Residuated Transition Systems

Eugene W. Stark
Department of Computer Science
Stony Brook University
Stony Brook, New York 11794 USA

June 17, 2024

Abstract

A residuated transition system (RTS) is a transition system that is equipped with a certain partial binary operation, called residuation, on transitions. Using the residuation operation, one can express nuances, such as a distinction between nondeterministic and concurrent choice, as well as partial commutativity relationships between transitions, which are not captured by ordinary transition systems. A version of residuated transition systems was introduced by the author in [10], where they were called "concurrent transition systems" in view of the original motivation for their definition from the study of concurrency. In the first part of the present article, we give a formal development that generalizes and subsumes the original presentation. We give an axiomatic definition of residuated transition systems that assumes only a single partial binary operation as given structure. From the axioms, we derive notions of "arrow" (transition), "source", "target", "identity", as well as "composition" and "join" of transitions; thereby recovering structure that in the previous work was assumed as given. We formalize and generalize the result, that residuation extends from transitions to transition paths, and we systematically develop the properties of this extension. A significant generalization made in the present work is the identification of a general notion of congruence on RTS's, along with an associated quotient construction.

In the second part of this article, we use the RTS framework to formalize several results in the theory of reduction in Church's λ-calculus. Using a de Bruijn indexbased syntax in which terms represent parallel reduction steps, we define residuation on terms and show that it satisfies the axioms for an RTS. An application of the results on paths from the first part of the article allows us to prove the classical Church-Rosser Theorem with little additional effort. We then use residuation to define the notion of "development" and we prove the Finite Developments Theorem, that every development is finite, formalizing and adapting to de Bruijn indices a proof by de Vrijer. We also use residuation to define the notion of a "standard reduction path", and we prove the Standardization Theorem: that every reduction path is congruent to a standard one. As a corollary of the Standardization Theorem, we obtain the Leftmost Reduction Theorem: that leftmost reduction is a normalizing strategy.

Contents

1 Introduction 4
2 Residuated Transition Systems 8
2.1 Basic Definitions and Properties 8
2.1.1 Partial Magmas 8
2.1.2 Residuation 9
2.1.3 Residuated Transition System 11
2.1.4 Weakly Extensional RTS 19
2.1.5 Extensional RTS 23
2.1.6 Composites of Transitions 23
2.1.7 Joins of Transitions 27
2.1.8 Joins and Composites in a Weakly Extensional RTS 29
2.1.9 Joins and Composites in an Extensional RTS 30
2.1.10 Confluence 45
2.2 Simulations 45
2.2.1 Identity Simulation 46
2.2.2 Composite of Simulations 47
2.2.3 Simulations into a Weakly Extensional RTS 47
2.2.4 Simulations into an Extensional RTS 48
2.2.5 Simulations between Extensional RTS's 48
2.2.6 Transformations 49
2.3 Normal Sub-RTS's and Congruence 50
2.3.1 Normal Sub-RTS's 50
2.3.2 Semi-Congruence 52
2.3.3 Congruence 55
2.3.4 Congruence Classes 61
2.3.5 Coherent Normal Sub-RTS's 63
2.3.6 Quotient by Coherent Normal Sub-RTS 70
2.3.7 Identities form a Coherent Normal Sub-RTS 85
2.4 Paths 86
2.4.1 Residuation on Paths 90
2.4.2 Inclusion Map 126
2.4.3 Composites of Paths 126
2.4.4 Paths in a Weakly Extensional RTS 134
2.4.5 Paths in a Confluent RTS 138
2.4.6 Simulations Lift to Paths 139
2.4.7 Normal Sub-RTS's Lift to Paths 141
2.5 Composite Completion 159
2.5.1 Inclusion Map 167
2.5.2 Composite Completion of an Extensional RTS 169
2.5.3 Freeness of Composite Completion 170
2.6 Constructions on RTS's 179
2.6.1 Products of RTS's 179
2.6.2 Sub-RTS's 186
3 The Lambda Calculus 191
3.1 Syntax 192
3.1.1 Some Orderings for Induction 193
3.1.2 Arrows and Identities 194
3.1.3 Raising Indices 195
3.1.4 Substitution 198
3.2 Lambda-Calculus as an RTS 201
3.2.1 Residuation 201
3.2.2 Source and Target 203
3.2.3 Residuation and Substitution 209
3.2.4 Residuation Determines an RTS 211
3.2.5 Simulations from Syntactic Constructors 222
3.2.6 Reduction and Conversion 225
3.2.7 The Church-Rosser Theorem 227
3.2.8 Normalization 230
3.3 Reduction Paths 231
3.3.1 Sources and Targets 231
3.3.2 Mapping Constructors over Paths 233
3.3.3 Decomposition of 'App Paths' 239
3.3.4 Miscellaneous 248
3.4 Developments 250
3.4.1 Finiteness of Developments 256
3.4.2 Complete Developments 273
3.5 Reduction Strategies 275
3.5.1 Parallel Reduction 277
3.5.2 Head Reduction 284
3.5.3 Leftmost Reduction 296
3.6 Standard Reductions 301
3.6.1 Standard Reduction Paths 302
3.6.2 Standard Developments 318
3.6.3 Standardization 329

Chapter 1

Introduction

A transition system is a graph used to represent the dynamics of a computational process. It consists simply of nodes, called states, and edges, called transitions. Paths through a transition system correspond to possible computations. A residuated transition system is a transition system that is equipped with a partial binary operation, called residuation, on transitions, subject to certain axioms. Among other things, these axioms imply that if residuation is defined for transitions t and u, then t and u must be coinitial; that is, they must have a common source state. If the residuation is defined for coinitial transitions t and u, then we regard transitions t and u as consistent, otherwise they are in conflict. The residuation $t \backslash u$ of t along u can be thought of as what remains of transition t after the portion that it has in common with u has been cancelled.

A version of residuated transition systems was introduced in [10], where I called them "concurrent transition systems", because my motivation for the definition was to be able to have a way of representing information about concurrency and nondeterministic choice. Indeed, transitions that are in conflict can be thought of as representing a nondeterministic choice between steps that cannot occur in a single computation, whereas consistent transitions represent steps that can so occur and are therefore in some sense concurrent with each other. Whereas performing a product construction on ordinary transition system results in a transition system that records no information about commutativity of concurrent steps, with residuated transition systems the residuation operation makes it possible to represent such information.

In [10], concurrent transition systems were defined in terms of graphs, consisting of states, transitions, and a pair of functions that assign to each transition a source (or domain) state and a target (or codomain) state. In addition, the presence of transitions that are identities for the residuation was assumed. Identity transitions had the same source and target state, and they could be thought of as representing empty computational steps. The key axiom for concurrent transition systems is the "cube axiom", which is a parallel moves property stating that the same result is achieved when transporting a transition by residuation along the two paths from the base to the apex of a "commuting diamond". Using the residuation operation and the associated cube axiom, it becomes possible to define notions of "join" and "composition" of transitions. The residuation also
induces a notion of congruence of transitions; namely, transitions t and u are congruent whenever they are coinitial and both $t \backslash u$ and $u \backslash t$ are identities. In [10], the basic definition of concurrent transition system included an axiom, called "extensionality", which states that the congruence relation is trivial (i.e. coincides with equality). An advantage of the extensionality axiom is that, in its presence, joins and composites of transitions are uniquely defined when they exist. It was shown in [10] that a concurrent transition system could always be quotiented by congruence to achieve extensionality.

A focus of the basic theory developed in [10] was to show that the residuation operation \backslash on individual transitions extended in a natural way to a residuation operation \backslash^{*} on paths, so that a concurrent transition system could be completed to one having a composite for each "composable" pair of transitions. The construction involved quotienting by the congruence on paths obtained by declaring paths T and U to be congruent if they are coinitial and both $T \backslash^{*} U$ and $U \backslash^{*} T$ are paths consisting ony of identities. Besides collapsing paths of identities, this congruence reflects permutation relations induced by the residuation. In particular, if t and u are consistent, then the paths $t(u \backslash t)$ and $u(t \backslash u)$ are congruent.

Imposing the extensionality requirement as part of the basic definition of concurrent transition systems does not end up being particularly desirable, since natural examples of situations where there is a residuation on transitions (such as on reductions in the λ-calculus) often do not naturally satisfy the extensionality condition and can only be made to do so if a quotient construction is applied. Also, the treatment of identity transitions and quotienting in [10] was not entirely satisfactory. The definition of "strong congruence" given there was somewhat awkward and basically existed to capture the specific congruence that was induced on paths by the underlying residuation. It was clear that a more general quotient construction ought to be possible than the one used in [10], but it was not clear what the right general definition ought to be.

In the present article we revisit the notion of transition systems equipped with a residuation operation, with the idea of developing a more general theory that does not require the assumption of extensionality as part of the basic axioms, and of clarifying the general notion of congruence that applies to such structures. We use the term "residuated transition systems" to refer to the more general structures defined here, as the name is perhaps more suggestive of what the theory is about and it does not seem to limit the interpretation of the residuation operation only to settings that have something to do with concurrency.

Rather than starting out by assuming source, target, and identities as basic structure, here we develop residuated transition systems purely as a theory about a partial binary operation (residuation) that is subject to certain axioms. The axioms will allow us to introduce sources, targets, and identities as defined notions, and we will be able to recover the properties of this additional structure that in [10] were taken as axiomatic. This idea of defining residuated transition systems purely in terms of a partial binary operation of residuation is similar to the approach taken in [11], where we formalized categories purely in terms of a partial binary operation of composition.

This article comprises two parts. In the first part, we give the definition of residuated transition systems and systematically develop the basic theory. We show how sources,
composites, and identities can be defined in terms of the residuation operation. We also show how residuation can be used to define the notions of join and composite of transitions, as well as the simple notion of congruence that relates transitions t and u whenever both $t \backslash u$ and $u \backslash t$ are identities. We then present a much more general notion of congruence, based a definition of "coherent normal sub-RTS", which abstracts the properties enjoyed by the sub-RTS of identity transitions. After defining this general notion of congruence, we show that it admits a quotient construction, which yields a quotient RTS having the extensionality property. After studying congruences and quotients, we consider paths in an RTS, represented as nonempty lists of transitions whose sources and targets match up in the expected "domino fashion". We show that the residuation operation of an RTS lifts to a residuation on its paths, yielding an "RTS of paths" in which composites of paths are given by list concatenation. The collection of paths that consist entirely of identity transitions is then shown to form a coherent normal sub-RTS of the RTS of paths. The associated congruence on paths can be seen as "permutation congruence": the least congruence respecting composition that relates the two-element lists $[t, t \backslash u]$ and $[u, u \backslash t]$ whenever t and u are consistent, and that relates $[t, b]$ and $[t]$ whenever b is an identity transition that is a target of t. Quotienting by the associated congruence results in a free "composite completion" of the original RTS. The composite completion has a composite for each pair of "composable" transitions, and it will in general exhibit nontrivial equations between composites, as a result of the congruence induced on paths by the underlying residuation. In summary, the first part of this article can be seen as a significant generalization and more satisfactory development of the results originally presented in [10].

The second part of this article applies the formal framework developed in the first part to prove various results about reduction in Church's λ-calculus. Although many of these results have had machine-checked proofs given by other authors (e.g. the basic formalization of residuation in the λ-calculus given by Huet [7]), the presentation here develops a number of such results in a single formal framework: that of residuated transition systems. For the presentation of the λ-calculus given here we employ (as was also done in [7]) the device of de Bruijn indices [4], in order to avoid having to treat the issue of α-convertibility. The terms in our syntax represent reductions in which multiple redexes are contracted in parallel; this is done to deal with the well-known fact that contractions of single redexes are not preserved by residuation, in general. We treat only β-reduction here; leaving the extension to the $\beta \eta$-calculus for future work. We define residuation on terms essentially as is done in [7] and we develop a similar series of lemmas concerning residuation, substitution, and de Bruijn indices, culminating in Lévy's "Cube Lemma" [8], which is the key property needed to show that a residuated transition system is obtained. In this residuated transition system, the identities correspond to the usual λ-terms, and transitions correspond to parallel reductions, represented by λ-terms with "marked redexes". The source of a transition is obtained by erasing the markings on the redexes; the target is obtained by contracting all the marked redexes.

Once having obtained an RTS whose transitions represent parallel reductions, we exploit the general results proved in the first part of this article to extend the residuation to sequences of reductions. It is then possible to prove the Church-Rosser Theorem
with very little additional effort. After that, we turn our attention to the notion of a "development", which is a reduction sequence in which the only redexes contracted are those that are residuals of redexes in some originally marked set. We give a formal proof of the Finite Developments Theorem ($[9,6]$), which states that all developments are finite. The proof here follows the one by de Vrijer [5], with the difference that here we are using de Bruijn indices, whereas de Vrijer used a classical λ-calculus syntax. The modifications of de Vrijer's proof required for de Bruijn indices were not entirely straightforward to find. We then proceed to define the notion of "standard reduction path", which is a reduction sequence that in some sense contracts redexes in a left-to-right fashion, perhaps with some jumps. We give a formal proof of the Standardization Theorem ([3]), stated in the strong form which asserts that every reduction is permutation congruent to a standard reduction. The proof presented here proceeds by stating and proving correct the definition of a recursive function that transforms a given path of parallel reductions into a standard reduction path, using a technique roughly analogous to insertion sort. Finally, as a corollary of the Standardization Theorem, we prove the Leftmost Reduction Theorem, which is the well-known result that the leftmost (or normal-order) reduction strategy is normalizing.

Chapter 2

Residuated Transition Systems

theory ResiduatedTransitionSystem
imports Main
begin

2.1 Basic Definitions and Properties

2.1.1 Partial Magmas

A partial magma consists simply of a partial binary operation. We represent the partiality by assuming the existence of a unique value null that behaves as a zero for the operation.

```
locale partial-magma \(=\)
fixes \(O P\) :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
assumes ex-un-null: \(\exists!n . \forall t . O P n t=n \wedge O P t n=n\)
begin
definition null :: ' \(a\)
where null \(=(\) THE \(n . \forall t . O P n t=n \wedge O P t n=n)\)
lemma null-eqI:
assumes \(\wedge t\). \(O P n t=n \wedge O P t n=n\)
shows \(n=\) null
    using assms null-def ex-un-null the1-equality [of \(\lambda n . \forall t . O P n t=n \wedge O P t n=n\) ]
    by auto
lemma null-is-zero [simp]:
shows \(O P\) null \(t=\) null and \(O P\) null \(=\) null
    using null-def ex-un-null theI \(I^{\prime}[\) of \(\lambda n . \forall t . O P n t=n \wedge O P t n=n]\)
    by auto
end
```


2.1.2 Residuation

A residuation is a partial magma subject to three axioms. The first, con-sym-ax, states that the domain of a residuation is symmetric. The second, con-imp-arr-resid, constrains the results of residuation either to be null, which indicates inconsistency, or something that is self-consistent, which we will define below to be an "arrow". The "cube axiom", cube-ax, states that if v can be transported by residuation around one side of the "commuting square" formed by t and $u \backslash t$, then it can also be transported around the other side, formed by u and $t \backslash u$, with the same result.

```
type-synonym 'a resid \(={ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
locale residuation \(=\) partial-magma resid
for resid :: 'a resid (infix \70) +
assumes con-sym-ax: \(t \backslash u \neq\) null \(\Longrightarrow u \backslash t \neq\) null
and con-imp-arr-resid: \(t \backslash u \neq\) null \(\Longrightarrow(t \backslash u) \backslash(t \backslash u) \neq\) null
and cube-ax: \((v \backslash t) \backslash(u \backslash t) \neq\) null \(\Longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)\)
begin
```

The axiom cube-ax is equivalent to the following unconditional form. The locale assumptions use the weaker form to avoid having to treat the case $(v \backslash t) \backslash(u \backslash t)=$ null specially for every interpretation.

```
lemma cube:
shows \((v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)\)
    using cube-ax by metis
```

We regard t and u as consistent if the residuation $t \backslash u$ is defined. It is convenient to make this a definition, with associated notation.

```
definition con (infix \(\frown 50\) )
where \(t \frown u \equiv t \backslash u \neq\) null
lemma conI [intro]:
assumes \(t \backslash u \neq\) null
shows \(t \frown u\)
    using assms con-def by blast
lemma conE [elim]:
assumes \(t \frown u\)
and \(t \backslash u \neq\) null \(\Longrightarrow T\)
shows \(T\)
    using assms con-def by simp
lemma con-sym:
assumes \(t \frown u\)
shows \(u \frown t\)
    using assms con-def con-sym-ax by blast
```

We call t an arrow if it is self-consistent.
definition arr

```
where arr t\equivt\frownt
lemma arrI [intro]:
assumes t\frownt
shows arr t
    using assms arr-def by simp
lemma arrE [elim]:
assumes arr t
and t}\frownt\Longrightarrow
shows T
    using assms arr-def by simp
lemma not-arr-null [simp]:
shows ᄀ arr null
    by (auto simp add: con-def)
lemma con-implies-arr:
assumes t\frownu
shows arr t and arr u
    using assms
    by (metis arrI con-def con-imp-arr-resid cube null-is-zero(2))+
lemma arr-resid [simp]:
assumes t\frownu
shows arr (t\u)
    using assms con-imp-arr-resid by blast
lemma arr-resid-iff-con:
shows arr (t\u)\longleftrightarrow \longleftrightarrow
    by auto
lemma con-arr-self [simp]:
assumes arr f
shows f\frownf
    using assms arrE by auto
lemma not-con-null [simp]:
shows con null t = False and con t null = False
    by auto
The residuation of an arrow along itself is the canonical target of the arrow.
definition trg
where trgt\equivt\t
lemma resid-arr-self:
shows t\t=\operatorname{trg}t
    using trg-def by auto
An identity is an arrow that is its own target.
```

```
definition ide
where ide }a\equiva\frowna\wedgea\a=
lemma ideI [intro]:
assumes }a\frowna\mathrm{ and }a\a=
shows ide a
    using assms ide-def by auto
lemma ideE [elim]:
assumes ide a
and }\llbracketa\frowna;a\a=a\rrbracket\Longrightarrow
shows T
    using assms ide-def by blast
lemma ide-implies-arr [simp]:
assumes ide a
shows arr a
    using assms by blast
lemma not-ide-null [simp]:
shows ide null = False
    by auto
end
```


2.1.3 Residuated Transition System

A residuated transition system consists of a residuation subject to additional axioms that concern the relationship between identities and residuation. These axioms make it possible to sensibly associate with each arrow certain nonempty sets of identities called the sources and targets of the arrow. Axiom ide-trg states that the canonical target trg t of an arrow t is an identity. Axiom resid-arr-ide states that identities are right units for residuation, when it is defined. Axiom resid-ide-arr states that the residuation of an identity along an arrow is again an identity, assuming that the residuation is defined. Axiom con-imp-coinitial-ax states that if arrows t and u are consistent, then there is an identity that is consistent with both of them (i.e. they have a common source). Axiom con-target states that an identity of the form $t \backslash u$ (which may be regarded as a "target" of u) is consistent with any other arrow $v \backslash u$ obtained by residuation along u. We note that replacing the premise $i d e(t \backslash u)$ in this axiom by either $\operatorname{arr}(t \backslash u)$ or $t \frown u$ would result in a strictly stronger statement.

```
locale \(r\) ts \(=\) residuation +
assumes \(i d e-\operatorname{trg}[\operatorname{simp}]: \operatorname{arr} t \Longrightarrow i d e(\operatorname{trg} t)\)
and resid-arr-ide: \(\llbracket i d e ~ a ; ~ t \frown a \rrbracket \Longrightarrow t \backslash a=t\)
and resid-ide-arr \([\) simp \(]: \llbracket i d e ~ a ; a \frown t \rrbracket \Longrightarrow i d e ~(a \backslash t)\)
and con-imp-coinitial-ax: \(t \frown u \Longrightarrow \exists\). ide \(a \wedge a \frown t \wedge a \frown u\)
and con-target: \(\llbracket i d e(t \backslash u) ; u \frown v \rrbracket \Longrightarrow t \backslash u \frown v \backslash u\)
begin
```

We define the sources of an arrow t to be the identities that are consistent with t.
definition sources
where sources $t=\{a$. ide $a \wedge t \frown a\}$
We define the targets of an arrow t to be the identities that are consistent with the canonical target trg t.
definition targets
where targets $t=\{b$. ide $b \wedge \operatorname{trg} t \frown b\}$
lemma in-sourcesI [intro, simp]:
assumes $i d e a$ and $t \frown a$
shows $a \in$ sources t
using assms sources-def by simp
lemma in-sourcesE [elim]:
assumes $a \in$ sources t
and $\llbracket i d e ~ a ; ~ t \frown a \rrbracket \Longrightarrow T$
shows T
using assms sources-def by auto
lemma in-targetsI [intro, simp]:
assumes $i d e b$ and $\operatorname{trg} t \frown b$
shows $b \in$ targets t
using assms targets-def resid-arr-self by simp
lemma in-targetsE [elim]:
assumes $b \in$ targets t
and $\llbracket i d e b ; \operatorname{trg} t \frown b \rrbracket \Longrightarrow T$
shows T
using assms targets-def resid-arr-self by force
lemma trg-in-targets:
assumes arr t
shows $\operatorname{trg} t \in$ targets t
using assms
by (meson ideE ide-trg in-targetsI)
lemma source-is-ide:
assumes $a \in$ sources t
shows ide a
using assms by blast
lemma target-is-ide:
assumes $a \in$ targets t
shows ide a
using assms by blast
Consistent arrows have a common source.
lemma con-imp-common-source:

```
assumes \(t \frown u\)
shows sources \(t \cap\) sources \(u \neq\{ \}\)
using assms
by (meson disjoint-iff in-sourcesI con-imp-coinitial-ax con-sym)
```

Arrows are characterized by the property of having a nonempty set of sources, or equivalently, by that of having a nonempty set of targets.
lemma arr-iff-has-source:
shows arr $t \longleftrightarrow$ sources $t \neq\{ \}$
using con-imp-common-source con-implies-arr(1) sources-def by blast
lemma arr-iff-has-target:
shows arr $t \longleftrightarrow$ targets $t \neq\{ \}$
using trg-def trg-in-targets by fastforce
The residuation of a source of an arrow along that arrow gives a target of the same arrow. However, it is not true that every target of an arrow t is of the form $u \backslash t$ for some u with $t \frown u$.

```
lemma resid-source-in-targets:
assumes \(a \in\) sources \(t\)
shows \(a \backslash t \in\) targets \(t\)
    by (metis arr-resid assms con-target con-sym resid-arr-ide ide-trg
        in-sourcesE resid-ide-arr in-targetsI resid-arr-self)
```

Residuation along an identity reflects identities.
lemma ide-backward-stable:
assumes ide a and ide ($t \backslash a$)
shows ide t
by (metis assms ideE resid-arr-ide arr-resid-iff-con)
lemma resid-reflects-con:
assumes $t \frown v$ and $u \frown v$ and $t \backslash v \frown u \backslash v$
shows $t \frown u$
using assms cube
by (elim conE) auto
lemma con-transitive-on-ide:
assumes ide a and ide b and ide c
shows $\llbracket a \frown b ; b \frown c \rrbracket \Longrightarrow a \frown c$
using assms
by (metis resid-arr-ide con-target con-sym)
lemma sources-are-con:
assumes $a \in$ sources t and $a^{\prime} \in$ sources t
shows $a \frown a^{\prime}$
using assms
by (metis (no-types, lifting) CollectD con-target con-sym resid-ide-arr sources-def resid-reflects-con)
lemma sources-con-closed:
assumes $a \in$ sources t and ide a^{\prime} and $a \frown a^{\prime}$
shows $a^{\prime} \in$ sources t
using assms
by (metis (no-types, lifting) con-target con-sym resid-arr-ide mem-Collect-eq sources-def)
lemma sources-eqI:
assumes sources $t \cap$ sources $t^{\prime} \neq\{ \}$
shows sources $t=$ sources t^{\prime}
using assms sources-def sources-are-con sources-con-closed by blast
lemma targets-are-con:
assumes $b \in$ targets t and $b^{\prime} \in$ targets t
shows $b \frown b^{\prime}$
using assms sources-are-con sources-def targets-def by blast
lemma targets-con-closed:
assumes $b \in$ targets t and ide b^{\prime} and $b \frown b^{\prime}$
shows $b^{\prime} \in$ targets t
using assms sources-con-closed sources-def targets-def by blast
lemma targets-eqI:
assumes targets $t \cap$ targets $t^{\prime} \neq\{ \}$
shows targets $t=$ targets t^{\prime}
using assms targets-def targets-are-con targets-con-closed by blast
Arrows are coinitial if they have a common source, and coterminal if they have a common target.

```
definition coinitial
where coinitial \(t u \equiv\) sources \(t \cap\) sources \(u \neq\{ \}\)
definition coterminal
where coterminal \(t u \equiv\) targets \(t \cap\) targets \(u \neq\{ \}\)
lemma coinitialI [intro]:
assumes arr \(t\) and sources \(t=\) sources \(u\)
shows coinitial \(t u\)
    using assms coinitial-def arr-iff-has-source by simp
lemma coinitialE [elim]:
assumes coinitial \(t u\)
and \(\llbracket \operatorname{arr} t\); arr \(u\); sources \(t=\) sources \(u \rrbracket \Longrightarrow T\)
shows \(T\)
    using assms coinitial-def sources-eqI arr-iff-has-source by auto
lemma con-imp-coinitial:
assumes \(t \frown u\)
shows coinitial \(t u\)
```

```
using assms
by (simp add: coinitial-def con-imp-common-source)
lemma coinitial-iff:
shows coinitial t t'\longleftrightarrow arr t ^ arr t' }^\mathrm{ sources }t=\mathrm{ sources t'
    by (metis arr-iff-has-source coinitial-def inf-idem sources-eqI)
lemma coterminal-iff:
shows coterminal t t' \longleftrightarrow arr t ^ arr t'}^\ targets t= targets t'
    by (metis arr-iff-has-target coterminal-def inf-idem targets-eqI)
lemma coterminal-iff-con-trg:
shows coterminal t u \longleftrightarrow trg t\frown\operatorname{trg}u
    by (metis coinitial-iff con-imp-coinitial coterminal-iff in-targetsE trg-in-targets
        resid-arr-self arr-resid-iff-con sources-def targets-def)
lemma coterminalI [intro]:
assumes arr t and targets t= targets u
shows coterminal t u
    using assms coterminal-iff arr-iff-has-target by auto
lemma coterminalE [elim]:
assumes coterminal t u
and \llbracketarr t; arr u; targets t= targets u\rrbracket\LongrightarrowT
shows T
    using assms coterminal-iff by auto
lemma sources-resid [simp]:
assumes t \frownu
shows sources (t\u)= targets u
    unfolding targets-def trg-def
    using assms conI conE
    by (metis con-imp-arr-resid assms coinitial-iff con-imp-coinitial
        cube ex-un-null sources-def)
lemma targets-resid-sym:
assumes t\frownu
shows targets (t\u)= targets ( }u\t
    using assms
    apply (intro targets-eqI)
    by (metis (no-types, opaque-lifting) assms cube inf-idem arr-iff-has-target arr-def
        arr-resid-iff-con sources-resid)
```

Arrows t and u are sequential if the set of targets of t equals the set of sources of u.
definition seq
where seq $t u \equiv \operatorname{arr} t \wedge \operatorname{arr} u \wedge$ targets $t=$ sources u
lemma seqI [intro]:
shows \llbracket arr t; targets $t=$ sources $u \rrbracket \Longrightarrow$ seq $t u$

```
and \llbracketarr u; targets t= sources }u\rrbracket\Longrightarrow\mathrm{ seq t u
    using seq-def arr-iff-has-source arr-iff-has-target by metis+
lemma seqE [elim]:
assumes seq tu
and \llbracketarr t; arr u; targets t = sources }u\rrbracket\Longrightarrow
shows T
    using assms seq-def by blast
```


Congruence of Transitions

Residuation induces a preorder \lesssim on transitions, defined by $t \lesssim u$ if and only if $t \backslash u$ is an identity.
abbreviation prfx (infix $\lesssim 50)$
where $t \lesssim u \equiv i d e(t \backslash u)$
lemma $p r f x E$:
assumes $t \lesssim u$
and ide $(t \backslash u) \Longrightarrow T$
shows T
using assms by fastforce
lemma prfx-implies-con:
assumes $t \lesssim u$
shows $t \frown u$
using assms arr-resid-iff-con by blast
lemma prfx-reflexive:
assumes arr t
shows $t \lesssim t$
by (simp add: assms resid-arr-self)
lemma prfx-transitive [trans]:
assumes $t \lesssim u$ and $u \lesssim v$
shows $t \lesssim v$
using assms con-target resid-ide-arr ide-backward-stable cube conI
by metis
lemma source-is-prfx:
assumes $a \in$ sources t
shows $a \lesssim t$
using assms resid-source-in-targets by blast
The equivalence \sim associated with \lesssim is substitutive with respect to residuation.
abbreviation cong (infix ~ 50)
where $t \sim u \equiv t \lesssim u \wedge u \lesssim t$
lemma congE:
assumes $t \sim u$

```
and \llbrackett\frownu; ide (t\u);ide (u\t)\rrbracket\LongrightarrowT
shows T
    using assms prfx-implies-con by blast
lemma cong-reflexive:
assumes arr t
shows }t~
    using assms prfx-reflexive by simp
lemma cong-symmetric:
assumes t~u
shows }u~
    using assms by simp
lemma cong-transitive [trans]:
assumes }t~u\mathrm{ and }u~
shows }t~
    using assms prfx-transitive by auto
lemma cong-subst-left:
assumes }t~\mp@subsup{t}{}{\prime}\mathrm{ and }t\frown
shows t'\frownu and t\u~\mp@subsup{t}{}{\prime}\u
    apply (meson assms con-sym con-target prfx-implies-con resid-reflects-con)
    by (metis assms con-sym con-target cube prfx-implies-con resid-ide-arr resid-reflects-con)
lemma cong-subst-right:
assumes }u~\mp@subsup{u}{}{\prime}\mathrm{ and }t\frown
shows t\frown\mp@subsup{u}{}{\prime}\mathrm{ and }t\u~t\\mp@subsup{u}{}{\prime}
proof -
    have 1:t\frown\mp@subsup{u}{}{\prime}\wedget\ u}\mp@subsup{|}{}{\prime}\frownu\\mp@subsup{u}{}{\prime}
                            (t\u)\(\mp@subsup{u}{}{\prime}\u)=(t\\mp@subsup{u}{}{\prime})\(u\\mp@subsup{u}{}{\prime})
        using assms cube con-sym con-target cong-subst-left(1) by meson
    show t\frown\mp@subsup{u}{}{\prime}
        using 1 by simp
    show t\u~t\ u'
        by (metis 1 arr-resid-iff-con assms(1) cong-reflexive resid-arr-ide)
qed
lemma cong-implies-coinitial:
assumes }u~\mp@subsup{u}{}{\prime
shows coinitial u u
    using assms con-imp-coinitial prfx-implies-con by simp
lemma cong-implies-coterminal:
assumes }u~\mp@subsup{u}{}{\prime
shows coterminal u u'
    using assms
    by (metis con-implies-arr(1) coterminalI ideE prfx-implies-con sources-resid
        targets-resid-sym)
```

lemma ide-imp-con-iff-cong:
assumes ide t and ide u
shows $t \frown u \longleftrightarrow t \sim u$
using assms
by (metis con-sym resid-ide-arr prfx-implies-con)
lemma sources-are-cong:
assumes $a \in$ sources t and $a^{\prime} \in$ sources t
shows $a \sim a^{\prime}$
using assms sources-are-con
by (metis CollectD ide-imp-con-iff-cong sources-def)
lemma sources-cong-closed:
assumes $a \in$ sources t and $a \sim a^{\prime}$
shows $a^{\prime} \in$ sources t
using assms sources-def
by (meson in-sourcesE in-sourcesI cong-subst-right(1) ide-backward-stable)
lemma targets-are-cong:
assumes $b \in$ targets t and $b^{\prime} \in$ targets t
shows $b \sim b^{\prime}$
using assms(1-2) sources-are-cong sources-def targets-def by blast
lemma targets-cong-closed:
assumes $b \in$ targets t and $b \sim b^{\prime}$
shows $b^{\prime} \in$ targets t
using assms targets-def sources-cong-closed sources-def by blast
lemma targets-char:
shows targets $t=\{b$. arr $t \wedge t \backslash t \sim b\}$
unfolding targets-def
by (metis (no-types, lifting) con-def con-implies-arr(2) con-sym cong-reflexive ide-def resid-arr-ide trg-def)
lemma coinitial-ide-are-cong:
assumes ide a and ide a^{\prime} and coinitial a a^{\prime}
shows $a \sim a^{\prime}$
using assms coinitial-def
by (metis ideE in-sourcesI coinitialE sources-are-cong)
lemma cong-respects-seq:
assumes seq $t u$ and cong $t t^{\prime}$ and cong $u u^{\prime}$
shows seq $t^{\prime} u^{\prime}$
by (metis assms coterminalE rts.coinitialE rts.cong-implies-coinitial rts.cong-implies-coterminal rts-axioms seqE seqI)
end

2.1.4 Weakly Extensional RTS

A weakly extensional RTS is an RTS that satisfies the additional condition that identity arrows have trivial congruence classes. This axiom has a number of useful consequences, including that each arrow has a unique source and target.

```
locale weakly-extensional-rts =rts+
assumes weak-extensionality:\llbrackett~u;ide t;ide u\rrbracket\Longrightarrowt=u
begin
lemma con-ide-are-eq:
assumes ide a and ide a' and a\frown\mp@subsup{a}{}{\prime}
shows a= a'
    using assms ide-imp-con-iff-cong weak-extensionality by blast
lemma coinitial-ide-are-eq:
assumes ide a and ide a' and coinitial a a'
shows a= a'
    using assms coinitial-def con-ide-are-eq by blast
lemma arr-has-un-source:
assumes arr t
shows }\exists\mathrm{ !a. a f sources t
    using assms
    by (meson arr-iff-has-source con-ide-are-eq ex-in-conv in-sourcesE sources-are-con)
lemma arr-has-un-target:
assumes arr t
shows }\exists!b.b\in\mathrm{ targets }
    using assms
    by (metis arrE arr-has-un-source arr-resid sources-resid)
definition src
where src t \equiv if arr t then THE a.a \in sources t else null
lemma src-in-sources:
assumes arr t
shows src t \in sources t
    using assms src-def arr-has-un-source
        the1I2 [of \lambdaa.a\in sources t \lambdaa.a 的ources t]
    by simp
lemma src-eqI:
assumes ide a and a\frownt
shows src t=a
    using assms src-in-sources
    by (metis arr-has-un-source resid-arr-ide in-sourcesI arr-resid-iff-con con-sym)
lemma sources-char:
shows sources t}={a.arr t\wedge src t=a
```

using src-in-sources arr-has-un-source arr-iff-has-source by auto
lemma targets-char ${ }_{W E}$:
shows targets $t=\{b$. arr $t \wedge \operatorname{trg} t=b\}$
using trg-in-targets arr-has-un-target arr-iff-has-target by auto
lemma arr-src-iff-arr:
shows arr $($ src $t) \longleftrightarrow$ arr t
by (metis arrI conE null-is-zero(2) sources-are-con arrE src-def src-in-sources)
lemma arr-trg-iff-arr:
shows $\operatorname{arr}(\operatorname{trg} t) \longleftrightarrow \operatorname{arr} t$
by (metis arrI arrE arr-resid-iff-con resid-arr-self)
lemma arr-src-if-arr [simp]:
assumes arr t
shows $\operatorname{arr}(\operatorname{src} t)$
using assms arr-src-iff-arr by blast
lemma arr-trg-if-arr [simp]:
assumes arr t
shows $\operatorname{arr}(\operatorname{trg} t)$
using assms arr-trg-iff-arr by blast
lemma con-imp-eq-src:
assumes $t \frown u$
shows src $t=s r c u$
using assms
by (metis con-imp-coinitial-ax src-eqI)
lemma src-resid [simp]:
assumes $t \frown u$
shows $\operatorname{src}(t \backslash u)=\operatorname{trg} u$
using assms
by (metis arr-resid-iff-con con-implies-arr(2) arr-has-un-source trg-in-targets
sources-resid src-in-sources)
lemma apex-sym:
shows $\operatorname{trg}(t \backslash u)=\operatorname{trg}(u \backslash t)$
by (metis arr-has-un-target con-sym-ax residuation.arr-resid-iff-con residuation.conI residuation-axioms targets-resid-sym trg-in-targets)
lemma apex-arr-prfx:
assumes prfx $t u$
shows $\operatorname{trg}(u \backslash t)=\operatorname{trg} u$
and $\operatorname{trg}(t \backslash u)=\operatorname{trg} u$
using assms
apply (metis apex-sym arr-resid-iff-con ideE src-resid)
by (metis arr-resid-iff-con assms ideE src-resid)

```
lemma seqI \(W_{E E}\) [intro, simp]:
shows \(\llbracket\) arr \(t ; \operatorname{trg} t=\operatorname{src} u \rrbracket \Longrightarrow \operatorname{seq} t u\)
and \(\llbracket \operatorname{arr} u ; \operatorname{trg} t=s r c u \rrbracket \Longrightarrow \operatorname{seq} t u\)
    by (metis arrE arr-src-iff-arr arr-trg-iff-arr in-sourcesE rts.resid-arr-ide
        rts-axioms seqI (1) sources-resid src-in-sources trg-def)+
lemma \(\operatorname{seq} E_{W E}[e l i m]\) :
assumes seq \(t u\)
and \(\llbracket \operatorname{arr} u ; \operatorname{arr} t ; \operatorname{trg} t=\operatorname{src} u \rrbracket \Longrightarrow T\)
shows \(T\)
    using assms
    by (metis arr-has-un-source seq-def src-in-sources trg-in-targets)
lemma coinitial-iff \(W_{E}\) :
shows coinitial \(t u \longleftrightarrow \operatorname{arr} t \wedge \operatorname{arr} u \wedge \operatorname{src} t=\operatorname{src} u\)
    by (metis arr-has-un-source coinitial-def coinitial-iff disjoint-iff-not-equal
        src-in-sources)
lemma coterminal-iff \(W_{E}\) :
shows coterminal \(t u \longleftrightarrow \operatorname{arr} t \wedge \operatorname{arr} u \wedge \operatorname{trg} t=\operatorname{trg} u\)
    by (metis arr-has-un-target coterminal-iff-con-trg coterminal-iff trg-in-targets)
lemma coinitialI \(W_{E}\) [intro]:
assumes arr \(t\) and \(\operatorname{src} t=\operatorname{src} u\)
shows coinitial \(t u\)
    using assms coinitial-iff \(W_{E}\) by (metis arr-src-iff-arr)
lemma coinitialE \({ }_{W E}\) [elim]:
assumes coinitial \(t u\)
and \(\llbracket \operatorname{arr} t\); arr \(u\); src \(t=\operatorname{src} u \rrbracket \Longrightarrow T\)
shows \(T\)
    using assms coinitial-iff \(W E\) by blast
lemma coterminalI \(W_{E}\) [intro]:
assumes \(\operatorname{arr} t\) and \(\operatorname{trg} t=\operatorname{trg} u\)
shows coterminal \(t u\)
    using assms coterminal-iff \(W_{E}\) by (metis arr-trg-iff-arr)
lemma coterminalE \(W_{E}\) [elim]:
assumes coterminal \(t u\)
and \(\llbracket \operatorname{arr} t ; \operatorname{arr} u ; \operatorname{trg} t=\operatorname{trg} u \rrbracket \Longrightarrow T\)
shows \(T\)
    using assms coterminal-iff \(W_{E}\) by blast
lemma ide-src [simp]:
assumes arr \(t\)
shows ide (src t)
    using assms
```

```
by (metis arrE con-imp-coinitial-ax src-eqI)
```

lemma src-ide [simp]:
assumes ide a
shows src $a=a$
using arrI assms src-eqI by blast
lemma trg-ide [simp]:
assumes ide a
shows $\operatorname{trg} a=a$
using assms resid-arr-self by auto
lemma ide-iff-src-self:
assumes arr a
shows ide $a \longleftrightarrow$ src $a=a$
using assms by (metis ide-src src-ide)
lemma ide-iff-trg-self:
assumes arr a
shows ide $a \longleftrightarrow \operatorname{trg} a=a$
using assms ide-def resid-arr-self ide-trg by metis
lemma src-src [simp]:
shows $\operatorname{src}(\operatorname{src} t)=\operatorname{src} t$
using ide-src src-def src-ide by auto
lemma trg-trg [simp]:
shows $\operatorname{trg}(\operatorname{trg} t)=\operatorname{trg} t$
by (metis con-def con-implies-arr(2) cong-reflexive ide-def null-is-zero(2) resid-arr-self)
lemma src-trg [simp]:
shows $\operatorname{src}(\operatorname{trg} t)=\operatorname{trg} t$
by (metis con-def not-arr-null src-def src-resid trg-def)
lemma trg-src [simp]:
shows $\operatorname{trg}(\operatorname{src} t)=\operatorname{src} t$
by (metis ide-src null-is-zero(2) resid-arr-self src-def trg-ide)
lemma resid-ide:
assumes ide a and coinitial a t
shows $t \backslash a=t$ and $a \backslash t=\operatorname{trg} t$
using assms resid-arr-ide apply blast
using assms
by (metis con-def con-sym-ax ideE in-sourcesE in-sourcesI resid-ide-arr coinitialE src-ide src-resid)
lemma con-arr-src [simp]:
assumes $\operatorname{arr} f$
shows $f \frown \operatorname{src} f$ and $\operatorname{src} f \frown f$

```
    using assms src-in-sources con-sym by blast+
    lemma resid-src-arr [simp]:
    assumes arr f
    shows src f\f=trg f
    using assms
    by (simp add: con-imp-coinitial resid-ide(2))
    lemma resid-arr-src [simp]:
    assumes arr f
    shows f\ src f}=
    using assms
    by (simp add: resid-arr-ide)
end
```


2.1.5 Extensional RTS

An extensional RTS is an RTS in which all arrows have trivial congruence classes; that is, congruent arrows are equal.

```
locale extensional-rts \(=r t s+\)
assumes extensional: \(t \sim u \Longrightarrow t=u\)
begin
```

 sublocale weakly-extensional-rts
 using extensional
 by unfold-locales auto
 lemma cong-char:
 shows \(t \sim u \longleftrightarrow \operatorname{arr} t \wedge t=u\)
 by (metis arrI cong-reflexive prfx-implies-con extensional)
 end

2.1.6 Composites of Transitions

Residuation can be used to define a notion of composite of transitions. Composites are not unique, but they are unique up to congruence.

```
context rts
begin
definition composite-of
where composite-of }utv\equivu\lesssimv\wedgev\u~
lemma composite-ofI [intro]:
assumes }u\lesssimv\mathrm{ and v\u 
shows composite-of utv
    using assms composite-of-def by blast
```

lemma composite-ofE [elim]:
assumes composite-of $u t v$
and $\llbracket u \lesssim v ; v \backslash u \sim t \rrbracket \Longrightarrow T$
shows T
using assms composite-of-def by auto
lemma arr-composite-of:
assumes composite-of $u t v$
shows arr v
using assms
by (meson composite-of-def con-implies-arr(2) prfx-implies-con)
lemma composite-of-unq-upto-cong:
assumes composite-of $u t v$ and composite-of $u t v^{\prime}$
shows $v \sim v^{\prime}$
using assms cube ide-backward-stable prfx-transitive
by (elim composite-ofE) metis
lemma composite-of-ide-arr:
assumes ide a
shows composite-of $a t t \longleftrightarrow t \frown a$
using assms
by (metis composite-of-def con-implies-arr(1) con-sym resid-arr-ide resid-ide-arr prfx-implies-con prfx-reflexive)
lemma composite-of-arr-ide:
assumes ide b
shows composite-of $t b t \longleftrightarrow t \backslash t \frown b$
using assms
by (metis arr-resid-iff-con composite-of-def ide-imp-con-iff-cong con-implies-arr(1) prfx-implies-con prfx-reflexive)
lemma composite-of-source-arr:
assumes arr t and $a \in$ sources t
shows composite-of a $t t$
using assms composite-of-ide-arr sources-def by auto
lemma composite-of-arr-target:
assumes arr t and $b \in$ targets t
shows composite-of $t b t$
by (metis arrE assms composite-of-arr-ide in-sourcesE sources-resid)
lemma composite-of-ide-self:
assumes ide a
shows composite-of a a a
using assms composite-of-ide-arr by blast
lemma con-prfx-composite-of:

```
assumes composite-of t u w
shows }t\frownw\mathrm{ and }w\frownv\Longrightarrowt\frown
    using assms apply force
    using assms composite-of-def con-target prfx-implies-con
        resid-reflects-con con-sym
    by meson
lemma sources-composite-of:
assumes composite-of utv
shows sources v= sources u
    using assms
    by (meson arr-resid-iff-con composite-of-def con-imp-coinitial cong-implies-coinitial
        coinitial-iff)
lemma targets-composite-of:
assumes composite-of utv
shows targets v}=\mathrm{ targets }
proof -
    have targets t= targets (v\u)
        using assms composite-of-def
        by (meson cong-implies-coterminal coterminal-iff)
    also have ... = targets ( }u\v
        using assms targets-resid-sym con-prfx-composite-of by metis
    also have ... = targets v
        using assms composite-of-def
        by (metis prfx-implies-con sources-resid ideE)
    finally show ?thesis by auto
qed
lemma resid-composite-of:
assumes composite-of tuw and w\frownv
shows v\t\frownw\t
and}v\t\frown
and}v\w~(v\t)\
and composite-of (t\v)(u\(v\t))(w\backslashv)
proof -
    show 0:v\t\frownw\t
        using assms con-def
    by (metis con-target composite-ofE conE con-sym cube)
    show 1:v\w~(v\t)\u
    proof -
        have }v\w=(v\w)\(t\w
        using assms composite-of-def
        by (metis (no-types, opaque-lifting) con-target con-sym resid-arr-ide)
    also have ... = (v\t)\(w\backslasht)
        using assms cube by metis
    also have ...~(v\t)\u
        using assms 0 cong-subst-right(2) [of w\tuv\t] by blast
    finally show ?thesis by blast
```

```
    qed
    show 2: v\t\frownu
        using assms 1 by force
    show composite-of (t\v)(u\(v\t))(w\backslashv)
    proof (unfold composite-of-def, intro conjI)
    show }t\v\lesssimw\
        using assms cube con-target composite-of-def resid-ide-arr by metis
    show (w\backslashv)\(t\v)\lesssimu\(v\t)
        by (metis assms(1) 2 composite-ofE con-sym cong-subst-left(2) cube)
    thus }u\(v\t)\lesssim(w\backslashv)\(t\v
        using assms
        by (metis composite-of-def con-implies-arr(2) cong-subst-left(2)
        prfx-implies-con arr-resid-iff-con cube)
    qed
qed
lemma con-composite-of-iff:
assumes composite-of t u v
shows }w\frownv\longleftrightarroww\t\frown
    by (meson arr-resid-iff-con assms composite-ofE con-def con-implies-arr(1)
    con-sym-ax cong-subst-right(1) resid-composite-of(2) resid-reflects-con)
definition composable
where composable tu\equiv\existsv. composite-of t uv
lemma composableD [dest]:
assumes composable t u
shows arr t and arr u and targets t = sources }
    using assms arr-composite-of arr-iff-has-source composable-def sources-composite-of
        arr-composite-of arr-iff-has-target composable-def targets-composite-of
    apply auto[2]
by (metis assms composable-def composite-ofE con-prfx-composite-of(1) con-sym
        cong-implies-coinitial coinitial-iff sources-resid)
lemma composable-imp-seq:
assumes composable t u
shows seq t u
    using assms by blast
lemma bounded-imp-con:
assumes composite-of tuv and composite-of t' }\mp@subsup{|}{}{\prime}
shows con t t'
    by (meson assms composite-of-def con-prfx-composite-of prfx-implies-con
        arr-resid-iff-con con-implies-arr(2))
lemma composite-of-cancel-left:
assumes composite-of tuv and composite-of t u'v
shows u~\mp@subsup{u}{}{\prime}
    using assms composite-of-def cong-transitive by blast
```

end

RTS with Composites

```
locale rts-with-composites \(=r t s+\)
assumes has-composites: seq \(t u \Longrightarrow\) composable \(t u\)
begin
    lemma composable-iff-seq:
    shows composable \(g f \longleftrightarrow\) seq \(g f\)
        using composable-imp-seq has-composites by blast
    lemma composableI [intro]:
    assumes seq \(g f\)
    shows composable \(g f\)
        using assms composable-iff-seq by auto
    lemma composableE [elim]:
    assumes composable \(g f\) and seq \(g f \Longrightarrow T\)
    shows \(T\)
        using assms composable-iff-seq by blast
    lemma obtains-composite-of:
    assumes seq \(g f\)
    obtains \(h\) where composite-of \(g f h\)
        using assms has-composites composable-def by blast
    lemma diamond-commutes-upto-cong:
    assumes composite-of \(t(u \backslash t) v\) and composite-of \(u(t \backslash u) v^{\prime}\)
    shows \(v \sim v^{\prime}\)
    using assms cube ide-backward-stable prfx-transitive
    by (elim composite-ofE) metis
end
```


2.1.7 Joins of Transitions

context rts
begin
Transition v is a join of u and v when v is the diagonal of the square formed by u, v, and their residuals. As was the case for composites, joins in an RTS are not unique, but they are unique up to congruence.
definition join-of
where join-of $t u v \equiv$ composite-of $t(u \backslash t) v \wedge$ composite-of $u(t \backslash u) v$
lemma join-ofI [intro]:
assumes composite-of $t(u \backslash t) v$ and composite-of $u(t \backslash u) v$

```
shows join-of t uv
    using assms join-of-def by simp
lemma join-ofE [elim]:
assumes join-of t u v
and \llbracketcomposite-of t (u\t)v; composite-of }u(t\backslashu)v\rrbracket\Longrightarrow
shows T
    using assms join-of-def by simp
definition joinable
where joinable t u}\equiv\existsv.join-of tu
lemma joinable-implies-con:
assumes joinable t u
shows t\frownu
    by (meson assms bounded-imp-con join-of-def joinable-def)
lemma joinable-implies-coinitial:
assumes joinable t u
shows coinitial t u
    using assms
    by (simp add: con-imp-coinitial joinable-implies-con)
lemma join-of-un-upto-cong:
assumes join-of tuv and join-of t u v
shows v~\mp@subsup{v}{}{\prime}
    using assms join-of-def composite-of-unq-upto-cong by auto
lemma join-of-symmetric:
assumes join-of t uv
shows join-of utv
    using assms join-of-def by simp
lemma join-of-arr-self:
assumes arr t
shows join-of t t t
    by (meson assms composite-of-arr-ide ideE join-of-def prfx-reflexive)
lemma join-of-arr-src:
assumes arr t and a\in sources t
shows join-of a t t and join-of t a t
proof -
    show join-of a t t
    by (meson assms composite-of-arr-target composite-of-def composite-of-source-arr join-of-def
        prfx-transitive resid-source-in-targets)
    thus join-of t a t
        using join-of-symmetric by blast
qed
```

lemma sources-join-of:
assumes join-of $t u v$
shows sources $t=$ sources v and sources $u=$ sources v
using assms join-of-def sources-composite-of by blast+
lemma targets-join-of:
assumes join-of $t u v$
shows targets $(t \backslash u)=$ targets v and targets $(u \backslash t)=$ targets v
using assms join-of-def targets-composite-of by blast+
lemma join-of-resid:
assumes join-of $t u w$ and con $v w$
shows join-of $(t \backslash v)(u \backslash v)(w \backslash v)$
using assms con-sym cube join-of-def resid-composite-of(4) by fastforce
lemma con-with-join-of-iff:
assumes join-of $t u w$
shows $u \frown v \wedge v \backslash u \frown t \backslash u \Longrightarrow w \frown v$
and $w \frown v \Longrightarrow t \frown v \wedge v \backslash t \frown u \backslash t$
proof -
have $*: t \frown v \wedge v \backslash t \frown u \backslash t \longleftrightarrow u \frown v \wedge v \backslash u \frown t \backslash u$
by (metis arr-resid-iff-con con-implies-arr(1) con-sym cube)
show $u \frown v \wedge v \backslash u \frown t \backslash u \Longrightarrow w \frown v$
by (meson assms con-composite-of-iff con-sym join-of-def)
show $w \frown v \Longrightarrow t \frown v \wedge v \backslash t \frown u \backslash t$
by (meson assms con-prfx-composite-of join-of-def resid-composite-of(2))
qed
end

RTS with Joins

locale rts-with-joins $=r t s+$
assumes has-joins: $t \frown u \Longrightarrow$ joinable $t u$

2.1.8 Joins and Composites in a Weakly Extensional RTS

context weakly-extensional-rts
begin
lemma src-composite-of:
assumes composite-of $u t v$
shows src $v=\operatorname{src} u$
using assms
by (metis con-imp-eq-src con-prfx-composite-of(1))
lemma trg-composite-of:
assumes composite-of $u t v$
shows $\operatorname{trg} v=\operatorname{trg} t$
by (metis arr-composite-of arr-has-un-target arr-iff-has-target assms

```
targets-composite-of trg-in-targets)
```

```
    lemma src-join-of:
    assumes join-of \(t u v\)
    shows src \(t=\operatorname{src} v\) and src \(u=\operatorname{src} v\)
    by (metis assms join-ofE src-composite-of)+
    lemma trg-join-of:
    assumes join-of \(t u v\)
    shows \(\operatorname{trg}(t \backslash u)=\operatorname{trg} v\) and \(\operatorname{trg}(u \backslash t)=\operatorname{trg} v\)
    by (metis assms join-of-def trg-composite-of)+
end
```


2.1.9 Joins and Composites in an Extensional RTS

```
context extensional-rts
begin
lemma composite-of-unique:
assumes composite-of \(t u v\) and composite-of \(t u v^{\prime}\)
shows \(v=v^{\prime}\)
using assms composite-of-unq-upto-cong extensional by fastforce
```

Here we define composition of transitions. Note that we compose transitions in diagram order, rather than in the order used for function composition. This may eventually lead to confusion, but here (unlike in the case of a category) transitions are typically not functions, so we don't have the constraint of having to conform to the order of function application and composition, and diagram order seems more natural.
definition comp (infixr - 55)
where $t \cdot u \equiv$ if composable $t u$ then THE v. composite-of $t u v$ else null
lemma comp-is-composite-of:
shows composable $t u \Longrightarrow$ composite-of $t u(t \cdot u)$
and composite-of $t u v \Longrightarrow t \cdot u=v$
proof -
show composable $t u \Longrightarrow$ composite-of $t u(t \cdot u)$
using comp-def composite-of-unique the1I2 [of composite-of t u composite-of $t u$] composable-def
by metis
thus composite-of $t u v \Longrightarrow t \cdot u=v$
using composite-of-unique composable-def by auto
qed
lemma comp-null [simp]:
shows null $\cdot t=$ null and $t \cdot$ null $=$ null
by (meson composableD not-arr-null comp-def)+
lemma composable-iff-arr-comp:
shows composable $t u \longleftrightarrow \operatorname{arr}(t \cdot u)$
by (metis arr-composite-of comp-is-composite-of(2) composable-def comp-def not-arr-null)
lemma composable-iff-comp-not-null:
shows composable $t u \longleftrightarrow t \cdot u \neq$ null
by (metis composable-iff-arr-comp comp-def not-arr-null)
lemma comp-src-arr [simp]:
assumes arr t and src $t=a$
shows $a \cdot t=t$
using assms comp-is-composite-of(2) composite-of-source-arr src-in-sources by blast
lemma comp-arr-trg [simp]:
assumes arr t and $\operatorname{trg} t=b$
shows $t \cdot b=t$
using assms comp-is-composite-of(2) composite-of-arr-target trg-in-targets by blast
lemma comp-ide-self:
assumes ide a
shows $a \cdot a=a$
using assms comp-is-composite-of(2) composite-of-ide-self by fastforce
lemma arr-comp [intro, simp]:
assumes composable $t u$
shows $\operatorname{arr}(t \cdot u)$
using assms composable-iff-arr-comp by blast
lemma trg-comp [simp]:
assumes composable $t u$
shows $\operatorname{trg}(t \cdot u)=\operatorname{trg} u$
by (metis arr-has-un-target assms comp-is-composite-of(2) composable-def composable-imp-seq arr-iff-has-target seq-def targets-composite-of trg-in-targets)
lemma src-comp [simp]:
assumes composable $t u$
shows $\operatorname{src}(t \cdot u)=\operatorname{src} t$
using assms comp-is-composite-of arr-iff-has-source sources-composite-of src-def composable-def
by auto
lemma con-comp-iff:
shows $w \frown t \cdot u \longleftrightarrow$ composable $t u \wedge w \backslash t \frown u$
by (meson comp-is-composite-of(1) composable-iff-arr-comp con-composite-of-iff con-implies-arr(2))
lemma con-compI [intro]:
assumes composable $t u$ and $w \backslash t \frown u$
shows $w \frown t \cdot u$ and $t \cdot u \frown w$
using assms con-comp-iff con-sym by blast+
lemma resid-comp:
assumes $t \cdot u \frown w$
shows $w \backslash(t \cdot u)=(w \backslash t) \backslash u$
and $(t \cdot u) \backslash w=(t \backslash w) \cdot(u \backslash(w \backslash t))$
proof -
have 1: composable $t u$
using assms composable-iff-comp-not-null by force
show $w \backslash(t \cdot u)=(w \backslash t) \backslash u$ using 1
by (meson assms cong-char composable-def resid-composite-of(3) comp-is-composite-of(1))
show $(t \cdot u) \backslash w=(t \backslash w) \cdot(u \backslash(w \backslash t))$
using assms 1 composable-def comp-is-composite-of(2) resid-composite-of by metis
qed
lemma $p r f x$-decomp:
assumes $t \lesssim u$
shows $t \cdot(u \backslash t)=u$
by (meson assms arr-resid-iff-con comp-is-composite-of(2) composite-of-def con-sym cong-reflexive prfx-implies-con)
lemma prfx-comp:
assumes arr u and $t \cdot v=u$
shows $t \lesssim u$
by (metis assms comp-is-composite-of(2) composable-def composable-iff-arr-comp composite-of-def)
lemma comp-eqI:
assumes $t \lesssim v$ and $u=v \backslash t$
shows $t \cdot u=v$
by (metis assms prfx-decomp)
lemma comp-assoc:
assumes composable $(t \cdot u) v$
shows $t \cdot(u \cdot v)=(t \cdot u) \cdot v$
proof -
have $1: t \lesssim(t \cdot u) \cdot v$
by (meson assms composable-iff-arr-comp composableD prfx-comp prfx-transitive)
moreover have $((t \cdot u) \cdot v) \backslash t=u \cdot v$
proof -
have $((t \cdot u) \cdot v) \backslash t=((t \cdot u) \backslash t) \cdot(v \backslash(t \backslash(t \cdot u)))$
by (meson assms calculation con-sym prfx-implies-con resid-comp(2))
also have $\ldots=u \cdot v$
proof -
have 2: $(t \cdot u) \backslash t=u$
by (metis assms comp-is-composite-of(2) composable-def composable-iff-arr-comp composable-imp-seq composite-of-def extensional seqE)

```
            moreover have \(v \backslash(t \backslash(t \cdot u))=v\)
            using assms
            by (meson 1 con-comp-iff con-sym composable-imp-seq resid-arr-ide
                prfx-implies-con prfx-comp seqE)
            ultimately show ?thesis by simp
        qed
        finally show ?thesis by blast
    qed
    ultimately show \(t \cdot(u \cdot v)=(t \cdot u) \cdot v\)
    by (metis comp-eqI)
qed
```

We note the following assymmetry: composable $(t \cdot u) v \Longrightarrow$ composable $u v$ is true, but composable $t(u \cdot v) \Longrightarrow$ composable $t u$ is not.
lemma comp-cancel-left:
assumes $\operatorname{arr}(t \cdot u)$ and $t \cdot u=t \cdot v$
shows $u=v$
using assms
by (metis composable-def composable-iff-arr-comp composite-of-cancel-left extensional comp-is-composite-of(2))
lemma comp-resid-prfx [simp]:
assumes $\operatorname{arr}(t \cdot u)$
shows $(t \cdot u) \backslash t=u$
using assms
by (metis comp-cancel-left comp-eqI prfx-comp)
lemma bounded-imp-con ${ }_{E}$:
assumes $t \cdot u \sim t^{\prime} \cdot u^{\prime}$
shows $t \frown t^{\prime}$
by (metis arr-resid-iff-con assms con-comp-iff con-implies-arr(2) prfx-implies-con con-sym)
lemma join-of-unique:
assumes join-of $t u v$ and join-of $t u v^{\prime}$
shows $v=v^{\prime}$
using assms join-of-def composite-of-unique by blast
definition join (infix $\sqcup 52$)
where $t \sqcup u \equiv$ if joinable $t u$ then THE v. join-of $t u$ velse null
lemma join-is-join-of:
assumes joinable $t u$
shows join-of $t u(t \sqcup u)$
using assms joinable-def join-def join-of-unique the1I2 [of join-of t u join-of t u]
by force
lemma joinable-iff-arr-join:
shows joinable $t u \longleftrightarrow \operatorname{arr}(t \sqcup u)$
by (metis cong-char join-is-join-of join-of-un-upto-cong not-arr-null join-def)
lemma joinable-iff-join-not-null:
shows joinable $t u \longleftrightarrow t \sqcup u \neq$ null
by (metis join-def joinable-iff-arr-join not-arr-null)
lemma join-sym:
shows $t \sqcup u=u \sqcup t$
by (metis extensional-rts.join-def extensional-rts.join-of-unique extensional-rts-axioms join-is-join-of join-of-symmetric joinable-def)
lemma src-join:
assumes joinable $t u$
shows $\operatorname{src}(t \sqcup u)=\operatorname{src} t$
using assms
by (metis con-imp-eq-src con-prfx-composite-of(1) join-is-join-of join-of-def)
lemma trg-join:
assumes joinable $t u$
shows $\operatorname{trg}(t \sqcup u)=\operatorname{trg}(t \backslash u)$
using assms
by (metis arr-resid-iff-con join-is-join-of joinable-iff-arr-join joinable-implies-con in-targetsE src-eqI targets-join-of(1) trg-in-targets)
lemma resid-join ${ }_{E}[$ simp]:
assumes joinable $t u$ and $v \frown t \sqcup u$
shows $v \backslash(t \sqcup u)=(v \backslash u) \backslash(t \backslash u)$
and $v \backslash(t \sqcup u)=(v \backslash t) \backslash(u \backslash t)$
and $(t \sqcup u) \backslash v=(t \backslash v) \sqcup(u \backslash v)$
proof -
show 1: $v \backslash(t \sqcup u)=(v \backslash u) \backslash(t \backslash u)$
by (meson assms con-sym join-of-def resid-composite-of(3) extensional join-is-join-of)
show $v \backslash(t \sqcup u)=(v \backslash t) \backslash(u \backslash t)$
by (metis 1 cube)
show $(t \sqcup u) \backslash v=(t \backslash v) \sqcup(u \backslash v)$
using assms joinable-def join-of-resid join-is-join-of extensional
by (meson join-of-unique)
qed
lemma join-eqI:
assumes $t \lesssim v$ and $u \lesssim v$ and $v \backslash u=t \backslash u$ and $v \backslash t=u \backslash t$
shows $t \sqcup u=v$
using assms composite-of-def cube ideE join-of-def joinable-def join-of-unique join-is-join-of trg-def
by metis
lemma comp-join:
assumes joinable $(t \cdot u)\left(t \cdot u^{\prime}\right)$
shows composable $t\left(u \sqcup u^{\prime}\right)$

```
and \(t \cdot\left(u \sqcup u^{\prime}\right)=t \cdot u \sqcup t \cdot u^{\prime}\)
proof -
    have \(t \lesssim t \cdot u \sqcup t \cdot u^{\prime}\)
        using assms
        by (metis composable-def composite-of-def join-of-def join-is-join-of
            joinable-implies-con prfx-transitive comp-is-composite-of(2) con-comp-iff)
    moreover have \(\left(t \cdot u \sqcup t \cdot u^{\prime}\right) \backslash t=u \sqcup u^{\prime}\)
        by (metis arr-resid-iff-con assms calculation comp-resid-prfx con-implies-arr(2)
            joinable-implies-con resid-join \({ }_{E}\) (3) con-implies-arr(1) ide-implies-arr)
    ultimately show \(t \cdot\left(u \sqcup u^{\prime}\right)=t \cdot u \sqcup t \cdot u^{\prime}\)
        by (metis comp-eqI)
    thus composable \(t\left(u \sqcup u^{\prime}\right)\)
    by (metis assms joinable-iff-join-not-null comp-def)
qed
lemma join-src:
assumes arr \(t\)
shows src \(t \sqcup t=t\)
    using assms joinable-def join-of-arr-src join-is-join-of join-of-unique src-in-sources
    by meson
lemma join-arr-self:
assumes arr \(t\)
shows \(t \sqcup t=t\)
    using assms joinable-def join-of-arr-self join-is-join-of join-of-unique by blast
lemma arr-prfx-join-self:
assumes joinable \(t u\)
shows \(t \lesssim t \sqcup u\)
    using assms
    by (meson composite-of-def join-is-join-of join-of-def)
lemma con-prfx:
shows \(\llbracket t \frown u ; v \lesssim u \rrbracket \Longrightarrow t \frown v\)
and \(\llbracket t \frown u ; v \lesssim \tau \rrbracket \Longrightarrow v \frown u\)
    apply (metis arr-resid con-arr-src(1) ide-iff-src-self prfx-implies-con resid-reflects-con
        src-resid)
    by (metis arr-resid-iff-con comp-eqI con-comp-iff con-implies-arr(1) con-sym)
lemma join-prfx:
assumes \(t \lesssim u\)
shows \(t \sqcup u=u\) and \(u \sqcup t=u\)
proof -
    show \(t \sqcup u=u\)
            using assms
            by (metis (no-types, lifting) join-eqI ide-iff-src-self ide-implies-arr resid-arr-self
                prfx-implies-con src-resid)
    thus \(u \sqcup t=u\)
            by (metis join-sym)
```

qed
lemma con-with-join-if [intro, simp]:
assumes joinable $t u$ and $u \frown v$ and $v \backslash u \frown t \backslash u$
shows $t \sqcup u \frown v$
and $v \frown t \sqcup u$
proof -
show $t \sqcup u \frown v$
using assms con-with-join-of-iff [of t u join t uv] join-is-join-of by simp
thus $v \frown t \sqcup u$
using assms con-sym by blast
qed
lemma join-assoc ${ }_{E}$:
assumes $\operatorname{arr}((t \sqcup u) \sqcup v)$ and $\operatorname{arr}(t \sqcup(u \sqcup v))$
shows $(t \sqcup u) \sqcup v=t \sqcup(u \sqcup v)$
proof (intro join-eqI)
have tu: joinable t u
by (metis arr-src-iff-arr assms(1) joinable-iff-arr-join src-join)
have uv: joinable $u v$
by (metis assms(2) joinable-iff-arr-join joinable-iff-join-not-null joinable-implies-con not-con-null(2))
have tu-v: joinable $(t \sqcup u) v$
by (simp add: assms(1) joinable-iff-arr-join)
have t-uv: joinable $t(u \sqcup v)$
by (simp add: assms(2) joinable-iff-arr-join)
show $0: t \sqcup u \lesssim t \sqcup(u \sqcup v)$
proof -
have $(t \sqcup u) \backslash(t \sqcup(u \sqcup v))=((u \backslash t) \backslash(u \backslash t)) \backslash((v \backslash t) \backslash(u \backslash t))$
proof -
have $(t \sqcup u) \backslash(t \sqcup(u \sqcup v))=((t \sqcup u) \backslash t) \backslash((u \sqcup v) \backslash t)$
by (metis t-uv tu arr-prfx-join-self conI con-with-join-if(2)
join-sym joinable-iff-join-not-null not-ide-null resid-join $\left.{ }_{E}(2)\right)$
also have $\ldots=(t \backslash t \sqcup u \backslash t) \backslash((u \sqcup v) \backslash t)$
by (simp add: tu con-sym joinable-implies-con)
also have $\ldots=(t \backslash t \sqcup u \backslash t) \backslash(u \backslash t \sqcup v \backslash t)$
by (simp add: t-uv uv joinable-implies-con)
also have $\ldots=(u \backslash t) \backslash \operatorname{join}(u \backslash t)(v \backslash t)$
by (metis tu con-implies-arr(1) cong-subst-left(2) cube join-eqI join-sym
joinable-iff-join-not-null joinable-implies-con prfx-reflexive trg-def trg-join)
also have $\ldots=((u \backslash t) \backslash(u \backslash t)) \backslash((v \backslash t) \backslash(u \backslash t))$ proof -
have 1: joinable $(u \backslash t)(v \backslash t)$
by (metis t-uv uv con-sym joinable-iff-join-not-null joinable-implies-con resid-join $_{E}$ (3) conE)
moreover have $u \backslash t \frown u \backslash t \sqcup v \backslash t$
using arr-prfx-join-self 1 prfx-implies-con by blast
ultimately show ?thesis
using resid-join ${ }_{E}$ (2) [of $\left.u \backslash t v \backslash t u \backslash t\right]$ by blast

```
    qed
    finally show ?thesis by blast
    qed
    moreover have ide ..
    by (metis tu-v tu arr-resid-iff-con con-sym cube joinable-implies-con prfx-reflexive
        resid-join}\mp@subsup{E}{E}{(2))
    ultimately show ?thesis by simp
qed
show 1:v\lesssimt\sqcup(u\sqcupv)
    by (metis arr-prfx-join-self join-sym joinable-iff-join-not-null prfx-transitive t-uv uv)
show (t\sqcup(u\sqcupv))\v=(t\sqcupu)\v
proof -
    have }(t\sqcup(u\sqcupv))\v=t\v\sqcup(u\sqcupv)\
        by (metis 1 assms(2) join-def not-arr-null resid-join}\mp@subsup{|}{E}{(3) prfx-implies-con)
    also have ... =t\v\sqcup(u\v\sqcupv\v)
        by (metis 1 conE conI con-sym join-def resid-join (1) resid-join }\mp@subsup{\mp@code{E}}{E}{(3) null-is-zero(2)
            prfx-implies-con)
    also have ...=t\v\sqcupu\v
        by (metis arr-resid-iff-con con-sym cube cong-char join-prfx(2) joinable-implies-con uv)
    also have ... =(t\sqcupu)\v
        by (metis 0 1 con-implies-arr(1) con-prfx(1) joinable-iff-arr-join resid-join }\mp@subsup{\mp@code{E}}{(}{(3)
            prfx-implies-con)
    finally show ?thesis by blast
qed
show }(t\sqcup(u\sqcupv))\(t\sqcupu)=v\(t\sqcupu
proof -
    have 2: (t \sqcup (u\sqcupv))\(t\sqcupu)=t\(t\sqcupu)\sqcup(u\sqcupv)\(t\sqcupu)
        by (metis 0 assms(2) join-def not-arr-null resid-join (3) prfx-implies-con)
    also have 3: .. = (t\t)\(u\t)\sqcup(u\sqcupv)\(t\sqcupu)
        by (metis tu arr-prfx-join-self prfx-implies-con resid-join}\mp@subsup{E}{E}{(2))
    also have 4: ... = (u\sqcupv)\(t\sqcupu)
    proof -
        have }(t\backslasht)\(u\t)=\operatorname{src}((u\sqcupv)\(t\sqcupu)
            using src-resid trg-join
            by (metis (full-types) t-uv tu 0 arr-resid-iff-con con-implies-arr(1) con-sym
                cube prfx-implies-con resid-join }\mp@subsup{\mp@code{E}}{(1) trg-def)}{
            thus ?thesis
                by (metis tu arr-prfx-join-self conE join-src prfx-implies-con resid-join}\mp@subsup{E}{E}{(2) src-def)
    qed
    also have ... =u\(t \sqcupu)\sqcupv\(t\sqcupu)
        by (metis 02 3 4 uv conI con-sym-ax not-ide-null resid-join }\mp@subsup{\mp@code{E}}{(3)}{(3)
    also have ... = (u\u)\(t\u) \sqcupv\(t\sqcupu)
        by (metis tu arr-prfx-join-self join-sym joinable-iff-join-not-null prfx-implies-con
            resid-join}\mp@subsup{\mp@code{E}}{(1))}{(1)
    also have ... = v\(t\sqcupu)
    proof -
        have }(u\u)\(t\u)=\operatorname{src}(v\(t\sqcupu)
            by (metis tu-v tu con-sym cube joinable-implies-con src-resid trg-def trg-join
                apex-sym)
```

```
            thus ?thesis
                    using tu-v arr-resid-iff-con con-sym join-src joinable-implies-con
            by presburger
        qed
        finally show ?thesis by blast
    qed
qed
lemma join-prfx-monotone:
assumes }t\lesssimu\mathrm{ and }u\sqcupv\frownt\sqcup
shows t\sqcupv\lesssimu\sqcupv
proof -
    have }(t\sqcupv)\(u\sqcupv)=(t\u)\(v\u
    proof -
        have }(t\sqcupv)\(u\sqcupv)=t\(u\sqcupv)\sqcupv\(u\sqcupv
            using assms join-sym resid-join}\mp@subsup{E}{E}{(3) [of t v join u v] joinable-iff-join-not-null
            by fastforce
        also have \ldots=(t\u)\(v\u)\sqcup(v\u)\(v\u)
            by (metis (full-types) assms(2) conE conI joinable-iff-join-not-null null-is-zero(1)
                resid-join}\mp@subsup{E}{E}{(1-2) con-sym-ax)
            also have ... = (t\u)\(v\u)\sqcuptrg (v\u)
            using trg-def by fastforce
        also have ... = (t\u)\(v\u)\sqcup\operatorname{src}((t\u)\(v\u))
            by (metis assms(1-2) con-implies-arr(1) con-target joinable-iff-arr-join
                joinable-implies-con src-resid)
            also have ... = (t\u)\(v\u)
            by (metis arr-resid-iff-con assms(2) con-implies-arr(1) con-sym join-def
                join-src join-sym not-arr-null resid-join}\mp@subsup{\mp@code{E}}{(2))}{(2)
            finally show ?thesis by blast
    qed
    moreover have ide ...
        by (metis arr-resid-iff-con assms(1-2) calculation con-sym resid-ide-arr)
    ultimately show ?thesis by presburger
qed
lemma join-eqI':
assumes }t\lesssimv\mathrm{ and u}<v\mathrm{ and v\u=t\u and v\t=u\t
shows v=t\sqcupu
    using assms composite-of-def cube ideE join-of-def joinable-def join-of-unique
        join-is-join-of trg-def
    by metis
```

We note that it is not the case that the existence of either of $t \sqcup(u \sqcup v)$ or $(t \sqcup u) \sqcup$ v implies that of the other. For example, if $(t \sqcup u) \sqcup v \neq n u l l$, then it is not necessarily the case that $u \sqcup v \neq$ null.

```
end
```


Extensional RTS with Joins

```
locale extensional-rts-with-joins =
    rts-with-joins +
    extensional-rts
```

begin
lemma joinable-iff-con [iff]:
shows joinable $t u \longleftrightarrow t \frown u$
by (meson has-joins joinable-implies-con)
lemma joinableE [elim]:
assumes joinable $t u$ and $t \frown u \Longrightarrow T$
shows T
using assms joinable-iff-con by blast
lemma src-join ${ }_{E J}[$ simp]:
assumes $t \frown u$
shows $\operatorname{src}(t \sqcup u)=\operatorname{src} t$
using assms
by (meson has-joins src-join)
lemma trg-join ${ }_{E J}$:
assumes $t \frown u$
shows $\operatorname{trg}(t \sqcup u)=\operatorname{trg}(t \backslash u)$
using assms
by (meson has-joins trg-join)
lemma resid-join ${ }_{E J}[$ simp $]$:
assumes $t \frown u$ and $v \frown t \sqcup u$
shows $v \backslash(t \sqcup u)=(v \backslash t) \backslash(u \backslash t)$
and $(t \sqcup u) \backslash v=(t \backslash v) \sqcup(u \backslash v)$
using assms has-joins resid-join ${ }_{E}[$ of $t u v]$ by blast +
lemma join-assoc:
shows $t \sqcup(u \sqcup v)=(t \sqcup u) \sqcup v$
proof -
have *: $\bigwedge t u v . \operatorname{con}(t \sqcup u) v \Longrightarrow t \sqcup(u \sqcup v)=(t \sqcup u) \sqcup v$
proof -
fix $t u v$
assume 1: con $(t \sqcup u) v$
have $v t-u t: v \backslash t \frown u \backslash t$
using 1
by (metis con-with-join-of-iff(2) join-def join-is-join-of not-con-null(1))
have tv-uv: $t \backslash v \frown u \backslash v$
using vt-ut cube con-sym
by (metis arr-resid-iff-con)
have 2: $(t \sqcup u) \sqcup v=(t \cdot(u \backslash t)) \cdot(v \backslash(t \cdot(u \backslash t)))$
using 1
by (metis comp-is-composite-of(2) con-implies-arr(1) has-joins join-is-join-of

```
                join-of-def joinable-iff-arr-join)
    also have ... =t (( u\t) \cdot(v\(t ( (u\t))))
    using 1
    by (metis calculation has-joins joinable-iff-join-not-null comp-assoc comp-def)
    also have ... =t \cdot ((u\t) \cdot ((v\t)\(u\t)))
    using 1
    by (metis 2 comp-null(2) con-compI(2) con-comp-iff has-joins resid-comp(1)
        conI joinable-iff-join-not-null)
    also have ... =t | ((v\t) \sqcup(u\t))
    by (metis vt-ut comp-is-composite-of(2) has-joins join-of-def join-is-join-of)
    also have ... =t (( u\t) \sqcup(v\t))
        using join-sym by metis
    also have ... =t (( u\sqcupv)\t)
        by (metis tv-uv vt-ut con-implies-arr(2) con-sym con-with-join-of-iff(1) has-joins
                join-is-join-of arr-resid-iff-con resid-join }\mp@subsup{\mp@code{E}}{E}{(3))
    also have ... = t\sqcup(u\sqcupv)
    by (metis comp-is-composite-of(2) comp-null(2) conI has-joins join-is-join-of
                join-of-def joinable-iff-join-not-null)
    finally show }t\sqcup(u\sqcupv)=(t\sqcupu)\sqcup
        by simp
    qed
    thus ?thesis
    by (metis (full-types) has-joins joinable-iff-join-not-null joinable-implies-con con-sym)
qed
lemma join-is-lub:
assumes t\lesssimv and u\lesssimv
shows t\sqcupu\lesssimv
proof -
    have }(t\sqcupu)\v=(t\v)\sqcup(u\v
        using assms resid-join}\mp@subsup{\mp@code{E}}{E}{(3) [of t u v]
        by (metis arr-prfx-join-self con-target con-sym join-assoc joinable-iff-con
            joinable-iff-join-not-null prfx-implies-con resid-reflects-con)
    also have ... = trg v \sqcuptrg v
        using assms
        by (metis ideE prfx-implies-con src-resid trg-ide)
    also have ... = trg v
        by (metis assms(2) ide-iff-src-self ide-implies-arr join-arr-self prfx-implies-con
            src-resid)
    finally have }(t\sqcupu)\v=\operatorname{trg}v\mathrm{ by blast
    moreover have ide (trg v)
        using assms
        by (metis con-implies-arr(2) prfx-implies-con cong-char trg-def)
    ultimately show ?thesis by simp
qed
end
```


Extensional RTS with Composites

If an extensional RTS is assumed to have composites for all composable pairs of transitions, then the "semantic" property of transitions being composable can be replaced by the "syntactic" property of transitions being sequential. This results in simpler statements of a number of properties.

```
locale extensional-rts-with-composites =
    rts-with-composites +
    extensional-rts
```

begin
lemma seq-implies-arr-comp:
assumes seq $t u$
shows $\operatorname{arr}(t \cdot u)$
using assms
by (meson composable-iff-arr-comp composable-iff-seq)
lemma arr-comp ${ }_{E C}$ [intro, simp]:
assumes arr t and $\operatorname{arr} u$ and $\operatorname{trg} t=\operatorname{src} u$
shows $\operatorname{arr}(t \cdot u)$
using assms
by (simp add: seq-implies-arr-comp)
lemma arr-comp $E_{E C}[$ elim]:
assumes $\operatorname{arr}(t \cdot u)$
and $\llbracket \operatorname{arr} t ; \operatorname{arr} u ; \operatorname{trg} t=\operatorname{src} u \rrbracket \Longrightarrow T$
shows T
using assms composable-iff-arr-comp composable-iff-seq by blast
lemma trg-comp ${ }_{E C}[s i m p]$:
assumes seq $t u$
shows $\operatorname{trg}(t \cdot u)=\operatorname{trg} u$
by (meson assms has-composites trg-comp)
lemma src-comp ${ }_{E C}[$ simp $]$:
assumes seq $t u$
shows $\operatorname{src}(t \cdot u)=\operatorname{src} t$
using assms src-comp has-composites by simp
lemma con-comp-iff ${ }_{E C}[$ simp $]$:
shows $w \frown t \cdot u \longleftrightarrow$ seq $t u \wedge u \frown w \backslash t$
and $t \cdot u \frown w \longleftrightarrow \operatorname{seq} t u \wedge u \frown w \backslash t$
using composable-iff-seq con-comp-iff con-sym by meson+
lemma comp-assoc ${ }_{E C}$:
shows $t \cdot(u \cdot v)=(t \cdot u) \cdot v$
apply (cases seq $t u$)
apply (metis arr-comp comp-assoc comp-def not-arr-null arr-comp $E_{E C}$ arr-comp ${ }_{E C}$
seq-implies-arr-comp trg-comp ${ }_{E C}$)
by (metis comp-def composable-iff-arr-comp seqI $W_{E}(1)$ src-comp arr-comp $E_{E C}$)
lemma diamond-commutes:
shows $t \cdot(u \backslash t)=u \cdot(t \backslash u)$
proof (cases $t \frown u$)
show $\neg t \frown u \Longrightarrow$?thesis
by (metis comp-null(2) conI con-sym)
assume con: $t \frown u$
have $(t \cdot(u \backslash t)) \backslash u=(t \backslash u) \cdot((u \backslash t) \backslash(u \backslash t))$ using con
by (metis (no-types, lifting) arr-resid-iff-con con-compI(2) con-implies-arr(1) resid-comp(2) con-imp-arr-resid con-sym comp-def arr-comp ${ }_{E C}$ src-resid conI)
moreover have $u \lesssim t \cdot(u \backslash t)$
by (metis arr-resid-iff-con calculation con cong-reflexive comp-arr-trg resid-arr-self resid-comp(1) apex-sym)
ultimately show ?thesis
by (metis comp-eqI con comp-arr-trg resid-arr-self arr-resid apex-sym)
qed
lemma mediating-transition:
assumes $t \cdot v=u \cdot w$
shows $v \backslash(u \backslash t)=w \backslash(t \backslash u)$
proof (cases seq $t v$)
assume 1: seq $t v$
hence 2: $\operatorname{arr}(u \cdot w)$
using assms by (metis arr-comp ${ }_{E C} \operatorname{seq} E_{W E}$)
have 3: $v \backslash(u \backslash t)=((t \cdot v) \backslash t) \backslash(u \backslash t)$
by (metis 2 assms comp-resid-prfx)
also have $\ldots=(t \cdot v) \backslash(t \cdot(u \backslash t))$
by (metis (no-types, lifting) 2 assms con-comp-iff $E_{E C}$ (2) con-imp-eq-src con-implies-arr(2) con-sym comp-resid-prfx prfx-comp resid-comp (1) arr-comp $E_{E C}$ arr-comp ${ }_{E C}$ prfx-implies-con)
also have $\ldots=(u \cdot w) \backslash(u \cdot(t \backslash u))$
using assms diamond-commutes by presburger
also have $\ldots=((u \cdot w) \backslash u) \backslash(t \backslash u)$
by (metis 3 assms calculation cube)
also have $\ldots=w \backslash(t \backslash u)$
using 2 by simp
finally show ?thesis by blast
next
assume 1: $\neg \operatorname{seq} t v$
have $v \backslash(u \backslash t)=$ null
using 1
by (metis (mono-tags, lifting) arr-resid-iff-con coinitial-iff W_{E} con-imp-coinitial seqI $W_{W E}(2)$ src-resid conI)
also have $\ldots=w \backslash(t \backslash u)$
by (metis (no-types, lifting) 1 arr-comp ${ }_{E C}$ assms composable-imp-seq con-imp-eq-src con-implies-arr(1) con-implies-arr(2) comp-def not-arr-null conI src-resid)
finally show ?thesis by blast

qed

lemma induced-arrow:
assumes seq $t u$ and $t \cdot u=t^{\prime} \cdot u^{\prime}$
shows $\left(t^{\prime} \backslash t\right) \cdot\left(u \backslash\left(t^{\prime} \backslash t\right)\right)=u$
and $\left(t \backslash t^{\prime}\right) \cdot\left(u \backslash\left(t^{\prime} \backslash t\right)\right)=u^{\prime}$
and $\left(t^{\prime} \backslash t\right) \cdot v=u \Longrightarrow v=u \backslash\left(t^{\prime} \backslash t\right)$
apply (metis assms comp-eqI arr-comp $E_{E C}$ prfx-comp resid-comp(1) arr-resid-iff-con seq-implies-arr-comp)
apply (metis assms comp-resid-prfx arr-comp $E_{E C}$ resid-comp(2) arr-resid-iff-con seq-implies-arr-comp)
by (metis assms(1) comp-resid-prfx seq-def)
If an extensional RTS has composites, then it automatically has joins.
sublocale extensional-rts-with-joins
proof
fix $t u$
assume con: $t \frown u$
have 1: con $u(t \cdot(u \backslash t))$
using con-compI(1) [of tu\tu]
by (metis con con-implies-arr (1) con-sym diamond-commutes prfx-implies-con arr-resid prfx-comp src-resid arr-comp ${ }_{E C}$)
have $t \sqcup u=t \cdot(u \backslash t)$
proof (intro join-eqI)
show $t \lesssim t \cdot(u \backslash t)$
by (metis 1 composable-def comp-is-composite-of(2) composite-of-def con-comp-iff)
moreover show 2: $u \lesssim t \cdot(u \backslash t)$
using 1 arr-resid con con-sym prfx-reflexive resid-comp(1) by metis
moreover show $(t \cdot(u \backslash t)) \backslash u=t \backslash u$
using 1 diamond-commutes induced-arrow(2) resid-comp(2) by force
ultimately show $(t \cdot(u \backslash t)) \backslash t=u \backslash t$
by (metis con-comp-iff $E C$ (1) con-sym prfx-implies-con resid-comp(2) induced-arrow(1))
qed
thus joinable $t u$
by (metis 1 con-implies-arr(2) joinable-iff-join-not-null not-arr-null)
qed
lemma comp-join ${ }_{E C}$:
assumes composable $t u$ and joinable $u u^{\prime}$
shows composable $t\left(u \sqcup u^{\prime}\right)$
and $t \cdot\left(u \sqcup u^{\prime}\right)=t \cdot u \sqcup t \cdot u^{\prime}$
proof -
have 1: $u \sqcup u^{\prime}=u \cdot\left(u^{\prime} \backslash u\right) \wedge u \sqcup u^{\prime}=u^{\prime} \cdot\left(u \backslash u^{\prime}\right)$
using assms joinable-implies-con diamond-commutes
by (metis comp-is-composite-of(2) join-is-join-of join-ofE)
show 2: composable $t\left(u \sqcup u^{\prime}\right)$
using assms 1 composable-iff-seq arr-comp src-join arr-comp $E_{E C}$ joinable-iff-arr-join $\operatorname{seq} I_{W E}(1)$
by metis

```
    have con (t | u) (t | u')
        using 12 arr-comp arr-compE EC assms(2) comp-assoc cC comp-resid-prfx
            con-comp-iff joinable-implies-con comp-def not-arr-null
    by metis
    thus t\cdot(u\sqcupu')=t\cdotu\sqcupt\cdotu'
    using assms comp-join(2) joinable-iff-con by blast
qed
lemma join-expansion:
assumes t\frownu
shows t\sqcupu=t\cdot(u\t) and seq t (u\t)
proof -
    show t\sqcupu=t ( (u\t)
        by (metis assms comp-is-composite-of(2) has-joins join-is-join-of join-of-def)
    thus seq t ( }u\t
        by (meson assms composable-def composable-iff-seq has-joins join-is-join-of join-of-def)
qed
lemma join3-expansion:
assumes t\frownu and t\frownv and u\frownv
shows }(t\sqcupu)\sqcupv=(t\cdot(u\t))\cdot((v\t)\(u\t)
proof (cases v\t\frownu\t)
    show }\negv\t\frownu\t\Longrightarrow\mathrm{ ?thesis
        by (metis assms(1) comp-null(2) join-expansion(1) joinable-implies-con
        resid-comp(1) join-def conI)
    assume 1:v\t\frownu\t
    have }(t\sqcupu)\sqcupv=(t\sqcupu)\cdot(v\(t\sqcupu)
        by (metis comp-null(1) diamond-commutes ex-un-null join-expansion(1)
        joinable-implies-con null-is-zero(2) join-def conI)
    also have ... = (t \cdot (u\t))\cdot(v\(t\sqcupu))
        using join-expansion [of t u] assms(1) by presburger
    also have ... = (t \cdot (u\t)) \cdot((v\u)\(t\u))
        using assms 1 join-of-resid(1) [of t u v] cube [of v t u]
        by (metis con-compI(2) con-implies-arr(2) join-expansion(1) not-arr-null resid-comp(1)
                con-sym comp-def src-resid arr-comp (EC)
    also have ... = (t \cdot (u\t))\cdot((v\t)\(u\t))
        by (metis cube)
    finally show ?thesis by blast
qed
lemma resid-common-prefix:
assumes t \cdotu\frownt .v
shows (t\cdotu)\(t\cdotv)=u\v
    using assms
    by (metis con-comp-iff con-sym con-comp-iff EC(2) con-implies-arr(2) induced-arrow(1)
    resid-comp(1) resid-comp(2) residuation.arr-resid-iff-con residuation-axioms)
lemma join-comp:
assumes t\cdotu\frownv
```

```
shows \((t \cdot u) \sqcup v=t \cdot(v \backslash t) \cdot(u \backslash(v \backslash t))\)
    using assms
    by (metis comp-assoc \(E_{E C}\) diamond-commutes join-expansion(1) resid-comp(1))
end
```


2.1.10 Confluence

An RTS is confluent if every coinitial pair of transitions is consistent.
locale confluent-rts $=r t s+$
assumes confluence: coinitial $t u \Longrightarrow$ con $t u$

2.2 Simulations

Simulations are morphisms of residuated transition systems. They are assumed to preserve consistency and residuation.

```
locale simulation \(=\)
    A: rts \(A+\)
    B: rts \(B\)
for \(A\) :: 'a resid (infix \(\left.\backslash_{A} 70\right)\)
and \(B:: ' b\) resid \(\quad\left(\right.\) infix \(\left.\backslash_{B} 70\right)\)
and \(F::{ }^{\prime} a \Rightarrow{ }^{\prime} b+\)
assumes extensional: \(\neg\) A.arr \(t \Longrightarrow F t=\) B.null
and preserves-con [simp]: A.con \(t u \Longrightarrow B . c o n(F t)(F u)\)
and preserves-resid [simp]: A.con \(t u \Longrightarrow F\left(t \backslash_{A} u\right)=F t \backslash_{B} F u\)
begin
```

```
notation A.con (infix \frownA 50)
```

notation A.con (infix \frownA 50)
notation A.prfx (infix }\mp@subsup{\lesssim}{A}{}50
notation A.prfx (infix }\mp@subsup{\lesssim}{A}{}50
notation A.cong (infix ~}\mp@subsup{~}{A}{50)
notation A.cong (infix ~}\mp@subsup{~}{A}{50)
notation B.con (infix }\mp@subsup{\frown}{B}{}50
notation B.con (infix }\mp@subsup{\frown}{B}{}50
notation B.prfx (infix \}\mp@subsup{\}{B}{50)
notation B.prfx (infix \}\mp@subsup{\}{B}{50)
notation B.cong (infix ~}\mp@subsup{~}{B}{50)
notation B.cong (infix ~}\mp@subsup{~}{B}{50)
lemma preserves-reflects-arr [iff]:
lemma preserves-reflects-arr [iff]:
shows B.arr (Ft)\longleftrightarrowA.arr t
shows B.arr (Ft)\longleftrightarrowA.arr t
by (metis A.arr-def B.con-implies-arr(2) B.not-arr-null extensional preserves-con)
by (metis A.arr-def B.con-implies-arr(2) B.not-arr-null extensional preserves-con)
lemma preserves-ide [simp]:
assumes A.ide a
shows B.ide (F a)
by (metis A.ideE assms preserves-con preserves-resid B.ideI)
lemma preserves-sources:
shows F ' A.sources $t \subseteq B$.sources ($F t$)
using A.sources-def B.sources-def preserves-con preserves-ide by auto

```
```

lemma preserves-targets:
shows F ' A.targets $t \subseteq B$.targets $(F t)$
by (metis A.arrE B.arrE A.sources-resid B.sources-resid equals0D image-subset-iff
A.arr-iff-has-target preserves-reflects-arr preserves-resid preserves-sources)
lemma preserves-trg [simp]:
assumes A.arr t
shows $B \cdot \operatorname{trg}(F t)=F(A \cdot \operatorname{trg} t)$
using assms A.trg-def B.trg-def by auto
lemma preserves-composites:
assumes A.composite-of $t u v$
shows B.composite-of (Ft) (Fu) (Fv)
using assms
by (metis A.composite-ofE A.prfx-implies-con B.composite-of-def preserves-ide
preserves-resid A.con-sym)
lemma preserves-joins:
assumes A.join-of $t u v$
shows B.join-of (Ft) (Fu) (Fv)
using assms A.join-of-def B.join-of-def A.joinable-def
by (metis A.joinable-implies-con preserves-composites preserves-resid)
lemma preserves-prfx:
assumes $t \lesssim_{A} u$
shows $F t \lesssim_{B} F u$
using assms
by (metis A.prfx-implies-con preserves-ide preserves-resid)
lemma preserves-cong:
assumes $t \sim_{A} u$
shows $F t \sim_{B} F u$
using assms preserves-prfx by simp
end

```

\subsection*{2.2.1 Identity Simulation}
```

locale identity-simulation $=$ rts
begin
abbreviation map
where map $\equiv \lambda t$. if arr t then t else null
sublocale simulation resid resid map
using con-implies-arr con-sym arr-resid-iff-con
by unfold-locales auto

```
end

\subsection*{2.2.2 Composite of Simulations}
```

lemma simulation-comp [intro]:
assumes simulation A B F and simulation B C G
shows simulation A C (GoF)
proof -
interpret F: simulation A B F using assms(1) by auto
interpret G: simulation B C G using assms(2) by auto
show simulation A C (GoF)
using F.extensional G.extensional by unfold-locales auto
qed
locale composite-simulation =
F: simulation A B F +
G: simulation B C G
for A :: 'a resid
and B :: 'b resid
and C :: 'c resid
and F::' 'a=>'b
and }G::'b=>'
begin
abbreviation map
where map \equivGo F
sublocale simulation A C map
using F.simulation-axioms G.simulation-axioms by blast
lemma is-simulation:
shows simulation A C map
using F.simulation-axioms G.simulation-axioms by blast
end

```

\subsection*{2.2.3 Simulations into a Weakly Extensional RTS}
locale simulation-to-weakly-extensional-rts \(=\) simulation + B: weakly-extensional-rts \(B\)

\section*{begin}
lemma preserves-src [simp]:
shows \(a \in\) A.sources \(t \Longrightarrow B . s r c(F t)=F a\)
by (metis equals0D image-subset-iff B.arr-iff-has-source preserves-sources B.arr-has-un-source B.src-in-sources)
lemma preserves-trg [simp]:
shows \(b \in\) A.targets \(t \Longrightarrow B \cdot \operatorname{trg}(F t)=F b\)
```

 by (metis equals0D image-subset-iff B.arr-iff-has-target
 preserves-targets B.arr-has-un-target B.trg-in-targets)
 end

```

\subsection*{2.2.4 Simulations into an Extensional RTS}
locale simulation-to-extensional-rts \(=\) simulation + \(B\) : extensional-rts \(B\)
begin
notation B.comp (infixr \(\cdot_{B} 55\) )
notation B.join (infix \(\sqcup_{B}\) 52)
lemma preserves-comp:
assumes A.composite-of t uv
shows \(F v=F t \cdot{ }_{B} F u\)
using assms
by (metis preserves-composites B.comp-is-composite-of(2))
lemma preserves-join:
assumes A.join-of \(t u v\)
shows \(F v=F t \sqcup_{B} F u\)
using assms preserves-joins
by (meson B.join-is-join-of B.join-of-unique B.joinable-def)
end

\subsection*{2.2.5 Simulations between Extensional RTS's}
locale simulation-between-extensional-rts \(=\) simulation-to-extensional-rts + A: extensional-rts \(A\)
begin
```

notation A.comp (infixr ${ }_{A}$ 55)
notation A.join (infix \sqcup_{A} 52)
lemma preserves-src [simp]:
shows B.src $(F t)=F(A . s r c t)$
by (metis A.arr-src-iff-arr A.src-in-sources extensional image-subset-iff
preserves-reflects-arr preserves-sources B.arr-has-un-source B.src-def
B.src-in-sources)
lemma preserves-trg [simp]:
shows B.trg $(F t)=F(A . \operatorname{trg} t)$
by (metis A.arr-trg-iff-arr A.residuation-axioms A.trg-def B.null-is-zero(2) B.trg-def
extensional preserves-resid residuation.arrE)

```
```

lemma preserves-comp:
assumes A.composable $t u$
shows $F\left(t \cdot{ }_{A} u\right)=F t \cdot{ }_{B} F u$
using assms
by (metis A.arr-comp A.comp-resid-prfx A.composableD(2) A.not-arr-null
A.prfx-comp A.residuation-axioms B.comp-eqI preserves-prfx preserves-resid
residuation.conI)
lemma preserves-join:
assumes A.joinable $t u$
shows $F\left(t \sqcup_{A} u\right)=F t \sqcup_{B} F u$
using assms
by (meson A.join-is-join-of B.joinable-def preserves-joins B.join-is-join-of
B.join-of-unique)
end

```

\subsection*{2.2.6 Transformations}

A transformation is a morphism of simulations, analogously to how a natural transformation is a morphism of functors, except the normal commutativity condition for that "naturality squares" is replaced by the requirement that the arrows at the apex of such a square are given by residuation of the arrows at the base. If the codomain RTS is extensional, then this condition implies the commutativity of the square with respect to composition, as would be the case for a natural transformation between functors.

The proper way to define a transformation when the domain and codomain are general RTS's is not yet clear to me. However, if the domain and codomain are weakly extensional, then we have unique sources and targets, so there is no problem. The definition below is limited to that case. I do not make any attempt here to develop facts about transformations. My main reason for including this definition here is so that in the subsequent application to the \(\lambda\)-calculus, I can exhibit \(\beta\)-reduction as an example of a transformation.
```

locale transformation $=$
A: weakly-extensional-rts $A+$
B: weakly-extensional-rts $B+$
F : simulation $A B F+$
G : simulation $A B G$
for A :: 'a resid $\quad\left(\right.$ infix $\left.\backslash_{A} 70\right)$
and $B::$ ' b resid $\quad\left(\right.$ infix $\left.\backslash_{B} 70\right)$
and $F::{ }^{\prime} a \Rightarrow{ }^{\prime} b$
and $G::{ }^{\prime} a \Rightarrow{ }^{\prime} b$
and $\tau::{ }^{\prime} a \Rightarrow{ }^{\prime} b+$
assumes extensional: \neg A.arr $f \Longrightarrow \tau f=$ B.null
and preserves-src: A.ide $f \Longrightarrow B . \operatorname{src}(\tau f)=F f$
and preserves-trg: A.ide $f \Longrightarrow B \cdot \operatorname{trg}(\tau f)=G f$
and naturality1-ax: A.arr $f \Longrightarrow \tau(A . s r c f) \backslash_{B} F f=\tau(A . \operatorname{trg} f)$
and naturality2-ax: A.arr $f \Longrightarrow F f \backslash_{B} \tau(A . \operatorname{src} f)=G f$

```
```

and naturality3: A.arr f}\Longrightarrow\mathrm{ B.join-of (}\tau(\mathrm{ A.src f)) (Ff) (}\tauf
begin

```
```

notation A.con (infix $\left.\frown_{A} 50\right)$

```
notation A.con (infix \(\left.\frown_{A} 50\right)\)
notation A.prfx \(\quad\left(\right.\) infix \(\left.\lesssim_{A} 50\right)\)
notation A.prfx \(\quad\left(\right.\) infix \(\left.\lesssim_{A} 50\right)\)
notation B.con (infix \(\left.\frown_{B} 50\right)\)
notation B.con (infix \(\left.\frown_{B} 50\right)\)
notation B.prfx \(\quad\left(\right.\) infix \(\left.\lesssim_{B} 50\right)\)
notation B.prfx \(\quad\left(\right.\) infix \(\left.\lesssim_{B} 50\right)\)
lemma naturality1:
lemma naturality1:
shows \(\tau(A . s r c f) \backslash_{B} F f=\tau(A . \operatorname{trg} f)\)
shows \(\tau(A . s r c f) \backslash_{B} F f=\tau(A . \operatorname{trg} f)\)
    by (metis A.arr-trg-iff-arr B.null-is-zero(2) F.extensional transformation.extensional
    by (metis A.arr-trg-iff-arr B.null-is-zero(2) F.extensional transformation.extensional
        transformation.naturality1-ax transformation-axioms)
        transformation.naturality1-ax transformation-axioms)
    lemma naturality2:
    lemma naturality2:
    shows \(F f \backslash_{B} \tau(A . s r c f)=G f\)
    shows \(F f \backslash_{B} \tau(A . s r c f)=G f\)
    by (metis A.weakly-extensional-rts-axioms B.null-is-zero(2) G.extensional extensional
    by (metis A.weakly-extensional-rts-axioms B.null-is-zero(2) G.extensional extensional
        naturality2-ax weakly-extensional-rts.arr-src-iff-arr)
        naturality2-ax weakly-extensional-rts.arr-src-iff-arr)
end
```


2.3 Normal Sub-RTS's and Congruence

We now develop a general quotient construction on an RTS. We define a normal sub-RTS of an RTS to be a collection of transitions \mathfrak{N} having certain "local" closure properties. A normal sub-RTS induces an equivalence relation \approx_{0}, which we call semi-congruence, by defining $t \approx_{0} u$ to hold exactly when $t \backslash u$ and $u \backslash t$ are both in \mathfrak{N}. This relation generalizes the relation \sim defined for an arbitrary RTS, in the sense that \sim is obtained when \mathfrak{N} consists of all and only the identity transitions. However, in general the relation \approx_{0} is fully substitutive only in the left argument position of residuation; for the right argument position, a somewhat weaker property is satisfied. We then coarsen \approx_{0} to a relation \approx, by defining $t \approx u$ to hold exactly when t and u can be transported by residuation along transitions in \mathfrak{N} to a common source, in such a way that the residuals are related by \approx_{0}. To obtain full substitutivity of \approx with respect to residuation, we need to impose an additional condition on \mathfrak{N}. This condition, which we call coherence, states that transporting a transition t along parallel transitions u and v in \mathfrak{N} always yields residuals $t \backslash u$ and $u \backslash t$ that are related by \approx_{0}. We show that, under the assumption of coherence, the relation \approx is fully substitutive, and the quotient of the original RTS by this relation is an extensional RTS which has the \mathfrak{N}-connected components of the original RTS as identities. Although the coherence property has a somewhat ad hoc feel to it, we show that, in the context of the other conditions assumed for \mathfrak{N}, coherence is in fact equivalent to substitutivity for \approx.

2.3.1 Normal Sub-RTS's

locale normal-sub-rts $=$

```
    R:rts +
    fixes \mathfrak{N :: 'a set}
    assumes elements-are-arr: t\in\mathfrak{N}\LongrightarrowR.arr t
    and ide-closed: R.ide a \Longrightarrowa\in\mathfrak{N}
    and forward-stable:\llbracketu\in\mathfrak{N};R.coinitial t u\rrbracket\Longrightarrowu\t\in\mathfrak{N}
    and backward-stable: \llbracketu\in\mathfrak{N};t\u\in\mathfrak{N}\rrbracket\Longrightarrowt\in\mathfrak{N}
    and composite-closed-left:\llbracketu\in\mathfrak{N};R.seq ut\rrbracket\Longrightarrow\existsv.R.composite-of utv
    and composite-closed-right:\llbracketu\in\mathfrak{N};R.seq tu\rrbracket\Longrightarrow\existsv.R.composite-of t uv
begin
    lemma prfx-closed:
    assumes u\in\mathfrak{N}\mathrm{ and R.prfx t u}
    shows t\in\mathfrak{N}
    using assms backward-stable ide-closed by blast
    lemma composite-closed:
    assumes t\in\mathfrak{N}\mathrm{ and u}\in\mathfrak{N}\mathrm{ and R.composite-of tuv}\0.
    shows v\in\mathfrak{N}
    using assms backward-stable R.composite-of-def prfx-closed by blast
lemma factor-closed:
assumes R.composite-of t uv and v\in\mathfrak{N}
shows}t\in\mathfrak{N}\mathrm{ and }u\in\mathfrak{N
    apply (metis assms R.composite-of-def prfx-closed)
    by (meson assms R.composite-of-def R.con-imp-coinitial forward-stable prfx-closed
                R.prfx-implies-con)
    lemma resid-along-elem-preserves-con:
    assumes t\frown\mp@subsup{t}{}{\prime}}\mathrm{ and R.coinitial }tu\mathrm{ and }u\in\mathfrak{N
    shows }t\u\frown\mp@subsup{t}{}{\prime}\
    proof -
    have R.coinitial (t\t')(u\t')
        by (metis assms R.arr-resid-iff-con R.coinitialI R.con-imp-common-source forward-stable
            elements-are-arr R.con-implies-arr(2) R.sources-resid R.sources-eqI)
    hence t\t'` 
        by (metis assms(3) R.coinitial-iff R.con-imp-coinitial R.con-sym elements-are-arr
                forward-stable R.arr-resid-iff-con)
    thus ?thesis
        using assms R.cube forward-stable by fastforce
    qed
end
```


Normal Sub-RTS's of an Extensional RTS with Composites

locale normal-in-extensional-rts-with-composites $=$
R : extensional-rts +
R : rts-with-composites + normal-sub-rts

```
begin
    lemma factor-closed }\mp@subsup{}{EC}{}\mathrm{ :
    assumes t | u \in N
    shows}t\in\mathfrak{N}\mathrm{ and u}u\in\mathfrak{N
        using assms factor-closed
        by (metis R.arrE R.composable-def R.comp-is-composite-of(2) R.con-comp-iff
        elements-are-arr)+
    lemma comp-in-normal-iff:
    shows t\cdotu\in\mathfrak{N}\longleftrightarrowt\in\mathfrak{N}\wedgeu\in\mathfrak{N}\wedgeR.seq tu
    by (metis R.comp-is-composite-of(2) composite-closed elements-are-arr
    factor-closed(1-2) R.composable-def R.has-composites R.rts-with-composites-axioms
    R.extensional-rts-axioms extensional-rts-with-composites.arr-comp E EC
    extensional-rts-with-composites-def R.seqIWE(1))
end
```


2.3.2 Semi-Congruence

context normal-sub-rts
begin
We will refer to the elements of \mathfrak{N} as normal transitions. Generalizing identity transitions to normal transitions in the definition of congruence, we obtain the notion of semi-congruence of transitions with respect to a normal sub-RTS.

```
abbreviation Cong \(_{0} \quad\left(\right.\) infix \(\left.\approx_{0} 50\right)\)
where \(t \approx_{0} t^{\prime} \equiv t \backslash t^{\prime} \in \mathfrak{N} \wedge t^{\prime} \backslash t \in \mathfrak{N}\)
lemma Cong \(_{0}\)-reflexive:
assumes R.arr \(t\)
shows \(t \approx_{0} t\)
    using assms R.cong-reflexive ide-closed by simp
lemma Cong \(_{0}\)-symmetric:
assumes \(t \approx_{0} t^{\prime}\)
shows \(t^{\prime} \approx_{0} t\)
    using assms by simp
lemma Cong \({ }_{0}\)-transitive [trans]:
assumes \(t \approx_{0} t^{\prime}\) and \(t^{\prime} \approx_{0} t^{\prime \prime}\)
shows \(t \approx_{0} t^{\prime \prime}\)
    by (metis (full-types) R.arr-resid-iff-con assms backward-stable forward-stable
        elements-are-arr R.coinitialI R.cube R.sources-resid)
lemma Cong O-imp-con: \(^{\text {a }}\)
assumes \(t \approx_{0} t^{\prime}\)
shows R.con \(t t^{\prime}\)
    using assms R.arr-resid-iff-con elements-are-arr by blast
```

```
lemma Cong \(g_{0}\)-imp-coinitial:
assumes \(t \approx_{0} t^{\prime}\)
shows R.sources \(t=R\).sources \(t^{\prime}\)
    using assms by (meson Cong \({ }_{0}\)-imp-con R.coinitial-iff R.con-imp-coinitial)
```

Semi-congruence is preserved and reflected by residuation along normal transitions.
lemma Resid-along-normal-preserves-Cong ${ }_{0}$:
assumes $t \approx_{0} t^{\prime}$ and $u \in \mathfrak{N}$ and R.sources $t=R$.sources u
shows $t \backslash u \approx_{0} t^{\prime} \backslash u$
by (metis Cong ${ }_{0}$-imp-coinitial R.arr-resid-iff-con R.coinitialI R.coinitial-def R.cube R.sources-resid assms elements-are-arr forward-stable)
lemma Resid-along-normal-reflects-Cong g_{0}
assumes $t \backslash u \approx_{0} t^{\prime} \backslash u$ and $u \in \mathfrak{N}$
shows $t \approx_{0} t^{\prime}$
using assms
by (metis backward-stable R.con-imp-coinitial R.cube R.null-is-zero(2)
forward-stable R.conI)

Semi-congruence is substitutive for the left-hand argument of residuation.

```
lemma Cong \(_{0}\)-subst-left:
assumes \(t \approx_{0} t^{\prime}\) and \(t \frown u\)
shows \(t^{\prime} \frown u\) and \(t \backslash u \approx_{0} t^{\prime} \backslash u\)
proof -
    have \(1: t \frown u \wedge t \frown t^{\prime} \wedge u \backslash t \frown t^{\prime} \backslash t\)
        using assms
        by (metis Resid-along-normal-preserves-Cong Cong \(_{0}\)-imp-con Cong \(g_{0}\)-reflexive R.con-sym
                    R.null-is-zero(2) R.arr-resid-iff-con R.sources-resid R.conI)
    hence 2: \(t^{\prime} \frown u \wedge u \backslash t \frown t^{\prime} \backslash t \wedge\)
                    \((t \backslash u) \backslash\left(t^{\prime} \backslash u\right)=\left(t \backslash t^{\prime}\right) \backslash\left(u \backslash t^{\prime}\right) \wedge\)
                    \(\left(t^{\prime} \backslash u\right) \backslash(t \backslash u)=\left(t^{\prime} \backslash t\right) \backslash(u \backslash t)\)
        by (meson R.con-sym R.cube R.resid-reflects-con)
    show \(t^{\prime} \frown u\)
        using 2 by \(\operatorname{simp}\)
    show \(t \backslash u \approx_{0} t^{\prime} \backslash u\)
        using assms 12
        by (metis R.arr-resid-iff-con R.con-imp-coinitial R.cube forward-stable)
qed
```

Semi-congruence is not exactly substitutive for residuation on the right. Instead, the following weaker property is satisfied. Obtaining exact substitutivity on the right is the motivation for defining a coarser notion of congruence below.

```
lemma Cong \(0_{0}\)-subst-right:
assumes \(u \approx_{0} u^{\prime}\) and \(t \frown u\)
shows \(t \frown u^{\prime}\) and \((t \backslash u) \backslash\left(u^{\prime} \backslash u\right) \approx_{0}\left(t \backslash u^{\prime}\right) \backslash\left(u \backslash u^{\prime}\right)\)
    using assms
    apply (meson Cong \(g_{0}\)-subst-left(1) R.con-sym)
    using assms
```

by (metis R.sources-resid Cong ${ }_{0}$-imp-con Cong ${ }_{0}$-reflexive Resid-along-normal-preserves-Cong 0_{0} R.arr-resid-iff-con residuation.cube R.residuation-axioms)

```
lemma Cong \(0_{0}\)-subst-Con:
assumes \(t \approx_{0} t^{\prime}\) and \(u \approx_{0} u^{\prime}\)
shows \(t \frown u \longleftrightarrow t^{\prime} \frown u^{\prime}\)
    using assms
    by (meson Cong \(_{0}\)-subst-left(1) Cong \(_{0}\)-subst-right(1))
lemma Cong \(0_{0}\)-cancel-left:
assumes R.composite-of \(t u v\) and R.composite-of \(t u^{\prime} v^{\prime}\) and \(v \approx_{0} v^{\prime}\)
shows \(u \approx_{0} u^{\prime}\)
proof -
    have \(u \approx_{0} v \backslash t\)
        using assms(1) ide-closed by blast
    also have \(v \backslash t \approx_{0} v^{\prime} \backslash t\)
    by (meson assms (1,3) Congo-subst-left(2) R.composite-of-def R.con-sym R.prfx-implies-con)
    also have \(v^{\prime} \backslash t \approx_{0} u^{\prime}\)
        using assms(2) ide-closed by blast
    finally show ?thesis by auto
qed
lemma Congo-iff:
shows \(t \approx_{0} t^{\prime} \longleftrightarrow\)
        \(\left(\exists u u^{\prime} v v^{\prime} . u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge v \approx_{0} v^{\prime} \wedge\right.\)
            R.composite-of \(t u v \wedge\) R.composite-of \(\left.t^{\prime} u^{\prime} v^{\prime}\right)\)
proof (intro iffI)
    show \(\exists u u^{\prime} v v^{\prime} . u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge v \approx_{0} v^{\prime} \wedge\)
                            R.composite-of \(t u v \wedge R\).composite-of \(t^{\prime} u^{\prime} v^{\prime}\)
                \(\Longrightarrow t \approx_{0} t^{\prime}\)
    by (meson Cong \(0_{0}\)-transitive R.composite-of-def ide-closed prfx-closed)
    show \(t \approx_{0} t^{\prime} \Longrightarrow \exists u u^{\prime} v v^{\prime} . u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge v \approx_{0} v^{\prime} \wedge\)
                                R.composite-of \(t u v \wedge R\).composite-of \(t^{\prime} u^{\prime} v^{\prime}\)
    by (metis Cong \({ }_{0}\)-imp-con Cong \(_{0}\)-transitive R.composite-of-def R.prfx-reflexive
        R.arrI R.ideE)
qed
lemma diamond-commutes-upto-Cong \({ }_{0}\) :
assumes \(t \frown u\) and R.composite-of \(t(u \backslash t) v\) and R.composite-of \(u(t \backslash u) v^{\prime}\)
shows \(v \approx_{0} v^{\prime}\)
proof -
    have \(v \backslash v \approx_{0} v^{\prime} \backslash v \wedge v^{\prime} \backslash v^{\prime} \approx_{0} v \backslash v^{\prime}\)
    proof -
        have 1: \((v \backslash t) \backslash(u \backslash t) \approx_{0}\left(v^{\prime} \backslash u\right) \backslash(t \backslash u)\)
            using assms(2-3) R.cube [of \(v t u\) ]
            by (metis R.con-target R.composite-ofE R.ide-imp-con-iff-cong ide-closed
                R.conI)
            have 2: \(v \backslash v \approx_{0} v^{\prime} \backslash v\)
            proof -
```

```
        have \(v \backslash v \approx_{0}(v \backslash t) \backslash(u \backslash t)\)
            using assms R.composite-of-def ide-closed
            by (meson R.composite-of-unq-upto-cong R.prfx-implies-con R.resid-composite-of (3))
        also have \((v \backslash t) \backslash(u \backslash t) \approx_{0}\left(v^{\prime} \backslash u\right) \backslash(t \backslash u)\)
            using 1 by \(\operatorname{simp}\)
        also have \(\left(v^{\prime} \backslash u\right) \backslash(t \backslash u) \approx_{0}\left(v^{\prime} \backslash t\right) \backslash(u \backslash t)\)
            by (metis 1 Congo-transitive R.cube)
            also have \(\left(v^{\prime} \backslash t\right) \backslash(u \backslash t) \approx_{0} v^{\prime} \backslash v\)
            using assms R.composite-of-def ide-closed
            by (metis 1 R.conI R.con-sym-ax R.cube R.null-is-zero(2) R.resid-composite-of(3))
            finally show ?thesis by auto
    qed
    moreover have \(v^{\prime} \backslash v^{\prime} \approx_{0} v \backslash v^{\prime}\)
    proof -
    have \(v^{\prime} \backslash v^{\prime} \approx_{0}\left(v^{\prime} \backslash u\right) \backslash(t \backslash u)\)
        using assms R.composite-of-def ide-closed
        by (meson R.composite-of-unq-upto-cong R.prfx-implies-con R.resid-composite-of(3))
    also have \(\left(v^{\prime} \backslash u\right) \backslash(t \backslash u) \approx_{0}(v \backslash t) \backslash(u \backslash t)\)
        using 1 by \(\operatorname{simp}\)
    also have \((v \backslash t) \backslash(u \backslash t) \approx_{0}(v \backslash u) \backslash(t \backslash u)\)
        using R.cube [of \(v t u\) ] ide-closed
        by (metis Cong \(0_{0}\)-reflexive R.arr-resid-iff-con assms(2) R.composite-of-def
                    R.prfx-implies-con)
    also have \((v \backslash u) \backslash(t \backslash u) \approx_{0} v \backslash v^{\prime}\)
        using assms R.composite-of-def ide-closed
        by (metis 2 R.conI elements-are-arr R.not-arr-null R.null-is-zero(2)
            R.resid-composite-of(3))
        finally show ?thesis by auto
    qed
    ultimately show ?thesis by blast
    qed
    thus ?thesis
    by (metis assms(2-3) R.composite-of-unq-upto-cong R.resid-arr-ide Cong Corimp-con) \(^{\text {(2 }}\) (
qed
```


2.3.3 Congruence

We use semi-congruence to define a coarser relation as follows.

```
definition Cong (infix \(\approx 50\) )
where Cong \(t t^{\prime} \equiv \exists u u^{\prime} . u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge t \backslash u \approx_{0} t^{\prime} \backslash u^{\prime}\)
lemma CongI [intro]:
assumes \(u \in \mathfrak{N}\) and \(u^{\prime} \in \mathfrak{N}\) and \(t \backslash u \approx_{0} t^{\prime} \backslash u^{\prime}\)
shows Cong \(t t^{\prime}\)
    using assms Cong-def by auto
lemma CongE [elim]:
assumes \(t \approx t^{\prime}\)
obtains \(u u^{\prime}\)
```

```
where \(u \in \mathfrak{N}\) and \(u^{\prime} \in \mathfrak{N}\) and \(t \backslash u \approx_{0} t^{\prime} \backslash u^{\prime}\)
    using assms Cong-def by auto
lemma Cong-imp-arr:
assumes \(t \approx t^{\prime}\)
shows R.arr \(t\) and R.arr \(t^{\prime}\)
    using assms Cong-def
    by (meson R.arr-resid-iff-con R.con-implies-arr(2) R.con-sym elements-are-arr) +
```

lemma Cong-reflexive:
assumes R.arr t
shows $t \approx t$
by (metis CongI Cong ${ }_{0}$-reflexive assms R.con-imp-coinitial-ax ide-closed
R.resid-arr-ide R.arrE R.con-sym)
lemma Cong-symmetric:
assumes $t \approx t^{\prime}$
shows $t^{\prime} \approx t$
using assms Cong-def by auto

The existence of composites of normal transitions is used in the following.

```
lemma Cong-transitive [trans]:
assumes \(t \approx t^{\prime \prime}\) and \(t^{\prime \prime} \approx t^{\prime}\)
shows \(t \approx t^{\prime}\)
proof -
    obtain \(u u^{\prime \prime}\) where \(u u^{\prime \prime}: u \in \mathfrak{N} \wedge u^{\prime \prime} \in \mathfrak{N} \wedge t \backslash u \approx_{0} t^{\prime \prime} \backslash u^{\prime \prime}\)
        using assms Cong-def by blast
    obtain \(v^{\prime} v^{\prime \prime}\) where \(v^{\prime} v^{\prime \prime}: v^{\prime} \in \mathfrak{N} \wedge v^{\prime \prime} \in \mathfrak{N} \wedge t^{\prime \prime} \backslash v^{\prime \prime} \approx_{0} t^{\prime} \backslash v^{\prime}\)
        using assms Cong-def by blast
    let ? \(w=(t \backslash u) \backslash\left(v^{\prime \prime} \backslash u^{\prime \prime}\right)\)
    let ? \(w^{\prime}=\left(t^{\prime} \backslash v^{\prime}\right) \backslash\left(u^{\prime \prime} \backslash v^{\prime \prime}\right)\)
    let ? \(w^{\prime \prime}=\left(t^{\prime \prime} \backslash v^{\prime \prime}\right) \backslash\left(u^{\prime \prime} \backslash v^{\prime \prime}\right)\)
    have \(w^{\prime \prime}: ? w^{\prime \prime}=\left(t^{\prime \prime} \backslash u^{\prime \prime}\right) \backslash\left(v^{\prime \prime} \backslash u^{\prime \prime}\right)\)
        by (metis R.cube)
    have \(u^{\prime \prime} v^{\prime \prime}\) : R.coinitial \(u^{\prime \prime} v^{\prime \prime}\)
        by (metis (full-types) R.coinitial-iff elements-are-arr R.con-imp-coinitial
            R.arr-resid-iff-con \(\left.u u^{\prime \prime} v^{\prime} v^{\prime \prime}\right)\)
    hence \(v^{\prime \prime} u^{\prime \prime}\) : R.coinitial \(v^{\prime \prime} u^{\prime \prime}\)
        by (meson R.con-imp-coinitial elements-are-arr forward-stable R.arr-resid-iff-con \(v^{\prime} v^{\prime \prime}\) )
    have 1:? \(w \backslash ? w^{\prime \prime} \in \mathfrak{N}\)
    proof -
        have \(\left(v^{\prime \prime} \backslash u^{\prime \prime}\right) \backslash\left(t^{\prime \prime} \backslash u^{\prime \prime}\right) \in \mathfrak{N}\)
        by (metis Cong \(0_{0}\)-transitive R.con-imp-coinitial forward-stable Cong \(g_{0}-i m p-c o n\)
            resid-along-elem-preserves-con R.arrI R.arr-resid-iff-con \(\left.u^{\prime \prime} v^{\prime \prime} u u^{\prime \prime} v^{\prime} v^{\prime \prime}\right)\)
        thus ?thesis
            by (metis Cong \({ }_{0}\)-subst-left(2) R.con-sym R.null-is-zero(1) uu" w" R.conI)
    qed
    have 2: ? \(w^{\prime \prime} \backslash ? w \in \mathfrak{N}\)
        by (metis 1 Congo-subst-left(2) uu" \(w^{\prime \prime}\) R.conI)
```

```
have 3: R.seq \(u\left(v^{\prime \prime} \backslash u^{\prime \prime}\right)\)
    by (metis (full-types) 2 Cong \(0_{0}\)-imp-coinitial R.sources-resid
        Cong \(0_{0}\)-imp-con R.arr-resid-iff-con R.con-implies-arr(2) R.seqI(1) uu" R.conI)
    have 4: R.seq \(v^{\prime}\left(u^{\prime \prime} \backslash v^{\prime \prime}\right)\)
    by (metis 1 Cong \(_{0}\)-imp-coinitial Cong \(g_{0}\)-imp-con R.arr-resid-iff-con
        R.con-implies-arr(2) R.seq-def R.sources-resid v'v" R.conI)
    obtain \(x\) where \(x\) : R.composite-of \(u\left(v^{\prime \prime} \backslash u^{\prime \prime}\right) x\)
    using 3 composite-closed-left uu" by blast
    obtain \(x^{\prime}\) where \(x^{\prime}: R\).composite-of \(v^{\prime}\left(u^{\prime \prime} \backslash v^{\prime \prime}\right) x^{\prime}\)
    using 4 composite-closed-left \(v^{\prime} v^{\prime \prime}\) by presburger
    have ? \(w \approx_{0} ? w^{\prime}\)
    proof -
    have \(? w \approx_{0} ? w^{\prime \prime} \wedge ? w^{\prime} \approx_{0} ? w^{\prime \prime}\)
        using 12
        by (metis Cong \(_{0}\)-subst-left(2) R.null-is-zero(2) \(v^{\prime} v^{\prime \prime}\) R.conI)
    thus ?thesis
        using Cong \(g_{0}\)-transitive by blast
    qed
    moreover have \(x \in \mathfrak{N} \wedge ? w \widetilde{\sim}_{0} t \backslash x\)
        apply (intro conjI)
        apply (meson composite-closed forward-stable \(u^{\prime \prime} v^{\prime \prime} u u^{\prime \prime} v^{\prime} v^{\prime \prime} x\) )
        apply (metis (full-types) R.arr-resid-iff-con R.con-implies-arr(2) R.con-sym
            ide-closed forward-stable R.composite-of-def R.resid-composite-of (3)
            Cong \(0_{0}\)-subst-right(1) prfx-closed \(u^{\prime \prime} v^{\prime \prime} u u^{\prime \prime} v^{\prime} v^{\prime \prime} x\) R.conI)
    by (metis (no-types, lifting) 1 R.con-composite-of-iff ide-closed
        R.resid-composite-of(3) R.arr-resid-iff-con R.con-implies-arr(1) R.con-sym x R.conI)
    moreover have \(x^{\prime} \in \mathfrak{N} \wedge ? w^{\prime} \approx_{0} t^{\prime} \backslash x^{\prime}\)
    apply (intro conjI)
        apply (meson composite-closed forward-stable \(\left.u u^{\prime \prime} v^{\prime \prime} u^{\prime \prime} v^{\prime} v^{\prime \prime} x^{\prime}\right)\)
        apply (metis (full-types) Cong \({ }_{0}\)-subst-right(1) R.composite-ofE R.con-sym
            ide-closed forward-stable R.con-imp-coinitial prfx-closed
            R.resid-composite-of (3) R.arr-resid-iff-con R.con-implies-arr(1) uu" \(\left.v^{\prime} v^{\prime \prime} x^{\prime} R . c o n I\right)\)
    by (metis (full-types) Cong \(0_{0}\)-subst-left(1) R.composite-ofE R.con-sym ide-closed
            forward-stable R.con-imp-coinitial prfx-closed R.resid-composite-of (3)
            R.arr-resid-iff-con R.con-implies-arr(1) \(u u^{\prime \prime} v^{\prime} v^{\prime \prime} x^{\prime}\) R.conI)
    ultimately show \(t \approx t^{\prime}\)
    using Cong-def Cong \(0_{0}\)-transitive by metis
qed
lemma Cong-closure-props:
shows \(t \approx u \Longrightarrow u \approx t\)
and \(\llbracket t \approx u ; u \approx v \rrbracket \Longrightarrow t \approx v\)
and \(t \approx_{0} u \Longrightarrow t \approx u\)
and \(\llbracket u \in \mathfrak{N} ;\) R.sources \(t=R\).sources \(u \rrbracket \Longrightarrow t \approx t \backslash u\)
proof -
    show \(t \approx u \Longrightarrow u \approx t\)
    using Cong-symmetric by blast
show \(\llbracket t \approx u ; u \approx v \rrbracket \Longrightarrow t \approx v\)
    using Cong-transitive by blast
```

```
    show \(t \approx_{0} u \Longrightarrow t \approx u\)
    by (metis Cong \(0_{0}\)-subst-left(2) Cong-def Cong-reflexive R.con-implies-arr (1)
        R.null-is-zero(2) R.conI)
    show \(\llbracket u \in \mathfrak{N}\); R.sources \(t=R\).sources \(u \rrbracket \Longrightarrow t \approx t \backslash u\)
    proof -
    assume \(u: u \in \mathfrak{N}\) and coinitial: R.sources \(t=R\).sources \(u\)
    obtain \(a\) where \(a: a \in\) R.targets \(u\)
            by (meson elements-are-arr empty-subsetI R.arr-iff-has-target subsetI subset-antisym u)
    have \(t \backslash u \approx_{0}(t \backslash u) \backslash a\)
    proof -
            have R.arr \(t\)
            using R.arr-iff-has-source coinitial elements-are-arr u by presburger
            thus ? thesis
            by (meson u a R.arr-resid-iff-con coinitial ide-closed forward-stable
                    elements-are-arr R.coinitial-iff R.composite-of-arr-target R.resid-composite-of(3))
    qed
    thus ?thesis
        using Cong-def
        by (metis a R.composite-of-arr-target elements-are-arr factor-closed(2) u)
    qed
qed
lemma Cong \(0_{0}\)-implies-Cong:
assumes \(t \approx_{0} t^{\prime}\)
shows \(t \approx t^{\prime}\)
    using assms Cong-closure-props(3) by simp
lemma in-sources-respects-Cong:
assumes \(t \approx t^{\prime}\) and \(a \in R\).sources \(t\) and \(a^{\prime} \in R\).sources \(t^{\prime}\)
shows \(a \approx a^{\prime}\)
proof -
    obtain \(u u^{\prime}\) where \(u u^{\prime}: u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge t \backslash u \approx_{0} t^{\prime} \backslash u^{\prime}\)
    using assms Cong-def by blast
    show \(a \approx a^{\prime}\)
    proof
        show \(u \in \mathfrak{N}\)
            using \(u u^{\prime}\) by simp
    show \(u^{\prime} \in \mathfrak{N}\)
            using \(u u^{\prime}\) by simp
    show \(a \backslash u \approx_{0} a^{\prime} \backslash u^{\prime}\)
    proof -
            have \(a \backslash u \in R\).targets \(u\)
                by (metis Cong \(0_{0}\)-imp-con R.arr-resid-iff-con assms(2) R.con-imp-common-source
                    R.con-implies-arr(1) R.resid-source-in-targets R.sources-eqI uu')
            moreover have \(a^{\prime} \backslash u^{\prime} \in R\).targets \(u^{\prime}\)
                    by (metis Cong O \(_{0}\)-imp-con R.arr-resid-iff-con assms(3) R.con-imp-common-source
                    R.resid-source-in-targets R.con-implies-arr (1) R.sources-eqI uu')
            moreover have R.targets \(u=\) R.targets \(u^{\prime}\)
                    by (metis Cong \(0_{0}\)-imp-coinitial Cong \(_{0}\)-imp-con R.arr-resid-iff-con
```

```
                    R.con-implies-arr(1) R.sources-resid uu')
        ultimately show ?thesis
            using ide-closed R.targets-are-cong by presburger
        qed
    qed
qed
lemma in-targets-respects-Cong:
assumes t\approx t' and b\inR.targets t and b}\mp@subsup{b}{}{\prime}\inR.\mathrm{ .targets t'
shows b}\approx\mp@subsup{b}{}{\prime
proof -
    obtain }u\mp@subsup{u}{}{\prime}\mathrm{ where }u\mp@subsup{u}{}{\prime}:u\in\mathfrak{N}\wedge\mp@subsup{u}{}{\prime}\in\mathfrak{N}\wedget\u\mp@subsup{\approx}{0}{}\mp@subsup{t}{}{\prime}\\mp@subsup{u}{}{\prime
        using assms Cong-def by blast
    have seq:R.seq (u\t) ((t'\\mp@subsup{u}{}{\prime})\(t\u))\wedgeR.seq (\mp@subsup{u}{}{\prime}\\mp@subsup{t}{}{\prime})((t\u)\(\mp@subsup{t}{}{\prime}\\mp@subsup{u}{}{\prime}))
        by (metis R.arr-iff-has-source R.arr-iff-has-target R.conI elements-are-arr R.not-arr-null
            R.seqI(2) R.sources-resid R.targets-resid-sym uu')
    obtain v}\mathrm{ where v: R.composite-of (u\t) ((t'\ \u')\ \t\u))v
        using seq composite-closed-right uu' by presburger
    obtain }\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{v}{}{\prime}:R.\mathrm{ R.composite-of ( }\mp@subsup{u}{}{\prime}\\mp@subsup{t}{}{\prime})((t\u)\(\mp@subsup{t}{}{\prime}\\mp@subsup{u}{}{\prime}))\mp@subsup{v}{}{\prime
        using seq composite-closed-right uu' by presburger
    show b}\approx\mp@subsup{b}{}{\prime
    proof
        show v-in-\mathfrak{N}:v\in\mathfrak{N}
            by (metis composite-closed R.con-imp-coinitial R.con-implies-arr(1) forward-stable
                R.composite-of-def R.prfx-implies-con R.arr-resid-iff-con R.con-sym uu'v)
        show }\mp@subsup{v}{}{\prime}-in-\mathfrak{N}:\mp@subsup{v}{}{\prime}\in\mathfrak{N
            by (metis backward-stable R.composite-of-def R.con-imp-coinitial forward-stable
                R.null-is-zero(2) prfx-closed uu' v' R.conI)
            show }b\v\mp@subsup{\approx}{0}{}\mp@subsup{b}{}{\prime}\\mp@subsup{v}{}{\prime
            using assms uu'v v
        by (metis R.arr-resid-iff-con ide-closed R.seq-def R.sources-resid R.targets-resid-sym
            R.resid-source-in-targets seq R.sources-composite-of R.targets-are-cong
            R.targets-composite-of)
    qed
qed
lemma sources-are-Cong:
assumes a \in R.sources t and a'}\inR.sources 
shows a}\approx\mp@subsup{a}{}{\prime
    using assms
    by (simp add: ide-closed R.sources-are-cong Cong-closure-props(3))
```

 lemma targets-are-Cong:
 assumes \(b \in\) R.targets \(t\) and \(b^{\prime} \in R\).targets \(t\)
 shows \(b \approx b^{\prime}\)
 using assms
 by (simp add: ide-closed R.targets-are-cong Cong-closure-props(3))
 It is not the case that sources and targets are \approx-closed; i.e. $t \approx t^{\prime} \Longrightarrow$ sources $t=$ sources t^{\prime} and $t \approx t^{\prime} \Longrightarrow$ targets $t=$ targets t^{\prime} do not hold, in general.

```
lemma Resid-along-normal-preserves-reflects-con:
assumes \(u \in \mathfrak{N}\) and R.sources \(t=R\).sources \(u\)
shows \(t \backslash u \frown t^{\prime} \backslash u \longleftrightarrow t \frown t^{\prime}\)
    by (metis R.arr-resid-iff-con assms R.con-implies-arr(1-2) elements-are-arr R.coinitial-iff
        R.resid-reflects-con resid-along-elem-preserves-con)
```

We can alternatively characterize \approx as the least symmetric and transitive relation on transitions that extends \approx_{0} and has the property of being preserved by residuation along transitions in \mathfrak{N}.

```
inductive Cong \({ }^{\prime}\)
where \(\wedge t u\). Cong \(^{\prime} t u \Longrightarrow\) Cong \(^{\prime} u t\)
```

 \(\mid \bigwedge t u v . \llbracket C_{o n g}{ }^{\prime} t u ; C o n g^{\prime} u v \rrbracket \Longrightarrow C o n g^{\prime} t v\)
 \(\mid \bigwedge t u . t \approx_{0} u \Longrightarrow\) Cong \(^{\prime} t u\)
 \(\mid \bigwedge t u . \llbracket R\).arr \(t ; u \in \mathfrak{N} ;\) R.sources \(t=\) R.sources \(u \rrbracket \Longrightarrow\) Cong \(^{\prime} t(t \backslash u)\)
 lemma Cong'-if:
shows $\llbracket u \in \mathfrak{N} ; u^{\prime} \in \mathfrak{N} ; t \backslash u \approx_{0} t^{\prime} \backslash u \rrbracket \Longrightarrow$ Cong $^{\prime} t t^{\prime}$
proof -
assume $u: u \in \mathfrak{N}$ and $u^{\prime}: u^{\prime} \in \mathfrak{N}$ and $1: t \backslash u \approx_{0} t^{\prime} \backslash u^{\prime}$
show Cong' $t t^{\prime}$
using $u u^{\prime} 1$
by (metis (no-types, lifting) Cong'.simps Cong g_{0}-imp-con R.arr-resid-iff-con
R.coinitial-iff R.con-imp-coinitial)
qed
lemma Cong-char:
shows Cong $t t^{\prime} \longleftrightarrow$ Cong $^{\prime} t t^{\prime}$
proof -
have Cong $t t^{\prime} \Longrightarrow$ Cong $^{\prime} t t^{\prime}$
using Cong-def Cong'-if by blast
moreover have Cong $t t^{\prime} \Longrightarrow$ Cong $t t^{\prime}$
apply (induction rule: Cong'.induct)
using Cong-symmetric apply simp
using Cong-transitive apply simp
using Cong-closure-props(3) apply simp
using Cong-closure-props(4) by simp
ultimately show ?thesis
using Cong-def by blast
qed
lemma normal-is-Cong-closed:
assumes $t \in \mathfrak{N}$ and $t \approx t^{\prime}$
shows $t^{\prime} \in \mathfrak{N}$
using assms
by (metis (full-types) CongE R.con-imp-coinitial forward-stable
R.null-is-zero(2) backward-stable R.conI)

2.3.4 Congruence Classes

Here we develop some notions relating to the congruence classes of \approx.
definition Cong-class ($\{-\}$)
where Cong-class $t \equiv\left\{t^{\prime} . t \approx t^{\prime}\right\}$
definition is-Cong-class
where is-Cong-class $\mathcal{T} \equiv \exists t . t \in \mathcal{T} \wedge \mathcal{T}=\{t\}$
definition Cong-class-rep
where Cong-class-rep $\mathcal{T} \equiv S O M E t . t \in \mathcal{T}$
lemma Cong-class-is-nonempty:
assumes is-Cong-class \mathcal{T}
shows $\mathcal{T} \neq\{ \}$
using assms is-Cong-class-def Cong-class-def by auto
lemma rep-in-Cong-class:
assumes is-Cong-class \mathcal{T}
shows Cong-class-rep $\mathcal{T} \in \mathcal{T}$
using assms is-Cong-class-def Cong-class-rep-def someI-ex $[$ of $\lambda t . t \in \mathcal{T}]$
by metis
lemma arr-in-Cong-class:
assumes R.arr t
shows $t \in\{t\}$
using assms Cong-class-def Cong-reflexive by simp
lemma is-Cong-classI:
assumes R.arr t
shows is-Cong-class $\{t\}$
using assms Cong-class-def is-Cong-class-def Cong-reflexive by blast
lemma is-Cong-classI' ${ }^{\text {intro }]:}$
assumes $\mathcal{T} \neq\{ \}$
and $\wedge t t^{\prime} . \llbracket t \in \mathcal{T} ; t^{\prime} \in \mathcal{T} \rrbracket \Longrightarrow t \approx t^{\prime}$
and $\bigwedge t t^{\prime} . \llbracket t \in \mathcal{T} ; t^{\prime} \approx t \rrbracket \Longrightarrow t^{\prime} \in \mathcal{T}$
shows is-Cong-class \mathcal{T}
proof -
obtain t where $t: t \in \mathcal{T}$
using assms by auto
have $\mathcal{T}=\{t\}$
unfolding Cong-class-def
using assms(2-3) t by blast
thus ?thesis
using is-Cong-class-def t by blast
qed
lemma Cong-class-memb-is-arr:

```
assumes is-Cong-class }\mathcal{T}\mathrm{ and }t\in\mathcal{T
shows R.arr t
    using assms Cong-class-def is-Cong-class-def Cong-imp-arr(2) by force
lemma Cong-class-membs-are-Cong:
assumes is-Cong-class }\mathcal{T}\mathrm{ and }t\in\mathcal{T}\mathrm{ and }\mp@subsup{t}{}{\prime}\in\mathcal{T
shows Cong t t'
    using assms Cong-class-def is-Cong-class-def
    by (metis CollectD Cong-closure-props(2) Cong-symmetric)
lemma Cong-class-eqI:
assumes t}\approx\mp@subsup{t}{}{\prime
shows {t} ={t'}
    using assms Cong-class-def
    by (metis (full-types) Collect-cong Cong'.intros(1-2) Cong-char)
lemma Cong-class-eqI':
assumes is-Cong-class }\mathcal{T}\mathrm{ and is-Cong-class }\mathcal{U}\mathrm{ and }\mathcal{T}\cap\mathcal{U}\not={
shows }\mathcal{T}=\mathcal{U
    using assms is-Cong-class-def Cong-class-eqI Cong-class-membs-are-Cong Int-emptyI
    by (metis (no-types, lifting))
lemma is-Cong-classE [elim]:
assumes is-Cong-class }\mathcal{T
and }\llbracket\mathcal{T}\not={};\bigwedget\mp@subsup{t}{}{\prime}.\llbrackett\in\mathcal{T};\mp@subsup{t}{}{\prime}\in\mathcal{T}\rrbracket\Longrightarrowt\approx\mp@subsup{t}{}{\prime};\Lambdat\mp@subsup{t}{}{\prime}.\llbrackett\in\mathcal{T};\mp@subsup{t}{}{\prime}\approxt\rrbracket\Longrightarrow\mp@subsup{t}{}{\prime}\in\mathcal{T}\rrbracket\Longrightarrow
shows T
proof -
    have \mathcal{T:T}\not={}
        using assms Cong-class-is-nonempty by simp
    moreover have 1: \t t'.}\llbrackett\in\mathcal{T};\mp@subsup{t}{}{\prime}\in\mathcal{T}\rrbracket\Longrightarrowt\approx\mp@subsup{t}{}{\prime
        using assms Cong-class-membs-are-Cong by metis
    moreover have }\t\mp@subsup{t}{}{\prime}.\llbrackett\in\mathcal{T};\mp@subsup{t}{}{\prime}\approxt\rrbracket\Longrightarrow\mp@subsup{t}{}{\prime}\in\mathcal{T
        using assms Cong-class-def
        by (metis 1 Cong-class-eqI Cong-imp-arr(1) is-Cong-class-def arr-in-Cong-class)
    ultimately show ?thesis
        using assms by blast
qed
lemma Cong-class-rep [simp]:
assumes is-Cong-class }\mathcal{T
shows {Cong-class-rep TT}=\mathcal{T}
by (metis Cong-class-membs-are-Cong Cong-class-eqI assms is-Cong-class-def rep-in-Cong-class)
lemma Cong-class-memb-Cong-rep:
assumes is-Cong-class }\mathcal{T}\mathrm{ and t}\in\mathcal{T
shows Cong t (Cong-class-rep }\mathcal{T}
    using assms Cong-class-membs-are-Cong rep-in-Cong-class by simp
lemma composite-of-normal-arr:
```

```
shows \llbracketR.arr t;u\in\mathfrak{N};R.composite-of ut t'\rrbracket\Longrightarrow\Longrightarrow t'\approxt
    by (meson Cong'.intros(3) Cong-char R.composite-of-def R.con-implies-arr(2)
            ide-closed R.prfx-implies-con Cong-closure-props(2,4) R.sources-composite-of)
    lemma composite-of-arr-normal:
    shows \llbracketarr t;u\in\mathfrak{N};R.composite-of tu t'\rrbracket\Longrightarrow (' }\mp@subsup{t}{0}{}
    by (meson Cong-closure-props(3) R.composite-of-def ide-closed prfx-closed)
end
```


2.3.5 Coherent Normal Sub-RTS's

A coherent normal sub-RTS is one that satisfies a parallel moves property with respect to arbitrary transitions. The congruence \approx induced by a coherent normal sub-RTS is fully substitutive with respect to consistency and residuation, and in fact coherence is equivalent to substitutivity in this context.

```
locale coherent-normal-sub-rts \(=\) normal-sub-rts +
    assumes coherent: \(\llbracket\) R.arr \(t ; u \in \mathfrak{N} ; u^{\prime} \in \mathfrak{N} ;\) R.sources \(u=\) R.sources \(u^{\prime} ;\)
            R.targets \(u=\) R.targets \(u^{\prime} ;\) R.sources \(t=\) R.sources \(u \rrbracket\)
                \(\Longrightarrow t \backslash u \approx_{0} t \backslash u^{\prime}\)
```

context normal-sub-rts
begin

The above "parallel moves" formulation of coherence is equivalent to the following formulation, which involves "opposing spans".

```
lemma coherent-iff:
shows \(\left(\forall t u u^{\prime}\right.\). R.arr \(t \wedge u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge\) R.sources \(t=\) R.sources \(u \wedge\)
                        R.sources \(u=R\).sources \(u^{\prime} \wedge R\).targets \(u=\) R.targets \(u^{\prime}\)
                    \(\left.\longrightarrow t \backslash u \approx_{0} t \backslash u^{\prime}\right)\)
    \(\longleftrightarrow\)
    \(\left(\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge\right.\)
                        \(R\).sources \(v=R\).sources \(w \wedge R\).sources \(v^{\prime}=R\).sources \(w^{\prime} \wedge\)
                        R.targets \(w=\) R.targets \(w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}\)
                        \(\left.\longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}\right)\)
proof
    assume 1: \(\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge\)
                            R.sources \(v=R\).sources \(w \wedge R\).sources \(v^{\prime}=R\).sources \(w^{\prime} \wedge\)
                        R.targets \(w=\) R.targets \(w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}\)
                        \(\longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}\)
    show \(\forall t u u^{\prime}\). R.arr \(t \wedge u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge\) R.sources \(t=R\).sources \(u \wedge\)
                        R.sources \(u=R\).sources \(u^{\prime} \wedge R\).targets \(u=\) R.targets \(u^{\prime}\)
                    \(\longrightarrow t \backslash u \approx_{0} t \backslash u^{\prime}\)
    proof (intro allI impI, elim conjE)
        fix \(t u u^{\prime}\)
        assume \(t: R\).arr \(t\) and \(u: u \in \mathfrak{N}\) and \(u^{\prime}: u^{\prime} \in \mathfrak{N}\)
```

and tu: R.sources $t=R$.sources u and sources: R.sources $u=R$.sources u^{\prime} and targets: R.targets $u=R$.targets u^{\prime}
show $t \backslash u \approx_{0} t \backslash u^{\prime}$
by (metis 1 Cong $_{0}$-reflexive Resid-along-normal-preserves-Cong g_{0} sources t targets tu $u u^{\prime}$)
qed
next
assume 1: $\forall t u u^{\prime}$. R.arr $t \wedge u \in \mathfrak{N} \wedge u^{\prime} \in \mathfrak{N} \wedge$ R.sources $t=$ R.sources $u \wedge$ R.sources $u=R$.sources $u^{\prime} \wedge R$.targets $u=R$.targets u^{\prime} $\longrightarrow t \backslash u \approx_{0} t \backslash u^{\prime}$
show $\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge$
R.sources $v=R$.sources $w \wedge R$.sources $v^{\prime}=R$.sources $w^{\prime} \wedge$ R.targets $w=$ R.targets $w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$
$\longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
proof (intro allI impI, elim conjE)
fix $t t^{\prime} v v^{\prime} w w^{\prime}$
assume $v: v \in \mathfrak{N}$ and $v^{\prime}: v^{\prime} \in \mathfrak{N}$ and $w: w \in \mathfrak{N}$ and $w^{\prime}: w^{\prime} \in \mathfrak{N}$
and vw: R.sources $v=R$.sources w and $v^{\prime} w^{\prime}: R$.sources $v^{\prime}=R$.sources w^{\prime}
and $w w^{\prime}$: R.targets $w=$ R.targets w^{\prime}
and $t v t^{\prime} v^{\prime}:(t \backslash v) \backslash\left(t^{\prime} \backslash v^{\prime}\right) \in \mathfrak{N}$ and $t^{\prime} v^{\prime} t v:\left(t^{\prime} \backslash v^{\prime}\right) \backslash(t \backslash v) \in \mathfrak{N}$
show $t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
proof -
have 3: R.sources $t=$ R.sources $v \wedge$ R.sources $t^{\prime}=R$.sources v^{\prime} using R.con-imp-coinitial by (meson Cong $g_{0}-i m p-c o n t v t^{\prime} v^{\prime} t^{\prime} v^{\prime} t v$
R.coinitial-iff R.arr-resid-iff-con)
have 2: $t \backslash w \approx t^{\prime} \backslash w^{\prime}$
using Cong-closure-props
by (metis tut' $v^{\prime} t^{\prime} v^{\prime} t v 3 v w v^{\prime} w^{\prime} v v^{\prime} w w^{\prime}$)
obtain $z z^{\prime}$ where $z z^{\prime}: z \in \mathfrak{N} \wedge z^{\prime} \in \mathfrak{N} \wedge(t \backslash w) \backslash z \approx_{0}\left(t^{\prime} \backslash w^{\prime}\right) \backslash z^{\prime}$ using 2 by auto
have $(t \backslash w) \backslash z \approx_{0}(t \backslash w) \backslash z^{\prime}$
proof -
have R.coinitial $((t \backslash w) \backslash z)\left((t \backslash w) \backslash z^{\prime}\right)$
proof -
have R.targets $z=R$.targets z^{\prime}
using $w w^{\prime} z z^{\prime}$
by (metis Cong ${ }_{0}$-imp-coinitial Congo-imp-con R.con-sym-ax R.null-is-zero(2)
R.sources-resid R.conI)
moreover have R.sources $((t \backslash w) \backslash z)=$ R.targets z
using $w w^{\prime} z z^{\prime}$
by (metis R.con-def R.not-arr-null R.null-is-zero(2)
R.sources-resid elements-are-arr)
moreover have R.sources $\left((t \backslash w) \backslash z^{\prime}\right)=R$.targets z^{\prime}
using $w w^{\prime} z z^{\prime}$
by (metis Cong-closure-props(4) Cong-imp-arr(2) R.arr-resid-iff-con R.coinitial-iff R.con-imp-coinitial R.rts-axioms rts.sources-resid)
ultimately show ?thesis
using $w w^{\prime} z z^{\prime}$

```
                    apply (intro R.coinitialI)
                    apply auto
                            by (meson R.arr-resid-iff-con R.con-implies-arr(2) elements-are-arr)
                qed
                thus ?thesis
                        apply (intro conjI)
                        by (metis 1 R.coinitial-iff R.con-imp-coinitial R.arr-resid-iff-con
                        R.sources-resid zz')+
            qed
            hence (t\w)\\mp@subsup{z}{}{\prime}\mp@subsup{\approx}{0}{}(\mp@subsup{t}{}{\prime}\\mp@subsup{w}{}{\prime})\\mp@subsup{z}{}{\prime}
                        using zz' Congo-transitive Cong}\mp@subsup{g}{0}{\prime-symmetric by blast
            thus ?thesis
            using zz' Resid-along-normal-reflects-Congo by metis
        qed
        qed
    qed
end
context coherent-normal-sub-rts
begin
```

