
Partial Correctness of the Top-Down Solver

Yannick Stade∗, Sarah Tilscher∗, Helmut Seidl

May 26, 2024

Abstract

The top-down solver (TD) is a local and generic fixpoint algorithm
used for abstract interpretation. Being local means it only evaluates
equations required for the computation of the value of some initially
queried unknown, while being generic means that it is applicable for
arbitrary equation systems where right-hand sides are considered as
black-box functions. To avoid unnecessary evaluations of right-hand
sides, the TD collects stable unknowns that need not be re-evaluated.
This optimization requires the additional tracking of dependencies be-
tween unknowns and a non-local destabilization mechanism to assure
the re-evaluation of previously stable unknowns that were affected by
a changed value.

Due to the recursive evaluation strategy and the non-local destabi-
lization mechanism of the TD, its correctness is non-obvious. To pro-
vide a formal proof of its partial correctness, we employ the insight that
the TD can be considered an optimized version of a considerably sim-
pler recursive fixpoint algorithm. Following this insight, we first prove
the partial correctness of the simpler recursive fixpoint algorithm, the
plain TD. Then, we transfer the statement of partial correctness to
the TD by establishing the equivalence of both algorithms concerning
both their termination behavior and their computed result.

∗The first two authors contributed equally to this research and are ordered alphabeti-
cally.

1

Contents
1 Introduction 3

2 Preliminaries 4
2.1 Strategy Trees . 4
2.2 Auxiliary Lemmas for Default Maps 4
2.3 Functions on the Constraint System 6
2.4 Subtrees of Strategy Trees . 6
2.5 Dependencies between Unknowns 7
2.6 Set Reach . 8
2.7 Partial solution . 9

3 The plain Top-Down Solver 10
3.1 Definition of the Solver Algorithm 10
3.2 Refinement of Auto-Generated Rules 11
3.3 Domain Lemmas . 12
3.4 Case Rules . 12
3.5 Predicate for Valid Input States 13
3.6 Partial Correctness Proofs . 14
3.7 Termination of TD_plain for Stable Unknowns 15
3.8 Program Refinement for Code Generation 16

4 The Top-Down Solver 17
4.1 Definition of Destabilize and Proof of its Termination 18
4.2 Definition of the Solver Algorithm 19
4.3 Refinement of Auto-Generated Rules 21
4.4 Domain Lemmas . 21
4.5 Case Rules . 22
4.6 Description of the Effect of Destabilize 23
4.7 Predicate for Valid Input States 24
4.8 Auxiliary Lemmas for Partial Correctness Proofs 25
4.9 Preservation of the Invariant 26
4.10 TD_plain and TD Equivalence 26
4.11 Partial Correctness of the TD 29
4.12 Program Refinement for Code Generation 29

5 Example 31
5.1 Definition of the Domain . 32
5.2 Definition of the Equation System 33
5.3 Solve the Equation System with TD_plain 33
5.4 Solve the Equation System with TD 34

2

1 Introduction

Static analysis of programs based on abstract interpretation requires effi-
cient and reliable fixpoint engines [1]. In this work, we focus on the top-
down solver (TD) [3]—a generic fixpoint algorithm that can handle arbitrary
equation systems, even those with infinitely many equations. The latter is
achieved by a property called local: When the TD is invoked to compute the
value of some unknown, it recursively descends only into those unknowns
on which the initially queried unknown depends. In order to avoid redun-
dant re-evaluations of equations, the TD maintains a set of stable unknowns
whose re-evaluation can be replaced by a simple lookup. Removing un-
knowns from the set of stable unknowns when they are possibly affected
by changes to other unknowns, requires information about dependencies
between unknowns. These dependencies need not be provided beforehand
but are detected through self-observation on the fly. This makes the TD
suitable also for equation systems where dependencies change dynamically
during the solver’s computation.
By removing the collecting of stable unknowns and dependency tracking,
we obtain a stripped version of the TD, which we call the plain TD. The
plain TD is capable of solving the same equation systems as the original TD
and also shares the same termination behavior, but also re-evaluates those
unknowns that have already been evaluated and whose value could just be
looked up. In the first part of this work, we show the partial correctness of
the plain TD. We use a mutual induction following its computation trace
to establish invariants describing a valid solver state. From this, the partial
correctness of the solver’s result can be derived. The proof is described in
Section 3.
We then recover the original TD from the plain TD and prove the equiva-
lence between the two, i. e., that they share the same termination behavior
and return the same result whenever they terminate. This way, the partial
correctness statement from the plain TD is shown to carry over to the orig-
inal TD. The essential part of this proof is twofold: First, we extend the
invariants to describe the additional data structures for collecting stable un-
knowns and the dependencies between unknowns. Second, we show that the
destabilization of an unknown preserves those invariants. The corresponding
proofs are outlined in Section 4.
We conclude this work with an example in Section 5 showing the application
of the TD to a simple equation system derived from a program for the
analysis of must-be initialized variables.

3

2 Preliminaries

Before we define the TD in Isabelle/HOL and start with its partial correct-
ness proof, we define all required data structures, formalize definitions and
prove auxiliary lemmas.
theory Basics

imports Main "HOL-Library.Finite_Map"
begin

unbundle lattice_syntax

2.1 Strategy Trees

The constraint system is a function mapping each unknown to a right-hand
side to compute its value. We require the right-hand sides to be pure func-
tionals [2]. This means that they may query the values of other unknowns
and perform additional computations based on those, but they may, e.g., not
spy on the solver’s data structures. Such pure functions can be expressed
as strategy trees.
datatype (’a, ’b) strategy_tree = Answer ’b |

Query ’a "’b ⇒ (’a , ’b) strategy_tree"

The solver is defined based on a black-box function T describing the con-
straint system and under the assumption that the special element ⊥ exists
among the values.
locale Solver =

fixes D :: "’d :: bot"
and T :: "’x ⇒ (’x , ’d) strategy_tree"

begin

2.2 Auxiliary Lemmas for Default Maps

The solver maintains a solver state to implement optimizations based on
self-observation. Among the data structures for the solver state are maps
that return a default value for non-existing keys. In the following, we define
some helper functions and lemmas for these.
definition fmlookup_default where

"fmlookup_default m d x = (case fmlookup m x of Some v ⇒ v | None ⇒
d)"

abbreviation slookup where
"slookup infl x ≡ set (fmlookup_default infl [] x)"

definition mlup where
"mlup σ x ≡ case σ x of Some v ⇒ v | None ⇒ ⊥"

4

definition fminsert where
"fminsert infl x y = fmupd x (y # (fmlookup_default infl [] x)) infl"

lemma set_fmlookup_default_cases:
assumes "y ∈ slookup infl x"
obtains (1) xs where "fmlookup infl x = Some xs" and "y ∈ set xs"
〈proof 〉

lemma notin_fmlookup_default_cases:
assumes "y /∈ slookup infl x"
obtains (1) xs where "fmlookup infl x = Some xs" and "y /∈ set xs"
| (2) "fmlookup infl x = None"
〈proof 〉

lemma slookup_helper[simp]:
assumes "fmlookup m x = Some ys"

and "y ∈ set ys"
shows "y ∈ slookup m x"
〈proof 〉

lemma lookup_implies_mlup:
assumes "σ x = σ’ x’"
shows "mlup σ x = mlup σ’ x’"
〈proof 〉

lemma fmlookup_fminsert:
assumes "fmlookup_default infl [] x = xs"
shows "fmlookup (fminsert infl x y) x = Some (y # xs)"

〈proof 〉

lemma fmlookup_fminsert’:
obtains xs ys
where "fmlookup (fminsert infl x y) x = Some xs"

and "fmlookup_default infl [] x = ys" and "xs = y # ys"
〈proof 〉

lemma fmlookup_default_drop_set:
"fmlookup_default (fmdrop_set A m) [] x = (if x /∈ A then fmlookup_default

m [] x else [])"
〈proof 〉

lemma mlup_eq_mupd_set:
assumes "x /∈ s"

and "∀ y∈s. mlup σ y = mlup σ’ y"
shows "∀ y∈s. mlup σ y = mlup (σ’(x 7→ xd)) y"
〈proof 〉

5

2.3 Functions on the Constraint System

The function rhs_length computes the length of a specific path in the strat-
egy tree defined by a value assignment for unknowns σ.
function (domintros) rhs_length where

