The Stone-Čech Compactification

Mike Stannett

June 5, 2024

Contents

$1 C^{*}$-embedding 4
2 Weak topologies 9
2.1 Tychonov spaces carry the weak topology induced by $C^{*}(X)$ 14
2.2 A topology is a weak topology if it admits a continuous func- tion set that separates points from closed sets 19
2.3 A product topology is the weak topology induced by its pro- jections if the projections separate points from closed sets. 21
2.4 Evaluation is an embedding for weak topologies 23
3 Compactification 26
3.1 Definition 26
3.2 Example: The Alexandroff compactification of a non-compact locally-compact Hausdorff space 26
3.3 Example: The closure of a subset of a compact space 26
3.4 Example: A compact space is a compactification of itself 27
3.5 Example: A closed non-trivial real interval is a compactifica- tion of its interior 27
4 The Stone-Čech compactification of a Tychonov space 28
4.1 Definition of βX 33
$4.2 \beta X$ is a compactification of X 34
4.3 Evaluation is a C^{*}-embedding of X into βX 36
4.4 The Stone-Čech Extension Property: Any continuous mapfrom X to a compact Hausdorff space K extends uniquely toa continuous map from βX to K.39
Building on parts of HOL-Analysis, we provide mathematical components for work on the Stone-Čech compactification. The main concepts covered are: C^{*}-embedding, weak topologies and compactification, focusing in particular on the Stone-Čech compactification of an arbitrary Tychonov space X. Many of the proofs given here derive from those of Willard (General

Topology, 1970, Addison-Wesley) and Walker (The Stone-Čech Compactification, 1974, Springer-Verlag).
Using traditional topological proof strategies we define the evaluation and projection functions for product spaces, and show that product spaces carry the weak topology induced by their projections whenever those projections separate points both from each other and from closed sets.
In particular, we show that the evaluation map from an arbitrary Tychonov space X into βX is a dense C^{*}-embedding, and then verify the Stone-Čech Extension Property: any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from βX to K.

```
theory Stone-Cech
    imports HOL.Topological-Spaces
        HOL.Set
        HOL-Analysis.Urysohn
```


begin

Concrete definitions of finite intersections and arbitrary unions, and their relationship to the Analysis.Abstract_Topology versions.

```
definition finite-intersections-of :: 'a set set \(\Rightarrow\) 'a set set
    where finite-intersections-of \(S=\left\{(\bigcap F) \mid F . F \subseteq S \wedge\right.\) finite \(\left.{ }^{\prime} F\right\}\)
definition arbitrary-unions-of :: 'a set set \(\Rightarrow\) 'a set set
    where arbitrary-unions-of \(S=\{(\bigcup F) \mid F . F \subseteq S\}\)
lemma generator-imp-arbitrary-union:
    shows \(S \subseteq\) arbitrary-unions-of \(S\)
    unfolding arbitrary-unions-of-def by blast
lemma finite-intersections-container:
    shows \(\forall s \in\) finite-intersections-of \(S . \cup S \cap s=s\)
    unfolding finite-intersections-of-def by blast
lemma generator-imp-finite-intersection:
    shows \(S \subseteq\) finite-intersections-of \(S\)
    unfolding finite-intersections-of-def by blast
lemma finite-intersections-equiv:
    shows (finite' intersection-of \((\lambda x . x \in S)) U \longleftrightarrow U \in\) finite-intersections-of \(S\)
    unfolding finite-intersections-of-def intersection-of-def
    by auto
lemma arbitrary-unions-equiv:
    shows (arbitrary union-of \((\lambda x . x \in S)) U \longleftrightarrow U \in\) arbitrary-unions-of \(S\)
    unfolding arbitrary-unions-of-def union-of-def arbitrary-def
```


by auto

Supplementary information about topological bases and the topologies they generate
definition base-generated-on-by :: 'a set \Rightarrow 'a set set \Rightarrow 'a set set
where base-generated-on-by $X S=\{X \cap s \mid s . s \in$ finite-intersections-of $S\}$
definition opens-generated-on-by :: 'a set \Rightarrow ' a set set \Rightarrow 'a set set
where opens-generated-on-by $X S=$ arbitrary-unions-of (base-generated-on-by X
S)
definition base-generated-by :: 'a set set \Rightarrow ' a set set where base-generated-by $S=$ finite-intersections-of S
definition opens-generated-by :: 'a set set \Rightarrow ' a set set where opens-generated-by $S=$ arbitrary-unions-of (base-generated-by S)
lemma generators-are-basic:
shows $S \subseteq$ base-generated-by S
unfolding base-generated-by-def finite-intersections-of-def
by blast
lemma basics-are-open:
shows base-generated-by $S \subseteq$ opens-generated-by S
unfolding opens-generated-by-def arbitrary-unions-of-def
by blast
lemma generators-are-open:
shows $\quad S \subseteq$ opens-generated-by S
using generators-are-basic basics-are-open
by blast
lemma generated-topspace:
assumes $T=$ topology-generated-by S
shows topspace $T=\bigcup S$
using assms by simp
lemma base-generated-by-alt:
shows base-generated-by $S=$ base-generated-on-by $(\bigcup S) S$
unfolding base-generated-by-def base-generated-on-by-def
using finite-intersections-container $[$ of $S]$
by auto
lemma opens-generated-by-alt:
shows opens-generated-by $S=$ arbitrary-unions-of (finite-intersections-of S)
unfolding opens-generated-by-def base-generated-by-def
by simp
lemma opens-generated-unfolded:
shows opens-generated-by $S=\left\{\bigcup A \mid A . A \subseteq\left\{\bigcap B \mid B\right.\right.$. finite $\left.\left.^{\prime} B \wedge B \subseteq S\right\}\right\}$ apply (simp add: opens-generated-by-alt)
unfolding finite-intersections-of-def arbitrary-unions-of-def
by blast
lemma opens-eq-generated-topology:
shows openin (topology-generated-by S) $U \longleftrightarrow U \in$ opens-generated-by S proof -
have openin (topology-generated-by S) = arbitrary union-of finite' intersection-of
$(\lambda x . x \in S)$
by (metis generate-topology-on-eq istopology-generate-topology-on topology-inverse')
also have $\ldots=$ arbitrary union-of ($\lambda U . U \in$ finite-intersections-of S)
using finite-intersections-equiv[of $S]$ by presburger
also have $\ldots=(\lambda U . U \in$ arbitrary-unions-of (finite-intersections-of $S)$)
using arbitrary-unions-equiv[of finite-intersections-of S] by presburger
finally show ?thesis
using opens-generated-by-alt by auto
qed

$1 \quad C^{*}$-embedding

abbreviation continuous-from-to
$::$ 'a topology \Rightarrow 'b topology $\Rightarrow(' a \Rightarrow$ 'b) set (cts[-, -])
where continuous-from-to $X Y \equiv\{f$. continuous-map $X Y f\}$
abbreviation continuous-from-to-extensional
$::$ 'a topology \Rightarrow ' b topology $\Rightarrow\left(' a \Rightarrow\right.$ 'b) set $\left(\operatorname{cts}_{E}[-,-]\right)$
where continuous-from-to-extensional $X Y$ (topspace $X \rightarrow_{E}$ topspace $\left.Y\right) \cap$ $\operatorname{cts}[X, Y]$
abbreviation continuous-maps-from-to-shared-where ::
'a topology $\Rightarrow\left({ }^{\prime} b\right.$ topology \Rightarrow bool $) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ set \Rightarrow bool (cts'-on - to'-shared
-)
where continuous-maps-from-to-shared-where $X P$ $\equiv(\lambda f s .(\exists Y . P Y \wedge f s \subseteq c t s[X, Y]))$
definition dense-in :: 'a topology \Rightarrow 'a set \Rightarrow 'a set \Rightarrow bool
where dense-in $T A B \equiv T$ closure-of $A=B$
lemma dense-in-closure:
assumes dense-in TAB
shows dense-in (subtopology T B) A B
by (metis Int-UNIV-right Int-absorb Int-commute assms closure-of-UNIV clo-sure-of-restrict
closure-of-subtopology dense-in-def topspace-subtopology)
abbreviation dense-embedding :: 'a topology $\Rightarrow{ }^{\prime} b$ topology $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ bool where dense-embedding small big $f \equiv$ (embedding-map small big f)
lemma continuous-maps-on-dense-subset:
assumes (cts-on X to-shared Hausdorff-space) $\{f, g\}$
and dense-in X D (topspace $X)$
and $\quad \forall x \in D . f x=g x$
shows $\quad \forall x \in$ topspace $X . f x=g x$
proof -
obtain Y where continuous-map $X Y f \wedge$ continuous-map $X Y g \wedge$ Haus-
dorff-space Y
using assms(1) by auto
thus ?thesis using assms dense-in-def forall-in-closure-of-eq by fastforce qed
lemma continuous-map-on-dense-embedding: assumes (cts-on X to-shared Hausdorff-space) $\{f, g\}$
and dense-embedding $D X e$
and $\quad \forall d \in$ topspace $D .(f \circ e) d=\left(\begin{array}{lll}g \circ & o\end{array}\right) d$
shows $\quad \forall x \in$ topspace $X . f x=g x$
using assms continuous-maps-on-dense-subset[offgXe'topspace D]
unfolding dense-in-def by fastforce
definition range' :: 'a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow$ real set where range' $X f=$ euclideanreal closure-of (f 'topspace X)
abbreviation fbounded-below :: (${ }^{\prime} a \Rightarrow$ real $) \Rightarrow{ }^{\prime}$ a topology \Rightarrow bool where founded-below $f X \equiv(\exists m . \forall y \in$ topspace $X . f y \geq m)$
abbreviation fbounded-above :: ('a \Rightarrow real $) \Rightarrow$ 'a topology \Rightarrow bool where fbounded-above $f X \equiv(\exists M . \forall y \in$ topspace $X . f y \leq M)$
abbreviation fbounded $::\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow{ }^{\prime} a$ topology \Rightarrow bool where fbounded $f X \equiv(\exists m M . \forall y \in$ topspace $X . m \leq f y \wedge f y \leq M)$
lemma fbounded-iff:
shows fbounded $f X \longleftrightarrow$ fbounded-below $f X \wedge$ fbounded-above $f X$
by auto
abbreviation c-of :: ' a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $)$ set $(C(-))$ where $C(X) \equiv\{f$. continuous-map X euclideanreal $f\}$
abbreviation cstar-of :: 'a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $)$ set $(C *(-))$ where $C * X \equiv\{f \mid f . f \in c$-of $X \wedge$ fbounded $f X\}$
definition cstar-id $::$ 'a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow{ }^{\prime} a \Rightarrow$ real where cstar-id $X=(\lambda f \in C * X . f)$

```
abbreviation c-embedding :: 'a topology # 'b topology # (' }a=>\mathrm{ ' 'b) # bool
    where c-embedding S X e \equivembedding-map S X e^
                                    (\forallfS\inC(S).\existsfX\inC(X).\forallx\in topspace S.fS x=
fX(e e x)
abbreviation cstar-embedding :: 'a topology }=>\mathrm{ 'b topology }=>('a=>'b)=> boo
    where cstar-embedding SXe\equivembedding-map S X e^
                                    (\forallfS \inC*(S).\existsfX\inC*(X).\forallx\in topspace S . fS x
= fX (e x))
definition c-embedded :: 'a topology }=>\mathrm{ 'b topology }=>\mathrm{ bool
    where c-embedded SX\equiv(\existse.c-embedding SXe)
definition cstar-embedded :: 'a topology }=>\mathrm{ 'b topology }=>\mathrm{ bool
    where cstar-embedded S X \equiv(\exists e.cstar-embedding S X e)
lemma bounded-range-iff-fbounded:
    assumes f\inCX
    shows bounded (f'topspace }X\mathrm{ ) }\longleftrightarrow fbounded f X
(is ?lhs \longleftrightarrow? ?rhs)
proof
    assume ?lhs
    then obtain x e where }\forally\inf'topspace X . dist x y \leq
        using bounded-def[of f'topspace X] by auto
    hence }\forally\inf'topspace X.y\in{(x-e).. (x+e)
        using dist-real-def by auto
    thus ?rhs by auto
next
    assume ?rhs
    then obtain mM where }\forally\inf'topspace X.y\in{m..M} by aut
    thus ?lhs using bounded-closed-interval[of m M] subsetI bounded-subset
        by meson
qed
Combinations of functions in C(X) and C}\mp@subsup{C}{}{*}(X
abbreviation fconst :: real = ' }a>\mathrm{ real
    where fconst v}\equiv(\lambdax.v
definition fmin :: ('a m real) ) (' }a=>\mathrm{ real ) }=>('a=>\mathrm{ real )
    where fmin f g}=(\lambdax.\operatorname{min}(fx)(gx)
definition fmax :: (' }a=>\mathrm{ real ) > (' }a=>\mathrm{ real ) > ('a m real)
    where fmax f g = (\lambdax. max (fx)(gx))
```



```
    where fmid f m M = fmax m (fmin f M)
```

```
definition fbound :: (' }a=>\mathrm{ real ) # real }=>\mathrm{ real }=>\mp@subsup{}{}{\prime}'a=>\mathrm{ real
    where fbound f m M = fmid f (fconst m) (fconst M)
lemma fmin-cts:
    assumes }(f\inCX)\wedge(g\inCX
    shows fmin fg\inCX
    using assms continuous-map-real-min[of X f g] fmin-def[offg] by auto
lemma fmax-cts:
    assumes (f\inCX)\wedge(g\inCX)
    shows fmax f g}\inC
    using assms continuous-map-real-max[of X fg] fmax-def[offg] by auto
lemma fmid-cts:
    assumes (f\inCX)\wedge(m\inCX)\wedge(M\inCX)
    shows fmid f m M \inCX
    unfolding fmid-def using assms fmin-cts[of f X M] fmax-cts[of m X (fmin f
M)]
    by auto
lemma fconst-cts:
    shows fconst v\inCX
    by simp
lemma fbound-cts:
    assumes f\inCX
    shows fbound f m M \inCX
    unfolding fbound-def
    using assms fmid-cts[of f X fconst m fconst M] fconst-cts[of m X] fconst-cts[of
M X]
    by auto
Bounded and bounding functions
lemma fconst-bounded:
    shows fbounded (fconst v) X
    by auto
lemma fmin-bounded-below:
    assumes fbounded-below f X ^ fbounded-below g X
    shows fbounded-below (fmin f g) X
proof -
    obtain mf mg where }\forally\intopspace X.fy\geqmf\wedgegy\geqmg using assms by
auto
    hence }\forally\in\mathrm{ topspace X.fmin fg y \ min mf mg unfolding fmin-def min-def
by auto
    thus?thesis by auto
```

```
qed
lemma fmax-bounded-above:
    assumes fbounded-above f X ^ fbounded-above g X
    shows fbounded-above (fmax f g) X
proof -
    obtain mf mg where }\forally\in\mathrm{ topspace X.fy {mf ^gy smg using assms by
auto
    hence }\forally\in\mathrm{ topspace X.fmax fg y smax mf mg unfolding fmax-def max-def
by auto
    thus ?thesis by auto
qed
lemma fmid-bounded:
    assumes fbounded m X ^ fbounded M X
    shows fbounded (fmid f m M) X
proof -
    obtain mmin mmax Mmin Mmax
        where }\forally\in\mathrm{ topspace }X.mmin \leqmy\wedgemy\leqmmax \wedge Mmin \leqMy^
y \leqMmax
            using assms by blast
    hence }\forally\intopspace X.min mmin Mmin \leq(fmid fm M y)^(fmid fm M y)
\leq max mmax Mmax
    unfolding fmid-def fmax-def fmin-def max-def min-def by auto
    thus?thesis by auto
qed
lemma fbound-bounded:
    shows fbounded (fbound f m M) X
    using fmid-bounded[of X fconst m fconst M] fconst-bounded [of X m] fconst-bounded[of
X M]
    unfolding fbound-def by simp
Members of C}\mp@subsup{C}{}{*}(X
lemma fconst-cstar:
    shows fconst v\inC*X
    using fconst-cts[of v X] fconst-bounded[of X v]
    by auto
lemma fbound-cstar:
    assumes f}\inC
    shows fbound f m M \inC* X
    using assms fbound-cts[of f X m M] fbound-bounded[of X f m M]
    by auto
lemma cstar-nonempty:
    shows {} = C* X
    using fconst-cstar by blast
```