The proof of the substitutivity of \approx with respect to residuation only uses coherence in the "opposing spans" form.
lemma coherent ${ }^{\prime}$:
assumes $v \in \mathfrak{N}$ and $v^{\prime} \in \mathfrak{N}$ and $w \in \mathfrak{N}$ and $w^{\prime} \in \mathfrak{N}$
and R.sources $v=R$.sources w and R.sources $v^{\prime}=R$.sources w^{\prime}
and R.targets $w=R$.targets w^{\prime} and $t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$
shows $t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
proof
show $(t \backslash w) \backslash\left(t^{\prime} \backslash w^{\prime}\right) \in \mathfrak{N}$
using assms coherent coherent-iff by meson
show $\left(t^{\prime} \backslash w^{\prime}\right) \backslash(t \backslash w) \in \mathfrak{N}$
using assms coherent coherent-iff by meson
qed
The relation \approx is substitutive with respect to both arguments of residuation.
lemma Cong-subst:
assumes $t \approx t^{\prime}$ and $u \approx u^{\prime}$ and $t \frown u$ and R.sources $t^{\prime}=R$.sources u^{\prime}
shows $t^{\prime} \frown u^{\prime}$ and $t \backslash u \approx t^{\prime} \backslash u^{\prime}$
proof -
obtain $v v^{\prime}$ where $v v^{\prime}: v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$ using assms by auto
obtain $w w^{\prime}$ where $w w^{\prime}: w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge u \backslash w \approx_{0} u^{\prime} \backslash w^{\prime}$ using assms by auto
let $? x=t \backslash v$ and $? x^{\prime}=t^{\prime} \backslash v^{\prime}$
let $? y=u \backslash w$ and $? y^{\prime}=u^{\prime} \backslash w^{\prime}$
have $x x^{\prime}: ? x \approx_{0} ? x^{\prime}$ using assms $v v^{\prime}$ by blast

```
have yy':?y }\mp@subsup{\approx}{0}{}\mathrm{ ? 'y'
    using assms ww' by blast
have 1:t\w \mp@subsup{~}{0}{}\mp@subsup{t}{}{\prime}\\mp@subsup{w}{}{\prime}
proof -
    have R.sources v=R.sources w
        by (metis (no-types, lifting) Congo-imp-con R.arr-resid-iff-con assms(3)
            R.con-imp-common-source R.con-implies-arr(2) R.sources-eqI ww' xx')
    moreover have R.sources v'}=R\mathrm{ .sources w'
        by (metis (no-types, lifting) assms(4) R.coinitial-iff R.con-imp-coinitial
            Congo-imp-con R.arr-resid-iff-con ww' xx')
    moreover have R.targets w=R.targets w'
        by (metis Cong}\mp@subsup{0}{0}{-implies-Cong Cong}\mp@subsup{0}{0}{-imp-coinitial Cong-imp-arr(1)
            R.arr-resid-iff-con R.sources-resid ww')
    ultimately show ?thesis
        using assms vv' ww'
        by (intro coherent' [of v v' w w't]) auto
qed
have 2: t \}\\mp@subsup{w}{}{\prime}\frown\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime
    using assms 1 ww'
by (metis Cong}\mp@subsup{0}{0}{}\mathrm{ -subst-left(1) Congo-subst-right(1) Resid-along-normal-preserves-reflects-con
        R.arr-resid-iff-con R.coinitial-iff R.con-imp-coinitial elements-are-arr)
thus 3: t' \frown u'
    using ww' R.cube by force
have t\u\approx((t\u)\(w\u))\(?\mp@subsup{y}{}{\prime}\?y)
proof -
    have }t\u\approx(t\u)\(w\backslashu
        by (metis Cong-closure-props(4) assms(3) R.con-imp-coinitial
                elements-are-arr forward-stable R.arr-resid-iff-con R.con-implies-arr(1)
                R.sources-resid ww')
    also have \ldots. }\approx((t\u)\(w\backslashu))\(?\mp@subsup{y}{}{\prime}\?y
        by (metis Congo-imp-con Cong-closure-props(4) Cong-imp-arr(2)
            R.arr-resid-iff-con calculation R.con-implies-arr(2) R.targets-resid-sym
            R.sources-resid ww')
    finally show ?thesis by simp
qed
also have ... \approx (((t\w)\?y)\(?\mp@subsup{y}{}{\prime}\?y))
    using ww'
    by (metis Cong-imp-arr(2) Cong-reflexive calculation R.cube)
also have ... \approx (((t'\ \w')\?y)\(?\mp@subsup{y}{}{\prime}\?y))
    using 1 Congo-subst-left(2) [of t\w(t'\ \ ' ') ?y]
        Congo-subst-left(2) [of (t\w)\?y (t'\ \ w')\?y ? y'\ \y]
    by (meson 2 Congo-implies-Cong Congo-subst-Con Cong-imp-arr(2)
                R.arr-resid-iff-con calculation ww')
also have ... }\approx((\mp@subsup{t}{}{\prime}\\mp@subsup{w}{}{\prime})\?\mp@subsup{y}{}{\prime})\(?y\?y'
```



```
also have 4:\ldots. }\approx=(\mp@subsup{t}{}{\prime}\\mp@subsup{u}{}{\prime})\(\mp@subsup{w}{}{\prime}\\mp@subsup{u}{}{\prime}
    using 2 ww'
```



```
also have ... \approxt'\ \ '
```

using $w w^{\prime} 34$
by (metis Cong-closure-props(4) Cong-imp-arr(2) Cong-symmetric R.con-imp-coinitial R.con-implies-arr (2) forward-stable R.sources-resid R.arr-resid-iff-con)
finally show $t \backslash u \approx t^{\prime} \backslash u^{\prime}$ by simp
qed
lemma Cong-subst-con:
assumes R.sources $t=R$.sources u and R.sources $t^{\prime}=R$.sources u^{\prime} and $t \approx t^{\prime}$ and $u \approx u^{\prime}$ shows $t \frown u \longleftrightarrow t^{\prime} \frown u^{\prime}$
using assms by (meson Cong-subst(1) Cong-symmetric)
lemma Cong g_{0}-composite-of-arr-normal:
assumes R.composite-of $t u t^{\prime}$ and $u \in \mathfrak{N}$
shows $t^{\prime} \approx_{0} t$
using assms backward-stable R.composite-of-def ide-closed by blast
lemma Cong-composite-of-normal-arr:
assumes R.composite-of $u t t^{\prime}$ and $u \in \mathfrak{N}$
shows $t^{\prime} \approx t$
using assms
by (meson Cong-closure-props(2-4) R.arr-composite-of ide-closed R.composite-of-def R.sources-composite-of)
end
context normal-sub-rts
begin
Coherence is not an arbitrary property: here we show that substitutivity of congruence in residuation is equivalent to the "opposing spans" form of coherence.
lemma Cong-subst-iff-coherent':
shows $\left(\forall t t^{\prime} u u^{\prime} . t \approx t^{\prime} \wedge u \approx u^{\prime} \wedge t \frown u \wedge\right.$ R.sources $t^{\prime}=R$.sources u^{\prime}

$$
\left.\longrightarrow t^{\prime} \frown u^{\prime} \wedge t \backslash u \approx t^{\prime} \backslash u^{\prime}\right)
$$

\longleftrightarrow $\left(\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge\right.$ R.sources $v=R$.sources $w \wedge R$.sources $v^{\prime}=R$.sources $w^{\prime} \wedge$ R.targets $w=$ R.targets $w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$

$$
\left.\longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}\right)
$$

proof
assume 1: $\forall t t^{\prime} u u^{\prime} . t \approx t^{\prime} \wedge u \approx u^{\prime} \wedge t \frown u \wedge$ R.sources $t^{\prime}=R$.sources u^{\prime}

$$
\longrightarrow t^{\prime} \frown u^{\prime} \wedge t \backslash u \approx t^{\prime} \backslash u^{\prime}
$$

show $\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge$
R.sources $v=R$.sources $w \wedge R$.sources $v^{\prime}=R$.sources $w^{\prime} \wedge$
R.targets $w=$ R.targets $w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$
$\longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
proof (intro allI impI, elim conjE)
fix $t t^{\prime} v v^{\prime} w w^{\prime}$
assume $v: v \in \mathfrak{N}$ and $v^{\prime}: v^{\prime} \in \mathfrak{N}$ and $w: w \in \mathfrak{N}$ and $w^{\prime}: w^{\prime} \in \mathfrak{N}$
and sources-vw: R.sources $v=$ R.sources w
and sources-v' w^{\prime} : R.sources $v^{\prime}=R$.sources w^{\prime}
and targets-w w^{\prime} : R.targets $w=$ R.targets w^{\prime}
and $t t^{\prime}:(t \backslash v) \backslash\left(t^{\prime} \backslash v^{\prime}\right) \in \mathfrak{N}$ and $t^{\prime} t:\left(t^{\prime} \backslash v^{\prime}\right) \backslash(t \backslash v) \in \mathfrak{N}$
show $t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
proof -
have 2: $\wedge t t^{\prime} u u^{\prime} . \llbracket t \approx t^{\prime} ; u \approx u^{\prime} ; t \frown u ;$ R.sources $t^{\prime}=R$.sources $u^{\rrbracket} \rrbracket$ $\Longrightarrow t^{\prime} \frown u^{\prime} \wedge t \backslash u \approx t^{\prime} \backslash u^{\prime}$
using 1 by blast
have 3: $t \backslash w \approx t \backslash v \wedge t^{\prime} \backslash w^{\prime} \approx t^{\prime} \backslash v^{\prime}$
by (metis $t t^{\prime} t^{\prime} t$ sources-vw sources-v'w' Cong $_{0}$-subst-right(2) Cong-closure-props(4)
Cong-def R.arr-resid-iff-con Cong-closure-props(3) Cong-imp-arr (1)
normal-is-Cong-closed $\left.v w v^{\prime} w^{\prime}\right)$
have $(t \backslash w) \backslash\left(t^{\prime} \backslash w^{\prime}\right) \approx(t \backslash v) \backslash\left(t^{\prime} \backslash v^{\prime}\right)$
using $2\left[o f t \backslash w t \backslash v t^{\prime} \backslash w^{\prime} t^{\prime} \backslash v\right] 3$
by (metis $t t^{\prime} t^{\prime} t$ targets-ww' 1 Cong g_{0}-imp-con Cong-imp-arr (1) Cong-symmetric R.arr-resid-iff-con R.sources-resid)
moreover have $\left(t^{\prime} \backslash w^{\prime}\right) \backslash(t \backslash w) \approx\left(t^{\prime} \backslash v^{\prime}\right) \backslash(t \backslash v)$
using 23
by (metis $t t^{\prime} t^{\prime} t$ targets-ww' Cong $_{0}$-imp-con Cong-symmetric Cong-imp-arr (1) R.arr-resid-iff-con R.sources-resid)
ultimately show ?thesis
by (meson $t t^{\prime} t^{\prime} t$ normal-is-Cong-closed Cong-symmetric)
qed
qed
next
assume 1: $\forall t t^{\prime} v v^{\prime} w w^{\prime} . v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge$

$$
\begin{aligned}
& \text { R.sources } v=R \text {.sources } w \wedge R \text {.sources } v^{\prime}=R \text {.sources } w^{\prime} \wedge \\
& \text { R.targets } w=R \text {.targets } w^{\prime} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime} \\
& \longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime} \\
& \text { show } \forall t t^{\prime} u u^{\prime} . t \approx t^{\prime} \wedge u \approx u^{\prime} \wedge t \frown u \wedge \text { R.sources } t^{\prime}=R \text {.sources } u^{\prime} \\
& \longrightarrow t^{\prime} \frown u^{\prime} \wedge t \backslash u \approx t^{\prime} \backslash u^{\prime} \\
& \text { proof (intro allI impI, elim conjE, intro conjI) } \\
& \text { have } *: \bigwedge t t^{\prime} v v^{\prime} w w^{\prime} . \llbracket v \in \mathfrak{N} ; v^{\prime} \in \mathfrak{N} ; w \in \mathfrak{N} ; w^{\prime} \in \mathfrak{N} \text {; } \\
& \text { R.sources } v=R \text {.sources } w ; \text { R.sources } v^{\prime}=R \text {.sources } w^{\prime} ; \\
& \text { R.targets } v=R \text {.targets } v^{\prime} ; R \text {.targets } w=R \text {.targets } w^{\prime} ; \\
& t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime} \rrbracket \\
& \Longrightarrow t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}
\end{aligned}
$$

using 1 by metis
fix $t t^{\prime} u u^{\prime}$
assume $t t^{\prime}: t \approx t^{\prime}$ and $u u^{\prime}: u \approx u^{\prime}$ and con: $t \frown u$
and $t^{\prime} u^{\prime}:$ R.sources $t^{\prime}=$ R.sources u^{\prime}
obtain $v v^{\prime}$ where $v v^{\prime}: v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge t \backslash v \approx_{0} t^{\prime} \backslash v^{\prime}$ using $t t^{\prime}$ by auto
obtain $w w^{\prime}$ where $w w^{\prime}: w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge u \backslash w \approx_{0} u^{\prime} \backslash w^{\prime}$
using $u u^{\prime}$ by auto
let $? x=t \backslash v$ and $?^{\prime} x^{\prime}=t^{\prime} \backslash v^{\prime}$
let ? $y=u \backslash w$ and $? y^{\prime}=u^{\prime} \backslash w^{\prime}$
have $x x^{\prime}: ? x \approx_{0} ? x^{\prime}$
using $t t^{\prime} v v^{\prime}$ by blast

```
have \(y y^{\prime}: ? y \approx_{0}\) ? \(y^{\prime}\)
    using \(u u^{\prime} w w^{\prime}\) by blast
have 1: \(t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}\)
proof -
    have \(R\).sources \(v=R\).sources \(w \wedge R\).sources \(v^{\prime}=R\).sources \(w^{\prime}\)
    proof
        show R.sources \(v^{\prime}=R\).sources \(w^{\prime}\)
            using Cong \(_{0}\)-imp-con R.arr-resid-iff-con R.coinitial-iff R.con-imp-coinitial
                    \(t^{\prime} u^{\prime} v v^{\prime} w w^{\prime}\)
            by metis
        show R.sources \(v=R\).sources \(w\)
            by (metis con elements-are-arr R.not-arr-null R.null-is-zero(2) R.conI
                R.con-imp-common-source rts.sources-eqI R.rts-axioms vv' ww')
    qed
    moreover have R.targets \(v=R\).targets \(v^{\prime} \wedge\) R.targets \(w=R\).targets \(w^{\prime}\)
        by (metis Cong \(0_{0}\)-imp-coinitial Cong \(0_{0}\)-imp-con R.arr-resid-iff-con
            R.con-implies-arr(2) R.sources-resid \(\left.v v^{\prime} w w^{\prime}\right)\)
    ultimately show ?thesis
        using \(v v^{\prime} w w^{\prime} x x^{\prime}\)
        by (intro * [of v v \(\left.v^{\prime} w w^{\prime} t t^{\prime}\right]\) ) auto
qed
have 2: \(t^{\prime} \backslash w^{\prime} \frown u^{\prime} \backslash w^{\prime}\)
    using \(1 t t^{\prime} w w^{\prime}\)
```



```
        R.con-implies-arr(2) resid-along-elem-preserves-con)
thus 3: \(t^{\prime} \frown u^{\prime}\)
    using \(w w^{\prime}\) R.cube by force
have \(t \backslash u \approx(t \backslash u) \backslash(w \backslash u)\)
    by (metis Cong-closure-props(4) R.arr-resid-iff-con con R.con-imp-coinitial
        elements-are-arr forward-stable R.con-implies-arr(2) R.sources-resid ww')
also have \((t \backslash u) \backslash(w \backslash u) \approx((t \backslash u) \backslash(w \backslash u)) \backslash\left(? y^{\prime} \backslash ? y\right)\)
    using \(y y^{\prime}\)
    by (metis Cong \(0_{0}\)-imp-con Cong-closure-props(4) Cong-imp-arr(2)
    R.arr-resid-iff-con calculation R.con-implies-arr(2) R.sources-resid R.targets-resid-sym)
also have \(\ldots \approx\left(((t \backslash w) \backslash ? y) \backslash\left(? y^{\prime} \backslash ? y\right)\right)\)
    using \(w w^{\prime}\)
    by (metis Cong-imp-arr(2) Cong-reflexive calculation R.cube)
also have \(\ldots \approx\left(\left(\left(t^{\prime} \backslash w^{\prime}\right) \backslash ? y\right) \backslash\left(? y^{\prime} \backslash ? y\right)\right)\)
proof -
    have \(((t \backslash w) \backslash ? y) \backslash\left(? y^{\prime} \backslash ? y\right) \approx_{0}\left(\left(t^{\prime} \backslash w^{\prime}\right) \backslash ? y\right) \backslash\left(? y^{\prime} \backslash ? y\right)\)
        using 12 Cong \(_{0}\)-subst-left(2)
        by (meson Cong \({ }_{0}\)-subst-Con calculation Cong-imp-arr(2) R.arr-resid-iff-con ww')
    thus ?thesis
        using Cong \(0_{0}\)-implies-Cong by presburger
qed
also have \(\ldots \approx\left(\left(t^{\prime} \backslash w^{\prime}\right) \backslash ? y^{\prime}\right) \backslash\left(? y \backslash ? y^{\prime}\right)\)
    by (meson 2 Cong \(_{0}\)-implies-Cong Cong \(0_{0}\)-subst-right(2) ww')
also have 4: ... \(\approx\left(t^{\prime} \backslash u^{\prime}\right) \backslash\left(w^{\prime} \backslash u^{\prime}\right)\)
    using \(2 w w^{\prime}\)
```

```
        by (metis Cong o-imp-con Cong-closure-props(4) Cong-symmetric R.cube R.sources-resid)
        also have ... \approxt t \u '
            using ww' 2 3 4
            by (metis Cong'.intros(1) Cong'.intros(4) Cong-char Cong-imp-arr(2)
                    R.arr-resid-iff-con forward-stable R.con-imp-coinitial R.sources-resid
                    R.con-implies-arr(2))
        finally show }t\u\approx\mp@subsup{t}{}{\prime}\\mp@subsup{u}{}{\prime}\mathrm{ by simp
        qed
qed
end
```


2.3.6 Quotient by Coherent Normal Sub-RTS

We now define the quotient of an RTS by a coherent normal sub-RTS and show that it is an extensional RTS.

```
locale quotient-by-coherent-normal \(=\)
    \(R\) : rts +
    \(N\) : coherent-normal-sub-rts
begin
definition Resid (infix \(\{\backslash\}\) 70)
where \(\mathcal{T}\{\backslash\} \mathcal{U} \equiv\)
        if N.is-Cong-class \(\mathcal{T} \wedge\). is-Cong-class \(\mathcal{U} \wedge(\exists t u . t \in \mathcal{T} \wedge u \in \mathcal{U} \wedge t \frown u)\)
        then N.Cong-class
            (fst (SOME tu. fst \(t u \in \mathcal{T} \wedge\) snd \(t u \in \mathcal{U} \wedge f s t ~ t u \frown\) snd tu) \(\backslash\)
            snd (SOME tu. fst \(t u \in \mathcal{T} \wedge\) snd \(t u \in \mathcal{U} \wedge f s t t u \frown\) snd \(t u)\) )
        else \{\}
sublocale partial-magma Resid
    using N.Cong-class-is-nonempty Resid-def
    by unfold-locales metis
lemma is-partial-magma:
shows partial-magma Resid
    ..
lemma null-char:
shows null \(=\{ \}\)
    using N.Cong-class-is-nonempty Resid-def
    by (metis null-is-zero(2))
lemma Resid-by-members:
assumes \(N\).is-Cong-class \(\mathcal{T}\) and \(N\).is-Cong-class \(\mathcal{U}\) and \(t \in \mathcal{T}\) and \(u \in \mathcal{U}\) and \(t \frown u\)
shows \(\mathcal{T}\{\backslash\} \mathcal{U}=\{t \backslash u\}\)
    using assms Resid-def someI-ex [of \(\lambda t u\). fst \(t u \in \mathcal{T} \wedge\) snd \(t u \in \mathcal{U} \wedge\) fst tu \(\frown\) snd \(t u]\)
    apply \(\operatorname{simp}\)
    by (meson N.Cong-class-membs-are-Cong N.Cong-class-eqI N.Cong-subst(2)
        R.coinitial-iff R.con-imp-coinitial)
```

abbreviation Con (infix $\{\frown\} 50)$
where $\mathcal{T}\{\frown\} \mathcal{U} \equiv \mathcal{T}\{\backslash\} \mathcal{U} \neq\{ \}$
lemma Con-char:
shows $\mathcal{T}\{\frown\} \mathcal{U} \longleftrightarrow$
N.is-Cong-class $\mathcal{T} \wedge N$.is-Cong-class $\mathcal{U} \wedge(\exists t u . t \in \mathcal{T} \wedge u \in \mathcal{U} \wedge t \frown u)$
by (metis (no-types, opaque-lifting) N.Cong-class-is-nonempty N.is-Cong-classI Resid-def Resid-by-members R.arr-resid-iff-con)
lemma Con-sym:
assumes Con $\mathcal{T} \mathcal{U}$
shows $\operatorname{Con} \mathcal{U} \mathcal{T}$
using assms Con-char R.con-sym by meson
lemma is-Cong-class-Resid:
assumes $\mathcal{T}\{\frown\} \mathcal{U}$
shows N.is-Cong-class $(\mathcal{T}\{\backslash\} \mathcal{U})$
using assms Con-char Resid-by-members R.arr-resid-iff-con N.is-Cong-classI by auto
lemma Con-witnesses:
assumes $\mathcal{T}\{\frown\} \mathcal{U}$ and $t \in \mathcal{T}$ and $u \in \mathcal{U}$
shows $\exists v w . v \in \mathfrak{N} \wedge w \in \mathfrak{N} \wedge t \backslash v \frown u \backslash w$
proof -
have 1: N.is-Cong-class $\mathcal{T} \wedge N$.is-Cong-class $\mathcal{U} \wedge(\exists t u . t \in \mathcal{T} \wedge u \in \mathcal{U} \wedge t \frown u)$ using assms Con-char by simp
obtain $t^{\prime} u^{\prime}$ where $t^{\prime} u^{\prime}: t^{\prime} \in \mathcal{T} \wedge u^{\prime} \in \mathcal{U} \wedge t^{\prime} \frown u^{\prime}$
using 1 by auto
have 2: $t^{\prime} \approx t \wedge u^{\prime} \approx u$
using assms $1 t^{\prime} u^{\prime} N$.Cong-class-membs-are-Cong by auto
obtain $v v^{\prime}$ where $v v^{\prime}: v \in \mathfrak{N} \wedge v^{\prime} \in \mathfrak{N} \wedge t^{\prime} \backslash v \approx_{0} t \backslash v^{\prime}$ using 2 by auto
obtain $w w^{\prime}$ where $w w^{\prime}: w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge u^{\prime} \backslash w \approx_{0} u \backslash w^{\prime}$
using 2 by auto
have 3: $w \frown v$
by (metis R.arr-resid-iff-con R.con-def R.con-imp-coinitial R.ex-un-null
N.elements-are-arr R.null-is-zero(2) N.resid-along-elem-preserves-con $\left.t^{\prime} u^{\prime} v v^{\prime} w w^{\prime}\right)$
have R.seq $v(w \backslash v)$
by (simp add: N.elements-are-arr R.seq-def 3 vv')
obtain x where x : R.composite-of $v(w \backslash v) x$ using N.composite-closed-left 〈R.seq $v(w \backslash v)\rangle v v^{\prime}$ by blast
obtain x^{\prime} where $x^{\prime}: R$.composite-of $v^{\prime}(w \backslash v) x^{\prime}$ using $x v v^{\prime} N$.composite-closed-left
by (metis N.Congo-implies-Cong N.Cong g_{0}-imp-coinitial N.Cong-imp-arr (1)
R.composable-def R.composable-imp-seq R.con-implies-arr(2) R.seq-def R.sources-resid R.arr-resid-iff-con)
have $*: t^{\prime} \backslash x \approx_{0} t \backslash x^{\prime}$
by (metis N.coherent' N.composite-closed N.forward-stable R.con-imp-coinitial R.targets-composite-of 3 R.con-sym R.sources-composite-of $v v^{\prime} w w^{\prime} x x^{\prime}$)

```
obtain \(y\) where \(y\) : R.composite-of \(w(v \backslash w) y\)
    using \(x v v^{\prime} w w^{\prime}\)
    by (metis R.arr-resid-iff-con R.composable-def R.composable-imp-seq
        R.con-imp-coinitial R.seq-def R.sources-resid N.elements-are-arr
        N.forward-stable N.composite-closed-left)
    obtain \(y^{\prime}\) where \(y^{\prime}\) : R.composite-of \(w^{\prime}(v \backslash w) y^{\prime}\)
    using \(y w w^{\prime}\)
    by (metis N.Cong \({ }_{0}\)-imp-coinitial N.Cong-closure-props(3) N.Cong-imp-arr(1)
        R.composable-def R.composable-imp-seq R.con-implies-arr(2) R.seq-def
        R.sources-resid N.composite-closed-left R.arr-resid-iff-con)
    have \(* *: u^{\prime} \backslash y \approx_{0} u \backslash y^{\prime}\)
    by (metis N.composite-closed N.forward-stable R.con-imp-coinitial R.targets-composite-of
        〈 \(w \frown v\rangle N\).coherent \({ }^{\prime}\) R.sources-composite-of \(v v^{\prime} w w^{\prime} y y^{\prime}\) )
    have \(4: x \in \mathfrak{N} \wedge y \in \mathfrak{N}\)
    using \(x y v v^{\prime} w w^{\prime} * * *\)
    by (metis 3 N.composite-closed \(N\).forward-stable R.con-imp-coinitial R.con-sym)
    have \(t \backslash x^{\prime} \frown u \backslash y^{\prime}\)
    proof -
    have \(t \backslash x^{\prime} \approx_{0} t^{\prime} \backslash x\)
        using \(*\) by simp
    moreover have \(t^{\prime} \backslash x \frown u^{\prime} \backslash y\)
    proof -
        have \(t^{\prime} \backslash x \frown u^{\prime} \backslash x\)
        using \(t^{\prime} u^{\prime} v v^{\prime} w w^{\prime} 4 *\)
        by (metis \(N\).Resid-along-normal-preserves-reflects-con N.elements-are-arr
            R.coinitial-iff R.con-imp-coinitial R.arr-resid-iff-con)
        moreover have \(u^{\prime} \backslash x \approx_{0} u^{\prime} \backslash y\)
            using \(w w^{\prime} x y\)
        by (metis 4 N.Cong \(g_{0}\)-imp-coinitial N.Cong \(g_{0}\)-imp-con N.Cong \(g_{0}\)-transitive
                    N.coherent' \(N\).factor-closed(2) R.sources-composite-of
                    R.targets-composite-of R.targets-resid-sym)
        ultimately show ?thesis
        using \(N\).Cong \(g_{0}\)-subst-right by blast
    qed
    moreover have \(u^{\prime} \backslash y \approx_{0} u \backslash y^{\prime}\)
        using \(* *\) R.con-sym by simp
    ultimately show ?thesis
        using N.Cong \(g_{0}\)-subst-Con by auto
    qed
    moreover have \(x^{\prime} \in \mathfrak{N} \wedge y^{\prime} \in \mathfrak{N}\)
        using \(x^{\prime} y^{\prime} v v^{\prime} w w^{\prime}\)
        by (metis N.Cong-composite-of-normal-arr N.Cong-imp-arr(2) N.composite-closed
        R.con-imp-coinitial N.forward-stable R.arr-resid-iff-con)
    ultimately show ?thesis by auto
qed
abbreviation Arr
where \(\operatorname{Arr} \mathcal{T} \equiv \operatorname{Con} \mathcal{T} \mathcal{T}\)
```

lemma Arr-Resid:
assumes Con $\mathcal{T} \mathcal{U}$
shows $\operatorname{Arr}(\mathcal{T}\{\backslash\} \mathcal{U})$
by (metis Con-char N.Cong-class-memb-is-arr R.arrE N.rep-in-Cong-class assms is-Cong-class-Resid)
lemma Cube:
assumes $\operatorname{Con}(\mathcal{V}\{\backslash\} \mathcal{T})(\mathcal{U}\{\backslash\} \mathcal{T})$
shows $(\mathcal{V}\{\backslash\} \mathcal{T})\{\backslash\}(\mathcal{U}\{\backslash\} \mathcal{T})=(\mathcal{V}\{\backslash\} \mathcal{U})\{\backslash\}(\mathcal{T}\{\backslash\} \mathcal{U})$
proof -
obtain $t u$ where $t u: t \in \mathcal{T} \wedge u \in \mathcal{U} \wedge t \frown u \wedge \mathcal{T}\{\backslash\} \mathcal{U}=\{t \backslash u\}$
using assms
by (metis Con-char N.Cong-class-is-nonempty R.con-sym Resid-by-members)
obtain $t^{\prime} v$ where $t^{\prime} v: t^{\prime} \in \mathcal{T} \wedge v \in \mathcal{V} \wedge t^{\prime} \frown v \wedge \mathcal{T}\{\backslash\} \mathcal{V}=\left\{t^{\prime} \backslash v\right\}$
using assms
by (metis Con-char N.Cong-class-is-nonempty Resid-by-members Con-sym)
have $t t^{\prime}: t \approx t^{\prime}$
using assms
by (metis N.Cong-class-membs-are-Cong N.Cong-class-is-nonempty Resid-def t'v tu)
obtain $w w^{\prime}$ where $w w^{\prime}: w \in \mathfrak{N} \wedge w^{\prime} \in \mathfrak{N} \wedge t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}$
using $t u t^{\prime} v t t^{\prime}$ by auto
have $1: \mathcal{U}\{\backslash\} \mathcal{T}=\{u \backslash t\} \wedge \mathcal{V}\{\backslash\} \mathcal{T}=\left\{v \backslash t^{\prime}\right\}$
by (metis Con-char N.Cong-class-is-nonempty R.con-sym Resid-by-members assms t'v tu)
obtain $x x^{\prime}$ where $x x^{\prime}: x \in \mathfrak{N} \wedge x^{\prime} \in \mathfrak{N} \wedge(u \backslash t) \backslash x \frown\left(v \backslash t^{\prime}\right) \backslash x^{\prime}$
using 1 Con-witnesses $\left[o f \mathcal{U}\{\backslash\} \mathcal{T} \mathcal{V}\{\backslash\} \mathcal{T} u \backslash t v \backslash t^{\prime}\right]$
by (metis N.arr-in-Cong-class R.con-sym t'v tu assms Con-sym R.arr-resid-iff-con)
have R.seq $t x$
by (metis R.arr-resid-iff-con R.coinitial-iff R.con-imp-coinitial R.seqI(2)
R.sources-resid $x x^{\prime}$)
have R.seq $t^{\prime} x^{\prime}$
by (metis R.arr-resid-iff-con R.sources-resid R.coinitialE R.con-imp-coinitial R.seqI(2) $x x^{\prime}$)
obtain $t x$ where $t x$: R.composite-of $t x t x$
using $x x^{\prime}{ }^{\langle }$R.seq $\left.t x\right\rangle N$.composite-closed-right [of $\left.x t\right] R$.composable-def by auto
obtain $t^{\prime} x^{\prime}$ where $t^{\prime} x^{\prime}$: R.composite-of $t^{\prime} x^{\prime} t^{\prime} x^{\prime}$
using $x x^{\prime}\left\langle R\right.$.seq $\left.t^{\prime} x^{\prime}\right\rangle N$.composite-closed-right [of $\left.x^{\prime} t^{\prime}\right] R$.composable-def by auto
let $? t x-w=t x \backslash w$ and $? t^{\prime} x^{\prime}-w^{\prime}=t^{\prime} x^{\prime} \backslash w^{\prime}$
let ? $w-t x=(w \backslash t) \backslash x$ and ? $w^{\prime}-t^{\prime} x^{\prime}=\left(w^{\prime} \backslash t^{\prime}\right) \backslash x^{\prime}$
let $? u-t x=(u \backslash t) \backslash x$ and $? v-t^{\prime} x^{\prime}=\left(v \backslash t^{\prime}\right) \backslash x^{\prime}$
let $? u-w=u \backslash w$ and $? v-w^{\prime}=v \backslash w^{\prime}$
let ? $w-u=w \backslash u$ and ? $w^{\prime}-v=w^{\prime} \backslash v$
have $w-t x-i n-\mathfrak{N}: ~ ? ~ w-t x \in \mathfrak{N}$
using $t x w w^{\prime} x x^{\prime}$ R.con-composite-of-iff [of $t x$ tx w]
by (metis (full-types) N.Cong 0_{0}-composite-of-arr-normal N.Cong ${ }_{0}$-subst-left(1)
N.forward-stable R.null-is-zero(2) R.con-imp-coinitial R.conI R.con-sym)
have $w^{\prime}-t^{\prime} x^{\prime}-i n-\mathfrak{N}: ? w^{\prime}-t^{\prime} x^{\prime} \in \mathfrak{N}$
using $t^{\prime} x^{\prime} w w^{\prime} x x^{\prime}$ R.con-composite-of-iff [of $\left.t^{\prime} x^{\prime} t^{\prime} x^{\prime} w^{\prime}\right]$
by (metis (full-types) N.Cong 0_{0}-composite-of-arr-normal N.Cong ${ }_{0}$-subst-left(1) R.con-sym N.forward-stable R.null-is-zero(2) R.con-imp-coinitial R.conI)

```
have 2: ? \(t x-w \approx_{0}\) ? \(t^{\prime} x^{\prime}-w^{\prime}\)
proof -
    have ? \(t x-w \approx_{0} t \backslash w\)
    using \(t^{\prime} x^{\prime} t x w w^{\prime} x x^{\prime} N\). Cong \(_{0}\)-composite-of-arr-normal [of \(\left.t x t x\right]\). Cong \(_{0}\)-subst-left(2)
    by (metis N.Cong \({ }_{0}\)-transitive R.conI)
    also have \(t \backslash w \approx_{0} t^{\prime} \backslash w^{\prime}\)
        using ww' by blast
    also have \(t^{\prime} \backslash w^{\prime} \approx_{0} ? t^{\prime} x^{\prime}-w^{\prime}\)
    using \(t^{\prime} x^{\prime} t x w w^{\prime} x x^{\prime} N\).Cong \(g_{0}\)-composite-of-arr-normal [of \(\left.t^{\prime} x^{\prime} t^{\prime} x\right] N\).Cong \(g_{0}\)-subst-left(2)
        by (metis \(N\).Cong \(g_{0}\)-transitive R.conI)
    finally show ?thesis by blast
qed
obtain \(z\) where \(z:\) R.composite-of ? \(t x-w\left(? t^{\prime} x^{\prime}-w^{\prime} \backslash ? t x-w\right) z\)
    by (metis 2 R.arr-resid-iff-con R.con-implies-arr(2) N.elements-are-arr
        N.composite-closed-right R.seqI(1) R.sources-resid)
obtain \(z^{\prime}\) where \(z^{\prime}: R\).composite-of ? \(t^{\prime} x^{\prime}-w^{\prime}\left(? t x-w \backslash ? t^{\prime} x^{\prime}-w^{\prime}\right) z^{\prime}\)
    by (metis 2 R.arr-resid-iff-con R.con-implies-arr(2) N.elements-are-arr
        N.composite-closed-right R.seqI(1) R.sources-resid)
have 3: \(z \approx_{0} z^{\prime}\)
    using 2 N.diamond-commutes-upto-Cong \(0_{0}\) N.Cong \(g_{0}-i m p-c o n z z^{\prime}\) by blast
have R.targets \(z=\) R.targets \(z^{\prime}\)
    by (metis R.targets-resid-sym z \(z^{\prime}\) R.targets-composite-of R.conI)
have Con-z-uw: \(z \frown\) ? \(u-w\)
proof -
    have ? tx-w ? ? \(u-w\)
        by (meson 3 N.Cong \(0_{0}\)-composite-of-arr-normal N.Cong \({ }_{0}\)-subst-left(1)
            R.bounded-imp-con R.con-implies-arr (1) R.con-imp-coinitial
            N.resid-along-elem-preserves-con tu \(t x w w^{\prime} x x^{\prime} z z^{\prime}\) R.arr-resid-iff-con)
    thus ?thesis
        using 2 N.Cong \(g_{0}\)-composite-of-arr-normal N.Cong \(g_{0}\)-subst-left(1) \(z\) by blast
qed
moreover have Con- \(z^{\prime}-v w^{\prime}: z^{\prime} \frown ? v-w^{\prime}\)
proof -
    have ? \(t^{\prime} x^{\prime}-w^{\prime} \frown ? v-w^{\prime}\)
        by (meson 3 N.Cong \(0_{0}\)-composite-of-arr-normal N.Cong \(0_{0}\)-subst-left(1)
            R.bounded-imp-con \(t^{\prime} v t^{\prime} x^{\prime} w w^{\prime} x x^{\prime} z z^{\prime}\) R.con-imp-coinitial
            N.resid-along-elem-preserves-con R.arr-resid-iff-con R.con-implies-arr(1))
    thus ?thesis
        by (meson 2 N.Cong \(g_{0}\)-composite-of-arr-normal N.Cong \(g_{0}\)-subst-left(1) \(z^{\prime}\) )
qed
moreover have \(C o n-z-v w^{\prime}: z \frown ? v-w^{\prime}\)
    using 3 Con-z'-vw' N. Cong \(_{0}\)-subst-left(1) by blast
moreover have \(*: ? u-w \backslash z \frown\) ? \(v-w^{\prime} \backslash z\)
proof -
    obtain \(y\) where \(y\) : R.composite-of \((w \backslash t x)\left(? t^{\prime} x^{\prime}-w^{\prime} \backslash ? t x-w\right) y\)
        by (metis 2 R.arr-resid-iff-con R.composable-def R.composable-imp-seq
            R.con-imp-coinitial N.elements-are-arr N.composite-closed-right
            R.seq-def R.targets-resid-sym ww' z N.forward-stable)
obtain \(y^{\prime}\) where \(y^{\prime}: R\). composite-of \(\left(w^{\prime} \backslash t^{\prime} x^{\prime}\right)\left(? t x-w \backslash ? t^{\prime} x^{\prime}-w^{\prime}\right) y^{\prime}\)
```

by (metis 2 R.arr-resid-iff-con R.composable-def R.composable-imp-seq R.con-imp-coinitial N.elements-are-arr N.composite-closed-right R.targets-resid-sym ww ${ }^{\prime} z^{\prime}$ R.seq-def N.forward-stable)
have y-comp: R.composite-of $(w \backslash t x)\left(\left(t^{\prime} x^{\prime} \backslash w^{\prime}\right) \backslash(t x \backslash w)\right) y$
using y by simp
have y-in-normal: $y \in \mathfrak{N}$
by (metis 2 Con-z-uw R.arr-iff-has-source R.arr-resid-iff-con N.composite-closed R.con-imp-coinitial R.con-implies-arr(1) N.forward-stable R.sources-composite-of $w w^{\prime} y$-comp z)
have y-coinitial: R.coinitial $y(u \backslash t x)$
using y R.arr-composite-of R.sources-composite-of
apply (intro R.coinitialI)
apply auto
apply (metis N. Cong $_{0}$-composite-of-arr-normal N. Cong $_{0}$-subst-right(1)
R.composite-of-cancel-left R.con-sym R.not-ide-null R.null-is-zero(2) R.sources-resid R.conI tu tx xx')
by (metis R.arr-iff-has-source R.not-arr-null R.sources-resid empty-iff R.conI)
have y-con: $y \frown u \backslash t x$
using y-in-normal y-coinitial
by (metis R.coinitial-iff N.elements-are-arr N.forward-stable R.arr-resid-iff-con)
have $A: ? u-w \backslash z \sim(u \backslash t x) \backslash y$
proof -
have $(u \backslash t x) \backslash y \sim((u \backslash t x) \backslash(w \backslash t x)) \backslash\left(? t^{\prime} x^{\prime}-w^{\prime} \backslash ? t x-w\right)$
using y-comp y-con
R.resid-composite-of(3) [of $\left.w \backslash t x ? t^{\prime} x^{\prime}-w^{\prime} \backslash ? t x-w y u \backslash t x\right]$
by simp
also have $((u \backslash t x) \backslash(w \backslash t x)) \backslash\left(? t^{\prime} x^{\prime}-w^{\prime} \backslash ? t x-w\right) \sim ? u-w \backslash z$
by (metis Con-z-uw R.resid-composite-of(3) z R.cube)
finally show ?thesis by blast
qed
have y^{\prime}-comp: R.composite-of $\left(w^{\prime} \backslash t^{\prime} x\right)$ (?tx-w $\left.\backslash ? t^{\prime} x^{\prime}-w^{\prime}\right) y^{\prime}$
using y^{\prime} by simp
have y^{\prime}-in-normal: $y^{\prime} \in \mathfrak{N}$
by (metis 2 Con-z'-vw' R.arr-iff-has-source R.arr-resid-iff-con N.composite-closed R.con-imp-coinitial R.con-implies-arr (1) N.forward-stable R.sources-composite-of ww' y^{\prime}-comp z^{\prime})
have y^{\prime}-coinitial: R.coinitial $y^{\prime}\left(v \backslash t^{\prime} x^{\prime}\right)$
using y^{\prime} R.coinitial-def
by (metis Con-z'-vw' R.arr-resid-iff-con R.composite-ofE R.con-imp-coinitial R.con-implies-arr (1) R.cube R.prfx-implies-con R.resid-composite-of (1) R.sources-resid z^{\prime})
have y^{\prime}-con: $y^{\prime} \frown v \backslash t^{\prime} x^{\prime}$
using y^{\prime}-in-normal y^{\prime}-coinitial
by (metis R.coinitial-iff N.elements-are-arr N.forward-stable R.arr-resid-iff-con)
have $B: ? v-w^{\prime} \backslash z^{\prime} \sim\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime}$
proof -
have $\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime} \sim\left(\left(v \backslash t^{\prime} x^{\prime}\right) \backslash\left(w^{\prime} \backslash t^{\prime} x\right)\right) \backslash\left(? t x-w \backslash ? t^{\prime} x^{\prime}-w^{\prime}\right)$
using y^{\prime}-comp y^{\prime}-con
R.resid-composite-of(3) [of $\left.w^{\prime} \backslash t^{\prime} x^{\prime} ? t x-w \backslash ? t^{\prime} x^{\prime}-w^{\prime} y^{\prime} v \backslash t^{\prime} x\right]$
by blast
also have $\left(\left(v \backslash t^{\prime} x^{\prime}\right) \backslash\left(w^{\prime} \backslash t^{\prime} x^{\prime}\right)\right) \backslash\left(? t x-w \backslash ? t^{\prime} x^{\prime}-w^{\prime}\right) \sim ? v-w^{\prime} \backslash z^{\prime}$ by (metis Con-z'-vw' R.cube R.resid-composite-of(3) z^{\prime})
finally show ?thesis by blast
qed
have $C: u \backslash t x \frown v \backslash t^{\prime} x^{\prime}$
using $t x t^{\prime} x^{\prime} x x^{\prime}$ R.con-sym R.cong-subst-right(1) R.resid-composite-of(3)
by (meson R.coinitial-iff R.arr-resid-iff-con y^{\prime}-coinitial y-coinitial)
have $D: y \approx_{0} y^{\prime}$
proof -
have $y \approx_{0} w \backslash t x$
using $2 N$.Cong g_{0}-composite-of-arr-normal y-comp by blast
also have $w \backslash t x \approx_{0} w^{\prime} \backslash t^{\prime} x^{\prime}$
proof -
have $w \backslash t x \in \mathfrak{N} \wedge w^{\prime} \backslash t^{\prime} x^{\prime} \in \mathfrak{N}$
using N.factor-closed (1) y-comp y-in-normal y^{\prime}-comp y^{\prime}-in-normal by blast moreover have R.coinitial $(w \backslash t x)\left(w^{\prime} \backslash t^{\prime} x^{\prime}\right)$
by (metis C R.coinitial-def R.con-implies-arr (2) N.elements-are-arr R.sources-resid calculation R.con-imp-coinitial R.arr-resid-iff-con y-con) ultimately show ?thesis
by (meson R.arr-resid-iff-con R.con-imp-coinitial N.forward-stable N.elements-are-arr)
qed
also have $w^{\prime} \backslash t^{\prime} x^{\prime} \approx_{0} y^{\prime}$ using 2 N.Cong g_{0}-composite-of-arr-normal y^{\prime}-comp by blast
finally show? thesis by blast
qed
have par-y-y': R.sources $y=$ R.sources $y^{\prime} \wedge$ R.targets $y=R$.targets y^{\prime}
using D N.Cong 0_{0}-imp-coinitial R.targets-composite-of y^{\prime}-comp y-comp $z z^{\prime}$
$\left\langle R\right.$.targets $z=$ R.targets $\left.z^{\prime}\right\rangle$
by presburger
have $E:(u \backslash t x) \backslash y \frown\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime}$
proof -
have $(u \backslash t x) \backslash y \frown\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y$
using C N.Resid-along-normal-preserves-reflects-con R.coinitial-iff
y-coinitial y-in-normal
by presburger
moreover have $\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y \approx_{0}\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime}$
using par-y- $y^{\prime} N$.coherent R.coinitial-iff y^{\prime}-coinitial y^{\prime}-in-normal y-in-normal by presburger
ultimately show ?thesis
using N.Cong ${ }_{0}$-subst-right(1) by blast
qed
hence ? $u-w \backslash z \frown ? v-w^{\prime} \backslash z^{\prime}$
proof -
have $(u \backslash t x) \backslash y \sim ? u-w \backslash z$ using A by simp

```
    moreover have \((u \backslash t x) \backslash y \frown\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime}\)
        using \(E\) by blast
    moreover have \(\left(v \backslash t^{\prime} x^{\prime}\right) \backslash y^{\prime} \sim ? v-w^{\prime} \backslash z^{\prime}\)
    using \(B\) R.cong-symmetric by blast
    moreover have R.sources \(((u \backslash w) \backslash z)=\) R.sources \(\left(\left(v \backslash w^{\prime}\right) \backslash z^{\prime}\right)\)
    by (simp add: Con-z'-vw' Con-z-uw R.con-sym \(\left\langle\right.\) R.targets \(z=\) R.targets \(\left.z^{\prime}\right\rangle\) )
    ultimately show ?thesis
        by (meson N.Cong \(0_{0}\)-subst-Con N.ide-closed)
    qed
    moreover have ? \(v-w^{\prime} \backslash z^{\prime} \approx ? v-w^{\prime} \backslash z\)
    by (meson 3 Con-z-vw' N.CongI N.Cong \(0_{0}\)-subst-right(2) R.con-sym)
    moreover have R.sources \(\left(\left(v \backslash w^{\prime}\right) \backslash z\right)=\) R.sources \(((u \backslash w) \backslash z)\)
    by (metis R.con-implies-arr(1) R.sources-resid calculation(1) calculation(2)
        N.Cong-imp-arr(2) R.arr-resid-iff-con)
    ultimately show ?thesis
    by (metis N.Cong-reflexive N.Cong-subst(1) R.con-implies-arr(1))
qed
ultimately have \(* *\) : ? \(v-w^{\prime} \backslash z \frown\) ? \(u-w \backslash z \wedge\)
                        \(\left(? v-w^{\prime} \backslash z\right) \backslash(? u-w \backslash z)=\left(? v-w^{\prime} \backslash ? u-w\right) \backslash(z \backslash ? u-w)\)
    by (meson R.con-sym R.cube)
have Cong-t-z: \(t \approx z\)
    by (metis 2 N.Cong \(0_{0}\)-composite-of-arr-normal N.Cong-closure-props(2-3)
        N.Cong-closure-props(4) N.Cong-imp-arr(2) R.coinitial-iff R.con-imp-coinitial
        tx \(w w^{\prime} x x^{\prime} z\) R.arr-resid-iff-con)
have Cong-u-uw: \(u \approx\) ? \(u-w\)
    by (meson Con-z-uw N.Cong-closure-props(4) R.coinitial-iff R.con-imp-coinitial
        ww' R.arr-resid-iff-con)
    have Cong-v-vw': \(v \approx ? v-w^{\prime}\)
    by (meson Con-z-vw' N.Cong-closure-props(4) R.coinitial-iff ww' R.con-imp-coinitial
        R.arr-resid-iff-con)
    have \(\mathcal{T}: N\).is-Cong-class \(\mathcal{T} \wedge z \in \mathcal{T}\)
    by (metis (no-types, lifting) Cong-t-z N.Cong-class-eqI N.Cong-class-is-nonempty
        N.Cong-class-memb-Cong-rep N.Cong-class-rep N.Cong-imp-arr(2) N.arr-in-Cong-class
        tu assms Con-char)
    have \(\mathcal{U}: N\).is-Cong-class \(\mathcal{U} \wedge\) ? \(u-w \in \mathcal{U}\)
    by (metis Con-char Con-z-uw Cong-u-uw Int-iff N.Cong-class-eqI' N.Cong-class-eqI
        N.arr-in-Cong-class R.con-implies-arr(2) N.is-Cong-classI tu assms empty-iff)
have \(\mathcal{V}\) : N.is-Cong-class \(\mathcal{V} \wedge ? v-w^{\prime} \in \mathcal{V}\)
    by (metis Con-char Con-z-vw' Cong-v-vw' Int-iff N.Cong-class-eqI' N.Cong-class-eqI
        N.arr-in-Cong-class R.con-implies-arr(2) N.is-Cong-classI t'v assms empty-iff)
show \((\mathcal{V}\{\backslash\} \mathcal{T})\{\backslash\}(\mathcal{U}\{\backslash\} \mathcal{T})=(\mathcal{V}\{\backslash\} \mathcal{U})\{\backslash\}(\mathcal{T}\{\backslash\} \mathcal{U})\)
proof -
    have \((\mathcal{V}\{\backslash\} \mathcal{T})\{\backslash\}(\mathcal{U}\{\backslash\} \mathcal{T})=\left\{\left(? v-w^{\prime} \backslash z\right) \backslash(? u-w \backslash z)\right\}\)
        using \(\mathcal{T} \mathcal{U} \mathcal{V} *\) Resid-by-members
    by (metis \(* *\) Con-char N.arr-in-Cong-class R.arr-resid-iff-con assms R.con-implies-arr(2))
    moreover have \((\mathcal{V}\{\backslash \backslash\} \mathcal{U})\{\backslash\}(\mathcal{T}\{\backslash\} \mathcal{U})=\left\{\left(? v-w^{\prime} \backslash ? u-w\right) \backslash(z \backslash ? u-w)\right\}\)
        using Resid-by-members \(\left[\right.\) of \(\mathcal{V} \mathcal{U}\) ? \(v-w^{\prime}\) ? \(\left.u-w\right]\) Resid-by-members [of \(\mathcal{T} \mathcal{U} z\) ?u-w]
            Resid-by-members \(\left[\right.\) of \(\mathcal{V}\{\backslash\} \mathcal{U} \mathcal{T}\{\backslash\} \mathcal{U}\) ? \(\left.v-w^{\prime} \backslash ? u-w z \backslash ? u-w\right]\)
        by (metis \(\mathcal{T} \mathcal{U} \mathcal{V} * * *\) N.arr-in-Cong-class R.con-implies-arr(2) N.is-Cong-classI
```

```
            R.resid-reflects-con R.arr-resid-iff-con)
    ultimately show ?thesis
    using ** by simp
    qed
qed
sublocale residuation Resid
    using null-char Con-sym Arr-Resid Cube
    by unfold-locales metis+
lemma is-residuation:
shows residuation Resid
```

lemma arr-char:
shows $\operatorname{arr} \mathcal{T} \longleftrightarrow$ N.is-Cong-class \mathcal{T}
by (metis N.is-Cong-class-def arrI not-arr-null null-char N.Cong-class-memb-is-arr Con-char R.arrE arrE arr-resid conI)
lemma ide-char:
shows ide $\mathcal{U} \longleftrightarrow \operatorname{arr} \mathcal{U} \wedge \mathcal{U} \cap \mathfrak{N} \neq\{ \}$
proof
show ide $\mathcal{U} \Longrightarrow \operatorname{arr} \mathcal{U} \wedge \mathcal{U} \cap \mathfrak{N} \neq\{ \}$
apply (elim ideE)
by (metis Con-char N.Cong ${ }_{0}$-reflexive Resid-by-members disjoint-iff null-char
N.arr-in-Cong-class R.arrE R.arr-resid arr-resid conE)
show $\operatorname{arr} \mathcal{U} \wedge \mathcal{U} \cap \mathfrak{N} \neq\{ \} \Longrightarrow$ ide \mathcal{U}
proof -
assume $\mathcal{U}:$ arr $\mathcal{U} \wedge \mathcal{U} \cap \mathfrak{N} \neq\{ \}$
obtain u where u : R.arr $u \wedge u \in \mathcal{U} \cap \mathfrak{N}$
using \mathcal{U} arr-char
by (metis IntI N.Cong-class-memb-is-arr disjoint-iff)
show ?thesis
by (metis IntD1 IntD2 N.Cong-class-eqI N.Cong-closure-props(4) N.arr-in-Cong-class
N.is-Cong-classI Resid-by-members \mathcal{U} arrE arr-char disjoint-iff ideI
N.Cong-class-eqI' R.arrE u)
qed
qed
lemma ide-char':
shows ide $\mathcal{A} \longleftrightarrow \operatorname{arr} \mathcal{A} \wedge \mathcal{A} \subseteq \mathfrak{N}$
by (metis Int-absorb2 Int-emptyI N.Cong-class-memb-Cong-rep N.Cong-closure-props(1) ide-char not-arr-null null-char N.normal-is-Cong-closed arr-char subsetI)
lemma con-char ${ }_{Q C N}$:
shows con $\mathcal{T} \mathcal{U} \longleftrightarrow$
N.is-Cong-class $\mathcal{T} \wedge N$.is-Cong-class $\mathcal{U} \wedge(\exists t u . t \in \mathcal{T} \wedge u \in \mathcal{U} \wedge t \frown u)$
by (metis Con-char conE conI null-char)
lemma con-imp-coinitial-members-are-con:
assumes $\operatorname{con} \mathcal{T} \mathcal{U}$ and $t \in \mathcal{T}$ and $u \in \mathcal{U}$ and R.sources $t=R$.sources u
shows $t \frown u$
by (meson assms N.Cong-subst(1) N.is-Cong-classE con-char ${ }_{Q C N}$)

```
sublocale rts Resid
proof
    show 1: \(\bigwedge \mathcal{A} \mathcal{T} . \llbracket\) ide \(\mathcal{A} ; \operatorname{con} \mathcal{T} \mathcal{A} \rrbracket \Longrightarrow \mathcal{T}\{\backslash\} \mathcal{A}=\mathcal{T}\)
    proof -
        fix \(\mathcal{A} \mathcal{T}\)
        assume \(\mathcal{A}\) : ide \(\mathcal{A}\) and con: con \(\mathcal{T} \mathcal{A}\)
        obtain \(t a\) where \(t a: t \in \mathcal{T} \wedge a \in \mathcal{A} \wedge R\).con \(t a \wedge \mathcal{T}\{\backslash\} \mathcal{A}=\{t \backslash a\}\)
            using con con-char \({ }_{Q C N}\) Resid-by-members by auto
        have \(a \in \mathfrak{N}\)
            using \(\mathcal{A}\) ta ide-char' by auto
        hence \(t \backslash a \approx t\)
        by (meson N.Cong-closure-props(4) N.Cong-symmetric R.coinitialE R.con-imp-coinitial
            \(t a)\)
        thus \(\mathcal{T}\{\backslash\} \mathcal{A}=\mathcal{T}\)
        using \(t a\)
        by (metis N.Cong-class-eqI N.Cong-class-memb-Cong-rep N.Cong-class-rep con con-char \({ }_{Q C N}\) )
    qed
    show \(\wedge \mathcal{T} . \operatorname{arr} \mathcal{T} \Longrightarrow\) ide \((\operatorname{trg} \mathcal{T})\)
    by (metis N.Congo-reflexive Resid-by-members disjoint-iff ide-char N.Cong-class-memb-is-arr
            N.arr-in-Cong-class N.is-Cong-class-def arr-char R.arrE R.arr-resid resid-arr-self)
    show \(\wedge \mathcal{A} \mathcal{T}\). \(\llbracket\) ide \(\mathcal{A}\); con \(\mathcal{A} \mathcal{T} \rrbracket \Longrightarrow\) ide \((\mathcal{A}\{\backslash\} \mathcal{T})\)
    by (metis 1 arrE arr-resid con-sym ideE ideI cube)
    show \(\wedge \mathcal{T} \mathcal{U}\). con \(\mathcal{T} \mathcal{U} \Longrightarrow \exists \mathcal{A}\). ide \(\mathcal{A} \wedge \operatorname{con} \mathcal{A} \mathcal{T} \wedge \operatorname{con} \mathcal{A} \mathcal{U}\)
    proof -
        fix \(\mathcal{T} \mathcal{U}\)
        assume \(\mathcal{T U}\) : con \(\mathcal{T} \mathcal{U}\)
        obtain \(t u\) where \(t u: \mathcal{T}=\{t\} \wedge \mathcal{U}=\{u\} \wedge t \frown u\)
        using \(\mathcal{T U}\) con-char \({ }_{Q C N}\) arr-char
        by (metis N.Cong-class-memb-Cong-rep N.Cong-class-eqI N.Cong-class-rep)
    obtain \(a\) where \(a: a \in R\).sources \(t\)
        using \(\mathcal{T U}\) tu R.con-implies-arr (1) R.arr-iff-has-source by blast
        have ide \(\{a\} \wedge \operatorname{con}\{a\} \mathcal{T} \wedge \operatorname{con}\{a\} \mathcal{U}\)
    proof (intro conjI)
            have 2: \(a \in \mathfrak{N}\)
            using \(\mathcal{T U}\) tu a arr-char N.ide-closed R.sources-def by force
            show 3: ide \(\{a\}\)
            using \(\mathcal{T U}\) tu 2 a ide-char arr-char con-char \({ }_{Q C N}\)
            by (metis IntI N.arr-in-Cong-class N.is-Cong-classI empty-iff N.elements-are-arr)
            show con \(\{a\} \mathcal{T}\)
            using \(\mathcal{T U}\) tu 23 a ide-char arr-char con-char \({ }_{Q C N}\)
            by (metis N.arr-in-Cong-class R.composite-of-source-arr
                    R.composite-of-def R.prfx-implies-con R.con-implies-arr(1))
```

```
    show con {a}\mathcal{U}
    using \mathcal{TU tu a ide-char arr-char con-charaCN}
    by (metis N.arr-in-Cong-class R.composite-of-source-arr R.con-prfx-composite-of
        N.is-Cong-classI R.con-implies-arr(1) R.con-implies-arr(2))
    qed
    thus }\exists\mathcal{A}\mathrm{ . ide }\mathcal{A}\wedge\mathrm{ con }\mathcal{A}\mathcal{T}\wedge\mathrm{ con }\mathcal{A}\mathcal{U}\mathrm{ by auto
qed
show }\wedge\mathcal{T}\mathcal{U}\mathcal{V}\mathrm{ . \ide (T }{\\}\mathcal{U}); con \mathcal{U}V\rrbracket\Longrightarrow\operatorname{con}(\mathcal{T}{\}\mathcal{U})(\mathcal{V}{\}\mathcal{U}
proof -
    fix }\mathcal{T}\mathcal{U}\mathcal{V
    assume T\mathcal{U}: ide ( }\mathcal{T}{\}\mathcal{U}
    assume \mathcal{UV}}\mathrm{ : con }\mathcal{U}\mathcal{V
    obtain tu where tu:t\in\mathcal{T}\wedgeu\in\mathcal{U}\wedget\frownu\wedge\mathcal{T}{\}\mathcal{U}={t\u}
        using }\mathcal{TU
        by (meson Resid-by-members ide-implies-arr quotient-by-coherent-normal.con-charQCN
            quotient-by-coherent-normal-axioms arr-resid-iff-con)
    obtain v u' where vu':v\in\mathcal{V}\wedge\mp@subsup{u}{}{\prime}\in\mathcal{U}\wedgev\frown\mp@subsup{u}{}{\prime}\wedge\mathcal{V}{\\\mathcal{U}={v\\mp@subsup{u}{}{\prime}}
        by (meson R.con-sym Resid-by-members }\mathcal{UV}\mathrm{ con-charQCN)
    have 1:u\approxu'
        using }\mathcal{UV}tuv\mp@subsup{u}{}{\prime
        by (meson N.Cong-class-membs-are-Cong con-charqCN)
    obtain ww'where ww':w\in\mathfrak{N}\wedge\mp@subsup{w}{}{\prime}\in\mathfrak{N}\wedgeu\w\mp@subsup{\approx}{0}{}\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime}
        using 1 by auto
    have 2: ((t\u)\(w\backslashu))\((\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})\(u\w))
                        ((v\\mp@subsup{u}{}{\prime})\(\mp@subsup{w}{}{\prime}\\mp@subsup{u}{}{\prime}))\((u\w)\(\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime}))
    proof -
        have}((t\u)\(w\backslashu))\((\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})\(u\w))\in\mathfrak{N
        proof -
            have}t\u\in\mathfrak{N
            using tu N.arr-in-Cong-class R.arr-resid-iff-con TU ide-char' by blast
            hence (t \u)\(w\u)\in\mathfrak{N}
            by (metis N.Cong-closure-props(4) N.forward-stable R.null-is-zero(2)
                    R.con-imp-coinitial R.sources-resid N.Cong-imp-arr(2) R.arr-resid-iff-con
                        tu ww' R.conI)
            thus ?thesis
                    by (metis N.Cong-closure-props(4) N.normal-is-Cong-closed R.sources-resid
                    R.targets-resid-sym N.elements-are-arr R.arr-resid-iff-con ww' R.conI)
        qed
        moreover have R.sources (((t\u)\(w\u))\((\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})\(u\w)))=
                    R.sources (((v\\mp@subsup{u}{}{\prime})\(\mp@subsup{w}{}{\prime}\\mp@subsup{u}{}{\prime}))\((u\w)\(\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})))
        proof -
            have R.sources (((t \u)\(w\backslashu))\((\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})\(u\w)))=
                R.targets ((\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})\(u\w))
                using R.arr-resid-iff-con N.elements-are-arr R.sources-resid calculation by blast
            also have ... = R.targets ((u\w)\(u'\ \w'))
                by (metis R.targets-resid-sym R.conI)
            also have ... = R.sources (((v\\mp@subsup{u}{}{\prime})\(\mp@subsup{w}{}{\prime}\\mp@subsup{u}{}{\prime}))\((u\w)\(\mp@subsup{u}{}{\prime}\\mp@subsup{w}{}{\prime})))
            using R.arr-resid-iff-con N.elements-are-arr R.sources-resid
            by (metis N.Cong-closure-props(4) N.Cong-imp-arr(2) R.con-implies-arr(1)
```

R.con-imp-coinitial N.forward-stable R.targets-resid-sym vu' ww')
finally show? ?thesis by simp
qed
ultimately show ?thesis
by (metis (no-types, lifting) N.Cong 0_{0}-imp-con N.Cong-closure-props(4)
N.Cong-imp-arr(2) R.arr-resid-iff-con R.con-imp-coinitial N.forward-stable R.null-is-zero(2) R.conI)
qed
moreover have $t \backslash u \approx((t \backslash u) \backslash(w \backslash u)) \backslash\left(\left(u^{\prime} \backslash w^{\prime}\right) \backslash(u \backslash w)\right)$
by (metis (no-types, opaque-lifting) N.Cong-closure-props(4) N.Cong-transitive
N.forward-stable R.arr-resid-iff-con R.con-imp-coinitial R.rts-axioms calculation rts.coinitial-iff $w w^{\prime}$)
moreover have $v \backslash u^{\prime} \approx\left(\left(v \backslash u^{\prime}\right) \backslash\left(w^{\prime} \backslash u^{\prime}\right)\right) \backslash\left((u \backslash w) \backslash\left(u^{\prime} \backslash w^{\prime}\right)\right)$
proof -
have $w^{\prime} \backslash u^{\prime} \in \mathfrak{N}$
by (meson R.con-implies-arr(2) R.con-imp-coinitial N.forward-stable $w w^{\prime}$ N. Cong $_{0}$-imp-con R.arr-resid-iff-con)
moreover have $(u \backslash w) \backslash\left(u^{\prime} \backslash w^{\prime}\right) \in \mathfrak{N}$
using $w w^{\prime}$ by blast
ultimately show ?thesis
by (meson 2 N.Cong-closure-props(2) N.Cong-closure-props(4) R.arr-resid-iff-con R.coinitial-iff R.con-imp-coinitial)
qed
ultimately show $\operatorname{con}(\mathcal{T}\{\backslash\} \mathcal{U})(\mathcal{V}\{\backslash\} \mathcal{U})$
using con-char $Q_{Q C N}$ N.Cong-class-def N.is-Cong-classI tu vu' R.arr-resid-iff-con by auto
qed
qed
lemma is-rts:
shows rts Resid
sublocale extensional-rts Resid
proof
fix $\mathcal{T} \mathcal{U}$
assume $\mathcal{T U}$: cong $\mathcal{T} \mathcal{U}$
show $\mathcal{T}=\mathcal{U}$
proof -
obtain $t u$ where $t u: \mathcal{T}=\{t\} \wedge \mathcal{U}=\{u\} \wedge t \frown u$
by (metis Con-char N.Cong-class-eqI N.Cong-class-memb-Cong-rep N.Cong-class-rep
$\mathcal{T} \mathcal{U}$ ide-char not-arr-null null-char)
have $t \approx_{0} u$
proof
show $t \backslash u \in \mathfrak{N}$
using tu $\mathcal{T U}$ Resid-by-members [of $\mathcal{T} \mathcal{U} t u]$
by (metis (full-types) N.arr-in-Cong-class R.con-implies-arr(1-2)
N.is-Cong-classI ide-char' R.arr-resid-iff-con subset-iff)
show $u \backslash t \in \mathfrak{N}$

```
            using tu \mathcal{TU Resid-by-members [of \mathcal{U}}\mathcal{T}ut] R.con-sym
            by (metis (full-types) N.arr-in-Cong-class R.con-implies-arr(1-2)
                    N.is-Cong-classI ide-char' R.arr-resid-iff-con subset-iff)
    qed
    hence t\approxu
        using N.Cong}\mp@subsup{0}{0}{-implies-Cong by simp
    thus }\mathcal{T}=\mathcal{U
        by (simp add: N.Cong-class-eqI tu)
    qed
qed
theorem is-extensional-rts:
shows extensional-rts Resid
```

lemma sources-char ${ }_{Q C N}$:
shows sources $\mathcal{T}=\left\{\mathcal{A}\right.$. arr $\mathcal{T} \wedge \mathcal{A}=\left\{a . \exists t a^{\prime} . t \in \mathcal{T} \wedge a^{\prime} \in\right.$ R.sources $\left.\left.t \wedge a^{\prime} \approx a\right\}\right\}$
proof -
let ? $\mathcal{A}=\left\{a . \exists t a^{\prime} . t \in \mathcal{T} \wedge a^{\prime} \in\right.$ R.sources $\left.t \wedge a^{\prime} \approx a\right\}$
have 1: arr $\mathcal{T} \Longrightarrow$ ide? \mathcal{A}
proof (unfold ide-char ${ }^{\prime}$, intro conjI)
assume \mathcal{T} : arr \mathcal{T}
show ? $\mathcal{A} \subseteq \mathfrak{N}$
using N.ide-closed N.normal-is-Cong-closed by blast
show arr? \mathcal{A}
proof -
have N.is-Cong-class? \mathcal{A}
proof
show ? $\mathcal{A} \neq\{ \}$
by (metis (mono-tags, lifting) Collect-empty-eq N.Cong-class-def N.Cong-imp-arr (1)
N.is-Cong-class-def N.sources-are-Cong R.arr-iff-has-source R.sources-def
\mathcal{T} arr-char mem-Collect-eq)
show $\bigwedge a a^{\prime} . \llbracket a \in ? \cdot \mathcal{A} ; a^{\prime} \approx a \rrbracket \Longrightarrow a^{\prime} \in ? \mathcal{A}$
using N.Cong-transitive by blast
show $\bigwedge a a^{\prime} . \llbracket a \in ? \mathcal{A} ; a^{\prime} \in ? \mathcal{A} \rrbracket \Longrightarrow a \approx a^{\prime}$
proof -
fix $a a^{\prime}$
assume $a: a \in ? \cdot \mathcal{A}$ and $a^{\prime}: a^{\prime} \in ? \cdot \mathcal{A}$
obtain $t b$ where $b: t \in \mathcal{T} \wedge b \in R$.sources $t \wedge b \approx a$
using a by blast
obtain $t^{\prime} b^{\prime}$ where $b^{\prime}: t^{\prime} \in \mathcal{T} \wedge b^{\prime} \in R$.sources $t^{\prime} \wedge b^{\prime} \approx a^{\prime}$
using a^{\prime} by blast
have $b \approx b^{\prime}$
using \mathcal{T} arr-char $b b^{\prime}$
by (meson IntD1 N.Cong-class-membs-are-Cong N.in-sources-respects-Cong)
thus $a \approx a^{\prime}$
by (meson N.Cong-symmetric N.Cong-transitive b b^{\prime})
qed
qed

```
        thus ?thesis
            using arr-char by auto
    qed
    qed
    moreover have arr }\mathcal{T}\Longrightarrow\operatorname{con}\mathcal{T}\mathrm{ ? A
    proof -
        assume \mathcal{T}: arr \mathcal{T}
    obtain ta where a: t\in\mathcal{T}\wedgea\inR.sources t
        using }\mathcal{T}\mathrm{ arr-char
        by (metis N.Cong-class-is-nonempty R.arr-iff-has-source empty-subsetI
            N.Cong-class-memb-is-arr subsetI subset-antisym)
    have }t\in\mathcal{T}\wedgea\in{a.\existst\mp@subsup{a}{}{\prime}.t\in\mathcal{T}\wedge\mp@subsup{a}{}{\prime}\inR.sources t\wedge a'\approxa}\wedget\frown
        using a N.Cong-reflexive R.sources-def R.con-implies-arr(2) by fast
    thus ?thesis
        using \mathcal{T }1\mathrm{ arr-char con-charQCN [of }\mathcal{T}\mathrm{ ? A] by auto}
    qed
    ultimately have arr }\mathcal{T}\Longrightarrow?{\mathcal{A}\in\mathrm{ sources }\mathcal{T
        using sources-def by blast
    thus ?thesis
    using 1 ide-char sources-char by auto
qed
lemma targets-char QCN:
shows targets }\mathcal{T}={\mathcal{B}.\operatorname{arr}\mathcal{T}\wedge\mathcal{B}=\mathcal{T}{\}\mathcal{T}
proof -
    have targets }\mathcal{T}={\mathcal{B}\mathrm{ . ide }\mathcal{B}\wedge\operatorname{con}(\mathcal{T}{\\}\mathcal{T})\mathcal{B}
    by (simp add: targets-def trg-def)
    also have ... ={\mathcal{B}.\operatorname{arr}\mathcal{T}\wedge ide \mathcal{B}\wedge(\existstu.t\in\mathcal{T}{\}\mathcal{T}\wedgeu\in\mathcal{B}\wedget\frownu)}
    using arr-resid-iff-con con-char QCN arr-char arr-def by auto
    also have ... ={\mathcal{B}.arr \mathcal{T}\wedge ide \mathcal{B}\wedge
                        (\existst\mp@subsup{t}{}{\prime}bu.t\in\mathcal{T}\wedge\mp@subsup{t}{}{\prime}\in\mathcal{T}\wedget\frown\mp@subsup{t}{}{\prime}\wedgeb\in{t\\mp@subsup{t}{}{\prime}}\wedgeu\in\mathcal{B}\wedgeb\frownu)}
    apply auto
        apply (metis (full-types) Resid-by-members cong-char not-ide-null null-char Con-char)
    by (metis Resid-by-members arr-char)
    also have ... ={\mathcal{B}.arr }\mathcal{T}\wedge\mathrm{ ide }\mathcal{B}
                    (\existst\mp@subsup{t}{}{\prime}b.t\in\mathcal{T}\wedge\mp@subsup{t}{}{\prime}\in\mathcal{T}\wedget\frown\mp@subsup{t}{}{\prime}\wedgeb\in{t\\mp@subsup{t}{}{\prime}}\wedgeb\in\mathcal{B})}
    proof -
    have }\wedge\mathcal{B}t\mp@subsup{t}{}{\prime}b.\llbracket\operatorname{arr}\mathcal{T};\mathrm{ ide }\mathcal{B};t\in\mathcal{T};\mp@subsup{t}{}{\prime}\in\mathcal{T};t\frown\mp@subsup{t}{}{\prime};b\in{t\\mp@subsup{t}{}{\prime}}
                \Longrightarrow(\existsu.u\in\mathcal{B}\wedgeb\frownu)\longleftrightarrow}\longleftrightarrowb\in\mathcal{B
    proof -
        fix \mathcal{B }t\mp@subsup{t}{}{\prime}b
        assume \mathcal{T}:\operatorname{arr}\mathcal{T}\mathrm{ and }\mathcal{B}:\mathrm{ ide }\mathcal{B}\mathrm{ and }t:t\in\mathcal{T}\mathrm{ and }\mp@subsup{t}{}{\prime}:\mp@subsup{t}{}{\prime}\in\mathcal{T}
            and }t\mp@subsup{t}{}{\prime}:t\frown\mp@subsup{t}{}{\prime}\mathrm{ and }b:b\in{t\\mp@subsup{t}{}{\prime}
            have }0:b\in\mathfrak{N
            by (metis Resid-by-members }\mathcal{T}\mathrm{ b ide-char' ide-trg arr-char subsetD t t t' trg-def tt')
            show }(\existsu.u\in\mathcal{B}\wedgeb\frownu)\longleftrightarrowb\in\mathcal{B
            using 0
            by (meson N.Cong-closure-props(3) N.forward-stable N.elements-are-arr
                    \mathcal{B}}\mathrm{ arr-char R.con-imp-coinitial N.is-Cong-classE ide-char' R.arrE
```

```
                R.con-sym subsetD)
    qed
    thus ?thesis
        using ide-char arr-char
        by (metis (no-types, lifting))
    qed
    also have ... ={\mathcal{B}.\operatorname{arr}\mathcal{T}\wedge ide \mathcal{B}\wedge(\existst\mp@subsup{t}{}{\prime}.t\in\mathcal{T}\wedge\mp@subsup{t}{}{\prime}\in\mathcal{T}\wedget\frown\mp@subsup{t}{}{\prime}\wedge{t\\mp@subsup{t}{}{\prime}}\subseteq\mathcal{B})}
    proof -
    have }\\mathcal{B}t\mp@subsup{t}{}{\prime}b.\llbracketarr \mathcal{T}; ide \mathcal{B};t\in\mathcal{T};\mp@subsup{t}{}{\prime}\in\mathcal{T};t\frown\mp@subsup{t}{}{\prime}
                        \Longrightarrow(\existsb.b\in{t\\mp@subsup{t}{}{\prime}}\wedgeb\in\mathcal{B})\longleftrightarrow{\mp@code{\ \t'}\subseteq\mathcal{B}}\mathbf{\})
        using ide-char arr-char
        apply (intro iffI)
        apply (metis IntI N.Cong-class-eqI' R.arr-resid-iff-con N.is-Cong-classI empty-iff
                        set-eq-subset)
    by (meson N.arr-in-Cong-class R.arr-resid-iff-con subsetD)
    thus ?thesis
    using ide-char arr-char
    by (metis (no-types,lifting))
qed
also have ... ={\mathcal{B}.arr \mathcal{T}\wedgeide \mathcal{B}\wedge\mathcal{T}{\}\mathcal{T}\subseteq\mathcal{B}}
    using arr-char ide-char Resid-by-members [of \mathcal{T}\mathcal{T}]
    by (metis (no-types, opaque-lifting) arrE con-char QCN)
    also have ... ={\mathcal{B}.\operatorname{arr}\mathcal{T}\wedge\mathcal{B}=\mathcal{T}{\}\mathcal{T}}
    by (metis (no-types, lifting) arr-has-un-target calculation con-ide-are-eq
        cong-reflexive mem-Collect-eq targets-def trg-def)
    finally show ?thesis by blast
qed
lemma src-charqCN:
shows src \mathcal{T}={a.arr \mathcal{T}\wedge(\existst\mp@subsup{a}{}{\prime}.t\in\mathcal{T}\wedge\mp@subsup{a}{}{\prime}\inR.sources t\wedge 的}\approxa)
    using sources-char QCN [of \mathcal{T}]
    by (simp add: null-char src-def)
lemma trg-char}\mp@subsup{Q}{QCN}{
shows }\operatorname{trg}\mathcal{T}=\mathcal{T}{\\}\mathcal{T
    unfolding trg-def by blast
```


Quotient Map

abbreviation quot
where quot $t \equiv\{t\}$
sublocale quot: simulation resid Resid quot
proof
show $\wedge t$. \neg R.arr $t \Longrightarrow\{t\}=$ null
using N.Cong-class-def N.Cong-imp-arr(1) null-char by force
show $\wedge t u . t \frown u \Longrightarrow \operatorname{con}\{t\}\{u\}$
by (meson N.arr-in-Cong-class N.is-Cong-classI R.con-implies-arr(1-2) con-char ${ }_{Q C N}$)
show $\wedge t u . t \frown u \Longrightarrow\{t \backslash u\}=\{t\}\{\backslash\}\{u\}$
by（metis N．arr－in－Cong－class N．is－Cong－classI R．con－implies－arr（1－2）Resid－by－members） qed
lemma quotient－is－simulation：
shows simulation resid Resid quot
end

2．3．7 Identities form a Coherent Normal Sub－RTS

We now show that the collection of identities of an RTS form a coherent normal sub－ RTS，and that the associated congruence \approx coincides with \sim ．Thus，every RTS can be factored by the relation \sim to obtain an extensional RTS．Although we could have shown that fact much earlier，we have delayed proving it so that we could simply obtain it as a special case of our general quotient result without redundant work．

```
context rts
begin
interpretation normal-sub-rts resid〈Collect ide〉
proof
    show \(\bigwedge t . t \in\) Collect ide \(\Longrightarrow\) arr \(t\)
        by blast
    show 1: \(\bigwedge a\). ide \(a \Longrightarrow a \in\) Collect ide
        by blast
    show \(\bigwedge u t . \llbracket u \in\) Collect ide; coinitial \(t u \rrbracket \Longrightarrow u \backslash t \in\) Collect ide
        by (metis 1 CollectD arr-def coinitial-iff
            con-sym in-sourcesE in-sourcesI resid-ide-arr)
    show \(\bigwedge u t . \llbracket u \in\) Collect ide; \(t \backslash u \in\) Collect ide \(\rrbracket \Longrightarrow t \in\) Collect ide
        using ide-backward-stable by blast
    show \(\wedge u t . \llbracket u \in\) Collect ide; seq \(u t \rrbracket \Longrightarrow \exists v\). composite-of \(u t v\)
        by (metis composite-of-source-arr ide-def in-sourcesI mem-Collect-eq seq-def
            resid-source-in-targets)
    show \(\bigwedge u t . \llbracket u \in\) Collect ide; seq \(t u \rrbracket \Longrightarrow \exists v\). composite-of \(t u v\)
        by (metis arrE composite-of-arr-target in-sourcesI seqE mem-Collect-eq)
qed
lemma identities-form-normal-sub-rts:
shows normal-sub-rts resid (Collect ide)
    ..
interpretation coherent-normal-sub-rts resid 〈Collect ide〉
    apply unfold-locales
    by (metis CollectD Congo-reflexive Cong-closure-props(4) Cong-imp-arr(2)
                arr-resid-iff-con resid-arr-ide)
```

```
lemma identities-form-coherent-normal-sub-rts:
shows coherent-normal-sub-rts resid (Collect ide)
```

```
lemma Cong-iff-cong:
```

lemma Cong-iff-cong:
shows Cong t u\longleftrightarrowt~u
shows Cong t u\longleftrightarrowt~u
by (metis CollectD Cong-def ide-closed resid-arr-ide
by (metis CollectD Cong-def ide-closed resid-arr-ide
Cong-closure-props(3) Cong-imp-arr (2) arr-resid-iff-con)
Cong-closure-props(3) Cong-imp-arr (2) arr-resid-iff-con)
end

```
end
```


2.4 Paths

A path in an RTS is a nonempty list of arrows such that the set of targets of each arrow suitably matches the set of sources of its successor. The residuation on the given RTS extends inductively to a residuation on paths, so that paths also form an RTS. The append operation on lists yields a composite for each pair of compatible paths.

```
locale paths-in-rts =
    \(R\) : rts
begin
fun Srcs
where Srcs []\(=\{ \}\)
    \(\mid \operatorname{Srcs}[t]=\) R.sources \(t\)
    \(\mid \operatorname{Srcs}(t \# T)=\) R.sources \(t\)
fun Trgs
where \(\operatorname{Trgs}[]=\{ \}\)
    | Trgs \([t]=\) R.targets \(t\)
    \(\mid \operatorname{Trg} s(t \# T)=\operatorname{Trg} s T\)
fun \(A r r\)
where Arr []\(=\) False
    | \(\operatorname{Arr}[t]=\) R.arr \(t\)
    \(\mid \operatorname{Arr}(t \neq T)=(\) R.arr \(t \wedge \operatorname{Arr} T \wedge\) R.targets \(t \subseteq \operatorname{Srcs} T)\)
fun Ide
where Ide []\(=\) False
    | Ide \([t]=\) R.ide \(t\)
    \(\mid\) Ide \((t \neq T)=(\) R.ide \(t \wedge\) Ide \(T \wedge\) R.targets \(t \subseteq \operatorname{Srcs} T)\)
lemma set-Arr-subset-arr:
shows Arr \(T \Longrightarrow\) set \(T \subseteq\) Collect R.arr
    apply (induct \(T\) )
    apply auto
    using Arr.elims(2)
    apply blast
    by (metis Arr.simps(3) Ball-Collect list.set-cases)
```

```
lemma Arr-imp-arr-hd [simp]:
assumes Arr T
shows R.arr (hd T)
    using assms
    by (metis Arr.simps(1) CollectD hd-in-set set-Arr-subset-arr subset-code(1))
lemma Arr-imp-arr-last [simp]:
assumes Arr T
shows R.arr (last T)
    using assms
    by (metis Arr.simps(1) CollectD in-mono last-in-set set-Arr-subset-arr)
lemma Arr-imp-Arr-tl [simp]:
assumes Arr T and tl T\not=[]
shows Arr (tl T)
    using assms
    by (metis Arr.simps(3) list.exhaust-sel list.sel(2))
lemma set-Ide-subset-ide:
shows Ide T\Longrightarrow set T\subseteqCollect R.ide
    apply (induct T)
    apply auto
    using Ide.elims(2)
    apply blast
    by (metis Ide.simps(3) Ball-Collect list.set-cases)
lemma Ide-imp-Ide-hd [simp]:
assumes Ide T
shows R.ide (hd T)
    using assms
    by (metis Ide.simps(1) CollectD hd-in-set set-Ide-subset-ide subset-code(1))
lemma Ide-imp-Ide-last [simp]:
assumes Ide T
shows R.ide (last T)
    using assms
    by (metis Ide.simps(1) CollectD in-mono last-in-set set-Ide-subset-ide)
lemma Ide-imp-Ide-tl [simp]:
assumes Ide T and tl T\not=[]
shows Ide (tl T)
    using assms
    by (metis Ide.simps(3) list.exhaust-sel list.sel(2))
lemma Ide-implies-Arr:
shows Ide T\Longrightarrow Arr T
    apply (induct T)
    apply simp
```

```
using Ide.elims(2) by fastforce
lemma const-ide-is-Ide:
shows \(\llbracket T \neq[] ;\) R.ide \((h d T) ;\) set \(T \subseteq\{h d T\} \rrbracket \Longrightarrow\) Ide \(T\)
    apply (induct \(T\) )
    apply auto
    by (metis Ide.simps(2-3) R.ideE R.sources-resid Srcs.simps(2-3) empty-iff insert-iff
        list.exhaust-sel list.set-sel(1) order-refl subset-singletonD)
lemma Ide-char:
shows Ide \(T \longleftrightarrow\) Arr \(T \wedge\) set \(T \subseteq\) Collect R.ide
    apply (induct \(T\) )
    apply auto[1]
    by (metis Arr.simps(3) Ide.simps(2-3) Ide-implies-Arr empty-subsetI
        insert-subset list.simps(15) mem-Collect-eq neq-Nil-conv set-empty)
lemma IdeI [intro]:
assumes Arr \(T\) and set \(T \subseteq\) Collect R.ide
shows Ide \(T\)
    using assms Ide-char by force
lemma Arr-has-Src:
shows Arr \(T \Longrightarrow\) Srcs \(T \neq\{ \}\)
    apply (cases \(T\) )
    apply simp
    by (metis R.arr-iff-has-source Srcs.elims Arr.elims(2) list.distinct(1) list.sel(1))
lemma Arr-has-Trg:
shows \(\operatorname{Arr} T \Longrightarrow \operatorname{Trgs} T \neq\{ \}\)
    using R.arr-iff-has-target
    apply (induct \(T\) )
    apply simp
    by (metis \(\operatorname{Arr} . \operatorname{simps(2)} \operatorname{Arr} . \operatorname{simps(3)} \operatorname{Trgs.simps(2-3)~list.exhaust-sel)}\)
lemma Srcs-are-ide:
shows Srcs \(T \subseteq\) Collect R.ide
    apply (cases \(T\) )
    apply \(\operatorname{simp}\)
    by (metis (no-types, lifting) Srcs.elims list.distinct(1) mem-Collect-eq
        R.sources-def subsetI)
lemma Trgs-are-ide:
shows Trgs \(T \subseteq\) Collect R.ide
    apply (induct \(T\) )
    apply simp
    by (metis R.arr-iff-has-target R.sources-resid \(\operatorname{Srcs} . \operatorname{simps}(2) \operatorname{Trgs} . \operatorname{simps}(2-3)\)
        Srcs-are-ide empty-subsetI list.exhaust R.arrE)
lemma Srcs-are-con:
```

```
assumes a\inSrcs T and a'\inSrcs T
shows }a\frown\mp@subsup{a}{}{\prime
    using assms
    by (metis Srcs.elims empty-iff R.sources-are-con)
```

lemma Srcs-con-closed:
assumes $a \in \operatorname{Srcs} T$ and R.ide a^{\prime} and $a \frown a^{\prime}$
shows $a^{\prime} \in \operatorname{Srcs} T$
using assms R.sources-con-closed
apply (cases T, auto)
by (metis Srcs.simps(2-3) neq-Nil-conv)
lemma Srcs-eqI:
assumes Srcs $T \cap \operatorname{Srcs} T^{\prime} \neq\{ \}$
shows Srcs $T=$ Srcs T^{\prime}
using assms R.sources-eqI
apply (cases T; cases T^{\prime})
apply auto
apply (metis IntI Srcs.simps(2-3) empty-iff neq-Nil-conv)
by (metis Srcs.simps(2-3) assms neq-Nil-conv)
lemma Trgs-are-con:
shows $\llbracket b \in \operatorname{Trgs} T ; b^{\prime} \in \operatorname{Trgs} T \rrbracket \Longrightarrow b \frown b^{\prime}$
apply (induct T)
apply auto
by (metis R.targets-are-con $\operatorname{Trgs} . \operatorname{simps}(2-3)$ list.exhaust-sel)
lemma Trgs-con-closed:
shows $\llbracket b \in \operatorname{Trgs} T ;$ R.ide $b^{\prime} ; b \frown b^{\top} \rrbracket \Longrightarrow b^{\prime} \in \operatorname{Trgs} T$
apply (induct T)
apply auto
by (metis R.targets-con-closed Trgs.simps(2-3) neq-Nil-conv)
lemma Trgs-eqI:
assumes Trgs $T \cap \operatorname{Trgs} T^{\prime} \neq\{ \}$
shows $\operatorname{Trgs} T=\operatorname{Trgs} T^{\prime}$
using assms Trgs-are-ide Trgs-are-con Trgs-con-closed by blast
lemma Srcs-simp P_{P} :
assumes $\operatorname{Arr} T$
shows Srcs $T=$ R.sources ($h d T$)
using assms
by (metis Arr-has-Src Srcs.simps(1) Srcs.simps(2) Srcs.simps(3) list.exhaust-sel)
lemma Trgs-simp ${ }_{P}$:
shows $\operatorname{Arr} T \Longrightarrow$ Trgs $T=$ R.targets (last T)
apply (induct T)
apply simp
by (metis Arr.simps(3) Trgs.simps(2) Trgs.simps(3) last-ConsL last-ConsR neq-Nil-conv)

2.4.1 Residuation on Paths

It was more difficult than I thought to get a correct formal definition for residuation on paths and to prove things from it. Straightforward attempts to write a single recursive definition ran into problems with being able to prove termination, as well as getting the cases correct so that the domain of definition was symmetric. Eventually I found the definition below, which simplifies the termination proof to some extent through the use of two auxiliary functions, and which has a symmetric form that makes symmetry easier to prove. However, there was still some difficulty in proving the recursive expansions with respect to cons and append that I needed.

The following defines residuation of a single transition along a path, yielding a transition.

```
fun Resid1x (infix \({ }^{1}{ }^{*}\) 70)
where \(t^{1} \backslash{ }^{*}[]=\) R.null
    \(\mid t^{1} \backslash^{*}[u]=t \backslash u\)
    \(\mid t^{1} \backslash^{*}(u \# U)=(t \backslash u)^{1} \backslash^{*} U\)
```

Next, we have residuation of a path along a single transition, yielding a path.

```
fun Residx1 (infix * \({ }^{1}\) 70)
where [] * \({ }^{1} u=[]\)
    \(\mid[t]{ }^{*}{ }^{1} u=(\) if \(t \frown u\) then \([t \backslash u]\) else []\()\)
    \(\mid(t \# T)^{*}{ }^{1} u=\)
        (if \(t \frown u \wedge T^{*} \backslash^{1}(u \backslash t) \neq[]\) then \((t \backslash u) \# T^{*} \backslash^{1}(u \backslash t)\) else [])
```

Finally, residuation of a path along a path, yielding a path.

```
function (sequential) Resid (infix *\* 70)
where [] *\(\backslash^{*}-=[]\)
    \(\mid-{ }^{*} \backslash{ }^{*}[]=[]\)
    \(\mid[t]^{*} \backslash *[u]=(\) if \(t \frown u\) then \([t \backslash u]\) else []\()\)
    \(\mid[t]{ }^{*} \backslash *(u \# U)=\)
        (if \(t \frown u \wedge(t \backslash u)^{1} \backslash^{*} U \neq\) R.null then \(\left[(t \backslash u)^{1} \backslash^{*} U\right]\) else [])
        \(\mid(t \# T)^{*} \backslash *[u]=\)
            (if \(t \frown u \wedge T^{*} \backslash^{1}(u \backslash t) \neq[]\) then \((t \backslash u) \#\left(T^{*} \backslash{ }^{1}(u \backslash t)\right)\) else [])
        \(\mid(t \# T)^{*} \backslash *(u \# U)=\)
            (if \(t \frown u \wedge(t \backslash u)^{1} \backslash * U \neq\) R.null \(\wedge\)
                \(\left(T^{*} \backslash^{1}(u \backslash t)\right)^{*} \backslash^{*}\left(U^{*} \backslash^{1}(t \backslash u)\right) \neq[]\)
            then \((t \backslash u)^{1} \backslash{ }^{*} U \#\left(T^{*} \backslash^{1}(u \backslash t)\right)^{*} \backslash^{*}\left(U^{*} \backslash^{1}(t \backslash u)\right)\)
            else [])
```

 by pat-completeness auto
 Residuation of a path along a single transition is length non-increasing. Actually, it is length-preserving, except in case the path and the transition are not consistent. We will show that later, but for now this is what we need to establish termination for (\backslash).

```
lemma length-Residx1:
shows length \(\left(T^{*} \backslash{ }^{1} u\right) \leq\) length \(T\)
proof (induct \(T\) arbitrary: u)
    show \(\bigwedge u\). length \(\left([]^{*} \backslash^{1} u\right) \leq\) length []
```

```
    by simp
    fix }tT
    assume ind: \bigwedgeu. length (T *\1}u)\leqlength T
    show length ((t# T)*\\}\mp@subsup{}{}{1}u)\leqlength (t#T
    using ind
    by (cases T, cases t\frownu, cases T **\
qed
termination Resid
proof (relation measure ( }\lambda(T,U)\mathrm{ . length T + length U))
    show wf (measure ( }\lambda(T,U). length T + length U))
        by simp
    fix }t\mp@subsup{t}{}{\prime}Tu
    have length ((t'# T) *\1}(u\t))+ length (U *\1 (t\u)
                < length ( }t#\mp@subsup{t}{}{\prime}#T)+\mathrm{ length ( }u##
        using length-Residx1
        by (metis add-less-le-mono impossible-Cons le-neq-implies-less list.size(4) trans-le-add1)
    thus 1: (((t'# T)*\1}(u\t),\mp@subsup{U}{}{*}\\mp@subsup{}{}{1}(t\u)),t#\mp@subsup{t}{}{\prime}#T,u#U
                measure ( }\lambda(T,U).\mathrm{ length }T+\mathrm{ length }U
    by simp
```



```
        measure ( }\lambda(T,U). length T + length U
    using }1\mathrm{ length-Residx1 by blast
    have length }(\mp@subsup{T}{}{*}\mp@subsup{\}{}{1}(u\t))+\mathrm{ length }(\mp@subsup{U}{}{*}\1`(t\u))\leq length T + length U
    using length-Residx1 by (simp add: add-mono)
    thus 2: ((T *\1}(u\t),\mp@subsup{U}{}{*}\1`\ (t\u)),t#T,u#U
            measure ( }\lambda(T,U)\mathrm{ . length T + length U)
    by simp
    show ((T* *}\mp@subsup{\}{}{1}(u\t),\mp@subsup{U}{}{*}\1`\\ (t\u)),t#T,u#U
        measure ( }\lambda(T,U)\mathrm{ . length }T+\mathrm{ length }U
    using 2 length-Residx1 by blast
qed
lemma Resid1x-null:
shows R.null }\mp@subsup{}{}{1}\mp@subsup{\}{}{*}T=\mathrm{ R.null
    apply (induct T)
    apply auto
    by (metis R.null-is-zero(1) Resid1x.simps(2-3) list.exhaust)
lemma Resid1x-ide:
shows \llbracketR.ide a; a }\mp@subsup{}{}{\}\* T\not=R.null\rrbracket\LongrightarrowR.ide ( a ' \ \* T)
proof (induct T arbitrary: a)
    show \a. a }\mp@subsup{}{}{1}\*[]\not=R.null \LongrightarrowR.ide ( a 1\* [])
        by simp
    fix atT
    assume a: R.ide a
    assume ind: \bigwedgea. \llbracketR.ide a; a }\mp@subsup{}{}{1}\* T\not=R.null\rrbracket\LongrightarrowR.ide ( a  \ \* T)
    assume con: a }\mp@subsup{}{}{1}\* (t#T)\not=R\mathrm{ R.null
    have 1:a\frownt
```

```
    using con
    by (metis R.con-def Resid1x.simps(2-3) Resid1x-null list.exhaust)
    show R.ide (a }\mp@subsup{}{}{1}\mp@subsup{\}{}{*}(t#T)
    using a 1 con ind R.resid-ide-arr
    by (metis Resid1x.simps(2-3) list.exhaust)
qed
abbreviation Con (infix *\frown* 50)
where T *\frown* U \equiv T *\* U = []
lemma Con-sym1:
shows T *\1
proof (induct T arbitrary: u)
    show }\u.[]*\\1 u\not=[]\longleftrightarrow \longleftrightarrow ' \ \* [] # R.null
        by simp
    show }\tTu.(\bigwedgeu.\mp@subsup{T}{}{*}\\mp@subsup{}{}{1}u\not=[]\longleftrightarrow\mp@subsup{u}{}{1}\* T\not=R.null
```



```
    proof -
        fix tTu
        assume ind: \bigwedgeu. T *\\}\mp@subsup{\}{}{1}u\not=[]\longleftrightarrow\mp@subsup{u}{}{1}\* T\not=R.null
        show }(t#T)*\\mp@subsup{}{}{*}u\not=[]\longleftrightarrow\mp@subsup{u}{}{1}\** (t#T)\not=R.null
        proof
            show }(t#T)*\mp@subsup{)}{}{*}u\not=[]\Longrightarrow\mp@subsup{u}{}{1}\mp@subsup{\}{}{*}(t#T)\not=R.null
            by (metis R.con-sym Resid1x.simps(2-3) Residx1.simps(2-3)
                ind neq-Nil-conv R.conE)
            show }\mp@subsup{u}{}{1}\**(t#T)\not=R.null \Longrightarrow(t#T)*\1 u = []
            using ind R.con-sym
            apply (cases T)
                apply auto
            by (metis R.conI Resid1x-null)
        qed
    qed
qed
lemma Con-sym-ind:
shows length T + length U\leqn\LongrightarrowT *\frown* U \longleftrightarrowU *\frown* T
proof (induct n arbitrary:T U)
```



```
        by simp
    fix n and T U :: 'a list
    assume ind: \bigwedgeT U. length T + length U\leqn\Longrightarrow T *\frown* U }\longleftrightarrow\mp@subsup{U}{}{*}\mp@subsup{\frown}{}{*}
    assume 1: length T + length U\leqSuc n
    show T *`* U \longleftrightarrowU *\frown*}
        using R.con-sym Con-sym1
            apply (cases T; cases U)
            apply auto[3]
    proof -
        fix }tu\mp@subsup{T}{}{\prime}\mp@subsup{U}{}{\prime
```

```
assume \(T: T=t \# T^{\prime}\) and \(U: U=u \# U^{\prime}\)
show \(T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
proof (cases \(T^{\prime}=[]\) )
    show \(T^{\prime}=[] \Longrightarrow T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
    using \(T\) U Con-sym1 R.con-sym
    by (cases \(U^{\prime}\) ) auto
    show \(T^{\prime} \neq[] \Longrightarrow T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
    proof (cases \(\left.U^{\prime}=[]\right)\)
    show \(\llbracket T^{\prime} \neq[] ; U^{\prime}=[] \rrbracket \Longrightarrow T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
        using \(T U\) R.con-sym Con-sym 1
        by (cases \(T^{\prime}\) ) auto
    show \(\llbracket T^{\prime} \neq[] ; U^{\prime} \neq[] \rrbracket \Longrightarrow T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
    proof -
        assume \(T^{\prime}: T^{\prime} \neq[]\) and \(U^{\prime}: U^{\prime} \neq[]\)
        have 2: length \(\left(U^{\prime *} \backslash^{1}(t \backslash u)\right)+\) length \(\left(T^{\prime *} \backslash^{1}(u \backslash t)\right) \leq n\)
        proof -
            have length \(\left(U^{\prime *} \backslash^{1}(t \backslash u)\right)+\) length \(\left(T^{\prime *} \backslash^{1}(u \backslash t)\right)\)
                                    \(\leq\) length \(U^{\prime}+\) length \(T^{\prime}\)
            by (simp add: add-le-mono length-Residx1)
            also have \(\ldots \leq\) length \(T^{\prime}+\) length \(U^{\prime}\)
            using \(T^{\prime}\) add.commute not-less-eq-eq by auto
            also have \(\ldots \leq n\)
                using \(1 T U\) by simp
            finally show ?thesis by blast
    qed
    show \(T^{*}{ }^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
    proof
    assume Con: \(T^{*} \frown^{*} U\)
    have 3: \(t \frown u \wedge T^{\prime *} \backslash^{1}(u \backslash t) \neq[] \wedge(t \backslash u)^{1} \backslash * U^{\prime} \neq\) R.null \(\wedge\)
                    \(\left(T^{\prime *} \backslash^{1}(u \backslash t)\right)^{*} \backslash *\left(U^{\prime *}{ }^{1}(t \backslash u)\right) \neq[]\)
            using Con \(T U T^{\prime} U^{\prime}\) Con-sym1
            apply (cases \(T^{\prime}\), cases \(U^{\prime}\) )
                apply simp-all
            by (metis Resid.simps(1) Resid.simps(6) neq-Nil-conv)
            hence \(u \frown t \wedge U^{\prime *} \backslash^{1}(t \backslash u) \neq[] \wedge(u \backslash t)^{1} \backslash^{*} T^{\prime} \neq\) R.null
            using \(T^{\prime} U^{\prime}\) R.con-sym Con-sym 1 by simp
            moreover have \(\left(U^{\prime *} \backslash^{1}(t \backslash u)\right)^{*} \backslash *\left(T^{\prime *} \backslash^{1}(u \backslash t)\right) \neq[]\)
                using 23 ind by simp
            ultimately show \(U^{*} \frown^{*} T\)
                using \(T U T^{\prime} U^{\prime}\)
                by (cases \(T^{\prime} ;\) cases \(U^{\prime}\) ) auto
    next
    assume Con: \(U^{*} \frown^{*} T\)
    have 3: \(u \frown t \wedge U^{\prime *} \backslash^{1}(t \backslash u) \neq[] \wedge(u \backslash t)^{1} \backslash^{*} T^{\prime} \neq\) R.null \(\wedge\)
                        \(\left(U^{\prime *} \backslash^{1}(t \backslash u)\right)^{*} \backslash^{*}\left(T^{\prime *} \backslash^{1}(u \backslash t)\right) \neq[]\)
            using Con \(T U T^{\prime} U^{\prime}\) Con-sym1
            apply (cases \(T^{\prime} ;\) cases \(U^{\prime}\) )
                    apply auto
                apply argo
```

```
                    by force
                    hence \(t \frown u \wedge T^{\prime *}{ }^{1}(u \backslash t) \neq[] \wedge(t \backslash u)^{1} \backslash^{*} U^{\prime} \neq\) R.null
                        using \(T^{\prime} U^{\prime}\). .con-sym Con-sym 1 by \(\operatorname{simp}\)
                    moreover have \(\left(T^{\prime *} \backslash^{1}(u \backslash t)\right)^{*} \backslash *\left(U^{\prime *} \backslash^{1}(t \backslash u)\right) \neq[]\)
                        using 23 ind by simp
                    ultimately show \(T^{*} \frown^{*} U\)
                    using \(T U T^{\prime} U^{\prime}\)
                    by (cases \(T^{\prime} ;\) cases \(U^{\prime}\) ) auto
                qed
            qed
        qed
        qed
    qed
qed
lemma Con-sym:
shows \(T^{*} \frown^{*} U \longleftrightarrow U^{*} \frown^{*} T\)
    using Con-sym-ind by blast
lemma Residx1-as-Resid:
shows \(T^{*} \backslash{ }^{1} u=T^{*} \backslash *[u]\)
proof (induct \(T\) )
    show []\(^{*} \backslash^{1} u=[]^{*} \backslash^{*}[u]\) by simp
    fix \(t T\)
    assume ind: \(T^{*} \backslash{ }^{1} u=T^{*} \backslash *[u]\)
    show \((t \# T)^{*}{ }^{1} u=(t \# T)^{*} \backslash^{*}[u]\)
        by (cases \(T\) ) auto
qed
lemma Resid1x-as-Resid':
shows \(t^{1} \backslash^{*} U=\left(\right.\) if \([t]^{*} \backslash * U \neq[]\) then hd \(\left([t]^{*} \backslash^{*} U\right)\) else R.null \()\)
proof (induct \(U\) )
    show \(t^{1} \backslash \backslash^{*}[]=\left(\right.\) if \([t]{ }^{*} \backslash^{*}[] \neq[]\) then \(h d\left([t]^{*} \backslash *[]\right)\) else R.null \()\) by simp
    fix \(u U\)
    assume ind: \(t^{1} \backslash * U=\left(\right.\) if \([t]{ }^{*} \backslash * U \neq[]\) then \(h d\left([t]^{*} \backslash * U\right)\) else R.null \()\)
    show \(t^{1} \backslash^{*}(u \# U)=\left(\right.\) if \([t]^{*} \backslash^{*}(u \# U) \neq[]\) then hd \(\left([t]^{*} \backslash^{*}(u \# U)\right)\) else R.null \()\)
        using Resid1x-null
        by (cases \(U\) ) auto
qed
```

The following recursive expansion for consistency of paths is an intermediate result that is not yet quite in the form we really want.
lemma Con-rec:
shows $[t]^{*} \frown^{*}[u] \longleftrightarrow t \frown u$
and $T \neq[] \Longrightarrow t \# T^{*} \frown^{*}[u] \longleftrightarrow t \frown u \wedge T^{*} \frown^{*}[u \backslash t]$
and $U \neq[] \Longrightarrow[t]^{*} \frown^{*}(u \# U) \longleftrightarrow t \frown u \wedge[t \backslash u]^{*} \frown^{*} U$
and $\llbracket T \neq[] ; U \neq[] \rrbracket \Longrightarrow$

```
proof -
    show \([t]^{*} \frown^{*}[u] \longleftrightarrow t \frown u\)
        by \(\operatorname{simp}\)
    show \(T \neq[] \Longrightarrow t \# T^{*} \frown^{*}[u] \longleftrightarrow t \frown u \wedge T^{*} \frown^{*}[u \backslash t]\)
        using Residx1-as-Resid
        by (cases \(T\) ) auto
    show \(U \neq[] \Longrightarrow[t]^{*} \frown^{*}(u \# U) \longleftrightarrow t \frown u \wedge[t \backslash u]^{*} \frown^{*} U\)
        using Resid1x-as-Resid' Con-sym Con-sym1 Resid1x.simps(3) Residx1-as-Resid
        by (cases \(U\) ) auto
    show \(\llbracket T \neq[] ; U \neq[] \rrbracket \Longrightarrow\)
            \(t \# T^{*} \frown^{*} u \# U \longleftrightarrow t \frown u \wedge T^{*} \frown^{*}[u \backslash t] \wedge[t \backslash u]^{*} \frown^{*} U \wedge\)
                        \(T^{*} \backslash{ }^{*}[u \backslash t]{ }^{*}{ }^{*} U^{*} \backslash *[t \backslash u]\)
        using Residx1-as-Resid Resid1x-as-Resid \({ }^{\prime}\) Con-sym1 Con-sym R.con-sym
        by (cases \(T\); cases \(U\) ) auto
qed
```

This version is a more appealing form of the previously proved fact Resid1x-as-Resid ${ }^{\prime}$.

```
lemma Resid1x-as-Resid:
assumes \([t]^{*} \backslash * U \neq[]\)
shows \([t]^{*} \backslash * U=\left[t^{1} \backslash * U\right]\)
    using assms Con-rec (2,4)
    apply (cases \(U\); cases tl \(U\) )
        apply auto
    by argo+
```

The following is an intermediate version of a recursive expansion for residuation, to be improved subsequently.

```
lemma Resid-rec:
shows \([\) simp \(]:[t]{ }^{*}{ }^{*}[u] \Longrightarrow[t]^{*} \backslash *[u]=[t \backslash u]\)
and \(\llbracket T \neq[] ; t \# T^{*} \frown^{*}[u] \rrbracket \Longrightarrow(t \# T)^{*} \backslash *[u]=(t \backslash u) \#\left(T^{*} \backslash{ }^{*}[u \backslash t]\right)\)
and \(\llbracket U \neq[] ; \operatorname{Con}[t](u \# U) \rrbracket \Longrightarrow[t]^{*} \backslash *(u \# U)=[t \backslash u]^{*} \backslash^{*} U\)
and \(\llbracket T \neq[] ; U \neq[] ; \operatorname{Con}(t \# T)(u \# U) \rrbracket \Longrightarrow\)
    \((t \# T)^{*} \backslash^{*}(u \# U)=\left([t \backslash u]^{*} \backslash{ }^{*} U\right) @\left(\left(T^{*} \backslash^{*}[u \backslash t]\right)^{*} \backslash *\left(U^{*}{ }^{*}[t \backslash u]\right)\right)\)
proof -
    show \([t]^{*} \frown^{*}[u] \Longrightarrow \operatorname{Resid}[t][u]=[t \backslash u]\)
        by (meson Resid.simps(3))
    show \(\llbracket T \neq[] ; t \# T^{*} \frown^{*}[u] \rrbracket \Longrightarrow(t \# T)^{*} \backslash^{*}[u]=(t \backslash u) \#\left(T^{*} \backslash^{*}[u \backslash t]\right)\)
        using Residx1-as-Resid
        by (metis Residx1.simps(3) list.exhaust-sel)
    show \(1: \llbracket U \neq[] ;[t]^{*} \frown^{*} u \# U \rrbracket \Longrightarrow[t]^{*} \backslash *(u \# U)=[t \backslash u]^{*} \backslash^{*} U\)
        by (metis Con-rec(3) Resid1x.simps(3) Resid1x-as-Resid list.exhaust)
    show \(\llbracket T \neq[] ; U \neq[] ; t \# T^{*} \frown^{*} u \# U \rrbracket \Longrightarrow\)
            \((t \# T)^{*} \backslash^{*}(u \# U)=\left([t \backslash u]^{*} \backslash^{*} U\right) @\left(\left(T^{*} \backslash{ }^{*}[u \backslash t]\right)^{*} \backslash^{*}\left(U^{*} \backslash^{*}[t \backslash u]\right)\right)\)
    proof -
        assume \(T: T \neq[]\) and \(U: U \neq[]\) and Con: \(\operatorname{Con}(t \# T)(u \# U)\)
        have \(t u: t \frown u\)
            using Con Con-rec by metis
        have \((t \# T)^{*} \backslash^{*}(u \# U)=\left((t \backslash u)^{1} \backslash^{*} U\right) \#\left(\left(T^{*} \backslash^{1}(u \backslash t)\right)^{*} \backslash^{*}\left(U^{*} \backslash^{1}(t \backslash u)\right)\right)\)
        using \(T U\) Con tu
```

```
        by (cases T; cases U) auto
        also have ... = ([t\u]*\* U)@ ((T*** [u\t])*\* (U *\* [t \u]))
            using T U Con tu Con-rec(4) Resid1x-as-Resid Residx1-as-Resid by force
        finally show ?thesis by simp
    qed
qed
For consistent paths, residuation is length-preserving.
```

```
lemma length-Resid-ind:
```

lemma length-Resid-ind:
shows \llbracket length $T+$ length $U \leq n ; T^{*} \frown^{*} U \rrbracket \Longrightarrow$ length $\left(T^{*} \backslash^{*} U\right)=$ length T
shows \llbracket length $T+$ length $U \leq n ; T^{*} \frown^{*} U \rrbracket \Longrightarrow$ length $\left(T^{*} \backslash^{*} U\right)=$ length T
apply (induct n arbitrary: T U)
apply (induct n arbitrary: T U)
apply simp
apply simp
proof -
proof -
fix $n T U$
fix $n T U$
assume ind: $\wedge T U$. \llbracket length $T+$ length $U \leq n ; T^{*}$ $^{*} U \rrbracket$
assume ind: $\wedge T U$. \llbracket length $T+$ length $U \leq n ; T^{*}$ $^{*} U \rrbracket$
\Longrightarrow length $\left(T^{*} \backslash^{*} U\right)=$ length T
\Longrightarrow length $\left(T^{*} \backslash^{*} U\right)=$ length T
assume Con: $T^{*} \wedge^{*} U$
assume Con: $T^{*} \wedge^{*} U$
assume len: length $T+$ length $U \leq$ Suc n
assume len: length $T+$ length $U \leq$ Suc n
show length $\left(T^{*} \backslash^{*} U\right)=$ length T
show length $\left(T^{*} \backslash^{*} U\right)=$ length T
using Con len ind Resid1x-as-Resid length-Cons Con-rec(2) Resid-rec(2)
using Con len ind Resid1x-as-Resid length-Cons Con-rec(2) Resid-rec(2)
apply (cases T; cases U)
apply (cases T; cases U)
apply auto
apply auto
apply (cases tl $T=[]$; cases tl $U=[]$)
apply (cases tl $T=[]$; cases tl $U=[]$)
apply auto
apply auto
apply metis
apply metis
apply fastforce
apply fastforce
proof -
proof -
fix $t T^{\prime} u U^{\prime}$
fix $t T^{\prime} u U^{\prime}$
assume $T: T=t \# T^{\prime}$ and $U: U=u \# U^{\prime}$
assume $T: T=t \# T^{\prime}$ and $U: U=u \# U^{\prime}$
assume $T^{\prime}: T^{\prime} \neq[]$ and $U^{\prime}: U^{\prime} \neq[]$
assume $T^{\prime}: T^{\prime} \neq[]$ and $U^{\prime}: U^{\prime} \neq[]$
show length $\left.\left(\left(t \# T^{\prime}\right)^{*}\right\rangle^{*}\left(u \# U^{\prime}\right)\right)=$ Suc (length $\left.T^{\prime}\right)$
show length $\left.\left(\left(t \# T^{\prime}\right)^{*}\right\rangle^{*}\left(u \# U^{\prime}\right)\right)=$ Suc (length $\left.T^{\prime}\right)$
using Con Con-rec(4) Con-sym Resid-rec(4) T T $T^{\prime} U U^{\prime}$ ind len by auto
using Con Con-rec(4) Con-sym Resid-rec(4) T T $T^{\prime} U U^{\prime}$ ind len by auto
qed
qed
qed
qed
lemma length-Resid:
lemma length-Resid:
assumes $T^{*} \frown^{*} U$
assumes $T^{*} \frown^{*} U$
shows length $\left(T^{*} \backslash * U\right)=$ length T
shows length $\left(T^{*} \backslash * U\right)=$ length T
using assms length-Resid-ind by auto
using assms length-Resid-ind by auto
lemma Con-initial-left:
lemma Con-initial-left:
shows $t \# T^{*}{ }^{*} U \Longrightarrow[t]{ }^{*}{ }^{*} U$
shows $t \# T^{*}{ }^{*} U \Longrightarrow[t]{ }^{*}{ }^{*} U$
apply (induct U)
apply (induct U)
apply simp
apply simp
by (metis Con-rec(1-4))
by (metis Con-rec(1-4))
lemma Con-initial-right:
lemma Con-initial-right:
shows T^{*} * $^{*} \# U \Longrightarrow T^{*}{ }^{*}[u]$
shows T^{*} * $^{*} \# U \Longrightarrow T^{*}{ }^{*}[u]$
apply (induct T)

```
    apply (induct \(T\) )
```


apply simp

by (metis Con-rec (1-4))
lemma Resid-cons-ind:
shows $\llbracket T \neq[] ; U \neq[] ;$ length $T+$ length $U \leq n \rrbracket \Longrightarrow$

$$
\begin{aligned}
& \left(\forall t . t \# T^{*} \frown^{*} U \longleftrightarrow[t]^{*} \frown^{*} U \wedge \bar{T}^{*} \frown^{*} U^{*} \backslash *[t]\right) \wedge \\
& (\forall u \cdot T^{*} \frown^{*} u \# U \longleftrightarrow T \frown^{*}[u] \wedge T^{*} \backslash^{*}[u] \overbrace{}^{*} U) \wedge \\
& \left(\forall t . t \# T^{*} \frown^{*} U \longrightarrow(t \# T)^{*} \backslash * U=[t]^{*} \backslash^{*} U @ T^{*} \backslash *\left(U^{*} \backslash{ }^{*}[t]\right)\right) \wedge \\
& \left(\forall u . T^{*} \frown^{*} u \# U \longrightarrow T^{*} \backslash^{*}(u \# U)=\left(T^{*} \backslash^{*}[u]\right)^{*} \backslash^{*} U\right)
\end{aligned}
$$

proof (induct n arbitrary: $T U$)
show $\wedge T U . \llbracket T \neq[] ; U \neq[] ;$ length $T+$ length $U \leq 0 \rrbracket \Longrightarrow$
$\left(\forall t . t \# T^{*} \frown^{*} U \longleftrightarrow[t]^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*}[t]\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longleftrightarrow T^{*} \frown^{*}[u] \wedge T^{*} \wedge^{*}[u]^{*} \frown^{*} U\right) \wedge$
$\left(\forall t . t \# T^{*} \frown^{*} U \longrightarrow(t \# T)^{*} \backslash * U=[t]^{*} \backslash * U @ T^{*} \backslash *\left(U^{*} \backslash *[t]\right)\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longrightarrow T^{*} \backslash^{*}(u \# U)=\left(T^{*} \backslash^{*}[u]\right)^{*} \backslash^{*} U\right)$
by simp
fix n and $T U$:: 'a list
assume ind: $\wedge T U . \llbracket T \neq[] ; U \neq[] ;$ length $T+$ length $U \leq n \rrbracket \Longrightarrow$
$\left(\forall t . t \# T^{*} \frown^{*} U \longleftrightarrow[t]{ }^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*}[t]\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longleftrightarrow T^{*} \frown^{*}[u] \wedge T^{*} \backslash^{*}[u]^{*} \frown^{*} U\right) \wedge$
$\left(\forall t . t \# T^{*} \frown^{*} U \longrightarrow(t \# T)^{*} \backslash^{*} U=[t]^{*} \backslash^{*} U @ T^{*} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longrightarrow T^{*} \backslash^{*}(u \# U)=\left(T^{*} \backslash^{*}[u]\right)^{*} \backslash^{*} U\right)$
assume $T: T \neq[]$ and $U: U \neq[]$
assume len: length $T+$ length $U \leq$ Suc n
show $\left(\forall t . t \# T^{*} \frown^{*} U \longleftrightarrow[t] \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash *[t]\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longleftrightarrow T^{*} \frown^{*}[u] \wedge T^{*} \backslash *[u]^{*} \frown^{*} U\right) \wedge$
$\left(\forall t . t \# T^{*} \frown^{*} U \longrightarrow(t \# T)^{*} \backslash^{*} U=[t]^{*} \backslash^{*} U @ T^{*} \backslash *\left(U^{*} \backslash{ }^{*}[t]\right)\right) \wedge$
$\left(\forall u . T^{*} \frown^{*} u \# U \longrightarrow T^{*} \backslash^{*}(u \# U)=\left(T^{*} \backslash *[u]\right)^{*} \backslash * U\right)$
proof (intro allI conjI iffI impI)
fix t
show 1: $t \# T^{*} \frown^{*} U \Longrightarrow(t \# T)^{*} \backslash * U=[t]^{*} \backslash{ }^{*} U @ T^{*} \backslash^{*}\left(U^{*} \backslash{ }^{*}[t]\right)$
proof (cases U)
show $U=[] \Longrightarrow$?thesis
using U by simp
fix $u U^{\prime}$
assume $U: U=u \# U^{\prime}$
assume Con: $t \# T^{*}{ }^{*} U$
show ?thesis
proof (cases $\left.U^{\prime}=[]\right)$
show $U^{\prime}=[] \Longrightarrow$?thesis
using TUCon R.con-sym Con-rec(2) Resid-rec(2) by auto
assume $U^{\prime}: U^{\prime} \neq[]$
have $(t \# T)^{*} \backslash * U=[t \backslash u]^{*} \backslash * U^{\prime} @\left(T^{*} \backslash *[u \backslash t]\right)^{*} \backslash *\left(U^{\prime}{ }^{*} \backslash *[t \backslash u]\right)$
using TU U'Con Resid-rec(4) by fastforce
also have 1: $\ldots=[t]^{*} \backslash^{*} U$ @ $\left(T^{*} \backslash *[u \backslash t]\right)^{*} \backslash^{*}\left(U^{\prime *} \backslash^{*}[t \backslash u]\right)$
using $T U U^{\prime}$ Con Con-rec (3-4) Resid-rec(3) by auto
also have $\ldots=[t]^{*} \backslash * U @ T^{*} \backslash *\left((u \backslash t) \#\left(U^{\prime *} \backslash^{*}[t \backslash u]\right)\right)$
proof -
have $T^{*} \backslash *\left((u \backslash t) \#\left(U^{\prime *} \backslash^{*}[t \backslash u]\right)\right)=\left(T^{*} \backslash{ }^{*}[u \backslash t]\right)^{*} \backslash^{*}\left(U^{\prime *} \backslash *[t \backslash u]\right)$

```
                using TU U' ind [of T U'*\* [t \u]] Con Con-rec(4) Con-sym len length-Resid
                by fastforce
            thus ?thesis by auto
        qed
        also have \ldots= .. [t] *\** U@ T *}\**(U\mp@subsup{U}{}{*}\* [t]
            using TU U'1 Con Con-rec(4) Con-sym1 Residx1-as-Resid
                Resid1x-as-Resid Resid-rec(2) Con-sym Con-initial-left
            by auto
    finally show?thesis by simp
    qed
qed
show }t#\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U\Longrightarrow[t]*\mp@subsup{}{}{*}
    by (simp add: Con-initial-left)
show }t#\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U\LongrightarrowT\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}(\mp@subsup{U}{}{*}\* * [t]
    by (metis 1 Suc-inject T append-Nil2 length-0-conv length-Cons length-Resid)
show [t] *\frown* U^T *`\frown* U *\* [t]\Longrightarrowt# T *\frown`*}
proof (cases U)
    show }\llbracket[t]\mp@subsup{}{}{*}\mp@subsup{\frown}{}{*}U\wedge\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}\mp@subsup{U}{}{*}\* [t];U= U]\rrbracket\Longrightarrowt# T * \frown* U
        using U by simp
    fix }u\mp@subsup{U}{}{\prime
    assume U:U=u# U'
    assume Con: [t] *\frown** U^T *\frown* U *\* [t]
    show t# T *\frown* U
    proof (cases U'=[])
        show }\mp@subsup{U}{}{\prime}=[]\Longrightarrow\mathrm{ ?thesis
            using T U Con
            by (metis Con-rec(2) Resid.simps(3) R.con-sym)
    assume U': U'}=[
    show ?thesis
    proof -
            have t}\frown
                using TU U' Con Con-rec(3) by blast
            moreover have T *\frown`}[u\t
            using TU U'Con Con-initial-right Con-sym1 Residx1-as-Resid
                    Resid1x-as-Resid Resid-rec(2)
            by (metis Con-sym)
        moreover have [t\u] *\frown* U'
            using TU U' Con Resid-rec(3) by force
        moreover have T *** [u\t]*``* U'*\* [t\u]
            by (metis (no-types, opaque-lifting) Con Con-sym Resid-rec(2) Suc-le-mono
                    T U U' add-Suc-right calculation(3) ind len length-Cons length-Resid)
            ultimately show ?thesis
            using TU U'Con-rec(4) by simp
        qed
    qed
qed
next
fix u
show 1: T *\frown** 
```

```
proof (cases T)
    show 2: \(\llbracket T^{*} \frown^{*} u \# U ; T=[] \rrbracket \Longrightarrow T^{*} \backslash *(u \# U)=\left(T^{*} \backslash^{*}[u]\right)^{*} \backslash * U\)
        using \(T\) by simp
    fix \(t T^{\prime}\)
    assume \(T: T=t \# T^{\prime}\)
    assume Con: \(T^{*} \frown^{*} u \# U\)
    show ?thesis
    proof (cases \(T^{\prime}=[]\) )
        show \(T^{\prime}=[] \Longrightarrow\) ?thesis
            using T U Con Con-rec(3) Resid1x-as-Resid Resid-rec(3) by force
        assume \(T^{\prime}: T^{\prime} \neq[]\)
        have \(T^{*} \backslash *(u \# U)=[t \backslash u]^{*} \backslash^{*} U @\left(T^{\prime *} \backslash *[u \backslash t]\right)^{*} \backslash^{*}\left(U^{*} \backslash *[t \backslash u]\right)\)
            using \(T U T^{\prime}\) Con Resid-rec(4) [of \(\left.T^{\prime} U t u\right]\) by simp
        also have \(\ldots=\left((t \backslash u) \#\left(T^{\prime *} \backslash *[u \backslash t]\right)\right)^{*}{ }^{*} U\)
        proof -
            have length \(\left(T^{\prime *} \backslash^{*}[u \backslash t]\right)+\) length \(U \leq n\)
                by (metis (no-types, lifting) Con Con-rec(4) One-nat-def Suc-eq-plus1 Suc-leI
                    \(T T^{\prime} U\) add-Suc le-less-trans len length-Resid lessI list.size(4)
                    not-le)
            thus ?thesis
            using ind \(\left[\right.\) of \(\left.T^{\prime *} \backslash^{*}[u \backslash t] U\right]\) Con Con-rec(4) \(T T^{\prime} U\) by auto
        qed
        also have \(\ldots=\left(T^{*} \backslash *[u]\right)^{*} \backslash * ~ U\)
            using \(T U T^{\prime}\) Con Con-rec(2,4) Resid-rec(2) by force
        finally show? ?thesis by simp
    qed
qed
show \(T^{*} \frown^{*} u \# U \Longrightarrow T^{*} \frown^{*}[u]\)
    using 1 by force
show \(T^{*} \frown^{*} u \# U \Longrightarrow T^{*} \backslash^{*}[u]^{*} \frown^{*} U\)
    using 1 by fastforce
show \(T^{*} \frown^{*}[u] \wedge T^{*} \backslash{ }^{*}[u]^{*} \frown^{*} U \Longrightarrow T^{*} \frown^{*} u \# U\)
proof (cases T)
    show \(\llbracket T^{*} \frown^{*}[u] \wedge T^{*} \backslash^{*}[u]^{*} \frown^{*} U ; T=[] \rrbracket \Longrightarrow T^{*} \frown^{*} u \# U\)
        using \(T\) by simp
    fix \(t T^{\prime}\)
    assume \(T: T=t \# T^{\prime}\)
    assume Con: \(T^{*} \frown^{*}[u] \wedge T^{*} \backslash^{*}[u]^{*} \frown^{*} U\)
    show Con \(T(u \# U)\)
    proof (cases \(T^{\prime}=[]\) )
        show \(T^{\prime}=[] \Longrightarrow\) ?thesis
            using Con \(T U\) Con-rec \((1,3)\) by auto
    assume \(T^{\prime}: T^{\prime} \neq[]\)
    have \(t \frown u\)
            using Con T U T' Con-rec(2) by blast
    moreover have 2: \(T^{\prime *} \frown^{*}[u \backslash t]\)
            using Con T U T' Con-rec(2) by blast
        moreover have \([t \backslash u]^{*} \frown^{*} U\)
            using Con TU T'
```

```
                by (metis Con-initial-left Resid-rec(2))
        moreover have \(T^{\prime *} \backslash^{*}[u \backslash t]^{*} \frown^{*} U^{*} \backslash^{*}[t \backslash u]\)
        proof -
            have 0 : length \(\left(U^{*} \backslash *[t \backslash u]\right)=\) length \(U\)
                using Con T U T' length-Resid Con-sym calculation(3) by blast
            hence 1: length \(T^{\prime}+\) length \(\left(U^{*} \backslash *[t \backslash u]\right) \leq n\)
            using Con \(T U T^{\prime}\) len length-Resid Con-sym by simp
            have length \(\left(\left(T^{*} \backslash *[u]\right)^{*} \backslash^{*} U\right)=\)
                length \(\left([t \backslash u]^{*} \backslash^{*} U\right)+\) length \(\left(\left(T^{\prime *} \backslash^{*}[u \backslash t]\right)^{*} \backslash^{*}\left(U^{*} \backslash^{*}[t \backslash u]\right)\right)\)
            proof -
            have \(\left(T^{*} \backslash *[u]\right)^{*} \backslash * U=\)
                    \([t \backslash u]^{*} \backslash * U @\left(T^{*} \backslash^{*}[u \backslash t]\right)^{*} \backslash{ }^{*}\left(U^{*} \backslash *[t \backslash u]\right)\)
                by (metis 012 Con Resid-rec(2) \(T T^{\prime} U\) ind length-Resid)
            thus ?thesis
                using Con \(T U T^{\prime}\) length-Resid by simp
    qed
    moreover have length \(\left(\left(T^{*} \backslash{ }^{*}[u]\right)^{*} \backslash * U\right)=\) length \(T\)
            using Con \(T U T^{\prime}\) length-Resid by metis
            moreover have length \(\left([t \backslash u]^{*} \backslash^{*} U\right) \leq 1\)
                using Con T U T \({ }^{\prime}\) Resid1x-as-Resid
                by (metis One-nat-def length-Cons list.size(3) order-refl zero-le)
    ultimately show ?thesis
                    using Con T U T' length-Resid by auto
        qed
        ultimately show \(T^{*} \frown^{*} u \# U\)
            using \(T\) Con-rec(4) [of \(\left.T^{\prime} U t u\right]\) by fastforce
        qed
        qed
    qed
qed
```

The following are the final versions of recursive expansion for consistency and residuation on paths. These are what I really wanted the original definitions to look like, but if this is tried, then Con and Resid end up having to be mutually recursive, expressing the definitions so that they are single-valued becomes an issue, and proving termination is more problematic.

```
lemma Con-cons:
assumes \(T \neq[]\) and \(U \neq[]\)
shows \(t \# T^{*} \frown^{*} U \longleftrightarrow[t]{ }^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash{ }^{*}[t]\)
and \(T^{*} \frown^{*} u \# U \longleftrightarrow T^{*} \frown^{*}[u] \wedge T^{*} \backslash{ }^{*}[u]^{*} \frown^{*} U\)
    using assms Resid-cons-ind [of T U] by blast+
lemma Con-consI [intro, simp]:
shows \(\llbracket T \neq[] ; U \neq[] ;[t]{ }^{*} \frown^{*} U ; T^{*} \frown^{*} U^{*} \backslash *[t] \rrbracket \Longrightarrow t \# T^{*} \frown^{*} U\)
and \(\llbracket T \neq[] ; U \neq[] ; T^{*} \frown^{*}[u] ; T^{*} \backslash{ }^{*}[u]^{*} \frown^{*} U \rrbracket \Longrightarrow T^{*} \frown^{*} u \# U\)
    using Con-cons by auto
lemma Resid-cons:
```

```
assumes \(U \neq[]\)
shows \(t \# T^{*} \frown^{*} U \Longrightarrow(t \# T)^{*} \backslash * U=\left([t]^{*} \backslash * U\right) @\left(T^{*} \backslash *\left(U^{*} \backslash *[t]\right)\right)\)
and \(T^{*} \frown^{*} u \# U \Longrightarrow T^{*} \backslash *(u \# U)=\left(T^{*} \backslash{ }^{*}[u]\right)^{*} \backslash{ }^{*} U\)
    using assms Resid-cons-ind [of T U] Resid.simps(1)
    by blast+
```

