
The Sum-of-Squares Function and Jacobi’s
Two-Square Theorem

Manuel Eberl

November 30, 2024

Abstract

This entry defines the sum-of-squares function rk(n), which counts
the number of ways to write a natural number n as a sum of k squares
of integers. Signs and permutations of these integers are taken into
account, such that e.g. 12 +22, 22 +12, and (−1)2 +22 are all different
decompositions of 5.

Using this, I then formalise the main result: Jacobi’s two-square
theorem, which states that for n > 0 we have r2(n) = 4(d1(3)−d3(n)),
where di(n) denotes the number of divisors m of n such that m =
i (mod 4).

Corollaries include the identities r2(2n) = r2(n) and r2(p2n) =
r2(n) if p = 3 (mod 4) and the well-known theorem that r2(n) = 0 iff
n has a prime factor p of odd multiplicity with p = 3 (mod 4).

Contents
1 Sum-of-square decompositions and Jacobi’s two-squares The-

orem 2
1.1 Auxiliary material . 2
1.2 Decompositions into squares of integers 4
1.3 Decompositions into squares of positive integers 6
1.4 Decompositions into two squares 9

1.4.1 Gaussian integers on a circle 9
1.4.2 The number of divisors in a given congruence class . . 12
1.4.3 Jacobi’s two-square Theorem 14

1

1 Sum-of-square decompositions and Jacobi’s two-
squares Theorem

theory Sum_Of_Squares_Count
imports
"HOL-Library.Discrete"
"HOL-Library.FuncSet"
"Gaussian_Integers.Gaussian_Integers"
"Dirichlet_Series.Multiplicative_Function"
"List-Index.List_Index"

begin

1.1 Auxiliary material
lemma map_index_cong:

assumes "length xs = length ys" "
∧
i. i < length xs =⇒ f i (xs ! i)

= g i (ys ! i)"
shows "map_index f xs = map_index g ys"
〈proof 〉

lemma map_index_idI: "(
∧
i. f i (xs ! i) = xs ! i) =⇒ map_index f xs

= xs"
〈proof 〉

lemma map_index_transfer [transfer_rule]:
"rel_fun (rel_fun (=) (rel_fun R1 R2)) (rel_fun (list_all2 R1) (list_all2

R2))
map_index map_index"

〈proof 〉

lemma map_index_Cons: "map_index f (x # xs) = f 0 x # map_index (λi x.
f (Suc i) x) xs"
〈proof 〉

lemma map_index_rev: "map_index f (rev xs) = rev (map_index (λi. f (length
xs - i - 1)) xs)"
〈proof 〉

lemma map_conv_map_index: "map f xs = map_index (λi x. f x) xs"
〈proof 〉

lemma map_index_map_index: "map_index f (map_index g xs) = map_index
(λi x. f i (g i x)) xs"
〈proof 〉

lemma map_index_replicate [simp]: "map_index f (replicate n x) = map
(λi. f i x) [0..<n]"
〈proof 〉

2

lemma zip_map_index:
"zip (map_index f xs) (map_index g ys) = map_index (λi. map_prod (f

i) (g i)) (zip xs ys)"
〈proof 〉

lemma map_index_conv_fold:
"map_index f xs = rev (snd (fold (λx (i,ys). (i+1, f i x # ys)) xs (0,

[])))"
〈proof 〉

lemma map_index_code_conv_foldr:
"map_index f xs = snd (foldr (λx (i,ys). (i-1, f i x # ys)) xs (length

xs - 1, []))"
〈proof 〉

lemma sum_list_of_nat: "sum_list (map of_nat xs) = of_nat (sum_list xs)"
〈proof 〉

lemma sum_list_of_int: "sum_list (map of_int xs) = of_int (sum_list xs)"
〈proof 〉

lemma sum_list_of_real: "sum_list (map of_real xs) = of_real (sum_list
xs)"
〈proof 〉

lemma prime_cong_4_nat_cases [consumes 1, case_names 2 cong_1 cong_3]:
assumes "prime (p :: nat)"
obtains "p = 2" | "[p = 1] (mod 4)" | "[p = 3] (mod 4)"

〈proof 〉

lemma member_le_sum_list:
fixes x :: "'a :: ordered_comm_monoid_add"
assumes "x ∈ set xs" "

