (T x) c infl (insert x stabl) \sigma"
        and "(xd_new, infl1, stabl1, \sigma1) = eval x (T x) c infl (insert x
stabl) \sigma"
        and "mlup \sigma1 x f xd_new"
        and "(inf12, stabl2) = destab x infl1 stabl1"
        and "iterate_dom x c infl2 stabl2 ( }\sigma1(\textrm{x}\mapsto \d_new))"
        and "(xd, infl', stabl', \sigma') = iterate x c infl2 stabl2 ( }\sigma1(\textrm{x}
xd new))"
    and "x & stabl"
\langleproof\rangle
lemma iterate_fmlookup:
    assumes "iterate_dom x c infl stabl \sigma"
        and "(xd, infl', stabl', \sigma') = iterate x c infl stabl \sigma"
        and "x 
    shows "mlup \sigma' x = xd"
    <proof\rangle
corollary query_fmlookup:
    assumes "query_dom y x c infl stabl \sigma"
        and "(xd, infl', stabl', \sigma') = query y x c infl stabl \sigma"
    shows "mlup \sigma' x = xd"
    <proof\rangle
lemma query_iterate_lookup_cases [consumes 2]:
    assumes "query_dom y x c infl stabl \sigma"
        and "(xd, infl', stabl', \sigma') = query y x c infl stabl \sigma"
    obtains (Iterate) infl1
    where "iterate_dom x (insert x c) infl stabl \sigma"
        and "(xd, infl1, stabl', \sigma') = iterate x (insert x c) infl stabl
\sigma"
        and "infl' = fminsert infl1 x y"
        and "mlup \sigma' x = xd"
```

and " $x \notin c$ "
| (Lookup) "mlup $\sigma x=x d "$
and "infl' = fminsert infl x y"
and "stabl" = stabl"
and " σ ' = σ "
and "x $\in c$ "
$\langle p r o o f\rangle$

```
lemma eval_query_answer_cases [consumes 2]:
    assumes "eval_dom x t c infl stabl \sigma"
        and "(xd, infl', stabl', \sigma') = eval x t c infl stabl \sigma"
    obtains (Query) y g yd infl1 stabl1 \sigma1
    where "t = Query y g"
        and "query_dom x y c infl stabl \sigma"
        and "(yd, infl1, stabl1, \sigma1) = query x y c infl stabl \sigma"
        and "eval_dom x (g yd) c infl1 stabl1 \sigma1"
        and "(xd, infl', stabl', \sigma') = eval x (g yd) c infl1 stabl1 \sigma1"
        and "mlup \sigma1 y = yd"
    | (Answer) "t = Answer xd"
        and "infl' = infl"
        and "stabl' = stabl"
```



```
    <proof\rangle
```


4.6 Description of the Effect of Destabilize

To describe the effect of a call to the function destab, we define an inductive set that, based on some infl map, collects all unknowns transitively influenced by some unknown x.
inductive_set influenced_by for infl x where
base: "fmlookup infl $\mathrm{x}=$ Some ys $\Longrightarrow \mathrm{y} \in \operatorname{set} \mathrm{ys} \Longrightarrow \mathrm{y} \in$ influenced_by infl $x "$
| step: "y \in influenced_by infl $x \Longrightarrow$ fmlookup infl $y=$ Some $z s \Longrightarrow z$ \in set zs
$\Longrightarrow z \in$ influenced_by infl x"
inductive_set influenced_by_cutoff for infl x c where
base: " $\mathrm{x} \notin c \Longrightarrow$ fmlookup infl $\mathrm{x}=$ Some $\mathrm{ys} \Longrightarrow \mathrm{y} \in \operatorname{set} \mathrm{ys} \Longrightarrow \mathrm{y} \in$ influenced_by_cutoff infl x c"
| step: "y \in influenced_by_cutoff infl x $c \Longrightarrow y \notin c \Longrightarrow$ fmlookup infl $y=$ Some $z s \Longrightarrow z \in \operatorname{set} z s$
$\Longrightarrow z \in$ influenced_by_cutoff infl x c"
lemma influenced_by_aux:
 (fmdrop x infl) y))"
$\langle p r o o f\rangle$
lemma lookup_in_influenced:
shows "slookup infl $\mathrm{x} \subseteq$ influenced_by infl x"

