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Abstract

We formalise a proof of Roth’s Theorem on Arithmetic Progres-
sions, a major result in additive combinatorics on the existence of 3-
term arithmetic progressions in subsets of natural numbers. To this
end, we follow a proof using graph regularity. We employ our re-
cent formalisation of Szemerédi’s Regularity Lemma, a major result
in extremal graph theory, which we use here to prove the Triangle
Counting Lemma and the Triangle Removal Lemma. Our sources are
Yufei Zhao’s MIT lecture notes “Graph Theory and Additive Com-
binatorics”1 and W.T. Gowers’s Cambridge lecture notes “Topics in
Combinatorics”.2 We also refer to the University of Georgia notes
by Stephanie Bell and Will Grodzicki “Using Szemerédi’s Regularity
Lemma to Prove Roth’s Theorem”.3
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1 Roth’s Theorem on Arithmetic Progressions
theory Roth-Arithmetic-Progressions

imports Szemeredi-Regularity.Szemeredi
Random-Graph-Subgraph-Threshold.Subgraph-Threshold
Ergodic-Theory.Asymptotic-Density
HOL−Library.Ramsey HOL−Library.Nat-Bijection

begin

1.1 Miscellaneous Preliminaries
lemma sum-prod-le-prod-sum:

fixes a :: ′a ⇒ ′b::linordered-idom
assumes

∧
i. i ∈ I =⇒ a i ≥ 0 ∧ b i ≥ 0

shows (
∑

i∈I .
∑

j∈I . a i ∗ b j) ≤ (
∑

i∈I . a i) ∗ (
∑

i∈I . b i)
using assms
by (induction I rule: infinite-finite-induct) (auto simp add: algebra-simps sum.distrib

sum-distrib-left)

lemma real-mult-gt-cube: A ≥ (X ::real) =⇒ B ≥ X =⇒ C ≥ X =⇒ X ≥ 0 =⇒
A ∗ B ∗ C ≥ X^3

by (simp add: mult-mono ′ power3-eq-cube)

lemma triple-sigma-rewrite-card:
assumes finite X finite Y finite Z
shows card {(x,y,z) . x ∈ X ∧ (y,z) ∈ Y × Z ∧ P x y z} = (

∑
x∈ X . card

{(y,z) ∈ Y × Z . P x y z})
proof −

define W where W ≡ λx. {(y,z) ∈ Y × Z . P x y z}
have W x ⊆ Y × Z for x

by (auto simp: W-def )
then have [simp]: finite (W x) for x

by (meson assms finite-SigmaI infinite-super)
have eq: {(x,y,z) . x ∈ X ∧ (y,z) ∈ Y × Z ∧ P x y z} = (

⋃
x∈X .

⋃
(y,z)∈W

x. {(x,y,z)})
by (auto simp: W-def )

show ?thesis
unfolding eq by (simp add: disjoint-iff assms card-UN-disjoint) (simp add:

W-def )
qed

lemma all-edges-between-mono1 :
Y ⊆ Z =⇒ all-edges-between Y X G ⊆ all-edges-between Z X G
by (auto simp: all-edges-between-def )

lemma all-edges-between-mono2 :
Y ⊆ Z =⇒ all-edges-between X Y G ⊆ all-edges-between X Z G
by (auto simp: all-edges-between-def )
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lemma uwellformed-alt-fst:
assumes uwellformed G {x, y} ∈ uedges G
shows x ∈ uverts G
using uwellformed-def assms by simp

lemma uwellformed-alt-snd:
assumes uwellformed G {x, y} ∈ uedges G
shows y ∈ uverts G
using uwellformed-def assms by simp

lemma all-edges-between-subset-times: all-edges-between X Y G ⊆ (X ∩
⋃
(uedges

G)) × (Y ∩
⋃

(uedges G))
by (auto simp: all-edges-between-def )

lemma finite-all-edges-between ′:
assumes finite (uverts G) uwellformed G
shows finite (all-edges-between X Y G)

proof −
have finite (

⋃
(uedges G))

by (meson Pow-iff all-edges-subset-Pow assms finite-Sup subsetD wellformed-all-edges)
with all-edges-between-subset-times show ?thesis

by (metis finite-Int finite-SigmaI finite-subset)
qed

lemma all-edges-between-E-diff :
all-edges-between X Y (V ,E−E ′) = all-edges-between X Y (V ,E) − all-edges-between

X Y (V ,E ′)
by (auto simp: all-edges-between-def )

lemma all-edges-between-E-Un:
all-edges-between X Y (V ,E∪E ′) = all-edges-between X Y (V ,E) ∪ all-edges-between

X Y (V ,E ′)
by (auto simp: all-edges-between-def )

lemma all-edges-between-E-UN :
all-edges-between X Y (V ,

⋃
i∈I . E i) = (

⋃
i∈I . all-edges-between X Y (V ,E

i))
by (auto simp: all-edges-between-def )

lemma all-edges-preserved: [[all-edges-between A B G ′ = all-edges-between A B G;
X ⊆ A; Y ⊆ B]]

=⇒ all-edges-between X Y G ′ = all-edges-between X Y G
by (auto simp: all-edges-between-def )

lemma subgraph-edge-wf :
assumes uwellformed G uverts H = uverts G uedges H ⊆ uedges G
shows uwellformed H
by (metis assms subsetD uwellformed-def )
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1.2 Preliminaries on Neighbors in Graphs
definition neighbor-in-graph:: uvert ⇒ uvert ⇒ ugraph ⇒ bool

where neighbor-in-graph x y G ≡ (x ∈ (uverts G) ∧ y ∈ (uverts G) ∧ {x,y} ∈
(uedges G))

definition neighbors :: uvert ⇒ ugraph ⇒ uvert set where
neighbors x G ≡ {y ∈ uverts G . neighbor-in-graph x y G}

definition neighbors-ss:: uvert ⇒ uvert set ⇒ ugraph ⇒ uvert set where
neighbors-ss x Y G ≡ {y ∈ Y . neighbor-in-graph x y G}

lemma all-edges-betw-sigma-neighbor :
uwellformed G =⇒ all-edges-between X Y G = (SIGMA x:X . neighbors-ss x Y G)

by (auto simp add: all-edges-between-def neighbors-ss-def neighbor-in-graph-def
uwellformed-alt-fst uwellformed-alt-snd)

lemma card-all-edges-betw-neighbor :
assumes finite X finite Y uwellformed G
shows card (all-edges-between X Y G) = (

∑
x∈X . card (neighbors-ss x Y G))

using all-edges-betw-sigma-neighbor assms by (simp add: neighbors-ss-def )

1.3 Preliminaries on Triangles in Graphs
definition triangle-in-graph:: uvert ⇒ uvert ⇒ uvert ⇒ ugraph ⇒ bool

where triangle-in-graph x y z G
≡ ({x,y} ∈ uedges G) ∧ ({y,z} ∈ uedges G) ∧ ({x,z} ∈ uedges G)

definition triangle-triples
where triangle-triples X Y Z G ≡ {(x,y,z) ∈ X × Y × Z . triangle-in-graph x y

z G}

lemma triangle-commu1 :
assumes triangle-in-graph x y z G
shows triangle-in-graph y x z G
using assms triangle-in-graph-def by (auto simp add: insert-commute)

lemma triangle-vertices-distinct1 :
assumes wf : uwellformed G
assumes tri: triangle-in-graph x y z G
shows x 6= y

proof (rule ccontr)
assume a: ¬ x 6= y
have card {x, y} = 2 using tri wf triangle-in-graph-def

using uwellformed-def by blast
thus False using a by simp

qed

lemma triangle-vertices-distinct2 :
assumes uwellformed G triangle-in-graph x y z G
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shows y 6= z
by (metis assms triangle-vertices-distinct1 triangle-in-graph-def )

lemma triangle-in-graph-edge-point:
assumes uwellformed G
shows triangle-in-graph x y z G ←→ {y, z} ∈ uedges G ∧ neighbor-in-graph x y

G ∧ neighbor-in-graph x z G
by (auto simp add: triangle-in-graph-def neighbor-in-graph-def assms uwellformed-alt-fst

uwellformed-alt-snd)

definition
unique-triangles G
≡ ∀ e ∈ uedges G. ∃ !T . ∃ x y z. T = {x,y,z} ∧ triangle-in-graph x y z G ∧ e ⊆

T

definition triangle-free-graph:: ugraph ⇒ bool
where triangle-free-graph G ≡ ¬(∃ x y z. triangle-in-graph x y z G )

lemma triangle-free-graph-empty: uedges G = {} =⇒ triangle-free-graph G
by (simp add: triangle-free-graph-def triangle-in-graph-def )

lemma edge-vertices-not-equal:
assumes uwellformed G {x,y} ∈ uedges G
shows x 6= y
using assms triangle-in-graph-def triangle-vertices-distinct1 by blast

lemma triangle-in-graph-verts:
assumes uwellformed G triangle-in-graph x y z G
shows x ∈ uverts G y ∈ uverts G z∈ uverts G

proof −
have 1 : {x, y} ∈ uedges G using triangle-in-graph-def

using assms(2 ) by auto
then show x ∈ uverts G using uwellformed-alt-fst assms by blast
then show y ∈ uverts G using 1 uwellformed-alt-snd assms by blast
have {x, z} ∈ uedges G using triangle-in-graph-def assms(2 ) by auto
then show z ∈ uverts G using uwellformed-alt-snd assms by blast

qed

definition triangle-set :: ugraph ⇒ uvert set set
where triangle-set G ≡ { {x,y,z} | x y z. triangle-in-graph x y z G}

fun mk-triangle-set :: (uvert × uvert × uvert) ⇒ uvert set
where mk-triangle-set (x,y,z) = {x,y,z}

lemma finite-triangle-set:
assumes fin: finite (uverts G) and wf : uwellformed G
shows finite (triangle-set G)

proof −
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have triangle-set G ⊆ Pow (uverts G)
using PowI local.wf triangle-in-graph-def triangle-set-def uwellformed-def by

auto
then show ?thesis

by (meson fin finite-Pow-iff infinite-super)
qed

lemma card-triangle-3 :
assumes t ∈ triangle-set G uwellformed G
shows card t = 3
using assms by (auto simp: triangle-set-def edge-vertices-not-equal triangle-in-graph-def )

lemma triangle-set-power-set-ss: uwellformed G =⇒ triangle-set G ⊆ Pow (uverts
G)
by (auto simp add: triangle-set-def triangle-in-graph-def uwellformed-alt-fst uwell-

formed-alt-snd)

lemma triangle-in-graph-ss:
assumes uedges Gnew ⊆ uedges G
assumes triangle-in-graph x y z Gnew
shows triangle-in-graph x y z G

using assms triangle-in-graph-def by auto

lemma triangle-set-graph-edge-ss:
assumes uedges Gnew ⊆ uedges G
assumes uverts Gnew = uverts G
shows triangle-set Gnew ⊆ triangle-set G
using assms unfolding triangle-set-def by (blast intro: triangle-in-graph-ss)

lemma triangle-set-graph-edge-ss-bound:
fixes G :: ugraph and Gnew :: ugraph
assumes uwellformed G finite (uverts G) uedges Gnew ⊆ uedges G uverts Gnew

= uverts G
shows card (triangle-set G) ≥ card (triangle-set Gnew)
by (simp add: assms card-mono finite-triangle-set triangle-set-graph-edge-ss)

