
A General Method for the Proof of Theorems on
Tail-recursive Functions

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

May 26, 2024

Abstract

Tail-recursive function definitions are sometimes more straightfor-
ward than alternatives, but proving theorems on them may be round-
about because of the peculiar form of the resulting recursion induction
rules.

This paper describes a proof method that provides a general so-
lution to this problem by means of suitable invariants over inductive
sets, and illustrates the application of such method by examining two
case studies.

Contents
1 Method rationale 2

2 Method summary 6

3 Case study 1 8
3.1 Step 1 . 10
3.2 Step 2 . 10
3.3 Step 3 . 11
3.4 Step 4 . 11
3.5 Step 5 . 13
3.6 Step 6 . 14
3.7 Step 7 . 14
3.8 Step 8 . 14
3.9 Step 9 . 15
3.10 Step 10 . 17

1

4 Case study 2 18
4.1 Step 1 . 20
4.2 Step 2 . 21
4.3 Step 3 . 21
4.4 Step 4 . 22
4.5 Step 5 . 24
4.6 Step 6 . 25
4.7 Step 7 . 25
4.8 Step 8 . 26
4.9 Step 9 . 26
4.10 Step 10 . 32

1 Method rationale
Tail-recursive function definitions are sometimes more intuitive and straight-
forward than alternatives, and this alone would be enough to make them
preferable in such cases for the mere purposes of functional programming.
However, proving theorems about them with a formal proof assistant like
Isabelle may be roundabout because of the peculiar form of the resulting
recursion induction rules.

Let:

• f-naive be a tail-recursive function of type ′a1 ⇒ ... ⇒ ′an ⇒ ′b.

• a be an n-tuple of values of types ′a1, ..., ′an such that the computation
of f-naive a, say outputting value b, involves at least one recursive
call – which is what happens in general for significant inputs (e.g.
those complying with initial conditions for accumulator arguments),
as otherwise a non-recursive function definition would be sufficient.

• a1, ..., am be the sequence of the intermediate n-tuples of values of
types ′a1, ..., ′an arising from the computation of f-naive a.

• f-naive X1 = f-naive X ′
1, ..., f-naive Xm = f-naive X ′

m, f-naive X =
Y be the sequence (possibly with repetitions) of the equations involved
in the computation of f-naive a – which implies that, putting a0 = a,
they are satisfied for (X1, X ′

1) = (a0, a1), ..., (Xm, X ′
m) = (am−1,

am), (X , Y) = (am, b), respectively.

That being stated, suppose that theorem P (f-naive a) has to be proven.
If recursion induction is applied to such goal, for each i ∈ {1 ..m}, the recur-
sive equation f-naive X i = f-naive X ′

i gives rise to subgoal P (f-naive X ′
i)

=⇒ P (f-naive X i), trivially discharged by simplification. On the contrary,
the non-recursive equation f-naive X = Y brings about the generation of

2

subgoal P (f-naive X), which is intractable unless it trivially follows from
either the equation or the form of pattern X.

Indeed, in non-trivial cases such as the case studies examined in this
paper, this formula even fails to be a theorem, thus being hopeless as a goal,
since it is false for some values of its variables. The reason for this is that
non-trivial properties of the output of tail-recursive functions depend on the
input as well as on the whole recursive call pipeline leading from the input
to the output, and all of this information corresponds to missing necessary
assumptions in subgoal P (f-naive X).

Therefore, for a non-trivial theorem P (f-naive a), recursion induction is
rather applicable to some true conditional statement f-inv x −→ P (f-naive
x) complying with both of the following requirements:

• subgoal f-inv X −→ P (f-naive X) arising from equation f-naive X =
Y be tractable, and

• formula f-inv a can be shown to be true, so that theorem P (f-naive a)
can be inferred from conditional f-inv a −→ P (f-naive a) by modus
ponens.

Observe that the antecedent of the conditional may not have the form
f-inv (f-naive x). Otherwise, the latter requirement would ask for proving
formula f-inv (f-naive a), which would be at least as hard to prove as formula
P (f-naive a) being the former a sufficient condition for the latter. Hence,
the same problem as that originating from the proof of formula P (f-naive
a) would have to be solved again, which would give rise to a regressio ad
infinitum.

The latter requirement entails that formula f-inv a0 holds. Moreover,
for each i ∈ {1 ..m}, in the proof of conditional f-inv x −→ P (f-naive x) by
recursion induction, the recursive equation f-naive X i = f-naive X ′

i brings
about the generation of subgoal f-inv X ′

i −→ P (f-naive X ′
i) =⇒ f-inv X i

−→ P (f-naive X i). Assuming that formula f-inv ai−1 holds, it turns out
that the conclusion antecedent f-inv X i may not be shown to be false, as
n-tuple ai−1 matches pattern X i; thus, the conclusion consequent P (f-naive
X i) has to be proven.

In non-trivial cases, this requires that the assumption antecedent f-inv
X ′

i be derived from the conclusion antecedent f-inv X i used as a further
assumption, so that the assumption consequent P (f-naive X ′

i) – matching
P (f-naive X i) by virtue of equation f-naive X i = f-naive X ′

i – can be
proven by modus ponens. This in turn requires that f-inv X i imply f-inv
X ′

i, i.e. that f-inv x i imply f-inv x ′
i for any pair of n-tuples x i, x ′

i matching
patterns X i, X ′

i with respect to the same value assignment. But such are
n-tuples ai−1, ai as they solve equation f-naive X i = f-naive X ′

i, so that
the supposed truth of f-inv ai−1 entails that of f-inv ai.

3

Hence, by induction, all of formulae f-inv a, f-inv a1, ..., f-inv am turn
out to be true. On the other hand, the former requirement is verified if
either the antecedent f-inv X can be shown to be false, which would entail
its falsity for any n-tuple matching pattern X, or else the consequent P
(f-naive X) can be shown to be true using the antecedent as an assumption.
Since formula f-inv am is true and n-tuple am matches pattern X, the case
that actually occurs is the second one.

Thus, the former requirement is equivalent to asking for an introduction
rule to be proven – in fact, a conditional with a contradiction as antecedent
may not be used as an introduction rule – having the form f-inv X =⇒ P
(f-naive X), or rather [[f-inv x; f-form x]] =⇒ P (f-naive x) for a suitable
predicate f-form satisfied by any n-tuple matching pattern X. In the degen-
erate case in which the rule can be shown to be true for f-form = (λx. True),
it admits to be put into the simpler equivalent form f-inv x =⇒ P (f-naive
x).

An even more important consequence of the previous argument is that
in non-trivial cases, the task of proving conditional f-inv x −→ P (f-naive
x) by recursion induction requires that f-inv X ′

i be derived from f-inv X i

for each recursive equation f-naive X i = f-naive X ′
i, where i ∈ {1 ..m}.

Let:

• ′a be the Cartesian product of types ′a1, ..., ′an.

• f-set be the inductive set of type ′a ⇒ ′a set defined by introduction
rules x ∈ f-set x, X1 ∈ f-set x =⇒ X ′

1 ∈ f-set x, ..., Xm ∈ f-set x =⇒
X ′

m ∈ f-set x – where patterns X1, X ′
1, ..., Xm, X ′

m are now viewed
as values of type ′a.

Then, the problem of discharging the above proof obligation on predicate
f-inv is at least as hard as that of proving by rule induction introduction
rule [[y ∈ f-set x; f-inv x]] =⇒ f-inv y – which states that for any x such that
f-inv x is true, f-inv is an invariant over inductive set f-set x, i.e. f-inv y is
true for each y ∈ f-set x.

In fact, the application of rule induction to this goal generates subgoals
f-inv x =⇒ f-inv x, [[X1 ∈ f-set x; f-inv X1; f-inv x]] =⇒ f-inv X ′

1, ..., [[Xm ∈
f-set x; f-inv Xm; f-inv x]] =⇒ f-inv X ′

m; the first is trivial, and such would
also be the other ones if rules f-inv X1 =⇒ f-inv X ′

1, ..., f-inv Xm =⇒ f-inv
X ′

m were available.
Furthermore, suppose that the above invariance property of predicate

f-inv have been proven; then, the proof of conditional f-inv x −→ P (f-naive
x) by recursion induction can be made unnecessary by slightly refining the
definition of function f-naive, as shown in the continuation.

Let f-aux be the tail-recursive function of type ′a ⇒ ′a whose definition
is obtained from that of f-naive by treating as fixed points the patterns to
which non-recursive equations apply as well as those to which no equation

4

applies, if any – i.e. by replacing recursive equation f-naive X i = f-naive X ′
i

with f-aux X i = f-aux X ′
i for each i ∈ {1 ..m} and non-recursive equation

f-naive X = Y with f-aux X = X.
Then, define function f by means of a non-recursive equation f x = f-out

(f-aux (f-in x)), where:

• f-in is a function of type ′a ′⇒ ′a, for a suitable type ′a ′, whose range
contains all the significant inputs of function f-naive.

