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Abstract

The top-down solver (TD) is a local and generic fixpoint algorithm
used for abstract interpretation. Being local means it only evaluates
equations required for the computation of the value of some initially
queried unknown, while being generic means that it is applicable for
arbitrary equation systems where right-hand sides are considered as
black-box functions. To avoid unnecessary evaluations of right-hand
sides, the TD collects stable unknowns that need not be re-evaluated.
This optimization requires the additional tracking of dependencies be-
tween unknowns and a non-local destabilization mechanism to assure
the re-evaluation of previously stable unknowns that were affected by
a changed value.

Due to the recursive evaluation strategy and the non-local destabi-
lization mechanism of the TD, its correctness is non-obvious. To pro-
vide a formal proof of its partial correctness, we employ the insight that
the TD can be considered an optimized version of a considerably sim-
pler recursive fixpoint algorithm. Following this insight, we first prove
the partial correctness of the simpler recursive fixpoint algorithm, the
plain TD. Then, we transfer the statement of partial correctness to
the TD by establishing the equivalence of both algorithms concerning
both their termination behavior and their computed result.

*The first two authors contributed equally to this research and are ordered alphabeti-
cally.
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1 Introduction

Static analysis of programs based on abstract interpretation requires effi-
cient and reliable fixpoint engines [1]. In this work, we focus on the top-
down solver (TD) [3]—a generic fixpoint algorithm that can handle arbitrary
equation systems, even those with infinitely many equations. The latter is
achieved by a property called local: When the TD is invoked to compute the
value of some unknown, it recursively descends only into those unknowns
on which the initially queried unknown depends. In order to avoid redun-
dant re-evaluations of equations, the TD maintains a set of stable unknowns
whose re-evaluation can be replaced by a simple lookup. Removing un-
knowns from the set of stable unknowns when they are possibly affected
by changes to other unknowns, requires information about dependencies
between unknowns. These dependencies need not be provided beforehand
but are detected through self-observation on the fly. This makes the TD
suitable also for equation systems where dependencies change dynamically
during the solver’s computation.

By removing the collecting of stable unknowns and dependency tracking,
we obtain a stripped version of the TD, which we call the plain TD. The
plain TD is capable of solving the same equation systems as the original TD
and also shares the same termination behavior, but also re-evaluates those
unknowns that have already been evaluated and whose value could just be
looked up. In the first part of this work, we show the partial correctness of
the plain TD. We use a mutual induction following its computation trace
to establish invariants describing a valid solver state. From this, the partial
correctness of the solver’s result can be derived. The proof is described in
Section 3.

We then recover the original TD from the plain TD and prove the equiva-
lence between the two, i.e., that they share the same termination behavior
and return the same result whenever they terminate. This way, the partial
correctness statement from the plain TD is shown to carry over to the orig-
inal TD. The essential part of this proof is twofold: First, we extend the
invariants to describe the additional data structures for collecting stable un-
knowns and the dependencies between unknowns. Second, we show that the
destabilization of an unknown preserves those invariants. The corresponding
proofs are outlined in Section 4.

We conclude this work with an example in Section 5 showing the application
of the TD to a simple equation system derived from a program for the
analysis of must-be initialized variables.



2 Preliminaries

Before we define the TD in Isabelle/HOL and start with its partial correct-
ness proof, we define all required data structures, formalize definitions and
prove auxiliary lemmas.

theory Basics
imports Main "HOL-Library.Finite_Map"
begin

unbundle lattice_syntax

2.1 Strategy Trees

The constraint system is a function mapping each unknown to a right-hand
side to compute its value. We require the right-hand sides to be pure func-
tionals [2]. This means that they may query the values of other unknowns
and perform additional computations based on those, but they may, e.g., not
spy on the solver’s data structures. Such pure functions can be expressed
as strategy trees.

datatype (’a, ’b) strategy_tree = Answer °’b |
Query ’a "’b = (’a , ’b) strategy_tree"

The solver is defined based on a black-box function T describing the con-
straint system and under the assumption that the special element L exists
among the values.

locale Solver =

fixes D :: "’d :: bot"
and T :: "’x = (’x , ’d) strategy_tree"
begin

2.2 Auxiliary Lemmas for Default Maps

The solver maintains a solver state to implement optimizations based on
self-observation. Among the data structures for the solver state are maps
that return a default value for non-existing keys. In the following, we define
some helper functions and lemmas for these.

definition fmlookup_default where
"fmlookup_default m d x = (case fmlookup m x of Some v = v | None =
d) n

abbreviation slookup where
"slookup infl x = set (fmlookup_default infl [] x)"

definition mlup where
"mlup ¢ x = case ¢ x of Some v = v | None = 1"



definition fminsert where
"fminsert infl x y = fmupd x (y # (fmlookup_default infl [] x)) infl"

lemma set_fmlookup_default_cases:
assumes "y € slookup infl x"
obtains (1) xs where "fmlookup infl x = Some xs" and "y € set xs"
using assms that unfolding fmlookup_default_def
by (cases "fmlookup infl x"; auto)

lemma notin_fmlookup_default_cases:
assumes "y ¢ slookup infl x"
obtains (1) xs where "fmlookup infl x = Some xs" and "y ¢ set xs"
| (2) "fmlookup infl x = None"
using assms that unfolding fmlookup_default_def
by (cases "fmlookup infl x"; auto)

lemma slookup_helper[simp]:
assumes "fmlookup m x = Some ys"
and "y € set ys"
shows "y € slookup m x"
using assms(1,2) notin_fmlookup_default_cases by force

lemma lookup_implies_mlup:
assumes "o x =0’ x’"
shows "mlup o x = mlup o’ x’"
using assms
unfolding mlup_def fmlookup_default_def
by auto

lemma fmlookup_fminsert:

assumes "fmlookup_default infl [] x = xs"

shows "fmlookup (fminsert infl x y) x = Some (y # xs)"
proof(cases "fmlookup infl x")

case None

then show ?thesis using assms unfolding fmlookup_default_def fminsert_def
by auto
next

case (Some a)

then show ?thesis using assms unfolding fmlookup_default_def fminsert_def
by auto
qed

lemma fmlookup_fminsert’:
obtains xs ys
where "fmlookup (fminsert infl x y) x = Some xs"
and "fmlookup_default infl [] x = ys" and "xs =y # ys"
using that fmlookup_fminsert
by fastforce



lemma fmlookup_default_drop_set:

"fmlookup_default (fmdrop_set A m) [] x = (if x ¢ A then fmlookup_default
m [] x else [])"

by (simp add: fmlookup_default_def)

lemma mlup_eq mupd_set:
assumes "x ¢ s"
and "Vyes. mlup ¢ y = mlup o’ y"
shows "Vye€s. mlup o y = mlup (¢’ (x — xd)) y"
using assms
by (simp add: mlup_def)

2.3 Functions on the Constraint System

The function rhs_length computes the length of a specific path in the strat-
egy tree defined by a value assignment for unknowns o.

function (domintros) rhs_length where
"rhs_length (Answer d) _ = 0" |
"rhs_length (Query x f) o = 1 + rhs_length (f (mlup o x)) o"
by pat_completeness auto

termination rhs_length
proof (rule alll, safe)
fix t :: "(’a, ’b) strategy_tree" and o :: "(’a, ’b) map"
show "rhs_length_dom (t, o)"
by (induction t, auto simp add: rhs_length.domintros)
qed

The function traverse_rhs traverses a strategy tree and determines the
answer when choosing the path through the strategy tree based on a given
unknown-value mapping o

function (domintros) traverse_rhs where
"traverse_rhs (Answer d) _ = d" |
"traverse_rhs (Query x f) o = traverse_rhs (f (mlup o x)) o"
by pat_completeness auto

termination traverse_rhs
by (relation "measure (A(t,o). rhs_length t o)") auto

The function eq evaluates the right-hand side of an unknown x with an
unknown-value mapping o.

definition eq :: "’x = (°x, ’d) map = ’d" where
"eq x 0 = traverse_rhs (T x) o"
declare eq_def[simp]



2.4 Subtrees of Strategy Trees

We define the set of subtrees of a strategy tree for a specific path (defined
through o).

inductive__set subt_aux ::
"(’x, ’d) map = (’x, ’d) strategy_tree = (’x, ’d) strategy_tree
set" for o t where
base: "t € subt_aux o t"
| step: "t’ € subt_aux 0 t = t’ = Query y g = (g (mlup o y)) € subt_aux
o t"

definition subt where
"subt o x = subt_aux o (T x)"

lemma subt_of_answer_singleton:
shows "subt_aux o (Answer d) = {Answer d}"
proof (intro set_eqI iffI, goal_cases)
case (1 x)
then show ?case by (induction rule: subt_aux.induct; simp)
next
case (2 x)
then show ?case by (simp add: subt_aux.base)
qed

lemma subt_transitive:
assumes "t’ € subt_aux o t"
shows "subt_aux o t’ C subt_aux o t"
proof
fix 7
assume "7 € subt_aux o t’"
then show "7 € subt_aux o t"
using assms
by (induction rule: subt_aux.induct; simp add: subt_aux.step)
qed

lemma subt_unfold:
shows "subt_aux o (Query x f) = insert (Query x f) (subt_aux o (f (mlup
o x)))"
proof(intro set_eql iffI, goal_cases)
case (1 1)
then show ?case
using subt_aux.simps
by (induction rule: subt_aux.induct; blast)
next
case (2 1)
then show ?case
proof (elim insertE, goal_cases)
case 1
then show ?case



using subt_aux.base
by simp
next
case 2
then show ?case
using subt_transitive[of "f (mlup o x)" o "Query x f"] subt_aux.base
subt_aux.step
by auto
qed
qed

2.5 Dependencies between Unknowns

The set dep o x collects all unknowns occuring in the right-hand side of x
when traversing it with o.

function dep_aux where
"dep_aux o (Answer d) = {}"

| "dep_aux o (Query y g) = insert y (dep_aux o (g (mlup o y)))"
by pat_completeness auto

termination dep_aux
by (relation "measure (A(o, t). rhs_length t ¢)") auto

definition dep where
"dep o x = dep_aux o (T x)"

lemma dep_aux_eq:
assumes "Vy € dep_aux o t. mlup o y = mlup o’ y"
shows "dep_aux o t = dep_aux o’ t"
using assms
by (induction t rule: strategy_tree.induct) auto

lemmas dep_eq = dep_aux_eqlof o "T x" ¢’ for ¢ x 0’, folded dep_def]

lemma subt_implies_dep:
assumes "Query y g € subt_aux o t"
shows "y € dep_aux o t"
using assms subt_of_answer_singleton subt_unfold
by (induction t) auto

lemma solution_sufficient:
assumes "Vy € dep o x. mlup 0 y = mlup o’ y"
shows "eq x 0 = eq x 0"
proof -
obtain xd where xd_def: "eq x o = xd" by simp
have "traverse_rhs t o’ = xd"
if "t € subt o x"
and "traverse_rhs t o = xd"
for t



using that
proof(induction t rule: strategy_tree.induct)
case (Query y g)
define t where [simp]: "t = g (mlup o y)"
have "traverse rhs t o’ = xd"
using subt_aux.step Query.prems Query.IH
by (simp add: subt_def)
then show ?case
using subt_implies_dep[where 7t="T x", folded subt_def dep_def]
Query.prems (1) assms(1)
by simp
qged simp
then show ?thesis
using assms subt_aux.base xd_def
unfolding eq_def subt_def
by simp
qed

corollary eq_mupd_no_dep:
assumes "x ¢ dep o y"
shows "eq y 0 =eqy (0 (x — xd))"
using assms solution_sufficient fmupd_lookup
unfolding fmlookup_default_def mlup_def
by simp

2.6 Set Reach

Let reach be the set of all unknowns contributing to x (for a given o). This
corresponds to the set of all unknowns on which x transitively depends on
when evaluating the necessary right-hand sides with o.

inductive__set reach for o x where
base: "x € reach o x"
| step: "y € reach 0 x = z € dep 0 y = z € reach o x"

The solver stops descending when it encounters an unknown whose evalua-
tion it has already started (i.e. an unknown in c). Therefore, reach might
collect contributing unknowns which the solver did not descend into. For
a predicate, that relates more closely to the solver’s history, we define the
set reach_cap. Similarly to reach it collects the unknowns on which an
unknown transitively depends, but only until an unknown in c is reached.

inductive__set reach_cap_tree for ¢ ¢ t where

base: "x € dep_aux o0 t = x € reach_cap_tree o c t"
| step: "y € reach_cap_tree c ct — y ¢ ¢ = z € dep 0y = z €
reach_cap_tree o c t"

abbreviation "reach_cap o ¢ x
= insert x (if x € c¢ then {} else reach_cap_tree o (insert x c) (T

X)) "



lemma reach_cap_tree_answer_empty[simp] :
"reach_cap_tree o c (Answer d) = {}"

proof (intro equalsOI, goal_cases)
case (1 y)

then show ?case by (induction rule: reach_cap_tree.induct; simp)
qed

lemma dep_subset_reach_cap_tree:

"dep_aux o’ t C reach_cap_tree o’ c t"
proof(intro subsetI, goal_cases)
case (1 x)

then show ?case using reach_cap_tree.base
by (induction rule: dep_aux.induct; auto)
qed

lemma reach_cap_tree_subset:

shows "reach_cap_tree o ¢ t C reach_cap_tree o (c - {x}) t"
proof

fix xa

show "xa € reach_cap_tree o ¢ t = xa € reach_cap_tree o (c - {x})
t”

case base

proof (induction rule: reach_cap_tree.induct)
then show 7case

using reach_cap_tree.base
by simp
next
case (step y’ z)
then show ?case
using reach_cap_tree.step
by simp
qed
qed

lemma reach_empty_capped:
shows "reach o x

= insert x (reach_cap_tree o {x} (T x))"
proof(intro equalityl subsetI, goal_cases)

case (1 y)

then show ?case

proof (induction rule: reach.induct)
case (step y z)

then show ?7case using reach_cap_tree.base[of z o "T x"] reach_cap_tree.step[of
y o "{x}"]
unfolding dep_def by blast
qged simp
next
case (2 y)

then show ?case
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using reach.base
proof(cases "y = x")
case False
then have "y € reach_cap_tree o {x} (T x)"
using 2
by simp
then show ?thesis
proof (induction rule: reach_cap_tree.induct)
case (base y)
then show 7case
using reach.base reach.step[of x]
unfolding dep_def
by auto
next
case (step y z)
then show ?case
using reach.step
by blast
qed
qged simp
qed

lemma dep_aux_implies_reach_cap_tree:
assumes "y ¢ c"
and "y € dep_aux o t"
shows "reach_cap_tree o ¢ (T y) C reach_cap_tree o c t"
proof
fix xa
assume "xa € reach_cap_tree o ¢ (T y)"
then show "xa € reach_cap_tree o c t"
proof(induction rule: reach_cap_tree.induct)
case (base x)
then show 7case
using assms reach_cap_tree.base reach_cap_tree.step[unfolded dep_def,
of yl
by simp
next
case (step y z)
then show 7case
using reach_cap_tree.step
by simp
qed
qed

lemma reach_cap_tree_simp:
shows "reach_cap_tree o c t
= dep_aux 0 t U (|Jé€dep_aux o t - c. reach_cap_tree o (insert &
e (T O
proof (intro set_eqI iffI, goal_cases)

11



case (1 x)
then show ?case
proof (induction rule: reach_cap_tree.induct)
case (base x)
then show ?case using reach_cap_tree.step by auto
next
case (step y z)
then show ?case using reach_cap_tree.steplof y o] reach_cap_tree.base[of
z o "T y"]
unfolding dep_def
by blast
qed
next
case (2 x)
then show 7case
proof (elim UnE, goal_cases)
case 1
then show ?case using reach_cap_tree.base by simp
next
case 2
then obtain y where "x € reach_cap_tree o (insert y c¢) (T y)" and
"y € dep_aux o t - c" by auto
then show ?case
using dep_aux_implies_reach_cap_tree[of y c] reach_cap_tree_subset [of
o "insert y c" "T y" yl
by auto
qed
qed

lemma reach_cap_tree_step:
assumes "mlup o y = yd"
shows "reach_cap_tree o ¢ (Query y g) = insert y (if y € c¢ then {}
else reach_cap_tree o (insert y c) (T y)) U reach_cap_tree o c (g
yd)"
using assms reach_cap_tree_simp[of o c]
by auto

lemma reach_cap_tree_eq:
assumes "Vxcreach_cap_tree o ¢ t. mlup ¢ x = mlup o’ x"
shows "reach_cap_tree o ¢ t = reach_cap_tree o’ c t"
proof(intro equalityl subsetI, goal_cases)
case (1 x)
then show ?case
proof (induction rule: reach_cap_tree.induct)
case (base x)
then show 7case
using assms reach_cap_tree.base[of _ o t c] dep_aux_eq reach_cap_tree.base[of
x o’ t c]
by metis

12



next
case (step y z)
then show 7case
using assms reach_cap_tree.step[of y o c t] dep_eq reach_cap_tree.step[of
yo’ct z]
by blast
qed
next
case (2 x)
then show ?case
proof(induction rule: reach_cap_tree.induct)
case (base x)
then show 7case
using assms reach_cap_tree.base[of _ o t c] dep_aux_eq reach_cap_tree.base[of
x 0’ t c]
by metis
next
case (step y z)
then show 7case
using assms reach_cap_tree.step[of y o c t] dep_eq reach_cap_tree.step[of
yo’ct z]
by blast
qed
qed

lemma reach_cap_tree_simp2:
shows "insert x (if x € c then {} else reach_cap_tree o ¢ (T x)) =
insert x (if x € c then {} else reach_cap_tree o (insert x c)
(T x))"
proof(cases "x € c" rule: case_split[case_names called not_called])
case not_called
moreover have "insert x (reach_cap_tree o (insert x c) (T x))
= insert x (reach_cap_tree o c (T x))"
proof(intro equalityIl subsetI, goal_cases)
case (1 y)
then show 7case
proof(cases "x = y")
case False
then show 7thesis
by (metis "1" Diff_insert_absorb in_mono insert_mono not_called
reach_cap_tree_subset)

qged auto
next
case (2 y)

then show ?case
proof(cases "x = y")
case False
then show 7thesis
proof(cases "y € dep o x" rule: case_split[case_names xdep no_xdep])