∧
x. x ∈ set xs =⇒ x ≥ 0"

shows "x ≤ sum_list xs"
〈proof 〉

lemma is_square_conv_sqrt: "is_square n ←→ Discrete.sqrt n ^ 2 = n"
〈proof 〉

lemma sum_replicate_mset_count_eq: "(
∑

x∈set_mset X. replicate_mset
(count X x) x) = X"
〈proof 〉

lemma coprime_crossproduct_strong:
fixes a b c d :: "'a :: semiring_gcd"
assumes "coprime a d" "coprime b c"
shows "normalize (a * b) = normalize (c * d) ←→

3

normalize a = normalize c ∧ normalize b = normalize d"
〈proof 〉

lemma divisor_coprime_product_decomp_normalize:
fixes d n1 n2 :: "'a :: factorial_semiring_gcd"
assumes "d dvd n1 * n2" "coprime n1 n2"
shows "normalize d = normalize (gcd d n1 * gcd d n2)"

〈proof 〉

lemma divisor_coprime_product_decomp:
fixes d n1 n2 :: nat
assumes "d dvd n1 * n2" "coprime n1 n2"
shows "d = gcd d n1 * gcd d n2"
〈proof 〉

lemma gauss_int_norm_power: "gauss_int_norm (x ^ n) = gauss_int_norm
x ^ n"
〈proof 〉

lemma gcd_gauss_cnj: "gcd (gauss_cnj x) (gauss_cnj y) = normalize (gauss_cnj
(gcd x y))"
〈proof 〉

lemma gcd_gauss_cnj_left: "gcd (gauss_cnj x) y = normalize (gauss_cnj
(gcd x (gauss_cnj y)))"
〈proof 〉

lemma gcd_gauss_cnj_right: "gcd x (gauss_cnj y) = normalize (gauss_cnj
(gcd (gauss_cnj x) y))"
〈proof 〉

1.2 Decompositions into squares of integers

The following definition gives the set of all the different ways to decompose
a natural number n into a sum of k squares of integers. The signs and
permutation of these integers is taken into account, i.e. 12 +22, 22 +12, and
12 + (−2)2 are all counted as different decompositions of 5.
definition sos_decomps :: "nat ⇒ nat ⇒ int list set" where
"sos_decomps k n = {xs. length xs = k ∧ int n = (

∑
x←xs. x ^ 2)}"

The following function that counts the number of such decompositions is
known as the “sum-of-squares function” in the literature, and frequently
denoted with rk(n).
definition count_sos :: "nat ⇒ nat ⇒ nat" where
"count_sos k n = card (sos_decomps k n)"

4

lemma finite_sos_decomps [simp, intro]: "finite (sos_decomps k n)"
〈proof 〉

lemma sos_decomps_0_right [simp]: "sos_decomps k 0 = {replicate k 0}"
〈proof 〉

lemma sos_decomps_0: "sos_decomps 0 n = (if n = 0 then {[]} else {})"
〈proof 〉

lemma sos_decomps_1:
"sos_decomps (Suc 0) n = (if is_square n then {[Discrete.sqrt n], [-Discrete.sqrt

n]} else {})"
(is "?lhs = ?rhs")

〈proof 〉

lemma bij_betw_sos_decomps_2: "bij_betw (λ(x,y). [x,y]) {(i,j). i2 +
j2 = int n} (sos_decomps 2 n)"
〈proof 〉

lemma sos_decomps_Suc:
"sos_decomps (Suc k) n =

(#) 0 ` sos_decomps k n ∪
(
⋃
i∈{1..Discrete.sqrt n}.

