
The Stone-Čech Compactification

Mike Stannett

June 5, 2024

Contents
1 C∗-embedding 4

2 Weak topologies 9
2.1 Tychonov spaces carry the weak topology induced by C∗(X) 14
2.2 A topology is a weak topology if it admits a continuous func-

tion set that separates points from closed sets 19
2.3 A product topology is the weak topology induced by its pro-

jections if the projections separate points from closed sets. . . 21
2.4 Evaluation is an embedding for weak topologies 23

3 Compactification 26
3.1 Definition . 26
3.2 Example: The Alexandroff compactification of a non-compact

locally-compact Hausdorff space 26
3.3 Example: The closure of a subset of a compact space 26
3.4 Example: A compact space is a compactification of itself . . . 27
3.5 Example: A closed non-trivial real interval is a compactifica-

tion of its interior . 27

4 The Stone-Čech compactification of a Tychonov space 28
4.1 Definition of βX . 33
4.2 βX is a compactification of X 34
4.3 Evaluation is a C∗-embedding of X into βX 36
4.4 The Stone-Čech Extension Property: Any continuous map

from X to a compact Hausdorff space K extends uniquely to
a continuous map from βX to K. 39

Building on parts of HOL-Analysis, we provide mathematical components
for work on the Stone-Čech compactification. The main concepts covered
are: C∗-embedding, weak topologies and compactification, focusing in par-
ticular on the Stone-Čech compactification of an arbitrary Tychonov space
X. Many of the proofs given here derive from those of Willard (General

1

Topology, 1970, Addison-Wesley) and Walker (The Stone-Čech Compactifi-
cation, 1974, Springer-Verlag).
Using traditional topological proof strategies we define the evaluation and
projection functions for product spaces, and show that product spaces carry
the weak topology induced by their projections whenever those projections
separate points both from each other and from closed sets.
In particular, we show that the evaluation map from an arbitrary Tychonov
space X into βX is a dense C∗-embedding, and then verify the Stone-Čech
Extension Property: any continuous map from X to a compact Hausdorff
space K extends uniquely to a continuous map from βX to K.

theory Stone-Cech
imports HOL.Topological-Spaces

HOL.Set
HOL−Analysis.Urysohn

begin

Concrete definitions of finite intersections and arbitrary unions, and their
relationship to the Analysis.Abstract_Topology versions.
definition finite-intersections-of :: ′a set set ⇒ ′a set set

where finite-intersections-of S = { (
⋂

F) | F . F ⊆ S ∧ finite ′ F }

definition arbitrary-unions-of :: ′a set set ⇒ ′a set set
where arbitrary-unions-of S = { (

⋃
F) | F . F ⊆ S }

lemma generator-imp-arbitrary-union:
shows S ⊆ arbitrary-unions-of S
unfolding arbitrary-unions-of-def by blast

lemma finite-intersections-container :
shows ∀ s ∈ finite-intersections-of S .

⋃
S ∩ s = s

unfolding finite-intersections-of-def by blast

lemma generator-imp-finite-intersection:
shows S ⊆ finite-intersections-of S
unfolding finite-intersections-of-def by blast

lemma finite-intersections-equiv:
shows (finite ′ intersection-of (λx. x ∈ S)) U ←→ U ∈ finite-intersections-of S
unfolding finite-intersections-of-def intersection-of-def
by auto

lemma arbitrary-unions-equiv:
shows (arbitrary union-of (λ x . x ∈ S)) U ←→ U ∈ arbitrary-unions-of S
unfolding arbitrary-unions-of-def union-of-def arbitrary-def

2

by auto

Supplementary information about topological bases and the topologies they
generate
definition base-generated-on-by :: ′a set ⇒ ′a set set ⇒ ′a set set

where base-generated-on-by X S = { X ∩ s | s . s ∈ finite-intersections-of S}

definition opens-generated-on-by :: ′a set ⇒ ′a set set ⇒ ′a set set
where opens-generated-on-by X S = arbitrary-unions-of (base-generated-on-by X

S)

definition base-generated-by :: ′a set set ⇒ ′a set set
where base-generated-by S = finite-intersections-of S

definition opens-generated-by :: ′a set set ⇒ ′a set set
where opens-generated-by S = arbitrary-unions-of (base-generated-by S)

lemma generators-are-basic:
shows S ⊆ base-generated-by S
unfolding base-generated-by-def finite-intersections-of-def
by blast

lemma basics-are-open:
shows base-generated-by S ⊆ opens-generated-by S
unfolding opens-generated-by-def arbitrary-unions-of-def
by blast

lemma generators-are-open:
shows S ⊆ opens-generated-by S
using generators-are-basic basics-are-open
by blast

lemma generated-topspace:
assumes T = topology-generated-by S
shows topspace T =

⋃
S

using assms by simp

lemma base-generated-by-alt:
shows base-generated-by S = base-generated-on-by (

⋃
S) S

unfolding base-generated-by-def base-generated-on-by-def
using finite-intersections-container [of S]
by auto

lemma opens-generated-by-alt:
shows opens-generated-by S = arbitrary-unions-of (finite-intersections-of S)
unfolding opens-generated-by-def base-generated-by-def
by simp

lemma opens-generated-unfolded:

3

shows opens-generated-by S = {
⋃

A | A . A ⊆ {
⋂

B | B . finite ′ B ∧ B ⊆ S}}
apply (simp add: opens-generated-by-alt)
unfolding finite-intersections-of-def arbitrary-unions-of-def
by blast

lemma opens-eq-generated-topology:
shows openin (topology-generated-by S) U ←→ U ∈ opens-generated-by S

proof −
have openin (topology-generated-by S) = arbitrary union-of finite ′ intersection-of

(λx. x ∈ S)
by (metis generate-topology-on-eq istopology-generate-topology-on topology-inverse ′)

also have . . . = arbitrary union-of (λ U . U ∈ finite-intersections-of S)
using finite-intersections-equiv[of S] by presburger

also have . . . = (λ U . U ∈ arbitrary-unions-of (finite-intersections-of S))
using arbitrary-unions-equiv[of finite-intersections-of S] by presburger

finally show ?thesis
using opens-generated-by-alt by auto

qed

1 C∗-embedding
abbreviation continuous-from-to

:: ′a topology ⇒ ′b topology ⇒ (′a ⇒ ′b) set (cts[-, -])
where continuous-from-to X Y ≡ { f . continuous-map X Y f }

abbreviation continuous-from-to-extensional
:: ′a topology ⇒ ′b topology ⇒ (′a ⇒ ′b) set (ctsE [-, -])

where continuous-from-to-extensional X Y ≡ (topspace X →E topspace Y) ∩
cts[X ,Y]

abbreviation continuous-maps-from-to-shared-where ::
′a topology ⇒ (′b topology ⇒ bool) ⇒ (′a ⇒ ′b) set ⇒ bool (cts ′-on - to ′-shared

-)
where continuous-maps-from-to-shared-where X P

≡ (λ fs . (∃ Y . P Y ∧ fs ⊆ cts[X ,Y]))

definition dense-in :: ′a topology ⇒ ′a set ⇒ ′a set ⇒ bool
where dense-in T A B ≡ T closure-of A = B

lemma dense-in-closure:
assumes dense-in T A B
shows dense-in (subtopology T B) A B
by (metis Int-UNIV-right Int-absorb Int-commute assms closure-of-UNIV clo-

sure-of-restrict
closure-of-subtopology dense-in-def topspace-subtopology)

abbreviation dense-embedding :: ′a topology ⇒ ′b topology ⇒ (′a ⇒ ′b) ⇒ bool
where dense-embedding small big f ≡ (embedding-map small big f)

4

∧ dense-in big (f‘topspace small) (topspace big)

lemma continuous-maps-on-dense-subset:
assumes (cts-on X to-shared Hausdorff-space) {f ,g}

and dense-in X D (topspace X)
and ∀ x ∈ D . f x = g x
shows ∀ x ∈ topspace X . f x = g x
proof −

obtain Y where continuous-map X Y f ∧ continuous-map X Y g ∧ Haus-
dorff-space Y

using assms(1) by auto
thus ?thesis using assms dense-in-def forall-in-closure-of-eq by fastforce

qed

lemma continuous-map-on-dense-embedding:
assumes (cts-on X to-shared Hausdorff-space) {f ,g}

and dense-embedding D X e
and ∀ d ∈ topspace D . (f o e) d = (g o e) d
shows ∀ x ∈ topspace X . f x = g x

using assms continuous-maps-on-dense-subset[of f g X e ‘ topspace D]
unfolding dense-in-def by fastforce

definition range ′ :: ′a topology ⇒ (′a ⇒ real) ⇒ real set
where range ′ X f = euclideanreal closure-of (f ‘ topspace X)

abbreviation fbounded-below :: (′a ⇒ real) ⇒ ′a topology ⇒ bool
where fbounded-below f X ≡ (∃ m . ∀ y ∈ topspace X . f y ≥ m)

abbreviation fbounded-above :: (′a ⇒ real) ⇒ ′a topology ⇒ bool
where fbounded-above f X ≡ (∃ M . ∀ y ∈ topspace X . f y ≤ M)

abbreviation fbounded :: (′a ⇒ real) ⇒ ′a topology ⇒ bool
where fbounded f X ≡ (∃ m M . ∀ y ∈ topspace X . m ≤ f y ∧ f y ≤ M)

lemma fbounded-iff :
shows fbounded f X ←→ fbounded-below f X ∧ fbounded-above f X
by auto

abbreviation c-of :: ′a topology ⇒ (′a ⇒ real) set (C (-))
where C (X) ≡ { f . continuous-map X euclideanreal f }

abbreviation cstar-of :: ′a topology ⇒ (′a ⇒ real) set (C∗(-))
where C∗ X ≡ { f | f . f ∈ c-of X ∧ fbounded f X }

definition cstar-id :: ′a topology ⇒ (′a ⇒ real) ⇒ ′a ⇒ real
where cstar-id X = (λ f ∈ C∗ X . f)

5

abbreviation c-embedding :: ′a topology ⇒ ′b topology ⇒ (′a ⇒ ′b) ⇒ bool
where c-embedding S X e ≡ embedding-map S X e ∧

(∀ fS ∈ C (S) . ∃ fX ∈ C (X) . ∀ x ∈ topspace S . fS x =
fX (e x))

abbreviation cstar-embedding :: ′a topology ⇒ ′b topology ⇒ (′a ⇒ ′b) ⇒ bool
where cstar-embedding S X e ≡ embedding-map S X e ∧

(∀ fS ∈ C∗(S) . ∃ fX ∈ C∗(X) . ∀ x ∈ topspace S . fS x
= fX (e x))

definition c-embedded :: ′a topology ⇒ ′b topology ⇒ bool
where c-embedded S X ≡ (∃ e . c-embedding S X e)

definition cstar-embedded :: ′a topology ⇒ ′b topology ⇒ bool
where cstar-embedded S X ≡ (∃ e . cstar-embedding S X e)

lemma bounded-range-iff-fbounded:
assumes f ∈ C X
shows bounded (f ‘ topspace X) ←→ fbounded f X

(is ?lhs ←→ ?rhs)
proof

assume ?lhs
then obtain x e where ∀ y ∈ f ‘ topspace X . dist x y ≤ e

using bounded-def [of f ‘ topspace X] by auto
hence ∀ y ∈ f ‘ topspace X . y ∈ { (x−e) .. (x+e) }

using dist-real-def by auto
thus ?rhs by auto

next
assume ?rhs
then obtain m M where ∀ y ∈ f ‘ topspace X . y ∈ {m..M} by auto
thus ?lhs using bounded-closed-interval[of m M] subsetI bounded-subset

by meson
qed

Combinations of functions in C(X) and C∗(X)

abbreviation fconst :: real ⇒ ′a ⇒ real
where fconst v ≡ (λ x . v)

definition fmin :: (′a ⇒ real) ⇒ (′a ⇒ real) ⇒ (′a ⇒ real)
where fmin f g = (λ x . min (f x) (g x))

definition fmax :: (′a ⇒ real) ⇒ (′a ⇒ real) ⇒ (′a ⇒ real)
where fmax f g = (λ x . max (f x) (g x))

definition fmid :: (′a ⇒ real) ⇒ (′a ⇒ real) ⇒ (′a ⇒ real) ⇒ ′a ⇒ real
where fmid f m M = fmax m (fmin f M)