```
\langleproof\rangle
lemma influenced_unknowns_fmdrop_set:
    shows "influenced_by (fmdrop_set C infl) x = influenced_by_cutoff infl
x C"
\langleproof\rangle
lemma influenced_by_transitive:
    assumes "y \in influenced_by infl x"
        and "z \in influenced_by infl y"
    shows "z \in influenced_by infl x"
    <proof\rangle
lemma influenced_cutoff_subset:
    "influenced_by_cutoff infl x C \subseteq influenced_by infl x"
\langleproof\rangle
lemma influenced_cutoff_subset_2:
    shows "influenced_by infl x - (Uy \in C. influenced_by infl y) \subseteq influenced_by_cutoff
infl x C"
<proof\rangle
lemma union_influenced_to_cutoff:
    shows "insert y (influenced_by infl y) U influenced_by infl x =
        insert y (influenced_by infl y) U influenced_by_cutoff infl x (insert
y (influenced_by infl y))"
\langleproof\rangle
lemma destab_iter_infl_stabl_relation:
    shows
            "(infl', stabl') = destab_iter xs infl stabl
            "infl' = fmdrop_set (Ux \in set xs. insert x (influenced_by infl
x)) infl
            ^ stabl' = stabl - ( \x f set xs. insert x (influenced_by infl x))"
    and destab_infl_stabl_relation:
            "(infl', stabl') = destab x infl stabl
            "infl' = fmdrop_set (insert x (influenced_by infl x)) infl
            ^ stabl' = stabl - influenced_by infl x"
\langleproof\rangle
```


4.7 Predicate for Valid Input States

For the TD, we extend the predicate of valid solver states of the TD_plain, to also covers the additional data structures stabl and infl:

```
definition invariant where
    "invariant c \sigma infl stabl \equiv
    c \subseteq stabl
    ^ part_solution \sigma (stabl - c)
    fset (fmdom infl) \subseteq stabl
```

```
    ^(\forally\instabl - c. }\forall\textrm{x}\in\operatorname{dep}\sigma\textrm{y}.\textrm{y}\in\mathrm{ slookup infl x)"
lemma invariant_simp_c_stabl:
    assumes "x \in c"
        and "invariant (c - {x}) \sigma infl stabl"
    shows "invariant c \sigma infl (insert x stabl)"
    <proof>
```


4.8 Auxiliary Lemmas for Partial Correctness Proofs

```
lemma stabl_infl_empty:
```

lemma stabl_infl_empty:
assumes "x \& stabl"
assumes "x \& stabl"
and "fset (fmdom infl) \subseteq stabl"
and "fset (fmdom infl) \subseteq stabl"
shows "slookup infl x = {}"
shows "slookup infl x = {}"
<proof\rangle
<proof\rangle
lemma dep_closed_implies_reach_cap_tree_closed:
lemma dep_closed_implies_reach_cap_tree_closed:
assumes "x \in stabl'"
assumes "x \in stabl'"
and "\forall\xi\instabl' - (c - {x}). dep \sigma' \xi\subseteq stabl'"
and "\forall\xi\instabl' - (c - {x}). dep \sigma' \xi\subseteq stabl'"
shows "reach_cap \sigma' (c - {x}) x \subseteq stabl'"
shows "reach_cap \sigma' (c - {x}) x \subseteq stabl'"
<proof\rangle
<proof\rangle
lemma dep_subset_stable:
lemma dep_subset_stable:
assumes "fset (fmdom infl) \subseteq stabl"
assumes "fset (fmdom infl) \subseteq stabl"
and "(\forally\instabl - c. }\forall\textrm{x}\in\operatorname{dep}\sigma\textrm{y}.\textrm{y}\in\mathrm{ slookup infl x)"
and "(\forally\instabl - c. }\forall\textrm{x}\in\operatorname{dep}\sigma\textrm{y}.\textrm{y}\in\mathrm{ slookup infl x)"
shows "(\forall\xi\instabl - c. dep \sigma \xi\subseteq stabl)"
shows "(\forall\xi\instabl - c. dep \sigma \xi\subseteq stabl)"
<proof>
<proof>
lemma new_lookup_to_infl_not_stabl:
assumes "\forall\xi. (slookup infl1 \xi - slookup infl \xi) \cap stabl = {}"
and "x \& stabl"
and "fset (fmdom infl) \subseteq stabl"
shows "influenced_by infl1 x \cap stabl = {}"
<proof\rangle
lemma infl_upd_diff:
assumes "\forall\xi. (slookup infl' \xi - slookup infl \xi) \cap stabl = {}"
shows "\forall\xi. (slookup (fminsert infl' x y) \xi - slookup infl \xi) \cap (stabl

- {y}) = {}"
<proof\rangle
lemma infl_diff_eval_step:
assumes "stabl \subseteq stabl1"
and "\forall\xi. (slookup infl' \xi - slookup infl1 \xi) \cap (stabl1 - {x}) = {}"
and "\forall\xi. (slookup infl1 \xi - slookup infl \xi) \cap (stabl - {x}) = {}"
shows "\forall\xi. (slookup infl' \xi - slookup infl \xi) \cap (stabl - {x}) = {}"
<proof\rangle