• f-out is a function of type ′a ⇒ ′b mapping the outputs of f-aux to
those of f-naive, i.e. the values of type ′a matching pattern X to
those of type ′b matching pattern Y with respect to the same value
assignment.

The definitions of functions f-aux and f-out entail that equation f-naive
x = f-out (f-aux x) holds for any x. Particularly, f-naive a = f-out (f-aux a);
thus, being a ′ an inverse image of a under f-in, viz. a = f-in a ′, it follows
that f-naive a = f a ′. As a result, theorem P (f-naive a) may be rewritten
as P (f a ′).

For any x, f-set x is precisely the set of the values recursively input to
function f-aux in the computation of f-aux x, including x itself, and it can
easily be ascertained that f-aux x is such a value. In fact, the equation
invoked last in the computation of f-aux x must be a non-recursive one, so
that it has the form f-aux X = X, since all non-recursive equations in the
definition of f-aux apply to fixed points. Thus, being f-aux x the output of
the computation, the right-hand side of the equation, i.e. the pattern X also
input to function f-aux in the left-hand side, is instantiated to value f-aux
x.

Therefore, f-aux x ∈ f-set x for any x. Observe that the argument rests
on the assumption that whatever x is given, a sequence of equations leading
from x to f-aux x be actually available – and what is more, nothing significant
could be proven on f-aux x for any x for which its value were undefined, and
then arbitrary. The trick of making the definition of f-aux total by adding
equations for the patterns not covered in the definition of f-naive, if any,
guarantees that this assumption be satisfied.

An additional consequence of the previous argument is that f-aux (f-aux
x) = f-aux x for any x, i.e. function f-aux is idempotent. If introduction
rule [[f-inv x; f-form x]] =⇒ P (f-naive x) is rewritten by applying equation
f-naive x = f-out (f-aux x), instantiating free variable x to f-aux x, and
then applying the idempotence of function f-aux, the result is formula [[f-inv
(f-aux x); f-form (f-aux x)]] =⇒ P (f-out (f-aux x)), which is nothing but an
instantiation of introduction rule [[f-inv x; f-form x]] =⇒ P (f-out x).

Observe that this rule is just a refinement of a rule whose proof is required
for proving conditional f-inv x −→ P (f-naive x) by recursion induction, so
that it does not give rise to any additional proof obligation. Moreover, it

5

contains neither function f-naive nor f-aux, thus its proof does not require
recursion induction with respect to the corresponding induction rules.

The instantiation of such refined introduction rule with value f-aux a is
[[f-inv (f-aux a); f-form (f-aux a)]] =⇒ P (f-out (f-aux a)), which by virtue
of equality a = f-in a ′ and the definition of function f is equivalent to
formula [[f-inv (f-aux a); f-form (f-aux a)]] =⇒ P (f a ′). Therefore, the rule
is sufficient to prove theorem P (f a ′) – hence making unnecessary the proof
of conditional f-inv x −→ P (f-naive x) by recursion induction, as mentioned
previously – provided the instantiated assumptions f-inv (f-aux a), f-form
(f-aux a) can be shown to be true.

This actually is the case: the former assumption can be derived from
formulae f-aux a ∈ f-set a, f-inv a and the invariance of predicate f-inv
over f-set a, while the latter can be proven by recursion induction, as by
construction goal f-form X is trivial for any pattern X to which some non-
recursive equation in the definition of function f-naive applies. If further
non-recursive equations whose patterns do not satisfy predicate f-form have
been added to the definition of f-aux to render it total, rule inversion can
be applied to exclude that f-aux a may match any of such patterns, again
using formula f-aux a ∈ f-set a.

2 Method summary
The general method developed so far can be schematized as follows.

Let f-naive be a tail-recursive function of type ′a1 ⇒ ... ⇒ ′an ⇒ ′b, and
P (f-naive a1 ... an) be a non-trivial theorem having to be proven on this
function.

In order to accomplish such task, the following procedure shall be ob-
served.

• Step 1 — Refine the definition of f-naive into that of an auxiliary
tail-recursive function f-aux of type ′a ⇒ ′a, where ′a is a product or
record type with types ′a1, ..., ′an as components, by treating as fixed
points the patterns to which non-recursive equations apply as well as
those to which no equation applies, if any.

• Step 2 — Define a function f of type ′a ′ ⇒ ′b by means of a non-
recursive equation f x = f-out (f-aux (f-in x)), where f-in is a function
of type ′a ′⇒ ′a (possibly matching the identity function) whose range
contains all the significant inputs of function f-naive, and f-out is a
function of type ′a ⇒ ′b mapping the outputs of f-aux to those of
f-naive.
Then, denoting with a the value of type ′a with components a1, ...,
an, and with a ′ an inverse image of a under function f-in, the theorem
to be proven takes the equivalent form P (f a ′).

6

• Step 3 — Let f-aux X1 = f-aux X ′
1, ..., f-aux Xm = f-aux X ′

m be the
recursive equations in the definition of function f-aux.
Then, define an inductive set f-set of type ′a ⇒ ′a set with introduction
rules x ∈ f-set x, X1 ∈ f-set x =⇒ X ′

1 ∈ f-set x, ..., Xm ∈ f-set x =⇒
X ′

m ∈ f-set x.
If the right-hand side of some recursive equation contains conditionals
in the form of if or case constructs, the corresponding introduction
rule can be split into as many rules as the possible mutually exclusive
cases; each of such rules shall then provide for the related case as an
additional assumption.

• Step 4 — Prove lemma f-aux x ∈ f-set x; a general inference scheme,
independent of the specific function f-aux, applies to this proof.
First, prove lemma y ∈ f-set x =⇒ f-set y ⊆ f-set x, which can easily
be done by rule induction.
Next, applying recursion induction to goal f-aux x ∈ f-set x and then
simplifying, a subgoal X i ∈ f-set X i arises for each non-recursive equa-
tion f-aux X i = X i, while a subgoal f-aux X ′

j ∈ f-set X ′
j =⇒ f-aux

X ′
j ∈ f-set X j arises for each recursive equation f-aux X j = f-aux X ′

j .
The former subgoals can be proven by introduction rule x ∈ f-set x, the
latter ones as follows: rule instantiations X j ∈ f-set X j and X j ∈ f-set
X j =⇒ X ′

j ∈ f-set X j imply formula X ′
j ∈ f-set X j ; thus f-set X ′

j

⊆ f-set X j by the aforesaid lemma; from this and subgoal assumption
f-aux X ′

j ∈ f-set X ′
j , subgoal conclusion f-aux X ′

j ∈ f-set X j ensues.
As regards recursive equations containing conditionals, the above steps
have to be preceded by a case distinction, so as to obtain further as-
sumptions sufficient for splitting such conditionals.

• Step 5 — Define a predicate f-inv of type ′a ⇒ bool in such a way as
to meet the proof obligations prescribed by the following steps.

• Step 6 — Prove lemma f-inv a.
In case of failure, return to step 5 so as to suitably change the definition
of predicate f-inv.

• Step 7 — Prove introduction rule f-inv x =⇒ P (f-out x), or rather
[[f-inv x; f-form x]] =⇒ P (f-out x), where f-form is a suitable predicate
of type ′a ⇒ bool satisfied by any pattern to which some non-recursive
equation in the definition of function f-naive applies.
In case of failure, return to step 5 so as to suitably change the definition
of predicate f-inv.

• Step 8 — In case an introduction rule of the second form has been
proven in step 7, prove lemma f-form (f-aux a) by recursion induction.
If the definition of function f-aux resulting from step 1 contains addi-
tional non-recursive equations whose patterns do not satisfy predicate

7

f-form, rule inversion can be applied to exclude that f-aux a may match
any of such patterns, using instantiation f-aux a ∈ f-set a of the lemma
proven in step 4.

• Step 9 — Prove by rule induction introduction rule [[y ∈ f-set x; f-inv
x]] =⇒ f-inv y, which states the invariance of predicate f-inv over in-
ductive set f-set x for any x satisfying f-inv.
In case of failure, return to step 5 so as to suitably change the defini-
tion of predicate f-inv.
Observe that the order in which the proof obligations related to pred-
icate f-inv are distributed among steps 6 to 9 is ascending in the effort
typically required to discharge them. The reason why this strategy
is advisable is that in case one step fails, which forces to revise the
definition of predicate f-inv and then also the proofs already worked
out, such proofs will be the least demanding ones so as to minimize
the effort required for their revision.

