The Stone-Cech Compactification

Mike Stannett

June 5, 2024
Contents
1 (C*-embedding 4
2 Weak topologies 7

2.1 Tychonov spaces carry the weak topology induced by C*(X) 9
2.2 A topology is a weak topology if it admits a continuous func-

tion set that separates points from closed sets 10
2.3 A product topology is the weak topology induced by its pro-
jections if the projections separate points from closed sets. . . 11
2.4 Evaluation is an embedding for weak topologies 12
3 Compactification 12
3.1 Definition 12
3.2 Example: The Alexandroff compactification of a non-compact
locally-compact Hausdorff space 13
3.3 Example: The closure of a subset of a compact space 13
3.4 Example: A compact space is a compactification of itself . . . 13
3.5 Example: A closed non-trivial real interval is a compactifica-
tion of its interior 13
4 The Stone-Cech compactification of a Tychonov space 13
4.1 Definitionof X oo 15
4.2 (X is a compactificationof X oL 15
4.3 Evaluation is a C"*-embedding of X into 56X 16

4.4 The Stone-Cech Extension Property: Any continuous map
from X to a compact Hausdorff space K extends uniquely to
a continuous map from X to K. 16

Building on parts of HOL-Analysis, we provide mathematical components
for work on the Stone-Cech compactification. The main concepts covered
are: C*-embedding, weak topologies and compactification, focusing in par-
ticular on the Stone-Cech compactification of an arbitrary Tychonov space
X. Many of the proofs given here derive from those of Willard (General

Topology, 1970, Addison-Wesley) and Walker (The Stone-Cech Compactifi-
cation, 1974, Springer-Verlag).

Using traditional topological proof strategies we define the evaluation and
projection functions for product spaces, and show that product spaces carry
the weak topology induced by their projections whenever those projections
separate points both from each other and from closed sets.

In particular, we show that the evaluation map from an arbitrary Tychonov
space X into $X is a dense C*-embedding, and then verify the Stone-Cech
Extension Property: any continuous map from X to a compact Hausdorff
space K extends uniquely to a continuous map from X to K.

theory Stone-Cech
imports HOL. Topological-Spaces
HOL.Set
HOL— Analysis. Urysohn

begin

Concrete definitions of finite intersections and arbitrary unions, and their
relationship to the Analysis.Abstract_ Topology versions.

definition finite-intersections-of :: 'a set set = 'a set set
where finite-intersections-of S ={ (| F) | F . F C S A finite’ F' }

definition arbitrary-unions-of :: 'a set set = 'a set set
where arbitrary-unions-of S={(J F) | F. FC S}

lemma generator-imp-arbitrary-union:
shows S C arbitrary-unions-of S

{proof)

lemma finite-intersections-container:
shows V s € finite-intersections-of S . |JS Ns=s

{proof)

lemma generator-imp-finite-intersection:
shows S C finite-intersections-of S

{proof)

lemma finite-intersections-equiv:
shows (finite’ intersection-of (Az. z € §)) U «— U € finite-intersections-of S

(proof)

lemma arbitrary-unions-equiv:
shows (arbitrary union-of (A z .z € S)) U «— U € arbitrary-unions-of S

{proof)

Supplementary information about topological bases and the topologies they

generate

definition base-generated-on-by :: ‘a set = 'a set set = 'a set set
where base-generated-on-by X S ={ X N s | s . s € finite-intersections-of S}

definition opens-generated-on-by :: 'a set = 'a set set = 'a set set
where opens-generated-on-by X S = arbitrary-unions-of (base-generated-on-by X

5)

definition base-generated-by :: 'a set set = 'a set set
where base-generated-by S = finite-intersections-of S

definition opens-generated-by :: 'a set set = 'a set set
where opens-generated-by S = arbitrary-unions-of (base-generated-by S)

lemma generators-are-basic:
shows S C base-generated-by S

{proof)

lemma basics-are-open:
shows base-generated-by S C opens-generated-by S

(proof)

lemma generators-are-open:
shows S C opens-generated-by S

(proof)

lemma generated-topspace:
assumes 1 = topology-generated-by S
shows topspace T = |J S