```

\subsection*{4.9 Preservation of the Invariant}

In this section, we prove that the destabilization of some unknown that is currently being iterated, will preserve the valid solver state invariant.
```

lemma destab_x_no_dep:
assumes "stabl2 = stabl1 - influenced_by infl1 x"
and "\forally\instabl1 - (c - {x}). \forallz\indep \sigma1 y. y \in slookup infl1 z"
shows "\forally\instabl2 - (c - {x}). x \& dep \sigma1 y"
<proof\rangle
lemma destab_preserves_c_subset_stabl:
assumes "c\subseteqstabl"
and "stabl \subseteq stabl""
shows "c \subseteq stabl""
<proof\rangle
lemma destab_preserves_infl_dom_stabl:
assumes "(infl', stabl') = destab x infl stabl"
and "fset (fmdom infl) \subseteq stabl"
shows "fset (fmdom infl') \subseteq stabl'"
<proof\rangle

```
lemma destab_and_upd_preserves_dep_closed_in_infl:
    assumes "(īnf12, stabl2) = destab \(x\) infl1 stabl1"
        and " \(\forall y \in \operatorname{stabl1}-(c-\{x\}) . \forall z \in \operatorname{dep} \sigma 1\) y. y \(\in \operatorname{slookup}\) infl1 z)"
    shows " \((\forall y \in s t a b l 2-(c-\{x\}) . \forall z \in \operatorname{dep}(\sigma 1(x \mapsto x d \prime)) y . y \in\) slookup
infl2 z)"
\(\langle\) proof \(\rangle\)
lemma destab_upd_preserves_part_sol:
    assumes "(infl2, stabl2) = destab \(x\) infl1 stabl1"
        and "part_solution \(\sigma 1\) (stabl1 - c)"
        and \(" \forall y \in s t a b l 1-(c-\{x\}) . \forall x \in \operatorname{dep} \sigma 1 y \cdot y \in\) slookup infl1 x"
        and "traverse_rhs ( \(T x\) ) \(\sigma 1=x d "\)
    shows "part_solution \((\sigma 1(x \mapsto x d \prime))(\) stabl2 - (c - \(\{x\})\) )"
\(\langle\) proof \(\rangle\)

\subsection*{4.10 TD_plain and TD Equivalence}

Finally, we can prove the equivalence of TD and TD_plain. We split this proof into two parts: first we show that whenever the TD_plain terminates the TD terminates as well and returns the same result, and second we show the other direction, i.e., whenever the TD terminates, the TD_plain terminates as well and returns the same result.
declare TD_plain.query_dom_def[of T,simp]
declare TD_plain.eval_dom_def[of T,simp]
declare TD_plain.iterate_dom_def[of T,simp]
declare TD_plain.query.psimps[of T,simp]
declare TD_plain.iterate.psimps[of T,simp] declare TD_plain.eval.psimps[of T,simp]

