
Formally Verified Suffix Array Construction

Louis Cheung and Christine Rizkallah

October 3, 2024

Abstract

A suffix array [2] is a data structure that is extensively used in text
retrieval and data compression applications, including query sugges-
tion mechanisms in web search, and in bioinformatics tools for DNA
sequencing and matching. This wide applicability means that algo-
rithms for constructing suffix arrays are of great practical importance.
The Suffix Array by Induced Sorting (SA-IS) algorithm [3] is a concep-
tually complex yet highly efficient suffix array construction technique,
based on an earlier algorithm [1].

As part of this formalization, we have developed the SA-IS algo-
rithm in Isabelle/HOL and formally verified that it is equivalent to
a mathematical functional specification of suffix arrays. This required
verifying a wide range of underlying properties of lists and suffixes, that
could be reused in other contexts. We also used Isabelle’s code extrac-
tion facilities to extract an executable Haskell implementation of SAIS.
In particular, this entry includes the following: an axiomatic charac-
terisation of suffix array construction; a formally verified encoding of a
straightforward but inefficient suffix array construction algorithm (val-
idating the specification); and a formally verified encoding of the linear
time SA-IS algorithm.

Contents
1 HOL 9

2 Natural Number Arithmetic 9

3 Monotonic Functions 10

4 Sets 11
4.1 From AutoCorres . 14

5 General Lists 14

6 Find 16

1

7 Filter 17

8 Upt 22

9 Lemmas about bijections 22

10 Lemmas about monotone functions 26

11 Sorting 28
11.1 General sorting . 28
11.2 Sorting on linear orders . 29
11.3 Sorting on orders . 31

12 Mapping elements to natural numbers 31

13 Repeat Function At Most N Times 33
13.1 Step and early termination lemmas 33

14 Repeat Function N Times 37

15 Continuous Intervals 38

16 List Slices 41

17 Sorted List Slice 47

18 General Non-standard Lexicographical Comparison 51
18.1 Intro and Elimination . 51
18.2 Simplification . 52
18.3 Recursive version . 53
18.4 Properties . 54
18.5 Monotonicity . 59
18.6 Other . 61

19 Order definitions on lists of linorder elements 63

20 Helper list comparison theorems 64

21 list-less-ns helpers 66

22 Lists of linorder elements are linorders with a bottom ele-
ment 67

23 Recursive Definition 68

24 list-less-ns-ex helpers 69

2

25 Valid List 70

26 Order Equivalence 73

27 Classical Lexicographical Order 74

28 Non-standard Lexicographical Ordering 76

29 Suffix 77

30 Valid Lists and Suffixes 79

31 Prefixes and Suffixes 79

32 Suffix Comparisons 81
32.1 Lexicographical Ordering . 81
32.2 Non-standard List Ordering 82

33 List Slice 82

34 Sorting 83

35 Prefix Definition 87

36 Axiomatic Suffix Array Specification 88

37 Wrapper for Natural Number String only Algorithm 88

38 General Suffix Array Properties 89

39 Properties of Suffix Arrays on Valid Lists 90

40 Equivalence 94

41 Small and Large List Types 99

42 Suffix Type 104
42.1 General Suffix Type Simplifications 105
42.2 S-Type Simplifications . 106
42.3 L-Type Simplifications . 107
42.4 General Suffix Type Theories 110
42.5 S/L-Type Ordering . 111
42.6 Implementation of Suffix Type Computation 113

43 SAIS Sublist Order 115

44 Sorting 115

3

45 LMS-Types 118
45.1 LMS-Type Simplifications . 118
45.2 LMS-Type Sets and Subsets 120
45.3 Implementation of LMS-Types Computation 120

45.3.1 Properties . 121
45.4 Cardinality LMS-Types . 121
45.5 General Properties about LMS-types 123

46 Buckets 129
46.1 Entire Bucket . 129
46.2 L-types . 133
46.3 LMS-types . 135
46.4 S-types . 135

47 Continuous Buckets 143

48 Bucket Initialisation 144

49 Bucket Range 145

50 Helpers 145

51 LMS Slice 146
51.1 Find the next LMS position 146
51.2 LMS Prefix . 150
51.3 LMS Slice . 151
51.4 LMS Substring butlast . 153
51.5 Suffix Types . 154

52 Ordering LMS-substrings 165

53 Mapping from suffix to lists of LMS-Substrings 174
53.1 LMS Sequence . 175
53.2 LMS-Substring Sequence . 182
53.3 LMS Map . 190

54 Induce Sorting 198
54.1 Bucket Insert . 198
54.2 Induce L-types . 198
54.3 Induce S-types . 199
54.4 Induce Sorting . 200

55 Rename Mapping 201

56 Rename String 201

4

57 Order LMS 201

58 Extract LMS 201

59 SAIS Definition 202

60 Bucket Insert with Ghost State 203

61 Simple Properties 203

62 Invariants 203
62.1 Defintions and Simple Helper Lemmas 203

62.1.1 Distinctness . 203
62.1.2 LMS Bucket Ptr . 204
62.1.3 Unknowns . 205
62.1.4 Locations . 205
62.1.5 Unchanged . 205
62.1.6 Inserted . 206
62.1.7 Sorted . 206

62.2 Combined Invariant . 207
62.3 Helpers . 208
62.4 Establishment and Maintenance Steps 219

62.4.1 Distinctness . 219
62.4.2 Bucket Ptr . 223
62.4.3 Unknowns . 226
62.4.4 Locations . 229
62.4.5 Unchanged . 232
62.4.6 Inserted . 234
62.4.7 Sorted . 235

62.5 Combined Establishment and Maintenance 242

63 Exhaustiveness 243

64 Postconditions 245

65 Abstract Induce L-types Simple Properties 253

66 Precondition Definitions 255

67 Invariant Definitions 261
67.1 Distinctness . 261
67.2 Predecessor . 261
67.3 L Bucket Ptr . 262
67.4 Unknowns . 262
67.5 Indexes . 263

5

67.6 Unchanged . 263
67.7 L Locations . 263
67.8 Seen . 264
67.9 Sortedness . 265
67.10Permutation . 266

68 Invariant Helpers 267
68.1 Distinctness of New Insert . 267
68.2 Bucket Ranges . 269
68.3 No Overwrite . 271
68.4 Bucket Values . 275
68.5 Seen . 280

69 Distinctness 281
69.1 Establishment . 281
69.2 Maintenance . 283

70 Unknowns 286
70.1 Establishment . 286
70.2 Maintenance . 286

71 Number of L-types 289
71.1 Establishment . 289
71.2 Maintenance . 291

72 L Locations 295
72.1 Establishment . 295
72.2 Maintenance . 295

73 Unchanged 298
73.1 Establishment . 298
73.2 Maintenance . 299

74 Invariant about the Current Index 301
74.1 Establishment . 301
74.2 Maintenance . 302

75 Predecessor Invariant 305
75.1 Establishment . 305
75.2 Maintenance . 305

76 Seen Invariant 308
76.1 Establishment . 308
76.2 Maintenance . 308

6

77 Permutation 310
77.1 Establishment . 310
77.2 Maintenance . 311

78 Sorted 313

79 L-type Exhaustiveness 333
79.1 Case 1 . 334
79.2 Case 2 . 334
79.3 Exhaustiveness Proof . 336

80 Correctness and Exhaustiveness 338

81 Abstract Induce S Simple Properties 342

82 Preconditions 344

83 Invariants 346
83.1 Definitions . 346

83.1.1 Distinctness . 346
83.1.2 S Bucket Ptr . 346
83.1.3 Locations . 347
83.1.4 Unchanged . 348
83.1.5 Seen . 348
83.1.6 Predecessor . 348
83.1.7 Successor . 349
83.1.8 Combined Permutation Invariant 349
83.1.9 Sorted . 350

83.2 Helpers . 351
83.3 Establishment and Maintenance Steps 363

83.3.1 Distinctness . 363
83.3.2 Bucket Pointer . 366
83.3.3 Locations . 369
83.3.4 Unchanged . 373
83.3.5 Seen . 375
83.3.6 Predecessor . 406
83.3.7 Successor . 410
83.3.8 Combined Permutation Invariant 418
83.3.9 Sorted . 426

84 Induce S Correctness Theorems 458

85 Bucket Initialisation Properties 459

86 Bucket Insert Precondition 460

7

87 Induce L Precondition 460

88 Induce S Precondition 461

89 Permutation 463

90 Sorting 463

91 Extract LMS types Proofs 467

92 Order LMS-types Proofs 468

93 Rename Mapping Proofs 468

94 Rename String Proofs 472

95 SAIS General Helpers 472

96 SAIS cases simplifications 473

97 SAIS returns a permutation 474

98 SAIS Sorted Helpers 477

99 SAIS sorts suffixes 477

100Verification of a SAIS construction algorithm 480

101Final Theorem: Verification of a generalised SAIS construc-
tion algorithm 481

102Bucket Insert 481

103Suffix Types 482

104LMS types 482

105Extracting LMS types 483

106LMS Substrings 483

107Rename Mapping 483

108Induce L Refinement 484

109Induce S Refinement 485

110Induce 488

8

111SAIS 489

112Bucket Insert 491

113Induce L Refinement 493

114Induce S Refinement 495

115Induce 501

116Suffix Types 503

117LMS types 506

118Extracting LMS types 507

119LMS Substrings 507

120Rename Mapping 507

121SAIS 508

122Correctness 513
theory Nat-Util

imports Main
begin

1 HOL
lemma duplicate-assms:
([[P; P]] =⇒ Q) ≡ (P =⇒ Q)
by simp

2 Natural Number Arithmetic
lemma div-2-eq-Suc:
[[x div 2 = y div 2 ; x 6= y]] =⇒ (y = Suc x) ∨ (x = Suc y)
by linarith

lemma Suc-m-sub-n-div-2 :
Suc ((m − n) div 2) > (m − Suc n) div 2
by (simp add: div-le-mono le-Suc-eq)

lemma Suc-div-2-less-Suc:
Suc x div 2 < Suc x
by simp

lemma nat-x-less-y-le-Suc-x:

9

[[x < y; y ≤ Suc x]] =⇒ y = Suc x
by simp

lemma nat-sub-eq-add:
[[(a :: nat) − b = c − d; b < a]] =⇒ a + d = c + b
by simp

end
theory Fun-Util

imports Main
begin

3 Monotonic Functions
lemma strict-mono-leD: strict-mono r =⇒ m ≤ n =⇒ r m ≤ r n

by (erule (1) monoD [OF strict-mono-mono])

definition map-to-nat :: (′a :: linorder list) ⇒ (′a ⇒ nat)
where

map-to-nat xs = (λx. card {y|y. y ∈ set xs ∧ y < x})

lemma map-to-nat-strict-mono-on:
strict-mono-on (set xs) (map-to-nat xs)
unfolding strict-mono-on-def map-to-nat-def

proof safe
fix x y :: ′a
assume x < y x ∈ set xs y ∈ set xs
have finite {a |a. a ∈ set xs ∧ a < y}

by auto
moreover
have {a |a. a ∈ set xs ∧ a < x} ⊂ {a |a. a ∈ set xs ∧ a < y}
proof (intro psubsetI subsetI notI)

fix k
assume k ∈ {a |a. a ∈ set xs ∧ a < x}
hence k < x k ∈ set xs

by simp-all
hence k < y k ∈ set xs

using ‹x < y› by auto
then show k ∈ {a |a. a ∈ set xs ∧ a < y}

by simp
next

assume {a |a. a ∈ set xs ∧ a < x} = {a |a. a ∈ set xs ∧ a < y}
moreover
have x ∈ {a |a. a ∈ set xs ∧ a < y}

using ‹x < y› ‹x ∈ set xs› by auto
moreover
have x /∈ {a |a. a ∈ set xs ∧ a < x}

by auto
ultimately show False

10

by simp
qed
ultimately show card {a |a. a ∈ set xs ∧ a < x} < card {a |a. a ∈ set xs ∧ a

< y}
using psubset-card-mono[of {a |a. a ∈ set xs ∧ a < y} {a |a. a ∈ set xs ∧ a <

x}]
by blast

qed

lemma strict-mono-on-map-set-ex:
∃ (f :: (′a :: linorder ⇒ nat)). strict-mono-on (set xs) f
using map-to-nat-strict-mono-on by blast

locale Linorder-to-Nat-List =
fixes map-to-nat :: ′a :: linorder list ⇒ ′a ⇒ nat
and xs :: ′a :: linorder list
assumes map-to-nat-strict-mono-on: strict-mono-on (set xs) (map-to-nat xs)

context Linorder-to-Nat-List begin

lemma strict-mono-on-Suc-map-to-nat:
strict-mono-on (set xs) (λx. Suc (map-to-nat xs x))
by (metis (mono-tags, lifting) Suc-mono ord.strict-mono-on-def map-to-nat-strict-mono-on)

end

lemma Linorder-to-Nat-List-ex:
∃α. Linorder-to-Nat-List α xs
by (meson Linorder-to-Nat-List.intro strict-mono-on-map-set-ex)

end
theory Set-Util

imports Main
begin

4 Sets
lemma pigeonhole-principle-advanced:

assumes finite A
and finite B
and A ∩ B = {}
and card A > card B
and bij-betw f (A ∪ B) (A ∪ B)

shows ∃ a∈A. f a ∈ A
proof (rule ccontr)

assume ¬(∃ a∈A. f a ∈ A)
hence ∀ a ∈ A. f a /∈ A

by blast

11

hence ∀ a∈A. f a ∈ B
using assms(5) bij-betw-apply by fastforce

hence f ‘ A ⊆ B
by blast

have inj-on f A
by (meson assms(5) bij-betw-def inj-on-Un)

hence card (f ‘ A) = card A
using card-image by blast

hence f ‘ A = B
by (metis ‹f ‘ A ⊆ B› assms(2 ,4) card-mono leD)

hence card B = card A
using ‹card (f ‘ A) = card A› by blast

then show False
using assms(4) by linarith

qed

lemma Suc-mod-n-bij-betw:
bij-betw (λx. Suc x mod n) {0 ..<n} {0 ..<n}

proof (intro bij-betwI ′)
fix x y
assume x ∈ {0 ..<n} y ∈ {0 ..<n}
then show (Suc x mod n = Suc y mod n) = (x = y)

by (simp add: mod-Suc)
next

fix x
assume x ∈ {0 ..<n}
then show Suc x mod n ∈ {0 ..<n}

by clarsimp
next

fix y
assume y ∈ {0 ..<n}
then show ∃ x∈{0 ..<n}. y = Suc x mod n
by (metis atLeastLessThan-iff bot-nat-0 .extremum less-nat-zero-code mod-Suc-eq

mod-less
mod-less-divisor mod-self not-gr-zero old.nat.exhaust)

qed

lemma subset-upt-no-Suc:
assumes A ⊆ {1 ..<n}
and ∀ x∈A. Suc x /∈ A
shows card A ≤ n div 2

proof (rule ccontr)
assume ¬ card A ≤ n div 2
hence n div 2 < card A

by auto

12

have ∃ a∈A. Suc a mod n ∈ A
proof (rule pigeonhole-principle-advanced[of A {0 ..<n} − A (λx. Suc x mod n),

simplified])
show finite A

using assms(1) finite-subset by blast
next

from card-Diff-subset
have card ({0 ..<n} − A) = card {0 ..<n} − card A

by (metis Diff-subset assms(1) dual-order .trans ivl-diff less-eq-nat.simps(1)
subset-eq-atLeast0-lessThan-finite)

moreover
have card {0 ..<n} − card A < card A

using ‹¬ card A ≤ n div 2 › assms by simp
ultimately show card ({0 ..<n} − A) < card A

by simp
next

have A ∪ {0 ..<n} = {0 ..<n}
using assms(1) dual-order .trans by auto

with Suc-mod-n-bij-betw[of n]
show bij-betw (λx. Suc x mod n) (A ∪ {0 ..<n}) (A ∪ {0 ..<n})

by simp
qed
then obtain x where

x ∈ A
Suc x mod n ∈ A
by blast

show False
proof (cases n)

case 0
then show ?thesis

using ‹Suc x mod n ∈ A› ‹x ∈ A› assms(2) by force
next

case (Suc m)
assume n = Suc m

have x = m ∨ x < m
using Suc ‹x ∈ A› assms(1) by auto

then show ?thesis
proof

assume x = m
then show False

using Suc ‹Suc x mod n ∈ A› assms(1) by auto
next

assume x < m
with mod-less[of Suc x Suc m]
show False

using Suc ‹Suc x mod n ∈ A› ‹x ∈ A› assms(2) by force
qed

13

qed
qed

lemma in-set-mapD:
x ∈ set (map f xs) =⇒ ∃ y ∈ set xs. x = f y
by (simp add: image-iff)

4.1 From AutoCorres
lemma disjointI ′:

assumes
∧

x y. [[x ∈ A; y ∈ B]] =⇒ x 6= y
shows A ∩ B = {}
using assms by fast

lemma disjoint-subset2 :
assumes B ′ ⊆ B and A ∩ B = {}
shows A ∩ B ′ = {}
using assms by fast

end
theory List-Util

imports Main
begin

5 General Lists
lemma list-cases-3 :

T = [] ∨ (∃ x. T = [x]) ∨ (∃ a b xs. T = a # b # xs)
proof (cases T)

case Nil
then show ?thesis by simp

next
case (Cons a list)
then show ?thesis
proof (cases list)

case Nil
with ‹T = a # list›
show ?thesis

by simp
next

case (Cons a ′ list ′)
with ‹T = a # list›
show ?thesis

by simp
qed

qed

14

lemma length-cons-cons:
T = a # b # xs =⇒ ∃n. length T = Suc (Suc n)
by simp

lemma length-Suc-Suc:
length T = Suc (Suc n) =⇒ ∃ a b xs. T = a # b # xs
by (metis length-Suc-conv)

lemma length-Suc-0 :
length xs = Suc 0 =⇒ ∃ x. xs = [x]
by (simp add: length-Suc-conv)

lemma map-eq-replicate:
∀ x ∈ set xs. f x = k =⇒ map f xs = replicate (length xs) k
by (metis map-eq-conv map-replicate-const)

lemma map-upt-eq-replicate:
∀ x ∈ set [i..<j]. f x = k =⇒ map f [i..<j] = replicate (j − i) k
by (metis length-upt map-eq-replicate)

lemma in-set-list-update:
[[x ∈ set xs; xs ! k 6= x]] =⇒ x ∈ set (xs[k := y])
by (metis in-set-conv-nth length-list-update nth-list-update-neq)

lemma Max-greD:
i < length s =⇒ Max (set s) ≥ s ! i
by clarsimp

lemma list-neq-rc1 :
(∃ z zs. xs = ys @ z # zs) =⇒ xs 6= ys
by fastforce

lemma list-neq-rc2 :
(∃ z zs. ys = xs @ z # zs) =⇒ xs 6= ys
by fastforce

lemma list-neq-rc3 :
(∃ x y as bs cs. xs = as @ x # bs ∧ ys = as @ y # cs ∧ x 6= y) =⇒ xs 6= ys
by fastforce

lemma list-neq-rc:
(∃ z zs. xs = ys @ z # zs) ∨
(∃ z zs. ys = xs @ z # zs) ∨
(∃ x y as bs cs. xs = as @ x # bs ∧ ys = as @ y # cs ∧ x 6= y) =⇒
xs 6= ys

by (elim disjE conjE list-neq-rc1 list-neq-rc2 list-neq-rc3)

lemma list-neq-fc:

15

xs 6= ys =⇒
(∃ z zs. xs = ys @ z # zs) ∨
(∃ z zs. ys = xs @ z # zs) ∨
(∃ x y as bs cs. xs = as @ x # bs ∧ ys = as @ y # cs ∧ x 6= y)

proof (induct xs arbitrary: ys)
case Nil
then show ?case

by (metis append-Nil list.exhaust)
next

case (Cons a xs ys)
note IH = this
then show ?case
proof (cases ys)

case Nil
then show ?thesis

by simp
next

case (Cons b ys ′)
assume ys = b # ys ′

show ?thesis
proof (cases a = b)

assume a 6= b
with ‹ys = b # ys ′›
show ?thesis

by blast
next

assume a = b
with IH (2) ‹ys = b # ys ′›
have xs 6= ys ′

by simp
with IH (1)[of ys ′]
show ?thesis

by (metis Cons-eq-appendI ‹a = b› local.Cons)
qed

qed
qed

lemma list-neq-cases:
xs 6= ys ←→
(∃ z zs. xs = ys @ z # zs) ∨
(∃ z zs. ys = xs @ z # zs) ∨
(∃ x y as bs cs. xs = as @ x # bs ∧ ys = as @ y # cs ∧ x 6= y)

using list-neq-fc list-neq-rc by blast

6 Find
lemma findSomeD:

find P xs = Some x =⇒ P x ∧ x ∈ set xs
by (induct xs) (auto split: if-split-asm)

16

lemma findNoneD:
find P xs = None =⇒ ∀ x ∈ set xs. ¬P x
by (induct xs) (auto split: if-split-asm)

7 Filter
lemma filter-update-nth-success:
[[P v; i < length xs]] =⇒

filter P (xs[i := v]) = (filter P (take i xs)) @ [v] @ (filter P (drop (Suc i) xs))
by (simp add: upd-conv-take-nth-drop)

lemma filter-update-nth-fail:
[[¬P v; i < length xs]] =⇒

filter P (xs[i := v]) = (filter P (take i xs)) @ (filter P (drop (Suc i) xs))
by (simp add: upd-conv-take-nth-drop)

lemma filter-take-nth-drop-success:
[[i < length xs; P (xs ! i)]] =⇒

filter P xs = (filter P (take i xs)) @ [xs ! i] @ (filter P (drop (Suc i) xs))
by (metis filter-update-nth-success list-update-id)

lemma filter-take-nth-drop-fail:
[[i < length xs; ¬P (xs ! i)]] =⇒

filter P xs = (filter P (take i xs)) @ (filter P (drop (Suc i) xs))
by (metis filter-update-nth-fail list-update-id)

lemma filter-nth-1 :
[[i < length xs; P (xs ! i)]] =⇒
∃ i ′. i ′ < length (filter P xs) ∧ (filter P xs) ! i ′ = xs ! i

proof (induct xs arbitrary: i)
case Nil
then show ?case

by simp
next

case (Cons a xs i)
note IH = this
show ?case
proof (cases i)

case 0
with IH (3)
show ?thesis

by fastforce
next

case (Suc n)
with IH (1)[of n] IH (2 ,3)
have ∃ i ′<length (filter P xs). filter P xs ! i ′ = xs ! n

by fastforce
then show ?thesis

17

using Suc by auto
qed

qed

lemma filter-nth-2 :
[[i < length (filter P xs)]] =⇒
∃ i ′. i ′ < length xs ∧ (filter P xs) ! i = xs ! i ′

proof (induct xs arbitrary: i)
case Nil
then show ?case

by simp
next

case (Cons a xs i)
note IH = this
then show ?case
proof (cases i)

case 0
then show ?thesis

using Cons.hyps Cons.prems by force
next

case (Suc n)
with IH (1)[of n] IH (2)
have ∃ i ′<length xs. filter P xs ! n = xs ! i ′

by (metis filter .simps(2) length-Cons not-less-eq not-less-iff-gr-or-eq)
then show ?thesis

by (metis Cons.hyps Cons.prems Suc filter .simps(2) length-Cons not-less-eq
nth-Cons-Suc)

qed
qed

lemma filter-nth-relative-1 :
[[i < length xs; P (xs ! i); j < i; P (xs ! j)]] =⇒
∃ i ′ j ′. i ′ < length (filter P xs) ∧ j ′ < i ′ ∧ (filter P xs) ! i ′ = xs ! i ∧
(filter P xs) ! j ′ = xs ! j

proof (induct xs arbitrary: i j)
case Nil
then show ?case

by simp
next

case (Cons a xs i j)
note IH = this
show ?case
proof (cases i)

case 0
then show ?thesis

using IH (4) by blast
next

case (Suc n)
assume i = Suc n

18

show ?thesis
proof (cases j)

case 0
with filter-nth-1 [of n xs P] IH (2 ,3) ‹i = Suc n› IH (4−)
show ?thesis

by (metis filter .simps(2) length-Cons not-less-eq nth-Cons-0 nth-Cons-Suc
zero-less-Suc)

next
case (Suc m)
with IH (1)[of n m] IH (2−) ‹i = Suc n›
show ?thesis

by fastforce
qed

qed
qed

lemma filter-nth-relative-neq-1 :
assumes i < length xs P (xs ! i) j < length xs P (xs ! j) i 6= j
shows ∃ i ′ j ′. i ′ < length (filter P xs) ∧ j ′ < length (filter P xs) ∧ (filter P xs) !

i ′ = xs ! i ∧
(filter P xs) ! j ′ = xs ! j ∧ i ′ 6= j ′

proof (cases i < j)
assume i < j
with filter-nth-relative-1 [where P = P, OF assms(3 ,4) - assms(2)]
show ?thesis

by (metis (no-types, lifting) nat-neq-iff order-less-trans)
next

assume ¬ i < j
with assms(5)
have j < i

by auto
with filter-nth-relative-1 [where P = P, OF assms(1 ,2) - assms(4)]
show ?thesis

using order-less-trans by blast
qed

lemma filter-nth-relative-2 :
[[i < length (filter P xs); j < i]] =⇒
∃ i ′ j ′. i ′ < length xs ∧ j ′ < i ′ ∧ (filter P xs) ! i = xs ! i ′ ∧ (filter P xs) ! j = xs

! j ′
proof (induct xs arbitrary: i j)

case Nil
then show ?case

by simp
next

case (Cons a xs i j)
note IH = this

let ?goal = ∃ i ′ j ′. i ′ < length (a # xs) ∧ j ′ < i ′ ∧ filter P (a # xs) ! i = (a #

19

xs) ! i ′ ∧
filter P (a # xs) ! j = (a # xs) ! j ′

show ?case
proof (cases i)

case 0
then show ?goal

using IH (3) by blast
next

case (Suc n)
assume i = Suc n
show ?thesis
proof (cases j)

case 0
assume j = 0
from filter-nth-2 [of n P xs] IH (2)
have ∃ i ′<length xs. filter P xs ! n = xs ! i ′

using Suc order-less-trans by fastforce

show ?goal
proof (cases P a)

assume P a
then show ?goal

by (metis 0 Suc ‹∃ i ′<length xs. filter P xs ! n = xs ! i ′› filter .simps(2)
length-Cons not-less-eq nth-Cons-0 nth-Cons-Suc zero-less-Suc)

next
assume ¬ P a
then show ?goal

using Cons.hyps IH (2 ,3) Suc-less-eq by fastforce
qed

next
case (Suc m)
with IH (1)[of n m] IH (2−) ‹i = Suc n›
have ∃ i ′ j ′. i ′ < length xs ∧ j ′ < i ′ ∧ filter P xs ! n = xs ! i ′ ∧

filter P xs ! m = xs ! j ′
by (metis filter .simps(2) length-Cons not-less-eq not-less-iff-gr-or-eq)

then obtain i ′ j ′ where
A: i ′ < length xs j ′ < i ′ filter P xs ! n = xs ! i ′ filter P xs ! m = xs ! j ′
by blast

show ?goal
proof (cases P a)

assume P a
then show ?goal

using A Suc ‹i = Suc n› by force
next

assume ¬ P a
then show ?goal

using Cons.hyps IH (2 ,3) by fastforce
qed

qed

20

qed
qed

lemma filter-nth-relative-neq-2 :
assumes i < length (filter P xs) j < length (filter P xs) i 6= j
shows ∃ i ′ j ′. i ′ < length xs ∧ j ′ < length xs ∧ xs ! i ′ = (filter P xs) ! i ∧

xs ! j ′ = (filter P xs) ! j ∧ i ′ 6= j ′
proof (cases i < j)

assume i < j
with filter-nth-relative-2 [OF assms(2), of i]
show ?thesis

by (metis dual-order .strict-trans exists-least-iff)
next

assume ¬ i < j
with assms(3)
have j < i

by auto
with filter-nth-relative-2 [OF assms(1), of j]
show ?thesis

by (metis nat-neq-iff order-less-trans)
qed

lemma filter-find:
filter P xs 6= [] =⇒ find P xs = Some ((filter P xs) ! 0)
by (induct xs; auto)

lemma filter-nth-update-subset:
set (filter P (xs[i := v])) ⊆ {v} ∪ set (filter P xs)

proof
fix x
assume x ∈ set (filter P (xs[i := v]))
with filter-set member-filter
have x ∈ set (xs[i := v]) P x

by auto
hence ∃ k < length (xs[i := v]). (xs[i := v]) ! k = x

by (simp add: in-set-conv-nth)
then obtain k where

k < length (xs[i := v])
(xs[i := v]) ! k = x
by blast

hence k < length xs
by simp

from ‹(xs[i := v]) ! k = x› ‹k < length (xs[i := v])›
have k = i =⇒ x = v

by simp
moreover
have k 6= i =⇒ x ∈ set (filter P xs)

using ‹P x› ‹k < length xs› ‹xs[i := v] ! k = x› by auto

21

ultimately
show x ∈ {v} ∪ set (filter P xs)

by blast
qed

8 Upt
lemma card-upt:

card {0 ..<n} = n
by simp

lemma bounded-distinct-subset-upt-length:
[[distinct xs; ∀ i<length xs. xs ! i < length xs]] =⇒ set xs ⊆ {0 ..<length xs}
by (intro subsetI ; clarsimp simp: in-set-conv-nth)

lemma bounded-distinct-eq-upt-length:
assumes distinct xs
assumes ∀ i < length xs. xs ! i < length xs
shows set xs = {0 ..<length xs}

proof (intro card-subset-eq finite-atLeastLessThan
bounded-distinct-subset-upt-length[OF assms])

from distinct-card[OF assms(1)] card-upt[of length xs]
show card (set xs) = card {0 ..<length xs}

by simp
qed

lemma set-map-nth-subset:
assumes n ≤ length xs
shows set (map (nth xs) [0 ..<n]) ⊆ set xs
using assms by clarsimp

lemma set-map-nth-eq:
set (map (nth xs) [0 ..<length xs]) = set xs
by (intro equalityI set-map-nth-subset subsetI ; simp add: map-nth)

lemma distinct-map-nth:
assumes distinct xs
assumes n ≤ length xs
shows distinct (map (nth xs) [0 ..<n])
using assms by (simp add: distinct-conv-nth)

end
theory Sorting-Util

imports Main
begin

9 Lemmas about bijections
A convenient definition of an inverses between two sets

22

definition
inverses-on ::
(′a ⇒ ′b) ⇒ (′b ⇒ ′a) ⇒ ′a set ⇒ ′b set ⇒ bool

where
inverses-on f g A B ←→

(∀ x ∈ A. g (f x) = x) ∧
(∀ x ∈ B. f (g x) = x)

lemmas inverses-onD1 = inverses-on-def [THEN iffD1 , THEN conjunct1]
lemmas inverses-onD2 = inverses-on-def [THEN iffD1 , THEN conjunct2]

The inverses relation over maps
lemma inverses-on-mapD:

assumes inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B}
shows inverses-on f g A B

proof −
from inverses-onD1 [OF assms, THEN bspec, of [-], simplified]
have ∀ x ∈ A. g (f x) = x

by blast
moreover
from inverses-onD2 [OF assms, THEN bspec, of [-], simplified]
have ∀ x ∈ B. f (g x) = x

by blast
ultimately show ?thesis

by (simp add: inverses-on-def)
qed

lemma inverses-on-map:
assumes inverses-on f g A B
shows inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B}

proof −
have ∀ x ∈ {xs. set xs ⊆ A}. map g (map f x) = x

using list-eq-iff-nth-eq inverses-onD1 assms subsetD by fastforce
moreover
have ∀ x ∈ {xs. set xs ⊆ B}. map f (map g x) = x

using list-eq-iff-nth-eq inverses-onD2 assms subsetD by fastforce
ultimately show ?thesis

by (simp add: inverses-on-def)
qed

Inverses are symmetric
lemma inverses-on-sym:

inverses-on f g A B = inverses-on g f B A
apply (simp add: inverses-on-def)
apply (subst conj.commute)
apply simp
done

Convenient theorem to obtain the inverse of a bijection between two sets
lemma bij-betw-inv-alt:

23

assumes bij-betw f A B
shows ∃ g. bij-betw g B A ∧ inverses-on f g A B
by (meson assms bij-betw-imp-inj-on bij-betw-inv-into inv-into-f-f

bij-betw-inv-into-right inverses-on-def [THEN iffD2])

Bijections over maps
lemma bij-betw-map:

assumes bij-betw f A B
shows bij-betw (map f) {xs. set xs ⊆ A} {xs. set xs ⊆ B}

proof (rule bij-betwI ′)
fix x y
assume x ∈ {xs. set xs ⊆ A} y ∈ {xs. set xs ⊆ A}
hence P: set x ⊆ A set y ⊆ A

by blast+
note inj = inj-on-eq-iff [THEN iffD1 , OF bij-betw-imp-inj-on[OF assms]]
from list.inj-map-strong[OF inj, simplified]
show (map f x = map f y) = (x = y)

using P(1) P(2) by blast
next

fix x
assume x ∈ {xs. set xs ⊆ A}
hence set x ⊆ A

by blast
then show map f x ∈ {xs. set xs ⊆ B}

using assms bij-betw-imp-surj-on by fastforce
next

fix y
assume y ∈ {xs. set xs ⊆ B}
hence set y ⊆ B

by blast

from bij-betw-inv-alt[OF assms, simplified inverses-on-def]
obtain g where

bij-betw g B A
∀ x∈A. g (f x) = x
∀ x∈B. f (g x) = x
by blast

have set (map g y) ⊆ A
using ‹bij-betw g B A› ‹set y ⊆ B› bij-betw-imp-surj-on
by fastforce

moreover
have y = map f (map g y)
proof −

have length y = length (map f (map g y))
by simp

moreover
have ∀ i < length y. y ! i = map f (map g y) ! i

using ‹∀ x∈B. f (g x) = x› ‹set y ⊆ B› subsetD by fastforce

24

ultimately show ?thesis
using list-eq-iff-nth-eq by blast

qed
ultimately have ∃ x. set x ⊆ A ∧ y = map f x

by blast
then show ∃ x∈{xs. set xs ⊆ A}. y = map f x

by blast
qed

Eliminating the map from a bijection relation
lemma bij-betw-mapD:

assumes bij-betw (map f) {xs. set xs ⊆ A} {xs. set xs ⊆ B}
shows bij-betw f A B

proof (intro bij-betwI ′ iffI)
fix x y
assume x ∈ A y ∈ A f x = f y
with inj-onD[OF bij-betw-imp-inj-on[OF assms], of [x] [y], simplified]
show x = y

by blast
next

fix x
assume x ∈ A
with bij-betwE [OF assms, THEN bspec, of [x], simplified]
show f x ∈ B

by blast
next

fix y
assume y ∈ B
with bij-betw-imp-surj-on[OF assms, simplified]
have [y] ∈ map f ‘ {xs. set xs ⊆ A}

by auto
with image-iff [THEN iffD1 , of [y] map f {xs. set xs ⊆ A}]
obtain x ′ where

x ′ ∈ {xs. set xs ⊆ A}
[y] = map f x ′

by meson
then show ∃ x∈A. y = f x

by auto
next
qed(clarsimp)

Obtaining the inverse over map
lemma bij-betw-inv-map:

assumes bij-betw f A B
shows ∃ g. bij-betw (map g) {xs. set xs ⊆ B} {xs. set xs ⊆ A} ∧

inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B}
proof −

from bij-betw-inv-alt[OF assms, simplified inverses-on-def]
obtain g where

25

bij-betw g B A
∀ x∈A. g (f x) = x
∀ x∈B. f (g x) = x
by blast

note bij-betw-map[OF ‹bij-betw g B A›]
moreover
{

have ∀ x. set x ⊆ A −→ map g (map f x) = x
proof safe

fix x
assume set x ⊆ A
then show map g (map f x) = x

by (clarsimp simp: list-eq-iff-nth-eq ‹∀ x∈A. g (f x) = x› subsetD)
qed
moreover
have ∀ x. set x ⊆ B −→ map f (map g x) = x
proof safe

fix x
assume set x ⊆ B
then show map f (map g x) = x

by (clarsimp simp: list-eq-iff-nth-eq ‹∀ x∈B. f (g x) = x› subsetD)
qed
ultimately have

inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B}
by (simp add: inverses-on-def)

}
ultimately show ?thesis

by blast
qed

10 Lemmas about monotone functions
Note that the base version of monotone is used as the sorts cause some issues
with the types

Essentially a general version of strict-mono ?f =⇒ (?f ?x < ?f ?y) =
(?x < ?y)
lemma monotone-on-iff :

assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on (f ‘ A) ordb
and totalp-on (f ‘ A) ordb
and x ∈ A
and y ∈ A

shows orda x y ←→ ordb (f x) (f y)
proof (safe)

26

show orda x y =⇒ ordb (f x) (f y)
by (meson assms monotone-onD)

next
show ordb (f x) (f y) =⇒ orda x y

by (metis (full-types) assms(1 ,3 ,4 ,6 ,7)
asymp-onD monotone-onD totalp-onD imageI)

qed

The inverse of a monotonic function is also monotonic
lemma monotone-on-bij-betw-inv:

assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on B ordb
and totalp-on B ordb
and bij-betw f A B
and bij-betw g B A
and inverses-on f g A B

shows monotone-on B ordb orda g
proof (rule monotone-onI)

fix x y
assume x ∈ B y ∈ B ordb x y
moreover
have g x ∈ A

using ‹bij-betw g B A› bij-betwE calculation(1) by auto
moreover
have f (g x) = x

using assms(8) calculation(1) inverses-onD2 by blast
moreover
have g y ∈ A

using ‹bij-betw g B A› bij-betwE calculation(2) by auto
moreover
have f (g y) = y

using assms(8) calculation(2) inverses-onD2 by blast
ultimately show orda (g x) (g y)

using assms bij-betw-imp-surj-on monotone-on-iff by fastforce
qed

lemma monotone-on-bij-betw:
assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on B ordb
and totalp-on B ordb
and bij-betw f A B

shows ∃ g. bij-betw g B A ∧ inverses-on f g A B ∧ monotone-on B ordb orda g
using assms bij-betw-inv-alt monotone-on-bij-betw-inv by fastforce

27

11 Sorting
11.1 General sorting
Intro for sorted-wrt
lemmas sorted-wrtI = sorted-wrt-iff-nth-less[THEN iffD2 , OF allI , OF allI , OF
impI , OF impI]

lemma sorted-wrt-mapI :
(
∧

i j. [[i < j; j < length xs]] =⇒ P (f (xs ! i)) (f (xs ! j))) =⇒
sorted-wrt P (map f xs)

by (metis (mono-tags, lifting) length-map nth-map order-less-trans sorted-wrtI)

lemma sorted-wrt-mapD:
(
∧

i j. [[sorted-wrt P (map f xs); i < j; j < length xs]] =⇒ P (f (xs ! i)) (f (xs !
j)))
by (metis (mono-tags, lifting) length-map nth-map order-less-trans sorted-wrt-iff-nth-less)

lemma monotone-on-sorted-wrt-map:
assumes monotone-on A orda ordb f
and sorted-wrt orda xs
and set xs ⊆ A

shows sorted-wrt ordb (map f xs)
proof (rule sorted-wrt-mapI)

fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(2)]
have orda (xs ! i) (xs ! j)

by blast
with monotone-onD[OF assms(1), of xs ! i xs ! j] assms(3)
show ordb (f (xs ! i)) (f (xs ! j))

by (meson ‹i < j› ‹j < length xs› nth-mem order-less-trans subsetD)
qed

lemma monotone-on-map-sorted-wrt:
assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on (f ‘ A) ordb
and totalp-on (f ‘ A) ordb
and sorted-wrt ordb (map f xs)
and set xs ⊆ A

shows sorted-wrt orda xs
proof (rule sorted-wrtI)

fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(6)]
have ordb (f (xs ! i)) (f (xs ! j))

by force

28

with monotone-on-iff [OF assms(1−3), of xs ! i xs ! j]
show orda (xs ! i) (xs ! j)

using ‹i < j› ‹j < length xs› assms(4 ,5 ,7)
nth-mem order-less-trans by blast

qed

11.2 Sorting on linear orders
context linorder begin

abbreviation strict-sorted xs ≡ sorted-wrt (<) xs

lemma sorted-nth-less-mono:
[[sorted xs; i < length xs; j < length xs; i 6= j; xs ! i < xs ! j]] =⇒ i < j
by (meson linorder-neqE-nat not-less sorted-iff-nth-mono-less)

lemma strict-sorted-nth-less-mono:
[[strict-sorted xs; i < length xs; j < length xs; i 6= j; xs ! i < xs ! j]] =⇒ i < j
using strict-sorted-iff sorted-nth-less-mono by blast

lemma strict-sorted-Min:
[[strict-sorted xs; xs 6= []]] =⇒ xs ! 0 = Min (set xs)
by (metis finite-set list.simps(15) Min-insert2 strict-sorted-imp-sorted

nth-Cons-0 sorted-wrt.elims(2))

lemma strict-sorted-take:
assumes strict-sorted xs
and i < length xs
shows set (take i xs) = {x. x ∈ set xs ∧ x < xs ! i}

proof (safe)
fix x
assume x ∈ set (take i xs)
then show x ∈ set xs

by (meson in-set-takeD)
next

fix x
assume x ∈ set (take i xs)
then show x < xs ! i

by (metis assms id-take-nth-drop list.set-intros(1) sorted-wrt-append)
next

fix x
assume x ∈ set xs x < xs ! i
hence ∃ j < length xs. xs ! j = x

by (simp add: in-set-conv-nth)
then obtain j where

j < length xs xs ! j = x
by blast

with strict-sorted-nth-less-mono[OF assms(1) - assms(2), of j] ‹x < xs ! i›
have j < i

29

by blast
then show x ∈ set (take i xs)

using ‹j < length xs› ‹xs ! j = x› in-set-conv-nth by fastforce
qed

lemma strict-sorted-card-idx:
[[strict-sorted xs; i < length xs]] =⇒ card {x. x ∈ set xs ∧ x < xs ! i} = i
by (metis (mono-tags, lifting) distinct-card distinct-take length-take strict-sorted-iff

ord-class.min-def order-class.leD strict-sorted-take)

lemmas strict-sorted-distinct-set-unique =
sorted-distinct-set-unique[OF strict-sorted-imp-sorted - strict-sorted-imp-sorted]

lemma sorted-and-distinct-imp-strict-sorted:
[[sorted xs; distinct xs]] =⇒ strict-sorted xs
using strict-sorted-iff
by blast

lemma filter-sorted:
sorted xs =⇒ sorted (filter P xs)
using sorted-wrt-filter by blast

lemma sorted-nth-eq:
assumes sorted xs
and j < length xs
and xs ! i = xs ! j
and i ≤ k
and k ≤ j

shows xs ! k = xs ! i
by (metis assms sorted-iff-nth-mono preorder-class.le-less-trans nle-le)

lemma sorted-find-Min:
sorted xs =⇒ ∃ x ∈ set xs. P x =⇒ List.find P xs = Some (Min {x∈set xs. P x})

proof (induct xs)
case Nil then show ?case by simp

next
case (Cons x xs) show ?case
proof (cases P x)

case True
with Cons show ?thesis by (auto intro: Min-eqI [symmetric])

next
case False then have {y. (y = x ∨ y ∈ set xs) ∧ P y} = {y ∈ set xs. P y}

by auto
with Cons False show ?thesis by (simp-all)

qed
qed

lemma sorted-cons-nil:
xs = [] =⇒ sorted (x # xs)

30

by simp

lemma sorted-consI :
[[xs 6= []; sorted xs; x ≤ xs ! 0]] =⇒ sorted (x # xs)
by (metis list.exhaust sorted2-simps(2) nth-Cons-0)

end

11.3 Sorting on orders
context order begin

lemma strict-mono-strict-sorted-map-1 :
assumes strict-mono α
and strict-sorted xs

shows strict-sorted (map α xs)
using assms(1) assms(2) monotone-on-sorted-wrt-map by blast

lemma strict-mono-sorted-map-2 :
assumes strict-mono α
and strict-sorted (map α xs)

shows strict-sorted xs
using assms(1) assms(2) monotone-on-map-sorted-wrt by fastforce

end

12 Mapping elements to natural numbers
This section contains a mapping from elements to natural numbers that
maintains ordering.
definition elm-rank :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ ′a ⇒ nat

where
elm-rank ord A x = card {y. y ∈ A ∧ ord y x}

lemma monotone-on-elm-rank:
assumes finite A
and transp-on A ord
and irreflp-on A ord
shows monotone-on A ord (<) (elm-rank ord A)

proof (rule monotone-onI)
fix a b
assume a ∈ A b ∈ A ord a b

have {y. y ∈ A ∧ ord y a} ⊆ {y. y ∈ A ∧ ord y b}
proof safe

fix x
assume x ∈ A ord x a
then show ord x b

31

by (meson ‹a ∈ A› ‹b ∈ A› ‹ord a b› assms(2) transp-onD)
qed
moreover
have a ∈ {y. y ∈ A ∧ ord y b}

by (simp add: ‹a ∈ A› ‹ord a b›)
moreover
have a /∈ {y. y ∈ A ∧ ord y a}

using assms(3) irreflp-onD by fastforce
ultimately have {y. y ∈ A ∧ ord y a} ⊂ {y. y ∈ A ∧ ord y b}

by blast
then show elm-rank ord A a < elm-rank ord A b

by (simp add: elm-rank-def assms(1) psubset-card-mono)
qed

lemma elm-rank-insert-min:
assumes finite A
and x /∈ A
and ∀ y ∈ A. ord x y
and z ∈ A

shows elm-rank ord (insert x A) z = Suc (elm-rank ord A z)
unfolding elm-rank-def

proof −
have ord x z

by (simp add: assms(3 ,4))
hence {y ∈ insert x A. ord y z} = insert x {y ∈ A. ord y z}

by safe
moreover
have x /∈ {y ∈ A. ord y z}

using assms(2) by auto
ultimately show card {y ∈ insert x A. ord y z} = Suc (card {y ∈ A. ord y z})

by (simp add: assms(1))
qed

definition (in order) elem-rank :: ′a set ⇒ ′a ⇒ nat
where

elem-rank = elm-rank (<)

lemma (in order) strict-mono-on-elem-rank:
assumes finite A
shows strict-mono-on A (elem-rank A)
by (simp add: assms elem-rank-def monotone-on-elm-rank)

lemma (in linorder) bij-betw-elem-rank-upt:
assumes finite A
shows bij-betw (elem-rank A) A {0 ..<card A}

proof −
have

∧
x. x ∈ A =⇒ {y. y ∈ A ∧ y < x} ⊂ A

by blast
hence

∧
x. x ∈ A =⇒ card {y. y ∈ A ∧ y < x} < card A

32

by (meson assms psubset-card-mono)
hence

∧
x. x ∈ A =⇒ elem-rank A x ∈ {0 ..<card A}

by (simp add: elm-rank-def elem-rank-def)
moreover
have

∧
x y. [[x ∈ A; y ∈ A]] =⇒ (elem-rank A x = elem-rank A y) = (x = y)

by (metis assms less-irrefl-nat antisym-conv3 ord.strict-mono-onD strict-mono-on-elem-rank)
moreover
{

let ?xs = sorted-list-of-set A
have strict-sorted ?xs

by simp
moreover
have

∧
x. elem-rank A x = elem-rank (set ?xs) x

using assms by force
moreover
have

∧
y. y < length ?xs =⇒ y = elem-rank (set ?xs) (?xs ! y)

by (metis (no-types, lifting) Collect-cong calculation(1) elem-rank-def elm-rank-def
strict-sorted-card-idx)

ultimately have
∧

y. y ∈ {0 ..<card A} =⇒ ∃ x∈A. y = elem-rank A x
by (metis assms length-sorted-list-of-set set-sorted-list-of-set nth-mem

ord-class.atLeastLessThan-iff)
}
ultimately show ?thesis

using bij-betwI ′ by blast
qed

lemma (in order) elem-rank-insert-min:
[[finite A; x /∈ A; ∀ y∈A. x < y; z ∈ A]] =⇒ elem-rank (insert x A) z = Suc

(elem-rank A z)
by (simp add: elm-rank-insert-min elem-rank-def)

end
theory Repeat

imports Main
begin

13 Repeat Function At Most N Times
fun repeatatm :: nat ⇒ (′a ⇒ ′b ⇒ bool) ⇒ (′a ⇒ ′b ⇒ ′a) ⇒ ′a ⇒ ′b ⇒ ′a

where
repeatatm 0 - - acc - = acc |
repeatatm (Suc n) f g acc obsv = (if f acc obsv then acc else repeatatm n f g (g acc
obsv) obsv)

declare repeatatm.simps[simp del]

13.1 Step and early termination lemmas
lemma repeatatm-step-stop-Suc:

f (repeatatm n f g a b) b

33

=⇒ repeatatm (Suc n) f g a b = repeatatm n f g a b
proof (induct n arbitrary: a)

case 0
then show ?case

by (simp add: repeatatm.simps)
next

case (Suc n a)
note IH = this
show ?case
proof (cases f a b)

assume f a b
then show ?case

by (simp add: repeatatm.simps)
next

assume ¬ f a b
with IH (2)
have f (repeatatm n f g (g a b) b) b

by (simp add: repeatatm.simps)
with IH (1)
have repeatatm (Suc n) f g (g a b) b = repeatatm n f g (g a b) b

by blast
then show ?case

by (simp add: repeatatm.simps)
qed

qed

lemma repeatatm-step:
¬f (repeatatm n f g a b) b
=⇒ repeatatm (Suc n) f g a b = g (repeatatm n f g a b) b

proof (induct n arbitrary: a)
case 0
then show ?case

by (simp add: repeatatm.simps)
next

case (Suc n a)
note IH = this
show ?case
proof (cases f a b)

assume f a b
with IH (2)
show ?case

by (simp add: repeatatm.simps)
next

assume ¬ f a b
with IH (2)
have ¬ f (repeatatm n f g (g a b) b) b

by (simp add: repeatatm.simps)
with IH (1)
have repeatatm (Suc n) f g (g a b) b = g (repeatatm n f g (g a b) b) b

34

by blast
then show ?case

by (simp add: repeatatm.simps ‹¬ f a b›)
qed

qed

lemma repeatatm-step-forward:
¬f a b =⇒ repeatatm (Suc n) f g a b = repeatatm n f g (g a b) b
by (induct n arbitrary: a; simp add: repeatatm.simps)

lemma repeatatm-stop-Suc:
[[f (repeatatm n f g a b) b]] =⇒ f (repeatatm (Suc n) f g a b) b

proof (induct n arbitrary: a)
case 0
then show ?case

by (simp add: repeatatm.simps)
next

case (Suc n a)
note IH = this
show ?case
proof (cases f a b)

assume f a b
then show ?case

by (simp add: repeatatm.simps)
next

assume ¬ f a b
with IH (2)
have f (repeatatm n f g (g a b) b) b

by (simp add: repeatatm.simps)
with IH (1)
have f (repeatatm (Suc n) f g (g a b) b) b

by blast
then show ?case

by (simp add: repeatatm.simps)
qed

qed

lemma repeatatm-stop:
[[f (repeatatm n f g a b) b; n ≤ m]] =⇒ f (repeatatm m f g a b) b

proof (induct m arbitrary: a n)
case 0
then show ?case

by simp
next

case (Suc m a n)
note IH = this
show ?case
proof (cases n ≤ m)

assume n ≤ m

35

with repeatatm-stop-Suc[of f m g a b] IH (1)[OF IH (2)]
show ?case

by simp
next

assume ¬ n ≤ m
with IH (2 ,3)
show ?case

using le-Suc-eq by blast
qed

qed

lemma repeatatm-step-stop:
[[f (repeatatm n f g a b) b; n ≤ m]] =⇒ repeatatm m f g a b = repeatatm n f g a b

proof (induct m arbitrary: a n)
case 0
then show ?case

by simp
next

case (Suc m a n)
note IH = this
show ?case
proof (cases n ≤ m)

assume n ≤ m
with repeatatm-step-stop-Suc[of f m g a b] IH (2) IH (1)[OF IH (2)]
show ?case

by simp
next

assume ¬ n ≤ m
then show ?case

using Suc.prems(2) le-SucE by blast
qed

qed

lemma repeatatm-not-stop-Suc:
¬f (repeatatm (Suc n) f g a b) b =⇒ ¬f (repeatatm n f g a b) b
apply (rule contrapos-nn[where Q = f (repeatatm (Suc n) f g a b) b]; simp)
using repeatatm-stop-Suc[of f n g a b] by simp

lemma repeatatm-maintain-inv:
assumes

∧
a. P a =⇒ P (g a b)

shows P a =⇒ P (repeatatm n f g a b)
proof (induct n arbitrary: a)

case 0
then show ?case

by (simp add: repeatatm.simps)
next

case (Suc n a)
note IH = this

36

from IH (1)[OF IH (2)]
have P (repeatatm n f g a b)

by assumption

with ‹
∧

a. P a =⇒ P (g a b)›
show ?case

by (metis repeatatm-step repeatatm-step-stop-Suc)
qed

14 Repeat Function N Times
definition repeat :: nat ⇒ (′a ⇒ ′b ⇒ ′a) ⇒ ′a ⇒ ′b ⇒ ′a

where
repeat n f a b = repeatatm n (λx y. False) f a b

lemma repeat-0 :
repeat 0 f a b = a
by (simp add: repeat-def repeatatm.simps(1))

lemma repeat-step:
repeat (Suc n) f a b = f (repeat n f a b) b
unfolding repeat-def
by (simp add: repeatatm-step)

lemma repeat-step-forward:
repeat (Suc n) f a b = repeat n f (f a b) b
unfolding repeat-def
by (simp add: repeatatm-step-forward)

lemma repeat-maintain-inv:
assumes

∧
a. P a =⇒ P (f a b)

shows P a =⇒ P (repeat n f a b)
by (simp add: assms repeat-def repeatatm-maintain-inv)

lemma repeat-eq-fold:
repeat n f a b = fold (λ- a. f a b) [0 ..<n] a
apply (induct n)
apply (simp add: repeat-def repeatatm.simps)

apply (subst repeat-step)
apply simp
done

end
theory Continuous-Interval

imports Main
begin

37

15 Continuous Intervals
definition

continuous-list :: (nat × nat) list ⇒ bool
where

continuous-list xs =
(∀ i. Suc i < length xs −→ fst (xs ! Suc i) = snd (xs ! i))

lemma continuous-list-nil:
continuous-list []
by (simp add: continuous-list-def)

lemma continuous-list-singleton:
continuous-list [x]
by (simp add: continuous-list-def)

lemma continuous-list-cons:
continuous-list (x # xs) =⇒ continuous-list xs
by (simp add: continuous-list-def)

lemma continuous-list-app:
continuous-list (xs @ ys) =⇒ continuous-list xs ∧ continuous-list ys

proof (induct xs)
case Nil
then show ?case

by (clarsimp simp: continuous-list-nil continuous-list-cons)
next

case (Cons x1 xs)
note IH1 = this(1) and

IH2 = this(2)

from continuous-list-cons IH2
have continuous-list (xs @ ys)

by simp
with IH1
have continuous-list ys

by simp

have xs = [] ∨ xs 6= []
by simp

then show ?case
proof

assume xs = []
with IH2 continuous-list-singleton
have continuous-list (x1 # xs)

by blast
with ‹continuous-list ys›
show ?thesis

by simp

38

next
assume xs 6= []
hence ∃ x xs ′. xs = x # xs ′

using neq-Nil-conv by blast
then obtain x xs ′ where

xs = x # xs ′

by blast

have continuous-list (x1 # (x # xs ′))
unfolding continuous-list-def

proof(intro allI impI)
fix i
assume Suc i < length (x1 # (x # xs ′))
have i = 0 ∨ i 6= 0

by blast
then show fst ((x1 # x # xs ′) ! Suc i) = snd ((x1 # x # xs ′) ! i)
proof

assume i = 0
then show ?thesis

using IH2 ‹xs = x # xs ′› continuous-list-def by auto
next

assume i 6= 0
then show ?thesis
using IH1 ‹Suc i < length (x1 # x # xs ′)› ‹continuous-list (xs @ ys)› ‹xs

= x # xs ′›
continuous-list-def

by auto
qed

qed
with ‹continuous-list ys› ‹xs = x # xs ′›
show ?thesis

by simp
qed

qed

lemma continuous-list-interval-1 :
assumes continuous-list xs
and xs 6= []
and fst (hd xs) ≤ i
and i < snd (last xs)
shows ∃ j < length xs. fst (xs ! j) ≤ i ∧ i < snd (xs ! j)
using assms

proof (induct xs)
case Nil
then show ?case

by simp
next

case (Cons x1 xs)
note IH = this

39

have xs = [] −→ ?case
proof

assume xs = []
with IH (4 ,5)
show ?case

by simp
qed

have xs 6= [] −→ ?case
proof

assume xs 6= []
hence ∃ a b xs ′. xs = (a, b) # xs ′

by (metis (full-types) list.exhaust surj-pair)
then obtain a b xs ′ where

xs = (a, b) # xs ′

by blast

from IH (2)
have continuous-list xs

using continuous-list-cons by blast

from IH (5) ‹xs 6= []›
have i < snd (last xs)

by simp

have a ≤ i ∨ i < a
by linarith

then show ?case
proof

assume a ≤ i
with IH (1)

[OF ‹continuous-list xs›
‹xs 6= []› -
‹i < snd (last xs)›]

‹xs = (a, b) # xs ′›
show ?thesis

by auto
next

assume i < a
with IH (2) ‹xs = (a, b) # xs ′›
have i < snd x1

using continuous-list-def by auto
with IH (4)
show ?thesis

by auto
qed

qed

40

with ‹xs = [] −→ ?case›
show ?case

by blast
qed

lemma continuous-list-interval-2 :
assumes continuous-list xs
and length xs = Suc n
and fst (xs ! 0) ≤ i
and i < snd (xs ! n)
shows ∃ j < length xs. fst (xs ! j) ≤ i ∧ i < snd (xs ! j)

proof −
from ‹length xs = Suc n›
have xs 6= []

by auto

from ‹fst (xs ! 0) ≤ i› ‹xs 6= []›
have fst (hd xs) ≤ i

by (simp add: hd-conv-nth)

from ‹i < snd (xs ! n)›
‹length xs = Suc n› ‹xs 6= []›

have i < snd (last xs)
by (simp add: last-conv-nth)

from continuous-list-interval-1
[OF ‹continuous-list xs›

‹xs 6= []›
‹fst (hd xs) ≤ i›
‹i < snd (last xs)›]

show ?thesis
by assumption

qed

end
theory List-Slice

imports Main
begin

16 List Slices
fun list-slice ::

′a list ⇒ nat ⇒ nat ⇒ ′a list
where

list-slice xs i j = drop i (take j xs)

lemma length-list-slice[simp add]:
length (list-slice xs i j) = (min j (length xs)) − i
by simp

41

lemma list-slice-cons:
fixes i j :: nat
assumes i ≤ j
assumes i > 0
shows list-slice (x # xs) i j = list-slice xs (i − 1) (j − 1)
using assms gr0-implies-Suc[OF order .strict-trans2]
by (fastforce dest: gr0-implies-Suc)

lemma list-slice-append:
fixes i j k :: nat
assumes i ≤ j
assumes j ≤ k
shows list-slice xs i k = list-slice xs i j @ list-slice xs j k

using assms
proof (induct xs arbitrary: i j k)

case (Cons a xs i j k)
note IH = this
show ?case
proof (cases i > 0)

assume ¬ i > 0
hence i = 0

by simp
then show ?case

unfolding list-slice.simps
by (metis IH (3) append-take-drop-id drop0 min-def take-take)

next
assume i > 0
with list-slice-cons[of i k a xs]
have list-slice (a # xs) i k = list-slice xs (i − 1) (k − 1)

using IH (2) IH (3) dual-order .trans by blast
moreover
from list-slice-cons[of i j a xs]
have list-slice (a # xs) i j = list-slice xs (i − 1) (j − 1)

using IH (2) ‹i > 0 › by blast
moreover
from list-slice-cons[of j k a xs]
have list-slice (a # xs) j k = list-slice xs (j − 1) (k − 1)

using IH (2) IH (3) ‹0 < i› by blast
moreover
from IH (1)[of i−1 j−1 k−1]
have list-slice xs (i − 1) (k − 1) =

list-slice xs (i − 1) (j − 1) @ list-slice xs (j − 1) (k − 1)
using IH (2) IH (3) diff-le-mono by blast

ultimately show ?case
by presburger

qed
qed simp

42

lemma list-slice-0-length:
fixes xs :: ′a list
fixes n :: nat
assumes length xs ≤ n
shows list-slice xs 0 n = xs
using assms by simp

lemma list-slice-n-n[simp add]:
fixes xs :: ′a list
fixes n :: nat
shows list-slice xs n n = []
by simp

lemma list-slice-nth:
fixes i s e :: nat
fixes xs :: ′a list
assumes i < length xs
assumes s ≤ i
assumes i < e
shows (list-slice xs s e) ! (i − s) = xs ! i
using assms by simp

lemma list-slice-start-gre-length:
fixes xs :: ′a list
fixes s :: nat
assumes length xs ≤ s
shows list-slice xs s e = []
using assms by simp

lemma list-slice-end-gre-length:
fixes xs :: ′a list
fixes e :: nat
assumes length xs ≤ e
shows list-slice xs s e = list-slice xs s (length xs)
using assms by simp

lemma fold-list-slice:
fixes i j :: nat
fixes B :: nat list
assumes i ≤ j
and j < length B
and sorted B
fixes T zs :: ′a list
shows
fold (λx xs. xs @ list-slice T (B ! x) (B ! Suc x)) [i..<j] zs
= zs @ (list-slice T (B ! i) (B ! j))

using assms
proof (induct j arbitrary: i)

case 0

43

then show ?case
by (simp del: list-slice.simps)

next
case (Suc j i)
note IH = this
show ?case
proof (cases i ≤ j)

assume i-leq-j: i ≤ j

have fold (λx xs. xs @ list-slice T (B ! x) (B ! Suc x)) [i..<Suc j] zs =
fold (λx xs. xs @ list-slice T (B ! x) (B ! Suc x)) [i..<j] zs @

list-slice T (B ! j) (B ! Suc j)
using ‹i ≤ j› by force

moreover
from IH (1)[OF ‹i ≤ j› - IH (4)]
have fold (λx xs. xs @ list-slice T (B ! x) (B ! Suc x)) [i..<j] zs =

zs @ list-slice T (B ! i) (B ! j)
using Suc.prems(2) Suc-lessD by blast

moreover
have list-slice T (B ! i) (B ! Suc j) = list-slice T (B ! i) (B ! j) @

list-slice T (B ! j) (B ! Suc j)
by (meson Suc.prems(2 ,3) Suc-lessD i-leq-j list-slice-append

sorted-iff-nth-Suc sorted-nth-mono)
ultimately show ?case

by (metis append.assoc)
next

assume ¬ i ≤ j
then show ?case

using Suc.prems(1) le-SucE by fastforce
qed

qed

lemma nth-list-slice:
fixes i s e :: nat
fixes xs :: ′a list
assumes i < length (list-slice xs s e)
shows (list-slice xs s e) ! i = xs ! (s + i)
using assms less-diff-conv by auto

lemma list-slice-nth-eq-iff-index-eq:
fixes i s e j :: nat
fixes xs :: ′a list
assumes distinct (list-slice xs s e)
assumes e ≤ length xs
assumes s ≤ i and i < e
and s ≤ j and j < e
shows (xs ! i = xs ! j) ←→ (i = j)
using assms
by (fastforce

44

dest: nth-eq-iff-index-eq[where i = i − s and j = j − s])

lemma distinct-list-slice:
fixes i j :: nat
fixes xs :: ′a list
assumes distinct xs
shows distinct (list-slice xs i j)
using assms by simp

lemma list-slice-nth-mem:
fixes e :: nat
fixes xs :: ′a list
fixes s i :: nat
assumes s ≤ i and i < e
assumes e ≤ length xs
shows xs ! i ∈ set (list-slice xs s e)
by (metis (no-types, opaque-lifting) assms nat-le-iff-add

add-diff-cancel-left ′ diff-less-mono nth-mem
length-list-slice min-def nth-list-slice)

lemma nth-mem-list-slice:
fixes x :: ′a
fixes xs :: ′a list
fixes s e :: nat
assumes x ∈ set (list-slice xs s e)
shows ∃ i < length xs.

s ≤ i ∧
i < e ∧
xs ! i = x

proof −
from in-set-conv-nth[THEN iffD1 , OF ‹- ∈ -›]
obtain i where

i < length (list-slice xs s e)
(list-slice xs s e) ! i = x
by auto

with nth-list-slice[of i xs s e]
have xs ! (s + i) = x

by auto
moreover
have s ≤ s + i

by linarith
moreover
have s + i < length xs

using ‹i < length (list-slice xs s e)› by auto
moreover
have s + i < e

using ‹i < length (list-slice xs s e)› by auto
ultimately show ?thesis

by blast

45

qed

lemma list-slice-subset:
fixes i j :: nat
fixes xs :: ′a list
shows set (list-slice xs i j) ⊆ set xs
using set-drop-subset set-take-subset by force

lemma list-slice-Suc:
fixes i j :: nat
fixes xs :: ′a list
assumes i < length xs
assumes i < j
shows list-slice xs i j = xs ! i # list-slice xs (Suc i) j
by (metis assms Cons-nth-drop-Suc Suc-diff-Suc

list-slice.simps take-Suc-Cons drop-take)

lemma list-slice-update-unchanged-1 :
fixes xs :: ′a list
fixes i j k :: nat
assumes i < j
shows list-slice (xs[i := x]) j k = list-slice xs j k
by (simp add: assms drop-take)

lemma list-slice-update-unchanged-2 :
fixes i j k :: nat
fixes xs :: ′a list
assumes k ≤ i
shows list-slice (xs[i := x]) j k = list-slice xs j k
by (metis assms list-slice.simps take-update-cancel)

lemma list-slice-update-changed:
assumes i < length xs
assumes j ≤ i
assumes i < k
shows list-slice (xs[i := x]) j k = (list-slice xs j k)[i − j := x]
using assms
by (fastforce

intro: list-eq-iff-nth-eq[THEN iffD2]
simp: nth-list-slice nth-list-update)

lemma list-slice-map-nth-upt:
assumes j < length xs
shows list-slice xs i j = map (nth xs) [i..<j]
using assms
by (fastforce intro: list-eq-iff-nth-eq[THEN iffD2])

lemma map-list-slice:

46

map f (list-slice xs i j) = list-slice (map f xs) i j
by (simp add: drop-map take-map)

17 Sorted List Slice
lemma (in linorder) sorted-list-slice:

assumes sorted xs
shows sorted (list-slice xs i j)
by (simp add: assms sorted-wrt-drop sorted-wrt-take)

lemma (in linorder) sorted-map-list-slice:
assumes sorted (map f xs)
shows sorted (map f (list-slice xs i j))
by (metis assms drop-map list-slice.simps local.sorted-list-slice take-map)

lemma (in linorder) sorted-map-filter-list-slice:
assumes sorted (map f (filter P xs))
shows sorted (map f (filter P (list-slice xs i j)))

proof −
have i ≤ j ∨ j < i

using linorder-class.le-less-linear by blast
moreover
have j < i =⇒ ?thesis
proof −

assume j < i
hence list-slice xs i j = []

by (simp add: drop-take)
then show ?thesis

by simp
qed
moreover
have i ≤ j =⇒ ?thesis
proof −

let ?as = list-slice xs 0 i and
?bs = list-slice xs i j and
?cs = list-slice xs j (length xs)

assume i ≤ j
hence xs = ?as @ ?bs @ ?cs

by (metis le0 linorder-class.linear list-slice-0-length list-slice-append
list-slice-start-gre-length)

hence filter P xs = filter P ?as @ filter P ?bs @ filter P ?cs
by (metis filter-append)

hence map f (filter P xs)
= (map f (filter P ?as)) @ (map f (filter P ?bs)) @ (map f (filter P ?cs))

by simp
with ‹sorted (map f (filter P xs))›
show ?thesis

by (simp add: local.sorted-append)
qed

47

ultimately show ?thesis
by blast

qed

lemma (in linorder) list-slice-sorted-nth-mono:
assumes sorted (list-slice xs s e)
and s ≤ i
and i ≤ j
and j < e
and j < length xs

shows xs ! i ≤ xs ! j
proof −

have ∃ i ′. i = s + i ′
using assms(2) nat-le-iff-add by blast

then obtain i ′ where
i = s + i ′
by blast

have ∃ j ′. j = s + j ′
using assms(2) assms(3) nat-le-iff-add by auto

then obtain j ′ where
j = s + j ′
by blast

have i ′ ≤ j ′
using ‹i = s + i ′› ‹j = s + j ′› assms(3) by auto

have j ′ < length (list-slice xs s e)
using ‹j = s + j ′› assms(4) assms(5) by auto

with sorted-nth-mono[OF assms(1) ‹i ′ ≤ j ′›]
have list-slice xs s e ! i ′ ≤ list-slice xs s e ! j ′ .
moreover
have xs ! i = list-slice xs s e ! i ′

using ‹i = s + i ′› assms(3−5) by force
moreover
have xs ! j = list-slice xs s e ! j ′

using ‹j = s + j ′› ‹j ′ < length (list-slice xs s e)› nth-list-slice by force
ultimately show ?thesis

by simp
qed
end
theory List-Lexorder-Util

imports
HOL−Library.List-Lexorder

begin

lemma same-equiv-def :
(∀ j<n. s ! (i + j) = s ! Suc (i + j)) = (∀ j≤n. s ! (i + j) = s ! i)

proof safe

48

fix j
assume ∀ j<n. s ! (i + j) = s ! Suc (i + j) j ≤ n
then show s ! (i + j) = s ! i
proof (induct n arbitrary: j)

case 0
then show ?case

by simp
next

case (Suc n j)
note IH = this
show ?case
proof (cases j)

case 0
then show ?thesis

by simp
next

case (Suc m)
with IH (1)[of m] IH (2 ,3)
have s ! (i + m) = s ! i

by (meson Suc-le-mono less-Suc-eq)
then show ?thesis

using Suc Suc.prems(1) Suc.prems(2) by force
qed

qed
next

fix j
assume ∀ j≤n. s ! (i + j) = s ! i j < n
then show s ! (i + j) = s ! Suc (i + j)

using less-eq-Suc-le by fastforce
qed

lemma list-less-ex:
xs < ys ←→
(∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c) ∨
(∃ c cs. ys = xs @ c # cs)

by (clarsimp simp: List-Lexorder .list-less-def lexord-def ; blast)

end
theory List-Permutation-Util

imports HOL−Combinatorics.List-Permutation ../util/List-Util
begin

lemma perm-distinct-set-of-upt-iff :
xs <∼∼> [0 ..<n] ←→ distinct xs ∧ set xs = {0 ..<n}
by (metis atLeastLessThan-upt distinct-upt perm-distinct-iff set-eq-iff-mset-eq-distinct)

lemma distinct-set-of-upto-length:
[[distinct xs; set xs = {0 ..<n}]] =⇒ length xs = n
apply (drule (1) iffD2 [OF perm-distinct-set-of-upt-iff conjI])

49

apply (drule perm-length; simp)
done

lemma set-perm-upt:
xs <∼∼> [0 ..<n] =⇒ set xs = {0 ..<n}
using perm-distinct-set-of-upt-iff by blast

lemma perm-upt-length:
xs <∼∼> [0 ..<n] =⇒ length xs = n
using distinct-set-of-upto-length perm-distinct-set-of-upt-iff by blast

lemma perm-nth-ex:
[[xs <∼∼> [0 ..<n]; i < n]] =⇒ ∃ k < n. xs ! i = k
using perm-upt-length set-perm-upt by fastforce

lemma ex-perm-nth:
[[xs <∼∼> [0 ..<n]; k < n]] =⇒ ∃ i < n. xs ! i = k
by (metis atLeast-upt distinct-Ex1 distinct-upt lessThan-iff perm-distinct-iff perm-set-eq

perm-upt-length)

lemma set-map-nth-perm-subset:
[[ys <∼∼> [0 ..<n]; n ≤ length xs]] =⇒ set (map (nth xs) ys) ⊆ set xs
by (simp add: nth-image set-perm-upt set-take-subset)

lemma set-map-nth-perm-eq:
ys <∼∼> [0 ..<length xs] =⇒ set (map (nth xs) ys) = set xs
by (metis perm-set-eq set-map set-map-nth-eq)

lemma distinct-map-nth-perm:
[[distinct xs; n ≤ length xs; ys <∼∼> [0 ..<n]]] =⇒ distinct (map (nth xs) ys)
by (metis distinct-map distinct-map-nth perm-distinct-iff perm-set-eq)

theorem distinct-set-imp-perm:
assumes distinct xs
and distinct ys
and set xs = set ys

shows xs <∼∼> ys
proof −

from set-eq-iff-mset-eq-distinct[OF assms(1 ,2), THEN iffD1 , OF assms(3)]
show ?thesis

by simp
qed

theorem perm-nth:
assumes xs <∼∼> ys
and i < length xs

shows ∃ j < length ys. ys ! j = xs ! i
by (metis assms(1) assms(2) in-set-conv-nth perm-set-eq)

50

lemma sort-perm:
xs <∼∼> sort xs
by simp

end
theory List-Lexorder-NS

imports
../util/Sorting-Util
../util/List-Slice
../order/List-Permutation-Util

begin

18 General Non-standard Lexicographical Com-
parison

This section is based on the lexord classical lexicographical definition in the
the List library but accounts for a variant of lexicographic order defined
below that we rely on for verifying sais. The main difference is that this
ordering preferences the original string over its prefix. For example, "aaa" is
less than "aa", which in turn is less than "a".
definition nslexord :: (′a × ′a) set ⇒ (′a list × ′a list) set where
nslexord r = {(x,y). (∃ a v. x = y @ a # v) ∨

(∃ u a b v w. (a, b) ∈ r ∧ x = u @ a # v ∧ y = u @ b # w)}

definition nslexordp :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ bool
where

nslexordp cmp xs ys ←→
(∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ cmp b c) ∨
(∃ c cs. xs = ys @ c # cs)

lemma nslexord-eq-nslexordp:
(xs, ys) ∈ nslexord {(x, y). cmp x y} ←→ nslexordp cmp xs ys
(xs, ys) ∈ nslexord r ←→ nslexordp (λx y. (x, y) ∈ r) xs ys
by (clarsimp simp: nslexord-def nslexordp-def ; blast)+

definition nslexordeqp :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ bool
where

nslexordeqp cmp xs ys ←→ nslexordp cmp xs ys ∨ (xs = ys)

18.1 Intro and Elimination
lemma nslexordpI1 :
∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ cmp b c =⇒ nslexordp

cmp xs ys
by (simp add: nslexordp-def)

51

lemma nslexordpI2 :
∃ c cs. xs = ys @ c # cs =⇒ nslexordp cmp xs ys
by (simp add: nslexordp-def)

lemma nslexordpE :
nslexordp cmp xs ys =⇒
(∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ cmp b c) ∨
(∃ c cs. xs = ys @ c # cs)

by (simp add: nslexordp-def)

lemma nslexordp-imp-eq:
nslexordp cmp xs ys =⇒ nslexordeqp cmp xs ys
by (simp add: nslexordeqp-def)

lemma nslexordeqp-imp-eq-or-less:
nslexordeqp cmp xs ys =⇒ xs = ys ∨ nslexordp cmp xs ys
using nslexordeqp-def by auto

18.2 Simplification
lemma nslexord-Nil-left[simp]: ([], y) /∈ nslexord r

by (unfold nslexord-def , induct y, auto)

lemma nslexord-Nil-right[simp]: (y, []) ∈ nslexord r = (∃ a x. y = a # x)
by (unfold nslexord-def , induct y, auto)

lemma nslexord-cons-cons[simp]:
(a # x, b # y) ∈ nslexord r ←→ (a, b) ∈ r ∨ (a = b ∧ (x, y) ∈ nslexord r) (is

?lhs = ?rhs)
proof

assume ?lhs
then show ?rhs

apply (simp add: nslexord-def)
apply (metis hd-append list.sel(1) list.sel(3) tl-append2)
done

qed (auto simp add: nslexord-def ; (blast | meson Cons-eq-appendI))

lemma nslexordp-cons-cons[simp]:
nslexordp r (a # x) (b # y) ←→ r a b ∨ (a = b ∧ nslexordp r x y)
by (metis mem-Collect-eq nslexord-cons-cons nslexord-eq-nslexordp(1) prod.simps(2))

lemmas nslexord-simps = nslexord-Nil-left nslexord-Nil-right nslexord-cons-cons

lemma nslexord-same-pref-iff :
(xs @ ys, xs @ zs) ∈ nslexord r ←→ (∃ x ∈ set xs. (x, x) ∈ r) ∨ (ys, zs) ∈ nslexord

r
by(induction xs) auto

lemma nslexord-same-pref-if-irrefl[simp]:

52

irrefl r =⇒ (xs @ ys, xs @ zs) ∈ nslexord r ←→ (ys, zs) ∈ nslexord r
by (simp add: irrefl-def nslexord-same-pref-iff)

lemma nslexord-append-leftI :
∃ b z. y = b # z =⇒ (x @ y, x) ∈ nslexord r
by (simp add: nslexordpI2 nslexord-eq-nslexordp(2))

lemma nslexord-append-left-rightI :
(a ,b) ∈ r =⇒ (u @ a # x, u @ b # y) ∈ nslexord r
by (simp add: nslexord-same-pref-iff)

lemma nslexord-append-rightI :
(u, v) ∈ nslexord r =⇒ (x @ u, x @ v) ∈ nslexord r
by (simp add: nslexord-same-pref-iff)

lemma nslexord-append-rightD:
[[(x @ u, x @ v) ∈ nslexord r ; (∀ a. (a,a) /∈ r)]] =⇒ (u,v) ∈ nslexord r
by (simp add: nslexord-same-pref-iff)

— nslexord is extension of partial ordering List.lex
lemma nslexord-lex:
(x,y) ∈ lex r = ((x,y) ∈ nslexord r ∧ length x = length y)

proof (induction x arbitrary: y)
case (Cons a x y) then show ?case

by (cases y) (force+)
qed auto

18.3 Recursive version
fun nslexordrec :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ bool

where
nslexordrec P [] - = False |
nslexordrec P - [] = True |
nslexordrec P (x#xs) (y#ys) = (if P x y then True else if x = y then nslexordrec
P xs ys else False)

lemma nslexordp-eq-nslexordrec:
nslexordp cmp xs ys ←→ nslexordrec cmp xs ys

proof (induct xs arbitrary: ys)
case Nil
then show ?case

by (simp add: nslexordp-def)
next

case (Cons a xs)
note IH = this

then show ?case
proof (cases ys)

case Nil

53

then show ?thesis
by (simp add: nslexordp-def)

next
case (Cons b zs)
note P = IH [of zs]
have cmp a b =⇒ ?thesis

by (simp add: Cons)
moreover
have [[¬cmp a b; a = b]] =⇒ ?thesis

by (simp add: P Cons)
moreover
have [[¬cmp a b; a 6= b]] =⇒ ?thesis

by (simp add: local.Cons)
ultimately show ?thesis

by blast
qed

qed

lemmas nslexordp-induct = nslexordrec.induct

18.4 Properties
Useful properties for proving things about relations, such as what type of
order is satisfied
lemma nslexord-total-on:

assumes total-on A R
shows total-on {xs. set xs ⊆ A} (nslexord R)

proof (intro total-onI)
fix x y
assume x ∈ {xs. set xs ⊆ A} y ∈ {xs. set xs ⊆ A} x 6= y
hence set x ⊆ A set y ⊆ A x 6= y

by blast+
then show (x, y) ∈ nslexord R ∨ (y, x) ∈ nslexord R
proof (induct x arbitrary: y)

case Nil
then show ?case

by (metis list.exhaust nslexord-Nil-right)
next

case (Cons a x)
note IH = this
then show ?case
proof (cases y)

case Nil
then show ?thesis

by auto
next

case (Cons b z)
then show ?thesis

by (metis Cons.hyps IH (2−4) assms list.set-intros(1 ,2) nslexord-cons-cons

54

subset-code(1)
total-on-def)

qed
qed

qed

lemma total-on-totalp-on-eq:
total-on A {(x, y). R x y} = totalp-on A R
by (simp add: total-on-def totalp-on-def)

lemmas nslexordp-totalp-on =
nslexord-total-on[OF total-on-totalp-on-eq[THEN iffD2],

simplified nslexord-eq-nslexordp(1) totalp-on-total-on-eq[symmetric]]

lemma nslexord-total:
total r =⇒ total (nslexord r)
using nslexord-total-on by fastforce

lemma nslexordp-totalp:
totalp r =⇒ totalp (nslexordp r)
using nslexordp-totalp-on by fastforce

corollary nslexord-linear :
(∀ a b. (a,b) ∈ r ∨ a = b ∨ (b,a) ∈ r) =⇒ (x,y) ∈ nslexord r ∨ x = y ∨ (y,x) ∈

nslexord r
using nslexord-total by (metis UNIV-I total-on-def)

lemma nslexord-irrefl-on:
assumes irrefl-on A R
shows irrefl-on {xs. set xs ⊆ A} (nslexord R)

proof (intro irrefl-onI)
fix x
assume x ∈ {xs. set xs ⊆ A}
hence set x ⊆ A

by blast
then show (x, x) /∈ nslexord R
proof (induct x)

case Nil
then show ?case

by auto
next

case (Cons a x)
then show ?case
by (meson assms irrefl-onD list.set-intros(1) nslexord-cons-cons set-subset-Cons

subset-code(1))
qed

qed

lemma irrefl-on-irreflp-on-eq:

55

irrefl-on A {(x, y). R x y} = irreflp-on A R
by (simp add: irrefl-on-def irreflp-on-def)

lemmas nslexordp-irreflp-on =
nslexord-irrefl-on[OF irrefl-on-irreflp-on-eq[THEN iffD2],

simplified nslexord-eq-nslexordp(1) irreflp-on-irrefl-on-eq[symmetric]]

lemma nslexord-irreflexive:
∀ x. (x,x) /∈ r =⇒ (xs,xs) /∈ nslexord r
by (metis lex-take-index nslexord-lex)

lemma nslexord-irrefl:
irrefl R =⇒ irrefl (nslexord R)
by (simp add: irrefl-def nslexord-irreflexive)

lemma nslexordp-irreflp:
assumes irreflp R
shows irreflp (nslexordp R)
using assms nslexordp-irreflp-on by force

lemma asym-on-asymp-on-eq:
asym-on A {(x, y). R x y} = asymp-on A R
by (simp add: asym-on-def asymp-on-def)

lemma nslexord-asym-on:
assumes asym-on A R
shows asym-on {xs. set xs ⊆ A} (nslexord R)

proof (intro asym-onI)
fix x y
assume x ∈ {xs. set xs ⊆ A} y ∈ {xs. set xs ⊆ A} (x, y) ∈ nslexord R
hence set x ⊆ A set y ⊆ A (x, y) ∈ nslexord R

by blast+
then show (y, x) /∈ nslexord R
proof (induct x arbitrary: y)

case Nil
then show ?case

by force
next

case (Cons a x)
note IH = this
then show ?case
proof (cases y)

case Nil
then show ?thesis

by simp
next

case (Cons b z)
hence (a # x, b # z) ∈ nslexord R

using IH (4) by blast

56

with nslexord-cons-cons[of a x b z R]
have (a, b) ∈ R ∨ a = b ∧ (x, z) ∈ nslexord R

by blast
moreover
have (a, b) ∈ R =⇒ ?thesis

by (metis IH (2 ,3) assms asym-onD list.set-intros(1) local.Cons nslex-
ord-cons-cons

subset-code(1))
moreover
have a = b ∧ (x, z) ∈ nslexord R =⇒ ?thesis

using Cons.hyps IH (2 ,3) calculation(2) local.Cons by auto
ultimately show ?thesis

by blast
qed

qed
qed

lemmas nslexordp-asymp-on =
nslexord-asym-on[OF asym-on-asymp-on-eq[THEN iffD2],

simplified nslexord-eq-nslexordp(1) asymp-on-asym-on-eq[symmetric]]

lemma nslexord-asym:
assumes asym R
shows asym (nslexord R)
using assms nslexord-asym-on by force

lemma nslexordp-asymp:
assumes asymp R
shows asymp (nslexordp R)
using assms nslexordp-asymp-on by force

lemma nslexord-asymmetric:
assumes asym R (a, b) ∈ nslexord R
shows (b, a) /∈ nslexord R
by (simp add: assms asymD nslexord-asym)

lemma trans-on-transp-on-eq:
trans-on A {(x, y). R x y} = transp-on A R
by (simp add: trans-on-def transp-on-def)

lemma nslexord-trans-on:
assumes trans-on A R
shows trans-on {xs. set xs ⊆ A} (nslexord R)

proof (intro trans-onI)
fix x y z
assume x ∈ {xs. set xs ⊆ A} y ∈ {xs. set xs ⊆ A} z ∈ {xs. set xs ⊆ A}

(x, y) ∈ nslexord R (y, z) ∈ nslexord R
hence set x ⊆ A set y ⊆ A set z ⊆ A (x, y) ∈ nslexord R (y, z) ∈ nslexord R

by blast+

57

then show (x, z) ∈ nslexord R
proof (induct x arbitrary: y z)

case Nil
then show ?case

by simp
next

case (Cons a x)
note IH = this
then show ?case
proof (cases y)

case Nil
then show ?thesis

using IH (6) by auto
next

case (Cons b y ′)
hence (a # x, b # y ′) ∈ nslexord R

using IH (5) by blast
with nslexord-cons-cons[of a x b y ′ R]
have P: (a, b) ∈ R ∨ a = b ∧ (x, y ′) ∈ nslexord R

by blast
then show ?thesis
proof (cases z)

case Nil
then show ?thesis

by simp
next

case (Cons c z ′)
hence (b # y ′, c # z ′) ∈ nslexord R

using IH (6) ‹y = b # y ′› by auto
with nslexord-cons-cons[of b y ′ c z ′ R]
have (b, c) ∈ R ∨ b = c ∧ (y ′, z ′) ∈ nslexord R

by blast
moreover
have a ∈ A set x ⊆ A

using IH (2) by auto
moreover
have b ∈ A set y ′ ⊆ A

using IH (3) ‹y = b # y ′› by force+
moreover
have c ∈ A set z ′ ⊆ A

using IH (4) ‹z = c # z ′› by force+
moreover
from P
have (b, c) ∈ R =⇒ ?thesis
by (metis assms calculation(2 ,4 ,6) local.Cons nslexord-cons-cons trans-onD)
moreover
from P
have b = c ∧ (y ′, z ′) ∈ nslexord R =⇒ ?thesis

by (metis Cons.hyps calculation(3 ,5 ,7) local.Cons nslexord-cons-cons)

58

ultimately show ?thesis
by blast

qed
qed

qed
qed

lemmas nslexordp-transp-on =
nslexord-trans-on[OF trans-on-transp-on-eq[THEN iffD2],

simplified nslexord-eq-nslexordp(1) transp-on-trans-on-eq[symmetric]]

lemma nslexord-trans:
assumes trans R
shows trans (nslexord R)
using assms nslexord-trans-on by force

lemma nslexordp-transp:
assumes transp R
shows transp (nslexordp R)
using assms nslexordp-transp-on by force

18.5 Monotonicity
Properties about monotonicity
lemma monotone-on-nslexordp:

assumes monotone-on A orda ordb f
shows monotone-on {xs. set xs ⊆ A} (nslexordp orda) (nslexordp ordb) (map f)

proof (rule monotone-onI)
fix x y
assume x ∈ {xs. set xs ⊆ A} y ∈ {xs. set xs ⊆ A} nslexordp orda x y
hence set x ⊆ A set y ⊆ A

by blast+

let ?c1 = ∃ b c as bs cs. x = as @ b # bs ∧ y = as @ c # cs ∧ orda b c
and ?c2 = ∃ c cs. x = y @ c # cs

let ?g = nslexordp ordb (map f x) (map f y)
from nslexordpE [OF ‹nslexordp orda x y›]
have ?c1 ∨ ?c2 .
moreover
have ?c2 =⇒ ?g

using nslexordpI2 by fastforce
moreover
have ?c1 =⇒ ?g
proof (rule nslexordpI1)

assume ?c1
then obtain b c as bs cs where

x = as @ b # bs
y = as @ c # cs

59

orda b c
by blast

moreover
have map f x = map f as @ f b # map f bs

by (simp add: calculation(1))
moreover
have map f y = map f as @ f c # map f cs

by (simp add: calculation(2))
moreover
have ordb (f b) (f c)
by (metis ‹set x ⊆ A› ‹set y ⊆ A› assms calculation(1−3) in-set-conv-decomp

monotone-on-def
subset-code(1))

ultimately show ∃ b c as bs cs. map f x = as @ b # bs ∧ map f y = as @ c
cs ∧ ordb b c

by blast
qed
ultimately show nslexordp ordb (map f x) (map f y)

by blast
qed

lemma monotone-on-bij-betw-inv-nslexordp:
assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on B ordb
and totalp-on B ordb
and bij-betw f A B
and bij-betw g B A
and inverses-on f g A B

shows monotone-on {xs. set xs ⊆ B} (nslexordp ordb) (nslexordp orda) (map g)
by (metis assms monotone-on-bij-betw-inv monotone-on-nslexordp)

lemma monotone-on-bij-betw-nslexordp:
assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda
and asymp-on B ordb
and totalp-on B ordb
and bij-betw f A B

shows ∃ g. bij-betw (map g) {xs. set xs ⊆ B} {xs. set xs ⊆ A} ∧
inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B} ∧
monotone-on {xs. set xs ⊆ B} (nslexordp ordb) (nslexordp orda) (map g)

by (metis assms bij-betw-inv-alt bij-betw-map inverses-on-map monotone-on-bij-betw-inv-nslexordp)

lemma monotone-on-iff-nslexordp:
assumes monotone-on A orda ordb f
and asymp-on A orda
and totalp-on A orda

60

and asymp-on B ordb
and totalp-on B ordb
and bij-betw f A B
and set xs ⊆ A
and set ys ⊆ A

shows nslexordp orda xs ys ←→ nslexordp ordb (map f xs) (map f ys)
proof

assume nslexordp orda xs ys
with monotone-onD[OF monotone-on-nslexordp[OF assms(1)], simplified, OF

assms(7 ,8)]
show nslexordp ordb (map f xs) (map f ys)

by blast
next

assume A: nslexordp ordb (map f xs) (map f ys)

from monotone-on-bij-betw-nslexordp[OF assms(1−6)]
obtain g where P:

bij-betw (map g) {xs. set xs ⊆ B} {xs. set xs ⊆ A}
inverses-on (map f) (map g) {xs. set xs ⊆ A} {xs. set xs ⊆ B}
monotone-on {xs. set xs ⊆ B} (nslexordp ordb) (nslexordp orda) (map g)
by blast

have Q: set (map f xs) ⊆ B
using assms(6 ,7) bij-betw-imp-surj-on by fastforce

have R: set (map f ys) ⊆ B
using assms(6 ,8) bij-betw-imp-surj-on by fastforce

from monotone-onD[OF P(3), simplified, OF Q R A]
show nslexordp orda xs ys

by (metis P(2) assms(7 ,8) inverses-on-def mem-Collect-eq)
qed

18.6 Other
lemma nslexordp-cons1-exE :

assumes nslexordp cmp xs (x # xs)
shows ∃ a as bs. x # xs = as @ x # a # bs ∧ cmp a x ∧ (∀ b ∈ set as. b = x)
using assms

proof (induct xs arbitrary: x)
case Nil
then show ?case

using nslexord-Nil-left nslexord-eq-nslexordp(1) by blast
next

case (Cons a xs)
note IH = this

have cmp a x =⇒ ?case
by fastforce

61

moreover
have [[¬cmp a x; a 6= x]] =⇒ ?case

using IH (2) by force
moreover
have [[¬cmp a x; a = x]] =⇒ ?case
proof −

assume ¬cmp a x a = x
with IH (2)
have nslexordp cmp xs (x # xs)

by simp
with IH (1)[OF -] ‹a = x›
have ∃ k as bs. a # xs = as @ x # k # bs ∧ cmp k x ∧ (∀ b∈set as. b = x)

by simp
then obtain k as bs where P:

a # xs = as @ x # k # bs cmp k x ∀ b∈set as. b = x
by blast

then show ?case
by (metis Cons-eq-appendI set-ConsD)

qed
ultimately show ?case

by blast
qed

lemma nslexordp-cons2-exE :
assumes nslexordp cmp (x # xs) xs
shows (∀ k ∈ set xs. k = x) ∨ (∃ a as bs. x # xs = as @ x # a # bs ∧ cmp x a
∧ (∀ b ∈ set as. b = x))

using assms
proof (induct xs arbitrary: x)

case Nil
then show ?case

by simp
next

case (Cons a xs)
note IH = this

have cmp x a =⇒ ?case
by (metis append-Nil empty-iff empty-set)

moreover
have [[¬cmp x a; a = x]] =⇒ ?case
proof −

assume ¬cmp x a a = x
with IH (2)
have nslexordp cmp (x # xs) xs

by simp
with IH (1)[of x] ‹a = x›
have (∀ k∈set xs. k = x) ∨

(∃ k as bs. a # xs = as @ x # k # bs ∧ cmp x k ∧ (∀ b∈set as. b = x))
by simp

62

then show ?thesis
proof

assume ∀ k∈set xs. k = x
then show ?thesis

by (simp add: ‹a = x›)
next
assume ∃ k as bs. a # xs = as @ x # k # bs ∧ cmp x k ∧ (∀ b∈set as. b = x)
then obtain k as bs where P:

a # xs = as @ x # k # bs cmp x k ∀ b∈set as. b = x
by blast

then show ?thesis
by (metis Cons-eq-appendI set-ConsD)

qed
qed
moreover
have [[¬cmp x a; a 6= x]] =⇒ ?case

using Cons.prems by auto

ultimately show ?case
by blast

qed

19 Order definitions on lists of linorder elements
definition list-less-ns :: (′a :: linorder) list ⇒ ′a list ⇒ bool

where
list-less-ns xs ys =
(∃n. n ≤ length xs ∧ n ≤ length ys ∧
(∀ i < n. xs ! i = ys ! i) ∧
(length ys = n −→ n < length xs) ∧
(length ys 6= n −→ length xs 6= n ∧ xs ! n < ys ! n))

definition list-less-eq-ns :: (′a :: linorder) list ⇒ ′a list ⇒ bool
where

list-less-eq-ns xs ys =
(∃n. n ≤ length xs ∧ n ≤ length ys ∧
(∀ i < n. xs ! i = ys ! i) ∧
(length ys 6= n −→ length xs 6= n ∧ xs ! n < ys ! n))

— Alternative definition

definition list-less-ns-ex :: (′a :: linorder) list ⇒ (′a :: linorder) list ⇒ bool
where

list-less-ns-ex xs ys ←→
(∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c) ∨
(∃ c cs. xs = ys @ c # cs)

63

20 Helper list comparison theorems
lemma list-less-ns-alt-def :

list-less-ns xs ys = list-less-ns-ex xs ys
proof

assume list-less-ns xs ys
with list-less-ns-def [THEN iffD1 , of xs ys]
obtain n where P:

n ≤ length xs n ≤ length ys ∀ i<n. xs ! i = ys ! i length ys = n −→ n < length
xs

length ys 6= n −→ length xs 6= n ∧ xs ! n < ys ! n
by blast

show list-less-ns-ex xs ys
proof (cases length ys = n)

assume length ys = n
then show ?thesis

by (metis P(1 ,2 ,3 ,4) id-take-nth-drop list-less-ns-ex-def nth-take-lemma
take-all)

next
assume length ys 6= n
then show ?thesis

by (metis P(1 ,2 ,3 ,5) id-take-nth-drop le-neq-implies-less list-less-ns-ex-def
nth-take-lemma)

qed
next

assume list-less-ns-ex xs ys
hence (∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c) ∨ (∃ c cs.

xs = ys @ c # cs)
using list-less-ns-ex-def by blast

then show list-less-ns xs ys
proof

assume ∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c
then obtain b c as bs cs where P:

xs = as @ b # bs ys = as @ c # cs b < c
by blast

hence length as < length xs
by simp

moreover
have length as < length ys

by (simp add: P(2))
moreover
have ∀ i < length as. xs ! i = ys ! i

by (simp add: P(1) P(2) nth-append)
moreover
have xs ! length as < ys ! length as

by (simp add: P(1) P(2) P(3))
ultimately show list-less-ns xs ys

using list-less-ns-def [THEN iffD2 , OF exI , of length as xs ys] by simp
next

64

assume ∃ c cs. xs = ys @ c # cs
then obtain c cs where

xs = ys @ c # cs
by blast

hence length ys < length xs
by simp

then show list-less-ns xs ys
using list-less-ns-def [THEN iffD2 , OF exI , of length ys xs ys]
by (simp add: ‹xs = ys @ c # cs› nth-append)

qed
qed

lemma nslexordp-eq-list-less-ns-ex:
nslexordp (<) = list-less-ns-ex
by (clarsimp simp: fun-eq-iff nslexordp-def list-less-ns-ex-def)

lemma nslexordp-eq-list-less-ns-ex-apply:
nslexordp (<) x y = list-less-ns-ex x y
by (simp add: nslexordp-eq-list-less-ns-ex)

lemma nslexordp-eq-list-less-ns:
nslexordp (<) = list-less-ns
by (clarsimp simp: fun-eq-iff list-less-ns-alt-def nslexordp-eq-list-less-ns-ex)

lemma nslexordp-eq-list-less-ns-app:
nslexordp (<) x y = list-less-ns x y
by (simp add: nslexordp-eq-list-less-ns)

lemma nslexordeqp-eq-list-less-eq-ns-apply:
nslexordeqp (<) x y = list-less-eq-ns x y

proof (cases x = y)
assume x = y
then show ?thesis

by (simp add: list-less-eq-ns-def nslexordeqp-def)
next

assume x 6= y
hence nslexordeqp (<) x y = nslexordp (<) x y

by (simp add: nslexordeqp-def)
moreover
have nslexordp (<) x y = list-less-ns x y

by (simp add: nslexordp-eq-list-less-ns)
moreover
have list-less-eq-ns x y = list-less-ns x y

unfolding list-less-eq-ns-def list-less-ns-def
proof (intro iffI ; elim exE conjE)

fix n
assume n ≤ length x n ≤ length y ∀ i<n. x ! i = y ! i

length y 6= n −→ length x 6= n ∧ x ! n < y ! n
then show ∃n≤length x. n ≤ length y ∧ (∀ i<n. x ! i = y ! i) ∧

65

(length y = n −→ n < length x) ∧
(length y 6= n −→ length x 6= n ∧ x ! n < y ! n)

by (metis ‹x 6= y› le-eq-less-or-eq nth-equalityI)
next

fix n
assume n ≤ length x n ≤ length y ∀ i<n. x ! i = y ! i length y = n −→ n <

length x
length y 6= n −→ length x 6= n ∧ x ! n < y ! n

then show ∃n≤length x. n ≤ length y ∧ (∀ i<n. x ! i = y ! i) ∧
(length y 6= n −→ length x 6= n ∧ x ! n < y ! n)

by blast
qed
ultimately show ?thesis

by blast
qed

21 list-less-ns helpers
lemma list-less-ns-cons-same:

list-less-ns (a # xs) (a # ys) = list-less-ns xs ys
by (metis nslexordp-cons-cons nslexordp-eq-list-less-ns order-less-irrefl)

lemma list-less-ns-cons-diff :
a < b =⇒ list-less-ns (a # xs) (b # ys)
using list-less-ns-def by fastforce

lemma list-less-ns-cons:
list-less-ns (a # xs) (b # ys) = (a ≤ b ∧ (a = b −→ list-less-ns xs ys))
by (metis length-Cons list-less-ns-cons-diff list-less-ns-cons-same list-less-ns-def

nat.simps(3)
not-less-iff-gr-or-eq not-less-zero nth-Cons-0 order .strict-iff-order
order-class.order-eq-iff)

lemma list-less-eq-ns-cons-same:
list-less-eq-ns (a # xs) (a # ys) = list-less-eq-ns xs ys
by (metis list.inject list-less-ns-cons-same nslexordeqp-def nslexordeqp-eq-list-less-eq-ns-apply

nslexordp-eq-list-less-ns-app)

lemma list-less-eq-ns-cons:
list-less-eq-ns (a # xs) (b # ys) = (a ≤ b ∧ (a = b −→ list-less-eq-ns xs ys))
by (metis list.inject list-less-ns-cons nle-le nslexordeqp-def

nslexordeqp-eq-list-less-eq-ns-apply nslexordp-eq-list-less-ns)

lemma list-less-ns-hd-same:
[[hd xs = hd ys; xs 6= []; ys 6= []]] =⇒ list-less-ns xs ys = list-less-ns (tl xs) (tl ys)
by (metis list.collapse list-less-ns-cons-same)

lemma list-less-ns-recurse:

66

[[xs 6= []; ys 6= []]] =⇒
(hd xs = hd ys −→ list-less-ns xs ys = list-less-ns (tl xs) (tl ys)) ∧
(hd xs 6= hd ys −→ list-less-ns xs ys = (hd xs < hd ys))

by (metis list.collapse list-less-ns-cons list-less-ns-hd-same nless-le)

lemma list-less-ns-nil:
xs 6= [] =⇒ list-less-ns xs []
using list-less-ns-def by auto

lemma list-less-ns-app:
bs 6= [] =⇒ list-less-ns (as @ bs) as
by (metis list.collapse nslexordpI2 nslexordp-eq-list-less-ns)

22 Lists of linorder elements are linorders with a
bottom element

lemma list-less-ns-imp-less-eq-not-less-eq:
list-less-ns x y =⇒ (list-less-eq-ns x y ∧ ¬ list-less-eq-ns y x)
apply (clarsimp simp: nslexordp-eq-list-less-ns[symmetric]

nslexordeqp-eq-list-less-eq-ns-apply[symmetric]
nslexordeqp-def
nslexord-eq-nslexordp(1)[symmetric])

apply (rule conjI)
apply (erule nslexord-asymmetric[rotated], fastforce)
by (metis Product-Type.Collect-case-prodD fst-conv nslexord-irreflexive order-less-irrefl

snd-conv)

lemma list-less-eq-ns-not-less-eq-imp-less:
list-less-eq-ns x y ∧ ¬ list-less-eq-ns y x =⇒ list-less-ns x y
by (metis nslexordeqp-eq-list-less-eq-ns-apply nslexordeqp-imp-eq-or-less

nslexordp-eq-list-less-ns)

lemma list-less-eq-ns-trans:
[[list-less-eq-ns x y; list-less-eq-ns y z]] =⇒ list-less-eq-ns x z
apply (clarsimp simp: nslexordp-eq-list-less-ns[symmetric]

nslexordeqp-eq-list-less-eq-ns-apply[symmetric]
nslexordeqp-def
nslexord-eq-nslexordp(1)[symmetric])

apply safe
apply (erule (1) transD[OF nslexord-trans, rotated])
by (metis order-less-trans transp-def transp-trans)

lemma list-less-eq-ns-anti-sym:
[[list-less-eq-ns x y; list-less-eq-ns y x]] =⇒ x = y
by (metis list-less-ns-imp-less-eq-not-less-eq nslexordeqp-eq-list-less-eq-ns-apply

nslexordeqp-imp-eq-or-less nslexordp-eq-list-less-ns)

67

lemma list-less-eq-ns-linear :
list-less-eq-ns x y ∨ list-less-eq-ns y x
apply (simp add: nslexordp-eq-list-less-ns[symmetric]

nslexordeqp-eq-list-less-eq-ns-apply[symmetric]
nslexordeqp-def
nslexord-eq-nslexordp(1)[symmetric])

by (metis case-prodI linorder-neqE mem-Collect-eq nslexord-linear)

interpretation ordlistns: linorder list-less-eq-ns list-less-ns
proof

fix x y z :: ′a list
show list-less-ns x y = (list-less-eq-ns x y ∧ ¬ list-less-eq-ns y x)

using list-less-ns-imp-less-eq-not-less-eq list-less-eq-ns-not-less-eq-imp-less
by blast

show list-less-eq-ns x x
unfolding list-less-eq-ns-def
by simp

show [[list-less-eq-ns x y; list-less-eq-ns y z]] =⇒ list-less-eq-ns x z
by (rule list-less-eq-ns-trans)

show [[list-less-eq-ns x y; list-less-eq-ns y x]] =⇒ x = y
by (rule list-less-eq-ns-anti-sym)

show list-less-eq-ns x y ∨ list-less-eq-ns y x
by (rule list-less-eq-ns-linear)

qed

interpretation ordlistns: order-top list-less-eq-ns list-less-ns []
proof

fix a :: ′a list
show list-less-eq-ns a []

unfolding list-less-eq-ns-def
by auto

qed

23 Recursive Definition
fun lt-ns :: (′a :: linorder) list ⇒ ′a list ⇒ bool

where
lt-ns [] [] = False |
lt-ns [] - = False |
lt-ns - [] = True |
lt-ns (a # as) (b # bs) =
(if a < b then True
else if a > b then False
else lt-ns as bs)

lemma list-less-ns-lt-ns:
list-less-ns xs ys = lt-ns xs ys
apply (induct rule: lt-ns.induct)

apply simp

68

apply simp
apply (simp add: list-less-ns-nil)

apply (simp add: list-less-ns-cons)
apply (safe; simp)
done

24 list-less-ns-ex helpers
lemma list-less-ns-exI1 :
∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c =⇒ list-less-ns-ex

xs ys
by (simp add: list-less-ns-ex-def)

lemma list-less-ns-exI2 :
∃ c cs. xs = ys @ c # cs =⇒ list-less-ns-ex xs ys
by (simp add: list-less-ns-ex-def)

lemma list-less-ns-exE :
list-less-ns-ex xs ys =⇒
(∃ b c as bs cs. xs = as @ b # bs ∧ ys = as @ c # cs ∧ b < c) ∨
(∃ c cs. xs = ys @ c # cs)

by (simp add: list-less-ns-ex-def)

lemma list-less-ns-app-same:
list-less-ns (as @ xs) (as @ ys) = list-less-ns xs ys
apply (induct as arbitrary: xs ys)
apply simp

apply (simp add: list-less-ns-cons-same)
done

lemma list-less-eq-ns-app-same:
list-less-eq-ns (as @ xs) (as @ ys) = list-less-eq-ns xs ys
apply (induct as arbitrary: xs ys)
apply simp

apply (simp add: list-less-eq-ns-cons-same)
done

lemma list-less-ns-cons1-exE :
assumes list-less-ns xs (x # xs)
shows ∃ a as bs. x # xs = as @ x # a # bs ∧ x > a ∧ (∀ b ∈ set as. b = x)
by (metis assms nslexordp-cons1-exE nslexordp-eq-list-less-ns)

lemma list-less-ns-cons1-exI :
assumes ∃ a as bs. x # xs = as @ x # a # bs ∧ x > a ∧ (∀ b ∈ set as. b = x)
shows list-less-ns-ex xs (x # xs)

proof −
from assms
obtain a as bs where

x # xs = as @ x # a # bs

69

a < x
∀ b ∈ set as. b = x
by blast

have as = [] =⇒ ?thesis
using ‹a < x› ‹x # xs = as @ x # a # bs› list-less-ns-alt-def list-less-ns-cons-diff
by fastforce

moreover
have ∃ c cs. as = cs @ [c] =⇒ ?thesis
proof −

assume ∃ c cs. as = cs @ [c]
then obtain c cs where

as = cs @ [c]
by blast

with ‹∀ b ∈ set as. b = x›
have c = x

by auto
hence x # xs = cs @ x # x # a # bs

by (simp add: ‹as = cs @ [c]› ‹x # xs = as @ x # a # bs›)

have ∀ b ∈ set cs. b = x
by (simp add: ‹∀ b∈set as. b = x› ‹as = cs @ [c]›)

hence ∃n. cs = replicate n x
by (meson replicate-eqI)

then show ?thesis
by (metis ‹a < x› ‹x # xs = cs @ x # x # a # bs› list-less-ns-alt-def

list-less-ns-app-same
list-less-ns-cons-diff list-less-ns-cons-same replicate-app-Cons-same)

qed
ultimately show ?thesis

by (meson rev-exhaust)
qed

lemma list-less-ns-cons2-ex:
assumes list-less-ns (x # xs) xs
shows (∀ k ∈ set xs. k = x) ∨ (∃ a as bs. x # xs = as @ x # a # bs ∧ x < a ∧

(∀ b ∈ set as. b = x))
by (metis assms nslexordp-cons2-exE nslexordp-eq-list-less-ns)

end
theory Valid-List

imports Main ../util/List-Util
begin

25 Valid List
definition

valid-list :: (′a :: {linorder , order-bot}) list ⇒ bool
where

70

valid-list s = (length s > 0 ∧ (∀ i < length s − 1 . s ! i 6= bot) ∧ last s = bot)

lemma valid-list-ex-def :
fixes s ::(′a :: {linorder , order-bot}) list
shows (valid-list s) =

(∃ xs. s = xs @ [bot] ∧
(∀ i < length xs. xs ! i 6= bot))

unfolding valid-list-def
proof safe

assume
s 6= []
∀ i<length s − 1 . s ! i 6= bot
last s = bot

then
show ∃ xs. s = xs @ [bot] ∧

(∀ i<length xs. xs ! i 6= bot)
by (metis append-butlast-last-id length-butlast nth-butlast)

qed (simp add: nth-append)+

lemma valid-list-iff-butlast-app-last:
fixes s :: (′a :: {linorder , order-bot}) list
shows valid-list s ←→

s 6= [] ∧
(∀ x ∈ set (butlast s). x 6= bot) ∧
last s = bot

by (metis append-butlast-last-id butlast-snoc in-set-conv-nth
valid-list-def valid-list-ex-def length-greater-0-conv)

lemma valid-list-consI :
fixes s :: (′a :: {linorder , order-bot}) list
fixes a :: ′a
assumes valid-list s
and a 6= bot
shows valid-list (a # s)
using assms
by (simp add: valid-list-iff-butlast-app-last)

lemma valid-list-consD:
fixes s :: (′a :: {linorder , order-bot}) list
fixes a :: ′a
assumes valid-list (a # s)
assumes s 6= []
shows valid-list s
using assms
by (simp add: valid-list-iff-butlast-app-last)

lemma Min-valid-list:
fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s

71

shows Min (set s) = bot
by (metis assms List.finite-set Min.in-idem last-in-set min-bot valid-list-iff-butlast-app-last)

lemma valid-list-length:
fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows length s > 0
using assms
by (clarsimp simp: valid-list-ex-def)

lemma valid-list-length-ex:
fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows ∃n. length s = Suc n
using assms
by (clarsimp simp: valid-list-ex-def)

lemma valid-list-not-nil:
fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows s 6= []
using assms by (simp add: valid-list-def)

lemma valid-list-Suc-mapping:
fixes f :: ′a ⇒ nat
fixes s :: ′a list
shows valid-list ((map (λx. Suc (f x)) s) @ [bot])

proof (induct s)
case (Cons a s)
note IH = this
have map (λx. Suc (f x)) (a # s) = (Suc (f a)) # map (λx. Suc (f x)) s

by simp
moreover
have Suc (f a) 6= bot

by (simp add: bot-nat-def)
hence valid-list ((Suc (f a)) # (map (λx. Suc (f x)) s) @ [bot])

by (simp add: IH valid-list-consI)
ultimately
show ?case

by simp
qed (simp add: valid-list-ex-def)

lemma valid-list-app:
assumes valid-list (xs @ y # ys)
shows valid-list (y # ys)
using assms
by (induct xs) (simp add: valid-list-consD)+

lemma not-valid-list-app:

72

assumes valid-list (xs @ y # ys)
shows ¬valid-list xs
using assms

proof (induct xs)
case Nil
then show ?case

using valid-list-not-nil by auto
next

case (Cons a xs)
then show ?case
by (metis Groups.add-ac(2) Nil-is-append-conv One-nat-def add-diff-cancel-left ′

append-Cons
last-ConsL list.discI list.size(4) nth-Cons-0 valid-list-consD valid-list-def)

qed

lemma valid-list-neqE :
assumes valid-list xs valid-list ys xs 6= ys
shows ∃ x y as bs cs. xs = as @ x # bs ∧ ys = as @ y # cs ∧ x 6= y

proof −
note cases = list-neq-fc[OF assms(3)]
moreover
have ¬(∃ z zs. xs = ys @ z # zs)

using assms(1) assms(2) not-valid-list-app by blast
moreover
have ¬(∃ z zs. ys = xs @ z # zs)

using assms(1) assms(2) not-valid-list-app by blast
ultimately show ?thesis

by blast
qed

end
theory Valid-List-Util

imports List-Lexorder-Util List-Lexorder-NS Valid-List
begin

26 Order Equivalence
lemma valid-list-list-less-equiv-list-less-ns:

assumes valid-list s1
and valid-list s2

shows s1 < s2 = list-less-ns s1 s2
proof

assume s1 < s2
hence s1 6= s2

by simp
with valid-list-neqE [OF assms(1 ,2)]
obtain x y as bs cs where

s1 = as @ x # bs s2 = as @ y # cs x 6= y
by blast

73

hence x < y
by (metis ‹s1 < s2 › linorder-less-linear list-less-ex order-less-imp-not-less)

then have list-less-ns-ex s1 s2
using ‹s1 = as @ x # bs› ‹s2 = as @ y # cs› list-less-ns-ex-def by fastforce

then show list-less-ns s1 s2
by (simp add: list-less-ns-alt-def)

next
assume list-less-ns s1 s2
hence s1 6= s2

by fastforce
with valid-list-neqE [OF assms(1 ,2)]
obtain x y as bs cs where

s1 = as @ x # bs s2 = as @ y # cs x 6= y
by blast

hence x < y
by (metis ‹list-less-ns s1 s2 › list.distinct(1) list.sel(1) list-less-ns-app-same

list-less-ns-recurse)
then show s1 < s2

using ‹s1 = as @ x # bs› ‹s2 = as @ y # cs› list-less-ex by fastforce
qed

lemma valid-list-list-less-eq-equiv-list-less-eq-ns:
assumes valid-list s1
and valid-list s2

shows s1 ≤ s2 = list-less-eq-ns s1 s2
by (simp add: assms order-le-less ordlistns.le-less valid-list-list-less-equiv-list-less-ns)

27 Classical Lexicographical Order
lemma valid-list-list-less-imp:

assumes valid-list (xs @ [bot])
and valid-list (ys @ [bot])
and (xs @ [bot]) < (ys @ [bot])

shows xs < ys
proof −

from assms(3)
have xs @ [bot] 6= ys @ [bot]

by fastforce
with valid-list-neqE [OF assms(1 ,2)]
obtain x y as bs cs where

xs @ [bot] = as @ x # bs ys @ [bot] = as @ y # cs x 6= y
by blast

hence x < y
by (metis assms(3) linorder-less-linear list-less-ex order-less-imp-not-less)

then show ?thesis
by (metis ‹xs @ [bot] = as @ x # bs› ‹ys @ [bot] = as @ y # cs› append-self-conv

bot.extremum-strict butlast.simps(2) butlast-append last-snoc list-less-ex
list-neq-rc1)

qed

74

lemma strict-mono-on-list-less-map:
fixes α :: ′a :: preorder ⇒ ′b :: ord
assumes strict-mono-on A α
and set xs ⊆ A
and set ys ⊆ A
and xs < ys

shows (map α xs) < (map α ys)
using assms(2−4)

proof (induct xs arbitrary: ys)
case Nil
then show ?case

using list-le-def by fastforce
next

case (Cons a xs)
note IH = this

have ∃ z zs. a ≤ z ∧ ys = z # zs
by (metis Cons-less-Cons IH (4) dual-order .refl dual-order .strict-iff-not neq-Nil-conv

not-less-Nil)
then obtain z zs where

a ≤ z ys = z # zs
by blast

then show ?case
using IH assms(1) strict-mono-onD by fastforce

qed

lemma strict-mono-list-less-map:
assumes strict-mono α
and xs < ys

shows map α xs < map α ys
using assms(1) assms(2) strict-mono-on-list-less-map by blast

lemma strict-mono-on-map-list-less:
fixes α :: ′a :: linorder ⇒ ′b :: order
assumes strict-mono-on A α
and set xs ⊆ A
and set ys ⊆ A
and (map α xs) < (map α ys)

shows xs < ys
using assms(2−4)

proof (induct xs arbitrary: ys)
case Nil

then show ?case
using list-le-def by fastforce

next
case (Cons a xs)
note IH = this

75

have ys = [] ∨ (∃ b zs. ys = b # zs)
using neq-Nil-conv by blast

moreover
have ys = [] =⇒ ?case

using Cons.prems by auto
moreover
have ∃ b zs. ys = b # zs =⇒ ?case
by (metis IH (2−4) assms(1) linorder-neq-iff order-less-asym strict-mono-on-list-less-map)

ultimately show ?case
by blast

qed

lemma strict-mono-map-list-less:
fixes α :: ′a :: linorder ⇒ ′b :: order
assumes strict-mono α
and (map α xs) < (map α ys)

shows xs < ys
using assms(1) assms(2) strict-mono-on-map-list-less by blast

28 Non-standard Lexicographical Ordering
lemma sorted-list-less-ns:

assumes sorted (a # bs @ [c])
and c < d

shows list-less-ns (a # bs @ [c, d] @ xs) (bs @ [c, d] @ ys)
using assms

proof (induct bs arbitrary: a)
case Nil
then show ?case
by (metis append-Cons append-Nil le-less list-less-ns-cons-diff list-less-ns-cons-same

sorted2)
next

case (Cons a bs x)
note IH = this

from IH (2)
have sorted (a # bs @ [c])

by simp
with IH (1)[OF - assms(2)]
have list-less-ns (a # bs @ [c, d] @ xs) (bs @ [c, d] @ ys) .
with sorted-nth-mono[OF IH (2), of 0 Suc 0 , simplified]
show ?case

by (simp add: list-less-ns-cons)
qed

lemma rev-sorted-list-less-ns:
assumes sorted (rev (a # bs @ [c]))
and c > d

shows list-less-ns (bs @ [c, d] @ xs) (a # bs @ [c, d] @ ys)

76

using assms
proof (induct bs arbitrary: a)

case Nil
then show ?case

using list-less-ns-cons list-less-ns-cons-diff by fastforce
next

case (Cons a bs x)
note IH = this

from IH (2)
have sorted (rev (a # bs @ [c]))

by (simp add: sorted-append)
with IH (1)[OF - assms(2)]
have list-less-ns (bs @ [c, d] @ xs) (a # bs @ [c, d] @ ys) .
with sorted-rev-nth-mono[OF IH (2), of 0 Suc 0 , simplified]
show ?case

using list-less-ns-cons by auto
qed

lemma sorted-cons-list-less-ns:
assumes sorted (a # bs)
shows list-less-ns (a # bs) bs
using assms

proof (induct bs arbitrary: a)
case Nil

then show ?case
by (simp add: list-less-ns-nil)

next
case (Cons a bs x)
note IH = this

from IH (2)
have sorted (a # bs)

by simp
with IH (1)
have list-less-ns (a # bs) bs .
with sorted-nth-mono[OF IH (2), of 0 Suc 0 , simplified]
show ?case

by (simp add: list-less-ns-cons)
qed

end
theory Suffix

imports Main
begin

29 Suffix
abbreviation suffix :: ′a list ⇒ nat ⇒ ′a list

77

where
suffix xs i ≡ drop i xs

lemma suffixes-neq:
[[i < length s; j < length s; i 6= j]] =⇒ suffix s i 6= suffix s j
by (metis diff-diff-cancel length-drop less-or-eq-imp-le)

lemma distinct-suffixes:
[[distinct xs; ∀ x ∈ set xs. x < length s]] =⇒ distinct (map (suffix s) xs)
by (simp add: distinct-conv-nth suffixes-neq)

lemma suffix-eq-index:
[[i < length xs; j < length xs; suffix xs i = suffix xs j]] =⇒ i = j
by (metis diff-diff-cancel le-eq-less-or-eq length-drop)

lemma suffix-neq-nil:
i < length s =⇒ suffix s i 6= []
by simp

lemma suffix-map:
suffix (map f xs) i = map f (suffix xs i)
by (simp add: drop-map)

lemma set-suffix-subset:
set (suffix s i) ⊆ set s
by (simp add: set-drop-subset)

lemma suffix-cons-suc:
suffix (a # xs) (Suc i) = suffix xs i
by simp

lemma suffix-app:
i < length xs =⇒ suffix (xs @ ys) i = suffix xs i @ ys
by simp

lemma suffix-cons-ex:
i < length T =⇒ ∃ x xs. suffix T i = x # xs ∧ x = T ! i
by (metis Cons-nth-drop-Suc)

lemma suffix-cons-Suc:
i < length T =⇒ suffix T i = T ! i # suffix T (Suc i)
by (metis Cons-nth-drop-Suc)

lemma suffix-cons-app:
suffix T i = as @ bs =⇒ suffix T (i + length as) = bs
by (metis add.commute append-eq-conv-conj drop-drop)

lemma suffix-0 :
suffix T 0 = T
by simp

78

end
theory Suffix-Util

imports
../util/List-Slice
Suffix
Valid-List
Valid-List-Util

begin

30 Valid Lists and Suffixes
lemma valid-suffix:
[[valid-list s; i < length s]] =⇒ valid-list (suffix s i)
by (clarsimp simp: valid-list-ex-def)

lemma last-suffix-index:
assumes valid-list s
and i < length s
shows hd (suffix s i) = bot ←→ i = length s − 1

proof −
from iffD1 [OF valid-list-ex-def ‹valid-list s›]
obtain xs where

s = xs @ [bot]
∀ i < length xs. xs ! i 6= bot
by blast

show ?thesis
proof

from ‹s = xs @ [bot]› ‹∀ i < length xs. xs ! i 6= bot›
show i = length s − 1 =⇒ hd (suffix s i) = bot

by simp
next

from ‹s = xs @ [bot]› ‹∀ i < length xs. xs ! i 6= bot› ‹i < length s›
show hd (suffix s i) = bot =⇒ i = length s − 1

by (clarsimp simp: hd-append hd-drop-conv-nth split: if-splits)
qed

qed

31 Prefixes and Suffixes
lemma suffix-has-no-prefix-suffix:

assumes valid-list: valid-list s
and i-less-len-s: i < length s
and j-less-len-s: j < length s
and i-neq-j: i 6= j
shows ¬ (∃ s ′. suffix s i = (suffix s j) @ s ′)

proof

79

assume ∃ s ′. suffix s i = suffix s j @ s ′

then obtain s ′ where
pref : suffix s i = suffix s j @ s ′

by blast
with i-neq-j i-less-len-s j-less-len-s
have i < j

by (metis diff-less-mono2 length-append length-drop less-Suc-eq not-add-less1
not-less-eq)

with pref i-less-len-s j-less-len-s
have s-not-nil: s ′ 6= []
by (metis append-Nil2 diff-less-mono2 length-drop less-irrefl-nat)

from valid-list i-less-len-s valid-suffix
have valid-suf-i: valid-list (suffix s i)

by force

from valid-list j-less-len-s valid-suffix
have valid-list (suffix s j)

by force
with pref valid-list-ex-def
have ∃ xs. suffix s i = xs @ [bot] @ s ′

using append-assoc by auto
then obtain xs where

suf-i: suffix s i = xs @ [bot] @ s ′

by blast

from valid-suf-i valid-list-ex-def
have ∃ ys. suffix s i = ys @ [bot] ∧ (∀ k < length ys. ys ! k 6= bot)

by blast
then obtain ys where

suffix s i = ys @ [bot] and
all-ys-not-0 : ∀ k < length ys. ys ! k 6= bot
by blast

with suf-i
have suf-i-eq: xs @ [bot] @ s ′ = ys @ [bot]

by force
with s-not-nil
have length xs < length ys

by (metis (no-types, lifting) append-assoc append-eq-append-conv
length-append length-append-singleton less-trans-Suc
linorder-neqE-nat not-add-less1 self-append-conv)

with suf-i-eq all-ys-not-0
show False

by (metis append-Cons butlast-snoc nth-append-length nth-butlast)
qed

80

32 Suffix Comparisons
32.1 Lexicographical Ordering
lemma suffix-less-ex:

fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
and i < length s
and j < length s
and suffix s i < suffix s j
shows ∃ b c as bs cs. suffix s i = as @ b # bs ∧

suffix s j = as @ c # cs ∧ b < c
proof −

have valid-list (suffix s i)
using assms(1) assms(2) valid-suffix by blast

moreover
have valid-list (suffix s j)

using assms(1) assms(3) valid-suffix by blast
moreover
have suffix s i 6= suffix s j

using assms(4) nless-le by blast
ultimately have
∃ b c as bs cs. suffix s i = as @ b # bs ∧ suffix s j = as @ c # cs ∧ b 6= c
using valid-list-neqE by blast

then obtain b c as bs cs where
suffix s i = as @ b # bs suffix s j = as @ c # cs b 6= c
by blast

hence b < c
by (metis assms(4) linorder-less-linear list-less-ex order-less-imp-not-less)

then show ?thesis
using ‹suffix s i = as @ b # bs› ‹suffix s j = as @ c # cs› by blast

qed

lemma suffix-less-nth:
assumes valid-list s
and i < length s
and j < length s
and suffix s i < suffix s j
shows
∃n. n < length (suffix s i) ∧

n < length (suffix s j) ∧
(∀ k < n. (suffix s i) ! k = (suffix s j) ! k) ∧

(suffix s i) ! n < (suffix s j) ! n
proof −

from suffix-less-ex[OF assms]
obtain b c as bs cs where

suf-i: suffix s i = as @ b # bs and
suf-j: suffix s j = as @ c # cs and
b-less-c: b < c
by blast

81

hence length as < length (suffix s i) and
length as < length (suffix s j) and
(suffix s i) ! length as = b and
(suffix s j) ! length as = c

by fastforce+
with b-less-c suf-i suf-j
show ?thesis

by (metis nth-append)
qed

lemma suffix-less-butlast:
assumes valid-list s
and i < length s
and j < length s
and suffix s i < suffix s j
shows butlast (suffix s i) < butlast (suffix s j)
by (metis append-butlast-last-id assms suffix-neq-nil valid-list-def valid-list-list-less-imp

valid-suffix)

32.2 Non-standard List Ordering
lemma suffix-less-ns-ex:

assumes valid-list s
and i < length s
and j < length s
and list-less-ns (suffix s i) (suffix s j)
shows ∃ b c as bs cs.

suffix s i = as @ b # bs ∧
suffix s j = as @ c # cs ∧ b < c

by (meson assms suffix-less-ex valid-suffix
valid-list-list-less-equiv-list-less-ns)

lemma suffix-less-ns-nth:
assumes valid-list s
and i < length s
and j < length s
and list-less-ns (suffix s i) (suffix s j)
shows
∃n. n < length (suffix s i) ∧

n < length (suffix s j) ∧
(∀ k < n. (suffix s i) ! k = (suffix s j) ! k) ∧
(suffix s i) ! n < (suffix s j) ! n

by (meson assms suffix-less-nth valid-list-list-less-equiv-list-less-ns valid-suffix)

33 List Slice
declare list-slice.simps[simp del]

82

lemma list-slice-to-suffix:
list-slice T i j = take (j − i) (suffix T i)
by (simp add: list-slice.simps drop-take)

lemma suffix-eq-list-slice:
suffix T i = list-slice T i (length T)
by (simp add: list-slice.simps)

lemma list-slice-suffix:
list-slice T i j = list-slice (suffix T i) 0 (j − i)
by (metis drop0 drop-take list-slice.simps)

lemma suffix-to-list-slice-app:
i ≤ j =⇒ suffix T i = (list-slice T i j) @ (list-slice T j (length T))
apply (cases j ≤ length T)
apply (subst list-slice-append[symmetric]; simp?)
apply (clarsimp simp: list-slice.simps)

apply (clarsimp simp: not-le)
apply (subst list-slice-end-gre-length, arith)
apply (simp add: list-slice-start-gre-length list-slice.simps)
done

34 Sorting
lemma ordlist-strict-mono-strict-sorted-1 :

assumes strict-mono α
and strict-sorted (map (suffix (map α s)) xs)
shows strict-sorted (map (suffix s) xs)

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(2)]
have suffix (map α s) (xs ! i) < suffix (map α s) (xs ! j)

by auto
then show suffix s (xs ! i) < suffix s (xs ! j)

by (metis assms(1) strict-mono-map-list-less suffix-map)
qed

lemma ordlist-strict-mono-on-strict-sorted-1 :
assumes strict-mono-on A α
and set s ⊆ A
and strict-sorted (map (suffix (map α s)) xs)
shows strict-sorted (map (suffix s) xs)

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(3)]
have suffix (map α s) (xs ! i) < suffix (map α s) (xs ! j)

by auto
hence map α (suffix s (xs ! i)) < map α (suffix s (xs ! j))

83

by (metis suffix-map)
then show suffix s (xs ! i) < suffix s (xs ! j)

by (meson assms(1 ,2) dual-order .trans set-suffix-subset
strict-mono-on-map-list-less)

qed

lemma ordlist-strict-mono-strict-sorted-2 :
assumes strict-mono α
and strict-sorted (map (suffix s) xs)
shows strict-sorted (map (suffix (map α s)) xs)

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(2)]
have suffix s (xs ! i) < suffix s (xs ! j)

by auto
then show suffix (map α s) (xs ! i) < suffix (map α s) (xs ! j)

by (metis assms(1) strict-mono-list-less-map suffix-map)
qed

lemma ordlist-strict-mono-on-strict-sorted-2 :
assumes strict-mono-on A α
and set s ⊆ A
and strict-sorted (map (suffix s) xs)
shows strict-sorted (map (suffix (map α s)) xs)

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF assms(3)]
have suffix s (xs ! i) < suffix s (xs ! j)

by auto
moreover
have set (suffix s (xs ! i)) ⊆ A

by (meson assms(2) dual-order .trans set-suffix-subset)
moreover
have set (suffix s (xs ! j)) ⊆ A

by (meson assms(2) dual-order .trans set-suffix-subset)
ultimately show suffix (map α s) (xs ! i) < suffix (map α s) (xs ! j)

using strict-mono-on-list-less-map[OF assms(1)]
by (metis suffix-map)

qed

lemma valid-list-ordlist-ordlistns-strict-sorted-eq:
assumes valid-list T
and set xs ⊆ {0 ..<length T}
shows ordlistns.strict-sorted (map (suffix T) xs) ←→

strict-sorted (map (suffix T) xs)
using assms
proof (safe)

84

assume A: valid-list T and
B: set xs ⊆ {0 ..<length T} and
C : sorted-wrt list-less-ns (map (suffix T) xs)

show sorted-wrt (<) (map (suffix T) xs)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF C ‹i < j›]
have R1 : list-less-ns (suffix T (xs ! i)) (suffix T (xs ! j))

by auto

from B ‹i < j› ‹j < length xs›
have xs ! i < length T

by (meson atLeastLessThan-iff less-trans nth-mem subsetD)
with valid-suffix[OF A]
have R2 : valid-list (suffix T (xs ! i))

by simp

from B ‹j < length xs›
have xs ! j < length T

by (meson atLeastLessThan-iff less-trans nth-mem subsetD)
with valid-suffix[OF A]
have R3 : valid-list (suffix T (xs ! j))

by simp

from R1 valid-list-list-less-equiv-list-less-ns[OF R2 R3]
show suffix T (xs ! i) < suffix T (xs ! j)

by simp
qed

next
assume A: valid-list T and

B: set xs ⊆ {0 ..<length T} and
C : sorted-wrt (<) (map (suffix T) xs)

show sorted-wrt list-less-ns (map (suffix T) xs)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF C ‹i < j›]
have R1 : suffix T (xs ! i) < suffix T (xs ! j)

by auto

from B ‹i < j› ‹j < length xs›
have xs ! i < length T

by (meson atLeastLessThan-iff less-trans nth-mem subsetD)
with valid-suffix[OF A]
have R2 : valid-list (suffix T (xs ! i))

by simp

from B ‹j < length xs›

85

have xs ! j < length T
by (meson atLeastLessThan-iff less-trans nth-mem subsetD)

with valid-suffix[OF A]
have R3 : valid-list (suffix T (xs ! j))

by simp

from R1 valid-list-list-less-equiv-list-less-ns[OF R2 R3]
show list-less-ns (suffix T (xs ! i)) (suffix T (xs ! j))

by simp
qed

qed

lemma Min-valid-suffix:
assumes valid-list T
and length T = Suc n

shows ordlistns.Min {suffix T i |i. i < length T} = suffix T n
proof −

from assms
have suffix T n = [bot]

by (metis add-diff-cancel-left ′ butlast-snoc length-butlast lessI list-slice-n-n
nth-append-length plus-1-eq-Suc suffix-cons-Suc suffix-eq-list-slice valid-list-ex-def)

have ∀ i < n. (suffix T i) ! 0 6= bot
by (metis add-diff-cancel-left ′ assms last-suffix-index less-SucI list.sel(1) nat-neq-iff

nth-Cons-0 plus-1-eq-Suc suffix-cons-Suc)
hence A: ∀ i < n. bot < (suffix T i) ! 0

using bot.not-eq-extremum by blast

have B: ∀ i < length T . length (suffix T i) > 0
by auto

show ?thesis
proof (intro ordlistns.Min-eqI conjI)

show finite {suffix T i |i. i < length T}
by simp

next
fix ys
assume ys ∈ {suffix T i |i. i < length T}
hence ∃ i < length T . ys = suffix T i

by blast
then obtain i where

i < length T
ys = suffix T i
by blast

with ‹ys = suffix T i›
have R1 : i = n =⇒ list-less-eq-ns (suffix T n) ys

by simp

86

from ‹i < length T › assms(2)
have R2-1 : i 6= n =⇒ i < n

by linarith

from A ‹suffix T n = [bot]› ‹i < length T › ‹ys = suffix T i›
have R2-2 : i < n =⇒ list-less-eq-ns (suffix T n) ys

by (metis list-less-ns-cons-diff nth-Cons-0 ordlistns.less-imp-le suffix-cons-ex)

from R1 R2-2 [OF R2-1]
show list-less-eq-ns (suffix T n) ys

by blast
next

show suffix T n ∈ {suffix T i |i. i < length T}
using assms(2) by auto

qed
qed

end
theory Prefix

imports Main
begin

35 Prefix Definition
abbreviation prefix :: ′a list ⇒ nat ⇒ ′a list

where
prefix xs i ≡ take i xs

lemma prefix-neq:
assumes i < length s
and j < length s
and i 6= j

shows prefix s i 6= prefix s j
by (metis assms length-take less-imp-le min-absorb2)

lemma not-prefix-app:
(∀ k. s1 6= prefix s2 k) ←→ (∀ xs. s2 6= s1 @ xs)
by (metis append-eq-conv-conj append-take-drop-id)

lemma not-prefix-imp-not-nil:
∀ k. s1 6= prefix s2 k =⇒ s1 6= []
by (metis take0)

end
theory Prefix-Util

imports Prefix ../order/Suffix-Util
begin

lemma prefix-suffix-not-suffix:

87

assumes valid-list s
and i < length s
and j < length s
and i 6= j
shows ¬(∃ k. prefix (suffix s i) k = suffix s j)
using suffix-has-no-prefix-suffix assms
by (metis append-take-drop-id)

end
theory Suffix-Array

imports
../util/Sorting-Util
../order/List-Lexorder-Util
../order/Suffix
../order/Valid-List
../order/List-Permutation-Util

begin

36 Axiomatic Suffix Array Specification
locale Suffix-Array-General =

fixes sa :: (′a :: {linorder , order-bot}) list ⇒ nat list
assumes sa-g-permutation: sa s <∼∼> [0 ..<length s]

and sa-g-sorted: strict-sorted (map (suffix s) (sa s))

locale Suffix-Array-Restricted =
fixes sa :: nat list ⇒ nat list
assumes sa-r-permutation: valid-list s =⇒ sa s <∼∼> [0 ..<length s]

and sa-r-sorted: valid-list s =⇒ strict-sorted (map (suffix s) (sa s))

37 Wrapper for Natural Number String only Al-
gorithm

definition sa-nat-wrapper ::
(′a :: linorder list ⇒ ′a ⇒ nat) ⇒ (nat list ⇒ nat list) ⇒ ′a :: linorder list ⇒

nat list
where

sa-nat-wrapper α sa xs =
tl (sa ((map (λx. Suc (α xs x)) xs) @ [bot]))

end
theory Suffix-Array-Properties
imports
../util/Fun-Util
../order/Suffix-Util
Suffix-Array

begin

88

38 General Suffix Array Properties
context Suffix-Array-General begin

lemma sa-length:
length (sa s) = length s
by (metis Suffix-Array-General-axioms Suffix-Array-General-def length-upt mi-

nus-nat.diff-0
perm-length)

lemma sa-distinct:
distinct (sa s)
using Suffix-Array-General.sa-g-permutation Suffix-Array-General-axioms

perm-distinct-set-of-upt-iff by blast

lemma sa-set-upt:
set (sa s) = {0 ..<length s}
using Suffix-Array-General.sa-g-permutation Suffix-Array-General-axioms

perm-distinct-set-of-upt-iff by blast

lemma sa-nth-ex:
i < length s =⇒ ∃ k < length s. sa s ! i = k
by (metis atLeastLessThan-iff nth-mem sa-length sa-set-upt)

lemma ex-sa-nth:
k < length s =⇒ ∃ i < length s. sa s ! i = k
by (metis atLeast0LessThan in-set-conv-nth lessThan-iff sa-length sa-set-upt)

end

lemma Suffix-Array-General-determinism:
assumes Suffix-Array-General f
and Suffix-Array-General g

shows f = g
proof

fix s
from distinct-suffixes[OF Suffix-Array-General.sa-distinct[OF assms(1)], of s s]

Suffix-Array-General.sa-set-upt[OF assms(1), of s]
have distinct (map (suffix s) (f s))

using atLeastLessThan-iff by blast
moreover
from distinct-suffixes[OF Suffix-Array-General.sa-distinct[OF assms(2)], of s s]

Suffix-Array-General.sa-set-upt[OF assms(2), of s]
have distinct (map (suffix s) (g s))

using atLeastLessThan-iff by blast
moreover
from Suffix-Array-General.sa-set-upt[OF assms(1), of s]

Suffix-Array-General.sa-set-upt[OF assms(2), of s]
have set (map (suffix s) (f s)) = set (map (suffix s) (g s))

89

by simp
ultimately have map (suffix s) (f s) = map (suffix s) (g s)

using strict-sorted-distinct-set-unique[
OF Suffix-Array-General.sa-g-sorted[of f , OF assms(1)] -

Suffix-Array-General.sa-g-sorted[of g, OF assms(2)],
of s s]

by blast
moreover
from Suffix-Array-General.sa-set-upt[OF assms(1), of s]

Suffix-Array-General.sa-set-upt[OF assms(2), of s]
have inj-on (suffix s) (set (f s) ∪ set (g s))

by (simp add: inj-on-def suffix-eq-index)
ultimately show f s = g s

using map-inj-on[of suffix s f s g s]
by blast

qed

39 Properties of Suffix Arrays on Valid Lists
lemma valid-list-bot-min:

assumes valid-list (s @ [bot])
and sa (s @ [bot]) <∼∼> [0 ..<length (s @ [bot])]
and strict-sorted (map (suffix (s @ [bot])) (sa (s @ [bot])))

shows ∃ xs. sa (s @ [bot]) = length s # xs
proof −

have suffix (s @ [bot]) (length s) = [bot]
by simp

have P: ∀ i < length s. suffix (s @ [bot]) (length s) < suffix (s @ [bot]) i
proof(safe)

fix i
assume i < length s
have ∃ a as. suffix (s @ [bot]) i = a # as ∧ a 6= bot
by (metis Cons-nth-drop-Suc ‹i < length s› assms(1) butlast-snoc length-append-singleton

less-SucI nth-butlast valid-list-ex-def)
then obtain a as where

suffix (s @ [bot]) i = a # as ∧ a 6= bot
by blast

moreover
from ‹suffix (s @ [bot]) (length s) = [bot]›
have suffix (s @ [bot]) (length s) = bot # []

by simp
ultimately show suffix (s @ [bot]) (length s) < suffix (s @ [bot]) i

by (simp add: bot.not-eq-extremum)
qed

have Min (set (map (suffix (s @ [bot])) (sa (s @ [bot]))))
= suffix (s @ [bot]) (length s)

proof (intro Min-eqI)

90

show finite (set (map (suffix (s @ [bot])) (sa (s @ [bot]))))
by blast

next
fix y
assume y ∈ set (map (suffix (s @ [bot])) (sa (s @ [bot])))
with set-perm-upt[OF assms(2)]
have ∃ i < length (s @ [bot]). y = suffix (s @ [bot]) i

by auto
then obtain i where

i < length (s @ [bot])
y = suffix (s @ [bot]) i
by blast

hence i < length s ∨ i = length s
by (simp add: less-Suc-eq)

moreover
have i < length s =⇒ suffix (s @ [bot]) (length s) < y

using P ‹y = suffix (s @ [bot]) i› dual-order .strict-iff-order by blast
moreover
have i = length s =⇒ suffix (s @ [bot]) (length s) ≤ y

by (simp add: ‹y = suffix (s @ [bot]) i›)
ultimately show suffix (s @ [bot]) (length s) ≤ y

using nless-le by blast
next

from assms
have length s ∈ set (sa (s @ [bot]))
by (metis ex-perm-nth length-append-singleton lessI nth-mem perm-upt-length)

then show suffix (s @ [bot]) (length s) ∈ set (map (suffix (s @ [bot])) (sa (s @
[bot])))

by force
qed
hence map (suffix (s @ [bot])) (sa (s @ [bot])) ! 0 = suffix (s @ [bot]) (length s)

using assms(2 ,3) strict-sorted-Min by fastforce
hence suffix (s @ [bot]) ((sa (s @ [bot])) ! 0) = suffix (s @ [bot]) (length s)

by (metis assms(1 ,2) nth-map perm-upt-length valid-list-length)
hence (sa (s @ [bot])) ! 0 = length s

by (metis Suc-le-eq ‹suffix (s @ [bot]) (length s) = [bot]› assms(1) drop-all
last-suffix-index

list.distinct(1) list.sel(1) not-less-eq-eq)
then show ?thesis

by (metis append-eq-Cons-conv assms(1 ,2) id-take-nth-drop perm-upt-length
take0

valid-list-length)
qed

lemma valid-list-bot-perm:
assumes valid-list (s @ [bot])
and sa (s @ [bot]) <∼∼> [0 ..<length (s @ [bot])]
and strict-sorted (map (suffix (s @ [bot])) (sa (s @ [bot])))

shows ∃ xs. sa (s @ [bot]) = length s # xs ∧ xs <∼∼> [0 ..<length s]

91

proof −
from valid-list-bot-min[OF assms(1), of sa, OF assms(2 ,3)]
obtain xs where

sa (s @ [bot]) = length s # xs
by blast

with assms(2)
have length s # xs <∼∼> [0 ..<length (s @ [bot])]

by simp
then show ?thesis

by (metis ‹sa (s @ [bot]) = length s # xs› assms(1) length-append-singleton
less-Suc-eq-le

perm-append2-eq perm-append-single upt-Suc valid-list-length)
qed

lemma valid-list-bot-perm-sort:
assumes valid-list (s @ [bot])
and sa (s @ [bot]) <∼∼> [0 ..<length (s @ [bot])]
and strict-sorted (map (suffix (s @ [bot])) (sa (s @ [bot])))

shows ∃ xs. sa (s @ [bot]) = length s # xs ∧ xs <∼∼> [0 ..<length s] ∧
strict-sorted (map (suffix s) xs)

proof −
from valid-list-bot-perm[OF assms(1), of sa, OF assms(2 ,3)]
obtain xs where

sa (s @ [bot]) = length s # xs
xs <∼∼> [0 ..<length s]
by blast

with assms(3)
have strict-sorted (map (suffix (s @ [bot])) (length s # xs))

by simp
hence strict-sorted ((suffix (s @ [bot]) (length s)) # map (suffix (s @ [bot])) xs)

by simp
hence P: strict-sorted (map (suffix (s @ [bot])) xs)

using strict-sorted-simps(2) by blast

have strict-sorted (map (suffix s) xs)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length xs
with sorted-wrt-nth-less[OF P, of i j]
have suffix (s @ [bot]) (xs ! i) < suffix (s @ [bot]) (xs ! j)

by auto
moreover
have xs ! i < length s
using ‹i < j› ‹j < length xs› ‹xs <∼∼> [0 ..<length s]› perm-distinct-set-of-upt-iff

by auto
hence suffix (s @ [bot]) (xs ! i) = suffix s (xs ! i) @ [bot]

using suffix-app by blast
moreover
have xs ! j < length s

92

using ‹j < length xs› ‹xs <∼∼> [0 ..<length s]› perm-distinct-set-of-upt-iff
by auto

hence suffix (s @ [bot]) (xs ! j) = suffix s (xs ! j) @ [bot]
using suffix-app by blast

moreover
have valid-list (suffix s (xs ! i) @ [bot])

using ‹xs ! i < length s› assms valid-suffix by fastforce
moreover
have valid-list (suffix s (xs ! j) @ [bot])

using ‹xs ! j < length s› assms valid-suffix by fastforce
ultimately show suffix s (xs ! i) < suffix s (xs ! j)

by (simp add: valid-list-list-less-imp)
qed
with ‹sa (s @ [bot]) = length s # xs› ‹xs <∼∼> [0 ..<length s]›
show ?thesis

by blast
qed

theorem Suffix-Array-Restricted-valid-list-bot-perm-sort:
assumes valid-list (s @ [bot])
and Suffix-Array-Restricted sa

shows ∃ xs. sa (s @ [bot]) = length s # xs ∧ xs <∼∼> [0 ..<length s] ∧
strict-sorted (map (suffix s) xs)

proof (rule valid-list-bot-perm-sort[OF assms(1)])
from assms
show sa (s @ [bot]) <∼∼> [0 ..<length (s @ [bot])]

using Suffix-Array-Restricted-def by blast
next

from assms
show strict-sorted (map (suffix (s @ [bot])) (sa (s @ [bot])))

using Suffix-Array-Restricted-def by blast
qed

lemma Suffix-Array-Restricted-wrapper-permutation:
assumes Linorder-to-Nat-List α s
and Suffix-Array-Restricted sa

shows sa-nat-wrapper α sa s <∼∼> [0 ..<length s]
proof −

let ?α = α s
let ?f = λx. Suc (?α x)
let ?s = map ?f s

have valid-list (?s @ [bot])
using valid-list-Suc-mapping by blast

with Suffix-Array-Restricted-valid-list-bot-perm-sort[OF - ‹Suffix-Array-Restricted
-›]

obtain xs where
sa (?s @ [bot]) = length ?s # xs
xs <∼∼> [0 ..<length ?s]

93

strict-sorted (map (suffix ?s) xs)
by blast

then show ?thesis
by (simp add: sa-nat-wrapper-def)

qed

lemma Suffix-Array-Restricted-wrapper-sorted:
assumes Linorder-to-Nat-List α s
and Suffix-Array-Restricted sa

shows strict-sorted (map (suffix s) (sa-nat-wrapper α sa s))
proof −

let ?α = α s
let ?f = λx. Suc (?α x)
let ?s = map ?f s

have valid-list (?s @ [bot])
using valid-list-Suc-mapping by blast

with Suffix-Array-Restricted-valid-list-bot-perm-sort[OF - ‹Suffix-Array-Restricted
-›]

obtain xs where A:
sa (?s @ [bot]) = length ?s # xs
xs <∼∼> [0 ..<length ?s]
strict-sorted (map (suffix ?s) xs)
by blast

hence xs <∼∼> [0 ..<length s]
by simp

with ordlist-strict-mono-on-strict-sorted-1 [
OF Linorder-to-Nat-List.strict-mono-on-Suc-map-to-nat[OF assms(1)] -

A(3)]
show ?thesis

by (simp add: A(1) sa-nat-wrapper-def)
qed

40 Equivalence
lemma Suffix-Array-General-imp-Restrict:

Suffix-Array-General sa-nat =⇒ Suffix-Array-Restricted sa-nat
using Suffix-Array-General-def Suffix-Array-Restricted.intro by blast

interpretation Linorder-to-Nat-List map-to-nat
proof

show strict-mono-on (set xs) (map-to-nat xs)
by (simp add: map-to-nat-strict-mono-on)

qed

lemma Suffix-Array-Restricted-imp-General:
Suffix-Array-Restricted sa =⇒ Suffix-Array-General (sa-nat-wrapper map-to-nat

sa)
using Linorder-to-Nat-List-axioms Suffix-Array-General-def

94

Suffix-Array-Restricted-wrapper-permutation Suffix-Array-Restricted-wrapper-sorted
by blast

lemma Suffix-Array-General-Restrict-determinism:
assumes Suffix-Array-Restricted f
and Suffix-Array-General g

shows sa-nat-wrapper map-to-nat f = g
by (simp add: Suffix-Array-General-determinism Suffix-Array-Restricted-imp-General

assms)

end
theory Simple-SACA

imports
../order/Suffix
../order/List-Lexorder-Util

begin

fun gen-suffixes :: (′a :: {linorder ,order-bot}) list ⇒ ′a list list
where

gen-suffixes s = map (suffix s) [0 ..<(length s)]

fun suffix-ids :: (′a :: {linorder ,order-bot}) list ⇒ ′a list list ⇒ nat list
where

suffix-ids s ss = map (λx. length s − length x) ss

fun simple-saca :: (′a :: {linorder ,order-bot}) list ⇒ nat list
where

simple-saca s = suffix-ids s (sort (gen-suffixes s))

end
theory Simple-SACA-Verification

imports
Simple-SACA
../spec/Suffix-Array

begin

lemma suf-length-app:
i < length xs =⇒ length (suffix (xs @ ys) i) = length (suffix xs i) + length ys
apply (induct xs)
apply simp

apply simp
done

lemma distinct-natlist-add:
distinct (xs :: nat list) =⇒ distinct (map ((+) n) xs)
apply (induct xs arbitrary: n)
apply simp

apply clarsimp
done

95

lemma nat-minus-cancel-right:
[[(x::nat) ≤ n; y ≤ n; n − x = n − y]] =⇒ x = y
apply (subst (asm) le-imp-diff-is-add, simp)
apply (subst (asm) add.commute)
apply (subst (asm) add-diff-assoc, simp)
apply (subst (asm) add.commute)
apply (drule sym)
apply (subst (asm) Nat.le-imp-diff-is-add, simp)
apply clarsimp
done

lemma distinct-natlist-sub:
[[distinct (xs :: nat list); ∀ x ∈ set xs. x ≤ n]] =⇒ distinct (map ((−) n) xs)
by (meson distinct-map inj-onI nat-minus-cancel-right)

lemma map-suf-app:
n ≤ length xs =⇒

map (length ◦ suffix (xs @ ys)) [0 ..<n] = map ((+) (length ys)) (map (length
◦ (suffix xs)) [0 ..<n])

apply (induct xs)
apply simp

apply clarsimp
apply (subst add.commute)
apply simp
done

lemma distinct-map-length-gen-suffixes:
distinct (map length (gen-suffixes s))
apply (induct s rule: rev-induct)
apply simp

apply (simp only: gen-suffixes.simps map-map length-append)
apply (subst upt-add-eq-append; simp only: map-append)
apply (subst map-suf-app; simp only: distinct-append)
apply (rule conjI)
apply (rule distinct-natlist-add; simp)

apply (rule conjI ; clarsimp)
done

lemma different-length-different-list:
length a /∈ length ‘ set xs =⇒ a /∈ set xs
apply blast
done

lemma distinct-map-length-sort:
distinct (map length xs) =⇒ distinct (map length (sort xs))
apply (induct xs)
apply simp

apply clarsimp

96

apply (rule card-distinct)
apply simp
apply (drule distinct-card)
apply clarsimp
apply (frule different-length-different-list)
apply (subst insort-insert-insort[symmetric]; simp)
apply (subst set-insort-insert)
apply simp
done

lemma suffix-ids-def ′:
suffix-ids s xs = map (((−) (length s)) ◦ length) xs
apply simp
done

lemma distinct-simple-saca:
distinct (simple-saca s)
apply (subst simple-saca.simps)
apply (subst suffix-ids-def ′)
apply (subst map-map[symmetric])
apply (rule distinct-natlist-sub)
apply (rule distinct-map-length-sort[OF distinct-map-length-gen-suffixes])

apply clarsimp
done

lemma suf-suffix-id-suf :
i < length s =⇒ suffix s (length s − length (suffix s i)) = suffix s i
apply (induct s arbitrary: i)
apply simp

apply clarsimp
done

lemma in-set-ordlist-sort:
(x ∈ set xs) = (x ∈ set (sort xs))
by simp

lemma ordlist-sort-conv-nth:
(∃ i<length xs. xs ! i = x) = (∃ i<length xs. (sort xs) ! i = x)
by (metis in-set-conv-nth length-sort set-sort)

lemma ordlist-sort-nth-before:
[[i < length xs; (sort xs) ! i = x]] =⇒
∃ j<length xs. xs ! j = x

apply (subst ordlist-sort-conv-nth)
apply blast
done

lemma suf-sort-suf-nth:
i < length s =⇒

97

suffix s (length s − length ((sort (gen-suffixes s)) ! i)) =
sort (gen-suffixes s) ! i

proof −
assume i < length s

have ∃ x. sort (gen-suffixes s) ! i = x
by blast

then obtain x where
sort (gen-suffixes s) ! i = x
by blast

with ordlist-sort-nth-before[of i gen-suffixes s x]
have ∃ j<length (gen-suffixes s). gen-suffixes s ! j = x

by (simp add: ‹i < length s›)
then obtain j where

j < length (gen-suffixes s)
gen-suffixes s ! j = x
by blast

hence sort (gen-suffixes s) ! i = gen-suffixes s ! j
using ‹sort (gen-suffixes s) ! i = x› by blast

moreover
have j < length s

using ‹j < length (gen-suffixes s)› by auto
hence gen-suffixes s ! j = suffix s j

by simp
ultimately show ?thesis

by (metis ‹j < length s› suf-suffix-id-suf)
qed

lemma map-suf-simple-saca:
map (suffix s) (simple-saca s) = sort (gen-suffixes s)
apply (simp only: simple-saca.simps suffix-ids.simps)
apply (subst list-eq-iff-nth-eq)
apply (rule conjI)
apply simp

apply (clarsimp simp del: gen-suffixes.simps)
apply (rule suf-sort-suf-nth; simp)
done

interpretation simple-saca: Suffix-Array-General simple-saca
proof

fix s :: (′a :: {linorder , order-bot}) list

show simple-saca s <∼∼> [0 ..<length s]
proof −

have set (simple-saca s) = {0 ..<length s}
by force

with perm-distinct-set-of-upt-iff [THEN iffD2 , OF conjI , OF distinct-simple-saca]
show ?thesis

98

by blast
qed

show strict-sorted (map (suffix s) (simple-saca s))
proof −

from ‹simple-saca s <∼∼> [0 ..<length s]›
have set (simple-saca s) = {0 ..<length s}

using perm-distinct-set-of-upt-iff by blast
hence ∀ x ∈ set (simple-saca s). x < length s

using atLeastLessThan-iff by blast
with distinct-simple-saca distinct-suffixes
have distinct (map (suffix s) (simple-saca s))

by blast

have sorted (map (suffix s) (simple-saca s))
by (metis map-suf-simple-saca sorted-sort)

with ‹distinct (map (suffix s) (simple-saca s))› show ?thesis
using strict-sorted-iff by blast

qed
qed

end
theory List-Type

imports
../../util/Nat-Util
../../util/Set-Util
../../util/Fun-Util
../../util/List-Util
../../order/Suffix-Util
../../order/Valid-List-Util
../../spec/Suffix-Array-Properties

begin

This theory file contains the background theory for the SAIS algorithm
(Nong et al., DCC 2009), which is essentially an optimisation of the KA
algorithm (Ko et al, JDA 2005).

41 Small and Large List Types
datatype SL-types = S-type | L-type

This section contains a generalisation of the suffix types to sequences of
any type and any element comparison function that satisfies certain prop-
erties given the theorem. Typical constraints involve either one or a combi-
nation of totalp-on, irreflp-on, transp-on and asymp-on.
definition

list-type :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ SL-types
where

99

list-type cmp xs =
(if nslexordp cmp xs (suffix xs (Suc 0))
then S-type
else L-type)

lemma list-type-cons-same:
[[irreflp-on A cmp; x ∈ A]] =⇒ list-type cmp (x # x # xs) = list-type cmp (x #

xs)
by (clarsimp simp: list-type-def irreflp-onD)

lemma list-type-nil:
list-type cmp [] = L-type
by (clarsimp simp: list-type-def nslexordp-def)

lemma list-type-singleton:
list-type cmp [x] = S-type
by (simp add: nslexordp-def list-type-def)

lemma list-type-s-type-eq:
list-type cmp xs = S-type ←→ nslexordp cmp xs (suffix xs (Suc 0))
by (simp add: list-type-def)

lemma list-type-l-type-eq:
list-type cmp xs = L-type ←→ ¬nslexordp cmp xs (suffix xs (Suc 0))
by (simp add: list-type-def)

lemma list-type-cons-diff1 :
cmp x y =⇒ list-type cmp (x # y # xs) = S-type
by (simp add: list-type-s-type-eq)

lemma list-type-cons-diff2 :
[[¬cmp x y; x 6= y]] =⇒ list-type cmp (x # y # xs) = L-type
by (clarsimp simp add: list-type-l-type-eq)

lemma list-type-s-neq-nil:
list-type cmp xs = S-type =⇒ xs 6= []
by (metis SL-types.simps(2) list-type-nil)

lemma list-type-s-hd-cmp:
list-type cmp (x # y # xs) = S-type =⇒ cmp x y ∨ x = y
by (metis SL-types.simps(2) list-type-cons-diff2)

lemma list-type-l-hd-cmp:
list-type cmp (x # y # xs) = L-type =⇒ ¬cmp x y ∨ x = y
by (metis SL-types.simps(2) list-type-cons-diff1)

lemma list-type-repl:
[[irreflp-on A cmp; x ∈ A; set xs = {x}]] =⇒ list-type cmp (x # xs) = S-type
apply (induct xs; simp add: list-type-cons-same)

100

using list-type-singleton subset-singletonD by fastforce

lemma list-type-s-ex:
assumes list-type cmp (x # xs) = S-type
shows (∀ a ∈ set xs. a = x) ∨ (∃ b as bs. x # xs = as @ x # b # bs ∧ cmp x b
∧ (∀ k ∈ set as. k = x))
proof −

from list-type-s-type-eq[THEN iffD1 , OF assms(1)]
have nslexordp cmp (x # xs) xs

by simp
with nslexordp-cons2-exE [of cmp x xs]
show ?thesis

by blast
qed

lemma list-type-l-type-ex:
assumes list-type cmp (x # xs) = L-type
and totalp-on A cmp
and x ∈ A
and set xs ⊆ A
shows ∃ b as bs. x # xs = as @ x # b # bs ∧ cmp b x ∧ (∀ k ∈ set as. k = x)

proof −
from list-type-l-type-eq[THEN iffD1 , OF assms(1)]
have ¬ nslexordp cmp (x # xs) xs

by simp
moreover
have x # xs 6= xs

by fastforce
ultimately have nslexordp cmp xs (x # xs)

using totalp-onD[OF nslexordp-totalp-on[OF assms(2)]]
by (metis assms(3 ,4) insert-subset list.simps(15) mem-Collect-eq)

with nslexordp-cons1-exE [of cmp xs x]
show ?thesis

by blast
qed

theorem l-less-than-s-type-list-type:
assumes list-type cmp (a # s1) = S-type
and list-type cmp (a # s2) = L-type
and totalp-on A cmp
and transp-on A cmp
and a ∈ A
and set s1 ⊆ A
and set s2 ⊆ A

shows nslexordp cmp (a # s2) (a # s1)
proof −

from list-type-l-type-ex[OF assms(2 ,3 ,5 ,7)]
obtain b as bs where

a # s2 = as @ a # b # bs

101

cmp b a
∀ k∈set as. k = a
by blast

hence S2 : a # s2 = replicate (length as) a @ a # b # bs
by (simp add: replicate-length-same)

let ?c1 = ∀ x ∈ set s1 . x = a
and ?c2 = ∃ d cs ds. a # s1 = cs @ a # d # ds ∧ cmp a d ∧ (∀ k∈set cs. k =

a)

from list-type-s-ex[OF assms(1)]
have ?c1 ∨ ?c2

by blast
moreover
have ?c1 =⇒ ?thesis

proof −
assume ?c1

have length s1 ≤ length as =⇒ ?thesis
proof −

assume length s1 ≤ length as
have a # s1 = replicate (length s1) a @ [a]

by (metis ‹?c1 › replicate-append-same replicate-length-same)
hence ∃ es. replicate (length as) a @ [a] = a # s1 @ es
by (metis ‹length s1 ≤ length as› le-add-diff-inverse list.simps(1) replicate-add

replicate-append-same)
then show ?thesis
by (metis S2 SL-types.simps(2) append.assoc append.right-neutral assms(1)

assms(2)
list.sel(3) neq-Nil-conv nslexordpI2 nslexordp-cons-cons repli-

cate-app-Cons-same)
qed
moreover
have length s1 > length as =⇒ ?thesis
proof −

assume length s1 > length as
hence ∃ es. s1 = replicate (length as) a @ a # es

by (metis ‹?c1 › add-Suc-right less-iff-Suc-add replicate-Suc replicate-add
replicate-length-same)

then obtain es where
s1 = replicate (length as) a @ a # es
by blast

hence S1 : a # s1 = replicate (length as) a @ a # a # es
by (simp add: replicate-app-Cons-same)

then show ?thesis
by (metis S2 ‹cmp b a› nslexordpI1 nslexordp-cons-cons replicate-app-Cons-same)

qed
ultimately show ?thesis

by linarith

102

qed
moreover
have ?c2 =⇒ ?thesis
proof −

assume ?c2
then obtain d cs ds where

a # s1 = cs @ a # d # ds
cmp a d
∀ k∈set cs. k = a
by blast

hence S1 : a # s1 = replicate (length cs) a @ a # d # ds
by (simp add: replicate-length-same)

from transp-onD[OF assms(4) - assms(5) - ‹cmp b a› ‹cmp a d›]
have cmp b d

by (metis S1 S2 add-diff-cancel-left ′ assms(6 ,7) length-Cons length-append
less-Suc-eq-le

list.simps(1) nth-append-length nth-mem replicate-app-Cons-same
subsetD zero-le

zero-less-diff)
hence length cs = length as =⇒ ?thesis

by (metis S1 S2 nslexordpI1 nslexordp-cons-cons replicate-app-Cons-same)
moreover
have length as < length cs =⇒ ?thesis
proof −

assume length as < length cs
hence ∃ es. replicate (length cs) a = replicate (length as) a @ a # es ∧

(∀ k ∈ set es. k = a)
by (metis (no-types, lifting) Cons-nth-drop-Suc S1 ‹a # s1 = cs @ a # d

ds› add-Suc-right
add-diff-cancel-left ′ append-same-eq drop-replicate

in-set-replicate less-iff-Suc-add nth-mem replicate-add)
then obtain es where

replicate (length cs) a = replicate (length as) a @ a # es
∀ k ∈ set es. k = a
by blast

then show ?thesis
by (metis S1 S2 ‹cmp b a› append.assoc append-Cons nslexordpI1 repli-

cate-app-Cons-same)
qed
moreover
have length cs < length as =⇒ ?thesis
proof −

assume length cs < length as
hence ∃ es. replicate (length as) a = replicate (length cs) a @ a # es ∧

(∀ k ∈ set es. k = a)
by (metis (no-types, lifting) Cons-nth-drop-Suc S2 ‹a # s2 = as @ a # b

bs› add-Suc-right
add-diff-cancel-left ′ append-same-eq drop-replicate

103

in-set-replicate less-iff-Suc-add nth-mem replicate-add)
then obtain es where

replicate (length as) a = replicate (length cs) a @ a # es
∀ k ∈ set es. k = a
by blast

then show ?thesis
by (metis S1 S2 ‹cmp a d› append.assoc append-Cons nslexordpI1 repli-

cate-app-Cons-same)
qed
ultimately show ?thesis

by linarith
qed
ultimately show ?thesis

by blast
qed

lemma list-type-cons-diff-type1 :
[[list-type cmp (a # b # xs) = S-type; list-type cmp (b # xs) = L-type]] =⇒

cmp a b
by (simp add: list-type-l-type-eq list-type-s-type-eq)

lemma list-type-cons-diff-type2 :
[[list-type cmp (a # b # xs) = L-type; list-type cmp (b # xs) = S-type]] =⇒
¬cmp a b ∧ a 6= b

by (simp add: list-type-l-type-eq list-type-s-type-eq)

42 Suffix Type
This section contains the suffix type definition.
definition suffix-type :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ SL-types

where
suffix-type s i ≡
(if list-less-ns (suffix s i) (suffix s (Suc i)) then S-type
else L-type)

lemma suffix-type-list-type-eq:
suffix-type xs i = list-type (<) (suffix xs i)
by (clarsimp simp: suffix-type-def list-type-def nslexordp-eq-list-less-ns)

There are two types of suffixes (SL-types): S-type and L-type. An S-type
suffix is a suffix that is strictly less than the suffix that occurs immediately
after it, and an L-type suffix is a suffix that is strictly greater than the suffix
that occurs immediately after it. The definition of less than used here is
list-less-ns. Note that this definition of less than differs from lexicographical
order(list-less, i.e. dictionary order, but it is equivalent when the both lists
are valid (valid-list) as shown in [[valid-list ?s1 .0 ; valid-list ?s2 .0]] =⇒ (?s1 .0
< ?s2 .0) = list-less-ns ?s1 .0 ?s2 .0. There are three reasons for using the
list-less-ns definition, and we explain in order of importance.

104

The first reason is that the original suffix types definition required a
special case for the singleton suffix that only contains the sentinel symbol.
While this special case makes sense in regards to the algorithms, i.e. it is
necessary for the correctness of the algorithms, it does not naturally follow
from the intuition of suffix types. In fact, it contradicts the intuitive def-
inition that follows from the lexicographical order list-less. That is, a list
that only consists of one element is always strictly greater than the empty
list. With the alternate definition of less than list-less-ns, a proper prefix
is always strictly greater, and so, a singleton list will always be strictly less
than the empty list. Therefore, there is no need to have a special case for
the singleton suffix that only contains the sentinel.

The second reason is that the SAIS algorithm uses a sublist order that
depends on the suffix type definition (see Section S̈AIS Sublist Order)̈. This
definition is perfectly valid for the algorithm, since the ordering is only used
for sublist of the same list. However, the ordering is not easily understand-
able when applied to arbitrary list, even though it is equivalent to list-less-ns,
which we prove in a later section. As an ordering, list-less-ns is much easier
to understand. It is also used within the definition of suffix-type. There-
fore, it makes more sense to reuse list-less-ns, rather than having multiple
definitions of the same thing.

The third reason is that the original suffix types definition does not
handle the case where the suffix is not terminated by sentinel symbol. The
reason for this is that it is assumed that all lists are terminated by the
sentinel. This assumption is very important to the SAIS algorithm as it is
central to its correctness argument. That being said, in terms of elegance
and consistency, using list-less-ns requires the least amount of special cases.

42.1 General Suffix Type Simplifications
This section contains theorems that simplify the use of the definition suf-
fix-type.
lemma suffix-type-cons-suc:

suffix-type (a # s) (Suc i) = suffix-type s i
by (simp add: suffix-type-def)

lemma suffix-type-cons-same:
suffix-type (x # x # xs) 0 = suffix-type (x # xs) 0
by (simp add: list-less-ns-cons-same suffix-type-def)

lemma suffix-type-suffix:
suffix-type s i = suffix-type (suffix s i) 0
by (simp add: suffix-type-list-type-eq)

lemma suffix-type-suffix-gen:
suffix-type (suffix s n) i = suffix-type s (i + n)

105

by (simp add: suffix-type-list-type-eq)

lemma suffix-type-eq-Suc:
suffix-type xs n = suffix-type xs (Suc n) =⇒
suffix-type xs n = S-type ∨ suffix-type xs (Suc n) = L-type

using SL-types.exhaust by auto

42.2 S-Type Simplifications
This subsection contains theorems about facts that can be derived S-type
suffixes and vice versa.
lemma suffix-is-bot:

suffix s i = [bot] =⇒ suffix-type s i = S-type
by (simp add: list-type-singleton suffix-type-list-type-eq)

lemma suffix-is-singleton:
suffix s i = [x] =⇒ suffix-type s i = S-type
by (simp add: list-type-singleton suffix-type-list-type-eq)

lemma suffix-type-last:
length xs = Suc n =⇒ suffix-type xs n = S-type
by (simp add: list-less-ns-nil suffix-type-def)

lemma s-type-list-less-ns:
suffix-type s i = S-type ←→ list-less-ns (suffix s i) (suffix s (Suc i))
by (metis SL-types.simps(2) suffix-type-def)

lemma nth-less-imp-s-type:
[[Suc i < length s; s ! i < s ! Suc i]] =⇒ suffix-type s i = S-type
by (metis Cons-nth-drop-Suc Suc-lessD less-imp-le list-less-ns-cons neq-iff s-type-list-less-ns)

lemma sl-type-hd-less:
[[Suc i < length s; hd (suffix s i) < hd (suffix s (Suc i))]] =⇒
suffix-type s i = S-type

by (simp add: hd-drop-conv-nth nth-less-imp-s-type)

lemma suffix-type-cons-less:
x < y =⇒ suffix-type (x # y # xs) 0 = S-type
by (clarsimp simp: suffix-type-def list-less-ns-cons-diff)

lemma suffix-type-s-bound:
suffix-type s i = S-type =⇒ i < length s
using ordlistns.less-asym s-type-list-less-ns by fastforce

lemma s-type-letter-le-Suc:
[[Suc i < length T ; suffix-type T i = S-type]] =⇒

T ! i ≤ T ! (Suc i)
by (metis Cons-nth-drop-Suc Suc-lessD leI list-less-ns-cons-diff ordlistns.less-asym

s-type-list-less-ns)

106

lemma s-type-ex:
assumes suffix-type (x # xs) 0 = S-type
shows (∀ a ∈ set xs. a = x) ∨ (∃ b as bs. x # xs = as @ x # b # bs ∧ x < b ∧

(∀ k ∈ set as. k = x))
by (metis assms drop0 list-type-s-ex suffix-type-list-type-eq)

42.3 L-Type Simplifications
This subsection contains theorems about facts that can be derived from
L-type suffixes and vice versa.
lemma suffix-is-nil:

suffix s i = [] =⇒ suffix-type s i = L-type
by (clarsimp simp: suffix-type-def split: if-splits)

lemma l-type-list-less-ns:
suffix-type s i = L-type ←→ list-less-ns (suffix s (Suc i)) (suffix s i) ∨ suffix s i

= []
by (metis Cons-nth-drop-Suc SL-types.distinct(1) drop-Nil drop-eq-Nil linorder-le-less-linear

not-Cons-self2 ordlistns.less-imp-not-less ordlistns.neqE suffix-type-def
suffix-type-suffix)

lemma nth-gr-imp-l-type:
[[Suc i < length s; s ! i > s ! Suc i]] =⇒ suffix-type s i = L-type
by (metis Cons-nth-drop-Suc Suc-lessD list-less-ns-cons-diff ordlistns.less-asym

suffix-type-def)

lemma sl-type-hd-greater :
[[Suc i < length s; hd (suffix s i) > hd (suffix s (Suc i))]] =⇒
suffix-type s i = L-type

by (simp add: hd-drop-conv-nth nth-gr-imp-l-type)

lemma suffix-type-cons-greater :
x > y =⇒ suffix-type (x # y # xs) 0 = L-type
by (simp add: list-type-cons-diff2 suffix-type-list-type-eq)

lemma l-type-letter-gre-Suc:
[[i < length T ; suffix-type T i = L-type]] =⇒

T ! (Suc i) ≤ T ! i
by (metis SL-types.distinct(1) Suc-lessI not-less nth-less-imp-s-type suffix-type-last)

lemma l-type-ex:
assumes suffix-type (x # xs) 0 = L-type
shows ∃ b as bs. x # xs = as @ x # b # bs ∧ x > b ∧ (∀ k ∈ set as. k = x)
by (metis assms drop0 drop-Suc-Cons l-type-list-less-ns list.discI list-less-ns-cons1-exE)

An overlooked property, but one that is crucial for completeness of the
SAIS algorithm
lemma suffix-max-hd-is-l-type:

107

assumes valid-list s
and i < length s
and length s > Suc 0
and hd (suffix s i) = Max (set s)

shows suffix-type s i = L-type
using assms

proof (induct s arbitrary: i)
case Nil
then show ?case

by simp
next

case (Cons a s i)
note IH = this
show ?case
proof (cases s)

case Nil
then show ?thesis

using IH (4) by auto
next

case (Cons b xs)
assume s = b # xs
show ?thesis
proof (cases xs)

case Nil
hence s = [b]

by (simp add: local.Cons)
moreover
have b = bot

by (metis IH (2) last.simps local.Cons local.Nil not-Cons-self
valid-list-iff-butlast-app-last)

moreover
have a > b
by (metis IH (2 ,4) One-nat-def antisym-conv3 bot.extremum-strict nth-Cons-0

valid-list-def
zero-less-diff calculation(2))

ultimately show ?thesis
by (metis IH (2 ,3 ,5) Max-greD add-diff-cancel-left ′ last-suffix-index length-Cons

less-Suc0
linorder-not-less list.size(3) not-less-eq not-less-iff-gr-or-eq nth-Cons-0

plus-1-eq-Suc suffix-type-cons-greater)
next

case (Cons c ys)
hence s = b # c # ys

by (simp add: ‹s = b # xs›)
show ?thesis
proof (cases i)

case 0
hence a ≥ b

by (metis IH (4 ,5) List.finite-set Max-ge ‹s = b # xs› drop0 list.sel(1)

108

nth-Cons-0
nth-Cons-Suc nth-mem)

hence a > b ∨ a = b
using antisym-conv1 by blast

then show ?thesis
proof

assume b < a
then show ?thesis

by (simp add: 0 ‹s = b # xs› suffix-type-cons-greater)
next

assume a = b
hence Max (set s) = b

using 0 IH (5) ‹s = b # xs› by auto
with IH (1)[of 0]
have suffix-type s 0 = L-type

by (metis IH (2) Suc-less-eq2 ‹s = b # xs› drop0 drop-Suc-Cons
length-Cons list.sel(1)

local.Cons valid-suffix zero-less-Suc)
then show ?thesis

by (simp add: 0 ‹a = b› ‹s = b # xs› suffix-type-cons-same)
qed

next
case (Suc n)
assume i = Suc n
have valid-list s

using IH (2) ‹s = b # xs› valid-list-consD by blast
moreover
have n < length s

using IH (3) Suc by auto
moreover
have Suc 0 < length s

by (simp add: ‹s = b # xs› local.Cons)
moreover
{

have hd (suffix s n) = hd (suffix (a # s) i)
using Suc by fastforce

moreover
have hd (suffix s n) ∈ set s

by (simp add: ‹n < length s› hd-drop-conv-nth)
with IH (5)
have Max (set (a # s)) ∈ set s

using calculation by argo
hence Max (set (a # s)) = Max (set s)

using IH (5) max.cobounded1 [of a Max (set s)]
by (metis List.finite-set Max-greD Max-insert Suc-lessD ‹Suc 0 < length

s›
‹n < length s› calculation hd-drop-conv-nth length-greater-0-conv

list.set(2)
max-def set-empty)

109

ultimately have hd (suffix s n) = Max (set s)
using IH (5) by presburger

}
ultimately have suffix-type s n = L-type

using Cons.hyps by blast
then show ?thesis

by (simp add: Suc suffix-type-cons-suc)
qed

qed
qed

qed

42.4 General Suffix Type Theories
This subsection contains the background theory needed to prove that com-
puting the suffix types of a list can be achieved in linear time by starting
from the end of the list (lemma 1, Ko et al., JDA 2005).

The main intuition is that the suffix type of the (i+1)th suffix is known
and the ith suffix starts with same symbol of the (i+1)th suffix, then the ith
suffix will have the same type.
theorem sl-type-hd-equal:
[[Suc i < length s; hd (suffix s i) = hd (suffix s (Suc i))]] =⇒
suffix-type s i = suffix-type s (Suc i)
by (metis Cons-nth-drop-Suc Suc-lessD hd-drop-conv-nth l-type-letter-gre-Suc

list-less-ns-cons
suffix-type-def)

corollary sl-type-prefix-equal:
[[i + n ≤ length s; ∀ j < n. hd (suffix s (i + j)) = hd (suffix s i)]] =⇒
∀ j < n. suffix-type s (i + j) = suffix-type s i

proof (induct n)
case 0
then show ?case

by blast
next

case (Suc n)
note IH = this
hence ∀ j<n. suffix-type s (i + j) = suffix-type s i

by (metis add-Suc-right less-Suc-eq linorder-not-less)
show ?case
proof safe

fix j
assume j < Suc n
then show suffix-type s (i + j) = suffix-type s i
proof (cases j < n)

assume j < n
then show ?thesis

by (simp add: ‹∀ j<n. suffix-type s (i + j) = suffix-type s i›)

110

next
assume ¬ j < n
hence j = n

using ‹j < Suc n› by auto
show ?thesis
proof (cases j)

case 0
then show ?thesis

by simp
next

case (Suc m)
then show ?thesis

by (metis Suc.prems(1 ,2) Suc-lessD Suc-less-SucD ‹j < Suc n› ‹j = n›
add-Suc-right

‹∀ j<n. suffix-type s (i + j) = suffix-type s i› le-imp-less-Suc
sl-type-hd-equal)

qed
qed

qed
qed

corollary sl-type-prefix-equal-nth:
[[i + n ≤ length s; ∀ j < n. (suffix s i) ! j = (suffix s i) ! 0]] =⇒
∀ j < n. suffix-type s (i + j) = suffix-type s i

by (rule sl-type-prefix-equal, assumption, clarsimp simp: hd-conv-nth)

corollary sl-type-prefix-replicate:
∀ i < n. suffix-type (replicate n a @ as) i = suffix-type (replicate n a @ as) 0
by (rule sl-type-prefix-equal-nth[where i = 0 , simplified]; clarsimp simp: nth-append)

lemma suffix-type-neq:
[[suffix-type T j 6= suffix-type T (Suc j); Suc j < length T]] =⇒ T ! j 6= T ! Suc j
by (metis Cons-nth-drop-Suc Suc-lessD l-type-letter-gre-Suc list-less-ns-cons suf-

fix-type-def)

42.5 S/L-Type Ordering
This section contains the crucial theorem that L-type suffixes are always less
than S-type suffixes if they start with the same symbol (lemma 2, Ko et al.,
JDA 2005).
theorem l-less-than-s-type-general:

assumes suffix-type (a # s1) 0 = S-type
and suffix-type (a # s2) 0 = L-type

shows list-less-ns (a # s2) (a # s1)
proof −

from suffix-type-list-type-eq[of a # s1 0]
have suffix-type (a # s1) 0 = list-type (<) (a # s1)

by simp
hence list-type (<) (a # s1) = S-type

111

using assms(1) by auto
moreover
from suffix-type-list-type-eq[of a # s2 0]
have suffix-type (a # s2) 0 = list-type (<) (a # s2)

by simp
hence list-type (<) (a # s2) = L-type

using assms(2) by auto
ultimately show ?thesis

using l-less-than-s-type-list-type[of (<) a s1 s2]
by (meson UNIV-I nslexordp-eq-list-less-ns-app top-greatest totalp-on-less transp-on-less)

qed

corollary l-less-than-s-type-suffix:
assumes i < length s
and j < length s
and s ! i = s ! j
and suffix-type s i = S-type
and suffix-type s j = L-type

shows list-less-ns (suffix s j) (suffix s i)
by (metis Cons-nth-drop-Suc assms l-less-than-s-type-general suffix-type-suffix)

theorem l-less-than-s-type:
assumes valid-list s
and i < length s
and j < length s
and hd (suffix s i) = hd (suffix s j)
and suffix-type s i = S-type
and suffix-type s j = L-type

shows list-less-ns (suffix s j) (suffix s i)
by (metis hd-drop-conv-nth assms(2−) l-less-than-s-type-suffix)

corollary (in Suffix-Array-General) same-hd-s-after-l:
assumes valid-list: valid-list s
and i-less-len-s: i < length s
and j-less-len-s: j < length s
and i-neq-j: i 6= j
and suf-i-type: suffix-type s ((sa s)! i) = L-type
and suf-j-type: suffix-type s ((sa s)! j) = S-type
and hd-eq: hd (suffix s ((sa s) ! i)) = hd (suffix s ((sa s) ! j))

shows i < j
proof −

have A: (sa s) ! i < length s
using i-less-len-s sa-nth-ex by auto

from sa-set-upt[where s = s] sa-length[where s = s] j-less-len-s
have B: (sa s) ! j < length s

by (metis atLeast0LessThan lessThan-iff nth-mem)

from l-less-than-s-type[OF valid-list B A hd-eq[symmetric] suf-j-type suf-i-type]

112

have suf-i-less-suf-j: list-less-ns (suffix s ((sa s)! i)) (suffix s ((sa s)! j))
by simp

from sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted],
simplified length-map sa-length,
OF i-less-len-s j-less-len-s i-neq-j]

nth-map[where f = suffix s and xs = sa s, simplified sa-length, OF i-less-len-s]
nth-map[where f = suffix s and xs = sa s, simplified sa-length, OF j-less-len-s]

valid-list-list-less-equiv-list-less-ns[OF valid-suffix,
OF valid-list A valid-suffix,
OF valid-list B,
THEN iffD2 ,
OF suf-i-less-suf-j]

show ?thesis by simp
qed

42.6 Implementation of Suffix Type Computation
This subsection contain a shallow embedding of a function that would com-
pute the suffix types for a list.
fun abs-get-suffix-types :: (′a :: {linorder , order-bot}) list ⇒ SL-types list

where
abs-get-suffix-types [] = [] |
abs-get-suffix-types ([-]) = [S-type] |
abs-get-suffix-types (a # b # xs) =
(let ys = abs-get-suffix-types (b # xs)
in
(if a < b then S-type # ys
else if a > b then L-type # ys
else hd (ys) # ys))

lemma length-abs-get-suffix-types:
length (abs-get-suffix-types s) = length s
by (induct s rule: abs-get-suffix-types.induct; clarsimp simp: Let-def)

lemma abs-get-suffix-types-correct-nth:
i < length s =⇒ abs-get-suffix-types s ! i = suffix-type s i

proof (induct s arbitrary: i rule: abs-get-suffix-types.induct)
case 1
then show ?case

by simp
next

case (2 uu i)
then show ?case

by (simp add: suffix-is-singleton)
next

case (3 a b xs i)
note IH = this

113

have i 6= 0 =⇒ ?case
proof −

assume i 6= 0
hence ∃n. i = Suc n

using not0-implies-Suc by blast
then obtain n where

i = Suc n
by blast

hence abs-get-suffix-types (a # b # xs) ! i = abs-get-suffix-types (b # xs) ! n
by (clarsimp simp: Let-def)

moreover
have suffix-type (a # b # xs) i = suffix-type (b # xs) n

by (simp add: ‹i = Suc n› suffix-type-cons-suc)
moreover
from IH (1)[of n] IH (2) ‹i = Suc n›
have abs-get-suffix-types (b # xs) ! n = suffix-type (b # xs) n

by simp
ultimately show ?thesis

by simp
qed
moreover
have i = 0 =⇒ ?case
proof −

assume i = 0

have a < b ∨ b < a ∨ a = b
by fastforce

then show ?case
proof (elim disjE)

assume a < b
then show ?case

by (simp add: ‹i = 0 › suffix-type-cons-less)
next

assume b < a
then show ?case

using ‹i = 0 › order-less-imp-triv suffix-type-cons-greater by fastforce
next

assume a = b

have abs-get-suffix-types (b # xs) 6= []
by (metis Zero-neq-Suc length-Cons length-abs-get-suffix-types list.size(3))

hence abs-get-suffix-types (a # b # xs) ! i = abs-get-suffix-types (b # xs) ! 0
unfolding abs-get-suffix-types.simps(3)[of a b xs, simplified Let-def]
by (simp add: ‹a = b› ‹i = 0 › hd-conv-nth)

moreover
have suffix-type (a # b # xs) i = suffix-type (b # xs) 0

by (simp add: ‹a = b› ‹i = 0 › suffix-type-cons-same)
ultimately show ?case

using IH (1)[of 0 , simplified] by presburger

114

qed
qed
ultimately show ?case

by blast
qed

lemma get-suffix-types-correct:
∀ i < length s. (abs-get-suffix-types s) ! i = suffix-type s i
by (simp add: abs-get-suffix-types-correct-nth)

43 SAIS Sublist Order
This section contains the sublist ordering used in SAIS (definition 2.3, Nong
et al., DCC 2009). Note that this generalised so that it is not a ternary
relation but a binary relation.
fun ss-order-less :: (′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ bool

where
ss-order-less [] - = False |
ss-order-less - [] = True |
ss-order-less (a # as) (b # bs) =
(if a < b then True
else if a > b then False
else if suffix-type (a # as) 0 = suffix-type (b # bs) 0 then ss-order-less as bs
else if suffix-type (a # as) 0 = L-type then True
else False)

As described in section "Suffix Type", the SAIS sublist ordering (ss-order-less)
is equivalent to list-less-ns.
lemma ss-order-less-equiv-list-less-ns:

ss-order-less s1 s2 = list-less-ns s1 s2
proof (induct rule: ss-order-less.induct)

case (1 uu)
then show ?case

by simp
next

case (2 v va)
then show ?case

by (simp add: list-less-ns-nil)
next

case (3 a as b bs)
then show ?case
by (metis antisym-conv3 l-less-than-s-type-general list-less-ns-cons-diff list-less-ns-cons-same

ordlistns.less-asym ss-order-less.simps(3) suffix-type-def)
qed

44 Sorting
lemma sorted-letters-s-types:

115

assumes ∀ k≥i. k < j −→ suffix-type T k = S-type
and j ≤ length T
shows sorted (list-slice T i j)

proof (intro sorted-iff-nth-mono[THEN iffD2] allI impI)
fix x y
assume x ≤ y y < length (list-slice T i j)

have list-slice T i j ! x = T ! (i + x)
by (meson ‹x ≤ y› ‹y < length (list-slice T i j)› dual-order .strict-trans2

nth-list-slice)
moreover
have list-slice T i j ! y = T ! (i + y)

using ‹y < length (list-slice T i j)› nth-list-slice
by blast

moreover
have i + y < j

using ‹y < length (list-slice T i j)›
by (simp add: assms(2))

have i + x ≤ i + y
by (simp add: ‹x ≤ y›)

with ‹i + y < j›
have T ! (i + x) ≤ T ! (i + y)
proof (induct y − x arbitrary: x y)

case 0
then show ?case by simp

next
case (Suc z)
note IH = this
from IH (2)
have ∃ y ′. y = Suc y ′

by presburger
then obtain y ′ where

y = Suc y ′

by blast
hence z = y ′ − x

using IH (2) by linarith
moreover
have i + y ′ < j

using Suc.prems(1) ‹y = Suc y ′› by linarith
moreover
have i + x ≤ i + y ′

using Suc.hyps(2) ‹y = Suc y ′› by linarith
ultimately have T ! (i + x) ≤ T ! (i + y ′)

using Suc.hyps(1) by blast
moreover
from assms(1)
have suffix-type T (i + y ′) = S-type

by (simp add: ‹i + y ′ < j›)
hence T ! (i + y ′) ≤ T ! (i + y)

116

using Suc.prems(1) ‹y = Suc y ′› assms(2) less-le-trans s-type-letter-le-Suc
by fastforce

ultimately show ?case
using order .trans by blast

qed
ultimately show list-slice T i j ! x ≤ list-slice T i j ! y

by simp
qed

lemma sorted-letters-l-types:
assumes ∀ k≥i. k < j −→ suffix-type T k = L-type
and j ≤ length T

shows sorted ((rev (list-slice T i j)))
proof (intro sorted-rev-iff-nth-mono[THEN iffD2] allI impI)

fix x y
assume x ≤ y y < length (list-slice T i j)

have length (list-slice T i j) = j − i
by (simp add: assms(2))

have i + y < j
using ‹length (list-slice T i j) = j − i› ‹y < length (list-slice T i j)› by linarith

with ‹x ≤ y›
have T ! (i + y) ≤ T ! (i + x)
proof (induct y − x arbitrary: x y)

case 0
then show ?case by simp

next
case (Suc z x y)
note IH = this
have ∃ y ′. y = Suc y ′ ∧ x ≤ y ′ ∧ z = y ′ − x
by (metis Suc.hyps(2) Suc.prems(1) add-Suc-right add-diff-cancel-left ′ add-diff-cancel-right ′

diff-le-self ordered-cancel-comm-monoid-diff-class.add-diff-inverse)
then obtain y ′ where

y = Suc y ′ x ≤ y ′ z = y ′ − x
by blast

with IH (1) IH (4)
have T ! (i + x) ≥ T ! (i + y ′)

by simp
moreover
from assms(1)
have suffix-type T (i + y ′) = L-type

using Suc.prems(2) ‹y = Suc y ′› by auto
hence T ! (i + y ′) ≥ T ! (i + y)
using Suc.prems(2) ‹y = Suc y ′› assms(2) nth-less-imp-s-type order-less-le-trans

by fastforce
ultimately show ?case

by auto
qed

117

moreover
have list-slice T i j ! x = T ! (i + x)

by (metis ‹x ≤ y› ‹y < length (list-slice T i j)› nth-list-slice order-le-less-trans)
moreover
have list-slice T i j ! y = T ! (i + y)

using ‹y < length (list-slice T i j)› nth-list-slice by blast
ultimately show list-slice T i j ! y ≤ list-slice T i j ! x

by presburger
qed

45 LMS-Types
This section contains the definition of an LMS-type; standing for large, mid-
dle and small. It also contains lemmas pertaining to these types.
definition

abs-is-lms :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ bool
where

abs-is-lms s i ≡
(suffix-type s i = S-type) ∧
(∃ j. i = Suc j ∧

suffix-type s j = L-type)

LMS-types are subtypes of S-type. This is because these are S-type, but
they are also immediately succeed L-type.

45.1 LMS-Type Simplifications
This subsection contains theorems about facts that can be derived from the
abs-is-lms definition and vice versa.
lemma lms-type-list-less-ns:

abs-is-lms s i = (∃ j. i = Suc j ∧ list-less-ns (suffix s i) (suffix s j) ∧
list-less-ns (suffix s i) (suffix s (Suc i)))

by (metis SL-types.simps(2) abs-is-lms-def l-type-list-less-ns ordlistns.antisym-conv3

s-type-list-less-ns)

lemma abs-is-lms-0 :
¬abs-is-lms s 0
apply (clarsimp simp: abs-is-lms-def)
done

lemma abs-is-lms-cons-suc:
i > 0 =⇒ abs-is-lms (a # s) (Suc i) = abs-is-lms s i
apply (drule gr0-implies-Suc; clarsimp)
apply (clarsimp simp: abs-is-lms-def suffix-type-cons-suc)
done

118

lemma i-s-type-imp-Suc-i-not-lms:
suffix-type s i = S-type =⇒ ¬abs-is-lms s (Suc i)
by (simp add: abs-is-lms-def)

lemma suffix-type-same-imp-not-lms:
suffix-type s i = suffix-type s (Suc i) =⇒ ¬abs-is-lms s (Suc i)
by (simp add: abs-is-lms-def)

lemma abs-is-lms-consec:
abs-is-lms xs i =⇒ ¬abs-is-lms xs (Suc i)
abs-is-lms xs (Suc i) =⇒ ¬abs-is-lms xs i
by (clarsimp simp: abs-is-lms-def)+

lemma abs-is-lms-gre-length:
n ≥ length xs =⇒ ¬abs-is-lms xs n
by (metis SL-types.distinct(1) drop-eq-Nil abs-is-lms-def l-type-list-less-ns)

lemma abs-is-lms-suffix:
abs-is-lms (suffix s n) i =⇒ abs-is-lms s (i + n)
by (clarsimp simp: abs-is-lms-def suffix-type-suffix-gen)

lemma abs-is-lms-i-gr-0 :
i > 0 =⇒ abs-is-lms (suffix s n) i = abs-is-lms s (i + n)
apply safe
apply (erule abs-is-lms-suffix)

apply (clarsimp simp: abs-is-lms-def)
apply (rule conjI)
apply (subst suffix-type-suffix-gen; simp)

by (metis (no-types, opaque-lifting) add.commute add-Suc-right add-right-cancel
less-Suc-eq-le

less-iff-Suc-add ordered-cancel-comm-monoid-diff-class.diff-add suffix-type-suffix-gen)

lemma set-abs-is-lms-suffix:
{i. abs-is-lms (suffix s n) (i − n)} = {i. abs-is-lms s i ∧ i > n}
apply safe

apply (metis abs-is-lms-0 abs-is-lms-suffix le-less-linear nat-diff-split
ordered-cancel-comm-monoid-diff-class.diff-add)

apply (metis bot-nat-0 .not-eq-extremum abs-is-lms-0 zero-less-diff)
apply (cases n)
apply clarsimp

by (metis (no-types, lifting) Suc-diff-le abs-is-lms-def less-Suc-eq-le less-or-eq-imp-le
ordered-cancel-comm-monoid-diff-class.diff-add suffix-type-suffix-gen)

lemma abs-is-lms-set-less-length:
n ≥ length xs =⇒ {i. abs-is-lms xs i ∧ i < n} = {i. abs-is-lms xs i}
by (meson dual-order .trans abs-is-lms-gre-length le-less-linear)

lemma abs-is-lms-suffix-Suc:
abs-is-lms (suffix s n) (Suc i) = abs-is-lms s (Suc (i + n))

119

apply safe
apply (drule abs-is-lms-suffix; simp)

apply (clarsimp simp: abs-is-lms-def)
apply (subst suffix-type-suffix-gen)+
apply simp
done

45.2 LMS-Type Sets and Subsets
This subsection contains lemmas about sets and subsets of LMS-types.
lemma set-lms-gr-0 :
{i. abs-is-lms xs i ∧ 0 < i} = {i. abs-is-lms xs i}
using bot-nat-0 .not-eq-extremum abs-is-lms-0 by blast

lemma set-lms-n-subset:
{i. abs-is-lms xs i ∧ i > n} ⊆ {i. abs-is-lms xs i}
by blast

lemma set-lms-Suc-subset:
{i. abs-is-lms xs i ∧ i > Suc n} ⊆ {i. abs-is-lms xs i ∧ i > n}
by (simp add: Collect-mono)

lemma set-lms-Suc-insert:
abs-is-lms xs (Suc n) =⇒ {i. abs-is-lms xs i ∧ i > n} = insert (Suc n) {i.

abs-is-lms xs i ∧ i > Suc n}
using Collect-cong by auto

lemma lms-finite:
finite {i. abs-is-lms xs i}
by (metis finite-nat-set-iff-bounded abs-is-lms-def mem-Collect-eq suffix-type-s-bound)

lemma lms-set-empty:
[[length xs = Suc n; m ≥ n]] =⇒ {i. abs-is-lms xs i ∧ i > m } = {}
by (metis (no-types, lifting) Collect-empty-eq Suc-leI diff-diff-cancel abs-is-lms-gre-length

less-imp-diff-less)

45.3 Implementation of LMS-Types Computation
This section contains a shallow embedding of a function that would compute
all the LMS-types of an ordered list.
fun get-lms :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ nat list

where
get-lms xs 0 = [] |
get-lms xs (Suc n) = (if abs-is-lms xs n then n # get-lms xs n else get-lms xs n)

lemma get-lms-correct:
get-lms xs n = rev (filter (abs-is-lms xs) [0 ..<n])
apply (induct n)

120

apply simp
apply clarsimp
done

45.3.1 Properties

This subsection contains miscellaneous lemmas about facts that can be de-
rived from the shallow embedding and vice versa.
lemma get-lms-element-bound:

x ∈ set (get-lms xs n) =⇒ x < n ∧ x > 0
apply (induct n; simp)
apply (clarsimp split: if-splits)
apply (erule disjE ; clarsimp)
apply (cases x; clarsimp simp: abs-is-lms-0)
done

lemma distinct-get-lms:
distinct (get-lms xs n)
apply (induct n; clarsimp)
apply (drule get-lms-element-bound)
by blast

lemma get-lms-abs-is-lms:
x ∈ set (get-lms xs n) ←→ abs-is-lms xs x ∧ x < n
apply (subst get-lms-correct)
apply clarsimp
by blast

lemma lms-le-length:
x ∈ set (get-lms xs n) =⇒ x < length xs
by (simp add: get-lms-abs-is-lms abs-is-lms-def suffix-type-s-bound)

lemma get-lms-set:
set (get-lms xs n) = {i. abs-is-lms xs i ∧ i < n}
apply (induct n)
apply simp

apply safe
using get-lms-abs-is-lms by blast+

lemma get-lms-set-n-gre-length:
n ≥ length xs =⇒ set (get-lms xs n) = {i. abs-is-lms xs i}
apply (simp add: get-lms-set)
by (meson dual-order .trans abs-is-lms-gre-length not-less)

45.4 Cardinality LMS-Types
This section contains lemmas about how many LMS-types exist (lemma 2.1,
Nonge et al., DCC2009). These lemmas are particularly important when

121

proving that the SAIS is O(n) in space (bytes) and time complexity (lemma
3.1, Nong et al., DCC 2009).
lemma num-lms-bound-1 :

length (get-lms xs n) ≤ n div 2
proof −

have card (set (get-lms xs n)) ≤ n div 2
proof (intro ballI subset-upt-no-Suc[of set (get-lms xs n) n])

show set (get-lms xs n) ⊆ {1 ..<n}
by (simp add: Suc-leI get-lms-element-bound subset-code(1))

next
fix x
assume x ∈ set (get-lms xs n)
hence abs-is-lms xs x

by (simp add: get-lms-abs-is-lms)
then show Suc x /∈ set (get-lms xs n)

using get-lms-abs-is-lms abs-is-lms-consec(2) by blast
qed
with distinct-card[OF distinct-get-lms[of xs n]]
show ?thesis

by presburger
qed

lemma num-lms-bound-2 :
length (get-lms xs n) ≤ length xs div 2

proof −
have card (set (get-lms xs n)) ≤ length xs div 2
proof (intro ballI subset-upt-no-Suc[of set (get-lms xs n) length xs])

show set (get-lms xs n) ⊆ {1 ..<length xs}
by (metis One-nat-def Suc-leI atLeastLessThan-iff get-lms-element-bound

lms-le-length subsetI)
next

fix x
assume x ∈ set (get-lms xs n)
hence abs-is-lms xs x

by (simp add: get-lms-abs-is-lms)
then show Suc x /∈ set (get-lms xs n)

using get-lms-abs-is-lms abs-is-lms-consec(2) by blast
qed
with distinct-card[OF distinct-get-lms[of xs n]]
show ?thesis

by simp
qed

lemma card-abs-is-lms-bound:
xs 6= [] =⇒ card {i. abs-is-lms xs i} < length xs
by (metis (no-types, opaque-lifting) One-nat-def distinct-card distinct-get-lms

div-less-dividend
get-lms-set-n-gre-length le-less-linear le-less-trans length-greater-0-conv lessI
num-lms-bound-2 numeral-2-eq-2)

122

lemma card-abs-is-lms-bound-length-div-2 :
card {i. abs-is-lms xs i} ≤ length xs div 2
by (metis distinct-card distinct-get-lms get-lms-set-n-gre-length linear num-lms-bound-2)

lemma length-filter-lms:
T 6= [] =⇒ length (filter (abs-is-lms T) [0 ..<length T]) < length T
by (metis diff-zero abs-is-lms-0 length-filter-less length-greater-0-conv length-upt

nth-Cons-0
nth-mem upt-rec)

45.5 General Properties about LMS-types
lemma abs-is-lms-imp-le-nth:
[[abs-is-lms T i; Suc i < length T]] =⇒ T ! i ≤ T ! Suc i
by (metis SL-types.simps(2) abs-is-lms-def not-less nth-gr-imp-l-type)

lemma abs-is-lms-neq:
abs-is-lms T (Suc i) =⇒ T ! Suc i < T ! i
unfolding abs-is-lms-def

proof(safe)
assume suffix-type T (Suc i) = S-type suffix-type T i = L-type

from ‹suffix-type T (Suc i) = S-type›
have Suc i < length T

by (simp add: suffix-type-s-bound)
with suffix-type-neq ‹suffix-type T (Suc i) = S-type› ‹suffix-type T i = L-type›
show ?thesis

by (metis SL-types.simps(2) not-less-iff-gr-or-eq nth-less-imp-s-type)
qed

lemma abs-is-lms-last:
[[valid-list T ; length T = Suc (Suc n)]] =⇒ abs-is-lms T (Suc n)

proof (induct n arbitrary: T)
case 0
note IH = this

have T ! Suc 0 = bot
by (metis IH Zero-neq-Suc diff-Suc-1 last-conv-nth list.size(3) valid-list-def)

with IH (1)[simplified valid-list-ex-def]
have T ! 0 > T ! Suc 0
by (metis IH (2) One-nat-def bot.not-eq-extremum butlast-snoc diff-Suc-1 ′ le-less-Suc-eq

length-butlast less-or-eq-imp-le nth-butlast)
with suffix-type-last[OF IH (2)]
show ?case

using abs-is-lms-def nth-gr-imp-l-type suffix-type-s-bound by blast
next

case (Suc n)
note IH = this

123

show ?case
proof (cases T)

case Nil
then show ?thesis

by (simp add: Suc.prems(1) valid-list-not-nil)
next

case (Cons a T ′)
with IH valid-list-consD[of a T ′]
have abs-is-lms T ′ (Suc n)

by fastforce
then show ?thesis

by (simp add: abs-is-lms-def local.Cons suffix-type-cons-suc)
qed

qed

lemma abs-is-lms-imp-less-length:
abs-is-lms T i =⇒ i < length T
using abs-is-lms-gre-length le-less-linear by blast

lemma s-type-and-not-lms-Suc:
[[¬abs-is-lms T (Suc i); suffix-type T (Suc i) = S-type]] =⇒ suffix-type T i =

S-type
by (meson abs-is-lms-def suffix-type-def)

lemma no-lms-imp-all-s-type:
assumes j < length T
and i ≤ j
and ∀ k>i. k ≤ j −→ ¬abs-is-lms T k
and suffix-type T j = S-type
and i ≤ k
and k ≤ j

shows suffix-type T k = S-type
using assms

proof (induct j − k arbitrary: j)
case 0
then show ?case

by auto
next

case (Suc x)
note IH = this

have ∃ j ′. j = Suc j ′
using Suc.hyps(2) by presburger

then obtain j ′ where
j = Suc j ′
by blast

hence x = j ′ − k
using Suc.hyps(2) by linarith

moreover

124

have j ′ < length T
using Suc.prems(1) Suc-lessD ‹j = Suc j ′› by blast

moreover
have i ≤ j ′

using Suc.hyps(2) ‹j = Suc j ′› assms(5) by linarith
moreover
have ∀ k>i. k ≤ j ′ −→ ¬ abs-is-lms T k

by (simp add: Suc.prems(3) ‹j = Suc j ′›)
moreover
from IH (5)
have ¬abs-is-lms T (Suc j ′)

by (simp add: ‹j = Suc j ′› calculation(3) le-imp-less-Suc)
with IH (6) ‹j = Suc j ′› s-type-and-not-lms-Suc[of T j ′]
have suffix-type T j ′ = S-type

by blast
moreover
have k ≤ j ′

using Suc.hyps(2) ‹j = Suc j ′› by linarith
ultimately show ?case

using IH (1)[of j ′] assms(5) by blast
qed

lemma first-l-type-after-s-type:
assumes j < length T
and i ≤ j
and ∀ k>i. k ≤ j −→ ¬abs-is-lms T k
and suffix-type T j = L-type
and suffix-type T i = S-type

shows ∃ l≥i. l ≤ j ∧ (∀ k<l. i ≤ k −→ suffix-type T k = S-type) ∧ suffix-type T l
= L-type

using assms
proof (induct j − i arbitrary: j)

case 0
then show ?case

by auto
next

case (Suc x)
note IH = this

have ∃ j ′. j = Suc j ′
by (metis SL-types.distinct(1) Suc.prems(2) Suc.prems(4) assms(5) diff-is-0-eq

diff-zero
less-imp-Suc-add neq0-conv)

then obtain j ′ where
j = Suc j ′
by blast

hence x = j ′ − i
using Suc.hyps(2) ‹j = Suc j ′› by linarith

125

have j ′ < length T
using Suc.prems(1) Suc-lessD ‹j = Suc j ′› by blast

have i ≤ j ′
using Suc.hyps(2) ‹j = Suc j ′› by linarith

have P: ∀ k>i. k ≤ j ′ −→ ¬ abs-is-lms T k
by (simp add: Suc.prems(3) ‹j = Suc j ′›)

have suffix-type T j ′ = S-type ∨ suffix-type T j ′ = L-type
using SL-types.exhaust by blast

moreover
have suffix-type T j ′ = S-type =⇒ ?case
proof −

assume suffix-type T j ′ = S-type
hence ∀ k<j. i ≤ k −→ suffix-type T k = S-type

using P ‹j ′ < length T › no-lms-imp-all-s-type ‹j = Suc j ′› less-Suc-eq-le by
auto

then show ?thesis
using Suc.prems(2) Suc.prems(4) by blast

qed
moreover
have suffix-type T j ′ = L-type =⇒ ?case
proof −

assume suffix-type T j ′ = L-type
with IH (1)[OF ‹x = -› ‹j ′ < -› ‹i ≤ j ′› P - assms(5)]
have ∃ l≥i. l ≤ j ′ ∧ (∀ k<l. i ≤ k −→ suffix-type T k = S-type) ∧ suffix-type

T l = L-type .
then show ?thesis

using ‹j = Suc j ′› by auto
qed
ultimately show ?case

by blast
qed

lemma no-lms-imp-and-s-imp-all-s-below:
assumes ∀ k. i ≤ k ∧ k < j −→ ¬abs-is-lms T k
and suffix-type T k = S-type
and i ≤ k
and k < j

shows [[i ≤ k ′; k ′ ≤ k]] =⇒ suffix-type T k ′ = S-type
proof (induct k − k ′ arbitrary: k ′)

case 0
with assms
show ?case

by auto
next

case (Suc x)
note IH = this

126

from IH (2)
have x = k − Suc k ′

by linarith

from IH (3)
have i ≤ Suc k ′

by simp

from IH (2)
have Suc k ′ ≤ k

by linarith

from IH (1)[OF ‹x = k − Suc k ′› ‹i ≤ Suc k ′› ‹Suc k ′ ≤ k›]
have suffix-type T (Suc k ′) = S-type

by assumption
with assms(1) ‹i ≤ k ′› ‹k ′ ≤ k› ‹Suc k ′ ≤ k› ‹i ≤ Suc k ′› assms(4)
show ?case

by (meson SL-types.exhaust abs-is-lms-def order .strict-trans1)
qed

lemma no-lms-imp-and-l-imp-all-l-above:
assumes ∀ k. i ≤ k ∧ k < j −→ ¬abs-is-lms T k
and suffix-type T k = L-type
and i ≤ k
and k < j

shows [[k ≤ k ′; k ′ < j]] =⇒ suffix-type T k ′ = L-type
proof (induct k ′ − k arbitrary: k ′)

case 0
with assms
show ?case

by auto
next

case (Suc x)
note IH = this
from IH (2)
have ∃n. k ′ = Suc n

by (metis less-Suc-eq less-Suc-eq-0-disj zero-diff)
then obtain n where

k ′ = Suc n
by blast

with IH (2)
have x = n − k

by linarith

from IH (2) ‹k ′ = Suc n›
have k ≤ n

by linarith

127

from IH (4) ‹k ′ = Suc n›
have n < j

by linarith

from IH (1)[OF ‹x = n − k› ‹k ≤ n› ‹n < j›]
have suffix-type T n = L-type

by assumption
with assms(1) ‹k ′ = Suc n› ‹k ′ < j› ‹k ≤ k ′› assms(3)
show ?case

by (meson SL-types.exhaust abs-is-lms-def le-trans)
qed

lemma lms-sublist-helper :
assumes ∀ k. suffix-type T k = S-type −→ Suc k < n −→ i ≤ k −→ suffix-type

T (Suc k) 6= L-type
and suffix-type T i = S-type

shows [[i ≤ k; k < n]] =⇒ suffix-type T k = S-type
proof (induct k − i arbitrary: k)

case 0
then show ?case

using assms(2) by auto
next

case (Suc x)
note IH = this
from IH (2)
have ∃ k ′. k = Suc k ′

by presburger
then obtain k ′ where

k = Suc k ′

by blast
with IH (2)
have x = k ′ − i

by linarith

from IH (2) ‹k = Suc k ′›
have i ≤ k ′

by linarith

from IH (4) ‹k = Suc k ′›
have k ′ < n

by linarith

from IH (1)[OF ‹x = k ′ − i› ‹i ≤ k ′› ‹k ′ < n›] assms(1) IH (4) ‹k = Suc k ′› ‹i
≤ k ′›

show ?case
using SL-types.exhaust by blast

qed

end

128

theory Buckets
imports
../../util/Continuous-Interval
List-Type

begin

46 Buckets
46.1 Entire Bucket
definition bucket :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat set

where
bucket α T b ≡ {k |k. k < length T ∧ α (T ! k) = b}

definition bucket-size :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat
where

bucket-size α T b ≡ card (bucket α T b)

definition bucket-upt :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat
set

where
bucket-upt α T b = {k |k. k < length T ∧ α (T ! k) < b}

definition bucket-start :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
bucket-start α T b ≡ card (bucket-upt α T b)

definition bucket-end :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat
where

bucket-end α T b ≡ card (bucket-upt α T (Suc b))

lemma bucket-upt-subset:
bucket-upt α T b ⊆ {0 ..<length T}
by (rule subsetI , simp add: bucket-upt-def)

lemma bucket-upt-subset-Suc:
bucket-upt α T b ⊆ bucket-upt α T (Suc b)
by (rule subsetI , simp add: bucket-upt-def)

lemma bucket-upt-un-bucket:
bucket-upt α T b ∪ bucket α T b = bucket-upt α T (Suc b)
apply (clarsimp simp: bucket-upt-def bucket-def)
apply (intro equalityI subsetI ; clarsimp)
apply (erule disjE ; clarsimp)
done

lemma bucket-0 :
assumes valid-list T α bot = 0 strict-mono α length T = Suc k

129

shows bucket α T 0 = {k}
proof safe

fix x
assume x ∈ bucket α T 0
then show x = k
by (metis (mono-tags, lifting) assms bucket-def diff-Suc-1 le-neq-trans le-simps(2)

mem-Collect-eq strict-mono-eq valid-list-def)
next

show k ∈ bucket α T 0
by (metis (mono-tags, lifting) assms(1 ,2 ,4) bucket-def diff-Suc-1 last-conv-nth

lessI
list.size(3) mem-Collect-eq order-less-irrefl valid-list-def)

qed

lemma finite-bucket:
finite (bucket α T x)
by (clarsimp simp: bucket-def)

lemma finite-bucket-upt:
finite (bucket-upt α T b)
by (meson bucket-upt-subset subset-eq-atLeast0-lessThan-finite)

lemma bucket-start-Suc:
bucket-start α T (Suc b) = bucket-start α T b + bucket-size α T b
apply (clarsimp simp: bucket-start-def bucket-size-def)
apply (subst card-Un-disjoint[symmetric])

apply (meson bucket-upt-subset subset-eq-atLeast0-lessThan-finite)
apply (simp add: finite-bucket)

apply (rule disjointI ′)
apply (metis (mono-tags, lifting) bucket-def bucket-upt-def less-irrefl-nat mem-Collect-eq)
apply (simp add: bucket-upt-un-bucket)
done

lemma bucket-start-le:
b ≤ b ′ =⇒ bucket-start α T b ≤ bucket-start α T b ′

apply (clarsimp simp: bucket-start-def)
by (meson bucket-upt-subset bucket-upt-subset-Suc card-mono lift-Suc-mono-le

subset-eq-atLeast0-lessThan-finite)

lemma bucket-start-Suc-eq-bucket-end:
bucket-start α T (Suc b) = bucket-end α T b
by (simp add: bucket-end-def bucket-start-def)

lemma bucket-end-le-length:
bucket-end α T b ≤ length T
apply (clarsimp simp: bucket-end-def)
apply (insert card-mono[OF - bucket-upt-subset[of α T Suc b]])
apply (erule meta-impE , simp)
apply (erule order .trans)

130

apply simp
done

lemma bucket-start-le-end:
bucket-start α T b ≤ bucket-end α T b
by (metis Suc-n-not-le-n bucket-start-Suc-eq-bucket-end bucket-start-le nat-le-linear)

lemma le-bucket-start-le-end:
b ≤ b ′ =⇒ bucket-start α T b ≤ bucket-end α T b ′

using bucket-start-le bucket-start-le-end le-trans by blast

lemma bucket-end-le:
b ≤ b ′ =⇒ bucket-end α T b ≤ bucket-end α T b ′

by (metis bucket-start-Suc-eq-bucket-end bucket-start-le-end lift-Suc-mono-le)

lemma less-bucket-end-le-start:
b < b ′ =⇒ bucket-end α T b ≤ bucket-start α T b ′

by (metis Suc-leI bucket-start-Suc-eq-bucket-end bucket-start-le)

lemma bucket-end-def ′:
bucket-end α T b = bucket-start α T b + bucket-size α T b
by (metis bucket-start-Suc bucket-start-Suc-eq-bucket-end)

lemma valid-list-bucket-start-0 :
[[valid-list T ; strict-mono α; α bot = 0]] =⇒
bucket-start α T 0 = 0

by (clarsimp simp: bucket-start-def bucket-upt-def)

lemma bucket-upt-0 :
bucket-upt α T 0 = {}
by (clarsimp simp: bucket-upt-def)

lemma bucket-start-0 :
bucket-start α T 0 = 0
by (clarsimp simp: bucket-start-def bucket-upt-def)

lemma valid-list-bucket-upt-Suc-0 :
[[valid-list T ; strict-mono α; α bot = 0 ; length T = Suc n]] =⇒
bucket-upt α T (Suc 0) = {n}

apply (clarsimp simp: bucket-upt-def)
apply (intro equalityI subsetI)
apply (clarsimp simp: valid-list-def)
apply (metis less-antisym strict-mono-eq)

apply (clarsimp simp: valid-list-ex-def)
done

lemma valid-list-bucket-end-0 :
[[valid-list T ; strict-mono α; α bot = 0]] =⇒
bucket-end α T 0 = 1

131

apply (clarsimp simp: bucket-end-def)
apply (frule valid-list-length-ex)
apply clarsimp
apply (frule (3) valid-list-bucket-upt-Suc-0)
apply simp
done

lemma nth-Max:
T 6= [] =⇒ ∃ i < length T . T ! i = Max (set T)
by (metis List.finite-set Max-in in-set-conv-nth set-empty)

lemma bucket-upt-Suc-Max:
strict-mono α =⇒ bucket-upt α T (Suc (α (Max (set T)))) = {0 ..<length T}
apply (intro equalityI subsetI)
apply (erule bucket-upt-subset[THEN subsetD])

by (clarsimp simp: bucket-upt-def less-Suc-eq-le strict-mono-less-eq)

lemma bucket-end-Max:
strict-mono α =⇒ bucket-end α T (α (Max (set T))) = length T
apply (clarsimp simp: bucket-end-def)
apply (drule bucket-upt-Suc-Max[where T = T])
apply clarsimp
done

lemma bucket-end-eq-length:
[[strict-mono α; b ≤ α (Max (set T)); T 6= []; bucket-end α T b = length T]] =⇒
b = α (Max (set T))

proof −
assume strict-mono α b ≤ α (Max (set T)) bucket-end α T b = length T T 6= []
show b = α (Max (set T))
proof (rule ccontr)

assume b 6= α (Max (set T))
with ‹b ≤ -›
have b < α (Max (set T))

by simp
hence ∃ b ′. b ′ = α (Max (set T))

by blast
then obtain b ′ where

b ′ = α (Max (set T))
by blast

with ‹b < -›
have b < b ′

by blast
hence bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
moreover
from nth-Max[OF ‹T 6= []›]
obtain i where

i < length T

132

T ! i = Max (set T)
by blast

with ‹b ′ = α (Max (set T))› ‹strict-mono α›
have i ∈ bucket α T b ′

by (simp add: bucket-def)
hence bucket-start α T b ′ < bucket-end α T b ′

by (metis add-diff-cancel-left ′ bucket-end-def ′ bucket-size-def bucket-start-le-end
card-gt-0-iff diff-is-0-eq ′ empty-iff finite-bucket nat-less-le)

moreover
have bucket-end α T b ′ ≤ length T

using bucket-end-le-length by blast
ultimately
show False

using ‹bucket-end α T b = length T ›
by linarith

qed
qed

46.2 L-types
definition l-bucket :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat set

where
l-bucket α T b = {k |k. k ∈ bucket α T b ∧ suffix-type T k = L-type}

definition l-bucket-size :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
l-bucket-size α T b ≡ card (l-bucket α T b)

definition l-bucket-end :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
l-bucket-end α T b = bucket-start α T b + l-bucket-size α T b

lemma l-bucket-subset-bucket:
l-bucket α T b ⊆ bucket α T b
by (rule subsetI , simp add: l-bucket-def)

lemma bucket-upt-int-l-bucket:
strict-mono α =⇒ bucket-upt α T b ∩ l-bucket α T b = {}
apply (rule disjoint-subset2 [where B = bucket α T b])
apply (simp add: l-bucket-def)

apply (simp add: bucket-def bucket-upt-def)
apply (rule disjointI ′)
apply clarsimp
done

lemma subset-l-bucket:
[[∀ k < length ls. ls ! k < length T ∧ suffix-type T (ls ! k) = L-type ∧ α (T ! (ls

133

! k)) = x;
distinct ls]] =⇒

set ls ⊆ l-bucket α T x
apply (rule subsetI)
apply (clarsimp simp: l-bucket-def bucket-def in-set-conv-nth)
done

lemma finite-l-bucket:
finite (l-bucket α T x)
apply (clarsimp simp: finite-bucket l-bucket-def)
done

lemma l-bucket-list-eq:
[[∀ k < length ls. ls ! k < length T ∧ suffix-type T (ls ! k) = L-type ∧ α (T ! (ls

! k)) = x;
distinct ls; length ls = l-bucket-size α T x]] =⇒

set ls = l-bucket α T x
apply (frule (1) subset-l-bucket)
apply (frule distinct-card)
apply (insert finite-l-bucket[of α T x])
by (simp add: card-subset-eq l-bucket-size-def)

lemma l-bucket-le-bucket-size:
l-bucket-size α T b ≤ bucket-size α T b
apply (clarsimp simp: l-bucket-size-def bucket-size-def)
apply (rule card-mono[OF finite-bucket l-bucket-subset-bucket])
done

lemma l-bucket-not-empty:
[[i < length T ; suffix-type T i = L-type]] =⇒ 0 < l-bucket-size α T (α (T ! i))
apply (clarsimp simp: l-bucket-size-def)
apply (subst card-gt-0-iff)
apply (intro conjI finite-l-bucket)
apply (clarsimp simp: l-bucket-def bucket-def)
apply blast
done

lemma l-bucket-end-le-bucket-end:
l-bucket-end α T b ≤ bucket-end α T b
apply (clarsimp simp: l-bucket-end-def)
apply (rule order .trans[where b = bucket-start α T b + bucket-size α T b])
apply (simp add: l-bucket-le-bucket-size)

by (metis bucket-start-Suc bucket-start-Suc-eq-bucket-end le-refl)

lemma l-bucket-Max:
assumes valid-list T
and Suc 0 < length T
and strict-mono α
shows l-bucket α T (α (Max (set T))) = bucket α T (α (Max (set T)))

134

proof (intro subsetI equalityI)
let ?b = α (Max (set T))
fix x
assume x ∈ l-bucket α T ?b
then show x ∈ bucket α T ?b

using l-bucket-subset-bucket by blast
next

let ?b = α (Max (set T))
fix x
assume x ∈ bucket α T ?b
hence x < length T α (T ! x) = ?b

using bucket-def by blast+
with suffix-max-hd-is-l-type[OF assms(1) - assms(2)]
have suffix-type T x = L-type

by (metis Cons-nth-drop-Suc assms(3) list.sel(1) strict-mono-eq)
then show x ∈ l-bucket α T ?b

using ‹x ∈ bucket α T (α (Max (set T)))› l-bucket-def by blast
qed

46.3 LMS-types
definition lms-bucket :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat
set

where
lms-bucket α T b = {k |k. k ∈ bucket α T b ∧ abs-is-lms T k}

definition lms-bucket-size :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
lms-bucket-size α T b ≡ card (lms-bucket α T b)

lemma lms-bucket-subset-bucket:
lms-bucket α T b ⊆ bucket α T b
by (simp add: lms-bucket-def)

lemma finite-lms-bucket:
finite (lms-bucket α T b)
by (clarsimp simp: lms-bucket-def finite-bucket)

lemma disjoint-l-lms-bucket:
l-bucket α T b ∩ lms-bucket α T b = {}
apply (rule disjointI ′)
by (clarsimp simp: l-bucket-def lms-bucket-def abs-is-lms-def)

46.4 S-types
definition s-bucket :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat
set

where
s-bucket α T b = {k |k. k ∈ bucket α T b ∧ suffix-type T k = S-type}

135

definition s-bucket-size :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
s-bucket-size α T b ≡ card (s-bucket α T b)

definition s-bucket-start :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat

where
s-bucket-start α T b ≡ bucket-start α T b + l-bucket-size α T b

lemma finite-s-bucket:
finite (s-bucket α T b)
by (clarsimp simp: s-bucket-def finite-bucket)

lemma disjoint-l-s-bucket:
l-bucket α T b ∩ s-bucket α T b = {}
apply (rule disjointI ′)
by (clarsimp simp: l-bucket-def s-bucket-def)

lemma lms-subset-s-bucket:
lms-bucket α T b ⊆ s-bucket α T b
by (clarsimp simp: s-bucket-def lms-bucket-def abs-is-lms-def)

lemma l-un-s-bucket:
bucket α T b = l-bucket α T b ∪ s-bucket α T b
apply (rule equalityI ; clarsimp simp: l-bucket-def s-bucket-def)
by (meson suffix-type-def)

lemma s-bucket-Max:
assumes valid-list T
and length T > Suc 0
and strict-mono α

shows s-bucket α T (α (Max (set T))) = {}
proof −

let ?b = α (Max (set T))
from l-bucket-Max[OF assms]
have l-bucket α T ?b = bucket α T ?b .
moreover
from l-un-s-bucket
have bucket α T ?b = l-bucket α T ?b ∪ s-bucket α T ?b .
hence s-bucket α T ?b ⊆ bucket α T ?b

by blast
moreover
from disjoint-l-s-bucket
have l-bucket α T ?b ∩ s-bucket α T ?b = {} .
ultimately
show ?thesis

by blast

136

qed

lemma s-bucket-0 :
assumes valid-list T
and strict-mono α
and α bot = 0
and length T = Suc n

shows s-bucket α T 0 = {n}
proof −

have suffix-type T n = S-type
using assms(4) suffix-type-last by blast

moreover
have T ! n = bot

by (metis assms(1) assms(4) diff-Suc-1 last-conv-nth length-greater-0-conv
valid-list-def)

hence α (T ! n) = 0
by (simp add: assms(3))

ultimately have n ∈ s-bucket α T 0
by (simp add: assms(4) bucket-def s-bucket-def)

hence {n} ⊆ s-bucket α T 0
by blast

moreover
have s-bucket α T 0 ⊆ {n}

unfolding s-bucket-def
proof safe

fix k
assume k ∈ bucket α T 0 suffix-type T k = S-type
hence k ≤ n

by (simp add: assms(4) bucket-def)
have α (T ! k) = 0

using ‹k ∈ bucket α T 0 › bucket-def by blast
hence T ! k = bot

by (metis assms(2) assms(3) strict-mono-eq)
show k = n
proof (rule ccontr)

assume k 6= n
hence k < n

by (simp add: ‹k ≤ n› le-neq-implies-less)
then show False

using ‹k ∈ bucket α T 0 › ‹k 6= n› assms bucket-0 by blast
qed

qed
ultimately show ?thesis

by blast
qed

lemma s-bucket-successor :
[[valid-list T ; strict-mono α; α bot = 0 ; b 6= 0 ; x ∈ s-bucket α T b]] =⇒