{proof)

lemma base-generated-by-alt:
shows base-generated-by S = base-generated-on-by (IJS) S

{proof)

lemma opens-generated-by-alt:
shows opens-generated-by S = arbitrary-unions-of (finite-intersections-of S)

(proof)

lemma opens-generated-unfolded:
shows opens-generated-by S ={J A|A.AC{ () B| B. finite’ BA BC S}}
(proof)

lemma opens-eq-generated-topology:
shows openin (topology-generated-by S) U «— U € opens-generated-by S
(proof)

1 C*-embedding

abbreviation continuous-from-to
:: 'a topology = 'b topology = (‘a = 'b) set (cts| -, -])
where continuous-from-to X Y = { f . continuous-map X Y f }

abbreviation continuous-from-to-extensional
: 'a topology = 'b topology = ('a = 'b) set (ctsg| -, -])
where continuous-from-to-extensional X Y = (topspace X —g topspace Y) N
cts[X,Y]

abbreviation continuous-maps-from-to-shared-where ::
‘a topology = ('b topology = bool) = ('a = 'b) set = bool (cts’-on - to’-shared

where continuous-maps-from-to-shared-where X P
=Afs.3Y.PYA[fsCcts[X,Y]))

definition dense-in :: 'a topology = 'a set = 'a set = bool
where dense-in T A B = T closure-of A = B

lemma dense-in-closure:
assumes dense-in T A B
shows dense-in (subtopology T B) A B
(proof)
abbreviation dense-embedding :: 'a topology = 'b topology = ('a = 'b) = bool
where dense-embedding small big f = (embedding-map small big f)
A dense-in big (f‘topspace small) (topspace big)

lemma continuous-maps-on-dense-subset:
assumes (cts-on X to-shared Hausdorff-space) {f,g}
and dense-in X D (topspace X)
and VeeD.fz=g=x
shows V z € topspace X . fx =g
(proof)

lemma continuous-map-on-dense-embedding:
assumes (cts-on X to-shared Hausdorff-space) {f,g}
and dense-embedding D X e
and YV d € topspace D . (foe)d=(goe)d
shows V x € topspace X . fx =gz
(proof)

definition range’ :: 'a topology = ('a = real) = real set
where range’ X f = euclideanreal closure-of (f ¢ topspace X)

abbreviation fbounded-below :: (‘a = real) = ’a topology = bool
where fbounded-below f X = (3 m .V y € topspace X . fy > m)

abbreviation fhbounded-above :: ('a = real) = 'a topology = bool
where fbounded-above f X = (3 M .V y € topspace X . fy < M)

abbreviation fbounded :: ('a = real) = 'a topology = bool
where fbounded f X = (3 m M .V y € topspace X . m < fy A fy < M)

lemma fbounded-iff:
shows fbounded f X «— foounded-below f X A fbounded-above f X

{proof)

abbreviation c-of :: ‘a topology = (‘a = real) set (C(-))
where C(X) = { f . continuous-map X euclideanreal f }

abbreviation cstar-of :: ‘a topology = (‘a = real) set (Cx(-))
where Cx X ={ f | f.f € c-of X A fbounded f X }

definition cstar-id :: 'a topology = ('a = real) = 'a = real
where cstar-id X = (A f € Cx X . f)

abbreviation c-embedding :: 'a topology = 'b topology = ('a = 'b) = bool
where c-embedding S X e = embedding-map S X e A
(V fSeC(S).3 fXeCX).V z € topspace S . fSz =
JX (e x))

abbreviation cstar-embedding :: 'a topology = 'b topology = (‘a = 'b) = bool
where cstar-embedding S X e = embedding-map S X e A
(V fSe Cx(S).3 fX € Cx(X) .V z € topspace S . fS z
= fX (e x))

definition c-embedded :: 'a topology = 'b topology = bool
where c-embedded S X = (3 e. c-embedding S X e)

definition cstar-embedded :: 'a topology = 'b topology = bool
where cstar-embedded S X = (3 e . cstar-embedding S X e)

lemma bounded-range-iff-fbounded:

assumes f € C X

shows bounded (f * topspace X) «— fbounded f X
(is ?lhs «— ?rhs)