• Step 10 — Prove theorem P (f a ′) by means of the following inference
scheme.
First, derive formula f-inv (f-aux a) from introduction rule [[y ∈ f-set
x; f-inv x]] =⇒ f-inv y and formulae f-aux a ∈ f-set a, f-inv a.
Then, derive formula P (f-out (f-aux a)) from either introduction rule
f-inv x =⇒ P (f-out x) or [[f-inv x; f-form x]] =⇒ P (f-out x) and
formulae f-inv (f-aux a), f-form (f-aux a) (in the latter case).
Finally, derive theorem P (f a ′) from formulae P (f-out (f-aux a)), a
= f-in a ′ and the definition of function f.

In the continuation, the application of this method is illustrated by ana-
lyzing two case studies drawn from an exercise comprised in Isabelle online
course material; see [1]. The salient points of definitions and proofs are com-
mented; for additional information see Isabelle documentation, particularly
[5], [4], [3], and [2].

3 Case study 1
theory CaseStudy1
imports Main
begin

In the first case study, the problem will be examined of defining a func-
tion l-sort performing insertion sort on lists of elements of a linear order,
and then proving the correctness of this definition, i.e. that the lists output
by the function actually be sorted and contain as many occurrences of any
value as the input lists.

8

Such function constitutes a paradigmatic example of a function admit-
ting a straightforward tail-recursive definition. Here below is a naive one:

fun l-sort-naive :: ′a::linorder list ⇒ ′a list ⇒ ′a list ⇒ ′a list where
l-sort-naive (x # xs) ys [] = l-sort-naive xs [] (ys @ [x]) |
l-sort-naive (x # xs) ys (z # zs) = (if x ≤ z

then l-sort-naive xs [] (ys @ x # z # zs)
else l-sort-naive (x # xs) (ys @ [z]) zs) |

l-sort-naive [] ys zs = zs

The first argument is deputed to contain the values still having to be
inserted into the sorted list, accumulated in the third argument. For each of
such values, the items of the sorted list are orderly moved into a temporary
one (second argument) to search the insertion position. Once found, the
sorted list is restored, the processed value is moved from the unsorted list
to the sorted one, and another iteration of the loop is performed up to the
exhaustion of the former list.

A further couple of functions are needed to express the aforesaid correct-
ness properties of function l-sort-naive:

fun l-sorted :: ′a::linorder list ⇒ bool where
l-sorted (x # x ′ # xs) = (x ≤ x ′ ∧ l-sorted (x ′ # xs)) |
l-sorted - = True

definition l-count :: ′a ⇒ ′a list ⇒ nat where
l-count x xs ≡ length [x ′←xs. x ′ = x]

Then, the target correctness theorems can be enunciated as follows:

l-sorted (l-sort-naive xs [] [])

l-count x (l-sort-naive xs [] []) = l-count x xs

Unfortunately, attempts to apply recursion induction to such goals turn
out to be doomed, as can easily be ascertained by considering the former
theorem:

theorem l-sorted (l-sort-naive xs [] [])
proof (rule l-sort-naive.induct [of λxs ys zs. l-sorted (l-sort-naive xs ys zs)],
simp-all del: l-sort-naive.simps(3))

Simplification deletes all the subgoals generated by recursive equations.
However, the following subgoal arises from the non-recursive one:

9

1 .
∧

ys zs. l-sorted (l-sort-naive [] ys zs)

which is hopeless as the formula is false for any unsorted list zs.

oops

3.1 Step 1
type-synonym ′a l-type = ′a list × ′a list × ′a list

fun l-sort-aux :: ′a::linorder l-type ⇒ ′a l-type where
l-sort-aux (x # xs, ys, []) = l-sort-aux (xs, [], ys @ [x]) |
l-sort-aux (x # xs, ys, z # zs) = (if x ≤ z

then l-sort-aux (xs, [], ys @ x # z # zs)
else l-sort-aux (x # xs, ys @ [z], zs)) |

l-sort-aux ([], ys, zs) = ([], ys, zs)

Observe that the Cartesian product of the input types has been imple-
mented as a product type.

3.2 Step 2
definition l-sort-in :: ′a list ⇒ ′a l-type where
l-sort-in xs ≡ (xs, [], [])

definition l-sort-out :: ′a l-type ⇒ ′a list where
l-sort-out X ≡ snd (snd X)

definition l-sort :: ′a::linorder list ⇒ ′a list where
l-sort xs ≡ l-sort-out (l-sort-aux (l-sort-in xs))

Since the significant inputs of function l-sort-naive match pattern -, [],
[], those of function l-sort-aux match pattern (-, [], []), thus being in a one-
to-one correspondence with the type of the first component.

The target correctness theorems can then be put into the following equiv-
alent form:

l-sorted (l-sort xs)

l-count x (l-sort xs) = l-count x xs

10

3.3 Step 3
The conditional recursive equation in the definition of function l-sort-aux
will equivalently be associated to two distinct introduction rules in the defi-
nition of the inductive set l-sort-set, one for either truth value of the Boolean
condition, handled as an additional assumption. The advantage is twofold:
simpler introduction rules are obtained, and case distinctions are saved as
rule induction is applied.

inductive-set l-sort-set :: ′a::linorder l-type ⇒ ′a l-type set
for X :: ′a l-type where
R0 : X ∈ l-sort-set X |
R1 : (x # xs, ys, []) ∈ l-sort-set X =⇒ (xs, [], ys @ [x]) ∈ l-sort-set X |
R2 : [[(x # xs, ys, z # zs) ∈ l-sort-set X ; x ≤ z]] =⇒

(xs, [], ys @ x # z # zs) ∈ l-sort-set X |
R3 : [[(x # xs, ys, z # zs) ∈ l-sort-set X ; ¬ x ≤ z]] =⇒

(x # xs, ys @ [z], zs) ∈ l-sort-set X

3.4 Step 4
lemma l-sort-subset:

assumes XY : Y ∈ l-sort-set X
shows l-sort-set Y ⊆ l-sort-set X

proof (rule subsetI , erule l-sort-set.induct)
show Y ∈ l-sort-set X using XY .

next
fix x xs ys
assume (x # xs, ys, []) ∈ l-sort-set X
thus (xs, [], ys @ [x]) ∈ l-sort-set X by (rule R1)

next
fix x xs ys z zs
assume (x # xs, ys, z # zs) ∈ l-sort-set X and x ≤ z
thus (xs, [], ys @ x # z # zs) ∈ l-sort-set X by (rule R2)

next
fix x xs ys z zs
assume (x # xs, ys, z # zs) ∈ l-sort-set X and ¬ x ≤ z
thus (x # xs, ys @ [z], zs) ∈ l-sort-set X by (rule R3)

qed

lemma l-sort-aux-set: l-sort-aux X ∈ l-sort-set X
proof (induction rule: l-sort-aux.induct, simp-all del: l-sort-aux.simps(2))

fix ys :: ′a list and zs
show ([], ys, zs) ∈ l-sort-set ([], ys, zs) by (rule R0)

next
fix x :: ′a and xs ys
have (x # xs, ys, []) ∈ l-sort-set (x # xs, ys, []) by (rule R0)
hence (xs, [], ys @ [x]) ∈ l-sort-set (x # xs, ys, []) by (rule R1)
hence l-sort-set (xs, [], ys @ [x]) ⊆ l-sort-set (x # xs, ys, [])
by (rule l-sort-subset)

11

moreover assume l-sort-aux (xs, [], ys @ [x]) ∈ l-sort-set (xs, [], ys @ [x])
ultimately show l-sort-aux (xs, [], ys @ [x]) ∈ l-sort-set (x # xs, ys, [])
by (rule subsetD)

next
fix x :: ′a and xs ys z zs
assume
case1 : x ≤ z =⇒
l-sort-aux (xs, [], ys @ x # z # zs) ∈ l-sort-set (xs, [], ys @ x # z # zs)

and
case2 : ¬ x ≤ z =⇒
l-sort-aux (x # xs, ys @ [z], zs) ∈ l-sort-set (x # xs, ys @ [z], zs)

have 0 : (x # xs, ys, z # zs) ∈ l-sort-set (x # xs, ys, z # zs) by (rule R0)
show l-sort-aux (x # xs, ys, z # zs) ∈ l-sort-set (x # xs, ys, z # zs)
proof (cases x ≤ z, simp-all)

assume x ≤ z
with 0 have (xs, [], ys @ x # z # zs) ∈ l-sort-set (x # xs, ys, z # zs)
by (rule R2)

hence l-sort-set (xs, [], ys @ x # z # zs) ⊆ l-sort-set (x # xs, ys, z # zs)
by (rule l-sort-subset)

moreover have l-sort-aux (xs, [], ys @ x # z # zs) ∈
l-sort-set (xs, [], ys @ x # z # zs) using case1 and ‹x ≤ z› by simp

ultimately show l-sort-aux (xs, [], ys @ x # z # zs) ∈
l-sort-set (x # xs, ys, z # zs) by (rule subsetD)

next
assume ¬ x ≤ z
with 0 have (x # xs, ys @ [z], zs) ∈ l-sort-set (x # xs, ys, z # zs)
by (rule R3)

hence l-sort-set (x # xs, ys @ [z], zs) ⊆ l-sort-set (x # xs, ys, z # zs)
by (rule l-sort-subset)

moreover have l-sort-aux (x # xs, ys @ [z], zs) ∈
l-sort-set (x # xs, ys @ [z], zs) using case2 and ‹¬ x ≤ z› by simp

ultimately show l-sort-aux (x # xs, ys @ [z], zs) ∈
l-sort-set (x # xs, ys, z # zs) by (rule subsetD)

qed
qed

The reader will have observed that the simplification rule arising from
the second equation in the definition of function l-sort-aux, i.e. the one
whose right-hand side contains a conditional, has been ignored in the initial
backward steps of the previous proof. The reason is that it would actually
make more complex the conclusion of the corresponding subgoal, as can
easily be verified by trying to leave it enabled.