1.4 The Triangle Counting Lemma and the Triangle Re-
moval Lemma

We begin with some more auxiliary material to be used in the main lemmas.
lemma regular-pair-neighbor-bound:

fixes ε::real
assumes finG: finite (uverts G)
assumes xss: X ⊆ uverts G and yss: Y ⊆ uverts G and card X > 0

and wf : uwellformed G
and eg0 : ε > 0 and ε−regular-pair X Y G and ed: edge-density X Y G ≥ 2∗ε

defines X ′ ≡ {x ∈ X . card (neighbors-ss x Y G) < (edge-density X Y G − ε) ∗
card (Y )}

shows card X ′ < ε ∗ card X

6



(is card (?X ′) < ε ∗ -)
proof (cases ?X ′ = {})

case False — Following Gowers’s proof - more in depth with reasoning on con-
tradiction

let ?rxy = 1/(card X ′ ∗ card Y )
show ?thesis
proof (rule ccontr)

assume ¬ (card (X ′) < ε ∗ card X)
then have a: (card(X ′) ≥ ε ∗ card X) by simp
have fin: finite X finite Y using assms finite-subset by auto
have ebound: ε ≤ 1/2

by (metis ed edge-density-le1 le-divide-eq-numeral1 (1 ) mult.commute or-
der-trans)

have finx: finite X ′ using fin X ′-def by simp
have

∧
x. x ∈ X ′=⇒ (card (neighbors-ss x Y G)) < (edge-density X Y G − ε)

∗ (card Y )
unfolding X ′-def by blast

then have (
∑

x∈X ′. card (neighbors-ss x Y G)) < (
∑

x∈X ′. ((edge-density X
Y G − ε) ∗ (card Y )))

using False sum-strict-mono X ′-def
by (smt (verit, del-insts) finx of-nat-sum)

then have upper : (
∑

x∈X ′. card (neighbors-ss x Y G)) < (card X ′) ∗ ((edge-density
X Y G − ε) ∗ (card Y ))

by (simp add: sum-bounded-above)
have yge0 : card Y > 0

by (metis gr0I mult-eq-0-iff of-nat-0 of-nat-less-0-iff upper)
have ?rxy > 0

using card-0-eq finx False yge0 X ′-def by fastforce
then have upper2 : ?rxy ∗ (

∑
x∈X ′. card (neighbors-ss x Y G)) < ?rxy ∗ (card

X ′) ∗ ((edge-density X Y G − ε) ∗ (card Y ))
by (smt (verit) mult.assoc mult-le-cancel-left upper)

have ?rxy ∗ (card X ′) ∗ ((edge-density X Y G − ε) ∗ (card Y )) = edge-density
X Y G − ε

using False X ′-def finx by force
with ‹ε > 0 › upper2 have con: edge-density X Y G − ?rxy ∗ (

∑
x∈X ′. card

(neighbors-ss x Y G)) > ε
by linarith

have |edge-density X Y G − ?rxy ∗ (
∑

x∈X ′. card (neighbors-ss x Y G))|
= |?rxy ∗ (card (all-edges-between X ′ Y G)) − edge-density X Y G|

using card-all-edges-betw-neighbor fin wf by (simp add: X ′-def )
also have ... = |edge-density X ′ Y G − edge-density X Y G|

by (simp add: edge-density-def )
also have ... ≤ ε

using assms ebound yge0 a by (force simp add: X ′-def regular-pair-def )
finally show False using con by linarith

qed
qed (simp add: ‹card X > 0 › eg0 )

lemma neighbor-set-meets-e-reg-cond:

7



fixes ε::real
assumes edge-density X Y G ≥ 2∗ε
and card (neighbors-ss x Y G) ≥ (edge-density X Y G − ε) ∗ card Y

shows card (neighbors-ss x Y G) ≥ ε ∗ card (Y )
by (smt (verit) assms mult-right-mono of-nat-0-le-iff )

lemma all-edges-btwn-neighbor-sets-lower-bound:
fixes ε::real
assumes rp2 : ε−regular-pair Y Z G

and ed1 : edge-density X Y G ≥ 2∗ε and ed2 : edge-density X Z G ≥ 2∗ε
and cond1 : card (neighbors-ss x Y G) ≥ (edge-density X Y G − ε) ∗ card Y
and cond2 : card (neighbors-ss x Z G) ≥ (edge-density X Z G − ε) ∗ card Z

shows card (all-edges-between (neighbors-ss x Y G) (neighbors-ss x Z G) G)
≥ (edge-density Y Z G − ε) ∗ card (neighbors-ss x Y G) ∗ card (neighbors-ss

x Z G)
(is card (all-edges-between ?Y ′ ?Z ′ G) ≥ (edge-density Y Z G − ε) ∗ card ?Y ′

∗ card ?Z ′)
proof −

have yss ′: ?Y ′ ⊆ Y using neighbors-ss-def by simp
have zss ′: ?Z ′ ⊆ Z using neighbors-ss-def by simp
have min-sizeY : card ?Y ′ ≥ ε ∗ card Y

using cond1 ed1 neighbor-set-meets-e-reg-cond by blast
have min-sizeZ : card ?Z ′ ≥ ε ∗ card Z

using cond2 ed2 neighbor-set-meets-e-reg-cond by blast
then have | edge-density ?Y ′ ?Z ′ G − edge-density Y Z G | ≤ ε

using min-sizeY yss ′ zss ′ assms by (force simp add: regular-pair-def )
then have edge-density Y Z G − ε ≤ (card (all-edges-between ?Y ′ ?Z ′ G)/(card

?Y ′ ∗ card ?Z ′))
using edge-density-def by simp

then have (card ?Y ′ ∗ card ?Z ′) ∗ (edge-density Y Z G − ε) ≤ (card (all-edges-between
?Y ′ ?Z ′ G))

by (fastforce simp: divide-simps mult.commute simp flip: of-nat-mult split:
if-split-asm)

then show ?thesis
by (metis (no-types, lifting) mult.assoc mult-of-nat-commute of-nat-mult)

qed

We are now ready to show the Triangle Counting Lemma:
theorem triangle-counting-lemma:

fixes ε::real
assumes xss: X ⊆ uverts G and yss: Y ⊆ uverts G and zss: Z ⊆ uverts G and

en0 : ε > 0
and finG: finite (uverts G) and wf : uwellformed G
and rp1 : ε−regular-pair X Y G and rp2 : ε−regular-pair Y Z G and rp3 :

ε−regular-pair X Z G
and ed1 : edge-density X Y G ≥ 2∗ε and ed2 : edge-density X Z G ≥ 2∗ε and

ed3 : edge-density Y Z G ≥ 2∗ε
shows card (triangle-triples X Y Z G)

≥ (1−2∗ε) ∗ (edge-density X Y G − ε) ∗ (edge-density X Z G − ε) ∗
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(edge-density Y Z G − ε)∗
card X ∗ card Y ∗ card Z

proof −
let ?T-all = {(x,y,z) ∈ X × Y × Z . (triangle-in-graph x y z G)}
let ?ediff = λX Y . edge-density X Y G − ε
define XF where XF ≡ λY . {x ∈ X . card(neighbors-ss x Y G) < ?ediff X Y ∗

card Y }
have fin: finite X finite Y finite Z using finG rev-finite-subset xss yss zss by

auto
then have card X > 0

using card-0-eq ed1 edge-density-def en0 by fastforce

Obtain a subset of X where all elements meet minimum numbers for
neighborhood size in Y and Z.

define X2 where X2 ≡ X − (XF Y ∪ XF Z )
have xss: X2 ⊆ X and finx2 : finite X2

by (auto simp add: X2-def fin)

Reasoning on the minimum size of X2 :
have part1 : (XF Y ∪ XF Z ) ∪ X2 = X

by (auto simp: XF-def X2-def )
have card-XFY : card (XF Y ) < ε ∗ card X

using regular-pair-neighbor-bound assms ‹card X > 0 › by (simp add: XF-def )

We now repeat the same argument as above to the regular pair X Z in
G.

have card-XFZ : card (XF Z ) < ε ∗ card X
using regular-pair-neighbor-bound assms ‹card X > 0 › by (simp add: XF-def )

have card (XF Y ∪ XF Z ) ≤ 2 ∗ ε ∗ (card X)
by (smt (verit) card-XFY card-XFZ card-Un-le comm-semiring-class.distrib

of-nat-add of-nat-mono)
then have card X2 ≥ card X − 2 ∗ ε ∗ card X

using part1 by (smt (verit, del-insts) card-Un-le of-nat-add of-nat-mono)
then have minx2 : card X2 ≥ (1 − 2 ∗ ε) ∗ card X

by (metis mult.commute mult-cancel-left2 right-diff-distrib)

Reasoning on the minimum number of edges between neighborhoods of
X in Y and Z.

have edyzgt0 : ?ediff Y Z > 0 and edxygt0 : ?ediff X Y > 0
using ed1 ed3 ‹ε > 0 › by linarith+

have card-y-bound: card (neighbors-ss x Y G) ≥ ?ediff X Y ∗ card Y
and card-z-bound: card (neighbors-ss x Z G) ≥ ?ediff X Z ∗ card Z
if x ∈ X2 for x
using that by (auto simp: XF-def X2-def )

have card-y-bound ′:
(
∑

x∈ X2 . ?ediff Y Z ∗ (card (neighbors-ss x Y G)) ∗ (card (neighbors-ss
x Z G))) ≥

(
∑

x∈ X2 . ?ediff Y Z ∗ ?ediff X Y ∗ (card Y ) ∗ (card (neighbors-ss x Z
G)))
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by (rule sum-mono) (smt (verit, best) mult.left-commute card-y-bound edyzgt0
mult.commute mult-right-mono of-nat-0-le-iff )

have card-z-bound ′:
(
∑

x∈ X2 . ?ediff Y Z ∗ ?ediff X Y ∗ (card Y ) ∗ (card (neighbors-ss x Z
G))) ≥

(
∑

x∈ X2 . ?ediff Y Z ∗ ?ediff X Y ∗ (card Y ) ∗ ?ediff X Z ∗ (card Z ))
using card-z-bound mult-left-mono edxygt0 edyzgt0 by (fastforce intro!: sum-mono)

have eq-set:
∧

x. {(y,z). y ∈ Y ∧ z ∈ Z ∧ {y, z} ∈ uedges G ∧ neighbor-in-graph
x y G ∧ neighbor-in-graph x z G } =

{(y,z). y ∈ (neighbors-ss x Y G) ∧ z ∈ (neighbors-ss x Z G) ∧ {y,
z} ∈ uedges G }

by (auto simp: neighbors-ss-def )
have card ?T-all = (

∑
x∈ X . card {(y,z) ∈ Y × Z . triangle-in-graph x y z G})

using triple-sigma-rewrite-card fin by force
also have . . . = (

∑
x∈ X . card {(y,z). y ∈ Y ∧ z ∈ Z ∧ {y, z} ∈ uedges G ∧

neighbor-in-graph x y G ∧ neighbor-in-graph x z G })
using triangle-in-graph-edge-point assms by auto

also have ... = (
∑

x ∈ X . card (all-edges-between (neighbors-ss x Y G) (neighbors-ss
x Z G) G))

using all-edges-between-def eq-set by presburger
finally have l: card ?T-all ≥ (

∑
x∈ X2 . card (all-edges-between (neighbors-ss

x Y G) (neighbors-ss x Z G) G))
by (simp add: fin xss sum-mono2 )

have (
∑

x∈ X2 . ?ediff Y Z ∗ (card (neighbors-ss x Y G)) ∗ (card (neighbors-ss
x Z G))) ≤

