# The Stone-Čech Compactification

## Mike Stannett

## $\mathrm{June}\ 5,\ 2024$

## Contents

| 1 | $C^*$ -          | embedding                                                                                                              | 4   |
|---|------------------|------------------------------------------------------------------------------------------------------------------------|-----|
| 2 | Weak topologies  |                                                                                                                        | 7   |
|   | 2.1              | Tychonov spaces carry the weak topology induced by $C^*(X)$                                                            | 9   |
|   | 2.2              | A topology is a weak topology if it admits a continuous function set that separates points from closed sets            | 10  |
|   | 2.3              | A product topology is the weak topology induced by its projections if the projections separate points from closed sets | 11  |
|   | 2.4              | Evaluation is an embedding for weak topologies                                                                         | 12  |
| 3 | Compactification |                                                                                                                        | 12  |
|   | 3.1              | Definition                                                                                                             | 12  |
|   | 3.2              | Example: The Alexandroff compactification of a non-compact                                                             |     |
|   |                  | locally-compact Hausdorff space                                                                                        | 13  |
|   | 3.3              | Example: The closure of a subset of a compact space                                                                    | 13  |
|   | 3.4              | Example: A compact space is a compactification of itself                                                               | 13  |
|   | 3.5              | Example: A closed non-trivial real interval is a compactifica-                                                         |     |
|   |                  | tion of its interior                                                                                                   | 13  |
| 4 | The              | e Stone-Čech compactification of a Tychonov space                                                                      | 13  |
|   | 4.1              | Definition of $\beta X$                                                                                                | 15  |
|   | 4.2              | $\beta X$ is a compactification of $X$                                                                                 | 15  |
|   | 4.3              | Evaluation is a $C^*$ -embedding of $X$ into $\beta X \dots \dots$                                                     | 16  |
|   | 4.4              | The Stone-Čech Extension Property: Any continuous map                                                                  |     |
|   |                  | from $X$ to a compact Hausdorff space $K$ extends uniquely to                                                          |     |
|   |                  | a continuous map from $\beta X$ to $K$                                                                                 | 16  |
|   |                  | g on parts of HOL-Analysis, we provide mathematical component                                                          |     |
|   |                  | k on the Stone-Čech compactification. The main concepts cover                                                          |     |
|   |                  | -embedding, weak topologies and compactification, focusing in p                                                        |     |
|   |                  | on the Stone-Čech compactification of an arbitrary Tychonov sp                                                         |     |
| X | . Ma             | ny of the proofs given here derive from those of Willard (Gen                                                          | era |

Topology, 1970, Addison-Wesley) and Walker (The Stone-Cech Compactification, 1974, Springer-Verlag).

Using traditional topological proof strategies we define the evaluation and projection functions for product spaces, and show that product spaces carry the weak topology induced by their projections whenever those projections separate points both from each other and from closed sets.

In particular, we show that the evaluation map from an arbitrary Tychonov space X into  $\beta X$  is a dense  $C^*$ -embedding, and then verify the Stone-Čech Extension Property: any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from  $\beta X$  to K.

```
theory Stone-Cech
 imports HOL. Topological-Spaces
       HOL.Set
       HOL-Analysis. Urysohn
```

#### begin

Concrete definitions of finite intersections and arbitrary unions, and their

```
relationship to the Analysis. Abstract Topology versions.
definition finite-intersections-of :: 'a set set \Rightarrow 'a set set
  where finite-intersections-of S = \{ (\bigcap F) \mid F : F \subseteq S \land finite' F \}
definition arbitrary-unions-of :: 'a set set \Rightarrow 'a set set
  where arbitrary-unions-of S = \{ (\bigcup F) \mid F : F \subseteq S \}
lemma generator-imp-arbitrary-union:
  shows S \subseteq arbitrary-unions-of S
  \langle proof \rangle
lemma finite-intersections-container:
  shows \forall s \in finite-intersections-of S . \bigcup S \cap s = s
  \langle proof \rangle
lemma generator-imp-finite-intersection:
  shows S \subseteq finite-intersections-of S
  \langle proof \rangle
lemma finite-intersections-equiv:
  shows (finite' intersection-of (\lambda x. \ x \in S)) U \longleftrightarrow U \in \text{finite-intersections-of } S
  \langle proof \rangle
lemma arbitrary-unions-equiv:
  shows (arbitrary union-of (\lambda \ x \ . \ x \in S)) U \longleftrightarrow U \in arbitrary-unions-of S
  \langle proof \rangle
```

