Roth's Theorem on Arithmetic Progressions

Chelsea Edmonds, Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson Computer Laboratory, University of Cambridge CB3 0FD \{cle47,ak2110,lp15\}@cam.ac.uk

May 26, 2024

Abstract

We formalise a proof of Roth's Theorem on Arithmetic Progressions, a major result in additive combinatorics on the existence of 3 term arithmetic progressions in subsets of natural numbers. To this end, we follow a proof using graph regularity. We employ our recent formalisation of Szemerédi's Regularity Lemma, a major result in extremal graph theory, which we use here to prove the Triangle Counting Lemma and the Triangle Removal Lemma. Our sources are Yufei Zhao's MIT lecture notes "Graph Theory and Additive Combinatorics" ${ }^{1}$ and W.T. Gowers's Cambridge lecture notes "Topics in Combinatorics". ${ }^{2}$ We also refer to the University of Georgia notes by Stephanie Bell and Will Grodzicki "Using Szemerédi's Regularity Lemma to Prove Roth's Theorem". ${ }^{3}$

Contents

1 Roth's Theorem on Arithmetic Progressions
 2

1.1 Miscellaneous Preliminaries 2
1.2 Preliminaries on Neighbors in Graphs 4
1.3 Preliminaries on Triangles in Graphs 4
1.4 The Triangle Counting Lemma and the Triangle Removal Lemma 6
1.5 Roth's Theorem 21

Acknowledgements

The authors were supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

[^0]
1 Roth's Theorem on Arithmetic Progressions

theory Roth-Arithmetic-Progressions
imports Szemeredi-Regularity.Szemeredi
Random-Graph-Subgraph-Threshold.Subgraph-Threshold
Ergodic-Theory.Asymptotic-Density
HOL-Library.Ramsey HOL-Library.Nat-Bijection

begin

1.1 Miscellaneous Preliminaries

lemma sum-prod-le-prod-sum:
fixes $a::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ linordered-idom
assumes $\bigwedge i . i \in I \Longrightarrow a i \geq 0 \wedge b i \geq 0$
shows $\left(\sum i \in I . \sum j \in I . a i * b j\right) \leq\left(\sum i \in I . a i\right) *\left(\sum i \in I . b i\right)$
using assms
by (induction I rule: infinite-finite-induct) (auto simp add: algebra-simps sum.distrib sum-distrib-left)
lemma real-mult-gt-cube: $A \geq(X::$ real $) \Longrightarrow B \geq X \Longrightarrow C \geq X \Longrightarrow X \geq 0 \Longrightarrow$ $A * B * C \geq X^{\wedge} 3$
by (simp add: mult-mono' power3-eq-cube)
lemma triple-sigma-rewrite-card:
assumes finite X finite Y finite Z
shows card $\{(x, y, z) . x \in X \wedge(y, z) \in Y \times Z \wedge P x y z\}=\left(\sum x \in X\right.$. card
$\{(y, z) \in Y \times Z . P x y z\})$
proof -
define W where $W \equiv \lambda x .\{(y, z) \in Y \times Z . P x y z\}$
have $W x \subseteq Y \times Z$ for x
by (auto simp: W-def)
then have [simp]: finite ($W x$) for x
by (meson assms finite-SigmaI infinite-super)
have eq: $\{(x, y, z) . x \in X \wedge(y, z) \in Y \times Z \wedge P x y z\}=(\bigcup x \in X . \bigcup(y, z) \in W$ x. $\{(x, y, z)\})$
by (auto simp: W-def)
show ?thesis
unfolding eq by (simp add: disjoint-iff assms card-UN-disjoint) (simp add:
W-def)
qed
lemma all-edges-between-mono1:
$Y \subseteq Z \Longrightarrow$ all-edges-between $Y X G \subseteq$ all-edges-between $Z X G$
by (auto simp: all-edges-between-def)
lemma all-edges-between-mono2:
$Y \subseteq Z \Longrightarrow$ all-edges-between $X Y G \subseteq$ all-edges-between $X Z G$
by (auto simp: all-edges-between-def)

```
lemma uwellformed-alt-fst:
    assumes uwellformed G{x,y}\in uedges }
    shows }x\in\mathrm{ uverts }
    using uwellformed-def assms by simp
lemma uwellformed-alt-snd:
    assumes uwellformed G{x,y}\in uedges }
    shows }y\in\mathrm{ uverts }
    using uwellformed-def assms by simp
lemma all-edges-between-subset-times: all-edges-between X Y G\subseteq(X\cap\bigcup(uedges
G))}\times(Y\cap\bigcup(\mathrm{ uedges }G)
    by (auto simp: all-edges-between-def)
lemma finite-all-edges-between':
    assumes finite (uverts G) uwellformed G
    shows finite (all-edges-between X Y G)
proof -
    have finite (\ (uedges G))
    by (meson Pow-iff all-edges-subset-Pow assms finite-Sup subsetD wellformed-all-edges)
    with all-edges-between-subset-times show ?thesis
        by (metis finite-Int finite-SigmaI finite-subset)
qed
lemma all-edges-between-E-diff:
    all-edges-between X Y (V,E-E')=all-edges-between X Y (V,E)-all-edges-between
X Y (V,E')
    by (auto simp: all-edges-between-def)
lemma all-edges-between-E-Un:
    all-edges-between X Y (V,E\cupE')= all-edges-between X Y (V,E)\cup all-edges-between
X Y (V,E')
    by (auto simp: all-edges-between-def)
lemma all-edges-between-E-UN:
    all-edges-between X Y (V, \bigcupi\inI. E i) =(\bigcupi\inI.all-edges-between X Y (V,E
i))
    by (auto simp: all-edges-between-def)
lemma all-edges-preserved: \llbracketall-edges-between A B G'=all-edges-between A B G;
X\subseteqA;Y\subseteqB\rrbracket
    all-edges-between X Y G'=all-edges-between X Y G
    by (auto simp: all-edges-between-def)
lemma subgraph-edge-wf:
    assumes uwellformed G uverts H}=\mathrm{ uverts }G\mathrm{ uedges }H\subseteq\mathrm{ uedges }
    shows uwellformed H
    by (metis assms subsetD uwellformed-def)
```


1.2 Preliminaries on Neighbors in Graphs

```
definition neighbor-in-graph \(:: \quad\) uvert \(\Rightarrow\) uvert \(\Rightarrow\) ugraph \(\Rightarrow\) bool
    where neighbor-in-graph \(x\) y \(G \equiv(x \in(\) uverts \(G) \wedge y \in(\) uverts \(G) \wedge\{x, y\} \in\)
(uedges \(G\) ))
definition neighbors \(::\) uvert \(\Rightarrow\) ugraph \(\Rightarrow\) uvert set where
    neighbors \(x G \equiv\{y \in\) uverts \(G\). neighbor-in-graph x y \(G\}\)
definition neighbors-ss:: uvert \(\Rightarrow\) uvert set \(\Rightarrow\) ugraph \(\Rightarrow\) uvert set where
    neighbors-ss \(x Y G \equiv\{y \in Y\). neighbor-in-graph \(x\) y \(G\}\)
lemma all-edges-betw-sigma-neighbor:
uwellformed \(G \Longrightarrow\) all-edges-between \(X \quad Y G=(\) SIGMA \(x: X\). neighbors-ss \(x \quad Y G)\)
    by (auto simp add: all-edges-between-def neighbors-ss-def neighbor-in-graph-def
        uwellformed-alt-fst uwellformed-alt-snd)
lemma card-all-edges-betw-neighbor:
    assumes finite \(X\) finite \(Y\) uwellformed \(G\)
    shows card (all-edges-between \(X \quad Y G)=\left(\sum x \in X\right.\).card (neighbors-ss \(\left.\left.x \quad Y G\right)\right)\)
    using all-edges-betw-sigma-neighbor assms by (simp add: neighbors-ss-def)
```


1.3 Preliminaries on Triangles in Graphs

definition triangle-in-graph:: uvert \Rightarrow uvert \Rightarrow uvert \Rightarrow ugraph \Rightarrow bool where triangle-in-graph x y $z G$

$$
\equiv(\{x, y\} \in \text { uedges } G) \wedge(\{y, z\} \in \text { uedges } G) \wedge(\{x, z\} \in \text { uedges } G)
$$

definition triangle-triples

where triangle-triples $X Y Z G \equiv\{(x, y, z) \in X \times Y \times Z$. triangle-in-graph x y $z G\}$
lemma triangle-commu1:
assumes triangle-in-graph x y $z G$
shows triangle-in-graph y $x z G$
using assms triangle-in-graph-def by (auto simp add: insert-commute)
lemma triangle-vertices-distinct1:
assumes wf: uwellformed G
assumes tri: triangle-in-graph x y $z G$
shows $x \neq y$
proof (rule ccontr)
assume $a: \neg x \neq y$
have card $\{x, y\}=2$ using tri wf triangle-in-graph-def
using uwellformed-def by blast
thus False using a by simp
qed
lemma triangle-vertices-distinct2:
assumes uwellformed G triangle-in-graph x y $z G$

```
    shows }y\not=
    by (metis assms triangle-vertices-distinct1 triangle-in-graph-def)
    lemma triangle-in-graph-edge-point:
    assumes uwellformed G
    shows triangle-in-graph x y z G\longleftrightarrow < <y,z}\in uedges G\wedge neighbor-in-graph x y
G^ neighbor-in-graph x z G
    by (auto simp add: triangle-in-graph-def neighbor-in-graph-def assms uwellformed-alt-fst
uwellformed-alt-snd)
definition
    unique-triangles G
    \equiv\foralle\inuedges G. \exists!T.\existsxyz.T={x,y,z}\wedgetriangle-in-graph x y zG\wedgee\subseteq
T
definition triangle-free-graph:: ugraph }=>\mathrm{ bool
    where triangle-free-graph G}\equiv\neg(\existsxyz.triangle-in-graph x y z G
lemma triangle-free-graph-empty: uedges }G={}\Longrightarrow\mathrm{ triangle-free-graph G
    by (simp add: triangle-free-graph-def triangle-in-graph-def)
lemma edge-vertices-not-equal:
    assumes uwellformed G {x,y}\in uedges G
    shows }x\not=
    using assms triangle-in-graph-def triangle-vertices-distinct1 by blast
lemma triangle-in-graph-verts:
    assumes uwellformed G triangle-in-graph x y z G
    shows }x\in\mathrm{ uverts }Gy\in\mathrm{ uverts }Gz\in\mathrm{ uverts }
proof -
    have 1:{x,y}\in uedges G using triangle-in-graph-def
        using assms(2) by auto
    then show }x\in\mathrm{ uverts }G\mathrm{ using uwellformed-alt-fst assms by blast
    then show y uverts G using 1 uwellformed-alt-snd assms by blast
    have {x,z}\in uedges G using triangle-in-graph-def assms(2) by auto
    then show z uverts G using uwellformed-alt-snd assms by blast
qed
definition triangle-set :: ugraph }=>\mathrm{ uvert set set
    where triangle-set }G\equiv{{x,y,z}|xyz.triangle-in-graph x y zG
fun mk-triangle-set :: (uvert }\times\mathrm{ uvert }\times\mathrm{ uvert) }=>\mathrm{ uvert set
    where mk-triangle-set (x,y,z)={x,y,z}
lemma finite-triangle-set:
    assumes fin: finite (uverts G) and wf: uwellformed G
    shows finite (triangle-set G)
proof -
```

```
    have triangle-set G\subseteq Pow (uverts G)
    using PowI local.wf triangle-in-graph-def triangle-set-def uwellformed-def by
auto
    then show ?thesis
        by (meson fin finite-Pow-iff infinite-super)
qed
lemma card-triangle-3:
    assumes t\in triangle-set G uwellformed G
    shows card t=3
    using assms by (auto simp: triangle-set-def edge-vertices-not-equal triangle-in-graph-def)
lemma triangle-set-power-set-ss: uwellformed G\Longrightarrow triangle-set G\subseteqPow (uverts
G)
    by (auto simp add: triangle-set-def triangle-in-graph-def uwellformed-alt-fst uwell-
formed-alt-snd)
lemma triangle-in-graph-ss:
    assumes uedges Gnew \subseteq uedges G
    assumes triangle-in-graph x y z Gnew
    shows triangle-in-graph x y z G
using assms triangle-in-graph-def by auto
lemma triangle-set-graph-edge-ss:
    assumes uedges Gnew \subseteq uedges G
    assumes uverts Gnew = uverts G
    shows triangle-set Gnew \subseteq triangle-set G
    using assms unfolding triangle-set-def by (blast intro: triangle-in-graph-ss)
lemma triangle-set-graph-edge-ss-bound:
    fixes G :: ugraph and Gnew :: ugraph
    assumes uwellformed G finite (uverts G) uedges Gnew \subseteq uedges G uverts Gnew
= uverts G
    shows card (triangle-set G)\geq card (triangle-set Gnew)
    by (simp add: assms card-mono finite-triangle-set triangle-set-graph-edge-ss)
```


1.4 The Triangle Counting Lemma and the Triangle Removal Lemma

We begin with some more auxiliary material to be used in the main lemmas.

```
lemma regular-pair-neighbor-bound:
    fixes \varepsilon::real
    assumes finG: finite (uverts G)
    assumes xss: X\subsetequverts G and yss: Y\subsetequverts }G\mathrm{ and card X>0
        and wf:uwellformed G
        and eg0: }<>0\mathrm{ and }\varepsilon\mathrm{ -regular-pair X Y G and ed: edge-density X Y G 2 2*&
```



```
card (Y)}
    shows card X'}<<\varepsilon* card X
```