"rhs_length (Answer d) _ = 0" |
"rhs_length (Query x f) σ = 1 + rhs_length (f (mlup σ x)) σ"
〈proof 〉

termination rhs_length
〈proof 〉

The function traverse_rhs traverses a strategy tree and determines the
answer when choosing the path through the strategy tree based on a given
unknown-value mapping σ

function (domintros) traverse_rhs where
"traverse_rhs (Answer d) _ = d" |
"traverse_rhs (Query x f) σ = traverse_rhs (f (mlup σ x)) σ"
〈proof 〉

termination traverse_rhs
〈proof 〉

The function eq evaluates the right-hand side of an unknown x with an
unknown-value mapping σ.
definition eq :: "’x ⇒ (’x, ’d) map ⇒ ’d" where

"eq x σ = traverse_rhs (T x) σ"
declare eq_def[simp]

2.4 Subtrees of Strategy Trees

We define the set of subtrees of a strategy tree for a specific path (defined
through σ).
inductive_set subt_aux ::

"(’x, ’d) map ⇒ (’x, ’d) strategy_tree ⇒ (’x, ’d) strategy_tree
set" for σ t where

base: "t ∈ subt_aux σ t"
| step: "t’ ∈ subt_aux σ t =⇒ t’ = Query y g =⇒ (g (mlup σ y)) ∈ subt_aux
σ t"

definition subt where
"subt σ x = subt_aux σ (T x)"

lemma subt_of_answer_singleton:
shows "subt_aux σ (Answer d) = {Answer d}"

〈proof 〉

6

lemma subt_transitive:
assumes "t’ ∈ subt_aux σ t"
shows "subt_aux σ t’ ⊆ subt_aux σ t"

〈proof 〉

lemma subt_unfold:
shows "subt_aux σ (Query x f) = insert (Query x f) (subt_aux σ (f (mlup

σ x)))"
〈proof 〉

2.5 Dependencies between Unknowns

The set dep σ x collects all unknowns occuring in the right-hand side of x
when traversing it with σ.
function dep_aux where

"dep_aux σ (Answer d) = {}"
| "dep_aux σ (Query y g) = insert y (dep_aux σ (g (mlup σ y)))"
〈proof 〉

termination dep_aux
〈proof 〉

definition dep where
"dep σ x = dep_aux σ (T x)"

lemma dep_aux_eq:
assumes "∀ y ∈ dep_aux σ t. mlup σ y = mlup σ’ y"
shows "dep_aux σ t = dep_aux σ’ t"
〈proof 〉

lemmas dep_eq = dep_aux_eq[of σ "T x" σ’ for σ x σ’, folded dep_def]

lemma subt_implies_dep:
assumes "Query y g ∈ subt_aux σ t"
shows "y ∈ dep_aux σ t"
〈proof 〉

lemma solution_sufficient:
assumes "∀ y ∈ dep σ x. mlup σ y = mlup σ’ y"
shows "eq x σ = eq x σ’"

〈proof 〉

corollary eq_mupd_no_dep:
assumes "x /∈ dep σ y"
shows "eq y σ = eq y (σ (x 7→ xd))"
〈proof 〉

7

2.6 Set Reach

Let reach be the set of all unknowns contributing to x (for a given σ). This
corresponds to the set of all unknowns on which x transitively depends on
when evaluating the necessary right-hand sides with σ.
inductive_set reach for σ x where

base: "x ∈ reach σ x"
| step: "y ∈ reach σ x =⇒ z ∈ dep σ y =⇒ z ∈ reach σ x"

The solver stops descending when it encounters an unknown whose evalua-
tion it has already started (i.e. an unknown in c). Therefore, reach might
collect contributing unknowns which the solver did not descend into. For
a predicate, that relates more closely to the solver’s history, we define the
set reach_cap. Similarly to reach it collects the unknowns on which an
unknown transitively depends, but only until an unknown in c is reached.
inductive_set reach_cap_tree for σ c t where

base: "x ∈ dep_aux σ t =⇒ x ∈ reach_cap_tree σ c t"
| step: "y ∈ reach_cap_tree σ c t =⇒ y /∈ c =⇒ z ∈ dep σ y =⇒ z ∈
reach_cap_tree σ c t"

abbreviation "reach_cap σ c x
≡ insert x (if x ∈ c then {} else reach_cap_tree σ (insert x c) (T

x))"

lemma reach_cap_tree_answer_empty[simp]:
"reach_cap_tree σ c (Answer d) = {}"

〈proof 〉

lemma dep_subset_reach_cap_tree:
"dep_aux σ’ t ⊆ reach_cap_tree σ’ c t"

〈proof 〉

lemma reach_cap_tree_subset:
shows "reach_cap_tree σ c t ⊆ reach_cap_tree σ (c - {x}) t"

〈proof 〉

lemma reach_empty_capped:
shows "reach σ x = insert x (reach_cap_tree σ {x} (T x))"

〈proof 〉

lemma dep_aux_implies_reach_cap_tree:
assumes "y /∈ c"

and "y ∈ dep_aux σ t"
shows "reach_cap_tree σ c (T y) ⊆ reach_cap_tree σ c t"

〈proof 〉

lemma reach_cap_tree_simp:
shows "reach_cap_tree σ c t

8

= dep_aux σ t ∪ (
⋃
ξ∈dep_aux σ t - c. reach_cap_tree σ (insert ξ

c) (T ξ))"
〈proof 〉

lemma reach_cap_tree_step:
assumes "mlup σ y = yd"
shows "reach_cap_tree σ c (Query y g) = insert y (if y ∈ c then {}

else reach_cap_tree σ (insert y c) (T y)) ∪ reach_cap_tree σ c (g
yd)"
〈proof 〉

lemma reach_cap_tree_eq:
assumes "∀ x∈reach_cap_tree σ c t. mlup σ x = mlup σ’ x"
shows "reach_cap_tree σ c t = reach_cap_tree σ’ c t"

〈proof 〉

lemma reach_cap_tree_simp2:
shows "insert x (if x ∈ c then {} else reach_cap_tree σ c (T x)) =

insert x (if x ∈ c then {} else reach_cap_tree σ (insert x c)
(T x))"
〈proof 〉

lemma dep_closed_implies_reach_cap_tree_closed:
assumes "x ∈ s"

and "∀ ξ∈s - (c - {x}). dep σ’ ξ ⊆ s"
shows "reach_cap σ’ (c - {x}) x ⊆ s"

〈proof 〉

lemma reach_cap_tree_subset2:
assumes "mlup σ y = yd"
shows "reach_cap_tree σ c (g yd) ⊆ reach_cap_tree σ c (Query y g)"
〈proof 〉

lemma reach_cap_tree_subset_subt:
assumes "t’ ∈ subt_aux σ t"
shows "reach_cap_tree σ c t’ ⊆ reach_cap_tree σ c t"
〈proof 〉

lemma reach_cap_tree_singleton:
assumes "reach_cap_tree σ (insert x c) t ⊆ {x}"
obtains (Answer) d where "t = Answer d"
| (Query) f where "t = Query x f"

and "dep_aux σ t = {x}"
〈proof 〉

2.7 Partial solution

Finally, we define an unknown-to-value mapping σ to be a partial solution
over a set of unknowns vars if for every unknown in vars, the value obtained

9

from an evaluation of its right-hand side function eq x with σ matches the
value stored in σ.
abbreviation part_solution where

"part_solution σ vars ≡ (∀ x ∈ vars. eq x σ = mlup σ x)"

lemma part_solution_coinciding_sigma_called:
assumes "part_solution σ (s - c)"

and "∀ x ∈ s. mlup σ x = mlup σ’ x"
and "∀ x ∈ s - c. dep σ x ⊆ s"

shows "part_solution σ’ (s - c)"
〈proof 〉

end

end

3 The plain Top-Down Solver

TD_plain is a simplified version of the original TD which only keeps track
of already called unknowns to avoid infinite descend in case of recursive
dependencies. In contrast to the TD, it does, however, not track stable
unknowns and the dependencies between unknowns. Instead, it re-iterates
every unknown when queried again.
theory TD_plain

imports Basics
begin

locale TD_plain = Solver D T
for D :: "’d :: bot"

and T :: "’x ⇒ (’x, ’d) strategy_tree"
begin

3.1 Definition of the Solver Algorithm

The recursively descending solver algorithm is defined with three mutual re-
cursive functions. Initially, the function iterate is called from the top-level
solve function for the requested unknown. iterate keeps evaluating the
right-hand side by calling the function eval and updates the value mapping
σ until the value stabilizes. The function eval walks through a strategy
tree and chooses the path based on the result for queried unknowns. These
queries are delegated to the third mutual recursive function query which
checks that the unknown is not already being evaluated and iterates it other-
wise. The function keyword is used for the definition, since, without further
assumptions, the solver may not terminate.
function (domintros)