⋃
xs∈sos_decomps k (n - i ^ 2). {int i

xs, (-int i) # xs})"
(is "?A = ?B ∪ ?C")

〈proof 〉

lemma count_sos_0_right [simp]: "count_sos k 0 = 1"
〈proof 〉

lemma count_sos_0 [simp]: "n > 0 =⇒ count_sos 0 n = 0"
〈proof 〉

lemma count_sos_1: "n > 0 =⇒ count_sos (Suc 0) n = (if is_square n then
2 else 0)"
〈proof 〉

lemma count_sos_2: "count_sos 2 n = card {(i,j). i2 + j2 = int n}"
〈proof 〉

The following obvious recurrence for rk(n) allows us to compute rk(n) for
concrete k, n – albeit rather inefficiently:

rk+1(n) = rk(n) + 2
b
√

nc∑
i=1

rk(n− i2)

lemma count_sos_Suc:
"count_sos (Suc k) n = count_sos k n + 2 * (

∑
i=1..Discrete.sqrt n.

count_sos k (n - i ^ 2))"

5

〈proof 〉

lemma count_sos_code [code]:
"count_sos k n = (if n = 0 then 1

else if k = 0 then 0
else if k = 1 then (if Discrete.sqrt n ^ 2 = n then 2 else 0)
else count_sos (k-1) n + 2 * (

∑
i=1..Discrete.sqrt n. count_sos (k-1)

(n-i^2)))"
〈proof 〉

1.3 Decompositions into squares of positive integers

It seems somewhat unnatural to allow (−x)n and xn as two different squares
(for nonzero x), and it may also seem strange to allow 02 in the decomposi-
tion. However, as we will see later, this notion of square decomposition has
some nice properties.
Still, we now introduce the perhaps more intuitively sensible definition of
the different ways to decompose n into k squares of positive integers, and
relate it to what we introduced above.
definition pos_sos_decomps :: "nat ⇒ nat ⇒ nat list set" where
"pos_sos_decomps k n = {xs. length xs = k ∧ 0 /∈ set xs ∧ n = (

∑
x←xs.

x ^ 2)}"

definition count_pos_sos :: "nat ⇒ nat ⇒ nat" where
"count_pos_sos k n = card (pos_sos_decomps k n)"

lemma finite_pos_sos_decomps [simp, intro]: "finite (pos_sos_decomps
k n)"
〈proof 〉

lemma pos_sos_decomps_0_right: "pos_sos_decomps k 0 = (if k = 0 then
{[]} else {})"
〈proof 〉

lemma pos_sos_decomps_0: "pos_sos_decomps 0 n = (if n = 0 then {[]} else
{})"
〈proof 〉

lemma pos_sos_decomps_1:
"pos_sos_decomps (Suc 0) n = (if is_square n ∧ n > 0 then {[Discrete.sqrt

n]} else {})"
(is "?lhs = ?rhs")

〈proof 〉

lemma bij_betw_pos_sos_decomps_2:
"bij_betw (λ(x,y). [x,y]) {(i,j). i2 + j2 = n ∧ i > 0 ∧ j > 0} (pos_sos_decomps

2 n)"
〈proof 〉

6

lemma pos_sos_decomps_Suc:
"pos_sos_decomps (Suc k) n =

(
⋃
i∈{1..Discrete.sqrt n}. ((#) i) ` pos_sos_decomps k (n - i ^ 2))"

(is "?A = ?B")
〈proof 〉

lemma count_pos_sos_0_right: "count_pos_sos k 0 = (if k = 0 then 1 else
0)"
〈proof 〉

lemma count_pos_sos_0: " count_pos_sos 0 n = (if n = 0 then 1 else 0)"
〈proof 〉

lemma count_pos_sos_0_0 [simp]: "count_pos_sos 0 0 = 1"
and count_pos_sos_0_right' [simp]: "k > 0 =⇒ count_pos_sos k 0 = 0"
and count_pos_sos_0' [simp]: "n > 0 =⇒ count_pos_sos 0 n = 0"
〈proof 〉

lemma count_pos_sos_1: "count_pos_sos (Suc 0) n = (if is_square n ∧
n > 0 then 1 else 0)"
〈proof 〉

lemma count_pos_sos_2: "count_pos_sos 2 n = card {(i,j). i2 + j2 = n
∧ i > 0 ∧ j > 0}"
〈proof 〉

We get a similar recurrence for count_pos_sos as earlier:
lemma count_pos_sos_Suc:
"count_pos_sos (Suc k) n = (

∑
i=1..Discrete.sqrt n. count_pos_sos k

(n - i ^ 2))"
〈proof 〉

lemma count_pos_sos_code [code]:
"count_pos_sos k n = (if k = 0 ∧ n = 0 then 1

else if k = 0 ∨ n = 0 then 0
else if k = 1 then (if Discrete.sqrt n ^ 2 = n then 1 else 0)
else (