(is $\left.\operatorname{card}\left(? X^{\prime}\right)<\varepsilon *-\right)$
proof (cases? $\left.X^{\prime}=\{ \}\right)$
case False - Following Gowers's proof - more in depth with reasoning on contradiction
let ? $r x y=1 /\left(\operatorname{card} X^{\prime} * \operatorname{card} Y\right)$
show ?thesis
proof (rule ccontr)
assume $\neg\left(\operatorname{card}\left(X^{\prime}\right)<\varepsilon * \operatorname{card} X\right)$
then have $a:\left(\operatorname{card}\left(X^{\prime}\right) \geq \varepsilon * \operatorname{card} X\right)$ by simp
have fin: finite X finite Y using assms finite-subset by auto
have ebound: $\varepsilon \leq 1 / 2$
by (metis ed edge-density-le1 le-divide-eq-numeral1(1) mult.commute or-der-trans)
have finx: finite X^{\prime} using fin X^{\prime}-def by simp
have $\wedge x . x \in X^{\prime} \Longrightarrow($ card (neighbors-ss $\left.x Y G)\right)<($ edge-density $X Y G-\varepsilon)$

* (card Y)
unfolding X^{\prime}-def by blast
then have $\left(\sum x \in X^{\prime}\right.$. card (neighbors-ss $\left.\left.x \quad Y G\right)\right)<\left(\sum x \in X^{\prime}\right.$. ((edge-density X
$Y G-\varepsilon) *($ card $Y)))$
using False sum-strict-mono X^{\prime}-def
by (smt (verit, del-insts) finx of-nat-sum)
then have upper: $\left(\sum x \in X^{\prime}\right.$. card (neighbors-ss $\left.\left.x Y G\right)\right)<\left(\right.$ card $\left.X^{\prime}\right) *(($ edge-density
$X Y G-\varepsilon) *(\operatorname{card} Y))$
by (simp add: sum-bounded-above)
have yge 0: card $Y>0$
by (metis gr0I mult-eq-0-iff of-nat-0 of-nat-less-0-iff upper)
have ? $r x y>0$
using card-0-eq finx False yge0 X^{\prime}-def by fastforce
then have upper2: ? rxy $*\left(\sum x \in X^{\prime}\right.$. card (neighbors-ss $\left.\left.x Y G\right)\right)<$?rxy * (card $\left.X^{\prime}\right) *(($ edge-density $X Y G-\varepsilon) *($ card $Y))$ by (smt (verit) mult.assoc mult-le-cancel-left upper)
have ?rxy * $\left(\right.$ card $\left.X^{\prime}\right) *(($ edge-density $X Y G-\varepsilon) *($ card $Y))=$ edge-density
XYG-
using False X^{\prime}-def finx by force
with $\langle\varepsilon>0\rangle$ upper2 have con: edge-density $X Y G-$? $r x y *\left(\sum x \in X^{\prime}\right.$. card $($ neighbors-ss $x Y G))>\varepsilon$ by linarith
have \mid edge-density $X Y G-? r x y *\left(\sum x \in X^{\prime}\right.$. card (neighbors-ss $\left.\left.x \quad Y G\right)\right) \mid$
$=\mid$?rxy $*\left(\right.$ card (all-edges-between $\left.\left.X^{\prime} Y G\right)\right)-$ edge-density $X Y G \mid$
using card-all-edges-betw-neighbor fin wf by (simp add: X^{\prime}-def)
also have $\ldots=\mid$ edge-density $X^{\prime} Y G-$ edge-density $X Y G \mid$
by (simp add: edge-density-def)
also have $\ldots \leq \varepsilon$
using assms ebound yge0 a by (force simp add: X^{\prime}-def regular-pair-def)
finally show False using con by linarith
qed
qed (simp add: 〈card $X>0\rangle$ eg 0)
lemma neighbor-set-meets-e-reg-cond:

```
    fixes \varepsilon::real
    assumes edge-density X Y G \geq2*\varepsilon
    and card (neighbors-ss x Y G)\geq(edge-density X Y G-\varepsilon) * card Y
shows card (neighbors-ss x Y G)\geq\varepsilon* card (Y)
    by (smt (verit) assms mult-right-mono of-nat-0-le-iff)
lemma all-edges-btwn-neighbor-sets-lower-bound:
    fixes \varepsilon::real
    assumes rp2: \varepsilon-regular-pair Y ZG
        and ed1: edge-density X Y G \geq2*\varepsilon and ed2: edge-density X ZG\geq2*\varepsilon
        and cond1: card (neighbors-ss x Y G)\geq(edge-density X Y G-\varepsilon) * card Y
        and cond2: card (neighbors-ss x Z G)\geq(edge-density X Z G-\varepsilon) * card Z
    shows card (all-edges-between (neighbors-ss x Y G) (neighbors-ss x Z G)G)
        \geq \mp@code { ( e d g e - d e n s i t y ~ Y ~ Z ~ G ~ - ~ \varepsilon ) * ~ c a r d ~ ( n e i g h b o r s - s s ~ x ~ Y ~ G ) * ~ c a r d ~ ( n e i g h b o r s - s s }
x Z G)
    (is card (all-edges-between ? Y' ? Z' G)\geq(edge-density YZ G-\varepsilon) * card ?Y'
* card ?Z')
proof -
    have yss': ? Y'}\subseteqY\mathrm{ using neighbors-ss-def by simp
    have zss': ? Z' }\subseteqZ using neighbors-ss-def by sim
    have min-size Y: card ? Y'}\geq\varepsilon* card Y
        using cond1 ed1 neighbor-set-meets-e-reg-cond by blast
    have min-sizeZ: card ?'Z'}\geq\varepsilon* card Z
        using cond2 ed2 neighbor-set-meets-e-reg-cond by blast
    then have | edge-density? ? '' ?Z' G - edge-density YZ G | \leq <
        using min-sizeY yss' zss' assms by (force simp add: regular-pair-def)
    then have edge-density Y Z G-\varepsilon\leq(card (all-edges-between ?Y' ?Z' G)/(card
?Y'* card ? Z'))
        using edge-density-def by simp
    then have (card ? ' ''* card ?Z') *(edge-density YZ G-\varepsilon)\leq(card (all-edges-between
? Y' ?'Z' G))
        by (fastforce simp: divide-simps mult.commute simp flip: of-nat-mult split:
if-split-asm)
    then show ?thesis
        by (metis (no-types, lifting) mult.assoc mult-of-nat-commute of-nat-mult)
qed
```

We are now ready to show the Triangle Counting Lemma:

```
theorem triangle-counting-lemma:
```

fixes ε ::real
assumes xss: $X \subseteq$ uverts G and yss: $Y \subseteq$ uverts G and zss: $Z \subseteq$ uverts G and en0: $\varepsilon>0$
and finG: finite (uverts G) and wf: uwellformed G
and rp1: ε-regular-pair $X \quad Y$ and rp2: ε-regular-pair $Y Z G$ and rp3: ε-regular-pair $X Z G$
and ed1: edge-density $X Y G \geq 2 * \varepsilon$ and ed2: edge-density $X Z G \geq 2 * \varepsilon$ and ed3: edge-density $Y Z G \geq 2 * \varepsilon$
shows card (triangle-triples $X Y Z G$)

$$
\geq(1-2 * \varepsilon) *(\text { edge-density } X Y G-\varepsilon) *(\text { edge-density } X Z G-\varepsilon) *
$$

```
(edge-density Y Z G - \varepsilon)*
    card X* card Y* card Z
proof -
    let ?T-all }={(x,y,z)\inX\timesY\timesZ.(triangle-in-graph x y z G)
    let ?ediff = \lambdaX Y. edge-density X YG-\varepsilon
    define XF where XF\equiv\lambdaY. {x\inX.card(neighbors-ss x Y G)< ?ediff X Y*
card Y}
    have fin: finite }X\mathrm{ finite Y finite Z using finG rev-finite-subset xss yss zss by
auto
    then have card X > 0
        using card-0-eq ed1 edge-density-def en0 by fastforce
```

Obtain a subset of X where all elements meet minimum numbers for neighborhood size in Y and Z ．

```
define \(X 2\) where \(X 2 \equiv X-(X F Y \cup X F Z)\)
have xss: \(X 2 \subseteq X\) and finx2: finite \(X 2\)
    by (auto simp add: X2-def fin)
```

 Reasoning on the minimum size of \(X 2\) :
 have part1: $(X F Y \cup X F Z) \cup X 2=X$
by (auto simp: XF-def X2-def)
have card-XFY: card $(X F Y)<\varepsilon *$ card X
using regular-pair-neighbor-bound assms 〈card $X>0$ 〉 by (simp add: XF-def)
We now repeat the same argument as above to the regular pair $X Z$ in
G.
have card-XFZ: card $(X F Z)<\varepsilon *$ card X
using regular-pair-neighbor-bound assms 〈card $X>0\rangle$ by (simp add: XF-def)
have card $(X F Y \cup X F Z) \leq 2 * \varepsilon *(\operatorname{card} X)$
by (smt (verit) card-XFY card-XFZ card-Un-le comm-semiring-class.distrib
of-nat-add of-nat-mono)
then have card $X 2 \geq$ card $X-2 * \varepsilon *$ card X
using part1 by (smt (verit, del-insts) card-Un-le of-nat-add of-nat-mono)
then have minx2: card $X 2 \geq(1-2 * \varepsilon) *$ card X
by (metis mult.commute mult-cancel-left2 right-diff-distrib)

Reasoning on the minimum number of edges between neighborhoods of X in Y and Z ．
have edyzgt0: ?ediff $Y Z>0$ and edxygt0: ?ediff $X Y>0$
using ed1 ed3 $\langle\varepsilon>0\rangle$ by linarith +
have card-y-bound: card (neighbors-ss $x Y G$) \geq ?ediff $X Y *$ card Y
and card-z-bound: card (neighbors-ss $x Z G) \geq$?ediff $X Z *$ card Z
if $x \in X 2$ for x
using that by (auto simp: XF-def X2-def)
have card-y-bound ${ }^{\prime}$:
($\sum x \in$ X2. ?ediff $Y Z *($ card (neighbors-ss $\left.x Y G)\right) *($ card (neighbors-ss
$x Z G))) \geq$
$\sum x \in$ X2. ?ediff $Y Z *$? ediff $X Y *($ card $Y) *($ card (neighbors-ss $x Z$
$G)$))
by (rule sum-mono) (smt (verit, best) mult.left-commute card-y-bound edyzgt0 mult.commute mult-right-mono of-nat-0-le-iff)
have card-z-bound':
($\sum x \in$ X2. ?ediff $Y Z *$?ediff $X Y *($ card $Y) *$ (card (neighbors-ss $x Z$
G))) \geq
($\sum x \in$ X2. ?ediff $Y Z *$?ediff $X Y *(\operatorname{card} Y) *$?ediff $\left.X Z *(\operatorname{card} Z)\right)$
using card-z-bound mult-left-mono edxygt0 edyzgt0 by (fastforce intro!: sum-mono)
have eq-set: $\bigwedge x .\{(y, z) . y \in Y \wedge z \in Z \wedge\{y, z\} \in$ uedges $G \wedge$ neighbor-in-graph $x y G \wedge$ neighbor-in-graph $x z G\}=$
$\{(y, z) . y \in($ neighbors-ss $x Y G) \wedge z \in($ neighbors-ss $x Z G) \wedge\{y$,
$z\} \in$ uedges $G\}$
by (auto simp: neighbors-ss-def)
have card ? T-all $=\left(\sum x \in X\right.$. card $\{(y, z) \in Y \times Z$. triangle-in-graph x y $\left.z G\}\right)$
using triple-sigma-rewrite-card fin by force
also have $\ldots=\left(\sum x \in X\right.$. card $\{(y, z) . y \in Y \wedge z \in Z \wedge\{y, z\} \in$ uedges $G \wedge$ neighbor-in-graph x y $G \wedge$ neighbor-in-graph $x z G\})$
using triangle-in-graph-edge-point assms by auto
also have $\ldots=\left(\sum x \in X\right.$. card (all-edges-between (neighbors-ss $\left.x Y G\right)($ neighbors-ss $x Z G) G)$)
using all-edges-between-def eq-set by presburger
finally have l : card ? T-all $\geq\left(\sum x \in X 2\right.$. card (all-edges-between (neighbors-ss $x Y G)($ neighbors-ss $x Z G) G))$
by (simp add: fin xss sum-mono2)
have $\left(\sum x \in\right.$ X2. ?ediff $Y Z *($ card (neighbors-ss $\left.x Y G)\right) *($ card (neighbors-ss $x Z G))) \leq$
($\sum x \in$ X2. real (card (all-edges-between (neighbors-ss x Y G) (neighbors-ss $x Z G) G)$)
(is sum ?F - \leq sum ? G-)
proof (rule sum-mono)
show $\bigwedge x . x \in X 2 \Longrightarrow ? F x \leq ? G x$
using all-edges-btwn-neighbor-sets-lower-bound card-y-bound card-z-bound ed1 ed2 rp2 by blast
qed
then have card ? T-all \geq card $X 2 *$?ediff $Y Z *$?ediff $X Y *$ card $Y *$?ediff X $Z *$ card Z using card-z-bound' card-y-bound' l of-nat-le-iff [symmetric, where 'a=real] by force
then have real $(\operatorname{card}$?T-all $) \geq((1-2 * \varepsilon) * \operatorname{card} X) *$?ediff $Y Z *$?ediff $X Y *(\operatorname{card} Y) *$?ediff $X Z *($ card $Z)$
by (smt (verit, best) ed2 edxygt0 edyzgt0 en0 minx2 mult-right-mono of-nat-0-le-iff)
then show?thesis by (simp add: triangle-triples-def mult.commute mult.left-commute)
qed
definition regular-graph $::$ real \Rightarrow uvert set set \Rightarrow ugraph \Rightarrow bool
(--regular'-graph [999]1000)
where ε-regular-graph $P G \equiv \forall R S . R \in P \longrightarrow S \in P \longrightarrow \varepsilon$-regular-pair $R S G$
for ε ::real