6

definition fbound :: (′a ⇒ real) ⇒ real ⇒ real ⇒ ′a ⇒ real
where fbound f m M = fmid f (fconst m) (fconst M)

lemma fmin-cts:
assumes (f ∈ C X) ∧ (g ∈ C X)
shows fmin f g ∈ C X
using assms continuous-map-real-min[of X f g] fmin-def [of f g] by auto

lemma fmax-cts:
assumes (f ∈ C X) ∧ (g ∈ C X)
shows fmax f g ∈ C X
using assms continuous-map-real-max[of X f g] fmax-def [of f g] by auto

lemma fmid-cts:
assumes (f ∈ C X) ∧ (m ∈ C X) ∧ (M ∈ C X)
shows fmid f m M ∈ C X
unfolding fmid-def using assms fmin-cts[of f X M] fmax-cts[of m X (fmin f

M)]
by auto

lemma fconst-cts:
shows fconst v ∈ C X
by simp

lemma fbound-cts:
assumes f ∈ C X
shows fbound f m M ∈ C X
unfolding fbound-def
using assms fmid-cts[of f X fconst m fconst M] fconst-cts[of m X] fconst-cts[of

M X]
by auto

Bounded and bounding functions
lemma fconst-bounded:

shows fbounded (fconst v) X
by auto

lemma fmin-bounded-below:
assumes fbounded-below f X ∧ fbounded-below g X
shows fbounded-below (fmin f g) X

proof −
obtain mf mg where ∀ y ∈ topspace X . f y ≥ mf ∧ g y ≥ mg using assms by

auto
hence ∀ y ∈ topspace X . fmin f g y ≥ min mf mg unfolding fmin-def min-def

by auto
thus ?thesis by auto

7

qed

lemma fmax-bounded-above:
assumes fbounded-above f X ∧ fbounded-above g X
shows fbounded-above (fmax f g) X

proof −
obtain mf mg where ∀ y ∈ topspace X . f y ≤ mf ∧ g y ≤ mg using assms by

auto
hence ∀ y ∈ topspace X . fmax f g y ≤ max mf mg unfolding fmax-def max-def

by auto
thus ?thesis by auto

qed

lemma fmid-bounded:
assumes fbounded m X ∧ fbounded M X
shows fbounded (fmid f m M) X

proof −
obtain mmin mmax Mmin Mmax

where ∀ y ∈ topspace X . mmin ≤ m y ∧ m y ≤ mmax ∧ Mmin ≤ M y ∧ M
y ≤ Mmax

using assms by blast
hence ∀ y ∈ topspace X . min mmin Mmin ≤ (fmid f m M y) ∧ (fmid f m M y)
≤ max mmax Mmax

unfolding fmid-def fmax-def fmin-def max-def min-def by auto
thus ?thesis by auto

qed

lemma fbound-bounded:
shows fbounded (fbound f m M) X
using fmid-bounded[of X fconst m fconst M] fconst-bounded[of X m] fconst-bounded[of

X M]
unfolding fbound-def by simp

Members of C∗(X)

lemma fconst-cstar :
shows fconst v ∈ C∗ X
using fconst-cts[of v X] fconst-bounded[of X v]
by auto

lemma fbound-cstar :
assumes f ∈ C X
shows fbound f m M ∈ C∗ X
using assms fbound-cts[of f X m M] fbound-bounded[of X f m M]
by auto

lemma cstar-nonempty:
shows {} 6= C∗ X
using fconst-cstar by blast

8

2 Weak topologies
definition funcset-types :: ′a set ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b set
⇒ bool

where funcset-types S F T I = (∀ i ∈ I . F i ∈ S → topspace (T i))

lemma cstar-types:
shows funcset-types (topspace X) (cstar-id X) (λf ∈ C∗ X . euclideanreal) (C∗

X)
unfolding funcset-types-def
by simp

lemma cstar-types-restricted:
shows funcset-types (topspace X) (cstar-id X)

(λf ∈ C∗ X . (subtopology euclideanreal (range ′ X f))) (C∗ X)
proof −

have ∀ f ∈ C∗ X . f ‘ topspace X ⊆ range ′ X f using range ′-def [of X]
by (metis closedin-subtopology-refl closedin-topspace closure-of-subset

topspace-euclidean-subtopology)
thus ?thesis unfolding funcset-types-def

by (simp add: image-subset-iff cstar-id-def)
qed

definition inverse ′ :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ ′a set
where inverse ′ f source target = { x ∈ source . f x ∈ target }

lemma inverse ′-alt:
shows inverse ′ f s t = (f −‘ t) ∩ s
using inverse ′-def [of f s t] by auto

definition open-sets-induced-by-func :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b topology ⇒ ′a set
set

where open-sets-induced-by-func f source T
= { (inverse ′ f source V) | V . openin T V ∧ f ∈ source → topspace

T}

definition weak-generators :: ′a set ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b
set ⇒ ′a set set

where weak-generators source funcs tops index
=

⋃
{ open-sets-induced-by-func (funcs i) source (tops i) | i. i ∈ index }

definition weak-base :: ′a set ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b set ⇒
′a set set

where weak-base source funcs tops index = base-generated-by (weak-generators
source funcs tops index)

9

definition weak-opens :: ′a set ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b set
⇒ ′a set set

where weak-opens source funcs tops index = opens-generated-by (weak-generators
source funcs tops index)

definition weak-topology :: ′a set ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b
set ⇒ ′a topology

where weak-topology source funcs tops index
= topology-generated-by (weak-generators source funcs tops index)

lemma weak-topology-alt:
shows openin (weak-topology S F T I) U ←→ U ∈ weak-opens S F T I
using weak-topology-def [of S F T I] weak-opens-def [of S F T I]

opens-eq-generated-topology[of weak-generators S F T I U]
by auto

lemma weak-generators-exist-for-each-point-and-axis:
assumes x ∈ S

and funcset-types S F T I
and i ∈ I
and b = inverse ′ (F i) S (topspace (T i))
and F i ∈ S → topspace (T i)
shows x ∈ b ∧ b ∈ weak-generators S F T I
proof −

have xprops: x ∈ {r ∈ S . F i r ∈ topspace (T i)}
using assms(2) funcset-types-def [of S F T I] assms(3) assms(1)
by blast

hence part1 : x ∈ b using assms(4) inverse ′-def [of F i S topspace (T i)]
by auto

have openin (T i) (topspace (T i)) by simp
hence b ∈ open-sets-induced-by-func (F i) S (T i)

using open-sets-induced-by-func-def [of F i S T i] assms(4) assms(5)
inverse ′-def [of F i S topspace (T i)] xprops

by auto
thus ?thesis using part1 weak-generators-def [of S F T I] assms(3) by auto

qed

lemma weak-generators-topspace:
assumes W = weak-topology S F T I
shows topspace W =

⋃
(weak-generators S F T I)

using weak-topology-def [of S F T I] assms by simp

lemma weak-topology-topspace:
assumes W = weak-topology S F T I

and funcset-types S F T I
shows (I = {} −→ topspace W = {}) ∧ (I 6= {} −→ topspace W = S)
proof (cases I = {})

case True

10

hence weak-generators S F T I = {} using assms(1) weak-generators-def [of S
F T I] by auto

hence topspace W = {} using assms(1) weak-generators-topspace[of W S F T
I] by simp

then show ?thesis using True by simp
next

case False
then obtain i where iprops: i ∈ I by auto
hence (F i) ‘ S ⊆ topspace (T i)

using assms(2) unfolding funcset-types-def by auto
hence inverse ′ (F i) S (topspace (T i)) = S

using inverse ′-def [of F i S topspace (T i)] by auto
moreover have openin (T i) (topspace (T i)) using weak-generators-def by

simp
ultimately have S ∈ open-sets-induced-by-func (F i) S (T i)

using open-sets-induced-by-func-def [of F i S T i] assms(2) iprops unfolding
funcset-types-def

by auto
hence S ∈ weak-generators S F T I

using weak-generators-def [of S F T I] iprops by auto
hence S ⊆ topspace W

using weak-generators-topspace[of W S F T I] assms by auto

moreover have topspace W ⊆ S
proof −

have openin W (topspace W) by auto
hence topspace W ∈ opens-generated-by (weak-generators S F T I)

using assms(1) unfolding weak-topology-def
using opens-eq-generated-topology[of weak-generators S F T I topspace W]
by simp

then obtain A where topspace W =
⋃

A ∧ A ⊆ {
⋂

B |B. finite ′ B ∧ B ⊆
weak-generators S F T I}

using opens-generated-unfolded[of weak-generators S F T I]
by auto

thus ?thesis using assms(2)
unfolding weak-generators-def open-sets-induced-by-func-def inverse ′-def func-

set-types-def
by blast

qed
ultimately show ?thesis using False by auto

qed

lemma weak-opens-nhood-base:
assumes W = weak-topology S F T I

and openin W U
and x ∈ U
shows ∃ b ∈ weak-base S F T I . x ∈ b ∧ b ⊆ U
proof −

define G where G = weak-generators S F T I

11

hence Wprops: U ∈ opens-generated-by G
using weak-topology-def [of S F T I] opens-eq-generated-topology[of G] assms(1)

assms(2)
by presburger

then obtain B where Bprops: B ⊆ base-generated-by G ∧ U =
⋃

B
unfolding opens-generated-by-def arbitrary-unions-of-def by auto

then obtain b where b ∈ base-generated-by G ∧ x ∈ b
using assms(3) by blast

thus ?thesis using G-def weak-base-def [of S F T I]
by (metis Union-iff Bprops assms(3) subset-eq)

qed

lemma opens-generate-opens:
assumes ∀ b ∈ S . openin T b
shows ∀ U ∈ opens-generated-by S . openin T U
by (metis assms generate-topology-on-coarsest istopology-openin openin-topology-generated-by

opens-eq-generated-topology)

lemma weak-topology-is-weakest:
assumes W = weak-topology S F T I

and funcset-types S F T I
and topspace X = topspace W
and ∀ i ∈ I . continuous-map X (T i) (F i)
and openin W U
shows openin X U
proof −

{ fix b assume bprops: b ∈ weak-generators S F T I
then obtain i where iprops: i ∈ I ∧ b ∈ open-sets-induced-by-func (F i) S

(T i)
using weak-generators-def [of S F T I] by auto

hence Sprops: S = topspace X
using assms(1) assms(2) weak-topology-topspace[of W S F T I]
unfolding funcset-types-def assms(3)
by auto

obtain V where Vprops: openin (T i) V ∧ b = inverse ′ (F i) S V
using iprops open-sets-induced-by-func-def [of F i S T i] by auto

have cts: continuous-map X (T i) (F i) using iprops assms(4) by auto
hence ∀U . openin (T i) U −→ openin X {x ∈ topspace X . F i x ∈ U}

unfolding continuous-map-def by simp
hence openin X {x ∈ topspace X . F i x ∈ V } using Vprops by auto
hence openin X b using Vprops Sprops unfolding inverse ′-def by auto

}
hence ∀ b ∈ weak-generators S F T I . openin X b by auto
hence ∀ c ∈ weak-opens S F T I . openin X c
using assms(5) weak-opens-def [of S F T I] opens-generate-opens[of weak-generators

S F T I X]
by auto

moreover have U ∈ weak-opens S F T I

12

using assms(1) weak-topology-def [of S F T I] weak-opens-def [of S F T I]
opens-eq-generated-topology[of weak-generators S F T I U] assms(5)

by auto
ultimately show ?thesis by auto

qed

lemma weak-generators-continuous:
assumes W = weak-topology S F T I

and funcset-types S F T I
and i ∈ I
shows continuous-map W (T i) (F i)
proof −
have S = topspace W using assms(1) assms(2) assms(3) weak-topology-topspace[of

W S F T I]
unfolding funcset-types-def by auto

hence F i ∈ topspace W → topspace (T i)
using assms funcset-types-def [of S F T I] by auto

moreover have ∀ V . openin (T i) V −→ openin W {x ∈ topspace W . (F i) x
∈ V }

proof −
{ fix V assume Vprops: openin (T i) V

{ assume hyp: inverse ′ (F i) (topspace W) V 6= {}
have {x ∈ topspace W . (F i) x ∈ V } = inverse ′ (F i) (topspace W) V

using inverse ′-def [of F i topspace W V] by simp
moreover have (inverse ′ (F i) (topspace W) V) ∈ open-sets-induced-by-func

(F i) S (T i)
using Vprops assms weak-topology-topspace[of W S F T I] hyp
unfolding open-sets-induced-by-func-def funcset-types-def
by fastforce

ultimately have {x ∈ topspace W . (F i) x ∈ V } ∈ weak-generators S F T
I

using weak-generators-def [of S F T I] assms(3) by auto
hence openin W {x ∈ topspace W . (F i) x ∈ V }

using assms(1) weak-topology-def [of S F T I]
generators-are-open[of weak-generators S F T I]
opens-eq-generated-topology[of weak-generators S F T I {x ∈ topspace

W . (F i) x ∈ V }]
by auto

}
hence inverse ′ (F i) (topspace W) V 6= {} −→ openin W {x ∈ topspace W .