2 Weak topologies

```
definition funcset-types :: 'a set }=>('b=>\mp@subsup{'}{}{\prime}a=>'c)=>('b=>'c topology) =>' 'b se
=> bool
    where funcset-types S FTI=(\foralli\inI.Fi\inS->topspace (Ti))
lemma cstar-types:
    shows funcset-types (topspace X) (cstar-id X) ( }\lambdaf\inC*X.euclideanreal) (C*
X)
    unfolding funcset-types-def
    by simp
lemma cstar-types-restricted:
    shows funcset-types (topspace X) (cstar-id X)
        (\lambdaf\inC*X.(subtopology euclideanreal (range' X f))) (C*X)
proof -
    have }\forallf\inC*X.f'topspace X\subseteq range' X f using range'-def[of X]
        by (metis closedin-subtopology-refl closedin-topspace closure-of-subset
                topspace-euclidean-subtopology)
    thus ?thesis unfolding funcset-types-def
        by (simp add: image-subset-iff cstar-id-def)
qed
```

definition inverse $:::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a$ set \Rightarrow ' b set $\Rightarrow{ }^{\prime} a$ set where inverse' f source target $=\{x \in$ source.$f x \in$ target $\}$
lemma inverse ${ }^{\prime}$-alt:
shows inverse' fst=(f-‘t) $\cap s$
using inverse'-def[offst] by auto
definition open-sets-induced-by-func :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a$ set $\Rightarrow{ }^{\prime} b$ topology $\Rightarrow{ }^{\prime}$ a set set
where open-sets-induced-by-func f source T

$$
=\left\{\left(\text { inverse }{ }^{\prime} f \text { source } V\right) \mid V . \text { openin } T V \wedge f \in \text { source } \rightarrow\right. \text { topspace }
$$

definition weak-generators :: 'a set $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} c\right.$ topology $) \Rightarrow{ }^{\prime} b$ set \Rightarrow 'a set set
where weak-generators source funcs tops index

$$
=\bigcup\{\text { open-sets-induced-by-func (funcs } i \text {) source (tops } i) \mid i . i \in \text { index }\}
$$

definition weak-base :: 'a set $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow\left({ }^{\prime} b \Rightarrow^{\prime} c\right.$ topology $) \Rightarrow{ }^{\prime} b$ set \Rightarrow 'a set set
where weak-base source funcs tops index $=$ base-generated-by (weak-generators source funcs tops index)
definition weak-opens :: 'a set $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow\left({ }^{\prime} b \Rightarrow^{\prime} c\right.$ topology $) \Rightarrow{ }^{\prime} b$ set \Rightarrow 'a set set
where weak-opens source funcs tops index $=$ opens-generated-by (weak-generators source funcs tops index)
definition weak-topology $::$ 'a set $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} c\right.$ topology $) \Rightarrow{ }^{\prime} b$ set \Rightarrow 'a topology
where weak-topology source funcs tops index

$$
=\text { topology-generated-by }(\text { weak-generators source funcs tops index })
$$

lemma weak-topology-alt:
shows openin (weak-topology SFTI) U $\longleftrightarrow U \in$ weak-opens S F T I
using weak-topology-def[of S F T I] weak-opens-def[of S F T I]
opens-eq-generated-topology[of weak-generators S F T I U]
by auto
lemma weak-generators-exist-for-each-point-and-axis:
assumes $x \in S$
and funcset-types S F T I
and $\quad i \in I$
and $\quad b=$ inverse $^{\prime}(F i) S$ (topspace $\left.(T i)\right)$
and $\quad F i \in S \rightarrow$ topspace $(T i)$
shows $\quad x \in b \wedge b \in$ weak-generators S F T I
proof -
have xprops: $x \in\{r \in S . F$ ir topspace $(T i)\}$
using assms(2) funcset-types-def[of S F T I] assms(3) assms(1)
by blast
hence part1: $x \in b$ using $\operatorname{assms}(4)$ inverse'-def[of FiS topspace ($T i)]$
by auto
have openin ($T i$) (topspace ($T i$) by simp
hence $b \in$ open-sets-induced-by-func (Fi)S (Ti)
using open-sets-induced-by-func-def[of FiS Ti] assms(4) assms(5)
inverse'-def[of $F i S$ topspace ($T i$) xprops
by auto
thus ?thesis using part1 weak-generators-def[of S F T I] assms(3) by auto qed
lemma weak-generators-topspace:
assumes $W=$ weak-topology S F T I
shows topspace $W=\bigcup$ (weak-generators S F T I)
using weak-topology-def[of S F T I] assms by simp
lemma weak-topology-topspace:
assumes $W=$ weak-topology S F T I
and funcset-types S FTI
shows $(I=\{ \} \longrightarrow$ topspace $W=\{ \}) \wedge(I \neq\{ \} \longrightarrow$ topspace $W=S)$
proof (cases $I=\{ \}$)
case True
hence weak-generators SFTI=\{\}using assms(1) weak-generators-def[of S FTI] by auto
hence topspace $W=\{ \}$ using assms(1) weak-generators-topspace[of W S FT I] by simp
then show ?thesis using True by simp
next
case False
then obtain i where iprops: $i \in I$ by auto
hence $(F i)$ ' $S \subseteq$ topspace ($T i$)
using assms(2) unfolding funcset-types-def by auto
hence inverse ${ }^{\prime}(F i) S$ (topspace $\left.(T i)\right)=S$
using inverse'-def[of FiS topspace ($T i$)] by auto
moreover have openin (T i) (topspace ($T i$) using weak-generators-def by simp
ultimately have $S \in$ open-sets-induced-by-func (Fi)S (Ti)
using open-sets-induced-by-func-def[of FiS T i] assms(2) iprops unfolding
funcset-types-def
by auto
hence $S \in$ weak-generators $S F T I$
using weak-generators-def[of S F T I] iprops by auto
hence $S \subseteq$ topspace W
using weak-generators-topspace[of W S F T I] assms by auto
moreover have topspace $W \subseteq S$
proof -
have openin W (topspace W) by auto
hence topspace $W \in$ opens-generated-by (weak-generators S F T I)
using assms(1) unfolding weak-topology-def
using opens-eq-generated-topology[of weak-generators S F T I topspace W]
by simp
then obtain A where topspace $W=\bigcup A \wedge A \subseteq\{\bigcap B \mid B$. finite' $B \wedge B \subseteq$ weak-generators SFTI\}
using opens-generated-unfolded[of weak-generators S F T I]
by auto
thus ?thesis using assms(2)
unfolding weak-generators-def open-sets-induced-by-func-def inverse'-def func-set-types-def
by blast
qed
ultimately show ?thesis using False by auto
qed
lemma weak-opens-nhood-base:
assumes $W=$ weak-topology S F T I
and openin $W U$
and $\quad x \in U$
shows $\quad \exists b \in$ weak-base SFTI. $x \in b \wedge b \subseteq U$
proof -
define G where $G=$ weak-generators S F T I
hence Wprops: $U \in$ opens-generated-by G
using weak-topology-def[of S F T I] opens-eq-generated-topology[of G] assms(1)
assms (2)
by presburger
then obtain B where Bprops: $B \subseteq$ base-generated-by $G \wedge U=\bigcup B$
unfolding opens-generated-by-def arbitrary-unions-of-def by auto
then obtain b where $b \in$ base-generated-by $G \wedge x \in b$
using assms(3) by blast
thus ?thesis using G-def weak-base-def[of S F T I]
by (metis Union-iff Bprops assms(3) subset-eq)
qed
lemma opens-generate-opens:
assumes $\forall b \in S$. openin $T b$
shows $\forall U \in$ opens-generated-by S. openin $T U$
by (metis assms generate-topology-on-coarsest istopology-openin openin-topology-generated-by
opens-eq-generated-topology)
lemma weak-topology-is-weakest:
assumes $W=$ weak-topology S F T I
and funcset-types S F T I
and topspace $X=$ topspace W
and $\quad \forall i \in I$. continuous-map $X(T i)(F i)$
and openin $W U$
shows openin $X U$
proof -
\{ fix b assume bprops: $b \in$ weak-generators S F T I
then obtain i where iprops: $i \in I \wedge b \in$ open-sets-induced-by-func (Fi) S
($T i$)
using weak-generators-def[of S F T I] by auto
hence Sprops: $S=$ topspace X
using assms(1) assms(2) weak-topology-topspace[of W S F T I]
unfolding funcset-types-def assms(3)
by auto
obtain V where Vprops: openin $(T i) V \wedge b=$ inverse $^{\prime}(F i) S V$
using iprops open-sets-induced-by-func-def[of FiSTi] by auto
have cts: continuous-map $X(T i)(F i)$ using iprops assms(4) by auto
hence $\forall U$. openin $(T i) U \longrightarrow$ openin $X\{x \in$ topspace X. Fix $x \in U\}$
unfolding continuous-map-def by simp
hence openin $X\{x \in$ topspace X. $F i x \in V\}$ using Vprops by auto
hence openin $X b$ using Vprops Sprops unfolding inverse'-def by auto
\}
hence $\forall b \in$ weak-generators S F T I . openin X b by auto
hence $\forall c \in$ weak-opens S FTI. openin X c
using assms(5) weak-opens-def[of S F T I] opens-generate-opens[of weak-generators
$S F T I X]$
by auto
moreover have $U \in$ weak-opens S F T I
using assms(1) weak-topology-def[of S F T I] weak-opens-def[of S F T I] opens-eq-generated-topology[of weak-generators S F T I U] assms(5)
by auto
ultimately show ?thesis by auto
qed
lemma weak-generators-continuous:
assumes $W=$ weak-topology S F T I
and funcset-types S F T I
and $\quad i \in I$
shows continuous-map W ($T i$) (Fi)
proof -
have $S=$ topspace W using assms(1) assms(2) assms(3) weak-topology-topspace[of
WS FTI]
unfolding funcset-types-def by auto
hence $F i \in$ topspace $W \rightarrow$ topspace $(T i)$
using assms funcset-types-def[of S F T I] by auto
moreover have $\forall V$. openin $(T i) V \longrightarrow$ openin $W\{x \in$ topspace W. (Fi) x $\in V\}$
proof -
\{ fix V assume Vprops: openin ($T i$) V
\{ assume hyp: inverse' $(F$ i) (topspace W) $V \neq\{ \}$
have $\{x \in$ topspace W. (Fi) $x \in V\}=$ inverse $^{\prime}(F i)$ (topspace W) V using inverse'-def[of F i topspace W V] by simp
moreover have (inverse ${ }^{\prime}(F i)$ (topspace $\left.\left.W\right) V\right) \in$ open-sets-induced-by-func
(Fi) $S(T i)$
using Vprops assms weak-topology-topspace[of W S F T I] hyp
unfolding open-sets-induced-by-func-def funcset-types-def
by fastforce
ultimately have $\{x \in$ topspace $W .(F i) x \in V\} \in$ weak-generators $S F T$
I
using weak-generators-def[of S F T I] assms(3) by auto
hence openin $W\{x \in$ topspace W. (Fi) $x \in V\}$
using assms(1) weak-topology-def[of S FTI]
generators-are-open[of weak-generators S F T I]
opens-eq-generated-topology[of weak-generators S F TI\{x topspace
$W .(F i) x \in V\}]$
by auto
\}
hence inverse ${ }^{\prime}(F i)$ (topspace $\left.W\right) V \neq\{ \} \longrightarrow$ openin $W\{x \in$ topspace W.
(Fi) $x \in V\}$
by auto
moreover have inverse ${ }^{\prime}\left(\begin{array}{l}\text { Fi) (topspace } W) \\ \text {) }\end{array}\right.$ =\{\} \longrightarrow openin $W\{x \in$
topspace W. (Fi) $x \in V\}$
by (metis openin-empty inverse'-def)
ultimately have openin $W\{x \in$ topspace $W .(F i) x \in V\}$ by auto \}
thus ?thesis by auto
qed
ultimately show ?thesis using continuous-map-def by blast qed
lemma funcset-types-on-empty: shows funcset-types $\}$ F T I
unfolding funcset-types-def by simp
lemma weak-topology-on-empty:
assumes $W=$ weak-topology $\} F T I$
shows $\forall U$. openin $W U \longleftrightarrow U=\{ \}$
proof -
have topspace $W=\{ \}$
using assms(1) weak-topology-topspace $[$ of W \{\} F T I] funcset-types-on-empty[of F TI] by blast
thus ?thesis by simp
qed