To carry out the induction proof, we complement the valid solver state invariant, with a second predicate update_rel, that describes the relation between output and input solver states.
```

abbreviation "update_rel x infl stabl infl' stabl' \equiv
stabl \subseteq stabl' ^
(\forallu \in stabl. slookup infl u \subseteq slookup infl' u) ^
(\forallu. (slookup infl' u - slookup infl u) \cap (stabl - {x}) = {})"

```

\subsection*{4.10.1 TD__plain \(\rightarrow\) TD}
lemma TD_plain_TD_equivalence_ind:
    shows "TD_plain.query_dom \(T\) x y c \(\sigma\)
        \(\Longrightarrow\) TD_plain.query \(T\) x y \(c \sigma=\left(y d, \sigma^{\prime}\right)\)
    \(\Longrightarrow\) invariant \(c \sigma\) infl stabl
    \(\Longrightarrow\) query_dom x y c infl stabl \(\sigma\)
    \(\wedge\) ( \(\exists\) infl' stabl'. query x y c infl stabl \(\sigma=(y d, i n f l\) ', stabl',
\(\sigma^{\prime}\) )
    \(\wedge\) invariant c \(\sigma\) ' infl' stabl'
    \(\wedge x \in s l o o k u p ~ i n f l ' ~ y ~\)
    \(\wedge\) update_rel x infl stabl infl' stabl')"
    and "TD_plain.iterate_dom \(T \times c \sigma\)
    \(\Longrightarrow\) TD_plain.iterate \(T \times c \sigma=\left(x d, \sigma^{\prime}\right)\)
    \(\Longrightarrow x \in c\)
    \(\Longrightarrow\) invariant (c - \{x\}) \(\sigma\) infl stabl
    \(\Longrightarrow\) iterate_dom x c infl stabl \(\sigma\)
    \(\wedge(\exists\) infl' stabl'. iterate \(\mathrm{x} \subset\) infl stabl \(\sigma=(x d\), infl', stabl',
\(\left.\sigma^{\prime}\right)\)
    \(\wedge\) invariant (c - \{x\}) \(\sigma^{\prime}\) infl' stabl'
    \(\wedge x \in\) stabl'
    ^ update_rel x infl stabl infl' stabl')"
    and "TD_plain.eval_dom \(T \times t c \sigma\)
    \(\Longrightarrow\) TD_plain.eval \(T \times t c \sigma=\left(x d, \sigma^{\prime}\right)\)
    \(\Longrightarrow\) invariant \(c \sigma\) infl stabl
    \(\Longrightarrow \mathrm{x} \in\) stabl
    \(\Longrightarrow\) eval_dom x t c infl stabl \(\sigma\)
    \(\wedge\) ( \(\exists\) infl' stabl'. eval \(x t c\) infl stabl \(\sigma=(x d, i n f l ', ~ s t a b l '\),
\(\sigma^{\prime}\) )
    \(\wedge\) invariant c \(\sigma^{\prime}\) infl' stabl'
    \(\wedge\) traverse_rhs \(t \sigma^{\prime}=x d\)
    \(\wedge\left(\forall y \in d e p_{-} a u x \sigma^{\prime} t . x \in s l o o k u p ~ i n f l \prime y\right)\)
    \(\wedge\) update_rel x infl stabl infl' stabl')"
\(\langle p r o o f\rangle\)
corollary TD_plain_TD_equivalence:
    assumes "TD_plain.solve_dom T x"
        and "TD_plain.solve \(T \mathrm{x}=\sigma\) "
shows " \(\exists\) stabl. solve_dom \(x \wedge\) solve \(x=(s t a b l, \sigma) "\) \(\langle p r o o f\rangle\)