lemma l-sort-aux X ∈ l-sort-set X
proof (induction rule: l-sort-aux.induct, simp-all)

12

As a result of the application of the rule, the related subgoal takes the
following form:

1 .
∧

x xs ys z zs.
[[x ≤ z =⇒
l-sort-aux (xs, [], ys @ x # z # zs)
∈ l-sort-set (xs, [], ys @ x # z # zs);
¬ x ≤ z =⇒
l-sort-aux (x # xs, ys @ [z], zs)
∈ l-sort-set (x # xs, ys @ [z], zs)]]
=⇒ (x ≤ z −→

l-sort-aux (xs, [], ys @ x # z # zs)
∈ l-sort-set (x # xs, ys, z # zs)) ∧
(¬ x ≤ z −→
l-sort-aux (x # xs, ys @ [z], zs)
∈ l-sort-set (x # xs, ys, z # zs))

A total of 3 subgoals...

Now the conclusion is comprised of a conjunction of two implications.
This is pointless, since case distinction is faster than the application of
conjunction and implication introduction rules in providing sufficient as-
sumptions for the simplification of both the induction hypotheses and the
conclusion.

oops

These considerations clearly do not depend on the particular function
under scrutiny, so that postponing the application of conditional simplifica-
tion rules to case distinction turns out to be a generally advisable strategy
for the accomplishment of step 4.

3.5 Step 5
Two invariants are defined here below, one for each of the target correctness
theorems:

fun l-sort-inv-1 :: ′a::linorder l-type ⇒ bool where
l-sort-inv-1 (x # xs, y # ys, z # zs) =
(l-sorted (y # ys) ∧ l-sorted (z # zs) ∧
last (y # ys) ≤ x ∧ last (y # ys) ≤ z) |

l-sort-inv-1 (x # xs, y # ys, []) =
(l-sorted (y # ys) ∧ last (y # ys) ≤ x) |

l-sort-inv-1 (-, -, zs) =
l-sorted zs

13

definition l-sort-inv-2 :: ′a ⇒ ′a list ⇒ ′a l-type ⇒ bool where
l-sort-inv-2 x xs X ≡ (fst X = [] −→ fst (snd X) = []) ∧

l-count x (fst X) + l-count x (fst (snd X)) + l-count x (snd (snd X)) =
l-count x xs

More precisely, the second invariant, whose type has to match ′a l-type
⇒ bool according to the method specification, shall be comprised of function
l-sort-inv-2 x xs, where x, xs are the free variables appearing in the latter
target theorem.

Both of the above definitions are non-recursive; command fun is used in
the former for the sole purpose of taking advantage of pattern matching.

3.6 Step 6
lemma l-sort-input-1 : l-sort-inv-1 (xs, [], [])
by simp

lemma l-sort-input-2 : l-sort-inv-2 x xs (xs, [], [])
by (simp add: l-sort-inv-2-def l-count-def)

3.7 Step 7
definition l-sort-form :: ′a l-type ⇒ bool where
l-sort-form X ≡ fst X = []

lemma l-sort-intro-1 :
l-sort-inv-1 X =⇒ l-sorted (l-sort-out X)

by (rule l-sort-inv-1 .cases [of X], simp-all add: l-sort-out-def)

lemma l-sort-intro-2 :
[[l-sort-inv-2 x xs X ; l-sort-form X]] =⇒
l-count x (l-sort-out X) = l-count x xs

by (simp add: l-sort-inv-2-def , (erule conjE)+,
simp add: l-sort-form-def l-sort-out-def l-count-def)

3.8 Step 8
lemma l-sort-form-aux-all: l-sort-form (l-sort-aux X)
by (rule l-sort-aux.induct [of λX . l-sort-form (l-sort-aux X)],
simp-all add: l-sort-form-def)

lemma l-sort-form-aux: l-sort-form (l-sort-aux (xs, [], []))
by (rule l-sort-form-aux-all)

14

3.9 Step 9
The proof of the first invariance property requires the following lemma,
stating that in case two lists are sorted, their concatenation still is such as
long as the last item of the former is not greater than the first one of the
latter.

lemma l-sorted-app [rule-format]:
l-sorted xs −→ l-sorted ys −→ last xs ≤ hd ys −→ l-sorted (xs @ ys)

proof (induction xs rule: l-sorted.induct, simp-all, (rule impI)+)
fix x
assume l-sorted ys and x ≤ hd ys
thus l-sorted (x # ys) by (cases ys, simp-all)

qed

lemma l-sort-invariance-1 :
assumes XY : Y ∈ l-sort-set X and X : l-sort-inv-1 X
shows l-sort-inv-1 Y

using XY
proof (rule l-sort-set.induct, simp-all)

show l-sort-inv-1 X using X .
next

fix x :: ′a and xs ys
assume I : l-sort-inv-1 (x # xs, ys, [])
show l-sorted (ys @ [x])
proof (cases ys, simp)

fix a as
assume ys = a # as
hence l-sorted ys ∧ last ys ≤ x using I by simp
moreover have l-sorted [x] by simp
ultimately show ?thesis by (simp add: l-sorted-app)

qed
next

fix x :: ′a and xs ys z zs
assume XZ : x ≤ z and I : l-sort-inv-1 (x # xs, ys, z # zs)
thus l-sorted (ys @ x # z # zs)
proof (cases ys, simp)

fix a as
assume ys = a # as
hence ∗: l-sorted ys ∧ l-sorted (z # zs) ∧ last ys ≤ x using I by simp
with XZ have l-sorted (x # z # zs) by simp
with ∗ show ?thesis by (simp add: l-sorted-app)

qed
next

fix x :: ′a and xs ys z zs
assume ¬ x ≤ z
hence XZ : z ≤ x by simp
assume l-sort-inv-1 (x # xs, ys, z # zs)
thus l-sort-inv-1 (x # xs, ys @ [z], zs)

15

proof (cases ys, simp)
assume I : l-sorted (z # zs)
show l-sort-inv-1 (x # xs, [z], zs)
proof (cases zs, simp)

show z ≤ x using XZ .
next

fix a as
assume zs: zs = a # as
then have ∗: z ≤ a ∧ l-sorted zs using I by simp
have l-sorted [z] by simp
with zs ∗ show ?thesis using XZ by simp

qed
next

fix a as
assume YS : ys = a # as and l-sort-inv-1 (x # xs, ys, z # zs)
hence I : l-sorted ys ∧ l-sorted (z # zs) ∧ last ys ≤ z by simp
have l-sorted [z] by simp
hence I ′: l-sorted (ys @ [z]) using I by (simp add: l-sorted-app)
show ?thesis
proof (cases zs, simp)

show l-sort-inv-1 (x # xs, ys @ [z], []) using I ′ and XZ and YS by simp
next

fix b bs
assume zs: zs = b # bs
then have z ≤ b ∧ l-sorted zs using I by simp
with zs show ?thesis using I and I ′ and XZ and YS by simp

qed
qed

qed

Likewise, the proof of the second invariance property calls for the fol-
lowing lemmas, stating that the number of occurrences of a value in a list is
additive with respect to both item prepending and list concatenation.