A minimum density, but empty edge sets are excluded.
definition edge-dense :: nat set \Rightarrow nat set \Rightarrow ugraph \Rightarrow real \Rightarrow bool where edge-dense $X Y G \varepsilon \equiv$ all-edges-between $X Y G=\{ \} \vee$ edge-density X $Y G \geq \varepsilon$
definition dense-graph $::$ uvert set set \Rightarrow ugraph \Rightarrow real \Rightarrow bool
where dense-graph $P G \varepsilon \equiv \forall R S . R \in P \longrightarrow S \in P \longrightarrow$ edge-dense $R S G \varepsilon$ for ع::real
definition decent $::$ nat set \Rightarrow nat set \Rightarrow ugraph \Rightarrow real \Rightarrow bool
where decent $X Y G \eta \equiv$ all-edges-between $X Y G=\{ \} \vee($ card $X \geq \eta \wedge$ card $Y \geq \eta$) for η ::real
definition decent-graph $::$ uvert set set \Rightarrow ugraph \Rightarrow real \Rightarrow bool where decent-graph $P G \eta \equiv \forall R S . R \in P \longrightarrow S \in P \longrightarrow$ decent $R S G \eta$

The proof of the triangle counting lemma requires ordered triples. For each unordered triple there are six permutations, hence the factor of $1 / 6$ here.

```
lemma card-convert-triangle-rep:
    fixes G :: ugraph
    assumes }X\subseteq\mathrm{ uverts }G\mathrm{ and Y}\subseteq\mathrm{ uverts }G\mathrm{ and Z }\subseteq\mathrm{ uverts }G\mathrm{ and fin: finite
(uverts G)
and wf: uwellformed G
    shows card (triangle-set G)\geq1/6* card {(x,y,z) \inX\timesY\timesZ.(triangle-in-graph
x yzG)}
            (is - \geq1/6* card ?TT)
proof -
    define tofl where tofl \equiv\lambdal::nat list. (hd l,hd(tl l),hd(tl(tl l)))
    have in-tofl: (x,y,z)\intofl'permutations-of-set {x,y,z} if }x\not=yy\not=zx\not=z\mathrm{ for x y
z
    proof -
        have distinct[x,y,z]
            using that by simp
        then show ?thesis
            unfolding tofl-def image-iff
                by (smt (verit, best) list.sel(1) list.sel(3) set-simps permutations-of-setI
set-empty)
    qed
    have ?TT\subseteq{(x,y,z). (triangle-in-graph x y z G)}
        by auto
    also have }\ldots\subseteq(\bigcupt\in\mathrm{ triangle-set G. tofl'permutations-of-set t)
        using edge-vertices-not-equal [OF wf] in-tofl
        by (clarsimp simp add: triangle-set-def triangle-in-graph-def) metis
    finally have ?TT\subseteq( Ut\in triangle-set G. tofl' permutations-of-set t).
    then have card ?TT \leqcard ( \bigcupt triangle-set G. tofl' permutations-of-set t)
        by (intro card-mono finite-UN-I finite-triangle-set) (auto simp: assms)
    also have ...\leq(\sumt\in triangle-set G.card (tofl'permutations-of-set t))
        using card-UN-le fin finite-triangle-set local.wf by blast
```

```
    also have ... \leq(\sumt\in triangle-set G. card (permutations-of-set t))
    by (meson card-image-le finite-permutations-of-set sum-mono)
    also have \ldots.\leq(\sumt\in triangle-set G. fact 3)
    by (rule sum-mono) (metis card.infinite card-permutations-of-set card-triangle-3
eq-refl local.wf nat.case numeral-3-eq-3)
    also have \ldots. =6* card (triangle-set G)
        by (simp add: eval-nat-numeral)
    finally have card?TT\leq6* card (triangle-set G).
    then show ?thesis
        by (simp add: divide-simps)
qed
lemma card-convert-triangle-rep-bound:
    fixes }G\mathrm{ :: ugraph and t :: real
    assumes X\subsetequverts G and Y\subsetequverts G and Z\subsetequverts G and fin: finite
(uverts G)
and wf: uwellformed G
    assumes card {(x,y,z)\inX\timesY\timesZ.(triangle-in-graph x y z G)} \geqt
    shows card (triangle-set G)\geq1/6*t
proof -
    define t' where t'\equiv\operatorname{card {(x,y,z) \inX }\timesY\timesZ.(triangle-in-graph x y z G)}
    have t'\geqt using assms t'-def by simp
    then have tgt: 1/6* t'\geq1/6*t by simp
    have card (triangle-set G)\geq1/6*t' using t'-def card-convert-triangle-rep assms
by simp
    thus ?thesis using tgt by linarith
qed
lemma edge-density-eq0:
    assumes all-edges-between A B G={} and X\subseteqA Y\subseteqB
    shows edge-density X Y G=0
proof -
    have all-edges-between X Y G={}
    by (metis all-edges-between-mono1 all-edges-between-mono2 assms subset-empty)
    then show ?thesis
    by (auto simp: edge-density-def)
qed
```

The following is the Triangle Removal Lemma.
theorem triangle-removal-lemma:
fixes ε :: real
assumes egt: $\varepsilon>0$
shows $\exists \delta::$ real $>0 . \forall G$. card $($ uverts $G)>0 \longrightarrow$ uwellformed $G \longrightarrow$ card $($ triangle-set $G) \leq \delta * \operatorname{card}($ uverts $G) へ 3 \longrightarrow$ $\left(\exists G^{\prime}\right.$. triangle-free-graph $G^{\prime} \wedge$ uverts $G^{\prime}=$ uverts $G \wedge$ uedges $G^{\prime} \subseteq$ uedges
$G \wedge$
card $\left(\right.$ uedges $G-$ uedges $\left.\left.G^{\prime}\right) \leq \varepsilon *(\text { card }(\text { uverts } G))^{2}\right)$
(is $\exists \delta::$ real $>0 . \forall G .-\longrightarrow-\longrightarrow-\longrightarrow(\exists$ Gnew. ? Φ G Gnew $)$)
proof (cases $\varepsilon<1$)

```
case False
show ?thesis
proof (intro exI conjI strip)
    fix }
    define Gnew where Gnew \equiv((uverts G), {}::uedge set)
    assume G: uwellformed G card(uverts G)>0
    then show triangle-free-graph Gnew uverts Gnew = uverts G uedges Gnew }
uedges G
            by (auto simp: Gnew-def triangle-free-graph-empty)
    have real (card (uedges G)) \leq(card (uverts G))}\mp@subsup{)}{}{2
            by (meson G card-gt-0-iff max-edges-graph of-nat-le-iff)
    also have \ldots.\leq\varepsilon*( (card (uverts G))}\mp@subsup{)}{}{2
            using False mult-le-cancel-right1 by fastforce
    finally show real (card (uedges G - uedges Gnew)) \leq\varepsilon*((card (uverts G))}\mp@subsup{)}{}{2}
            by (simp add:Gnew-def)
qed (rule zero-less-one)
next
    case True
    have e4gt: \varepsilon/4>0 using <\varepsilon> 0> by auto
    then obtain M0 where
        M0: \G.card (uverts G)>0\Longrightarrow\existsP.regular-partition (\varepsilon/4)GP^card P
\leqMO
    and M0>0
    by (metis Szemeredi-Regularity-Lemma le0 neq0-conv not-le not-numeral-le-zero)
define DO where DO\equiv1/6*(1-(\varepsilon/2))*((\varepsilon/4)^3)*((\varepsilon/(4*M0))^3)
have D0 > 0
    using {0< <><\varepsilon< 1\rangle\langleM0> 0\rangle by (simp add: D0-def zero-less-mult-iff)
    then obtain \delta:: real where \delta: 0< < < < D0
    by (meson dense)
show ?thesis
proof (rule exI, intro conjI strip)
    fix }
    assume card(uverts G) > 0 and wf: uwellformed G
    then have fin: finite (uverts G)
            by (simp add: card-gt-0-iff)
```

Assume that, for a yet to be determined δ, we have:
assume ineq: real $(\operatorname{card}($ triangle-set $G)) \leq \delta * \operatorname{card}($ uverts $G){ }^{\wedge} 3$
Step 1: Partition: Using Szemerédi's Regularity Lemma, we get an $\epsilon / 4$ partition.
let ? $n=$ card (uverts G)
have vne: uverts $G \neq\{ \}$
using $\langle 0<$ card (uverts G) 〉 by force
then have ngt0: ? $n>0$
by (simp add: fin card-gt-0-iff)
with $M 0$ obtain P where M : regular-partition $(\varepsilon / 4) G P$ and card $P \leq M 0$
by blast
define M where $M \equiv \operatorname{card} P$

```
    have finite P
    by (meson M fin finite-elements regular-partition-def)
    with M0 have M>0
    unfolding M-def
    by (metis M card-gt-0-iff partition-onD1 partition-on-empty regular-partition-def
vne)
let ?e4M= | / (4* real M)
    define D where D \equiv1/6*(1-(\varepsilon/2))* ((\varepsilon/4)^3)*? e4M^3
    have D>0
        using <0 < ह\rangle\langle\varepsilon< 1\rangle\langleM> 0\rangle by (simp add: D-def zero-less-mult-iff)
    have D0 \leq D
        unfolding D0-def D-def using <0< < <\varepsilon< < 1\rangle\langlecard P\leqM0\rangle\langleM>0\rangle
        by (intro mult-mono) (auto simp: frac-le M-def)
    have fin-part: finite-graph-partition (uverts G) P M
        using M unfolding regular-partition-def finite-graph-partition-def
        by (metis M-def <0 < M> card-gt-0-iff)
    then have fin-P: finite R and card-P-gt0: card R>0 if R\inP for R
        using fin finite-graph-partition-finite finite-graph-partition-gt0 that by auto
    have card-P-le: card R}\leq?n if R\inP for R
        by (meson card-mono fin fin-part finite-graph-partition-subset that)
    have P-disjnt: \bigwedgeRS.\llbracketR\not=S;R\inP;S\inP\rrbracket\LongrightarrowR\capS={}
        using fin-part
            by (metis disjnt-def finite-graph-partition-def insert-absorb pairwise-insert
partition-on-def)
    have sum-card-P:(\sumR\inP. card R)=?n
        using card-finite-graph-partition fin fin-part by meson
```

Step 2. Cleaning. For each ordered pair of parts $\left(P_{i}, P_{j}\right)$, remove all edges between P_{i} and P_{j} if (a) it is an irregular pair, (b) its edge density $<\epsilon / 2$, (c) either P_{i} or P_{j} is small $(\leq(\epsilon / 4 M) n)$ Process (a) removes at most $(\epsilon / 4) n^{2}$ edges. Process (b) removes at most $(\epsilon / 2) n^{2}$ edges. Process (c) removes at most $(\epsilon / 4) n^{2}$ edges. The remaining graph is triangle-free for some choice of δ.
define edge where edge $\equiv \lambda R S$. mk-uedge' (all-edges-between $R S G)$
have edge-commute: edge $R S=$ edge $S R$ for $R S$
by (force simp add: edge-def all-edges-between-swap [of S] split: prod.split)
have card-edge-le-card: card (edge $R S$) \leq card (all-edges-between $R S G$) for R S
by (simp add: card-image-le edge-def fin finite-all-edges-between' local.wf)
have card-edge-le: card (edge $R S$) \leq card $R * \operatorname{card} S$ if $R \in P S \in P$ for $R S$
by (meson card-edge-le-card fin-P le-trans max-all-edges-between that)
Obtain the set of edges meeting condition (a).
define irreg-pairs where irreg-pairs $\equiv\{(R, S) . R \in P \wedge S \in P \wedge \neg(\varepsilon / 4)$-regular-pair $R S G\}$
define $E a$ where $E a \equiv(\bigcup(R, S) \in$ irreg-pairs. edge $R S)$
Obtain the set of edges meeting condition (b).
define low-density-pairs
where low－density－pairs $\equiv\{(R, S) . R \in P \wedge S \in P \wedge \neg$ edge－dense $R S G$ （ $\varepsilon / 2)\}$
define $E b$ where $E b \equiv(\bigcup(i, j) \in$ low－density－pairs．edge $i j)$
Obtain the set of edges meeting condition（c）．
define small where small $\equiv \lambda R . R \in P \wedge \operatorname{card} R \leq$ ？$e 4 M * ? n$
let ？SMALL $=$ Collect small
define small－pairs where small－pairs $\equiv\{(R, S) . R \in P \wedge S \in P \wedge($ small R \vee small $S)\}$
define $E c$ where $E c \equiv(\bigcup R \in$ ？SMALL．$\bigcup S \in P$ ．edge $R S)$
have Ec－def $: E c=(\bigcup(i, j) \in$ small－pairs．edge $i j)$
by（force simp：edge－commute small－pairs－def small－def Ec－def）
have eabound：card $E a \leq(\varepsilon / 4) * ? n$～2－Count the edge bound for $E a$
proof－
have $\S: \bigwedge R S . \llbracket R \in P ; S \in P \rrbracket \Longrightarrow \operatorname{card}($ edge $R S) \leq \operatorname{card} R * \operatorname{card} S$
unfolding edge－def
by（meson card－image－le fin－P finite－all－edges－between max－all－edges－between order－trans）
have irreg－pairs $\subseteq P \times P$
by（auto simp：irreg－pairs－def）
then have finite irreg－pairs
by（meson 〈finite P 〉finite－SigmaI finite－subset）
have card Ea $\leq\left(\sum(R, S) \in\right.$ irreg－pairs．card（edge $\left.\left.R S\right)\right)$
by（simp add：Ea－def card－UN－le［OF〈finite irreg－pairs〉］case－prod－unfold）
also have $\ldots \leq\left(\sum(R, S) \in\{(R, S) . R \in P \wedge S \in P \wedge \neg(\varepsilon / 4)\right.$－regular－pair R $S G\}$ ．card $R * \operatorname{card} S$ ）
unfolding irreg－pairs－def using § by（force intro：sum－mono）
also have $\ldots=\left(\sum(R, S) \in\right.$ irregular－set $\left.(\varepsilon / 4) G P . \operatorname{card} R * \operatorname{card} S\right)$
by（simp add：irregular－set－def）
finally have card $E a \leq\left(\sum(R, S) \in\right.$ irregular－set $(\varepsilon / 4) G P$ ．card $R *$ card $S)$ ．
with M show ？thesis
unfolding regular－partition－def by linarith