\subsection*{4.10.2 TD \(\rightarrow\) TD_plain}
lemmas TD_plain_dom_defs \(=\)
TD_plain.query_dom_def[of T]
TD_plain.iterate_dom_def[of T]
TD_plain.eval_dom_def[of T]
lemma TD_TD_plain_equivalence_ind:
shows "query_dom x y c infl stabl \(\sigma\)
\(\Longrightarrow\left(y d\right.\), infl', stabl', \(\left.\sigma^{\prime}\right)=\) query \(x\) y \(c\) infl stabl \(\sigma\)
\(\Longrightarrow\) invariant \(c \sigma\) infl stabl
\(\Longrightarrow\) finite stabl
\(\Longrightarrow\) invariant c \(\sigma\) ' infl' stabl'
\(\wedge\) TD_plain.query_dom \(T\) x y c \(\sigma\)
\(\wedge\left(y d, \sigma^{\prime}\right)=T D \_p l a i n . q u e r y T x y c \sigma\)
\(\wedge\) finite stabl'
\(\wedge x \in\) slookup infl' \(y\)
^ update_rel x infl stabl infl' stabl'"
and "iterate_dom x c infl stabl \(\sigma\)
\(\Longrightarrow\left(x d\right.\), infl', stabl', \(\left.\sigma^{\prime}\right)=\) iterate \(x\) cinfl stabl \(\sigma\)
\(\Longrightarrow x \in c\)
\(\Longrightarrow\) invariant (c - \{x\}) \(\sigma\) infl stabl
\(\Longrightarrow\) finite stabl
\(\Longrightarrow\) invariant (c - \{x\}) \(\sigma^{\prime}\) infl' stabl'
\(\wedge\) TD_plain.iterate_dom \(T \times c \sigma\)
\(\wedge\left(x d, \sigma^{\prime}\right)=T D \_p l a i n . i t e r a t e T \times c \sigma\)
\(\wedge\) finite stabl'
\(\wedge \mathrm{x} \in\) stabl'
^ update_rel x infl stabl infl' stabl'"
and "eval_dom x \(t\) c infl stabl \(\sigma\)
\(\Longrightarrow\left(x d\right.\), infl', stabl', \(\left.\sigma^{\prime}\right)=\) eval \(x t c\) infl stabl \(\sigma\)
\(\Longrightarrow\) invariant \(c \sigma\) infl stabl
\(\Longrightarrow \mathrm{x} \in\) stabl
\(\Longrightarrow\) finite stabl
\(\Longrightarrow\) invariant \(c \sigma^{\prime}\) infl' stabl'
\(\wedge T D\) plain.eval_dom \(T \times t c \sigma\)
\(\wedge\left(x d, \sigma^{\prime}\right)=T D_{-} p l a i n . e v a l \operatorname{x} t c \sigma\)
\(\wedge\) finite stabl'
\(\wedge\) traverse_rhs \(t \sigma^{\prime}=x d\)
\(\wedge\left(\forall y \in d e p_{-} a u x \sigma^{\prime} t . x \in\right.\) slookup infl' \(\left.y\right)\)
^ update_rel x infl stabl infl' stabl'"
\(\langle p r o o f\rangle\)
corollary TD_TD_plain_equivalence:
assumes "solve_dom \(x\) "
and "solve \(x=(s t a b l, \sigma) "\)
shows "TD_plain.solve_dom \(T x \wedge T D \_p l a i n . s o l v e ~ T x=\sigma "\) \(\langle\) proof \(\rangle\)

\subsection*{4.11 Partial Correctness of the TD}

From the equivalence of the TD and TD_plain and the partial correctness proof of the TD__plain we can now conclude partial correctness also for the TD.
```

corollary partial_correctness:
assumes "solve_dom x"
and "solve x = (stabl, \sigma)"
shows "part_solution \sigma stabl" and "reach \sigma x \subseteqstabl"
<proof\rangle