The following expansion of residuation with respect to the first argument is stated in terms of the more primitive cons, rather than list append, but as a result ${ }^{1} \backslash^{*}$ has to be used.

```
lemma Resid-cons':
assumes \(T \neq[]\)
shows \(t \# T^{*} \frown^{*} U \Longrightarrow(t \# T)^{*} \backslash^{*} U=\left(t^{1} \backslash^{*} U\right) \#\left(T^{*} \backslash^{*}\left(U^{*} \backslash{ }^{*}[t]\right)\right)\)
    using assms
    by (metis Con-sym Resid.simps(1) Resid1x-as-Resid Resid-cons(1)
        append-Cons append-Nil)
lemma Srcs-Resid-Arr-single:
assumes \(T^{*}{ }^{*}[u]\)
shows \(\operatorname{Srcs}\left(T^{*} \backslash^{*}[u]\right)=\) R.targets \(u\)
proof (cases \(T\) )
    show \(T=[] \Longrightarrow \operatorname{Srcs}\left(T^{*} \backslash^{*}[u]\right)=\) R.targets \(u\)
        using assms by simp
    fix \(t T^{\prime}\)
    assume \(T: T=t \# T^{\prime}\)
    show Srcs \(\left(T^{*} \backslash^{*}[u]\right)=\) R.targets \(u\)
    proof (cases \(\left.T^{\prime}=[]\right)\)
        show \(T^{\prime}=[] \Longrightarrow\) ?thesis
            using assms \(T\) R.sources-resid by auto
        assume \(T^{\prime}: T^{\prime} \neq[]\)
        have \(\operatorname{Srcs}\left(T^{*} \backslash *[u]\right)=\operatorname{Srcs}\left(\left(t \# T^{\prime}\right)^{*} \backslash^{*}[u]\right)\)
            using \(T\) by \(\operatorname{simp}\)
        also have \(\ldots=\operatorname{Srcs}\left((t \backslash u) \#\left(T^{\prime *} \backslash^{*}\left([u]^{*} \backslash^{*} T^{\prime}\right)\right)\right)\)
            using assms \(T\)
            by (metis Resid-rec(2) Srcs.elims \(T^{\prime}\) list.distinct(1) list.sel(1))
        also have \(\ldots=\) R.sources \((t \backslash u)\)
            using Srcs.elims by blast
        also have \(\ldots=\) R.targets \(u\)
            using assms Con-rec(2) T T' R.sources-resid by force
        finally show ?thesis by blast
    qed
qed
lemma Srcs-Resid-single-Arr:
shows \([u]{ }^{*} \frown^{*} T \Longrightarrow \operatorname{Srcs}\left([u]^{*} \backslash * T\right)=\operatorname{Trgs} T\)
proof (induct \(T\) arbitrary: u)
    show \(\wedge u .[u]^{*} \frown^{*}[] \Longrightarrow \operatorname{Srcs}\left([u]^{*} \backslash *[]\right)=\operatorname{Trgs}[]\)
        by simp
    fix \(t u T\)
    assume ind: \(\bigwedge u .[u]^{*} \frown^{*} T \Longrightarrow \operatorname{Srcs}\left([u]^{*}{ }^{*} T\right)=\operatorname{Trgs} T\)
```

```
    assume Con: \([u]^{*} \frown^{*} t \# T\)
    show \(\operatorname{Srcs}\left([u]{ }^{*} \backslash *(t \# T)\right)=\operatorname{Trgs}(t \# T)\)
    proof (cases \(T=[]\) )
        show \(T=[] \Longrightarrow\) ?thesis
            using Con Srcs-Resid-Arr-single Trgs.simps(2) by presburger
    assume \(T: T \neq[]\)
    have \(\operatorname{Srcs}\left([u]^{*} \backslash^{*}(t \# T)\right)=\operatorname{Srcs}\left([u \backslash t]^{*} \backslash * T\right)\)
            using Con Resid-rec(3) \(T\) by force
    also have \(\ldots=\operatorname{Trg} s T\)
        using Con ind Con-rec(3) T by auto
    also have \(\ldots=\operatorname{Trgs}(t \# T)\)
        by (metis T Trgs.elims Trgs.simps(3))
    finally show ?thesis by simp
    qed
qed
lemma Trgs-Resid-sym-Arr-single:
shows \(T^{*} \frown^{*}[u] \Longrightarrow \operatorname{Trgs}\left(T^{*} \backslash^{*}[u]\right)=\operatorname{Trgs}\left([u]^{*} \backslash^{*} T\right)\)
proof (induct \(T\) arbitrary: u)
    show \(\wedge u .[]^{*} \frown^{*}[u] \Longrightarrow \operatorname{Trgs}\left([]^{*} \backslash^{*}[u]\right)=\operatorname{Trgs}\left([u]^{*} \backslash^{*}[]\right)\)
    by simp
    fix \(t u T\)
    assume ind: \(\bigwedge u . T^{*} \frown^{*}[u] \Longrightarrow \operatorname{Trgs}\left(T^{*} \backslash *[u]\right)=\operatorname{Trgs}\left([u]{ }^{*} \backslash{ }^{*} T\right)\)
    assume Con: \(t \# T^{*} \frown^{*}[u]\)
    show \(\operatorname{Trgs}\left((t \# T)^{*} \backslash *[u]\right)=\operatorname{Trgs}\left([u]^{*} \backslash^{*}(t \# T)\right)\)
    proof (cases \(T=[]\) )
    show \(T=[] \Longrightarrow\) ?thesis
            using R.targets-resid-sym
            by (simp add: R.con-sym)
        assume \(T: T \neq[]\)
        show ?thesis
        proof -
            have \(\operatorname{Trgs}\left((t \# T)^{*} \backslash *[u]\right)=\operatorname{Trgs}\left((t \backslash u) \#\left(T^{*} \backslash *[u \backslash t]\right)\right)\)
                using Con Resid-rec(2) \(T\) by auto
            also have \(\ldots=\operatorname{Trgs}\left(T^{*} \backslash *[u \backslash t]\right)\)
            using \(T\) Con Con-rec(2) [of Ttu]
            by (metis Trgs.elims Trgs.simps(3))
            also have \(\ldots=\operatorname{Trgs}\left([u \backslash t]^{*} \backslash * T\right)\)
                using \(T\) Con ind Con-sym by metis
            also have \(\ldots=\operatorname{Trgs}\left([u]^{*} \backslash *(t \# T)\right)\)
            using \(T\) Con Con-sym Resid-rec(3) by presburger
            finally show ?thesis by blast
        qed
    qed
qed
lemma Srcs-Resid [simp]:
shows \(T^{*}\) 〇* \(^{*} U \operatorname{Srcs}\left(T^{*} \backslash * U\right)=\operatorname{Trgs} U\)
proof (induct \(U\) arbitrary: \(T\) )
```

```
show \(\wedge T . T^{*} \frown^{*}[] \Longrightarrow \operatorname{Srcs}\left(T^{*} \backslash{ }^{*}[]\right)=\operatorname{Trgs}[]\)
    using Con-sym Resid.simps(1) by blast
    fix \(u U T\)
    assume ind: \(\bigwedge T . T^{*} \frown^{*} U \Longrightarrow \operatorname{Srcs}\left(T^{*} \backslash * U\right)=\operatorname{Trgs} U\)
    assume Con: \(T^{*} \frown^{*} u \# U\)
    show \(\operatorname{Srcs}\left(T^{*} \backslash^{*}(u \# U)\right)=\operatorname{Trgs}(u \# U)\)
    by (metis Con Resid-cons(2) Srcs-Resid-Arr-single Trgs.simps(2-3) ind
        list.exhaust-sel)
qed
lemma Trgs-Resid-sym [simp]:
shows \(T^{*} \frown^{*} U \Longrightarrow \operatorname{Trgs}\left(T^{*} \backslash^{*} U\right)=\operatorname{Trgs}\left(U^{*} \backslash^{*} T\right)\)
proof (induct \(U\) arbitrary: \(T\) )
    show \(\wedge T . T^{*} \frown^{*}[] \Longrightarrow \operatorname{Trgs}\left(T^{*} \backslash{ }^{*}[]\right)=\operatorname{Trgs}\left([]^{*} \backslash *\right)\)
    by (meson Con-sym Resid.simps(1))
    fix \(u U T\)
    assume ind: \(\wedge T . T^{*} \frown^{*} U \Longrightarrow \operatorname{Trgs}\left(T^{*} \backslash^{*} U\right)=\operatorname{Trgs}\left(U^{*} \backslash^{*} T\right)\)
    assume Con: \(T^{*} \frown^{*} u \# U\)
    show \(\operatorname{Trgs}\left(T^{*} \backslash *(u \# U)\right)=\operatorname{Trgs}\left((u \# U)^{*} \backslash^{*} T\right)\)
    proof (cases \(U=[]\) )
        show \(U=[] \Longrightarrow\) ?thesis
            using Con Trgs-Resid-sym-Arr-single by blast
        assume \(U: U \neq[]\)
        show ?thesis
        proof -
            have \(\operatorname{Trgs}\left(T^{*} \backslash^{*}(u \# U)\right)=\operatorname{Trgs}\left(\left(T^{*} \backslash{ }^{*}[u]\right)^{*} \backslash{ }^{*} U\right)\)
                using \(U\) by (metis Con Resid-cons(2))
            also have \(\ldots=\operatorname{Trgs}\left(U^{*} \backslash{ }^{*}\left(T^{*} \backslash^{*}[u]\right)\right)\)
            using \(U\) Con by (metis Con-sym ind)
            also have \(\ldots=\operatorname{Trgs}\left((u \# U)^{*} \backslash{ }^{*} T\right)\)
                by (metis (no-types, opaque-lifting) Con-cons(1) Con-sym Resid.simps(1) Resid-cons'
                    Trgs.simps(3) U neq-Nil-conv)
            finally show ?thesis by simp
        qed
    qed
qed
lemma img-Resid-Srcs:
shows \(\operatorname{Arr} T \Longrightarrow(\lambda a .[a] * \backslash *) \cdot \operatorname{Srcs} T \subseteq(\lambda b .[b]) \cdot \operatorname{Trgs} T\)
proof (induct \(T\) )
    show \(\operatorname{Arr}[] \Longrightarrow\left(\lambda a .[a]{ }^{*} \backslash^{*}[]\right) ' \operatorname{Srcs}[] \subseteq(\lambda b .[b]){ }^{\prime} \operatorname{Trgs}[]\)
        by simp
    fix \(t::{ }^{\prime} a\) and \(T\) :: 'a list
    assume \(t T: \operatorname{Arr}(t \# T)\)
    assume ind: Arr \(T \Longrightarrow\left(\lambda a .[a]{ }^{*} \backslash * T\right)\) 'Srcs \(T \subseteq(\lambda b .[b])\) ' Trgs \(T\)
    show \(\left(\lambda a .[a]^{*} \backslash^{*}(t \# T)\right) \cdot \operatorname{Srcs}(t \# T) \subseteq(\lambda b .[b]) \cdot \operatorname{Trgs}(t \# T)\)
    proof
        fix \(B\)
        assume \(B: B \in\left(\lambda a .[a]{ }^{*} \backslash *(t \# T)\right) \cdot \operatorname{Srcs}(t \# T)\)
```

```
        show B \in(\lambdab.[b])'Trgs (t#T)
    proof (cases T=[])
    assume T:T=[]
    obtain }a\mathrm{ where a: a & R.sources t ^ [a\t]=B
        by (metis (no-types, lifting) B R.composite-of-source-arr R.con-prfx-composite-of(1)
                Resid-rec(1) Srcs.simps(2) T Arr.simps(2) Con-rec(1) imageE tT)
    have a\t\in\operatorname{Trgs}(t#T)
            using tTT a
            by (simp add: R.resid-source-in-targets)
            thus ?thesis
            using B a image-iff by fastforce
        next
        assume T:T\not=[]
        obtain a where a: a\inR.sources t ^[a]*\* (t# T)=B
            using tT T B Srcs.elims by blast
            have [a\t]*\**}T=
            using tT T B a
            by (metis Con-rec(3) R.arrI R.resid-source-in-targets R.targets-are-cong
                Resid-rec(3) R.arr-resid-iff-con R.ide-implies-arr)
            moreover have a\t\inSrcs T
            using a tT
            by (metis Arr.simps(3) R.resid-source-in-targets T neq-Nil-conv subsetD)
            ultimately show ?thesis
            using T tT ind
            by (metis Trgs.simps(3) Arr.simps(3) image-iff list.exhaust-sel subsetD)
        qed
    qed
qed
lemma Resid-Arr-Src:
shows \llbracketArr T; a\inSrcs T\rrbracket\Longrightarrow T *\* [a]=T
proof (induct T arbitrary: a)
    show \a.\llbracketArr [];a\inSrcs []\rrbracket\Longrightarrow[]*\* [a]=[]
        by simp
    fix atT
    assume ind: \bigwedgea.\llbracketArr T; a \inSrcs T\rrbracket\Longrightarrow T * \* [a]=T
    assume Arr: Arr (t#T)
    assume a: a \in Srcs ( }t#T
    show (t#T)*\* [a]=t#T
    proof (cases T = [])
        show T=[]\Longrightarrow?thesis
            using a R.resid-arr-ide R.sources-def by auto
            assume T:T\not=[]
            show (t#T) *\* [a]=t# T
            proof -
            have 1: R.arr t^Arr T^R.targets t\subseteq Srcs T
                using Arr T
                by (metis Arr.elims(2) list.sel(1) list.sel(3))
            have 2: t # T *\frown* [a]
```

```
            using T a Arr Con-rec(2)
            by (metis (no-types, lifting) img-Resid-Srcs Con-sym imageE image-subset-iff
                list.distinct(1))
            have (t#T)*\*[a]=(t\a)#(T*** [a\t])
            using 2 T Resid-rec(2) by simp
            moreover have t\a=t
            using Arr a R.sources-def
            by (metis 2 CollectD Con-rec(2) T Srcs-are-ide in-mono R.resid-arr-ide)
            moreover have T *\* [a\t]=T
            by (metis 12 R.in-sourcesI R.resid-source-in-targets Srcs-are-ide T a
                Con-rec(2) in-mono ind mem-Collect-eq)
            ultimately show ?thesis by simp
        qed
    qed
qed
lemma Con-single-ide-ind:
shows R.ide a\Longrightarrow[a]*``*}T\longleftrightarrow4\mathrm{ Arr T^a S Srcs T
proof (induct T arbitrary: a)
    show \a.[a] *\frown* [] \longleftrightarrow Arr [] ^a G Srcs []
    by simp
    fix atT
    assume ind: \a. R.ide a\Longrightarrow[a]*\frown* T\longleftrightarrow Arr T^a\inSrcs T
    assume a: R.ide a
    show [a]*\frown* }(t#T)\longleftrightarrow\operatorname{Arr}(t#T)\wedgea\in\operatorname{Srcs}(t#T
    proof (cases T = [])
    show T=[]\Longrightarrow ?thesis
        using a Con-sym
        by (metis Arr.simps(2) Resid-Arr-Src Srcs.simps(2) R.arr-iff-has-source
                Con-rec(1) empty-iff R.in-sourcesI list.distinct(1))
    assume T:T\not=[]
    have 1:[a]*`*}(t#T)\longleftrightarrowa\frownt\wedge[a\t]*`\mp@subsup{}{}{*}
            using a T Con-cons(2) [of [a] T t] by simp
        also have 2: ...\longleftrightarrowa\frownt\wedge Arr T^a\t\inSrcs T
            using a T ind R.resid-ide-arr by blast
        also have }\ldots\longleftrightarrow\operatorname{Arr}(t#T)\wedgea\in\operatorname{Srcs}(t#T
            using a T Con-sym R.con-sym Resid-Arr-Src R.con-implies-arr Srcs-are-ide
            apply (cases T)
            apply simp
            by (metis Arr.simps(3) R.resid-arr-ide R.targets-resid-sym Srcs.simps(3)
                Srcs-Resid-Arr-single calculation dual-order.eq-iff list.distinct(1)
                R.in-sourcesI)
    finally show ?thesis by simp
    qed
qed
lemma Con-single-ide-iff:
assumes R.ide a
shows [a]*\frown* T\longleftrightarrow Arr T^a\inSrcs T
```

using assms Con-single-ide-ind by simp
lemma Con-single-ideI [intro]:
assumes R.ide a and Arr T and $a \in \operatorname{Srcs} T$
shows $[a]^{*} \frown^{*} T$ and $T^{*} \frown^{*}[a]$
using assms Con-single-ide-iff Con-sym by auto
lemma Resid-single-ide:
assumes R.ide a and $[a]^{*}{ }^{*} T$
shows $[a]^{*} \backslash^{*} T \in(\lambda b .[b]){ }^{*} \operatorname{Trgs} T$ and $[\operatorname{simp}]: T^{*} \backslash{ }^{*}[a]=T$
using assms Con-single-ide-ind img-Resid-Srcs Resid-Arr-Src Con-sym by blast+
lemma Resid-Arr-Ide-ind:
shows $\llbracket I d e A ; T^{*} \frown^{*} A \rrbracket \Longrightarrow T^{*} \backslash * A=T$
proof (induct A)
show $\llbracket I d e[] ; T^{*} \frown^{*}[] \rrbracket \Longrightarrow T^{*} \backslash{ }^{*}[]=T$
by simp
fix $a A$
assume ind: \llbracket Ide $A ; T^{*} \frown^{*} A \rrbracket \Longrightarrow T^{*} \backslash * A=T$
assume Ide: Ide ($a \neq A$)
assume Con: T^{*}-* * \# A
show $T^{*} \backslash *(a \# A)=T$
by (metis (no-types, lifting) Con Con-initial-left Con-sym Ide Ide.elims(2) Resid-cons(2) Resid-single-ide(2) ind list.inject)
qed
lemma Resid-Ide-Arr-ind:
shows \llbracket Ide $A ; A^{*} \wedge^{*} T \rrbracket \Longrightarrow \operatorname{Ide}\left(A^{*} \backslash * T\right)$
proof (induct A)
show $\llbracket I d e[] ;[] \frown^{*} T \rrbracket \Longrightarrow \operatorname{Ide}\left([]{ }^{*} \backslash * T\right)$
by simp
fix $a A$
assume ind: $\llbracket \operatorname{Ide} A ; A^{*} \frown^{*} T \rrbracket \Longrightarrow \operatorname{Ide}\left(A^{*} \backslash{ }^{*} T\right)$
assume Ide: Ide ($a \# A$)
assume Con: $\left.a \# A^{*}\right)^{*} T$
have T : Arr T
using Con Ide Con-single-ide-ind Con-initial-left Ide.elims(2)
by blast
show Ide $\left((a \# A)^{*} \backslash{ }^{*} T\right)$
proof (cases $A=[]$)
show $A=[] \Longrightarrow$?thesis
by (metis Con Con-sym1 Ide Ide.simps(2) Resid1x-as-Resid Resid1x-ide Residx1-as-Resid Con-sym)
assume $A: A \neq[]$
show ?thesis
proof -
have Ide $\left([a]{ }^{*} \backslash * ~ T\right)$
by (metis Con Con-initial-left Con-sym Con-sym1 Ide Ide.simps(3)

```
                Resid1x-as-Resid Residx1-as-Resid Ide.simps(2) Resid1x-ide
                list.exhaust-sel)
            moreover have \(\operatorname{Trgs}\left([a]^{*} \backslash{ }^{*} T\right) \subseteq \operatorname{Srcs}\left(A^{*} \backslash{ }^{*} T\right)\)
            using A T Ide Con
            by (metis (no-types, lifting) Con-sym Ide.elims(2) Ide.simps(2) Resid-Arr-Ide-ind
                Srcs-Resid Trgs-Resid-sym Con-cons(2) dual-order.eq-iff list.inject)
            moreover have Ide \(\left(A^{*} \backslash *\left(T^{*} \backslash *[a]\right)\right)\)
            by (metis A Con Con-cons(1) Con-sym Ide Ide.simps(3) Resid-Arr-Ide-ind
                Resid-single-ide(2) ind list.exhaust-sel)
            moreover have Ide \(\left((a \# A)^{*} \backslash^{*} T\right) \longleftrightarrow\)
                    \(\operatorname{Ide}\left([a]^{*} \backslash^{*} T\right) \wedge \operatorname{Ide}\left(A^{*} \backslash^{*}\left(T^{*} \backslash^{*}[a]\right)\right) \wedge\)
                        \(\operatorname{Trgs}\left([a]^{*} \backslash * T\right) \subseteq \operatorname{Srcs}\left(A^{*}{ }^{*} T\right)\)
            using calculation \((1-3)\)
            by (metis Arr.simps(1) Con Ide Ide.simps(3) Resid1x-as-Resid Resid-cons'
                Trgs.simps(2) Con-single-ide-iff Ide.simps(2) Ide-implies-Arr Resid-Arr-Src
                list.exhaust-sel)
            ultimately show ?thesis by blast
        qed
    qed
qed
lemma Resid-Ide:
assumes \(I d e A\) and \(A{ }^{*} \frown^{*} T\)
shows \(T^{*} \backslash^{*} A=T\) and \(\operatorname{Ide}\left(A^{*} \backslash{ }^{*} T\right)\)
    using assms Resid-Ide-Arr-ind Resid-Arr-Ide-ind Con-sym by auto
lemma Con-Ide-iff:
shows Ide \(A \Longrightarrow A^{*} \frown^{*} T \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Srcs} T=\operatorname{Srcs} A\)
proof (induct \(A\) )
    show Ide []\(\Longrightarrow[]^{*}{ }^{*} T \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Srcs} T=\operatorname{Srcs}[]\)
        by simp
    fix \(a A\)
    assume ind: Ide \(A \Longrightarrow A^{*}{ }^{*} T \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Srcs} T=\operatorname{Srcs} A\)
    assume Ide: Ide ( \(a \# A\) )
    show \(a \# A^{*} \frown^{*} T \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Srcs} T=\operatorname{Srcs}(a \# A)\)
    proof (cases \(A=[]\) )
    show \(A=[] \Longrightarrow\) ?thesis
        using Con-single-ide-ind Ide
        by (metis Arr.simps(2) Con-sym Ide.simps(2) Ide-implies-Arr R.arrE
                            Resid-Arr-Src Srcs.simps(2) Srcs-Resid R.in-sourcesI)
    assume \(A: A \neq[]\)
    have \(a \# A^{*} \frown^{*} T \longleftrightarrow[a]^{*} \frown^{*} T \wedge A^{*} \frown^{*} T^{*} \backslash^{*}[a]\)
        using A Ide Con-cons(1) [of A T a] by fastforce
    also have 1: ... \(\longleftrightarrow \operatorname{Arr} T \wedge a \in \operatorname{Srcs} T\)
    by (metis A Arr-has-Src Con-single-ide-ind Ide Ide.elims(2) Resid-Arr-Src
                Srcs-Resid-Arr-single Con-sym Srcs-eqI ind inf.absorb-iff2 list.inject)
    also have \(\ldots \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Srcs} T=\operatorname{Srcs}(a \# A)\)
        by (metis A 1 Con-sym Ide Ide.simps(3) R.ideE
            R.sources-resid Resid-Arr-Src Srcs.simps(3) Srcs-Resid-Arr-single
```

```
                list.exhaust-sel R.in-sourcesI)
    finally show }a##\mp@subsup{A}{}{*}\mp@subsup{\frown}{}{*}T\longleftrightarrow\operatorname{Arr}T\wedge\operatorname{Srcs}T=\operatorname{Srcs}(a#A
    by blast
    qed
qed
lemma Con-IdeI:
assumes Ide A and Arr T and Srcs T = Srcs A
shows A*\frown* T and T*``*}
    using assms Con-Ide-iff Con-sym by auto
lemma Con-Arr-self:
shows Arr T\Longrightarrow T * `* T
proof (induct T)
    show Arr [] \Longrightarrow []*`* []
        by simp
    fix tT
    assume ind: Arr T\LongrightarrowT*\frown* T
    assume Arr: Arr (t#T)
    show }t#\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}t#
    proof (cases T= [])
    show T=[]\Longrightarrow ?thesis
        using Arr R.arrE by simp
    assume T:T\not=[]
    have }t\frownt\wedge\mp@subsup{T}{}{*}\frown*[t\t]\wedge[t\t]*\frown* T\wedge T**\*[t\t]*\frown* T**\* [t\t
    proof -
        have t\frownt
            using Arr Arr.elims(1) by auto
            moreover have T*``* [t\t]
            proof -
            have Ide [t\t]
                by (simp add: R.arr-def R.prfx-reflexive calculation)
            moreover have Srcs [t\t]=Srcs T
                by (metis Arr Arr.simps(2) Arr-has-Trg R.arrE R.sources-resid Srcs.simps(2)
                    Srcs-eqI T Trgs.simps(2) Arr.simps(3) inf.absorb-iff2 list.exhaust)
            ultimately show ?thesis
                by (metis Arr Con-sym T Arr.simps(3) Con-Ide-iff neq-Nil-conv)
            qed
            ultimately show ?thesis
                    by (metis Con-single-ide-ind Con-sym R.prfx-reflexive
                    Resid-single-ide(2) ind R.con-implies-arr (1))
        qed
        thus ?thesis
            using Con-rec(4) [of T T t t] by force
    qed
qed
lemma Resid-Arr-self:
shows Arr T\LongrightarrowIde (T*\* T)
```

```
proof (induct T)
    show Arr [] \(\Longrightarrow\) Ide ([] ** [])
        by \(\operatorname{simp}\)
    fix \(t T\)
    assume ind: Arr \(T \Longrightarrow \operatorname{Ide}\left(T^{*} \backslash^{*} T\right)\)
    assume \(\operatorname{Arr}: \operatorname{Arr}(t \# T)\)
    show Ide \(\left((t \# T)^{*} \backslash^{*}(t \# T)\right)\)
    proof (cases \(T=[])\)
        show \(T=[] \Longrightarrow\) ?thesis
            using Arr R.prfx-reflexive by auto
        assume \(T: T \neq[]\)
        have 1: \((t \# T)^{*} \backslash^{*}(t \# T)=t^{1} \backslash^{*}(t \# T) \# T^{*} \backslash *\left((t \# T)^{*} \backslash^{*}[t]\right)\)
            using Arr T Resid-cons' \({ }^{\prime}\) of \(\left.T t \neq T\right]\) Con-Arr-self by presburger
        also have \(\ldots=(t \backslash t)^{1} \backslash^{*} T \# T^{*} \backslash{ }^{*}\left(t^{1} \backslash *[t] \# T^{*} \backslash *\left([t]{ }^{*} \backslash{ }^{*}[t]\right)\right)\)
            using Arr T Resid-cons' [of T \(t\) [t]]
            by (metis Con-initial-right Resid1x.simps(3) calculation neq-Nil-conv)
        also have \(\ldots=(t \backslash t)^{1} \backslash^{*} T \#\left(T^{*} \backslash^{*}\left([t]^{*} \backslash^{*}[t]\right)\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*}\left([t]^{*} \backslash^{*}[t]\right)\right)\)
            by (metis 1 Resid1x.simps(2) Residx1.simps(2) Residx1-as-Resid T calculation
                Con-cons(1) Con-rec(4) Resid-cons(2) list.distinct(1) list.inject)
        finally have 2: \((t \# T)^{*} \backslash^{*}(t \# T)=\)
                        \((t \backslash t)^{1} \backslash^{*} T \#\left(T^{*} \backslash^{*}\left([t]^{*} \backslash *[t]\right)\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*}\left([t]^{*} \backslash^{*}[t]\right)\right)\)
            by blast
        moreover have Ide ...
        proof -
            have R.ide \(\left((t \backslash t)^{1} \backslash{ }^{*} T\right)\)
            using Arr T
            by (metis Con-initial-right Con-rec(2) Con-sym1 R.con-implies-arr(1)
                Resid1x-ide Con-Arr-self Residx1-as-Resid R.prfx-reflexive)
            moreover have Ide \(\left(\left(T^{*} \backslash^{*}\left([t]^{*} \backslash *[t]\right)\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*}\left([t] * \backslash^{*}[t]\right)\right)\right)\)
            using Arr T
            by (metis Con-Arr-self Con-rec(4) Resid-single-ide(2) Con-single-ide-ind
                    Resid.simps(3) ind R.prfx-reflexive R.con-implies-arr(2))
            moreover have R.targets \(\left((t \backslash t)^{1} \backslash^{*} T\right) \subseteq\)
                    \(\operatorname{Srcs}\left(\left(T^{*} \backslash^{*}\left([t]^{*} \backslash^{*}[t]\right)\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*}\left([t]^{*} \backslash^{*}[t]\right)\right)\right)\)
            by (metis (no-types, lifting) 12 Con-cons(1) Resid1x-as-Resid \(T \operatorname{Trgs} . \operatorname{simps}(2)\)
                    Trgs-Resid-sym Srcs-Resid dual-order.eq-iff list.discI list.inject)
            ultimately show ?thesis
            using Arr T
            by (metis Ide.simps \((1,3)\) list.exhaust-sel)
        qed
        ultimately show ?thesis by auto
    qed
qed
lemma Con-imp-eq-Srcs:
assumes \(T^{*} \frown^{*} U\)
shows Srcs \(T=\) Srcs \(U\)
proof (cases T)
    show \(T=[] \Longrightarrow\) ?thesis
```

```
    using assms by simp
    fix }t\mp@subsup{T}{}{\prime
    assume T:T=t# T'
    show Srcs T = Srcs U
    proof (cases U)
    show U = []\Longrightarrow ?thesis
            using assms T by simp
    fix u U'
    assume }U:U=u#\mp@subsup{U}{}{\prime
    show Srcs T = Srcs U
        by (metis Con-initial-right Con-rec(1) Con-sym R.con-imp-common-source
            Srcs.simps(2-3) Srcs-eqI T Trgs.cases U assms)
    qed
qed
lemma Arr-iff-Con-self:
shows Arr T\longleftrightarrow T *\frown* T
proof (induct T)
    show Arr [] \longleftrightarrow[]*\frown* []
        by simp
    fix tT
    assume ind: Arr T\longleftrightarrow \longleftrightarrow * }\mp@subsup{}{}{*}
    show }\operatorname{Arr}(t#T)\longleftrightarrowt#T\mp@subsup{T}{}{*}\mp@subsup{}{}{*}t#
    proof (cases T=[])
        show }T=[]\Longrightarrow\mathrm{ ?thesis
            by auto
        assume T:T\not=[]
        show ?thesis
        proof
            show }\operatorname{Arr}(t#T)\Longrightarrowt#T\mp@subsup{T}{}{*}\mp@subsup{}{}{*}t#
            using Con-Arr-self by simp
            show }t#\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}t#T\Longrightarrow\operatorname{Arr}(t#T
            proof -
                    assume Con: t# T *\frown* t # T
                    have R.arr t
                    using T Con Con-rec(4) [of T T t t ] by blast
            moreover have Arr T
                using T Con Con-rec(4) [of T T t t] ind R.arrI
                by (meson R.prfx-reflexive Con-single-ide-ind)
            moreover have R.targets t\subseteqSrcs T
                using T Con
                by (metis Con-cons(2) Con-imp-eq-Srcs Trgs.simps(2)
                    Srcs-Resid list.distinct(1) subsetI)
            ultimately show ?thesis
                by (cases T) auto
            qed
        qed
    qed
qed
```

```
lemma Arr-Resid-single:
shows \(T^{*} \frown^{*}[u] \Longrightarrow \operatorname{Arr}\left(T^{*} \backslash^{*}[u]\right)\)
proof (induct \(T\) arbitrary: u)
    show \(\bigwedge u .[]^{*} \frown^{*}[u] \Longrightarrow \operatorname{Arr}\left([]^{*} \backslash^{*}[u]\right)\)
        by simp
    fix \(t u T\)
    assume ind: \(\bigwedge u . T^{*} \frown^{*}[u] \Longrightarrow \operatorname{Arr}\left(T^{*} \backslash^{*}[u]\right)\)
    assume Con: \(t \# T^{*} \frown^{*}[u]\)
    show \(\operatorname{Arr}\left((t \# T)^{*} \backslash^{*}[u]\right)\)
    proof (cases \(T=[]\) )
        show \(T=[] \Longrightarrow\) ?thesis
            using Con Arr-iff-Con-self R.con-imp-arr-resid Con-rec(1) by fastforce
        assume \(T: T \neq[]\)
        have \(\operatorname{Arr}\left((t \# T)^{*} \backslash^{*}[u]\right) \longleftrightarrow \operatorname{Arr}\left((t \backslash u) \#\left(T^{*} \backslash^{*}[u \backslash t]\right)\right)\)
            using Con T Resid-rec(2) by auto
        also have \(\ldots \longleftrightarrow \operatorname{R.} \operatorname{arr}(t \backslash u) \wedge \operatorname{Arr}\left(T^{*} \backslash *[u \backslash t]\right) \wedge\)
                        R.targets \((t \backslash u) \subseteq \operatorname{Srcs}\left(T^{*} \backslash{ }^{*}[u \backslash t]\right)\)
        using Con \(T\)
        by (metis Arr.simps(3) Con-rec(2) neq-Nil-conv)
        also have \(\ldots \longleftrightarrow R\).con \(t u \wedge \operatorname{Arr}\left(T^{*} \backslash^{*}[u \backslash t]\right)\)
            using Con \(T\)
            by (metis Srcs-Resid-Arr-single Con-rec(2) R.arr-resid-iff-con subsetI
            R.targets-resid-sym)
        also have \(\ldots \longleftrightarrow\) True
        using Con ind T Con-rec(2) by blast
        finally show ?thesis by auto
    qed
qed
lemma Con-imp-Arr-Resid:
shows \(T^{*} \frown^{*} U \Longrightarrow \operatorname{Arr}\left(T^{*} \backslash^{*} U\right)\)
proof (induct \(U\) arbitrary: \(T\) )
    show \(\wedge T . T^{*} \frown^{*}[] \Longrightarrow \operatorname{Arr}\left(T^{*} \backslash^{*}[]\right)\)
    by (meson Con-sym Resid.simps(1))
    fix \(u U T\)
    assume ind: \(\wedge T . T^{*} \frown^{*} U \Longrightarrow \operatorname{Arr}\left(T^{*} \backslash^{*} U\right)\)
    assume Con: \(T^{*} \frown^{*} u \# U\)
    show \(\operatorname{Arr}\left(T^{*} \backslash^{*}(u \# U)\right)\)
    by (metis Arr-Resid-single Con Resid-cons(2) ind)
qed
lemma Cube-ind:
shows \(\llbracket T^{*} \frown^{*} U ; V^{*} \frown^{*} T\); length \(T+\) length \(U+\) length \(V \leq n \rrbracket \Longrightarrow\)
            \(\left(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{*} \backslash{ }^{*} U\right) \wedge\)
        \(\left(V^{*} \backslash{ }^{*} T{ }^{*} \frown^{*} U^{*} \backslash^{*} T \longrightarrow\right.\)
            \(\left.\left(V^{*} \backslash * T\right)^{*} \backslash *\left(U^{*} \backslash * T\right)=\left(V^{*} \backslash * U\right)^{*} \backslash{ }^{*}\left(T^{*} \backslash * U\right)\right)\)
proof (induct n arbitrary: T U V)
    show \(\wedge T U V . \llbracket T^{*} \frown^{*} U ; V^{*} \frown^{*} T\); length \(T+\) length \(U+\) length \(V \leq 0 \rrbracket \Longrightarrow\)
```

$$
\begin{aligned}
& \left(V^{*} \backslash T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow V^{*} \backslash{ }^{*} U{ }^{*} \frown^{*} T^{*} \backslash{ }^{*} U\right) \wedge \\
& \left(V^{*} \backslash * T^{*} \frown^{*} U U^{*} \backslash T \longrightarrow\right. \\
& \left.\left(V^{*} \backslash * T\right)^{*} \backslash{ }^{*}\left(U^{*} \backslash{ }^{*} T\right)=\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash{ }^{*}\left(T^{*} \backslash * U\right)\right)
\end{aligned}
$$

by simp
fix n and $T U V$:: 'a list
assume Con-TU: $T^{*} \frown^{*} U$ and $C o n-V T: V^{*} \frown^{*} T$
have $T: T \neq[]$
using Con-TU by auto
have $U: U \neq[]$
using Con-TU Con-sym Resid.simps(1) by blast
have $V: V \neq[]$
using Con-VT by auto
assume len: length $T+$ length $U+$ length $V \leq$ Suc n
assume ind: $\bigwedge T U V . \llbracket T^{*} \frown^{*} U ; V^{*} \frown^{*} T$; length $T+$ length $U+$ length $V \leq n \rrbracket \Longrightarrow$ $\left(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash{ }^{*} T \longleftrightarrow V^{*} \backslash{ }^{*} U{ }^{*} \frown^{*} T^{*} \backslash{ }^{*} U\right) \wedge$
$\left(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longrightarrow\right.$
$\left.\left(V^{*} \backslash{ }^{*} T\right)^{*} \backslash *\left(U^{*} \backslash * T\right)=\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash *\left(T^{*} \backslash{ }^{*} U\right)\right)$
show $\left(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash^{*} T \longleftrightarrow V^{*} \backslash^{*} U^{*} \frown^{*} T^{*} \backslash{ }^{*} U\right) \wedge$
$\left(V^{*} \backslash{ }^{*} T \frown^{*} U^{*} \backslash{ }^{*} T \longrightarrow\left(V^{*} \backslash{ }^{*} T\right)^{*} \backslash *\left(U^{*} \backslash^{*} T\right)=\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash{ }^{*}\left(T^{*} \backslash{ }^{*} U\right)\right)$
proof (cases V)
show $V=[] \Longrightarrow$?thesis
using V by simp
fix $v V^{\prime}$
assume $V: V=v \# V^{\prime}$
show ?thesis
proof (cases U)
show $U=[] \Longrightarrow$?thesis
using U by simp
fix $u U^{\prime}$
assume $U: U=u \# U^{\prime}$
show ?thesis
proof (cases T)
show $T=[] \Longrightarrow$?thesis
using T by simp
fix $t T^{\prime}$
assume $T: T=t \# T^{\prime}$
show ?thesis
proof (cases $V^{\prime}=[]$, cases $U^{\prime}=[]$, cases $T^{\prime}=[]$)
show $\llbracket V^{\prime}=[] ; U^{\prime}=[] ; T^{\prime}=[] \rrbracket \Longrightarrow$?thesis
using TUV R.cube Con-TU Resid.simps(2-3) R.arr-resid-iff-con
R.con-implies-arr Con-sym
by metis
assume $T^{\prime}: T^{\prime} \neq[]$ and $V^{\prime}: V^{\prime}=[]$ and $U^{\prime}: U^{\prime}=[]$
have 1: $U^{*} \frown^{*}[t]$
using T Con-TU Con-cons(2) Con-sym Resid.simps(2) by metis
have 2: $V^{*} \frown^{*}[t]$
using V Con-VT Con-initial-right T by blast
show ?thesis

```
proof (intro conjI impI)
    have 3: length \([t]+\) length \(U+\) length \(V \leq n\)
        using \(T T^{\prime}\) le-Suc-eq len by fastforce
    show \(*: V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{*} \backslash{ }^{*} U\)
    proof -
        have \(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow\left(V^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime *} \frown^{*}\left(U^{*} \backslash{ }^{*}[t]\right)^{*} \backslash{ }^{*} T^{\prime}\)
            using Con-TU Con-VT Con-sym Resid-cons(2) T T' by force
        also have \(\ldots \longleftrightarrow V^{*} \backslash{ }^{*}[t]{ }^{*} \frown^{*} U^{*} \backslash *[t] \wedge\)
                    \(\left(V^{*} \backslash *[t]\right)^{*} \backslash{ }^{*}\left(U^{*} \backslash *[t]\right)^{*} \frown^{*} T^{* *} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)\)
    proof (intro iffI conjI)
            show \(\left(V^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{*} \frown^{*}\left(U^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime} \Longrightarrow V^{*} \backslash{ }^{*}[t]{ }^{*}\) * \(^{*} U^{*} \backslash^{*}[t]\)
                using TUV T' U' V' 1 ind [of T \(]\) len Con-TU Con-rec(2) Resid-rec(1)
                    Resid.simps(1) length-Cons Suc-le-mono add-Suc
                by (metis (no-types))
            show \(\left(V^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{*} \frown^{*}\left(U^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime} \Longrightarrow\)
                \(\left(V^{*} \backslash *[t]\right)^{*} \backslash^{*}\left(U^{*} \backslash *[t]\right)^{*} \frown^{*} T^{* *} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)\)
            using \(T U V T^{\prime} U^{\prime} V^{\prime}\)
            by (metis Con-sym Resid.simps(1) Resid-rec(1) Suc-le-mono ind len
                length-Cons list.size (3-4))
            show \(V^{*} \backslash *[t]{ }^{*} \frown^{*} U^{*} \backslash *[t] \wedge\)
                \(\left(V^{*} \backslash *[t]\right)^{*} \backslash *\left(U^{*} \backslash *[t]\right)^{*} \frown^{*} T^{* *} \backslash^{*}\left(U^{*} \backslash *[t]\right) \Longrightarrow\)
                    \(\left(V^{*} \backslash *[t]\right)^{*} \backslash^{*} T^{\prime *} \frown^{*}\left(U^{*} \backslash *[t]\right)^{*} \backslash * T^{\prime}\)
            using \(T U V T^{\prime} U^{\prime} V^{\prime} 1\) ind len Con-TU Con-VT Con-rec(1-3)
            by (metis (no-types, lifting) One-nat-def Resid-rec(1) Suc-le-mono
                add.commute list.size(3) list.size(4) plus-1-eq-Suc)
    qed
    also have \(\ldots \longleftrightarrow\left(V^{*} \backslash * U\right)^{*} \backslash^{*}\left([t]^{*} \backslash * U\right)^{*} \frown^{*} T^{*} \backslash{ }^{*}\left(U^{*} \backslash^{*}[t]\right)\)
        by (metis 23 Con-sym ind Resid.simps(1))
    also have \(\ldots \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{*} \backslash^{*} U\)
            using Con-rec(2) of \(\left.T^{\prime} t\right]\)
            by (metis (no-types, lifting) 1 Con-TU Con-cons(2) Resid.simps(1)
                Resid.simps(3) Resid-rec(2) \(T T^{\prime} U U^{\prime}\) )
    finally show ?thesis by simp
    qed
    assume Con: \(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash{ }^{*} T\)
    show \(\left(V^{*} \backslash{ }^{*} T\right)^{*} \backslash *\left(U^{*} \backslash * T\right)=\left(V^{*} \backslash * U\right)^{*} \backslash{ }^{*}\left(T^{*} \backslash * U\right)\)
    proof -
    have \(\left(V^{*} \backslash{ }^{*} T\right)^{*} \backslash *\left(U^{*} \backslash * T\right)=\left(\left(V^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime}\right)^{*} \backslash^{*}\left(\left(U^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime}\right)\)
        using Con-TU Con-VT Con-sym Resid-cons(2) T T' by force
    also have \(\ldots=\left(\left(V^{*} \backslash *[t]\right)^{*} \backslash *\left(U^{*} \backslash *[t]\right)\right)^{*} \backslash *\left(T^{* *} \backslash^{*}\left(U^{*} \backslash *[t]\right)\right)\)
            using \(T U V T^{\prime} U^{\prime} V^{\prime} 1\) Con ind [of \(T^{\prime}\) Resid \(U[t]\) Resid \(\left.V[t]\right]\)
            by (metis One-nat-def add.commute calculation len length-0-conv length-Resid
                list.size(4) nat-add-left-cancel-le Con-sym plus-1-eq-Suc)
    also have \(\ldots=\left(\left(V^{*} \backslash * U\right)^{*} \backslash^{*}\left([t]^{*} \backslash * U\right)\right)^{*} \backslash^{*}\left(T^{\prime *} \backslash^{*}\left(U^{*} \backslash{ }^{*}[t]\right)\right)\)
            by (metis 123 Con-sym ind)
    also have \(\ldots=\left(V^{*} \backslash^{*} U\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*} U\right)\)
            using \(T U T^{\prime} U^{\prime}\) Con*
            by (metis Con-sym Resid-rec(1-2) Resid.simps(1) Resid-cons(2))
    finally show?thesis by simp
```

qed
qed
next
assume $U^{\prime}: U^{\prime} \neq[]$ and $V^{\prime}: V^{\prime}=[]$
show ?thesis
proof (intro conjI impI)
show $*: V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash^{*} T \longleftrightarrow V^{*} \backslash^{*} U^{*} \frown^{*} T^{*} \backslash^{*} U$
proof (cases $\left.T^{\prime}=[]\right)$
assume $T^{\prime}: T^{\prime}=[]$
show ?thesis
proof -
have $V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow V^{*} \backslash *[t]^{*} \frown^{*}(u \backslash t) \#\left(U^{\prime *} \backslash{ }^{*}[t \backslash u]\right)$
using Con-TU Con-sym Resid-rec(2) $T T^{\prime} U U^{\prime}$ by auto
also have $\ldots \longleftrightarrow\left(V^{*} \backslash *[t]\right)^{*} \backslash *[u \backslash t]^{*} \frown^{*} U^{\prime *} \backslash^{*}[t \backslash u]$ by (metis Con-TU Con-cons(2) Con-rec(3) Con-sym Resid.simps(1) TU U')
also have $\ldots \longleftrightarrow\left(V^{*} \backslash^{*}[u]\right)^{*} \backslash^{*}[t \backslash u]^{*} \frown^{*} U^{\prime *} \backslash^{*}[t \backslash u]$
using $T U V V^{\prime}$ R.cube-ax
apply simp
by (metis R.con-implies-arr(1) R.not-arr-null R.con-def)
also have $\ldots \longleftrightarrow\left(V^{*} \backslash *[u]\right)^{*} \backslash^{*} U^{\prime *} \frown^{*}[t \backslash u]^{*} \backslash^{*} U^{\prime}$
proof -
have length $[t \backslash u]+$ length $U^{\prime}+$ length $\left(V^{*} \backslash *[u]\right) \leq n$ using $T U V V^{\prime}$ len by force
thus ?thesis
by (metis Con-sym Resid.simps(1) add.commute ind)
qed
also have $\ldots \longleftrightarrow V^{*} \backslash^{*} U^{*} \frown^{*} T^{*} \backslash^{*} U$
by (metis Con-TU Resid-cons(2) Resid-rec(3) T T $U U^{\prime}$ Con-cons(2)
length-Resid length-0-conv)
finally show?thesis by simp
qed
next
assume $T^{\prime}: T^{\prime} \neq[]$
show ?thesis
proof -
have $V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow\left(V^{*} \backslash{ }^{*}[t]\right)^{*} \backslash{ }^{*} T^{*}{ }^{*}{ }^{*}\left(\left(U^{*} \backslash{ }^{*}[t]\right)^{*} \backslash{ }^{*} T^{\prime}\right)$
using Con-TU Con-VT Con-sym Resid-cons(2) T T' by force
also have $\ldots \longleftrightarrow\left(V^{*} \backslash{ }^{*}[t]\right)^{*} \backslash^{*}\left(U^{*} \backslash *[t]\right)^{*} \frown^{*} T^{*} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)$
proof -
have length $T^{\prime}+$ length $\left(U^{*} \backslash *[t]\right)+$ length $\left(V^{*} \backslash *[t]\right) \leq n$
by (metis (no-types, lifting) Con-TU Con-VT Con-initial-right Con-sym One-nat-def Suc-eq-plus1 T ab-semigroup-add-class.add-ac(1) add-le-imp-le-left len length-Resid list.size(4) plus-1-eq-Suc)
thus ?thesis by (metis Con-TU Con-VT Con-cons(1) Con-cons(2) T T'U V ind list.discI) qed
also have $\ldots \longleftrightarrow\left(V^{*} \backslash * U\right)^{*} \backslash *\left([t]^{*} \backslash * U\right)^{*} \frown^{*} T^{*} \backslash^{*}\left(U^{*} \backslash *[t]\right)$
proof -
have length $[t]+$ length $U+$ length $V \leq n$

```
            using T T' le-Suc-eq len by fastforce
            thus ?thesis
            by (metis Con-TU Con-VT Con-initial-left Con-initial-right T ind)
    qed
    also have ...\longleftrightarrow \longleftrightarrow '\\* U *\frown* T *\* U
    by (metis Con-cons(2) Con-sym Resid.simps(1) Resid1x-as-Resid
            Residx1-as-Resid Resid-cons' T T')
    finally show ?thesis by blast
    qed
qed
show }\mp@subsup{V}{}{*}\* * T * \frown* U *\** T \Longrightarrow
    (V*\*}T\mp@subsup{)}{}{*}\** (U*'\* T) =(V*\* U) *\* (T**\* U)
proof -
    assume Con: V *\* T *\frown* U *\* T
    show ?thesis
    proof (cases T' = [])
    assume T': T' = []
    show ?thesis
    proof -
            have 1:(V*\\* T)*\* (U *\*}T)
                (V*\*}T)\mp@subsup{)}{}{*}\mp@subsup{\}{}{*}((u\t)#(\mp@subsup{U}{}{**}\* [t\u])
            using Con-TU Con-sym Resid-rec(2) T T' U U' by force
            also have ... = ((V\mp@subsup{V}{}{*}\* [t]) *\* [u\t]) *\* (U'*\* [t \u])
                    by (metis Con Con-TU Con-rec(2) Con-sym Resid-cons(2) T T' U U'
                    calculation)
            also have ... = ((V *\* [u])*\* [t\u])*\* ( U'**\* [t\u])
            by (metis * Con Con-rec(3) R.cube Resid.simps(1,3) T T' U V V'
                calculation R.conI R.conE)
```



```
            proof -
            have length [t\u] + length ( }\mp@subsup{U}{}{\prime*}\* [t\u]) + length (V**\ [u])\leqn
                by (metis (no-types, lifting) Nat.le-diff-conv2 One-nat-def T U V V'
                    add.commute add-diff-cancel-left' add-leD2 len length-Cons
                    length-Resid list.size(3) plus-1-eq-Suc)
            thus ?thesis
                by (metis Con-sym add.commute Resid.simps(1) ind length-Resid)
            qed
            also have ... = (V*\\* U)*\* (T *\* U)
                    by (metis Con-TU Con-cons(2) Resid-cons(2) T T' U U'
                Resid-rec(3) length-0-conv length-Resid)
            finally show ?thesis by blast
    qed
    next
    assume T': T' }=[
    show ?thesis
    proof -
        have (V*\*T) *\* (U *\* T) =
            ((V*``* T) *\* ([u] *\* T)) *\* (U'*'** (T *'* [u]))
            by (metis Con Con-TU Resid.simps(2) Resid1x-as-Resid U U'
```

Con-cons(2) Con-sym Resid-cons' Resid-cons(2))
also have $\ldots=\left(\left(V^{*} \backslash *[u]\right)^{*} \backslash^{*}\left(T^{*} \backslash *[u]\right)\right)^{*} \backslash{ }^{*}\left(U^{\prime *} \backslash^{*}\left(T^{*} \backslash *[u]\right)\right)$ proof -
have length $T+$ length $[u]+$ length $V \leq n$
using $U U^{\prime}$ antisym-conv len not-less-eq-eq by fastforce
thus ?thesis
by (metis Con-TU Con-VT Con-initial-right U ind)
qed
also have $\ldots=\left(\left(V^{*} \backslash *[u]\right)^{*} \backslash^{*} U^{\prime}\right)^{*} \backslash{ }^{*}\left(\left(T^{*} \backslash^{*}[u]\right)^{*} \backslash{ }^{*} U^{\prime}\right)$
proof -
have length $\left(T^{*} \backslash{ }^{*}[u]\right)+$ length $U^{\prime}+$ length $\left(V^{*} \backslash{ }^{*}[u]\right) \leq n$ using Con-TU Con-initial-right $U V V^{\prime}$ len length-Resid by force
thus ?thesis
by (metis Con Con-TU Con-cons(2) $U U^{\prime}$ calculation ind length-0-conv length-Resid)
qed
also have $\ldots=\left(V^{*} \backslash * U\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*} U\right)$
by (metis * Con Con-TU Resid-cons(2) $U U^{\prime}$ length-Resid length-0-conv)
finally show ?thesis by blast
qed
qed
qed
qed
next
assume $V^{\prime}: V^{\prime} \neq[]$
show ?thesis
proof (cases $\left.U^{\prime}=[]\right)$
assume $U^{\prime}: U^{\prime}=[]$
show ?thesis
proof (cases $\left.T^{\prime}=[]\right)$
assume $T^{\prime}: T^{\prime}=[]$
show ?thesis
proof (intro conjI impI)
show $*: V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * ~ T \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{*} \backslash{ }^{*} U$
proof -
have $V^{*} \backslash^{*} T^{*} \frown^{*} U^{*} \backslash^{*} T \longleftrightarrow(v \backslash t) \#\left(V^{*} \backslash^{*}[t \backslash v]\right)^{*} \frown^{*}[u \backslash t]$
using Con-TU Con-VT Con-sym Resid-rec(1-2) T T' U U'V V'
by metis
also have $\ldots \longleftrightarrow[v \backslash t]^{*} \frown^{*}[u \backslash t] \wedge$

$$
V^{\prime *} \backslash *^{\prime}[t \backslash v] \frown^{*}[u \backslash v]^{*} \backslash *[t \backslash v]
$$

proof -
have $V^{\prime *} \frown^{*}[t \backslash v]$
using $T T^{\prime} V V^{\prime}$ Con-VT Con-rec(2) by blast
thus ?thesis
using R.con-def R.con-sym R.cube
Con-rec(2) [of $\left.V^{\prime *} \backslash^{*}[t \backslash v] v \backslash t u \backslash t\right]$
by auto
qed
also have $\ldots \longleftrightarrow[v \backslash t]^{*} \frown^{*}[u \backslash t] \wedge$

```
    \mp@subsup{V}{}{\prime*}\*}[u\v]\mp@subsup{]}{}{*}\mp@subsup{\frown}{}{*}[t\v]*\* [u\v
    proof -
    have length [t \v] + length [u\v] + length V'}\mp@subsup{V}{}{\prime}\leq
        using T U V len by fastforce
    thus ?thesis
        by (metis Con-imp-Arr-Resid Arr-has-Src Con-VT T T' Trgs.simps(1)
            Trgs-Resid-sym V V'Con-rec(2) Srcs-Resid ind)
    qed
    also have ...\longleftrightarrow[v\t]*`* [u\t]^
                        V'*\* [u\v] *\frown* [t\u]*\* [v\u]
    by (simp add: R.con-def R.cube)
    also have ... \longleftrightarrow ' V** U*`* T*\* U
    proof
    assume 1: V *\* U *\frown* T *}\mp@subsup{}{}{*}**
    have tu-vu: t\u\frownv\u
        by (metis (no-types, lifting) 1 T T' U U'V V V' Con-rec(3)
            Resid-rec(1-2) Con-sym length-Resid length-0-conv)
    have vt-ut:v\t\frownu\t
        using 1
        by (metis R.con-def R.con-sym R.cube tu-vu)
```



```
        by (metis (no-types,lifting) 1 Con-TU Con-cons(1) Con-rec(1-2)
            Resid-rec(1) T T' U U'V V'Resid-rec(2) length-Resid
            length-0-conv vt-ut)
    next
    assume 1: [v\t]*\frown* [u\t]^
                V'*\* [u\v] *\frown* [t\u] *\* [v\u]
    have tu-vu:t\u\frownv\u\wedgev\t\frownu\t
        by (metis 1 Con-sym Resid.simps(1) Residx1.simps(2)
            Residx1-as-Resid)
    have tu:t\frownu
        using Con-TU Con-rec(1) T T' U U' by blast
    show V**\* U*\frown* T * \* U
        by (metis (no-types, opaque-lifting) 1 Con-rec(2) Con-sym
            R.con-implies-arr(2) Resid.simps(1,3) T T'U U'V V'
            Resid-rec(2) R.arr-resid-iff-con)
    qed
    finally show ?thesis by simp
qed
show }\mp@subsup{V}{}{*}\* T* ``* U*\* T
```



```
proof -
    assume Con: V *\** T *\frown* U *\* T
    have ( }\mp@subsup{V}{}{*}\**T)*\* (U\mp@subsup{U}{}{*}\* T)=((v\t)#(\mp@subsup{V}{}{\prime*}\* [t\v])) *\* [u\t
    using Con-TU Con-VT Con-sym Resid-rec(1-2) T T' U U'V V' by metis
    also have 1:... = ((v\t)\(u\t)) #
                                    ( (V'*\* [t\v])*\*([u\v] *\* [t\v])
    apply simp
    by (metis Con Con-VT Con-rec(2) R.conE R.conI R.con-sym R.cube
```

```
    Resid-rec(2) \(T T^{\prime} V V^{\prime}\) calculation(1))
    also have \(\ldots=((v \backslash t) \backslash(u \backslash t)) \#\)
                    \(\left(V^{\prime *} \backslash *[u \backslash v]\right)^{*} \backslash *\left([t \backslash v]^{*} \backslash^{*}[u \backslash v]\right)\)
    proof -
    have length \([t \backslash v]+\) length \([u \backslash v]+\) length \(V^{\prime} \leq n\)
        using \(T U V\) len by fastforce
    moreover have \(u \backslash v \frown t \backslash v\)
        by (metis 1 Con-VT Con-rec(2) R.con-sym-ax \(T T^{\prime} V V^{\prime}\) list.discI
            R.conE R.conI R.cube)
    moreover have \(t \backslash v \frown u \backslash v\)
        using R.con-sym calculation(2) by blast
    ultimately show ?thesis
        by (metis Con-VT Con-rec(2) \(T T^{\prime} V V^{\prime} \operatorname{Con-rec}(1)\) ind)
    qed
    also have \(\ldots=((v \backslash t) \backslash(u \backslash t)) \#\)
                        \(\left(\left(V^{\prime *} \backslash *[u \backslash v]\right)^{*} \backslash^{*}\left([t \backslash u]^{*} \backslash^{*}[v \backslash u]\right)\right)\)
    using R.cube by fastforce
    also have \(\ldots=((v \backslash u) \backslash(t \backslash u))\) \#
                        \(\left(\left(V^{\prime *} \backslash^{*}[u \backslash v]\right)^{*} \backslash *\left([t \backslash u]^{*} \backslash^{*}[v \backslash u]\right)\right)\)
    by (metis R.cube)
    also have \(\ldots=\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left(T^{*} \backslash^{*} U\right)\)
    proof -
    have \(\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left(T^{*} \backslash * U\right)=\left((v \backslash u) \#\left(\left(V^{\prime *} \backslash *[u \backslash v]\right)\right)\right)^{*} \backslash^{*}[t \backslash u]\)
        using \(T T^{\prime} U U^{\prime} V\) Resid-cons(1) [of [u] v \(\left.V^{\prime}\right]\)
        by (metis * Con Con-TU Resid.simps(1) Resid-rec(1) Resid-rec(2))
    also have \(\ldots=((v \backslash u) \backslash(t \backslash u)) \#\)
                \(\left(\left(V^{\prime *} \backslash^{*}[u \backslash v]\right)^{*} \backslash^{*}\left([t \backslash u]^{*} \backslash^{*}[v \backslash u]\right)\right)\)
            by (metis * Con Con-initial-left calculation Con-sym Resid.simps(1)
                Resid-rec(1-2))
            finally show?thesis by simp
    qed
    finally show? ?thesis by simp
    qed
qed
next
assume \(T^{\prime}: T^{\prime} \neq[]\)
show ?thesis
proof (intro conjI impI)
    show \(*: V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash^{*} T \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{*} \backslash^{*} U\)
proof -
    have \(V^{*} \backslash{ }^{*} T^{*} \frown^{*} U^{*} \backslash * T \longleftrightarrow\left(V^{*} \backslash{ }^{*}[t]\right)^{*} \backslash{ }^{*} T^{*} \frown^{*}[u \backslash t]{ }^{*}{ }^{*} T^{\prime}\)
        using Con-TU Con-VT Con-sym Resid-cons(2) Resid-rec(3) T T' U U'
        by force
    also have \(\ldots \longleftrightarrow\left(V^{*} \backslash{ }^{*}[t]\right)^{*} \backslash^{*}[u \backslash t]^{*} \frown^{*} T^{*} \backslash^{*}[u \backslash t]\)
    proof -
        have length \([u \backslash t]+\) length \(T^{\prime}+\) length \(\left(V^{*} \backslash *[t]\right) \leq n\)
            using Con-VT Con-initial-right \(T U\) length-Resid len by fastforce
        thus ?thesis
        by (metis Con-TU Con-VT Con-rec(2) \(T T^{\prime} U\) V add.commute Con-cons(2)
```

```
                ind list.discI)
    qed
    also have ...\longleftrightarrow(\mp@subsup{V}{}{*}\* [u])*\* [t\u]*\frown* T'*\* [u\t]
    proof -
    have length [t] + length [u] + length V \leqn
        using T T' U le-Suc-eq len by fastforce
    hence (V*\* [t])*\* ([u]*\*[t])=(V*\* [u])*\* ([t] *\*[u])
        using ind [of [t] [u] V]
        by (metis Con-TU Con-VT Con-initial-left Con-initial-right T U)
    thus ?thesis
        by (metis (full-types) Con-TU Con-initial-left Con-sym Resid-rec(1) T U)
    qed
    also have ... \longleftrightarrow ' V *\* U* \frown* T *}\* 
    by (metis Con-TU Con-cons(2) Con-rec(2) Resid.simps(1) Resid-rec(2)
        T T'U U')
    finally show ?thesis by simp
qed
show }\mp@subsup{V}{}{*}\* T * ``* U *\* T
            (V*\*}T\mp@subsup{)}{}{*}\**(U*** T)=(\mp@subsup{V}{}{*}\* U)*\* (T *'\* U)
proof -
    assume Con: V *\** T *\frown* U *\* T
```



```
        using Con-TU Con-VT Con-sym Resid-cons(2) Resid-rec(3) T T' U U'
        by force
    also have ... =((V*\* [t]) *\* [u\t])*\* (T'*\* [u\t])
    proof -
        have length [u\t] + length T' + length (Resid V [t]) \leqn
        using Con-VT Con-initial-right T U length-Resid len by fastforce
        thus ?thesis
    by (metis Con-TU Con-VT Con-cons(2) Con-rec(2) T T' U V add.commute
                ind list.discI)
    qed
    also have ... = ((V**\* [u])*\* [t\u])*\* (T, **\*[u\t])
    proof -
        have length [t] + length [u]+ length V \leqn
            using T T' U le-Suc-eq len by fastforce
        thus ?thesis
            using ind [of [t] [u] V]
            by (metis Con-TU Con-VT Con-initial-left Con-sym Resid-rec(1) T U)
    qed
    also have \ldots. =( V *\* U)*\* (T *\* U)
        using * Con Con-TU Con-rec(2) Resid-cons(2) Resid-rec(2) T T' U U'
        by auto
    finally show ?thesis by simp
qed
    qed
qed
next
assume U':}\mp@subsup{U}{}{\prime}\not=[
```

```
show ?thesis
proof (cases T' = [])
    assume T': T' = []
    show ?thesis
    proof (intro conjI impI)
    show *: }\mp@subsup{V}{}{*}\* T**\frown* U *\* T \longleftrightarrow (V*`* U *\frown** T *\* U
    proof -
        have }\mp@subsup{V}{}{*}\\mp@subsup{\}{}{*}T\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}\mp@subsup{U}{}{*}\* T\longleftrightarrow \longleftrightarrow V *\* [t] *\frown* (u\t)# (U\mp@subsup{U}{}{\prime*}\* [t\u]
            using TUV T' U' V' Con-TU Con-VT Con-sym Resid-rec(2) by auto
        also have ... \longleftrightarrow ' V*\* [t]*`*}[u\t]
                            (V*\\ [t]) *\* [u\t] *\frown* U'*\* [t\ \u]
        by (metis Con-TU Con-VT Con-cons(2) Con-initial-right
            Con-rec(2) Con-sym T U U')
        also have ...\longleftrightarrow \longleftrightarrow*** [t]*\frown* [u\t]^
            (V*\* [u])*\* [t\u]*``* U'*\* [t\u]
        proof -
        have length [u] + length [t] + length V \leqn
            using TUV T' U' V' len not-less-eq-eq order-trans by fastforce
            thus ?thesis
                using ind [of [t] [u] V]
                by (metis Con-TU Con-VT Con-initial-right Resid-rec(1) T U
                                    Con-sym length-Cons)
    qed
    also have ... \longleftrightarrow ' V * '* [u]*\frown* [t\u]^
                    (V*\*[u])*\* [t\u]*\frown* U'*\* [t\u]
    proof -
        have length [t] + length [u]+ length V}\leq
            using TUV T' U' V' len antisym-conv not-less-eq-eq by fastforce
            thus ?thesis
                using ind [of [t]]
                by (metis (full-types) Con-TU Con-VT Con-initial-right Con-sym
                    Resid-rec(1) T U)
    qed
    also have ...\longleftrightarrow( \longleftrightarrow\mp@subsup{V}{}{*}\*}[u])*\* U'*``* [t\u]*\** U
    proof -
        have length [t\u]+ length U' + length ( }\mp@subsup{V}{}{*}\* * [u])\leq
            by (metis T T' U add.assoc add.right-neutral add-leD1
                        add-le-cancel-left length-Resid len length-Cons list.size(3)
                    plus-1-eq-Suc)
        thus ?thesis
            by (metis (no-types, opaque-lifting) Con-sym Resid.simps(1)
                    add.commute ind)
    qed
    also have ... \longleftrightarrow ' * \* U * '* T *\* U
        by (metis Con-TU Resid-cons(2) Resid-rec(3) T T' U U'
            Con-cons(2) length-Resid length-0-conv)
    finally show ?thesis by blast
    qed
    show }\mp@subsup{V}{}{*}\* T**`* U* *'* T
```



```
    proof -
    assume Con: V *\* T * ^* U *\* T
    have (V*\** T)*\* (U*\*}T)
                (V*\* [t])*\* ((u\t) # (U'*\* [t\u]))
    using Con-TU Con-sym Resid-rec(2) T T' U U' by auto
    also have ... = ((V**\* [t]) *\\ [u\t]) *\* (U'**\* [t\u])
        by (metis Con Con-TU Con-rec(2) Con-sym T T' U U' calculation
            Resid-cons(2))
    also have ... = ((V**\* [u])*\* [t\u])*\* ( U'**\* [t\u])
    proof -
        have length [t] + length [u]+ length V \leqn
        using TU U' le-Suc-eq len by fastforce
        thus ?thesis
        using T U Con-TU Con-VT Con-sym ind [of [t][u]V]
        by (metis (no-types, opaque-lifting) Con-initial-right Resid.simps(3))
    qed
    also have ... = ((V**\* [u])*\* U')*\* ([t\u]*\\* U')
    proof -
        have length [t\u] + length }\mp@subsup{U}{}{\prime}+\mathrm{ length }(\mp@subsup{V}{}{*}\* [u])\leq
        by (metis (no-types, opaque-lifting) T T' U add.left-commute
            add.right-neutral add-leD2 add-le-cancel-left len length-Cons
            length-Resid list.size(3) plus-1-eq-Suc)
        thus ?thesis
            by (metis Con Con-TU Con-rec(3) T T' U U' calculation
                ind length-0-conv length-Resid)
    qed
    also have ... = (V**\* U) *\* (T**** U)
        by (metis * Con Con-TU Resid-rec(3) T T'U U' Resid-cons(2)
            length-Resid length-0-conv)
    finally show ?thesis by blast
    qed
qed
next
assume T': T'\not=[]
show ?thesis
proof (intro conjI impI)
    have 1: U*\frown* [t]
    using T Con-TU
    by (metis Con-cons(2) Con-sym Resid.simps(2))
    have 2: }\mp@subsup{V}{}{*}\mp@subsup{\frown}{}{*}[t
    using V Con-VT Con-initial-right T by blast
    have 3: length }\mp@subsup{T}{}{\prime}+\mathrm{ length ( }\mp@subsup{U}{}{*}\* [t])+ length ( V *\* [t])\leq
    using 12 T len length-Resid by force
    have 4: length [t] + length }U+\mathrm{ length V 
    using T T' len antisym-conv not-less-eq-eq by fastforce
```



```
    proof -
```



```
                    using Con-TU Con-VT Con-sym Resid-cons(2) T T' by force
                            also have \(\ldots \longleftrightarrow\left(V^{*} \backslash *[t]\right)^{*} \backslash^{*}\left(U^{*} \backslash *[t]\right)^{*} \frown^{*} T^{*} \backslash *\left(U^{*} \backslash *[t]\right)\)
                            by (metis 3 Con-TU Con-VT Con-cons(1) Con-cons(2) T T'U Vind
                            list.discI)
                            also have \(\ldots \longleftrightarrow\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left([t]^{*} \backslash * U\right)^{*} \frown^{*} T^{*} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)\)
                            by (metis 124 Con-sym ind)
                                also have \(\ldots \longleftrightarrow V^{*} \backslash{ }^{*} U^{*} \frown^{*} h d\left([t]^{*} \backslash^{*} U\right) \# T^{*} \backslash *\left(U^{*} \backslash^{*}[t]\right)\)
                            by (metis 1 Con-TU Con-cons(1) Con-cons(2) Resid.simps(1)
                    Resid1x-as-Resid T T' list.sel(1))
                    also have \(\ldots \longleftrightarrow V^{*} \backslash^{*} U^{*} \frown^{*} T^{*} \backslash^{*} U\)
                            using 1 Resid-cons \({ }^{\prime}\) [of \(\left.T^{\prime} t U\right]\) Con-TU \(T T^{\prime}\) Resid1x-as-Resid
                                    Con-sym
                    by force
                    finally show ?thesis by simp
                    qed
                    show \(\left(V^{*} \backslash * T\right)^{*} \backslash *\left(U^{*} \backslash * T\right)=\left(V^{*} \backslash * U\right)^{*} \backslash *\left(T^{*} \backslash * U\right)\)
                    proof -
                    have \(\left(V^{*} \backslash * T\right)^{*} \backslash{ }^{*}\left(U^{*} \backslash * T\right)=\)
                                    \(\left(\left(V^{*} \backslash *[t]\right)^{*} \backslash^{*} T^{\prime}\right)^{*} \backslash *\left(\left(U^{*} \backslash *[t]\right)^{*} \backslash{ }^{*} T^{\prime}\right)\)
                            using Con-TU Con-VT Con-sym Resid-cons(2) \(T T^{\prime}\) by force
                    also have \(\ldots=\left(\left(V^{*} \backslash *[t]\right)^{*} \backslash^{*}\left(U^{*} \backslash *[t]\right)\right)^{*} \backslash^{*}\left(T^{\prime *} \backslash^{*}\left(U^{*} \backslash^{*}[t]\right)\right)\)
                            by (metis (no-types, lifting) 3 Con-TU Con-VT T T \(~ U ~ V C o n-c o n s(1)\)
                            Con-cons(2) ind list.simps(3))
                            also have \(\ldots=\left(\left(V^{*} \backslash * U\right)^{*} \backslash^{*}\left([t]^{*} \backslash * U\right)\right)^{*} \backslash^{*}\left(T^{\prime *} \backslash^{*}\left(U^{*} \backslash *[t]\right)\right)\)
                            by (metis 124 Con-sym ind)
                            also have \(\ldots=\left(V^{*} \backslash * U\right)^{*} \backslash^{*}\left(\left(t \# T^{\prime}\right)^{*} \backslash{ }^{*} U\right)\)
                            by (metis \(*\) Con-TU Con-cons(1) Resid1x-as-Resid
                            Resid-cons' T T' U calculation Resid-cons(2) list.distinct(1))
                    also have \(\ldots=\left(V^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left(T^{*} \backslash * U\right)\)
                            using \(T\) by fastforce
                    finally show ?thesis by simp
                    qed
                    qed
                    qed
                qed
                qed
        qed
        qed
    qed
qed
lemma Cube:
shows \(T^{*} \backslash{ }^{*} U^{*} \frown^{*} V^{*} \backslash{ }^{*} U \longleftrightarrow T^{*} \backslash{ }^{*} V^{*} \frown^{*} U{ }^{*} \backslash{ }^{*} V\)
and \(T^{*} \backslash{ }^{*} U{ }^{*} \frown^{*} V^{*} \backslash * ~ U \Longrightarrow\left(T^{*} \backslash^{*} U\right)^{*} \backslash^{*}\left(V^{*} \backslash * U\right)=\left(T^{*} \backslash{ }^{*} V\right)^{*} \backslash^{*}\left(U^{*} \backslash * V\right)\)
proof -
    show \(T^{*} \backslash^{*} U^{*} \frown^{*} V^{*} \backslash^{*} U \longleftrightarrow T^{*} \backslash{ }^{*} V^{*} \frown^{*} U^{*} \backslash^{*} V\)
    using Cube-ind by (metis Con-sym Resid.simps(1) le-add2)
show \(T^{*} \backslash{ }^{*} U^{*} \frown^{*} V^{*} \backslash^{*} U \Longrightarrow\left(T^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left(V^{*} \backslash^{*} U\right)=\left(T^{*} \backslash^{*} V\right)^{*} \backslash^{*}\left(U^{*} \backslash{ }^{*} V\right)\)
    using Cube-ind by (metis Con-sym Resid.simps(1) order-refl)
```


qed

lemma Con-implies-Arr:
assumes $T^{*} \frown^{*} U$
shows Arr T and Arr U
using assms Con-sym
by (metis Con-imp-Arr-Resid Arr-iff-Con-self Cube(1) Resid.simps(1))+
sublocale partial-magma Resid
by (unfold-locales, metis Resid.simps(1) Con-sym)
lemma is-partial-magma:
shows partial-magma Resid
..
lemma null-char:
shows null $=[]$
by (metis null-is-zero(2) Resid.simps(1))
sublocale residuation Resid
using null-char Con-sym Arr-iff-Con-self Con-imp-Arr-Resid Cube null-is-zero(2)
by unfold-locales auto
lemma is-residuation:
shows residuation Resid
lemma arr-char:
shows arr $T \longleftrightarrow$ Arr T
using null-char Arr-iff-Con-self by fastforce
lemma $\operatorname{arr} I_{P}[$ intro $]$:
assumes Arr T
shows arr T
using assms arr-char by auto
lemma ide-char:
shows ide $T \longleftrightarrow$ Ide T
by (metis Con-Arr-self Ide-implies-Arr Resid-Arr-Ide-ind Resid-Arr-self arr-char ide-def arr-def)
lemma con-char:
shows con $T U \longleftrightarrow C o n T U$
using null-char by auto
lemma con $I_{P}[$ intro :
assumes Con TU
shows con $T U$
using assms con-char by auto

```
sublocale rts Resid
proof
    show }\AT.\llbracketide A; con TA\rrbracket\Longrightarrow T *\* A = T
    using Resid-Arr-Ide-ind ide-char null-char by auto
    show }\T.\operatorname{arr}T\Longrightarrowide (trg T
    by (metis arr-char Resid-Arr-self ide-char resid-arr-self)
    show }\AT.\llbracketide A; con A T\rrbracket\Longrightarrow ide (A*\* T
    by (simp add: Resid-Ide-Arr-ind con-char ide-char)
    show }\wedgeTU.\operatorname{con T U\Longrightarrow\existsA. ide A\wedge con A T^ con A U
    proof -
    fix TU
    assume TU: con T U
    have 1: Srcs T = Srcs U
        using TU Con-imp-eq-Srcs con-char by force
    obtain a where a: a\inSrcs T\cap Srcs U
        using 1
        by (metis Int-absorb Int-emptyI TU arr-char Arr-has-Src con-implies-arr(1))
    show }\exists\mathrm{ A. ide A^con A T^ con A U
        using a 1
        by (metis (full-types) Ball-Collect Con-single-ide-ind Ide.simps(2) Int-absorb TU
            Srcs-are-ide arr-char con-char con-implies-arr(1-2) ide-char)
    qed
    show }\TUV.\llbracketide (Resid T U); con U V\rrbracket\Longrightarrowcon (T * \* U)(V *\* U
    using null-char ide-char
    by (metis Con-imp-Arr-Resid Con-Ide-iff Srcs-Resid con-char con-sym arr-resid-iff-con
        ide-implies-arr)
qed
theorem is-rts:
shows rts Resid
notation cong (infix * ~* 50)
notation prfx (infix *<* 50)
lemma sources-char }\mp@subsup{P}{P}{
shows sources T = {A.Ide A A Arr T ^ Srcs A = Srcs T}
    using Con-Ide-iff Con-sym con-char ide-char sources-def by fastforce
lemma sources-cons:
shows Arr (t# T)\Longrightarrow sources (t# T) = sources [t]
    apply (induct T)
    apply simp
    using sources-char P by auto
lemma targets-char }\mp@subsup{P}{P}{
shows targets T = {B. Ide B ^ Arr T ^ Srcs B= Trgs T}
    unfolding targets-def
```

by (metis (no-types, lifting) trg-def Arr.simps(1) Ide-implies-Arr Resid-Arr-self arr-char Con-Ide-iff Srcs-Resid con-char ide-char con-implies-arr(1))
lemma seq-char':
shows seq $T U \longleftrightarrow$ Arr $T \wedge \operatorname{Arr} U \wedge \operatorname{Trgs} T \cap \operatorname{Srcs} U \neq\{ \}$
proof
show seq $T U \Longrightarrow \operatorname{Arr} T \wedge \operatorname{Arr} U \wedge \operatorname{Trgs} T \cap \operatorname{Srcs} U \neq\{ \}$
unfolding seq-def
using Arr-has-Trg arr-char Con-Arr-self sources-char ${ }_{P}$ trg-def trg-in-targets by fastforce
assume 1: Arr $T \wedge \operatorname{Arr} U \wedge \operatorname{Trgs} T \cap \operatorname{Srcs} U \neq\{ \}$
have targets $T=$ sources U
proof -
obtain a where a : R.ide $a \wedge a \in \operatorname{Trgs} T \wedge a \in \operatorname{Srcs} U$
using 1 Trgs-are-ide by blast
have $\operatorname{Trg}[a]=\operatorname{Trg} s T$
using a 1
by (metis Con-single-ide-ind Con-sym Resid-Arr-Src Srcs-Resid Trgs-eqI)
moreover have Srcs $[a]=$ Srcs U
using a 1 Con-single-ide-ind Con-imp-eq-Srcs by blast
moreover have $\operatorname{Trgs}[a]=\operatorname{Srcs}[a]$
using a
by (metis R.residuation-axioms R.sources-resid Srcs.simps(2) Trgs.simps(2) residuation.ideE)
ultimately show ?thesis
using 1 sources-char ${ }_{P}$ targets-char ${ }_{P}$ by auto
qed
thus seq $T U$
using 1 by blast
qed
lemma seq-char:
shows seq $T U \longleftrightarrow$ Arr $T \wedge$ Arr $U \wedge \operatorname{Trgs} T=\operatorname{Srcs} U$
by (metis Int-absorb Srcs-Resid Arr-has-Src Arr-iff-Con-self Srcs-eqI seq-char')
lemma seqI ${ }_{P}[$ intro $]$:
assumes Arr T and $\operatorname{Arr} U$ and $\operatorname{Trgs} T \cap \operatorname{Srcs} U \neq\{ \}$
shows seq $T U$
using assms seq-char' by auto
lemma Ide-imp-sources-eq-targets:
assumes Ide T
shows sources $T=$ targets T
using assms
by (metis Resid-Arr-Ide-ind arr-iff-has-source arr-iff-has-target con-char arr-def sources-resid)

2.4.2 Inclusion Map

Inclusion of an RTS to the RTS of its paths.

```
abbreviation incl
where incl \equiv\lambdat. if R.arr t then [t] else null
lemma incl-is-simulation:
shows simulation resid Resid incl
    using R.con-implies-arr(1-2) con-char R.arr-resid-iff-con null-char
    by unfold-locales auto
    lemma incl-is-injective:
    shows inj-on incl (Collect R.arr)
    by (intro inj-onI) simp
lemma reflects-con:
assumes incl t*\frown* incl u
shows t\frownu
    using assms
    by (metis (full-types) Arr.simps(1) Con-implies-Arr(1-2) Con-rec(1) null-char)
end
```


2.4.3 Composites of Paths

The RTS of paths has composites, given by the append operation on lists.

```
context paths-in-rts
begin
lemma Srcs-append [simp]:
assumes T\not=[]
shows Srcs (T @ U ) = Srcs T
    by (metis Nil-is-append-conv Srcs.simps(2) Srcs.simps(3) assms hd-append list.exhaust-sel)
lemma Trgs-append [simp]:
shows U\not=[]\LongrightarrowTrgs (T @ U)=Trgs U
proof (induct T)
    show }U\not=[]\Longrightarrow\operatorname{Trgs}([]@U)=Trgs 
        by auto
    show }\tT.\llbracketU\not=[]\Longrightarrow\operatorname{Trgs}(T@U)=\operatorname{Trgs}U;U\not=[]
                \Longrightarrow T r g s ~ ( ( t \# T ) @ U ) = T r g s ~ U ~
        by (metis Nil-is-append-conv Trgs.simps(3) append-Cons list.exhaust)
qed
    lemma seq-implies-Trgs-eq-Srcs:
    shows \llbracketArr T; Arr U; Trgs T\subseteq Srcs U\rrbracket\Longrightarrow Trgs T=Srcs U
    by (metis inf.orderE Arr-has-Trg seqI I seq-char)
lemma Arr-append-iff P:
```

```
shows \(\llbracket T \neq[] ; U \neq[] \rrbracket \Longrightarrow \operatorname{Arr}(T @ U) \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Arr} U \wedge \operatorname{Trgs} T \subseteq \operatorname{Srcs} U\)
proof (induct \(T\) arbitrary: \(U\) )
    show \(\wedge U . \llbracket[] \neq[] ; U \neq[] \rrbracket \Longrightarrow \operatorname{Arr}([] @ U)=(\operatorname{Arr}[] \wedge \operatorname{Arr} U \wedge \operatorname{Trgs}[] \subseteq \operatorname{Srcs} U)\)
    by simp
    fix \(t T\) and \(U\) :: 'a list
    assume ind: \(\wedge U . \llbracket T \neq[] ; U \neq[] \rrbracket\)
                                    \(\Longrightarrow \operatorname{Arr}(T @ U)=(\operatorname{Arr} T \wedge \operatorname{Arr} U \wedge \operatorname{Trgs} T \subseteq \operatorname{Srcs} U)\)
    assume \(U: U \neq[]\)
    show \(\operatorname{Arr}((t \# T) @ U) \longleftrightarrow \operatorname{Arr}(t \# T) \wedge \operatorname{Arr} U \wedge \operatorname{Trgs}(t \# T) \subseteq \operatorname{Srcs} U\)
    proof (cases \(T=[])\)
    show \(T=[] \Longrightarrow\) ?thesis
            using Arr.elims(1) \(U\) by auto
            assume \(T: T \neq[]\)
            have \(\operatorname{Arr}((t \# T) @ U) \longleftrightarrow \operatorname{Arr}(t \#(T @ U))\)
            by \(\operatorname{simp}\)
            also have \(\ldots \longleftrightarrow R\).arr \(t \wedge \operatorname{Arr}(T @ U) \wedge\) R.targets \(t \subseteq \operatorname{Srcs}(T @ U)\)
            using \(T U\)
            by (metis Arr.simps(3) Nil-is-append-conv neq-Nil-conv)
            also have \(\ldots \longleftrightarrow R\). arr \(t \wedge \operatorname{Arr} T \wedge\) Arr \(U \wedge \operatorname{Trgs} T \subseteq \operatorname{Srcs} U \wedge\) R.targets \(t \subseteq\) Srcs \(T\)
            using \(T U\) ind by auto
            also have \(\ldots \longleftrightarrow \operatorname{Arr}(t \# T) \wedge \operatorname{Arr} U \wedge \operatorname{Trgs}(t \# T) \subseteq \operatorname{Srcs} U\)
            using \(T U\)
            by (metis Arr.simps(3) Trgs.simps(3) neq-Nil-conv)
            finally show ?thesis by auto
    qed
qed
lemma Arr-consI \(I_{P}[\) intro, simp \(]\) :
assumes R.arr \(t\) and Arr \(U\) and R.targets \(t \subseteq \operatorname{Srcs} U\)
shows \(\operatorname{Arr}(t \# U)\)
    using assms Arr.elims(3) by blast
lemma Arr-appendI \({ }_{P}[\) intro, simp \(]\) :
assumes Arr \(T\) and Arr \(U\) and Trgs \(T \subseteq\) Srcs \(U\)
shows \(\operatorname{Arr}(T @ U)\)
    using assms
    by (metis Arr.simps(1) Arr-append-iff \({ }_{P}\) )
lemma Arr-appendE \({ }_{P}[\) elim \(]\) :
assumes \(\operatorname{Arr}(T @ U)\) and \(T \neq[]\) and \(U \neq[]\)
and \(\llbracket\) Arr \(T\); Arr \(U ; \operatorname{Trgs} T=\operatorname{Srcs} U \rrbracket \Longrightarrow\) thesis
shows thesis
    using assms Arr-append-iff \(P_{P}\) seq-implies-Trgs-eq-Srcs by force
lemma Ide-append-iff \({ }_{P}\) :
shows \(\llbracket T \neq[] ; U \neq[] \rrbracket \Longrightarrow\) Ide \((T @ U) \longleftrightarrow\) Ide \(T \wedge\) Ide \(U \wedge\) Trgs \(T \subseteq \operatorname{Srcs} U\)
    using Ide-char by auto
lemma Ide-appendI \(I_{P}[\) intro, simp \(]\) :
```

assumes Ide T and Ide U and $\operatorname{Trgs} T \subseteq$ Srcs U
shows $\operatorname{Ide}(T$ @ U)
using assms
by (metis Ide.simps(1) Ide-append-iff ${ }_{P}$)
lemma Resid-append-ind:
shows $\llbracket T \neq[] ; U \neq[] ; V \neq[] \rrbracket \Longrightarrow$
$\left(V @ T^{*} \frown^{*} U \longleftrightarrow V^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash * V\right) \wedge$
$\left(T^{*} \frown^{*} V @ U \longleftrightarrow T^{*} \frown^{*} V \wedge T^{*} \backslash{ }^{*} V^{*} \frown^{*} U\right) \wedge$
$\left(V @ T^{*} \frown^{*} U \longrightarrow(V @ T)^{*} \backslash * U=V^{*} \backslash^{*} U @ T^{*} \backslash *\left(U^{*} \backslash * V\right)\right) \wedge$
$\left(T^{*} \frown^{*} V @ U \longrightarrow T^{*} \backslash{ }^{*}(V @ U)=\left(T^{*} \backslash^{*} V\right)^{*} \backslash^{*} U\right)$
proof (induct V arbitrary: T U)
show $\wedge T U . \llbracket T \neq[] ; U \neq[] ;[] \neq[] \rrbracket \Longrightarrow$

$$
\begin{aligned}
& \text { ([] @ } \left.T^{*} \frown^{*} U \longleftrightarrow[] \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash{ }^{*}[]\right) \wedge \\
& \left(T^{*} \frown^{*}[] @ U \longleftrightarrow T^{*} \frown^{*}[] \wedge T^{*} \backslash^{*}[]^{*}{ }^{*} U\right) \wedge \\
& \left([] @ T^{*} \frown^{*} U \longrightarrow([] @ T)^{*} \backslash * U=[]^{*} \backslash * U @ T^{*} \backslash *\left(U{ }^{*} \backslash *[]\right)\right) \wedge \\
& \left(T^{*} \frown^{*}[] @ U \longrightarrow T^{*} \backslash *([] @ U)=\left(T^{*} \backslash *[]\right)^{*} \backslash * U\right)
\end{aligned}
$$

by simp
fix $v::{ }^{\prime} a$ and $T U V$:: 'a list
assume ind: $\wedge T U . \llbracket T \neq[] ; U \neq[] ; V \neq[] \rrbracket \Longrightarrow$

$$
\begin{aligned}
& \left(V @ T^{*} \frown^{*} U \longleftrightarrow V^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*} V\right) \wedge \\
& \left(T^{*} \frown^{*} V @ U \longleftrightarrow T^{*} U \wedge T^{*} \backslash^{*} V^{*} \frown^{*} U\right) \wedge \\
& \left(V @ T^{*} \frown^{*} U \longrightarrow(V @ T){ }^{*} \backslash \backslash^{*} U V^{*} \backslash^{*} U @ T^{*} \backslash^{*}\left(U^{*} \backslash * V\right)\right) \wedge \\
& \left(T^{*} \frown^{*} V @ U \longrightarrow T^{*} U *(V @ U)=\left(T^{*} \backslash^{*} V\right)^{*} \backslash{ }^{*} U\right)
\end{aligned}
$$

assume $T: T \neq[]$ and $U: U \neq[]$
show $\left((v \# V) @ T^{*} \frown^{*} U \longleftrightarrow(v \# V)^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*}(v \# V)\right) \wedge$ $\left(T^{*} \frown^{*}(v \# V) @ U \longleftrightarrow T^{*} \frown^{*}(v \# V) \wedge T^{*} \backslash *(v \# V)^{*} \frown^{*} U\right) \wedge$ $\left((v \# V) @ T^{*} \frown^{*} U \longrightarrow\right.$
$\left.((v \# V) @ T)^{*} \backslash * U=(v \# V)^{*} \backslash{ }^{*} U @ T^{*} \backslash *\left(U^{*} \backslash *(v \# V)\right)\right) \wedge$
$\left(T^{*} \frown^{*}(v \# V) @ U \longrightarrow T^{*} \backslash^{*}((v \# V) @ U)=\left(T^{*} \backslash^{*}(v \# V)\right)^{*} \backslash{ }^{*} U\right)$
proof (intro conjI iffI impI)
show 1: $(v \# V) @ T^{*} \frown^{*} U \Longrightarrow$

$$
((v \# V) @ T)^{*} \backslash * U=(v \# V)^{*} \backslash * U @ T^{*} \backslash *\left(U^{*} \backslash *(v \# V)\right)
$$

proof (cases $V=[])$
show $V=[] \Longrightarrow(v \# V) @ T^{*} \frown^{*} U \Longrightarrow$?thesis
using $T U$ Resid-cons(1) U by auto
assume $V: V \neq[]$
assume Con: $(v \# V) @ T^{*} \frown^{*} U$
have $((v \# V) @ T)^{*} \backslash * U=(v \#(V @ T))^{*} \backslash * U$
by simp
also have $\ldots=[v]^{*} \backslash * U$ @ $(V @ T)^{*} \backslash *\left(U^{*} \backslash *[v]\right)$
using $T U$ Con Resid-cons by simp
also have $\ldots=[v]^{*} \backslash * U @ V^{*} \backslash *\left(U^{*} \backslash *[v]\right) @ T^{*} \backslash *\left(\left(U^{*} \backslash *[v]\right)^{*} \backslash * V\right)$
using T U V Con ind Resid-cons
by (metis Con-sym Cons-eq-appendI append-is-Nil-conv Con-cons(1))
also have $\ldots=(v \# V)^{*} \backslash^{*} U @ T^{*} \backslash{ }^{*}\left(U^{*} \backslash *(v \# V)\right)$
using ind[of $T]$
by (metis Con Con-cons(2) Cons-eq-appendI Resid-cons(1) Resid-cons(2) T U V
append.assoc append-is-Nil-conv Con-sym)

```
    finally show ?thesis by simp
qed
show 2: \(T^{*} \frown^{*}(v \# V) @ U \Longrightarrow T^{*} \backslash *((v \# V) @ U)=\left(T^{*} \backslash^{*}(v \# V)\right)^{*} \backslash{ }^{*} U\)
proof (cases \(V=[]\) )
    show \(V=[] \Longrightarrow T^{*} \frown^{*}(v \# V) @ U \Longrightarrow\) ?thesis
        using Resid-cons(2) T U by auto
    assume \(V: V \neq[]\)
    assume Con: \(T^{*} \frown^{*}(v \# V) @ U\)
    have \(T^{*} \backslash^{*}((v \# V) @ U)=T^{*} \backslash^{*}(v \#(V @ U))\)
        by \(\operatorname{simp}\)
    also have 1: ... \(=\left(T^{*} \backslash *[v]\right)^{*} \backslash *(V @ U)\)
        using \(V\) Con Resid-cons(2) \(T\) by force
    also have \(\ldots=\left(\left(T^{*} \backslash *[v]\right)^{*} \backslash * V\right)^{*} \backslash^{*} U\)
        using \(T U V 1\) Con ind
        by (metis Con-initial-right Cons-eq-appendI)
    also have \(\ldots=\left(T^{*} \backslash^{*}(v \# V)\right)^{*} \backslash^{*} U\)
        using \(T V\) Con
        by (metis Con-cons(2) Con-initial-right Cons-eq-appendI Resid-cons(2))
    finally show ?thesis by blast
qed
show \((v \# V) @ T^{*} \frown^{*} U \Longrightarrow v \# V^{*} \frown^{*} U\)
    by (metis 1 Con-sym Resid.simps(1) append-Nil)
show \((v \# V) @ T^{*} \frown^{*} U \Longrightarrow T^{*} \frown^{*} U^{*} \backslash^{*}(v \# V)\)
    using \(T U\) Con-sym
    by (metis 1 Con-initial-right Resid-cons(1-2) append.simps(2) ind self-append-conv)
show \(T^{*} \frown^{*}(v \# V) @ U \Longrightarrow T^{*} \frown^{*} v \# V\)
    using 2 by fastforce
show \(T^{*} \frown^{*}(v \# V) @ U \Longrightarrow T^{*} \backslash^{*}(v \# V)^{*} \frown^{*} U\)
    using 2 by fastforce
show \(T^{*} \frown^{*} v \# V \wedge T^{*} \backslash^{*}(v \# V)^{*} \frown^{*} U \Longrightarrow T^{*} \frown^{*}(v \# V) @ U\)
proof -
    assume Con: \(T^{*} \frown^{*} v \# V \wedge T^{*} \backslash^{*}(v \# V)^{*} \frown^{*} U\)
    have \(T^{*} \frown^{*}(v \# V) @ U \longleftrightarrow T^{*} \frown^{*} v \#(V @ U)\)
        by \(\operatorname{simp}\)
    also have \(\ldots \longleftrightarrow T^{*} \frown^{*}[v] \wedge T^{*} \backslash{ }^{*}[v]^{*} \frown^{*} V @ U\)
        using \(T U C o n-c o n s(2)\) by simp
    also have \(\ldots \longleftrightarrow T^{*} \backslash^{*}[v]^{*} \frown^{*} V @ U\)
        by fastforce
    also have \(\ldots \longleftrightarrow\) True
        using Con ind
        by (metis Con-cons(2) Resid-cons(2) T U self-append-conv2)
    finally show? ?thesis by blast
qed
show \(v \# V^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*}(v \# V) \Longrightarrow(v \# V) @ T^{*} \frown^{*} U\)
proof -
    assume Con: \(v \# V^{*} \frown^{*} U \wedge T^{*} \frown^{*} U^{*} \backslash^{*}(v \# V)\)
    have \((v \# V) @ T^{*} \frown^{*} U \longleftrightarrow v \#(V @ T)^{*} \frown^{*} U\)
        by \(\operatorname{simp}\)
    also have \(\ldots \longleftrightarrow[v]^{*} \frown^{*} U \wedge V @ T^{*} \frown^{*} U^{*} \backslash^{*}[v]\)
```

```
            using T U Con-cons(1) by simp
            also have ...\longleftrightarrowV@ T *\frown* U *\*[v]
            by (metis Con Con-cons(1) U)
        also have ... \longleftrightarrowTrue
            using Con ind
            by (metis Con-cons(1) Con-sym Resid-cons(2) T U append-self-conv2)
            finally show ?thesis by blast
        qed
    qed
qed
lemma Con-append:
assumes T\not=[] and U\not=[] and V\not=[]
shows T@ U *\frown* V \longleftrightarrowT *\frown* V ^U*``* V *\* T
and T *`* U @ V \longleftrightarrow T*`*}U\wedgeT\mp@subsup{T}{}{*}\* U *``* V
    using assms Resid-append-ind by blast+
lemma Con-appendI [intro]:
shows \llbracketT * ``*}V;\mp@subsup{U}{}{*}\mp@subsup{\frown}{}{*}\mp@subsup{V}{}{*}\* T\rrbracket\LongrightarrowT@ U *\frown* V
and \llbracketT\mp@subsup{T}{}{*}\mp@subsup{`}{}{*}U;T\mp@subsup{T}{}{*}\*}\mp@subsup{U}{}{*}\mp@subsup{\frown}{}{*}V\rrbracket\Longrightarrow\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U@
    by (metis Con-append(1) Con-sym Resid.simps(1))+
lemma Resid-append [intro, simp]:
```



```
and }\llbracketU\not=[];V\not=[];\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U@V\rrbracket\Longrightarrow\mp@subsup{T}{}{*}\* (U@V)=(T*\* U)*\* V
    using Resid-append-ind
    apply (metis Con-sym Resid.simps(1) append-self-conv)
    using Resid-append-ind
    by (metis Resid.simps(1))
lemma Resid-append2 [simp]:
assumes T\not=[] and U\not=[] and V\not=[] and W\not=[]
and T@ @ *\frown* V @ W
shows}(T@U)*\*(V@W)
```



```
    using assms Resid-append
    by (metis Con-append(1-2) append-is-Nil-conv)
lemma append-is-composite-of:
assumes seq TU
shows composite-of TU(T @ U)
    unfolding composite-of-def
    using assms
    apply (intro conjI)
        apply (metis Arr.simps(1) Resid-Arr-self Resid-Ide-Arr-ind Arr-appendI P
                        Resid-append-ind ide-char order-refl seq-char)
    apply (metis Arr.simps(1) Arr-appendI I Con-Arr-self Resid-Arr-self Resid-append-ind
                        ide-char seq-char order-refl)
    by (metis Arr.simps(1) Con-Arr-self Con-append(1) Resid-Arr-self Arr-appendII 
```

sublocale rts-with-composites Resid
using append-is-composite-of composable-def by unfold-locales blast
theorem is-rts-with-composites:
shows rts-with-composites Resid

```
lemma arr-append [intro, simp]:
assumes seq T U
shows arr (T@U)
    using assms arr I I seq-char by simp
lemma arr-append-imp-seq:
assumes T\not=[] and U\not=[] and arr (T@U)
shows seq TU
    using assms arr-char seq-char Arr-append-iff P seq-implies-Trgs-eq-Srcs by simp
lemma sources-append [simp]:
assumes seq T U
shows sources (T @ U) = sources T
    using assms
    by (meson append-is-composite-of sources-composite-of)
```

lemma targets-append [simp]:
assumes seq $T U$
shows targets $(T$ @ U) $=$ targets U
using assms
by (meson append-is-composite-of targets-composite-of)
lemma cong-respects-seq ${ }_{P}$:
assumes seq $T U$ and $T^{*} \sim^{*} T^{\prime}$ and $U^{*} \sim^{*} U^{\prime}$
shows seq $T^{\prime} U^{\prime}$
by (meson assms cong-respects-seq)
lemma cong-append [intro]:
assumes seq $T U$ and $T^{*} \sim^{*} T^{\prime}$ and $U^{*} \sim^{*} U^{\prime}$
shows $T @ U^{*} \sim^{*} T^{\prime} @ U^{\prime}$
proof
have 1: $\bigwedge T U T^{\prime} U^{\prime} . \llbracket \operatorname{seq} T U ; T^{*} \sim^{*} T^{\prime} ; U^{*} \sim^{*} U^{\rrbracket} \rrbracket \operatorname{seq} T^{\prime} U^{\prime}$
using assms cong-respects-seq ${ }_{P}$ by simp
have 2: $\wedge T U T^{\prime} U^{\prime} . \llbracket \operatorname{seq} T U ; T^{*} \sim^{*} T^{\prime} ; U^{*} \sim^{*} U^{\prime} \rrbracket \Longrightarrow T @ U^{*} \Sigma^{*} T^{\prime} @ U^{\prime}$
proof -
fix $T U T^{\prime} U^{\prime}$
assume $T U$: seq $T U$ and $T T^{\prime}: T^{*} \sim^{*} T^{\prime}$ and $U U^{\prime}: U^{*} \sim^{*} U^{\prime}$
have $T^{\prime} U^{\prime}:$ seq $T^{\prime} U^{\prime}$
using $T U T T^{\prime} U U^{\prime}$ cong-respects-seq ${ }_{P}$ by simp

```
have 3: Ide (T**** T')^ Ide ( }\mp@subsup{T}{}{**}\mp@subsup{\}{}{*}T)\wedge\operatorname{Ide}(\mp@subsup{U}{}{*}\mp@subsup{\}{}{*}\mp@subsup{U}{}{\prime})\wedge Ide ( (\mp@subsup{U}{}{\prime*}\mp@subsup{\}{}{*}U
    using TU TT' UU' ide-char by blast
have (T @ U )*\* (T'@ U')=
        ((T*\`* T')*\* U')@ U *\* ((T'*\* T) @ U'**** (T*`\* T'})
proof -
    have 4:T\not=[]^U\not=[]^ T'\not=[]^ U'\not=[]
        using TU TT' UU'Arr.simps(1) seq-char ide-char by auto
    moreover have (T @ U )*\* (T'@ U')}=[
    proof (intro Con-appendI)
        show T *\* T'}=[
            using 3 by force
        show (T**\* T') *\* U'\not=[]
            using 3 T}\mp@subsup{T}{}{\prime}\mp@subsup{U}{}{\prime}\langle\mp@subsup{T}{}{*}\mp@subsup{\}{}{*}\mp@subsup{T}{}{\prime}\not=[]> Con-Ide-iff seq-char by fastforc
        show U *\* ((T''@ U') *\* T) = []
        proof -
```



```
            by (metis Con-appendI(1) Resid-append(1)<(T *\* T') *\* U'# []>
                    < *\* T'}=[]> calculation Con-sym)
```



```
                by (metis Arr.simps(1) Con-append(2) Resid-append(2)<(T**\* T') *\* U'\not=[]`
                    Con-implies-Arr(1) Con-sym)
            also have ... = U *\* U'
                by (metis (mono-tags, lifting) 3 Ide.simps(1) Resid-Ide(1) Srcs-Resid TU
                        <(T**\* T')*\* U'}=[]>\mathrm{ Con-Ide-iff seq-char)
            finally show ?thesis
            using 3 UU' by force
        qed
    qed
    ultimately show ?thesis
        using Resid-append2 [of T U T' U` seq-char
        by (metis Con-append(2) Con-sym Resid-append(2) Resid.simps(1))
qed
moreover have Ide ...
proof
    have 3: Ide (T**\* T')^Ide (T\mp@subsup{T}{}{*}\*}T)\wedge\operatorname{Ide}(\mp@subsup{U}{}{*}\* U')^Ide ( (\mp@subsup{U}{}{\prime*}\* U
        using TU TT' UU' ide-char by blast
    show 4: Ide ((T *\* T') *\* U')
        using TU T'U'TT'}U\mp@subsup{U}{}{\prime}1
        by (metis (full-types) Srcs-Resid Con-Ide-iff Resid-Ide-Arr-ind seq-char)
    show 5: Ide (U*\** ((T'*\*}T)@ U'*\* (T *'\* T'))
    proof -
        have U *\* (T'*\**}T)=
            by (metis (full-types) 3 TT' TU Con-Ide-iff Resid-Ide(1) Srcs-Resid
                con-char seq-char prfx-implies-con)
    moreover have U'*\* (T *\* T')}=\mp@subsup{U}{}{\prime
            by (metis 3 4 Ide.simps(1) Resid-Ide(1))
        ultimately show ?thesis
            by (metis 34 Arr.simps(1) Con-append(2) Ide.simps(1) Resid-append(2)
                TU Con-sym seq-char)
```

```
        qed
```



```
        by (metis 4 5 Arr-append-iff P}I|de.simps(1) Nil-is-append-conv
            calculation Con-imp-Arr-Resid)
    qed
    ultimately show T@ U *<* T' @ U'
        using ide-char by presburger
    qed
    show T@ U *}\mp@subsup{~}{*}{*}\mp@subsup{T}{}{\prime}@ U
        using assms 2 by simp
    show T'@ U'*<* T@ U
    using assms 1 2 cong-symmetric by blast
qed
lemma cong-cons [intro]:
assumes seq[t] U and t ~ t' and U * ~* U'
shows t # U *}\mp@subsup{~}{}{*}\mp@subsup{t}{}{\prime}#\mp@subsup{U}{}{\prime
    using assms cong-append [of [t] U [t'] U']
    by (simp add: R.prfx-implies-con ide-char)
lemma cong-append-ideI [intro]:
assumes seq T U
shows ide T\LongrightarrowT@ U* ~* U and ide U\LongrightarrowT@ U * ~* T
and ide T\LongrightarrowU * ~
proof -
    show 1: ide T\LongrightarrowT@ U *}\mp@subsup{~}{}{*}
        using assms
        by (metis append-is-composite-of composite-ofE resid-arr-ide prfx-implies-con
        con-sym)
    show 2: ide }U\LongrightarrowT@ U * ~* 
        by (meson assms append-is-composite-of composite-ofE ide-backward-stable)
    show ide T\LongrightarrowU*~*}T\mathrm{ @ U
        using 1 cong-symmetric by auto
    show ide }U\Longrightarrow\mp@subsup{T}{}{*}\mp@subsup{~}{}{*}T@@
        using 2 cong-symmetric by auto
qed
lemma cong-cons-ideI [intro]:
assumes seq[t] U and R.ide t
shows t#U *}\mp@subsup{~}{}{*}U\mathrm{ and }\mp@subsup{U}{}{*}\mp@subsup{~}{}{*}t#
    using assms cong-append-ideI [of [t] U]
    by (auto simp add: ide-char)
lemma prfx-decomp:
assumes [t] *<* [u]
shows [t]@ [u\t] * ~*}[u
proof
show 1:[u]*<* [t]@ [u\t]
```

```
    using assms
    by (metis Con-imp-Arr-Resid Con-rec(3) Resid.simps(3) Resid-rec(3) R.con-sym
        append.left-neutral append-Cons arr-char cong-reflexive list.distinct(1))
    show \([t]\) @ \([u \backslash t]{ }^{*} \Sigma^{*}[u]\)
    proof -
    have \(([t] @[u \backslash t])^{*} \backslash^{*}[u]=\left([t]{ }^{*} \backslash *[u]\right) @\left([u \backslash t]^{*} \backslash^{*}[u \backslash t]\right)\)
        using assms
        by (metis Arr-Resid-single Con-Arr-self Con-appendI(1) Con-sym Resid-append(1)
                Resid-rec(1) con-char list.discI prfx-implies-con)
    moreover have Ide ...
        using assms
        by (metis 1 Con-sym append-Nil2 arr-append-imp-seq calculation cong-append-ideI(4)
                ide-backward-stable Con-implies-Arr(2) Resid-Arr-self con-char ide-char
                prfx-implies-con arr-resid-iff-con)
    ultimately show ? thesis
        using ide-char by presburger
    qed
qed
lemma composite-of-single-single:
assumes R.composite-of tuv
shows composite-of \([t][u]([t] @[u])\)
proof
    show \([t]\) * \(\lesssim^{*}[t]\) @ \([u]\)
    proof -
        have \([t]{ }^{*} \backslash^{*}([t] @[u])=\left([t]{ }^{*} \text { ' }^{*}[t]\right)^{*} \backslash^{*}[u]\)
        using assms by auto
    moreover have Ide ...
        by (metis (no-types, lifting) Con-implies-Arr(2) R.bounded-imp-con
            R.con-composite-of-iff R.con-prfx-composite-of (1) assms resid-ide-arr
            Con-rec(1) Resid.simps(3) Resid-Arr-self con-char ide-char)
    ultimately show ?thesis
            using ide-char by presburger
    qed
    show \(([t] @[u]){ }^{*} \backslash^{*}[t]{ }^{*} \sim^{*}[u]\)
        using assms
        by (metis \(\langle p r f x[t]([t] @[u])\rangle\) append-is-composite-of arr-append-imp-seq
            composite-ofE con-def not-Cons-self2 Con-implies-Arr(2) arr-char null-char
            prfx-implies-con)
qed
end
```


2.4.4 Paths in a Weakly Extensional RTS

```
locale paths-in-weakly-extensional-rts \(=\) \(R\) : weakly-extensional-rts + paths-in-rts
begin
```

```
lemma ex-un-Src:
assumes \(\operatorname{Arr} T\)
shows \(\exists\) !a. a \(\in \operatorname{Srcs} T\)
    using assms
    by (simp add: R.weakly-extensional-rts-axioms Srcs-simp \(P_{P}\) R.arr-has-un-source)
fun \(S r c\)
where Src \(T=R . \operatorname{src}(h d T)\)
lemma Srcs-simp \(P_{P W E}\) :
assumes Arr T
shows Srcs \(T=\{\operatorname{Src} T\}\)
proof -
    have \([\) R.src \((h d T)] \in\) sources \(T\)
        by (metis Arr-imp-arr-hd Con-single-ide-ind Ide.simps(2) Srcs-simp \(P_{P}\) assms
            con-char ide-char in-sourcesI con-sym R.ide-src R.src-in-sources)
    hence R.src \((h d T) \in \operatorname{Srcs} T\)
        using assms
        by (metis Srcs.elims Arr-has-Src list.sel(1) R.arr-iff-has-source R.src-in-sources)
    thus ?thesis
        using assms ex-un-Src by auto
qed
lemma ex-un-Trg:
assumes Arr T
shows \(\exists!b . b \in \operatorname{Trgs} T\)
    using assms
    apply (induct \(T\) )
    apply auto[1]
    by (metis Con-Arr-self Ide-implies-Arr Resid-Arr-self Srcs-Resid ex-un-Src)
fun \(\operatorname{Trg}\)
where \(\operatorname{Trg}[]=\) R.null
    \(\mid \operatorname{Trg}[t]=\) R.trg \(t\)
    \(\mid \operatorname{Trg}(t \# T)=\operatorname{Trg} T\)
lemma Trg-simp [simp]:
shows \(T \neq[] \Longrightarrow \operatorname{Trg} T=R \cdot \operatorname{trg}(\) last \(T)\)
    apply (induct \(T\) )
    apply auto
    by (metis Trg.simps(3) list.exhaust-sel)
lemma \(\operatorname{Trgs}\)-simp \(P_{P W}[\operatorname{simp}]\) :
assumes Arr T
shows \(\operatorname{Trgs} T=\{\operatorname{Trg} T\}\)
    using assms
    by (metis Arr-imp-arr-last Con-Arr-self Con-imp-Arr-Resid R.trg-in-targets
        Srcs.simps(1) Srcs-Resid Srcs-simp \({ }_{P W}\) E Trg-simp insertE insert-absorb insert-not-empty
```


$\operatorname{Trgs}-$ simp $_{P}$)

lemma Src-resid [simp]:
assumes $T^{*}{ }^{*} U$
shows $\operatorname{Src}\left(T^{*} \backslash^{*} U\right)=\operatorname{Trg} U$
using assms Con-imp-Arr-Resid Con-implies-Arr(2) Srcs-Resid Srcs-simp ${ }_{P W E}$ by force
lemma Trg-resid-sym:
assumes $T^{*} \frown^{*} U$
shows $\operatorname{Trg}\left(T^{*} \backslash{ }^{*} U\right)=\operatorname{Trg}\left(U^{*} \backslash{ }^{*} T\right)$
using assms Con-imp-Arr-Resid Con-sym Trgs-Resid-sym by auto
lemma Src-append [simp]:
assumes seq $T U$
shows $\operatorname{Src}(T @ U)=\operatorname{Src} T$
using assms
by (metis Arr.simps(1) Src.simps hd-append seq-char)
lemma Trg-append [simp]:
assumes seq $T U$
shows $\operatorname{Trg}(T @ U)=\operatorname{Trg} U$
using assms
by (metis Ide.simps(1) Resid.simps(1) Trg-simp append-is-Nil-conv ide-char ide-trg last-appendR seqE trg-def)
lemma Arr-append-iff $P_{P W}$:
assumes $T \neq[]$ and $U \neq[]$
shows $\operatorname{Arr}(T @ U) \longleftrightarrow \operatorname{Arr} T \wedge \operatorname{Arr} U \wedge \operatorname{Trg} T=\operatorname{Src} U$
using assms Arr-appendE E_{P} Srcs-simp $P_{P W}$ by auto
lemma Arr-cons $I_{P W E}$ [intro, simp]:
assumes R.arr t and Arr U and R.trg $t=\operatorname{Src} U$
shows $\operatorname{Arr}(t \# U)$
using assms
by (metis $\operatorname{Arr} . \operatorname{simps(2)~Srcs-simp} P_{P W E} \operatorname{Trg} . \operatorname{simps(2)~Trgs.simps(2)~Trgs-simp} p_{P W} E$ dual-order.eq-iff Arr-consI ${ }_{P}$)
lemma Arr-consE [elim]:
assumes $\operatorname{Arr}(t \# U)$
and \llbracket R.arr $t ; U \neq[] \Longrightarrow \operatorname{Arr} U ; U \neq[] \Longrightarrow R . \operatorname{trg} t=\operatorname{Src} U \rrbracket \Longrightarrow$ thesis
shows thesis
using assms
by (metis Arr-append-iff $P_{\text {W }}$ Trg.simps(2) append-Cons append-Nil list.distinct(1) $\operatorname{Arr} . \operatorname{simps}(2))$
lemma Arr-appendI $P_{P W E}$ [intro, simp]:
assumes Arr T and $\operatorname{Arr} U$ and $\operatorname{Trg} T=\operatorname{Src} U$
shows $\operatorname{Arr}(T @ U)$
using assms

```
by (metis Arr.simps(1) Arr-append-iff PWE)
```

lemma Arr-append $E_{P W E}$ [elim]:
assumes $\operatorname{Arr}(T @ U)$ and $T \neq[]$ and $U \neq[]$
and $\llbracket \operatorname{Arr} T ; \operatorname{Arr} U ; \operatorname{Trg} T=\operatorname{Src} U \rrbracket \Longrightarrow$ thesis
shows thesis
using assms Arr-append-iff $P_{P W}$ seq-implies-Trgs-eq-Srcs by force
lemma Ide-append-iff $P_{P W}$:
assumes $T \neq[]$ and $U \neq[]$
shows Ide $(T @ U) \longleftrightarrow$ Ide $T \wedge$ Ide $U \wedge \operatorname{Trg} T=\operatorname{Src} U$
using assms Ide-char
apply (intro iffI)
by force auto
lemma Ide-appendI ${ }_{P W E}[$ intro, simp]:
assumes Ide T and $I d e U$ and $\operatorname{Trg} T=\operatorname{Src} U$
shows Ide (T @ U)
using assms
by (metis Ide.simps(1) Ide-append-iff ${ }_{P W E}$)
lemma Ide-appendE [elim]:
assumes $\operatorname{Ide}(T @ U)$ and $T \neq[]$ and $U \neq[]$
and \llbracket Ide T; Ide $U ; \operatorname{Trg} T=\operatorname{Src} U \rrbracket \Longrightarrow$ thesis
shows thesis
using assms Ide-append-iff $P W E$ by metis
lemma Ide-consI [intro, simp]:
assumes R.ide t and Ide U and R.trg $t=\operatorname{Src} U$
shows Ide ($t \# U$)
using assms
by (simp add: Ide-char)
lemma Ide-consE [elim]:
assumes $\operatorname{Ide}(t \# U)$
and \llbracket R.ide $t ; U \neq[] \Longrightarrow$ Ide $U ; U \neq[] \Longrightarrow R \cdot \operatorname{trg} t=\operatorname{Src} U \rrbracket \Longrightarrow$ thesis
shows thesis
using assms
by (metis Con-rec(4) Ide.simps(2) Ide-imp-Ide-hd Ide-imp-Ide-tl R.trg-def R.trg-ide Resid-Arr-Ide-ind Trg.simps(2) ide-char list.sel(1) list.sel(3) list.simps(3) Src-resid ide-def)
lemma Ide-imp-Src-eq-Trg:
assumes Ide T
shows $\operatorname{Src} T=\operatorname{Trg} T$
using assms
by (metis Ide.simps(1) Src-resid ide-char ide-def)
end

2.4.5 Paths in a Confluent RTS

Here we show that confluence of an RTS extends to confluence of the RTS of its paths.

```
locale paths-in-confluent-rts \(=\)
    paths-in-rts +
    \(R\) : confluent-rts
begin
lemma confluence-single:
assumes \(\bigwedge t u\). R.coinitial \(t u \Longrightarrow t \frown u\)
shows \(\llbracket\) R.arr \(t\); Arr \(U\); R.sources \(t=\operatorname{Srcs} U \rrbracket \Longrightarrow[t]^{*} \frown^{*} U\)
proof (induct \(U\) arbitrary: \(t\) )
    show \(\wedge t . \llbracket\) R.arr \(t ;\) Arr []\(;\) R.sources \(t=\operatorname{Srcs}[] \rrbracket \Longrightarrow[t]{ }^{*} \wedge^{*}[]\)
        by \(\operatorname{simp}\)
    fix \(t u U\)
    assume ind: \(\wedge t . \llbracket R\).arr \(t ; \operatorname{Arr} U ; R\).sources \(t=\operatorname{Srcs} U \rrbracket \Longrightarrow[t]{ }^{*} U\)
    assume \(t\) : R.arr \(t\)
    assume \(u U: \operatorname{Arr}(u \# U)\)
    assume coinitial: R.sources \(t=\operatorname{Srcs}(u \# U)\)
    hence 1: R.coinitial \(t u\)
        using \(t u U\)
        by (metis Arr.simps(2) Con-implies-Arr(1) Con-imp-eq-Srcs Con-initial-left
            Srcs.simps(2) Con-Arr-self R.coinitial-iff)
    show \([t]{ }^{*} \frown^{*} u \# U\)
    proof (cases \(U=[]\) )
        show \(U=[] \Longrightarrow\) ?thesis
            using assms t uU coinitial R.coinitial-iff by fastforce
        assume \(U: U \neq[]\)
        show ?thesis
        proof -
            have 2: \(\operatorname{Arr}[t \backslash u] \wedge \operatorname{Arr} U \wedge \operatorname{Srcs}[t \backslash u]=\operatorname{Srcs} U\)
            using assms 1 t uU U R.arr-resid-iff-con
            apply (intro conjI)
                apply simp
                    apply (metis Con-Arr-self Con-implies-Arr(2) Resid-cons(2))
            by (metis (full-types) Con-cons(2) Srcs.simps(2) Srcs-Resid Trgs.simps(2)
                    Con-Arr-self Con-imp-eq-Srcs list.simps(3) R.sources-resid)
            have \([t]^{*} \frown^{*} u \# U \longleftrightarrow t \frown u \wedge[t \backslash u]^{*} \frown^{*} U\)
                using \(U\) Con-rec(3) [of \(U t u\) ] by \(\operatorname{simp}\)
            also have \(\ldots \longleftrightarrow\) True
                using assms t uU U 12 ind by force
            finally show ?thesis by blast
        qed
    qed
qed
lemma confluence-ind:
shows \(\llbracket\) Arr \(T\); Arr \(U\); Srcs \(T=\) Srcs \(U \rrbracket \Longrightarrow T^{*} \frown^{*} U\)
proof (induct \(T\) arbitrary: \(U\) )
```

```
    show \UU.\llbracketArr [];Arr U; Srcs []= Srcs U\rrbracket\Longrightarrow \] *\frown* U
    by simp
    fix tTU
    assume ind: \bigwedgeU.\llbracketArr T; Arr U; Srcs T=Srcs U\rrbracket\Longrightarrow T *\frown* U
    assume tT: Arr (t # T)
    assume U: Arr U
    assume coinitial: Srcs (t# T) = Srcs U
    show t# T *\frown* U
    proof (cases T = [])
    show T=[]\Longrightarrow ?thesis
            using U tT coinitial confluence-single [of t U] R.confluence by simp
    assume T:T\not=[]
    show ?thesis
    proof -
        have 1: [t] *\frown* U
            using tT U coinitial R.confluence
            by (metis R.arr-def Srcs.simps(2) T Con-Arr-self Con-imp-eq-Srcs
                    Con-initial-right Con-rec(4) confluence-single)
            moreover have T * ^* U * \* [t]
                using 1tT U T coinitial ind [of U *\* [t]]
                by (metis (full-types) Con-imp-Arr-Resid Arr-iff-Con-self Con-implies-Arr(2)
                    Con-imp-eq-Srcs Con-sym R.sources-resid Srcs.simps(2) Srcs-Resid
                    Trgs.simps(2) Con-rec(4))
            ultimately show ?thesis
            using Con-cons(1) [of T U t] by fastforce
        qed
    qed
qed
lemma confluence }\mp@subsup{P}{P}{
assumes coinitial T U
shows con T U
    using assms confluence-ind sources-char P coinitial-def con-char by auto
sublocale confluent-rts Resid
    apply (unfold-locales)
    using confluence }\mp@subsup{P}{P}{}\mathrm{ by simp
lemma is-confluent-rts:
shows confluent-rts Resid
    ..
end
```


2.4.6 Simulations Lift to Paths

In this section we show that a simulation from RTS A to RTS B determines a simulation from the RTS of paths in A to the RTS of paths in B. In other words, the path-RTS construction is functorial with respect to simulation.
context simulation
begin
interpretation P_{A} : paths-in-rts A

```
interpretation }\mp@subsup{P}{B}{}\mathrm{ : paths-in-rts B
```

 ..
 lemma map-Resid-single:
shows P_{A}.con $T[u] \Longrightarrow \operatorname{map} F\left(P_{A}\right.$.Resid $\left.T[u]\right)=P_{B}$.Resid $(\operatorname{map} F T)[F u]$
apply (induct T arbitrary: u)
apply simp
proof -
fix $t u T$
assume ind: $\bigwedge u . P_{A} . \operatorname{con} T[u] \Longrightarrow \operatorname{map} F\left(P_{A} . \operatorname{Resid} T[u]\right)=P_{B}$.Resid $(\operatorname{map} F T)[F u]$
assume 1: P_{A}.con $(t \# T)[u]$
show map $F\left(P_{A} \cdot \operatorname{Resid}(t \# T)[u]\right)=P_{B} \cdot \operatorname{Resid}(\operatorname{map} F(t \# T))[F u]$
proof (cases $T=[]$)
show $T=[] \Longrightarrow$?thesis
using $1 P_{A}$.null-char by fastforce
assume $T: T \neq[]$
show ?thesis
using $T 1$ ind P_{A}.con-def P_{A}.null-char $P_{A} . \operatorname{Con-rec}(2) P_{A}$. Resid-rec(2) $P_{B} . \operatorname{Con-rec}(2)$
P_{B}. Resid-rec(2)
apply simp
by (metis A.con-sym Nil-is-map-conv preserves-con preserves-resid)
qed
qed
lemma map-Resid:
shows P_{A}.con $T U \Longrightarrow \operatorname{map} F\left(P_{A}\right.$.Resid $\left.T U\right)=P_{B}$.Resid (map $\left.F T\right)(\operatorname{map} F U)$
apply (induct U arbitrary: T)
using P_{A}.Resid.simps(1) P_{A}.con-char P_{A}.con-sym
apply blast
proof -
fix $u U T$
assume ind: $\bigwedge T . P_{A}$.con $T U \Longrightarrow$
$\operatorname{map} F\left(P_{A}\right.$.Resid $\left.T U\right)=P_{B}$.Resid $(\operatorname{map} F T)(\operatorname{map} F U)$
assume 1: P_{A}.con $T(u \# U)$
show map $F\left(P_{A} \cdot \operatorname{Resid} T(u \# U)\right)=P_{B} \cdot \operatorname{Resid}(\operatorname{map} F T)(\operatorname{map} F(u \# U))$
proof (cases $U=[]$)
show $U=[] \Longrightarrow$?thesis
using 1 map-Resid-single by force
assume $U: U \neq[]$
have P_{B}.Resid $($ map $F T)($ map $F(u \# U))=$
P_{B}. Resid $\left(P_{B}\right.$. Resid (map $\left.\left.F T\right)[F u]\right)($ map $F U)$
using $U 1 P_{B}$.Resid-cons(2)
apply simp
by (metis P_{B}.Arr.simps(1) P_{B}.Con-consI(2) P_{B}.Con-implies-Arr(1) list.map-disc-iff)

```
        also have ... = map F ( (PA.Resid ( }\mp@subsup{P}{A}{}\cdot\operatorname{Resid}T[u])U
            using U1 ind
            by (metis P P . Con-initial-right P P
        also have ... = map F ( ( }\mp@subsup{A}{A}{}\cdot\operatorname{Resid}T(u#U)
            using 1 P A.Resid-cons(2) P}\mp@subsup{P}{A}{}\mathrm{ .con-char U by auto
        finally show ?thesis by simp
    qed
qed
lemma preserves-paths:
shows P}\mp@subsup{P}{A}{}.Arr T\Longrightarrow P P Arr (map F T)
```



```
    interpretation Fx: simulation }\mp@subsup{P}{A}{}\mathrm{ .Resid }\mp@subsup{P}{B}{}\mathrm{ .Resid 〈 }\lambdaT\mathrm{ . if }\mp@subsup{P}{A}{}.\mathrm{ .Arr T then map F T else []〉
    proof
    let ?Fx = \lambdaT. if P}\mp@subsup{A}{A}{}\mathrm{ .Arr T then map F T else []
    show }\wedgeT.\neg\mp@subsup{P}{A}{}.\mathrm{ arr T C ?Fx T= PB.null
        by (simp add: P}\mp@subsup{P}{A}{}.\mathrm{ arr-char }\mp@subsup{P}{B}{}.null-char
    show }\bigwedgeTU.\mp@subsup{P}{A}{}.conTU\Longrightarrow\mp@subsup{P}{B}{
    using P}\mp@subsup{P}{A}{}\mathrm{ .Con-implies-Arr(1) P}\mp@subsup{P}{A}{}\mathrm{ .Con-implies-Arr(2) P A.con-char map-Resid by fastforce
    show }\TU.\mp@subsup{P}{A}{}.\mathrm{ con T U C ?Fx (PA.Resid T U ) = P P
        by (simp add: P
            PA.con-char map-Resid)
    qed
    lemma lifts-to-paths:
    shows simulation P}\mp@subsup{P}{A}{}\mathrm{ .Resid P P
end
```


2.4.7 Normal Sub-RTS's Lift to Paths

Here we show that a normal sub-RTS N of an RTS R lifts to a normal sub-RTS of the RTS of paths in N, and that it is coherent if N is.
locale paths-in-rts-with-normal $=$ R : rts + N : normal-sub-rts + paths-in-rts
begin
We define a "normal path" to be a path that consists entirely of normal transitions. We show that the collection of all normal paths is a normal sub-RTS of the RTS of paths.

```
definition NPath
where NPath T\equiv(Arr T^ set T\subseteq\mathfrak{N})
lemma Ide-implies-NPath:
assumes Ide T
shows NPath T
```

```
using assms
by (metis Ball-Collect NPath-def Ide-implies-Arr N.ide-closed set-Ide-subset-ide
    subsetI)
lemma NPath-implies-Arr:
assumes NPath T
shows Arr T
    using assms NPath-def by simp
lemma NPath-append:
assumes \(T \neq[]\) and \(U \neq[]\)
shows NPath \((T @ U) \longleftrightarrow\) NPath \(T \wedge\) NPath \(U \wedge \operatorname{Trgs} T \subseteq\) Srcs \(U\)
    using assms NPath-def by auto
lemma NPath-appendI [intro, simp]:
assumes NPath \(T\) and NPath \(U\) and Trgs \(T \subseteq\) Srcs \(U\)
shows NPath (T @ U)
    using assms NPath-def by simp
lemma NPath-Resid-single-Arr:
shows \(\llbracket t \in \mathfrak{N}\); Arr \(U\); R.sources \(t=\) Srcs \(U \rrbracket \Longrightarrow\) NPath \((\) Resid \([t] U)\)
proof (induct \(U\) arbitrary: \(t\) )
    show \(\wedge t . \llbracket t \in \mathfrak{N} ;\) Arr []\(;\) R.sources \(t=\operatorname{Srcs}[] \rrbracket \Longrightarrow\) NPath \((\) Resid \([t][])\)
    by simp
fix \(t u U\)
assume ind: \(\wedge t . \llbracket t \in \mathfrak{N} ;\) Arr \(U ;\) R.sources \(t=\operatorname{Srcs} U \rrbracket \Longrightarrow N P a t h(R e s i d[t] U)\)
assume \(t: t \in \mathfrak{N}\)
assume \(u U: \operatorname{Arr}(u \# U)\)
assume src: R.sources \(t=\operatorname{Srcs}(u \# U)\)
show NPath (Resid \([t](u \# U))\)
proof (cases \(U=[]\) )
    show \(U=[] \Longrightarrow\) ?thesis
        using NPath-def t src
        apply simp
        by (metis Arr.simps(2) R.arr-resid-iff-con R.coinitialI N.forward-stable
                \(N\).elements-are-arr \(u U\) )
    assume \(U: U \neq[]\)
    show ?thesis
    proof -
            have NPath \((\) Resid \([t](u \# U)) \longleftrightarrow\) NPath \((\) Resid \([t \backslash u] U)\)
            using \(t U u U\) src
        by (metis Arr.simps(2) Con-implies-Arr(1) Resid-rec(3) Con-rec(3) R.arr-resid-iff-con)
            also have \(\ldots \longleftrightarrow\) True
            proof -
                have \(t \backslash u \in \mathfrak{N}\)
                    using \(t U u U \operatorname{src} N\).forward-stable [of \(t u\) ]
                    by (metis Con-Arr-self Con-imp-eq-Srcs Con-initial-left
                        Srcs.simps(2) inf.idem Arr-has-Src R.coinitial-def)
            moreover have \(\operatorname{Arr} U\)
```

```
            using UuU
            by (metis Arr.simps(3) neq-Nil-conv)
            moreover have R.sources ( }t\backslashu)=\mathrm{ Srcs U
                    using tuU src
                    by (metis Con-Arr-self Srcs.simps(2) U calculation(1) Con-imp-eq-Srcs
                            Con-rec(4) N.elements-are-arr R.sources-resid R.arr-resid-iff-con)
            ultimately show ?thesis
            using ind [of t\u] by simp
        qed
        finally show ?thesis by blast
    qed
    qed
qed
lemma NPath-Resid-Arr-single:
shows \llbracket NPath T; R.arr u; Srcs T = R.sources u\rrbracket\Longrightarrow NPath (Resid T [u])
proof (induct T arbitrary: u)
    show \u.\llbracketNPath []; R.arr u; Srcs [] = R.sources u\rrbracket\Longrightarrow NPath (Resid [] [u])
    by simp
fix }tu
assume ind: \u.\llbracketNPath T; R.arr u; Srcs T = R.sources u\rrbracket\Longrightarrow NPath (Resid T [u])
assume tT: NPath (t # T)
assume u: R.arr u
assume src: Srcs (t# T) = R.sources u
show NPath (Resid (t#T)[u])
proof (cases T = [])
    show T=[]\Longrightarrow ?thesis
        using tT u src NPath-def
    by (metis Arr.simps(2) NPath-Resid-single-Arr Srcs.simps(2) list.set-intros(1) subsetD)
    assume T:T\not=[]
    have R.coinitial u t
        by (metis R.coinitialI Srcs.simps(3) T list.exhaust-sel src u)
    hence con: t\frownu
        using tT T u src R.con-sym NPath-def
        by (metis N.forward-stable N.elements-are-arr R.not-arr-null
            list.set-intros(1) R.conI subsetD)
    have 1:NPath (Resid (t# T) [u])\longleftrightarrow NPath ((t\u)# Resid T [u\t])
    proof -
        have t # T *\frown* [u]
        proof -
            have 2: [t] *\frown* [u]
                by (simp add: Con-rec(1) con)
            moreover have T*``* Resid [u][t]
            proof -
                have NPath T
                    using tT T NPath-def
                    by (metis NPath-append append-Cons append-Nil)
                moreover have 3: R.arr ( }u\t\mathrm{ )
                    using con by (meson R.arr-resid-iff-con R.con-sym)
```

```
            moreover have Srcs \(T=\) R.sources \((u \backslash t)\)
                    using \(t T T\) u src con
                    by (metis 3 Arr-iff-Con-self Con-cons(2) Con-imp-eq-Srcs
                    R.sources-resid Srcs-Resid Trgs.simps(2) NPath-implies-Arr list.discI
                    R.arr-resid-iff-con)
            ultimately show ?thesis
                    using 2 ind \([\) of \(u \backslash t]\) NPath-def by auto
        qed
        ultimately show ?thesis
            using \(t T T\) u src Con-cons(1) \([\) of \(T[u] t]\) by \(\operatorname{simp}\)
    qed
    thus ?thesis
        using \(t T T u\) src Resid-cons(1) [of \(T t[u]\) Resid-rec(2) by presburger
    qed
    also have \(\ldots \longleftrightarrow\) True
    proof -
    have 2: \(t \backslash u \in \mathfrak{N} \wedge R . \operatorname{arr}(u \backslash t)\)
        using \(t T\) u src con NPath-def
        by (meson R.arr-resid-iff-con R.con-sym \(N\).forward-stable 〈R.coinitial \(u t\rangle\)
            list.set-intros(1) subsetD)
    moreover have 3: NPath ( \(\left.T^{*} \backslash^{*}[u \backslash t]\right)\)
        using \(t T\) ind [of \(u \backslash t]\) NPath-def
        by (metis Con-Arr-self Con-imp-eq-Srcs Con-rec(4) R.arr-resid-iff-con
            R.sources-resid Srcs.simps(2) T calculation insert-subset list.exhaust
            list.simps(15) Arr.simps(3))
    moreover have R.targets \((t \backslash u) \subseteq \operatorname{Srcs}(\operatorname{Resid} T[u \backslash t])\)
        using tT T u src NPath-def
        by (metis 3 Arr.simps(1) R.targets-resid-sym Srcs-Resid-Arr-single con subset-refl)
    ultimately show ?thesis
        using NPath-def
        by (metis Arr-consI \(I_{P}\) N.elements-are-arr insert-subset list.simps(15))
    qed
    finally show ?thesis by blast
    qed
qed
lemma NPath-Resid [simp]:
shows \(\llbracket N P a t h T\) Arr \(U\); Srcs \(T=\operatorname{Srcs} U \rrbracket \Longrightarrow \operatorname{NPath}\left(T^{*} \backslash^{*} U\right)\)
proof (induct \(T\) arbitrary: \(U\) )
    show \(\bigwedge U . \llbracket\) NPath []\(;\) Arr \(U ; \operatorname{Srcs}[]=\operatorname{Srcs} U \rrbracket \Longrightarrow\) NPath \(\left([]^{*} \backslash^{*} U\right)\)
    by simp
fix \(t T U\)
assume ind: \(\wedge U . \llbracket N P a t h T ; \operatorname{Arr} U ; \operatorname{Srcs} T=\operatorname{Srcs} U \rrbracket \Longrightarrow \operatorname{NPath}\left(T^{*} \backslash * U\right)\)
assume \(t T\) : NPath ( \(t \# T\) )
assume \(U\) : \(\operatorname{Arr} U\)
assume Coinitial: Srcs \((t \# T)=\) Srcs \(U\)
show NPath \(\left((t \# T){ }^{*} \backslash * U\right)\)
proof (cases \(T=[])\)
    show \(T=[] \Longrightarrow\) ?thesis
```

using tT U Coinitial NPath-Resid-single-Arr [of t U] NPath-def by force
assume $T: T \neq[]$
have 0: NPath $\left((t \# T)^{*} \backslash * U\right) \longleftrightarrow N P a t h\left([t]^{*} \backslash * U @ T^{*} \backslash *\left(U^{*} \backslash{ }^{*}[t]\right)\right)$
proof -
have $U \neq[]$
using U by auto
moreover have $(t \# T)^{*} \frown^{*} U$
proof -
have $t \in \mathfrak{N}$
using $t T$ NPath-def by auto
moreover have R.sources $t=\operatorname{Srcs} U$
using Coinitial
by (metis Srcs.elims U list.sel(1) Arr-has-Src)
ultimately have $1:[t]{ }^{*}{ }^{*} U$
using U NPath-Resid-single-Arr [of $t U]$ NPath-def by auto
moreover have $T^{*} \frown^{*}\left(U^{*} \backslash^{*}[t]\right)$
proof -
have Srcs $T=\operatorname{Srcs}\left(U^{*} \backslash{ }^{*}[t]\right)$
using $t T U$ Coinitial 1
by (metis Con-Arr-self Con-cons(2) Con-imp-eq-Srcs Con-sym Srcs-Resid-Arr-single T list.discI NPath-implies-Arr)
hence NPath $\left(T^{*} \backslash{ }^{*}\left(U^{*} \backslash *[t]\right)\right)$
using $t T U$ Coinitial 1 Con-sym ind [of Resid $U[t]]$ NPath-def
by (metis Con-imp-Arr-Resid Srcs.elims T insert-subset list.simps(15)
Arr.simps(3))
thus ?thesis
using NPath-def by auto
qed
ultimately show ?thesis
using Con-cons(1) [of TUt] by fastforce
qed
ultimately show ?thesis
using $t T U T$ Coinitial Resid-cons(1) by auto
qed
also have $\ldots \longleftrightarrow$ True
proof (intro iffI, simp-all)
have 1: NPath $\left([t]{ }^{*} \backslash * U\right)$
by (metis Coinitial NPath-Resid-single-Arr Srcs-simp $P_{P} U$ insert-subset list.sel(1) list.simps(15) NPath-def tT)
moreover have 2: NPath $\left(T^{*} \backslash *\left(U^{*} \backslash *[t]\right)\right)$
by (metis 0 Arr.simps(1) Con-cons(1) Con-imp-eq-Srcs Con-implies-Arr(1-2)
NPath-def T append-Nil2 calculation ind insert-subset list.simps(15) tT)
moreover have $\operatorname{Trgs}\left([t] *{ }^{*} U\right) \subseteq \operatorname{Srcs}\left(T^{*} \backslash *\left(U^{*} \backslash *[t]\right)\right)$
by (metis Arr.simps(1) NPath-def Srcs-Resid Trgs-Resid-sym calculation(2) dual-order.refl)
ultimately show NPath $\left([t]^{*} \backslash * U @ T^{*} \backslash{ }^{*}\left(U^{*} \backslash *[t]\right)\right)$
using NPath-append $\left[\right.$ of $\left.T^{*} \backslash *\left(U^{*} \backslash *[t]\right)[t]^{*} \backslash * U\right]$ by fastforce
qed
finally show ?thesis by blast

```
    qed
qed
lemma Backward-stable-single:
shows \llbracketNPath U; NPath ([t] *\* U)\rrbracket\Longrightarrow NPath [t]
proof (induct U arbitrary: t)
    show \t.\llbracketNPath []; NPath ([t]*\* [])\rrbracket\Longrightarrow NPath [t]
    using NPath-def by simp
    fix tuU
    assume ind: \t. \llbracketNPath U; NPath ([t] *\* U)\rrbracket\Longrightarrow NPath [t]
    assume uU: NPath (u#U)
    assume resid: NPath ([t] *\* (u#U))
    show NPath [t]
        using uU ind NPath-def
        by (metis Arr.simps(1) Arr.simps(2) Con-implies-Arr(2) N.backward-stable
            N.elements-are-arr Resid-rec(1) Resid-rec(3) insert-subset list.simps(15) resid)
qed
lemma Backward-stable:
shows \llbracketNPath U;NPath (T**\* U)\rrbracket\Longrightarrow NPath T
proof (induct T arbitrary:U)
    show \U.\llbracketNPath U; NPath ([] *\* U)\rrbracket\Longrightarrow NPath []
        by simp
    fix }tT
    assume ind: \U.\llbracketNPath U;NPath (T**\* U)\rrbracket\Longrightarrow NPath T
    assume U: NPath U
    assume resid: NPath ((t#T) *\* U)
    show NPath (t # T)
    proof (cases T = [])
        show T=[]\Longrightarrow?thesis
            using U resid Backward-stable-single by blast
            assume T:T\not=[]
            have 1: NPath ([t]*\* U)^NPath (T*** (U *\* [t]))
            using T U NPath-append resid NPath-def
            by (metis Arr.simps(1) Con-cons(1) Resid-cons(1))
            have 2: }t\in\mathfrak{N
            using 1 U Backward-stable-single NPath-def by simp
            moreover have NPath T
            using 1 U resid ind
            by (metis 2 Arr.simps(2) Con-imp-eq-Srcs NPath-Resid N.elements-are-arr)
            moreover have R.targets t\subseteqSrcs T
            using resid 1 Con-imp-eq-Srcs Con-sym Srcs-Resid-Arr-single NPath-def
            by (metis Arr.simps(1) dual-order.eq-iff)
        ultimately show ?thesis
            using NPath-def
            by (simp add: N.elements-are-arr)
    qed
qed
```

sublocale normal-sub-rts Resid 〈Collect NPath〉
using Ide-implies-NPath NPath-implies-Arr arr-char ide-char coinitial-def sources-char ${ }_{P}$ append-is-composite-of
apply unfold-locales apply auto
using Backward-stable
by metis+
theorem normal-extends-to-paths:
shows normal-sub-rts Resid (Collect NPath)
..
lemma Resid-NPath-preserves-reflects-Con:
assumes NPath U and Srcs $T=\operatorname{Srcs} U$
shows $T^{*} \backslash{ }^{*} U^{*} \frown^{*} T^{\prime *} \backslash^{*} U \longleftrightarrow T^{*} \frown^{*} T^{\prime}$
using assms NPath-def NPath-Resid con-char con-imp-coinitial resid-along-elem-preserves-con Con-implies-Arr(2) Con-sym Cube(1)
by (metis Arr.simps(1) mem-Collect-eq)
notation Cong $_{0}\left(\right.$ infix $\left.\approx^{*}{ }_{0} 50\right)$
notation Cong (infix $\approx^{*} 50$)
lemma Cong g_{0} cancel-left ${ }_{C S}$:
assumes $T @ U \approx^{*}{ }_{0} T @ U^{\prime}$ and $T \neq[]$ and $U \neq[]$ and $U^{\prime} \neq[]$
shows $U \approx^{*}{ }_{0} U^{\prime}$
using assms Cong g_{0}-cancel-left [of T U T @ U U' T @ U $]$ Cong $_{0}$-reflexive append-is-composite-of
by (metis Congo-implies-Cong Cong-imp-arr (1) arr-append-imp-seq)
lemma Srcs-respects-Cong:
assumes $T \approx^{*} T^{\prime}$ and $a \in \operatorname{Srcs} T$ and $a^{\prime} \in \operatorname{Srcs} T^{\prime}$
shows $[a] \approx^{*}[a]$
proof -
obtain $U U^{\prime}$ where $U U^{\prime}:$ NPath $U \wedge$ NPath $U^{\prime} \wedge T{ }^{*} \backslash^{*} U \approx^{*}{ }_{0} T^{\prime *} \backslash^{*} U^{\prime}$
using assms(1) by blast
show ?thesis
proof
show $U \in$ Collect NPath
using $U U^{\prime}$ by simp
show $U^{\prime} \in$ Collect NPath
using $U U^{\prime}$ by simp
show $[a]{ }^{*} \backslash{ }^{*} U \approx^{*}{ }_{0}[a\rceil{ }^{*} \backslash{ }^{*} U^{\prime}$
proof -
have NPath $\left([a]^{*} \backslash^{*} U\right) \wedge$ NPath $\left(\left[a^{\prime}\right]^{*} \backslash^{*} U^{\prime}\right)$
by (metis Arr.simps(1) Con-imp-eq-Srcs Con-implies-Arr(1) Con-single-ide-ind NPath-implies-Arr N.ide-closed R.in-sourcesE Srcs.simps(2) Srcs-simp P_{P} UU' assms(2-3) elements-are-arr not-arr-null null-char NPath-Resid-single-Arr) thus ?thesis

```
            using }U\mp@subsup{U}{}{\prime
            by (metis Con-imp-eq-Srcs Congo-imp-con NPath-Resid Srcs-Resid
                con-char NPath-implies-Arr mem-Collect-eq arr-resid-iff-con con-implies-arr(2))
        qed
    qed
qed
lemma Trgs-respects-Cong:
assumes T ** T' and b\inTrgs T and b}\mp@subsup{b}{}{\prime}\in\operatorname{Trgs}\mp@subsup{T}{}{\prime
shows [b] ** [b]
proof -
    have [b]\in targets T}^[b]\in\mathrm{ targets T'
    proof -
        have 1:Ide [b]^ Ide [b]
        using assms
        by (metis Ball-Collect Trgs-are-ide Ide.simps(2))
    moreover have Srcs [b] = Trgs T
        using assms
        by (metis 1 Con-imp-Arr-Resid Con-imp-eq-Srcs Cong-imp-arr(1) Ide.simps(2)
            Srcs-Resid Con-single-ide-ind con-char arrE)
        moreover have Srcs [b] = Trgs T'
            using assms
            by (metis Con-imp-Arr-Resid Con-imp-eq-Srcs Cong-imp-arr(2) Ide.simps(2)
                Srcs-Resid 1 Con-single-ide-ind con-char arrE)
        ultimately show ?thesis
            unfolding targets-char }\mp@subsup{P}{}{\prime
            using assms Cong-imp-arr(2) arr-char by blast
    qed
    thus ?thesis
        using assms targets-char in-targets-respects-Cong [of T T' [b] [b]] by simp
qed
lemma Congo-append-resid-NPath:
assumes NPath (T *}\mp@subsup{\}{}{*}\mp@subsup{\}{}{*}U
shows Congo (T@ (U *\* T)) U
proof (intro conjI)
    show 0:(T@ U *\* T)*\* U Collect NPath
    proof -
        have 1:(T@ @ *\* T) *\* U = T**\* U @ (U*\\* T) *\* (U *\** T)
            by (metis Arr.simps(1) NPath-implies-Arr assms Con-append(1) Con-implies-Arr(2)
                    Con-sym Resid-append(1) con-imp-arr-resid null-char)
            moreover have NPath ...
                using assms
            by (metis 1 Arr-append-iff P NPath-append NPath-implies-Arr Ide-implies-NPath
                    Nil-is-append-conv Resid-Arr-self arr-char con-char arr-resid-iff-con
                    self-append-conv)
            ultimately show ?thesis by simp
        qed
        show U*\*(T @ U *\*}T)\inC\mathrm{ Collect NPath
```

```
    using assms 0
    by (metis Arr.simps(1) Con-implies-Arr(2) Congo-reflexive Resid-append(2)
        append.right-neutral arr-char Con-sym)
    qed
```

end
locale paths-in-rts-with-coherent-normal $=$
R : rts +
N : coherent-normal-sub-rts +
paths-in-rts

begin

sublocale paths-in-rts-with-normal resid \mathfrak{N}..
notation Cong $_{0}\left(\right.$ infix $\left.\approx^{*}{ }_{0} 50\right)$
notation Cong (infix $\approx^{*} 50$)
Since composites of normal transitions are assumed to exist, normal paths can be "folded" by composition down to single transitions.

```
lemma NPath-folding:
shows NPath \(U \Longrightarrow \exists u\). \(u \in \mathfrak{N} \wedge\) R.sources \(u=\operatorname{Srcs} U \wedge\) R.targets \(u=\operatorname{Trgs} U \wedge\)
                    \(\left(\forall t . \operatorname{con}[t] U \longrightarrow[t]^{*} \backslash^{*} U \approx^{*}{ }_{0}[t \backslash u]\right)\)
proof (induct \(U\) )
    show NPath []\(\Longrightarrow \exists u . u \in \mathfrak{N} \wedge\) R.sources \(u=\operatorname{Srcs}[] \wedge\) R.targets \(u=\operatorname{Trgs}[] \wedge\)
                            \(\left(\forall t . \operatorname{con}[t][] \longrightarrow[t]^{*} \backslash^{*}[] \approx_{0}^{*}[t \backslash u]\right)\)
        using NPath-def by auto
    fix \(v U\)
    assume ind: NPath \(U \Longrightarrow \exists u . u \in \mathfrak{N} \wedge\) R.sources \(u=\operatorname{Srcs} U \wedge\) R.targets \(u=\operatorname{Trgs} U \wedge\)
                        \(\left(\forall t . \operatorname{con}[t] U \longrightarrow[t]^{*} \backslash * U \approx^{*}{ }_{0}[t \backslash u]\right)\)
    assume \(v U\) : NPath \((v \# U)\)
    show \(\exists v U . v U \in \mathfrak{N} \wedge\) R.sources \(v U=\operatorname{Srcs}(v \# U) \wedge R\).targets \(v U=\operatorname{Trgs}(v \# U) \wedge\)
            \(\left(\forall t\right.\). con \(\left.[t](v \# U) \longrightarrow[t]^{*} \backslash{ }^{*}(v \# U) \approx^{*}{ }_{0}[t \backslash v U]\right)\)
    proof (cases \(U=[]\) )
        show \(U=[] \Longrightarrow \exists v U . v U \in \mathfrak{N} \wedge\) R.sources \(v U=\operatorname{Srcs}(v \# U) \wedge\)
                        R.targets \(v U=\operatorname{Trgs}(v \# U) \wedge\)
                        \(\left(\forall t\right.\). con \(\left.[t](v \# U) \longrightarrow[t]^{*} \backslash{ }^{*}(v \# U) \approx^{*}{ }_{0}[t \backslash v U]\right)\)
        using \(v U\) Resid-rec (1) con-char
        by (metis Cong \({ }_{0}\)-reflexive NPath-def Srcs.simps(2) Trgs.simps(2) arr-resid-iff-con
            insert-subset list.simps(15))
        assume \(U \neq[]\)
        hence \(U\) : NPath \(U\)
            using \(v U\) by (metis NPath-append append-Cons append-Nil)
        obtain \(u\) where \(u: u \in \mathfrak{N} \wedge\) R.sources \(u=\operatorname{Srcs} U \wedge R\).targets \(u=\operatorname{Trgs} U \wedge\)
                        \(\left(\forall t . \operatorname{con}[t] U \longrightarrow[t]{ }^{*} \backslash * U \approx^{*}{ }_{0}[t \backslash u]\right)\)
        using \(U\) ind by blast
        have seq: R.seq \(v u\)
    proof
        show R.arr u
```

```
            by (simp add: N.elements-are-arr u)
    show R.targets \(v=R\).sources \(u\)
    by (metis (full-types) NPath-implies-Arr R.sources-resid Srcs.simps(2) \(\langle U \neq[]\rangle\)
            Con-Arr-self Con-imp-eq-Srcs Con-initial-right Con-rec(2) u vU)
    qed
    obtain \(v u\) where \(v u\) : R.composite-of \(v u v u\)
        using \(N\).composite-closed-right seq \(u\) by presburger
    have \(v u \in \mathfrak{N} \wedge\) R.sources \(v u=\operatorname{Srcs}(v \# U) \wedge\) R.targets \(v u=\operatorname{Trgs}(v \# U) \wedge\)
            \(\left(\forall t\right.\). con \(\left.[t](v \# U) \longrightarrow[t]^{*} \backslash^{*}(v \# U) \approx^{*}{ }_{0}[t \backslash v u]\right)\)
    proof (intro conjI allI)
    show \(v u \in \mathfrak{N}\)
            by (meson NPath-def N.composite-closed list.set-intros(1) subsetD \(u v U v u\) )
    show R.sources vu \(=\operatorname{Srcs}(v \# U)\)
            by (metis Con-imp-eq-Srcs Con-initial-right NPath-implies-Arr
                    R.sources-composite-of Srcs.simps(2) Arr-iff-Con-self vU vu)
    show R.targets \(v u=\operatorname{Trgs}(v \# U)\)
```



```
    fix \(t\)
    show con \([t](v \# U) \longrightarrow[t]^{*} \backslash^{*}(v \# U) \approx^{*}{ }_{0}[t \backslash v u]\)
    proof (intro impI)
        assume \(t\) : con \([t](v \# U)\)
        have 1: \([t]^{*} \backslash^{*}(v \# U)=[t \backslash v]^{*} \backslash * U\)
            using \(t\) Resid-rec (3) \(\langle U \neq[]\rangle\) con-char by force
        also have \(\ldots \approx^{*}{ }_{0}[(t \backslash v) \backslash u]\)
            using \(1 t u\) by force
        also have \([(t \backslash v) \backslash u] \approx^{*}{ }_{0}[t \backslash v u]\)
        proof -
            have \((t \backslash v) \backslash u \sim t \backslash v u\)
            using vu R.resid-composite-of
        by (metis (no-types, lifting) N.Cong \(g_{0}\)-composite-of-arr-normal N.Cong \(g_{0}\)-subst-right(1)
                            \(\langle U \neq[]\rangle \operatorname{Con-rec}(3)\) con-char \(R\).con-sym t u)
            thus ?thesis
                using Ide.simps(2) R.prfx-implies-con Resid.simps(3) ide-char ide-closed
                by presburger
        qed
        finally show \([t]^{*} \backslash *(v \# U) \approx^{*}{ }_{0}[t \backslash v u]\) by blast
        qed
    qed
    thus ?thesis by blast
    qed
qed
```