2.1 Tychonov spaces carry the weak topology induced by $C^{*}(X)$

abbreviation tych-space :: 'a topology \Rightarrow bool
where tych-space $X \equiv$ t1-space $X \wedge$ completely-regular-space X
abbreviation compact-Hausdorff :: 'a topology \Rightarrow bool
where compact-Hausdorff $X \equiv$ compact-space $X \wedge$ Hausdorff-space X
lemma compact-Hausdorff-imp-tych:
assumes compact-Hausdorff K
shows tych-space K
by (simp add: Hausdorff-imp-t1-space assms compact-Hausdorff-or-regular-imp-normal-space normal-imp-completely-regular-space- A)

```
lemma tych-space-imp-Hausdorff:
    assumes tych-space \(X\)
    shows Hausdorff-space X
proof -
    have Hausdorff-space euclideanreal by auto
    moreover have \((0::\) real \() \neq(1::\) real \()\) by simp
    moreover have \((0::\) real \() \in\) topspace euclideanreal \(\wedge(1::\) real \() \in\) topspace eu-
clideanreal by simp
    ultimately have \(\exists U V\). openin euclideanreal \(U \wedge\) openin euclideanreal \(V \wedge\)
\((0::\) real \() \in U \wedge(1::\) real \() \in V \wedge\) disjnt \(U V\)
    using Hausdorff-space-def[of euclideanreal] by blast
    then obtain \(U V\)
    where UVprops: openin euclideanreal \(U \wedge\) openin euclideanreal \(V \wedge\) ( \(0::\) real \()\)
\(\in U \wedge(1::\) real \() \in V \wedge\) disjnt \(U V\)
    by auto
```

```
    \{ fix \(x y\) assume xyprops: \(x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge x \neq y\)
    hence closedin \(X\{y\} \wedge x \in\) topspace \(X-\{y\}\)
        using assms(1) by (simp add: t1-space-closedin-finite)
    then obtain \(f\)
        where fprops: continuous-map \(X\) (top-of-set \(\{0 . .1\}) f \wedge f x=(0::\) real \() \wedge f\)
\(y \in\{1::\) real \(\}\)
        using assms(1) completely-regular-space-def \([\) of \(X]\) by blast
    hence freal: continuous-map \(X\) euclideanreal \(f \wedge f x=0 \wedge f y=1\)
        using continuous-map-into-fulltopology by auto
    define \(U^{\prime}\) where \(U^{\prime}=\{v \in\) topspace \(X . f v \in U\}\)
    define \(V^{\prime}\) where \(V^{\prime}=\{v \in\) topspace \(X . f v \in V\}\)
    have openin \(X U^{\prime} \wedge\) openin \(X V^{\prime}\)
        using \(U^{\prime}\)-def \(V^{\prime}\)-def UVprops freal continuous-map-def[of \(X\) euclideanreal \(\left.f\right]\)
        by auto
    moreover have \(U^{\prime} \cap V^{\prime}=\{ \}\) using UVprops \(U^{\prime}\)-def \(V^{\prime}\)-def disjnt-def[of \(U\)
\(V]\) by auto
    moreover have \(x \in U^{\prime} \wedge y \in V^{\prime}\) using UVprops \(U^{\prime}\)-def \(V^{\prime}\)-def fprops xyprops
by auto
    ultimately have \(\exists U^{\prime} V^{\prime}\). openin \(X U^{\prime} \wedge\) openin \(X V^{\prime} \wedge x \in U^{\prime} \wedge y \in V^{\prime}\)
\(\wedge\) disjnt \(U^{\prime} V^{\prime}\)
    using disjnt-def[of \(\left.U^{\prime} V^{\dagger}\right]\) by auto
\}
hence \(\forall x y . x \in\) topspace \(X \wedge y \in\) topspace \(X \wedge x \neq y\)
                    \(\longrightarrow\left(\exists U^{\prime} V^{\prime}\right.\). openin \(X U^{\prime} \wedge\) openin \(X V^{\prime} \wedge x \in U^{\prime} \wedge y \in V^{\prime} \wedge\)
disjnt \(U^{\prime} V^{\prime}\) )
    by auto
    thus ?thesis using Hausdorff-space-def \([\) of \(X]\) by blast
qed
```

lemma cstar-range-restricted:
assumes $f \in C * X$
and $\quad U \subseteq$ topspace euclideanreal
shows inverse' $f($ topspace $X) U=$ inverse $^{\prime} f($ topspace $X)\left(U \cap\right.$ range $\left.^{\prime} X f\right)$
proof -
define U^{\prime} where $U^{\prime}=U \cap$ range $^{\prime} X f$
hence inverse' $f($ topspace $X) U^{\prime} \subseteq$ inverse ${ }^{\prime} f($ topspace $X) U$
unfolding inverse'-def U^{\prime}-def by auto
moreover have inverse' f (topspace $X) U \subseteq$ inverse $^{\prime} f($ topspace $X) U^{\prime}$
proof -
\{ fix x assume hyp: $x \in$ inverse $^{\prime} f$ (topspace X) U
hence $f x \in U \cap(f$ 'topspace $X)$ unfolding inverse'-def by auto
hence $f x \in U \cap$ range $^{\prime} X f$
unfolding range'-def
by (metis Int-iff closure-of-subset-Int inf.orderE inf-top-left topspace-euclidean)
hence $x \in$ inverse f (topspace X) U^{\prime}
unfolding inverse'-def
using U^{\prime}-def hyp inverse ${ }^{\prime}$-alt by fastforce
\}
thus ?thesis
by (simp add: subsetI)
qed
ultimately show ?thesis using U^{\prime}-def by simp
qed
lemma weak-restricted-topology-eq-weak:
shows weak-topology (topspace $X)($ cstar-id $X)(\lambda f \in C * X$. euclideanreal) $(C *$ X)
$=$ weak-topology (topspace $X)($ cstar-id $X)(\lambda f \in C * X$. subtopology
euclideanreal (range' $X f$)) ($C * X$)
proof -
define T where $T=(\lambda f \in C * X$. euclideanreal $)$
define T^{\prime} where $T^{\prime}=(\lambda f \in C * X$. subtopology euclideanreal (range' $X f$))
define W where $W=$ weak-topology (topspace $X)($ cstar-id $X) T(C * X)$
define W^{\prime} where $W^{\prime}=$ weak-topology (topspace $\left.X\right)($ cstar-id $X) T^{\prime}(C * X)$
have $\forall f \in C * X . f \in$ topspace $X \rightarrow$ topspace $(T f)$
using T-def unfolding continuous-map-def T-def by auto
have generators: weak-generators (topspace $X)($ cstar-id $X) T(C * X)$ $=$ weak-generators $($ topspace $X)($ cstar-id $X) T^{\prime}(C * X)$
proof -
have weak-generators (topspace $X)($ cstar-id $X) T(C * X)$
\subseteq weak-generators (topspace $X)($ cstar-id $X) T^{\prime}(C * X)$
proof -
have weak-generators (topspace $X)($ cstar-id $X) T(C * X)$
\subseteq weak-generators (topspace $X)($ cstar-id $X) T^{\prime}(C * X)$
proof -
\{ fix U assume Uprops: $U \in$ weak-generators (topspace $X)($ cstar-id $X) T$ $(C * X)$
then obtain f where fprops: $f \in(C * X) \wedge U \in$ open-sets-induced-by-func f (topspace X) (Tf)
unfolding weak-generators-def using cstar-id-def $[$ of $X]$
by (smt (verit) Union-iff mem-Collect-eq restrict-apply')
then obtain V where Vprops: $U=$ inverse' $f($ topspace $X) V \wedge$ openin (Tf) V
unfolding open-sets-induced-by-func-def by blast
hence $U=$ inverse' f (topspace X) V by auto
hence rtp1: $U \subseteq$ topspace X unfolding inverse'-def by auto
have rtp2: openin $\left(T^{\prime} f\right)\left(V \cap\right.$ range $\left.^{\prime} X f\right)$
proof -
have openin euclideanreal V using fprops Vprops T-def by auto
hence openin (subtopology euclideanreal (range' $X f$)) ($V \cap$ range $^{\prime} X f$) by (simp add: openin-subtopology-Int)

```
    thus ?thesis using fprops \(T^{\prime}\)-def by auto
    qed
    have \(\operatorname{rtp} 3: f \in\) topspace \(X \rightarrow\) topspace \(\left(T^{\prime} f\right)\)
    proof -
    have \(f\) ' topspace \(X \subseteq\) topspace euclideanreal using fprops by auto
    hence \(f\) 'topspace \(X \subseteq\) range \(^{\prime} X f\) unfolding range'-def
        by (meson closure-of-subset)
    thus ?thesis using \(T^{\prime}\)-def fprops by auto
    qed
    hence \(\operatorname{rtp} 4: U=\) inverse \(^{\prime} f(\) topspace \(X)\left(V \cap\right.\) range \(\left.^{\prime} X f\right)\)
    proof -
    have inverse' \(f(\) topspace \(X)\left(V \cap\right.\) range \(\left.^{\prime} X f\right) \subseteq U\)
        using Vprops fprops unfolding inverse'-def by auto
    moreover have \(U \subseteq\) inverse \(^{\prime} f(\) topspace \(X)\left(V \cap\right.\) range \(\left.^{\prime} X f\right)\)
    proof -
        \{ fix \(u\) assume uprops: \(u \in U\)
            hence \(f u \in V\) using Vprops unfolding inverse'-def by auto
                moreover have \(f u \in\) range \(^{\prime} X f\) using uprops rtp1 unfolding
range'-def
                    by (metis closure-of-subset-Int imageI inf-top-left subset-iff
topspace-euclidean)
            ultimately have \(u \in\) inverse \(^{\prime} f(\) topspace \(X)\left(V \cap\right.\) range \(\left.^{\prime} X f\right)\)
                unfolding inverse'-def range'-def using rtp1 uprops by force
            \}
            thus ?thesis by auto
            qed
            ultimately show ?thesis by auto
            qed
            have \(U \in\) open-sets-induced-by-func \(f\) (topspace \(X)\left(T^{\prime} f\right)\)
            using rtp1 rtp2 rtp3 rtp4 unfolding open-sets-induced-by-func-def
            by blast
            hence \(U \in\) weak-generators (topspace \(X)(\) cstar-id \(X) T^{\prime}(C * X)\)
            using fprops weak-generators-def[of (topspace \(X\) ) (cstar-id X) \(T^{\prime}(C *\)
X)] cstar-id-def[of \(X]\)
            by (smt (verit, best) Sup-upper in-mono mem-Collect-eq restrict-apply')
        \}
        thus ?thesis by auto
        qed
        thus ?thesis by auto
    qed
    moreover have weak-generators (topspace \(X)(\) cstar-id \(X) T^{\prime}(C * X)\)
            \(\subseteq\) weak-generators (topspace \(X)(\) cstar-id \(X) T(C * X)\)
    proof -
    \{ fix \(U\) assume Uprops: \(U \in\) weak-generators (topspace \(X\) ) (cstar-id X) \(T^{\prime}\)
(C*X)
```

then obtain f where fprops: $f \in(C * X) \wedge U \in$ open-sets-induced-by-func $f($ topspace $X)\left(T^{\prime} f\right)$
unfolding weak-generators-def using cstar-id-def[of X]
by (smt (verit) Union-iff mem-Collect-eq restrict-apply')
then obtain V where Vprops: $U=$ inverse' $f($ topspace $X) V \wedge$ openin ($T^{\prime} f$) V
unfolding open-sets-induced-by-func-def by blast
have $T^{\prime} f=$ subtopology $(T f)$ (topspace $\left(T^{\prime} f\right)$)
using T-def T^{\prime}-def fprops unfolding range'-def by auto
moreover have openin ($T^{\prime} f$) V using Vprops by simp
ultimately obtain Vbig where Vbigprops: openin $(T f) V b i g \wedge V=V b i g$ \cap (topspace $\left(T^{\prime} f\right)$)
using openin-subtopology[of T f topspace $\left.\left(T^{\prime} f\right)\right]$
by auto
have Vrestrict: Vbig \cap topspace $\left(T^{\prime} f\right)=$ Vbig \cap range ${ }^{\prime} X f$
using T^{\prime}-def fprops by auto
have Vrange: inverse' f (topspace $X)\left(\right.$ Vbig \cap range $\left.{ }^{\prime} X f\right)=$ inverse ${ }^{\prime} f$ (topspace X) Vbig
proof -
\{ fix x assume $x \in$ inverse $^{\prime} f$ (topspace X) Vbig
hence $x \in$ topspace $X \wedge f x \in V b i g \cap$ range $^{\prime} X f$ using range' -def[of $X f$]
by (metis Int-iff closure-of-subset image-subset-iff inverse'-alt subset-UNIV
topspace-euclidean vimage-eq)
hence $x \in$ inverse' f (topspace X) (Vbig \cap range $^{\prime} X f$) unfolding
inverse' ${ }^{\prime}$ def by auto
\}
hence inverse' f (topspace X) Vbig \subseteq inverse $^{\prime} f($ topspace $X)($ Vbig \cap range ${ }^{\prime} X f$) by auto
thus ?thesis unfolding inverse'-def by auto
qed
hence $U=$ inverse $^{\prime} f$ (topspace X) Vbig \wedge openin (Tf) Vbig
by (simp add: Vbigprops Vprops Vrestrict)
moreover have fcstar: $f \in C * X$ using fprops by simp
ultimately have $U \in$ open-sets-induced-by-func f (topspace $X)(T f)$
using open-sets-induced-by-func-def[of f topspace X euclideanreal] T-def
by auto
hence $U \in$ open-sets-induced-by-func (cstar-id $X f$) (topspace $X)(T f) \wedge f$ $\in C * X$
using fcstar cstar-id-def[of X] by auto
hence $U \in$ weak-generators (topspace $X)($ cstar-id $X) T(C * X)$
using fcstar unfolding weak-generators-def by auto
\}
thus ?thesis by auto

```
    qed
    ultimately show ?thesis by auto
    qed
    thus ?thesis by (simp add:T-def T'-def weak-topology-def cstar-id-def)
qed
```