13



case xdep
then show ?thesis using 2 reach_cap_tree.base[of y o "T x" "insert
x c", folded dep_def]
by auto
next
case no_xdep
have "y € reach_cap_tree o c (T x)" using 2 False by auto
then show ?thesis
proof (induction rule: reach_cap_tree.induct)
case (base x)
then show ?case by (simp add: reach_cap_tree.base)
next
case (step y z)
then show ?case using reach_cap_tree.step reach_cap_tree.base
dep_def by blast
qed
qed
qed auto
qed
then show 7thesis by auto
qged auto

lemma dep_closed_implies_reach_cap_tree_closed:
assumes "x € s"
and "Vées - (¢ - {x}). dep o’ &
shows "reach_cap o’ (c - {x}) x C
proof (intro subsetI, goal_cases)
case (1 y)
then show ?7case using assms
proof(cases "x = y")
case False
then have "y € reach_cap_tree o’ (c - {x}) (T x)"
using 1 reach_cap_tree_simp2[of x "c - {x}" ¢’] by auto
then show 7thesis using assms
proof(induction)
case (base y)
then show 7case using base.hyps dep_def by auto
next
case (step y z)
then show ?case by (metis (no_types, lifting) Diff_iff insert_subset
mk_disjoint_insert)
qed
qged simp
qed

C sl’
sl!

lemma reach_cap_tree_subset2:
assumes "mlup o y = yd"
shows "reach_cap_tree o c (g yd) C reach_cap_tree o c (Query y g)"
using reach_cap_tree_step[OF assms] by blast

14



lemma reach_cap_tree_subset_subt:
assumes "t’ € subt_aux o t"
shows "reach_cap_tree o c¢ t’ C reach_cap_tree o c t"
using assms
proof(induction rule: subt_aux.induct)
case (step t’ y g)
then show ?case using reach_cap_tree_step by simp
qed simp

lemma reach_cap_tree_singleton:
assumes '"reach_cap_tree o (insert x c) t C {x}"
obtains (Answer) d where "t = Answer d"
| (Query) f where "t = Query x f"
and "dep_aux o t = {x}"
using assms that (1)
proof(cases t)
case (Query x’ f)
then have "x’ € reach_cap_tree o (insert x c) t"
using reach_cap_tree.base dep_aux.simps(2) by simp
then have [simp]: "x’ = x" using assms by auto
then show ?thesis
using assms that(2) reach_cap_tree.base Query dep_subset_reach_cap_tree
subset_antisym
by fastforce
qed simp

2.7 Partial solution

Finally, we define an unknown-to-value mapping o to be a partial solution
over a set of unknowns vars if for every unknown in vars, the value obtained
from an evaluation of its right-hand side function eq x with ¢ matches the
value stored in o.

abbreviation part_solution where
"part_solution o vars = (Vx € vars. eq x 0 = mlup o x)"

lemma part_solution_coinciding sigma_called:
assumes '"part_solution o (s - c)"
and "Vx € s. mlup o0 x = mlup o’ x"
and "Vx € s - c. dep 0 x C s"
shows "part_solution o’ (s - c¢)"
using assms
proof(intro balll, goal_cases)
case (1 x)
then have "Vyedep o x. mlup 0 y = mlup o’ y" by blast
then show ?case using 1 solution_sufficient[of o x o’] by simp
qed

15



end

end
3 The plain Top-Down Solver

TD_ plain is a simplified version of the original TD which only keeps track
of already called unknowns to avoid infinite descend in case of recursive
dependencies. In contrast to the TD, it does, however, not track stable
unknowns and the dependencies between unknowns. Instead, it re-iterates
every unknown when queried again.

theory TD_plain
imports Basics

begin
locale TD_plain = Solver D T
for D :: "’d :: bot"
and T :: "’x = (’x, ’d) strategy_tree"
begin

3.1 Definition of the Solver Algorithm

The recursively descending solver algorithm is defined with three mutual re-
cursive functions. Initially, the function iterate is called from the top-level
solve function for the requested unknown. iterate keeps evaluating the
right-hand side by calling the function eval and updates the value mapping
o until the value stabilizes. The function eval walks through a strategy
tree and chooses the path based on the result for queried unknowns. These
queries are delegated to the third mutual recursive function query which
checks that the unknown is not already being evaluated and iterates it other-
wise. The function keyword is used for the definition, since, without further
assumptions, the solver may not terminate.

function (domintros)

query :: "’x = ’x = ’x set = (’x, ’d) map = ’d x (’x, ’d) map"
and
iterate :: "’x = ’x set = (’x, ’d) map = ’d x (’x, ’d) map" and
eval :: "’x = (’x, ’d) strategy_tree = ’x set = (’x, ’d) map =

’d x (’x, ’d) map" where
"query x y ¢ 0 = (
if y € c then
(mlup o y, o)
else
iterate y (insert y c) o)"
| "iterate x ¢ o = (
let (d_new, o) = eval x (T x) ¢ o in

16



if d_new = mlup o x then
(d_new, o)

else
iterate x ¢ (o(x +— d_new)))"

| "eval x t ¢ 0 = (case t of

Answer d = (d, o)

| Query y g = (let (yd, o) = query x y ¢ o in eval x (g yd) ¢ o))"

by pat_completeness auto

definition solve :: "’x = (’x, ’d) map" where
"solve x = (let (_, o) = iterate x {x} Map.empty in o)"

definition query_dom where

"query_dom x y ¢ o = query_iterate_eval_dom (Inl (x, y, c, o))"
declare query_dom_def [simp]
definition iterate_dom where

"iterate_dom x ¢ o = query_iterate_eval_dom (Inr (Inl (x, c, o)))"
declare iterate_dom_def [simp]
definition eval_dom where

"eval_dom x t ¢ o = query_iterate_eval_dom (Inr (Inr (x, t, c, o)))"
declare eval_dom_def [simp]

definition solve_dom where
"solve_dom x = iterate_dom x {x} Map.empty"

lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def

3.2 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This
lemma removes this redundant assumption for easier instantiation and as-
signs each case a comprehensible name.

lemmas query_iterate_eval_pinduct[consumes 1, case_names (uery Iterate
Evall]
= query_iterate_eval.pinduct (1) [
folded query_dom_def iterate_dom_def eval_dom_def,
of xycoforxyco
]
query_iterate_eval.pinduct (2)[
folded query_dom_def iterate_dom_def eval_dom_def,
of x c o for x c o
]
query_iterate_eval.pinduct (3) [
folded query_dom_def iterate_dom_def eval_dom_def,
of xt coforxtco

lemmas iterate_pinduct[consumes 1, case_names Iterate]
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= query_iterate_eval_pinduct (2) [where 7?P="Ax y ¢ o. True" and 7R="Ax
t ¢ o. True",
simplified (no_asm_use), folded query_dom_def iterate_dom_def eval_dom_def]

declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

3.3 Domain Lemmas

lemma dom_backwards_pinduct:
shows '"query_dom x y ¢ o
= y ¢ ¢ = iterate_dom y (insert y c) o"
and "iterate_dom x ¢ o
= (eval_dom x (T x) ¢ 0 A
(eval x (T x) ¢ 0 = (xd_new, o’)
— mlup 0’ x = xd_old — xd_new # xd_old —
iterate_dom x ¢ (0’ (x + xd_new))))"
and "eval_dom x (Query y g) ¢ o
= (query_dom x y ¢ 0 N (query x y ¢ 0 = (yd, 0’) — eval_dom x
(g yd) c o’))"
proof (induction x y ¢ 0 and x ¢ ¢ and x "Query y g" ¢ o
arbitrary: and xd_new xd_old ¢’ and y g yd o’
rule: query_iterate_eval_pinduct)
case (Query x c o)
then show 7case
using query_iterate_eval.domintros(2) by fastforce
next
case (Iterate x ¢ o)
then show ?case
using query_iterate_eval.domintros(2,3) [folded eval_dom_def iterate_dom_def
query_dom_def]
by metis
next
case (Eval c o)
then show ?case
using query_iterate_eval.domintros(1,3) by simp
qed

3.4 Case Rules

lemma iterate_continue_fixpoint_cases[consumes 3]:
assumes "iterate_dom x ¢ o"
and "iterate x ¢ o0 = (xd, o’)"
and "x € c¢"
obtains (Fixpoint) "eval_dom x (T x) ¢ o"
and "eval x (T x) ¢ 0 = (xd, o’)"
and "mlup o’ x = xd"
| (Continue) o1 xd_new
where "eval_dom x (T x) ¢ o"
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and "eval x (T x) ¢ o = (xd_new, o1)"
and "mlup o1 x # xd_new"
and "iterate_dom x ¢ (01(x — xd_new))"
and "iterate x ¢ (01(x +— xd_new)) = (xd, o’)"
proof -
obtain xd_new o1
where "eval x (T x) ¢ o = (xd_new, o1)"
by (cases "eval x (T x) ¢ o")
then show 7thesis
using assms that dom_backwards_pinduct(2)
by (cases "mlup o1 x = xd_new"; simp)
qed

lemma iterate_fmlookup:
assumes "iterate_dom x c o
and "iterate x ¢ o = (xd, o’)"
and "x € c¢"
shows "mlup o’ x = xd"
using assms
proof(induction rule: iterate_pinduct)
case (Iterate x ¢ o)
show ?case
using Iterate.hyps Iterate.prems
proof (cases rule: iterate_continue_fixpoint_cases)
case (Continue o1 xd_new)
then show ?thesis
using Iterate.prems(2) Iterate.IH
by fastforce
qged simp
qed

corollary query_fmlookup:
assumes "query_ dom x y ¢ o"
and "query x y ¢ 0 = (yd, o’)"
shows "mlup o’ y = yd"
using assms iterate_fmlookup dom_backwards_pinduct (1) [of x y ¢ o]
by (auto split: if_splits)

lemma query_iterate_lookup_cases [consumes 2]:
assumes "query_ dom x y ¢ o"
and "query x y ¢ 0 = (yd, o’)"
obtains (Iterate)
"iterate_dom y (insert y c) o"
and "iterate y (imsert y c¢) o = (yd, o’)"
and "mlup o’ y = yd"
and "y ¢ c"
| (Lookup) "mlup o y = yd"
and ”U = OJ!I
and "y € c¢"
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using assms that dom_backwards_pinduct (1) query_fmlookup[of x y ¢ o
yd o’]
by (cases "y € c"; auto)

lemma eval_query_answer_cases [consumes 2] :
assumes "eval_dom x t c o"
and "eval x t ¢ 0 = (d, o’)"
obtains (Query) y g yd o1
where "t = Query y g"
and "query_dom x y ¢ o"
and "query x y ¢ 0 = (yd, o1)"
and "eval_dom x (g yd) c o1"
and "eval x (g yd) ¢ o1 = (d, o’)"
and "mlup o1 y = yd"
| (Answer) "t = Answer d"
and "o =o¢o’"
using assms dom_backwards_pinduct(3) that query_rfmlookup
by (cases t; auto split: prod.splits)

3.5 Predicate for Valid Input States

We define a predicate for valid input solver states. c is the set of called un-
knowns, i.e., the unknowns currently being evaluated and o is an unknown-
to-value mapping. Both are data structures maintained by the solver. In
contrast, the parameter s describing a set of unknowns, for which a partial
solution has already been computed or which are currently being evaluated,
is introduced for the proof. Although it is similar to the set stabl maintained
by the original TD, it is only an under-approximation of it. A valid solver
state is one, where ¢ is a partial solution for all truly stable unknowns, i.e.,
unknowns in s - ¢, and where these truly stable unknowns only depend on
unknowns which are also truly stable or currently being evaluated. A sub-
stantial part of the partial correctness proof is to show that this property
about the solver’s state is preserved during a solver’s run.

definition invariant where
"invariant s ¢ 0 = (V€€s - ¢c. dep 0 & C s) A part_solution o (s -

C) n

lemma invariant_simp:
assumes "x € c"
and "invariant s (¢ - {x}) o"
shows "invariant (insert x s) ¢ o"
using assms
proof -
have "¢ - {x} C s = ¢ C insert x s"
using assms (1)
by (simp add: subset_insert_iff)
moreover have "s - (¢ - {x}) D insert x s - c"
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using assms (1)
by auto
ultimately show 7thesis
using assms(2)
unfolding invariant_def
by fastforce
qed

lemma invariant_continue:
assumes "x ¢ s"
and "invariant s c o"
and "Vye€s. mlup ¢ y = mlup o1 y"
shows "invariant s ¢ (c1(x — xd))"
proof -
show ?thesis
using assms mlup_eq_mupd_set [OF assms(1,3)] unfolding invariant_def
proof(intro conjI, goal_cases)
case 1 then show ?case using dep_eq by blast
next
case 2 then show ?case using part_solution_coinciding sigma_called
by (metis DiffD1 solution_sufficient subsetD)
qed
qed

3.6 Partial Correctness Proofs

lemma x_not_stable:
assumes "eq x 0 # mlup o x"
and "part_solution o s"
shows "x ¢ s"
using assms by auto

With the following lemma we establish, that whenever the solver is called for
an unknown in s and where the solver state and s fulfill the invariant, the
output value mapping is unchanged compared to the input value mapping.

lemma already_solution:
shows "query_dom x y ¢ o

= query x y ¢ 0 = (yd, o’)
= y € s
—> 1invariant s c O
= o =0’"
and "iterate_dom x ¢ o
—> iterate x ¢ o = (xd, o’)
— X € ¢C
— X € 8
— invariant s (¢ - {x}) o
= o =0’"
and "eval dom x t ¢ o
= eval xt ¢c o0 = (xd, o’)
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— dep_aux 0 t C s
— invariant s ¢ O
= traverse_rhs t ¢’ =xd N 0 =o0’"
proof(induction arbitrary: yd s o’ and xd s ¢’ and xd s ¢’ rule: query_iterate_eval_pindu
case (Query x y ¢ o)
show ?case using @uery.IH(1) Query.prems Query.IH(2)
by (cases rule: query_iterate_lookup_cases; simp)
next
case (Iterate x c o)
show 7case using Iterate.IH(1) Iterate.prems(1,2)
proof(cases rule: iterate_continue_fixpoint_cases)
case Fixpoint
then show ?thesis
using Iterate.prems(3,4) Iterate.IH(2)[of _ _ "insert x s"]
invariant_simp[OF Iterate.prems(2,4)]
unfolding dep_def invariant_def by auto
next
case (Continue o1 xd’)
show ?thesis
proof (rule ccontr)
have IH: "eq x 01 = xd’ N 0 = o1"
using Iterate.prems(2-4) Iterate.IH(2)[OF Continue(2), of s]
invariant_simp[OF Iterate.prems(2,4)] unfolding dep_def invariant_def
by auto
then show False
using Iterate.prems(2-4) Continue(3) unfolding invariant_def by
simp
qed
qed
next
case (Eval x t c o)
show ?case using Eval.IH(1) Eval.prems(1)
proof(cases rule: eval_query_answer_cases)
case (Query y g yd o1)
then show ?thesis using Eval.prems(1-3) Eval.IH(1) Eval.IH(2) [OF
Query(1,3)]
Eval.IH(3) [OF Query(1) Query(3) [symmetric] _ Query(5)]
by auto
qged simp
qed

Furthermore, we show that whenever the solver is called with a valid solver
state, the valid solver state invariant also holds for its output state and
the set of stable unknowns increases by the set reach_cap of the current
unknown.

lemma partial_correctness_ind:
shows "query dom x y ¢ o
= query x y ¢ 0 = (yd, o’)
— invariant s ¢ o
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= invariant (s U reach_cap o’ ¢ y) ¢ o’
AN (V¢ € s. mlup 0 & = mlup o’ &))"
and "iterate_dom x ¢ o
—> iterate x ¢ o = (xd, o’)
— X € ¢C
—> invariant s (c - {x}) o
—> invariant (s U (reach_cap o’ (c - {x}) x)) (¢ - {zx}) o’
AN (V¢ € s. mlup 0 & = mlup o’ &))"
and "eval dom x t ¢ o
= eval xt ¢c o0 = (xd, o’)
—> invariant s ¢ o0
—> invariant (s U reach_cap_tree o’ c t) c o’
AN (V¢ € s. mlup 0 £ = mlup o’ &)
N traverse_rhs t o’ = xd"
proof(induction arbitrary: yd s o’ and xd s ¢’ and xd s ¢’ rule: query_iterate_eval_pindu
case (Query x y ¢ o)
show ?case
using Query.IH(1) Query.prems(1)
proof (cases rule: query_iterate_lookup_cases)
case Iterate
note IH = Query.IH(2)[simplified, OF Iterate(4,2) Query.prems(2)]
then show ?thesis
using Iterate(4) by simp
next
case Lookup
then show ?thesis
using Query.prems(2) unfolding invariant_def by auto
qed
next
case (Iterate x ¢ o)
show ?case
using Iterate.IH(1) Iterate.prems(1,2)
proof(cases rule: iterate_continue_fixpoint_cases)
case Fixpoint
note IH = Iterate.IH(2)[OF Fixpoint(2) invariant_simp[OF Iterate.prems(2,3)],
folded eq_def]
then show ?thesis
using Fixpoint(3) Iterate.prems(2) reach_cap_tree_simp2[of x "c
- {x}"]
dep_subset_reach_cap_tree[of o’ "T x", folded dep_def]
unfolding invariant_def
by (auto simp add: insert_absorb)
next
case (Continue o1 xd’)
note IH = Iterate.IH(2)[OF Continue(2) invariant_simp[OF Iterate.prems(2,3)]]

have "part_solution o1 (s - (¢ - {x}))"

using part_solution_coinciding sigma_called[of s "c - {x}" o o1]
IH Iterate.prems(3)
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unfolding invariant_def
by simp
then have x_not_stable: "x ¢ s"
using x_not_stable[of x o1 s] IH Continue(3)
by auto
then have inv: "invariant s (¢ - {x}) (c1(x — xd’))"
using IH invariant_continue[0OF x_not_stable Iterate.prems(3)] by
blast

note ih = Iterate.IH(3)[OF Continue(2) [symmetric] _ Continue(3) [symmetric]
Continue (5)
Iterate.prems(2) inv, simplified]
then show ?thesis
using IH mlup_eq_mupd_set [OF x_not_stable, of o]
unfolding mlup_def
by auto
qed
next
case (Eval x t ¢ o)
show ?case using Eval.IH(1) Eval.prems(1)
proof(cases rule: eval_query_answer_cases)
case (Query y g yd o1)
note IH = Eval.IH(2)[OF Query(1,3) Eval.prems(2)]
note ih = Eval.IH(3) [OF Query(1) Query(3) [symmetric] _ Query(5) conjunctl[OF
IH], simplified]
show ?thesis
using Query IH ih reach_cap_tree_step reach_cap_tree_eql[of o1 "insert
yc" "Ty" ¢’]
by (auto simp add: Un_assoc)
next
case Answer
then show ?thesis
using Eval.prems(2) by simp
qed
qed