(
∑

x∈ X2 . real (card (all-edges-between (neighbors-ss x Y G) (neighbors-ss
x Z G) G)))

(is sum ?F - ≤ sum ?G -)
proof (rule sum-mono)

show
∧

x. x ∈ X2 =⇒ ?F x ≤ ?G x
using all-edges-btwn-neighbor-sets-lower-bound card-y-bound card-z-bound ed1

ed2 rp2 by blast
qed
then have card ?T-all ≥ card X2 ∗ ?ediff Y Z ∗ ?ediff X Y ∗ card Y ∗ ?ediff X

Z ∗ card Z
using card-z-bound ′ card-y-bound ′ l of-nat-le-iff [symmetric, where ′a=real]

by force
then have real (card ?T-all) ≥ ((1 − 2 ∗ ε) ∗ card X) ∗ ?ediff Y Z ∗

?ediff X Y ∗ (card Y ) ∗ ?ediff X Z ∗ (card Z )
by (smt (verit, best) ed2 edxygt0 edyzgt0 en0 minx2 mult-right-mono of-nat-0-le-iff )

then show ?thesis by (simp add: triangle-triples-def mult.commute mult.left-commute)

qed

definition regular-graph :: real ⇒ uvert set set ⇒ ugraph ⇒ bool
(-−regular ′-graph [999 ]1000 )

where ε−regular-graph P G ≡ ∀R S . R∈P −→ S∈P −→ ε−regular-pair R S G
for ε::real
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A minimum density, but empty edge sets are excluded.
definition edge-dense :: nat set ⇒ nat set ⇒ ugraph ⇒ real ⇒ bool

where edge-dense X Y G ε ≡ all-edges-between X Y G = {} ∨ edge-density X
Y G ≥ ε

definition dense-graph :: uvert set set ⇒ ugraph ⇒ real ⇒ bool
where dense-graph P G ε ≡ ∀R S . R∈P −→ S∈P −→ edge-dense R S G ε for

ε::real

definition decent :: nat set ⇒ nat set ⇒ ugraph ⇒ real ⇒ bool
where decent X Y G η ≡ all-edges-between X Y G = {} ∨ (card X ≥ η ∧ card

Y ≥ η) for η::real

definition decent-graph :: uvert set set ⇒ ugraph ⇒ real ⇒ bool
where decent-graph P G η ≡ ∀R S . R∈P −→ S∈P −→ decent R S G η

The proof of the triangle counting lemma requires ordered triples. For
each unordered triple there are six permutations, hence the factor of 1/6
here.
lemma card-convert-triangle-rep:

fixes G :: ugraph
assumes X ⊆ uverts G and Y ⊆ uverts G and Z ⊆ uverts G and fin: finite

(uverts G)
and wf : uwellformed G
shows card (triangle-set G) ≥ 1/6 ∗ card {(x,y,z) ∈ X × Y × Z . (triangle-in-graph

x y z G)}
(is - ≥ 1/6 ∗ card ?TT )

proof −
define tofl where tofl ≡ λl::nat list. (hd l, hd(tl l), hd(tl(tl l)))
have in-tofl: (x,y,z) ∈ tofl ‘ permutations-of-set {x,y,z} if x 6=y y 6=z x 6=z for x y

z
proof −

have distinct[x,y,z]
using that by simp

then show ?thesis
unfolding tofl-def image-iff

by (smt (verit, best) list.sel(1 ) list.sel(3 ) set-simps permutations-of-setI
set-empty)

qed
have ?TT ⊆ {(x,y,z). (triangle-in-graph x y z G)}

by auto
also have . . . ⊆ (

⋃
t ∈ triangle-set G. tofl ‘ permutations-of-set t)

using edge-vertices-not-equal [OF wf ] in-tofl
by (clarsimp simp add: triangle-set-def triangle-in-graph-def ) metis

finally have ?TT ⊆ (
⋃

t ∈ triangle-set G. tofl ‘ permutations-of-set t) .
then have card ?TT ≤ card(

⋃
t ∈ triangle-set G. tofl ‘ permutations-of-set t)

by (intro card-mono finite-UN-I finite-triangle-set) (auto simp: assms)
also have . . . ≤ (

∑
t ∈ triangle-set G. card (tofl ‘ permutations-of-set t))

using card-UN-le fin finite-triangle-set local.wf by blast

11



also have . . . ≤ (
∑

t ∈ triangle-set G. card (permutations-of-set t))
by (meson card-image-le finite-permutations-of-set sum-mono)

also have . . . ≤ (
∑

t ∈ triangle-set G. fact 3 )
by (rule sum-mono) (metis card.infinite card-permutations-of-set card-triangle-3

eq-refl local.wf nat.case numeral-3-eq-3 )
also have . . . = 6 ∗ card (triangle-set G)

by (simp add: eval-nat-numeral)
finally have card ?TT ≤ 6 ∗ card (triangle-set G) .
then show ?thesis

by (simp add: divide-simps)
qed

lemma card-convert-triangle-rep-bound:
fixes G :: ugraph and t :: real
assumes X ⊆ uverts G and Y ⊆ uverts G and Z ⊆ uverts G and fin: finite

(uverts G)
and wf : uwellformed G

assumes card {(x,y,z) ∈ X × Y × Z . (triangle-in-graph x y z G)} ≥ t
shows card (triangle-set G) ≥ 1/6 ∗t

proof −
define t ′ where t ′ ≡ card {(x,y,z) ∈ X × Y × Z . (triangle-in-graph x y z G)}
have t ′ ≥ t using assms t ′-def by simp
then have tgt: 1/6 ∗ t ′ ≥ 1/6 ∗ t by simp
have card (triangle-set G) ≥ 1/6 ∗t ′ using t ′-def card-convert-triangle-rep assms

by simp
thus ?thesis using tgt by linarith

qed

lemma edge-density-eq0 :
assumes all-edges-between A B G = {} and X ⊆ A Y ⊆ B
shows edge-density X Y G = 0

proof −
have all-edges-between X Y G = {}
by (metis all-edges-between-mono1 all-edges-between-mono2 assms subset-empty)

then show ?thesis
by (auto simp: edge-density-def )

qed

The following is the Triangle Removal Lemma.
theorem triangle-removal-lemma:

fixes ε :: real
assumes egt: ε > 0
shows ∃ δ::real > 0 . ∀G. card(uverts G) > 0 −→ uwellformed G −→

card (triangle-set G) ≤ δ ∗ card(uverts G) ^ 3 −→
(∃G ′. triangle-free-graph G ′ ∧ uverts G ′ = uverts G ∧ uedges G ′ ⊆ uedges

G ∧
card (uedges G − uedges G ′) ≤ ε ∗ (card (uverts G))2)

(is ∃ δ::real > 0 . ∀G. - −→ - −→ - −→ (∃Gnew. ?Φ G Gnew))
proof (cases ε < 1 )
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case False
show ?thesis
proof (intro exI conjI strip)

fix G
define Gnew where Gnew ≡ ((uverts G), {}::uedge set)
assume G: uwellformed G card(uverts G) > 0
then show triangle-free-graph Gnew uverts Gnew = uverts G uedges Gnew ⊆

uedges G
by (auto simp: Gnew-def triangle-free-graph-empty)

have real (card (uedges G)) ≤ (card (uverts G))2

by (meson G card-gt-0-iff max-edges-graph of-nat-le-iff )
also have . . . ≤ ε ∗ (card (uverts G))2

using False mult-le-cancel-right1 by fastforce
finally show real (card (uedges G − uedges Gnew)) ≤ ε ∗ ((card (uverts G))2)

by (simp add: Gnew-def )
qed (rule zero-less-one)

next
case True
have e4gt: ε/4 > 0 using ‹ε > 0 › by auto
then obtain M0 where

M0 :
∧

G. card (uverts G) > 0 =⇒ ∃P. regular-partition (ε/4 ) G P ∧ card P
≤ M0

and M0>0
by (metis Szemeredi-Regularity-Lemma le0 neq0-conv not-le not-numeral-le-zero)

define D0 where D0 ≡ 1/6 ∗(1−(ε/2 ))∗((ε/4 )^3 )∗((ε /(4∗M0 ))^3 )
have D0 > 0

using ‹0 < ε› ‹ε < 1 › ‹M0 > 0 › by (simp add: D0-def zero-less-mult-iff )
then obtain δ:: real where δ: 0 < δ δ < D0

by (meson dense)
show ?thesis
proof (rule exI , intro conjI strip)

fix G
assume card(uverts G) > 0 and wf : uwellformed G
then have fin: finite (uverts G)

by (simp add: card-gt-0-iff )

Assume that, for a yet to be determined δ, we have:
assume ineq: real (card (triangle-set G)) ≤ δ ∗ card (uverts G) ^ 3

Step 1: Partition: Using Szemerédi’s Regularity Lemma, we get an ε/4
partition.

let ?n = card (uverts G)
have vne: uverts G 6= {}

using ‹0 < card (uverts G)› by force
then have ngt0 : ?n > 0

by (simp add: fin card-gt-0-iff )
with M0 obtain P where M : regular-partition (ε/4 ) G P and card P ≤ M0

by blast
define M where M ≡ card P
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have finite P
by (meson M fin finite-elements regular-partition-def )

with M0 have M > 0
unfolding M-def

by (metis M card-gt-0-iff partition-onD1 partition-on-empty regular-partition-def
vne)

let ?e4M = ε / (4 ∗ real M )
define D where D ≡ 1/6 ∗(1−(ε/2 )) ∗ ((ε/4 )^3 ) ∗ ?e4M^3
have D > 0

using ‹0 < ε› ‹ε < 1 › ‹M > 0 › by (simp add: D-def zero-less-mult-iff )
have D0 ≤ D

unfolding D0-def D-def using ‹0 < ε› ‹ε < 1 › ‹card P ≤ M0 › ‹M > 0 ›
by (intro mult-mono) (auto simp: frac-le M-def )

have fin-part: finite-graph-partition (uverts G) P M
using M unfolding regular-partition-def finite-graph-partition-def
by (metis M-def ‹0 < M › card-gt-0-iff )

then have fin-P: finite R and card-P-gt0 : card R > 0 if R∈P for R
using fin finite-graph-partition-finite finite-graph-partition-gt0 that by auto

have card-P-le: card R ≤ ?n if R∈P for R
by (meson card-mono fin fin-part finite-graph-partition-subset that)

have P-disjnt:
∧

R S . [[R 6= S ; R ∈ P; S ∈ P]] =⇒ R ∩ S = {}
using fin-part

by (metis disjnt-def finite-graph-partition-def insert-absorb pairwise-insert
partition-on-def )

have sum-card-P: (
∑

R∈P. card R) = ?n
using card-finite-graph-partition fin fin-part by meson

Step 2. Cleaning. For each ordered pair of parts (Pi, Pj), remove all
edges between Pi and Pj if (a) it is an irregular pair, (b) its edge density
< ε/2, (c) either Pi or Pj is small ( ≤ (ε/4M)n) Process (a) removes at

most (ε/4)n2 edges. Process (b) removes at most (ε/2)n2 edges. Process
(c) removes at most (ε/4)n2 edges. The remaining graph is triangle-free for
some choice of δ.

define edge where edge ≡ λR S . mk-uedge ‘ (all-edges-between R S G)
have edge-commute: edge R S = edge S R for R S

by (force simp add: edge-def all-edges-between-swap [of S ] split: prod.split)
have card-edge-le-card: card (edge R S) ≤ card (all-edges-between R S G) for

R S
by (simp add: card-image-le edge-def fin finite-all-edges-between ′ local.wf )

have card-edge-le: card (edge R S) ≤ card R ∗ card S if R∈P S∈P for R S
by (meson card-edge-le-card fin-P le-trans max-all-edges-between that)

Obtain the set of edges meeting condition (a).
define irreg-pairs where irreg-pairs ≡ {(R,S). R ∈ P ∧ S ∈ P ∧ ¬ (ε/4 )−regular-pair

R S G}
define Ea where Ea ≡ (

⋃
(R,S) ∈ irreg-pairs. edge R S)

Obtain the set of edges meeting condition (b).
define low-density-pairs
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where low-density-pairs ≡ {(R,S). R ∈ P ∧ S ∈ P ∧ ¬ edge-dense R S G
(ε/2 )}

define Eb where Eb ≡ (
⋃
(i,j) ∈ low-density-pairs. edge i j)

Obtain the set of edges meeting condition (c).
define small where small ≡ λR. R ∈ P ∧ card R ≤ ?e4M ∗ ?n
let ?SMALL = Collect small
define small-pairs where small-pairs ≡ {(R,S). R ∈ P ∧ S ∈ P ∧ (small R

∨ small S)}
define Ec where Ec ≡ (

⋃
R ∈ ?SMALL.