Coherence for single transitions extends inductively to paths.

```
lemma Coherent-single:
assumes R.arr t and NPath U and NPath U'
and R.sources t=Srcs U and Srcs U =Srcs U' and Trgs U = Trgs U'
shows [t] *\* U 洉[t] *\* U'
proof -
    have 1: con [t] U\wedge con [t] U'
```


using assms

by (metis Arr.simps(1-2) Arr-iff-Con-self Resid-NPath-preserves-reflects-Con Srcs.simps(2) con-char)
obtain u where $u: u \in \mathfrak{N} \wedge R$.sources $u=\operatorname{Srcs} U \wedge$ R.targets $u=\operatorname{Trgs} U \wedge$

$$
\left(\forall t . \operatorname{con}[t] U \longrightarrow[t]^{*} \backslash^{*} U \approx^{*}{ }_{0}[t \backslash u]\right)
$$

using assms NPath-folding by metis
obtain u^{\prime} where $u^{\prime}: u^{\prime} \in \mathfrak{N} \wedge$ R.sources $u^{\prime}=$ Srcs $U^{\prime} \wedge$ R.targets $u^{\prime}=\operatorname{Trgs} U^{\prime} \wedge$
$\left(\forall t\right.$. con $\left.[t] U^{\prime} \longrightarrow[t]^{*} \backslash^{*} U^{\prime} \approx^{*}{ }_{0}[t \backslash u\rceil\right)$
using assms NPath-folding by metis
have $[t]^{*} \backslash * U \quad \approx^{*}{ }_{0}[t \backslash u]$
using $u 1$ by blast
also have $[t \backslash u] \approx^{*}{ }_{0}[t \backslash u]$
using $\operatorname{assms}(1,4-6) N$.Cong $g_{0}-i m p-c o n N . c o h e r e n t u u^{\prime} N P a t h-d e f$ by simp
also have $[t \backslash u] \approx^{*}{ }_{0}[t]{ }^{*} \backslash * U^{\prime}$
using $u^{\prime} 1$ by simp
finally show ?thesis by simp
qed
lemma Coherent:
shows \llbracket Arr T; NPath U; NPath $U^{\prime} ;$ Srcs $T=$ Srcs U;
Srcs $U=$ Srcs $U^{\prime} ; \operatorname{Trgs} U=\operatorname{Trgs} U^{\prime} \rrbracket$
$\Longrightarrow T^{*} \backslash^{*} U \approx_{0}{ }_{0} T^{*} \backslash^{*} U^{\prime}$
proof (induct T arbitrary: $U U^{\prime}$)
show $\wedge U U^{\prime} . \llbracket$ Arr []; NPath $U ;$ NPath $U^{\prime} ; \operatorname{Srcs}[]=$ Srcs U;

$$
\text { Srcs } U=\text { Srcs } U^{\prime} ; \operatorname{Trgs} U=\operatorname{Trgs} U^{\prime} \rrbracket
$$

$$
\Longrightarrow[]^{*} \backslash * U \approx_{0}^{*}[]^{*} \backslash^{*} U^{\prime}
$$

by (simp add: arr-char)
fix $t T U U^{\prime}$
assume $t T: \operatorname{Arr}(t \# T)$ and $U: N P a t h ~ U$ and $U^{\prime}: N P a t h ~ U^{\prime}$
and Srcs1: Srcs $(t \# T)=$ Srcs U and Srcs2: Srcs $U=$ Srcs U^{\prime}
and Trgs: Trgs $U=\operatorname{Trgs} U^{\prime}$
and ind: $\wedge U U^{\prime}$. 【Arr T; NPath $U ;$ NPath $U^{\prime} ;$ Srcs $T=$ Srcs U;

$$
\begin{aligned}
& \text { Srcs } U=\text { Srcs } U^{\prime} ; \text { Trgs } U=\text { Trgs } U^{\prime} \rrbracket \\
& \quad \Longrightarrow T^{*} \backslash^{*} U \approx_{0} T^{*} \backslash^{*} U^{\prime}
\end{aligned}
$$

have t : R.arr t
using $t T$ by (metis Arr.simps(2) Con-Arr-self Con-rec(4) R.arrI)
show $(t \# T)^{*} \backslash{ }^{*} U \approx^{*}{ }_{0}(t \# T)^{*} \backslash{ }^{*} U^{\prime}$
proof (cases $T=[]$)
show $T=[] \Longrightarrow$?thesis
by (metis Srcs.simps(2) Srcs1 Srcs2 Trgs $U U^{\prime}$ Coherent-single Arr.simps(2) tT)
assume $T: T \neq[]$
let ? $t=[t]^{*} \backslash{ }^{*} U$ and ? $t^{\prime}=[t]^{*} \backslash^{*} U^{\prime}$
let ? $T=T^{*} \backslash *\left(U^{*} \backslash *[t]\right)$
let ? $T^{\prime}=T^{*} \backslash^{*}\left(U^{\prime *} \backslash^{*}[t]\right)$
have $0:(t \# T)^{*} \backslash * U=? t$ @ ?T $\wedge(t \# T)^{*} \backslash{ }^{*} U^{\prime}=? t^{\prime} @ ? T^{\prime}$
using $t T U U^{\prime}$ Srcs1 Srcs2
by (metis Arr-has-Src Arr-iff-Con-self Resid-cons(1) Srcs.simps(1)
Resid-NPath-preserves-reflects-Con)
have 1: ? $t \approx_{0}{ }^{?}$? t^{\prime}
by (metis Srcs1 Srcs2 Srcs-simp P_{P} Trgs $U U^{\prime}$ list.sel(1) Coherent-single t tT)
have A : ? $T^{*} \backslash *\left(? t^{\prime *} \backslash * ? t\right)=T^{*} \backslash{ }^{*}\left(\left(U^{*} \backslash *[t]\right) @\left(? t^{\prime *} \backslash * ? t\right)\right)$
using 1 Arr.simps(1) Con-append(2) Con-sym Resid-append(2) Con-implies-Arr(1) NPath-def
by (metis arr-char elements-are-arr)
have $B: ? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash * ? t^{\prime}\right)=T^{*} \backslash *\left(\left(U^{\prime *} \backslash^{*}[t]\right) @\left(? t^{*} \backslash^{*} ? t^{\prime}\right)\right)$
by (metis 1 Con-appendI(2) Con-sym Resid.simps(1) Resid-append(2) elements-are-arr not-arr-null null-char)
have E : ? $T^{*} \backslash^{*}\left(? t^{\prime *} \backslash * ? t\right) \approx_{0}{ }_{0} ? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash^{*} ? t^{\prime}\right)$
proof -
have Arr T
using Arr.elims (1) $T t T$ by blast
moreover have NPath $\left(U^{*} \backslash^{*}[t] @\left([t]^{*} \backslash^{*} U^{\prime}\right)^{*} \backslash^{*}\left([t]^{*} \backslash^{*} U\right)\right)$
using $1 U t t T$ Srcs1 Srcs-simp P_{P}
apply (intro NPath-appendI) apply auto
by (metis Arr.simps(1) NPath-def Srcs-Resid Trgs-Resid-sym)
moreover have NPath $\left(U^{\prime *} \backslash^{*}[t] @\left([t]^{*} \backslash^{*} U\right)^{*} \backslash^{*}\left([t]^{*} \backslash^{*} U^{\prime}\right)\right)$
using $t U^{\prime} 1$ Con-imp-eq-Srcs Trgs-Resid-sym
apply (intro NPath-appendI)
apply auto
apply (metis Arr.simps(2) NPath-Resid Resid.simps(1))
by (metis Arr.simps(1) NPath-def Srcs-Resid)
moreover have Srcs $T=\operatorname{Srcs}\left(U^{*} \backslash^{*}[t] @\left([t]^{*} \backslash U^{*}\right)^{*} \backslash^{*}\left([t]^{*} \backslash^{*} U\right)\right)$
using $A B$
by (metis (full-types) 01 Arr-has-Src Con-cons(1) Con-implies-Arr(1)
Srcs.simps(1) Srcs-append T elements-are-arr not-arr-null null-char Con-imp-eq-Srcs)
moreover have $\left.\operatorname{Srcs}\left(U^{*} \backslash *[t] @\left([t]{ }^{*} \backslash U^{*}\right)^{*} \backslash *([t]]^{*} \backslash U\right)\right)=$

$$
\operatorname{Srcs}\left(U^{\prime *} \backslash *[t] @\left([t] * \backslash^{*} U\right) * *^{*}\left([t] * \backslash^{*} U^{\prime}\right)\right)
$$

by (metis 1 Con-implies-Arr (2) Con-sym Cong 0_{0}-imp-con Srcs-Resid Srcs-append arr-char con-char arr-resid-iff-con)
moreover have Trgs $\left(U^{*} \backslash *[t] @\left([t]^{*} \backslash * U^{\prime}\right)^{*} \backslash *\left([t]{ }^{*} \backslash * U\right)\right)=$

$$
\operatorname{Trgs}\left(U^{\prime *} \backslash *[t] @\left([t]{ }^{*} \backslash * U\right)^{*} \backslash *\left([t] *{ }^{*} U^{\prime}\right)\right)
$$

using 1 Cong $_{0}$-imp-con con-char by force
ultimately show ?thesis
using $A B$ ind $\left[\right.$ of $\left.\left(U^{*} \backslash *[t]\right) @\left(? t^{\prime *} \backslash * ? t\right)\left(U^{\prime *} \backslash^{*}[t]\right) @\left(? t^{*} \backslash * ? t^{\prime}\right)\right]$
by simp
qed
have C: NPath $\left(\left(? T^{*} \backslash^{*}\left(? t^{\prime *} \backslash^{*} ? t\right)\right)^{*} \backslash^{*}\left(? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash^{*} ? t^{\prime}\right)\right)\right)$
using E by blast
have $D: \operatorname{NPath}\left(\left(? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash^{*} ? t^{\prime}\right)\right)^{*} \backslash^{*}\left(? T^{*} \backslash^{*}\left(? t^{\prime *} \backslash^{*} ? t\right)\right)\right)$
using E by blast
show ?thesis
proof
have 2: $\left((t \# T)^{*} \backslash{ }^{*} U\right)^{*} \backslash^{*}\left((t \# T)^{*} \backslash^{*} U^{\prime}\right)=$
$\left(\left(? t^{*} \backslash * ? t^{\prime}\right)^{*} \backslash * ? T^{\prime}\right) @\left(\left(? T^{*} \backslash *\left(? t^{\prime} \backslash^{*} ? t\right)\right)^{*}{ }^{*}\left(? T^{\prime *} \backslash^{*}\left(? t^{*}\right.\right.\right.$ * $\left.\left.\left.^{*} ? t^{\prime}\right)\right)\right)$
proof -
have $\left((t \# T)^{*} \backslash * U\right)^{*} \backslash *\left((t \# T)^{*} \backslash^{*} U^{\prime}\right)=(\text { ?t @ ?T })^{*} \backslash *\left(? t^{\prime} @ ? T^{\prime}\right)$
using 0 by fastforce
also have $\ldots=\left((? t \text { @ ?T })^{*} \backslash * ? t^{\prime}\right){ }^{*} \backslash * ? T^{\prime}$
using $t T T U U^{\prime} \operatorname{Srcs1} 1 \operatorname{Srcs2} 0$
by (metis Con-appendI(2) Con-cons(1) Con-sym Resid.simps(1) Resid-append(2))
also have $\ldots=\left(\left(? t^{*} \backslash^{*} ? t^{\prime}\right) @\left(? T^{*} \backslash^{*}\left(? t^{\prime *} \backslash^{*} ? t\right)\right)\right)^{*} \backslash^{*} ? T^{\prime}$
by (metis (no-types, lifting) Arr.simps(1) Con-appendI(1) Con-implies-Arr(1) D NPath-def Resid-append(1) null-is-zero(2))
also have $\ldots=\left(\left(? t^{*} \backslash{ }^{*} ? t^{\prime}\right){ }^{*} \backslash{ }^{*} ? T^{\prime}\right) @$

$$
\left(\left(? T^{*} \backslash *\left(? t^{\prime *} \backslash * ? t\right)\right)^{*} \backslash *\left(? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash * ? t^{\prime}\right)\right)\right)
$$

proof -
have ? $t^{*} \backslash{ }^{*}$? $t^{\prime} @$? $T^{*} \backslash *\left(? t^{\prime *} \backslash * ? t\right)^{*}$ * $^{*} T^{\prime}$
using C D E Con-sym
by (metis Con-append(2) Cong O-imp-con con-char arr-resid-iff-con 2 con-implies-arr(2))
thus ?thesis
using Resid-append(1)
by (metis Con-sym append.right-neutral Resid.simps(1))
qed
finally show? ?thesis by simp
qed
moreover have 3: NPath ...
proof -
have NPath $\left(\left(? t^{*} \backslash * ? t^{\prime}\right)^{*} \backslash^{*} ? T^{\prime}\right)$
using $01 E$
by (metis Con-imp-Arr-Resid Con-imp-eq-Srcs NPath-Resid Resid.simps(1) ex-un-null mem-Collect-eq)
moreover have Trgs $\left(\left(? t^{*} \backslash^{*} ? t^{\prime}\right)^{*} \backslash^{*} ? T^{\prime}\right)=$

$$
\operatorname{Srcs}\left(\left(? T^{*} \backslash *\left(? t^{\prime *} \backslash * ? t\right)\right)^{*} \backslash{ }^{*}\left(? T^{\prime *} \backslash *\left(? t^{*} \backslash * ? t^{\prime}\right)\right)\right)
$$

using C
by (metis NPath-implies-Arr Srcs.simps(1) Srcs-Resid Trgs-Resid-sym Arr-has-Src)
ultimately show?thesis
using C by blast
qed
ultimately show $\left((t \# T)^{*} \backslash * U\right)^{*} \backslash^{*}\left((t \# T)^{*} \backslash U^{*}\right) \in$ Collect NPath by simp
have 4: $\left((t \# T)^{*} \backslash^{*} U^{\prime}\right)^{*} \backslash^{*}\left((t \# T)^{*} \backslash{ }^{*} U\right)=$
$\left(\left(? t^{\prime *} \backslash * ? t\right)^{*} \backslash * ? T\right) @\left(\left(? T^{\prime *} \backslash *\left(? t^{*} \backslash * ? t^{\prime}\right)\right)^{*} \backslash^{*}\left(? T^{*} \backslash *\left(? t^{\prime *} \backslash * t\right)\right)\right)$
by (metis 023 Arr.simps(1) Con-implies-Arr(1) Con-sym D NPath-def Resid-append2)
moreover have NPath ...
proof -
have NPath $\left(\left(? t^{\prime *} \backslash^{*} ? t\right)^{*} \backslash * ? T\right)$
by (metis 1 CollectD Cong Colimp-con 2 e con-imp-coinitial forward-stable arr-resid-iff-con con-implies-arr(2))
moreover have NPath $\left(\left(? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash * ? t^{\prime}\right)\right)^{*} \backslash^{*}\left(? T^{*} \backslash *\left(? t^{\prime *} \backslash * ? t\right)\right)\right)$
using $U U^{\prime} 1 D$ ind Coherent-single $\left[\right.$ of $\left.t U^{\prime} U\right]$ by blast
moreover have Trgs $\left(\left(? t^{\prime *} \text { ' }^{*} \text { ? }\right)^{*} \backslash * ? T\right)=$

$$
\operatorname{Srcs}\left(\left(? T^{\prime *} \backslash^{*}\left(? t^{*} \backslash{ }^{*} ? t^{\prime}\right)\right)^{*} \backslash^{*}\left(? T^{*} \backslash^{*}\left(? t^{\prime *} \backslash^{*} ? t\right)\right)\right)
$$

```
                by (metis Arr.simps(1) NPath-def Srcs-Resid Trgs-Resid-sym calculation(2))
            ultimately show ?thesis by blast
        qed
        ultimately show ((t#T) *\* U') *\* ((t# T) *\\* U) \in Collect NPath
            by simp
        qed
    qed
qed
sublocale rts-with-composites Resid
    using is-rts-with-composites by simp
sublocale coherent-normal-sub-rts Resid 〈Collect NPath〉
proof
    fix TU U'
    assume T: arr T and U:U\inCollect NPath and U': U'\inCollect NPath
    assume sources-U\mp@subsup{U}{}{\prime}:\mathrm{ sources }U=\mathrm{ sources }\mp@subsup{U}{}{\prime}\mathrm{ and targets-UU': targets }U=\mathrm{ targets }\mp@subsup{U}{}{\prime}
    and TU: sources T = sources }
    have Srcs T = Srcs U
        using TU sources-char }\mp@subsup{P}{P}{T}\mathrm{ arr-iff-has-source by auto
    moreover have Srcs U = Srcs U'
        by (metis Con-imp-eq-Srcs T TU con-char con-imp-coinitial-ax con-sym in-sourcesE
            in-sourcesI arr-def sources-UU')
    moreover have Trgs U = Trgs U'
        using U U' targets-UU' targets-char
        by (metis (full-types) arr-iff-has-target composable-def composable-iff-seq
            composite-of-arr-target elements-are-arr equals0I seq-char)
    ultimately show T * \* U 利 T T *}\*\mp@subsup{}{}{*}\mp@subsup{U}{}{\prime
        using TU U' Coherent [of TU U\ arr-char by blast
qed
theorem coherent－normal－extends－to－paths：
shows coherent－normal－sub－rts Resid（Collect NPath）
    ..
lemma Congo-append-Arr-NPath:
assumes T\not=[] and Arr (T @ U) and NPath U
shows Congo (T @U)T
    using assms
    by (metis Arr.simps(1) Arr-appendE EP NPath-implies-Arr append-is-composite-of arrI }\mp@subsup{I}{P}{
        arr-append-imp-seq composite-of-arr-normal mem-Collect-eq)
    lemma Cong-append-NPath-Arr:
    assumes T\not=[] and Arr (U@ T) and NPath U
    shows U@ T 承T
    using assms
    by (metis (full-types) Arr.simps(1) Con-Arr-self Con-append(2) Con-implies-Arr(2)
        Con-imp-eq-Srcs composite-of-normal-arr Srcs-Resid append-is-composite-of arr-char
        NPath-implies-Arr mem-Collect-eq seq-char)
```


Permutation Congruence

Here we show that * \sim^{*} coincides with "permutation congruence": the least congruence respecting composition that relates $[t, u \backslash t]$ and $[u, t \backslash u]$ whenever $t \frown u$ and that relates $T @[b]$ and T whenever b is an identity such that seq $T[b]$.

```
inductive \(P\) Cong
where \(\operatorname{Arr} T \Longrightarrow\) PCong \(T T\)
    | PCong \(T U \Longrightarrow\) PCong \(U T\)
    \(\mid \llbracket P C o n g T U ; P C o n g U V \rrbracket \Longrightarrow P C o n g T V\)
    \(\mid \llbracket\) seq \(T U ;\) PCong \(T T^{\prime} ; P C o n g U U^{\prime} \rrbracket \Longrightarrow P C o n g(T @ U)\left(T^{\prime} @ U^{\prime}\right)\)
    \(\mid \llbracket\) seq \(T[b] ;\) R.ide \(b \rrbracket \Longrightarrow\) PCong \((T @[b]) T\)
    \(\mid t \frown u \Longrightarrow\) PCong \([t, u \backslash t][u, t \backslash u]\)
lemmas PCong.intros(3) [trans]
lemma PCong-append-Ide:
shows \(\llbracket\) seq \(T B ;\) Ide \(B \rrbracket \Longrightarrow P C o n g(T @ B) T\)
proof (induct \(B\) )
    show \(\llbracket\) seq \(T[] ;\) Ide []』 \(\Longrightarrow P \operatorname{Cong}(T @[]) T\)
        by auto
    fix \(b B T\)
    assume ind: \(\llbracket\) seq \(T B\); Ide \(B \rrbracket \Longrightarrow P C o n g ~(T @ B) T\)
    assume seq: seq \(T(b \# B)\)
    assume Ide: Ide \((b \# B)\)
    have \(T @(b \# B)=(T @[b]) @ B\)
        by \(\operatorname{simp}\)
    also have PCong ... (T @ B)
    apply (cases \(B=[])\)
        using Ide PCong.intros(5) seq apply force
        using seq Ide PCong.intros(4) [of T @ [b] B T B]
        by (metis Arr.simps(1) Ide-imp-Ide-hd PCong.intros(1) PCong.intros(5)
            append-is-Nil-conv arr-append arr-append-imp-seq arr-char calculation
            list.distinct(1) list.sel(1) seq-char)
    also have \(\operatorname{PCong}(T\) @ \(B) T\)
    proof (cases \(B=[]\) )
        show \(B=[] \Longrightarrow\) ?thesis
            using PCong.intros(1) seq seq-char by force
            assume \(B: B \neq[]\)
            have seq \(T B\)
            using \(B\) seq Ide
            by (metis Con-imp-eq-Srcs Ide-imp-Ide-hd Trgs-append \(\langle T @ b \# B=(T @[b]) @ B\rangle\)
                    append-is-Nil-conv arr-append arr-append-imp-seq arr-char cong-cons-ideI(2)
                list.distinct(1) list.sel(1) not-arr-null null-char seq-char ide-implies-arr)
            thus ?thesis
        using seq Ide ind
        by (metis Arr.simps(1) Ide.elims(3) Ide.simps(3) seq-char)
    qed
    finally show PCong (T @ (b \# B)) T by blast
qed
```

```
lemma PCong-imp-Cong:
shows PCong \(T U \Longrightarrow T^{*} \sim^{*} U\)
proof (induct rule: PCong.induct)
    show \(\bigwedge T\). Arr \(T \Longrightarrow T^{*} \sim^{*} T\)
        using cong-reflexive by blast
    show \(\bigwedge T U . \llbracket P C o n g T U ; T^{*} \sim^{*} U \rrbracket \Longrightarrow U^{*} \sim^{*} T\)
        by blast
    show \(\bigwedge T U V . \llbracket P C o n g T U ; T^{*} \sim^{*} U ; P C o n g U V ; U^{*} \sim^{*} V \rrbracket \Longrightarrow T^{*} \sim^{*} V\)
        using cong-transitive by blast
    show \(\bigwedge T U U^{\prime} T^{\prime} . \llbracket\) seq \(T U ;\) PCong \(T T^{\prime} ; T^{*} \sim^{*} T^{\prime} ; P C o n g U U^{\prime} ; U^{*} \sim^{*} U^{\prime} \rrbracket\)
                            \(\Longrightarrow T @ U^{*} \sim^{*} T^{\prime} @ U^{\prime}\)
        using cong-append by simp
    show \(\bigwedge T b\). \(\llbracket\) seq \(T[b] ;\) R.ide \(b \rrbracket \Longrightarrow T @[b]{ }^{*} \sim^{*} T\)
        using cong-append-ideI(4) ide-char by force
    show \(\wedge t u . t \frown u \Longrightarrow[t, u \backslash t]^{*} \sim^{*}[u, t \backslash u]\)
    proof -
        have \(\bigwedge t u . t \frown u \Longrightarrow[t, u \backslash t]{ }_{\sim}^{*}[u, t \backslash u]\)
        proof -
        fix \(t u\)
        assume con: \(t \frown u\)
        have \(([t] @[u \backslash t])^{*} \backslash *([u] @[t \backslash u])=\)
                    \([(t \backslash u) \backslash(t \backslash u),((u \backslash t) \backslash(u \backslash t)) \backslash((t \backslash u) \backslash(t \backslash u))]\)
                using con Resid-append2 [of \([t][u \backslash t][u][t \backslash u]]\)
                apply simp
                by (metis R.arr-resid-iff-con R.con-target R.conE R.con-sym
                    R.prfx-implies-con R.prfx-reflexive R.cube)
            moreover have Ide ...
                using con
                by (metis Arr.simps(2) Arr.simps(3) Ide.simps(2) Ide.simps(3) R.arr-resid-iff-con
                    R.con-sym R.resid-ide-arr R.prfx-reflexive calculation Con-imp-Arr-Resid)
            ultimately show \([t, u \backslash t]{ }^{*} \lesssim^{*}[u, t \backslash u]\)
                using ide-char by auto
    qed
    thus \(\bigwedge t u . t \frown u \Longrightarrow[t, u \backslash t]^{*} \sim^{*}[u, t \backslash u]\)
        using R.con-sym by blast
    qed
qed
lemma PCong-permute-single:
shows \([t]^{* \frown^{*} U \Longrightarrow P C o n g ~}\left([t]\right.\) @ \(\left.\left(U^{*} \backslash *[t]\right)\right)\left(U\right.\) @ \(\left.\left([t]^{*} \backslash^{*} U\right)\right)\)
proof (induct \(U\) arbitrary: \(t\) )
    show \(\wedge t .[t]{ }^{*} \frown^{*}[] \Longrightarrow P C o n g\left([t] @[] *{ }^{*}[t]\right)\left([] @[t]{ }^{*} \backslash{ }^{*}[]\right)\)
    by auto
    fix \(t u U\)
    assume ind: \(\wedge t .[t]^{*} \backslash * U \neq[] \Longrightarrow P C o n g\left([t] @\left(U^{*} \backslash *[t]\right)\right)\left(U @\left([t]^{*} \backslash * U\right)\right)\)
    assume con: \([t]{ }^{*} \frown^{*} u \# U\)
    show PCong \(\left([t]\right.\) @ \(\left.(u \# U)^{*} \backslash *[t]\right)\left((u \# U) @[t]^{*} \backslash^{*}(u \# U)\right)\)
    proof (cases \(U=[])\)
```

```
show \(U=[] \Longrightarrow\) ?thesis
    by (metis PCong.intros(6) Resid.simps(3) append-Cons append-eq-append-conv2
        append-self-conv con-char con-def con con-sym-ax)
assume \(U: U \neq[]\)
show PCong \(\left([t]\right.\) @ \(\left.\left((u \# U)^{*} \backslash^{*}[t]\right)\right)\left((u \# U) @\left([t]^{*} \backslash^{*}(u \# U)\right)\right)\)
proof -
    have \([t]\) @ \(\left((u \# U)^{*} \backslash *[t]\right)=[t] @\left([u \backslash t] @\left(U^{*} \backslash *[t \backslash u]\right)\right)\)
        using Con-sym Resid-rec(2) \(U\) con by auto
    also have \(\ldots=([t] @[u \backslash t]) @\left(U^{*} \backslash *[t \backslash u]\right)\)
        by auto
    also have PCong ... (([u] @ \([t \backslash u])\) @ \(\left.\left(U^{*} \backslash *[t \backslash u]\right)\right)\)
    proof -
        have \(\operatorname{PCong}([t]\) @ \([u \backslash t])([u] @[t \backslash u])\)
        using con
        by (simp add: Con-rec(3) PCong.intros(6) U)
    thus ?thesis
        by (metis Arr-Resid-single Con-implies-Arr(1) Con-rec(2) Con-sym
                    PCong.intros \((1,4)\) Srcs-Resid \(U\) append-is-Nil-conv append-is-composite-of
                    arr-append-imp-seq arr-char calculation composite-of-unq-upto-cong
                        con not-arr-null null-char ide-implies-arr seq-char)
    qed
    also have \(([u] @[t \backslash u]) @\left(U^{*} \backslash *[t \backslash u]\right)=[u] @\left([t \backslash u] @\left(U^{*} \backslash *[t \backslash u]\right)\right)\)
        by \(\operatorname{simp}\)
    also have PCong ... \(\left([u]\right.\) @ \(\left(U\right.\) @ \(\left.\left([t \backslash u]^{*} \backslash * U\right)\right)\) )
    proof -
        have \(P C o n g\left([t \backslash u] @\left(U^{*} \backslash *[t \backslash u]\right)\right)\left(U\right.\) @ \(\left.\left([t \backslash u]^{*} \backslash * U\right)\right)\)
            using ind
            by (metis Resid-rec(3) U con)
    moreover have seq \([u]\left([t \backslash u] @ U^{*} \backslash *[t \backslash u]\right)\)
    proof
            show Arr [u]
                using Con-implies-Arr(2) Con-initial-right con by blast
            show \(\operatorname{Arr}\left([t \backslash u] @ U^{*} \backslash *[t \backslash u]\right)\)
                    using Con-implies-Arr(1) U con Con-imp-Arr-Resid Con-rec(3) Con-sym
                by fastforce
            show \(\operatorname{Trgs}[u] \cap \operatorname{Srcs}\left([t \backslash u] @ U^{*} \backslash *[t \backslash u]\right) \neq\{ \}\)
                by (metis Arr.simps(1) Arr.simps(2) Arr-has-Trg Con-implies-Arr (1)
                    Int-absorb R.arr-resid-iff-con R.sources-resid Resid-rec(3)
                    Srcs.simps(2) Srcs-append Trgs.simps(2) \(U\langle\operatorname{Arr}[u]\rangle\) con)
        qed
        moreover have PCong \([u][u]\)
            using PCong.intros(1) calculation(2) seq-char by force
        ultimately show ?thesis
            using \(U\) arr-append arr-char con seq-char
                                    PCong.intros(4) [of [u] [t \u] @ ( \(\left.U^{*} \backslash *[t \backslash u]\right)\)
                                    \([u] U\) @ \(\left.\left([t \backslash u]^{*} \backslash{ }^{*} U\right)\right]\)
        by blast
    qed
    also have \(\left([u] @\left(U @\left([t \backslash u]^{*} \backslash^{*} U\right)\right)\right)=\left((u \# U) @[t]^{*} \backslash^{*}(u \# U)\right)\)
```

```
                by (metis Resid-rec(3) U append-Cons append-Nil con)
            finally show ?thesis by blast
        qed
    qed
qed
lemma PCong-permute:
shows T*``*}U\LongrightarrowPCong(T@(U*\* T))(U@ (T*\* U)
proof (induct T arbitrary: U)
    show \U.[]*\* U = [] \LongrightarrowPCong ([] @ U *\* [])(U@ []*\* U)
        by simp
    fix tTU
    assume ind: \U.T *``*}U\LongrightarrowPCong(T@ (U*\* T))(U@ (T*\`* U)
    assume con: t# T *\frown* U
    show PCong ((t# T)@ (U*\** (t#T))) (U@ ((t # T) *\* U))
    proof (cases T = [])
        assume T:T=[]
        have (t#T)@(U*\* (t#T))=[t]@(U*\* [t])
        using con T by simp
        also have PCong ... (U @ ([t] *\* U))
        using PCong-permute-single T con by blast
        finally show ?thesis
            using T by fastforce
        next
        assume T: T\not=[]
        have (t# T)@ (U**\* (t# T))=[t]@(T@ @ (U*`*}(t# T))
            by simp
        also have PCong ... ([t]@ (U*\* [t])@ (T**\* (U* *'* [t])))
        using ind [of U *\* [t]]
        by (metis Arr.simps(1) Con-imp-Arr-Resid Con-implies-Arr(2) Con-sym
            PCong.intros(1,4) Resid-cons(2) Srcs-Resid T arr-append arr-append-imp-seq
            calculation con not-arr-null null-char seq-char)
        also have [t]@(U*\\* [t])@ (T*\** (U**\* [t])) =
                    ([t]@ @ (U*\* [t]))@ (T**`*}(\mp@subsup{U}{}{*}\* [t])
        by simp
        also have PCong}(([t]@(\mp@subsup{U}{}{*}\*[t]))@(T\mp@subsup{T}{}{*}\* (U**\* [t]))
                        ((U @ ([t] *\* U)) @ (T *\* (U *\* [t])))
        by (metis Arr.simps(1) Con-cons(1) Con-imp-Arr-Resid Con-implies-Arr(2)
                PCong-intros(1,4) PCong-permute-single Srcs-Resid T Trgs-append arr-append
                arr-char con seq-char)
        also have (U @ ([t] *\* U)) @ (T**\* (U* * * [t]))=U@ ((t# T)*\* U)
            by (metis Resid.simps(2) Resid-cons(1) append.assoc con)
        finally show ?thesis by blast
    qed
qed
lemma Cong-imp-PCong:
assumes }\mp@subsup{T}{}{*}\mp@subsup{~}{}{*}
shows PCong TU
```

```
    proof -
    have PCong T (T @ (U*\* T))
        using assms PCong.intros(2) PCong-append-Ide
        by (metis Con-implies-Arr(1) Ide.simps(1) Srcs-Resid ide-char Con-imp-Arr-Resid
            seq-char)
    also have PCong (T @ (U *\* T))(U@ (T* *'* U))
        using PCong-permute assms con-char prfx-implies-con by presburger
    also have PCong (U @ (T *\* U)) U
        using assms PCong-append-Ide
        by (metis Con-imp-Arr-Resid Con-implies-Arr(1) Srcs-Resid arr-resid-iff-con
            ide-implies-arr con-char ide-char seq-char)
    finally show ?thesis by blast
qed
    lemma Cong-iff-PCong:
    shows T**~*}U\longleftrightarrowPCong T U
    using PCong-imp-Cong Cong-imp-PCong by blast
end
```


2．5 Composite Completion

The RTS of paths in an RTS factors via the coherent normal sub－RTS of identity paths into an extensional RTS with composites，which can be regarded as a＂composite com－ pletion＂of the original RTS．
locale composite－completion $=$
R ：r ts
begin
interpretation N ：coherent－normal－sub－rts resid 〈Collect R．ide〉
using R．rts－axioms R．identities－form－coherent－normal－sub－rts by auto
sublocale P ：paths－in－rts－with－coherent－normal resid «Collect R．ide〉．．
sublocale quotient－by－coherent－normal P．Resid 〈Collect P．NPath〉．．

```
notation P.Resid (infix *\* 70)
notation P.Con (infix *\frown* 50)
notation P.Cong (infix *** 50)
notation P.Cong ( (infix ***
notation P.Cong-class ({-})
notation Resid (infix {\mp@subsup{*}{}{*}\*} 70)
notation con (infix {*`*} 50)
notation prfx (infix {**** 50)
```

lemma NPath－char：
shows P．NPath $T \longleftrightarrow$ P．Ide T using P．NPath－def P．Ide－implies－NPath by blast
lemma Cong-eq-Cong ${ }_{0}$:
shows $T^{*} \approx^{*} T^{\prime} \longleftrightarrow T^{*} \approx_{0}{ }^{*} T^{\prime}$
by (metis P.Cong-iff-cong P.ide-char P.ide-closed CollectD Collect-cong NPath-char)
lemma Srcs-respects-Cong:
assumes $T^{*} \approx^{*} T^{\prime}$
shows P.Srcs $T=$ P.Srcs T^{\prime}
using assms
by (meson P.Con-imp-eq-Srcs P.Cong C_{0}-imp-con P.con-char Cong-eq-Cong ${ }_{0}$)
lemma sources-respects-Cong:
assumes $T^{*} \approx^{*} T^{\prime}$
shows P.sources $T=P$.sources T^{\prime}
using assms
by (meson P.Cong 0_{0}-imp-coinitial Cong-eq-Cong ${ }_{0}$)
lemma Trgs-respects-Cong:
assumes $T^{*} \approx^{*} T^{\prime}$
shows P.Trgs $T=P . \operatorname{Trgs} T^{\prime}$
proof -
have P.Trgs $T=P$.Trgs $\left(T @\left(T^{\prime *} \backslash * T\right)\right)$
using assms NPath-char P.Arr.simps(1) P.Con-imp-Arr-Resid
P.Con-sym P.Cong-def P.Con-Arr-self
P.Con-implies-Arr(2) P.Resid-Ide(1) P.Srcs-Resid P.Trgs-append
by (metis P.Cong 0_{0}-imp-con P.con-char CollectD)
also have $\ldots=P$. $\operatorname{Trgs}\left(T^{\prime} @\left(T^{*} \backslash^{*} T^{\prime}\right)\right)$
using P.Cong C_{0}-imp-con P.con-char Cong-eq-Cong C_{0} assms by force
also have $\ldots=P$. Trgs T^{\prime}
using assms NPath-char P.Arr.simps(1) P.Con-imp-Arr-Resid
P.Con-sym P.Cong-def P.Con-Arr-self
P.Con-implies-Arr(2) P.Resid-Ide(1) P.Srcs-Resid P.Trgs-append
by (metis P.Congo-imp-con P.con-char CollectD)
finally show ?thesis by blast
qed
lemma targets-respects-Cong:
assumes $T^{*} \approx^{*} T^{\prime}$
shows P.targets $T=P$.targets T^{\prime}
using assms P.Cong-imp-arr (1) P.Cong-imp-arr(2) P.arr-iff-has-target P.targets-char ${ }_{P}$ Trgs-respects-Cong
by force
lemma ide-char ${ }_{C C}$:
shows ide $\mathcal{T} \longleftrightarrow \operatorname{arr} \mathcal{T} \wedge(\forall T . T \in \mathcal{T} \longrightarrow$ P.Ide $T)$
using NPath-char ide-char ${ }^{\prime}$ by blast
lemma con-char ${ }_{C C}$:
shows $\mathcal{T}\left\{\right.$ $\left.^{*}\right\} \mathcal{U} \longleftrightarrow \operatorname{arr} \mathcal{T} \wedge$ arr $\mathcal{U} \wedge$ P.Cong-class-rep $\mathcal{T}^{*} \frown^{*}$ P.Cong-class-rep \mathcal{U}

```
proof
    show arr }\mathcal{T}\wedge\operatorname{arr}\mathcal{U}\wedgeP.Cong-class-rep T\mathcal{T}\mp@subsup{~}{}{*}P\mathrm{ P.Cong-class-rep }\mathcal{U}\Longrightarrow\mathcal{T}{\mp@subsup{{}{}{*}\mp@subsup{`}{}{*}}\mathcal{U
        using arr-char P.con-char
        by (meson P.rep-in-Cong-class con-char}\mp@subsup{Q}{QCN}{}
    show }\mathcal{T}{\mp@subsup{{}{}{*}\mp@subsup{`}{}{*}}\mathcal{U}\Longrightarrow\operatorname{arr}\mathcal{T}\wedge\operatorname{arr}\mathcal{U}\wedgeP\mathrm{ .Cong-class-rep }\mp@subsup{\mathcal{T}}{}{*}\mp@subsup{\frown}{}{*}P\mathrm{ P.Cong-class-rep }\mathcal{U
    proof -
        assume con: }\mathcal{T}{\mp@subsup{{}{}{*}\mp@subsup{~}{}{*}}\mathcal{U
        have 1: arr }\mathcal{T}\wedge\operatorname{arr}\mathcal{U
            using con coinitial-iff con-imp-coinitial by blast
        moreover have P.Cong-class-rep }\mathcal{T}\mp@subsup{}{}{*}\mp@subsup{\frown}{}{*}\mathrm{ P.Cong-class-rep U
        proof -
            obtain TU where TU:T\in\mathcal{T}\wedgeU\in\mathcal{U}\wedgeP.Con T U
                using con Resid-def
                by (meson P.con-char con-char}\mp@subsup{Q}{QCN}{}
            have T *** P.Cong-class-rep }\mathcal{T}\wedge\mp@subsup{U}{}{*}\mp@subsup{\approx}{}{*}\mathrm{ P.Cong-class-rep }\mathcal{U
                using TU 1 by (meson P.Cong-class-memb-Cong-rep arr-char)
            thus ?thesis
                using TU P.Cong-subst(1) [of T P.Cong-class-rep \mathcal{T U P.Cong-class-rep U U]}
            by (metis P.coinitial-iff P.con-char P.con-imp-coinitial sources-respects-Cong)
        qed
        ultimately show ?thesis by simp
    qed
qed
lemma con-char_C':
shows}\mathcal{T}{\mp@subsup{\}{}{*}\mp@subsup{}{}{*}}\mathcal{U}\longleftrightarrow\operatorname{arr}\mathcal{T}\wedge\operatorname{arr}\mathcal{U}\wedge(\forallTU.T\in\mathcal{T}\wedgeU\in\mathcal{U}\longrightarrowT\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U
proof
    show arr \mathcal{T}\wedge arr \mathcal{U}\wedge(\forallTU.T\in\mathcal{T}\wedgeU\in\mathcal{U}\longrightarrowT\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U)\Longrightarrow\mathcal{T}{\mp@subsup{\}{}{*}\mp@subsup{\frown}{}{*}}\mathcal{U}
        using con-charcC
        by (simp add: P.rep-in-Cong-class arr-char)
    show }\mathcal{T}{\mp@subsup{{}{}{*}\mp@subsup{`}{}{*}}\mathcal{U}\Longrightarrow\operatorname{arr}\mathcal{T}\wedge\operatorname{arr}\mathcal{U}\wedge(\forallTU.T\in\mathcal{T}\wedgeU\in\mathcal{U}\longrightarrowT\mp@subsup{T}{}{*}\mp@subsup{\frown}{}{*}U
    proof (intro conjI allI impI)
        assume 1:\mathcal{T}{*\mp@subsup{\frown}{}{*}}\mathcal{U}
        show arr \mathcal{T}
            using 1 con-implies-arr by simp
        show arr \mathcal{U}
            using 1 con-implies-arr by simp
        fix TU
        assume 2: T\in\mathcal{T}\wedgeU\in\mathcal{U}
        show T**`* U
            using 12 P.Cong-class-memb-Cong-rep
            by (meson P.Cong}\mp@subsup{0}{0}{-subst-Con P.con-char Cong-eq-Cong}\mp@subsup{0}{0}{}\mathrm{ arr-char con-charCC)
    qed
qed
lemma resid-char:
shows}\mathcal{T}{\mp@subsup{|}{}{*}\*}\mathcal{U}
    (if \mathcal{T {*`** \mathcal{U}}\mathrm{ then {P.Cong-class-rep }\mp@subsup{\mathcal{T}}{}{*}\* P.Cong-class-rep }\mathcal{U}} else {}
    by (metis P.con-char P.rep-in-Cong-class Resid-by-members arr-char arr-resid-iff-con
```

```
con-char CC is-Cong-class-Resid)
```

```
lemma src-char':
shows src \(\mathcal{T}=\{A . \operatorname{arr} \mathcal{T} \wedge\) P.Ide \(A \wedge\) P.Srcs \((\) P.Cong-class-rep \(\mathcal{T})=\) P.Srcs \(A\}\)
proof (cases arr \(\mathcal{T}\) )
    show \(\neg\) arr \(\mathcal{T} \Longrightarrow\) ?thesis
        by (simp add: null-char src-def)
    assume \(\mathcal{T}: \operatorname{arr} \mathcal{T}\)
    have 1: \(\exists\) A. P.Ide \(A \wedge\) P.Srcs \((P . C o n g-c l a s s-r e p ~ \mathcal{T})=P . S r c s A\)
        by (metis P.Arr.simps(1) P.Con-imp-eq-Srcs P.Cong \({ }_{0}\)-imp-con
            P.Cong-class-memb-Cong-rep P.Cong-def P.con-char P.rep-in-Cong-class
            CollectD \(\mathcal{T}\) NPath-char P.Con-implies-Arr (1) arr-char)
    let ? \(A=S O M E A\). P.Ide \(A \wedge P . S r c s(P . C o n g-\) class-rep \(\mathcal{T})=P . S r c s A\)
    have A: P.Ide ? A \(\wedge\) P.Srcs \((\) P.Cong-class-rep \(\mathcal{T})=\) P.Srcs ? A
        using 1 someI-ex \([\) of \(\lambda A\). P.Ide \(A \wedge\) P.Srcs \((P\).Cong-class-rep \(\mathcal{T})=\) P.Srcs \(A]\) by simp
    have \(a\) : \(\operatorname{arr}\{? A\}\)
        using A P.ide-char P.is-Cong-classI arr-char by blast
    have ide-a: ide \(\{? A\}\)
        using a A P.Cong-class-def P.normal-is-Cong-closed NPath-char ide-char \({ }_{C C}\) by auto
    have sources \(\mathcal{T}=\{\{? A\}\}\)
    proof -
        have \(\mathcal{T}\left\{{ }^{*} \frown^{*}\right\}\{? A\}\)
        by (metis (no-types, lifting) A P.Con-Ide-iff P.Cong-class-memb-Cong-rep
            P.Cong-imp-arr (1) P.arr-char P.arr-in-Cong-class P.ide-char
            P.ide-implies-arr P.rep-in-Cong-class Con-char a \(\mathcal{T}\) P.con-char
            null-char arr-char P.con-sym conI)
        hence \(\{? A\} \in\) sources \(\mathcal{T}\)
        using ide-a in-sourcesI by simp
        thus ?thesis
        using sources-char by auto
    qed
    moreover have \(\{? A\}=\{A\). P.Ide \(A \wedge\) P.Srcs \((\) P.Cong-class-rep \(\mathcal{T})=\) P.Srcs \(A\}\)
    proof
        show \(\{A\). P.Ide \(A \wedge P\).Srcs \((P . C o n g-c l a s s-r e p ~ \mathcal{T})=P . S r c s A\} \subseteq\{? A\}\)
        using A P.Cong-class-def P.Cong-closure-props(3) P.Ide-implies-Arr
            P.ide-closed P.ide-char
        by fastforce
        show \(\{? A\} \subseteq\{A\). P.Ide \(A \wedge\) P.Srcs \((P\).Cong-class-rep \(\mathcal{T})=P . S r c s A\}\)
            using a A P.Cong-class-def Srcs-respects-Cong ide-a ide-char \({ }_{C C}\) by blast
    qed
    ultimately show ?thesis
        using \(\mathcal{T}\) src-in-sources sources-char by auto
qed
lemma src-char:
shows \(\operatorname{src} \mathcal{T}=\{A\). arr \(\mathcal{T} \wedge\) P.Ide \(A \wedge(\forall T . T \in \mathcal{T} \longrightarrow\) P.Srcs \(T=P . S r c s A)\}\)
proof (cases arr \(\mathcal{T}\) )
    show \(\neg\) arr \(\mathcal{T} \Longrightarrow\) ?thesis
        by (simp add: null-char src-def)
```

```
    assume \(\mathcal{T}: \operatorname{arr} \mathcal{T}\)
    have \(\wedge T . T \in \mathcal{T} \Longrightarrow\) P.Srcs \(T=\) P.Srcs (P.Cong-class-rep \(\mathcal{T}\) )
    using \(\mathcal{T}\) P.Cong-class-memb-Cong-rep Srcs-respects-Cong arr-char by auto
    thus ?thesis
        using \(\mathcal{T}\) src-char \({ }^{\prime}\) P.is-Cong-class-def arr-char by force
qed
lemma \(\operatorname{trg}\)-char':
shows \(\operatorname{trg} \mathcal{T}=\{B . \operatorname{arr} \mathcal{T} \wedge\) P.Ide \(B \wedge\) P.Trgs \((\) P.Cong-class-rep \(\mathcal{T})=\) P.Srcs B \(\}\)
proof (cases arr \(\mathcal{T}\) )
    show \(\neg\) arr \(\mathcal{T} \Longrightarrow\) ?thesis
        by (metis (no-types, lifting) Collect-empty-eq arrI resid-arr-self resid-char)
    assume \(\mathcal{T}: \operatorname{arr} \mathcal{T}\)
    have 1: \(\exists B\). P.Ide \(B \wedge\) P.Trgs (P.Cong-class-rep \(\mathcal{T})=P\).Srcs \(B\)
        by (metis P.Con-implies-Arr(2) P.Resid-Arr-self P.Srcs-Resid \(\mathcal{T}\) con-char \({ }_{C C}\) arrE)
    define \(B\) where \(B=(S O M E B\). P.Ide \(B \wedge P\).Trgs \((P . C o n g-c l a s s-r e p ~ \mathcal{T})=P\).Srcs B)
    have \(B\) : P.Ide \(B \wedge\) P.Trgs (P.Cong-class-rep \(\mathcal{T})=\) P.Srcs \(B\)
        unfolding \(B\)-def
        using 1 someI-ex \([\) of \(\lambda B\). P.Ide \(B \wedge P\).Trgs \((P\).Cong-class-rep \(\mathcal{T})=P . S r c s B]\) by simp
    hence 2: P.Ide \(B \wedge P\).Con ( \(P\).Resid (P.Cong-class-rep \(\mathcal{T}\) ) (P.Cong-class-rep \(\mathcal{T})) B\)
        using \(\mathcal{T}\)
        by (metis (no-types, lifting) P.Con-Ide-iff P.Ide-implies-Arr P.Resid-Arr-self
            P.Srcs-Resid arrE P.Con-implies-Arr(2) con-char \({ }_{C C}\) )
    have \(b: \operatorname{arr}\{B\}\)
        by (simp add: 2 P.ide-char P.is-Cong-classI arr-char)
    have ide-b: ide \(\{B\}\)
        by (meson 2 P.arr-in-Cong-class P.ide-char P.ide-closed
            b disjoint-iff ide-char P.ide-implies-arr)
    have targets \(\mathcal{T}=\{\{B\}\}\)
    proof -
        have cong \(\left(\mathcal{T}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\right)\{B\}\)
        proof -
        have \(\mathcal{T}\left\{{ }^{*} \backslash *\right\} \mathcal{T}=\{B\}\)
            by (metis (no-types, lifting) 2 P.Cong-class-eqI P.Cong-closure-props(3)
                    P.Resid-Arr-Ide-ind P.Resid-Ide(1) NPath-char \(\mathcal{T}\) con-char \({ }_{C C}\) resid-char
                    P.Con-implies-Arr (2) P.Resid-Arr-self mem-Collect-eq)
        thus ?thesis
                using \(b\) cong-reflexive by presburger
    qed
    thus ?thesis
        using \(\mathcal{T}\) targets-char \({ }_{Q C N}[\) of \(\mathcal{T}]\) cong-char by auto
    qed
    moreover have \(\{B\}=\{B\). P.Ide \(B \wedge\) P.Trgs (P.Cong-class-rep \(\mathcal{T})=P\).Srcs \(B\}\)
    proof
        show \(\{B . P\). Ide \(B \wedge P\).Trgs \((P . C o n g-\) class-rep \(\mathcal{T})=P . S r c s B\} \subseteq\{B\}\)
            using B P.Cong-class-def P.Cong-closure-props(3) P.Ide-implies-Arr
                P.ide-closed P.ide-char
        by force
    show \(\{B\} \subseteq\{B\). P.Ide \(B \wedge P\).Trgs \((P\). Cong-class-rep \(\mathcal{T})=P . S r c s B\}\)
```

```
    proof -
```



```
            using B NPath-char P.normal-is-Cong-closed Srcs-respects-Cong
            by (metis P.Cong-closure-props(1) mem-Collect-eq)
        thus ?thesis
            using P.Cong-class-def by blast
        qed
    qed
    ultimately show ?thesis
    using }\mathcal{T}\mathrm{ trg-in-targets targets-char by auto
qed
lemma trg-char:
shows trg \mathcal{T}={B. arr \mathcal{T}\wedgeP.Ide B\wedge(\forallT.T\in\mathcal{T}\longrightarrowP.Trgs T=P.Srcs B)}
proof (cases arr \mathcal{T})
    show }\neg\mathrm{ arr }\mathcal{T}\Longrightarrow\mathrm{ ?thesis
        using trg-char' by presburger
    assume \mathcal{T}:\operatorname{arr}\mathcal{T}
    have }\bigwedgeT.T\in\mathcal{T}\LongrightarrowP.Trgs T=P.Trgs(P.Cong-class-rep \mathcal{T}
        using}\mathcal{T
        by (metis P.Cong-class-memb-Cong-rep Trgs-respects-Cong arr-char)
    thus ?thesis
        using \mathcal{T}\mathrm{ trg-char' P.is-Cong-class-def arr-char by force}
qed
lemma is-extensional-rts-with-composites:
shows extensional-rts-with-composites Resid
proof
    fix }\mathcal{T}\mathcal{U
    assume seq: seq }\mathcal{T}\mathcal{U
    obtain T where T:\mathcal{T}={T}
        using seq P.Cong-class-rep arr-char seq-def by blast
    obtain U where U:\mathcal{U}={U}
        using seq P.Cong-class-rep arr-char seq-def by blast
    have 1: P.Arr T}\wedge P.Arr U
        using seq T U P.Con-implies-Arr(2) P.Cong}\mp@subsup{0}{0}{-subst-right(1) P.Cong-class-def
            P.con-char seq-def
        by (metis Collect-empty-eq P.Cong-imp-arr (1) P.arr-char P.rep-in-Cong-class
            empty-iff arr-char)
    have 2: P.Trgs T = P.Srcs U
    proof -
        have targets }\mathcal{T}=\mathrm{ sources }\mathcal{U
            using seq seq-def sources-char targets-char WE by force
        hence 3: trg \mathcal{T}=\operatorname{src}\mathcal{U}
            using seq arr-has-un-source arr-has-un-target
            by (metis seq-def src-in-sources trg-in-targets)
        hence {B. P.Ide B ^P.Trgs (P.Cong-class-rep \mathcal{T})=P.Srcs B}=
            {A.P.Ide A ^ P.Srcs (P.Cong-class-rep U ) = P.Srcs A}
            using seq seq-def src-char' [of \mathcal{U}] trg-char' [of \mathcal{T}] by force
```

```
    hence \(P\).Trgs \((\) P.Cong-class-rep \(\mathcal{T})=\) P.Srcs \((\) P.Cong-class-rep \(\mathcal{U})\)
    using seq seq-def arr-char
    by (metis (mono-tags, lifting) 3 P.Cong-class-is-nonempty Collect-empty-eq
        arr-src-iff-arr mem-Collect-eq trg-char')
    thus ?thesis
    using seq seq-def arr-char T U P.Srcs-respects-Cong P.Trgs-respects-Cong
        P.Cong-class-memb-Cong-rep P.Cong-symmetric
    by (metis 1 P.arr-char P.arr-in-Cong-class Srcs-respects-Cong Trgs-respects-Cong)
qed
have \(\operatorname{P.Arr}(T @ U)\)
    using 12 by simp
moreover have P.Ide \(\left(T^{*} \backslash^{*}(T\right.\) @ \(\left.U)\right)\)
    by (metis 1 P.Con-append(2) P.Con-sym P.Resid-Arr-self P.Resid-Ide-Arr-ind
        P.Resid-append(2) P.Trgs.simps(1) calculation P.Arr-has-Trg)
moreover have ( \(T\) @ \(U\) ) \({ }^{*} \backslash{ }^{*} T^{*} \approx^{*} U\)
by (metis 1 P.Arr.simps(1) P.Con-sym P.Cong \({ }_{0}\)-append-resid-NPath P.Cong \({ }_{0}\)-cancel-left CS
    P.Ide.simps(1) calculation(2) Cong-eq-Congo NPath-char)
ultimately have composite-of \(\mathcal{T} \mathcal{U}\{T @ U\}\)
proof (unfold composite-of-def, intro conjI)
    show prfx \(\mathcal{T}(P . C o n g-c l a s s ~(T @ U))\)
    proof -
    have ide ( \(\mathcal{T}\left\{\right.\) * \(\left.^{*} \backslash^{*}\right\}\{T\) @ \(U\}\) )
    proof (unfold ide-char, intro conjI)
        have 3: \(T^{*} \backslash^{*}(T @ U) \in \mathcal{T}\left\{\left\{^{*} \backslash *\right\} T\right.\) @ \(\left.U\right\}\)
        proof -
            have \(\mathcal{T}\left\{\left\{^{*} \backslash^{*}\right\}\{T @ U\}=\left\{T^{*} \backslash *(T @ U)\right\}\right.\)
                by (metis 1 P.Ide.simps(1) P.arr-char P.arr-in-Cong-class P.con-char
                        P.is-Cong-classI Resid-by-members \(T\langle P . \operatorname{Arr}(T\) @ \(U)\rangle\)
                        \(\left\langle P . I d e\left(T^{*} \backslash *(T\right.\right.\) @ \(\left.\left.\left.U)\right)\right\rangle\right)\)
            thus ?thesis
                    by (simp add: P.arr-in-Cong-class P.elements-are-arr NPath-char
                        \(\left\langle P . I d e\left(T^{*} \backslash *(T\right.\right.\) @ \(\left.\left.\left.U)\right)\right\rangle\right)\)
        qed
        show \(\operatorname{arr}\left(\mathcal{T}\left\{{ }^{*} \backslash *\right\}\{T @ U\}\right)\)
            using 3 arr-char is-Cong-class-Resid by blast
        show \(\mathcal{T}\left\{*^{*} \backslash\right\}\{T\) @ U\} \(\cap\) Collect P.NPath \(\neq\{ \}\)
            using 3 P.ide-closed P.ide-char 〈P.Ide \(\left(T^{*} \backslash *(T\right.\) @ \(\left.\left.U)\right)\right\rangle\) by blast
        qed
        thus ?thesis by blast
    qed
    show \(\left.\{T @ U\}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\left\{*{ }^{*}\right\}\right\} \mathcal{U}\)
    proof -
        have 3: \(\left((T \text { @ } U)^{*} \backslash * T\right)^{*} \backslash^{*} U \in\left(\{T\right.\) @ \(U\}\left\{\left\{^{*} \backslash *\right\} \mathcal{T}\right)\left\{{ }^{*} \backslash{ }^{*}\right\} \mathcal{U}\)
        proof -
        have \((\{T @ U\}\{* \backslash *\} \mathcal{T})\left\{{ }^{*} \backslash *\right\} \mathcal{U}=\left\{\left((T @ U)^{*} \backslash * T\right)^{*} \backslash * U\right\}\)
        proof -
            have \(\{T @ U\}\left\{\left\{^{*} \backslash\right\} \mathcal{T}=\left\{(T \text { @ } U)^{*} \backslash * T\right\}\right.\)
            by (metis 1 P.Cong-imp-arr(1) P.arr-char P.arr-in-Cong-class
                        P.is-Cong-classI T \(\langle P . \operatorname{Arr}(T @ U)\rangle\left\langle(T @ U)^{*} \backslash^{*} T^{*} \approx^{*} U\right\rangle\)
```

```
Resid-by-members P.arr-resid-iff-con)
```


moreover

have $\left\{(T \text { @ } U)^{*} \backslash{ }^{*} T\right\}\left\}^{*} \backslash *\right\} \mathcal{U}=\left\{\left((T \text { @ } U)^{*} \backslash{ }^{*} T\right)^{*} \backslash{ }^{*} U\right\}$
by (metis 1 P.Cong-class-eqI P.Cong-imp-arr(1) P.arr-char P.arr-in-Cong-class P.con-char P.is-Cong-classI arr-char arrE U $\left\langle(T @ U)^{*} \backslash^{*} T{ }^{*} \approx^{*} U\right\rangle$ con-char $C_{C}{ }^{\prime}$ Resid-by-members $)$
ultimately show ?thesis by auto
qed
thus ?thesis
by (metis 1 P.Arr.simps(1) P.Cong ${ }_{0}$-reflexive P.Resid-append(2) P.arr-char P.arr-in-Cong-class P.elements-are-arr $\langle P . A r r(T @ U)\rangle)$

qed

have $\{T$ @ $U\}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\left\{{ }^{*} \lesssim^{*}\right\} \mathcal{U}$
proof (unfold ide-char, intro conjI)
show $\operatorname{arr}\left(\left(\{T @ U\}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\right)\left\{{ }^{*} \backslash^{*}\right\} \mathcal{U}\right)$
using 3 arr-char is-Cong-class-Resid by blast
show $\left(\{T @ U\}\left\{\backslash^{*} \backslash^{*}\right\} \mathcal{T}\right)\left\{{ }^{*} \backslash^{*}\right\} \mathcal{U} \cap$ Collect P.NPath $\neq\{ \}$
by (metis 13 P.Arr.simps(1) P.Resid-append(2) P.con-char
IntI $\langle P . \operatorname{Arr}(T @ U)\rangle$ NPath-char P.Resid-Arr-self P.arr-char empty-iff mem-Collect-eq P.arrE)
qed
thus ?thesis by blast
qed
show $\mathcal{U}\left\{{ }^{*} \lesssim^{*}\right\}\{T @ U\}\left\{{ }^{*} \backslash{ }^{*}\right\} \mathcal{T}$
proof (unfold ide-char, intro conjI)
have 3: $U^{*} \backslash^{*}\left((T @ U)^{*} \backslash * T\right) \in \mathcal{U}\left\{\left\{^{*} \backslash *\right\}\left(\{T @ U\}\left\{{ }^{*} \backslash{ }^{*}\right\} \mathcal{T}\right)\right.$
proof -
have $\mathcal{U}\left\{\left\{^{*} \backslash^{*}\right\}\left(\{T @ U\}\left\{\left\{^{*} \backslash *\right\} \mathcal{T}\right)=\left\{U^{*} \backslash{ }^{*}\left((T @ U)^{*} \backslash{ }^{*} T\right)\right\}\right.\right.$
proof -
have $\{T @ U\}\left\{\left\{^{*} \backslash * \mathcal{T}=\left\{(T \text { @ } U)^{*} \backslash * T\right\}\right.\right.$
by (metis 1 P.Con-sym P.Ide.simps(1) P.arr-char P.arr-in-Cong-class P.con-char P.is-Cong-classI Resid-by-members $T\langle P . \operatorname{Arr}(T$ @ $U)\rangle$ $\left\langle P . I d e\left(T^{*} \backslash *(T\right.\right.$ @ $\left.\left.\left.U)\right)\right\rangle\right)$
moreover have $\mathcal{U}\left\{\left\{^{*} \backslash *\right\}\left(\{T @ U\}\left\{{ }^{*} \backslash^{*}\right\} \mathcal{T}\right)=\left\{U^{*} \backslash^{*}\left((T \text { @ } U)^{*} \backslash^{*} T\right)\right\}\right.$
by (metis 1 P.Cong-class-eqI P.Cong-imp-arr(1) P.arr-char
P.arr-in-Cong-class P.con-char P.is-Cong-classI prfx-implies-con $U\left\langle(T @ U)^{*} \backslash{ }^{*} T^{*} \approx^{*} U\right\rangle\left\langle\{T @ U\}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\left\{{ }^{*} \sum^{*}\right\} \mathcal{U}\right\rangle$ calculation con-char ${ }_{C C}{ }^{\prime}$ Resid-by-members)
ultimately show ?thesis by blast
qed
thus ?thesis
by (metis 1 P.Arr.simps(1) P.Resid-append-ind P.arr-in-Cong-class
P.con-char $\langle P . \operatorname{Arr}(T @ U)\rangle P . C o n-A r r-s e l f ~ P . a r r-r e s i d-i f f-c o n)$
qed
show $\operatorname{arr}\left(\mathcal{U}\left\{{ }^{*} \backslash^{*}\right\}\left(\{T @ U\}\left\{{ }^{*} \backslash *\right\} \mathcal{T}\right)\right)$
by (metis 3 arr-resid-iff-con empty-iff resid-char)
show $\mathcal{U}\left\{{ }^{*} \backslash *\right\}(\{T @ U\}\{* \backslash *\} \mathcal{T}) \cap$ Collect P.NPath $\neq\{ \}$
by (metis 13 P.Arr.simps(1) P.Cong g_{0}-append-resid-NPath P.Cong ${ }_{0}$-cancel-left C_{S} P.Cong-imp-arr (1) P.arr-char NPath-char IntI $\left\langle(T @ U)^{*} \backslash{ }^{*} T^{*} \approx^{*} U\right\rangle$

```
            <P.Ide (T**\* (T @ U))> empty-iff)
        qed
    qed
    thus composable }\mathcal{T}\mathcal{U
        using composable-def by auto
qed
sublocale extensional-rts-with-composites Resid
    using is-extensional-rts-with-composites by simp
```


2.5.1 Inclusion Map

abbreviation incl
where incl $t \equiv\{[t]\}$
The inclusion into the composite completion preserves consistency and residuation.
lemma incl-preserves-con:
assumes $t \frown u$
shows $\{[t]\}\left\{{ }^{*} \frown^{*}\right\}\{[u]\}$
using assms
by (meson P.Con-rec(1) P.arr-in-Cong-class P.con-char P.is-Cong-classI con-char ${ }_{Q C N}$ P.con-implies-arr(1-2))
lemma incl-preserves-resid:
shows $\{[t \backslash u]\}=\{[t]\}\left\{\left\{^{*} \backslash *\right\}\{[u]\}\right.$
proof (cases $t \frown u$)
show $t \frown u \Longrightarrow$?thesis
proof -
assume 1: $t \frown u$
have P.is-Cong-class $\{[t]\} \wedge$ P.is-Cong-class $\{[u]\}$
using 1 con-char ${ }_{Q C N}$ incl-preserves-con by presburger
moreover have $[t] \in\{[t]\} \wedge[u] \in\{[u]\}$

using 1

by (meson P.Con-rec(1) P.arr-in-Cong-class P.con-char
P.Con-implies-Arr(2) P.arr-char P.con-implies-arr(1))
moreover have P.con $[t][u]$
using 1 by (simp add: P.con-char)
ultimately show ?thesis
using Resid-by-members $[$ of $\{[t]\}\{[u]\}[t][u]]$
by (simp add: 1)
qed
assume 1: $\neg t \frown u$
have $\{[t \backslash u]\}=\{ \}$
using 1 R.arrI
by (metis Collect-empty-eq P.Con-Arr-self P.Con-rec(1)
P.Cong-class-def P.Cong-imp-arr (1) P.arr-char R.arr-resid-iff-con)
also have $\ldots=\{[t]\}\left\{{ }^{*} \backslash *\right\}\{[u]\}$
by (metis (full-types) 1 Con-char CollectD P.Con-rec(1) P.Cong-class-def
P.Cong-imp-arr (1) P.arr-in-Cong-class con-char ${ }_{C C}{ }^{\prime}$ null-char conI)
finally show? thesis by simp

qed

lemma incl-reflects-con:
assumes $\{[t]\}\left\{{ }^{*} \frown^{*}\right\}\{[u]\}$
shows $t \frown u$
by (metis P.Con-rec(1) P.Cong-class-def P.Cong-imp-arr(1) P.arr-in-Cong-class CollectD assms con-char $C_{C}{ }^{\prime}$ con-char $\left.{ }_{Q C N}\right)$

The inclusion map is a simulation.
sublocale incl: simulation resid Resid incl
proof
show $\wedge t . \neg$ R.arr $t \Longrightarrow$ incl $t=$ null
by (metis Collect-empty-eq P.Cong-class-def P.Cong-imp-arr(1) P.Ide.simps(2)
P.Resid-rec (1) P.cong-reflexive P.elements-are-arr P.ide-char P.ide-closed P.not-arr-null P.null-char R.prfx-implies-con null-char R.con-implies-arr (1))
show $\wedge t u . t \frown u \Longrightarrow$ incl $t\left\{\right.$ º $\left.^{*}\right\}$ incl u using incl-preserves-con by blast
show $\wedge t u$. $t \frown u \Longrightarrow \operatorname{incl}(t \backslash u)=$ incl $t\left\{\left\{^{*} \backslash *\right\}\right.$ incl u using incl-preserves-resid by blast
qed
lemma inclusion-is-simulation:
shows simulation resid Resid incl
..
lemma incl-preserves-arr:
assumes R.arr a
shows arr $\{[a]\}$
using assms incl-preserves-con by auto
lemma incl-preserves-ide:
assumes R.ide a
shows ide $\{[a]\}$
by (metis assms incl-preserves-con incl-preserves-resid R.ide-def ide-def)
lemma cong-iff-eq-incl:
assumes R.arr t and R.arr u
shows $\{[t]\}=\{[u]\} \longleftrightarrow t \sim u$
proof
show $\{[t]\}=\{[u]\} \Longrightarrow t \sim u$
by (metis P.Con-rec(1) P.Ide.simps(2) P.Resid.simps(3) P.arr-in-Cong-class P.con-char R.arr-def R.cong-reflexive assms(1) ide-char ${ }_{C C}$ incl-preserves-con incl-preserves-ide incl-preserves-resid incl-reflects-con P.arr-resid-iff-con)
show $t \sim u \Longrightarrow\{[t]\}=\{[u]\}$
using assms
by (metis incl-preserves-resid extensional incl-preserves-ide)
qed
The inclusion is surjective on identities.

```
lemma img-incl-ide:
shows incl' (Collect R.ide) \(=\) Collect ide
proof
    show incl' Collect R.ide \(\subseteq\) Collect ide
        by (simp add: image-subset-iff)
    show Collect ide \(\subseteq\) incl' Collect R.ide
    proof
        fix \(\mathcal{A}\)
        assume \(\mathcal{A}: \mathcal{A} \in\) Collect ide
        obtain \(A\) where \(A: A \in \mathcal{A}\)
            using \(\mathcal{A}\) ide-char by blast
        have P.NPath \(A\)
        by (metis A Ball-Collect \(\mathcal{A}\) ide-char' mem-Collect-eq)
        obtain \(a\) where \(a: a \in P\).Stcs \(A\)
            using 〈P.NPath A〉
            by (meson P.NPath-implies-Arr equals0I P.Arr-has-Src)
        have \(P\). Cong \(_{0} A[a]\)
        proof -
            have P.Ide \([a]\)
            by (metis NPath-char P.Con-Arr-self P.Ide.simps(2) P.NPath-implies-Arr
                P.Resid-Ide(1) P.Srcs.elims R.in-sourcesE 〈P.NPath A〉a)
            thus ?thesis
            using a \(A\)
            by (metis P.Ide.simps(2) P.ide-char P.ide-closed \(\langle P . N P a t h ~ A\rangle\) NPath-char
                P.Con-single-ide-iff P.Ide-implies-Arr P.Resid-Arr-Ide-ind P.Resid-Arr-Src)
        qed
        have \(\mathcal{A}=\{[a]\}\)
        by (metis A P.Cong \(g_{0}\)-imp-con P.Cong \(0_{0}\)-implies-Cong P.Cong \(g_{0}\)-transitive P.Cong-class-eqI
                P.ide-char P.resid-arr-ide Resid-by-members \(\mathcal{A}\left\langle A^{*} \approx_{0}{ }^{*}[a]\right\rangle\langle P . N P a t h ~ A\rangle\) arr-char
                NPath-char ideE ide-implies-arr mem-Collect-eq)
        thus \(\mathcal{A} \in\) incl ' Collect R.ide
        using NPath-char P.Ide.simps(2) P.backward-stable \(\left\langle A^{*} \approx_{0}{ }^{*}[a]\right\rangle\langle P . N P a t h ~ A\rangle\) by blast
    qed
qed
end
```


2．5．2 Composite Completion of an Extensional RTS

locale composite－completion－of－extensional－rts $=$ R ：extensional－rts + composite－completion
begin
sublocale P ：paths－in－weakly－extensional－rts resid ．．

```
notation comp (infixr {*.*} 55)
```

When applied to an extensional RTS，the composite completion construction does not identify any states that are distinct in the original RTS．

```
lemma incl-injective-on-ide:
shows inj-on incl (Collect R.ide)
using R.extensional cong-iff-eq-incl
by (intro inj-onI) auto
```

When applied to an extensional RTS, the composite completion construction is a bijection between the states of the original RTS and the states of its completion.

```
lemma incl-bijective-on-ide:
shows bij-betw incl (Collect R.ide) (Collect ide)
    using incl-injective-on-ide img-incl-ide bij-betw-def by blast
```

end

2.5.3 Freeness of Composite Completion

In this section we show that the composite completion construction is free: any simulation from RTS A to an extensional RTS with composites B extends uniquely to a simulation on the composite completion of A.

```
locale extension-of-simulation \(=\)
    A: paths-in-rts resid \(A+\)
    \(B\) : extensional-rts-with-composites resid \({ }_{B}+\)
    \(F\) : simulation resid \(A\) resid \(_{B} F\)
for resid \(_{A}::\) ' \(a\) resid \(\quad\left(\right.\) infix \(\left.\backslash_{A} 70\right)\)
and resid \(_{B}::\) ' \(b\) resid \(\quad\left(\right.\) infix \(\left.\backslash_{B} 70\right)\)
and \(F::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
begin
```

```
notation A.Resid (infix \({ }^{*} \backslash A^{*}\) 70)
```

notation A.Resid (infix ${ }^{*} \backslash A^{*}$ 70)
notation A.Resid1x (infix ${ }^{1} \backslash A^{*}$ 70)
notation A.Resid1x (infix ${ }^{1} \backslash A^{*}$ 70)
notation A.Residx1 (infix $\left.{ }^{*} \backslash A^{1}{ }^{7} 70\right)$
notation A.Residx1 (infix $\left.{ }^{*} \backslash A^{1}{ }^{7} 70\right)$
notation A.Con (infix * A^{*} * 70)
notation A.Con (infix * A^{*} * 70)
notation B.comp (infixr $\cdot{ }_{B} 55$)
notation B.comp (infixr $\cdot{ }_{B} 55$)
notation B.con (infix $\left.\frown_{B} 50\right)$
notation B.con (infix $\left.\frown_{B} 50\right)$
fun map
fun map
where map []$=$ B.null
where map []$=$ B.null
$\mid \operatorname{map}[t]=F t$
$\mid \operatorname{map}[t]=F t$
$\mid \operatorname{map}(t \# T)=\left(\right.$ if A.arr $(t \# T)$ then $F t \cdot{ }_{B}$ map T else B.null $)$
$\mid \operatorname{map}(t \# T)=\left(\right.$ if A.arr $(t \# T)$ then $F t \cdot{ }_{B}$ map T else B.null $)$
lemma map-o-incl-eq:
shows map $($ A.incl $t)=F t$
by (simp add: A.null-char F.extensional)
lemma extensional:
shows \neg A.arr $T \Longrightarrow$ map $T=$ B.null
using F.extensional A.arr-char
by (metis A.Arr.simps(2) map.elims)

```
lemma preserves-comp:
```

shows $\llbracket T \neq[] ; U \neq[] ; \operatorname{A.Arr}(T @ U) \rrbracket \Longrightarrow \operatorname{map}(T @ U)=\operatorname{map} T \cdot{ }_{B} \operatorname{map} U$
proof (induct T arbitrary: U)
show $\bigwedge U \cdot[] \neq[] \Longrightarrow \operatorname{map}([] @ U)=\operatorname{map}[] \cdot{ }_{B} \operatorname{map} U$
by simp
fix t and $T U$:: 'a list
assume ind: $\bigwedge U . \llbracket T \neq[] ; U \neq[] ; \operatorname{A.Arr}(T @ U) \rrbracket$
$\Longrightarrow \operatorname{map}(T @ U)=\operatorname{map} T \cdot{ }_{B} \operatorname{map} U$
assume $U: U \neq[]$
assume $\operatorname{Arr}: \operatorname{A.Arr}((t \# T) @ U)$
hence 1: $\operatorname{A.Arr}(t \#(T @ U))$
by simp
have 2: $\operatorname{A.Arr}(t \# T)$
by (metis A.Con-Arr-self A.Con-append (1) A.Con-implies-Arr(1) Arr U append-is-Nil-conv
list.distinct(1))
show map $((t \# T) @ U)=B \cdot \operatorname{comp}(\operatorname{map}(t \# T))($ map $U)$
proof (cases $T=[])$
show $T=[] \Longrightarrow$?thesis
by (metis (full-types) 1 A.arr-char U append-Cons append-Nil list.exhaust
map.simps(2) map.simps(3))
assume $T: T \neq[]$
have $\operatorname{map}((t \# T) @ U)=\operatorname{map}(t \#(T @ U))$
by simp
also have $\ldots=F t \cdot{ }_{B} \operatorname{map}(T @ U)$
using $T 1$
by (metis A.arr-char Nil-is-append-conv list.exhaust map.simps(3))
also have $\ldots=F t \cdot{ }_{B}\left(\operatorname{map} T \cdot{ }_{B} \operatorname{map} U\right)$
using ind
by (metis 1 A.Con-Arr-self A.Con-implies-Arr(1) A.Con-rec(4) T U append-is-Nil-conv)
also have $\ldots=(F t \cdot B$ map $T) \cdot{ }_{B}$ map U
using B.comp-assoc ${ }_{E C}$ by blast
also have $\ldots=\operatorname{map}(t \# T) \cdot{ }_{B} \operatorname{map} U$
using $T 2$
by (metis A.arr-char list.exhaust map.simps(3))
finally show map $((t \# T) @ U)=\operatorname{map}(t \# T) \cdot{ }_{B}$ map U by simp
qed
qed
lemma preserves-arr-ind:
shows $\llbracket A \operatorname{arr} T ; a \in A . S r c s T \rrbracket \Longrightarrow B \operatorname{arr}(\operatorname{map} T) \wedge B \operatorname{src}(\operatorname{map} T)=F a$
proof (induct T arbitrary: a)
show $\bigwedge a . \llbracket A . \operatorname{arr}[] ; a \in A . \operatorname{Srcs}[] \rrbracket \Longrightarrow B \operatorname{arr}(\operatorname{map}[]) \wedge B . \operatorname{src}(\operatorname{map}[])=F a$
using A.arr-char by simp
fix $a t T$
assume $a: a \in A . S r c s(t \# T)$
assume $t T$: A.arr $(t \# T)$
assume ind: $\bigwedge a . \llbracket A . a r r T ; a \in A . S r c s T \rrbracket \Longrightarrow B . \operatorname{arr}(\operatorname{map} T) \wedge B . \operatorname{src}(\operatorname{map} T)=F a$
have 1: $a \in$ A.R.sources t
using a tT A.Con-imp-eq-Srcs A.Con-initial-right A.Srcs.simps(2) A.con-char
by blast

```
```

 show B.arr \((\operatorname{map}(t \# T)) \wedge B \cdot \operatorname{src}(\operatorname{map}(t \# T))=F a\)
 proof (cases \(T=[]\))
 show \(T=[] \Longrightarrow\) ?thesis
 by (metis 1 A.Arr.simps(2) A.arr-char B.arr-has-un-source B.src-in-sources
 F.preserves-reflects-arr F.preserves-sources image-subset-iff map.simps(2) \(t T\))
 assume \(T: T \neq[]\)
 obtain \(a^{\prime}\) where \(a^{\prime}: a^{\prime} \in\) A.R.targets \(t\)
 using \(t T 1\) A.R.resid-source-in-targets by auto
 have 2: \(a^{\prime} \in\) A.Srcs \(T\)
 using \(a^{\prime} t T\)
 by (metis A.Con-Arr-self A.R.sources-resid A.Srcs.simps(2) A.arr-char T
 A.Con-imp-eq-Srcs A.Con-rec(4))
 have \(B \cdot \operatorname{arr}(\operatorname{map}(t \# T)) \longleftrightarrow B \cdot \operatorname{arr}\left(F t \cdot_{B} \operatorname{map} T\right)\)
 using \(t T T\) by (metis map.simps(3) neq-Nil-conv)
 also have 2: ... \(\longleftrightarrow\) True
 by (metis (no-types, lifting) 2 A.arr-char B.arr-comp \({ }_{E C}\) B.arr-has-un-target
 B.trg-in-targets F.preserves-reflects-arr F.preserves-targets \(T a^{\prime}\)
 A.Arr.elims(2) image-subset-iff ind list.sel(1) list.sel(3) tT)
 finally have \(B \cdot \operatorname{arr}(\operatorname{map}(t \# T))\) by \(\operatorname{simp}\)
 moreover have B.src \((\operatorname{map}(t \# T))=F a\)
 proof -
 have \(B . \operatorname{src}(\operatorname{map}(t \# T))=B . \operatorname{src}\left(F t \cdot{ }_{B} \operatorname{map} T\right)\)
 using \(t T T\) by (metis map.simps(3) neq-Nil-conv)
 also have \(\ldots=B . \operatorname{src}(F t)\)
 using 2 B.con-comp-iff by force
 also have \(\ldots=F a\)
 by (meson 1 B.weakly-extensional-rts-axioms F.simulation-axioms
 simulation-to-weakly-extensional-rts.preserves-src
 simulation-to-weakly-extensional-rts-def)
 finally show? thesis by simp
 qed
 ultimately show ?thesis by simp
 qed
 qed
lemma preserves-arr:
shows A.arr $T \Longrightarrow$ B.arr (map T)
using preserves-arr-ind A.arr-char A.Arr-has-Src by blast
lemma preserves-src:
assumes A.arr T and $a \in A . S r c s T$
shows $B . \operatorname{src}(\operatorname{map} T)=F a$
using assms preserves-arr-ind by simp
lemma preserves-trg:
shows \llbracket A.arr $T ; b \in A . \operatorname{Trgs} T \rrbracket \Longrightarrow B . \operatorname{trg}(\operatorname{map} T)=F b$
proof (induct T)
show \llbracket A.arr []$; b \in A . \operatorname{Trgs}[] \rrbracket \Longrightarrow B \cdot \operatorname{trg}(\operatorname{map}[])=F b$
by simp

```
fix \(t T\)
assume \(t T\) : \(A \cdot \operatorname{arr}(t \# T)\)
assume \(b: b \in A . \operatorname{Trgs}(t \# T)\)
assume ind: \(\llbracket A\).arr \(T ; b \in A\). Trgs \(T \rrbracket \Longrightarrow B \cdot \operatorname{trg}(\operatorname{map} T)=F b\)
show \(B . \operatorname{trg}(\operatorname{map}(t \# T))=F b\)
proof (cases \(T=[]\) )
show \(T=[] \Longrightarrow\) ?thesis
using \(t T b\)
by (metis A.Trgs.simps(2) B.arr-has-un-target B.trg-in-targets F.preserves-targets preserves-arr image-subset-iff map.simps(2))
assume \(T: T \neq[]\)
have 1: B.trg \((\operatorname{map}(t \# T))=B \cdot \operatorname{trg}\left(F t \cdot{ }_{B} \operatorname{map} T\right)\)
using \(t T T b\)
by (metis map.simps(3) neq-Nil-conv)
also have \(\ldots=\) B.trg (map \(T\) )
by (metis B.arr-trg-iff-arr B.composable-iff-arr-comp B.trg-comp calculation preserves-arr tT)
also have \(\ldots=F b\)
using \(t T b\) ind
by (metis A.Trgs.simps(3) T A.Arr.simps(3) A.arr-char list.exhaust)
finally show ?thesis by simp
qed
qed
lemma preserves-Resid1x-ind:
shows \(t^{1} \backslash_{A}{ }^{*} U \neq A\).R.null \(\Longrightarrow F t \frown_{B} \operatorname{map} U \wedge F\left(t^{1} \backslash_{A}{ }^{*} U\right)=F t \backslash_{B} \operatorname{map} U\)
proof (induct \(U\) arbitrary: \(t\) )
show \(\wedge t . t^{1} \backslash_{A}{ }^{*}[] \neq A\). . .null \(\Longrightarrow F t \frown_{B} \operatorname{map}[] \wedge F\left(t^{1} \backslash_{A}{ }^{*}[]\right)=F t \backslash_{B} \operatorname{map}[]\)
by simp
fix \(t u U\)
assume \(u U: t^{1} \backslash A^{*}(u \# U) \neq\) A.R.null
assume ind: \(\wedge t . t^{1} \backslash A^{*} U \neq\) A.R.null
\[
\Longrightarrow F t \frown_{B} \operatorname{map} U \wedge F\left(t^{1} \backslash_{A}{ }^{*} U\right)=F t \backslash_{B} \operatorname{map} U
\]
show \(F t \frown_{B} \operatorname{map}(u \# U) \wedge F\left(t^{1} \backslash_{A}{ }^{*}(u \# U)\right)=F t \backslash_{B} \operatorname{map}(u \# U)\)
proof
show 1: \(F t \frown_{B} \operatorname{map}(u \# U)\)
proof (cases \(U=[]\) )
show \(U=[] \Longrightarrow\) ?thesis
using A.Resid1x.simps(2) map.simps(2) F.preserves-con uU by fastforce
assume \(U: U \neq[]\)
have 3: \([t]^{*} \backslash A^{*}[u] \neq[] \wedge\left([t]{ }^{*} \backslash A^{*}[u]\right)^{*} \backslash A^{*} U \neq[]\)
using A.Con-cons(2) [of [t] Uu]
by (meson A.Resid1x-as-Resid' \(U\) not-Cons-self2 \(u U\) )
hence 2: \(F t \frown_{B} F u \wedge F t \backslash_{B} F u \frown_{B} \operatorname{map} U\)
by (metis A.Con-rec (1) A.Con-sym A.Con-sym1 A.Residx1-as-Resid A.Resid-rec(1) F.preserves-con F.preserves-resid ind)
moreover have B.seq \((F u)\) (map \(U\) )
by (metis B.coinitial-iff \(W_{E}\) B.con-imp-coinitial B.seqI \(W_{E}(1)\) B.src-resid calculation)
ultimately have \(F t \frown_{B} \operatorname{map}([u] @ U)\)
```

 using B.con-comp-iff \({ }_{E C}(1)\) [of \(F t F\) u map U] B.con-sym preserves-comp
 by (metis 3 A.Con-cons(2) A.Con-implies-Arr(2)
 append.left-neutral append-Cons map.simps(2) not-Cons-self2)
 thus ?thesis by simp
 qed
 show \(F\left(t^{1} \backslash_{A}{ }^{*}(u \# U)\right)=F t \backslash_{B} \operatorname{map}(u \# U)\)
 proof (cases \(U=[]\))
 show \(U=[] \Longrightarrow\) ?thesis
 using A.Resid1x.simps(2) F.preserves-resid map.simps(2) uU by fastforce
 assume \(U: U \neq[]\)
 have \(F\left(t^{1} \backslash A^{*}(u \# U)\right)=F\left(\left(t \backslash_{A} u\right)^{1} \backslash_{A}{ }^{*} U\right)\)
 using A.Resid1x-as-Resid' A.Resid-rec(3) \(U u U\) by metis
 also have \(\ldots=F\left(t \backslash_{A} u\right) \backslash_{B} \operatorname{map} U\)
 using \(u U U\) ind A.Con-rec(3) A.Resid1x-as-Resid \(\left[\right.\) of \(\left.t \backslash_{A} u U\right]\)
 by (metis A.Resid1x.simps(3) list.exhaust)
 also have \(\ldots=\left(F t \backslash_{B} F u\right) \backslash_{B} \operatorname{map} U\)
 using \(u U U\)
 by (metis A.Resid1x-as-Resid' F.preserves-resid A.Con-rec(3))
 also have \(\ldots=F t \backslash_{B}\left(F u \cdot{ }_{B} \operatorname{map} U\right)\)
 by (metis B.comp-null(2) B.composable-iff-comp-not-null B.con-compI(2) B.conI
 B.con-sym-ax B.mediating-transition B.null-is-zero(2) B.resid-comp(1))
 also have \(\ldots=F t \backslash_{B} \operatorname{map}(u \# U)\)
 by (metis A.Resid1x-as-Resid' A.con-char U map.simps(3) neq-Nil-conv
 A.con-implies-arr(2) uU)
 finally show?thesis by simp
 qed
 qed
 qed
lemma preserves-Residx1-ind:
shows $U{ }^{*} \backslash A^{1} t \neq[] \Longrightarrow \operatorname{map} U \frown_{B} F t \wedge \operatorname{map}\left(U^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map} U \backslash_{B} F t$
proof (induct U arbitrary: t)
show $\wedge t .[]^{*} \backslash_{A}{ }^{1} t \neq[] \Longrightarrow \operatorname{map}[] \frown_{B} F t \wedge \operatorname{map}\left([]{ }^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map}[] \backslash_{B} F t$
by simp
fix $t u U$
assume ind: $\wedge t . U{ }^{*} \backslash{ }_{A}{ }^{1} t \neq[] \Longrightarrow \operatorname{map} U \frown_{B} F t \wedge \operatorname{map}\left(U^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map} U \backslash_{B} F t$
assume $u U:(u \# U){ }^{*} \backslash A^{1} t \neq[]$
show map $(u \# U) \frown_{B} F t \wedge \operatorname{map}\left((u \# U){ }^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map}(u \# U) \backslash_{B} F t$
proof (cases $U=[]$)
show $U=[] \Longrightarrow$?thesis
using A.Residx1.simps(2) F.preserves-con F.preserves-resid map.simps(2) uU
by presburger
assume $U: U \neq[]$
show ?thesis
proof
show map $(u \# U) \frown_{B} F t$
using $u U U$ A.Con-sym1 B.con-sym preserves-Resid1x-ind by blast
show $\operatorname{map}\left((u \# U){ }^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map}(u \# U) \backslash_{B} F t$
proof -

```
```

 have map \(\left((u \# U)^{*} \backslash_{A}{ }^{1} t\right)=\operatorname{map}\left(\left(u \backslash_{A} t\right) \# U^{*} \backslash_{A}{ }^{1}\left(t \backslash_{A} u\right)\right)\)
 using \(u U U\) A.Residx1-as-Resid A.Resid-rec(2) by fastforce
 also have \(\ldots=F\left(u \backslash_{A} t\right) \cdot{ }_{B} \operatorname{map}\left(U^{*} \backslash_{A}{ }^{1}\left(t \backslash_{A} u\right)\right)\)
 by (metis A.Residx1-as-Resid A.arr-char U A.Con-imp-Arr-Resid
 A.Con-rec(2) A.Resid-rec(2) list.exhaust map.simps(3) uU)
 also have \(\ldots=F\left(u \backslash_{A} t\right) \cdot_{B} \operatorname{map} U \backslash_{B} F\left(t \backslash_{A} u\right)\)
 using \(u U U\) ind A.Con-rec(2) A.Residx1-as-Resid by force
 also have \(\ldots=\left(F u \backslash_{B} F t\right) \cdot{ }_{B} \operatorname{map} U \backslash_{B}\left(F t \backslash_{B} F u\right)\)
 using \(u U U\)
 by (metis A.Con-initial-right A.Con-rec(1) A.Con-sym1 A.Resid1x-as-Resid'
 A.Residx1-as-Resid F.preserves-resid)
 also have \(\ldots=\left(F u \cdot_{B} \operatorname{map} U\right) \backslash_{B} F t\)
 by (metis B.comp-null(2) B.composable-iff-comp-not-null B.con-compI(2) B.con-sym
 B.mediating-transition B.null-is-zero(2) B.resid-comp(2) B.con-def)
 also have \(\ldots=\operatorname{map}(u \# U) \backslash_{B} F t\)
 by (metis A.Con-implies-Arr(2) A.Con-sym A.Residx1-as-Resid \(U\)
 A.arr-char map.simps(3) neq-Nil-conv uU)
 finally show? ?thesis by simp
 qed
 qed
 qed
 qed
lemma preserves-resid-ind:
shows A.con $T U \Longrightarrow \operatorname{map} T \frown_{B} \operatorname{map} U \wedge \operatorname{map}\left(T^{*} \backslash_{A}{ }^{*} U\right)=\operatorname{map} T \backslash_{B} \operatorname{map} U$
proof (induct T arbitrary: U)
show $\wedge U$. A.con [] $U \Longrightarrow \operatorname{map}[] \frown_{B} \operatorname{map} U \wedge \operatorname{map}\left([]{ }^{*} \backslash A^{*} U\right)=\operatorname{map}[] \backslash_{B} \operatorname{map} U$
using A.con-char A.Resid.simps(1) by blast
fix $t T U$
assume $t T$: A.con $(t \# T) U$
assume ind: $\wedge U$. A.con $T U \Longrightarrow$
map $T \frown_{B} \operatorname{map} U \wedge \operatorname{map}\left(T^{*} \backslash_{A}{ }^{*} U\right)=\operatorname{map} T \backslash_{B} \operatorname{map} U$
show map $(t \# T) \frown_{B} \operatorname{map} U \wedge \operatorname{map}\left((t \# T)^{*} \backslash A^{*} U\right)=\operatorname{map}(t \# T) \backslash_{B} \operatorname{map} U$
proof (cases $T=[]$)
assume $T: T=[]$
show ?thesis
using $T t T$
apply simp
by (metis A.Resid1x-as-Resid A.Residx1-as-Resid A.con-char
A.Con-sym A.Con-sym1 map.simps(2) preserves-Resid1x-ind)
next
assume $T: T \neq[]$
have 1: $\operatorname{map}(t \# T)=F t \cdot B \operatorname{map} T$
using $t T T$
by (metis A.con-implies-arr(1) list.exhaust map.simps(3))
show ?thesis
proof
show 2: B.con (map $(t \# T))(\operatorname{map} U)$
using $T t T$

```
```

 by (metis 1 A.Con-cons(1) A.Residx1-as-Resid A.con-char A.not-arr-null
 A.null-char B.composable-iff-comp-not-null B.con-compI(2) B.con-sym
 B.not-arr-null preserves-arr ind preserves-Residx1-ind A.con-implies-arr(1-2))
 show map ((t# T) *\A** U) = map (t # T)\ \B map U
 proof -
 have map ((t # T) *\A** U) = map (([t] *\A* U)@ (T *\A** (U *\A* [t])))
 by (metis A.Resid.simps(1) A.Resid-cons(1) A.con-char A.ex-un-null tT)
 also have ... = map ([t] *\A* U)\cdotB map (T *\\A* (U *\A * [t]))
 by (metis A.Arr.simps(1) A.Con-imp-Arr-Resid A.Con-implies-Arr(2) A.Con-sym
 A.Resid-cons(1-2) A.con-char T preserves-comp tT)
    ```

```

 by (metis A.Con-initial-right A.Con-sym A.Resid1x-as-Resid
 A.Residx1-as-Resid A.con-char A.Con-sym1 map.simps(2)
 preserves-Resid1x-ind tT)
 also have ... = (map [t]\ \ map U) 施 (map T \B map (U *\A* * [t]))
 using tT T ind
 by (metis A.Con-cons(1) A.Con-sym A.Resid.simps(1) A.con-char)
 also have \ldots. = (map [t]\\ \map U) 施 (map T \ \ (map U \B map [t]))
 using tT T
 by (metis A.Con-cons(1) A.Con-sym A.Resid.simps(2) A.Residx1-as-Resid
 A.con-char map.simps(2) preserves-Residx1-ind)
 also have ... = (Ft\\ map U) \cdotB (map T\ \B (map U\\B F t))
 using tT T by simp
 also have ... = map (t#T) \B map U
 using 12 B.resid-comp(2) by presburger
 finally show ?thesis by simp
 qed
 qed
 qed
 qed
lemma preserves-con:
assumes A.con T U
shows map T \frownB map U
using assms preserves-resid-ind by simp
lemma preserves-resid:
assumes A.con T U
shows map (T *\A* U) = map T\ \B map U
using assms preserves-resid-ind by simp
sublocale simulation A.Resid resid}\mp@subsup{B}{B}{}\mathrm{ map
using A.con-char preserves-con preserves-resid extensional
by unfold-locales auto
sublocale simulation-to-extensional-rts A.Resid resid B map ..
lemma is-universal:
assumes rts-with-composites resid}\mp@subsup{B}{B}{}\mathrm{ and simulation resid

```
```

shows $\exists!F^{\prime}$. simulation A.Resid resid ${ }_{B} F^{\prime} \wedge F^{\prime}$ o A.incl $=F$
proof
interpret B : rts-with-composites resid ${ }_{B}$
using assms by auto
interpret F : simulation resid ${ }_{A}$ resid $_{B} F$
using assms by auto
show simulation A.Resid resid ${ }_{B}$ map \wedge map \circ A.incl $=F$
using map-o-incl-eq simulation-axioms by auto
show $\wedge F^{\prime}$. simulation A.Resid resid $_{B} F^{\prime} \wedge F^{\prime}$ o A.incl $=F \Longrightarrow F^{\prime}=$ map
proof
fix $F^{\prime} T$
assume F^{\prime} : simulation A.Resid resid ${ }_{B} F^{\prime} \wedge F^{\prime}$ o A.incl $=F$
interpret F^{\prime} : simulation A.Resid resid $_{B} F^{\prime}$
using F^{\prime} by simp
show $F^{\prime} T=$ map T
proof (induct T)
show $F^{\prime}[]=\operatorname{map}[]$
by (simp add: A.arr-char F^{\prime}.extensional)
fix $t T$
assume ind: $F^{\prime} T=\operatorname{map} T$
show $F^{\prime}(t \# T)=\operatorname{map}(t \# T)$
proof (cases A.Arr (t \# T))
show $\neg \operatorname{A.Arr}(t \# T) \Longrightarrow$?thesis
by (simp add: A.arr-char F^{\prime}.extensional extensional)
assume $t T: A \cdot \operatorname{Arr}(t \# T)$
show ?thesis
proof (cases $T=[])$
show 2: $T=[] \Longrightarrow$?thesis
using $F^{\prime} t T$ by auto
assume $T: T \neq[]$
have $F^{\prime}(t \# T)=F^{\prime}[t] \cdot B$ map T
proof -
have $F^{\prime}(t \# T)=F^{\prime}([t] @ T)$
by simp
also have $\ldots=F^{\prime}[t] \cdot{ }_{B} F^{\prime} T$
proof -
have A.composite-of $[t] T$ ([t] @ T)
using $T t T$
by (metis (full-types) A.Arr.simps(2) A.Con-Arr-self
A.append-is-composite-of A.Con-implies-Arr (1) A.Con-imp-eq-Srcs
A.Con-rec(4) A.Resid-rec(1) A.Srcs-Resid A.seq-char A.R.arrI)
thus ?thesis
using F^{\prime}.preserves-composites $[$ of $[t] T[t] @ T]$ B.comp-is-composite-of
by auto
qed
also have $\ldots=F^{\prime}[t] \cdot{ }_{B} \operatorname{map} T$
using T ind by simp
finally show ?thesis by simp
qed

```
```

 also have ... = (F'\circA.incl) t 的 map T
 using tT
 by (simp add: A.arr-char A.null-char F'.extensional)
 also have ... =Ft 施 map T
 using F' by simp
 also have ... = map (t#T)
 using T tT
 by (metis A.arr-char list.exhaust map.simps(3))
 finally show ?thesis by simp
 qed
 qed
 qed
 qed
 qed
end

```
lemma composite-completion-of-rts:
assumes rts \(A\)
shows \(\exists(C\) :: 'a list resid \() I\). rts-with-composites \(C \wedge\) simulation A \(C I \wedge\)
\(\left(\forall B\left(J:: ' a \Rightarrow^{\prime} c\right)\right.\). extensional-rts-with-composites \(B \wedge\) simulation \(A B J\)
\[
\left.\longrightarrow\left(\exists!J^{\prime} . \text { simulation } C B J^{\prime} \wedge J^{\prime} \text { o } I=J\right)\right)
\]
proof (intro exI conjI)
interpret \(A\) : rts \(A\)
using assms by auto
interpret \(P_{A}\) : paths-in-rts \(A\)..
show rts-with-composites \(P_{A}\). Resid
using \(P_{A}\).rts-with-composites-axioms by simp
show simulation \(A P_{A}\). Resid \(P_{A}\).incl
using \(P_{A}\).incl-is-simulation by simp
show \(\forall B\left(J:: ' a \Rightarrow{ }^{\prime} c\right)\). extensional-rts-with-composites \(B \wedge\) simulation \(A B J\) \(\longrightarrow\left(\exists!J^{\prime}\right.\). simulation \(P_{A}\). Resid \(B J^{\prime} \wedge J^{\prime}\) o \(P_{A}\).incl \(\left.=J\right)\)
proof (intro allI impI)
fix \(B::{ }^{\prime} c\) resid and \(J\)
assume 1: extensional-rts-with-composites \(B \wedge\) simulation \(A B J\)
interpret \(B\) : extensional-rts-with-composites \(B\) using 1 by \(\operatorname{simp}\)
interpret \(J\) : simulation \(A B J\)
using 1 by simp
interpret \(J\) : extension-of-simulation \(A B J\)
have simulation \(P_{A}\). Resid \(B\) J.map using J.simulation-axioms by simp
moreover have J.map o \(P_{A}\).incl \(=J\) using J.map-o-incl-eq by auto
moreover have \(\bigwedge J^{\prime}\). simulation \(P_{A}\). Resid \(B J^{\prime} \wedge J^{\prime}\) o \(P_{A}\). incl \(=J \Longrightarrow J^{\prime}=J . m a p\) using 1 B.rts-with-composites-axioms J.is-universal J.simulation-axioms calculation(2)
```

 by blast
 ultimately show }\exists!\mp@subsup{J}{}{\prime}\mathrm{ . simulation }\mp@subsup{P}{A}{}.\mathrm{ Resid }B\mp@subsup{J}{}{\prime}\wedge\mp@subsup{J}{}{\prime}\circ\mp@subsup{P}{A}{}.\mathrm{ incl }=J\mathrm{ by auto
 qed
 qed

```

\subsection*{2.6 Constructions on RTS's}

\subsection*{2.6.1 Products of RTS's}
locale \(p\) roduct-rts \(=\)
A: rts \(A+\)
\(B\) : rts \(B\)
for \(A\) :: 'a resid (infix \(\left.\backslash_{A} 70\right)\)
and \(B:: ' b\) resid \(\quad\left(\right.\) infix \(\left.\backslash_{B} 70\right)\)
begin
```

notation A.con (infix }\mp@subsup{\frown}{A}{50)
notation A.prfx (infix }\mp@subsup{\lesssim}{A}{}50
notation A.cong (infix ~A 50)
notation B.con (infix }\mp@subsup{\frown}{B}{}50
notation B.prfx (infix \}\mp@subsup{\}{B}{50)
notation B.cong (infix ~}\mp@subsup{~}{B}{50)
type-synonym('c, 'd) arr = ' c*'d
abbreviation (input) Null :: ('a, 'b) arr
where Null \equiv(A.null, B.null)
definition resid :: ('a,'b) arr => ('a,'b) arr => ('a, 'b) arr
where resid t u}=(\mathrm{ if fst t }\mp@subsup{\frown}{A}{\prime}\mathrm{ fst }u\wedge\mathrm{ snd t }\mp@subsup{\frown}{B}{}\mathrm{ snd u
then (fst t}\mp@subsup{\}{A}{}\mathrm{ fst }u\mathrm{ , snd t \B snd u)
else Null)
notation resid (infix \ 70)
sublocale partial-magma resid
by unfold-locales
(metis A.con-implies-arr(1-2) A.not-arr-null fst-conv resid-def)

```
    lemma is-partial-magma:
    shows partial-magma resid
    ..
lemma null-char [simp]:
shows null \(=\) Null
    by (metis B.null-is-zero(1) B.residuation-axioms ex-un-null null-is-zero(1)
        resid-def residuation.conE snd-conv)
sublocale residuation resid
proof
show \(\wedge t u . t \backslash u \neq\) null \(\Longrightarrow u \backslash t \neq\) null
by (metis A.con-def A.con-sym null-char prod.inject resid-def B.con-sym)
show \(\wedge t u\). \(t \backslash u \neq\) null \(\Longrightarrow(t \backslash u) \backslash(t \backslash u) \neq\) null
by (metis (no-types, lifting) A.arrE B.con-def B.con-imp-arr-resid fst-conv null-char resid-def A.arr-resid snd-conv)
show \(\wedge v t u .(v \backslash t) \backslash(u \backslash t) \neq \operatorname{null} \Longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)\)
proof -
fix \(t u v\)
assume 1: \((v \backslash t) \backslash(u \backslash t) \neq\) null
have \(\left(f s t v \backslash_{A} f s t\right) \backslash_{A}\left(f s t u \backslash_{A} f s t\right) \neq\) A.null
by (metis 1 A.not-arr-null fst-conv null-char null-is-zero(1-2)
resid-def A.arr-resid)
moreover have \(\left(\right.\) snd \(v \backslash_{B}\) snd \(\left.t\right) \backslash_{B}\left(\right.\) snd \(u \backslash_{B}\) snd \(\left.t\right) \neq\) B.null
by (metis 1 B.not-arr-null snd-conv null-char null-is-zero(1-2)
resid-def B.arr-resid)
ultimately show \((v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)\)
using resid-def null-char A.con-def B.con-def A.cube B.cube apply \(\operatorname{simp}\)
by (metis (no-types, lifting) A.conI A.con-sym-ax A.resid-reflects-con B.con-sym-ax B.null-is-zero(1))
qed
qed
lemma is-residuation:
shows residuation resid
notation con \(\quad(\) infix \(\frown 50)\)
lemma arr-char [iff]:
shows arr \(t \longleftrightarrow A\).arr \((f s t t) \wedge B \operatorname{arr}(s n d t)\)
by (metis (no-types, lifting) A.arr-def B.arr-def B.conE null-char resid-def residuation.arr-def residuation.con-def residuation-axioms snd-eqD)
lemma ide-char [iff]:
shows ide \(t \longleftrightarrow\) A.ide \((\) fst \(t) \wedge\) B.ide \((\) snd \(t)\)
by (metis (no-types, lifting) A.residuation-axioms B.residuation-axioms
arr-char arr-def fst-conv null-char prod.collapse resid-def residuation.conE
residuation.ide-def residuation.ide-implies-arr residuation-axioms snd-conv)
lemma con-char [iff]:
shows \(t \frown u \longleftrightarrow\) fst \(t \frown_{A}\) fst \(u \wedge\) snd \(t \frown_{B}\) snd \(u\)
by (simp add: B.residuation-axioms con-def resid-def residuation.con-def)
lemma trg-char:
shows \(\operatorname{trg} t=(\) if arr \(t\) then (A.trg \((f s t t)\), B.trg (snd \(t)\) ) else Null)
using A.trg-def B.trg-def resid-def trg-def by auto
```

sublocale rts resid
proof
show $\wedge t$. arr $t \Longrightarrow i d e(\operatorname{trg} t)$
by (simp add: trg-char)
show 1: $\bigwedge a t$. $\llbracket i d e a ; t \frown a \rrbracket \Longrightarrow t \backslash a=t$
by (simp add: A.resid-arr-ide B.resid-arr-ide resid-def)
thus $\bigwedge a t$. $\llbracket i d e ~ a ; a \frown t \rrbracket \Longrightarrow i d e(a \backslash t)$
using arr-resid cube
apply (elim ideE, intro ideI)
apply auto
by (metis 1 conI con-sym-ax ideI null-is-zero(2))
show $\wedge t u$. $t \frown u \Longrightarrow \exists a$. ide $a \wedge a \frown t \wedge a \frown u$
proof -
fix $t u$
assume $t u: t \frown u$
obtain a1 where a1: a1 \in A.sources $(f$ st $t) \cap$ A.sources (f st u)
by (meson A.con-imp-common-source all-not-in-conv con-char tu)
obtain a2 where a2: a2 \in B.sources (snd t) \cap B.sources (snd u)
by (meson B.con-imp-common-source all-not-in-conv con-char tu)
have ide $(a 1, a 2) \wedge(a 1, a 2) \frown t \wedge(a 1, a 2) \frown u$
using a1 a2 ide-char con-char
by (metis A.con-imp-common-source A.in-sourcesE A.sources-eqI
B.con-imp-common-source B.in-sourcesE B.sources-eqI con-sym
fst-conv inf-idem snd-conv tu)
thus $\exists a$. ide $a \wedge a \frown t \wedge a \frown u$ by blast
qed
show $\wedge t u v . \llbracket i d e(t \backslash u) ; u \frown v \rrbracket \Longrightarrow t \backslash u \frown v \backslash u$
proof -
fix $t u v$
assume tu: ide $(t \backslash u)$
assume $u v: u \frown v$
have A.ide $\left(\right.$ fst $\left.t \backslash_{A} f s t u\right) \wedge$ B.ide $\left(\right.$ snd $t \backslash_{B}$ snd $\left.u\right)$
using tu ide-char
by (metis conI con-char fst-eqD ide-implies-arr not-arr-null resid-def snd-conv)
moreover have fst $u \frown_{A}$ fst $v \wedge$ snd $u \frown_{B}$ snd v
using uv con-char by blast
ultimately show $t \backslash u \frown v \backslash u$
by (simp add: A.con-target A.con-sym A.prfx-implies-con
B.con-target B.con-sym B.prfx-implies-con resid-def)
qed
qed
lemma is-rts:
shows rts resid
..
notation $p r f x \quad($ infix $\lesssim 50)$
notation cong (infix ~ 50)

```
```

lemma sources-char:
shows sources $t=A$.sources $(f s t t) \times B$.sources $($ snd $t)$
by force
lemma targets-char:
shows targets $t=A$.targets $(f s t t) \times B$.targets $($ snd $t)$
proof
show targets $t \subseteq$ A.targets $($ fst $t) \times B$.targets (snd t)
using targets-def ide-char con-char resid-def trg-char trg-def by auto
show A.targets $(f s t t) \times$ B.targets $($ snd $t) \subseteq$ targets t
proof
fix a
assume $a: a \in A$.targets $(f s t t) \times B$.targets $($ snd $t)$
show $a \in$ targets t
proof
show ide a
using a ide-char by auto
show $\operatorname{trg} t \frown a$
using a trg-char con-char [of trg ta]
by (metis (no-types, lifting) SigmaE arr-char con-char con-implies-arr(1)
fst-conv A.in-targetsE B.in-targetsE A.arr-resid-iff-con B.arr-resid-iff-con
A.trg-def B.trg-def snd-conv)
qed
qed
qed
lemma prfx-char:
shows $t \lesssim u \longleftrightarrow f$ st $t \lesssim A$ fst $u \wedge$ snd $t \lesssim B$ snd u
using A.prfx-implies-con B.prfx-implies-con resid-def by auto
lemma cong-char:
shows $t \sim u \longleftrightarrow f s t t \sim_{A}$ fst $u \wedge$ snd $t \sim_{B}$ snd u
using prfx-char by auto
lemma join-of-char:
shows join-of $t u v \longleftrightarrow$ A.join-of $(f s t t)(f s t u)(f s t v) \wedge B . j o i n-o f(s n d t)(s n d u)(s n d v)$
and joinable $t u \longleftrightarrow$ A.joinable $($ fst $t)($ fst $u) \wedge$ B.joinable $($ snd $t)($ snd $u)$
proof -
show $\bigwedge v$. join-of $t u v \longleftrightarrow$
A.join-of $(f s t t)(f s t u)(f s t v) \wedge B . j o i n-o f(s n d t)(s n d u)($ snd $v)$
proof
fix v
show join-of t $u v \Longrightarrow$
A.join-of $(f s t t)(f s t u)(f s t v) \wedge B . j o i n-o f(s n d t)(s n d u)(s n d v)$
proof -
assume 1: join-of $t u v$
have 2: $t \frown u \wedge t \frown v \wedge u \frown v \wedge u \frown t \wedge v \frown t \wedge v \frown u$
by (meson 1 bounded-imp-con con-prfx-composite-of(1) join-ofE con-sym)

```
```

 show A.join-of (fst t) (fst u) (fst v) ^ B.join-of (snd t) (snd u) (snd v)
 using 12 prfx-char resid-def
 by (elim conjE join-ofE composite-ofE congE conE,
 intro conjI A.join-ofI B.join-ofI A.composite-ofI B.composite-ofI)
 auto
 qed
 show A.join-of (fst t) (fstu) (fst v)}\wedge B.join-of (snd t) (snd u) (snd v
 \Longrightarrow ~ j o i n - o f ~ t ~ u v
 using cong-char resid-def
 by (elim conjE A.join-ofE B.join-ofE A.composite-ofE B.composite-ofE,
 intro join-ofI composite-ofI)
 auto
 qed
 thus joinable t u\longleftrightarrowA.joinable (fst t) (fst u)^B.joinable (snd t) (snd u)
 using joinable-def A.joinable-def B.joinable-def by simp
 qed
end
locale product-of-weakly-extensional-rts =
A: weakly-extensional-rts A+
B: weakly-extensional-rts B +
product-rts
begin
sublocale weakly-extensional-rts resid
proof
show \tu.\llbrackett~u; ide t; ide u\rrbracket\Longrightarrowt=u
by (metis cong-char ide-char prod.exhaust-sel A.weak-extensionality B.weak-extensionality)
qed
lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid
lemma src-char:
shows src t = (if arr t then (A.src (fst t), B.src (snd t)) else null)
proof (cases arr t)
show ᄀ arr t \Longrightarrow ?thesis
using src-def by presburger
assume t: arr t
show ?thesis
using t con-char arr-char
by (intro src-eqI) auto
qed
end
locale product-of-extensional-rts =

```

A: extensional-rts \(A+\) \(B\) : extensional-rts \(B+\) product-of-weakly-extensional-rts begin
sublocale extensional-rts resid proof
        show \(\wedge t u . t \sim u \Longrightarrow t=u\)
        by (metis A.extensional B.extensional cong-char prod.collapse)
qed
lemma is-extensional-rts: shows extensional-rts resid
end

\section*{Product Simulations}
locale product-simulation \(=\)
A1: rts A1 +
A0: rts A0 +
B1: rts B1 +
B0: rts B0 +
A1xA0: product-rts A1 A0 +
B1xB0: product-rts B1 B0 +
F1: simulation A1 B1 F1 +
F0: simulation A0 B0 F0
```

for A1 :: 'a1 resid (infix \A1 70)
and A0 :: 'a0 resid (infix \A0 70)
and B1 :: 'b1 resid (infix \ \B1 70)
and B0 :: 'b0 resid (infix \B0 70)
and F1 :: 'a1 m'b1
and F0 :: 'a0 m'b0
begin

```
definition map
where map \(=(\lambda a\). if A1xA0.arr a then \((F 1(f s t a), F 0(\) snd a) \()\)
                                    else (F1 A1.null, F0 A0.null))
lemma map-simp [simp]:
assumes A1.arr a1 and A0.arr a0
shows map \((a 1, a 0)=(F 1 a 1, F 0 a 0)\)
    using assms map-def by auto
sublocale simulation A1xA0.resid B1xB0.resid map
proof
    show \(\wedge t . \neg\) A1xA0.arr \(t \Longrightarrow\) map \(t=\) B1xB0.null
        using map-def F1.extensional F0.extensional by auto
```

 show \tu.A1xA0.con t u \Longrightarrow B1xB0.con (map t) (map u)
 using A1xA0.con-char B1xB0.con-char A1.con-implies-arr A0.con-implies-arr by auto
 show \tu.A1xA0.con t u\Longrightarrowmap (A1xA0.resid tu)=B1xB0.resid (map t) (mapu)
 using A1xA0.resid-def B1xB0.resid-def A1.con-implies-arr A0.con-implies-arr
 by auto
 qed
lemma is-simulation:
shows simulation A1xA0.resid B1xB0.resid map
end

```

\section*{Binary Simulations}
```

locale binary-simulation $=$
A1: rts A1 +
A0: rts A0 +
A: product-rts A1 A0 +
B: rts $B+$
simulation A.resid B F
for $A 1$:: 'a1 resid (infix $\left.\backslash_{A 1} 70\right)$
and $A 0$:: 'a0 resid (infix $\left.\backslash_{A 0} 70\right)$
and $B:: ' b$ resid $\quad\left(\right.$ infix $\left.\backslash_{B} 70\right)$
and $F::{ }^{\prime} a 1 *{ }^{\prime} a 0 \Rightarrow{ }^{\prime} b$
begin
lemma fixing-ide-gives-simulation-1:
assumes A1.ide a1
shows simulation $A 0 B(\lambda t 0 . F(a 1, t 0))$
proof
show $\bigwedge t 0 . \neg$ A0.arr $t 0 \Longrightarrow F(a 1, t 0)=$ B.null
using assms extensional A.arr-char by simp
show $\bigwedge t 0 u 0$. A0.con t0 $u 0 \Longrightarrow B \cdot \operatorname{con}(F(a 1, t 0))(F(a 1, u 0))$
using assms A.con-char preserves-con by auto
show $\bigwedge t 0 u 0$. A0.con $t 0 u 0 \Longrightarrow F\left(a 1, t 0 \backslash_{A 0} u 0\right)=F(a 1, t 0) \backslash_{B} F(a 1, u 0)$
using assms A.con-char A.resid-def preserves-resid
by (metis A1.ideE fst-conv snd-conv)
qed
lemma fixing-ide-gives-simulation-0:
assumes A0.ide a0
shows simulation $A 1 B(\lambda t 1 . F(t 1, a 0))$
proof
show $\bigwedge t 1 . \neg$ A1.arr $t 1 \Longrightarrow F(t 1, a 0)=$ B.null
using assms extensional A.arr-char by simp
show $\bigwedge t 1 u 1 . A 1 . \operatorname{con} t 1 u 1 \Longrightarrow B \cdot \operatorname{con}(F(t 1, a 0))(F(u 1, a 0))$
using assms A.con-char preserves-con by auto
show $\bigwedge t 1 u 1$. A1.con $t 1 u 1 \Longrightarrow F\left(t 1 \backslash_{A 1} u 1, a 0\right)=F(t 1, a 0) \backslash_{B} F(u 1, a 0)$

```
```

 using assms A.con-char A.resid-def preserves-resid
 by (metis A0.ideE fst-conv snd-conv)
 qed
end

```

\subsection*{2.6.2 Sub-RTS's}
locale sub-rts \(=\)
\(R\) : rts \(R\)
for \(R::\) 'a resid \(\quad\left(\right.\) infix \(\left.\backslash_{R} 70\right)\)
and Arr :: ' \(a \Rightarrow\) bool +
assumes inclusion: Arr \(t \Longrightarrow\) R.arr \(t\)
and sources-closed: Arr \(t \Longrightarrow\) R.sources \(t \subseteq\) Collect Arr
and resid-closed: \(\llbracket \operatorname{Arr} t ; \operatorname{Arr} u ; R . \operatorname{con} t u \rrbracket \Longrightarrow \operatorname{Arr}\left(t \backslash_{R} u\right)\)
begin
```

notation R.con $\quad\left(\right.$ infix $\left.\frown_{R} 50\right)$
notation R.prfx (infix $\left.\lesssim_{R} 50\right)$
notation R.cong (infix $\left.\sim_{R} 50\right)$
definition resid (infix $\backslash 70$)
where $t \backslash u \equiv\left(\right.$ if $\operatorname{Arr} t \wedge \operatorname{Arr} u \wedge t \frown_{R} u$ then $t \backslash_{R} u$ else R.null)
sublocale partial-magma resid
by unfold-locales
(metis R.ex-un-null R.null-is-zero(2) resid-def)

```
lemma is-partial-magma:
shows partial-magma resid
lemma null-char [simp]:
shows null \(=\) R.null
    by (metis R.null-is-zero(1) ex-un-null null-is-zero(1) resid-def)
sublocale residuation resid
proof
    show \(\wedge t u . t \backslash u \neq\) null \(\Longrightarrow u \backslash t \neq\) null
        by (metis R.con-sym R.con-sym-ax null-char resid-def)
    show \(\wedge t u\). \(t \backslash u \neq\) null \(\Longrightarrow(t \backslash u) \backslash(t \backslash u) \neq\) null
        by (metis R.arrE R.arr-resid R.not-arr-null null-char resid-closed resid-def)
    show \(\wedge v t u\). \((v \backslash t) \backslash(u \backslash t) \neq \operatorname{null} \Longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)\)
        by (metis R.cube R.ex-un-null R.null-is-zero(1) R.residuation-axioms null-is-zero(2)
            resid-closed resid-def residuation.conE residuation.conI)
qed
lemma is-residuation:
shows residuation resid
```

notation con (infix \frown50)
lemma arr-char [iff]:
shows arr t \longleftrightarrow Arr t
proof
show arr t \Longrightarrow Arr t
by (metis arrE conE null-char resid-def)
show Arr t\Longrightarrowarr t
by (metis R.arrE R.conE conI con-implies-arr(2) inclusion null-char resid-def)
qed
lemma ide-char [iff]:
shows ide t \longleftrightarrow Arr t ^ R.ide t
by (metis R.ide-def arrE arr-char conE ide-def null-char resid-def)
lemma con-char [iff]:
shows }t\frownu\longleftrightarrowArr t\wedge Arr u\wedget\frown\mp@subsup{\frown}{R}{}
using con-def resid-def by auto
lemma trg-char:
shows trg t=(if arr t then R.trg t else null)
using R.trg-def arr-def resid-def trg-def by force
sublocale rts resid
proof
show \t. arr t\Longrightarrowide (trg t)
by (metis R.ide-trg arrE arr-char arr-resid ide-char inclusion trg-char trg-def)
show \at. \llbracketide a; t\frowna\rrbracket\Longrightarrowt\a=t
by (simp add: R.resid-arr-ide resid-def)
show \at. \llbracketide a;a\frownt\rrbracket\Longrightarrow \de (a\t)
by (metis R.resid-ide-arr arr-resid-iff-con arr-char con-char ide-char resid-def)
show }\tu.t\frownu\Longrightarrow\existsa. ide a\wedgea\frownt\wedgea\frown
by (metis (full-types) R.con-imp-coinitial-ax R.con-sym R.in-sourcesI
con-char ide-char in-mono mem-Collect-eq sources-closed)
show \tuv.\llbracketide (t\u);u\frownv\rrbracket\Longrightarrowt\u\frownv\u
by (metis R.con-target arr-resid-iff-con con-char con-sym ide-char
ide-implies-arr resid-closed resid-def)
qed
lemma is-rts:
shows rts resid
_ notation prfx (infix \lesssim 50)
lemma sources-char }\mp@subsup{\mp@code{SRTS}}{}{\prime

```
```

shows sources t={a. Arr t ^a\inR.sources t }
using sources-closed by auto
lemma targets-char }\mp@subsup{}{SRTS}{
shows targets t}={b\mathrm{ . Arr }t\wedgeb\inR.targets t
proof
show targets t\subseteq{b. Arr t}\wedgeb\inR.targets t
proof
fix b
assume b: b \in targets t
show b}\in{b\mathrm{ . Arr }t\wedgeb\inR.targets t
proof
have Arr t
using arr-iff-has-target b by force
moreover have Arr b
using b by blast
moreover have b\inR.targets t
by (metis R.in-targetsI b calculation(1) con-char in-targetsE
arr-char ide-char trg-char)
ultimately show Arr t}\wedgeb\inR.targets t by blas
qed
qed
show {b. Arr t}\wedgeb\inR.targets t}\subseteq targets
proof
fix b
assume b:b\in{b. Arr t ^b\inR.targets t}
show b}\in\mathrm{ targets t
proof (intro in-targetsI)
show ide b
using b
by (metis R.arrE ide-char inclusion mem-Collect-eq R.sources-resid
R.target-is-ide resid-closed sources-closed subset-eq)
show trgt\frownb
using b
using <ide b` ide-trg trg-char by auto
qed
qed
qed
lemma prfx-char_SRTS:
shows }t\lesssimu\longleftrightarrowArr t\wedge Arr u\wedget\lesssim \lesssim
by (metis R.prfx-implies-con con-char ide-char prfx-implies-con resid-closed resid-def)
lemma cong-char,
shows t~u\longleftrightarrowArr t\wedge Arr u^t ~
using prfx-char SRTS by force
lemma inclusion-is-simulation:
shows simulation resid R (}\lambdat\mathrm{ . if arr t then t else null)

```
using resid-closed resid-def
by unfold-locales auto
interpretation \(P_{R}\) : paths-in-rts \(R\)
interpretation \(P\) : paths-in-rts resid
lemma path-reflection:
shows \(\llbracket P_{R}\).Arr \(T\); set \(T \subseteq\) Collect Arr \(\rrbracket \Longrightarrow P . A r r ~ T\)
apply (induct \(T\) )
apply simp
proof -
fix \(t T\)
assume ind: \(\llbracket P_{R}\).Arr \(T\); set \(T \subseteq\) Collect Arr \(\rrbracket \Longrightarrow P . A r r ~ T\)
assume \(t T: P_{R}\). \(\operatorname{Arr}(t \# T)\)
assume set: set \((t \# T) \subseteq\) Collect Arr
have 1: R.arr \(t\)
using \(t T\)
by (metis \(P_{R}\).Arr-imp-arr-hd list.sel(1))
show \(\operatorname{P.Arr}(t \# T)\)
proof (cases \(T=[]\) )
show \(T=[] \Longrightarrow\) ?thesis
using 1 set by simp
assume \(T: T \neq[]\)
show ?thesis
proof
show arr \(t\)
using 1 arr-char set by simp
show P.Arr T
using \(T\) t \(T P_{R}\).Arr-imp-Arr-tl
by (metis ind insert-subset list.sel(3) list.simps(15) set)
show targets \(t \subseteq\) P.Srcs \(T\)
proof -
have targets \(t \subseteq R\).targets \(t\)
using targets-char \({ }_{S R T S}\) by blast
also have \(\ldots \subseteq\) R.sources (hd \(T\) )
using \(T t T\)
by (metis \(P_{R}\).Arr.simps(3) \(P_{R}\).Srcs-simp \(P_{P}\) list.collapse)
also have \(\ldots \subseteq P\).Srcs \(T\)
using P.Arr-imp-arr-hd P.Srcs-simp \({ }_{P}\langle P . A r r T\rangle\) sources-char \({ }_{S R T S}\) by force
finally show ?thesis by blast
qed
qed
qed
qed
end
```

locale sub-weakly-extensional-rts $=$
sub-rts +
R : weakly-extensional-rts R
begin
sublocale weakly-extensional-rts resid
apply unfold-locales
using R.weak-extensionality cong-char ${ }_{S R T S}$
by blast
lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid
lemma src-char:
shows src $t=$ (if arr t then R.src t else null)
proof (cases arr t)
show \neg arr $t \Longrightarrow$?thesis
by (simp add: src-def)
assume t : arr t
show ?thesis
proof (intro src-eqI)
show ide (if arr then R.src t else null)
using t sources-closed inclusion R.src-in-sources
by (metis (full-types) CollectD R.ide-src arr-char in-mono ide-char)
show con (if arr then R.src t else null) t
using t con-char
by (metis (full-types) R.con-sym R.in-sourcesE R.src-in-sources
〈ide (if arr then R.src t else null)〉 arr-char ide-char inclusion)
qed
qed
end

```

Here we justify the terminology "normal sub-RTS", which was introduced earlier, by showing that a normal sub-RTS really is a sub-RTS.
```

lemma (in normal-sub-rts) is-sub-rts:
shows sub-rts resid $(\lambda t . t \in \mathfrak{N})$
using elements-are-arr ide-closed
apply unfold-locales
apply auto[2]
by (meson R.con-imp-coinitial R.con-sym forward-stable)

```
end

\section*{Chapter 3}

\section*{The Lambda Calculus}

In this second part of the article, we apply the residuated transition system framework developed in the first part to the theory of reductions in Church's \(\lambda\)-calculus. The underlying idea is to exhibit \(\lambda\)-terms as states (identities) of an RTS, with reduction steps as non-identity transitions. We represent both states and transitions in a unified, variable-free syntax based on de Bruijn indices. A difficulty one faces in regarding the \(\lambda\) calculus as an RTS is that "elementary reductions", in which just one redex is contracted, are not preserved by residuation: an elementary reduction can have zero or more residuals along another elementary reduction. However, "parallel reductions", which permit the contraction of multiple redexes existing in a term to be contracted in a single step, are preserved by residuation. For this reason, in our syntax each term represents a parallel reduction of zero or more redexes; a parallel reduction of zero redexes representing an identity. We have syntactic constructors for variables, \(\lambda\)-abstractions, and applications. An additional constructor represents a \(\beta\)-redex that has been marked for contraction. This is a slightly different approach that that taken by other authors (e.g. [1] or [7]), in which it is the application constructor that is marked to indicate a redex to be contracted, but it seems more natural in the present setting in which a single syntax is used to represent both terms and reductions.

Once the syntax has been defined, we define the residuation operation and prove that it satisfies the conditions for a weakly extensional RTS. In this RTS, the source of a term is obtained by "erasing" the markings on redexes, leaving an identity term. The target of a term is the contractum of the parallel reduction it represents. As the definition of residuation involves the use of substitution, a necessary prerequisite is to develop the theory of substitution using de Bruijn indices. In addition, various properties concerning the commutation of residuation and substitution have to be proved. This part of the work has benefited greatly from previous work of Huet [7], in which the theory of residuation was formalized in the proof assistant Coq. In particular, it was very helpful to have already available known-correct statements of various lemmas regarding indices, substitution, and residuation. The development of the theory culminates in the proof of Lévy's "Cube Lemma" [8], which is the key axiom in the definition of RTS.

Once reductions in the \(\lambda\)-calculus have been cast as transitions of an RTS, we are
able to take advantage of generic results already proved for RTS's; in particular, the construction of the RTS of paths, which represent reduction sequences. Very little additional effort is required at this point to prove the Church-Rosser Theorem. Then, after proving a series of miscellaneous lemmas about reduction paths, we turn to the study of developments. A development of a term is a reduction path from that term in which the only redexes that are contracted are those that are residuals of redexes in the original term. We prove the Finite Developments Theorem: all developments are finite. The proof given here follows that given by de Vrijer [5], except that here we make the adaptations necessary for a syntax based on de Bruijn indices, rather than the classical named-variable syntax used by de Vrijer. Using the Finite Developments Theorem, we define a function that takes a term and constructs a "complete development" of that term, which is a development in which no residuals of original redexes remain to be contracted.

We then turn our attention to "standard reduction paths", which are reduction paths in which redexes are contracted in a left-to-right order, perhaps with some skips. After giving a definition of standard reduction paths, we define a function that takes a term and constructs a complete development that is also standard. Using this function as a base case, we then define a function that takes an arbitrary parallel reduction path and transforms it into a standard reduction path that is congruent to the given path. The algorithm used is roughly analogous to insertion sort. We use this function to prove strong form of the Standardization Theorem: every reduction path is congruent to a standard reduction path. As a corollary of the Standardization Theorem, we prove the Leftmost Reduction Theorem: leftmost reduction is a normalizing reduction strategy.

It should be noted that, in this article, we consider only the \(\lambda \beta\)-calculus. In the early stages of this work, I made an exploratory attempt to incorporate \(\eta\)-reduction as well, but after encountering some unanticipated difficulties I decided not to attempt that extension until the \(\beta\)-only case had been well-developed.
theory LambdaCalculus
imports Main ResiduatedTransitionSystem
begin

\subsection*{3.1 Syntax}

\section*{locale lambda-calculus \\ begin}

The syntax of terms has constructors Var for variables, Lam for \(\lambda\)-abstraction, and \(A p p\) for application. In addition, there is a constructor Beta which is used to represent a \(\beta\)-redex that has been marked for contraction. The idea is that a term Beta \(t u\) represents a marked version of the term \(\operatorname{App}(\operatorname{Lamt}) u\). Finally, there is a constructor Nil which is used to represent the null element required for the residuation operation.

\footnotetext{
datatype (discs-sels) lambda \(=\) Nil
| Var nat
| Lam lambda
| App lambda lambda
}

\section*{| Beta lambda lambda}

The following notation renders Beta \(t u\) as a "marked" version of \(\operatorname{App}(\operatorname{Lam} t) u\), even though the former is a single constructor, whereas the latter contains two constructors.
```

notation Nil ($\sharp)$
notation Var ($\mu-»)$
notation Lam ($\boldsymbol{\lambda}[-]$)
notation $A p p$ (infixl $\circ 55$)
notation Beta (($\boldsymbol{\lambda}[-] \bullet-)[55,56] 55)$

```

The following function computes the set of free variables of a term. Note that since variables are represented by numeric indices, this is a set of numbers.
```

fun $F V$
where $F V \sharp=\{ \}$
$\mid F V « i »=\{i\}$
$\mid F V \boldsymbol{\lambda}[t]=(\lambda n . n-1)^{\prime}(F V t-\{0\})$
$\mid F V(t \circ u)=F V t \cup F V u$
$\mid F V(\boldsymbol{\lambda}[t] \bullet u)=(\lambda n . n-1) '(F V t-\{0\}) \cup F V u$

```

\subsection*{3.1.1 Some Orderings for Induction}

We will need to do some simultaneous inductions on pairs and triples of subterms of given terms. We prove the well-foundedness of the associated relations using the following size measure.
```

fun size :: lambda \Rightarrow nat
where size $\sharp=0$
| size $«-»=1$
| size $\boldsymbol{\lambda}[t]=$ size $t+1$
| size $(t \circ u)=$ size $t+$ size $u+1$
\mid size $(\boldsymbol{\lambda}[t] \bullet u)=($ size $t+1)+$ size $u+1$

```
lemma wf-if-img-lt:
fixes \(r::\left({ }^{\prime} a * ' a\right)\) set and \(f::{ }^{\prime} a \Rightarrow n a t\)
assumes \(\bigwedge x y .(x, y) \in r \Longrightarrow f x<f y\)
shows \(w f r\)
    using assms
    by (metis in-measure wf-iff-no-infinite-down-chain wf-measure)
inductive subterm
where \(\wedge t\). subterm \(t \boldsymbol{\lambda}[t]\)
    \(\mid \wedge t u . \operatorname{subterm} t(t \circ u)\)
    \(\mid \bigwedge t u\). subterm \(u(t \circ u)\)
    \(\mid \bigwedge t u\). subterm \(t(\boldsymbol{\lambda}[t] \bullet u)\)
    \(\mid \wedge t u\). subterm \(u(\boldsymbol{\lambda}[t] \bullet u)\)
    \(\mid \bigwedge t u v . \llbracket\) subterm \(t u\); subterm \(u v \rrbracket \Longrightarrow\) subterm \(t v\)
lemma subterm-implies-smaller:
shows subterm \(t u \Longrightarrow\) size \(t<\) size \(u\)
```

by (induct rule: subterm.induct) auto

```
abbreviation subterm-rel
where subterm-rel \(\equiv\{(t, u)\). subterm \(t u\}\)
lemma wf-subterm-rel:
shows wf subterm-rel
using subterm-implies-smaller wf-if-img-lt
by (metis case-prod-conv mem-Collect-eq)
abbreviation subterm-pair-rel
where subterm-pair-rel \(\equiv\{((t 1\), t2 \()\), u1, u2 \()\). subterm t1 u1 \(\wedge\) subterm t2 u2 \(\}\)
lemma wf-subterm-pair-rel:
shows wf subterm-pair-rel
using subterm-implies-smaller wf-if-img-lt [of subterm-pair-rel \(\lambda(t 1\), t2). \(\max (\) size t1) (size t2)]
by fastforce
abbreviation subterm-triple-rel
where subterm-triple-rel \(\equiv\)
\(\{((t 1, t 2, t 3), u 1, u 2, u 3)\). subterm t1 u1 \(\wedge\) subterm t2 u2 \(\wedge\) subterm t3 u3\}
lemma wf-subterm-triple-rel:
shows wf subterm-triple-rel
using subterm-implies-smaller
wf-if-img-lt [of subterm-triple-rel \(\lambda(t 1\), t2, t3). \(\max (\max (\) size t1) \()(\) size t2) \()(\) size t3) \(]\)
by fastforce
```

lemma subterm-lemmas:
shows subterm t \boldsymbol{\lambda}[t]
and subterm t (\boldsymbol{\lambda}[t]\circu)\wedge subterm u (}\boldsymbol{\lambda}[t]\circu
and subterm t (t\circu)^ subterm }u(t\circu
and subterm t (\boldsymbol{\lambda}[t]\bulletu)^ subterm u (}\boldsymbol{\lambda}[t]\bulletu
by (metis subterm.simps)+

```

\subsection*{3.1.2 Arrows and Identities}

Here we define some special classes of terms. An "arrow" is a term that contains no occurrences of Nil. An "identity" is an arrow that contains no occurrences of Beta. It will be important for the commutation of substitution and residuation later on that substitution not be used in a way that could create any marked redexes; for example, we don't want the substitution of \(\operatorname{Lam}(\operatorname{Var} 0)\) for \(\operatorname{Var} 0\) in an application \(\operatorname{App}(\operatorname{Var} 0)\) ( Var 0) to create a new "marked" redex. The use of the separate constructor Beta for marked redexes automatically avoids this.
fun \(A r r\)
where Arr \(\sharp=\) False
\[
\begin{aligned}
& \text { Arr } «-»=\text { True } \\
& \mid \operatorname{Arr} \boldsymbol{\lambda}[t]=\operatorname{Arr} t \\
& \mid \operatorname{Arr}(t \circ u)=(\operatorname{Arr} t \wedge \operatorname{Arr} u) \\
& \operatorname{Arr}(\boldsymbol{\lambda}[t] \bullet u)=(\operatorname{Arr} t \wedge \operatorname{Arr} u)
\end{aligned}
\]
lemma Arr-not-Nil:
assumes Arr \(t\)
shows \(t \neq \sharp\)
using assms by auto

\section*{fun Ide}
where Ide \(\sharp=\) False
| Ide «-» = True
| Ide \(\boldsymbol{\lambda}[t]=\) Ide \(t\)
| Ide \((t \circ u)=(\) Ide \(t \wedge\) Ide \(u)\)
| Ide \((\boldsymbol{\lambda}[t] \bullet u)=\) False
lemma Ide-implies-Arr:
shows Ide \(t \Longrightarrow\) Arr \(t\)
by (induct t) auto
lemma \(\operatorname{ArrE}\) [elim]:
assumes Arr \(t\)
and \(\bigwedge i . t=« i » \Longrightarrow T\)
and \(\bigwedge u . t=\lambda[u] \Longrightarrow T\)
and \(\wedge u v . t=u \circ v \Longrightarrow T\)
and \(\bigwedge u v . t=\boldsymbol{\lambda}[u] \bullet v \Longrightarrow T\)
shows \(T\)
using assms
by (cases t) auto

\subsection*{3.1.3 Raising Indices}

For substitution, we need to be able to raise the indices of all free variables in a subterm by a specified amount. To do this recursively, we need to keep track of the depth of nesting of \(\lambda\) 's and only raise the indices of variables that are already greater than or equal to that depth, as these are the variables that are free in the current context. This leads to defining a function Raise that has two arguments: the depth threshold \(d\) and the increment \(n\) to be added to indices above that threshold.
fun Raise
where Raise - \(\sharp=\sharp\)
| Raise \(d n « i »=(\) if \(i \geq d\) then \(« i+n »\) else \(« i »)\)
\(\mid\) Raise d \(n \boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\) Raise (Suc d) \(n t]\)
| Raise dn \((t \circ u)=\) Raise \(d n t \circ\) Raise \(d n u\)
\(\mid\) Raise \(d n(\boldsymbol{\lambda}[t] \bullet u)=\boldsymbol{\lambda}[\) Raise (Suc d) \(n t] \bullet\) Raise d \(n u\)
Ultimately, the definition of substitution will only directly involve the function that raises all indices of variables that are free in the outermost context; in a term, so we introduce an abbreviation for this special case.
```

abbreviation raise
where raise == Raise 0
lemma size-Raise:
shows \d. size (Raise d n t) = size t
by (induct t) auto
lemma Raise-not-Nil:
assumes t\not=\sharp
shows Raise d n t\not=\sharp
using assms
by (cases t) auto
lemma FV-Raise:
shows FV (Raise d n t)}=(\lambdax\mathrm{ . if }x\geqd\mathrm{ then }x+n\mathrm{ else }x\mathrm{)' FV t
apply (induct t arbitrary: d n)
apply auto[3]
apply force
apply force
apply force
apply force
apply force
proof -
fix tudn
assume ind1: \d n. FV (Raise d n t)=(\lambdax. if d\leqx then x + n else x)'FVt
assume ind2: \d n.FV (Raise d n u)=(\lambdax. if d \leqx then x + n else x)'FV u
have FV (Raise d n (\lambda[t] \bulletu))=
(\lambdax. x - Suc 0)'((\lambdax. x + n)
(FVt\cap{x.Suc d \leqx})\cupFVt\cap{x.\negSuc d\leqx}-{0})\cup
((\lambdax.x + n)'(FV u\cap{x.d\leqx})\cupFVu\cap{x.\negd\leqx})
using ind1 ind2 by simp
also have ... = (\lambdax. if d\leqx then x + n else x)' FV (\lambda[t]\bulletu)
by auto force+
finally show FV (Raise d n (}\boldsymbol{\lambda}[t]\bulletu))
(\lambdax. if d}\leqx\mathrm{ then }x+n\mathrm{ else }x\mp@subsup{)}{}{\prime}FV(\boldsymbol{\lambda}[t]\bulletu
by blast
qed
lemma Arr-Raise:
shows Arr t \longleftrightarrow Arr (Raise d nt)
using FV-Raise
by (induct t arbitrary: d n) auto
lemma Ide-Raise:
shows Ide t \longleftrightarrow Ide (Raise d nt)
by (induct t arbitrary:d n) auto
lemma Raise-0:
shows Raise d 0t=t

```
by (induct \(t\) arbitrary: d) auto
lemma Raise-Suc:
shows Raise d (Suc n) \(t=\) Raise d 1 (Raise d \(n t\) ) by (induct \(t\) arbitrary: \(d n\) ) auto
lemma Raise-Var:
shows Raise \(d n « i »=« i f i<d\) then \(i\) else \(i+n »\) by auto

The following development of the properties of raising indices, substitution, and residuation has benefited greatly from the previous work by Huet [7]. In particular, it was very helpful to have correct statements of various lemmas available, rather than having to reconstruct them.
lemma Raise-plus:
shows Raise \(d(m+n) t=\) Raise \((d+m) n(\) Raise \(d m t)\)
by (induct \(t\) arbitrary: \(d m n\) ) auto
lemma Raise-plus':
shows \(\llbracket d^{\prime} \leq d+n ; d \leq d^{d} \rrbracket \Longrightarrow\) Raise \(d(m+n) t=\) Raise \(d^{\prime} m(\) Raise \(d n t)\)
by (induct \(t\) arbitrary: \(n m d d^{\prime}\) ) auto
lemma Raise-Raise:
shows \(i \leq n \Longrightarrow\) Raise ip \((\) Raise \(n k t)=\) Raise \((p+n) k(\) Raise ipt)
by (induct \(t\) arbitrary: \(i k n p\) ) auto
lemma raise-plus:
shows \(d \leq n \Longrightarrow\) raise \((m+n) t=\) Raise \(d m\) (raise \(n t\) )
using Raise-plus' by auto
lemma raise-Raise:
shows raise \(p(\) Raise \(n k t)=\) Raise \((p+n) k(\) raise \(p t)\)
by (simp add: Raise-Raise)
lemma Raise-inj:
shows Raise \(d n t=\) Raise \(d n u \Longrightarrow t=u\)
proof (induct \(t\) arbitrary: \(d n u\) )
show \(\bigwedge d n u\). Raise \(d n \sharp=\) Raise \(d n u \Longrightarrow \sharp=u\)
by (metis Raise.simps(1) Raise-not-Nil)
show \(\bigwedge x d n\). Raise \(d n « x »=\) Raise \(d n u \Longrightarrow « x »=u\) for \(u\) using Raise-Var apply (cases u, auto) by (metis add-lessD1 add-right-imp-eq)
show \(\wedge t d n . \llbracket \bigwedge d n u^{\prime}\). Raise \(d n t=\) Raise \(d n u^{\prime} \Longrightarrow t=u^{\prime}\);
Raise \(d n \boldsymbol{\lambda}[t]=\) Raise \(d n u \rrbracket\)
\[
\Longrightarrow \boldsymbol{\lambda}[t]=u
\]
for \(u\) apply (cases u, auto) by (metis lambda.distinct(9))
```

show $\wedge t 1$ t2 $d n . \llbracket \bigwedge d n u^{\prime}$. Raise $d n t 1=$ Raise $d n u^{\prime} \Longrightarrow t 1=u^{\prime}$;
$\bigwedge d n u^{\prime}$. Raise $d n t \mathcal{Z}=$ Raise $d n u^{\prime} \Longrightarrow t \mathcal{Z}=u^{\prime}$;
Raise $d n(t 1 \circ t 2)=$ Raise $d n u \rrbracket$
$\Longrightarrow t 1 \circ t 2=u$
for u
apply (cases u, auto)
by (metis lambda.distinct(11))
show $\wedge t 1 t 2 d n . \llbracket \bigwedge d n u^{\prime}$. Raise $d n t 1=$ Raise $d n u^{\prime} \Longrightarrow t 1=u^{\prime}$;
$\bigwedge d n u^{\prime}$. Raise dnt2 $=$ Raise $d n u^{\prime} \Longrightarrow t 2=u^{\prime}$;
Raise $d n(\boldsymbol{\lambda}[t 1] \bullet t 2)=$ Raise $d n u \rrbracket$
$\Longrightarrow \boldsymbol{\lambda}[t 1] \bullet t 2=u$
for u
apply (cases u, auto)
by (metis lambda.distinct(13))
qed

```

\subsection*{3.1.4 Substitution}

Following [7], we now define a generalized substitution operation with adjustment of indices. The ultimate goal is to define the result of contraction of a marked redex Beta \(t u\) to be subst \(u t\). However, to be able to give a proper recursive definition of subst, we need to introduce a parameter \(n\) to keep track of the depth of nesting of Lam's as we descend into the the term \(t\). So, instead of subst \(u t\) simply substituting \(u\) for occurrences of Var 0 , Subst \(n u t\) will be substituting for occurrences of Var \(n\), and the term \(u\) will have the indices of its free variables raised by \(n\) before replacing Var \(n\). In addition, any variables in \(t\) that have indices greater than \(n\) will have these indices lowered by one, to account for the outermost Lam that is being removed by the contraction. We can then define subst \(u t\) to be Subst \(0 u t\).
```

fun Subst
where Subst $-\sharp=\sharp$
| Subst $n v$ «i» $=($ if $n<i$ then $« i-1$ » else if $n=i$ then raise $n v$ else $« i »)$
\mid Subst n v $\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[$ Subst (Suc n) $v t$]
| Subst $n v(t \circ u)=$ Subst $n v t \circ$ Subst $n v u$
|Subst $n v(\boldsymbol{\lambda}[t] \bullet u)=\boldsymbol{\lambda}[$ Subst (Suc n) $v t] \bullet$ Subst $n v u$

```
abbreviation subst
where subst \(\equiv\) Subst 0
lemma Subst-Nil:
shows Subst \(n v \sharp=\sharp\)
by (cases \(v=\sharp\) ) auto
lemma Subst-not-Nil:
assumes \(v \neq \sharp\) and \(t \neq \sharp\)
shows \(t \neq \sharp \Longrightarrow\) Subst \(n v t \neq \sharp\)
using assms Raise-not-Nil
by (induct t) auto

The following expression summarizes how the set of free variables of a term Subst d \(u t\), obtained by substituting \(u\) into \(t\) at depth \(d\), relates to the sets of free variables of \(t\) and \(u\). This expression is not used in the subsequent formal development, but it has been left here as an aid to understanding.
abbreviation \(F V S\)
where \(F V S d v t \equiv(F V t \cap\{x . x<d\}) \cup\)
\[
\begin{aligned}
& (\lambda x \cdot x-1) \cdot \\
& (\lambda x \cdot x+d) \cdot\{x \cdot x>d \wedge x \in F V t\} \cup \\
& (x \cdot d \in F V t \wedge x \in F V v\}
\end{aligned}
\]
```

lemma $F V$-Subst:
shows $F V(S u b s t d v t)=F V S d v t$
proof (induct t arbitrary: $d v$)
have $\wedge d t v .(\lambda x . x-1)^{\prime}(F V S(S u c d) v t-\{0\})=F V S d v \boldsymbol{\lambda}[t]$
proof -
fix $d t v$
have $F V S d v \boldsymbol{\lambda}[t]=$
$(\lambda x . x-$ Suc 0$)$ ' $(F V t-\{0\}) \cap\{x . x<d\} \cup$
$(\lambda x . x-$ Suc 0$)$ ' $\{x . d<x \wedge x \in(\lambda x . x-$ Suc 0$)$ ' $(F V t-\{0\})\} \cup$
$(\lambda x . x+d) '\{x . d \in(\lambda x . x-S u c 0) '(F V t-\{0\}) \wedge x \in F V v\}$

```
        by \(\operatorname{simp}\)
    also have \(\ldots=(\lambda x \cdot x-1)\) ' \((F V S(\) Suc \(d) v t-\{0\})\)
        by auto force+
    finally show \((\lambda x . x-1) '(F V S(S u c d) v t-\{0\})=F V S d v \boldsymbol{\lambda}[t]\)
        by metis
    qed
    thus \(\bigwedge d t v .(\bigwedge d v . F V(S u b s t d v t)=F V S d v t)\)
                                    \(\Longrightarrow F V(\) Subst \(d v \boldsymbol{\lambda}[t])=F V S d v \boldsymbol{\lambda}[t]\)
        by \(\operatorname{simp}\)
    have \(\wedge t u v d .(\lambda x . x-1) '(F V S(S u c d) v t-\{0\}) \cup F V S d v u=F V S d v(\boldsymbol{\lambda}[t] \bullet u)\)
    proof -
        fix \(t u v d\)
        have \(F V S d v(\boldsymbol{\lambda}[t] \bullet u)=\)
                \(((\lambda x . x-\) Suc 0) ' \((F V t-\{0\}) \cup F V u) \cap\{x . x<d\} \cup\)
                \((\lambda x . x-\) Suc 0\() '\{x . d<x \wedge(x \in(\lambda x . x-S u c 0)\) ' \((F V t-\{0\}) \vee x \in F V u)\} \cup\)
                \((\lambda x . x+d) '\{x .(d \in(\lambda x . x-S u c 0) '(F V t-\{0\}) \vee d \in F V u) \wedge x \in F V v\}\)
            by \(\operatorname{simp}\)
    also have \(\ldots=(\lambda x . x-1) '(F V S(S u c d) v t-\{0\}) \cup F V S d v u\)
        by force
    finally show \((\lambda x . x-1)^{\prime}(F V S(S u c d) v t-\{0\}) \cup F V S d v u=F V S d v(\boldsymbol{\lambda}[t] \bullet u)\)
        by metis
    qed
    thus \(\wedge t u v d . \llbracket \bigwedge d v . F V(\) Subst \(d v t)=F V S d v t\);
                                    \(\bigwedge d v . F V(\) Subst \(d v u)=F V S d v u \rrbracket\)
                                    \(\Longrightarrow F V(S u b s t d v(\boldsymbol{\lambda}[t] \bullet u))=F V S d v(\boldsymbol{\lambda}[t] \bullet u)\)
    by simp
qed (auto simp add: FV-Raise)
lemma Arr-Subst:
assumes Arr \(v\)
```

shows Arr $t \Longrightarrow \operatorname{Arr}$ (Subst nvt)
using assms Arr-Raise FV-Subst
by (induct t arbitrary: n) auto
lemma vacuous-Subst:
shows \llbracket Arr $v ; i \notin F V t \rrbracket \Longrightarrow$ Raise $i 1$ (Subst ivt) $=t$
apply (induct t arbitrary: iv, auto)
by force+
lemma Ide-Subst-iff:
shows Ide $($ Subst $n v t) \longleftrightarrow$ Ide $t \wedge(n \in F V t \longrightarrow$ Ide $v)$
using Ide-Raise vacuous-Subst
apply (induct t arbitrary: n)
apply auto[5]
apply fastforce
by (metis Diff-empty Diff-insert0 One-nat-def diff-Suc-1 image-iff insertE
insert-Diff nat.distinct(1))
lemma Ide-Subst:
shows $\llbracket I d e t ; I d e v \rrbracket \Longrightarrow I d e($ Subst $n v t)$
using Ide-Raise
by (induct t arbitrary: n) auto
lemma Raise-Subst:
shows Raise $(p+n) k$ (Subst pvt) $=$ Subst p(Raise nkv)(Raise $(\operatorname{Suc}(p+n)) k t)$
using raise-Raise
apply (induct t arbitrary: vk n p, auto)
by (metis add-Suc)+
lemma Raise-Subst':
assumes $t \neq \sharp$
shows $\llbracket v \neq \sharp ; k \leq n \rrbracket \Longrightarrow$ Raise $k p($ Subst $n v t)=\operatorname{Subst}(p+n) v($ Raise $k p t)$
using assms raise-plus
apply (induct t arbitrary: vkn n, auto)
apply (metis Raise.simps(1) Subst-Nil Suc-le-mono add-Suc-right)
apply fastforce
apply fastforce
apply (metis Raise.simps(1) Subst-Nil Suc-le-mono add-Suc-right)
by fastforce
lemma Raise-subst:
shows Raise $n k($ subst $v t)=\operatorname{subst}($ Raise $n k v)($ Raise (Suc n) $k t)$
using Raise-0
apply (induct t arbitrary: $v k n$, auto)
by (metis One-nat-def Raise-Subst plus-1-eq-Suc)+
lemma raise-Subst:
assumes $t \neq \sharp$
shows $v \neq \sharp \Longrightarrow$ raise $p($ Subst $n v t)=\operatorname{Subst}(p+n) v($ raise $p t)$

```
using assms Raise-plus raise-Raise Raise-Subst'
apply (induct \(t\) arbitrary: \(v n p\) )
by (meson zero-le)+

\section*{lemma Subst-Raise:}
shows \(\llbracket v \neq \sharp ; d \leq m ; m \leq n+d \rrbracket \Longrightarrow\) Subst \(m v(\) Raise \(d(\) Suc \(n) t)=\) Raise \(d n t\) by (induct \(t\) arbitrary: \(v m n d\) ) auto
```

lemma Subst-raise:
shows $\llbracket v \neq \sharp ; m \leq n \rrbracket \Longrightarrow$ Subst $m v($ raise $($ Suc $n) t)=$ raise $n t$
using Subst-Raise
by (induct t arbitrary: $v m n$) auto

```
lemma Subst-Subst:
shows \(\llbracket v \neq \sharp ; w \neq \sharp \rrbracket \Longrightarrow\)
    Subst \((m+n) w(\) Subst \(m v t)=\) Subst \(m(\) Subst \(n w v)(\) Subst \((S u c(m+n)) w t)\)
    using Raise-0 raise-Subst Subst-not-Nil Subst-raise
    apply (induct \(t\) arbitrary: \(v\) w \(m\) n, auto)
    by (metis add-Suc)+

The Substitution Lemma, as given by Huet [7].
lemma substitution-lemma:
shows \(\llbracket v \neq \sharp ; w \neq \sharp \rrbracket \Longrightarrow\) Subst \(n v(\) subst \(w t)=\operatorname{subst}(\) Subst \(n v w)(\) Subst \((\) Suc \(n) v t)\)
    by (metis Subst-Subst add-0)

\subsection*{3.2 Lambda-Calculus as an RTS}

\subsection*{3.2.1 Residuation}

We now define residuation on terms. Residuation is an operation which, when defined for terms \(t\) and \(u\), produces terms \(t \backslash u\) and \(u \backslash t\) that represent, respectively, what remains of the reductions of \(t\) after performing the reductions in \(u\), and what remains of the reductions of \(u\) after performing the reductions in \(t\).

The definition ensures that, if residuation is defined for two terms, then those terms in must be arrows that are coinitial (i.e. they are the same after erasing marks on redexes). The residual \(t \backslash u\) then has marked redexes at positions corresponding to redexes that were originally marked in \(t\) and that were not contracted by any of the reductions of \(u\).

