
Formalization of (Conflict-)Serializability and
Strict Two-Phase Locking

Dmitriy Traytel

February 11, 2025

Abstract

Concurrency control is an essential component of any transactional
database management system, which is responsible for providing iso-
lation (the “I” in ACID) to transactions. Formally, concurrency con-
trol aims to achieve serializability: a way to rearrange the actions of
concurrently executing transactions that eliminates concurrency while
leaves the database modifications unchanged. In this small entry, we
define serializability, a syntactic over-approximation called conflict-
serializability, and characterize schedules generated by the frequently
used concurrency control mechanism of strict two-phase locking (S2PL).
We also prove two inclusions: S2PL implies conflict-serializability, which
in turn implies serializability. The formalization is based on standard
material from an advanced database systems course [1, Chapter 17].

1 Transactions

We work with a rather abstract model of transactions comprised of read/write
actions.

Read/written values are natural numbers.
type-alias val = nat

Transactions ′xid may read from/write two addresses ′addr.
datatype (′xid, ′addr) action = isRead: Read (xid-of : ‹ ′xid›) (addr-of : ′addr)

| isWrite: Write (xid-of : ‹ ′xid›) (addr-of : ′addr)

A schedule is a sequence of actions.
type-synonym (′xid, ′addr) schedule = ‹(′xid, ′addr) action list›

A database, which is being modified by the read/write actions, maps ad-
dresses to values.
type-synonym ′addr db = ‹ ′addr ⇒ val›

1

Each transaction has a local state, which is represented as the list of previ-
ously read values (and the addresses they have been read from).
type-synonym ′addr xstate = ‹(′addr × val) list›

The values written by a transaction are given by a higher-order parameter
and may depend on the previously read values.
context fixes write-logic :: ‹ ′xid ⇒ ′addr xstate ⇒ ′addr ⇒ val› begin

Read values are recorded in the transaction’s local state; writes modify the
database.
fun action-effect :: ‹(′xid, ′addr) action ⇒ (′xid ⇒ ′addr xstate) × ′addr db ⇒
(′xid ⇒ ′addr xstate) × ′addr db› where

‹action-effect (Read xid addr) (xst, db) = (xst(xid := (addr , db addr) # xst xid),
db)›
| ‹action-effect (Write xid addr) (xst, db) = (xst, db(addr := write-logic xid (xst
xid) addr))›

We are interested in how a schedule modifies the database (local state
changes are discarded at the end).
definition schedule-effect :: ‹(′xid, ′addr) schedule ⇒ ′addr db ⇒ ′addr db› where

‹schedule-effect s db = snd (fold action-effect s (λ-. [], db))›

end

Actions that belong to the same transaction.
definition eq-xid where

‹eq-xid a b = (xid-of a = xid-of b)›

2 Serial and Serializable Schedules
declare length-dropWhile-le[termination-simp]

A serial schedule does not interleave actions of different transactions.
fun serial :: ‹(′xid, ′addr) schedule ⇒ bool› where

‹serial [] = True›
| ‹serial (a # as) = (let bs = dropWhile (λb. eq-xid a b) as

in serial bs ∧ xid-of a /∈ xid-of ‘ set bs)›

A schedule s can be rearranged into schedule t by a permutation π, which
preserves the relative order of actions related by eq.
definition permutes-upto where

‹permutes-upto eq π s t =
(bij-betw π {..<length s} {..<length t} ∧
(∀ i<length s. s ! i = t ! π i) ∧
(∀ i<length s. ∀ j<length s. i < j ∧ eq (s ! i) (s ! j) −→ π i < π j))›