⋃
S ∈ P. edge R S)

have Ec-def ′: Ec = (
⋃
(i,j) ∈ small-pairs. edge i j)

by (force simp: edge-commute small-pairs-def small-def Ec-def )
have eabound: card Ea ≤ (ε/4 ) ∗ ?n^2 — Count the edge bound for Ea
proof −

have §:
∧

R S . [[R ∈ P; S ∈ P]] =⇒ card (edge R S) ≤ card R ∗ card S
unfolding edge-def
by (meson card-image-le fin-P finite-all-edges-between max-all-edges-between

order-trans)
have irreg-pairs ⊆ P × P

by (auto simp: irreg-pairs-def )
then have finite irreg-pairs

by (meson ‹finite P› finite-SigmaI finite-subset)
have card Ea ≤ (

∑
(R,S)∈irreg-pairs. card (edge R S))

by (simp add: Ea-def card-UN-le [OF ‹finite irreg-pairs›] case-prod-unfold)
also have . . . ≤ (

∑
(R,S) ∈ {(R,S). R∈P ∧ S∈P ∧ ¬ (ε/4 )−regular-pair R

S G}. card R ∗ card S)
unfolding irreg-pairs-def using § by (force intro: sum-mono)

also have . . . = (
∑

(R,S) ∈ irregular-set (ε/4 ) G P. card R ∗ card S)
by (simp add: irregular-set-def )

finally have card Ea ≤ (
∑

(R,S) ∈ irregular-set (ε/4 ) G P. card R ∗ card
S) .

with M show ?thesis
unfolding regular-partition-def by linarith

qed
have ebbound: card Eb ≤ (ε/2 ) ∗ (?n^2 ) — Count the edge bound for Eb.
proof −

have §:
∧

R S . [[R ∈ P; S ∈ P; ¬ edge-dense R S G (ε / 2 )]]
=⇒ real (card (edge R S)) ∗ 2 ≤ ε ∗ real (card R) ∗ real (card S)

by (simp add: divide-simps edge-dense-def edge-density-def card-P-gt0 )
(smt (verit, best) card-edge-le-card of-nat-le-iff mult.assoc)

have subs: low-density-pairs ⊆ P × P
by (auto simp: low-density-pairs-def )

then have finite low-density-pairs
by (metis ‹finite P› finite-SigmaI finite-subset)

have real (card Eb) ≤ (
∑

(i,j)∈low-density-pairs. real (card (edge i j)))
unfolding Eb-def
by (smt (verit, ccfv-SIG) ‹finite low-density-pairs› card-UN-le of-nat-mono

of-nat-sum
case-prod-unfold sum-mono)
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also have . . . ≤ (
∑

(R,S)∈low-density-pairs. ε/2 ∗ card R ∗ card S)
unfolding low-density-pairs-def by (force intro: sum-mono §)

also have . . . ≤ (
∑

(R,S)∈P × P. ε/2 ∗ card R ∗ card S)
using subs ‹ε > 0 › by (intro sum-mono2 ) (auto simp: ‹finite P›)

also have . . . = ε/2 ∗ (
∑

(R,S)∈P × P. card R ∗ card S)
by (simp add: sum-distrib-left case-prod-unfold mult-ac)

also have . . . ≤ (ε/2 ) ∗ (?n^2 )
using ‹ε>0 › sum-prod-le-prod-sum

by (simp add: power2-eq-square sum-product flip: sum.cartesian-product
sum-card-P)

finally show ?thesis .
qed
have ecbound: card Ec ≤ (ε/4 ) ∗ (?n^2 ) — Count the edge bound for Ec.
proof −

have edge-bound: (card (edge R S)) ≤ ?e4M ∗ ?n^2
if S ∈ P small R for R S

proof −
have real (card R) ≤ ε ∗ ?n / (4 ∗ real M )

using that by (simp add: small-def )
with card-P-le [OF ‹S∈P›]
have ∗: real (card R) ∗ real (card S) ≤ ε ∗ card (uverts G) / (4 ∗ real M )

∗ ?n
by (meson mult-mono of-nat-0-le-iff of-nat-mono order .trans)

also have . . . = ?e4M ∗ ?n^2
by (simp add: power2-eq-square)

finally show ?thesis
by (smt (verit) card-edge-le of-nat-mono of-nat-mult small-def that)

qed
have subs: ?SMALL ⊆ P

by (auto simp: small-def )
then obtain card-sp: card (?SMALL) ≤ M and finite ?SMALL

using M-def ‹finite P› card-mono by (metis finite-subset)
have real (card Ec) ≤ (

∑
R ∈ ?SMALL. real (card (

⋃
S ∈ P. edge R S)))

unfolding Ec-def
by (smt (verit, ccfv-SIG) ‹finite ?SMALL› card-UN-le of-nat-mono of-nat-sum

case-prod-unfold sum-mono)
also have . . . ≤ (

∑
R ∈ ?SMALL. ?e4M ∗ ?n^2 )

proof (intro sum-mono)
fix R assume i: R ∈ Collect small
then have R∈P and card-Pi: card R ≤ ?e4M ∗ ?n

by (auto simp: small-def )
let ?UE =

⋃
(edge R ‘ (P))

have ∗: real (card ?UE) ≤ real (card R ∗ ?n)
proof −

have ?UE ⊆ mk-uedge ‘ (all-edges-between R (uverts G) G)
apply (simp add: edge-def UN-subset-iff Ball-def )
by (meson all-edges-between-mono2 fin-part finite-graph-partition-subset

image-mono)
then have card ?UE ≤ card (all-edges-between R (uverts G) G)
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by (meson card-image-le card-mono fin finite-all-edges-between ′ fi-
nite-imageI wf le-trans)

then show ?thesis
by (meson of-nat-mono fin fin-P max-all-edges-between order .trans ‹R∈P›)

qed
also have . . . ≤ ?e4M ∗ real (?n2)

using card-Pi ‹M > 0 › ‹?n > 0 › by (force simp add: divide-simps
power2-eq-square)

finally show real (card ?UE) ≤ ?e4M ∗ real (?n2) .
qed
also have . . . ≤ card ?SMALL ∗ (?e4M ∗ ?n^2 )

by simp
also have . . . ≤ M ∗ (?e4M ∗ ?n^2 )

using egt by (intro mult-right-mono) (auto simp add: card-sp)
also have . . . ≤ (ε/4 ) ∗ (?n^2 )

using ‹M > 0 › by simp
finally show ?thesis .

qed
— total count
have prev1 : card (Ea ∪ Eb ∪ Ec) ≤ card (Ea ∪ Eb) + card Ec by (simp add:

card-Un-le)
also have . . . ≤ card Ea + card Eb + card Ec by (simp add: card-Un-le)
also have prev: . . . ≤ (ε/4 )∗(?n^2 ) + (ε/2 )∗(?n^2 ) + (ε/4 )∗(?n^2 )

using eabound ebbound ecbound by linarith
finally have cutedgesbound: card (Ea ∪ Eb ∪ Ec) ≤ ε ∗ (?n^2 ) by simp

define Gnew where Gnew ≡ (uverts G, uedges G − (Ea ∪ Eb ∪ Ec))
show ∃Gnew. ?Φ G Gnew
proof (intro exI conjI )

show verts: uverts Gnew = uverts G by (simp add: Gnew-def )
have diffedges: (Ea ∪ Eb ∪ Ec) ⊆ uedges G

by (auto simp: Ea-def Eb-def Ec-def all-edges-between-def edge-def )
then show edges: uedges Gnew ⊆ uedges G

by (simp add: Gnew-def )
then have uedges G − (uedges Gnew) = uedges G ∩ (Ea ∪ Eb ∪ Ec)

by (simp add: Gnew-def Diff-Diff-Int)
then have uedges G − (uedges Gnew) = (Ea ∪ Eb ∪ Ec) using diffedges

by (simp add: Int-absorb1 )
then have cardbound: card (uedges G − uedges Gnew) ≤ ε ∗ (?n^2 )

using cutedgesbound by simp
have graph-partition-new: finite-graph-partition (uverts Gnew) P M using

verts
by (simp add: fin-part)

have new-wf : uwellformed Gnew using subgraph-edge-wf verts edges wf by
simp

have new-fin: finite (uverts Gnew) using verts fin by simp

The notes by Bell and Grodzicki are quite useful for understanding the
lines below. See pg 4 in the middle after the summary of the min edge
counts.
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have irreg-pairs-swap: (R,S) ∈ irreg-pairs ←→ (S , R) ∈ irreg-pairs for R S
by (auto simp: irreg-pairs-def regular-pair-commute)

have low-density-pairs-swap: (R,S) ∈ low-density-pairs←→ (S ,R) ∈ low-density-pairs
for R S

by (simp add: low-density-pairs-def edge-density-commute edge-dense-def )
(use all-edges-between-swap in blast)

have small-pairs-swap: (R,S) ∈ small-pairs ←→ (S ,R) ∈ small-pairs for R S
by (auto simp: small-pairs-def )

have all-edges-if :
all-edges-between R S Gnew
= (if (R,S) ∈ irreg-pairs ∪ low-density-pairs ∪ small-pairs then {}

else all-edges-between R S G)
(is ?lhs = ?rhs)
if ij: R ∈ P S ∈ P for R S

proof
show ?lhs ⊆ ?rhs

using that fin-part unfolding Gnew-def Ea-def Eb-def Ec-def ′

apply (simp add: all-edges-between-E-diff all-edges-between-E-Un all-edges-between-E-UN )
apply (auto simp: edge-def in-mk-uedge-img-iff all-edges-between-def )
done

next
have Ea: all-edges-between R S (V , Ea) = {}

if (R,S) /∈ irreg-pairs for V
using ij that P-disjnt

by (auto simp: Ea-def doubleton-eq-iff edge-def all-edges-between-def ir-
reg-pairs-def ;

metis regular-pair-commute disjoint-iff-not-equal)
have Eb: all-edges-between R S (V , Eb) = {}

if (R,S) /∈ low-density-pairs for V
using ij that

apply (auto simp: Eb-def edge-def all-edges-between-def low-density-pairs-def
edge-dense-def )