This definition has also benefited from the presentation in [7].
```

fun resid (infix \70)
where «i» ${ }^{\prime}$ «i'» $=\left(\right.$ if $i=i^{\prime}$ then «i»else $\left.\sharp\right)$
$\mid \boldsymbol{\lambda}[t] \backslash \boldsymbol{\lambda}\left[t^{\prime}\right]=\left(\right.$ if $t \backslash t^{\prime}=\sharp$ then \sharp else $\left.\boldsymbol{\lambda}\left[t \backslash t^{\prime}\right]\right)$
$\mid(t \circ u) \backslash\left(t^{\prime} \circ u^{\prime}\right)=\left(\right.$ if $t \backslash t^{\prime}=\sharp \vee u \backslash u^{\prime}=\sharp$ then \sharp else $\left.\left(t \backslash t^{\prime}\right) \circ\left(u \backslash u^{\prime}\right)\right)$
$\mid(\boldsymbol{\lambda}[t] \bullet u) \backslash\left(\boldsymbol{\lambda}\left[t^{\prime}\right] \bullet u^{\prime}\right)=\left(\right.$ if $t \backslash t^{\prime}=\sharp \vee u \backslash u^{\prime}=\sharp$ then \sharp else subst $\left.\left(u \backslash u^{\prime}\right)\left(t \backslash t^{\prime}\right)\right)$
$\mid(\boldsymbol{\lambda}[t] \circ u) \backslash\left(\boldsymbol{\lambda}\left[t^{\prime}\right] \bullet u^{\prime}\right)=\left(\right.$ if $t \backslash t^{\prime}=\sharp \vee u \backslash u^{\prime}=\sharp$ then \sharp else subst $\left.\left(u \backslash u^{\prime}\right)\left(t \backslash t^{\prime}\right)\right)$
$\mid(\boldsymbol{\lambda}[t] \bullet u) \backslash\left(\boldsymbol{\lambda}\left[t^{\prime}\right] \circ u^{\prime}\right)=\left(\right.$ if $t \backslash t^{\prime}=\sharp \vee u \backslash u^{\prime}=\sharp$ then \sharp else $\left.\boldsymbol{\lambda}\left[t \backslash t^{\prime}\right] \bullet\left(u \backslash u^{\prime}\right)\right)$
| resid - - = $\#$

```

Terms t and u are consistent if residuation is defined for them.
```

abbreviation Con (infix }\frown50
where Con t u\equiv resid t u\not=\sharp
lemma ConE [elim]:
assumes t\frownt'
and }\bigwedgei.\llbrackett=«i»;\mp@subsup{t}{}{\prime}=«i»;\mathrm{ resid t t'=}<<|\rrbracket\rrbracket\Longrightarrow
and }\bigwedgeu\mp@subsup{u}{}{\prime}.\llbrackett=\boldsymbol{\lambda}[u];\mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u];u\frown\mp@subsup{u}{}{\prime};t
mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u\u]\rrbracket\Longrightarrow
and \bigwedge}\bigwedgeuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.\llbrackett=u\circv;\mp@subsup{t}{}{\prime}=\mp@subsup{u}{}{\prime}\circ\mp@subsup{v}{}{\prime};u\frown\mp@subsup{u}{}{\prime};v\frown\mp@subsup{v}{}{\prime}

t'=(u\u')\circ(v
mp@subsup{v}{}{\prime})\rrbracket\LongrightarrowT
and }\bigwedgeuvu\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.\llbrackett=\boldsymbol{\lambda}[u]\bulletv;\mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u]\bullet\mp@subsup{v}{}{\prime};u\frown\mp@subsup{u}{}{\prime};v\frown\mp@subsup{v}{}{\prime}
t\t' = subst (v
mp@subsup{v}{}{\prime})(u
mp@subsup{u}{}{\prime})]\LongrightarrowT
and }\bigwedgeuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.\llbrackett=\lambda[u]\circv;\mp@subsup{t}{}{\prime}=Beta \mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime};u\frown\mp@subsup{u}{}{\prime};v\frown\mp@subsup{v}{}{\prime}
t
mp@subsup{t}{}{\prime}=\operatorname{subst}(v
mp@subsup{v}{}{\prime})(u
mp@subsup{u}{}{\prime})\rrbracket\LongrightarrowT
and }\bigwedgeuvu\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.\llbrackett=\boldsymbol{\lambda}[u]\bulletv;\mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u]\circ\mp@subsup{v}{}{\prime};u\frown\mp@subsup{u}{}{\prime};v\frown\mp@subsup{v}{}{\prime}
t\t'}=\boldsymbol{\lambda}[u\u]\bullet(v
mp@subsup{v}{}{\prime})]\Longrightarrow
shows T
using assms
apply (cases t; cases t')
apply simp-all
apply metis
apply metis
apply metis
apply (cases un-App1t, simp-all)
apply metis
apply (cases un-App1 t', simp-all)
apply metis
by metis

```

A term can only be consistent with another if both terms are "arrows".
lemma Con-implies-Arr1:
shows \(t \frown u \Longrightarrow\) Arr \(t\)
proof (induct t arbitrary: \(u\) )
    fix \(u v t^{\prime}\)
    assume ind1: \(\bigwedge u^{\prime} . u \frown u^{\prime} \Longrightarrow \operatorname{Arr} u\)
    assume ind2: \(\left\lfloor v^{\prime} . v \frown v^{\prime} \Longrightarrow \operatorname{Arr} v\right.\)
    show \(u \circ v \frown t^{\prime} \Longrightarrow \operatorname{Arr}(u \circ v)\)
        using ind1 ind2
        apply (cases \(t^{\prime}\), simp-all)
        apply metis
        apply (cases u, simp-all)
        by (metis lambda.distinct(3) resid.simps(2))
    show \(\boldsymbol{\lambda}[u] \bullet v \frown t^{\prime} \Longrightarrow \operatorname{Arr}(\boldsymbol{\lambda}[u] \bullet v)\)
        using ind1 ind2
        apply (cases \(t^{\prime}\), simp-all)
            apply (cases un-App1 t', simp-all)
        by metis+
qed auto
lemma Con-implies-Arr2:
```

shows $t \frown u \Longrightarrow$ Arr u
proof (induct u arbitrary: t)
fix $u^{\prime} v^{\prime} t$
assume ind1: $\bigwedge u . u \frown u^{\prime} \Longrightarrow \operatorname{Arr} u^{\prime}$
assume ind2: $\bigwedge v . v \frown v^{\prime} \Longrightarrow \operatorname{Arr} v^{\prime}$
show $t \frown u^{\prime} \circ v^{\prime} \Longrightarrow \operatorname{Arr}\left(u^{\prime} \circ v^{\prime}\right)$
using ind1 ind2
apply (cases t, simp-all)
apply metis
apply (cases u^{\prime}, simp-all)
by (metis lambda.distinct(3) resid.simps(2))
show $t \frown\left(\boldsymbol{\lambda}[u] \bullet v^{\prime}\right) \Longrightarrow \operatorname{Arr}\left(\boldsymbol{\lambda}[u] \bullet v^{\prime}\right)$
using ind1 ind2
apply (cases t, simp-all)
apply (cases un-App1 t, simp-all)
by metis+
qed auto
lemma ConD:
shows $t \circ u \frown t^{\prime} \circ u^{\prime} \Longrightarrow t \frown t^{\prime} \wedge u \frown u^{\prime}$
and $\boldsymbol{\lambda}[v] \bullet u \frown \boldsymbol{\lambda}\left[v^{\prime}\right] \bullet u^{\prime} \Longrightarrow \boldsymbol{\lambda}[v] \frown \boldsymbol{\lambda}\left[v^{\prime}\right] \wedge u \frown u^{\prime}$
and $\boldsymbol{\lambda}[v] \bullet u \frown t^{\prime} \circ u^{\prime} \Longrightarrow \boldsymbol{\lambda}[v] \frown t^{\prime} \wedge u \frown u^{\prime}$
and $t \circ u \frown \boldsymbol{\lambda}\left[v^{\prime}\right] \bullet u^{\prime} \Longrightarrow t \frown \boldsymbol{\lambda}[v] \wedge u \frown u^{\prime}$
by auto

```

Residuation on consistent terms preserves arrows.
```

lemma Arr-resid:
shows $t \frown u \Longrightarrow \operatorname{Arr}(t \backslash u)$
proof (induct t arbitrary: u)
fix $t 1$ t2 u
assume ind1: $\wedge u . t 1 \frown u \Longrightarrow \operatorname{Arr}(t 1 \backslash u)$
assume ind2: $\wedge u$. t2 $\frown u \Longrightarrow \operatorname{Arr}(t 2 \backslash u)$
show $t 1 \circ t 2 \frown u \Longrightarrow \operatorname{Arr}((t 1 \circ t 2) \backslash u)$
using ind1 ind2 Arr-Subst
apply (cases u, auto)
apply (cases t1, auto)
by (metis Arr.simps(3) ConD(2) resid.simps(2) resid.simps(4))
show $\boldsymbol{\lambda}[t 1] \bullet t 2 \frown u \Longrightarrow \operatorname{Arr}((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u)$
using ind1 ind2 Arr-Subst
by (cases u) auto
qed auto

```

\subsection*{3.2.2 Source and Target}

Here we give syntactic versions of the source and target of a term. These will later be shown to agree (on arrows) with the versions derived from the residuation. The underlying idea here is that a term stands for a reduction sequence in which all marked redexes (corresponding to instances of the constructor Beta) are contracted in a bottomup fashion. A term without any marked redexes stands for an empty reduction sequence;
such terms will be shown to be the identities derived from the residuation. The source of term is the identity obtained by erasing all markings; that is, by replacing all subterms of the form Beta \(t u\) by \(A p p(L a m t) u\). The target of a term is the identity that is the result of contracting all the marked redexes.
```

fun Src
where $\operatorname{Src} \sharp=\sharp$
$\mid S r c « i »=« i »$
Src $\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\operatorname{Src} t]$
Src $(t \circ u)=$ Src $t \circ \operatorname{Src} u$
| Src $(\boldsymbol{\lambda}[t] \bullet u)=\boldsymbol{\lambda}[\operatorname{Src} t] \circ \operatorname{Src} u$
fun Trg
where Trg $« i »=« i »$
$\mid \operatorname{Trg} \boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\operatorname{Trg} t]$
$\operatorname{Trg}(t \circ u)=\operatorname{Trg} t \circ \operatorname{Trg} u$
$\mid \operatorname{Trg}(\boldsymbol{\lambda}[t] \bullet u)=\operatorname{subst}(\operatorname{Trg} u)(\operatorname{Trg} t)$
$\mid \operatorname{Trg}-=\sharp$
lemma Ide-Src:
shows Arr $t \Longrightarrow$ Ide (Src t)
by (induct t) auto
lemma Ide-iff-Src-self:
assumes Arr t
shows Ide $t \longleftrightarrow S r c t=t$
using assms Ide-Src
by (induct t) auto
lemma Arr-Src [simp]:
assumes Arr t
shows Arr (Src t)
using assms Ide-Src Ide-implies-Arr by blast
lemma Con-Src:
shows \llbracket size $t+$ size $u \leq n ; t \frown u \rrbracket \Longrightarrow$ Src $t \frown$ Src u
by (induct n arbitrary: $t u$) auto
lemma Src-eq-iff:
shows $S r c « i »=S r c « i^{\prime} » \longleftrightarrow i=i^{\prime}$
and $\operatorname{Src}(t \circ u)=\operatorname{Src}\left(t^{\prime} \circ u^{\prime}\right) \longleftrightarrow \operatorname{Src} t=\operatorname{Src} t^{\prime} \wedge \operatorname{Src} u=\operatorname{Src} u^{\prime}$
and $\operatorname{Src}(\boldsymbol{\lambda}[t] \bullet u)=\operatorname{Src}\left(\boldsymbol{\lambda}\left[t^{\prime}\right] \bullet u^{\prime}\right) \longleftrightarrow \operatorname{Src} t=\operatorname{Src} t^{\prime} \wedge \operatorname{Src} u=\operatorname{Src} u^{\prime}$
and $\operatorname{Src}(\boldsymbol{\lambda}[t] \circ u)=\operatorname{Src}\left(\boldsymbol{\lambda}\left[t^{\prime}\right] \bullet u^{\prime}\right) \longleftrightarrow \operatorname{Src} t=\operatorname{Src} t^{\prime} \wedge \operatorname{Src} u=\operatorname{Src} u^{\prime}$
by auto
lemma Src-Raise:
shows Src (Raise d $n t)=$ Raise $d n(\operatorname{Src} t)$
by (induct t arbitrary: d) auto
lemma Src-Subst [simp]:

```
```

shows \llbracket Arr t; Arr $u \rrbracket \Longrightarrow \operatorname{Src}($ Subst $d t u)=$ Subst d $($ Src $t)($ Src $u)$
using Src-Raise
by (induct u arbitrary: $d X$) auto
lemma $\operatorname{Ide}-\mathrm{Trg}$:
shows $\operatorname{Arr} t \Longrightarrow$ Ide $(\operatorname{Trg} t)$
using Ide-Subst
by (induct t) auto
lemma Ide-iff-Trg-self:
shows Arr $t \Longrightarrow$ Ide $t \longleftrightarrow \operatorname{Trg} t=t$
apply (induct t)
apply auto
by (metis Ide.simps(5) Ide-Subst Ide-Trg)+
lemma $\operatorname{Arr}-\operatorname{Trg}[s i m p]$:
assumes $\operatorname{Arr} X$
shows $\operatorname{Arr}(\operatorname{Trg} X)$
using assms Ide-Trg Ide-implies-Arr by blast
lemma Src-Src [simp]:
assumes Arr t
shows $\operatorname{Src}(\operatorname{Src} t)=\operatorname{Src} t$
using assms Ide-Src Ide-iff-Src-self Ide-implies-Arr by blast
lemma Trg-Src [simp]:
assumes Arr t
shows $\operatorname{Trg}(\operatorname{Src} t)=\operatorname{Src} t$
using assms Ide-Src Ide-iff-Trg-self Ide-implies-Arr by blast
lemma $\operatorname{Trg}-\operatorname{Trg}[\operatorname{simp}]$:
assumes Arr t
shows $\operatorname{Trg}(\operatorname{Trg} t)=\operatorname{Trg} t$
using assms Ide-Trg Ide-iff-Trg-self Ide-implies-Arr by blast
lemma Src-Trg [simp]:
assumes Arr t
shows $\operatorname{Src}(\operatorname{Trg} t)=\operatorname{Trg} t$
using assms Ide-Trg Ide-iff-Src-self Ide-implies-Arr by blast

```

Two terms are syntactically coinitial if they are arrows with the same source; that is, they represent two reductions from the same starting term.
abbreviation Coinitial
where Coinitial \(t u \equiv \operatorname{Arr} t \wedge \operatorname{Arr} u \wedge \operatorname{Src} t=\operatorname{Src} u\)
We now show that terms are consistent if and only if they are coinitial.
lemma Coinitial-cases:
assumes Arr \(t\) and Arr \(t^{\prime}\) and \(\operatorname{Src} t=\operatorname{Src} t^{\prime}\)
shows \(\left(t=\sharp \wedge t^{\prime}=\sharp\right) \vee\)
```

(\existsx.t=«x»\wedge t'=«x»)\vee
(\existsu u}\mp@subsup{u}{}{\prime}.t=\boldsymbol{\lambda}[u]\wedge\mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u])
(\existsuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.t=u\circv\wedge t'= u}\circ\mp@code{\prime
(\existsuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.t=\boldsymbol{\lambda}[u]\bulletv\wedge t'=\boldsymbol{\lambda}[u]\bullet v')\vee
(\existsuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.t=\boldsymbol{\lambda}[u]\circv\wedge\mp@subsup{t}{}{\prime}=\boldsymbol{\lambda}[u]\bullet v})
(\existsuv\mp@subsup{u}{}{\prime}\mp@subsup{v}{}{\prime}.t=\lambda[u]\bulletv\wedge t'=\lambda[u]\circ\mp@subsup{v}{}{\prime})
using assms
by (cases t; cases t') auto
lemma Con-implies-Coinitial-ind:
shows \llbracketsize t+ size u\leqn;t\frownu\rrbracket\Longrightarrow Coinitial t u
using Con-implies-Arr1 Con-implies-Arr2
by (induct n arbitrary: t u) auto
lemma Coinitial-implies-Con-ind:
shows \llbracketsize (Src t) \leqn; Coinitial tu\rrbracket\Longrightarrowt\frownu
proof (induct n arbitrary: t u)
show }\tu.\llbracket\mathrm{ size (Src t) ธ 0; Coinitial tu』 वtصu
by auto
fix n tu
assume Coinitial:Coinitial t u
assume n: size (Src t)\leqSuc n
assume ind: \tu.\llbracketsize (Src t)\leqn; Coinitial t u\rrbracket\Longrightarrowt\frownu
show }t\frown
using n ind Coinitial Coinitial-cases [of t u] Subst-not-Nil by auto
qed
lemma Coinitial-iff-Con:
shows Coinitial t u \longleftrightarrowt\frownu
using Coinitial-implies-Con-ind Con-implies-Coinitial-ind by blast
lemma Coinitial-Raise-Raise:
shows Coinitial t }u\Longrightarrow\mathrm{ Coinitial (Raise d n t) (Raise d n u)
using Arr-Raise Src-Raise
apply (induct t arbitrary: d n u,auto)
by (metis Raise.simps(3-4))
lemma Con-sym:
shows }t\frownu\longleftrightarrowu\frown
by (metis Coinitial-iff-Con)
lemma ConI [intro, simp]:
assumes Arr t and Arr u and Src t = Src u
shows Cont u
using assms Coinitial-iff-Con by blast
lemma Con-Arr-Src [simp]:
assumes Arr t
shows t\frownSrct and Src t\frownt

```

\section*{using assms}
by (auto simp add: Ide-Src Ide-implies-Arr)
lemma resid-Arr-self:
shows \(\operatorname{Arr} t \Longrightarrow t \backslash t=\operatorname{Trg} t\)
by (induct \(t\) ) auto
The following result is not used in the formal development that follows, but it requires some proof and might eventually be useful.
lemma finite-branching:
shows Ide \(a \Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a\}\)
proof (induct a)
show Ide \(\sharp \Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=\sharp\}\)
by \(\operatorname{simp}\)
fix \(x\)
have \(\wedge t\). Src \(t=\mu x » \longleftrightarrow t=« x »\) using Src.elims by blast
thus finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=« x »\}\) by simp
next
fix \(a\)
assume \(a\) : Ide \(\boldsymbol{\lambda}[a]\)
assume ind: Ide \(a \Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a\}\)
have \(\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=\boldsymbol{\lambda}[a]\}=\operatorname{Lam} '\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=a\}\) using Coinitial-cases by fastforce
thus finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=\boldsymbol{\lambda}[a]\}\) using a ind by simp
next
fix \(a 1\) az
assume ind1: Ide a1 \(\Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a 1\}\)
assume ind2: Ide a2 \(\Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a 2\}\)
assume a: Ide ( \(\boldsymbol{\lambda}[a 1] \bullet a 2)\)
show finite \(\{t\). Arr \(t \wedge\) Src \(t=\boldsymbol{\lambda}[a 1] \bullet a 2\}\)
using a ind1 ind2 by simp
next
fix \(a 1 a 2\)
assume ind1: Ide a1 \(\Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a 1\}\)
assume ind2: Ide a2 \(\Longrightarrow\) finite \(\{t\). Arr \(t \wedge \operatorname{Src} t=a 2\}\)
assume a: Ide (a1 ○ a2)
have \(\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=a 1 \circ a 2\}=\)
\((\{t . \operatorname{is-App} t\} \cap(\{t . \operatorname{Arr} t \wedge \operatorname{Src}(u n-\operatorname{App1} t)=a 1 \wedge \operatorname{Src}(u n-A p p 2 t)=a 2\})) \cup\)
(\{t. is-Beta \(t \wedge i s-L a m a 1\} \cap\)
\((\{t . \operatorname{Arr} t \wedge i s-L a m a 1 \wedge \operatorname{Src}(u n-B e t a 1 t)=u n-L a m a 1 \wedge \operatorname{Src}(u n-B e t a 2 t)=a 2\}))\)
by fastforce
have \(\{t\). Arr \(t \wedge \operatorname{Src} t=a 1 \circ a 2\}=\)
\((\lambda(t 1, t 2) . t 1 \circ t 2) \cdot(\{t 1 . \operatorname{Arr} t 1 \wedge \operatorname{Src} t 1=a 1\} \times\{t 2 . \operatorname{Arr} t 2 \wedge \operatorname{Src} t 2=a 2\}) \cup\)
\((\lambda(t 1, t 2) . \boldsymbol{\lambda}[t 1] \bullet t 2)\)
\[
(\{t 1 t 2 . i s-L a m \quad a 1\} \cap
\]
\[
\{t 1 . \operatorname{Arr} t 1 \wedge \operatorname{Src} t 1=u n-L a m a 1\} \times\{t 2 . \operatorname{Arr} t 2 \wedge \operatorname{Src} t 2=a 2\})
\]
```

proof
show $(\lambda(t 1, t 2) . t 1 \circ t 2) \cdot(\{t 1 . \operatorname{Arr} t 1 \wedge S r c t 1=a 1\} \times\{t 2 . \operatorname{Arr} t 2 \wedge \operatorname{Src} t 2=a 2\}) \cup$
$(\lambda(t 1, t 2) \cdot \lambda[t 1] \bullet t 2)$
(\{t1t2. is-Lam a1\} \cap
$\{t 1$. Arr $t 1 \wedge$ Src $t 1=$ un-Lama1 $\} \times\{$ t2. Arr t2 \wedge Src t2 $=a 2\})$
$\subseteq\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=a 1 \circ a 2\}$
by auto
show $\{t$. Arr $t \wedge S r c t=a 1 \circ a 2\}$
$\subseteq(\lambda(t 1, t 2) . t 1 \circ t 2) \cdot$
$(\{t 1 . \operatorname{Arr} t 1 \wedge \operatorname{Src} t 1=a 1\} \times\{t 2 . \operatorname{Arr}$ t2 $\wedge \operatorname{Src} t 2=a 2\}) \cup$
$(\lambda(t 1, t 2) . \boldsymbol{\lambda}[t 1] \bullet t 2)$
(\{t1t2. is-Lam a1\} \cap
$\{t 1 . \operatorname{Arr} t 1 \wedge \operatorname{Src} t 1=u n-\operatorname{Lam} a 1\} \times\{$ t2. Arr t2 $\wedge \operatorname{Src} t 2=a 2\})$
proof
fix t
assume $t: t \in\{t$. Arr $t \wedge$ Src $t=a 1 \circ a 2\}$
have is-App $t \vee$ is-Beta t
using t by auto
moreover have $i s-A p p t \Longrightarrow t \in(\lambda(t 1, t 2) . t 1 \circ t 2)$ '
$(\{t 1 . \operatorname{Arr} t 1 \wedge \operatorname{Src} t 1=a 1\} \times\{$ t2. Arr t2 $\wedge \operatorname{Src}$ t2 $=a 2\})$
using t image-iff is-App-def by fastforce
moreover have is-Beta $t \Longrightarrow$
$t \in(\lambda(t 1, t 2) . \lambda[t 1] \bullet t 2)$
$\quad(\{t 1 t 2$. is-Lam a $\}\} \cap$
$\quad\{t 1$. Arr $t 1 \wedge$ Src $t 1=$ un-Lam a1 $\} \times\{t 2$. Arr $t 2 \wedge$ Src $t 2=a 2\})$
using t is-Beta-def by fastforce
ultimately show $t \in(\lambda(t 1, t 2) . t 1 \circ t 2) \cdot$
$(\{t 1$. Arr t1 \wedge Src $t 1=a 1\} \times\{$ t2. Arr $t 2 \wedge \operatorname{Src} t 2=a 2\}) \cup$
$(\lambda(t 1, t 2) . \boldsymbol{\lambda}[t 1] \bullet t 2) \cdot$
(\{t1t2. is-Lam a1\} \cap
$\{t 1$. Arr $t 1 \wedge \operatorname{Src} t 1=u n-\operatorname{Lam} a 1\} \times\{t 2$. Arr t2 $\wedge \operatorname{Src}$ t2 $=a 2\})$
by blast
qed
qed
moreover have finite $(\{t 1$. Arr $t 1 \wedge \operatorname{Src} t 1=a 1\} \times\{t 2$. Arr $t 2 \wedge \operatorname{Src} t 2=a 2\})$
using a ind1 ind2 Ide.simps(4) by blast
moreover have is-Lam a1 \Longrightarrow
finite $(\{t 1$. Arr $t 1 \wedge$ Src $t 1=u n-L a m a 1\} \times\{t 2 . \operatorname{Arr} t 2 \wedge \operatorname{Src} t 2=a 2\})$
proof -
assume a1: is-Lam a1
have Ide (un-Lam a1)
using a a1 is-Lam-def by force
have Lam' $\{t 1$. Arr $t 1 \wedge$ Src $t 1=$ un-Lama1 $\}=\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=a 1\}$
proof
show Lam' $\{$ t1. Arr $t 1 \wedge \operatorname{Src} t 1=u n-L a m a 1\} \subseteq\{t . \operatorname{Arr} t \wedge \operatorname{Src} t=a 1\}$
using a1 by fastforce
show $\{t$. Arr $t \wedge \operatorname{Src} t=a 1\} \subseteq \operatorname{Lam} '\{t 1$. Arr $t 1 \wedge$ Src $t 1=$ un-Lama1 $\}$
proof
fix t

```
```

 assume t:t\in{t. Arr t}\wedge\operatorname{Src}t=a1
 have is-Lam t
 using a1t by auto
 hence un-Lam t\in{t1. Arr t1 ^ Src t1=un-Lama1}
 using is-Lam-def t by force
 thus t\inLam'{t1. Arr t1 ^ Src t1 = un-Lam a1}
 by (metis <is-Lam t\rangle lambda.collapse(2) rev-image-eqI)
 qed
 qed
 moreover have inj Lam
 using inj-on-def by blast
 ultimately have finite {t1. Arr t1 ^ Src t1 =un-Lam a1}
 by (metis (mono-tags, lifting) Ide.simps(4) a finite-imageD ind1 injD inj-onI)
 moreover have finite {t2. Arr t2 }\wedge Src t2 =a2}
 using Ide.simps(4) a ind2 by blast
 ultimately
    ```

```

 by blast
 qed
 ultimately show finite {t. Arr t ^ Src t=a1\circa2}
 using a ind1 ind2 by simp
 qed

```

\subsection*{3.2.3 Residuation and Substitution}

We now develop a series of lemmas that involve the interaction of residuation and substitution.
lemma Raise-resid:
shows \(t \frown u \Longrightarrow\) Raise \(k n(t \backslash u)=\) Raise \(k n t \backslash\) Raise \(k n u\)
proof -
let ? \(P=\lambda(t, u) . \forall k n . t \frown u \longrightarrow\) Raise \(k n(t \backslash u)=\) Raise \(k n t \backslash\) Raise \(k n u\)
have \(\wedge t u\).
\[
\begin{aligned}
& \forall t^{\prime} u^{\prime} .\left(\left(t^{\prime}, u^{\prime}\right),(t, u)\right) \in \text { subterm-pair-rel } \longrightarrow \\
& \quad\left(\forall k n . t^{\prime} \frown u^{\prime} \longrightarrow\right. \\
& \left.\quad \text { Raise } k n\left(t^{\prime} \backslash u^{\prime}\right)=\text { Raise } k n t^{\prime} \backslash \text { Raise } k n u^{\prime}\right) \Longrightarrow \\
& (\bigwedge k n . t \frown u \Longrightarrow \text { Raise } k n(t \backslash u)=\text { Raise } k n t \backslash \text { Raise } k n u)
\end{aligned}
\]
using subterm-lemmas Coinitial-iff-Con Coinitial-Raise-Raise Raise-subst by auto
thus \(t \frown u \Longrightarrow\) Raise \(k n(t \backslash u)=\) Raise \(k n t \backslash\) Raise \(k n u\)
using wf-subterm-pair-rel wf-induct [of subterm-pair-rel ?P] by blast
qed
lemma Con-Raise:
shows \(t \frown u \Longrightarrow\) Raise \(d n t \frown\) Raise \(d n u\)
by (metis Raise-not-Nil Raise-resid)
The following is Huet's Commutation Theorem [7]: "substitution commutes with residuation".
lemma resid-Subst:
```

assumes $t \frown t^{\prime}$ and $u \frown u^{\prime}$
shows Subst $n t u \backslash$ Subst $n t^{\prime} u^{\prime}=\operatorname{Subst} n\left(t \backslash t^{\prime}\right)\left(u \backslash u^{\prime}\right)$
proof -
let ? $P=\lambda\left(u, u^{\prime}\right) . \forall n t t^{\prime} . t \frown t^{\prime} \wedge u \frown u^{\prime} \longrightarrow$
Subst $n t u \backslash$ Subst $n t^{\prime} u^{\prime}=$ Subst $n\left(t \backslash t^{\prime}\right)\left(u \backslash u^{\prime}\right)$
have $\bigwedge u u^{\prime} . \forall w w^{\prime} .\left(\left(w, w^{\prime}\right),\left(u, u^{\prime}\right)\right) \in$ subterm-pair-rel \longrightarrow
$\left(\forall n v v^{\prime} . v \frown v^{\prime} \wedge w \frown w^{\prime} \longrightarrow\right.$
Subst $n v w \backslash$ Subst $n v^{\prime} w^{\prime}=$ Subst $\left.n\left(v \backslash v^{\prime}\right)\left(w \backslash w^{\prime}\right)\right) \Longrightarrow$
$\forall n t t^{\prime} . t \frown t^{\prime} \wedge u \frown u^{\prime} \longrightarrow$
Subst $n t u \backslash$ Subst $n t^{\prime} u^{\prime}=\operatorname{Subst} n\left(t \backslash t^{\prime}\right)\left(u \backslash u^{\prime}\right)$
using subterm-lemmas Raise-resid Subst-not-Nil Con-Raise Raise-subst substitution-lemma
by auto
thus ?thesis
using assms wf-subterm-pair-rel wf-induct [of subterm-pair-rel ?P] by auto
qed
lemma Trg-Subst [simp]:
shows \llbracket Arr $t ; A r r u \rrbracket \Longrightarrow \operatorname{Trg}($ Subst $d t u)=$ Subst $d(\operatorname{Trg} t)(\operatorname{Trg} u)$
by (metis Arr-Subst Arr-Trg Arr-not-Nil resid-Arr-self resid-Subst)
lemma Src-resid:
shows $t \frown u \Longrightarrow \operatorname{Src}(t \backslash u)=\operatorname{Trg} u$
proof (induct u arbitrary: t, auto simp add: Arr-resid)
fix $t t 1^{\prime}$
show $\wedge t 2^{\prime} . \llbracket \bigwedge t 1 . t 1 \frown t 1^{\prime} \Longrightarrow \operatorname{Src}\left(t 1 \backslash t 1^{\prime}\right)=\operatorname{Trg} t 1^{\prime} ;$
$\wedge t 2 . t 2 \frown t 2^{\prime} \Longrightarrow \operatorname{Src}\left(t 2 \backslash t 2^{\prime}\right)=\operatorname{Trg} t^{\prime}{ }^{\prime} ;$
$t \frown t 1^{\prime} \circ t 2 \rrbracket$
$\Longrightarrow \operatorname{Src}\left(t \backslash\left(t 1^{\prime} \circ t 2^{\prime}\right)\right)=\operatorname{Trg} t 1^{\prime} \circ \operatorname{Trg} t 2^{\prime}$
apply (cases t; cases $t 1^{\prime}$)
apply auto
by (metis Src.simps(3) lambda.distinct(3) lambda.sel(2) resid.simps(2))
qed
lemma Coinitial-resid-resid:
assumes $t \frown v$ and $u \frown v$
shows Coinitial $(t \backslash v)(u \backslash v)$
using assms Src-resid Arr-resid Coinitial-iff-Con by presburger
lemma Con-implies-is-Lam-iff-is-Lam:
assumes $t \frown u$
shows $i s$-Lam $t \longleftrightarrow i s$-Lam u
using assms by auto
lemma Con-implies-Coinitial3:
assumes $t \backslash v \frown u \backslash v$
shows Coinitial $v u$ and Coinitial $v t$ and Coinitial $u t$
using assms
by (metis Coinitial-iff-Con resid.simps(7))+

```

We can now prove Lévy's "Cube Lemma" [8], which is the key axiom for a residuated
```

transition system.
lemma Cube:
shows $v \backslash t \frown u \backslash t \Longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
proof -
let $? P=\lambda(t, u, v) . v \backslash t \frown u \backslash t \longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
have $\wedge t u v$.
$\forall t^{\prime} u^{\prime} v^{\prime}$.
$\left(\left(t^{\prime}, u^{\prime}, v^{\prime}\right),(t, u, v)\right) \in$ subterm-triple-rel $\longrightarrow ? P\left(t^{\prime}, u^{\prime}, v^{\prime}\right) \Longrightarrow$
$v \backslash t \frown u \backslash t \longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
proof -
fix $t u v$
assume $i n d: \forall t^{\prime} u^{\prime} v^{\prime}$.
$\left(\left(t^{\prime}, u^{\prime}, v^{\prime}\right),(t, u, v)\right) \in$ subterm-triple-rel $\longrightarrow ? P\left(t^{\prime}, u^{\prime}, v^{\prime}\right)$
show $v \backslash t \frown u \backslash t \longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
proof (intro impI)
assume con: $v \backslash t \frown u \backslash t$
have Con $v t$
using con by auto
moreover have Con $u t$
using con by auto
ultimately show $(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
using subterm-lemmas ind Coinitial-iff-Con Coinitial-resid-resid resid-Subst
apply (elim ConE [of $v t$] ConE [of $u t]$)
apply simp-all
apply metis
apply metis
apply (cases un-App1 t; cases un-App1 v, simp-all)
apply metis
apply metis
apply metis
apply metis
apply metis
apply (cases un-App1 u, simp-all)
apply metis
by metis
qed
qed
hence ?P (t, u, v)
using wf-subterm-triple-rel wf-induct [of subterm-triple-rel ?P] by blast
thus $v \backslash t \frown u \backslash t \Longrightarrow(v \backslash t) \backslash(u \backslash t)=(v \backslash u) \backslash(t \backslash u)$
by simp
qed

```

\subsection*{3.2.4 Residuation Determines an RTS}

We are now in a position to verify that the residuation operation that we have defined satisfies the axioms for a residuated transition system, and that various notions which we have defined syntactically above (e.g. arrow, source, target) agree with the versions derived abstractly from residuation.
```

sublocale partial-magma resid
apply unfold-locales
by (metis Arr.simps(1) Coinitial-iff-Con)
lemma null-char [simp]:
shows null = \#
using null-def
by (metis null-is-zero(2) resid.simps(7))
sublocale residuation resid
using null-char Arr-resid Coinitial-iff-Con Cube
apply (unfold-locales, auto)
by metis+
notation resid (infix \ 70)
lemma resid-is-residuation:
shows residuation resid
..
lemma arr-char [iff]:
shows arr t \longleftrightarrow Arr t
using Coinitial-iff-Con arr-def con-def null-char by auto
lemma ide-char [iff]:
shows ide t \longleftrightarrow Ide t
by (metis Ide-iff-Trg-self Ide-implies-Arr arr-char arr-resid-iff-con ide-def
resid-Arr-self)
lemma resid-Arr-Ide:
shows \llbracketIde a; Coinitial t a\rrbracket\Longrightarrowt\a=t
using Ide-iff-Src-self
by (induct t arbitrary: a, auto)
lemma resid-Ide-Arr:
shows \llbracketIde a; Coinitial a t\rrbracket\LongrightarrowIde (a\t)
by (metis Coinitial-resid-resid ConI Ide-iff-Trg-self cube resid-Arr-Ide resid-Arr-self)
lemma resid-Arr-Src [simp]:
assumes Arr t
shows t\Src t=t
using assms Ide-Src
by (simp add: Ide-implies-Arr resid-Arr-Ide)
lemma resid-Src-Arr [simp]:
assumes Arr t
shows Src t\t=\operatorname{Trg}t
using assms

```
```

 by (metis (full-types) Con-Arr-Src(2) Con-implies-Arr1 Src-Src Src-resid cube
 resid-Arr-Src resid-Arr-self)
 sublocale rts resid
proof
show \at. \llbracketide a; con t a\rrbracket\Longrightarrowt\a=t
using ide-char resid-Arr-Ide
by (metis Coinitial-iff-Con con-def null-char)
show \t. arr t\Longrightarrowide (trg t)
by (simp add: Ide-Trg resid-Arr-self trg-def)
show \at. \llbracketide a; con a t\rrbracket\Longrightarrow \ ide (resid a t)
using ide-char null-char resid-Ide-Arr Coinitial-iff-Con con-def by force
show \tu. con t u\Longrightarrow\existsa. ide a ^ con a t ^ con a u
by (metis Coinitial-iff-Con Ide-Src Ide-iff-Src-self Ide-implies-Arr con-def
ide-char null-char)
show \t u v. \llbracketide (resid tu); con u v\rrbracket\Longrightarrowcon (resid t u) (resid v u)
by (metis Coinitial-resid-resid ide-char not-arr-null null-char resid-Ide-Arr
con-def con-sym ide-implies-arr)
qed
lemma is-rts:
shows rts resid
..
lemma sources-char,
shows sources t=(if Arr t then {Src t} else {})
proof (cases Arr t)
show ᄀ Arr t\Longrightarrow ?thesis
using arr-char arr-iff-has-source by auto
assume t: Arr t
have 1: {Src t}\subseteq sources t
using t Ide-Src by force
moreover have sources t\subseteq{Src t}
by (metis Coinitial-iff-Con Ide-iff-Src-self ide-char in-sourcesE null-char
con-def singleton-iff subsetI)
ultimately show ?thesis
using t by auto
qed
lemma sources-simp [simp]:
assumes Arr t
shows sources t = {Src t}
using assms sources-char\mp@subsup{r}{\Lambda}{}}\mathrm{ by auto
lemma sources-simps [simp]:
shows sources }\sharp={
and sources «x» = { «x»}

```

```

and \llbracketarr t; arr u\rrbracket\Longrightarrow sources (t ○ u)={Src t ○ Src u}

```
```

and \llbracketarr t; arr }u\rrbracket\Longrightarrow\mathrm{ sources (}\boldsymbol{\lambda}[t]\bulletu)={\boldsymbol{\lambda}[\mathrm{ Src t] ○ Src u}
using sources-char_ by auto
lemma targets-char_
shows targets t=(if Arr t then {Trg t} else {})
proof (cases Arr t)
show ᄀ Arr t\Longrightarrow ?thesis
by (meson arr-char arr-iff-has-target)
assume t: Arr t
have 1:{\operatorname{Trg}t}\subseteq targets t
using t resid-Arr-self trg-def trg-in-targets by force
moreover have targets t\subseteq{\operatorname{Trg}t}
by (metis 1 Ide-iff-Src-self arr-char ide-char ide-implies-arr
in-targetsE insert-subset prfx-implies-con resid-Arr-self
sources-resid sources-simp t)
ultimately show ?thesis
using t by auto
qed
lemma targets-simp [simp]:
assumes Arr t
shows targets t}={\operatorname{Trg}t
using assms targets-char_ by auto
lemma targets-simps [simp]:
shows targets \sharp={}
and targets «x» = { «x»}
and arr }t\Longrightarrow\mathrm{ targets }\boldsymbol{\lambda}[t]={\boldsymbol{\lambda}[\operatorname{Trg}t]
and \llbracketarr t; arr u\rrbracket\Longrightarrow targets (t\circu)={\operatorname{Trg}t\circ\operatorname{Trg}u}
and \llbracketarr t; arr u\rrbracket\Longrightarrow targets }(\boldsymbol{\lambda}[t]\bulletu)={\mathrm{ subst (Trg u) (Trg t)}
using targets-char\Lambda by auto
lemma seq-char:
shows seq t u\longleftrightarrowArr t^Arr u ^ Trg t=Src u
using seq-def arr-char sources-char}\mp@subsup{\Lambda}{\Lambda}{}\mp@subsup{t}{}{targets-char}\mp@subsup{\}{\Lambda}{}\mathrm{ by force
lemma seq\mp@subsup{I}{\Lambda}{}[\mathrm{ [intro, simp]:}
assumes Arr t and Arr u and Trg t=Src u
shows seq t u
using assms seq-char by simp
lemma seqE
assumes seq t u
and \llbracketArr t; Arr u; Trg t=Src u\rrbracket\LongrightarrowT
shows T
using assms seq-char by blast

```

The following classifies the ways that transitions can be sequential. It is useful for later proofs by case analysis.
```

lemma seq-cases:
assumes seq t u
shows (is-Var t ^ is-Var u) \vee
(is-Lam t ^ is-Lam u)\vee
(is-App t ^is-App u) \vee
(is-App t ^is-Beta u ^ is-Lam (un-App1 t)) \vee
(is-App t ^ is-Beta u ^ is-Beta (un-App1 t)) \vee
is-Beta t
using assms seq-char
by (cases t; cases u) auto
sublocale confluent-rts resid
by (unfold-locales) fastforce
lemma is-confluent-rts:
shows confluent-rts resid
lemma con-char [iff]:
shows contu\longleftrightarrowCon tu
by fastforce
lemma coinitial-char [iff]:
shows coinitial t u \longleftrightarrow Coinitial t u
by fastforce
lemma sources-Raise:
assumes Arr t

```

```

 using assms
 by (simp add: Coinitial-Raise-Raise Src-Raise)
 lemma targets-Raise:
assumes Arr t
shows targets (Raise d nt)}={\mathrm{ Raise d n (Trg t)}
using assms
by (metis Arr-Raise ConI Raise-resid resid-Arr-self targets-char\Lambda)
lemma sources-subst [simp]:
assumes Arr t and Arr u
shows sources (subst tu)={subst (Src t) (Src u)}
using assms sources-char_ Arr-Subst arr-char by simp
lemma targets-subst [simp]:
assumes Arr t and Arr u
shows targets (subst t u)={ subst (Trg t) (Trg u)}
using assms targets-char (Arr-Subst arr-char by simp
notation prfx (infix \lesssim 50)

```
```

notation cong (infix ~ 50)
lemma prfx-char [iff]:
shows }t\lesssimu\longleftrightarrowIde (t\u
using ide-char by simp
lemma prfx-Var-iff:
shows }u\lesssim«i»\longleftrightarrowu=«i
by (metis Arr.simps(2) Coinitial-iff-Con Ide.simps(1) Ide-iff-Src-self Src.simps(2)
ide-char resid-Arr-Ide)
lemma prfx-Lam-iff:
shows }u\lesssim\operatorname{Lam}t\longleftrightarrowis-Lam u^un-Lam u\lesssim
using ide-char Arr-not-Nil Con-implies-is-Lam-iff-is-Lam Ide-implies-Arr is-Lam-def
by fastforce
lemma prfx-App-iff:
shows u\lesssimt1\circt2 \longleftrightarrow is-App u ^un-App1u\lesssimt1^un-App2 u\lesssim t2
using ide-char
by (cases u; cases t1) auto
lemma prfx-Beta-iff:
shows }u\lesssim\lambda[t1]\bullett2
(is-App u ^un-App1 u \lesssim \lambda[t1]^un-App2 u}\frownt2
(0\inFV (un-Lam (un-App1 u)\t1)\longrightarrowun-App2 u \lesssimt2))\vee
(is-Beta u ^ un-Beta1 u\lesssimt1 ^ un-Beta2 u 人t2 ^
(0 GFV (un-Beta1 u\t1)\longrightarrowun-Beta2 u\lesssimt2))
using ide-char Ide-Subst-iff
by (cases u; cases un-App1 u) auto
lemma cong-Ide-are-eq:
assumes t~u and Ide t and Ide u
shows t=u
using assms
by (metis Coinitial-iff-Con Ide-iff-Src-self con-char prfx-implies-con)
lemma eq-Ide-are-cong:
assumes t=u and Ide t
shows t~u
using assms Ide-implies-Arr resid-Ide-Arr by blast
sublocale weakly-extensional-rts resid
apply unfold-locales
by (metis Coinitial-iff-Con Ide-iff-Src-self Ide-implies-Arr ide-char ide-def)
lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid

```
lemma src－char［simp］：
shows src \(t=(\) if Arr \(t\) then Src \(t\) else \(\sharp)\)
using src－def by force
lemma trg－char［simp］：
shows \(\operatorname{trg} t=(\) if Arr \(t\) then Trg \(t\) else \(\sharp)\)
by（metis Coinitial－iff－Con resid－Arr－self trg－def）
We＂almost＂have an extensional RTS．The case that fails is \(\boldsymbol{\lambda}[t 1] \bullet t 2 \sim u \Longrightarrow \boldsymbol{\lambda}[t 1]\)
－\(t 2=u\) ．This is because \(t 1\) might ignore its argument，so that subst t2 \(t 1=\) subst \(t^{\prime}{ }^{\prime}\) \(t 1\) ，with both sides being identities，even if \(t 2 \neq t 2^{\prime}\) ．

The following gives a concrete example of such a situation．
abbreviation non－extensional－ex1
where non－extensional－ex \(1 \equiv \boldsymbol{\lambda}[\boldsymbol{\lambda}[« 0 »] \circ \boldsymbol{\lambda}[« 0 »]] \bullet(\boldsymbol{\lambda}[« 0 »] \bullet \boldsymbol{\lambda}[« 0 »])\)
abbreviation non－extensional－ex2
where non－extensional－ex2 \(\equiv \boldsymbol{\lambda}[\boldsymbol{\lambda}[« 0 »] \circ \boldsymbol{\lambda}[« 0 »]] \bullet(\boldsymbol{\lambda}[« 0 »] \circ \boldsymbol{\lambda}[« 0 »])\)
lemma non－extensional：
shows \(\boldsymbol{\lambda}[« 1 »] \bullet\) non－extensional－ex1 \(\sim \boldsymbol{\lambda}[« 1 »] \bullet\) non－extensional－ex2
and \(\lambda[« 1 »] \bullet\) non－extensional－ex1 \(\neq \lambda[« 1 »] \bullet\) non－extensional－ex2
by auto
The following gives an example of two terms that are both coinitial and coterminal， but which are not congruent．
abbreviation cong－nontrivial－ex1
where cong－nontrivial－ex1 \(\equiv\)
\[
\boldsymbol{\lambda}[« 0 » \circ 《 0 »] \circ \boldsymbol{\lambda}[« 0 » \circ \text { « } 0 »] \circ(\boldsymbol{\lambda}[« 0 » \circ<0 »] \bullet \boldsymbol{\lambda}[« 0 » \circ<0 »])
\]
abbreviation cong－nontrivial－ex2
where cong－nontrivial－ex2 \(\equiv\)
\[
\boldsymbol{\lambda}[« 0 » \circ 《 0 »] \bullet \lambda[« 0 » \circ 《 0 »] \circ(\boldsymbol{\lambda}[« 0 » \circ « 0 »] \circ \boldsymbol{\lambda}[« 0 » \circ \text { « } 0 »])
\]
lemma cong－nontrivial：
shows coinitial cong－nontrivial－ex1 cong－nontrivial－ex2
and coterminal cong－nontrivial－ex1 cong－nontrivial－ex2
and \(\neg\) cong cong－nontrivial－ex1 cong－nontrivial－ex2
by auto
Every two coinitial transitions have a join，obtained structurally by unioning the sets of marked redexes．
```

fun Join (infix \sqcup 52)
where «x» \sqcup «x'»=(if x= 名 then «x» else \sharp)

```

```

 |}[t]\circu\sqcup\boldsymbol{\lambda}[\mp@subsup{t}{}{\prime}]\bullet\mp@subsup{u}{}{\prime}=\boldsymbol{\lambda}[(t\sqcup\mp@subsup{t}{}{\prime})]\bullet(u\sqcup\mp@subsup{u}{}{\prime}
 |}\boldsymbol{\lambda}[t]\bulletu\sqcup\boldsymbol{\lambda}[\mp@subsup{t}{}{\prime}]\circ\mp@subsup{u}{}{\prime}=\boldsymbol{\lambda}[(t\sqcup\mp@subsup{t}{}{\prime})]\bullet(u\sqcup\mp@subsup{u}{}{\prime}
 |
 | [t] \bulletu \sqcup\boldsymbol{\lambda}[\mp@subsup{t}{}{\prime}]\bullet u
 |-\sqcup-=#
    ```
```

lemma Join-sym:
shows $t \sqcup u=u \sqcup t$
using Join.induct [of $\lambda t u . t \sqcup u=u \sqcup t$] by auto
lemma Src-Join:
shows Coinitial $t u \Longrightarrow \operatorname{Src}(t \sqcup u)=\operatorname{Src} t$
proof (induct t arbitrary: u)
show $\bigwedge u$. Coinitial $\sharp u \Longrightarrow \operatorname{Src}(\sharp \sqcup u)=\operatorname{Src} \sharp$
by simp
show $\backslash x u$. Coinitial $« x » u \Longrightarrow \operatorname{Src}(« x » \sqcup u)=\operatorname{Src} « x »$
by auto
fix $t u$
assume ind: $\bigwedge u$. Coinitial $t u \Longrightarrow \operatorname{Src}(t \sqcup u)=\operatorname{Src} t$
assume tu: Coinitial $\boldsymbol{\lambda}[t] u$
show $\operatorname{Src}(\boldsymbol{\lambda}[t] \sqcup u)=\operatorname{Src} \boldsymbol{\lambda}[t]$
using tu ind
by (cases u) auto
next
fix $t 1$ t2 u
assume ind1: $\bigwedge u 1$. Coinitial $t 1 u 1 \Longrightarrow \operatorname{Src}(t 1 \sqcup u 1)=\operatorname{Src} t 1$
assume ind2: $\bigwedge u 2$. Coinitial t2 u2 $\Longrightarrow \operatorname{Src}(t 2 \sqcup u 2)=\operatorname{Src}$ t2
assume tu: Coinitial ($t 1 \circ$ t2) u
show $\operatorname{Src}(t 1 \circ t 2 \sqcup u)=\operatorname{Src}(t 1 \circ t 2)$
using tu ind1 ind2
apply (cases u, simp-all)
apply (cases t1, simp-all)
by (metis Arr.simps(3) Join.simps(2) Src.simps(3) lambda.sel(2))
next
fix $t 1$ t2 u
assume ind1: $\bigwedge u 1$. Coinitial $t 1 u 1 \Longrightarrow \operatorname{Src}(t 1 \sqcup u 1)=\operatorname{Src} t 1$
assume ind2: $\bigwedge u 2$. Coinitial t2 u2 $\Longrightarrow \operatorname{Src}(t 2 \sqcup u 2)=\operatorname{Src}$ t2
assume tu: Coinitial $(\boldsymbol{\lambda}[t 1] \bullet t 2) u$
show $\operatorname{Src}((\boldsymbol{\lambda}[t 1] \bullet t 2) \sqcup u)=\operatorname{Src}(\boldsymbol{\lambda}[t 1] \bullet t 2)$
using tu ind1 ind2
apply (cases u, simp-all)
by (cases un-App1 u) auto
qed
lemma resid-Join:
shows Coinitial $t u \Longrightarrow(t \sqcup u) \backslash u=t \backslash u$
proof (induct t arbitrary: u)
show $\bigwedge u$. Coinitial $\sharp u \Longrightarrow(\sharp \sqcup u) \backslash u=\sharp \backslash u$
by auto
show $\bigwedge x u$. Coinitial $« x » u \Longrightarrow(« x » \sqcup u) \backslash u=« x » \backslash u$
by auto
fix $t u$
assume ind: $\bigwedge u$. Coinitial $t u \Longrightarrow(t \sqcup u) \backslash u=t \backslash u$
assume tu: Coinitial $\boldsymbol{\lambda}[t] u$

```
```

show $(\boldsymbol{\lambda}[t] \sqcup u) \backslash u=\boldsymbol{\lambda}[t] \backslash u$
using tu ind
by (cases u) auto
next
fix $t 1$ t2 u
assume ind1: \u1. Coinitial t1 $u 1 \Longrightarrow(t 1 \sqcup u 1) \backslash u 1=t 1 \backslash u 1$
assume ind2: $\bigwedge u 2$. Coinitial t2 $u 2 \Longrightarrow(t 2 \sqcup u 2) \backslash u 2=t 2 \backslash u 2$
assume tu: Coinitial ($t 1 \circ$ t2) u
show $(t 1 \circ t 2 \sqcup u) \backslash u=(t 1 \circ$ t2 $) \backslash u$
using tu ind1 ind2 Coinitial-iff-Con
apply (cases u, simp-all)
proof -
fix $u 1 u_{2}$
assume $u: u=\lambda[u 1] \bullet u 2$
have t2u2: t2 $\sim u 2$
using Arr-not-Nil Arr-resid tu u by simp
have t1u1: Coinitial (un-Lam t1 $\sqcup u 1) ~ u 1$
proof -
have Arr (un-Lam t1 $\sqcup u 1$)
by (metis Arr.simps(3-5) Coinitial-iff-Con Con-implies-is-Lam-iff-is-Lam
Join.simps(2) Src.simps(3-5) ind1 lambda.collapse(2) lambda.disc(8)
lambda.sel(3) tu u)
thus ?thesis
using Src-Join
by (metis Arr.simps(3-5) Coinitial-iff-Con Con-implies-is-Lam-iff-is-Lam
Src.simps(3-5) lambda.collapse(2) lambda.disc(8) lambda.sel(2-3) tu u)
qed
have un-Lam t1 $\sim u 1$
using t1u1
by (metis Coinitial-iff-Con Con-implies-is-Lam-iff-is-Lam ConD(4) lambda.collapse(2)
lambda.disc(8) resid.simps(2) tu u)
thus $(t 1 \circ t 2 \sqcup \boldsymbol{\lambda}[u 1] \bullet u 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)=(t 1 \circ t 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)$
using u tu t1u1 t2u2 ind1 ind2
apply (cases t1, auto)
proof -
fix v
assume $v: t 1=\boldsymbol{\lambda}[v]$
show subst $(t 2 \backslash u 2)((v \sqcup u 1) \backslash u 1)=\operatorname{subst}(t 2 \backslash u 2)(v \backslash u 1)$
proof -
have subst $(t 2 \backslash u 2)((v \sqcup u 1) \backslash u 1)=(t 1 \circ t 2 \sqcup \boldsymbol{\lambda}[u 1] \bullet u 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)$
by (simp add: Coinitial-iff-Con ind2 t2u2 v)
also have $\ldots=(t 1 \circ t 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)$
proof -
have $(t 1 \circ t 2 \sqcup \boldsymbol{\lambda}[u 1] \bullet u 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)=$
$(\boldsymbol{\lambda}[(v \sqcup u 1)] \bullet(t 2 \sqcup u 2)) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)$
using v by simp
also have $\ldots=\operatorname{subst}(t 2 \backslash u 2)((v \sqcup u 1) \backslash u 1)$
by (simp add: Coinitial-iff-Con ind2 t2u2)
also have $\ldots=\operatorname{subst}(t 2 \backslash u 2)(v \backslash u 1)$

```
```

 proof -
 have \((t 1 \sqcup \boldsymbol{\lambda}[u 1]) \backslash \boldsymbol{\lambda}[u 1]=t 1 \backslash \boldsymbol{\lambda}[u 1]\)
 using \(u\) tu ind1 by simp
 thus ?thesis
 using 〈un-Lam t1 \u1 \(\neq \sharp\) 〉t1u1 \(v\) by force
 qed
 also have \(\ldots=(t 1 \circ t 2) \backslash(\boldsymbol{\lambda}[u 1] \bullet u 2)\)
 using \(t u u v\) by force
 finally show ?thesis by blast
 qed
 also have \(\ldots=\) subst (\(t 2 \backslash u 2\)) \((v \backslash u 1)\)
 by (simp add: t2u2 v)
 finally show? ?thesis by auto
 qed
 qed
 qed
next
fix $t 1$ t2 u
assume ind1: $\bigwedge u 1$. Coinitial t1 $u 1 \Longrightarrow(t 1 \sqcup u 1) \backslash u 1=t 1 \backslash u 1$
assume ind2: \u2. Coinitial t2 u2 $\Longrightarrow(t 2 \sqcup u 2) \backslash u 2=t 2 \backslash u 2$
assume tu: Coinitial ($\boldsymbol{\lambda}[t 1]$ - t2) u
show $((\boldsymbol{\lambda}[t 1] \bullet t 2) \sqcup u) \backslash u=(\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u$
using tu ind1 ind2 Coinitial-iff-Con
apply (cases u, simp-all)
proof -
fix $u 1 u 2$
assume $u: u=u 1 \circ u 2$
show $(\boldsymbol{\lambda}[t 1] \bullet t 2 \sqcup u 1 \circ u 2) \backslash(u 1 \circ u 2)=(\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash(u 1 \circ u 2)$
using ind1 ind2 tu u
by (cases u1) auto
qed
qed
lemma prfx-Join:
shows Coinitial $t u \Longrightarrow u \lesssim t \sqcup u$
proof (induct t arbitrary: u)
show $\wedge u$. Coinitial $\sharp u \Longrightarrow u \lesssim \sharp \sqcup u$
by simp
show $\bigwedge x u$. Coinitial $« x » u \Longrightarrow u \lesssim « x » \sqcup u$
by auto
fix $t u$
assume ind: $\bigwedge u$. Coinitial $t u \Longrightarrow u \lesssim t \sqcup u$
assume tu: Coinitial $\boldsymbol{\lambda}[t] u$
show $u \lesssim \boldsymbol{\lambda}[t] \sqcup u$
using tu ind
apply (cases u, auto)
by force
next
fix $t 1$ t2 u

```
```

assume ind1: $\bigwedge u 1$. Coinitial t1 $u 1 \Longrightarrow u 1 \lesssim t 1 \sqcup u 1$
assume ind2: \u2. Coinitial t2 u2 $\Longrightarrow u 2 \lesssim t 2 \sqcup u 2$
assume tu: Coinitial ($t 1 \circ$ t2) u
show $u \lesssim t 1 \circ t 2 \sqcup u$
using tu ind1 ind2 Coinitial-iff-Con
apply (cases u, simp-all)
apply (metis Ide.simps(1))
proof -
fix $u 1 u^{2}$
assume $u: u=\boldsymbol{\lambda}[u 1]$ • $u 2$
assume 1: Arr t1 $\wedge \operatorname{Arr} t 2 \wedge \operatorname{Arr} u 1 \wedge \operatorname{Arr} u 2 \wedge \operatorname{Src} t 1=\lambda[\operatorname{Src} u 1] \wedge \operatorname{Src} t 2=\operatorname{Src}$ u2
have 2: $u 1 \frown u n$-Lam $t 1 \sqcup u 1$
by (metis 1 Coinitial-iff-Con Con-implies-is-Lam-iff-is-Lam Con-Arr-Src(2)
lambda.collapse(2) lambda.disc(8) resid.simps(2) resid-Join)
have 3: u2 $\frown t 2 \sqcup u 2$
by (metis 1 conE ind2 null-char prfx-implies-con)
show Ide $((\boldsymbol{\lambda}[u 1] \bullet u 2) \backslash(t 1 \circ t 2 \sqcup \boldsymbol{\lambda}[u 1] \bullet u 2))$
using u tu 123 ind1 ind2
apply (cases t1, simp-all)
by (metis Arr.simps(3) Ide.simps(3) Ide-Subst Join.simps(2) Src.simps(3) resid.simps(2))
qed
next
fix $t 1$ t2 u
assume ind1: $\bigwedge u 1$. Coinitial $t 1 u 1 \Longrightarrow u 1 \lesssim t 1 \sqcup u 1$
assume ind2: \u2. Coinitial t2 u2 $\Longrightarrow u 2 \lesssim t 2 \sqcup u 2$
assume tu: Coinitial ($\boldsymbol{\lambda}[t 1]$ - t2) u
show $u \lesssim(\boldsymbol{\lambda}[t 1] \bullet t 2) \sqcup u$
using tu ind1 ind2 Coinitial-iff-Con
apply (cases u, simp-all)
apply (cases un-App1 u, simp-all)
by (metis Ide.simps(1) Ide-Subst)+
qed
lemma Ide-resid-Join:
shows Coinitial $t u \Longrightarrow I d e(u \backslash(t \sqcup u))$
using ide-char prfx-Join by blast
lemma join-of-Join:
assumes Coinitial $t u$
shows join-of $t u(t \sqcup u)$
proof (unfold join-of-def composite-of-def, intro conjI)
show $t \lesssim t \sqcup u$
using assms Join-sym prfx-Join [of ut] by simp
show $u \lesssim t \sqcup u$
using assms Ide-resid-Join ide-char by simp
show $(t \sqcup u) \backslash t \lesssim u \backslash t$
by (metis $\langle p r f x \quad u(J o i n ~ t u)\rangle$ arr-char assms cong-subst-right(2) prfx-implies-con
prfx-reflexive resid-Join con-sym cube)
show $u \backslash t \lesssim(t \sqcup u) \backslash t$

```
```

 by (metis Coinitial-resid-resid <prfx t (Join t u)\rangle\langleprfx u (Join tu)\rangle conE ide-char
 null-char prfx-implies-con resid-Ide-Arr cube)
 show (t\sqcupu)\u\lesssimt\u
 using «(t \sqcupu)\t\lesssim \u\t> cube by auto
 show }t\u\lesssim(t\sqcupu)\
 by (metis «(t \sqcupu)\t\lesssimu\t` assms cube resid-Join)
 qed
sublocale rts-with-joins resid
using join-of-Join
apply unfold-locales
by (metis Coinitial-iff-Con conE joinable-def null-char)

```
lemma is-rts-with-joins:
shows rts-with-joins resid

\subsection*{3.2.5 Simulations from Syntactic Constructors}

Here we show that the syntactic constructors Lam and App, as well as the substitution operation subst, determine simulations. In addition, we show that Beta determines a transformation from App \(\circ(L a m \times I d)\) to subst.
abbreviation Lam \(_{\text {ext }}\)
where \(L a m_{\text {ext }} t \equiv\) if arr \(t\) then \(\boldsymbol{\lambda}[t]\) else \(\#\)
lemma Lam-is-simulation:
shows simulation resid resid Lam \(_{\text {ext }}\)
using Arr-resid Coinitial-iff-Con
by unfold-locales auto
interpretation Lam: simulation resid resid Lam \(_{\text {ext }}\)
using Lam-is-simulation by simp
interpretation \(\Lambda x \Lambda\) : product-of-weakly-extensional-rts resid resid
abbreviation \(A p p_{\text {ext }}\)
where \(A p p_{\text {ext }} t \equiv\) if \(\Lambda x \Lambda\).arr \(t\) then fst \(t \circ\) snd \(t\) else \(\sharp\)
lemma App-is-binary-simulation:
shows binary-simulation resid resid resid App ext
proof
show \(\wedge t\). \(\neg \Lambda x \Lambda\).arr \(t \Longrightarrow A p p_{\text {ext }} t=\) null by auto
show \(\wedge t u . \Lambda x \Lambda . c o n t u \Longrightarrow \operatorname{con}\left(A p p_{e x t} t\right)\left(A p p_{e x t} u\right)\)
using \(\Lambda x \Lambda\).con-char Coinitial-iff-Con by auto
show \(\Lambda t u\). \(\Lambda x \Lambda\).con \(t u \Longrightarrow A p p_{\text {ext }}(\Lambda x \Lambda\).resid \(t u)=A p p_{\text {ext }} t \backslash A p p_{\text {ext }} u\) using \(\Lambda x \Lambda\).arr-char \(\Lambda x \Lambda\).resid-def apply simp
```

 by (metis Arr-resid Con-implies-Arr1 Con-implies-Arr2)
 qed
interpretation App: binary-simulation resid resid resid App ext
using App-is-binary-simulation by simp
abbreviation substext
where subst ext }\equiv\lambdat\mathrm{ . if }\Lambdax\Lambda.arr t then subst (snd t) (fst t) else \sharp
lemma subst-is-binary-simulation:
shows binary-simulation resid resid resid substext
proof
show }\Lambdat.\neg\Lambdax\Lambda.arr t\Longrightarrow\mp@subsup{substext}{}{
by auto
show }\Lambdatu.\Lambdax\Lambda.con t u\Longrightarrow con (subst ext t) (subst ext u)
using \Lambdax\Lambda.con-char con-char Subst-not-Nil resid-Subst \Lambdax\Lambda.coinitialE
\Lambdax\Lambda.con-imp-coinitial
apply simp
by metis
show \tu.\Lambdax\Lambda.con tu\Longrightarrowsubst ext (\Lambdax\Lambda.resid t u)= subst ext t \ subst ext }
using \Lambdax\Lambda.arr-char \Lambdax\Lambda.resid-def
apply simp
by (metis Arr-resid Con-implies-Arr1 Con-implies-Arr2 resid-Subst)
qed
interpretation subst: binary-simulation resid resid resid subst ext
using subst-is-binary-simulation by simp
interpretation Id: identity-simulation resid
interpretation Lam-Id: product-simulation resid resid resid resid Lamext Id.map
interpretation App-o-Lam-Id: composite-simulation \Lambdax\Lambda.resid \Lambdax\Lambda.resid resid Lam-Id.map
..
abbreviation Beta ext
where Beta ext }t\equiv\mathrm{ if }\Lambdax\Lambda.arr t then \boldsymbol{\lambda}[fst t] \bullet snd t else \sharp
lemma Beta-is-transformation:
shows transformation \Lambdax\Lambda.resid resid App-o-Lam-Id.map substext Beta ext
proof
show }\f.\neg\Lambdax\Lambda.arr f\Longrightarrow\mp@subsup{Beta}{ext}{}f=\mathrm{ null
by simp
show }\f.\Lambdax\Lambda.ide f\Longrightarrowsrc (Beta ext f)=App-o-Lam-Id.map
using \Lambdax\Lambda.src-char \Lambdax\Lambda.src-ide Lam-Id.map-def by force

```

```

 using \Lambdax\Lambda.trg-char \Lambdax\Lambda.trg-ide by force
 show \f.\Lambdax\Lambda.arr f\Longrightarrow
    ```
App \(p_{\text {ext }}\)
    show \(\Lambda f . \Lambda x \Lambda . a r r f \Longrightarrow A p p-o-L a m-I d . m a p ~ f \backslash \operatorname{Beta}_{\text {ext }}(\Lambda x \Lambda . s r c f)=\) subst \(_{\text {ext }} f\)
        using \(\Lambda x \Lambda\).src-char \(\Lambda x \Lambda\).trg-char Lam-Id.map-def by auto
    show \(\Lambda f . \Lambda x \Lambda . a r r f \Longrightarrow\) join-of \(\left(\operatorname{Beta}_{\text {ext }}(\Lambda x \Lambda . s r c f)\right)(\) App-o-Lam-Id.mapf \()\left(\right.\) Beta \(\left._{e x t} f\right)\)
    proof -
        fix \(f\)
        assume \(f: \Lambda x \Lambda\).arr \(f\)
    show join-of (Beta ext \((\Lambda x \Lambda\).src f \()\) ) (App-o-Lam-Id.map f) (Beta ext \(\left.^{f}\right)\)
    proof (intro join-ofI composite-ofI)
        show App-o-Lam-Id.map \(f \lesssim\) Beta \(_{\text {ext }} f\)
            using \(f\) Lam-Id.map-def Ide-Subst arr-char prfx-char prfx-reflexive by auto
        show \(\operatorname{Beta}_{\text {ext }} f \backslash\) Beta \(_{\text {ext }}(\Lambda x \Lambda\).src \(f) \sim\) App-o-Lam-Id.map \(f \backslash\) Beta \(_{\text {ext }}(\Lambda x \Lambda . s r c f)\)
            using \(f\) Lam-Id.map-def \(\Lambda x \Lambda\).src-char trg-char trg-def
            apply auto
            by (metis Arr-Subst Ide-Trg)
        show 1: Beta ext \(f \backslash\) App-o-Lam-Id.map \(f \sim \operatorname{Beta}_{\text {ext }}(\Lambda x \Lambda\).src f) \(\backslash\) App-o-Lam-Id.map \(f\)
            using \(f\) Lam-Id.map-def Ide-Subst \(\Lambda x \Lambda\).src-char Ide-Trg Arr-resid Coinitial-iff-Con
                    resid-Arr-self
        apply \(\operatorname{simp}\)
        by metis
        show Beta \(_{\text {ext }}(\Lambda x \Lambda\).src \(f) \lesssim\) Beta \(_{\text {ext }} f\)
            using f 1 Lam-Id.map-def Ide-Subst \(\Lambda x \Lambda\).src-char resid-Arr-self by auto
        qed
    qed
    qed

The next two results are used to show that mapping App over lists of transitions preserves paths.
lemma App-is-simulation1:
assumes ide a
shows simulation resid resid ( \(\lambda t\). if arr \(t\) then \(t \circ\) a else \(\sharp\) )
proof -
have \((\lambda t\). if \(\Lambda x \Lambda . \operatorname{arr}(t, a)\) then \(f s t(t, a) \circ \operatorname{snd}(t, a)\) else \(\sharp)=\)
\((\lambda t\). if arr \(t\) then \(t \circ\) a else \(\sharp)\)
using assms ide-implies-arr by force
thus ?thesis
using assms App.fixing-ide-gives-simulation-0 [of a] by auto
qed
lemma App-is-simulation2:
assumes ide a
shows simulation resid resid ( \(\lambda t\). if arr \(t\) then \(a \circ t\) else \(\sharp\) )
proof -
have \((\lambda t\). if \(\Lambda x \Lambda\).arr \((a, t)\) then \(f s t(a, t) \circ \operatorname{snd}(a, t)\) else \(\sharp)=\)
\((\lambda t\). if arr \(t\) then \(a \circ t\) else \(\sharp\) )
using assms ide-implies-arr by force
thus ?thesis
using assms App.fixing-ide-gives-simulation-1 [of a] by auto
qed

\subsection*{3.2.6 Reduction and Conversion}

Here we define the usual relations of reduction and conversion. Reduction is the least transitive relation that relates \(a\) to \(b\) if there exists an arrow \(t\) having \(a\) as its source and \(b\) as its target. Conversion is the least transitive relation that relates \(a\) to b if there exists an arrow \(t\) in either direction between \(a\) and \(b\).
```

inductive red
where $\operatorname{Arr} t \Longrightarrow \operatorname{red}(\operatorname{Src} t)(\operatorname{Trg} t)$
$\mid \llbracket r e d$ a b; red $b c \rrbracket \Longrightarrow$ red a c
inductive $c n v$
where $\operatorname{Arr} t \Longrightarrow \operatorname{cnv}(\operatorname{Src} t)(\operatorname{Trg} t)$
$\mid \operatorname{Arr} t \Longrightarrow c n v(\operatorname{Trg} t)(\operatorname{Src} t)$
$\mid \llbracket c n v a b ; c n v b c \rrbracket \Longrightarrow c n v a c$
lemma cnv-refl:
assumes Ide a
shows cnv a a
using assms
by (metis Ide-iff-Src-self Ide-implies-Arr cnv.simps)
lemma cnv-sym:
shows $c n v a b \Longrightarrow c n v b a$
apply (induct rule: cnv.induct)
using cnv.intros(1-2)
apply auto[2]
using cnv.intros(3) by blast
lemma red-imp-cnv:
shows red $a b \Longrightarrow c n v a b$
using cnv.intros $(1,3)$ red.inducts by blast
end

```

We now define a locale that extends the residuation operation defined above to paths, using general results that have already been shown for paths in an RTS. In particular, we are taking advantage of the general proof of the Cube Lemma for residuation on paths.

Our immediate goal is to prove the Church-Rosser theorem, so we first prove a lemma that connects the reduction relation to paths. Later, we will prove many more facts in this locale, thereby developing a general framework for reasoning about reduction paths in the \(\lambda\)-calculus.
locale reduction-paths \(=\)
^: lambda-calculus
begin
sublocale \(\Lambda\) : rts \(\Lambda\).resid
by (simp add: \(\Lambda . i s\)-rts-with-joins rts-with-joins.axioms(1)) sublocale paths-in-weakly-extensional-rts \(\Lambda\).resid
sublocale paths-in-confluent-rts \(\Lambda\).resid
 paths-in-confluent-rts.intro
by blast
```

notation Λ.resid (infix \70)
notation .con (infix $\frown 50)$
notation $\Lambda . p r f x \quad($ infix $\lesssim 50)$
notation Λ.cong (infix $\sim 50)$
notation Resid (infix * ${ }^{*}$ * 70)
notation Resid1x (infix $\left.{ }^{1} \backslash * ~ 70\right) ~$
notation Residx1 (infix *\} { } ^ { 1 } 70)
notation con (infix * ${ }^{*} 50$)
notation prfx (infix *<* 50)
notation cong (infix *~* 50)
lemma red-iff:
shows Λ.red $a b \longleftrightarrow(\exists T$. Arr $T \wedge \operatorname{Src} T=a \wedge \operatorname{Trg} T=b)$
proof
show Λ.red $a b \Longrightarrow \exists T$. Arr $T \wedge \operatorname{Src} T=a \wedge \operatorname{Trg} T=b$
proof (induct rule: Λ.red.induct)
show $\wedge t . \Lambda . A r r t \Longrightarrow \exists T$. Arr $T \wedge \operatorname{Src} T=\Lambda . \operatorname{Src} t \wedge \operatorname{Trg} T=\Lambda$. $\operatorname{Trg} t$
by (metis Arr.simps(2) Srcs.simps(2) Srcs-simp ${ }_{P W E} \operatorname{Trg} . \operatorname{simps}(2)$ 1.trg-def

```

```

 show \(\wedge a b c . \llbracket \exists T\). Arr \(T \wedge \operatorname{Src} T=a \wedge \operatorname{Trg} T=b\);
 \(\exists T . A r r T \wedge \operatorname{Src} T=b \wedge \operatorname{Trg} T=c \rrbracket\)
 \(\Longrightarrow \exists T\). Arr \(T \wedge \operatorname{Src} T=a \wedge \operatorname{Trg} T=c\)
 by (metis Arr.simps(1) Arr-appendI \(I_{P W E}\) Srcs-append Srcs-simp \(P_{P W}\) Trgs-append
 Trgs-simp \(P_{P W}\) singleton-insert-inj-eq')
 qed
show $\exists T$. Arr $T \wedge \operatorname{Src} T=a \wedge \operatorname{Trg} T=b \Longrightarrow \Lambda$.red $a b$
proof -
have $\operatorname{Arr} T \Longrightarrow \Lambda$.red $(\operatorname{Src} T)(\operatorname{Trg} T)$ for T
proof (induct T)
show $\operatorname{Arr}[] \Longrightarrow$.red $(\operatorname{Src}[])(\operatorname{Trg}[])$
by auto
fix $t T$
assume ind: Arr $T \Longrightarrow$. red $(\operatorname{Src} T)(\operatorname{Trg} T)$
assume $\operatorname{Arr}: \operatorname{Arr}(t \# T)$
show Λ.red $(\operatorname{Src}(t \# T))(\operatorname{Trg}(t \# T))$
proof (cases $T=[]$)
show $T=[] \Longrightarrow$?thesis
using Arr arr-char Λ.red.intros(1) by simp
assume $T: T \neq[]$
have $\Lambda \cdot \operatorname{red}(\operatorname{Src}(t \# T))(\Lambda . \operatorname{Trg} t)$

```
```

 apply simp
 by (meson Arr Arr.simps(2) Con-Arr-self Con-implies-Arr(1) Con-initial-left
 \Lambda.arr-char \Lambda.red.intros(1))
 moreover have \Lambda.Trg t=Src T
 using Arr
 by (metis Arr.elims(2) Srcs-simp }\mp@subsup{P}{WE}{}T\mathrm{ \.arr-iff-has-target insert-subset
 \Lambda.targets-char_ list.sel(1) list.sel(3) singleton-iff)
 ultimately show ?thesis
 using ind
 by (metis (no-types, opaque-lifting) Arr Con-Arr-self Con-implies-Arr(2)
 Resid-cons(2) T Trg.simps(3) \Lambda.red.intros(2) neq-Nil-conv)
 qed
 qed
 thus \existsT.Arr T^Src T=a^ Trg T=b\Longrightarrow \Lambda.red ab
 by blast
 qed
 qed

```
end

\subsection*{3.2.7 The Church-Rosser Theorem}

\section*{context lambda-calculus \\ begin}
interpretation \(\Lambda x\) : reduction-paths .
theorem church-rosser:
shows \(c n v a b \Longrightarrow \exists c\). red \(a c \wedge\) red \(b c\)
proof (induct rule: cnv.induct)
show \(\wedge t\). Arr \(t \Longrightarrow \exists c\). red \((\operatorname{Src} t) c \wedge \operatorname{red}(\operatorname{Trg} t) c\)
by (metis Ide-Trg Ide-iff-Src-self Ide-iff-Trg-self Ide-implies-Arr red.intros(1))
thus \(\wedge t\). Arr \(t \Longrightarrow \exists c . \operatorname{red}(\operatorname{Trg} t) c \wedge \operatorname{red}(\operatorname{Src} t) c\)
by auto
show \(\bigwedge a b c . \llbracket c n v a b ; c n v b c ; \exists x\). red \(a x \wedge \operatorname{red} b x ; \exists y\). red \(b y \wedge\) red \(c y \rrbracket\) \(\Longrightarrow \exists z \cdot \operatorname{red} a z \wedge \operatorname{red} c z\)
proof -
fix \(a b c\)
assume ind1: \(\exists x\). red \(a x \wedge \operatorname{red} b x\) and ind2: \(\exists y\). red \(b y \wedge\) red c \(y\)
obtain \(x\) where \(x\) : red \(a x \wedge\) red \(b x\)
using ind1 by blast
obtain \(y\) where \(y\) : red b \(y \wedge\) red \(c y\)
using ind2 by blast
obtain T1 U1 where 1: \(\Lambda x . A r r T 1 \wedge \Lambda x . A r r U 1 \wedge \Lambda x . S r c T 1=a \wedge \Lambda x . S r c U 1=b \wedge\) \(\Lambda x . \operatorname{Trgs} T 1=\Lambda x\).Trgs \(U 1\)
using \(x\) ^x.red-iff [of a x] \(\Lambda\) x.red-iff [of b x] by fastforce
 \(\Lambda x . \operatorname{Trgs}\) T2 \(=\Lambda x\).Trgs UZ
using y \(\Lambda\) x.red-iff \([\) of \(b y] \Lambda x\).red-iff [of \(c y]\) by fastforce
```

 show \existse. red a e^ red ce
 proof -
 let ?T=T1 @ (\Lambdax.Resid T2 U1) and ?U = U2 @ (\Lambdax.Resid U1 T2)
 have 3: \Lambdax.Arr ?T ^ \Lambdax.Arr ? U ^ \Lambdax.Src ?T = a ^ \Lambdax.Src ?U = c
 using 1 2
 by (metis \Lambdax.Arr-appendI IWEE \Lambdax.Arr-has-Trg \Lambdax.Con-imp-Arr-Resid \Lambdax.Src-append
 \Lambdax.Src-resid \Lambdax.Srcs-simp PWE \Lambdax.Trgs.simps(1) \Lambdax.Trgs-simp PWE \Lambdax.arrI I
 \Lambdax.arr-append-imp-seq \Lambdax.confluence-ind singleton-insert-inj-eq')
 moreover have \Lambdax.Trgs ?T = \Lambdax.Trgs ? U
 using 12 3 \Lambdax.Srcs-simp PWE \Lambdax.Trgs-Resid-sym \Lambdax.Trgs-append \Lambdax.confluence-ind
 by presburger
 ultimately have }\existsTU.\Lambdax.Arr T^\Lambdax.Arr U\wedge\Lambdax.Src T = a ^\Lambdax.Src U = c^
 \Lambdax.Trgs T = \Lambdax.Trgs U
 by blast
 thus ?thesis
 using \Lambdax.red-iff \Lambdax.Arr-has-Trg by fastforce
 qed
 qed
 qed
corollary weak-diamond:
assumes red a b and red a b
obtains c where red b c and red b}\mp@subsup{}{}{\prime}
proof -
have cnv b b'
using assms
by (metis cnv.intros(1,3) cnv-sym red.induct)
thus ?thesis
using that church-rosser by blast
qed

```

As a consequence of the Church－Rosser Theorem，the collection of all reduction paths forms a coherent normal sub－RTS of the RTS of reduction paths，and on identities the congruence induced by this normal sub－RTS coincides with convertibility．The quotient of the \(\lambda\)－calculus RTS by this congruence is then obviously discrete：the only transitions are identities．
```

interpretation Red: normal-sub-rts Λx.Resid 〈Collect Λx.Arr〉
proof
show $\wedge t . t \in$ Collect Λx.Arr $\Longrightarrow \Lambda x$.arr t
by blast
show $\bigwedge a$. Λx.ide $a \Longrightarrow a \in$ Collect Λx.Arr
using Λx.Ide-char Λx.ide-char by blast
show $\Lambda u t . \llbracket u \in$ Collect Λx.Arr $; \Lambda x$.coinitial $t u \rrbracket \Longrightarrow \Lambda x$.Resid $u t \in$ Collect Λx.Arr
by (metis Λx.Con-imp-Arr-Resid Λx.Resid.simps(1) Λx.con-sym Λx.confluence ${ }_{P} \Lambda x$.ide-def
$\langle\bigwedge a$. Λx.ide $a \Longrightarrow a \in$ Collect Λx.Arr〉 mem-Collect-eq Λx.arr-resid-iff-con)
show $\Lambda u t . \llbracket u \in$ Collect Λx.Arr $; \Lambda x$.Resid $t u \in$ Collect Λx.Arr $\rrbracket \Longrightarrow t \in$ Collect Λx.Arr
by (metis Λx x.Arr.simps(1) Λx.Con-implies-Arr (1) mem-Collect-eq)
show $\Lambda u t . \llbracket u \in$ Collect Λx.Arr; Λx.seq $u t \rrbracket \Longrightarrow \exists v . \Lambda x$.composite-of $u t v$
by (meson Λx x.obtains-composite-of)

```
```

 show }\ut.\llbracketu\in\mathrm{ Collect \x.Arr; \x.seq t u\ \ \v. ^x.composite-of t u v
 by (meson \Lambdax.obtains-composite-of)
 qed
interpretation Red: coherent-normal-sub-rts \Lambdax.Resid \Collect \Lambdax.Arr` apply unfold-locales by (metis Red.Cong-closure-props(4) Red.Cong-imp-arr(2) \Lambdax.Con-imp-Arr-Resid \Lambdax.arr-resid-iff-con \Lambdax.con-char \Lambdax.sources-resid mem-Collect-eq) lemma cnv-iff-Cong: assumes ide a and ide b shows cnv a b \longleftrightarrow Red.Cong [a][b] proof assume 1: Red.Cong [a] [b] obtain UV where UV: \Lambdax.Arr U ^ \Lambdax.Arr V ^ Red.Cong ((\Lambdax.Resid [a] U) (\Lambdax.Resid [b] V) using }1\mathrm{ Red.Cong-def [of [a] [b]] by blast have red a (\Lambdax.Trg U) ^ red b (\Lambdax.TTg V) by (metis UV \Lambdax.Arr.simps(1) \Lambdax.Con-implies-Arr(1) \Lambdax.Resid-single-ide(2) \Lambdax.Src-resid \Lambdax.Trg.simps(2) assms(1-2) mem-Collect-eq reduction-paths.red-iff trg-ide) moreover have \Lambdax.Trg U = \Lambdax.Trg V using UV by (metis (no-types, lifting) Red.Congo-imp-con \Lambdax.Arr.simps(1) \Lambdax.Con-Arr-self \Lambdax.Con-implies-Arr(1) \Lambdax.Resid-single-ide(2) \Lambdax.Src-resid \Lambdax.cube \Lambdax.ide-def \Lambdax.resid-arr-ide assms(1) mem-Collect-eq) ultimately show cnv ab by (metis cnv-sym cnv.intros(3) red-imp-cnv) next assume 1:cnv a b obtain c where c: red a c^red b c using 1 church-rosser by blast obtain U where U: \Lambdax.Arr U ^\Lambdax.Src U =a^\Lambdax.Trg U = c using c \Lambdax.red-iff by blast obtain V where V: \Lambdax.Arr V ^\Lambdax.Src V = b^\Lambdax.Trg V = c using c \Lambdax.red-iff by blast have \Lambdax.Resid1x a }U=c\wedge\Lambdax.Resid1x b V = by (metis U V \Lambdax.Con-single-ide-ind \Lambdax.Ide.simps(2) \Lambdax.Resid1x-as-Resid \Lambdax.Resid-Ide-Arr-ind \Lambdax.Resid-single-ide(2) \Lambdax.Srcs-simp PWE \Lambdax.Trg.simps(2) \Lambdax.Trg-resid-sym \Lambdax.ex-un-Src assms(1-2) singletonD trg-ide) hence Red.Congo (\Lambdax.Resid [a] U) (\Lambdax.Resid [b] V) by (metis Red.Congo-reflexive U V \Lambdax.Con-single-ideI(1) \Lambdax.Resid1x-as-Resid \Lambdax.Srcs-simp \mp@subsup{p}{PE}{}}\\\mathrm{ \x.arr-resid \x.con-char assms(1-2) empty-set list.set-intros(1) list.simps(15)) thus Red.Cong [a] [b] using U V Red.Cong-def [of [a] [b]] by blast qed interpretation \Lambdaq: quotient-by-coherent-normal \Lambdax.Resid «Collect \Lambdax.Arr`

```
```

lemma quotient-by-cnv-is-discrete:
shows \Lambdaq.arr t}\longleftrightarrow\Lambda\Lambdaq.ide
by (metis Red.Cong-class-memb-is-arr \Lambdaq.arr-char \Lambdaq.ide-char' \Lambdax.arr-char
mem-Collect-eq subsetI)

```

\subsection*{3.2.8 Normalization}

A normal form is an identity that is not the source of any non-identity arrow.
```

definition $N F$
where $N F a \equiv$ Ide $a \wedge(\forall t$. Arr $t \wedge \operatorname{Src} t=a \longrightarrow$ Ide $t)$
lemma (in reduction-paths) path-from-NF-is-Ide:
assumes $\Lambda . N F a$
shows \llbracket Arr U; Src $U=a \rrbracket \Longrightarrow$ Ide U
proof (induct U, simp)
fix $u U$
assume ind: $\llbracket \operatorname{Arr} U ; \operatorname{Src} U=a \rrbracket \Longrightarrow I d e U$
assume $u U: \operatorname{Arr}(u \# U)$ and $a: \operatorname{Src}(u \# U)=a$
have Λ.Ide u
using assms a Λ. $N F$-def $u U$ by force
thus Ide $(u \# U)$
using a uU ind
by (metis Arr-consE Con-Arr-self Con-imp-eq-Srcs Con-initial-right Ide.simps(2)
Ide-consI Srcs.simps(2) Srcs-simp ${ }_{P W E}$ E .Ide-iff-Src-self Λ.Ide-implies-Arr
प.sources-char Λ.trg-ide Λ.ide-char
singleton-insert-inj-eq)
qed
lemma $N F$-reduct-is-trivial:
assumes $N F a$ and red $a b$
shows $a=b$
proof -
interpret Λx : reduction-paths .
have $\Lambda U . \llbracket \Lambda x$.Arr $U ; a \in \Lambda x$.Srcs $U \rrbracket \Longrightarrow \Lambda x$.Ide U
using assms Λx.path-from-NF-is-Ide
by (simp add: $\left.\Lambda x . S r c s-\operatorname{simp} p_{P W E}\right)$
thus ?thesis
using assms Λx.red-iff
by (metis Λx.Con-Arr-self Λx.Resid-Arr-Ide-ind Λx.Src-resid Λx.path-from-NF-is-Ide)
qed
lemma NF-unique:
assumes red $t u$ and red $t u^{\prime}$ and $N F u$ and $N F u^{\prime}$
shows $u=u^{\prime}$
using assms weak-diamond NF-reduct-is-trivial by metis
A term is normalizable if it is an identity that is reducible to a normal form.
definition normalizable

```
where normalizable \(a \equiv\) Ide \(a \wedge(\exists b\). red \(a b \wedge N F b)\)
end

\subsection*{3.3 Reduction Paths}

In this section we develop further facts about reduction paths for the \(\lambda\)-calculus.
```

context reduction-paths
begin

```

\subsection*{3.3.1 Sources and Targets}
lemma Srcs-simp \({ }_{\Lambda P}\) :
shows Arr \(t \Longrightarrow \operatorname{Srcs} t=\{\Lambda . \operatorname{Src}(h d t)\}\)
by (metis Arr-has-Src Srcs.elims list.sel(1) \(\left.\Lambda . s o u r c e s-c h a r_{\Lambda}\right)\)
lemma Trgs-simp \({ }_{\Lambda P}\) :
shows \(\operatorname{Arr} t \Longrightarrow \operatorname{Trgs} t=\{\Lambda . \operatorname{Trg}(\) last \(t)\}\)
by (metis \(\operatorname{Arr} . \operatorname{simps}(1)\) Arr-has-Trg Trgs.simps(2) Trgs-append append-butlast-last-id not-Cons-self2 \(\Lambda\).targets-char \(\Lambda_{\Lambda}\) )
lemma sources-single-Src [simp]:
assumes \(\Lambda\).Arr \(t\)
shows sources \([\Lambda . S r c t]=\) sources \([t]\)
using assms


lemma targets-single-Trg [simp]:
assumes \(\Lambda\).Arr \(t\)
shows targets \([\Lambda . \operatorname{Trg} t]=\) targets \([t]\)
using assms
by (metis (full-types) Resid.simps(3) conI \(P_{P}\) ム.Arr-Trg \(\Lambda . a r r-c h a r ~ \Lambda . r e s i d-A r r-S r c ~\) ム.resid-Src-Arr \(\Lambda\).arr-resid-iff-con targets-resid-sym)
lemma sources-single-Trg [simp]:
assumes \(\Lambda\).Arr \(t\)
shows sources \([\Lambda . \operatorname{Trg} t]=\) targets \([t]\)
using assms
by (metis \(\Lambda . I d e-\operatorname{Trg} \operatorname{Ide} . \operatorname{simps}(2)\) ideE ide-char sources-resid \(\Lambda\).ide-char targets-single-Trg)
lemma targets-single-Src [simp]:
assumes \(\Lambda\).Arr \(t\)
shows targets \([\Lambda . S r c t]=\) sources \([t]\)
using assms
by (metis \(\Lambda\). Arr-Src \(\Lambda\).Trg-Src sources-single-Src sources-single-Trg)
lemma single-Src-hd-in-sources:
assumes Arr T
shows \([\Lambda . S r c(h d T)] \in\) sources \(T\)
using assms
by (metis Arr.simps(1) Arr-has-Src Ide.simps(2) Resid-Arr-Src Srcs-simp \(P_{P}\)
प.source-is-ide conI \(I_{P}\) empty-set ide-char in-sourcesI \(\Lambda\).sources-char \({ }_{\Lambda}\) list.set-intros(1) list.simps(15))
lemma single-Trg-last-in-targets:
assumes \(\operatorname{Arr} T\)
shows \([\Lambda . \operatorname{Trg}(\) last \(T)] \in\) targets \(T\)
using assms targets-char \(P_{P}\) Arr-imp-arr-last Trgs-simp \({ }_{\Lambda P}\) \(\Lambda\).Ide-Trg by fastforce
lemma in-sources-iff:
assumes Arr T
shows \(A \in\) sources \(T \longleftrightarrow A^{*} \sim^{*}[\Lambda . S r c ~(h d T)]\)
using assms
by (meson single-Src-hd-in-sources sources-are-cong sources-cong-closed)
```

lemma in-targets-iff:
assumes Arr T
shows $B \in$ targets $T \longleftrightarrow B^{*} \sim^{*}[\Lambda . \operatorname{Trg}($ last $T)]$
using assms
by (meson single-Trg-last-in-targets targets-are-cong targets-cong-closed)
lemma seq-imp-cong-Trg-last-Src-hd:
assumes seq $T U$
shows $\Lambda . \operatorname{Trg}($ last $T) \sim \Lambda . \operatorname{Src}(h d U)$
using assms Arr-imp-arr-hd Arr-imp-arr-last Srcs-simp $P_{P E} \operatorname{Trgs-simp}_{P W E}$
प.cong-reflexive seq-char
by (metis Srcs-simp Λ_{P} Trgs-simp Λ_{P} К.Arr-Trg Λ.arr-char singleton-inject)
lemma sources-char ${ }_{\Lambda P}$:
shows sources $T=\left\{A\right.$. Arr $\left.T \wedge A^{*} \sim^{*}[\Lambda . \operatorname{Src}(h d T)]\right\}$
using in-sources-iff arr-char sources-char ${ }_{P}$ by auto
lemma targets-char ${ }_{\Lambda P}$:
shows targets $T=\left\{B . \operatorname{Arr} T \wedge B^{*} \sim^{*}[\Lambda . \operatorname{Trg}(\right.$ last $\left.T)]\right\}$
using in-targets-iff arr-char targets-char by auto
lemma Src-hd-eqI:
assumes $T^{*} \sim^{*} U$
shows $\Lambda . \operatorname{Src}(h d T)=\Lambda . \operatorname{Src}(h d U)$
using assms
by (metis Con-imp-eq-Srcs Con-implies-Arr(1) Ide.simps(1) Srcs-simp ${ }_{\Lambda P}$ ide-char
singleton-insert-inj-eq')
lemma Trg-last-eqI:
assumes $T^{*} \sim^{*} U$

```
```

shows $\Lambda . \operatorname{Trg}($ last $T)=\Lambda . \operatorname{Trg}($ last $U)$
proof -
have 1: $[\Lambda . \operatorname{Trg}($ last $T)] \in$ targets $T \wedge[\Lambda . \operatorname{Trg}($ last $U)] \in$ targets U
using assms
by (metis Con-implies-Arr(1) Ide.simps(1) ide-char single-Trg-last-in-targets)
have $\Lambda . \operatorname{cong}(\Lambda . \operatorname{Trg}($ last $T))(\Lambda . \operatorname{Trg}($ last $U))$
by (metis 1 Ide.simps(2) Resid.simps(3) assms con-char cong-implies-coterminal
coterminal-iff ide-char prfx-implies-con targets-are-cong)
moreover have $\Lambda . I d e(\Lambda . \operatorname{Trg}($ last $T)) \wedge \Lambda$.Ide $(\Lambda . \operatorname{Trg}($ last $U))$
using 1 Ide.simps(2) ide-char by blast
ultimately show ?thesis
using Λ.weak-extensionality by blast
qed
lemma Trg-last-Src-hd-eqI:
assumes seq $T U$
shows $\Lambda . \operatorname{Trg}($ last $T)=\Lambda . \operatorname{Src}(h d U)$
using assms Arr-imp-arr-hd Arr-imp-arr-last Λ.Ide-Src Λ.weak-extensionality Λ.Ide- Trg
seq-char seq-imp-cong-Trg-last-Src-hd
by force
lemma seqI ${ }_{\Lambda P}$ [intro]:
assumes Arr T and Arr U and $\Lambda . \operatorname{Trg}($ last $T)=\Lambda . S r c(h d U)$
shows seq $T U$
by (metis assms Arr-imp-arr-last Srcs-simp $\boldsymbol{\Lambda}_{P}$ К.arr-char $\Lambda . t a r g e t s-c h a r_{\Lambda}$
Trgs-simp P_{P} seq-char)
lemma $\operatorname{conI}_{\Lambda P}$ [intro]:
assumes arr T and $\operatorname{arr} U$ and $\Lambda . S r c(h d T)=\Lambda . S r c(h d U)$
shows $T^{*} \frown^{*} U$
using assms
by (simp add: Srcs-simp ${ }_{\Lambda P}$ arr-char con-char confluence-ind)

```

\section*{3．3．2 Mapping Constructors over Paths}
lemma Arr－map－Lam：
assumes Arr T
shows Arr（map A．Lam T）
proof－
interpret Lam：simulation \(\Lambda\) ．resid \(\Lambda\) ．resid 〈 \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(\boldsymbol{\lambda}[t]\) else \(\sharp\rangle\) using \(\Lambda . L a m\)－is－simulation by simp
interpret simulation Resid Resid using assms Lam．lifts－to－paths by blast
have map（ \(\lambda t\) ．if \(\Lambda\) ．Arr then \(\boldsymbol{\lambda}[t]\) else \(\sharp) T=\operatorname{map} \Lambda . \operatorname{Lam} T\) using assms set－Arr－subset－arr by fastforce
thus ？thesis
using assms preserves－reflects－arr［of T］arr－char by（simp add：\(\langle\operatorname{map}(\lambda t\) ．if \(\Lambda\). Arr \(t\) then \(\boldsymbol{\lambda}[t]\) else \(\sharp) T=\operatorname{map}\) К．Lam \(T \succ)\)
qed
lemma Arr－map－App1：
assumes \(\Lambda\) ．Ide \(b\) and Arr \(T\)
shows \(\operatorname{Arr}(\operatorname{map}(\lambda t . t \circ b) T)\)
proof－
interpret App1：simulation \(\Lambda\) ．resid \(\Lambda\) ．resid 〈 \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(t \circ b\) else \(\sharp\rangle\) using assms \(\Lambda\) ．App－is－simulation1［of b］by simp
interpret simulation Resid Resid \(\langle\lambda T\) ．if Arr \(T\) then map（ \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(t \circ b\) else \(\sharp\) ）\(T\) else［］\(\rangle\) using assms App1．lifts－to－paths by blast
have map（ \(\lambda\) t．if \(\Lambda\) ．arr \(t\) then \(t \circ b\) else \(\sharp) T=\operatorname{map}(\lambda t . t \circ b) T\) using assms set－Arr－subset－arr by auto
thus ？thesis
using assms preserves－reflects－arr arr－char by（metis（mono－tags，lifting））
qed
lemma Arr－map－App2：
assumes \(\Lambda\) ．Ide \(a\) and Arr T
shows \(\operatorname{Arr}(\operatorname{map}(\Lambda . A p p a) T)\)
proof－
interpret App2：simulation \(\Lambda\) ．resid \(\Lambda\) ．resid 〈 \(\lambda\) ．if \(\Lambda\) ．arr \(u\) then \(a \circ u\) else \(\sharp\rangle\) using assms \(\Lambda\) ．App－is－simulation2 by simp
interpret simulation Resid Resid
\(\langle\lambda T\) ．if Arr \(T\) then map（ \(\lambda u\) ．if \(\Lambda\) ．arr \(u\) then \(a \circ u\) else \(\sharp\) ）\(T\) else［］〉 using assms App2．lifts－to－paths by blast
have map（ \(\lambda u\) ．if \(\Lambda\) ．arr \(u\) then \(a \circ u\) else \(\sharp) T=\operatorname{map}(\lambda u . a \circ u) T\) using assms set－Arr－subset－arr by auto
thus ？thesis
using assms preserves－reflects－arr arr－char by（metis（mono－tags，lifting））
qed
interpretation \(\Lambda_{\text {Lam }}:\) sub－rts \(\Lambda\). resid \(\langle\lambda t . \Lambda . A r r t \wedge \Lambda . i s\)－Lam \(t\rangle\)
proof
show \(\wedge t\) ． ．Arr \(t \wedge \Lambda\) ．is－Lam \(t \Longrightarrow\) L．arr \(t\)
by blast
show \(\wedge t . \Lambda\). Arr \(t \wedge \Lambda . i s-L a m t \Longrightarrow \Lambda\) ．sources \(t \subseteq\{t . \Lambda . A r r t \wedge \Lambda . i s-L a m t\}\) by auto
show \(\llbracket \Lambda\) ．Arr \(t \wedge \Lambda . i s-L a m t ; \Lambda . A r r u \wedge \Lambda . i s-L a m u ; \Lambda . \operatorname{con} t u \rrbracket\) \(\Longrightarrow \Lambda \operatorname{Arr}(t \backslash u) \wedge \Lambda . i s-\operatorname{Lam}(t \backslash u)\)
for \(t u\)
apply（cases \(t\) ；cases \(u\) ）
apply simp－all
using ．Coinitial－resid－resid
by presburger
qed
interpretation un-Lam: simulation \(\Lambda_{\text {Lam }}\).resid \(\Lambda\).resid \(\left\langle\lambda t\right.\). if \(\Lambda_{\text {Lam }}\).arr \(t\) then \(\Lambda\).un-Lam \(t\) else \(\left.\sharp\right\rangle\)
proof
let ? un-Lam \(=\lambda\) t. if \(\Lambda_{\text {Lam }}\).arr \(t\) then \(\Lambda\).un-Lam \(t\) else \(\sharp\)
show \(\wedge t\). \(\neg \Lambda_{\text {Lam }}\).arr \(t \Longrightarrow\) ?un-Lam \(t=\Lambda\).null by auto
show \(\Lambda t u . \Lambda_{\text {Lam }} \cdot \operatorname{con} t u \Longrightarrow \Lambda \cdot \operatorname{con}(? u n-L a m t)(? u n-L a m u)\) by auto
show \(\wedge t u . \Lambda_{\text {Lam }} \cdot \operatorname{con} t u \Longrightarrow\) ?un-Lam \(\left(\Lambda_{\text {Lam }}\right.\).resid \(\left.t u\right)=\) ?un-Lam \(t \backslash\) ?un-Lam \(u\) using \(\Lambda_{\text {Lam }}\).resid-closed \(\Lambda_{\text {Lam }}\).resid-def by auto
qed
lemma Arr-map-un-Lam:
assumes Arr \(T\) and set \(T \subseteq\) Collect \(\Lambda\).is-Lam
shows Arr (map К.un-Lam T)
proof -
have map ( \(\lambda\) t. if \(\Lambda_{\text {Lam. }}\).arr \(t\) then \(\Lambda\).un-Lam \(t\) else \(\sharp\) ) \(T=\) map \(\Lambda\).un-Lam \(T\) using assms set-Arr-subset-arr by auto
thus ?thesis
using assms
by (metis (no-types, lifting) \(\Lambda_{\text {Lam. }}\) path-reflection \(\Lambda . a r r\)-char mem-Collect-eq set-Arr-subset-arr subset-code(1) un-Lam.preserves-paths)
qed
interpretation \(\Lambda_{A p p}\) : sub-rts \(\Lambda\).resid \(\langle\lambda t\). \(\Lambda . A r r t \wedge \Lambda . i s-A p p t\rangle\)
proof
show \(\wedge t . \Lambda . A r r t \wedge \Lambda . i s-A p p t \Longrightarrow \Lambda\).arr \(t\) by blast
show \(\Lambda t . \Lambda . A r r t \wedge \Lambda . i s-A p p t \Longrightarrow \Lambda . s o u r c e s t \subseteq\{t . \Lambda . A r r t \wedge \Lambda . i s-A p p t\}\) by auto
show \(\llbracket \Lambda . A r r t \wedge \Lambda . i s-A p p t ; \Lambda . A r r ~ u \wedge \Lambda . i s-A p p u ; \Lambda . c o n t u \rrbracket\) \(\Longrightarrow \Lambda \cdot \operatorname{Arr}(t \backslash u) \wedge \Lambda . i s-\operatorname{App}(t \backslash u)\)
for \(t u\)
using \(\Lambda\).Arr-resid
by (cases \(t\); cases u) auto
qed
interpretation un-App1: simulation \(\Lambda_{A p p}\).resid \(\Lambda\).resid
\(\left\langle\lambda t\right.\). if \(\Lambda_{\text {App }}\).arr \(t\) then \(\Lambda\).un-App 1 telse \(\left.\sharp\right\rangle\)
proof
let ?un-App1 \(=\lambda\) t. if \(\Lambda_{A p p}\).arr \(t\) then \(\Lambda\).un-App1 \(t\) else \(\sharp\)
show \(\Lambda t . \neg \Lambda_{\text {App }}\).arr \(t \Longrightarrow\) ?un-App1 \(t=\Lambda\).null
by auto
show \(\Lambda t u . \Lambda_{A p p} \cdot \operatorname{con} t u \Longrightarrow \Lambda . c o n(? u n-A p p 1 t)(? u n-A p p 1 u)\)
by auto
show \(\Lambda_{A p p}\).con \(t u \Longrightarrow\) ?un-App1 \(\left(\Lambda_{\text {App }}\right.\).resid \(\left.t u\right)=\) ?un-App1 \(t \backslash\) ?un-App1 \(u\) for \(t u\)
using \(\Lambda_{\text {App }}\).resid-def \(\Lambda\).Arr-resid
by (cases \(t\); cases \(u\) ) auto
qed
interpretation un-App2: simulation \(\Lambda_{\text {App }}\).resid \(\Lambda\).resid
\[
\left\langle\lambda t \text {. if } \Lambda_{A p p} \text {.arr } t \text { then } \Lambda \text {.un-App2 } t \text { else } \sharp\right\rangle
\]
proof
let ?un-App2 \(=\lambda t\). if \(\Lambda_{\text {App }}\).arr \(t\) then \(\Lambda\).un-App2 \(t\) else \(\sharp\)
show \(\Lambda t\). \(\neg \Lambda_{\text {App }}\).arr \(t \Longrightarrow\) ?un-App2 \(t=\Lambda\).null
by auto
show \(\Lambda t u . \Lambda_{A p p} \cdot \operatorname{con} t u \Longrightarrow\) 亿.con (?un-App2t) (?un-App2 \(\left.u\right)\)
by auto
show \(\Lambda_{A p p}\).con \(t u \Longrightarrow\) ?un-App2 ( \(\Lambda_{A p p}\). resid \(\left.t u\right)=\) ?un-App2 \(t \backslash\) ?un-App2 \(u\) for \(t u\)
using \(\Lambda_{\text {App }}\).resid-def \(\Lambda\).Arr-resid
by (cases \(t\); cases \(u\) ) auto
qed
lemma Arr-map-un-App1:
assumes Arr \(T\) and set \(T \subseteq\) Collect \(\Lambda . i s-A p p\)
shows \(\operatorname{Arr}\) (map \(\Lambda\).un-App1 T)
proof -
interpret \(P_{\text {App }}\) : paths-in-rts \(\Lambda_{A p p}\).resid
interpret un-App1: simulation \(P_{\text {App }}\).Resid Resid
\(\left\langle\lambda T\right.\). if \(P_{A p p} . A r r T\) then
map \(\left(\lambda t\right.\). if \(\Lambda_{A p p}\).arr \(t\) then \(\Lambda . u n-A p p 1 t\) else \(\left.\sharp\right) T\) else []>
using un-App1.lifts-to-paths by simp

using assms set-Arr-subset-arr by auto
have 2: \(P_{A p p}\). Arr \(T\)
using assms set-Arr-subset-arr \(\Lambda_{\text {App }}\).path-reflection [of T] by blast
hence \(\operatorname{arr}\left(\right.\) if \(P_{A p p} . A r r ~ T\) then map ( \(\lambda t\). if \(\Lambda_{\text {App }}\).arr \(t\) then \(\Lambda\).un-App1 \(t\) else \(\sharp\) ) Telse []) using un-App1.preserves-reflects-arr [of T] by blast
hence \(\operatorname{Arr}\) (if \(P_{A p p}\).Arr \(T\) then map ( \(\lambda\) t. if \(\Lambda_{\text {App }}\).arr \(t\) then \(\Lambda\).un-App1 \(t\) else \(\sharp\) ) \(T\) else []) using arr-char by auto
hence \(\operatorname{Arr}\) (if \(P_{A p p}\).Arr \(T\) then map \(\Lambda . u n-A p p 1 T\) else [])
using 1 by metis
thus ?thesis
using 2 by \(\operatorname{simp}\)
qed
lemma Arr-map-un-App2:
assumes Arr \(T\) and set \(T \subseteq\) Collect \(\Lambda . i s-A p p\)
shows \(\operatorname{Arr}\) (map \(\Lambda\).un-App2 T)
proof -
interpret \(P_{A p p}:\) paths-in-rts \(\Lambda_{A p p}\).resid
interpret un-App2: simulation \(P_{A p p}\).Resid Resid
\(\left\langle\lambda T\right.\). if \(P_{A p p} . A r r T\) then
```

 map (\lambdat. if \Lambda \Lambda App.arr t then \Lambda.un-App2 t else \sharp)T
 else []
 using un-App2.lifts-to-paths by simp
 have 1: map (}\lambdat\mathrm{ . if }\mp@subsup{\Lambda}{App}{\mathrm{ .arr t then \.un-App2 t else }\sharp)T=map \Lambda.un-App2 T
 using assms set-Arr-subset-arr by auto
 have 2: P
 using assms set-Arr-subset-arr \Lambda \pp.path-reflection [of T] by blast
 hence arr (if P App.Arr T then map (\lambdat. if \Lambda \Lambda App.arr t then \Lambda.un-App2 t else \sharp)T else [])
 using un-App2.preserves-reflects-arr [of T] by blast
 hence Arr (if P App.Arr T then map (}\lambdat\mathrm{ . if }\mp@subsup{\Lambda}{App}{*}\mathrm{ .arr t then \.un-App2 t else #)T else [])
 using arr-char by blast
 hence Arr (if P App.Arr T then map \Lambda.un-App2 T else [])
 using 1 by metis
 thus ?thesis
 using 2 by simp
 qed
lemma map-App-map-un-App1:
shows \llbracketArr U; set U\subseteqCollect \Lambda.is-App; \Lambda.Ide b; \Lambda.un-App2'set U\subseteq{b}\rrbracket\Longrightarrow
map (\lambdat. \Lambda.App t b) (map \Lambda.un-App1 U) = U
by (induct U) auto
lemma map-App-map-un-App2:
shows \llbracketArr U; set U\subseteqCollect \Lambda.is-App; \Lambda.Ide a; \Lambda.un-App1'set U\subseteq{a}\rrbracket\Longrightarrow
map (\Lambda.App a) (map \Lambda.un-App2 U)=U
by (induct U) auto
lemma map-Lam-Resid:
assumes coinitial $T U$
shows map $\Lambda . \operatorname{Lam}\left(T^{*} \backslash * U\right)=\operatorname{map} \Lambda . \operatorname{Lam} T^{*} \backslash{ }^{*} \operatorname{map} \Lambda . \operatorname{Lam} U$
proof -
interpret Lam: simulation Λ.resid Λ.resid $\langle\lambda t$. if Λ.arr t then $\boldsymbol{\lambda}[t]$ else $\sharp\rangle$ using $\Lambda . L a m$-is-simulation by simp
interpret Lamx: simulation Resid Resid
$\langle\lambda T$. if Arr T then
map (λ t. if Λ.arr t then $\boldsymbol{\lambda}[t]$ else \sharp) T else []>
using Lam.lifts-to-paths by simp
have ΛT. Arr $T \Longrightarrow$ map (λ. if Λ.arr t then $\boldsymbol{\lambda}[t]$ else \sharp) $T=\operatorname{map} \Lambda$.Lam T using set-Arr-subset-arr by auto
moreover have $\operatorname{Arr}\left(T^{*} \backslash * U\right)$
using assms confluence P_{P} Con-imp-Arr-Resid con-char by force
moreover have $T^{*} \frown^{*} U$
using assms confluence by simp
moreover have $\operatorname{Arr} T \wedge \operatorname{Arr} U$
using assms arr-char by auto
ultimately show ?thesis
using assms Lamx.preserves-resid [of T U] by presburger
qed

```
lemma map－App1－Resid：
assumes \(\Lambda\) ．Ide \(x\) and coinitial \(T U\)
shows map \((\Lambda . A p p x)\left(T^{*} \backslash * U\right)=\operatorname{map}(\Lambda . A p p x) T^{*} \backslash * \operatorname{map}(\Lambda . A p p x) U\)
proof－
interpret App：simulation \(\Lambda\) ．resid \(\Lambda\) ．resid 〈 \(\lambda t\) ．if 人．arr \(t\) then \(x \circ t\) else \(\sharp\) 〉 using assms \(\Lambda\) ．App－is－simulation2 by simp
interpret Appx：simulation Resid Resid
\(\langle\lambda T\) ．if Arr \(T\) then map（ \(\lambda\) t．if \(\Lambda\) ．arr \(t\) then \(x \circ t\) else \(\sharp) T\) else［］＞ using App．lifts－to－paths by simp
have \(\wedge T\) ．Arr \(T \Longrightarrow \operatorname{map}(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(x \circ t\) else \(\sharp) T=\operatorname{map}(\Lambda . A p p x) T\) using set－Arr－subset－arr by auto
moreover have \(\operatorname{Arr}\left(T^{*} \backslash * U\right)\) using assms confluence \(P_{P}\) Con－imp－Arr－Resid con－char by force
moreover have \(T^{*} \frown^{*} U\) using assms confluence by simp
moreover have Arr \(T \wedge\) Arr \(U\) using assms arr－char by auto
ultimately show ？thesis using assms Appx．preserves－resid［of T U］by presburger
qed
lemma map－App2－Resid：
assumes \(\Lambda\) ．Ide \(x\) and coinitial \(T U\)
shows map \((\lambda t . t \circ x)\left(T^{*} \backslash * U\right)=\operatorname{map}(\lambda t . t \circ x) T^{*} \backslash * \operatorname{map}(\lambda t . t \circ x) U\)
proof－
interpret App：simulation \(\Lambda\) ．resid \(\Lambda\) ．resid 〈 \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(t \circ x\) else \(\sharp\rangle\) using assms \(\Lambda\) ．App－is－simulation1 by simp
interpret Appx：simulation Resid Resid
〈 \(\lambda T\) ．if Arr \(T\) then map（ \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(t \circ x\) else \(\sharp\) ）\(T\) else［］ using App．lifts－to－paths by simp
have \(\Lambda T\) ．Arr \(T \Longrightarrow\) map（ \(\lambda t\) ．if \(\Lambda\) ．arr \(t\) then \(t \circ x\) else \(\sharp\) ）\(T=\operatorname{map}(\lambda t . t \circ x) T\) using set－Arr－subset－arr by auto
moreover have \(\operatorname{Arr}\left(T^{*} \backslash^{*} U\right)\) using assms confluence \(P_{P}\) Con－imp－Arr－Resid con－char by force
moreover have \(T^{*} \frown^{*} U\) using assms confluence by simp
moreover have Arr \(T \wedge \operatorname{Arr} U\) using assms arr－char by auto
ultimately show ？thesis using assms Appx．preserves－resid［of T U］by presburger
qed
lemma cong－map－Lam：
shows \(T^{*} \sim^{*} U \Longrightarrow\) map \(\Lambda . \operatorname{Lam} T^{*} \sim^{*}\) map \(\Lambda . \operatorname{Lam} U\)
apply（induct \(U\) arbitrary：\(T\) ）
apply（simp add：ide－char）
by（metis map－Lam－Resid cong－implies－coinitial cong－reflexive ideE map－is－Nil－conv Con－imp－Arr－Resid arr－char）
```

lemma cong-map-App1:
shows $\llbracket \Lambda$.Ide $x ; T^{*} \sim^{*} U \rrbracket \Longrightarrow \operatorname{map}(\Lambda . A p p x) T^{*} \sim^{*} \operatorname{map}(\Lambda . A p p x) U$
apply (induct U arbitrary: $x T$)
apply (simp add: ide-char)
apply (intro conjI)
by (metis Nil-is-map-conv arr-resid-iff-con con-char con-imp-coinitial
cong-reflexive ideE map-App1-Resid)+

```
```

lemma cong-map-App2:
shows $\llbracket \Lambda$.Ide $x ; T^{*} \sim^{*} U \rrbracket \Longrightarrow \operatorname{map}(\lambda X . X \circ x) T^{*} \sim^{*} \operatorname{map}(\lambda X . X \circ x) U$
apply (induct U arbitrary: x T)
apply (simp add: ide-char)
apply (intro conjI)
by (metis Nil-is-map-conv arr-resid-iff-con con-char cong-implies-coinitial
cong-reflexive ide-def arr-char ideE map-App2-Resid)+

```

\subsection*{3.3.3 Decomposition of 'App Paths'}

The following series of results is aimed at showing that a reduction path, all of whose transitions have \(A p p\) as their top-level constructor, can be factored up to congruence into a reduction path in which only the "rator" components are reduced, followed by a reduction path in which only the "rand" components are reduced.
```

lemma orthogonal-App-single-single
assumes Λ.Arr t and Λ.Arr u
shows $[\Lambda . \operatorname{Src} t \circ u]^{*} \backslash^{*}[t \circ \Lambda . \operatorname{Src} u]=[\Lambda . \operatorname{Trg} t \circ u]$
and $[t \circ \Lambda . \operatorname{Src} u]^{*} \backslash *[\Lambda . \operatorname{Src} t \circ u]=[t \circ \Lambda . \operatorname{Trg} u]$
using assms arr-char Λ.Arr-not-Nil by auto
lemma orthogonal-App-single-Arr:
shows $\llbracket \operatorname{Arr}[t] ; \operatorname{Arr} U \rrbracket \Longrightarrow$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c t)) U^{*} \backslash *[t \circ \Lambda . \operatorname{Src}(h d U)]=\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t)) U \wedge$
$[t \circ \Lambda . \operatorname{Src}(h d U)]^{*} \backslash^{*} \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c t)) U=[t \circ \Lambda . \operatorname{Trg}($ last $U)]$
proof (induct U arbitrary: t)
show $\wedge t . \llbracket \operatorname{Arr}[t] ; \operatorname{Arr}[] \rrbracket \Longrightarrow$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t))[]^{*} \backslash *[t \circ \Lambda . \operatorname{Src}(h d[])]=\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t))[] \wedge$
$[t \circ \Lambda . \operatorname{Src}(h d[])]^{*}{ }^{*} \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t))[]=[t \circ \Lambda . \operatorname{Trg}($ last []$)]$
by fastforce
fix $t u U$
assume ind: $\wedge t . \llbracket \operatorname{Arr}[t] ; \operatorname{Arr} U \rrbracket \Longrightarrow$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t)) U^{*} \backslash *[t \circ \Lambda . S r c(h d U)]=$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t)) U \wedge$
$[t \circ \Lambda . \operatorname{Src}(h d U)]^{*} \backslash^{*} \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c t)) U=[t \circ \Lambda . \operatorname{Trg}($ last $U)]$
assume t : Arr $[t]$
assume $u U: \operatorname{Arr}(u \# U)$
show map $(\Lambda . \operatorname{App}(\Lambda . S r c t))(u \# U)^{*} \backslash *[t \circ \Lambda . S r c(h d(u \# U))]=$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t))(u \# U) \wedge$
$[t \circ \Lambda . \operatorname{Src}(h d(u \# U))]^{*}{ }^{*} \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c t))(u \# U)=$
$[t \circ \Lambda . \operatorname{Trg}(\operatorname{last}(u \# U))]$

```
```

proof (cases $U=[]$)
show $U=[] \Longrightarrow$?thesis
using $t u U$ orthogonal-App-single-single by simp
assume $U: U \neq[]$
have 2: coinitial ([$\Lambda . \operatorname{Src} t \circ u]$ @ map $(\Lambda . \operatorname{App}(\Lambda . S r c t)) U)[t \circ \Lambda . S r c u]$
proof
show 3: arr ([$\Lambda . \operatorname{Src} t \circ u] @ \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t)) U)$
using $t u U$
by (metis Arr-iff-Con-self Arr-map-App2 Con-rec(1) append-Cons append-Nil arr-char

```

```

 show sources \(([\Lambda . S r c t \circ u] @ \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c t)) U)=\operatorname{sources}[t \circ \Lambda . S r c u]\)
 proof -
 have seq \([\Lambda . S r c t \circ u](\operatorname{map}(\Lambda . A p p(\Lambda . S r c t)) U)\)
 using U 3 arr-append-imp-seq by force
 thus?thesis
 using sources-append \([\) of \([\Lambda . S r c t \circ u] \operatorname{map}(\Lambda . A p p(\Lambda . S r c t)) U]\)
 sources-single-Src [of \(\Lambda . S r c t \circ u\)]
 sources-single-Src [of \(t \circ\) (.Src \(u\)]
 using arr-char \(t\)
 by (simp add: seq-char)
 qed
 qed
 show ?thesis
 proof
 show 4: map \((\Lambda . \operatorname{App}(\Lambda . S r c t))(u \# U)^{*} \backslash *[t \circ \Lambda . \operatorname{Src}(h d(u \# U))]=\)
 \(\operatorname{map}(\Lambda . A p p(\Lambda . \operatorname{Trg} t))(u \# U)\)
 proof -
 have map (\(\Lambda . \operatorname{App}(\Lambda . S r c t))(u \# U)^{*} \backslash^{*}[t \circ \Lambda . \operatorname{Src}(h d(u \# U))]=\)
 \(([\Lambda . \operatorname{Src} t \circ u] @ \operatorname{map}(\Lambda . A p p(\Lambda . S r c t)) U)^{*} \backslash^{*}[t \circ \Lambda . S r c u]\)
 by \(\operatorname{simp}\)
 also have \(\ldots=[\Lambda . \operatorname{Src} t \circ u]^{*} \backslash *[t \circ \Lambda . \operatorname{Src} u] @\)
 map \((\Lambda . \operatorname{App}(\Lambda . S r c t)) U^{*} \backslash^{*}\left([t \circ \Lambda . S r c u]^{*} \backslash^{*}[\Lambda . S r c t \circ u]\right)\)
 by (meson 2 Resid-append(1) con-char confluence not-Cons-self2)
 also have \(\ldots=[\Lambda . \operatorname{Trg} t \circ u] @ \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t)) U^{*} \backslash^{*}[t \circ \Lambda . \operatorname{Trg} u]\)
 using \(t\). Arr-not-Nil
 by (metis Arr-imp-arr-hd \(\Lambda\).arr-char list.sel(1) orthogonal-App-single-single(1)
 orthogonal-App-single-single(2) \(u U\))
 also have \(\ldots=[\Lambda . \operatorname{Trg} t \circ u] @ \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t)) U\)
 proof -
 have \(\Lambda . \operatorname{Src}(h d U)=\Lambda . \operatorname{Trg} u\)
 using \(U u U\) Arr.elims(2) Srcs-simp \({ }_{\Lambda} P\) by force
 thus ?thesis
 using \(t u U\) ind Arr.elims(2) by fastforce
 qed
 also have \(\ldots=\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg} t))(u \# U)\)
 by auto
 finally show ?thesis by blast
 qed
 show \([t \circ \Lambda . \operatorname{Src}(h d(u \# U))]{ }^{*} \backslash * \operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Src} t))(u \# U)=\)
    ```
```

 [t ○ \Lambda. Trg (last (u#U))]
 proof -
 have [t\circ \.Src (hd (u#U))]** map (\Lambda.App (\Lambda.Src t)) (u#U)=
 ([t\circ \.Src (hd (u#U))]** [\Lambda.Src t ○ u]) ** map (\Lambda.App (\Lambda.Src t)) U
 by (metis U 4 Con-sym Resid-cons(2) list.distinct(1) list.simps(9) map-is-Nil-conv)
 also have ... = [t\circ \Lambda.Trg u] ** map (\Lambda.App (\Lambda.Src t)) U
 by (metis Arr-imp-arr-hd lambda-calculus.arr-char list.sel(1)
 orthogonal-App-single-single(2) tuU)
 also have ... = [t ○ \Lambda.Trg (last (u#U))]
 by (metis 2t U uU Con-Arr-self Con-cons(1) Con-implies-Arr(1) Trg-last-Src-hd-eqI
 arr-append-imp-seq coinitialE ind \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.lambda.inject(3) last.simps list.distinct(1) list.map-sel(1) map-is-Nil-conv)
 finally show ?thesis by blast
 qed
 qed
 qed
 qed
lemma orthogonal-App-Arr-Arr:
shows \llbracketArr T; Arr U\rrbracket\Longrightarrow
map (\Lambda.App (\Lambda.Src (hd T))) U ** map (\lambdaX. \Lambda.App X (\Lambda.Src (hd U)))T =
map (\Lambda.App (\Lambda.Trg (last T))) U ^
map (\lambdaX.X o \Lambda.Src (hd U)) T*** map (\Lambda.App (\Lambda.Src (hd T))) U =
map (\lambdaX. X ○ \Lambda.Trg (last U)) T
proof (induct T arbitrary: U)
show \U.\llbracketArr []; Arr U\rrbracket
\Longrightarrow \operatorname { m a p } (\Lambda . A p p ~ (\Lambda . S r c ~ (h d ~ []))) ~ U ~ * \ * ~ m a p ~ (\lambda X . ~ X ~ \circ ~ \Lambda . S r c ~ (h d ~ U)) ~ [] ~ = ~
map (\Lambda.App (\Lambda.Trg (last []))) U^
map (\lambdaX. X ○ \Lambda.Src (hd U)) [] ** map (\Lambda.App (\Lambda.Src (hd []))) U =
map (\lambdaX. X ○ \Lambda.Trg (last U)) []
by simp
fix }tT
assume ind: \U.\llbracketArr T; Arr U\rrbracket
map (\Lambda.App (\Lambda.Src (hd T))) U **
map (\lambdaX. \Lambda.App X (\Lambda.Src (hd U))) T=
map (\Lambda.App (\Lambda.Trg (last T))) U ^
map (\lambdaX. X o \Lambda.Src (hd U)) T*\`* map (\Lambda.App (\Lambda.Src (hd T))) U =
map (\lambdaX. X ○ \Lambda.Trg (last U))T
assume tT: Arr (t \# T)
assume U: Arr U
show map (\Lambda.App (\Lambda.Src (hd (t\# T)))) U * * map (\lambdaX. X ○ \Lambda.Src (hd U)) (t\# T)=
map (\Lambda.App (\Lambda.Trg (last (t \# T)))) U ^
map (\lambdaX. X o \Lambda.Src (hd U)) (t\# T) ** map (\Lambda.App (\Lambda.Src (hd (t \# T)))) U =
map (\lambdaX. X ○ \Lambda.Trg (last U)) (t\# T)
proof (cases T= [])
show }T=[]\Longrightarrow\mathrm{ ?thesis
using tT U
by (simp add: orthogonal-App-single-Arr)
assume T:T\not=[]

```
```

have 1: Arr T
using T tT Arr-imp-Arr-tl by fastforce
have 2: \Lambda.Src (hd T) = \Lambda.Trg t
using tT T Arr.elims(2) Srcs-simp}\mp@subsup{\Lambda}{P}{}\mathrm{ by force
show ?thesis
proof
show 3: map (\Lambda.App (\Lambda.Src (hd (t\# T)))) U **
map}(\lambdaX.X o \Lambda.Src (hd U)) (t\# T)
map (\Lambda.App (\Lambda.Trg (last (t \# T)))) U
proof -
have map (\Lambda.App (\Lambda.Src (hd (t\# T)))) U*** map (\lambdaX. X ○ \Lambda.Src (hd U)) (t \# T)
map (\Lambda.App (\Lambda.Src t)) U **
([\Lambda.App t (\Lambda.Src (hd U))] @ map (\lambdaX. X ○ \Lambda.Src (hd U)) T)
using tT U by simp
also have ... = (map (\Lambda.App (\Lambda.Src t)) U ** [t ○ \Lambda.Src (hd U)]) **
map (\lambdaX. X o \Lambda.Src (hd U)) T
using tT U Resid-append(2)
by (metis Con-appendI(2) Resid.simps(1) T map-is-Nil-conv not-Cons-self2)
also have ... = map (\Lambda.App (\Lambda.Trg t)) U ** map (}\lambda\mathrm{ \X. X ○ \.Src (hd U))T
using tT U orthogonal-App-single-Arr Arr-imp-arr-hd by fastforce
also have ... = map (\Lambda.App (\Lambda.Trg (last (t \# T)))) U
using tT U 1 2 ind by auto
finally show ?thesis by blast
qed
show map (\lambdaX. X ○ \Lambda.Src (hd U)) (t\# T) **
map (\Lambda.App (\Lambda.Src (hd (t \# T)))) U =
map (\lambdaX. X ○ \Lambda.Trg (last U)) (t \# T)
proof -
have map (}\lambdaX.X\circ\Lambda.Src (hd U)) (t\#T) ****
map (\Lambda.App (\Lambda.Src (hd (t\# T)))) U =
([t\circ \Lambda.Src (hd U)]@ map (\lambdaX. X ○ \Lambda.Src (hd U)) T) **
map (\Lambda.App (\Lambda.Src t)) U
using tT U by simp
also have ... = ([t\circ \.Src (hd U)] ** map (\Lambda.App (\Lambda.Src t)) U)@
(map (\lambdaX. X ○ \Lambda.Src (hd U)) T **
(map (\Lambda.App (\Lambda.Src t)) U ** [t o \Lambda.Src (hd U)]))
using tT U 3 Con-sym
Resid-append(1)
[of [t \circ \Lambda.Src (hd U)] map (}\lambda\mathrm{ X. X ○ \.Src (hd U)) T
map (\Lambda.App (\Lambda.Src t)) U]
by fastforce
also have ... = [t ○ \Lambda.Trg (last U)] @
map (\lambdaX. X o \Lambda.Src (hd U)) T*** map (\Lambda.App (\Lambda.Trg t)) U
using tT U Arr-imp-arr-hd orthogonal-App-single-Arr by fastforce
also have ... = [t ○ \Lambda.Trg (last U)]@ map (\lambdaX.X ○ \Lambda.Trg (last U))T
using tT U 1 2 ind by presburger
also have ... = map (\lambdaX. X\circ . .Trg (last U)) (t\# T)
by simp

```
```

 finally show ?thesis by blast
 qed
 qed
 qed
 qed

```
lemma orthogonal-App-cong:
assumes \(\operatorname{Arr} T\) and \(\operatorname{Arr} U\)
shows map \((\lambda X . X \circ \Lambda . \operatorname{Src}(h d U)) T @ \operatorname{map}(\Lambda . A p p(\Lambda . \operatorname{Trg}(l a s t T))) U^{*} \sim^{*}\) \(\operatorname{map}(\Lambda . A p p(\Lambda . S r c(h d T))) U @ \operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T\)
proof
have 1: \(\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ \Lambda . S r c(h d U)) T)\)
using assms Arr-imp-arr-hd Arr-map-App1 \(\Lambda . I d e-S r c ~ b y ~ f o r c e ~\)
have 2: \(\operatorname{Arr}(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\) last \(T))) U)\) using assms Arr-imp-arr-last Arr-map-App2 \(\Lambda\).Ide-Trg by force
have 3: \(\operatorname{Arr}(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c ~(h d T))) U)\) using assms Arr-imp-arr-hd Arr-map-App2 1. Ide-Src by force
have 4: \(\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T)\) using assms Arr-imp-arr-last Arr-map-App1 \(\Lambda\).Ide-Trg by force
have 5: \(\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src}(h d U)) T\) @ map ( \(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\operatorname{last} T))) U)\) using assms
by (metis (no-types, lifting) 12 Arr.simps(2) Arr-has-Src Arr-imp-arr-last Srcs.simps(1) Srcs-Resid-Arr-single Trgs-simp \(P_{P}\) arr-append arr-char last-map orthogonal-App-single-Arr seq-char)
have 6: \(\operatorname{Arr}(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . S r c(h d T))) U @ \operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\operatorname{last} U)) T)\) using assms
by (metis (no-types, lifting) 34 Arr.simps(2) Arr-has-Src Arr-imp-arr-hd Srcs.simps(1) Srcs.simps(2) Srcs-Resid Srcs-simp \(P_{P}\) arr-append arr-char hd-map orthogonal-App-single-Arr seq-char)
have 7: Con (map \((\lambda X . X \circ \Lambda . S r c(h d U)) T @ \operatorname{map}((\circ)(\Lambda . \operatorname{Trg}(\operatorname{last} T))) U)\) \((\operatorname{map}((\circ)(\Lambda . S r c(h d T))) U\) @ map \((\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T)\) using assms orthogonal-App-Arr-Arr [of T U] by (metis 1256 Con-imp-eq-Srcs Resid.simps(1) Srcs-append confluence-ind)
have 8: Con (map ((o) \((\Lambda . \operatorname{Src}(h d T))) U\) @ map \((\lambda X . X \circ \Lambda . \operatorname{Trg}(l a s t U)) T)\)
\((\operatorname{map}(\lambda X . X \circ \Lambda . S r c(h d U)) T @ \operatorname{map}((\circ)(\Lambda . \operatorname{Trg}(\) last \(T))) U)\)
using 7 Con-sym by simp
show map \((\lambda X . X \circ \Lambda . S r c(h d U)) T\) @ map ((o) \((\Lambda . \operatorname{Trg}(\operatorname{last} T))) U^{*} \lesssim^{*}\) map \(((\circ)(\Lambda . S r c(h d T))) U\) @ map \((\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T\)
proof -
have \((\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src}(h d U)) T @ \operatorname{map}((\circ)(\Lambda . \operatorname{Trg}(\text { last } T))) U)^{*} \backslash *\) \((\operatorname{map}((\circ)(\Lambda . S r c(h d T))) U\) @ map \((\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T)=\) \(\operatorname{map}\left(\lambda X . X \circ \Lambda . \operatorname{Trg}\left(\right.\right.\) last U)) \(T^{*} \backslash * \operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last U)) \(T\) @ \(\left(\operatorname{map}((\mathrm{o})(\Lambda . \operatorname{Trg}(\operatorname{last} T))) U^{*} \backslash{ }^{*} \operatorname{map}((\mathrm{o})(\Lambda . \operatorname{Trg}(\operatorname{last} T))) U\right)^{*} \backslash^{*}\) (map \((\lambda X . X \circ \Lambda . \operatorname{Trg}(\operatorname{last} U)) T^{*} \backslash * \operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(\left.U)) T\right)\) using assms 7 orthogonal-App-Arr-Arr

Resid-append2
[of map ( \(\lambda\) X. X o \(\Lambda . \operatorname{Src}(h d U)) T \operatorname{map}(\Lambda . A p p(\Lambda . \operatorname{Trg}(\) last T) \()) U\) \(\operatorname{map}(\Lambda . A p p(\Lambda . S r c(h d T))) U \operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \(U)) T]\)
```

 by fastforce
 moreover have Ide ...
 using assms 1234567 Resid-Arr-self
 by (metis Arr-append-iff P Con-Arr-self Con-imp-Arr-Resid Ide-appendI }\mp@subsup{P}{P}{
 Resid-Ide-Arr-ind append-Nil2 calculation)
 ultimately show ?thesis
 using ide-char by presburger
 qed
 show map ((o) (\Lambda.Src (hd T))) U @ map (}\lambda\textrm{X}.\textrm{X}\circ\textrm{\Lambda.Trg (last U)) T *`*
 map (\lambdaX. X \circ \Lambda.Src (hd U)) T @ map ((o) (\Lambda.Trg (last T))) U
 proof -
 have map ((o) (\Lambda.Src (hd T))) U * '* map (\lambdaX. X \circ \Lambda.Src (hd U)) T=
 map ((o) (\Lambda.Trg (last T))) U
 by (simp add: assms orthogonal-App-Arr-Arr)
 have (map ((o) (\Lambda.Src (hd T))) U @ map (\lambdaX. X ○ \Lambda.Trg (last U)) T) **
 (map (\lambdaX.X\circ\Lambda.Src (hd U)) T @ map ((o) (\Lambda.Trg (last T))) U)=
 (map ((0) (\Lambda.Trg (last T))) U)** map ((0) (\Lambda.Trg (last T))) U @
 (map (\lambdaX. X\circ\Lambda.Trg (last U)) T * * map (}\lambda\mathrm{ X. X ○ \.Trg (last U)) T)**
 (map ((0) (\Lambda.Trg (last T))) U ** map ((0) (\Lambda.Trg (last T))) U)
 using assms 8 orthogonal-App-Arr-Arr [of T U]
 Resid-append2
 [of map (\Lambda.App (\Lambda.Src (hd T))) U map (\lambdaX. X \circ \Lambda.Trg (last U)) T
 map (}\lambda\mathrm{ X. X ○ \.Src (hd U)) T map (\.App (\.Trg (last T))) U]
 by fastforce
 moreover have Ide ...
 using assms 1234568 Resid-Arr-self Arr-append-iff P Con-sym
 by (metis Con-Arr-self Con-imp-Arr-Resid Ide-appendI IP Resid-Ide-Arr-ind
 append-Nil2 calculation)
 ultimately show ?thesis
 using ide-char by presburger
 qed
 qed

```

We arrive at the final objective of this section: factorization, up to congruence, of a path whose transitions all have \(A p p\) as the top-level constructor, into the composite of a path that reduces only the "rators" and a path that reduces only the "rands".
```

lemma map-App-decomp:
shows \llbracketArr U; set U\subseteq Collect \Lambda.is-App\rrbracket\Longrightarrow
map (\lambdaX. X \circ \Lambda.Src (\Lambda.un-App2 (hd U))) (map \Lambda.un-App1 U)@
map (\lambdaX. \Lambda.Trg (\Lambda.un-App1 (last U)) ○ X) (map \Lambda.un-App2 U) *~*
U
proof (induct U)
show Arr [] \Longrightarrow map (\lambdaX. X ○ \Lambda.Src (\Lambda.un-App2 (hd []))) (map \Lambda.un-App1 [])@
map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last [])))) (map \Lambda.un-App2 []) *~*
[]
by simp
fix }u
assume ind: \llbracketArr U; set U\subseteq Collect \Lambda.is-App\rrbracket\Longrightarrow
map (\lambdaX. \Lambda.App X (\Lambda.Src (\Lambda.un-App2 (hd U)))) (map \Lambda.un-App1 U)@

```
```

 map (\lambdaX. \Lambda.Trg (\Lambda.un-App1 (last U)) o X) (map \Lambda.un-App2 U) * ~*
 U
 assume uU: Arr (u\#U)
assume set: set (u\#U)\subseteq Collect \Lambda.is-App
have u: \Lambda.Arr u ^ \Lambda.is-App u
using set set-Arr-subset-arr uU by fastforce
show map (\lambdaX. X o \Lambda.Src (\Lambda.un-App2 (hd (u\#U)))) (map \Lambda.un-App1 (u\#U)) @
map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u\#U))))) (map \Lambda.un-App2 (u\#U)) *~*
u \# U
proof (cases U = [])
assume U:U = []
show ?thesis
using u U \Lambda.Con-sym \Lambda.Ide-iff-Src-self \Lambda.resid-Arr-self \Lambda.resid-Src-Arr
\Lambda.resid-Arr-Src \Lambda.Src-resid \Lambda.Arr-resid ide-char \Lambda.Arr-not-Nil
by (cases u, simp-all)
next
assume U:U\not=[]
have 1: Arr (map \Lambda.un-App1 U)
using U set Arr-map-un-App1 uU
by (metis Arr-imp-Arr-tl list.distinct(1) list.map-disc-iff list.map-sel(2) list.sel(3))
have 2: Arr [\Lambda.un-App2 u]
using UuU set
by (metis Arr.simps(2) Arr-imp-arr-hd Arr-map-un-App2 hd-map list.discI list.sel(1))
have 3: \Lambda.Arr (\Lambda.un-App1 u)^\Lambda.Arr (\Lambda.un-App2 u)
using uU set
by (metis Arr-imp-arr-hd Arr-map-un-App1 Arr-map-un-App2 \Lambda.arr-char
list.distinct(1) list.map-sel(1) list.sel(1))
have 4: map (\lambdaX. X ○ \Lambda.Src (\Lambda.un-App2 u)) (map \Lambda.un-App1 U)@
[\Lambda.Trg (\Lambda.un-App1 (last U)) ○ \Lambda.un-App2 u] * ~*
[\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u]@
map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)
proof -
have map (\lambdaX. X o \Lambda.Src (hd [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)=
map (\lambdaX. X ○ \Lambda.Src (\Lambda.un-App2 u)) (map \Lambda.un-App1 U)
using UuU set by simp
moreover have map (\Lambda.App (\Lambda.Trg (last (map \Lambda.un-App1 U)))) [\Lambda.un-App2 u]=
[\Lambda.Trg (\Lambda.un-App1 (last U)) ○ \Lambda.un-App2 u]
by (simp add: U last-map)
moreover have map (\Lambda.App (\Lambda.Src (hd (map \Lambda.un-App1 U)))) [\Lambda.un-App2 u] =
[\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u]
by simp
moreover have map (\lambdaX. X o \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)=
map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)
using UuU set by blast
ultimately show ?thesis
using UuU set last-map hd-map 12 3
orthogonal-App-cong [of map \Lambda.un-App1 U [\Lambda.un-App2 u]]
by presburger
qed

```
```

have 5: \Lambda.Arr (\Lambda.un-App1 u o \Lambda.Src (\Lambda.un-App2 u))
by (simp add: 3)
have 6: Arr (map (\lambdaX. \Lambda.Trg (\Lambda.un-App1 (last U)) ○ X) (map \Lambda.un-App2 U))
by (metis 1 Arr-imp-arr-last Arr-map-App2 Arr-map-un-App2 Con-implies-Arr(2)
Ide.simps(1) Resid-Arr-self Resid-cons(2) U insert-subset
\Lambda.Ide-Trg \Lambda.arr-char last-map list.simps(15) set uU)
have 7: \Lambda.Arr (\Lambda.Trg (\Lambda.un-App1 (last U)))
by (metis 4 Arr.simps(2) Arr-append-iff P Con-implies-Arr(2) Ide.simps(1)
U ide-char \Lambda.Arr.simps(4) \Lambda.arr-char list.map-disc-iff not-Cons-self2)
have 8: \Lambda.Src (hd (map \Lambda.un-App1 U)) = \Lambda.Trg (\Lambda.un-App1 u)
proof -
have \Lambda.Src (hd U) = \Lambda.Trg u
using u uU U by fastforce
thus ?thesis
using u uU U set
apply (cases u; cases hd U)
apply (simp-all add:list.map-sel(1))
using list.set-sel(1)
by fastforce
qed
have 9: \Lambda.Src (\Lambda.un-App2 (hd U)) = \Lambda.Trg (\Lambda.un-App2 u)
proof -
have \Lambda.Src (hd U) = \Lambda.Trg u
using u uU U by fastforce
thus ?thesis
using u uU U set
apply (cases u; cases hd U)
apply simp-all
by (metis lambda-calculus.lambda.disc(15) list.set-sel(1) mem-Collect-eq
subset-code(1))
qed
have map (\lambdaX. X o \Lambda.Src (\Lambda.un-App2 (hd (u \# U)))) (map \Lambda.un-App1 (u \# U)) @
map ((o) (\Lambda.Trg (\Lambda.un-App1 (last (u\#U))))) (map \Lambda.un-App2 (u\#U)) =
[\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
(map (\lambdaX. X ○ \Lambda.Src (\Lambda.un-App2 u))
(map \Lambda.un-App1 U)@ [\Lambda.Trg (\Lambda.un-App1 (last U)) ○ \Lambda.un-App2 u])@
map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U)
using uU U by simp
also have 12:cong ... ([\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
([\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u]@
map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)) @
map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U))
proof (intro cong-append [of [\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)]]

```

```

 (map \Lambda.un-App2 U)])
 show [\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] *~* [\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)]
 using 5 arr-char cong-reflexive Arr.simps(2) \Lambda.arr-char by presburger
 show map (\lambdaX. \Lambda. Trg (\Lambda.un-App1 (last U)) ○ X) (map \Lambda.un-App2 U) * ~*
 map (\lambdaX. \Lambda.Trg (\Lambda.un-App1 (last U)) ○ X) (map \Lambda.un-App2 U)
    ```
using 6 cong－reflexive by auto
show map \((\lambda X . X \circ \Lambda . S r c(\Lambda . u n-A p p 2 u))(m a p\) \(\Lambda . u n-A p p 1 U) @\)
\(\left[\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\right.\) last \(U)) \circ\) К．un－App2 u］＊\(\sim^{*}\)
［ \(\Lambda . S r c(h d ~(m a p ~ \Lambda . u n-A p p 1 ~ U)) ~ ○ ~ \Lambda . u n-A p p 2 ~ u] ~ @ ~\) \(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Trg}(\) last \([\Lambda . u n-A p p 2 u]))(\) map \(\Lambda . u n-A p p 1 U)\)
using 4 by \(\operatorname{simp}\)
show 10：seq［ \(\Lambda . u n-A p p 1 u \circ \Lambda . S r c(\Lambda . u n-A p p 2 u)]\)
\(((\operatorname{map}(\lambda X . X \circ \Lambda . S r c(\Lambda . u n-A p p 2 u))(\operatorname{map} \Lambda . u n-A p p 1 U) @\)
\([\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ\) \(\Lambda . u n-A p p 2 u]) @\) \(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(l a s t U)) \circ X)(\) map \(\Lambda . u n-A p p 2 U))\)
proof
show \(\operatorname{Arr}\)［ \(\Lambda . u n-A p p 1 \quad u \circ \Lambda . S r c(\Lambda . u n-A p p 2 u)]\)
using 5 Arr．simps（2）by blast
show \(\operatorname{Arr}((\operatorname{map}(\lambda X . X \circ\) ． \(\operatorname{Src}(\Lambda . u n-A p p 2 u))(m a p\) \(\Lambda . u n-A p p 1 U) @\)
［ \(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last U））○ \(\Lambda . u n-A p p 2 u]) @\)
\(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ X)(\operatorname{map}\) ム．un－App2 U）\()\)
proof（intro Arr－appendI \(I_{P W E}\) ）
show \(\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src}(\Lambda . u n-A p p 2 u))(\operatorname{map} \Lambda . u n-A p p 1 U))\)
using 13 Arr－map－App1 lambda－calculus．Ide－Src by blast
show \(\operatorname{Arr}[\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ\) \(1 . u n-A p p 2 u]\)
by（simp add： 3 7）
show \(\operatorname{Trg}(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src}(\Lambda . u n-A p p 2 u))(\operatorname{map} \Lambda . u n-A p p 1 U))=\) Src \([\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last U））○ \(\Lambda . u n-A p p 2 u]\)
by（metis 4 Arr－appendE PWE Con－implies－Arr（2）Ide．simps（1）U ide－char list．map－disc－iff not－Cons－self2）
show \(\operatorname{Arr}(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ X)(\operatorname{map}\) К．un－App2 \(U))\)
using 6 by \(\operatorname{simp}\)
show \(\operatorname{Trg}(\operatorname{map}(\lambda X . X \circ\). \(\operatorname{Src}(\Lambda . u n-A p p 2 u))(m a p \Lambda . u n-A p p 1 U) @\)
\([\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ\) К．un－App2 u］\()=\)
\(\operatorname{Src}(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ X)(\operatorname{map} \Lambda . u n-A p p 2 U))\)
using \(U u U\) set 13679 Srcs－simp \(P_{P E}\) Arr－imp－arr－hd Arr－imp－arr－last
apply auto
by（metis Nil－is－map－conv hd－map \(\Lambda . \operatorname{Src} . \operatorname{simps}(4)\)（4．Src－Trg \(\Lambda . \operatorname{Trg}-\operatorname{Trg}\) last－map list．map－comp）
qed
show \(\Lambda . \operatorname{Trg}(\) last \([\Lambda . u n-A p p 1 u \circ \Lambda . \operatorname{Src}(\Lambda . u n-A p p 2 u)])=\) ム．Src（hd（（map \((\lambda X . X \circ\) ． \(\operatorname{Src}(\Lambda . u n-A p p 2 u))(\operatorname{map}\) И．un－App1 U）＠ \([\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ\) 亿．un－App2 u］\() @\) \(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ X)(\) map \(\Lambda . u n-A p p 2 U)))\)
using 89
by（simp add： 3 U hd－map）
qed
show seq（map \((\lambda X . X \circ \Lambda . S r c(\Lambda . u n-A p p 2 u))(m a p\) \(\Lambda . u n-A p p 1 U) @\)
［ \(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last U））\(\circ\) 亿．un－App2 u］）
\((\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \(U)) \circ X)(\) map \(\Lambda . u n-A p p 2 U))\)
by（metis Nil－is－map－conv U 10 append－is－Nil－conv arr－append－imp－seq seqE）
qed
also have 11：［ \(\Lambda . u n-A p p 1 u \circ\) К．Src（ \(\Lambda . u n-A p p 2 u)] @\)
（［＾．Src（hd（map \(\Lambda . u n-A p p 1 U)) \circ\) К．un－App2 u］＠
```

 map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U))@
 map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U) =
 ([\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
 [\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u]) @
 map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)@
 map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U)
 by simp
 also have cong ... ([u]@U)
 proof (intro cong-append)
 show seq ([\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
 [\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u])
 (map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)@
 map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U))
 by (metis 51112 U Arr.simps(1-2) Con-implies-Arr(2) Ide.simps(1) Nil-is-map-conv
 append-is-Nil-conv arr-append-imp-seq arr-char ide-char \Lambda.arr-char)
 show [\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
 [\Lambda.Src (hd (map \Lambda.un-App1 U)) ○ \Lambda.un-App2 u] *~*
 [u]
 proof -
 have [\Lambda.un-App1 u ○ \Lambda.Src (\Lambda.un-App2 u)] @
 [\Lambda.Trg (\Lambda.un-App1 u) ○ \Lambda.un-App2 u] * ~*
 [u]
 using u uU U \Lambda.Arr-Trg \Lambda.Arr-not-Nil \Lambda.resid-Arr-self
 apply (cases u)
 apply auto
 by force+
 thus ?thesis using 8 by simp
 qed
 show map (\lambdaX. X ○ \Lambda.Trg (last [\Lambda.un-App2 u])) (map \Lambda.un-App1 U)@
 map ((o) (\Lambda.Trg (\Lambda.un-App1 (last U)))) (map \Lambda.un-App2 U) *~*
 U
 using ind set 9
 apply simp
 using UuU by blast
 qed
 also have [u] @ U = u#U
 by simp
 finally show ?thesis by blast
 qed
 qed

```

\subsection*{3.3.4 Miscellaneous}
lemma Resid-parallel:
assumes cong \(t t^{\prime}\) and coinitial \(t u\)
shows \(u^{*} \backslash^{*} t=u^{*} \backslash^{*} t^{\prime}\)
proof -
have \(u^{*} \backslash * t=\left(u^{*} \backslash * t\right)^{*} \backslash{ }^{*}\left(t^{*} \backslash^{*} t\right)\)
using assms
```

 by (metis con-target conI I con-sym resid-arr-ide)
 also have ... =(u*** t}\mp@subsup{)}{}{*}*(t** t'
 using cube by auto
 also have ... = u** t'
 using assms
 by (metis con-target conI }\mp@subsup{I}{P}{}\mathrm{ con-sym resid-arr-ide)
 finally show ?thesis by blast
 qed
lemma set-Ide-subset-single-hd:
shows Ide T\Longrightarrow set T\subseteq{hdT}
apply (induct T, auto)
using \Lambda.coinitial-ide-are-cong
by (metis Arr-imp-arr-hd Ide-consE Ide-imp-Ide-hd Ide-implies-Arr Srcs-simp pWE Srcs-simp}\mp@subsup{|}{\Lambda}{
\Lambda.trg-ide equals0D \Lambda.Ide-iff-Src-self \Lambda.arr-char \Lambda.ide-char set-empty singletonD
subset-code(1))

```

A single parallel reduction with Beta as the top-level operator factors, up to congruence, either as a path in which the top-level redex is contracted first, or as a path in which the top-level redex is contracted last.
lemma Beta-decomp:
assumes \(\Lambda\).Arr \(t\) and \(\Lambda\).Arr \(u\)
shows \([\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @[\Lambda \text {.subst } u t]^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]\)
and \([\boldsymbol{\lambda}[t] \circ u] @[\boldsymbol{\lambda}[\Lambda . \operatorname{Trg} t] \bullet \Lambda . \operatorname{Trg} u]^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]\)

प.Arr-Subst प.resid-Arr-self
by auto
If a reduction path follows an initial reduction whose top-level constructor is Lam, then all the terms in the path have Lam as their top-level constructor.
```

lemma seq-Lam-Arr-implies:
shows \llbracket seq $[t] U ; \Lambda . i s$-Lam $t \rrbracket \Longrightarrow$ set $U \subseteq$ Collect Λ.is-Lam
proof (induct U arbitrary: t)
show $\wedge t . \llbracket$ seq $[t][] ; \Lambda . i s-L a m t \rrbracket \Longrightarrow$ set []\subseteq Collect Λ.is-Lam
by simp
fix $u U t$
assume ind: $\Lambda t . \llbracket s e q[t] U ; \Lambda . i s-L a m t \rrbracket \Longrightarrow$ set $U \subseteq$ Collect Λ.is-Lam
assume $u U$: seq $[t](u \# U)$
assume t : $\Lambda . i s$-Lam t
show set $(u \# U) \subseteq$ Collect Λ.is-Lam
proof -
have $\Lambda . i s$-Lam u
by (metis Trg-last-Src-hd-eqI $\Lambda . S r c . \operatorname{simps}(1-2,4-5) ~ \Lambda . \operatorname{Trg} . \operatorname{simps}(2) ~ \Lambda . i s-A p p-d e f$

```

```

 last-ConsL list.sel(1) t uU)
 moreover have set \(U \subseteq\) Collect \(\Lambda\).is-Lam
 proof (cases \(U=[]\))
 show \(U=[] \Longrightarrow\) ?thesis
 by \(\operatorname{simp}\)
    ```
```

 assume U:U\not=[]
 have seq [u] U
 by (metis U append-Cons arr-append-imp-seq not-Cons-self2 self-append-conv2
 seqE uU)
 thus ?thesis
 using ind calculation by simp
 qed
 ultimately show ?thesis by auto
 qed
 qed
lemma seq-map-un-Lam:
assumes seq[\boldsymbol{\lambda}[t]]U
shows seq [t] (map \Lambda.un-Lam U)
proof -
have Arr (\lambda[t] \#U)
using assms
by (simp add: seq-char)
hence Arr (map \Lambda.un-Lam (\lambda[t]\#U))^\operatorname{Arr}U
using seq-Lam-Arr-implies
by (metis Arr-map-un-Lam <seq [\lambda[t]] U\ \Lambda.lambda.discI(2) mem-Collect-eq
seq-char set-ConsD subset-code(1))
hence Arr (\Lambda.un-Lam \lambda[t] \# map \Lambda.un-Lam U)^ Arr U
by simp
thus ?thesis
using seq-char
by (metis (no-types,lifting) Arr.simps(1) Con-imp-eq-Srcs Con-implies-Arr(2)
Con-initial-right Resid-rec(1) Resid-rec(3) Srcs-Resid \Lambda.lambda.sel(2)
map-is-Nil-conv confluence-ind)
qed
end

```

\subsection*{3.4 Developments}

A development is a reduction path from a term in which at each step exactly one redex is contracted, and the only redexes that are contracted are those that are residuals of redexes present in the original term. That is, no redexes are contracted that were newly created as a result of the previous reductions. The main theorem about developments is the Finite Developments Theorem, which states that all developments are finite. A proof of this theorem was published by Hindley [6], who attributes the result to Schroer [9]. Other proofs were published subsequently. Here we follow the paper by de Vrijer [5], which may in some sense be considered the definitive work because de Vrijer's proof gives an exact bound on the number of steps in a development. Since de Vrijer used a classical, named-variable representation of \(\lambda\)-terms, for the formalization given in the present article it was necessary to find the correct way to adapt de Vrijer's proof to the de Bruijn index representation of terms. I found this to be a somewhat delicate matter
and to my knowledge it has not been done previously.