(F i) x ∈ V }
by auto

moreover have inverse ′ (F i) (topspace W) V = {} −→ openin W {x ∈
topspace W . (F i) x ∈ V }

by (metis openin-empty inverse ′-def)
ultimately have openin W {x ∈ topspace W . (F i) x ∈ V } by auto

}
thus ?thesis by auto

qed

13

ultimately show ?thesis using continuous-map-def by blast
qed

lemma funcset-types-on-empty:
shows funcset-types {} F T I
unfolding funcset-types-def by simp

lemma weak-topology-on-empty:
assumes W = weak-topology {} F T I
shows ∀ U . openin W U ←→ U = {}

proof −
have topspace W = {}
using assms(1) weak-topology-topspace[of W {} F T I] funcset-types-on-empty[of

F T I]
by blast

thus ?thesis by simp
qed

2.1 Tychonov spaces carry the weak topology induced by
C∗(X)

abbreviation tych-space :: ′a topology ⇒ bool
where tych-space X ≡ t1-space X ∧ completely-regular-space X

abbreviation compact-Hausdorff :: ′a topology ⇒ bool
where compact-Hausdorff X ≡ compact-space X ∧ Hausdorff-space X

lemma compact-Hausdorff-imp-tych:
assumes compact-Hausdorff K
shows tych-space K
by (simp add: Hausdorff-imp-t1-space assms compact-Hausdorff-or-regular-imp-normal-space

normal-imp-completely-regular-space-A)

lemma tych-space-imp-Hausdorff :
assumes tych-space X
shows Hausdorff-space X

proof −
have Hausdorff-space euclideanreal by auto
moreover have (0 ::real) 6= (1 ::real) by simp
moreover have (0 ::real) ∈ topspace euclideanreal ∧ (1 ::real) ∈ topspace eu-

clideanreal by simp
ultimately have ∃ U V . openin euclideanreal U ∧ openin euclideanreal V ∧

(0 ::real) ∈ U ∧ (1 ::real) ∈ V ∧ disjnt U V
using Hausdorff-space-def [of euclideanreal] by blast

then obtain U V
where UVprops: openin euclideanreal U ∧ openin euclideanreal V ∧ (0 ::real)

∈ U ∧ (1 ::real) ∈ V ∧ disjnt U V
by auto

14

{ fix x y assume xyprops: x ∈ topspace X ∧ y ∈ topspace X ∧ x 6= y
hence closedin X {y} ∧ x ∈ topspace X − {y}

using assms(1) by (simp add: t1-space-closedin-finite)
then obtain f

where fprops: continuous-map X (top-of-set {0 ..1}) f ∧ f x = (0 ::real) ∧ f
y ∈ {1 ::real}

using assms(1) completely-regular-space-def [of X] by blast
hence freal: continuous-map X euclideanreal f ∧ f x = 0 ∧ f y = 1

using continuous-map-into-fulltopology by auto

define U ′ where U ′ = { v ∈ topspace X . f v ∈ U }
define V ′ where V ′ = { v ∈ topspace X . f v ∈ V }
have openin X U ′ ∧ openin X V ′

using U ′-def V ′-def UVprops freal continuous-map-def [of X euclideanreal f]
by auto

moreover have U ′ ∩ V ′ = {} using UVprops U ′-def V ′-def disjnt-def [of U
V] by auto

moreover have x ∈ U ′ ∧ y ∈ V ′ using UVprops U ′-def V ′-def fprops xyprops
by auto

ultimately have ∃ U ′ V ′ . openin X U ′ ∧ openin X V ′ ∧ x ∈ U ′ ∧ y ∈ V ′

∧ disjnt U ′ V ′

using disjnt-def [of U ′ V ′] by auto
}
hence ∀ x y . x ∈ topspace X ∧ y ∈ topspace X ∧ x 6= y

−→ (∃ U ′ V ′ . openin X U ′ ∧ openin X V ′ ∧ x ∈ U ′ ∧ y ∈ V ′ ∧
disjnt U ′ V ′)

by auto
thus ?thesis using Hausdorff-space-def [of X] by blast

qed

lemma cstar-range-restricted:
assumes f ∈ C∗ X
and U ⊆ topspace euclideanreal

shows inverse ′ f (topspace X) U = inverse ′ f (topspace X) (U ∩ range ′ X f)
proof −

define U ′ where U ′ = U ∩ range ′ X f
hence inverse ′ f (topspace X) U ′ ⊆ inverse ′ f (topspace X) U

unfolding inverse ′-def U ′-def by auto
moreover have inverse ′ f (topspace X) U ⊆ inverse ′ f (topspace X) U ′

proof −
{ fix x assume hyp: x ∈ inverse ′ f (topspace X) U

hence f x ∈ U ∩ (f ‘ topspace X) unfolding inverse ′-def by auto
hence f x ∈ U ∩ range ′ X f

unfolding range ′-def
by (metis Int-iff closure-of-subset-Int inf .orderE inf-top-left topspace-euclidean)
hence x ∈ inverse ′ f (topspace X) U ′

unfolding inverse ′-def

15

using U ′-def hyp inverse ′-alt by fastforce
}
thus ?thesis

by (simp add: subsetI)
qed
ultimately show ?thesis using U ′-def by simp

qed

lemma weak-restricted-topology-eq-weak:
shows weak-topology (topspace X) (cstar-id X) (λ f ∈ C∗ X . euclideanreal) (C∗
X)

= weak-topology (topspace X) (cstar-id X) (λ f ∈ C∗ X . subtopology
euclideanreal (range ′ X f)) (C∗ X)
proof −

define T where T = (λ f ∈ C∗ X . euclideanreal)
define T ′ where T ′ = (λ f ∈ C∗ X . subtopology euclideanreal (range ′ X f))
define W where W = weak-topology (topspace X) (cstar-id X) T (C∗ X)
define W ′ where W ′ = weak-topology (topspace X) (cstar-id X) T ′ (C∗ X)

have ∀ f ∈ C∗ X . f ∈ topspace X → topspace (T f)
using T-def unfolding continuous-map-def T-def by auto

have generators: weak-generators (topspace X) (cstar-id X) T (C∗ X)
= weak-generators (topspace X) (cstar-id X) T ′ (C∗ X)

proof −

have weak-generators (topspace X) (cstar-id X) T (C∗ X)
⊆ weak-generators (topspace X) (cstar-id X) T ′ (C∗ X)

proof −
have weak-generators (topspace X) (cstar-id X) T (C∗ X)

⊆ weak-generators (topspace X) (cstar-id X) T ′ (C∗ X)
proof −

{ fix U assume Uprops: U ∈ weak-generators (topspace X) (cstar-id X) T
(C∗ X)

then obtain f where fprops: f ∈ (C∗ X) ∧ U ∈ open-sets-induced-by-func
f (topspace X) (T f)

unfolding weak-generators-def using cstar-id-def [of X]
by (smt (verit) Union-iff mem-Collect-eq restrict-apply ′)

then obtain V where Vprops: U = inverse ′ f (topspace X) V ∧ openin
(T f) V

unfolding open-sets-induced-by-func-def by blast
hence U = inverse ′ f (topspace X) V by auto
hence rtp1 : U ⊆ topspace X unfolding inverse ′-def by auto

have rtp2 : openin (T ′ f) (V ∩ range ′ X f)
proof −

have openin euclideanreal V using fprops Vprops T-def by auto
hence openin (subtopology euclideanreal (range ′ X f)) (V ∩ range ′ X f)

by (simp add: openin-subtopology-Int)

16

thus ?thesis using fprops T ′-def by auto
qed

have rtp3 : f ∈ topspace X → topspace (T ′ f)
proof −

have f ‘ topspace X ⊆ topspace euclideanreal using fprops by auto
hence f ‘ topspace X ⊆ range ′ X f unfolding range ′-def

by (meson closure-of-subset)
thus ?thesis using T ′-def fprops by auto

qed

hence rtp4 : U = inverse ′ f (topspace X) (V ∩ range ′ X f)
proof −

have inverse ′ f (topspace X) (V ∩ range ′ X f) ⊆ U
using Vprops fprops unfolding inverse ′-def by auto

moreover have U ⊆ inverse ′ f (topspace X) (V ∩ range ′ X f)
proof −

{ fix u assume uprops: u ∈ U
hence f u ∈ V using Vprops unfolding inverse ′-def by auto

moreover have f u ∈ range ′ X f using uprops rtp1 unfolding
range ′-def

by (metis closure-of-subset-Int imageI inf-top-left subset-iff
topspace-euclidean)

ultimately have u ∈ inverse ′ f (topspace X) (V ∩ range ′ X f)
unfolding inverse ′-def range ′-def using rtp1 uprops by force

}
thus ?thesis by auto

qed
ultimately show ?thesis by auto

qed

have U ∈ open-sets-induced-by-func f (topspace X) (T ′ f)
using rtp1 rtp2 rtp3 rtp4 unfolding open-sets-induced-by-func-def
by blast

hence U ∈ weak-generators (topspace X) (cstar-id X) T ′ (C∗ X)
using fprops weak-generators-def [of (topspace X) (cstar-id X) T ′ (C∗

X)] cstar-id-def [of X]
by (smt (verit, best) Sup-upper in-mono mem-Collect-eq restrict-apply ′)

}
thus ?thesis by auto

qed
thus ?thesis by auto

qed

moreover have weak-generators (topspace X) (cstar-id X) T ′ (C∗ X)
⊆ weak-generators (topspace X) (cstar-id X) T (C∗ X)

proof −
{ fix U assume Uprops: U ∈ weak-generators (topspace X) (cstar-id X) T ′

(C∗ X)

17

then obtain f where fprops: f ∈ (C∗ X) ∧ U ∈ open-sets-induced-by-func
f (topspace X) (T ′ f)

unfolding weak-generators-def using cstar-id-def [of X]
by (smt (verit) Union-iff mem-Collect-eq restrict-apply ′)

then obtain V where Vprops: U = inverse ′ f (topspace X) V ∧ openin
(T ′ f) V

unfolding open-sets-induced-by-func-def by blast

have T ′ f = subtopology (T f) (topspace (T ′ f))
using T-def T ′-def fprops unfolding range ′-def by auto

moreover have openin (T ′ f) V using Vprops by simp
ultimately obtain Vbig where Vbigprops: openin (T f) Vbig ∧ V = Vbig

∩ (topspace (T ′ f))
using openin-subtopology[of T f topspace (T ′ f)]
by auto

have Vrestrict: Vbig ∩ topspace (T ′ f) = Vbig ∩ range ′ X f
using T ′-def fprops by auto

have Vrange: inverse ′ f (topspace X) (Vbig ∩ range ′ X f) = inverse ′ f
(topspace X) Vbig

proof −
{ fix x assume x ∈ inverse ′ f (topspace X) Vbig

hence x ∈ topspace X ∧ f x ∈ Vbig ∩ range ′ X f
using range ′-def [of X f]

by (metis Int-iff closure-of-subset image-subset-iff inverse ′-alt subset-UNIV

topspace-euclidean vimage-eq)
hence x ∈ inverse ′ f (topspace X) (Vbig ∩ range ′ X f) unfolding

inverse ′-def by auto
}
hence inverse ′ f (topspace X) Vbig ⊆ inverse ′ f (topspace X) (Vbig ∩

range ′ X f) by auto
thus ?thesis unfolding inverse ′-def by auto

qed
hence U = inverse ′ f (topspace X) Vbig ∧ openin (T f) Vbig

by (simp add: Vbigprops Vprops Vrestrict)
moreover have fcstar : f ∈ C∗ X using fprops by simp
ultimately have U ∈ open-sets-induced-by-func f (topspace X) (T f)

using open-sets-induced-by-func-def [of f topspace X euclideanreal] T-def
by auto

hence U ∈ open-sets-induced-by-func (cstar-id X f) (topspace X) (T f) ∧ f
∈ C∗ X

using fcstar cstar-id-def [of X] by auto
hence U ∈ weak-generators (topspace X) (cstar-id X) T (C∗ X)

using fcstar unfolding weak-generators-def by auto
}
thus ?thesis by auto

18

qed
ultimately show ?thesis by auto

qed
thus ?thesis by (simp add: T-def T ′-def weak-topology-def cstar-id-def)

qed

2.2 A topology is a weak topology if it admits a continuous
function set that separates points from closed sets

definition funcset-separates-points :: ′a topology ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ ′b set ⇒
bool

where funcset-separates-points X F I
= (∀ x ∈ topspace X . ∀ y ∈ topspace X . x 6= y −→ (∃ i ∈ I . F i x 6=