lemma l-count-cons: l-count x (y # ys) = l-count x [y] + l-count x ys
by (simp add: l-count-def)

lemma l-count-app: l-count x (ys @ zs) = l-count x ys + l-count x zs
by (simp add: l-count-def)

lemma l-sort-invariance-2 :
assumes XY : Y ∈ l-sort-set X and X : l-sort-inv-2 w ws X
shows l-sort-inv-2 w ws Y

using XY
proof (rule l-sort-set.induct)

show l-sort-inv-2 w ws X using X .
next

fix x xs ys

16

assume l-sort-inv-2 w ws (x # xs, ys, [])
thus l-sort-inv-2 w ws (xs, [], ys @ [x])
proof (simp add: l-sort-inv-2-def , subst (asm) l-count-cons, subst l-count-app)
qed (simp add: l-count-def ac-simps)

next
fix x xs ys z zs
assume l-sort-inv-2 w ws (x # xs, ys, z # zs)
thus l-sort-inv-2 w ws (xs, [], ys @ x # z # zs)
proof (simp add: l-sort-inv-2-def , subst (asm) l-count-cons, subst l-count-app,
subst l-count-cons)

qed (simp add: l-count-def ac-simps)
next

fix x xs ys z zs
assume l-sort-inv-2 w ws (x # xs, ys, z # zs)
thus l-sort-inv-2 w ws (x # xs, ys @ [z], zs)
proof (simp add: l-sort-inv-2-def , subst (asm) (2) l-count-cons,
subst l-count-app)

qed (simp add: l-count-def ac-simps)
qed

3.10 Step 10
theorem l-sorted (l-sort xs)
proof −

let ?X = (xs, [], [])
have l-sort-aux ?X ∈ l-sort-set ?X by (rule l-sort-aux-set)
moreover have l-sort-inv-1 ?X by (rule l-sort-input-1)
ultimately have l-sort-inv-1 (l-sort-aux ?X) by (rule l-sort-invariance-1)
hence l-sorted (l-sort-out (l-sort-aux ?X)) by (rule l-sort-intro-1)
moreover have ?X = l-sort-in xs by (simp add: l-sort-in-def)
ultimately show ?thesis by (simp add: l-sort-def)

qed

theorem l-count x (l-sort xs) = l-count x xs
proof −

let ?X = (xs, [], [])
have l-sort-aux ?X ∈ l-sort-set ?X by (rule l-sort-aux-set)
moreover have l-sort-inv-2 x xs ?X by (rule l-sort-input-2)
ultimately have l-sort-inv-2 x xs (l-sort-aux ?X) by (rule l-sort-invariance-2)
moreover have l-sort-form (l-sort-aux ?X) by (rule l-sort-form-aux)
ultimately have l-count x (l-sort-out (l-sort-aux ?X)) = l-count x xs
by (rule l-sort-intro-2)

moreover have ?X = l-sort-in xs by (simp add: l-sort-in-def)
ultimately show ?thesis by (simp add: l-sort-def)

qed

end

17

4 Case study 2
theory CaseStudy2
imports Main HOL−Library.Multiset
begin

In the second case study, the problem will be examined of defining a
function t-ins performing item insertion into binary search trees (admitting
value repetitions) of elements of a linear order, and then proving the cor-
rectness of this definition, i.e. that the trees output by the function still be
sorted if the input ones are and contain one more occurrence of the inserted
value, the number of occurrences of any other value being left unaltered.

Here below is a naive tail-recursive definition of such function:

datatype ′a bintree = Leaf | Branch ′a ′a bintree ′a bintree

function (sequential) t-ins-naive ::
bool ⇒ ′a::linorder ⇒ ′a bintree list ⇒ ′a bintree

where
t-ins-naive False x (Branch y yl yr # ts) = (if x ≤ y

then t-ins-naive False x (yl # Branch y yl yr # ts)
else t-ins-naive False x (yr # Branch y yl yr # ts)) |

t-ins-naive False x (Leaf # ts) =
t-ins-naive True x (Branch x Leaf Leaf # ts) |

t-ins-naive True x (xt # Branch y yl yr # ts) = (if x ≤ y
then t-ins-naive True x (Branch y xt yr # ts)
else t-ins-naive True x (Branch y yl xt # ts)) |

t-ins-naive True x [xt] = xt
by pat-completeness auto

The list appearing as the third argument, deputed to initially contain
the sole tree into which the second argument has to be inserted, is used
to unfold all the involved subtrees until a leaf is reached; then, such leaf is
replaced with a branch whose root value matches the second argument, and
the subtree list is folded again. The information on whether unfolding or
folding is taking place is conveyed by the first argument, whose value will
respectively be False or True.

According to this plan, the computation is meant to terminate in cor-
respondence with pattern True, -, [-]. Hence, the above naive definition
comprises a non-recursive equation for this pattern only, so that the resid-
ual ones True, -, - # Leaf # - and -, -, [] are not covered by any equation.

That which decreases in recursive calls is the size of the head of the sub-
tree list during unfolding, and the length of the list during folding. Further-
more, unfolding precedes folding in the recursive call pipeline, viz. there is a
recursive equation switching from unfolding to folding, but no one carrying

18

out the opposite transition. These considerations suggest that a measure
function suitable to prove the termination of function t-ins-naive should
roughly match the sum of the length of the list and the size of the list head
during unfolding, and the length of the list alone during folding.

This idea can be refined by observing that the length of the list increases
by one at each recursive call during unfolding, and does not change in the
recursive call leading from unfolding to folding, at which the size of the input
list head (a leaf) equals zero. Therefore, in order that the measure function
value be strictly decreasing in each recursive call, the size of the list head
has to be counted more than once during unfolding – e.g. twice –, and the
length of the list has to be decremented by one during folding – no more
than that, as otherwise the function value would not change in the passage
from a two-item to a one-item list.

As a result, a suitable measure function and the corresponding termina-
tion proof are as follows:

fun t-ins-naive-measure :: bool × ′a × ′a bintree list ⇒ nat where
t-ins-naive-measure (b, x, ts) = (if b

then length ts − 1
else length ts + 2 ∗ size (hd ts))

termination t-ins-naive
by (relation measure t-ins-naive-measure, simp-all)

Some further functions are needed to express the aforesaid correctness
properties of function t-ins-naive:

primrec t-set :: ′a bintree ⇒ ′a set where
t-set Leaf = {} |
t-set (Branch x xl xr) = {x} ∪ t-set xl ∪ t-set xr

primrec t-multiset :: ′a bintree ⇒ ′a multiset where
t-multiset Leaf = {#} |
t-multiset (Branch x xl xr) = {#x#} + t-multiset xl + t-multiset xr

lemma t-set-multiset: t-set xt = set-mset (t-multiset xt)
by (induction, simp-all)

primrec t-sorted :: ′a::linorder bintree ⇒ bool where
t-sorted Leaf = True |
t-sorted (Branch x xl xr) =
((∀ y ∈ t-set xl. y ≤ x) ∧ (∀ y ∈ t-set xr . x < y) ∧ t-sorted xl ∧ t-sorted xr)

definition t-count :: ′a ⇒ ′a bintree ⇒ nat where
t-count x xt ≡ count (t-multiset xt) x

19

Functions t-set and t-multiset return the set and the multiset, respec-
tively, of the items of the input tree; the connection between them expressed
by lemma t-set-multiset will be used in step 9.

The target correctness theorems can then be enunciated as follows:

t-sorted xt −→ t-sorted (t-ins-naive False x [xt])

t-count y (t-ins-naive False x [xt]) =
(if y = x then Suc else id) (t-count y xt)

4.1 Step 1
This time, the Cartesian product of the input types will be implemented as
a record type. The second command instructs the system to regard such
type as a datatype, thus enabling record patterns:

record ′a t-type =
folding :: bool
item :: ′a
subtrees :: ′a bintree list

function (sequential) t-ins-aux :: ′a::linorder t-type ⇒ ′a t-type where
t-ins-aux (|folding = False, item = x, subtrees = Branch y yl yr # ts|) =
(if x ≤ y
then t-ins-aux (|folding = False, item = x,

subtrees = yl # Branch y yl yr # ts|)
else t-ins-aux (|folding = False, item = x,

subtrees = yr # Branch y yl yr # ts|)) |
t-ins-aux (|folding = False, item = x, subtrees = Leaf # ts|) =

t-ins-aux (|folding = True, item = x, subtrees = Branch x Leaf Leaf # ts|) |
t-ins-aux (|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|) =
(if x ≤ y
then t-ins-aux (|folding = True, item = x, subtrees = Branch y xt yr # ts|)
else t-ins-aux (|folding = True, item = x, subtrees = Branch y yl xt # ts|)) |

t-ins-aux X = X
by pat-completeness auto

Observe that the pattern appearing in the non-recursive equation matches
any one of the residual patterns (|folding = True, item = -, subtrees = [-]|),
(|folding = True, item = -, subtrees = - # Leaf # -|), (|folding = -, item =
-, subtrees = []|), thus complying with the requirement that the definition of
function t-ins-aux be total.