(proof)
Combinations of functions in C'(X) and C*(X)

abbreviation fconst :: real = 'a = real
where feconst v=(Az . v)

definition fmin :: (‘a = real) = ('a = real) = (‘a = real)
where fmin fg = (A z . min (fz) (g x))

definition fmaz :: ('a = real) = (‘a = real) = (‘a = real)
where fmaz fg = (A z . mazx (fz) (g))

definition fmid :: (‘a = real) = ('a = real) = ('a = real) = 'a = real
where fmid f m M = fmazx m (fmin f M)

definition fbound :: (‘a = real) = real = real = 'a = real
where fbound fm M = fmid f (fconst m) (fconst M)

lemma fmin-cts:
assumes (f € C X) A (g € C X)
shows fmin fg e C X

{proof)

lemma fmaz-cts:
assumes (f € C X) A (g € CX)
shows fmar fg € C X

{proof)

lemma fmid-cts:
assumes (f€e CX)A(me CX)AN(Me CX)
shows fmid fm M € C X

{proof)

lemma feonst-cts:
shows feonst v € C X

{proof)

lemma fbound-cts:
assumes f € C X
shows fbound fm M € C X

{proof)

Bounded and bounding functions

lemma fconst-bounded:
shows fbounded (fconst v) X

(proof)

lemma fmin-bounded-below:
assumes fbounded-below f X A fbounded-below g X
shows fbounded-below (fmin f g) X

(proof)

lemma fmax-bounded-above:
assumes fbounded-above f X A foounded-above g X
shows fbounded-above (fmax f g) X

(proof)

lemma fmid-bounded:
assumes fbounded m X A foounded M X
shows fbounded (fmid f m M) X

(proof)

lemma fbound-bounded:
shows fbounded (fbound f m M) X

(proof)
Members of C*(X)

lemma fconst-cstar:
shows feonst v € Cx X

{proof)

lemma fbound-cstar:
assumes f € C X
shows fbound fm M € Cx X

{proof)

lemma cstar-nonempty:
shows {} # Cx X

{proof)

2 Weak topologies

definition funcset-types :: ‘a set = ('b = 'a = 'c) = ('b = ’c topology) = 'b set
= bool
where funcset-types SF TI = (VY i€ 1. Fie€ S — topspace (T i))

lemma cstar-types:

shows funcset-types (topspace X) (cstar-id X) (M € Cx X . euclideanreal) (Cx
X)

{proof)

lemma cstar-types-restricted:
shows funcset-types (topspace X) (cstar-id X)
(M € Cx X. (subtopology euclideanreal (range’ X f))) (Cx X)

(proof)

definition inverse’ :: (‘a = 'b) = 'a set = 'b set = 'a set
where inverse’ f source target = { x© € source . fx € target }

lemma inverse’-alt:
shows inverse’ fst=(f —t)N's
{proof)

definition open-sets-induced-by-func :: (‘a = 'b) = 'a set = 'b topology = 'a set
set
where open-sets-induced-by-func f source T
= { (inverse’ f source V) | V . openin T V A f € source — topspace
T}

definition weak-generators :: ‘a set = ('b = 'a = ‘¢) = ('b = 'c topology) = 'b
set = 'a set set
where weak-generators source funcs tops index
= |J { open-sets-induced-by-func (funcs i) source (tops i) | i. i € index }

definition weak-base :: ‘a set = ('b = ‘a = ‘¢) = ('b = 'c topology) = 'b set =
‘a set set