qed

have ebbound：card $E b \leq(\varepsilon / 2) *(? n$ 2 $)$－Count the edge bound for $E b$ ．

proof－

have $\S: ~ \bigwedge R S . \llbracket R \in P ; S \in P ; \neg$ edge－dense $R S G(\varepsilon / 2) \rrbracket$ $\Longrightarrow \operatorname{real}($ card $($ edge $R S)) * 2 \leq \varepsilon * \operatorname{real}($ card $R) * \operatorname{real}(\operatorname{card} S)$
by（simp add：divide－simps edge－dense－def edge－density－def card－P－gt0）
（smt（verit，best）card－edge－le－card of－nat－le－iff mult．assoc）
have subs：low－density－pairs $\subseteq P \times P$
by（auto simp：low－density－pairs－def）
then have finite low－density－pairs
by（metis 〈finite P 〉 finite－SigmaI finite－subset）
have real $($ card $E b) \leq\left(\sum(i, j) \in\right.$ low－density－pairs．real $($ card $($ edge $\left.i j))\right)$
unfolding $E b$－def
by（smt（verit，ccfv－SIG）＜finite low－density－pairs〉card－UN－le of－nat－mono of－nat－sum
case－prod－unfold sum－mono）

```
        also have .. S (\sum(R,S)\inlow-density-pairs. \varepsilon/2 * card R * card S)
        unfolding low-density-pairs-def by (force intro: sum-mono §)
        also have .. \leq (\sum (R,S)\inP\timesP.\varepsilon/2* card R* card S)
        using subs «\varepsilon> 0\rangle by (intro sum-mono2) (auto simp: <finite P>)
    also have \ldots=\varepsilon/2* (\sum(R,S)\inP\timesP. card R* card S)
        by (simp add: sum-distrib-left case-prod-unfold mult-ac)
    also have \ldots.\leq (\varepsilon/2) * (?n^2)
        using «\varepsilon>0\rangle sum-prod-le-prod-sum
        by (simp add: power2-eq-square sum-product flip: sum.cartesian-product
sum-card-P)
    finally show ?thesis .
    qed
    have ecbound: card Ec\leq(\varepsilon/4)*(?n^2) - Count the edge bound for Ec.
    proof -
        have edge-bound: (card (edge R S)) \leq?e4M*?n^2
        if S \inP small R for R S
    proof -
        have real (card R)\leq\varepsilon*?n / (4* real M)
            using that by (simp add: small-def)
        with card-P-le [OF \langleS\inP〉]
        have *: real (card R) * real (card S) \leq\varepsilon * card (uverts G)/(4 * real M)
* ?n
            by (meson mult-mono of-nat-0-le-iff of-nat-mono order.trans)
            also have ... =? e4M*?n^2
            by (simp add: powerD-eq-square)
        finally show ?thesis
            by (smt (verit) card-edge-le of-nat-mono of-nat-mult small-def that)
    qed
    have subs: ?SMALL\subseteqP
        by (auto simp: small-def)
    then obtain card-sp: card (?SMALL) \leqM and finite ?SMALL
        using M-def 〈finite P> card-mono by (metis finite-subset)
    have real (card Ec) \leq (\sumR ?SMALL. real (card (\bigcupS\inP. edge R S)))
        unfolding Ec-def
    by (smt (verit, ccfv-SIG)<finite ?SMALL〉 card-UN-le of-nat-mono of-nat-sum
case-prod-unfold sum-mono)
    also have ... \leq (\sumR & ?SMALL. ?e4M* ? n^2)
    proof (intro sum-mono)
        fix R assume i:R\inCollect small
        then have R\inP and card-Pi: card R\leq?e4M*?n
            by (auto simp: small-def)
        let ? UE = U(edge R'(P))
        have *: real (card ?UE) \leq real (card R*?n)
        proof -
            have ?UE\subseteqmk-uedge'(all-edges-between R (uverts G)G)
            apply (simp add: edge-def UN-subset-iff Ball-def)
            by (meson all-edges-between-mono2 fin-part finite-graph-partition-subset
image-mono)
            then have card ?UE \leqcard (all-edges-between R (uverts G)G)
```

by (meson card-image-le card-mono fin finite-all-edges-between' f_{i} -nite-imageI wf le-trans)
then show ?thesis
by (meson of-nat-mono fin fin-P max-all-edges-between order.trans $\langle R \in P 〉$)
qed
also have $\ldots \leq ? e_{4} M *$ real $\left(? n^{2}\right)$
using card- $\mathrm{Pi}\langle M>0\rangle\langle ? n>0\rangle$ by (force simp add: divide-simps
power2-eq-square)
finally show real $($ card ? $U E) \leq ? e 4 M *$ real $\left(? n^{2}\right)$.
qed
also have $\ldots \leq \operatorname{card} ?$ SMALL $*(? e 4 M * ? n$ ^2)
by simp
also have $\ldots \leq M *\left(? e_{4} M * ? n\right.$ ح 2$)$
using egt by (intro mult-right-mono) (auto simp add: card-sp)
also have $\ldots \leq(\varepsilon / 4) *(? n$ へ2 $)$
using $\langle M\rangle 0\rangle$ by simp
finally show ?thesis .
qed

- total count
have prev1: card $(E a \cup E b \cup E c) \leq \operatorname{card}(E a \cup E b)+c a r d E c$ by $(\operatorname{simp}$ add: card-Un-le)
also have $\ldots \leq$ card $E a+$ card $E b+$ card $E c$ by (simp add: card-Un-le)
also have prev: $\ldots \leq(\varepsilon / 4) *(? n \wedge 2)+(\varepsilon / 2) *(? n$ ^2 $)+(\varepsilon / 4) *(? n$ ^2 $)$
using eabound ebbound ecbound by linarith
finally have cutedgesbound: card $(E a \cup E b \cup E c) \leq \varepsilon *\left(? n^{\wedge}\right.$ Z $)$ by simp
define Gnew where Gnew $\equiv($ uverts G, uedges $G-(E a \cup E b \cup E c))$
show \exists Gnew. ? Φ G Gnew
proof (intro exI conjI)
show verts: uverts Gnew $=$ uverts G by (simp add: Gnew-def)
have diffedges: $(E a \cup E b \cup E c) \subseteq$ uedges G
by (auto simp: Ea-def Eb-def Ec-def all-edges-between-def edge-def)
then show edges: uedges Gnew \subseteq uedges G
by (simp add: Gnew-def)
then have uedges $G-($ uedges Gnew $)=$ uedges $G \cap(E a \cup E b \cup E c)$
by (simp add: Gnew-def Diff-Diff-Int)
then have uedges $G-($ uedges Gnew $)=(E a \cup E b \cup E c)$ using diffedges by (simp add: Int-absorb1)
then have cardbound: card (uedges G - uedges Gnew) $\leq \varepsilon *(? n$ ^2)
using cutedgesbound by simp
have graph-partition-new: finite-graph-partition (uverts Gnew) P M using verts
by (simp add: fin-part)
have new-wf: uwellformed Gnew using subgraph-edge-wf verts edges wf by simp
have new-fin: finite (uverts Gnew) using verts fin by simp
The notes by Bell and Grodzicki are quite useful for understanding the lines below. See pg 4 in the middle after the summary of the min edge counts.
have irreg-pairs-swap: $(R, S) \in$ irreg-pairs $\longleftrightarrow(S, R) \in$ irreg-pairs for $R S$
by (auto simp: irreg-pairs-def regular-pair-commute)
have low-density-pairs-swap: $(R, S) \in$ low-density-pairs $\longleftrightarrow(S, R) \in$ low-density-pairs for $R S$
by (simp add: low-density-pairs-def edge-density-commute edge-dense-def)
(use all-edges-between-swap in blast)
have small-pairs-swap: $(R, S) \in$ small-pairs $\longleftrightarrow(S, R) \in$ small-pairs for $R S$
by (auto simp: small-pairs-def)
have all-edges-if:
all-edges-between $R S$ Gnew
$=($ if $(R, S) \in$ irreg-pairs \cup low-density-pairs \cup small-pairs then $\{ \}$ else all-edges-between $R S G$)
(is ? lhs = ? $r h s$)
if $i j: R \in P S \in P$ for $R S$