∑
i=1..Discrete.sqrt n. count_pos_sos (k-1) (n-i^2)))"

〈proof 〉

If we denote the number of decompositions of n into k squares of integers
as rk(n) and the number of decompositions of n into k positive integers as
r+
k (n), we can show the following formula:

rk(n) =
k∑

j=0

2j

(
k

j

)
r+
j (n)

There is a simple combinatorial argument for this: any decomposition of n
into k squares of integers can be produced by picking

7

• an integer j between 0 and k determining how many of the squares in
the decomposition will be non-zero

• a set X ⊆ [k] with |X| = j of their indices

• a function s : X → {−1, 1} determining the sign of each of the j
non-zero integers

• a decomposition of n into j squares, which determines the absolute
values of each of the j integers

The inverse of this process is also clear: given a decomposition of n into k
squares of integers, j is the number of non-zero integers in it, X is the set
of all indices with a non-zero integer, s(i) is the sign of the i-th integer, and
the absolute values of the j non-zero integers in the decomposition form a
decomposition of n into j squares of positive integers.
However, this proof is somewhat tedious to write down because it is not
so easy to, given a list xs with k elements and a set X ⊆ [k] of indices,
construct a list that has the elements of xs at the indices X left-to-right and
0 everywhere else.
Therefore, we simply use a straightforward induction on k instead, which is
also simple to do, albeit perhaps less insightful.
lemma count_sos_conv_count_pos_sos:
"count_sos k n = (

∑
j≤k. 2 ^ j * (k choose j) * count_pos_sos j n)"

〈proof 〉

We can however, just for illustration, easily establish a bijection between the
the set of decompositions of n into k squares of integers and the set of pairs
consisting of a decomposition of n into k squares of positive integers and a
subset of [k] (indicating which of the integers were originally negative).
This shows that rk(n) ≥ 2kr+

k (n) (although we could easily have derived
that fact from our identity relating rk(n) and r+

k (n) as well).
lemma

fixes k n :: nat
fixes f :: "nat list × nat set ⇒ int list"
defines "f ≡ (λ(xs, X). map_index (λi x. if i ∈ X then -int x else int

x) xs)"
defines "A ≡ pos_sos_decomps k n × Pow {..<k}"
defines "B ≡ {xs∈sos_decomps k n. 0 /∈ set xs}"
shows bij_betw_pos_sos_deocmps_nonzero_sos_decomps: "bij_betw f A B"

and count_sos_ge_twopow_pos_sos: "count_sos k n ≥ 2 ^ k * count_pos_sos
k n"
〈proof 〉

value "map (count_pos_sos 2) [0..<100]"

8

1.4 Decompositions into two squares

For the rest of this development, we will focus on k = 2, i.e. decompositions
of n into two squares. There is an obvious relationship between these and
Gaussian integers with norm n.
To that end, recall that the Gaussian integers Z[i] are the subring of the
complex numbers of the form a + bi with a, b ∈ Z. Their integer-valued
norm is defined as N(a + bi) = a2 + b2 (which is the square of the distance
of the complex number a + bi to the origin).
lemma in_sos_decomps_2_conv_gauss_int_norm:

"[x, y] ∈ sos_decomps 2 n ←→ gauss_int_norm (of_int x + of_int y
* i�) = n"
〈proof 〉

lemma sos_decomps_2_conv_gauss_int_norm:
"bij_betw (λz. [ReZ z, ImZ z]) {z. gauss_int_norm z = n} (sos_decomps

2 n)"
〈proof 〉

To make use of this connection, we will now develop some more theory on
Gaussian integers with a given norm n.