Suc x ∈ s-bucket α T b ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)

137

proof −
assume valid-list T strict-mono α α bot = 0 b 6= 0 x ∈ s-bucket α T b
hence suffix-type T x = S-type

by (simp add: s-bucket-def)

from valid-list-length-ex[OF ‹valid-list -›]
obtain n where

length T = Suc n
by blast

moreover
from ‹x ∈ s-bucket α T b›
have x < length T α (T ! x) = b

by (simp add: s-bucket-def bucket-def)+
ultimately have Suc x < length T

by (metis Suc-lessI ‹α bot = 0 › ‹b 6= 0 › ‹valid-list T › diff-Suc-1 last-conv-nth
list.size(3)

valid-list-def)

have T ! x ≤ T ! Suc x
by (simp add: ‹Suc x < length T › ‹suffix-type T x = S-type› s-type-letter-le-Suc)

hence T ! x < T ! Suc x ∨ T ! x = T ! Suc x
using le-neq-trans by blast

moreover
have T ! x < T ! Suc x =⇒ ?thesis
proof −

assume T ! x < T ! Suc x
hence α (T ! x) < α (T ! Suc x)

by (simp add: ‹strict-mono α› strict-mono-less)
hence b < α (T ! Suc x)

by (simp add: ‹α (T ! x) = b›)
with ‹Suc x < length T ›
have Suc x ∈ bucket α T (α (T ! Suc x))

by (simp add: bucket-def)
with ‹b < α (T ! Suc x)›
show ?thesis

by blast
qed
moreover
have T ! x = T ! Suc x =⇒ ?thesis
proof −

assume T ! x = T ! Suc x
hence α (T ! Suc x) = b

using ‹α (T ! x) = b› by auto
moreover
from ‹Suc x < length T › ‹T ! x = T ! Suc x› ‹suffix-type T x = S-type›
have suffix-type T (Suc x) = S-type

using suffix-type-neq by force
ultimately show ?thesis

by (simp add: ‹Suc x < length T › bucket-def s-bucket-def)

138

qed
ultimately show ?thesis

by blast
qed

lemma subset-s-bucket-successor :
[[valid-list T ; strict-mono α; α bot = 0 ; b 6= 0 ; A ⊆ s-bucket α T b; A 6= {}]] =⇒
∃ x ∈ A. Suc x ∈ s-bucket α T b − A ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)

proof −
assume valid-list T strict-mono α α bot = 0 b 6= 0 A ⊆ s-bucket α T b A 6= {}

have finite A
using ‹A ⊆ s-bucket α T b› finite-s-bucket finite-subset by blast

let ?B = s-bucket α T b − A

have ∃ x ∈ A. Suc x /∈ A
proof (rule ccontr)

assume ¬ (∃ x∈A. Suc x /∈ A)
hence ∀ x∈A. Suc x ∈ A

by clarsimp
hence ¬ finite A

using Max.coboundedI Max-in Suc-n-not-le-n ‹A 6= {}› by blast
with ‹finite A›
show False

by blast
qed
then obtain x where

x ∈ A
Suc x /∈ A
by blast

with s-bucket-successor [OF ‹valid-list -› ‹strict-mono -› ‹α - = -› ‹b 6= -›, of x]
‹A ⊆ s-bucket α T b›

have Suc x ∈ s-bucket α T b ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)
by blast

moreover
have Suc x ∈ s-bucket α T b =⇒ ?thesis
proof −

assume Suc x ∈ s-bucket α T b
with ‹Suc x /∈ A›
show ?thesis

using ‹x ∈ A› by blast
qed
moreover
have (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′) =⇒ ?thesis

using ‹x ∈ A› by blast
ultimately show ?thesis

by blast
qed

139

lemma valid-list-s-bucket-start-0 :
[[valid-list T ; strict-mono α; α bot = 0]] =⇒
s-bucket-start α T 0 = 0

apply (clarsimp simp: s-bucket-start-def bucket-start-0)
apply (frule valid-list-length-ex)
apply clarsimp
apply (frule (3) bucket-0)
apply (frule suffix-type-last)
apply (clarsimp simp: l-bucket-size-def l-bucket-def)
done

definition pure-s-bucket :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒
nat set

where
pure-s-bucket α T b = {k |k. k ∈ s-bucket α T b ∧ k /∈ lms-bucket α T b}

definition pure-s-bucket-size :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat
⇒ nat

where
pure-s-bucket-size α T b ≡ card (pure-s-bucket α T b)

lemma finite-pure-s-bucket:
finite (pure-s-bucket α T b)
by (clarsimp simp: pure-s-bucket-def finite-s-bucket)

lemma pure-s-subset-s-bucket:
pure-s-bucket α T b ⊆ s-bucket α T b
by (clarsimp simp: s-bucket-def pure-s-bucket-def)

lemma disjoint-lms-pure-s-bucket:
lms-bucket α T b ∩ pure-s-bucket α T b = {}
apply (rule disjointI ′)
by (clarsimp simp: lms-bucket-def pure-s-bucket-def)

lemma disjoint-pure-s-lms-bucket:
pure-s-bucket α T b ∩ lms-bucket α T b = {}
apply (subst Int-commute)
by (rule disjoint-lms-pure-s-bucket)

lemma s-eq-pure-s-un-lms-bucket:
s-bucket α T b = pure-s-bucket α T b ∪ lms-bucket α T b
apply (intro equalityI ; clarsimp simp: pure-s-subset-s-bucket lms-subset-s-bucket)
apply (clarsimp simp: s-bucket-def lms-bucket-def pure-s-bucket-def)
done

lemma l-pl-pure-s-pl-lms-size:
bucket-size α T b = l-bucket-size α T b + pure-s-bucket-size α T b + lms-bucket-size

α T b

140

apply (clarsimp simp: bucket-size-def l-bucket-size-def pure-s-bucket-size-def
lms-bucket-size-def)

apply (subst add.assoc)
apply (subst card-Un-disjoint[symmetric,

OF finite-pure-s-bucket finite-lms-bucket disjoint-pure-s-lms-bucket])
apply (subst s-eq-pure-s-un-lms-bucket[symmetric])
apply (subst card-Un-disjoint[symmetric,

OF finite-l-bucket finite-s-bucket disjoint-l-s-bucket])
apply (clarsimp simp: l-un-s-bucket)
done

lemma s-bucket-start-eq-l-bucket-end:
s-bucket-start α T b = l-bucket-end α T b
by (simp add: l-bucket-end-def s-bucket-start-def)

lemma s-eq-pure-pl-lms-size:
s-bucket-size α T b = pure-s-bucket-size α T b + lms-bucket-size α T b
by (simp add: card-Un-disjoint disjoint-pure-s-lms-bucket finite-lms-bucket fi-

nite-pure-s-bucket
lms-bucket-size-def pure-s-bucket-size-def s-bucket-size-def s-eq-pure-s-un-lms-bucket)

lemma bucket-end-eq-s-start-pl-size:
bucket-end α T b = s-bucket-start α T b + s-bucket-size α T b
by (simp add: bucket-end-def ′ l-bucket-end-def l-pl-pure-s-pl-lms-size

s-bucket-start-eq-l-bucket-end s-eq-pure-pl-lms-size)

lemma bucket-start-le-s-bucket-start:
bucket-start α T b ≤ s-bucket-start α T b
by (simp add: s-bucket-start-def)

lemma bucket-0-size1 :
assumes valid-list T
and strict-mono α
and α bot = 0

shows bucket-size α T 0 = Suc 0 ∧ l-bucket-size α T 0 = 0
proof −

from valid-list-length-ex[OF assms(1)]
obtain n where

length T = Suc n
by blast

with bucket-0 [OF assms(1 ,3 ,2)]
have bucket α T 0 = {n}

by blast
hence bucket-size α T 0 = Suc 0

by (simp add: bucket-size-def)
moreover
have suffix-type T n = S-type

by (simp add: ‹length T = Suc n› suffix-type-last)
hence n /∈ l-bucket α T 0

141

by (simp add: l-bucket-def)
hence l-bucket-size α T 0 = 0
proof −

have l-bucket α T 0 ⊆ {n}
by (metis ‹bucket α T 0 = {n}› l-bucket-subset-bucket)

hence ∀n. n /∈ l-bucket α T 0
using ‹n /∈ l-bucket α T 0 › by blast

then show ?thesis
by (simp add: l-bucket-size-def)

qed
ultimately
show ?thesis

by blast
qed

lemma bucket-0-size2 :
assumes valid-list T
and strict-mono α
and α bot = 0
and length T = Suc (Suc n)

shows bucket-size α T 0 = Suc 0 ∧ l-bucket-size α T 0 = 0 ∧ lms-bucket-size α
T 0 = Suc 0 ∧

pure-s-bucket-size α T 0 = 0
proof −

from bucket-0 [OF assms(1 ,3 ,2 ,4)]
have bucket α T 0 = {Suc n} .

have abs-is-lms T (Suc n)
using assms(1 ,4) abs-is-lms-last by blast

hence lms-bucket α T 0 = {Suc n}
using lms-bucket-subset-bucket[of α T 0] ‹bucket α T 0 = {Suc n}›
by (simp add: lms-bucket-def subset-antisym)

hence lms-bucket-size α T 0 = Suc 0
by (simp add: lms-bucket-size-def)

moreover
from ‹bucket α T 0 = {Suc n}› ‹lms-bucket α T 0 = {Suc n}›
have pure-s-bucket α T 0 = {}

by (metis disjoint-insert(1) disjoint-l-lms-bucket disjoint-lms-pure-s-bucket
l-bucket-subset-bucket l-un-s-bucket pure-s-subset-s-bucket singletonI
subset-singletonD sup-bot.left-neutral)

hence pure-s-bucket-size α T 0 = 0
by (simp add: pure-s-bucket-size-def)

moreover
from bucket-0-size1 [OF assms(1−3)]
have bucket-size α T 0 = Suc 0 ∧ l-bucket-size α T 0 = 0 .
ultimately
show ?thesis

by blast
qed

142

definition lms-bucket-start :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat
⇒ nat

where
lms-bucket-start α T b = bucket-start α T b + l-bucket-size α T b + pure-s-bucket-size
α T b

lemma l-bucket-end-le-lms-bucket-start:
l-bucket-end α T b ≤ lms-bucket-start α T b
by (simp add: l-bucket-end-def lms-bucket-start-def)

lemma lms-bucket-start-le-bucket-end:
lms-bucket-start α T b ≤ bucket-end α T b
by (simp add: bucket-end-def ′ lms-bucket-start-def l-pl-pure-s-pl-lms-size)

lemma lms-bucket-pl-size-eq-end:
lms-bucket-start α T b + lms-bucket-size α T b = bucket-end α T b
by (simp add: bucket-end-def ′ l-pl-pure-s-pl-lms-size lms-bucket-start-def)

47 Continuous Buckets
lemma continuous-buckets:

continuous-list (map (λb. (bucket-start α T b, bucket-end α T b)) [i..<j])
by (clarsimp simp: continuous-list-def bucket-start-Suc-eq-bucket-end)

lemma index-in-bucket-interval-gen:
[[i < length T ; strict-mono α]] =⇒
∃ b ≤ α (Max (set T)). bucket-start α T b ≤ i ∧ i < bucket-end α T b

apply (insert continuous-buckets[of α T 0 Suc (α (Max (set T)))])
apply (drule continuous-list-interval-2 [where n = α (Max (set T)) and i = i])

apply clarsimp
apply (subst nth-map)
apply clarsimp

apply (clarsimp split: prod.split simp: upt-rec bucket-start-0)
apply (subst nth-map)
apply clarsimp

apply (clarsimp split: prod.split simp: nth-append bucket-end-Max)
apply clarsimp
apply (clarsimp simp: nth-append split: if-splits prod.splits)
apply (meson dual-order .order-iff-strict)
by blast

lemma index-in-bucket-interval:
[[i < length T ; valid-list T ; α bot = 0 ; strict-mono α]] =⇒
∃ b ≤ α (Max (set T)). bucket-start α T b ≤ i ∧ i < bucket-end α T b

using index-in-bucket-interval-gen by blast

143

48 Bucket Initialisation
definition lms-bucket-init :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list
⇒ bool

where
lms-bucket-init α T B =
(α (Max (set T)) < length B ∧
(∀ b ≤ α (Max (set T)). B ! b = bucket-end α T b))

lemma lms-bucket-init-length:
lms-bucket-init α T B =⇒ α (Max (set T)) < length B
using lms-bucket-init-def by blast

lemma lms-bucket-initD:
[[lms-bucket-init α T B; b ≤ α (Max (set T))]] =⇒ B ! b = bucket-end α T b
using lms-bucket-init-def by blast

definition l-bucket-init :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list
⇒ bool

where
l-bucket-init α T B =
(α (Max (set T)) < length B ∧
(∀ b ≤ α (Max (set T)). B ! b = bucket-start α T b))

lemma l-bucket-init-length:
l-bucket-init α T B =⇒ α (Max (set T)) < length B
using l-bucket-init-def by blast

lemma l-bucket-initD:
[[l-bucket-init α T B; b ≤ α (Max (set T))]] =⇒ B ! b = bucket-start α T b
using l-bucket-init-def by blast

definition s-bucket-init
where

s-bucket-init α T B =
(α (Max (set T)) < length B ∧
(∀ b≤α (Max (set T)).
(b > 0 −→ B ! b = bucket-end α T b) ∧
(b = 0 −→ B ! b = 0)
)
)

lemma s-bucket-init-length:
s-bucket-init α T B =⇒ α (Max (set T)) < length B
using s-bucket-init-def by blast

lemma s-bucket-initD:
[[s-bucket-init α T B; b ≤ α (Max (set T)); b > 0]] =⇒ B ! b = bucket-end α T

b

144

[[s-bucket-init α T B; b ≤ α (Max (set T)); b = 0]] =⇒ B ! b = 0
using s-bucket-init-def by auto

49 Bucket Range
definition in-s-current-bucket

where
in-s-current-bucket α T B b i ≡ (b ≤ α (Max (set T)) ∧ B ! b ≤ i ∧ i < bucket-end
α T b)

lemma in-s-current-bucketD:
in-s-current-bucket α T B b i =⇒ b ≤ α (Max (set T))
in-s-current-bucket α T B b i =⇒ B ! b ≤ i
in-s-current-bucket α T B b i =⇒ i < bucket-end α T b
by (simp-all add: in-s-current-bucket-def)

definition in-s-current-buckets
where

in-s-current-buckets α T B i ≡ (∃ b. in-s-current-bucket α T B b i)

lemma in-s-current-bucket-list-slice:
assumes length SA = length T
and in-s-current-bucket α T B b i
and SA ! i = x

shows x ∈ set (list-slice SA (B ! b) (bucket-end α T b))
by (metis assms bucket-end-le-length in-s-current-bucket-def list-slice-nth-mem)

definition in-l-bucket
where

in-l-bucket α T b i ≡ (b ≤ α (Max (set T)) ∧ bucket-start α T b ≤ i ∧ i <
l-bucket-end α T b)

end
theory LMS-List-Slice-Util

imports List-Type
begin

50 Helpers
lemma filter-abs-is-lms-upt-0 :

filter (abs-is-lms xs) [0 ..<n] = filter (abs-is-lms xs) [Suc 0 ..<n]
by (metis filter .simps(2) abs-is-lms-0 tl-upt upt-0 upt-rec)

lemma filter-abs-is-lms-upt-hd:
[[abs-is-lms xs i; i < n]] =⇒
filter (abs-is-lms xs) [i..<n] = i # filter (abs-is-lms xs) [Suc i..<n]

by (metis filter .simps(2) upt-rec)

145

51 LMS Slice
51.1 Find the next LMS position
fun

abs-find-index ′ :: (′a ⇒ bool) ⇒ ′a list ⇒ nat ⇒ nat
where

abs-find-index ′ P xs i =
(case xs of
[] ⇒ i
| x#xs ′⇒
(if P x

then i
else abs-find-index ′ P xs ′ (Suc i)))

definition
abs-find-next-lms :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ nat

where
abs-find-next-lms T i =
(case find (λj. abs-is-lms T j) [Suc i..<length T] of

Some j ⇒ j
| - ⇒ length T)

lemma abs-find-next-lms-le-length:
abs-find-next-lms T i ≤ length T
unfolding abs-find-next-lms-def
apply (clarsimp split: option.split)
by (metis find-Some-iff abs-is-lms-gre-length not-less order .order-iff-strict)

lemma abs-find-next-lms-abs-is-lms:
abs-is-lms T (Suc i) =⇒ abs-find-next-lms T i = Suc i
unfolding abs-find-next-lms-def
apply (frule abs-is-lms-imp-less-length)
apply (clarsimp split: option.split simp: upt-rec)
done

lemma Suc-not-lms-imp-abs-find-next-eq-Suc:
¬ abs-is-lms T (Suc i) =⇒ abs-find-next-lms T i = abs-find-next-lms T (Suc i)
unfolding abs-find-next-lms-def
by (simp add: upt-rec)

lemma abs-find-next-lms-lower-bound-1 :
i < length T =⇒ i < abs-find-next-lms T i
unfolding abs-find-next-lms-def
apply (clarsimp split: option.split)
using findSomeD by fastforce

lemma abs-find-next-lms-lower-bound-2 :
length T ≤ i =⇒ length T ≤ abs-find-next-lms T i
unfolding abs-find-next-lms-def

146

by (clarsimp split: option.split)

lemma abs-find-next-lms-le-Suc:
abs-find-next-lms T i ≤ abs-find-next-lms T (Suc i)
apply (cases Suc i < length T)

apply (metis find.simps(2) abs-find-next-lms-def abs-find-next-lms-abs-is-lms
abs-find-next-lms-lower-bound-1

le-less upt-rec)
by (simp add: abs-find-next-lms-def)

lemma no-lms-between-i-and-next:
[[i < k; k < abs-find-next-lms T i]] =⇒ ¬abs-is-lms T k
unfolding abs-find-next-lms-def
apply (clarsimp split: option.splits)
apply (drule findNoneD)
apply (erule ballE [of - - k])
apply blast

apply simp
apply (drule find-Some-iff [THEN iffD1])
apply clarsimp
apply (erule allE [of - k − Suc i])
apply clarsimp
done

lemma abs-find-next-lms-less-length-abs-is-lms:
abs-find-next-lms T i < length T =⇒

abs-is-lms T (abs-find-next-lms T i)
unfolding abs-find-next-lms-def
apply (clarsimp split: option.splits)
apply (drule find-Some-iff [THEN iffD1])
apply clarsimp
done

lemma abs-find-next-lms-strict-upper-imp-lower-bound:
abs-find-next-lms T i < length T =⇒

i < abs-find-next-lms T i
unfolding abs-find-next-lms-def
apply (clarsimp split: option.splits)
using findSomeD by fastforce

lemma abs-find-next-lms-suffix:
assumes i ≤ length T
shows abs-find-next-lms T i =

i + abs-find-next-lms (suffix T i) 0
proof −

from abs-is-lms-i-gr-0 [of - i T] no-lms-between-i-and-next[of i - T]
have P:

∧
k. [[0 < k; k < abs-find-next-lms T i − i]] =⇒ ¬abs-is-lms (suffix T

i) k
by (meson less-add-same-cancel2 less-diff-conv)

147

have abs-find-next-lms T i = length T ∨ abs-find-next-lms T i < length T
using abs-find-next-lms-le-length le-neq-implies-less by blast

moreover
have abs-find-next-lms T i = length T =⇒ ?thesis
proof −

assume abs-find-next-lms T i = length T
hence

∧
k. [[0 < k; k < length T − i]] =⇒ ¬abs-is-lms (suffix T i) k

using P by presburger
hence abs-find-next-lms (suffix T i) 0 = length T − i

by (metis abs-find-next-lms-le-length abs-find-next-lms-less-length-abs-is-lms
abs-find-next-lms-strict-upper-imp-lower-bound le-neq-implies-less

length-drop)
then show ?thesis

by (simp add: ‹abs-find-next-lms T i = length T › assms)
qed
moreover
have abs-find-next-lms T i < length T =⇒ ?thesis
proof −

assume abs-find-next-lms T i < length T
hence abs-is-lms T (abs-find-next-lms T i)

using abs-find-next-lms-less-length-abs-is-lms by blast
hence abs-is-lms (suffix T i) (abs-find-next-lms T i − i)

by (simp add: abs-is-lms-i-gr-0 ‹abs-find-next-lms T i < length T ›
abs-find-next-lms-strict-upper-imp-lower-bound less-or-eq-imp-le)

with P
show ?thesis
by (metis add.commute abs-find-next-lms-le-length abs-find-next-lms-less-length-abs-is-lms

abs-find-next-lms-strict-upper-imp-lower-bound abs-is-lms-imp-less-length
le-neq-implies-less length-drop less-or-eq-imp-le nat-neq-iff

no-lms-between-i-and-next ordered-cancel-comm-monoid-diff-class.diff-add
zero-less-diff)

qed
ultimately show ?thesis

by blast
qed

lemma abs-find-next-lms-cons-Suc:
assumes i ≤ length xs
shows abs-find-next-lms (x # xs) (Suc i) =

Suc (abs-find-next-lms xs i)
proof −

have abs-find-next-lms xs i = length xs ∨ abs-find-next-lms xs i < length xs
using abs-find-next-lms-le-length le-neq-implies-less by blast

moreover
have abs-find-next-lms xs i = length xs =⇒ ?thesis

by (metis Suc-le-mono add.assoc assms drop-Suc-Cons
abs-find-next-lms-suffix length-Cons plus-1-eq-Suc)

moreover

148

have abs-find-next-lms xs i < length xs =⇒ ?thesis
by (metis (no-types, lifting) Suc-le-mono add.assoc length-Cons

assms drop-Suc-Cons abs-find-next-lms-suffix plus-1-eq-Suc)
ultimately show ?thesis

by blast
qed

lemma abs-find-next-lms-funpow-Suc:
((abs-find-next-lms T)^^(Suc k)) i =

abs-find-next-lms T (((abs-find-next-lms T)^^k) i)
by simp

lemma abs-find-next-lms-funpow-le:
i < length T =⇒
((abs-find-next-lms T)^^k) i ≤
((abs-find-next-lms T)^^(Suc k)) i

apply (induct k; clarsimp)
apply (simp add: abs-find-next-lms-lower-bound-1 less-or-eq-imp-le)

by (simp add: abs-find-next-lms-le-Suc lift-Suc-mono-le)

lemma no-lms-between-i-and-next-funpow:
[[((abs-find-next-lms T)^^k) i <
((abs-find-next-lms T)^^(Suc k)) i;
((abs-find-next-lms T)^^k) i < j;
j < ((abs-find-next-lms T)^^(Suc k)) i]] =⇒
¬ abs-is-lms T j

by (simp add: no-lms-between-i-and-next)

lemma abs-find-next-lms-eq-Suc:
xs 6= [] =⇒ ∃ k. abs-find-next-lms xs i = Suc k
by (metis abs-find-next-lms-less-length-abs-is-lms

abs-is-lms-0 length-greater-0-conv not0-implies-Suc)

lemma filter-no-lms1 :
[[abs-is-lms xs i; i < k; k ≤ abs-find-next-lms xs i]] =⇒
filter (abs-is-lms xs) [Suc i..<k] = []

proof (induct k)
case 0
then show ?case

by simp
next

case (Suc k)
then show ?case

by (metis Suc-leD Suc-le-eq append-Nil filter .simps(1 ,2)
upt-Suc filter-append no-lms-between-i-and-next)

qed

lemma filter-no-lms2 :
[[¬abs-is-lms xs i; i < k; k ≤ abs-find-next-lms xs i]] =⇒

149

filter (abs-is-lms xs) [i..<k] = []
proof (induct k)

case 0
then show ?case

by simp
next

case (Suc k)
then show ?case

by (metis Suc-le-eq append-Nil filter .simps(1)
filter .simps(2) filter-append
not-less-eq-eq upt.simps(2) nle-le
no-lms-between-i-and-next upt-conv-Cons)

qed

51.2 LMS Prefix
fun

closest-lms ::
(′a :: {linorder , order-bot}) list ⇒ nat ⇒ nat

where
closest-lms T i =

(if abs-is-lms T i
then i
else abs-find-next-lms T i)

definition
lms-prefix ::

(′a :: {linorder , order-bot}) list ⇒ nat ⇒ ′a list
where

lms-prefix T i =
list-slice T i (Suc (closest-lms T i))

lemma lms-lms-prefix:
abs-is-lms T i =⇒ lms-prefix T i = [T ! i]
unfolding lms-prefix-def
by (simp add: abs-is-lms-imp-less-length list-slice-Suc)

lemma suffix-to-lms-prefix:
i < length T =⇒

suffix T i =
lms-prefix T i @
(list-slice T (Suc (closest-lms T i)) (length T))

unfolding lms-prefix-def
apply clarsimp
apply (intro impI conjI)
apply (rule suffix-to-list-slice-app)
apply linarith

by (meson abs-find-next-lms-lower-bound-1 less-SucI

150

less-or-eq-imp-le suffix-to-list-slice-app)

lemma abs-find-next-lms-funpow-all-lms:
[[abs-is-lms xs ((abs-find-next-lms xs ^^ Suc k) x);

i ≤ k]] =⇒
abs-is-lms xs ((abs-find-next-lms xs ^^ Suc i) x)

proof (induct k arbitrary: i)
case 0
then show ?case

by blast
next

case (Suc k)
note IH = this
hence (abs-find-next-lms xs ^^ Suc (Suc k)) x < length xs

using abs-is-lms-imp-less-length by blast
moreover
have x < length xs

by (metis calculation abs-find-next-lms-funpow-Suc
abs-find-next-lms-le-length abs-find-next-lms-lower-bound-2
abs-find-next-lms-strict-upper-imp-lower-bound funpow-swap1
linorder-not-less nat-neq-iff)

ultimately
have (abs-find-next-lms xs ^^ Suc k) x < length xs

using abs-find-next-lms-funpow-le order .strict-trans1 by blast
hence P: abs-is-lms xs ((abs-find-next-lms xs ^^ Suc k) x)

by (simp add: abs-find-next-lms-less-length-abs-is-lms)

from IH (3)
have i ≤ k ∨ i = Suc k

by (meson le-Suc-eq le-neq-implies-less)
moreover
from IH (1)[OF P, of i]
have i ≤ k =⇒ ?case

by blast
moreover
from IH (2)
have i = Suc k =⇒ ?case

by simp
ultimately show ?case

by blast
qed

51.3 LMS Slice
definition

lms-slice :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ ′a list
where

lms-slice T i =
list-slice T i (Suc (abs-find-next-lms T i))

151

lemma suffix-to-lms-slice:
i < length T =⇒
suffix T i =
lms-slice T i @
(list-slice T (Suc (abs-find-next-lms T i)) (length T))

unfolding lms-slice-def
apply (rule suffix-to-list-slice-app)
by (simp add: abs-find-next-lms-lower-bound-1

le-Suc-eq less-or-eq-imp-le)

lemma suffix-to-lms-slice-app-suffix:
i < length T =⇒
suffix T i =
lms-slice T i @
(suffix T (Suc (abs-find-next-lms T i)))

by (metis suffix-eq-list-slice suffix-to-lms-slice)

lemma lms-slice-cons:
[[i < length T ; suffix-type T i = S-type]] =⇒
lms-slice T i =
T ! i # lms-slice T (Suc i)

using abs-is-lms-def Suc-not-lms-imp-abs-find-next-eq-Suc
abs-find-next-lms-lower-bound-1 i-s-type-imp-Suc-i-not-lms
list-slice-Suc Suc-not-lms-imp-abs-find-next-eq-Suc

by (clarsimp simp: lms-slice-def) fastforce

lemma lms-slice-hd:
i < length T =⇒
∃ xs. lms-slice T i = T ! i # xs

by (simp add: abs-find-next-lms-lower-bound-1 less-SucI list-slice-Suc lms-slice-def)

lemma lms-slice-suffix:
assumes i ≤ length T
shows lms-slice (suffix T i) 0 =

lms-slice T i
proof −

from list-slice-suffix[of T i Suc (abs-find-next-lms T i)]
lms-slice-def [of T i]
abs-find-next-lms-suffix[OF assms]
lms-slice-def [of suffix T i 0]

show ?thesis
by (metis add-Suc-right add-diff-cancel-left ′)

qed

lemma lms-slice-suffix-gen:
assumes i ≤ length T
and j ≤ length T − i

shows lms-slice (suffix T i) j =

152

lms-slice T (i + j)
proof −

have lms-slice T (i + j) =
lms-slice (suffix T (i + j)) 0

by (metis add.commute assms lms-slice-suffix le-diff-conv2)
hence lms-slice T (i + j) =

lms-slice (suffix (suffix T i) j) 0
by (simp add: add.commute)

moreover
have lms-slice (suffix T i) j = lms-slice (suffix (suffix T i) j) 0

by (metis assms(2) length-drop lms-slice-suffix)
ultimately show ?thesis

by simp
qed

lemma lms-slice-cons-Suc:
i ≤ length xs =⇒ lms-slice (x # xs) (Suc i) = lms-slice xs i
by (metis Suc-le-mono drop-Suc-Cons length-Cons lms-slice-suffix)

51.4 LMS Substring butlast
definition lms-slice-butlast :: (′a :: {linorder , order-bot}) list ⇒ nat ⇒ ′a list

where
lms-slice-butlast T i = list-slice T i (abs-find-next-lms T i)

lemma lms-slice-to-butlast-app:
abs-find-next-lms T i < length T =⇒
lms-slice T i = lms-slice-butlast T i @ [T ! abs-find-next-lms T i]

unfolding lms-slice-def lms-slice-butlast-def
apply (subst list-slice-append[of - abs-find-next-lms T i])
apply (simp add: abs-find-next-lms-strict-upper-imp-lower-bound order .strict-implies-order)
apply simp

by (simp add: list-slice-Suc)

lemma lms-slice-eq-butlast:
length T ≤ abs-find-next-lms T i =⇒
lms-slice T i = lms-slice-butlast T i

by (metis le-SucI list-slice-end-gre-length lms-slice-butlast-def lms-slice-def)

lemma lms-slice-eq-suffix:
length T ≤ abs-find-next-lms T i =⇒
lms-slice T i = suffix T i

by (simp add: list-slice.simps lms-slice-butlast-def lms-slice-eq-butlast)

lemma suffix-abs-find-next-lms:
abs-find-next-lms T i < length T =⇒
suffix T i = lms-slice-butlast T i @ suffix T (abs-find-next-lms T i)
by (simp add: abs-find-next-lms-strict-upper-imp-lower-bound less-or-eq-imp-le

list-slice-append

153

lms-slice-butlast-def suffix-eq-list-slice)

51.5 Suffix Types
lemma suffix-type-lms-slice-l-s:

assumes suffix-type T i = L-type
and suffix-type T (Suc i) = S-type
shows suffix-type (lms-slice T i) 0 = suffix-type T i

proof −
have Suc i < length T

by (simp add: assms(2) suffix-type-s-bound)

have abs-is-lms T (Suc i)
by (simp add: assms abs-is-lms-def)

hence abs-find-next-lms T i = Suc i
by (simp add: abs-find-next-lms-abs-is-lms)

hence lms-slice T i = [T ! i, T ! Suc i]
by (metis Suc-n-not-le-n ‹Suc i < length T › le-Suc-eq not-le

list-slice-Suc list-slice-n-n lms-slice-def)
moreover
have T ! i > T ! Suc i

using ‹abs-is-lms T (Suc i)› abs-is-lms-neq by blast
ultimately show ?thesis

by (simp add: ‹suffix-type T i = L-type› suffix-type-cons-greater)
qed

lemma abs-find-next-lms-same-types:
assumes ∀ k. i ≤ k ∧ k < length T −→ suffix-type T k = suffix-type T i
and i ≤ j

shows abs-find-next-lms T j = length T
proof (cases find (abs-is-lms T) [Suc j..<length T])

assume find (abs-is-lms T) [Suc j..<length T] = None
then show abs-find-next-lms T j = length T

by (simp add: abs-find-next-lms-def)
next

fix x
assume find (abs-is-lms T) [Suc j..<length T] = Some x
hence x < length T Suc j ≤ x abs-is-lms T x

using ‹find (abs-is-lms T) [Suc j..<length T] = Some x› findSomeD by force+
hence ∃ y. x = Suc y

using abs-is-lms-def by blast
then obtain y where

x = Suc y
by blast

hence suffix-type T y = L-type suffix-type T (Suc y) = S-type
using ‹abs-is-lms T x› abs-is-lms-def by auto

have i ≤ y
using ‹Suc j ≤ x› ‹x = Suc y› assms(2) le-trans by blast

154

moreover
have y < length T

using Suc-lessD ‹x < length T › ‹x = Suc y› by blast
ultimately have suffix-type T i = L-type

by (metis ‹suffix-type T y = L-type› assms(1))

have i ≤ Suc y
by (simp add: ‹i ≤ y› le-SucI)

moreover
have Suc y < length T

using ‹x < length T › ‹x = Suc y› by blast
ultimately have suffix-type T i = S-type

by (metis ‹suffix-type T (Suc y) = S-type› assms(1))
with ‹suffix-type T i = L-type›
have x = length T

by simp
then show ?thesis

using ‹x < length T › by blast
qed

lemma lms-slice-same-types:
assumes ∀ k. i ≤ k ∧ k < length T −→ suffix-type T k = suffix-type T i
and i ≤ j

shows lms-slice T j = suffix T j
proof −

have abs-find-next-lms T j = length T
using assms abs-find-next-lms-same-types by blast

then show ?thesis
by (metis le0 le-add-same-cancel2 list-slice-end-gre-length lms-slice-def plus-1-eq-Suc

suffix-eq-list-slice)
qed

lemma all-l-types-up-to-next-lms:
[[i ≤ k; k < abs-find-next-lms T i; suffix-type T i = L-type]] =⇒ suffix-type T k

= L-type
proof(induct k − i arbitrary: k)

case 0
then show ?case by simp

next
case (Suc x)
have ∃ k ′. k = Suc k ′

using Suc.hyps(2) Suc-le-D diff-le-self by presburger
then obtain k ′ where

k = Suc k ′

by blast
hence x = k ′ − i

using Suc.hyps(2) by linarith
moreover
have i ≤ k ′

155

using Suc.hyps(2) ‹k = Suc k ′› by linarith
moreover
have k ′ < abs-find-next-lms T i

using Suc.prems(2) Suc-lessD ‹k = Suc k ′› by blast
ultimately have suffix-type T k ′ = L-type

using Suc.hyps(1) Suc.prems(3) by blast

have i < k
by (simp add: ‹i ≤ k ′› ‹k = Suc k ′› le-imp-less-Suc)

with Suc.prems(2) no-lms-between-i-and-next[of i k T]
have ¬ abs-is-lms T k

by blast
with ‹suffix-type T k ′ = L-type› ‹k = Suc k ′›
show ?case

using SL-types.exhaust abs-is-lms-def by blast
qed

lemma abs-find-next-lms-eq-length:
assumes abs-find-next-lms T i = length T
and i < length T

shows suffix-type T i = S-type
proof (rule ccontr)

assume suffix-type T i 6= S-type
hence suffix-type T i = L-type

using SL-types.exhaust by blast
moreover
have ∃ k. abs-find-next-lms T i = Suc k

by (metis assms(1) assms(2) not-less0 old.nat.exhaust)
then obtain k where

abs-find-next-lms T i = Suc k
by blast

moreover
have i ≤ k

using assms(1 ,2) calculation by linarith
ultimately have suffix-type T k = L-type

by (metis all-l-types-up-to-next-lms lessI)
moreover
have length T = Suc k

using ‹abs-find-next-lms T i = Suc k› assms(1) by auto
ultimately show False

using suffix-type-last[of T k]
by simp

qed

lemma abs-find-next-lms-eq-length-all-s-types:
assumes abs-find-next-lms T i = length T
and i ≤ j
and j < length T

shows suffix-type T j = S-type

156

by (metis assms abs-find-next-lms-eq-length abs-find-next-lms-le-length abs-find-next-lms-less-length-abs-is-lms
abs-find-next-lms-lower-bound-1 le-neq-implies-less no-lms-between-i-and-next
order .strict-trans1)

lemma abs-find-next-lms-first-l-after-s-type:
assumes abs-find-next-lms T i < length T
and suffix-type T i = S-type

shows ∃ j>i. j < abs-find-next-lms T i ∧ (∀ k<j. i ≤ k −→ suffix-type T k =
S-type) ∧

suffix-type T j = L-type
proof −

have ∃ j. abs-find-next-lms T i = Suc j
by (metis assms(2) abs-find-next-lms-lower-bound-1 not-less0 old.nat.exhaust

suffix-type-s-bound)
then obtain j where

abs-find-next-lms T i = Suc j
by blast

hence abs-is-lms T (Suc j)
using assms(1) abs-find-next-lms-less-length-abs-is-lms by fastforce

hence suffix-type T j = L-type
using SL-types.exhaust i-s-type-imp-Suc-i-not-lms by auto

moreover
have j < length T

using ‹abs-find-next-lms T i = Suc j› assms(1) by linarith
moreover
have i ≤ j
by (metis ‹abs-find-next-lms T i = Suc j› assms(1) abs-find-next-lms-strict-upper-imp-lower-bound

less-Suc-eq-le)
moreover
have ∀ k>i. k ≤ j −→ ¬ abs-is-lms T k

by (simp add: ‹abs-find-next-lms T i = Suc j› no-lms-between-i-and-next)
ultimately show ?thesis

using first-l-type-after-s-type[OF - - - -assms(2), of j]
by (metis SL-types.simps(2) ‹abs-find-next-lms T i = Suc j› assms(2) dual-order .order-iff-strict

le-imp-less-Suc)
qed

lemma lms-slice-type:
assumes i < length T
shows suffix-type (lms-slice T i) 0 = suffix-type T i

proof −
have ∃ k. abs-find-next-lms T i = Suc k

by (meson Nat.lessE assms abs-find-next-lms-lower-bound-1)
then obtain k where

abs-find-next-lms T i = Suc k
by blast

have suffix-type T i = L-type ∨ suffix-type T i = S-type
using SL-types.exhaust by blast

157

moreover
have suffix-type T i = L-type =⇒ ?thesis
proof −

assume suffix-type T i = L-type

have suffix-type T (Suc i) = L-type ∨ suffix-type T (Suc i) = S-type
using SL-types.exhaust by blast

moreover
have suffix-type T (Suc i) = S-type =⇒ ?thesis

by (simp add: ‹suffix-type T i = L-type› suffix-type-lms-slice-l-s)
moreover
have suffix-type T (Suc i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (Suc i) = L-type

from ‹abs-find-next-lms T i = Suc k›
have P: ∀ k ′≥i. k ′ < Suc k −→ suffix-type T k ′ = L-type

by (simp add: ‹suffix-type T i = L-type› all-l-types-up-to-next-lms)

have lms-slice T i = list-slice T i (Suc (Suc k))
by (simp add: lms-slice-def ‹abs-find-next-lms T i = Suc k›)

moreover
{

have i < k
by (metis SL-types.simps(2) Suc-lessI ‹abs-find-next-lms T i = Suc k›

‹suffix-type T (Suc i) = L-type› ‹suffix-type T i = L-type› assms
abs-find-next-lms-less-length-abs-is-lms abs-find-next-lms-lower-bound-1

less-antisym
suffix-type-last suffix-type-same-imp-not-lms)

hence list-slice T i (Suc (Suc k)) = list-slice T i k @ list-slice T k (Suc (Suc
k))

by (meson dual-order .order-iff-strict le-Suc-eq list-slice-append)
moreover
have list-slice T k (Suc (Suc k)) = [T ! k, T ! (Suc k)]

by (metis SL-types.simps(2) ‹abs-find-next-lms T i = Suc k› ‹suffix-type
T i = L-type›

all-l-types-up-to-next-lms assms dual-order .order-iff-strict
abs-find-next-lms-le-length less-Suc-eq-le list-slice-Suc list-slice-n-n
not-less-eq suffix-type-last)

moreover
have list-slice T i k = T ! i # list-slice T (Suc i) k

using ‹i < k› assms list-slice-Suc by blast
ultimately have
list-slice T i (Suc (Suc k)) = T ! i # (list-slice T (Suc i) k) @ [T ! k, T !

Suc k]
by simp

}
ultimately have

lms-slice T i = T ! i # (list-slice T (Suc i) k) @ [T ! k, T ! Suc k]

158

by simp

let ?bs = list-slice T (Suc i) k

have abs-is-lms T (Suc k)
by (metis SL-types.simps(2) ‹abs-find-next-lms T i = Suc k› ‹suffix-type T

i = L-type›
all-l-types-up-to-next-lms assms dual-order .order-iff-strict suffix-type-last

abs-find-next-lms-le-length abs-find-next-lms-less-length-abs-is-lms
less-Suc-eq-le)

hence T ! k > T ! Suc k
using abs-is-lms-neq by blast

moreover
from sorted-letters-l-types[OF P[simplified ‹abs-find-next-lms T i = Suc k›]]
have sorted (rev (list-slice T i (Suc k)))

using ‹abs-is-lms T (Suc k)› abs-is-lms-gre-length linear by blast
moreover
have list-slice T i (Suc k) = T ! i # (list-slice T (Suc i) k) @ [T ! k]

by (metis SL-types.simps(2) ‹abs-find-next-lms T i = Suc k› ‹abs-is-lms T
(Suc k)›

‹suffix-type T (Suc i) = L-type› assms dual-order .order-iff-strict
not-less-eq

abs-find-next-lms-le-length abs-find-next-lms-lower-bound-1 abs-is-lms-def
list-slice-Suc not-less

list-slice-append list-slice-n-n)
ultimately have

list-less-ns (?bs @ [T ! k, T ! Suc k]) (T ! i # ?bs @ [T ! k, T ! Suc k])
using rev-sorted-list-less-ns[of T ! i ?bs T ! k T ! Suc k [] []]
by simp

moreover
have suffix (lms-slice T i) 0 = T ! i # ?bs @ [T ! k, T ! Suc k]

by (simp add: ‹lms-slice T i = T ! i # ?bs @ [T ! k, T ! Suc k]›)
moreover
have suffix (lms-slice T i) (Suc 0) = ?bs @ [T ! k, T ! Suc k]

by (simp add: ‹lms-slice T i = T ! i # list-slice T (Suc i) k @ [T ! k, T !
Suc k]›)

ultimately show ?thesis
by (metis ‹suffix-type T i = L-type› ordlistns.less-asym suffix-type-def)

qed
ultimately show ?thesis

by blast
qed
moreover
have suffix-type T i = S-type =⇒ ?thesis
proof −

assume suffix-type T i = S-type
hence lms-slice T i = T ! i # lms-slice T (Suc i)

using assms lms-slice-cons by blast

159

have abs-find-next-lms T i < length T ∨ abs-find-next-lms T i = length T
by (simp add: abs-find-next-lms-le-length nat-less-le)

moreover
have abs-find-next-lms T i < length T =⇒ ?thesis
proof −

assume abs-find-next-lms T i < length T
with abs-find-next-lms-first-l-after-s-type[OF - ‹suffix-type T i = S-type›]
obtain j where

i < j
j < abs-find-next-lms T i
∀ k<j. i ≤ k −→ suffix-type T k = S-type
suffix-type T j = L-type
by blast

hence sorted (list-slice T i j)
by (meson ‹abs-find-next-lms T i < length T › dual-order .order-iff-strict

order .strict-trans
sorted-letters-s-types)

have ∃ l. j = Suc l
using ‹i < j› less-imp-Suc-add by blast

then obtain l where
j = Suc l
by blast

let ?xs = list-slice T (Suc i) (Suc l)
and ?ys = list-slice T (Suc ((Suc l))) (Suc (Suc k))

have lms-slice T i = list-slice T i j @ list-slice T j (Suc (Suc k))
by (metis ‹abs-find-next-lms T i = Suc k› ‹i < j› ‹j < abs-find-next-lms T

i› less-SucI
less-imp-le-nat list-slice-append lms-slice-def)

moreover
have list-slice T i j = T ! i # ?xs

using ‹i < j› ‹j = Suc l› assms list-slice-Suc by blast
moreover
have list-slice T j (Suc (Suc k)) = T ! Suc l # ?ys

by (metis ‹abs-find-next-lms T i < length T › ‹abs-find-next-lms T i = Suc
k› ‹j < abs-find-next-lms T i›

‹j = Suc l› less-SucI list-slice-Suc order .strict-trans)
ultimately have lms-slice T i = T ! i # ?xs @ [T ! Suc l] @ ?ys

by auto

have i = l ∨ i < l
using ‹i < j› less-antisym ‹j = Suc l› by blast

moreover
have i = l =⇒ ?thesis
proof −

assume i = l
hence ?xs = []

160

using list-slice-n-n by blast
hence lms-slice T i = T ! i # [T ! Suc l] @ ?ys

using ‹lms-slice T i = T ! i # ?xs @ [T ! Suc l] @ ?ys›
by simp

moreover
have T ! i < T ! Suc l

by (metis SL-types.simps(2) ‹abs-find-next-lms T i < length T › ‹i = l› ‹j
< abs-find-next-lms T i›

‹j = Suc l› ‹suffix-type T i = S-type› ‹suffix-type T j = L-type›
suffix-type-neq

le-imp-less-or-eq order .strict-trans s-type-letter-le-Suc)
ultimately show ?thesis

by (simp add: ‹suffix-type T i = S-type› suffix-type-cons-less)
qed
moreover
have i < l =⇒ ?thesis
proof −

let ?zs = list-slice T (Suc i) l
assume i < l
hence ?xs = ?zs @ [T ! l]

by (metis Suc-leI Suc-n-not-le-n ‹abs-find-next-lms T i < length T › ‹j <
abs-find-next-lms T i›

‹j = Suc l› lessI less-le-trans linear list-slice-Suc list-slice-append
list-slice-n-n)

hence lms-slice T i = T ! i # ?zs @ [T ! l, T ! Suc l] @ ?ys
using ‹lms-slice T i = T ! i # ?xs @ [T ! Suc l] @ ?ys›
by simp

moreover
have suffix-type T l = S-type
by (simp add: ‹∀ k<j. i ≤ k −→ suffix-type T k = S-type› ‹i < l› ‹j = Suc

l› less-or-eq-imp-le)
hence T ! l < T ! Suc l

by (metis SL-types.simps(2) ‹abs-find-next-lms T i < length T › ‹j <
abs-find-next-lms T i›

‹j = Suc l› ‹suffix-type T j = L-type› order .strict-iff-order or-
der .strict-trans

s-type-letter-le-Suc suffix-type-neq)
ultimately show ?thesis

using ‹sorted (list-slice T i j)›
sorted-list-less-ns[of T ! i ?zs T ! l T ! Suc l ?ys ?ys]

by (metis ‹?xs = ?zs @ [T ! l]› ‹list-slice T i j = T ! i # ?xs› suffix-0
length-Cons

‹suffix-type T i = S-type› list.inject suffix-0 suffix-cons-Suc suffix-type-def
zero-less-Suc)

qed
ultimately show ?thesis

by blast
qed
moreover

161

have abs-find-next-lms T i = length T =⇒ ?thesis
proof −

assume abs-find-next-lms T i = length T
hence P: ∀ k ′≥i. k ′ < length T −→ suffix-type T k ′ = S-type

using abs-find-next-lms-eq-length-all-s-types by blast

have lms-slice T i = T ! i # list-slice T (Suc i) (length T)
by (metis ‹abs-find-next-lms T i = length T › assms leI less-not-refl

list-slice-Suc
lms-slice-butlast-def lms-slice-eq-butlast)

with sorted-letters-s-types[OF P]
sorted-cons-list-less-ns[of T ! i list-slice T (Suc i) (length T)]

show ?thesis
by (metis assms list-slice-Suc suffix-eq-list-slice suffix-type-suffix)

qed

ultimately show ?thesis
by blast

qed
ultimately show ?thesis

by blast
qed

lemma lms-slice-l-less-than-s-type-gen:
assumes suffix-type (a # as) 0 = L-type
and suffix-type (a # bs) 0 = S-type

shows list-less-ns (lms-slice (a # as) 0) (lms-slice (a # bs) 0)
proof −

from lms-slice-type[of 0 a # as] assms(1)
have suffix-type (lms-slice (a # as) 0) 0 = L-type

by simp
moreover
have ∃ xs. lms-slice (a # as) 0 = a # xs

by (simp add: list-slice-Suc lms-slice-def)
then obtain xs where

lms-slice (a # as) 0 = a # xs
by blast

moreover
from lms-slice-type[of 0 a # bs] assms(2)
have suffix-type (lms-slice (a # bs) 0) 0 = S-type

by simp
moreover
have ∃ xs. lms-slice (a # bs) 0 = a # xs

by (simp add: assms(2) lms-slice-cons)
then obtain ys where

lms-slice (a # bs) 0 = a # ys
by blast

ultimately show ?thesis
by (simp add: l-less-than-s-type-general)

162

qed

lemma lms-slice-l-less-than-s-type:
assumes i < length T
and j < length T
and T ! i = T ! j
and suffix-type T i = L-type
and suffix-type T j = S-type

shows list-less-ns (lms-slice T i) (lms-slice T j)
by (metis assms abs-find-next-lms-lower-bound-1 l-less-than-s-type-general less-SucI

list-slice-Suc
lms-slice-def lms-slice-type)

lemma lms-prefix-type:
assumes i < length T
shows suffix-type (lms-prefix T i) 0 = suffix-type T i

proof −
have abs-is-lms T i ∨ ¬abs-is-lms T i

by blast
moreover
have ¬abs-is-lms T i =⇒ ?thesis

by (metis assms closest-lms.simps lms-prefix-def lms-slice-def
lms-slice-type)

moreover
have abs-is-lms T i =⇒ ?thesis

by (simp add: abs-is-lms-def lms-lms-prefix suffix-type-last)
ultimately show ?thesis

by blast
qed

lemma lms-prefix-l-less-than-s-type-gen:
assumes suffix-type (a # as) 0 = L-type
and suffix-type (a # bs) 0 = S-type

shows list-less-ns (lms-prefix (a # as) 0) (lms-prefix (a # bs) 0)
by (metis assms closest-lms.simps lms-prefix-def abs-is-lms-def lessI lms-slice-def

lms-slice-l-less-than-s-type-gen not-gr-zero not-less-iff-gr-or-eq)

lemma lms-prefix-l-less-than-s-type:
assumes i < length T
and j < length T
and T ! i = T ! j
and suffix-type T i = L-type
and suffix-type T j = S-type

shows list-less-ns (lms-prefix T i) (lms-prefix T j)
proof −

let ?a = T ! i

have ∃ as. lms-prefix T i = ?a # as
by (simp add: assms(1) lms-prefix-def abs-find-next-lms-lower-bound-1 less-SucI

163

list-slice-Suc)
then obtain as where

lms-prefix T i = ?a # as
by blast

hence suffix-type (?a # as) 0 = L-type
using assms(1 ,4) lms-prefix-type by fastforce

have ∃ bs. lms-prefix T j = ?a # bs
by (simp add: assms(2 ,3) lms-prefix-def abs-find-next-lms-lower-bound-1 less-SucI

list-slice-Suc)
then obtain bs where

lms-prefix T j = ?a # bs
by blast

hence suffix-type (?a # bs) 0 = S-type
using assms(2) assms(5) lms-prefix-type by fastforce

with l-less-than-s-type-general[OF - ‹suffix-type (?a # as) 0 = -›, of bs]
have list-less-ns (?a # as) (?a # bs) .
then show ?thesis

by (simp add: ‹lms-prefix T i = T ! i # as› ‹lms-prefix T j = T ! i # bs›)
qed

lemma l-type-lms-prefix-cons:
assumes suffix-type T i = L-type
and i < length T

shows lms-prefix T i = T ! i # lms-prefix T (Suc i)
proof −

have suffix-type T (Suc i) = L-type ∨ suffix-type T (Suc i) = S-type
using SL-types.exhaust by blast

moreover
have suffix-type T (Suc i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (Suc i) = L-type
hence ¬abs-is-lms T (Suc i)

by (simp add: ‹suffix-type T i = L-type› suffix-type-same-imp-not-lms)
with Suc-not-lms-imp-abs-find-next-eq-Suc
have abs-find-next-lms T i = abs-find-next-lms T (Suc i) .
hence closest-lms T i = abs-find-next-lms T (Suc i)

by (simp add: ‹suffix-type T i = L-type› abs-is-lms-def)
hence lms-prefix T i = list-slice T i (Suc (abs-find-next-lms T (Suc i)))

by (simp add: lms-prefix-def)
moreover
have Suc i < Suc (abs-find-next-lms T (Suc i))
using ‹abs-find-next-lms T i = abs-find-next-lms T (Suc i)› assms(2) abs-find-next-lms-lower-bound-1

by force
ultimately have

lms-prefix T i = T ! i # list-slice T (Suc i) (Suc (abs-find-next-lms T (Suc
i)))

by (simp add: assms(2) list-slice-Suc)
then show ?thesis

164

by (simp add: ‹¬ abs-is-lms T (Suc i)› lms-prefix-def)
qed
moreover
have suffix-type T (Suc i) = S-type =⇒ ?thesis
proof −

assume suffix-type T (Suc i) = S-type
hence abs-is-lms T (Suc i)

by (simp add: assms(1) abs-is-lms-def)
hence abs-find-next-lms T i = Suc i

by (simp add: abs-find-next-lms-abs-is-lms)
hence lms-prefix T i = [T ! i, T ! Suc i]
by (metis Suc-lessD ‹abs-is-lms T (Suc i)› assms(2) closest-lms.simps lms-prefix-def

abs-is-lms-consec(1) lessI list-slice-Suc lms-lms-prefix)
moreover
have lms-prefix T (Suc i) = [T ! Suc i]

by (simp add: ‹abs-is-lms T (Suc i)› lms-lms-prefix)
ultimately show ?thesis

by simp
qed
ultimately show ?thesis

by blast
qed

52 Ordering LMS-substrings
This section contains theorems about how LMS-substrings and suffixes are
ordered.
lemma lms-slice-eq-suffix-less:

assumes lms-slice T i = lms-slice T j
shows list-less-ns (suffix T i) (suffix T j) ←→

list-less-ns (suffix T (abs-find-next-lms T i)) (suffix T (abs-find-next-lms T
j))
proof −

have [[abs-find-next-lms T i < length T ; abs-find-next-lms T j < length T]] =⇒
?thesis

proof −
assume A: abs-find-next-lms T i < length T abs-find-next-lms T j < length T
have suffix T i = lms-slice-butlast T i @ suffix T (abs-find-next-lms T i)

using A(1) suffix-abs-find-next-lms by blast
moreover
have suffix T j = lms-slice-butlast T j @ suffix T (abs-find-next-lms T j)

using A(2) suffix-abs-find-next-lms by blast
moreover
have lms-slice-butlast T i = lms-slice-butlast T j

by (metis A(1) A(2) assms butlast-snoc lms-slice-to-butlast-app)
ultimately show ?thesis

by (simp add: list-less-ns-app-same)
qed

165

moreover
have [[abs-find-next-lms T i = length T ; abs-find-next-lms T j = length T]] =⇒

?thesis
by (metis assms dual-order .refl lms-slice-eq-suffix ordlistns.less-irrefl)

moreover
have [[abs-find-next-lms T i = length T ; abs-find-next-lms T j < length T]] =⇒

?thesis
proof −

assume A: abs-find-next-lms T i = length T abs-find-next-lms T j < length T
have suffix T i = lms-slice T i

by (simp add: A(1) lms-slice-eq-suffix)
moreover
have suffix T j = lms-slice T j @ suffix T (Suc (abs-find-next-lms T j))

by (meson A(2) abs-find-next-lms-lower-bound-2 linorder-not-less
suffix-to-lms-slice-app-suffix)

ultimately show ?thesis
by (metis A(1) append.right-neutral assms cancel-comm-monoid-add-class.diff-cancel

length-0-conv length-drop list-less-ns-app ordlistns.not-less-iff-gr-or-eq
ordlistns.top.extremum-strict)

qed
moreover
have [[abs-find-next-lms T i < length T ; abs-find-next-lms T j = length T]] =⇒

?thesis
proof −

assume A: abs-find-next-lms T i < length T abs-find-next-lms T j = length T
have suffix T i = lms-slice T i @ suffix T (Suc (abs-find-next-lms T i))

by (meson A(1) abs-find-next-lms-lower-bound-2 linorder-not-less
suffix-to-lms-slice-app-suffix)

moreover
have suffix T j = lms-slice T j

by (simp add: A(2) lms-slice-eq-suffix)
ultimately show ?thesis

by (metis A append-Nil2 assms drop-eq-Nil2 abs-find-next-lms-lower-bound-2
linorder-le-less-linear

list-less-ns-app nless-le ordlistns.top.not-eq-extremum suffix-neq-nil
suffixes-neq)

qed
ultimately show ?thesis

by (meson abs-find-next-lms-le-length le-neq-implies-less)
qed

lemma lms-slice-eq-suffix-less-funpow ′:
assumes ∀ k < n. lms-slice T (((abs-find-next-lms T)^^k) i) =

lms-slice T (((abs-find-next-lms T)^^k) j)
and k < n
shows list-less-ns (suffix T i) (suffix T j) ←→

list-less-ns (suffix T (((abs-find-next-lms T)^^k) i)) (suffix T (((abs-find-next-lms
T)^^k) j))

using assms

166

proof (induct n arbitrary: k)
case 0
then show ?case

by blast
next

case (Suc n)
note IH = this
have k < n =⇒ ?case

by (simp add: Suc.hyps Suc.prems(1))
moreover
have k = n =⇒ ?case
proof −

assume k = n

have k = 0 =⇒ ?thesis
by auto

moreover
have ∃m. k = Suc m =⇒ ?thesis
proof −

assume ∃m. k = Suc m
then obtain m where k = Suc m

by blast
hence m < n

using ‹k = n› by blast
with IH (1)[of m]
have list-less-ns (suffix T i) (suffix T j) =

list-less-ns (suffix T ((abs-find-next-lms T ^^ m) i))
(suffix T ((abs-find-next-lms T ^^ m) j))

using Suc.prems(1) less-Suc-eq-le less-or-eq-imp-le by presburger
moreover
have list-less-ns (suffix T ((abs-find-next-lms T ^^ m) i))

(suffix T ((abs-find-next-lms T ^^ m) j)) =
list-less-ns (suffix T (abs-find-next-lms T ((abs-find-next-lms T ^^ m)

i)))
(suffix T (abs-find-next-lms T ((abs-find-next-lms T ^^ m) j)))

using Suc.prems(1 ,2) Suc-lessD ‹k = Suc m› lms-slice-eq-suffix-less by blast
ultimately show ?thesis

by (simp add: ‹k = Suc m›)
qed
ultimately show ?thesis

using not0-implies-Suc by blast
qed
ultimately show ?case

using Suc.prems(2) less-Suc-eq by blast
qed

lemma lms-slice-eq-suffix-less-funpow:
assumes ∀ k < n. lms-slice T (((abs-find-next-lms T)^^k) i) =

lms-slice T (((abs-find-next-lms T)^^k) j)

167

shows list-less-ns (suffix T i) (suffix T j) ←→
list-less-ns (suffix T (((abs-find-next-lms T)^^n) i)) (suffix T (((abs-find-next-lms

T)^^n) j))
proof (cases n)

case 0
then show ?thesis

by auto
next

case (Suc m)
then show ?thesis

by (metis assms abs-find-next-lms-funpow-Suc lessI lms-slice-eq-suffix-less
lms-slice-eq-suffix-less-funpow ′)

qed

lemma list-slice-single:
i < length xs =⇒ list-slice xs i (Suc i) = [xs ! i]
by (simp add: list-slice-Suc)

lemma less-lms-slice-imp-suffix:
assumes i < length T
and j < length T
and list-less-ns (lms-slice T i) (lms-slice T j)
shows list-less-ns (suffix T i) (suffix T j)

proof −

let ?c1 = ∃ b c as bs cs. lms-slice T i = as @ b # bs ∧
lms-slice T j = as @ c # cs ∧ b < c

let ?c2 = ∃ c cs. lms-slice T i = lms-slice T j @ c # cs

from list-less-ns-exE [OF assms(3)[simplified list-less-ns-alt-def]]
have ?c1 ∨ ?c2 .
moreover
have ?c1 =⇒ ?thesis
by (metis append.assoc append-Cons assms(1 ,2) list-less-ns-app-same list-less-ns-cons-diff

suffix-to-lms-slice-app-suffix)
moreover
have ?c2 =⇒ ?thesis
proof −

assume ?c2
then obtain c cs where

lms-slice T i = lms-slice T j @ c # cs
by blast

moreover
from lms-slice-hd[OF assms(2)]
obtain xs where

Sj: lms-slice T j = T ! j # xs
by blast

ultimately have Si: lms-slice T i = T ! j # xs @ c # cs
by simp

168

let ?i = abs-find-next-lms T i
let ?j = abs-find-next-lms T j
have ∃ k. ?j = Suc k

by (meson Nat.lessE assms(1) dual-order .strict-trans1
abs-find-next-lms-strict-upper-imp-lower-bound linorder-not-less)

then obtain k where
?j = Suc k
by blast

hence j ≤ k
using assms(2) abs-find-next-lms-lower-bound-1 by force

have ?j = length T =⇒ ?thesis
by (metis append-Nil2 assms(1 ,3) abs-find-next-lms-le-length list-less-ns-app

lms-slice-eq-suffix ordlistns.dual-order .strict-trans
suffix-to-lms-slice-app-suffix)

moreover
have ?j < length T =⇒ ?thesis
proof −

assume ?j < length T
with lms-slice-to-butlast-app
have lms-slice T j = lms-slice-butlast T j @ [T ! Suc k]

using ‹?j = Suc k› by fastforce
moreover
have ∃ ys. lms-slice-butlast T j = ys @ [T ! k]
proof (cases j = k)

case True
hence lms-slice-butlast T j = list-slice T k (Suc k)

by (metis ‹?j = Suc k› lms-slice-butlast-def)
moreover
have list-slice T k (Suc k) = [T ! k]

using True assms(2) list-slice-single by auto
ultimately show ?thesis

by simp
next

case False
hence j < k

by (simp add: ‹j ≤ k› le-neq-implies-less)
hence list-slice T j (Suc k) = list-slice T j k @ [T ! k]

by (metis ‹?j < length T › ‹?j = Suc k› ‹j ≤ k› le-SucI le-add2
list-slice-append

list-slice-single not-less plus-1-eq-Suc)
then show ?thesis

by (simp add: ‹?j = Suc k› lms-slice-butlast-def)
qed
then obtain ys where

lms-slice-butlast T j = ys @ [T ! k]
by blast

ultimately have Sj ′: lms-slice T j = ys @ [T ! k, T ! Suc k]

169

by simp

have Si ′: lms-slice T i = ys @ T ! k # T ! Suc k # c # cs
using Si Sj Sj ′ by auto

have suffix-type T k = L-type
by (metis ‹?j < length T › ‹?j = Suc k› abs-find-next-lms-less-length-abs-is-lms

abs-is-lms-neq nth-gr-imp-l-type)

have abs-is-lms T (Suc k)
by (metis ‹?j < length T › ‹?j = Suc k› abs-find-next-lms-less-length-abs-is-lms)
hence T ! k > T ! Suc k

using abs-is-lms-neq by blast

have Si: suffix T i = ys @ T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i)
by (simp add: Si ′ assms(1) suffix-to-lms-slice-app-suffix)

moreover
have suffix T j = ys @ T ! k # T ! Suc k # suffix T (Suc ?j)

by (simp add: ‹lms-slice T j = ys @ [T ! k, T ! Suc k]› assms(2)
suffix-to-lms-slice-app-suffix)

ultimately have list-less-ns (suffix T i) (suffix T j) ←→
list-less-ns (T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i))

(T ! k # T ! Suc k # suffix T (Suc ?j))
by (simp add: list-less-ns-app-same)

moreover
have suffix-type (T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i)) (Suc 0)

= L-type =⇒ ?thesis
by (metis Cons-nth-drop-Suc ‹?j < length T › ‹?j = Suc k› ‹abs-is-lms T

(Suc k)› calculation
abs-is-lms-def l-less-than-s-type-general list-less-ns-cons-same

suffix-type-cons-suc
suffix-type-suffix)

moreover
have suffix-type (T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i)) (Suc 0)

= S-type =⇒ ?thesis
proof −

assume suffix-type (T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i)) (Suc
0) = S-type

with Si
have suffix-type T (Suc (i + length ys)) = S-type

by (metis One-nat-def plus-1-eq-Suc suffix-cons-app suffix-type-suffix-gen)
moreover
have suffix-type (T ! k # T ! Suc k # c # cs @ suffix T (Suc ?i)) 0 =

L-type
using ‹T ! Suc k < T ! k› suffix-type-cons-greater by blast

hence suffix-type T (i + length ys) = L-type
by (simp add: Si suffix-cons-app suffix-type-list-type-eq)

ultimately have abs-is-lms T (Suc (i + length ys))
using abs-is-lms-def by blast

170

moreover
{

have i < ?i
by (simp add: assms(1) abs-find-next-lms-lower-bound-1)

from ‹lms-slice T i = ys @ T ! k # T ! Suc k # c # cs›
have Suc (Suc (length ys)) < length (lms-slice T i)

by simp

have ?i = length T =⇒ Suc (i + length ys) < ?i
by (simp add: ‹abs-is-lms T (Suc (i + length ys))› abs-is-lms-imp-less-length)
moreover
have ?i < length T =⇒ Suc (i + length ys) < ?i
proof −

assume ?i < length T
hence length (lms-slice T i) = Suc ?i − i

by (simp add: lms-slice-def Suc-leI)
hence Suc (Suc (length ys)) < Suc ?i − i

using ‹Suc (Suc (length ys)) < length (lms-slice T i)› by presburger
then show ?thesis

by linarith
qed
ultimately have Suc (i + length ys) < ?i

using abs-find-next-lms-le-length le-neq-implies-less by blast
}
ultimately show ?thesis

using no-lms-between-i-and-next[of i Suc (i + length ys)] less-add-Suc1
by blast

qed
ultimately show ?thesis

using SL-types.exhaust by blast
qed
ultimately show ?thesis

using abs-find-next-lms-le-length le-neq-implies-less by blast
qed
ultimately show ?thesis

by blast
qed

lemma lms-slice-list-less-ns-suffix:
assumes abs-is-lms T i
and abs-is-lms T j
and list-less-ns (lms-slice T i) (lms-slice T j)

shows list-less-ns (suffix T i) (suffix T j)
by (simp add: assms abs-is-lms-imp-less-length less-lms-slice-imp-suffix)

lemma less-suffix-imp-lms-slice:
assumes i < length T
and j < length T

171

and lms-slice T i 6= lms-slice T j
and list-less-ns (suffix T i) (suffix T j)

shows list-less-ns (lms-slice T i) (lms-slice T j)
by (meson assms less-lms-slice-imp-suffix ordlistns.less-asym ordlistns.neqE)

lemma not-lms-imp-next-eq-lms-prefix:
¬abs-is-lms T i =⇒ lms-slice T i = lms-prefix T i
by (simp add: lms-prefix-def lms-slice-def)

lemma lms-slice-last:
assumes valid-list T
and length T = Suc n

shows lms-slice T n = [bot]
by (metis add-diff-cancel-left ′ assms butlast-snoc abs-find-next-lms-lower-bound-1

le-Suc-eq
length-butlast less-Suc-eq list-slice-Suc list-slice-start-gre-length lms-slice-def
nth-append-length plus-1-eq-Suc valid-list-ex-def)

lemma Min-valid-lms-slice:
assumes valid-list T
and length T = Suc n

shows ordlistns.Min {lms-slice T i |i. i < length T} = lms-slice T n
proof −

from lms-slice-last[OF assms]
have lms-slice T n = [bot]

by assumption

have ∀ i < n. (lms-slice T i) ! 0 6= bot
by (metis add-diff-cancel-left ′ assms abs-find-next-lms-lower-bound-1 less-SucI

list-slice-Suc
lms-slice-def nth-Cons-0 plus-1-eq-Suc valid-list-def)

hence A: ∀ i < n. bot < (lms-slice T i) ! 0
using bot.not-eq-extremum by blast

have B: ∀ i < length T . length (lms-slice T i) > 0
by (simp add: abs-find-next-lms-lower-bound-1 less-SucI list-slice-Suc lms-slice-def)

show ?thesis
proof (intro ordlistns.Min-eqI conjI)

show finite {lms-slice T i |i. i < length T}
using finite-image-set by blast

next
fix ys
assume ys ∈ {lms-slice T i |i. i < length T}
hence ∃ i < length T . ys = lms-slice T i

by blast
then obtain i where

i < length T
ys = lms-slice T i

172

by blast

with ‹ys = lms-slice T i›
have R1 : i = n =⇒ list-less-eq-ns (lms-slice T n) ys

by simp

from ‹i < length T › assms(2)
have R2-1 : i 6= n =⇒ i < n

by linarith

from A ‹lms-slice T n = [bot]› ‹i < length T › ‹ys = lms-slice T i›
have R2-2 : i < n =⇒ list-less-eq-ns (lms-slice T n) ys

using list-less-eq-ns-def by fastforce

from R1 R2-2 [OF R2-1]
show list-less-eq-ns (lms-slice T n) ys

by blast
next

show lms-slice T n ∈ {lms-slice T i |i. i < length T}
using assms(2) by auto

qed
qed

lemma unique-valid-lms-slice:
assumes valid-list T
and length T = Suc n

shows ∀ i < n. lms-slice T i 6= lms-slice T n
proof (intro allI impI)

fix i
assume i < n
from lms-slice-last[OF assms]
have lms-slice T n = [bot]

by assumption

have ∀ i < n. (lms-slice T i) ! 0 6= bot
by (metis add-diff-cancel-left ′ assms abs-find-next-lms-lower-bound-1 less-SucI

list-slice-Suc
lms-slice-def nth-Cons-0 plus-1-eq-Suc valid-list-def)

hence ∀ i < n. bot < (lms-slice T i) ! 0
using bot.not-eq-extremum by blast

with ‹lms-slice T n = [bot]› ‹i < n›
show lms-slice T i 6= lms-slice T n

by auto
qed

lemma strict-Min-valid-lms-slice:
assumes valid-list T
and length T = Suc n

shows ∀ i < n. list-less-ns (lms-slice T n) (lms-slice T i)

173

by (metis add-diff-cancel-left ′ assms bot.not-eq-extremum abs-find-next-lms-lower-bound-1
less-Suc-eq

list-less-ns-cons-diff list-slice-Suc lms-slice-def lms-slice-last plus-1-eq-Suc
valid-list-def)

lemma ordlistns-lms-slice-imp-suffix-strict-sorted:
assumes set xs ⊆ {i. abs-is-lms T i} ordlistns.strict-sorted (map (lms-slice T)

xs)
shows ordlistns.strict-sorted (map (suffix T) xs)

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length xs
with sorted-wrt-mapD[OF assms(2), of i j]
have list-less-ns (lms-slice T (xs ! i)) (lms-slice T (xs ! j))

by blast
moreover
have abs-is-lms T (xs ! i)

using ‹i < j› ‹j < length xs› assms(1) subsetD by fastforce
hence xs ! i < length T

by (simp add: abs-is-lms-imp-less-length)
moreover
have abs-is-lms T (xs ! j)

using ‹j < length xs› assms(1) nth-mem by auto
hence xs ! j < length T

by (simp add: abs-is-lms-imp-less-length)
ultimately show list-less-ns (suffix T (xs ! i)) (suffix T (xs ! j))

using less-lms-slice-imp-suffix by blast
qed

53 Mapping from suffix to lists of LMS-Substrings
This section contains the mapping from LMS-type suffixes to suffixes of the
reduced sequence. The mapping is constructed in 3 major steps. 1) From
suffix ID to a sequence of LMS-type suffix IDs 2) From a sequence of LMS-
type suffix IDs to a sequence of LMS-substrings 3) From a LMS-type suffix
to a reduced suffix using the mappings 1, 2 and ordlistns.elem-rank The
mapping is also shown to be monotonic.
abbreviation lms-substrs xs ≡ lms-slice xs ‘ {i. abs-is-lms xs i}
abbreviation lms-suffixes xs ≡ suffix xs ‘ {i. abs-is-lms xs i}

abbreviation nth-lms xs i ≡ (abs-find-next-lms xs ^^ Suc i) 0

abbreviation lms0 xs ≡ abs-find-next-lms xs 0
abbreviation lms0-suffix xs ≡ suffix xs (lms0 xs)
abbreviation lms0-substr xs ≡ lms-slice xs (lms0 xs)

174

53.1 LMS Sequence
definition lms-seq :: ′a :: {linorder ,order-bot} list ⇒ nat ⇒ nat list

where
lms-seq xs i = filter (abs-is-lms xs) [i..<length xs]

lemma lms-seq-distinct:
distinct (lms-seq xs i)
by (simp add: lms-seq-def)

lemma lms-seq-sorted:
sorted (lms-seq xs i)
by (simp add: filter-sorted lms-seq-def)

lemma lms-seq-strict-sorted:
strict-sorted (lms-seq xs i)
by (simp add: lms-seq-distinct lms-seq-sorted sorted-and-distinct-imp-strict-sorted)

lemma lms-seq-abs-is-lms-hd:
abs-is-lms xs i =⇒ ∃ ys. lms-seq xs i = i # ys
by (simp add: filter-abs-is-lms-upt-hd abs-is-lms-imp-less-length lms-seq-def)

lemma length-lms-seq:
assumes abs-is-lms xs i
shows length (lms-seq xs i) = card {j. abs-is-lms xs j ∧ i ≤ j}

proof −
from distinct-length-filter [of [i..<length xs] abs-is-lms xs]
have length (lms-seq xs i) = card ({x. abs-is-lms xs x} ∩ {i..<length xs})

by (simp add: lms-seq-def)
moreover
have {x. abs-is-lms xs x} ∩ {i..<length xs} = {x. abs-is-lms xs x ∧ i ≤ x}

by (safe; clarsimp simp: abs-is-lms-imp-less-length)
ultimately show ?thesis

by simp
qed

lemma length-lms-seq-less:
assumes abs-is-lms xs i
and abs-is-lms xs j
and i < j

shows length (lms-seq xs j) < length (lms-seq xs i)
proof −

have {k. abs-is-lms xs k ∧ j ≤ k} ⊆ {j. abs-is-lms xs j ∧ i ≤ j}
using assms(3) by force

moreover
have i ∈ {j. abs-is-lms xs j ∧ i ≤ j}

using assms(1) less-or-eq-imp-le by blast
moreover
have i /∈ {k. abs-is-lms xs k ∧ j ≤ k}

using assms(3) linorder-not-less by blast

175

ultimately have {k. abs-is-lms xs k ∧ j ≤ k} ⊂ {j. abs-is-lms xs j ∧ i ≤ j}
by blast

hence card {k. abs-is-lms xs k ∧ j ≤ k} < card {j. abs-is-lms xs j ∧ i ≤ j}
by (simp add: lms-finite psubset-card-mono)

then show ?thesis
by (simp add: assms(1) assms(2) length-lms-seq)

qed

lemma lms-seq-nth-0 :
lms-seq xs (Suc k) 6= [] =⇒ lms-seq xs (Suc k) ! 0 = abs-find-next-lms xs k
unfolding lms-seq-def
apply (simp add: abs-find-next-lms-funpow-Suc abs-find-next-lms-def)
apply (drule filter-find)
by (clarsimp split: option.splits)

lemma lms-seq-eq-cons-lms:
assumes abs-is-lms xs i i < k k ≤ abs-find-next-lms xs i
shows lms-seq xs i = i # lms-seq xs k

proof −
have filter (abs-is-lms xs) [Suc i..<k] = []

using assms(1) assms(2) assms(3) filter-no-lms1 by blast
moreover
have [i..<length xs] = i # [Suc i..<k] @ [k..<length xs]
by (metis Suc-leI assms dual-order .trans abs-find-next-lms-le-length abs-is-lms-imp-less-length

le-add-diff-inverse upt-add-eq-append upt-conv-Cons)
hence lms-seq xs i = i # (filter (abs-is-lms xs) [Suc i..<k]) @ (filter (abs-is-lms

xs) [k..<length xs])
by (simp add: assms(1) lms-seq-def)

ultimately show ?thesis
by (metis append-Nil lms-seq-def)

qed

lemma lms-seq-not-lms:
assumes ¬abs-is-lms xs i i < k k ≤ abs-find-next-lms xs i
shows lms-seq xs i = lms-seq xs k

proof −
have filter (abs-is-lms xs) [i..<k] = []

using assms filter-no-lms2 by blast
moreover
have [i..<length xs] = [i..<k] @ [k..<length xs]
by (metis assms(2 ,3) dual-order .trans abs-find-next-lms-le-length le-add-diff-inverse

less-or-eq-imp-le upt-add-eq-append)
ultimately show ?thesis

by (simp add: lms-seq-def)
qed

lemma lms-seq-eq-cons:
assumes lms-seq xs (Suc i) 6= []
shows lms-seq xs (Suc i) = abs-find-next-lms xs i # lms-seq xs (Suc (abs-find-next-lms

176

xs i))
proof −

from lms-seq-nth-0 [OF assms]
have lms-seq xs (Suc i) ! 0 = abs-find-next-lms xs i .
moreover
have i < abs-find-next-lms xs i
by (metis Suc-lessD assms filter .simps(1) abs-find-next-lms-lower-bound-1 lms-seq-def

upt-rec)
hence Suc i ≤ abs-find-next-lms xs i

by simp
hence lms-seq xs (Suc i) = lms-seq xs (abs-find-next-lms xs i)

by (metis abs-find-next-lms-abs-is-lms abs-find-next-lms-le-Suc lms-seq-not-lms
order-le-imp-less-or-eq)

ultimately show ?thesis
by (metis Suc-leI assms filter .simps(1) abs-find-next-lms-less-length-abs-is-lms

abs-find-next-lms-lower-bound-1 lessI lms-seq-def lms-seq-eq-cons-lms
upt-rec)
qed

lemma lms-seq-nth-abs-is-lms:
i < length (lms-seq xs k) =⇒ abs-is-lms xs ((lms-seq xs k) ! i)
unfolding lms-seq-def
using nth-mem by fastforce

lemma lms-seq-0 :
lms-seq xs 0 = lms-seq xs (Suc 0)
by (metis filter-abs-is-lms-upt-0 lms-seq-def)

lemma lms-seq-nth:
i < length (lms-seq xs (Suc k)) =⇒ lms-seq xs (Suc k) ! i = ((abs-find-next-lms

xs)^^(Suc i)) k
proof (induct i arbitrary: k)

case 0
then show ?case

by (simp add: lms-seq-nth-0)
next

case (Suc i)
note IH = this
let ?j = abs-find-next-lms xs k
have lms-seq xs (Suc k) = ?j # lms-seq xs (Suc ?j)

using Suc.prems lms-seq-eq-cons by force
with IH (1)[of ?j]
have lms-seq xs (Suc ?j) ! i = (abs-find-next-lms xs ^^ Suc i) ?j

using Suc.prems by fastforce
then show ?case

by (simp add: ‹lms-seq xs (Suc k) = ?j # lms-seq xs (Suc ?j)› funpow-swap1)
qed

lemma inj-on-lms-seq:

177

inj-on (lms-seq xs) {i. abs-is-lms xs i}
by (metis (mono-tags, lifting) inj-onI list.inject lms-seq-abs-is-lms-hd mem-Collect-eq)

lemma list-app-imp-suffix:
xs = ys @ zs =⇒ suffix xs (length ys) = zs
by auto

abbreviation nth-lms-seq xs i ≡ lms-seq xs (nth-lms xs i)

abbreviation lms0-seq xs ≡ lms-seq xs (lms0 xs)

lemma lms-seq-0-zeroth-lms:
lms-seq xs 0 = lms0-seq xs
by (metis gr-zeroI abs-is-lms-0 le-refl lms-seq-not-lms)

lemma lms-seq-set:
set (lms-seq xs i) = {k. abs-is-lms xs k ∧ i ≤ k}
by (intro equalityI subsetI ; clarsimp simp add: abs-is-lms-def suffix-type-s-bound

lms-seq-def)

lemma lms-seq-last-eq-length:
length (lms-seq xs i) = Suc n =⇒
abs-find-next-lms xs ((lms-seq xs i) ! n) = length xs

proof −
let ?k = (lms-seq xs i) ! n
assume length (lms-seq xs i) = Suc n
hence i ≤ ?k

by (metis (no-types, lifting) lessI lms-seq-set mem-Collect-eq nth-mem)
have ∀ j < length xs. ?k < j −→ ¬abs-is-lms xs j
proof safe

fix j
assume j < length xs ?k < j abs-is-lms xs j
hence j ∈ set (lms-seq xs i)

using ‹i ≤ lms-seq xs i ! n› lms-seq-set by fastforce
hence ∃ j ′< length (lms-seq xs i). (lms-seq xs i) ! j ′ = j

by (simp add: in-set-conv-nth)
then obtain j ′ where

j ′ < length (lms-seq xs i)
(lms-seq xs i) ! j ′ = j
by blast

with strict-sorted-nth-less-mono[OF lms-seq-strict-sorted[of xs i], of n j ′]
have n < j ′

using ‹length (lms-seq xs i) = Suc n› ‹lms-seq xs i ! n < j› by fastforce
then show False

using ‹j ′ < length (lms-seq xs i)› ‹length (lms-seq xs i) = Suc n› by linarith
qed
then show ?thesis

by (meson abs-find-next-lms-le-length abs-find-next-lms-less-length-abs-is-lms
abs-find-next-lms-strict-upper-imp-lower-bound order .strict-iff-order)

178

qed

lemma lms0-seq-has-all-lms:
set (lms0-seq xs) = {i. abs-is-lms xs i}
by (metis (mono-tags, lifting) Collect-cong linorder-le-less-linear lms-seq-set mem-Collect-eq

no-lms-between-i-and-next set-lms-gr-0)

lemma lms0-seq-length:
length (lms0-seq xs) = card {i. abs-is-lms xs i}
by (metis distinct-card lms0-seq-has-all-lms lms-seq-distinct)

lemma lms0-seq-nth:
i < card {i. abs-is-lms xs i} =⇒ lms0-seq xs ! i = nth-lms xs i
by (metis lms0-seq-length lms-seq-0 lms-seq-0-zeroth-lms lms-seq-nth)

lemma lms-seq-Suc1 :
assumes abs-is-lms xs i
shows lms-seq xs i = i # lms-seq xs (Suc i)
by (simp add: assms filter-abs-is-lms-upt-hd abs-is-lms-imp-less-length lms-seq-def)

lemma lms-seq-Suc2 :
assumes ¬abs-is-lms xs i
shows lms-seq xs i = lms-seq xs (Suc i)
by (metis (no-types, lifting) assms dual-order .strict-trans2 filter .simps(2) lessI

less-or-eq-imp-le lms-seq-def upt-rec)

lemma lms-seq-suf :
i ≤ j =⇒ ∃ ys. lms-seq xs i = ys @ lms-seq xs j

proof (induct j − i arbitrary: i j)
case 0
then show ?case

by force
next

case (Suc x)
note IH = this
hence ∃ j ′. j = Suc j ′

by (metis Suc-le-D diff-le-self)
then obtain j ′ where

A: j = Suc j ′
by blast

with IH (1)[of j ′ i] IH (2 ,3)
have B: ∃ ys. lms-seq xs i = ys @ lms-seq xs j ′

by (metis Suc-diff-le Suc-eq-plus1 add.commute add-left-imp-eq antisym-conv2
le-Suc-eq

zero-less-Suc zero-less-diff)
show ?case
proof (cases abs-is-lms xs j ′)

assume abs-is-lms xs j ′
with A B lms-seq-Suc1 [of xs j ′]

179

show ?thesis
by auto

next
assume ¬abs-is-lms xs j ′
with A B lms-seq-Suc2 [of xs j ′]
show ?thesis

by simp
qed

qed

lemma lms-lms-seq-is-suffix:
assumes abs-is-lms xs i
shows ∃ k < length (lms0-seq xs).

suffix (lms0-seq xs) k = lms-seq xs i
proof −

have lms0 xs ≤ i
by (metis assms bot-nat-0 .not-eq-extremum abs-is-lms-0 linorder-not-less no-lms-between-i-and-next)

with lms-seq-suf [of lms0 xs i xs]
show ?thesis
by (metis assms length-Cons length-append length-greater-0-conv less-add-same-cancel1

less-numeral-extra(1) list.size(3) list-app-imp-suffix lms-seq-Suc1
plus-1-eq-Suc

zero-eq-add-iff-both-eq-0)
qed

lemma nth-lms:
i < card {i. abs-is-lms xs i} =⇒
abs-is-lms xs (nth-lms xs i)

proof −
assume i < card {i. abs-is-lms xs i}
hence i < length (lms0-seq xs)

by (metis distinct-card lms0-seq-has-all-lms lms-seq-distinct)
moreover
have ∃ k. lms0 xs = Suc k

by (metis calculation filter .simps(1) abs-find-next-lms-eq-Suc less-nat-zero-code
list.size(3)

lms-seq-def upt.simps(1))
then obtain k where lms0 xs = Suc k by blast
ultimately show ?thesis

by (metis lms-seq-0 lms-seq-0-zeroth-lms lms-seq-nth lms-seq-nth-abs-is-lms)
qed

lemma card-abs-find-next-lms-funpow:
i < card {k. abs-is-lms xs k} =⇒
card {k. abs-is-lms xs k ∧ k < nth-lms xs i} = i

proof (induct i)
case 0
then show ?case

by (metis (mono-tags, lifting) Collect-empty-eq card-eq-0-iff comp-apply fun-

180

pow.simps(2)
funpow-0 gr-zeroI abs-is-lms-0 no-lms-between-i-and-next)

next
case (Suc i)
note IH = this
let ?i = nth-lms xs i
let ?j = nth-lms xs (Suc i)
let ?A = {k. abs-is-lms xs k ∧ k < ?i}
let ?B = {k. abs-is-lms xs k ∧ k < ?j}

from IH
have A: card ?A = i

using Suc-lessD by blast
moreover
have P: ?i < ?j
by (metis Suc.prems Suc-lessD abs-find-next-lms-funpow-Suc abs-find-next-lms-lower-bound-1

abs-is-lms-imp-less-length nth-lms)
with no-lms-between-i-and-next-funpow
have B: ∀ j. ?i < j ∧ j < ?j −→ j /∈ ?B

by blast

have C : ?i ∈ ?B
using P Suc.prems Suc-lessD nth-lms by fastforce

have D: ?A ⊆ ?B
using P by force

have ?B = insert ?i ?A
using B nat-neq-iff C D
by (intro equalityI subsetI insert-iff [THEN iffD2]; auto)

moreover
have ?i /∈ ?A

by blast
hence card (insert ?i ?A) = Suc (card ?A)

by simp
ultimately show ?case

by simp
qed

lemma lms-seq-nth-suffix:
i < card {i. abs-is-lms xs i} =⇒
suffix (lms0-seq xs) i = nth-lms-seq xs i

proof −
let ?i = lms0 xs
let ?j = nth-lms xs i
assume A: i < card {i. abs-is-lms xs i}
from nth-lms[OF A]
have abs-is-lms xs ?j .
moreover

181

have ?i ≤ ?j
by (metis bot-nat-0 .not-eq-extremum calculation abs-is-lms-0 linorder-not-less

no-lms-between-i-and-next)
hence [?i..<length xs] = [?i..<?j] @ [?j..<length xs]
by (metis abs-find-next-lms-funpow-Suc abs-find-next-lms-le-length le-add-diff-inverse

upt-add-eq-append)
moreover
have length (filter (abs-is-lms xs) [?i..<?j]) = card {k. abs-is-lms xs k ∧ k < ?j}
proof −

from filter-no-lms2 [of xs 0 ?i]
have filter (abs-is-lms xs) [0 ..<?i] = []

using abs-is-lms-0 by fastforce
moreover
have [0 ..<?j] = [0 ..<?i] @ [?i..<?j]
by (metis ‹?i ≤ ?j› bot-nat-0 .not-eq-extremum le-add-diff-inverse less-or-eq-imp-le

upt-add-eq-append)
ultimately have filter (abs-is-lms xs) [0 ..<?j] = filter (abs-is-lms xs) [?i..<?j]

by fastforce
moreover
have length (filter (abs-is-lms xs) [0 ..<?j]) = card {k. abs-is-lms xs k ∧ k <

?j}
proof −

from length-filter-conv-card[of abs-is-lms xs [0 ..<?j], simplified length-upt]
have length (filter (abs-is-lms xs) [0 ..<?j]) = card {k. k < ?j ∧ abs-is-lms xs

([0 ..<?j] ! k)}
by simp

moreover
have {k. k < ?j ∧ abs-is-lms xs ([0 ..<?j] ! k)} = {k. abs-is-lms xs k ∧ k <

?j}
by force

ultimately show ?thesis
by simp

qed
ultimately show ?thesis

by presburger
qed
ultimately show ?thesis

by (metis (no-types, lifting) A Collect-cong card-abs-find-next-lms-funpow fil-
ter-append

list-app-imp-suffix lms-seq-def)
qed

53.2 LMS-Substring Sequence
definition lms-substr-seq :: ′a :: {linorder ,order-bot} list ⇒ nat ⇒ ′a list list

where
lms-substr-seq xs i = map (lms-slice xs) (lms-seq xs i)

lemma lms-substr-seq-length:

182

length (lms-substr-seq xs i) = length (lms-seq xs i)
by (simp add: lms-substr-seq-def)

lemma inj-on-map-lms-slice-lms-seq:
inj-on (map (lms-slice xs)) (lms-seq xs ‘ {i. abs-is-lms xs i})

proof (intro inj-onI)
fix x y
assume x ∈ lms-seq xs ‘ {i. abs-is-lms xs i}

y ∈ lms-seq xs ‘ {i. abs-is-lms xs i}
map (lms-slice xs) x = map (lms-slice xs) y

then obtain i j where
x = lms-seq xs i y = lms-seq xs j
map (lms-slice xs) (lms-seq xs i) = map (lms-slice xs) (lms-seq xs j)
abs-is-lms xs i abs-is-lms xs j
by clarsimp+

then have lms-seq xs i = lms-seq xs j
by (metis length-lms-seq-less length-map nat-neq-iff)

then show x = y
by (simp add: ‹x = lms-seq xs i› ‹y = lms-seq xs j›)

qed

lemma inj-on-lms-substr-seq:
inj-on (lms-substr-seq xs) {i. abs-is-lms xs i}
unfolding lms-substr-seq-def
using comp-inj-on[OF inj-on-lms-seq inj-on-map-lms-slice-lms-seq, simplified o-def]
by blast

lemma lms-substr-seq-nth:
i < length (lms-substr-seq xs (Suc k)) =⇒
lms-substr-seq xs (Suc k) ! i = lms-slice xs ((abs-find-next-lms xs ^^ Suc i) k)

by (simp add: lms-seq-nth lms-substr-seq-def)

lemma lms-substr-seq-nth-abs-is-lms:
i < length (lms-substr-seq xs k) =⇒
(lms-substr-seq xs k) ! i ∈ lms-substrs xs

by (simp add: lms-seq-nth-abs-is-lms lms-substr-seq-def)

definition suffix-to-id
where

suffix-to-id xs ys = length xs − length ys

lemma suffix-lengths-neq:
[[i < j; j < length xs]] =⇒ length (suffix xs i) > length (suffix xs j)
by simp

lemma inj-on-suffix-to-id:
inj-on (suffix-to-id xs) (suffix xs ‘ {i. abs-is-lms xs i})
by (intro inj-onI ; clarsimp simp: suffix-to-id-def abs-is-lms-imp-less-length less-or-eq-imp-le)

183

lemma suffix-id-suffix:
i < length xs =⇒ suffix-to-id xs (suffix xs i) = i
by (simp add: suffix-to-id-def)

lemma suffix-to-id-image:
suffix-to-id xs ‘ suffix xs ‘ {i. abs-is-lms xs i} = {i. abs-is-lms xs i}

proof safe
fix i
assume abs-is-lms xs i
then show abs-is-lms xs (suffix-to-id xs (suffix xs i))

by (simp add: abs-is-lms-imp-less-length suffix-id-suffix)
next

fix i
assume abs-is-lms xs i
then show i ∈ suffix-to-id xs ‘ lms-suffixes xs

by (simp add: image-iff abs-is-lms-imp-less-length suffix-id-suffix)
qed

abbreviation lms-substr-seq-id xs ≡ (lms-substr-seq xs) ◦ (suffix-to-id xs)

lemma lms-subtrs-seq-id-suffix:
lms-substr-seq-id xs (suffix xs i) = lms-substr-seq xs i
apply simp
apply (cases i < length xs)
apply (simp add: suffix-id-suffix)

by (simp add: lms-seq-def lms-substr-seq-def suffix-to-id-def)

lemma lms-substr-seq-id-nth-abs-is-lms:
i < length (lms-substr-seq-id xs (suffix xs k)) =⇒
(lms-substr-seq-id xs (suffix xs k)) ! i ∈ lms-substrs xs

by (simp add: lms-seq-nth-abs-is-lms lms-substr-seq-def)

lemma inj-on-lms-substr-seq-o-suffix-to-id:
inj-on (lms-substr-seq-id xs) (lms-suffixes xs)

proof −
have lms-substr-seq xs = map (lms-slice xs) ◦ lms-seq xs

using lms-substr-seq-def by fastforce
with comp-inj-on[OF inj-on-lms-seq inj-on-map-lms-slice-lms-seq, of xs]
have inj-on (lms-substr-seq xs) {i. abs-is-lms xs i}

by simp
with comp-inj-on[OF inj-on-suffix-to-id[of xs], simplified suffix-to-id-image[of xs]]
show ?thesis

by blast
qed

lemma list-less-ns-lms-substr-seq-suffix:
assumes abs-is-lms xs i
and abs-is-lms xs j
and nslexordp list-less-ns (lms-substr-seq xs i) (lms-substr-seq xs j)

184

shows list-less-ns (suffix xs i) (suffix xs j)
proof −

have ∃ i ′. i = Suc i ′
using assms(1) abs-is-lms-def by blast

then obtain i ′ where
i = Suc i ′
by blast

hence abs-find-next-lms xs i ′ = i
using assms(1) abs-find-next-lms-abs-is-lms by blast

have A:
∧

k. k < length (lms-substr-seq xs i) =⇒
lms-substr-seq xs i ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) i)

by (simp add: ‹abs-find-next-lms xs i ′= i› ‹i = Suc i ′› funpow-swap1 lms-substr-seq-nth)

have ∃ j ′. j = Suc j ′
using assms(2) abs-is-lms-def by blast

then obtain j ′ where
j = Suc j ′
by blast

hence abs-find-next-lms xs j ′ = j
using assms(2) abs-find-next-lms-abs-is-lms by blast

have B:
∧

k. k < length (lms-substr-seq xs j) =⇒
lms-substr-seq xs j ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by (simp add: ‹abs-find-next-lms xs j ′= j› ‹j = Suc j ′› funpow-swap1 lms-substr-seq-nth)

let ?c1 = ∃ b c as bs cs.
lms-substr-seq xs i = as @ b # bs ∧ lms-substr-seq xs j = as @ c # cs

∧
list-less-ns b c

let ?c2 = ∃ c cs. lms-substr-seq xs i = lms-substr-seq xs j @ c # cs
from nslexordpE [OF assms(3)]
have ?c1 ∨ ?c2 .
moreover
have ?c1 =⇒ ?thesis
proof −

assume ?c1
then obtain b c as bs cs where

lms-substr-seq xs i = as @ b # bs
lms-substr-seq xs j = as @ c # cs
list-less-ns b c
by blast

let ?b = lms-slice xs ((abs-find-next-lms xs ^^ (length as)) i)
from lms-substr-seq-nth[of length as xs i ′] ‹i = Suc i ′›

‹lms-substr-seq xs i = as @ b # bs›
have b = lms-slice xs ((abs-find-next-lms xs ^^ Suc (length as)) i ′)

by simp
with ‹abs-find-next-lms xs i ′ = i›

185

have b = ?b
by (simp add: funpow-swap1)

let ?c = lms-slice xs ((abs-find-next-lms xs ^^ (length as)) j)
from lms-substr-seq-nth[of length as xs j ′] ‹j = Suc j ′›

‹lms-substr-seq xs j = as @ c # cs›
have c = lms-slice xs ((abs-find-next-lms xs ^^ Suc (length as)) j ′)

by simp
with ‹abs-find-next-lms xs j ′ = j›
have c = lms-slice xs ((abs-find-next-lms xs ^^ (length as)) j)

by (simp add: funpow-swap1)

have P: ∀ k<length as. lms-slice xs ((abs-find-next-lms xs ^^ k) i) =
lms-slice xs ((abs-find-next-lms xs ^^ k) j)

proof (safe)
fix k
assume k < length as
with ‹lms-substr-seq xs i = as @ b # bs› A[of k]
have as ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) i)

by (simp add: nth-append)
moreover
from ‹lms-substr-seq xs j = as @ c # cs› ‹k < length as› B[of k]
have as ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by (simp add: nth-append)
ultimately show

lms-slice xs ((abs-find-next-lms xs ^^ k) i) =
lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by simp
qed

have Q: list-less-ns (suffix xs ((abs-find-next-lms xs ^^ (length as)) i))
(suffix xs ((abs-find-next-lms xs ^^ (length as)) j))

by (metis ‹b = ?b› ‹c = ?c› ‹list-less-ns b c› drop-eq-Nil abs-find-next-lms-lower-bound-2
less-lms-slice-imp-suffix list-less-ns-nil lms-slice-eq-suffix
not-le-imp-less ordlistns.less-asym)

show ?thesis
proof (cases length as)

case 0
then show ?thesis

using Q by force
next

case (Suc n)
assume length as = Suc n
moreover
from lms-slice-eq-suffix-less-funpow[OF P]
have list-less-ns (suffix xs i) (suffix xs j) =

list-less-ns (suffix xs ((abs-find-next-lms xs ^^ (length as)) i))
(suffix xs ((abs-find-next-lms xs ^^ (length as)) j))

186

using lessI by presburger
ultimately show ?thesis

using Q by blast
qed

qed
moreover
have ?c2 =⇒ ?thesis
proof −

assume ?c2
then obtain c cs where

lms-substr-seq xs i = lms-substr-seq xs j @ c # cs
by blast

have lms-substr-seq xs j 6= []
by (metis assms(2) list.distinct(1) list.map-disc-iff lms-seq-abs-is-lms-hd

lms-substr-seq-def)
hence ∃n. length (lms-substr-seq xs j) = Suc n

using not0-implies-Suc by auto
then obtain n where

length (lms-substr-seq xs j) = Suc n
by blast

have P: ∀ k < Suc n. lms-slice xs ((abs-find-next-lms xs ^^ k) i) =
lms-slice xs ((abs-find-next-lms xs ^^ k) j)

proof safe
fix k
assume k < Suc n
hence lms-substr-seq xs j ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by (simp add: B ‹length (lms-substr-seq xs j) = Suc n›)
moreover
from ‹lms-substr-seq xs i = lms-substr-seq xs j @ c # cs› ‹k < Suc n›
have lms-substr-seq xs i ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by (simp add: B ‹length (lms-substr-seq xs j) = Suc n› nth-append)
moreover
have lms-substr-seq xs i ! k = lms-slice xs ((abs-find-next-lms xs ^^ k) i)

using A ‹k < Suc n› ‹length (lms-substr-seq xs j) = Suc n›
‹lms-substr-seq xs i = lms-substr-seq xs j @ c # cs› by auto

ultimately show
lms-slice xs ((abs-find-next-lms xs ^^ k) i) =
lms-slice xs ((abs-find-next-lms xs ^^ k) j)

by simp
qed

have list-less-ns (suffix xs i) (suffix xs j) =
list-less-ns (suffix xs ((abs-find-next-lms xs ^^ Suc n) i))

(suffix xs ((abs-find-next-lms xs ^^ Suc n) j))
using lms-slice-eq-suffix-less-funpow[OF P]
by blast

moreover

187

from lms-seq-last-eq-length[of xs j n]
have (abs-find-next-lms xs ^^ Suc n) j = length xs

by (metis ‹abs-find-next-lms xs j ′ = j› ‹j = Suc j ′› ‹length (lms-substr-seq xs
j) = Suc n›

funpow-swap1 length-map lessI lms-seq-nth lms-substr-seq-def)
hence suffix xs ((abs-find-next-lms xs ^^ Suc n) j) = []

by force
ultimately show ?thesis

by (metis P ‹lms-substr-seq xs i = lms-substr-seq xs j @ c # cs› ap-
pend-self-conv assms(1 ,2)

abs-is-lms-imp-less-length list.distinct(1) list-less-ns-nil suffix-id-suffix
lms-slice-eq-suffix-less-funpow ordlistns.not-less-iff-gr-or-eq)

qed
ultimately show ?thesis

by blast
qed

lemma monotone-on-lms-substr-seq-id:
monotone-on (lms-suffixes xs) list-less-ns (nslexordp list-less-ns) (lms-substr-seq-id

xs)
(is monotone-on ?A ?orda ?ordb ?f)

proof −
let ?B = ?f ‘ ?A

from inj-on-imp-bij-betw[OF inj-on-lms-substr-seq-o-suffix-to-id]
have A: bij-betw ?f ?A ?B .
with bij-betw-inv-alt
have ∃ g. bij-betw g ?B ?A ∧ inverses-on ?f g ?A ?B

by blast
then obtain g where B:

bij-betw g ?B ?A
inverses-on ?f g ?A ?B
by blast

have C : monotone-on ?B ?ordb ?orda g
proof (intro monotone-onI)

fix x y
assume x ∈ ?B y ∈ ?B nslexordp list-less-ns x y
moreover
have ∃ i. abs-is-lms xs i ∧ g x = suffix xs i

using ‹x ∈ ?B› bij-betw-apply B(1) by fastforce
then obtain i where

abs-is-lms xs i g x = suffix xs i
by blast

moreover
have ∃ j. abs-is-lms xs j ∧ g y = suffix xs j

using ‹y ∈ ?B› bij-betw-apply B(1) by fastforce
then obtain j where

abs-is-lms xs j g y = suffix xs j

188

by blast
ultimately show list-less-ns (g x) (g y)

using list-less-ns-lms-substr-seq-suffix[of xs i j]
by (metis (mono-tags, lifting) B(2) comp-def inverses-onD2 abs-is-lms-imp-less-length

suffix-id-suffix)
qed

from nslexordp-asymp[of list-less-ns]
have asymp-on ?B ?ordb

using asympD by fastforce

from totalp-on-subset[OF nslexordp-totalp[of list-less-ns]]
have totalp-on ?B ?ordb

using ordlistns.totalp-on-less by blast

note D = ‹asymp-on ?B ?ordb› ‹totalp-on ?B ?ordb›

from monotone-on-bij-betw-inv[OF C D - - B(1) A inverses-on-sym[THEN iffD1 ,
OF B(2)],

simplified]
show ?thesis .

qed

lemma list-less-ns-suffix-lms-substr-seq:
assumes abs-is-lms xs i
and abs-is-lms xs j
and list-less-ns (suffix xs i) (suffix xs j)

shows nslexordp list-less-ns (lms-substr-seq xs i) (lms-substr-seq xs j)
using monotone-onD[OF monotone-on-lms-substr-seq-id - - assms(3)]

assms(1 ,2) abs-is-lms-imp-less-length suffix-id-suffix by fastforce

lemma lms-substr-seq-suf :
i ≤ j =⇒ ∃ ys. lms-substr-seq xs i = ys @ lms-substr-seq xs j
unfolding lms-substr-seq-def
by (frule lms-seq-suf [of - - xs]; clarsimp)

lemma lms-lms-substr-seq-is-suffix:
assumes abs-is-lms xs i
shows ∃ k < length (lms-substr-seq xs (abs-find-next-lms xs 0)).

suffix (lms-substr-seq xs (abs-find-next-lms xs 0)) k = lms-substr-seq xs i
unfolding lms-substr-seq-def
by (metis assms length-map lms-lms-seq-is-suffix[of xs i] suffix-map)

lemma lms-substr-seq-nth-suffix:
i < card {i. abs-is-lms xs i} =⇒
suffix (lms-substr-seq xs (abs-find-next-lms xs 0)) i =
lms-substr-seq xs ((abs-find-next-lms xs ^^ Suc i) 0)

by (simp add: lms-seq-nth-suffix lms-substr-seq-def suffix-map)

189

53.3 LMS Map
lemma finite-lms-substrs:

finite (lms-substrs xs)
by (simp add: lms-finite)

definition lms-map :: (′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat list
where

lms-map xs ≡ (map (ordlistns.elem-rank (lms-substrs xs))) ◦ (lms-substr-seq-id xs)

lemma lms-substr-seq-o-suffix-to-id-range:
(lms-substr-seq xs ◦ suffix-to-id xs) ‘ lms-suffixes xs ⊆ {ys. set ys ⊆ lms-substrs

xs}
unfolding lms-substr-seq-def suffix-to-id-def
by (safe; clarsimp simp: lms-seq-set)

lemma lms-map-o-def :
lms-map xs ys = map (ordlistns.elem-rank (lms-substrs xs)) (lms-substr-seq-id xs

ys)
by (simp add: lms-map-def)

lemma inj-on-lms-map:
inj-on (lms-map xs) (lms-suffixes xs)

proof −
note A = comp-inj-on[OF inj-on-lms-substr-seq-o-suffix-to-id]
note B = inj-on-subset[OF bij-betw-imp-inj-on[OF bij-betw-map[OF ordlistns.bij-betw-elem-rank-upt]]]
from A[OF B, OF finite-lms-substrs lms-substr-seq-o-suffix-to-id-range, of xs]
show ?thesis

by (simp add: lms-map-def)
qed

lemma lms-map-length:
length (lms-map xs ys) = length (lms-substr-seq xs (suffix-to-id xs ys))
by (simp add: lms-map-def)

lemma lms-map-nth-suffix:
i < card {i. abs-is-lms xs i} =⇒
suffix (lms-map xs (suffix xs (abs-find-next-lms xs 0))) i =
lms-map xs (suffix xs ((abs-find-next-lms xs ^^ Suc i) 0))

by (simp add: abs-find-next-lms-le-length lms-map-def lms-seq-nth-suffix lms-substr-seq-def
suffix-map

suffix-to-id-def)

lemma lms-lms-map-is-suffix:
assumes abs-is-lms xs i
shows ∃ k < length (lms-map xs (suffix xs (abs-find-next-lms xs 0))).

suffix (lms-map xs (suffix xs (abs-find-next-lms xs 0))) k = lms-map xs
(suffix xs i)

proof −

190

have suffix-to-id xs (suffix xs i) = i
by (simp add: assms abs-is-lms-imp-less-length suffix-id-suffix)

moreover
have suffix-to-id xs (suffix xs (abs-find-next-lms xs 0)) = abs-find-next-lms xs 0

by (simp add: abs-find-next-lms-le-length suffix-to-id-def)
moreover
from lms-lms-substr-seq-is-suffix[OF assms]
obtain k where

k < length (lms-substr-seq xs (abs-find-next-lms xs 0))
suffix (lms-substr-seq xs (abs-find-next-lms xs 0)) k = lms-substr-seq xs i
by blast

moreover
have k < length (lms-map xs (suffix xs (abs-find-next-lms xs 0)))

by (simp add: calculation(2) calculation(3) lms-map-length)
moreover
have suffix (lms-map xs (suffix xs (abs-find-next-lms xs 0))) k = lms-map xs

(suffix xs i)
by (simp add: lms-map-def calculation suffix-map)

ultimately show ?thesis
by blast

qed

lemma length-reduced-seq:
length (lms-map xs (suffix xs (abs-find-next-lms xs 0))) = card (lms-suffixes xs)
apply (simp add: lms-map-length lms-substr-seq-length)
apply (cases abs-find-next-lms xs 0 < length xs)
apply (simp add: suffix-id-suffix)
apply (subst distinct-card[OF lms-seq-distinct[of xs abs-find-next-lms xs 0], sym-

metric])
apply (simp add: lms0-seq-has-all-lms)
apply (metis card-image inj-on-suffix-to-id suffix-to-id-image)

by (metis card-eq-0-iff diff-diff-cancel empty-set filter .simps(1) abs-find-next-lms-le-length
lms0-seq-has-all-lms image-is-empty length-drop linorder-le-less-linear

list.size(3)
lms-seq-def suffix-to-id-def upt-eq-Nil-conv)

corollary lms-lms-map-in-suffixes:
abs-is-lms xs i =⇒
lms-map xs (suffix xs i) ∈
suffix (lms-map xs (suffix xs (abs-find-next-lms xs 0))) ‘ {0 ..<card (lms-suffixes

xs)}
by (metis atLeastLessThan-iff imageI length-reduced-seq lms-lms-map-is-suffix

zero-le)

lemma card-lms-suffixes:
card (lms-suffixes xs) = card {i. abs-is-lms xs i}
by (metis card-image inj-on-suffix-to-id suffix-to-id-image)

lemma lms-map-image:

191

lms-map xs ‘ lms-suffixes xs =
suffix (lms-map xs (suffix xs (abs-find-next-lms xs 0))) ‘ {0 ..<card (lms-suffixes

xs)}
proof (safe)

fix i
assume abs-is-lms xs i
then show lms-map xs (suffix xs i) ∈

suffix (lms-map xs (lms0-suffix xs)) ‘ {0 ..<card (lms-suffixes xs)}
using lms-lms-map-in-suffixes by blast

next
fix i
assume i ∈ {0 ..<card (lms-suffixes xs)}
with card-lms-suffixes
have i < card {i. abs-is-lms xs i}

by (metis atLeastLessThan-iff)
with lms-map-nth-suffix[of i xs]
have suffix (lms-map xs (lms0-suffix xs)) i = lms-map xs (suffix xs (nth-lms xs

i))
by blast

moreover
have suffix xs (nth-lms xs i) ∈ lms-suffixes xs

using ‹i < card {i. abs-is-lms xs i}› nth-lms by fastforce
ultimately show suffix (lms-map xs (lms0-suffix xs)) i ∈ lms-map xs ‘ lms-suffixes

xs
by blast

qed

lemma monotone-on-lms-map:
monotone-on (lms-suffixes xs) list-less-ns list-less-ns (lms-map xs)

proof (intro monotone-onI)
fix x y
assume x ∈ lms-suffixes xs y ∈ lms-suffixes xs list-less-ns x y
with monotone-onD[OF monotone-on-lms-substr-seq-id, of x xs y]
have nslexordp list-less-ns (lms-substr-seq-id xs x) (lms-substr-seq-id xs y)

by blast
moreover
have

∧
x. lms-map xs x = map (ordlistns.elem-rank (lms-substrs xs)) (lms-substr-seq-id

xs x)
by (simp add: lms-map-def)

moreover
{

have set (lms-substr-seq-id xs x) ⊆ lms-substrs xs
by (simp add: Collect-mono-iff image-mono lms-seq-set lms-substr-seq-def)

moreover
have set (lms-substr-seq-id xs y) ⊆ lms-substrs xs

by (simp add: Collect-mono-iff image-mono lms-seq-set lms-substr-seq-def)
ultimately have

nslexordp list-less-ns (lms-substr-seq-id xs x) (lms-substr-seq-id xs y) =
nslexordp (<) (map (ordlistns.elem-rank (lms-substrs xs)) (lms-substr-seq-id