proof

show ?lhs \subseteq ?rhs
using that fin-part unfolding Gnew-def Ea-def Eb-def Ec-def'
apply (simp add: all-edges-between-E-diff all-edges-between-E-Un all-edges-between-E-UN)
apply (auto simp: edge-def in-mk-uedge-img-iff all-edges-between-def)
done
next
have Ea: all-edges-between $R S(V, E a)=\{ \}$
if $(R, S) \notin$ irreg-pairs for V
using ij that P-disjnt
by (auto simp: Ea-def doubleton-eq-iff edge-def all-edges-between-def ir-
reg-pairs-def;
metis regular-pair-commute disjoint-iff-not-equal)
have Eb: all-edges-between $R S(V, E b)=\{ \}$
if $(R, S) \notin$ low-density-pairs for V
using ij that
apply (auto simp: Eb-def edge-def all-edges-between-def low-density-pairs-def edge-dense-def)
apply metis
by (metis IntI P-disjnt doubleton-eq-iff edge-density-commute equals0D)
have Ec: all-edges-between $R S(V, E c)=\{ \}$
if $(R, S) \notin$ small-pairs for V
using ij that by (auto simp: Ec-def' doubleton-eq-iff edge-def all-edges-between-def
small-pairs-def;
metis P-disjnt disjoint-iff)
show ? $\mathrm{rhs} \subseteq$? lhs
by (auto simp add: Gnew-def Ea Eb Ec all-edges-between-E-diff all-edges-between-E-Un)
qed
have $r p:(\varepsilon / 4)$-regular-pair $R S$ Gnew if $i j: R \in P S \in P$ for $R S$
proof (cases $(R, S) \in$ irreg-pairs)
case False
have ed: edge-density X Y Gnew =
(if $(R, S) \in$ irreg-pairs \cup low-density-pairs \cup small-pairs then 0 else edge-density $X Y G$)
if $X \subseteq R Y \subseteq S$ for $X Y$
using all-edges-if that ij False
by (smt (verit) all-edges-preserved edge-density-eq0 edge-density-def)
show ?thesis
using that False $\langle\varepsilon>0\rangle$
by (auto simp add: irreg-pairs-def regular-pair-def less-le ed)
next
case True
then have ed: edge-density $X Y$ Gnew $=0$ if $X \subseteq R Y \subseteq S$ for $X Y$
by (meson edge-density-eq0 all-edges-if that $\langle R \in P\rangle\langle S \in P\rangle U n C I)$
with egt that show ?thesis
by (auto simp: regular-pair-def ed)
qed
then have reg-pairs: $(\varepsilon / 4)$-regular-graph P Gnew
by (meson regular-graph-def)
have edge-dense $R S$ Gnew ($\varepsilon / 2$)
if $R \in P S \in P$ for $R S$
proof (cases $(R, S) \in$ low-density-pairs)
case False
have ed: edge-density $R S$ Gnew $=$
(if $(R, S) \in$ irreg-pairs \cup low-density-pairs \cup small-pairs then 0 else edge-density $R S G$)
using all-edges-if that that by (simp add: edge-density-def)
with that $\langle\varepsilon>0\rangle$ False show ?thesis
by (auto simp: low-density-pairs-def edge-dense-def all-edges-if)
next
case True
then have edge-density $R S$ Gnew $=0$
by (simp add: all-edges-if edge-density-def that)
with $\langle\varepsilon>0\rangle$ that show ?thesis
by (simp add: True all-edges-if edge-dense-def)
qed
then have density-bound: dense-graph P Gnew ($\varepsilon / 2$)
by (meson dense-graph-def)
have min-subset-size: decent-graph P Gnew (?e4M*?n)
using $\langle\varepsilon>0$ 〉
by (auto simp: decent-graph-def small-pairs-def small-def decent-def all-edges-if)
show triangle-free-graph Gnew
proof (rule ccontr)
assume non: \neg ?thesis
then obtain $x y z$ where trig-ex: triangle-in-graph x y z Gnew
using triangle-free-graph-def non by auto
then have xin: $x \in$ (uverts Gnew) and yin: $y \in$ (uverts Gnew) and zin: z \in (uverts Gnew)
using triangle-in-graph-verts new-wf by auto
then obtain $R S T$ where xinp: $x \in R$ and ilt: $R \in P$ and yinp: $y \in S$ and $j l t: S \in P$
and zinp: $z \in T$ and $k l t: T \in P$
by (metis graph-partition-new xin Union-iff finite-graph-partition-equals)
then have finitesubsets: finite R finite S finite T
using new-fin fin-part finite-graph-partition-finite fin by auto
have subsets: $R \subseteq$ uverts Gnew $S \subseteq$ uverts Gnew $T \subseteq$ uverts Gnew
using finite-graph-partition-subset ilt jlt klt graph-partition-new by auto
have min-sizes: card $R \geq$? $e_{4} M *$? n card $S \geq$? $e 4 M *$? n card $T \geq$? $e_{4} M *$? n using trig-ex min-subset-size xinp yinp zinp ilt jlt klt
by (auto simp: triangle-in-graph-def decent-graph-def decent-def all-edges-between-def)
have min-dens: edge-density $R S$ Gnew $\geq \varepsilon / 2$ edge-density $R T$ Gnew \geq $\varepsilon / 2$ edge-density $S T$ Gnew $\geq \varepsilon / 2$
using density-bound ilt jlt klt xinp yinp zinp trig-ex
by (auto simp: dense-graph-def edge-dense-def all-edges-between-def trian-gle-in-graph-def)
then have min-dens-diff:
edge-density $R S$ Gnew $-\varepsilon / 4 \geq \varepsilon / 4$ edge-density $R T$ Gnew $-\varepsilon / 4 \geq \varepsilon / 4$ edge-density $S T$ Gnew $-\varepsilon / 4 \geq \varepsilon / 4$
by auto
have mincard0: $(\operatorname{card} R) *(\operatorname{card} S) *(\operatorname{card} T) \geq 0$ by simp
have gtcube: ((edge-density $R S$ Gnew) $-\varepsilon / 4) *(($ edge-density $R T$ Gnew $)$
$-\varepsilon / 4) *(($ edge-density $S T$ Gnew $)-\varepsilon / 4) \geq(\varepsilon / 4)^{\wedge} 3$
using min-dens-diff eqgt real-mult-gt-cube by auto
then have c1: ((edge-density $R S$ Gnew $)-\varepsilon / 4) *(($ edge-density $R T$ Gnew $)$
$-\varepsilon / 4) *(($ edge-density $S T$ Gnew $)-\varepsilon / 4) \geq 0$
by (smt (verit) e4gt zero-less-power)
have ? $e 4 M * ? n \geq 0$
using egt by force
then have card $R *$ card $S *$ card $T \geq(? e 4 M * ? n) \wedge 3$
by (metis min-sizes of-nat-mult real-mult-gt-cube)
then have cardgtbound:card $R *$ card $S *$ card $T \geq$? $e 4 M^{\wedge} 3 * ? n$ ^3
by (metis of-nat-power power-mult-distrib)
have $(1-\varepsilon / 2) *(\varepsilon / 4)^{\wedge} 3 *(\varepsilon /(4 * M))^{\wedge} 3 * ? n^{\wedge} 3 \leq(1-\varepsilon / 2) *(\varepsilon / 4)^{\wedge} 3 *$ card $R * \operatorname{card} S * \operatorname{card} T$
using cardgtbound ordered-comm-semiring-class.comm-mult-left-mono True e4gt by fastforce
also have $\ldots \leq(1-2 *(\varepsilon / 4)) *($ edge-density $R S$ Gnew $-\varepsilon / 4) *($ edge-density R T Gnew - $\varepsilon / 4$)

* (edge-density $S T$ Gnew $-\varepsilon / 4) *$ card $R * \operatorname{card} S * \operatorname{card} T$
using gtcube c1 $\langle\varepsilon<1\rangle$ mincard0 by (simp add: mult.commute mult.left-commute mult-left-mono)
also have $\ldots \leq$ card (triangle-triples $R S T$ Gnew)
by (smt (verit, best) e4gt ilt jlt klt min-dens-diff new-fin new-wf rp subsets triangle-counting-lemma)
finally have card (triangle-set Gnew) $\geq D *$? n^3
using card-convert-triangle-rep-bound new-wf new-fin subsets
by (auto simp: triangle-triples-def D-def)

```
    then have g-tset-bound: card (triangle-set G)\geqD*? n^3
        using triangle-set-graph-edge-ss-bound by (smt (verit) edges fin local.wf
of-nat-mono verts)
    have card (triangle-set G)>\delta* ?n^3
    proof -
            have ? n^} > 0
                by (simp add: <uverts G}\not={}> card-gt-0-iff fin
            with }\delta<D0\leqD>\mathrm{ have }D*??n`3>\delta*?n^
                by force
            thus card (triangle-set G)>\delta* ?n ^3
                using g-tset-bound unfolding D-def by linarith
            qed
            thus False
                using ineq by linarith
            qed
            show real (card (uedges G - uedges Gnew)) \leq\varepsilon* real ((card (uverts G))}\mp@subsup{)}{}{2}
            using cardbound edges verts by blast
    qed
    qed (rule }<0<\delta\rangle\mathrm{ )
qed
```


1.5 Roth's Theorem

We will first need the following corollary of the Triangle Removal Lemma.
See https://en.wikipedia.org/wiki/Ruzsa--Szemerédi_problem. Suggested by Yaël Dillies

```
corollary Diamond-free:
```

 fixes \(\varepsilon\) :: real
 assumes \(0<\varepsilon\)
 shows \(\exists N>0 . \forall G\). card(uverts \(G)>N \longrightarrow\) uwellformed \(G \longrightarrow\) unique-triangles
 $G \longrightarrow$
card $($ uedges $G) \leq \varepsilon *(\operatorname{card}(\text { uverts } G))^{2}$
proof -
have $\varepsilon / 3>0$
using assms by auto
then obtain $\delta:$:real where $\delta>0$
and $\delta: \wedge G$. $\llbracket \operatorname{card}($ uverts $G)>0$; uwellformed G; card $($ triangle-set $G) \leq \delta *$
card (uverts G) ~3】
$\Longrightarrow \exists G^{\prime}$. triangle-free-graph $G^{\prime} \wedge$ uverts $G^{\prime}=$ uverts $G \wedge$ (uedges G^{\prime}
\subseteq uedges $G) \wedge$
card $\left(\right.$ uedges $G-$ uedges $\left.G^{\prime}\right) \leq \varepsilon / 3 *(\text { card }(\text { uverts } G))^{2}$
using triangle-removal-lemma by metis
obtain N ::nat where N : real $N \geq 1 /(3 * \delta)$
by (meson real-arch-simple)
show ?thesis
proof (intro exI conjI strip)
show $N>0$
using $N\langle 0<\delta\rangle$ zero-less-iff-neq-zero by fastforce
fix G
let ${ }^{2} n=$ card (uverts G)
assume $G-g t-N: N<? n$
and $w f$: uwellformed G
and uniq: unique-triangles G
have G-ne: ?n >0
using $G-g t-N$ by linarith
let ? $T W O=\left(\lambda t .[t]^{2}\right)$
have tri-nsets-2: $[\{x, y, z\}]^{2}=\{\{x, y\},\{y, z\},\{x, z\}\}$ if triangle-in-graph x y $z G$
for $x y z$
using that unfolding nsets-def triangle-in-graph-def card-2-iff doubleton-eq-iff by (blast dest!: edge-vertices-not-equal [OF wf])
have tri-nsets-3: $\{\{x, y\},\{y, z\},\{x, z\}\} \in[\text { uedges } G]^{3}$ if triangle-in-graph x y $z G$
for $x y z$
using that by (simp add: nsets-def card-3-iff triangle-in-graph-def)
(metis doubleton-eq-iff edge-vertices-not-equal [OF wf])
have sub: ?TWO' triangle-set $G \subseteq[\text { uedges } G]^{3}$
using tri-nsets-2 tri-nsets-3 triangle-set-def by auto
have $\bigwedge i . i \in$ triangle-set $G \Longrightarrow ? T W O i \neq\{ \}$
using tri-nsets- 2 triangle-set-def by auto
moreover have dfam: disjoint-family-on ?TWO (triangle-set G)
using sub [unfolded image-subset-iff] uniq
unfolding disjoint-family-on-def triangle-set-def nsets-def unique-triangles-def
by (smt (verit) disjoint-iff-not-equal insert-subset mem-Collect-eq mk-disjoint-insert
)
ultimately have inj: inj-on ?TWO (triangle-set G)
by (simp add: disjoint-family-on-iff-disjoint-image)
have $\S: \exists T \in$ triangle-set $G . e \in[T]^{2}$ if $e \in$ uedges G for e
using uniq [unfolded unique-triangles-def] that local.wf
apply (simp add: triangle-set-def triangle-in-graph-def nsets-def uwellformed-def)
by (metis (mono-tags, lifting) finite.emptyI finite.insertI finite-subset)
with sub have $\cup(? T W O$ 'triangle-set $G)=$ uedges G
by (auto simp: image-subset-iff nsets-def)
then have card $(\bigcup($?TWO'triangle-set $G))=\operatorname{card}($ uedges $G)$
by simp
moreover have card $(\bigcup($?TWO 'triangle-set $G))=3 *$ card $($ triangle-set $G)$
proof (subst card-UN-disjoint' [OF dfam])
show finite $\left([i]^{2}\right)$ if $i \in$ triangle-set G for i
using that tri-nsets-2 triangle-set-def by fastforce
show finite (triangle-set G)
by (meson G-ne card-gt-0-iff local.wf finite-triangle-set)
have $\operatorname{card}\left([i]^{2}\right)=3$ if $i \in$ triangle-set G for i
using that wf tri-nsets-2 tri-nsets-3 by (force simp add: nsets-def trian-gle-set-def)
then show $\left(\sum i \in\right.$ triangle-set $\left.G . \operatorname{card}\left([i]^{2}\right)\right)=3 * \operatorname{card}($ triangle-set $G)$
by simp
qed
ultimately have 3: 3 * card (triangle-set G) $=\operatorname{card}($ uedges $G)$
by auto

```
    have card (uedges G) \leq card (all-edges(uverts G))
    by (meson G-ne all-edges-finite card-gt-0-iff card-mono local.wf wellformed-all-edges)
    also have ... = ?n choose 2
    by (metis G-ne card-all-edges card-eq-0-iff not-less0)
    also have ...\leq? ? n
    by (metis binomial-eq-0-iff binomial-le-pow linorder-not-le zero-le)
    finally have card (uedges G) \leq? n
    with 3 have card (triangle-set G)\leq? n}\mp@subsup{n}{}{2}/3\mathrm{ by linarith
    also have \ldots}\leq\delta*? ? ^ 3
    proof -
    have 1\leq3*\delta*N
        using N\langle\delta> 0\rangle by (simp add: field-simps)
    also have \ldots\leq3*\delta*?n
        using G-gt-N<0< < by force
    finally have 1*? n^2 \leq (3*\delta*? n)*? n^2
        by (simp add: G-ne)
    then show ?thesis
        by (simp add: eval-nat-numeral mult-ac)
    qed
    finally have card (triangle-set G)\leq\delta*?n^ 3 .
    then obtain Gnew where Gnew: triangle-free-graph Gnew uverts Gnew =
uverts G
    uedges Gnew \subsetequedges G and card-edge-diff: card (uedges G - uedges Gnew)
\leq\varepsilon/3*? ? n
        using G-ne \delta local.wf by meson
Deleting an edge removes at most one triangle from the graph by assumption, so the number of edges removed in this process is at least the number of triangles.
obtain \(T F\) where \(T F: \wedge e . e \in\) uedges \(G \Longrightarrow \exists x y z . T F e=\{x, y, z\} \wedge\) triangle-in-graph x y \(z G \wedge e \subseteq T F e\)
using uniq unfolding unique-triangles-def by metis
have False
if non: \(\bigwedge e . e \in\) uedges \(G-\) uedges Gnew \(\Longrightarrow\{x, y, z\} \neq T F e\)
and tri: triangle-in-graph \(x\) y \(z G\) for \(x y z\)
proof -
have \(\neg\) triangle-in-graph \(x\) y \(z\) Gnew
using Gnew triangle-free-graph-def by blast
with tri obtain \(e\) where \(e G\) : \(e \in\) uedges \(G-\) uedges \(G n e w\) and esub: \(e \subseteq\) \(\{x, y, z\}\)
using insert-commute triangle-in-graph-def by auto
then show False
by (metis DiffD1 TF tri uniq unique-triangles-def non \([O F e G]\) )
qed
then have triangle-set \(G \subseteq T F\) ' (uedges \(G\) - uedges Gnew)
unfolding triangle-set-def by blast
moreover have finite (uedges \(G\) - uedges Gnew)
by (meson \(G\)-ne card-gt-0-iff finite-Diff finite-graph-def wf wellformed-finite)
ultimately have card (triangle-set \(G) \leq\) card (uedges \(G\) - uedges Gnew)
```

```
        by (meson surj-card-le)
    then show card (uedges G) \leq\varepsilon*? ?n
        using 3 card-edge-diff by linarith
    qed
qed
```