1.4.1 Gaussian integers on a circle

We define the set of all Gaussian integers with norm n, i.e. all complex
numbers with integer real and imaginary part that lie on a circle of radius
n2 around the origin.
definition gauss_ints_with_norm :: "nat ⇒ gauss_int set" where
"gauss_ints_with_norm n = gauss_int_norm -` {n}"

lemma gauss_ints_with_norm_0 [simp]: "gauss_ints_with_norm 0 = {0}"
〈proof 〉

lemma card_gauss_ints_with_norm_conv_count_sos: "card (gauss_ints_with_norm
n) = count_sos 2 n"
〈proof 〉

For convenience, we also define the following variant where we restrict the
above set to the “standard” quadrant where the real part is positive and the
imaginary part is non-negative.
In other words: if we have a Gaussian integer z, there are three more copies
of it with the same norm in the other three quadrants, differing from z by
one of the unit factors −1, i, or −i. It makes sense to therefore only look at
the copy in the first quadrant as the “canonical” representative.
definition gauss_ints_with_norm' :: "nat ⇒ gauss_int set" where

9

"gauss_ints_with_norm' n = gauss_int_norm -` {n} ∩ {z. z 6= 0 ∧ normalize
z = z}"

lemma gauss_ints_with_norm'_subset:
"gauss_ints_with_norm' n ⊆ (λ(a,b). of_int a + of_int b * i�) ` ({0..int

n} × {0..int n})"
〈proof 〉

lemma finite_gauss_ints_with_norm' [simp, intro]: "finite (gauss_ints_with_norm'
n)"
〈proof 〉

lemma gauss_ints_with_norm'_0 [simp]: "gauss_ints_with_norm' 0 = {}"
〈proof 〉

lemma gauss_ints_with_norm'_1 [simp]: "gauss_ints_with_norm' (Suc 0)
= {1}"
〈proof 〉

lemma unit_factor_eq_1_iff: "unit_factor x = 1 ←→ normalize x = x ∧
x 6= 0"
〈proof 〉

lemma gauss_ints_with_norm_conv_norm':
assumes "n > 0"
shows "bij_betw (λ(c,z). c * z)

({z. is_unit z} × gauss_ints_with_norm' n) (gauss_ints_with_norm
n)"
〈proof 〉

lemma finite_gauss_ints_with_norm [simp, intro]: "finite (gauss_ints_with_norm
n)"
〈proof 〉

lemma card_gauss_ints_with_norm_conv_norm':
assumes "n > 0"
shows "card (gauss_ints_with_norm n) = 4 * card (gauss_ints_with_norm'

n)"
〈proof 〉

It now turns out that the number G(n) of Gaussian integers (up to units)
with norm n is a multiplicative function in n, meaning that G(0) = 0,
G(1) = 1, and G(mn) = G(m)G(n) if m and n are coprime.
lemma gauss_ints_with_norm'_mult_coprime:

assumes "coprime n1 n2"
shows "bij_betw (λ(x1,x2). normalize (x1 * x2))

(gauss_ints_with_norm' n1 × gauss_ints_with_norm' n2)
(gauss_ints_with_norm' (n1 * n2))"

〈proof 〉

10

interpretation gauss_ints_with_norm': multiplicative_function "λn. card
(gauss_ints_with_norm' n)"
〈proof 〉

A similar multiplicativity result for r2(n) follows, namely

r2(mn) =
1
4
r2(m)r2(n)

for m,n positive and coprime.
corollary count_sos_2_mult_coprime:
"m > 0 =⇒ n > 0 =⇒ coprime m n =⇒ 4 * count_sos 2 (m * n) = count_sos

2 m * count_sos 2 n"
〈proof 〉

Since G(n) is multiplicative, it is determined completely by the values it
takes on prime powers. We will therefore determine the value of G(pk) for
p being a (rational) prime next, and we distinguish the three cases p = 2,
p ≡ 1 (mod 1), and p ≡ 3 (mod 3), corresponding to the different ways in
which a rational prime p factors in Z[i]

The integer 2 factors into the prime factors into −i(1 + i)2 in Z[i] (where
1 + i is prime and −i is a unit), there is exactly one Gaussian integer with
norm 2n (up to units), namely (1 + i)n.
lemma gauss_ints_with_norm'_2_power: "gauss_ints_with_norm' (2 ^ n) =
{normalize ((1 + i�) ^ n)}"
〈proof 〉

Rational primes p with p ≡ 3 (mod 4) are inert in Z[i], i.e. they are also
prime in Z[i]. Using this, we can show that there is no Gaussian integers
with norm p2n+1 and exactly one Gaussian integer (up to units) with norm
p2n, namely pn.
lemma gauss_ints_with_norm'_prime_power_cong_3:

assumes "prime p" "[p = 3] (mod 4)"
shows "gauss_ints_with_norm' (p ^ n) =

(if odd n then {} else {of_nat (p ^ (n div 2))})"
(is "?lhs = ?rhs")