Since the initial solver state fulfills the valid solver state predicate, we can
conclude from the above lemma, that the solve function returns a partial
solution for the queried unknown x and all unknowns on which it transitively
depends.

corollary partial_correctness:
assumes "solve_dom x"
and "solve x = ¢"
shows '"part_solution o (reach o x)"
proof -
obtain xd where "iterate x {x} Map.empty = (xd, o)"
using assms(2) unfolding solve_def by (auto split: prod.splits)
then show ?thesis

using assms (1) partial_correctness_ind(2) [of x "{x}" Map.empty xd o
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"{}"] reach_empty_capped
unfolding solve_dom_def invariant_def by simp
qed

3.7 Termination of TD_ plain for Stable Unknowns

In the equivalence proof of the TD and the TD_ plain, we need to show that
when the TD trivially terminates because the queried unknown is already
stable and its value is only looked up, the evaluation of this unknown x
with TD_ plain also terminates. For this, we exploit that the set of stable
unknowns is always finite during a terminating solver’s run and provide the
following lemma:

lemma td!_terminates_for_stabl:
assumes "x € s"
and "invariant s (c - {x}) o"
and "mlup o x = xd"
and "finite s"
and "x € c¢"
shows "iterate_dom x ¢ o" and "iterate x ¢ o = (xd, o)"
proof(goal_cases)
have '"reach_cap o (¢ - {x}) x C s"
using assms(1,2) dep_closed_implies_reach_cap_tree_closed unfold-
ing invariant_def by simp
from finite_subset[OF this] have "finite (reach_cap o (c - {x}) x -
(c - {xP)"
using assms(4) by simp+
then have goal: "iterate_dom x ¢ o A iterate x ¢ ¢ = (xd, o)" us-
ing assms(1-3,5)
proof(induction "reach_cap o (¢ - {x}) x - (c - {x})"
arbitrary: x ¢ xd rule: finite_psubset_induct)
case psubset
have "eval dom x t ¢ 0 A (traverse_rhs t o, o) =eval x t c o" if
"t € subt o x" for t
using that
proof(induction t)
case (Answer _)
then show 7case
using query_iterate_eval.domintros(3) [folded query_dom_def iterate_dom_def
eval_dom_def]
by fastforce
next
case (Query y g)
have "reach_cap_tree o (insert x (¢ - {x})) (T x) C s"
using dep_closed_implies_reach_cap_tree_closed[OF psubset.prems(1),
of ¢ o]
psubset.prems (2) [unfolded invariant_def]
by auto
then have y_stable: "y € s"
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using dep_subset_reach_cap_tree subt_implies_dep[OF Query(2) [unfolded
subt_def]]
by blast
show ?case
proof(cases "y € c" rule: case_split[case_names called not_called])
case called
then have dom: "query dom x y ¢ o"
using query_iterate_eval.domintros (1) [folded query_dom_def]
by auto
moreover have query_val: "(mlup o y, 0) = query x y ¢ o"
using called already_solution(1) partial_correctness_ind(1)
by (metis query.psimps query_iterate_eval.domintros(1))
ultimately have "eval_dom x (Query y g) c o"
using Query.IH[of "g (mlup o y)"]
query_iterate_eval.domintros(3) [folded dom_defs, of "Query
y &" x ¢ o] Query.prems
subt_aux.step subt_def
by fastforce
have "g (mlup o y) € subt_aux o (T x)"
using Query.prems subt_aux.step subt_def by blast
then have "eval_dom x (g (mlup o y)) c o"
and "(traverse_rhs (g (mlup o y)) o, o) = eval x (g (mlup
oy))co"
using Query.IH unfolding subt_def by auto
then show ?thesis
using <eval_dom x (Query y g) c¢ o> query_val
by (auto split: strategy_tree.split prod.split)
next
case not_called
then obtain yd where lupy: "mlup o y = yd" and eqy: "eq y o
= yd"
using y_stable psubset.prems(2) unfolding invariant_def by auto
have ih: "eval_dom x (g (mlup o y)) c o"
and "(traverse_rhs (g (mlup o y)) o, o) = eval x (g (mlup
oy))co"
using Query.IH[of "g (mlup o y)"] Query.prems subt_aux.step
subt_def by auto
moreover have '"reach_cap o ¢ y C reach_cap o (c - {x}) x"
using not_called psubset.prems(4) reach_cap_tree_steplof o y
yd ¢ g, OF lupy]
reach_cap_tree_subset_subt[of "Query y g" o "T x" c, folded
subt_def, OF Query.prems]
by (simp add: insert_absorb subset_insertI2)
then have f_def: "reach_cap o ¢ y - ¢ C reach_cap o (c - {x})
x - (c - {xP"
using psubset.prems (4)
by blast
have "invariant s (¢ - {y}) o"
using psubset.prems(2) not_called psubset.prems(1) invariant_simp

26



by (metis Diff_ empty Diff_insertO insert_absorb)
then have IH: "iterate_dom y (insert y c) o A iterate y (insert
yc) o= (yd, o)"
using f_def y_stable not_called lupy psubset.hyps(2)[of y "c
- {y}" yd] psubset.hyps(2)
by (metis Diff_idemp Diff_insert_absorb insertCI )
then have "query dom x y ¢ 0 A (mlup o y, 0) = query x y ¢ o"
using not_called lupy query_iterate_eval.domintros (1) [folded
dom_defs, of y ¢ o]
by simp
ultimately show ?7thesis
using query_iterate_eval.domintros(3) [folded dom_defs, of "Query
vy &" x ¢ o] by fastforce
qed
qed
note IH = this[of "T x", folded eq_def, OF subt_aux.base[of "T x"
o, folded subt_def]]
moreover have "eq x o = mlup o x" using psubset.prems(1,2) unfold-
ing invariant_def by auto
moreover have "iterate_dom x ¢ o"
using query_iterate_eval.domintros(2) [folded dom_defs, of x ¢ o]
IH <eq x 0 = mlup o x>
by (metis Pair_inject)
ultimately show ?case
using iterate.psimps[folded dom_defs, of x ¢ o] psubset.prems(3)
by (cases "eval x (T x) ¢ o¢") auto
qed
case 1 show ?case using goal ..
case 2 show ?case using goal ..
qed

3.8 Program Refinement for Code Generation

For code generation, we define a refined version of the solver function using
the partial function keyword with the option attribute.

datatype (’a,’b) state = § "’a X ’a X ’a set x (’a, ’b) map"
| I "’a x ’a set x (’a, ’b) map" | E "’a x (’a,’b) strategy_tree
X ’a set x (’a, ’b) map"

partial_function (option)
solve_rec_c :: "(’x, ’d) state = (’d x (’x, ’d) map) option"
where
"solve_rec_c s = (case s of Q (x, y, ¢, 0) =
if y € c then
Some (mlup o y, o)
else
solve_rec_c (I (y, (insert y c), o))
| I (x, ¢c, 0) =
Option.bind (solve_rec_c (E (x, (T x), ¢, 0))) (A(d_new, o).
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if d_new = mlup o x then
Some (d_new, o)

else
solve_rec_c (I (x, c, (c(x — d_new)))))

| E (x, t, ¢, 0) =

(case t of
Answer d = Some (d, o)

| Query y g = Option.bind (solve_rec_c (Q (x, y, c, 0)))
(A(yd, o). solve_rec_c (E (x, (g yd), c, c)))))"

declare solve_rec_c.simps[simp,code]

definition solve_rec_c_dom where "solve_rec_c_dom p = Jo. solve_rec_c
p = Some o

definition solve_c :: "’x = ((’x, ’d) map) option" where
"solve_c x = Option.bind (solve_rec_c (I (x, {x}, Map.empty))) (\(_,
o). Some o)"

definition solve_c_dom :: "’x = bool" where "solve_c_dom x = do. solve_c
x = Some o"

We proof the equivalence between the refined solver function for code gen-
eration and the initial version used for the partial correctness proof.

lemma query_iterate_eval_solve_rec_c_equiv:
shows "query_dom x y ¢ 0 = solve_rec_c_dom (Q (x,y,c,0))
A query x y ¢ o = the (solve_rec_c (Q (x,y,c,0)))"
and "iterate_dom x ¢ ¢ —> solve_rec_c_dom (I (x,c,0))
A iterate x ¢ o = the (solve_rec_c (I (x,c,o)))"
and "eval_dom x t ¢ 0 =—> solve_rec_c_dom (E (x,t,c,0))
A eval x t ¢ 0 = the (solve_rec_c (E (x,t,c,o)))"
proof (induction x y ¢ 0 and x ¢ 0 and x t ¢ o rule: query_iterate_eval_pinduct)
case (Query x y c o)
show 7case
proof (cases "y € c")
case True
then have "solve_rec_c (@ (x, y, ¢, o)) = Some (mlup o y, o)" by
simp
moreover have "query x y ¢ 0 = (mlup o y, o)"
using query.psimps([folded dom_defs] Query(1) True by force
ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
next
case False
then have '"query x y ¢ 0 = iterate y (insert y c) o"
using Query.IH(1) query.pelims[folded dom_defs] by fastforce
then have "query x y ¢ o = the (solve_rec_c (Q (x, y, ¢, 0)))"
using Query False False by simp
moreover have "solve_rec_c_dom (@ (x, y, ¢, o))"
using Query(2) False unfolding solve_rec_c_dom_def by simp
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ultimately show ?thesis using @uery unfolding solve_rec_c_dom_def
by auto
qed
next
case (Iterate x ¢ o)
obtain d1 o1 where eval: "eval x (T x) ¢ o = (d1, o1)"
and "solve_rec_c (E (x, T x, ¢, 0)) = Some (d1, o1)" using Iterate(2)
solve_rec_c_dom_def by force
show 7case
proof (cases "d1 = mlup o1 x")
case True
have "iterate x ¢ o = (d1, o1)"
using eval iterate.psimps[folded dom_defs, OF Iterate(1)] True by
simp
then show ?thesis
using solve_rec_c_dom_def dom_defs iterate.psimps Iterate by fastforce
next
case False
then have "solve_rec_c_dom (I (x, ¢, o01(x — d1)))"
and "iterate x ¢ (01(x + d1)) = the (solve_rec_c (I (x, c, o1(x
— d1))))"
using Iterate(3) [OF eval[symmetric] _ False] by blast+
moreover have "iterate x ¢ o = iterate x ¢ (c1(x — d1))"
using eval iterate.psimps[folded dom_defs, OF Iterate(1)] False
by simp
moreover have "solve _rec_c (I (x, ¢, 01(x — d1))) = solve_rec_c
(I (x, ¢, o))"
using False eval Iterate(2) solve_rec_c_dom_def by auto
ultimately show ?7thesis unfolding solve_rec_c_dom_def by auto
qed
next
case (Eval x t ¢ o)
show 7case
proof (cases t)
case (Answer d)
then have '"eval x t ¢ 0 = (d, o))"
using eval.psimps query_iterate_eval.domintros(3) dom_defs(3)
by fastforce
then show 7thesis using Eval Answer unfolding solve_rec_c_dom_def
by simp
next
case (Query y g)
then obtain d1 o1 where "solve_rec_c (@ (x, y, ¢, o)) = Some (di,
o1)"
and "query x y ¢ 0 = (d1, o1)"
using Query Eval(2) unfolding solve_rec_c_dom_def by auto
then have "solve_rec_c_dom (E (x, t, c, o))"
"eval x (g d1) ¢ o1 = the (solve_rec_c (E (x, t, c, o)))"
using Eval(3) Query unfolding solve_rec_c_dom_def by auto
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moreover have "eval x t ¢ 0 = eval x (g d1) ¢ o1"
using Eval.IH(1) Query eval.psimps eval_dom_def
<query x y ¢ o = (d1, o1)>
by fastforce
ultimately show ?thesis by simp
qed
qed

lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r —> (case s of
Q (x,y,c,0) = query_dom xy c 0 A\ query x y ¢ 0 = r
| I (x,c,0) = iterate_dom x ¢ o0 A iterate x ¢ 0 = r
| E (x,t,c,0) = eval domx t c o Neval x t c o =r)"
proof (induction arbitrary: s r rule: solve_rec_c.fixp_induct)
case 1
then show ?case using option_admissible by fast
next
case 2
then show ?case by simp
next
case (3 S)
show 7case
proof (cases s)
case (Q a)
obtain x y ¢ 0 where "a = (x, y, ¢, 0)" using prod_cases4 by blast
have "query_dom x y ¢ 0 N query x y ¢ 0 = r"
proof (cases "y € c")
case True
then have "Some (mlup o y, o) = Some r" using 3(2) @ <a = (x,
¥, €, 0)> by simp
then show 7thesis
by (metis query.psimps query_dom_def
query_iterate_eval.domintros (1) True option.inject)
next
case False
then have "S (I (y, insert y ¢, o)) = Some r"
using 3(2) Q <a = (x, y, ¢, 0)> by auto
then have "iterate_dom y (insert y c) o A iterate y (insert y c)

using 3(1) unfolding iterate_dom_def by fastforce
then show 7thesis using False
by (simp add: query_iterate_eval.domintros (1))
qed
then show ?thesis using § <a = (x, y, ¢, 0)> unfolding query_dom_def
by simp
next
case (I a)
obtain x ¢ o where "a = (x, ¢, 0)" using prod_cases3 by blast
then have IH1: "Option.bind (S (E (x, T x, ¢, 0)))
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(\(d_new, o).
if d_new = mlup o x then Some (d_new, o)
else S (I (x, c, o(x — d_new)))) = Some r"
using 3(2) I by simp
then obtain d_new o1 where eval_some: "S (E (x, T x, ¢, o)) = Some
(d_new, o1)"
using 3(2) I
by (cases "S (E (x, T x, ¢, 0g))") auto
then have eval: "eval dom x (T x) ¢ o N eval x (T x) ¢ o = (d_new,
0'1)"
using 3(1) unfolding eval_dom_def by force
have "iterate_dom x ¢ o N iterate x ¢ 0 = r"
proof (cases "d_new = mlup o1 x")
case True
then show ?thesis
using eval IH1 dom_defs(2) dom_defs(3) iterate.psimps
query_iterate_eval.domintros(2) eval_some
by fastforce
next
case False
then have "S (I (x, ¢, 01(x — d_new))) = Some r" using IH1 eval_some
by simp
then have "iterate_dom x ¢ (c1(x + d_new))
A iterate x ¢ (01(x — d_new)) = r"
using 3(1) unfolding iterate_dom_def by fastforce
then show ?thesis using eval False
by (smt (verit, best) Pair_inject dom_defs(2) dom_defs(3)
iterate.psimps query_iterate_eval.domintros(2) case_prod_conv)
qed
then show ?thesis using I <a = (x, ¢, 0)> unfolding iterate_dom_def
by simp
next
case (E a)
obtain x t ¢ 0 where "a = (x, t, ¢, 0)" using prod_cases4 by blast
then have "s = E (x, t, ¢, 0)" using E by auto
have "eval dom x t ¢ ¢ N eval x t ¢ 0 = r"
proof (cases t)
case (Answer d)
then have "eval_dom x t ¢ o" unfolding eval_dom_def
using query_iterate_eval.domintros(3) by fastforce
moreover have "eval x t ¢ o = (d, o)"
by (smt (verit, del_insts) Answer eval_query_answer_cases calculation
strategy_tree.distinct (1) strategy_tree.simps(1) surj_pair)
moreover have "(d, ¢) = r" using 3(2) <s = E (x, t, ¢, 0)> Answer
by simp
ultimately show ?thesis by simp
next
case (Query y g)
then have A: "Option.bind (S (@ (x, y, ¢, 0))) (A(yd, o). S (E
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(x, g yd, c, d)))
= Some r" using <s = E (x, t, ¢, 0)> 3(2) by simp
then obtain yd o1 where S1: "S (@ (x, y, ¢, o)) = Some (yd, c1)"
and S2: "S (E (x, g yd, ¢, 01)) = Some r"
by (cases "S (@ (x, y, c, d))") auto
then have "query_dom x y ¢ 0 A query x y ¢ o = (yd, o1)"
and "eval_dom x (g yd) ¢ 01 A eval x (g yd) ¢ o1 = r"
using 3(1) [OF S1] 3(1) [OF S2] unfolding dom_defs by force+
then show ?thesis
using query_iterate_eval.domintros(3) [folded dom_defs, of t x
¢ o] Query
by fastforce
qed
then show ?thesis using E <a = (x, t, ¢, 0)> unfolding eval_dom_def
by simp
qed
qed

theorem term_equivalence: "solve_dom x <— solve_c_dom x"
using query_iterate_eval_solve_rec_c_equiv(2) [of x "{x}" "Ax. None"]
solve_rec_c_query_iterate_eval_equiv[of "I (x, {x}, Ax. None)"]
unfolding solve_dom_def solve_c_dom_def solve_rec_c_dom_def solve_c_def
by (cases "solve_rec_c (I (x, {x}, Ax. None))") force+

theorem value_equivalence:
"solve_dom x —> do. solve_c x = Some o A solve x = ¢g"
proof goal_cases
case 1
then obtain r where "solve_rec_c (I (x, {x}, Ax. None)) = Some r
A iterate x {x} (Ax. None) = r"
using query_iterate_eval_solve_rec_c_equiv(2)
unfolding solve_rec_c_dom_def solve_dom_def
by fastforce
then show ?case unfolding solve_def solve_c_def by (auto split: prod.split)
qed