10

query :: "’x ⇒ ’x ⇒ ’x set ⇒ (’x, ’d) map ⇒ ’d × (’x, ’d) map"
and

iterate :: "’x ⇒ ’x set ⇒ (’x, ’d) map ⇒ ’d × (’x, ’d) map" and
eval :: "’x ⇒ (’x, ’d) strategy_tree ⇒ ’x set ⇒ (’x, ’d) map ⇒

’d × (’x, ’d) map" where
"query x y c σ = (

if y ∈ c then
(mlup σ y, σ)

else
iterate y (insert y c) σ)"

| "iterate x c σ = (
let (d_new, σ) = eval x (T x) c σ in
if d_new = mlup σ x then

(d_new, σ)
else

iterate x c (σ(x 7→ d_new)))"
| "eval x t c σ = (case t of

Answer d ⇒ (d, σ)
| Query y g ⇒ (let (yd, σ) = query x y c σ in eval x (g yd) c σ))"

〈proof 〉

definition solve :: "’x ⇒ (’x, ’d) map" where
"solve x = (let (_, σ) = iterate x {x} Map.empty in σ)"

definition query_dom where
"query_dom x y c σ = query_iterate_eval_dom (Inl (x, y, c, σ))"

declare query_dom_def [simp]
definition iterate_dom where

"iterate_dom x c σ = query_iterate_eval_dom (Inr (Inl (x, c, σ)))"
declare iterate_dom_def [simp]
definition eval_dom where

"eval_dom x t c σ = query_iterate_eval_dom (Inr (Inr (x, t, c, σ)))"
declare eval_dom_def [simp]

definition solve_dom where
"solve_dom x = iterate_dom x {x} Map.empty"

lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def

3.2 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This
lemma removes this redundant assumption for easier instantiation and as-
signs each case a comprehensible name.
lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
Eval]

= query_iterate_eval.pinduct(1)[
folded query_dom_def iterate_dom_def eval_dom_def,
of x y c σ for x y c σ

11

]
query_iterate_eval.pinduct(2)[

folded query_dom_def iterate_dom_def eval_dom_def,
of x c σ for x c σ

]
query_iterate_eval.pinduct(3)[

folded query_dom_def iterate_dom_def eval_dom_def,
of x t c σ for x t c σ

]

lemmas iterate_pinduct[consumes 1, case_names Iterate]
= query_iterate_eval_pinduct(2)[where ?P="λx y c σ. True" and ?R="λx

t c σ. True",
simplified (no_asm_use), folded query_dom_def iterate_dom_def eval_dom_def]

declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

3.3 Domain Lemmas
lemma dom_backwards_pinduct:

shows "query_dom x y c σ
=⇒ y /∈ c =⇒ iterate_dom y (insert y c) σ"

and "iterate_dom x c σ
=⇒ (eval_dom x (T x) c σ ∧

(eval x (T x) c σ = (xd_new, σ’)
−→ mlup σ’ x = xd_old −→ xd_new 6= xd_old −→
iterate_dom x c (σ’(x 7→ xd_new))))"

and "eval_dom x (Query y g) c σ
=⇒ (query_dom x y c σ ∧ (query x y c σ = (yd, σ’) −→ eval_dom x

(g yd) c σ’))"
〈proof 〉

3.4 Case Rules
lemma iterate_continue_fixpoint_cases[consumes 3]:

assumes "iterate_dom x c σ"
and "iterate x c σ = (xd, σ’)"
and "x ∈ c"

obtains (Fixpoint) "eval_dom x (T x) c σ"
and "eval x (T x) c σ = (xd, σ’)"
and "mlup σ’ x = xd"

| (Continue) σ1 xd_new
where "eval_dom x (T x) c σ"

and "eval x (T x) c σ = (xd_new, σ1)"
and "mlup σ1 x 6= xd_new"
and "iterate_dom x c (σ1(x 7→ xd_new))"
and "iterate x c (σ1(x 7→ xd_new)) = (xd, σ’)"

〈proof 〉

12

lemma iterate_fmlookup:
assumes "iterate_dom x c σ"

and "iterate x c σ = (xd, σ’)"
and "x ∈ c"

shows "mlup σ’ x = xd"
〈proof 〉

corollary query_fmlookup:
assumes "query_dom x y c σ"

and "query x y c σ = (yd, σ’)"
shows "mlup σ’ y = yd"
〈proof 〉

lemma query_iterate_lookup_cases [consumes 2]:
assumes "query_dom x y c σ"

and "query x y c σ = (yd, σ’)"
obtains (Iterate)

"iterate_dom y (insert y c) σ"
and "iterate y (insert y c) σ = (yd, σ’)"
and "mlup σ’ y = yd"
and "y /∈ c"

| (Lookup) "mlup σ y = yd"
and "σ = σ’"
and "y ∈ c"

〈proof 〉

lemma eval_query_answer_cases [consumes 2]:
assumes "eval_dom x t c σ"

and "eval x t c σ = (d, σ’)"
obtains (Query) y g yd σ1
where "t = Query y g"

and "query_dom x y c σ"
and "query x y c σ = (yd, σ1)"
and "eval_dom x (g yd) c σ1"
and "eval x (g yd) c σ1 = (d, σ’)"
and "mlup σ1 y = yd"

| (Answer) "t = Answer d"
and "σ = σ’"

〈proof 〉

3.5 Predicate for Valid Input States

We define a predicate for valid input solver states. c is the set of called un-
knowns, i.e., the unknowns currently being evaluated and σ is an unknown-
to-value mapping. Both are data structures maintained by the solver. In
contrast, the parameter s describing a set of unknowns, for which a partial
solution has already been computed or which are currently being evaluated,

13

is introduced for the proof. Although it is similar to the set stabl maintained
by the original TD, it is only an under-approximation of it. A valid solver
state is one, where σ is a partial solution for all truly stable unknowns, i.e.,
unknowns in s - c, and where these truly stable unknowns only depend on
unknowns which are also truly stable or currently being evaluated. A sub-
stantial part of the partial correctness proof is to show that this property
about the solver’s state is preserved during a solver’s run.
definition invariant where

"invariant s c σ ≡ (∀ ξ∈s - c. dep σ ξ ⊆ s) ∧ part_solution σ (s -
c)"

lemma invariant_simp:
assumes "x ∈ c"

and "invariant s (c - {x}) σ"
shows "invariant (insert x s) c σ"
〈proof 〉

lemma invariant_continue:
assumes "x /∈ s"

and "invariant s c σ"
and "∀ y∈s. mlup σ y = mlup σ1 y"

shows "invariant s c (σ1(x 7→ xd))"
〈proof 〉

3.6 Partial Correctness Proofs
lemma x_not_stable:

assumes "eq x σ 6= mlup σ x"
and "part_solution σ s"

shows "x /∈ s"
〈proof 〉

With the following lemma we establish, that whenever the solver is called for
an unknown in s and where the solver state and s fulfill the invariant, the
output value mapping is unchanged compared to the input value mapping.
lemma already_solution:

shows "query_dom x y c σ
=⇒ query x y c σ = (yd, σ’)
=⇒ y ∈ s
=⇒ invariant s c σ
=⇒ σ = σ’"
and "iterate_dom x c σ
=⇒ iterate x c σ = (xd, σ’)
=⇒ x ∈ c
=⇒ x ∈ s
=⇒ invariant s (c - {x}) σ
=⇒ σ = σ’"
and "eval_dom x t c σ

14

=⇒ eval x t c σ = (xd, σ’)
=⇒ dep_aux σ t ⊆ s
=⇒ invariant s c σ
=⇒ traverse_rhs t σ’ = xd ∧ σ = σ’"