〈proof 〉

Any rational prime p with p ≡ 1 (mod 4) factor into two conjugate prime
factors q and q̄ in Z[i], just like it was the case for 2. But unlike for 2, where
q = q̄ = 1 + i, we now have q = q̄.
Thus a Gaussian integer z has norm pn iff we have zz̄ = pn = qnq̄n, which
means that z must be of the form qiq̄n−i. This leaves us with n + 1 choices
for i and therefore n + 1 such Gaussian integers z.
lemma gauss_ints_with_norm'_prime_power_cong_1:

11

assumes "prime p" "[p = 1] (mod 4)"
obtains q :: gauss_int where "prime q" "gauss_int_norm q = p"
"bij_betw (λi. normalize (q ^ i * gauss_cnj q ^ (n - i))) {0..n} (gauss_ints_with_norm'

(p ^ n))"
〈proof 〉

Combining all of these results, we now know the value of G(pn) for any
rational prime p:
theorem card_gauss_ints_with_norm'_prime_power:

assumes "prime p"
shows "card (gauss_ints_with_norm' (p ^ n)) =

(if [p = 3] (mod 4) ∧ odd n then 0
else if [p = 1] (mod 4) then n + 1 else 1)"

〈proof 〉

This allows us to compute G(n) efficiently given a prime factorisation of n.

1.4.2 The number of divisors in a given congruence class

Next, we introduce a variant of the divisor counting function σ0(n) that will
turn out to be useful for computing rk(n). This function counts the number
of divisors d of n with d ∼= i (mod m) for fixed i and m.
It is not quite a multiplicative function (unless i = 1) since it does not nec-
essarily return 1 for n = 1 (unless i = 1), but it is somewhat multiplicative
since it does distribute over coprime factors in a more general sense, as we
will see below.
definition divisor_count_cong :: "nat ⇒ nat ⇒ nat ⇒ nat" where
"divisor_count_cong i m n = card {d. d dvd n ∧ [d = i] (mod m)}"

lemma divisor_count_cong_0 [simp]:
assumes "m > 0"
shows "divisor_count_cong i m 0 = 0"

〈proof 〉

lemma divisor_count_cong_1:
"divisor_count_cong i m (Suc 0) = (if [i = 1] (mod m) then 1 else 0)"

〈proof 〉

The following is an obvious but very helpful lemma that allows us to deter-
mine the value of the function on a prime power by determining the number
of exponents k such that pk ≡ i (mod m), which is quite easy for concrete
i, m, p.
lemma divisor_count_cong_prime_power:

assumes "prime p"
shows "divisor_count_cong i m (p ^ n) = card {k∈{0..n}. [p ^ k =

i] (mod m)}"

12

〈proof 〉

The following is a variant of the above lemma for the particular case where
p divides the modulus m but not i.
lemma divisor_count_cong_prime_power_dvd:

assumes "p dvd m" "prime p" "¬p dvd i"
shows "divisor_count_cong i m (p ^ n) = (if [i = 1] (mod m) then 1

else 0)"
〈proof 〉

Next, we explore the way in which our function distributes over coprime
factors.
context

fixes D :: "nat ⇒ nat ⇒ nat set" and m :: nat
and F :: "nat ⇒ (nat × nat) set"
and count :: "nat ⇒ nat ⇒ nat"

assumes m: "m > 0"
defines "D ≡ (λi n. {d. d dvd n ∧ [d = i] (mod m)})"
defines "F ≡ (λi. {(j1,j2). j1 < m ∧ j2 < m ∧ [j1 * j2 = i] (mod m)})"
defines "count ≡ (λi. divisor_count_cong i m)"

begin

lemma finite_divisors_cong:
assumes "n > 0"
shows "finite (D i n)"

〈proof 〉

lemma bij_betw_divisors_cong_nat:
assumes "coprime n1 n2"
shows "bij_betw (λ(d1, d2). d1 * d2) (

⋃
(j1,j2)∈F i. D j1 n1 × D

j2 n2) (D i (n1 * n2))"
〈proof 〉

lemma divisor_count_cong_mult_coprime:
assumes "coprime n1 n2"
shows "count i (n1 * n2) = (