Supplementary information about topological bases and the topologies they

```
generate
definition base-generated-on-by :: 'a set \Rightarrow 'a set set \Rightarrow 'a set set
  where base-generated-on-by X S = \{ X \cap s \mid s : s \in finite-intersections-of S \}
definition opens-generated-on-by :: 'a set \Rightarrow 'a set set \Rightarrow 'a set set
 where opens-generated-on-by XS = arbitrary-unions-of (base-generated-on-by X
S)
definition base-generated-by :: 'a set set \Rightarrow 'a set set
  where base-generated-by S = finite-intersections-of S
definition opens-generated-by :: 'a set set \Rightarrow 'a set set
  where opens-generated-by S = arbitrary-unions-of (base-generated-by S)
lemma generators-are-basic:
  shows S \subseteq base-generated-by S
  \langle proof \rangle
lemma basics-are-open:
  shows base-generated-by S \subseteq opens-generated-by S
  \langle proof \rangle
lemma generators-are-open:
 shows S \subseteq opens-generated-by S
  \langle proof \rangle
lemma generated-topspace:
  assumes T = topology-generated-by S
  shows topspace T = \bigcup S
  \langle proof \rangle
lemma base-generated-by-alt:
  shows base-generated-by S = base-generated-on-by (\bigcup S) S
  \langle proof \rangle
lemma opens-generated-by-alt:
  shows opens-generated-by S = arbitrary-unions-of (finite-intersections-of S)
  \langle proof \rangle
\mathbf{lemma}\ opens\text{-}generated\text{-}unfolded:
 shows opens-generated-by S = \{ \bigcup A \mid A \cdot A \subseteq \{ \cap B \mid B \cdot finite' \mid B \land B \subseteq S \} \}
  \langle proof \rangle
lemma opens-eq-generated-topology:
  shows open in (topology-generated-by S) U \longleftrightarrow U \in open s-generated-by S
\langle proof \rangle
```