192

xs x))
(map (ordlistns.elem-rank (lms-substrs xs)) (lms-substr-seq-id xs

y))
using monotone-on-iff-nslexordp[OF ordlistns.strict-mono-on-elem-rank, sim-

plified,
OF finite-lms-substrs[of xs] ordlistns.bij-betw-elem-rank-upt,

OF finite-lms-substrs[of xs]]
by blast

}
ultimately show list-less-ns (lms-map xs x) (lms-map xs y)

by (simp add: nslexordp-eq-list-less-ns)
qed

lemma list-less-ns-lms-map-suffix:
assumes abs-is-lms xs i
and abs-is-lms xs j
and list-less-ns (lms-map xs (suffix xs i)) (lms-map xs (suffix xs j))

shows list-less-ns (suffix xs i) (suffix xs j)
using monotone-on-iff [OF monotone-on-lms-map, simplified] assms by blast

abbreviation
lms0-map xs ≡

lms-map xs (lms0-suffix xs)

lemma sorted-reduced-seq-imp-lms:
assumes ordlistns.strict-sorted (map (suffix (lms0-map xs)) ys)
and ∀ y ∈ set ys. y < card {i. abs-is-lms xs i}
shows ordlistns.strict-sorted (map (suffix xs) (map ((!) (lms0-seq xs)) ys))

proof (intro sorted-wrt-mapI)
fix i j
assume i < j j < length (map ((!) (lms0-seq xs)) ys)
hence A: i < j j < length ys

by simp-all
with sorted-wrt-mapD[OF assms(1)]
have list-less-ns (suffix (lms0-map xs) (ys ! i)) (suffix (lms0-map xs) (ys ! j)) .
moreover
from lms-map-nth-suffix[of ys ! i xs]
have suffix (lms0-map xs) (ys ! i) = lms-map xs (suffix xs (nth-lms xs (ys ! i)))

using A(1) A(2) assms(2) by fastforce
moreover
from lms-map-nth-suffix[of ys ! j xs]
have suffix (lms0-map xs) (ys ! j) = lms-map xs (suffix xs (nth-lms xs (ys ! j)))

using A(2) assms(2) by fastforce
moreover
have abs-is-lms xs (nth-lms xs (ys ! i))

by (meson A(1) A(2) assms(2) nth-lms nth-mem order .strict-trans)
hence suffix xs (nth-lms xs (ys ! i)) ∈ lms-suffixes xs

by blast
moreover

193

have abs-is-lms xs (nth-lms xs (ys ! j))
by (meson A(2) assms(2) nth-lms nth-mem order .strict-trans)

hence suffix xs (nth-lms xs (ys ! j)) ∈ lms-suffixes xs
by blast

ultimately have
list-less-ns (suffix xs (nth-lms xs (ys ! i))) (suffix xs (nth-lms xs (ys ! j)))
using monotone-on-iff [OF monotone-on-lms-map, simplified] by auto

moreover
from lms0-seq-nth[of ys ! i xs]
have lms0-seq xs ! (ys ! i) = nth-lms xs (ys ! i)

using A(1) A(2) assms(2) by force
moreover
from lms0-seq-nth[of ys ! j xs]
have lms0-seq xs ! (ys ! j) = nth-lms xs (ys ! j)

using A(2) assms(2) by force
ultimately have

list-less-ns (suffix xs (lms0-seq xs ! (ys ! i))) (suffix xs (lms0-seq xs ! (ys ! j)))
by presburger

then show list-less-ns (suffix xs (map ((!) (lms0-seq xs)) ys ! i))
(suffix xs (map ((!) (lms0-seq xs)) ys ! j))

using A(1) A(2) by fastforce
qed

lemma sorted-distinct-lms-substr :
assumes ordlistns.sorted (map (lms-slice xs) ys)
and distinct (map (lms-slice xs) ys)
and ∀ y ∈ set ys. y < length xs

shows ordlistns.sorted (map (suffix xs) ys)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length ys
with sorted-wrt-mapD[OF assms(1)]
have list-less-eq-ns (lms-slice xs (ys ! i)) (lms-slice xs (ys ! j)) .
moreover
have lms-slice xs (ys ! i) 6= lms-slice xs (ys ! j)

using ‹i < j› ‹j < length ys› assms(2) nth-eq-iff-index-eq by fastforce
ultimately have list-less-ns (lms-slice xs (ys ! i)) (lms-slice xs (ys ! j))

using ordlistns.nless-le by blast
then show list-less-eq-ns (suffix xs (ys ! i)) (suffix xs (ys ! j))
by (metis ‹i < j› ‹j < length ys› less-lms-slice-imp-suffix assms(3) dual-order .strict-trans

nth-mem ordlistns.dual-order .strict-implies-order)
qed

lemma distinct-lms0-map:
assumes distinct (lms0-map xs)
shows distinct (map (lms-slice xs) (lms0-seq xs))

proof (intro distinct-conv-nth[THEN iffD2] allI impI)
fix i j
assume i < length (map (lms-slice xs) (lms0-seq xs))

194

j < length (map (lms-slice xs) (lms0-seq xs))
i 6= j

hence A: i < length (lms0-seq xs) j < length (lms0-seq xs) i 6= j
by simp-all

with distinct-conv-nth[THEN iffD1 , OF assms]
have B: lms0-map xs ! i 6= lms0-map xs ! j

by (metis card-lms-suffixes length-reduced-seq lms0-seq-length)
moreover
have lms-substr-seq-id xs (lms0-suffix xs) = map (lms-slice xs) (lms0-seq xs)

by (metis lms-substr-seq-def lms-subtrs-seq-id-suffix)
hence lms0-map xs = map (ordlistns.elem-rank (lms-substrs xs)) (map (lms-slice

xs) (lms0-seq xs))
by (simp add: lms-map-o-def)

with A
have lms0-map xs ! i = ordlistns.elem-rank (lms-substrs xs) (lms-slice xs (lms0-seq

xs ! i))
lms0-map xs ! j = ordlistns.elem-rank (lms-substrs xs) (lms-slice xs (lms0-seq

xs ! j))
by auto

ultimately have lms-slice xs (lms0-seq xs ! i) 6= lms-slice xs (lms0-seq xs ! j)
by fastforce

then show map (lms-slice xs) (lms0-seq xs) ! i 6= map (lms-slice xs) (lms0-seq
xs) ! j

by (simp add: A(1) A(2))
qed

lemma sorted-distinct-lms-substr-perm:
assumes ordlistns.sorted (map (lms-slice xs) ys)
and distinct (lms0-map xs)
and ys <∼∼> lms0-seq xs

shows ordlistns.sorted (map (suffix xs) ys)
by (metis sorted-distinct-lms-substr [OF assms(1)] distinct-lms0-map[OF assms(2)]

assms(3)
distinct-map abs-is-lms-imp-less-length lms0-seq-has-all-lms mem-Collect-eq

perm-distinct-iff perm-set-eq)

lemma list-less-ns-suffix-lms-map:
assumes abs-is-lms xs i
and abs-is-lms xs j
and list-less-ns (suffix xs i) (suffix xs j)

shows list-less-ns (lms-map xs (suffix xs i)) (lms-map xs (suffix xs j))
using monotone-on-iff [OF monotone-on-lms-map, simplified] assms by blast

lemma valid-list-lms-map:
assumes valid-list (a # b # xs)
and abs-is-lms (a # b # xs) i

shows valid-list (lms-map (a # b # xs) (suffix (a # b # xs) i))
proof −

let ?xs = a # b # xs

195

have ∃n. length ?xs = Suc n
by simp

then obtain n where
length ?xs = Suc n
by blast

hence abs-is-lms ?xs n
using assms(1) abs-is-lms-last by fastforce

have lms-slice ?xs n = [bot]
using ‹length ?xs = Suc n› assms(1) lms-slice-last by blast

have ∃m. i = Suc m
using assms(2) lms-type-list-less-ns by auto

then obtain m where
i = Suc m
by blast

have P: ∀ x ∈ {k. abs-is-lms ?xs k}. x 6= n −→
list-less-ns (lms-slice ?xs n) (lms-slice ?xs x)

proof safe
fix x
assume abs-is-lms ?xs x x 6= n
hence ∃ ys. lms-slice ?xs x = ?xs ! x # ys

using abs-is-lms-imp-less-length lms-slice-hd by blast
then obtain ys where

lms-slice ?xs x = ?xs ! x # ys
by blast

moreover
have bot < ?xs ! x
by (metis ‹abs-is-lms ?xs x› ‹length ?xs = Suc n› ‹x 6= n› assms(1) bot.not-eq-extremum

diff-Suc-1 hd-drop-conv-nth abs-is-lms-imp-less-length last-suffix-index)
ultimately show list-less-ns (lms-slice ?xs n) (lms-slice ?xs x)

by (simp add: ‹lms-slice ?xs n = [bot]› list-less-ns-cons-diff)
qed

have Q: ordlistns.elem-rank (lms-substrs ?xs) (lms-slice ?xs n) = 0
unfolding ordlistns.elem-rank-def elm-rank-def

proof −
have {y ∈ lms-substrs ?xs. list-less-ns y (lms-slice ?xs n)} = {}

using P by auto
then show card {y ∈ lms-substrs ?xs. list-less-ns y (lms-slice ?xs n)} = 0

by (metis card.empty)
qed

have R: ∀ x ∈ lms-substrs ?xs. list-less-ns (lms-slice ?xs n) x −→
ordlistns.elem-rank (lms-substrs ?xs) x > 0

using ‹abs-is-lms ?xs n› finite-lms-substrs ordlistns.strict-mono-onD
ordlistns.strict-mono-on-elem-rank by fastforce

196

have [i..<length ?xs] = [i..<n] @ [n..<Suc n]
using ‹length ?xs = Suc n› assms(2) abs-is-lms-imp-less-length by fastforce

hence last (lms-seq ?xs i) = n
unfolding lms-seq-def
by (simp add: ‹abs-is-lms ?xs n›)

hence last (lms-substr-seq ?xs i) = lms-slice ?xs n
by (metis assms(2) last-map list.discI lms-seq-Suc1 lms-substr-seq-def)

hence last (lms-substr-seq-id ?xs (suffix ?xs i)) = lms-slice ?xs n
by (metis lms-subtrs-seq-id-suffix)

hence last (lms-map ?xs (suffix ?xs i)) = 0
unfolding lms-map-o-def

by (metis assms(2) Q last-map length-0-conv list.discI lms-seq-Suc1 lms-substr-seq-length
lms-subtrs-seq-id-suffix)

moreover
have butlast (lms-seq ?xs i) = filter (abs-is-lms ?xs) [i..<n]

unfolding lms-seq-def
using ‹[i..<length ?xs] = [i..<n] @ [n..<Suc n]› ‹abs-is-lms ?xs n› by auto

hence ∀ x ∈ set (butlast (lms-seq ?xs i)). x 6= n ∧ abs-is-lms ?xs x
by clarsimp

hence ∀ x ∈ set (butlast (lms-substr-seq ?xs i)).
list-less-ns (lms-slice ?xs n) x

by (clarsimp simp: P map-butlast[symmetric] lms-substr-seq-def)
hence S : ∀ x ∈ set (butlast (lms-substr-seq-id ?xs (suffix ?xs i))).

list-less-ns (lms-slice ?xs n) x
by (metis lms-subtrs-seq-id-suffix)

have ∀ x ∈ set (butlast (lms-map ?xs (suffix ?xs i))). x > 0
proof safe

fix x
assume x ∈ set (butlast (lms-map ?xs (suffix ?xs i)))
moreover
have butlast (lms-map ?xs (suffix ?xs i)) =

map (ordlistns.elem-rank (lms-substrs ?xs)) (butlast (lms-substr-seq-id ?xs
(suffix ?xs i)))

unfolding lms-map-o-def
by (simp add: map-butlast)

ultimately have
∃ y ∈ set (butlast (lms-substr-seq-id ?xs (suffix ?xs i))).

x = ordlistns.elem-rank (lms-substrs ?xs) y
by (simp add: in-set-mapD)

then obtain y where A:
y ∈ set (butlast (lms-substr-seq-id ?xs (suffix ?xs i)))
x = ordlistns.elem-rank (lms-substrs ?xs) y
by blast

moreover
have y ∈ lms-substrs (a # b # xs)
by (metis calculation(1) in-set-butlastD in-set-conv-nth lms-substr-seq-id-nth-abs-is-lms)
ultimately show 0 < x

using S R by blast
qed

197

moreover
have lms-map ?xs (suffix ?xs i) 6= []

unfolding lms-map-o-def
by (metis assms(2) list.discI list.map-disc-iff lms-seq-Suc1 lms-substr-seq-def

lms-subtrs-seq-id-suffix)
ultimately show ?thesis

unfolding valid-list-iff-butlast-app-last
by (metis bot-nat-def less-numeral-extra(3))

qed

end
theory Abs-SAIS

imports ../prop/Buckets
../prop/LMS-List-Slice-Util
../../util/Repeat

begin

54 Induce Sorting
54.1 Bucket Insert
fun abs-bucket-insert ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list

where
abs-bucket-insert α T - SA [] = SA |
abs-bucket-insert α T B SA (x # xs) =
(let b = α (T ! x);

k = B ! b − Suc 0 ;
SA ′ = SA[k := x];
B ′ = B[b := k]

in abs-bucket-insert α T B ′ SA ′ xs)

54.2 Induce L-types
fun abs-induce-l-step ::

nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list ⇒
nat list × nat list × nat

where
abs-induce-l-step (B, SA, i) (α, T) =
(if i < length SA ∧ SA ! i < length T
then
(case SA ! i of

Suc j ⇒

198

(case suffix-type T j of
L-type ⇒
(let k = α (T ! j);

l = B ! k
in (B[k := Suc l], SA[l := j], Suc i))

| - ⇒ (B, SA, Suc i))
| - ⇒ (B, SA, Suc i))

else (B, SA, Suc i))

definition abs-induce-l-base ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list × nat list × nat

where
abs-induce-l-base α T B SA = repeat (length T) abs-induce-l-step (B, SA, 0) (α,
T)

definition abs-induce-l ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list

where
abs-induce-l α T B SA =
(let (B ′, SA ′, i) = abs-induce-l-base α T B SA
in SA ′)

54.3 Induce S-types
fun abs-induce-s-step ::

nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list ⇒
nat list × nat list × nat

where
abs-induce-s-step (B, SA, i) (α, T) =
(case i of

Suc n ⇒
(if Suc n < length SA ∧ SA ! Suc n < length T then
(case SA ! Suc n of

Suc j ⇒
(case suffix-type T j of

S-type ⇒
(let b = α (T ! j);

k = B ! b − Suc 0
in (B[b := k], SA[k := j], n)
)

199

| - ⇒ (B, SA, n)
)
| - ⇒ (B, SA, n)

)
else
(B, SA, n)

)
| - ⇒ (B, SA, 0)

)

definition abs-induce-s-base ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list × nat list × nat

where
abs-induce-s-base α T B SA = repeat (length T) abs-induce-s-step (B, SA, length
T) (α, T)

definition abs-induce-s ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list

where
abs-induce-s α T B SA =
(let (B ′, SA ′, i) = abs-induce-s-base α T B SA
in SA ′)

54.4 Induce Sorting
definition abs-sa-induce ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list

where
abs-sa-induce α T LMS =
(let

B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))];
B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))];

— Initialise SA
SA = replicate (length T) (length T);

— Insert the LMS types into the suffix array
SA = abs-bucket-insert α T B0 SA (rev LMS);

200

— Insert the L types into the suffix array
SA = abs-induce-l α T B1 SA

— Insert the S types into the suffix array
in abs-induce-s α T (B0 [0 := 0]) SA)

55 Rename Mapping
fun abs-rename-mapping ′ ::
(′a :: {linorder , order-bot}) list ⇒

nat list ⇒
nat list ⇒
nat ⇒
nat list

where
abs-rename-mapping ′ - [] names - = names |
abs-rename-mapping ′ - [x] names i = names[x := i] |
abs-rename-mapping ′ T (a # b # xs) names i =
(if lms-slice T a = lms-slice T b

then abs-rename-mapping ′ T (b # xs) (names[a := i]) i
else abs-rename-mapping ′ T (b # xs) (names[a := i]) (Suc i))

definition abs-rename-mapping :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒
nat list

where
abs-rename-mapping T LMS = abs-rename-mapping ′ T LMS (replicate (length T)
(length T)) 0

56 Rename String
fun rename-string :: nat list ⇒ nat list ⇒ nat list

where
rename-string [] - = [] |
rename-string (x#xs) names = (names ! x) # rename-string xs names

57 Order LMS
fun order-lms :: nat list ⇒ nat list ⇒ nat list

where
order-lms LMS [] = [] |
order-lms LMS (x # xs) = LMS ! x # order-lms LMS xs

58 Extract LMS
abbreviation abs-extract-lms :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ nat
list

201

where
abs-extract-lms ≡ filter ◦ abs-is-lms

59 SAIS Definition
function abs-sais ::

nat list ⇒
nat list

where
abs-sais [] = [] |
abs-sais [x] = [0] |
abs-sais (a # b # xs) =
(let

T = a # b # xs;

— Extract the LMS types
LMS0 = abs-extract-lms T [0 ..<length T];

— Induce the prefix ordering based on LMS
SA = abs-sa-induce id T LMS0 ;

— Extract the LMS types
LMS = abs-extract-lms T SA;

— Create a new alphabet
names = abs-rename-mapping T LMS ;

— Make a reduced string
T ′ = rename-string LMS0 names;

— Obtain the correct ordering of LMS-types
LMS = (if distinct T ′ then LMS else order-lms LMS0 (abs-sais T ′))

— Induce the suffix ordering based of LMS
in abs-sa-induce id T LMS)

by pat-completeness blast+

end
theory Abs-Bucket-Insert-Verification

imports
../abs−def /Abs-SAIS
../../util/List-Util
../../util/List-Slice

begin

202

60 Bucket Insert with Ghost State
fun bucket-insert-abs ′ ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list × nat list × nat list

where
bucket-insert-abs ′ α T B SA gs [] = (SA, B, gs) |
bucket-insert-abs ′ α T B SA gs (x # xs) =
(let b = α (T ! x);

k = B ! b − Suc 0 ;
SA ′ = SA[k := x];
B ′ = B[b := k];
gs ′ = gs @ [x]

in bucket-insert-abs ′ α T B ′ SA ′ gs ′ xs)

61 Simple Properties
lemma abs-bucket-insert-length:

length (abs-bucket-insert α T B SA xs) = length SA
by (induct xs arbitrary: B SA; simp add: Let-def)

lemma abs-bucket-insert-equiv:
abs-bucket-insert α T B SA xs = fst (bucket-insert-abs ′ α T B SA gs xs)
by (induct xs arbitrary: B SA gs; simp add: Let-def)

62 Invariants
62.1 Defintions and Simple Helper Lemmas
62.1.1 Distinctness
definition lms-distinct-inv ::
(′a :: {linorder , order-bot}) list ⇒ nat list ⇒ nat list ⇒ bool

where
lms-distinct-inv T SA LMS =

distinct ((filter (λx. x < length T) SA) @ LMS)

lemma lms-inv-distinct-inv-helper :
assumes lms-distinct-inv T SA LMS
shows distinct (filter (λx. x < length T) SA) ∧

distinct LMS ∧
set (filter (λx. x < length T) SA) ∩ set LMS = {}

using assms distinct-append lms-distinct-inv-def by blast

203

62.1.2 LMS Bucket Ptr
definition cur-lms-types ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat ⇒ nat set

where
cur-lms-types α T SA b =
{i|i. i ∈ set SA ∧
i ∈ lms-bucket α T b }

lemma cur-lms-subset-SA:
cur-lms-types α T SA b ⊆ set SA
using cur-lms-types-def by blast

lemma cur-lms-subset-lms-bucket:
cur-lms-types α T SA b ⊆ lms-bucket α T b
using cur-lms-types-def by blast

definition num-lms-types ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat ⇒ nat

where
num-lms-types α T SA b =

card (cur-lms-types α T SA b)

lemma num-lms-types-upper-bound:
num-lms-types α T SA b ≤ lms-bucket-size α T b
by (metis not-le cur-lms-subset-lms-bucket num-lms-types-def

finite-lms-bucket lms-bucket-size-def card-mono)

definition lms-bucket-ptr-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒ nat list ⇒ nat list ⇒ bool

where
lms-bucket-ptr-inv α T B SA ≡

(∀ b ≤ α (Max (set T)).
B ! b + num-lms-types α T SA b = bucket-end α T b)

lemma lms-bucket-ptr-invD:
assumes lms-bucket-ptr-inv α T B SA
and b ≤ α (Max (set T))
shows B ! b + num-lms-types α T SA b = bucket-end α T b
using assms lms-bucket-ptr-inv-def by blast

lemma lms-bucket-ptr-lower-bound:
assumes lms-bucket-ptr-inv α T B SA
and b ≤ α (Max (set T))
shows lms-bucket-start α T b ≤ B ! b

proof −
from lms-bucket-ptr-invD[OF assms]
have B ! b + num-lms-types α T SA b = bucket-end α T b .
then show ?thesis

204

by (metis add.commute add-le-cancel-left lms-bucket-pl-size-eq-end num-lms-types-upper-bound)
qed

lemma lms-bucket-ptr-upper-bound:
assumes lms-bucket-ptr-inv α T B SA
and b ≤ α (Max (set T))
shows B ! b ≤ bucket-end α T b
by (metis assms le-iff-add lms-bucket-ptr-inv-def)

62.1.3 Unknowns
definition lms-unknowns-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒ nat list ⇒ nat list ⇒ bool

where
lms-unknowns-inv α T B SA ≡

(∀ b ≤ α (Max (set T)).
(∀ i. lms-bucket-start α T b ≤ i ∧

i < B ! b −→ SA ! i = length T))

lemma lms-unknowns-invD:
assumes lms-unknowns-inv α T B SA
and b ≤ α (Max (set T))
and lms-bucket-start α T b ≤ i
and i < B ! b
shows SA ! i = length T
using assms lms-unknowns-inv-def by blast

62.1.4 Locations
definition lms-locations-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒ nat list ⇒ nat list ⇒ bool

where
lms-locations-inv α T B SA ≡

(∀ b ≤ α (Max (set T)).
(∀ i. B ! b ≤ i ∧

i < bucket-end α T b −→ SA ! i ∈ lms-bucket α T b))

lemma lms-locations-invD:
assumes lms-locations-inv α T B SA
and b ≤ α (Max (set T))
and B ! b ≤ i
and i < bucket-end α T b
shows SA ! i ∈ lms-bucket α T b
using assms lms-locations-inv-def by blast

62.1.5 Unchanged
definition lms-unchanged-inv ::

205

(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒ nat list ⇒ nat list ⇒ nat list ⇒ bool

where
lms-unchanged-inv α T B SA SA ′ ≡
(∀ b ≤ α (Max (set T)).

(∀ i. bucket-start α T b ≤ i ∧
i < B ! b −→ SA ′ ! i = SA ! i))

lemma lms-unchanged-invD:
assumes lms-unchanged-inv α T B SA SA ′

and b ≤ α (Max (set T))
and bucket-start α T b ≤ i
and i < B ! b
shows SA ′ ! i = SA ! i
using assms lms-unchanged-inv-def by blast

62.1.6 Inserted
definition lms-inserted-inv ::

nat list ⇒ nat list ⇒ nat list ⇒ nat list ⇒ bool
where

lms-inserted-inv LMS SA LMSa LMSb ≡
LMS = LMSa @ LMSb ∧
set LMSa ⊆ set SA

lemma lms-inserted-invD:∧
LMS SA LMSa LMSb. lms-inserted-inv LMS SA LMSa LMSb =⇒ LMS =

LMSa @ LMSb∧
LMS SA LMSa LMSb. lms-inserted-inv LMS SA LMSa LMSb =⇒ set LMSa

⊆ set SA
unfolding lms-inserted-inv-def by blast+

62.1.7 Sorted
definition lms-sorted-inv :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ nat list
⇒ bool
where
lms-sorted-inv T LMS SA ≡
(∀ j < length SA.
∀ i < j.

SA ! i ∈ set LMS ∧ SA ! j ∈ set LMS −→
(T ! (SA ! i) 6= T ! (SA ! j) −→ T ! (SA ! i) < T ! (SA ! j)) ∧
(T ! (SA ! i) = T ! (SA ! j) −→
(∃ j ′ < length LMS . ∃ i ′ < j ′. LMS ! i ′ = SA ! j ∧ LMS ! j ′ = SA ! i))

)

lemma lms-sorted-invD:
[[lms-sorted-inv T LMS SA; j < length SA; i < j; SA ! i ∈ set LMS ; SA ! j ∈ set

LMS]] =⇒
(T ! (SA ! i) 6= T ! (SA ! j) −→ T ! (SA ! i) < T ! (SA ! j)) ∧

206

(T ! (SA ! i) = T ! (SA ! j) −→
(∃ j ′ < length LMS . ∃ i ′ < j ′. LMS ! i ′ = SA ! j ∧ LMS ! j ′ = SA ! i))

using lms-sorted-inv-def by blast

lemma lms-sorted-invD1 :
[[lms-sorted-inv T LMS SA; j < length SA; i < j;
SA ! i ∈ set LMS ; SA ! j ∈ set LMS ;

T ! (SA ! i) 6= T ! (SA ! j)]] =⇒
T ! (SA ! i) < T ! (SA ! j)

using lms-sorted-inv-def by blast

lemma lms-sorted-invD2 :
[[lms-sorted-inv T LMS SA; j < length SA; i < j; SA ! i ∈ set LMS ; SA ! j ∈ set

LMS ;
T ! (SA ! i) = T ! (SA ! j)]] =⇒
∃ j ′ < length LMS . ∃ i ′ < j ′. LMS ! i ′ = SA ! j ∧ LMS ! j ′ = SA ! i

using lms-sorted-inv-def by blast

62.2 Combined Invariant
definition lms-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
bool

where
lms-inv α T B LMS LMSa LMSb SA0 SA ≡

lms-distinct-inv T SA LMSb ∧
lms-bucket-ptr-inv α T B SA ∧
lms-unknowns-inv α T B SA ∧
lms-locations-inv α T B SA ∧
lms-unchanged-inv α T B SA0 SA ∧
lms-inserted-inv LMS SA LMSa LMSb ∧
lms-sorted-inv T LMS SA ∧
strict-mono α ∧
α (Max (set T)) < length B ∧
set LMS ⊆ {i. abs-is-lms T i} ∧
length SA0 = length T ∧
length SA = length T ∧
(∀ i < length T . SA0 ! i = length T)

lemma lms-invD:
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-distinct-inv T SA LMSb
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-bucket-ptr-inv α T B SA

207

lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-unknowns-inv α T B SA
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-locations-inv α T B SA
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-unchanged-inv α T B SA0 SA
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-inserted-inv LMS SA LMSa

LMSb
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ lms-sorted-inv T LMS SA
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ strict-mono α
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ α (Max (set T)) < length B
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ set LMS ⊆ {i. abs-is-lms T i}
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ length SA0 = length T
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ length SA = length T
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ ∀ i < length T . SA0 ! i = length

T
unfolding lms-inv-def by blast+

lemma lms-inv-lms-helper :
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ ∀ x ∈ set LMS . abs-is-lms T x
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ ∀ x ∈ set LMSa. abs-is-lms T x
lms-inv α T B LMS LMSa LMSb SA0 SA =⇒ ∀ x ∈ set LMSb. abs-is-lms T x
using lms-invD(10) lms-inserted-invD(1)[OF lms-invD(6)] by fastforce+

62.3 Helpers
lemma lms-distinct-bucket-ptr-lower-bound:

assumes b = α (T ! x)
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and strict-mono α
and ∀ i ∈ set (x # LMS). abs-is-lms T i

shows lms-bucket-start α T b < B ! b
proof (rule ccontr)

assume ¬ lms-bucket-start α T b < B ! b
hence B ! b ≤ lms-bucket-start α T b

by simp
moreover
from lms-bucket-ptr-invD[OF assms(3), of b] assms(1 ,4 ,5)
have B ! b + num-lms-types α T SA b = bucket-end α T b

by (simp add: abs-is-lms-imp-less-length strict-mono-leD)
ultimately
have lms-bucket-start α T b + num-lms-types α T SA b ≥ bucket-end α T b

by linarith
with lms-bucket-pl-size-eq-end
have num-lms-types α T SA b ≥ lms-bucket-size α T b

by (metis add-le-cancel-left)
with card-seteq[OF finite-lms-bucket cur-lms-subset-lms-bucket]
have cur-lms-types α T SA b = lms-bucket α T b

by (simp add: lms-bucket-size-def num-lms-types-def)
with cur-lms-subset-SA
have lms-bucket α T b ⊆ set SA

208

by blast
moreover
from assms(1 ,5)
have x ∈ lms-bucket α T b

by (simp add: bucket-def abs-is-lms-imp-less-length lms-bucket-def)
ultimately
have x ∈ set SA

by blast
moreover
from assms(2 ,5)
have x /∈ set SA

by (simp add: abs-is-lms-imp-less-length lms-distinct-inv-def)
ultimately
show False

by blast
qed

lemma lms-next-insert-at-unknown:
assumes b = α (T ! x)
and k = (B ! b) − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and lms-unknowns-inv α T B SA
and strict-mono α
and length SA = length T
and ∀ i ∈ set (x # LMS). abs-is-lms T i

shows k < length SA ∧ SA ! k = length T
proof −

from lms-distinct-bucket-ptr-lower-bound[OF assms(1 ,3−4 ,6 ,8)]
have lms-bucket-start α T b < B ! b

by assumption
with assms(2)

have lms-bucket-start α T b ≤ k k < B ! b
by linarith+

with lms-unknowns-invD[OF assms(5), of b k] assms(1 ,6 ,8)
have SA ! k = length T

by (simp add: abs-is-lms-imp-less-length strict-mono-less-eq)
moreover
from ‹k < B ! b› lms-bucket-ptr-invD[OF assms(4), of b] assms(1 ,6 ,8)
have k < bucket-end α T b

by (simp add: assms(7) abs-is-lms-imp-less-length strict-mono-less-eq)
with assms(7)
have k < length SA

by (metis bucket-end-le-length dual-order .strict-trans1)
ultimately
show ?thesis

by blast
qed

209

lemma lms-distinct-slice:
assumes lms-distinct-inv T SA LMS
and lms-bucket-ptr-inv α T B SA
and lms-locations-inv α T B SA
and length SA = length T
and b ≤ α (Max (set T))

shows distinct (list-slice SA (B ! b) (bucket-end α T b))
proof −

from assms(4)
have bucket-end α T b ≤ length SA

by (simp add: bucket-end-le-length)

from lms-bucket-ptr-upper-bound[OF assms(2 ,5)]
have B ! b ≤ bucket-end α T b .

from lms-locations-invD[OF assms(3 ,5)]
have ∀ i. B ! b ≤ i ∧ i < bucket-end α T b −→ SA ! i ∈ lms-bucket α T b

by blast
hence ∀ i. B ! b ≤ i ∧ i < bucket-end α T b −→ SA ! i < length T

by (simp add: abs-is-lms-imp-less-length lms-bucket-def)

have ∀ x ∈ set (list-slice SA (B ! b) (bucket-end α T b)). x < length T
proof

fix x
assume A: x ∈ set (list-slice SA (B ! b) (bucket-end α T b))
from in-set-conv-nth[THEN iffD1 , OF A]
obtain i where

i < length (list-slice SA (B ! b) (bucket-end α T b))
(list-slice SA (B ! b) (bucket-end α T b)) ! i = x
by blast

with nth-list-slice
have (list-slice SA (B ! b) (bucket-end α T b)) ! i = SA ! (B ! b + i)

by blast
moreover
from ‹i < length (list-slice SA (B ! b) (bucket-end α T b))›
have B ! b + i < bucket-end α T b

by (simp add: ‹bucket-end α T b ≤ length SA›
length-list-slice)

with ‹∀ i. B ! b ≤ i ∧ i < bucket-end α T b −→ SA ! i < length T ›
have SA ! (B ! b + i) < length T

by simp
ultimately
show x < length T

using ‹(list-slice SA (B ! b) (bucket-end α T b)) ! i = x› by simp
qed

from lms-inv-distinct-inv-helper [OF assms(1)]
have distinct (filter (λx. x < length T) SA) distinct LMS

210

set (filter (λx. x < length T) SA) ∩ set LMS = {}
by blast+

have SA = list-slice SA 0 (length SA)
by (simp add: list-slice-0-length)

hence SA = list-slice SA 0 (B ! b) @ list-slice SA (B ! b) (length SA)
using append-take-drop-id
by (simp add: list-slice.simps)

moreover
from list-slice-append[OF ‹B ! b ≤ bucket-end α T b› ‹bucket-end α T b ≤ length

SA›, of SA]
have list-slice SA (B ! b) (length SA)

= list-slice SA (B ! b) (bucket-end α T b) @ list-slice SA (bucket-end α T
b) (length SA)

by assumption
ultimately
have SA = list-slice SA 0 (B ! b) @ list-slice SA (B ! b) (bucket-end α T b) @

list-slice SA (bucket-end α T b) (length SA)
by metis

with ‹distinct (filter (λx. x < length T) SA)›
have distinct (filter (λx. x < length T) (list-slice SA (B ! b) (bucket-end α T

b)))
by (metis distinct-append filter-append)

with ‹∀ x ∈ set (list-slice SA (B ! b) (bucket-end α T b)). x < length T ›
show distinct (list-slice SA (B ! b) (bucket-end α T b))

by simp
qed

lemma lms-slice-subset-lms-bucket:
assumes lms-locations-inv α T B SA
and length SA = length T
and b ≤ α (Max (set T))

shows set (list-slice SA (B ! b) (bucket-end α T b)) ⊆ lms-bucket α T b
proof

fix x
assume A: x ∈ set (list-slice SA (B ! b) (bucket-end α T b))
from in-set-conv-nth[THEN iffD1 , OF A]
obtain i where

i < length (list-slice SA (B ! b) (bucket-end α T b))
(list-slice SA (B ! b) (bucket-end α T b)) ! i = x
by blast

with nth-list-slice
have (list-slice SA (B ! b) (bucket-end α T b)) ! i = SA ! (B ! b + i)

by blast
moreover
from ‹i < length (list-slice SA (B ! b) (bucket-end α T b))›
have B ! b + i < bucket-end α T b

by (simp add: assms(2) bucket-end-le-length length-list-slice)
moreover

211

have B ! b ≤ B ! b + i
by simp

ultimately
show x ∈ lms-bucket α T b
using ‹list-slice SA (B ! b) (bucket-end α T b) ! i = x› assms(1 ,3) lms-locations-invD
by fastforce

qed

lemma lms-val-location:
assumes lms-locations-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and strict-mono α
and length SA = length T
and ∀ i < length T . SA0 ! i = length T
and i < length SA
and SA ! i < length T

shows ∃ b ≤ α (Max (set T)). B ! b ≤ i ∧ i < bucket-end α T b
proof −

from assms
have i < length T

by simp
with index-in-bucket-interval-gen[OF - assms(3)]
obtain b where

b ≤ α (Max (set T))
bucket-start α T b ≤ i
i < bucket-end α T b
by blast

moreover
have B ! b ≤ i
proof (rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with lms-unchanged-invD[OF assms(2) ‹b ≤ α (Max (set T))› ‹bucket-start α

T b ≤ i›]
have SA ! i = SA0 ! i

by blast
with assms(5) ‹i < length T ›
have SA ! i = length T

by auto
with assms(7)
show False

by auto
qed
ultimately
show ?thesis

by auto
qed

212

lemma lms-val-imp-abs-is-lms:
assumes lms-locations-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and strict-mono α
and length SA = length T
and ∀ i < length T . SA0 ! i = length T
and i < length SA
and SA ! i < length T

shows abs-is-lms T (SA ! i)
proof −

from lms-val-location[OF assms(1−7)]
obtain b where

b ≤ α (Max (set T))
B ! b ≤ i
i < bucket-end α T b
by blast

with lms-locations-invD[OF assms(1)]
have SA ! i ∈ lms-bucket α T b

by blast
then show abs-is-lms T (SA ! i)

using lms-bucket-def by blast
qed

lemma lms-lms-prefix-sorted:
assumes lms-bucket-ptr-inv α T B SA
and lms-locations-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and strict-mono α
and length SA = length T
and ∀ i < length T . SA0 ! i = length T
and set LMS = {i. abs-is-lms T i}

shows ordlistns.sorted (map (lms-prefix T) (filter (λx. x < length T) SA))
proof (intro sorted-wrt-mapI)

fix i j
let ?fs = filter (λx. x < length T) SA
let ?goal = list-less-eq-ns (lms-prefix T (?fs ! i)) (lms-prefix T (?fs ! j))
assume i < j j < length ?fs

from filter-nth-relative-2 [OF ‹j < length ?fs› ‹i < j›]
obtain i ′ j ′ where

j ′ < length SA
i ′ < j ′
?fs ! j = SA ! j ′
?fs ! i = SA ! i ′
by blast

hence i ′ < length SA
by linarith

have SA ! i ′ < length T

213

by (metis ‹?fs ! i = SA ! i ′› ‹i < j› ‹j < length ?fs› filter-set member-filter
nth-mem order .strict-trans)

with lms-val-location[OF assms(2−6) ‹i ′ < length SA›]
obtain b where

b ≤ α (Max (set T))
B ! b ≤ i ′
i ′ < bucket-end α T b
by blast

with lms-locations-invD[OF assms(2)]
have SA ! i ′ ∈ lms-bucket α T b

by blast
hence α (T ! (SA ! i ′)) = b abs-is-lms T (SA ! i ′)

by (simp add: bucket-def lms-bucket-def)+

from lms-lms-prefix[OF ‹abs-is-lms T (SA ! i ′)›] ‹?fs ! i = SA ! i ′›
have S1 : lms-prefix T (?fs ! i) = [T ! (SA ! i ′)]

by simp

have SA ! j ′ < length T
using ‹?fs ! j = SA ! j ′› ‹j < length ?fs› nth-mem by fastforce

with lms-val-location[OF assms(2−6) ‹j ′ < length SA›]
obtain b ′ where

b ′ ≤ α (Max (set T))
B ! b ′ ≤ j ′
j ′ < bucket-end α T b ′

by blast
with lms-locations-invD[OF assms(2)]
have SA ! j ′ ∈ lms-bucket α T b ′

by blast
hence α (T ! (SA ! j ′)) = b ′ abs-is-lms T (SA ! j ′)

by (simp add: bucket-def lms-bucket-def)+

from lms-lms-prefix[OF ‹abs-is-lms T (SA ! j ′)›] ‹?fs ! j = SA ! j ′›
have S2 : lms-prefix T (?fs ! j) = [T ! (SA ! j ′)]

by simp

have b ≤ b ′

proof (rule ccontr)
assume ¬b ≤ b ′

hence b ′ < b
by simp

hence bucket-end α T b ′ ≤ bucket-start α T b
by (simp add: less-bucket-end-le-start)

hence bucket-end α T b ′ ≤ lms-bucket-start α T b
by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)

with lms-bucket-ptr-lower-bound[OF assms(1) ‹b ≤ α (Max (set T))›]
have bucket-end α T b ′ ≤ B ! b

by linarith
with ‹j ′ < bucket-end α T b ′› ‹B ! b ≤ i ′› ‹i ′ < j ′›

214

show False
by linarith

qed
moreover
have b < b ′ =⇒ ?goal
proof −

assume b < b ′

with ‹α (T ! (SA ! i ′)) = b› ‹α (T ! (SA ! j ′)) = b ′› assms(4)
have T ! (SA ! i ′) < T ! (SA ! j ′)

using strict-mono-less by blast
with S1 S2
show ?goal

by (simp add: list-less-eq-ns-cons)
qed
moreover
have b = b ′ =⇒ ?goal
proof −

assume b = b ′

with ‹α (T ! (SA ! i ′)) = b› ‹α (T ! (SA ! j ′)) = b ′› assms(4)
have T ! (SA ! i ′) = T ! (SA ! j ′)

by (meson strict-mono-eq)
with S1 S2
show ?goal

by simp
qed
ultimately
show ?goal

using less-le by blast
qed

lemma lms-suffix-sorted:
assumes lms-bucket-ptr-inv α T B SA
and lms-locations-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and lms-sorted-inv T LMS SA
and strict-mono α
and length SA = length T
and ∀ i < length T . SA0 ! i = length T
and set LMS = {i. abs-is-lms T i}
and ordlistns.sorted (map (suffix T) (rev LMS))

shows ordlistns.sorted (map (suffix T) (filter (λx. x < length T) SA))
proof (intro sorted-wrt-mapI)

fix i j
let ?fs = filter (λx. x < length T) SA
let ?goal = list-less-eq-ns (suffix T (?fs ! i)) (suffix T (?fs ! j))
assume i < j j < length ?fs

from filter-nth-relative-2 [OF ‹j < length ?fs› ‹i < j›]
obtain i ′ j ′ where

215

j ′ < length SA
i ′ < j ′
?fs ! j = SA ! j ′
?fs ! i = SA ! i ′
by blast

hence i ′ < length SA
by linarith

have SA ! i ′ < length T
by (metis ‹?fs ! i = SA ! i ′› ‹i < j› ‹j < length ?fs› filter-set member-filter

nth-mem order .strict-trans)
with lms-val-location[OF assms(2 ,3 ,5−7) ‹i ′ < length SA›]
obtain b where

b ≤ α (Max (set T))
B ! b ≤ i ′
i ′ < bucket-end α T b
by blast

with lms-locations-invD[OF assms(2)]
have SA ! i ′ ∈ lms-bucket α T b

by blast
hence α (T ! (SA ! i ′)) = b abs-is-lms T (SA ! i ′)

by (simp add: bucket-def lms-bucket-def)+
hence SA ! i ′ ∈ set LMS

using assms(8)
by blast

have SA ! j ′ < length T
using ‹?fs ! j = SA ! j ′› ‹j < length ?fs› nth-mem by fastforce

with lms-val-location[OF assms(2 ,3 ,5−7) ‹j ′ < length SA›]
obtain b ′ where

b ′ ≤ α (Max (set T))
B ! b ′ ≤ j ′
j ′ < bucket-end α T b ′

by blast
with lms-locations-invD[OF assms(2)]
have SA ! j ′ ∈ lms-bucket α T b ′

by blast
hence α (T ! (SA ! j ′)) = b ′ abs-is-lms T (SA ! j ′)

by (simp add: bucket-def lms-bucket-def)+
hence SA ! j ′ ∈ set LMS

using assms(8)
by blast

have b ≤ b ′

proof (rule ccontr)
assume ¬b ≤ b ′

hence b ′ < b
by simp

hence bucket-end α T b ′ ≤ bucket-start α T b

216

by (simp add: less-bucket-end-le-start)
hence bucket-end α T b ′ ≤ lms-bucket-start α T b

by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)
with lms-bucket-ptr-lower-bound[OF assms(1) ‹b ≤ α (Max (set T))›]
have bucket-end α T b ′ ≤ B ! b

by linarith
with ‹j ′ < bucket-end α T b ′› ‹B ! b ≤ i ′› ‹i ′ < j ′›
show False

by linarith
qed
moreover
have b < b ′ =⇒ ?goal
proof −

assume b < b ′

with ‹α (T ! (SA ! i ′)) = b› ‹α (T ! (SA ! j ′)) = b ′› assms(5)
have T ! (SA ! i ′) < T ! (SA ! j ′)

using strict-mono-less by blast
with ‹?fs ! i = SA ! i ′› ‹?fs ! j = SA ! j ′› ‹SA ! i ′ < length T › ‹SA ! j ′ <

length T ›
show ?goal

by (metis list-less-ns-cons-diff ordlistns.less-imp-le suffix-cons-ex)
qed
moreover
have b = b ′ =⇒ ?goal
proof −

assume b = b ′

with ‹α (T ! (SA ! i ′)) = b› ‹α (T ! (SA ! j ′)) = b ′› assms(5)
have T ! (SA ! i ′) = T ! (SA ! j ′)

by (meson strict-mono-eq)
with lms-sorted-invD2 [OF assms(4) ‹j ′ < length SA› ‹i ′ < j ′› ‹SA ! i ′ ∈ set

LMS›
‹SA ! j ′ ∈ set LMS›]

obtain m n where
n < length LMS
m < n
LMS ! m = SA ! j ′
LMS ! n = SA ! i ′
by blast

hence rev LMS ! (length LMS − Suc m) = SA ! j ′ rev LMS ! (length LMS −
Suc n) = SA ! i ′

by (metis length-rev order .strict-trans rev-nth rev-rev-ident)+
moreover
from ‹m < n› ‹n < length LMS›
have length LMS − Suc n ≤ length LMS − Suc m

by linarith
moreover
have length LMS − Suc m < length (rev LMS)

using ‹n < length LMS› by auto
ultimately

217

have list-less-eq-ns (suffix T (SA ! i ′)) (suffix T (SA ! j ′))
using ordlistns.sorted-nth-mono[OF assms(9)]
by fastforce

with ‹?fs ! i = SA ! i ′› ‹?fs ! j = SA ! j ′›
show ?goal

by simp
qed
ultimately
show ?goal

using less-le by blast
qed

lemma next-index-outside:
assumes b = α (T ! x)
and k = B ! b − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and strict-mono α
and ∀ a ∈ set (x # LMS). abs-is-lms T a
and b ′ ≤ α (Max (set T))
and b 6= b ′

shows k < bucket-start α T b ′ ∨ bucket-end α T b ′ ≤ k
proof −

from lms-distinct-bucket-ptr-lower-bound[OF assms(1 ,3−6)]
have lms-bucket-start α T b < B ! b .
hence k < B ! b

using assms(2) by linarith

from ‹lms-bucket-start α T b < B ! b›
have lms-bucket-start α T b ≤ k

using assms(2) by linarith

have x < length T
by (simp add: assms(6) abs-is-lms-imp-less-length)

hence b ≤ α (Max (set T))
by (simp add: assms(1 ,5) strict-mono-leD)

from assms(8)
have b < b ′ ∨ b ′ < b

by linarith
moreover
have b < b ′ =⇒ k < bucket-start α T b ′

proof −
assume b < b ′

hence bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
with lms-bucket-ptr-upper-bound[OF assms(4) ‹b ≤ α (Max (set T))›]
have B ! b ≤ bucket-start α T b ′

218

by linarith
with ‹k < B ! b›
show ?thesis

by linarith
qed
moreover
have b ′ < b =⇒ bucket-end α T b ′ ≤ k
proof −

assume b ′ < b
hence bucket-end α T b ′ ≤ bucket-start α T b

by (simp add: less-bucket-end-le-start)
hence bucket-end α T b ′ ≤ lms-bucket-start α T b

by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)
with ‹lms-bucket-start α T b ≤ k›
show ?thesis

using le-trans by blast
qed
ultimately show ?thesis

by blast
qed

62.4 Establishment and Maintenance Steps
62.4.1 Distinctness
lemma lms-distinct-inv-established:

assumes distinct LMS
and ∀ i < length SA. SA ! i = length T

shows lms-distinct-inv T SA LMS
proof −

from assms(2)
have filter (λx. x < length T) SA = []

by (metis filter-False in-set-conv-nth nat-neq-iff)
then show ?thesis
unfolding lms-distinct-inv-def
using distinct-append assms(1)
by simp

qed

lemma lms-distinct-inv-maintained-step:
assumes lms-distinct-inv T SA (x # LMS)

shows lms-distinct-inv T (SA[k := x]) LMS
unfolding lms-distinct-inv-def

proof(intro distinct-conv-nth[THEN iffD2] allI impI)
let ?xs = filter (λx. x < length T) SA and

?ys = filter (λx. x < length T) (SA[k := x])
fix i j
assume i 6= j i < length (filter (λx. x < length T) (SA[k := x]) @ LMS)

j < length (filter (λx. x < length T) (SA[k := x]) @ LMS)
hence i < length ?ys + length LMS j < length ?ys + length LMS

219

by simp-all

let ?goal = (?ys @ LMS) ! i 6= (?ys @ LMS) ! j

from assms(1) distinct-append
have distinct LMS distinct ?xs x /∈ set ?xs x /∈ set LMS set ?xs ∩ set LMS = {}

by (simp add: lms-distinct-inv-def)+

from ‹distinct LMS› ‹i < length ?ys + length LMS› ‹j < length ?ys + length
LMS› ‹i 6= j›

have R1 : [[length ?ys ≤ i; length ?ys ≤ j]] =⇒ ?goal
by (metis le-Suc-ex nat-add-left-cancel-less nth-append-length-plus nth-eq-iff-index-eq)

have set ?ys ⊆ {x} ∪ set ?xs
by (meson filter-nth-update-subset)

have R2 :∧
i j. [[i < length ?ys; length ?ys ≤ j; j < length ?ys + length LMS]] =⇒

(?ys @ LMS) ! i 6= (?ys @ LMS) ! j
proof −

fix i j
assume i < length ?ys length ?ys ≤ j j < length ?ys + length LMS
hence ?ys ! i ∈ {x} ∪ set ?xs

using ‹set ?ys ⊆ {x} ∪ set ?xs› nth-mem by blast
hence (?ys @ LMS) ! i ∈ {x} ∪ set ?xs

by (simp add: ‹i < length ?ys› nth-append)
moreover
from ‹length ?ys ≤ j› ‹j < length ?ys + length LMS›
have (?ys @ LMS) ! j ∈ set LMS

by (metis add.commute in-set-conv-nth leD less-diff-conv2 nth-append)
moreover
from ‹set ?xs ∩ set LMS = {}› ‹x /∈ set LMS›
have ({x} ∪ set ?xs) ∩ set LMS = {}

by blast
ultimately
show (?ys @ LMS) ! i 6= (?ys @ LMS) ! j

by (metis disjoint-iff-not-equal)
qed

have R3 : [[i < length ?ys; j < length ?ys]] =⇒ ?goal
proof −

assume i < length ?ys j < length ?ys
with filter-nth-relative-neq-2 [OF - - ‹i 6= j›]
obtain i ′ j ′ where

i ′ < length (SA[k := x])
j ′ < length (SA[k := x])
(SA[k := x]) ! i ′ = ?ys ! i
(SA[k := x]) ! j ′ = ?ys ! j
i ′ 6= j ′

220

by blast

have ?ys ! i < length T
using ‹i < length ?ys› nth-mem by fastforce

hence (SA[k := x]) ! i ′ < length T
using ‹(SA[k := x]) ! i ′ = ?ys ! i› by simp

have ?ys ! j < length T
using ‹j < length ?ys› nth-mem by fastforce

hence (SA[k := x]) ! j ′ < length T
using ‹(SA[k := x]) ! j ′ = ?ys ! j› by simp

have R4 :∧
i j. [[i 6= k; j = k; i < length (SA[k := x]); j < length (SA[k := x]);

(SA[k := x]) ! i < length T]] =⇒
(SA[k := x]) ! i 6= (SA[k := x]) ! j

proof −
fix i j
assume i 6= k j = k i < length (SA[k := x]) j < length (SA[k := x])

(SA[k := x]) ! i < length T

from ‹j = k› ‹j < length (SA[k := x])›
have (SA[k := x]) ! j = x

by simp
moreover
from ‹i 6= k› ‹i < length (SA[k := x])›
have (SA[k := x]) ! i = SA ! i

by simp
with ‹(SA[k := x]) ! i < length T ›
have SA ! i < length T

by simp
with filter-nth-1 [of i SA λx. x < length T] ‹i < length (SA[k := x])›
obtain i ′ where

i ′ < length ?xs
?xs ! i ′ = SA ! i
by auto

with ‹(SA[k := x]) ! i = SA ! i›
have (SA[k := x]) ! i ∈ set ?xs

using nth-mem by fastforce
ultimately
show (SA[k := x]) ! i 6= (SA[k := x]) ! j

using ‹x /∈ set ?xs› by auto
qed

have [[i ′ 6= k; j ′ 6= k]] =⇒ (SA[k := x]) ! i ′ 6= (SA[k := x]) ! j ′
proof −

assume i ′ 6= k j ′ 6= k
with ‹(SA[k := x]) ! i ′ = ?ys ! i› ‹(SA[k := x]) ! j ′ = ?ys ! j›
have ?ys ! i = SA ! i ′ ?ys ! j = SA ! j ′

221

by auto
with ‹?ys ! i < length T › ‹?ys ! j < length T › ‹i ′ < length (SA[k := x])›

‹j ′ < length (SA[k := x])›
filter-nth-relative-neq-1 [of i ′ SA λx. x < length T j ′, OF - - - - ‹i ′ 6= j ′›]

obtain i ′′ j ′′ where
i ′′ < length ?xs
j ′′ < length ?xs
?xs ! i ′′ = SA ! i ′
?xs ! j ′′ = SA ! j ′
i ′′ 6= j ′′
by auto

with ‹distinct ?xs›
have SA ! i ′ 6= SA ! j ′

by (metis distinct-Ex1 in-set-conv-nth)
then show ?thesis

using ‹SA[k := x] ! i ′ = ?ys ! i› ‹?ys ! i = SA ! i ′› ‹j ′ 6= k› by auto
qed
moreover
from ‹i ′ 6= j ′›
have [[i ′ = k; j ′ = k]] =⇒ False

by blast
ultimately
have (SA[k := x]) ! i ′ 6= (SA[k := x]) ! j ′
using R4 [of i ′ j ′, OF - - ‹i ′ < length (SA[k := x])› ‹j ′ < length (SA[k := x])›

‹(SA[k := x]) ! i ′ < length T ›]
R4 [of j ′ i ′, OF - - ‹j ′ < length (SA[k := x])› ‹i ′ < length (SA[k := x])›

‹(SA[k := x]) ! j ′ < length T ›]
by metis

with ‹(SA[k := x]) ! i ′ = ?ys ! i› ‹i < length ?ys›
‹(SA[k := x]) ! j ′ = ?ys ! j› ‹j < length ?ys›

show ?goal
by (simp add: nth-append)

qed

from R1 R2 [of i j, OF - - ‹j < length ?ys + length LMS›]
R2 [of j i, OF - - ‹i < length ?ys + length LMS›] R3

show ?goal
by presburger

qed

lemma lms-distinct-inv-maintained:
assumes lms-distinct-inv T SA LMS
shows lms-distinct-inv T (abs-bucket-insert α T B SA LMS) []
using assms

proof (induct rule: abs-bucket-insert.induct[of - α T B SA LMS])
case (1 α T uu SA)
then show ?case

by simp
next

222

case (2 α T B SA x xs)
note IH = this
let ?b = α (T ! x)
let ?k = B ! ?b − Suc 0
from IH (1)[OF - - - - lms-distinct-inv-maintained-step[OF IH (2), of ?k], of ?b

?k B[?b := ?k]]
show ?case

by (metis (full-types) One-nat-def abs-bucket-insert.simps(2))
qed

lemma abs-bucket-insert-lms-distinct-inv:
assumes distinct LMS
and ∀ i < length SA. SA ! i = length T

shows lms-distinct-inv T (abs-bucket-insert α T B SA LMS) []
using assms lms-distinct-inv-maintained lms-distinct-inv-established
by blast

62.4.2 Bucket Ptr
lemma lms-bucket-ptr-inv-established:

assumes lms-bucket-init α T B
and ∀ i < length SA. SA ! i = length T

shows lms-bucket-ptr-inv α T B SA
unfolding lms-bucket-ptr-inv-def

proof (intro allI impI)
fix b
assume b ≤ α (Max (set T))
with lms-bucket-initD[OF assms(1)]
have B ! b = bucket-end α T b

by simp
moreover
from assms(2)
have ∀ i ∈ set SA. ¬abs-is-lms T i

by (metis in-set-conv-nth abs-is-lms-imp-less-length less-not-refl2)
hence cur-lms-types α T SA b = {}

by (simp add: cur-lms-types-def lms-bucket-def)
hence num-lms-types α T SA b = 0

by (simp add: num-lms-types-def)
ultimately
show B ! b + num-lms-types α T SA b = bucket-end α T b

by simp
qed

lemma lms-bucket-ptr-inv-maintained-step:
assumes b = α (T ! x)
and k = B ! b − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and lms-unknowns-inv α T B SA

223

and strict-mono α
and α (Max (set T)) < length B
and length SA = length T
and ∀ a ∈ set (x # LMS). abs-is-lms T a

shows lms-bucket-ptr-inv α T (B[b := k]) (SA[k := x])
unfolding lms-bucket-ptr-inv-def

proof (intro allI impI)
fix b ′

assume b ′ ≤ α (Max (set T))

let ?goal = B[b := k] ! b ′ + num-lms-types α T (SA[k := x]) b ′ = bucket-end α
T b ′

from assms(1 ,9)
have x ∈ lms-bucket α T b

by (simp add: bucket-def abs-is-lms-imp-less-length lms-bucket-def)

from lms-next-insert-at-unknown[OF assms(1−6 ,8 ,9)]
have k < length SA SA ! k = length T

by blast+

have b ′ 6= b =⇒ ?goal
proof −

assume b ′ 6= b
with ‹x ∈ lms-bucket α T b›
have x /∈ lms-bucket α T b ′

by (simp add: bucket-def lms-bucket-def)
with cur-lms-subset-lms-bucket
have x /∈ cur-lms-types α T SA b ′

by blast

have cur-lms-types α T (SA[k := x]) b ′ = cur-lms-types α T SA b ′

unfolding cur-lms-types-def
proof (intro equalityI subsetI)

fix y
assume y ∈ {i |i. i ∈ set (SA[k := x]) ∧ i ∈ lms-bucket α T b ′}
hence y ∈ set (SA[k := x]) y ∈ lms-bucket α T b ′

by simp-all
with ‹x /∈ lms-bucket α T b ′›
have y ∈ set SA
by (metis in-set-conv-nth length-list-update nth-list-update-eq nth-list-update-neq)
then show y ∈ {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b ′}

by (simp add: ‹y ∈ lms-bucket α T b ′›)
next

fix y
assume y ∈ {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b ′}
hence y ∈ set SA y ∈ lms-bucket α T b ′

by simp-all
with ‹x /∈ lms-bucket α T b ′› ‹SA ! k = length T ›

224

have y ∈ set (SA[k := x])
using in-set-list-update abs-is-lms-imp-less-length lms-bucket-def by fastforce
then show y ∈ {i |i. i ∈ set (SA[k := x]) ∧ i ∈ lms-bucket α T b ′}

using ‹y ∈ lms-bucket α T b ′› by blast
qed
hence num-lms-types α T (SA[k := x]) b ′ = num-lms-types α T SA b ′

by (simp add: num-lms-types-def)
with lms-bucket-ptr-invD[OF assms(4) ‹b ′ ≤ α (Max (set T))›] ‹b ′ 6= b›
show ?thesis

by simp
qed
moreover
have b ′ = b =⇒ ?goal
proof −

assume b ′ = b
with ‹b ′ ≤ α (Max (set T))›
have b ≤ α (Max (set T))

by simp

from assms(3 ,9)
have x /∈ set SA

by (simp add: abs-is-lms-imp-less-length lms-distinct-inv-def)

from ‹k < length SA›
have x ∈ set (SA[k := x])

by (simp add: set-update-memI)

have b < length B
using ‹b ≤ α (Max (set T))› assms(7) dual-order .strict-trans2 by blast

hence B[b := k] ! b = k
by simp

have finite (cur-lms-types α T SA b)
by (meson List.finite-set cur-lms-subset-SA finite-subset)

moreover
from ‹x /∈ set SA›
have cur-lms-types α T SA b − {x} = cur-lms-types α T SA b

using cur-lms-subset-SA by fastforce
moreover
have insert x (cur-lms-types α T SA b) = cur-lms-types α T (SA[k := x]) b

unfolding cur-lms-types-def
proof (intro equalityI subsetI)

fix y
assume y ∈ insert x {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b}
hence y = x ∨ y ∈ set SA ∧ y ∈ lms-bucket α T b

by blast
with ‹SA ! k = length T › ‹x ∈ lms-bucket α T b› ‹x ∈ set (SA[k := x])›
have y ∈ set (SA[k := x]) ∧ y ∈ lms-bucket α T b

by (metis (no-types, lifting) in-set-list-update abs-is-lms-imp-less-length

225

less-irrefl-nat
lms-bucket-def mem-Collect-eq)

then show y ∈ {i |i. i ∈ set (SA[k := x]) ∧ i ∈ lms-bucket α T b}
by blast

next
fix y
assume y ∈ {i |i. i ∈ set (SA[k := x]) ∧ i ∈ lms-bucket α T b}
hence y ∈ set (SA[k := x]) y ∈ lms-bucket α T b

by simp-all
moreover
have y ∈ set SA =⇒ y ∈ insert x {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b}

using calculation(2) by blast
moreover
from ‹k < length SA ∧ SA ! k = length T ›
have y /∈ set SA =⇒ y ∈ insert x {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b}
by (metis (no-types, lifting) calculation(1) in-set-conv-nth insert-iff length-list-update

nth-list-update)
ultimately show y ∈ insert x {i |i. i ∈ set SA ∧ i ∈ lms-bucket α T b}

by blast
qed
ultimately
have num-lms-types α T (SA[k := x]) b = Suc (num-lms-types α T SA b)

by (metis num-lms-types-def card.insert-remove)
with ‹b ′ = b› ‹B[b := k] ! b = k› assms(2)
have B[b := k] ! b ′ + num-lms-types α T (SA[k := x]) b ′

= B ! b − Suc 0 + Suc (num-lms-types α T SA b)
by simp
hence B[b := k] ! b ′ + num-lms-types α T (SA[k := x]) b ′ = B ! b +

num-lms-types α T SA b
using add-Suc-shift assms less-nat-zero-code lms-distinct-bucket-ptr-lower-bound

neq0-conv
by fastforce

with ‹b ′ = b›
have B[b := k] ! b ′ + num-lms-types α T (SA[k := x]) b ′ = B ! b ′ +

num-lms-types α T SA b ′

by simp
with lms-bucket-ptr-invD[OF assms(4) ‹b ′ ≤ α (Max (set T))›]
show ?thesis

by simp
qed
ultimately
show ?goal

by blast
qed

62.4.3 Unknowns
lemma lms-unknowns-inv-established:

assumes lms-bucket-init α T B

226

and ∀ i < length SA. SA ! i = length T
and length SA = length T

shows lms-unknowns-inv α T B SA
unfolding lms-unknowns-inv-def

proof (intro allI impI ; elim conjE)
fix b i
assume b ≤ α (Max (set T)) lms-bucket-start α T b ≤ i i < B ! b
with lms-bucket-initD[OF assms(1)]
have B ! b = bucket-end α T b

by simp
with ‹i < B ! b›
have i < length T

by (simp add: bucket-end-le-length less-le-trans)
with assms(3)
have i < length SA

by simp
with assms(2)
show SA ! i = length T

by simp
qed

lemma lms-unknowns-inv-maintained-step:
assumes b = α (T ! x)
and k = B ! b − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and lms-unknowns-inv α T B SA
and strict-mono α
and α (Max (set T)) < length B
and ∀ a ∈ set (x # LMS). abs-is-lms T a

shows lms-unknowns-inv α T (B[b := k]) (SA[k := x])
unfolding lms-unknowns-inv-def

proof (intro allI impI ; elim conjE)
fix b ′ i
assume b ′ ≤ α (Max (set T)) lms-bucket-start α T b ′ ≤ i i < B[b := k] ! b ′

let ?goal = SA[k := x] ! i = length T

have b ′ 6= b =⇒ ?goal
proof −

assume b ′ 6= b
with ‹i < B[b := k] ! b ′›
have i < B ! b ′

by simp
with lms-unknowns-invD[OF assms(5) ‹b ′≤ α (Max (set T))› ‹lms-bucket-start

α T b ′ ≤ i›]
have SA ! i = length T

by simp

227

from ‹b ′ 6= b›
have b ′ < b ∨ b < b ′

by auto
then show ?thesis
proof

assume b ′ < b
from lms-distinct-bucket-ptr-lower-bound[OF assms(1 ,3 ,4 ,6 ,8)]
have lms-bucket-start α T b < B ! b .
hence bucket-start α T b < B ! b
by (metis dual-order .strict-trans2 l-bucket-end-def l-bucket-end-le-lms-bucket-start

le-add1)
moreover
from lms-bucket-ptr-upper-bound[OF assms(4) ‹b ′ ≤ α (Max (set T))›]
have B ! b ′ ≤ bucket-end α T b ′ .
ultimately
have B ! b ′ < B ! b

by (meson ‹b ′ < b› dual-order .strict-trans2 less-bucket-end-le-start)
hence i 6= k

using assms(2 ,3) ‹i < B ! b ′›
by linarith

with ‹SA ! i = length T ›
show ?thesis

by auto
next

assume b < b ′

from ‹lms-bucket-start α T b ′ ≤ i›
have bucket-start α T b ′ ≤ i

by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)
moreover
from lms-bucket-ptr-upper-bound[OF assms(4), of b] assms(7)
have B ! b ≤ bucket-end α T b

using ‹b < b ′› ‹b ′ ≤ α (Max (set T))› by linarith
hence k < bucket-end α T b

using assms lms-distinct-bucket-ptr-lower-bound by fastforce
ultimately
have i 6= k

by (meson ‹b < b ′› leD le-trans less-bucket-end-le-start)
with ‹SA ! i = length T ›
show ?thesis

by auto
qed

qed
moreover
have b ′ = b =⇒ ?goal
proof −

assume b ′ = b
with ‹b ′ ≤ α (Max (set T))› ‹lms-bucket-start α T b ′ ≤ i› ‹i < B[b := k] ! b ′›
have b ≤ α (Max (set T)) lms-bucket-start α T b ≤ i i < B[b := k] ! b

by simp-all

228

hence i < B ! b − Suc 0
using assms by auto

with lms-unknowns-invD[OF assms(5) ‹b ≤ α (Max (set T))› ‹lms-bucket-start
α T b ≤ i›]

have SA ! i = length T
by linarith

with ‹i < B ! b − Suc 0 › assms(2)
show ?thesis

by simp
qed
ultimately
show ?goal

by blast
qed

62.4.4 Locations
lemma lms-locations-inv-established:

assumes lms-bucket-init α T B
shows lms-locations-inv α T B SA

unfolding lms-locations-inv-def
proof (intro allI impI ; elim conjE)

fix b i
assume b ≤ α (Max (set T)) B ! b ≤ i i < bucket-end α T b
with lms-bucket-initD[OF assms(1), of b]
have False

by linarith
then show SA ! i ∈ lms-bucket α T b

by blast
qed

lemma lms-locations-inv-maintained-step:
assumes b = α (T ! x)
and k = (B ! b) − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and lms-locations-inv α T B SA
and strict-mono α
and α (Max (set T)) < length B
and length SA = length T
and ∀ a ∈ set (x # LMS). abs-is-lms T a

shows lms-locations-inv α T (B[b := k]) (SA[k := x])
unfolding lms-locations-inv-def

proof (intro allI impI ; elim conjE)
fix b ′ i
assume b ′ ≤ α (Max (set T)) B[b := k] ! b ′ ≤ i i < bucket-end α T b ′

let ?goal = SA[k := x] ! i ∈ lms-bucket α T b ′

229

have lms-bucket-start α T b < B ! b
using assms lms-distinct-bucket-ptr-lower-bound by blast

have b ′ 6= b =⇒ ?goal
proof −

assume b ′ 6= b
with ‹B[b := k] ! b ′ ≤ i›
have B ! b ′ ≤ i

by simp

from ‹b ′ 6= b›
have b ′ < b ∨ b < b ′

by auto
then show ?thesis
proof

assume b ′ < b
from ‹lms-bucket-start α T b < B ! b›
have bucket-start α T b < B ! b
by (metis dual-order .strict-trans2 l-bucket-end-def l-bucket-end-le-lms-bucket-start

le-add1)
with ‹i < bucket-end α T b ′› ‹b ′ < b›
have i 6= k

using assms(2 ,3)
by (metis Suc-lessI Suc-pred dual-order .strict-trans1 less-bucket-end-le-start

less-nat-zero-code not-less-iff-gr-or-eq)
hence SA[k := x] ! i = SA ! i

by auto
with lms-locations-invD[OF assms(5) ‹b ′ ≤ α (Max (set T))› ‹B ! b ′ ≤ i›

‹i < bucket-end α T b ′›]
show ?thesis

by simp
next

assume b < b ′

from lms-bucket-ptr-lower-bound[OF assms(4) ‹b ′ ≤ α (Max (set T))›]
have lms-bucket-start α T b ′ ≤ B ! b ′ .
hence bucket-start α T b ′ ≤ B ! b ′

by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)
hence bucket-start α T b ′ ≤ i

using ‹B ! b ′ ≤ i› le-trans by blast
moreover
from lms-bucket-ptr-upper-bound[OF assms(4), of b] assms(7)
have B ! b ≤ bucket-end α T b

using ‹b < b ′› ‹b ′ ≤ α (Max (set T))› by linarith
with ‹lms-bucket-start α T b < B ! b›
have k < bucket-end α T b

using assms(2) by linarith
ultimately
have i 6= k

by (meson ‹b < b ′› leD le-less-trans less-bucket-end-le-start)

230

hence SA[k := x] ! i = SA ! i
by simp

with lms-locations-invD[OF assms(5)‹b ′ ≤ α (Max (set T))› ‹B ! b ′ ≤ i›
‹i < bucket-end α T b ′›]

show ?thesis
by simp

qed
qed
moreover
have b ′ = b =⇒ ?goal
proof −

assume b ′ = b
with ‹b ′ ≤ α (Max (set T))› ‹B[b := k] ! b ′ ≤ i› ‹i < bucket-end α T b ′›
have b ≤ α (Max (set T)) B[b := k] ! b ≤ i i < bucket-end α T b

by simp-all
hence k ≤ i

by (simp add: assms(7) order .strict-trans1)
hence k = i ∨ B ! b ≤ i

using assms(2) by linarith
then show ?thesis
proof

assume k = i
hence SA[k := x] ! i = x
using ‹i < bucket-end α T b› assms(8) bucket-end-le-length order .strict-trans2

by fastforce
moreover
from assms(1 ,9)
have x ∈ lms-bucket α T b

by (simp add: bucket-def abs-is-lms-imp-less-length lms-bucket-def)
ultimately
show ?thesis

using ‹b ′ = b› by simp
next

assume B ! b ≤ i
with lms-locations-invD[OF assms(5) ‹b ≤ α (Max (set T))› - ‹i < bucket-end

α T b›]
have SA ! i ∈ lms-bucket α T b

by blast
moreover
from ‹B ! b ≤ i› assms(2) ‹lms-bucket-start α T b < B ! b›
have SA[k := x] ! i = SA ! i

by auto
ultimately
show ?thesis

using ‹b ′ = b› by simp
qed

qed
ultimately
show ?goal

231

by blast
qed

62.4.5 Unchanged
lemma lms-unchanged-inv-established:

lms-unchanged-inv α T B SA SA
unfolding lms-unchanged-inv-def
by blast

lemma lms-unchanged-inv-maintained-step:
assumes b = α (T ! x)
and k = (B ! b) − Suc 0
and lms-distinct-inv T SA (x # LMS)
and lms-bucket-ptr-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and strict-mono α
and α (Max (set T)) < length B
and length SA = length T
and ∀ a ∈ set (x # LMS). abs-is-lms T a

shows lms-unchanged-inv α T (B[b := k]) SA0 (SA[k := x])
unfolding lms-unchanged-inv-def

proof (intro allI impI ; elim conjE)
fix b ′ i
assume b ′ ≤ α (Max (set T)) bucket-start α T b ′ ≤ i i < B[b := k] ! b ′

let ?goal = SA[k := x] ! i = SA0 ! i

have lms-bucket-start α T b < B ! b
using assms lms-distinct-bucket-ptr-lower-bound by blast

have b ′ 6= b =⇒ ?goal
proof −

assume b ′ 6= b
with ‹i < B[b := k] ! b ′›
have i < B ! b ′

by simp

from ‹b ′ 6= b›
have b ′ < b ∨ b < b ′

by linarith
then show ?thesis
proof

assume b ′ < b
from ‹lms-bucket-start α T b < B ! b›
have bucket-start α T b < B ! b

by (simp add: lms-bucket-start-def)
with assms(2)
have bucket-start α T b ≤ k

232

by linarith
moreover
from lms-bucket-ptr-upper-bound[OF assms(4) ‹b ′ ≤ α (Max (set T))›]
have B ! b ′ ≤ bucket-end α T b ′ .
with ‹i < B ! b ′›
have i < bucket-end α T b ′

using less-le-trans by blast
ultimately
have i 6= k

using ‹b ′ < b›
by (meson dual-order .strict-trans2 less-bucket-end-le-start order .strict-implies-not-eq)
hence SA[k := x] ! i = SA ! i

by simp
with lms-unchanged-invD[OF assms(5) ‹b ′ ≤ α (Max (set T))› ‹bucket-start

α T b ′ ≤ i›
‹i < B ! b ′›]

show ?thesis
by simp

next
assume b < b ′

from ‹lms-bucket-start α T b < B ! b› assms(2)
have k < B ! b

by linarith
with lms-bucket-ptr-upper-bound[OF assms(4), of b] ‹b ′ ≤ α (Max (set T))›

‹b < b ′› assms(7)
have k < bucket-end α T b

by linarith
with ‹bucket-start α T b ′ ≤ i› ‹b < b ′›
have i 6= k

by (meson dual-order .strict-trans1 leD less-bucket-end-le-start)
hence SA[k := x] ! i = SA ! i

by simp
with lms-unchanged-invD[OF assms(5) ‹b ′ ≤ α (Max (set T))› ‹bucket-start

α T b ′ ≤ i›
‹i < B ! b ′›]

show ?thesis
by simp

qed
qed
moreover
have b ′ = b =⇒ ?goal
proof −

assume b ′ = b
with ‹b ′ ≤ α (Max (set T))› ‹bucket-start α T b ′ ≤ i› ‹i < B[b := k] ! b ′›
have b ≤ α (Max (set T)) bucket-start α T b ≤ i i < B[b := k] ! b

by simp-all
hence i < k

using assms(7) by auto
hence i < B ! b

233

using assms(2) by linarith
with lms-unchanged-invD[OF assms(5) ‹b ≤ α (Max (set T))› ‹bucket-start α

T b ≤ i›]
have SA ! i = SA0 ! i

by simp
with ‹i < k›
show ?thesis

by auto
qed
ultimately
show ?goal

by blast
qed

62.4.6 Inserted
lemma lms-inserted-inv-established:

shows lms-inserted-inv LMS SA [] LMS
unfolding lms-inserted-inv-def
by simp

lemma lms-inserted-inv-maintained-step:
assumes b = α (T ! x)
and k = (B ! b) − Suc 0
and lms-distinct-inv T SA (x # LMSb)
and lms-bucket-ptr-inv α T B SA
and lms-unknowns-inv α T B SA
and lms-inserted-inv LMS SA LMSa (x # LMSb)
and strict-mono α
and length SA = length T
and ∀ a ∈ set LMS . abs-is-lms T a

shows lms-inserted-inv LMS (SA[k := x]) (LMSa @ [x]) LMSb
proof −

from lms-inserted-invD(1)[OF assms(6)] assms(9)
have ∀ a ∈ set (x # LMSb). abs-is-lms T a

by auto
with lms-next-insert-at-unknown[OF assms(1−5 ,7 ,8)]
have k < length SA SA ! k = length T

by blast+

from lms-inserted-invD(1)[OF assms(6)] assms(9)
have ∀ a ∈ set LMSa. abs-is-lms T a

by auto
hence ∀ a ∈ set LMSa. a < length T

using abs-is-lms-imp-less-length by blast

have set LMSa ⊆ set (SA[k := x])
proof (intro subsetI)

234

fix y
assume y ∈ set LMSa
with ‹∀ a ∈ set LMSa. a < length T ›
have y < length T

by blast
with ‹SA ! k = length T ›
have SA ! k 6= y

by simp
moreover
from lms-inserted-invD(2)[OF assms(6)] ‹y ∈ set LMSa›
have y ∈ set SA

by blast
ultimately
show y ∈ set (SA[k := x])

using in-set-list-update by fast
qed
moreover
from ‹k < length SA›
have x ∈ set (SA[k := x])

by (simp add: set-update-memI)
ultimately
have set (LMSa @ [x]) ⊆ set (SA[k := x])

by simp
with lms-inserted-invD(1)[OF assms(6)]
show ?thesis

by (simp add: lms-inserted-inv-def)
qed

62.4.7 Sorted
lemma lms-sorted-inv-established:

assumes ∀ i < length SA. SA ! i = length T
and ∀ a ∈ set LMS . abs-is-lms T a

shows lms-sorted-inv T LMS SA
unfolding lms-sorted-inv-def

proof (intro allI impI ; elim conjE)
fix i j
assume A: j < length SA i < j SA ! i ∈ set LMS SA ! j ∈ set LMS
from A(1) assms(1)
have SA ! j = length T

by blast
moreover
from A(4) assms(2)
have SA ! j < length T

using abs-is-lms-imp-less-length by blast
ultimately
have False

by auto
then show

235

(T ! (SA ! i) 6= T ! (SA ! j) −→ T ! (SA ! i) < T ! (SA ! j)) ∧
(T ! (SA ! i) = T ! (SA ! j) −→
(∃ j ′<length LMS . ∃ i ′<j ′. LMS ! i ′ = SA ! j ∧ LMS ! j ′ = SA ! i))

by blast
qed

lemma lms-sorted-inv-maintained-step:
assumes b = α (T ! x)
and k = (B ! b) − Suc 0
and lms-distinct-inv T SA (x # LMSb)
and lms-bucket-ptr-inv α T B SA
and lms-unknowns-inv α T B SA
and lms-locations-inv α T B SA
and lms-unchanged-inv α T B SA0 SA
and lms-inserted-inv LMS SA LMSa (x # LMSb)
and lms-sorted-inv T LMS SA
and strict-mono α
and length SA = length T
and ∀ i < length T . SA0 ! i = length T
and ∀ a ∈ set LMS . abs-is-lms T a

shows lms-sorted-inv T LMS (SA[k := x])
unfolding lms-sorted-inv-def

proof (intro allI impI ; elim conjE)
fix i j
assume A: j < length (SA[k := x]) i < j SA[k := x] ! i ∈ set LMS

SA[k := x] ! j ∈ set LMS
let ?goal1 = T ! (SA[k := x] ! i) 6= T ! (SA[k := x] ! j) −→

T ! (SA[k := x] ! i) < T ! (SA[k := x] ! j)
and ?goal2 = T ! (SA[k := x] ! i) = T ! (SA[k := x] ! j) −→

(∃ j ′<length LMS . ∃ i ′<j ′.
LMS ! i ′ = SA[k := x] ! j ∧ LMS ! j ′ = SA[k := x] ! i)

let ?goal = ?goal1 ∧ ?goal2

from assms(13) lms-inserted-invD[OF assms(8)]
have ∀ a∈set (x # LMSb). abs-is-lms T a

by auto
with lms-next-insert-at-unknown[OF assms(1−5 ,10 ,11)]
have k < length SA SA ! k = length T

by blast+

from lms-distinct-bucket-ptr-lower-bound[OF assms(1 ,3 ,4 ,10) ‹∀ a∈set (x # LMSb).
abs-is-lms T a›]

have lms-bucket-start α T b < B ! b .

from assms(1 ,10) ‹∀ a∈set (x # LMSb). abs-is-lms T a›
have b ≤ α (Max (set T))

by (simp add: abs-is-lms-imp-less-length strict-mono-less-eq)

236

have [[k 6= i; k 6= j]] =⇒ ?goal
proof −

assume k 6= i k 6= j
with A
have j < length SA SA ! i ∈ set LMS SA ! j ∈ set LMS

by simp-all
with lms-sorted-invD[OF assms(9) - ‹i < j›] ‹k 6= i› ‹k 6= j›
show ?goal

by simp
qed
moreover
have [[k = i; k 6= j]] =⇒ ?goal
proof −

assume k = i k 6= j
with A(1 ,4)
have j < length SA SA ! j ∈ set LMS SA[k := x] ! j = SA ! j

by simp-all

from ‹k = i› assms(2)
have i = B ! b − Suc 0

by simp

from ‹SA ! j ∈ set LMS› assms(13)
have SA ! j < length T

using abs-is-lms-imp-less-length by blast

from index-in-bucket-interval-gen[of j T , OF - assms(10)] assms(11) ‹j <
length SA›

obtain b ′ where
b ′ ≤ α (Max (set T))
bucket-start α T b ′ ≤ j
j < bucket-end α T b ′

by auto

have B ! b ′ ≤ j
proof (rule ccontr)

assume ¬ B ! b ′ ≤ j
hence j < B ! b ′

by simp
with lms-unchanged-invD[OF assms(7) ‹b ′ ≤ α (Max (set T))› ‹bucket-start

α T b ′ ≤ j›]
assms(11 ,12) ‹j < length SA›

have SA ! j = length T
by auto

with ‹SA ! j < length T ›
show False

by auto
qed
with lms-locations-invD[OF assms(6) ‹b ′ ≤ α (Max (set T))› - ‹j < bucket-end

237

α T b ′›]
have SA ! j ∈ lms-bucket α T b ′

by blast
hence α (T ! (SA ! j)) = b ′

by (simp add: bucket-def lms-bucket-def)

from ‹lms-bucket-start α T b < B ! b› ‹i = B ! b − Suc 0 ›
have lms-bucket-start α T b ≤ i

by linarith
hence bucket-start α T b ≤ i

by (metis l-bucket-end-def l-bucket-end-le-lms-bucket-start le-add1 le-trans)

have b ≤ b ′

proof (rule ccontr)
assume ¬ b ≤ b ′

hence b ′ < b
by simp

hence bucket-end α T b ′ ≤ bucket-start α T b
by (simp add: less-bucket-end-le-start)

with ‹j < bucket-end α T b ′›
have j < bucket-start α T b

by linarith
with ‹bucket-start α T b ≤ i›
have j < i

by linarith
with ‹i < j›
show False

by linarith
qed

from assms(3)[simplified lms-distinct-inv-def distinct-append] ‹SA ! j < length
T ›

‹j < length SA›
have SA ! j /∈ set (x # LMSb)

by (metis IntI empty-iff filter-set member-filter nth-mem)
with lms-inserted-invD[OF assms(8)] ‹SA ! j ∈ set LMS›
have SA ! j ∈ set LMSa

by auto
hence ∃ j ′ < length LMSa. LMSa ! j ′ = SA ! j

by (simp add: in-set-conv-nth)
then obtain j ′ where

j ′ < length LMSa
LMSa ! j ′ = SA ! j
by blast

with lms-inserted-invD(1)[OF assms(8)] ‹SA[k := x] ! j = SA ! j›
have LMS ! j ′ = SA[k := x] ! j

by (simp add: nth-append)

from ‹α (T ! (SA ! j)) = b ′› ‹SA[k := x] ! j = SA ! j›

238

have α (T ! (SA[k := x] ! j)) = b ′

by simp

from lms-inserted-invD(1)[OF assms(8)]
have length LMSa < length LMS

by simp

from assms(3)[simplified lms-distinct-inv-def distinct-append] lms-inserted-invD[OF
assms(8)]

have x /∈ set LMSa
using ‹∀ a∈set (x # LMSb). abs-is-lms T a› abs-is-lms-imp-less-length by

fastforce
with lms-inserted-invD(1)[OF assms(8)]
have LMS ! length LMSa = x

by simp
hence LMS ! length LMSa = SA[k := x] ! i

using ‹k < length SA› ‹k = i› by auto

from ‹k = i› assms(1) ‹k < length SA›
have α (T ! (SA[k := x] ! i)) = b

by auto

have b = b ′ =⇒ ?goal2
proof

from ‹LMS ! j ′ = SA[k := x] ! j› ‹LMS ! length LMSa = SA[k := x] ! i› ‹j ′
< length LMSa›

‹length LMSa < length LMS›
show ∃ j ′<length LMS . ∃ i ′<j ′. LMS ! i ′ = SA[k := x] ! j ∧ LMS ! j ′ = SA[k

:= x] ! i
by blast

qed
moreover
from ‹α (T ! (SA[k := x] ! j)) = b ′› ‹α (T ! (SA[k := x] ! i)) = b› assms(10)
have b = b ′ =⇒ T ! (SA[k := x] ! i) = T ! (SA[k := x] ! j)

using strict-mono-eq by auto
moreover
have b < b ′ =⇒ ?goal1
proof

assume b < b ′

with ‹α (T ! (SA[k := x] ! i)) = b› ‹α (T ! (SA[k := x] ! j)) = b ′› assms(10)
show T ! (SA[k := x] ! i) < T ! (SA[k := x] ! j)

using strict-mono-less by blast
qed
moreover
from ‹α (T ! (SA[k := x] ! j)) = b ′› ‹α (T ! (SA[k := x] ! i)) = b› assms(10)
have b < b ′ =⇒ T ! (SA[k := x] ! i) 6= T ! (SA[k := x] ! j)

by auto
moreover
from ‹b ≤ b ′›

239

have b = b ′ ∨ b < b ′

by linarith
ultimately
show ?goal

by blast
qed
moreover
have [[k 6= i; k = j]] =⇒ ?goal
proof −

assume k 6= i k = j
with ‹SA[k := x] ! i ∈ set LMS›
have SA[k := x] ! i = SA ! i SA ! i ∈ set LMS

by simp-all

from ‹k = j› assms(2)
have j = B ! b − Suc 0

by simp

from ‹j < length (SA[k := x])› ‹i < j› assms(11)
have i < length T

by simp
with index-in-bucket-interval-gen[of i T , OF - assms(10)]
obtain b ′ where

b ′ ≤ α (Max (set T))
bucket-start α T b ′ ≤ i
i < bucket-end α T b ′

by auto

from ‹SA ! i ∈ set LMS› assms(13)
have SA ! i < length T

using abs-is-lms-imp-less-length by blast

have B ! b ′ ≤ i
proof (rule ccontr)

assume ¬B ! b ′ ≤ i
hence i < B ! b ′

by (simp add: not-le)
with lms-unchanged-invD[OF assms(7) ‹b ′ ≤ α (Max (set T))› ‹bucket-start

α T b ′ ≤ i›]
assms(12) ‹i < length T ›

have SA ! i = length T
by simp

with ‹SA ! i < length T ›
show False

by linarith
qed
with lms-locations-invD[OF assms(6) ‹b ′ ≤ α (Max (set T))› - ‹i < bucket-end

α T b ′›]
have SA ! i ∈ lms-bucket α T b ′

240

by blast
hence α (T ! (SA ! i)) = b ′

by (simp add: bucket-def lms-bucket-def)
with ‹SA[k := x] ! i = SA ! i›
have α (T ! (SA[k := x] ! i)) = b ′

by simp

from ‹i < j› ‹j = B ! b − Suc 0 › ‹lms-bucket-start α T b < B ! b›
have i < B ! b

using diff-le-self dual-order .strict-trans1 by blast

have i < bucket-start α T b
proof (rule ccontr)

assume ¬i < bucket-start α T b
hence bucket-start α T b ≤ i

by (simp add: not-le)
with lms-unchanged-invD[OF assms(7) ‹b ≤ α (Max (set T))› - ‹i < B ! b›]

assms(12) ‹i < length T ›
have SA ! i = length T

by auto
with ‹SA ! i < length T ›
show False

by linarith
qed
with ‹bucket-start α T b ′ ≤ i›
have bucket-start α T b ′ < bucket-start α T b

by linarith
hence b ′ < b

by (meson bucket-start-le leD leI)

from assms(1) ‹k = j› ‹k < length SA›
have α (T ! (SA[k := x] ! j)) = b

by simp
with ‹α (T ! (SA[k := x] ! i)) = b ′› ‹b ′ < b› assms(10)
have T ! (SA[k := x] ! i) < T ! (SA[k := x] ! j)

using strict-mono-less by blast
then show ?goal

by auto
qed
moreover
from ‹i < j›
have [[k = i; k = j]] =⇒ ?goal

by blast
ultimately
show ?goal

by blast
qed

241

62.5 Combined Establishment and Maintenance
lemma lms-inv-established:

assumes ∀ i < length SA. SA ! i = length T
and ∀ x ∈ set LMS . abs-is-lms T x
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α

shows lms-inv α T B LMS [] LMS SA SA
unfolding lms-inv-def
using lms-distinct-inv-established[OF assms(3 ,1)]

lms-bucket-ptr-inv-established[OF assms(4 ,1)]
lms-unknowns-inv-established[OF assms(4 ,1 ,5)]
lms-locations-inv-established[OF assms(4)]
lms-unchanged-inv-established
lms-inserted-inv-established
lms-sorted-inv-established[OF assms(1 ,2)]
lms-bucket-init-length[OF assms(4)]
assms

by auto

lemma lms-inv-maintained-step:
assumes lms-inv α T B LMS LMSa (x # LMSb) SA0 SA
and b = α (T ! x)
and k = (B ! b) − Suc 0

shows lms-inv α T (B[b := k]) LMS (LMSa @ [x]) LMSb SA0 (SA[k := x])
unfolding lms-inv-def
using lms-distinct-inv-maintained-step[OF lms-invD(1)[OF assms(1)]]

lms-bucket-ptr-inv-maintained-step[OF assms(2−3)
lms-invD(1−3 ,8 ,9 ,12)[OF assms(1)]
lms-inv-lms-helper(3)[OF assms(1)]]

lms-unknowns-inv-maintained-step[OF assms(2−3)
lms-invD(1−3 ,8 ,9)[OF assms(1)]
lms-inv-lms-helper(3)[OF assms(1)]]

lms-locations-inv-maintained-step[OF assms(2−3)
lms-invD(1−2 ,4 ,8 ,9 ,12)[OF assms(1)]
lms-inv-lms-helper(3)[OF assms(1)]]

lms-unchanged-inv-maintained-step[OF assms(2−3)
lms-invD(1−2 ,5 ,8 ,9 ,12)[OF assms(1)]
lms-inv-lms-helper(3)[OF assms(1)]]

lms-inserted-inv-maintained-step[OF assms(2−3)
lms-invD(1−3 ,6 ,8 ,12)[OF assms(1)]
lms-inv-lms-helper(1)[OF assms(1)]]

lms-sorted-inv-maintained-step[OF assms(2−3)
lms-invD(1−8 ,12 ,13)[OF assms(1)]
lms-inv-lms-helper(1)[OF assms(1)]]

by (metis assms(1) length-list-update lms-inv-def)

lemma lms-inv-maintained:

242

assumes bucket-insert-abs ′ α T B SA gs xs = (SA ′, B ′, gs ′)
and lms-inv α T B LMS gs xs SA0 SA

shows lms-inv α T B ′ LMS gs ′ [] SA0 SA ′

using assms
proof (induct arbitrary: SA ′ B ′ gs ′ LMS SA0

rule: bucket-insert-abs ′.induct[of - α T B SA gs xs])
case (1 α T B SA gs)
note BC = this
from BC (1)[simplified]
have B ′ = B SA ′ = SA gs ′ = gs

by auto
with BC (2)
show ?case

by simp
next

case (2 α T B SA gs x xs)
note IH = this
let ?b = α (T ! x)
let ?k = B ! ?b − Suc 0
from lms-inv-maintained-step[OF IH (3), of ?b ?k]
have R1 : lms-inv α T (B[?b := ?k]) LMS (gs @ [x]) xs SA0 (SA[?k := x])

by simp

from IH (2)[simplified, simplified Let-def]
have R2 : bucket-insert-abs ′ α T (B[?b := ?k]) (SA[?k := x]) (gs @ [x]) xs =

(SA ′, B ′, gs ′) .

from IH (1)[of ?b ?k SA[?k := x] B[?b := ?k] gs @ [x] SA ′ B ′ gs ′ LMS SA0 ,
simplified,
OF R2 R1]

show ?case .
qed

lemma lms-inv-holds:
assumes ∀ i < length SA. SA ! i = length T
and ∀ x ∈ set LMS . abs-is-lms T x
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)

shows lms-inv α T B ′ LMS gs ′ [] SA SA ′

using lms-inv-maintained[OF assms(7) lms-inv-established[OF assms(1−6)]] .

63 Exhaustiveness
definition lms-type-exhaustive :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ bool
where
lms-type-exhaustive T SA = (∀ i < length T . abs-is-lms T i −→ i ∈ set SA)

243

lemma lms-type-exhaustiveD:
[[lms-type-exhaustive T SA; i < length T ; abs-is-lms T i]] =⇒ i ∈ set SA
using lms-type-exhaustive-def by blast

lemma lms-all-inserted-imp-exhaustive:
assumes lms-inserted-inv LMS SA LMS []
and set LMS = {i. abs-is-lms T i}

shows lms-type-exhaustive T SA
unfolding lms-type-exhaustive-def

proof (intro allI impI)
fix i
assume i < length T abs-is-lms T i
with assms(2)
have i ∈ set LMS

by blast
with lms-inserted-invD(2)[OF assms(1)]
show i ∈ set SA

by blast
qed

lemma lms-type-exhaustive-imp-lms-bucket-subset:
assumes lms-type-exhaustive T SA
and b ≤ α (Max (set T))

shows lms-bucket α T b ⊆ set SA
proof (intro subsetI)

fix x
assume x ∈ lms-bucket α T b
hence x < length T

by (simp add: abs-is-lms-imp-less-length lms-bucket-def)

from ‹x ∈ lms-bucket α T b›
have abs-is-lms T x

by (simp add: lms-bucket-def)

from lms-type-exhaustiveD[OF assms(1) ‹x < length T › ‹abs-is-lms T x›]
show x ∈ set SA .

qed

lemma lms-B-val:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)
and b ≤ α (Max (set T))

244

shows B ′ ! b = lms-bucket-start α T b
proof −

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have lms-inv α T B ′ LMS gs ′ [] SA SA ′ .
hence lms-inserted-inv LMS SA ′ gs ′ []

using lms-inv-def by blast
hence gs ′ = LMS

by (simp add: lms-inserted-inv-def)
with ‹lms-inserted-inv LMS SA ′ gs ′ []› lms-all-inserted-imp-exhaustive[OF - assms(6),

of SA ′]
have lms-type-exhaustive T SA ′

by simp
with lms-type-exhaustive-imp-lms-bucket-subset assms(8)
have lms-bucket α T b ⊆ set SA ′

by blast
with cur-lms-subset-lms-bucket
have cur-lms-types α T SA ′ b = lms-bucket α T b

by (simp add: cur-lms-types-def equalityI subset-eq)
hence num-lms-types α T SA ′ b = card (lms-bucket α T b)

by (simp add: num-lms-types-def)
moreover
from ‹lms-inv α T B ′ LMS gs ′ [] SA SA ′›
have lms-bucket-ptr-inv α T B ′ SA ′

using lms-inv-def by blast
with lms-bucket-ptr-invD assms(8)
have B ′ ! b + num-lms-types α T SA ′ b = bucket-end α T b

by blast
ultimately
have B ′ ! b + card (lms-bucket α T b) = bucket-end α T b

by simp
then show B ′ ! b = lms-bucket-start α T b

by (metis add-implies-diff lms-bucket-pl-size-eq-end lms-bucket-size-def)
qed

64 Postconditions
definition lms-vals-post :: (′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list
⇒ bool
where
lms-vals-post α T SA =
(∀ b ≤ α (Max (set T)).

lms-bucket α T b = set (list-slice SA (lms-bucket-start α T b) (bucket-end α T
b))
)

lemma lms-vals-postD:

245

[[lms-vals-post α T SA; b ≤ α (Max (set T))]] =⇒
lms-bucket α T b = set (list-slice SA (lms-bucket-start α T b) (bucket-end α T

b))
using lms-vals-post-def by blast

definition
lms-pre :: (′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒

nat list ⇒ bool
where

lms-pre α T B SA LMS ≡
(∀ i < length SA. SA ! i = length T) ∧
length SA = length T ∧
lms-bucket-init α T B ∧
strict-mono α ∧
distinct LMS ∧
set LMS = {i. abs-is-lms T i}

lemma lms-pre-elims:
lms-pre α T B SA LMS =⇒ ∀ i < length SA. SA ! i = length T
lms-pre α T B SA LMS =⇒ length SA = length T
lms-pre α T B SA LMS =⇒ lms-bucket-init α T B
lms-pre α T B SA LMS =⇒ strict-mono α
lms-pre α T B SA LMS =⇒ distinct LMS
lms-pre α T B SA LMS =⇒ set LMS = {i. abs-is-lms T i}
using lms-pre-def by blast+

lemma lms-vals-post-holds:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)

shows lms-vals-post α T SA ′

unfolding lms-vals-post-def
proof(intro allI impI)

fix b
assume b ≤ α (Max (set T))

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have R0 :lms-inv α T B ′ LMS gs ′ [] SA SA ′ .

from lms-B-val[OF assms(1−7) ‹b ≤ α (Max (set T))›]
have R1 : B ′ ! b = lms-bucket-start α T b .

246

have bucket-end α T b ≤ length SA ′

by (metis R0 bucket-end-le-length lms-inv-def)

have finite (lms-bucket α T b)
by (simp add: finite-lms-bucket)

moreover
from lms-slice-subset-lms-bucket[OF lms-invD(4 ,12)[OF R0] ‹b ≤ α (Max (set

T))›]
have set (list-slice SA ′ (B ′ ! b) (bucket-end α T b)) ⊆ lms-bucket α T b .
with R1
have set (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b)) ⊆ lms-bucket

α T b
by simp

moreover
from lms-distinct-slice[OF lms-invD(1 ,2 ,4 ,12)[OF R0] ‹b ≤ α (Max (set T))›]
have distinct (list-slice SA ′ (B ′ ! b) (bucket-end α T b)) .
with R1
have distinct (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b))

by simp
with distinct-card
have card (set (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b)))

= length (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b))
by blast

with ‹bucket-end α T b ≤ length SA ′›
have card (set (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b)))

= lms-bucket-size α T b
by (metis add-diff-cancel-left ′ length-list-slice lms-bucket-pl-size-eq-end min.absorb-iff1)

hence card (set (list-slice SA ′ (lms-bucket-start α T b) (bucket-end α T b)))
= card (lms-bucket α T b)

by (simp add: lms-bucket-size-def)
ultimately
show lms-bucket α T b = set (list-slice SA ′ (lms-bucket-start α T b) (bucket-end

α T b))
using card-subset-eq by blast

qed

corollary abs-bucket-insert-vals:
assumes lms-pre α T B SA LMS
shows lms-vals-post α T (abs-bucket-insert α T B SA LMS)

proof −
have ∃SA ′ B ′ gs. bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)

by (meson prod-cases3)
then obtain SA ′ B ′ gs where

A: bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by blast

hence abs-bucket-insert α T B SA LMS = SA ′

by (metis abs-bucket-insert-equiv fst-conv)
with lms-vals-post-holds[OF lms-pre-elims(1 ,5 ,3 ,2 ,4 ,6)[OF assms] A]
show ?thesis

247

by simp
qed

definition lms-unknowns-post
where

lms-unknowns-post α T SA =
(∀ b ≤ α (Max (set T)).
(∀ i. bucket-start α T b ≤ i ∧ i < lms-bucket-start α T b −→ SA ! i = length

T)
)

lemma lms-unknowns-postD:
[[lms-unknowns-post α T SA; b ≤ α (Max (set T)); bucket-start α T b ≤ i;

i < lms-bucket-start α T b]] =⇒
SA ! i = length T

using lms-unknowns-post-def by blast

lemma lms-unknowns-post-holds:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)

shows lms-unknowns-post α T SA ′

unfolding lms-unknowns-post-def
proof(intro allI impI ; elim conjE)

fix b i
assume b ≤ α (Max (set T)) bucket-start α T b ≤ i i < lms-bucket-start α T b

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have R0 :lms-inv α T B ′ LMS gs ′ [] SA SA ′ .

from ‹i < lms-bucket-start α T b›
have i < length SA
by (metis assms(4) bucket-end-le-length dual-order .strict-trans1 lms-bucket-start-le-bucket-end)

moreover
from lms-B-val[OF assms(1−7) ‹b ≤ α (Max (set T))›]
have B ′ ! b = lms-bucket-start α T b .
with ‹i < lms-bucket-start α T b›
have i < B ′ ! b

by simp
with lms-unchanged-invD[OF lms-invD(5)[OF R0] ‹b ≤ α (Max (set T))› ‹bucket-start

α T b ≤ i›]
have SA ′ ! i = SA ! i

248

by blast
ultimately
show SA ′ ! i = length T

using assms(1) by auto
qed

corollary abs-bucket-insert-unknowns:
assumes lms-pre α T B SA LMS
shows lms-unknowns-post α T (abs-bucket-insert α T B SA LMS)

proof −
have ∃SA ′ B ′ gs. bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)

by (meson prod-cases3)
then obtain SA ′ B ′ gs where

A: bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by blast

hence abs-bucket-insert α T B SA LMS = SA ′

by (metis abs-bucket-insert-equiv fst-conv)
with lms-unknowns-post-holds[OF lms-pre-elims(1 ,5 ,3 ,2 ,4 ,6)[OF assms] A]
show ?thesis

by simp
qed

corollary abs-bucket-insert-values:
assumes lms-pre α T B SA LMS
shows ∀ b ≤ α (Max (set T)).

(∀ i. bucket-start α T b ≤ i ∧ i < lms-bucket-start α T b −→ (abs-bucket-insert
α T B SA LMS) ! i = length T) ∧

lms-bucket α T b = set (list-slice (abs-bucket-insert α T B SA LMS)
(lms-bucket-start α T b) (bucket-end α T b))
by (meson assms abs-bucket-insert-unknowns abs-bucket-insert-vals lms-unknowns-postD

lms-vals-postD)

lemma lms-lms-prefix-sorted-holds:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)

shows ordlistns.sorted (map (lms-prefix T) (filter (λx. x < length T) SA ′))
proof −

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have R0 :lms-inv α T B ′ LMS gs ′ [] SA SA ′ .

from lms-lms-prefix-sorted[OF lms-invD(2 ,4 ,5 ,8 ,12 ,13)[OF R0] assms(6)]

249

show ?thesis .
qed

lemma lms-suffix-sorted-holds:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)
and ordlistns.sorted (map (suffix T) (rev LMS))

shows ordlistns.sorted (map (suffix T) (filter (λx. x < length T) SA ′))
proof −

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have R0 :lms-inv α T B ′ LMS gs ′ [] SA SA ′ .

from lms-suffix-sorted[OF lms-invD(2 ,4 ,5 ,7 ,8 ,12 ,13)[OF R0] assms(6) assms(8)]
show ?thesis .

qed

lemma lms-bot-is-first:
assumes ∀ i < length SA. SA ! i = length T
and distinct LMS
and lms-bucket-init α T B
and length SA = length T
and strict-mono α
and set LMS = {i. abs-is-lms T i}
and bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs ′)
and valid-list T
and length T = Suc (Suc n)
and α bot = 0

shows SA ′ ! 0 = Suc n
proof −

have abs-is-lms T (Suc n)
by (simp add: assms(8 ,9) abs-is-lms-last)

moreover
have α (T ! (Suc n)) = 0
by (metis assms(8−10) diff-Suc-1 last-conv-nth length-greater-0-conv valid-list-def)

ultimately
have Suc n ∈ lms-bucket α T 0

by (simp add: assms(5 ,8−10) bucket-0 lms-bucket-def)

have lms-bucket-size α T 0 = Suc 0 l-bucket-size α T 0 = 0 pure-s-bucket-size
α T 0 = 0

using assms(5 ,8−10) bucket-0-size2 by blast+

250

hence lms-bucket α T 0 = {Suc n}
by (metis One-nat-def add.commute assms(5 ,8−10) atLeastLessThan-singleton

bucket-0
lms-bucket-size-def lms-bucket-subset-bucket plus-1-eq-Suc subset-card-intvl-is-intvl)

from assms(6)
have ∀ x ∈ set LMS . abs-is-lms T x

by blast
with lms-inv-holds[OF assms(1) - assms(2−5 ,7)]
have R0 :lms-inv α T B ′ LMS gs ′ [] SA SA ′ .

from ‹l-bucket-size α T 0 = 0 › ‹pure-s-bucket-size α T 0 = 0 ›
have lms-bucket-start α T 0 = 0

by (simp add: bucket-start-0 lms-bucket-start-def)
moreover
from lms-B-val[OF assms(1−7), of 0]
have B ′ ! 0 = lms-bucket-start α T 0

by simp
moreover
have 0 < bucket-end α T 0

by (simp add: assms(5 ,8 ,10) valid-list-bucket-end-0)
ultimately
show ?thesis

using lms-locations-invD[OF lms-invD(4)[OF R0], of 0 0] ‹lms-bucket α T 0
= {Suc n}›

by auto
qed

corollary abs-bucket-insert-bot-first:
assumes lms-pre α T B SA LMS
and valid-list T
and length T = Suc (Suc n)
and α bot = 0

shows (abs-bucket-insert α T B SA LMS) ! 0 = Suc n
proof −

have ∃SA ′ B ′ gs. bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by (meson prod-cases3)

then obtain SA ′ B ′ gs where
A: bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by blast

hence abs-bucket-insert α T B SA LMS = SA ′

by (metis abs-bucket-insert-equiv fst-conv)
with lms-bot-is-first[OF lms-pre-elims(1 ,5 ,3 ,2 ,4 ,6)[OF assms(1)] A assms(2−)]
show ?thesis

by simp
qed

— Used in SAIS algorithm as part of inducing the prefix ordering based on LMS

251

theorem lms-prefix-sorted-bucket:
assumes lms-pre α T B SA LMS
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (lms-prefix T)
(list-slice (abs-bucket-insert α T B SA LMS) (lms-bucket-start α T b)

(bucket-end α T b)))
(is ordlistns.sorted (map ?f ?SA))

proof −
have ∃SA ′ B ′ gs. bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)

by (meson prod-cases3)
then obtain SA ′ B ′ gs where

A: bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by blast

hence abs-bucket-insert α T B SA LMS = SA ′

by (metis abs-bucket-insert-equiv fst-conv)

from lms-vals-postD[OF abs-bucket-insert-vals[OF assms(1)] assms(2)]
have P: ∀ x ∈ set ?SA . x < length T

using abs-is-lms-imp-less-length lms-bucket-def by blast

from lms-lms-prefix-sorted-holds[OF lms-pre-elims(1 ,5 ,3 ,2 ,4 ,6)[OF assms(1)]
A]

have ordlistns.sorted (map (lms-prefix T) (filter (λx. x < length T) SA ′)) .
hence ordlistns.sorted (map (lms-prefix T) (filter (λx. x < length T) ?SA))
using ‹abs-bucket-insert α T B SA LMS = SA ′› ordlistns.sorted-map-filter-list-slice

by blast
then show ?thesis

by (simp add: P)
qed

— Used in SAIS algorithm as part of inducing the suffix ordering based on LMS
theorem lms-suffix-sorted-bucket:

assumes lms-pre α T B SA LMS
and ordlistns.sorted (map (suffix T) (rev LMS))
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (suffix T)
(list-slice (abs-bucket-insert α T B SA LMS) (lms-bucket-start α T b)

(bucket-end α T b)))
(is ordlistns.sorted (map ?f ?SA))

proof −
have ∃SA ′ B ′ gs. bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)

by (meson prod-cases3)
then obtain SA ′ B ′ gs where

A: bucket-insert-abs ′ α T B SA [] LMS = (SA ′, B ′, gs)
by blast

hence abs-bucket-insert α T B SA LMS = SA ′

by (metis abs-bucket-insert-equiv fst-conv)

252

from lms-vals-postD[OF abs-bucket-insert-vals[OF assms(1)] assms(3)]
have P: ∀ x ∈ set ?SA . x < length T

using abs-is-lms-imp-less-length lms-bucket-def by blast

from lms-suffix-sorted-holds[OF lms-pre-elims(1 ,5 ,3 ,2 ,4 ,6)[OF assms(1)] A assms(2)]
have ordlistns.sorted (map (suffix T) (filter (λx. x < length T) SA ′)) .
hence ordlistns.sorted (map (suffix T) (filter (λx. x < length T) ?SA))
using ‹abs-bucket-insert α T B SA LMS = SA ′› ordlistns.sorted-map-filter-list-slice

by blast
then show ?thesis

by (simp add: P)
qed

end
theory Abs-Induce-L-Verification

imports ../abs−def /Abs-SAIS
begin

65 Abstract Induce L-types Simple Properties
lemma abs-induce-l-step-ex:
∃B ′ SA ′ i ′. abs-induce-l-step a b = (B ′, SA ′, i ′)
by (cases a; cases b; clarsimp split: prod.splits nat.splits SL-types.splits simp:

Let-def)

lemma abs-induce-l-step-B-length:
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒ length B ′ = length B
by (clarsimp split: prod.splits nat.splits SL-types.splits if-splits simp: Let-def)

lemma abs-induce-l-step-SA-length:
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒ length SA ′ = length SA
by (clarsimp split: prod.splits nat.splits SL-types.splits if-splits simp: Let-def)

lemma abs-induce-l-step-Suc:
∃B ′ SA ′. abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, Suc i)
by (clarsimp simp: Let-def split: prod.splits nat.splits SL-types.splits)

lemma abs-induce-l-step-B-val-1 :
[[length SA ≤ i; abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)]] =⇒

B ′ = B
[[i < length SA; length T ≤ SA ! i; abs-induce-l-step (B, SA, i) (α, T) = (B ′,

SA ′, i ′)]] =⇒
B ′ = B

[[i < length SA; SA ! i < length T ; SA ! i = 0 ;
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)]] =⇒
B ′ = B

[[i < length SA; SA ! i < length T ; SA ! i = Suc j; suffix-type T j = S-type;
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)]] =⇒
B ′ = B

253

by (clarsimp simp: Let-def split: prod.splits nat.splits SL-types.splits if-splits)+

lemma abs-induce-l-step-B-val-2 :
[[strict-mono α;
α (Max (set T)) < length B;
i < length SA;
SA ! i < length T ;
SA ! i = Suc j;
suffix-type T j = L-type;
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)]] =⇒
B ′ = B[α (T ! j) := Suc (B ! α (T ! j))]

by (clarsimp simp: Let-def split: prod.splits nat.splits SL-types.splits if-splits)

lemma repeat-abs-induce-l-step-index:
∃B ′ SA ′. repeat n abs-induce-l-step (B, SA, m) (α, T) = (B ′, SA ′, n + m)

proof (induct n)
case 0
then show ?case

by (simp add: repeat-0)
next

case (Suc n)
from this
obtain B ′ SA ′ where

A: repeat n abs-induce-l-step (B, SA, m) (α, T) = (B ′, SA ′, n + m)
by blast

from repeat-step[of n abs-induce-l-step (B, SA, m) (α, T)]
have B: repeat (Suc n) abs-induce-l-step (B, SA, m) (α, T) =

abs-induce-l-step (repeat n abs-induce-l-step (B, SA, m) (α, T)) (α, T)
by assumption

from abs-induce-l-step-Suc[of B ′ SA ′ n + m α T]
obtain B ′′ SA ′′ where

abs-induce-l-step (B ′, SA ′, n + m) (α, T) = (B ′′, SA ′′, Suc (n + m))
by blast

with A B
show ?case

by simp
qed

lemma abs-induce-l-step-lengths:
abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒
length B ′ = length B ∧ length SA ′ = length SA

by (clarsimp split: if-splits nat.splits SL-types.splits simp: Let-def)

lemma repeat-abs-induce-l-step-lengths:
repeat n abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒
length B ′ = length B ∧ length SA ′ = length SA

proof −

254

let ?P = λ(a, b, c). length a = length B ∧ length b = length SA

from abs-induce-l-step-lengths
have A:

∧
a. ?P a =⇒ ?P (abs-induce-l-step a (α, T))

by (clarsimp simp: Let-def split: prod.splits if-splits nat.splits SL-types.splits)

assume repeat n abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)

with repeat-maintain-inv[of ?P abs-induce-l-step (α, T) (B, SA, i) n,
OF A]

show ?thesis
by auto

qed

lemma abs-induce-l-index:
∃B ′ SA ′. abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by (metis add.right-neutral abs-induce-l-base-def repeat-abs-induce-l-step-index)

lemma abs-induce-l-length:
length (abs-induce-l α T B SA) = length SA
unfolding abs-induce-l-def abs-induce-l-base-def
by (rule repeat-maintain-inv)

(fastforce
simp del: abs-induce-l-step.simps
split: prod.splits
dest: abs-induce-l-step-SA-length)+

66 Precondition Definitions
definition lms-init :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒
bool

where
lms-init α T SA =
(∀ b ≤ α (Max (set T)).

lms-bucket α T b =
set (list-slice SA (lms-bucket-start α T b) (bucket-end α T b))

)

lemma lms-init-D:
[[lms-init α T SA; b ≤ α (Max (set T))]] =⇒

lms-bucket α T b = set (list-slice SA (lms-bucket-start α T b) (bucket-end α T
b))

using lms-init-def by blast

lemma lms-init-nth:
[[lms-init α T SA;

b ≤ α (Max (set T));
lms-bucket-start α T b ≤ i;
i < bucket-end α T b;

255

length SA = length T]] =⇒
abs-is-lms T (SA ! i) ∧ α (T ! (SA ! i)) = b

by (fastforce
dest: lms-init-D list-slice-nth-mem[where xs = SA]
simp: bucket-end-le-length lms-bucket-def bucket-def)

lemma lms-init-imp-distinct-bucket:
[[lms-init α T SA;

b ≤ α (Max (set T));
length SA = length T]] =⇒
distinct (list-slice SA (lms-bucket-start α T b) (bucket-end α T b))

by (metis bucket-end-def ′ min.absorb1 diff-diff-add bucket-end-le-length
l-pl-pure-s-pl-lms-size lms-bucket-start-def length-list-slice
diff-add-inverse lms-init-D lms-bucket-size-def card-distinct)

lemma lms-init-imp-all-lms-in-SA:
assumes lms-init α T SA
and strict-mono α
shows {k |k. abs-is-lms T k} ⊆ set SA

proof
fix x
assume x ∈ {k |k. abs-is-lms T k}
hence x < length T

using abs-is-lms-gre-length le-less-linear by blast

from ‹x ∈ {k |k. abs-is-lms T k}›
have abs-is-lms T x

by blast
with ‹x < length T ›
have x ∈ lms-bucket α T (α (T ! x))

unfolding lms-bucket-def bucket-def
by blast

from ‹strict-mono α› ‹x < length T ›
have α (T ! x) ≤ α (Max (set T))

by (simp add: strict-mono-leD)

from lms-init-D[OF ‹lms-init α T SA› ‹α (T ! x) ≤ α (Max (set T))›]
‹x ∈ lms-bucket α T (α (T ! x))›

show x ∈ set SA
using list-slice-subset by force

qed

definition s-init :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ bool
where

s-init α T SA =
(∀ b ≤ α (Max (set T)).
∀ i < length SA. l-bucket-end α T b ≤ i ∧ i < lms-bucket-start α T b −→ SA

256

! i = length T
)

lemma s-init-D:
[[s-init α T SA;

b ≤ α (Max (set T));
i < length SA;
l-bucket-end α T b ≤ i;
i < lms-bucket-start α T b]] =⇒
SA ! i = length T

using s-init-def by blast

definition l-init :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ bool
where

l-init α T SA =
(∀ b ≤ α (Max (set T)).
∀ i < length SA. bucket-start α T b ≤ i ∧ i < l-bucket-end α T b −→ SA ! i =

length T
)

lemma l-init-D:
[[l-init α T SA;

b ≤ α (Max (set T));
i < length SA;
bucket-start α T b ≤ i;
i < l-bucket-end α T b]] =⇒
SA ! i = length T

using l-init-def by blast

lemma init-imp-lms-range:
assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
and i < length SA
and SA ! i = j
and j < length T
shows lms-bucket-start α T (α (T ! j)) ≤ i ∧ i < bucket-end α T (α (T ! j))

proof −
from ‹i < length SA› ‹length SA = length T ›
have i < length T

by simp

from index-in-bucket-interval-gen[OF ‹i < length T › ‹strict-mono α›]
obtain b where

b ≤ α (Max (set T))
bucket-start α T b ≤ i
i < bucket-end α T b

257

by blast

have i < l-bucket-end α T b −→ False
proof

assume i < l-bucket-end α T b
with l-init-D[OF ‹l-init α T SA› ‹b ≤ α (Max (set T))› ‹i < length SA›]

‹bucket-start α T b ≤ i›
‹SA ! i = j›
‹j < length T ›

show False
by simp

qed

have l-bucket-end α T b ≤ i ∧ i < lms-bucket-start α T b −→ False
proof(intro impI ; elim conjE)

assume l-bucket-end α T b ≤ i i < lms-bucket-start α T b
with s-init-D[OF ‹s-init α T SA› ‹b ≤ α (Max (set T))› ‹i < length SA›]

‹SA ! i = j›
‹j < length T ›

show False
by simp

qed
with ‹i < l-bucket-end α T b −→ False›

‹b ≤ α (Max (set T))›
‹i < bucket-end α T b›
‹lms-init α T SA›
‹length SA = length T ›
‹SA ! i = j›

show ?thesis
by (metis lms-init-nth not-less)

qed

lemma init-imp-only-lms-types:
assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
shows ∀ i < length SA. SA ! i < length T −→ abs-is-lms T (SA ! i)

proof (intro allI impI)
fix i
assume i < length SA SA ! i < length T
with init-imp-lms-range[OF ‹lms-init α T SA›

‹l-init α T SA›
‹s-init α T SA›
‹length SA = length T ›
‹strict-mono α›
‹i < length SA›]

have lms-bucket-start α T (α (T ! (SA ! i))) ≤ i ∧ i < bucket-end α T (α (T !