F i y))

definition funcset-separates-points-from-closed-sets ::
′a topology ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ (′b ⇒ ′c topology) ⇒ ′b set ⇒ bool

where funcset-separates-points-from-closed-sets X F T I
= (∀ x . ∀ A . closedin X A ∧ x ∈ (topspace X − A)

−→ (∃ i ∈ I . F i x /∈ (T i) closure-of (F i ‘ A)))

lemma funcset-separates-points-from-closed-sets-imp-weak:
assumes funcset-separates-points-from-closed-sets X F T I

and ∀ i ∈ I . continuous-map X (T i) (F i)
and W = weak-topology (topspace X) F T I
and funcset-types (topspace X) F T I

shows X = W
proof −

{ fix U assume Uhyp: openin X U
{ fix x assume xhyp: x ∈ U

define A where A = (topspace X) − U
have xinX : x ∈ topspace X using Uhyp xhyp openin-subset by auto
moreover have Aprops: closedin X A ∧ x /∈ A using Uhyp xhyp A-def by

auto
ultimately obtain i where iprops: i ∈ I ∧ F i x /∈ (T i) closure-of (F i ‘

A)
using assms(1) funcset-separates-points-from-closed-sets-def [of X F T I] by

auto

define V where V = topspace (T i) − (T i) closure-of (F i ‘ A)
define R where R = { p ∈ (topspace X) . F i p ∈ V }

have Vopen: openin (T i) V ∧ F i x ∈ V using iprops xinX V-def
by (metis DiffI Int-iff assms(2) closedin-closure-of continuous-map-preimage-topspace

openin-diff openin-topspace vimage-eq)
hence x ∈ R using R-def assms(2) xinX by simp
moreover have R ⊆ U
proof −

have F i ‘ R ⊆ V using R-def by auto

19

hence F i ‘ R ∩ (T i) closure-of (F i ‘ A) = {} using V-def by auto
moreover have F i ‘ A ⊆ (T i) closure-of (F i ‘ A)
by (metis Aprops assms(2) closure-of-eq continuous-map-subset-aux1 iprops)
ultimately have F i ‘ R ∩ (F i ‘A) = {} by auto
hence R ∩ A = {} by auto
thus ?thesis using A-def R-def by auto

qed
moreover have openin W R
proof −

have R = inverse ′ (F i) (topspace X) V
by (simp add: R-def inverse ′-def)

hence R ∈ open-sets-induced-by-func (F i) (topspace X) (T i)
using open-sets-induced-by-func-def [of F i topspace X T i] Vopen

assms(2) continuous-map-funspace iprops by fastforce
hence R ∈ weak-generators (topspace X) F T I

using weak-generators-def [of topspace X F T I] iprops by auto
thus ?thesis using generators-are-open[of weak-generators (topspace X) F

T I]
opens-eq-generated-topology[of weak-generators (topspace X) F T I R]

assms(3)
by (simp add: topology-generated-by-Basis weak-topology-def)

qed
ultimately have x ∈ R ∧ R ⊆ U ∧ openin W R by auto
hence ∃ R . x ∈ R ∧ R ⊆ U ∧ openin W R by auto

}
hence ∀ x . x ∈ U −→ (∃ R . x ∈ R ∧ R ⊆ U ∧ openin W R)

by auto
hence openin W U by (meson openin-subopen)

}
hence XimpW : ∀ U . openin X U −→ openin W U by auto

moreover have ∀ U . openin W U −→ openin X U
proof −

have topspace X = topspace W
using assms(3) assms(4) weak-topology-topspace[of W topspace X F T I]

by (metis XimpW openin-topspace openin-topspace-empty subtopology-eq-discrete-topology-empty)
thus ?thesis
using assms(3) assms(4) assms(2) weak-topology-is-weakest[of W topspace X

F T I X]
by blast

qed
ultimately show ?thesis by (meson topology-eq)

qed

The canonical functions on a product space: evaluation and projection
definition evaluation-map :: ′a topology ⇒ (′b ⇒ ′a ⇒ ′c) ⇒ ′b set ⇒ ′a ⇒ ′b ⇒
′c

where evaluation-map X F I = (λ x ∈ topspace X . (λ i ∈ I . F i x))

20

definition product-projection :: (′a ⇒ ′b topology) ⇒ ′a set ⇒ ′a ⇒ (′a ⇒ ′b) ⇒
′b

where product-projection T I = (λ i ∈ I . (λ p ∈ topspace (product-topology T
I) . p i))

lemma product-projection:
shows ∀ i ∈ I . ∀ p ∈ topspace (product-topology T I) . product-projection T I

i p = p i
using product-projection-def [of T I] by simp

lemma evaluation-then-projection:
assumes ∀ i ∈ I . F i ∈ topspace X → topspace (T i)

shows ∀ i ∈ I . ∀ x ∈ topspace X . ((product-projection T I i) o (evaluation-map
X F I)) x = F i x
proof −

{ fix i assume iprops: i ∈ I
{ fix x assume xprops: x ∈ topspace X

have Fix: (λ i ∈ I . F i x) ∈ topspace (product-topology T I) using xprops
assms(1) by auto

have ((product-projection T I i) o (evaluation-map X F I)) x
= (product-projection T I i) ((λ x ∈ topspace X . (λ i ∈ I . F i x)) x)

unfolding evaluation-map-def by auto
moreover have . . . = (product-projection T I i) (λ i ∈ I . F i x) using

xprops by simp
moreover have . . . = (λ p ∈ topspace (product-topology T I) . p i) (λ i ∈ I

. F i x)
unfolding product-projection-def using iprops by auto

moreover have . . . = F i x using Fix iprops by simp
ultimately have ((product-projection T I i) o (evaluation-map X F I)) x =

F i x by auto
}
hence ∀ x ∈ topspace X . ((product-projection T I i) o (evaluation-map X F

I)) x = F i x
by auto

}
thus ?thesis by auto

qed

2.3 A product topology is the weak topology induced by its
projections if the projections separate points from closed
sets.

lemma projections-continuous:
assumes P = product-topology T I

and F = (λ i ∈ I . product-projection T I i)
shows ∀ i∈I . continuous-map P (T i) (F i)

using assms(1) assms(2) product-projection-def [of T I]
by fastforce

21

lemma product-topology-eq-weak-topology:
assumes P = product-topology T I

and F = (λ i ∈ I . product-projection T I i)
and W = weak-topology (topspace P) F T I
and funcset-types (topspace P) F T I
and funcset-separates-points-from-closed-sets P F T I
shows P = W
using assms product-projection-def [of T I] projections-continuous

funcset-separates-points-from-closed-sets-imp-weak[of P F T I W]
by simp

Reducing the domain and minimising the range of continuous functions, and
related results concerning weak topologies.
lemma continuous-map-reduced:

assumes continuous-map X Y f
shows continuous-map (subtopology X S) (subtopology Y (f‘S)) (restrict f S)
using assms continuous-map-from-subtopology continuous-map-in-subtopology by

fastforce

lemma inj-on-imp:
assumes inj-on f S
shows ∀ y . (y ∈ f ‘ S) ←→ (∃ x ∈ S . y = f x)

by (simp add: image-iff)

lemma injection-on-intersection:
assumes inj-on f S

and B 6= {}
and ∀ b ∈ B . b ⊆ S

shows f ‘ (
⋂

B) =
⋂
{ f ‘ b | b . b ∈ B }

(is ?lhs = ?rhs)
proof −

have ?lhs ⊆ ?rhs by auto
moreover have ?rhs ⊆ ?lhs
proof −

{ fix y assume rhs: y ∈ ?rhs
then obtain b where bprops: y ∈ f ‘ b ∧ b ∈ B

by (smt (verit, del-insts) Inter-iff assms(2) ex-in-conv mem-Collect-eq)
then obtain x where xprops: x ∈ b ∧ b ∈ B ∧ y = f x by auto

have ∀ b ∈ B . y ∈ f ‘ b using rhs by auto
hence ∀ b ∈ B . f x ∈ f ‘ b using xprops by auto
hence ∀ b ∈ B . x ∈ b using assms(1)

by (meson assms(3) in-mono inj-on-image-mem-iff xprops)
hence x ∈

⋂
B by auto

hence y ∈ ?lhs using xprops by auto
}
thus ?thesis by auto

22

qed
ultimately show ?thesis by auto

qed

2.4 Evaluation is an embedding for weak topologies
lemma evaluation-is-embedding:

assumes X = weak-topology (topspace X) F T I
and P = product-topology T I
and funcset-types (topspace X) F T I
and funcset-separates-points X F I
shows embedding-map X P (evaluation-map X F I)
proof −

define ev where ev = evaluation-map X F I
define proj where proj = product-projection T I
define R where R = ev ‘ topspace X
define Rtop where Rtop = subtopology P R

have injective: inj-on ev (topspace X)
proof −

have sigs: ∀ i ∈ I . F i ∈ (topspace X) → (topspace (T i))
using assms(3) funcset-types-def [of topspace X F T I]
by blast

{ fix x y assume xyprops: x ∈ topspace X ∧ y ∈ topspace X
{ assume hyp: x 6= y

then obtain i where iprops: i ∈ I ∧ F i x 6= F i y
using assms(4) funcset-separates-points-def [of X F I] hyp xyprops
by blast

hence (proj i) (ev x) 6= (proj i) (ev y)
using evaluation-then-projection[of I F X T] proj-def ev-def
by (simp add: sigs xyprops)

hence ev x 6= ev y by auto
}
hence ev x = ev y −→ x = y by auto

}
thus ?thesis using inj-on-def by blast

qed

moreover have ev-cts: continuous-map X Rtop ev
proof −

have main: ∀ i ∈ I . ∀ x ∈ topspace X . (proj i o ev) x = F i x
using proj-def ev-def product-projection-def [of T I] evaluation-then-projection[of

I F X T]
evaluation-map-def [of X F I]

by (metis assms(1) assms(3) continuous-map-funspace weak-generators-continuous)
moreover have ∀ i ∈ I . continuous-map X (T i) (F i)

using weak-generators-continuous[of X topspace X F T I] assms by auto

23

moreover have ∀ i ∈ I . ∀ x ∈ topspace X . F i x = ev x i
using product-projection-def [of T I] main ev-def
by (simp add: evaluation-map-def [of X F I])

moreover have ev ‘ topspace X ⊆ extensional I
using ev-def extensional-def assms evaluation-map-def [of X F I]
by fastforce

ultimately have continuous-map X P ev
using assms proj-def ev-def Rtop-def continuous-map-componentwise[of X T

I ev]
continuous-map-eq by fastforce

thus ?thesis
using Rtop-def R-def continuous-map-in-subtopology by blast

qed

moreover have open-map X Rtop ev
proof −

have open-map-on-gens: ∀ U ∈ weak-generators (topspace X) F T I . openin
Rtop (ev ‘ U)

proof −
{ define Rs where Rs = (λ i ∈ I . (F i ‘ topspace X))

define Rtops where Rtops = (λ i ∈ I . subtopology (T i) (Rs i))

fix U assume U ∈ weak-generators (topspace X) F T I
then obtain i where iprops: i ∈ I ∧ U ∈ open-sets-induced-by-func (F i)