## 1 $C^*$ -embedding

```
abbreviation continuous-from-to
    ":" 'a topology \Rightarrow "b topology \Rightarrow ("a \Rightarrow "b) set (cts[-,-])
  where continuous-from-to X Y \equiv \{ f : continuous-map \ X \ Y f \}
abbreviation continuous-from-to-extensional
     :: 'a \ topology \Rightarrow 'b \ topology \Rightarrow ('a \Rightarrow 'b) \ set \ (cts_E[-,-])
  where continuous-from-to-extensional X Y \equiv (topspace \ X \rightarrow_E topspace \ Y) \cap
cts[X,Y]
\textbf{abbreviation} \ \textit{continuous-maps-from-to-shared-where} ::
    'a\ topology \Rightarrow ('b\ topology \Rightarrow bool) \Rightarrow ('a \Rightarrow 'b)\ set \Rightarrow bool\ (cts'-on\ -\ to'-shared
  where continuous-maps-from-to-shared-where X P
            \equiv (\lambda \ fs \ . \ (\exists \ Y \ . \ P \ Y \land fs \subseteq cts[X,Y]))
definition dense-in :: 'a topology \Rightarrow 'a set \Rightarrow 'a set \Rightarrow bool
  where dense-in T A B \equiv T closure-of A = B
lemma dense-in-closure:
  assumes dense-in T A B
 shows dense-in (subtopology T B) A B
  \langle proof \rangle
abbreviation dense-embedding: 'a topology \Rightarrow 'b topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool
  where dense-embedding small big f \equiv (embedding-map \ small \ big \ f)
                                          \land dense-in big (f'topspace small) (topspace big)
{f lemma}\ continuous	ext{-}maps	ext{-}on	ext{-}dense	ext{-}subset:
 assumes (cts-on X to-shared Hausdorff-space) \{f,g\}
            dense-in \ X \ D \ (topspace \ X)
and
            \forall x \in D . fx = gx
and
             \forall x \in topspace X . f x = g x
shows
\langle proof \rangle
lemma continuous-map-on-dense-embedding:
 assumes (cts-on X to-shared Hausdorff-space) \{f,g\}
            dense\text{-}embedding\ D\ X\ e
and
            \forall d \in topspace \ D \ . \ (f \ o \ e) \ d = (g \ o \ e) \ d
and
shows
             \forall x \in topspace X . f x = g x
  \langle proof \rangle
definition range' :: 'a \ topology \Rightarrow ('a \Rightarrow real) \Rightarrow real \ set
  where range' X f = euclidean real closure-of (f 'topspace X)
```

```
\textbf{abbreviation} \ \textit{fbounded-below} :: (\textit{'a} \Rightarrow \textit{real}) \Rightarrow \textit{'a topology} \Rightarrow \textit{bool}
  where fbounded-below f X \equiv (\exists m . \forall y \in topspace X . f y \geq m)
abbreviation flounded-above :: ('a \Rightarrow real) \Rightarrow 'a \ topology \Rightarrow bool
  where flounded-above f X \equiv (\exists M . \forall y \in topspace X . f y \leq M)
abbreviation flounded :: ('a \Rightarrow real) \Rightarrow 'a \ topology \Rightarrow bool
  where flounded f X \equiv (\exists m M . \forall y \in topspace X . m \leq f y \land f y \leq M)
lemma fbounded-iff:
  shows flounded f X \longleftrightarrow flounded-below f X \land flounded-above f X
  \langle proof \rangle
abbreviation c\text{-}of :: 'a \ topology \Rightarrow ('a \Rightarrow real) \ set ( \ C(\ -\ ) \ )
  where C(X) \equiv \{ f : continuous\text{-}map \ X \ euclidean real \ f \} \}
abbreviation cstar-of :: 'a \ topology \Rightarrow ('a \Rightarrow real) \ set \ (\ C*(\ -\ )\ )
  where C*X \equiv \{f \mid f : f \in c\text{-}of X \land fbounded f X\}
definition cstar-id :: 'a \ topology \Rightarrow ('a \Rightarrow real) \Rightarrow 'a \Rightarrow real
  where cstar-id\ X = (\lambda\ f \in C*\ X\ .\ f)
abbreviation c-embedding :: 'a topology \Rightarrow 'b topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool
  where c-embedding S X e \equiv embedding\text{-map } S X e \wedge
                              (\forall fS \in C(S) . \exists fX \in C(X) . \forall x \in topspace S . fS x =
fX(ex)
abbreviation cstar-embedding :: 'a topology \Rightarrow 'b topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool
  where cstar-embedding S X e \equiv embedding\text{-map } S X e \wedge
                                (\forall fS \in C*(S) . \exists fX \in C*(X) . \forall x \in topspace S . fS x)
= fX (e x)
definition c-embedded :: 'a topology \Rightarrow 'b topology \Rightarrow bool
  where c-embedded S X \equiv (\exists e . c\text{-embedding } S X e)
definition cstar-embedded :: 'a topology \Rightarrow 'b topology \Rightarrow bool
  where cstar-embedded S X \equiv (\exists e . cstar-embedding S X e)
lemma bounded-range-iff-fbounded:
  assumes f \in CX
  shows bounded (f \text{ 'topspace } X) \longleftrightarrow fbounded f X
(is ?lhs \longleftrightarrow ?rhs)
\langle proof \rangle
Combinations of functions in C(X) and C^*(X)
abbreviation fconst :: real \Rightarrow 'a \Rightarrow real
  where fconst \ v \equiv (\lambda \ x \ . \ v)
```

```
definition fmin :: ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real)
  where fmin f g = (\lambda x \cdot min (f x) (g x))
definition fmax :: ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real)
  where fmax f g = (\lambda x \cdot max (f x) (g x))
definition fmid :: ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real) \Rightarrow ('a \Rightarrow real) \Rightarrow 'a \Rightarrow real
  where fmid\ f\ m\ M = fmax\ m\ (fmin\ f\ M)
definition flound :: ('a \Rightarrow real) \Rightarrow real \Rightarrow real \Rightarrow 'a \Rightarrow real
  where found f m M = fmid f (fconst m) (fconst M)
lemma fmin-cts:
  assumes (f \in C X) \land (g \in C X)
 shows fmin f g \in C X
  \langle proof \rangle
lemma fmax-cts:
  assumes (f \in C X) \land (g \in C X)
 shows fmax f g \in C X
  \langle proof \rangle
lemma fmid-cts:
  assumes (f \in C X) \land (m \in C X) \land (M \in C X)
  shows fmid f m M \in C X