〈proof 〉

Furthermore, we show that whenever the solver is called with a valid solver
state, the valid solver state invariant also holds for its output state and
the set of stable unknowns increases by the set reach_cap of the current
unknown.
lemma partial_correctness_ind:

shows "query_dom x y c σ
=⇒ query x y c σ = (yd, σ’)
=⇒ invariant s c σ
=⇒ invariant (s ∪ reach_cap σ’ c y) c σ’
∧ (∀ ξ ∈ s. mlup σ ξ = mlup σ’ ξ)"

and "iterate_dom x c σ
=⇒ iterate x c σ = (xd, σ’)
=⇒ x ∈ c
=⇒ invariant s (c - {x}) σ
=⇒ invariant (s ∪ (reach_cap σ’ (c - {x}) x)) (c - {x}) σ’
∧ (∀ ξ ∈ s. mlup σ ξ = mlup σ’ ξ)"

and "eval_dom x t c σ
=⇒ eval x t c σ = (xd, σ’)
=⇒ invariant s c σ
=⇒ invariant (s ∪ reach_cap_tree σ’ c t) c σ’
∧ (∀ ξ ∈ s. mlup σ ξ = mlup σ’ ξ)
∧ traverse_rhs t σ’ = xd"

〈proof 〉

Since the initial solver state fulfills the valid solver state predicate, we can
conclude from the above lemma, that the solve function returns a partial
solution for the queried unknown x and all unknowns on which it transitively
depends.
corollary partial_correctness:

assumes "solve_dom x"
and "solve x = σ"

shows "part_solution σ (reach σ x)"
〈proof 〉

3.7 Termination of TD_plain for Stable Unknowns

In the equivalence proof of the TD and the TD_plain, we need to show that
when the TD trivially terminates because the queried unknown is already
stable and its value is only looked up, the evaluation of this unknown x
with TD_plain also terminates. For this, we exploit that the set of stable
unknowns is always finite during a terminating solver’s run and provide the
following lemma:

15

lemma td1_terminates_for_stabl:
assumes "x ∈ s"

and "invariant s (c - {x}) σ"
and "mlup σ x = xd"
and "finite s"
and "x ∈ c"

shows "iterate_dom x c σ" and "iterate x c σ = (xd, σ)"
〈proof 〉

3.8 Program Refinement for Code Generation

For code generation, we define a refined version of the solver function using
the partial_function keyword with the option attribute.
datatype (’a,’b) state = Q "’a × ’a × ’a set × (’a, ’b) map"

| I "’a × ’a set × (’a, ’b) map" | E "’a × (’a,’b) strategy_tree
× ’a set × (’a, ’b) map"

partial_function (option)
solve_rec_c :: "(’x, ’d) state ⇒ (’d × (’x, ’d) map) option"

where
"solve_rec_c s = (case s of Q (x, y, c, σ) ⇒

if y ∈ c then
Some (mlup σ y, σ)

else
solve_rec_c (I (y, (insert y c), σ))

| I (x, c, σ) ⇒
Option.bind (solve_rec_c (E (x, (T x), c, σ))) (λ(d_new, σ).
if d_new = mlup σ x then

Some (d_new, σ)
else

solve_rec_c (I (x, c, (σ(x 7→ d_new)))))
| E (x, t, c, σ) ⇒

(case t of
Answer d ⇒ Some (d, σ)

| Query y g ⇒ Option.bind (solve_rec_c (Q (x, y, c, σ)))
(λ(yd, σ). solve_rec_c (E (x, (g yd), c, σ)))))"

declare solve_rec_c.simps[simp,code]

definition solve_rec_c_dom where "solve_rec_c_dom p ≡ ∃σ. solve_rec_c
p = Some σ"

definition solve_c :: "’x ⇒ ((’x, ’d) map) option" where
"solve_c x = Option.bind (solve_rec_c (I (x, {x}, Map.empty))) (λ(_,

σ). Some σ)"

definition solve_c_dom :: "’x ⇒ bool" where "solve_c_dom x ≡ ∃σ. solve_c
x = Some σ"

16

We proof the equivalence between the refined solver function for code gen-
eration and the initial version used for the partial correctness proof.
lemma query_iterate_eval_solve_rec_c_equiv:

shows "query_dom x y c σ =⇒ solve_rec_c_dom (Q (x,y,c,σ))
∧ query x y c σ = the (solve_rec_c (Q (x,y,c,σ)))"

and "iterate_dom x c σ =⇒ solve_rec_c_dom (I (x,c,σ))
∧ iterate x c σ = the (solve_rec_c (I (x,c,σ)))"

and "eval_dom x t c σ =⇒ solve_rec_c_dom (E (x,t,c,σ))
∧ eval x t c σ = the (solve_rec_c (E (x,t,c,σ)))"

〈proof 〉

lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r =⇒ (case s of

Q (x,y,c,σ) ⇒ query_dom x y c σ ∧ query x y c σ = r
| I (x,c,σ) ⇒ iterate_dom x c σ ∧ iterate x c σ = r
| E (x,t,c,σ) ⇒ eval_dom x t c σ ∧ eval x t c σ = r)"

〈proof 〉

theorem term_equivalence: "solve_dom x ←→ solve_c_dom x"
〈proof 〉

theorem value_equivalence:
"solve_dom x =⇒ ∃σ. solve_c x = Some σ ∧ solve x = σ"

〈proof 〉

Then, we can define the code equation for solve based on the refined solver
program solve_c.
lemma solve_code_equation [code]:

"solve x = (case solve_c x of Some r ⇒ r
| None ⇒ Code.abort (String.implode ’’Input not in domain’’) (λ_. solve

x))"
〈proof 〉

end

To setup the code generation for the solver locale we use a dedicated rewrite
definition.
global_interpretation TD_plain_Interp: TD_plain D T for D T

defines TD_plain_Interp_solve = TD_plain_Interp.solve
〈proof 〉

end

4 The Top-Down Solver

In this theory we proof the partial correctness of the original TD by estab-
lishing its equivalence with the TD_plain. Compared to the TD_plain, it

17

additionally tracks a set of currently stable unknowns stabl, and a map infl
collecting for each unknown x a list of unknowns influenced by it. This al-
lows for the optimization that skips the re-evaluation of unknowns which are
already stable. It does, however, also require a destabilization mechanism
triggering re-evaluation of all unknowns possibly affected by an unknown
whose value has changed.
theory TD_equiv

imports Main "HOL-Library.Finite_Map" Basics TD_plain
begin

declare fun_upd_apply[simp del]

locale TD = Solver D T
for D :: "’d::bot"

and T :: "’x ⇒ (’x, ’d) strategy_tree"
begin

4.1 Definition of Destabilize and Proof of its Termination

The destabilization function is called by the solver before continuing itera-
tion because the value of an unknown changed. In this case, also the values
of unknowns whose last evaluation was based on the outdated value, need to
be re-evaluated again. This re-evaluation of influenced unknowns is enforced
by following the entries for directly influenced unknowns in the map infl
and removing all transitively influenced unknowns from stabl. This way,
influenced unknowns are not re-evaluated immediately, but instead will be
re-evaluated whenever they are queried again.
function (domintros)
destab_iter :: "’x list ⇒ (’x, ’x list) fmap ⇒ ’x set ⇒ (’x, ’x list)
fmap × ’x set"
and destab :: "’x ⇒ (’x, ’x list) fmap ⇒ ’x set ⇒ (’x, ’x list) fmap
× ’x set" where

"destab_iter [] infl stabl = (infl, stabl)"
| "destab_iter (y # ys) infl stabl = (

let (infl, stabl) = destab y infl (stabl - {y}) in
destab_iter ys infl stabl)"

| "destab x infl stabl = destab_iter (fmlookup_default infl [] x) (fmdrop
x infl) stabl"
〈proof 〉

definition destab_iter_dom where
"destab_iter_dom ls infl stabl = destab_iter_destab_dom (Inl (ls, infl,

stabl))"
declare destab_iter_dom_def[simp]

definition destab_dom where
"destab_dom y infl stabl = destab_iter_destab_dom (Inr (y, infl, stabl))"

18

declare destab_dom_def[simp]

lemma destab_domintros:
"destab_iter_dom [] infl stabl"
"destab_dom y infl (stabl - {y}) =⇒

destab y infl (stabl - {y}) = (infl’, stabl’) =⇒
destab_iter_dom ys infl’ stabl’ =⇒
destab_iter_dom (y # ys) infl stabl"