2

lemma permutes-upto-Nil[simp]: ‹permutes-upto R π [] []›
〈proof 〉

Two schedules are equivalent if one can be rearranged into another without
rearranging the actions of each transaction and in addition they have the
same effect on any database for any fixed write logic.
abbreviation equivalent :: ‹(′xid, ′addr) schedule ⇒ (′xid, ′addr) schedule ⇒ bool›
where
‹equivalent s t ≡ (∃π. permutes-upto eq-xid π s t ∧ (∀write-logic db. schedule-effect

write-logic s db = schedule-effect write-logic t db))›

A schedule is serializable if it is equivalent to some serial schedule. Seri-
alizable schedules thus provide isolation: even though actions of different
transactions may be interleaved, the effect from the point of view of each
transaction is as if the transaction was the only one executing in the system
(as is the case in serial schedules).
definition serializable :: ‹(′xid, ′addr) schedule ⇒ bool› where

‹serializable s = (∃ t. serial t ∧ equivalent s t)›

3 Conflict Serializable Schedules

Two actions of different transactions are conflicting if they access the same
address and at least one of them is a write.
definition conflict where

‹conflict a b = (xid-of a 6= xid-of b ∧ addr-of a = addr-of b ∧ (isWrite a ∨ isWrite
b))›

Two schedules are conflict-equivalent if one can be rearranged into another
without rearranging conflicting actions or actions of one transaction. Note
that unlike equivalence, the conflict-equivalence notion is purely syntactic,
i.e., not talking about databases and action/schedule effects.
abbreviation conflict-equivalent :: ‹(′xid, ′addr) schedule ⇒ (′xid, ′addr) schedule
⇒ bool› where

‹conflict-equivalent s t ≡ (∃π. permutes-upto (sup eq-xid conflict) π s t)›

A schedule is conflict-serializable if it is conflict equivalent to some serial
schedule.
definition conflict-serializable :: ‹(′xid, ′addr) schedule ⇒ bool› where

‹conflict-serializable s = (∃ t. serial t ∧ conflict-equivalent s t)›

4 Conflict-Serializability Implies Serializability

In the following, we prove that the syntactic notion implies the semantic
one. The key obsevation is that swapping non-conflicting actions of different
transactions preserves the overall effect on the database.

3

lemma swap-actions: ‹¬ conflict a b =⇒ ¬ eq-xid a b =⇒
action-effect wl a (action-effect wl b st) = action-effect wl b (action-effect wl a

st)›
〈proof 〉

lemma swap-many-actions: ‹∀ i < length p. ¬ conflict a (p ! i) ∧ ¬ eq-xid a (p !
i) =⇒
action-effect wl a (fold (action-effect wl) p st) = fold (action-effect wl) p (action-effect

wl a st)›
〈proof 〉

lemma fold-action-effect-eq:
assumes ‹t = p @ a # u›
shows
‹fold (action-effect wl) s (action-effect wl a st) =
fold (action-effect wl) (p @ u) (action-effect wl a st) =⇒
∀ i < length p. ¬ conflict a (p ! i) ∧ ¬ eq-xid a (p ! i) =⇒
fold (action-effect wl) (a # s) st = fold (action-effect wl) t st›
〈proof 〉

definition shift where
‹shift π = (λi. if i < π 0 then i else i − 1) o π o Suc›

lemma bij-betw-remove: ‹bij-betw f A B =⇒ x ∈ A =⇒ bij-betw f (A − {x}) (B
− {f x})›
〈proof 〉

lemma permutes-upto-shift:
assumes ‹permutes-upto eq π (a # s) t›
shows ‹permutes-upto eq (shift π) s (take (π 0) t @ drop (Suc (π 0)) t)›

〈proof 〉

lemma permutes-upto-prefix-upto:
assumes ‹permutes-upto eq π (t ! π 0 # s) t› ‹i < π 0 ›
shows ‹¬ eq (t ! π 0) (t ! i)›

〈proof 〉

lemma conflict-equivalent-imp-equivalent:
assumes ‹conflict-equivalent s t›
shows ‹equivalent s t›

〈proof 〉

theorem conflict-serializable-imp-serializable: ‹conflict-serializable s =⇒ serializ-
able s›
〈proof 〉