```

\subsection*{4.12 Program Refinement for Code Generation}

To derive executable code for the TD, we do a program refinement and define an equivalent solve function based on partial_function with options that can be used for the code generation.
```

datatype ('a,'b) state $=Q$ "'a \times 'a \times 'a set $\times(\prime a, \quad$ 'a list) $f m a p \times$
'a set \times ('a, 'b) map"
| I "'a \times 'a set \times ('a, 'a list) fmap \times 'a set $\times(\prime a, \quad$ 'b) map"
| E "'a $\times(' a, ' b)$ strategy_tree \times 'a set $\times(' a$, 'a list) fmap \times 'a
set $\times(' a, \quad$ 'b) map"
partial_function (option) solve_rec_c ::
" ('x, 'd) state \Rightarrow ('d \times ('x, 'x list) fmap \times ' x set $\times(\prime x, \quad$ ($)$ map)
option"
where
"solve_rec_c s = (case s of $Q(y, x, c, i n f l, s t a b l, \sigma) \Rightarrow$ Option.bind
(if $x \in c$ then
Some (mlup $\sigma \mathrm{x}$, infl, stabl, σ)
else
solve_rec_c (I (x, (insert x c), infl, stabl, σ)))
(λ ($x d$, infl, stabl, σ). Some ($x d$, fminsert infl $x y, ~ s t a b l, ~ \sigma)$)
$\mid I(x, c, i n f l$, stabl, $\sigma) \Rightarrow$
if $x \notin$ stabl then Option.bind (
solve_rec_c (E (x, ($T \mathrm{x}), c$, infl, insert x stabl, σ))) ($\lambda\left(d_{-} n e w\right.$,
infl, stabl, σ).
if mlup $\sigma \mathrm{x}=d_{-}$new then
Some (d_new, infl, stabl, σ)
else
let (infl, stabl) = destab x infl stabl in
solve_rec_c (I (x, c, infl, stabl, $\left.\left.\sigma\left(x \mapsto d_{-} n e w\right)\right)\right)$
else
Some (mlup $\sigma \mathrm{x}$, infl, stabl, σ)
$\mid E(x, t, c, i n f l, s t a b l, \sigma) \Rightarrow$ (case t of
Answer $d \Rightarrow$ Some (d, infl, stabl, σ)

```
```

 | Query y g m (
 Option.bind (solve_rec_c (Q (x, y, c, infl, stabl, \sigma))) (\lambda(yd,
 infl, stabl, \sigma).
solve_rec_c (E (x, g yd, c, infl, stabl, \sigma))))))"

```
definition solve_rec_c_dom where "solve_rec_c_dom \(p \equiv \exists \sigma\). solve_rec_c \(p=\) Some \(\sigma^{\prime \prime}\)
declare destab.simps[code]
declare destab_iter.simps[code]
declare solve_rec_c.simps[simp, code]
definition solve_c :: "'x \(\Rightarrow\) ('x set \(\times\left(\left({ }^{\prime} x,{ }^{\prime} d\right)\right.\) map)) option" where
"solve_c x = Option.bind (solve_rec_c (I (x, \{x\}, fmempty, \{\}, Map.empty))) \(\left(\lambda\left({ }_{-}, \ldots, s t a b l, \sigma\right)\right.\). Some (stabl, \(\left.\left.\sigma\right)\right) "\)
definition solve_c_dom :: "'x \(\Rightarrow\) bool" where "solve_c_dom \(x \equiv \exists \sigma\). solve_c \(x=\) Some \(\sigma^{\prime \prime}\)