  \langle proof \rangle
lemma fconst-cts:
 shows fconst\ v\in C\ X
  \langle proof \rangle
lemma fbound-cts:
  assumes f \in CX
 shows flound f m M \in C X
  \langle proof \rangle
Bounded and bounding functions
lemma fconst-bounded:
 shows flounded (fconst v) X
  \langle proof \rangle
lemma fmin-bounded-below:
  assumes fbounded-below f X \land fbounded-below g X
  shows fbounded-below (fmin f g) X
\langle proof \rangle
```

```
lemma fmax-bounded-above:
  assumes fbounded-above f X \land fbounded-above g X
  shows fbounded-above (fmax f g) X
\langle proof \rangle
\mathbf{lemma}\ fmid	ext{-}bounded:
  assumes flounded m \ X \land flounded \ M \ X
  shows flounded (fmid f m M) X
\langle proof \rangle
lemma fbound-bounded:
  shows fbounded (fbound f m M) X
  \langle proof \rangle
Members of C^*(X)
lemma fconst-cstar:
  shows fconst\ v \in C*\ X
  \langle proof \rangle
lemma fbound-cstar:
  assumes f \in CX
  shows fbound f m M \in C * X
  \langle proof \rangle
lemma cstar-nonempty:
  shows \{\} \neq C * X
  \langle proof \rangle
       Weak topologies
\mathbf{2}
definition funcset-types :: 'a set \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c topology) \Rightarrow 'b set
  where funcset-types S \ F \ T \ I = (\forall \ i \in I \ . \ F \ i \in S \rightarrow topspace \ (T \ i))
lemma cstar-types:
  shows funcset-types (topspace X) (cstar-id X) (\lambda f \in C*X . euclideanreal) (C*
X)
  \langle proof \rangle
lemma cstar-types-restricted:
  shows funcset-types (topspace X) (cstar-id X)
           (\lambda f \in \mathit{C*}\ \mathit{X}.\ (\mathit{subtopology}\ \mathit{euclideanreal}\ (\mathit{range'}\ \mathit{X}\ f)))\ (\mathit{C*}\ \mathit{X})
\langle proof \rangle
definition inverse' :: ('a \Rightarrow 'b) \Rightarrow 'a \ set \Rightarrow 'b \ set \Rightarrow 'a \ set
where inverse' f source target = \{ x \in source . f x \in target \}
```

```
lemma inverse'-alt:
  shows inverse' f s t = (f - `t) \cap s
definition open-sets-induced-by-func :: ('a \Rightarrow 'b) \Rightarrow 'a \ set \Rightarrow 'b \ topology \Rightarrow 'a \ set
  where open-sets-induced-by-func f source T
               = \{ (inverse' f source V) \mid V . openin T V \land f \in source \rightarrow topspace \}
T
definition weak-generators :: 'a set \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c topology) \Rightarrow 'b
set \Rightarrow 'a \ set \ set
  where weak-generators source funcs tops index
          =\bigcup \{ open\text{-}sets\text{-}induced\text{-}by\text{-}func (funcs i) source (tops i) \mid i. i \in index \} 
definition weak-base :: 'a set \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c topology) \Rightarrow 'b set \Rightarrow
'a set set
  where weak-base source funcs tops index = base-generated-by (weak-generators
source funcs tops index)
definition weak-opens :: 'a set \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c topology) \Rightarrow 'b set
\Rightarrow 'a set set
 where weak-opens source funcs tops index = opens-generated-by (weak-generators
source funcs tops index)
definition weak-topology :: 'a set \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c topology) \Rightarrow 'b
set \Rightarrow 'a \ topology
  where weak-topology source funcs tops index
          = topology-generated-by (weak-generators source funcs tops index)
lemma weak-topology-alt:
  shows openin (weak-topology S F T I) U \longleftrightarrow U \in weak-opens S F T I
  \langle proof \rangle
\mathbf{lemma}\ \textit{weak-generators-exist-for-each-point-and-axis}:
  assumes x \in S
            funcset-types S F T I
and
            i \in I
and
            b = inverse'(F i) S (topspace(T i))
and
            F \ i \in S \rightarrow topspace \ (T \ i)
and
             x \in b \land b \in weak-generators S F T I
shows
\langle proof \rangle
\mathbf{lemma}\ \textit{weak-generators-topspace} :
  assumes W = weak-topology S F T I
  shows topspace W = \bigcup (weak-generators S F T I)
  \langle proof \rangle
```

```
\mathbf{lemma}\ \textit{weak-topology-topspace} :
 assumes W = weak\text{-}topology \ S \ F \ T \ I
           funcset-types S F T I
            (I = \{\} \longrightarrow topspace \ W = \{\}) \land (I \neq \{\} \longrightarrow topspace \ W = S)
shows
\langle proof \rangle
lemma weak-opens-nhood-base:
  \mathbf{assumes}\ W = \textit{weak-topology}\ S\ F\ T\ I
           openin\ W\ U
and
and
            x \in U
            \exists \ b \in \mathit{weak-base} \ S \ F \ T \ I \ . \ x \in b \land b \subseteq U
shows
\langle proof \rangle
lemma opens-generate-opens:
assumes \forall b \in S . openin Tb
shows \forall U \in opens\text{-}generated\text{-}by S . openin T U
\langle proof \rangle
lemma weak-topology-is-weakest:
 assumes W = weak-topology S F T I
and
           funcset-types S F T I
            topspace\ X=topspace\ W
and
            \forall i \in I . continuous\text{-}map \ X \ (T \ i) \ (F \ i)
and
            openin\ W\ U
and
             open in X U
shows
\langle proof \rangle
{\bf lemma}\ \textit{weak-generators-continuous}:
 assumes W = weak-topology S F T I
            funcset-types S F T I
and
and
shows
             continuous-map W(T i)(F i)
\langle proof \rangle
lemma funcset-types-on-empty:
 shows funcset-types \{\} F T I
  \langle proof \rangle
lemma weak-topology-on-empty:
  assumes W = weak\text{-}topology \{\} F T I
  shows \forall U . openin W U \longleftrightarrow U = \{\}
\langle proof \rangle
2.1
        Tychonov spaces carry the weak topology induced by
        C^*(X)
abbreviation tych-space :: 'a topology <math>\Rightarrow bool
```