Then, we can define the code equation for solve based on the refined solver
program solve_c.

lemma solve_code_equation [code]:

"solve x = (case solve_c x of Some r = r

| None = Code.abort (String.implode ’’Input not in domain’’) (A_. solve
x))"
proof (cases "solve_dom x")

case True

then show ?thesis unfolding solve_def solve_c_def

by (metis solve_def solve_c_def option.simps(5) value_equivalence)

next

case False

then have "solve_c x = None" using solve_c_dom_def term_equivalence
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by auto
then show ?thesis by auto
qed

end

To setup the code generation for the solver locale we use a dedicated rewrite
definition.

global__interpretation TD_plain_Interp: TD_plain D T for D T
defines TD_plain_Interp_solve = TD_plain_Interp.solve
done

end

4 The Top-Down Solver

In this theory we proof the partial correctness of the original TD by estab-
lishing its equivalence with the TD_ plain. Compared to the TD_ plain, it
additionally tracks a set of currently stable unknowns stabl, and a map infl
collecting for each unknown x a list of unknowns influenced by it. This al-
lows for the optimization that skips the re-evaluation of unknowns which are
already stable. It does, however, also require a destabilization mechanism
triggering re-evaluation of all unknowns possibly affected by an unknown
whose value has changed.
theory TD_equiv

imports Main "HOL-Library.Finite_Map" Basics TD_plain
begin

declare fun_upd_apply[simp dell

locale TD = Solver D T

for D :: "’d::bot"
and T :: "’x = (’x, ’d) strategy_tree"
begin

4.1 Definition of Destabilize and Proof of its Termination

The destabilization function is called by the solver before continuing itera-
tion because the value of an unknown changed. In this case, also the values
of unknowns whose last evaluation was based on the outdated value, need to
be re-evaluated again. This re-evaluation of influenced unknowns is enforced
by following the entries for directly influenced unknowns in the map infl
and removing all transitively influenced unknowns from stabl. This way,
influenced unknowns are not re-evaluated immediately, but instead will be
re-evaluated whenever they are queried again.
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function (domintros)

destab_iter :: "’x list = (’x, ’x list) fmap = ’x set = (’x, ’x list)
fmap X ’x set'
and destab :: "’x = (’x, ’x list) fmap = ’x set = (’x, ’x list) fmap

X ’x set" where
"destab_iter [] infl stabl = (infl, stabl)"
| "destab_iter (y # ys) infl stabl = (
let (infl, stabl) = destab y infl (stabl - {y}) in
destab_iter ys infl stabl)"
"destab x infl stabl = destab_iter (fmlookup_default infl [] x) (fmdrop
x infl) stabl"
by pat_completeness auto

—

definition destab_iter_dom where

"destab_iter_dom ls infl stabl = destab_iter_destab_dom (Inl (1s, infl,
stabl))"
declare destab_iter_dom_def [simp]

definition destab_dom where
"destab_dom y infl stabl = destab_iter_destab_dom (Inr (y, infl, stabl))"
declare destab_dom_def [simp]

lemma destab_domintros:
"destab_iter_dom [] infl stabl"
"destab_dom y infl (stabl - {y}) —
destab y infl (stabl - {y}) = (infl’, stabl’) —
destab_iter_dom ys infl’ stabl’ —
destab_iter_dom (y # ys) infl stabl"
"destab_iter_dom (fmlookup_default infl [] x) (fmdrop x infl) stabl
— destab_dom x infl stabl"
using destab_iter_destab.domintros by auto

definition count_non_empty :: "(’a, ’b list) fmap = nat" where
"count_non_empty m = fcard (ffilter ((#) [] o snd) (fset_of_fmap m))"

lemma count_non_empty_dec_fmdrop:
assumes "fmlookup_default m [] x # []"
shows "Suc (count_non_empty (fmdrop x m)) = count_non_empty m"
proof -
obtain ys where ys_def: "ys = fmlookup_default m [] x" and ys_non_empty:
"ys # [1"
using assms by simp
then have in_map: "(x, ys) |€l| fset_of_fmap m"
unfolding fmlookup_default_def
by (cases "fmlookup m x"; auto)
then have eq: "fset_of_fmap (fmdrop x m) = fset_of_fmap m [-| {[(x,
ys) |}
by (auto split: if_splits)
then have "ffilter ((#) [] o snd) (fset_of_fmap (fmdrop x m))
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= (ffilter ((#) [] o snd) (fset_of_fmap m)) [-| {|(x, ys)|}" by
fastforce
then show ?thesis
unfolding count_non_empty_def
using in_map ys_non_empty fcard_Suc_fminusi[of "(x, ys)"]
by auto
qed

lemma count_non_empty_eq_fmdrop:
assumes "fmlookup_default m [] x = []"
shows "count_non_empty (fmdrop x m) = count_non_empty m"
proof -
have "ffilter ((#) [] o snd) (fset_of_fmap (fmdrop x m))
= (ffilter ((#) [] o snd) (fset_of_fmap m))"
using assms
unfolding fmlookup_default_def
by (auto split: if_splits)
thus 7thesis unfolding count_non_empty_def by simp
qed

termination
proof -
{
fix ys infl stabl
have "destab_iter_dom ys infl stabl A (destab_iter ys infl stabl
= (infl’, stabl’)
— count_non_empty infl’ < count_non_empty infl)"
for infl’ stabl’
proof (induction "count_non_empty infl" arbitrary: ys infl stabl infl’
stabl’
rule: full_nat_induct)
case 1
then show 7case
proof(induction ys arbitrary: infl stabl)
case Nil
then show 7case
by (simp add: destab_iter.psimps(1) destab_iter_destab.domintros(1))
next
case (Cons y ys)
have IH: "destab_iter_dom xa x xb A
(destab_iter xa x xb = (xc, xd) — count_non_empty xc <
count_non_empty x)"
if "Suc m < count_non_empty infl" and "m = count_non_empty
X”
for m x xa xb xc xd
using Cons.prems that by blast
show 7case
proof(cases "fmlookup_default infl [] y = []")
case True
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obtain infll stabll where inflstabll: "destab y infl (stabl
- {y}) = (infl1, stabli)"
by fastforce
have y_dom: "destab_dom y infl (stabl - {y})"
using destab_domintros(1,3) True
by auto
have destab_y: "destab y infl (stabl - {y}) = (fmdrop y infl,
stabl - {y})"
using destab.psimps[folded destab_dom_def, OF y_dom]
destab_iter.psimps (1) [OF destab_iter_destab.domintros(1)]

True
by auto
have count_eq: "count_non_empty (fmdrop y infl) = count_non_empty
infl"
using count_non_empty_eq_fmdrop[of infl y] True by auto
then have IH: "destab_iter_dom ys (fmdrop y infl) (stabl -
{y})
A (destab_iter ys (fmdrop y infl) (stabl - {y}) = (infl’,
stabl’)

— count_non_empty infl’ < count_non_empty (fmdrop y infl))"
using Cons.IH[of "fmdrop y infl" "stabl - {y}"] Cons.prems
by auto

then show 7thesis
proof (intro conjI, goal_cases)
case 1
then show dom_ys: 7case using destab_domintros(2) [OF y_dom
destab_y] IH by auto
case 2
then show ?case
using IH count_eq destab_iter.psimps(2) destab_y dom_ys
by auto
qged
next
case False
obtain u w where
prod: "destab_iter (fmlookup_default infl [] y) (fmdrop y
infl) (stabl - {y}) = (u, w"
by fastforce

have eq: "Suc (count_non_empty (fmdrop y infl)) = count_non_empty

infl"
by (simp add: False count_non_empty_dec_fmdrop)
then have domi: "destab_dom y infl (stabl - {y})"
using IH destab_domintros(3) by auto
obtain i s where i_s_def: "(i, s) = destab y infl (stabl -
{yH"

by (metis surj_pair)

have "count_non_empty u < count_non_empty (fmdrop y infl)"
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using IH eq prod
by simp
then have dom2: "destab_iter_dom ys i s" and dec: "destab_iter
ys u w = (infl’, stabl’)
— count_non_empty infl’ < count_non_empty infl"

using IH[of "count_non_empty u" u ys w infl’ stabl’] prod
eq i_s_def destab.psimps doml

by auto

show ?thesis
using destab_iter.psimps(2) dec destab_iter_destab.domintros(2)
doml dom2 prod
by (simp add: destab.psimps i_s_def)
qed
qed
qed

}

then show ?thesis using destab_iter_destab.domintros(3) unfolding destab_iter_dom_def
by (metis prod.collapse sumE)
qed

4.2 Definition of the Solver Algorithm

Apart from passing the additional arguments for the solver state, the iterate
function contains, compared to the TD_plain, an additional check to skip
iteration of already stable unknowns. Furthermore, the helper function
destabilize is called whenever the newly evalauated value of an unknown
changed compared to the value tracked in o. Lastly, a dependency is recorded
whenever returning from a query call for unknown x within the evaluation
of right-hand side of unknown y.

function (domintros)

query :: "’x = ’x = ’x set = (’x, ’x list) fmap = ’x set = (’x,
’d) map
= ’d x (’x, ’x list) fmap X ’x set x (’x, ’d) map" and
iterate :: "’x = ’x set = (’x, ’x list) fmap = ’x set = (’x, ’d)
map

= ’d x (’x, ’x list) fmap X ’x set x (’x, ’d) map" and
eval :: "’x = (’x, ’d) strategy_tree = ’x set = (’x, ’x list)
fmap = ’x set
= (’x, ’d) map = ’d x (’x, ’x list) fmap X ’x set X
(°’x, ’d) map" where
"query y x c infl stabl o = (
let (xd, infl, stabl, o) =
if x € c then
(mlup o x, infl, stabl, o)
else
iterate x (insert x c) infl stabl o
in (xd, fminsert infl x y, stabl, o))"
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| "iterate x ¢ infl stabl o = (
if x ¢ stabl then
let (d_new, infl, stabl, o) = eval x (T x) c infl (insert x stabl)
o in
if mlup o x = d_new then
(d_new, infl, stabl, o)
else
let (infl, stabl) = destab x infl stabl in
iterate x ¢ infl stabl (o(x — d_new))
else
(mlup o x, infl, stabl, o))"
| "eval x t ¢ infl stabl o = (case t of
Answer d = (d, infl, stabl, o)
| Query y g = (
let (yd, infl, stabl, o) = query x y c¢ infl stabl o in eval x
(g yd) c¢ infl stabl o))"
by pat_completeness auto

definition solve :: "’x = ’x set x (’x, ’d) map" where
"solve x = (let (_, _, stabl, o) = iterate x {x} fmempty {} Map.empty
in (stabl, o))"

definition query_dom where
"query_dom x y ¢ infl stabl o = query_iterate_eval_dom (Inl (x, y, c,
infl, stabl, o))"
declare query_dom_def [simp]
definition iterate_dom where
"iterate_dom x c¢ infl stabl o
c, infl, stabl, o)))"
declare iterate_dom_def [simp]
definition eval_dom where
"eval_dom x t c¢ infl stabl o = query_iterate_eval_dom (Inr (Inr (x,
t, ¢, infl, stabl, o)))"
declare eval_dom_def [simp]

query_iterate_eval_dom (Inr (Inl (x,

definition solve_dom where
"solve_dom x = iterate_dom x {x} fmempty {} Map.empty"

lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def

4.3 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This
lemma removes this redundant assumption such that the rule is easier to
instantiate and gives comprehensible names to the cases.
lemmas query_iterate_eval_pinduct[consumes 1, case_names (uery Iterate
Eval]
= query_iterate_eval.pinduct (1) [
folded query_dom_def iterate_dom_def eval_dom_def,
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of x y ¢ infl stabl o for x y ¢ infl stabl o

]

query_iterate_eval.pinduct (2) [
folded query_dom_def iterate_dom_def eval_dom_def,
of x ¢ infl stabl o for x ¢ infl stabl o

]

query_iterate_eval.pinduct(3)[
folded query_dom_def iterate_dom_def eval_dom_def,
of x t ¢ infl stabl o for x t ¢ infl stabl o

lemmas iterate_pinduct[consumes 1, case_names Iterate]
= query_iterate_eval_pinduct(2) [where ?P=")\x y c infl stabl o. True"
and 7R="Ax t c¢ infl stabl o. True", simplified (no_asm_use),
folded query_dom_def iterate_dom_def eval_dom_def]

declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

4.4 Domain Lemmas

lemma dom_backwards_pinduct:
shows "query_dom x y ¢ infl stabl o
— y ¢ ¢ = iterate_dom y (insert y c) infl stabl o"
and "iterate_dom x c¢ infl stabl o
= x ¢ stabl = (eval_dom x (T x) c¢ infl (insert x stabl) o A
((xd_new, infll, stabll, o’) = eval x (T x) c infl (insert x stabl)
o
— mlup ¢’ x # xd_new — (infl2, stabl2) = destab x infll
stabll —
iterate_dom x ¢ infl2 stabl2 (o’ (x +— xd_new))))"
and "eval_dom x (Query y g) c infl stabl o
—> (query_dom x y c infl stabl o A
((yd, infl’, stabl’, o’) = query x y ¢ infl stabl o —
eval_dom x (g yd) c infl’ stabl’ o’))"
proof (induction x y ¢ infl stabl o and x c¢ infl stabl ¢ and x "Query
y g&" ¢ infl stabl o
arbitrary: and xd_new infll stabll infl2 stabl2 ¢’ and y g yd infl’
stabl’ o’
rule: query_iterate_eval_pinduct)
case (Query y x ¢ infl stabl o)
then show ?case using query_iterate_eval.domintros(2) by fastforce
next
case (Iterate x c infl stabl o)
then show ?case using query_iterate_eval.domintros(2,3) by simp
next
case (Eval x c infl stabl o)
then show 7case using query_iterate_eval.domintros(1,3) by simp
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qed

4.5 Case Rules

lemma iterate_continue_fixpoint_cases[consumes 3]:

assumes "iterate_dom x ¢ infl stabl o"
and "(xd, infl’, stabl’, o’) = iterate x c¢ infl stabl o"
and "x € c¢"

obtains (Stable) "infl’ = infl"
and "stabl’ = stabl"
and "o’ = o"
and "mlup o x = xd"
and "x € stabl"

| (Fixpoint) "eval_dom x (T x) c¢ infl (insert x stabl) o"
and "(xd, infl’, stabl’, o’) = eval x (T x) c¢ infl (insert x stabl)

and "mlup o’ x = xd"
and "x ¢ stabl"
| (Continue) stabll infll o1 xd_new stabl2 infl2
where "eval_dom x (T x) c¢ infl (insert x stabl) o"
and "(xd_new, infll, stabll, o1) = eval x (T x) c¢ infl (insert x
stabl) o"
and "mlup o1 x # xd_new"
and "(infl2, stabl2) = destab x infll stabll"
and "iterate_dom x ¢ infl2 stabl2 (c1(x +— xd_new))"
and "(xd, infl’, stabl’, o’) = iterate x c¢ infl2 stabl2 (c1(x —
xd_new))"
and "x ¢ stabl"
proof(cases "x € stabl" rule: case_split[case_names Stable Unstable])
case Stable
then show ?thesis using that (1) assms by auto
next
case Unstable
then have sldom: "eval_dom x (T x) c¢ infl (insert x stabl) o"
using assms (1) dom_backwards_pinduct (2)
by simp
then obtain xd_new infll stabll ol
where slapp: "eval x (T x) c infl (insert x stabl) o = (xd_new, infll,
stabll, o1)"
by (cases "eval x (T x) c¢ infl (insert x stabl) o") auto
show ?thesis
proof (cases "mlup ol x = xd_new")
case True
then show 7thesis
using Unstable sldom slapp assms that(2)
by auto
next
case False
then obtain infl2 stabl2 where destab: "destab x infll stabll = (infl2,
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stabl2)"
by (cases "destab x infll stabll")
then have dom: "iterate_dom x ¢ infl2 stabl2 (c1(x + xd_new))"
and "iterate x c¢ infl stabl o
= iterate x c¢ infl2 stabl2 (c1(x + xd_new))"
and app: "iterate x c¢ infl2 stabl2 (c1(x ~ xd_new))
= (xd, infl’, stabl’, o’)"
using Unstable False slapp assms(1-3) dom_backwards_pinduct (2)
by auto
then show ?thesis
using sldom slapp Unstable False destab that(3)
by simp
qed
qed

lemma iterate_fmlookup:
assumes "iterate_dom x ¢ infl stabl o"
and "(xd, infl’, stabl’, o’) = iterate x c¢ infl stabl o"
and "x € c¢"
shows "mlup ¢’ x = xd"
using assms
proof(induction rule: iterate_pinduct)
case (Iterate x ¢ infl stabl o)
show 7case
using Iterate.hyps Iterate.prems
proof(cases rule: iterate_continue_fixpoint_cases)
case (Continue o1 xd_new)
then show ?thesis
using Iterate.prems(2) Iterate.IH
by force
qged (simp add: Iterate.prems(1))
qed

corollary query_fmlookup:
assumes '"query_dom y x c¢ infl stabl o"
and "(xd, infl’, stabl’, o’) = query y x c¢ infl stabl o"
shows "mlup o’ x = xd"
using assms iterate_fmlookup dom_backwards_pinduct (1) [of y x ¢ infl
stabl o]
by (auto split: prod.splits if_splits)

lemma query_iterate_lookup_cases [consumes 2] :
assumes "query_dom y x c¢ infl stabl o
and "(xd, infl’, stabl’, ¢’) = query y x c infl stabl c¢"
obtains (Iterate) infll
where "iterate_dom x (insert x c) infl stabl o"
and "(xd, infll, stabl’, o’) = iterate x (insert x c) infl stabl
O-VI
and "infl’ = fminsert infll x y"
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and "mlup ¢’ x = xd"

and "x ¢ c"
| (Lookup) "mlup o x = xd"

and "infl’ = fminsert infl x y"

and "stabl’ = stabl"

and "o’ = o"

and "x € c¢"
using assms that dom_backwards_pinduct (1) query_fmlookup[OF assms(1,2)]
by (cases "x € c"; auto split: prod.splits)

lemma eval_query_answer_cases [consumes 2]:
assumes "eval _dom x t c¢ infl stabl o"
and "(xd, infl’, stabl’, o’) = eval x t ¢ infl stabl o"
obtains (Query) y g yd infll stabll o1
where "t = Query y g"
and "query_dom x y ¢ infl stabl o"
and "(yd, infll, stabll, o1) = query x y c infl stabl o"
and "eval_dom x (g yd) c¢ infll stabll o1"
and "(xd, infl’, stabl’, o’) = eval x (g yd) c infll stabll o1"
and "mlup o1 y = yd"
| (Answer) "t = Answer xd"
and "infl’ = infl"
and "stabl’ = stabl"
and "o’ = o"
using assms dom_backwards_pinduct(3) that query_fmlookup
by (cases t; auto split: prod.splits)