2.2 A topology is a weak topology if it admits a continuous function set that separates points from closed sets

definition funcset-separates-points :: 'a topology $\Rightarrow\left(' b \Rightarrow^{\prime} a \Rightarrow^{\prime} c\right) \Rightarrow{ }^{\prime} b$ set \Rightarrow bool
where funcset-separates-points X F I

$$
=(\forall x \in \text { topspace } X . \forall y \in \text { topspace } X . x \neq y \longrightarrow(\exists i \in I . F i x \neq
$$

Fi y)
definition funcset-separates-points-from-closed-sets ::
'a topology $\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow\left(' b \Rightarrow^{\prime} c\right.$ topology $) \Rightarrow{ }^{\prime} b$ set \Rightarrow bool
where funcset-separates-points-from-closed-sets X F T I

$$
\begin{aligned}
=(\forall x \cdot & \forall A . \text { closedin } X A \wedge x \in(\text { topspace } X-A) \\
& \longrightarrow(\exists i \in I . F i x \notin(T i) \text { closure-of }(F i ‘ A)))
\end{aligned}
$$

lemma funcset-separates-points-from-closed-sets-imp-weak:
assumes funcset-separates-points-from-closed-sets X F T I
and $\quad \forall i \in I$. continuous-map $X(T i)(F i)$
and $\quad W=$ weak-topology (topspace X) FTI
and funcset-types (topspace X) F T I
shows $\quad X=W$
proof -
\{ fix U assume Uhyp: openin $X U$
$\{$ fix x assume xhyp: $x \in U$
define A where $A=($ topspace $X)-U$
have xin $X: x \in$ topspace X using Uhyp xhyp openin-subset by auto
moreover have Aprops: closedin $X A \wedge x \notin A$ using Uhyp xhyp A-def by auto
ultimately obtain i where iprops: $i \in I \wedge F i x \notin(T i)$ closure-of (Fi‘
A)
using assms(1) funcset-separates-points-from-closed-sets-def[of X F T I] by auto
define V where $V=$ topspace $(T i)-(T i)$ closure-of $(F i$ ' $A)$
define R where $R=\{p \in($ topspace $X)$. Fip $\mathcal{V}\}$
have Vopen: openin $(T i) V \wedge F i x \in V$ using iprops xinX V-def
by (metis DiffI Int-iff assms(2) closedin-closure-of continuous-map-preimage-topspace
openin-diff openin-topspace vimage-eq)
hence $x \in R$ using R-def assms(2) xinX by simp
moreover have $R \subseteq U$
proof -
have $F i$ ' $R \subseteq V$ using R-def by auto

```
            hence Fi'`}R\cap(Ti) closure-of (Fi'`A)={} using V-def by aut
            moreover have Fi`}A\subseteq(Ti) closure-of (Fi`'A
            by (metis Aprops assms(2) closure-of-eq continuous-map-subset-aux1 iprops)
            ultimately have Fi'}R\cap(Fi'A)={} by aut
            hence }R\capA={}\mathrm{ by auto
            thus ?thesis using A-def R-def by auto
    qed
    moreover have openin W R
    proof -
        have R= inverse' (F i) (topspace X) V
            by (simp add: R-def inverse'-def)
    hence R \in open-sets-induced-by-func (F i) (topspace X) (T i)
            using open-sets-induced-by-func-def[of F i topspace X T i] Vopen
                assms(2) continuous-map-funspace iprops by fastforce
            hence R \in weak-generators (topspace X) F T I
                using weak-generators-def[of topspace X F T I] iprops by auto
            thus ?thesis using generators-are-open[of weak-generators (topspace X) F
T I]
                opens-eq-generated-topology[of weak-generators (topspace X) F T I R]
assms(3)
            by (simp add: topology-generated-by-Basis weak-topology-def)
        qed
        ultimately have }x\inR\wedgeR\subseteqU\wedge\mathrm{ openin W R by auto
        hence }\existsR.x\inR\wedgeR\subseteqU\wedge\mathrm{ openin W R by auto
    }
    hence }\forallx.x\inU\longrightarrow(\existsR.x\inR\wedgeR\subseteqU\wedge\mathrm{ openin W R)
        by auto
    hence openin W U by (meson openin-subopen)
}
hence XimpW:}\forallU.\mathrm{ openin }XU\longrightarrow\mathrm{ openin }WU\mathrm{ by auto
moreover have }\forallU\mathrm{ . openin }WU\longrightarrow\mathrm{ openin X U
proof -
    have topspace X = topspace W
        using assms(3) assms(4) weak-topology-topspace[of W topspace X F T I]
    by (metis XimpW openin-topspace openin-topspace-empty subtopology-eq-discrete-topology-empty)
    thus ?thesis
        using assms(3) assms(4) assms(2) weak-topology-is-weakest[of W topspace X
F T I X]
        by blast
    qed
    ultimately show ?thesis by (meson topology-eq)
qed
```

The canonical functions on a product space: evaluation and projection

```
definition evaluation-map :: 'a topology \(\Rightarrow\left(' b \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} c\right) \Rightarrow{ }^{\prime} b\) set \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\)
'c
    where evaluation-map \(X F I=(\lambda x \in\) topspace \(X .(\lambda i \in I . F i x))\)
```

definition product-projection $::\left({ }^{\prime} a \Rightarrow\right.$ ' b topology $) \Rightarrow^{\prime} a$ set $\Rightarrow^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ 'b
where product-projection $T I=(\lambda i \in I .(\lambda p \in$ topspace (product-topology T I) $\cdot p i)$)
lemma product-projection:
shows $\forall i \in I . \forall p \in$ topspace (product-topology T I) . product-projection T I $i p=p i$
using product-projection-def[of T I] by simp
lemma evaluation-then-projection:
assumes $\forall i \in I . F i \in$ topspace $X \rightarrow$ topspace $(T i)$
shows $\forall i \in I . \forall x \in$ topspace $X .(($ product-projection $T I i)$ o (evaluation-map X FI)) $x=F i x$
proof -
\{ fix i assume iprops: $i \in I$
\{ fix x assume x props: $x \in$ topspace X
have Fix: $(\lambda i \in I . F i x) \in$ topspace (product-topology $T I$) using xprops assms(1) by auto
have ((product-projection T I i) o (evaluation-map X F I)) x $=($ product-projection T I i) $((\lambda x \in$ topspace $X .(\lambda i \in I . F i x)) x)$ unfolding evaluation-map-def by auto moreover have $\ldots=($ product-projection $T I i)(\lambda i \in I . F i x)$ using xprops by simp
moreover have $\ldots=(\lambda p \in$ topspace (product-topology $T I) \cdot p i)(\lambda i \in I$. $F i x)$
unfolding product-projection-def using iprops by auto
moreover have $\ldots=F i x$ using Fix iprops by simp
ultimately have ((product-projection TI i) o (evaluation-map X FI)) $x=$ $F i x$ by auto
\}
hence $\forall x \in$ topspace X. ((product-projection T I i) o (evaluation-map X F I)) $x=F i x$
by auto
\}
thus ?thesis by auto
qed

2.3 A product topology is the weak topology induced by its projections if the projections separate points from closed sets.

lemma projections-continuous:
assumes $P=$ product-topology TI
and $\quad F=(\lambda i \in I$. product-projection T I $i)$
shows $\quad \forall i \in I$. continuous-map $P(T i)(F i)$
using assms(1) assms(2) product-projection-def[of T I]
by fastforce
lemma product-topology-eq-weak-topology:
assumes $P=$ product-topology TI
and $\quad F=(\lambda i \in I$. product-projection $T I i)$
and $\quad W=$ weak-topology (topspace P) F T I
and funcset-types (topspace P) FTI
and funcset-separates-points-from-closed-sets P F T I
shows $\quad P=W$
using assms product-projection-def[of T I] projections-continuous funcset-separates-points-from-closed-sets-imp-weak[of P F T I W]
by simp
Reducing the domain and minimising the range of continuous functions, and related results concerning weak topologies.
lemma continuous-map-reduced:
assumes continuous-map $X Y f$
shows continuous-map (subtopology X S) (subtopology $Y\left(f^{\prime} S\right)$) (restrict $f S$)
using assms continuous-map-from-subtopology continuous-map-in-subtopology by
fastforce
lemma inj-on-imp:
assumes inj-on $f S$
shows $\forall y .\left(y \in f^{\prime} S\right) \longleftrightarrow(\exists x \in S . y=f x)$
by (simp add: image-iff)
lemma injection-on-intersection:
assumes inj-on $f S$
and $\quad B \neq\{ \}$
and $\quad \forall b \in B . b \subseteq S$
shows $\quad f^{\prime}(\bigcap B)=\bigcap\left\{f^{\prime} b \mid b . b \in B\right\}$
(is?lhs =? rhs)
proof -
have ?lhs \subseteq ? rh s by auto
moreover have ? $\mathrm{rh} s \subseteq$? lhs
proof -
\{ fix y assume rhs: $y \in$?rhs
then obtain b where bprops: $y \in f^{\prime} b \wedge b \in B$
by (smt (verit, del-insts) Inter-iff assms(2) ex-in-conv mem-Collect-eq)
then obtain x where xprops: $x \in b \wedge b \in B \wedge y=f x$ by auto
have $\forall b \in B . y \in f^{\prime} b$ using rhs by auto
hence $\forall b \in B . f x \in f^{\prime} b$ using xprops by auto
hence $\forall b \in B . x \in b$ using $\operatorname{assms}(1)$
by (meson assms(3) in-mono inj-on-image-mem-iff xprops)
hence $x \in \bigcap B$ by auto
hence $y \in$?lhs using xprops by auto
\}
thus ?thesis by auto

```
    qed
    ultimately show ?thesis by auto
qed
```