where tych-space  $X \equiv t1$ -space  $X \land completely$ -regular-space X

```
abbreviation compact-Hausdorff :: 'a topology \Rightarrow bool
  where compact-Hausdorff X \equiv compact-space X \wedge Hausdorff-space X
lemma compact-Hausdorff-imp-tych:
  assumes compact-Hausdorff K
  shows tych-space K
  \langle proof \rangle
lemma tych-space-imp-Hausdorff:
  assumes tych-space X
  shows Hausdorff-space X
\langle proof \rangle
lemma cstar-range-restricted:
  assumes f \in C * X
            U \subseteq topspace\ euclidean real
 and
             inverse' f (topspace X) U = inverse' f (topspace X) (U \cap range' X f)
shows
\langle proof \rangle
{\bf lemma}\ weak\text{-}restricted\text{-}topology\text{-}eq\text{-}weak\text{:}
shows weak-topology (topspace X) (cstar-id X) (\lambda f \in C*X . euclideanreal) (C*
X)
          = weak-topology (topspace X) (cstar-id X) (\lambda f \in C* X . subtopology
euclideanreal (range' X f)) (C* X)
\langle proof \rangle
2.2
        A topology is a weak topology if it admits a continuous
        function set that separates points from closed sets
definition funcset-separates-points :: 'a topology \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow 'b set \Rightarrow
bool
  where funcset-separates-points X F I
           = (\forall x \in topspace \ X . \ \forall y \in topspace \ X . \ x \neq y \longrightarrow (\exists i \in I . \ Fix \neq i)
F(i|y)
\mathbf{definition}\ \mathit{funcset-separates-points-from-closed-sets} ::
    'a \ topology \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'c \ topology) \Rightarrow 'b \ set \Rightarrow bool
  where funcset-separates-points-from-closed-sets X F T I
            = (\forall x . \forall A . closedin X A \land x \in (topspace X - A))
                        \longrightarrow (\exists i \in I . Fix \notin (Ti) closure-of (Fi 'A)))
{\bf lemma}\ funcset\text{-}separates\text{-}points\text{-}from\text{-}closed\text{-}sets\text{-}imp\text{-}weak\text{:}}
 {\bf assumes}\ \mathit{funcset-separates-points-from-closed-sets}\ X\ F\ T\ I
and
            \forall i \in I \text{ . } continuous\text{-}map \ X \ (T \ i) \ (F \ i)
            W = weak-topology (topspace X) F T I
and
            funcset-types (topspace X) F T I
and
           X = W
 shows
```

```
\langle proof \rangle
The canonical functions on a product space: evaluation and projection
definition evaluation-map :: 'a topology \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow 'b set \Rightarrow 'a \Rightarrow 'b \Rightarrow
  where evaluation-map X F I = (\lambda x \in topspace X . (\lambda i \in I . F i x))
definition product-projection :: ('a \Rightarrow 'b \ topology) \Rightarrow 'a \ set \Rightarrow 'a \Rightarrow ('a \Rightarrow 'b) \Rightarrow
  where product-projection T I = (\lambda \ i \in I \ . \ (\lambda \ p \in topspace \ (product-topology \ T
I) \cdot p i)
lemma product-projection:
  shows \forall i \in I . \forall p \in topspace (product-topology T I) . product-projection T I
i p = p i
  \langle proof \rangle
lemma evaluation-then-projection:
assumes \forall i \in I . F i \in topspace X \rightarrow topspace (T i)
 shows \forall i \in I . \forall x \in topspace X . ((product-projection T I i) o (evaluation-map)
X F I)) x = F i x
\langle proof \rangle
2.3
        A product topology is the weak topology induced by its
        projections if the projections separate points from closed
        sets.
lemma projections-continuous:
  assumes P = product\text{-}topology\ T\ I
           F = (\lambda \ i \in I \ . \ product\text{-projection} \ T \ I \ i)
and
            \forall i \in I. \ continuous\text{-}map \ P \ (T \ i) \ (F \ i)
shows
    \langle proof \rangle
lemma product-topology-eq-weak-topology:
  assumes P = product-topology T I
           F = (\lambda \ i \in I \ . \ product\text{-projection} \ T \ I \ i)
            W = weak-topology (topspace P) F T I
and
           funcset-types (topspace P) F T I
and
           funcset-separates-points-from-closed-sets P F T I
and
            P = W
shows
\langle proof \rangle
Reducing the domain and minimising the range of continuous functions, and
related results concerning weak topologies.
```