4

5 Schedules Generated by Strict Two-Phase Lock-
ing (S2PL).

To enforce conflict-serializability database management systems use locks.
Locks come in two kinds: shared locks for reads and exclusive locks for writes.
An address can be accessed in a reading fashion by multiple transactions,
each holding a shared lock. If one transaction however holds an exclusive
locks to write to an address, then no other transaction can hold a lock
(neither shared nor exclusive) for the same address.
datatype ′addr lock = S (addr-of : ′addr) | X (addr-of : ′addr)

fun lock-for where
‹lock-for (Read - addr) = S addr›

| ‹lock-for (Write - addr) = X addr›

definition valid-locks where
‹valid-locks locks = (∀ addr xid1 xid2 . X addr ∈ locks xid1 −→

X addr ∈ locks xid2 ∨ S addr ∈ locks xid2 −→ xid1 = xid2)›

A frequently used lock strategy is strict two phase locking (S2PL) in which
transactions attempt to acquire locks gradually (whenever they want to
execute an action that needs a particular lock) and release them all at once
at the end of each transaction.
The following predicate checks whether a schedule could have been generated
using the S2PL strategy. To this end, the predicate checks for each action,
whether the corresponding lock could have been acquired by the transaction
executing the action. We also allow lock upgrades (from shared to exclusive),
i.e., one transaction can hold both a shared and and exclusive lock
As in our model there is no explicit transaction end marker (commit), we
treat each transaction as finished immediately when it has executed its last
action in the given schedule. This is the moment, when the transaction’s
locks are released.
fun s2pl :: ‹(′xid ⇒ ′addr lock set) ⇒ (′xid, ′addr) schedule ⇒ bool› where

‹s2pl locks [] = True›
| ‹s2pl locks (a # s) =

(let xid = xid-of a; addr = action.addr-of a
in if ∃ xid ′. xid ′ 6= xid ∧ (X addr ∈ locks xid ′ ∨ isWrite a ∧ S addr ∈ locks

xid ′)
then False
else s2pl (locks(xid := if xid /∈ xid-of ‘ set s then {} else locks xid ∪ {lock-for

a})) s)›

We prove in the following that S2PL schedules are conflict-serializable (and
thus also serializable). The proof proceeds by induction on the number
of transactions in a schedule. To construct the conflict-equivalent serial

5

schedule we always move the actions of the transaction that finished first in
our S2PL schedule to the front. To do so we show that these actions are not
conflicting with any preceding actions (due to the acquired/held locks).
lemma conflict-equivalent-trans:

‹conflict-equivalent s t =⇒ conflict-equivalent t u =⇒ conflict-equivalent s u›
〈proof 〉

lemma conflict-equivalent-append: ‹conflict-equivalent s t =⇒ conflict-equivalent
(u @ s) (u @ t)›
〈proof 〉

lemma conflict-equivalent-Cons: ‹conflict-equivalent s t =⇒ conflict-equivalent (a
s) (a # t)›
〈proof 〉

lemma conflict-equivalent-rearrange:
assumes ‹

∧
i j. xid-of (s ! i) = xid =⇒ j < i =⇒ i < length s =⇒ ¬ conflict (s

! j) (s ! i)›
shows ‹conflict-equivalent s (filter ((=) xid ◦ xid-of) s @ filter (Not ◦ (=) xid ◦

xid-of) s)›
(is ‹conflict-equivalent s (?filter s)›)

〈proof 〉

lemma serial-append:
‹serial s =⇒ serial t =⇒ xid-of ‘ set s ∩ xid-of ‘ set t = {} =⇒ serial (s @ t)›

〈proof 〉

lemma serial-same-xid: ‹∀ x ∈ set s. xid-of x = xid =⇒ serial s›
〈proof 〉

lemma conflict-equivalent-same-set: ‹conflict-equivalent s t =⇒ set s = set t›
〈proof 〉

lemma s2pl-filter :
‹s2pl locks s =⇒ s2pl (locks(xid := {})) (filter (Not o (=) xid o xid-of) s)›
〈proof 〉

lemma valid-locks-grab[simp]: ‹valid-locks locks =⇒
¬ (∃ xid ′. xid ′ 6= xid-of a ∧