apply metis
by (metis IntI P-disjnt doubleton-eq-iff edge-density-commute equals0D)

have Ec: all-edges-between R S (V , Ec) = {}
if (R,S) /∈ small-pairs for V
using ij that

by (auto simp: Ec-def ′ doubleton-eq-iff edge-def all-edges-between-def
small-pairs-def ;

metis P-disjnt disjoint-iff )
show ?rhs ⊆ ?lhs

by (auto simp add: Gnew-def Ea Eb Ec all-edges-between-E-diff all-edges-between-E-Un)
qed

have rp: (ε/4 )−regular-pair R S Gnew if ij: R ∈ P S ∈ P for R S
proof (cases (R,S) ∈ irreg-pairs)

case False
have ed: edge-density X Y Gnew =
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(if (R,S) ∈ irreg-pairs ∪ low-density-pairs ∪ small-pairs then 0
else edge-density X Y G)

if X ⊆ R Y ⊆ S for X Y
using all-edges-if that ij False
by (smt (verit) all-edges-preserved edge-density-eq0 edge-density-def )

show ?thesis
using that False ‹ε > 0 ›
by (auto simp add: irreg-pairs-def regular-pair-def less-le ed)

next
case True
then have ed: edge-density X Y Gnew = 0 if X ⊆ R Y ⊆ S for X Y

by (meson edge-density-eq0 all-edges-if that ‹R ∈ P› ‹S ∈ P› UnCI )
with egt that show ?thesis

by (auto simp: regular-pair-def ed)
qed
then have reg-pairs: (ε/4 )−regular-graph P Gnew

by (meson regular-graph-def )

have edge-dense R S Gnew (ε/2 )
if R ∈ P S ∈ P for R S

proof (cases (R,S) ∈ low-density-pairs)
case False
have ed: edge-density R S Gnew =

(if (R,S) ∈ irreg-pairs ∪ low-density-pairs ∪ small-pairs then 0
else edge-density R S G)

using all-edges-if that that by (simp add: edge-density-def )
with that ‹ε > 0 › False show ?thesis

by (auto simp: low-density-pairs-def edge-dense-def all-edges-if )
next

case True
then have edge-density R S Gnew = 0

by (simp add: all-edges-if edge-density-def that)
with ‹ε > 0 › that show ?thesis

by (simp add: True all-edges-if edge-dense-def )
qed
then have density-bound: dense-graph P Gnew (ε/2 )

by (meson dense-graph-def )

have min-subset-size: decent-graph P Gnew (?e4M ∗ ?n)
using ‹ε > 0 ›

by (auto simp: decent-graph-def small-pairs-def small-def decent-def all-edges-if )
show triangle-free-graph Gnew
proof (rule ccontr)

assume non: ¬?thesis
then obtain x y z where trig-ex: triangle-in-graph x y z Gnew

using triangle-free-graph-def non by auto
then have xin: x ∈ (uverts Gnew) and yin: y ∈ (uverts Gnew) and zin: z

∈ (uverts Gnew)
using triangle-in-graph-verts new-wf by auto
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then obtain R S T where xinp: x ∈ R and ilt: R∈P and yinp: y ∈ S and
jlt: S∈P

and zinp: z ∈ T and klt: T∈P
by (metis graph-partition-new xin Union-iff finite-graph-partition-equals)

then have finitesubsets: finite R finite S finite T
using new-fin fin-part finite-graph-partition-finite fin by auto

have subsets: R ⊆ uverts Gnew S ⊆ uverts Gnew T ⊆ uverts Gnew
using finite-graph-partition-subset ilt jlt klt graph-partition-new by auto

have min-sizes: card R ≥ ?e4M∗?n card S ≥ ?e4M∗?n card T ≥ ?e4M∗?n
using trig-ex min-subset-size xinp yinp zinp ilt jlt klt

by (auto simp: triangle-in-graph-def decent-graph-def decent-def all-edges-between-def )
have min-dens: edge-density R S Gnew ≥ ε/2 edge-density R T Gnew ≥

ε/2 edge-density S T Gnew ≥ ε/2
using density-bound ilt jlt klt xinp yinp zinp trig-ex
by (auto simp: dense-graph-def edge-dense-def all-edges-between-def trian-

gle-in-graph-def )
then have min-dens-diff :
edge-density R S Gnew − ε/4 ≥ ε/4 edge-density R T Gnew − ε/4 ≥ ε/4

edge-density S T Gnew − ε/4 ≥ ε/4
by auto

have mincard0 : (card R) ∗ (card S) ∗ (card T ) ≥ 0 by simp
have gtcube: ((edge-density R S Gnew) − ε/4 )∗((edge-density R T Gnew)

− ε/4 ) ∗((edge-density S T Gnew) − ε/4 ) ≥ (ε/4 )^3
using min-dens-diff e4gt real-mult-gt-cube by auto

then have c1 : ((edge-density R S Gnew) − ε/4 )∗((edge-density R T Gnew)
− ε/4 ) ∗((edge-density S T Gnew) − ε/4 ) ≥ 0

by (smt (verit) e4gt zero-less-power)
have ?e4M ∗ ?n ≥ 0

using egt by force
then have card R ∗ card S ∗ card T ≥ (?e4M ∗ ?n)^3

by (metis min-sizes of-nat-mult real-mult-gt-cube)
then have cardgtbound:card R ∗ card S ∗ card T ≥ ?e4M^ 3 ∗ ?n^3

by (metis of-nat-power power-mult-distrib)

have (1−ε/2 ) ∗ (ε/4 )^3 ∗ (ε/(4∗M ))^3 ∗ ?n^3 ≤ (1−ε/2 ) ∗ (ε/4 )^3 ∗
card R ∗ card S ∗ card T

using cardgtbound ordered-comm-semiring-class.comm-mult-left-mono True
e4gt by fastforce

also have ... ≤ (1−2∗(ε/4 )) ∗ (edge-density R S Gnew − ε/4 ) ∗ (edge-density
R T Gnew − ε/4 )

∗ (edge-density S T Gnew − ε/4 ) ∗ card R ∗ card S ∗ card T
using gtcube c1 ‹ε < 1 › mincard0 by (simp add: mult.commute mult.left-commute

mult-left-mono)
also have ... ≤ card (triangle-triples R S T Gnew)
by (smt (verit, best) e4gt ilt jlt klt min-dens-diff new-fin new-wf rp subsets

triangle-counting-lemma)
finally have card (triangle-set Gnew) ≥ D ∗ ?n^3

using card-convert-triangle-rep-bound new-wf new-fin subsets
by (auto simp: triangle-triples-def D-def )
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then have g-tset-bound: card (triangle-set G) ≥ D ∗ ?n^3
using triangle-set-graph-edge-ss-bound by (smt (verit) edges fin local.wf

of-nat-mono verts)
have card (triangle-set G) > δ ∗ ?n^3
proof −

have ?n^3 > 0
by (simp add: ‹uverts G 6= {}› card-gt-0-iff fin)

with δ ‹D0 ≤ D› have D ∗ ?n^3 > δ ∗ ?n^3
by force

thus card (triangle-set G) > δ ∗ ?n ^3
using g-tset-bound unfolding D-def by linarith

qed
thus False

using ineq by linarith
qed
show real (card (uedges G − uedges Gnew)) ≤ ε ∗ real ((card (uverts G))2)

using cardbound edges verts by blast
qed

qed (rule ‹0 < δ›)
qed

1.5 Roth’s Theorem
We will first need the following corollary of the Triangle Removal Lemma.

See https://en.wikipedia.org/wiki/Ruzsa--Szemerédi_problem. Suggested
by Yaël Dillies
corollary Diamond-free:

fixes ε :: real
assumes 0 < ε
shows ∃N>0 . ∀G. card(uverts G) > N −→ uwellformed G −→ unique-triangles

G −→
card (uedges G) ≤ ε ∗ (card (uverts G))2

proof −
have ε/3 > 0

using assms by auto
then obtain δ::real where δ > 0

and δ:
∧

G. [[card(uverts G) > 0 ; uwellformed G; card (triangle-set G) ≤ δ ∗
card(uverts G) ^ 3 ]]

=⇒ ∃G ′. triangle-free-graph G ′ ∧ uverts G ′ = uverts G ∧ (uedges G ′

⊆ uedges G) ∧
card (uedges G − uedges G ′) ≤ ε/3 ∗ (card (uverts G))2

using triangle-removal-lemma by metis
obtain N ::nat where N : real N ≥ 1 / (3∗δ)

by (meson real-arch-simple)
show ?thesis
proof (intro exI conjI strip)

show N > 0
using N ‹0 < δ› zero-less-iff-neq-zero by fastforce
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fix G
let ?n = card (uverts G)
assume G-gt-N : N < ?n

and wf : uwellformed G
and uniq: unique-triangles G

have G-ne: ?n > 0
using G-gt-N by linarith

let ?TWO = (λt. [t]2)
have tri-nsets-2 : [{x,y,z}]2 = {{x,y},{y,z},{x,z}} if triangle-in-graph x y z G

for x y z
using that unfolding nsets-def triangle-in-graph-def card-2-iff doubleton-eq-iff
by (blast dest!: edge-vertices-not-equal [OF wf ])

have tri-nsets-3 : {{x,y},{y,z},{x,z}} ∈ [uedges G]3 if triangle-in-graph x y z G
for x y z

using that by (simp add: nsets-def card-3-iff triangle-in-graph-def )
(metis doubleton-eq-iff edge-vertices-not-equal [OF wf ])

have sub: ?TWO ‘ triangle-set G ⊆ [uedges G]3

using tri-nsets-2 tri-nsets-3 triangle-set-def by auto
have

∧
i. i ∈ triangle-set G =⇒ ?TWO i 6= {}

using tri-nsets-2 triangle-set-def by auto
moreover have dfam: disjoint-family-on ?TWO (triangle-set G)

using sub [unfolded image-subset-iff ] uniq
unfolding disjoint-family-on-def triangle-set-def nsets-def unique-triangles-def

by (smt (verit) disjoint-iff-not-equal insert-subset mem-Collect-eq mk-disjoint-insert
)

ultimately have inj: inj-on ?TWO (triangle-set G)
by (simp add: disjoint-family-on-iff-disjoint-image)

have §: ∃T∈triangle-set G. e ∈ [T ]2 if e ∈ uedges G for e
using uniq [unfolded unique-triangles-def ] that local.wf

apply (simp add: triangle-set-def triangle-in-graph-def nsets-def uwellformed-def )
by (metis (mono-tags, lifting) finite.emptyI finite.insertI finite-subset)

with sub have
⋃
(?TWO ‘ triangle-set G) = uedges G

by (auto simp: image-subset-iff nsets-def )
then have card (

⋃
(?TWO ‘ triangle-set G)) = card (uedges G)

by simp
moreover have card (

⋃
(?TWO ‘ triangle-set G)) = 3 ∗ card (triangle-set G)

proof (subst card-UN-disjoint ′ [OF dfam])
show finite ([i]2) if i ∈ triangle-set G for i

using that tri-nsets-2 triangle-set-def by fastforce
show finite (triangle-set G)

by (meson G-ne card-gt-0-iff local.wf finite-triangle-set)
have card ([i]2) = 3 if i ∈ triangle-set G for i

using that wf tri-nsets-2 tri-nsets-3 by (force simp add: nsets-def trian-
gle-set-def )

then show (
∑

i∈triangle-set G. card ([i]2)) = 3 ∗ card (triangle-set G)
by simp

qed
ultimately have 3 : 3 ∗ card (triangle-set G) = card (uedges G)

by auto
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have card (uedges G) ≤ card (all-edges(uverts G))
by (meson G-ne all-edges-finite card-gt-0-iff card-mono local.wf wellformed-all-edges)
also have . . . = ?n choose 2

by (metis G-ne card-all-edges card-eq-0-iff not-less0 )
also have . . . ≤ ?n2

by (metis binomial-eq-0-iff binomial-le-pow linorder-not-le zero-le)
finally have card (uedges G) ≤ ?n2 .
with 3 have card (triangle-set G) ≤ ?n2 / 3 by linarith
also have . . . ≤ δ ∗ ?n ^ 3
proof −

have 1 ≤ 3 ∗ δ ∗ N
using N ‹δ > 0 › by (simp add: field-simps)

also have . . . ≤ 3 ∗ δ ∗ ?n
using G-gt-N ‹0 < δ› by force

finally have 1 ∗ ?n^2 ≤ (3 ∗ δ ∗ ?n) ∗ ?n^2
by (simp add: G-ne)

then show ?thesis
by (simp add: eval-nat-numeral mult-ac)

qed
finally have card (triangle-set G) ≤ δ ∗ ?n ^ 3 .
then obtain Gnew where Gnew: triangle-free-graph Gnew uverts Gnew =

uverts G
uedges Gnew ⊆ uedges G and card-edge-diff : card (uedges G − uedges Gnew)