2.4 Evaluation is an embedding for weak topologies

```
lemma evaluation-is-embedding:
    assumes X = weak-topology (topspace X) F T I
and }\quadP=\mathrm{ product-topology T I
and funcset-types (topspace X) F T I
and funcset-separates-points X F I
shows embedding-map X P (evaluation-map X F I)
proof -
    define ev where ev = evaluation-map X F I
    define proj where proj = product-projection T I
    define R where R = ev'topspace X
    define Rtop where Rtop = subtopology P R
```

 have injective: inj-on ev (topspace \(X\))
 proof -
 have sigs: \(\forall i \in I . F i \in(\) topspace \(X) \rightarrow(\) topspace \((T i))\)
 using assms(3) funcset-types-def[of topspace X F T I]
 by blast
 \(\{\) fix \(x y\) assume xyprops: \(x \in\) topspace \(X \wedge y \in\) topspace \(X\)
 \{ assume hyp: \(x \neq y\)
 then obtain \(i\) where iprops: \(i \in I \wedge F i x \neq F i y\)
 using assms(4) funcset-separates-points-def[of X F I] hyp xyprops
 by blast
 hence \((\) proj \(i)(e v x) \neq(\) proj \(i)(e v y)\)
 using evaluation-then-projection[of I F X T] proj-def ev-def
 by (simp add: sigs xyprops)
 hence ev \(x \neq e v y\) by auto
 \}
 hence \(e v x=e v y \longrightarrow x=y\) by auto
 \}
 thus ?thesis using inj-on-def by blast
 qed
 moreover have ev-cts: continuous-map X Rtop ev
 proof -
 have main: \(\forall i \in I . \forall x \in\) topspace \(X .(\) proj io ev) \(x=F i x\)
 using proj-def ev-def product-projection-def[of T I] evaluation-then-projection[of
 $I F X T$
evaluation-map-def[of X F I]
by (metis assms(1) assms(3) continuous-map-funspace weak-generators-continuous)
moreover have $\forall i \in I$. continuous-map $X(T i)(F i)$
using weak-generators-continuous $[$ of X topspace X F T I] assms by auto
moreover have $\forall i \in I . \forall x \in$ topspace $X . F i x=e v x i$
using product-projection-def[of T I] main ev-def
by (simp add: evaluation-map-def[of X FI])
moreover have ev 'topspace $X \subseteq$ extensional I
using ev-def extensional-def assms evaluation-map-def[of X F I]
by fastforce
ultimately have continuous-map X Pev
using assms proj-def ev-def Rtop-def continuous-map-componentwise[of X T I ev]
continuous-map-eq by fastforce
thus ?thesis
using Rtop-def R-def continuous-map-in-subtopology by blast qed
moreover have open-map X Rtop ev proof -
have open-map-on-gens: $\forall U \in$ weak-generators (topspace X) FTI. openin Rtop (ev ' U)
proof -
$\{$ define $R s$ where $R s=(\lambda i \in I .(F i$ 'topspace $X))$
define Rtops where Rtops $=(\lambda i \in I$. subtopology $(T i)(R s i))$
fix U assume $U \in$ weak-generators (topspace X) FTI
then obtain i where iprops: $i \in I \wedge U \in$ open-sets-induced-by-func (F i) (topspace X) ($T i$ i)
using assms weak-generators-def[of topspace X F T I] by auto
then obtain V
where Vprops: openin (T i $) V \wedge U=$ inverse $^{\prime}(F i)$ (topspace $\left.X\right) V$
using open-sets-induced-by-func-def[of Fitopspace $X T i]$
by blast
hence Uprops: openin (Ti) $V \wedge U=\{x \in$ topspace X.Fix $\in V\}$
using inverse'-def[of Fitopspace $X \quad V]$ by auto
moreover have $\forall x \in$ topspace X. Fix $\begin{gathered}\text { it } \\ (\text { proj i) o ev }) \\ x\end{gathered}$
using evaluation-then-projection[of I F X T] assms(3)
funcset-types-def $[$ of topspace X F T I $]$ iprops
proj-def ev-def
by auto
hence $U=\{x \in$ topspace X. ((proj i) o ev) $x \in V\}$ using Uprops by auto
hence $e v$ ' $U=\{y \in R .($ proj $i) y \in V\}$ using R-def by auto
moreover have $\{y \in R$. (proj i) $y \in V\}=R \cap(($ proj $i)-‘ V)$
by auto
moreover have continuous-map $P(T i)($ proj i)
using continuous-map-product-projection[of i I T] iprops proj-def product-projection-def[of T I] assms(2) by auto
ultimately have summary: openin ($T i$) $V \wedge$ continuous-map $P(T i)$ (proj
i)

$$
\wedge(e v ' U)=R \cap\left((\text { proj } i)-^{\prime} \cdot V\right) \text { by auto }
$$

hence $\forall U$. openin (T i) $U \longrightarrow$ openin $P\{x \in$ topspace P. proj ix $x \in U\}$

```
            using continuous-map-def[of P T i proj i] by auto
            hence openin P((proj i -' }V)\cap\mathrm{ topspace P)
            using summary by blast
            moreover have R\subseteqtopspace P
            using R-def ev-def evaluation-map-def[of X F I] assms(3)
                funcset-types-def[of topspace X F T I]
            by (metis Rtop-def ev-cts continuous-map-image-subset-topspace
                continuous-map-into-fulltopology)
            ultimately have openin Rtop ((proj i -` V) \capR)
            using Rtop-def
            by (metis inf.absorb-iff2 inf-assoc openin-subtopology)
            hence openin Rtop (ev ' U) using summary
            by (simp add: inf-commute)
        }
        thus ?thesis by auto
    qed
    have open-map-on-basics: }\forallU\in\mathrm{ weak-base (topspace X) FT I . openin Rtop
(ev'U)
    proof -
            have Ugens: \ (weak-generators (topspace X) FT I) = topspace X
            using assms(1) weak-generators-topspace by blast
            { fix U assume bprops: U\in weak-base (topspace X) FT I
            hence U \in finite-intersections-of (weak-generators (topspace X) FTI)
                by (simp add: base-generated-by-def weak-base-def)
            then obtain b where bprops: b\subseteq weak-generators (topspace X) FTI^
finite}\mp@subsup{}{}{\prime}b\wedgeU=\bigcap
                unfolding finite-intersections-of-def
                by auto
            hence finite' b ^(\forallg\inb. openin Rtop (ev 'g)) using open-map-on-gens
by auto
            hence openin Rtop (\bigcap {(ev`g)|g.g\inb}) by auto
            hence openin Rtop (ev '\bigcapb)
                using injection-on-intersection[of ev topspace X b] bprops
                by (metis (no-types, lifting) Ugens Union-upper in-mono injective)
            hence openin Rtop (ev' U) using bprops by metis
        }
        thus ?thesis by auto
    qed
    hence open-map-on-opens: }\forallU\in\mathrm{ weak-opens (topspace X) FTI . openin
Rtop (ev'U)
    by (smt (verit, ccfv-SIG) image-iff image-mono openin-subopen weak-opens-nhood-base
            weak-topology-alt)
    thus ?thesis
            using opens-eq-generated-topology[of weak-generators (topspace X) F T I]
assms(1)
            unfolding weak-topology-def using open-map-def[of X Rtop]
```

```
    by (simp add: weak-opens-def)
    qed
    ultimately have homeomorphic-map X Rtop ev
    by (metis R-def Rtop-def bijective-open-imp-homeomorphic-map continuous-map-image-subset-topspace
        continuous-map-into-fulltopology topspace-subtopology-subset)
    thus ?thesis using embedding-map-def[of X P ev] ev-def R-def Rtop-def
    by auto
qed
```


3 Compactification

3.1 Definition

lemma embedding-map-id:
assumes $S \subseteq$ topspace X
shows embedding-map (subtopology X S) X id
using assms embedding-map-def topspace-subtopology-subset
by fastforce
definition compactification-via $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime}$ a topology \Rightarrow 'b topology \Rightarrow bool where compactification-via f $X K \equiv$ compact-space $K \wedge$ dense-embedding $X K f$
definition compactification :: 'a topology \Rightarrow 'b topology \Rightarrow bool where compactification $X K=(\exists f$. compactification-via $f X K)$
lemma compactification-compactification-via:
assumes compactification-via f $X K$
shows compactification $X K$
using assms unfolding compactification-def by fastforce

3.2 Example: The Alexandroff compactification of a noncompact locally-compact Hausdorff space

```
lemma Alexandroff-is-compactification-via-Some:
    assumes \neg compact-space X ^ Hausdorff-space X ^ locally-compact-space X
    shows compactification-via Some X (Alexandroff-compactification X)
    using assms compact-space-Alexandroff-compactification
            embedding-map-Some
            Alexandroff-compactification-dense
            compactification-via-def
    by (metis dense-in-def)
```


3.3 Example: The closure of a subset of a compact space
 lemma compact-closure-is-compactification:

```
    assumes compact-space K
and}\quadS\subseteq\mathrm{ topspace K
shows compactification-via id (subtopology K S) (subtopology K (K closure-of
S))
proof -
    define big where big = subtopology K (K closure-of S)
    define small where small = subtopology K S
    have dense-in big (id'topspace small) (topspace big)
    by (metis dense-in-def big-def small-def assms(2) closedin-topspace closure-of-minimal
                closure-of-subset closure-of-subtopology-open id-def image-id inf.orderE
                    openin-imp-subset openin-subtopology-refl topspace-subtopology-subset)
    moreover have embedding-map small big id
    by (metis assms(2) big-def closure-of-subset-Int embedding-map-in-subtopology
id-apply
            embedding-map-id image-id small-def topspace-subtopology)
    ultimately have dense-embedding small big id by blast
    moreover have compact-space big
    by (simp add:big-def assms(1) closedin-compact-space compact-space-subtopology)
    ultimately show ?thesis
    unfolding compactification-via-def using small-def big-def by blast
qed
```


3.4 Example: A compact space is a compactification of itself

lemma compactification-of-compact:
assumes compact-space K
shows compactification-via id $K K$
using compact-closure-is-compactification[of K topspace K]
by (simp add: assms)

3.5 Example: A closed non-trivial real interval is a compactification of its interior

lemma closed-interval-interior:
shows $\{a::$ real $<. .<b\}=$ interior $\{a . . b\}$
by auto
lemma open-interval-closure:
shows $(a<(b::$ real $)) \longrightarrow\{a . . b\}=$ closure $\{a<. .<b\}$
using closure-greaterThanLessThan[of a b] by simp
lemma closed-interval-compactification:
assumes ($a:$:real) $<b$
and \quad open-interval $=$ subtopology euclideanreal $\{a<. .<b\}$
and \quad closed-interval $=$ subtopology euclideanreal $\{a . . b\}$
shows compactification open-interval closed-interval
proof -
have compact-space closed-interval using assms(3)
using compact-space-subtopology compactin-euclidean-iff by blast moreover have Hausdorff-space closed-interval
by (simp add: Hausdorff-space-subtopology assms(3))
moreover have $\{a<. .<b\} \subseteq$ topspace closed-interval
by (simp add: assms(3) greaterThanLessThan-subseteq-atLeastAtMost-iff)
ultimately have compactification-via id open-interval closed-interval
using compact-closure-is-compactification[of closed-interval $\{a<. .<b\}$] open-interval-closure[of a b]
by (metis assms closedin-self closedin-subtopology-refl closure-of-subtopology euclidean-closure-of subtopology-subtopology subtopology-topspace topspace-subtopology-subset)
thus ?thesis using
compactification-compactification-via[of id open-interval closed-interval] by auto
qed

4 The Stone-Čech compactification of a Tychonov space

lemma compact-range':
assumes $f \in C * X$
shows compact (range' $X f$)
proof -
obtain $m M$ where $m M: \forall y \in$ topspace $X . f y \in\{m . . M\}$ using assms by
auto
hence f ' topspace $X \subseteq\{m . . M\}$ by auto
hence range' $X f \subseteq$ euclideanreal closure-of $\{m . . M\}$
unfolding range'-def by (meson closure-of-mono)
moreover have compact $\{m . . M\}$ by auto
ultimately show ?thesis
by (metis closed-Int-compact closed-atLeastAtMost closed-closedin closedin-closure-of
closure-of-closedin inf.order-iff range'-def)
qed
lemma c-range-nonempty:
assumes $f \in C(X)$
and topspace $X \neq\{ \}$
shows range' $X f \neq\{ \}$
proof -
have f ' topspace $X \neq\{ \}$ using assms by blast
thus ?thesis unfolding range'-def by simp
qed
lemma cstar-range-nonempty:
assumes $f \in C * X$
and topspace $X \neq\{ \}$
shows range' $X f \neq\{ \}$
using assms c-range-nonempty[of $f X]$
by auto
lemma cstar-separates-tych-space:
assumes tych-space X
shows funcset-separates-points-from-closed-sets X (cstar-id $X)(\lambda f \in C * X$. euclideanreal) $(C * X)$
\wedge funcset-separates-points $X($ cstar-id $X)(C * X)$
proof -
\{ fix $x S$ assume closedin $X S \wedge x \in$ topspace $X-S$
then obtain f
where fprops: continuous-map $X($ top-of-set $\{0 . .(1::$ real $)\}) f \wedge f x=0 \wedge f$ '
$S \subseteq\{1\}$
using assms completely-regular-space-def $[$ of $X]$
by presburger
hence $f \in C X$
using continuous-map-into-fulltopology[of X euclideanreal $\{0 . .(1::$ real $)\} f]$ by auto
moreover have fbounded $f X$
proof -
have $\forall x \in$ topspace $X .0 \leq f x \wedge f x \leq 1$ using fprops
by (simp add: continuous-map-in-subtopology image-subset-iff)
thus ?thesis by auto
qed
ultimately have f-in-cstar: $f \in(C * X)$ by auto
moreover have f-separates: $f x \notin\left(\right.$ euclideanreal closure-of $\left.\left(f^{\prime} S\right)\right)$
proof -
have closedin euclideanreal (f ' S)
by (metis closed-closedin closed-empty closed-singleton fprops subset-singletonD)
moreover have $f x \notin f$ ' S using fprops by auto
thus ?thesis using calculation by auto
qed
ultimately have $\exists f \in C * X$. $f x \notin$ euclideanreal closure-of (f ' S) by auto \}
hence rtp1: funcset-separates-points-from-closed-sets $X($ cstar-id $X)(\lambda f \in C *$ X. euclideanreal) $(C * X)$
using cstar-id-def[of X] unfolding funcset-separates-points-from-closed-sets-def by auto

```
moreover have funcset-separates-points X (cstar-id X) (C*X)
proof -
    { fix x y assume {x,y}\subseteq topspace }X\wedgex\not=
    hence closedin X{y}}\wedgex\in\mathrm{ topspace }X-{y
            using assms by (simp add: t1-space-closedin-finite)
    hence }\existsf\inC*X . cstar-id Xfx\not\in(\lambdaf\inC*X . euclideanreal) f closure-of
cstar-id X f'{y}
            using funcset-separates-points-from-closed-sets-def[of X cstar-id X \lambda f\in
```

```
C* X . euclideanreal C* X]
                rtp1 by presburger
    hence }\existsf\inC*X.fx\not=f
            using cstar-id-def[of X] t1-space-closedin-finite[of euclideanreal] by auto
    }
    thus ?thesis using cstar-id-def[of X] unfolding funcset-separates-points-def
by auto
    qed
    ultimately show ?thesis by auto
qed
```