4.6 Description of the Effect of Destabilize

To describe the effect of a call to the function destab, we define an induc-
tive set that, based on some infl map, collects all unknowns transitively
influenced by some unknown x.

inductive__set influenced_by for infl x where
base: "fmlookup infl x = Some ys —> y € set ys =—> y € influenced_by
infl x"
| step: "y € influenced_by infl x => fmlookup infl y = Some zs — z
€ set zs
— z € influenced_by infl x"
inductive__set influenced_by_cutoff for infl x ¢ where
base: "x ¢ ¢ = fmlookup infl x = Some ys =—> y € set ys = y €
influenced_by_cutoff infl x c"
| step: "y € influenced_by_cutoff infl x ¢ — y ¢ ¢ —> fmlookup infl
y = Some zs — z € set zs
= z € influenced_by_cutoff infl x c"

lemma influenced_by_aux:

shows "influenced_by infl x = (|Jy € slookup infl x. insert y (influenced_by
(fmdrop x infl) y))"
unfolding fmlookup_default_def
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proof(intro equalityl subsetI, goal_cases)
case (1 u)
then show ?case
proof(induction rule: influenced_by.induct)
case (step y zs z)
then show ?case
proof(cases "y € slookup infl x")
case True
then show ?thesis
using step.hyps(2,3) influenced_by.base[of "fmdrop x infl" y]
by (cases rule: set_fmlookup_default_cases, cases "x = y") auto
next
case False
then show 7thesis
using step.IH step.hyps(2,3) influenced_by.steplof y "fmdrop x
infl"]
by (cases rule: notin_fmlookup_default_cases, cases "x = y") auto
qed
qged auto
next
case (2 z)
then show ?case
proof(cases "fmlookup infl x")
case (Some xs)
then obtain y where z_mem: "z € insert y (influenced_by (fmdrop
x infl) y)"
and step: "y € set (case fmlookup infl x of None = [] | Some v
= v)" using 2 by blast
then show ?thesis using Some influenced_by.base
proof(cases "z = y")
case False
then have "z € influenced_by (fmdrop x infl) y" using z_mem by

auto
then show 7thesis
proof (induction rule: influenced_by.induct)
case (base ys’ y’)
then show ?case
using Some step influenced_by.base[of infl] influenced_by.step[of
vl
by (auto split: if_splits)
next
case (step y’ zs z)
then show ?case using influenced_by.step
by (auto split: if_splits)
qed
qed simp
qged simp
qed
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lemma lookup_in_influenced:

shows "slookup infl x C influenced_by infl x"
proof(intro subsetI, goal_cases)

case (1 y)

then show 7case using influenced_by.base[of infl x]

by (cases rule: set_fmlookup_default_cases) simp
qed

lemma influenced_unknowns_fmdrop_set:
shows "influenced_by (fmdrop_set C infl) x = influenced_by_cutoff infl
x C"
proof (intro equalityl subsetI, goal_cases)
case (1 u) then show ?case by (induction rule: influenced_by.induct;
simp add: influenced_by_cutoff.base influenced_by_cutoff.step
split: if_splits)
next
case (2 u) then show ?case by (induction rule: influenced_by_cutoff.induct;
simp add: influenced_by.base influenced_by.step)
qed

lemma influenced_by_transitive:
assumes "y € influenced_by infl x"
and "z € influenced_by infl y"
shows "z € influenced_by infl x"
using assms
proof (induction rule: influenced_by.induct)
case (base ys y)
show ?case using base(3,1,2) influenced_by.step[of _ infl x]
proof (induction rule: influenced_by.induct)
case (base us u)
then show 7case using influenced_by.base[of infl x ys y] by simp
qged simp
next
case (step u vs v)
have "z € influenced_by infl u" using step(5,1-4)
proof (induction rule: influenced_by.induct)
case (base ys y)
then show ?7case using influenced_by.base[of infl] influenced_by.step[of
v infl] by auto
next
case (step y zs z)
then show ?case using influenced_by.steplof _ infl] by auto
qed
then show ?case using step by auto
qed

lemma influenced_cutoff_subset:

"influenced_by_cutoff infl x C C influenced_by infl x"
proof (intro subsetI, goal_cases)
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case (1 y)
then show ?case
by (induction rule: influenced_by_cutoff.induct)
(auto simp add: influenced_by.base influenced_by.step)
qed

lemma influenced_cutoff_subset_2:
shows "influenced_by infl x - (|Jy € C. influenced_by infl y) C influenced_by_cutoff
infl x C"
proof (intro equalityl subsetl, elim DiffE, goal_cases)
case (1 y)
then show ?case
proof (induction rule: influenced_by.induct)
case (base ys z)
then show ?case using 1 influenced_by_cutoff.base by fastforce
next
case (step y zs z)
then show ?case
using influenced_by.base[OF step(2,3)] influenced_by.step[of y infl]
influenced_by_cutoff.step[of y infl x C zs z]
by blast
qed
qed

lemma union_influenced_to_cutoff:
shows "insert y (influenced_by infl y) U influenced_by infl x =
insert y (influenced_by infl y) U influenced_by_cutoff infl x (insert
y (influenced_by infl y))"
proof -
have "u € influenced_by infl y"
if "u # y" and "u ¢ influenced_by_cutoff infl x (insert y (influenced_by
infl y))"
and "u € influenced_by infl x" for u
using that influenced_cutoff_subset_2[of infl x "insert y (influenced_by
infl y)"]
influenced_by_transitive[of _ infl y] by auto
moreover have "u € influenced_by infl y"
if "u # y" and "u ¢ influenced_by infl x"
and "u € influenced_by_cutoff infl x (insert y (influenced_by infl
y))" for u
using that(3)
proof (induction rule: influenced_by_cutoff.induct)
case (base ys y)
then show ?case using that(2,3) influenced_cutoff_subset[of infl
x] by auto
qged simp
ultimately show ?thesis by auto
qed
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lemma destab_iter_infl_stabl_relation:
shows
"(infl’, stabl’) = destab_iter xs infl stabl
— infl’ = fmdrop_set (|Jx € set xs. insert x (influenced_by infl
x)) infl
A stabl’ = stabl - (|Jx € set xs. insert x (influenced_by infl x))"
and destab_infl_stabl_relation:
"(infl’, stabl’) = destab x infl stabl
— infl’ = fmdrop_set (insert x (influenced_by infl x)) infl
N stabl’ = stabl - influenced_by infl x"
proof (induction xs infl stabl and x infl stabl
arbitrary: infl’ stabl’ and infl’ stabl’ rule: destab_iter_destab.induct)
case (1 infl stabl)
then show ?case by simp
next
case (2 y ys infl stabl)
then obtain infl’’ stabl’’ where destab_y: "(infl’’, stabl’’) = destab
y infl (stabl - {y})"
and destab_ys: "(infl’, stabl’) = destab_iter ys infl’’ stabl’’"
by (cases "destab y infl (stabl - {y})"; auto)
note IH1 = "2.IH"(1) [OF destab_y]
note IH2 = "2.IH"(2) [OF destab_y _ destab_ys, simplified]

define A where "A x = insert x (influenced_by infl x)" for x
define B where "B x = insert x (influenced_by_cutoff infl x (insert
y (influenced_by infl y)))"
for x

have A_union_B_simp: "A y U (|Jx€set ys. B x) = ((JxEset (y#ys). A
X) n
using union_influenced_to_cutoff[of y] A_def B_def
by fastforce

show ?case
proof(intro conjI, goal_cases)
case 1
have "infl’ = fmdrop_set (|Jx€Eset ys. B x) (fmdrop_set (A y) infl)"
using IH!1 IH2 influenced_unknowns_fmdrop_set[of "A y"] A_def B_def
by auto

also have "... = fmdrop_set (A y U (|Jx€E€set ys. B x)) infl"
by (simp add: Un_commute)
also have "... = fmdrop_set (|Jx€set (y # ys). A x) infl"

using A_union_B_simp by auto
finally show ?case
using A_def B_def by auto
next
case 2
have "stabl’ = stabl - (A y U (|Jx€set ys. B x))"
using IH1 IH2 A_def B_def influenced_unknowns_fmdrop_set[of "A y"]
by auto
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also have "... = stabl - (|Jx€set (y#ys). A x)"
using A_union_B_simp
by auto
finally show 7case
using A_def B_def by auto
qed
next
case (3 y infl stabl)
then have
destab_y: "destab_iter (fmlookup_default infl [] y) (fmdrop y infl)
stabl = (infl’, stabl’)"
by simp
note IH = "3.IH"[OF destab_y[symmetric]]
then show ?case using influenced_by_aux[of infl] by simp
qed

4.7 Predicate for Valid Input States

For the TD, we extend the predicate of valid solver states of the TD_ plain,
to also covers the additional data structures stabl and infl:

definition invariant where
"invariant ¢ o infl stabl =
c C stabl
A part_solution o (stabl - c¢)
A fset (fmdom infl) C stabl
AN (Vyestabl - ¢. Vx € dep o0 y. y € slookup infl x)"

lemma invariant_simp_c_stabl:
assumes "x € c"
and "invariant (¢ - {x}) o infl stabl"
shows "invariant c¢ o infl (insert x stabl)"
using assms
proof -
have "¢ - {x} C stabl = ¢ C insert x stabl"
using assms (1)
by (simp add: subset_insert_iff)
moreover have "stabl - (¢ - {x}) D insert x stabl - c"
using assms (1)
by auto
ultimately show ?thesis
using assms (2)
unfolding invariant_def
by (meson subset_iff subset_insertI2)
qed

4.8 Auxiliary Lemmas for Partial Correctness Proofs

lemma stabl_infl_empty:
assumes "x ¢ stabl"
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and "fset (fmdom infl) C stabl"
shows "slookup infl x = {}"
proof (rule ccontr, goal_cases)
case 1
then have "x € fset (fmdom infl)"
unfolding fmlookup_default_def by force
then show ?7case using assms by blast
qed

lemma dep_closed_implies_reach_cap_tree_closed:
assumes "x € stabl’"
and "Véestabl’ - (c - {x}). dep o’ £ C stabl’"
shows "reach_cap o’ (c - {x}) x C stabl’"
proof (intro subsetI, goal_cases)
case (1 y)
then show ?case using assms
proof(cases "x = y")
case False
then have "y € reach_cap_tree o’ (c - {x}) (T x)"
using 1 reach_cap_tree_simp2[of x "c - {x}" o’] by auto
then show ?thesis using assms
proof (induction)
case (base y)
then show ?case using base.hyps dep_def by auto
next
case (step y z)
then show 7case by (metis (no_types, lifting) Diff_iff insert_subset
mk_disjoint_insert)
qed
qged simp
qed

lemma dep_subset_stable:
assumes "fset (fmdom infl) C stabl"
and "(Vyestabl - c. Vx € dep 0 y. y € slookup infl x)"
shows "(V&cstabl - c. dep o £ C stabl)"
using assms stabl_infl_empty[of _ stabl infl]
by (metis DiffD2 Diff_empty subsetI)

lemma new_lookup_to_infl_not_stabl:
assumes "V¢. (slookup infll & - slookup infl &) N stabl = {}"
and "x ¢ stabl"
and "fset (fmdom infl) C stabl"
shows "influenced_by infll x N stabl = {}"

proof -
have "u ¢ stabl" if "u € influenced_by infll x" for u
using that

proof (induction rule: influenced_by.induct)
case (base ys y)
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have "slookup infl x = {}" using stabl_infl_empty[OF assms(2,3)] by
auto
then have "y € slookup infll x - slookup infl x"
using base.hyps(1,2) by auto
then show ?case using base.hyps(1) assms(1,3) by force
next
case (step y zs z)
have "slookup infl y = {}"
by (meson assms(3) stabl_infl_empty step.IH)
then have "z € slookup infll y - slookup infl y"
by (simp add: step.hyps(2,3))
then show ?case using assms(1) stabl_infl_empty[OF _ assms(3)] by
fastforce
qed
then show 7thesis by auto
qed

lemma infl upd_diff:
assumes "V¢. (slookup infl’ ¢ - slookup infl &) N stabl = {}"
shows "V¢. (slookup (fminsert infl’ x y) & - slookup infl ¢) N (stabl
- {yp) = {}"
proof(intro alll, goal_cases)
case (1 &)
show ?case using assms unfolding fminsert_def fmlookup_default_def
by (cases "x = £") auto
qed

lemma infl_diff eval_step:
assumes '"stabl C stabl1l"
and "V¢. (slookup infl’ ¢ - slookup infll &) N (stabll - {x}) = {}"
and "V¢. (slookup infll & - slookup infl &) N (stabl - {x}) = {}"
shows "V¢. (slookup infl’ £ - slookup infl &) N (stabl - {x}) = {}"
proof(intro alll, goal_cases)
case (1 &)
have "((slookup infl’ ¢ - slookup infll &)
U (slookup infll & - slookup infl &£)) N (stabl - {x}) = {}"
using assms by auto
then show 7case by blast
qed

4.9 Preservation of the Invariant

In this section, we prove that the destabilization of some unknown that is
currently being iterated, will preserve the valid solver state invariant.

lemma destab_x_no_dep:
assumes "stabl2 = stabll - influenced_by infll x"
and "Vyestabll - (¢ - {x}). Vz&dep 01 y. y € slookup infll z"
shows "Vy € stabl2 - (¢ - {x}). x ¢ dep o1 y"
proof (intro balll, goal_cases)
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case (1 y)
show ?case
proof (rule ccontr, goal_cases)
case 1
then have "y € slookup infll x"
using assms <y € stabl2 - (¢ - {x})> by blast
then have "y € influenced_by infll x"
using lookup_in_influenced by force
moreover have "y ¢ influenced_by infll x"
using assms(1) <y € stabl2 - (¢ - {x})> by fastforce
ultimately show ?case by auto
qed
qed

lemma destab_preserves_c_subset_stabl:
assumes "¢ C stabl"
and "stabl C stabl’"
shows "¢ C stabl’"
using assms by auto

lemma destab_preserves_infl_dom_stabl:
assumes "(infl’, stabl’) = destab x infl stabl"
and "fset (fmdom infl) C stabl"
shows "fset (fmdom infl’) C stabl’"
proof -
have "infl’ = fmdrop_set (insert x (influenced_by infl x)) infl"
and A: "stabl’ = stabl - influenced_by infl x"
using assms (1) destab_infl_stabl_relation by metis+
then show 7?thesis
using assms(2)
by (metis Diff_mono fmdom’_alt_def fmdom’_drop_set subset_insertI)
qed

lemma destab_and_upd_preserves_dep_closed_in_infl:
assumes "(infl2, stabl2) = destab x infll stabll"
and "(Vyestabll - (c - {x}). Vze&dep 01 y. y € slookup infll z)"
shows "(Vye&stabl2 - (¢ - {x}). Vz€&dep (c1(x — xd’)) y. y € slookup
infl2 z)"
proof (intro balll, goal_cases)
case (1 z y)
have infl2_def: "infl2 = fmdrop_set (insert x (influenced_by infll x))
infl1"
and stabl2_def: "stabl2 = stabll - influenced_by infll x"
using assms (1) destab_infl_stabl_relation by metis+

have "y € dep o1 z"
proof (goal_cases)
case 1
have "Vyecstabl2 - (¢ - {x}). x ¢ dep o1 y"
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using assms(2) stabl2_def destab_x_no_dep by auto
then have "x ¢ dep o1 z"
using <z € stabl2 - (¢ - {x})> by blast
then have "dep (c1(x +— xd’)) z = dep o1 z"
using dep_eq[of 01 z "o1(x + xd’)"] mlup_eq _mupd_set[of x "dep
ol z" 01 o1 xd’]
by metis
then show ?7case using <y € dep (c1(x — xd’)) z> by auto
qed
then have z_in_infll y: "z € slookup infll y"
using 1(1) stabl2_def assms(2) by fastforce

have "z € influenced_by infll y"
using lookup_in_influenced[of infll y] z_in_infll_ y
by auto
then have "y ¢ influenced_by infll x" and "y # x"
using stabl2 def 1(1) influenced_by_transitive[of y _ x z] by auto
then show ?7case
using z_in_infll_y fmlookup_drop_set infl2_def
unfolding fmlookup_default_def
by fastforce
qed

lemma destab_upd_preserves_part_sol:
assumes "(infl2, stabl2) = destab x infll stabll"
and "part_solution o1 (stabll - c)"
and "Vyestabll - (¢ - {x}). Vx&dep o1 y. y € slookup infll x"
and "traverse_rhs (T x) o1 = xd’"
shows "part_solution (c1(x — xd’)) (stabl2 - (c - {x}))"
proof (intro balll, goal_cases)
case (1 y)
have stabl2_def: "stabl2 = stabll - influenced_by infll x"
using assms (1) destab_infl_stabl_relation by auto
have x_no_dep: "Vy € stabl2 - (¢ - {x}). x ¢ dep o1 y"
using destab_x_no_dep[0F stabl2_def assms(3)] by simp
have eq_y_upd: "eq y (c1(x +— xd’)) =eqy o1"
using 1 eq_mupd_no_deplof x o1 y] x_no_dep
by auto
show ?case
proof (cases "y = x")
case True
then show 7thesis using assms(4) eq_y_upd unfolding mlup_def by
(simp add: fun_upd_same)
next
case False
then have "y € stabll - c"
using 1 stabl2 def by force
then have "eq y 01 = mlup o1 y"
using assms(2) by blast
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then show ?thesis using False eq_y_upd unfolding mlup_def by (simp

add: fun_upd_other)
qed
qed

4.10 TD_ plain and TD Equivalence

Finally, we can prove the equivalence of TD and TD_ plain. We split this
proof into two parts: first we show that whenever the TD_ plain terminates
the TD terminates as well and returns the same result, and second we show
the other direction, i.e., whenever the TD terminates, the TD_ plain termi-
nates as well and returns the same result.