where weak-base source funcs tops index = base-generated-by (weak-generators
source funcs tops inder)

definition weak-opens :: ‘a set = ('b = ‘a = '¢) = ('b = 'c topology) = 'b set
= 'a set set

where weak-opens source funcs tops index = opens-generated-by (weak-generators
source funcs tops inder)

definition weak-topology :: 'a set = ('b = 'a = '¢) = ('b = 'c topology) = 'b
set = 'a topology
where weak-topology source funcs tops index
= topology-generated-by (weak-generators source funcs tops index)

lemma weak-topology-alt:
shows openin (weak-topology S F T I) U «— U € weak-opens S F T I

{proof)

lemma weak-generators-exist-for-each-point-and-azis:
assumes r € S

and funcset-types S F T I

and iel

and b = inverse’ (F i) S (topspace (T 7))

and FieS — topspace (T i)

shows x € b A b€ weak-generators S F T I

{proof)

lemma weak-generators-topspace:
assumes W = weak-topology S F T I
shows topspace W = |J (weak-generators S F T I)

{proof)

lemma weak-topology-topspace:
assumes W = weak-topology S F T I
and funcset-types S F T I
shows (I = {} — topspace W = {}) A (I # {} — topspace W = S)
(proof)

lemma weak-opens-nhood-base:
assumes W = weak-topology S F T I

and openin W U

and re U

shows d b€ weak-base SFTI.zecbNbC U
(proof)

lemma opens-generate-opens:
assumes V b € S . openin T b
shows V U € opens-generated-by S . openin T U

(proof)

lemma weak-topology-is-weakest:
assumes W = weak-topology S F T I
and funcset-types S F T 1
and topspace X = topspace W
and YV i€ I. continuous-map X (T i) (F 1)
and openin W U
shows openin X U

(proof)

lemma weak-generators-continuous:
assumes W = weak-topology S F T I
and funcset-types S F T I

and iel
shows continuous-map W (T i) (F i)
(proof)

lemma funcset-types-on-empty:
shows funcset-types {} F T I
(proof)

lemma weak-topology-on-empty:
assumes W = weak-topology {} F T I
shows V U . openin WU «— U = {}

(proof)
2.1 Tychonov spaces carry the weak topology induced by
C*(X)

abbreviation tych-space :: 'a topology = bool
where tych-space X = t1-space X N completely-reqular-space X

abbreviation compact-Hausdorff :: 'a topology = bool
where compact-Hausdorff X = compact-space X N Hausdorff-space X

lemma compact-Hausdorff-imp-tych:
assumes compact-Hausdorff K
shows tych-space K

{proof)

lemma tych-space-imp-Hausdorff:
assumes tych-space X
shows Hausdorff-space X

(proof)

lemma cstar-range-restricted:

assumes f € Cx X

and U C topspace euclideanreal
shows inverse’ f (topspace X) U = inverse’ f (topspace X) (U N range’ X f)
(proof)

lemma weak-restricted-topology-eq-weak:
shows weak-topology (topspace X) (cstar-id X) (A f € Cx X . euclideanreal) (Cx
X)

= weak-topology (topspace X) (cstar-id X) (A f € Cx X . subtopology
euclideanreal (range’ X f)) (Cx X)

(proof)

2.2 A topology is a weak topology if it admits a continuous
function set that separates points from closed sets

definition funcset-separates-points :: 'a topology = ('b = 'a = '¢) = b set =
bool
where funcset-separates-points X F I
= (V z € topspace X .V y € topspace X .o #y— (3 i€l.Fizx#
Fiy))

definition funcset-separates-points-from-closed-sets ::
‘a topology = ('b = 'a = 'c¢) = ('b = 'c topology) = 'b set = bool
where funcset-separates-points-from-closed-sets X F T I
=V z.V A. closedin X A N\ x € (topspace X — A)
— (3 iel.Fiz ¢ (T closure-of (Fi‘A)))

lemma funcset-separates-points-from-closed-sets-imp-weak:
assumes funcset-separates-points-from-closed-sets X F T 1
and V i€ I. continuous-map X (T @) (F i)
and W = weak-topology (topspace X) F T I
and funcset-types (topspace X) F T I
shows X =W