∑
(j1,j2)∈F i. count j1 n1 * count j2

n2)"
〈proof 〉

end

We now specialise the above relation to the particularly simple (but impor-
tant) cases of m = 4 and i = 1, 3.
context

fixes d :: "nat ⇒ nat ⇒ nat"
defines "d ≡ (λi. divisor_count_cong i 4)"

begin

13

lemma divisor_count_cong_1_mult_coprime:
assumes "coprime n1 n2"
shows "d 1 (n1 * n2) = d 1 n1 * d 1 n2 + d 3 n1 * d 3 n2"

〈proof 〉

lemma divisor_count_cong_3_mult_coprime:
assumes "coprime n1 n2"
shows "d 3 (n1 * n2) = d 1 n1 * d 3 n2 + d 3 n1 * d 1 n2"

〈proof 〉

1.4.3 Jacobi’s two-square Theorem

We are now ready to prove Jacobi’s two-square theorem, namely that the
number of ways in which a number n > 0 can be written as a sum of two
squares of integers is equal to 4(d1(n) − d3(n)), where di(n) denotes the
number of divisors of n that are congruent i modulo 4.
To that end, we first define the function f(n) as the number of divisors con-
gruent 1 modulo 4 minus the divisors congruent 3 modulo 4. This function
f(n) turns out to be multiplicative.
context

fixes f :: "nat ⇒ int"
defines "f ≡ (λn. int (d 1 n) - int (d 3 n))"

begin

interpretation f: multiplicative_function f
〈proof 〉

Next, we prove that in fact the number of Gaussian integers (up to units)
with norm n is exactly f(n). Since both functions are multiplicative, it
suffices to show that this holds for n being a prime power.
Since we have already done all the hard work for G(pk), it only remains to
evaluate f(pk) in each of the three cases.
lemma card_gauss_ints_with_norm': "int (card (gauss_ints_with_norm' n))
= f n"
〈proof 〉

corollary card_gauss_ints_with_norm:
assumes "n > 0"
shows "int (card (gauss_ints_with_norm n)) = 4 * f n"
〈proof 〉

end
end

We get the “Sum of Two Squares” Theorem as a simply corollary.
theorem sum_of_two_squares_eq:

assumes "n > 0"

14

shows "count_sos 2 n = 4 * (int (divisor_count_cong 1 4 n) - int (divisor_count_cong
3 4 n))"
〈proof 〉

The number of decompositions into two squares of positive numbers can be
computed similarly, but we need a “correction term” for the case that n
itself is a square.
corollary count_pos_sos_2_eq:

assumes "n > 0"
shows "count_pos_sos 2 n =

(int (divisor_count_cong 1 4 n) - int (divisor_count_cong
3 4 n) -

(if is_square n then 1 else 0))"
〈proof 〉

As a simple corollary, it follows that if p = 2 (for any k) or p ≡ 3 (mod 4) (for
even k), the numbers n and pkn have the same number of decompositions
into two squares.
corollary count_sos_times_prime_power:

assumes "p = 2 ∨ (prime p ∧ [p = 3] (mod 4) ∧ even k)"
shows "count_sos 2 (p ^ k * n) = count_sos 2 n"

〈proof 〉

corollary count_sos_2_double: "count_sos 2 (2 * n) = count_sos 2 n"
〈proof 〉

And as yet another corollary, the following well-known fact follows: a positive
integer n can be written as a sum of two squares iff all the prime factors
congruent 3 modulo 4 have odd multiplicity.
corollary count_sos_2_eq_0_iff:
"count_sos 2 n = 0 ←→ (∃ p. prime p ∧ [p = 3] (mod 4) ∧ odd (multiplicity

p n))"
〈proof 〉

end

References

[1] E. Grosswald. Representations of Integers as Sums of Squares.
Springer New York, 2012.

15

	Sum-of-square decompositions and Jacobi's two-squares Theorem
	Auxiliary material
	Decompositions into squares of integers
	Decompositions into squares of positive integers
	Decompositions into two squares
	Gaussian integers on a circle
	The number of divisors in a given congruence class
	Jacobi's two-square Theorem