declare TD_plain.query_dom_def[of T,simp]
declare TD_plain.eval_dom_def[of T,simp]
declare TD_plain.iterate_dom_def[of T,simp]
declare TD_plain.query.psimps[of T,simp]
declare TD_plain.iterate.psimps[of T,simp]
declare TD_plain.eval.psimps[of T,simp]

To carry out the induction proof, we complement the valid solver state
invariant, with a second predicate update_rel, that describes the relation
between output and input solver states.

abbreviation "update_rel x infl stabl infl’ stabl’ =
stabl C stabl’ A
(Vu € stabl. slookup infl u C slookup infl’ u) A
(Vu. (slookup infl’ u - slookup infl u) N (stabl - {x}) = {PH)"

4.10.1 TD_ plain - TD

lemma TD_plain_TD_equivalence_ind:
shows "TD_plain.query_dom T x y ¢ ©
—> TD_plain.query Txy c o = (yd, o’)
— invariant c¢ o infl stabl
— query_dom x y ¢ infl stabl o

A (Finfl’ stabl’. query x y c infl stabl o = (yd, infl’, stabl’,

N invariant c¢ o’ infl’ stabl’

AN x € slookup infl’ y

A update_rel x infl stabl infl’ stabl’)"
and "TD_plain.iterate_dom T x ¢ o
TD_plain.iterate T x ¢ o = (xd, o’)
X € c
invariant (¢ - {x}) o infl stabl
iterate_dom x c¢ infl stabl o

ey

A (dinfl’ stabl’. iterate x c¢ infl stabl o = (xd, infl’, stabl’,

A invariant (c - {x}) o’ infl’ stabl’
N x € stabl’
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A update_rel x infl stabl infl’ stabl’)"
and "TD_plain.eval dom T x t ¢ o
TD_plain.eval Tx t ¢ 0 = (xd, 0’)
invariant ¢ o infl stabl
x € stabl
eval_dom x t ¢ infl stabl o
A (dinfl’ stabl’. eval x t c¢ infl stabl o = (xd, infl’, stabl’,

ey

o’)
A invariant ¢ o’ infl’ stabl’
N\ traverse_rhs t o’ = xd
AN (Vy€dep_aux ¢’ t. x € slookup infl’ y)
A update_rel x infl stabl infl’ stabl’)"
proof(induction x y ¢ 0 and x ¢ 0 and x t ¢ o
arbitrary: yd o’ infl stabl and xd ¢’ infl stabl and xd o’ infl
stabl
rule: TD_plain.query_iterate_eval_pinduct[of T, consumes 1, case_names
Query Iterate Eval])
case (Query x y ¢ o)
show ?case using Query.IH(1) Query.prems(1)
proof (cases rule:
TD_plain.query_iterate_lookup_cases[of T, consumes 2, case_names
Iterate Lookup])
case Iterate
moreover obtain infl’ stabl’ where IH: "iterate_dom y (insert y
c) infl stabl o A
iterate y (inmsert y c) infl stabl o = (yd, infl’, stabl’, o’)
N
invariant ¢ o’ infl’ stabl’ A
y € stabl’ A
update_rel y infl stabl infl’ stabl’"
using Query.IH(2) [simplified, OF Iterate(4,2) Query.prems(2), folded
dom_defs] by auto
ultimately show ?7thesis
proof (intro conjI, goal_cases)
case 1 then show dom: 7case using query_iterate_eval.domintros(1) [folded
dom_defs] by auto
case 2 then show 7case
proof (intro exI[of _ "fminsert infl’ y x"] exI[of _ stabl’], intro
conjI, goal_cases)
case 1 then show ?case using dom by simp
next
case 2 then show 7case
unfolding invariant_def by (auto simp add: fminsert_def fmlookup_default_def)
next
case 6 then have "V¢. (slookup infl’ ¢ - slookup infl &) N stabl
= {}"
by (cases "y € stabl"; auto)
then show ?case
using infl_upd_diff[of infl’ infl stabl y x] by auto
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qged (auto simp add: fminsert_def fmlookup_ default_def)
qed
next
case Lookup
then show ?7thesis using Query.prems(1,2)
proof (intro conjI, goal_cases)
case 1 then show dom: 7case using query_iterate_eval.domintros(1) [of
y c] by auto
case 2 then show ?case
proof (intro exI[of _ "fminsert infl y x"] exI[of _ stabl], intro
conjI, goal_cases)
case 1 then show ?case using dom by simp
next
case 2 then show ?case
unfolding invariant_def by (auto simp add: fminsert_def fmlookup_default_def)
next
case 6 then show ?case
using infl_upd_diff[of infl infl stabl y] by auto
qged (auto simp add: fminsert_def fmlookup_default_def)
qed
qged
next
case (Iterate x ¢ o)
have inv: "invariant ¢ o infl (insert x stabl)"
using Iterate.prems(2,3) invariant_simp_c_stabl by auto
have dep_in_stabl: "V&cstabl - (¢ - {x}). dep o & C stabl"
using Iterate.prems(3) dep_subset_stable[of infl stabl] unfolding
invariant_def by auto
show ?case
proof(cases "x € stabl" rule: case_split[case_names Stable Unstable])
case Stable
then show ?thesis
proof (intro conjI, goal_cases)
case 1 then show dom: 7case using query_iterate_eval.domintros(2) [of
x stabl] by simp
case 2 moreover have "o = og’"
using Iterate.prems(3) TD_plain.already_solution(2)[OF Iterate.IH(1)
Iterate.prems(1,2) 2]
dep_in_stabl unfolding TD_plain.invariant_def invariant_def
by fastforce
ultimately show ?case
proof (intro exI[of _ infl] exI[of _ stabl] conjI, goal_cases)
case 1
then show ?case using dom TD_plain.iterate_fmlookup[OF Iterate.IH(1)
Iterate.prems(1,2)]
by auto
next
case 2 then show ?case using Iterate.prems(3) by auto
qged auto
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qed
next
case Unstable
show ?thesis using Iterate.IH(1) Iterate.prems(1,2)
proof(cases rule:
TD_plain.iterate_continue_fixpoint_cases[of T, consumes 3, case_names
Fixpoint Continue])
case Fixpoint
moreover obtain infl’ stabl’ where IH: "eval dom x (T x) c infl
(insert x stabl) o A
(xd, infl’, stabl’, o’) = eval x (T x) c infl (insert x stabl)
o N
invariant ¢ o’ infl’ stabl’ A
eq x 0’ =xd A
(Vy€dep o’ x. x € slookup infl’ y) A
update_rel x infl (insert x stabl) infl’ stabl’"
using Iterate.IH(2) [OF Fixpoint(2) inv, folded dep_def] by auto
ultimately show ?thesis using Unstable
proof(intro conjI, goal_cases)
case 1 then show dom: 7case using query_iterate_eval.domintros(2) [of
x stabl ¢ infl o]
by (cases "eval x (T x) c¢ infl (insert x stabl) o"; auto)
case 2 then show ?case
proof (intro exI[of _ infl’] exI[of _ stabl’] conjI, goal_cases)
case 1 then show ?case using dom by (auto split: prod.splits)
next
case 2 then show ?case unfolding invariant_def by auto

next
case 3 then show ?case using Iterate.prems(2) invariant_def
by fastforce
qged auto
qged
next
case (Continue o1 xd’)
obtain infll stabll where IH: "eval_dom x (T x) c¢ infl (insert

x stabl) o A
(xd’, infll, stabll, o01) = eval x (T x) c¢ infl (insert x stabl)

o N
invariant ¢ o1 infll stabll A
eq x o1l = xd’ A
(Vyedep 01 x. x € slookup infll y) A
update_rel x infl (insert x stabl) infll stabll”
using Iterate.IH(2) [OF Continue(2) inv, folded dep_def] by auto
obtain infl2 stabl2 where destab: "(infl2, stabl2) = destab x infll
stabl1l"
by (cases "destab x infll stabll"; auto)
then have infl2_def: "infl2 = fmdrop_set (insert x (influenced_by

infll x)) infl1"
and stabl2_def: "stabl2 = stabll - influenced_by infll x"
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using destab_infl_stabl_relation[of infl2 stabl2 x infll stabll]

by auto
define 02 where [simp]: "02 = c1(x — xd’)"
have infl_diff: "V¢. (slookup infll & - slookup infl &) N stabl
= {}"
using Unstable Iterate.prems(3) IH
unfolding invariant_def by auto
have infl_closed: "Vxé&stabll - (c - {x}). Vy&dep o1 x. x € slookup

infll y"
using IH unfolding dep_def invariant_def by auto
have stabl_inc: "stabl C stabl2"
using IH Iterate.prems(3) new_lookup_to_infl_not_stabl[OF infl_diff

Unstable]
unfolding invariant_def stabl2 def by auto

have inv2: "invariant (c - {x}) o2 infl2 stabl2"

using IH unfolding invariant_def
proof(elim conjE, intro conjI, goal_cases)

case 1
show ?case using destab_preserves_c_subset_stabl stabl_inc Iterate.prems(3)

unfolding invariant_def by auto

next
case 2 then show ?case using destab_upd_preserves_part_sol [OF

destab _ infl_closed] by auto
next
case 3 then show 7case using destab_preserves_infl_dom_stabl [OF

destab] by auto
next
case 4 show ?case
proof(intro balll, goal_cases)

case (1 y z)
have x_no_dep: "x ¢ dep o1 y" if "y € stabl2 - (¢ - {x})" for

y

using that destab_infl_stabl_relation[OF destab] infl_closed
destab_x_no_dep by blast
have "dep o1 y = dep 02 y" using x_no_dep[OF 1(1)] dep_eqlof

ol _ o02]
unfolding mlup_def by (simp add: fun_upd_apply)
then show ?case using 1 destab_and_upd_preserves_dep_closed_in_inf1[OF

destab infl_closed]
by auto

qed
qged
obtain infl’ stabl’ where ih: "iterate_dom x c¢ infl2 stabl2 (c1(x

— xd’)) A
iterate x c¢ infl2 stabl2 (c1(x — xd’)) = (xd, infl’, stabl’,

o’) N
invariant (c - {x}) o’ infl’ stabl’ A

X € stabl’ A
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update_rel x infl2 stabl2 infl’ stabl’"
using Iterate.IH(3) [OF Continue(2) [symmetric] _ Continue(3) [symmetric]
Continue (5)
Iterate.prems(2) inv2[unfolded o2 _def], simplified, folded dom_defs]
Continue(2,3,5) Iterate.IH(3) Iterate.prems(2) c2_def inv2
by fastforce

show 7thesis using IH ih destab Unstable
proof(elim conjE, intro conjI, goal_cases)
case 1 show dom: ?case using query_iterate_eval.domintros(2) [of
x stabl ¢ infl o]
using 1(1-2,3-5)
by (cases "eval x (T x) c¢ infl (insert x stabl) o¢"; cases "destab
x infll stabll"; auto)
case 2 then show ?case
proof (intro exI[of _ infl’] exI[of _ stabl’] conjI, goal_cases)
case 1 show ?case using 1(1,5,6) Continue(3) dom Unstable by
(auto split: prod.splits)
next
case 4
show ?case
using "4"(12) stabl_inc by auto
next
case 5 show 7case
proof(intro balll subsetI, goal_cases)
case (1 & w
have "¢ ¢ insert x (influenced_by infll x)"
using 1(1) stabl2_def stabl_inc Unstable by blast
then show ?7case using stabl_inc infl2 def 1 5(14,16)
fmlookup_default_drop_set[of "insert x (influenced_by
infll x)" infl1l £]
by fastforce
qed
next
case 6 show 7case
proof(intro alll, goal_cases)
case (1 &)
have "slookup infl2 ¢ C slookup infll £" using infl2 def
unfolding fmlookup_default_def by auto
moreover have "(slookup infl’ { - slookup infl2 &) N (stabl

- {x}) = {}"
using stabl_inc ih
by blast
moreover have "(slookup infll £ - slookup infl £) N (stabl
- {x}) = {}"

using 6(7) [unfolded invariant_def] infl_diff stabl_infl_empty[of

¢ stabll infli1]
by (cases "¢ € stabll"; auto)
ultimately show ?7case unfolding stabl2_def by auto
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qed
qged auto
qed
qed
qed
next
case (Eval x t ¢ o)
show ?case using Eval.IH(1) Eval.prems(1)
proof(cases rule: TD_plain.eval_query_answer_cases[of T, consumes 2,
case_names Ruery Answer])
case (Query y g yd o1)
obtain infll stabll where IH: "query dom x y c infl stabl o A
(yd, infll, stabll, ol1) = query x y c¢ infl stabl o A
invariant ¢ o1 infll stabll A
x € slookup infll y A
update_rel x infl stabl infll stabll"
using Eval.IH(2) [OF Query(1,3) Eval.prems(2)] by metis
then obtain infl’ stabl’ where ih: "eval_dom x (g yd) c¢ infll stabll
ol A
(xd, infl’, stabl’, o’) = eval x (g yd) c infll stabll o1 A
invariant ¢ o’ infl’ stabl’ A
traverse_rhs (g yd) o’ = xd A
(Vy€dep_aux o’ (g yd). x € slookup infl’ y) A
update_rel x infll stabll infl’ stabl’"
using Eval.prems(3) Eval.IH(3) [OF Query(1) Query(3)[symmetric] _
Query (5), of infll stabll]
by fastforce
have td1_inv: "TD_plain.invariant T stabl c o"
using Eval.prems(2) dep_subset_stable unfolding TD_plain.invariant_def
invariant_def by blast
have td1_inv2: "TD_plain.invariant T (stabl U reach_cap o1 c y) ¢
0-1/1
using TD_plain.partial_correctness_ind (1) [OF Query(2,3) tdl_inv]
by auto
have mlup: "mlup o’ y = yd"
using TD_plain.partial_correctness_ind(3) [OF Query(4,5) tdl_inv2]
Query(6) by auto

show 7thesis using IH ih
proof (elim conjE, intro conjI, goal_cases)
case 1
show dom: ?case
using 1(1-3) Query(1) query_iterate_eval.domintros(3)[of t x ¢
infl stabl o]
by (cases "query x y c¢ infl stabl o"; fastforce)
case 2
then show ?case
proof (intro exI[of _ infl’] exI[of _ stabl’] conjI, goal_cases)
case 1 show 7case using 1(3,4) dom Query(1) by (auto split:prod.splits)
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next
case 3 then show ?case using Query(1) mlup by auto
next
case 4 show ?case using 4(5,7,10,14) Query(1) mlup stabl_infl_empty[of
y stabll infli]
unfolding invariant_def by auto
next
case 6 then show 7case by blast
next
case 7 show ?case
using 7(9,12,15) infl_diff_eval_step[of stabl stabll infl’ infll

x infl]
by auto
qged auto
qed
next

case Answer
then show ?thesis using Eval.prems(2)
proof (intro conjI, goal_cases)
case 1 then show dom: 7case using query_iterate_eval.domintros(3) [of
t] by auto
case 2 then show ?case
proof (intro exI[of _ infl] exI[of _ stabl] conjI, goal_cases)
case 1 then show 7case using dom by auto
qged auto
qed
qed
qed

corollary TD_plain_TD_equivalence:
assumes "TD_plain.solve_dom T x"
and "TD_plain.solve T x = o"
shows "dstabl. solve_dom x A solve x = (stabl, o)"
proof -
obtain xd where iter: "TD_plain.iterate T x {x} Map.empty = (xd, o)"
using assms(2) unfolding TD_plain.solve_def by (auto split: prod.splits)
have inv: "invariant ({x} - {x}) Map.empty fmempty {}" unfolding invariant_def
by fastforce
obtain infl stabl where "iterate_dom x {x} fmempty {} (Ax. None)"
and "iterate x {x} fmempty {} (Ax. None) = (xd, infl, stabl, o)"
using TD_plain_TD_equivalence_ind(2) [OF assms(1) [unfolded TD_plain.solve_dom_def]
iter _ inv]
by auto
then show ?thesis unfolding solve_dom_def solve_def by (auto split:
prod.splits)
qed
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4.10.2 TD — TD_ plain

lemmas TD_plain_dom_defs =
TD_plain.query_dom_def [of T]
TD_plain.iterate_dom_def [of T]
TD_plain.eval_dom_def [of T]