**shows** continuous-map (subtopology X S) (subtopology Y (f'S)) (restrict f S)

lemma continuous-map-reduced: assumes continuous-map X Y f

 $\langle proof \rangle$ 

```
lemma inj-on-imp:
   assumes inj-on f S
   shows \forall y : (y \in f `S) \longleftrightarrow (\exists x \in S : y = f x)
\langle proof \rangle

lemma inj-inj-on f S
and B \neq \{\}
and \forall b \in B : b \subseteq S
shows f `(\bigcap B) = \bigcap \{f `b \mid b : b \in B \}
(is ?lhs = ?rhs)
\langle proof \rangle
```

#### 2.4 Evaluation is an embedding for weak topologies

## 3 Compactification

#### 3.1 Definition

```
 \begin{array}{l} \textbf{lemma} \ embedding\text{-}map\text{-}id\text{:} \\ \textbf{assumes} \ S \subseteq topspace \ X \\ \textbf{shows} \ embedding\text{-}map \ (subtopology \ X \ S) \ X \ id \\ \langle proof \rangle \\ \\ \textbf{definition} \ compactification\text{-}via :: ('a \Rightarrow 'b) \Rightarrow 'a \ topology \Rightarrow 'b \ topology \Rightarrow bool \\ \textbf{where} \ compactification\text{-}via \ f \ X \ K \equiv compact\text{-}space \ K \ \land \ dense\text{-}embedding \ X \ K \ f \\ \\ \textbf{definition} \ compactification :: 'a \ topology \Rightarrow 'b \ topology \Rightarrow bool \\ \textbf{where} \ compactification \ X \ K = (\exists \ f \ . \ compactification\text{-}via \ f \ X \ K) \\ \\ \textbf{lemma} \ compactification\text{-}compactification\text{-}via \ f \ X \ K \\ \textbf{shows} \ compactification \ X \ K \\ \langle proof \rangle \\ \\ \end{array}
```

#### 3.2 Example: The Alexandroff compactification of a noncompact locally-compact Hausdorff space

```
lemma Alexandroff-is-compactification-via-Some: 
assumes \neg compact-space X \land Hausdorff-space X \land locally-compact-space X shows compactification-via Some X (Alexandroff-compactification X) \langle proof \rangle
```

#### 3.3 Example: The closure of a subset of a compact space

```
lemma compact-closure-is-compactification:
    assumes compact-space K
and S \subseteq topspace K
shows compactification-via id (subtopology KS) (subtopology K (K closure-of S))
\langle proof \rangle
```

#### 3.4 Example: A compact space is a compactification of itself

```
lemma compactification-of-compact:

assumes compact-space K

shows compactification-via id K K

\langle proof \rangle
```

## 3.5 Example: A closed non-trivial real interval is a compactification of its interior

```
lemma closed-interval-interior:
   shows \{a::real < ... < b\} = interior \{a..b\}
\langle proof \rangle

lemma open-interval-closure:
   shows (a < (b::real)) \longrightarrow \{a ... b\} = closure \{a < ... < b\}
\langle proof \rangle

lemma closed-interval-compactification:
   assumes (a::real) < b
and open-interval = subtopology euclideanreal \{a < ... < b\}
and closed-interval = subtopology euclideanreal \{a... < b\}
shows compactification open-interval closed-interval
\langle proof \rangle
```