≤ ε/3 ∗ ?n2

using G-ne δ local.wf by meson

Deleting an edge removes at most one triangle from the graph by as-
sumption, so the number of edges removed in this process is at least the
number of triangles.

obtain TF where TF :
∧

e. e ∈ uedges G =⇒ ∃ x y z. TF e = {x,y,z} ∧
triangle-in-graph x y z G ∧ e ⊆ TF e

using uniq unfolding unique-triangles-def by metis
have False

if non:
∧

e. e ∈ uedges G − uedges Gnew =⇒ {x,y,z} 6= TF e
and tri: triangle-in-graph x y z G for x y z

proof −
have ¬ triangle-in-graph x y z Gnew

using Gnew triangle-free-graph-def by blast
with tri obtain e where eG: e ∈ uedges G − uedges Gnew and esub: e ⊆

{x,y,z}
using insert-commute triangle-in-graph-def by auto

then show False
by (metis DiffD1 TF tri uniq unique-triangles-def non [OF eG])

qed
then have triangle-set G ⊆ TF ‘ (uedges G − uedges Gnew)

unfolding triangle-set-def by blast
moreover have finite (uedges G − uedges Gnew)

by (meson G-ne card-gt-0-iff finite-Diff finite-graph-def wf wellformed-finite)
ultimately have card (triangle-set G) ≤ card (uedges G − uedges Gnew)
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by (meson surj-card-le)
then show card (uedges G) ≤ ε ∗ ?n2

using 3 card-edge-diff by linarith
qed

qed

We are now ready to proceed to the proof of Roth’s Theorem for Arith-
metic Progressions.
definition progression3 :: ′a::comm-monoid-add ⇒ ′a ⇒ ′a set

where progression3 k d ≡ {k, k+d, k+d+d}

lemma p3-int-iff : progression3 (int k) (int d) ⊆ int ‘ A ←→ progression3 k d ⊆
A

apply (simp add: progression3-def image-iff )
by (smt (verit, best) int-plus of-nat-eq-iff )

We assume that a set of naturals A ⊆ {... < N} does not have any
arithmetic progression. We will then show that A is of cardinality o(N).
lemma RothArithmeticProgressions-aux:

fixes ε::real
assumes ε > 0
obtains M where ∀N ≥ M . ∀A ⊆ {..<N}. (@ k d. d>0 ∧ progression3 k d ⊆

A) −→ card A < ε ∗ real N
proof −

obtain L where L>0
and L:

∧
G. [[card(uverts G) > L; uwellformed G; unique-triangles G]]
=⇒ card (uedges G) ≤ ε/12 ∗ (card (uverts G))2

by (metis assms Diamond-free less-divide-eq-numeral1 (1 ) mult-eq-0-iff )
show thesis
proof (intro strip that)

fix N A
assume L ≤ N and A: A ⊆ {..<N}

and non: @ k d. 0 < d ∧ progression3 k d ⊆ A
then have N > 0 using ‹0 < L› by linarith
define M where M ≡ Suc (2∗N )
have M-mod-bound[simp]: x mod M < M for x

by (simp add: M-def )
have odd M M>0 N<M by (auto simp: M-def )
have coprime M (Suc N )

unfolding M-def
by (metis add-2-eq-Suc coprime-Suc-right-nat coprime-mult-right-iff mult-Suc-right)
then have cop: coprime M (1 + int N )

by (metis coprime-int-iff of-nat-Suc)
have A-sub-M : int ‘ A ⊆ {..<M}

using A by (force simp: M-def )
have non-img-A: @ k d. d > 0 ∧ progression3 k d ⊆ int ‘ A

by (metis imageE insert-subset non p3-int-iff pos-int-cases progression3-def )

Construct a tripartite graph G whose three parts are copies of �/M�.
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define part-of where part-of ≡ λξ. (λi. prod-encode (ξ,i)) ‘ {..<M}
define label-of-part where label-of-part ≡ λp. fst (prod-decode p)
define from-part where from-part ≡ λp. snd (prod-decode p)
have enc-iff [simp]: prod-encode (a,i) ∈ part-of a ′←→ a ′=a ∧ i<M for a a ′ i

using ‹0 < M › by (clarsimp simp: part-of-def image-iff Bex-def ) presburger
have part-of-M : p ∈ part-of a =⇒ from-part p < M for a p

using from-part-def part-of-def by fastforce
have disjnt-part-of : a 6= b =⇒ disjnt (part-of a) (part-of b) for a b

by (auto simp: part-of-def disjnt-iff )
have from-enc [simp]: from-part (prod-encode (a,i)) = i for a i

by (simp add: from-part-def )
have finpart [iff ]: finite (part-of a) for a

by (simp add: part-of-def ‹0 < M ›)
have cardpart [simp]: card (part-of a) = M for a

using ‹0 < M ›
by (simp add: part-of-def eq-nat-nat-iff inj-on-def card-image)

let ?X = part-of 0
let ?Y = part-of (Suc 0 )
let ?Z = part-of (Suc (Suc 0 ))
define diff where diff ≡ λa b. (int a − int b) mod (int M )
have inj-on-diff : inj-on (λx. diff x a) {..<M} for a

apply (clarsimp simp: diff-def inj-on-def )
by (metis diff-add-cancel mod-add-left-eq mod-less nat-int of-nat-mod)

have eq-mod-M : (x − y) mod int M = (x ′ − y) mod int M =⇒ x mod int M
= x ′ mod int M for x x ′ y

by (simp add: mod-eq-dvd-iff )

have diff-invert: diff y x = int a ←→ y = (x + a) mod M if y < M a∈A for
x y a

proof −
have a < M

using A ‹N < M › that by auto
show ?thesis
proof

assume diff y x = int a
with that ‹a<M › have int y = int (x+a) mod int M

by (smt (verit) diff-def eq-mod-M mod-less of-nat-add zmod-int)
with that show y = (x + a) mod M

by (metis nat-int zmod-int)
qed (simp add: ‹a < M › diff-def mod-diff-left-eq zmod-int)

qed

define diff2 where diff2 ≡ λa b. ((int a − int b) ∗ int(Suc N )) mod (int M )
have inj-on-diff2 : inj-on (λx. diff2 x a) {..<M} for a

apply (clarsimp simp: diff2-def inj-on-def )
by (metis eq-mod-M mult-mod-cancel-right [OF - cop] int-int-eq mod-less

zmod-int)
have [simp]: (1 + int N ) mod int M = 1 + int N

using M-def ‹0 < N › by auto
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have diff2-by2 : (diff2 a b ∗ 2 ) mod M = diff a b for a b
proof −

have int M dvd ((int a − int b) ∗ int M )
by simp

then have int M dvd ((int a − int b) ∗ int (Suc N ) ∗ 2 − (int a − int b))
by (auto simp: M-def algebra-simps)

then show ?thesis
by (metis diff2-def diff-def mod-eq-dvd-iff mod-mult-left-eq)

qed
have diff2-invert: diff2 (((x + a) mod M + a) mod M ) x = int a if a∈A for

x a
proof −

have 1 : ((x + a) mod M + a) mod M = (x + 2∗a) mod M
by (metis group-cancel.add1 mod-add-left-eq mult-2 )

have (int ((x + 2∗a) mod M ) − int x) ∗ (1 + int N ) mod int M
= (int (x + 2∗a) − int x) ∗ (1 + int N ) mod int M

by (metis mod-diff-left-eq mod-mult-cong of-nat-mod)
also have . . . = int (a ∗ (Suc M )) mod int M

by (simp add: algebra-simps M-def )
also have . . . = int a mod int M

by simp
also have . . . = int a

using A M-def subsetD that by auto
finally show ?thesis

using that by (auto simp: 1 diff2-def )
qed

define Edges where Edges ≡ λX Y df . {{x,y}| x y. x ∈ X ∧ y ∈ Y ∧
df (from-part y) (from-part x) ∈ int ‘ A}

have Edges-subset: Edges X Y df ⊆ Pow (X ∪ Y ) for X Y df
by (auto simp: Edges-def )

define XY where XY ≡ Edges ?X ?Y diff
define YZ where YZ ≡ Edges ?Y ?Z diff
define XZ where XZ ≡ Edges ?X ?Z diff2
obtain [simp]: finite XY finite YZ finite XZ

using Edges-subset unfolding XY-def YZ-def XZ-def
by (metis finite-Pow-iff finite-UnI finite-subset finpart)

define G where G ≡ (?X ∪ ?Y ∪ ?Z , XY ∪ YZ ∪ XZ )
have finG: finite (uverts G) and cardG: card (uverts G) = 3∗M

by (simp-all add: G-def card-Un-disjnt disjnt-part-of )
then have card(uverts G) > L

using M-def ‹L ≤ N › by linarith
have uwellformed G

by (fastforce simp: card-insert-if part-of-def G-def XY-def YZ-def XZ-def
Edges-def uwellformed-def )

have [simp]: {prod-encode (ξ,x), prod-encode (ξ,y)} /∈ XY
{prod-encode (ξ,x), prod-encode (ξ,y)} /∈ YZ
{prod-encode (ξ,x), prod-encode (ξ,y)} /∈ XZ for x y ξ

by (auto simp: XY-def YZ-def XZ-def Edges-def doubleton-eq-iff )
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have label-ne-XY [simp]: label-of-part p 6= label-of-part q if {p,q} ∈ XY for p
q

using that by (auto simp add: XY-def part-of-def Edges-def doubleton-eq-iff
label-of-part-def )

then have [simp]: {p} /∈ XY for p
by (metis insert-absorb2 )

have label-ne-YZ [simp]: label-of-part p 6= label-of-part q if {p,q} ∈ YZ for p q
using that by (auto simp add: YZ-def part-of-def Edges-def doubleton-eq-iff

label-of-part-def )
then have [simp]: {p} /∈ YZ for p

by (metis insert-absorb2 )
have label-ne-XZ [simp]: label-of-part p 6= label-of-part q if {p,q} ∈ XZ for p q

using that by (auto simp add: XZ-def part-of-def Edges-def doubleton-eq-iff
label-of-part-def )

then have [simp]: {p} /∈ XZ for p
by (metis insert-absorb2 )

have label012 : label-of-part v < 3 if v ∈ uverts G for v
using that by (auto simp add: G-def eval-nat-numeral part-of-def label-of-part-def )

have Edges-distinct:
∧

p q r ξ ζ γ β df df ′. [[{p,q} ∈ Edges (part-of ξ) (part-of
ζ) df ;