"destab_iter_dom (fmlookup_default infl [] x) (fmdrop x infl) stabl
=⇒ destab_dom x infl stabl"
〈proof 〉

definition count_non_empty :: "(’a, ’b list) fmap ⇒ nat" where
"count_non_empty m = fcard (ffilter ((6=) [] ◦ snd) (fset_of_fmap m))"

lemma count_non_empty_dec_fmdrop:
assumes "fmlookup_default m [] x 6= []"
shows "Suc (count_non_empty (fmdrop x m)) = count_non_empty m"

〈proof 〉

lemma count_non_empty_eq_fmdrop:
assumes "fmlookup_default m [] x = []"
shows "count_non_empty (fmdrop x m) = count_non_empty m"

〈proof 〉

termination
〈proof 〉

4.2 Definition of the Solver Algorithm

Apart from passing the additional arguments for the solver state, the iterate
function contains, compared to the TD_plain, an additional check to skip
iteration of already stable unknowns. Furthermore, the helper function
destabilize is called whenever the newly evalauated value of an unknown
changed compared to the value tracked in σ. Lastly, a dependency is recorded
whenever returning from a query call for unknown x within the evaluation
of right-hand side of unknown y.
function (domintros)

query :: "’x ⇒ ’x ⇒ ’x set ⇒ (’x, ’x list) fmap ⇒ ’x set ⇒ (’x,
’d) map

⇒ ’d × (’x, ’x list) fmap × ’x set × (’x, ’d) map" and
iterate :: "’x ⇒ ’x set ⇒ (’x, ’x list) fmap ⇒ ’x set ⇒ (’x, ’d)

map
⇒ ’d × (’x, ’x list) fmap × ’x set × (’x, ’d) map" and

eval :: "’x ⇒ (’x, ’d) strategy_tree ⇒ ’x set ⇒ (’x, ’x list)
fmap ⇒ ’x set

⇒ (’x, ’d) map ⇒ ’d × (’x, ’x list) fmap × ’x set ×
(’x, ’d) map" where

19

"query y x c infl stabl σ = (
let (xd, infl, stabl, σ) =

if x ∈ c then
(mlup σ x, infl, stabl, σ)

else
iterate x (insert x c) infl stabl σ

in (xd, fminsert infl x y, stabl, σ))"
| "iterate x c infl stabl σ = (

if x /∈ stabl then
let (d_new, infl, stabl, σ) = eval x (T x) c infl (insert x stabl)

σ in
if mlup σ x = d_new then

(d_new, infl, stabl, σ)
else

let (infl, stabl) = destab x infl stabl in
iterate x c infl stabl (σ(x 7→ d_new))

else
(mlup σ x, infl, stabl, σ))"

| "eval x t c infl stabl σ = (case t of
Answer d ⇒ (d, infl, stabl, σ)

| Query y g ⇒ (
let (yd, infl, stabl, σ) = query x y c infl stabl σ in eval x

(g yd) c infl stabl σ))"
〈proof 〉

definition solve :: "’x ⇒ ’x set × (’x, ’d) map" where
"solve x = (let (_, _, stabl, σ) = iterate x {x} fmempty {} Map.empty

in (stabl, σ))"

definition query_dom where
"query_dom x y c infl stabl σ = query_iterate_eval_dom (Inl (x, y, c,

infl, stabl, σ))"
declare query_dom_def [simp]
definition iterate_dom where

"iterate_dom x c infl stabl σ = query_iterate_eval_dom (Inr (Inl (x,
c, infl, stabl, σ)))"
declare iterate_dom_def [simp]
definition eval_dom where

"eval_dom x t c infl stabl σ = query_iterate_eval_dom (Inr (Inr (x,
t, c, infl, stabl, σ)))"
declare eval_dom_def [simp]

definition solve_dom where
"solve_dom x = iterate_dom x {x} fmempty {} Map.empty"

lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def

20

4.3 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This
lemma removes this redundant assumption such that the rule is easier to
instantiate and gives comprehensible names to the cases.
lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
Eval]

= query_iterate_eval.pinduct(1)[
folded query_dom_def iterate_dom_def eval_dom_def,
of x y c infl stabl σ for x y c infl stabl σ

]
query_iterate_eval.pinduct(2)[

folded query_dom_def iterate_dom_def eval_dom_def,
of x c infl stabl σ for x c infl stabl σ

]
query_iterate_eval.pinduct(3)[

folded query_dom_def iterate_dom_def eval_dom_def,
of x t c infl stabl σ for x t c infl stabl σ

]

lemmas iterate_pinduct[consumes 1, case_names Iterate]
= query_iterate_eval_pinduct(2)[where ?P="λx y c infl stabl σ. True"

and ?R="λx t c infl stabl σ. True", simplified (no_asm_use),
folded query_dom_def iterate_dom_def eval_dom_def]

declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

4.4 Domain Lemmas
lemma dom_backwards_pinduct:

shows "query_dom x y c infl stabl σ
=⇒ y /∈ c =⇒ iterate_dom y (insert y c) infl stabl σ"

and "iterate_dom x c infl stabl σ
=⇒ x /∈ stabl =⇒ (eval_dom x (T x) c infl (insert x stabl) σ ∧

((xd_new, infl1, stabl1, σ’) = eval x (T x) c infl (insert x stabl)
σ

−→ mlup σ’ x 6= xd_new −→ (infl2, stabl2) = destab x infl1
stabl1 −→

iterate_dom x c infl2 stabl2 (σ’(x 7→ xd_new))))"
and "eval_dom x (Query y g) c infl stabl σ

=⇒ (query_dom x y c infl stabl σ ∧
((yd, infl’, stabl’, σ’) = query x y c infl stabl σ −→

eval_dom x (g yd) c infl’ stabl’ σ’))"
〈proof 〉

21

4.5 Case Rules
lemma iterate_continue_fixpoint_cases[consumes 3]:

assumes "iterate_dom x c infl stabl σ"
and "(xd, infl’, stabl’, σ’) = iterate x c infl stabl σ"
and "x ∈ c"

obtains (Stable) "infl’ = infl"
and "stabl’ = stabl"
and "σ’ = σ"
and "mlup σ x = xd"
and "x ∈ stabl"

| (Fixpoint) "eval_dom x (T x) c infl (insert x stabl) σ"
and "(xd, infl’, stabl’, σ’) = eval x (T x) c infl (insert x stabl)

σ"
and "mlup σ’ x = xd"
and "x /∈ stabl"

| (Continue) stabl1 infl1 σ1 xd_new stabl2 infl2
where "eval_dom x (T x) c infl (insert x stabl) σ"

and "(xd_new, infl1, stabl1, σ1) = eval x (T x) c infl (insert x
stabl) σ"

and "mlup σ1 x 6= xd_new"
and "(infl2, stabl2) = destab x infl1 stabl1"
and "iterate_dom x c infl2 stabl2 (σ1(x 7→ xd_new))"
and "(xd, infl’, stabl’, σ’) = iterate x c infl2 stabl2 (σ1(x 7→

xd_new))"
and "x /∈ stabl"

〈proof 〉

lemma iterate_fmlookup:
assumes "iterate_dom x c infl stabl σ"

and "(xd, infl’, stabl’, σ’) = iterate x c infl stabl σ"
and "x ∈ c"

shows "mlup σ’ x = xd"
〈proof 〉

corollary query_fmlookup:
assumes "query_dom y x c infl stabl σ"

and "(xd, infl’, stabl’, σ’) = query y x c infl stabl σ"
shows "mlup σ’ x = xd"
〈proof 〉

lemma query_iterate_lookup_cases [consumes 2]:
assumes "query_dom y x c infl stabl σ"

and "(xd, infl’, stabl’, σ’) = query y x c infl stabl σ"
obtains (Iterate) infl1
where "iterate_dom x (insert x c) infl stabl σ"

and "(xd, infl1, stabl’, σ’) = iterate x (insert x c) infl stabl
σ"

and "infl’ = fminsert infl1 x y"
and "mlup σ’ x = xd"

22

and "x /∈ c"
| (Lookup) "mlup σ x = xd"

and "infl’ = fminsert infl x y"
and "stabl’ = stabl"
and "σ’ = σ"
and "x ∈ c"

〈proof 〉

lemma eval_query_answer_cases [consumes 2]:
assumes "eval_dom x t c infl stabl σ"

and "(xd, infl’, stabl’, σ’) = eval x t c infl stabl σ"
obtains (Query) y g yd infl1 stabl1 σ1
where "t = Query y g"

and "query_dom x y c infl stabl σ"
and "(yd, infl1, stabl1, σ1) = query x y c infl stabl σ"
and "eval_dom x (g yd) c infl1 stabl1 σ1"
and "(xd, infl’, stabl’, σ’) = eval x (g yd) c infl1 stabl1 σ1"
and "mlup σ1 y = yd"

| (Answer) "t = Answer xd"
and "infl’ = infl"
and "stabl’ = stabl"
and "σ’ = σ"