(topspace X) (T i)
using assms weak-generators-def [of topspace X F T I] by auto

then obtain V
where Vprops: openin (T i) V ∧ U = inverse ′ (F i) (topspace X) V
using open-sets-induced-by-func-def [of F i topspace X T i]
by blast

hence Uprops: openin (T i) V ∧ U = { x ∈ topspace X . F i x ∈ V }
using inverse ′-def [of F i topspace X V] by auto

moreover have ∀ x ∈ topspace X . F i x = ((proj i) o ev) x
using evaluation-then-projection[of I F X T] assms(3)

funcset-types-def [of topspace X F T I] iprops
proj-def ev-def

by auto
hence U = { x ∈ topspace X . ((proj i) o ev) x ∈ V } using Uprops by

auto
hence ev ‘ U = { y ∈ R . (proj i) y ∈ V } using R-def by auto
moreover have { y ∈ R . (proj i) y ∈ V } = R ∩ ((proj i) −‘ V)

by auto
moreover have continuous-map P (T i) (proj i)

using continuous-map-product-projection[of i I T] iprops proj-def
product-projection-def [of T I] assms(2) by auto

ultimately have summary: openin (T i) V ∧ continuous-map P (T i) (proj
i)

∧ (ev ‘ U) = R ∩ ((proj i) −‘ V) by auto
hence ∀U . openin (T i) U −→ openin P {x ∈ topspace P. proj i x ∈ U}

24

using continuous-map-def [of P T i proj i] by auto
hence openin P ((proj i −‘ V) ∩ topspace P)

using summary by blast
moreover have R ⊆ topspace P

using R-def ev-def evaluation-map-def [of X F I] assms(3)
funcset-types-def [of topspace X F T I]

by (metis Rtop-def ev-cts continuous-map-image-subset-topspace
continuous-map-into-fulltopology)

ultimately have openin Rtop ((proj i −‘ V) ∩ R)
using Rtop-def
by (metis inf .absorb-iff2 inf-assoc openin-subtopology)

hence openin Rtop (ev ‘ U) using summary
by (simp add: inf-commute)

}
thus ?thesis by auto

qed

have open-map-on-basics: ∀ U ∈ weak-base (topspace X) F T I . openin Rtop
(ev ‘ U)

proof −
have Ugens:

⋃
(weak-generators (topspace X) F T I) = topspace X

using assms(1) weak-generators-topspace by blast

{ fix U assume bprops: U ∈ weak-base (topspace X) F T I
hence U ∈ finite-intersections-of (weak-generators (topspace X) F T I)

by (simp add: base-generated-by-def weak-base-def)
then obtain b where bprops: b ⊆ weak-generators (topspace X) F T I ∧

finite ′ b ∧ U =
⋂

b
unfolding finite-intersections-of-def
by auto

hence finite ′ b ∧ (∀ g ∈ b . openin Rtop (ev ‘ g)) using open-map-on-gens
by auto

hence openin Rtop (
⋂
{ (ev ‘ g) | g . g ∈ b }) by auto

hence openin Rtop (ev ‘
⋂

b)
using injection-on-intersection[of ev topspace X b] bprops
by (metis (no-types, lifting) Ugens Union-upper in-mono injective)

hence openin Rtop (ev ‘ U) using bprops by metis
}
thus ?thesis by auto

qed
hence open-map-on-opens: ∀ U ∈ weak-opens (topspace X) F T I . openin

Rtop (ev ‘ U)
by (smt (verit, ccfv-SIG) image-iff image-mono openin-subopen weak-opens-nhood-base

weak-topology-alt)
thus ?thesis

using opens-eq-generated-topology[of weak-generators (topspace X) F T I]
assms(1)

unfolding weak-topology-def using open-map-def [of X Rtop]

25

by (simp add: weak-opens-def)
qed

ultimately have homeomorphic-map X Rtop ev
by (metis R-def Rtop-def bijective-open-imp-homeomorphic-map continuous-map-image-subset-topspace

continuous-map-into-fulltopology topspace-subtopology-subset)
thus ?thesis using embedding-map-def [of X P ev] ev-def R-def Rtop-def

by auto
qed

3 Compactification
3.1 Definition
lemma embedding-map-id:

assumes S ⊆ topspace X
shows embedding-map (subtopology X S) X id
using assms embedding-map-def topspace-subtopology-subset
by fastforce

definition compactification-via :: (′a ⇒ ′b) ⇒ ′a topology ⇒ ′b topology ⇒ bool
where compactification-via f X K ≡ compact-space K ∧ dense-embedding X K f

definition compactification :: ′a topology ⇒ ′b topology ⇒ bool
where compactification X K = (∃ f . compactification-via f X K)

lemma compactification-compactification-via:
assumes compactification-via f X K
shows compactification X K
using assms unfolding compactification-def by fastforce

3.2 Example: The Alexandroff compactification of a non-
compact locally-compact Hausdorff space

lemma Alexandroff-is-compactification-via-Some:
assumes ¬ compact-space X ∧ Hausdorff-space X ∧ locally-compact-space X
shows compactification-via Some X (Alexandroff-compactification X)
using assms compact-space-Alexandroff-compactification

embedding-map-Some
Alexandroff-compactification-dense
compactification-via-def

by (metis dense-in-def)

3.3 Example: The closure of a subset of a compact space
lemma compact-closure-is-compactification:

26

assumes compact-space K
and S ⊆ topspace K
shows compactification-via id (subtopology K S) (subtopology K (K closure-of
S))
proof −

define big where big = subtopology K (K closure-of S)
define small where small = subtopology K S
have dense-in big (id ‘ topspace small) (topspace big)
by (metis dense-in-def big-def small-def assms(2) closedin-topspace closure-of-minimal

closure-of-subset closure-of-subtopology-open id-def image-id inf .orderE
openin-imp-subset openin-subtopology-refl topspace-subtopology-subset)

moreover have embedding-map small big id
by (metis assms(2) big-def closure-of-subset-Int embedding-map-in-subtopology

id-apply
embedding-map-id image-id small-def topspace-subtopology)

ultimately have dense-embedding small big id by blast
moreover have compact-space big
by (simp add: big-def assms(1) closedin-compact-space compact-space-subtopology)

ultimately show ?thesis
unfolding compactification-via-def using small-def big-def by blast

qed

3.4 Example: A compact space is a compactification of itself
lemma compactification-of-compact:

assumes compact-space K
shows compactification-via id K K
using compact-closure-is-compactification[of K topspace K]
by (simp add: assms)

3.5 Example: A closed non-trivial real interval is a compact-
ification of its interior

lemma closed-interval-interior :
shows {a::real <..< b} = interior {a..b}
by auto

lemma open-interval-closure:
shows (a < (b::real)) −→ {a .. b} = closure {a <..< b}

using closure-greaterThanLessThan[of a b] by simp

lemma closed-interval-compactification:
assumes (a::real) < b

and open-interval = subtopology euclideanreal {a<..<b}
and closed-interval = subtopology euclideanreal {a..b}

shows compactification open-interval closed-interval
proof −

have compact-space closed-interval using assms(3)

27

using compact-space-subtopology compactin-euclidean-iff by blast
moreover have Hausdorff-space closed-interval

by (simp add: Hausdorff-space-subtopology assms(3))
moreover have {a<..<b} ⊆ topspace closed-interval

by (simp add: assms(3) greaterThanLessThan-subseteq-atLeastAtMost-iff)
ultimately have compactification-via id open-interval closed-interval

using compact-closure-is-compactification[of closed-interval {a<..<b}]
open-interval-closure[of a b]

by (metis assms closedin-self closedin-subtopology-refl closure-of-subtopology
euclidean-closure-of subtopology-subtopology subtopology-topspace
topspace-subtopology-subset)

thus ?thesis using
compactification-compactification-via[of id open-interval closed-interval]

by auto
qed

4 The Stone-Čech compactification of a Tychonov
space

lemma compact-range ′:
assumes f ∈ C∗ X
shows compact (range ′ X f)

proof −
obtain m M where mM : ∀ y ∈ topspace X . f y ∈ {m..M} using assms by

auto
hence f ‘ topspace X ⊆ {m..M} by auto
hence range ′ X f ⊆ euclideanreal closure-of {m..M}

unfolding range ′-def by (meson closure-of-mono)
moreover have compact {m..M} by auto
ultimately show ?thesis
by (metis closed-Int-compact closed-atLeastAtMost closed-closedin closedin-closure-of

closure-of-closedin inf .order-iff range ′-def)
qed

lemma c-range-nonempty:
assumes f ∈ C (X)

and topspace X 6= {}
shows range ′ X f 6= {}
proof −

have f ‘ topspace X 6= {} using assms by blast
thus ?thesis unfolding range ′-def by simp

qed

lemma cstar-range-nonempty:
assumes f ∈ C∗ X

and topspace X 6= {}
shows range ′ X f 6= {}

28

using assms c-range-nonempty[of f X]
by auto

lemma cstar-separates-tych-space:
assumes tych-space X
shows funcset-separates-points-from-closed-sets X (cstar-id X) (λf ∈ C∗ X . eu-

clideanreal) (C∗ X)
∧ funcset-separates-points X (cstar-id X) (C∗ X)

proof −
{ fix x S assume closedin X S ∧ x ∈ topspace X − S

then obtain f
where fprops: continuous-map X (top-of-set {0 ..(1 ::real)}) f ∧ f x = 0 ∧ f ‘

S ⊆ {1}
using assms completely-regular-space-def [of X]
by presburger

hence f ∈ C X
using continuous-map-into-fulltopology[of X euclideanreal {0 ..(1 ::real)} f]
by auto

moreover have fbounded f X
proof −

have ∀ x ∈ topspace X . 0 ≤ f x ∧ f x ≤ 1 using fprops
by (simp add: continuous-map-in-subtopology image-subset-iff)

thus ?thesis by auto
qed
ultimately have f-in-cstar : f ∈ (C∗ X) by auto

moreover have f-separates: f x /∈ (euclideanreal closure-of (f ‘ S))
proof −

have closedin euclideanreal (f ‘ S)
by (metis closed-closedin closed-empty closed-singleton fprops subset-singletonD)
moreover have f x /∈ f ‘ S using fprops by auto
thus ?thesis using calculation by auto

qed
ultimately have ∃ f ∈ C∗ X . f x /∈ euclideanreal closure-of (f ‘ S) by auto

}
hence rtp1 : funcset-separates-points-from-closed-sets X (cstar-id X) (λf ∈ C∗

X . euclideanreal) (C∗ X)
using cstar-id-def [of X] unfolding funcset-separates-points-from-closed-sets-def

by auto

moreover have funcset-separates-points X (cstar-id X) (C∗ X)
proof −

{ fix x y assume {x,y} ⊆ topspace X ∧ x 6= y
hence closedin X {y} ∧ x ∈ topspace X − {y}

using assms by (simp add: t1-space-closedin-finite)
hence ∃ f ∈ C∗ X . cstar-id X f x /∈ (λf∈ C∗ X . euclideanreal) f closure-of

cstar-id X f ‘ {y}
using funcset-separates-points-from-closed-sets-def [of X cstar-id X λ f ∈

29

C∗ X . euclideanreal C∗ X]
rtp1 by presburger

hence ∃ f ∈ C∗ X . f x 6= f y
using cstar-id-def [of X] t1-space-closedin-finite[of euclideanreal] by auto

}
thus ?thesis using cstar-id-def [of X] unfolding funcset-separates-points-def

by auto
qed
ultimately show ?thesis by auto

qed

The product topology induced by C∗(X) on a Tychonov space.
definition scT :: ′a topology ⇒ (′a ⇒ real) ⇒ real topology

where scT X = (λ f ∈ C∗ X . subtopology euclideanreal (range ′ X f))

definition scT-full :: ′a topology ⇒ (′a ⇒ real) ⇒ real topology
where scT-full X = (λ f ∈ C∗ X . euclideanreal)

definition scProduct :: ′a topology ⇒ ((′a ⇒ real) ⇒ real) topology
where scProduct X = product-topology (scT X) (C∗ X)

definition scProject :: ′a topology ⇒ (′a ⇒ real) ⇒ ((′a ⇒ real) ⇒ real) ⇒ real
where scProject X = product-projection (scT X) (C∗ X)

definition scEmbed :: ′a topology ⇒ ′a ⇒ (′a ⇒ real) ⇒ real
where scEmbed X = evaluation-map X (cstar-id X) (C∗ X)

lemma scT-images-compact-Hausdorff :
shows ∀ f ∈ C∗ X . compact-Hausdorff (scT X f)

proof −
have T : ∀ f ∈ C∗ X . scT X f = subtopology euclideanreal (range ′ X f)

unfolding scT-def by simp
thus ?thesis using range ′-def [of X f]
by (simp add: Hausdorff-space-subtopology compact-range ′ compact-space-subtopology)

qed

lemma scT-images-bounded:
shows ∀ f ∈ C∗ X . bounded (topspace (scT X f))
using scT-images-compact-Hausdorff [of X] scT-def [of X]
by (simp add: compact-imp-bounded compact-range ′)

lemma scProduct-compact-Hausdorff :
shows compact-Hausdorff (scProduct X)
unfolding scProduct-def using scT-images-compact-Hausdorff [of X]
using compact-space-product-topology