\section*{context lambda-calculus \\ begin}

We define an elementary reduction defined to be a term with exactly one marked redex. These correspond to the most basic computational steps.
```

fun elementary-reduction
where elementary-reduction $\sharp \longleftrightarrow$ False
| elementary-reduction $(«-») \longleftrightarrow$ False
| elementary-reduction $\boldsymbol{\lambda}[t] \longleftrightarrow$ elementary-reduction t
| elementary-reduction $(t \circ u) \longleftrightarrow$
(elementary-reduction $t \wedge$ Ide $u) \vee($ Ide $t \wedge$ elementary-reduction $u)$
| elementary-reduction $(\boldsymbol{\lambda}[t] \bullet u) \longleftrightarrow$ Ide $t \wedge$ Ide u

```

It is tempting to imagine that elementary reductions would be atoms with respect to the preorder \(\lesssim\), but this is not necessarily the case. For example, suppose \(t=\lambda[« 1 »] \bullet\) \((\boldsymbol{\lambda}[« 0 »] \circ<0 »)\) and \(u=\boldsymbol{\lambda}[« 1 »] \bullet(\boldsymbol{\lambda}[« 0 »] \bullet « 0 »)\). Then \(t\) is an elementary reduction, \(u \lesssim t\) (in fact \(u \sim t\) ) but \(u\) is not an identity, nor is it elementary.
lemma elementary-reduction-is-arr:
shows elementary-reduction \(t \Longrightarrow\) arr \(t\)
using Ide-implies-Arr arr-char
by (induct t) auto
lemma elementary-reduction-not-ide:
shows elementary-reduction \(t \Longrightarrow \neg\) ide \(t\)
using ide-char
by (induct \(t\) ) auto
lemma elementary-reduction-Raise-iff:
shows \(\bigwedge d\) n. elementary-reduction (Raise \(d n t) \longleftrightarrow\) elementary-reduction \(t\)
using Ide-Raise
by (induct \(t\) ) auto
lemma elementary-reduction-Lam-iff:
shows is-Lam \(t \Longrightarrow\) elementary-reduction \(t \longleftrightarrow\) elementary-reduction (un-Lam \(t\) )
by (metis elementary-reduction.simps(3) lambda.collapse(2))
lemma elementary-reduction-App-iff:
shows is-App \(t \Longrightarrow\) elementary-reduction \(t \longleftrightarrow\)
(elementary-reduction \((u n-A p p 1 t) \wedge i d e(u n-A p p 2 t)) \vee\)
(ide (un-App1 t) \(\wedge\) elementary-reduction \((u n-A p p 2 t))\)
using ide-char
by (metis elementary-reduction.simps(4) lambda.collapse(3))
lemma elementary-reduction-Beta-iff:
shows is-Beta \(t \Longrightarrow\) elementary-reduction \(t \longleftrightarrow\) ide \((\) un-Beta1 \(t) \wedge\) ide \((\) un-Beta2 \(t)\)
using ide-char
by (metis elementary-reduction.simps(5) lambda.collapse(4))
```

lemma cong-elementary-reductions-are-equal:
shows 【elementary-reduction t; elementary-reduction $u ; t \sim u \rrbracket \Longrightarrow t=u$
proof (induct t arbitrary: u)
show $\wedge u$. \llbracket elementary-reduction \sharp; elementary-reduction $u ; \sharp \sim u \rrbracket \Longrightarrow \sharp=u$
by simp
show $\bigwedge x u$. \llbracket elementary-reduction $« x » ;$ elementary-reduction $u ; « x » \sim u \rrbracket \Longrightarrow « x »=u$
by simp
show $\bigwedge t u . \llbracket \bigwedge u . \llbracket$ elementary-reduction t; elementary-reduction $u ; t \sim u \rrbracket \Longrightarrow t=u$;
elementary-reduction $\boldsymbol{\lambda}[t]$; elementary-reduction $u ; \boldsymbol{\lambda}[t] \sim u \rrbracket$
$\Longrightarrow \boldsymbol{\lambda}[t]=u$
by (metis elementary-reduction-Lam-iff lambda.collapse(2) lambda.inject(2) prfx-Lam-iff)
show $\bigwedge t 1$ t2. $\llbracket \bigwedge u$. 【elementary-reduction $t 1 ;$ elementary-reduction $u ; t 1 \sim u \rrbracket \Longrightarrow t 1=u$;
$\bigwedge u$. 【elementary-reduction t2; elementary-reduction $u ; t 2 \sim u \rrbracket \Longrightarrow t 2=u ;$
elementary-reduction ($t 1 \circ$ t2) ; elementary-reduction $u ; t 1 \circ t 2 \sim u \rrbracket$
$\Longrightarrow t 1 \circ t 2=u$
for u
using $p r f x$-App-iff
apply (cases u)
apply auto[3]
apply (metis elementary-reduction-App-iff ide-backward-stable lambda.sel(3-4)
weak-extensionality)
by auto
show $\bigwedge t 1$ t2. $\llbracket \wedge u$. 【elementary-reduction t1; elementary-reduction $u ; t 1 \sim u \rrbracket \Longrightarrow t 1=u$;
$\bigwedge u$. 【elementary-reduction t2; elementary-reduction $u ; t 2 \sim u \rrbracket \Longrightarrow t 2=u ;$
elementary-reduction $(\boldsymbol{\lambda}[t 1] \bullet t 2) ;$ elementary-reduction $u ; \boldsymbol{\lambda}[t 1] \bullet t 2 \sim u \rrbracket$
$\Longrightarrow \boldsymbol{\lambda}[t 1] \bullet t 2=u$
for u
using $p r f x-A p p$-iff
apply (cases u, simp-all)
by (metis (full-types) Coinitial-iff-Con Ide-iff-Src-self Ide.simps(1))
qed

```

An elementary reduction path is a path in which each step is an elementary reduction． It will be convenient to regard the empty list as an elementary reduction path，even though it is not actually a path according to our previous definition of that notion．
definition（in reduction－paths）elementary－reduction－path
where elementary－reduction－path \(T \longleftrightarrow\)
\[
(T=[] \vee \operatorname{Arr} T \wedge \text { set } T \subseteq \text { Collect } \text { प.elementary-reduction })
\]

In the formal definition of＂development＂given below，we represent a set of redexes simply by a term，in which the occurrences of Beta correspond to the redexes in the set．To express the idea that an elementary reduction \(u\) is a member of the set of redexes represented by term \(t\) ，it is not adequate to say \(u \lesssim t\) ．To see this，consider the developments of a term of the form \(\boldsymbol{\lambda}[t 1]\)－\(t 2\) ．Intuitively，such developments should consist of a（possibly empty）initial segment containing only transitions of the form \(t 1\) －\(t 2\) ，followed by a transition of the form \(\boldsymbol{\lambda}[u 1] \bullet u 2^{\prime}\) ，followed by a development of the residual of the original \(\boldsymbol{\lambda}[t 1]\)－\(t 2\) after what has come so far．The requirement \(u\) \(\lesssim \boldsymbol{\lambda}[t 1] \bullet t 2\) is not a strong enough constraint on the transitions in the initial segment，
because \(\boldsymbol{\lambda}[u 1] \bullet u 2 \lesssim \boldsymbol{\lambda}[t 1] \bullet t 2\) can hold for \(t 2\) and \(u 2\) coinitial, but otherwise without any particular relationship between their sets of marked redexes. In particular, this can occur when 42 and \(t 2\) occur as subterms that can be deleted by the contraction of an outer redex. So we need to introduce a notion of containment between terms that is stronger and more "syntactic" than \(\lesssim\). The notion "subsumed by" defined below serves this purpose. Term \(u\) is subsumed by term \(t\) if both terms are arrows with exactly the same form except that \(t\) may contain \(\boldsymbol{\lambda}[t 1]\) - t2 (a marked redex) in places where \(u\) contains \(\boldsymbol{\lambda}[t 1]\) ○ \(t 2\).
```

fun subs (infix $\sqsubseteq 50)$
where «i» $\sqsubseteq « i^{\prime} » \longleftrightarrow i=i^{\prime}$
$\mid \boldsymbol{\lambda}[t] \sqsubseteq \boldsymbol{\lambda}[t] \longleftrightarrow t \sqsubseteq t^{\prime}$
$\mid t \circ u \sqsubseteq t^{\prime} \circ u^{\prime} \longleftrightarrow t \sqsubseteq t^{\prime} \wedge u \sqsubseteq u^{\prime}$
$\mid \boldsymbol{\lambda}[t] \circ u \sqsubseteq \boldsymbol{\lambda}[t] \bullet u^{\prime} \longleftrightarrow t \sqsubseteq t^{\prime} \wedge u \sqsubseteq u^{\prime}$
$\mid \boldsymbol{\lambda}[t] \bullet u \sqsubseteq \boldsymbol{\lambda}[t] \bullet u^{\prime} \longleftrightarrow t \sqsubseteq t^{\prime} \wedge u \sqsubseteq u^{\prime}$
|- $\sqsubseteq-\longleftrightarrow$ False
lemma subs-implies-prfx:
shows $t \sqsubseteq u \Longrightarrow t \lesssim u$
apply (induct t arbitrary: u)
apply auto[1]
using subs.elims(2)
apply fastforce
proof -
show $\wedge t . \llbracket \wedge u . t \sqsubseteq u \Longrightarrow t \lesssim u ; \boldsymbol{\lambda}[t] \sqsubseteq u \rrbracket \Longrightarrow \boldsymbol{\lambda}[t] \lesssim u$ for u
by (cases u, auto) fastforce
show $\wedge t 2 . \llbracket \wedge u 1 . t 1 \sqsubseteq u 1 \Longrightarrow t 1 \lesssim u 1 ;$
\u2. $\mathrm{t2} \sqsubseteq u 2 \Longrightarrow t 2 \lesssim u 2$;
$t 1 \circ t 2 \sqsubseteq u \rrbracket$
$\Longrightarrow t 1 \circ t 2 \lesssim u$ for $t 1 u$
apply (cases t1; cases u)
apply simp-all
apply fastforce+
apply (metis Ide-Subst con-char lambda.sel(2) subs.simps(2) prfx-Lam-iff prfx-char
prfx-implies-con)
by fastforce+
show $\bigwedge t 1 t 2 . \llbracket \wedge u 1 . t 1 \sqsubseteq u 1 \Longrightarrow t 1 \lesssim u 1$;
\u2. $t 2 \sqsubseteq u 2 \Longrightarrow t 2 \lesssim u 2 ;$
$\boldsymbol{\lambda}[t 1] \bullet t 2 \sqsubseteq u \rrbracket$
$\Longrightarrow \boldsymbol{\lambda}[t 1] \bullet t 2 \lesssim u$ for u
using Ide-Subst
apply (cases u, simp-all)
by (metis Ide.simps(1))
qed

```

The following is an example showing that two terms can be related by \(\lesssim\) without being related by \(\sqsubseteq\).
lemma subs-example:
shows \(\boldsymbol{\lambda}[« 1 »] \bullet(\boldsymbol{\lambda}[« 0 »] \bullet « 0 ») \lesssim \boldsymbol{\lambda}[« 1 »] \bullet(\boldsymbol{\lambda}[« 0 »] \circ « 0 »)=\) True
```

and $\boldsymbol{\lambda}[« 1 »] \bullet(\boldsymbol{\lambda}[« 0 »] \bullet « 0 ») \sqsubseteq \boldsymbol{\lambda}[« 1 »] \bullet(\boldsymbol{\lambda}[« 0 »] \circ « 0 »)=$ False
by auto
lemma subs-Ide:
shows $\llbracket i d e ~ u ; S r c t=S r c u \rrbracket \Longrightarrow u \sqsubseteq t$
using Ide-Src Ide-implies-Arr Ide-iff-Src-self
by (induct t arbitrary: u, simp-all) force+
lemma subs-App:
shows $u \sqsubseteq t 1 \circ t 2 \longleftrightarrow$ is-App $u \wedge u n-A p p 1 u \sqsubseteq t 1 \wedge u n-A p p 2 u \sqsubseteq t 2$
by (metis lambda.collapse(3) prfx-App-iff subs.simps(3) subs-implies-prfx)
end
context reduction-paths
begin

```

We now formally define a development of \(t\) to be an elementary reduction path \(U\) that is coinitial with \([t]\) and is such that each transition \(u\) in \(U\) is subsumed by the residual of \(t\) along the prefix of \(U\) coming before \(u\). Stated another way, each transition in \(U\) corresponds to the contraction of a single redex that is the residual of a redex originally marked in \(t\).
```

fun development
where development $t[] \longleftrightarrow \Lambda$.Arr t
\mid development $t(u \# U) \longleftrightarrow$
Λ.elementary-reduction $u \wedge u \sqsubseteq t \wedge$ development $(t \backslash u) U$

```
lemma development-imp-Arr:
assumes development \(t U\)
shows \(\Lambda\).Arr \(t\)
    using assms

        development.elims(2))
lemma development-Ide:
shows \(\Lambda\).Ide \(t \Longrightarrow\) development \(t U \longleftrightarrow U=[]\)
    using I.Ide-implies-Arr
    apply (induct \(U\) arbitrary: \(t\) )
    apply auto
    by (meson \(\Lambda . e l e m e n t a r y-r e d u c t i o n-n o t-i d e ~ \Lambda . i d e-b a c k w a r d-s t a b l e ~ \Lambda . i d e-c h a r ~\)
        ム.subs-implies-prfx)
lemma development-implies:
shows development \(t U \Longrightarrow\) elementary-reduction-path \(U \wedge\left(U \neq[] \longrightarrow U^{*} \lesssim^{*}[t]\right)\)
    apply (induct \(U\) arbitrary: \(t\) )
    using elementary-reduction-path-def
    apply simp
proof -
    fix \(t u U\)
```

 assume ind: \(\wedge t\). development \(t U \Longrightarrow\)
 elementary-reduction-path \(U \wedge\left(U \neq[] \longrightarrow U^{*} \lesssim^{*}[t]\right)\)
 show development \(t(u \# U) \Longrightarrow\)
 elementary-reduction-path \((u \# U) \wedge\left(u \# U \neq[] \longrightarrow u \# U^{*} \lesssim^{*}[t]\right)\)
 proof (cases \(U=[]\))
 assume \(u U\) : development \(t(u \# U)\)
 show \(U=[] \Longrightarrow\) ?thesis
 using \(u U\).subs-implies-prfx ide-char \(\Lambda\).elementary-reduction-is-arr
 elementary-reduction-path-def prfx-implies-con
 by force
 assume \(U: U \neq[]\)
 have \(\Lambda\).elementary-reduction \(u \wedge u \sqsubseteq t \wedge\) development \((t \backslash u) U\)
 using \(U u U\) development.elims (1) by blast
 hence 1: \(\Lambda\).elementary-reduction \(u \wedge\) elementary-reduction-path \(U \wedge u \sqsubseteq t \wedge\)
 \(\left(U \neq[] \longrightarrow U^{*} \lesssim^{*}[t \backslash u]\right)\)
 using \(U u U\) ind by auto
 show ?thesis
 proof (unfold elementary-reduction-path-def, intro conjI)
 show \(u \# U=[] \vee \operatorname{Arr}(u \# U) \wedge \operatorname{set}(u \# U) \subseteq\) Collect \(\Lambda\).elementary-reduction
 using \(U 1\)
 by (metis Con-implies-Arr(1) Con-rec(2) con-char prfx-implies-con
 elementary-reduction-path-def insert-subset list.simps(15) mem-Collect-eq
 ム.prfx-implies-con \(\Lambda . s u b s-i m p l i e s-p r f x)\)
 show \(u \# U \neq[] \longrightarrow u \# U^{*} \lesssim^{*}[t]\)
 proof -
 have \(u \# U^{*} \Sigma^{*}[t] \longleftrightarrow\) ide \(\left([u \backslash t]\right.\) @ \(\left.U^{*} \backslash^{*}[t \backslash u]\right)\)
 using \(1 U\) Con-rec(2) Resid-rec(2) con-char prfx-implies-con
 ム.prfx-implies-con \(\Lambda . s u b s\)-implies-prfx
 by \(\operatorname{simp}\)
 also have \(\ldots \longleftrightarrow\) True
 using \(U 1\) ide-char Ide-append-iff \(P_{P W E}\left[o f[u \backslash t] U^{*} \backslash *[t \backslash u]\right]\)
 by (metis Ide.simps(2) Ide-appendI \({ }_{P W E}\) Src-resid Trg.simps(2)
 ム.apex-sym con-char \(\Lambda\).subs-implies-prfx prfx-implies-con)
 finally show ?thesis by blast
 qed
 qed
 qed
 qed

```

The converse of the previous result does not hold，because there could be a stage \(i\) at which \(u_{i} \lesssim t_{i}\) ，but \(t_{i}\) deletes the redex contracted in \(u_{i}\) ，so there is nothing forcing that redex to have been originally marked in \(t\) ．So \(U\) being a development of \(t\) is a stronger property than \(U\) just being an elementary reduction path such that \(U^{*} \lesssim^{*}[t]\) ．
```

lemma development-append:
shows \llbracket development $t U$; development $\left(t^{1} \backslash^{*} U\right) V \rrbracket \Longrightarrow$ development $t(U @ V)$
using development-imp-Arr null-char
apply (induct U arbitrary: $t V$)
apply auto
by (metis Resid1x.simps(2-3) append-Nil neq-Nil-conv)

```
```

 lemma development-map-Lam:
 shows development t T\Longrightarrow development \boldsymbol{\lambda}[t](\mathrm{ map \.Lam T)}
 using \Lambda.Arr-not-Nil development-imp-Arr
 by (induct T arbitrary: t) auto
 lemma development-map-App-1:
 shows \llbracketdevelopment t T; \Lambda.Arr u\rrbracket\Longrightarrow development (t\circu)(map (}\lambda\mathrm{ x. x ○ \.Src u)T)
 apply (induct T arbitrary: t)
 apply (simp add: \Lambda.Ide-implies-Arr)
 proof -
 fix tT t'
 assume ind: \t.\llbracketdevelopment t T; \Lambda.Arr u\rrbracket
 \Longrightarrow \text { development (t○u)(map (} \lambda x . x \circ \Lambda . S r c ~ u) T)
 assume t'T: development t (t'# T)
 assume u: \Lambda.Arr u
 show development (t\circu) (map (}\lambdax.x\circ\Lambda.Src u)(t'# T)
 using u t'T ind
 apply simp
 using \Lambda.Arr-not-Nil \Lambda.Ide-Src development-imp-Arr \Lambda.subs-Ide by force
 qed
 lemma development-map-App-2:
 shows \llbracket\Lambda.Arr t; development u U\rrbracket\Longrightarrow development (t\circu)(map (\lambdax. \Lambda.App (\Lambda.Src t) x)
 U)
apply (induct U arbitrary: u)
apply (simp add: \Lambda.Ide-implies-Arr)
proof -
fix }uU\mp@subsup{u}{}{\prime
assume ind: \u.\llbracket\Lambda.Arr t; development u U\rrbracket
\Longrightarrow development (t○u) (map (1 . A p p ~ (\Lambda . S r c ~ t)) ~ U)
assume u'U: development u (u' \# U)
assume t: \Lambda.Arr t
show development (t\circu) (map (\Lambda.App (\Lambda.Src t)) (u'\# \#))
using t u'U ind
apply simp
by (metis \Lambda.Coinitial-iff-Con \Lambda.Ide-Src \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr
development-imp-Arr \Lambda.ide-char \Lambda.resid-Arr-Ide \Lambda.subs-Ide)
qed

```

\subsection*{3.4.1 Finiteness of Developments}

A term \(t\) has the finite developments property if there exists a finite value that bounds the length of all developments of \(t\). The goal of this section is to prove the Finite Developments Theorem: every term has the finite developments property.
```

definition FD
where FD t\equiv\existsn.\forallU. development t U length }U\leq

```
end

In [6], Hindley proceeds by using structural induction to establish a bound on the length of a development of a term. The only case that poses any difficulty is the case of a \(\beta\)-redex, which is \(\boldsymbol{\lambda}[t] \bullet u\) in the notation used here. He notes that there is an easy bound on the length of a development of a special form in which all the contractions of residuals of \(t\) occur before the contraction of the top-level redex. The development first takes \(\boldsymbol{\lambda}[t]\) - \(u\) to \(\boldsymbol{\lambda}\left[t^{\prime}\right]\) - \(u^{\prime}\), then to subst \(u^{\prime} t^{\prime}\), then continues with independent developments of \(u^{\prime}\). The number of independent developments of \(u^{\prime}\) is given by the number of free occurrences of Var 0 in \(t^{\prime}\). As there can be only finitely many such \(t^{\prime}\), we can use the maximum number of free occurrences of Var 0 over all such \(t^{\prime}\) to bound the steps in the independent developments of \(u^{\prime}\).

In the general case, the problem is that reductions of residuals of \(t\) can increase the number of free occurrences of \(\operatorname{Var} 0\), so we can't readily count them at any particular stage. Hindley shows that developments in which there are reductions of residuals of \(t\) that occur after the contraction of the top-level redex are equivalent to reductions of the special form, by a transformation with a bounded increase in length. This can be considered as a weak form of standardization for developments.

A later paper by de Vrijer [5] obtains an explicit function for the exact number of steps in a development of maximal length. His proof is very straightforward and amenable to formalization, and it is what we follow here. The main issue for us is that de Vrijer uses a classical representation of \(\lambda\)-terms, with variable names and \(\alpha\)-equivalence, whereas here we are using de Bruijn indices. This means that we have to discover the correct modification of de Vrijer's definitions to apply to the present situation.

\section*{context lambda-calculus \\ begin}

Our first definition is that of the "multiplicity" of a free variable in a term. This is a count of the maximum number of times a variable could occur free in a term reachable in a development. The main issue in adjusting to de Bruijn indices is that the same variable will have different indices depending on the depth at which it occurs in the term. So, we need to keep track of how the indices of variables change as we move through the term. Our modified definitions adjust the parameter to the multiplicity function on each recursive call, to account for the contextual depth (i.e. the number of binders on a path from the root of the term).

The definition of this function is readily understandable, except perhaps for the Beta case. The multiplicity \(m t p x(\boldsymbol{\lambda}[t] \bullet u)\) has to be at least as large as \(m t p x(\boldsymbol{\lambda}[t] \circ u)\), to account for developments in which the top-level redex is not contracted. However, if the top-level redex \(\boldsymbol{\lambda}[t] \bullet u\) is contracted, then the contractum is subst \(u t\), so the multiplicity has to be at least as large as mtp \(x\) (subst \(u t\) ). This leads to the relation:
```

mtpx(\boldsymbol{\lambda}[t]\bulletu)=max (mtpx (\boldsymbol{\lambda}[t]\circu))(mtpx (subst ut))

```

This is not directly suitable for use in a definition of the function \(m t p\), because proving the termination is problematic. Instead, we have to guess the correct expression for \(m t p\) \(x\) (subst \(u t\) ) and use that.

Now, each variable \(x\) in subst \(u t\) other than the variable 0 that is substituted for still has all the occurrences that it does in \(\boldsymbol{\lambda}[t]\). In addition, the variable being substituted
for (which has index 0 in the outermost context of \(t\) ) will in general have multiple free occurrences in \(t\), with a total multiplicity given by \(m t p 0 t\). The substitution operation replaces each free occurrence by \(u\), which has the effect of multiplying the multiplicity of a variable \(x\) in \(t\) by a factor of \(m t p 0 t\). These considerations lead to the following:
\[
m t p x(\boldsymbol{\lambda}[t] \bullet u)=\max (m t p x \boldsymbol{\lambda}[t]+m t p x u)(m t p x \boldsymbol{\lambda}[t]+m t p x u * m t p 0 t)
\]

However, we can simplify this to:
\[
m t p x(\boldsymbol{\lambda}[t] \bullet u)=m t p x \boldsymbol{\lambda}[t]+m t p x u * \max 1(m t p 0 t)
\]
and replace the \(m t p x \boldsymbol{\lambda}[t]\) by \(m t p\) (Suc \(x) t\) to simplify the ordering necessary for the termination proof and allow it to be done automatically.

The final result is perhaps about the first thing one would think to write down, but there are possible ways to go wrong and it is of course still necessary to discover the proper form required for the various induction proofs. I followed a long path of rather more complicated-looking definitions, until I eventually managed to find the proper inductive forms for all the lemmas and eventually arrive back at this definition.
```

fun $m t p::$ nat \Rightarrow lambda \Rightarrow nat
where $m t p x \sharp=0$
$\mid m t p x « z »=($ if $z=x$ then 1 else 0$)$
mtp $x \boldsymbol{\lambda}[t]=m t p($ Suc $x) t$
| mtp $x(t \circ u)=m t p x t+m t p x u$
$\mid m t p x(\boldsymbol{\lambda}[t] \bullet u)=m t p(S u c x) t+m t p x u * \max 1(m t p 0 t)$

```

The multiplicity function generalizes the free variable predicate. This is not actually used, but is included for explanatory purposes.
```

lemma mtp-gt-0-iff-in-FV:
shows $m t p x t>0 \longleftrightarrow x \in F V t$
proof (induct t arbitrary: x)
show $\bigwedge x .0<m t p x \sharp \longleftrightarrow x \in F V \sharp$
by simp
show $\bigwedge x z .0<m t p x « z » \longleftrightarrow x \in F V « z »$
by auto
show Lam: $\bigwedge t x .(\bigwedge x .0<m t p x t \longleftrightarrow x \in F V t)$
$\Longrightarrow 0<m t p x \boldsymbol{\lambda}[t] \longleftrightarrow x \in F V \boldsymbol{\lambda}[t]$
proof -
fix t and $x::$ nat
assume ind: $\bigwedge x .0<m t p x t \longleftrightarrow x \in F V t$
show $0<m t p x \boldsymbol{\lambda}[t] \longleftrightarrow x \in F V \boldsymbol{\lambda}[t]$
using ind
apply auto
apply (metis Diff-iff One-nat-def diff-Suc-1 empty-iff imageI insert-iff
nat.distinct(1))
by (metis Suc-pred neq0-conv)
qed
show $\wedge t u x$.
$\llbracket \bigwedge x .0<m t p x t \longleftrightarrow x \in F V t ;$

```
\(\bigwedge x .0<m t p x u \longleftrightarrow x \in F V u \rrbracket\)
\[
\Longrightarrow 0<m t p x(t \circ u) \longleftrightarrow x \in F V(t \circ u)
\]
by simp
show \(\wedge t u x\).
\(\llbracket \wedge x .0<m t p x t \longleftrightarrow x \in F V t ;\)
\(\wedge x .0<m \operatorname{tp} x u \longleftrightarrow x \in F V u \rrbracket\)
\[
\Longrightarrow 0<m \operatorname{tp} x(\boldsymbol{\lambda}[t] \bullet u) \longleftrightarrow x \in F V(\boldsymbol{\lambda}[t] \bullet u)
\]
proof -
fix \(t u\) and \(x:: n a t\)
assume ind1: \(\wedge x .0<m t p x t \longleftrightarrow x \in F V t\)
assume ind2: \(\wedge x .0<m t p x u \longleftrightarrow x \in F V u\)
show \(0<m t p x(\boldsymbol{\lambda}[t] \bullet u) \longleftrightarrow x \in F V(\boldsymbol{\lambda}[t] \bullet u)\)
using ind1 ind2
apply simp
by force
qed
qed
We now establish a fact about commutation of multiplicity and Raise that will be needed subsequently.
lemma mtpE-eq-Raise:
shows \(x<d \Longrightarrow\) mtp \(x\) (Raise dkt) \(=\) mtp \(x t\)
by (induct \(t\) arbitrary: \(x k d\) ) auto
lemma mtp-Raise-ind:
shows \(\llbracket l \leq d ;\) size \(t \leq s \rrbracket \Longrightarrow m t p(x+d+k)(\) Raise \(l k t)=m t p(x+d) t\)
proof (induct \(s\) arbitrary: \(d x k l t\) )
show \(\wedge d x k l . \llbracket l \leq d\); size \(t \leq 0 \rrbracket \Longrightarrow m t p(x+d+k)(\) Raise \(l k t)=m t p(x+d) t\) for \(t\)
by (cases \(t\) ) auto
show \(\wedge s d x k l\).
\(\llbracket \wedge d x k l t . \llbracket l \leq d ;\) size \(t \leq s \rrbracket \Longrightarrow m t p(x+d+k)(\) Raise lkt \()=m t p(x+d) t ;\) \(l \leq d ;\) size \(t \leq\) Suc \(s \rrbracket\)
\[
\Longrightarrow m t p(x+d+k)(\text { Raise l } k t)=m t p(x+d) t
\]
for \(t\)
proof (cases \(t\) )
show \(\backslash d x k l\) s. \(t=\sharp \Longrightarrow m\) tp \((x+d+k)(\) Raise l \(k t)=m t p(x+d) t\)
by \(\operatorname{simp}\)
show \(\bigwedge z d x k l s . \llbracket l \leq d ; t=« z » \rrbracket\)
\[
\Longrightarrow m t p(x+d+k)(\text { Raise l } k t)=m t p(x+d) t
\]
by \(\operatorname{simp}\)
show \(\bigwedge u d x k l s . \llbracket l \leq d ;\) size \(t \leq\) Suc \(s ; t=\boldsymbol{\lambda}[u]\);
\[
\begin{aligned}
& (\bigwedge d x \text { x } l u . \llbracket l \leq d ; \text { size } u \leq s \rrbracket \\
& \\
& \Longrightarrow m \operatorname{mtp}(x+d+k)(\text { Raise l } k t)=m t p(x+d) t
\end{aligned}
\]
proof -
fix \(u d x s\) and \(k l::\) nat
assume \(l: l \leq d\) and s: size \(t \leq\) Suc s and \(t: t=\boldsymbol{\lambda}[u]\)
assume ind: \(\wedge\) d xklu. \(\llbracket l \leq d\); size \(u \leq s \rrbracket\)
\[
\Longrightarrow m t p(x+d+k)(\text { Raise } l k u)=m t p(x+d) u
\]
show \(m t p(x+d+k)(\) Raise \(l k t)=m t p(x+d) t\) proof -
have \(m t p(x+d+k)(\) Raise \(l k t)=m t p(S u c(x+d+k))(\) Raise \((\) Suc l) \(k u)\) using \(t\) by simp
also have \(\ldots=m t p(x+\) Suc d) \(u\)
proof -
have size \(u \leq s\)
using \(t s\) by force
thus ?thesis
using \(l s\) ind [of Suc \(l\) Suc d] by simp
qed
also have \(\ldots=m t p(x+d) t\)
using \(t\) by auto
finally show ?thesis by blast
qed
qed
show \(\wedge t 1\) t2 dxkls.
\(\llbracket \bigwedge d x k l t 1 . \llbracket l \leq d ;\) size \(t 1 \leq s \rrbracket\)
\[
\Longrightarrow m t p(x+d+k)(\text { Raise l k t1 })=m t p(x+d) t 1 ;
\]
\(\bigwedge d x k l t 2 . \llbracket l \leq d ;\) size \(\mathrm{t} 2 \leq s \rrbracket\)
\(\Longrightarrow m t p(x+d+k)(\) Raise \(l k t 2)=m t p(x+d) t 2 ;\)
\(l \leq d ;\) size \(t \leq\) Suc \(s ; t=t 1 \circ t 2 \rrbracket\)
\(\Longrightarrow m t p(x+d+k)(\) Raise \(l k t)=m t p(x+d) t\)
proof -
fix \(t 1\) t2 \(s\)
assume s: size \(t \leq\) Suc \(s\) and \(t: t=t 1 \circ t 2\)
have size \(t 1 \leq s \wedge\) size \(t 2 \leq s\)
using \(s t\) by auto
thus \(\bigwedge d x k l\).
\[
\begin{aligned}
\llbracket \bigwedge d x k l t 1 . & \llbracket l \leq d ; \text { size } t 1 \leq s \rrbracket \\
& \Longrightarrow m t p(x+d+k)(\text { Raise } l k t 1)=m t p(x+d) t 1 ; \\
\bigwedge d x k l t 2 . & \llbracket l \leq d ; \text { size t2 } \leq s \rrbracket \\
& \Longrightarrow m t p(x+d+k)(\text { Raise } l k t 2)=m t p(x+d) t 2 ; \\
l \leq d ; \text { size } t & \leq \text { Suc } s ; t=t 1 \circ t 2 \rrbracket \\
& \Longrightarrow m t p(x+d+k)(\text { Raise } l k t)=m t p(x+d) t
\end{aligned}
\]
by \(\operatorname{simp}\)
qed
show \(\bigwedge t 1 t 2 d x k l s\).
\(\llbracket \bigwedge d x k l t 1 . \llbracket l \leq d ;\) size \(t 1 \leq s \rrbracket\)
\(\Longrightarrow m t p(x+\bar{d}+k)(\) Raise \(l k t 1)=m t p(x+d) t 1\);
\dxklt2. \(\llbracket l \leq d ;\) size t2 \(\leq s \rrbracket\)
\(\Longrightarrow m t p(x+d+k)(\) Raise \(l k t 2)=m t p(x+d) t 2\);
\(l \leq d ;\) size \(t \leq\) Suc \(s ; t=\boldsymbol{\lambda}[t 1] \bullet t 2 \rrbracket\) \(\Longrightarrow m t p(x+d+k)(\) Raise \(l k t)=m t p(x+d) t\)
proof -
fix \(t 1\) t2 \(d x s\) and \(k l::\) nat
assume \(l: l \leq d\) and \(s:\) size \(t \leq S u c s\) and \(t: t=\boldsymbol{\lambda}[t 1] \bullet t 2\)
assume ind: \(\bigwedge d x k l N . \llbracket l \leq d ;\) size \(N \leq s \rrbracket\)
```

 \Longrightarrow m t p (x + d + k) (R a i s e ~ l ~ k N) = m t p ~ (x + d) N
 show mtp (x+d+k)(Raise l kt)=mtp (x+d)t
 proof -
 have 1: size t1 \leqs ^ size t2 \leqs
 using st by auto
 have mtp (x+d+k) (Raise l kt)=
 mtp (Suc (x+d+k)) (Raise (Suc l) kt1) +
 mtp (x+d+k)(Raiselkt2)* max 1 (mtp 0 (Raise (Suc l) k t1))
 using tl by simp
 also have ... =mtp (Suc (x+d + k)) (Raise (Suc l)kt1) +
 mtp (x+d)t2 * max 1 (mtp 0 (Raise (Suc l) kt1))
 using l 1 ind by auto
 also have ... = mtp (x+Suc d) t1 + mtp (x+d) t2 * max 1 (mtp 0 t1)
 proof -
 have mtp (x+Suc d +k)(Raise (Suc l) k t1) =mtp (x+Suc d) t1
 using l }1\mathrm{ ind [of Suc l Suc d t1] by simp
 moreover have mtp 0 (Raise (Suc l) kt1) = mtp 0 t1
 using l }1\mathrm{ ind [of Suc l Suc d t1 k] mtpE-eq-Raise by simp
 ultimately show ?thesis
 by simp
 qed
 also have ... = mtp (x+d)t
 using t by auto
 finally show ?thesis by blast
 qed
 qed
 qed
 qed
lemma mtp-Raise:
assumes l\leqd
shows mtp (x+d+k)(Raise l k t)=mtp (x+d)t
using assms mtp-Raise-ind by blast
lemma mtp-Raise':
shows mtp l (Raise l (Suc k)t)=0
by (induct t arbitrary: k l) auto
lemma mtp-raise:
shows mtp (x+Suc d) (raise d t) = mtp (Suc x) t
by (metis Suc-eq-plus1 add.assoc le-add2 le-add-same-cancel2 mtp-Raise plus-1-eq-Suc)
lemma mtp-Subst-cancel:
shows mtp k (Subst (Suc d + k)ut)=mtpkt
proof (induct t arbitrary: kd)
show \k d. mtp k(Subst (Suc d + k) u\sharp)=mtp k\sharp
by simp
show \kzd.mtpk(Subst (Suc d + k)u «z»)=mtp k«z»

```
```

using mtp-Raise ${ }^{\prime}$
apply auto
by (metis add-Suc-right add-Suc-shift order-refl raise-plus)
show $\wedge t k d .(\bigwedge k d . m t p k(S u b s t(S u c d+k) u t)=m t p k t)$
$\Longrightarrow m t p k(S u b s t(S u c d+k) u \boldsymbol{\lambda}[t])=m t p k \boldsymbol{\lambda}[t]$
by (metis Subst.simps(3) add-Suc-right mtp.simps(3))
show $\wedge t 1$ t2 $k d$.
$\llbracket \bigwedge k d . m t p k($ Subst $($ Suc $d+k) u t 1)=m t p k t 1$;
$\wedge k d$. mtp $k($ Subst $(S u c d+k) u t 2)=m t p k t 2 \rrbracket$
$\Longrightarrow m t p k($ Subst $($ Suc $d+k) u(t 1 \circ t 2))=m t p k(t 1 \circ t 2)$
by auto
show $\bigwedge t 1$ t2 $k d$.
$\llbracket \bigwedge k d . m t p k($ Subst $($ Suc $d+k) u t 1)=m t p k t 1$;
$\bigwedge k d$. mtp $k($ Subst $(S u c d+k) u t 2)=m t p k t 2 \rrbracket$
$\Longrightarrow m t p k(S u b s t(S u c d+k) u(\boldsymbol{\lambda}[t 1] \bullet t 2))=m t p k(\boldsymbol{\lambda}[t 1] \bullet t 2)$
using mtp-Raise ${ }^{\prime}$
apply auto
by (metis Nat.add-0-right add-Suc-right)
qed
lemma mtpo-Subst-cancel:
shows mtp 0 (Subst (Suc d) ut) $=m t p 0 t$
using mtp-Subst-cancel [of 0] by simp

```

We can now (!) prove the desired generalization of de Vrijer's formula for the commutation of multiplicity and substitution. This is the main lemma whose form is difficult to find. To get this right, the proper relationships have to exist between the various depth parameters to Subst and the arguments to mtp.
```

lemma mtp-Subst':
shows mtp $(x+$ Suc d) $($ Subst $d u t)=m t p(x+S u c($ Suc d) $) t+m t p(S u c x) u * m t p d t$
proof (induct t arbitrary: $d x u$)
show $\bigwedge d x u$. mtp $(x+$ Suc d) $($ Subst $d u \sharp)=$
$m t p(x+S u c($ Suc $d)) \sharp+m t p(S u c x) u * m t p d \sharp$
by simp
show $\bigwedge z d x$ u. mtp $(x+$ Suc d) $($ Subst du «z») $=$
$m t p(x+$ Suc $($ Suc $d))$ «z» + mtp (Suc x) u* mtp d «z»
using mtp-raise by auto
show $\wedge t d x u$.
$(\bigwedge d x$ u. mtp $(x+$ Suc d) $($ Subst $d u t)=$
$m t p(x+$ Suc (Suc d)) $t+m t p($ Suc $x) u * m t p d t)$
$\Longrightarrow m t p(x+$ Suc d) $($ Subst $d u \boldsymbol{\lambda}[t])=$
$m t p(x+$ Suc (Suc d)) $\boldsymbol{\lambda}[t]+m t p($ Suc $x) u * m t p d \boldsymbol{\lambda}[t]$
proof -
fix $t u d x$
assume ind: $\wedge d x N . m t p(x+S u c d)($ Subst $d N t)=$
$m t p(x+$ Suc $($ Suc $d)) t+m t p($ Suc $x) N * m t p d t$
have mtp $(x+$ Suc $d)($ Subst d u $\boldsymbol{\lambda}[t])=$
$m t p($ Suc $x+$ Suc (Suc d)) $t+$
$m t p(x+$ Suc (Suc d)) (raise (Suc d) u)*mtp (Suc d) t

```
```

 using ind mtp-raise add-Suc-shift
 by (metis Subst.simps(3) add-Suc-right mtp.simps(3))
    ```

```

 using Raise-Suc
 by (metis add-Suc-right add-Suc-shift mtp.simps(3) mtp-raise)
 finally show mtp (x+Suc d) (Subst d u \boldsymbol{\lambda}[t])=
    ```

```

 by blast
 qed
show \t1 t2 u dx.
\llbracket\d x u.mtp (x+ Suc d) (Subst d u t1) =
mtp (x + Suc (Suc d)) t1 + mtp (Suc x) u* mtp d t1;
\dxu.mtp (x+ Suc d) (Subst d u t2) =
mtp (x + Suc (Suc d)) t2 + mtp (Suc x) u* mtp d t2】
mtp}(x+\mathrm{ Suc d) (Subst d u (t1० t2)) =
mtp (x + Suc (Suc d)) (t1\circ t2) + mtp (Suc x) u* mtpd (t1\circ t2)
by (simp add: add-mult-distrib2)
show \t1 t2 udx.

dx N.mtp (x+Suc d) (Subst d N t1) =
mtp (x + Suc (Suc d)) t1 + mtp (Suc x) N * mtp d t1;
\dxN.mtp (x+Suc d) (Subst d N t2) =
mtp (x + Suc (Suc d)) t2 + mtp (Suc x) N * mtp d t2】
\Longrightarrow m t p (x + S u c ~ d) (S u b s t ~ d u (\lambda [t 1] ~ \bullet ~ t 2)) =
mtp (x + Suc (Suc d)) (\boldsymbol{\lambda[t1] \bullet t2) + mtp (Suc x) u*mtpd (\boldsymbol{\lambda}[t1] \bullet t2)}
proof -
fix t1 t2 u dx
assume ind1: \d x N.mtp (x+Suc d) (Subst d N t1) =
mtp (x + Suc (Suc d)) t1 + mtp (Suc x) N * mtp d t1
assume ind2: \d x N.mtp (x+ Suc d) (Subst d N t2) =
mtp (x + Suc (Suc d)) t2 + mtp (Suc x) N * mtp d t2
show mtp (x+Suc d)(Subst du (\boldsymbol{\lambda}t1] \bullet t2)) =
mtp (x + Suc (Suc d)) (\boldsymbol{\lambda[t1] \bullet t2) + mtp (Suc x) u* mtp d (\lambda[t1] \bullet t2)}
proof -
let ?A =mtp (Suc x + Suc (Suc d)) t1
let ?B=mtp (Sucx+Sucd) t2
let ?M1 =mtp (Suc d) t1
let ?M2 = mtpd t2
let ?M1 O = mtp 0 (Subst (Suc d) u t1)
let ?M10' = mtp 0 t1
let ?N =mtp (Suc x) u
have mtp (x+ Suc d) (Subst du(\boldsymbol{\lambda}[t]| \bullet t2))=
mtp (x+Suc d) (\lambda[Subst (Suc d) u t1] \bullet Subst d u t2)
by simp
also have ... = mtp (x+Suc (Suc d)) (Subst (Suc d) u t1) +
mtp (x + Suc d) (Subst d u t2) *
max 1(mtp 0 (Subst (Suc d) u t1))
by simp
also have ... = (?A + ?N * ?M1) + (?B + ?N * ?M2) * max 1?M10
using ind1 ind2 add-Suc-shift by presburger

```
```

 also have \(\ldots=? A+? N * ? M 1+? B * \max 1 ? M 1_{0}+? N * ? M 2 * \max 1\) ? \(\mathrm{M} 1_{0}\)
 by algebra
 also have \(\ldots=? A+? B * \max 1 ? M 1_{0}{ }^{\prime}+? N * ? M 1+? N * ? M 2 * \max 1 ? M 1_{0}{ }^{\prime}\)
 proof -
 have ? \(M 1_{0}=? M 1_{0}{ }^{\prime}\)
 using \(m t p_{0}\)-Subst-cancel by blast
 thus ?thesis by auto
 qed
 also have \(\ldots=? A+? B * \max 1 ? M 1_{0}{ }^{\prime}+? N *\left(? M 1+? M 2 * \max 1 ? M 1_{0}{ }^{\prime}\right)\)
 by algebra
 also have \(\ldots=m t p(\) Suc \(x+\) Suc d \()(\boldsymbol{\lambda}[t 1] \bullet t 2)+m t p(S u c x) u * m t p d(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
 by \(\operatorname{simp}\)
 finally show?thesis by simp
 qed
 qed
 qed

```

The following lemma provides expansions that apply when the parameter to \(m t p\) is 0 , as opposed to the previous lemma, which only applies for parameters greater than 0 .
```

lemma mtp-Subst:
shows mtp $k($ Subst $k u t)=m t p($ Suc $k) t+m t p k($ raise $k u) * m t p k t$
proof (induct t arbitrary: $u k$)
show $\bigwedge u k$. mtp $k($ Subst $k u \sharp)=m t p(S u c k) \sharp+m t p k($ raise $k u) * m t p k \sharp$
by simp
show $\bigwedge x u k$. mtp k (Subst $k u « x »)=$
$m t p($ Suc $k) « x »+m t p k($ raise $k u) * m t p k « x »$
by auto
show $\wedge t u k .(\bigwedge u k . m t p k($ Subst $k u t)=m t p(S u c k) t+m t p k($ raise $k u) * m t p k t)$
$\Longrightarrow m t p k$ (Subst $k u \boldsymbol{\lambda}[t])=$
$m t p($ Suc $k) \boldsymbol{\lambda}[t]+m t p k($ Raise $0 k u) * m t p k \boldsymbol{\lambda}[t]$
using mtp-Raise [of 0]
apply auto
by (metis add.left-neutral)
show $\bigwedge t 1$ t2 $u k$.
$\llbracket \bigwedge u k . m t p k($ Subst $k u t 1)=m t p($ Suc $k) t 1+m t p k($ raise $k u) * m t p k t 1$;
$\bigwedge u k . m t p k(S u b s t k u t 2)=m t p(S u c k) t 2+m t p k($ raise $k u) * m t p k t 2 \rrbracket$
$\Longrightarrow m t p k($ Subst $k u(t 1 \circ t 2))=$
$m t p($ Suc $k)(t 1 \circ t 2)+m t p k($ raise $k u) * m t p k(t 1 \circ t 2)$
by (auto simp add: distrib-left)
show $\wedge t 1 t 2 u k$.
$\llbracket \bigwedge u k . m t p k($ Subst $k u t 1)=m t p($ Suc $k) t 1+m t p k($ raise $k u) * m t p k t 1$;
^uk. mtp $k($ Subst $k u t 2)=m t p($ Suc $k) t 2+m t p k($ raise $k u) * m t p k t 2 \rrbracket$
$\Longrightarrow m t p k(S u b s t k u(\boldsymbol{\lambda}[t 1] \bullet t 2))=$
$m t p($ Suc $k)(\boldsymbol{\lambda}[t 1] \bullet t 2)+m t p k($ raise $k u) * m t p k(\boldsymbol{\lambda}[t 1] \bullet t 2)$
proof -
fix $t 1$ t2 $u k$
assume ind1: $\bigwedge u k . m t p k($ Subst $k u t 1)=$
$m t p($ Suc $k) t 1+m t p k($ raise $k u) * m t p k t 1$

```
```

 assume ind2: \u k.mtp k (Subst kut2)=
 mtp (Suc k) t2 + mtp k (raise k u)* mtp k t2
 show mtp k (Subst ku (\boldsymbol{\lambda}[t1]\bullet t2))=
 mtp (Suc k) (\boldsymbol{\lambda}[t1] \bullet t2) + mtp k (raise k u)*mtp k (\boldsymbol{\lambda}[t1] \bullet t2)
 proof -
 have mtp (Suc k) (Raise 0 (Suc k)u)* mtp (Suc k) t1 +
 (mtp (Suc k) t2 + mtpk (Raise 0ku)*mtp kt2) * max (Suc 0) (mtp 0 t1) =
 mtp (Suc k) t2 * max (Suc 0) (mtp 0 t1) +
 mtpk(Raise 0 k u)*(mtp (Suc k)t1 + mtp k t2 * max (Suc 0) (mtp 0 t1))
 proof -
 have mtp (Suc k) (Raise 0 (Suc k)u)*mtp (Suc k) t1 +
 (mtp (Suc k) t2 + mtpk (Raise 0ku)*mtpkt2)* max (Suc 0) (mtp 0 t1) =
 mtp (Suc k) t2 * max (Suc 0) (mtp 0 t1) +
 mtp (Suc k) (Raise 0 (Suc k)u)*mtp (Suc k) t1 +
 mtp k (Raise 0 ku)*mtp k t2 * max (Suc 0) (mtp 0 t1)
 by algebra
 also have ... = mtp (Suc k) t2 * max (Suc 0) (mtp 0 t1) +
 mtp (Suc k) (Raise 0 (Suc k)u)*mtp (Suc k) t1 +
 mtp 0u*mtpk t2 * max (Suc 0) (mtp 0 t1)
 using mtp-Raise [of 0 O O ku] by auto
 also have ... = mtp (Suc k) t2 * max (Suc 0) (mtp 0 t1) +
 mtp k(Raise 0 ku)*
 (mtp (Suc k) t1 + mtpkt2 * max (Suc 0) (mtp 0 t1))
 by (metis (no-types, lifting) ab-semigroup-add-class.add-ac(1)
 ab-semigroup-mult-class.mult-ac(1) add-mult-distrib2 le-add1 mtp-Raise
 plus-nat.add-0)
 finally show ?thesis by blast
 qed
 thus ?thesis
 using ind1 ind2 mtpo-Subst-cancel by auto
 qed
 qed
 qed
lemma mtp0-subst-le:
shows mtp 0 (subst ut)\leqmtp1t+mtp 0u* max 1 (mtp 0t)
proof (cases t)
show t=\sharp\Longrightarrowmtp 0 (subst ut)\leqmtp 1t +mtp 0 u * max 1 (mtp 0t)
by auto
show \z. t= «z»\Longrightarrowmtp 0 (subst ut)\leqmtp 1t +mtp 0 u* max 1 (mtp 0t)
using Raise-0 by force
show \P.t=\lambda[P]\Longrightarrowmtp 0(subst ut)\leqmtp 1t+mtp 0 u* max 1 (mtp 0t)
using mtp-Subst [of 0 u t] Raise-0 by force
show \t1 t2. t= t1 ○ t2 \Longrightarrowmtp 0 (subst ut)\leqmtp 1t +mtp 0 u* max 1 (mtp 0 t)
using mtp-Subst Raise-0 add-mult-distrib2 nat-mult-max-right by auto
show \t1 t2.t=\lambda[t1] \bullet t2 \Longrightarrowmtp 0(subst ut)\leqmtp 1t+mtp 0u* max 1 (mtp 0t)
using mtp-Subst Raise-0
by (metis Nat.add-0-right dual-order.eq-iff max-def mult.commute mult-zero-left
not-less-eq-eq plus-1-eq-Suc trans-le-add1)

```

\section*{qed}
lemma elementary－reduction－nonincreases－mtp：
shows 【elementary－reduction \(u ; u \sqsubseteq t \rrbracket \Longrightarrow m t p x(\) resid \(t u) \leq m t p x t\)
proof（induct t arbitrary：\(u x\) ）
show \(\wedge u x\) ．【elementary－reduction \(u ; u \sqsubseteq \sharp \rrbracket \Longrightarrow m t p x(\) resid \(\sharp u) \leq m t p x \sharp\)
by \(\operatorname{simp}\)
show \(\bigwedge x u i\) ．【elementary－reduction \(u ; u \sqsubseteq « i » \rrbracket\)
\[
\Longrightarrow m t p x(\text { resid } « i » u) \leq m t p x « i »
\]
by（meson Ide．simps（2）elementary－reduction－not－ide ide－backward－stable ide－char subs－implies－prfx）
fix \(u\)
show \(\wedge t x . \llbracket \bigwedge u x\) ．\(\llbracket\) elementary－reduction \(u ; u \sqsubseteq t \rrbracket \Longrightarrow m t p x(\) resid \(t u) \leq m t p x t\) ； elementary－reduction \(u ; u \sqsubseteq \boldsymbol{\lambda}[t] \rrbracket\)
\[
\Longrightarrow m t p x(\boldsymbol{\lambda}[t] \backslash u) \leq m t p x \quad \boldsymbol{\lambda}[t]
\]
by（cases \(u\) ）auto
show \(\wedge t 1\) t2 \(x\) ．
\(\llbracket \bigwedge u x\) ．【elementary－reduction \(u ; u \sqsubseteq t 1 \rrbracket \Longrightarrow m t p x(\) resid \(t 1 u) \leq m t p x t 1\) ；
\(\bigwedge u x\) ．【elementary－reduction \(u ; u \sqsubseteq t 2 \rrbracket \Longrightarrow m t p x(\) resid \(t 2 u) \leq m t p x\) t2；
elementary－reduction \(u ; u \sqsubseteq t 1 \circ\) t2】
\[
\Longrightarrow m t p x(\text { resid }(t 1 \circ t 2) u) \leq m t p x(t 1 \circ t 2)
\]
apply（cases u）
apply auto
apply（metis Coinitial－iff－Con add－mono－thms－linordered－semiring（3）resid－Arr－Ide）
by（metis Coinitial－iff－Con add－mono－thms－linordered－semiring（2）resid－Arr－Ide）
show \(\wedge t 1\) t2 \(x\) ．
\(\llbracket \bigwedge u 1 x\) ．【elementary－reduction \(u 1 ; u 1 \sqsubseteq t 1 \rrbracket \Longrightarrow m t p x(\) resid \(t 1 u 1) \leq m t p x t 1\) ；
\(\bigwedge u 2 x\) ． elementary－reduction u2；u2 \(\sqsubseteq t 2 \rrbracket \Longrightarrow m t p x(\) resid t2 u2）\(\leq m t p x t 2\) ；
elementary－reduction \(u ; u \sqsubseteq \boldsymbol{\lambda}[t 1] \bullet t 2]\)
\(\Longrightarrow m t p x((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u) \leq m t p x(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
proof－
fix \(t 1\) t2 \(x\)
assume ind1：\(\bigwedge u 1 x\) ．【elementary－reduction \(u 1 ; u 1 \sqsubseteq t 1 \rrbracket\) \(\Longrightarrow m t p x(t 1 \backslash u 1) \leq m t p x t 1\)
assume ind2：\u2 \(x\) ．【elementary－reduction u2；u2 \(\sqsubseteq ~ t 2 \rrbracket ~\) \(\Longrightarrow m t p x(t 2 \backslash u 2) \leq m t p x\) t2
assume \(u\) ：elementary－reduction \(u\)
assume subs：\(u \sqsubseteq \boldsymbol{\lambda}[t 1]\) • t2
have 1 ：is－App \(u \vee i s\)－Beta \(u\)
using subs by（metis prfx－Beta－iff subs－implies－prfx）
have \(i s-A p p u \Longrightarrow m t p x((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u) \leq m t p x(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
proof－
assume 2：\(i s-A p p u\)
obtain \(u 1\) u2 where \(u 1 u 2: u=\boldsymbol{\lambda}[41] \circ u 2\) using \(2 u\)
by（metis ConD（3）Con－implies－is－Lam－iff－is－Lam Con－sym con－def is－App－def is－Lam－def lambda．disc（8）null－char prfx－implies－con subs subs－implies－prfx）
have \(m t p x((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u)=m t p x(\boldsymbol{\lambda}[t 1 \backslash u 1] \bullet(t 2 \backslash u \mathcal{Z}))\)
```

 using u1u2 subs
 by (metis Con-sym Ide.simps(1) ide-char resid.simps(6) subs-implies-prfx)
 also have ... = mtp (Suc x) (resid t1 u1) +
 mtp x (resid t2 u2) * max 1 (mtp 0 (resid t1 u1))
 by simp
 also have ... \leqmtp (Suc x) t1 + mtp x (resid t2 u2) * max 1 (mtp 0 (resid t1 u1))
 using u1u2 ind1 [of u1 Suc x] con-sym ide-char resid-arr-ide prfx-implies-con
 subs subs-implies-prfx u
 by force
 also have ... \leqmtp (Suc x) t1 + mtp x t2 * max 1 (mtp 0 (resid t1 u1))
 using u1u2 ind2 [of u2 x]
 by (metis (no-types, lifting) Con-implies-Coinitial-ind add-left-mono
 dual-order.eq-iff elementary-reduction.simps(4) lambda.disc(11)
 mult-le-cancel2 prfx-App-iff resid.simps(31) resid-Arr-Ide subs subs.simps(4)
 subs-implies-prfx u)
 also have .. \leqmtp (Suc x) t1 + mtp x t2 * max 1 (mtp 0 t1)
 using ind1 [of u1 0]
 by (metis Con-implies-Coinitial-ind Ide.simps(3) elementary-reduction.simps(3)
 elementary-reduction.simps(4) lambda.disc(11) max.mono mult-le-mono
 nat-add-left-cancel-le nat-le-linear prfx-App-iff resid.simps(31) resid-Arr-Ide
 subs subs.simps(4) subs-implies-prfx u u1u2)
 also have ... = mtp x (\boldsymbol{\lambda}[t1] \bullet t2)
 by auto
 finally show mtpx((\boldsymbol{\lambda}[t1] \bullet t2)\u)\leqmtpx(\boldsymbol{\lambda}[t1] - t2) by blast
 qed
moreover have is-Beta u\Longrightarrowmtpx((\boldsymbol{\lambda}[t1] \bullet t2) \ u)\leqmtpx (\boldsymbol{\lambda}[t1] \bullet t2)
proof -
assume 2: is-Beta u
obtain u1 u2 where u1u2: }u=\boldsymbol{\lambda}[u1] \bullet u2
using 2 u is-Beta-def by auto
have mtpx ((\boldsymbol{\lambda}[t1] \bullet t2) \u)=mtpx(subst (t2\u2) (t1 \u1))
using u1u2 subs
by (metis con-def con-sym null-char prfx-implies-con resid.simps(4) subs-implies-prfx)
also have ... \leqmtp (Suc x) (resid t1 u1) +
mtp x (resid t2 u2) * max 1 (mtp 0 (resid t1 u1))
apply (cases x=0)
using mtp0-subst-le Raise-0 mtp-Subst' [of x - 1 0 resid t2 u2 resid t1 u1]
by auto
also have ... \leqmtp (Suc x) t1 + mtp x t2 * max 1 (mtp 0 t1)
using ind1 ind2
apply simp
by (metis Coinitial-iff-Con Ide.simps(1) dual-order.eq-iff elementary-reduction.simps(5)
ide-char resid.simps(4) resid-Arr-Ide subs subs-implies-prfx u u1u\mathcal{O)}
also have ... = mtp x (\boldsymbol{\lambda}[t1]\bullett2)
by simp
finally show mtpx((\boldsymbol{\lambda}[t1] \bullet t2)\u)\leqmtpx(\boldsymbol{\lambda}[t1] - t2) by blast
qed
ultimately show mtp x ((\boldsymbol{\lambda}[t1] \bullet t2) \u) \leqmtp x (\boldsymbol{\lambda}[t1] \bullet t2)
using 1 by blast

```
qed
qed
Next we define the "height" of a term. This counts the number of steps in a development of maximal length of the given term.
fun \(h g t\)
where hgt \(\sharp=0\)
| hgt \(<-»=0\)
| hgt \(\boldsymbol{\lambda}[t]=\) hgt \(t\)
\(\mid h g t(t \circ u)=h g t t+h g t u\)
\(\mid \operatorname{hgt}(\boldsymbol{\lambda}[t] \bullet u)=\operatorname{Suc}(h g t t+h g t u * \max 1(\operatorname{mtp} 0 t))\)
lemma hgt-resid-ide:
shows \(\llbracket i d e u ; u \sqsubseteq t \rrbracket \Longrightarrow h g t(\) resid \(t u) \leq h g t t\)
by (metis con-sym eq-imp-le resid-arr-ide prfx-implies-con subs-implies-prfx)
lemma hgt-Raise:
shows hgt (Raise lkt) hgt \(t\)
using mtpE-eq-Raise
by (induct \(t\) arbitrary: \(l k\) ) auto
lemma hgt-Subst:
shows Arr \(u \Longrightarrow h g t(\) Subst \(k u t)=h g t t+h g t u * m t p k t\)
proof (induct \(t\) arbitrary: \(u k\) )
show \(\wedge u k\). Arr \(u \Longrightarrow\) hgt (Subst \(k u \sharp)=h g t \sharp+h g t u * m t p k \sharp\)
by \(\operatorname{simp}\)
show \(\bigwedge x u k\). Arr \(u \Longrightarrow\) hgt (Subst \(k u « x »)=h g t « x »+h g t u * m t p k « x »\)
using hgt-Raise by auto
show \(\bigwedge t u k . \llbracket \bigwedge u k\). Arr \(u \Longrightarrow h g t(S u b s t k u t)=h g t t+h g t u * m t p k t ; \operatorname{Arr} u \rrbracket\) \(\Longrightarrow h g t(\) Subst \(k u \boldsymbol{\lambda}[t])=h g t \boldsymbol{\lambda}[t]+h g t u * m t p k \boldsymbol{\lambda}[t]\)
by auto
show \(\wedge t 1 t 2 u k\).
\(\llbracket \bigwedge u k . \operatorname{Arr} u \Longrightarrow h g t(\) Subst \(k u t 1)=h g t t 1+h g t u * m t p k t 1\);
\(\bigwedge u k\). Arr \(u \Longrightarrow h g t(\) Subst \(k u t 2)=h g t t 2+h g t u * m t p k t 2 ;\) Arr \(u \rrbracket\) \(\Longrightarrow h g t(S u b s t k u(t 1 \circ t 2))=h g t(t 1 \circ t 2)+h g t u * m t p k(t 1 \circ t 2)\) by (simp add: distrib-left)
show \(\bigwedge t 1\) t2 \(u k\).
\(\llbracket \bigwedge u k . \operatorname{Arr} u \Longrightarrow h g t(\) Subst \(k u t 1)=\) hgt \(t 1+\) hgt \(u * m t p k t 1\);
\(\bigwedge u k\). Arr \(u \Longrightarrow\) hgt (Subst kut2) \(=\) hgt t2 + hgt \(u * m t p k t 2\); Arr \(u \rrbracket\)
\(\Longrightarrow \operatorname{hgt}(S u b s t k u(\boldsymbol{\lambda}[t 1] \bullet t 2))=h g t(\boldsymbol{\lambda}[t 1] \bullet t 2)+h g t u * m t p k(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
proof -
fix \(t 1\) t2 \(u k\)
assume ind1: \(\bigwedge u k\). Arr \(u \Longrightarrow h g t\) (Subst \(k u t 1)=h g t 1+h g t u * m t p k t 1\)
assume ind2: \(\bigwedge u k\). Arr \(u \Longrightarrow h g t(S u b s t k u t 2)=h g t 2+h g t u * m t p k t 2\)
assume \(u\) : Arr u
show hgt (Subst ku( \(\boldsymbol{\lambda}[t 1] \bullet t 2))=\operatorname{hgt}(\boldsymbol{\lambda}[t 1] \bullet t 2)+h g t u * m t p k(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
proof -
have hgt (Subst ku( \(\boldsymbol{\lambda}[t 1] \bullet t 2))=\)
Suc (hgt (Subst (Suc k) ut1) +
```

 hgt (Subst k u t2) * max 1 (mtp 0 (Subst (Suc k) u t1)))
 by simp
 also have ... = Suc ((hgt t1 + hgt u* mtp (Suc k) t1) +
 (hgt t2 + hgt u*mtp k t2)* max 1 (mtp 0 (Subst (Suc k) u t1)))
 using u ind1 [of u Suc k] ind2 [of u k] by simp
 also have ... = Suc (hgt t1 + hgt t2 * max 1 (mtp 0 (Subst (Suc k)ut1)) +
 hgt u*mtp (Suc k) t1) +
 hgt u*mtpkt2 * max 1 (mtp 0 (Subst (Suc k)ut1))
 using comm-semiring-class.distrib by force
 also have ... = Suc (hgt t1 + hgt t2 * max 1 (mtp 0 (Subst (Suc k) u t1)) +
 hgt u * (mtp (Suc k) t1 +
 mtpkt2 * max 1 (mtp 0 (Subst (Suc k) u t1))))
 by (simp add: distrib-left)
 also have ... = Suc (hgt t1 + hgt t2 * max 1 (mtp 0 t1) +
 hgt u* (mtp (Suc k) t1 +
 mtp k t2 * max 1 (mtp 0 t1)))
 proof -
 have mtp 0 (Subst (Suc k) u t1) = mtp 0 t1
 using mtpo-Subst-cancel by auto
 thus ?thesis by simp
 qed
 also have ... = hgt (\boldsymbol{\lambda}[t1] \bullet t2) + hgt u* mtp k (\boldsymbol{\lambda}[t1] \bullet t2)
 by simp
 finally show ?thesis by blast
 qed
 qed
 qed
lemma elementary-reduction-decreases-hgt:
shows \llbracketelementary-reduction }u;u\sqsubseteqt\rrbracket\Longrightarrow hgt (t\u)<hgt
proof (induct t arbitrary:u)
show \u. \llbracketelementary-reduction u;u\sqsubseteq\sharp\rrbracket\Longrightarrow hgt (\#\u)<hgt \#
by simp
show \ux.\llbracketelementary-reduction u; u\sqsubseteq «x»\rrbracket\Longrightarrow hgt («x»\u)<hgt «x»
using Ide.simps(2) elementary-reduction-not-ide ide-backward-stable ide-char
subs-implies-prfx
by blast
show \tu.\llbracket\u.\llbracketelementary-reduction u;u\sqsubseteqt\rrbracket\Longrightarrow hgt (t\u)<hgt t;
elementary-reduction u;u\sqsubseteq \ [t]\rrbracket
hgt (\boldsymbol{\lambda}[t]\u)<hgt \boldsymbol{\lambda}[t]
proof -
fix }t
assume ind: \u.\llbracketelementary-reduction u;u\sqsubseteqt\rrbracket\Longrightarrow hgt (t\u)<hgt t
assume u: elementary-reduction u
assume subs: }u\sqsubseteq\boldsymbol{\lambda}[t
show hgt (\boldsymbol{\lambda}tt]\u)<hgt \boldsymbol{\lambda}[t]
using u subs ind
apply (cases u)
apply simp-all

```
```

 by fastforce
 qed
show \t1 t2 u.
\llbracket\u.\llbracketelementary-reduction u;u\sqsubseteqt1\rrbracket\Longrightarrow hgt (t1\u)<hgt t1;
\u.\llbracketelementary-reduction u;u\sqsubseteq t2\rrbracket\Longrightarrow hgt (t2 \u)<hgt t2;
elementary-reduction u;u\sqsubseteqt1\circ t2】
hgt ((t1\circ t2)\u)<hgt (t1\circ t2)
proof -
fix t1 t2 u
assume ind1: \bigwedgeu.\llbracketelementary-reduction u;u\sqsubseteqt1\rrbracket\Longrightarrow hgt (t1\u)<hgt t1
assume ind2: \u. \llbracketelementary-reduction u;u\sqsubseteqt2\rrbracket\Longrightarrow hgt (t2 \u)<hgt t2
assume u: elementary-reduction u
assume subs: u}\sqsubseteqt1\circt
show hgt ((t1\circ t2)\u)<hgt (t1\circ t2)
using u subs ind1 ind2
apply (cases u)
apply simp-all
by (metis add-le-less-mono add-less-le-mono hgt-resid-ide ide-char not-less0
zero-less-iff-neq-zero)
qed
show \t1 t2 u.
\llbracket\u.\llbracketelementary-reduction u; u\sqsubseteqt1\rrbracket\Longrightarrow hgt (t1 \u)<hgt t1;
\u.\llbracketelementary-reduction u;u\sqsubseteqt2\rrbracket\Longrightarrow hgt (t2\u)<hgt t2;
elementary-reduction }u;u\sqsubseteq\boldsymbol{\lambda}[t1]\bullet t2
hgt ((\boldsymbol{\lambda}t1]\bullett2)\u)<hgt (\boldsymbol{\lambda}[t1]\bullett2)
proof -
fix t1 t2 u
assume ind1: \u. \llbracketelementary-reduction u;u\sqsubseteqt1\rrbracket\Longrightarrow hgt (t1\u)<hgt t1
assume ind2: \bigwedgeu.\llbracketelementary-reduction u;u\sqsubseteqt2\rrbracket\Longrightarrow hgt (t2 \u)<hgt t2
assume u: elementary-reduction u
assume subs: u\sqsubseteq \lambda[t1] \bullet t2
have is-Appu\vee is-Beta u
using subs by (metis prfx-Beta-iff subs-implies-prfx)
moreover have is-App u\Longrightarrowhgt ((\boldsymbol{\lambda}[t] \bullet t2)\u)<hgt (\boldsymbol{\lambda}[t1]\bullet t2)
proof -
fix u1 u2
assume 0: is-App u
obtain u1 u1'u2 where 1: u= u1\circ u2 ^ u1 = \lambda[u1]
using u 0
by (metis ConD(3) Con-implies-is-Lam-iff-is-Lam Con-sym con-def is-App-def is-Lam-def
null-char prfx-implies-con subs subs-implies-prfx)
have hgt ((\boldsymbol{\lambda}[t1]\bullet t2) \u)=hgt ((\boldsymbol{\lambda}[t1] \bullet t2) \(u1\circ u2))
using 1 by simp
also have ... = hgt (}\boldsymbol{\lambda}[t1\u1] \bullet t2 \u2)
by (metis 1 Con-sym Ide.simps(1) ide-char resid.simps(6) subs subs-implies-prfx)
also have ... = Suc (hgt (t1\u1') +hgt (t2 \u2) * max (Suc 0) (mtp 0 (t1\u1')))
by auto
also have ... < hgt (\boldsymbol{\lambda}[t1] \bullet t2)
proof -

```
have elementary-reduction (un-App1 u) \(\wedge i d e(u n-A p p 2 u) \vee\) ide (un-App1 u) ^ elementary-reduction (un-App2 u)
using \(u 1\) elementary-reduction-App-iff \([\) of \(u\) ] by simp
moreover have elementary-reduction \((u n-A p p 1 u) \wedge\) ide (un-App2 u) \(\Longrightarrow\) ?thesis
proof -
assume 2: elementary-reduction (un-App1 u) \(\wedge i d e(u n-A p p 2 u)\)
have elementary-reduction \(u 1^{\prime} \wedge\) ide (un-App2 u)
using 12 u elementary-reduction-Lam-iff by force
moreover have \(m t p 0\left(t 1 \backslash u 1^{\prime}\right) \leq m t p 0 t 1\)
using 1 calculation elementary-reduction-nonincreases-mtp subs subs.simps(4)
by blast
moreover have mtp \(0(t 2 \backslash u 2) \leq m t p 0 t 2\)
using 1 hgt-resid-ide [of u2 t2]
by (metis calculation(1) con-sym eq-refl resid-arr-ide lambda.sel(4) prfx-implies-con subs subs.simps(4) subs-implies-prfx)
ultimately show ?thesis
using 12 ind1 [of u1 ] hgt-resid-ide
apply simp
by (metis 1 Suc-le-mono \(\left\langle m t p 0\left(t 1 \backslash u 1^{\prime}\right) \leq m t p 0\right.\) t1〉add-less-le-mono le-add1 le-add-same-cancel1 max.mono mult-le-mono subs subs.simps(4))
qed
moreover have ide (un-App1 u) ^ elementary-reduction (un-App2 u) \(\Longrightarrow\) ?thesis proof -
assume 2: ide (un-App1 u) ^elementary-reduction (un-App2 u)
have ide (un-App1 u) \(\wedge\) elementary-reduction u2
using 12 u elementary-reduction-Lam-iff by force
moreover have mtp \(0\left(t 1 \backslash u 1^{\prime}\right) \leq m t p 0 t 1\)
using 1 hgt-resid-ide [of u1' t1]
by (metis Ide.simps(3) calculation con-sym eq-refl ide-char resid-arr-ide
lambda.sel(3) prfx-implies-con subs subs.simps(4) subs-implies-prfx)
moreover have mtp \(0(t 2 \backslash u 2) \leq m t p 0 t 2\)
using 1 elementary-reduction-nonincreases-mtp subs calculation(1) subs.simps(4) by blast
ultimately show ?thesis
using 12 ind2 [of u2]
apply simp
by (metis Coinitial-iff-Con Ide-iff-Src-self Nat.add-0-right add-le-less-mono ide-char Ide.simps(1) subs.simps(4) le-add1 max-nat.neutr-eq-iff mult-less-cancel2 nat.distinct(1) neq0-conv resid-Arr-Src subs subs-implies-prfx)
qed
ultimately show ?thesis by blast
qed
also have \(\ldots=\operatorname{Suc}(h g t t 1+h g t t 2 * \max 1(m t p 0 t 1))\)
by \(\operatorname{simp}\)
also have \(\ldots=h g t(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
by \(\operatorname{simp}\)
finally show \(h g t((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u)<h g t(\boldsymbol{\lambda}[t 1] \bullet t 2)\)
```

 by blast
 qed
 moreover have is-Beta u\Longrightarrowhgt ((\boldsymbol{\lambda}[t1] \bullet t2) \ u)<hgt (\boldsymbol{\lambda}[t1] \bullet t2)
 proof -
 fix u1 u2
 assume 0: is-Beta u
 obtain u1 u2 where 1:u=\lambda[u1] - u2
 using u0 by (metis lambda.collapse(4))
 have hgt ((\boldsymbol{\lambda}[t1]\bullet t2) \u)=hgt ((\boldsymbol{\lambda}[t1]\bullet t2) \(\boldsymbol{\lambda}[u1]\bulletu2))
 using 1 by simp
 also have ... = hgt (subst (resid t2 u2) (resid t1 u1))
 by (metis 1 con-def con-sym null-char prfx-implies-con resid.simps(4)
 subs subs-implies-prfx)
 also have ... = hgt (resid t1 u1) + hgt (resid t2 u2) * mtp 0 (resid t1 u1)
 proof -
 have Arr (resid t2 u2)
 by (metis 1 Coinitial-resid-resid Con-sym Ide.simps(1) ide-char resid.simps(4)
 subs subs-implies-prfx)
 thus ?thesis
 using hgt-Subst [of resid t2 u2 0 resid t1 u1] by simp
 qed
 also have .. < hgt (}\boldsymbol{\lambda}[t1]\bullett2
 proof -
 have ide u1 ^ ide u2
 using u 1 elementary-reduction-Beta-iff [of u] by auto
 thus ?thesis
 using 1 hgt-resid-ide
 by (metis add-le-mono con-sym hgt.simps(5) resid-arr-ide less-Suc-eq-le
 max.cobounded2 nat-mult-max-right prfx-implies-con subs subs.simps(5)
 subs-implies-prfx)
 qed
 finally show hgt ((\boldsymbol{\lambda}[t1] \bullet t2) \u)<hgt (\boldsymbol{\lambda}[t1]\bullett2)
 by blast
 qed
 ultimately show hgt ((\boldsymbol{\lambda}[t1] \bullet t2) \u)<hgt (\boldsymbol{\lambda}[t1] \bullet t2) by blast
 qed
 qed
end
context reduction-paths
begin
lemma length-devel-le-hgt:
shows development t U\Longrightarrow length U}\leq\Lambda\mathrm{ .hgt t
using \Lambda.elementary-reduction-decreases-hgt
by (induct U arbitrary: t, auto, fastforce)

```

We finally arrive at the main result of this section: the Finite Developments Theorem.
theorem finite-developments:
shows \(F D t\)
using length-devel-le-hgt [of \(t\) ] FD-def by auto

\subsection*{3.4.2 Complete Developments}

A complete development is a development in which there are no residuals of originally marked redexes left to contract.
```

definition complete-development
where complete-development t U D development t U ^(\Lambda.Ide t\vee [t] *<* U)
lemma complete-development-Ide-iff:
shows complete-development }tU\Longrightarrow\Lambda.Ide t \longleftrightarrowU=[
using complete-development-def development-Ide Ide.simps(1) ide-char
by (induct t) auto
lemma complete-development-cons:
assumes complete-development t(u\#U)
shows complete-development (}t\u)
using assms complete-development-def
by (metis Ide.simps(1) Ide.simps(2) Resid-rec(1) Resid-rec(3)
complete-development-Ide-iff ide-char development.simps(2)
\Lambda.ide-char list.simps(3))
lemma complete-development-cong:
shows \llbracketcomplete-development t U; ᄀ\Lambda.Ide t\rrbracket\Longrightarrow \Longrightarrowt] * ~* U
using complete-development-def development-implies
by (induct U) auto
lemma complete-developments-cong:
assumes }\neg\Lambda\mathrm{ .Ide }t\mathrm{ and complete-development t U and complete-development t V
shows U *~*}
using assms complete-development-cong [of t] cong-symmetric cong-transitive
by blast
lemma Trgs-complete-development:
shows \llbracketcomplete-development t U; \neg\Lambda.Ide t\rrbracket\Longrightarrow Trgs U = {\Lambda.Trg t}
using complete-development-cong Ide.simps(1) Srcs-Resid Trgs.simps(2)
Trgs-Resid-sym ide-char complete-development-def development-imp-Arr \Lambda.targets-char}\mp@subsup{}{\Lambda}{
apply simp
by (metis Srcs-Resid Trgs.simps(2) con-char ide-def)

```

Now that we know all developments are finite, it is easy to construct a complete development by an iterative process that at each stage contracts one of the remaining marked redexes at each stage. It is also possible to construct a complete development by structural induction without using the finite developments property, but it is more work to prove the correctness.
fun (in lambda-calculus) bottom-up-redex
```

where bottom-up-redex $\sharp=\sharp$
bottom-up-redex «x» = «x»
bottom-up-redex $\boldsymbol{\lambda}[M]=\boldsymbol{\lambda}[$ bottom-up-redex $M]$
| bottom-up-redex $(M \circ N)=$
(if \neg Ide M then bottom-up-redex $M \circ$ Src N else $M \circ$ bottom-up-redex N)
| bottom-up-redex $(\boldsymbol{\lambda}[M] \bullet N)=$
(if \neg Ide M then $\boldsymbol{\lambda}[$ bottom-up-redex $M] \circ$ Src N
else if \neg Ide N then $\boldsymbol{\lambda}[M] \circ$ bottom-up-redex N
else $\boldsymbol{\lambda}[M] \bullet N)$
lemma (in lambda-calculus) elementary-reduction-bottom-up-redex:
shows \llbracket Arr $t ; \neg I d e ~ t \rrbracket \Longrightarrow$ elementary-reduction (bottom-up-redex t)
using Ide-Src
by (induct t) auto
lemma (in lambda-calculus) subs-bottom-up-redex:
shows Arr $t \Longrightarrow$ bottom-up-redex $t \sqsubseteq t$
apply (induct t)
apply auto[3]
apply (metis Arr.simps(4) Ide.simps(4) Ide-Src Ide-iff-Src-self Ide-implies-Arr
bottom-up-redex.simps(4) ide-char lambda.disc(14) lambda.sel(3) lambda.sel(4)
subs-App subs-Ide)
by (metis Arr.simps(5) Ide-Src Ide-iff-Src-self Ide-implies-Arr bottom-up-redex.simps(5)
ide-char subs.simps(4) subs.simps(5) subs-Ide)
function (sequential) bottom-up-development
where bottom-up-development $t=$
(if \neg. Arr $t \vee \Lambda$.Ide t then []

```

```

 by pat-completeness auto
 termination bottom-up-development

```

```

 प.subs-bottom-up-redex
 by (relation measure \(\Lambda . h g t\)) auto
 lemma complete-development-bottom-up-development-ind:
shows $\llbracket \Lambda$.Arr t; length (bottom-up-development t) $\leq n \rrbracket$
\Longrightarrow complete-development t (bottom-up-development t)
proof (induct n arbitrary: t)
show $\wedge t$. $\llbracket \Lambda$.Arr t; length (bottom-up-development $t) \leq 0 \rrbracket$
\Longrightarrow complete-development t (bottom-up-development t)
using complete-development-def development-Ide by auto
show $\bigwedge n t . \llbracket \wedge t . \llbracket \Lambda$.Arr t; length (bottom-up-development $t) \leq n \rrbracket$
\Longrightarrow complete-development t (bottom-up-development t);
^.Arr t; length (bottom-up-development t) \leq Suc $n \rrbracket$
\Longrightarrow complete-development t (bottom-up-development t)
proof -
fix $n t$

```
```

 assume t: \Lambda.Arr t
 assume n: length (bottom-up-development t) \leqSuc n
 assume ind: \t.\llbracket\Lambda.Arr t; length (bottom-up-development t)\leqn\rrbracket
 \Longrightarrow ~ c o m p l e t e - d e v e l o p m e n t ~ t ~ (b o t t o m - u p - d e v e l o p m e n t ~ t)
 show complete-development t (bottom-up-development t)
 proof (cases bottom-up-development t)
 show bottom-up-development }t=[]\Longrightarrow\mathrm{ ?thesis
 using ind t by force
 fix }u
 assume uU: bottom-up-development t=u#U
 have 1: \Lambda.elementary-reduction }u\wedgeu\sqsubseteq
 using t uU
 by (metis bottom-up-development.simps \Lambda.elementary-reduction-bottom-up-redex
 list.inject list.simps(3) \Lambda.subs-bottom-up-redex)
 moreover have complete-development (\Lambda.resid t u)U
 using 1 ind
 by (metis Suc-le-length-iff \Lambda.arr-char \Lambda.arr-resid-iff-con bottom-up-development.simps
 list.discI list.inject n not-less-eq-eq \Lambda.prfx-implies-con
 \Lambda.con-sym \Lambda.subs-implies-prfx uU)
 ultimately show ?thesis
 by (metis Con-sym Ide.simps(2) Resid-rec(1) Resid-rec(3)
 complete-development-Ide-iff complete-development-def ide-char
 development.simps(2) development-implies \Lambda.ide-char list.simps(3) uU)
 qed
 qed
 qed
lemma complete-development-bottom-up-development:
assumes \Lambda.Arr t
shows complete-development t (bottom-up-development t)
using assms complete-development-bottom-up-development-ind by blast
end

```

\subsection*{3.5 Reduction Strategies}

\section*{context lambda-calculus \\ begin}

A reduction strategy is a function taking an identity term to an arrow having that identity as its source.
definition reduction-strategy
where reduction-strategy \(f \longleftrightarrow(\forall t\). Ide \(t \longrightarrow\) Coinitial \((f t) t)\)
The following defines the iterated application of a reduction strategy to an identity term.
fun reduce
where reduce f a \(0=a\)
\(\mid\) reduce \(f\) a \((S u c n)=\) reduce \(f(\operatorname{Trg}(f a)) n\)
```

lemma red-reduce:
assumes reduction-strategy f
shows Ide a \Longrightarrow red a (reduce f a n)
apply (induct n arbitrary:a, auto)
apply (metis Ide-iff-Src-self Ide-iff-Trg-self Ide-implies-Arr red.simps)
by (metis Ide-Trg Ide-iff-Src-self assms red.intros(1) red.intros(2) reduction-strategy-def)

```

A reduction strategy is normalizing if iterated application of it to a normalizable term eventually yields a normal form.
```

definition normalizing-strategy
where normalizing-strategy $f \longleftrightarrow(\forall$ a. normalizable $a \longrightarrow(\exists n . N F($ reduce f a $n)))$
end
context reduction-paths
begin

```

The following function constructs the reduction path that results by iterating the application of a reduction strategy to a term.
fun apply-strategy
where apply-strategy f a \(0=[]\)
| apply-strategy \(f a(S u c n)=f a \#\) apply-strategy \(f(\Lambda \cdot \operatorname{Trg}(f a)) n\)
lemma apply-strategy-gives-path-ind:
assumes \(\Lambda\).reduction-strategy \(f\)
shows \(\llbracket \Lambda\).Ide \(a ; n>0 \rrbracket \Longrightarrow \operatorname{Arr}(a p p l y\)-strategy \(f\) a \(n) \wedge\)
length (apply-strategy f a \(n\) ) \(=n \wedge\)
Src (apply-strategy f \(a n)=a \wedge\)
\(\operatorname{Trg}(\) apply-strategy f a \(n)=\Lambda\).reduce f a \(n\)
proof (induct \(n\) arbitrary: a, simp)
fix \(n a\)
assume ind: \(\wedge a\). \(\llbracket \Lambda\).Ide \(a ; 0<n \rrbracket \Longrightarrow \operatorname{Arr}(\) apply-strategy fan) \(\wedge\)
length (apply-strategy f a \(n\) ) \(=n \wedge\)
Src (apply-strategy fan)=a^
\(\operatorname{Trg}(\) apply-strategy \(f\) a \(n)=\Lambda\).reduce \(f\) a \(n\)
assume a: .Ide a
show \(\operatorname{Arr}(\) apply-strategy \(f a(S u c n)) \wedge\)
length (apply-strategy \(f\) a (Suc n)) \(=\) Suc \(n \wedge\)
Src (apply-strategy f \(a(\) Suc \(n))=a \wedge\)
\(\operatorname{Trg}(\) apply-strategy \(f a(\) Suc \(n))=\Lambda\).reduce \(f a(\) Suc \(n)\)
proof (intro conjI)
have 1: \(\Lambda . \operatorname{Arr}(f a) \wedge \Lambda . \operatorname{Src}(f a)=a\)
using assms a \(\Lambda\).reduction-strategy-def
by (metis \(\Lambda\).Ide-iff-Src-self)
show \(\operatorname{Arr}\) (apply-strategy f a (Suc n))
using 1 Arr.elims(3) ind \(\Lambda\). targets-char \(\boldsymbol{\Lambda}_{\Lambda}\).Ide-Trg by fastforce
show Src (apply-strategy fa(Suc n)) \(=a\)
by (simp add: 1)
```

 show length (apply-strategy fa (Suc n)) = Suc n
 by (metis 1 \Lambda.Ide-Trg One-nat-def Suc-eq-plus1 ind list.size(3) list.size(4)
 neq0-conv apply-strategy.simps(1) apply-strategy.simps(2))
 show Trg (apply-strategy f a (Suc n)) =\Lambda.reduce f a (Suc n)
 proof (cases apply-strategy f(\Lambda.Trg (f a)) n=[])
 show apply-strategy f(\Lambda.Trg (f a)) n=[]\Longrightarrow\mathrm{ ?thesis}
 using a 1 ind [of \Lambda.Trg (f a)] \Lambda.Ide-Trg \Lambda.targets-char, by force
 assume 2: apply-strategy f (\Lambda.Trg (fa)) n\not= []
 have Trg (apply-strategy fa(Suc n)) = Trg (apply-strategy f(\Lambda.Trg (fa))n)
 using a 1 ind [of \Lambda.Trg (f a)]
 by (simp add: 2)
 also have .. = \Lambda.reduce f a (Suc n)
 using 12 \Lambda.Ide-Trg ind [of \Lambda.Trg (f a)] by fastforce
 finally show?thesis by blast
 qed
 qed
 qed
lemma apply-strategy-gives-path:
assumes \Lambda.reduction-strategy f}\mathrm{ and \.Ide a and n>0
shows Arr (apply-strategy f a n)
and length (apply-strategy fa n)=n
and Src (apply-strategy f a n) =a
and Trg (apply-strategy f a n)=\Lambda.reduce f a n
using assms apply-strategy-gives-path-ind by auto
lemma reduce-eq-Trg-apply-strategy:
assumes \Lambda.reduction-strategy S and \Lambda.Ide a
shows n>0\Longrightarrow\Lambda.reduce S a n = Trg(apply-strategy S a n)
using assms
apply (induct n)
apply simp-all
by (metis Arr.simps(1) Trg-simp apply-strategy-gives-path-ind \Lambda.Ide-Trg
\Lambda.reduce.simps(1) \Lambda.reduction-strategy-def \Lambda.trg-char neq0-conv
apply-strategy.simps(1))
end

```

\subsection*{3.5.1 Parallel Reduction}

\section*{context lambda-calculus}
begin
Parallel reduction is the strategy that contracts all available redexes at each step.
```

fun parallel-strategy

```
where parallel-strategy «i» = «i»
    \(\mid\) parallel-strategy \(\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\) parallel-strategy \(t]\)
    \(\mid\) parallel-strategy \((\boldsymbol{\lambda}[t] \circ u)=\boldsymbol{\lambda}[\) parallel-strategy \(t] \bullet\) parallel-strategy \(u\)
    | parallel-strategy \((t \circ u)=\) parallel-strategy \(t \circ\) parallel-strategy \(u\)
    | parallel-strategy \((\boldsymbol{\lambda}[t] \bullet u)=\boldsymbol{\lambda}[\) parallel-strategy \(t] \bullet\) parallel-strategy u
```

 | parallel-strategy }#=
 lemma parallel-strategy-is-reduction-strategy:
 shows reduction-strategy parallel-strategy
 proof (unfold reduction-strategy-def, intro allI impI)
 fix }
 show Ide t\LongrightarrowCoinitial (parallel-strategy t) t
 using Ide-implies-Arr
 apply (induct t, auto)
 by force+
 qed
 lemma parallel-strategy-Src-eq:
 shows Arr t\Longrightarrow parallel-strategy (Src t)= parallel-strategy t
 by (induct t) auto
 lemma subs-parallel-strategy-Src:
 shows Arr t\Longrightarrowt\sqsubseteq parallel-strategy (Src t)
 by (induct t) auto
 end
context reduction-paths
begin
Parallel reduction is a universal strategy in the sense that every reduction path is ${ }^{*}{ }^{*}$-below the path generated by the parallel reduction strategy.
lemma parallel-strategy-is-universal:
shows $\llbracket n>0 ; n \leq$ length $U ;$ Arr $U \rrbracket$
\Longrightarrow take $n U^{*}{ }^{*}$ apply-strategy Λ.parallel-strategy $(S r c \quad U) n$
proof (induct n arbitrary: U, simp)
fix $n a$ and U :: Λ.lambda list
assume n : Suc $n \leq$ length U
assume U : $\operatorname{Arr} U$
assume ind: $\wedge U . \llbracket 0<n ; n \leq$ length $U ;$ Arr $U \rrbracket$
\Longrightarrow take $n U^{*} \Sigma^{*}$ apply-strategy Λ.parallel-strategy $(\operatorname{Src} U) n$
have 1: take (Suc n) $U=h d \widetilde{U} \#$ take $n(t l U)$
by (metis U Arr.simps(1) take-Suc)
have 2: hd $U \sqsubseteq$ 亿.parallel-strategy (Src U) by (metis Arr-imp-arr-hd Con-single-ideI(2) Resid-Arr-Src Src-resid Srcs-simp ${ }_{\Lambda P}$

```

``` प.subs-parallel-strategy-Src list.set-intros(1) list.simps(15))
show take (Suc n) \(U^{*} \lesssim^{*}\) apply-strategy \(\Lambda\).parallel-strategy (Src U) (Suc n)
proof (cases apply-strategy \(\Lambda\).parallel-strategy (Src U) (Suc n))
show apply-strategy \(\Lambda\).parallel-strategy (Src U) \((\) Suc n) \(=[] \Longrightarrow\) take (Suc n) \(U^{*} \stackrel{*}{*}^{*}\) apply-strategy \(\Lambda\).parallel-strategy (Src U) (Suc n)
by \(\operatorname{simp}\)
fix \(v V\)
assume 3: apply-strategy \(\Lambda\).parallel-strategy \((\) Src \(U)(\) Suc \(n)=v \# V\)
```

```
show take (Suc n) U *<* apply-strategy \(\Lambda\).parallel-strategy (Src U) (Suc n)
proof (cases \(V=[]\))
 show \(V=[] \Longrightarrow\) ?thesis
 using 123 ind ide-char
 by (metis Suc-inject Ide.simps(2) Resid.simps(3) list.discI list.inject
```



```
 assume \(V: V \neq[]\)
 have \(4: \operatorname{Arr}(v \# V)\)
 using 3 apply-strategy-gives-path(1)
 by (metis Arr-imp-arr-hd Srcs-simp \(P_{P E} \operatorname{Srcs-simp}_{\Lambda P} U\) \(\Lambda\).Ide-Src \(\Lambda\).arr-iff-has-target
 ム.parallel-strategy-is-reduction-strategy \(\Lambda\). targets-char \(_{\Lambda}\) singleton-insert-inj-eq'
 zero-less-Suc)
 have 5: \(\operatorname{Arr}(h d U \#\) take \(n(t l U)\))
 by (metis 1 U Arr-append-iff \(P_{P}\) id-take-nth-drop list.discI not-less take-all-iff)
 have 6 : Srcs \((h d U \#\) take \(n(t l U))=\operatorname{Srcs}(v \# V)\)
 by (metis 23 प.Coinitial-iff-Con \(\Lambda . I d e . s i m p s(1) \operatorname{Srcs.simps(2)~Srcs.simps(3)~}\)
 ム.ide-char list.exhaust-sel list.inject apply-strategy.simps(2) \(\Lambda\). sources-char \(_{\Lambda}\)
 प.subs-implies-prfx)
 have take (Suc n) \(U^{*} \wedge^{*}\) apply-strategy \(\Lambda\).parallel-strategy (Src \(U\)) \((\) Suc \(n)=\)
 \([h d U \backslash v]^{*} \backslash{ }^{*} V @\left(\text { take } n(t l U)^{*} \backslash *[v \backslash h d U]\right)^{*} \backslash{ }^{*}\left(V^{*} \backslash^{*}[h d U \backslash v]\right)\)
 using \(U\) V13456
 by (metis Resid.simps(1) Resid-cons(1) Resid-rec(3-4) confluence-ind)
moreover have Ide ...
proof
 have 7: \(v=\Lambda\).parallel-strategy \((\) Src \(U) \wedge\)
 \(V=\) apply-strategy \(\Lambda\). parallel-strategy \((\operatorname{Src} U \backslash v) n\)
```



```
 apply simp
 by (metis (full-types) \(\Lambda\). Coinitial-iff-Con \(\Lambda . I d e . \operatorname{simps}(1)\) \(\Lambda . \operatorname{Trg} . \operatorname{simps}(5)\)
 ム.parallel-strategy.simps(9) \(\Lambda\).resid-Src-Arr)
 show 8: Ide ([hd \(U \backslash v]{ }^{*} \backslash{ }^{*} V\))
 by (metis 24567 V Con-initial-left Ide.simps(2)
 confluence-ind Con-rec(3) Resid-Ide-Arr-ind \(\Lambda . s u b s-i m p l i e s-p r f x) ~\)
 show 9: Ide \(\left(\left(\text { take } n(t l U)^{*} \backslash *[v \backslash h d U]\right)^{*} \backslash *\left(V^{*} \backslash^{*}[h d U \backslash v]\right)\right)\)
 proof -
 have 10: \(\Lambda\).Ide (\(h d U \backslash v\))
 using 27 亿.ide-char \(\Lambda . s u b s-i m p l i e s-p r f x\) by presburger
 have 11: \(V=\) apply-strategy \(\Lambda\).parallel-strategy (\(\Lambda . \operatorname{Trg} v\)) \(n\)
 using 3 by auto
 have (take \(\left.n(t l U)^{*} \backslash^{*}[v \backslash h d U]\right)^{*} \backslash *\left(V^{*} \backslash *[h d U \backslash v]\right)=\)
 (take \(\left.n(t l U)^{*} \backslash^{*}[v \backslash h d U]\right)^{*} \backslash *\)
 apply-strategy \(\Lambda . p a r a l l e l-s t r a t e g y ~(\Lambda . \operatorname{Trg} v) n\)
 by (metis 81011 Ide.simps(1) Resid-single-ide(2) \(\Lambda . p r f x-c h a r)\)
 moreover have Ide ...
 proof -
 have Ide (take \(n\left(\right.\) take \(\left.n(t l U)^{*} \backslash *[v \backslash h d U]\right){ }^{*} \backslash *\)
 apply-strategy \(\Lambda\).parallel-strategy \((\Lambda . \operatorname{Trg} v) n)\)
 proof -
 have \(0<n\)
```

```
 proof -
 have length V = n
 using apply-strategy-gives-path
 by (metis 10 11 V \Lambda.Coinitial-iff-Con \Lambda.Ide-Trg \Lambda.Arr-not-Nil
 \Lambda.Ide-implies-Arr \Lambda.parallel-strategy-is-reduction-strategy neq0-conv
 apply-strategy.simps(1))
 thus ?thesis
 using V by blast
 qed
 moreover have n\leq length (take n (tl U) ** [v\hd U])
 proof -
 have length (take n (tl U)) =n
 using n by force
 thus ?thesis
 using n U length-Resid [of take n (tl U) [v\hd U]]
 by (metis 4 5 6 Arr.simps(1) Con-cons(2) Con-rec(2)
 confluence-ind dual-order.eq-iff)
 qed
 moreover have \Lambda.Trg v=Src (take n (tl U) **[v\hd U])
 proof -
 have Src (take n (tl U) ** [v\hd U]) = Trg [v\hd U]
 by (metis Src-resid calculation(1-2) linorder-not-less list.size(3))
 also have ... = \Lambda.Trg v
 by (metis 10 Trg.simps(2) \Lambda.Arr-not-Nil \Lambda.apex-sym \Lambda.trg-ide
 \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr \Lambda.Src-resid \Lambda.prfx-char)
 finally show ?thesis by simp
 qed
 ultimately show ?thesis
 using ind [of Resid (take n (tl U)) [\Lambda.resid v (hd U)]] ide-char
 by (metis Con-imp-Arr-Resid le-zero-eq less-not-refl list.size(3))
 qed
 moreover have take n (take n (tl U) ** [v\hd U])=
 take n (tl U) ** [v\hd U]
 proof -
 have Arr (take n (tl U) ** [v\hd U])
 by (metis Con-imp-Arr-Resid Con-implies-Arr(1) Ide.simps(1) calculation
 take-Nil)
 thus ?thesis
 by (metis 1 Arr.simps(1) length-Resid dual-order.eq-iff length-Cons
 length-take min.absorb2 n old.nat.inject take-all)
 qed
 ultimately show ?thesis by simp
 qed
 ultimately show ?thesis by auto
qed
show Trg ([hd U\v]**}V)
 Src ((take n (tl U)** [v\hd U]) ** (V** [hd U \v]))
 by (metis 9 Ide.simps(1) Src-resid Trg-resid-sym)
qed
```

```
 ultimately show ?thesis
 using ide-char by presburger
 qed
 qed
 qed
end
context lambda-calculus
begin
```

    Parallel reduction is a normalizing strategy.
    lemma parallel-strategy-is-normalizing:
shows normalizing-strategy parallel-strategy
proof -
interpret $\Lambda x$ : reduction-paths .
have $\bigwedge a$. normalizable $a \Longrightarrow \exists n . N F$ (reduce parallel-strategy a $n$ )
proof -
fix $a$
assume 1: normalizable a
obtain $U b$ where $U: \Lambda x$.Arr $U \wedge \Lambda x$.Src $U=a \wedge \Lambda x$. $\operatorname{Trg} U=b \wedge N F b$
using 1 normalizable-def $\Lambda$ x.red-iff by blast
have 2: $\wedge n . \llbracket 0<n ; n \leq$ length $U \rrbracket$
$\Longrightarrow \Lambda x . I d e \overline{(\Lambda x . R e s i d}($ take $n U)(\Lambda x$.apply-strategy parallel-strategy a $n$ ) $)$
using $U \Lambda$ x.parallel-strategy-is-universal $\Lambda x$.ide-char by blast
let ? $P R=\Lambda$ x.apply-strategy parallel-strategy a (length $U$ )
have $\Lambda x . \operatorname{Trg} ? P R=b$
proof -
have 3: $\Lambda x$.Ide $(\Lambda x$.Resid $U$ ?PR $)$
using $U 2$ [of length $U$ ] by force
have $\Lambda x$. $\operatorname{Trg}(\Lambda x$.Resid ?PR $U)=b$
by (metis 3 NF-reduct-is-trivial U $\Lambda x$.Con-imp-Arr-Resid $\Lambda x$.Con-sym $\Lambda x$.Ide.simps (1)
$\Lambda x . S r c-r e s i d ~ r e d u c t i o n-p a t h s . r e d-i f f)$
thus ?thesis
by (metis $3 \Lambda x$.Con-Arr-self $\Lambda x$.Ide-implies-Arr $\Lambda x$.Resid-Arr-Ide-ind
$\Lambda x . S r c-r e s i d ~ \Lambda x . T r g-r e s i d-s y m)$
qed
hence reduce parallel-strategy $a($ length $U)=b$
using $1 U$
by (metis $\Lambda x . A r r . \operatorname{simps}(1)$ length-greater-0-conv normalizable-def
$\Lambda$ x.apply-strategy-gives-path(4) parallel-strategy-is-reduction-strategy)
thus $\exists n$. NF (reduce parallel-strategy a n)
using $U$ by blast
qed
thus ?thesis
using normalizing-strategy-def by blast
qed

An alternative characterization of a normal form is a term on which the parallel
reduction strategy yields an identity.

```
abbreviation has-redex
where has-redex \(t \equiv \operatorname{Arr} t \wedge \neg\) Ide (parallel-strategy \(t\))
lemma NF-iff-has-no-redex:
shows Arr \(t \Longrightarrow N F t \longleftrightarrow \neg\) has-redex \(t\)
proof (induct t)
 show Arr \(\sharp \Longrightarrow N F \sharp \longleftrightarrow \neg\) has-redex \(\sharp\)
 using \(N F\)-def by simp
 show \(\bigwedge x\). Arr \(« x » \Longrightarrow N F « x » \longleftrightarrow \neg\) has-redex \(« x »\)
 using NF-def by force
 show \(\wedge t . \llbracket \operatorname{Arr} t \Longrightarrow N F t \longleftrightarrow \neg\) has-redex \(t ; \operatorname{Arr} \boldsymbol{\lambda}[t] \rrbracket \Longrightarrow N F \boldsymbol{\lambda}[t] \longleftrightarrow \neg\) has-redex \(\boldsymbol{\lambda}[t]\)
 proof -
 fix \(t\)
 assume ind: Arr \(t \Longrightarrow N F t \longleftrightarrow \neg\) has-redex \(t\)
 assume \(t: \operatorname{Arr} \boldsymbol{\lambda}[t]\)
 show \(N F \boldsymbol{\lambda}[t] \longleftrightarrow \neg\) has-redex \(\boldsymbol{\lambda}[t]\)
 proof
 show \(N F \boldsymbol{\lambda}[t] \Longrightarrow \neg\) has-redex \(\boldsymbol{\lambda}[t]\)
 using \(t\) ind
 by (metis NF-def Arr.simps(3) Ide.simps(3) Src.simps(3) parallel-strategy.simps(2))
 show \(\neg\) has-redex \(\boldsymbol{\lambda}[t] \Longrightarrow N F \boldsymbol{\lambda}[t]\)
 using \(t\) ind
 by (metis NF-def ide-backward-stable ide-char parallel-strategy-Src-eq
 subs-implies-prfx subs-parallel-strategy-Src)
 qed
 qed
 show \(\bigwedge\) t1 t2. \(\llbracket\) Arr \(t 1 \Longrightarrow N F t 1 \longleftrightarrow \neg\) has-redex \(t 1\);
 Arr t 2 NF t2 \(\longleftrightarrow \neg\) has-redex t 2 ;
 \(\operatorname{Arr}(\boldsymbol{\lambda}[t 1] \bullet t 2) \rrbracket\)
 \(\Longrightarrow N F(\boldsymbol{\lambda}[t 1] \bullet t 2) \longleftrightarrow \neg\) has-redex \((\boldsymbol{\lambda}[t 1] \bullet t 2)\)
 using NF-def Ide.simps(5) parallel-strategy.simps(8) by presburger
 show \(\wedge\) t1 t2. \(\llbracket\) Arr \(t 1 \Longrightarrow N F t 1 \longleftrightarrow \neg\) has-redex \(t 1\);
 Arr t2 \(\Longrightarrow\) NF \(\mathrm{t} 2 \longleftrightarrow\) ᄀ has-redex t2;
 \(\operatorname{Arr}(t 1 \circ\) t2 \() \rrbracket\)
 \(\Longrightarrow N F(t 1 \circ t 2) \longleftrightarrow \neg\) has-redex \((t 1 \circ t 2)\)
 proof -
 fix \(t 1\) t2
 assume ind1: Arr \(t 1 \Longrightarrow N F t 1 \longleftrightarrow \neg\) has-redex \(t 1\)
 assume ind2: Arr t2 \(\Longrightarrow N F t 2 \longleftrightarrow \neg\) has-redex t2
 assume \(t: \operatorname{Arr}(t 1 \circ t 2)\)
 show \(N F(t 1 \circ t 2) \longleftrightarrow \neg\) has-redex \((t 1 \circ t 2)\)
 using \(t\) ind1 ind2 NF-def
 apply (intro iffI)
 apply (metis Ide-iff-Src-self parallel-strategy-is-reduction-strategy
 reduction-strategy-def)
 apply (cases t1)
 apply simp-all
 apply (metis Ide-iff-Src-self ide-char parallel-strategy.simps \((1,5)\)
```

```
 parallel-strategy-is-reduction-strategy reduction-strategy-def resid-Arr-Src
 subs-implies-prfx subs-parallel-strategy-Src)
 by (metis Ide-iff-Src-self ide-char ind1 Arr.simps(4) parallel-strategy.simps(6)
 parallel-strategy-is-reduction-strategy reduction-strategy-def resid-Arr-Src
 subs-implies-prfx subs-parallel-strategy-Src)
 qed
qed
lemma (in lambda-calculus) not-NF-elim:
assumes \negNF t and Ide t
obtains }u\mathrm{ where coinitial t u ^ ᄀIde }
 using assms NF-def by auto
lemma (in lambda-calculus) NF-Lam-iff:
shows NF \lambda[t]\longleftrightarrowNF t
 using NF-def
 by (metis Ide-implies-Arr NF-iff-has-no-redex Ide.simps(3) parallel-strategy.simps(2))
lemma (in lambda-calculus) NF-App-iff:
shows NF (t1\circt2) \longleftrightarrow ᄀis-Lam t1 ^NF t1 ^NF t2
proof -
 have }\negNF(t1\circt2)\Longrightarrowis-Lam t1 \vee\negNF t1 \vee ᄀNF t2
 apply (cases is-Lam t1)
 apply simp-all
 apply (cases t1)
 apply simp-all
 using NF-def Ide.simps(1) apply presburger
 apply (metis Ide-implies-Arr NF-def NF-iff-has-no-redex Ide.simps(4)
 parallel-strategy.simps(5))
 apply (metis Ide-implies-Arr NF-def NF-iff-has-no-redex Ide.simps(4)
 parallel-strategy.simps(6))
 using NF-def Ide.simps(5) by presburger
 moreover have is-Lam t1\vee\negNF t1\vee\negNF t2 \Longrightarrow\negNF(t1\circ t2)
 proof -
 have is-Lam t1 \Longrightarrow ᄀNF(t1\circ t2)
 by (metis Ide-implies-Arr NF-def NF-iff-has-no-redex Ide.simps(5) lambda.collapse(2)
 parallel-strategy.simps(3,8))
 moreover have }\negNFt1\Longrightarrow\negNF(t1\circ t2
 using NF-def Ide-iff-Src-self Ide-implies-Arr
 apply auto
 by (metis (full-types) Arr.simps(4)Ide.simps(4) Src.simps(4))
 moreover have }\negNF t2 \Longrightarrow ᄀNF (t1\circ t2)
 using NF-def Ide-iff-Src-self Ide-implies-Arr
 apply auto
 by (metis (full-types) Arr.simps(4)Ide.simps(4) Src.simps(4))
 ultimately show is-Lam t1\vee\negNF t1\vee\negNF t2 \Longrightarrow\negNF (t1\circ 作)
 by auto
 qed
 ultimately show ?thesis by blast
```

qed

### 3.5.2 Head Reduction

Head reduction is the strategy that only contracts a redex at the "head" position, which is found at the end of the "left spine" of applications, and does nothing if there is no such redex.

The following function applies to an arbitrary arrow $t$, and it marks the redex at the head position, if any, otherwise it yields $S r c t$.

```
fun head-strategy
where head-strategy «i» = «i»
 | head-strategy }\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\mathrm{ head-strategy }t
 head-strategy }(\boldsymbol{\lambda}[t]\circu)=\boldsymbol{\lambda}[\mathrm{ Src t] - Src u
 | head-strategy (t ० u) = head-strategy t O Src u
 | head-strategy (\lambda [t] \bulletu)=\boldsymbol{\lambda[Src t] \bullet Src u}
 | head-strategy }#=
lemma Arr-head-strategy:
shows Arr t \Longrightarrow Arr (head-strategy t)
 apply (induct t)
 apply auto
proof -
 fix tu
 assume ind: Arr (head-strategy t)
 assume t: Arr t and u: Arr u
 show Arr (head-strategy (t ○ u))
 using t u ind
 by (cases t) auto
qed
lemma Src-head-strategy:
shows Arr t\LongrightarrowSrc (head-strategy t) = Src t
 apply (induct t)
 apply auto
proof -
 fix tu
 assume ind: Src (head-strategy t) = Src t
 assume t:Arr t and u: Arr u
 have Src (head-strategy (t\circu))=Src (head-strategy t O Src u)
 using t ind
 by (cases t) auto
 also have ... = Src t ○ Src u
 using tu ind by auto
 finally show Src (head-strategy (t\circu))=Src t ○ Src u by simp
qed
lemma Con-head-strategy:
shows Arr t C Con t (head-strategy t)
```

```
 apply (induct t)
 apply auto
 apply (simp add: Arr-head-strategy Src-head-strategy)
 using Arr-Subst Arr-not-Nil by auto
lemma head-strategy-Src:
shows Arr t \Longrightarrow head-strategy (Src t) = head-strategy t
 apply (induct t)
 apply auto
 using Arr.elims(2) by fastforce
lemma head-strategy-is-elementary:
shows}\llbracket\mathrm{ Arr t; ᄀIde (head-strategy t)| ב elementary-reduction (head-strategy t)
 using Ide-Src
 apply (induct t)
 apply auto
proof -
 fix t1 t2
 assume t1: Arr t1 and t2: Arr t2
 assume t:\negIde (head-strategy (t1 ○ t2))
 assume 1:\neg Ide (head-strategy t1) \Longrightarrow elementary-reduction (head-strategy t1)
 assume 2: ᄀIde (head-strategy t2) \Longrightarrow elementary-reduction (head-strategy t2)
 show elementary-reduction (head-strategy (t1 ○ t2))
 using t t1 t2 1 2 Ide-Src Ide-implies-Arr
 by (cases t1) auto
qed
lemma head-strategy-is-reduction-strategy:
shows reduction-strategy head-strategy
proof (unfold reduction-strategy-def, intro allI impI)
 fix }
 show Ide t\LongrightarrowCoinitial (head-strategy t) t
 proof (induct t)
 show Ide }#\Longrightarrow\mathrm{ Coinitial (head-strategy }\sharp\mathrm{) }
 by simp
 show \bigwedgex. Ide «x» \Longrightarrow Coinitial (head-strategy «x») «x»
 by simp
 show }\wedget.\llbracketIde t\Longrightarrow Coinitial (head-strategy t) t; Ide \boldsymbol{\lambda}[t]
```



```
 by simp
 fix t1 t2
 assume ind1: Ide t1 \Longrightarrow Coinitial (head-strategy t1) t1
 assume ind2: Ide t2 \Longrightarrow Coinitial (head-strategy t2) t2
 assume t: Ide (t1 ○ t2)
 show Coinitial (head-strategy (t1 ○ t2)) (t1 ○ t2)
 using t ind1 Ide-implies-Arr Ide-iff-Src-self
 by (cases t1) simp-all
 next
 fix t1 t2
```

```
 assume ind1: Ide t1 \Longrightarrow Coinitial (head-strategy t1) t1
 assume ind2: Ide t2 \Longrightarrow Coinitial (head-strategy t2) t2
 assume t:Ide (\boldsymbol{\lambda}[t1] \bullet t2)
 show Coinitial (head-strategy (\boldsymbol{\lambda}[t1] \bullet t2)) (\boldsymbol{\lambda}[t1] \bullet t2)
 using t by auto
 qed
qed
```

The following function tests whether a term is an elementary reduction of the head redex.
fun is-head-reduction
where is-head-reduction $«-» \longleftrightarrow$ False
| is-head-reduction $\boldsymbol{\lambda}[t] \longleftrightarrow$ is-head-reduction $t$
| is-head-reduction $(\boldsymbol{\lambda}[-] \circ-) \longleftrightarrow$ False
| is-head-reduction $(t \circ u) \longleftrightarrow$ is-head-reduction $t \wedge$ Ide $u$
| is-head-reduction $(\boldsymbol{\lambda}[t] \bullet u) \longleftrightarrow$ Ide $t \wedge$ Ide $u$
| is-head-reduction $\sharp \longleftrightarrow$ False
lemma is-head-reduction-char:
shows is-head-reduction $t \longleftrightarrow$ elementary-reduction $t \wedge$ head-strategy $($ Src $t)=t$
apply (induct $t$ )
apply simp-all
proof -
fix $t 1$ t2
assume ind: is-head-reduction $t 1 \longleftrightarrow$
elementary-reduction t1 $\wedge$ head-strategy $($ Src t1) $)=t 1$
show is-head-reduction $(t 1 \circ t 2) \longleftrightarrow$
(elementary-reduction t1 $\wedge$ Ide t2 $\vee$ Ide t1 $\wedge$ elementary-reduction t2) $\wedge$ head-strategy $($ Src $t 1 \circ$ Src t2 $)=t 1 \circ t 2$
using ind Ide-implies-Arr Ide-iff-Src-self Ide-Src elementary-reduction-not-ide ide-char
apply (cases t1)
apply simp-all
apply (metis Ide-Src arr-char elementary-reduction-is-arr)
apply (metis Ide-Src arr-char elementary-reduction-is-arr)
by metis
next
fix $t 1$ t2
show Ide $t 1 \wedge$ Ide t2 $\longleftrightarrow$ Ide $t 1 \wedge$ Ide t2 $\wedge \operatorname{Src}(\operatorname{Src} t 1)=t 1 \wedge \operatorname{Src}(\operatorname{Src} t 2)=t 2$
by (metis Ide-iff-Src-self Ide-implies-Arr)
qed
lemma is-head-reductionI:
assumes Arr $t$ and elementary-reduction $t$ and head-strategy (Src $t)=t$
shows is-head-reduction $t$
using assms is-head-reduction-char by blast
The following function tests whether a redex in the head position of a term is marked.
fun contains-head-reduction

```
where contains-head-reduction \(«-» \longleftrightarrow\) False
 |contains-head-reduction \(\boldsymbol{\lambda}[t] \longleftrightarrow\) contains-head-reduction \(t\)
 |contains-head-reduction (\(\boldsymbol{\lambda}[-] \circ-) \longleftrightarrow\) False
 contains-head-reduction \((t \circ u) \longleftrightarrow\) contains-head-reduction \(t \wedge\) Arr \(u\)
 contains-head-reduction \((\boldsymbol{\lambda}[t] \bullet u) \longleftrightarrow\) Arr \(t \wedge\) Arr \(u\)
 | contains-head-reduction \(\sharp \longleftrightarrow\) False
```

lemma is-head-reduction-imp-contains-head-reduction:
shows is-head-reduction $t \Longrightarrow$ contains-head-reduction $t$
using Ide-implies-Arr
apply (induct $t$ )
apply auto
proof -
fix $t 1$ t2
assume ind1: is-head-reduction $t 1 \Longrightarrow$ contains-head-reduction t1
assume ind2: is-head-reduction t2 $\Longrightarrow$ contains-head-reduction t2
assume $t$ : is-head-reduction ( $t 1 \circ$ t2)
show contains-head-reduction ( $t 1 \circ$ t2)
using $t$ ind1 ind2 Ide-implies-Arr
by (cases t1) auto
qed

An internal reduction is one that does not contract any redex at the head position.
fun is-internal-reduction
where is-internal-reduction $«-» \longleftrightarrow$ True
| is-internal-reduction $\boldsymbol{\lambda}[t] \longleftrightarrow$ is-internal-reduction $t$
| is-internal-reduction $(\boldsymbol{\lambda}[t] \circ u) \longleftrightarrow$ Arr $t \wedge \operatorname{Arr} u$
| is-internal-reduction $(t \circ u) \longleftrightarrow$ is-internal-reduction $t \wedge$ Arr $u$
| is-internal-reduction $(\boldsymbol{\lambda}[-] \bullet-) \longleftrightarrow$ False
| is-internal-reduction $\sharp \longleftrightarrow$ False
lemma is-internal-reduction-iff:
shows is-internal-reduction $t \longleftrightarrow$ Arr $t \wedge \neg$ contains-head-reduction $t$
apply (induct t) apply simp-all
proof -
fix $t 1$ t2
assume ind1: is-internal-reduction t1 $\longleftrightarrow$ Arr t1 $\wedge \neg$ contains-head-reduction t1
assume ind2: is-internal-reduction $t 2 \longleftrightarrow$ Arr $t 2 \wedge \neg$ contains-head-reduction t2
show is-internal-reduction (t1 ○ t2) $\longleftrightarrow$
Arr t1 $\wedge$ Arr $t 2 \wedge \neg$ contains-head-reduction $(t 1 \circ$ t2)
using ind1 ind2
apply (cases t1)
apply simp-all
by blast
qed
Head reduction steps are either $\lesssim$-prefixes of, or are preserved by, residuation along arbitrary reductions.
lemma is-head-reduction-resid:
shows $\llbracket i s$－head－reduction $t$ ；Arr $u ; \operatorname{Src} t=\operatorname{Src} u \rrbracket \Longrightarrow t \lesssim u \vee$ is－head－reduction $(t \backslash u)$ proof（induct $t$ arbitrary：$u$ ）
show $\wedge u$ ．$\llbracket i$ is－head－reduction $\sharp ;$ Arr $u ; \operatorname{Src} \sharp=\operatorname{Src} u \rrbracket$

$$
\Longrightarrow \sharp \lesssim u \vee \text { is-head-reduction }(\sharp \backslash u)
$$

by auto
show $\bigwedge x u$ ．$\llbracket i s-h e a d-r e d u c t i o n ~ « x » ;$ Arr u；Src $« x »=$ Src $u \rrbracket$

$$
\Longrightarrow « x » \lesssim u \vee \text { is-head-reduction }(« x » \backslash u)
$$

by auto
fix $t u$
assume ind：$\bigwedge u$ ．$\llbracket i s$－head－reduction $t ; \operatorname{Arr} u ; \operatorname{Src} t=\operatorname{Src} u \rrbracket$
$\Longrightarrow t \lesssim u \vee$ is－head－reduction $(t \backslash u)$
assume $t$ ：is－head－reduction $\boldsymbol{\lambda}[t]$
assume $u$ ：Arr u
assume tu：Src $\boldsymbol{\lambda}[t]=\operatorname{Src} u$
have 1：Arr $t$
by（metis Arr－head－strategy head－strategy－Src is－head－reduction－char $\operatorname{Arr} \cdot \operatorname{simps}(3) t$ tu u）
show $\boldsymbol{\lambda}[t] \lesssim u \vee$ is－head－reduction $(\boldsymbol{\lambda}[t] \backslash u)$
using $t$ utu 1 ind
by（cases $u$ ）auto
next
fix $t 1$ t2 $u$
assume ind1：$\bigwedge u 1 . \llbracket i s-h e a d-r e d u c t i o n ~ t 1 ; ~ A r r ~ u 1 ; ~ S r c ~ t 1 ~=~ S r c ~ u 1 \rrbracket ~$
$\Longrightarrow t 1 \lesssim u 1 \vee$ is－head－reduction $(t 1 \backslash u 1)$
assume ind2：\u2．【is－head－reduction t2；Arr u2；Src t2＝Src u2】
$\Longrightarrow t 2 \lesssim u 2 \vee$ is－head－reduction（t2 \u2）
assume $t$ ：is－head－reduction $(\boldsymbol{\lambda}[t 1] \bullet t 2)$
assume u：Arr u
assume tu： $\operatorname{Src}(\boldsymbol{\lambda}[t 1] \bullet t 2)=\operatorname{Src} u$
show $\boldsymbol{\lambda}[t 1] \bullet t 2 \lesssim u \vee$ is－head－reduction $((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u)$
using $t u$ tu ind1 ind2 Coinitial－iff－Con Ide－implies－Arr ide－char resid－Ide－Arr Ide－Subst
by（cases $u$ ；cases un－App1 u）auto
next
fix $t 1$ t2 $u$
assume ind1：$\bigwedge u 1$ ．$\llbracket i s$－head－reduction t1；Arr u1；Src t1 $=$ Src u1】
$\Longrightarrow t 1 \lesssim u 1 \vee$ is－head－reduction $(t 1 \backslash u 1)$
assume ind2：\u2．【is－head－reduction t2；Arr u2；Src t2＝Src u2】
$\Longrightarrow$ t2 $\lesssim u 2 \vee i s-h e a d-r e d u c t i o n ~(t 2 ~ \ u 2) ~$
assume $t$ ：is－head－reduction（ $t 1 \circ$ t2）
assume $u$ ：Arr u
assume tu：Src $(t 1 \circ t 2)=\operatorname{Src} u$
have $\operatorname{Arr}(t 1 \circ$ t2）
using is－head－reduction－char elementary－reduction－is－arr $t$ by blast
hence t1：Arr t1 and t2：Arr t2
by auto
have 0 ：$\neg$ is－Lam t1
using $t$ is－Lam－def by fastforce
have 1：is－head－reduction t1
using $t$ t1 by force
show $t 1 \circ t 2 \lesssim u \vee$ is－head－reduction $((t 1 \circ t 2) \backslash u)$

```
proof -
 have ᄀIde((t1\circ t2)\u)\Longrightarrow is-head-reduction ((t1\circ t2) \u)
 proof (intro is-head-reductionI)
 assume 2: ᄀIde ((t1 ○ t2) \u)
 have 3: is-App u\Longrightarrow ᄀIde (t1 \un-App1 u)\vee ᄀIde (t2 \un-App2 u)
 by (metis 2 ide-char lambda.collapse(3) lambda.discI(3) lambda.sel(3-4) prfx-App-iff)
 have 4: is-Beta u\Longrightarrow\negIde (t1\un-Beta1 u)\vee\negIde (t2 \un-Beta2 u)
 using utu 2
 by (metis 0 ConI Con-implies-is-Lam-iff-is-Lam〈Arr (t1 ○ t2)>
 ConD(4) lambda.collapse(4) lambda.disc(8))
 show 5: Arr ((t1\circ t2) \u)
 using Arr-resid <Arr (t1 ○ t2)> tu u by auto
 show head-strategy (Src ((t1\circ t2)\u))=(t1\circ \2)\u
 proof (cases u)
 show }u=\sharp\Longrightarrow\mathrm{ head-strategy (Src ((t1० t2) \u))=(t1○ t2) \u
 by simp
 show \x.u = «x» \Longrightarrow\Longrightarrow head-strategy (Src ((t1\circ t2)\u))=(t1\circ t2)\u
 by auto
 show }\v.u=\boldsymbol{\lambda[v]\Longrightarrow head-strategy (Src ((t1\circ t2)\u))=(t1\circt2)\u
 by simp
 show \u1 u2. u = \lambda[u1] \bullet u2 \Longrightarrow head-strategy (Src ((t1\circ t2) \u))=(t1\circ t2)\u
 by (metis 05 Arr-not-Nil ConD(4) Con-implies-is-Lam-iff-is-Lam lambda.disc(8))
 show \u1 u2. u = App u1 u2 \Longrightarrow head-strategy (Src ((t1\circ t2)\u))=(t1\circ t2)\u
 proof -
 fix u1 u2
 assume u1u2: u=u1\circ u2
 have head-strategy (Src ((t1 ○ t2) \u))=
 head-strategy (Src (t1 \u1) o Src (t2 \u2))
 using u u1u2 tu t1 t2 Coinitial-iff-Con by auto
 also have ... = head-strategy (Trg u1 ○ Trg u2)
 using 5 u1u2 Src-resid
 by (metis Arr-not-Nil ConD(1))
 also have ... = (t1\circ t2) \u
 proof (cases Trg u1)
 show }\operatorname{Trg}u1=\sharp\Longrightarrow\mathrm{ head-strategy (Trg u1 ○ Trg u2) = (t1 ○ t2) \u
 using Arr-not-Nil u u1u2 by force
 show \xx. Trg u1 = «x» \Longrightarrow head-strategy (Trg u1\circ Trg u2) = (t1\circ t2)\u
 using tu t u t1 t2 u1u2 Arr-not-Nil Ide-iff-Src-self
 by (cases u1; cases t1) auto
 show }\v.\operatorname{Trg}u1=\boldsymbol{\lambda}[v]\Longrightarrow\mathrm{ head-strategy (Trg u1○ Trg u2)}=(t1\circt2)\
 using tu t u t1 t2 u1u2 Arr-not-Nil Ide-iff-Src-self
 apply (cases u1; cases t1)
 apply auto
 by (metis 2 5 Src-resid Trg.simps(3-4) resid.simps(3-4) resid-Src-Arr)
 show \u11 u12. Trg u1=u11\circu12
 \Longrightarrow \text { head-strategy (Trg u1○Trg u2) = (t1○ t2) \u}
 proof -
 fix u11 u12
 assume u1: Trg u1=u11\circ u12
```

```
 show head-strategy \((\operatorname{Trg} u 1 \circ \operatorname{Trg} u 2)=(t 1 \circ\) t2 \() \backslash u\)
 proof (cases Trg u1)
 show \(\operatorname{Trg} u 1=\sharp \Longrightarrow\) ?thesis
 using \(u 1\) by simp
 show \(\bigwedge x\). Trg \(u 1=« x » \Longrightarrow\) ?thesis
 apply simp
 using \(u 1\) by force
 show \(\bigwedge v\). Trg \(u 1=\boldsymbol{\lambda}[v] \Longrightarrow\) ?thesis
 using \(u 1\) by simp
 show \(\bigwedge u 11 u 12 . \operatorname{Trg} u 1=u 11 \circ u 12 \Longrightarrow\) ?thesis
 using \(t u\) tu u1u2 12 ind1 elementary-reduction-not-ide
 is-head-reduction-char Src-resid Ide-iff-Src-self
 \(\langle\operatorname{Arr}(t 1 \circ\) t2) \(\rangle\) Coinitial-iff-Con
 by fastforce
 show \(\bigwedge u 11 u 12 . \operatorname{Trg} u 1=\lambda[u 11] \bullet u 12 \Longrightarrow\) ?thesis
 using \(u 1\) by simp
 qed
 qed
 show \(\bigwedge u 11 u 12 . \operatorname{Trg} u 1=\boldsymbol{\lambda}[u 11] \bullet u 12 \Longrightarrow\) ?thesis
 using u1u2 u Ide-Trg by fastforce
 qed
 finally show head-strategy \((\operatorname{Src}((t 1 \circ t 2) \backslash u))=(t 1 \circ t 2) \backslash u\)
 by \(\operatorname{simp}\)
 qed
 qed
 thus elementary-reduction (\((11 \circ\) t2) \u)
 by (metis 25 Ide-Src Ide-implies-Arr head-strategy-is-elementary)
 qed
 thus ?thesis by blast
 qed
qed
```

Internal reductions are closed under residuation.
lemma is-internal-reduction-resid:
shows 【is-internal-reduction t; is-internal-reduction $u$; Src $t=$ Src $u \rrbracket$
$\Longrightarrow$ is-internal-reduction $(t \backslash u)$
apply (induct $t$ arbitrary: u)
apply auto
apply (metis Con-implies-Arr2 con-char weak-extensionality Arr.simps(2) Src.simps(2)
parallel-strategy.simps(1) prfx-implies-con resid-Arr-Src subs-Ide
subs-implies-prfx subs-parallel-strategy-Src)
proof -
fix $t u$
assume ind: $\bigwedge u$. $\llbracket i s$-internal-reduction $u$; Src $t=\operatorname{Src} u \rrbracket \Longrightarrow i s$-internal-reduction $(t \backslash u)$
assume $t$ : is-internal-reduction $t$
assume $u$ : is-internal-reduction $u$
assume tu: $\boldsymbol{\lambda}[$ Src $t]=\operatorname{Src} u$
show is-internal-reduction $(\boldsymbol{\lambda}[t] \backslash u)$
using $t u$ tu ind

```
 apply (cases u)
 by auto fastforce
 next
 fix t1 t2 u
 assume ind1: \u. \llbracketis-internal-reduction t1; is-internal-reduction u; Src t1 = Src u\rrbracket
 \Longrightarrow ~ i s - i n t e r n a l - r e d u c t i o n ~ (~ t 1 ~ \ u)
 assume t: is-internal-reduction (t1\circ t2)
 assume u: is-internal-reduction u
 assume tu: Src t1 \circ Src t2 = Src u
 show is-internal-reduction ((t1\circ t2) \u)
 using t u tu ind1 Coinitial-resid-resid Coinitial-iff-Con Arr-Src
 is-internal-reduction-iff
 apply auto
 apply (metis Arr.simps(4) Src.simps(4))
 proof -
 assume t1:Arr t1 and t2: Arr t2 and u: Arr u
 assume tu: Src t1\circ Src t2 = Src u
 assume 1:` contains-head-reduction u
 assume 2: ᄀ contains-head-reduction (t1\circ t2)
 assume 3: contains-head-reduction ((t1\circ t2)\u)
 show False
 using t1 t2 u tu 12 3 is-internal-reduction-iff
 apply (cases u)
 apply simp-all
 apply (cases t1; cases un-App1 u)
 apply simp-all
 by (metis Coinitial-iff-Con ind1 Arr.simps(4) Src.simps(4) resid.simps(3))
 qed
qed
```

A head reduction is preserved by residuation along an internal reduction, so a head reduction can only be canceled by a transition that contains a head reduction.

```
lemma is-head-reduction-resid':
shows \(\llbracket i s\)-head-reduction \(t\); is-internal-reduction \(u\); Src \(t=\operatorname{Src} u \rrbracket\)
 \(\Longrightarrow\) is-head-reduction \((t \backslash u)\)
proof (induct \(t\) arbitrary: u)
 show \(\bigwedge u\). \(\llbracket i\) is-head-reduction \(\sharp\); is-internal-reduction \(u ; \operatorname{Src} \sharp=\operatorname{Src} u \rrbracket\)
 \(\Longrightarrow\) is-head-reduction (\(\sharp \backslash u\))
 by simp
 show \(\wedge x u\). \(\llbracket i s-h e a d-r e d u c t i o n ~ « x » ;\) is-internal-reduction \(u ; \operatorname{Src} « x »=\operatorname{Src} u \rrbracket\)
 \(\Longrightarrow\) is-head-reduction (\(« x » \backslash u\))
 by simp
 show \(\bigwedge t . \llbracket \bigwedge u\). \(\llbracket i s\)-head-reduction \(t ;\) is-internal-reduction \(u ; \operatorname{Src} t=\operatorname{Src} u \rrbracket\)
 \(\Longrightarrow\) is-head-reduction \((t \backslash u)\);
 is-head-reduction \(\boldsymbol{\lambda}[t]\); is-internal-reduction \(u ; \operatorname{Src} \boldsymbol{\lambda}[t]=\operatorname{Src} u \rrbracket\)
 \(\Longrightarrow\) is-head-reduction \((\boldsymbol{\lambda}[t] \backslash u)\)
 for \(u\)
 by (cases \(u\), simp-all) fastforce
 fix \(t 1\) t2 \(u\)
```

assume ind1: $\bigwedge u . \llbracket i s$-head-reduction t1; is-internal-reduction $u ; \operatorname{Src} t 1=\operatorname{Src} u \rrbracket$ $\Longrightarrow$ is-head-reduction ( $t 1 \backslash u$ )
assume $t$ : is-head-reduction ( $t 1 \circ$ t2)
assume $u$ : is-internal-reduction $u$
assume tu: Src ( $t 1 \circ$ t2) $=\operatorname{Src} u$
show is-head-reduction $((t 1 \circ$ t2 $) \backslash u)$
using $t u$ tu ind1
apply (cases $u$ )
apply simp-all
proof (intro conjI impI)
fix $u 1$ u2
assume $u 1 u 2: u=u 1 \circ u 2$
show 1: Con t1 u1 using Coinitial-iff-Con tu u1u2 ide-char by (metis ConD(1) Ide.simps(1) is-head-reduction.simps(9) is-head-reduction-resid is-internal-reduction.simps(9) is-internal-reduction-resid t u)
show Con t2 u2 using Coinitial-iff-Con tu u1u2 ide-char by (metis ConD (1) Ide.simps(1) is-head-reduction.simps(9) is-head-reduction-resid is-internal-reduction.simps(9) is-internal-reduction-resid $t u$ )
show is-head-reduction ( $t 1 \backslash u 1 \circ$ t2 \u2)
using $t$ u u1u2 1 Coinitial-iff-Con 〈Con t2 u2〉 ide-char ind1 resid-Ide-Arr
apply (cases t1; simp-all; cases u1; simp-all; cases un-App1 u1)
apply auto
by (metis 1 ind1 is-internal-reduction.simps(6) resid.simps(3))
qed
next
fix $t 1$ t2 $u$
assume ind1: $\bigwedge u$. $\llbracket i s$-head-reduction t1; is-internal-reduction $u ; \operatorname{Src} t 1=\operatorname{Src} u \rrbracket$ $\Longrightarrow$ is-head-reduction $(t 1 \backslash u)$
assume $t$ : is-head-reduction ( $\boldsymbol{\lambda}[t 1]$ - t2)
assume $u$ : is-internal-reduction $u$
assume tu: $\operatorname{Src}(\boldsymbol{\lambda}[t 1] \bullet t 2)=\operatorname{Src} u$
show is-head-reduction $((\boldsymbol{\lambda}[t 1] \bullet t 2) \backslash u)$
using $t u$ tu ind1
apply (cases $u$ )
apply simp-all
by (metis Con-implies-Arr1 is-head-reduction-resid is-internal-reduction.simps(9)
is-internal-reduction-resid lambda.disc(15) prfx-App-iff t tu)
qed
The following function differs from head-strategy in that it only selects an alreadymarked redex, whereas head-strategy marks the redex at the head position.

```
fun head-redex
where head-redex \(\sharp=\sharp\)
 | head-redex \(« x »=« x »\)
 | head-redex \(\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\) head-redex \(t]\)
 | head-redex \((\boldsymbol{\lambda}[t] \circ u)=\boldsymbol{\lambda}[\) Src \(t] \circ \operatorname{Src} u\)
 \(\mid\) head-redex \((t \circ u)=\) head-redex \(t \circ\) Src \(u\)
```

```
 | head-redex }(\boldsymbol{\lambda}[t]\bulletu)=(\boldsymbol{\lambda}[\mathrm{ Src t] • Src u}
lemma elementary-reduction-head-redex:
shows \llbracketArr t; ᄀIde (head-redex t)\rrbracket\Longrightarrow elementary-reduction (head-redex t)
 using Ide-Src
 apply (induct t)
 apply auto
proof -
 show \t2. \llbracket\negIde (head-redex t1)\Longrightarrow elementary-reduction (head-redex t1);
 \neg Ide (head-redex (t1 ○ t2));
 \. Arr t\LongrightarrowIde (Src t); Arr t1; Arr t2\rrbracket
 \Longrightarrow ~ e l e m e n t a r y - r e d u c t i o n ~ (h e a d - r e d e x ~ (t 1 ~ 口 ~ t 2)) ~
 for t1
 using Ide-Src
 by (cases t1) auto
qed
lemma subs-head-redex:
shows Arr t\Longrightarrow head-redex }t\sqsubseteq
 using Ide-Src subs-Ide
 apply (induct t)
 apply simp-all
proof -
 show \t2. \llbrackethead-redex t1 \sqsubseteq t1; head-redex t2 \sqsubseteq t2;
 Arr t1 ^ Arr t2; \t. Arr t \LongrightarrowIde (Src t);
 \ut.\llbracketIde u; Src t=Src u\rrbracket\Longrightarrowu\sqsubseteqt\rrbracket
 \Longrightarrow head-redex (t1 ○ t2) \sqsubseteqt1 ○ t2
 for t1
 using Ide-Src subs-Ide
 by (cases t1) auto
qed
lemma contains-head-reduction-iff:
shows contains-head-reduction t \longleftrightarrow Arr t ^ ᄀIde (head-redex t)
 apply (induct t)
 apply simp-all
proof -
 show \t2. contains-head-reduction t1 = (Arr t1 ^ ᄀIde (head-redex t1))
 contains-head-reduction (t1 ○ t2) =
 (Arr t1 ^ Arr t2 ^ ᄀIde (head-redex (t1 ○ t2)))
 for t1
 using Ide-Src
 by (cases t1) auto
qed
lemma head-redex-is-head-reduction:
shows \llbracketArr t; contains-head-reduction t\rrbracket\Longrightarrow is-head-reduction (head-redex t)
 using Ide-Src
 apply (induct t)
```

apply simp-all
proof -
show $\wedge$ t2. $\llbracket$ contains-head-reduction $t 1 \Longrightarrow$ is-head-reduction (head-redex t1);
Arr t1 $\wedge$ Arr t2;
contains-head-reduction (t1 ○ t2); $\wedge t . \operatorname{Arr} t \Longrightarrow I d e(S r c t) \rrbracket$
$\Longrightarrow$ is-head-reduction (head-redex (t1 ○ t2))
for $t 1$
using Ide-Src contains-head-reduction-iff subs-implies-prfx
by (cases t1) auto
qed
lemma Arr-head-redex:
assumes Arr $t$
shows Arr (head-redex t)
using assms Ide-implies-Arr elementary-reduction-head-redex elementary-reduction-is-arr by blast
lemma Src-head-redex:
assumes Arr $t$
shows Src (head-redex $t)=\operatorname{Src} t$
using assms
by (metis Coinitial-iff-Con Ide.simps(1) ide-char subs-head-redex subs-implies-prfx)
lemma Con-Arr-head-redex:
assumes Arr $t$
shows Con $t$ (head-redex $t$ )
using assms
by (metis Con-sym Ide.simps(1) ide-char subs-head-redex subs-implies-prfx)
lemma is-head-reduction-if:
shows $\llbracket$ contains-head-reduction $u$; elementary-reduction $u \rrbracket \Longrightarrow$ is-head-reduction $u$
apply (induct u)
apply auto
using contains-head-reduction.elims(2)
apply fastforce
proof -
fix $u 1 u 2$
assume u1: Ide u1
assume u2: elementary-reduction u2
assume 1: contains-head-reduction (u1 ○ u2)
have False
using u1 u2 1
apply (cases u1)
apply auto
by (metis Arr-head-redex Ide-iff-Src-self Src-head-redex contains-head-reduction-iff ide-char resid-Arr-Src subs-head-redex subs-implies-prfx u1)
thus is-head-reduction ( $u 1 \circ$ u2)
by blast
qed
lemma（in reduction－paths）head－redex－decomp：
assumes $\Lambda$ ．Arr $t$
shows $[\Lambda$ ．head－redex $t] @[t \backslash \Lambda$ ．head－redex $t]$＊$^{*}[t]$

by（metis Ide．simps（2）Resid．simps（3）$\Lambda . p r f x$－implies－con ide－char）
An internal reduction cannot create a new head redex．

```
lemma internal-reduction-preserves-no-head-redex:
shows 【is-internal-reduction u; Ide (head-strategy (Src u))】
 \(\Longrightarrow\) Ide (head-strategy (Trg u))
 apply (induct u)
 apply simp-all
proof -
 fix \(u 1 u 2\)
 assume ind1: 【is-internal-reduction u1; Ide (head-strategy (Src u1))】
 \(\Longrightarrow\) Ide (head-strategy (Trg u1))
 assume ind2: \(\llbracket i s\)-internal-reduction u2; Ide (head-strategy (Src u2))】
 \(\Longrightarrow\) Ide (head-strategy (Trg u2))
 assume \(u\) : is-internal-reduction (\(u 1 \circ\) u2)
 assume 1: Ide (head-strategy (Src u1 o Src u2))
 show Ide (head-strategy (Trg u1 ○ Trg u2))
 using \(u 1\) ind1 ind2 Ide-Src Ide-Trg Ide-implies-Arr
 by (cases u1) auto
qed
```

lemma head-reduction-unique:
shows $\llbracket i s$-head-reduction $t$; is-head-reduction $u$; coinitial $t u \rrbracket \Longrightarrow t=u$
by (metis Coinitial-iff-Con con-def confluence is-head-reduction-char null-char)

Residuation along internal reductions preserves head reductions．

```
lemma resid-head-strategy-internal:
shows is-internal-reduction \(u \Longrightarrow\) head-strategy (Src \(u\)) \u=head-strategy (Trg u)
 using internal-reduction-preserves-no-head-redex Arr-head-strategy Ide-iff-Src-self
 Src-head-strategy Src-resid head-strategy-is-elementary is-head-reduction-char
 is-head-reduction-resid' is-internal-reduction-iff
 apply (cases u)
 apply simp-all
 apply (metis head-strategy-Src resid-Src-Arr)
 apply (metis head-strategy-Src Arr.simps(4) Src.simps(4) Trg.simps(3) resid-Src-Arr)
 by blast
```

An internal reduction followed by a head reduction can be expressed as a join of the internal reduction with a head reduction．
lemma resid－head－strategy－Src：
assumes is－internal－reduction $t$ and is－head－reduction $u$
and seq $t u$
shows head－strategy（Src $t$ ）$\backslash t=u$
and composite－of $t u(\operatorname{Join}($ head－strategy $(\operatorname{Src} t)) t)$

```
proof -
 show 1: head-strategy (Src t) \t=u
 using assms internal-reduction-preserves-no-head-redex resid-head-strategy-internal
 elementary-reduction-not-ide ide-char is-head-reduction-char seq-char
 by force
 show composite-of t u (Join (head-strategy (Src t)) t)
 using assms(3) 1 Arr-head-strategy Src-head-strategy join-of-Join join-of-def seq-char
 by force
qed
lemma App-Var-contains-no-head-reduction:
shows \neg contains-head-reduction («x» ○ u)
 by simp
lemma hgt-resid-App-head-redex:
assumes Arr (t\circu) and \negIde (head-redex (t\circu))
shows hgt ((t ○ u)\ head-redex (t ○ u)) < hgt (t ○ u)
using assms contains-head-reduction-iff elementary-reduction-decreases-hgt
 elementary-reduction-head-redex subs-head-redex
 by blast
```


### 3.5.3 Leftmost Reduction

Leftmost (or normal-order) reduction is the strategy that produces an elementary reduction path by contracting the leftmost redex at each step. It agrees with head reduction as long as there is a head redex, otherwise it continues on with the next subterm to the right.

```
fun leftmost-strategy
where leftmost-strategy \(« x »=\) «x»
 | leftmost-strategy \(\boldsymbol{\lambda}[t]=\boldsymbol{\lambda}[\) leftmost-strategy \(t]\)
 leftmost-strategy \((\boldsymbol{\lambda}[t] \circ u)=\boldsymbol{\lambda}[t] \bullet u\)
 | leftmost-strategy \((t \circ u)=\)
 (if \(\neg\) Ide (leftmost-strategy \(t\))
 then leftmost-strategy \(t \circ u\)
 else \(t\) ○ leftmost-strategy \(u\))
 | leftmost-strategy \((\boldsymbol{\lambda}[t] \bullet u)=\boldsymbol{\lambda}[t] \bullet u\)
 | leftmost-strategy \(\sharp=\sharp\)
definition is-leftmost-reduction
where is-leftmost-reduction \(t \longleftrightarrow\) elementary-reduction \(t \wedge\) leftmost-strategy \((\) Src \(t)=t\)
lemma leftmost-strategy-is-reduction-strategy:
shows reduction-strategy leftmost-strategy
proof (unfold reduction-strategy-def, intro allI impI)
 fix \(t\)
 show Ide \(t \Longrightarrow\) Coinitial (leftmost-strategy \(t\)) \(t\)
 proof (induct \(t\), auto)
 show \(\wedge\) t2. \(\llbracket\) Arr (leftmost-strategy t1); Arr (leftmost-strategy t2);
```

```
 Ide t1; Ide t2;
 Arr t1; Src (leftmost-strategy t1) = Src t1;
 Arr t2; Src (leftmost-strategy t2) = Src t2\rrbracket
 \Longrightarrow \operatorname { A r r ~ (l e f t m o s t - s t r a t e g y ~ (t 1 ~ ○ ~ t 2)) }
 for t1
 by (cases t1) auto
 qed
qed
lemma elementary-reduction-leftmost-strategy:
shows Ide t\Longrightarrow elementary-reduction (leftmost-strategy t) \vee Ide (leftmost-strategy t)
 apply (induct t)
 apply simp-all
proof -
 fix t1 t2
 show \llbracketelementary-reduction (leftmost-strategy t1) \vee Ide (leftmost-strategy t1);
 elementary-reduction (leftmost-strategy t2) \vee Ide (leftmost-strategy t2);
 Ide t1 ^ Ide t2]
 \Longrightarrow ~ e l e m e n t a r y - r e d u c t i o n ~ (l e f t m o s t - s t r a t e g y ~ (t 1 \circ ~ t 2)) ~ \vee ~
 Ide (leftmost-strategy (t1 ○ t2))
 by (cases t1) auto
qed
lemma (in lambda-calculus) leftmost-strategy-selects-head-reduction:
shows is-head-reduction t\Longrightarrowt= leftmost-strategy (Src t)
proof (induct t)
 show \t1 t2. \llbracketis-head-reduction t1 \Longrightarrow t1 = leftmost-strategy (Src t1);
 is-head-reduction (t1 ○ t2)】
 \Longrightarrow t 1 \circ t 2 = l e f t m o s t - s t r a t e g y ~ (S r c ~ (t 1 \circ t 2))
 proof -
 fix t1 t2
 assume ind1: is-head-reduction t1 \Longrightarrowt1 = leftmost-strategy (Src t1)
 assume t:is-head-reduction (t1 ○ t2)
 show t1 \circ t2 = leftmost-strategy (Src (t1 ○ t2))
 using t ind1
 apply (cases t1)
 apply simp-all
 apply (cases Src t1)
 apply simp-all
 using ind1
 apply force
 using ind1
 apply force
 using ind1
 apply force
 apply (metis Ide-iff-Src-self Ide-implies-Arr elementary-reduction-not-ide
 ide-char ind1 is-head-reduction-char)
 using ind1
 apply force
```

```
 by (metis Ide-iff-Src-self Ide-implies-Arr)
qed
show \t1 t2. \llbracketis-head-reduction t1 \Longrightarrowt1 = leftmost-strategy (Src t1);
 is-head-reduction (\lambda[t1] \bullet t2)]
 \Longrightarrow \boldsymbol { \lambda } [t 1] \bullet ~ t 2 ~ = ~ l e f t m o s t - s t r a t e g y ~ (S r c ~ (\boldsymbol { \lambda } [t 1] ~ \bullet ~ t 2)) ~
 by (metis Ide-iff-Src-self Ide-implies-Arr Src.simps(5)
 is-head-reduction.simps(8) leftmost-strategy.simps(3))
qed auto
lemma has-redex-iff-not-Ide-leftmost-strategy:
shows Arr t has-redex t \longleftrightarrow ᄀIde (leftmost-strategy (Src t))
 apply (induct t)
 apply simp-all
proof -
 fix t1 t2
 assume ind1: Ide (parallel-strategy t1) \longleftrightarrow Ide (leftmost-strategy (Src t1))
 assume ind2: Ide (parallel-strategy t2) \longleftrightarrow Ide (leftmost-strategy (Src t2))
 assume t: Arr t1 ^ Arr t2
 show Ide (parallel-strategy (t1\circ t2)) \longleftrightarrow
 Ide (leftmost-strategy (Src t1 ○ Src t2))
 using t ind1 ind2 Ide-Src Ide-iff-Src-self
 by (cases t1) auto
qed
lemma leftmost-reduction-preservation:
shows 【is-leftmost-reduction t; elementary-reduction u; ᄀ is-leftmost-reduction u;
 coinitial t u\rrbracket\Longrightarrow is-leftmost-reduction (}t\u
proof (induct t arbitrary: u)
 show }\u\mathrm{ . coinitial }\sharpu\Longrightarrow\mathrm{ is-leftmost-reduction (}#\u
 by simp
 show \^x u. is-leftmost-reduction «x» \Longrightarrow is-leftmost-reduction («x» \ u)
 by (simp add: is-leftmost-reduction-def)
 fix }t
 show \llbracket^u. \llbracketis-leftmost-reduction t; elementary-reduction u;
 \neg \text { is-leftmost-reduction u; coinitial t u】 \# is-leftmost-reduction (t \u);}
 is-leftmost-reduction (Lam t); elementary-reduction u;
 ~s-leftmost-reduction u; coinitial }\boldsymbol{\lambda}[t]u
 \Longrightarrow i s - l e f t m o s t - r e d u c t i o n ~ (\boldsymbol { \lambda } [t] \ u)
 using is-leftmost-reduction-def
 by (cases u) auto
 next
 fix t1 t2 u
 show \llbracketis-leftmost-reduction (\lambda[t1] \bullet t2); elementary-reduction u; ᄀ is-leftmost-reduction u;
 coinitial (\lambda[t1] \bullet t2) u]
 \Longrightarrow ~ i s - l e f t m o s t - r e d u c t i o n ~ ((\lambda [t 1] ~ \bullet ~ t 2) ~ \ u) ~
 using is-leftmost-reduction-def Src-resid Ide-Trg Ide-iff-Src-self Arr-Trg Arr-not-Nil
 apply (cases u)
 apply simp-all
 by (cases un-App1 u) auto
```

assume ind1: $\bigwedge u$. $\llbracket i s$-leftmost-reduction t1; elementary-reduction $u$; $\neg$ is-leftmost-reduction $u$; coinitial t1 $u \rrbracket$ $\Longrightarrow$ is-leftmost-reduction ( $t 1 \backslash u$ )
assume ind2: $\wedge u$. $\llbracket i s$-leftmost-reduction t2; elementary-reduction $u$; $\neg$ is-leftmost-reduction $u$; coinitial t2 u】 $\Longrightarrow$ is-leftmost-reduction ( $t 2 \backslash u$ )
assume 1: is-leftmost-reduction ( $t 1 \circ$ t2)
assume 2: elementary-reduction $u$
assume 3: $\neg$ is-leftmost-reduction $u$
assume 4: coinitial ( $t 1 \circ$ t2) $u$
show is-leftmost-reduction ( $(11 \circ$ t2) \u)
using 123 4 ind1 ind2 is-leftmost-reduction-def Src-resid
apply (cases $u$ )
apply auto[3]
proof -
show $\bigwedge u 1$ u2. $u=\boldsymbol{\lambda}[u 1] \bullet u 2 \Longrightarrow$ is-leftmost-reduction $((t 1 \circ$ t2 $) \backslash u)$
by (metis 23 is-leftmost-reduction-def elementary-reduction.simps(5)
is-head-reduction.simps(8) leftmost-strategy-selects-head-reduction)
fix $u 1 u^{2}$
assume $u: u=u 1 \circ u 2$
show is-leftmost-reduction $((t 1 \circ$ t2) $\backslash u)$
using u 123 4 ind1 ind2 is-leftmost-reduction-def Src-resid Ide-Trg elementary-reduction-not-ide
apply (cases u)
apply simp-all
apply (cases u1)
apply simp-all
apply auto[1]
using Ide-iff-Src-self
apply simp-all
proof -
fix $u 11 u 12$
assume $u: u=u 11 \circ u 12 \circ u 2$
assume $u 1: u 1=u 11 \circ u 12$
have A: (elementary-reduction $11 \wedge$ Src $u 2=t 2 \vee$
Src u11 ○ Src u12 = t1 ^ elementary-reduction t2) $\wedge$ (if ᄀIde (leftmost-strategy (Src u11 ○ Src u12)) then leftmost-strategy (Src u11 o Src u12) ○ Src u2 else Src u11 ○ Src u12 ○ leftmost-strategy (Src u2)) $=t 1 \circ$ t2
using 14 Ide-iff-Src-self is-leftmost-reduction-def $u$ by auto
have $B$ : (elementary-reduction u11 $\wedge$ Src $u 12=u 12 \vee$
Src $u 11=u 11 \wedge$ elementary-reduction u12) $\wedge$ Src u2 $=u 2 \vee$
Src $u 11=u 11 \wedge$ Src $u 12=u 12 \wedge$ elementary-reduction u2
using 24 Ide-iff-Src-self $u$ by force
have $C: t 1=u 11 \circ u 12 \longrightarrow t 2 \neq u 2$
using $13 u$ by fastforce
have $D: \operatorname{Arr} t 1 \wedge \operatorname{Arr} t 2 \wedge \operatorname{Arr} u 11 \wedge \operatorname{Arr} u 12 \wedge \operatorname{Arr} u 2 \wedge$
Src $11=$ Src u11 ○ Src u12 $\wedge$ Src $12=$ Src $u 2$
using $4 u$ by force
have $E: \wedge u . \llbracket$ elementary-reduction t1 $\wedge$ leftmost-strategy $($ Src $u)=t 1$;
elementary-reduction $u$;
$t 1 \neq u$;
Arr $u \wedge \operatorname{Src} u 11 \circ$ Src $u 12=\operatorname{Src} u \rrbracket$
$\Longrightarrow$ elementary-reduction $(t 1 \backslash u) \wedge$ leftmost-strategy $(\operatorname{Trg} u)=t 1 \backslash u$
using $D$ Src-resid ind1 is-leftmost-reduction-def by auto
have $F: \wedge u$. 【elementary-reduction $t 2 \wedge$ leftmost-strategy $($ Src $u)=t 2$;

> elementary-reduction $u$;
> t2 $\neq u ;$
> Arr $u \wedge \operatorname{Src} u \mathcal{Q}=\operatorname{Src} u \rrbracket$
$\Longrightarrow$ elementary-reduction $(t 2 \backslash u) \wedge$
leftmost-strategy $(\operatorname{Trg} u)=t 2 \backslash u$
using $D$ Src-resid ind2 is-leftmost-reduction-def by auto
have $G$ : $\wedge t$. elementary-reduction $t \Longrightarrow \neg$ Ide $t$
using elementary-reduction-not-ide ide-char by blast
have $H$ : elementary-reduction $(t 1 \backslash(u 11 \circ u 12)) \wedge I d e(t 2 \backslash u 2) \vee$
Ide $(t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $(t 2 \backslash u 2)$
proof (cases Ide (t2 \u2))
assume 1: Ide (t2 \u2)
hence elementary-reduction $(t 1 \backslash(u 11 \circ u 12))$
by (metis A B C D E F G Ide-Src Arr.simps(4) Src.simps(4) elementary-reduction.simps(4) lambda.inject(3) resid-Arr-Src)
thus ?thesis
using 1 by auto
next
assume 1: $\neg I d e(t 2 \backslash u 2)$
hence Ide ( $t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $($ t2 $\backslash u 2)$
apply (intro conjI)
apply (metis 1 A D Ide-Src Arr.simps(4) Src.simps(4) resid-Ide-Arr)
by (metis A B C D F Ide-iff-Src-self lambda.inject(3) resid-Arr-Src resid-Ide-Arr)
thus?thesis by simp
qed
show ( $\neg$ Ide (leftmost-strategy $(\operatorname{Trg} u 11 \circ \operatorname{Trg} \mathrm{u} 12)) \longrightarrow$ (elementary-reduction $(t 1 \backslash(u 11 \circ u 12)) \wedge$ Ide $($ t2 $\backslash u 2) \vee$ Ide $(t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $(t 2 \backslash u 2)) \wedge$ leftmost-strategy $(\operatorname{Trg} u 11 \circ \operatorname{Trg} u 12)=t 1 \backslash(u 11 \circ u 12) \wedge \operatorname{Trg} u 2=t 2 \backslash u 2) \wedge$
(Ide (leftmost-strategy (Trg u11○ Trg u12)) $\longrightarrow$
(elementary-reduction $(t 1 \backslash(u 11 \circ u 12)) \wedge$ Ide $($ t2 $\backslash u 2) \vee$ Ide $(t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $(t 2 \backslash u 2)) \wedge$ $\operatorname{Trg} u 11 \circ \operatorname{Trg} u 12=t 1 \backslash(u 11 \circ u 12) \wedge$ leftmost-strategy $(\operatorname{Trg} u 2)=t 2 \backslash u 2)$
proof (intro conjI impI)
show $H$ : elementary-reduction $(t 1 \backslash(u 11 \circ u 12)) \wedge$ Ide $(t 2 \backslash u 2) \vee$
Ide $(t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $(t 2 \backslash u 2)$
by fact
show $H$ : elementary-reduction $(t 1 \backslash(u 11 \circ u 12)) \wedge$ Ide $(t 2 \backslash u 2) \vee$
Ide $(t 1 \backslash(u 11 \circ u 12)) \wedge$ elementary-reduction $(t 2 \backslash u 2)$
by fact
assume $K$ : $\neg$ Ide (leftmost-strategy (Trg u11○ Trg u12))

```
 show J: Trg u2 = t2 \u2
 using A B D G K has-redex-iff-not-Ide-leftmost-strategy
 NF-def NF-iff-has-no-redex NF-App-iff resid-Arr-Src resid-Src-Arr
 by (metis lambda.inject(3))
 show leftmost-strategy (Trg u11\circ Trg u12) = t1 \(u11\circ u12)
 using 2 A B C D E G H J u Ide-Trg Src-Src
 has-redex-iff-not-Ide-leftmost-strategy resid-Arr-Ide resid-Src-Arr
 by (metis Arr.simps(4) Ide.simps(4) Src.simps(4) Trg.simps(3)
 elementary-reduction.simps(4) lambda.inject(3))
 next
 assume K:Ide (leftmost-strategy (Trg u11 ○ Trg u12))
 show I: Trg u11\circ}\operatorname{Trg}u12=t1\(u11\circu12
 using 2 A D E K u Coinitial-resid-resid ConI resid-Arr-self resid-Ide-Arr
 resid-Arr-Ide Ide-iff-Src-self Src-resid
 apply (cases Ide (leftmost-strategy (Src u11 ○ Src u12)))
 apply simp
 using lambda-calculus.Con-Arr-Src(2)
 apply force
 apply simp
 using u1 G H Coinitial-iff-Con
 apply (cases elementary-reduction u11;
 cases elementary-reduction u12)
 apply simp-all
 apply metis
 apply (metis Src.simps(4) Trg.simps(3) elementary-reduction.simps(1,4))
 apply (metis Src.simps(4) Trg.simps(3) elementary-reduction.simps(1,4))
 by (metis Trg-Src)
 show leftmost-strategy (Trg u2) = t2 \u2
 using 2 A C D F G H I u Ide-Trg Ide-iff-Src-self NF-def NF-iff-has-no-redex
 has-redex-iff-not-Ide-leftmost-strategy resid-Ide-Arr
 by (metis Arr.simps(4) Src.simps(4) Trg.simps(3) elementary-reduction.simps(4)
 lambda.inject(3))
 qed
 qed
 qed
qed
end
```


### 3.6 Standard Reductions

In this section, we define the notion of a standard reduction, which is an elementary reduction path that performs reductions from left to right, possibly skipping some redexes that could be contracted. Once a redex has been skipped, neither that redex nor any redex to its left will subsequently be contracted. We then define and prove correct a function that transforms an arbitrary elementary reduction path into a congruent standard reduction path. Using this function, we prove the Standardization Theorem, which says that every elementary reduction path is congruent to a standard reduction
path. We then show that a standard reduction path that reaches a normal form is in fact a leftmost reduction path. From this fact and the Standardization Theorem we prove the Leftmost Reduction Theorem: leftmost reduction is a normalizing strategy.