258

(SA ! i)))
by simp

with ‹SA ! i < length T › ‹lms-init α T SA› ‹length SA = length T › ‹strict-mono
α›

show abs-is-lms T (SA ! i)
by (meson Max-greD lms-init-nth strict-mono-less-eq)

qed

lemma init-imp-only-s-types:
assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α

shows ∀ i < length SA. SA ! i < length T −→ suffix-type T (SA ! i) = S-type
using assms init-imp-only-lms-types abs-is-lms-def by blast

definition lms-sorted-init ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
(′a list ⇒ nat ⇒ ′a list) ⇒
′a list ⇒
nat list ⇒
bool

where
lms-sorted-init α f T SA =
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (f T) (list-slice SA (lms-bucket-start α T b) (bucket-end
α T b)))
)

lemma lms-sorted-init-D:
[[lms-sorted-init α f T SA; b ≤ α (Max (set T))]] =⇒

ordlistns.sorted (map (f T) (list-slice SA (lms-bucket-start α T b) (bucket-end
α T b)))

using lms-sorted-init-def by blast

definition l-suffix-sorted-pre ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ bool
where

l-suffix-sorted-pre α T SA =
(∀ b ≤ α (Max (set T)).
ordlistns.sorted (map (suffix T) (list-slice SA (lms-bucket-start α T b) (bucket-end

α T b)))
)

lemma l-suffix-sorted-preD:
[[l-suffix-sorted-pre α T SA; b ≤ α (Max (set T))]] =⇒
ordlistns.sorted (map (suffix T) (list-slice SA (lms-bucket-start α T b) (bucket-end

α T b)))

259

using l-suffix-sorted-pre-def by blast

definition l-prefix-sorted-pre ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ bool
where

l-prefix-sorted-pre α T SA =
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (lms-prefix T) (list-slice SA (lms-bucket-start α T b)
(bucket-end α T b)))
)

lemma l-prefix-sorted-preD:
[[l-prefix-sorted-pre α T SA; b ≤ α (Max (set T))]] =⇒

ordlistns.sorted (map (lms-prefix T) (list-slice SA (lms-bucket-start α T b)
(bucket-end α T b)))

using l-prefix-sorted-pre-def by blast

definition l-perm-pre ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
bool

where
l-perm-pre α T B SA =
(lms-init α T SA ∧
l-init α T SA ∧
s-init α T SA ∧
l-bucket-init α T B ∧
T 6= [] ∧
strict-mono α ∧
length SA = length T ∧
α (Max (set T)) < length B)

lemma l-perm-pre-elims:
l-perm-pre α T B SA =⇒ lms-init α T SA
l-perm-pre α T B SA =⇒ l-init α T SA
l-perm-pre α T B SA =⇒ s-init α T SA
l-perm-pre α T B SA =⇒ l-bucket-init α T B
l-perm-pre α T B SA =⇒ T 6= []
l-perm-pre α T B SA =⇒ strict-mono α
l-perm-pre α T B SA =⇒ length SA = length T
l-perm-pre α T B SA =⇒ α (Max (set T)) < length B
unfolding l-perm-pre-def by blast+

260

67 Invariant Definitions
This section contains all the various invariants that we need for the abs-induce-l
subroutine.

67.1 Distinctness
definition l-distinct-inv :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ bool

where
l-distinct-inv T SA = distinct (filter (λx. x < length T) SA)

lemma l-distinct-inv-D:
assumes l-distinct-inv T SA
and i < length SA
and j < length SA
and i 6= j
and SA ! i < length T
and SA ! j < length T
shows SA ! i 6= SA ! j

proof −
from filter-nth-relative-neq-1 [where P = λx. x < length T ,

OF ‹i < length SA›
‹SA ! i < length T ›
‹j < length SA›
‹SA ! j < length T ›
‹i 6= j›]

obtain i ′ j ′ where
i ′ < length (filter (λx. x < length T) SA)
j ′ < length (filter (λx. x < length T) SA)
filter (λx. x < length T) SA ! i ′ = SA ! i
filter (λx. x < length T) SA ! j ′ = SA ! j
i ′ 6= j ′
by blast

from distinct-conv-nth[THEN iffD1 ,
OF l-distinct-inv-def [THEN iffD1],
OF ‹l-distinct-inv T SA›]

‹filter (λx. x < length T) SA ! i ′ = SA ! i›
‹filter (λx. x < length T) SA ! j ′ = SA ! j›
‹i ′ < length (filter (λx. x < length T) SA)›
‹i ′ 6= j ′›
‹j ′ < length (filter (λx. x < length T) SA)›

show ?thesis
by fastforce

qed

67.2 Predecessor
definition l-pred-inv :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ nat ⇒ bool

261

where
l-pred-inv T SA k =
(∀ i < length SA. SA ! i < length T ∧ suffix-type T (SA ! i) = L-type −→
(∃ j < length SA. SA ! j = Suc (SA ! i) ∧ j < i ∧ j < k))

lemma l-pred-inv-D:
[[l-pred-inv T SA k; i < length SA; SA ! i < length T ; suffix-type T (SA ! i) =

L-type]] =⇒
∃ j < length SA. SA ! j = Suc (SA ! i) ∧ SA ! j < length T ∧ j < i ∧ j < k

by (metis SL-types.simps(2) Suc-lessI l-pred-inv-def suffix-type-last)

67.3 L Bucket Ptr
We prove that the pointer for each bucket is related to the number of L-types
currently in SA. That is, if we subtract the original pointer with the current,
we should have the number of L-types currently in SA for each symbol.
definition cur-l-types ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat ⇒ nat set
where

cur-l-types α T SA b = {i|i. i ∈ set SA ∧ i ∈ l-bucket α T b }

definition num-l-types ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat ⇒ nat
where

num-l-types α T SA b = card (cur-l-types α T SA b)

definition l-bucket-ptr-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-bucket-ptr-inv α T B SA ≡
(∀ b ≤ α (Max (set T)). B ! b = bucket-start α T b + num-l-types α T SA b)

lemma l-bucket-ptr-inv-D:
[[l-bucket-ptr-inv α T B SA; b ≤ α (Max (set T))]] =⇒

B ! b = bucket-start α T b + num-l-types α T SA b
using l-bucket-ptr-inv-def by blast

67.4 Unknowns
definition l-unknowns-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-unknowns-inv α T B SA ≡
(∀ a ≤ α (Max (set T)). ∀ k. B ! a ≤ k ∧ k < l-bucket-end α T a −→ SA ! k =

length T)

lemma l-unknowns-inv-D:
[[l-unknowns-inv α T B SA; b ≤ α (Max (set T)); B ! b ≤ k; k < l-bucket-end α

T b]] =⇒

262

SA ! k = length T
using l-unknowns-inv-def by blast

67.5 Indexes
definition l-index-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-index-inv α T B SA ≡
(∀ i < length SA.
(∀ j. SA ! i = Suc j ∧ Suc j < length T ∧ suffix-type T j = L-type −→

i < B ! (α (T ! j))
)

)

lemma l-index-inv-D:
[[l-index-inv α T B SA; i < length SA; SA ! i = Suc j; Suc j < length T ; suffix-type

T j = L-type]] =⇒
i < B ! (α (T ! j))

using l-index-inv-def by blast

67.6 Unchanged
definition l-unchanged-inv ::
(′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-unchanged-inv α T SA SA ′=
((length SA ′ = length SA) ∧
(∀ b ≤ α (Max (set T)).
(∀ i < length SA. l-bucket-end α T b ≤ i ∧ i < bucket-end α T b −→ SA ! i =

SA ′ ! i)
))

lemma l-unchanged-inv-trans:
[[l-unchanged-inv α T SA0 SA1 ; l-unchanged-inv α T SA1 SA2]] =⇒

l-unchanged-inv α T SA0 SA2
by (simp add: l-unchanged-inv-def)

lemma l-unchanged-inv-D:
[[l-unchanged-inv α T SA SA ′; length SA ′ = length SA; b ≤ α (Max (set T));

i < length SA; l-bucket-end α T b ≤ i; i < bucket-end α T b]] =⇒
SA ! i = SA ′ ! i

using l-unchanged-inv-def by blast

67.7 L Locations
definition l-locations-inv ::
(′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-locations-inv α T B SA =

263

(∀ b ≤ α (Max (set T)).
(∀ i < length SA. bucket-start α T b ≤ i ∧ i < B ! b −→

SA ! i < length T ∧ suffix-type T (SA ! i) = L-type ∧ α (T ! (SA ! i)) = b
)

)

lemma l-locations-inv-D:
[[l-locations-inv α T B SA;

b ≤ α (Max (set T));
i < length SA;
bucket-start α T b ≤ i;
i < B ! b]] =⇒
SA ! i < length T ∧ suffix-type T (SA ! i) = L-type ∧ α (T ! (SA ! i)) = b

using l-locations-inv-def by blast

lemma l-locations-list-slice:
assumes l-locations-inv α T B SA
and b ≤ α (Max (set T))

shows set (list-slice SA (bucket-start α T b) (B ! b)) ⊆ l-bucket α T b
(is set ?xs ⊆ l-bucket α T b)

proof
fix x
assume x ∈ set ?xs

from nth-mem-list-slice[OF ‹x ∈ set ?xs›]
obtain i where

i < length SA
bucket-start α T b ≤ i
i < B ! b
SA ! i = x
by blast

with l-locations-inv-D[OF assms, of i]
have x < length T suffix-type T x = L-type α (T ! x) = b

by blast+
then show x ∈ l-bucket α T b

by (simp add: bucket-def l-bucket-def)
qed

67.8 Seen
In this section, we prove that the seen invariant is maintained. In English,
this invariant states for all L-type suffixes, excluding the one that starts at
position 0, in the suffix array (SA) and that are less than the current index,
their left neighbour is also in SA.
definition l-seen-inv :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ nat ⇒ bool

where
l-seen-inv T SA n ≡ ∀ i < n. i < length SA ∧ SA ! i < length T −→

(∀ j. SA ! i = Suc j ∧ suffix-type T j = L-type −→
(∃ k < length SA. SA ! k = j))

264

lemma l-seen-inv-nth-ex:
[[l-seen-inv T SA n; i < n; i < length SA; SA ! i < length T ; SA ! i = Suc j;

suffix-type T j = L-type]] =⇒
∃ k < length SA. SA ! k = j

using l-seen-inv-def by blast

67.9 Sortedness
definition abs-induce-l-sorted ::
((′a :: {linorder ,order-bot}) list ⇒ nat ⇒ ′a list) ⇒ ′a list ⇒ nat list ⇒ bool
where

abs-induce-l-sorted f T SA = ordlistns.sorted (map (f T) (filter (λx. x < length T)
SA))

lemma abs-induce-l-sorted-nth:
assumes abs-induce-l-sorted f T SA
and i < j
and j < length SA
and SA ! i < length T
and SA ! j < length T
shows list-less-eq-ns (f T (SA ! i)) (f T (SA ! j))

proof −
let ?SA = filter (λx. x < length T) SA and

?le = (λx y. list-less-eq-ns (f T x) (f T y))
from filter-nth-relative-1 [where P = (λx. x < length T),

OF ‹j < length SA›
‹SA ! j < length T ›
‹i < j›
‹SA ! i < length T ›]

obtain i ′ j ′ where
j ′ < length ?SA
i ′ < j ′
?SA ! j ′ = SA ! j
?SA ! i ′ = SA ! i
by blast

from ordlistns.sorted-map
‹abs-induce-l-sorted f T SA›

have sorted-wrt ?le ?SA
unfolding abs-induce-l-sorted-def
by blast

from sorted-wrt-nth-less[OF ‹sorted-wrt ?le ?SA›
‹i ′ < j ′›
‹j ′ < length ?SA›]

have list-less-eq-ns (f T (?SA ! i ′)) (f T (?SA ! j ′))
by assumption

with ‹?SA ! i ′ = SA ! i› ‹?SA ! j ′ = SA ! j›

265

show ?thesis
by simp

qed

definition l-suffix-sorted-inv ::
((′a :: {linorder ,order-bot}) ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-suffix-sorted-inv α T B SA =
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (suffix T) (list-slice SA (bucket-start α T b) (B ! b))))

lemma l-suffix-sorted-invD:
[[l-suffix-sorted-inv α T B SA; b ≤ α (Max (set T))]] =⇒

ordlistns.sorted (map (suffix T) (list-slice SA (bucket-start α T b) (B ! b)))
using l-suffix-sorted-inv-def by blast

definition l-prefix-sorted-inv ::
((′a :: {linorder ,order-bot}) ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

l-prefix-sorted-inv α T B SA =
(∀ b ≤ α (Max (set T)).
ordlistns.sorted (map (lms-prefix T) (list-slice SA (bucket-start α T b) (B ! b))))

lemma l-prefix-sorted-invD:
[[l-prefix-sorted-inv α T B SA; b ≤ α (Max (set T))]] =⇒

ordlistns.sorted (map (lms-prefix T) (list-slice SA (bucket-start α T b) (B ! b)))
using l-prefix-sorted-inv-def by blast

67.10 Permutation
definition l-perm-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list ⇒
nat list ⇒
nat ⇒
bool

where
l-perm-inv α T B SA SA ′ i ≡
α (Max (set T)) < length B ∧
length SA = length T ∧
length SA ′ = length SA ∧
l-distinct-inv T SA ′ ∧
l-unknowns-inv α T B SA ′ ∧
l-bucket-ptr-inv α T B SA ′ ∧
l-index-inv α T B SA ′ ∧
l-unchanged-inv α T SA SA ′ ∧
l-locations-inv α T B SA ′ ∧

266

l-pred-inv T SA ′ i ∧
l-seen-inv T SA ′ i ∧
strict-mono α ∧
T 6= [] ∧
lms-init α T SA ∧
s-init α T SA

lemma l-perm-inv-elims:
l-perm-inv α T B SA SA ′ i =⇒ α (Max (set T)) < length B
l-perm-inv α T B SA SA ′ i =⇒ length SA = length T
l-perm-inv α T B SA SA ′ i =⇒ length SA ′ = length SA
l-perm-inv α T B SA SA ′ i =⇒ l-distinct-inv T SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-unknowns-inv α T B SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-bucket-ptr-inv α T B SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-index-inv α T B SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-unchanged-inv α T SA SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-locations-inv α T B SA ′

l-perm-inv α T B SA SA ′ i =⇒ l-pred-inv T SA ′ i
l-perm-inv α T B SA SA ′ i =⇒ l-seen-inv T SA ′ i
l-perm-inv α T B SA SA ′ i =⇒ strict-mono α
l-perm-inv α T B SA SA ′ i =⇒ T 6= []
l-perm-inv α T B SA SA ′ i =⇒ lms-init α T SA
l-perm-inv α T B SA SA ′ i =⇒ s-init α T SA
by (simp add: l-perm-inv-def)+

68 Invariant Helpers
68.1 Distinctness of New Insert
We prove that the next item to be inserted cannot already be in the suffix
array.
lemma l-distinct-pred-inv-helper :

assumes i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and l-distinct-inv T SA
and l-pred-inv T SA i
shows j /∈ set SA

proof
assume j ∈ set SA
then obtain l where

l < length SA
SA ! l = j
by (meson in-set-conv-nth)

from l-pred-inv-D[OF ‹l-pred-inv T SA i› ‹l < length SA›]
‹SA ! l = j›

267

‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›

obtain i ′ where
i ′ < length SA
SA ! i ′ = Suc j
i ′ < l
i ′ < i
by auto

from ‹SA ! i = Suc j› ‹SA ! i ′ = Suc j›
have SA ! i = SA ! i ′

by simp

from ‹SA ! i ′ = Suc j› ‹Suc j < length T ›
have SA ! i ′ < length T

by simp

from ‹i ′ < i›
have i 6= i ′

by simp

from ‹SA ! i = Suc j› ‹Suc j < length T ›
have SA ! i < length T

by simp

from l-distinct-inv-D[OF ‹l-distinct-inv T SA›
‹i < length SA›
‹i ′ < length SA›
‹i 6= i ′›
‹SA ! i < length T ›
‹SA ! i ′ < length T ›]

‹SA ! i = SA ! i ′›
show False

by simp
qed

lemma l-distinct-slice:
assumes l-distinct-inv T SA
and l-locations-inv α T B SA
and length SA = length T
and b ≤ α (Max (set T))

shows distinct (list-slice SA (bucket-start α T b) (B ! b))
(is distinct ?xs)

proof (intro distinct-conv-nth[THEN iffD2] allI impI)
fix i j
assume i < length ?xs j < length ?xs i 6= j

let ?i = bucket-start α T b + i

268

and ?j = bucket-start α T b + j

have SA ! ?i = ?xs ! i
using ‹i < length ?xs› nth-list-slice by force

have SA ! ?j = ?xs ! j
using ‹j < length ?xs› nth-list-slice by force

from ‹i 6= j›
have ?i 6= ?j

by auto
moreover
from ‹i < length ?xs›
have ?i < length SA ?i < B ! b

by auto
with l-locations-inv-D[OF assms(2 ,4), of ?i]
have SA ! ?i < length T

using le-add1 by blast
moreover
from ‹j < length ?xs›
have ?j < length SA ?j < B ! b

by auto
with l-locations-inv-D[OF assms(2 ,4), of ?j]
have SA ! ?j < length T

using le-add1 by blast
ultimately have SA ! ?i 6= SA ! ?j

using l-distinct-inv-D[OF assms(1) ‹?i < length SA› ‹?j < length SA›]
by blast

with ‹SA ! ?i = ?xs ! i› ‹SA ! ?j = ?xs ! j›
show ?xs ! i 6= ?xs ! j

by simp
qed

68.2 Bucket Ranges
lemma num-l-types-le-l-bucket-size:

num-l-types α T SA b ≤ l-bucket-size α T b
by (metis (no-types, lifting) card-mono cur-l-types-def finite-l-bucket l-bucket-size-def

mem-Collect-eq num-l-types-def subsetI)

lemma num-l-types-less-l-bucket-size:
[[j /∈ set SA; suffix-type T j = L-type; α (T ! j) = b; j < length T]] =⇒
num-l-types α T SA b < l-bucket-size α T b

apply (clarsimp simp: num-l-types-def cur-l-types-def l-bucket-size-def)
apply (rule psubset-card-mono)
apply (simp add: finite-l-bucket)

apply (rule psubsetI)
apply (rule subsetI)
apply blast

269

apply clarsimp
apply (drule equalityD2)
apply (drule subsetD[where c = j])
apply (simp add: bucket-def l-bucket-def)

apply blast
done

lemma l-bucket-ptr-inv-imp-le-l-bucket-end:
[[l-bucket-ptr-inv α T B SA; b ≤ α (Max (set T))]] =⇒

B ! b ≤ l-bucket-end α T b
apply (drule (1) l-bucket-ptr-inv-D)
by (simp add: l-bucket-end-def num-l-types-le-l-bucket-size)

lemma l-bucket-ptr-inv-imp-less-l-bucket-end:
[[l-bucket-ptr-inv α T B SA; j < length T ; suffix-type T j = L-type; j /∈ set SA;

strict-mono α]] =⇒
B ! (α (T ! j)) < l-bucket-end α T (α (T ! j))

apply (frule num-l-types-less-l-bucket-size[where α = α and b = α (T ! j)];
assumption?)

apply simp
apply (drule l-bucket-ptr-inv-D[where b = α (T ! j)])
apply (simp add: strict-mono-leD)

by (simp add: l-bucket-end-def)

lemma bucket-size-imp-less-length:
[[l-bucket-ptr-inv α T B SA; j < length T ; suffix-type T j = L-type; j /∈ set SA;

strict-mono α]] =⇒
B ! (α (T ! j)) < length T

apply (drule (4) l-bucket-ptr-inv-imp-less-l-bucket-end)
apply (erule order .strict-trans2)
apply (rule order .trans[OF l-bucket-end-le-bucket-end bucket-end-le-length])
done

lemma l-bucket-ptr-inv-imp-ge-bucket-start:
[[l-bucket-ptr-inv α T B SA; b ≤ α (Max (set T))]] =⇒

bucket-start α T b ≤ B ! b
by (simp add: l-bucket-ptr-inv-D)

lemma l-bucket-ptr-inv-le-bucket-pointers:
[[l-bucket-ptr-inv α T B SA; a < b; b ≤ α (Max (set T))]] =⇒

B ! a ≤ B ! b
apply (frule l-bucket-ptr-inv-imp-le-l-bucket-end[where b = a])
apply arith

apply (frule l-bucket-ptr-inv-D[where b = b])
apply assumption

apply simp
apply (erule order .trans)
apply (rule order .trans[where b = bucket-start α T b])
apply (erule order .trans[OF l-bucket-end-le-bucket-end less-bucket-end-le-start])

270

apply simp
done

68.3 No Overwrite
We prove that the next location is set as unknown.
lemma l-unknowns-l-bucket-ptr-inv-helper :
[[l-unknowns-inv α T B SA;

l-bucket-ptr-inv α T B SA;
j < length T ;
suffix-type T j = L-type;
j /∈ set SA;
strict-mono α;
k = α (T ! j);
l = B ! k]] =⇒
SA ! l = length T

apply (drule (4) l-bucket-ptr-inv-imp-less-l-bucket-end)
apply (drule l-unknowns-inv-D[where b = k and k = l]; simp add: strict-mono-leD)
done

lemma unchanged-slice:
assumes l-unchanged-inv α T SA0 SA
and length SA = length SA0
and length SA = length T
and b ≤ α (Max (set T))
and l-bucket-end α T b ≤ i
and j ≤ bucket-end α T b

shows list-slice SA0 i j = list-slice SA i j
proof (intro list-eq-iff-nth-eq[THEN iffD2] allI impI conjI)

from ‹length SA = length SA0 ›
length-list-slice

show length (list-slice SA0 i j) = length (list-slice SA i j)
by simp

next
fix k
assume k < length (list-slice SA0 i j)
with ‹l-bucket-end α T b ≤ i›
have l-bucket-end α T b ≤ i + k

by simp

from ‹length SA = length T ›
have bucket-end α T b ≤ length SA

by (simp add: bucket-end-le-length)
with ‹j ≤ bucket-end α T b›
have j ≤ length SA

by simp
with ‹length SA = length SA0 ›
have length (list-slice SA0 i j) = j − i

271

by simp
with ‹k < length (list-slice SA0 i j)›
have i < j

by linarith

from ‹j ≤ length SA›
‹k < length (list-slice SA0 i j)›
‹length (list-slice SA0 i j) = j − i›
‹length SA = length SA0 ›

have i + k < length SA0
by linarith

from ‹j ≤ bucket-end α T b›
‹k < length (list-slice SA0 i j)›
‹length (list-slice SA0 i j) = j − i›

have i + k < bucket-end α T b
by linarith

from l-unchanged-inv-D[OF ‹l-unchanged-inv α T SA0 SA›
‹length SA = length SA0 ›
‹b ≤ α (Max (set T))›
‹i + k < length SA0 ›
‹l-bucket-end α T b ≤ i + k›
‹i + k < bucket-end α T b›]

‹k < length (list-slice SA0 i j)›
‹length SA = length SA0 ›

show list-slice SA0 i j ! k = list-slice SA i j ! k
by (metis length-list-slice nth-list-slice)

qed

lemma lms-init-unchanged:
assumes l-unchanged-inv α T SA0 SA
and length SA = length SA0
and length SA = length T
and lms-init α T SA0
shows lms-init α T SA
unfolding lms-init-def

proof (intro allI impI)
fix b
assume b ≤ α (Max (set T))

have l-bucket-end α T b ≤ lms-bucket-start α T b
by (simp add: l-bucket-end-le-lms-bucket-start)

from unchanged-slice[OF ‹l-unchanged-inv α T SA0 SA›
‹length SA = length SA0 ›
‹length SA = length T ›
‹b ≤ α (Max (set T))›
‹l-bucket-end α T b ≤ lms-bucket-start α T b›

272

order .refl]
lms-init-D[OF ‹lms-init α T SA0 › ‹b ≤ α (Max (set T))›]

show lms-bucket α T b = set (list-slice SA (lms-bucket-start α T b) (bucket-end
α T b))

by simp
qed

lemma s-init-unchanged:
assumes l-unchanged-inv α T SA0 SA
and length SA = length SA0
and length SA = length T
and s-init α T SA0
shows s-init α T SA
unfolding s-init-def

proof (intro allI impI ; elim conjE)
fix b i
assume b ≤ α (Max (set T))

i < length SA
l-bucket-end α T b ≤ i
i < lms-bucket-start α T b

have lms-bucket-start α T b ≤ bucket-end α T b
by (simp add: bucket-end-def ′ l-pl-pure-s-pl-lms-size lms-bucket-start-def)

with ‹i < lms-bucket-start α T b›
have i < bucket-end α T b

by simp

from ‹i < length SA› ‹length SA = length SA0 ›
have i < length SA0

by simp

from l-unchanged-inv-D[OF ‹l-unchanged-inv α T SA0 SA›
‹length SA = length SA0 ›
‹b ≤ α (Max (set T))›
‹i < length SA0 ›
‹l-bucket-end α T b ≤ i›
‹i < bucket-end α T b›]

have SA0 ! i = SA ! i
by assumption

from s-init-D[OF ‹s-init α T SA0 ›
‹b ≤ α (Max (set T))›
‹i < length SA0 ›
‹l-bucket-end α T b ≤ i›
‹i < lms-bucket-start α T b›]

have SA0 ! i = length T
by simp

with ‹SA0 ! i = SA ! i›
show SA ! i = length T

273

by simp
qed

lemma l-suffix-sorted-pre-maintained:
assumes l-unchanged-inv α T SA0 SA
and length SA = length SA0
and length SA = length T
and l-suffix-sorted-pre α T SA0

shows l-suffix-sorted-pre α T SA
unfolding l-suffix-sorted-pre-def

proof (safe)
fix b
assume b ≤ α (Max (set T))
let ?xs = list-slice SA0 (lms-bucket-start α T b) (bucket-end α T b) and

?ys = list-slice SA (lms-bucket-start α T b) (bucket-end α T b)

have l-bucket-end α T b ≤ lms-bucket-start α T b
using l-bucket-end-le-lms-bucket-start by auto

with unchanged-slice[OF assms(1−3) ‹b ≤ -›]
have ?xs = ?ys

by blast
then show ordlistns.sorted (map (suffix T) ?ys)

by (metis ‹b ≤ α (Max (set T))› assms(4) l-suffix-sorted-pre-def)
qed

lemma l-prefix-sorted-pre-maintained:
assumes l-unchanged-inv α T SA0 SA
and length SA = length SA0
and length SA = length T
and l-prefix-sorted-pre α T SA0

shows l-prefix-sorted-pre α T SA
unfolding l-prefix-sorted-pre-def

proof (safe)
fix b
assume b ≤ α (Max (set T))
let ?xs = list-slice SA0 (lms-bucket-start α T b) (bucket-end α T b) and

?ys = list-slice SA (lms-bucket-start α T b) (bucket-end α T b)

have l-bucket-end α T b ≤ lms-bucket-start α T b
using l-bucket-end-le-lms-bucket-start by auto

with unchanged-slice[OF assms(1−3) ‹b ≤ -›]
have ?xs = ?ys

by blast
then show ordlistns.sorted (map (lms-prefix T) ?ys)

by (metis ‹b ≤ α (Max (set T))› assms(4) l-prefix-sorted-pre-def)
qed

lemma unknown-range-values:
assumes l-unchanged-inv α T SA0 SA

274

and l-unknowns-inv α T B SA
and length SA = length SA0
and length SA = length T
and lms-init α T SA0
and s-init α T SA0
and b ≤ α (Max (set T))
and B ! b ≤ i
and i < lms-bucket-start α T b

shows SA ! i = length T
proof −

have i < length T
by (meson assms(9) bucket-end-le-length leD le-less-linear le-less-trans lms-bucket-start-le-bucket-end)

hence i < length SA
by (simp add: assms(4))

have i < l-bucket-end α T b ∨ l-bucket-end α T b ≤ i
using not-less by blast

moreover
have i < l-bucket-end α T b =⇒ ?thesis
proof −

assume i < l-bucket-end α T b
with l-unknowns-inv-D[OF assms(2 ,7 ,8)]
show ?thesis .

qed
moreover
have l-bucket-end α T b ≤ i =⇒ ?thesis
proof −

assume l-bucket-end α T b ≤ i
with s-init-D[OF s-init-unchanged[OF assms(1 ,3−4 ,6)] assms(7) ‹i < length

SA› - assms(9)]
show ?thesis .

qed
ultimately show ?thesis

by blast
qed

68.4 Bucket Values
lemma same-bucket-same-hd:

assumes l-unchanged-inv α T SA0 SA
and l-locations-inv α T B SA
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA
and length SA = length T
and length SA = length SA0
and lms-init α T SA0
and s-init α T SA0
and b ≤ α (Max (set T))
and i < length SA

275

and SA ! i < length T
and bucket-start α T b ≤ i
and i < bucket-end α T b
shows α (T ! (SA ! i)) = b

proof −
have i < B ! b ∨ B ! b ≤ i

by linarith
then show ?thesis
proof

assume i < B ! b
from l-locations-inv-D[OF ‹l-locations-inv α T B SA›

‹b ≤ α (Max (set T))›
‹i < length SA›
‹bucket-start α T b ≤ i›
‹i < B ! b›]

show ?thesis
by blast

next
assume B ! b ≤ i

from ‹i < length SA› ‹length SA = length SA0 ›
have i < length SA0

by simp

have lms-bucket-start α T b ≤ i
proof −

have i < l-bucket-end α T b −→ SA ! i = length T
proof

assume i < l-bucket-end α T b
from l-unknowns-inv-D[OF ‹l-unknowns-inv α T B SA›

‹b ≤ α (Max (set T))›
‹B ! b ≤ i›
‹i < l-bucket-end α T b›]

show SA ! i = length T
by assumption

qed

have l-bucket-end α T b ≤ i ∧ i < lms-bucket-start α T b −→ SA ! i = length
T

proof (intro impI ; elim conjE)
assume i < lms-bucket-start α T b

l-bucket-end α T b ≤ i

from ‹s-init α T SA0 ›
‹l-bucket-end α T b ≤ i›
‹i < lms-bucket-start α T b›
‹b ≤ α (Max (set T))›
‹i < length SA0 ›

have SA0 ! i = length T

276

by (metis s-init-def)
with l-unchanged-inv-D[OF ‹l-unchanged-inv α T SA0 SA›

‹length SA = length SA0 ›
‹b ≤ α (Max (set T))›
‹i < length SA0 ›
‹l-bucket-end α T b ≤ i›
‹i < bucket-end α T b›]

show SA ! i = length T
by simp

qed

from ‹i < l-bucket-end α T b −→ SA ! i = length T ›
‹l-bucket-end α T b ≤ i ∧ i < lms-bucket-start α T b −→ SA ! i = length

T ›
‹SA ! i < length T ›

show lms-bucket-start α T b ≤ i
by auto

qed
hence l-bucket-end α T b ≤ i

using l-bucket-end-le-lms-bucket-start le-trans by blast

from ‹length SA = length T ›
have bucket-end α T b ≤ length SA

by (simp add: bucket-end-le-length)
with ‹lms-init α T SA0 ›

‹lms-bucket-start α T b ≤ i›
‹i < bucket-end α T b›
‹b ≤ α (Max (set T))›
‹length SA = length SA0 ›

have SA0 ! i ∈ lms-bucket α T b
by (metis list-slice-nth-mem lms-init-def)

with l-unchanged-inv-D[OF ‹l-unchanged-inv α T SA0 SA›
‹length SA = length SA0 ›
‹b ≤ α (Max (set T))›
‹i < length SA0 ›
‹l-bucket-end α T b ≤ i›
‹i < bucket-end α T b›]

have SA ! i ∈ lms-bucket α T b
by simp

then show ?thesis
by (simp add: bucket-def lms-bucket-def)

qed
qed

lemma same-hd-same-bucket:
assumes l-unchanged-inv α T SA0 SA
and l-locations-inv α T B SA
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA

277

and strict-mono α
and length SA = length T
and length SA = length SA0
and lms-init α T SA0
and s-init α T SA0
and i < length SA
and SA ! i < length T
and b = α (T ! (SA ! i))
shows bucket-start α T b ≤ i ∧ i < bucket-end α T b

proof −
from ‹length SA = length T › ‹i < length SA›
have i < length T

by simp
from index-in-bucket-interval-gen[OF ‹i < length T › ‹strict-mono α›]
obtain b ′ where

b ′ ≤ α (Max (set T))
bucket-start α T b ′ ≤ i
i < bucket-end α T b ′

by blast

from same-bucket-same-hd[OF ‹l-unchanged-inv α T SA0 SA›
‹l-locations-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹l-unknowns-inv α T B SA›
‹length SA = length T ›
‹length SA = length SA0 ›
‹lms-init α T SA0 ›
‹s-init α T SA0 ›
‹b ′ ≤ α (Max (set T))›
‹i < length SA›
‹SA ! i < length T ›
‹bucket-start α T b ′ ≤ i›
‹i < bucket-end α T b ′›]

‹b = α (T ! (SA ! i))›
‹bucket-start α T b ′ ≤ i›
‹i < bucket-end α T b ′›

show ?thesis
by blast

qed

lemma less-bucket-less-hd:
assumes l-unchanged-inv α T SA0 SA
and l-locations-inv α T B SA
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA
and strict-mono α
and length SA = length T
and length SA = length SA0

278

and lms-init α T SA0
and s-init α T SA0
and i < length SA
and SA ! i < length T
and i < bucket-start α T b
shows α (T ! (SA ! i)) < b

proof −
from same-hd-same-bucket[OF ‹l-unchanged-inv α T SA0 SA›

‹l-locations-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹l-unknowns-inv α T B SA›
‹strict-mono α›
‹length SA = length T ›
‹length SA = length SA0 ›
‹lms-init α T SA0 ›
‹s-init α T SA0 ›
‹i < length SA›
‹SA ! i < length T ›,

of α (T ! (SA ! i))]
have bucket-start α T (α (T ! (SA ! i))) ≤ i ∧ i < bucket-end α T (α (T ! (SA

! i)))
by simp

then show ?thesis
by (meson ‹i < bucket-start α T b› bucket-start-le leD le-less-linear le-trans)

qed

lemma gr-bucket-gr-hd:
assumes l-unchanged-inv α T SA0 SA
and l-locations-inv α T B SA
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA
and strict-mono α
and length SA = length T
and length SA = length SA0
and lms-init α T SA0
and s-init α T SA0
and i < length SA
and SA ! i < length T
and bucket-end α T b ≤ i
shows b < α (T ! (SA ! i))

proof −
from same-hd-same-bucket[OF ‹l-unchanged-inv α T SA0 SA›

‹l-locations-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹l-unknowns-inv α T B SA›
‹strict-mono α›
‹length SA = length T ›
‹length SA = length SA0 ›
‹lms-init α T SA0 ›

279

‹s-init α T SA0 ›
‹i < length SA›
‹SA ! i < length T ›,

of α (T ! (SA ! i))]
have bucket-start α T (α (T ! (SA ! i))) ≤ i ∧ i < bucket-end α T (α (T ! (SA

! i)))
by simp

then show ?thesis
by (meson ‹bucket-end α T b ≤ i› bucket-end-le leD le-less-linear less-le-trans)

qed

68.5 Seen
We have two helper lemmas in the case of updating the suffix array SA, and
in the case when the current index is incremented. The two lemmas are used
in conjunction in the case that the SA is updated and the current index is
incremented.
lemma l-seen-inv-upd:

assumes l-seen-inv T SA n n ≤ k SA ! k = length T
shows l-seen-inv T (SA[k := x]) n
unfolding l-seen-inv-def

proof safe
fix i j
assume A: i < n i < length (SA[k := x]) SA[k := x] ! i < length T SA[k := x]

! i = Suc j
suffix-type T j = L-type

hence i 6= k
using assms(2) leD by blast

hence B: i < length SA SA ! i < length T SA ! i = Suc j
using A by auto

with l-seen-inv-nth-ex[OF assms(1) A(1) B A(5)]
have ∃ k ′<length SA. SA ! k ′ = j

by blast
then obtain k ′ where

k ′ < length SA SA ! k ′ = j
by blast

then show ∃ k ′<length (SA[k := x]). SA[k := x] ! k ′ = j
by (metis B(2 ,3) Suc-lessD assms(3) length-list-update less-irrefl-nat nth-list-update-neq)

qed

lemma l-seen-inv-Suc:
assumes l-seen-inv T SA n SA ! n = Suc j k < length SA SA ! k = j
shows l-seen-inv T SA (Suc n)
unfolding l-seen-inv-def

proof safe
fix i j ′
assume A: i < Suc n i < length SA SA ! i < length T SA ! i = Suc j ′

suffix-type T j ′ = L-type
have i < n ∨ ¬ i < n

280

by blast
then show ∃ k<length SA. SA ! k = j ′
proof

assume i < n
with l-seen-inv-nth-ex[OF assms(1) - A(2−)]
show ∃ k<length SA. SA ! k = j ′

by blast
next

assume ¬ i < n
then show ∃ k<length SA. SA ! k = j ′

using A(1) A(4) assms(2−) not-less-less-Suc-eq by force
qed

qed

69 Distinctness
lemma distinct-app3 :

distinct (xs @ ys @ zs) ←→
distinct xs ∧ distinct ys ∧ distinct zs ∧
set xs ∩ set ys = {} ∧ set xs ∩ set zs = {} ∧ set ys ∩ set zs = {}

by auto

69.1 Establishment
lemma abs-is-lms-imp-in-lms-bucket:

abs-is-lms T i =⇒ i ∈ lms-bucket α T (α (T ! i))
apply (clarsimp simp: lms-bucket-def bucket-def)
by (simp add: abs-is-lms-def suffix-type-s-bound)

lemma l-distinct-inv-established:
assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
and l-bucket-init α T B
shows l-distinct-inv T SA
unfolding l-distinct-inv-def

proof (intro distinct-conv-nth[THEN iffD2] allI impI)
let ?P = (λx. x < length T)
let ?SA = filter (λx. x < length T) SA

fix i j
assume i < length ?SA j < length ?SA i 6= j

from ‹i < length ?SA›
have ?SA ! i < length T

using mem-Collect-eq nth-mem by fastforce

281

from ‹j < length ?SA›
have ?SA ! j < length T

using mem-Collect-eq nth-mem by fastforce

from filter-nth-relative-neq-2 [OF ‹i < length ?SA› ‹j < length ?SA› ‹i 6= j›]
obtain i ′ j ′ where

i ′ < length SA
j ′ < length SA
SA ! i ′ = ?SA ! i
SA ! j ′ = ?SA ! j
i ′ 6= j ′
by blast

from ‹?SA ! i < length T › ‹SA ! i ′ = ?SA ! i›
have SA ! i ′ < length T

by simp

from ‹?SA ! j < length T › ‹SA ! j ′ = ?SA ! j›
have SA ! j ′ < length T

by simp

from init-imp-lms-range assms ‹i ′ < length SA› ‹SA ! i ′ < length T ›
have lms-bucket-start α T (α (T ! (SA ! i ′))) ≤ i ′ i ′ < bucket-end α T (α (T !

(SA ! i ′)))
by blast+

from init-imp-lms-range assms ‹j ′ < length SA› ‹SA ! j ′ < length T ›
have lms-bucket-start α T (α (T ! (SA ! j ′))) ≤ j ′ j ′ < bucket-end α T (α (T !

(SA ! j ′)))
by blast+

have α (T ! (SA ! i ′)) = α (T ! (SA ! j ′)) ∨ α (T ! (SA ! i ′)) 6= α (T ! (SA !
j ′))

by simp
then show ?SA ! i 6= ?SA ! j
proof

assume α (T ! (SA ! i ′)) = α (T ! (SA ! j ′))
with ‹lms-bucket-start α T (α (T ! (SA ! i ′))) ≤ i ′›
have lms-bucket-start α T (α (T ! (SA ! j ′))) ≤ i ′

by simp

from ‹α (T ! (SA ! i ′)) = α (T ! (SA ! j ′))›
‹i ′ < bucket-end α T (α (T ! (SA ! i ′)))›

have i ′ < bucket-end α T (α (T ! (SA ! j ′)))
by simp

with list-slice-nth-eq-iff-index-eq[OF lms-init-imp-distinct-bucket,
OF ‹lms-init α T SA›

-

282

‹length SA = length T ›
-
‹lms-bucket-start α T (α (T ! (SA ! j ′))) ≤ i ′›
-
‹lms-bucket-start α T (α (T ! (SA ! j ′))) ≤ j ′›
‹j ′ < bucket-end α T (α (T ! (SA ! j ′)))›]

‹i ′ 6= j ′›
‹length SA = length T ›
‹SA ! j ′ < length T ›
‹strict-mono α›

have SA ! i ′ 6= SA ! j ′
by (simp add: bucket-end-le-length strict-mono-less-eq)

with ‹SA ! i ′ = ?SA ! i› ‹SA ! j ′ = ?SA ! j›
show ?thesis

by simp
next

assume α (T ! (SA ! i ′)) 6= α (T ! (SA ! j ′))
with ‹SA ! i ′ = ?SA ! i› ‹SA ! j ′ = ?SA ! j›
show ?thesis

by auto
qed

qed

corollary l-distinct-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-distinct-inv T SA
using assms l-distinct-inv-established l-perm-pre-def by blast

69.2 Maintenance
lemma l-distinct-inv-maintained:

assumes i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and l-distinct-inv T SA
and l-pred-inv T SA i
shows l-distinct-inv T (SA[l := j])

proof −
let ?P = (λx. x < length T)

from ‹Suc j < length T ›
have j < length T

by simp

— We case on whether the update occurs on an index within bounds
have l < length SA ∨ l ≥ length SA

by arith
then show ?thesis

283

proof
assume l < length SA

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

let ?xs = filter ?P (take l SA) and
?ys = filter ?P (drop (Suc l) SA)

— We have that j /∈ set SA and show that if we now add j to SA, it will maintain
distinctness. This is straightforward but does require some massaging, i.e. casing
on whether SA ! l < length T or not, due to the use of filter in the l-distinct-inv
?T ?SA = distinct (filter (λx. x < length ?T) ?SA) definition.

from ‹j < length T › ‹l < length SA›
have f-SA ′: filter ?P (SA[l := j]) = ?xs @ [j] @ ?ys

by (simp add: filter-update-nth-success)

from ‹j /∈ set SA›
have set ?xs ∩ set [j] = {}

using in-set-takeD by fastforce

from ‹j /∈ set SA›
have set [j] ∩ set ?ys = {}

using in-set-dropD by force

have SA ! l < length T ∨ SA ! l ≥ length T
by arith

then show ?thesis
proof

assume SA ! l < length T
with ‹l < length SA›
have f-SA: filter ?P SA = ?xs @ [SA ! l] @ ?ys

by (meson filter-take-nth-drop-success)

from f-SA ‹l-distinct-inv T SA› distinct-app3 [of ?xs [SA ! l] ?ys]
have distinct ?xs

distinct ?ys
set ?xs ∩ set ?ys = {}

unfolding l-distinct-inv-def
by auto

with ‹set ?xs ∩ set [j] = {}›
‹set [j] ∩ set ?ys = {}›

284

f-SA ′

show ?thesis
unfolding l-distinct-inv-def
by auto

next
assume SA ! l ≥ length T
with ‹l < length SA›
have f-SA: filter ?P SA = ?xs @ ?ys

by (simp add: filter-take-nth-drop-fail)

from f-SA ‹l-distinct-inv T SA› distinct-append[of ?xs ?ys]
have distinct ?xs

distinct ?ys
set ?xs ∩ set ?ys = {}

unfolding l-distinct-inv-def
by auto

with ‹set ?xs ∩ set [j] = {}›
‹set [j] ∩ set ?ys = {}›
f-SA ′

show ?thesis
unfolding l-distinct-inv-def
by auto

qed
next
— We now handle the case length SA ≤ l, which is straightforward. In the actual

abs-induce-l subroutine, l will always be less than length SA, but for this proof, we
make no such assumption, nor do we need to prove it.

assume l ≥ length SA
hence SA[l := j] = SA

by simp
with ‹l-distinct-inv T SA›
show ?thesis

by simp
qed

qed

corollary l-distinct-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type

shows l-distinct-inv T (SA[l := j])
by (meson assms l-distinct-inv-maintained l-perm-inv-elims(4 ,10))

285

70 Unknowns
70.1 Establishment
lemma l-unknowns-inv-established:

assumes l-init α T SA
l-bucket-init α T B
length SA = length T

shows l-unknowns-inv α T B SA
unfolding l-unknowns-inv-def

proof (intro allI impI ; elim conjE)
fix a k
assume a ≤ α (Max (set T))

B ! a ≤ k
k < l-bucket-end α T a

from ‹B ! a ≤ k› l-bucket-initD[OF ‹l-bucket-init α T B› ‹a ≤ α (Max (set T))›]
have bucket-start α T a ≤ k

by simp

from ‹length SA = length T › ‹k < l-bucket-end α T a›
have k < length SA

by (metis bucket-end-le-length l-bucket-end-le-bucket-end less-le-trans)

from l-init-D[OF ‹l-init α T SA›
‹a ≤ α (Max (set T))›
‹k < length SA›
‹bucket-start α T a ≤ k›
‹k < l-bucket-end α T a›]

show SA ! k = length T
by assumption

qed

corollary l-unknowns-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-unknowns-inv α T B SA
using assms l-perm-pre-elims(2 ,4 ,7) l-unknowns-inv-established by blast

70.2 Maintenance
lemma l-unknowns-inv-maintained:

assumes l-unknowns-inv α T B SA
and length B > α (Max (set T))
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α

286

and l-distinct-inv T SA
and l-pred-inv T SA i
and l-bucket-ptr-inv α T B SA
shows l-unknowns-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
unfolding l-unknowns-inv-def

proof (intro allI impI ; elim conjE)
fix a k ′

assume a ≤ α (Max (set T))
B[k := Suc (B ! k)] ! a ≤ k ′

k ′ < l-bucket-end α T a

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

from ‹Suc j < length T ›
have j < length T

by simp

from l-unknowns-l-bucket-ptr-inv-helper [OF ‹l-unknowns-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›
‹k = α (T ! j)›
‹l = B ! k›]

have SA ! l = length T
by assumption

from ‹strict-mono α› ‹k = α (T ! j)› ‹j < length T ›
have k ≤ α (Max (set T))

by (simp add: strict-mono-leD)

from l-unknowns-inv-D[OF ‹l-unknowns-inv α T B SA›
‹a ≤ α (Max (set T))›
-
‹k ′ < l-bucket-end α T a›]

‹B[k := Suc (B ! k)] ! a ≤ k ′›
‹a ≤ α (Max (set T))›
‹α (Max (set T)) < length B›

have SA ! k ′ = length T
by (metis Suc-le-mono le-SucI le-less-trans nth-list-update nth-list-update-neq)

287

from ‹j < length T › ‹strict-mono α› ‹l-bucket-ptr-inv α T B SA› ‹k = α (T !
j)› ‹l = B ! k›

have bucket-start α T k ≤ l
using Max-greD l-bucket-ptr-inv-imp-ge-bucket-start strict-mono-less-eq by blast

from ‹j < length T ›
‹j /∈ set SA›
‹strict-mono α›
‹l-bucket-ptr-inv α T B SA›
‹suffix-type T j = L-type›
‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
using l-bucket-ptr-inv-imp-less-l-bucket-end by blast

have a = k ∨ a 6= k
by simp

then show SA[l := j] ! k ′ = length T
proof

assume a = k
hence k ′ 6= l

using ‹B[k := Suc (B ! k)] ! a ≤ k ′› ‹a ≤ α (Max (set T))› ‹α (Max (set
T)) < length B›

‹l = B ! k› by auto
then show ?thesis

using ‹SA ! k ′ = length T › by auto
next

assume a 6= k
hence a < k ∨ a > k

by arith
then show ?thesis
proof

assume a < k

from less-bucket-end-le-start[OF ‹a < k›]
have bucket-end α T a ≤ bucket-start α T k

by blast
with ‹bucket-start α T k ≤ l›
have bucket-end α T a ≤ l

by simp
with l-bucket-end-le-bucket-end
have l-bucket-end α T a ≤ l

using le-trans by blast
with ‹k ′ < l-bucket-end α T a›
have k ′ < l

using less-le-trans by blast
then show ?thesis

using ‹SA ! k ′ = length T › by auto
next

288

assume a > k

from ‹B[k := Suc (B ! k)] ! a ≤ k ′›
‹a ≤ α (Max (set T))›
‹a 6= k›
‹l-bucket-ptr-inv α T B SA›
l-bucket-ptr-inv-imp-ge-bucket-start

have bucket-start α T a ≤ k ′

by force

from less-bucket-end-le-start[OF ‹k < a›]
have bucket-end α T k ≤ bucket-start α T a

by blast
with ‹bucket-start α T a ≤ k ′›
have bucket-end α T k ≤ k ′

by simp
with l-bucket-end-le-bucket-end
have l-bucket-end α T k ≤ k ′

using le-trans by blast
with ‹l < l-bucket-end α T k›
have l < k ′

using less-le-trans by blast
then show ?thesis

using ‹SA ! k ′ = length T › by auto
qed

qed
qed

corollary l-unknowns-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-unknowns-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
by (metis assms l-perm-inv-elims(1 ,4−6 ,10 ,12) l-unknowns-inv-maintained)

71 Number of L-types
71.1 Establishment
We first prove that this invariant is established from the precondition, i.e.,
that initially, there are only LMS-types, which are just a special type of
S-types, and that the initial pointer is the start of the bucket.
lemma l-bucket-ptr-inv-established:

assumes lms-init α T SA

289

and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
and l-bucket-init α T B
shows l-bucket-ptr-inv α T B SA

proof −
have ∀ b ≤ α (Max (set T)). cur-l-types α T SA b = {}

unfolding cur-l-types-def
proof (intro allI impI equalityI subsetI)

fix b x
assume x ∈ {i |i. i ∈ set SA ∧ i ∈ l-bucket α T b}
hence x ∈ set SA x ∈ l-bucket α T b

by blast+

have x < length T ∨ x ≥ length T
using not-less by blast

then show x ∈ {}
proof

assume x < length T
with ‹x ∈ set SA› init-imp-only-s-types assms
have suffix-type T x = S-type

by (metis in-set-conv-nth)
hence x /∈ l-bucket α T b

by (simp add: l-bucket-def)
with ‹x ∈ l-bucket α T b›
show ?thesis

by blast
next

assume length T ≤ x
hence x /∈ l-bucket α T b

by (simp add: bucket-def l-bucket-def)
with ‹x ∈ l-bucket α T b›
show ?thesis

by blast
qed

next
fix b :: nat
fix x :: nat
assume x ∈ {}
then show x ∈ {i |i. i ∈ set SA ∧ i ∈ l-bucket α T b}

by blast
qed
hence ∀ b ≤ α (Max (set T)). num-l-types α T SA b = 0

by (simp add: num-l-types-def)
with ‹l-bucket-init α T B›
show ?thesis

by (simp add: l-bucket-ptr-inv-def l-bucket-init-def)
qed

290

corollary l-bucket-ptr-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-bucket-ptr-inv α T B SA
using assms l-bucket-ptr-inv-established l-perm-pre-def by blast

71.2 Maintenance
We now prove that the invariant is maintained.
lemma set-update-mem-neqI :
[[x ∈ set xs; xs ! i 6= x]] =⇒ x ∈ set (xs[i := y])
by (metis in-set-conv-nth length-list-update nth-list-update-neq)

lemma cur-l-types-update-1 :
[[SA ! l = length T ; l < length SA; j /∈ set SA; suffix-type T j = L-type; j < length

T ;
α (T ! j) = b]] =⇒
cur-l-types α T (SA[l := j]) b = insert j (cur-l-types α T SA b)

apply (intro equalityI subsetI)
apply (metis (no-types, lifting) cur-l-types-def in-set-conv-nth insertCI length-list-update

mem-Collect-eq nth-list-update nth-list-update-neq)
by (metis (mono-tags, lifting) bucket-def cur-l-types-def insert-iff l-bucket-def

less-irrefl-nat mem-Collect-eq set-update-memI
set-update-mem-neqI)

lemma cur-l-types-update-2 :
assumes SA ! l = length T α (T ! j) 6= b
shows cur-l-types α T (SA[l := j]) b = cur-l-types α T SA b

proof (cases l < length SA)
assume l < length SA
show ?thesis
proof safe

fix x
assume x ∈ cur-l-types α T (SA[l := j]) b
show x ∈ cur-l-types α T SA b
proof (cases x = j)

assume x = j
then show ?thesis
using ‹x ∈ cur-l-types α T (SA[l := j]) b› assms(2) bucket-def cur-l-types-def

l-bucket-def
by fastforce

next
assume x 6= j
then show ?thesis
by (metis (no-types, lifting) ‹x ∈ cur-l-types α T (SA[l := j]) b› cur-l-types-def

in-set-conv-nth length-list-update mem-Collect-eq
nth-list-update nth-list-update-neq)

qed
next

291

fix x
assume x ∈ cur-l-types α T SA b
then show x ∈ cur-l-types α T (SA[l := j]) b
by (simp add: assms(1) bucket-def cur-l-types-def l-bucket-def set-update-mem-neqI)

qed
next

assume ¬ l < length SA
then show ?thesis

by simp
qed

lemma num-l-types-update-1 :
[[SA ! l = length T ; l < length SA; j /∈ set SA; suffix-type T j = L-type; j < length

T ;
α (T ! j) = b]] =⇒
num-l-types α T (SA[l := j]) b = Suc (num-l-types α T SA b)

apply (clarsimp simp: num-l-types-def)
apply (subst cur-l-types-update-1 ; simp?)
apply (subst card-insert-disjoint)
apply (metis (no-types, lifting) List.finite-set cur-l-types-def finite-nat-set-iff-bounded

mem-Collect-eq)
apply (simp add: cur-l-types-def)

apply simp
done

lemma num-l-types-update-2 :
[[SA ! l = length T ; α (T ! j) 6= b]] =⇒

num-l-types α T (SA[l := j]) b = num-l-types α T SA b
apply (cases l < length SA; clarsimp?)
apply (clarsimp simp: num-l-types-def)
apply (intro arg-cong[where f = card])
by (erule (1) cur-l-types-update-2)

lemma l-bucket-ptr-inv-maintained:
assumes l-bucket-ptr-inv α T B SA
and length SA = length T
and length B > α (Max (set T))
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α
and l-distinct-inv T SA
and l-pred-inv T SA i
and l-unknowns-inv α T B SA
shows l-bucket-ptr-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
unfolding l-bucket-ptr-inv-def

292

proof safe
fix b
assume b ≤ α (Max (set T))

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

from ‹Suc j < length T ›
have j < length T

by arith

from l-unknowns-l-bucket-ptr-inv-helper [OF ‹l-unknowns-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›
‹k = α (T ! j)›
‹l = B ! k›]

have SA ! l = length T
by assumption

let ?G = B[k := Suc (B ! k)] ! b = bucket-start α T b + num-l-types α T (SA[l
:= j]) b

have b = k ∨ b 6= k
by blast

then show ?G
proof

assume b = k
hence B[k := Suc (B ! k)] ! b = Suc (B ! k)

using ‹b ≤ α (Max (set T))› ‹length B > α (Max (set T))› by auto

from num-l-types-less-l-bucket-size[OF ‹j /∈ set SA› ‹suffix-type T j = L-type›]
‹Suc j < length T ›
‹b = k›
‹k = α (T ! j)›

have num-l-types α T SA b < l-bucket-size α T b
by simp

from ‹l-bucket-ptr-inv α T B SA› ‹b ≤ α (Max (set T))›
have B ! b = bucket-start α T b + num-l-types α T SA b

by (metis l-bucket-ptr-inv-def)
with ‹num-l-types α T SA b < l-bucket-size α T b›

293

bucket-end-le-length l-bucket-le-bucket-size bucket-end-def ′

have B ! b < length T
by (metis add-less-cancel-left less-le-trans)

with ‹k = α (T ! j)› ‹b = k› ‹l = B ! k› ‹length SA = length T ›
have l < length SA

by simp

from ‹SA ! l = length T ›
‹b = k›
‹b ≤ α (Max (set T))›
‹j /∈ set SA›
‹l < length SA›
‹k = α (T ! j)›
num-l-types-update-1
‹suffix-type T j = L-type›
‹Suc j < length T ›
Suc-lessD

have num-l-types α T (SA[l := j]) b = Suc (num-l-types α T SA b)
by blast

from ‹B[k := Suc (B ! k)] ! b = Suc (B ! k)›
‹b = k›
‹b ≤ α (Max (set T))›
‹num-l-types α T (SA[l := j]) b = Suc (num-l-types α T SA b)›
‹l-bucket-ptr-inv α T B SA›
l-bucket-ptr-inv-def

show ?thesis
by fastforce

next
assume b 6= k
hence B[k := Suc (B ! k)] ! b = B ! b

by auto

from num-l-types-update-2 [OF ‹SA ! l = length T ›]
‹b ≤ α (Max (set T))›
‹b 6= k›
‹k = α (T ! j)›

have num-l-types α T (SA[l := j]) b = num-l-types α T SA b
by simp

from ‹B[k := Suc (B ! k)] ! b = B ! b›
‹b ≤ α (Max (set T))›
‹num-l-types α T (SA[l := j]) b = num-l-types α T SA b›
‹l-bucket-ptr-inv α T B SA›
l-bucket-ptr-inv-def

show ?thesis
by fastforce

qed
qed

294

corollary l-bucket-ptr-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-bucket-ptr-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
by (metis assms l-bucket-ptr-inv-maintained l-perm-inv-elims(1 ,2 ,3−6 ,10 ,12))

72 L Locations
72.1 Establishment
lemma l-locations-inv-established:

assumes l-bucket-init α T B
shows l-locations-inv α T B SA
using assms l-bucket-initD l-locations-inv-def by fastforce

corollary l-locations-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-locations-inv α T B SA
using assms l-locations-inv-established l-perm-pre-elims(4) by blast

72.2 Maintenance
lemma l-locations-inv-maintained:

assumes l-locations-inv α T B SA
and length B > α (Max (set T))
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α
and l-distinct-inv T SA
and l-pred-inv T SA i
and l-bucket-ptr-inv α T B SA
shows l-locations-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
unfolding l-locations-inv-def

proof (intro allI impI ; elim conjE)
fix b i ′
assume b ≤ α (Max (set T))

i ′ < length (SA[l := j])
bucket-start α T b ≤ i ′
i ′ < B[k := Suc (B ! k)] ! b

hence i ′ < length SA

295

by simp

have b = k ∨ b 6= k
by blast

then
show SA[l := j] ! i ′ < length T ∧ suffix-type T (SA[l := j] ! i ′) = L-type ∧

α (T ! (SA[l := j] ! i ′)) = b
proof

assume b = k
with ‹bucket-start α T b ≤ i ′›
have bucket-start α T k ≤ i ′

by simp

from ‹b = k› ‹i ′ < B[k := Suc (B ! k)] ! b›
have i ′ < Suc (B ! k)

using ‹b ≤ α (Max (set T))› ‹length B > α (Max (set T))› by auto
hence i ′ < B ! k ∨ i ′ = B ! k

by (simp add: less-Suc-eq)
then show ?thesis
proof

assume i ′ < B ! k
with ‹l = B ! k› ‹b = k› ‹b ≤ α (Max (set T))› ‹bucket-start α T k ≤ i ′› ‹i ′

< length SA›
show ?thesis

using ‹l-locations-inv α T B SA› l-locations-inv-def by fastforce
next

assume i ′ = B ! k
with ‹l = B ! k›
have i ′ = l

by simp

from ‹i ′ < length SA› ‹i ′ = l›
have SA[l := j] ! i ′ = j

by simp
with ‹suffix-type T j = L-type› ‹Suc j < length T › ‹i ′ < length SA› ‹b = k›

‹k = α (T ! j)›
show ?thesis

by auto
qed

next
assume b 6= k
hence B[k := Suc (B ! k)] ! b = B ! b

by simp

from l-bucket-ptr-inv-imp-le-l-bucket-end[OF ‹l-bucket-ptr-inv α T B SA›
‹b ≤ α (Max (set T))›]

have B ! b ≤ l-bucket-end α T b
by simp

296

from ‹Suc j < length T ›
have j < length T

by simp

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

from l-bucket-ptr-inv-imp-less-l-bucket-end[OF ‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›]

‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
by simp

from ‹k = α (T ! j)› ‹j < length T › ‹strict-mono α›
have k ≤ α (Max (set T))

by (simp add: strict-mono-less-eq)

from l-bucket-ptr-inv-imp-ge-bucket-start[OF ‹l-bucket-ptr-inv α T B SA›
‹k ≤ α (Max (set T))›]

‹l = B ! k›
have bucket-start α T k ≤ l

by simp

from ‹B[k := Suc (B ! k)] ! b = B ! b›
‹i ′ < B[k := Suc (B ! k)] ! b›
l-bucket-ptr-inv-imp-le-l-bucket-end[OF ‹l-bucket-ptr-inv α T B SA›

‹b ≤ α (Max (set T))›]
l-bucket-end-le-bucket-end

have i ′ < bucket-end α T b
by (metis less-le-trans)

from ‹b 6= k›
have b < k ∨ k < b

by linarith
hence i ′ 6= l
proof

assume b < k
hence bucket-end α T b ≤ bucket-start α T k

by (simp add: less-bucket-end-le-start)

297

with ‹i ′ < bucket-end α T b› ‹bucket-start α T k ≤ l›
have i ′ < l

by linarith
then show ?thesis

by simp
next

assume k < b
hence bucket-end α T k ≤ bucket-start α T b

by (simp add: less-bucket-end-le-start)
hence l-bucket-end α T k ≤ bucket-start α T b

using l-bucket-end-le-bucket-end le-trans by blast
with ‹bucket-start α T b ≤ i ′› ‹l < l-bucket-end α T k›
have l < i ′

by simp
then show ?thesis

by simp
qed
with ‹B[k := Suc (B ! k)] ! b = B ! b›

‹b ≤ α (Max (set T))›
‹bucket-start α T b ≤ i ′›
‹i ′ < B[k := Suc (B ! k)] ! b›
‹i ′ < length SA›
‹l-locations-inv α T B SA›

show ?thesis
using l-locations-inv-D by fastforce

qed
qed

corollary l-locations-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-locations-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
by (metis assms l-locations-inv-maintained l-perm-inv-elims(1 ,4 ,6 ,9 ,10 ,12))

73 Unchanged
73.1 Establishment
lemma l-unchanged-inv-established:

l-unchanged-inv α T SA SA
using l-unchanged-inv-def by blast

298

73.2 Maintenance
lemma l-unchanged-inv-maintained:

assumes l-unchanged-inv α T SA0 SA
and length B > α (Max (set T))
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α
and l-distinct-inv T SA
and l-pred-inv T SA i
and l-bucket-ptr-inv α T B SA
shows l-unchanged-inv α T SA0 (SA[l := j])

proof −
have l-unchanged-inv α T SA (SA[l := j])

unfolding l-unchanged-inv-def
proof safe

show length (SA[l := j]) = length SA
by simp

next
fix b i ′
assume b ≤ α (Max (set T))

i ′ < length SA
l-bucket-end α T b ≤ i ′
i ′ < bucket-end α T b

from ‹strict-mono α›
‹l-bucket-ptr-inv α T B SA›
‹Suc j < length T ›
‹k = α (T ! j)›
‹l = B ! k›

have bucket-start α T k ≤ l
by (metis Max-greD Suc-lessD l-bucket-ptr-inv-imp-ge-bucket-start strict-mono-leD)

from ‹l-distinct-inv T SA›
‹l-pred-inv T SA i›
‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›

have j /∈ set SA
using l-distinct-pred-inv-helper by blast

from ‹j /∈ set SA›
‹strict-mono α›
‹l-bucket-ptr-inv α T B SA›
‹Suc j < length T ›

299

‹suffix-type T j = L-type›
‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
using Suc-lessD l-bucket-ptr-inv-imp-less-l-bucket-end by blast

have b = k ∨ b 6= k
by blast

then show SA ! i ′ = SA[l := j] ! i ′
proof

assume b = k
then show ?thesis

using ‹l < l-bucket-end α T k› ‹l-bucket-end α T b ≤ i ′› by auto
next

assume b 6= k
hence b < k ∨ k < b

using less-linear by blast
then show ?thesis
proof

assume b < k
hence bucket-end α T b ≤ bucket-start α T k

by (simp add: less-bucket-end-le-start)
with ‹i ′ < bucket-end α T b› ‹bucket-start α T k ≤ l›
have i ′ < l

by linarith
then show ?thesis

by simp
next

assume k < b
hence bucket-end α T k ≤ bucket-start α T b

by (simp add: less-bucket-end-le-start)
hence l-bucket-end α T k ≤ bucket-start α T b

using l-bucket-end-le-bucket-end le-trans by blast
hence l-bucket-end α T k ≤ l-bucket-end α T b

by (simp add: l-bucket-end-def)
with ‹l < l-bucket-end α T k› ‹l-bucket-end α T b ≤ i ′›
have l < i ′

by linarith
then show ?thesis

by simp
qed

qed
qed
with ‹l-unchanged-inv α T SA0 SA›
show ?thesis

using l-unchanged-inv-trans by blast
qed

corollary l-unchanged-inv-perm-maintained:

300

assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-unchanged-inv α T SA0 (SA[l := j])
by (metis assms l-perm-inv-elims(1 ,4 ,6 ,8 ,10 ,12) l-unchanged-inv-maintained)

74 Invariant about the Current Index
74.1 Establishment
The first invariant is that current index is always less than the index where
the update will occur.
lemma l-index-inv-established:

assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
and l-bucket-init α T B
shows l-index-inv α T B SA
unfolding l-index-inv-def

proof (intro allI impI ; elim conjE)
fix i j
assume i < length SA SA ! i = Suc j Suc j < length T suffix-type T j = L-type
with init-imp-only-s-types[OF ‹lms-init α T SA›

‹l-init α T SA›
‹s-init α T SA›
‹length SA = length T ›
‹strict-mono α›,

THEN spec, of i]
have suffix-type T (Suc j) = S-type

by simp
with ‹suffix-type T j = L-type› ‹Suc j < length T ›
have T ! j 6= T ! Suc j

by (simp add: suffix-type-neq)
with ‹suffix-type T j = L-type› ‹Suc j < length T ›
have T ! Suc j < T ! j

using nth-less-imp-s-type by fastforce
from same-hd-same-bucket[OF l-unchanged-inv-established

l-locations-inv-established[OF ‹l-bucket-init α T B›]
l-bucket-ptr-inv-established[OF ‹lms-init α T SA›

‹l-init α T SA›
‹s-init α T SA›
‹length SA = length T ›

301

‹strict-mono α›]
l-unknowns-inv-established
- - - - -
‹i < length SA›]

assms
‹SA ! i = Suc j›
‹Suc j < length T ›

have bucket-start α T (α (T ! Suc j)) ≤ i i < bucket-end α T (α (T ! Suc j))
by simp+

with ‹T ! Suc j < T ! j› ‹strict-mono α›
have i < bucket-start α T (α (T ! j))

by (meson less-bucket-end-le-start less-le-trans strict-mono-less)

from ‹l-bucket-init α T B› ‹Suc j < length T › ‹strict-mono α›
have B ! α (T ! j) = bucket-start α T (α (T ! j))

by (simp add: Suc-lessD l-bucket-initD strict-mono-leD)
with ‹i < bucket-start α T (α (T ! j))›
show i < B ! α (T ! j)

by simp
qed

corollary l-index-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-index-inv α T B SA
using assms l-index-inv-established l-perm-pre-def by blast

74.2 Maintenance
lemma l-index-inv-maintained:

assumes l-index-inv α T B SA
and length B > α (Max (set T))
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α
and l-distinct-inv T SA
and l-pred-inv T SA i
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA
shows l-index-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
unfolding l-index-inv-def

proof(intro impI allI ; elim conjE)
fix l ′ j ′
assume l ′ < length (SA[l := j])

SA[l := j] ! l ′ = Suc j ′
Suc j ′ < length T

302

suffix-type T j ′ = L-type

from ‹l ′ < length (SA[l := j])›
have l ′ < length SA

by simp

have l ′ = l ∨ l ′ 6= l
by simp

then show l ′ < B[k := Suc (B ! k)] ! α (T ! j ′)
proof

assume l ′ = l
with ‹SA[l := j] ! l ′ = Suc j ′› ‹l ′ < length SA›
have j = Suc j ′

by simp
with ‹suffix-type T j ′ = L-type› ‹Suc j ′ < length T ›
have T ! j ≤ T ! j ′

by (simp add: Suc-lessD l-type-letter-gre-Suc)
with ‹strict-mono α›
have α (T ! j) ≤ α (T ! j ′)

using strict-mono-less-eq by blast
hence α (T ! j) = α (T ! j ′) ∨ α (T ! j) < α (T ! j ′)

using le-imp-less-or-eq by blast
then show ?thesis
proof

assume α (T ! j) = α (T ! j ′)
with ‹k = α (T ! j)›

‹Suc j ′ < length T ›
‹j = Suc j ′›
‹strict-mono α›
‹length B > α (Max (set T))›

have B[k := Suc (B ! k)] ! α (T ! j ′) = Suc (B ! k)
by (metis Max-greD less-le-trans not-less nth-list-update-eq strict-mono-less)

with ‹l = B ! k› ‹l ′ = l›
show ?thesis

by simp
next

assume α (T ! j) < α (T ! j ′)

from ‹α (T ! j) < α (T ! j ′)› ‹k = α (T ! j)›
have B[k := Suc (B ! k)] ! α (T ! j ′) = B ! α (T ! j ′)

by simp

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA

303

by assumption

from Suc-lessD[OF ‹Suc j < length T ›]
have j < length T

by assumption

from l-bucket-ptr-inv-imp-less-l-bucket-end[OF ‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›]

have B ! α (T ! j) < l-bucket-end α T (α (T ! j))
by assumption

with ‹l ′ = l› ‹k = α (T ! j)› ‹l = B ! k›
have l ′ < l-bucket-end α T (α (T ! j))

by simp
hence l ′ < bucket-end α T (α (T ! j))

using l-bucket-end-le-bucket-end less-le-trans by blast
with less-bucket-end-le-start[OF ‹α (T ! j) < α (T ! j ′)›]
have l ′ < bucket-start α T (α (T ! j ′))

using less-le-trans by blast
with l-bucket-ptr-inv-imp-ge-bucket-start[OF ‹l-bucket-ptr-inv α T B SA›]

‹Suc j ′ < length T ›
‹strict-mono α›

have l ′ < B ! α (T ! j ′)
by (meson Max-greD Suc-lessD less-le-trans strict-mono-less-eq)

with ‹B[k := Suc (B ! k)] ! α (T ! j ′) = B ! α (T ! j ′)›
show ?thesis

by simp
qed

next
assume l ′ 6= l
with ‹SA[l := j] ! l ′ = Suc j ′›
have SA ! l ′ = Suc j ′

by auto

from l-index-inv-D[OF ‹l-index-inv α T B SA›
‹l ′ < length SA›
‹SA ! l ′ = Suc j ′›
‹Suc j ′ < length T ›
‹suffix-type T j ′ = L-type›]

show ?thesis
by (metis Suc-leI Suc-le-lessD Suc-lessD list-update-beyond not-less nth-list-update-eq

nth-list-update-neq)
qed

qed

corollary l-index-inv-perm-maintained:

304

assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-index-inv α T (B[k := Suc (B ! k)]) (SA[l := j])
using assms l-index-inv-maintained l-perm-inv-def by blast

75 Predecessor Invariant
75.1 Establishment
The proof for the establishment is simple because initially, SA contains no
L-types.
lemma l-pred-inv-established:

assumes lms-init α T SA
and l-init α T SA
and s-init α T SA
and length SA = length T
and strict-mono α
shows l-pred-inv T SA 0
using assms init-imp-only-s-types l-pred-inv-def by fastforce

corollary l-pred-inv-perm-established:
assumes l-perm-pre α T B SA
shows l-pred-inv T SA 0
using assms l-perm-pre-def l-pred-inv-established by blast

75.2 Maintenance
In this section, we prove that the predecessor invariant l-pred-inv ?T ?SA
?k = (∀ i<length ?SA. ?SA ! i < length ?T ∧ suffix-type ?T (?SA ! i) =
L-type −→ (∃ j<length ?SA. ?SA ! j = Suc (?SA ! i) ∧ j < i ∧ j < ?k))is
maintained. In English, this invariant states that for all L-type suffixes in
the suffix array (SA), their right neighbour is in SA and occurs before them.

We now prove that the invariant is maintained for each branch of the
abs-induce-l-step
lemma l-pred-inv-maintained-no-update:

assumes l-pred-inv T SA i
shows l-pred-inv T SA (Suc i)
using assms
unfolding l-pred-inv-def
using less-Suc-eq by auto

lemma l-pred-inv-maintained:

305

assumes l-pred-inv T SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and strict-mono α
and l-distinct-inv T SA
and l-bucket-ptr-inv α T B SA
and l-unknowns-inv α T B SA
and l-index-inv α T B SA
shows l-pred-inv T (SA[l := j]) (Suc i)

proof −

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

from ‹Suc j < length T ›
have j < length T

by simp

from l-unknowns-l-bucket-ptr-inv-helper [OF ‹l-unknowns-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›
‹k = α (T ! j)›
‹l = B ! k›]

have SA ! l = length T
by assumption

from l-index-inv-D[OF ‹l-index-inv α T B SA›
‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›]

‹k = α (T ! j)›
‹l = B ! k›

have l > i
by simp

306

show ?thesis
unfolding l-pred-inv-def

proof (intro impI allI ; elim conjE)
fix i ′
assume i ′ < length (SA[l := j])

SA[l := j] ! i ′ < length T
suffix-type T (SA[l := j] ! i ′) = L-type

have i ′ = l ∨ i ′ 6= l
by blast

then show
∃ ja<length (SA[l := j]). SA[l := j] ! ja = Suc (SA[l := j] ! i ′) ∧ ja < i ′ ∧ ja

< Suc i
proof

assume i ′ = l
with ‹i ′ < length (SA[l := j])›
have SA[l := j] ! i ′ = j

by simp

from ‹l > i› ‹SA ! i = Suc j›
have SA[l := j] ! i = Suc j

by simp
with ‹l > i› ‹i ′ = l› ‹SA[l := j] ! i ′ = j› ‹i < length SA›
show ?thesis

by auto
next

assume i ′ 6= l
with ‹i ′ < length (SA[l := j])›
have i ′ < length SA

by simp

from ‹i ′ 6= l› ‹SA[l := j] ! i ′ < length T ›
have SA ! i ′ < length T

by simp

from ‹i ′ 6= l› ‹suffix-type T (SA[l := j] ! i ′) = L-type›
have suffix-type T (SA ! i ′) = L-type

by simp

from ‹i ′ < length SA› ‹SA ! i ′ < length T › ‹suffix-type T (SA ! i ′) = L-type›
‹l-pred-inv T SA i›[simplified l-pred-inv-def , THEN spec, of i ′]

obtain j ′ where
j ′ < length SA
SA ! j ′ = Suc (SA ! i ′)
j ′ < i ′
j ′ < i
by blast

with ‹SA ! l = length T › ‹i ′ 6= l› ‹suffix-type T (SA ! i ′) = L-type› ‹i < l›
show ?thesis

307

by auto
qed

qed
qed

corollary l-pred-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-pred-inv T (SA[l := j]) (Suc i)
by (metis assms l-perm-inv-elims(4−7 ,10 ,12) l-pred-inv-maintained)

76 Seen Invariant
76.1 Establishment
We first show that the invariant is initially true, i.e. l-seen-inv T SA 0.
lemma l-seen-inv-established:

l-seen-inv T SA 0
by (simp add: l-seen-inv-def)

76.2 Maintenance
We now show that the invariant is maintained after each call of abs-induce-l-step.
lemma l-seen-inv-maintained-no-update:
[[l-seen-inv T SA i; length T ≤ SA ! i]] =⇒ l-seen-inv T SA (Suc i)
[[l-seen-inv T SA i; length SA ≤ i]] =⇒ l-seen-inv T SA (Suc i)
[[l-seen-inv T SA i; SA ! i < length T ; SA ! i = 0]] =⇒ l-seen-inv T SA (Suc i)
[[l-seen-inv T SA i; SA ! i < length T ; SA ! i = Suc j; suffix-type T j = S-type]]

=⇒
l-seen-inv T SA (Suc i)

unfolding l-seen-inv-def
using less-Suc-eq by auto

lemma l-seen-inv-maintained:
assumes l-seen-inv T SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and length SA = length T
and strict-mono α

308

and l-distinct-inv T SA
and l-pred-inv T SA i
and l-unknowns-inv α T B SA
and l-bucket-ptr-inv α T B SA
and l-index-inv α T B SA
shows l-seen-inv T (SA[l := j]) (Suc i)

proof −
from l-distinct-pred-inv-helper [OF ‹i < length SA›

‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
‹l-distinct-inv T SA›
‹l-pred-inv T SA i›]

have j /∈ set SA
by assumption

from ‹Suc j < length T ›
have j < length T

by simp

from bucket-size-imp-less-length[OF ‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›]

‹k = α (T ! j)›
‹l = B ! k›

have l < length T
by simp

from l-index-inv-D[OF ‹l-index-inv α T B SA›
‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›]

‹k = α (T ! j)›
‹l = B ! k›

have l > i
by simp

from l-unknowns-l-bucket-ptr-inv-helper [OF ‹l-unknowns-inv α T B SA›
‹l-bucket-ptr-inv α T B SA›
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
‹strict-mono α›
‹k = α (T ! j)›
‹l = B ! k›]

have SA ! l = length T

309

by assumption

with ‹SA ! i = Suc j› ‹Suc j < length T › ‹i < l›
have (SA[l := j]) ! i < length T

by auto

with ‹SA ! i = Suc j› ‹i < l›
have (SA[l := j]) ! i = Suc j

by auto

from l-seen-inv-upd[OF ‹l-seen-inv T SA i›]
‹l > i›
‹SA ! l = length T ›
‹l < length T ›
‹length SA = length T ›

have l-seen-inv T (SA[l := j]) i
by auto

with l-seen-inv-Suc[OF - ‹(SA[l := j]) ! i = Suc j›]
‹l < length T ›
‹length SA = length T ›

show ?thesis
by (metis length-list-update nth-list-update-eq)

qed

corollary l-seen-inv-perm-maintained:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-seen-inv T (SA[l := j]) (Suc i)
by (metis assms l-perm-inv-elims(2 ,3−7 ,10−12) l-seen-inv-maintained)

77 Permutation
77.1 Establishment
lemma l-perm-inv-established:

assumes l-perm-pre α T B SA
shows l-perm-inv α T B SA SA 0
unfolding l-perm-inv-def
by (simp add: l-perm-pre-elims[OF assms] l-distinct-inv-perm-established[OF assms]

l-unknowns-inv-perm-established[OF assms] l-bucket-ptr-inv-perm-established[OF
assms]

l-index-inv-perm-established[OF assms] l-unchanged-inv-established
l-locations-inv-perm-established[OF assms] l-pred-inv-perm-established[OF

assms]

310

l-seen-inv-established)

77.2 Maintenance
lemma l-perm-inv-maintained:

assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-perm-inv α T (B[k := Suc (B ! k)]) SA0 (SA[l := j]) (Suc i)
unfolding l-perm-inv-def
by (simp add: l-perm-inv-elims[OF assms(1)] l-distinct-inv-perm-maintained[OF

assms(1−5)]
l-unknowns-inv-perm-maintained[OF assms] l-bucket-ptr-inv-perm-maintained[OF

assms]
l-index-inv-perm-maintained[OF assms] l-unchanged-inv-perm-maintained[OF

assms]
l-locations-inv-perm-maintained[OF assms] l-pred-inv-perm-maintained[OF

assms]
l-seen-inv-perm-maintained[OF assms])

lemma l-perm-inv-maintained-no-upd-1 :
assumes l-perm-inv α T B SA0 SA i
and length SA ≤ i

shows l-perm-inv α T B SA0 SA (Suc i)
unfolding l-perm-inv-def
by (simp add: l-perm-inv-elims[OF assms(1)] l-pred-inv-maintained-no-update

l-seen-inv-maintained-no-update(2)[OF l-perm-inv-elims(11)[OF
assms(1)] assms(2)])

lemma l-perm-inv-maintained-no-upd-2 :
assumes l-perm-inv α T B SA0 SA i
and length T ≤ SA ! i

shows l-perm-inv α T B SA0 SA (Suc i)
unfolding l-perm-inv-def
by (simp add: l-perm-inv-elims[OF assms(1)] l-pred-inv-maintained-no-update

l-seen-inv-maintained-no-update(1)[OF l-perm-inv-elims(11)[OF
assms(1)] assms(2)])

lemma l-perm-inv-maintained-no-upd-3 :
assumes l-perm-inv α T B SA0 SA i
and SA ! i < length T
and SA ! i = 0

shows l-perm-inv α T B SA0 SA (Suc i)
unfolding l-perm-inv-def
by (simp add: l-perm-inv-elims[OF assms(1)] l-pred-inv-maintained-no-update

311

l-seen-inv-maintained-no-update(3)[OF l-perm-inv-elims(11)[OF
assms(1)] assms(2−)])

lemma l-perm-inv-maintained-no-upd-4 :
assumes l-perm-inv α T B SA0 SA i
and SA ! i < length T
and SA ! i = Suc j
and suffix-type T j = S-type

shows l-perm-inv α T B SA0 SA (Suc i)
unfolding l-perm-inv-def
by (simp add: l-perm-inv-elims[OF assms(1)] l-pred-inv-maintained-no-update

l-seen-inv-maintained-no-update(4)[OF l-perm-inv-elims(11)[OF
assms(1)] assms(2−)])

lemmas l-perm-inv-maintained-no-update =
l-perm-inv-maintained-no-upd-1 l-perm-inv-maintained-no-upd-2 l-perm-inv-maintained-no-upd-3
l-perm-inv-maintained-no-upd-4

lemma abs-induce-l-perm-step:
assumes l-perm-inv α T B SA0 SA i
and abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)

shows l-perm-inv α T B ′ SA0 SA ′ i ′
proof (cases i < length SA ∧ SA ! i < length T)

assume A: i < length SA ∧ SA ! i < length T
show ?thesis
proof (cases SA ! i)

case 0
then show ?thesis

using A l-perm-inv-maintained-no-update(3)[OF assms(1)] assms(2)
by force

next
case (Suc j)
assume B: SA ! i = Suc j
show ?thesis
proof (cases suffix-type T j)

case S-type
then show ?thesis

using A B l-perm-inv-maintained-no-update(4)[OF assms(1)] assms(2)
by force

next
case L-type
then show ?thesis

using A B l-perm-inv-maintained[OF assms(1)] assms(2)
by (clarsimp simp: Let-def)

qed
qed

next
assume A: ¬(i < length SA ∧ SA ! i < length T)

312

show ?thesis
using l-perm-inv-maintained-no-update(1 ,2)[OF assms(1)] A assms(2)
by force

qed

lemma abs-induce-l-base-perm-inv-maintained:
assumes l-perm-inv α T B SA0 SA 0
and abs-induce-l-base α T B SA = (B ′, SA ′, i)

shows l-perm-inv α T B ′ SA0 SA ′ i
proof −

let ?P = λ(B, SA, i). l-perm-inv α T B SA0 SA i

from assms(2)
have repeat (length T) abs-induce-l-step (B, SA, 0) (α, T) = (B ′, SA ′, i)

by (simp add: abs-induce-l-base-def)
moreover
have

∧
a. ?P a =⇒ ?P (abs-induce-l-step a (α, T))

using abs-induce-l-perm-step by blast
ultimately show ?thesis

using repeat-maintain-inv[of ?P abs-induce-l-step (α, T) (B, SA, 0) length T]
using assms(1) by auto

qed

78 Sorted
lemma l-suffix-sorted-inv-established:

assumes l-bucket-init α T B
shows l-suffix-sorted-inv α T B SA
unfolding l-suffix-sorted-inv-def

proof(intro allI impI)
fix b
assume b ≤ α (Max (set T))
with l-bucket-initD[OF assms, of b]
have B ! b = bucket-start α T b .
then
show ordlistns.sorted

(map (suffix T)
(list-slice SA (bucket-start α T b) (B ! b)))

by simp
qed

lemma l-prefix-sorted-inv-established:
assumes l-bucket-init α T B
shows l-prefix-sorted-inv α T B SA
unfolding l-prefix-sorted-inv-def

proof(intro allI impI)
fix b
assume b ≤ α (Max (set T))
with l-bucket-initD[OF assms, of b]

313

have B ! b = bucket-start α T b .
then show ordlistns.sorted (map (lms-prefix T) (list-slice SA (bucket-start α T

b) (B ! b)))
by simp

qed

lemma l-sorted-inv-maintained-step:
assumes l-perm-inv α T B SA0 SA i
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k
and b ≤ α (Max (set T))
and b 6= k
and ordlistns.sorted (map f (list-slice SA (bucket-start α T b) (B ! b)))

shows ordlistns.sorted (map f (list-slice (SA[l := j]) (bucket-start α T b) (B[k :=
Suc l] ! b)))
proof −

let ?xs = list-slice (SA[l := j]) (bucket-start α T b) (B[k := Suc l] ! b) and
?ys = list-slice SA (bucket-start α T b) (B ! b)

have i < length T
by (metis assms(1 ,2) l-perm-inv-def)

hence k ≤ α (Max (set T))
using assms(1 ,4 ,6) l-perm-inv-def strict-mono-less-eq by fastforce

from ‹Suc j < length T ›
have j < length T

by simp

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
l-perm-inv-elims(4 ,10)[OF assms(1)]]

have j /∈ set SA
by assumption

from l-bucket-ptr-inv-imp-less-l-bucket-end[OF l-perm-inv-elims(6)[OF assms(1)]
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
l-perm-inv-elims(12)[OF assms(1)]]

‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
by simp

314

hence l < length SA
by (metis assms(1) bucket-end-le-length dual-order .strict-trans1 l-bucket-end-le-bucket-end

l-perm-inv-def)

have B[k := Suc l] ! b = B ! b
using assms(9) by auto

have l < bucket-start α T b ∨ B ! b ≤ l
proof −

have b < k ∨ k < b
using ‹b 6= k› less-linear by blast

moreover
have b < k =⇒ ?thesis
proof −

assume b < k
hence bucket-end α T b ≤ bucket-start α T k

by (simp add: less-bucket-end-le-start)
hence l-bucket-end α T b ≤ bucket-start α T k

using l-bucket-end-le-bucket-end le-trans by blast
with l-bucket-ptr-inv-imp-le-l-bucket-end[OF l-perm-inv-elims(6)[OF assms(1)]

‹b ≤ -›]
have B ! b ≤ bucket-start α T k

by linarith
with l-bucket-ptr-inv-imp-ge-bucket-start[OF l-perm-inv-elims(6)[OF assms(1)]

‹k ≤ -›]
show ?thesis

using assms(7) le-trans by blast
qed
moreover
have k < b =⇒ ?thesis
proof −

assume k < b
hence bucket-end α T k ≤ bucket-start α T b

by (simp add: less-bucket-end-le-start)
hence l-bucket-end α T k ≤ bucket-start α T b

using l-bucket-end-le-bucket-end le-trans by blast
with ‹l < l-bucket-end α T k›
show ?thesis

using less-le-trans by blast
qed
ultimately show ?thesis

by blast
qed
with ‹B[k := Suc l] ! b = B ! b›

list-slice-update-unchanged-1
list-slice-update-unchanged-2

have ?xs = ?ys
by auto

then show ?thesis

315

using assms(10) by auto
qed

lemma l-suffix-sorted-inv-maintained-step:
assumes l-perm-inv α T B SA0 SA i
and l-suffix-sorted-pre α T SA0
and l-suffix-sorted-inv α T B SA
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-suffix-sorted-inv α T (B[k := Suc l]) (SA[l := j])
unfolding l-suffix-sorted-inv-def

proof (safe)
fix b
assume b ≤ α (Max (set T))
let ?xs = list-slice (SA[l := j]) (bucket-start α T b) (B[k := Suc l] ! b) and

?ys = list-slice SA (bucket-start α T b) (B ! b)

have i < length T
by (metis assms(1 ,4) l-perm-inv-def)

hence k ≤ α (Max (set T))
using assms(1 ,6 ,8) l-perm-inv-def strict-mono-less-eq by fastforce

from ‹Suc j < length T ›
have j < length T

by simp

from l-distinct-pred-inv-helper [OF ‹i < length SA›
‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
l-perm-inv-elims(4 ,10)[OF assms(1)]]

have j /∈ set SA
by assumption

from l-bucket-ptr-inv-imp-less-l-bucket-end[OF l-perm-inv-elims(6)[OF assms(1)]
‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
l-perm-inv-elims(12)[OF assms(1)]]

‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
by simp

hence l < length SA
by (metis assms(1) bucket-end-le-length dual-order .strict-trans1 l-bucket-end-le-bucket-end

316

l-perm-inv-def)

have b = k ∨ b 6= k
by simp

moreover
have b 6= k =⇒ ordlistns.sorted (map (suffix T) ?xs)
using ‹b ≤ α (Max (set T))› assms l-sorted-inv-maintained-step l-suffix-sorted-inv-def

by blast
moreover
have b = k =⇒ ordlistns.sorted (map (suffix T) ?xs)
proof −

assume b = k
hence B[k := Suc l] ! b = Suc l

using ‹b ≤ α (Max (set T))› assms(1) l-perm-inv-elims(1) by fastforce

have SA[l := j] ! l = j
by (simp add: ‹l < length SA›)

from list-slice-update-unchanged-2 [of B ! b j - bucket-start α T b]
have list-slice (SA[l := j]) (bucket-start α T b) (B ! b) = ?ys

using ‹b = k› assms(9)
by (simp add: list-slice-update-unchanged-2)

hence ?xs = ?ys @ list-slice (SA[l := j]) (B ! b) (B[k := Suc l] ! k)
by (metis Suc-n-not-le-n ‹B[k := Suc l] ! b = Suc l› ‹b = k› ‹k ≤ α (Max

(set T))› assms(1 ,9)
l-bucket-ptr-inv-imp-ge-bucket-start l-perm-inv-elims(6) linear

list-slice-append)
moreover
have list-slice (SA[l := j]) (B ! b) (B[k := Suc l] ! k) = [j]

by (metis ‹B[k := Suc l] ! b = Suc l› ‹SA[l := j] ! l = j›
‹b = k› ‹l < length SA› assms(9)
length-list-update lessI list-slice-Suc list-slice-n-n)

ultimately have ?xs = ?ys @ [j]
by simp

hence map (suffix T) ?xs = (map (suffix T) ?ys) @ [suffix T j]
by simp

moreover
have ordlistns.sorted ((map (suffix T) ?ys) @ [suffix T j])
proof −

from l-suffix-sorted-invD[OF assms(3) ‹b ≤ -›]
have ordlistns.sorted (map (suffix T) ?ys) .
moreover
have ordlistns.sorted [suffix T j]

by simp
moreover
have ∀ x ∈ set (map (suffix T) ?ys).

∀ y ∈ set [suffix T j].
list-less-eq-ns x y

proof(safe)

317

fix x y
assume

x ∈ set (map (suffix T) ?ys)
y ∈ set [suffix T j]

hence y = suffix T j
by simp

have A: length ?ys = B ! b − bucket-start α T b
using ‹b = k› ‹l < length SA› assms(9) min-def by auto

from in-set-conv-nth[THEN iffD1 , OF ‹x ∈ set (map (suffix T) ?ys)›]
have ∃ i ′. x = suffix T (SA ! i ′) ∧

bucket-start α T b ≤ i ′ ∧ i ′ < B ! b
by (metis A add.commute le-add1 length-map

less-diff-conv nth-list-slice nth-map)
then obtain j ′ where j ′-assms:

x = suffix T (SA ! j ′)
bucket-start α T b ≤ j ′
j ′ < B ! b
by blast

hence j ′-less: j ′ < length SA
using ‹b = k› ‹l < length SA› assms(9) dual-order .strict-trans
by blast

with l-locations-inv-D
[OF l-perm-inv-elims(9)[OF assms(1)] ‹b ≤ -› - j ′-assms(2 ,3)]

have SA ! j ′ < length T
suffix-type T (SA ! j ′) = L-type
α (T ! (SA ! j ′)) = b

by blast+
with l-pred-inv-D[OF l-perm-inv-elims(10)[OF assms(1)] j ′-less]
have ∃ j<length SA.

SA ! j = Suc (SA ! j ′) ∧
SA ! j < length T ∧
j < j ′ ∧
j < i

by blast
then obtain i ′ where i ′-assms:

i ′ < length SA
SA ! i ′ = Suc (SA ! j ′)
SA ! i ′ < length T
i ′ < j ′
i ′ < i
by blast

have α (T ! j) = b
using ‹b = k› assms(8) by blast

with ‹α (T ! (SA ! j ′)) = b›
have T ! (SA ! j ′) = T ! j

by (metis (no-types, lifting) assms(1) l-perm-inv-elims(12)

318

less-le not-le strict-mono-less-eq)
moreover
have x = T ! (SA ! j ′) # suffix T (SA ! i ′)

using ‹SA ! i ′ = Suc (SA ! j ′)›
‹SA ! j ′ < length T ›
‹x = suffix T (SA ! j ′)›
suffix-cons-Suc

by auto
moreover
have y = T ! j # suffix T (SA ! i)

using ‹j < length T › ‹y = suffix T j›
suffix-cons-Suc
‹SA ! i = Suc j›

by auto
ultimately
have list-less-eq-ns x y =

list-less-eq-ns (suffix T (SA ! i ′)) (suffix T (SA ! i))
using list-less-eq-ns-cons

[of T ! (SA ! j ′)
suffix T (SA ! i ′)
T ! j
suffix T (SA ! i)]

by simp
moreover
have list-less-eq-ns (suffix T (SA ! i ′)) (suffix T (SA ! i))
proof −

have i ′ < length T
using ‹i < length T › ‹i ′ < i› order .strict-trans by blast

with index-in-bucket-interval-gen
[of i ′ T α,
OF - l-perm-inv-elims(12)[OF assms(1)]]

obtain b0 where b0-assms:
b0 ≤ α (Max (set T))
bucket-start α T b0 ≤ i ′
i ′ < bucket-end α T b0
by blast

with same-bucket-same-hd
[OF l-perm-inv-elims(8 ,9 ,6 ,5)[OF assms(1)],
of b0 i ′]

l-perm-inv-elims(2 ,3 ,14 ,15)[OF assms(1)]
have α (T ! (SA ! i ′)) = b0

using ‹SA ! i ′ < length T › ‹i ′ < length SA› by auto

from index-in-bucket-interval-gen[OF ‹i < length T › l-perm-inv-elims(12)[OF
assms(1)]]

obtain b1 where b1-assms:
b1 ≤ α (Max (set T))
bucket-start α T b1 ≤ i
i < bucket-end α T b1

319

by blast
with same-bucket-same-hd

[OF l-perm-inv-elims(8 ,9 ,6 ,5)[OF assms(1)],
of b1 i]

l-perm-inv-elims(2 ,3 ,14 ,15)[OF assms(1)]
have α (T ! (SA ! i)) = b1

using assms(4−6) by auto

have b0 ≤ b1
proof (rule ccontr)

assume ¬ b0 ≤ b1
hence b1 < b0

by auto
hence bucket-end α T b1 ≤ bucket-start α T b0

by (simp add: less-bucket-end-le-start)
with ‹i < bucket-end α T b1 › ‹bucket-start α T b0 ≤ i ′› ‹i ′ < i›
show False

by linarith
qed
hence b0 < b1 ∨ b0 = b1

by linarith
moreover
have b0 < b1 =⇒ ?thesis
proof −

assume b0 < b1
with ‹α (T ! (SA ! i ′)) = b0 ›

‹α (T ! (SA ! i)) = b1 ›
have T ! (SA ! i ′) < T ! (SA ! i)

using assms(1) l-perm-inv-elims(12) strict-mono-less by blast
moreover
have ∃ as. suffix T (SA ! i ′) = T ! (SA ! i ′) # as

using ‹SA ! i ′ < length T › suffix-cons-Suc by blast
then obtain as where as-assm:

suffix T (SA ! i ′) = T ! (SA ! i ′) # as
by blast

moreover
have ∃ bs. suffix T (SA ! i) = T ! (SA ! i) # bs

by (metis Cons-nth-drop-Suc assms(5 ,6))
then obtain bs where bs-assm:

suffix T (SA ! i) = T ! (SA ! i) # bs
by blast

ultimately show ?thesis
by (simp add: less-le list-less-eq-ns-cons)

qed
moreover
have b0 = b1 =⇒ ?thesis
proof −

assume b0 = b1
hence α (T ! (SA ! i ′)) = α (T ! (SA ! i))

320

by (simp add: ‹α (T ! (SA ! i ′)) = b0 › ‹α (T ! (SA ! i)) = b1 ›)
hence T ! (SA ! i ′) = T ! (SA ! i)

by (metis (no-types, opaque-lifting) assms(1) strict-mono-less
l-perm-inv-elims(12) not-less-iff-gr-or-eq)

have i < bucket-end α T b0
by (simp add: ‹b0 = b1 › ‹i < bucket-end α T b1 ›)

from unknown-range-values[OF l-perm-inv-elims(8 ,5)[OF assms(1)] - -
l-perm-inv-elims(14 ,15)[OF assms(1)]
‹b0 ≤ α -›]

l-perm-inv-elims(2 ,3)[OF assms(1)]
have i < B ! b0 ∨ lms-bucket-start α T b0 ≤ i

using assms(5) assms(6) not-le by force

from unknown-range-values[OF l-perm-inv-elims(8 ,5)[OF assms(1)] - -
l-perm-inv-elims(14 ,15)[OF assms(1)]
‹b0 ≤ α -›]

l-perm-inv-elims(2 ,3)[OF assms(1)]
‹SA ! i ′ < length T ›

have i ′ < B ! b0 ∨
lms-bucket-start α T b0 ≤ i ′

using not-le by force
moreover
have i ′ < B ! b0 =⇒ ?thesis
proof −

assume i ′ < B ! b0
have i < B ! b0 =⇒ ?thesis
proof −

assume i-b0-assm: i < B ! b0
let ?xs = list-slice SA (bucket-start α T b0) (B ! b0)

have i ′ ≤ i
by (simp add: ‹i ′ < i› less-imp-le-nat)

from l-suffix-sorted-invD[OF assms(3) ‹b0 ≤ α -›]
have ordlistns.sorted (map (suffix T) ?xs) .
with ordlistns.list-slice-sorted-nth-mono

[OF - b0-assms(2) ‹i ′ ≤ i› i-b0-assm,
of map (suffix T) SA]

show ?thesis
by (metis i ′-assms(1) assms(4) length-map

map-list-slice nth-map)
qed
moreover
have lms-bucket-start α T b0 ≤ i =⇒ ?thesis
proof −

assume lms-bucket-start α T b0 ≤ i
with lms-init-D

[OF lms-init-unchanged

321

[OF l-perm-inv-elims(8)[OF assms(1)]],
OF - - l-perm-inv-elims(14)[OF assms(1)]

‹b0 ≤ α -›]
l-perm-inv-elims(2 ,3)[OF assms(1)]
‹i < bucket-end α T b0 ›

have SA ! i ∈ lms-bucket α T b0
by (metis bucket-end-le-length list-slice-nth-mem)

hence suffix-type T (SA ! i) = S-type
by (metis ‹b0 ≤ α (Max (set T))›

‹i < bucket-end α T b0 ›
‹length SA = length SA0 ›
‹length SA0 = length T ›
‹lms-bucket-start α T b0 ≤ i›
‹lms-init α T SA0 ›
assms(1) abs-is-lms-def l-perm-inv-elims(8)
lms-init-nth lms-init-unchanged)

moreover
from l-locations-inv-D

[OF l-perm-inv-elims(9)[OF assms(1)]
‹b0 ≤ α -›
i ′-assms(1)
b0-assms(2)
‹i ′ < B ! b0 ›]

have suffix-type T (SA ! i ′) = L-type SA ! i ′ < length T
by blast+

ultimately show ?thesis
using l-less-than-s-type-suffix[of SA ! i T SA ! i ′]
by (simp add: ordlistns.less-imp-le ‹α (T ! (SA ! i ′)) = b0 ›

‹T ! (SA ! i ′) = T ! (SA ! i)› assms(5 ,6))
qed
ultimately
show ?thesis

using ‹i < B ! b0 ∨ lms-bucket-start α T b0 ≤ i›
by blast

qed
moreover
have lms-bucket-start α T b0 ≤ i ′ =⇒ ?thesis
proof −

assume lms-bucket-start α T b0 ≤ i ′

let ?xs =
list-slice SA (lms-bucket-start α T b0) (bucket-end α T b0)

from l-suffix-sorted-pre-maintained
[OF l-perm-inv-elims(8)[OF assms(1)]]

l-perm-inv-elims(2 ,3)[OF assms(1)]
l-suffix-sorted-preD[of α T SA b0 , OF - ‹b0 ≤ α -›]

have ordlistns.sorted (map (suffix T) ?xs)
by (simp add: assms(2))

322

with ordlistns.list-slice-sorted-nth-mono
[of map (suffix T) SA

lms-bucket-start α T b0
bucket-end α T b0 i ′ i]

‹i < bucket-end α T b0 ›
‹i ′ < i›
i ′-assms(1)
‹lms-bucket-start α T b0 ≤ i ′›

show ?thesis
by (metis assms(4) length-map map-list-slice

not-less not-less-iff-gr-or-eq nth-map)
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
ultimately show list-less-eq-ns x y

by simp
qed
ultimately show ?thesis

using ordlistns.sorted-append[of map (suffix T) ?ys [suffix T j]]
by blast

qed
ultimately show ?thesis

by simp
qed
ultimately show ordlistns.sorted (map (suffix T) ?xs)

by blast
qed

lemma l-prefix-sorted-inv-maintained-step:
assumes l-perm-inv α T B SA0 SA i
and l-prefix-sorted-pre α T SA0
and l-prefix-sorted-inv α T B SA
and i < length SA
and SA ! i = Suc j
and Suc j < length T
and suffix-type T j = L-type
and k = α (T ! j)
and l = B ! k

shows l-prefix-sorted-inv α T (B[k := Suc l]) (SA[l := j])
unfolding l-prefix-sorted-inv-def

proof (safe)
fix b
assume b ≤ α (Max (set T))
let ?xs = list-slice (SA[l := j]) (bucket-start α T b) (B[k := Suc l] ! b)
and ?ys = list-slice SA (bucket-start α T b) (B ! b)

323

have i < length T
by (metis assms(1 ,4) l-perm-inv-def)

hence k ≤ α (Max (set T))
using assms(1 ,6 ,8) l-perm-inv-def strict-mono-less-eq by fastforce

from ‹Suc j < length T ›
have j < length T

by simp

from l-distinct-pred-inv-helper
[OF ‹i < length SA›

‹SA ! i = Suc j›
‹Suc j < length T ›
‹suffix-type T j = L-type›
l-perm-inv-elims(4 ,10)[OF assms(1)]]

have j /∈ set SA
by assumption

from l-bucket-ptr-inv-imp-less-l-bucket-end
[OF l-perm-inv-elims(6)[OF assms(1)]

‹j < length T ›
‹suffix-type T j = L-type›
‹j /∈ set SA›
l-perm-inv-elims(12)[OF assms(1)]]

‹k = α (T ! j)›
‹l = B ! k›

have l < l-bucket-end α T k
by simp

hence l < length SA
by (metis bucket-end-le-length dual-order .strict-trans1

assms(1) l-bucket-end-le-bucket-end l-perm-inv-def)

have b = k ∨ b 6= k
by simp

moreover
have b 6= k =⇒

ordlistns.sorted (map (lms-prefix T) ?xs)
using ‹b ≤ α (Max (set T))›

assms l-sorted-inv-maintained-step l-prefix-sorted-inv-def
by blast

moreover
have b = k =⇒

ordlistns.sorted (map (lms-prefix T) ?xs)
proof −

assume b = k
hence B[k := Suc l] ! b = Suc l

using ‹b ≤ α (Max (set T))› assms(1) l-perm-inv-elims(1)
by fastforce

324

have SA[l := j] ! l = j
by (simp add: ‹l < length SA›)

from list-slice-update-unchanged-2
have list-slice (SA[l := j]) (bucket-start α T b) (B ! b) = ?ys

using ‹b = k› assms(9)
by fast

hence ?xs = ?ys @ list-slice (SA[l := j]) (B ! b) (B[k := Suc l] ! k)
by (metis ‹B[k := Suc l] ! b = Suc l› ‹b = k›

‹k ≤ α (Max (set T))›
assms(1 ,9) Suc-n-not-le-n list-slice-append linear
l-bucket-ptr-inv-imp-ge-bucket-start l-perm-inv-elims(6))

moreover
have list-slice (SA[l := j]) (B ! b) (B[k := Suc l] ! k) = [j]

by (metis ‹B[k := Suc l] ! b = Suc l›
‹SA[l := j] ! l = j›
‹b = k›
‹l < length SA›
assms(9) length-list-update lessI list-slice-Suc list-slice-n-n)

ultimately
have ?xs = ?ys @ [j]

by simp
hence map (lms-prefix T) ?xs = (map (lms-prefix T) ?ys) @ [lms-prefix T j]

by simp
moreover
have ordlistns.sorted ((map (lms-prefix T) ?ys) @ [lms-prefix T j])
proof −

from l-prefix-sorted-invD[OF assms(3) ‹b ≤ -›]
have ordlistns.sorted (map (lms-prefix T) ?ys) .
moreover
have ordlistns.sorted [lms-prefix T j]

by simp
moreover
have ∀ x ∈ set (map (lms-prefix T) ?ys). ∀ y ∈ set [lms-prefix T j].

list-less-eq-ns x y
proof(safe)

fix x y
assume x ∈ set (map (lms-prefix T) ?ys) y ∈ set [lms-prefix T j]
hence y = lms-prefix T j

by simp

have A: length ?ys = B ! b − bucket-start α T b
using ‹b = k› ‹l < length SA› assms(9) min-def by auto

from in-set-conv-nth[THEN iffD1 , OF ‹x ∈ set (map (lms-prefix T) ?ys)›]
have ∃ i ′. x = lms-prefix T (SA ! i ′) ∧

bucket-start α T b ≤ i ′ ∧
i ′ < B ! b

325

by (metis A add.commute le-add1 length-map less-diff-conv
nth-list-slice nth-map)

then obtain j ′ where j ′-assms:
x = lms-prefix T (SA ! j ′)
bucket-start α T b ≤ j ′
j ′ < B ! b
by blast

hence j ′ < length SA
using ‹b = k› ‹l < length SA›

assms(9) dual-order .strict-trans by blast
with l-locations-inv-D

[OF l-perm-inv-elims(9)[OF assms(1)]
‹b ≤ -› -
j ′-assms(2 ,3)]

have SA ! j ′ < length T
suffix-type T (SA ! j ′) = L-type
α (T ! (SA ! j ′)) = b

by blast+
with l-pred-inv-D[OF l-perm-inv-elims(10)[OF assms(1)] ‹j ′ < length SA›]
have ∃ j<length SA. SA ! j = Suc (SA ! j ′) ∧ SA ! j < length T ∧ j < j ′ ∧

j < i
by blast

then obtain i ′ where
i ′ < length SA
SA ! i ′ = Suc (SA ! j ′)
SA ! i ′ < length T
i ′ < j ′
i ′ < i
by blast

have α (T ! j) = b
using ‹b = k› assms(8) by blast

with ‹α (T ! (SA ! j ′)) = b›
have T ! (SA ! j ′) = T ! j

by (metis (no-types, lifting) assms(1) l-perm-inv-elims(12) less-le not-le
strict-mono-less-eq)

moreover
have x = T ! (SA ! j ′) # lms-prefix T (SA ! i ′)

by (simp add: ‹SA ! i ′ = Suc (SA ! j ′)› ‹SA ! j ′ < length T ›
‹suffix-type T (SA ! j ′) = L-type› ‹x = lms-prefix T (SA ! j ′)›
l-type-lms-prefix-cons)

moreover
have y = T ! j # lms-prefix T (SA ! i)

by (simp add: ‹j < length T › ‹y = lms-prefix T j› assms(5 ,7)
l-type-lms-prefix-cons)

ultimately have
list-less-eq-ns x y =

list-less-eq-ns (lms-prefix T (SA ! i ′)) (lms-prefix T (SA ! i))
using list-less-eq-ns-cons[of T ! (SA ! j ′) lms-prefix T (SA ! i ′) T ! j

326

lms-prefix T (SA ! i)]
by simp

moreover
have list-less-eq-ns (lms-prefix T (SA ! i ′)) (lms-prefix T (SA ! i))
proof −

have i ′ < length T
using ‹i < length T › ‹i ′ < i› order .strict-trans by blast

with index-in-bucket-interval-gen[of i ′ T α, OF - l-perm-inv-elims(12)[OF
assms(1)]]

obtain b0 where
b0 ≤ α (Max (set T))
bucket-start α T b0 ≤ i ′
i ′ < bucket-end α T b0
by blast
with same-bucket-same-hd[OF l-perm-inv-elims(8 ,9 ,6 ,5)[OF assms(1)],

of b0 i ′]
l-perm-inv-elims(2 ,3 ,14 ,15)[OF assms(1)]

have α (T ! (SA ! i ′)) = b0
using ‹SA ! i ′ < length T › ‹i ′ < length SA› by auto

from index-in-bucket-interval-gen[OF ‹i < length T › l-perm-inv-elims(12)[OF
assms(1)]]

obtain b1 where
b1 ≤ α (Max (set T))
bucket-start α T b1 ≤ i
i < bucket-end α T b1
by blast
with same-bucket-same-hd[OF l-perm-inv-elims(8 ,9 ,6 ,5)[OF assms(1)],

of b1 i]
l-perm-inv-elims(2 ,3 ,14 ,15)[OF assms(1)]

have α (T ! (SA ! i)) = b1
using assms(4−6) by auto

have b0 ≤ b1
proof (rule ccontr)

assume ¬b0 ≤ b1
hence b1 < b0

by auto
hence bucket-end α T b1 ≤ bucket-start α T b0

by (simp add: less-bucket-end-le-start)
with ‹i < bucket-end α T b1 › ‹bucket-start α T b0 ≤ i ′› ‹i ′ < i›
show False

by linarith
qed
hence b0 < b1 ∨ b0 = b1

by linarith
moreover
have b0 < b1 =⇒ ?thesis
proof −

327

assume b0 < b1
with ‹α (T ! (SA ! i ′)) = b0 › ‹α (T ! (SA ! i)) = b1 ›
have T ! (SA ! i ′) < T ! (SA ! i)

using assms(1) l-perm-inv-elims(12) strict-mono-less by blast
moreover
have ∃ as. lms-prefix T (SA ! i ′) = T ! (SA ! i ′) # as

by (metis ‹SA ! i ′ < length T › lms-slice-hd
lms-lms-prefix not-lms-imp-next-eq-lms-prefix)

then obtain as where
lms-prefix T (SA ! i ′) = T ! (SA ! i ′) # as
by blast

moreover
have ∃ bs. lms-prefix T (SA ! i) = T ! (SA ! i) # bs

by (metis (full-types) SL-types.exhaust assms(5−7) abs-is-lms-def
l-type-lms-prefix-cons lms-lms-prefix)

then obtain bs where
lms-prefix T (SA ! i) = T ! (SA ! i) # bs
by blast

ultimately show ?thesis
by (simp add: less-le list-less-eq-ns-cons)

qed
moreover
have b0 = b1 =⇒ ?thesis
proof −

assume b0 = b1
hence α (T ! (SA ! i ′)) = α (T ! (SA ! i))

by (simp add: ‹α (T ! (SA ! i ′)) = b0 › ‹α (T ! (SA ! i)) = b1 ›)
hence T ! (SA ! i ′) = T ! (SA ! i)

by (metis (no-types, opaque-lifting) assms(1) strict-mono-less
l-perm-inv-elims(12) not-less-iff-gr-or-eq)

have i < bucket-end α T b0
by (simp add: ‹b0 = b1 › ‹i < bucket-end α T b1 ›)

from unknown-range-values
[OF l-perm-inv-elims(8 ,5)[OF assms(1)] - -

l-perm-inv-elims(14 ,15)[OF assms(1)] ‹b0 ≤ α -›]
l-perm-inv-elims(2 ,3)[OF assms(1)]

have i < B ! b0 ∨ lms-bucket-start α T b0 ≤ i
using assms(5) assms(6) not-le by force

from unknown-range-values
[OF l-perm-inv-elims(8 ,5)[OF assms(1)] - -

l-perm-inv-elims(14 ,15)[OF assms(1)] ‹b0 ≤ α -›]
l-perm-inv-elims(2 ,3)[OF assms(1)]
‹SA ! i ′ < length T ›

have i ′ < B ! b0 ∨ lms-bucket-start α T b0 ≤ i ′
using not-le by force

moreover

328

have i ′ < B ! b0 =⇒ ?thesis
proof −

assume i ′ < B ! b0
have i < B ! b0 =⇒ ?thesis
proof −

assume i < B ! b0
let ?xs = list-slice SA (bucket-start α T b0) (B ! b0)

have i ′ ≤ i
by (simp add: ‹i ′ < i› less-imp-le-nat)

from l-prefix-sorted-invD[OF assms(3) ‹b0 ≤ α -›]
have ordlistns.sorted (map (lms-prefix T) ?xs) .
with ordlistns.list-slice-sorted-nth-mono

[OF - ‹bucket-start α T b0 ≤ i ′› ‹i ′ ≤ i›
‹i < B ! b0 ›,

of map (lms-prefix T) SA]
show ?thesis

by (metis ‹i ′ < length SA› assms(4) length-map map-list-slice
nth-map)

qed
moreover
have lms-bucket-start α T b0 ≤ i =⇒ ?thesis
proof −

assume lms-bucket-start α T b0 ≤ i
with lms-init-D[OF lms-init-unchanged

[OF l-perm-inv-elims(8)[OF assms(1)]],
OF - - l-perm-inv-elims(14)[OF assms(1)] ‹b0 ≤ α -›]

l-perm-inv-elims(2 ,3)[OF assms(1)]
‹i < bucket-end α T b0 ›

have SA ! i ∈ lms-bucket α T b0
by (metis bucket-end-le-length list-slice-nth-mem)

hence suffix-type T (SA ! i) = S-type
by (metis ‹b0 ≤ α (Max (set T))›

‹i < bucket-end α T b0 ›
‹length SA = length SA0 ›
‹length SA0 = length T ›
‹lms-bucket-start α T b0 ≤ i›
‹lms-init α T SA0 › assms(1)
abs-is-lms-def l-perm-inv-elims(8) lms-init-nth
lms-init-unchanged)

moreover
from l-locations-inv-D[OF l-perm-inv-elims(9)[OF assms(1)] ‹b0 ≤

α -›
‹i ′ < length SA› ‹bucket-start α T b0 ≤ i ′›
‹i ′ < B ! b0 ›]

have suffix-type T (SA ! i ′) = L-type SA ! i ′ < length T
by blast+

ultimately show ?thesis
using lms-prefix-l-less-than-s-type[of SA ! i T SA ! i ′]

329

by (simp add: ‹T ! (SA ! i ′) = T ! (SA ! i)› assms(5−6)
lms-prefix-l-less-than-s-type
ordlistns.dual-order .strict-implies-order)

qed
ultimately show ?thesis

using ‹i < B ! b0 ∨ lms-bucket-start α T b0 ≤ i› by blast
qed
moreover
have lms-bucket-start α T b0 ≤ i ′ =⇒ ?thesis
proof −

assume lms-bucket-start α T b0 ≤ i ′

let ?xs = list-slice SA (lms-bucket-start α T b0) (bucket-end α T b0)

from l-prefix-sorted-pre-maintained[OF l-perm-inv-elims(8)[OF assms(1)]]
l-perm-inv-elims(2 ,3)[OF assms(1)]
l-prefix-sorted-preD[of α T SA b0 , OF - ‹b0 ≤ α -›]

have ordlistns.sorted (map (lms-prefix T) ?xs)
by (simp add: assms(2))

with ordlistns.list-slice-sorted-nth-mono
[of map (lms-prefix T) SA

lms-bucket-start α T b0
bucket-end α T b0 i ′ i]

‹i < bucket-end α T b0 › ‹i ′ < i›
‹i ′ < length SA›
‹lms-bucket-start α T b0 ≤ i ′›

show ?thesis
by (metis assms(4) length-map map-list-slice

not-less not-less-iff-gr-or-eq nth-map)
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
ultimately show list-less-eq-ns x y

by simp
qed
ultimately show ?thesis

using ordlistns.sorted-append
[of map (lms-prefix T) ?ys

[lms-prefix T j]]
by blast

qed
ultimately show ?thesis

by simp
qed
ultimately show ordlistns.sorted (map (lms-prefix T) ?xs)

330

by blast
qed

lemma abs-induce-l-suffix-sorted-step:
assumes l-perm-inv α T B SA0 SA i
and l-suffix-sorted-pre α T SA0
and l-suffix-sorted-inv α T B SA
and abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)
shows l-suffix-sorted-inv α T B ′ SA ′

proof (cases i < length SA ∧ SA ! i < length T)
assume ¬ (i < length SA ∧ SA ! i < length T)
then show ?thesis

using assms(3 ,4) by force
next

assume A: i < length SA ∧ SA ! i < length T
show ?thesis
proof (cases SA ! i)

case 0
then show ?thesis

using assms(3 ,4) A by force
next

case (Suc j)
assume B: SA ! i = Suc j
show ?thesis
proof (cases suffix-type T j)

case S-type
then show ?thesis

using assms(3 ,4) A B by force
next

case L-type
then show ?thesis

using assms(3 ,4) A B
l-suffix-sorted-inv-maintained-step

[OF assms(1−3), of j α (T ! j) B ! α (T ! j)]
by (clarsimp simp: Let-def)

qed
qed

qed

lemma abs-induce-l-prefix-sorted-step:
assumes l-perm-inv α T B SA0 SA i
and l-prefix-sorted-pre α T SA0
and l-prefix-sorted-inv α T B SA
and abs-induce-l-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)
shows l-prefix-sorted-inv α T B ′ SA ′

proof (cases i < length SA ∧ SA ! i < length T)
assume ¬ (i < length SA ∧ SA ! i < length T)
then show ?thesis

using assms(3 ,4) by force

331

next
assume A: i < length SA ∧ SA ! i < length T
show ?thesis
proof (cases SA ! i)

case 0
then show ?thesis

using assms(3 ,4) A by force
next

case (Suc j)
assume B: SA ! i = Suc j
show ?thesis
proof (cases suffix-type T j)

case S-type
then show ?thesis

using assms(3 ,4) A B by force
next

case L-type
then show ?thesis

using assms(3 ,4) A B
l-prefix-sorted-inv-maintained-step[OF assms(1−3), of j α (T ! j) B !