We are now ready to proceed to the proof of Roth's Theorem for Arithmetic Progressions.
definition progression3 :: 'a::comm-monoid-add $\Rightarrow^{\prime} a \Rightarrow^{\prime}$ a set where progression3 $k d \equiv\{k, k+d, k+d+d\}$
lemma p 3-int-iff: progression3 (int k) (int d) \subseteq int ' $A \longleftrightarrow$ progression3 $k d \subseteq$ A
apply (simp add: progression3-def image-iff)
by (smt (verit, best) int-plus of-nat-eq-iff)
We assume that a set of naturals $A \subseteq\{\ldots<N\}$ does not have any arithmetic progression. We will then show that A is of cardinality $o(N)$.

```
lemma RothArithmeticProgressions-aux:
    fixes \(\varepsilon\) :: real
    assumes \(\varepsilon>0\)
    obtains \(M\) where \(\forall N \geq M . \forall A \subseteq\{. .<N\} .(\nexists k d . d>0 \wedge\) progression3 \(k d \subseteq\)
A) \(\longrightarrow \operatorname{card} A<\varepsilon *\) real \(N\)
proof -
    obtain \(L\) where \(L>0\)
    and \(L: \bigwedge G\). \(\llbracket\) card \((\) uverts \(G)>L\); uwellformed \(G\); unique-triangles \(G \rrbracket\)
                        \(\Longrightarrow \operatorname{card}(\) uedges \(G) \leq \varepsilon / 12 *(\text { card }(\text { uverts } G))^{2}\)
    by (metis assms Diamond-free less-divide-eq-numeral1 (1) mult-eq-0-iff)
    show thesis
    proof (intro strip that)
    fix \(N A\)
    assume \(L \leq N\) and \(A: A \subseteq\{. .<N\}\)
            and non: \(\ddagger k d .0<d \wedge\) progression3 \(k d \subseteq A\)
    then have \(N>0\) using \(\langle 0<L\) ) by linarith
    define \(M\) where \(M \equiv \operatorname{Suc}(2 * N)\)
    have \(M\)-mod-bound[simp]: \(x \bmod M<M\) for \(x\)
            by (simp add: \(M\)-def)
    have odd \(M M>0 N<M\) by (auto simp: \(M\)-def)
    have coprime \(M\) (Suc \(N\) )
        unfolding \(M\)-def
    by (metis add-2-eq-Suc coprime-Suc-right-nat coprime-mult-right-iff mult-Suc-right)
    then have cop: coprime \(M(1+\) int \(N)\)
            by (metis coprime-int-iff of-nat-Suc)
    have \(A\)-sub-M: int ' \(A \subseteq\{. .<M\}\)
            using \(A\) by (force simp: \(M\)-def)
    have non-img-A: \(\nexists k d . d>0 \wedge\) progression \(3 k d \subseteq\) int ' \(A\)
            by (metis imageE insert-subset non p3-int-iff pos-int-cases progression3-def)
```

 Construct a tripartite graph \(G\) whose three parts are copies of \(\mathbb{Z} / M \mathbb{Z}\).
    ```
    define part-of where part-of \equiv\lambda\xi. (\lambdai. prod-encode (\xi,i)) '{..<M}
    define label-of-part where label-of-part \equiv \lambdap.fst (prod-decode p)
    define from-part where from-part }\equiv\lambdap\mathrm{ . snd (prod-decode p)
    have enc-iff [simp]: prod-encode (a,i)\in part-of a' }\longleftrightarrow\mp@subsup{a}{}{\prime}=a\wedgei<M for a a' i
        using }\langle0<M\rangle\mathrm{ by (clarsimp simp: part-of-def image-iff Bex-def) presburger
    have part-of-M: p \in part-of a\Longrightarrow from-part p<M for a p
        using from-part-def part-of-def by fastforce
    have disjnt-part-of: }a\not=b\Longrightarrow\mathrm{ disjnt (part-of a) (part-of b) for a b
        by (auto simp: part-of-def disjnt-iff)
    have from-enc [simp]: from-part (prod-encode (a,i)) =i for a i
        by (simp add: from-part-def)
    have finpart [iff]: finite (part-of a) for a
        by (simp add: part-of-def <0<M>)
    have cardpart [simp]:card (part-of a)=M for a
        using < 0 < M>
        by (simp add: part-of-def eq-nat-nat-iff inj-on-def card-image)
    let ?X = part-of 0
    let ?Y = part-of (Suc 0)
    let ?Z = part-of (Suc (Suc 0))
    define diff where diff \equiv\lambdaab. (int a - int b) mod (int M)
    have inj-on-diff: inj-on ( }\lambdax\mathrm{ . diff }x\mathrm{ a) {..<M} for a
        apply (clarsimp simp: diff-def inj-on-def)
        by (metis diff-add-cancel mod-add-left-eq mod-less nat-int of-nat-mod)
    have eq-mod-M: (x-y) mod int M=( (x'-y) mod int M \Longrightarrowx mod int M
= x' mod int M for x x'y
    by (simp add: mod-eq-dvd-iff)
    have diff-invert: diff y x= int }a\longleftrightarrowy=(x+a)\operatorname{mod}M\mathrm{ if }y<Ma\inA\mathrm{ for
x y a
    proof -
        have a<M
            using }A<N<M\rangle\mathrm{ that by auto
        show ?thesis
        proof
            assume diff y x= int a
            with that }\langlea<M\rangle\mathrm{ have int }y=\operatorname{int}(x+a)\mathrm{ mod int M
                by (smt (verit) diff-def eq-mod-M mod-less of-nat-add zmod-int)
            with that show }y=(x+a)\operatorname{mod}
                by (metis nat-int zmod-int)
        qed (simp add: <a<M> diff-def mod-diff-left-eq zmod-int)
    qed
    define diff2 where diff2 \equiv \lambdaa b. ((int a - int b)*int(Suc N)) mod (int M)
    have inj-on-diff2:inj-on ( }\lambdax\mathrm{ . diff2 }x\mathrm{ a) {..<M} for a
            apply (clarsimp simp: diff2-def inj-on-def)
            by (metis eq-mod-M mult-mod-cancel-right [OF - cop] int-int-eq mod-less
zmod-int)
    have [simp]: (1 + int N) mod int M=1 + int N
        using M-def <0 < N` by auto
```

```
    have diff2-by2:(diff2 a b*2) mod M = diff a b for ab
    proof -
        have int M dvd ((int a - int b) * int M)
        by simp
    then have int M dvd ((int a - int b)*int (Suc N)*2 - (int a - int b))
        by (auto simp:M-def algebra-simps)
    then show ?thesis
        by (metis diff2-def diff-def mod-eq-dvd-iff mod-mult-left-eq)
    qed
    have diff2-invert: diff2 (((x+a) mod M +a) mod M)x= int a if a\inA for
x a
    proof -
        have 1: ((x+a) mod M +a) mod M = (x+2*a) mod M
        by (metis group-cancel.add1 mod-add-left-eq mult-2)
        have (int ((x+2*a) mod M) - int x) * (1 + int N) mod int M
            =(int (x+2*a) - int x)* (1 + int N) mod int M
        by (metis mod-diff-left-eq mod-mult-cong of-nat-mod)
    also have ... = int (a* (Suc M)) mod int M
        by (simp add: algebra-simps M-def)
        also have ... = int a mod int M
        by simp
    also have ... = int a
        using A M-def subsetD that by auto
    finally show ?thesis
        using that by (auto simp: 1 diff2-def)
    qed
    define Edges where Edges \equiv\lambdaX Y df. {{x,y}| x y. x \in X ^ y \inY^
df(from-part y) (from-part x) \in int ' A}
    have Edges-subset: Edges X Y df\subseteqPow (X\cupY) for X Y df
        by (auto simp: Edges-def)
    define XY where XY\equivEdges ?X ?Y diff
    define YZ where YZ \equivEdges ?Y ?Z diff
    define }XZ\mathrm{ where }XZ\equiv\mathrm{ Edges ? }X\mathrm{ ? Z diff2
    obtain [simp]: finite XY finite YZ finite XZ
        using Edges-subset unfolding XY-def YZ-def XZ-def
        by (metis finite-Pow-iff finite-UnI finite-subset finpart)
    define }G\mathrm{ where }G\equiv(?X\cup?Y\cup?Z,XY\cupYZ\cupXZ
    have finG: finite (uverts G) and cardG: card (uverts G) = 3*M
        by (simp-all add: G-def card-Un-disjnt disjnt-part-of)
    then have card(uverts G)>L
        using M-def <L}\leqN\rangle\mathrm{ by linarith
    have uwellformed G
        by (fastforce simp: card-insert-if part-of-def G-def XY-def YZ-def XZ-def
Edges-def uwellformed-def)
    have [simp]: {prod-encode (\xi,x), prod-encode (\xi,y)}\not\inXY
                            {prod-encode (\xi,x), prod-encode (\xi,y)}\not\inYZ
                            {prod-encode ( }\xi,x)\mathrm{ , prod-encode ( }\xi,y)}\not\inXZ\mathrm{ for x y }
    by (auto simp: XY-def YZ-def XZ-def Edges-def doubleton-eq-iff)
```

have label-ne-XY $[$ simp $]$: label-of-part $p \neq$ label-of-part q if $\{p, q\} \in X Y$ for p q
using that by (auto simp add: XY-def part-of-def Edges-def doubleton-eq-iff label-of-part-def)
then have $[$ simp $]:\{p\} \notin X Y$ for p
by (metis insert-absorb2)
have label-ne- YZ [simp]: label-of-part $p \neq$ label-of-part q if $\{p, q\} \in Y Z$ for $p q$ using that by (auto simp add: YZ-def part-of-def Edges-def doubleton-eq-iff label-of-part-def)
then have $[$ simp $]:\{p\} \notin Y Z$ for p
by (metis insert-absorb2)
have label-ne-XZ [simp]: label-of-part $p \neq$ label-of-part q if $\{p, q\} \in X Z$ for $p q$ using that by (auto simp add: XZ-def part-of-def Edges-def doubleton-eq-iff label-of-part-def)
then have $[$ simp]: $\{p\} \notin X Z$ for p
by (metis insert-absorb2)
have label012: label-of-part $v<3$ if $v \in$ uverts G for v
using that by (auto simp add: G-def eval-nat-numeral part-of-def label-of-part-def)
have Edges-distinct: $\wedge p q r \xi \zeta \gamma \beta d f d f^{\prime} . \llbracket\{p, q\} \in$ Edges (part-of ξ) (part-of ち) $d f$;
$\{q, r\} \in$ Edges (part-of ξ) (part-of ζ) $d f ;$
$\{p, r\} \in$ Edges (part-of γ) (part-of β) df $; ; \xi \neq \zeta ; \gamma \rrbracket \Longrightarrow$ False
apply (auto simp: disjnt-iff Edges-def doubleton-eq-iff conj-disj-distribR ex-disj-distrib)
apply (metis disjnt-iff disjnt-part-of)+ done
have uniq: $\exists i<M . \exists d \in A . \exists x \in\{p, q, r\} . \exists y \in\{p, q, r\} . \exists z \in\{p, q, r\}$.

$$
\begin{aligned}
& x=\operatorname{prod-encode}(0, i) \\
& \wedge y=\operatorname{prod}-\operatorname{encode}(1,(i+d) \bmod M) \\
& \wedge z=\operatorname{prod-encode}(2,(i+d+d) \bmod M)
\end{aligned}
$$

if T : triangle-in-graph $p q r G$ for $p q r$
proof -
obtain $x y z$ where $x y:\{x, y\} \in X Y$ and $y z:\{y, z\} \in Y Z$ and $x z:\{x, z\} \in$
$X Z$
and $x: x \in\{p, q, r\}$ and $y: y \in\{p, q, r\}$ and $z: z \in\{p, q, r\}$
using T apply (simp add: triangle-in-graph-def G-def XY-def YZ-def XZ-def)
by (smt (verit, ccfv-SIG) Edges-distinct Zero-not-Suc insert-commute n-not-Suc-n)
then have $x \in ? X y \in ? Y z \in ? Z$
by (auto simp: XY-def YZ-def XZ-def Edges-def doubleton-eq-iff; metis disjnt-iff disjnt-part-of)+
then obtain $i j k$ where $i: x=\operatorname{prod-encode}(0, i)$ and $j: y=\operatorname{prod-encode}(1, j)$
and $k: z=$ prod-encode $(2, k)$
by (metis One-nat-def Suc-1 enc-iff prod-decode-aux.cases prod-decode-inverse)
obtain $a 1$ where $a 1 \in A$ and $a 1:($ int $j-$ int $i) \bmod$ int $M=$ int a1
using $x y\langle x \in ? X\rangle i j$ by (auto simp add: XY-def Edges-def doubleton-eq-iff diff-def)
obtain $a 3$ where $a 3 \in A$ and $a 3:($ int $k-$ int j) \bmod int $M=$ int a3
using $y z\langle x \in$? $X>j k$ by (auto simp add: YZ-def Edges-def doubleton-eq-iff diff-def)
obtain $a 2$ where $a 2 \in A$ and $a 2:(\operatorname{int} k-\operatorname{int} i) \bmod \operatorname{int} M=\operatorname{int}(a 2 * 2)$ mod int M
using $x z\langle x \in ? X\rangle$ i k apply (auto simp add: XZ-def Edges-def double-ton-eq-iff)
by (metis diff2-by2 diff-def int-plus mult-2-right)
obtain $a 1<N a 2<N a 3<N$
using $A\langle a 1 \in A\rangle\langle a 2 \in A\rangle\langle a 3 \in A\rangle$ by blast
then obtain $a 1+a 3<M a 2 * 2<M$
by (simp add: M-def)
then have $\operatorname{int}(a 2 * 2)=\operatorname{int}(a 2 * 2) \bmod M$
by force
also have $\ldots=\operatorname{int}(a 1+a 3) \bmod \operatorname{int} M$
using a1 a2 a3 by (smt (verit, del-insts) int-plus mod-add-eq)
also have $\ldots=\operatorname{int}(a 1+a 3)$
using $\langle a 1+a 3<M$ 〉 by force
finally have $a 2 * 2=a 1+a 3$
by presburger
then obtain equal: $a 3-a 2=a 2-a 1 a 2-a 3=a 1-a 2$
by (metis Nat.diff-cancel diff-cancel2 mult-2-right)
with $\langle a 1 \in A\rangle\langle a 2 \in A\rangle\langle a 3 \in A\rangle$ have progression3 a1 $(a 2-a 1) \subseteq A$
apply (clarsimp simp: progression3-def)
by (metis diff-is-0-eq' le-add-diff-inverse nle-le)
with non equal have $a 2=a 1$
unfolding progression3-def
by (metis $\langle a 2 \in A\rangle\langle a 3 \in A\rangle$ add.right-neutral diff-is-0-eq insert-subset le-add-diff-inverse not-gr-zero)
then have $a 3=a 2$
using $\langle a 2 * 2=a 1+a 3\rangle$ by force
have k-minus- j : $($ int $k-i n t j) \bmod$ int $M=$ int a1
by $($ simp add: $\langle a 2=a 1\rangle\langle a 3=a 2\rangle a 3)$
have i-to- $j: j \bmod M=(i+a 1) \bmod M$
by (metis a1 add-diff-cancel-left' add-diff-eq mod-add-right-eq nat-int of-nat-add of-nat-mod)
have j-to- $k: k \bmod M=(j+a 1) \bmod M$
by (metis $\langle a 2=a 1\rangle\langle a 3=a 2\rangle$ a3 add-diff-cancel-left' add-diff-eq mod-add-right-eq