# 4 The Stone-Čech compactification of a Tychonov space

```
lemma compact-range':

assumes f \in C*X

shows compact (range' X f)

\langle proof \rangle
```

```
lemma c-range-nonempty:
 assumes f \in C(X)
            topspace X \neq \{\}
         range' X f \neq \{\}
shows
\langle proof \rangle
lemma cstar-range-nonempty:
  assumes f \in C * X
           topspace X \neq \{\}
and
             range' X f \neq \{\}
shows
  \langle proof \rangle
lemma cstar-separates-tych-space:
  assumes tych-space X
 shows funcset-separates-points-from-closed-sets X (cstar-id X) (\lambda f \in C*X. eu-
clideanreal) (C*X)
         \land funcset-separates-points X (cstar-id X) (C*X)
\langle proof \rangle
The product topology induced by C^*(X) on a Tychonov space.
definition scT :: 'a \ topology \Rightarrow ('a \Rightarrow real) \Rightarrow real \ topology
  where scT X = (\lambda f \in C * X . subtopology euclideanreal (range' X f))
definition scT-full :: 'a topology \Rightarrow ('a \Rightarrow real) \Rightarrow real topology
  where scT-full X = (\lambda f \in C * X . euclidean real)
definition scProduct :: 'a \ topology \Rightarrow (('a \Rightarrow real) \Rightarrow real) \ topology
  where scProduct X = product\text{-}topology (scT X) (C* X)
definition scProject :: 'a \ topology \Rightarrow ('a \Rightarrow real) \Rightarrow (('a \Rightarrow real) \Rightarrow real) \Rightarrow real)
  where scProject X = product\text{-}projection (scT X) (C* X)
definition scEmbed :: 'a \ topology \Rightarrow 'a \Rightarrow ('a \Rightarrow real) \Rightarrow real
  where scEmbed\ X = evaluation-map\ X\ (cstar-id\ X)\ (C*\ X)
{f lemma}\ scT{-}images{-}compact{-}Hausdorff:
 shows \forall f \in C * X. compact-Hausdorff (scT X f)
\langle proof \rangle
lemma \ scT-images-bounded:
  shows \forall f \in C * X. bounded (topspace (scT X f))
  \langle proof \rangle
```

```
lemma scProduct-compact-Hausdorff:
 shows compact-Hausdorff (scProduct X)
  \langle proof \rangle
The Stone-Čech compactification of a Tychonov space and its extension
properties
lemma tych-space-weak:
 assumes tych-space X
            X = weak-topology (topspace X) (cstar-id X) (scT X) (C*X)
\langle proof \rangle
        Definition of \beta X
4.1
definition scEmbeddedCopy :: 'a topology <math>\Rightarrow (('a \Rightarrow real) \Rightarrow real) set
  where scEmbeddedCopy\ X = scEmbed\ X ' topspace\ X
definition scCompactification :: 'a topology <math>\Rightarrow (('a \Rightarrow real) \Rightarrow real) topology (\beta -)
  where scCompactification X
           = subtopology (scProduct X) ((scProduct X) closure-of (scEmbeddedCopy))
X))
lemma sc-topspace:
  shows topspace (\beta X) = (scProduct X) closure-of (scEmbeddedCopy X)
  \langle proof \rangle
lemma scProject':
  \mathbf{shows} \ \forall \ f \in \mathit{C*}\ \mathit{X} \ . \ \forall \ \mathit{p} \in \mathit{topspace}\ (\beta\ \mathit{X}) \ . \ \mathit{scProject}\ \mathit{X}\ \mathit{f}\ \mathit{p} = \mathit{p}\ \mathit{f}
Evaluation densely embeds Tychonov X in \beta X
lemma dense-embedding-scEmbed:
  assumes tych-space X
            dense-embedding X (\beta X) (scEmbed X)
  \mathbf{shows}
\langle proof \rangle
        \beta X is a compactification of X
{\bf lemma}\ scCompactification\mbox{-}compact\mbox{-}Hausdorff:
  assumes tych-space X
 shows compact-Hausdorff (\beta X)
  \langle proof \rangle
\mathbf{lemma}\ scCompactification\text{-}is\text{-}compactification\text{-}via\text{-}scEmbed:}
  assumes tych-space X
  shows compactification-via (scEmbed X) X (\beta X)
  \langle proof \rangle
{\bf lemma}\ scCompactification\hbox{-} is\hbox{-} compactification\hbox{:}
```