α (T ! j)]
by (clarsimp simp: Let-def)

qed
qed

qed

lemma abs-induce-l-base-suffix-sorted-inv-maintained:
assumes l-perm-inv α T B SA0 SA 0
and l-suffix-sorted-pre α T SA0
and l-suffix-sorted-inv α T B SA
and abs-induce-l-base α T B SA = (B ′, SA ′, i)
shows l-suffix-sorted-inv α T B ′ SA ′

proof −
let ?P = λ(B, SA, i). l-perm-inv α T B SA0 SA i ∧ l-suffix-sorted-inv α T B

SA

from assms(4)
have repeat (length T) abs-induce-l-step (B, SA, 0) (α, T) = (B ′, SA ′, i)

by (simp add: abs-induce-l-base-def)
moreover
have

∧
a. ?P a =⇒ ?P (abs-induce-l-step a (α, T))

using abs-induce-l-perm-step abs-induce-l-suffix-sorted-step assms(2) by blast
ultimately show ?thesis

using repeat-maintain-inv[of ?P abs-induce-l-step (α, T) (B, SA, 0) length T]
using assms(1 ,2 ,3) by auto

qed

lemma abs-induce-l-base-prefix-sorted-inv-maintained:
assumes l-perm-inv α T B SA0 SA 0

332

and l-prefix-sorted-pre α T SA0
and l-prefix-sorted-inv α T B SA
and abs-induce-l-base α T B SA = (B ′, SA ′, i)
shows l-prefix-sorted-inv α T B ′ SA ′

proof −
let ?P = λ(B, SA, i). l-perm-inv α T B SA0 SA i ∧ l-prefix-sorted-inv α T B

SA

from assms(4)
have repeat (length T) abs-induce-l-step (B, SA, 0) (α, T) = (B ′, SA ′, i)

by (simp add: abs-induce-l-base-def)
moreover
have

∧
a. ?P a =⇒ ?P (abs-induce-l-step a (α, T))

using abs-induce-l-perm-step abs-induce-l-prefix-sorted-step assms(2) by blast
ultimately show ?thesis

using repeat-maintain-inv[of ?P abs-induce-l-step (α, T) (B, SA, 0) length T]
using assms(1 ,2 ,3) by auto

qed

79 L-type Exhaustiveness
The abs-induce-l function is exhaustive if it has inserted all the L-types
definition l-type-exhaustive :: (′a :: {linorder , order-bot}) list ⇒ nat list ⇒ bool

where
l-type-exhaustive T SA = (∀ i < length T . suffix-type T i = L-type −→ i ∈ set SA)

There two cases when the abs-induce-l function is not exhaustive: when
there is an L-type that is not in SA but its successor (right neighbour) is
in SA, and the other is when there is an L-type that is not in SA and its
successor is also not in SA. We will show that both cases will be False.
lemma not-l-type-exhaustive-imp-ex:
¬l-type-exhaustive T SA =⇒
(∃ i < length T . suffix-type T i = L-type ∧ i /∈ set SA ∧ Suc i ∈ set SA) ∨
((∃ i < length T . suffix-type T i = L-type ∧ i /∈ set SA) ∧
¬(∃ i. i < length T ∧ suffix-type T i = L-type ∧ i /∈ set SA ∧ Suc i ∈ set SA))

using l-type-exhaustive-def
by blast

lemma l-type-exhaustive-imp-l-bucket:
[[strict-mono α; l-type-exhaustive T SA; b ≤ α (Max (set T))]] =⇒
{i. i ∈ set SA ∧ i ∈ l-bucket α T b} = l-bucket α T b

by (intro equalityI subsetI ; clarsimp simp add: bucket-def l-bucket-def l-type-exhaustive-def)

lemma l-type-exhaustive-imp-all-l-types:
l-type-exhaustive T SA =⇒
{i. i ∈ set SA ∧ i ∈ l-bucket α T (α (T ! i))} = {i. i < length T ∧ suffix-type

T i = L-type}
apply (intro equalityI subsetI ; clarsimp)

333

apply (simp add: bucket-def l-bucket-def)
by (simp add: l-type-exhaustive-def bucket-def l-bucket-def)

79.1 Case 1
In the case 1, we have that ∃ k<length T . suffix-type T k = L-type ∧ k /∈
set SA ∧ Suc k ∈ set SA. From this, we know that ∃ j<length SA. SA ! j =
Suc k
lemma

Suc k ∈ set SA=⇒ ∃ j < length SA. SA ! j = Suc k
by (simp add: in-set-conv-nth)

After executing the abs-induce-l function, we know that we have seen

79.2 Case 2
In the case 2, we have that ∃ k<length T . suffix-type T k = L-type ∧ k /∈
set SA ∧ Suc k /∈ set SA.
lemma finite-and-Suc-imp-False:

assumes finite-A: finite A
and not-empty: A 6= {}
and Suc-A: ∀ a ∈ A. Suc a ∈ A
shows False

proof −
from Max-in[OF finite-A not-empty]
have Max A ∈ A by assumption

with Suc-A bspec
have Suc (Max A) ∈ A by blast

with ‹Max A ∈ A› finite-A
show ?thesis

using Max-ge Suc-n-not-le-n by blast
qed

lemma not-exhaustive-neighbour-is-l-type:
assumes A: A = {k |k. suffix-type T k = L-type ∧ k /∈ B ∧ Suc k /∈ B ∧ k <

length T}
and subset-B: {k |k. abs-is-lms T k} ⊆ B
and k ∈ A
shows suffix-type T (Suc k) = L-type

proof −
from A ‹k ∈ A›
have Suc k /∈ B

by blast
with subset-B
have ¬abs-is-lms T (Suc k)

by blast

334

from A ‹k ∈ A›
have suffix-type T k = L-type

by blast

with ‹∼abs-is-lms T (Suc k)›
show ?thesis

by (meson abs-is-lms-def suffix-type-def)
qed

lemma no-exhausted-neighbour :
assumes A: A = {k |k. suffix-type T k = L-type ∧ k /∈ B ∧ Suc k /∈ B ∧ k <

length T}
and B: {k |k. abs-is-lms T k} ⊆ B
and C : ¬(∃ k. k < length T ∧ suffix-type T k = L-type ∧ k /∈ B ∧ Suc k ∈ B)
and D: suffix-type T i = L-type
and E : i /∈ B
and F : i < length T
shows i ∈ A

proof −
from C [simplified] D E F
have Suc i /∈ B

by blast

with A D E F
show ?thesis

by blast
qed

lemma l-type-less-length-imp-neightbour-less-length:
[[suffix-type T i = L-type; i < length T]] =⇒ Suc i < length T
by (metis SL-types.simps(2) Suc-lessI suffix-type-last)

lemma no-exhausted-neighbour-imp-False:
assumes A: A = {k |k. suffix-type T k = L-type ∧ k /∈ B ∧ Suc k /∈ B ∧ k <

length T}
and B: {k |k. abs-is-lms T k} ⊆ B
and C : ¬(∃ k. k < length T ∧ suffix-type T k = L-type ∧ k /∈ B ∧ Suc k ∈ B)
and nempty: A 6= {}
shows False

proof −

from A
have finite A

by auto

have ∀ a ∈ A. Suc a ∈ A
proof

fix a

335

assume a ∈ A
with not-exhaustive-neighbour-is-l-type[OF A B]
have suffix-type T (Suc a) = L-type

by blast

from ‹a ∈ A› A
have Suc a < length T

by (simp add: l-type-less-length-imp-neightbour-less-length)

from ‹a ∈ A› A
have Suc a /∈ B

by blast

from no-exhausted-neighbour [OF A B C ‹suffix-type T (Suc a) = L-type› ‹Suc
a /∈ B› ‹Suc a < length T ›]

show Suc a ∈ A
by blast

qed

with ‹finite A› nempty
show ?thesis

using finite-and-Suc-imp-False by blast
qed

79.3 Exhaustiveness Proof
lemma abs-induce-l-exhaustive:

assumes l-seen-inv T SA (length SA)
and lms-init α T SA0
and length SA = length SA0
and length SA = length T
and strict-mono α
and l-unchanged-inv α T SA0 SA
shows l-type-exhaustive T SA

proof(rule ccontr)

let ?P = ∃ i<length T . suffix-type T i = L-type ∧ i /∈ set SA ∧ Suc i ∈ set SA
and

?Q1 = ∃ i<length T . suffix-type T i = L-type ∧ i /∈ set SA and
?Q2 = ¬(∃ i. i < length T ∧ suffix-type T i = L-type ∧ i /∈ set SA ∧ Suc i

∈ set SA)

assume ¬l-type-exhaustive T SA
with not-l-type-exhaustive-imp-ex
have ?P ∨ (?Q1 ∧ ?Q2)

by blast
then show False
proof

assume ?P

336

then obtain i where
i < length T
suffix-type T i = L-type
i /∈ set SA
Suc i ∈ set SA
by blast

from ‹Suc i ∈ set SA›
have ∃ k < length SA. SA ! k = Suc i

by (simp add: in-set-conv-nth)
then obtain k where

k < length SA
SA ! k = Suc i
by blast

from l-type-less-length-imp-neightbour-less-length[OF ‹suffix-type T i = L-type›
‹i < length T ›]

have Suc i < length T
by assumption

from ‹l-seen-inv T SA (length SA)›
have ∀ i < length SA. SA ! i < length T −→

(∀ j. SA ! i = Suc j ∧ suffix-type T j = L-type −→
(∃ k < length SA. SA ! k = j))

using l-seen-inv-def by blast
with ‹k < length SA› ‹SA ! k = Suc i› ‹Suc i < length T ›
have ∀ j. SA ! k = Suc j ∧ suffix-type T j = L-type −→ (∃ k<length SA. SA !

k = j)
by auto

with ‹SA ! k = Suc i› ‹suffix-type T i = L-type›
have ∃ k<length SA. SA ! k = i

by blast
with ‹i /∈ set SA›
show ?thesis

using nth-mem by blast
next

assume ?Q1 ∧ ?Q2
then have ?Q1 ?Q2

by blast+
then have ∃A. A = {k |k. suffix-type T k = L-type ∧ k /∈ set SA ∧ Suc k /∈

set SA ∧ k < length T}
by blast

then obtain A where
A-eq: A = {k |k. suffix-type T k = L-type ∧ k /∈ set SA ∧ Suc k /∈ set SA ∧

k < length T}
by blast

from ‹?Q1 › ‹?Q2 › A-eq
have A 6= {}

337

by blast

from lms-init-unchanged[OF ‹l-unchanged-inv α T SA0 SA›
‹length SA = length SA0 ›
‹length SA = length T ›
‹lms-init α T SA0 ›]

lms-init-imp-all-lms-in-SA[OF - ‹strict-mono α›]
have lms-subset-SA : {k |k. abs-is-lms T k} ⊆ set SA

by blast

from no-exhausted-neighbour-imp-False[OF A-eq lms-subset-SA ‹?Q2 › ‹A 6=
{}›]

show ?thesis
by assumption

qed
qed

80 Correctness and Exhaustiveness
lemma abs-induce-l-perm-inv-imp-exhaustiveness:

assumes abs-induce-l-base α T B SA = (B ′, SA ′, i)
and l-perm-inv α T B ′ SA SA ′ i

shows l-type-exhaustive T SA ′

proof −
from abs-induce-l-index[of α T B SA] assms(1)
have i = length T

by simp
hence i = length SA ′

using assms(2) l-perm-inv-elims(2 ,3) by fastforce
hence P: l-perm-inv α T B ′ SA SA ′ (length SA ′)

using assms(2) by blast

have length SA ′ = length T
using ‹i = length SA ′› ‹i = length T › by blast

with abs-induce-l-exhaustive[OF l-perm-inv-elims(11 ,14 ,3)[OF P] - l-perm-inv-elims(12 ,8)[OF
P]]

show ?thesis .
qed

lemma abs-induce-l-perm-inv-B-val:
assumes abs-induce-l-base α T B SA = (B ′, SA ′, i)
and l-perm-inv α T B ′ SA SA ′ i
and b ≤ α (Max (set T))

shows B ′ ! b = l-bucket-end α T b
proof −
from abs-induce-l-perm-inv-imp-exhaustiveness[OF assms(1−2)]

have l-type-exhaustive T SA ′

by assumption

338

have strict-mono α
using assms(2) l-perm-inv-elims(12) by blast

from l-bucket-ptr-inv-D[OF l-perm-inv-elims(6)[OF assms(2)] assms(3)]
have B ′ ! b = bucket-start α T b + num-l-types α T SA ′ b

by blast
moreover
from l-type-exhaustive-imp-l-bucket[OF ‹strict-mono α› ‹l-type-exhaustive T SA ′›

assms(3)]
have cur-l-types α T SA ′ b = l-bucket α T b

unfolding cur-l-types-def
by blast

hence num-l-types α T SA ′ b = l-bucket-size α T b
by (simp add: l-bucket-size-def num-l-types-def)

ultimately
show ?thesis

by (simp add: l-bucket-end-def)
qed

theorem abs-induce-l-distinct-l-bucket:
assumes l-perm-pre α T B SA
and b ≤ α (Max (set T))

shows distinct (list-slice (abs-induce-l α T B SA) (bucket-start α T b) (l-bucket-end
α T b))
proof −

from abs-induce-l-index[of α T B SA]
obtain B ′ SA ′ where

A: abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by blast

with abs-induce-l-base-perm-inv-maintained[OF l-perm-inv-established[OF assms(1)],
of B ′ SA ′ length T]

have B: l-perm-inv α T B ′ SA SA ′ (length T) .
with abs-induce-l-perm-inv-B-val[OF A - assms(2)]
have B ′ ! b = l-bucket-end α T b .
with l-distinct-slice[OF l-perm-inv-elims(4 ,9)[OF B] - assms(2)] l-perm-inv-elims(2 ,3)[OF

B]
have distinct (list-slice SA ′ (bucket-start α T b) (l-bucket-end α T b))

by simp
then show ?thesis

by (simp add: A abs-induce-l-def)
qed

theorem abs-induce-l-list-slice-l-bucket:
assumes l-perm-pre α T B SA
and b ≤ α (Max (set T))

shows set (list-slice (abs-induce-l α T B SA) (bucket-start α T b) (l-bucket-end α
T b)) = l-bucket α T b

(is set ?xs = l-bucket α T b)
proof −

339

from abs-induce-l-index[of α T B SA]
obtain B ′ SA ′ where

A: abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by blast

with abs-induce-l-base-perm-inv-maintained[OF l-perm-inv-established[OF assms(1)],
of B ′ SA ′ length T]

have B: l-perm-inv α T B ′ SA SA ′ (length T) .
with abs-induce-l-perm-inv-B-val[OF A - assms(2)]
have B ′ ! b = l-bucket-end α T b .
with l-locations-list-slice[OF l-perm-inv-elims(9)[OF B] assms(2)]
have set (list-slice SA ′ (bucket-start α T b) (l-bucket-end α T b)) ⊆ l-bucket α

T b
by simp

hence set ?xs ⊆ l-bucket α T b
by (simp add: A abs-induce-l-def)

moreover
from distinct-card[OF abs-induce-l-distinct-l-bucket[OF assms]]
have card (set ?xs) = length ?xs .
hence card (set ?xs) = l-bucket-end α T b − bucket-start α T b

by (metis B bucket-end-le-length abs-induce-l-length l-bucket-end-le-bucket-end
l-perm-inv-elims(2)

le-trans length-list-slice min-def)
hence card (set ?xs) = card (l-bucket α T b)

by (simp add: l-bucket-end-def l-bucket-size-def)
ultimately show ?thesis

using card-subset-eq[OF finite-l-bucket]
by blast

qed

lemma abs-induce-l-unchanged:
assumes l-perm-pre α T B SA
and b ≤ α (Max (set T))
and s-bucket-start α T b ≤ i
and i < bucket-end α T b

shows (abs-induce-l α T B SA) ! i = SA ! i
proof −

from abs-induce-l-index[of α T B SA]
obtain B ′ SA ′ where

A: abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by blast

with abs-induce-l-base-perm-inv-maintained[OF l-perm-inv-established[OF assms(1)],
of B ′ SA ′ length T]

have B: l-perm-inv α T B ′ SA SA ′ (length T) .

have i < length SA
by (metis B assms(4) bucket-end-le-length l-perm-inv-elims(2) le-less-trans

not-less-eq)
moreover
have l-bucket-end α T b ≤ i

340

by (metis assms(3) s-bucket-start-eq-l-bucket-end)
ultimately have SA ′ ! i = SA ! i
using l-unchanged-inv-D[OF l-perm-inv-elims(8 ,3)[OF B] assms(2) - - assms(4)]
by auto

then show ?thesis
by (simp add: A abs-induce-l-def)

qed

— Used in SAIS algorithm as part of inducing the suffix ordering based on LMS
theorem abs-induce-l-suffix-sorted-l-bucket:

assumes l-perm-pre α T B SA
and l-suffix-sorted-pre α T SA
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (suffix T)
(list-slice (abs-induce-l α T B SA) (bucket-start α T b) (l-bucket-end α T

b)))
proof −

from l-perm-inv-established[OF assms(1)]
have A: l-perm-inv α T B SA SA 0 .

from l-suffix-sorted-inv-established[OF l-perm-pre-elims(4)[OF assms(1)], of SA]
have D: l-suffix-sorted-inv α T B SA .

from abs-induce-l-index[of α T B SA]
obtain B ′ SA ′ where

B: abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by blast

with abs-induce-l-base-perm-inv-maintained[OF A, of B ′ SA ′ length T]
have C : l-perm-inv α T B ′ SA SA ′ (length T) .
with abs-induce-l-perm-inv-B-val[OF B - assms(3)]
have B ′ ! b = l-bucket-end α T b .
moreover
from abs-induce-l-base-suffix-sorted-inv-maintained[OF A assms(2) D B]
have l-suffix-sorted-inv α T B ′ SA ′ .
ultimately show ?thesis

using l-suffix-sorted-invD[of α T B ′ SA ′, OF - assms(3)]
by (simp add: B abs-induce-l-def)

qed

— Used in SAIS algorithm as part of inducing the prefix ordering based on LMS
theorem abs-induce-l-prefix-sorted-l-bucket:

assumes l-perm-pre α T B SA
and l-prefix-sorted-pre α T SA
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (lms-prefix T)
(list-slice (abs-induce-l α T B SA) (bucket-start α T b) (l-bucket-end α T

b)))
proof −

341

from l-perm-inv-established[OF assms(1)]
have A: l-perm-inv α T B SA SA 0 .

from l-prefix-sorted-inv-established[OF l-perm-pre-elims(4)[OF assms(1)], of SA]
have D: l-prefix-sorted-inv α T B SA .

from abs-induce-l-index[of α T B SA]
obtain B ′ SA ′ where

B: abs-induce-l-base α T B SA = (B ′, SA ′, length T)
by blast

with abs-induce-l-base-perm-inv-maintained[OF A, of B ′ SA ′ length T]
have C : l-perm-inv α T B ′ SA SA ′ (length T) .
with abs-induce-l-perm-inv-B-val[OF B - assms(3)]
have B ′ ! b = l-bucket-end α T b .
moreover
from abs-induce-l-base-prefix-sorted-inv-maintained[OF A assms(2) D B]
have l-prefix-sorted-inv α T B ′ SA ′ .
ultimately show ?thesis

using l-prefix-sorted-invD[of α T B ′ SA ′, OF - assms(3)]
by (simp add: B abs-induce-l-def)

qed

end
theory Abs-Induce-S-Verification

imports ../abs−def /Abs-SAIS
begin

81 Abstract Induce S Simple Properties
lemma abs-induce-s-step-ex:
∃B ′ SA ′ i ′. abs-induce-s-step a b = (B ′, SA ′, i ′)
by (meson prod-cases3)

lemma abs-induce-s-step-B-length:
abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒ length B ′ = length B
by (clarsimp split: prod.splits if-splits nat.splits SL-types.splits simp: Let-def)

lemma abs-induce-s-step-SA-length:
abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′) =⇒ length SA ′ = length SA
by (clarsimp split: prod.splits if-splits nat.splits SL-types.splits simp: Let-def)

lemma abs-induce-s-step-Suc:
abs-induce-s-step (B, SA, Suc i) (α, T) = (B ′, SA ′, i ′) =⇒ i ′ = i
by (clarsimp split: prod.splits if-splits nat.splits SL-types.splits simp: Let-def)

lemma abs-induce-s-step-0 :
abs-induce-s-step (B, SA, 0) (α, T) = (B, SA, 0)
by (clarsimp split: prod.splits if-splits nat.splits SL-types.splits simp: Let-def)

342

corollary abs-induce-s-step-0-alt:
assumes abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)
and i = 0

shows B = B ′ ∧ SA = SA ′ ∧ i ′ = 0
using assms(1) assms(2) by auto

lemma repeat-abs-induce-s-step-index:
∃B ′ SA ′. repeat n abs-induce-s-step (B, SA, m) (α, T) = (B ′, SA ′, m − n) ∧

length SA ′ = length SA ∧ length B ′ = length B
proof(induct n arbitrary: m)

case 0
then show ?case by (clarsimp simp: repeat-0)

next
case (Suc n)
note IH = this

from IH [of m]
obtain B ′ SA ′ where

repeat n abs-induce-s-step (B, SA, m) (α, T) = (B ′, SA ′, m − n)
length SA ′ = length SA
length B ′ = length B
by blast

with repeat-step[of n abs-induce-s-step (B, SA, m) (α, T)]
have repeat (Suc n) abs-induce-s-step (B, SA, m) (α, T) = abs-induce-s-step

(B ′, SA ′, m − n) (α, T)
by simp

moreover
have ∃B ′′ SA ′′. abs-induce-s-step (B ′, SA ′, m − n) (α, T) = (B ′′, SA ′′, m −

Suc n) ∧
length SA ′′ = length SA ′ ∧ length B ′′ = length B ′

proof (cases n < m)
assume n < m
hence ∃ k. m − n = Suc k

by presburger
then obtain k where

m − n = Suc k
by blast

from abs-induce-s-step-ex[of (B ′,SA ′, m − n) (α, T)]
obtain B ′′ SA ′′ i ′ where

P: abs-induce-s-step (B ′, SA ′, m − n) (α, T) = (B ′′, SA ′′, i ′)
by blast

with ‹m − n = Suc k› abs-induce-s-step-Suc[of B ′ SA ′ k α T B ′′ SA ′′ i ′]
have i ′ = m − Suc n

by auto
with ‹abs-induce-s-step (B ′, SA ′, m − n) (α, T) = (B ′′, SA ′′, i ′)›

abs-induce-s-step-SA-length[OF P]
abs-induce-s-step-B-length[OF P]

343

show ?thesis
by simp

next
assume ¬n < m
hence m ≤ n

by simp
hence m − n = 0

by simp
with abs-induce-s-step-0 [of B ′ SA ′ α T]
show ?thesis

by simp
qed
ultimately show ?case

by (simp add: ‹length SA ′ = length SA› ‹length B ′ = length B›)
qed

lemma abs-induce-s-base-index:
∃B ′ SA ′. abs-induce-s-base α T B SA = (B ′, SA ′, 0)
unfolding abs-induce-s-base-def
by (metis cancel-comm-monoid-add-class.diff-cancel repeat-abs-induce-s-step-index)

lemma abs-induce-s-length:
length (abs-induce-s α T B SA) = length SA
unfolding abs-induce-s-def abs-induce-s-base-def
apply (rule repeat-maintain-inv; simp add: Let-def)
apply (clarsimp split: prod.splits simp del: abs-induce-s-step.simps)
apply (drule abs-induce-s-step-SA-length; simp)
done

82 Preconditions
definition l-types-init

where
l-types-init α T SA ≡
(∀ b ≤ α (Max (set T)).

set (list-slice SA (bucket-start α T b) (l-bucket-end α T b)) = l-bucket α T b ∧
distinct (list-slice SA (bucket-start α T b) (l-bucket-end α T b))

)

lemma l-types-initD:
[[l-types-init α T SA; b ≤ α (Max (set T))]] =⇒
set (list-slice SA (bucket-start α T b) (l-bucket-end α T b)) = l-bucket α T b
[[l-types-init α T SA; b ≤ α (Max (set T))]] =⇒
distinct (list-slice SA (bucket-start α T b) (l-bucket-end α T b))

using l-types-init-def by blast+

lemma l-types-init-nth:
assumes length SA = length T
and l-types-init α T SA

344

and b ≤ α (Max (set T))
and bucket-start α T b ≤ i
and i < l-bucket-end α T b

shows SA ! i ∈ l-bucket α T b
proof −

have l-bucket-end α T b ≤ length SA
by (metis assms(1) bucket-end-le-length dual-order .order-iff-strict l-bucket-end-le-bucket-end

less-le-trans)
with l-types-initD(1)[OF assms(2 ,3)] list-slice-nth-mem[OF assms(4 ,5)]
show ?thesis

by blast
qed

definition s-type-init
where

s-type-init T SA ≡ (∃n. length T = Suc n ∧ SA ! 0 = n)

definition s-perm-pre
where

s-perm-pre α T B SA n ≡
s-bucket-init α T B ∧
s-type-init T SA ∧
strict-mono α ∧
α (Max (set T)) < length B ∧
length SA = length T ∧
l-types-init α T SA ∧
valid-list T ∧
α bot = 0 ∧
Suc 0 < length T ∧
length T ≤ n

definition s-sorted-pre
where

s-sorted-pre α T SA ≡
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (suffix T) (list-slice SA (bucket-start α T b) (l-bucket-end
α T b)))
)

lemma s-sorted-preD:
[[s-sorted-pre α T SA; b ≤ α (Max (set T))]] =⇒
ordlistns.sorted (map (suffix T) (list-slice SA (bucket-start α T b) (l-bucket-end

α T b)))
using s-sorted-pre-def by blast

definition s-prefix-sorted-pre
where

s-prefix-sorted-pre α T SA ≡
(∀ b ≤ α (Max (set T)).

345

ordlistns.sorted (map (lms-slice T) (list-slice SA (bucket-start α T b) (l-bucket-end
α T b)))
)

lemma s-prefix-sorted-preD:
[[s-prefix-sorted-pre α T SA; b ≤ α (Max (set T))]] =⇒
ordlistns.sorted (map (lms-slice T) (list-slice SA (bucket-start α T b) (l-bucket-end

α T b)))
using s-prefix-sorted-pre-def by blast

83 Invariants
83.1 Definitions
83.1.1 Distinctness
definition s-distinct-inv

where
s-distinct-inv α T B SA ≡
(∀ b ≤ α (Max (set T)). distinct (list-slice SA (B ! b) (bucket-end α T b)))

lemma s-distinct-invD:
[[s-distinct-inv α T B SA; b ≤ α (Max (set T))]] =⇒
distinct (list-slice SA (B ! b) (bucket-end α T b))

using s-distinct-inv-def by blast

83.1.2 S Bucket Ptr
definition s-bucket-ptr-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ bool
where

s-bucket-ptr-inv α T B ≡
(∀ b ≤ α (Max (set T)).

s-bucket-start α T b ≤ B ! b ∧
B ! b ≤ bucket-end α T b ∧
(b = 0 −→ B ! b = 0))

lemma s-bucket-ptr-lower-bound:
assumes s-bucket-ptr-inv α T B
and b ≤ α (Max (set T))

shows s-bucket-start α T b ≤ B ! b
using assms(1) assms(2) s-bucket-ptr-inv-def by blast

lemma s-bucket-ptr-upper-bound:
assumes s-bucket-ptr-inv α T B
and b ≤ α (Max (set T))

shows B ! b ≤ bucket-end α T b
by (metis assms s-bucket-ptr-inv-def)

lemma s-bucket-ptr-0 :

346

assumes s-bucket-ptr-inv α T B
and b = 0

shows B ! b = 0
using assms s-bucket-ptr-inv-def by auto

83.1.3 Locations
definition s-locations-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ bool
where

s-locations-inv α T B SA ≡
(∀ b ≤ α (Max (set T)).
(∀ i. B ! b ≤ i ∧ i < bucket-end α T b −→ SA ! i ∈ s-bucket α T b))

lemma s-locations-invD:
[[s-locations-inv α T B SA; b ≤ α (Max (set T)); B ! b ≤ i; i < bucket-end α T

b]] =⇒
SA ! i ∈ s-bucket α T b

using s-locations-inv-def by blast

lemma s-locations-inv-in-list-slice:
assumes s-locations-inv α T B SA
and b ≤ α (Max (set T))
and x ∈ set (list-slice SA (B ! b) (bucket-end α T b))

shows x ∈ s-bucket α T b
proof −

from in-set-conv-nth[THEN iffD1 , OF assms(3)]
obtain i where

i < length (list-slice SA (B ! b) (bucket-end α T b))
list-slice SA (B ! b) (bucket-end α T b) ! i = x
by blast

with nth-list-slice
have SA ! (B ! b + i) = x

by fastforce
moreover
have B ! b + i < bucket-end α T b

using ‹i < length (list-slice SA (B ! b) (bucket-end α T b))› by auto
ultimately
show ?thesis

using assms(1 ,2) le-add1 s-locations-invD by blast
qed

lemma s-locations-inv-subset-s-bucket:
assumes s-locations-inv α T B SA
and b ≤ α (Max (set T))

shows set (list-slice SA (B ! b) (bucket-end α T b)) ⊆ s-bucket α T b
using assms s-locations-inv-in-list-slice by blast

347

83.1.4 Unchanged
definition s-unchanged-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat list ⇒

bool
where

s-unchanged-inv α T B SA SA ′ ≡
(∀ b ≤ α (Max (set T)). (∀ i. bucket-start α T b ≤ i ∧ i < B ! b −→ SA ′ ! i =

SA ! i))

lemma s-unchanged-invD:
[[s-unchanged-inv α T B SA SA ′; b ≤ α (Max (set T)); bucket-start α T b ≤ i; i

< B ! b]] =⇒
SA ′ ! i = SA ! i

using s-unchanged-inv-def by blast

83.1.5 Seen
definition s-seen-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat ⇒ bool
where

s-seen-inv α T B SA n ≡
∀ i < length SA. n ≤ i −→
(suffix-type T (SA ! i) = S-type −→ in-s-current-bucket α T B (α (T ! (SA !

i))) i) ∧
(suffix-type T (SA ! i) = L-type −→ in-l-bucket α T (α (T ! (SA ! i))) i) ∧
SA ! i < length T

lemma s-seen-invD:
[[s-seen-inv α T B SA n; i < length SA; n ≤ i]] =⇒ SA ! i < length T
[[s-seen-inv α T B SA n; i < length SA; n ≤ i; suffix-type T (SA ! i) = L-type]]

=⇒
in-l-bucket α T (α (T ! (SA ! i))) i
[[s-seen-inv α T B SA n; i < length SA; n ≤ i; suffix-type T (SA ! i) = S-type]]

=⇒
in-s-current-bucket α T B (α (T ! (SA ! i))) i

unfolding s-seen-inv-def by blast+

83.1.6 Predecessor
definition s-pred-inv ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat ⇒

bool
where

s-pred-inv α T B SA n =
(∀ b i. in-s-current-bucket α T B b i ∧ b 6= 0 −→
(∃ j < length SA. SA ! j = Suc (SA ! i) ∧ i < j ∧ n < j)

)

lemma s-pred-invD:

348

[[s-pred-inv α T B SA k; in-s-current-bucket α T B b i; b 6= 0]] =⇒
∃ j < length SA. SA ! j = Suc (SA ! i) ∧ i < j ∧ k < j

using s-pred-inv-def by blast

83.1.7 Successor
definition s-suc-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat ⇒ bool
where

s-suc-inv α T B SA n ≡
∀ i < length SA. n < i −→
(∀ j. SA ! i = Suc j ∧ suffix-type T j = S-type −→
(∃ k. in-s-current-bucket α T B (α (T ! j)) k ∧ SA ! k = j ∧ k < i))

lemma s-suc-invD:
[[s-suc-inv α T B SA n; i < length SA; n < i; SA ! i = Suc j; suffix-type T j =

S-type]] =⇒
∃ k. in-s-current-bucket α T B (α (T ! j)) k ∧ SA ! k = j ∧ k < i

using s-suc-inv-def by blast

83.1.8 Combined Permutation Invariant
definition s-perm-inv ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat list ⇒

nat ⇒ bool
where

s-perm-inv α T B SA SA ′ n ≡
s-distinct-inv α T B SA ′ ∧
s-bucket-ptr-inv α T B ∧
s-locations-inv α T B SA ′ ∧
s-unchanged-inv α T B SA SA ′ ∧
s-seen-inv α T B SA ′ n ∧
s-pred-inv α T B SA ′ n ∧
s-suc-inv α T B SA ′ n ∧
strict-mono α ∧
α (Max (set T)) < length B ∧
length SA = length T ∧
length SA ′ = length T ∧
l-types-init α T SA ∧
valid-list T ∧
α bot = 0 ∧
Suc 0 < length T

lemma s-perm-inv-elims:
s-perm-inv α T B SA SA ′ n =⇒ s-distinct-inv α T B SA ′

s-perm-inv α T B SA SA ′ n =⇒ s-bucket-ptr-inv α T B
s-perm-inv α T B SA SA ′ n =⇒ s-locations-inv α T B SA ′

s-perm-inv α T B SA SA ′ n =⇒ s-unchanged-inv α T B SA SA ′

s-perm-inv α T B SA SA ′ n =⇒ s-seen-inv α T B SA ′ n
s-perm-inv α T B SA SA ′ n =⇒ s-pred-inv α T B SA ′ n

349

s-perm-inv α T B SA SA ′ n =⇒ s-suc-inv α T B SA ′ n
s-perm-inv α T B SA SA ′ n =⇒ strict-mono α
s-perm-inv α T B SA SA ′ n =⇒ α (Max (set T)) < length B
s-perm-inv α T B SA SA ′ n =⇒ length SA = length T
s-perm-inv α T B SA SA ′ n =⇒ length SA ′ = length T
s-perm-inv α T B SA SA ′ n =⇒ l-types-init α T SA
s-perm-inv α T B SA SA ′ n =⇒ valid-list T
s-perm-inv α T B SA SA ′ n =⇒ α bot = 0
s-perm-inv α T B SA SA ′ n =⇒ Suc 0 < length T
by (simp-all add: s-perm-inv-def)

fun s-perm-inv-alt ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list × nat list ×

nat ⇒ bool
where

s-perm-inv-alt α T SA (B, SA ′, n) = s-perm-inv α T B SA SA ′ n

83.1.9 Sorted
definition s-sorted-inv

where
s-sorted-inv α T B SA ≡
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (suffix T) (list-slice SA (B ! b) (bucket-end α T b)))
)

lemma s-sorted-invD:
[[s-sorted-inv α T B SA; b ≤ α (Max (set T))]] =⇒
ordlistns.sorted (map (suffix T) (list-slice SA (B ! b) (bucket-end α T b)))

using s-sorted-inv-def by blast

fun s-sorted-inv-alt ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list × nat list ×

nat ⇒ bool
where

s-sorted-inv-alt α T SA (B, SA ′, n) =
(s-perm-inv α T B SA SA ′ n ∧ s-sorted-pre α T SA ∧ s-sorted-inv α T B SA ′)

definition s-prefix-sorted-inv
where

s-prefix-sorted-inv α T B SA ≡
(∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (lms-slice T) (list-slice SA (B ! b) (bucket-end α T b)))
)

lemma s-prefix-sorted-invD:
[[s-prefix-sorted-inv α T B SA; b ≤ α (Max (set T))]] =⇒
ordlistns.sorted (map (lms-slice T) (list-slice SA (B ! b) (bucket-end α T b)))

using s-prefix-sorted-inv-def by blast

350

fun s-prefix-sorted-inv-alt ::
(′a :: {linorder , order-bot} ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list × nat list ×

nat ⇒ bool
where

s-prefix-sorted-inv-alt α T SA (B, SA ′, n) =
(s-perm-inv α T B SA SA ′ n ∧ s-prefix-sorted-pre α T SA ∧ s-prefix-sorted-inv

α T B SA ′)

83.2 Helpers
lemma s-current-bucket-pairwise-distinct:

assumes s-distinct-inv α T B SA
and s-locations-inv α T B SA
and b ≤ α (Max (set T))
and b ′ ≤ α (Max (set T))
and b 6= b ′

shows distinct (list-slice SA (B ! b) (bucket-end α T b) @ list-slice SA (B ! b ′)
(bucket-end α T b ′))
proof (intro distinct-append[THEN iffD2] conjI disjointI ′)

from s-distinct-invD[OF assms(1 ,3)]
show distinct (list-slice SA (B ! b) (bucket-end α T b)) .

next
from s-distinct-invD[OF assms(1 ,4)]
show distinct (list-slice SA (B ! b ′) (bucket-end α T b ′)) .

next
fix x y
assume A: x ∈ set (list-slice SA (B ! b) (bucket-end α T b))

y ∈ set (list-slice SA (B ! b ′) (bucket-end α T b ′))

from s-locations-inv-in-list-slice[OF assms(2 ,3) A(1)]
have x ∈ s-bucket α T b .
moreover
from s-locations-inv-in-list-slice[OF assms(2 ,4) A(2)]
have y ∈ s-bucket α T b ′ .
ultimately
show x 6= y

using assms(5)
by (metis (mono-tags, lifting) bucket-def s-bucket-def mem-Collect-eq)

qed

lemma s-unchanged-list-slice:
assumes s-unchanged-inv α T B SA0 SA
and length SA0 = length T
and length SA = length T
and b ≤ α (Max (set T))
and bucket-start α T b ≤ i
and j ≤ B ! b

shows list-slice SA i j = list-slice SA0 i j

351

proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI allI impI)
show length (list-slice SA i j) = length (list-slice SA0 i j)

by (simp add: assms)
next

fix k
assume k < length (list-slice SA i j)
hence k < length (list-slice SA0 i j)

by (simp add: assms)

from nth-list-slice[OF ‹k < length (list-slice SA i j)›]
have list-slice SA i j ! k = SA ! (i + k) .
moreover
from nth-list-slice[OF ‹k < length (list-slice SA0 i j)›]
have list-slice SA0 i j ! k = SA0 ! (i + k) .
moreover
{

have bucket-start α T b ≤ i + k
by (simp add: assms(5) trans-le-add1)

moreover
have i + k < j

using ‹k < length (list-slice SA i j)› by auto
hence i + k < B ! b

using assms(6) order .strict-trans2 by blast
ultimately
have SA ! (i + k) = SA0 ! (i + k)

using s-unchanged-invD[OF assms(1 ,4)]
by blast

}
ultimately show list-slice SA i j ! k = list-slice SA0 i j ! k

by simp
qed

lemma l-types-init-maintained:
assumes s-bucket-ptr-inv α T B
and s-unchanged-inv α T B SA0 SA
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0

shows l-types-init α T SA
unfolding l-types-init-def

proof(intro allI impI)
fix b
let ?xs = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
let ?ys = list-slice SA0 (bucket-start α T b) (l-bucket-end α T b)
assume b ≤ α (Max (set T))
with s-bucket-ptr-lower-bound[OF assms(1), of b]
have l-bucket-end α T b ≤ B ! b

by (simp add: s-bucket-start-eq-l-bucket-end)
with s-unchanged-list-slice[OF assms(2−4) ‹b ≤ α (Max (set T))›,

352

of bucket-start α T b l-bucket-end α T b]
have ?xs = ?ys

by blast
with assms(5)[simplified l-types-init-def , THEN spec, THEN mp, OF ‹b ≤ α

(Max (set T))›]
show set ?xs = l-bucket α T b ∧ distinct ?xs

by simp
qed

lemma s-sorted-pre-maintained:
assumes s-bucket-ptr-inv α T B
and s-unchanged-inv α T B SA0 SA
and length SA0 = length T
and length SA = length T
and s-sorted-pre α T SA0

shows s-sorted-pre α T SA
unfolding s-sorted-pre-def

proof(intro allI impI)
fix b
let ?xs = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
let ?ys = list-slice SA0 (bucket-start α T b) (l-bucket-end α T b)
assume b ≤ α (Max (set T))
with s-bucket-ptr-lower-bound[OF assms(1), of b]
have l-bucket-end α T b ≤ B ! b

by (simp add: s-bucket-start-eq-l-bucket-end)
with s-unchanged-list-slice[OF assms(2−4) ‹b ≤ α (Max (set T))›,

of bucket-start α T b l-bucket-end α T b]
have ?xs = ?ys

by blast
then show ordlistns.sorted (map (suffix T) ?xs)

using ‹b ≤ α (Max (set T))› assms(5) s-sorted-pre-def by auto
qed

lemma s-prefix-sorted-pre-maintained:
assumes s-bucket-ptr-inv α T B
and s-unchanged-inv α T B SA0 SA
and length SA0 = length T
and length SA = length T
and s-prefix-sorted-pre α T SA0

shows s-prefix-sorted-pre α T SA
unfolding s-prefix-sorted-pre-def

proof(intro allI impI)
fix b
let ?xs = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
let ?ys = list-slice SA0 (bucket-start α T b) (l-bucket-end α T b)
assume b ≤ α (Max (set T))
with s-bucket-ptr-lower-bound[OF assms(1), of b]
have l-bucket-end α T b ≤ B ! b

by (simp add: s-bucket-start-eq-l-bucket-end)

353

with s-unchanged-list-slice[OF assms(2−4) ‹b ≤ α (Max (set T))›,
of bucket-start α T b l-bucket-end α T b]

have ?xs = ?ys
by blast

then show ordlistns.sorted (map (lms-slice T) ?xs)
using ‹b ≤ α (Max (set T))› assms(5) s-prefix-sorted-pre-def by auto

qed

lemma s-next-item-not-seen:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)

shows j /∈ set (list-slice SA (B ! b) (bucket-end α T b))
proof

let ?xs = list-slice SA (B ! b) (bucket-end α T b)
let ?b = α (T ! (Suc j))
assume j ∈ set ?xs

from s-seen-invD(1)[OF assms(5 ,14)] assms(13 ,15)
have Suc j < length T

by simp
hence ?b ≤ α (Max (set T))

using assms(7)
by (simp add: strict-mono-leD)

have bucket-end α T ?b ≤ length SA
by (simp add: assms(9) bucket-end-le-length)

hence l-bucket-end α T ?b ≤ length SA
by (metis dual-order .trans l-bucket-end-le-bucket-end)

have j < length T
by (simp add: assms(16) suffix-type-s-bound)

from valid-list-length-ex[OF assms(11)]
obtain n ′ where

354

length T = Suc n ′

by blast
with ‹Suc j < length T ›
have j < n ′

by linarith
hence T ! j 6= bot

by (metis ‹length T = Suc n ′› assms(11) diff-Suc-1 valid-list-def)
hence b 6= 0

using assms(7 ,12 ,17) strict-mono-eq by fastforce

with in-set-conv-nth[THEN iffD1 , OF ‹j ∈ set ?xs›]
obtain a where

a < length ?xs
?xs ! a = j
by blast

hence SA ! (B ! b + a) = j
using nth-list-slice by fastforce

from assms(9)
have bucket-end α T b ≤ length SA

by (simp add: bucket-end-le-length)
with ‹a < length ?xs›
have B ! b + a < bucket-end α T b

by auto
with assms(7 ,17) ‹j < length T ›
have in-s-current-bucket α T B b (B ! b + a)

unfolding in-s-current-bucket-def
by (simp add: strict-mono-less-eq)

with s-pred-invD[OF assms(6) - ‹b 6= 0 ›, of B ! b + a] ‹SA ! (B ! b + a) = j›
obtain m where

m < length SA
SA ! m = Suc j
B ! b + a < m
i < m
by blast

hence i 6= m
by blast

have suffix-type T (Suc j) = L-type =⇒ False
proof −

assume suffix-type T (Suc j) = L-type
with s-seen-invD(2)[OF assms(5) ‹m < length SA›] ‹i < m› ‹SA ! m = Suc j›
have in-l-bucket α T ?b m

by simp
hence bucket-start α T ?b ≤ m m < l-bucket-end α T ?b

using in-l-bucket-def by blast+
moreover
from ‹suffix-type T (Suc j) = L-type› assms(13 ,15)

s-seen-invD(2)[OF assms(5) ‹Suc n < length SA›]

355

have in-l-bucket α T ?b i
by simp

hence bucket-start α T ?b ≤ i i < l-bucket-end α T ?b
using in-l-bucket-def by blast+

ultimately
show False

using list-slice-nth-eq-iff-index-eq[
OF l-types-initD(2)[OF l-types-init-maintained[OF assms(2 ,4 ,8−10)]

‹?b ≤ α -›]
‹l-bucket-end α T ?b ≤ length SA›,

of i m]
‹i 6= m› assms(13 ,15) ‹SA ! m = Suc j›

by simp
qed
moreover
have suffix-type T (Suc j) = S-type =⇒ False
proof −

assume suffix-type T (Suc j) = S-type
with s-seen-invD(3)[OF assms(5) ‹m < length SA›] ‹i < m› ‹SA ! m = Suc j›
have in-s-current-bucket α T B ?b m

by simp
hence B ! ?b ≤ m m < bucket-end α T ?b

using in-s-current-bucket-def by blast+
moreover
from ‹suffix-type T (Suc j) = S-type› assms(13 ,15)

s-seen-invD(3)[OF assms(5) ‹Suc n < length SA›]
have in-s-current-bucket α T B ?b i

by simp
hence B ! ?b ≤ i i < bucket-end α T ?b

using in-s-current-bucket-def by blast+
ultimately
show False

using list-slice-nth-eq-iff-index-eq[
OF s-distinct-invD[OF assms(1) ‹?b ≤ α -›] ‹bucket-end α T ?b ≤

length SA›,
of i m]

‹i 6= m› assms(13 ,15) ‹SA ! m = Suc j›
by simp

qed
ultimately
show False

using SL-types.exhaust by blast
qed

lemma s-bucket-ptr-strict-lower-bound:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA

356

and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)

shows s-bucket-start α T b < B ! b
proof −

have j < length T
by (simp add: assms(16) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(7 ,17) strict-mono-leD)

let ?xs = list-slice SA (B ! b) (bucket-end α T b)

have bucket-end α T b ≤ length SA
by (simp add: assms(9) bucket-end-le-length)

hence length ?xs = bucket-end α T b − B ! b
by auto

from s-next-item-not-seen[OF assms(1−17)]
have j /∈ set ?xs .
moreover
have j ∈ s-bucket α T b

by (simp add: assms(16 ,17) bucket-def s-bucket-def suffix-type-s-bound)
ultimately
have set ?xs ⊂ s-bucket α T b

using s-locations-inv-subset-s-bucket[OF assms(3) ‹b ≤ -›]
by blast

hence card (set ?xs) < s-bucket-size α T b
using psubset-card-mono[OF finite-s-bucket, simplified s-bucket-size-def [symmetric]]
by blast

moreover
from s-distinct-invD[OF assms(1) ‹b ≤ -›]
have distinct ?xs .
ultimately
have length ?xs < s-bucket-size α T b

by (simp add: distinct-card)
with ‹length ?xs = -›
have bucket-end α T b − B ! b < s-bucket-size α T b

by simp
hence bucket-end α T b < B ! b + s-bucket-size α T b

357

by linarith
hence

s-bucket-start α T b + bucket-end α T b < B ! b + s-bucket-start α T b +
s-bucket-size α T b

by simp
then show s-bucket-start α T b < B ! b

by (simp add: bucket-end-eq-s-start-pl-size)
qed

lemma outside-another-bucket:
assumes b 6= b ′

and bucket-start α T b ≤ i
and i < bucket-end α T b

shows ¬(bucket-start α T b ′ ≤ i ∧ i < bucket-end α T b ′)
by (meson assms dual-order .antisym less-bucket-end-le-start not-le order .strict-trans1)

lemma s-B-val:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and length T > Suc 0
and b ≤ α (Max (set T))
and i < B ! b

shows B ! b = s-bucket-start α T b
proof (rule ccontr ; drule neq-iff [THEN iffD1]; elim disjE)

assume B ! b < s-bucket-start α T b
with s-bucket-ptr-lower-bound[OF assms(2 ,13)]
show False

by linarith
next

let ?k = B ! b − Suc 0
assume s-bucket-start α T b < B ! b
hence s-bucket-start α T b ≤ ?k

by linarith
hence bucket-start α T b ≤ ?k

using bucket-start-le-s-bucket-start le-trans by blast

have ?k < B ! b
using ‹s-bucket-start α T b < B ! b› by auto

from assms(14)

358

have i ≤ ?k
by linarith

from s-bucket-ptr-upper-bound[OF assms(2 ,13)]
have B ! b ≤ bucket-end α T b .
hence ?k < bucket-end α T b

using ‹s-bucket-start α T b < B ! b› by linarith

have bucket-end α T b ≤ length SA
by (simp add: assms(9) bucket-end-le-length)

moreover
have bucket-end α T b = length SA =⇒ False
proof −

assume bucket-end α T b = length SA
with ‹s-bucket-start α T b < B ! b› ‹B ! b ≤ bucket-end α T b› assms(7 ,9 ,13)
have b = α (Max (set T))

using bucket-end-eq-length by fastforce
hence s-bucket α T b = {}

by (simp add: assms(7 ,11 ,12) s-bucket-Max)
hence s-bucket-size α T b = 0

by (simp add: s-bucket-size-def)
hence s-bucket-start α T b = bucket-end α T b

by (simp add: bucket-end-eq-s-start-pl-size)
with ‹B ! b ≤ bucket-end α T b› ‹s-bucket-start α T b < B ! b›
show False

by simp
qed
moreover
have bucket-end α T b < length SA =⇒ False
proof −

assume bucket-end α T b < length SA
hence B ! b < length SA

using ‹B ! b ≤ bucket-end α T b›
by linarith

hence ?k < length SA
using less-imp-diff-less by blast

with s-seen-invD[OF assms(5) - ‹i ≤ ?k›]
have SA ! ?k < length T

by blast

let ?b = α (T ! (SA ! ?k))

from ‹SA ! ?k < length T › assms(7)
have ?b ≤ α (Max (set T))

using Max-greD strict-mono-leD by blast
with s-bucket-ptr-lower-bound[OF assms(2)]
have s-bucket-start α T ?b ≤ B ! ?b

by blast
hence bucket-start α T ?b ≤ B ! ?b

359

using bucket-start-le-s-bucket-start le-trans by blast

have suffix-type T (SA ! ?k) = L-type =⇒ False
proof −

assume suffix-type T (SA ! ?k) = L-type
with s-seen-invD(2)[OF assms(5) ‹?k < length SA› ‹i ≤ ?k›]
have in-l-bucket α T ?b ?k

by blast
hence bucket-start α T ?b ≤ ?k ?k < l-bucket-end α T ?b

using in-l-bucket-def by blast+
hence ?k < bucket-end α T ?b

using l-bucket-end-le-bucket-end less-le-trans by blast

from ‹?k < l-bucket-end - - -› ‹s-bucket-start - - - ≤ ?k›
have b = ?b =⇒ False

by (simp add: s-bucket-start-eq-l-bucket-end)
moreover
from outside-another-bucket[OF - ‹bucket-start - - b ≤ ?k› ‹?k < bucket-end

- - b›]
‹bucket-start - - ?b ≤ ?k› ‹?k < bucket-end - - ?b›

have b 6= ?b =⇒ False
by blast

ultimately show False
by blast

qed
moreover
have suffix-type T (SA ! ?k) = S-type =⇒ False
proof −

assume suffix-type T (SA ! ?k) = S-type
with s-seen-invD(3)[OF assms(5) ‹?k < length SA› ‹i ≤ ?k›]
have in-s-current-bucket α T B ?b ?k

by blast
hence B ! ?b ≤ ?k ?k < bucket-end α T ?b

using in-s-current-bucket-def by blast+
hence bucket-start α T ?b ≤ ?k

using ‹bucket-start α T ?b ≤ B ! ?b› by linarith

from ‹B ! ?b ≤ ?k› ‹?k < B ! b›
have b = ?b =⇒ False

by simp
moreover
from outside-another-bucket[OF - ‹bucket-start - - b ≤ ?k› ‹?k < bucket-end

- - b›]
‹bucket-start α T ?b ≤ ?k› ‹?k < bucket-end α T ?b›

have b 6= ?b =⇒ False
by blast

ultimately show False
by blast

qed

360

ultimately show False
using SL-types.exhaust by blast

qed
ultimately show False

by linarith
qed

lemma s-bucket-eq-list-slice:
assumes s-distinct-inv α T B SA
and s-locations-inv α T B SA
and length SA = length T
and b ≤ α (Max (set T))
and B ! b = s-bucket-start α T b

shows set (list-slice SA (s-bucket-start α T b) (bucket-end α T b)) = s-bucket α
T b

(is set ?xs = s-bucket α T b)
using card-subset-eq[

OF finite-s-bucket s-locations-inv-subset-s-bucket[OF assms(2 ,4), simplified
assms(5)]]

distinct-card[OF s-distinct-invD[OF assms(1 ,4), simplified assms(5)]]
bucket-end-eq-s-start-pl-size[of α T b]
s-bucket-size-def [of α T b]

by (metis assms(3) bucket-end-le-length diff-add-inverse length-list-slice min-def)

lemma bucket-eq-list-slice:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and b ≤ α (Max (set T))
and B ! b = s-bucket-start α T b

shows set (list-slice SA (bucket-start α T b) (bucket-end α T b)) = bucket α T b
(is set ?xs = bucket α T b)

proof −
let ?ys = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
and ?zs = list-slice SA (s-bucket-start α T b) (bucket-end α T b)

have ?xs = ?ys @ ?zs
by (metis list-slice-append bucket-start-le-s-bucket-start l-bucket-end-le-bucket-end

s-bucket-start-eq-l-bucket-end)
hence set ?xs = set ?ys ∪ set ?zs

by simp
with l-types-initD(1)[OF l-types-init-maintained[OF assms(2 ,4−7)] assms(8)]

s-bucket-eq-list-slice[OF assms(1 ,3 ,6 ,8 ,9)]
have set ?xs = l-bucket α T b ∪ s-bucket α T b

by simp

361

then show ?thesis
using l-un-s-bucket by blast

qed

lemma s-index-lower-bound:
assumes s-bucket-ptr-inv α T B
and s-seen-inv α T B SA n
and i < length SA
and n ≤ i

shows bucket-start α T (α (T ! (SA ! i))) ≤ i
(is bucket-start α T ?b ≤ i)

proof −

have ?b ≤ α (Max (set T))
by (meson SL-types.exhaust assms(2−) in-l-bucket-def in-s-current-bucketD(1)

s-seen-invD(2 ,3))

have suffix-type T (SA ! i) = S-type ∨ suffix-type T (SA ! i) = L-type
using SL-types.exhaust by blast

moreover
have suffix-type T (SA ! i) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = S-type
with s-seen-invD(3)[OF assms(2−)] s-bucket-ptr-lower-bound[OF assms(1)]
show ?thesis
by (meson ‹?b ≤ α (Max (set T))› bucket-start-le-s-bucket-start dual-order .trans

in-s-current-bucketD(2))
qed
moreover
have suffix-type T (SA ! i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = L-type
with s-seen-invD(2)[OF assms(2−)]
show ?thesis

using in-l-bucket-def by blast
qed
ultimately show ?thesis

by blast
qed

lemma s-index-upper-bound:
assumes s-bucket-ptr-inv α T B
and s-seen-inv α T B SA n
and i < length SA
and n ≤ i

shows i < bucket-end α T (α (T ! (SA ! i)))
(is i < bucket-end α T ?b)

proof −

362

have ?b ≤ α (Max (set T))
by (meson SL-types.exhaust assms(2−) in-l-bucket-def in-s-current-bucketD(1)

s-seen-invD(2 ,3))

have suffix-type T (SA ! i) = S-type ∨ suffix-type T (SA ! i) = L-type
using SL-types.exhaust by blast

moreover
have suffix-type T (SA ! i) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = S-type
with s-seen-invD(3)[OF assms(2−)] s-bucket-ptr-upper-bound[OF assms(1)]
show ?thesis

by (simp add: in-s-current-bucket-def)
qed
moreover
have suffix-type T (SA ! i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = L-type
with s-seen-invD(2)[OF assms(2−)]
show ?thesis

using in-l-bucket-def l-bucket-end-le-bucket-end less-le-trans by blast
qed
ultimately show ?thesis

by blast
qed

83.3 Establishment and Maintenance Steps
83.3.1 Distinctness
lemma s-distinct-inv-established:

assumes s-bucket-init α T B
and valid-list T
and strict-mono α
and α bot = 0
shows s-distinct-inv α T B SA
unfolding s-distinct-inv-def

proof (intro allI impI)
fix b
let ?goal = distinct (list-slice SA (B ! b) (bucket-end α T b))
assume b ≤ α (Max (set T))

have b > 0 =⇒ ?goal
proof −

assume b > 0
with s-bucket-initD(1)[OF assms(1) ‹b ≤ -›]
have B ! b = bucket-end α T b

by blast
then show ?goal

using list-slice-n-n

363

by (metis distinct.simps(1))
qed
moreover
have b = 0 =⇒ ?goal
proof −

assume b = 0
with s-bucket-initD(2)[OF assms(1) ‹b ≤ -›]
have B ! b = 0 .
moreover
from ‹b = 0 › assms(2−4)
have bucket-end α T b = Suc 0

by (simp add: valid-list-bucket-end-0)
ultimately show ?thesis

by (simp add: distinct-conv-nth)
qed
ultimately show ?goal

by blast
qed

lemma s-distinct-inv-maintained-step:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-distinct-inv α T (B[b := k]) (SA[k := j])
unfolding s-distinct-inv-def

proof (intro allI impI)
fix b ′

let ?goal = distinct (list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′))

assume b ′ ≤ α (Max (set T))

from s-next-item-not-seen[OF assms(1−7 ,9−18)]

364

have j /∈ set (list-slice SA (B ! b) (bucket-end α T b)).

from s-bucket-ptr-strict-lower-bound[OF assms(1−7 ,9−18)]
have s-bucket-start α T b < B ! b .
hence s-bucket-start α T b ≤ k k < B ! b

using assms(19) by linarith+
hence bucket-start α T b ≤ k

using bucket-start-le-s-bucket-start le-trans by blast

from assms(17)
have j < length T

by (simp add: suffix-type-s-bound)
hence b ≤ α (Max (set T))

by (simp add: assms(7 ,18) strict-mono-less-eq)
with s-bucket-ptr-upper-bound[OF assms(2)] ‹k < B ! b›
have k < bucket-end α T b

using less-le-trans by auto
hence k < length SA

using assms(10) bucket-end-le-length less-le-trans by fastforce

have b = b ′ =⇒ ?goal
proof −

assume b = b ′

hence B[b := k] ! b ′ = k
using ‹b ≤ α (Max (set T))› assms(8) by auto

from s-distinct-invD[OF assms(1) ‹b ≤ -›]
have distinct (list-slice SA (B ! b) (bucket-end α T b)) .
moreover
from ‹B[b := k] ! b ′ = k› ‹b = b ′› ‹k < B ! b› ‹k < bucket-end α T b› ‹k <

length SA› assms(19)
have list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)

= j # list-slice SA (B ! b) (bucket-end α T b)
by (metis Suc-pred diff-is-0-eq ′ dual-order .order-iff-strict gr0I length-list-update

list-slice-Suc list-slice-update-unchanged-1 nth-list-update-eq)
ultimately show ?thesis

using ‹j /∈ set (list-slice SA (B ! b) (bucket-end α T b))›
by simp

qed
moreover
have b 6= b ′ =⇒ ?goal
proof −

assume b 6= b ′

hence B[b := k] ! b ′ = B ! b ′

by simp

from outside-another-bucket[OF ‹b 6= b ′› ‹bucket-start - - - ≤ k› ‹k < bucket-end
- - -›]

have k < bucket-start α T b ′ ∨ bucket-end α T b ′ ≤ k
using leI by auto

365

moreover
have k < bucket-start α T b ′ =⇒

list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)
= list-slice SA (B ! b ′) (bucket-end α T b ′)

proof −
assume k < bucket-start α T b ′

hence k < B ! b ′

by (meson ‹b ′ ≤ α (Max (set T))› assms(2) bucket-start-le-s-bucket-start
less-le-trans

s-bucket-ptr-inv-def)
with list-slice-update-unchanged-1 ‹B[b := k] ! b ′ = B ! b ′›
show ?thesis

by simp
qed
moreover
from ‹B[b := k] ! b ′ = B ! b ′›
have bucket-end α T b ′ ≤ k =⇒

list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)
= list-slice SA (B ! b ′) (bucket-end α T b ′)

by (simp add: list-slice-update-unchanged-2)
moreover
from s-distinct-invD[OF assms(1) ‹b ′ ≤ -›]
have distinct (list-slice SA (B ! b ′) (bucket-end α T b ′)) .
ultimately show ?goal

by auto
qed
ultimately
show ?goal

by blast
qed

corollary s-distinct-inv-maintained-perm-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-distinct-inv α T (B[b := k]) (SA[k := j])
using s-distinct-inv-maintained-step[OF s-perm-inv-elims(1−6 ,8−14)[OF assms(1)]

assms(2−)]
by blast

83.3.2 Bucket Pointer
lemma s-bucket-ptr-inv-established:

assumes s-bucket-init α T B
and valid-list T

366

and strict-mono α
and α bot = 0
shows s-bucket-ptr-inv α T B
unfolding s-bucket-ptr-inv-def

proof(intro allI impI)
fix b
let ?goal = s-bucket-start α T b ≤ B ! b ∧ B ! b ≤ bucket-end α T b ∧ (b = 0
−→ B ! b = 0)

assume b ≤ α (Max (set T))

have b > 0 =⇒ ?goal
proof −

assume b > 0
with s-bucket-initD(1)[OF assms(1) ‹b ≤ -›]
have B ! b = bucket-end α T b .
then show ?thesis

by (metis ‹0 < b› l-bucket-end-le-bucket-end less-numeral-extra(3) order-refl
s-bucket-start-eq-l-bucket-end)

qed
moreover
have b = 0 =⇒ ?goal
proof −

assume b = 0
with s-bucket-initD(2)[OF assms(1) ‹b ≤ -›]
have B ! b = 0 .
with ‹b = 0 ›

valid-list-bucket-end-0 [OF assms(2−)]
valid-list-s-bucket-start-0 [OF assms(2−)]

show ?thesis
by auto

qed
ultimately show ?goal

by auto
qed

lemma s-bucket-ptr-inv-maintained-step:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0

367

and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-bucket-ptr-inv α T (B[b := k])
unfolding s-bucket-ptr-inv-def

proof(intro allI impI)
fix b ′

assume b ′ ≤ α (Max (set T))

let ?goal = s-bucket-start α T b ′ ≤ B[b := k] ! b ′ ∧ B[b := k] ! b ′ ≤ bucket-end
α T b ′ ∧

(b ′ = 0 −→ B[b := k] ! b ′ = 0)

from valid-list-length-ex[OF assms(12)]
obtain m where

length T = Suc m
by blast

moreover
have j < length T

by (simp add: assms(17) suffix-type-s-bound)
moreover
from s-seen-invD(1)[OF assms(5 ,15)] assms(14 ,16)
have Suc j < length T

by simp
ultimately have j < m

by linarith
hence b 6= 0

by (metis ‹length T = Suc m› assms(7 ,12 ,13 ,18) diff-Suc-1 strict-mono-eq
valid-list-def)

have b 6= b ′ =⇒ ?goal
proof −

assume b 6= b ′

hence B[b := k] ! b ′ = B ! b ′

by simp
with s-bucket-ptr-lower-bound[OF assms(2) ‹b ′ ≤ α (Max (set T))›]

s-bucket-ptr-upper-bound[OF assms(2) ‹b ′ ≤ α (Max (set T))›]
s-bucket-ptr-0 [OF assms(2)]

show ?thesis
by auto

qed
moreover
have b = b ′ =⇒ ?goal
proof −

assume b = b ′

from s-bucket-ptr-strict-lower-bound[OF assms(1−7 ,9−13 ,14−18)]

368

have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(19) by linarith
moreover
from ‹b = b ′› ‹b ′ ≤ α (Max (set T))› assms(2 ,19)
have k ≤ bucket-end α T b

using le-diff-conv s-bucket-ptr-inv-def trans-le-add1 by blast
moreover
have B[b := k] ! b ′ = k

using ‹b = b ′› ‹b ′ ≤ α (Max (set T))› assms(8) by auto
ultimately show ?thesis

using ‹b = b ′› ‹b 6= 0 › by auto
qed
ultimately show ?goal

by linarith
qed

corollary s-bucket-ptr-inv-maintained-perm-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-bucket-ptr-inv α T (B[b := k])
using s-bucket-ptr-inv-maintained-step[OF s-perm-inv-elims(1−6 ,8−14)[OF assms(1)]

assms(2−)]
by blast

83.3.3 Locations
lemma s-locations-inv-established:

assumes s-bucket-init α T B
and s-type-init T SA
and valid-list T
and strict-mono α
and α bot = 0
shows s-locations-inv α T B SA
unfolding s-locations-inv-def

proof(safe)
fix b i
assume b ≤ α (Max (set T)) B ! b ≤ i i < bucket-end α T b
hence b > 0 =⇒ SA ! i ∈ s-bucket α T b

by (metis assms(1) not-le s-bucket-init-def)
moreover
have b = 0 =⇒ SA ! i ∈ s-bucket α T b
proof −

assume b = 0

369

have 0 ≤ i
by blast

moreover
have bucket-end α T 0 = 1

using assms(3−5) valid-list-bucket-end-0 by blast
with ‹i < bucket-end α T b› ‹b = 0 ›
have i < 1

by simp
ultimately have i = 0

by blast
moreover
from s-type-init-def [of T SA] assms(2)
obtain n where

length T = Suc n
SA ! 0 = n
by blast

with suffix-type-last[of T n]
have suffix-type T n = S-type

by blast
moreover
have T ! n = bot
by (metis ‹length T = Suc n› assms(3) diff-Suc-1 last-conv-nth less-numeral-extra(3)

list.size(3) valid-list-def)
hence α (T ! n) = 0

by (simp add: assms(5))
ultimately show ?thesis
by (simp add: ‹SA ! 0 = n›‹b = 0 › ‹length T = Suc n› bucket-def s-bucket-def)

qed
ultimately show SA ! i ∈ s-bucket α T b

by linarith
qed

lemma s-locations-inv-maintained-step:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j

370

and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-locations-inv α T (B[b := k]) (SA[k := j])
unfolding s-locations-inv-def

proof(safe)
fix b ′ i ′
assume b ′ ≤ α (Max (set T)) B[b := k] ! b ′ ≤ i ′ i ′ < bucket-end α T b ′

from s-bucket-ptr-strict-lower-bound[OF assms(1−7 ,9−18)]
have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(19) by linarith

from ‹s-bucket-start α T b < B ! b›
have k < B ! b

using assms(19) by linarith

have j < length T
by (simp add: assms(17) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(18) assms(7) strict-mono-less-eq)

with s-bucket-ptr-upper-bound[OF assms(2)]
have B ! b ≤ bucket-end α T b

by blast

have b 6= b ′ =⇒ SA[k := j] ! i ′ ∈ s-bucket α T b ′

proof −
assume b 6= b ′

hence B[b := k] ! b ′ = B ! b ′

by simp
with ‹B[b := k] ! b ′ ≤ i ′›
have B ! b ′ ≤ i ′

by simp
with s-locations-invD[OF assms(3) ‹b ′ ≤ α (Max (set T))› - ‹i ′ < bucket-end

α T b ′›]
have SA ! i ′ ∈ s-bucket α T b ′

by linarith
moreover
from s-bucket-ptr-lower-bound[OF assms(2) ‹b ′ ≤ α (Max (set T))›] ‹B ! b ′ ≤

i ′›
have bucket-start α T b ′ ≤ i ′

by (meson bucket-start-le-s-bucket-start dual-order .trans)
with outside-another-bucket[OF ‹b 6= b ′›[symmetric] - ‹i ′ < -›]

‹B ! b ≤ bucket-end α T b› ‹k < B ! b› ‹s-bucket-start α T b ≤ k›
have k 6= i ′

using bucket-start-le-s-bucket-start le-trans less-le-trans by blast
hence SA[k := j] ! i ′ = SA ! i ′

by simp

371

ultimately show ?thesis
by simp

qed
moreover
have b = b ′ =⇒ SA[k := j] ! i ′ ∈ s-bucket α T b ′

proof −
assume b = b ′

hence k ≤ i ′
using ‹B[b := k] ! b ′ ≤ i ′› ‹b ′ ≤ α (Max (set T))› assms(8) by auto

hence k = i ′ ∨ k < i ′
by linarith

moreover
have k = i ′ =⇒ ?thesis
proof −

assume k = i ′
hence SA[k := j] ! i ′ = j
by (metis ‹i ′< bucket-end α T b ′› assms(10) bucket-end-le-length dual-order .strict-trans1

nth-list-update)
with assms(17 ,18) ‹b = b ′› ‹j < length T ›
show ?thesis

by (simp add: bucket-def s-bucket-def)
qed
moreover
have k < i ′ =⇒ ?thesis
proof −

assume k < i ′
hence B ! b ≤ i ′

using assms(19) by linarith
with s-locations-invD[OF assms(3) ‹b ′ ≤ -› - ‹i ′ < bucket-end - - -›] ‹b = b ′›
have SA ! i ′ ∈ s-bucket α T b ′

by blast
moreover
have SA[k := j] ! i ′ = SA ! i ′

using ‹k < i ′› by auto
ultimately show ?thesis

by simp
qed
ultimately show ?thesis

by linarith
qed
ultimately show SA[k := j] ! i ′ ∈ s-bucket α T b ′

by blast
qed

corollary s-locations-inv-maintained-perm-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j

372

and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-locations-inv α T (B[b := k]) (SA[k := j])
using s-locations-inv-maintained-step[OF s-perm-inv-elims(1−6 ,8−14)[OF assms(1)]

assms(2−)]
by blast

83.3.4 Unchanged
lemma s-unchanged-inv-established:

shows s-unchanged-inv α T B SA SA
by (simp add: s-unchanged-inv-def)

lemma s-unchanged-inv-maintained-step:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-unchanged-inv α T (B[b := k]) SA0 (SA[k := j])
unfolding s-unchanged-inv-def

proof(safe)
fix b ′ i ′
assume b ′ ≤ α (Max (set T)) bucket-start α T b ′ ≤ i ′ i ′ < B[b := k] ! b ′

from s-bucket-ptr-strict-lower-bound[OF assms(1−7 ,9−18)]
have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(19) by linarith
hence bucket-start α T b ≤ k

using bucket-start-le-s-bucket-start le-trans by blast

from ‹s-bucket-start α T b < B ! b›
have k < B ! b

373

using assms(19) by linarith

have j < length T
by (simp add: assms(17) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(7 ,18) strict-mono-less-eq)

with s-bucket-ptr-upper-bound[OF assms(2)]
have B ! b ≤ bucket-end α T b

by blast
with ‹k < B ! b›
have k < bucket-end α T b

by linarith

have b = b ′ =⇒ SA[k := j] ! i ′ = SA0 ! i ′
proof −

assume b = b ′

hence B[b := k] ! b ′ = k
using ‹b ′ ≤ α (Max (set T))› assms(8) by auto

with ‹i ′ < B[b := k] ! b ′›
have i ′ < k

by linarith
hence SA[k := j] ! i ′ = SA ! i ′

by simp
moreover
from ‹i ′ < k› ‹k < B ! b› ‹b = b ′›
have i ′ < B ! b ′

by simp
with s-unchanged-invD[OF assms(4) ‹b ′ ≤ -› ‹bucket-start - - - ≤ i ′›]
have SA ! i ′ = SA0 ! i ′

by simp
ultimately show ?thesis

by simp
qed
moreover
have b 6= b ′ =⇒ SA[k := j] ! i ′ = SA0 ! i ′
proof −

assume b 6= b ′

with ‹i ′ < B[b := k] ! b ′›
have i ′ < B ! b ′

by simp
with s-unchanged-invD[OF assms(4) ‹b ′ ≤ -› ‹bucket-start - - b ′ ≤ -›]
have SA ! i ′ = SA0 ! i ′

by blast
moreover
from s-bucket-ptr-upper-bound[OF assms(2) ‹b ′ ≤ -›] ‹i ′ < B ! b ′›
have i ′ < bucket-end α T b ′

by linarith
with outside-another-bucket[OF ‹b 6= b ′› ‹bucket-start - - - ≤ k› ‹k < bucket-end

- - -›]

374

‹bucket-start - - b ′ ≤ i ′›
have k 6= i ′

by blast
hence SA[k := j] ! i ′ = SA ! i ′

by simp
ultimately show ?thesis

by simp
qed
ultimately show SA[k := j] ! i ′ = SA0 ! i ′

by blast
qed

corollary s-unchanged-inv-maintained-perm-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-unchanged-inv α T (B[b := k]) SA0 (SA[k := j])
using s-unchanged-inv-maintained-step[OF s-perm-inv-elims(1−6 ,8−14)[OF assms(1)]

assms(2−)]
by blast

83.3.5 Seen
lemma s-seen-inv-established:

assumes length SA = length T
and length T ≤ n

shows s-seen-inv α T B SA n
unfolding s-seen-inv-def
using assms by auto

lemma s-seen-inv-maintained-step-c1 :
assumes s-bucket-ptr-inv α T B
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and strict-mono α
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and Suc 0 < length T
and i = Suc n
and length SA ≤ Suc n
shows s-seen-inv α T B SA n
unfolding s-seen-inv-def

proof (intro allI impI)

375

fix j
assume j < length SA n ≤ j
hence n < length SA

by simp
with assms(10 ,11)
have length SA = Suc n

by linarith

let ?b = α (T ! (SA ! j))
let ?g1 = (suffix-type T (SA ! j) = S-type −→ in-s-current-bucket α T B ?b j)
and ?g2 = (suffix-type T (SA ! j) = L-type −→ in-l-bucket α T ?b j)
and ?g3 = SA ! j < length T

from ‹n ≤ j›
have n = j ∨ Suc n ≤ j

using dual-order .antisym not-less-eq-eq by auto
moreover
have n = j =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

let ?b-max = α (Max (set T))
assume n = j
hence j < bucket-end α T ?b-max

using ‹j < length SA› assms(4 ,6) bucket-end-Max by fastforce
hence j < l-bucket-end α T ?b-max

using l-bucket-Max[OF assms(8 ,9 ,4)]
by (simp add: bucket-end-def ′ bucket-size-def l-bucket-end-def l-bucket-size-def)
moreover
from ‹n = j› ‹j < length SA› ‹length SA = Suc n› assms(4 ,6 ,10)
have bucket-start α T ?b-max ≤ j
by (metis Suc-leI antisym bucket-end-eq-length bucket-end-le-length gr-implies-not0

index-in-bucket-interval-gen length-0-conv)
moreover
have ?b-max ≤ α (Max (set T))

by simp
ultimately have SA ! j ∈ l-bucket α T ?b-max
using l-types-init-nth[OF assms(6) l-types-init-maintained[OF assms(1 ,2 ,5−7)]

]
by blast

hence ?b-max = α (T ! (SA ! j))
by (simp add: bucket-def l-bucket-def)

moreover
from ‹SA ! j ∈ l-bucket α T ?b-max›
have ?g3

by (simp add: bucket-def l-bucket-def)
moreover
from ‹SA ! j ∈ l-bucket α T ?b-max›
have suffix-type T (SA ! j) = L-type

by (simp add: bucket-def l-bucket-def)
moreover

376

have in-l-bucket α T (α (T ! (SA ! j))) j
using ‹bucket-start - - - ≤ j› ‹j < l-bucket-end - - -› calculation(1)

in-l-bucket-def
by fastforce

hence ?g2
using calculation(3) by blast

moreover
from calculation(3)
have ?g1

by simp
ultimately show ?thesis

by simp
qed
moreover
have Suc n ≤ j =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume Suc n ≤ j
with s-seen-invD[OF assms(3) ‹j < length SA›] assms(10)
show ?thesis

by blast
qed
ultimately show ?g1 ∧ ?g2 ∧ ?g3

by blast
qed

corollary s-seen-inv-maintained-perm-step-c1 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length SA ≤ Suc n
shows s-seen-inv α T B SA n
using s-seen-inv-maintained-step-c1 [OF s-perm-inv-elims(2 ,4 ,5 ,8 ,10−13 ,15)[OF

assms(1)] assms(2−)]
by blast

lemma s-seen-inv-maintained-step-c1-alt:
assumes s-bucket-ptr-inv α T B
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and strict-mono α
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and Suc 0 < length T
and i = Suc n
and length T ≤ SA ! Suc n
shows s-seen-inv α T B SA n

proof (cases length SA ≤ Suc n)
assume length SA ≤ Suc n

377

then show ?thesis
using assms(1−10) s-seen-inv-maintained-step-c1 by blast

next
assume ¬ length SA ≤ Suc n
hence Suc n < length SA

by simp
show ?thesis

unfolding s-seen-inv-def
proof (intro allI impI)

fix j
assume j < length SA n ≤ j
hence n < length SA

by simp

let ?b = α (T ! (SA ! j))
let ?g1 = (suffix-type T (SA ! j) = S-type −→ in-s-current-bucket α T B ?b j)
and ?g2 = (suffix-type T (SA ! j) = L-type −→ in-l-bucket α T ?b j)
and ?g3 = SA ! j < length T

from ‹n ≤ j›
have n = j ∨ Suc n ≤ j

using dual-order .antisym not-less-eq-eq by auto
moreover
have n = j =⇒ ?g1 ∧ ?g2 ∧ ?g3
by (metis Suc-le-mono ‹Suc n < length SA› ‹n ≤ j› assms(3 ,10 ,11) linorder-not-le

s-seen-invD(1))
moreover
have Suc n ≤ j =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume Suc n ≤ j
with s-seen-invD[OF assms(3) ‹j < length SA›] assms(10)
show ?thesis

by blast
qed
ultimately show ?g1 ∧ ?g2 ∧ ?g3

by blast
qed

qed

corollary s-seen-inv-maintained-perm-step-c1-alt:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length T ≤ SA ! Suc n
shows s-seen-inv α T B SA n
using s-seen-inv-maintained-step-c1-alt[OF s-perm-inv-elims(2 ,4 ,5 ,8 ,10−13 ,15)[OF

assms(1)] assms(2−)]
by blast

lemma s-seen-inv-maintained-step-c2 :

378

assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and s-suc-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and Suc 0 < length T
and i = Suc n
and Suc n < length SA
and SA ! Suc n = 0
shows s-seen-inv α T B SA n

unfolding s-seen-inv-def
proof (intro allI impI)

fix j
assume j < length SA n ≤ j
hence n < length SA

by simp
hence n < length T

by (simp add: assms(11))

let ?b = α (T ! (SA ! j))
let ?g1 = (suffix-type T (SA ! j) = S-type −→ in-s-current-bucket α T B ?b j)
and ?g2 = (suffix-type T (SA ! j) = L-type −→ in-l-bucket α T ?b j)
and ?g3 = SA ! j < length T

from ‹n ≤ j›
have n = j ∨ Suc n ≤ j

by linarith
moreover
have n = j =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume n = j
with index-in-bucket-interval-gen[OF ‹n < length T › assms(8)]
obtain b where

b ≤ α (Max (set T))
bucket-start α T b ≤ j
j < bucket-end α T b
by blast

have j < l-bucket-end α T b ∨ s-bucket-start α T b ≤ j

379

by (metis not-le s-bucket-start-eq-l-bucket-end)
moreover
have j < l-bucket-end α T b =⇒ ?thesis
proof −

assume j < l-bucket-end α T b
with l-types-init-nth[OF assms(11) l-types-init-maintained[OF assms(2 ,4 ,10−12)]

‹b ≤ -›
‹bucket-start - - - ≤ j›]

have SA ! j ∈ l-bucket α T b .
hence suffix-type T (SA ! j) = L-type SA ! j < length T

by (simp add: l-bucket-def bucket-def)+
moreover
have ?g1

by(simp add: calculation(1) SL-types.exhaust)
moreover
from ‹SA ! j ∈ l-bucket α T b›
have b = α (T ! (SA ! j))

by (metis (mono-tags, lifting) bucket-def l-bucket-def mem-Collect-eq)
with ‹bucket-start α T b ≤ j› ‹j < l-bucket-end α T b› ‹b ≤ -›
have in-l-bucket α T (α (T ! (SA ! j))) j

using in-l-bucket-def by blast
ultimately show ?thesis

by blast
qed
moreover
have s-bucket-start α T b ≤ j =⇒ ?thesis
proof −

assume s-bucket-start α T b ≤ j
hence s-bucket-start α T b < i

by (simp add: ‹n = j› assms(16))

have B ! b ≤ i
proof(rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ≤ α -›]
have B ! b = s-bucket-start α T b .
with ‹s-bucket-start α T b < i› ‹i < B ! b›
show False

by linarith
qed
hence B ! b < i ∨ B ! b = i

using dual-order .order-iff-strict by blast
moreover
have B ! b < i =⇒ ?thesis
proof −

assume B ! b < i
hence B ! b ≤ j

380

by (simp add: ‹n = j› assms(16))
with s-locations-invD[OF assms(3) ‹b ≤ -› - ‹j < bucket-end - - -›]
have SA ! j ∈ s-bucket α T b .
hence SA ! j < length T suffix-type T (SA ! j) = S-type

by (simp add: s-bucket-def bucket-def)+
moreover
from calculation(2)
have ?g2

by simp
moreover
from ‹SA ! j ∈ s-bucket α T b›
have α (T ! (SA ! j)) = b

by (simp add: s-bucket-def bucket-def)
with ‹B ! b ≤ j› ‹j < bucket-end α T b› ‹b ≤ -›
have in-s-current-bucket α T B (α (T ! (SA ! j))) j

by (simp add: in-s-current-bucket-def)
ultimately show ?thesis

by blast
qed
moreover
have B ! b = i =⇒ ?thesis
proof −

assume B ! b = i
hence s-bucket-start α T b < B ! b

using ‹s-bucket-start α T b < i› by blast

have b 6= 0
using ‹B ! b = i› assms(2 ,16) less-Suc-eq-0-disj s-bucket-ptr-0 by fastforce

let ?xs = list-slice SA (B ! b) (bucket-end α T b)
let ?B = set ?xs
let ?A = s-bucket α T b − ?B

from s-locations-inv-subset-s-bucket[OF assms(3) ‹b ≤ -›]
have ?B ⊆ s-bucket α T b .
hence ?A ⊆ s-bucket α T b

by blast

have card (s-bucket α T b) = bucket-end α T b − s-bucket-start α T b
by (simp add: bucket-end-eq-s-start-pl-size s-bucket-size-def)

from s-distinct-invD[OF assms(1) ‹b ≤ -›]
have card ?B = bucket-end α T b − B ! b

by (metis assms(11) bucket-end-le-length distinct-card length-list-slice
min.absorb-iff1)

hence card ?B < card (s-bucket α T b)
using ‹card (s-bucket α T b) = bucket-end α T b − s-bucket-start α T b›

‹j < bucket-end α T b› ‹s-bucket-start α T b < B ! b› ‹s-bucket-start
α T b ≤ j›

381

by linarith
with card-psubset[OF finite-s-bucket ‹?B ⊆ s-bucket α T b›]
have ?B ⊂ s-bucket α T b .
hence ?A 6= {}

by blast
with subset-s-bucket-successor [OF assms(13 ,8 ,14) ‹b 6= -› ‹?A ⊆ -›]
obtain x where

x ∈ ?A
Suc x ∈ ?B ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)
by blast

hence suffix-type T x = S-type α (T ! x) = b x < length T
by (simp add: s-bucket-def bucket-def)+

from ‹x ∈ ?A›
have x /∈ ?B

by blast

have Suc x ∈ ?B =⇒ ?thesis
proof −

assume Suc x ∈ ?B
from nth-mem-list-slice[OF ‹Suc x ∈ ?B›]
obtain i ′ where

i ′ < length SA
B ! b ≤ i ′
i ′ < bucket-end α T b
SA ! i ′ = Suc x
by blast

have i 6= i ′
proof (rule ccontr)

assume ¬ i 6= i ′
hence i = i ′

by auto
with assms(16 ,18) ‹SA ! i ′ = Suc x›
show False

by simp
qed
with ‹B ! b = i› ‹B ! b ≤ i ′›
have i < i ′

by simp
with s-suc-invD[OF assms(7) ‹i ′ < length SA› - ‹SA ! i ′ = Suc x›

‹suffix-type T x = -›,
simplified ‹α (T ! x) = b›]

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B

382

by (meson assms(11) in-s-current-bucket-list-slice)
with ‹x /∈ ?B›
have False

by blast
then show ?thesis

by blast
qed
moreover
have ∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′ =⇒ ?thesis
proof −

assume ∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′

then obtain b ′ where
b < b ′

Suc x ∈ bucket α T b ′

by blast
hence bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
with s-bucket-ptr-upper-bound[OF assms(2) ‹b ≤ - ›] ‹B ! b = i›
have i ≤ bucket-start α T b ′

by linarith

from ‹Suc x ∈ bucket α T b ′›
have b ′ ≤ α (Max (set T))

by (metis (mono-tags, lifting) Max-greD assms(8) bucket-def mem-Collect-eq
strict-mono-less-eq)

with ‹i ≤ bucket-start α T b ′› s-bucket-ptr-lower-bound[OF assms(2), of
b ′]

have i ≤ B ! b ′

by (metis nat-le-iff-add s-bucket-start-def trans-le-add1)
hence i = B ! b ′ ∨ i < B ! b ′

using antisym-conv1 by blast
hence B ! b ′ = s-bucket-start α T b ′

proof
assume i = B ! b ′

with ‹i ≤ bucket-start α T b ′› s-bucket-ptr-lower-bound[OF assms(2) ‹b ′

≤ -›]
show ?thesis

by (simp add: s-bucket-start-def)
next

assume i < B ! b ′

with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ′ ≤ -›]
show ?thesis .

qed

from ‹Suc x ∈ bucket α T b ′›
have Suc x ∈ l-bucket α T b ′ ∨ Suc x ∈ s-bucket α T b ′

by (simp add: l-un-s-bucket)
moreover
have Suc x ∈ l-bucket α T b ′ =⇒ ?thesis

383

proof −
assume Suc x ∈ l-bucket α T b ′

with l-types-initD(1)[OF l-types-init-maintained[OF assms(2 ,4 ,10−12)]
‹b ′ ≤ -›]

have Suc x ∈ set (list-slice SA (bucket-start α T b ′) (l-bucket-end α T
b ′))

by simp
with nth-mem-list-slice[of Suc x SA bucket-start α T b ′ l-bucket-end α

T b ′]
obtain i ′ where

i ′ < length SA
bucket-start α T b ′ ≤ i ′
i ′ < l-bucket-end α T b ′

SA ! i ′ = Suc x
by blast

have i 6= i ′
proof (rule ccontr)

assume ¬ i 6= i ′
hence i = i ′

by auto
with ‹SA ! i ′ = Suc x› assms(16 ,18)
show False

by simp
qed
hence i < i ′

using ‹bucket-start α T b ′ ≤ i ′› ‹i ≤ bucket-start α T b ′› by auto
with s-suc-invD[OF assms(7) ‹i ′ < length -› - ‹SA ! i ′ = -› ‹suffix-type

T x = -›,
simplified ‹α (T ! x) = b›]

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B
by (meson assms(11) in-s-current-bucket-list-slice)

with ‹x /∈ ?B›
have False

by blast
then show ?thesis

by blast
qed
moreover
have Suc x ∈ s-bucket α T b ′ =⇒ ?thesis
proof −

assume Suc x ∈ s-bucket α T b ′

let ?ys = list-slice SA (s-bucket-start α T b ′) (bucket-end α T b ′)

384

from distinct-card[OF s-distinct-invD[OF assms(1) ‹b ′ ≤ -›],
simplified ‹B ! b ′ = s-bucket-start - - -›]

have card (set ?ys) = card (s-bucket α T b ′)
by (metis add-diff-cancel-left ′ assms(11) bucket-end-eq-s-start-pl-size

bucket-end-le-length length-list-slice min-def s-bucket-size-def)
with card-subset-eq[

OF finite-s-bucket s-locations-inv-subset-s-bucket[OF assms(3) ‹b ′ ≤
-›],

simplified ‹B ! b ′ = s-bucket-start α T b ′›]
have set ?ys = s-bucket α T b ′

by blast
with ‹Suc x ∈ s-bucket α T b ′›
have Suc x ∈ set ?ys

by simp
with nth-mem-list-slice[of Suc x]
obtain i ′ where

i ′ < length SA
s-bucket-start α T b ′ ≤ i ′
i ′ < bucket-end α T b ′

SA ! i ′ = Suc x
by blast

from ‹SA ! i ′ = Suc x› assms(16 ,18)
have i 6= i ′

using nat.discI by blast
hence i < i ′

using ‹B ! b ′ = s-bucket-start α T b ′› ‹i ≤ B ! b ′› ‹s-bucket-start α T
b ′ ≤ i ′›

by linarith
with s-suc-invD[OF assms(7) ‹i ′ < length -› - ‹SA ! i ′ = -› ‹suffix-type

T x = -›,
simplified ‹α (T ! x) = b›]

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B
by (meson assms(11) in-s-current-bucket-list-slice)

with ‹x /∈ ?B›
have False

by blast
then show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed

385

ultimately show ?thesis
using ‹Suc x ∈ ?B ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)› by blast

qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
moreover
have Suc n ≤ j =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume Suc n ≤ j
with s-seen-invD[OF assms(5) ‹j < length SA›] assms(16)
show ?thesis

by blast
qed
ultimately show ?g1 ∧ ?g2 ∧ ?g3

by blast
qed

corollary s-seen-inv-maintained-perm-step-c2 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = 0

shows s-seen-inv α T B SA n
using s-seen-inv-maintained-step-c2 [OF s-perm-inv-elims[OF assms(1)] assms(2−)]
by blast

lemma s-seen-inv-maintained-step-c3 :
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and s-suc-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and Suc 0 < length T
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j

386

and suffix-type T j = L-type
shows s-seen-inv α T B SA n
unfolding s-seen-inv-def

proof (intro allI impI)
fix k
assume k < length SA n ≤ k
hence n < length SA

by simp
hence n < length T

by (simp add: assms(11))

let ?b = α (T ! (SA ! k))
let ?g1 = (suffix-type T (SA ! k) = S-type −→ in-s-current-bucket α T B ?b k)
and ?g2 = (suffix-type T (SA ! k) = L-type −→ in-l-bucket α T ?b k)
and ?g3 = SA ! k < length T

from ‹n ≤ k›
have n = k ∨ Suc n ≤ k

by linarith
moreover
have n = k =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume n = k
with index-in-bucket-interval-gen[OF ‹n < length T › assms(8)]
obtain b where

b ≤ α (Max (set T))
bucket-start α T b ≤ k
k < bucket-end α T b
by blast

have k < l-bucket-end α T b ∨ s-bucket-start α T b ≤ k
by (metis not-le s-bucket-start-eq-l-bucket-end)

moreover
have k < l-bucket-end α T b =⇒ ?thesis
proof −

assume k < l-bucket-end α T b
with l-types-init-nth[OF assms(11) l-types-init-maintained[OF assms(2 ,4 ,10−12)]

‹b ≤ -› ‹bucket-start - - - ≤ -›]
have SA ! k ∈ l-bucket α T b .
hence SA ! k < length T suffix-type T (SA ! k) = L-type

by (simp add: l-bucket-def bucket-def)+
moreover
from calculation(2)
have ?g1

by simp
moreover
from ‹SA ! k ∈ l-bucket α T b›
have b = (α (T ! (SA ! k)))

by (simp add: l-bucket-def bucket-def)

387

with ‹b ≤ -› ‹bucket-start - - - ≤ -› ‹k < l-bucket-end - - -›
have in-l-bucket α T (α (T ! (SA ! k))) k

using in-l-bucket-def by blast
ultimately show ?thesis

by blast
qed
moreover
have s-bucket-start α T b ≤ k =⇒ ?thesis
proof −

assume s-bucket-start α T b ≤ k
hence s-bucket-start α T b < i

by (simp add: ‹n = k› assms(16))

have B ! b ≤ i
proof(rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ≤ α -›]
have B ! b = s-bucket-start α T b .
with ‹s-bucket-start α T b < i› ‹i < B ! b›
show False

by linarith
qed
hence i = B ! b ∨ B ! b < i

by linarith
moreover
have B ! b < i =⇒ ?thesis
proof −

assume B ! b < i
hence B ! b ≤ k

by (simp add: ‹n = k› assms(16))
with s-locations-invD[OF assms(3) ‹b ≤ -› - ‹k < bucket-end - - -›]
have SA ! k ∈ s-bucket α T b .
hence SA ! k < length T suffix-type T (SA ! k) = S-type

by (simp add: s-bucket-def bucket-def)+
moreover
from calculation(2)
have ?g2

by simp
moreover
from ‹SA ! k ∈ s-bucket α T b›
have α (T ! (SA ! k)) = b

by (simp add: s-bucket-def bucket-def)
with ‹B ! b ≤ k› ‹k < bucket-end α T b› ‹b ≤ -›
have in-s-current-bucket α T B (α (T ! (SA ! k))) k

by (simp add: in-s-current-bucket-def)
ultimately show ?thesis

by blast

388

qed
moreover
have i = B ! b =⇒ ?thesis
proof −

assume i = B ! b
hence k < B ! b

using ‹n = k› assms(16) by linarith

have s-bucket-start α T b < B ! b
using ‹i = B ! b› ‹s-bucket-start α T b < i› by blast

have b 6= 0
by (metis ‹k < B ! b› assms(2) not-less-zero s-bucket-ptr-0)

let ?xs = list-slice SA (B ! b) (bucket-end α T b)
let ?B = set ?xs
let ?A = s-bucket α T b − ?B

from s-locations-inv-subset-s-bucket[OF assms(3) ‹b ≤ -›]
have ?B ⊆ s-bucket α T b .
hence ?A ⊆ s-bucket α T b

by blast

have card (s-bucket α T b) = bucket-end α T b − s-bucket-start α T b
by (simp add: bucket-end-eq-s-start-pl-size s-bucket-size-def)

from s-distinct-invD[OF assms(1) ‹b ≤ -›]
have card ?B = bucket-end α T b − B ! b

by (metis assms(11) bucket-end-le-length distinct-card length-list-slice
min.absorb-iff1)

hence card ?B < card (s-bucket α T b)
using ‹card (s-bucket α T b) = bucket-end α T b − s-bucket-start α T b›

‹k < bucket-end α T b› ‹s-bucket-start α T b < B ! b› ‹s-bucket-start
α T b ≤ k›

by linarith
with card-psubset[OF finite-s-bucket ‹?B ⊆ s-bucket α T b›]
have ?B ⊂ s-bucket α T b .
hence ?A 6= {}

by blast
with subset-s-bucket-successor [OF assms(13 ,8 ,14) ‹b 6= 0 › ‹?A ⊆ s-bucket

α T b›]
obtain x where

x ∈ ?A
Suc x ∈ s-bucket α T b − ?A ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)
by blast

hence Suc x ∈ ?B ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)
by blast

from ‹x ∈ ?A› ‹?A ⊆ s-bucket α T b›

389

have suffix-type T x = S-type α (T ! x) = b
by (simp add: s-bucket-def bucket-def)+

have x /∈ ?B
using ‹x ∈ ?A› by blast

from ‹Suc x ∈ ?B ∨ (∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′)›
have False
proof

assume Suc x ∈ ?B
from nth-mem-list-slice[OF ‹Suc x ∈ ?B›]
obtain i ′ where

i ′ < length SA
B ! b ≤ i ′
i ′ < bucket-end α T b
SA ! i ′ = Suc x
by blast

have i 6= i ′
proof (rule ccontr)

assume ¬ i 6= i ′
hence i = i ′

by auto
hence j = x

using ‹SA ! i ′ = Suc x› assms(16 ,18) by auto
with assms(19) ‹suffix-type T x = -›
show False

by simp
qed
with ‹B ! b ≤ i ′› ‹i = B ! b›
have i < i ′

using nat-less-le by blast
with s-suc-invD[OF assms(7) ‹i ′ < length SA › - ‹SA ! i ′ = -› ‹suffix-type

T x = -›]
‹α (T ! x) = b›

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B
by (meson assms(11) in-s-current-bucket-list-slice)

with ‹x /∈ ?B›
show False

by blast
next

assume ∃ b ′. b < b ′ ∧ Suc x ∈ bucket α T b ′

then obtain b ′ where
b < b ′

390

Suc x ∈ bucket α T b ′

by blast
hence b ′ ≤ α (Max (set T))

by (metis (mono-tags, lifting) Max-greD assms(8) bucket-def mem-Collect-eq
strict-mono-less-eq)

have suffix-type T (Suc x) = S-type ∨ suffix-type T (Suc x) = L-type
by (simp add: suffix-type-def)

hence Suc x ∈ l-bucket α T b ′ ∨ Suc x ∈ s-bucket α T b ′

using ‹Suc x ∈ bucket α T b ′› l-bucket-def s-bucket-def by fastforce
moreover
have Suc x ∈ l-bucket α T b ′ =⇒ False
proof −

assume Suc x ∈ l-bucket α T b ′

with l-types-initD(1)[OF l-types-init-maintained[OF assms(2 ,4 ,10−12)]
‹b ′ ≤ -›]

have Suc x ∈ set (list-slice SA (bucket-start α T b ′) (l-bucket-end α T
b ′))

by blast
with nth-mem-list-slice[of Suc x]
obtain i ′ where

i ′ < length SA
bucket-start α T b ′ ≤ i ′
i ′ < l-bucket-end α T b ′

SA ! i ′ = Suc x
by blast

have i 6= i ′
proof (rule ccontr)

assume ¬ i 6= i ′
hence i = i ′

by auto
hence j = x

using ‹SA ! i ′ = Suc x› assms(16 ,18) by auto
with assms(19) ‹suffix-type T x = -›
show False

by simp
qed
moreover
from ‹b < b ′›
have bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
hence B ! b ≤ i ′

using s-bucket-ptr-upper-bound[OF assms(2) ‹b ≤ α (Max (set T))›]
‹bucket-start α T b ′ ≤ i ′›

by linarith
ultimately have i < i ′

using ‹i = B ! b› nat-less-le by blast
with s-suc-invD[OF assms(7) ‹i ′ < length SA › - ‹SA ! i ′ = -› ‹suffix-type

391

T x = -›]
‹α (T ! x) = b›

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B
by (meson assms(11) in-s-current-bucket-list-slice)

with ‹x /∈ ?B›
show False

by blast
qed
moreover
have Suc x ∈ s-bucket α T b ′ =⇒ False
proof −

assume Suc x ∈ s-bucket α T b ′

have i ≤ bucket-end α T b
by (simp add: Suc-le-eq ‹k < bucket-end α T b› ‹n = k› assms(16))

hence i ≤ bucket-start α T b ′

using ‹b < b ′› less-bucket-end-le-start order .trans by blast
hence i ≤ B ! b ′

using s-bucket-ptr-lower-bound[OF assms(2) ‹b ′ ≤ -›]
by (metis l-bucket-end-def le-trans nat-le-iff-add s-bucket-start-eq-l-bucket-end)

hence i < B ! b ′ ∨ i = B ! b ′

using nat-less-le by blast
hence B ! b ′ = s-bucket-start α T b ′

proof
assume i < B ! b ′

with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ′ ≤ -›]
show B ! b ′ = s-bucket-start α T b ′

by blast
next

assume i = B ! b ′

with s-bucket-ptr-lower-bound[OF assms(2) ‹b ′ ≤ -›]
‹i ≤ bucket-start α T b ′›

show B ! b ′ = s-bucket-start α T b ′

by (simp add: s-bucket-start-def)
qed

let ?ys = list-slice SA (s-bucket-start α T b ′) (bucket-end α T b ′)

from distinct-card[OF s-distinct-invD[OF assms(1) ‹b ′ ≤ -›],
simplified ‹B ! b ′ = s-bucket-start - - -›]

have card (set ?ys) = card (s-bucket α T b ′)
by (metis add-diff-cancel-left ′ assms(11) bucket-end-eq-s-start-pl-size

bucket-end-le-length length-list-slice min-def s-bucket-size-def)
with card-subset-eq[

392

OF finite-s-bucket s-locations-inv-subset-s-bucket[OF assms(3) ‹b ′ ≤
-›],

simplified ‹B ! b ′ = s-bucket-start α T b ′›]
have set ?ys = s-bucket α T b ′

by blast
with ‹Suc x ∈ s-bucket α T b ′›
have Suc x ∈ set ?ys

by simp
with nth-mem-list-slice[of Suc x]
obtain i ′ where

i ′ < length SA
s-bucket-start α T b ′ ≤ i ′
i ′ < bucket-end α T b ′

SA ! i ′ = Suc x
by blast

have i 6= i ′
proof (rule ccontr)

assume ¬ i 6= i ′
hence i = i ′

by auto
hence j = x

using ‹SA ! i ′ = Suc x› assms(16 ,18) by auto
with assms(19) ‹suffix-type T x = -›
show False

by simp
qed
moreover
have i ≤ i ′

using ‹B ! b ′ = s-bucket-start α T b ′› ‹i ≤ B ! b ′› ‹s-bucket-start α T
b ′ ≤ i ′›

by linarith
ultimately have i < i ′

using dual-order .order-iff-strict by blast
with s-suc-invD[OF assms(7) ‹i ′ < length SA › - ‹SA ! i ′ = -› ‹suffix-type