lemma TD_TD_plain_equivalence_ind:
shows "query_dom x y c infl stabl o
(yd, infl’, stabl’, ¢’) = query x y c¢ infl stabl o
invariant ¢ o infl stabl
finite stabl
invariant ¢ o’ infl’ stabl’
TD_plain.query_dom T x y ¢ o
(yd, 0’) = TD_plain.query Tx y c o
finite stabl’
X € slookup infl’ y
update_rel x infl stabl infl’ stabl’"
nd "iterate_dom x c infl stabl o
(xd, infl’, stabl’, o’) = iterate x c infl stabl o
X €cC
invariant (¢ - {x}) o infl stabl
finite stabl
invariant (¢ - {x}) o’ infl’ stabl’
TD_plain.iterate_dom T x ¢ o
(xd, 0’) = TD_plain.iterate T x ¢ o
finite stabl’
x € stabl’
update_rel x infl stabl infl’ stabl’"
"eval_dom x t ¢ infl stabl o
(xd, infl’, stabl’, o’) = eval x t ¢ infl stabl o
invariant ¢ o infl stabl
X € stabl
finite stabl
invariant ¢ o’ infl’ stabl’
TD_plain.eval_dom T x t ¢ ©
(xd, 0’) = TD_plain.eval Tx t c ¢
finite stabl’
traverse_rhs t o’ = xd
(Vy€dep_aux o’ t. x € slookup infl’ y)
update_rel x infl stabl infl’ stabl’"
proof (induction x y ¢ infl stabl ¢ and y ¢ infl stabl ¢ and x t ¢ infl
stabl o
arbitrary: yd infl’ stabl’ ¢’ and xd infl’ stabl’ ¢’ and xd infl’
stabl’ o’
rule: query_iterate_eval_pinduct)
case (Query y x ¢ infl stabl o)
show ?case using @uery.IH(1) Query.prems(1)
proof(cases rule: query_iterate_lookup_cases)
case (Iterate infll)
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moreover
note IH = Query.IH(2) [simplified, folded TD_plain_dom_defs, OF Iterate(5,2)
Query.prems(2,3)]
ultimately show ?thesis
proof(intro conjI, goal_cases)
case 1 then show 7case unfolding invariant_def
by (auto simp add: fminsert_def fmlookup_default_def)
next
case 2 then show dom: 7case using TD_plain.query_iterate_eval.domintros(1) [of
x c] by auto
case 3 then show ?case using dom by auto
next case 8 then have "V¢. (slookup infll & - slookup infl &) N
stabl = {}"
using Query.prems (3) [unfolded invariant_def]
by (cases "x € stabl"; simp)
then show ?case
using 8 infl_upd_diff[of infll infl stabl x] Query.prems(2) by
auto
qed (auto simp add: fminsert_def fmlookup_default_def)
next
case Lookup
then show 7thesis using Query.prems(2,3)
proof(intro conjI, goal_cases)
case 1 then show 7case unfolding invariant_def
by (auto simp add: fminsert_def fmlookup_default_def)
next
case 2 then show dom: 7case using TD_plain.query_iterate_eval.domintros (1) [of
x c] by auto
case 3 then show 7case using dom by auto
next case 8 then show 7case
using infl_upd_diff[of infl infl stabl x] Query.prems(2) by auto
qed (auto simp add: fminsert_def fmlookup_default_def)
qed
next
case (Iterate x ¢ infl stabl o)
then have inv: "invariant ¢ o infl (insert x stabl)" using invariant_simp_c_stabl
by metis
have xstabl: "x € insert x stabl" by simp
have stablfinite: "finite (insert x stabl)" using Iterate.prems(4) by
auto
show ?case using Iterate.IH(1) Iterate.prems(1-2)
proof(cases rule: iterate_continue_fixpoint_cases)
case Stable
have "TD_plain.invariant T stabl (¢ - {x}) o"
using Iterate.prems(3) dep_subset_stable[of infl stabl]
unfolding invariant_def TD_plain.invariant_def[of T]
by auto
then have "TD_plain.iterate_dom T x ¢ ¢" and "TD_plain.iterate T
xc o= (xd, o)"
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using Stable(5,4) Iterate.prems(2,4) TD_plain.tdl_terminates_for_stabl[of
x stabl T] by auto

then show ?thesis using Stable(2,3,5) Iterate.prems(1,3,4) Iterate.IH(1)
by auto

next
case Fixpoint
note IH = Iterate.IH(2)[OF Fixpoint(4,2) inv xstabl stablfinite, folded
eq_def dep_def]

then show ?thesis
proof(intro conjI, goal_cases)

case 1 then show 7case unfolding invariant_def

proof(intro conjI, goal_cases)

case 1 then have '"part_solution o’ (stabl’ - (c - {x}))"
using Fixpoint(3) unfolding eq def invariant_def by auto

then show 7case using IH invariant_def by auto
next

case 2

then show ?case using Fixpoint(3) by auto
next

case 3 then show ?case using Iterate.prems(2) by (simp add:
insert_absorb)
ged auto
next

case 2 then show dom: ?case

using Fixpoint(3) TD_plain.query_iterate_eval.domintros(2) [of
T, folded TD_plain_dom_defs]

by (metis prod.inject)

case 3 then show ?case using dom Fixpoint(3) by (auto split: prod.splits)
next

case 6 then show ?case
using Fixpoint(4) by blast
next case 8
have "x ¢ fset (fmdom infl)"
using Iterate.prems(3) Fixpoint (4)
unfolding invariant_def
by auto
then have "slookup infl x = {}"
unfolding fmlookup_default_def
by (simp add: fmdom_notD)
then show ?case
using Fixpoint(4) IH lookup_in_influenced
by auto
qed auto
next
case (Continue stabll infll o1 xd’ stabl2 infl2)

have infl2 def: "infl2 = fmdrop_set (insert x (influenced_by infll
x)) infl1"

and stabl2 def: "stabl2 = stabll - influenced_by infll x"
using destab_infl_stabl_relation[of infl2 stabl2 x infll stabll]

62



Continue (4) by auto
note IH = Iterate.IH(2)[OF Continue(7,2) inv xstabl stablfinite]

have "(slookup infll £ - slookup infl &) N stabl = {}" for ¢
using Iterate.prems(3) Continue(7) IH
unfolding invariant_def
by auto
then have stabl_inc: "stabl C stabl2"
using Iterate.prems(3) Continue(4,7) new_lookup_to_infl_not_stabl[of
infll infl stabl x]
destab_infl_stabl_relation[of infl2 stabl2] IH
unfolding invariant_def
by auto

have infl_closed: "(Vxé&stabll - (¢ - {x}). Vy€&dep 01 x. x € slookup
infl1l y)"
using IH[unfolded invariant_def, folded dep_def] by auto

have x_no_dep: "x ¢ dep o1 y" if "y € stabl2 - (¢ - {x})" for y
using that Continue(4) destab_infl_stabl_relation destab_x_no_dep[OF
_ infl_closed]
by fastforce

have "invariant (c - {x}) (c1(x — xd’)) infl2 stabl2"
using IH Iterate.prems(2,3) Continue(4,7)
unfolding invariant_def
proof(elim conjE, intro conjI, goal_cases)
case 1
define 02 where [simp]: "02 = o1(x — xd’)"
show 7case using 1(4) stabl_inc by auto
case 2
show ?case
using 2(2,8,15) destab_upd_preserves_part_sol infl_closed
by auto
case 3
show ?case using 3(2,12) destab_preserves_infl_dom_stabl by auto
case 4
show 7case
proof(intro balll, goal_cases)
case (1 y z)
have "dep 01 y = dep 02 y" using x_no_dep[OF 1(1)] dep_eqlof
01 _ 02] o02_def fun_upd_apply
unfolding mlup_def by metis
then show ?case using 1 4(2) destab_and_upd_preserves_dep_closed_in_infl
infl_closed by auto
qed
qed
then have "invariant (¢ - {x}) (01(x + xd’)) infl2 stabl2" by simp+
note inv = this
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have B: "finite stabl2"
by (metis Continue(4) Diff_subset IH destab_infl_stabl_relation
infinite_super)
note ih = Iterate.IH(3) [0OF Continue(7,2) _ _ _ Continue(3,4) _ Continue(6)
Iterate.prems(2) inv
B, of "(infll, stabll, o1)" "(stabll, c1)", simplified, folded
TD_plain_dom_defs]
then show ?thesis
proof(intro conjI, goal_cases)
case 2 show dom: 7case
using IH TD_plain.query_iterate_eval.domintros(2)[of T x ¢ o,
folded TD_plain_dom_defs] ih
by (metis Pair_inject)
case 3 then show 7case using dom Continue(3) IH ih
by (auto split: prod.split)
next case 6 then show 7case
using stabl_inc by auto
next case 7
then show 7case unfolding invariant_def
proof(elim conjE, intro balll subsetI, goal_cases)
case (1 & u)
have "¢ ¢ insert x (influenced_by infll x)"
using 1(13) Continue(7) stabl2 def stabl_inc by blast
then show ?case
using stabl_inc infl2_def 1(10,13,14) IH
fmlookup_default_drop_set[of "insert x (influenced_by infll
x)" infll £]
by fastforce
qed
next case 8
then show ?case unfolding invariant_def
proof(intro alll, goal_cases)
case (1 &)
have "slookup infl2 ¢ C slookup infll &"
using infl2 def unfolding fmlookup_default_def by auto
moreover have "(slookup infl’ ¢ - slookup infl2 &) N stabl =
{ n
proof (cases "x € stabl2")
case True
then show 7thesis using Continue(5,6) by auto
next
case False
then show ?thesis
using 1(1) inv/[unfolded invariant_def] stabl_inc
by fastforce
qed
moreover have "(slookup infll & - slookup infl &) N stabl =
{}Il
using Continue(7) Iterate.prems(3) IH stabl_infl_empty[of x
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stabl infl]
unfolding invariant_def by auto
ultimately show ?case using infl2_def stabl2_def by blast
qed
qged auto
qed
next
case (Eval x t ¢ infl stabl o)
show ?case using Eval.IH(1) Eval.prems(1)
proof(cases rule: eval_query_answer_cases)
case (Query y g yd infll stabll o1)
note IH = Eval.IH(2)[OF Query(1,3) Eval.prems(2,4)]
then have "invariant ¢ o1 infll stabll
A TD_plain.invariant T
stabll ¢ o1"
using Eval.prems(3)
unfolding invariant_def
proof(elim conjE, intro conjI, goal_cases)
case 1 show 7case using 1(2) .
next
case 2 show 7case using 2(4) .
next
case 3 show 7case using 3(6) .
next
case 4 show 7case using 4(7) .
next
case 5 show 7case using Eval.prems(3) IH
reach_cap_tree_simp2 dep_eq unfolding TD plain.invariant_def
by (meson "5"(13) dep_subset_stable)
qed
then have "invariant c¢ o1 infll stabll"
and "TD_plain.invariant T stabll ¢ o1"
by simp+
note inv = this
have B: "finite stabll" using IH by simp
have C: "x € stabl1l" using IH Eval.prems(3) by blast
note ih = Eval.IH(3) [OF Query(1,3) _ _ _ Query(5) inv(1) C B,
of "(infll, stabll, o1)" "(stabll, o1)", simplified, folded TD_plain_dom_defs]

have "y € stabl1l"
using IH stabl_infl_empty[of y stabll infll]
unfolding invariant_def
by fastforce
then have "mlup 01 y = mlup o’ y"
using TD_plain.partial_correctness_ind(3)[of T x "g yd" ¢ o1 xd
o’ stabll] inv ih by auto
then have mlup: "mlup o’ y = yd"
using Query(6) by auto
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show 7thesis using ih
proof(intro conjI, goal_cases)
case 2
then show dom: 7case
using IH Query(1) TD_plain.query_iterate_eval.domintros(3) [of
t T, folded TD_plain_dom_defs]
by (cases "TD_plain.query T x y ¢ o") fastforce
case 3
then show ?case
using dom IH Query(1)
TD_plain.query_iterate_eval.domintros(3) [of t T, folded TD_plain_dom_defs]
by (auto split: prod.splits)
next
case 5
then show 7case using Query IH mlup unfolding invariant_def by
auto
next
case 6
then show 7case using 6 Query IH mlup <y € stabll> unfolding invariant_def
by auto
next
case 7
then show 7case using IH by auto
next
case 8
then show ?case using IH by blast
next
case 9
then show ?case
using infl_diff_eval_step[of stabl stabll infl’ infll x] IH ih
Eval.prems(2,3) by auto
qged auto
next
case Answer
then show ?thesis using Answer TD_plain.query_iterate_eval.domintros(3)
Eval.prems(2-3,4)
by fastforce
qed
qed

corollary TD_TD_plain_equivalence:
assumes "solve_dom x"
and "solve x = (stabl, o)"
shows "TD_plain.solve_dom T x A TD_plain.solve T x = o"
proof -
obtain xd infl where iter: "(xd, infl, stabl, o) = iterate x {x} fmempty
{} Map.empty"
using assms(2) unfolding solve_def by (auto split: prod.splits)
have inv: "invariant ({x} - {x}) Map.empty fmempty {}" unfolding invariant_def
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by fastforce
have "TD_plain.iterate_dom T x {x} (\x. None) A (xd, o) = TD_plain.iterate
T x {x} (A\x. None)"
using TD_TD_plain_equivalence_ind(2) [OF assms (1) [unfolded solve_dom_def]
iter _ inv, simplified]
by auto
then show ?thesis unfolding TD_plain.solve_dom_def TD_plain.solve_def
by (auto split: prod.splits)
qed

4.11 Partial Correctness of the TD

From the equivalence of the TD and TD_ plain and the partial correctness
proof of the TD_ plain we can now conclude partial correctness also for the
TD.

corollary partial_correctness:
assumes "solve_dom x"
and "solve x = (stabl, o)"
shows "part_solution o stabl" and "reach o x C stabl"
proof(goal_cases)
note dom = assms (1) [unfolded solve_dom_def]
obtain infl xd where app: "(xd, infl, stabl, o) = iterate x {x} fmempty
{} Map.empty"
using assms unfolding solve_def by (cases "iterate x {x} fmempty
{} Map.empty") auto
case 1 show ?case using TD_TD_plain_equivalence_ind(2) [OF dom app,
unfolded invariant_def] by auto
case 2 show ?case
using TD_TD_plain_equivalence_ind(2) [OF dom app, unfolded invariant_def]
reach_empty_capped dep_closed_implies_reach_cap_tree_closed
dep_subset_stable[of infl stabl "{}"] by auto
qged

4.12 Program Refinement for Code Generation

To derive executable code for the TD, we do a program refinement and
define an equivalent solve function based on partial function with options
that can be used for the code generation.

datatype (’a,’b) state = § "’a X ’a X ’a set x (’a, ’a list) fmap X
’a set x (’a, ’b) map"

| I "’a x ’a set x (’a, ’a list) fmap X ’a set x (’a, ’b) map"

| E "’a x (’a,’b) strategy_tree X ’a set x (’a, ’a list) fmap X ’a
set X (’a, ’b) map"

partial_function (option) solve_rec_c ::

"(’x, ’d) state = (°’d x (’x, ’x list) fmap X ’x set x (’x, ’d) map)
option"

where
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"solve_rec_c s = (case s of Q (y,x,c,infl,stabl,oc) = Option.bind
(if x € c¢ then
Some (mlup o x, infl, stabl, o)
else
solve_rec_c (I (x, (insert x c), infl, stabl, o)))
(A (xd, infl, stabl, o). Some (xd, fminsert infl x y, stabl, o))
| T (x,c,infl,stabl,c) =
if x ¢ stabl then Option.bind (
solve_rec_c (E (x, (T x), c, infl, insert x stabl, o))) (A(d_new,
infl, stabl, o).
if mlup o x = d_new then
Some (d_new, infl, stabl, o)
else
let (infl, stabl) = destab x infl stabl in
solve_rec_c (I (x, ¢, infl, stabl, o(x +> d_new))))
else
Some (mlup o x, infl, stabl, o)
| E (x,t,c,infl,stabl,oc) = (case t of
Answer d = Some (d, infl, stabl, o)
| Query y g = (
Option.bind (solve_rec_c (Q (x, y, ¢, infl, stabl, o))) (A (yd,
infl, stabl, o).
solve_rec_c (E (x, g yd, c, infl, stabl, o))))))"

definition solve_rec_c_dom where "solve_rec_c_dom p = do. solve_rec_c
p = Some o"

declare destab.simps[code]
declare destab_iter.simps[code]
declare solve_rec_c.simps[simp, code]

definition solve_c :: "’x = (’x set x ((’x, ’d) map)) option" where
"solve_c x = Option.bind (solve_rec_c (I (x, {x}, fmempty, {}, Map.empty)))
(\N(_, _, stabl, o). Some (stabl,oc))"

definition solve c_dom :: "’x = bool" where "solve c_dom x = do. solve_c
x = Some o"

We prove the equivalence of the refined solver function for code generation
and the initial version used for the partial correctness proof.

lemma query_iterate_eval_solve_rec_c_equiv:
shows "query_dom x y ¢ infl stabl o0 = solve_rec_c_dom (Q (x,y,c,infl,stabl,o))
A query x y c¢ infl stabl o = the (solve_rec_c (Q (x,y,c,infl,stabl,c)))"
and "iterate_dom x ¢ infl stabl o —> solve_rec_c_dom (I (x,c,infl,stabl,c))
A iterate x c¢ infl stabl o = the (solve_rec_c (I (x,c,infl,stabl,c)))"
and "eval_dom x t c¢ infl stabl o0 — solve_rec_c_dom (E (x,t,c,infl,stabl,c))
A eval x t ¢ infl stabl o = the (solve_rec_c (E (x,t,c,infl,stabl,c)))"
proof (induction x y ¢ infl stabl o and x c infl stabl o and x t ¢ infl
stabl o
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rule: query_iterate_eval_pinduct)
case (Query x y c infl stabl o)
show ?case
proof (cases "y € c")
case True
then have "solve_rec_c (Q (x, y, ¢, infl, stabl, o))
= Some (mlup o y, fminsert infl y x, stabl, o)"
by simp
moreover have "query x y c¢ infl stabl o = (mlup o y, fminsert infl
y x, stabl, o)"
using query.psimps[folded dom_defs] Query(1) True by force

ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
next

case False
obtain d1 infll stabll o1 where

I: "iterate y (insert y c) infl stabl ¢ = (d1, infll, stabll,
O'l)”

using prod_cases4 by blast
then have J: "query x y c¢ infl stabl o = (dl, fminsert infll y x,
stabll, o1)"
using False Query.IH(1) query.pelims[folded dom_defs] by fastforce
then have "solve_rec_c (I (y, insert y c, infl, stabl, o)) = Some
(d1, infll, stabll, o1)"
using Query(2) False I by (simp add: solve_rec_c_dom_def)

then have "solve_rec_c (Q (x, y, ¢, infl, stabl, o)) = Some (d1,
fminsert infll y x, stabll, o1)"

using False by simp
moreover have "solve_rec_c_dom (§ (x, y, c, infl, stabl, o))"
using Query(2) False unfolding solve_rec_c_dom_def by fastforce

ultimately show ?thesis using @uery J unfolding solve_rec_c_dom_def
by auto

qed
next
case (Iterate x c infl stabl o)
show 7case
proof (cases "x € stabl")
case True
have "iterate_dom x c¢ infl stabl o A
iterate x c¢ infl stabl o = (mlup o x, infl, stabl, o)"

using True iterate.psimps query_iterate_eval.domintros(2)
unfolding iterate_dom_def
by fastforce

then show ?thesis using True unfolding solve_rec_c_dom_def by auto
next

case False
obtain d1 infll stabll o1 where

eval: "eval x (T x) c¢ infl (insert x stabl) o = (d1, infll, stabll,
0.1):!