assumes tych-space X

```
compactification X (\beta X)
 \mathbf{shows}
  \langle proof \rangle
\mathbf{lemma}\ scEvaluation\text{-}range:
  assumes x \in topspace X
and
            tych-space X
             (\lambda f \in C* X . f x) \in topspace (product-topology (scT X) C* X)
shows
\langle proof \rangle
\mathbf{lemma}\ \mathit{scEmbed-then-project}\colon
  assumes f \in C * X
and
            x \in topspace X
and
            tych-space X
             scProject \ X \ f \ (scEmbed \ X \ x) = f \ x
shows
\langle proof \rangle
        Evaluation is a C^*-embedding of X into \beta X
4.3
definition scExtend :: 'a \ topology \Rightarrow ('a \Rightarrow real) \Rightarrow (('a \Rightarrow real) \Rightarrow real) \Rightarrow real)
  where scExtend\ X = (\lambda\ f \in C*\ X\ .\ restrict\ (scProject\ X\ f)\ (topspace\ (\beta\ X)))
proposition scExtend-extends:
  assumes tych-space X
  shows \forall f \in C * X . \forall x \in topspace X . f x = (scExtend X f) (scEmbed X x)
\langle proof \rangle
{f lemma} scExtend-extends-cstar:
  assumes tych-space X
  shows \forall f \in C \times X. (\forall x \in topspace X . f x = (scExtend X f) (scEmbed X)
x)) \, \wedge \, \mathit{scExtend} \, \, X \, f \, \in \, C {*} \, \left( \beta \, \, X \right)
\langle proof \rangle
\mathbf{lemma}\ cstar\text{-}embedding\text{-}scEmbed:
 assumes tych-space X
 shows cstar-embedding X (\beta X) (scEmbed X)
  \langle proof \rangle
A compact Hausdorff space is its own Stone-Cech compactification
{\bf lemma}\ scCompactification-of-compact-Hausdorff:
assumes compact-Hausdorff X
shows homeomorphic-map X (\beta X) (scEmbed X)
\langle proof \rangle
```

4.4 The Stone-Čech Extension Property: Any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from  $\beta X$  to K.

**proposition** gof-cstar:

```
assumes compact-Hausdorff K
and
            continuous-map\ X\ K\ f
shows
            \forall g \in C * K . (g \circ f) \in C * X
\langle proof \rangle
proposition scEmbed-range:
  assumes tych-space X
            x \in topspace X
shows
             scEmbed\ X\ x \in topspace\ (\beta\ X)
  \langle proof \rangle
proposition scEmbed-range':
 assumes tych-space X
            x \in topspace X
and
             scEmbed\ X\ x \in topspace\ (scProduct\ X)
shows
  \langle proof \rangle
proposition scProjection:
 shows \forall f \in C * X. \forall p \in topspace (scProduct X) . scProject X f p = p f
  \langle proof \rangle
\textbf{proposition} \ \textit{scProjections-continuous}:
  shows \forall f \in C * X. continuous-map (scProduct X) (scT X f) (scProject X f)
\langle proof \rangle
proposition continuous-embedding-inverse:
  assumes embedding-map X Y e
  shows \exists e'. continuous-map (subtopology Y (e' topspace X)) X e' \land (\forall x \in A)
topspace X . e'(e x) = x)
  \langle proof \rangle
\mathbf{lemma} scExtension-exists:
 assumes tych-space X
            compact-Hausdorff K
            \forall \ f \in cts[X,K] \ . \ \exists \ F \in cts[\beta \ X, \ K] \ . \ (\forall \ x \in topspace \ X \ . \ F \ (scEmbed
(X x) = f x
\langle proof \rangle
lemma scExtension-unique:
 assumes F \in cts[\beta \ X, \ K] \land (\forall \ x \in topspace \ X \ . \ F \ (scEmbed \ X \ x) = f \ x)
            compact-Hausdorff\ K
and
             (\forall G . G \in cts[\beta X, K] \land (\forall x \in topspace X . G (scEmbed X x) = f)
shows
x)
                      \longrightarrow (\forall p \in topspace (\beta X) . F p = G p))
\langle proof \rangle
```

```
 \begin{array}{ll} \textbf{lemma} \ scExtension\text{-}property\text{:} \\ \textbf{assumes} \ tych\text{-}space \ X \\ \textbf{and} \quad compact\text{-}Hausdorff \ K \\ \textbf{shows} \quad \forall \ f \in cts[X,K] \ . \ \exists \, ! \ F \in cts_E[\beta \ X, \ K] \ . \ (\forall \ x \in topspace \ X \ . \ F \ (scEmbed \ X \ x) = f \ x) \\ \langle proof \rangle \\ \end{array}
```

 $\quad \mathbf{end} \quad$ 

## References

[Wal74] Russell C. Walker. The Stone-Čech Compactification. Springer-Verlag, 1974.

[Wil70] Stephen Willard. General Topology. Addison-Wesley, 1970.