T x = -›]
‹α (T ! x) = b›

obtain k where
in-s-current-bucket α T B b k
SA ! k = x
k < i ′
by blast

hence x ∈ ?B
by (meson assms(11) in-s-current-bucket-list-slice)

with ‹x /∈ ?B›
show False

by blast
qed
ultimately show False

393

by blast
qed
then show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
moreover
have Suc n ≤ k =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume Suc n ≤ k
with s-seen-invD[OF assms(5) ‹k < length SA›] assms(16)
show ?thesis

by blast
qed
ultimately show ?g1 ∧ ?g2 ∧ ?g3

by blast
qed

corollary s-seen-inv-maintained-perm-step-c3 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = L-type

shows s-seen-inv α T B SA n
using s-seen-inv-maintained-step-c3 [OF s-perm-inv-elims[OF assms(1)] assms(2−)]
by blast

lemma s-seen-inv-maintained-step-c4 :
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and s-suc-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and Suc 0 < length T

394

and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-seen-inv α T (B[b := k]) (SA[k := j]) n
unfolding s-seen-inv-def

proof(intro allI impI)
fix i ′
assume i ′ < length (SA[k := j]) n ≤ i ′

let ?g1 = (suffix-type T (SA[k := j] ! i ′) = S-type −→
in-s-current-bucket α T (B[b := k]) (α (T ! (SA[k := j] ! i ′))) i ′) and

?g2 = (suffix-type T (SA[k := j] ! i ′) = L-type −→
in-l-bucket α T (α (T ! (SA[k := j] ! i ′))) i ′) and

?g3 = SA[k := j] ! i ′ < length T

from s-bucket-ptr-strict-lower-bound[OF assms(1−6 ,8 ,10−14 ,16−20)]
have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(21) by linarith
hence bucket-start α T b ≤ k

using bucket-start-le-s-bucket-start le-trans by blast

from ‹s-bucket-start α T b < B ! b›
have k < B ! b

using assms(21) by linarith

have j < length T
by (simp add: assms(19) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(8 ,20) strict-mono-less-eq)

with s-bucket-ptr-upper-bound[OF assms(2)]
have B ! b ≤ bucket-end α T b

by blast
with ‹k < B ! b›
have k < bucket-end α T b

by linarith

have B ! b ≤ i
proof(rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ≤ α -›]
have B ! b = s-bucket-start α T b .
with ‹s-bucket-start α T b < B ! b›
show False

395

by linarith
qed
hence k < i

using ‹k < B ! b› less-le-trans by blast

have k = i ′ =⇒ n = i ′
using ‹k < i› ‹n ≤ i ′› assms(16) le-less-Suc-eq by blast

have k ≤ i ′
using ‹k < i› ‹n ≤ i ′› assms(16) by linarith

have i ′ < length T
using ‹i ′ < length (SA[k := j])› assms(11) by auto

with index-in-bucket-interval-gen[OF - assms(8), of i ′ T]
obtain b ′ where

b ′ ≤ α (Max (set T))
bucket-start α T b ′ ≤ i ′
i ′ < bucket-end α T b ′

by blast
hence n < bucket-end α T b ′

using ‹n ≤ i ′› dual-order .strict-trans2 by blast
hence i ≤ bucket-end α T b ′

using assms(16) by linarith

have b ≤ b ′

proof (rule ccontr)
assume ¬b ≤ b ′

hence b ′ < b
by linarith

hence bucket-end α T b ′ ≤ bucket-start α T b
by (simp add: less-bucket-end-le-start)

with ‹i ≤ bucket-end α T b ′› ‹bucket-start α T b ≤ k› ‹k < B ! b›
have i < B ! b

by linarith
with ‹B ! b ≤ i›
show False

by linarith
qed

have in-s-current-bucket α T (B[b := k]) b k
unfolding in-s-current-bucket-def
using ‹b ≤ α (Max (set T))› ‹k < bucket-end α T b› assms(9) by auto

have b < b ′ =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume b < b ′

hence bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
with ‹k < bucket-end - - b› ‹bucket-start - - b ′ ≤ i ′›

396

have k < i ′
by linarith

hence SA[k := j] ! i ′ = SA ! i ′
by simp

from ‹b < b ′›
have B[b := k] ! b ′ = B ! b ′

by simp

have i ′ < l-bucket-end α T b ′ ∨ B ! b ′ ≤ i ′ ∨ (s-bucket-start α T b ′ ≤ i ′ ∧ i ′
< B ! b ′)

by (metis not-le s-bucket-start-eq-l-bucket-end)
moreover
have B ! b ′ ≤ i ′ =⇒ ?thesis
proof −

assume B ! b ′ ≤ i ′
with s-locations-invD[OF assms(3) ‹b ′ ≤ -› - ‹i ′ < bucket-end - - -›]
have SA ! i ′ ∈ s-bucket α T b ′ .
hence suffix-type T (SA ! i ′) = S-type α (T ! (SA ! i ′)) = b ′ SA ! i ′ < length

T
by (simp add: s-bucket-def bucket-def)+

moreover
from ‹B[b := k] ! b ′ = B ! b ′› ‹b ′ ≤ α -› ‹B ! b ′ ≤ i ′› ‹i ′ < bucket-end α T

b ′›
have in-s-current-bucket α T (B[b := k]) b ′ i ′

by (simp add: in-s-current-bucket-def)
ultimately show ?thesis

by (simp add: ‹SA[k := j] ! i ′ = SA ! i ′›)
qed
moreover
have i ′ < l-bucket-end α T b ′ =⇒ ?thesis
proof −

assume i ′ < l-bucket-end α T b ′

hence in-l-bucket α T b ′ i ′
by (simp add: ‹bucket-start α T b ′ ≤ i ′› ‹b ′ ≤ α -› in-l-bucket-def)

moreover
from l-types-init-nth[OF assms(11) l-types-init-maintained[OF assms(2 ,4 ,10−12)]

‹b ′ ≤ α -› ‹bucket-start - - - ≤ i ′› ‹i ′ < l-bucket-end - - -›]
have SA ! i ′ ∈ l-bucket α T b ′ .
hence SA ! i ′ < length T α (T ! (SA ! i ′)) = b ′ suffix-type T (SA ! i ′) =

L-type
by (simp add: l-bucket-def bucket-def)+

ultimately show ?thesis
using ‹SA[k := j] ! i ′ = SA ! i ′›
by simp

qed
moreover
have [[s-bucket-start α T b ′ ≤ i ′; i ′ < B ! b ′]] =⇒ ?thesis
proof −

397

assume s-bucket-start α T b ′ ≤ i ′ i ′ < B ! b ′

have B ! b ′ = i
proof (rule ccontr)

assume B ! b ′ 6= i
hence i < B ! b ′ ∨ B ! b ′ < i

by linarith
moreover
have B ! b ′ < i =⇒ False

using ‹i ′ < B ! b ′› ‹n ≤ i ′› assms(16) by linarith
moreover
have i < B ! b ′ =⇒ False
proof −

assume i < B ! b ′

with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ′ ≤ α -›]
have B ! b ′ = s-bucket-start α T b ′ .
with ‹s-bucket-start α T b ′ ≤ i ′› ‹i ′ < B ! b ′›
show False

by linarith
qed
ultimately show False

by linarith
qed

have s-bucket-start α T b ′ < B ! b ′

using ‹i ′ < B ! b ′› ‹s-bucket-start α T b ′ ≤ i ′› by linarith
hence s-bucket-start α T b ′ < bucket-end α T b ′

using ‹B ! b ′ = i› ‹i ≤ bucket-end α T b ′› order .strict-trans2 by blast
hence s-bucket α T b ′ 6= {}
by (metis add.commute bucket-end-eq-s-start-pl-size distinct-card distinct-conv-nth

empty-set less-irrefl-nat less-nat-zero-code list.size(3) plus-nat.add-0
s-bucket-size-def)

have bucket-end α T b ′ ≤ length SA
by (simp add: assms(11) bucket-end-le-length)

let ?xs = list-slice SA (B ! b ′) (bucket-end α T b ′)

have set ?xs ⊂ s-bucket α T b ′

proof
from s-locations-inv-subset-s-bucket[OF assms(3) ‹b ′ ≤ -›]
show set ?xs ⊆ s-bucket α T b ′ .

next
from ‹s-bucket-start α T b ′ < B ! b ′› ‹s-bucket-start α T b ′ < bucket-end

α T b ′›
have bucket-end α T b ′ − B ! b ′ < bucket-end α T b ′ − s-bucket-start α T

b ′

using diff-less-mono2 by blast
hence length ?xs < s-bucket-size α T b ′

by (metis ‹bucket-end α T b ′ ≤ length SA› add-diff-cancel-left ′

398

bucket-end-eq-s-start-pl-size length-list-slice min-def)
hence card (set ?xs) 6= card (s-bucket α T b ′)

by (metis card-length not-le s-bucket-size-def)
then show set ?xs 6= s-bucket α T b ′

by auto
qed

have P0 : ∀ i0 < length T . α (T ! i0) = b ′ −→ T ! i0 6= bot
using ‹b < b ′› assms(8 ,20) strict-mono-less by fastforce

hence P1 : ∀ i0 < length T . α (T ! i0) = b ′ −→ Suc i0 < length T
by (metis Suc-leI assms(13) diff-Suc-1 last-conv-nth le-imp-less-or-eq

length-greater-0-conv
valid-list-def)

let ?S = s-bucket α T b ′ − set ?xs

from ‹set ?xs ⊂ s-bucket α T b ′›
have ?S 6= {}

by blast
have ?S ⊆ s-bucket α T b ′

by blast
hence P2 : ∀ x ∈ ?S . α (T ! x) = b ′ ∧ suffix-type T x = S-type ∧ x < length

T
by (simp add: bucket-def s-bucket-def)

have P3 : ∀ x ∈ ?S . Suc x < length T ∧ α (T ! Suc x) ≥ b ′

proof
fix x
assume x ∈ ?S
with P2
have α (T ! x) = b ′ suffix-type T x = S-type x < length T

by blast+
with P1
have Suc x < length T

by blast
moreover
from ‹suffix-type T x = S-type› ‹x < length T ›
have T ! x ≤ T ! Suc x

using calculation nth-gr-imp-l-type by fastforce
hence α (T ! Suc x) ≥ b ′

using ‹α (T ! x) = b ′› assms(8) strict-mono-leD by blast
ultimately show Suc x < length T ∧ α (T ! Suc x) ≥ b ′

by blast
qed

have finite ?S
by (simp add: finite-s-bucket)

have ∃ x ∈ ?S . α (T ! Suc x) > b ′ ∨ Suc x ∈ set ?xs

399

proof (rule ccontr)
assume ¬ (∃ x ∈ ?S . b ′ < α (T ! Suc x) ∨ Suc x ∈ set ?xs)
hence ∀ x ∈ ?S . α (T ! Suc x) ≤ b ′ ∧ Suc x /∈ set ?xs

using not-le-imp-less by blast
with P3
have P4 : ∀ x ∈ ?S . α (T ! Suc x) = b ′ ∧ Suc x /∈ set ?xs

using dual-order .antisym by blast
hence P5 : ∀ x ∈ ?S . suffix-type T (Suc x) = S-type

by (metis P2 P3 assms(8) strict-mono-eq suffix-type-neq)
hence P6 : ∀ x ∈ ?S . Suc x ∈ ?S

by (metis (mono-tags, lifting) Diff-iff P3 P4 bucket-def mem-Collect-eq
s-bucket-def)

with ‹?S 6= {}› ‹finite ?S›
show False

using Suc-le-lessD infinite-growing by blast
qed
then obtain x where

x ∈ ?S
α (T ! Suc x) > b ′ ∨ Suc x ∈ set ?xs
by blast

with P3
have Suc x < length T

by blast

from ‹x ∈ ?S›
have suffix-type T x = S-type α (T ! x) = b ′ x < length T

using P2 by blast+

have P4 : ∀ b0 ≤ α (Max (set T)). b ′ < b0 −→ B ! b0 = s-bucket-start α T
b0

proof(safe)
fix b0
assume b0 ≤ α (Max (set T)) b ′ < b0
hence bucket-end α T b ′ ≤ bucket-start α T b0

by (simp add: less-bucket-end-le-start)
with s-bucket-ptr-upper-bound[OF assms(2) ‹b ′ ≤ - ›]

s-bucket-ptr-lower-bound[OF assms(2) ‹b0 ≤ - ›]
have B ! b ′ ≤ B ! b0

by (meson bucket-start-le-s-bucket-start le-trans)
hence B ! b ′ = B ! b0 ∨ B ! b ′ < B ! b0

by linarith
moreover
have B ! b ′ = B ! b0 =⇒ B ! b0 = s-bucket-start α T b0

by (metis ‹B ! b ′ = i› ‹bucket-end α T b ′ ≤ bucket-start α T b0 › le-trans
‹i ≤ bucket-end α T b ′› ‹s-bucket-start α T b0 ≤ B ! b0 › dual-order .antisym

bucket-start-le-s-bucket-start)
moreover
have B ! b ′ < B ! b0 =⇒ i < B ! b0

by (simp add: ‹B ! b ′ = i›)

400

with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b0 ≤ -›]
have B ! b ′ < B ! b0 =⇒ B ! b0 = s-bucket-start α T b0

by blast
ultimately show B ! b0 = s-bucket-start α T b0

by blast
qed

from ‹α (T ! Suc x) > b ′ ∨ Suc x ∈ set ?xs›
show ?thesis
proof

let ?b = α (T ! Suc x)
let ?ys = list-slice SA (bucket-start α T ?b) (l-bucket-end α T ?b)
and ?zs = list-slice SA (s-bucket-start α T ?b) (bucket-end α T ?b)

assume b ′ < ?b
with P4 ‹Suc x < length T ›
have B ! ?b = s-bucket-start α T ?b

by (simp add: assms(8) strict-mono-less-eq)

from ‹Suc x < length T ›
have ?b ≤ α (Max (set T))

by (simp add: assms(8) strict-mono-leD)

have bucket-end α T b ′ ≤ bucket-start α T ?b
using ‹b ′ < α (T ! Suc x)› less-bucket-end-le-start by blast

hence i ≤ bucket-start α T ?b
using ‹i ≤ bucket-end α T b ′› order .trans by blast

have set ?zs = s-bucket α T ?b
proof (rule card-subset-eq[OF finite-s-bucket])

show set ?zs ⊆ s-bucket α T ?b
by (metis Max-greD ‹B ! ?b = s-bucket-start α T ?b› ‹Suc x < length

T › assms(3 ,8)
s-locations-inv-subset-s-bucket strict-mono-leD)

next
from distinct-card[OF s-distinct-invD[OF assms(1) ‹?b ≤ -›]]

‹B ! ?b = s-bucket-start α T ?b›
have card (set ?zs) = length ?zs

by simp
moreover
have length ?zs = bucket-end α T ?b − s-bucket-start α T ?b

by (metis assms(11) bucket-end-le-length length-list-slice min-def)
moreover
have s-bucket-size α T ?b = bucket-end α T ?b − s-bucket-start α T ?b

by (simp add: bucket-end-eq-s-start-pl-size)
hence card (s-bucket α T ?b) = bucket-end α T ?b − s-bucket-start α T

?b
by (simp add: s-bucket-size-def)

ultimately show card (set ?zs) = card (s-bucket α T ?b)

401

by simp
qed

have suffix-type T (Suc x) = L-type =⇒ ?thesis
proof −

assume suffix-type T (Suc x) = L-type
with l-types-initD(1)[OF l-types-init-maintained[OF assms(2 ,4 ,10−12)]

‹?b ≤ -›]
have Suc x ∈ set ?ys

by (simp add: ‹Suc x < length T › bucket-def l-bucket-def)

from nth-mem-list-slice[OF ‹Suc x ∈ set ?ys›]
obtain i0 where

i0 < length SA
bucket-start α T ?b ≤ i0
i0 < l-bucket-end α T ?b
SA ! i0 = Suc x
by blast

hence i ≤ i0
using ‹i ≤ bucket-start α T ?b› dual-order .trans by blast

hence i = i0 ∨ i < i0
by linarith

then show ?thesis
proof

assume i = i0
hence x = j

using ‹SA ! i0 = Suc x› assms(16 ,18) by auto
then show ?thesis

using ‹α (T ! x) = b ′› ‹b < b ′› assms(20) by blast
next

assume i < i0
with s-suc-invD[OF assms(7) ‹i0 < length -› - ‹SA ! i0 = -› ‹suffix-type

T x = S-type›]
‹α (T ! x) = b ′›

obtain i1 where
in-s-current-bucket α T B b ′ i1
SA ! i1 = x
i1 < i0
by auto

with in-s-current-bucket-list-slice[OF assms(11)]
have x ∈ set ?xs

by blast
then show ?thesis

using ‹x ∈ ?S› by blast
qed

qed
moreover
have suffix-type T (Suc x) = S-type =⇒ ?thesis
proof −

402

assume suffix-type T (Suc x) = S-type
with ‹set ?zs = s-bucket α T ?b› ‹Suc x < length T ›
have Suc x ∈ set ?zs

by (simp add: s-bucket-def bucket-def)

from nth-mem-list-slice[OF ‹Suc x ∈ set ?zs›]
obtain i0 where

i0 < length SA
s-bucket-start α T ?b ≤ i0
i0 < bucket-end α T ?b
SA ! i0 = Suc x
by blast

hence i ≤ i0
by (meson ‹i ≤ bucket-start α T ?b› bucket-start-le-s-bucket-start

dual-order .trans)
hence i = i0 ∨ i < i0

by linarith
then show ?thesis
proof

assume i = i0
hence x = j

using ‹SA ! i0 = Suc x› assms(16 ,18) by auto
then show ?thesis

using ‹α (T ! x) = b ′› ‹b < b ′› assms(20) by blast
next

assume i < i0
with s-suc-invD[OF assms(7) ‹i0 < length -› - ‹SA ! i0 = -› ‹suffix-type

T x = S-type›]
‹α (T ! x) = b ′›

obtain i1 where
in-s-current-bucket α T B b ′ i1
SA ! i1 = x
i1 < i0
by auto

with in-s-current-bucket-list-slice[OF assms(11)]
have x ∈ set ?xs

by blast
then show ?thesis

using ‹x ∈ ?S› by blast
qed

qed
ultimately show ?thesis

using SL-types.exhaust by blast
next

assume Suc x ∈ set ?xs

from nth-mem-list-slice[OF ‹Suc x ∈ set ?xs›]
obtain i0 where

i0 < length SA

403

B ! b ′ ≤ i0
i0 < bucket-end α T b ′

SA ! i0 = Suc x
by blast

with ‹B ! b ′ = i›
have i ≤ i0

by blast
hence i = i0 ∨ i < i0

by linarith
then show ?thesis
proof

assume i = i0
hence x = j

using ‹SA ! i0 = Suc x› assms(16 ,18) by auto
then show ?thesis

using ‹α (T ! x) = b ′› ‹b < b ′› assms(20) by blast
next

assume i < i0
with s-suc-invD[OF assms(7) ‹i0 < length -› - ‹SA ! i0 = -› ‹suffix-type

T x = -›]
‹α (T ! x) = b ′›

obtain i1 where
in-s-current-bucket α T B b ′ i1
SA ! i1 = x
i1 < i0
by blast

with in-s-current-bucket-list-slice[OF assms(11)]
have x ∈ set ?xs

by blast
then show ?thesis

using ‹x ∈ ?S› by blast
qed

qed
qed
ultimately show ?thesis

by linarith
qed
moreover
have b = b ′ =⇒ ?g1 ∧ ?g2 ∧ ?g3
proof −

assume b = b ′

have k = i ′ =⇒ ?thesis
proof −

assume k = i ′
hence SA[k := j] ! i ′ = j

using ‹i ′ < length (SA[k := j])› by auto
with ‹suffix-type T j = S-type› ‹j < length T › ‹in-s-current-bucket α T (B[b

:= k]) b k›
assms(20) ‹k = i ′›

404

show ?thesis
by simp

qed
moreover
have k < i ′ =⇒ ?thesis
proof −

assume k < i ′
hence B ! b ≤ i ′

using assms(21) by linarith
with s-locations-invD[OF assms(3) ‹b ′ ≤ α -› - ‹i ′ < bucket-end - - -›] ‹b =

b ′›
have SA ! i ′ ∈ s-bucket α T b ′

by blast
hence suffix-type T (SA ! i ′) = S-type α (T ! (SA ! i ′)) = b ′

by (simp add: s-bucket-def bucket-def)+
moreover
have SA[k := j] ! i ′ = SA ! i ′

using ‹k < i ′› by simp
moreover
have in-s-current-bucket α T (B[b := k]) b ′ i ′
by (metis (no-types, lifting) ‹b = b ′› ‹b ′ ≤ α (Max (set T))› ‹i ′ < bucket-end

α T b ′›
‹k ≤ i ′› assms(9) dual-order .strict-trans2 in-s-current-bucket-def

nth-list-update-eq)
ultimately show ?thesis

by (simp add: suffix-type-s-bound)
qed
ultimately show ?thesis

using ‹k ≤ i ′› dual-order .order-iff-strict by blast
qed
ultimately show ?g1 ∧ ?g2 ∧ ?g3

using ‹b ≤ b ′› dual-order .order-iff-strict by blast
qed

corollary s-seen-inv-maintained-perm-step-c4 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-seen-inv α T (B[b := k]) (SA[k := j]) n
using s-seen-inv-maintained-step-c4 [OF s-perm-inv-elims[OF assms(1)] assms(2−)]
by blast

lemmas s-seen-inv-maintained-perm-step =
s-seen-inv-maintained-perm-step-c1
s-seen-inv-maintained-perm-step-c2

405

s-seen-inv-maintained-perm-step-c3
s-seen-inv-maintained-perm-step-c4

83.3.6 Predecessor
lemma s-pred-inv-established:

assumes s-bucket-init α T B
shows s-pred-inv α T B SA n

unfolding s-pred-inv-def
proof (safe)

fix b i
assume A: in-s-current-bucket α T B b i 0 < b

let ?goal = ∃ j<length SA. SA ! j = Suc (SA ! i) ∧ i < j ∧ n < j

have b = 0 ∨ 0 < b
by blast

moreover
from A(2)
have b = 0 =⇒ ?goal

by blast
moreover
have 0 < b =⇒ ?goal
proof −

assume 0 < b
with s-bucket-initD(1)[OF assms(1) in-s-current-bucketD(1)[OF A(1)]]
have B ! b = bucket-end α T b .
with in-s-current-bucketD(2 ,3)[OF A(1)]
show ?goal

by linarith
qed
ultimately show ?goal

by blast
qed

lemma s-pred-inv-maintained-step-alt:
assumes s-pred-inv α T B SA i
and i = Suc n

shows s-pred-inv α T B SA n
unfolding s-pred-inv-def

proof (intro allI impI ; elim conjE)
fix b i ′
assume in-s-current-bucket α T B b i ′ b 6= 0
with s-pred-invD[OF assms(1), of b i ′] assms(2)
show ∃ j<length SA. SA ! j = Suc (SA ! i ′) ∧ i ′ < j ∧ n < j

using Suc-lessD by blast
qed

corollary s-pred-inv-maintained-perm-step-alt:

406

assumes s-perm-inv α T B SA0 SA i
and i = Suc n

shows s-pred-inv α T B SA n
using s-pred-inv-maintained-step-alt[OF s-perm-inv-elims(6), OF assms]
by blast

lemma s-pred-inv-maintained-step:
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and s-suc-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and Suc 0 < length T
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-pred-inv α T (B[b := k]) (SA[k := j]) n
unfolding s-pred-inv-def

proof(safe)
fix b ′ i ′
assume in-s-current-bucket α T (B[b := k]) b ′ i ′ 0 < b ′

hence b ′ 6= 0
by linarith

let ?goal = ∃ j ′<length (SA[k := j]). SA[k := j] ! j ′ = Suc (SA[k := j] ! i ′) ∧ i ′
< j ′ ∧ n < j ′

from s-bucket-ptr-strict-lower-bound[OF assms(1−6 ,8 ,10−14 ,16−20)]
have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(21) by linarith
hence bucket-start α T b ≤ k

using bucket-start-le-s-bucket-start le-trans by blast

from ‹s-bucket-start α T b < B ! b›
have k < B ! b

using assms(21) by linarith

407

have j < length T
by (simp add: assms(19) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(8 ,20) strict-mono-less-eq)

with s-bucket-ptr-upper-bound[OF assms(2)]
have B ! b ≤ bucket-end α T b

by blast
with ‹k < B ! b›
have k < bucket-end α T b

by linarith

have B ! b ≤ i
proof(rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ≤ α (Max (set T))›] ‹s-bucket-start

α T b < B ! b›
show False

by simp
qed
with ‹k < B ! b›
have k < i

by linarith

have b 6= b ′ =⇒ ?goal
proof −

assume b 6= b ′

hence B[b := k] ! b ′ = B ! b ′

by simp
with ‹in-s-current-bucket α T (B[b := k]) b ′ i ′›
have in-s-current-bucket α T B b ′ i ′

by (simp add: in-s-current-bucket-def)
with s-pred-invD[OF assms(6) - ‹b ′ 6= 0 ›]
obtain j ′ where

j ′ < length SA
SA ! j ′ = Suc (SA ! i ′)
i ′ < j ′
i < j ′
by blast

moreover
from ‹in-s-current-bucket α T B b ′ i ′›
have B ! b ′ ≤ i ′ i ′ < bucket-end α T b ′

by (simp-all add: in-s-current-bucket-def)
with s-bucket-ptr-lower-bound[OF assms(2)]

in-s-current-bucketD(1)[OF ‹in-s-current-bucket - - B - -›]
have bucket-start α T b ′ ≤ i ′

by (meson bucket-start-le-s-bucket-start le-trans)

408

with outside-another-bucket[OF ‹b 6= b ′› ‹bucket-start - - - ≤ k› ‹k < bucket-end
- - -›]

‹i ′ < bucket-end α T b ′›
have k 6= i ′

by blast
hence SA[k := j] ! i ′ = SA ! i ′

by simp
moreover
from ‹i < j ′› assms(16)
have n < j ′

using Suc-lessD by blast
moreover
have SA[k := j] ! j ′ = SA ! j ′

using ‹k < i› calculation(4) by auto
ultimately show ?thesis

by auto
qed
moreover
have b = b ′ =⇒ ?goal
proof −

assume b = b ′

hence B[b := k] ! b ′ = k
using ‹b ≤ α (Max (set T))› assms(9) by auto

have k = i ′ =⇒ ?goal
proof −

assume k = i ′
hence SA[k := j] ! i ′ = j

using ‹k < i› assms(16 ,17) by auto
moreover
have SA[k := j] ! i = SA ! i

using ‹k < i› by auto
ultimately show ?goal

using assms(16−18) ‹k = i ′› ‹k < i›
by auto

qed
moreover
have k 6= i ′ =⇒ ?goal
proof −

assume k 6= i ′
with ‹in-s-current-bucket α T (B[b := k]) b ′ i ′› ‹B[b := k] ! b ′ = k›
have k < i ′

by (simp add: in-s-current-bucket-def)
hence B ! b ′ ≤ i ′

using assms(21) ‹b = b ′› ‹k < B ! b› by simp
hence in-s-current-bucket α T B b ′ i ′
using ‹in-s-current-bucket α T (B[b := k]) b ′ i ′› in-s-current-bucket-def by

blast
with s-pred-invD[OF assms(6) - ‹b ′ 6= 0 ›]

409

obtain j ′ where
j ′ < length SA
SA ! j ′ = Suc (SA ! i ′)
i ′ < j ′
i < j ′
by blast

moreover
have SA[k := j] ! i ′ = SA ! i ′

using ‹k 6= i ′› by simp
moreover
have SA[k := j] ! j ′ = SA ! j ′

using ‹k < i ′› ‹i ′ < j ′›
by auto

ultimately show ?goal
using assms(16) by auto

qed
ultimately show ?goal

by blast
qed
ultimately show ?goal

by blast
qed

corollary s-pred-inv-maintained-perm-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-pred-inv α T (B[b := k]) (SA[k := j]) n
using s-pred-inv-maintained-step[OF s-perm-inv-elims[OF assms(1)] assms(2−)]
by blast

83.3.7 Successor
lemma s-suc-inv-established:

assumes length SA = length T
and length T ≤ n

shows s-suc-inv α T B SA n
unfolding s-suc-inv-def
using assms(1) assms(2) by linarith

lemma s-suc-inv-maintained-step-c1 :
assumes length SA ≤ Suc n

shows s-suc-inv α T B SA n
unfolding s-suc-inv-def

proof (intro allI impI ; elim conjE)

410

fix i ′ j
assume i ′ < length SA n < i ′ SA ! i ′ = Suc j suffix-type T j = S-type
with assms
have False

using less-trans-Suc not-less by blast
then show ∃ k. in-s-current-bucket α T B (α (T ! j)) k ∧ SA ! k = j ∧ k < i ′

by blast
qed

corollary s-suc-inv-maintained-perm-step-c1 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length SA ≤ Suc n

shows s-suc-inv α T B SA n
by (simp add: assms(3) s-suc-inv-maintained-step-c1)

lemma s-suc-inv-maintained-step-c1-alt:
assumes s-suc-inv α T B SA i
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and strict-mono α
and α (Max (set T)) < length B
and valid-list T
and α bot = 0
and i = Suc n
and length T ≤ SA ! Suc n
shows s-suc-inv α T B SA n

proof (cases length SA ≤ Suc n)
case True
then show ?thesis

by (simp add: s-suc-inv-maintained-step-c1)
next

case False
hence Suc n < length SA

by simp
show ?thesis

unfolding s-suc-inv-def
proof (intro allI impI ; elim conjE)

fix i ′ j
let ?goal = ∃ k. in-s-current-bucket α T B (α (T ! j)) k ∧ SA ! k = j ∧ k < i ′
assume i ′ < length SA n < i ′ SA ! i ′ = Suc j suffix-type T j = S-type
hence i ′ = Suc n ∨ Suc n < i ′

using Suc-lessI by blast
moreover
from s-suc-invD[OF assms(1) ‹i ′ < length SA› - ‹SA ! i ′ = Suc j› ‹suffix-type

T j = S-type›]
have Suc n < i ′ =⇒ ?goal

using ‹i = Suc n› by blast
moreover

411

have i ′ = Suc n =⇒ ?goal
proof −

assume i ′ = Suc n
have j < length T ∨ length T ≤ j

using linorder-not-le by blast
moreover
have length T ≤ j =⇒ ?goal

by (meson ‹suffix-type T j = S-type› linorder-not-le suffix-type-s-bound)
moreover
have j < length T =⇒ ?goal
proof −

assume j < length T
hence length T = Suc j

using ‹SA ! i ′ = Suc j› ‹i ′ = Suc n› ‹length T ≤ SA ! Suc n› by force
hence T ! j = bot

by (metis ‹valid-list T › diff-Suc-1 last-conv-nth length-greater-0-conv
valid-list-def)

hence α (T ! j) = 0
using ‹α bot = 0 › by presburger

hence in-s-current-bucket α T B (α (T ! j)) 0
unfolding in-s-current-bucket-def

using One-nat-def assms(2 ,4 ,6 ,7) lessI s-bucket-ptr-0 valid-list-bucket-end-0
by fastforce

moreover
{

have 0 < bucket-end α T 0
using ‹α (T ! j) = 0 › calculation in-s-current-bucket-def by fastforce

with s-bucket-ptr-0 [OF assms(2), of 0 , simplified]
s-locations-invD[OF assms(3), of 0 0 , simplified]

have SA ! 0 ∈ s-bucket α T 0
by simp

moreover
have s-bucket α T 0 = {j}
by (simp add: ‹length T = Suc j› assms(4) assms(6) assms(7) s-bucket-0)
ultimately have SA ! 0 = j

by blast
}
ultimately show ?goal

using ‹i ′ = Suc n› by blast
qed
ultimately show ?goal

by blast
qed
ultimately show ?goal

by blast
qed

qed

corollary s-suc-inv-maintained-perm-step-c1-alt:

412

assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length T ≤ SA ! Suc n

shows s-suc-inv α T B SA n
using assms s-perm-inv-def s-suc-inv-maintained-step-c1-alt by blast

lemma s-suc-inv-maintained-step-c2 :
assumes s-suc-inv α T B SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = 0

shows s-suc-inv α T B SA n
unfolding s-suc-inv-def

proof (intro allI impI ; elim conjE)
fix i ′ j
assume i ′ < length SA n < i ′ SA ! i ′ = Suc j suffix-type T j = S-type

let ?goal = ∃ k. in-s-current-bucket α T B (α (T ! j)) k ∧ SA ! k = j ∧ k < i ′

from ‹n < i ′› ‹i = Suc n›
have i = i ′ ∨ i < i ′

by linarith
moreover
from assms(2 ,4) ‹SA ! i ′ = Suc j›
have i = i ′ =⇒ ?goal

by simp
moreover
from s-suc-invD[OF assms(1) ‹i ′ < -› - ‹SA ! i ′ = -› ‹suffix-type T j = -›]

assms(2)
have i < i ′ =⇒ ?goal

by blast
ultimately show ?goal

by blast
qed

corollary s-suc-inv-maintained-perm-step-c2 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = 0

shows s-suc-inv α T B SA n
using assms s-perm-inv-elims(7) s-suc-inv-maintained-step-c2 by blast

lemma s-suc-inv-maintained-step-c3 :
assumes s-suc-inv α T B SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = L-type

413

shows s-suc-inv α T B SA n
unfolding s-suc-inv-def

proof (intro allI impI ; elim conjE)
fix i ′ j ′
assume i ′ < length SA n < i ′ SA ! i ′ = Suc j ′ suffix-type T j ′ = S-type

let ?goal = ∃ k. in-s-current-bucket α T B (α (T ! j ′)) k ∧ SA ! k = j ′ ∧ k < i ′

from ‹n < i ′› assms(2)
have i = i ′ ∨ i < i ′

using Suc-lessI by blast
moreover
from assms(2 ,4 ,5) ‹SA ! i ′ = -› ‹suffix-type T j ′ = -›
have i = i ′ =⇒ ?goal

by simp
moreover
from s-suc-invD[OF assms(1) ‹i ′ < -› - ‹SA ! i ′ = -› ‹suffix-type T j ′ = -›]
have i < i ′ =⇒ ?goal

by blast
ultimately show ?goal

by blast
qed

corollary s-suc-inv-maintained-perm-step-c3 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = L-type

shows s-suc-inv α T B SA n
using assms s-perm-inv-elims(7) s-suc-inv-maintained-step-c3 by blast

lemma s-suc-inv-maintained-step-c4 :
assumes s-distinct-inv α T B SA
and s-bucket-ptr-inv α T B
and s-locations-inv α T B SA
and s-unchanged-inv α T B SA0 SA
and s-seen-inv α T B SA i
and s-pred-inv α T B SA i
and s-suc-inv α T B SA i
and strict-mono α
and α (Max (set T)) < length B
and length SA0 = length T
and length SA = length T
and l-types-init α T SA0
and valid-list T
and α bot = 0
and Suc 0 < length T
and i = Suc n

414

and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-suc-inv α T (B[b := k]) (SA[k := j]) n
unfolding s-suc-inv-def

proof(safe)
fix i ′ j ′
assume i ′ < length (SA[k := j]) n < i ′ SA[k := j] ! i ′ = Suc j ′ suffix-type T j ′

= S-type
hence i ′ < length SA

by simp

let ?b = α (T ! j ′)
and ?B = B[b := k]
and ?SA = SA[k := j]

let ?goal = ∃ k ′. in-s-current-bucket α T ?B ?b k ′ ∧ ?SA ! k ′ = j ′ ∧ k ′ < i ′

from ‹suffix-type T j ′ = -›
have j ′ < length T

by (simp add: suffix-type-s-bound)
hence ?b ≤ α (Max (set T))

using ‹strict-mono -›
by (simp add: strict-mono-less-eq)

from s-bucket-ptr-strict-lower-bound[OF assms(1−6 ,8 ,10−14 ,16−20)]
have s-bucket-start α T b < B ! b.
hence s-bucket-start α T b ≤ k

using assms(21) by linarith
hence bucket-start α T b ≤ k

using bucket-start-le-s-bucket-start le-trans by blast

from ‹s-bucket-start α T b < B ! b›
have k < B ! b

using assms(21) by linarith

have j < length T
by (simp add: assms(19) suffix-type-s-bound)

hence b ≤ α (Max (set T))
by (simp add: assms(8 ,20) strict-mono-less-eq)

with s-bucket-ptr-upper-bound[OF assms(2)]
have B ! b ≤ bucket-end α T b

by blast
with ‹k < B ! b›
have k < bucket-end α T b

by linarith

415

have B ! b ≤ i
proof(rule ccontr)

assume ¬B ! b ≤ i
hence i < B ! b

by simp
with s-B-val[OF assms(1−6 ,8 ,10−13 ,15) ‹b ≤ α (Max (set T))›] ‹s-bucket-start

α T b < B ! b›
show False

by simp
qed
with ‹k < B ! b›
have k < i

by linarith
hence k ≤ n

by (simp add: assms(16))
with ‹n < i ′›
have k < i ′

using dual-order .strict-trans2 by blast
hence SA[k := j] ! i ′ = SA ! i ′

by simp
with ‹SA[k := j] ! i ′ = Suc j ′›
have SA ! i ′ = Suc j ′

by simp

have i ≤ i ′
by (simp add: Suc-leI ‹n < i ′› assms(16))

hence i = i ′ ∨ i < i ′
by (simp add: nat-less-le)

moreover
have i = i ′ =⇒ ?goal
proof −

assume i = i ′
hence j = j ′

using ‹SA ! i ′ = Suc j ′› assms(16 ,18) by auto
hence SA[k := j] ! k = j ′

using ‹k ≤ n› assms(17) by auto
moreover
have ?b = b

using ‹j = j ′› assms(20) by blast
hence in-s-current-bucket α T ?B ?b k = in-s-current-bucket α T ?B b k

by simp
moreover
from ‹α (T ! j ′) ≤ α (Max (set T))›

‹?b = b›[symmetric]
have in-s-current-bucket α T ?B b k

unfolding in-s-current-bucket-def
using ‹k < bucket-end α T b› assms(9) by auto

ultimately show ?goal
using ‹k < i ′› by blast

416

qed
moreover
have i < i ′ =⇒ ?goal
proof −

assume i < i ′
with s-suc-invD[OF assms(7) ‹i ′ < length SA› - ‹SA ! i ′ = Suc j ′› ‹suffix-type

T j ′ = -›]
obtain k ′ where

in-s-current-bucket α T B ?b k ′

SA ! k ′ = j ′
k ′ < i ′
by blast

moreover
from in-s-current-bucketD[OF ‹in-s-current-bucket α T B ?b k ′›]
have in-s-current-bucket α T ?B ?b k ′

unfolding in-s-current-bucket-def
proof (safe)

show ?B ! ?b ≤ k ′

by (metis ‹B ! ?b ≤ k ′› ‹k < B ! b› dual-order .trans list-update-beyond
nat-le-linear

not-less nth-list-update-eq nth-list-update-neq)
qed
moreover
from in-s-current-bucketD(2)[OF ‹in-s-current-bucket α T B ?b k ′›]
have B ! ?b ≤ k ′ .
hence s-bucket-start α T ?b ≤ k ′

by (meson ‹?b ≤ α (Max (set T))› assms(2) le-less-trans not-le s-bucket-ptr-inv-def)
hence bucket-start α T ?b ≤ k ′

using bucket-start-le-s-bucket-start dual-order .trans by blast

have b = ?b ∨ b 6= ?b
by blast

hence k 6= k ′

proof
assume b = ?b
with ‹B ! ?b ≤ k ′› ‹k < B ! b›
show ?thesis

by simp
next

assume b 6= ?b
with outside-another-bucket[OF - ‹bucket-start - - - ≤ k› ‹k < bucket-end -

- -›]
‹bucket-start α T ?b ≤ k ′› in-s-current-bucketD(3)[OF ‹in-s-current-bucket

α T B ?b k ′›]
show ?thesis

by blast
qed
hence SA[k := j] ! k ′ = SA ! k ′

by simp

417

ultimately show ?goal
by blast

qed
ultimately show ?goal

by blast
qed

corollary s-suc-inv-maintained-perm-step-c4 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-suc-inv α T (B[b := k]) (SA[k := j]) n
using s-suc-inv-maintained-step-c4 [OF s-perm-inv-elims[OF assms(1)] assms(2−)]
by blast

lemmas s-suc-inv-maintained-perm-step =
s-suc-inv-maintained-step-c1
s-suc-inv-maintained-perm-step-c2
s-suc-inv-maintained-perm-step-c3
s-suc-inv-maintained-perm-step-c4

83.3.8 Combined Permutation Invariant
lemma s-perm-inv-established:

assumes s-bucket-init α T B
and s-type-init T SA
and strict-mono α
and α (Max (set T)) < length B
and length SA = length T
and l-types-init α T SA
and valid-list T
and α bot = 0
and Suc 0 < length T
and length T ≤ n

shows s-perm-inv α T B SA SA n
unfolding s-perm-inv-def
by (simp add: assms s-distinct-inv-established s-bucket-ptr-inv-established

s-locations-inv-established s-unchanged-inv-established s-seen-inv-established
s-pred-inv-established s-suc-inv-established)

lemma s-perm-inv-maintained-step-c1 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length SA ≤ Suc n

shows s-perm-inv α T B SA0 SA n

418

unfolding s-perm-inv-def
by (clarsimp simp: s-perm-inv-elims[OF assms(1)]

s-seen-inv-maintained-perm-step-c1 [OF assms]
s-pred-inv-maintained-perm-step-alt[OF assms(1 ,2)]
s-suc-inv-maintained-step-c1 [OF assms(3)])

lemma s-perm-inv-maintained-step-c1-alt:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and length T ≤ SA ! Suc n

shows s-perm-inv α T B SA0 SA n
proof (cases length T ≤ Suc n)

case True
then show ?thesis
by (metis assms(1) assms(2) s-perm-inv-elims(11) s-perm-inv-maintained-step-c1)

next
case False
hence Suc n < length T

by simp
then show ?thesis

unfolding s-perm-inv-def
by (metis assms s-perm-inv-def s-pred-inv-maintained-step-alt

s-seen-inv-maintained-perm-step-c1-alt s-suc-inv-maintained-perm-step-c1-alt)
qed

lemma s-perm-inv-maintained-step-c2 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = 0

shows s-perm-inv α T B SA0 SA n
unfolding s-perm-inv-def
by (clarsimp simp: s-perm-inv-elims[OF assms(1)]

s-seen-inv-maintained-perm-step-c2 [OF assms]
s-pred-inv-maintained-perm-step-alt[OF assms(1 ,2)]
s-suc-inv-maintained-perm-step-c2 [OF assms])

lemma s-perm-inv-maintained-step-c3 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = L-type

shows s-perm-inv α T B SA0 SA n
unfolding s-perm-inv-def
by (clarsimp simp: s-perm-inv-elims[OF assms(1)]

s-seen-inv-maintained-perm-step-c3 [OF assms]
s-pred-inv-maintained-perm-step-alt[OF assms(1 ,2)]
s-suc-inv-maintained-perm-step-c3 [OF assms])

419

lemma s-perm-inv-maintained-step-c4 :
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-perm-inv α T (B[b := k]) SA0 (SA[k := j]) n
unfolding s-perm-inv-def
by (clarsimp simp: s-perm-inv-elims[OF assms(1)]

s-distinct-inv-maintained-perm-step[OF assms]
s-bucket-ptr-inv-maintained-perm-step[OF assms]
s-locations-inv-maintained-perm-step[OF assms]
s-unchanged-inv-maintained-perm-step[OF assms]
s-seen-inv-maintained-perm-step-c4 [OF assms]
s-pred-inv-maintained-perm-step[OF assms]
s-suc-inv-maintained-perm-step-c4 [OF assms])

theorem abs-induce-s-perm-step:
assumes s-perm-inv α T B SA0 SA i
and abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)

shows s-perm-inv α T B ′ SA0 SA ′ i ′
proof (cases i)

case 0
then show ?thesis

using assms by force
next

case (Suc n)
assume i = Suc n
have T 6= []

using s-perm-inv-elims(15)[OF assms(1)] by fastforce
show ?thesis
proof (cases Suc n < length SA ∧ SA ! Suc n < length T)

assume Suc n < length SA ∧ SA ! Suc n < length T
hence Suc n < length SA SA ! Suc n < length T

by blast+
show ?thesis
proof (cases SA ! Suc n)

case 0
then show ?thesis

using s-perm-inv-maintained-step-c2 [OF assms(1) ‹i = Suc n› ‹Suc n <
length SA› 0] assms

by (clarsimp simp: ‹i = Suc n› ‹Suc n < length SA› 0 ‹T 6= []›)
next

case (Suc j)
assume SA ! Suc n = Suc j
hence Suc j < length T

420

using ‹SA ! Suc n < length T › by auto
show ?thesis
proof (cases suffix-type T j)

case S-type
then show ?thesis

using assms ‹i = Suc n› ‹Suc n < length SA› ‹SA ! Suc n = Suc j›
s-perm-inv-maintained-step-c4 [OF assms(1), of n j α (T ! j) B ! α

(T ! j) − Suc 0]
by (clarsimp simp: Let-def ‹Suc j < length T ›)

next
case L-type
then show ?thesis

using assms ‹i = Suc n› ‹Suc n < length SA› ‹SA ! Suc n = Suc j›
s-perm-inv-maintained-step-c3 [OF assms(1)]

by (clarsimp simp: Let-def ‹Suc j < length T ›)
qed

qed
next

assume ¬(Suc n < length SA ∧ SA ! Suc n < length T)
hence ¬ Suc n < length SA ∨ ¬ SA ! Suc n < length T

by blast
then show ?thesis
proof

assume ¬ Suc n < length SA
then show ?thesis

using assms ‹i = Suc n› s-perm-inv-maintained-step-c1 [OF assms(1)] by
force

next
assume ¬ SA ! Suc n < length T
hence length T ≤ SA ! Suc n

by simp
then show ?thesis

using assms ‹i = Suc n› s-perm-inv-maintained-step-c1-alt[OF assms(1)]
by simp

qed
qed

qed

corollary abs-induce-s-perm-step-alt:∧
a. s-perm-inv-alt α T SA0 a =⇒ s-perm-inv-alt α T SA0 (abs-induce-s-step a

(α, T))
by (metis abs-induce-s-perm-step s-perm-inv-alt.elims(2) s-perm-inv-alt.elims(3))

theorem abs-induce-s-perm-alt-maintained:
assumes s-perm-inv-alt α T SA0 (B, SA, length T)
shows s-perm-inv-alt α T SA0 (abs-induce-s-base α T B SA)
unfolding abs-induce-s-base-def
using repeat-maintain-inv[of s-perm-inv-alt α T SA0 abs-induce-s-step (α, T),

OF - assms(1)]

421

abs-induce-s-perm-step-alt
by blast

corollary abs-induce-s-perm-maintained:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B SA0 SA (length T)

shows s-perm-inv α T B ′ SA0 SA ′ n
using assms abs-induce-s-perm-alt-maintained by force

lemma s-perm-inv-0-B-val:
assumes s-perm-inv α T B SA SA ′ 0
and b ≤ α (Max (set T))

shows B ! b = s-bucket-start α T b
proof −

from s-bucket-ptr-lower-bound[OF s-perm-inv-elims(2)[OF assms(1)] assms(2)]
have s-bucket-start α T b ≤ B ! b .

have s-bucket-start α T b ≥ 0
by blast

hence s-bucket-start α T b = 0 ∨ 0 < s-bucket-start α T b
by blast

with ‹s-bucket-start α T b ≤ B ! b›
have B ! b = s-bucket-start α T b ∨ 0 < B ! b

by linarith
then show ?thesis
proof

assume B ! b = s-bucket-start α T b
then show ?thesis .

next
assume 0 < B ! b
with s-B-val[OF s-perm-inv-elims(1−6 ,8 ,10−13 ,15)[OF assms(1)] assms(2)]
show ?thesis .

qed
qed

lemma s-perm-inv-0-list-slice-bucket:
assumes s-perm-inv α T B SA SA ′ 0
and b ≤ α (Max (set T))

shows set (list-slice SA ′ (bucket-start α T b) (bucket-end α T b)) = bucket α T b
by (meson assms bucket-eq-list-slice s-perm-inv-0-B-val s-perm-inv-elims(1−4 ,10−12))

lemma s-perm-inv-0-distinct-list-slice:
assumes s-perm-inv α T B SA SA ′ 0
and b ≤ α (Max (set T))

shows distinct (list-slice SA ′ (bucket-start α T b) (bucket-end α T b))
(is distinct ?xs)

proof −
let ?ys = list-slice SA ′ (bucket-start α T b) (l-bucket-end α T b)

422

and ?zs = list-slice SA ′ (s-bucket-start α T b) (bucket-end α T b)

have ?xs = ?ys @ ?zs
by (metis list-slice-append bucket-start-le-s-bucket-start l-bucket-end-le-bucket-end

s-bucket-start-eq-l-bucket-end)

from l-types-initD(1)[OF l-types-init-maintained[OF s-perm-inv-elims(2 ,4 ,10−12)[OF
assms(1)]]

assms(2)]
have set ?ys = l-bucket α T b .
moreover
from s-bucket-eq-list-slice[OF s-perm-inv-elims(1 ,3 ,11)[OF assms(1)] assms(2)

s-perm-inv-0-B-val[OF assms]]
have set ?zs = s-bucket α T b .
ultimately have set ?ys ∩ set ?zs = {}

using disjoint-l-s-bucket by blast
with s-distinct-invD[OF s-perm-inv-elims(1), OF assms, simplified s-perm-inv-0-B-val[OF

assms]]
l-types-initD(2)[OF l-types-init-maintained[OF s-perm-inv-elims(2 ,4 ,10−12)[OF

assms(1)]]
assms(2)]

‹?xs = ?ys @ ?zs›
show ?thesis

by auto
qed

lemma abs-induce-s-base-distinct:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B ′ SA SA ′ n

shows distinct SA ′

proof(intro distinct-conv-nth[THEN iffD2] allI impI)
fix i j
assume i < length SA ′ j < length SA ′ i 6= j
hence i < length T j < length T

using assms(2) s-perm-inv-elims(11) by fastforce+

from abs-induce-s-base-index[of α T B SA] assms(1)
have n = 0

by simp

from index-in-bucket-interval-gen[OF ‹i < length T › s-perm-inv-elims(8)[OF
assms(2)]]

obtain b0 where
b0 ≤ α (Max (set T))
bucket-start α T b0 ≤ i
i < bucket-end α T b0
by blast

have bucket-end α T b0 ≤ length SA ′

423

using assms(2) bucket-end-le-length s-perm-inv-elims(11) by fastforce

let ?xs = list-slice SA ′ (bucket-start α T b0) (bucket-end α T b0)

from index-in-bucket-interval-gen[OF ‹j < length T › s-perm-inv-elims(8)[OF
assms(2)]]

obtain b1 where
b1 ≤ α (Max (set T))
bucket-start α T b1 ≤ j
j < bucket-end α T b1
by blast

have bucket-end α T b1 ≤ length SA ′

using assms(2) bucket-end-le-length s-perm-inv-elims(11) by fastforce

have b0 6= b1 =⇒ SA ′ ! i 6= SA ′ ! j
proof −

assume b0 6= b1
hence bucket α T b0 ∩ bucket α T b1 = {}

by (metis (mono-tags, lifting) Int-emptyI bucket-def mem-Collect-eq)
moreover
from s-perm-inv-0-list-slice-bucket[OF assms(2)[simplified ‹n = 0 ›] ‹b0 ≤ -›]

list-slice-nth-mem[OF ‹bucket-start α T b0 ≤ i› ‹i < bucket-end α T b0 ›
‹bucket-end α T b0 ≤ -›]

have SA ′ ! i ∈ bucket α T b0
by blast

moreover
from s-perm-inv-0-list-slice-bucket[OF assms(2)[simplified ‹n = 0 ›] ‹b1 ≤ -›]

list-slice-nth-mem[OF ‹bucket-start α T b1 ≤ j› ‹j < bucket-end α T b1 ›
‹bucket-end α T b1 ≤ -›]

have SA ′ ! j ∈ bucket α T b1
by blast

ultimately show ?thesis
by auto

qed
moreover
have b0 = b1 =⇒ SA ′ ! i 6= SA ′ ! j
proof −

assume b0 = b1
with ‹bucket-start α T b1 ≤ j› ‹j < bucket-end α T b1 ›
have bucket-start α T b0 ≤ j j < bucket-end α T b0

by simp-all
with list-slice-nth-eq-iff-index-eq[

OF s-perm-inv-0-distinct-list-slice[OF assms(2)[simplified‹n = 0 ›] ‹b0 ≤
-›]

‹bucket-end - - b0 ≤ -› ‹bucket-start α T b0 ≤ i› ‹i < bucket-end α T
b0 ›, of j]

‹i 6= j›
show ?thesis

424

by blast
qed
ultimately show SA ′ ! i 6= SA ′ ! j

by blast
qed

lemma abs-induce-s-base-subset-upt:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B ′ SA SA ′ n

shows set SA ′ ⊆ {0 ..<length T}
proof

fix x
assume x ∈ set SA ′

from in-set-conv-nth[THEN iffD1 , OF ‹x ∈ set SA ′›]
obtain i where

i < length SA ′

SA ′ ! i = x
by blast

hence i < length T
using assms(2) s-perm-inv-elims(11) by fastforce

with index-in-bucket-interval-gen[OF - s-perm-inv-elims(8)[OF assms(2)]]
obtain b where

b ≤ α (Max (set T))
bucket-start α T b ≤ i
i < bucket-end α T b
by blast

from abs-induce-s-base-index[of α T B SA] assms(1)
have n = 0

by simp

have bucket-end α T b ≤ length SA ′

using assms(2) bucket-end-le-length s-perm-inv-elims(11) by fastforce
with s-perm-inv-0-list-slice-bucket[OF assms(2)[simplified ‹n = 0 ›] ‹b ≤ -›]

‹SA ′ ! i = x› ‹bucket-start α T b ≤ i› ‹i < bucket-end α T b›
have x ∈ bucket α T b

using list-slice-nth-mem by blast
hence x < length T

using bucket-def by blast
then show x ∈ {0 ..< length T}

by simp
qed

corollary abs-induce-s-base-eq-upt:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B ′ SA SA ′ n

shows set SA ′ = {0 ..<length T}
by (rule card-subset-eq[OF finite-atLeastLessThan abs-induce-s-base-subset-upt[OF

assms]];

425

clarsimp simp: distinct-card[OF abs-induce-s-base-distinct[OF assms]]
s-perm-inv-elims(11)[OF assms(2)])

theorem abs-induce-s-base-perm:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B ′ SA SA ′ n

shows SA ′ <∼∼> [0 ..< length T]
by (rule perm-distinct-set-of-upt-iff [THEN iffD2];

clarsimp simp: abs-induce-s-base-distinct[OF assms] abs-induce-s-base-eq-upt[OF
assms])

83.3.9 Sorted
lemma s-sorted-established:

assumes s-bucket-init α T B
and strict-mono α
and valid-list T
and α bot = 0
and b ≤ α (Max (set T))

shows sorted-wrt R (list-slice SA (B ! b) (bucket-end α T b))
(is sorted-wrt R ?xs)

proof −
have b = 0 ∨ 0 < b

by blast
moreover
have 0 < b =⇒ ?thesis
proof −

assume 0 < b
hence B ! b = bucket-end α T b

by (simp add: ‹b ≤ α (Max (set T))› assms(1) s-bucket-initD)
then show ?thesis

by simp
qed
moreover
have b = 0 =⇒ ?thesis
proof −

assume b = 0
hence bucket-end α T b = Suc 0

by (simp add: assms(2−4) valid-list-bucket-end-0)
moreover
from ‹b = 0 ›
have B ! b = 0

using assms(1) s-bucket-initD(2) by auto
ultimately show ?thesis

by (simp add: sorted-wrt01)
qed
ultimately show ?thesis

by blast
qed

426

lemma s-sorted-inv-established:
assumes s-bucket-init α T B
and strict-mono α
and valid-list T
and α bot = 0

shows s-sorted-inv α T B SA
unfolding s-sorted-inv-def
using assms ordlistns.sorted-map s-sorted-established by blast

lemma s-prefix-sorted-inv-established:
assumes s-bucket-init α T B
and strict-mono α
and valid-list T
and α bot = 0

shows s-prefix-sorted-inv α T B SA
unfolding s-prefix-sorted-inv-def
using assms ordlistns.sorted-map s-sorted-established by blast

lemma s-sorted-maintained-unchanged-step:
assumes s-perm-inv α T B SA0 SA i
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0
and b ′ ≤ α (Max (set T))
and sorted-wrt R (list-slice SA (B ! b ′) (bucket-end α T b ′))
and b 6= b ′

shows sorted-wrt R (list-slice (SA[k := j]) ((B[b := k]) ! b ′) (bucket-end α T b ′))
proof −

let ?xs = list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)

have bucket-end α T b ≤ length T
using bucket-end-le-length by blast

moreover
have B ! b ≤ bucket-end α T b
using assms(1 ,5 ,6) s-bucket-ptr-upper-bound s-perm-inv-elims(2 ,8) strict-mono-less-eq

suffix-type-s-bound by fastforce
ultimately have k < length T

using assms(1 ,7) s-perm-inv-elims(15) by fastforce
hence k < length SA

by (metis assms(1) s-perm-inv-def)

from s-bucket-ptr-strict-lower-bound[OF s-perm-inv-elims(1−6 ,8 ,10−14)[OF assms(1)]
assms(2−6)]

have s-bucket-start α T b < B ! b .
hence k < B ! b

427

using assms(7) diff-less gr-implies-not-zero by blast

have s-bucket-start α T b ≤ k
using assms s-bucket-ptr-strict-lower-bound s-perm-inv-def by fastforce

hence bucket-start α T b ≤ k
using bucket-start-le-s-bucket-start le-trans by blast

from ‹b 6= b ′›
have B[b := k] ! b ′ = B ! b ′

by simp

have k < B ! b ′ ∨ bucket-end α T b ′ ≤ k
proof −

from ‹b 6= b ′›
have b < b ′ ∨ b ′ < b

using nat-neq-iff by blast
moreover
have b < b ′ =⇒ k < B ! b ′

proof −
assume b < b ′

hence bucket-end α T b ≤ bucket-start α T b ′

by (simp add: less-bucket-end-le-start)
hence k < bucket-start α T b ′

using ‹B ! b ≤ bucket-end α T b› ‹k < B ! b› by linarith
with s-bucket-ptr-lower-bound[OF s-perm-inv-elims(2)[OF assms(1)] ‹b ′ ≤ -›]
show ?thesis

by (meson bucket-start-le-s-bucket-start order .strict-trans2)
qed
moreover
have b ′ < b =⇒ bucket-end α T b ′ ≤ k
proof −

assume b ′ < b
hence bucket-end α T b ′ ≤ bucket-start α T b

by (simp add: less-bucket-end-le-start)
then show ?thesis

using ‹bucket-start α T b ≤ k› by linarith
qed
ultimately show ?thesis

by blast
qed
with list-slice-update-unchanged-1

list-slice-update-unchanged-2
have ?xs = list-slice SA (B ! b ′) (bucket-end α T b ′)

using ‹B[b := k] ! b ′ = B ! b ′› by auto
then show ?thesis

using assms(9) by auto
qed

lemma s-sorted-inv-maintained-step:

428

assumes s-perm-inv α T B SA0 SA i
and s-sorted-pre α T SA0
and s-sorted-inv α T B SA
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-sorted-inv α T (B[b := k]) (SA[k := j])
unfolding s-sorted-inv-def

proof (safe)
fix b ′

assume b ′ ≤ α (Max (set T))
let ?xs = list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)

have bucket-end α T b ≤ length T
using bucket-end-le-length by blast

moreover
have B ! b ≤ bucket-end α T b

using assms(1 ,7 ,8) s-bucket-ptr-upper-bound suffix-type-s-bound
s-perm-inv-elims(2 ,8) strict-mono-less-eq

by fastforce

ultimately have k < length T
using assms(1 ,9) s-perm-inv-elims(15) by fastforce

hence k < length SA
by (metis assms(1) s-perm-inv-def)

from s-bucket-ptr-strict-lower-bound
[OF s-perm-inv-elims(1−6 ,8 ,10−14)
[OF assms(1)] assms(4−8)]

have s-bucket-start α T b < B ! b .
hence k < B ! b

using assms(9) diff-less gr-implies-not-zero by blast

have s-bucket-start α T b ≤ k
using assms s-bucket-ptr-strict-lower-bound s-perm-inv-def
by fastforce

hence bucket-start α T b ≤ k
using bucket-start-le-s-bucket-start le-trans
by blast

hence b ≤ α (Max (set T))
by (metis ‹k < length SA› assms(1) bucket-end-Max dual-order .trans

less-bucket-end-le-start s-perm-inv-elims(8 ,11) leD leI)

have b = b ′ ∨ b 6= b ′

by blast

429

moreover
have b = b ′ =⇒ ordlistns.sorted (map (suffix T) ?xs)
proof −

assume b = b ′

hence B[b := k] ! b ′ = k
by (meson ‹b ′ ≤ α (Max (set T))› assms(1) le-less-trans nth-list-update-eq

s-perm-inv-elims(9))

have SA[k := j] ! k = j
by (simp add: ‹k < length SA›)

from list-slice-update-unchanged-1
‹k < B ! b›
‹SA[k := j] ! k = j›
‹B[b := k] ! b ′ = k›
‹B ! b ≤ bucket-end α T b›
‹b = b ′› ‹k < length SA›

have ?xs = j # list-slice SA (B ! b) (bucket-end α T b)
by (metis Suc-pred assms(9) length-list-update not-le

less-nat-zero-code list-slice-Suc less-le-trans)
moreover
have ordlistns.sorted

(map (suffix T) (j # list-slice SA (B ! b) (bucket-end α T b)))
proof −

let ?ys = list-slice SA (B ! b) (bucket-end α T b)

have A: map (suffix T) (j # ?ys) = (suffix T j) # map (suffix T) ?ys
by simp

from s-sorted-invD[OF assms(3) ‹b ≤ -›]
have B: ordlistns.sorted (map (suffix T) ?ys) .

have ?ys = [] ∨ ?ys 6= []
by blast

hence map (suffix T) ?ys = [] ∨ map (suffix T) ?ys 6= []
by simp

moreover
have map (suffix T) ?ys = [] =⇒ ?thesis

using ordlistns.sorted-cons-nil by fastforce
moreover
have map (suffix T) ?ys 6= [] =⇒

ordlistns.sorted ((suffix T j) # map (suffix T) ?ys)
proof (rule ordlistns.sorted-consI [OF - B])

assume map (suffix T) (list-slice SA (B ! b) (bucket-end α T b)) 6= []
then
show map (suffix T) (list-slice SA (B ! b) (bucket-end α T b)) 6= []

by simp
next

assume map (suffix T) ?ys 6= []

430

hence map (suffix T) ?ys ! 0 = suffix T (?ys ! 0)
by (metis length-greater-0-conv list.simps(8) nth-map)

moreover
have list-less-eq-ns (suffix T j) (suffix T (?ys ! 0))
proof −

have ?ys ! 0 ∈ s-bucket α T b
by (metis assms(1) length-greater-0-conv s-perm-inv-elims(3)

length-map nth-mem s-locations-inv-in-list-slice
‹b = b ′›
‹b ′ ≤ α (Max (set T))›
‹map (suffix T) ?ys 6= []›)

hence α (T ! (?ys ! 0)) = b suffix-type T (?ys ! 0) = S-type
by (simp add: s-bucket-def bucket-def)+

hence T ! j = T ! (?ys ! 0)
using assms(1 ,8) s-perm-inv-elims(8) strict-mono-eq by fastforce

have ?ys ! 0 = SA ! (B ! b)
using ‹map (suffix T) ?ys 6= []› nth-list-slice by fastforce

have b 6= 0
by (metis ‹s-bucket-start α T b < B ! b› assms(1)

gr-implies-not-zero s-bucket-ptr-0 s-perm-inv-elims(2))

have in-s-current-bucket α T B b (B ! b)
using ‹b = b ′› ‹b ′ ≤ α (Max (set T))› ‹map (suffix T) ?ys 6= []›
by (metis ‹B ! b ≤ bucket-end α T b› in-s-current-bucket-def

le-eq-less-or-eq list.map-disc-iff list-slice-n-n)
with s-pred-invD

[OF s-perm-inv-elims(6)[OF assms(1)] - ‹b 6= 0 ›,
of B ! b]

obtain i ′ where i ′-assms:
i ′ < length SA
SA ! i ′ = Suc (SA ! (B ! b))
B ! b < i ′
i < i ′
by blast

let ?b0 = α (T ! (Suc j))
and ?b1 = α (T ! (Suc (SA ! (B ! b))))

have i-less: i < length SA
by (simp add: assms(4−5))

have ?b0 ≤ α (Max (set T))
by (metis Max-greD Suc-leI assms(1 ,4−6) strict-mono-leD

s-perm-inv-elims(5 ,8) s-seen-invD(1) lessI)

have ?b1 ≤ α (Max (set T))
by (metis Max-greD i ′-assms(1 ,2 ,4) assms(1)

431

less-imp-le-nat s-perm-inv-elims(5 ,8)
s-seen-invD(1) strict-mono-leD)

have S0 : suffix T j = T ! j # suffix T (Suc j)
using assms(7) suffix-cons-Suc suffix-type-s-bound
by blast

have S1 : suffix T (?ys ! 0) =
T ! (?ys ! 0) # suffix T (Suc (SA ! (B ! b)))

using ‹?ys ! 0 = SA ! (B ! b)›
‹suffix-type T (?ys ! 0) = S-type› suffix-cons-Suc
suffix-type-s-bound by auto

have ?b0 ≤ ?b1
proof(rule ccontr)

assume ¬?b0 ≤ ?b1
hence ?b1 < ?b0

by simp
hence bucket-end α T ?b1 ≤ bucket-start α T ?b0

by (simp add: less-bucket-end-le-start)
with s-index-upper-bound[OF s-perm-inv-elims(2 ,5)[OF assms(1)]

i ′-assms(1)]
s-index-lower-bound[OF s-perm-inv-elims(2 ,5)[OF assms(1)] i-less,

simplified]
order .strict-implies-order [OF i ′-assms(4)]

show False
using i ′-assms(2) assms(4 ,6) by auto

qed
hence ?b0 = ?b1 ∨ ?b0 < ?b1

by linarith
moreover
have ?b0 < ?b1 =⇒

list-less-eq-ns
(suffix T (Suc j))
(suffix T (Suc (SA ! (B ! b))))

proof −
assume ?b0 < ?b1
hence T ! (Suc j) < T ! (Suc (SA ! (B ! b)))

using assms(1) s-perm-inv-elims(8) strict-mono-less by blast
then show ?thesis

by (metis i ′-assms(1 ,2 ,4) assms(1 ,4−6) s-perm-inv-def
leD s-seen-invD(1) list-less-eq-ns-linear
suffix-cons-Suc list-less-eq-ns-cons)

qed
moreover
have ?b0 = ?b1 =⇒

list-less-eq-ns
(suffix T (Suc j))
(suffix T (Suc (SA ! (B ! b))))

432

proof −
assume ?b0 = ?b1
with s-index-upper-bound

[OF s-perm-inv-elims(2 ,5)[OF assms(1)]
‹i ′ < -›] i ′-assms(4)

have i ′ < bucket-end α T ?b0
by (simp add: ‹SA ! i ′ = Suc (SA ! (B ! b))›)

have suffix-type T (SA ! i) = S-type ∨
suffix-type T (SA ! i) = L-type

using SL-types.exhaust by blast
moreover
have suffix-type T (SA ! i) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = S-type
with s-seen-invD(3)

[OF s-perm-inv-elims(5)[OF assms(1)] i-less,
simplified]

have in-s-current-bucket α T B ?b0 i
by (simp add: assms(4) assms(6))

hence B ! ?b0 ≤ i
using in-s-current-bucket-def by blast

hence ∃m. B ! ?b0 + m = i
using less-eqE by blast

then obtain m0 where m0-assm:
B ! ?b0 + m0 = i
by blast

from ‹B ! ?b0 ≤ i› i ′-assms(4)
have ∃m. B ! ?b0 + m = i ′

by presburger
then obtain m1 where m1-assm:

B ! ?b0 + m1 = i ′
by blast

hence B ! ?b0 + m0 ≤ B ! ?b0 + m1
by (simp add: m0-assm i ′-assms(4) dual-order .order-iff-strict)

hence m0 ≤ m1
using add-le-imp-le-left by blast

have (list-slice SA (B ! ?b0) (bucket-end α T ?b0)) ! m0 =
Suc j

using m0-assm i-less
‹in-s-current-bucket α T B ?b0 i› assms(4 ,6)
in-s-current-bucketD(3)

by (metis ‹B ! α (T ! Suc j) ≤ i› diff-add-inverse list-slice-nth)
moreover
have (list-slice SA (B ! ?b0) (bucket-end α T ?b0)) ! m1 =

Suc (SA ! (B ! b))
using m1-assm i ′-assms

433

‹i ′ < bucket-end α T ?b0 ›
by (metis diff-add-inverse le-add1 list-slice-nth)

moreover
have length (list-slice SA (B ! ?b0) (bucket-end α T ?b0)) =

(bucket-end α T ?b0) − B ! ?b0
by (metis assms(1) bucket-end-le-length length-list-slice min-def

s-perm-inv-def)
with ‹B ! ?b0 + m1 = i ′›

‹i ′ < bucket-end α T ?b0 ›
have m1 < length (list-slice SA (B ! ?b0) (bucket-end α T ?b0))

by linarith
ultimately
show ?thesis

using ordlistns.sorted-nth-mono
[OF s-sorted-invD[OF assms(3) ‹?b0 ≤ α (Max -)›]

‹m0 ≤ m1 ›]
‹m0 ≤ m1 ›

by auto
qed
moreover
have suffix-type T (SA ! i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = L-type
with s-seen-invD(2)

[OF s-perm-inv-elims(5)[OF assms(1)] i-less,
simplified]

have in-l-bucket α T ?b0 i
by (simp add: assms(4) assms(6))

hence bucket-start α T ?b0 ≤ i
by (simp add: in-l-bucket-def)

hence ∃m. bucket-start α T ?b0 + m = i
using less-eqE by blast

then obtain m0 where start-plus-m0-eq:
bucket-start α T ?b0 + m0 = i
by blast

have suffix-type T (SA ! i ′) = L-type ∨
suffix-type T (SA ! i ′) = S-type

using SL-types.exhaust by blast
moreover
have suffix-type T (SA ! i ′) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i ′) = S-type

have SA ! i < length T
by (meson ‹i < length SA› assms(1) order-refl s-perm-inv-elims(5)

s-seen-invD(1))

have SA ! i ′ < length T

434

by (simp add: ‹suffix-type T (SA ! i ′) = S-type› suffix-type-s-bound)

from ‹?b0 = ?b1 ›
have T ! (Suc j) = T ! Suc (SA ! (B ! b))

using assms(1) s-perm-inv-def strict-mono-eq by blast
hence hd (suffix T (SA ! i ′)) = hd (suffix T (SA ! i))

by (metis assms(4 ,6) list.sel(1) suffix-cons-Suc
‹SA ! i < length T › ‹SA ! i ′ < length T ›
‹SA ! i ′ = Suc (SA ! (B ! b))›)

with l-less-than-s-type
[OF s-perm-inv-elims(13)[OF assms(1)]

‹SA ! i ′ < length T ›
‹SA ! i < length T › -
‹suffix-type T (SA ! i ′) = -›
‹suffix-type T (SA ! i) = -›]

have list-less-ns (suffix T (SA ! i)) (suffix T (SA ! i ′)).
then show ?thesis

by (simp add: ‹SA ! i ′ = Suc (SA ! (B ! b))› assms(4 ,6))
qed
moreover
have suffix-type T (SA ! i ′) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i ′) = L-type
with s-seen-invD(2)

[OF s-perm-inv-elims(5)[OF assms(1)]
‹i ′ < length SA›,

simplified
‹?b0 = ?b1 ›[symmetric]
‹SA ! i ′ = Suc (SA ! (B ! b))›]
‹SA ! i ′ = Suc (SA ! (B ! b))›

have in-l-bucket α T ?b0 i ′
by (simp add: ‹i < i ′› dual-order .order-iff-strict)

hence i ′-le-end: i ′ < l-bucket-end α T ?b0
by (simp add: in-l-bucket-def)

hence ∃m. bucket-start α T ?b0 + m = i ′
by (metis ‹in-l-bucket α T ?b0 i ′› in-l-bucket-def less-eqE)

then obtain m1 where start-plus-m1-eq:
bucket-start α T ?b0 + m1 = i ′
by blast

let ?zs =
list-slice SA
(bucket-start α T ?b0)
(l-bucket-end α T ?b0)

have ?zs ! m0 = Suc j
by (metis ‹bucket-start α T (α (T ! Suc j)) ≤ i›

assms(4 ,6) i ′-assms(4) i ′-le-end
diff-add-inverse dual-order .order-iff-strict

435

i-less list-slice-nth order .strict-trans1
start-plus-m0-eq)

moreover
have ?zs ! m1 = Suc (SA ! (B ! b))

using list-slice-nth dual-order .order-iff-strict i ′-assms(4)
le-trans [OF ‹bucket-start α T (α (T ! Suc j)) ≤ i›]
‹SA ! i ′ = Suc (SA ! (B ! b))›
‹bucket-start α T ?b0 + m1 = i ′›
‹i ′ < l-bucket-end α T ?b0 ›
‹i ′ < length SA›

by (metis diff-add-inverse)
moreover
have m0 ≤ m1

using start-plus-m0-eq start-plus-m1-eq i ′-assms(4)
by linarith

moreover
have length ?zs = l-bucket-end α T ?b0 − bucket-start α T ?b0

by (metis ‹?b0 ≤ α (Max (set T))› assms(1)
add-diff-cancel-left ′ distinct-card
l-bucket-end-def l-bucket-size-def
l-types-init-def s-perm-inv-def
l-types-init-maintained)

hence m1 < length ?zs
using start-plus-m1-eq i ′-le-end by linarith

moreover
from s-sorted-pre-maintained

[OF s-perm-inv-elims(2 ,4 ,10 ,11)[OF assms(1)]
assms(2)]

have s-sorted-pre α T SA .
ultimately show ?thesis

using ordlistns.sorted-nth-mono
[OF s-sorted-preD

[of α T SA,
OF - ‹?b0 ≤ α (Max -)›],

of m0 m1]
by (simp add: ‹m1 < length ?zs› le-less-trans

‹s-sorted-pre α T SA›)
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
ultimately
have list-less-eq-ns

(suffix T (Suc j))
(suffix T (Suc (SA ! (B ! b))))

by blast

436

with S0 S1 ‹T ! j = T ! (?ys ! 0)›
show ?thesis

by (simp add: list-less-eq-ns-cons)
qed
ultimately
show list-less-eq-ns (suffix T j) (map (suffix T) ?ys ! 0)

by simp
qed
ultimately show ?thesis

using A by fastforce
qed
ultimately show ?thesis

by simp
qed
moreover
have b 6= b ′ =⇒ ordlistns.sorted (map (suffix T) ?xs)
proof −

assume b 6= b ′

with s-sorted-maintained-unchanged-step[OF assms(1 ,4−) ‹b ′ ≤ -›]
s-sorted-invD[OF assms(3) ‹b ′ ≤ -›]

show ?thesis
using ordlistns.sorted-map by blast

qed
ultimately show ordlistns.sorted (map (suffix T) ?xs)

by blast
qed

lemma s-prefix-sorted-inv-maintained-step:
assumes s-perm-inv α T B SA0 SA i
and s-prefix-sorted-pre α T SA0
and s-prefix-sorted-inv α T B SA
and i = Suc n
and Suc n < length SA
and SA ! Suc n = Suc j
and suffix-type T j = S-type
and b = α (T ! j)
and k = B ! b − Suc 0

shows s-prefix-sorted-inv α T (B[b := k]) (SA[k := j])
unfolding s-prefix-sorted-inv-def

proof (safe)
fix b ′

assume b ′ ≤ α (Max (set T))
let ?xs = list-slice (SA[k := j]) (B[b := k] ! b ′) (bucket-end α T b ′)

have bucket-end α T b ≤ length T
using bucket-end-le-length by blast

moreover
have B ! b ≤ bucket-end α T b
using assms(1 ,7 ,8) s-bucket-ptr-upper-bound s-perm-inv-elims(2 ,8) strict-mono-less-eq

437

suffix-type-s-bound by fastforce

ultimately have k < length T
using assms(1 ,9) s-perm-inv-elims(15) by fastforce

hence k < length SA
by (metis assms(1) s-perm-inv-def)

from s-bucket-ptr-strict-lower-bound
[OF s-perm-inv-elims(1−6 ,8 ,10−14)[OF assms(1)] assms(4−8)]

have s-bucket-start α T b < B ! b .
hence k < B ! b

using assms(9) diff-less gr-implies-not-zero by blast

have s-bucket-start α T b ≤ k
using assms s-bucket-ptr-strict-lower-bound s-perm-inv-def by fastforce

hence bucket-start α T b ≤ k
using bucket-start-le-s-bucket-start le-trans by blast

hence b ≤ α (Max (set T))
by (metis ‹k < length SA› assms(1) bucket-end-Max dual-order .trans

leD leI s-perm-inv-elims(8 ,11) less-bucket-end-le-start)

have b = b ′ ∨ b 6= b ′

by blast
moreover
have b = b ′ =⇒ ordlistns.sorted (map (lms-slice T) ?xs)
proof −

assume b = b ′

hence B[b := k] ! b ′ = k
by (meson ‹b ′ ≤ α (Max (set T))› assms(1) le-less-trans

nth-list-update-eq s-perm-inv-elims(9))

have SA[k := j] ! k = j
by (simp add: ‹k < length SA›)

from list-slice-update-unchanged-1 [OF ‹k < B ! b›]
‹k < B ! b› ‹SA[k := j] ! k = j› ‹B[b := k] ! b ′ = k›
‹B ! b ≤ bucket-end α T b›
‹b = b ′› ‹k < length SA›

have ?xs = j # list-slice SA (B ! b) (bucket-end α T b)
by (metis Suc-pred assms(9) length-list-update not-le

less-nat-zero-code list-slice-Suc less-le-trans)
moreover
have ordlistns.sorted

(map (lms-slice T)
(j # list-slice SA (B ! b)
(bucket-end α T b)))

proof −
let ?ys = list-slice SA (B ! b) (bucket-end α T b)

438

have A: map (lms-slice T) (j # ?ys) = (lms-slice T j) # map (lms-slice T)
?ys

by simp

from s-prefix-sorted-invD[OF assms(3) ‹b ≤ -›]
have B: ordlistns.sorted (map (lms-slice T) ?ys) .

have ?ys = [] ∨ ?ys 6= []
by blast

hence map (lms-slice T) ?ys = [] ∨ map (lms-slice T) ?ys 6= []
by simp

moreover
have map (lms-slice T) ?ys = [] =⇒ ?thesis

using ordlistns.sorted-cons-nil by fastforce
moreover
have map (lms-slice T) ?ys 6= [] =⇒

ordlistns.sorted ((lms-slice T j) # map (lms-slice T) ?ys)
proof (rule ordlistns.sorted-consI [OF - B])

assume map (lms-slice T) ?ys 6= []
hence map (lms-slice T) ?ys ! 0 = lms-slice T (?ys ! 0)

by (metis length-greater-0-conv list.simps(8) nth-map)
moreover
have list-less-eq-ns (lms-slice T j) (lms-slice T (?ys ! 0))
proof −

have ?ys ! 0 ∈ s-bucket α T b
by (metis ‹b = b ′› ‹b ′ ≤ α (Max (set T))› ‹map (lms-slice T) ?ys 6= []›

assms(1)
length-greater-0-conv length-map nth-mem s-locations-inv-in-list-slice

s-perm-inv-elims(3))
hence α (T ! (?ys ! 0)) = b suffix-type T (?ys ! 0) = S-type

by (simp add: s-bucket-def bucket-def)+
hence T ! j = T ! (?ys ! 0)

using assms(1 ,8) s-perm-inv-elims(8) strict-mono-eq by fastforce

have ?ys ! 0 = SA ! (B ! b)
using ‹map (lms-slice T) ?ys 6= []› nth-list-slice by fastforce

have b 6= 0
by (metis ‹s-bucket-start α T b < B ! b› assms(1)

gr-implies-not-zero s-bucket-ptr-0 s-perm-inv-elims(2))

have in-s-current-bucket α T B b (B ! b)
using ‹b = b ′› ‹b ′ ≤ α (Max (set T))›

‹map (lms-slice T) ?ys 6= []›
in-s-current-bucket-def

by (metis ‹B ! b ≤ bucket-end α T b›
dual-order .order-iff-strict list.map-disc-iff
list-slice-n-n)

with s-pred-invD

439

[OF s-perm-inv-elims(6)[OF assms(1)] - ‹b 6= 0 ›,
of B ! b]

obtain i ′ where
i ′ < length SA
SA ! i ′ = Suc (SA ! (B ! b))
B ! b < i ′
i < i ′
by blast

let ?b0 = α (T ! (Suc j))
and ?b1 = α (T ! (Suc (SA ! (B ! b))))

have i < length SA
by (simp add: assms(4−5))

have ?b0 ≤ α (Max (set T))
by (metis Max-greD Suc-leI assms(1 ,4−6) lessI s-perm-inv-elims(5 ,8)

s-seen-invD(1)
strict-mono-leD)

have ?b1 ≤ α (Max (set T))
by (metis Max-greD ‹SA ! i ′ = Suc (SA ! (B ! b))› ‹i < i ′› ‹i ′ < length

SA› assms(1)
less-imp-le-nat s-perm-inv-elims(5) s-perm-inv-elims(8) s-seen-invD(1)

strict-mono-leD)

have S0 : lms-slice T j = T ! j # lms-slice T (Suc j)
using assms(7) lms-slice-cons suffix-type-s-bound by blast

have S1 :
lms-slice T (?ys ! 0) = T ! (?ys ! 0) # lms-slice T (Suc (SA ! (B ! b)))

using ‹?ys ! 0 = SA ! (B ! b)› ‹suffix-type T (?ys ! 0) = S-type›
lms-slice-cons

suffix-type-s-bound by auto

have ?b0 ≤ ?b1
proof(rule ccontr)

assume ¬?b0 ≤ ?b1
hence ?b1 < ?b0

by simp
hence bucket-end α T ?b1 ≤ bucket-start α T ?b0

by (simp add: less-bucket-end-le-start)
with s-index-upper-bound[OF s-perm-inv-elims(2 ,5)[OF assms(1)] ‹i ′ <

length SA›]
s-index-lower-bound[OF s-perm-inv-elims(2 ,5)[OF assms(1)] ‹i <

length SA›,
simplified]

order .strict-implies-order [OF ‹i < i ′›]
show False

440

using ‹SA ! i ′ = Suc (SA ! (B ! b))› assms(4 ,6) by auto
qed
hence ?b0 = ?b1 ∨ ?b0 < ?b1

by linarith
moreover
have

?b0 < ?b1 =⇒
list-less-eq-ns (lms-slice T (Suc j)) (lms-slice T (Suc (SA ! (B ! b))))

proof −
assume ?b0 < ?b1
hence T ! (Suc j) < T ! (Suc (SA ! (B ! b)))

using assms(1) s-perm-inv-elims(8) strict-mono-less by blast
moreover
have Suc j < length T
using ‹i < length SA› assms(1 ,4 ,6) s-perm-inv-elims(5) s-seen-invD(1)

by fastforce
hence ∃ as. lms-slice T (Suc j) = T ! (Suc j) # as

by (metis dual-order .strict-trans abs-find-next-lms-lower-bound-1 lessI
list-slice-Suc

lms-slice-def)
then obtain as where

lms-slice T (Suc j) = T ! (Suc j) # as
by blast

moreover
have Suc (SA ! (B ! b)) < length T
using ‹SA ! i ′ = Suc (SA ! (B ! b))› ‹i < i ′› ‹i ′ < length SA› assms(1)

s-perm-inv-elims(5) s-seen-invD(1) by fastforce
hence ∃ bs. lms-slice T (Suc (SA ! (B ! b))) = T ! (Suc (SA ! (B ! b)))

bs
by (metis abs-find-next-lms-lower-bound-1 less-Suc-eq

list-slice-Suc lms-slice-def)
then obtain bs where

lms-slice T (Suc (SA ! (B ! b))) = T ! (Suc (SA ! (B ! b))) # bs
by blast

ultimately show ?thesis
using list-less-eq-ns-cons by fastforce

qed
moreover
have

?b0 = ?b1 =⇒
list-less-eq-ns (lms-slice T (Suc j)) (lms-slice T (Suc (SA ! (B ! b))))

proof −
assume ?b0 = ?b1
with s-index-upper-bound[OF s-perm-inv-elims(2 ,5)[OF assms(1)] ‹i ′ <

-›] ‹i < i ′›
have i ′ < bucket-end α T ?b0

by (simp add: ‹SA ! i ′ = Suc (SA ! (B ! b))›)

have suffix-type T (SA ! i) = S-type ∨ suffix-type T (SA ! i) = L-type

441

using SL-types.exhaust by blast
moreover
have suffix-type T (SA ! i) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = S-type
with s-seen-invD(3)[OF s-perm-inv-elims(5)[OF assms(1)] ‹i < length

SA›, simplified]
have in-s-current-bucket α T B ?b0 i

by (simp add: assms(4) assms(6))
hence B ! ?b0 ≤ i

using in-s-current-bucket-def by blast
hence ∃m. B ! ?b0 + m = i

using less-eqE by blast
then obtain m0 where

B ! ?b0 + m0 = i
by blast

from ‹B ! ?b0 ≤ i› ‹i < i ′›
have ∃m. B ! ?b0 + m = i ′

by presburger
then obtain m1 where

B ! ?b0 + m1 = i ′
by blast

hence B ! ?b0 + m0 ≤ B ! ?b0 + m1
by (simp add: ‹B ! α (T ! Suc j) + m0 = i›

‹i < i ′› dual-order .order-iff-strict)
hence m0 ≤ m1

using add-le-imp-le-left by blast

have (list-slice SA (B ! ?b0) (bucket-end α T ?b0)) ! m0 = Suc j
using ‹B ! α (T ! Suc j) + m0 = i› ‹i < length SA›

‹in-s-current-bucket α T B ?b0 i› assms(4 ,6)
in-s-current-bucketD(3)

by (metis ‹B ! α (T ! Suc j) ≤ i› diff-add-inverse list-slice-nth)
moreover
have (list-slice SA (B ! ?b0) (bucket-end α T ?b0)) ! m1 = Suc (SA !

(B ! b))
using ‹B ! ?b0 + m1 = i ′› ‹SA ! i ′ = Suc (SA ! (B ! b))› ‹i ′ <

bucket-end α T ?b0 ›
‹i ′ < length SA›

by (metis diff-add-inverse le-add1 list-slice-nth)
moreover
have length (list-slice SA (B ! ?b0) (bucket-end α T ?b0))

= (bucket-end α T ?b0) − B ! ?b0
by (metis assms(1) bucket-end-le-length length-list-slice min-def

s-perm-inv-def)
with ‹B ! ?b0 + m1 = i ′› ‹i ′ < bucket-end α T ?b0 ›
have m1 < length (list-slice SA (B ! ?b0) (bucket-end α T ?b0))

by linarith

442

ultimately
show ?thesis

using ordlistns.sorted-nth-mono[OF
s-prefix-sorted-invD[OF assms(3) ‹?b0 ≤ α (Max -)›] ‹m0 ≤

m1 ›]
‹m0 ≤ m1 › by auto

qed
moreover
have suffix-type T (SA ! i) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i) = L-type
with s-seen-invD(2)[OF s-perm-inv-elims(5)[OF assms(1)] ‹i < length

SA›, simplified]
have in-l-bucket α T ?b0 i

by (simp add: assms(4) assms(6))
hence bucket-start α T ?b0 ≤ i

by (simp add: in-l-bucket-def)
hence ∃m. bucket-start α T ?b0 + m = i

using less-eqE by blast
then obtain m0 where

bucket-start α T ?b0 + m0 = i
by blast

have suffix-type T (SA ! i ′) = L-type ∨ suffix-type T (SA ! i ′) = S-type
using SL-types.exhaust by blast

moreover
have suffix-type T (SA ! i ′) = S-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i ′) = S-type

have SA ! i < length T
by (meson ‹i < length SA› assms(1) order-refl s-perm-inv-elims(5)

s-seen-invD(1))

have SA ! i ′ < length T
by (simp add: ‹suffix-type T (SA ! i ′) = S-type› suffix-type-s-bound)

from ‹?b0 = ?b1 ›
have T ! (Suc j) = T ! Suc (SA ! (B ! b))

using assms(1) s-perm-inv-def strict-mono-eq by blast
hence hd (suffix T (SA ! i ′)) = hd (suffix T (SA ! i))

by (metis ‹SA ! i < length T › ‹SA ! i ′ < length T › ‹SA ! i ′ = Suc
(SA ! (B ! b))›

assms(4) assms(6) list.sel(1) suffix-cons-Suc)
hence list-less-ns (lms-slice T (SA ! i)) (lms-slice T (SA ! i ′))
using ‹SA ! i < length T › ‹SA ! i ′ < length T › ‹SA ! i ′ = Suc (SA

! (B ! b))›
‹T ! Suc j = T ! Suc (SA ! (B ! b))› ‹suffix-type T (SA ! i ′) =

S-type›

443

‹suffix-type T (SA ! i) = L-type› assms(1 ,4 ,6) s-perm-inv-elims(13)
lms-slice-l-less-than-s-type by fastforce

then show ?thesis
by (simp add: ‹SA ! i ′ = Suc (SA ! (B ! b))› assms(4 ,6))

qed
moreover
have suffix-type T (SA ! i ′) = L-type =⇒ ?thesis
proof −

assume suffix-type T (SA ! i ′) = L-type
with s-seen-invD(2)[OF s-perm-inv-elims(5)[OF assms(1)] ‹i ′ <

length SA›,
simplified ‹?b0 = ?b1 ›[symmetric] ‹SA ! i ′ = Suc (SA ! (B ! b))›]
‹SA ! i ′ = Suc (SA ! (B ! b))›

have in-l-bucket α T ?b0 i ′
by (simp add: ‹i < i ′› dual-order .order-iff-strict)

hence i ′ < l-bucket-end α T ?b0
by (simp add: in-l-bucket-def)

hence ∃m. bucket-start α T ?b0 + m = i ′
by (metis ‹in-l-bucket α T ?b0 i ′› in-l-bucket-def less-eqE)

then obtain m1 where
bucket-start α T ?b0 + m1 = i ′
by blast

let ?zs = list-slice SA (bucket-start α T ?b0) (l-bucket-end α T ?b0)

have ?zs ! m0 = Suc j
using ‹bucket-start α T ?b0 + m0 = i› ‹i < i ′› ‹i < length SA›

‹i ′ < l-bucket-end α T ?b0 › assms(4 ,6)
by (metis ‹bucket-start α T (α (T ! Suc j)) ≤ i›

diff-add-inverse dual-order .order-iff-strict
list-slice-nth order .strict-trans1)

moreover
have ?zs ! m1 = Suc (SA ! (B ! b))

using ‹SA ! i ′ = Suc (SA ! (B ! b))› ‹bucket-start α T ?b0 + m1
= i ′›

‹i ′ < l-bucket-end α T ?b0 › ‹i ′ < length SA›
by (metis ‹in-l-bucket α T (α (T ! Suc j)) i ′›

diff-add-inverse in-l-bucket-def list-slice-nth)
moreover
have m0 ≤ m1

using ‹bucket-start α T ?b0 + m0 = i› ‹bucket-start α T ?b0 +
m1 = i ′› ‹i < i ′›

by linarith
moreover
have length ?zs = l-bucket-end α T ?b0 − bucket-start α T ?b0

by (metis ‹?b0 ≤ α (Max (set T))› add-diff-cancel-left ′ assms(1)
distinct-card

l-bucket-end-def l-bucket-size-def l-types-init-def l-types-init-maintained
s-perm-inv-def)

444

hence m1 < length ?zs
using ‹bucket-start α T ?b0 + m1 = i ′› ‹i ′ < l-bucket-end α T

?b0 › by linarith
moreover

from s-prefix-sorted-pre-maintained[OF s-perm-inv-elims(2 ,4 ,10 ,11)[OF
assms(1)]

assms(2)]
have s-prefix-sorted-pre α T SA .
ultimately show ?thesis
using ordlistns.sorted-nth-mono[OF s-prefix-sorted-preD[of α T SA,

OF - ‹?b0 ≤ α (Max -)›], of m0 m1]
by (simp add: ‹m1 < length ?zs› ‹s-prefix-sorted-pre α T SA›

le-less-trans)
qed
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

by blast
qed
ultimately have

list-less-eq-ns (lms-slice T (Suc j)) (lms-slice T (Suc (SA ! (B ! b))))
by blast

with S0 S1 ‹T ! j = T ! (?ys ! 0)›
show ?thesis

by (simp add: list-less-eq-ns-cons)
qed
ultimately show list-less-eq-ns (lms-slice T j) (map (lms-slice T) ?ys ! 0)

by simp
qed
ultimately show ?thesis

using A by fastforce
qed
ultimately show ?thesis

by simp
qed
moreover
have b 6= b ′ =⇒ ordlistns.sorted (map (lms-slice T) ?xs)
proof −

assume b 6= b ′

with s-sorted-maintained-unchanged-step[OF assms(1 ,4−) ‹b ′ ≤ -›]
s-prefix-sorted-invD[OF assms(3) ‹b ′ ≤ -›]

show ?thesis
using ordlistns.sorted-map by blast

qed
ultimately show ordlistns.sorted (map (lms-slice T) ?xs)

by blast
qed

445

theorem abs-induce-s-sorted-step:
assumes s-perm-inv α T B SA0 SA i
and s-sorted-pre α T SA0
and s-sorted-inv α T B SA
and abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)

shows s-sorted-inv α T B ′ SA ′

proof (rule abs-induce-s-step.elims[OF assms(4)];
clarsimp simp: assms(3 ,4) Let-def not-less

split: if-splits SL-types.splits nat.splits[where ?nat = i] nat.splits)
assume B = B ′ SA ′ = SA
with assms(3)
show s-sorted-inv α T B ′ SA

by simp
next

assume B = B ′ SA ′ = SA
with assms(3)
show s-sorted-inv α T B ′ SA

by simp
next

assume B = B ′ SA ′ = SA
with assms(3)
show s-sorted-inv α T B ′ SA

by simp
next

assume B = B ′ SA ′ = SA
with assms(3)
show s-sorted-inv α T B ′ SA

by simp
next

fix j

let ?b = α (T ! j)
let ?k = B ! ?b − Suc 0

assume A: i = Suc i ′ Suc i ′ < length SA SA ! Suc i ′ = Suc j suffix-type T j =
S-type

B ′ = B[?b := ?k] SA ′ = SA[?k := j]

from s-sorted-inv-maintained-step[OF assms(1−3) A(1−4), of ?b ?k, simplified]
show s-sorted-inv α T (B[?b := ?k]) (SA[?k := j]) .

qed

corollary abs-induce-s-sorted-step-alt:∧
a. s-sorted-inv-alt α T SA0 a =⇒ s-sorted-inv-alt α T SA0 (abs-induce-s-step a

(α, T))
proof −

fix a
assume s-sorted-inv-alt α T SA0 a

446

have ∃B SA i. a = (B, SA, i)
by (meson prod-cases3)

then obtain B SA i where
a = (B, SA, i)
by blast

with ‹s-sorted-inv-alt α T SA0 a›
have P: s-perm-inv α T B SA0 SA i s-sorted-pre α T SA0 s-sorted-inv α T B

SA
by simp-all

from abs-induce-s-step-ex[of (B, SA, i) (α, T)]
obtain B ′ SA ′ i ′ where

Q: abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)
by blast

from abs-induce-s-sorted-step[OF P Q] abs-induce-s-perm-step[OF P(1) Q] ‹s-sorted-pre
- - -›

show s-sorted-inv-alt α T SA0 (abs-induce-s-step a (α, T))
using Q ‹a = (B, SA, i)› by auto

qed

theorem abs-induce-s-sorted-alt-maintained:
assumes s-sorted-inv-alt α T SA0 (B, SA, length T)
shows s-sorted-inv-alt α T SA0 (abs-induce-s-base α T B SA)
unfolding abs-induce-s-base-def
using repeat-maintain-inv

[of s-sorted-inv-alt α T SA0 abs-induce-s-step (α, T), OF - assms(1)]
abs-induce-s-sorted-step-alt

by blast

corollary abs-induce-s-sorted-maintained:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B SA0 SA (length T)
and s-sorted-pre α T SA0
and s-sorted-inv α T B SA

shows s-sorted-inv α T B ′ SA ′

using assms abs-induce-s-sorted-alt-maintained by force

theorem abs-induce-s-prefix-sorted-step:
assumes s-perm-inv α T B SA0 SA i
and s-prefix-sorted-pre α T SA0
and s-prefix-sorted-inv α T B SA
and abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)

shows s-prefix-sorted-inv α T B ′ SA ′

proof (rule abs-induce-s-step.elims[OF assms(4)];
clarsimp simp: assms(3 ,4) Let-def not-less

split: if-splits SL-types.splits nat.splits[where ?nat = i] nat.splits)
assume B = B ′

with assms(3)

447

show s-prefix-sorted-inv α T B ′ SA
by simp

next
assume B = B ′

with assms(3)
show s-prefix-sorted-inv α T B ′ SA

by simp
next

assume B = B ′

with assms(3)
show s-prefix-sorted-inv α T B ′ SA

by simp
next

assume B = B ′

with assms(3)
show s-prefix-sorted-inv α T B ′ SA

by simp
next

fix j

let ?b = α (T ! j)
let ?k = B ! ?b − Suc 0

assume A: i = Suc i ′ Suc i ′ < length SA SA ! Suc i ′ = Suc j suffix-type T j =
S-type

B ′ = B[?b := ?k] SA ′ = SA[?k := j]

from s-prefix-sorted-inv-maintained-step[OF assms(1−3) A(1−4), of ?b ?k, sim-
plified]

show s-prefix-sorted-inv α T (B[?b := ?k]) (SA[?k := j]) .
qed

corollary abs-induce-s-prefix-sorted-step-alt:∧
a. s-prefix-sorted-inv-alt α T SA0 a =⇒

s-prefix-sorted-inv-alt α T SA0 (abs-induce-s-step a (α, T))
proof −

fix a
assume s-prefix-sorted-inv-alt α T SA0 a

have ∃B SA i. a = (B, SA, i)
by (meson prod-cases3)

then obtain B SA i where
a = (B, SA, i)
by blast

with ‹s-prefix-sorted-inv-alt α T SA0 a›
have P: s-perm-inv α T B SA0 SA i s-prefix-sorted-pre α T SA0 s-prefix-sorted-inv

α T B SA
by simp-all

448

from abs-induce-s-step-ex[of (B, SA, i) (α, T)]
obtain B ′ SA ′ i ′ where

Q: abs-induce-s-step (B, SA, i) (α, T) = (B ′, SA ′, i ′)
by blast

from abs-induce-s-prefix-sorted-step[OF P Q] abs-induce-s-perm-step[OF P(1) Q]
‹s-prefix-sorted-pre - - -›

show s-prefix-sorted-inv-alt α T SA0 (abs-induce-s-step a (α, T))
using Q ‹a = (B, SA, i)› by auto

qed

theorem abs-induce-s-prefix-sorted-alt-maintained:
assumes s-prefix-sorted-inv-alt α T SA0 (B, SA, length T)
shows s-prefix-sorted-inv-alt α T SA0 (abs-induce-s-base α T B SA)
unfolding abs-induce-s-base-def
using repeat-maintain-inv[of s-prefix-sorted-inv-alt α T SA0 abs-induce-s-step (α,

T),
OF - assms(1)]

abs-induce-s-prefix-sorted-step-alt
by blast

corollary abs-induce-s-prefix-sorted-maintained:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B SA0 SA (length T)
and s-prefix-sorted-pre α T SA0
and s-prefix-sorted-inv α T B SA

shows s-prefix-sorted-inv α T B ′ SA ′

using assms abs-induce-s-prefix-sorted-alt-maintained by force

theorem s-sorted-bucket:
assumes s-perm-inv α T B SA0 SA 0
and s-sorted-pre α T SA0
and s-sorted-inv α T B SA
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (suffix T) (list-slice SA (bucket-start α T b) (bucket-end
α T b)))

(is ordlistns.sorted (map (suffix T) ?xs))
proof −

let ?ys = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
and ?zs = list-slice SA (s-bucket-start α T b) (bucket-end α T b)

from s-perm-inv-0-B-val[OF assms(1 ,4)]
have B ! b = s-bucket-start α T b .

from s-sorted-pre-maintained[OF s-perm-inv-elims(2 ,4 ,10 ,11)[OF assms(1)] assms(2)]
have s-sorted-pre α T SA .

have ?xs = ?ys @ ?zs
by (metis bucket-start-le-s-bucket-start l-bucket-end-le-bucket-end list-slice-append

449

s-bucket-start-eq-l-bucket-end)
hence map (suffix T) ?xs = map (suffix T) ?ys @ map (suffix T) ?zs

by simp
moreover
from s-sorted-preD[OF ‹s-sorted-pre - - SA› ‹b ≤ -›]
have ordlistns.sorted (map (suffix T) ?ys) .
moreover
from s-sorted-invD[OF assms(3 ,4), simplified ‹- = s-bucket-start α - -›]
have ordlistns.sorted (map (suffix T) ?zs) .
moreover
have ∀ y ∈ set (map (suffix T) ?ys). ∀ z ∈ set (map (suffix T) ?zs). list-less-eq-ns

y z
proof(safe)

fix y z
assume y ∈ set (map (suffix T) ?ys) z ∈ set (map (suffix T) ?zs)
with in-set-mapD[of y suffix T ?ys]

in-set-mapD[of z suffix T ?zs]
obtain i j where

y = suffix T i i ∈ set ?ys
z = suffix T j j ∈ set ?zs
by blast

from l-types-initD(1)[OF l-types-init-maintained[OF s-perm-inv-elims(2 ,4 ,10−12)[OF
assms(1)]]

‹b ≤ -›]
‹i ∈ set ?ys›

have i ∈ l-bucket α T b
by blast

hence suffix-type T i = L-type α (T ! i) = b i < length T
by (simp add: l-bucket-def bucket-def)+

moreover
from s-bucket-eq-list-slice[OF s-perm-inv-elims(1 ,3 ,11)[OF assms(1)] ‹b ≤ -›

‹B ! b = s-bucket-start α - -›]
‹j ∈ set ?zs›

have j ∈ s-bucket α T b
by blast

hence suffix-type T j = S-type α (T ! j) = b j < length T
by (simp add: s-bucket-def bucket-def)+

moreover
have T ! i = T ! j

using calculation(2 ,5) s-perm-inv-elims(8)[OF assms(1)] strict-mono-eq by
fastforce

ultimately have list-less-eq-ns (suffix T i) (suffix T j)
using l-less-than-s-type-suffix[of j T i] by simp

then show list-less-eq-ns y z
using ‹y = suffix T i› ‹z = suffix T j› by blast

qed
ultimately show ?thesis

by (simp add: ordlistns.sorted-append)

450

qed

theorem abs-induce-s-base-sorted:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B SA0 SA (length T)
and s-sorted-pre α T SA0
and s-sorted-inv α T B SA

shows ordlistns.sorted (map (suffix T) SA ′)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length SA ′

hence i < length T j < length T
by (metis (no-types, lifting) abs-induce-s-perm-maintained

assms(1 ,2) order .strict-trans s-perm-inv-elims(11))+

let ?goal = list-less-eq-ns (suffix T (SA ′ ! i)) (suffix T (SA ′ ! j))

from index-in-bucket-interval-gen[OF ‹i < length -› s-perm-inv-elims(8)[OF assms(2)]]
obtain b0 where

b0 ≤ α (Max (set T))
bucket-start α T b0 ≤ i
i < bucket-end α T b0
by blast

from index-in-bucket-interval-gen[OF ‹j < length T › s-perm-inv-elims(8)[OF
assms(2)]]

obtain b1 where
b1 ≤ α (Max (set T))
bucket-start α T b1 ≤ j
j < bucket-end α T b1
by blast

from abs-induce-s-perm-maintained[OF assms(1 ,2)]
have s-perm-inv α T B ′ SA0 SA ′ n .
moreover
have n = 0

by (metis Pair-inject assms(1) abs-induce-s-base-index)
ultimately have s-perm-inv α T B ′ SA0 SA ′ 0

by simp

let ?xs = list-slice SA ′ (bucket-start α T b0) (bucket-end α T b0)
and ?ys = list-slice SA ′ (bucket-start α T b1) (bucket-end α T b1)

have b0 ≤ b1
proof (rule ccontr)

assume ¬ b0 ≤ b1
hence b1 < b0

by (simp add: not-le)
hence bucket-end α T b1 ≤ bucket-start α T b0

451

by (simp add: less-bucket-end-le-start)
with ‹j < bucket-end α T b1 › ‹bucket-start α T b0 ≤ i› ‹i < j›
show False

by linarith
qed
hence b0 = b1 ∨ b0 < b1

by (simp add: nat-less-le)
moreover
have b0 < b1 =⇒ ?goal
proof −

assume b0 < b1
moreover
from s-perm-inv-0-list-slice-bucket[OF ‹s-perm-inv - - - - - 0 › ‹b0 ≤ α -›]
have set ?xs = bucket α T b0 .
hence SA ′ ! i ∈ bucket α T b0

by (metis ‹bucket-start α T b0 ≤ i› ‹i < bucket-end α T b0 › ‹s-perm-inv α
T B ′ SA0 SA ′ 0 ›

bucket-end-le-length list-slice-nth-mem s-perm-inv-elims(11))
hence α (T ! (SA ′ ! i)) = b0 SA ′ ! i < length T

by (simp add: bucket-def)+
moreover
from s-perm-inv-0-list-slice-bucket[OF ‹s-perm-inv - - - - - 0 › ‹b1 ≤ α -›]
have set ?ys = bucket α T b1 .
hence SA ′ ! j ∈ bucket α T b1

by (metis ‹bucket-start α T b1 ≤ j› ‹j < bucket-end α T b1 › ‹s-perm-inv α
T B ′ SA0 SA ′ 0 ›

bucket-end-le-length list-slice-nth-mem s-perm-inv-elims(11))
hence α (T ! (SA ′ ! j)) = b1 SA ′ ! j < length T

by (simp add: bucket-def)+
ultimately have T ! (SA ′ ! i) < T ! (SA ′ ! j)

using assms(2) s-perm-inv-elims(8) strict-mono-less by blast
then show ?thesis
by (metis ‹SA ′ ! i < length T › ‹SA ′ ! j < length T › less-imp-le list-less-eq-ns-cons

neq-iff
suffix-cons-Suc)

qed
moreover
have b0 = b1 =⇒ ?goal
proof −

assume b0 = b1
with ‹j < bucket-end α T b1 ›
have j < bucket-end α T b0

by simp

have ∃ i ′. i = bucket-start α T b0 + i ′
using ‹bucket-start α T b0 ≤ i› nat-le-iff-add by blast

then obtain i ′ where
i = bucket-start α T b0 + i ′
by blast

452

have ∃ j ′. j = bucket-start α T b0 + j ′
by (simp add: ‹b0 = b1 › ‹bucket-start α T b1 ≤ j› le-Suc-ex)

then obtain j ′ where
j = bucket-start α T b0 + j ′
by blast

with ‹i < j› ‹i = bucket-start α T b0 + i ′›
have i ′ ≤ j ′

by linarith

have j ′ < length ?xs
by (metis ‹b0 = b1 › ‹j < bucket-end α T b1 › ‹j = bucket-start α T b0 + j ′›

‹s-perm-inv α T B ′ SA0 SA ′ n› add.commute bucket-end-le-length
length-list-slice

less-diff-conv min-def s-perm-inv-elims(11))
with ordlistns.sorted-nth-mono[OF s-sorted-bucket[OF ‹s-perm-inv - - - - - 0 ›

assms(3)
abs-induce-s-sorted-maintained[OF assms] ‹b0 ≤ α -›] ‹i ′ ≤ j ′›]

have list-less-eq-ns (suffix T (?xs ! i ′)) (suffix T (?xs ! j ′))
using ‹i ′ ≤ j ′› nth-map by auto

moreover
have SA ′ ! i = ?xs ! i ′
using ‹i < bucket-end α T b0 › ‹i < length T › ‹i = bucket-start α T b0 + i ′›

‹s-perm-inv α T B ′ SA0 SA ′ n› s-perm-inv-elims(11)
by (metis ‹bucket-start α T b0 ≤ i› diff-add-inverse list-slice-nth)

moreover
have SA ′ ! j = ?xs ! j ′

using ‹j < bucket-end α T b0 › ‹j < length SA ′›
‹j = bucket-start α T b0 + j ′›

by (simp add: nth-list-slice)
ultimately show ?goal

by simp
qed
ultimately show ?goal

by blast
qed

theorem s-prefix-sorted-bucket:
assumes s-perm-inv α T B SA0 SA 0
and s-prefix-sorted-pre α T SA0
and s-prefix-sorted-inv α T B SA
and b ≤ α (Max (set T))

shows ordlistns.sorted (map (lms-slice T) (list-slice SA (bucket-start α T b) (bucket-end
α T b)))

(is ordlistns.sorted (map (lms-slice T) ?xs))
proof −

let ?ys = list-slice SA (bucket-start α T b) (l-bucket-end α T b)
and ?zs = list-slice SA (s-bucket-start α T b) (bucket-end α T b)

453

from s-perm-inv-0-B-val[OF assms(1 ,4)]
have B ! b = s-bucket-start α T b .

from s-prefix-sorted-pre-maintained[OF s-perm-inv-elims(2 ,4 ,10 ,11)[OF assms(1)]
assms(2)]

have s-prefix-sorted-pre α T SA .

have ?xs = ?ys @ ?zs
by (metis bucket-start-le-s-bucket-start l-bucket-end-le-bucket-end list-slice-append

s-bucket-start-eq-l-bucket-end)
hence map (lms-slice T) ?xs = map (lms-slice T) ?ys @ map (lms-slice T) ?zs

by simp
moreover
from s-prefix-sorted-preD[OF ‹s-prefix-sorted-pre - - SA› ‹b ≤ -›]
have ordlistns.sorted (map (lms-slice T) ?ys) .
moreover
from s-prefix-sorted-invD[OF assms(3 ,4), simplified ‹- = s-bucket-start α - -›]
have ordlistns.sorted (map (lms-slice T) ?zs) .
moreover
have ∀ y ∈ set (map (lms-slice T) ?ys). ∀ z ∈ set (map (lms-slice T) ?zs).

list-less-eq-ns y z
proof safe

fix y z
assume y ∈ set (map (lms-slice T) ?ys)

z ∈ set (map (lms-slice T) ?zs)
with in-set-mapD[of y lms-slice T ?ys]

in-set-mapD[of z lms-slice T ?zs]
obtain i j where

y = lms-slice T i
i ∈ set ?ys
z = lms-slice T j
j ∈ set ?zs
by blast

from l-types-initD(1)[OF l-types-init-maintained[OF s-perm-inv-elims(2 ,4 ,10−12)[OF
assms(1)]]

‹b ≤ -›]
‹i ∈ set ?ys›

have i ∈ l-bucket α T b
by blast

hence suffix-type T i = L-type α (T ! i) = b i < length T
by (simp add: l-bucket-def bucket-def)+

moreover
from s-bucket-eq-list-slice[OF s-perm-inv-elims(1 ,3 ,11)[OF assms(1)] ‹b ≤ -›