{q,r} ∈ Edges (part-of ξ) (part-of ζ) df ;
{p,r} ∈ Edges (part-of γ) (part-of β) df ′; ξ 6= ζ; γ 6= β]] =⇒ False

apply (auto simp: disjnt-iff Edges-def doubleton-eq-iff conj-disj-distribR
ex-disj-distrib)

apply (metis disjnt-iff disjnt-part-of )+
done

have uniq: ∃ i<M . ∃ d∈A. ∃ x ∈ {p,q,r}. ∃ y ∈ {p,q,r}. ∃ z ∈ {p,q,r}.
x = prod-encode(0 , i)
∧ y = prod-encode(1 , (i+d) mod M )
∧ z = prod-encode(2 , (i+d+d) mod M )

if T : triangle-in-graph p q r G for p q r
proof −

obtain x y z where xy: {x,y} ∈ XY and yz: {y,z} ∈ YZ and xz: {x,z} ∈
XZ

and x: x ∈ {p,q,r} and y: y ∈ {p,q,r} and z: z ∈ {p,q,r}
using T apply (simp add: triangle-in-graph-def G-def XY-def YZ-def XZ-def )

by (smt (verit, ccfv-SIG) Edges-distinct Zero-not-Suc insert-commute
n-not-Suc-n)

then have x ∈ ?X y ∈ ?Y z ∈ ?Z
by (auto simp: XY-def YZ-def XZ-def Edges-def doubleton-eq-iff ; metis

disjnt-iff disjnt-part-of )+
then obtain i j k where i: x = prod-encode(0 ,i) and j: y = prod-encode(1 ,j)

and k: z = prod-encode(2 ,k)
by (metis One-nat-def Suc-1 enc-iff prod-decode-aux.cases prod-decode-inverse)
obtain a1 where a1 ∈ A and a1 : (int j − int i) mod int M = int a1
using xy ‹x ∈ ?X› i j by (auto simp add: XY-def Edges-def doubleton-eq-iff

diff-def )
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obtain a3 where a3 ∈ A and a3 : (int k − int j) mod int M = int a3
using yz ‹x ∈ ?X› j k by (auto simp add: YZ-def Edges-def doubleton-eq-iff

diff-def )
obtain a2 where a2 ∈ A and a2 : (int k − int i) mod int M = int (a2 ∗ 2 )

mod int M
using xz ‹x ∈ ?X› i k apply (auto simp add: XZ-def Edges-def double-

ton-eq-iff )
by (metis diff2-by2 diff-def int-plus mult-2-right)

obtain a1<N a2<N a3<N
using A ‹a1 ∈ A› ‹a2 ∈ A› ‹a3 ∈ A› by blast

then obtain a1+a3 < M a2 ∗ 2 < M
by (simp add: M-def )

then have int (a2 ∗ 2 ) = int (a2 ∗ 2 ) mod M
by force

also have . . . = int (a1 + a3 ) mod int M
using a1 a2 a3 by (smt (verit, del-insts) int-plus mod-add-eq)

also have . . . = int (a1+a3 )
using ‹a1 + a3 < M › by force

finally have a2∗2 = a1+a3
by presburger

then obtain equal: a3 − a2 = a2 − a1 a2 − a3 = a1 − a2
by (metis Nat.diff-cancel diff-cancel2 mult-2-right)

with ‹a1 ∈ A› ‹a2 ∈ A› ‹a3 ∈ A› have progression3 a1 (a2 − a1 ) ⊆ A
apply (clarsimp simp: progression3-def )
by (metis diff-is-0-eq ′ le-add-diff-inverse nle-le)

with non equal have a2 = a1
unfolding progression3-def
by (metis ‹a2 ∈ A› ‹a3 ∈ A› add.right-neutral diff-is-0-eq insert-subset

le-add-diff-inverse not-gr-zero)
then have a3 = a2

using ‹a2 ∗ 2 = a1 + a3 › by force
have k-minus-j: (int k − int j) mod int M = int a1

by (simp add: ‹a2 = a1 › ‹a3 = a2 › a3 )
have i-to-j: j mod M = (i+a1 ) mod M
by (metis a1 add-diff-cancel-left ′ add-diff-eq mod-add-right-eq nat-int of-nat-add

of-nat-mod)
have j-to-k: k mod M = (j+a1 ) mod M
by (metis ‹a2 = a1 › ‹a3 = a2 › a3 add-diff-cancel-left ′ add-diff-eq mod-add-right-eq

nat-int of-nat-add of-nat-mod)
have i<M

using ‹x ∈ ?X› i by simp
then show ?thesis

using i j k x y z ‹a1 ∈ A›
by (metis ‹y ∈ ?Y › ‹z ∈?Z › enc-iff i-to-j j-to-k mod-add-left-eq mod-less)

qed

Every edge of the graph G lies in exactly one triangle.
have unique-triangles G
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unfolding unique-triangles-def
proof (intro strip)

fix e
assume e ∈ uedges G
then consider e ∈ XY | e ∈ YZ | e ∈ XZ

using G-def by fastforce
then show ∃ !T . ∃ x y z. T = {x, y, z} ∧ triangle-in-graph x y z G ∧ e ⊆ T
proof cases

case 1
then obtain i j a where eeq: e = {prod-encode(0 ,i), prod-encode(1 ,j)}

and i<M and j<M
and df : diff j i = int a and a ∈ A
by (auto simp: XY-def Edges-def part-of-def )

let ?x = prod-encode (0 , i)
let ?y = prod-encode (1 , j)
let ?z = prod-encode (2 , (j+a) mod M )
have yeq: j = (i+a) mod M

using diff-invert using ‹a ∈ A› df ‹j<M › by blast
with ‹a ∈ A› ‹j<M › have {?y,?z} ∈ YZ

by (fastforce simp: YZ-def Edges-def image-iff diff-invert)
moreover have {?x,?z} ∈ XZ
using ‹a ∈ A› by (fastforce simp: XZ-def Edges-def yeq diff2-invert ‹i<M ›)
ultimately have T : triangle-in-graph ?x ?y ?z G
using ‹e ∈ uedges G› by (force simp add: G-def eeq triangle-in-graph-def )

show ?thesis
proof (intro ex1I )

show ∃ x y z. {?x,?y,?z} = {x, y, z} ∧ triangle-in-graph x y z G ∧ e ⊆
{?x,?y,?z}

using T eeq by blast
fix T
assume ∃ p q r . T = {p, q, r} ∧ triangle-in-graph p q r G ∧ e ⊆ T
then obtain p q r where Teq: T = {p,q,r}

and tri: triangle-in-graph p q r G and e ⊆ T
by blast

with uniq
obtain i ′ a ′ x y z where i ′<M a ′ ∈ A

and x: x ∈ {p,q,r} and y: y ∈ {p,q,r} and z: z ∈ {p,q,r}
and xeq: x = prod-encode(0 , i ′)
and yeq: y = prod-encode(1 , (i ′+a ′) mod M )
and zeq: z = prod-encode(2 , (i ′+a ′+a ′) mod M )

by metis
then have sets-eq: {x,y,z} = {p,q,r} by auto
with Teq ‹e ⊆ T › have esub ′: e ⊆ {x,y,z} by blast
have a ′ < M

using A ‹N < M › ‹a ′ ∈ A› by auto
obtain ?x ∈ e ?y ∈ e using eeq by force
then have x = ?x

using esub ′ eeq yeq zeq by simp
then have y = ?y
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using esub ′ eeq zeq by simp
obtain eq ′: i ′ = i (i ′+a ′) mod M = j

using ‹x = ?x› xeq using ‹y =?y› yeq by auto
then have diff (i ′+a ′) i ′ = int a ′

by (simp add: diff-def ‹a ′ < M ›)
then have a ′ = a

by (metis eq ′ df diff-def mod-diff-left-eq nat-int zmod-int)
then have z = ?z

by (metis ‹y = ?y› mod-add-left-eq prod-encode-eq snd-conv yeq zeq)
then show T = {?x,?y,?z}

using Teq ‹x = ?x› ‹y = ?y› sets-eq by presburger
qed

next
case 2
then obtain j k a where eeq: e = {prod-encode(1 ,j), prod-encode(2 ,k)}

and j<M k<M
and df : diff k j = int a and a ∈ A
by (auto simp: YZ-def Edges-def part-of-def numeral-2-eq-2 )

let ?x = prod-encode (0 , (M+j−a) mod M )
let ?y = prod-encode (1 , j)
let ?z = prod-encode (2 , k)
have zeq: k = (j+a) mod M

using diff-invert using ‹a ∈ A› df ‹k<M › by blast
with ‹a ∈ A› ‹k<M › have {?x,?z} ∈ XZ

unfolding XZ-def Edges-def image-iff
apply (clarsimp simp: mod-add-left-eq doubleton-eq-iff conj-disj-distribR

ex-disj-distrib)
apply (smt (verit, ccfv-threshold) A ‹N < M › diff2-invert le-add-diff-inverse2

lessThan-iff
linorder-not-less mod-add-left-eq mod-add-self1 not-add-less1

order .strict-trans subsetD)
done

moreover
have a < N using A ‹a ∈ A› by blast
with ‹N < M › have ((M + j − a) mod M + a) mod M = j mod M

by (simp add: mod-add-left-eq)
then have {?x,?y} ∈ XY

using ‹a ∈ A› ‹j<M › unfolding XY-def Edges-def
by (force simp add: zeq image-iff diff-invert doubleton-eq-iff ex-disj-distrib)

ultimately have T : triangle-in-graph ?x ?y ?z G
using ‹e ∈ uedges G› by (auto simp: G-def eeq triangle-in-graph-def )

show ?thesis
proof (intro ex1I )

show ∃ x y z. {?x,?y,?z} = {x, y, z} ∧ triangle-in-graph x y z G ∧ e ⊆
{?x,?y,?z}

using T eeq by blast
fix T
assume ∃ p q r . T = {p, q, r} ∧ triangle-in-graph p q r G ∧ e ⊆ T
then obtain p q r where Teq: T = {p,q,r} and tri: triangle-in-graph p
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q r G and e ⊆ T
by blast

with uniq
obtain i ′ a ′ x y z where i ′<M a ′ ∈ A

and x: x ∈ {p,q,r} and y: y ∈ {p,q,r} and z: z ∈ {p,q,r}
and xeq: x = prod-encode(0 , i ′)
and yeq: y = prod-encode(1 , (i ′+a ′) mod M )
and zeq: z = prod-encode(2 , (i ′+a ′+a ′) mod M )

by metis
then have sets-eq: {x,y,z} = {p,q,r} by auto
with Teq ‹e ⊆ T › have esub ′: e ⊆ {x,y,z} by blast
have a ′ < M

using A ‹N < M › ‹a ′ ∈ A› by auto
obtain ?y ∈ e ?z ∈ e

using eeq by force
then have y = ?y

using esub ′ eeq xeq zeq by simp
then have z = ?z

using esub ′ eeq xeq by simp
obtain eq ′: (i ′+a ′) mod M = j (i ′+a ′+a ′) mod M = k