The product topology induced by $C^{*}(X)$ on a Tychonov space.
definition $s c T$:: 'a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow$ real topology where $s c T X=(\lambda f \in C * X$. subtopology euclideanreal (range' $X f)$)
definition scT-full :: 'a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow$ real topology where scT-full $X=(\lambda f \in C * X$. euclideanreal $)$

```
definition scProduct :: 'a topology }=>(('a=>\mathrm{ real ) }=>\mathrm{ real) topology
    where scProduct }X=\mathrm{ product-topology (scT X) (C*X)
definition scProject :: 'a topology }=>('a=>\mathrm{ real ) }=>(('a=>\mathrm{ real ) }=>\mathrm{ real ) }=>\mathrm{ real 
    where scProject X = product-projection (scT X) (C* X)
definition scEmbed :: 'a topology }=>\mp@subsup{}{}{\prime}'a=>('a=>\mathrm{ real ) }=>\mathrm{ real
    where scEmbed X = evaluation-map X (cstar-id X)}(C*X
lemma scT-images-compact-Hausdorff:
    shows }\forallf\inC*X . compact-Hausdorff (scT Xf
proof -
    have}T:\forallf\inC*X.scTXf= subtopology euclideanreal (range' X f
        unfolding scT-def by simp
    thus ?thesis using range'-def[of Xf]
        by (simp add: Hausdorff-space-subtopology compact-range' compact-space-subtopology)
qed
lemma scT-images-bounded:
    shows }\forallf\inC*X . bounded (topspace (scT X f))
    using scT-images-compact-Hausdorff[of X] scT-def[of X]
    by (simp add: compact-imp-bounded compact-range')
lemma scProduct-compact-Hausdorff:
    shows compact-Hausdorff (scProduct X)
    unfolding scProduct-def using scT-images-compact-Hausdorff [of X]
    using compact-space-product-topology
```

by (metis (no-types, lifting) compact-Hausdorff-imp-regular-space regular-space-product-topology
regular-t0-eq-Hausdorff-space t0-space-product-topology)
The Stone-Čech compactification of a Tychonov space and its extension properties
lemma tych-space-weak:
assumes tych-space X
shows $\quad X=$ weak-topology (topspace $X)($ cstar-id $X)(s c T X)(C * X)$
proof (cases topspace $X=\{ \}$)
case True
then show ?thesis
using weak-topology-on-empty[of weak-topology (topspace X) (cstar-id X) (scT
X) $(C * X)$] topology-eq by fastforce
next
case False
define W where $W=$ weak-topology (topspace $X)($ cstar-id $X)(s c T X)(C *$ X)
hence topspace $W=$ topspace X
using cstar-types-restricted $[$ of $X]$ scT-def $[$ of $X] W$-def cstar-nonempty $[$ of $X]$ weak-topology-topspace $[$ of W topspace X cstar-id X scT X C* X]
by auto
moreover have $\forall f \in C * X$. continuous-map $X(s c T X f) f$
unfolding scT-def range'-def
by (metis (mono-tags, lifting) closure-of-subset continuous-map-image-subset-topspace
continuous-map-in-subtopology mem-Collect-eq restrict-apply')
ultimately have $\forall U$. openin $W U \longrightarrow$ openin $X U$
using W-def cstar-types-restricted $[$ of $X]$ scT-def[of X] cstar-id-def[of X]
weak-topology-is-weakest[of W (topspace $X)($ cstar-id X) (scT X) $C * X$
$X]$
by (smt (verit, ccfv-threshold) restrict-apply')
moreover have $\forall U$. openin $X U \longrightarrow$ openin $W U$
proof -
\{ fix U assume props: openin $X U$
\{ fix x assume xprops: $x \in U$
hence x-in- $X: x \in$ topspace X
using openin-subset props by fastforce
define S where $S=$ topspace $X-U$
hence props': $x \in$ topspace $X-S \wedge$ closedin $X S$
using props openin-closedin-eq xprops by fastforce
then obtain f where fprops: continuous-map X (top-of-set $\{0 . .1::$ real $\}$) f
$\wedge f x=0 \wedge f ' S \subseteq\{1\}$
using assms(1) completely-regular-space-def[of X]
by meson

then obtain ffull

where ffullprops: $($ ffull $\in C X) \wedge$ ffull $x=(0::$ real $) \wedge$ ffull' $S \subseteq\{1\}$
using continuous-map-into-fulltopology
by (metis mem-Collect-eq)
define F where $F=$ fbound ffull 01
hence Fcstar: $F \in C * X$ using ffullprops fbound-cstar[of ffull $X 0$ 1] by
auto
hence Ftype: $F \in$ topspace $X \rightarrow$ topspace euclideanreal unfolding continuous-map-def by auto
define I where $I=\{(-1)<. .<1:$:real $\}$
hence Iprops: openin euclideanreal I by (simp add: openin-delete)
define V where $V=$ inverse $^{\prime} F($ topspace $X) I$
have crprops: $F x=0 \wedge F$ ' $S \subseteq\{1\}$ using ffullprops F-def unfolding fbound-def fmid-def fmin-def fmax-def min-def max-def by auto
hence $V \subseteq U$
proof \{ fix v assume $v \in V$
hence $v \in$ topspace $X \wedge F v \in I$ unfolding inverse'-def V-def by auto hence $v \in U$ using S-def crprops I-def by auto
\}
thus ?thesis by auto
qed
moreover have $x \in V$
using crprops I-def x-in- X unfolding inverse'-def V-def by auto
moreover have openin $W V$
proof -
have $V \in$ open-sets-induced-by-func F (topspace X) euclideanreal
unfolding open-sets-induced-by-func-def using Ftype V-def Iprops by blast
moreover have open-sets-induced-by-func F (topspace X) euclideanreal \subseteq weak-generators (topspace $X)($ cstar-id $X)($ scT-full $X)(C * X)$
using weak-generators-def[of topspace $X($ cstar-id $X) \operatorname{scT-full~} X C * X]$ scT-full-def[of X] cstar-id-def[of X] Fcstar
by (smt (verit, ccfv-SIG) Sup-upper mem-Collect-eq restrict-apply')
ultimately have $V \in$ weak-generators (topspace X) (cstar-id X) (scT-full
X) $(C * X)$
by auto
hence openin (topology-generated-by (weak-generators (topspace X) (cstar-id X) (scT-full $X)(C * X))) V$
using generators-are-open[of weak-generators (topspace X) (cstar-id X) (scT-full $X)(C * X)]$

topology-generated-by-Basis by blast

 thus ?thesisusing W-def weak-restricted-topology-eq-weak[of X]
unfolding scT-def scT-full-def weak-topology-def
by simp
qed
ultimately have $x \in V \wedge V \subseteq U \wedge$ openin $W V$ by auto hence $\exists V . x \in V \wedge V \subseteq U \wedge$ openin $W V$ by auto
\}
hence $\forall x \in U . \exists V . x \in V \wedge V \subseteq U \wedge$ openin $W V$ by blast hence openin $W U$ by (meson openin-subopen)
\}
thus ?thesis by auto
qed
ultimately have $\forall U$. openin $X U \longleftrightarrow$ openin $W U$ by auto
hence $X=W$ by (simp add: topology-eq)
thus ?thesis using W-def by simp
qed

4.1 Definition of βX

definition scEmbeddedCopy :: 'a topology $\Rightarrow\left(\left({ }^{\prime} a \Rightarrow\right.\right.$ real $) \Rightarrow$ real $)$ set where scEmbeddedCopy $X=$ scEmbed X 'topspace X
definition scCompactification :: 'a topology $\Rightarrow\left(\left({ }^{\prime} a \Rightarrow\right.\right.$ real $) \Rightarrow$ real $)$ topology ($\left.\beta-\right)$ where scCompactification X

```
            = subtopology (scProduct X) ((scProduct X) closure-of (scEmbeddedCopy
```

$X)$)
lemma sc-topspace:
shows topspace $(\beta X)=($ scProduct $X)$ closure-of (scEmbeddedCopy $X)$
using scCompactification-def[of X] closure-of-subset-topspace by force
lemma scProject':
shows $\forall f \in C * X . \forall p \in$ topspace (βX). scProject $X f p=p f$
proof -
have topspace $(\beta X) \subseteq$ topspace (scProduct X) unfolding scCompactification-def
by auto
thus?thesis
unfolding scProject-def product-projection-def scProduct-def by auto
qed
Evaluation densely embeds Tychonov X in βX
lemma dense-embedding-scEmbed:
assumes tych-space X
shows dense-embedding $X(\beta X)($ scEmbed $X)$
proof -
define W where $W=$ weak-topology (topspace $X)($ cstar-id $X)(\lambda f \in C * X$.

```
euclideanreal) (C*X)
    hence }X=W\mathrm{ using assms tych-space-weak[of X]
    by (metis (mono-tags, lifting) scT-def weak-restricted-topology-eq-weak)
    hence Xweak: X = weak-topology (topspace X)(cstar-id X) (scT X) (C*X)
    using scT-def[of X] W-def cstar-id-def[of X]
                weak-restricted-topology-eq-weak[where X =X] by auto
    moreover have scProduct }X=\mathrm{ product-topology (scT X) (C*X) using scProd-
uct-def[of X] by auto
    moreover have funcset-types (topspace X) (cstar-id X) (scT X) (C*X)
    unfolding scT-def using cstar-types-restricted[of X] by auto
    moreover have funcset-separates-points X (cstar-id X) (C*X)
    using cstar-separates-tych-space[of X] assms(1) by auto
    moreover have (C*X)\not={} using cstar-nonempty by auto
    ultimately have embedding-map X (scProduct X) (scEmbed X)
        using evaluation-is-embedding[of X cstar-id X scT X C* X scProduct X]
        unfolding scProduct-def scEmbed-def
        by auto
    hence embeds: embedding-map X ( }\beta\mathrm{ X) (scEmbed X)
        unfolding scCompactification-def
        by (metis closure-of-subset embedding-map-in-subtopology scEmbeddedCopy-def
subtopology-topspace)
    moreover have dense-in ( }\beta\mathrm{ X) (scEmbed X' topspace X) (topspace ( }\beta\mathrm{ X))
    unfolding dense-in-def using scCompactification-def[of X] scEmbeddedCopy-def[of
X]
    by (metis Int-absorb1 closure-of-subset closure-of-subset-topspace closure-of-subtopology
            embedding-map-in-subtopology embeds set-eq-subset subtopology-topspace
            topspace-subtopology-subset)
    ultimately show ?thesis by auto
qed
```


$4.2 \beta X$ is a compactification of X

```
lemma scCompactification-compact-Hausdorff:
assumes tych-space \(X\)
shows compact-Hausdorff ( \(\beta\) X)
using scCompactification-def [of X] scProduct-compact-Hausdorff[of X]
by (simp add: Hausdorff-space-subtopology closedin-compact-space compact-space-subtopology)
lemma scCompactification-is-compactification-via-scEmbed:
assumes tych-space \(X\)
shows compactification-via (scEmbed X) X \((\beta X)\)
using compactification-via-def[of scEmbed \(X X \beta X]\)
scCompactification-compact-Hausdorff [of X]
dense-embedding-scEmbed \([\) of \(X]\) assms
by auto
```

```
lemma scCompactification-is-compactification:
    assumes tych-space X
    shows compactification X ( }\beta\mathrm{ X)
    using assms compactification-compactification-via
                scCompactification-is-compactification-via-scEmbed
    by blast
lemma scEvaluation-range:
    assumes }x\in\mathrm{ topspace }
and tych-space X
shows (\lambdaf\inC*X.fx)\intopspace (product-topology (scT X) C*X)
proof -
    have funcset-types (topspace X) (cstar-id X) (\lambdaf\inC*X . top-of-set (range' X
f)) }C*
    using cstar-types-restricted[of X] by auto
    hence }\forallf\inC*X.f \intopspace X -> topspace (scTXf
        unfolding funcset-types-def scT-def cstar-id-def[of X] by auto
    thus ?thesis using topspace-product-topology[of scT X C* X] assms(1) by auto
qed
lemma scEmbed-then-project:
    assumes f}\inC*
and }\quadx\in\mathrm{ topspace }
and tych-space X
shows scProject Xf(scEmbed X x) =fx
proof -
    have fequiv: }\forally\intopspace X. (\lambdag\inC*X.(cstar-id X)gy)=(\lambdag\inC*
X.g y)
    proof -
    { fix y assume yprops: }y\in\mathrm{ topspace }
        hence }\forallg\inC*X.(cstar-id X) g y = g y unfolding cstar-id-def by aut
        hence (\lambdag\inC*X.(cstar-id X)gy)=(\lambdag\inC*X.gy)
            by (meson restrict-ext)
    }
    thus ?thesis by auto
    qed
    have scProject Xf(scEmbed X x) = scProject Xf (evaluation-map X (cstar-id
X)(C*X) x)
    unfolding scEmbed-def by auto
    also have ... =scProject Xf(\lambdag\inC* X.gx)
    unfolding evaluation-map-def using assms(2) fequiv by auto
    also have ... = ( \lambdag\inC*X. \lambdap\intopspace (product-topology (scT X) (C*X)).p
g) f(\lambdag\inC*X.g x)
    unfolding product-projection-def scProject-def by auto
    also have \ldots=( .. (\lambda ttopspace (product-topology (scT X) (C*X)).pf) (\lambdag\in
C* X.g x)
    using assms(1) by auto
    also have \ldots= fx using scEvaluation-range[of x X] assms by auto
```