‹B ! b = s-bucket-start α - -›]
‹j ∈ set ?zs›

have j ∈ s-bucket α T b
by blast

hence suffix-type T j = S-type α (T ! j) = b j < length T

454

by (simp add: s-bucket-def bucket-def)+
moreover
have T ! i = T ! j

using assms(1) calculation(2 ,5) s-perm-inv-elims(8) strict-mono-eq by fast-
force

ultimately have list-less-eq-ns (lms-slice T i) (lms-slice T j)
using lms-slice-l-less-than-s-type[of i T j] by simp

then show list-less-eq-ns y z
by (simp add: ‹y = lms-slice T i› ‹z = lms-slice T j›)

qed
ultimately show ?thesis

by (simp add: ordlistns.sorted-append)
qed

theorem abs-induce-s-base-prefix-sorted:
assumes abs-induce-s-base α T B SA = (B ′, SA ′, n)
and s-perm-inv α T B SA0 SA (length T)
and s-prefix-sorted-pre α T SA0
and s-prefix-sorted-inv α T B SA

shows ordlistns.sorted (map (lms-slice T) SA ′)
proof (intro sorted-wrt-mapI)

fix i j
assume i < j j < length SA ′

hence i < length T j < length T
by (metis (no-types, lifting) abs-induce-s-perm-maintained

assms(1 ,2) order .strict-trans s-perm-inv-elims(11))+

let ?goal = list-less-eq-ns (lms-slice T (SA ′ ! i)) (lms-slice T (SA ′ ! j))

from index-in-bucket-interval-gen[OF ‹i < length -› s-perm-inv-elims(8)[OF assms(2)]]
obtain b0 where

b0 ≤ α (Max (set T))
bucket-start α T b0 ≤ i
i < bucket-end α T b0
by blast

from index-in-bucket-interval-gen[OF ‹j < length T › s-perm-inv-elims(8)[OF
assms(2)]]

obtain b1 where
b1 ≤ α (Max (set T))
bucket-start α T b1 ≤ j
j < bucket-end α T b1
by blast

from abs-induce-s-perm-maintained[OF assms(1 ,2)]
have s-perm-inv α T B ′ SA0 SA ′ n .
moreover
have n = 0

by (metis Pair-inject assms(1) abs-induce-s-base-index)

455

ultimately have s-perm-inv α T B ′ SA0 SA ′ 0
by simp

let ?xs = list-slice SA ′ (bucket-start α T b0) (bucket-end α T b0)
and ?ys = list-slice SA ′ (bucket-start α T b1) (bucket-end α T b1)

have b0 ≤ b1
proof (rule ccontr)

assume ¬b0 ≤ b1
hence b1 < b0

by (simp add: not-le)
hence bucket-end α T b1 ≤ bucket-start α T b0

by (simp add: less-bucket-end-le-start)
with ‹j < bucket-end α T b1 › ‹bucket-start α T b0 ≤ i› ‹i < j›
show False

by linarith
qed
hence b0 = b1 ∨ b0 < b1

by (simp add: nat-less-le)
moreover
have b0 < b1 =⇒ ?goal
proof −

assume b0 < b1
moreover
from s-perm-inv-0-list-slice-bucket[OF ‹s-perm-inv - - - - - 0 › ‹b0 ≤ α -›]
have set ?xs = bucket α T b0 .
hence SA ′ ! i ∈ bucket α T b0

by (metis ‹bucket-start α T b0 ≤ i› ‹i < bucket-end α T b0 › ‹s-perm-inv α
T B ′ SA0 SA ′ 0 ›

bucket-end-le-length list-slice-nth-mem s-perm-inv-elims(11))
hence α (T ! (SA ′ ! i)) = b0 SA ′ ! i < length T

by (simp add: bucket-def)+
moreover
from s-perm-inv-0-list-slice-bucket[OF ‹s-perm-inv - - - - - 0 › ‹b1 ≤ α -›]
have set ?ys = bucket α T b1 .
hence SA ′ ! j ∈ bucket α T b1

by (metis ‹bucket-start α T b1 ≤ j› ‹j < bucket-end α T b1 › ‹s-perm-inv α
T B ′ SA0 SA ′ 0 ›

bucket-end-le-length list-slice-nth-mem s-perm-inv-elims(11))
hence α (T ! (SA ′ ! j)) = b1 SA ′ ! j < length T

by (simp add: bucket-def)+
ultimately have T ! (SA ′ ! i) < T ! (SA ′ ! j)

using assms(2) s-perm-inv-elims(8) strict-mono-less by blast
then show ?thesis
by (metis ‹SA ′ ! i < length T › ‹SA ′ ! j < length T › abs-find-next-lms-lower-bound-1

less-SucI less-imp-le list-less-eq-ns-cons list-slice-Suc neq-iff lms-slice-def)
qed
moreover

456

have b0 = b1 =⇒ ?goal
proof −

assume b0 = b1
with ‹j < bucket-end α T b1 ›
have j < bucket-end α T b0

by simp

have ∃ i ′. i = bucket-start α T b0 + i ′
using ‹bucket-start α T b0 ≤ i› nat-le-iff-add by blast

then obtain i ′ where
i = bucket-start α T b0 + i ′
by blast

have ∃ j ′. j = bucket-start α T b0 + j ′
by (simp add: ‹b0 = b1 › ‹bucket-start α T b1 ≤ j› le-Suc-ex)

then obtain j ′ where
j = bucket-start α T b0 + j ′
by blast

with ‹i < j› ‹i = bucket-start α T b0 + i ′›
have i ′ ≤ j ′

by linarith

have j ′ < length ?xs
by (metis ‹b0 = b1 ›

‹j < bucket-end α T b1 ›
‹j = bucket-start α T b0 + j ′›
‹s-perm-inv α T B ′ SA0 SA ′ n›
add.commute bucket-end-le-length length-list-slice
less-diff-conv min-def s-perm-inv-elims(11))

with ordlistns.sorted-nth-mono
[OF s-prefix-sorted-bucket

[OF ‹s-perm-inv - - - - - 0 › assms(3)
abs-induce-s-prefix-sorted-maintained

[OF assms] ‹b0 ≤ α -›] ‹i ′ ≤ j ′›]
have list-less-eq-ns (lms-slice T (?xs ! i ′)) (lms-slice T (?xs ! j ′))

using ‹i ′ ≤ j ′› nth-map by auto
moreover
have SA ′ ! i = ?xs ! i ′

using ‹i < bucket-end α T b0 ›
‹i < length T ›
‹i = bucket-start α T b0 + i ′›
‹s-perm-inv α T B ′ SA0 SA ′ n›
‹j ′ < length (list-slice SA ′

(bucket-start α T b0)
(bucket-end α T b0))›

by (metis ‹i ′ ≤ j ′› nth-list-slice order .strict-trans1)
moreover
have SA ′ ! j = ?xs ! j ′

using ‹j < bucket-end α T b0 › ‹j < length SA ′›

457

‹j = bucket-start α T b0 + j ′›
by (simp add: nth-list-slice)

ultimately show ?goal
by simp

qed
ultimately show ?goal

by blast
qed

84 Induce S Correctness Theorems
theorem abs-induce-s-perm:

assumes s-perm-pre α T B SA (length T)
shows abs-induce-s α T B SA <∼∼> [0 ..< length T]

proof −
from s-perm-inv-established assms[simplified s-perm-pre-def]
have s-perm-inv α T B SA SA (length T)

by blast
moreover
from abs-induce-s-base-index[of α T B SA]
obtain B ′ SA ′ where

abs-induce-s-base α T B SA = (B ′, SA ′, 0)
by blast

ultimately have s-perm-inv α T B ′ SA SA ′ 0
using abs-induce-s-perm-maintained[of α T B SA B ′ SA ′ 0 SA]
by blast

hence SA ′ <∼∼> [0 ..< length T]
using abs-induce-s-base-perm[OF ‹abs-induce-s-base α T B SA = (B ′, SA ′, 0)›]
by blast

with ‹abs-induce-s-base α T B SA = (B ′, SA ′, 0)›
show ?thesis

by (simp add: abs-induce-s-def)
qed

— Used in SAIS algorithm as part of inducing the suffix ordering based on LMS
theorem abs-induce-s-sorted:

assumes s-perm-pre α T B SA (length T)
and s-sorted-pre α T SA

shows ordlistns.sorted (map (suffix T) (abs-induce-s α T B SA))
proof −

from s-perm-inv-established assms(1)[simplified s-perm-pre-def]
have s-perm-inv α T B SA SA (length T)

by blast
moreover
from abs-induce-s-base-index[of α T B SA]
obtain B ′ SA ′ where

abs-induce-s-base α T B SA = (B ′, SA ′, 0)
by blast

458

moreover
from s-sorted-inv-established assms(1)[simplified s-perm-pre-def]
have s-sorted-inv α T B SA

by blast
ultimately have ordlistns.sorted (map (suffix T) SA ′)

using abs-induce-s-base-sorted[OF - - assms(2), of B SA B ′ SA ′ 0]
by blast

then show ?thesis
by (simp add: ‹abs-induce-s-base α T B SA = (B ′, SA ′, 0)› abs-induce-s-def)

qed

— Used in SAIS algorithm as part of inducing the prefix ordering based on LMS
theorem abs-induce-s-prefix-sorted:

assumes s-perm-pre α T B SA (length T)
and s-prefix-sorted-pre α T SA

shows ordlistns.sorted (map (lms-slice T) (abs-induce-s α T B SA))
proof −

from s-perm-inv-established assms(1)[simplified s-perm-pre-def]
have s-perm-inv α T B SA SA (length T)

by blast
moreover
from abs-induce-s-base-index[of α T B SA]
obtain B ′ SA ′ where

abs-induce-s-base α T B SA = (B ′, SA ′, 0)
by blast

moreover
from s-prefix-sorted-inv-established assms(1)[simplified s-perm-pre-def]
have s-prefix-sorted-inv α T B SA

by blast
ultimately have ordlistns.sorted (map (lms-slice T) SA ′)

using abs-induce-s-base-prefix-sorted[OF - - assms(2), of B SA B ′ SA ′ 0]
by blast

then show ?thesis
by (simp add: ‹abs-induce-s-base α T B SA = (B ′, SA ′, 0)› abs-induce-s-def)

qed

end
theory Abs-Induce-Verification

imports
Abs-Induce-L-Verification
Abs-Induce-S-Verification
Abs-Bucket-Insert-Verification

begin

85 Bucket Initialisation Properties
lemma l-bucket-init-map-bucket-start:

l-bucket-init α T (map (bucket-start α T) [0 ..<Suc (α (Max (set T)))])

459

unfolding l-bucket-init-def
by (metis add.left-neutral diff-zero le-imp-less-Suc length-map length-upt lessI

nth-map-upt)

lemma lms-bucket-init-map-bucket-end:
lms-bucket-init α T (map (bucket-end α T) [0 ..<Suc (α (Max (set T)))])
unfolding lms-bucket-init-def
by (metis add.left-neutral diff-zero le-imp-less-Suc length-map length-upt lessI

nth-map-upt)

lemma s-bucket-init-map-bucket-end:
s-bucket-init α T ((map (bucket-end α T) [0 ..<Suc (α (Max (set T)))])[0 := 0])
unfolding s-bucket-init-def
by (metis (no-types, lifting) length-greater-0-conv length-list-update list.size(3)

nth-list-update lms-bucket-init-def lms-bucket-init-map-bucket-end)

abbreviation bucket-starts α T ≡ map (bucket-start α T) [0 ..<Suc (α (Max (set
T)))]

abbreviation bucket-ends α T ≡ map (bucket-end α T) [0 ..<Suc (α (Max (set
T)))]

86 Bucket Insert Precondition
lemma lms-pre-established:

assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and strict-mono α

shows lms-pre α T (bucket-ends α T) (replicate (length T) (length T)) (rev LMS)
(is lms-pre α T ?B ?SA (rev LMS))

proof −
from lms-bucket-init-map-bucket-end[of α T]
have lms-bucket-init α T ?B .
then show lms-pre α T ?B ?SA0 (rev LMS)

by (clarsimp simp: lms-pre-def ‹lms-bucket-init α T ?B› assms
simp del: upt-Suc)

qed

87 Induce L Precondition
lemma l-perm-pre-established:

assumes valid-list T
and strict-mono α
and lms-pre α T B SA (rev LMS)

shows l-perm-pre α T (bucket-starts α T) (abs-bucket-insert α T B SA (rev LMS))
(is l-perm-pre α T ?B ?SA)

unfolding l-perm-pre-def
proof safe

460

show lms-init α T ?SA
by (metis assms(3) abs-bucket-insert-vals lms-init-def lms-vals-postD)

next
show l-init α T ?SA

unfolding l-init-def
proof (intro allI impI ; elim conjE)

fix b i
assume b ≤ α (Max (set T)) i < length ?SA bucket-start α T b ≤ i

i < l-bucket-end α T b
hence i < lms-bucket-start α T b

using l-bucket-end-le-lms-bucket-start less-le-trans by blast
with lms-unknowns-postD[OF abs-bucket-insert-unknowns[OF assms(3)] ‹b ≤

-›
‹bucket-start - - - ≤ -›]

show ?SA ! i = length T .
qed

next
show s-init α T ?SA

unfolding s-init-def
proof (intro allI impI ; elim conjE)

fix b i
assume b ≤ α (Max (set T)) i < length ?SA l-bucket-end α T b ≤ i

i < lms-bucket-start α T b
hence bucket-start α T b ≤ i

by (simp add: l-bucket-end-def)
with lms-unknowns-postD[OF abs-bucket-insert-unknowns[OF assms(3)] ‹b ≤

-› -
‹i < lms-bucket-start - - -›]

show ?SA ! i = length T .
qed

next
from l-bucket-init-map-bucket-start[of α T]
show l-bucket-init α T ?B .

next
show length ?SA = length T

by (metis assms(3) abs-bucket-insert-length lms-pre-elims(2))
qed (force simp: valid-list-not-nil[OF assms(1)] assms(2))+

88 Induce S Precondition
lemma s-perm-pre-established:

assumes valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T
and lms-pre α T B0 SA0 (rev LMS)
and SA1 = abs-bucket-insert α T B0 SA0 (rev LMS)
and l-perm-pre α T B1 SA1

shows s-perm-pre α T ((bucket-ends α T)[0 := 0]) (abs-induce-l α T B1 SA1)

461

(length T)
(is s-perm-pre α T ?B ?SA ?n)

unfolding s-perm-pre-def
proof (intro conjI)

from s-bucket-init-map-bucket-end[of α T]
show s-bucket-init α T ?B .

next
from valid-list-length-ex[OF assms(1)]
obtain n where

length T = Suc n
by blast

hence ∃m. length T = Suc (Suc m)
using assms(4) old.nat.exhaust by auto

then obtain m where
length T = Suc (Suc m)
by blast

from abs-bucket-insert-bot-first[OF assms(5 ,1) ‹length T = Suc (Suc m)› assms(3)]
have SA1 ! 0 = n

using ‹length T = Suc (Suc m)› ‹length T = Suc n› assms(6) by auto

have 0 ≤ α (Max (set T))
by simp

moreover
have s-bucket-start α T 0 ≤ 0

by (simp add: assms(1−3) valid-list-s-bucket-start-0)
moreover
have 0 < bucket-end α T 0

by (simp add: assms(1−3) valid-list-bucket-end-0)
ultimately have ?SA ! 0 = SA1 ! 0

using abs-induce-l-unchanged[OF ‹l-perm-pre - - - -›, of 0 0]
by blast

with ‹SA1 ! 0 = n›
have ?SA ! 0 = n

by simp
with ‹length T = Suc n›
show s-type-init T ?SA

using s-type-init-def by blast
next

show length ?SA = length T
by (metis abs-induce-l-length assms(7) l-perm-pre-elims(7))

next
from abs-induce-l-distinct-l-bucket[OF assms(7)]

abs-induce-l-list-slice-l-bucket[OF assms(7)]
show l-types-init α T ?SA

by (simp add: l-types-init-def)
qed(force simp: assms)+

462

89 Permutation
lemma abs-sa-induce-permutation:

assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T

shows abs-sa-induce α T LMS <∼∼> [0 ..< length T]
proof −

let ?B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))] and
?B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))] and
?SA0 = replicate (length T) (length T)

let ?B2 = ?B0 [0 := 0]
let ?SA1 = abs-bucket-insert α T ?B0 ?SA0 (rev LMS)
let ?SA2 = abs-induce-l α T ?B1 ?SA1
let ?SA3 = abs-induce-s α T (?B0 [0 := 0]) ?SA2

from lms-pre-established[OF assms(1 ,2 ,4)]
have lms-pre α T ?B0 ?SA0 (rev LMS) .

have l-perm-pre α T ?B1 ?SA1
using ‹lms-pre α T ?B0 ?SA0 (rev LMS)› assms(3 ,4) l-perm-pre-established

by blast

have s-perm-pre α T ?B2 ?SA2 (length T)
using ‹l-perm-pre α T ?B1 ?SA1 › ‹lms-pre α T ?B0 ?SA0 (rev LMS)›

assms(3−6)
s-perm-pre-established by blast

with abs-induce-s-perm[of α T ?B0 [0 := 0] ?SA2]
have ?SA3 <∼∼> [0 ..< length T]

by blast
then show ?thesis

by (metis abs-sa-induce-def)
qed

90 Sorting
lemma abs-sa-induce-suffix-sorted:

assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T
and ordlistns.sorted (map (suffix T) LMS)

shows ordlistns.sorted (map (suffix T) (abs-sa-induce α T LMS))

463

proof −
let ?B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))] and

?B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))] and
?SA0 = replicate (length T) (length T)

let ?B2 = ?B0 [0 := 0]
let ?SA1 = abs-bucket-insert α T ?B0 ?SA0 (rev LMS)
let ?SA2 = abs-induce-l α T ?B1 ?SA1
let ?SA3 = abs-induce-s α T (?B0 [0 := 0]) ?SA2

from lms-pre-established[OF assms(1 ,2 ,4)]
have lms-pre α T ?B0 ?SA0 (rev LMS) .

have P0 :
∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (suffix T)
(list-slice ?SA1 (lms-bucket-start α T b) (bucket-end α T b)))

proof(intro allI impI)
fix b
assume b ≤ α (Max (set T))
from lms-suffix-sorted-bucket[OF ‹lms-pre - - - - -› - ‹b ≤ -›] assms(7)
show ordlistns.sorted (map (suffix T)

(list-slice ?SA1 (lms-bucket-start α T b) (bucket-end α T b)))
by simp

qed

have l-perm-pre α T ?B1 ?SA1
using ‹lms-pre α T ?B0 ?SA0 (rev LMS)› assms(3 ,4) l-perm-pre-established

by blast
moreover
have l-suffix-sorted-pre α T ?SA1

using P0 l-suffix-sorted-pre-def by blast
ultimately have P1 :
∀ b ≤ α (Max (set T)).
ordlistns.sorted (map (suffix T) (list-slice ?SA2 (bucket-start α T b) (l-bucket-end

α T b)))
using abs-induce-l-suffix-sorted-l-bucket by blast

have s-perm-pre α T ?B2 ?SA2 (length T)
using ‹l-perm-pre α T ?B1 ?SA1 › ‹lms-pre α T ?B0 ?SA0 (rev LMS)›

assms(3−6)
s-perm-pre-established by blast

moreover
have s-sorted-pre α T ?SA2

using P1 s-sorted-pre-def by blast
ultimately show ?thesis

by (metis abs-induce-s-sorted abs-sa-induce-def)
qed

464

— Used in SAIS algorithm to induce the prefix ordering based on LMS

theorem abs-sa-induce-prefix-sorted:
assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T

shows ordlistns.sorted (map (lms-slice T) (abs-sa-induce α T LMS))
proof −

let ?B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))] and
?B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))] and
?SA0 = replicate (length T) (length T)

let ?B2 = ?B0 [0 := 0]
let ?SA1 = abs-bucket-insert α T ?B0 ?SA0 (rev LMS)
let ?SA2 = abs-induce-l α T ?B1 ?SA1
let ?SA3 = abs-induce-s α T (?B0 [0 := 0]) ?SA2

from lms-pre-established[OF assms(1 ,2 ,4)]
have lms-pre α T ?B0 ?SA0 (rev LMS) .

have P0 :
∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (lms-prefix T)
(list-slice ?SA1 (lms-bucket-start α T b) (bucket-end α T b)))

proof(intro allI impI)
fix b
assume b ≤ α (Max (set T))
from lms-prefix-sorted-bucket[OF ‹lms-pre - - - - -› ‹b ≤ -›]
show ordlistns.sorted (map (lms-prefix T)

(list-slice ?SA1 (lms-bucket-start α T b) (bucket-end α T b)))
by simp

qed

have l-perm-pre α T ?B1 ?SA1
using ‹lms-pre α T ?B0 ?SA0 (rev LMS)› assms(3 ,4) l-perm-pre-established

by blast
moreover
have l-prefix-sorted-pre α T ?SA1

using P0 l-prefix-sorted-pre-def by blast
ultimately have P1 :
∀ b ≤ α (Max (set T)).

ordlistns.sorted (map (lms-prefix T)
(list-slice ?SA2 (bucket-start α T b) (l-bucket-end α T b)))

using abs-induce-l-prefix-sorted-l-bucket by blast

have P2 :

465

∀ b ≤ α (Max (set T)).
ordlistns.sorted (map (lms-slice T)
(list-slice ?SA2 (bucket-start α T b) (l-bucket-end α T b)))

proof (intro allI impI sorted-wrt-mapI)
fix b i j

let ?xs = list-slice ?SA2 (bucket-start α T b) (l-bucket-end α T b) and
?R1 = (λx y. list-less-eq-ns (lms-prefix T x) (lms-prefix T y)) and
?R2 = (λx y. list-less-eq-ns (lms-slice T x) (lms-slice T y))

assume b ≤ α (Max (set T)) i < j j < length ?xs
with P1
have ordlistns.sorted (map (lms-prefix T) ?xs)

by blast
with sorted-wrt-mapD[OF - ‹i < j› ‹j < length ?xs›]
have list-less-eq-ns (lms-prefix T (?xs ! i)) (lms-prefix T (?xs ! j))

by blast
moreover
from abs-induce-l-list-slice-l-bucket[OF ‹l-perm-pre - - - -› ‹b ≤ -›]
have ?xs ! i ∈ l-bucket α T b

using Suc-lessD ‹i < j› ‹j < length ?xs› less-trans-Suc nth-mem by blast
hence suffix-type T (?xs ! i) = L-type

using l-bucket-def bucket-def by blast
hence lms-prefix T (?xs ! i) = lms-slice T (?xs ! i)

by (metis SL-types.distinct(1) abs-is-lms-def not-lms-imp-next-eq-lms-prefix)
moreover
from abs-induce-l-list-slice-l-bucket[OF ‹l-perm-pre - - - -› ‹b ≤ -›]
have ?xs ! j ∈ l-bucket α T b

using ‹j < length ?xs› less-trans-Suc nth-mem by blast
hence suffix-type T (?xs ! j) = L-type

using l-bucket-def bucket-def by blast
hence lms-prefix T (?xs ! j) = lms-slice T (?xs ! j)

by (metis SL-types.distinct(1) abs-is-lms-def not-lms-imp-next-eq-lms-prefix)
ultimately show list-less-eq-ns (lms-slice T (?xs ! i)) (lms-slice T (?xs ! j))

by order
qed

have s-perm-pre α T ?B2 ?SA2 (length T)
using ‹l-perm-pre α T ?B1 ?SA1 › ‹lms-pre α T ?B0 ?SA0 (rev LMS)›

assms(3−6)
s-perm-pre-established by blast

moreover
have s-prefix-sorted-pre α T ?SA2

using P2 s-prefix-sorted-pre-def by blast
ultimately show ?thesis

by (metis abs-induce-s-prefix-sorted abs-sa-induce-def)
qed

466

end
theory Abs-Extract-LMS-Verification

imports ../abs−def /Abs-SAIS Abs-Induce-Verification
begin

91 Extract LMS types Proofs
lemma abs-extract-lms-correct:

xs <∼∼> [0 ..<length T] =⇒
distinct (abs-extract-lms T xs) ∧ set (abs-extract-lms T xs) = {i. abs-is-lms T i}
by (metis comp-apply distinct-filter distinct-upt filter-set get-lms-correct

get-lms-set-n-gre-length order .refl perm-distinct-iff perm-set-eq set-rev)

lemma set-abs-extract-lms-eq-all-lms:
set (abs-extract-lms T [0 ..<length T]) = {i. abs-is-lms T i}
using abs-extract-lms-correct by blast

lemma distinct-abs-extract-lms:
distinct (abs-extract-lms T [0 ..<length T])
using abs-extract-lms-correct by blast

lemma filter-abs-sa-induce-eq-all-lms:
[[set LMS = {i. abs-is-lms T i}; distinct LMS ; valid-list T ; strict-mono α; α bot

= 0 ;
Suc 0 < length T]] =⇒

set (abs-extract-lms T (abs-sa-induce α T LMS)) = {i. abs-is-lms T i}
using abs-extract-lms-correct abs-sa-induce-permutation by blast

lemma distinct-filter-abs-sa-induce:
[[set LMS = {i. abs-is-lms T i}; distinct LMS ; valid-list T ; strict-mono α; α bot

= 0 ;
Suc 0 < length T]] =⇒

distinct (abs-extract-lms T (abs-sa-induce α T LMS))
using abs-extract-lms-correct abs-sa-induce-permutation by blast

end
theory Abs-Order-LMS-Verification

imports ../abs−def /Abs-SAIS
begin

467

92 Order LMS-types Proofs
lemma abs-order-lms-eq-map-nth:

order-lms LMS xs = map (nth LMS) xs
by (induct xs; simp)

theorem distinct-abs-order-lms:
[[xs <∼∼> [0 ..<length LMS]; distinct LMS]] =⇒

distinct (order-lms LMS xs)
apply (subst abs-order-lms-eq-map-nth)
apply (erule distinct-map-nth-perm[of - length LMS]; simp)
done

theorem abs-order-lms-eq-all-lms:
[[xs <∼∼> [0 ..<length LMS]; set LMS = S]] =⇒

set (order-lms LMS xs) = S
apply (subst abs-order-lms-eq-map-nth)
apply (frule set-map-nth-perm-eq)
apply simp
done

end
theory Abs-Rename-LMS-Verification

imports ../abs−def /Abs-SAIS

begin

93 Rename Mapping Proofs
lemma abs-rename-mapping ′-length:

length (abs-rename-mapping ′ T LMS names i) = length names
by (induct rule: abs-rename-mapping ′.induct[of - T LMS names i]; simp)

lemma abs-rename-mapping-length:
length (abs-rename-mapping T LMS) = length T
by (clarsimp simp: abs-rename-mapping-def abs-rename-mapping ′-length)

lemma rename-mapping ′-unchanged:
[[x /∈ set LMS ; x < length names]] =⇒
(abs-rename-mapping ′ T LMS names i) ! x = names ! x

by (induct rule: abs-rename-mapping ′.induct[of - T LMS names i]; simp)

lemma rename-mapping ′-lms:
assumes distinct LMS
and ordlistns.sorted (map (lms-slice T) LMS)

468

and i ∈ set LMS
and i < length names

shows (abs-rename-mapping ′ T LMS names j) ! i =
j + (ordlistns.elem-rank ((lms-slice T) ‘ set LMS) (lms-slice T i))

using assms
proof (induct arbitrary: i rule: abs-rename-mapping ′.induct[of - T LMS names j])

case (1 uu names uv)
then show ?case

by force
next

case (2 uw x names j)
note A = this
hence x = i

by force
hence lms-slice uw ‘ set [x] = {lms-slice uw i}

using A(1) by auto
hence ordlistns.elem-rank (lms-slice uw ‘ set [x]) (lms-slice uw i) = 0

by (simp add: ordlistns.elem-rank-def elm-rank-def)
then show ?case

by (simp add: ‹x = i› A(4))
next

case (3 T a b xs names j)
note IH = this

have A1 : distinct (b # xs)
using IH (3) by fastforce

have A2 : ordlistns.sorted (map (lms-slice T) (b # xs))
using IH (4) by fastforce

have A3 : i < length (names[a := j])
by (simp add: IH (6))

have A4 : a /∈ set (b # xs)
using IH (3) by auto

have A5 : ordlistns.elem-rank (lms-slice T ‘ set (a # b # xs)) (lms-slice T a) =
0

unfolding ordlistns.elem-rank-def elm-rank-def using IH (4) by auto

note IH1 = IH (1)[OF - A1 A2 - A3]
note IH2 = IH (2)[OF - A1 A2 - A3]

have P: i ∈ set (b # xs) ∨ i = a
using IH (5) by force

have lms-slice T a = lms-slice T b ∨
lms-slice T a 6= lms-slice T b

by blast

469

then show ?case
proof

assume B: lms-slice T a = lms-slice T b
hence C : abs-rename-mapping ′ T (a # b # xs) names j =

abs-rename-mapping ′ T (b # xs) (names[a := j]) j
by simp

from IH1 [OF B] C
have i ∈ set (b # xs) =⇒ ?thesis

by (simp add: B list.set-map)
moreover
from rename-mapping ′-unchanged[OF A4 , of names[a := j] T j, simplified

C [symmetric]] IH (6) A5
have i = a =⇒ ?thesis

by simp
moreover
note P
ultimately show ?thesis

by blast
next

assume B: lms-slice T a 6= lms-slice T b
hence C : abs-rename-mapping ′ T (a # b # xs) names j =

abs-rename-mapping ′ T (b # xs) (names[a := j]) (Suc j)
by simp

have D: lms-slice T a /∈ lms-slice T ‘ set (b # xs)
proof

assume lms-slice T a ∈ lms-slice T ‘ set (b # xs)
moreover
from IH (4) ordlistns.sorted-simps(2)[of lms-slice T a map (lms-slice T) (b

xs)]
have ∀ y ∈ set (map (lms-slice T) (b # xs)). list-less-eq-ns (lms-slice T a) y

by auto
ultimately show False

using A2 B by auto
qed

from rename-mapping ′-unchanged[OF A4 , of names[a := j] T Suc j, simplified
C [symmetric]]

have i = a =⇒ ?thesis
using A5 IH (6) by auto

moreover
have i ∈ set (b # xs) =⇒ ?thesis
proof −

assume i ∈ set (b # xs)
with IH2 [OF B, simplified C [symmetric]] C
have abs-rename-mapping ′ T (a # b # xs) names j ! i =

j + Suc (ordlistns.elem-rank (lms-slice T ‘ set (b # xs)) (lms-slice T i))
by linarith

470

moreover
have lms-slice T ‘ set (a # b # xs) =

insert (lms-slice T a) (lms-slice T ‘ set (b # xs))
by simp

moreover
have ordlistns.elem-rank (insert (lms-slice T a) (lms-slice T ‘ set (b # xs)))

(lms-slice T i) =
Suc (ordlistns.elem-rank (lms-slice T ‘ set (b # xs)) (lms-slice T i))

proof (intro ordlistns.elem-rank-insert-min)
from D
show lms-slice T a /∈ lms-slice T ‘ set (b # xs) .

next
show finite (lms-slice T ‘ set (b # xs))

by blast
next

show ∀ y∈lms-slice T ‘ set (b # xs). list-less-ns (lms-slice T a) y
using D IH (4) by fastforce

next
show lms-slice T i ∈ lms-slice T ‘ set (b # xs)

using ‹i ∈ set (b # xs)› by blast
qed
ultimately show ?thesis

by presburger
qed
moreover
note P
ultimately show ?thesis

by blast
qed

qed

lemma abs-rename-mapping-lms:
assumes distinct LMS
and ordlistns.sorted (map (lms-slice T) LMS)
and i ∈ set LMS
and i < length T

shows (abs-rename-mapping T LMS) ! i =
ordlistns.elem-rank ((lms-slice T) ‘ set LMS) (lms-slice T i)

unfolding abs-rename-mapping-def
using rename-mapping ′-lms[where j = 0 , simplified, OF assms(1−3)] assms(4)

abs-rename-mapping-length[of T LMS]
by auto

lemma abs-rename-mapping-lms-all:
assumes distinct LMS
and ordlistns.sorted (map (lms-slice T) LMS)
and ∀ x ∈ set LMS . x < length T

shows ∀ x ∈ set LMS . (!) (abs-rename-mapping T LMS) x =

471

ordlistns.elem-rank (lms-slice T ‘ set LMS) (lms-slice T x)
using assms(1) assms(2) assms(3) abs-rename-mapping-lms by blast

lemma map-abs-rename-mapping:
assumes distinct LMS
and ordlistns.sorted (map (lms-slice T) LMS)
and ∀ x ∈ set LMS . x < length T
and set xs ⊆ set LMS

shows map ((!) (abs-rename-mapping T LMS)) xs =
map (ordlistns.elem-rank (lms-slice T ‘ set LMS)) (map (lms-slice T) xs)

using assms(1) assms(2) assms(3) assms(4) abs-rename-mapping-lms-all by
fastforce

94 Rename String Proofs
lemma rename-list-length:

length (rename-string xs names) = length xs
by (induct xs; simp)

theorem rename-list-correct:
rename-string T names = map (λx. names ! x) T
by (induct T ; simp)

corollary rename-list-nth:
i < length T =⇒ (rename-string T names) ! i = names ! (T ! i)
by (simp add: rename-list-correct)

end
theory Abs-SAIS-Verification-With-Valid-Precondition

imports
Abs-Induce-Verification
Abs-Rename-LMS-Verification
Abs-Extract-LMS-Verification
Abs-Order-LMS-Verification

begin

95 SAIS General Helpers
termination abs-sais

by (relation measure (λxs. length xs))
(simp (no-asm-simp)

del: List.list.size(4)
add: rename-list-length length-filter-lms)+

lemma abs-sais-reduced-string:

472

assumes LMS1 = lms0-seq T
and distinct LMS2
and set LMS2 = {i. abs-is-lms T i}
and ordlistns.sorted (map (lms-slice T) LMS2)
and names = abs-rename-mapping T LMS2
and T ′ = rename-string LMS1 names

shows T ′ = lms-map T (lms0-suffix T)
proof −

let ?T ′ = lms0-map T

have set-LMS1 : set LMS1 = {i. abs-is-lms T i}
using assms(1) lms0-seq-has-all-lms by blast

have distinct LMS1
by (simp add: assms(1) lms-seq-distinct)

have T ′ = map (λx. names ! x) LMS1
using rename-list-correct assms(6) by auto

have ∀ x ∈ set LMS2 . x < length T
using assms(3) abs-is-lms-imp-less-length by blast

with map-abs-rename-mapping[OF assms(2 ,4), simplified assms(3),
of LMS1 , simplified ‹LMS1 = lms0-seq T ›]

‹T ′ = map (λx. names ! x) LMS1 › ‹set LMS2 = {i. abs-is-lms T i}›
have T ′= map (ordlistns.elem-rank (lms-substrs T)) (map (lms-slice T) (lms0-seq

T))
using assms(1) assms(5) set-LMS1 by blast

moreover
have map (ordlistns.elem-rank (lms-substrs T)) (map (lms-slice T) (lms0-seq T))

= ?T ′

unfolding lms-map-def
by (metis (no-types, opaque-lifting) comp-apply lms-substr-seq-def lms-subtrs-seq-id-suffix)

ultimately show T ′ = ?T ′

by (simp only:)
qed

96 SAIS cases simplifications
lemma abs-sais-distinct-simp:

assumes T = a # b # xs
and LMS0 = abs-extract-lms T [0 ..<length T]
and SA = abs-sa-induce id T LMS0
and LMS = abs-extract-lms T SA
and names = abs-rename-mapping T LMS
and T ′ = rename-string LMS0 names
and distinct T ′

shows abs-sais T = abs-sa-induce id T LMS
proof −

let ?P = λys. abs-sais (a # b # xs) = ys

473

from subst[OF abs-sais.simps(3), of ?P a b xs,
simplified Let-def assms(1−6)[symmetric] assms(7),
simplified]

show ?thesis
by simp

qed

lemma abs-sais-not-distinct-simp:
assumes T = a # b # xs
and LMS0 = abs-extract-lms T [0 ..<length T]
and SA = abs-sa-induce id T LMS0
and LMS = abs-extract-lms T SA
and names = abs-rename-mapping T LMS
and T ′ = rename-string LMS0 names
and LMS1 = order-lms LMS0 (abs-sais T ′)
and ¬ distinct T ′

shows abs-sais T = abs-sa-induce id T LMS1
proof −

let ?P = λys. abs-sais (a # b # xs) = ys
from subst[OF abs-sais.simps(3), of ?P a b xs,

simplified Let-def assms(1−7)[symmetric] assms(8),
simplified]

show ?thesis
by simp

qed

97 SAIS returns a permutation
theorem abs-sais-permutation:

valid-list T =⇒ abs-sais T <∼∼> [0 ..<length T]
proof(induct rule: abs-sais.induct[of - T])

case 1
then show ?case by simp

next
case (2 x)
then show ?case by simp

next
case (3 a b xs)
note IH = this
let ?T = a # b # xs
have T : ?T = a # b # xs

by (simp only:)
let ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]
have LMS1 : ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]

by (simp only:)
let ?SA1 = abs-sa-induce id ?T ?LMS1
have SA1 : ?SA1 = abs-sa-induce id ?T ?LMS1

by (simp only:)
let ?LMS2 = abs-extract-lms ?T ?SA1

474

have LMS2 : ?LMS2 = abs-extract-lms ?T ?SA1
by (simp only:)

let ?names = abs-rename-mapping ?T ?LMS2
have names: ?names = abs-rename-mapping ?T ?LMS2

by (simp only:)
let ?T ′ = rename-string ?LMS1 ?names
have T ′: ?T ′ = rename-string ?LMS1 ?names

by (simp only:)
let ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)
have LMS3 : ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)

by (simp only:)

from IH (1)[OF T LMS1 SA1 LMS2 names T ′]
have IH ′: [[¬distinct ?T ′; valid-list ?T ′]] =⇒ abs-sais ?T ′ <∼∼> [0 ..<length ?T ′]

by assumption

have distinct ?LMS1
using distinct-abs-extract-lms
by fastforce

have set ?LMS1 = {i. abs-is-lms ?T i}
using set-abs-extract-lms-eq-all-lms
by (metis comp-apply)

have id: strict-mono (id :: nat ⇒ nat) (id :: nat ⇒ nat) bot = 0
by (simp add: strict-mono-def bot-nat-def)+

have len: Suc 0 < length ?T
by simp

from distinct-filter-abs-sa-induce
[OF ‹set ?LMS1 = {i. abs-is-lms ?T i}› ‹distinct ?LMS1 › IH (2) id len]

have distinct-LMS2 : distinct ?LMS2
by (metis comp-apply)

from filter-abs-sa-induce-eq-all-lms
[OF ‹set ?LMS1 = {i. abs-is-lms ?T i}› ‹distinct ?LMS1 › IH (2) id len]

have set-LMS2 : set ?LMS2 = {i. abs-is-lms ?T i}
by blast

from abs-sa-induce-permutation
[OF ‹set ?LMS2 = {i. abs-is-lms ?T i}› ‹distinct ?LMS2 › IH (2) id len]

have abs-sa-induce id ?T ?LMS2 <∼∼> [0 ..<length ?T]
by assumption

from rename-list-length[of ?LMS1 ?names]
have length ?T ′ = length ?LMS1

by assumption

475

have sorted-LMS2 : ordlistns.sorted (map (lms-slice ?T) ?LMS2)
by (metis 3 .prems ‹distinct ?LMS1 › ‹set ?LMS1 = {i. abs-is-lms ?T i}›

comp-apply len id
ordlistns.sorted-filter abs-sa-induce-prefix-sorted)

have ?LMS1 = lms0-seq ?T
by (metis comp-apply lms-seq-0-zeroth-lms lms-seq-def)

with abs-sais-reduced-string[OF - distinct-LMS2 set-LMS2 sorted-LMS2 names
T ′]

have ?T ′ = lms0-map ?T
by blast

have abs-is-lms ?T (lms0 ?T)
by (metis 3 .prems abs-find-next-lms-less-length-abs-is-lms length-Cons

abs-is-lms-last len no-lms-between-i-and-next not-less-eq)

from valid-list-lms-map[OF IH (2) ‹abs-is-lms ?T (lms0 ?T)›]
have valid-list (lms0-map ?T) .
hence valid-list ?T ′

by (simp only: ‹?T ′ = (lms0-map ?T)›)

from ‹length ?T ′= length ?LMS1 › ‹distinct ?LMS1 › ‹set ?LMS1 = {i. abs-is-lms
?T i}›

have R1 : abs-sais ?T ′ <∼∼> [0 ..<length ?T ′] =⇒ distinct ?LMS3
by (metis distinct-abs-order-lms)

from ‹length ?T ′= length ?LMS1 › ‹distinct ?LMS1 › ‹set ?LMS1 = {i. abs-is-lms
?T i}›

have R2 : abs-sais ?T ′ <∼∼> [0 ..<length ?T ′] =⇒ set ?LMS3 = {i. abs-is-lms
?T i}

by (metis (no-types, lifting) abs-order-lms-eq-all-lms)

from abs-sa-induce-permutation[OF R2 R1 IH (2) id len]
have R3 : abs-sais ?T ′ <∼∼> [0 ..<length ?T ′] =⇒

abs-sa-induce id ?T ?LMS3 <∼∼> [0 ..<length ?T]
by blast

from IH ′[OF - ‹valid-list ?T ′›]
have ¬distinct ?T ′ =⇒ abs-sais ?T ′ <∼∼> [0 ..<length ?T ′]

by assumption
with R3
have ¬distinct ?T ′ =⇒ abs-sa-induce id ?T ?LMS3 <∼∼> [0 ..<length ?T]

by blast

have distinct ?T ′ ∨ ¬distinct ?T ′

by blast
then show ?case
proof

assume A: distinct ?T ′

476

from abs-sais-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ A]
‹abs-sa-induce id ?T ?LMS2 <∼∼> [0 ..<length ?T]›

show ?thesis
by metis

next
assume A: ¬distinct ?T ′

from abs-sais-not-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ LMS3 A]
‹¬distinct ?T ′ =⇒ abs-sa-induce id ?T ?LMS3 <∼∼> [0 ..<length ?T]›[OF

A]
show ?thesis

by metis
qed

qed

98 SAIS Sorted Helpers
lemma abs-sais-subset-idx:

assumes valid-list T
shows set (abs-sais T) ⊆ {0 ..<length T}
using assms perm-distinct-set-of-upt-iff abs-sais-permutation by auto

99 SAIS sorts suffixes
theorem abs-sais-sorted-alt:

valid-list T =⇒
ordlistns.strict-sorted (map (suffix T) (abs-sais T))

proof(induct rule: abs-sais.induct[of - T])
case 1
then show ?case by simp

next
case (2 x)
then show ?case by simp

next
case (3 a b xs)
note IH = this
let ?T = a # b # xs
have T : ?T = a # b # xs

by (simp only:)
let ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]
have LMS1 : ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]

by (simp only:)
let ?SA1 = abs-sa-induce id ?T ?LMS1
have SA1 : ?SA1 = abs-sa-induce id ?T ?LMS1

by (simp only:)
let ?LMS2 = abs-extract-lms ?T ?SA1
have LMS2 : ?LMS2 = abs-extract-lms ?T ?SA1

by (simp only:)
let ?names = abs-rename-mapping ?T ?LMS2

477

have names: ?names = abs-rename-mapping ?T ?LMS2
by (simp only:)

let ?T ′ = rename-string ?LMS1 ?names
have T ′: ?T ′ = rename-string ?LMS1 ?names

by (simp only:)
let ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)
have LMS3 : ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)

by (simp only:)

from IH (1)[OF T LMS1 SA1 LMS2 names T ′]
have IH ′: [[¬distinct ?T ′; valid-list ?T ′]] =⇒

ordlistns.strict-sorted (map (suffix ?T ′) (abs-sais ?T ′))
by blast

from set-abs-extract-lms-eq-all-lms[of ?T]
have set-LMS1 : set ?LMS1 = {i. abs-is-lms ?T i}

by simp

from distinct-abs-extract-lms[of ?T]
have distinct-LMS1 : distinct ?LMS1

by simp

have id: strict-mono (id :: nat ⇒ nat) (id :: nat ⇒ nat) bot = 0
by (simp add: strict-mono-def bot-nat-def)+

have len: Suc 0 < length ?T
by simp

from distinct-filter-abs-sa-induce[OF ‹set ?LMS1 = {i. abs-is-lms ?T i}› ‹distinct
?LMS1 › IH (2) id len]

have distinct-LMS2 : distinct ?LMS2
by blast

from filter-abs-sa-induce-eq-all-lms[OF ‹set ?LMS1 = {i. abs-is-lms ?T i}› ‹dis-
tinct ?LMS1 › IH (2) id len]

have set-LMS2 : set ?LMS2 = {i. abs-is-lms ?T i}
by blast

from distinct-set-imp-perm[OF ‹distinct ?LMS1 › ‹distinct ?LMS2 ›]
‹set ?LMS1 = {i. abs-is-lms ?T i}›
‹set ?LMS2 = {i. abs-is-lms ?T i}›

have ?LMS1 <∼∼> ?LMS2
by blast

have sorted-LMS2 : ordlistns.sorted (map (lms-slice ?T) ?LMS2)
by (metis 3 .prems ‹distinct ?LMS1 › ‹set ?LMS1 = {i. abs-is-lms ?T i}›

comp-apply len id
ordlistns.sorted-filter abs-sa-induce-prefix-sorted)

478

have ?LMS1 = lms0-seq ?T
by (metis comp-apply lms-seq-0-zeroth-lms lms-seq-def)

with abs-sais-reduced-string[OF - distinct-LMS2 set-LMS2 sorted-LMS2 names
T ′]

have ?T ′ = lms0-map ?T
by blast

have abs-is-lms ?T (lms0 ?T)
by (metis 3 .prems abs-find-next-lms-less-length-abs-is-lms abs-is-lms-last

len length-Cons no-lms-between-i-and-next not-less-eq)

from valid-list-lms-map[OF IH (2) ‹abs-is-lms ?T (lms0 ?T)›]
have valid-list (lms0-map ?T) .
hence valid-list ?T ′

by (simp only: ‹?T ′ = (lms0-map ?T)›)

have distinct ?T ′ ∨ ¬distinct ?T ′

by blast
hence ordlistns.sorted (map (suffix ?T) (abs-sais ?T))
proof

assume A: distinct ?T ′

hence distinct (lms0-map ?T)
by (simp only: ‹?T ′ = (lms0-map ?T)›)

with sorted-distinct-lms-substr-perm[OF sorted-LMS2]
have ordlistns.sorted (map (suffix ?T) ?LMS2)

by (metis ‹?LMS1 = lms0-seq ?T › ‹?LMS1 <∼∼> ?LMS2 ›)
with abs-sa-induce-suffix-sorted[OF set-LMS2 distinct-LMS2 IH (2) id len]
have ordlistns.sorted (map (suffix ?T) (abs-sa-induce id ?T ?LMS2))

using ordlistns.strict-sorted-imp-sorted by blast
with abs-sais-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ A]
show ?thesis

by presburger
next

assume A: ¬distinct ?T ′

with IH ′[OF - ‹valid-list ?T ′›]
have ordlistns.strict-sorted (map (suffix ?T ′) (abs-sais ?T ′))

by blast
hence C1 : ordlistns.strict-sorted (map (suffix (lms0-map ?T)) (abs-sais (lms0-map

?T)))
by (simp only: ‹?T ′ = (lms0-map ?T)›)

from abs-order-lms-eq-map-nth[of ?LMS1 abs-sais ?T ′]
‹?LMS1 = lms0-seq ?T › ‹?T ′ = lms0-map ?T ›

have C2 : order-lms ?LMS1 (abs-sais ?T ′) =
map (nth (lms0-seq ?T)) (abs-sais (lms0-map ?T))

by (simp only:)

note perm = abs-sais-permutation[OF ‹valid-list ?T ′›,

479

simplified rename-list-length]

note set-LMS3 = abs-order-lms-eq-all-lms[OF perm set-LMS1]
note distinct-LMS3 = distinct-abs-order-lms[OF perm distinct-LMS1]

from abs-sais-permutation[OF ‹valid-list (lms0-map ?T)›]
have ∀ y ∈ set (abs-sais (lms0-map ?T)). y < card {i. abs-is-lms ?T i}

by (metis atLeastLessThan-iff card-lms-suffixes length-reduced-seq perm-set-eq
set-upt)

with sorted-reduced-seq-imp-lms[OF C1] C2
have ordlistns.strict-sorted (map (suffix ?T) ?LMS3)

by presburger
with abs-sa-induce-suffix-sorted[OF set-LMS3 distinct-LMS3 IH (2) id len]
have ordlistns.sorted (map (suffix ?T) (abs-sa-induce id ?T ?LMS3))

using ordlistns.strict-sorted-imp-sorted by blast
with abs-sais-not-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ LMS3 A]
show ?thesis

by presburger
qed
moreover
from perm-distinct-set-of-upt-iff [THEN iffD1 , OF abs-sais-permutation[OF IH (2)]]
have distinct (map (suffix ?T) (abs-sais ?T))

by (metis atLeastLessThan-iff distinct-suffixes)
ultimately show ?case

using ordlistns.strict-sorted-iff by blast
qed

theorem abs-sais-sorted:
valid-list T =⇒
strict-sorted (map (suffix T) (abs-sais T))

using abs-sais-sorted-alt abs-sais-subset-idx valid-list-ordlist-ordlistns-strict-sorted-eq
by blast

100 Verification of a SAIS construction algorithm
interpretation abs-sais: Suffix-Array-Restricted abs-sais

using Suffix-Array-Restricted.intro abs-sais-permutation abs-sais-sorted by blast

end
theory Abs-SAIS-Verification

imports Abs-SAIS-Verification-With-Valid-Precondition
begin

480

101 Final Theorem: Verification of a generalised
SAIS construction algorithm

The @term abs-sais implementation produces an output that is equivalent
to that of a suffix array construction algorithm for lists of any type that
can be linearly ordered. This lifts the restriction that the algorithm only
operates on natural numbers terminated by a bottom element.
interpretation abs-sais-gen: Suffix-Array-General sa-nat-wrapper map-to-nat abs-sais
by (simp add: Suffix-Array-Restricted-imp-General abs-sais.Suffix-Array-Restricted-axioms)

theorem abs-sais-gen-is-Suffix-Array-General:
Suffix-Array-General sa ←→ sa = sa-nat-wrapper map-to-nat abs-sais
using Suffix-Array-General-determinism abs-sais-gen.Suffix-Array-General-axioms

by auto

end
theory Bucket-Insert

imports
../../util/Repeat

begin

102 Bucket Insert
fun bucket-insert-step ::

nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list × nat list ⇒
nat list × nat list × nat

where
bucket-insert-step (B, SA, i) (α, T , LMS) =
(let b = α (T ! (LMS ! i));

k = B ! b − Suc 0
in (B[b := k], SA[k := LMS ! i], Suc i))

definition bucket-insert-base ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat list
⇒

nat list × nat list × nat
where

bucket-insert-base α T B SA LMS = repeat (length LMS) bucket-insert-step (B,
SA, 0) (α, T , LMS)

definition bucket-insert ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒ ′a list ⇒ nat list ⇒ nat list ⇒ nat list
⇒

nat list
where

bucket-insert α T B SA LMS =
(let (B ′, SA ′, i) = bucket-insert-base α T B SA LMS

481

in SA ′)

end
theory Get-Types

imports
../prop/List-Type
../prop/LMS-List-Slice-Util
../../util/Repeat

begin

103 Suffix Types
fun

get-suffix-types-step-r0 ::
SL-types list × nat ⇒ ′a :: {linorder , order-bot} list ⇒ SL-types list × nat

where
get-suffix-types-step-r0 (xs, i) ys =
(case i of

0 ⇒ (xs, 0)
| Suc j ⇒
(if Suc j < length xs ∧ Suc j < length ys then
(if ys ! j < ys ! Suc j then
(xs[j := S-type], j)

else if ys ! j > ys ! Suc j then
(xs[j := L-type], j)

else
(xs[j := xs ! Suc j], j))

else
(xs, j)))

definition get-suffix-types-base
where

get-suffix-types-base xs ≡
repeat (length xs − Suc 0) get-suffix-types-step-r0

(replicate (length xs) S-type, length xs − Suc 0) xs

definition get-suffix-types
where

get-suffix-types xs ≡ fst (get-suffix-types-base xs)

104 LMS types
fun is-lms-ref

where
is-lms-ref ST 0 = False |
is-lms-ref ST (Suc i) =
(if Suc i < length ST then ST ! i = L-type ∧ ST ! (Suc i) = S-type else False)

482

105 Extracting LMS types
abbreviation extract-lms ST xs ≡ filter (λi. is-lms-ref ST i) xs

106 LMS Substrings
definition find-next-lms :: SL-types list ⇒ nat ⇒ nat

where
find-next-lms ST i =
(case find (λj. is-lms-ref ST j) [Suc i..<length ST] of

Some j ⇒ j
| - ⇒ length ST)

definition
lms-slice-ref ::
(′a :: {linorder , order-bot}) list ⇒ SL-types list ⇒ nat ⇒ ′a list

where
lms-slice-ref T ST i =

list-slice T i (Suc (find-next-lms ST i))

107 Rename Mapping
fun rename-mapping ′ ::
(′a :: {linorder , order-bot}) list ⇒ SL-types list ⇒
nat list ⇒ nat list ⇒ nat ⇒ nat list

where
rename-mapping ′ - - [] names - = names |
rename-mapping ′ - - [x] names i = names[x := i] |
rename-mapping ′ T ST (a # b # xs) names i =
(if lms-slice-ref T ST a = lms-slice-ref T ST b

then
rename-mapping ′ T ST (b # xs) (names[a := i]) i

else
rename-mapping ′ T ST (b # xs) (names[a := i]) (Suc i))

definition
rename-mapping ::
(′a :: {linorder , order-bot}) list ⇒ SL-types list ⇒ nat list ⇒ nat list

where
rename-mapping T ST LMS =

rename-mapping ′ T ST LMS (replicate (length T) (length T)) 0

end
theory Induce-L

imports
../../util/Repeat
../prop/Buckets

begin

483

108 Induce L Refinement
fun induce-l-step-r0 ::

nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list ⇒
nat list × nat list × nat

where
induce-l-step-r0 (B, SA, i) (α, T) =
(if SA ! i < length T
then
(case SA ! i of

Suc j ⇒
(case suffix-type T j of

L-type ⇒
(let k = α (T ! j);

l = B ! k
in (B[k := Suc l], SA[l := j], Suc i))

| - ⇒ (B, SA, Suc i))
| - ⇒ (B, SA, Suc i))

else (B, SA, Suc i))

fun induce-l-step ::
nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list × SL-types list⇒
nat list × nat list × nat

where
induce-l-step (B, SA, i) (α, T , ST) =
(if SA ! i < length T
then
(case SA ! i of

Suc j ⇒
(case ST ! j of

L-type ⇒
(let k = α (T ! j);

l = B ! k
in (B[k := Suc (B ! k)], SA[l := j], Suc i))

| - ⇒ (B, SA, Suc i))
| - ⇒ (B, SA, Suc i))

else (B, SA, Suc i))

definition induce-l-base ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list ⇒
nat list × nat list × nat

where
induce-l-base α T ST B SA = repeat (length T) induce-l-step (B, SA, 0) (α, T ,

484

ST)

definition induce-l ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list ⇒
nat list

where
induce-l α T ST B SA = (let (B ′, SA ′, i) = induce-l-base α T ST B SA in SA ′)

end
theory Induce-S

imports ../abs−proof /Abs-Induce-S-Verification
begin

109 Induce S Refinement
fun induce-s-step-r0 ::

nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list ⇒
nat list × nat list × nat

where
induce-s-step-r0 (B, SA, i) (α, T) =
(case i of

Suc n ⇒
(if Suc n < length SA ∧ SA ! Suc n < length T then
(case SA ! Suc n of

Suc j ⇒
(case suffix-type T j of

S-type ⇒
(let b = α (T ! j);

k = B ! b − Suc 0
in (B[b := k], SA[k := j], n)
)
| - ⇒ (B, SA, n)

)
| - ⇒ (B, SA, n)

)
else
(B, SA, n)

)
| - ⇒ (B, SA, 0)

)

fun induce-s-step-r1 ::
nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list × SL-types list ⇒

485

nat list × nat list × nat
where

induce-s-step-r1 (B, SA, i) (α, T , ST) =
(case i of

Suc n ⇒
(if Suc n < length SA ∧ SA ! Suc n < length T then
(case SA ! Suc n of

Suc j ⇒
(case ST ! j of

S-type ⇒
(let b = α (T ! j);

k = B ! b − Suc 0
in (B[b := k], SA[k := j], n)
)
| - ⇒ (B, SA, n)

)
| - ⇒ (B, SA, n)

)
else
(B, SA, n)

)
| - ⇒ (B, SA, 0)

)

fun induce-s-step-r2 ::
nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list × SL-types list ⇒
nat list × nat list × nat

where
induce-s-step-r2 (B, SA, i) (α, T , ST) =
(case i of

Suc n ⇒
(if Suc n < length SA then
(case SA ! Suc n of

Suc j ⇒
(case ST ! j of

S-type ⇒
(let b = α (T ! j);

k = B ! b − Suc 0
in (B[b := k], SA[k := j], n)
)
| - ⇒ (B, SA, n)

)
| - ⇒ (B, SA, n)

)
else
(B, SA, n)

)
| - ⇒ (B, SA, 0)

486

)

fun induce-s-step ::
nat list × nat list × nat ⇒
((′a :: {linorder , order-bot}) ⇒ nat) × ′a list × SL-types list ⇒
nat list × nat list × nat

where
induce-s-step (B, SA, i) (α, T , ST) =
(case i of

Suc n ⇒
(case SA ! Suc n of

Suc j ⇒
(case ST ! j of

S-type ⇒
(let b = α (T ! j);

k = B ! b − Suc 0
in (B[b := k], SA[k := j], n)
)
| - ⇒ (B, SA, n)

)
| - ⇒ (B, SA, n)

)
| - ⇒ (B, SA, 0)

)

definition induce-s-base ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list ⇒
nat list × nat list × nat

where
induce-s-base α T ST B SA = repeat (length T − Suc 0) induce-s-step (B, SA,
length T − Suc 0) (α, T , ST)

definition induce-s ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list ⇒
nat list

where
induce-s α T ST B SA = (let (B ′, SA ′, i) = induce-s-base α T ST B SA in SA ′)

end
theory Induce

imports Induce-S Induce-L Bucket-Insert

487

begin

110 Induce
definition sa-induce-r0 ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
nat list ⇒
nat list

where
sa-induce-r0 α T LMS =
(let

B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))];
B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))];

— Initialise SA
SA = replicate (length T) (length T);

— Get the suffix types
ST = abs-get-suffix-types T ;

— Insert the LMS types into the suffix array
SA = abs-bucket-insert α T B0 SA (rev LMS);

— Insert the L types into the suffix array
SA = induce-l α T ST B1 SA

— Insert the S types into the suffix array
in induce-s α T ST (B0 [0 := 0]) SA)

definition sa-induce-r1 ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list

where
sa-induce-r1 α T ST LMS =
(let

B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))];
B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))];

— Initialise SA
SA = replicate (length T) (length T);

— Insert the LMS types into the suffix array
SA = abs-bucket-insert α T B0 SA (rev LMS);

— Insert the L types into the suffix array

488

SA = induce-l α T ST B1 SA

— Insert the S types into the suffix array
in induce-s α T ST (B0 [0 := 0]) SA)

definition sa-induce-r2 ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list

where
sa-induce-r2 α T ST LMS =
(let

B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))];
B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))];

— Initialise SA
SA = replicate (length T) (length T);

— Insert the LMS types into the suffix array
SA = bucket-insert α T B0 SA (rev LMS);

— Insert the L types into the suffix array
SA = induce-l α T ST B1 SA

— Insert the S types into the suffix array
in induce-s α T ST (B0 [0 := 0]) SA)

abbreviation sa-induce ≡ sa-induce-r2

end
theory SAIS

imports Induce Get-Types
begin

111 SAIS
function sais-r0 ::

nat list ⇒
nat list

where
sais-r0 [] = [] |
sais-r0 [x] = [0] |
sais-r0 (a # b # xs) =
(let

T = a # b # xs;

— Compute the suffix types

489

ST = abs-get-suffix-types T ;

— Extract the LMS types
LMS0 = extract-lms ST [0 ..<length T];

— Induce the prefix ordering based on LMS
SA = sa-induce id T ST LMS0 ;

— Extract the LMS types
LMS1 = extract-lms ST SA;

— Create a new alphabet
names = rename-mapping T ST LMS1 ;

— Make a reduced string (2 lines)
T ′ = rename-string LMS0 names;

— Obtain the correct ordering of LMS-types
LMS2 = (if distinct T ′ then LMS1 else order-lms LMS0 (sais-r0 T ′))

— Induce the suffix ordering based of LMS
in sa-induce id T ST LMS2)

by pat-completeness blast+

function sais-r1 ::
nat list ⇒
nat list

where
sais-r1 [] = [] |
sais-r1 [x] = [0] |
sais-r1 (a # b # xs) =
(let

T = a # b # xs;

— Compute the suffix types
ST = get-suffix-types T ;

— Extract the LMS types
LMS0 = extract-lms ST [0 ..<length T];

— Induce the prefix ordering based on LMS
SA = sa-induce id T ST LMS0 ;

— Extract the LMS types
LMS1 = extract-lms ST SA;

— Create a new alphabet
names = rename-mapping T ST LMS1 ;

490

— Make a reduced string
T ′ = rename-string LMS0 names;

— Obtain the correct ordering of LMS-types
LMS2 = (if distinct T ′ then LMS1 else order-lms LMS0 (sais-r1 T ′))

— Induce the suffix ordering based of LMS
in sa-induce id T ST LMS2)

by pat-completeness blast+

abbreviation sais ≡ sais-r1

end
theory Bucket-Insert-Verification

imports
../abs−proof /Abs-Bucket-Insert-Verification
../def /Bucket-Insert

begin

112 Bucket Insert
lemma abs-bucket-insert-step-cons:

assumes bucket-insert-step (B, SA, Suc i) (α, T , a # xs) = (B1 , SA1 , j1)
and bucket-insert-step (B, SA, i) (α, T , xs) = (B2 , SA2 , j2)

shows B1 = B2 ∧ SA1 = SA2
by (metis assms(1) assms(2) bucket-insert-step.simps nth-Cons-Suc prod.sel(1)

prod.sel(2))

lemma abs-bucket-insert-base-cons ′:
assumes repeat n bucket-insert-step (B, SA, Suc i) (α, T , x # xs) = (B1 , SA1 ,

j1)
and repeat n bucket-insert-step (B, SA, i) (α, T , xs) = (B2 , SA2 , j2)

shows B1 = B2 ∧ SA1 = SA2
using assms

proof (induct n arbitrary: B SA i)
case 0
then show ?case

by (simp add: repeat-0)
next

case (Suc n)
note IH = this

let ?b = α (T ! (xs ! i))
let ?k = B ! ?b − Suc 0

have bucket-insert-step (B, SA, Suc i) (α, T , x # xs)
= (B[?b := ?k], SA[?k := xs ! i], Suc (Suc i))

by (metis bucket-insert-step.simps nth-Cons-Suc)
with IH (2) repeat-step-forward[of n bucket-insert-step (B, SA, Suc i) (α, T , x

491

xs)]
have repeat n bucket-insert-step (B[?b := ?k], SA[?k := xs ! i], Suc (Suc i)) (α,

T , x # xs)
= (B1 , SA1 , j1)

by simp
moreover
have bucket-insert-step (B, SA, i) (α, T , xs) = (B[?b := ?k], SA[?k := xs ! i],

Suc i)
by (metis bucket-insert-step.simps)

with IH (3) repeat-step-forward[of n bucket-insert-step (B, SA, i) (α, T , xs)]
have repeat n bucket-insert-step (B[?b := ?k], SA[?k := xs ! i], Suc i) (α, T , xs)

= (B2 , SA2 , j2)
by simp

ultimately show ?case
using IH (1)[of B[?b := ?k] SA[?k := xs ! i] Suc i]
by blast

qed

lemma bucket-insert-base-cons:
assumes b = α (T ! a)
and k = B ! b − Suc 0
and bucket-insert-base α T B SA (a # xs) = (B1 , SA1 , j1)
and bucket-insert-base α T (B[b := k]) (SA[k := a]) xs = (B2 , SA2 , j2)

shows B1 = B2 ∧ SA1 = SA2
proof −

from assms(1 ,2)
have bucket-insert-step (B, SA, 0) (α, T , a # xs) = (B[b := k], SA[k := a], Suc

0)
by (metis bucket-insert-step.simps nth-Cons-0)

with assms(3)[simplified bucket-insert-base-def , simplified]
repeat-step-forward[of length xs bucket-insert-step (B, SA, 0) (α, T , a # xs)]

have A: repeat (length xs) bucket-insert-step (B[b := k], SA[k := a], Suc 0) (α,
T , a # xs)

= (B1 , SA1 , j1)
by simp

with abs-bucket-insert-base-cons ′[of length xs B[b := k] SA[k := a] 0 α T a xs
B1 SA1 j1 B2 SA2 j2]

assms(4)[simplified bucket-insert-base-def]
show ?thesis

by simp
qed

lemma bucket-insert-cons:
assumes b = α (T ! a)
and k = B ! b − Suc 0

shows bucket-insert α T B SA (a # xs) = bucket-insert α T (B[b := k]) (SA[k
:= a]) xs

by (clarsimp simp: bucket-insert-def Let-def bucket-insert-base-cons[of - α, OF
assms]

492

split: prod.splits)

lemma abs-bucket-insert-eq:
abs-bucket-insert α T B SA xs = bucket-insert α T B SA xs

proof (induct xs arbitrary: B SA)
case Nil
then show ?case

unfolding bucket-insert-def bucket-insert-base-def
by (simp add: repeat-0)

next
case (Cons a xs)
note IH = this

let ?b = α (T ! a)
let ?k = B ! ?b − Suc 0

have abs-bucket-insert α T B SA (a # xs) = abs-bucket-insert α T (B[?b :=
?k]) (SA[?k := a]) xs

by (meson abs-bucket-insert.simps(2))
moreover
from bucket-insert-cons[of ?b α T a ?k B SA xs, simplified]
have bucket-insert α T B SA (a # xs) = bucket-insert α T (B[?b := ?k]) (SA[?k

:= a]) xs .
ultimately show ?case

using IH [of B[?b := ?k] SA[?k := a]]
by simp

qed

end
theory Induce-L-Verification

imports
../abs−proof /Abs-Induce-L-Verification
../def /Induce-L

begin

113 Induce L Refinement
lemma abs-induce-l-step-to-r0 :

i < length SA =⇒ abs-induce-l-step (B, SA, i) (α, T) = induce-l-step-r0 (B, SA,
i) (α, T)

by (clarsimp simp: Let-def split: prod.splits nat.splits SL-types.splits)

lemma induce-l-step-r0-to:
[[length ST = length T ; ∀ k < length ST . ST ! k = suffix-type T k]] =⇒

induce-l-step-r0 (B, SA, i) (α, T) = induce-l-step (B, SA, i) (α, T , ST)
by (clarsimp simp: Let-def split: prod.splits nat.splits SL-types.splits)

lemma abs-induce-l-step-to:
assumes i < length SA

493

and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows abs-induce-l-step (B, SA, i) (α, T) = induce-l-step (B, SA, i) (α, T , ST)
by (metis assms induce-l-step-r0-to abs-induce-l-step-to-r0)

lemma repeat-abs-induce-l-step-to:
assumes n ≤ length SA
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows repeat n abs-induce-l-step (B, SA, 0) (α, T) = repeat n induce-l-step (B,
SA, 0) (α, T , ST)

using assms(1)
proof (induct n)
case 0

then show ?case
by (simp add: repeat-0)

next
case (Suc n)
note IH = this

from repeat-step[of n abs-induce-l-step (B, SA, 0) (α, T)]
have A: repeat (Suc n) abs-induce-l-step (B, SA, 0) (α, T) =

abs-induce-l-step (repeat n abs-induce-l-step (B, SA, 0) (α, T)) (α, T)
by assumption

from repeat-step[of n induce-l-step (B, SA, 0) (α, T , ST)]
have B: repeat (Suc n) induce-l-step (B, SA, 0) (α, T , ST) =

induce-l-step (repeat n induce-l-step (B, SA, 0) (α, T , ST)) (α, T , ST)
by assumption

from repeat-abs-induce-l-step-index[of n B SA 0 α T]
obtain B ′ SA ′ where

C : repeat n abs-induce-l-step (B, SA, 0) (α, T) = (B ′, SA ′, n)
by auto

with IH
have D: repeat n induce-l-step (B, SA, 0) (α, T , ST) = (B ′, SA ′, n)

by simp

from IH (2)
have n < length SA

by simp
with repeat-abs-induce-l-step-lengths[OF C]
have n < length SA ′

by simp

from abs-induce-l-step-to[OF ‹n < length SA ′› assms(2−), of B ′]
A B C D

show ?case
by simp

494

qed

lemma abs-induce-l-base-to:
assumes length SA = length T
and length ST = length T
and ∀ i < length ST . ST ! i = suffix-type T i

shows abs-induce-l-base α T B SA = induce-l-base α T ST B SA
unfolding induce-l-base-def abs-induce-l-base-def
by (simp add: assms(1 , 2 ,3) repeat-abs-induce-l-step-to)

lemma abs-induce-l-eq:
assumes length SA = length T
and length ST = length T
and ∀ i < length ST . ST ! i = suffix-type T i

shows abs-induce-l α T B SA = induce-l α T ST B SA
by (metis assms abs-induce-l-base-to abs-induce-l-def induce-l-def)

end
theory Induce-S-Verification

imports
../abs−proof /Abs-Induce-S-Verification
../def /Induce-S

begin

114 Induce S Refinement
lemma abs-induce-s-step-to-r0 :

shows induce-s-step-r0 (B, SA, i) (α, T) = abs-induce-s-step (B, SA, i) (α, T)
proof (cases i)

case 0
then show ?thesis

by simp
next

case (Suc n)
assume i = Suc n
then show ?thesis
proof (cases Suc n < length SA)

assume Suc n < length SA
show ?thesis
proof (cases SA ! Suc n < length T)

assume SA ! Suc n < length T
show ?thesis
proof (cases SA ! Suc n)

case 0
then show ?thesis

by (clarsimp simp: ‹i = -› ‹Suc n < length -› ‹SA ! - < -›)
next

case (Suc j)
assume SA ! Suc n = Suc j

495

hence Suc j < length T
using ‹SA ! Suc n < length T › by auto

then show ?thesis
by (clarsimp simp: ‹i = -› ‹Suc n < length -› ‹SA ! - < -›)

qed
next

assume ¬ SA ! Suc n < length T
then show ?thesis

by simp
qed

next
assume ¬ Suc n < length SA
show ?thesis

by (clarsimp simp: ‹i = -› ‹¬ -›)
qed

qed

lemma induce-s-step-r0-to-r1 :
assumes length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows induce-s-step-r1 (B, SA, i) (α, T , ST) = induce-s-step-r0 (B, SA, i) (α,
T)
proof (cases i)

case 0
then show ?thesis

by auto
next

case (Suc n)
assume i = Suc n
then show ?thesis
proof (cases Suc n < length SA ∧ SA ! Suc n < length T)

assume Suc n < length SA ∧ SA ! Suc n < length T
hence Suc n < length SA SA ! Suc n < length T

by blast+
then show ?thesis
proof (cases SA ! Suc n)

case 0
then show ?thesis

by (clarsimp simp: ‹i = -› ‹Suc n < length -› ‹SA ! - < -›)
next

case (Suc j)
assume SA ! Suc n = Suc j
hence ST ! j = suffix-type T j

using ‹SA ! Suc n < length T › assms(1 ,2) by force
then show ?thesis

by (clarsimp simp: ‹i = -› ‹Suc n < length -› ‹SA ! - < -› ‹SA ! - = -›)
qed

next
assume ¬ (Suc n < length SA ∧ SA ! Suc n < length T)

496

show ?thesis
by (simp add: ‹¬ -›‹i = Suc n›)

qed
qed

lemma abs-induce-s-step-to-r1 :
assumes length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows induce-s-step-r1 (B, SA, i) (α, T , ST) = abs-induce-s-step (B, SA, i) (α,
T)

by (metis assms induce-s-step-r0-to-r1 abs-induce-s-step-to-r0)

lemma induce-s-step-r1-to-r2 :
assumes s-perm-inv α T B SA0 SA i
shows induce-s-step-r2 (B, SA, i) (α, T , ST) = induce-s-step-r1 (B, SA, i) (α,

T , ST)
proof (cases i)

case 0
then show ?thesis

by simp
next

case (Suc n)
then show ?thesis
proof (cases Suc n < length SA)

assume Suc n < length SA
moreover
have SA ! Suc n < length T
by (metis Suc assms calculation dual-order .refl s-perm-inv-elims(5) s-seen-invD(1))
ultimately show ?thesis
proof (cases SA ! Suc n)

case 0
then show ?thesis

using ‹i = Suc n› ‹Suc n < length SA› ‹SA ! Suc n < length T ›
by simp

next
case (Suc j)
assume SA ! Suc n = Suc j
then show ?thesis
proof (cases ST ! j)

assume ST ! j = S-type
then show ?thesis

using ‹i = Suc n› ‹Suc n < length SA› ‹SA ! Suc n < length T › ‹SA !
Suc n = Suc j›

by (clarsimp simp: Let-def)
next

assume ST ! j = L-type
then show ?thesis

using ‹i = Suc n› ‹Suc n < length SA› ‹SA ! Suc n < length T › ‹SA !
Suc n = Suc j›

497

by (clarsimp simp: Let-def)
qed

qed
next

assume i = Suc n ¬Suc n < length SA
then show ?thesis

by simp
qed

qed

lemma abs-induce-s-step-to-r2 :
assumes s-perm-inv α T B SA0 SA i
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows induce-s-step-r2 (B, SA, i) (α, T , ST) = abs-induce-s-step (B, SA, i) (α,
T)
by (metis assms induce-s-step-r1-to-r2 induce-s-step-r0-to-r1 abs-induce-s-step-to-r0)

lemma induce-s-step-r2-to:
i < length SA =⇒ induce-s-step (B, SA, i) (α, T , ST) = induce-s-step-r2 (B,

SA, i) (α, T , ST)
by (clarsimp simp: Let-def split: nat.splits)

lemma abs-induce-s-step-to:
assumes s-perm-inv α T B SA0 SA i
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k
and i < length SA

shows induce-s-step (B, SA, i) (α, T , ST) = abs-induce-s-step (B, SA, i) (α, T)
by (metis abs-induce-s-step-to-r2 assms induce-s-step-r2-to)

lemma abs-induce-s-base-to ′:
assumes s-perm-inv α T B SA0 SA n
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k
and n < length SA

shows repeat m induce-s-step (B, SA, n) (α, T , ST) = repeat m abs-induce-s-step
(B, SA, n) (α, T)

using assms(1 ,4)
proof (induct m arbitrary: B SA n)

case 0
then show ?case

by (simp add: repeat-0)
next

case (Suc m)
note IH = this and

R0 = repeat-step[of m abs-induce-s-step (B, SA, n) (α, T)] and
R1 = repeat-step[of m induce-s-step (B, SA, n) (α, T , ST)]

498

from repeat-abs-induce-s-step-index[of m B SA n α T]
obtain B ′ SA ′ where S :

repeat m abs-induce-s-step (B, SA, n) (α, T) = (B ′, SA ′, n − m)
length SA ′ = length SA
length B ′ = length B
by blast

have n − m < length SA
using Suc.prems(2) by auto

hence n − m < length SA ′

using S(2) by fastforce

from IH (1)[OF IH (2 ,3)] R1 S
have repeat (Suc m) induce-s-step (B, SA, n) (α, T , ST)

= induce-s-step (B ′, SA ′, n − m) (α, T , ST)
by simp

moreover
from IH (1)[OF IH (2)] R0 S
have repeat (Suc m) abs-induce-s-step (B, SA, n) (α, T)

= abs-induce-s-step (B ′, SA ′, n − m) (α, T)
by simp

moreover
let ?P = λ(B, SA, i). s-perm-inv α T B SA0 SA i
have s-perm-inv α T B ′ SA0 SA ′ (n − m)

by (rule repeat-maintain-inv[of ?P abs-induce-s-step (α, T) (B, SA, n) m,
simplified S , simplified, OF - IH (2)];

clarsimp simp del: abs-induce-s-step.simps;
erule (1) abs-induce-s-perm-step)

with abs-induce-s-step-to[OF - assms(2 ,3) ‹n − m < length SA ′›, of α B ′ SA0]
have induce-s-step (B ′, SA ′, n − m) (α, T , ST) = abs-induce-s-step (B ′, SA ′, n
− m) (α, T)

by blast
ultimately show ?case

by simp
qed

lemma repeat-abs-induce-step-gre-length:
assumes length SA = length T
shows

length T ≤ Suc n =⇒
repeat (Suc m) abs-induce-s-step (B, SA, Suc n) (α, T)
= repeat m abs-induce-s-step (B, SA, n) (α, T)

proof (induct m arbitrary: n)
case 0
then show ?case

by (simp add: repeat-0 repeat-step Let-def assms)
next

case (Suc m)
note IH = this

499

from repeat-step[of Suc m abs-induce-s-step (B, SA, Suc n) (α, T)]
IH (1)[OF IH (2)]

have repeat (Suc (Suc m)) abs-induce-s-step (B, SA, Suc n) (α, T)
= abs-induce-s-step (repeat m abs-induce-s-step (B, SA, n) (α, T)) (α, T)

by presburger
with repeat-step[of m abs-induce-s-step (B, SA, n) (α, T)]
show ?case

by presburger
qed

lemma abs-induce-s-base-to:
assumes s-perm-pre α T B SA (length T)
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows induce-s-base α T ST B SA = abs-induce-s-base α T B SA
proof −

note A = assms(1)[simplified s-perm-pre-def]

from assms(1)[simplified s-perm-pre-def]
have s-perm-inv α T B SA SA (length T)

by (simp add: s-perm-inv-established)
with abs-induce-s-base-to ′[OF - assms(2−)]
have repeat (length T − Suc 0) induce-s-step (B, SA, length T − Suc 0) (α, T ,

ST)
= repeat (length T − Suc 0) abs-induce-s-step (B, SA, length T − Suc 0)

(α, T)
by (metis Suc-lessD Suc-pred A diff-Suc-less s-perm-inv-maintained-step-c1)

moreover
have repeat (length T) abs-induce-s-step (B, SA, length T) (α, T)

= repeat (length T − Suc 0) abs-induce-s-step (B, SA, length T − Suc 0)
(α, T)

by (metis Suc-lessD Suc-pred A repeat-abs-induce-step-gre-length)
ultimately show ?thesis

by (simp add: abs-induce-s-base-def induce-s-base-def)
qed

lemma abs-induce-s-eq:
assumes s-perm-pre α T B SA (length T)
and length ST = length T
and ∀ k < length ST . ST ! k = suffix-type T k

shows abs-induce-s α T B SA = induce-s α T ST B SA
by (simp add: assms abs-induce-s-base-to abs-induce-s-def induce-s-def)

end
theory Induce-Verification

imports
../abs−proof /Abs-Induce-Verification
../def /Induce

500

Induce-S-Verification Induce-L-Verification Bucket-Insert-Verification
begin

115 Induce
lemma sa-induce-to-r0 :

assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T
shows abs-sa-induce α T LMS = sa-induce-r0 α T LMS

proof −

let ?ST = abs-get-suffix-types T

note A = length-abs-get-suffix-types[of T]

from get-suffix-types-correct[of T] A
have B: ∀ i < length ?ST . ?ST ! i = suffix-type T i

by simp

let ?B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))] and
?B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))] and
?SA0 = replicate (length T) (length T)

let ?B2 = ?B0 [0 := 0]
let ?SA1 = abs-bucket-insert α T ?B0 ?SA0 (rev LMS)
let ?SA2 = abs-induce-l α T ?B1 ?SA1
let ?SA3 = abs-induce-s α T (?B0 [0 := 0]) ?SA2

let ?SA2 ′ = induce-l α T ?ST ?B1 ?SA1
let ?SA3 ′ = induce-s α T ?ST (?B0 [0 := 0]) ?SA2

from lms-pre-established[OF assms(1 ,2 ,4)]
have lms-pre α T ?B0 ?SA0 (rev LMS) .

have l-perm-pre α T ?B1 ?SA1
using ‹lms-pre α T ?B0 ?SA0 (rev LMS)›

assms(3 ,4) l-perm-pre-established by blast
with A B
have ?SA2 = ?SA2 ′

using abs-induce-l-eq l-perm-pre-elims(7) by blast

have s-perm-pre α T ?B2 ?SA2 (length T)
using ‹l-perm-pre α T ?B1 ?SA1 › ‹lms-pre α T ?B0 ?SA0 (rev LMS)›

assms(3−6)
s-perm-pre-established by blast

501

with A B
have ?SA3 = ?SA3 ′

using abs-induce-s-eq by blast
then show ?thesis

by (metis ‹?SA2 = ?SA2 ′› abs-sa-induce-def sa-induce-r0-def)
qed

definition sa-induce-r1 ::
((′a :: {linorder , order-bot}) ⇒ nat) ⇒
′a list ⇒
SL-types list ⇒
nat list ⇒
nat list

where
sa-induce-r1 α T ST LMS =
(let

B0 = map (bucket-end α T) [0 ..<Suc (α (Max (set T)))];
B1 = map (bucket-start α T) [0 ..<Suc (α (Max (set T)))];

— Initialise SA
SA = replicate (length T) (length T);

— Insert the LMS types into the suffix array
SA = abs-bucket-insert α T B0 SA (rev LMS);

— Insert the L types into the suffix array
SA = induce-l α T ST B1 SA

— Insert the S types into the suffix array
in induce-s α T ST (B0 [0 := 0]) SA)

lemma sa-induce-r0-to-r1 :
assumes length ST = length T
and ∀ i < length ST . ST ! i = suffix-type T i

shows sa-induce-r0 α T LMS = sa-induce-r1 α T ST LMS
proof −

let ?ST = abs-get-suffix-types T

note A = length-abs-get-suffix-types[of T]

from get-suffix-types-correct[of T] A
have B: ∀ i < length ?ST . ?ST ! i = suffix-type T i

by simp
with A
have ?ST = ST

by (simp add: assms nth-equalityI)
then show ?thesis

by (simp add: sa-induce-r0-def sa-induce-r1-def)
qed

502

lemma sa-induce-to-r1 :
assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T
and length ST = length T
and ∀ i < length ST . ST ! i = suffix-type T i

shows abs-sa-induce α T LMS = sa-induce-r1 α T ST LMS
by (simp add: assms sa-induce-r0-to-r1 sa-induce-to-r0)

lemma sa-induce-r1-to-r2 :
sa-induce-r1 α T ST LMS = sa-induce-r2 α T ST LMS
by (simp add: abs-bucket-insert-eq sa-induce-r1-def sa-induce-r2-def)

lemma abs-sa-induce-to-r2 :
assumes set LMS = {i. abs-is-lms T i}
and distinct LMS
and valid-list T
and strict-mono α
and α bot = 0
and Suc 0 < length T
and length ST = length T
and ∀ i < length ST . ST ! i = suffix-type T i

shows abs-sa-induce α T LMS = sa-induce-r2 α T ST LMS
by (metis assms sa-induce-r1-to-r2 sa-induce-to-r1)

end
theory Get-Types-Verification

imports
../abs−def /Abs-SAIS
../def /Get-Types

begin

116 Suffix Types
lemma get-suffix-types-step-r0-ret:
∃ xs ′ i ′. get-suffix-types-step-r0 (xs, i) ys = (xs ′, i ′) ∧

length xs ′ = length xs ∧ (i = 0 −→ i ′ = 0) ∧ (∃ j. i = Suc j −→ i ′ = j)
by (cases i; simp)

lemma get-suffix-types-step-r0-0 :
get-suffix-types-step-r0 (xs, 0) ys = (xs, 0)
by simp

lemma get-suffix-types-step-r0-Suc:
[[Suc i < length xs; length xs = length ys; ∀ k < length xs. i < k −→ xs ! k =

503

suffix-type ys k]] =⇒
get-suffix-types-step-r0 (xs, Suc i) ys = (xs[i := suffix-type ys i], i)

apply clarsimp
apply (intro conjI impI arg-cong[where f = λx. xs[i := x]])

apply (simp add: nth-gr-imp-l-type)
apply (simp add: nth-less-imp-s-type)

by (metis suffix-type-neq)

fun get-suffix-types-inv
where

get-suffix-types-inv ys (xs, i) =
(length xs = length ys ∧ i < length xs ∧ (∀ k < length xs. i ≤ k −→ xs ! k =

suffix-type ys k))

lemma get-suffix-types-inv-maintained:
assumes get-suffix-types-inv ys (xs, i)

shows get-suffix-types-inv ys (get-suffix-types-step-r0 (xs, i) ys)
proof (cases i)

case 0
hence get-suffix-types-step-r0 (xs, i) ys = (xs, 0)

using get-suffix-types-step-r0-0 by simp
moreover
have get-suffix-types-inv ys (xs, 0)

using 0 assms by auto
ultimately show ?thesis

by presburger
next

case (Suc n)
hence get-suffix-types-step-r0 (xs, i) ys = (xs[n := suffix-type ys n], n)

by (metis Suc-leI assms get-suffix-types-inv.simps get-suffix-types-step-r0-Suc)
moreover
have get-suffix-types-inv ys (xs[n := suffix-type ys n], n)

using Suc assms le-eq-less-or-eq by fastforce
ultimately show ?thesis

by simp
qed

lemma get-suffix-types-inv-established:
xs 6= [] =⇒ get-suffix-types-inv xs (replicate (length xs) S-type, length xs − Suc

0)
by (simp add: suffix-type-last)

lemma get-suffix-types-base-prod ′:
∃ xs ′. repeat n get-suffix-types-step-r0 (xs, m) ys = (xs ′, m − n)

proof (induct n arbitrary: xs m)
case 0
then show ?case

by (simp add: repeat-0)
next

504

case (Suc n)
note IH = this

from repeat-step[of n get-suffix-types-step-r0 (xs, m) ys]
have repeat (Suc n) get-suffix-types-step-r0 (xs, m) ys

= get-suffix-types-step-r0 (repeat n get-suffix-types-step-r0 (xs, m) ys) ys .
moreover
from IH [of xs m]
obtain xs ′ where

repeat n get-suffix-types-step-r0 (xs, m) ys = (xs ′, m − n)
by blast

moreover
have ∃ xs ′′. get-suffix-types-step-r0 (xs ′, m − n) ys = (xs ′′, m − Suc n)
proof (cases m−n)

case 0
hence get-suffix-types-step-r0 (xs ′, m − n) ys = (xs ′, 0)

by auto
moreover
have m − Suc n = 0

using 0 by auto
ultimately show ?thesis

by simp
next

case (Suc k)
have (m − n < length xs ′ ∧ m − n < length ys) ∨ ¬(m − n < length xs ′ ∧ m

− n < length ys)
by blast

moreover
have m − n < length xs ′ ∧ m − n < length ys =⇒ ?thesis

by (clarsimp simp add: Suc diff-Suc)
moreover
have ¬(m − n < length xs ′ ∧ m − n < length ys) =⇒ ?thesis
by (clarsimp simp add: Suc diff-Suc)

ultimately show ?thesis
by blast

qed
ultimately show ?case

by presburger
qed

lemma get-suffix-types-inv-holds:
assumes xs 6= []
shows get-suffix-types-inv xs (get-suffix-types-base xs)
unfolding get-suffix-types-base-def
apply (rule repeat-maintain-inv)
apply (metis get-suffix-types-inv-maintained prod.collapse)

apply (rule get-suffix-types-inv-established[OF assms])
done

505

lemma get-suffix-types-base-prod:
∃ xs ′. get-suffix-types-base xs = (xs ′, 0)
unfolding get-suffix-types-base-def
by (metis cancel-comm-monoid-add-class.diff-cancel get-suffix-types-base-prod ′)

lemma get-suffix-types-base-ref :
get-suffix-types-base xs = (abs-get-suffix-types xs, 0)

proof (cases xs 6= [])
assume ¬ xs 6= []
then show ?thesis

by (clarsimp simp: get-suffix-types-base-def repeat-0 get-suffix-types-def)
next

assume xs 6= []
with get-suffix-types-inv-holds
have get-suffix-types-inv xs (get-suffix-types-base xs)

by blast
moreover
from get-suffix-types-base-prod[of xs]
obtain xs ′ where

get-suffix-types-base xs = (xs ′, 0)
by blast

ultimately have get-suffix-types-inv xs (xs ′, 0)
by auto

moreover
have abs-get-suffix-types xs = xs ′

unfolding list-eq-iff-nth-eq
by (metis bot-nat-0 .extremum calculation get-suffix-types-correct

get-suffix-types-inv.simps
length-abs-get-suffix-types)

ultimately show ?thesis
by (simp add: ‹get-suffix-types-base xs = (xs ′, 0)›)

qed

lemma get-suffix-types-eq:
get-suffix-types xs = abs-get-suffix-types xs
by (simp add: get-suffix-types-base-ref get-suffix-types-def)

lemmas length-get-suffix-types =
length-abs-get-suffix-types[simplified get-suffix-types-eq]

117 LMS types
lemma is-lms-refinement:

assumes length ST = length T ∀ i < length T . ST ! i = suffix-type T i
shows is-lms-ref ST = abs-is-lms T

proof
fix i
show is-lms-ref ST i = abs-is-lms T i
proof (cases i)

506

case 0
then show ?thesis

by (simp add: abs-is-lms-0)
next

case (Suc n)
then show ?thesis
by (metis Suc-lessD assms abs-is-lms-def abs-is-lms-imp-less-length is-lms-ref .simps(2))

qed
qed

118 Extracting LMS types
lemma extract-lms-eq:
[[length ST = length T ; ∀ i < length T . ST ! i = suffix-type T i]] =⇒
extract-lms ST = abs-extract-lms T

by (clarsimp simp: fun-eq-iff is-lms-refinement)

119 LMS Substrings
lemma find-next-lms-refinement:
[[length ST = length T ; ∀ i < length T . ST ! i = suffix-type T i]] =⇒
find-next-lms ST= abs-find-next-lms T

unfolding find-next-lms-def abs-find-next-lms-def
apply (clarsimp simp: is-lms-refinement fun-eq-iff)
by argo

lemma lms-slice-refinement:
[[length ST = length T ; ∀ i < length T . ST ! i = suffix-type T i]] =⇒
lms-slice-ref T ST = lms-slice T

unfolding lms-slice-ref-def lms-slice-def
by (clarsimp simp: find-next-lms-refinement fun-eq-iff)

120 Rename Mapping
lemma rename-mapping ′-refinement:

assumes length ST = length T ∀ i < length T . ST ! i = suffix-type T i
shows rename-mapping ′ T ST = abs-rename-mapping ′ T

proof (intro fun-eq-iff [THEN iffD2] allI)
fix xs ns i
show rename-mapping ′ T ST xs ns i = abs-rename-mapping ′ T xs ns i

using assms
proof (induct rule: rename-mapping ′.induct[of - T ST xs ns i])

case (1 T ST ns i)
then show ?case

by simp
next

case (2 T ST x ns i)
then show ?case

507

by simp
next

case (3 T ST a b xs ns i)
then show ?case

by (simp add: lms-slice-refinement)
qed

qed

lemma rename-mapping-refinement:
assumes length ST = length T
assumes ∀ i < length T . ST ! i = suffix-type T i
shows rename-mapping T ST = abs-rename-mapping T
by (clarsimp simp: fun-eq-iff assms rename-mapping ′-refinement abs-rename-mapping-def

rename-mapping-def)

end
theory SAIS-Verification

imports
Get-Types-Verification
Induce-Verification
../abs−proof /Abs-SAIS-Verification-With-Valid-Precondition
../def /SAIS

begin

121 SAIS
termination sais-r0

apply (relation measure (λxs. length xs))
apply simp

apply (simp (no-asm-simp)
del: List.list.size(4)
only: extract-lms-eq[OF length-get-suffix-types get-suffix-types-correct]

rename-mapping-refinement[OF length-get-suffix-types
get-suffix-types-correct] get-suffix-types-eq)

apply (simp (no-asm-simp)
del: List.list.size(4)
add: rename-list-length length-filter-lms)

done

lemma abs-sais-r0-distinct-simp:
assumes T = a # b # xs
and ST = abs-get-suffix-types T
and LMS0 = extract-lms ST [0 ..<length T]
and SA = sa-induce id T ST LMS0
and LMS = extract-lms ST SA
and names = rename-mapping T ST LMS
and T ′ = rename-string LMS0 names
and distinct T ′

508

shows sais-r0 T = sa-induce id T ST LMS
proof −

let ?P = λys. sais-r0 (a # b # xs) = ys
from subst[OF sais-r0 .simps(3), of ?P a b xs, simplified Let-def

assms(1−7)[symmetric] assms(8), simplified]
show ?thesis

by simp
qed

lemma abs-sais-r0-not-distinct-simp:
assumes T = a # b # xs
and ST = abs-get-suffix-types T
and LMS0 = extract-lms ST [0 ..<length T]
and SA = sa-induce id T ST LMS0
and LMS = extract-lms ST SA
and names = rename-mapping T ST LMS
and T ′ = rename-string LMS0 names
and LMS1 = order-lms LMS0 (sais-r0 T ′)
and ¬distinct T ′

shows sais-r0 T = sa-induce id T ST LMS1
proof −

let ?P = λys. sais-r0 (a # b # xs) = ys
from subst[OF sais-r0 .simps(3), of ?P a b xs, simplified Let-def

assms(1−8)[symmetric] assms(9), simplified]
show ?thesis

by simp
qed

lemma abs-sais-to-r0 :
valid-list T =⇒ abs-sais T = sais-r0 T

proof(induct rule: abs-sais.induct[of - T])
case 1
then show ?case

by simp
next

case (2 x)
then show ?case

by simp
next

case (3 a b xs)
note IH = this

let ?T = a # b # xs
have T : ?T = a # b # xs

by (simp only:)

let ?ST = abs-get-suffix-types ?T
have ST : ?ST = abs-get-suffix-types ?T

by (simp only:)

509

from get-suffix-types-correct[of ?T] length-abs-get-suffix-types[of ?T]
have ∀ i < length ?ST . ?ST ! i = suffix-type ?T i

by (simp add: get-suffix-types-eq)
note st-thms = length-get-suffix-types[of ?T]

‹∀ i < length ?ST . ?ST ! i = suffix-type ?T i›

let ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]
let ?LMS1 ′ = extract-lms ?ST [0 ..<length ?T]
have LMS1 : ?LMS1 = abs-extract-lms ?T [0 ..<length ?T]

by (simp only:)
have LMS1 ′: ?LMS1 ′ = extract-lms ?ST [0 ..<length ?T]

by (simp only:)
have distinct ?LMS1

using distinct-abs-extract-lms
by fastforce

have set ?LMS1 = {i. abs-is-lms ?T i}
using set-abs-extract-lms-eq-all-lms
by (metis comp-apply)

have ?LMS1 = ?LMS1 ′

by (metis extract-lms-eq get-suffix-types-correct length-get-suffix-types)
note lms1-thms = ‹set ?LMS1 = {i. abs-is-lms ?T i}› ‹distinct ?LMS1 › ‹?LMS1

= ?LMS1 ′›

have id: strict-mono (id :: nat ⇒ nat) (id :: nat ⇒ nat) bot = 0
by (simp add: strict-mono-def bot-nat-def)+

have len: Suc 0 < length ?T
by simp

let ?SA1 = abs-sa-induce id ?T ?LMS1
have SA1 : ?SA1 = abs-sa-induce id ?T ?LMS1

by (simp only:)
let ?SA1 ′ = sa-induce id ?T ?ST ?LMS1 ′

have SA1 ′: ?SA1 ′ = sa-induce id ?T ?ST ?LMS1 ′

by (simp only:)
have ?SA1 = ?SA1 ′

by (metis 3 .prems len lms1-thms id st-thms abs-sa-induce-to-r2)

let ?LMS2 = abs-extract-lms ?T ?SA1
let ?LMS2 ′ = extract-lms ?ST ?SA1 ′

have LMS2 : ?LMS2 = abs-extract-lms ?T ?SA1
by (simp only:)

have LMS2 ′: ?LMS2 ′ = extract-lms ?ST ?SA1 ′

by (simp only:)
have ?LMS2 = ?LMS2 ′

using ‹?SA1 = ?SA1 ′› st-thms comp-apply is-lms-refinement
by (metis (no-types, lifting) get-suffix-types-eq)

have ?LMS1 <∼∼> ?LMS2
by (metis 3 .prems distinct-filter-abs-sa-induce lms1-thms len id

510

distinct-set-imp-perm filter-abs-sa-induce-eq-all-lms)
hence distinct ?LMS2 set ?LMS2 = {i. abs-is-lms ?T i}

using lms1-thms perm-distinct-iff perm-set-eq by blast+
have ordlistns.sorted (map (lms-slice ?T) ?LMS2)

by (metis 3 .prems ‹distinct ?LMS1 › ‹set ?LMS1 = {i. abs-is-lms ?T i}›
comp-apply len id

ordlistns.sorted-filter abs-sa-induce-prefix-sorted)
note lms2-thms = ‹distinct ?LMS2 › ‹set ?LMS2 = {i. abs-is-lms ?T i}›

‹ordlistns.sorted (map (lms-slice ?T) ?LMS2)›
‹?LMS2 = ?LMS2 ′›

let ?names = abs-rename-mapping ?T ?LMS2
let ?names ′ = rename-mapping ?T ?ST ?LMS2 ′

have names: ?names = abs-rename-mapping ?T ?LMS2
by (simp only:)

have names ′: ?names ′ = rename-mapping ?T ?ST ?LMS2 ′

by (simp only:)
have ?names = ?names ′

by (metis st-thms lms2-thms(4) rename-mapping-refinement)

let ?T ′ = rename-string ?LMS1 ?names
let ?T ′′ = rename-string ?LMS1 ′ ?names ′

have T ′: ?T ′ = rename-string ?LMS1 ?names
by (simp only:)

have T ′′: ?T ′′ = rename-string ?LMS1 ′ ?names ′

by (simp only:)
have ?T ′ = ?T ′′

using ‹?names = ?names ′› lms1-thms(3) by argo

let ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)
let ?LMS3 ′ = order-lms ?LMS1 ′ (sais-r0 ?T ′′)
have LMS3 : ?LMS3 = order-lms ?LMS1 (abs-sais ?T ′)

by (simp only:)
have LMS3 ′: ?LMS3 ′ = order-lms ?LMS1 ′ (sais-r0 ?T ′′)

by (simp only:)

have ?LMS1 = lms0-seq ?T
by (metis comp-apply lms-seq-0-zeroth-lms lms-seq-def)

with abs-sais-reduced-string[OF - lms2-thms(1−3) names T ′]
have ?T ′ = lms0-map ?T

by blast

have abs-is-lms ?T (lms0 ?T)
by (metis 3 .prems abs-find-next-lms-less-length-abs-is-lms abs-is-lms-last

len length-Cons no-lms-between-i-and-next not-less-eq)

from valid-list-lms-map[OF IH (2) ‹abs-is-lms ?T (lms0 ?T)›]
have valid-list (lms0-map ?T) .
hence valid-list ?T ′

511

by (simp only: ‹?T ′ = (lms0-map ?T)›)

have distinct ?T ′ =⇒ ?case
proof −

assume distinct ?T ′

hence distinct ?T ′′

by (simp only: ‹?T ′ = ?T ′′›)
note lms2-thms = filter-abs-sa-induce-eq-all-lms[OF lms1-thms(1 ,2) IH (2) id

len]
distinct-filter-abs-sa-induce[OF lms1-thms(1 ,2) IH (2) id len]

from abs-sa-induce-to-r2 lms2-thms(1 ,2) IH (2) id len st-thms
have abs-sa-induce id ?T ?LMS2 = sa-induce id ?T ?ST ?LMS2 ′

by (metis ‹?LMS2 = ?LMS2 ′› comp-apply)
with abs-sais-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ ‹distinct ?T ′›]

abs-sais-r0-distinct-simp[OF T ST LMS1 ′ SA1 ′ LMS2 ′ names ′ T ′′ ‹distinct
?T ′′›]

show ?thesis
by presburger

qed
moreover
have ¬distinct ?T ′ =⇒ ?case
proof −

assume ¬distinct ?T ′

hence ¬distinct ?T ′′

using ‹?T ′ = ?T ′′› by argo

from IH (1)[OF T LMS1 SA1 LMS2 names T ′, OF ‹¬distinct ?T ′› ‹valid-list
?T ′›]

have abs-sais ?T ′ = sais-r0 ?T ′′

using ‹?T ′ = ?T ′′› by argo
hence ?LMS3 ′ = ?LMS3

using lms1-thms(3) by argo

have abs-sais-perm: abs-sais ?T ′ <∼∼> [0 ..<length ?LMS1]
using abs-sais-permutation[OF ‹valid-list ?T ′›, simplified rename-list-length]
by blast

note lms3-thms = abs-order-lms-eq-all-lms[OF abs-sais-perm lms1-thms(1)]
distinct-abs-order-lms[OF abs-sais-perm lms1-thms(2)]

from abs-sa-induce-to-r2 [OF lms3-thms ‹valid-list ?T › id len st-thms]
have abs-sa-induce id ?T ?LMS3 = sa-induce id ?T ?ST ?LMS3 ′

using ‹abs-sais ?T ′ = sais-r0 ?T ′′› lms1-thms(3) by argo
with abs-sais-not-distinct-simp[OF T LMS1 SA1 LMS2 names T ′ LMS3 ‹¬distinct

?T ′›]
abs-sais-r0-not-distinct-simp[OF T ST LMS1 ′ SA1 ′ LMS2 ′ names ′ T ′′

LMS3 ′ ‹¬distinct ?T ′′›]
‹abs-sais ?T ′ = sais-r0 ?T ′›

show ?thesis
by presburger

512

qed
ultimately show ?case

by blast
qed

termination sais-r1
apply (relation measure (λxs. length xs))
apply simp

apply (simp (no-asm-simp)
del: List.list.size(4)

only: extract-lms-eq[OF length-abs-get-suffix-types get-suffix-types-correct]
rename-mapping-refinement[OF length-abs-get-suffix-types

get-suffix-types-correct])
apply (simp (no-asm-simp)

del: List.list.size(4)
add: rename-list-length length-filter-lms)

apply (metis get-suffix-types-correct get-suffix-types-eq is-lms-refinement
length-filter-lms length-get-suffix-types list.discI)

done

lemma abs-sais-r0-to-r1 :
sais-r1 T = sais-r0 T
apply (induct rule: sais-r0 .induct[of - T])

apply simp
apply simp

apply (subst sais-r1 .simps)
apply (subst get-suffix-types-eq)
apply (subst sais-r0 .simps)
apply (clarsimp simp only: Let-def split: if-splits)
by presburger

lemma abs-sais-to-r1 :
valid-list T =⇒ sais-r1 T = abs-sais T
by (simp add: abs-sais-r0-to-r1 abs-sais-to-r0)

122 Correctness
interpretation sais: Suffix-Array-Restricted sais
by (simp add: Suffix-Array-Restricted.intro Suffix-Array-Restricted.sa-r-permutation

Suffix-Array-Restricted.sa-r-sorted abs-sais.Suffix-Array-Restricted-axioms
abs-sais-to-r1)

interpretation abs-sais-ref-gen: Suffix-Array-General sa-nat-wrapper map-to-nat
sais
by (simp add: Suffix-Array-Restricted-imp-General sais.Suffix-Array-Restricted-axioms)

theorem sais-gen-is-Suffix-Array-General:
Suffix-Array-General sa ←→ sa = sa-nat-wrapper map-to-nat sais
using Suffix-Array-General-determinism abs-sais-ref-gen.Suffix-Array-General-axioms

513

by auto

end
theory Code-Extraction

imports ../abs−proof /Abs-SAIS-Verification
../proof /SAIS-Verification

begin

lemma [code]:
abs-is-lms T i =
(if i > 0 then

if suffix-type T i = S-type ∧ suffix-type T (i − 1) = L-type
then True
else False

else False)
by (metis abs-is-lms-0 One-nat-def Suc-pred bot-nat-0 .not-eq-extremum

i-s-type-imp-Suc-i-not-lms abs-is-lms-def suffix-type-def)

definition
bucket-upt-code :: (′a :: {linorder ,order-bot} ⇒ nat) ⇒ ′a list ⇒ nat ⇒ nat set

where
bucket-upt-code α T b ≡

set (filter (λx. α (T ! x) < b) [0 ..<length T])

lemma [code]:
bucket-upt α T b = bucket-upt-code α T b

proof(safe)
fix x
assume x ∈ bucket-upt α T b
hence x < length T α (T ! x) < b

by (simp add: bucket-upt-def)+
then show x ∈ bucket-upt-code α T b

by (simp add: bucket-upt-code-def)
next

fix x
assume x ∈ bucket-upt-code α T b
hence x < length T α (T ! x) < b

by (simp add: bucket-upt-code-def)+
then show x ∈ bucket-upt α T b

by (simp add: bucket-upt-def)
qed

export-code abs-sais in Haskell
module-name SAIS file-prefix abs-sais

export-code sais in Haskell
module-name SAIS-REF file-prefix sais

514

end
theory SACA-Equiv

imports sais/abs−proof /Abs-SAIS-Verification
simple/Simple-SACA-Verification
sais/proof /SAIS-Verification

begin

lemma Suffix-Array-General-imp-suffix-array:
Suffix-Array-General sa =⇒
sa s = simple-saca s

using Suffix-Array-General-determinism simple-saca.Suffix-Array-General-axioms
by blast

theorem Suffix-Array-General-equiv-spec:
Suffix-Array-General sa ←→
sa = simple-saca

using Suffix-Array-General-imp-suffix-array simple-saca.Suffix-Array-General-axioms
by blast

corollary abs-sais-equiv-simple-saca:
sa-nat-wrapper map-to-nat abs-sais = simple-saca
using Suffix-Array-General-equiv-spec abs-sais-gen.Suffix-Array-General-axioms

by auto

corollary sais-equiv-simple-saca:
sa-nat-wrapper map-to-nat sais = simple-saca
using sais-gen-is-Suffix-Array-General

Suffix-Array-General-equiv-spec
by auto

end

References
[1] P. Ko and S. Aluru. Space efficient linear time construction of suffix

arrays. Journal of Discrete Algorithms, 3(2-4):143–156, 2005.

[2] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[3] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction
by almost pure induced-sorting. In Proc. Data Compression Conference,
pages 193–202. IEEE Computing Society, 2009.

515

	HOL
	Natural Number Arithmetic
	Monotonic Functions
	Sets
	From AutoCorres

	General Lists
	Find
	Filter
	Upt
	Lemmas about bijections
	Lemmas about monotone functions
	Sorting
	General sorting
	Sorting on linear orders
	Sorting on orders

	Mapping elements to natural numbers
	Repeat Function At Most N Times
	Step and early termination lemmas

	Repeat Function N Times
	Continuous Intervals
	List Slices
	Sorted List Slice
	General Non-standard Lexicographical Comparison
	Intro and Elimination
	Simplification
	Recursive version
	Properties
	Monotonicity
	Other

	Order definitions on lists of linorder elements
	Helper list comparison theorems
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-less-ns helpers
	Lists of linorder elements are linorders with a bottom element
	Recursive Definition
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-less-ns-ex helpers
	Valid List
	Order Equivalence
	Classical Lexicographical Order
	Non-standard Lexicographical Ordering
	Suffix
	Valid Lists and Suffixes
	Prefixes and Suffixes
	Suffix Comparisons
	Lexicographical Ordering
	Non-standard List Ordering

	List Slice
	Sorting
	Prefix Definition
	Axiomatic Suffix Array Specification
	Wrapper for Natural Number String only Algorithm
	General Suffix Array Properties
	Properties of Suffix Arrays on Valid Lists
	Equivalence
	Small and Large List Types
	Suffix Type
	General Suffix Type Simplifications
	S-Type Simplifications
	L-Type Simplifications
	General Suffix Type Theories
	S/L-Type Ordering
	Implementation of Suffix Type Computation

	SAIS Sublist Order
	Sorting
	LMS-Types
	LMS-Type Simplifications
	LMS-Type Sets and Subsets
	Implementation of LMS-Types Computation
	Properties

	Cardinality LMS-Types
	General Properties about LMS-types

	Buckets
	Entire Bucket
	L-types
	LMS-types
	S-types

	Continuous Buckets
	Bucket Initialisation
	Bucket Range
	Helpers
	LMS Slice
	Find the next LMS position
	LMS Prefix
	LMS Slice
	LMS Substring butlast
	Suffix Types

	Ordering LMS-substrings
	Mapping from suffix to lists of LMS-Substrings
	LMS Sequence
	LMS-Substring Sequence
	LMS Map

	Induce Sorting
	Bucket Insert
	Induce L-types
	Induce S-types
	Induce Sorting

	Rename Mapping
	Rename String
	Order LMS
	Extract LMS
	SAIS Definition
	Bucket Insert with Ghost State
	Simple Properties
	Invariants
	Defintions and Simple Helper Lemmas
	Distinctness
	LMS Bucket Ptr
	Unknowns
	Locations
	Unchanged
	Inserted
	Sorted

	Combined Invariant
	Helpers
	Establishment and Maintenance Steps
	Distinctness
	Bucket Ptr
	Unknowns
	Locations
	Unchanged
	Inserted
	Sorted

	Combined Establishment and Maintenance

	Exhaustiveness
	Postconditions
	Abstract Induce L-types Simple Properties
	Precondition Definitions
	Invariant Definitions
	Distinctness
	Predecessor
	L Bucket Ptr
	Unknowns
	Indexes
	Unchanged
	L Locations
	Seen
	Sortedness
	Permutation

	Invariant Helpers
	Distinctness of New Insert
	Bucket Ranges
	No Overwrite
	Bucket Values
	Seen

	Distinctness
	Establishment
	Maintenance

	Unknowns
	Establishment
	Maintenance

	Number of L-types
	Establishment
	Maintenance

	L Locations
	Establishment
	Maintenance

	Unchanged
	Establishment
	Maintenance

	Invariant about the Current Index
	Establishment
	Maintenance

	Predecessor Invariant
	Establishment
	Maintenance

	Seen Invariant
	Establishment
	Maintenance

	Permutation
	Establishment
	Maintenance

	Sorted
	L-type Exhaustiveness
	Case 1
	Case 2
	Exhaustiveness Proof

	Correctness and Exhaustiveness
	Abstract Induce S Simple Properties
	Preconditions
	Invariants
	Definitions
	Distinctness
	S Bucket Ptr
	Locations
	Unchanged
	Seen
	Predecessor
	Successor
	Combined Permutation Invariant
	Sorted

	Helpers
	Establishment and Maintenance Steps
	Distinctness
	Bucket Pointer
	Locations
	Unchanged
	Seen
	Predecessor
	Successor
	Combined Permutation Invariant
	Sorted

	Induce S Correctness Theorems
	Bucket Initialisation Properties
	Bucket Insert Precondition
	Induce L Precondition
	Induce S Precondition
	Permutation
	Sorting
	Extract LMS types Proofs
	Order LMS-types Proofs
	Rename Mapping Proofs
	Rename String Proofs
	SAIS General Helpers
	SAIS cases simplifications
	SAIS returns a permutation
	SAIS Sorted Helpers
	SAIS sorts suffixes
	Verification of a SAIS construction algorithm
	Final Theorem: Verification of a generalised SAIS construction algorithm
	Bucket Insert
	Suffix Types
	LMS types
	Extracting LMS types
	LMS Substrings
	Rename Mapping
	Induce L Refinement
	Induce S Refinement
	Induce
	SAIS
	Bucket Insert
	Induce L Refinement
	Induce S Refinement
	Induce
	Suffix Types
	LMS types
	Extracting LMS types
	LMS Substrings
	Rename Mapping
	SAIS
	Correctness