10

(proof)

The canonical functions on a product space: evaluation and projection

definition evaluation-map :: 'a topology = ('b = 'a = '¢c) = 'b set = 'a = 'b =
i
c

where evaluation-map X FI = (A z € topspace X . (A i€ 1. Fiuzx))

definition product-projection :: (‘a = 'b topology) = 'a set = 'a = (‘a = 'b) =
/

b

where product-projection T 1 = (A i € I . (A p € topspace (product-topology T
I).pi)

lemma product-projection:

shows V i € I .V p € topspace (product-topology T I) . product-projection T I
Ip=Dp1

(proof)

lemma evaluation-then-projection:
assumes V i € I . F i € topspace X — topspace (T 1)
showsV i € [.V x € topspace X . ((product-projection T I i) o (evaluation-map
XFI)z=Fiz
(proof)

2.3 A product topology is the weak topology induced by its
projections if the projections separate points from closed
sets.

lemma projections-continuous:

assumes P = product-topology T I
and F=(\iel. product-projection T I 1)
shows Viel. continuous-map P (T i) (F 7)

(proof)

lemma product-topology-eq-weak-topology:
assumes P = product-topology T I
and F=(\iel. product-projection T I 1)

and W = weak-topology (topspace P) F T I

and funcset-types (topspace P) F T I

and funcset-separates-points-from-closed-sets P F T I
shows P=Ww

(proof)

Reducing the domain and minimising the range of continuous functions, and
related results concerning weak topologies.
lemma continuous-map-reduced:

assumes continuous-map X Y f
shows continuous-map (subtopology X S) (subtopology Y (f“S)) (restrict f S)

{proof)

11

lemma inj-on-imp:

assumes inj-on f S

showsV y.(yef‘S)«— FzeS.y=/fx)
{proof)

lemma injection-on-intersection:
assumes inj-on f S
and B #{}
and vVbeB.bCS
shows f‘(ONB)=N{f‘b|b.be B}
(is ?lhs = ?rhs)
(proof)

2.4 Evaluation is an embedding for weak topologies

lemma evaluation-is-embedding:

assumes X = weak-topology (topspace X) F T I
and P = product-topology T I
and funcset-types (topspace X) F T I

and funcset-separates-points X F 1
shows embedding-map X P (evaluation-map X F I)
(proof)

3 Compactification

3.1 Definition

lemma embedding-map-id:
assumes S C topspace X
shows embedding-map (subtopology X S) X id

{proof)

definition compactification-via :: (‘a = 'b) = 'a topology = 'b topology = bool
where compactification-via f X K = compact-space K N\ dense-embedding X K f

definition compactification :: 'a topology = 'b topology = bool
where compactification X K = (3 f . compactification-via f X K)

lemma compactification-compactification-via:
assumes compactification-via f X K
shows compactification X K

{proof)

12

3.2 Example: The Alexandroff compactification of a non-
compact locally-compact Hausdorff space

lemma Alexandroff-is-compactification-via-Some:
assumes - compact-space X N Hausdorff-space X N locally-compact-space X
shows compactification-via Some X (Alexzandroff-compactification X)

(proof)

3.3 Example: The closure of a subset of a compact space

lemma compact-closure-is-compactification:
assumes compact-space K
and S C topspace K
shows compactification-via id (subtopology K S) (subtopology K (K closure-of
S))
(proof)

3.4 Example: A compact space is a compactification of itself

lemma compactification-of-compact:
assumes compact-space K
shows compactification-via id K K

(proof)