30

by (metis (no-types, lifting) compact-Hausdorff-imp-regular-space regular-space-product-topology

regular-t0-eq-Hausdorff-space t0-space-product-topology)

The Stone-Čech compactification of a Tychonov space and its extension
properties
lemma tych-space-weak:

assumes tych-space X
shows X = weak-topology (topspace X) (cstar-id X) (scT X) (C∗ X)
proof (cases topspace X = {})

case True
then show ?thesis

using weak-topology-on-empty[of weak-topology (topspace X) (cstar-id X) (scT
X) (C∗ X)]

topology-eq by fastforce
next

case False
define W where W = weak-topology (topspace X) (cstar-id X) (scT X) (C∗

X)

hence topspace W = topspace X
using cstar-types-restricted[of X] scT-def [of X] W-def cstar-nonempty[of X]

weak-topology-topspace[of W topspace X cstar-id X scT X C∗ X]
by auto

moreover have ∀ f∈ C∗ X . continuous-map X (scT X f) f
unfolding scT-def range ′-def

by (metis (mono-tags, lifting) closure-of-subset continuous-map-image-subset-topspace

continuous-map-in-subtopology mem-Collect-eq restrict-apply ′)
ultimately have ∀ U . openin W U −→ openin X U

using W-def cstar-types-restricted[of X] scT-def [of X] cstar-id-def [of X]
weak-topology-is-weakest[of W (topspace X) (cstar-id X) (scT X) C∗ X

X]
by (smt (verit, ccfv-threshold) restrict-apply ′)

moreover have ∀ U . openin X U −→ openin W U
proof −

{ fix U assume props: openin X U
{ fix x assume xprops: x ∈ U

hence x-in-X : x ∈ topspace X
using openin-subset props by fastforce

define S where S = topspace X − U
hence props ′: x ∈ topspace X − S ∧ closedin X S

using props openin-closedin-eq xprops by fastforce
then obtain f where fprops: continuous-map X (top-of-set {0 ..1 ::real}) f

∧ f x = 0 ∧ f ‘ S ⊆ {1}
using assms(1) completely-regular-space-def [of X]
by meson

31

then obtain ffull
where ffullprops: (ffull ∈ C X) ∧ ffull x = (0 ::real) ∧ ffull ‘ S ⊆ {1}
using continuous-map-into-fulltopology
by (metis mem-Collect-eq)

define F where F = fbound ffull 0 1
hence Fcstar : F ∈ C∗ X using ffullprops fbound-cstar [of ffull X 0 1] by

auto
hence Ftype: F ∈ topspace X → topspace euclideanreal

unfolding continuous-map-def by auto

define I where I = {(−1) <..< 1 ::real}
hence Iprops: openin euclideanreal I

by (simp add: openin-delete)

define V where V = inverse ′ F (topspace X) I

have crprops: F x = 0 ∧ F ‘ S ⊆ {1}
using ffullprops F-def
unfolding fbound-def fmid-def fmin-def fmax-def min-def max-def
by auto

hence V ⊆ U
proof −

{ fix v assume v ∈ V
hence v ∈ topspace X ∧ F v ∈ I unfolding inverse ′-def V-def by auto
hence v ∈ U using S-def crprops I-def by auto

}
thus ?thesis by auto

qed
moreover have x ∈ V

using crprops I-def x-in-X unfolding inverse ′-def V-def by auto
moreover have openin W V
proof −

have V ∈ open-sets-induced-by-func F (topspace X) euclideanreal
unfolding open-sets-induced-by-func-def using Ftype V-def Iprops
by blast

moreover have open-sets-induced-by-func F (topspace X) euclideanreal ⊆
weak-generators (topspace X) (cstar-id X) (scT-full X) (C∗ X)

using weak-generators-def [of topspace X (cstar-id X) scT-full X C∗ X]
scT-full-def [of X] cstar-id-def [of X] Fcstar

by (smt (verit, ccfv-SIG) Sup-upper mem-Collect-eq restrict-apply ′)
ultimately have V ∈ weak-generators (topspace X) (cstar-id X) (scT-full

X) (C∗ X)
by auto

hence openin (topology-generated-by (weak-generators (topspace X) (cstar-id
X) (scT-full X) (C∗ X))) V

using generators-are-open[of weak-generators (topspace X) (cstar-id X)
(scT-full X) (C∗ X)]

32

topology-generated-by-Basis by blast
thus ?thesis

using W-def weak-restricted-topology-eq-weak[of X]
unfolding scT-def scT-full-def weak-topology-def
by simp

qed
ultimately have x ∈ V ∧ V ⊆ U ∧ openin W V by auto
hence ∃ V . x ∈ V ∧ V ⊆ U ∧ openin W V by auto

}
hence ∀ x ∈ U . ∃ V . x ∈ V ∧ V ⊆ U ∧ openin W V by blast
hence openin W U by (meson openin-subopen)

}
thus ?thesis by auto

qed
ultimately have ∀ U . openin X U ←→ openin W U by auto
hence X = W by (simp add: topology-eq)
thus ?thesis using W-def by simp

qed

4.1 Definition of βX

definition scEmbeddedCopy :: ′a topology ⇒ ((′a ⇒ real) ⇒ real) set
where scEmbeddedCopy X = scEmbed X ‘ topspace X

definition scCompactification :: ′a topology ⇒ ((′a ⇒ real) ⇒ real) topology (β -)
where scCompactification X

= subtopology (scProduct X) ((scProduct X) closure-of (scEmbeddedCopy
X))

lemma sc-topspace:
shows topspace (β X) = (scProduct X) closure-of (scEmbeddedCopy X)
using scCompactification-def [of X] closure-of-subset-topspace by force

lemma scProject ′:
shows ∀ f ∈ C∗ X . ∀ p ∈ topspace (β X) . scProject X f p = p f

proof −
have topspace (β X) ⊆ topspace (scProduct X) unfolding scCompactification-def

by auto
thus ?thesis

unfolding scProject-def product-projection-def scProduct-def
by auto

qed

Evaluation densely embeds Tychonov X in βX

lemma dense-embedding-scEmbed:
assumes tych-space X
shows dense-embedding X (β X) (scEmbed X)

proof −
define W where W = weak-topology (topspace X) (cstar-id X) (λf ∈ C∗ X .

33

euclideanreal) (C∗ X)
hence X = W using assms tych-space-weak[of X]

by (metis (mono-tags, lifting) scT-def weak-restricted-topology-eq-weak)

hence Xweak: X = weak-topology (topspace X) (cstar-id X) (scT X) (C∗ X)
using scT-def [of X] W-def cstar-id-def [of X]

weak-restricted-topology-eq-weak[where X =X] by auto
moreover have scProduct X = product-topology (scT X) (C∗ X) using scProd-

uct-def [of X] by auto
moreover have funcset-types (topspace X) (cstar-id X) (scT X) (C∗ X)

unfolding scT-def using cstar-types-restricted[of X] by auto
moreover have funcset-separates-points X (cstar-id X) (C∗ X)

using cstar-separates-tych-space[of X] assms(1) by auto
moreover have (C∗ X) 6= {} using cstar-nonempty by auto
ultimately have embedding-map X (scProduct X) (scEmbed X)

using evaluation-is-embedding[of X cstar-id X scT X C∗ X scProduct X]
unfolding scProduct-def scEmbed-def
by auto

hence embeds: embedding-map X (β X) (scEmbed X)
unfolding scCompactification-def
by (metis closure-of-subset embedding-map-in-subtopology scEmbeddedCopy-def

subtopology-topspace)
moreover have dense-in (β X) (scEmbed X ‘ topspace X) (topspace (β X))
unfolding dense-in-def using scCompactification-def [of X] scEmbeddedCopy-def [of

X]
by (metis Int-absorb1 closure-of-subset closure-of-subset-topspace closure-of-subtopology

embedding-map-in-subtopology embeds set-eq-subset subtopology-topspace

topspace-subtopology-subset)
ultimately show ?thesis by auto

qed

4.2 βX is a compactification of X

lemma scCompactification-compact-Hausdorff :
assumes tych-space X
shows compact-Hausdorff (β X)
using scCompactification-def [of X] scProduct-compact-Hausdorff [of X]
by (simp add: Hausdorff-space-subtopology closedin-compact-space compact-space-subtopology)

lemma scCompactification-is-compactification-via-scEmbed:
assumes tych-space X
shows compactification-via (scEmbed X) X (β X)
using compactification-via-def [of scEmbed X X β X]

scCompactification-compact-Hausdorff [of X]
dense-embedding-scEmbed[of X] assms

by auto

34

lemma scCompactification-is-compactification:
assumes tych-space X
shows compactification X (β X)
using assms compactification-compactification-via

scCompactification-is-compactification-via-scEmbed
by blast

lemma scEvaluation-range:
assumes x ∈ topspace X

and tych-space X
shows (λ f ∈ C∗ X . f x) ∈ topspace (product-topology (scT X) C∗ X)
proof −

have funcset-types (topspace X) (cstar-id X) (λf∈ C∗ X . top-of-set (range ′ X
f)) C∗ X

using cstar-types-restricted[of X] by auto
hence ∀ f∈ C∗ X . f ∈ topspace X → topspace (scT X f)

unfolding funcset-types-def scT-def cstar-id-def [of X] by auto
thus ?thesis using topspace-product-topology[of scT X C∗ X] assms(1) by auto

qed

lemma scEmbed-then-project:
assumes f ∈ C∗ X

and x ∈ topspace X
and tych-space X
shows scProject X f (scEmbed X x) = f x
proof −

have fequiv: ∀ y ∈ topspace X . (λ g ∈ C∗ X . (cstar-id X) g y) = (λ g ∈ C∗
X . g y)

proof −
{ fix y assume yprops: y ∈ topspace X

hence ∀ g ∈ C∗ X . (cstar-id X) g y = g y unfolding cstar-id-def by auto
hence (λ g ∈ C∗ X . (cstar-id X) g y) = (λ g ∈ C∗ X . g y)

by (meson restrict-ext)
}
thus ?thesis by auto

qed

have scProject X f (scEmbed X x) = scProject X f (evaluation-map X (cstar-id
X) (C∗ X) x)

unfolding scEmbed-def by auto
also have . . . = scProject X f (λg∈ C∗ X . g x)

unfolding evaluation-map-def using assms(2) fequiv by auto
also have . . . = (λg∈ C∗ X . λp∈topspace (product-topology (scT X) (C∗ X)). p

g) f (λg∈ C∗ X . g x)
unfolding product-projection-def scProject-def by auto

also have . . . = (λp∈topspace (product-topology (scT X) (C∗ X)). p f) (λg∈
C∗ X . g x)

using assms(1) by auto
also have . . . = f x using scEvaluation-range[of x X] assms by auto

35

ultimately show ?thesis by auto
qed

4.3 Evaluation is a C∗-embedding of X into βX

definition scExtend :: ′a topology ⇒ (′a ⇒ real) ⇒ ((′a ⇒ real) ⇒ real) ⇒ real
where scExtend X = (λ f ∈ C∗ X . restrict (scProject X f) (topspace (β X)))

proposition scExtend-extends:
assumes tych-space X
shows ∀ f ∈ C∗ X . ∀ x ∈ topspace X . f x = (scExtend X f) (scEmbed X x)

proof −
{ fix f assume fprops: f ∈ C∗ X

have ∀ x ∈ topspace X . (scProject X f) (scEmbed X x) = (scExtend X f)
(scEmbed X x)

proof −
{ fix x assume xprops: x ∈ topspace X

define p where pprops: p = scEmbed X x

hence scExtend X f p = (restrict (scProject X f) (topspace β X)) p
using xprops fprops unfolding scExtend-def by auto

moreover have p ∈ topspace β X
using assms(1) pprops dense-embedding-scEmbed[of X]

scCompactification-def [of X] scEmbeddedCopy-def [of X]
by (metis (no-types, lifting) embedding-map-in-subtopology image-eqI

in-mono subtopology-topspace xprops)
ultimately have scExtend X f p = scProject X f p

using pprops scEmbeddedCopy-def [of X] scEmbed-def [of X] evalua-
tion-map-def by auto