〈proof 〉

4.6 Description of the Effect of Destabilize

To describe the effect of a call to the function destab, we define an induc-
tive set that, based on some infl map, collects all unknowns transitively
influenced by some unknown x.
inductive_set influenced_by for infl x where

base: "fmlookup infl x = Some ys =⇒ y ∈ set ys =⇒ y ∈ influenced_by
infl x"
| step: "y ∈ influenced_by infl x =⇒ fmlookup infl y = Some zs =⇒ z
∈ set zs

=⇒ z ∈ influenced_by infl x"
inductive_set influenced_by_cutoff for infl x c where

base: "x /∈ c =⇒ fmlookup infl x = Some ys =⇒ y ∈ set ys =⇒ y ∈
influenced_by_cutoff infl x c"
| step: "y ∈ influenced_by_cutoff infl x c =⇒ y /∈ c =⇒ fmlookup infl
y = Some zs =⇒ z ∈ set zs

=⇒ z ∈ influenced_by_cutoff infl x c"

lemma influenced_by_aux:
shows "influenced_by infl x = (

⋃
y ∈ slookup infl x. insert y (influenced_by

(fmdrop x infl) y))"
〈proof 〉

lemma lookup_in_influenced:
shows "slookup infl x ⊆ influenced_by infl x"

23

〈proof 〉

lemma influenced_unknowns_fmdrop_set:
shows "influenced_by (fmdrop_set C infl) x = influenced_by_cutoff infl

x C"
〈proof 〉

lemma influenced_by_transitive:
assumes "y ∈ influenced_by infl x"

and "z ∈ influenced_by infl y"
shows "z ∈ influenced_by infl x"
〈proof 〉

lemma influenced_cutoff_subset:
"influenced_by_cutoff infl x C ⊆ influenced_by infl x"

〈proof 〉

lemma influenced_cutoff_subset_2:
shows "influenced_by infl x - (

⋃
y ∈ C. influenced_by infl y) ⊆ influenced_by_cutoff

infl x C"
〈proof 〉

lemma union_influenced_to_cutoff:
shows "insert y (influenced_by infl y) ∪ influenced_by infl x =

insert y (influenced_by infl y) ∪ influenced_by_cutoff infl x (insert
y (influenced_by infl y))"
〈proof 〉

lemma destab_iter_infl_stabl_relation:
shows

"(infl’, stabl’) = destab_iter xs infl stabl
=⇒ infl’ = fmdrop_set (

⋃
x ∈ set xs. insert x (influenced_by infl

x)) infl
∧ stabl’ = stabl - (

⋃
x ∈ set xs. insert x (influenced_by infl x))"

and destab_infl_stabl_relation:
"(infl’, stabl’) = destab x infl stabl
=⇒ infl’ = fmdrop_set (insert x (influenced_by infl x)) infl
∧ stabl’ = stabl - influenced_by infl x"

〈proof 〉

4.7 Predicate for Valid Input States

For the TD, we extend the predicate of valid solver states of the TD_plain,
to also covers the additional data structures stabl and infl :
definition invariant where

"invariant c σ infl stabl ≡
c ⊆ stabl
∧ part_solution σ (stabl - c)
∧ fset (fmdom infl) ⊆ stabl

24

∧ (∀ y∈stabl - c. ∀ x ∈ dep σ y. y ∈ slookup infl x)"

lemma invariant_simp_c_stabl:
assumes "x ∈ c"

and "invariant (c - {x}) σ infl stabl"
shows "invariant c σ infl (insert x stabl)"
〈proof 〉

4.8 Auxiliary Lemmas for Partial Correctness Proofs
lemma stabl_infl_empty:

assumes "x /∈ stabl"
and "fset (fmdom infl) ⊆ stabl"

shows "slookup infl x = {}"
〈proof 〉

lemma dep_closed_implies_reach_cap_tree_closed:
assumes "x ∈ stabl’"

and "∀ ξ∈stabl’ - (c - {x}). dep σ’ ξ ⊆ stabl’"
shows "reach_cap σ’ (c - {x}) x ⊆ stabl’"

〈proof 〉

lemma dep_subset_stable:
assumes "fset (fmdom infl) ⊆ stabl"

and "(∀ y∈stabl - c. ∀ x ∈ dep σ y. y ∈ slookup infl x)"
shows "(∀ ξ∈stabl - c. dep σ ξ ⊆ stabl)"
〈proof 〉

lemma new_lookup_to_infl_not_stabl:
assumes "∀ ξ. (slookup infl1 ξ - slookup infl ξ) ∩ stabl = {}"

and "x /∈ stabl"
and "fset (fmdom infl) ⊆ stabl"

shows "influenced_by infl1 x ∩ stabl = {}"
〈proof 〉

lemma infl_upd_diff:
assumes "∀ ξ. (slookup infl’ ξ - slookup infl ξ) ∩ stabl = {}"
shows "∀ ξ. (slookup (fminsert infl’ x y) ξ - slookup infl ξ) ∩ (stabl

- {y}) = {}"
〈proof 〉

lemma infl_diff_eval_step:
assumes "stabl ⊆ stabl1"

and "∀ ξ. (slookup infl’ ξ - slookup infl1 ξ) ∩ (stabl1 - {x}) = {}"
and "∀ ξ. (slookup infl1 ξ - slookup infl ξ) ∩ (stabl - {x}) = {}"

shows "∀ ξ. (slookup infl’ ξ - slookup infl ξ) ∩ (stabl - {x}) = {}"
〈proof 〉

25

4.9 Preservation of the Invariant

In this section, we prove that the destabilization of some unknown that is
currently being iterated, will preserve the valid solver state invariant.
lemma destab_x_no_dep:

assumes "stabl2 = stabl1 - influenced_by infl1 x"
and "∀ y∈stabl1 - (c - {x}). ∀ z∈dep σ1 y. y ∈ slookup infl1 z"

shows "∀ y ∈ stabl2 - (c - {x}). x /∈ dep σ1 y"
〈proof 〉

lemma destab_preserves_c_subset_stabl:
assumes "c ⊆ stabl"

and "stabl ⊆ stabl’"
shows "c ⊆ stabl’"
〈proof 〉

lemma destab_preserves_infl_dom_stabl:
assumes "(infl’, stabl’) = destab x infl stabl"

and "fset (fmdom infl) ⊆ stabl"
shows "fset (fmdom infl’) ⊆ stabl’"

〈proof 〉

lemma destab_and_upd_preserves_dep_closed_in_infl:
assumes "(infl2, stabl2) = destab x infl1 stabl1"

and "(∀ y∈stabl1 - (c - {x}). ∀ z∈dep σ1 y. y ∈ slookup infl1 z)"
shows "(∀ y∈stabl2 - (c - {x}). ∀ z∈dep (σ1(x 7→ xd’)) y. y ∈ slookup

infl2 z)"
〈proof 〉

lemma destab_upd_preserves_part_sol:
assumes "(infl2, stabl2) = destab x infl1 stabl1"

and "part_solution σ1 (stabl1 - c)"
and "∀ y∈stabl1 - (c - {x}). ∀ x∈dep σ1 y. y ∈ slookup infl1 x"
and "traverse_rhs (T x) σ1 = xd’"

shows "part_solution (σ1(x 7→ xd’)) (stabl2 - (c - {x}))"
〈proof 〉

4.10 TD_plain and TD Equivalence

Finally, we can prove the equivalence of TD and TD_plain. We split this
proof into two parts: first we show that whenever the TD_plain terminates
the TD terminates as well and returns the same result, and second we show
the other direction, i.e., whenever the TD terminates, the TD_plain termi-
nates as well and returns the same result.
declare TD_plain.query_dom_def[of T,simp]
declare TD_plain.eval_dom_def[of T,simp]
declare TD_plain.iterate_dom_def[of T,simp]
declare TD_plain.query.psimps[of T,simp]

26

declare TD_plain.iterate.psimps[of T,simp]
declare TD_plain.eval.psimps[of T,simp]