Since the arguments of recursive calls in the definition of function t-ins-aux
are the same as those of function t-ins-naive, the termination proof devel-
oped for the latter can be applied to the former as well by just turning the

20

input product type of the previous measure function into the input record
type of function t-ins-aux.

fun t-ins-aux-measure :: ′a t-type ⇒ nat where
t-ins-aux-measure (|folding = b, item = x, subtrees = ts|) = (if b

then length ts − 1
else length ts + 2 ∗ size (hd ts))

termination t-ins-aux
by (relation measure t-ins-aux-measure, simp-all)

4.2 Step 2
definition t-ins-in :: ′a ⇒ ′a bintree ⇒ ′a t-type where
t-ins-in x xt ≡ (|folding = False, item = x, subtrees = [xt]|)

definition t-ins-out :: ′a t-type ⇒ ′a bintree where
t-ins-out X ≡ hd (subtrees X)

definition t-ins :: ′a::linorder ⇒ ′a bintree ⇒ ′a bintree where
t-ins x xt ≡ t-ins-out (t-ins-aux (t-ins-in x xt))

Since the significant inputs of function t-ins-naive match pattern False,
-, [-], those of function t-ins-aux match pattern (|folding = False, item = -,
subtrees = [-]|), thus being in a one-to-one correspondence with the Cartesian
product of the types of the second and the third component.

Then, the target correctness theorems can be put into the following
equivalent form:

t-sorted xt −→ t-sorted (t-ins x xt)

t-count y (t-ins x xt) = (if y = x then Suc else id) (t-count y xt)

4.3 Step 3
inductive-set t-ins-set :: ′a::linorder t-type ⇒ ′a t-type set
for X :: ′a t-type where
R0 : X ∈ t-ins-set X |
R1 : [[(|folding = False, item = x, subtrees = Branch y yl yr # ts|) ∈ t-ins-set X ;

x ≤ y]] =⇒
(|folding = False, item = x, subtrees = yl # Branch y yl yr # ts|)
∈ t-ins-set X |

R2 : [[(|folding = False, item = x, subtrees = Branch y yl yr # ts|) ∈ t-ins-set X ;
¬ x ≤ y]] =⇒
(|folding = False, item = x, subtrees = yr # Branch y yl yr # ts|)
∈ t-ins-set X |

R3 : (|folding = False, item = x, subtrees = Leaf # ts|) ∈ t-ins-set X =⇒

21

(|folding = True, item = x, subtrees = Branch x Leaf Leaf # ts|)
∈ t-ins-set X |

R4 : [[(|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|)
∈ t-ins-set X ; x ≤ y]] =⇒

(|folding = True, item = x, subtrees = Branch y xt yr # ts|) ∈ t-ins-set X |
R5 : [[(|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|)

∈ t-ins-set X ; ¬ x ≤ y]] =⇒
(|folding = True, item = x, subtrees = Branch y yl xt # ts|) ∈ t-ins-set X

4.4 Step 4
lemma t-ins-subset:

assumes XY : Y ∈ t-ins-set X
shows t-ins-set Y ⊆ t-ins-set X

proof (rule subsetI , erule t-ins-set.induct)
show Y ∈ t-ins-set X using XY .

next
fix x y yl yr ts
assume
(|folding = False, item = x, subtrees = Branch y yl yr # ts|) ∈ t-ins-set X

and x ≤ y
thus (|folding = False, item = x, subtrees = yl # Branch y yl yr # ts|)
∈ t-ins-set X by (rule R1)

next
fix x y yl yr ts
assume
(|folding = False, item = x, subtrees = Branch y yl yr # ts|) ∈ t-ins-set X

and ¬ x ≤ y
thus (|folding = False, item = x, subtrees = yr # Branch y yl yr # ts|)
∈ t-ins-set X by (rule R2)

next
fix x ts
assume (|folding = False, item = x, subtrees = Leaf # ts|) ∈ t-ins-set X
thus (|folding = True, item = x, subtrees = Branch x Leaf Leaf # ts|)
∈ t-ins-set X by (rule R3)

next
fix x xt y yl yr ts
assume
(|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|) ∈ t-ins-set X

and x ≤ y
thus (|folding = True, item = x, subtrees = Branch y xt yr # ts|) ∈ t-ins-set X
by (rule R4)

next
fix x xt y yl yr ts
assume
(|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|) ∈ t-ins-set X

and ¬ x ≤ y
thus (|folding = True, item = x, subtrees = Branch y yl xt # ts|) ∈ t-ins-set X
by (rule R5)

22

qed

lemma t-ins-aux-set: t-ins-aux X ∈ t-ins-set X
proof (induction rule: t-ins-aux.induct,
simp-all add: R0 del: t-ins-aux.simps(1 , 3))
fix x :: ′a and y yl yr ts
let
?X = (|folding = False, item = x, subtrees = Branch y yl yr # ts|) and
?X ′ = (|folding = False, item = x, subtrees = yl # Branch y yl yr # ts|) and
?X ′′ = (|folding = False, item = x, subtrees = yr # Branch y yl yr # ts|)

assume
case1 : x ≤ y =⇒ t-ins-aux ?X ′ ∈ t-ins-set ?X ′ and
case2 : ¬ x ≤ y =⇒ t-ins-aux ?X ′′ ∈ t-ins-set ?X ′′

have 0 : ?X ∈ t-ins-set ?X by (rule R0)
show t-ins-aux ?X ∈ t-ins-set ?X
proof (cases x ≤ y, simp-all)

assume x ≤ y
with 0 have ?X ′ ∈ t-ins-set ?X by (rule R1)
hence t-ins-set ?X ′ ⊆ t-ins-set ?X by (rule t-ins-subset)
moreover have t-ins-aux ?X ′ ∈ t-ins-set ?X ′

using case1 and ‹x ≤ y› by simp
ultimately show t-ins-aux ?X ′ ∈ t-ins-set ?X by (rule subsetD)

next
assume ¬ x ≤ y
with 0 have ?X ′′ ∈ t-ins-set ?X by (rule R2)
hence t-ins-set ?X ′′ ⊆ t-ins-set ?X by (rule t-ins-subset)
moreover have t-ins-aux ?X ′′ ∈ t-ins-set ?X ′′

using case2 and ‹¬ x ≤ y› by simp
ultimately show t-ins-aux ?X ′′ ∈ t-ins-set ?X by (rule subsetD)

qed
next

fix x :: ′a and ts
let
?X = (|folding = False, item = x, subtrees = Leaf # ts|) and
?X ′ = (|folding = True, item = x, subtrees = Branch x Leaf Leaf # ts|)

have ?X ∈ t-ins-set ?X by (rule R0)
hence ?X ′ ∈ t-ins-set ?X by (rule R3)
hence t-ins-set ?X ′ ⊆ t-ins-set ?X by (rule t-ins-subset)
moreover assume t-ins-aux ?X ′ ∈ t-ins-set ?X ′

ultimately show t-ins-aux ?X ′ ∈ t-ins-set ?X by (rule subsetD)
next

fix x :: ′a and xt y yl yr ts
let
?X = (|folding = True, item = x, subtrees = xt # Branch y yl yr # ts|) and
?X ′ = (|folding = True, item = x, subtrees = Branch y xt yr # ts|) and
?X ′′ = (|folding = True, item = x, subtrees = Branch y yl xt # ts|)

assume
case1 : x ≤ y =⇒ t-ins-aux ?X ′ ∈ t-ins-set ?X ′ and
case2 : ¬ x ≤ y =⇒ t-ins-aux ?X ′′ ∈ t-ins-set ?X ′′

23

have 0 : ?X ∈ t-ins-set ?X by (rule R0)
show t-ins-aux ?X ∈ t-ins-set ?X
proof (cases x ≤ y, simp-all)

assume x ≤ y
with 0 have ?X ′ ∈ t-ins-set ?X by (rule R4)
hence t-ins-set ?X ′ ⊆ t-ins-set ?X by (rule t-ins-subset)
moreover have t-ins-aux ?X ′ ∈ t-ins-set ?X ′

using case1 and ‹x ≤ y› by simp
ultimately show t-ins-aux ?X ′ ∈ t-ins-set ?X by (rule subsetD)

next
assume ¬ x ≤ y
with 0 have ?X ′′ ∈ t-ins-set ?X by (rule R5)
hence t-ins-set ?X ′′ ⊆ t-ins-set ?X by (rule t-ins-subset)
moreover have t-ins-aux ?X ′′ ∈ t-ins-set ?X ′′

using case2 and ‹¬ x ≤ y› by simp
ultimately show t-ins-aux ?X ′′ ∈ t-ins-set ?X by (rule subsetD)

qed
qed

4.5 Step 5
primrec t-val :: ′a bintree ⇒ ′a where
t-val (Branch x xl xr) = x

primrec t-left :: ′a bintree ⇒ ′a bintree where
t-left (Branch x xl xr) = xl

primrec t-right :: ′a bintree ⇒ ′a bintree where
t-right (Branch x xl xr) = xr

The partiality of the definition of the previous functions, which merely
return the root value and either subtree of the input branch, does not matter
as they will be applied to branches only.