```
nat-int of-nat-add of-nat-mod)
```

have $i<M$
using $\langle x \in$? $X\rangle i$ by simp
then show ?thesis
using $i j k x y z\langle a 1 \in A\rangle$
by (metis $\langle y \in ? Y\rangle\langle z \in ? Z\rangle$ enc-iff i-to-j j-to-k mod-add-left-eq mod-less)
qed
Every edge of the graph G lies in exactly one triangle.
have unique-triangles G
unfolding unique-triangles-def
proof (intro strip)
fix e
assume $e \in$ uedges G
then consider $e \in X Y|e \in Y Z| e \in X Z$
using G-def by fastforce
then show $\exists!T . \exists x$ y $z . T=\{x, y, z\} \wedge$ triangle-in-graph x y $z G \wedge e \subseteq T$ proof cases
case 1
then obtain $i j$ a where eeq: $e=\{$ prod-encode $(0, i), \operatorname{prod}$-encode $(1, j)\}$
and $i<M$ and $j<M$
and df: diff $j i=$ int a and $a \in A$
by (auto simp: XY-def Edges-def part-of-def)
let ? $x=$ prod-encode $(0, i)$
let $? y=$ prod-encode $(1, j)$
let ? $z=$ prod-encode $(2,(j+a) \bmod M)$
have yeq: $j=(i+a) \bmod M$
using diff-invert using $\langle a \in A\rangle d f\langle j\langle M\rangle$ by blast
with $\langle a \in A\rangle\langle j<M\rangle$ have $\{? y, ? z\} \in Y Z$
by (fastforce simp: YZ-def Edges-def image-iff diff-invert)
moreover have $\{? x, ? z\} \in X Z$
using $\langle a \in A\rangle$ by (fastforce simp: XZ-def Edges-def yeq diff2-invert $\langle i<M\rangle$)
ultimately have T : triangle-in-graph ? x ? y ? z G
using $\langle e \in$ uedges G 〉 by (force simp add: G-def eeq triangle-in-graph-def)
show ?thesis
proof (intro ex1I)
show $\exists x$ y $z .\{? x, ? y, ? z\}=\{x, y, z\} \wedge$ triangle-in-graph x y $z G \wedge e \subseteq$ $\{? x, ? y, ? z\}$
using T eeq by blast
fix T
assume $\exists p q r . T=\{p, q, r\} \wedge$ triangle-in-graph p q $r G \wedge e \subseteq T$
then obtain $p q r$ where $T e q: T=\{p, q, r\}$
and tri: triangle-in-graph $p q r G$ and $e \subseteq T$
by blast
with uniq
obtain $i^{\prime} a^{\prime} x y z$ where $i^{\prime}<M a^{\prime} \in A$
and $x: x \in\{p, q, r\}$ and $y: y \in\{p, q, r\}$ and $z: z \in\{p, q, r\}$
and xeq: $x=$ prod-encode $\left(0, i^{\prime}\right)$
and yeq: $y=$ prod-encode $\left(1,\left(i^{\prime}+a^{\prime}\right) \bmod M\right)$
and zeq: $z=$ prod-encode $\left(2,\left(i^{\prime}+a^{\prime}+a^{\prime}\right) \bmod M\right)$
by metis
then have sets-eq: $\{x, y, z\}=\{p, q, r\}$ by auto
with $T e q\langle e \subseteq T\rangle$ have $e s u b^{\prime}: e \subseteq\{x, y, z\}$ by blast
have $a^{\prime}<M$
using $A\langle N<M\rangle\left\langle a^{\prime} \in A\right\rangle$ by auto
obtain $? x \in e ? y \in e$ using eeq by force
then have $x=$? x
using esub' eeq yeq zeq by simp
then have $y=? y$

```
        using esub \({ }^{\prime}\) eeq zeq by simp
    obtain eq': \(i^{\prime}=i\left(i^{\prime}+a^{\prime}\right) \bmod M=j\)
        using \(\langle x=\) ? \(x\rangle\) xeq using \(\langle y=\) ? \(y\rangle\) yeq by auto
    then have diff \(\left(i^{\prime}+a^{\prime}\right) i^{\prime}=\) int \(a^{\prime}\)
        by (simp add: diff-def \(\left\langle a^{\prime}<M\right\rangle\) )
    then have \(a^{\prime}=a\)
        by (metis eq' df diff-def mod-diff-left-eq nat-int zmod-int)
    then have \(z=? z\)
        by (metis \(\langle y=? y\rangle\) mod-add-left-eq prod-encode-eq snd-conv yeq zeq)
    then show \(T=\{? x, ? y, ? z\}\)
        using \(T e q\langle x=\) ? \(x\rangle\langle y=\) ? \(y\rangle\) sets-eq by presburger
    qed
next
    case 2
    then obtain \(j k a\) where eeq: \(e=\{\operatorname{prod}\)-encode \((1, j), \operatorname{prod}\)-encode \((2, k)\}\)
        and \(j<M k<M\)
        and df: diff \(k j=\) int \(a\) and \(a \in A\)
        by (auto simp: YZ-def Edges-def part-of-def numeral-2-eq-2)
    let \(? x=\) prod-encode \((0,(M+j-a) \bmod M)\)
    let \(? y=\) prod-encode \((1, j)\)
    let \(? z=\) prod-encode \((2, k)\)
    have zeq: \(k=(j+a) \bmod M\)
        using diff-invert using \(\langle a \in A\rangle d f\langle k<M\rangle\) by blast
    with \(\langle a \in A\rangle\langle k<M\rangle\) have \(\{? x, ? z\} \in X Z\)
    unfolding XZ-def Edges-def image-iff
        apply (clarsimp simp: mod-add-left-eq doubleton-eq-iff conj-disj-distribR
ex-disj-distrib)
    apply (smt (verit, ccfv-threshold) \(A\langle N<M\rangle\) diff2-invert le-add-diff-inverse2
lessThan-iff
                            linorder-not-less mod-add-left-eq mod-add-self1 not-add-less1
order.strict-trans subsetD)
    done
    moreover
    have \(a<N\) using \(A\langle a \in A\rangle\) by blast
    with \(\langle N<M\rangle\) have \(((M+j-a) \bmod M+a) \bmod M=j \bmod M\)
    by (simp add: mod-add-left-eq)
    then have \(\{? x, ? y\} \in X Y\)
        using \(\langle a \in A\rangle\langle j<M\rangle\) unfolding \(X Y\)-def Edges-def
    by (force simp add: zeq image-iff diff-invert doubleton-eq-iff ex-disj-distrib)
    ultimately have \(T\) : triangle-in-graph ?x ?y ?z \(G\)
        using \(\langle e \in\) uedges \(G\rangle\) by (auto simp: \(G\)-def eeq triangle-in-graph-def)
    show ?thesis
    proof (intro ex1I)
        show \(\exists x y z .\{? x, ? y, ? z\}=\{x, y, z\} \wedge\) triangle-in-graph \(x\) y \(z G \wedge e \subseteq\)
\(\{? x, ? y, ? z\}\)
            using \(T\) eeq by blast
        fix \(T\)
        assume \(\exists p q r . T=\{p, q, r\} \wedge\) triangle-in-graph p qrG \(\mathcal{G} \subseteq T\)
        then obtain \(p q r\) where Teq: \(T=\{p, q, r\}\) and tri: triangle-in-graph \(p\)
```

```
\(q r G\) and \(e \subseteq T\)
            by blast
        with uniq
        obtain \(i^{\prime} a^{\prime} x y z\) where \(i^{\prime}<M a^{\prime} \in A\)
            and \(x: x \in\{p, q, r\}\) and \(y: y \in\{p, q, r\}\) and \(z: z \in\{p, q, r\}\)
                and xeq: \(x=\) prod-encode \(\left(0, i^{\prime}\right)\)
                and yeq: \(y=\operatorname{prod}-\operatorname{encode}\left(1,\left(i^{\prime}+a^{\prime}\right) \bmod M\right)\)
                and zeq: \(z=\) prod-encode \(\left(2,\left(i^{\prime}+a^{\prime}+a^{\prime}\right) \bmod M\right)\)
            by metis
            then have sets-eq: \(\{x, y, z\}=\{p, q, r\}\) by auto
            with \(T e q\langle e \subseteq T\rangle\) have \(e s u b^{\prime}: e \subseteq\{x, y, z\}\) by blast
            have \(a^{\prime}<M\)
            using \(A\langle N<M\rangle\left\langle a^{\prime} \in A\right\rangle\) by auto
            obtain \(? y \in e ? z \in e\)
            using eeq by force
            then have \(y=? y\)
            using esub' eeq xeq zeq by simp
            then have \(z=? z\)
            using esub' eeq xeq by simp
            obtain \(e q^{\prime}:\left(i^{\prime}+a^{\prime}\right) \bmod M=j\left(i^{\prime}+a^{\prime}+a^{\prime}\right) \bmod M=k\)
            using \(\langle y=\) ? \(y\rangle\) yeq using \(\langle z=\) ? \(z\rangle z e q\) by auto
            then have diff \(\left(i^{\prime}+a^{\prime}+a^{\prime}\right)\left(i^{\prime}+a^{\prime}\right)=\) int \(a^{\prime}\)
            by (simp add: diff-def \(\left\langle a^{\prime}<M\right\rangle\) )
            then have \(a^{\prime}=a\)
            by (metis \(M\)-mod-bound \(\left\langle a^{\prime} \in A\right\rangle\) df diff-invert eq' mod-add-eq mod-if
of-nat-eq-iff)
    have \(\left(M+\left(\left(i^{\prime}+a^{\prime}\right) \bmod M\right)-a^{\prime}\right) \bmod M=\left(M+\left(i^{\prime}+a^{\prime}\right)-a^{\prime}\right) \bmod M\)
    by (metis Nat.add-diff-assoc2 〈 \(\left.a^{\prime}<M\right\rangle\) less-imp-le-nat mod-add-right-eq)
    with \(\left\langle i^{\prime}<M\right\rangle\) have \(\left(M+\left(\left(i^{\prime}+a^{\prime}\right) \bmod M\right)-a^{\prime}\right) \bmod M=i^{\prime}\)
            by force
            with \(\left\langle a^{\prime}=a\right\rangle e q^{\prime}\) have \((M+j-a) \bmod M=i^{\prime}\)
            by force
            with \(x e q\) have \(x=? x\) by blast
            then show \(T=\{? x, ? y, ? z\}\)
            using Teq \(\langle z=? z\rangle\langle y=? y\rangle\) sets-eq by presburger
    qed
    next
    case 3
    then obtain \(i k a\) where eeq: \(e=\{\operatorname{prod}\)-encode \((0, i)\), prod-encode \((2, k)\}\)
        and \(i<M\) and \(k<M\)
        and df: diffe \(k i=\) int \(a\) and \(a \in A\)
        by (auto simp: XZ-def Edges-def part-of-def eval-nat-numeral)
    let ? \(x=\) prod-encode ( \(0, i\) )
    let \(? y=\) prod-encode \((1,(i+a) \bmod M)\)
    let \(? z=\) prod-encode \((2, k)\)
    have keq: \(k=(i+a+a) \bmod M\)
    using diffo-invert \([O F\langle a \in A\rangle\), of \(i] d f\langle k<M\rangle\) using inj-on-diff2 [of \(i\) ]
    by (simp add: inj-on-def Ball-def mod-add-left-eq)
    with \(\langle a \in A\rangle\) have \(\{? x, ? y\} \in X Y\)
```