ultimately show ?thesis by auto qed

4.3 Evaluation is a C^{*}-embedding of X into βX

definition scExtend $::$ ' a topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow\left(\left({ }^{\prime} a \Rightarrow\right.\right.$ real $) \Rightarrow$ real $) \Rightarrow$ real where scExtend $X=(\lambda f \in C * X$. restrict (scProject $X f)($ topspace $(\beta X)))$
proposition scExtend-extends:
assumes tych-space X
shows $\forall f \in C * X . \forall x \in$ topspace $X . f x=($ scExtend $X f)($ scEmbed $X x)$ proof -
\{ fix f assume fprops: $f \in C * X$
have $\forall x \in$ topspace $X .($ scProject $X f)($ scEmbed $X x)=($ scExtend $X f)$
(scEmbed $X x$)
proof -
\{ fix x assume xprops: $x \in$ topspace X
define p where pprops: $p=s c$ Embed $X x$
hence scExtend Xfp=(restrict $($ scProject $X f)($ topspace $\beta X)) p$
using xprops fprops unfolding scExtend-def by auto
moreover have $p \in$ topspace βX
using assms(1) pprops dense-embedding-scEmbed[of X]
scCompactification-def[of X] scEmbeddedCopy-def[of X]
by (metis (no-types, lifting) embedding-map-in-subtopology image-eqI
in-mono subtopology-topspace xprops)
ultimately have scExtend $X f p=s c$ Project $X f p$
using pprops scEmbeddedCopy-def[of X] scEmbed-def[of X] evalua-
tion-map-def by auto
\}
thus ?thesis by auto
qed
hence $\forall x \in$ topspace $X . f x=(s c E x t e n d X f)(s c E m b e d X x)$
using scEmbed-then-project $[$ of $f X]$ assms(1) fprops by auto
\}
thus ?thesis by auto
qed
lemma scExtend-extends-cstar:
assumes tych-space X
shows $\forall f \in C * X .(\forall x \in$ topspace $X . f x=(s c E x t e n d X f)(s c E m b e d X$
x)) \wedge scExtend $X f \in C *(\beta X)$

proof -

define e where $e=$ scExtend X
$\{$ fix f assume fprops: $f \in C * X$
hence continuous-map (scProduct X) $(s c T X f)(s c P r o j e c t ~ X f)$
using scProduct-def[of X] scProject-def[of X]
projections-continuous[of scProduct X scT X C* X scProject $X]$

```
            product-projection-def[of scT X C* X]
        by (metis (no-types, lifting) restrict-extensional extensional-restrict)
    hence continuous-map ( }\betaX)(scTXf)(scProject Xf
    by (simp add: continuous-map-from-subtopology scCompactification-def)
    hence c-embedded-f: continuous-map ( }\beta\mathrm{ X) (scT X f) (scExtend Xf)
        using scExtend-def[of X] fprops by force
    moreover have fbounded-f:fbounded (scExtend X f) ( }\betaX\mathrm{ )
    proof -
    obtain m M where f'topspace X\subseteq{m..M} using fprops by force
    hence extend-on-embedded: e f'(scEmbeddedCopy X)\subseteq{m..M}
        using scExtend-extends[of X] e-def
            by (smt (verit, ccfv-SIG) fprops assms(1) image-cong image-image scEm-
beddedCopy-def)
    hence ef'(topspace ( }\betaX))\subseteq{m..M
    proof -
            { fix p assume pprops: p \ine f'(topspace ( }\betaX)\mathrm{ )
            then obtain v where vprops: v\in topspace ( }\betaX)\wedgep=efv\mathrm{ by auto
            { fix U assume Uprops: openin (scT Xf) U\wedge p\inU
            define V where V = inverse' (ef) (topspace ( }\betaX)\mathrm{ ) U
            hence openin ( }\betaX\mathrm{ ) V
                            using c-embedded-f Uprops e-def unfolding continuous-map-def
inverse'-def
            by auto
            moreover have topspace ( }\beta\mathrm{ X) = ( }\beta\mathrm{ X) closure-of scEmbeddedCopy X
                    using scCompactification-def[of X] closure-of-subset-topspace[of \beta X
scEmbeddedCopy X]
                    dense-embedding-scEmbed[of X] scEmbeddedCopy-def[of X]
            by (metis assms closure-of-subtopology-open embedding-map-in-subtopology
                    subtopology-topspace topspace-subtopology)
            moreover have v\inV\wedgev\in topspace ( }\beta\mathrm{ X)
                using vprops V-def Uprops unfolding inverse'-def by auto
            ultimately obtain x where xprops: x f scEmbeddedCopy X\wedgex\inV
                    using in-closure-of[of v \beta X scEmbeddedCopy X]
                    by presburger
            define w where w}=ef
            hence w}\in{m..M} using extend-on-embedded xprops by blas
            moreover have w\inU using w-def xprops vprops V-def
            by (simp add: inverse'-alt)
            ultimately have }\exists\mathrm{ w.w}
        }
                            hence }\forallU.\mathrm{ openin (scTXf) U^pGU }\longrightarrow(\existsw.w\inU\cap{m..M}
by auto
            moreover have p\intopspace (scTXf)
                            by (metis e-def Int-iff vprops c-embedded-f continuous-map-preimage-topspace
vimageE)
            ultimately have p\in(scT Xf) closure-of {m..M}
            using in-closure-of[of p scT Xf {m..M}]
            by auto
```

```
            hence }p\in\mathrm{ euclideanreal closure-of {m..M}
            using scT-def[of X] range'-def[of X f]
            by (metis (no-types, lifting) closure-of-subtopology-subset fprops re-
strict-apply' subsetD)
            hence }p\in{m..M}\mathrm{ by auto
            }
            thus ?thesis by auto
        qed
        thus ?thesis by (metis e-def atLeastAtMost-iff image-subset-iff)
    qed
    ultimately have scExtend Xf\inC* (\betaX)
        using scT-def[of X] continuous-map-into-fulltopology fprops by auto
}
    hence }\forallf\inC*X.scExtend Xf\inC*(\betaX) by aut
    thus ?thesis using assms scExtend-extends by blast
qed
lemma cstar-embedding-scEmbed:
    assumes tych-space X
    shows cstar-embedding X ( }\beta\timesX)(scEmbed X
    using assms scExtend-extends-cstar[of X] dense-embedding-scEmbed[of X]
    by meson
A compact Hausdorff space is its own Stone-Cech compactification
lemma scCompactification-of-compact-Hausdorff:
assumes compact-Hausdorff X
shows homeomorphic-map X ( }\beta\mathrm{ X) (scEmbed X)
proof -
    have dense:dense-embedding X ( }\beta\mathrm{ X) (scEmbed X)
    by (simp add: assms compact-Hausdorff-imp-tych dense-embedding-scEmbed)
    moreover have closed: closed-map X ( }\beta\mathrm{ X) (scEmbed X)
    by (meson T1-Spaces.continuous-imp-closed-map assms compact-Hausdorff-imp-tych
                    continuous-map-in-subtopology embedding-map-def dense
                    homeomorphic-eq-everything-map scCompactification-compact-Hausdorff)
    moreover have open-map X ( }\beta\mathrm{ X) (scEmbed X)
    by (metis closed closure-of-subset-eq dense-in-def embedding-imp-closed-map-eq
                            embedding-map-def homeomorphic-imp-open-map local.dense subtopol-
ogy-superset)
    thus ?thesis
    by (metis closed closure-of-subset-eq dense-in-def embedding-imp-closed-map-eq
                embedding-map-def local.dense subtopology-superset)
qed
```


4.4 The Stone-Čech Extension Property: Any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from βX to K.

```
proposition gof-cstar:
    assumes compact-Hausdorff K
and continuous-map X Kf
shows }\quad\forallg\inC*K.(gof)\inC*
proof -
    have tych-K: tych-space K
        using assms(1) compact-Hausdorff-imp-tych by auto
    { fix g assume gprops: g}\inC*
        have continuous-map K (scT K g)g
            using scT-def[of K] range'-def[of K g] cstar-types-restricted[of K] assms(2)
                gprops weak-generators-continuous[of K topspace K cstar-id K (scT K)
(C*K)g]
            by (metis (mono-tags, lifting) closure-of-topspace continuous-map-image-closure-subset
                continuous-map-in-subtopology mem-Collect-eq restrict-apply')
    hence cts-scT: continuous-map X (scT K g) (gof)
            using assms by (simp add: continuous-map-compose)
    hence gofprops: (gof) \in(CX)
            using scT-def[of K] range'-def[of K]
    by (metis (mono-tags, lifting) continuous-map-in-subtopology gprops mem-Collect-eq
restrict-apply')
    moreover have fbounded (gof) X
    proof -
            have compact (g'topspace K) using assms(1) gprops
                using compact-space-def compactin-euclidean-iff image-compactin by blast
            hence bounded (g'topspace K)
                by (simp add: compact-imp-bounded)
            moreover have (gof)'topspace X\subseteqg'topspace K
                by (metis assms(2) continuous-map-image-subset-topspace image-comp im-
age-mono)
            ultimately have bounded ((gof)'topspace X)
                by (metis bounded-subset)
            thus ?thesis using bounded-range-iff-fbounded[of g of X] gofprops by auto
        qed
        ultimately have (gof)\inC* X by auto
    }
    thus ?thesis by auto
qed
proposition scEmbed-range:
    assumes tych-space X
and }\quadx\in\mathrm{ topspace }
shows scEmbed X x topspace ( }\betaX\mathrm{ )
    using assms(1) assms(2) dense-embedding-scEmbed embedding-map-in-subtopology
```


by fastforce

```
proposition scEmbed-range':
    assumes tych-space X
and }\quadx\in\mathrm{ topspace }
shows scEmbed X x topspace (scProduct X)
    using assms(1) assms(2) scEmbed-range[of X]
    by (simp add: scCompactification-def)
```

proposition scProjection:
shows $\forall f \in C * X . \forall p \in$ topspace (scProduct X). scProject $X f p=p f$
using scProject-def[of X] scProduct-def[of X] product-projection[of C* X scT X]
by simp
proposition scProjections-continuous:
shows $\forall f \in C * X$. continuous-map (scProduct $X)(s c T X f)($ scProject $X f)$
proof -
have $\forall f \in C * X$. continuous-map (scProduct X) (scTXf) (scProject Xf)
using scProduct-def[of X] scProject-def[of X]
by (metis (mono-tags, lifting) projections-continuous restrict-apply')
thus ?thesis using scCompactification-def $[$ of $X]$ by simp
qed
proposition continuous-embedding-inverse:
assumes embedding-map $X Y e$
shows $\exists e^{\prime}$. continuous-map (subtopology $Y(e$ 'topspace $\left.X)\right) X e^{\prime} \wedge(\forall x \in$
topspace X. $\left.e^{\prime}(e x)=x\right)$
by (meson assms embedding-map-def homeomorphic-map-maps homeomorphic-maps-def)

```
lemma scExtension-exists:
    assumes tych-space \(X\)
and compact-Hausdorff \(K\)
shows \(\quad \forall f \in \operatorname{cts}[X, K] . \exists F \in \operatorname{cts}[\beta X, K] .(\forall x \in\) topspace \(X . F\) (scEmbed
\(X x)=f x\) )
proof-
    \{ fix \(f\) assume fprops: \(f \in \operatorname{cts}[X, K]\)
```

have tych-K: tych-space K using assms(2) compact-Hausdorff-imp-tych[of $K]$ by simp
define X space where X space $=$ topspace $($ scProduct $X)$
define Kspace where Kspace $=$ topspace $($ scProduct $K)$
define H where $H=(\lambda p \in X$ space.$\lambda g \in C * K$. scProject $X(g o f) p)$

```
    have H-of-scEmbed: }\forallx\in\mathrm{ topspace X . H(scEmbed X x) = scEmbed K (fx)
    proof -
    { fix x assume xprops: x \in topspace X
        hence H(scEmbed X x) = ( }\lambdap\in\mathrm{ Xspace. . g g C C*K. scProject X (g
o f) p) (scEmbed X x)
            using H-def by auto
            moreover have (scEmbed X x) \in Xspace
            using Xspace-def assms(1) scEmbed-range'[of X x] xprops by auto
        ultimately have H(scEmbed X x)}=(\lambdag\inC*K.scProject X (gof
(scEmbed X x))
            by auto
        also have ... = (\lambdag\inC*K.(gof) x)
            using assms(2) gof-cstar[of KX f] xprops fprops assms(1)
            scEmbed-then-project[where }x=x\mathrm{ and }X=X
            by (metis (no-types, lifting) mem-Collect-eq restrict-ext)
            also have ... = (\lambda g\inC*K.g(fx)) by auto
            finally have H(scEmbed X x)=scEmbed K (fx)
            using scEmbed-def[of K] cstar-id-def[of K] evaluation-map-def[of K cstar-id
KC*K]
            by (smt (verit) continuous-map-image-subset-topspace fprops xprops im-
                age-subset-iff
                    mem-Collect-eq restrict-apply' restrict-ext xprops)
    }
        thus ?thesis by auto
    qed
    hence H-on-embedded: H'scEmbeddedCopy X \subseteq scEmbeddedCopy K
    proof -
        { fix p assume p\inH'scEmbeddedCopy X
```



```
            then obtain x where xprops: }x\in\mathrm{ topspace }X\wedgeq=scEmbed X x
            using scEmbeddedCopy-def[of X] by auto
            hence p}=\mathrm{ scEmbed K (fx) using qprops H-of-scEmbed by auto
            hence p}\in\mathrm{ scEmbeddedCopy K
            using scEmbeddedCopy-def[of K] xprops qprops fprops
                by (metis continuous-map-image-subset-topspace image-eqI in-mono
mem-Collect-eq)
            }
            thus ?thesis by auto
    qed
    have components-cts: }\forallg\inC*K.continuous-map (scProduct X) (scT K g
(\lambdax\in Xspace.H x g)
    proof -
            {fix g}\mathrm{ assume gprops: g}\inC*
            have continuous-map (scProduct X) (scT X (gof)) ( \lambdax\inXspace.Hx
g)
```

```
    proof -
```