We prove the equivalence of the refined solver function for code generation and the initial version used for the partial correctness proof.
```

lemma query_iterate_eval_solve_rec_c_equiv:
shows "query_dom x y c infl stabl \sigma\Longrightarrow solve_rec_c_dom (Q (x,y,c,infl,stabl,\sigma))
^ query x y c infl stabl \sigma= the (solve_rec_c (Q (x,y,c,infl,stabl,\sigma)))"
and "iterate_dom x c infl stabl \sigma \Longrightarrow solve_rec_c_dom (I (x,c,infl,stabl,\sigma))
^ iterate x c infl stabl \sigma = the (solve_rec_c (I (x,c,infl,stabl,\sigma)))"
and "eval_dom x t c infl stabl \sigma \Longrightarrow solve_rec_c_dom (E (x,t,c,infl,stabl,\sigma))
^eval x t c infl stabl \sigma = the (solve_rec_c (E (x,t,c,infl,stabl,\sigma)))"
<proof\rangle
lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r \Longrightarrow (case s of
Q (x,y,c,infl,stabl,\sigma) => query_dom x y c infl stabl \sigma
^ query x y c infl stabl \sigma = r
| I (x,c,infl,stabl,\sigma) => iterate_dom x c infl stabl \sigma
^ iterate x c infl stabl \sigma = r
| E (x,t,c,infl,stabl,\sigma) => eval_dom x t c infl stabl \sigma
^ eval x t c infl stabl \sigma = r)"
\langleproof\rangle
theorem term_equivalence: "solve_dom x \longleftrightarrow solve_c_dom x"
\langleproof\rangle
theorem value_equivalence: "solve_dom x \Longrightarrow \exists |. solve_c x = Some \sigma ^
solve x = \sigma'
<proof\rangle

```

With the equivalence of the refined version and the initial version proven, we can specify a the code equation.
```

lemma solve_code_equation [code]:
"solve x = (case solve_c x of Some r m r
| None = Code.abort (String.implode ''Input not in domain'') (}\lambda\mathrm{ _. solve
x))"
\langleproof\rangle

```
end

Finally, we use a dedicated rewrite rule for the code generation of the solver locale.
```

global_interpretation TD_Interp: TD D T for D T
defines
TD_Interp_solve = TD_Interp.solve
<proof\rangle

```
end

\section*{5 Example}
```

theory Example
imports TD_plain TD_equiv
begin

```

As an example, let us consider a program analysis, namely the analysis of must-be initialized program variables for the following program:
```

a = 17
while true:
b = a * a
if b < 10: break
a = a - 1

```

The program corresponds to the following control-flow graph.


From the control-flow graph of the program, we generate the equation system to be solved by the TD. The left-hand side of an equation consists of an unknown which represents a program point. The right-hand side for some unknown describes how the set of must-be initialized variables at the corresponding program point can be computed from the sets of must-be initialized variables at the predecessors.

\subsection*{5.1 Definition of the Domain}
datatype \(p v=a \mid b\)
A fitting domain to describe possible values for the must-be initialized analysis, is an inverse power set lattice of the set of all program variables. The least informative value which is always a true over-approximation for the must-be initialized analysis is the empty set (called top), whereas the initial value to start fixpoint iteration from is the set \(\{a, b\}\) (called bot). The join operation, which is used to combine the values of several incoming edges to obtain a sound over-approximation over all paths, corresponds to the intersection of sets.
```

typedef D = "Pow ({a, b})"
<proof\rangle
setup_lifting D.type_definition_D
lift__definition top :: "D" is "{}" \langleproof\rangle
lift__definition bot :: D is "{a, b}" \langleproof\rangle
lift__definition join :: "D = D | D" is Set.inter 〈proof\rangle

```

Additionally, we define some helper functions to create values of type D.
```

lift__definition insert :: "pv = D = D"
is "\lambdae d. if e \in{a, b} then Set.insert e d else d"
<proof>
definition set_to_D :: "pv set }=>\mathrm{ | D" where
"set_to_D = (\lambdas. fold (\lambdae acc. if e \in s then insert e acc else acc)
[a, b] top)"

```

We show that the considered domain fulfills the sort constraints bot and equal as expected by the solver.
```

instantiation D :: bot
begin
definition bot_D :: D
where "bot_D = bot"
instance <proof\rangle
end
instantiation D :: equal
begin
definition equal_D :: "D \# D = bool"
where "equal_D d1 d2 = ((Rep_D d1) = (Rep_D d2))"
instance <proof\rangle
end

```

\subsection*{5.2 Definition of the Equation System}

The following equation system can be generated for the must-be initialized analysis and the program from above.
\[
\begin{aligned}
\mathrm{w} & =\emptyset \\
\mathcal{T}: \quad \mathrm{z} & =(\mathrm{y} \cup\{\mathrm{a}\}) \cap(\mathrm{w} \cup\{\mathrm{a}\}) \\
\mathrm{y} & =\mathrm{z} \cup\{\mathrm{~b}\} \\
\mathrm{x} & =\mathrm{y} \cap \mathrm{z}
\end{aligned}
\]