```
            using }\langlea\inA\rangle\langlei<M\rangle\langlek<M\rangle apply (auto simp:XY-def Edges-def
            by (metis M-mod-bound diff-invert enc-iff from-enc imageI)
moreover have {?y,?z} \inYZ
                            apply (auto simp: YZ-def Edges-def image-iff eval-nat-numeral)
                            by (metis M-mod-bound «a \inA〉 diff-invert enc-iff from-enc mod-add-left-eq
keq)
    ultimately have T: triangle-in-graph ?x ?y ?z G
    using «e\in uedges G〉 by (force simp add:G-def eeq triangle-in-graph-def)
    show ?thesis
    proof (intro ex1I)
        show \exists}\boldsymbol{x}y\mathrm{ y. {? }x,?y,?z}={x,y,z}\wedge triangle-in-graph x y zG^e
{?x,?y,?z}
            using T eeq by blast
        fix T
        assume \exists pqr.T={p,q,r}^ triangle-in-graph p qr G^e\subseteqT
        then obtain p qr where Teq:T={p,q,r} and tri: triangle-in-graph p
qrG and e\subseteqT
            by blast
        with uniq obtain }\mp@subsup{i}{}{\prime}\mp@subsup{a}{}{\prime}xyz\mathrm{ where }\mp@subsup{i}{}{\prime}<M\mp@subsup{a}{}{\prime}\in
            and x:x\in{p,q,r} and y:y\in{p,q,r} and z:z\in{p,q,r}
            and xeq: x = prod-encode(0, i)
            and yeq: y = prod-encode(1, (i'+a') mod M)
            and zeq:z = prod-encode(2, (i'+\mp@subsup{a}{}{\prime}+\mp@subsup{a}{}{\prime})\operatorname{mod}M)
        by metis
        then have sets-eq: {x,y,z}={p,q,r} by auto
        with Teq «e\subseteqT> have esub': e\subseteq{x,y,z} by blast
        have }\mp@subsup{a}{}{\prime}<
            using A <N<M\rangle\langlea'\in A\rangle by auto
            obtain ?x }\ine??z\ine\mathrm{ using eeq by force
            then have x=? 
            using esub' eeq yeq zeq by simp
            then have z=?z
            using esub' eeq yeq by simp
            obtain eq':}\mp@subsup{i}{}{\prime}=i(\mp@subsup{i}{}{\prime}+\mp@subsup{a}{}{\prime}+\mp@subsup{a}{}{\prime})\operatorname{mod}M=
            using <x = ? x > xeq using <z =? ? z zeq by auto
            then have diff (i'+a') i' = int a'
            by (simp add: diff-def \langlea'< <M〉)
            then have }\mp@subsup{a}{}{\prime}=
                by (metis <a' \in A \add.commute df diff2-invert eq' mod-add-right-eq
nat-int)
            then have }y=?
                by (metis }\langlex=?,x\rangle prod-encode-eq snd-conv yeq xeq
            then show }T={?x,?y,?z
                using Teq\langlex=? ? > \langlez=? ?z\rangle sets-eq by presburger
            qed
        qed
    qed
    have *: card (uedges G) \leq\varepsilon/12 * (card (uverts G))}\mp@subsup{)}{}{2
        using L<L< card (uverts G)\rangle\langleunique-triangles G〉<uwellformed G〉 by blast
```

have diff-cancel: $\exists j<M$. diff $j i=$ int a if $a \in A$ for $i a$ using M-mod-bound diff-invert that by blast
have diff2-cancel: $\exists j<M$. diff2 $j i=$ int a if $a \in A$ for $i a$ using M-mod-bound diffo-invert that by blast
have card-Edges: card (Edges (part-of $\xi)($ part-of $\zeta) d f)=M *$ card A (is card ? $E=-$)
if $\xi \neq \zeta$ and $d f$-cancel: $\forall a \in A . \forall i<M . \exists j<M . d f j i=$ int a and df-inj: $\forall a$. inj-on $(\lambda x$. df $x a)\{. .<M\}$ for $\xi \zeta d f$
proof -
define R where $R \equiv \lambda \xi$ Y df up. $\exists x$ y i a. $u=\{x, y\} \wedge p=(i, a) \wedge x=$ prod-encode (ξ, i)
$\wedge y \in Y \wedge a \in A \wedge d f($ from-part $y)$ (from-part
$x)=$ int a
have R-uniq: $\llbracket R \xi$ (part-of ζ) df u $p ; R \xi($ part-of $\zeta) d f u p^{\prime} ; \xi \neq \zeta \rrbracket \Longrightarrow p^{\prime}$ $=p$ for $u p p^{\prime} \xi \zeta d f$
by (auto simp add: R-def doubleton-eq-iff)
define f where $f \equiv \lambda \xi Y d f u$. @p. R $\xi Y d f u p$
have f-if-R: $f \xi($ part-of $\zeta) d f u=p$ if $R \xi($ part-of $\zeta) d f$ u $p \xi \neq \zeta$ for $u p$ $\xi \zeta d f$
using R-uniq f-def that by blast
have bij-betw $(f \xi($ part-of $\zeta) d f) ? E(\{. .<M\} \times A)$
unfolding bij-betw-def inj-on-def
proof (intro conjI strip)
fix $u u^{\prime}$
assume $u \in ? E$ and $u^{\prime} \in ? E$
and eq: $f \xi($ part-of $\zeta) d f u=f \xi($ part-of $\zeta) d f u^{\prime}$
obtain $x y$ a where $u: u=\{x, y\} x \in$ part-of $\xi y \in$ part-of $\zeta a \in A$
and $d f: d f$ (from-part $y)($ from-part $x)=$ int a
using $\langle u \in$? $E\rangle$ by (force simp add: Edges-def image-iff)
then obtain i where $i: x=$ prod-encode (ξ, i)
using part-of-def by blast
with $u d f R$-def f-if-R that have $f u$: $f \xi($ part-of $\zeta) d f u=(i, a)$
by blast
obtain $x^{\prime} y^{\prime} a^{\prime}$ where $u^{\prime}: u^{\prime}=\left\{x^{\prime}, y^{\prime}\right\} x^{\prime} \in$ part-of $\xi y^{\prime} \in$ part-of $\zeta a^{\prime} \in A$
and $d f^{\prime}: d f\left(\right.$ from-part $\left.y^{\prime}\right)\left(\right.$ from-part $\left.x^{\prime}\right)=$ int a^{\prime}
using $\left\langle u^{\prime} \in\right.$?E〉 by (force simp add: Edges-def image-iff)
then obtain i^{\prime} where $i^{\prime}: x^{\prime}=$ prod-encode $\left(\xi, i^{\prime}\right)$
using part-of-def by blast
with $u^{\prime} d f^{\prime} R$-def f-if-R that have $f u^{\prime}: f \xi($ part-of $\zeta) d f u^{\prime}=\left(i^{\prime}, a^{\prime}\right)$
by blast
have $i^{\prime}=i a^{\prime}=a$
using $f u f u^{\prime}$ eq by auto
with $i i^{\prime}$ have $x=x^{\prime}$
by meson
moreover have from-part $y=$ from-part y^{\prime}
using $d f d f^{\prime}\left\langle x=x^{\prime}\right\rangle\left\langle a^{\prime}=a\right\rangle d f-i n j u^{\prime}(3) u(3)$
by (clarsimp simp add: inj-on-def) (metis part-of-M lessThan-iff)
ultimately show $u=u^{\prime}$
using $u u^{\prime}$ by (metis enc-iff from-part-def prod.collapse prod-decode-inverse)
next
have $f \xi($ part-of $\zeta) d f$ ' ? $E \subseteq\{. .<M\} \times A$
proof (clarsimp simp: Edges-def)
fix $i a x y b$
assume $x \in$ part-of $\xi y \in$ part-of $\zeta d f($ from-part $y)($ from-part $x)=$ int b $b \in A$ and feq: $(i, a)=f \xi($ part-of $\zeta) d f\{x, y\}$
then have $R \xi($ part-of $\zeta) d f\{x, y\}$ (from-part $x, b)$
by (auto simp: R-def doubleton-eq-iff part-of-def)
then have (from-part $x, b)=(i, a)$
by (simp add: f-if-R feq from-part-def that)
then show $i<M \wedge a \in A$
using $\langle x \in$ part-of $\xi\rangle\langle b \in A\rangle$ part-of- M by fastforce
qed
moreover have $\{. .<M\} \times A \subseteq f \xi($ part-of $\zeta) d f$ '? E
proof clarsimp
fix $i a$ assume $a \in A$ and $i<M$
then obtain j where $j<M$ and $j: d f j i=$ int a
using $d f$-cancel by metis
then have $f j$: $f \xi($ part-of $\zeta) d f\{$ prod-encode (ξ, i), prod-encode $(\zeta, j)\}$
$=(i, a)$
by (metis R-def $\langle a \in A\rangle$ enc-iff f-if- R from-enc $\langle\xi \neq \zeta\rangle$)
then have $\{$ prod-encode (ξ, i), prod-encode $(\zeta, j \bmod M)\} \in$ Edges (part-of $\xi)($ part-of $\zeta) d f$
apply (clarsimp simp: Edges-def doubleton-eq-iff)
by (metis $\langle a \in A\rangle\langle i<M\rangle\langle j<M\rangle$ enc-iff from-enc image-eqI j mod-if)
then show $(i, a) \in f \xi($ part-of $\zeta) d f$ 'Edges (part-of ξ) (part-of ζ) df
using $\langle j<M\rangle$ fj image-iff by fastforce
qed
ultimately show $f \xi($ part-of $\zeta) d f$ ' ? $E=\{. .<M\} \times A$ by blast
qed
then show ?thesis
by (simp add: bij-betw-same-card card-cartesian-product)
qed
have [simp]: disjnt $X Y Y Z$ disjnt $X Y X Z$ disjnt $Y Z X Z$
using disjnt-part-of unfolding $X Y$-def YZ-def XZ-def Edges-def disjnt-def
by (clarsimp simp add: disjoint-iff doubleton-eq-iff, meson disjnt-iff n-not-Suc-n nat.discI)+
have $[$ simp $]:$ card $X Y=M * \operatorname{card} A \operatorname{card} Y Z=M * \operatorname{card} A$
by (simp-all add: XY-def YZ-def card-Edges diff-cancel inj-on-diff)
have [simp]: card $X Z=M * \operatorname{card} A$
by (simp-all add: XZ-def card-Edges diff2-cancel inj-on-diff2)
have card (uedges G) $=3 * M *$ card A
by (simp add: G-def card-Un-disjnt)
then have card $A \leq \varepsilon *($ real $M / 4)$
using $*\langle 0<M\rangle$ by (simp add: cardG power2-eq-square)
also have $\ldots<\varepsilon * N$
using $\langle N>0\rangle$ by (simp add: M-def assms)

```
    finally show card A<\varepsilon*N
    qed
qed
```

We finally present the main statement formulated using the upper asymptotic density condition.

```
theorem RothArithmeticProgressions:
    assumes upper-asymptotic-density A>0
    shows \existskd.d>0 ^ progression3 k d\subseteqA
proof (rule ccontr)
    assume non: #k d. 0<d^ progression3 k d\subseteqA
    obtain M where X:}\forallN\geqM.\forall\mp@subsup{A}{}{\prime}\subseteq{..<N}.(#kd.d>0^ progression3 k
\subseteq A ^ { \prime } )
                            \longrightarrow \text { card A' < upper-asymptotic-density A / 2 * real N}
    by (metis half-gt-zero RothArithmeticProgressions-aux assms)
    then have }\forallN\geqM.card (A\cap{..<N})<upper-asymptotic-density A/2*
    by (meson order-trans inf-le1 inf-le2 non)
    then have upper-asymptotic-density A \leq upper-asymptotic-density A / 2
    by (force simp add: eventually-sequentially less-eq-real-def intro!: upper-asymptotic-densityI)
    with assms show False by linarith
qed
end
```


[^0]: ${ }^{1}$ https://yufeizhao.com/gtacbook/ and https://yufeizhao.com/gtac/gtac.pdf
 ${ }^{2}$ https://www.dpmms.cam.ac.uk/~par31/notes/tic.pdf
 ${ }^{3} \mathrm{http}: / /$ citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.432.327