These functions are used to define the following invariant – this time, a
single invariant for both of the target correctness theorems:

fun t-ins-inv :: ′a::linorder ⇒ ′a bintree ⇒ ′a t-type ⇒ bool where
t-ins-inv x xt (|folding = b, item = y, subtrees = ts|) =
(y = x ∧
(∀n ∈ {..<length ts}.
(t-sorted xt −→ t-sorted (ts ! n)) ∧
(0 < n −→ (∃ y yl yr . ts ! n = Branch y yl yr)) ∧
(let ts ′ = ts @ [Branch x xt Leaf] in t-multiset (ts ! n) =
(if b ∧ n = 0 then {#x#} else {#}) +
(if x ≤ t-val (ts ′ ! Suc n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))))

24

More precisely, the invariant, whose type has to match ′a t-type ⇒
bool according to the method specification, shall be comprised of function
t-ins-inv x xt, where x, xt are the free variables appearing in the target
theorems as the arguments of function t-ins.

4.6 Step 6
lemma t-ins-input: t-ins-inv x xt (|folding = False, item = x, subtrees = [xt]|)
by simp

4.7 Step 7
fun t-ins-form :: ′a t-type ⇒ bool where
t-ins-form (|folding = True, item = -, subtrees = [-]|) = True |
t-ins-form (|folding = True, item = -, subtrees = - # Leaf # -|) = True |
t-ins-form - = False

lemma t-ins-intro-1 :
[[t-ins-inv x xt X ; t-ins-form X]] =⇒
t-sorted xt −→ t-sorted (t-ins-out X)
apply (rule t-ins-form.cases [of X])
apply (auto simp add: t-ins-out-def)
apply force
done

lemma t-ins-intro-2 :
[[t-ins-inv x xt X ; t-ins-form X]] =⇒
t-count y (t-ins-out X) = (if y = x then Suc else id) (t-count y xt)
apply (rule t-ins-form.cases [of X])
apply (auto simp add: t-ins-out-def t-count-def)
apply force

apply force
done

Defining predicate t-ins-form by means of pattern matching rather than
quantifiers permits a faster proof of the introduction rules through a case
distinction followed by simplification. These steps leave the subgoal corre-
sponding to pattern (|folding = True, item = -, subtrees = - # Leaf # -|) to
be proven, which can be done ad absurdum as this pattern is incompatible
with the invariant, stating that all the subtrees in the list except for its head
are branches.

The reason why this pattern, unlike (|folding = -, item = -, subtrees =
[]|), is not filtered by predicate t-ins-form, is that the lack of its occurrences
in recursive calls in correspondence with significant inputs cannot be proven
by rule inversion, being it compatible with the patterns introduced by rules
R3, R4, and R5.

25

4.8 Step 8
This step will be accomplished by first proving by recursion induction that
the outputs of function t-ins-aux match either of the patterns satisfying
predicate t-ins-form or else the residual one (|folding = -, item = -, subtrees
= []|), and then proving by rule inversion that the last pattern may not occur
in recursive calls in correspondence with significant inputs.

definition t-ins-form-all :: ′a t-type ⇒ bool where
t-ins-form-all X ≡ t-ins-form X ∨ subtrees X = []

lemma t-ins-form-aux-all: t-ins-form-all (t-ins-aux X)
by (rule t-ins-aux.induct [of λX . t-ins-form-all (t-ins-aux X)],
simp-all add: t-ins-form-all-def)

lemma t-ins-form-aux:
t-ins-form (t-ins-aux (|folding = False, item = x, subtrees = [xt]|))
(is - (t-ins-aux ?X))

using t-ins-aux-set [of ?X]
proof (rule t-ins-set.cases, insert t-ins-form-aux-all [of ?X])
qed (simp-all add: t-ins-form-all-def)

4.9 Step 9
lemma t-ins-invariance:

assumes XY : Y ∈ t-ins-set X and X : t-ins-inv x xt X
shows t-ins-inv x xt Y

using XY [[simproc del: defined-all]]
proof (rule t-ins-set.induct, simp-all split del: if-split)

show t-ins-inv x xt X using X .
next

fix z :: ′a::linorder and y yl yr ts
assume z = x ∧
(∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. ts ! (n − Suc 0) = Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = Branch y yl yr # ts @ [Branch x xt Leaf]

in t-multiset ((Branch y yl yr # ts) ! n) =
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n)))))

(is - ∧ (∀n ∈ {..<Suc (length ts)}. ?P n))
hence I : ∀n ∈ {..<Suc (length ts)}. ?P n ..
assume xy: x ≤ y
show
∀n ∈ {..<Suc (Suc (length ts))}.
(t-sorted xt −→ t-sorted ((yl # Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. (Branch y yl yr # ts) ! (n − Suc 0) =

Branch y ′ yl ′ yr ′)) ∧

26

(let ts ′ = yl # Branch y yl yr # ts @ [Branch x xt Leaf]
in t-multiset ((yl # Branch y yl yr # ts) ! n) =
(if x ≤ t-val ((Branch y yl yr # ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))

(is ∀n ∈ {..<Suc (Suc (length ts))}. ?Q n)
proof

fix n
assume n: n ∈ {..<Suc (Suc (length ts))}
show ?Q n
proof (cases n)

case 0
have 0 ∈ {..<Suc (length ts)} by simp
with I have ?P 0 ..
thus ?thesis by (simp add: Let-def xy 0)

next
case (Suc m)
hence m ∈ {..<Suc (length ts)} using n by simp
with I have ?P m ..
thus ?thesis
proof (simp add: Let-def Suc)
qed (cases m, simp-all)

qed
qed

next
fix z :: ′a::linorder and y yl yr ts
assume z = x ∧
(∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. ts ! (n − Suc 0) = Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = Branch y yl yr # ts @ [Branch x xt Leaf]

in t-multiset ((Branch y yl yr # ts) ! n) =
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n)))))

(is - ∧ (∀n ∈ {..<Suc (length ts)}. ?P n))
hence I : ∀n ∈ {..<Suc (length ts)}. ?P n ..
assume xy: ¬ x ≤ y
show
∀n ∈ {..<Suc (Suc (length ts))}.
(t-sorted xt −→ t-sorted ((yr # Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. (Branch y yl yr # ts) ! (n − Suc 0) =

Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = yr # Branch y yl yr # ts @ [Branch x xt Leaf]

in t-multiset ((yr # Branch y yl yr # ts) ! n) =
(if x ≤ t-val ((Branch y yl yr # ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))

(is ∀n ∈ {..<Suc (Suc (length ts))}. ?Q n)

27

proof
fix n
assume n: n ∈ {..<Suc (Suc (length ts))}
show ?Q n
proof (cases n)

case 0
have 0 ∈ {..<Suc (length ts)} by simp
with I have ?P 0 ..
thus ?thesis by (simp add: Let-def xy 0)

next
case (Suc m)
hence m ∈ {..<Suc (length ts)} using n by simp
with I have ?P m ..
thus ?thesis
proof (simp add: Let-def Suc)
qed (cases m, simp-all)

qed
qed

next
fix z :: ′a and ts
assume z = x ∧
(∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Leaf # ts) ! n)) ∧
(0 < n −→ (∃ y yl yr . ts ! (n − Suc 0) = Branch y yl yr)) ∧
(let ts ′ = Leaf # ts @ [Branch x xt Leaf]

in t-multiset ((Leaf # ts) ! n) =
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n)))))

(is - ∧ (∀n ∈ {..<Suc (length ts)}. ?P n))
hence I : ∀n ∈ {..<Suc (length ts)}. ?P n ..
show
∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Branch x Leaf Leaf # ts) ! n)) ∧
(let ts ′ = Branch x Leaf Leaf # ts @ [Branch x xt Leaf]

in t-multiset ((Branch x Leaf Leaf # ts) ! n) =
(if n = 0 then {#x#} else {#}) +
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))

(is ∀n ∈ {..<Suc (length ts)}. ?Q n)
proof

fix n
assume n: n ∈ {..<Suc (length ts)}
show ?Q n
proof (cases n)

case 0
have 0 ∈ {..<Suc (length ts)} by simp
with I have ?P 0 ..