Below we define this equation system and express the right-hand sides with strategy trees.
```

datatype Unknown = X | Y | Z | W

```
```

fun ConstrSys :: "Unknown m (Unknown, D) strategy_tree" where
"ConstrSys X = Query Y (}\lambdad1\mathrm{ . if d1 = top then Answer top
else Query Z (\lambdad2. Answer (join d1 d2)))"
| "ConstrSys Y = Query Z (\lambdad. if d \in {top, set_to_D {b}}
then Answer (set_to_D {b}) else Answer bot)"
| "ConstrSys Z = Query Y (\lambdad1. if d1 G {top, set_to_D {a}}
then Answer (set_to_D {a})
else Query W (\lambdad2. if d2 \in {top, set_to_D {a}}
then Answer (set_to_D {a}) else Answer bot))"
| "ConstrSys W = Answer top"

```

\subsection*{5.3 Solve the Equation System with TD__plain}

We solve the equation system for each unknown, first with the TD_plain and in the following also with the TD. Note, that we use a finite map that defaults to bot for keys that are not contained in the map. This can happen in two cases: (1) when the value computed for that unknown is equal to bot, or (2) if the unknown was not queried during the solving and therefore no value was stored in the finite map for it.

\section*{definition solution_plain_X where}
"solution_plain_X = TD_plain_Interp_solve ConstrSys X"
value "(solution_plain_X X, solution_plain_X Y, solution_plain_X Z, solution_plain_X W)"
definition solution_plain_Y where
"solution_plain_Y = TD_plain_Interp_solve ConstrSys Y"
value "(solution_plain_Y X, solution_plain_Y Y, solution_plain_Y Z, solution_plain_Y W)"
definition solution_plain_Z where
"solution_plain_Z = TD_plain_Interp_solve ConstrSys Z"
value " (solution_plain_Z X, solution_plain_Z Y, solution_plain_Z Z, solution_plain_Z W)"
```

definition solution_plain_W where
"solution_plain_W = TD_plain_Interp_solve ConstrSys W"
value "(solution_plain_W X, solution_plain_W Y, solution_plain_W Z, solution_plain_W
W)"

```

\subsection*{5.4 Solve the Equation System with TD}
definition solutionX where "solutionX = TD_Interp_solve ConstrSys X" value "((snd solutionX) X, (snd solutionX) Y, (snd solutionX) Z, (snd solutionX) W)"
definition solutionY where "solutionY = TD_Interp_solve ConstrSys Y" value "((snd solutionY) X, (snd solutionY) Y, (snd solutionY) Z, (snd solutionY) W)"
definition solutionZ where "solutionZ = TD_Interp_solve ConstrSys Z" value "((snd solutionZ) X, (snd solutionZ) Y, (snd solutionZ) Z, (snd solutionZ) W)"
definition solutionW where "solutionW = TD_Interp_solve ConstrSys W" value "((snd solutionW) \(X\), (snd solutionW) \(Y\), (snd solutionW) \(Z\), (snd solutionW) W)"
end

\section*{References}
[1] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi, editors, Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pages 238-252. ACM, 1977.
[2] M. Hofmann, A. Karbyshev, and H. Seidl. What is a pure functional? In S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, editors, Automata, Languages and Programming, \({ }^{77}\) th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 199-210. Springer, 2010.
[3] S. Tilscher, Y. Stade, M. Schwarz, R. Vogler, and H. Seidl. The TopDown Solver-An Exercise in \(A^{2}\) I. In V. Arceri, A. Cortesi, P. Ferrara, and M. Olliaro, editors, Challenges of Software Verification, volume 238, pages 157-179. Springer Nature Singapore, Singapore, 2023.```


[^0]:    *The first two authors contributed equally to this research and are ordered alphabetically.