using ‹y = ?y› yeq using ‹z =?z› zeq by auto
then have diff (i ′+a ′+a ′) (i ′+a ′) = int a ′

by (simp add: diff-def ‹a ′ < M ›)
then have a ′ = a

by (metis M-mod-bound ‹a ′ ∈ A› df diff-invert eq ′ mod-add-eq mod-if
of-nat-eq-iff )

have (M + ((i ′+a ′) mod M ) − a ′) mod M = (M + (i ′ + a ′) − a ′) mod M
by (metis Nat.add-diff-assoc2 ‹a ′ < M › less-imp-le-nat mod-add-right-eq)
with ‹i ′ < M › have (M + ((i ′+a ′) mod M ) − a ′) mod M = i ′

by force
with ‹a ′ = a› eq ′ have (M + j − a) mod M = i ′

by force
with xeq have x = ?x by blast
then show T = {?x,?y,?z}

using Teq ‹z = ?z› ‹y = ?y› sets-eq by presburger
qed

next
case 3
then obtain i k a where eeq: e = {prod-encode(0 ,i), prod-encode(2 ,k)}

and i<M and k<M
and df : diff2 k i = int a and a ∈ A
by (auto simp: XZ-def Edges-def part-of-def eval-nat-numeral)

let ?x = prod-encode (0 , i)
let ?y = prod-encode (1 , (i+a) mod M )
let ?z = prod-encode (2 , k)
have keq: k = (i+a+a) mod M

using diff2-invert [OF ‹a ∈ A›, of i] df ‹k<M › using inj-on-diff2 [of i]
by (simp add: inj-on-def Ball-def mod-add-left-eq)

with ‹a ∈ A› have {?x,?y} ∈ XY
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using ‹a ∈ A› ‹i<M › ‹k<M › apply (auto simp: XY-def Edges-def )
by (metis M-mod-bound diff-invert enc-iff from-enc imageI )

moreover have {?y,?z} ∈ YZ
apply (auto simp: YZ-def Edges-def image-iff eval-nat-numeral)

by (metis M-mod-bound ‹a ∈ A› diff-invert enc-iff from-enc mod-add-left-eq
keq)

ultimately have T : triangle-in-graph ?x ?y ?z G
using ‹e ∈ uedges G› by (force simp add: G-def eeq triangle-in-graph-def )

show ?thesis
proof (intro ex1I )

show ∃ x y z. {?x,?y,?z} = {x, y, z} ∧ triangle-in-graph x y z G ∧ e ⊆
{?x,?y,?z}

using T eeq by blast
fix T
assume ∃ p q r . T = {p, q, r} ∧ triangle-in-graph p q r G ∧ e ⊆ T
then obtain p q r where Teq: T = {p,q,r} and tri: triangle-in-graph p

q r G and e ⊆ T
by blast

with uniq obtain i ′ a ′ x y z where i ′<M a ′ ∈ A
and x: x ∈ {p,q,r} and y: y ∈ {p,q,r} and z: z ∈ {p,q,r}
and xeq: x = prod-encode(0 , i ′)
and yeq: y = prod-encode(1 , (i ′+a ′) mod M )
and zeq: z = prod-encode(2 , (i ′+a ′+a ′) mod M )

by metis
then have sets-eq: {x,y,z} = {p,q,r} by auto
with Teq ‹e ⊆ T › have esub ′: e ⊆ {x,y,z} by blast
have a ′ < M

using A ‹N < M › ‹a ′ ∈ A› by auto
obtain ?x ∈ e ?z ∈ e using eeq by force
then have x = ?x

using esub ′ eeq yeq zeq by simp
then have z = ?z

using esub ′ eeq yeq by simp
obtain eq ′: i ′ = i (i ′+a ′+a ′) mod M = k

using ‹x = ?x› xeq using ‹z =?z› zeq by auto
then have diff (i ′+a ′) i ′ = int a ′

by (simp add: diff-def ‹a ′ < M ›)
then have a ′ = a

by (metis ‹a ′ ∈ A› add.commute df diff2-invert eq ′ mod-add-right-eq
nat-int)

then have y = ?y
by (metis ‹x = ?x› prod-encode-eq snd-conv yeq xeq)

then show T = {?x,?y,?z}
using Teq ‹x = ?x› ‹z = ?z› sets-eq by presburger

qed
qed

qed
have ∗: card (uedges G) ≤ ε/12 ∗ (card (uverts G))2

using L ‹L < card (uverts G)› ‹unique-triangles G› ‹uwellformed G› by blast
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have diff-cancel: ∃ j<M . diff j i = int a if a ∈ A for i a
using M-mod-bound diff-invert that by blast

have diff2-cancel: ∃ j<M . diff2 j i = int a if a ∈ A for i a
using M-mod-bound diff2-invert that by blast

have card-Edges: card (Edges (part-of ξ) (part-of ζ) df ) = M ∗ card A (is card
?E = -)

if ξ 6= ζ and df-cancel: ∀ a∈A. ∀ i<M . ∃ j<M . df j i = int a
and df-inj: ∀ a. inj-on (λx. df x a) {..<M} for ξ ζ df

proof −
define R where R ≡ λξ Y df u p. ∃ x y i a. u = {x,y} ∧ p = (i,a) ∧ x =

prod-encode (ξ,i)
∧ y ∈ Y ∧ a ∈ A ∧ df (from-part y) (from-part

x) = int a
have R-uniq: [[R ξ (part-of ζ) df u p; R ξ (part-of ζ) df u p ′; ξ 6= ζ]] =⇒ p ′

= p for u p p ′ ξ ζ df
by (auto simp add: R-def doubleton-eq-iff )

define f where f ≡ λξ Y df u. @p. R ξ Y df u p
have f-if-R: f ξ (part-of ζ) df u = p if R ξ (part-of ζ) df u p ξ 6= ζ for u p

ξ ζ df
using R-uniq f-def that by blast

have bij-betw (f ξ (part-of ζ) df ) ?E ({..<M} × A)
unfolding bij-betw-def inj-on-def

proof (intro conjI strip)
fix u u ′

assume u ∈ ?E and u ′ ∈ ?E
and eq: f ξ (part-of ζ) df u = f ξ (part-of ζ) df u ′

obtain x y a where u: u = {x,y} x ∈ part-of ξ y ∈ part-of ζ a ∈ A
and df : df (from-part y) (from-part x) = int a
using ‹u ∈ ?E› by (force simp add: Edges-def image-iff )

then obtain i where i: x = prod-encode (ξ,i)
using part-of-def by blast

with u df R-def f-if-R that have fu: f ξ (part-of ζ) df u = (i,a)
by blast

obtain x ′ y ′ a ′ where u ′: u ′ = {x ′,y ′} x ′ ∈ part-of ξ y ′ ∈ part-of ζ a ′∈A
and df ′: df (from-part y ′) (from-part x ′) = int a ′

using ‹u ′ ∈ ?E› by (force simp add: Edges-def image-iff )
then obtain i ′ where i ′: x ′ = prod-encode (ξ,i ′)

using part-of-def by blast
with u ′ df ′ R-def f-if-R that have fu ′: f ξ (part-of ζ) df u ′ = (i ′,a ′)

by blast
have i ′=i a ′ = a

using fu fu ′ eq by auto
with i i ′ have x = x ′

by meson
moreover have from-part y = from-part y ′

using df df ′ ‹x = x ′› ‹a ′ = a› df-inj u ′(3 ) u(3 )
by (clarsimp simp add: inj-on-def ) (metis part-of-M lessThan-iff )
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ultimately show u = u ′

using u u ′ by (metis enc-iff from-part-def prod.collapse prod-decode-inverse)
next

have f ξ (part-of ζ) df ‘ ?E ⊆ {..<M} × A
proof (clarsimp simp: Edges-def )

fix i a x y b
assume x ∈ part-of ξ y ∈ part-of ζ df (from-part y) (from-part x) = int b

b ∈ A and feq: (i, a) = f ξ (part-of ζ) df {x, y}
then have R ξ (part-of ζ) df {x,y} (from-part x, b)

by (auto simp: R-def doubleton-eq-iff part-of-def )
then have (from-part x, b) = (i, a)

by (simp add: f-if-R feq from-part-def that)
then show i < M ∧ a ∈ A

using ‹x ∈ part-of ξ› ‹b ∈ A› part-of-M by fastforce
qed
moreover have {..<M} × A ⊆ f ξ (part-of ζ) df ‘ ?E
proof clarsimp

fix i a assume a ∈ A and i < M
then obtain j where j<M and j: df j i = int a

using df-cancel by metis
then have fj: f ξ (part-of ζ) df {prod-encode (ξ, i), prod-encode (ζ, j)}

= (i,a)
by (metis R-def ‹a ∈ A› enc-iff f-if-R from-enc ‹ξ 6= ζ›)

then have {prod-encode (ξ,i), prod-encode (ζ, j mod M )} ∈ Edges (part-of
ξ) (part-of ζ) df

apply (clarsimp simp: Edges-def doubleton-eq-iff )
by (metis ‹a ∈ A› ‹i < M › ‹j < M › enc-iff from-enc image-eqI j mod-if )

then show (i,a) ∈ f ξ (part-of ζ) df ‘ Edges (part-of ξ) (part-of ζ) df
using ‹j < M › fj image-iff by fastforce

qed
ultimately show f ξ (part-of ζ) df ‘ ?E = {..<M} × A by blast

qed
then show ?thesis

by (simp add: bij-betw-same-card card-cartesian-product)
qed
have [simp]: disjnt XY YZ disjnt XY XZ disjnt YZ XZ

using disjnt-part-of unfolding XY-def YZ-def XZ-def Edges-def disjnt-def
by (clarsimp simp add: disjoint-iff doubleton-eq-iff , meson disjnt-iff n-not-Suc-n

nat.discI )+
have [simp]: card XY = M ∗ card A card YZ = M ∗ card A

by (simp-all add: XY-def YZ-def card-Edges diff-cancel inj-on-diff )
have [simp]: card XZ = M ∗ card A

by (simp-all add: XZ-def card-Edges diff2-cancel inj-on-diff2 )
have card (uedges G) = 3 ∗ M ∗ card A

by (simp add: G-def card-Un-disjnt)
then have card A ≤ ε ∗ (real M / 4 )

using ∗ ‹0 < M › by (simp add: cardG power2-eq-square)
also have . . . < ε ∗ N

using ‹N>0 › by (simp add: M-def assms)
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finally show card A < ε ∗ N .
qed

qed

We finally present the main statement formulated using the upper asymp-
totic density condition.
theorem RothArithmeticProgressions:

assumes upper-asymptotic-density A > 0
shows ∃ k d. d>0 ∧ progression3 k d ⊆ A

proof (rule ccontr)
assume non: @ k d. 0 < d ∧ progression3 k d ⊆ A
obtain M where X : ∀N ≥ M . ∀A ′ ⊆ {..<N}. (@ k d. d>0 ∧ progression3 k d
⊆ A ′)

−→ card A ′ < upper-asymptotic-density A / 2 ∗ real N
by (metis half-gt-zero RothArithmeticProgressions-aux assms)

then have ∀N ≥ M . card (A ∩ {..<N}) < upper-asymptotic-density A / 2 ∗ N
by (meson order-trans inf-le1 inf-le2 non)

then have upper-asymptotic-density A ≤ upper-asymptotic-density A / 2
by (force simp add: eventually-sequentially less-eq-real-def intro!: upper-asymptotic-densityI )

with assms show False by linarith
qed

end
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