(X (action.addr-of a) ∈ locks xid ′ ∨ isWrite a ∧ S (action.addr-of a) ∈ locks
xid ′)) =⇒

valid-locks (locks(xid-of a := insert (lock-for a) (locks (xid-of a))))›
〈proof 〉

lemma s2pl-suffix: ‹valid-locks locks =⇒ s2pl locks (s @ t) =⇒
∀ a ∈ set s. ∃ b ∈ set t. eq-xid a b =⇒
∃ locks ′. valid-locks locks ′ ∧ (∀ xid. locks xid ⊆ locks ′ xid) ∧ s2pl locks ′ t›

〈proof 〉

6

lemma set-drop: ‹l ≤ length xs =⇒ set (drop l xs) = nth xs ‘ {l..<length xs}›
〈proof 〉

lemma drop-eq-Cons: ‹i < length xs =⇒ drop i xs = xs ! i # drop (Suc i) xs›
〈proof 〉

theorem s2pl-conflict-serializable: ‹s2pl (λ-. {}) s =⇒ conflict-serializable s›
〈proof 〉

corollary s2pl-serializable: ‹s2pl (λ-. {}) s =⇒ serializable s›
〈proof 〉

6 Example Executing S2PL

To make the S2PL check executable regardless of the transaction id type,
we restrict the quantification to transaction ids that are occurring in the
schedule.
fun s2pl-code :: ‹(′xid ⇒ ′addr lock set) ⇒ (′xid, ′addr) schedule ⇒ bool› where

‹s2pl-code locks [] = True›
| ‹s2pl-code locks (a # s) =

(let xid = xid-of a; addr = action.addr-of a
in if ∃ xid ′ ∈ xid-of ‘ set s. xid ′ 6= xid ∧ (X addr ∈ locks xid ′ ∨ isWrite a ∧ S

addr ∈ locks xid ′)
then False
else s2pl-code (locks(xid := if xid /∈ xid-of ‘ set s then {} else locks xid ∪

{lock-for a})) s)›

lemma s2pl-code-cong: (
∧

xid. xid ∈ xid-of ‘ set s =⇒ f xid = g xid) =⇒
(
∧

xid. xid /∈ xid-of ‘ set s =⇒ f xid = {}) =⇒
s2pl f s = s2pl-code g s

〈proof 〉

lemma s2pl-code[code-unfold]: s2pl (λ-. {}) s = s2pl-code (λ-. {}) s
〈proof 〉

definition TB = (0 :: nat)
definition TA = (1 :: nat)
definition TC = (2 :: nat)
definition AX = (0 :: nat)
definition AY = (1 :: nat)
definition AZ = (2 :: nat)

Good example involving a lock upgrade by TA and TB
lemma ‹s2pl (λ-. {})
[Write TB AZ , Read TA AX , Read TB AY , Read TC AX , Write TB AY , Write

TC AY , Write TA AX , Write TA AY]›
〈proof 〉

7

Bad example: TC cannot acquire exclusive lock for AY, which is already
held by TA
lemma ‹¬ s2pl (λ-. {})
[Read TA AX , Read TB AX , Read TC AX , Write TA AY , Write TC AY , Write

TB AY , Write TA AZ]›
〈proof 〉

hide-const TB TA TC AX AY AZ
hide-fact TB-def TA-def TC-def AX-def AY-def AZ-def

References

[1] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill Higher Education, 3rd edition, January 2003.

8

	Transactions
	Serial and Serializable Schedules
	Conflict Serializable Schedules
	Conflict-Serializability Implies Serializability
	Schedules Generated by Strict Two-Phase Locking (S2PL).
	Example Executing S2PL