To carry out the induction proof, we complement the valid solver state
invariant, with a second predicate update_rel, that describes the relation
between output and input solver states.
abbreviation "update_rel x infl stabl infl’ stabl’ ≡

stabl ⊆ stabl’ ∧
(∀ u ∈ stabl. slookup infl u ⊆ slookup infl’ u) ∧
(∀ u. (slookup infl’ u - slookup infl u) ∩ (stabl - {x}) = {})"

4.10.1 TD_plain → TD
lemma TD_plain_TD_equivalence_ind:

shows "TD_plain.query_dom T x y c σ
=⇒ TD_plain.query T x y c σ = (yd, σ’)
=⇒ invariant c σ infl stabl
=⇒ query_dom x y c infl stabl σ

∧ (∃ infl’ stabl’. query x y c infl stabl σ = (yd, infl’, stabl’,
σ’)

∧ invariant c σ’ infl’ stabl’
∧ x ∈ slookup infl’ y
∧ update_rel x infl stabl infl’ stabl’)"

and "TD_plain.iterate_dom T x c σ
=⇒ TD_plain.iterate T x c σ = (xd, σ’)
=⇒ x ∈ c
=⇒ invariant (c - {x}) σ infl stabl
=⇒ iterate_dom x c infl stabl σ

∧ (∃ infl’ stabl’. iterate x c infl stabl σ = (xd, infl’, stabl’,
σ’)

∧ invariant (c - {x}) σ’ infl’ stabl’
∧ x ∈ stabl’
∧ update_rel x infl stabl infl’ stabl’)"

and "TD_plain.eval_dom T x t c σ
=⇒ TD_plain.eval T x t c σ = (xd, σ’)
=⇒ invariant c σ infl stabl
=⇒ x ∈ stabl
=⇒ eval_dom x t c infl stabl σ

∧ (∃ infl’ stabl’. eval x t c infl stabl σ = (xd, infl’, stabl’,
σ’)

∧ invariant c σ’ infl’ stabl’
∧ traverse_rhs t σ’ = xd
∧ (∀ y∈dep_aux σ’ t. x ∈ slookup infl’ y)
∧ update_rel x infl stabl infl’ stabl’)"

〈proof 〉

corollary TD_plain_TD_equivalence:
assumes "TD_plain.solve_dom T x"

and "TD_plain.solve T x = σ"

27

shows "∃ stabl. solve_dom x ∧ solve x = (stabl, σ)"
〈proof 〉

4.10.2 TD → TD_plain
lemmas TD_plain_dom_defs =

TD_plain.query_dom_def[of T]
TD_plain.iterate_dom_def[of T]
TD_plain.eval_dom_def[of T]

lemma TD_TD_plain_equivalence_ind:
shows "query_dom x y c infl stabl σ

=⇒ (yd, infl’, stabl’, σ’) = query x y c infl stabl σ
=⇒ invariant c σ infl stabl
=⇒ finite stabl
=⇒ invariant c σ’ infl’ stabl’
∧ TD_plain.query_dom T x y c σ
∧ (yd, σ’) = TD_plain.query T x y c σ
∧ finite stabl’
∧ x ∈ slookup infl’ y
∧ update_rel x infl stabl infl’ stabl’"

and "iterate_dom x c infl stabl σ
=⇒ (xd, infl’, stabl’, σ’) = iterate x c infl stabl σ
=⇒ x ∈ c
=⇒ invariant (c - {x}) σ infl stabl
=⇒ finite stabl
=⇒ invariant (c - {x}) σ’ infl’ stabl’
∧ TD_plain.iterate_dom T x c σ
∧ (xd, σ’) = TD_plain.iterate T x c σ
∧ finite stabl’
∧ x ∈ stabl’
∧ update_rel x infl stabl infl’ stabl’"

and "eval_dom x t c infl stabl σ
=⇒ (xd, infl’, stabl’, σ’) = eval x t c infl stabl σ
=⇒ invariant c σ infl stabl
=⇒ x ∈ stabl
=⇒ finite stabl
=⇒ invariant c σ’ infl’ stabl’
∧ TD_plain.eval_dom T x t c σ
∧ (xd, σ’) = TD_plain.eval T x t c σ
∧ finite stabl’
∧ traverse_rhs t σ’ = xd
∧ (∀ y∈dep_aux σ’ t. x ∈ slookup infl’ y)
∧ update_rel x infl stabl infl’ stabl’"

〈proof 〉

corollary TD_TD_plain_equivalence:
assumes "solve_dom x"

and "solve x = (stabl, σ)"

28

shows "TD_plain.solve_dom T x ∧ TD_plain.solve T x = σ"
〈proof 〉

4.11 Partial Correctness of the TD

From the equivalence of the TD and TD_plain and the partial correctness
proof of the TD_plain we can now conclude partial correctness also for the
TD.
corollary partial_correctness:

assumes "solve_dom x"
and "solve x = (stabl, σ)"

shows "part_solution σ stabl" and "reach σ x ⊆ stabl"
〈proof 〉

4.12 Program Refinement for Code Generation

To derive executable code for the TD, we do a program refinement and
define an equivalent solve function based on partial_function with options
that can be used for the code generation.
datatype (’a,’b) state = Q "’a × ’a × ’a set × (’a, ’a list) fmap ×
’a set × (’a, ’b) map"

| I "’a × ’a set × (’a, ’a list) fmap × ’a set × (’a, ’b) map"
| E "’a × (’a,’b) strategy_tree × ’a set × (’a, ’a list) fmap × ’a

set × (’a, ’b) map"

partial_function (option) solve_rec_c ::
"(’x, ’d) state ⇒ (’d × (’x, ’x list) fmap × ’x set × (’x, ’d) map)

option"
where
"solve_rec_c s = (case s of Q (y,x,c,infl,stabl,σ) ⇒ Option.bind

(if x ∈ c then
Some (mlup σ x, infl, stabl, σ)

else
solve_rec_c (I (x, (insert x c), infl, stabl, σ)))

(λ (xd, infl, stabl, σ). Some (xd, fminsert infl x y, stabl, σ))
| I (x,c,infl,stabl,σ) ⇒

if x /∈ stabl then Option.bind (
solve_rec_c (E (x, (T x), c, infl, insert x stabl, σ))) (λ(d_new,

infl, stabl, σ).
if mlup σ x = d_new then

Some (d_new, infl, stabl, σ)
else

let (infl, stabl) = destab x infl stabl in
solve_rec_c (I (x, c, infl, stabl, σ(x 7→ d_new))))

else
Some (mlup σ x, infl, stabl, σ)

| E (x,t,c,infl,stabl,σ) ⇒ (case t of
Answer d ⇒ Some (d, infl, stabl, σ)

29

| Query y g ⇒ (
Option.bind (solve_rec_c (Q (x, y, c, infl, stabl, σ))) (λ(yd,

infl, stabl, σ).
solve_rec_c (E (x, g yd, c, infl, stabl, σ))))))"

definition solve_rec_c_dom where "solve_rec_c_dom p ≡ ∃σ. solve_rec_c
p = Some σ"

declare destab.simps[code]
declare destab_iter.simps[code]
declare solve_rec_c.simps[simp,code]

definition solve_c :: "’x ⇒ (’x set × ((’x, ’d) map)) option" where
"solve_c x = Option.bind (solve_rec_c (I (x, {x}, fmempty, {}, Map.empty)))

(λ(_, _, stabl, σ). Some (stabl,σ))"

definition solve_c_dom :: "’x ⇒ bool" where "solve_c_dom x ≡ ∃σ. solve_c
x = Some σ"

We prove the equivalence of the refined solver function for code generation
and the initial version used for the partial correctness proof.
lemma query_iterate_eval_solve_rec_c_equiv:

shows "query_dom x y c infl stabl σ =⇒ solve_rec_c_dom (Q (x,y,c,infl,stabl,σ))
∧ query x y c infl stabl σ = the (solve_rec_c (Q (x,y,c,infl,stabl,σ)))"

and "iterate_dom x c infl stabl σ =⇒ solve_rec_c_dom (I (x,c,infl,stabl,σ))
∧ iterate x c infl stabl σ = the (solve_rec_c (I (x,c,infl,stabl,σ)))"

and "eval_dom x t c infl stabl σ =⇒ solve_rec_c_dom (E (x,t,c,infl,stabl,σ))
∧ eval x t c infl stabl σ = the (solve_rec_c (E (x,t,c,infl,stabl,σ)))"

〈proof 〉

lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r =⇒ (case s of

Q (x,y,c,infl,stabl,σ) ⇒ query_dom x y c infl stabl σ
∧ query x y c infl stabl σ = r

| I (x,c,infl,stabl,σ) ⇒ iterate_dom x c infl stabl σ
∧ iterate x c infl stabl σ = r

| E (x,t,c,infl,stabl,σ) ⇒ eval_dom x t c infl stabl σ
∧ eval x t c infl stabl σ = r)"

〈proof 〉

theorem term_equivalence: "solve_dom x ←→ solve_c_dom x"
〈proof 〉

theorem value_equivalence: "solve_dom x =⇒ ∃σ. solve_c x = Some σ ∧
solve x = σ"
〈proof 〉

With the equivalence of the refined version and the initial version proven,
we can specify a the code equation.