The Standardization Theorem was first proved by Curry and Feys [3], with subsequent proofs given by a number of authors. Formalized proofs have also been given; a recent one (using Agda) is presented in [2], with references to earlier work. The version of the theorem that we formalize here is a "strong" version, which asserts the existence of a standard reduction path congruent to a a given elementary reduction path. At the core of the proof is a function that directly transforms a given reduction path into a standard one, using an algorithm roughly analogous to insertion sort. The Finite Development Theorem is used in the proof of termination. The proof of correctness is long, due to the number of cases that have to be considered, but the use of a proof assistant makes this manageable.

### 3.6.1 Standard Reduction Paths

## 'Standardly Sequential' Reductions

We first need to define the notion of a "standard reduction". In contrast to what is typically done by other authors, we define this notion by direct comparison of adjacent terms in an elementary reduction path, rather than by using devices such as a numbering of subterms from left to right.

The following function decides when two terms $t$ and $u$ are elementary reductions that are "standardly sequential". This means that $t$ and $u$ are sequential, but in addition no marked redex in $u$ is the residual of an (unmarked) redex "to the left of" any marked redex in $t$. Some care is required to make sure that the recursive definition captures what we intend. Most of the clauses are readily understandable. One clause that perhaps could use some explanation is the one for $\operatorname{sseq}((\boldsymbol{\lambda}[t] \bullet u) \circ v) w$. Referring to the previously proved fact seq-cases, which classifies the way in which two terms $t$ and $u$ can be sequential, we see that one case that must be covered is when $t$ has the form $\boldsymbol{\lambda}[t] \bullet$ $v) \circ w$ and the top-level constructor of $u$ is Beta. In this case, it is the reduction of $t$ that creates the top-level redex contracted in $u$, so it is impossible for $u$ to be a residual of a redex that already exists in Src $t$.

```
context lambda-calculus
begin
fun \(s s e q\)
where sseq \(-\sharp=\) False
 | sseq «-» «-» = False
 | sseq \(\boldsymbol{\lambda}[t] \boldsymbol{\lambda}\left[t^{\prime}\right]=\) sseq \(t t^{\prime}\)
 \(\mid \operatorname{sseq}(t \circ u)\left(t^{\prime} \circ u^{\prime}\right)=\)
 \(\left(\left(\right.\right.\) sseq \(t t^{\prime} \wedge\) Ide \(\left.u \wedge u=u^{\prime}\right) \vee\)
 \(\left(\right.\) Ide \(\left.t \wedge t=t^{\prime} \wedge \operatorname{sseq} u u^{\prime}\right) \vee\)
 (elementary-reduction \(t \wedge \operatorname{Trg} t=t^{\prime} \wedge\)
 \(\left(u=\right.\) Src \(u^{\prime} \wedge\) elementary-reduction \(\left.\left.\left.u^{\prime}\right)\right)\right)\)
```

```
 |seq (\lambda[t]\circu)(\boldsymbol{\lambda[t]}\bullet\mp@subsup{u}{}{\prime})=\mathrm{ False}
```

$\mid \operatorname{sseq}((\boldsymbol{\lambda}[t] \bullet u) \circ v) w=$
(Ide $t \wedge$ Ide $u \wedge$ Ide $v \wedge$ elementary-reduction $w \wedge \operatorname{seq}((\boldsymbol{\lambda}[t] \bullet u) \circ v) w)$
$\mid$ sseq $(\boldsymbol{\lambda}[t] \bullet u) v=($ Ide $t \wedge$ Ide $u \wedge$ elementary-reduction $v \wedge$ seq $(\boldsymbol{\lambda}[t] \bullet u) v)$
| sseq - - F False
lemma sseq-imp-seq:
shows sseq $t u \Longrightarrow$ seq $t u$
proof (induct $t$ arbitrary: $u$ )
show $\bigwedge u$. sseq $\sharp u \Longrightarrow$ seq $\sharp u$
using sseq.elims(1) by blast
fix $u$
show $\bigwedge x$. sseq «x» $u \Longrightarrow$ seq «x»u
using sseq.elims(1) by blast
show $\wedge t$. $\llbracket \wedge u$. sseq $t u \Longrightarrow \operatorname{seq} t u$; sseq $\boldsymbol{\lambda}[t] u \rrbracket \Longrightarrow \operatorname{seq} \boldsymbol{\lambda}[t] u$
using seq-char by (cases u) auto
show $\wedge$ t1 t2. $\llbracket \bigwedge u$. sseq t1 $u \Longrightarrow$ seq t1 $u ; ~ \bigwedge u$. sseq t2 $u \Longrightarrow$ seq t2 $u$;
$\operatorname{sseq}(\boldsymbol{\lambda}[t 1] \bullet t 2) u \rrbracket$
$\Longrightarrow \operatorname{seq}(\boldsymbol{\lambda}[t 1] \bullet t 2) u$
using seq-char Ide-implies-Arr
by (cases $u$ ) auto
fix $t 1$ t2
show $\llbracket \bigwedge u$. sseq $t 1 u \Longrightarrow \operatorname{seq} t 1 u ; \bigwedge u$. sseq t2 $u \Longrightarrow$ seq t2 $u$; sseq $(t 1 \circ t 2) u \rrbracket$
$\Longrightarrow \operatorname{seq}(t 1 \circ t 2) u$
proof -
assume ind1: $\bigwedge u$. sseq t1 $u \Longrightarrow$ seq $t 1 u$
assume ind2: $\bigwedge u$. sseq t2 $u \Longrightarrow$ seq t2 $u$
assume 1: sseq ( $t 1 \circ t 2$ ) $u$
show ?thesis
using 1 ind1 ind2 seq-char arr-char elementary-reduction-is-arr
Ide-Src Ide-Trg Ide-implies-Arr Coinitial-iff-Con resid-Arr-self
apply (cases u, simp-all)
apply (cases t1, simp-all)
apply (cases t1, simp-all)
apply (cases Ide t1; cases Ide t2)
apply simp-all
apply (metis Ide-iff-Src-self Ide-iff-Trg-self)
apply (metis Ide-iff-Src-self Ide-iff-Trg-self)
apply (metis Ide-iff-Trg-self Src-Trg)
by (cases t1) auto
qed
qed
lemma sseq-imp-elementary-reduction1:
shows sseq $t u \Longrightarrow$ elementary-reduction $t$
proof (induct $u$ arbitrary: $t$ )
show $\wedge$ t. sseq $t \sharp \Longrightarrow$ elementary-reduction $t$
by $\operatorname{simp}$
show $\bigwedge x t$. sseq $t « x » \Longrightarrow$ elementary-reduction $t$
using elementary-reduction.simps(2) sseq.elims(1) by blast show $\bigwedge u . \llbracket \bigwedge t$. sseq $t u \Longrightarrow$ elementary-reduction $t ;$ sseq $t \boldsymbol{\lambda}[u \rrbracket \rrbracket$ $\Longrightarrow$ elementary-reduction $t$ for $t$
using seq-cases sseq-imp-seq
apply (cases $t$, simp-all)
by force
show $\bigwedge u 1 u 2 . \llbracket \wedge t$. sseq $t u 1 \Longrightarrow$ elementary-reduction $t$;
$\wedge t$. sseq $t u 2 \Longrightarrow$ elementary-reduction $t$; sseq $t(u 1 \circ u 2) \rrbracket$
$\Longrightarrow$ elementary-reduction $t$ for $t$
using seq-cases sseq-imp-seq Ide-Src elementary-reduction-is-arr
apply (cases $t$, simp-all)
by blast
show $\bigwedge u 1 u 2$.
$\llbracket \bigwedge t$. sseq $t u 1 \Longrightarrow$ elementary-reduction $t ; \wedge t$. sseq $t u 2 \Longrightarrow$ elementary-reduction $t$;
sseq $t(\boldsymbol{\lambda}[u 1] \bullet u 2) 】$
$\Longrightarrow$ elementary-reduction $t$ for $t$
using seq-cases sseq-imp-seq
apply (cases $t$, simp-all)
by fastforce
qed
lemma sseq-imp-elementary-reduction2:
shows sseq $t u \Longrightarrow$ elementary-reduction $u$
proof (induct $u$ arbitrary: $t$ )
show $\wedge t$. sseq $t \sharp \Longrightarrow$ elementary-reduction $\sharp$
by $\operatorname{simp}$
show $\bigwedge x t$. sseq $t$ «x» $\Longrightarrow$ elementary-reduction «x»
using elementary-reduction.simps(2) sseq.elims(1) by blast
show $\bigwedge u$. $\llbracket \wedge t$. sseq $t u \Longrightarrow$ elementary-reduction $u$; sseq $t \boldsymbol{\lambda}[u \rrbracket \rrbracket$ $\Longrightarrow$ elementary-reduction $\boldsymbol{\lambda}[u]$ for $t$
using seq-cases sseq-imp-seq
apply (cases $t$, simp-all)
by force
show $\bigwedge u 1 u 2 . \llbracket \bigwedge t$. sseq $t u 1 \Longrightarrow$ elementary-reduction $u 1$;
$\wedge t$. sseq $t$ u2 $\Longrightarrow$ elementary-reduction u2;
sseq $t(u 1 \circ u 2) \rrbracket$
$\Longrightarrow$ elementary-reduction ( $u 1 \circ$ u2) for $t$
using seq-cases sseq-imp-seq Ide-Trg elementary-reduction-is-arr
by (cases t) auto
show $\bigwedge u 1 u 2 . \llbracket \wedge t$. sseq $t u 1 \Longrightarrow$ elementary-reduction $u 1$;
$\wedge t$. sseq $t u 2 \Longrightarrow$ elementary-reduction $u 2$; sseq $t(\boldsymbol{\lambda}[u 1] \bullet u 2) \rrbracket$
$\Longrightarrow$ elementary-reduction ( $\boldsymbol{\lambda}[u 1]$ • u2) for $t$
using seq-cases sseq-imp-seq
apply (cases $t$, simp-all)
by fastforce
qed
lemma sseq-Beta:
shows $\operatorname{sseq}(\boldsymbol{\lambda}[t] \bullet u) v \longleftrightarrow$ Ide $t \wedge$ Ide $u \wedge$ elementary-reduction $v \wedge \operatorname{seq}(\boldsymbol{\lambda}[t] \bullet u) v$ by (cases $v$ ) auto
lemma sseq-BetaI [intro]:
assumes Ide $t$ and Ide $u$ and elementary-reduction $v$ and seq $(\boldsymbol{\lambda}[t] \bullet u) v$
shows $\operatorname{sseq}(\boldsymbol{\lambda}[t] \bullet u) v$
using assms sseq-Beta by simp
A head reduction is standardly sequential with any elementary reduction that can be performed after it.
lemma sseq-head-reductionI:
shows $\llbracket i s-h e a d-r e d u c t i o n ~ t ; ~ e l e m e n t a r y-r e d u c t i o n ~ u ; ~ s e q ~ t u \rrbracket \Longrightarrow s s e q ~ t u ~$
proof (induct $t$ arbitrary: $u$ )
show $\bigwedge u$. $\llbracket$ is-head-reduction $\sharp$; elementary-reduction $u$; seq $\sharp u \rrbracket \Longrightarrow$ sseq $\sharp u$
by $\operatorname{simp}$
show $\bigwedge x u$. $\llbracket i s-h e a d-r e d u c t i o n ~ « x » ;$ elementary-reduction $u ;$ seq «x»u』 $\Longrightarrow$ sseq «x»u by auto
show $\wedge t . \llbracket \bigwedge u$. $\llbracket i s$-head-reduction $t$; elementary-reduction $u$; seq $t u \rrbracket \Longrightarrow$ sseq $t u$;
is-head-reduction $\boldsymbol{\lambda}[t]$; elementary-reduction $u$; seq $\boldsymbol{\lambda}[t] u \rrbracket$

$$
\Longrightarrow \operatorname{sseq} \boldsymbol{\lambda}[t] u \text { for } u
$$

by (cases u) auto
show $\wedge$ t2. $\llbracket \wedge u$. $\llbracket$ is-head-reduction t1; elementary-reduction $u$; seq $t 1 u \rrbracket \Longrightarrow$ sseq t1 $u$; $\bigwedge u$. is-head-reduction t2; elementary-reduction $u$; seq t2 $u \rrbracket \Longrightarrow$ sseq t2 $u$; is-head-reduction ( $t 1 \circ$ t2); elementary-reduction $u$; seq (t1 $\circ$ t2) $u \rrbracket$ $\Longrightarrow \operatorname{sseq}(t 1 \circ$ t2) $u$ for $t 1 u$
using seq-char
apply (cases u)
apply simp-all
apply (metis ArrE Ide-iff-Src-self Ide-iff-Trg-self App-Var-contains-no-head-reduction is-head-reduction-char is-head-reduction-imp-contains-head-reduction is-head-reduction.simps(3,6-7))
by (cases t1) auto
show $\bigwedge$ t1 t2 $u$. $\llbracket \wedge u$. $\llbracket$ is-head-reduction t1; elementary-reduction $u$; seq t1 $u \rrbracket \Longrightarrow$ sseq t1 u; $\bigwedge u$. $\llbracket$ is-head-reduction t2; elementary-reduction $u$; seq t2 $u \rrbracket \Longrightarrow$ sseq t2 $u$; is-head-reduction $(\boldsymbol{\lambda}[t 1] \bullet$ t2 $)$; elementary-reduction $u ;$ seq $(\boldsymbol{\lambda}[t 1] \bullet t 2) u \rrbracket$

$$
\Longrightarrow \operatorname{sseq}(\boldsymbol{\lambda}[t 1] \bullet t 2) u
$$

by auto
qed
Once a head reduction is skipped in an application, then all terms that follow it in a standard reduction path are also applications that do not contain head reductions.

```
lemma sseq-preserves-App-and-no-head-reduction:
shows \(\llbracket\) sseq \(t u ; i s-A p p t \wedge \neg\) contains-head-reduction \(t \rrbracket\)
 \(\Longrightarrow\) is-App \(u \wedge \neg\) contains-head-reduction \(u\)
 apply (induct \(t\) arbitrary: u)
 apply simp-all
proof -
 fix \(t 1 t 2 u\)
```

assume ind1：$\bigwedge u . \llbracket$ sseq t1 $u$ ；is－App t1 $\wedge \neg$ contains－head－reduction t1】 $\Longrightarrow$ is－App $u \wedge \neg$ contains－head－reduction $u$
assume ind2：$\bigwedge u$ ．【sseq t2 u；is－App t2 $\wedge \neg$ contains－head－reduction t2】
$\Longrightarrow$ is－App $u \wedge \neg$ contains－head－reduction $u$
assume sseq：sseq（ $t 1 \circ$ t2）$u$
assume $t$ ：$\neg$ contains－head－reduction（ $t 1 \circ$ t2）
have $u$ ：$\neg$ is－Beta $u$
using sseq $t$ sseq－imp－seq seq－cases
by（cases t1；cases $u$ ）auto
have 1：is－App u
using $u$ sseq sseq－imp－seq
apply（cases $u$ ）
apply simp－all
by fastforce＋
moreover have $\neg$ contains－head－reduction $u$
proof（cases $u$ ）
show $\wedge v . u=\boldsymbol{\lambda}[v] \Longrightarrow \neg$ contains－head－reduction $u$
using 1 by auto
show $\bigwedge v w . u=\boldsymbol{\lambda}[v] \bullet w \Longrightarrow \neg$ contains－head－reduction $u$
using $u$ by auto
fix $u 1 u 2$
assume $u: u=u 1 \circ u 2$
have 1：（sseq t1 u1 $\wedge$ Ide t2 $\wedge$ t2＝u2 $) \vee($ Ide $t 1 \wedge t 1=u 1 \wedge$ sseq t2 u2 $) \vee$
（elementary－reduction $t 1 \wedge u 1=\operatorname{Trg} t 1 \wedge t 2=\operatorname{Src} u 2 \wedge$ elementary－reduction u2）
using sseq $u$ by force
moreover have Ide t1 $\wedge t 1=u 1 \wedge$ sseq t2 $u 2 \Longrightarrow$ ？thesis
using Ide－implies－Arr ide－char sseq－imp－seq $t u$ by fastforce
moreover have elementary－reduction t1 $\wedge u 1=\operatorname{Trg} t 1 \wedge t 2=\operatorname{Src} u 2 \wedge$
elementary－reduction u2
$\Longrightarrow$ ？thesis
proof－
assume 2：elementary－reduction $t 1 \wedge u 1=\operatorname{Trg} t 1 \wedge t 2=\operatorname{Src} u 2 \wedge$ elementary－reduction u2
have contains－head－reduction $u \Longrightarrow$ contains－head－reduction $u 1$
using $u$
apply simp
using contains－head－reduction．elims（2）by fastforce
hence contains－head－reduction $u \Longrightarrow \neg$ Ide u1
using contains－head－reduction－iff
by（metis Coinitial－iff－Con Ide－iff－Src－self Ide－implies－Arr ide－char resid－Arr－Src subs－head－redex subs－implies－prfx）
thus ？thesis
using 2
by（metis Arr．simps（4）Ide－Trg seq－char sseq sseq－imp－seq）
qed
moreover have sseq t1 u1 $\wedge$ Ide t2 $\wedge$ t2 $=u 2 \Longrightarrow$ ？thesis
using $t u$ ind1［of u1］Ide－implies－Arr sseq－imp－elementary－reduction1
apply（cases t1，simp－all）
using elementary－reduction．simps（1）

```
 apply blast
 using elementary-reduction.simps(2)
 apply blast
 using contains-head-reduction.elims(2)
 apply fastforce
 apply (metis contains-head-reduction.simps(6)is-App-def)
 using sseq-Beta by blast
 ultimately show ?thesis by blast
 qed auto
 ultimately show is-App u ^\neg contains-head-reduction u
 by blast
qed
end
```


## Standard Reduction Paths

context reduction-paths
begin
A standard reduction path is an elementary reduction path in which successive reductions are standardly sequential.

```
fun \(S t d\)
where Std [] = True
 |Std \([t]=\)..elementary-reduction \(t\)
 \(\mid \operatorname{Std}(t \# U)=(\Lambda . s s e q ~ t(h d U) \wedge S t d U)\)
lemma Std-consE [elim]:
assumes \(\operatorname{Std}(t \# U)\)
and \(\llbracket \Lambda\).Arr \(t ; U \neq[] \Longrightarrow \Lambda . s s e q ~ t(h d U) ; S t d U \rrbracket \Longrightarrow\) thesis
shows thesis
 using assms
```



```
 list.exhaust-sel list.sel(1) Std.simps(1-3))
lemma Std-imp-Arr [simp]:
shows \(\llbracket S t d T ; T \neq[] \rrbracket \Longrightarrow \operatorname{Arr} T\)
proof (induct \(T\))
 show []\(\neq[] \Longrightarrow \operatorname{Arr}[]\)
 by \(\operatorname{simp}\)
 fix \(t U\)
 assume ind: \(\llbracket S t d U ; U \neq \llbracket] \rrbracket \Longrightarrow \operatorname{Arr} U\)
 assume \(t U\) : Std \((t \# U)\)
 show \(\operatorname{Arr}(t \# U)\)
 proof (cases \(U=[]\))
 show \(U=[] \Longrightarrow \operatorname{Arr}(t \# U)\)
```



```
 by blast
 assume \(U: U \neq[]\)
```

```
 show Arr (t #U)
 proof -
 have \Lambda.sseq t (hd U)
 using}tU
 by (metis list.exhaust-sel reduction-paths.Std.simps(3))
 thus ?thesis
 using U ind \Lambda.sseq-imp-seq
 apply auto
 using reduction-paths.Std.elims(3) tU
 by fastforce
 qed
 qed
qed
lemma Std-imp-sseq-last-hd:
shows \llbracketStd (T @ U);T\not=[];U\not=[]\rrbracket\Longrightarrow \Lambda.sseq (last T) (hd U)
 apply (induct T arbitrary: U)
 apply simp-all
 by (metis Std.elims(3) Std.simps(3) append-self-conv2 neq-Nil-conv)
lemma Std-implies-set-subset-elementary-reduction:
shows Std U\Longrightarrow set U\subseteq Collect \Lambda.elementary-reduction
 apply (induct U)
 apply auto
 by (metis Std.simps(2) Std.simps(3) neq-Nil-conv \Lambda.sseq-imp-elementary-reduction1)
lemma Std-map-Lam:
shows Std T\LongrightarrowStd (map \Lambda.Lam T)
proof (induct T)
 show Std [] \Longrightarrow Std (map \Lambda.Lam [])
 by simp
 fix }t
 assume ind: Std U \LongrightarrowStd (map \Lambda.Lam U)
 assume tU:Std (t#U)
 have Std (map \Lambda.Lam (t#U))\longleftrightarrowStd (\boldsymbol{\lambda}[t]# map \Lambda.Lam U)
 by auto
 also have ... = True
 apply (cases U = [])
 apply simp-all
 using Arr.simps(3) Std.simps(2) arr-char tU
 apply presburger
 proof -
 assume U:U\not=[]
 have Std (\boldsymbol{\lambda}[t]# map \Lambda.Lam U)\longleftrightarrow \Lambda.sseq \boldsymbol{\lambda}[t]\boldsymbol{\lambda}[hdU]^ Std (map \Lambda.Lam U)
 using U
 by (metis Nil-is-map-conv Std.simps(3) hd-map list.exhaust-sel)
 also have }\ldots\longleftrightarrow\Lambda.sseq t (hd U)^Std (map \Lambda.Lam U)
 by auto
 also have ... = True
```

```
 using ind tU U
 by (metis Std.simps(3) list.exhaust-sel)
 finally show Std (\lambda[t] # map \Lambda.Lam U) by blast
 qed
 finally show Std (map \Lambda.Lam (t # U)) by blast
qed
lemma Std-map-App1:
shows \llbracket\Lambda.Ide b; Std T\rrbracket \LongrightarrowStd (map (\lambdaX. X ○ b) T)
proof (induct T)
 show \llbracket\Lambda.Ide b; Std []\rrbracket \Longrightarrow Std (map (\lambdaX. X ○ b) [])
 by simp
 fix }t
 assume ind: \llbracket\Lambda.Ide b; Std U\rrbracket\Longrightarrow Std (map (}\lambdaX.X\circb)U
 assume b: \Lambda.Ide b
 assume tU:Std (t#U)
 show Std (map (\lambdav.v\circb) (t # U))
 proof (cases U = [])
 show }U=[]\Longrightarrow\mathrm{ ?thesis
 using Ide-implies-Arr b \Lambda.arr-char tU by force
 assume U:U\not=[]
 have Std (map (\lambdav.v\circb) (t#U))=Std ((t\circb) # map (\lambdaX.X\circb)U)
 by simp
 also have ... =(\Lambda.sseq (t\circb) (hdU\circb) \wedgeStd (map (\lambdaX.X\circb)U))
 using U reduction-paths.Std.simps(3) hd-map
 by (metis Nil-is-map-conv neq-Nil-conv)
 also have ... = True
 using b tU U ind
 by (metis Std.simps(3) list.exhaust-sel \Lambda.sseq.simps(4))
 finally show Std (map (\lambdav.v\circb) (t#U)) by blast
 qed
qed
lemma Std-map-App2:
shows \llbracket\Lambda.Ide a;Std T\rrbracket\LongrightarrowStd (map (\lambdau.a\circu)T)
proof (induct T)
 show \llbracket\Lambda.Ide a; Std []\rrbracket \LongrightarrowStd (map (\lambdau.a\circ u)[])
 by simp
 fix }t
 assume ind: \llbracket\Lambda.Ide a; Std U\rrbracket\LongrightarrowStd (map (\lambdau.a\circu)U)
 assume a: \Lambda.Ide a
 assume tU:Std (t#U)
 show Std (map (\lambdau.a\circu) (t#U))
 proof (cases U = [])
 show }U=[]\Longrightarrow\mathrm{ ?thesis
 using a tU by force
 assume U:U\not=[]
 have Std (map (\lambdau.a\circu) (t#U))=Std ((a\circt)#map (\lambdau.a\circu)U)
 by simp
```

```
 also have ... =(\Lambda.sseq (a\circt) (a\circhd U)\wedgeStd (map (\lambdau.a\circu)U))
 using}
 by (metis Nil-is-map-conv Std.simps(3) hd-map list.exhaust-sel)
 also have ... = True
 using a tU U ind
 by (metis Std.simps(3) list.exhaust-sel \Lambda.sseq.simps(4))
 finally show Std (map (\lambdau.a\circu) (t#U)) by blast
 qed
qed
lemma Std-map-un-Lam:
shows \llbracketStd T; set T\subseteqCollect \Lambda.is-Lam\rrbracket\LongrightarrowStd (map \Lambda.un-Lam T)
proof (induct T)
 show \llbracketStd []; set [] \subseteq Collect \Lambda.is-Lam\rrbracket\LongrightarrowStd (map \Lambda.un-Lam [])
 by simp
 fix tT
 assume ind: \llbracketStd T; set T\subseteqCollect \Lambda.is-Lam\rrbracket\LongrightarrowStd (map \Lambda.un-Lam T)
 assume tT:Std (t#T)
 assume 1: set (t#T)\subseteq Collect \Lambda.is-Lam
 show Std (map \Lambda.un-Lam (t # T))
 proof (cases T = [])
 show T = []\LongrightarrowStd (map \Lambda.un-Lam (t# T))
 by (metis 1 Std.simps(2) \Lambda.elementary-reduction.simps(3) \Lambda.lambda.collapse(2)
 list.set-intros(1) list.simps(8) list.simps(9) mem-Collect-eq subset-code(1) tT)
 assume T:T\not=[]
 show Std (map \Lambda.un-Lam (t # T))
 using T tT 1 ind Std.simps(3) [of \Lambda.un-Lam t \Lambda.un-Lam (hd T) map \Lambda.un-Lam (tl T)]
 by (metis \Lambda.lambda.collapse(2) \Lambda.sseq.simps(3) list.exhaust-sel list.sel(1)
 list.set-intros(1) map-eq-Cons-conv mem-Collect-eq reduction-paths.Std.simps(3)
 set-subset-Cons subset-code(1))
 qed
qed
lemma Std-append-single:
shows \llbracketStd T;T\not=[]; \Lambda.sseq (last T) u\rrbracket\LongrightarrowStd (T @ [u])
proof (induct T)
 show \llbracketStd [];[] \not= []; \Lambda.sseq (last [])u\rrbracket\Longrightarrow Std ([] @ [u])
 by blast
 fix }t
 assume ind:\llbracketStd T;T\not=[]; \Lambda.sseq (last T) u\rrbracket\LongrightarrowStd (T@ [u])
 assume tT:Std (t#T)
 assume sseq: \Lambda.sseq (last (t # T)) u
 have Std (t # (T @ [u]))
 using \Lambda.sseq-imp-elementary-reduction2 sseq ind tT
 apply (cases T = [])
 apply simp
 by (metis append-Cons last-ConsR list.sel(1) neq-Nil-conv reduction-paths.Std.simps(3))
 thus Std ((t# T) @ [u]) by simp
qed
```

```
lemma Std-append:
shows \(\llbracket\) Std \(T ;\) Std \(U ; T=[] \vee U=[] \vee \Lambda . s s e q(l a s t T)(h d U) \rrbracket \Longrightarrow S t d(T @ U)\)
proof (induct \(U\) arbitrary: \(T\))
 show \(\wedge T . \llbracket\) Std \(T ;\) Std []\(; T=[] \vee[]=[] \vee\)..sseq \((\) last \(T)(h d[]) \rrbracket \Longrightarrow \operatorname{Std}(T @[])\)
 by simp
 fix \(u T U\)
 assume ind: \(\wedge T . \llbracket\) Std \(T\); Std \(U ; T=[] \vee U=[] \vee \Lambda . s s e q(\) last \(T)(h d U) \rrbracket\)
 \(\Longrightarrow S t d(T @ U)\)
 assume \(T\) : Std \(T\)
 assume \(u U: S t d(u \# U)\)
 have \(U\) : Std \(U\)
 using uU Std.elims(3) by fastforce
 assume seq: \(T=[] \vee u \# U=[] \vee \Lambda . s s e q(\) last \(T)(h d(u \# U))\)
 show \(\operatorname{Std}(T\) @ \((u \# U)\))
 by (metis Std-append-single T U append.assoc append.left-neutral append-Cons
 ind last-snoc list.distinct(1) list.exhaust-sel list.sel(1) Std.simps(3) seq uU)
qed
```


## Projections of Standard 'App Paths'

Given a standard reduction path, all of whose transitions have App as their top-level constructor, we can apply un-App1 or un-App2 to each transition to project the path onto paths formed from the "rator" and the "rand" of each application. These projected paths are not standard, since the projection operation will introduce identities, in general. However, in this section we show that if we remove the identities, then in fact we do obtain standard reduction paths.

```
abbreviation notIde
where notIde \(\equiv \lambda u\). \(\neg\).Ide \(u\)
lemma filter-notIde-Ide:
shows Ide \(U \Longrightarrow\) filter notIde \(U=[]\)
 by (induct \(U\)) auto
lemma cong-filter-notIde:
shows \(\llbracket\) Arr \(U ; \neg\) Ide \(U \rrbracket \Longrightarrow\) filter notIde \(U^{*} \sim^{*} U\)
proof (induct \(U\))
 show \(\llbracket\) Arr []; \(\neg\) Ide []』 \(\Longrightarrow\) filter notIde [] * \(\sim^{*}[]\)
 by \(\operatorname{simp}\)
 fix \(u U\)
 assume ind: \(\llbracket\) Arr \(U ; \neg\) Ide \(U \rrbracket \Longrightarrow\) filter notIde \(U^{*} \sim^{*} U\)
 assume \(\operatorname{Arr}: \operatorname{Arr}(u \# U)\)
 assume 1: ᄀ Ide \((u \# U)\)
 show filter notIde \((u \# U){ }^{*} \sim^{*}(u \# U)\)
 proof (cases \(\Lambda . I d e ~ u)\)
 assume \(u\) : \(\Lambda\).Ide \(u\)
 have \(U\) : Arr \(U \wedge \neg\) Ide \(U\)
 using Arr u 1 Ide.elims(3) by fastforce
```

```
 have filter notIde (u # U) = filter notIde U
 using u by simp
 also have ... * ~* U
 using U ind by blast
 also have U *** [u]@ U
 using u
 by (metis (full-types) Arr Arr-has-Src Cons-eq-append-conv Ide.elims(3) Ide.simps(2)
 Srcs.simps(1) U arrIP arr-append-imp-seq cong-append-ideI(3) ide-char
 \Lambda.ide-char not-Cons-self2)
 also have [u] @ U = u#U
 by simp
 finally show ?thesis by blast
 next
 assume u: ᄀ \Lambda.Ide u
 show ?thesis
 proof (cases Ide U)
 assume U}\mathrm{ : Ide U
 have filter notIde (}u##)=[u
 using u U filter-notIde-Ide by simp
 moreover have [u] * ~* [u]@ U
 using u U cong-append-ideI(4) [of [u] U]
 by (metis Arr Con-Arr-self Cons-eq-appendI Resid-Ide(1) arr-append-imp-seq
 arr-char ide-char ide-implies-arr neq-Nil-conv self-append-conv2)
 moreover have [u]@ U=u#U
 by simp
 ultimately show ?thesis by auto
 next
 assume U: \negIde U
 have filter notIde (u# U)=[u] @ filter notIde U
 using u U Arr by simp
 also have ... * ~* [u]@ U
 proof (cases U = [])
 show }U=[]\Longrightarrow\mathrm{ ?thesis
 by (metis Arr arr-char cong-reflexive append-Nil2 filter.simps(1))
 assume 1:U\not=[]
 have seq [u] (filter notIde U)
 by (metis (full-types) 1 Arr Arr.simps(2-3) Con-imp-eq-Srcs Con-implies-Arr(1)
 Ide.elims(3) Ide.simps(1) Trgs.simps(2) U ide-char ind seq-char
 seq-implies-Trgs-eq-Srcs)
 thus ?thesis
 using u U Arr ind cong-append [of [u] filter notIde U [u]U]
 by (meson 1 Arr-consE cong-reflexive seqE)
 qed
 also have [u] @ U=u#U
 by simp
 finally show ?thesis by argo
 qed
 qed
qed
```

```
lemma Std-filter-map-un-App1:
shows \(\llbracket S t d U\); set \(U \subseteq\) Collect \(\Lambda . i s-A p p \rrbracket \Longrightarrow\) Std (filter notIde (map \(\Lambda . u n\)-App1 \(U\)))
proof (induct \(U\))
 show \(\llbracket\) Std []; set []\(\subseteq\) Collect \(\Lambda . i s-A p p \rrbracket \Longrightarrow \operatorname{Std}(\) filter notIde (map \(\Lambda\).un-App1 []))
 by simp
 fix \(u U\)
 assume ind: \(\llbracket S t d U\); set \(U \subseteq\) Collect \(\Lambda . i s-A p p \rrbracket \Longrightarrow\) Std (filter notIde (map \(\Lambda . u n\)-App1 \(U\)) \()\)
 assume 1: Std (\(u \# U\))
 assume 2: set \((u \# U) \subseteq\) Collect \(\Lambda\).is-App
 show Std (filter notIde (map 亿.un-App1 \((u \# U))\))
 using 12 ind
 apply (cases \(u\))
 apply simp-all
 proof -
 fix \(u 1\) u2
 assume \(u U\) : Std ((u1 o u2) \# U)
 assume set: set \(U \subseteq\) Collect \(\Lambda\).is-App
 assume ind: Std \(U \Longrightarrow\) Std (filter notIde (map \(\Lambda\).un-App1 \(U\)))
 assume \(u: u=u 1 \circ u 2\)
 show \((\neg\) 亿.Ide \(u 1 \longrightarrow\) Std \((u 1\) \# filter notIde \((\) map \(\Lambda . u n-A p p 1 U))) \wedge\)
 (\(\Lambda . I d e ~ u 1 \longrightarrow\) Std (filter notIde (map \(\Lambda . u n-A p p 1 U)\)))
 proof (intro conjI impI)
 assume u1: \(\Lambda\).Ide u1
 show Std (filter notIde (map \(\Lambda . u n-A p p 1 ~ U)) ~\)
 by (metis 1 Std.simps(1) Std.simps(3) ind neq-Nil-conv)
 next
 assume u1: \(\neg\) \.Ide u1
 show Std (u1 \# filter notIde (map К.un-App1 U))
 proof (cases Ide (map \(\Lambda\).un-App1 U))
 show Ide (map \(\Lambda\).un-App1 \(U\)) \(\Longrightarrow\) ?thesis
 proof -
 assume \(U\) : Ide (map \(\Lambda . u n-A p p 1 U)\)
 have filter notIde (map \(\Lambda . u n-A p p 1 U)=[]\)
 by (metis U Ide-char filter-False \(\Lambda\).ide-char
 mem-Collect-eq subsetD)
 thus ?thesis
 by (metis Std.elims(1) Std.simps(2) .elementary-reduction.simps(4) list.discI
 list.sel(1) .sseq-imp-elementary-reduction1 u1 uU)
 qed
 assume \(U: \neg \operatorname{Ide}(\operatorname{map} \Lambda . u n-A p p 1 U)\)
 show ?thesis
 proof (cases \(U=[]\))
 show \(U=[] \Longrightarrow\) ?thesis
 using \(1 u u 1\) by fastforce
 assume \(U \neq[]\)
 hence \(U: U \neq[] \wedge \neg\) Ide (map \(\Lambda\).un-App1 \(U\))
 using \(U\) by simp
 have \(\Lambda . s s e q ~ u 1(h d(\) filter notIde (map \(\Lambda . u n-A p p 1 U)))\)
```

```
proof -
 have \(\bigwedge u 1\) u2. \(\llbracket\) set \(U \subseteq\) Collect \(\Lambda . i s\)-App; \(\neg\) Ide (map \(\Lambda . u n-A p p 1 ~ U) ; U \neq[] ;\)
 Std ((u1○u2) \# U); ᄀ 1 .Ide u1』
 \(\Longrightarrow\) 亿.sseq u1 (hd (filter notIde (map \(\Lambda . u n-A p p 1 ~ U))\))
 for \(U\)
 apply (induct \(U\))
 apply simp-all
 apply (intro conjI impI)
proof -
 fix \(u U u 1 u 2\)
 assume ind: \(\bigwedge u 1 u 2 . \llbracket \neg\) Ide (map \(\Lambda . u n-\operatorname{App1} U) ; U \neq \llbracket] ;\)
 Std (\((u 1 \circ\) u2) \(\# U) ; ~ \neg\) I.Ide u1】
 \(\Longrightarrow\)..sseq u1 (hd (filter notIde (map \(\Lambda . u n-A p p 1 U))\))
 assume 1: \(\Lambda . i s-A p p u \wedge\) set \(U \subseteq\) Collect \(\Lambda\).is-App
```



```
 assume 3: \(\Lambda . s s e q(u 1 \circ u 2) u \wedge \operatorname{Std}(u \# U)\)
```



```
 by (metis 13 几.Arr.simps(4) \(\Lambda . I d e-\operatorname{Trg}\) К.lambda.collapse(3) \(\Lambda . s e q-c h a r\)
 \(\Lambda . s s e q . \operatorname{simps}(4) \Lambda . s s e q-i m p-s e q)\)
 assume 4: ᄀ .Ide u1
 assume 5: .Ide (\(\Lambda . u n\)-App1 u)
 have u1: .elementary-reduction u1
 using 34 ム.elementary-reduction.simps(4) .sseq-imp-elementary-reduction1
 by blast
```



```
 using 13 Std-imp-Arr Arr-map-un-App1 [of \(u \# U]\) by auto
 have 7: \(\operatorname{Arr}\) (map \(\Lambda . u n-A p p 1 U)\)
 using 12356 Arr-map-un-App1 Std-imp-Arr \(\Lambda\).ide-char by fastforce
 have 8: ᄀIde (map \(\Lambda\).un-App1 U)
 using 256 set-Ide-subset-ide by fastforce
 have 9: \(\Lambda\).seq u (hd \(U\))
 by (metis 37 Std.simps(3) Arr.simps(1) list.collapse list.simps(8)
 प.sseq-imp-seq)
 show \(\Lambda . s s e q u 1\) (hd (filter notIde (map \(\Lambda . u n-A p p 1 ~ U))\))
 proof -
 have \(\Lambda . \operatorname{sseq}(u 1 \circ \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 2 u))(h d U)\)
 proof (cases \(\Lambda\).Ide (\(\Lambda . u n-A p p 1(h d U)))\)
 assume 10: .Ide (\(\Lambda . u n\)-App1 (hd U))
 hence \(\Lambda . e l e m e n t a r y-r e d u c t i o n ~(\Lambda . u n-A p p 2 ~(h d ~ U)) ~\)
 by (metis (full-types) 137 Std.elims(2) Arr.simps(1)
 .elementary-reduction-App-iff \(\Lambda\).elementary-reduction-not-ide
 ム.ide-char list.sel(2) list.sel(3) list.set-sel(1) list.simps(8)
```



```
 moreover have \(\Lambda . \operatorname{Trg} u 1=\Lambda . u n-A p p 1(h d U)\)
 proof -
 have \(\Lambda . \operatorname{Trg} u 1=\Lambda . \operatorname{Src}(\Lambda . u n-A p p 1 u)\)
 by (metis 135 ム.Ide-iff-Src-self \(\Lambda . I d e-i m p l i e s-A r r ~ \Lambda . T r g-S r c ~\)
 ム.elementary-reduction-not-ide \(\Lambda . i d e-c h a r ~ \Lambda . l a m b d a . c o l l a p s e(3) ~\)
```



```
 also have ... = \Lambda.Trg (\Lambda.un-App1 u)
 by (metis 5 \Lambda.Ide-iff-Src-self \Lambda.Ide-iff-Trg-self
 \Lambda.Ide-implies-Arr)
 also have ... = \Lambda.un-App1 (hd U)
 using 1 357 \Lambda.Ide-iff-Trg-self
 by (metis 9 10 Arr.simps(1) lambda-calculus.Ide-iff-Src-self
 \Lambda.Ide-implies-Arr \Lambda.Src-Src \Lambda.Src-eq-iff(2) \Lambda.Trg.simps(3)
 \Lambda.lambda.collapse(3) \Lambda.seqE \ list.set-sel(1) list.simps(8)
 mem-Collect-eq subsetD)
 finally show ?thesis by argo
qed
moreover have \Lambda.Trg (\Lambda.un-App2 u) = \Lambda.Src (\Lambda.un-App2 (hd U))
 by (metis 179 Arr.simps(1) hd-in-set \Lambda.Src.simps(4) \Lambda.Src-Src
 \Lambda.Trg.simps(3) \Lambda.lambda.collapse(3) \Lambda.lambda.sel(4)
 \Lambda.seq-char list.simps(8) mem-Collect-eq subset-code(1))
 ultimately show ?thesis
 using \Lambda.sseq.simps(4)
 by (metis 17 u1 Arr.simps(1) hd-in-set \Lambda.lambda.collapse(3)
 list.simps(8) mem-Collect-eq subsetD)
 next
 assume 10: ᄀ \Lambda.Ide (\Lambda.un-App1 (hd U))
 have False
 proof -
 have \Lambda.elementary-reduction (\Lambda.un-App2 u)
 using 1 35 \Lambda.elementary-reduction-App-iff
 \Lambda.elementary-reduction-not-ide \Lambda.sseq-imp-elementary-reduction2
 by blast
 moreover have \Lambda.sseq u (hd U)
 by (metis 3 7 Std.simps(3) Arr.simps(1)
 hd-Cons-tl list.simps(8))
 moreover have \Lambda.elementary-reduction (\Lambda.un-App1 (hd U))
 by (metis 1710 Nil-is-map-conv Arr.simps(1)
 calculation(2) \Lambda.elementary-reduction-App-iff hd-in-set \Lambda.ide-char
 mem-Collect-eq \Lambda.sseq-imp-elementary-reduction2 subset-iff)
 ultimately show ?thesis
 using \Lambda.sseq.simps(4)
 by (metis 157 Arr.simps(1) \Lambda.elementary-reduction-not-ide
 hd-in-set \Lambda.ide-char \Lambda.lambda.collapse(3) list.simps(8)
 mem-Collect-eq subset-iff)
 qed
 thus?thesis by argo
qed
hence Std ((u1 o \Lambda.Trg (\Lambda.un-App2 u)) # U)
 by (metis 3 7 Std.simps(3) Arr.simps(1) list.exhaust-sel list.simps(8))
thus ?thesis
 using ind
 by (metis 7 8 u1 Arr.simps(1) \Lambda.elementary-reduction-not-ide \Lambda.ide-char
 list.simps(8))
qed
```

```
 qed
 thus ?thesis
 using U set u1 uU by blast
 qed
 thus ?thesis
 by (metis 1 Std.simps(2-3)<U\not=[]> ind list.exhaust-sel list.sel(1)
 \Lambda.sseq-imp-elementary-reduction1)
 qed
 qed
 qed
 qed
qed
lemma Std-filter-map-un-App2:
shows \llbracketStd U; set U\subseteq Collect \Lambda.is-App\rrbracket\Longrightarrow Std (filter notIde (map \Lambda.un-App2 U))
proof (induct U)
 show \llbracketStd []; set [] \subseteq Collect \Lambda.is-App\rrbracket\Longrightarrow Std (filter notIde (map \Lambda.un-App2 []))
 by simp
 fix }u
 assume ind: \llbracketStd U; set U\subseteq Collect \Lambda.is-App\rrbracket \LongrightarrowStd (filter notIde (map \Lambda.un-App2 U))
 assume 1: Std (u# U)
 assume 2: set (u#U)\subseteq Collect \Lambda.is-App
 show Std (filter notIde (map \Lambda.un-App2 (u # U)))
 using 12 ind
 apply (cases u)
 apply simp-all
 proof -
 fix u1 u2
 assume uU: Std ((u1\circu2) # U)
 assume set: set U\subseteqCollect \Lambda.is-App
 assume ind:Std U C Std (filter notIde (map \Lambda.un-App2 U))
 assume u:u=u1\circ u2
 show (\neg \Lambda.Ide u2 \longrightarrowStd (u2 # filter notIde (map \Lambda.un-App2 U))) ^
 (\Lambda.Ide u2 \longrightarrow Std (filter notIde (map \Lambda.un-App2 U)))
 proof (intro conjI impI)
 assume u2: \Lambda.Ide u2
 show Std (filter notIde (map \Lambda.un-App2 U))
 by (metis 1 Std.simps(1) Std.simps(3) ind neq-Nil-conv)
 next
 assume u2: \neg \Lambda.Ide u2
 show Std (u2 # filter notIde (map \Lambda.un-App2 U))
 proof (cases Ide (map \Lambda.un-App2 U))
 show Ide (map \Lambda.un-App2 U) \Longrightarrow ?thesis
 proof -
 assume U:Ide (map \Lambda.un-App2 U)
 have filter notIde (map \Lambda.un-App2 U)=[]
 by (metis U Ide-char filter-False \Lambda.ide-char mem-Collect-eq subsetD)
 thus ?thesis
 by (metis Std.elims(1) Std.simps(2) \Lambda.elementary-reduction.simps(4) list.discI
```

```
 list.sel(1) \Lambda.sseq-imp-elementary-reduction1 u2 uU)
 qed
 assume U:\negIde (map \Lambda.un-App2 U)
 show ?thesis
 proof (cases U = [])
 show }U=[]\Longrightarrow\mathrm{ ?thesis
 using 1 u u2 by fastforce
 assume U\not=[]
 hence }U:U\not=[]\wedge\negIde(map \Lambda.un-App2 U
 using U by simp
 have \Lambda.sseq u2 (hd (filter notIde (map \Lambda.un-App2 U)))
 proof -
 have \u1u2. \llbracketset U\subseteq Collect \Lambda.is-App; \negIde (map \Lambda.un-App2 U);U\not=[];
 Std ((u1 ○ u2) # U); ᄀ \Lambda.Ide u2\rrbracket
 \.sseq u2 (hd (filter notIde (map \Lambda.un-App2 U)))
 for }
 apply (induct U)
 apply simp-all
 apply (intro conjI impI)
 proof -
 fix u U u1 u2
 assume ind: \u1 u2. \llbracket\neg Ide (map \Lambda.un-App2 U); U F [];
 Std ((u1\circ u2) # U); ᄀ \Lambda.Ide u2]
 \Longrightarrow ~ \Lambda . s s e q ~ u 2 ~ (h d ~ (f i l t e r ~ n o t I d e ~ (m a p ~ \Lambda . u n - A p p 2 ~ U)))
 assume 1: \Lambda.is-App u ^ set U\subseteqCollect \Lambda.is-App
 assume 2: ᄀIde (\Lambda.un-App2 u # map \Lambda.un-App2 U)
 assume 3: \Lambda.sseq (u1\circ u2) u ^ Std (u#U)
 assume 4: ᄀ \Lambda.Ide u2
 show \neg \Lambda.Ide (\Lambda.un-App2 u)\Longrightarrow \Lambda.sseq u2 (\Lambda.un-App2 u)
 by (metis 134 \Lambda.elementary-reduction.simps(4)
 \Lambda.elementary-reduction-not-ide \Lambda.ide-char \Lambda.lambda.collapse(3)
 \Lambda.sseq.simps(4) \Lambda.sseq-imp-elementary-reduction1)
 assume 5: \Lambda.Ide (\Lambda.un-App2 u)
 have False
 by (metis 1 3 4 5 \Lambda.elementary-reduction-not-ide \Lambda.ide-char
 \Lambda.lambda.collapse(3) \Lambda.sseq.simps(4) \Lambda.sseq-imp-elementary-reduction2)
 thus \Lambda.sseq u2 (hd (filter notIde (map \Lambda.un-App2 U))) by argo
 qed
 thus ?thesis
 using U set u2 uU by blast
 qed
 thus ?thesis
 by (metis 1 Std.simps(2) Std.simps(3)<U # []> ind list.exhaust-sel list.sel(1)
 \Lambda.sseq-imp-elementary-reduction1)
 qed
 qed
 qed
 qed
qed
```

If the first step in a standard reduction path contracts a redex that is not at the head position, then all subsequent terms have $A p p$ as their top-level operator.
lemma seq-App-Std-implies:
shows $\llbracket$ Std $(t \# U)$; $\Lambda$.is-App $t \wedge \neg \Lambda$.contains-head-reduction $t \rrbracket$ $\Longrightarrow$ set $U \subseteq$ Collect $\Lambda . i s-A p p$
proof (induct $U$ arbitrary: $t$ )
show $\wedge t . \llbracket S t d[t] ; \Lambda . i s-A p p t \wedge \neg \Lambda$. contains-head-reduction $t \rrbracket$

$$
\Longrightarrow \text { set }[] \subseteq \text { Collect } \Lambda . i s-A p p
$$

by $\operatorname{simp}$
fix $t u U$
assume ind: $\wedge t . \llbracket S t d(t \# U) ; \Lambda . i s-A p p t \wedge \neg \Lambda$.contains-head-reduction $t \rrbracket$
$\Longrightarrow$ set $U \subseteq$ Collect $\Lambda$.is-App
assume $\operatorname{Std}: \operatorname{Std}(t \# u \# \bar{U})$
assume $t$ : $\Lambda$.is-App $t \wedge \neg \Lambda$.contains-head-reduction $t$
have $U$ : set $(u \# U) \subseteq$ Collect $\Lambda$.elementary-reduction using Std Std-implies-set-subset-elementary-reduction by fastforce
have $u$ : .elementary-reduction $u$ using $U$ by simp
have set $U \subseteq$ Collect $\Lambda$.elementary-reduction using $U$ by simp
show set $(u \# U) \subseteq$ Collect $\Lambda$.is-App
proof (cases $U=[]$ )
show $U=[] \Longrightarrow$ ?thesis
by (metis Std empty-set empty-subsetI insert-subset
ム.sseq-preserves-App-and-no-head-reduction list.sel(1) list.simps(15)
mem-Collect-eq reduction-paths.Std.simps(3) t)
assume $U: U \neq[]$
have $\Lambda$.sseq $t u$
using Std by auto
hence $\Lambda$.is-App $u \wedge \neg \Lambda$.Ide $u \wedge \neg \Lambda$.contains-head-reduction $u$
using $t u U$.sseq-preserves-App-and-no-head-reduction [of $t u$ ]
ム.elementary-reduction-not-ide
by blast
thus ?thesis
using Std ind $[$ of $u]$ set $U \subseteq$ Collect $\Lambda$.elementary-reduction» by simp
qed
qed

### 3.6.2 Standard Developments

The following function takes a term $t$ (representing a parallel reduction) and produces a standard reduction path that is a complete development of $t$ and is thus congruent to $[t]$. The proof of termination makes use of the Finite Development Theorem.
function (sequential) standard-development
where standard-development $\sharp=[]$
| standard-development $«-»=[]$
| standard-development $\boldsymbol{\lambda}[t]=$ map $\Lambda . L a m($ standard-development $t)$
| standard-development $(t \circ u)=$

```
 (if \Lambda.Arr t ^ \Lambda.Arr u then
 map (\lambdav.v\circ \Lambda.Src u) (standard-development t)@
 map (\lambdav. \Lambda.Trg t O v)(standard-development u)
 else [])
 | standard-development (\boldsymbol{\lambda}[t]\bulletu)=
 (if \Lambda.Arr t ^ \Lambda.Arr u then
 (\boldsymbol{\lambda}[\Lambda.Src t] \bullet \Lambda.Src u) # standard-development (\Lambda.subst u t)
 else [])
 by pat-completeness auto
abbreviation (in lambda-calculus) stddev-term-rel
where stddev-term-rel \equiv mlex-prod hgt subterm-rel
lemma (in lambda-calculus) subst-lt-Beta:
assumes Arr t and Arr u
shows (subst u t, \boldsymbol{\lambda}[t]\bulletu)\in stddev-term-rel
proof -
 have }(\boldsymbol{\lambda}[t]\bulletu)\(\boldsymbol{\lambda}[\mathrm{ Src t] • Src u) = subst ut
 using assms
 by (metis Arr-not-Nil Ide-Src Ide-iff-Src-self Ide-implies-Arr resid.simps(4)
 resid-Arr-Ide)
 moreover have elementary-reduction (\boldsymbol{\lambda}[Src t] \bullet Src u)
 by (simp add: assms Ide-Src)
 moreover have \lambda[Src t] \bullet Src u\sqsubseteq \boldsymbol{\lambda}[t] \bulletu
 by (metis assms Arr.simps(5) head-redex.simps(9) subs-head-redex)
 ultimately show ?thesis
 using assms elementary-reduction-decreases-hgt [of \boldsymbol{\lambda}[Src t] \bullet Src u \boldsymbol{\lambda}[t]\bulletu]
 by (metis mlex-less)
qed
termination standard-development
proof (relation \Lambda.stddev-term-rel)
 show wf \Lambda.stddev-term-rel
 using \Lambda.wf-subterm-rel wf-mlex by blast
 show }\wedget.(t,\boldsymbol{\lambda}[t])\in\Lambda.stddev-term-rel
 by (simp add: \Lambda.subterm-lemmas(1) mlex-prod-def)
 show }\tu.(t,t\circu)\in\Lambda.stddev-term-rel
 using \Lambda.subterm-lemmas(3)
 by (metis antisym-conv1 \Lambda.hgt.simps(4) le-add1 mem-Collect-eq mlex-iff old.prod.case)
 show }\tu.(u,t\circu)\in\Lambda.stddev-term-rel
 using \Lambda.subterm-lemmas(3) by (simp add: mlex-leq)
 show \tu.\Lambda.Arr t ^\Lambda.Arr u\Longrightarrow(\Lambda.subst ut, \lambda[t]\bulletu)\in\Lambda.stddev-term-rel
 using \Lambda.subst-lt-Beta by simp
qed
lemma Ide-iff-standard-development-empty:
shows \Lambda.Arr t \Lambda.Ide t < standard-development t= []
 by (induct t) auto
```

lemma set-standard-development:
shows $\Lambda$.Arr $t \longrightarrow$ set (standard-development $t$ ) $\subseteq$ Collect $\Lambda$.elementary-reduction apply (rule standard-development.induct)
using $\Lambda$.Ide-Src $\Lambda$.Ide-Trg . Arr-Subst by auto
lemma cong-standard-development:
shows $\Lambda$.Arr $t \wedge \neg \Lambda$.Ide $t \longrightarrow$ standard-development $t^{*} \sim^{*}[t]$
proof (rule standard-development.induct)
show $\Lambda . \operatorname{Arr} \sharp \wedge \neg \Lambda$.Ide $\sharp \longrightarrow$ standard-development $\sharp{ }^{*} \sim^{*}[\sharp]$
by $\operatorname{simp}$
show $\wedge x . \Lambda . A r r ~ « x » \wedge \neg$ И.Ide «x»
$\longrightarrow$ standard-development $« x »{ }^{*} \sim^{*}[« x »]$
by simp
show $\wedge$ t. $\Lambda$.Arr $t \wedge \neg \Lambda$.Ide $t \longrightarrow$ standard-development $t^{*} \sim^{*}[t] \Longrightarrow$
$\Lambda$.Arr $\boldsymbol{\lambda}[t] \wedge \neg \Lambda$.Ide $\boldsymbol{\lambda}[t] \longrightarrow$ standard-development $\boldsymbol{\lambda}[t]{ }^{*} \sim^{*}[\boldsymbol{\lambda}[t]]$
by (metis (mono-tags, lifting) cong-map-Lam $\Lambda . A r r . s i m p s(3) ~ \Lambda . I d e . s i m p s(3) ~$ list.simps $(8,9)$ standard-development.simps(3))
show $\wedge t u . \llbracket \Lambda . \operatorname{Arr} t \wedge \Lambda . \operatorname{Arr} u$ $\Longrightarrow$.Arr $t \wedge \neg \Lambda$.Ide $t \longrightarrow$ standard-development $t^{*} \sim^{*}[t] ;$
М.Arr $t \wedge \Lambda . A r r u$

$$
\Longrightarrow \Lambda . \text { Arr } u \wedge \neg \Lambda . \text { Ide } u \longrightarrow \text { standard-development } u^{*} \sim^{*}[u] \rrbracket
$$

$\Longrightarrow \Lambda . \operatorname{Arr}(t \circ u) \wedge \neg \Lambda . I d e(t \circ u) \longrightarrow$ standard-development $(t \circ u)^{*} \sim^{*}[t \circ u]$
proof
fix $t u$
assume ind1: $\Lambda . \operatorname{Arr} t \wedge \Lambda$.Arr $u$
$\Longrightarrow$ И.Arr $t \wedge \neg$.Ide $t \longrightarrow$ standard-development $t^{*} \sim^{*}[t]$
assume ind2: $\Lambda . \operatorname{Arr} t \wedge \Lambda$.Arr $u$
$\Longrightarrow$.Arr $u \wedge \neg \Lambda$.Ide $u \longrightarrow$ standard-development $u^{*} \sim^{*}[u]$
assume 1: $\Lambda . \operatorname{Arr}(t \circ u) \wedge \neg \Lambda . \operatorname{Ide}(t \circ u)$
show standard-development $(t \circ u)^{*} \sim^{*}[t \circ u]$
proof (cases standard-development $t=[]$ )
show standard-development $t=[] \Longrightarrow$ ?thesis
using 1 ind2 cong-map-App1 Ide-iff-standard-development-empty $\Lambda$.Ide-iff-Trg-self
apply simp
by (metis (no-types, opaque-lifting) list.simps $(8,9)$ )
assume $t$ : standard-development $t \neq[]$
show ?thesis
proof (cases standard-development $u=[])$
assume $u$ : standard-development $u=[]$
have standard-development $(t \circ u)=\operatorname{map}(\lambda X . X \circ u)($ standard-development $t)$
using $u 1$ ム.Ide-iff-Src-self ide-char ind2 by auto
also have..${ }^{*} \sim^{*} \operatorname{map}(\lambda a . a \circ u)[t]$
using cong-map-App2 [of u]
by (meson 1 ム.Arr.simps(4) Ide-iff-standard-development-empty $t u$ ind1)
also have $\operatorname{map}(\lambda a . a \circ u)[t]=[t \circ u]$
by $\operatorname{simp}$
finally show ?thesis by blast
next

```
 assume \(u\) : standard-development \(u \neq[]\)
 have standard-development \((t \circ u)=\)
 \(\operatorname{map}(\lambda a . a \circ \Lambda . S r c u)\) (standard-development \(t) @\)
 \(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)(\) standard-development \(u)\)
 using 1 by force
 moreover have map \((\lambda a . a \circ \Lambda . S r c u)(\text { standard-development } t)^{*} \sim^{*}[t \circ \Lambda . S r c u]\)
 proof -
 have map (\(\lambda a . a \circ \Lambda . S r c u)(\) standard-development \(t){ }^{*} \sim^{*} \operatorname{map}(\lambda a . a \circ \Lambda . S r c u)[t]\)
 using \(t\) u 1 ind1 \(\Lambda\).Ide-Src Ide-iff-standard-development-empty cong-map-App2
 by (metis \(\Lambda . \operatorname{Arr} . \operatorname{simps}(4))\)
 also have map (\(\lambda a . a \circ \Lambda . \operatorname{Src} u)[t]=[t \circ \Lambda . \operatorname{Src} u]\)
 by \(\operatorname{simp}\)
 finally show ?thesis by blast
 qed
 moreover have map \((\lambda b . \Lambda . \operatorname{Trg} t \circ b)(\text { standard-development } u)^{*} \sim^{*}[\Lambda . \operatorname{Trg} t \circ u]\)
 using t u 1 ind2 \(\Lambda\).Ide-Trg Ide-iff-standard-development-empty cong-map-App1
 by (metis (mono-tags, opaque-lifting) \(\Lambda . \operatorname{Arr} . \operatorname{simps}(4) \operatorname{list} . \operatorname{simps}(8,9))\)
 moreover have \(\operatorname{seq}(\operatorname{map}(\lambda a . a \circ \Lambda . S r c u)(\) standard-development \(t))\)
 \((\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)(\) standard-development \(u))\)
 proof
 show \(\operatorname{Arr}(\operatorname{map}(\lambda a . a \circ\).Src \(u)(\) standard-development \(t))\)
 by (metis Con-implies-Arr(1) Ide.simps(1) calculation(2) ide-char)
 show \(\operatorname{Arr}(\operatorname{map}((\mathrm{o})(\Lambda . \operatorname{Trg} t))\) (standard-development u))
 by (metis Con-implies-Arr(1) Ide.simps(1) calculation(3) ide-char)
 show \(\Lambda . \operatorname{Trg}(\operatorname{last}(\operatorname{map}(\lambda a . a \circ \Lambda . S r c u)(\) standard-development \(t)))=\)
 ム.Src (hd (map ((0) (\(\Lambda . \operatorname{Trg} t))(\) standard-development \(u)))\)
 using 1 Src-hd-eqI Trg-last-eqI calculation(2) calculation(3) by auto
 qed
 ultimately have standard-development \((t \circ u)^{*} \sim^{*}[t \circ \Lambda . \operatorname{Src} u] @[\Lambda . \operatorname{Trg} t \circ u]\)
 using cong-append [of map (\(\lambda a . a \circ \Lambda . S r c u)\) (standard-development \(t\))
 map (\(\lambda b . \Lambda . \operatorname{Trg} t \circ b)\) (standard-development \(u\))
 \([t \circ \Lambda . \operatorname{Src} u][\Lambda . \operatorname{Trg} t \circ u]]\)
 by \(\operatorname{simp}\)
 moreover have \([t \circ \Lambda . \operatorname{Src} u] @[\Lambda . \operatorname{Trg} t \circ u]^{*} \sim^{*}[t \circ u]\)
 using 1 .Ide-Trg \(\Lambda\).resid-Arr-Src \(\Lambda\).resid-Arr-self \(\Lambda\).null-char
 ide-char \(\Lambda\).Arr-not-Nil
 by \(\operatorname{simp}\)
 ultimately show ?thesis
 using cong-transitive by blast
 qed
 qed
qed
show \(\wedge t u .(\Lambda . \operatorname{Arr} t \wedge \Lambda\).Arr \(u \Longrightarrow\)
 ム.Arr \((\Lambda . s u b s t ~ u t) \wedge \neg \Lambda . I d e(\Lambda . s u b s t ~ u t)\)
 \(\longrightarrow\) standard-development \(\left.(\Lambda . s u b s t ~ u t)^{*} \sim^{*}[\Lambda . s u b s t ~ u t]\right) \Longrightarrow\)
 \(\Lambda . \operatorname{Arr}(\boldsymbol{\lambda}[t] \bullet u) \wedge \neg \Lambda . I d e(\boldsymbol{\lambda}[t] \bullet u) \longrightarrow\)
 standard-development \((\boldsymbol{\lambda}[t] \bullet u)^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]\)
proof
 fix \(t u\)
```

assume 1: $\Lambda . \operatorname{Arr}(\boldsymbol{\lambda}[t] \bullet u) \wedge \neg \Lambda . \operatorname{Ide}(\boldsymbol{\lambda}[t] \bullet u)$
assume ind: $\Lambda . \operatorname{Arr} t \wedge \Lambda$.Arr $u \Longrightarrow$
$\Lambda . \operatorname{Arr}(\Lambda . s u b s t \quad u t) \wedge \neg \Lambda$.Ide $(\Lambda$. subst $u t)$
$\longrightarrow$ standard-development ( $\Lambda$. subst $u t)^{*} \sim^{*}$ [ $\Lambda$.subst $\left.u t\right]$
show standard-development $(\boldsymbol{\lambda}[t] \bullet u)^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]$
proof (cases $\Lambda . I d e(\Lambda . s u b s t ~ u t))$
assume 2: $\Lambda$.Ide ( $\Lambda$. subst $u t$ )
have standard-development $(\boldsymbol{\lambda}[t] \bullet u)=[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u]$
using 12 Ide-iff-standard-development-empty [of $\Lambda$.subst ut] $\Lambda$.Arr-Subst
by $\operatorname{simp}$
also have $[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u]{ }^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]$
using 12 亿.Ide-Src $\Lambda$.Ide-implies-Arr ide-char $\Lambda$.resid-Arr-Ide
apply (intro conjI)
apply simp-all

by fastforce
finally show ?thesis by blast
next
assume 2: $\neg \Lambda$.Ide ( $\Lambda$.subst $u t$ )
have standard-development $(\boldsymbol{\lambda}[t] \bullet u)=$ $[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @$ standard-development ( $\Lambda$.subst $u t$ )
using 1 by auto
also have $[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @$ standard-development ( $\Lambda$.subst $u t$ ) * $\sim^{*}$
$[\boldsymbol{\lambda}[\Lambda$.Src $t] \bullet \Lambda . S r c u] @[\Lambda . s u b s t ~ u t]$
proof (intro cong-append)
show seq [ $\Lambda$.Beta ( $\Lambda$. Src $t)(\Lambda . S r c ~ u)]$ (standard-development ( $\Lambda$.subst u $t$ )) using 12 ind arr-char ide-implies-arr $\Lambda$.Arr-Subst Con-implies-Arr(1) Src-hd-eqI apply (intro seqI $\Lambda_{\Lambda P}$ )
apply simp-all
by (metis Arr.simps(1))
show $[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u]{ }^{*} \sim^{*}[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u]$ using 1
 ide-char $\Lambda . a r r-c h a r) ~$
show standard-development ( $\Lambda$.subst $u t)^{*} \sim^{*}[\Lambda$.subst $u t]$
using 12 . 1 .Arr-Subst ind by simp
qed
also have $[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @[\Lambda \text {.subst } u t]^{*} \sim^{*}[\boldsymbol{\lambda}[t] \bullet u]$
proof
show $[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u] @[\Lambda . s u b s t u t]{ }^{*} \Sigma^{*}[\boldsymbol{\lambda}[t] \bullet u]$
proof -
have $t \backslash \Lambda$.Src $t \neq \sharp \wedge u \backslash \Lambda$.Src $u \neq \sharp$
by (metis 1 М.Arr.simps(5) $\Lambda$.Coinitial-iff-Con $\Lambda$.Ide-Src $\Lambda$.Ide-iff-Src-self
^.Ide-implies-Arr)
moreover have $\Lambda . \operatorname{con}(\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u)(\boldsymbol{\lambda}[t] \bullet u)$
by (metis 1 ム.head-redex.simps(9) $\Lambda$.prfx-implies-con $\Lambda$.subs-head-redex
प.subs-implies-prfx)
ultimately have $([\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @[\Lambda . s u b s t u t])^{*} \backslash^{*}[\boldsymbol{\lambda}[t] \bullet u]=$ $[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u]^{*} \backslash *[\boldsymbol{\lambda}[t] \bullet u] @$

$$
[\Lambda . \text { subst } u t]^{*} \backslash^{*}\left([\boldsymbol{\lambda}[t] \bullet u]^{*} \backslash^{*}[\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . \operatorname{Src} u]\right)
$$

using Resid－append（1）
$[$ of $[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c ~ u][\Lambda . s u b s t ~ u t][\boldsymbol{\lambda}[t] \bullet u]]$
apply $\operatorname{simp}$

also have $\ldots=[\Lambda . \operatorname{subst}(\Lambda . \operatorname{Trg} u)(\Lambda . \operatorname{Trg} t)] @\left([\Lambda . s u b s t u t]^{*} \backslash^{*}[\Lambda . s u b s t\right.$ u $\left.t]\right)$
proof－
have $t \backslash \Lambda$ ．Src $t \neq \sharp \wedge u \backslash \Lambda$ ．Src $u \neq \sharp$
by（metis 1 ム．Arr．simps（5） ．Coinitial－iff－Con $\Lambda$ ．Ide－Src
ム．Ide－iff－Src－self $\Lambda$ ．Ide－implies－Arr）
moreover have $\Lambda . \operatorname{Src} t \backslash t \neq \sharp \wedge \Lambda$ ．Src $u \backslash u \neq \sharp$
using $\Lambda$ ．Con－sym calculation（1）by presburger
moreover have $\Lambda$ ．con（ $\Lambda$ ．subst $u t$ ）（ $\Lambda$ ．subst $u t$ ）

moreover have $\Lambda . c o n(\boldsymbol{\lambda}[t] \bullet u)(\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c ~ u)$
using 〈 $\Lambda$ ．con $(\boldsymbol{\lambda}[\Lambda$ ．Src $t] \bullet \Lambda . \operatorname{Src} u)(\boldsymbol{\lambda}[t] \bullet u)\rangle \Lambda . c o n-s y m$ by blast
moreover have $\Lambda . \operatorname{con}(\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u)(\boldsymbol{\lambda}[t] \bullet u)$
using $\langle\Lambda$ ．con $(\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u)(\boldsymbol{\lambda}[t] \bullet u)\rangle$ by blast
moreover have $\Lambda$ ．con（ $\Lambda$ ．subst $u t)(\Lambda . s u b s t(u \backslash \Lambda$ ．Src $u)(t \backslash \Lambda$ ．Src $t))$
by（metis $\Lambda$ ．Coinitial－iff－Con $\Lambda$ ．Ide－Src calculation（1－3）$\Lambda$ ．resid－Arr－Ide）
ultimately show ？thesis
using 1 by auto
qed
finally have $([\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u] @[\Lambda . s u b s t u t])^{*} \backslash *[\boldsymbol{\lambda}[t] \bullet u]=$
$[\Lambda . s u b s t(\Lambda . \operatorname{Trg} u)(\Lambda . \operatorname{Trg} t)] @[\Lambda . \text { subst } u t]^{*} \backslash *[\Lambda . s u b s t ~ u t]$
by blast
moreover have Ide ．．．
by（metis 12 ム．Arr．simps（5）$\Lambda . A r r-S u b s t$ ム．Ide－Subst $\Lambda$ ．Ide－Trg
Nil－is－append－conv Arr－append－iff $P_{W E}$ Con－implies－Arr（2）Ide．simps（1－2）
Ide－append $I_{P W E}$ Resid－Arr－self ide－char calculation $\Lambda$ ．ide－char ind Con－imp－Arr－Resid）
ultimately show ？thesis
using ide－char by presburger
qed
show $[\boldsymbol{\lambda}[t] \bullet u]{ }_{\sim}^{*}{ }^{*}[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u] @[\Lambda . s u b s t ~ u t]$
proof－
have $[\boldsymbol{\lambda}[t] \bullet u]^{*} \backslash^{*}([\boldsymbol{\lambda}[\Lambda . \operatorname{Src} t] \bullet \Lambda . S r c u] @[\Lambda$ ．subst $u t])=$
$\left([\boldsymbol{\lambda}[t] \bullet u]^{*} \backslash *[\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c u]\right)^{*} \backslash *[\Lambda$ ．subst $u t]$
by fastforce
also have $\ldots=[\Lambda \text { ．subst } u t]^{*} \backslash *[\Lambda$ ．subst $u t]$
proof－
have $t \backslash \Lambda . S r c t \neq \sharp \wedge u \backslash \Lambda . S r c ~ u \neq \sharp$
by（metis 1 ム．Arr．simps（5） ．Coinitial－iff－Con $\Lambda$ ．Ide－Src
प．Ide－iff－Src－self $\Lambda$ ．Ide－implies－Arr）
moreover have $\Lambda$ ．con（ $\Lambda$ ．subst $u t$ ）（ $\Lambda$ ．subst $u t$ ）
by（metis 1 ム．Arr．simps（5） ．Arr－Subst ．．Coinitial－iff－Con ム．con－def $\Lambda . n u l l-c h a r)$
moreover have $\Lambda . \operatorname{con}(\boldsymbol{\lambda}[t] \bullet u)(\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c ~ u)$


```
 \Lambda.prfx-implies-con \Lambda.subs-head-redex \Lambda.subs-implies-prfx)
 moreover have \Lambda.con (\Lambda.subst (u\\Lambda.Src u) (t\\Lambda.Src t)) (\Lambda.subst u t)
 by (metis \Lambda.Coinitial-iff-Con \Lambda.Ide-Src calculation(1) calculation(2)
 \Lambda.resid-Arr-Ide)
 ultimately show ?thesis
 using \Lambda.resid-Arr-Ide
 apply simp
 by (metis \Lambda.Coinitial-iff-Con \Lambda.Ide-Src)
 qed
 finally have [\lambda[t] \bullet u]** ([\lambda[\Lambda.Src t] \bullet \Lambda.Src u]@ [\Lambda.subst ut])=
 [\Lambda.subst u t] ** [\Lambda.subst u t]
 by blast
 moreover have Ide ...
 by (metis 12 \Lambda.Arr.simps(5) \Lambda.Arr-Subst Con-implies-Arr(2) Resid-Arr-self
 ind ide-char)
 ultimately show ?thesis
 using ide-char by presburger
 qed
 qed
 finally show ?thesis by blast
 qed
 qed
qed
lemma Src-hd-standard-development:
assumes \Lambda.Arr t and \neg\Lambda.Ide t
shows \Lambda.Src (hd (standard-development t)) = \Lambda.Src t
 by (metis assms Src-hd-eqI cong-standard-development list.sel(1))
lemma Trg-last-standard-development:
assumes \Lambda.Arr t and }\neg\Lambda.Ide
shows \Lambda.Trg (last (standard-development t)) = \Lambda. Trg t
 by (metis assms Trg-last-eqI cong-standard-development last-ConsL)
lemma Srcs-standard-development:
shows \llbracket\Lambda.Arr t; standard-development t }\not=[]
 \Longrightarrow \text { Srcs (standard-development t)=\{\.Src t\}}
 by (metis Con-implies-Arr(1) Ide.simps(1) Ide-iff-standard-development-empty
 Src-hd-standard-development Srcs-simp}\mp@subsup{\}{P}{}\mathrm{ cong-standard-development ide-char)
lemma Trgs-standard-development:
shows \llbracket\Lambda.Arr t; standard-development t \not= []\rrbracket
 \Longrightarrow \text { Trgs (standard-development t) =\{ \{.Trg t\}}
 by (metis Con-implies-Arr(2) Ide.simps(1) Ide-iff-standard-development-empty
 Trg-last-standard-development Trgs-simp }\mp@subsup{\}{P}{}\mathrm{ cong-standard-development ide-char)
lemma development-standard-development:
shows \Lambda.Arr t\longrightarrow development t (standard-development t)
 apply (rule standard-development.induct)
```

```
 apply blast
 apply simp
 apply (simp add: development-map-Lam)
proof
 fix t1 t2
 assume ind1: \Lambda.Arr t1 ^ \Lambda.Arr t2
 \Lambda.Arr t1 \longrightarrow development t1 (standard-development t1)
 assume ind2: \Lambda.Arr t1 ^ \Lambda.Arr t2
 \Longrightarrow ~ \Lambda . A r r ~ t 2 ~ \longrightarrow ~ d e v e l o p m e n t ~ t 2 ~ (s t a n d a r d - d e v e l o p m e n t ~ t 2) ~
 assume t: \Lambda.Arr (t1\circ t2)
 show development (t1 ○ t2) (standard-development (t1 ○ t2))
 proof (cases standard-development t1 = [])
 show standard-development t1 = []
 \Longrightarrow \text { development (t1 ○ t2) (standard-development (t1 ○ t2))}
 using t ind2 \Lambda.Ide-Src \Lambda.Ide-Trg \Lambda.Ide-iff-Src-self \Lambda.Ide-iff-Trg-self
 Ide-iff-standard-development-empty
 development-map-App-2 [of \Lambda.Src t1 t2 standard-development t2]
 by fastforce
 assume t1: standard-development t1 }=[
 show development (t1 ○ t2) (standard-development (t1 ○ t2))
 proof (cases standard-development t2 = [])
 assume t2: standard-development t2 = []
 show ?thesis
 using t t2 ind1 Ide-iff-standard-development-empty development-map-App-1 by simp
 next
 assume t2: standard-development t2 }=[
 have development (t1 ○ t2) (map (\lambdaa. a ○ \Lambda.Src t2) (standard-development t1))
 using \Lambda.Arr.simps(4) development-map-App-1 ind1 t by presburger
 moreover have development ((t1 ○ t2) '1 *
 map (\lambdaa.a\circ \Lambda.Src t2) (standard-development t1))
 (map (\lambdaa. \Lambda.Trg t1 ○a) (standard-development t2))
 proof -
 have \Lambda.App t1 t2 1* map (\lambdaa. a ○ \Lambda.Src t2) (standard-development t1) =
 \Lambda.Trg t1 ○ t2
 proof -
 have map (\lambdaa.a o \Lambda.Src t2) (standard-development t1) * ~* [t1 \circ \Lambda.Src t2]
 proof -
 have map (\lambdaa. a ○ \Lambda.Src t2) (standard-development t1)=
 standard-development (t1 ○ \Lambda.Src t2)
 by (metis \Lambda.Arr.simps(4) \Lambda.Ide-Src \Lambda.Ide-iff-Src-self
 Ide-iff-standard-development-empty \Lambda.Ide-implies-Arr Nil-is-map-conv
 append-Nil2 standard-development.simps(4) t)
 also have standard-development (t1 ○ \Lambda.Src t2) * ~* [t1 ○ \Lambda.Src t2]
 by (metis \Lambda.Arr.simps(4) \Lambda.Ide.simps(4) \Lambda.Ide-Src \Lambda.Ide-implies-Arr
 cong-standard-development development-Ide ind1 t t1)
 finally show ?thesis by blast
 qed
 hence [t1\circ t2] ** map (\lambdaa.a\circ \Lambda.Src t2) (standard-development t1) =
 [t1\circ t2] ** [t1\circ \Lambda.Src t2]
```

```
 by (metis Resid-parallel con-imp-coinitial prfx-implies-con calculation
 development-implies map-is-Nil-conv t1)
 also have [t1\circ t2] ** [t1\circ \.Src t2] = [\Lambda. Trg t1\circ t2]
 using t \Lambda.arr-resid-iff-con \Lambda.resid-Arr-self
 by simp force
 finally have [t1\circ t2] ** map (\lambdaa.a\circ \Lambda.Src t2) (standard-development t1) =
 [\Lambda.Trg t1 ○ t2]
 by blast
 thus ?thesis
 by (simp add: Resid1x-as-Resid')
 qed
 thus ?thesis
 by (metis ind2 \Lambda.Arr.simps(4) \Lambda.Ide-Trg \Lambda.Ide-iff-Src-self development-map-App-2
 \Lambda.reduction-strategy-def \Lambda.head-strategy-is-reduction-strategy t)
 qed
 ultimately show ?thesis
 using t development-append [of t1 ○ t2
 map (\lambdaa.a ○ \Lambda.Src t2) (standard-development t1)
 map (\lambdab. \Lambda.Trg t1 ○ b) (standard-development t2)]
 by auto
 qed
 qed
 next
 fix t1 t2
 assume ind: \Lambda.Arr t1 ^ \Lambda.Arr t2 \Longrightarrow
 \Lambda.Arr (\Lambda.subst t2 t1)
 \longrightarrow \text { development (\.subst t2 t1) (standard-development (\.subst t2 t1))}
 show \Lambda.Arr (\boldsymbol{\lambda}[t1]\bullett2)\longrightarrow development (\boldsymbol{\lambda}[t1]\bullett2) (standard-development (\boldsymbol{\lambda}[t1]\bullet t2))
 proof
 assume 1: \Lambda. Arr (\lambda[t1] \bullet t2)
 have development (\Lambda.subst t2 t1) (standard-development (\Lambda.subst t2 t1))
 using 1 ind by (simp add: \Lambda.Arr-Subst)
 thus development (\boldsymbol{\lambda}[t1]\bullett2) (standard-development (\boldsymbol{\lambda}[t1] \bullet t2))
 using 1 \Lambda.Ide-Src \Lambda.subs-Ide by auto
 qed
qed
lemma Std-standard-development:
shows Std (standard-development t)
 apply (rule standard-development.induct)
 apply simp-all
 using Std-map-Lam
 apply blast
proof
 fix tu
 assume t: \Lambda.Arr t ^ \Lambda.Arr u\LongrightarrowStd (standard-development t)
 assume u: \Lambda.Arr t ^\Lambda.Arr u\LongrightarrowStd (standard-development u)
 assume 0: \Lambda.Arr t ^ \Lambda.Arr u
 show Std (map (\lambdaa.a o \Lambda.Src u) (standard-development t)@
```

map（ $\lambda$ b．$\Lambda . \operatorname{Trg} t \circ b)($ standard－development $u))$
proof（cases $\Lambda$ ．Ide $t$ ）
show $\Lambda$ ．Ide $t \Longrightarrow$ ？thesis
using 0 ム．Ide－iff－Trg－self Ide－iff－standard－development－empty u Std－map－App2 by fastforce
assume 1：$\neg$ ．Ide $t$
show ？thesis
proof（cases $\Lambda . I d e u$ ）
show $\Lambda$ ．Ide $u \Longrightarrow$ ？thesis
using tu 01 Std－map－App1［of $\Lambda$ ．Src $u$ standard－development $t$ ］$\Lambda$ ．Ide－Src
by（metis Ide－iff－standard－development－empty append－Nil2 list．simps（8））
assume 2：$\neg$ ．Ide $u$
show ？thesis
proof（intro Std－append）
show 3：Std（map（ $\lambda a . a \circ$ К．Src u）（standard－development t））
using $t 0$ Std－map－App 1 ＾．Ide－Src by blast
show $\operatorname{Std}(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)($ standard－development $u))$
using $u 0$ Std－map－App2 $1 . I d e-T r g$ by simp
show map $(\lambda a . a \circ \Lambda . S r c u)($ standard－development $t)=[] \vee$ $\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)($ standard－development $u)=[] \vee$ ム．sseq（last（map（ $\lambda$ a．a ○ $\Lambda . S r c u)($ standard－development $t))$ ）
$(h d(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)($ standard－development $u)))$
proof－
have $\Lambda . \operatorname{sseq}(\operatorname{last}(\operatorname{map}(\lambda a . a \circ \Lambda . S r c u)($ standard－development $t)))$
（hd $(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)($ standard－development $u)))$
proof－
obtain $x$ where $x$ ：last $($ map $(\lambda a . a \circ \Lambda . \operatorname{Src} u)($ standard－development $t))=$ $x \circ \Lambda . S r c u$
using 01 Ide－iff－standard－development－empty last－map by auto
obtain $y$ where $y: h d(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg} t \circ b)($ standard－development $u))=$ М． $\operatorname{Trg} t \circ y$
using 02 Ide－iff－standard－development－empty list．map－sel（1）by auto
have $\Lambda . e l e m e n t a r y-r e d u c t i o n ~ x$
proof－
have $\Lambda$. elementary－reduction（ $x \circ \Lambda$. Src $u$ ） using $x$
by（metis 013 Ide－iff－standard－development－empty Nil－is－map－conv Std．simps（2）
Std－imp－sseq－last－hd append－butlast－last－id append－self－conv2 list．discI
list．sel（1） ．．sseq－imp－elementary－reduction2）
thus ？thesis
using 0 ム．Ide－Src $\Lambda . e l e m e n t a r y-r e d u c t i o n-n o t-i d e$ by auto
qed
moreover have $\Lambda$ ．elementary－reduction $y$
proof－
have $\Lambda . e l e m e n t a r y-r e d u c t i o n(\Lambda . \operatorname{Trg} t \circ y)$ using $y$
by（metis 02 ．Ide－Trg Ide－iff－standard－development－empty u Std．elims（2） ．elementary－reduction．simps（4）list．map－sel（1）list．sel（1） प．sseq－imp－elementary－reduction1）

```
 thus ?thesis
 using 0 \Lambda.Ide-Trg \Lambda.elementary-reduction-not-ide by auto
 qed
 moreover have \Lambda.Trg t=\Lambda.Trg x
 by (metis 0 1 Ide-iff-standard-development-empty Trg-last-standard-development
 x \Lambda.lambda.inject(3) last-map)
 moreover have \Lambda.Src u=\Lambda.Src y
 using y
 by (metis 0 2 \Lambda.Arr-not-Nil \Lambda.Coinitial-iff-Con
 Ide-iff-standard-development-empty development.elims(2) development-imp-Arr
 development-standard-development \Lambda.lambda.inject(3) list.map-sel(1)
 list.sel(1))
 ultimately show ?thesis
 using x y by simp
 qed
 thus ?thesis by blast
 qed
 qed
 qed
qed
next
fix }t
assume ind: \Lambda.Arr t ^ \Lambda.Arr u\LongrightarrowStd (standard-development (\Lambda.subst u t))
show \Lambda.Arr t ^ \Lambda.Arr u
 Std ((\boldsymbol{\lambda}[\Lambda.Src t] \bullet \Lambda.Src u) # standard-development (\Lambda.subst u t))
proof
 assume 1: \Lambda.Arr t ^ \Lambda.Arr u
 show Std ((\boldsymbol{\lambda}[\Lambda.Src t] \bullet \Lambda.Src u) # standard-development (\Lambda.subst u t))
 proof (cases \Lambda.Ide (\Lambda.subst u t))
 show \Lambda.Ide (\Lambda.subst ut)
 \Longrightarrow S t d ~ ((\boldsymbol { \lambda } [\Lambda . S r c ~ t] ~ \bullet ~ \Lambda . S r c ~ u) ~ \# ~ s t a n d a r d - d e v e l o p m e n t ~ (\Lambda . s u b s t ~ u ~ t)) ~
 using 1 \Lambda.Arr-Subst \Lambda.Ide-Src Ide-iff-standard-development-empty by simp
 assume 2: ᄀ \Lambda.Ide (\Lambda.subst u t)
 show Std ((\lambda[\Lambda.Src t] \bullet \Lambda.Src u) # standard-development (\Lambda.subst u t))
 proof -
 have \Lambda.sseq (\boldsymbol{\lambda}[\Lambda.Src t] \bullet \Lambda.Src u) (hd (standard-development (\Lambda.subst u t)))
 proof -
 have \Lambda.elementary-reduction (hd (standard-development (\Lambda.subst u t)))
 using ind
 by (metis 12 \Lambda.Arr-Subst Ide-iff-standard-development-empty
 Std.elims(2) list.sel(1) \Lambda.sseq-imp-elementary-reduction1)
 moreover have \Lambda.seq (}\boldsymbol{\lambda}[\Lambda.Src t] \bullet \Lambda.Src u)
 (hd (standard-development (\Lambda.subst u t)))
 using 12 Src-hd-standard-development calculation \Lambda.Arr.simps(5)
 \Lambda.Arr-Src \Lambda.Arr-Subst \Lambda.Src-Subst \Lambda.Trg.simps(4) \Lambda.Trg-Src \Lambda.arr-char
 \Lambda.elementary-reduction-is-arr \Lambda.seq-char
 by presburger
 ultimately show ?thesis
 using 1 \Lambda.Ide-Src \Lambda.sseq-Beta by auto
```

```
 qed
 moreover have Std (standard-development (\Lambda.subst u t))
 using 1 ind by blast
 ultimately show ?thesis
 by (metis 12 \Lambda.Arr-Subst Ide-iff-standard-development-empty Std.simps(3)
 list.collapse)
 qed
 qed
 qed
qed
```


### 3.6.3 Standardization

In this section, we define and prove correct a function that takes an arbitrary reduction path and produces a standard reduction path congruent to it. The method is roughly analogous to insertion sort: given a path, recursively standardize the tail and then "insert" the head into to the result. A complication is that in general the head may be a parallel reduction instead of an elementary reduction, and in any case elementary reductions are not preserved under residuation so we need to be able to handle the parallel reductions that arise from permuting elementary reductions. In general, this means that parallel reduction steps have to be decomposed into factors, and then each factor has to be inserted at its proper position. Another issue is that reductions don't all happen at the top level of a term, so we need to be able to descend recursively into terms during the insertion procedure. The key idea here is: in a standard reduction, once a step has occurred that is not a head reduction, then all subsequent terms will have $A p p$ as their top-level constructor. So, once we have passed a step that is not a head reduction, we can recursively descend into the subsequent applications and treat the "rator" and the "rand" parts independently.

The following function performs the core insertion part of the standardization algorithm. It assumes that it is given an arbitrary parallel reduction $t$ and an alreadystandard reduction path $U$, and it inserts $t$ into $U$, producing a standard reduction path that is congruent to $t \# U$. A somewhat elaborate case analysis is required to determine whether $t$ needs to be factored and whether part of it might need to be permuted with the head of $U$. The recursion is complicated by the need to make sure that the second argument $U$ is always a standard reduction path. This is so that it is possible to decide when the rest of the steps will be applications and it is therefore possible to recurse into them. This constrains what recursive calls we can make, since we are not able to make a recursive call in which an identity has been prepended to $U$. Also, if $t \# U$ consists completely of identities, then its standardization is the empty list [], which is not a path and cannot be congruent to $t \# U$. So in order to be able to apply the induction hypotheses in the correctness proof, we need to make sure that we don't make recursive calls when $U$ itself would consist entirely of identities. Finally, when we descend through an application, the step $t$ and the path $U$ are projected to their "rator" and "rand" components, which are treated separately and the results concatenated. However, the projection operations can introduce identities and therefore do not preserve elementary
reductions. To handle this, we need to filter out identities after projection but before the recursive call.

Ensuring termination also involves some care: we make recursive calls in which the length of the second argument is increased, but the "height" of the first argument is decreased. So we use a lexicographic order that makes the height of the first argument more significant and the length of the second argument secondary. The base cases either discard paths that consist entirely of identities, or else they expand a single parallel reduction $t$ into a standard development.

```
function (sequential) stdz-insert
where stdz-insert \(t[]=\) standard-development \(t\)
 | stdz-insert \(«\)-» \(U=\) stdz-insert \((h d U)(t l U)\)
 | stdz-insert \(\boldsymbol{\lambda}[t] U=\)
 (if \(\Lambda\).Ide \(t\) then
 stdz-insert (hd U) (tl U)
 else
 map \.Lam (stdz-insert \(t\) (map К.un-Lam U)))
 \(\mid\) stdz-insert \((\boldsymbol{\lambda}[t] \circ u)((\boldsymbol{\lambda}[-] \bullet-) \# U)=\operatorname{stdz}\)-insert \((\boldsymbol{\lambda}[t] \bullet u) U\)
 | stdz-insert \((t \circ u) U=\)
 (if \(\Lambda . I d e(t \circ u)\) then
 stdz-insert (hd U) (tl U)
 else if \(\Lambda . s e q(t \circ u)(h d U)\) then
 if \(\Lambda\).contains-head-reduction \((t \circ u)\) then
 if \(\Lambda\).Ide \(((t \circ u) \backslash \Lambda . h e a d-r e d e x ~(t \circ u))\) then
 \(\Lambda . h e a d-r e d e x ~(~ t \circ u) \#\) stdz-insert \((h d U)(t l U)\)
 else
 \(\Lambda . h e a d-r e d e x(t \circ u) \#\) stdz-insert \(((t \circ u) \backslash \Lambda . h e a d-r e d e x(t \circ u)) U\)
 else if \(\Lambda\). contains-head-reduction \((h d U)\) then
 if \(\Lambda\).Ide \(((t \circ u) \backslash \Lambda\).head-strategy \((t \circ u))\) then
 stdz-insert (\(\Lambda . h e a d-\)-strategy \((t \circ u))(t l U)\)
 else
 \(\Lambda . h e a d-\) strategy \((t \circ u) \#\) stdz-insert \(((t \circ u) \backslash \Lambda . h e a d-\) strategy \((t \circ u))(t l U)\)
 else
 \(\operatorname{map}(\lambda a . a \circ \Lambda . S r c u)\)
 (stdz-insert \(t\) (filter notIde (map \(\Lambda . u n-A p p 1 U)))\) @
 \(\operatorname{map}(\lambda b . \Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1\) (last \(U)) \circ b)\)
 (stdz-insert u (filter notIde (map \(\Lambda . u n-A p p 2 U))\))
 else [])
 | stdz-insert \((\boldsymbol{\lambda}[t] \bullet u) U=\)
 (if \(\Lambda\). Arr \(t \wedge \Lambda\).Arr \(u\) then
 \((\boldsymbol{\lambda}[\Lambda . S r c t] \bullet \Lambda . S r c ~ u) \#\) stdz-insert (\(\Lambda . s u b s t ~ u t) U\)
 else [])
 | stdz-insert - - = []
by pat-completeness auto
```

fun standardize
where standardize [] = []

```
| standardize U = stdz-insert (hd U) (standardize (tl U))
```

abbreviation stdzins-rel
 $f s t)$
termination stdz-insert
 $\Lambda$.elementary-reduction-head-redex $\Lambda$.contains-head-reduction-iff

प.hgt-resid-App-head-redex $\Lambda . s e q-c h a r$
apply (relation stdzins-rel)
apply (auto simp add: wf-mlex $\Lambda$.wf-subterm-rel mlex-iff mlex-less $\Lambda$.subterm-lemmas(1))
by (meson dual-order.eq-iff length-filter-le not-less-eq-eq)+
lemma stdz-insert-Ide:
shows Ide $(t \# U) \Longrightarrow$ stdz-insert $t U=[]$
proof (induct $U$ arbitrary: $t$ )
show $\wedge t$. Ide $[t] \Longrightarrow$ stdz-insert $t[]=[]$

^.ide-char stdz-insert.simps(1))
show $\wedge U . \llbracket \wedge t$. Ide $(t \# U) \Longrightarrow$ stdz-insert $t U=[] ;$ Ide $(t \# u \# U) \rrbracket$
$\Longrightarrow s t d z$-insert $t(u \# U)=[]$
for $t u$
using $\Lambda$.ide-char
apply (cases $t$; cases $u$ )
apply simp-all
by fastforce
qed
lemma stdz-insert-Ide-Std:
shows $\llbracket \Lambda$.Ide $u$; seq $[u] U ; S t d U \rrbracket \Longrightarrow$ stdz-insert $u U=$ stdz-insert $(h d U)(t l U)$
proof (induct $U$ arbitrary: u)
show $\bigwedge u . \llbracket \Lambda$.Ide $u$; seq $[u][] ;$ Std []$\rrbracket \Longrightarrow$ stdz-insert $u[]=$ stdz-insert (hd []) (tl [])
by (simp add: seq-char)
fix $u v U$
assume $u$ : $\Lambda$.Ide $u$
assume seq: seq $[u](v \# U)$
assume $S t d: S t d(v \# U)$
assume ind: $\bigwedge u$. $\llbracket \Lambda$.Ide $u ; \operatorname{seq}[u] U ;$ Std $U \rrbracket$
$\Longrightarrow$ stdz-insert $u U=$ stdz-insert $(h d U)(t l U)$
show stdz-insert $u(v \# U)=$ stdz-insert $(h d(v \# U))(t l(v \# U))$
using $u$ ind stdz-insert-Ide Ide-implies-Arr
apply (cases $u$; cases $v$ )
apply simp-all
proof -
fix $x$ y $a b$
assume xy: $\Lambda$.Ide $x \wedge$.Ide $y$
assume $u^{\prime}: u=x \circ y$

```
 assume \(v^{\prime}: v=\boldsymbol{\lambda}[a] \bullet b\)
 have \(a b\) : \(\Lambda\).Ide \(a \wedge \Lambda\).Ide \(b\)
 using Std \(\langle v=\boldsymbol{\lambda}[a] \bullet b\rangle S t d . e l i m s(2) \Lambda . s s e q-B e t a\)
 by (metis Std-consE \(\Lambda . e l e m e n t a r y-r e d u c t i o n . s i m p s(5) S t d . \operatorname{simps}(2))\)
 have \(x=\boldsymbol{\lambda}[a] \wedge y=b\)
 using \(x y\) ab \(u u^{\prime} v^{\prime}\) seq seq-char
```



```
 Srcs-simp \(A_{P} \operatorname{Trgs.simps(2)~\Lambda .lambda.inject(3)~list.sel(1)~singleton-insert-inj-eq~}\)
 ^.targets-char \({ }_{\Lambda}\))
 thus stdz-insert \((x \circ y)((\boldsymbol{\lambda}[a] \bullet b) \# U)=\operatorname{stdz-insert}(\boldsymbol{\lambda}[a] \bullet b) U\)
 using \(u u^{\prime}\) stdz-insert.simps(4) by presburger
 qed
qed
```

Insertion of a term with Beta as its top-level constructor always leaves such a term at the head of the result. Stated another way, Beta at the top-level must always come first in a standard reduction path.

```
lemma stdz-insert-Beta-ind:
shows \(\llbracket \Lambda\).hgt \(t+\) length \(U \leq n ; \Lambda . i s\)-Beta \(t ;\) seq \([t] U \rrbracket\)
 \(\Longrightarrow \Lambda . i s-B e t a(h d(s t d z-i n s e r t ~ t U))\)
proof (induct \(n\) arbitrary: \(t U\))
 show \(\wedge t U . \llbracket \Lambda . h g t t+\) length \(U \leq 0 ; \Lambda . i s-B e t a t ;\) seq \([t] U \rrbracket\)
 \(\Longrightarrow \Lambda . i s-B e t a(h d(s t d z\)-insert \(t U))\)
 using Arr.simps(1) seq-char by blast
 fix \(n t U\)
 assume ind: \(\wedge t U . \llbracket \Lambda\).hgt \(t+\) length \(U \leq n ; \Lambda\).is-Beta \(t ;\) seq \([t] U \rrbracket\)
 \(\Longrightarrow \Lambda . i s-B e t a(h d(\) stdz-insert \(t U))\)
 assume seq: seq \([t] U\)
 assume \(n\) : \(\Lambda\).hgt \(t+\) length \(U \leq\) Suc \(n\)
 assume \(t\) : \(\Lambda\).is-Beta \(t\)
 show \(\Lambda\).is-Beta (hd (stdz-insert t U))
 using \(t\) seq seq-char
 by (cases \(U\); cases \(t\); cases hd \(U\)) auto
qed
lemma stdz-insert-Beta:
assumes \(\Lambda\).is-Beta \(t\) and seq \([t] U\)
shows \(\Lambda . i s\)-Beta (\(h d\) (stdz-insert \(t U)\))
 using assms stdz-insert-Beta-ind by blast
```

This is the correctness lemma for insertion: Given a term $t$ and standard reduction path $U$ sequential with it, the result of insertion is a standard reduction path which is congruent to $t \# U$ unless $t \# U$ consists entirely of identities.

The proof is very long. Its structure parallels that of the definition of the function stdz-insert. For really understanding the details, I strongly suggest viewing the proof in Isabelle/JEdit and using the code folding feature to unfold the proof a little bit at a time.
lemma stdz-insert-correctness:

```
shows seq \([t] U \wedge\) Std \(U \longrightarrow\)
 Std \((\) stdz-insert \(t U) \wedge(\neg I d e(t \# U) \longrightarrow\) cong \((\) stdz-insert \(t U)(t \# U))\)
 (is ? P \(t U\))
proof (rule stdz-insert.induct \([o f ? P]\))
 show \(\wedge t\). ?P \(t[]\)
 using seq-char by simp
 show \(\bigwedge u U\).? \(P \sharp(u \# U)\)
 using seq-char not-arr-null null-char by auto
 show \(\bigwedge x u U\). ?P \((h d(u \# U))(t l(u \# U)) \Longrightarrow\) ? \(P\) «x» \((u \# U)\)
 proof -
 fix \(x u U\)
 assume \(i n d: ? P(h d(u \# U))(t l(u \# U))\)
 show ?P «x» (\(u \# U\))
 proof (intro impI, elim conjE, intro conjI)
 assume seq: seq [«x»] (\(u \# U\))
 assume Std: Std (\(u\) \# U)
 have 1: stdz-insert \(« x »(u \# U)=\) stdz-insert \(u U\)
 by \(\operatorname{simp}\)
 have 2: \(U \neq[] \Longrightarrow \operatorname{seq}[u] U\)
 using Std Std-imp-Arr
 by (simp add: arr \(I_{P}\) arr-append-imp-seq)
 show Std (stdz-insert «x» (u\#U))
 using ind
 by (metis 12 Std Std-standard-development list.exhaust-sel list.sel(1) list.sel(3)
 reduction-paths.Std.simps(3) reduction-paths.stdz-insert.simps(1))
 show \(\neg\) Ide \((« x » \# u \# U) \longrightarrow\) stdz-insert \(« x » ~(u \# U)^{*} \sim^{*} « x » \# u \# U\)
 proof (cases \(U=[])\)
 show \(U=[] \Longrightarrow\) ?thesis
 using cong-standard-development cong-cons-ideI(1)
 apply simp
 by (metis Arr.simps(1-2) Arr-iff-Con-self Con-rec(3) \(\Lambda\).in-sourcesI con-char
 cong-transitive ideE \(\Lambda . \operatorname{Ide} . \operatorname{simps}(2)\). .arr-char \(\Lambda\).ide-char seq)
 assume \(U: U \neq[]\)
 show ?thesis
 using 12 ind seq seq-char cong-cons-ideI(1)
 apply simp
 by (metis Std Std-consE U \(\Lambda . A r r . \operatorname{simps(2)~\Lambda .Ide.simps(2)~\Lambda .targets-simps(2)~}\)
 prfx-transitive)
 qed
 qed
 qed
 show \(\bigwedge M u U . \llbracket \Lambda . I d e M \Longrightarrow ? P(h d(u \# U))(t l(u \# U))\);
 \(\neg\) I.Ide \(M \Longrightarrow\) ? P \(M(\) map . .un-Lam \((u \# U))\) 】
 \(\Longrightarrow ? P \boldsymbol{\lambda}[M](u \# U)\)
 proof -
 fix \(M u U\)
 assume ind1: \(\Lambda\). Ide \(M \Longrightarrow\) ?P \((h d(u \# U))(t l(u \# U))\)
 assume ind2: \(\neg\).Ide \(M \Longrightarrow\) ?P \(M\) (map .un-Lam (\(u\) \# U))
 show ?P \(\boldsymbol{\lambda}[M](u \# U)\)
```

```
proof (intro impI, elim conjE)
 assume seq: seq \([\boldsymbol{\lambda}[M]](u \# U)\)
 assume Std: \(\operatorname{Std}(u \# U)\)
 have \(u\) : \(\Lambda\).is-Lam u
 using seq
 by (metis insert-subset \(\Lambda . l a m b d a . d i s c(8)\) list.simps(15) mem-Collect-eq
 seq-Lam-Arr-implies)
 have \(U\) : set \(U \subseteq\) Collect \(\Lambda\).is-Lam
 using \(u\) seq
 by (metis insert-subset \(\Lambda . l a m b d a . d i s c(8)\) list.simps(15) seq-Lam-Arr-implies)
 show Std (stdz-insert \(\boldsymbol{\lambda}[M](u \# U)) \wedge\)
 \(\left(\neg \operatorname{Ide}(\boldsymbol{\lambda}[M] \# u \# U) \longrightarrow\right.\) stdz-insert \(\left.\boldsymbol{\lambda}[M](u \# U)^{*} \sim^{*} \boldsymbol{\lambda}[M] \# u \# U\right)\)
 proof (cases \(\Lambda\).Ide \(M\))
 assume \(M\) : \(\Lambda\).Ide \(M\)
 have 1: stdz-insert \(\boldsymbol{\lambda}[M](u \# U)=\) stdz-insert \(u U\)
 using \(M\) by \(\operatorname{simp}\)
 show ?thesis
 proof (cases Ide \((u \# U))\)
 show Ide \((u \# U) \Longrightarrow\) ?thesis
 using 1 Std-standard-development Ide-iff-standard-development-empty
 by (metis Ide-imp-Ide-hd Std Std-implies-set-subset-elementary-reduction
 प.elementary-reduction-not-ide list.sel(1) list.set-intros(1)
 mem-Collect-eq subset-code(1))
 assume 2: ᄀIde \((u \# U)\)
 show ?thesis
 proof (cases \(U=[]\))
 assume 3: \(U=[]\)
 have 4: standard-development \(u^{*} \sim^{*}[\boldsymbol{\lambda}[M]\) @ \([u]\)
 using M 23 seq ide-char cong-standard-development [of u]
 cong-append-ideI(1) \([\) of \([\boldsymbol{\lambda}[M]][u]]\)
 by (metis Arr-imp-arr-hd Ide.simps(2) Std Std-imp-Arr cong-transitive
 प.Ide.simps(3) .arr-char .ide-char list.sel(1) not-Cons-self2)
 show ?thesis
 using 134 Std-standard-development by force
 next
 assume 3: \(U \neq[]\)
 have stdz-insert \(\boldsymbol{\lambda}[M](u \# U)=\) stdz-insert \(u U\)
 using \(M 3\) by \(\operatorname{simp}\)
 have 5: .Arr \(u \wedge \neg\). Ide \(u\)
 by (meson 3 Std Std-consE \(\Lambda\).elementary-reduction-not-ide \(\Lambda\).ide-char
 प.sseq-imp-elementary-reduction1)
 have 4: standard-development \(u\) @ \(U^{*} \sim^{*}([\boldsymbol{\lambda}[M]]\) @ \([u]) @ U\)
 proof (intro cong-append seqI \(\Lambda_{\Lambda P}\))
 show Arr (standard-development u)
 using 5 Std-standard-development Std-imp-Arr Ide-iff-standard-development-empty
 by force
 show \(\operatorname{Arr} U\)
 using Std 3 by auto
 show \(\Lambda . \operatorname{Trg}(\) last \((\) standard-development \(u))=\Lambda . \operatorname{Src}(h d U)\)
```

```
 by (metis 3 5 Std Std-consE Trg-last-standard-development \Lambda.seq-char
 \Lambda.sseq-imp-seq)
 show standard-development u * ~* [\lambda[M]]@ [u]
 using M 5 Std Std-imp-Arr cong-standard-development [of u]
 cong-append-ideI(3)[of [\boldsymbol{\lambda}[M]][u]]
 by (metis (no-types, lifting) Arr.simps(2) Ide.simps(2) arr-char ide-char
 \Lambda.Ide.simps(3) \Lambda.arr-char \Lambda.ide-char prfx-transitive seq seq-def
 sources-cons)
 show }\mp@subsup{U}{}{*}\mp@subsup{~}{}{*}
 by (simp add: <Arr U> arr-char prfx-reflexive)
qed
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert \boldsymbol{\lambda}[M](u#U))
 by (metis (no-types, lifting) }13\mathrm{ M Std Std-consE append-Cons
 append-eq-append-conv2 append-self-conv arr-append-imp-seq ind1
 list.sel(1) list.sel(3) not-Cons-self2 seq seq-def)
 show ᄀIde (\boldsymbol{\lambda}[M]#u#U)\longrightarrow\mathrm{ stdz-insert }\boldsymbol{\lambda}[M](u#U) * ~* \lambda[M] #u# U
 proof
 have seq[u] U\wedge Std U
 using 2 3 Std
 by (metis Cons-eq-appendI Std-consE arr-append-imp-seq neq-Nil-conv
 self-append-conv2 seq seqE)
 thus stdz-insert \boldsymbol{\lambda}[M](u#U)* ** \boldsymbol{\lambda}[M] #u#U
 using M12 3 4 ind1 cong-cons-ideI(1) [of \lambda[M]u# U]
 apply simp
 by (meson cong-transitive seq)
 qed
 qed
 qed
qed
next
assume M: ᄀ \Lambda.Ide M
have 1: stdz-insert \boldsymbol{\lambda}[M] (u#U)=
 map \Lambda.Lam (stdz-insert M (\Lambda.un-Lam u # map \Lambda.un-Lam U))
 using M by simp
show ?thesis
proof (intro conjI)
 show Std (stdz-insert \boldsymbol{\lambda}[M] (u# U))
 by (metis 1 M Std Std-map-Lam Std-map-un-Lam ind2 \Lambda.lambda.disc(8)
 list.simps(9) seq seq-Lam-Arr-implies seq-map-un-Lam)
show ᄀIde (\boldsymbol{\lambda}[M]#u#U)\longrightarrowstdz-insert }\boldsymbol{\lambda}[M](u#U)*** \lambda[M] #u#
proof
 have map \Lambda.Lam (stdz-insert M (\Lambda.un-Lam u # map \Lambda.un-Lam U)) * ~*
 \lambda[M] #u#U
 proof -
 have map \Lambda.Lam (stdz-insert M (\Lambda.un-Lam u # map \Lambda.un-Lam U)) * ~*
 map \Lambda.Lam (M # \Lambda.un-Lam u # map \Lambda.un-Lam U)
 by (metis (mono-tags, opaque-lifting) Ide-imp-Ide-hd M Std Std-map-un-Lam
```

```
 cong-map-Lam ind2 \Lambda.ide-char \Lambda.lambda.discI(2)
 list.sel(1) list.simps(9) seq seq-Lam-Arr-implies seq-map-un-Lam)
 thus ?thesis
 using u U
 by (simp add: map-idI subset-code(1))
 qed
 thus stdz-insert }\boldsymbol{\lambda}[M](u#U)\mp@subsup{)}{}{*}\mp@subsup{~}{}{*}\boldsymbol{\lambda}[M]#u#
 using 1 by presburger
 qed
 qed
 qed
 qed
qed
show }\MNABU.?P(\boldsymbol{\lambda}[M]\bulletN)U\Longrightarrow?P(\boldsymbol{\lambda}[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U
proof -
 fix MNABU
 assume ind:?P (\lambda[M]\bulletN)U
 show ?P (\boldsymbol{\lambda}[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U)
 proof (intro impI, elim conjE)
 assume seq: seq [\boldsymbol{\lambda}[M]\circN]((\boldsymbol{\lambda}[A]\bulletB)#U)
 assume Std: Std ((\lambda[A]\bullet B) #U)
 have MN: \Lambda.Arr M ^ \Lambda.Arr N
 using seq
 by (simp add: seq-char)
 have AB: \Lambda. Trg M=A^\Lambda.Trg N=B
 proof -
 have 1: \Lambda.Ide }A\wedge\Lambda\mathrm{ .Ide B
 using Std
 by (metis Std.simps(2) Std.simps(3) \Lambda.elementary-reduction.simps(5)
 list.exhaust-sel \Lambda.sseq-Beta)
 moreover have Trgs [\lambda[M]\circN]=\operatorname{Srcs}[\boldsymbol{\lambda}[A]\bulletB]
 using 1 seq seq-char
 by (simp add: \Lambda.Ide-implies-Arr Srcs-simp (
 ultimately show ?thesis
 by (metis \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr \Lambda.Src.simps(5) Srcs-simp}\mp@subsup{\}{P}{
 \Lambda.Trg.simps(2-3) Trgs-simp}\mp@subsup{\Lambda}{P}{}\mathrm{ \.lambda.inject(2) \.lambda.sel(3-4)
 last.simps list.sel(1) seq-char seq the-elem-eq)
 qed
 have 1: stdz-insert (\lambda[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U)=stdz-insert (\boldsymbol{\lambda}[M]\bulletN)U
 by auto
 show Std (stdz-insert (\boldsymbol{\lambda}[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U))\wedge
 (\negIde ((\boldsymbol{\lambda}[M]\circN)#(\boldsymbol{\lambda}[A]\bulletB)#U)\longrightarrow
 stdz-insert (\lambda[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U)* ~* (\lambda[M]\circN)# (\boldsymbol{\lambda}[A]\bulletB)#U)
 proof (cases U = [])
 assume U:U=[]
 have 1: stdz-insert (\boldsymbol{\lambda}[M]\circN)((\boldsymbol{\lambda}[A]\bulletB)#U)=
 standard-development (\boldsymbol{\lambda}[M]\bulletN)
 using U by simp
 show ?thesis
```

```
proof (intro conjI)
 show Std (stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U))\)
 using 1 Std-standard-development by presburger
 show \(\neg \operatorname{Ide}((\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U) \longrightarrow\)
 stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)^{*} \sim^{*}(\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
 proof (intro impI)
 assume 2: ᄀ Ide \(((\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U)\)
 have stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)=\)
```



```
 using \(1 M N\) by simp
 also have \(\ldots{ }^{*} \sim^{*}[\boldsymbol{\lambda}[M] \bullet N]\)
 using MN AB cong-standard-development
 by (metis 1 calculation \(\Lambda . \operatorname{Arr} \cdot \operatorname{simps}(5)\) \(\Lambda . \operatorname{Ide} . \operatorname{simps}(5))\)
 also have \([\boldsymbol{\lambda}[M] \bullet N]^{*} \sim^{*}(\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
 using \(A B M N\) U Beta-decomp(2) [of \(M N\)] by simp
 finally show stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)^{*} \sim^{*}\)
 \((\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
 by blast
 qed
qed
next
assume \(U: U \neq[]\)
have 1: stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)=\operatorname{stdz-insert}(\boldsymbol{\lambda}[M] \bullet N) U\)
 using \(U\) by \(\operatorname{simp}\)
have 2: seq \([\boldsymbol{\lambda}[M] \bullet N] U\)
 using MN AB U Std \(\Lambda\).sseq-imp-seq
 apply (intro seqI \(\Lambda_{\Lambda P}\))
 apply auto
 by fastforce
have 3: Std \(U\)
 using Std by fastforce
show ?thesis
proof (intro conjI)
 show Std (stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U))\)
 using 23 ind by simp
 show \(\neg \operatorname{Ide}((\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U) \longrightarrow\)
 stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)^{*} \sim^{*}(\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
 proof
 have stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)^{*} \sim^{*}[\boldsymbol{\lambda}[M] \bullet N] @ U\)
 by (metis 123 亿.Ide.simps(5) U Ide.simps(3) append.left-neutral
```



```
 also have \([\boldsymbol{\lambda}[M] \bullet N] @ U^{*} \sim^{*}([\boldsymbol{\lambda}[M] \circ N] @[\boldsymbol{\lambda}[A] \bullet B]) @ U\)
 using MN AB Beta-decomp
 by (meson 2 cong-append cong-reflexive seqE)
 also have \(([\boldsymbol{\lambda}[M] \circ N] @[\boldsymbol{\lambda}[A] \bullet B]) @ U=(\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
 by \(\operatorname{simp}\)
 finally show stdz-insert \((\boldsymbol{\lambda}[M] \circ N)((\boldsymbol{\lambda}[A] \bullet B) \# U)^{*} \sim^{*}\)
 \((\boldsymbol{\lambda}[M] \circ N) \#(\boldsymbol{\lambda}[A] \bullet B) \# U\)
```

            by argo
    ```
 qed
 qed
 qed
 qed
qed
show }\MNuU.(\Lambda.Arr M ^ \Lambda.Arr N\Longrightarrow?P(\Lambda.subst N M) (u#U)
 \Longrightarrow?P}(\boldsymbol{\lambda}[M]\bulletN)(u#U
proof -
 fix MNuU
 assume ind: \Lambda.Arr M ^ \Lambda.Arr N\Longrightarrow?P (\Lambda.subst N M) (u# U)
 show ?P (\lambda[M] \bullet N) (u#U)
 proof (intro impI, elim conjE)
 assume seq: seq [\boldsymbol{\lambda}[M]\bulletN](u#U)
 assume Std: Std (u#U)
 have MN: \Lambda.Arr M ^ \Lambda.Arr N
 using seq seq-char by simp
 show Std (stdz-insert (\lambda[M] \bullet N) (u#U))^
 (\negIde (\Lambda.Beta M N#u#U)\longrightarrow
 cong (stdz-insert (\boldsymbol{\lambda}[M]\bulletN)(u#U))((\boldsymbol{\lambda}[M]\bulletN)#u#U))
 proof (cases \Lambda.Ide (\Lambda.subst N M))
 assume 1: \Lambda.Ide (\Lambda.subst N M)
 have 2: ᄀIde (u#U)
 using Std Std-implies-set-subset-elementary-reduction \Lambda.elementary-reduction-not-ide
 by force
 have 3: stdz-insert }(\boldsymbol{\lambda}[M]\bulletN)(u#U)=(\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N) # stdz-insert u U
 using MN 1 seq seq-char Std stdz-insert-Ide-Std [of \Lambda.subst N M u # U]
 \Lambda.Ide-implies-Arr
 by (cases U = []) auto
 show ?thesis
 proof (cases U = [])
 assume U:U=[]
 have 3: stdz-insert (\boldsymbol{\lambda}[M]\bulletN) (u#U)=
 (\lambda[\Lambda.Src M] \bullet \Lambda.Src N) # standard-development u
 using 2 3 U by force
 have 4:\Lambda.seq (\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N) (hd (standard-development u))
 proof
 show \Lambda.Arr (\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N)
 using MN by simp
 show \Lambda.Arr (hd (standard-development u))
 by (metis 2 Arr-imp-arr-hd Ide.simps(2) Ide-iff-standard-development-empty
 Std Std-consE Std-imp-Arr Std-standard-development U \Lambda.arr-char
 \Lambda.ide-char)
 show \Lambda.Trg (\lambda[\Lambda.Src M] \bullet \Lambda.Src N) = \Lambda.Src (hd (standard-development u))
 by (metis 12 Ide.simps(2) MN Src-hd-standard-development Std Std-consE
 Trg-last-Src-hd-eqI U \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr \Lambda.Src-Subst
 \Lambda.Trg.simps(4) \Lambda.Trg-Src \Lambda.Trg-Subst \Lambda.ide-char last-ConsL list.sel(1) seq)
 qed
 show ?thesis
 proof (intro conjI)
```

```
show Std (stdz-insert (\boldsymbol{\lambda}[M] \bullet N) (u # U))
proof -
 have \Lambda.sseq (\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N) (hd (standard-development u))
 using MN 24 U \Lambda.Ide-Src
 apply (intro \Lambda.sseq-BetaI)
 apply auto
 by (metis Ide.simps(1) Resid.simps(2) Std Std-consE
 Std-standard-development cong-standard-development hd-Cons-tl ide-char
 \Lambda.sseq-imp-elementary-reduction1 Std.simps(2))
 thus ?thesis
 by (metis 3 Std.simps(2-3) Std-standard-development hd-Cons-tl
 \Lambda.sseq-imp-elementary-reduction1)
qed
show \neg Ide ((\lambda[M] \bullet N) # u # U)
 ltdz-insert (\lambda[M] \bullet N) (u#U)* ~* (\lambda[M] \bullet N)#u#U
proof
 have stdz-insert (\boldsymbol{\lambda}[M]\bulletN) (u#U)=
 [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] @ standard-development u
 using 3 by simp
 also have 5: [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] @ standard-development u * ~*
 [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] @ [u]
 proof (intro cong-append)
 show seq [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] (standard-development u)
 by (metis 2 3 Ide.simps(2) Ide-iff-standard-development-empty
 Std Std-consE Std-imp-Arr U <Std (stdz-insert (\Lambda.Beta M N) (u # U))>
 arr-append-imp-seq arr-char calculation \Lambda.ide-char neq-Nil-conv)
 thus [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] * ~* [\lambda[\Lambda.Src M] \bullet \Lambda.Src N]
 using cong-reflexive by blast
 show standard-development u*~* [u]
 by (metis 2 Arr.simps(2) Ide.simps(2) Std Std-imp-Arr U
 cong-standard-development \Lambda.arr-char \Lambda.ide-char not-Cons-self2)
 qed
 also have [\lambda[\Lambda.Src M] \bullet \Lambda.Src N]@ [u] * ~*
 ([\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N]@ [\Lambda.subst N M])@ [u]
 proof (intro cong-append)
 show seq [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] [u]
 by (metis 5 Con-implies-Arr(1) Ide.simps(1) arr-append-imp-seq
 arr-char ide-char not-Cons-self2)
 show [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] * ~* [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] @ [\Lambda.subst N M]
 by (metis (full-types) 1 MN Ide-iff-standard-development-empty
 cong-standard-development cong-transitive \Lambda.Arr.simps(5) \Lambda.Arr-Subst
 \Lambda.Ide.simps(5) Beta-decomp(1) standard-development.simps(5))
 show [u] * ~* [u]
 using Resid-Arr-self Std Std-imp-Arr U ide-char by blast
 qed
```



```
 by (metis Beta-decomp(1) MN U Resid-Arr-self cong-append
 ide-char seq-char seq)
 also have [\boldsymbol{\lambda}[M]\bulletN]@ [u]=(\lambda[M]\bulletN) #u#U
```

```
 using U by simp
 finally show stdz-insert (\boldsymbol{\lambda}[M]\bulletN)(u#U)*~* (\boldsymbol{\lambda}[M]\bulletN)#u#U
 by blast
 qed
qed
next
assume U:U\not=[]
have 4: seq [u] U
 by (simp add: Std U arrIP arr-append-imp-seq)
have 5: Std U
 using Std by auto
have 6: Std (stdz-insert u U)^
 set (stdz-insert u U)\subseteq{a. \Lambda.elementary-reduction a } ^
 (\negIde (u#U)\longrightarrow
 cong (stdz-insert u U) (u#U))
proof -
 have seq[\Lambda.subst N M] (u#U)^Std (u#U)
 using MN Std Std-imp-Arr \Lambda.Arr-Subst
 apply (intro conjI seqI \P)
 apply simp-all
 by (metis Trg-last-Src-hd-eqI \Lambda.Trg.simps(4) last-ConsL list.sel(1) seq)
 thus ?thesis
 using MN 12 345 ind Std-implies-set-subset-elementary-reduction
 stdz-insert-Ide-Std
 apply simp
 by (meson cong-cons-ideI(1) cong-transitive lambda-calculus.ide-char)
qed
have 7: \Lambda.seq (\lambda[\Lambda.Src M] \bullet \Lambda.Src N) (hd (stdz-insert u U))
 using MN 1 2 6 Arr-imp-arr-hd Con-implies-Arr(2) ide-char \Lambda.arr-char
 Ide-iff-standard-development-empty Src-hd-eqI Trg-last-Src-hd-eqI
 Trg-last-standard-development \Lambda.Ide-implies-Arr seq
 apply (intro \Lambda.seq\mp@subsup{I}{\Lambda}{\prime})
 apply simp
 apply (metis Ide.simps(1))
by (metis \Lambda.Arr.simps(5) \Lambda.Ide.simps(5) last.simps standard-development.simps(5))
have 8: seq [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] (stdz-insert u U)
 by (metis 2 6 7 seqI_\LambdaP Arr.simps(2) Con-implies-Arr(2)
 Ide.simps(1) ide-char last.simps \Lambda.seqE \Lambda.seq-char)
show ?thesis
proof (intro conjI)
 show Std (stdz-insert (\boldsymbol{\lambda}[M]\bulletN)(u#U))
 proof -
 have \Lambda.sseq (\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N) (hd (stdz-insert u U))
 by (metis MN 2 6 7 \Lambda.Ide-Src Std.elims(2) Ide.simps(1)
 Resid.simps(2) ide-char list.sel(1) \Lambda.sseq-BetaI
 \Lambda.sseq-imp-elementary-reduction1)
 thus ?thesis
 by (metis 2 3 6 Std.simps(3) Resid.simps(1) con-char prfx-implies-con
 list.exhaust-sel)
```

```
 qed
 show \negIde ((\lambda[M] \bullet N) # u # U)
 stdz-insert (\lambda[M]\bulletN)(u#U) *~* (\lambda[M]\bulletN)#u#U
 proof
 have stdz-insert (\lambda[M]\bulletN)(u#U)=[\lambda[\Lambda.Src M] \bullet\Lambda.Src N] @ stdz-insert u U
 using 3 by simp
 also have ... * ~
 using MN2 2 6 8 cong-append
 by (meson cong-reflexive seqE)
 also have [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] @ u # U *~*
 ([\boldsymbol{\lambda[\Lambda.Src M] @ \Lambda.Src N] @ [\Lambda.subst N M]) @ u#U}
 using MN 1268 Beta-decomp(1) Std Src-hd-eqI Trg-last-Src-hd-eqI
 \Lambda.Arr-Subst \Lambda.ide-char ide-char
 apply (intro cong-append cong-append-ideI seq\mp@subsup{I}{\LambdaP}{}\mathrm{)}
 apply auto[2]
 apply metis
 apply auto[4]
 by (metis cong-transitive)
 also have ([\lambda[\Lambda.Src M] \bullet \Lambda.Src N]@ [\Lambda.subst N M])@u# @ * ~*
 [\lambda[M] @ N] @ u#U
 by (meson MN 26 Beta-decomp(1) cong-append prfx-transitive seq)
 also have [\lambda[M]\bulletN]@u#U=(\lambda[M]\bulletN)#u#U
 by simp
 finally show stdz-insert (\lambda[M]\bulletN) (u#U) * ** (\lambda[M]\bulletN) #u#U
 by simp
 qed
qed
qed
next
assume 1: ᄀ \Lambda.Ide (\Lambda.subst N M)
have 2: stdz-insert (\lambda[M] \bulletN) (u#U)=
 (\lambda[\Lambda.Src M] \bullet \Lambda.Src N) # stdz-insert (\Lambda.subst N M) (u # U)
 using 1MN by simp
have 3: seq [\Lambda.subst N M] (u # U)
 using \Lambda.Arr-Subst MN seq-char seq by force
have 4: Std (stdz-insert (\Lambda.subst N M) (u#U)) ^
 set (stdz-insert (\Lambda.subst N M) (u # U))\subseteq{a. \Lambda.elementary-reduction a} ^
 stdz-insert (\Lambda.Subst 0 N M) (u#U) * ~* \Lambda.subst NM # u#U
 using}13\mathrm{ Std ind MN Ide.simps(3) \.ide-char
 Std-implies-set-subset-elementary-reduction
 by presburger
have 5: \Lambda.seq (\lambda[\Lambda.Src M] \bullet \Lambda.Src N) (hd (stdz-insert (\Lambda.subst N M) (u # U)))
 using MN4
 apply (intro \Lambda.seq\mp@subsup{I}{\Lambda}{\prime}
 apply simp
 apply (metis Arr-imp-arr-hd Con-implies-Arr(1)Ide.simps(1) ide-char \Lambda.arr-char)
 using Src-hd-eqI
 by force
show ?thesis
```

```
 proof (intro conjI)
 show Std (stdz-insert (\boldsymbol{\lambda}[M]\bulletN)(u#U))
 proof -
 have \Lambda.sseq (\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N) (hd (stdz-insert (\Lambda.subst N M) (u#U)))
 using 5
 by (metis 4 MN \Lambda.Ide-Src Std.elims(2) Ide.simps(1) Resid.simps(2)
 ide-char list.sel(1) \Lambda.sseq-BetaI \Lambda.sseq-imp-elementary-reduction1)
 thus ?thesis
 by (metis 2 4 Std.simps(3) Arr.simps(1) Con-implies-Arr(2)
 Ide.simps(1) ide-char list.exhaust-sel)
 qed
 show ᄀIde ((\boldsymbol{\lambda}[M]\bulletN)#u# U)
 <stdz-insert }(\boldsymbol{\lambda}[M]\bulletN)(u#U)*~* (\boldsymbol{\lambda}[M]\bulletN)#u#
 proof
 have stdz-insert (\lambda[M] \bullet N) (u#U)=
 [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N]@ stdz-insert (\Lambda.subst N M) (u# U)
 using 2 by simp
 also have ... * ~* [\lambda[\Lambda.Src M] \bullet \Lambda.Src N]@ \Lambda.subst NM# u#U
 proof (intro cong-append)
 show seq [\boldsymbol{\lambda}[\Lambda.Src M] \bullet \Lambda.Src N] (stdz-insert (\Lambda.subst N M) (u#U))
 by (metis 4 5 Arr.simps(2) Con-implies-Arr(1) Ide.simps(1) ide-char
 \Lambda.arr-char \Lambda.seq-char last-ConsL seqI IP)
 show [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] * ~* [\lambda[\Lambda.Src M] \bullet \Lambda.Src N]
 by (meson MN cong-transitive \Lambda.Arr-Src Beta-decomp(1))
 show stdz-insert (\Lambda.subst N M) (u#U) * ~* \Lambda.subst N M # u # U
 using 4 by fastforce
 qed
 also have [\lambda[\Lambda.Src M] \bullet \Lambda.Src N] @ \Lambda.subst NM# u#U =
 ([\boldsymbol{\lambda[\Lambda.Src M] \bullet \Lambda.Src N]@ [\Lambda.subst N M])@ @#U}
 by simp
 also have ... * ~* [\boldsymbol{\lambda}[M] \bullet N]@ u#U
 by (meson Beta-decomp(1) MN cong-append cong-reflexive seqE seq)
 also have [\boldsymbol{\lambda}[M]\bulletN]@u#U=(\boldsymbol{\lambda}[M]\bulletN)#u#U
 by simp
 finally show stdz-insert (\boldsymbol{\lambda}[M]\bulletN)(u#U)*~* (\boldsymbol{\lambda}[M]\bulletN)#u#U
 by blast
 qed
 qed
 qed
 qed
qed
```

Because of the way the function package processes the pattern matching in the definition of $s t d z$-insert, it produces eight separate subgoals for the remainder of the proof, even though these subgoals are all simple consequences of a single, more general fact. We first prove this fact, then use it to discharge the eight subgoals.