28

thus ?thesis by (simp add: Let-def 0 split: if-split-asm)
next

case (Suc m)
have ?P n using I and n ..
thus ?thesis by (simp add: Let-def Suc)

qed
qed

next
fix z :: ′a and zt y yl yr ts
assume z = x ∧
(∀n ∈ {..<Suc (Suc (length ts))}.
(t-sorted xt −→ t-sorted ((zt # Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. (Branch y yl yr # ts) ! (n − Suc 0) =

Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = zt # Branch y yl yr # ts @ [Branch x xt Leaf]

in t-multiset ((zt # Branch y yl yr # ts) ! n) =
(if n = 0 then {#x#} else {#}) +
(if x ≤ t-val ((Branch y yl yr # ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n)))))

(is - ∧ (∀n ∈ {..<Suc (Suc (length ts))}. ?P n))
hence I : ∀n ∈ {..<Suc (Suc (length ts))}. ?P n ..
assume xy: x ≤ y
show
∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Branch y zt yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. ts ! (n − Suc 0) = Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = Branch y zt yr # ts @ [Branch x xt Leaf]

in t-multiset ((Branch y zt yr # ts) ! n) =
(if n = 0 then {#x#} else {#}) +
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))

(is ∀n ∈ {..<Suc (length ts)}. ?Q n)
proof

fix n
assume n: n ∈ {..<Suc (length ts)}
show ?Q n
proof (cases n)

case 0
have 0 ∈ {..<Suc (Suc (length ts))} by simp
with I have ?P 0 ..
hence I0 : (t-sorted xt −→ t-sorted zt) ∧
t-multiset zt = {#x#} + t-multiset yl
by (simp add: Let-def xy)

have Suc 0 ∈ {..<Suc (Suc (length ts))} by simp
with I have ?P (Suc 0) ..
hence I1 : (t-sorted xt −→ t-sorted (Branch y yl yr)) ∧
t-multiset (Branch y yl yr) =

29

(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
then t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0))
else t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0)))

by (simp add: Let-def)
show ?thesis
proof (simp add: Let-def 0 del: t-sorted.simps split del: if-split,
rule conjI , simp-all add: Let-def 0 del: t-sorted.simps,
rule-tac [2] conjI , rule-tac [!] impI)
assume s: t-sorted xt
hence t-sorted zt using I0 by simp
moreover have t-sorted (Branch y yl yr) using I1 and s by simp
moreover have t-set zt = {x} ∪ t-set yl using I0
by (simp add: t-set-multiset)

ultimately show t-sorted (Branch y zt yr) using xy by simp
next

assume x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
hence t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0)) =
t-multiset (Branch y yl yr) using I1 by simp

thus add-mset y (t-multiset zt + t-multiset yr) =
add-mset x (t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0))) using I0
by simp

next
assume ¬ x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
hence t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0)) =
t-multiset (Branch y yl yr) using I1 by simp

thus add-mset y (t-multiset zt + t-multiset yr) =
add-mset x (t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0))) using I0
by simp

qed
next

case (Suc m)
have Suc n ∈ {..<Suc (Suc (length ts))} using n by simp
with I have ?P (Suc n) ..
thus ?thesis by (simp add: Let-def Suc)

qed
qed

next
fix z :: ′a and zt y yl yr ts
assume z = x ∧
(∀n ∈ {..<Suc (Suc (length ts))}.
(t-sorted xt −→ t-sorted ((zt # Branch y yl yr # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. (Branch y yl yr # ts) ! (n − Suc 0) =

Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = zt # Branch y yl yr # ts @ [Branch x xt Leaf]

in t-multiset ((zt # Branch y yl yr # ts) ! n) =
(if n = 0 then {#x#} else {#}) +
(if x ≤ t-val ((Branch y yl yr # ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n)))))

30

(is - ∧ (∀n ∈ {..<Suc (Suc (length ts))}. ?P n))
hence I : ∀n ∈ {..<Suc (Suc (length ts))}. ?P n ..
assume xy: ¬ x ≤ y
show
∀n ∈ {..<Suc (length ts)}.
(t-sorted xt −→ t-sorted ((Branch y yl zt # ts) ! n)) ∧
(0 < n −→ (∃ y ′ yl ′ yr ′. ts ! (n − Suc 0) = Branch y ′ yl ′ yr ′)) ∧
(let ts ′ = Branch y yl zt # ts @ [Branch x xt Leaf]

in t-multiset ((Branch y yl zt # ts) ! n) =
(if n = 0 then {#x#} else {#}) +
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! n)

then t-multiset (t-left (ts ′ ! Suc n))
else t-multiset (t-right (ts ′ ! Suc n))))

(is ∀n ∈ {..<Suc (length ts)}. ?Q n)
proof

fix n
assume n: n ∈ {..<Suc (length ts)}
show ?Q n
proof (cases n)

case 0
have 0 ∈ {..<Suc (Suc (length ts))} by simp
with I have ?P 0 ..
hence I0 : (t-sorted xt −→ t-sorted zt) ∧
t-multiset zt = {#x#} + t-multiset yr
by (simp add: Let-def xy)

have Suc 0 ∈ {..<Suc (Suc (length ts))} by simp
with I have ?P (Suc 0) ..
hence I1 : (t-sorted xt −→ t-sorted (Branch y yl yr)) ∧
t-multiset (Branch y yl yr) =
(if x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
then t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0))
else t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0)))

by (simp add: Let-def)
show ?thesis
proof (simp add: Let-def 0 del: t-sorted.simps split del: if-split,
rule conjI , simp-all add: Let-def 0 del: t-sorted.simps,
rule-tac [2] conjI , rule-tac [!] impI)
assume s: t-sorted xt
hence t-sorted zt using I0 by simp
moreover have t-sorted (Branch y yl yr) using I1 and s by simp
moreover have t-set zt = {x} ∪ t-set yr using I0
by (simp add: t-set-multiset)

ultimately show t-sorted (Branch y yl zt) using xy by simp
next

assume x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
hence t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0)) =
t-multiset (Branch y yl yr) using I1 by simp

thus add-mset y (t-multiset yl + t-multiset zt) =
add-mset x (t-multiset (t-left ((ts @ [Branch x xt Leaf]) ! 0))) using I0

31

by simp
next

assume ¬ x ≤ t-val ((ts @ [Branch x xt Leaf]) ! 0)
hence t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0)) =
t-multiset (Branch y yl yr) using I1 by simp

thus add-mset y (t-multiset yl + t-multiset zt) =
add-mset x (t-multiset (t-right ((ts @ [Branch x xt Leaf]) ! 0))) using I0
by simp

qed
next

case (Suc m)
have Suc n ∈ {..<Suc (Suc (length ts))} using n by simp
with I have ?P (Suc n) ..
thus ?thesis by (simp add: Let-def Suc)

qed
qed

qed

4.10 Step 10
theorem t-sorted xt −→ t-sorted (t-ins x xt)
proof −

let ?X = (|folding = False, item = x, subtrees = [xt]|)
have t-ins-aux ?X ∈ t-ins-set ?X by (rule t-ins-aux-set)
moreover have t-ins-inv x xt ?X by (rule t-ins-input)
ultimately have t-ins-inv x xt (t-ins-aux ?X) by (rule t-ins-invariance)
moreover have t-ins-form (t-ins-aux ?X) by (rule t-ins-form-aux)
ultimately have t-sorted xt −→ t-sorted (t-ins-out (t-ins-aux ?X))
by (rule t-ins-intro-1)

moreover have ?X = t-ins-in x xt by (simp add: t-ins-in-def)
ultimately show ?thesis by (simp add: t-ins-def)

qed

theorem t-count y (t-ins x xt) = (if y = x then Suc else id) (t-count y xt)
proof −

let ?X = (|folding = False, item = x, subtrees = [xt]|)
have t-ins-aux ?X ∈ t-ins-set ?X by (rule t-ins-aux-set)
moreover have t-ins-inv x xt ?X by (rule t-ins-input)
ultimately have t-ins-inv x xt (t-ins-aux ?X) by (rule t-ins-invariance)
moreover have t-ins-form (t-ins-aux ?X) by (rule t-ins-form-aux)
ultimately have t-count y (t-ins-out (t-ins-aux ?X)) =
(if y = x then Suc else id) (t-count y xt)
by (rule t-ins-intro-2)

moreover have ?X = t-ins-in x xt by (simp add: t-ins-in-def)
ultimately show ?thesis by (simp add: t-ins-def)

qed

end

32

References
[1] Isabelle/hol exercises — advanced — sorting with lists and trees. http:

//isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, Nov. 2013.
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/
doc/prog-prove.pdf.

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, Nov. 2013. http://isabelle.in.tum.de/
website-Isabelle2013-1/dist/Isabelle2013-1/doc/tutorial.pdf.

33

http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2013-1/dist/Isabelle2013-1/doc/tutorial.pdf

	Method rationale
	Method summary
	Case study 1
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Case study 2
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