"solve_rec_c (E (x, T x, ¢, infl, insert x stabl, o)) = Some (di,
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infll, stabll, o1)"

using Iterate(2) solve_rec_c_dom_def False by force
show 7thesis

proof (cases "mlup o1 x = d1")
case True

have "iterate x c¢ infl stabl o =

(d1, infll, stabll, o1)"

using eval iterate.psimps[folded dom_defs, OF Iterate(1)] True
False by simp

moreover have "solve _rec_c (I (x, ¢, infl, stabl, o)) = Some (di,
infll, stabll, o1)"

using eval False True by simp

ultimately show ?thesis unfolding solve_rec_c_dom_def by simp
next

case False

obtain infl2 stabl2 where destab:

"(infl2, stabl2) = destab x infll
stabl1l"

by (cases "destab x infll stabll") auto

have "solve_rec_c_dom (I (x, ¢, infl2, stabl2, oc1(x +~ di1)))"
and "iterate x ¢ infl2 stabl2 (c1(x +— d1)) =
the (solve_rec_c (I (x, ¢, infl2, stabl2, ol1(x +> di1))))"

using Iterate(3) [OF <x ¢ stabl> eval(1l) [symmetric] _ _ _ False
destab] by blast+

moreover have

"iterate x ¢ infl stabl o =
(c1(x — d1))"

iterate x ¢ infl2 stabl2

using eval iterate.psimps[folded dom_defs, OF Iterate(1)] False
<x ¢ stabl> destab

by (smt (verit) case_prod_conv)

moreover have "solve_rec_c (I (x, ¢, infl, stabl, o))

solve_rec_c (I (x, c, infl2, stabl2, o1(x + d1)))"

using <x ¢ stabl> False eval(2) destab[symmetric] by simp

ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
qed

qed
next
case (Eval x t ¢ infl stabl o)
show 7case
proof (cases t)
case (Answer d)

then have "eval x t ¢ infl stabl ¢ = (d, infl, stabl, o)"

using eval.psimps query_iterate_eval.domintros(3) dom_defs(3) by
fastforce

then show ?thesis using Eval Answer unfolding solve_rec_c_dom_def
by simp
next

case (Query y g)

then obtain d1 infll stabll o1 where

query: "solve_rec_c (Q (x, y, ¢, infl, stabl, o)) = Some (di,
infll, stabll, o1)"

"query x y c¢ infl stabl o =

(d1, infll, stabll, oc1)"
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using Query Eval(2) unfolding solve_rec_c_dom_def by auto
then have "solve_rec_c_dom (E (x, g d1, ¢, infll, stabll, o1))"
"eval x (g d1) c¢ infll stabll o1 = the (solve_rec_c (E (x, g di,
c, infll, stabll, o1)))"

using Eval(3) [OF Query] by auto
moreover have "eval x t c¢ infl stabl ¢ = eval x (g d1) c infll stabll

ol"
using Eval.IH(1) Query eval.psimps eval_dom_def query
by fastforce
moreover have "solve _rec_c (E (x, t, ¢, infl, stabl, o))
= solve_rec_c (E (x, g d1, c, infll, stabll, o1))"
using Query query solve_rec_c.simps[of "E (x,t,c,infl,stabl,o)"]
by (simp del: solve_rec_c.simps)
ultimately show ?7thesis using solve_rec_c_dom_def by force
qed
qed

lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r —> (case s of
Q (x,y,c,infl,stabl,oc) = query_dom x y c¢ infl stabl o
N query x y c¢ infl stabl o =r
| T (x,c,infl,stabl,oc) = iterate_dom x c¢ infl stabl o
N iterate x ¢ infl stabl o =r
| E (x,t,c,infl,stabl,oc) = eval_dom x t c¢ infl stabl o
N eval x t ¢ infl stabl o = r)"
proof (induction arbitrary: s r rule: solve_rec_c.fixp_induct)
case 1
then show ?case using option_admissible by fast
next
case 2
then show ?case by simp
next
case (3 S)
show ?case
proof (cases s)
case (Q a)
obtain x y ¢ infl stabl o where "a = (x, y, ¢, infl, stabl, o)" us-
ing prod_cases6 by blast
have "query_dom x y c¢ infl stabl o A query x y c infl stabl o =r
proof (cases "y € c")

case True
then have "Some (mlup ¢ y, fminsert infl y x, stabl, o) = Some

n

using 3(2) @ <a = (x, y, ¢, infl, stabl, o)> by simp
then show ?thesis using query.psimps[folded query_dom_def, of x

y ¢ infl stabl o]
query_iterate_eval.domintros (1) [folded query_dom_def, of y

¢ infl] True by simp
next

71



case False
then have "Option.bind (S (I (y, insert y c, infl, stabl, o)))
(\A(d,infl,stabl,o).
Some (d, fminsert infl y x, stabl, o)) = Some r"
using 3(2) Q <a = (x, y, ¢, infl, stabl, o)> by simp
then obtain d1 infl1l stabll o1l
where "S (I (y, insert y c, infl, stabl, o)) = Some (dl ,infll,
stabll, o1)"
and "(d1, fminsert infll y x, stabll, o1) = r"
by (cases "S (I (y, insert y c, infl, stabl, o))") auto
then have "iterate_dom y (insert y c) infl stabl o
A iterate y (insert y c) infl stabl o = (d1, infll, stabll,
o1)"
using 3(1) unfolding iterate_dom_def by fastforce
then show ?thesis using False <(d1, fminsert infll y x, stabll,
cl) = >
by (simp add: query_iterate_eval.domintros(l) False)
qed
then show ?thesis using § <a = (x, y, ¢, infl, stabl, o)> by simp
next
case (I a)
obtain x ¢ infl stabl o where "a = (x, ¢, infl, stabl, o)" using
prod_cases5 by blast
show ?7thesis
proof(cases "x € stabl")
case True
then have "(wmlup o x, infl, stabl, o) = r" using I <a = (x, c,
infl, stabl, o)> 3(2) by simp
moreover have "iterate_dom x ¢ infl stabl o
A iterate x ¢ infl stabl o = (mlup o x, infl, stabl, o)"
using True query_iterate_eval.domintros(2) iterate.psimps dom_defs
by fastforce
ultimately show ?thesis using I <a = (x, ¢, infl, stabl, o)> by

simp
next
case False
then have IH1: "Option.bind (S (E (x, T x, c, infl, insert x stabl,
ag)))

(\(d_new, infl, stabl, o).
if mlup o x = d_new then Some (d_new, infl, stabl, o)
else let (infl, stabl) = destab x infl stabl in
S (I (x, c, infl, stabl, o(x +> d_new)))) = Some r"
using 3(2) I <a = (x, ¢, infl, stabl, ¢)> by simp
then obtain d_new infll stabll o1
where eval_some: "S (E (x, T x, ¢, infl, insert x stabl, o))
= Some (d_new, infll, stabll, oc1)"
using 3(2) I
by (cases "S (E (x, T x, ¢, infl, insert x stabl, o¢))") auto
then have eval: "eval_dom x (T x) c¢ infl (insert x stabl) o
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A eval x (T x) c infl (insert x stabl) o = (d_new, infll, stabll,
o1)"
using 3(1) unfolding TD_plain.eval_dom_def by force
have "iterate_dom x c infl stabl o A iterate x c¢ infl stabl o =

proof (cases "mlup o1 x = d_new")
case True
then have "(d_new, infll, stabll, o1) = r" using IH1 eval_some
by simp
moreover have "iterate_dom x ¢ infl stabl o"
using query_iterate_eval.domintros(2) [folded dom_defs] False
True eval by fastforce
ultimately show ?7thesis
using iterate.psimps[folded dom_defs] False True eval by fastforce
next
case False
obtain infl2 stabl2 where destab: "(infl2, stabl2) = destab x
infll stabll"
by (cases "destab x infll stabll") auto
then have "S (I (x, ¢, infl2, stabl2, c1(x +— d_new))) = Some
r"
using IH!1 False eval_some by (smt (verit, best) bind.bind_lunit
case_prod_conv)
then have iter_cont: "iterate_dom x c¢ infl2 stabl2 (c1(x +— d_new))
N iterate x c¢ infl2 stabl2 (c1(x +> d_new)) = r"
using 3(1) unfolding iterate_dom_def by fastforce
then have "iterate_dom x c¢ infl stabl o"
using query_iterate_eval.domintros(2) [folded dom_defs destab.simps,
of x stabl c infl o] eval <x ¢ stabl> False destab
by (cases "destab x infll stabll") auto
then show 7?thesis
using iterate.psimps[folded dom_defs, of x c¢ infl stabl o] <x
¢ stabl> destab eval
False iter_cont
by (cases "destab x infll stabll") auto
qed
then show ?thesis
using I <a = (x, c, infl, stabl, o)> by simp
qed
next
case (E a)
obtain x t ¢ infl stabl o where "a = (x, t, ¢, infl, stabl, o)" us-
ing prod_cases6 by blast
then have "s = E (x, t, ¢, infl, stabl, o)" using E by auto
have "eval_dom x t ¢ infl stabl o A eval x t ¢ infl stabl o = r"
proof (cases t)
case (Answer d)
then have "eval _dom x t ¢ infl stabl o"
unfolding eval_dom_def
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using query_iterate_eval.domintros(3)
by fastforce
moreover have "eval x t ¢ infl stabl o = (d, infl, stabl, o)"
using Answer eval.psimps[folded dom_defs, OF calculation] by auto
moreover have "(d, infl, stabl, o) = r"
using 3(2) <s = E (x, t, ¢, infl, stabl, o)> Answer by simp
ultimately show ?thesis by simp
next
case (Query y g)
then have A: "Option.bind (S (Q (x, y, ¢, infl, stabl, o0))) (A (yd,
infl, stabl, o).
S (E (x, g yd, ¢, infl, stabl, o0))) = Some r" using <s = E (x,
t, ¢, infl, stabl, o)> 3(2)
by simp
then obtain yd infll stabll o1
where S1: "S (@ (x, y, ¢, infl, stabl, o)) = Some (yd, infll,
stabll, o1)"
and S2: "S (E (x, g yd, ¢, infll, stabll, o1)) = Some r"
by (cases "S (Q (x, y, c, infl, stabl, o¢))") auto
then have "query_dom x y c infl stabl o
A query x y c¢ infl stabl o = (yd, infll, stabll, o1)"
and "eval_dom x (g yd) c¢ infll stabll o1 A eval x (g yd) ¢
infll stabll o1 = r"
using 3(1) [OF S1] 3(1) [OF S2] unfolding TD_plain.dom_defs by force+
then show ?thesis
using query_iterate_eval.domintros(3) [folded dom_defs] eval.psimps[folded
dom_defs] Query
by fastforce
qed
then show ?thesis
using E <a = (x, t, ¢, infl, stabl, o)> by simp
qed
qed

theorem term_equivalence: "solve_dom x <— solve_c_dom x"
using solve_rec_c_query_iterate_eval_equiv[of "I (x, {x}, fmempty, {},
Ax. None)"]
query_iterate_eval_solve_rec_c_equiv(2) [of x "{x}" fmempty "{}" "MAx.
None"]
unfolding solve_dom_def solve_c_dom_def solve_rec_c_dom_def solve_c_def
by (cases "solve_rec_c (I (x, {x}, fmempty, {}, Ax. None))") fastforce+

theorem value_equivalence: "solve_dom x =—> Jo. solve_c x = Some o A
solve x = o"
proof goal_cases
case 1
then obtain r where "solve_rec_c (I (x, {x}, fmempty, {}, Ax. None))
= Some r
A iterate x {x} fmempty {} (Ax. None) = r"
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using query_iterate_eval_solve_rec_c_equiv(2) [OF 1[unfolded solve_dom_def]]
unfolding solve_rec_c_dom_def solve_dom_def
by fastforce
then show ?case unfolding solve_c_def solve_def by (auto split: prod.split)
qed

With the equivalence of the refined version and the initial version proven,
we can specify a the code equation.

lemma solve_code_equation [code]:

"solve x = (case solve_c x of Some r = r

| None = Code.abort (String.implode ’’Input not in domain’’) (A_. solve
X))"
proof (cases "solve_dom x")

case True

then show 7thesis

using solve_c_def solve_def value_equivalence by fastforce

next

case False

then have "solve_c x = None" using solve_c_dom_def term_equivalence
by (meson option.exhaust)

then show 7thesis by auto
qed

end
Finally, we use a dedicated rewrite rule for the code generation of the solver

locale.

global__interpretation TD_Interp: TD D T for D T
defines
TD_Interp_solve = TD_Interp.solve
done

end

5 Example

theory Example
imports TD_plain TD_equiv
begin

As an example, let us consider a program analysis, namely the analysis of
must-be initialized program variables for the following program:

a = 17
while true:
b=ax*xa

if b < 10: break
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The program corresponds to the following control-flow graph.
w

a=17
[true], ¢
=ax*xa

b Z
y / ¢ [— true]
\

[b < 10] X

[-b < 10],
a=a-1

From the control-flow graph of the program, we generate the equation sys-
tem to be solved by the TD. The left-hand side of an equation consists of
an unknown which represents a program point. The right-hand side for
some unknown describes how the set of must-be initialized variables at the
corresponding program point can be computed from the sets of must-be
initialized variables at the predecessors.

5.1 Definition of the Domain
datatype pv = a | b

A fitting domain to describe possible values for the must-be initialized anal-
ysis, is an inverse power set lattice of the set of all program variables. The
least informative value which is always a true over-approximation for the
must-be initialized analysis is the empty set (called top), whereas the initial
value to start fixpoint iteration from is the set {a, b} (called bot). The join
operation, which is used to combine the values of several incoming edges
to obtain a sound over-approximation over all paths, corresponds to the
intersection of sets.

typedef D = "Pow ({a, b})"
by auto

setup__lifting D.type_definition_D

lift_ definition top :: "D" is "{}" by simp

lift_ definition bot :: D is "{a, b}" by simp

lift_ definition join :: "D = D = D" is Set.inter by blast

Additionally, we define some helper functions to create values of type D.

lift_ definition insert :: "pv = D = D"
is "Me d. if e € {a, b} then Set.insert e d else d"
by auto

definition set_to_D :: "pv set = D" where

"set_to_D = (As. fold (Me acc. if e € s then insert e acc else acc)
[a, b] top)"

We show that the considered domain fulfills the sort constraints bot and
equal as expected by the solver.
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instantiation D :: bot
begin
definition bot_D :: D
where "bot_D = bot"

instance ..
end
instantiation D :: equal
begin
definition equal_D :: "D = D = bool"

where "equal_D d1 d2 = ((Rep_D d1) = (Rep_D d2))"

instance by standard (simp add: equal_D_def Rep_D_inject)
end

5.2 Definition of the Equation System

The following equation system can be generated for the must-be initialized
analysis and the program from above.

W=

7. 2=ufah)n(wudal
y=zU{b}
X=y Nz

Below we define this equation system and express the right-hand sides with
strategy trees.

datatype Unknown = X | Y | Z | W

fun ConstrSys :: "Unknown = (Unknown, D) strategy_tree" where
"ConstrSys X = Query Y (A\dl1. if d1 = top then Answer top
else Query Z (Ad2. Answer (join di1 d2)))"
| "ConstrSys Y = Query Z (Ad. if d € {top, set_to_D {b}}
then Answer (set_to_D {b}) else Answer bot)"
| "ConstrSys Z = Query Y (Ad1. if d1 € {top, set_to_D {a}}
then Answer (set_to_D {al})
else Query W (A\d2. if d2 € {top, set_to_D {a}}
then Answer (set_to_D {a}) else Answer bot))"
| "ConstrSys W = Answer top"

5.3 Solve the Equation System with TD_ plain

We solve the equation system for each unknown, first with the TD_ plain
and in the following also with the TD. Note, that we use a finite map that
defaults to bot for keys that are not contained in the map. This can happen
in two cases: (1) when the value computed for that unknown is equal to bot,
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or (2) if the unknown was not queried during the solving and therefore no
value was stored in the finite map for it.

definition solution_plain_X where

"solution_plain_X = TD_plain_Interp_solve ConstrSys X"
value "(solution_plain_X X, solution_plain_X Y, solution_plain_X Z, solution_plain_X
w) n

definition solution_plain_Y where

"solution_plain_Y = TD_plain_Interp_solve ConstrSys Y"
value "(solution_plain_Y X, solution_plain_Y Y, solution_plain_Y Z, solution_plain_Y
w) n

definition solution_plain_Z where

"solution_plain_Z = TD_plain_Interp_solve ConstrSys Z"
value "(solution_plain_Z X, solution_plain_Z Y, solution_plain_Z Z, solution_plain_Z
W) n

definition solution_plain_W where

"solution_plain_W = TD_plain_Interp_solve ConstrSys W"
value "(solution_plain_W X, solution_plain_W Y, solution_plain_W Z, solution_plain_W
w) n

5.4 Solve the Equation System with TD

definition solutionX where "solutionX = TD_Interp_solve ConstrSys X"
value "((snd solutionX) X, (snd solutionX) Y, (snd solutionX) Z, (snd
solutionX) W)"

definition solutionY where "solutionY = TD_Interp_solve ConstrSys Y"
value "((snd solutionY) X, (snd solutionY) Y, (snd solutionY) Z, (snd
solutionY) W)"

definition solutionZ where "solutionZ = TD_Interp_solve ConstrSys Z"
value "((snd solutionZ) X, (snd solutionZ) Y, (snd solutionZ) Z, (snd
solutionZ) W)"

definition solutionW where "solutionW = TD_Interp_solve ConstrSys W"

value "((snd solutionW) X, (snd solutionW) Y, (snd solutionW) Z, (snd
solutionW) W)"

end
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