}
thus ?thesis by auto

qed
hence ∀ x ∈ topspace X . f x = (scExtend X f) (scEmbed X x)

using scEmbed-then-project[of f X] assms(1) fprops by auto
}
thus ?thesis by auto

qed

lemma scExtend-extends-cstar :
assumes tych-space X
shows ∀ f ∈ C∗ X . (∀ x ∈ topspace X . f x = (scExtend X f) (scEmbed X

x)) ∧ scExtend X f ∈ C∗ (β X)
proof −

define e where e = scExtend X
{ fix f assume fprops: f ∈ C∗ X

hence continuous-map (scProduct X) (scT X f) (scProject X f)
using scProduct-def [of X] scProject-def [of X]

projections-continuous[of scProduct X scT X C∗ X scProject X]

36

product-projection-def [of scT X C∗ X]
by (metis (no-types, lifting) restrict-extensional extensional-restrict)

hence continuous-map (β X) (scT X f) (scProject X f)
by (simp add: continuous-map-from-subtopology scCompactification-def)

hence c-embedded-f : continuous-map (β X) (scT X f) (scExtend X f)
using scExtend-def [of X] fprops by force

moreover have fbounded-f :fbounded (scExtend X f) (β X)
proof −

obtain m M where f ‘ topspace X ⊆ {m..M} using fprops by force
hence extend-on-embedded: e f ‘ (scEmbeddedCopy X) ⊆ {m..M}

using scExtend-extends[of X] e-def
by (smt (verit, ccfv-SIG) fprops assms(1) image-cong image-image scEm-

beddedCopy-def)
hence e f ‘ (topspace (β X)) ⊆ {m..M}
proof −

{ fix p assume pprops: p ∈ e f ‘ (topspace (β X))
then obtain v where vprops: v ∈ topspace (β X) ∧ p = e f v by auto
{ fix U assume Uprops: openin (scT X f) U ∧ p ∈ U

define V where V = inverse ′ (e f) (topspace (β X)) U
hence openin (β X) V

using c-embedded-f Uprops e-def unfolding continuous-map-def
inverse ′-def

by auto
moreover have topspace (β X) = (β X) closure-of scEmbeddedCopy X

using scCompactification-def [of X] closure-of-subset-topspace[of β X
scEmbeddedCopy X]

dense-embedding-scEmbed[of X] scEmbeddedCopy-def [of X]
by (metis assms closure-of-subtopology-open embedding-map-in-subtopology

subtopology-topspace topspace-subtopology)
moreover have v ∈ V ∧ v ∈ topspace (β X)

using vprops V-def Uprops unfolding inverse ′-def by auto
ultimately obtain x where xprops: x ∈ scEmbeddedCopy X ∧ x ∈ V

using in-closure-of [of v β X scEmbeddedCopy X]
by presburger

define w where w = e f x
hence w ∈ {m..M} using extend-on-embedded xprops by blast
moreover have w ∈ U using w-def xprops vprops V-def

by (simp add: inverse ′-alt)
ultimately have ∃ w. w ∈ U ∩ {m..M} by auto

}
hence ∀ U . openin (scT X f) U ∧ p ∈ U −→ (∃ w. w ∈ U ∩ {m..M})

by auto
moreover have p ∈ topspace (scT X f)

by (metis e-def Int-iff vprops c-embedded-f continuous-map-preimage-topspace
vimageE)

ultimately have p ∈ (scT X f) closure-of {m..M}
using in-closure-of [of p scT X f {m..M}]
by auto

37

hence p ∈ euclideanreal closure-of {m..M}
using scT-def [of X] range ′-def [of X f]

by (metis (no-types, lifting) closure-of-subtopology-subset fprops re-
strict-apply ′ subsetD)

hence p ∈ {m..M} by auto
}
thus ?thesis by auto

qed
thus ?thesis by (metis e-def atLeastAtMost-iff image-subset-iff)

qed
ultimately have scExtend X f ∈ C∗ (β X)

using scT-def [of X] continuous-map-into-fulltopology fprops by auto
}
hence ∀ f ∈ C∗ X . scExtend X f ∈ C∗ (β X) by auto
thus ?thesis using assms scExtend-extends by blast

qed

lemma cstar-embedding-scEmbed:
assumes tych-space X
shows cstar-embedding X (β X) (scEmbed X)
using assms scExtend-extends-cstar [of X] dense-embedding-scEmbed[of X]
by meson

A compact Hausdorff space is its own Stone-Cech compactification
lemma scCompactification-of-compact-Hausdorff :
assumes compact-Hausdorff X
shows homeomorphic-map X (β X) (scEmbed X)
proof −

have dense: dense-embedding X (β X) (scEmbed X)
by (simp add: assms compact-Hausdorff-imp-tych dense-embedding-scEmbed)

moreover have closed: closed-map X (β X) (scEmbed X)
by (meson T1-Spaces.continuous-imp-closed-map assms compact-Hausdorff-imp-tych

continuous-map-in-subtopology embedding-map-def dense
homeomorphic-eq-everything-map scCompactification-compact-Hausdorff)

moreover have open-map X (β X) (scEmbed X)
by (metis closed closure-of-subset-eq dense-in-def embedding-imp-closed-map-eq

embedding-map-def homeomorphic-imp-open-map local.dense subtopol-
ogy-superset)

thus ?thesis
by (metis closed closure-of-subset-eq dense-in-def embedding-imp-closed-map-eq

embedding-map-def local.dense subtopology-superset)
qed

38

4.4 The Stone-Čech Extension Property: Any continuous map
from X to a compact Hausdorff space K extends uniquely
to a continuous map from βX to K.

proposition gof-cstar :
assumes compact-Hausdorff K

and continuous-map X K f
shows ∀ g ∈ C∗ K . (g o f) ∈ C∗ X
proof −

have tych-K : tych-space K
using assms(1) compact-Hausdorff-imp-tych by auto

{ fix g assume gprops: g ∈ C∗ K
have continuous-map K (scT K g) g

using scT-def [of K] range ′-def [of K g] cstar-types-restricted[of K] assms(2)
gprops weak-generators-continuous[of K topspace K cstar-id K (scT K)

(C∗ K) g]
by (metis (mono-tags, lifting) closure-of-topspace continuous-map-image-closure-subset

continuous-map-in-subtopology mem-Collect-eq restrict-apply ′)
hence cts-scT : continuous-map X (scT K g) (g o f)

using assms by (simp add: continuous-map-compose)
hence gofprops: (g o f) ∈ (C X)

using scT-def [of K] range ′-def [of K]
by (metis (mono-tags, lifting) continuous-map-in-subtopology gprops mem-Collect-eq

restrict-apply ′)
moreover have fbounded (g o f) X
proof −

have compact (g ‘ topspace K) using assms(1) gprops
using compact-space-def compactin-euclidean-iff image-compactin by blast

hence bounded (g ‘ topspace K)
by (simp add: compact-imp-bounded)

moreover have (g o f) ‘ topspace X ⊆ g ‘ topspace K
by (metis assms(2) continuous-map-image-subset-topspace image-comp im-

age-mono)
ultimately have bounded ((g o f) ‘ topspace X)

by (metis bounded-subset)
thus ?thesis using bounded-range-iff-fbounded[of g o f X] gofprops by auto

qed
ultimately have (g o f) ∈ C∗ X by auto

}
thus ?thesis by auto

qed

proposition scEmbed-range:
assumes tych-space X

and x ∈ topspace X
shows scEmbed X x ∈ topspace (β X)
using assms(1) assms(2) dense-embedding-scEmbed embedding-map-in-subtopology

39

by fastforce

proposition scEmbed-range ′:
assumes tych-space X

and x ∈ topspace X
shows scEmbed X x ∈ topspace (scProduct X)

using assms(1) assms(2) scEmbed-range[of X]
by (simp add: scCompactification-def)

proposition scProjection:
shows ∀ f ∈ C∗ X . ∀ p ∈ topspace (scProduct X) . scProject X f p = p f
using scProject-def [of X] scProduct-def [of X] product-projection[of C∗ X scT X]
by simp

proposition scProjections-continuous:
shows ∀ f ∈ C∗ X . continuous-map (scProduct X) (scT X f) (scProject X f)

proof −
have ∀ f ∈ C∗ X . continuous-map (scProduct X) (scT X f) (scProject X f)

using scProduct-def [of X] scProject-def [of X]
by (metis (mono-tags, lifting) projections-continuous restrict-apply ′)

thus ?thesis using scCompactification-def [of X] by simp
qed

proposition continuous-embedding-inverse:
assumes embedding-map X Y e
shows ∃ e ′ . continuous-map (subtopology Y (e ‘ topspace X)) X e ′ ∧ (∀ x ∈

topspace X . e ′ (e x) = x)
by (meson assms embedding-map-def homeomorphic-map-maps homeomorphic-maps-def)

lemma scExtension-exists:
assumes tych-space X

and compact-Hausdorff K
shows ∀ f ∈ cts[X ,K] . ∃ F ∈ cts[β X , K] . (∀ x ∈ topspace X . F (scEmbed
X x) = f x)
proof−

{ fix f assume fprops: f ∈ cts[X ,K]

have tych-K : tych-space K using assms(2) compact-Hausdorff-imp-tych[of K]
by simp

define Xspace where Xspace = topspace (scProduct X)
define Kspace where Kspace = topspace (scProduct K)

define H where H = (λ p ∈ Xspace . λ g ∈ C∗ K . scProject X (g o f) p)

40

have H-of-scEmbed: ∀ x ∈ topspace X . H (scEmbed X x) = scEmbed K (f x)
proof −

{ fix x assume xprops: x ∈ topspace X
hence H (scEmbed X x) = (λ p ∈ Xspace . λ g ∈ C∗ K . scProject X (g

o f) p) (scEmbed X x)
using H-def by auto

moreover have (scEmbed X x) ∈ Xspace
using Xspace-def assms(1) scEmbed-range ′[of X x] xprops by auto

ultimately have H (scEmbed X x) = (λ g ∈ C∗ K . scProject X (g o f)
(scEmbed X x))

by auto
also have . . . = (λ g ∈ C∗ K . (g o f) x)

using assms(2) gof-cstar [of K X f] xprops fprops assms(1)
scEmbed-then-project[where x=x and X=X]

by (metis (no-types, lifting) mem-Collect-eq restrict-ext)
also have . . . = (λ g ∈ C∗ K . g (f x)) by auto
finally have H (scEmbed X x) = scEmbed K (f x)
using scEmbed-def [of K] cstar-id-def [of K] evaluation-map-def [of K cstar-id

K C∗ K]
by (smt (verit) continuous-map-image-subset-topspace fprops xprops im-

age-subset-iff
mem-Collect-eq restrict-apply ′ restrict-ext xprops)

}
thus ?thesis by auto

qed
hence H-on-embedded: H ‘ scEmbeddedCopy X ⊆ scEmbeddedCopy K
proof −

{ fix p assume p ∈ H ‘ scEmbeddedCopy X
then obtain q where qprops: q ∈ scEmbeddedCopy X ∧ p = H q by auto
then obtain x where xprops: x ∈ topspace X ∧ q = scEmbed X x

using scEmbeddedCopy-def [of X] by auto
hence p = scEmbed K (f x) using qprops H-of-scEmbed by auto
hence p ∈ scEmbeddedCopy K

using scEmbeddedCopy-def [of K] xprops qprops fprops
by (metis continuous-map-image-subset-topspace image-eqI in-mono

mem-Collect-eq)
}
thus ?thesis by auto

qed

have components-cts: ∀ g ∈ C∗ K . continuous-map (scProduct X) (scT K g)
(λx ∈ Xspace . H x g)

proof −
{ fix g assume gprops: g ∈ C∗ K

have continuous-map (scProduct X) (scT X (g o f)) (λ x ∈ Xspace . H x
g)