30

lemma solve_code_equation [code]:
"solve x = (case solve_c x of Some r ⇒ r
| None ⇒ Code.abort (String.implode ’’Input not in domain’’) (λ_. solve

x))"
〈proof 〉

end

Finally, we use a dedicated rewrite rule for the code generation of the solver
locale.
global_interpretation TD_Interp: TD D T for D T

defines
TD_Interp_solve = TD_Interp.solve

〈proof 〉

end

5 Example

theory Example
imports TD_plain TD_equiv

begin

As an example, let us consider a program analysis, namely the analysis of
must-be initialized program variables for the following program:

a = 17

while true:

b = a * a

if b < 10: break

a = a - 1

The program corresponds to the following control-flow graph.
w

z

x

y

a = 17
[true],

b = a * a

[¬ true]

[¬b < 10],

a = a - 1

[b < 10]

From the control-flow graph of the program, we generate the equation sys-
tem to be solved by the TD. The left-hand side of an equation consists of
an unknown which represents a program point. The right-hand side for
some unknown describes how the set of must-be initialized variables at the
corresponding program point can be computed from the sets of must-be
initialized variables at the predecessors.

31

5.1 Definition of the Domain
datatype pv = a | b

A fitting domain to describe possible values for the must-be initialized anal-
ysis, is an inverse power set lattice of the set of all program variables. The
least informative value which is always a true over-approximation for the
must-be initialized analysis is the empty set (called top), whereas the initial
value to start fixpoint iteration from is the set {a, b} (called bot). The join
operation, which is used to combine the values of several incoming edges
to obtain a sound over-approximation over all paths, corresponds to the
intersection of sets.
typedef D = "Pow ({a, b})"
〈proof 〉

setup_lifting D.type_definition_D

lift_definition top :: "D" is "{}" 〈proof 〉
lift_definition bot :: D is "{a, b}" 〈proof 〉
lift_definition join :: "D ⇒ D ⇒ D" is Set.inter 〈proof 〉

Additionally, we define some helper functions to create values of type D.
lift_definition insert :: "pv ⇒ D ⇒ D"

is "λe d. if e ∈ {a, b} then Set.insert e d else d"
〈proof 〉

definition set_to_D :: "pv set ⇒ D" where
"set_to_D = (λs. fold (λe acc. if e ∈ s then insert e acc else acc)

[a, b] top)"

We show that the considered domain fulfills the sort constraints bot and
equal as expected by the solver.
instantiation D :: bot
begin

definition bot_D :: D
where "bot_D = bot"

instance 〈proof 〉
end

instantiation D :: equal
begin

definition equal_D :: "D ⇒ D ⇒ bool"
where "equal_D d1 d2 = ((Rep_D d1) = (Rep_D d2))"

instance 〈proof 〉
end

32

5.2 Definition of the Equation System

The following equation system can be generated for the must-be initialized
analysis and the program from above.

T :

w = ∅
z = (y ∪ {a}) ∩ (w ∪ {a})
y = z ∪ {b}
x = y ∩ z

Below we define this equation system and express the right-hand sides with
strategy trees.
datatype Unknown = X | Y | Z | W

fun ConstrSys :: "Unknown ⇒ (Unknown, D) strategy_tree" where
"ConstrSys X = Query Y (λd1. if d1 = top then Answer top

else Query Z (λd2. Answer (join d1 d2)))"
| "ConstrSys Y = Query Z (λd. if d ∈ {top, set_to_D {b}}

then Answer (set_to_D {b}) else Answer bot)"
| "ConstrSys Z = Query Y (λd1. if d1 ∈ {top, set_to_D {a}}

then Answer (set_to_D {a})
else Query W (λd2. if d2 ∈ {top, set_to_D {a}}

then Answer (set_to_D {a}) else Answer bot))"
| "ConstrSys W = Answer top"

5.3 Solve the Equation System with TD_plain

We solve the equation system for each unknown, first with the TD_plain
and in the following also with the TD. Note, that we use a finite map that
defaults to bot for keys that are not contained in the map. This can happen
in two cases: (1) when the value computed for that unknown is equal to bot,
or (2) if the unknown was not queried during the solving and therefore no
value was stored in the finite map for it.
definition solution_plain_X where

"solution_plain_X = TD_plain_Interp_solve ConstrSys X"
value "(solution_plain_X X, solution_plain_X Y, solution_plain_X Z, solution_plain_X
W)"

definition solution_plain_Y where
"solution_plain_Y = TD_plain_Interp_solve ConstrSys Y"

value "(solution_plain_Y X, solution_plain_Y Y, solution_plain_Y Z, solution_plain_Y
W)"

definition solution_plain_Z where
"solution_plain_Z = TD_plain_Interp_solve ConstrSys Z"

value "(solution_plain_Z X, solution_plain_Z Y, solution_plain_Z Z, solution_plain_Z
W)"

33

definition solution_plain_W where
"solution_plain_W = TD_plain_Interp_solve ConstrSys W"

value "(solution_plain_W X, solution_plain_W Y, solution_plain_W Z, solution_plain_W
W)"

5.4 Solve the Equation System with TD
definition solutionX where "solutionX = TD_Interp_solve ConstrSys X"
value "((snd solutionX) X, (snd solutionX) Y, (snd solutionX) Z, (snd
solutionX) W)"

definition solutionY where "solutionY = TD_Interp_solve ConstrSys Y"
value "((snd solutionY) X, (snd solutionY) Y, (snd solutionY) Z, (snd
solutionY) W)"

definition solutionZ where "solutionZ = TD_Interp_solve ConstrSys Z"
value "((snd solutionZ) X, (snd solutionZ) Y, (snd solutionZ) Z, (snd
solutionZ) W)"

definition solutionW where "solutionW = TD_Interp_solve ConstrSys W"
value "((snd solutionW) X, (snd solutionW) Y, (snd solutionW) Z, (snd
solutionW) W)"

end

References

[1] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi, edi-
tors, Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977,
pages 238–252. ACM, 1977.

[2] M. Hofmann, A. Karbyshev, and H. Seidl. What is a pure functional?
In S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and
P. G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer
Science, pages 199–210. Springer, 2010.

[3] S. Tilscher, Y. Stade, M. Schwarz, R. Vogler, and H. Seidl. The Top-
Down Solver—An Exercise in A2I. In V. Arceri, A. Cortesi, P. Ferrara,
and M. Olliaro, editors, Challenges of Software Verification, volume 238,
pages 157–179. Springer Nature Singapore, Singapore, 2023.

34

	Introduction
	Preliminaries
	Strategy Trees
	Auxiliary Lemmas for Default Maps
	Functions on the Constraint System
	Subtrees of Strategy Trees
	Dependencies between Unknowns
	Set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Reach
	Partial solution

	The plain Top-Down Solver
	Definition of the Solver Algorithm
	Refinement of Auto-Generated Rules
	Domain Lemmas
	Case Rules
	Predicate for Valid Input States
	Partial Correctness Proofs
	Termination of TD_plain for Stable Unknowns
	Program Refinement for Code Generation

	The Top-Down Solver
	Definition of Destabilize and Proof of its Termination
	Definition of the Solver Algorithm
	Refinement of Auto-Generated Rules
	Domain Lemmas
	Case Rules
	Description of the Effect of Destabilize
	Predicate for Valid Input States
	Auxiliary Lemmas for Partial Correctness Proofs
	Preservation of the Invariant
	TD_plain and TD Equivalence
	Partial Correctness of the TD
	Program Refinement for Code Generation

	Example
	Definition of the Domain
	Definition of the Equation System
	Solve the Equation System with TD_plain
	Solve the Equation System with TD