3.5 Example: A closed non-trivial real interval is a compact-
ification of its interior

lemma closed-interval-interior:
shows {a::real <..< b} = interior {a..b}

{proof)

lemma open-interval-closure:
shows (a < (b::real)) — {a .. b} = closure {a <..< b}

(proof)

lemma closed-interval-compactification:
assumes (a::real) < b

and open-interval = subtopology euclideanreal {a<..<b}
and closed-interval = subtopology euclideanreal {a..b}

shows compactification open-interval closed-interval
(proof)

4 The Stone-Cech compactification of a Tychonov
space
lemma compact-range’:

assumes f € Cx X
shows compact (range’ X f)

(proof)

13

lemma c-range-nonempty:
assumes f € C(X)

and topspace X # {}

shows range’ X f # {}

(proof)

lemma cstar-range-nonempty:
assumes f € Cx X

and topspace X # {}

shows range’ X f # {}
(proof)

lemma cstar-separates-tych-space:
assumes tych-space X
shows funcset-separates-points-from-closed-sets X (cstar-id X) (A\f € Cx X. eu-
clideanreal) (C* X)
A funcset-separates-points X (cstar-id X) (Cx X)
(proof)

The product topology induced by C*(X) on a Tychonov space.

definition scT :: 'a topology = ('a = real) = real topology
where scT X = (A f € Cx X . subtopology euclideanreal (range’ X f))

definition scT-full :: ‘a topology = (‘a = real) = real topology
where scT-full X = (A f € Cx X . euclideanreal)

definition scProduct :: 'a topology = (('a = real) = real) topology
where scProduct X = product-topology (scT X) (Cx X)

definition scProject :: 'a topology = (‘a = real) = (('a = real) = real) = real
where scProject X = product-projection (scT X) (Cx X)

definition scEmbed :: 'a topology = 'a = ('a = real) = real
where scEmbed X = evaluation-map X (cstar-id X) (Cx X)

lemma scT-images-compact-Hausdorff:
shows V f € Cx X . compact-Hausdorff (scT X f)

{(proof)

lemma scT-images-bounded:

shows V f € Cx X . bounded (topspace (scT X f))
{proof)

14

lemma scProduct-compact-Hausdorff:
shows compact-Hausdorff (scProduct X)

{proof)

The Stone-Cech compactification of a Tychonov space and its extension
properties
lemma tych-space-weak:

assumes tych-space X
shows X = weak-topology (topspace X) (cstar-id X) (scT X) (Cx X)

{(proof)

4.1 Definition of X

definition scEmbeddedCopy :: 'a topology = (('a = real) = real) set
where scEmbeddedCopy X = scEmbed X ‘ topspace X

definition scCompactification :: 'a topology = (('a = real) = real) topology (B -)
where scCompactification X
= subtopology (scProduct X) ((scProduct X) closure-of (scEmbeddedCopy
X))

lemma sc-topspace:
shows topspace (8 X) = (scProduct X) closure-of (scEmbeddedCopy X)

(proof)

lemma scProject’:

shows V f € Cx X .V p € topspace (6 X) . scProject X fp=1p f
(proof)

Evaluation densely embeds Tychonov X in X

lemma dense-embedding-scEmbed:
assumes tych-space X
shows dense-embedding X (8 X) (scEmbed X)

(proof)

4.2 (X is a compactification of X

lemma scCompactification-compact-Hausdorff:
assumes tych-space X
shows compact-Hausdorff (3 X)

{proof)

lemma scCompactification-is-compactification-via-scEmbed:
assumes tych-space X
shows compactification-via (scEmbed X) X (8 X)

(proof)

lemma scCompactification-is-compactification:
assumes tych-space X

15

shows compactification X (8 X)
{proof)

lemma scFvaluation-range:
assumes x € topspace X
and tych-space X
shows (A fe Cx X . fx) € topspace (product-topology (scT X) Cx X)

(proof)

lemma scEmbed-then-project:
assumes f € Cx X

and T € topspace X

and tych-space X

shows scProject X f (scEmbed X z) = fx
{proof)