41

proof −
have ∀ f∈ C∗ X . continuous-map (scProduct X) (scT X f) (scProject X

f)
using scProjections-continuous[of X] by simp

hence continuous-map (scProduct X) (scT X (g o f)) (scProject X (g o
f))

using assms(2) fprops gprops gof-cstar [of K X f] by auto
moreover have ∀ x ∈ Xspace. H x g = (scProject X (g o f)) x

using gprops H-def Xspace-def
by auto

ultimately show ?thesis
using Xspace-def continuous-map-eq by fastforce

qed

moreover have scT X (g o f) = subtopology (scT K g) (range ′ X (g o f))
proof −

have (g o f) ‘ topspace X ⊆ g ‘ topspace K
using gprops fprops unfolding continuous-map-def by auto

hence range ′ X (g o f) ⊆ range ′ K g
unfolding range ′-def by (meson closure-of-mono)

hence top-of-set (range ′ X (g o f))
= subtopology (top-of-set (range ′ K g)) (range ′ X (g o f))

by (simp add: inf .absorb-iff2 subtopology-subtopology)
hence scT X (g o f) = subtopology (scT K g) (range ′ X (g o f))

using scT-def [of X] scT-def [of K] gprops assms(2) gof-cstar [of K X f]
fprops by auto

thus ?thesis by auto
qed
ultimately have continuous-map (scProduct X) (scT K g) (λ x ∈ Xspace

. H x g)
using continuous-map-in-subtopology by auto

}
thus ?thesis by auto

qed

hence Hcts: continuous-map (scProduct X) (scProduct K) H
using continuous-map-coordinatewise-then-product[of C∗ K scProduct X scT

K H]
scProduct-def [of X] scProduct-def [of K] H-def Xspace-def

by (smt (verit, del-insts) continuous-map-eq restrict-apply)

have H-on-beta: H ‘ topspace (β X) ⊆ scEmbeddedCopy K
proof −

have H ‘ scEmbeddedCopy X ⊆ scEmbeddedCopy K using H-on-embedded
by auto

hence H ‘ topspace (β X) ⊆ scProduct K closure-of scEmbeddedCopy K
using scCompactification-def [of X] Hcts closure-of-mono

continuous-map-eq-image-closure-subset by fastforce
thus ?thesis using scEmbeddedCopy-def

42

by (metis assms(2) closure-of-subset-topspace homeomorphic-imp-surjective-map

scCompactification-def scCompactification-of-compact-Hausdorff
topspace-subtopology-subset)

qed

have embeds: dense-embedding K (β K) (scEmbed K) using dense-embedding-scEmbed[of
K] tych-K by auto

have closed: closedin (scProduct K) (scEmbeddedCopy K)
using assms(2) scEmbeddedCopy-def [of X] scCompactification-def [of K]

scCompactification-compact-Hausdorff [of K]
by (metis closure-of-eq closure-of-subset-topspace closure-of-topspace dense-in-def

embeds
homeomorphic-map-closure-of scCompactification-of-compact-Hausdorff

scEmbeddedCopy-def
topspace-subtopology-subset)

hence onto: scEmbeddedCopy K = topspace (β K)
using scCompactification-def [of K]

by (metis closure-of-closedin closure-of-subset-topspace topspace-subtopology-subset)
then obtain e ′

where e ′props: continuous-map (β K) K e ′

∧ (∀ x ∈ topspace K . e ′ (scEmbed K x) = x)
by (metis continuous-embedding-inverse embeds scEmbeddedCopy-def

subtopology-topspace)

define F where F = e ′ o (λ p ∈ topspace (β X) . restrict H (topspace β X)
p)

have Fcts: F ∈ cts[β X , K]
proof −
have (λ p ∈ topspace (β X) . restrict H (topspace β X) p) ∈ cts[β X , scProduct

K]
using Hcts Xspace-def continuous-map-from-subtopology scCompactifica-

tion-def
by (metis closedin-subset closedin-topspace mem-Collect-eq restrict-continuous-map)
moreover have H ‘ (topspace β X) ⊆ topspace (β K)

using Xspace-def H-on-beta Xspace-def scCompactification-def [of K] onto
by blast

ultimately have (λ p ∈ topspace (β X) . restrict H (topspace β X) p) ∈
cts[β X , β K]

using scCompactification-def [of K]
by (metis closed closure-of-closedin continuous-map-in-subtopology im-

age-restrict-eq mem-Collect-eq onto)
moreover have e ′ ∈ cts[β K , K] using e ′props by simp
ultimately show ?thesis

using F-def continuous-map-compose[of β X β K (λ p ∈ topspace (β X) .
restrict H (topspace β X) p)]

by auto
qed

43

moreover have Fextends: ∀ x ∈ topspace X . (F o scEmbed X) x = f x
proof −

{ fix x assume xprops: x ∈ topspace X
have (F o scEmbed X) x = F (scEmbed X x) by auto
moreover have scEmbed X x ∈ topspace (β X)

using assms(1) scEmbed-range[of X x] xprops by auto
ultimately have (F o scEmbed X) x

= (e ′ o (λ p ∈ topspace (β X) . restrict H (topspace β X) p)) (scEmbed
X x)

using F-def by simp
also have . . . = (e ′ o (λ p ∈ topspace (β X) . H p)) (scEmbed X x) by auto
finally have step1 : (F o scEmbed X) x = e ′ ((λ p ∈ topspace (β X) . H p)

(scEmbed X x)) by auto
have (λ p ∈ topspace (β X) . H p) (scEmbed X x) = H (scEmbed X x)

using scEmbed-range[of X x] assms(1) xprops by auto
also have . . . = scEmbed K (f x) using H-of-scEmbed xprops by auto
finally have step2 : (λ p ∈ topspace (β X) . H p) (scEmbed X x) = scEmbed

K (f x)
by auto

have (F o scEmbed X) x = e ′ ((λ p ∈ topspace (β X) . H p) (scEmbed X
x))

using step1 by simp
also have . . . = e ′ (scEmbed K (f x)) using step2 by auto
finally have (F o scEmbed X) x = f x

using e ′props tych-K scEmbed-range[of K f x] xprops fprops
by (metis continuous-map-image-subset-topspace image-subset-iff mem-Collect-eq)

}
thus ?thesis by auto

qed

ultimately have F ∈ cts[β X , K] ∧ (∀ x ∈ topspace X . F (scEmbed X x) =
f x)

by auto
hence ∃ F ∈ cts[β X , K] . (∀ x ∈ topspace X . F (scEmbed X x) = f x) by

auto
}
thus ?thesis by auto

qed

lemma scExtension-unique:
assumes F ∈ cts[β X , K] ∧ (∀ x ∈ topspace X . F (scEmbed X x) = f x)

and compact-Hausdorff K
shows (∀ G . G ∈ cts[β X , K] ∧ (∀ x ∈ topspace X . G (scEmbed X x) = f
x)

−→ (∀ p ∈ topspace (β X) . F p = G p))
proof −

{ fix G assume Gprops: G ∈ cts[β X , K] ∧ (∀ x ∈ topspace X . G (scEmbed X
x) = f x)

44

have ∀ p ∈ scEmbeddedCopy X . F p = G p
proof −

{ fix p assume pprops: p ∈ scEmbeddedCopy X
then obtain x where xprops: x ∈ topspace X ∧ p = scEmbed X x

using scEmbeddedCopy-def [of X] by auto
hence F p = G p using assms Gprops by auto

}
thus ?thesis by auto

qed
moreover have dense-in (β X) (scEmbeddedCopy X) (topspace (β X))

by (metis closure-of-subset-topspace dense-in-closure dense-in-def scCompa-
ctification-def

topspace-subtopology-subset)
moreover have (cts-on β X to-shared Hausdorff-space) {F ,G}
proof −

have Hausdorff-space K using assms(2) by auto
moreover have ∀ g ∈ {F ,G} . g ∈ cts[β X , K]

using assms Gprops by auto
ultimately have ∃ K . Hausdorff-space K ∧ {F ,G} ⊆ cts[β X ,K] by auto
thus ?thesis by auto

qed
ultimately have (∀ p ∈ topspace (β X) . F p = G p)

using continuous-maps-on-dense-subset[of F G β X scEmbeddedCopy X]
by auto

}
thus ?thesis by auto

qed

lemma scExtension-property:
assumes tych-space X

and compact-Hausdorff K
shows ∀ f ∈ cts[X ,K] . ∃ ! F ∈ ctsE [β X , K] . (∀ x ∈ topspace X . F (scEmbed
X x) = f x)
proof −

{ fix f assume fprops: f ∈ cts[X ,K]
define P where P = (λg . g ∈ ctsE [β X , K] ∧ (∀ x ∈ topspace X . g (scEmbed

X x) = f x))
then obtain F where Fprops: F ∈ cts[β X , K] ∧ (∀ x ∈ topspace X . F

(scEmbed X x) = f x)
using scExtension-exists[of X K] assms fprops by auto

define F ′ where F ′ = restrict F (topspace β X)

have F ∈ (topspace β X) → topspace K using Fprops continuous-map-def [of
β X K F] by auto

hence F ′ext: F ′ ∈ (topspace β X) →E topspace K
using F ′-def restrict-def [of F topspace β X] extensional-def [of topspace β X]
by auto

moreover have F ′cts: F ′ ∈ cts[β X , K]
proof −

45

have F ′ ∈ (topspace β X) → topspace K using F ′ext by auto
moreover have ∀ U . {x ∈ topspace β X . F x ∈ U} = {x ∈ topspace β X .

F ′ x ∈ U}
using F ′-def by auto

ultimately show ?thesis using Fprops unfolding continuous-map-def by
auto

qed
ultimately have F ′ ∈ ctsE [β X , K] by auto
moreover have F ′embed: (∀ x ∈ topspace X . F ′ (scEmbed X x) = f x)
proof −

have ∀ x ∈ topspace X . scEmbed X x ∈ topspace β X
using assms(1) scEmbed-range[of X] by blast

thus ?thesis using F ′-def Fprops by fastforce
qed
ultimately have P F ′ using P-def by auto

moreover have ∀ G . P G −→ G = F ′

proof −
{ fix G assume Gprops: P G

{ fix p
have F ′ p = G p
proof (cases p ∈ topspace β X)

case True
hence F ′ ∈ cts[β X , K] ∧ (∀ x∈topspace X . F ′ (scEmbed X x) = f x)

using F ′cts F ′embed by auto
moreover have G ∈ cts[β X , K] ∧ (∀ x∈topspace X . G (scEmbed X x)

= f x)
using Gprops P-def by auto

ultimately show ?thesis
using assms(2) scExtension-unique[of F ′ X K f] True by blast

next
case False
hence F ′ p = undefined using F ′-def by auto
moreover have G p = undefined

using Gprops P-def extensional-def [of topspace β X] False by auto
ultimately show ?thesis by auto

qed
}
hence ∀ p . F ′ p = G p by auto

}
thus ?thesis by auto

qed
ultimately have ∃ ! F ′ . P F ′ by blast
hence ∃ ! F ∈ ctsE [β X , K] . (∀ x ∈ topspace X . F (scEmbed X x) = f x)

using P-def by auto
}
thus ?thesis by auto

qed

46

end

References

[Wal74] Russell C. Walker. The Stone-Čech Compactification. Springer-
Verlag, 1974.

[Wil70] Stephen Willard. General Topology. Addison-Wesley, 1970.

47

	C*-embedding
	Weak topologies
	Tychonov spaces carry the weak topology induced by C*(X)
	A topology is a weak topology if it admits a continuous function set that separates points from closed sets
	A product topology is the weak topology induced by its projections if the projections separate points from closed sets.
	Evaluation is an embedding for weak topologies

	Compactification
	Definition
	Example: The Alexandroff compactification of a non-compact locally-compact Hausdorff space
	Example: The closure of a subset of a compact space
	Example: A compact space is a compactification of itself
	Example: A closed non-trivial real interval is a compactification of its interior

	The Stone-Čech compactification of a Tychonov space
	Definition of X
	X is a compactification of X
	Evaluation is a C*-embedding of X into X
	The Stone-Čech Extension Property: Any continuous map from X to a compact Hausdorff space K extends uniquely to a continuous map from X to K.