 have \(\forall f \in C * X\). continuous-map (scProduct \(X)(s c T X f)(s c P r o j e c t ~ X\)
 f)
using scProjections-continuous $[$ of $X]$ by simp
hence continuous-map (scProduct X) (scT X (gof)) (scProject X (go
f))
using assms(2) fprops gprops gof-cstar $[$ of $K X f]$ by auto
moreover have $\forall x \in X$ space. $H x g=($ scProject $X(g o f)) x$
using gprops H-def Xspace-def
by auto
ultimately show ?thesis
using Xspace-def continuous-map-eq by fastforce
qed
moreover have scTX(gof)=subtopology (scTKg)(rangéX(gof))
proof -
have (g of) 'topspace $X \subseteq g$ 'topspace K
using gprops fprops unfolding continuous-map-def by auto
hence range ${ }^{\prime} X(g o f) \subseteq$ range $^{\prime} K g$
unfolding range ${ }^{\prime}$-def by (meson closure-of-mono)
hence top-of-set (range' $X(g o f)$)
$=$ subtopology $\left(\right.$ top-of-set $\left(\right.$ range $\left.\left.^{\prime} K g\right)\right)\left(\right.$ range $^{\prime} X(g$ of $\left.)\right)$
by (simp add: inf.absorb-iff2 subtopology-subtopology)
hence $s c T X(g \circ f)=$ subtopology $(s c T K g)($ range' $X(g o f))$
using scT-def[of X] scT-def[of K] gprops assms(2) gof-cstar[of $K X f]$
fprops by auto
thus ?thesis by auto
qed
ultimately have continuous-map (scProduct $X)(s c T K g)(\lambda x \in X s p a c e$
. $H x g$)
using continuous-map-in-subtopology by auto
\}
thus ?thesis by auto
qed
hence Hcts: continuous-map (scProduct X) (scProduct K) H
using continuous-map-coordinatewise-then-product[of $C * K$ scProduct X scT
K H]
scProduct-def[of X] scProduct-def[of K] H-def Xspace-def
by (smt (verit, del-insts) continuous-map-eq restrict-apply)
have H-on-beta: H 'topspace $(\beta X) \subseteq$ scEmbeddedCopy K
proof -
have H 'scEmbeddedCopy $X \subseteq$ scEmbeddedCopy K using H-on-embedded
by auto
hence H 'topspace $(\beta X) \subseteq$ scProduct K closure-of scEmbeddedCopy K
using scCompactification-def[of X] Hcts closure-of-mono
continuous-map-eq-image-closure-subset by fastforce
thus ?thesis using scEmbeddedCopy-def
by (metis assms(2) closure-of-subset-topspace homeomorphic-imp-surjective-map
scCompactification-def scCompactification-of-compact-Hausdorff topspace-subtopology-subset)
qed
have embeds: dense-embedding $K(\beta K)(s c E m b e d ~ K)$ using dense-embedding-scEmbed[of $K]$ tych- K by auto
have closed: closedin (scProduct K) (scEmbeddedCopy K)
using assms(2) scEmbeddedCopy-def[of X] scCompactification-def[of K] scCompactification-compact-Hausdorff[of K]
by (metis closure-of-eq closure-of-subset-topspace closure-of-topspace dense-in-def embeds
homeomorphic-map-closure-of scCompactification-of-compact-Hausdorff scEmbeddedCopy-def
topspace-subtopology-subset)
hence onto: scEmbeddedCopy $K=$ topspace (β K)
using scCompactification-def[of K]
by (metis closure-of-closedin closure-of-subset-topspace topspace-subtopology-subset)
then obtain e^{\prime}
where e^{\prime} props: continuous-map $(\beta K) K e^{\prime}$
$\wedge\left(\forall x \in\right.$ topspace $K . e^{\prime}($ scEmbed $\left.K x)=x\right)$
by (metis continuous-embedding-inverse embeds scEmbeddedCopy-def subtopology-topspace)
define F where $F=e^{\prime}$ o ($\lambda p \in$ topspace (βX). restrict H (topspace $\left.\beta X\right)$ p)
have $F c t s: F \in \operatorname{cts}[\beta X, K]$
proof -
have $(\lambda p \in$ topspace (βX). restrict H (topspace $\beta X) p) \in \operatorname{cts}[\beta X$, scProduct $K]$
using Hcts Xspace-def continuous-map-from-subtopology scCompactifica-tion-def
by (metis closedin-subset closedin-topspace mem-Collect-eq restrict-continuous-map)
moreover have H^{\prime} (topspace βX) \subseteq topspace (β K)
using Xspace-def H-on-beta Xspace-def scCompactification-def[of K] onto by blast
ultimately have $(\lambda p \in$ topspace (βX). restrict H (topspace $\beta X) p) \in$ cts $\left[\begin{array}{lll}\beta & X, & \beta\end{array}\right]$
using scCompactification- $\operatorname{def}[$ of $K]$
by (metis closed closure-of-closedin continuous-map-in-subtopology im-age-restrict-eq mem-Collect-eq onto)
moreover have $e^{\prime} \in \operatorname{cts}[\beta K, K]$ using e^{\prime} props by simp
ultimately show ?thesis
using F-def continuous-map-compose $[$ of $\beta X \beta K(\lambda p \in$ topspace (βX).
restrict H (topspace βX) p)]
by auto
qed
moreover have Fextends: $\forall x \in$ topspace $X .(F$ o scEmbed $X) x=f x$ proof -
\{ fix x assume x props: $x \in$ topspace X
have $(F$ o scEmbed $X) x=F(s c E m b e d X x)$ by auto
moreover have scEmbed $X x \in$ topspace (βX)
using assms(1) scEmbed-range $[$ of $X x]$ xprops by auto
ultimately have (F o scEmbed X) x
$=\left(e^{\prime}\right.$ o $(\lambda p \in$ topspace (βX). restrict $H($ topspace $\left.\beta X) p)\right)($ scEmbed
X x)
using F-def by simp
also have $\ldots=\left(e^{\prime}\right.$ o $(\lambda p \in$ topspace $\left.(\beta X) . H p)\right)(s c E m b e d X x)$ by auto
finally have step 1: (Fo scEmbed $X) x=e^{\prime}((\lambda p \in$ topspace $(\beta X) . H p)$ (scEmbed $X x$)) by auto
have $(\lambda p \in$ topspace $(\beta X) . H p)(s c E m b e d X x)=H(s c E m b e d X x)$ using scEmbed-range $[$ of $X x]$ assms(1) xprops by auto
also have $\ldots=$ scEmbed $K(f x)$ using H-of-scEmbed xprops by auto
finally have step2: $(\lambda p \in$ topspace $(\beta X) . H p)(s c E m b e d X x)=s c E m b e d$ $K(f x)$

> by auto
have $(F$ o scEmbed $X) x=e^{\prime}((\lambda p \in$ topspace (βX). H p) (scEmbed X
$x)$)
using step 1 by simp
also have $\ldots=e^{\prime}($ scEmbed $K(f x))$ using step2 by auto
finally have (F o scEmbed X) $x=f x$
using e^{\prime} props tych-K scEmbed-range[of $\left.K f x\right]$ xprops fprops
by (metis continuous-map-image-subset-topspace image-subset-iff mem-Collect-eq)
\}
thus ?thesis by auto
qed
ultimately have $F \in \operatorname{cts}[\beta X, K] \wedge(\forall x \in$ topspace $X . F(s c E m b e d X x)=$ $f x)$
by auto
hence $\exists F \in \operatorname{cts}[\beta X, K] .(\forall x \in$ topspace $X . F($ scEmbed $X x)=f x)$ by auto
\}
thus ?thesis by auto
qed
lemma scExtension-unique:
assumes $F \in \operatorname{cts}[\beta X, K] \wedge(\forall x \in$ topspace $X . F($ scEmbed $X x)=f x)$
and compact-Hausdorff K
shows $\quad(\forall G . G \in \operatorname{cts}[\beta X, K] \wedge(\forall x \in$ topspace $X . G($ scEmbed $X x)=f$
x)
proof -
\{ fix G assume Gprops: $G \in \operatorname{cts}[\beta X, K] \wedge(\forall x \in$ topspace $X . G$ (scEmbed X $x)=f x)$

```
    have }\forallp\in scEmbeddedCopy X.F p=G
    proof -
    { fix p assume pprops: p\in scEmbeddedCopy X
            then obtain x where xprops: }x\in\mathrm{ topspace }X\wedgep=scEmbed X x
            using scEmbeddedCopy-def[of X] by auto
            hence F p=Gpusing assms Gprops by auto
    }
        thus ?thesis by auto
    qed
    moreover have dense-in ( }\beta\mathrm{ X) (scEmbeddedCopy X) (topspace ( }\beta\mathrm{ X))
        by (metis closure-of-subset-topspace dense-in-closure dense-in-def scCompa-
ctification-def
                                    topspace-subtopology-subset)
    moreover have (cts-on \beta X to-shared Hausdorff-space) {F,G}
    proof -
        have Hausdorff-space K using assms(2) by auto
        moreover have }\forallg\in{F,G}.g\incts[\betaX,K
            using assms Gprops by auto
        ultimately have }\existsK.\mathrm{ Hausdorff-space K}\wedge{F,G}\subseteqcts[\betaX,K] by aut
        thus ?thesis by auto
    qed
    ultimately have ( }\forallp\in\mathrm{ topspace ( }\betaX\mathrm{ ) . F p =G p)
        using continuous-maps-on-dense-subset[of F G \beta X scEmbeddedCopy X]
        by auto
    }
    thus ?thesis by auto
qed
lemma scExtension-property:
    assumes tych-space X
and compact-Hausdorff K
shows }\forallf\in\operatorname{cts[X,K].\exists!F\in\mp@subsup{\operatorname{cts}}{E}{}[\betaX,K].(\forallx\in topspace X .F (scEmbed
X x) = f x (
proof -
    { fix f}\mathrm{ assume fprops: f}\in\operatorname{cts[X,K]
    define P where P}=(\lambdag.g\incts [ [\beta X,K]^(\forallx\in topspace X.g(scEmbed
X x) = f x )
            then obtain F where Fprops: F\incts[\beta X,K]^(\forallx\in topspace X .F
(scEmbed X x) = fx)
            using scExtension-exists[of X K] assms fprops by auto
    define F}\mp@subsup{F}{}{\prime}\mathrm{ where F}\mp@subsup{F}{}{\prime}=\mathrm{ restrict F (topspace }\betaX
    have F}\in(\mathrm{ topspace }\betaX)->\mathrm{ topspace K using Fprops continuous-map-def[of
\betaXK F] by auto
    hence F'ext: F' (topspace \betaX) }\mp@subsup{->}{E}{\prime}\mathrm{ topspace K
            using F'-def restrict-def[of F topspace \beta X] extensional-def[of topspace \beta X]
            by auto
    moreover have F'cts: F'\incts[\betaX,K]
    proof -
```

```
    have F', (topspace \betaX) -> topspace K using F'ext by auto
    moreover have }\forallU.{x\in\mathrm{ topspace }\beta\mathrm{ X.Fx 价}={x topspace }\beta\mathrm{ X.
F'}x\inU
            using F'-def by auto
    ultimately show ?thesis using Fprops unfolding continuous-map-def by
auto
    qed
    ultimately have }\mp@subsup{F}{}{\prime}\inct\mp@subsup{s}{E}{}[\betaX,K] by aut
    moreover have F'embed: ( }\forallx\in\mathrm{ topspace X. F' (scEmbed X x)=fx)
    proof -
        have }\forallx\in\mathrm{ topspace X . scEmbed X x topspace }\beta\mathrm{ X
            using assms(1) scEmbed-range[of X] by blast
        thus ?thesis using F'-def Fprops by fastforce
    qed
    ultimately have P F' using P-def by auto
    moreover have }\forallG.PG\longrightarrowG=\mp@subsup{F}{}{\prime
    proof -
        {fix G assume Gprops: P G
            {fix p
                have }\mp@subsup{F}{}{\prime}p=G
                proof (cases p topspace \beta X)
                    case True
                    hence }\mp@subsup{F}{}{\prime}\incts[\betaX,K]\wedge(\forallx\intopspace X. F F'(scEmbed X x)=fx
                    using F'cts F'embed by auto
                moreover have G\incts[\betaX,K]^(\forallx\intopspace X.G (scEmbed X x)
= fx)
                using Gprops P-def by auto
                ultimately show ?thesis
                    using assms(2) scExtension-unique[of F' X K f] True by blast
                next
                        case False
                        hence F'}p=\mathrm{ undefined using }\mp@subsup{F}{}{\prime}\mathrm{ -def by auto
                        moreover have G p= undefined
                    using Gprops P-def extensional-def[of topspace \beta X] False by auto
                    ultimately show ?thesis by auto
                qed
            }
            hence }\forallp.\mp@subsup{F}{}{\prime}p=Gp\mathrm{ by auto
        }
        thus ?thesis by auto
    qed
    ultimately have }\exists!\mp@subsup{F}{}{\prime}.P\mp@subsup{F}{}{\prime}\mathrm{ by blast
    hence }\exists!F\in\mp@subsup{\operatorname{cts}}{E}{}[\betaX,K].(\forallx\in\mathrm{ topspace X.F (scEmbed X x)=fx)
            using P-def by auto
    }
    thus?thesis by auto
qed
```

end

References

[Wal74] Russell C. Walker. The Stone-Čech Compactification. SpringerVerlag, 1974.
[Wil70] Stephen Willard. General Topology. Addison-Wesley, 1970.