4.3 Evaluation is a C*-embedding of X into /X

definition scFEztend :: 'a topology = ('a = real) = (('a = real) = real) = real
where scExtend X = (A f € Cx X . restrict (scProject X f) (topspace (8 X)))

proposition scErtend-extends:
assumes tych-space X
shows V f e Ox X .V x € topspace X . fx = (scExtend X f) (scEmbed X x)

(proof)

lemma scEzxtend-extends-cstar:

assumes tych-space X

shows V fe Cx X . (V z € topspace X . fx = (scExtend X f) (scEmbed X
z)) A scExtend X f € Cx (6 X)

(proof)

lemma cstar-embedding-scEmbed:
assumes tych-space X
shows cstar-embedding X (8 X) (scEmbed X)

{proof)

A compact Hausdorff space is its own Stone-Cech compactification

lemma scCompactification-of-compact-Hausdorff:
assumes compact-Hausdorff X
shows homeomorphic-map X (8 X) (scEmbed X)

(proof)

4.4 The Stone-Cech Extension Property: Any continuous map
from X to a compact Hausdorff space K extends uniquely
to a continuous map from X to K.

proposition gof-cstar:

16

assumes compact-Hausdorff K

and continuous-map X K f
shows VgeCxK. (gof)e CxX
(proof)

proposition scEmbed-range:
assumes tych-space X

and z € topspace X
shows scEmbed X z € topspace (8 X)
(proof)

proposition scEmbed-range’:
assumes tych-space X

and z € topspace X
shows scEmbed X x € topspace (scProduct X)
(proof)

proposition scProjection:
shows V f € Cx X.V p € topspace (scProduct X) . scProject X fp=p f
(proof)

proposition scProjections-continuous:
shows V f € Cx X . continuous-map (scProduct X) (sc¢T X f) (scProject X f)
(proof)

proposition continuous-embedding-inverse:

assumes embedding-map X Y e

shows 3 e’ . continuous-map (subtopology Y (e * topspace X)) X ¢/ A (V z €
topspace X . e’ (e) = x)

(proof)

lemma scExtension-exists:
assumes tych-space X

and compact-Hausdorff K

shows V fe cts[X,K].3 F € cts|[B X, K] . (V z € topspace X . F (scEmbed
Xz) = fa)

(proof)

lemma scFEzxtension-unique:
assumes F € cts[f X, K] A (V z € topspace X . F (scEmbed X z) = f x)
and compact-Hausdorff K
shows (V G. G e cts|[8 X, K] A (VY z € topspace X . G (scEmbed X z) = f

z)
(proof)

— (V p € topspace (8 X) . Fp= G p))

17

lemma scFExtension-property:
assumes tych-space X
and compact-Hausdorff K
shows V f € cts[X,K].3! F € ctsg[f X, K] . (V z € topspace X . F (scEmbed
Xz)=fx)
(proof)

end

References

[Wal74] Russell C. Walker. The Stone-Cech Compactification. Springer-
Verlag, 1974.

[Wil70] Stephen Willard. General Topology. Addison-Wesley, 1970.

18

	C*-embedding
	Weak topologies
	Tychonov spaces carry the weak topology induced by C*(X)
	A topology is a weak topology if it admits a continuous function set that separates points from closed sets
	A product topology is the weak topology induced by its projections if the projections separate points from closed sets.
	Evaluation is an embedding for weak topologies

	Compactification
	Definition
	Example: The Alexandroff compactification of a non-compact locally-compact Hausdorff space
	Example: The closure of a subset of a compact space
	Example: A compact space is a compactification of itself
	Example: A closed non-trivial real interval is a compactification of its interior

	The Stone-Čech compactification of a Tychonov space
	Definition of X
	X is a compactification of X
	Evaluation is a C*-embedding of X into X
	The Stone-Čech Extension Property: Any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from X to K.