```
have \(*: \bigwedge M N u U\).
 \(\llbracket \neg(\Lambda . i s-L a m M \wedge \Lambda . i s-B e t a u) ;\)
 ^.Ide \((M \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))\);
```

$\llbracket\urcorner$ I．Ide $(M \circ N)$ ；
$\Lambda$. seq $(M \circ N)(h d(u \# U))$ ；
ム．contains－head－reduction（ $M \circ N$ ）；
$\Lambda . I d e(\Lambda . r e s i d ~(M \circ N)(\Lambda$. head－redex $(M \circ N)))]$
$\Longrightarrow ? P(h d(u \# U))(t l(u \# U))$ ；
$\llbracket \neg$ I．Ide $(M \circ N)$ ；
＾．seq $(M \circ N)(h d(u \# U))$ ；
ム．contains－head－reduction（ $M \circ N$ ）；
$\neg \Lambda . I d e(\Lambda . r e s i d ~(M \circ N)(\Lambda . h e a d-r e d e x(M \circ N))) \rrbracket$
$\Longrightarrow$ ？P（ $\Lambda$. ．resid $(M \circ N)(\Lambda . h e a d-r e d e x ~(M \circ N)))(u \# U) ;$
$\llbracket \neg$ I．Ide $(M \circ N)$ ；
$\Lambda . s e q(M \circ N)(h d(u \# U))$ ；
$\neg$ I．contains－head－reduction $(M \circ N)$ ；
＾．contains－head－reduction（hd（u\＃U））；
$\Lambda . I d e(\Lambda . r e s i d ~(M \circ N)(\Lambda$. head－strategy $(M \circ N))$ ）
$\Longrightarrow$ ？P（ $\Lambda$. head－strategy $(M \circ N))(t l(u \# U))$ ；
$\llbracket \neg$ I．Ide $(M \circ N)$ ；
$\Lambda . s e q(M \circ N)(h d(u \# U))$ ；
$\neg$ К．contains－head－reduction $(M \circ N)$ ；
＾．contains－head－reduction（hd（u\＃U））；
$\neg$ I．Ide $(\Lambda$. resid $(M \circ N)(\Lambda$. head－strategy $(M \circ N))) 】$
$\Longrightarrow ? P(\Lambda . r e s i d(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N)))(t l(u \# U))$ ；
$\llbracket \neg$ I．Ide $(M \circ N)$ ；
$\Lambda$. seq $(M \circ N)(h d(u \# U))$ ；
$\neg$ I．contains－head－reduction $(M \circ N)$ ；
$\neg$ И．contains－head－reduction（hd（u \＃U））】
$\Longrightarrow$ ？P M（filter notIde（map ム．un－App1（ $u$ \＃U）））；
$\llbracket \neg$ I．Ide $(M \circ N)$ ；
$\Lambda . s e q(M \circ N)(h d(u \# U))$ ；
$\neg$ I．contains－head－reduction（ $M \circ N$ ）；
$\neg$ I．contains－head－reduction（hd（u \＃U））】
$\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(u \# U))$ ）】
$\Longrightarrow ? P(M \circ N)(u \# U)$
proof－
fix $M N u U$
assume ind1：$\Lambda . I d e(M \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))$
assume ind2：$\llbracket \neg \Lambda . I d e(M \circ N)$ ；
$\Lambda . \operatorname{seq}(M \circ N)(h d(u \# U)) ;$
$\Lambda$. contains－head－reduction $(M \circ N)$ ；
К．Ide $(\Lambda . r e s i d(M \circ N)(\Lambda . h e a d-r e d e x(M \circ N))) \rrbracket$
$\Longrightarrow ? P(h d(u \# U))(t l(u \# U))$
assume ind3：$\llbracket\urcorner$ I．Ide $(M \circ N)$ ；
$\Lambda . s e q(M \circ N)(h d(u \# U)) ;$
$\Lambda$. contains－head－reduction（ $M \circ N$ ）；
$\neg \Lambda$ ．Ide $(\Lambda . \operatorname{resid}(M \circ N)(\Lambda$ ．head－redex $(M \circ N)))$ 』
$\Longrightarrow ? P(\Lambda$. resid $(M \circ N)(\Lambda$. head－redex $(M \circ N)))(u \# U)$
assume ind $4: \llbracket\urcorner$ I．Ide $(M \circ N)$ ；
$\Lambda . s e q(M \circ N)(h d(u \# U)) ;$
$\neg$ I．contains－head－reduction $(M \circ N)$ ；

ム．contains－head－reduction $(h d(u \# U))$ ；
几．Ide $(\Lambda . r e s i d ~(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N))$ ）】
$\Longrightarrow$ ？P $(\Lambda . h e a d-s t r a t e g y ~(M \circ N))(t l(u \# U))$
assume ind5：$\llbracket \neg$ I．Ide $(M \circ N)$ ；
ム．seq $(M \circ N)(h d(u \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
ム．contains－head－reduction $(h d(u \# U))$ ；
$\neg \Lambda . I d e(\Lambda . r e s i d ~(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N))$ ）
$\Longrightarrow ? P(\Lambda . r e s i d ~(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N)))(t l(u \# U))$
assume ind7：$\llbracket \neg$ I．Ide（ $M \circ N$ ）；
L．seq $(M \circ N)(h d(u \# U))$ ；
$\neg$ \．contains－head－reduction $(M \circ N)$ ；
$\neg$ ．．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P M（filter notIde（map $\Lambda$ ．un－App1 $(u \# U)))$
assume ind8：$\llbracket \neg$ I．Ide $(M \circ N)$ ；
ム．seq $(M \circ N)(h d(u \# U))$ ；
$\neg$ ．contains－head－reduction $(M \circ N)$ ；
$\neg$ ．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P $N$（filter notIde（map ム．un－App2 $(u \# U))$ ）
assume $*: \neg(\Lambda . i s-L a m ~ M \wedge \Lambda$ ．is－Beta $u)$
show ？P $(M \circ N)(u \# U)$
proof（intro impI，elim conjE）
assume seq：seq $[M \circ N](u \# U)$
assume $\operatorname{Std}: S t d(u \# U)$
have $M N$ ：$\Lambda . \operatorname{Arr} M \wedge \Lambda$ ．Arr $N$
using seq－char seq by force
have $u$ ： ．Arr $u$
using Std
by（meson Std－imp－Arr Arr．simps（2）Con－Arr－self Con－implies－Arr（1） Con－initial－left $\Lambda$ ．arr－char list．simps（3））
have $U \neq[] \Longrightarrow \operatorname{Arr} U$
using Std Std－imp－Arr Arr．simps（3）
by（metis Arr．elims（3）list．discI）
have $\Lambda$ ．is－App $u \vee \Lambda$ ．is－Beta $u$

by（cases $M$ ；cases u）auto
have $* *: \Lambda . s e q(M \circ N) u$
using Srcs－simp ${ }_{\Lambda P}$ seq－char seq $\Lambda . s e q-d e f u$ by force
show Std（stdz－insert $(M \circ N)(u \# U)) \wedge$
$(\neg$ Ide $((M \circ N) \# u \# U)$
$\longrightarrow$ cong $($ stdz－insert $(M \circ N)(u \# U))((M \circ N) \# u \# U))$
proof（cases $\Lambda$ ．Ide $(M \circ N)$ ）
assume 1：$\Lambda$. Ide（ $M \circ N$ ）
have $M N: \Lambda . \operatorname{Arr} M \wedge \Lambda$ ．Arr $N \wedge$ ．Ide $M \wedge$ ．Ide $N$
using $M N 1$ by simp
have 2：stdz－insert $(M \circ N)(u \# U)=$ stdz－insert $u U$
using MN 1
by（simp add：Std seq stdz－insert－Ide－Std）
show ？thesis

```
proof (cases \(U=[]\))
 assume \(U: U=[]\)
 have 2: stdz-insert \((M \circ N)(u \# U)=\) standard-development \(u\)
 using \(12 U\) by \(\operatorname{simp}\)
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert \((M \circ N)(u \# U))\)
 using 2 Std-standard-development by presburger
 show \(\neg\) Ide \(((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 by (metis 12 Ide.simps(2) U cong-cons-ideI(1) cong-standard-development
 ide-backward-stable ide-char \(\Lambda\).ide-char prfx-transitive seq u)
 qed
 next
 assume \(U: U \neq[]\)
 have 2: stdz-insert \((M \circ N)(u \# U)=\) stdz-insert \(u U\)
 using 12 U by simp
 have 3: seq \([u] U\)
 by (simp add: Std \(U\) arrI \(I_{P}\) arr-append-imp-seq)
 have 4 : Std (stdz-insert u \(U\)) ^
 set \((\) stdz-insert \(u U) \subseteq\{a\). .elementary-reduction \(a\} \wedge\)
 \((\neg\) Ide \((u \# U) \longrightarrow\) cong \((\) stdz-insert \(u U)(u \# U))\)
 using MN 3 Std ind1 Std-implies-set-subset-elementary-reduction
 by (metis 1 Std.simps(3) U list.sel(1) list.sel(3) standardize.cases)
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert \((M \circ N)(u \# U))\)
 by (metis 123 Std Std.simps(3) U ind1 list.exhaust-sel list.sel(1,3))
 show \(\neg\) Ide \(((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 proof
 assume 5: \(\neg \operatorname{Ide}((M \circ N) \# u \# U)\)
 have stdz-insert (MoN) (u\#U) *~* u\#U
 using 1245 seq-char seq by force
 also have \(u \# U^{*} \sim^{*}[M \circ N] @ u \# U\)
 using 1 Ide.simps(2) cong-append-ideI(1) ide-char seq by blast
 also have \([M \circ N] @(u \# U)=(M \circ N) \# u \# U\)
 by \(\operatorname{simp}\)
 finally show stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 by blast
 qed
 qed
qed
next
assume 1: \(\neg\).Ide \((M \circ N)\)
show ?thesis
proof (cases \(\Lambda\).contains-head-reduction \((M \circ N)\))
 assume 2: \(\Lambda . c o n t a i n s-h e a d-r e d u c t i o n ~(~ M \circ N) ~\)
 show ?thesis
```

```
proof (cases \(\Lambda . I d e((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)))\)
 assume 3: \(\Lambda\).Ide \(((M \circ N) \backslash \Lambda\).head-redex \((M \circ N))\)
 have 4: ᄀIde (u\#U)
 by (metis Std Std-implies-set-subset-elementary-reduction in-mono
 प.elementary-reduction-not-ide list.set-intros(1) mem-Collect-eq
 set-Ide-subset-ide)
 have 5: stdz-insert \((M \circ N)(u \# U)=\Lambda\).head-redex \((M \circ N) \#\) stdz-insert \(u U\)
 using MN1234 ** by auto
 show ?thesis
 proof (cases \(U=[])\)
 assume \(U: U=[]\)
 have \(u\) : \(\Lambda\).Arr \(u \wedge \neg\).Ide \(u\)
 using \(4 U u\) by force
 have 5: stdz-insert \((M \circ N)(u \# U)=\)
 ム.head-redex \((M \circ N) \#\) standard-development \(u\)
 using \(5 U\) by \(\operatorname{simp}\)
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert \((M \circ N)(u \# U))\)
 proof -
 have \(\Lambda . s s e q(\Lambda . h e a d-r e d e x ~(M \circ N))(h d(\) standard-development \(u))\)
 proof -
 have \(\Lambda . s e q(\Lambda . h e a d-r e d e x ~(M \circ N))(h d(\) standard-development \(u))\)
 proof
 show \(\Lambda . \operatorname{Arr}(\Lambda . h e a d-r e d e x(M \circ N))\)
 using \(M N\). \(. A r r . \operatorname{simps}(4) \Lambda . A r r-h e a d-r e d e x\) by presburger
 show \(\operatorname{A.Arr}\) (hd (standard-development \(u)\))
 using Arr-imp-arr-hd Ide-iff-standard-development-empty
 Std-standard-development \(u\)
 by force
 show \(\Lambda . \operatorname{Trg}(\Lambda . h e a d-r e d e x(M \circ N))=\Lambda . S r c(h d(\) standard-development \(u))\)
 proof -
 have \(\Lambda . \operatorname{Trg}(\Lambda . h e a d-r e d e x ~(M \circ N))=\)
 \(\Lambda . \operatorname{Trg}((M \circ N) \backslash \Lambda . h e a d-r e d e x(M \circ N))\)
 by (metis 3 MN \(\Lambda\).Con-Arr-head-redex \(\Lambda\).Src-resid
 ム.Arr.simps(4) \(\Lambda . I d e-i f f-S r c-s e l f ~ \Lambda . I d e-i f f-T r g-s e l f ~\)
 ^.Ide-implies-Arr)
 also have \(\ldots=\). .Src \(u\)
 using \(M N\)
 by (metis Trg-last-Src-hd-eqI Trg-last-eqI head-redex-decomp
 \(\Lambda . \operatorname{Arr} . \operatorname{simps}(4)\) last-ConsL last-appendR list.sel(1)
 not-Cons-self2 seq)
 also have \(\ldots=\Lambda . \operatorname{Src}(h d\) (standard-development \(u)\))
 using ** 23 u MN Src-hd-standard-development [of u] by metis
 finally show ?thesis by blast
 qed
 qed
 thus ?thesis
 by (metis 2 u MN \(\Lambda\).Arr.simps(4) Ide-iff-standard-development-empty
```

development．simps（2）development－standard－development \．head－redex－is－head－reduction list．exhaust－sel
＾．sseq－head－reductionI）

## qed

thus ？thesis
by（metis 5 Ide－iff－standard－development－empty Std．simps（3）
Std－standard－development list．exhaust u）
qed
show $\neg$ Ide $((M \circ N) \# u \# U) \longrightarrow$
stdz－insert $(M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U$
proof have stdz－insert $(M \circ N)(u \# U)=$
$[\Lambda . h e a d-r e d e x(M \circ N)]$＠standard－development $u$ using 5 by $\operatorname{simp}$
also have..${ }^{*} \sim^{*}[\Lambda$ ．head－redex $(M \circ N)] @[u]$
using $u$ cong－standard－development［of $u$ ］cong－append
by（metis 25 Ide－iff－standard－development－empty Std－imp－Arr
〈Std（stdz－insert $(M \circ N)(u \# U))\rangle$
arr－append－imp－seq arr－char calculation cong－standard－development
 list．distinct（1））
also have $[\Lambda$ ．head－redex $(M \circ N)] @[u] \sim^{*}$
$([\Lambda . h e a d-r e d e x(M \circ N)] @[(M \circ N) \backslash \Lambda . h e a d-r e d e x(M \circ N)]) @[u]$ proof－
have $[\Lambda \text { ．head－redex }(M \circ N)]^{*} \sim^{*}$
$[\Lambda$. head－redex $(M \circ N)] @[(M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)]$ by（metis（no－types，lifting） 13 MN Arr－iff－Con－self Ide．simps（2）

Resid．simps（2）arr－append－imp－seq arr－char cong－append－ideI（4） cong－transitive head－redex－decomp ide－backward－stable ide－char ム．Arr．simps（4）$\Lambda . i d e-c h a r$ not－Cons－self2）
thus ？thesis
using MN U u seq
by（meson cong－append head－redex－decomp $\Lambda . \operatorname{Arr} . \operatorname{simps}(4)$ prfx－transitive）
qed
also have（［几．head－redex $(M \circ N)]$＠
$[(M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)]) @[u]^{*} \sim^{*}$
$[M \circ N] @[u]$
by（metis $\Lambda . A r r . \operatorname{simps}(4)$ MN U Resid－Arr－self cong－append ide－char seq－char head－redex－decomp seq）
also have $[M \circ N] @[u]=(M \circ N) \# u \# U$
using $U$ by simp
finally show stdz－insert $(M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U$
by blast
qed
qed
next
assume $U: U \neq[]$
have 6：Std（stdz－insert u $U$ ）$\wedge$ set $($ stdz－insert $u U) \subseteq\{a$ ． ．elementary－reduction $a\} \wedge$

```
 cong (stdz-insert u U) (u# U)
proof -
 have seq [u] U
 by (simp add: Std U arrIP arr-append-imp-seq)
 moreover have Std U
 using Std Std.elims(2) U by blast
 ultimately show ?thesis
 using ind2 ** 12 34 Std-implies-set-subset-elementary-reduction
 by force
qed
show ?thesis
proof (intro conjI)
 show Std (stdz-insert (M\circN) (u#U))
 proof -
 have \Lambda.sseq (\Lambda.head-redex (M\circN)) (hd (stdz-insert u U))
 proof -
 have \Lambda.seq (\Lambda.head-redex (M ○ N)) (hd (stdz-insert u U))
 proof
 show \Lambda.Arr (\Lambda.head-redex (M ○ N))
 using MN \Lambda.Arr-head-redex by force
 show \Lambda.Arr (hd (stdz-insert u U))
 using }
 by (metis Arr-imp-arr-hd Con-implies-Arr(2) Ide.simps(1) ide-char
 \Lambda.arr-char)
 show \Lambda.Trg (\Lambda.head-redex (M\circN)) = \Lambda.Src (hd (stdz-insert u U))
 proof -
 have \Lambda.Trg (\Lambda.head-redex (M\circN)) =
 \Lambda.Trg ((M\circN)\\Lambda.head-redex (M\circN))
 by (metis 3 \Lambda.Arr-not-Nil \Lambda.Ide-iff-Src-self
 \Lambda.Ide-iff-Trg-self \Lambda.Ide-implies-Arr \Lambda.Src-resid)
 also have ... = \Lambda. Trg (}M\circN\mathrm{)
 by (metis 1 MN Trg-last-eqI Trg-last-standard-development
 cong-standard-development head-redex-decomp \Lambda.Arr.simps(4)
 last-snoc)
 also have ... = \Lambda.Src (hd (stdz-insert u U))
 by (metis ** 6 Src-hd-eqI \Lambda.seqE E
 finally show ?thesis by blast
 qed
 qed
 thus ?thesis
 by (metis 2 6 MN \Lambda.Arr.simps(4) Std.elims(1) Ide.simps(1)
 Resid.simps(2) ide-char \Lambda.head-redex-is-head-reduction
 list.sel(1) \Lambda.sseq-head-reductionI \Lambda.sseq-imp-elementary-reduction1)
 qed
 thus ?thesis
 by (metis 5 6 Std.simps(3) Arr.simps(1) Con-implies-Arr(1)
 con-char prfx-implies-con list.exhaust-sel)
 qed
 show \neg Ide ((M\circN) # u # U)\longrightarrow
```

```
 stdz-insert (M\circN)(u#U) * ~* (M\circN) #u#U
 proof
 have stdz-insert (M\circN) (u#U)=
 [\Lambda.head-redex (M ○ N)] @ stdz-insert u U
 using 5 by simp
 also have 7: [\Lambda.head-redex (M\circN)]@ stdz-insert u U * ~*
 [\Lambda.head-redex (M\circN)]@u#U
 using 6 cong-append [of [\Lambda.head-redex (M\circN)] stdz-insert u U
 [\Lambda.head-redex (M\circN)] u # U]
 by (metis 2 5 Arr.simps(1) Resid.simps(2) Std-imp-Arr
 <Std (stdz-insert (M ○ N) (u # U))>
 arr-append-imp-seq arr-char calculation cong-standard-development
 cong-transitive ide-implies-arr \Lambda.Arr-head-redex
 \Lambda.contains-head-reduction-iff list.distinct(1))
 also have [\Lambda.head-redex (M\circN)]@u# @ * ~*
 ([\Lambda.head-redex (M\circN)]@
 [(M\circN)\\Lambda.head-redex (M\circN)])@u#U
 proof -
 have [\Lambda.head-redex (M\circN)] *~*
 [\Lambda.head-redex (M\circN)] @ [(M\circN)\\Lambda.head-redex (M\circN)]
 by (metis 2 3 head-redex-decomp \Lambda.Arr-head-redex
 \Lambda.Con-Arr-head-redex \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr
 \Lambda.Src-resid \Lambda.contains-head-reduction-iff \Lambda.resid-Arr-self
 prfx-decomp prfx-transitive)
 moreover have seq [\Lambda.head-redex (M\circN)] (u#U)
 by (metis 7 arr-append-imp-seq cong-implies-coterminal coterminalE
 list.distinct(1))
 ultimately show ?thesis
 using 3 ide-char cong-symmetric cong-append
 by (meson 6 prfx-transitive)
 qed
 also have ([\Lambda.head-redex (M\circN)] @
 [(M\circN)\\Lambda.head-redex (M\circN)])@u# U * ~*
 [M\circN]@u#U
 by (meson 6 MN \Lambda.Arr.simps(4) cong-append prfx-transitive
 head-redex-decomp seq)
 also have [M\circN]@ (u#U)=(M\circN)#u#U
 by simp
 finally show stdz-insert (M\circN)(u#U)*** (M\circN) #u#U
 by blast
 qed
 qed
qed
next
assume 3:\neg \Lambda.Ide ((M\circN)\\Lambda.head-redex (M\circN))
have 4: stdz-insert (M\circN) (u#U)=
 \Lambda.head-redex (M\circN) #
 stdz-insert ((M\circN)\\Lambda.head-redex (M\circN)) (u # U)
using MN 1 2 3 ** by auto
```

```
have 5: Std (stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U)) \wedge\)
 set \((\) stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U))\)
 \(\subseteq\{a\). . elementary-reduction \(a\} \wedge\)
 stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U){ }^{*} \sim^{*}\)
 \((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N) \# u \# U\)
proof -
 have seq \([(M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)](u \# U)\)
 by (metis (full-types) MN arr-append-imp-seq cong-implies-coterminal
 coterminalE head-redex-decomp \(\Lambda\).Arr.simps(4) not-Cons-self2
 seq seq-def targets-append)
 thus ?thesis
 using ind3 123 ** Std Std-implies-set-subset-elementary-reduction
 by auto
qed
show ?thesis
proof (intro conjI)
 show Std (stdz-insert \((M \circ N)(u \# U))\)
 proof -
 have \(\Lambda\). sseq (\(\Lambda . h e a d-r e d e x ~(M \circ N)\))
 \((h d(\) stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U)))\)
 proof -
 have \(\Lambda . s e q(\Lambda . h e a d-r e d e x ~(M \circ N))\)
 \((h d(s t d z-i n s e r t((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U)))\)
 using MN 5 M.Arr-head-redex
 by (metis (no-types, lifting) Arr-imp-arr-hd Con-implies-Arr(2)
```




```
 moreover have \(\Lambda\).elementary-reduction
 \((h d(s t d z-i n s e r t((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))\)
 \((u \# U)))\)
 using 5
 by (metis Arr.simps(1) Con-implies-Arr(2) Ide.simps(1) hd-in-set
 ide-char mem-Collect-eq subset-code(1))
 ultimately show ?thesis
 using MN 2 . .head-redex-is-head-reduction \(\Lambda\).sseq-head-reductionI
 by \(\operatorname{simp}\)
 qed
 thus ?thesis
 by (metis 45 Std.simps(3) Arr.simps(1) Con-implies-Arr(2)
 Ide.simps(1) ide-char list.exhaust-sel)
 qed
show \(\neg \operatorname{Ide}((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
proof
 have stdz-insert \((M \circ N)(u \# U)=\)
 \([\Lambda . h e a d-r e d e x ~(M \circ N)] @\)
 stdz-insert \(((M \circ N) \backslash \Lambda\).head-redex \((M \circ N))(u \# U)\)
 using 4 by \(\operatorname{simp}\)
 also have ... *~* [\(\Lambda\).head-redex \((M \circ N)]\) @
```

```
 \(((M \circ N) \backslash \Lambda . h e a d-r e d e x(M \circ N) \# u \# U)\)
 proof (intro cong-append)
 show seq \([\Lambda . h e a d-r e d e x ~(M \circ N)]\)
 \((\) stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(u \# U))\)
 by (metis 45 Ide.simps(1) Resid.simps(1) Std-imp-Arr
 〈Std (stdz-insert \((M \circ N)(u \# U))\rangle\) arr \(I_{P}\) arr-append-imp-seq
 calculation ide-char list.discI)
 show \([\Lambda \text {.head-redex }(M \circ N)]^{*} \sim^{*}[\Lambda\).head-redex \((M \circ N)]\)
 using MN \(\Lambda\).cong-reflexive ide-char \(\Lambda\).Arr-head-redex by force
 show stdz-insert \(((M \circ N) \backslash \Lambda\).head-redex \((M \circ N))(u \# U)^{*} \sim^{*}(M \circ N) \backslash\)
 L.head-redex \((M \circ N) \# u \# U\)
 using 5 by fastforce
 qed
 also have ([\(\Lambda\).head-redex \((M \circ N)]\) @
 \(((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N) \# u \# U))=\)
 ([\(\Lambda . h e a d-r e d e x ~(M \circ N)] @\)
 \([(M \circ N) \backslash \Lambda . h e a d-r e d e x(M \circ N)]) @(u \# U)\)
 by \(\operatorname{simp}\)
 also have \(([\Lambda . h e a d-r e d e x ~(M \circ N)] @\)
 \([(M \circ N) \backslash \Lambda . h e a d-r e d e x(M \circ N)]) @ u \# U^{*} \sim^{*}\)
 [M○N]@u\#U
 by (meson ** cong-append cong-reflexive seqE head-redex-decomp
 seq \(\Lambda . s e q-c h a r)\)
 also have \([M \circ N] @(u \# U)=(M \circ N) \# u \# U\)
 by \(\operatorname{simp}\)
 finally show stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 by blast
 qed
 qed
qed
next
assume 2: \(\neg\). .contains-head-reduction \((M \circ N)\)
show ?thesis
proof (cases \(\Lambda . c o n t a i n s-h e a d-r e d u c t i o n ~ u) ~\)
 assume 3: \(\Lambda\).contains-head-reduction u
 have \(B:[\Lambda\). head-strategy \((M \circ N)] @[(M \circ N) \backslash \Lambda \text {.head-strategy }(M \circ N)]^{*} \sim^{*}\)
 \([M \circ N] @[u]\)
proof -
 have \([M \circ N] @[u]{ }^{*} \sim^{*}[\Lambda\). head-strategy \((\Lambda . S r c(M \circ N)) \sqcup M \circ N]\)
 proof -
 have \(\Lambda\).is-internal-reduction \((M \circ N)\)
 using 2 ** .is-internal-reduction-iff by blast
 moreover have \(\Lambda\).is-head-reduction \(u\)
 proof -
 have \(\Lambda\).elementary-reduction \(u\)
 by (metis Std lambda-calculus.sseq-imp-elementary-reduction1
 list.discI list.sel(1) reduction-paths.Std.elims(2))
 thus ?thesis
 using \(\Lambda\).is-head-reduction-if 3 by force
```


## qed

moreover have $\Lambda$. head-strategy $(\Lambda . S r c ~(M \circ N)) \backslash(M \circ N)=u$ using $\Lambda$.resid-head-strategy-Src(1) ** calculation (1-2) by fastforce
moreover have $[M \circ N]^{*} \lesssim^{*}[\Lambda$.head-strategy $(\Lambda . S r c(M \circ N)) \sqcup M \circ N]$ using MN $\Lambda$.prfx-implies-con ide-char I.Arr-head-strategy
1.Src-head-strategy $\Lambda . p r f x-J o i n$
by force
ultimately show ?thesis
using $u$ ^.Coinitial-iff-Con $\Lambda$.Arr-not-Nil ム.resid-Join
prfx-decomp $[o f ~ M \circ N$. head-strategy $(\Lambda . S r c(M \circ N)) \sqcup M \circ N]$
by $\operatorname{simp}$
qed
also have $[\Lambda . \text {.head-strategy }(\Lambda . S r c(M \circ N)) \sqcup M \circ N]^{*} \sim^{*}$
$[\Lambda$. head-strategy $(\Lambda . S r c(M \circ N))] @$ $[(M \circ N) \backslash \Lambda$. head-strategy $(\Lambda . S r c(M \circ N))]$
proof -
have 3: $\Lambda$. composite-of ( $\Lambda$.head-strategy $(\Lambda . S r c(M \circ N)))$ $((M \circ N) \backslash \Lambda . h e a d-$ strategy $(\Lambda . S r c(M \circ N)))$ ( $\Lambda$.head-strategy $(\Lambda . S r c(M \circ N)) \sqcup M \circ N)$
using $\Lambda$.Arr-head-strategy MN $\Lambda$.Src-head-strategy $\Lambda$.join-of-Join
।.join-of-def
by force
hence composite-of
[ $\Lambda$. .head-strategy $(\Lambda . S r c(M \circ N))]$
$[(M \circ N) \backslash \Lambda . h e a d-$ strategy $(\Lambda . S r c(M \circ N))]$
$[\Lambda$.head-strategy $(\Lambda . S r c(M \circ N)) \sqcup M \circ N]$
using composite-of-single-single
by (metis (no-types, lifting) $\Lambda$.Con-sym Ide.simps(2) Resid.simps(3)

hence $[\Lambda . h e a d-$ strategy $(\Lambda . S r c ~(M \circ N))]$ @ $[(M \circ N) \backslash \Lambda . \text { head-strategy }(\Lambda . S r c(M \circ N))]^{*} \sim^{*}$
$[\Lambda$. head-strategy $(\Lambda . S r c(M \circ N)) \sqcup M \circ N]$
using $\Lambda$.resid-Join
by (meson 3 composite-of-single-single composite-of-unq-upto-cong)
thus? ?thesis by blast
qed
also have $[\Lambda$. head-strategy $(\Lambda . S r c(M \circ N))] @$
$[(M \circ N) \backslash \Lambda . h e a d-$ strategy $(\Lambda . S r c(M \circ N))]{ }^{*} \sim^{*}$
$[\Lambda . h e a d-$ strategy $(M \circ N)]$ @
$[(M \circ N) \backslash \Lambda$.head-strategy $(M \circ N)]$
by (metis (full-types) $\Lambda$.Arr.simps(4) MN prfx-transitive calculation
$\Lambda . h e a d-s t r a t e g y-S r c) ~$
finally show ?thesis by blast
qed
show ?thesis
proof (cases $\Lambda . I d e((M \circ N) \backslash \Lambda . h e a d-$ strategy $(M \circ N)))$
assume 4: $\Lambda . I d e ~((M \circ N) \backslash \Lambda . h e a d-$ strategy $(M \circ N))$
have $A:[\Lambda$. head-strategy $(M \circ N)]{ }^{*} \sim^{*}$
$[\Lambda$. head-strategy $(M \circ N)] @[(M \circ N) \backslash \Lambda$. head-strategy $(M \circ N)]$
by (meson 4 B Con-implies-Arr(1)Ide.simps(2) arr-append-imp-seq arr-char con-char cong-append-ideI (2) ide-char $\Lambda$.ide-char not-Cons-self2 prfx-implies-con)
have 5: ᄀIde ( $u$ \# U)
by (meson 3 Ide-consE $\Lambda$.ide-backward-stable $\Lambda . s u b s$-head-redex
ム.subs-implies-prfx $\Lambda . c o n t a i n s-h e a d-r e d u c t i o n-i f f ~$
.elementary-reduction-head-redex $\Lambda$.elementary-reduction-not-ide)
have 6 : stdz-insert $(M \circ N)(u \# U)=$ stdz-insert ( $\Lambda . h e a d-$ strategy $(M \circ N)) U$
using $12345 * * *\langle\Lambda . i s-A p p u \vee \Lambda . i s-B e t a u\rangle$
apply (cases $u$ )
apply simp-all
apply blast
by (cases M) auto
show ?thesis
proof (cases $U=[]$ )
assume $U: U=[]$
have $u$ : $\neg$. Ide $u$
using $5 U$ by $\operatorname{simp}$
have 6: stdz-insert $(M \circ N)(u \# U)=$ standard-development ( $\Lambda$. head-strategy $(M \circ N)$ )
using $6 U$ by simp
show ?thesis
proof (intro conjI)
show Std (stdz-insert $(M \circ N)(u \# U))$
using 6 Std-standard-development by presburger
show $\neg$ Ide $((M \circ N) \# u \# U) \longrightarrow$
stdz-insert $(M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U$
proof
have stdz-insert $(M \circ N)(u \# U)^{*} \sim^{*}[\Lambda . h e a d-$ strategy $(M \circ N)]$ using 46 cong-standard-development ** 123 M.Arr.simps(4)

प.Arr-head-strategy MN $\Lambda$.ide-backward-stable $\Lambda . i d e-c h a r ~$ by metis
also have $[\Lambda \text {.head-strategy }(M \circ N)]^{*} \sim^{*}[M \circ N] @[u]$
by (meson A B prfx-transitive)
also have $[M \circ N]$ @ $[u]=(M \circ N) \# u \# U$
using $U$ by auto
finally show stdz-insert $(M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U$ by blast
qed
qed
next
assume $U: U \neq[]$
have 7: seq $[\Lambda$. head-strategy $(M \circ N)] U$
proof
show Arr [ $\Lambda$.head-strategy $(M \circ N)]$
by (meson A Con-implies-Arr(1) con-char prfx-implies-con)
show Arr $U$

```
 using \(U\langle U \neq[] \Longrightarrow\) Arr \(U\rangle\) by presburger
 show \(\Lambda . \operatorname{Trg}(\) last \([\Lambda\). head-strategy \((M \circ N)])=\Lambda . \operatorname{Src}(h d U)\)
 by (metis \(A B\) Std Std-consE \(\operatorname{Trg}\)-last-eqI \(U\) \(\left.\Lambda . s e q E_{\Lambda} \Lambda . s s e q-i m p-s e q ~ l a s t-s n o c\right) ~\)
qed
have 8: Std (stdz-insert (\(\Lambda\).head-strategy \((M \circ N)) U) \wedge\)
 set (stdz-insert (\(\Lambda . h e a d-s t r a t e g y ~(M \circ N)) U)\)
 \(\subseteq\{a\). .elementary-reduction \(a\} \wedge\)
 stdz-insert (\(\Lambda\).head-strategy \((M \circ N)) U^{*} \sim^{*}\)
 L.head-strategy \((M \circ N) \# U\)
 proof -
 have Std \(U\)
 by (metis Std Std.simps(3) U list.exhaust-sel)
 moreover have \(\neg\) Ide (\(\Lambda\).head-strategy \((M \circ N) \# t l(u \# U))\)
 using 14 M.ide-backward-stable by blast
 ultimately show ?thesis
 using ind4 ** 12347 Std-implies-set-subset-elementary-reduction
 by force
qed
show ?thesis
proof (intro conjI)
 show Std (stdz-insert \((M \circ N)(u \# U))\)
 using 68 by presburger
 show \(\neg \operatorname{Ide}((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 proof
 have stdz-insert \((M \circ N)(u \# U)=\)
 stdz-insert (\(\Lambda . h e a d-\) strategy \((M \circ N)) U\)
 using 6 by simp
 also have \(\ldots{ }^{*} \sim^{*}[\Lambda\).head-strategy \((M \circ N)] @ U\)
 using 8 by \(\operatorname{simp}\)
 also have \([\Lambda . h e a d-\) strategy \((M \circ N)] @ U^{*} \sim^{*}([M \circ N] @[u]) @ U\)
 by (meson A B U 7 Resid-Arr-self cong-append ide-char
 prfx-transitive \(\langle U \neq[] \Longrightarrow \operatorname{Arr} U\rangle)\)
 also have \(([M \circ N] @[u]) @ U=(M \circ N) \# u \# U\)
 by simp
 finally show stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 by blast
 qed
 qed
qed
next
assume 4: \(\neg\).Ide \(((M \circ N) \backslash \Lambda\).head-strategy \((M \circ N))\)
show ?thesis
proof (cases \(U=[]\))
 assume \(U: U=[]\)
 have 5: stdz-insert \((M \circ N)(u \# U)=\)
 प.head-strategy \((M \circ N) \#\)
 standard-development \(((M \circ N) \backslash \Lambda\).head-strategy \((M \circ N))\)
 using \(1234 U * * *\langle\Lambda . i s-A p p u \vee \Lambda . i s-B e t a u\rangle\)
```

```
apply (cases u)
 apply simp-all
 apply blast
apply (cases M)
 apply simp-all
 by blast+
show ?thesis
proof (intro conjI)
 show Std (stdz-insert (M\circN) (u#U))
 proof -
 have \Lambda.sseq (\Lambda.head-strategy (M\circN))
 (hd (standard-development
 ((M\circN)\\Lambda.head-strategy (M\circN))))
 proof -
 have \Lambda.seq (\Lambda.head-strategy (M\circN))
 (hd (standard-development
 ((M\circN)\\Lambda.head-strategy (M\circN))))
 using MN ** 4 \Lambda.Arr-head-strategy Arr-imp-arr-hd
 Ide-iff-standard-development-empty Src-hd-standard-development
 Std-imp-Arr Std-standard-development \Lambda.Arr-resid
 \Lambda.Src-head-strategy \Lambda.Src-resid
 by force
 moreover have \Lambda.elementary-reduction
 (hd (standard-development
 ((M\circN)\\Lambda.head-strategy (M\circN))))
 by (metis 4 Ide-iff-standard-development-empty MN Std-consE
 Std-standard-development hd-Cons-tl \Lambda.Arr.simps(4)
 \Lambda.Arr-resid \Lambda.Con-head-strategy
 \Lambda.sseq-imp-elementary-reduction1 Std.simps(2))
 ultimately show ?thesis
 using \Lambda.sseq-head-reductionI Std-standard-development
 by (metis ** 2 3 Std U \Lambda.internal-reduction-preserves-no-head-redex
 \Lambda.is-internal-reduction-iff \Lambda.Src-head-strategy
 \Lambda.elementary-reduction-not-ide \Lambda.head-strategy-Src
 \Lambda.head-strategy-is-elementary \Lambda.ide-char \Lambda.is-head-reduction-char
 \Lambda.is-head-reduction-if \Lambda.seqE E Std.simps(2))
 qed
 thus ?thesis
 by (metis 4 5 MN Ide-iff-standard-development-empty
 Std-standard-development \Lambda.Arr.simps(4) \Lambda.Arr-resid
 \Lambda.Con-head-strategy list.exhaust-sel Std.simps(3))
qed
show \neg Ide ((M\circN) # u # U)\longrightarrow
 stdz-insert (M\circN)(u#U)* ** }(M\circN)#u#
proof
 have stdz-insert (M\circN) (u#U)=
 [\Lambda.head-strategy (M\circN)]@
 standard-development ((M\circN)\\Lambda.head-strategy (M\circN))
 using 5 by simp
```

```
 also have ... * ~* [\Lambda.head-strategy (M\circN)]@
 [(M\circN)\\Lambda.head-strategy (M\circN)]
 proof (intro cong-append)
 show 6: seq [\Lambda.head-strategy (M\circN)]
 (standard-development
 ((M\circN)\\Lambda.head-strategy (M\circN)))
 using 4 Ide-iff-standard-development-empty MN
 <td (stdz-insert (M\circN) (u#U))>
 arr-append-imp-seq arr-char calculation \Lambda.Arr-head-strategy
 \Lambda.Arr-resid lambda-calculus.Src-head-strategy
 by force
 show [\Lambda.head-strategy (M\circN)] * ~* [\Lambda.head-strategy (M\circN)]
 by (meson MN 6 cong-reflexive seqE)
 show standard-development ((M\circN)\\Lambda.head-strategy (M\circN)) *~*
 [(M\circN)\\Lambda.head-strategy }(M\circN)
 using 4 MN cong-standard-development \Lambda.Arr.simps(4)
 \Lambda.Arr-resid \Lambda.Con-head-strategy
 by presburger
 qed
 also have [\Lambda.head-strategy (M ○ N)] @
 [(M\circN)\\Lambda.head-strategy (M\circN)] *~*
 [M\circN]@ [u]
 using B by blast
 also have [M\circN]@ [u]=(M\circN)#u#U
 using U by simp
 finally show stdz-insert (M\circN)(u#U)*~* (M\circN) #u#U
 by blast
qed
qed
next
assume U:U\not=[]
have 5: stdz-insert (M\circN) (u#U)=
 \Lambda.head-strategy (M ○ N) #
 stdz-insert (\Lambda.resid (M\circN) (\Lambda.head-strategy (M\circN)))U
 using1234U***〈\Lambda.is-Appu\vee \Lambda.is-Beta u`
 apply (cases u)
 apply simp-all
 apply blast
 apply (cases M)
 apply simp-all
 by blast+
have 6: Std (stdz-insert ((M\circN)\ \Lambda.head-strategy (M\circN)) U) ^
 set (stdz-insert ((M\circN)\\Lambda.head-strategy (M\circN))U)
 \subseteq \{ a . ~ \Lambda . e l e m e n t a r y - r e d u c t i o n ~ a \} ~ \wedge ~
```



```
 (M\circN)\\Lambda.head-strategy }(M\circN)#
proof -
 have seq [(M\circN)\\Lambda.head-strategy (M\circN)]U
 proof
```

```
 show Arr [(M\circN)\\Lambda.head-strategy (M\circN)]
 by (simp add: MN \Lambda.Arr-resid \Lambda.Con-head-strategy)
 show Arr U
 using U<U\not=[]\Longrightarrow Arr U> by blast
 show \Lambda.Trg (last [(M\circN)\\Lambda.head-strategy (M\circN)])= \Lambda.Src (hd U)
 by (metis (mono-tags, lifting) B U Std Std-consE Trg-last-eqI
 \Lambda.seq-char \Lambda.sseq-imp-seq last-ConsL last-snoc)
qed
thus ?thesis
 using ind5 Std-implies-set-subset-elementary-reduction
 by (metis ** 12 34 Std Std.simps(3) Arr-iff-Con-self Ide.simps(3)
 Resid.simps(1) seq-char \Lambda.ide-char list.exhaust-sel list.sel(1,3))
qed
show ?thesis
proof (intro conjI)
 show Std (stdz-insert (M\circN) (u#U))
 proof -
 have \Lambda.sseq (\Lambda.head-strategy (M\circN))
 (hd (stdz-insert ((M\circN)\ \Lambda.head-strategy (M\circN))U))
 proof -
 have \Lambda.seq (\Lambda.head-strategy (M\circN))
 (hd (stdz-insert ((M\circN)\\Lambda.head-strategy (M\circN))U))
 proof
 show \Lambda.Arr (\Lambda.head-strategy (M\circN))
 using MN \Lambda.Arr-head-strategy by force
 show \Lambda.Arr (hd (stdz-insert ((M\circN)\\Lambda.head-strategy (M\circN))U))
 using }
 by (metis Ide.simps(1) Resid.simps(2) Std-consE hd-Cons-tl ide-char)
 show \Lambda.Trg (\Lambda.head-strategy (M\circN)) =
 \Lambda.Src (hd (stdz-insert ((M\circN)\\Lambda.head-strategy (M\circN))U))
 using}
 by (metis MN Src-hd-eqI \Lambda.Arr.simps(4) \Lambda.Con-head-strategy
 \Lambda.Src-resid list.sel(1))
 qed
 moreover have \Lambda.is-head-reduction (\Lambda.head-strategy (M\circN))
 using ** 12 3 \Lambda.Src-head-strategy \Lambda.head-strategy-is-elementary
 \Lambda.head-strategy-Src \Lambda.is-head-reduction-char \Lambda.seq-char
 by (metis \Lambda.Src-head-redex \Lambda.contains-head-reduction-iff
 \Lambda.head-redex-is-head-reduction
 \Lambda.internal-reduction-preserves-no-head-redex
 \Lambda.is-internal-reduction-iff)
 moreover have \Lambda.elementary-reduction
 (hd (stdz-insert ((M\circN)\\Lambda.head-strategy (M\circN))U))
 by (metis 6 Ide.simps(1) Resid.simps(2) ide-char hd-in-set
 in-mono mem-Collect-eq)
 ultimately show ?thesis
 using \Lambda.sseq-head-reductionI by blast
 qed
 thus ?thesis
```

```
 by (metis 56 Std.simps(3) Arr.simps(1) Con-implies-Arr(1)
 con-char prfx-implies-con list.exhaust-sel)
 qed
 show \(\neg\) Ide \(((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 proof
 have stdz-insert \((M \circ N)(u \# U)=\)
 [\(\Lambda\). head-strategy \((M \circ N)] @\)
 stdz-insert \(((M \circ N) \backslash \Lambda\).head-strategy \((M \circ N)) U\)
 using 5 by \(\operatorname{simp}\)
 also have 10: ... * \(\sim^{*}[\) M.head-strategy \((M \circ N)] @\)
 \(((M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N) \# U)\)
 proof (intro cong-append)
 show 10: seq [\(\Lambda\).head-strategy \((M \circ N)\)]
 (stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N)) U)\)
 by (metis 56 Ide.simps(1) Resid.simps(1) Std-imp-Arr
 〈Std (stdz-insert \((M \circ N)(u \# U))\rangle\) arr-append-imp-seq
 arr-char calculation ide-char list.distinct(1))
 show \([\Lambda . h e a d-\text { strategy }(M \circ N)]^{*} \sim^{*}[\Lambda\).head-strategy \((M \circ N)]\)
 using MN 10 cong-reflexive by blast
 show stdz-insert \(((M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N)) U^{*} \sim^{*}\)
 \((M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N) \# U\)
 using 6 by auto
 qed
 also have 11: [\(\Lambda\).head-strategy \((M \circ N)]\) @
 \(((M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N) \# U)=\)
 ([^.head-strategy \((M \circ N)] @\)
 \([(M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N)]) @ U\)
 by \(\operatorname{simp}\)
 also have \(\ldots{ }^{*} \sim^{*}(([M \circ N] @[u]) @ U)\)
 proof -
 have seq \(([\Lambda . h e a d-\) strategy \((M \circ N)] @\)
 \([(M \circ N) \backslash \Lambda . h e a d-\) strategy \((M \circ N)]) U\)
 by (metis U 1011 append-is-Nil-conv arr-append-imp-seq
 cong-implies-coterminal coterminalE not-Cons-self2)
 thus ?thesis
 using \(B\) cong-append cong-reflexive by blast
 qed
 also have \(([M \circ N] @[u]) @ U=(M \circ N) \# u \# U\)
 by simp
 finally show stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 by blast
 qed
 qed
 qed
qed
next
assume 3: ᄀ .contains-head-reduction \(u\)
have \(u\) : . Arr \(u \wedge \Lambda . i s-A p p u \wedge \neg \Lambda\).contains-head-reduction \(u\)
```

using $3<\Lambda . i s-A p p u \vee \Lambda . i s-B e t a \quad u 〉 \Lambda . i s-B e t a-d e f u$ by force have 5：ᄀ ．Ide u
by（metis Std Std．simps（2）Std．simps（3）$\Lambda . e l e m e n t a r y-r e d u c t i o n-n o t-i d e ~$ ム．ide－char neq－Nil－conv $\Lambda . s s e q-i m p-e l e m e n t a r y-r e d u c t i o n 1) ~$
show ？thesis
proof－
have 4：stdz－insert $(M \circ N)(u \# U)=$ $\operatorname{map}(\lambda X . \Lambda . A p p X(\Lambda . \operatorname{Src} N))$
（stdz－insert $M$（filter notIde（map $\Lambda . u n-A p p 1(u \# U)))) @$ $\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))$
（stdz－insert $N$（filter notIde（map $\Lambda$ ．un－App2 $(u \# U)))$ ）
using MN $1235 * * *\langle\Lambda$ ．is－App $u \vee \Lambda . i s$－Beta u〉
apply（cases $U=[]$ cases $M$ ；cases $u$ ）
apply simp－all
by blast＋
have $* * *$ ：set $U \subseteq$ Collect $\Lambda$ ．is－App
using u 5 Std seq－App－Std－implies by blast
have X：Std（filter notIde（map I．un－App1（ $u \# U)$ ））
by（metis ＊＊＊$^{\text {Std }}$ Std－filter－map－un－App1 insert－subset list．simps（15） mem－Collect－eq u）
have $Y$ ：Std（filter notIde（map ．un－App2（ $u \# U)$ ）
by（metis＊＊＊u Std Std－filter－map－un－App2 insert－subset list．simps（15） mem－Collect－eq）
have A：$\neg$ ． ．un－App1＇set $(u \# U) \subseteq$ Collect $\Lambda$ ．Ide $\Longrightarrow$
Std（stdz－insert M（filter notIde（map $\Lambda . u n-A p p 1(u \# U)))) \wedge$ set（stdz－insert M（filter notIde（map $\Lambda . u n-A p p 1 ~(u \# U)))$ ）
$\subseteq\{a$ ． ．elementary－reduction $a\} \wedge$
stdz－insert $M($ filter notIde（map $\Lambda . u n-A p p 1(u \# U)))^{*} \sim^{*}$ M \＃filter notIde（map ．un－App1 $(u \# U))$
proof－
assume $*: \neg \Lambda . u n-A p p 1 ' s e t(u \# U) \subseteq$ Collect $\Lambda$ ．Ide
have seq $[M]$（filter notIde（map $\Lambda$ ．un－App1 $(u \# U))$ ）
proof
show Arr［M］
using $M N$ by simp
show $\operatorname{Arr}$（filter notIde（map $\Lambda . u n-\operatorname{App1}(u \# U)))$
by（metis（mono－tags，lifting）＊Std－imp－Arr X empty－filter－conv list．set－map mem－Collect－eq subset－code（1））
show $\Lambda . \operatorname{Trg}(\operatorname{last}[M])=\Lambda . \operatorname{Src}(h d($ filter notIde $(\operatorname{map}$ L．un－App1 $(u \# U))))$
proof－
have $\Lambda . \operatorname{Trg}(\operatorname{last}[M])=\Lambda . \operatorname{Src}(h d($ map $\Lambda . u n-\operatorname{App1}(u \# U)))$
using＊＊$u$ by fastforce
also have $\ldots=\Lambda . \operatorname{Src}(h d($ filter notIde $(\operatorname{map} \Lambda . u n-\operatorname{App1}(u \# U))))$
proof－
have $\operatorname{Arr}(\operatorname{map} \Lambda . u n-\operatorname{App1}(u \# U))$
using $u * * *$
by（metis Arr－map－un－App1 Std Std－imp－Arr insert－subset
list．simps（15）mem－Collect－eq neq－Nil－conv）
moreover have $\neg$ Ide（map $\Lambda . u n-\operatorname{App1}(u \# U))$

```
 by (metis * Collect-cong \Lambda.ide-char list.set-map set-Ide-subset-ide)
 ultimately show ?thesis
 using Src-hd-eqI cong-filter-notIde by blast
 qed
 finally show ?thesis by blast
 qed
qed
moreover have }\neg\mathrm{ Ide (M # filter notIde (map \.un-App1 (u#U)))
 using *
 by (metis (no-types, lifting) *** Arr-map-un-App1 Std Std-imp-Arr
 Arr.simps(1) Ide.elims(2) Resid-Arr-Ide-ind ide-char
 seq-char calculation(1) cong-filter-notIde filter-notIde-Ide
 insert-subset list.discI list.sel(3) list.simps(15) mem-Collect-eq u)
 ultimately show ?thesis
 by (metis X 1 2 3 ** ind7 Std-implies-set-subset-elementary-reduction
 list.sel(1))
qed
have B:\neg\Lambda.un-App2 ' set (u#U)\subseteq Collect \Lambda.Ide \Longrightarrow
 Std (stdz-insert N (filter notIde (map \Lambda.un-App2 (u#U)))) ^
 set (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))
 \subseteq \{ a . ~ \Lambda . e l e m e n t a r y - r e d u c t i o n ~ a \} ~ \wedge ~
 stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))) * ~*
 N # filter notIde (map \Lambda.un-App2 (u # U))
proof -
 assume **: \neg \Lambda.un-App2'set (u# U)\subseteq Collect \Lambda.Ide
 have seq [N] (filter notIde (map \Lambda.un-App2 (u# U)))
 proof
 show Arr [N]
 using MN by simp
 show Arr (filter (\lambdau. ᄀ \Lambda.Ide u) (map \Lambda.un-App2 (u# U)))
 by (metis (mono-tags, lifting) ** Std-imp-Arr Y empty-filter-conv
 list.set-map mem-Collect-eq subset-code(1))
 show \Lambda.Trg (last [N])=\Lambda.Src (hd (filter notIde (map \Lambda.un-App2 (u # U))))
 proof -
 have \Lambda.Trg (last [N]) = \Lambda.Src (hd (map \Lambda.un-App2 (u# U)))
 by (metis u seq Trg-last-Src-hd-eqI \Lambda.Src.simps(4)
 \Lambda.Trg.simps(3) \Lambda.is-App-def \Lambda.lambda.sel(4) last-ConsL
 list.discI list.map-sel(1) list.sel(1))
 also have ... = \Lambda.Src (hd (filter notIde (map \Lambda.un-App2 (u#U))))
 proof -
 have Arr (map \Lambda.un-App2 (u#U))
 using u***
 by (metis Arr-map-un-App2 Std Std-imp-Arr list.distinct(1)
 mem-Collect-eq set-ConsD subset-code(1))
 moreover have ᄀIde (map \Lambda.un-App2 (u#U))
 by (metis ** Collect-cong \Lambda.ide-char list.set-map set-Ide-subset-ide)
 ultimately show ?thesis
 using Src-hd-eqI cong-filter-notIde by blast
 qed
```

```
 finally show ?thesis by blast
 qed
qed
moreover have \Lambda.seq (M\circN)u
 by (metis u Srcs-simp_P Arr.simps(2) Trgs.simps(2) seq-char
 list.sel(1) seq \Lambda.seqI(1) \Lambda.sources-char_)
moreover have }\neg\mathrm{ Ide (N # filter notIde (map \.un-App2 (u#U)))
 using u*
 by (metis (no-types, lifting) *** Arr-map-un-App2 Std Std-imp-Arr
 Arr.simps(1) Ide.elims(2) Resid-Arr-Ide-ind ide-char
 seq-char calculation(1) cong-filter-notIde filter-notIde-Ide
 insert-subset list.discI list.sel(3) list.simps(15) mem-Collect-eq)
ultimately show ?thesis
 using * 1 2 3 Y ind8 Std-implies-set-subset-elementary-reduction
 by simp
qed
show ?thesis
proof (cases \Lambda.un-App1'set (u#U)\subseteq Collect \Lambda.Ide;
 cases \Lambda.un-App2'set (u#U)\subseteq\overline{Collect \Lambda.Ide)}\\mp@code{#})
show \llbracket\Lambda.un-App1'set (u#U)\subseteq Collect \Lambda.Ide;
 \Lambda.un-App2' set (u#U)\subseteqCollect \Lambda.Ide\rrbracket
 " ?thesis
proof -
 assume *: \Lambda.un-App1'set (u#U)\subseteq Collect \Lambda.Ide
 assume **: \Lambda.un-App2'set (u#U)\subseteq Collect \Lambda.Ide
 have False
 using u 5*** Ide-iff-standard-development-empty
 by (metis \Lambda.Ide.simps(4) image-subset-iff \Lambda.lambda.collapse(3)
 list.set-intros(1) mem-Collect-eq)
 thus ?thesis by blast
qed
show \llbracket\Lambda.un-App1'set (u#U)\subseteqCollect \Lambda.Ide;
 \neg \Lambda.un-App2'set (u#U)\subseteq Collect \Lambda.Ide\rrbracket
 \Longrightarrow \text { ?thesis}
proof -
 assume *: \Lambda.un-App1'set (u#U)\subseteq Collect \Lambda.Ide
 assume **: \neg \Lambda.un-App2' set (u#U)\subseteq Collect \Lambda.Ide
 have 6: \Lambda.Trg (\Lambda.un-App1 (last (u#U))) = \Lambda.Trg M
 proof -
 have \Lambda.Trg M = \Lambda.Src (hd (map \Lambda.un-App1 (u#U)))
 by (metis u seq Trg-last-Src-hd-eqI hd-map \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.is-App-def \Lambda.lambda.sel(3) last-ConsL list.discI list.sel(1))
 also have ... = \Lambda.Trg (last (map \Lambda.un-App1 (u#U)))
 proof -
 have 6:Ide (map \Lambda.un-App1 (u# U))
 using * *** u Std Std-imp-Arr Ide-char ide-char Arr-map-un-App1
 by (metis (mono-tags, lifting) Collect-cong insert-subset
 \Lambda.ide-char list.distinct(1) list.set-map list.simps(15)
 mem-Collect-eq)
```

```
 hence Src (map \Lambda.un-App1 (u#U)) = Trg (map \Lambda.un-App1 (u#U))
 using Ide-imp-Src-eq-Trg by blast
 thus ?thesis
 using 6 Ide-implies-Arr by force
 qed
 also have ... = \Lambda.Trg (\Lambda.un-App1 (last (u#U)))
 by (simp add: last-map)
 finally show ?thesis by simp
qed
have filter notIde (map \Lambda.un-App1 (u# U)) = []
 using * by (simp add: subset-eq)
hence 4: stdz-insert (M\circN) (u#U)=
 map (\lambdaX. X o \Lambda.Src N) (standard-development M)@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))
 using u 4 5 *** Ide-iff-standard-development-empty MN
 by simp
show ?thesis
proof (intro conjI)
 have Std (map (}\lambdaX.X\circ\Lambda.Src N) (standard-development M) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U)))))
 proof (intro Std-append)
 show Std (map (}\lambdaX.X \circ \Lambda.Src N) (standard-development M))
 using Std-map-App1 Std-standard-development MN \Lambda.Ide-Src
 by force
 show Std (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U)))))
 using ** B MN 6 Std-map-App2 \Lambda.Ide-Trg by presburger
 show map (\lambdaX. X ○ \Lambda.Src N) (standard-development M)=[] \vee
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u# U)))) = [] \vee
 \Lambda.sseq (last (map (}\lambda\mathrm{ X. X ○ \.Src N) (standard-development M)))
 (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde
 (map \Lambda.un-App2 (u#U))))))
 proof (cases \Lambda.Ide M)
 show \Lambda.Ide M \Longrightarrow ?thesis
 using Ide-iff-standard-development-empty MN by blast
 assume M: \neg \Lambda.Ide M
 have \Lambda.sseq (last (map (}\lambda\mathrm{ X. X o \.Src N) (standard-development M)))
 (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde
 (map \Lambda.un-App2 (u # U))))))
 proof -
 have last (map (}\lambdaX.X\circ\Lambda.Src N)(standard-development M))
 \Lambda.App (last (standard-development M)) (\Lambda.Src N)
 using M
 by (simp add: Ide-iff-standard-development-empty MN last-map)
```

```
 moreover have hd (map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))\)
 (stdz-insert \(N\) (filter notIde
 \((\) map \(\Lambda . u n-A p p 2(u \# U)))))=\)
 ム.App (\(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App} 1(\operatorname{last}(u \# U))))\)
 (hd (stdz-insert \(N\) (filter notIde
 (map \(\Lambda . u n-A p p 2(u \# U)))))\)
 by (metis ** \(B\) Ide.simps(1) Resid.simps(2) hd-map ide-char)
 moreover
 have \(\Lambda . s s e q(\Lambda . A p p(l a s t(s t a n d a r d-d e v e l o p m e n t ~ M))(\Lambda . S r c ~ N)) ~\)
 proof -
```



```
 using M MN Std-standard-development
 Ide-iff-standard-development-empty last-in-set
 mem-Collect-eq set-standard-development subsetD
 by metis
 moreover have \(\Lambda\).elementary-reduction
 (hd (stdz-insert \(N\)
 (filter notIde (map \(\Lambda . u n-A p p 2(u \# U)))))\)
 using \(* * B\)
 by (metis Arr.simps(1) Con-implies-Arr(2) Ide.simps(1)
 ide-char in-mono list.set-sel(1) mem-Collect-eq)
 moreover have \(\Lambda . \operatorname{Trg}(\) last (standard-development \(M))=\)
 \(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))\)
 using MMN 6 Trg-last-standard-development by presburger
 moreover have \(\Lambda . \operatorname{Src} N=\)
 M.Src (hd (stdz-insert N
```



```
 by (metis ** B Src-hd-eqI list.sel(1))
 ultimately show ?thesis
 by \(\operatorname{simp}\)
 qed
 ultimately show ?thesis by simp
 qed
 thus ?thesis by blast
 qed
qed
thus Std (stdz-insert \((M \circ N)(u \# U))\)
 using 4 by \(\operatorname{simp}\)
show \(\neg\) Ide \(((M \circ N) \# u \# U) \longrightarrow\)
 stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
proof
 show stdz-insert \((M \circ N)(u \# U)^{*} \sim^{*}(M \circ N) \# u \# U\)
 proof (cases \(\Lambda\).Ide \(M\))
 assume \(M\) : \(\Lambda\).Ide \(M\)
 have stdz-insert \((M \circ N)(u \# U)=\)
 map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))))\)
 (stdz-insert \(N\) (filter notIde (map \(\Lambda . u n-A p p 2(u \# U))))\)
 using 4 M MN Ide-iff-standard-development-empty by simp
```

```
also have \(\ldots{ }^{*} \sim^{*}(\operatorname{map}(\Lambda \cdot \operatorname{App}(\Lambda \cdot \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))\)
 (\(N\) \# filter notIde (map \(\Lambda . u n-A p p 2(u \# U)))\))
proof -
```




```
 thus? ?hesis
 using \(* * * * *\) B u cong-map-App1 by blast
qed
also have map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))\)
 \((N\) \# filter notIde (map К.un-App2 \((u \# U)))=\)
 map (\(\Lambda . \operatorname{App}(\Lambda \cdot \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))\)
 (filter notIde (\(N\) \# map \(\Lambda . u n\)-App2 (\(u \# U)\)))
 using 1 M by force
also have map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App} 1(\) last \((u \# U)))))\)
 (filter notIde (\(N\) \# map \(\Lambda . u n\)-App2 \((u \# U)))^{*} \sim^{*}\)
 map \((\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))))\)
 (\(N\) \# map \(\Lambda . u n-A p p 2(u \# U)\))
proof -
 have \(\operatorname{Arr}(N \#\) map \(\Lambda . u n-A p p 2(u \# U))\)
 proof
 show A.arr \(N\)
 using \(M N\) by blast
 show \(\operatorname{Arr}\) (map 亿.un-App2 (\(u \# U)\))
 using *** u Std Arr-map-un-App2
 by (metis Std-imp-Arr insert-subset list.distinct(1)
 list.simps(15) mem-Collect-eq)
 show \(\Lambda . \operatorname{trg} N=\operatorname{Src}(\) map \(\Lambda . u n-\operatorname{App} 2(u \# U))\)
 using \(u « \Lambda\). seq \((M \circ N) u\rangle \Lambda\).seq-char \(\Lambda . i s-A p p-d e f\) by auto
 qed
 moreover have \(\neg \operatorname{Ide}(N \#\) map \(\Lambda\).un-App2 \((u \# U))\)
 using 1 M by force
 moreover have К.Ide (\(\Lambda . \operatorname{Trg}\) (\(\Lambda . u n\)-App1 (last (u \# U))))
 using M 6 I.Ide-Trg ^.Ide-implies-Arr by presburger
 ultimately show? thesis
 using cong-filter-notIde cong-map-App1 by blast
qed
also have map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\) last \((u \# U)))))\)
 (\(N\) \# map \(\Lambda . u n-A p p 2(u \# U))=\)
 map (\(\Lambda . \operatorname{App} M)(N\) \# map \(\Lambda . u n-A p p 2(u \# U))\)
 using \(M M N\langle\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))=\Lambda . \operatorname{Trg} M\rangle\)
 I.Ide-iff-Trg-self
 by force
also have \(\ldots=(M \circ N) \#\) map \((\Lambda . A p p M)(\) map \(\Lambda . u n-A p p 2(u \# U))\)
 by \(\operatorname{simp}\)
also have \(\ldots=(M \circ N) \# u \# U\)
proof -
 have \(\operatorname{Arr}(u \# U)\)
 using Std Std-imp-Arr by blast
 moreover have set \((u \# U) \subseteq\) Collect К.is-App
```

```
 using *** u by simp
 moreover have \Lambda.un-App1 u=M
 by (metis * u M seq Trg-last-Src-hd-eqI \Lambda.Ide-iff-Src-self
 \Lambda.Ide-iff-Trg-self \Lambda.Ide-implies-Arr \Lambda.Src.simps(4)
 \Lambda.Trg.simps(3) \Lambda.lambda.collapse(3) \Lambda.lambda.sel(3)
 last.simps list.distinct(1) list.sel(1) list.set-intros(1)
 list.set-map list.simps(9) mem-Collect-eq standardize.cases
 subset-iff)
 moreover have \Lambda.un-App1'set (u#U)\subseteq{M}
 proof -
 have Ide (map \Lambda.un-App1 (u # U))
 using * *** Std Std-imp-Arr Arr-map-un-App1
 by (metis Collect-cong Ide-char calculation(1-2) \Lambda.ide-char
 list.set-map)
 thus ?thesis
 by (metis calculation(3) hd-map list.discI list.sel(1)
 list.set-map set-Ide-subset-single-hd)
 qed
 ultimately show ?thesis
 using M map-App-map-un-App2 by blast
qed
finally show ?thesis by blast
next
assume M:\neg \Lambda.Ide M
have stdz-insert (M\circN) (u#U)=
 map (\lambdaX. X o \Lambda.Src N) (standard-development M) @
 map (\lambdaX. \Lambda.Trg M ○ X)
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))
 using 4 6 by simp
also have ... *** [M\circ\Lambda.Src N]@ [\Lambda.Trg M\circN]@
 map (\lambdaX. \Lambda.Trg M\circX)
 (filter notIde (map \Lambda.un-App2 (u # U)))
proof (intro cong-append)
 show map (}\lambda\mathrm{ X. X ○ \.Src N) (standard-development M)***
 [M\circ M.Src N]
 using MN M cong-standard-development \Lambda.Ide-Src
 cong-map-App2 [of \Lambda.Src N standard-development M [M]]
 by simp
show map (}\lambdaX.\Lambda.Trg M\circX
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u#U)))) * ~*
 [\Lambda.Trg M ○ N]@
 map (\lambdaX. \Lambda.Trg M ○ X)
 (filter notIde (map \Lambda.un-App2 (u # U)))
 proof -
 have map (}\lambdaX.\Lambda.Trg M\circX
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u#U)))) *~*
 map (\lambdaX. \Lambda.Trg M ○ X)
 (N # filter notIde (map \Lambda.un-App2 (u # U)))
 using ** B MN cong-map-App1 lambda-calculus.Ide-Trg
```

by presburger
also have map $(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
$(N \#$ filter notIde (map К.un-App2 $(u \# U)))=$ $[\Lambda . \operatorname{Tr} g M \circ N] @$
$\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map К.un-App2 ( $u \# U)$ )
by $\operatorname{simp}$
finally show ?thesis by blast
qed
show seq (map $(\lambda X . X \circ \Lambda . S r c ~ N)($ standard-development $M))$ (map ( $\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(stdz-insert $N$ (filter notIde
$($ map $\Lambda . u n-A p p 2(u \# U)))))$
using MN M ** B cong-standard-development [of $M$ ]
by (metis Nil-is-append-conv Resid.simps(2) Std-imp-Arr $\langle S t d($ stdz-insert $(M \circ N)(u \# U))\rangle$ arr-append-imp-seq
arr-char calculation complete-development-Ide-iff
complete-development-def list.map-disc-iff development.simps(1))
qed
also have $[M \circ \Lambda . \operatorname{Src} N] @[\Lambda . \operatorname{Trg} M \circ N] @$ $\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map К.un-App2 $(u \# U)))=$
$([M \circ \Lambda . S r c N] @[\Lambda . \operatorname{Trg} M \circ N]) @$
$\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map $\Lambda . u n-A p p 2(u \# U)))$
by $\operatorname{simp}$
also have $([M \circ \Lambda . S r c N] @[\Lambda . \operatorname{Trg} M \circ N]) @$ $\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map $\Lambda . u n-A p p 2(u \# U)))^{*} \sim^{*}$
$([M \circ \Lambda . \operatorname{Src} N] @[\Lambda . \operatorname{Trg} M \circ N]) @$ map $(\lambda X . \Lambda . \operatorname{Trg} M \circ X)($ map $\Lambda . u n-A p p 2(u \# U))$
proof (intro cong-append)
show seq $([M \circ \Lambda . S r c ~ N] @[\Lambda . \operatorname{Trg} M \circ N])$
(map ( $\lambda$ X. $\Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map $\Lambda . u n-A p p 2(u \# U))))$
proof
show $\operatorname{Arr}([M \circ \Lambda . \operatorname{Src} N] @[\Lambda . \operatorname{Trg} M \circ N])$
by (simp add: MN)
show 9: $\operatorname{Arr}(\operatorname{map}(\lambda X . \Lambda . \operatorname{Trg} M \circ X)$
(filter notIde (map $\Lambda . u n$-App2 $(u \# U)))$ )
proof -
have $\operatorname{Arr}$ (map К.un-App2 ( $u$ \# U))
using $* * * u$ Arr-map-un-App2
by (metis Std Std-imp-Arr list.distinct(1) mem-Collect-eq set-ConsD subset-code(1))
moreover have $\neg I d e($ map $\Lambda$.un-App2 $(u \# U))$

## using **

by (metis Collect-cong $\Lambda$.ide-char list.set-map
set-Ide-subset-ide)

```
 ultimately show ?thesis
 using cong-filter-notIde
 by (metis Arr-map-App2 Con-implies-Arr (2) Ide.simps(1)
 MN ide-char \Lambda.Ide-Trg)
qed
show \Lambda.Trg (last ([M\circ \Lambda.Src N]@ [\Lambda.Trg M\circN])) =
 \Lambda.Src (hd (map (}\lambda\mathrm{ X. }\Lambda.Trg M\circX
 (flter notIde (map \Lambda.un-App2 (u # U)))))
proof -
 have \Lambda.Trg (last ([M\circ \Lambda.Src N] @ [\Lambda.Trg M\circN])) =
 \Lambda.Trg M\circ \Lambda.Trg N
 using MN by auto
 also have ... = \Lambda.Src u
 using Trg-last-Src-hd-eqI seq by force
 also have .. = \Lambda.Src (\Lambda.Trg M\circ\Lambda.un-App2 u)
 using MN <\Lambda.App (\Lambda.Trg M) (\Lambda.Trg N)=\Lambda.Src u` u by auto
 also have 8:... = \Lambda.Trg M\circ\Lambda.Src (\Lambda.un-App2 u)
 using MN by simp
 also have 7: ... = \Lambda.Trg M 。
 \Lambda.Src (hd (filter notIde
 (map \Lambda.un-App2 (u # U))))
 using u 5 list.simps(9) cong-filter-notIde
 <filter notIde (map \Lambda.un-App1 (u # U)) = []>
 by auto
 also have ... = \Lambda.Src (hd (map (}\lambda\textrm{X}.\Lambda.\operatorname{Trg M}\circX
 (filter notIde
 (map \Lambda.un-App2 (u # U)))))
 by (metis 78 9 Arr.simps(1) hd-map \Lambda.Src.simps(4)
 \Lambda.lambda.sel(4) list.simps(8))
 finally show }\Lambda.\operatorname{Trg}(last ([M\circ\Lambda.Src N]@ [\Lambda.Trg M\circN]))
 \Lambda.Src (hd (map (}\lambda\mathrm{ X. }\Lambda.Trg M ○ X)
 (filter notIde
 (map \Lambda.un-App2 (u#U)))))
 by blast
 qed
qed
show seq[M\circ \Lambda.Src N] [\Lambda.Trg M o N]
 using MN by force
show [M\circ\Lambda.Src N] * ~ [[M\circ \Lambda.Src N]
 using MN
 by (meson head-redex-decomp \Lambda.Arr.simps(4) \Lambda.Arr-Src
 prfx-transitive)
show [\Lambda.Trg M ○ N] * ~* [\Lambda.Trg M ○ N]
 using MN
 by (meson<seq [M\circ\Lambda.Src N][\Lambda.Trg M\circN]`cong-reflexive seqE)
show map (}\lambdaX.\Lambda.Trg M\circX
 (filter notIde (map \Lambda.un-App2 (u # U))) * ~*
 map (\lambdaX. \Lambda.Trg M ○ X) (map \Lambda.un-App2 (u#U))
```

```
 proof -
 have Arr (map \Lambda.un-App2 (u#U))
 using *** u Arr-map-un-App2
 by (metis Std Std-imp-Arr list.distinct(1) mem-Collect-eq
 set-ConsD subset-code(1))
 moreover have ᄀIde (map \Lambda.un-App2 (u#U))
 using **
 by (metis Collect-cong \Lambda.ide-char list.set-map
 set-Ide-subset-ide)
 ultimately show ?thesis
 using M MN cong-filter-notIde cong-map-App1 \Lambda.Ide-Trg
 by presburger
 qed
qed
also have ([M ○ \Lambda.Src N] @ [\Lambda.Trg M ○ N]) @
 map (\lambdaX. \Lambda.Trg M o X) (map \Lambda.un-App2 (u#U)) *~*
 [M\circN]@u#U
proof (intro cong-append)
 show seq ([M\circ \Lambda.Src N]@ [\Lambda.Trg M\circN])
 (map (\lambdaX. \Lambda.Trg M o X) (map \Lambda.un-App2 (u # U)))
 by (metis Nil-is-append-conv Nil-is-map-conv arr-append-imp-seq
 calculation cong-implies-coterminal coterminalE
 list.distinct(1))
 show [M\circ\Lambda.Src N]@ [\Lambda.Trg M\circN] * ~* [M\circN]
 using MN \Lambda.resid-Arr-self \Lambda.Arr-not-Nil \Lambda.Ide-Trg ide-char by simp
show map (\lambdaX. \Lambda.Trg M o X) (map \Lambda.un-App2 (u#U))* ~* u # U
 proof -
 have map (}\lambdaX.\Lambda.Trg M\circX) (map \Lambda.un-App2 (u#U))=u#U
 proof (intro map-App-map-un-App2)
 show Arr (u#U)
 using Std Std-imp-Arr by blast
 show set (u#U)\subseteq Collect \Lambda.is-App
 using *** u by auto
 show \Lambda.Ide (\Lambda.Trg M)
 using MN \Lambda.Ide-Trg by blast
 show \Lambda.un-App1'set (u#U)\subseteq{\Lambda.Trg M}
 proof -
 have \Lambda.un-App1 u=\Lambda.Trg M
 using *u seq seq-char
 apply (cases u)
 apply simp-all
 by (metis Trg-last-Src-hd-eqI \Lambda.Ide-iff-Src-self
 \Lambda.Src-Src \Lambda.Src-Trg \Lambda.Src-eq-iff(2) \Lambda.Trg.simps(3)
 last-ConsL list.sel(1) seq u)
 moreover have Ide (map \Lambda.un-App1 (u#U))
 using * Std Std-imp-Arr Arr-map-un-App1
 by (metis Collect-cong Ide-char
 Arr (u # U)\rangle\langleset (u # U)\subseteq Collect \Lambda.is-App>
 \Lambda.ide-char list.set-map)
```

```
 ultimately show ?thesis
 using set-Ide-subset-single-hd by force
 qed
 qed
 thus ?thesis
 by (simp add: Resid-Arr-self Std ide-char)
 qed
 qed
 also have [M\circN]@u#U=(M\circN)#u#U
 by simp
 finally show ?thesis by blast
 qed
 qed
 qed
qed
show \llbracket\neg \Lambda.un-App1'set (u# U)\subseteq Collect \Lambda.Ide;
 \Lambda.un-App2'set (u#U)\subseteq Collect \Lambda.Ide\rrbracket
 ?thesis
proof -
 assume *: \neg \Lambda.un-App1'set (u#U)\subseteq Collect \Lambda.Ide
 assume **: \Lambda.un-App2'set (u#U)\subseteq Collect \Lambda.Ide
 have 10: filter notIde (map \Lambda.un-App2 (u#U)) = []
 using ** by (simp add: subset-eq)
 hence 4: stdz-insert (M\circN)(u#U)=
 map (\lambdaX. X o \Lambda.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u # U)))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (standard-development N)
 using u & 5*** Ide-iff-standard-development-empty MN
 by simp
 have 6: \Lambda.Ide (\Lambda.Trg (\Lambda.un-App1 (last (u# U))))
 using *** u Std Std-imp-Arr
 by (metis Arr-imp-arr-last in-mono \Lambda.Arr.simps(4) \Lambda.Ide-Trg \Lambda.arr-char
 \Lambda.lambda.collapse(3) last.simps last-in-set list.discI mem-Collect-eq)
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert (M\circN) (u#U))
 proof -
 have Std (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u#U)))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (standard-development N))
 proof (intro Std-append)
 show Std (map (}\lambda\mathrm{ X. X o \.Src N)
 (stdz-insert M (filter notIde
 (map \Lambda.un-App1 (u # U)))))
 using * A MN Std-map-App1 \Lambda.Ide-Src by presburger
 show Std (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (standard-development N))
```

using MN 6 Std－map－App2 Std－standard－development by simp show map $(\lambda X . X \circ \Lambda . S r c N)$
（stdz－insert $M$
$($ filter notIde $($ map $\Lambda . u n-A p p 1(u \# U))))=[] \vee$
$\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(l a s t(u \# U)))))$
$($ standard－development $N)=[] \vee$
ム．sseq（last（map（ $\lambda$ X．$\Lambda . \operatorname{App} X(\Lambda . \operatorname{Src} N))$
（stdz－insert M
（filter notIde（map $\Lambda . u n-\operatorname{App1}(u \# U))))))$
（hd（map（ $\operatorname{A} . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(l a s t(u \# U)))))$
（standard－development $N)$ ））
proof（cases $\Lambda$ ．Ide $N$ ）
show $\Lambda$ ．Ide $N \Longrightarrow$ ？thesis
using Ide－iff－standard－development－empty $M N$ by blast
assume $N$ ：$\neg$ ．Ide $N$
have $\Lambda . s s e q(l a s t(\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)$
（stdz－insert M
$($ filter notIde $(\operatorname{map} \Lambda . u n-\operatorname{App1}(u \# U))))))$
$(h d(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))$
（standard－development $N)$ ））
proof－
have $h d(\operatorname{map}(\Lambda . A p p(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))$
$($ standard－development $N))=$
$\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U))))$
（hd（standard－development $N)$ ）
by（meson Ide－iff－standard－development－empty MN N list．map－sel（1））
moreover have last（map（ $\lambda X . X \circ \Lambda . \operatorname{Src} N$ ）
（stdz－insert M
$($ filter notIde $(\operatorname{map}$ ム．un－App1 $(u \# U)))))=$
ム．App（last（stdz－insert M
（filter notIde

$$
(\operatorname{map} \text { К.un-App1 }(u \# U)))))
$$

## （ $1 . \operatorname{Src} N$ ）

by（metis＊A Ide．simps（1）Resid．simps（1）ide－char last－map）
moreover have $\Lambda . \operatorname{sseq} \ldots(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App} 1(\operatorname{last}(u \# U))))$
（hd（standard－development $N)$ ））
proof－
have 7：$\Lambda$. elementary－reduction
（last（stdz－insert M（filter notIde $($ map $\Lambda . u n-A p p 1(u \# U)))))$
using $* A$
by（metis Ide．simps（1）Resid．simps（2）ide－char last－in－set
mem－Collect－eq subset－iff）

## moreover


using $M N N h d$－in－set set－standard－development
Ide－iff－standard－development－empty
by blast
moreover have $\Lambda . \operatorname{Src} N=\Lambda . S r c(h d($ standard－development $N))$
using MN N Src－hd－standard－development by auto moreover have $\Lambda . \operatorname{Trg}$（last（stdz－insert M
（filter notIde
$(\operatorname{map} \Lambda . u n-A p p 1(u \# U)))))=$

proof－
have $[\Lambda . \operatorname{Trg}$（last（stdz－insert $M$ （filter notIde
$(\operatorname{map}$ И．un－App1 $(u \# U)))))]=$
$[\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1($ last $(u \# U)))]$
proof－
have $\Lambda . \operatorname{Trg}$（last（stdz－insert M
（filter notIde
$($ map $\Lambda . u n-A p p 1(u \# U)))))=$
\．Trg（last（map $\Lambda . u n-\operatorname{App1}(u \# U)))$
proof－
have $\Lambda . \operatorname{Trg}$（last（stdz－insert M
$($ filter notIde $(\operatorname{map}$ ム．un－App1 $(u \# U)))))=$
ム． $\operatorname{Trg}(\operatorname{last}(M \#$ filter notIde（map $\Lambda$ ．un－App1 $(u \# U))))$
using＊A Trg－last－eqI by blast
also have $\ldots=\Lambda$ ． $\operatorname{Trg}$（last $([M]$＠filter notIde
（map ．un－App1 $(u \quad \# U))))$
by $\operatorname{simp}$
also have $\ldots=\Lambda . \operatorname{Trg}$（last（filter notIde
$($ map $\Lambda . u n-\operatorname{App} 1(u \# U))))$
proof－
have seq $[M]$（filter notIde（map $\Lambda$ ．un－App1 $(u \# U))$ ）
proof
show Arr $[M]$
using $M N$ by simp
show $\operatorname{Arr}$（filter notIde（map $\Lambda . u n-A p p 1(u \# U)))$ using $*$ Std－imp－Arr by（metis（no－types，lifting）

X empty－filter－conv list．set－map mem－Collect－eq subsetI）
show $\Lambda . \operatorname{Trg}($ last $[M])=$
\．Src $(h d($ filter notIde（map К．un－App1 $(u \# U))))$
proof－
have $\Lambda . \operatorname{Trg}(\operatorname{last}[M])=\Lambda . \operatorname{Trg} M$
using $M N$ by $\operatorname{simp}$
also have $\ldots=\Lambda . \operatorname{Src}(\Lambda . u n-A p p 1 u)$
by（metis Trg－last－Src－hd－eqI $\Lambda . S r c . s i m p s(4)$
ム．Trg．simps（3）$\Lambda . l a m b d a . c o l l a p s e(3)$
प．lambda．inject（3）last－ConsL list．sel（1）seq u）
also have $\ldots=\Lambda . \operatorname{Src}(h d(\operatorname{map} \Lambda . u n-\operatorname{App1}(u \# U)))$
by auto
also have $\ldots=\Lambda . \operatorname{Src}$（ $h d$（filter notIde
（map К．un－App1 $(u \# U)))$ ）
using $u 510$ by force
finally show ？thesis by blast

```
 qed
 qed
 thus ?thesis by fastforce
 qed
 also have ... = \Lambda.Trg (last (map \Lambda.un-App1 (u#U)))
 proof -
 have filter (\lambdau.\neg\Lambda.Ide u) (map \Lambda.un-App1 (u#U)) *~*
 map \Lambda.un-App1 (u # U)
 using * *** u Std Std-imp-Arr Arr-map-un-App1 [of u # U]
 cong-filter-notIde
 by (metis (mono-tags, lifting) empty-filter-conv
 filter-notIde-Ide list.discI list.set-map
 mem-Collect-eq set-ConsD subset-code(1))
 thus ?thesis
 using cong-implies-coterminal Trg-last-eqI
 by presburger
 qed
 finally show ?thesis by blast
 qed
 thus ?thesis
 by (simp add: last-map)
 qed
 moreover
 have \Lambda.Ide (\Lambda.Trg (last (stdz-insert M
 (filter notIde
 (map \Lambda.un-App1 (u # U))))))
 using }7\mathrm{ \.Ide-Trg \.elementary-reduction-is-arr by blast
 moreover have \Lambda.Ide (\Lambda.Trg (\Lambda.un-App1 (last (u # U))))
 using }6\mathrm{ by blast
 ultimately show ?thesis by simp
 qed
 ultimately show ?thesis
 using \Lambda.sseq.simps(4) by blast
 qed
 ultimately show ?thesis by argo
 qed
 thus ?thesis by blast
 qed
 qed
 thus ?thesis
 using & by simp
qed
show \negIde ((M\circN) # u # U)\longrightarrow
 stdz-insert (M\circN)(u#U) *~* (M\circN)#u#U
proof
 show stdz-insert (M\circN)(u#U)*~* (M\circN)#u#U
 proof (cases \Lambda.Ide N)
 assume N: \Lambda.Ide N
 have stdz-insert (M\circN) (u#U)=
```

```
map (}\lambda\mathrm{ X. X ○N)
```

    (stdz-insert \(M\) (filter notIde
                                    (map \(\Lambda . u n-\operatorname{App1}(u \# U))))\)
    using $4 N M N$ Ide－iff－standard－development－empty $\Lambda$ ．Ide－iff－Src－self by force
also have $\ldots{ }^{*} \sim^{*} \operatorname{map}(\lambda X . X \circ N)$
（ $M$ \＃filter notIde （map $\Lambda . u n-A p p 1(u \# U)))$
using＊A MN N $\Lambda$ ．Ide－Src cong－map－App2 $\Lambda$ ．Ide－iff－Src－self by blast
also have $\operatorname{map}(\lambda X . X \circ N)$
（ $M$ \＃filter notIde
$(\operatorname{map}$ ム．un－App1 $(u \# U)))=$
［M○N］＠

$$
\operatorname{map}(\lambda X . \Lambda . A p p X N)
$$

（filter notIde（map К．un－App1 $(u \# U))$ ）
by auto
also have $[M \circ N]$＠ $m a p(\lambda X . X \circ N)$
（filter notIde（map К．un－App1（u \＃U）））${ }^{*} \sim^{*}$
$[M \circ N] @ \operatorname{map}(\lambda X . X \circ N)($ map $\Lambda . u n-A p p 1(u \# U))$
proof（intro cong－append）
show seq $[M \circ N]$
$(\operatorname{map}(\lambda X . X \circ N)$
（filter notIde（map $\Lambda . u n-\operatorname{App1}(u \# U))))$
proof
have 20： $\operatorname{Arr}$（map ．un－App1（ $u \# U)$ ）
using＊＊＊u Std Arr－map－un－App1
by（metis Std－imp－Arr insert－subset list．discI list．simps（15）
mem－Collect－eq）
show $\operatorname{Arr}[M \circ N]$
using $M N$ by auto
show 21： $\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ N)$
（filter notIde（map $\Lambda . u n-A p p 1(u \# U))))$
proof－
have $\operatorname{Arr}$（filter notIde（map К．un－App1 $(u \# U))$ ）
using u 20 cong－filter－notIde
by（metis（no－types，lifting）＊Std－imp－Arr
〈Std（filter notIde（map I．un－App1（ $u \# U)$ ））〉
empty－filter－conv list．set－map mem－Collect－eq subsetI）
thus ？thesis
using MN N Arr－map－App1 1 ．Ide－Src by presburger
qed
show $\Lambda . \operatorname{Trg}(\operatorname{last}[M \circ N])=$
ム．Src（hd（map（ $\lambda X . X \circ N$ ）
（filter notIde（map $\Lambda . u n-A p p 1(u \# U)))))$
proof－
have $\Lambda . \operatorname{Trg}(\operatorname{last}[M \circ N])=\Lambda . \operatorname{Trg} M \circ N$ using MN N ．Ide－iff－Trg－self by simp

```
 also have ... = \Lambda.Src (\Lambda.un-App1 u) ○ N
 using MN u seq seq-char
 by (metis Trg-last-Src-hd-eqI calculation \Lambda.Src-Src \Lambda.Src-Trg
 \Lambda.Src-eq-iff(2) \Lambda.is-App-def \Lambda.lambda.sel(3) list.sel(1))
 also have ... = \Lambda.Src (\Lambda.un-App1 u ○ N)
 using MN N \Lambda.Ide-iff-Src-self by simp
 also have ... = \Lambda.Src (hd (map (}\lambdaX.X\circN
 (map \Lambda.un-App1 (u#U))))
 by simp
 also have ... = \Lambda.Src (hd (map (}\lambda\mathrm{ \X. X ○ N)
 (filter notIde
 (map \Lambda.un-App1 (u#U)))))
 proof -
 have cong (map \Lambda.un-App1 (u#U))
 (filter notIde (map \Lambda.un-App1 (u # U)))
 using * 20 21 cong-filter-notIde
 by (metis Arr.simps(1) filter-notIde-Ide map-is-Nil-conv)
 thus ?thesis
 by (metis (no-types, lifting) Ide.simps(1) Resid.simps(2)
 Src-hd-eqI hd-map ide-char \Lambda.Src.simps(4)
 list.distinct(1) list.simps(9))
 qed
 finally show ?thesis by blast
 qed
 qed
 show cong [M\circN][M\circN]
 using MN
 by (meson head-redex-decomp \Lambda.Arr.simps(4) \Lambda.Arr-Src
 prfx-transitive)
 show map (\lambdaX. X ○ N) (filter notIde (map \Lambda.un-App1 (u#U))) * ~*
 map (\lambdaX. X ○ N) (map \Lambda.un-App1 (u#U))
 proof -
 have Arr (map \Lambda.un-App1 (u # U))
 using *** u Std Arr-map-un-App1
 by (metis Std-imp-Arr insert-subset list.discI list.simps(15)
 mem-Collect-eq)
 moreover have }\neg\mathrm{ Ide (map \.un-App1 (u#U))
 using *
 by (metis Collect-cong \Lambda.ide-char list.set-map
 set-Ide-subset-ide)
 ultimately show ?thesis
 using *** u MN N cong-filter-notIde cong-map-App2
 by (meson \Lambda.Ide-Src)
 qed
qed
also have [M\circN]@ map (\lambdaX.X\circN)(map \Lambda.un-App1 (u#U)) *~*
 [M\circN]@u#U
proof -
 have map (\lambdaX. X ○ N) (map \Lambda.un-App1 (u#U)) *~* u#U
```

```
proof -
 have map (\lambdaX. X oN) (map \Lambda.un-App1 (u#U))=u#U
 proof (intro map-App-map-un-App1)
 show Arr (u#U)
 using Std Std-imp-Arr by simp
 show set (u#U)\subseteqCollect \Lambda.is-App
 using *** u by auto
 show \Lambda.Ide N
 using N by simp
 show \Lambda.un-App2'set (u#U)\subseteq{N}
 proof -
 have \Lambda.Src (\Lambda.un-App2 u)=\Lambda.Trg N
 using ** seq u seq-char N
 apply (cases u)
 apply simp-all
 by (metis Trg-last-Src-hd-eqI \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.lambda.inject(3) last-ConsL list.sel(1) seq)
 moreover have \Lambda.Ide (\Lambda.un-App2 u) ^ \Lambda.Ide N
 using ** N by simp
 moreover have Ide (map \Lambda.un-App2 (u#U))
 using ** Std Std-imp-Arr Arr-map-un-App2
 by (metis Collect-cong Ide-char
 \Arr (u#U)\rangle\langleset (u#U)\subseteq Collect \Lambda.is-App>
 \Lambda.ide-char list.set-map)
 ultimately show ?thesis
 by (metis hd-map \Lambda.Ide-iff-Src-self \Lambda.Ide-iff-Trg-self
 \Lambda.Ide-implies-Arr list.discI list.sel(1)
 list.set-map set-Ide-subset-single-hd)
 qed
 qed
 thus ?thesis
 by (simp add: Resid-Arr-self Std ide-char)
 qed
 thus ?thesis
 using MN cong-append
 by (metis (no-types, lifting) 1 cong-standard-development
 cong-transitive \Lambda.Arr.simps(4) seq)
qed
also have [M\circN]@ (u#U)=(M\circN)#u#U
 by simp
finally show ?thesis by blast
next
assume N: ᄀ \Lambda.Ide N
have stdz-insert (M\circN) (u#U)=
 map (\lambdaX. X ○ \Lambda.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u# U)))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (standard-development N)
 using & by simp
```

```
also have..\({ }^{*} \sim^{*} \operatorname{map}(\lambda X . X \circ \Lambda . S r c N)\)
 (M \# filter notIde (map \(\Lambda . u n-A p p 1(u \# U))) @\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))[N]\)
proof (intro cong-append)
 show 23: map (\(\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
 (stdz-insert M (filter notIde (map \(\Lambda . u n-A p p 1(u \# U))))^{*} \sim^{*}\)
 \(\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)\)
 (\(M\) \# filter notIde (map \(\Lambda . u n-A p p 1(u \# U)))\)
 using * A MN \(\Lambda\).Ide-Src cong-map-App2 by blast
 show 22: \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(l a s t(u \# U)))))\)
 (standard-development \(N\)) *~*
 map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(l a s t(u \# U)))))[N]\)
 using 6 *** u Std Std-imp-Arr MN N cong-standard-development
 cong-map-App1
 by presburger
 show seq (map \((\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
 (stdz-insert \(M\) (filter notIde
 (map \(\Lambda . u n-A p p 1(u \# U)))))\)
 \((\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))\)
 (standard-development \(N)\))
 proof -
 have seq (map \((\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
 (\(M\) \# filter notIde
 (map \(\Lambda . u n-\operatorname{App1}(u \# U))))\)
 \((\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))[N])\)
 proof
 show 26: \(\operatorname{Arr}(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
 (\(M\) \# filter notIde
 (map \(\Lambda . u n-A p p 1(u \# U))))\)
 by (metis 23 Con-implies-Arr(2) Ide.simps(1) ide-char)
 show \(\operatorname{Arr}(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1}(\) last \((u \# U)))))[N])\)
 by (meson 22 arr-char con-implies-arr(2) prfx-implies-con)
 show \(\Lambda . \operatorname{Trg}(\) last (map \((\lambda X . X \circ \Lambda . S r c N)\)
 (\(M\) \# filter notIde
 \((\) map \(\Lambda . u n-A p p 1(u \# U)))))=\)
 \(\Lambda . \operatorname{Src}(h d(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1}(\operatorname{last}(u \# U)))))\)
 [\(N]\)))
 proof -
 have \(\Lambda . \operatorname{Trg}(\) last \((\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)\)
 \((M \# \operatorname{map} \Lambda . u n-A p p 1(u \# U))))\)
 ^.Trg (last (map (\(\lambda\) X. X o \(\Lambda . \operatorname{Src} N)\)
 (\(M\) \# filter notIde
 (map \(\Lambda . u n-A p p 1(u \# U)))))\)
 proof -
 have targets (map \((\lambda X . X \circ \Lambda . S r c N)\)
 (\(M\) \# filter notIde
 \((m a p\) И.un-App1 \((u \# U))))=\)
 targets (map \((\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
```

$$
(M \# \operatorname{map} \Lambda \cdot u n-A p p 1(u \# U)))
$$

## proof -

have $\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)$
$(M$ \# filter notIde (map $\Lambda . u n-A p p 1(u \# U)))^{*} \sim^{*}$ $\operatorname{map}(\lambda X . X \circ$ L.Src $N)$
(M \# map $\Lambda . u n-A p p 1(u \# U))$
proof -
have $\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src} N)$
$(M \#$ map $\Lambda . u n-A p p 1(u \# U))=$ $\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)$
$([M] @$ map $\Lambda . u n-A p p 1(u \# U))$
by $\operatorname{simp}$
also have cong $\ldots(\operatorname{map}(\lambda X . X \circ \Lambda . \operatorname{Src} N)$
([M] @ filter notIde
(map К.un-App1 $(u \# U)))$ )
proof -
have $[M]$ @ map $\Lambda . u n-\operatorname{App1}(u \# U)^{*} \sim^{*}$
[M] @ filter notIde
(map $\Lambda . u n-A p p 1(u \# U))$
proof (intro cong-append)
show cong $[M][M]$
using MN
by (meson head-redex-decomp prfx-transitive)
show seq $[M](m a p$ ム.un-App1 $(u \# U))$
proof
show $\operatorname{Arr}[M]$
using $M N$ by simp
show $\operatorname{Arr}($ map $\Lambda . u n-\operatorname{App1}(u \# U))$
using $* * *$ u Std Arr-map-un-App1
by (metis Std-imp-Arr insert-subset list.discI
list.simps(15) mem-Collect-eq)
show $\Lambda . \operatorname{Trg}(\operatorname{last}[M])=$
ム.Src (hd (map $\Lambda . u n-A p p 1(u \# U)))$
using MN u seq seq-char Srcs-simp ${ }_{\Lambda P}$ by auto
qed
show cong (map $\Lambda . u n-\operatorname{App1}(u \# U))$
(filter notIde
(map $\Lambda . u n-A p p 1(u \# U)))$
proof -
have $\operatorname{Arr}($ map $\Lambda . u n-\operatorname{App} 1(u \# U))$
by (metis *** Arr-map-un-App1 Std Std-imp-Arr insert-subset list.discI list.simps(15) mem-Collect-eq u)
moreover have $\neg$ Ide (map $\Lambda . u n-\operatorname{App1}(u \# U))$
using * set-Ide-subset-ide by fastforce
ultimately show ?thesis
using cong-filter-notIde by blast
qed
qed

```
 thus map (}\lambda\mathrm{ X. X ○ \.Src N)
 ([M]@ map \Lambda.un-App1 (u#U)) *~*
 map (\lambdaX. X ○ \Lambda.Src N)
 ([M] @ filter notIde (map \Lambda.un-App1 (u# U)))
 using MN cong-map-App2 \Lambda.Ide-Src by presburger
 qed
 finally show ?thesis by simp
 qed
 thus ?thesis
 using cong-implies-coterminal by blast
 qed
 moreover have [\Lambda.Trg (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (M # map \Lambda.un-App1 (u#U))))]\in
 targets (map (}\lambda\times.X\circ\Lambda.Src N
 (M # map \Lambda.un-App1 (u # U)))
 by (metis (no-types, lifting) 26 calculation mem-Collect-eq
 single-Trg-last-in-targets targets-char}\mp@subsup{\Lambda}{P}{}
 moreover have [\Lambda.Trg (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (M # filter notIde
 (map \Lambda.un-App1 (u#U)))))]\in
 targets (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (M # filter notIde
 (map \Lambda.un-App1 (u#U))))
 using 26 single-Trg-last-in-targets by blast
 ultimately show ?thesis
 by (metis (no-types, lifting) 26 Ide.simps(1-2) Resid-rec(1)
 in-targets-iff ide-char)
 qed
 moreover have \Lambda.Ide (\Lambda.Trg (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (M # map \Lambda.un-App1 (u#U)))))
 by (metis 6 MN \Lambda.Ide.simps(4) \Lambda.Ide-Src \Lambda.Trg.simps(3)
 \Lambda.Trg-Src last-ConsR last-map list.distinct(1)
 list.simps(9))
 moreover have \Lambda.Ide (\Lambda.Trg (last (map (}\lambdaX.X\circ\Lambda.Src N
 (M # filter notIde
 (map \Lambda.un-App1 (u#U))))))
 using \Lambda.ide-backward-stable calculation(1-2) by fast
 ultimately show ?thesis
 by (metis (no-types, lifting)6 MN hd-map
 \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr \Lambda.Src.simps(4)
 \Lambda.Trg.simps(3) \Lambda.Trg-Src \Lambda.cong-Ide-are-eq
 last.simps last-map list.distinct(1) list.map-disc-iff
 list.sel(1))
 qed
 qed
 thus ?thesis
 using 22 23 cong-respects-seq}\mp@subsup{P}{P}{}\mathrm{ by presburger
 qed
qed
```

```
also have map (}\lambda\mathrm{ X. X ○ \.Src N)
 (M # filter notIde (map \Lambda.un-App1 (u#U))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U))))) [N]=
 [M\circ L.Src N]@
 map (\lambdaX. X ○ \Lambda.Src N)
 (filter notIde (map \Lambda.un-App1 (u # U))) @
 [\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))) N]
 by simp
also have 1: [M\circ \Lambda.Src N]@
 map (\lambdaX. X ○ \Lambda.Src N)
 (filter notIde (map \Lambda.un-App1 (u # U))) @
 [\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))) N] * ~*
 [M\circ\Lambda.Src N]@
 map (\lambdaX. X ○ \Lambda.Src N) (map \Lambda.un-App1 (u # U)) @
 [\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))) N]
proof (intro cong-append)
 show [M\circ \Lambda.Src N] * ~* [M ○ \Lambda.Src N]
 using MN
 by (meson head-redex-decomp lambda-calculus.Arr.simps(4)
 lambda-calculus.Arr-Src prfx-transitive)
 show 21: map (}\lambdaX.X\circ\Lambda.Src N
 (filter notIde (map \Lambda.un-App1 (u # U))) * ~*
 map (\lambdaX. X o \Lambda.Src N) (map \Lambda.un-App1 (u#U))
 proof -
 have filter notIde (map \Lambda.un-App1 (u#U)) *~*
 map \Lambda.un-App1 (u # U)
 proof -
 have ᄀIde (map \Lambda.un-App1 (u # U))
 using *
 by (metis Collect-cong \Lambda.ide-char list.set-map
 set-Ide-subset-ide)
 thus ?thesis
 using *** u Std Std-imp-Arr Arr-map-un-App1
 cong-filter-notIde
 by (metis <\negIde (map \Lambda.un-App1 (u#U))>
 list.distinct(1) mem-Collect-eq set-ConsD
 subset-code(1))
 qed
 thus ?thesis
 using MN cong-map-App2 [of \Lambda.Src N] \Lambda.Ide-Src by presburger
 qed
 show [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N] * ~*
 [\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N]
 by (metis 6 Con-implies-Arr(1) MN \Lambda.Ide-implies-Arr arr-char
 cong-reflexive \Lambda.Ide-iff-Src-self neq-Nil-conv
 orthogonal-App-single-single(1))
 show seq (map (}\lambda\mathrm{ X. X o \.Src N)
 (filter notIde (map \Lambda.un-App1 (u # U))))
 [\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N]
```

```
proof
 show Arr (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (filter notIde (map \Lambda.un-App1 (u# U))))
 by (metis 21 Con-implies-Arr(2) Ide.simps(1) ide-char)
 show Arr [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N]
 by (metis Con-implies-Arr(2) Ide.simps(1)
 < [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N] * ~*
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N]>
 ide-char)
 show \Lambda.Trg (last (map (}\lambda\mathrm{ X. X o \.Src N)
 (filter notIde
 (map \Lambda.un-App1 (u#U)))))=
 \Lambda.Src (hd [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N])
 by (metis (no-types, lifting) 6 21 MN Trg-last-eqI
 \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr \Lambda.Src.simps(4)
 \Lambda.Trg.simps(3) \Lambda.Trg-Src last-map list.distinct(1)
 list.map-disc-iff list.sel(1))
qed
show seq [M\circ \.Src N]
 (map (\lambdaX. X ○ \Lambda.Src N)
 (filter notIde (map \Lambda.un-App1 (u # U))) @
 [\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N])
proof
 show Arr [M\circ \.Src N]
 using MN by simp
 show Arr (map (}\lambda\mathrm{ N. X o \.Src N)
 (filter notIde (map \Lambda.un-App1 (u # U))) @
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N])
 apply (intro Arr-appendI P)
 apply (metis 21 Con-implies-Arr(2)Ide.simps(1) ide-char)
 apply (metis Con-implies-Arr(1) Ide.simps(1)
 <[\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N] * ~*
 [\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N]> ide-char)
 by (metis (no-types, lifting) 21 Arr.simps(1)
 Arr-append-iff P Con-implies-Arr(2) Ide.simps(1)
 append-is-Nil-conv calculation ide-char not-Cons-self2)
 show \Lambda.Trg (last [M\circ \Lambda.Src N]) =
 \Lambda.Src (hd (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (filter notIde
 (map \Lambda.un-App1 (u#U))) @
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N]))
 by (metis (no-types, lifting) Con-implies-Arr(2) Ide.simps(1)
 Trg-last-Src-hd-eqI append-is-Nil-conv arr-append-imp-seq
 arr-char calculation ide-char not-Cons-self2)
 qed
qed
also have [M\circ \.Src N] @
 map (\lambdaX. X o \Lambda.Src N)(map \Lambda.un-App1 (u#U)) @
 [\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N] * ~*
```

```
 [M\circ \Lambda.Src N] @
 [\Lambda.Trg MoN]@
 map}(\lambdaX.X o \Lambda.Trg N) (map \Lambda.un-App1 (u#U)
proof (intro cong-append [of [\Lambda.App M (\Lambda.Src N)]])
 show seq [M\circ \Lambda.Src N]
 (map (\lambdaX. X o \Lambda.Src N)
 (map \Lambda.un-App1 (u # U)) @
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N])
 proof
 show Arr [M\circ \Lambda.Src N]
 using MN by simp
 show Arr (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (map \Lambda.un-App1 (u#U))@
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N])
 by (metis (no-types, lifting) 1 Con-append(2) Con-implies-Arr(2)
 Ide.simps(1) append-is-Nil-conv ide-char not-Cons-self2)
 show \Lambda.Trg (last [M\circ\Lambda.Src N]) =
 \Lambda.Src (hd (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (map \Lambda.un-App1 (u#U))@
 [\Lambda.Trg (\Lambda.un-App1 (last (u# U))) ○ N]))
 proof -
 have \Lambda.Trg M = \Lambda.Src (\Lambda.un-App1 u)
 using u seq
 by (metis Trg-last-Src-hd-eqI \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.lambda.collapse(3) \Lambda.lambda.inject(3) last-ConsL
 list.sel(1))
 thus ?thesis
 using MN by auto
 qed
 qed
 show [M\circ \Lambda.Src N] * ~* [M\circ \Lambda.Src N]
 using MN
 by (metis head-redex-decomp \Lambda.Arr.simps(4) \Lambda.Arr-Src
 prfx-transitive)
 show map (\lambdaX. X ○ \Lambda.Src N) (map \Lambda.un-App1 (u#U))@
 [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N] * ~*
 [\Lambda.Trg M ○ N]@
 map (\lambdaX. X o \Lambda.Trg N) (map \Lambda.un-App1 (u # U))
 proof -
 have map (\lambdaX. X o \Lambda.Src (hd [N])) (map \Lambda.un-App1 (u# U)) @
 map (\Lambda.App (\Lambda.Trg (last (map \Lambda.un-App1 (u#U))))) [N] * ~*
 map (\Lambda.App (\Lambda.Src (hd (map \Lambda.un-App1 (u# #))))) [N] @
 map (\lambdaX. X o \Lambda.Trg (last [N])) (map \Lambda.un-App1 (u# #))
 proof -
 have Arr (map \Lambda.un-App1 (u # U))
 using Std *** u Arr-map-un-App1
 by (metis Std-imp-Arr insert-subset list.discI list.simps(15)
 mem-Collect-eq)
 moreover have Arr [N]
```

```
 using MN by simp
 ultimately show ?thesis
 using orthogonal-App-cong by blast
 qed
 moreover
 have map (\Lambda.App (\Lambda.Src (hd (map \Lambda.un-App1 (u# U))))) [N]=
 [\Lambda.Trg M\circN]
 by (metis Trg-last-Src-hd-eqI lambda-calculus.Src.simps(4)
 \Lambda.Trg.simps(3) \Lambda.lambda.collapse(3) \Lambda.lambda.sel(3)
 last-ConsL list.sel(1) list.simps(8) list.simps(9) seq u)
 moreover have [\Lambda.Trg (\Lambda.un-App1 (last (u#U))) ○ N]=
 map (\Lambda.App (\Lambda.Trg (last (map \Lambda.un-App1 (u#U))))) [N]
 by (simp add: last-map)
 ultimately show ?thesis
 using last-map by auto
 qed
qed
also have [M\circ\Lambda.Src N]@
 [\Lambda.Trg M\circN]@
 map }(\lambdaX.X\circ\Lambda.Trg N) (map \Lambda.un-App1 (u#U))
 ([M\circ ..Src N]@ [\Lambda.Trg M\circN]) @
 map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u#U))
 by simp
also have ... * ** [M\circN] @ (u#U)
proof (intro cong-append)
 show [M\circ\Lambda.Src N]@ [\Lambda.Trg M o N] * ~* [M ○N]
 using MN \Lambda.resid-Arr-self \Lambda.Arr-not-Nil \Lambda.Ide-Trg ide-char
 by auto
show 1: map (\lambdaX. X o \Lambda.Trg N) (map \Lambda.un-App1 (u#U)) * ~* u # U
 proof -
 have map (\lambdaX. X o \Lambda.Trg N) (map \Lambda.un-App1 (u#U)) =u#U
 proof (intro map-App-map-un-App1)
 show Arr (u#U)
 using Std Std-imp-Arr by simp
 show set (u#U)\subseteqCollect \Lambda.is-App
 using *** u by auto
 show \Lambda.Ide (\Lambda.Trg N)
 using MN \Lambda.Ide-Trg by simp
 show \Lambda.un-App2' set (u#U)\subseteq{\Lambda.Trg N}
 proof -
 have \Lambda.Src (\Lambda.un-App2 u)=\Lambda.Trg N
 using u seq seq-char
 apply (cases u)
 apply simp-all
 by (metis Trg-last-Src-hd-eqI \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.lambda.inject(3) last-ConsL list.sel(1) seq)
 moreover have \Lambda.Ide (\Lambda.un-App2 u)
 using ** by simp
 moreover have Ide (map \Lambda.un-App2 (u#U))
```

```
 using ** Std Std-imp-Arr Arr-map-un-App2
 by (metis Collect-cong Ide-char
 Arr (u#U)\rangle<set (u#U)\subseteqCollect \Lambda.is-App\rangle
 \Lambda.ide-char list.set-map)
 ultimately show ?thesis
 by (metis \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr list.sel(1)
 list.set-map list.simps(9) set-Ide-subset-single-hd
 singleton-insert-inj-eq)
 qed
 qed
 thus ?thesis
 by (simp add: Resid-Arr-self Std ide-char)
 qed
 show seq ([M ○ \Lambda.Src N]@ [\Lambda.Trg M ○ N])
 (map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u#U)))
 proof
 show Arr ([M\circ \Lambda.Src N] @ [\Lambda.Trg M O N])
 using MN by simp
 show Arr (map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u#U)))
 using MN Std Std-imp-Arr Arr-map-un-App1 Arr-map-App1
 by (metis 1 Con-implies-Arr(1) Ide.simps(1) ide-char)
 show \Lambda.Trg (last ([M\circ \Lambda.Src N] @ [\Lambda.Trg M ○ N])) =
 \Lambda.Src (hd (map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u#U))))
 using MN Std Std-imp-Arr Arr-map-un-App1 Arr-map-App1
 seq seq-char u Srcs-simp (AP by auto
 qed
 qed
 also have [M\circN]@ (u#U)=(M\circN)#u#U
 by simp
 finally show ?thesis by blast
 qed
 qed
 qed
qed
show \llbracket\neg \Lambda.un-App1'set (u#U)\subseteqCollect \Lambda.Ide;
 \neg.un-App2'set (u#U)\subseteq Collect \Lambda.Ide\rrbracket
 \Longrightarrow \text { ?thesis}
proof -
 assume *: ᄀ\Lambda.un-App1'set (u# U)\subseteq Collect \Lambda.Ide
 assume **:\neg\Lambda.un-App2'set (u#U)\subseteqCollect \Lambda.Ide
 show ?thesis
 proof (intro conjI)
 show Std (stdz-insert (M\circN) (u#U))
 proof -
 have Std (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u# U)))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u# U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U)))))
 proof (intro Std-append)
```

```
show Std (map (\lambdaX. X o \Lambda.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u# U)))))
 using * A \Lambda.Ide-Src MN Std-map-App1 by presburger
show Std (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U)))))
proof -
 have \Lambda.Arr (\Lambda.un-App1 (last (u#U)))
 by (metis *** \Lambda.Arr.simps(4) Std Std-imp-Arr Arr.simps(2)
 Arr-append-iff }P\mathrm{ append-butlast-last-id append-self-conv2
 \Lambda.arr-char \Lambda.lambda.collapse(3) last.simps last-in-set
 list.discI mem-Collect-eq subset-code(1) u)
 thus ?thesis
 using ** B \Lambda.Ide-Trg MN Std-map-App2 by presburger
qed
show map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u#U)))) = [] \vee
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U)))) = [] \vee
 \Lambda.sseq (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u # U))))))
 (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))))
proof -
 have \Lambda.sseq (last (map (}\lambda\mathrm{ X. X o \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u # U))))))
 (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))))
 proof -
 let ?M = \Lambda.un-App1 (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M
 (filter notIde
 (map \Lambda.un-App1 (u # U))))))
 let ?M' = \Lambda.Trg (\Lambda.un-App1 (last (u#U)))
 let ? N = \Lambda.Src N
 let ? N' = \Lambda.un-App2
 (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (stdz-insert N
 (filter notIde
 (map \Lambda.un-App2 (u # U))))))
 have M: ?M = last (stdz-insert M
 (filter notIde (map \Lambda.un-App1 (u# U))))
 by (metis * A Ide.simps(1) Resid.simps(1) ide-char
 \Lambda.lambda.sel(3) last-map)
 have }\mp@subsup{N}{}{\prime}:
 (filter notIde (map \Lambda.un-App2 (u# U))))
 by (metis ** B Ide.simps(1) Resid.simps(2) ide-char
 \Lambda.lambda.sel(4) hd-map)
 have AppMN: last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (stdz-insert M
```

$($ filter notIde $(\operatorname{map}$ ム．un－App1 $(u \# U)))))=$ ？$M \circ$ ？$N$
by（metis＊A Ide．simps（1）M Resid．simps（2）ide－char last－map） moreover
have 4：hd（map（ $\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1}(\operatorname{last}(u \# U)))))$ （stdz－insert $N$
$($ filter notIde $(\operatorname{map}$ ム．un－App2 $(u \# U)))))=$ ？$M^{\prime} \circ$ ？$N^{\prime}$
by（metis（no－types，lifting）＊＊B Resid．simps（2）con－char
 प．lambda．inject（3）list．map－sel（1））
moreover have MM： ．elementary－reduction ？M
by（metis＊A Arr．simps（1）Con－implies－Arr（2）Ide．simps（1） $M$ ide－char in－mono last－in－set mem－Collect－eq）
moreover have $N N^{\prime}$ ：$\Lambda$ ．elementary－reduction ？$N^{\prime}$
using＊＊$B N^{\prime}$
by（metis Arr．simps（1）Con－implies－Arr（2）Ide．simps（1） ide－char in－mono list．set－sel（1）mem－Collect－eq）
moreover have $\Lambda . \operatorname{Trg} ? M=? M^{\prime}$
proof－
have 1：$[\Lambda . \operatorname{Trg} ? M]^{*} \sim^{*}\left[? M^{\dagger}\right]$
proof－
have $[\Lambda . \operatorname{Trg} ? M]^{*} \sim^{*}$
$[\Lambda . \operatorname{Trg}(\operatorname{last}(M \#$ filter notIde $(\operatorname{map} \Lambda . u n-A p p 1(u \# U))))]$
proof－
have targets（stdz－insert M
$($ filter notIde $($ map $\Lambda . u n-A p p 1(u \# U))))=$ targets（M \＃filter notIde（map $\Lambda . u n-A p p 1(u \# U)))$ using $*$ A cong－implies－coterminal by blast moreover
have $[\Lambda . \operatorname{Trg}(\operatorname{last}(M \#$ filter notIde（map $\Lambda . u n-A p p 1(u \# U))))]$
$\in$ targets $(M$ \＃filter notIde（map $\Lambda . u n-A p p 1(u \# U)))$ by（metis（no－types，lifting）＊A $\Lambda$ ．Arr－ $\operatorname{Trg}$ ム．Ide－Trg Arr．simps（2）Arr－append－iff $P_{P}$ Arr－iff－Con－self Con－implies－Arr（2）Ide．simps（1）Ide．simps（2） Resid－Arr－Ide－ind ide－char append－butlast－last－id append－self－conv2 $\Lambda$ ．arr－char in－targets－iff $\Lambda$ ．ide－char list．discI）
ultimately show ？thesis
using $* A M$ in－targets－iff
by（metis（no－types，lifting）Con－implies－Arr（1）
con－char prfx－implies－con in－targets－iff）
qed
also have 2：［ $\Lambda . \operatorname{Trg}$（last（M \＃filter notIde
$($ map $\Lambda . u n-\operatorname{App1}(u \# U))))]^{*} \sim^{*}$
［ $\Lambda . \operatorname{Trg}$（last（filter notIde
（map $\Lambda . u n-A p p 1(u \# U))))]$
by（metis（no－types，lifting）＊prfx－transitive
calculation empty－filter－conv last－ConsR list．set－map

```
 mem-Collect-eq subsetI)
 also have [\Lambda.Trg (last (filter notIde
 (map \Lambda.un-App1 (u#U))))] * ~*
 [\Lambda.Trg (last (map \Lambda.un-App1 (u # U)))]
 proof -
 have map \Lambda.un-App1 (u#U) * ~*
 filter notIde (map \Lambda.un-App1 (u # U))
 by (metis (mono-tags, lifting) * *** Arr-map-un-App1
 Std Std-imp-Arr cong-filter-notIde empty-filter-conv
 filter-notIde-Ide insert-subset list.discI list.set-map
 list.simps(15) mem-Collect-eq subsetI u)
 thus ?thesis
 by (metis 2 Trg-last-eqI prfx-transitive)
 qed
 also have [\Lambda.Trg (last (map \Lambda.un-App1 (u#U)))] = [?M`
 by (simp add: last-map)
 finally show ?thesis by blast
qed
have 3: }\Lambda.T\operatorname{Trg}?M=\Lambda.Trg?M\?M
 by (metis (no-types,lifting) 1 * A M Con-implies-Arr(2)
 Ide.simps(1) Resid-Arr-Ide-ind Resid-rec(1)
 ide-char target-is-ide in-targets-iff list.inject)
also have ... = ? M'
 by (metis (no-types, lifting) 14 Arr.simps(2) Con-implies-Arr(2)
 Ide.simps(1) Ide.simps(2) MM NN' Resid-Arr-Ide-ind
 Resid-rec(1) Src-hd-eqI calculation ide-char
 \Lambda.Ide-iff-Src-self \Lambda.Src-Trg \Lambda.arr-char
 \Lambda.elementary-reduction.simps(4)
 \Lambda.elementary-reduction-App-iff \Lambda.elementary-reduction-is-arr
 \Lambda.elementary-reduction-not-ide \Lambda.lambda.discI(3)
 \Lambda.lambda.sel(3) list.sel(1))
 finally show ?thesis by blast
qed
moreover have ? N = \Lambda.Src ? N N
proof -
 have 1:[\Lambda.Src ?N \ * ~* [?N]
 proof -
 have sources (stdz-insert N
 (filter notIde (map \Lambda.un-App2 (u#U))))=
 sources [N]
 using ** B
 by (metis Con-implies-Arr(2) Ide.simps(1) coinitialE
 cong-implies-coinitial ide-char sources-cons)
 thus ?thesis
 by (metis (no-types, lifting) AppMN ** B \Lambda.Ide-Src
 MM MN N' NN' \Lambda.Trg-Src Arr.simps(1) Arr.simps(2)
 Con-implies-Arr(1) Ide.simps(2) con-char ideE ide-char
 sources-cons \Lambda.arr-char in-targets-iff
 \Lambda.elementary-reduction.simps(4) \Lambda.elementary-reduction-App-iff
```

```
 \Lambda.elementary-reduction-is-arr \Lambda.elementary-reduction-not-ide
 \Lambda.lambda.disc(14) \Lambda.lambda.sel(4) last-ConsL list.exhaust-sel
 targets-single-Src)
 qed
 have \Lambda.Src ? N' }=\Lambda.Src ? N' \ \?N
 by (metis (no-types, lifting) 1 MN \Lambda.Coinitial-iff-Con
 \Lambda.Ide-Src Arr.simps(2) Ide.simps(1) Ide-implies-Arr
 Resid-rec(1) ide-char \Lambda.not-arr-null \Lambda.null-char
 \Lambda.resid-Arr-Ide)
 also have ... = ?N
 by (metis 1 MN NN' Src-hd-eqI calculation \Lambda.Src-Src \Lambda.arr-char
 \Lambda.elementary-reduction-is-arr list.sel(1))
 finally show ?thesis by simp
 qed
 ultimately show ?thesis
 using u \Lambda.sseq.simps(4)
 by (metis (mono-tags, lifting))
 qed
 thus ?thesis by blast
 qed
 qed
 thus ?thesis
 using 4 by presburger
qed
show ᄀIde ((M\circN)#u#U)}
 stdz-insert (M\circN)(u#U) * ~* (M\circN) # u # U
proof
 have stdz-insert (M\circN) (u#U)=
 map}(\lambdaX.X \circ \Lambda.Src N
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u# #)))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u # U))))
 using 4 by simp
 also have ... * ~* map (}\lambda\mathrm{ N. X ○ \.Src N)
 (M # map \Lambda.un-App1 (u # U)) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (N # map \Lambda.un-App2 (u # U))
 proof (intro cong-append)
 have X: stdz-insert M (filter notIde (map \Lambda.un-App1 (u#U))) * ~*
 M # map \Lambda.un-App1 (u # U)
 proof -
 have stdz-insert M (filter notIde (map \Lambda.un-App1 (u#U))) * ~*
 [M] @ filter notIde (map \Lambda.un-App1 (u # U))
 using * A by simp
 also have [M] @ filter notIde (map \Lambda.un-App1 (u#U)) *~*
 [M]@ map \Lambda.un-App1 (u#U)
 proof -
 have filter notIde (map \Lambda.un-App1 (u#U)) * ~*
 map \Lambda.un-App1 (u#U)
```

```
 using * cong-filter-notIde
 by (metis (mono-tags, lifting) *** Arr-map-un-App1 Std
 Std-imp-Arr empty-filter-conv filter-notIde-Ide insert-subset
 list.discI list.set-map list.simps(15) mem-Collect-eq subsetI u)
 moreover have seq \([M]\) (filter notIde (map \(\Lambda . u n\)-App1 (\(u \# U)\)))
 by (metis \(*\) A Arr.simps(1) Con-implies-Arr(1) append-Cons
 append-Nil arr-append-imp-seq arr-char calculation
 ide-implies-arr list.discI)
 ultimately show ?thesis
 using cong-append cong-reflexive by blast
 qed
 also have \([M]\) @ map \(\Lambda . u n-\operatorname{App1}(u \# U)=\)
 M \# map \(\Lambda . u n-A p p 1(u \# U)\)
 by \(\operatorname{simp}\)
 finally show ?thesis by blast
qed
have \(Y\) : stdz-insert \(N(\) filter notIde (map \(\Lambda . u n-A p p 2(u \# U)))^{*} \sim^{*}\)
 \(N \# \operatorname{map}\) К.un-App2 \((u \# U)\)
proof -
 have 5: stdz-insert \(N(\) filter notIde (map \(\Lambda . u n-A p p 2(u \# U)))^{*} \sim^{*}\)
 [\(N\)] @ filter notIde (map 亿.un-App2 \((u \# U)\))
 using \(* * B\) by simp
 also have \([N]\) @ filter notIde (map \(\Lambda . u n-A p p 2(u \# U))^{*} \sim^{*}\)
 \([N]\) @ map \(\Lambda . u n-A p p 2(u \# U)\)
 proof -
 have filter notIde (map \(\Lambda . u n-A p p 2(u \# U))^{*} \sim^{*}\)
 map . un-App2 (\(u\) \# U)
 using \(* *\) cong-filter-notIde
 by (metis (mono-tags, lifting) *** Arr-map-un-App2 Std
 Std-imp-Arr empty-filter-conv filter-notIde-Ide insert-subset
 list.discI list.set-map list.simps(15) mem-Collect-eq subsetI u)
 moreover have seq \([N]\) (filter notIde (map \(\Lambda\).un-App2 (\(u \# U)\)))
 by (metis 5 Arr.simps(1) Con-implies-Arr(2) Ide.simps(1)
 arr-append-imp-seq arr-char calculation ide-char not-Cons-self2)
 ultimately show ?thesis
 using cong-append cong-reflexive by blast
 qed
 also have \([N]\) @ map \(\Lambda . u n-A p p 2(u \# U)=\)
 N \# map \(\Lambda . u n-A p p 2(u \# U)\)
 by \(\operatorname{simp}\)
 finally show ?thesis by blast
qed
show seq (map (\(\lambda X . X \circ \Lambda . \operatorname{Src} N)\)
 (stdz-insert M (filter notIde (map \(\Lambda . u n-A p p 1(u \# U)))))\)
 (map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))))\)
 (stdz-insert \(N\) (filter notIde (map \(\Lambda . u n-A p p 2(u \# U))))\))
```



```
 Resid.simps(1) Std-imp-Arr 〈Std (stdz-insert \((M \circ N)(u \# U))\rangle\)
 arr-append-imp-seq arr-char ide-char)
```

```
 show map (}\lambda\mathrm{ X. X o \.Src N)
 (stdz-insert M (filter notIde (map \Lambda.un-App1 (u#U)))) * ~*
 map}(\lambdaX.X o \Lambda.Src N) (M # map \Lambda.un-App1 (u#U)
 using X cong-map-App2 MN lambda-calculus.Ide-Src by presburger
 show map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (stdz-insert N (filter notIde (map \Lambda.un-App2 (u## U)))) *~*
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (N# map \Lambda.un-App2 (u#U))
 proof -
 have set U\subseteqCollect \Lambda.Arr \cap Collect \Lambda.is-App
 using *** Std Std-implies-set-subset-elementary-reduction
 \Lambda.elementary-reduction-is-arr
 by blast
 hence \Lambda.Ide (\Lambda.Trg (\Lambda.un-App1 (last (u#U))))
 by (metis inf.boundedE \Lambda.Arr.simps(4) \Lambda.Ide-Trg
 \Lambda.lambda.collapse(3) last.simps last-in-set mem-Collect-eq
 subset-eq u)
 thus ?thesis
 using Y cong-map-App1 by blast
 qed
qed
also have map (\lambdaX. X o \Lambda.Src N) (M # map \Lambda.un-App1 (u # U)) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (N # map \Lambda.un-App2 (u#U)) * ~*
 [M\circN]@[u]@U
proof -
 have (map (\lambdaX. X o \Lambda.Src N) (M # map \Lambda.un-App1 (u## U))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (N # map \Lambda.un-App2 (u # U))) =
 ([M\circ \Lambda.Src N] @
 map (\lambdaX. X o \Lambda.Src N) (map \Lambda.un-App1 (u # U)))@
 ([\Lambda.Trg (\Lambda.un-App1 (last (u # U))) ○ N] @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U)))
 by simp
 also have ... = [M\circ ..Src N]@
 (map (\lambdaX. X o \Lambda.Src N) (map \Lambda.un-App1 (u # U))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u #U))))) [N]) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U))
 by auto
 also have ... * ~* [M o \Lambda.Src N]@
 (map (\Lambda.App (\Lambda.Src (\Lambda.un-App1 u))) [N]@
 map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u # U))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (map \Lambda.un-App2 (u#U))
 proof -
 have (map (\lambdaX. X ○ \Lambda.Src N) (map \Lambda.un-App1 (u#U))@
```

```
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U))))) [N])@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U)) * ~*
 (map (\Lambda.App (\Lambda.Src (\Lambda.un-App1 u))) [N] @
 map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u # U))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (map \Lambda.un-App2 (u # U))
proof -
 have 1: Arr (map \Lambda.un-App1 (u#U))
 using u ***
 by (metis Arr-map-un-App1 Std Std-imp-Arr list.discI
 mem-Collect-eq set-ConsD subset-code(1))
 have map (\lambdaX. \Lambda.App X (\Lambda.Src N)) (map \Lambda.un-App1 (u# #)) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U))))) [N] *~*
 map (\Lambda.App (\Lambda.Src (\Lambda.un-App1 u))) [N] @
 map (\lambdaX. \Lambda.App X (\Lambda.Trg N)) (map \Lambda.un-App1 (u # U))
 proof -
 have Arr [N]
 using MN by simp
 moreover have \Lambda. Trg (last (map \Lambda.un-App1 (u#U)))=
 \Lambda.Trg (\Lambda.un-App1 (last (u # U)))
 by (simp add: last-map)
 ultimately show ?thesis
 using 1 orthogonal-App-cong [of map \Lambda.un-App1 (u#U) [N]]
 by simp
qed
moreover have seq (map (}\lambda\mathrm{ X. X o \.Src N) (map \.un-App1 (u #
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))[N])
proof
 show Arr (map (}\lambdaX.X\circ\Lambda.Src N
 (map \Lambda.un-App1 (u # U)) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U))))) [N])
 by (metis Con-implies-Arr(1) Ide.simps(1) calculation ide-char)
 show Arr (map (\Lambda.App (\Lambda. Trg (\Lambda.un-App1 (last (u # U)))))
 (map \Lambda.un-App2 (u#U)))
 using u***
 by (metis 1 Arr-imp-arr-last Arr-map-App2 Arr-map-un-App2
 Std Std-imp-Arr \Lambda.Ide-Trg \Lambda.arr-char last-map list.discI
 mem-Collect-eq set-ConsD subset-code(1))
 show \Lambda.Trg (last (map (}\lambda\mathrm{ X. X ○ \.Src N)
 (map \Lambda.un-App1 (u # U))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 [N])) =
 \Lambda.Src (hd (map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u # U)))))
 (map \Lambda.un-App2 (u # U))))
 proof -
```

U)) @

```
 have 1: \(\Lambda . A r r\) (\(\Lambda . u n-A p p 1 u)\)
 using \(u\). is-App-def by force
 have 2: \(U \neq[] \Longrightarrow\). \(\operatorname{Arr}\) (\(\Lambda . u n-A p p 1\) (last \(U\)))
 by (metis *** Arr-imp-arr-last Arr-map-un-App1
 \(\langle U \neq[] \Longrightarrow\) Arr \(U\rangle\) ^.arr-char last-map)
 have 3: \(\Lambda . \operatorname{Trg} N=\Lambda . \operatorname{Src}(\Lambda . u n-A p p 2 u)\)
 by (metis Trg-last-Src-hd-eqI \(\Lambda . \operatorname{Src} . \operatorname{simps}(4) \Lambda . \operatorname{Trg} . \operatorname{simps}(3)\)
 ム.lambda.collapse(3) \(\Lambda . l a m b d a . i n j e c t(3) ~ l a s t-C o n s L ~\)
 list.sel(1) seq u)
 show ?thesis
 using \(u\) *** seq 123
 by (cases \(U=[]\)) auto
 qed
 qed
 moreover have map (\(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))\)
 (map \(\Lambda . u n-A p p 2(u \# U))^{*} \sim^{*}\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))))\)
 (map \(\Lambda . u n-A p p 2(u \# U))\)
 using calculation(2) cong-reflexive by blast
 ultimately show ?thesis
 using cong-append by blast
qed
moreover have seq [M ○ \(\Lambda . S r c ~ N]\)
 \(((\operatorname{map}(\lambda X . X \circ \Lambda . S r c)(\operatorname{map}\) ム.un-App1 \((u \# U)) @\)
 map \((\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))[N]) @\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\) last \((u \# U)))))\)
 (map \(\Lambda . u n-A p p 2(u \# U)))\)
proof
 show \(\operatorname{Arr}[M \circ \Lambda . \operatorname{Src} N]\)
 using \(M N\) by simp
 show \(\operatorname{Arr}((\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)(m a p \Lambda . u n-\operatorname{App1}(u \# U)) @\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))[N]) @\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1} 1(\operatorname{last}(u \# U)))))\)
 (map \(\Lambda . u n-A p p 2(u \# U)))\)
 using \(M N u\) seq
 by (metis Con-implies-Arr (1) Ide.simps(1) calculation ide-char)
 show \(\Lambda . \operatorname{Trg}(\) last \([M \circ \Lambda . \operatorname{Src} N])=\)
 ム.Src \((h d((\operatorname{map}(\lambda X . X \circ \Lambda . S r c N)(m a p \Lambda . u n-A p p 1(u \# U)) @\)
 map \((\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-\operatorname{App1}(\operatorname{last}(u \# U)))))[N]) @\)
 \(\operatorname{map}(\Lambda . \operatorname{App}(\Lambda . \operatorname{Trg}(\Lambda . u n-A p p 1(\operatorname{last}(u \# U)))))\)
 (map \(\Lambda . u n-A p p 2(u \# U))))\)
 using \(M N u\) seq seq-char \(\operatorname{Srcs-simp}{ }_{\Lambda P}\)
 by (cases u) auto
 qed
 ultimately show?thesis
 using cong-append
 by (meson Resid-Arr-self ide-char seq-char)
qed
also have \([M \circ \Lambda . S r c N] @\)
```

```
 (map (\Lambda.App (\Lambda.Src (\Lambda.un-App1 u))) [N] @
 map (\lambdaX. \Lambda.App X (\Lambda.Trg N)) (map \Lambda.un-App1 (u##)))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u # U)) =
([M\circ \Lambda.Src N] @ [\Lambda.Src (\Lambda.un-App1 u) ○ N]) @
 (map (\lambdaX. X ○ \Lambda.Trg N) (map \Lambda.un-App1 (u # U))) @
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U))
 by simp
also have ... * ~* ([M\circN]@ @u]@U)
proof -
 have [M\circ\Lambda.Src N]@ [\Lambda.Src (\Lambda.un-App1 u) ○N] *~* [M\circN]
 proof -
 have \Lambda.Src (\Lambda.un-App1 u)=\Lambda.Trg M
 by (metis Trg-last-Src-hd-eqI \Lambda.Src.simps(4) \Lambda.Trg.simps(3)
 \Lambda.lambda.collapse(3) \Lambda.lambda.inject(3) last.simps
 list.sel(1) seq u)
 thus ?thesis
 using MN u seq seq-char \Lambda.Arr-not-Nil \Lambda.resid-Arr-self ide-char
 \Lambda.Ide-Trg
 by simp
 qed
moreover have map (}\lambdaX.X\circ\Lambda.Trg N) (map \Lambda.un-App1 (u#U))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U)) * ~*
 [u] @ U
 proof -
 have Arr ([u]@ U)
 by (simp add: Std)
 moreover have set ([u]@ U)\subseteq Collect \Lambda.is-App
 using *** u by auto
 moreover have \Lambda.Src (\Lambda.un-App2 (hd ([u]@ @)))=\Lambda.Trg N
 proof -
 have \Lambda.Ide (\Lambda.Trg N)
 using MN lambda-calculus.Ide-Trg by presburger
 moreover have \Lambda.Ide (\Lambda.Src (\Lambda.un-App2 (hd ([u] @ U))))
 by (metis Std Std-implies-set-subset-elementary-reduction
 \Lambda.Ide-Src \Lambda.arr-iff-has-source \Lambda.ide-implies-arr
 <et ([u]@ U)\subseteq Collect \Lambda.is-App〉 append-Cons
 \Lambda.elementary-reduction-App-iff \Lambda.elementary-reduction-is-arr
 \Lambda.sources-char. list.sel(1) list.set-intros(1)
 mem-Collect-eq subset-code(1))
 moreover have \Lambda.Src (\Lambda.Trg N)=
 \Lambda.Src (\Lambda.Src (\Lambda.un-App2 (hd ([u]@ @))))
 proof -
 have \Lambda.Src (\Lambda.Trg N)= \Lambda. Trg N
 using MN by simp
 also have ... = \Lambda.Src (\Lambda.un-App2 u)
 using u seq seq-char Srcs-simp
```

```
 by (cases u) auto
 also have ... = \Lambda.Src (\Lambda.Src (\Lambda.un-App2 (hd ([u]@U))))
 by (metis \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr
 <\Lambda.Ide (\Lambda.Src (\Lambda.un-App2 (hd ([u] @ U))))>
 append-Cons list.sel(1))
 finally show ?thesis by blast
 qed
 ultimately show ?thesis
 by (metis \Lambda.Ide-iff-Src-self \Lambda.Ide-implies-Arr)
 qed
 ultimately show ?thesis
 using map-App-decomp
 by (metis append-Cons append-Nil)
 qed
 moreover have seq ([M\circ \Lambda.Src N]@ [\Lambda.Src (\Lambda.un-App1 u) ○ N])
 (map (\lambdaX. X o \Lambda.Trg N) (map \Lambda.un-App1 (u##))@
 map (\Lambda.App (\Lambda.Trg (\Lambda.un-App1 (last (u#U)))))
 (map \Lambda.un-App2 (u#U)))
 using calculation(1-2) cong-respects-seq}\mp@subsup{P}{P}{}\mathrm{ seq by auto
 ultimately show ?thesis
 using cong-append by presburger
 qed
 finally show ?thesis by blast
 qed
 also have [M\circN]@ [u]@U=(M\circN)#u#U
 by simp
 finally show stdz-insert (M\circN)(u#U)*~* (M\circN)#u#U
 by blast
 qed
 qed
 qed
 qed
 qed
 qed
 qed
 qed
 qed
qed
```

The eight remaining subgoals are now trivial consequences of fact *. Unfortunately, I haven't found a way to discharge them without having to state each one of them explicitly.

```
show \(\wedge N u U . \llbracket \Lambda . I d e(\sharp \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))\);
 \(\llbracket \neg \Lambda . I d e(\sharp \circ N) ; \Lambda . s e q(\sharp \circ N)(h d(u \# U))\);
 \(\Lambda\).contains-head-reduction (\(\sharp \circ N\));
 M.Ide \(((\sharp \circ N) \backslash \Lambda . h e a d-r e d e x ~(\sharp \circ N)) 】\)
 \(\Longrightarrow\) ?P \((h d(u \# U))(t l(u \# U))\);
 \(\llbracket \neg\) M.Ide \((\sharp \circ N) ; \Lambda . s e q(\sharp \circ N)(h d(u \# U))\);
 ム.contains-head-reduction (\(\# \circ N\));
```

$\neg$ I．Ide $((\sharp \circ N) \backslash$ ．head－redex $(\sharp \circ N)) \rrbracket$ $\Longrightarrow ? P((\sharp \circ N) \backslash \Lambda . h e a d-r e d e x(\sharp \circ N))(u \# U)$ ；
$\llbracket \neg \Lambda$ ．Ide $(\sharp \circ N) ;$ ． $\operatorname{seq}(\sharp \circ N)(h d(u \# U))$ ；
$\neg$ 亿．contains－head－reduction $(\sharp \circ N$ ）；
L．contains－head－reduction（hd（u \＃U））；
亿．Ide $((\sharp \circ N) \backslash \Lambda . h e a d-s t r a t e g y ~(\sharp \circ N)) \rrbracket$
$\Longrightarrow$ ？P（ $\Lambda . h e a d$－strategy $(\sharp \circ N))(t l(u \# U))$ ；
$\llbracket \neg$ ．Ide $(\sharp \circ N) ; \Lambda . s e q(\sharp \circ N)(h d(u \# U))$ ；
$\neg$ ム．contains－head－reduction $(\sharp \circ N)$ ；
ム．contains－head－reduction（hd（u\＃U））；
$\neg$ I．Ide $((\sharp \circ N) \backslash \Lambda . h e a d-$ strategy $(\sharp \circ N)) \rrbracket$

$$
\Longrightarrow ? P(\Lambda \cdot r e s i d(\sharp \circ N)(\Lambda . h e a d-\text { strategy }(\sharp \circ N)))(t l(u \# U)) ;
$$

$\llbracket \neg$ ．Ide $(\sharp \circ N) ; \Lambda . \operatorname{seq}(\sharp \circ N)(h d(u \# U))$ ；
$\neg$ ム．contains－head－reduction（ $\# \circ N$ ）；
$\neg$ ．．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P $\sharp$（filter notIde（map $\Lambda . u n-A p p 1(u \# U))$ ）；
$\llbracket \neg \Lambda . I d e(\sharp \circ N) ; \Lambda . s e q(\sharp \circ N)(h d(u \# U))$ ；
$\neg$ 亿．contains－head－reduction（ $\# \circ N$ ）；
$\neg$ ．．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(u \# U))$ ）】
$\Longrightarrow ? P(\sharp \circ N)(u \# U)$
using $*$ ．$. l a m b d a . \operatorname{disc}(6)$ by presburger
show $\wedge x N u U . \llbracket \Lambda . I d e(« x » \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))$ ；
$\llbracket \neg \Lambda . I d e(« x » \circ N) ;$ ム．seq（«x» ○ N）（hd（u\＃U））；
ム．contains－head－reduction（ «x» ○ $N$ ）；
M．Ide（（ «x» ○ N）\ ．head－redex（ «x» ○ N））】

$$
\Longrightarrow ? P(h d(u \# U))(t l(u \# U))
$$

$\llbracket \neg \Lambda . I d e(« x » \circ N) ; \Lambda . s e q(« x » \circ N)(h d(u \# U))$ ；
＾．contains－head－reduction（ «x» ○ $N$ ）；
$\neg$ ム．Ide $(($ «x» ○ $N) \backslash$ 亿．head－redex $(« x » \circ N)) \rrbracket$
$\Longrightarrow$ ？$P(($ «x» ○ $N) \backslash \Lambda$ ．head－redex $(« x » \circ N))(u \# U)$ ；
$\llbracket \neg$ ム．Ide（«x» ○ N）；ム．seq（«x» ○ N）（hd（u\＃U））；
$\neg$ ．．contains－head－reduction（ «x» ○ N）；
$\Lambda$. contains－head－reduction $(h d(u \# U))$ ；
M．Ide $(($ «x» ○ $N) \backslash \Lambda$ ．head－strategy $(« x » \circ N)) \rrbracket$
$\Longrightarrow$ ？P（ $\Lambda . h e a d-$－strategy $(« x » \circ N))(t l(u \# U))$ ；
$\llbracket \neg \Lambda . I d e(« x » \circ N) ; \Lambda . s e q(« x » \circ N)(h d(u \# U))$ ；
$\neg$ ム．contains－head－reduction（«x» ○ $N$ ）；
A．contains－head－reduction（hd（u\＃U））；
$\neg$ И．Ide $(($ «x» ○ $N) \backslash$ M．head－strategy $(« x » \circ N)) \rrbracket$
$\Longrightarrow$ ？P $((« x » \circ N) \backslash \Lambda . h e a d-$ strategy $(« x » \circ N))(t l(u \# U))$ ；
$\llbracket \neg$ ム．Ide（«x» ○ N）；ム．seq（«x» ○ N）（hd（u\＃U））；
$\neg$ ．．contains－head－reduction（ «x» ○ $N$ ）；
$\neg$ M．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P «x»（filter notIde（map $\Lambda$ ．un－App1 $(u \# U))$ ）；
$\llbracket \neg \Lambda . I d e(« x » \circ N) ; \Lambda . s e q(« x » \circ N)(h d(u \# U))$ ；
$\neg$ ．．contains－head－reduction（ «x» ○ $N$ ）；
$\neg$ ．．contains－head－reduction $(h d(u \# U)) \rrbracket$
$\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(u \# U))$ ）】

$$
\Longrightarrow ? P(« x » \circ N)(u \# U)
$$

using $*$ ム．lambda．disc（7）by presburger
show $\bigwedge M 1$ M2 $N$ u $U$ ．$\llbracket \Lambda$ ．Ide $(M 1 \circ M 2 \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))$ ； $\llbracket \neg$ I．Ide（M1 ○ M2 ○ $N) ;$ ． $\operatorname{seq}(M 1 \circ$ M2 ○ $N)(h d(u \# U))$ ；
L．contains－head－reduction（M1 ○ M2 ○ $N$ ）；
M．Ide $(($ M1 ○ M2 ○ $N) \backslash$ 亿．head－redex $($ M1 ○ M2 ○ N $)) 】$ $\Longrightarrow$ ？P $(h d(u \# U))(t l(u \# U))$ ； $\llbracket \neg$ I．Ide $(M 1 \circ$ M2 ○ $N) ;$ ． ．seq $(M 1 \circ$ M2 ○ $N)(h d(u \# U))$ ； L．contains－head－reduction（M1 ○ M2 ○ $N$ ）；
$\neg$ M．Ide $(($ M1 ○ M2 ○ $N) \backslash$ ．head－redex $($ M1 ○ M2 ○ N $)) \rrbracket$ $\Longrightarrow ? P(($ M1 ○ M2 ○ $N) \backslash$ ．head－redex $($ M1 ○ M2 ○ $N))(u \# U) ;$
$\llbracket \neg$ M．Ide $($ M1 ○ M2 ○ $N) ; ~ \Lambda . s e q ~(M 1 \circ M 2 \circ N)(h d(u \# U)) ;$
$\neg$＾．contains－head－reduction（M1 ○ M2 ○ $N$ ）；
ム．contains－head－reduction $(h d(u \# U))$ ；
M．Ide $(($ M1 ○ M2 ○ $N) \backslash$ M．head－strategy $(M 1 \circ$ M2 ○ $N)) 】$ $\Longrightarrow$ ？P（ $1 . h e a d-$ strategy $(M 1 \circ M 2 \circ N))(t l(u \# U))$ ；
$\llbracket \neg$ M．Ide（M1 ○ M2 ○ N）； ．seq（M1 ○ M2 ○ N）（hd $(u \# U))$ ；
$\neg$＾．contains－head－reduction（M1 ○ M2 ○ $N$ ）；
ム．contains－head－reduction（hd（u\＃U））；
$\neg$ M．Ide $(($ M1 ○ M2 ○ $N) \backslash$ M．head－strategy $(M 1 \circ$ M2 ○ $N)) \rrbracket$ $\Longrightarrow ? P((M 1 \circ$ M2 $\circ N) \backslash$ 亿．head－strategy $(M 1 \circ$ M2 ○ $N))(t l(u \# U))$ ； $\llbracket \neg$ M．Ide $(M 1 \circ$ M2 $\circ N) ;$ ．seq $(M 1 \circ M 2 \circ N)(h d(u \# U))$ ；
$\neg$ A．contains－head－reduction（M1 ○ M2 ○ $N$ ）；
$\neg$ \．contains－head－reduction $(h d(u \# U)) \rrbracket$ $\Longrightarrow$ ？P（M1 ○ M2）（filter notIde（map $\Lambda . u n-A p p 1(u \# U))$ ）； $\llbracket \neg$ I．Ide（M1 ○ M2 ○ $N) ;$ ．$s e q(M 1 \circ$ M2 ○ $N)(h d(u \# U))$ ；
$\neg$ M．contains－head－reduction（M1 ○ M2 ○ N）；
$\neg$ ．．contains－head－reduction $(h d(u \# U)) \rrbracket$ $\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(u \# U))$ ）】 $\Longrightarrow ? P(M 1 \circ M 2 \circ N)(u \# U)$
using $*$ ム．lambda．disc（ 9 ）by presburger
show $\bigwedge$ M1 M2 $N$ u $U$ ．$\llbracket \Lambda$ ．Ide $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) \Longrightarrow ? P(h d(u \# U))(t l(u \# U))$ ； $\llbracket \neg$ M．Ide $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) ;$ ．seq $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)(h d(u \# U))$ ；
\．contains－head－reduction $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)$ ；
M．Ide $((\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) \backslash(\Lambda . h e a d-r e d e x ~(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N))) \rrbracket$ $\Longrightarrow$ ？P（hd $(u \# U))(t l(u \# U))$ ；
$\llbracket \neg$ I．Ide $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) ;$ ．seq $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)(h d(u \# U))$ ；
L．contains－head－reduction（ $\boldsymbol{\lambda}[$ M1］• M2 ○ $N$ ）；
$\neg$ I．Ide $((\boldsymbol{\lambda}[$ M1 $] \bullet$ M2 ○ $N) \backslash($（ ．head－redex $(\boldsymbol{\lambda}[M 1] \bullet$ M2 ○ $N))) \rrbracket$ $\Longrightarrow$ ？$P($ 几．resid $(\boldsymbol{\lambda}[M 1] \bullet$ M2 ○ $N)(\Lambda . h e a d-r e d e x ~(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)))$
（ $u$ \＃$U$ ）；
$\llbracket \neg$ ム．Ide $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) ;$ ム．seq $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)(h d(u \# U))$ ；
$\neg$ M．contains－head－reduction（ $\boldsymbol{\lambda}[\mathrm{M1}] \bullet$ M2 ○ $N)$ ；
＾．contains－head－reduction（hd（u \＃U））；
I．Ide $((\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) \backslash$ 亿．head－strategy $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)) \rrbracket$ $\Longrightarrow$ ？P（ ．head－strategy $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N))(t l(u \# U))$ ；
$\llbracket \neg$ M．Ide $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N) ;$ L．seq $(\boldsymbol{\lambda}[M 1] \bullet M 2 \circ N)(h d(u \# U))$ ；
$\neg$ 亿．contains－head－reduction（ $\boldsymbol{\lambda}[M 1] \bullet$ M2 ○ $N$ ）；
＾．contains－head－reduction（hd（u \＃U））；
using $*$ К．lambda．disc（10）by presburger
show $\wedge M N U . \llbracket \Lambda . I d e(M \circ N) \Longrightarrow ? P(h d(\sharp \# U))(t l(\sharp \# U))$;
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\sharp \# U))$;
ム.contains-head-reduction ( $M \circ N$ );
L.Ide $((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)) \rrbracket$
$\Longrightarrow$ ? P $(h d(\sharp \# U))(t l(\sharp \# U))$;
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\sharp \# U)) ;$
$\Lambda$.contains-head-reduction $(M \circ N)$;
$\neg$ I.Ide $((M \circ N) \backslash$.head-redex $(M \circ N)) \rrbracket$
$\Longrightarrow$ ?P $((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N))(\sharp \# U)$;
$\llbracket \neg$ M.Ide $(M \circ N) ;$. $s e q(M \circ N)(h d(\sharp \# U))$;
$\neg$. .contains-head-reduction $(M \circ N)$;
L.contains-head-reduction (hd ( $\sharp \# U)$ );
几.Ide $(\Lambda . r e s i d ~(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N))$ )】
$\Longrightarrow$ ? P ( $\Lambda . h e a d-$ strategy $(M \circ N))(t l(\sharp \# U))$;
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\sharp \# U)) ;$
$\neg$. .contains-head-reduction $(M \circ N)$;
$\Lambda$.contains-head-reduction $(h d(\sharp \# U))$;
$\neg$. Ide $((M \circ N) \backslash$ 亿.head-strategy $(M \circ N)) \rrbracket$
$\Longrightarrow ? P((M \circ N) \backslash \Lambda . h e a d-$ strategy $(M \circ N))(t l(\sharp \# U))$;
$\llbracket \neg$ M.Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\sharp \# U)) ;$
$\neg$ ム.contains-head-reduction $(M \circ N)$;
$\neg$. .contains-head-reduction $(h d(\sharp \# U)) \rrbracket$
$\Longrightarrow$ ? P M (filter notIde (map $\Lambda$.un-App1 $(\sharp \# U))$ );
$\llbracket \neg$ I.Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\sharp \# U)) ;$
$\neg$ 亿.contains-head-reduction $(M \circ N)$;
$\neg$ 亿.contains-head-reduction $(h d(\sharp \# U)) \rrbracket$
$\Longrightarrow$ ?P $N$ (filter notIde (map $\Lambda$.un-App2 $(\sharp \# U))$ )
$\Longrightarrow$ ? $P(M \circ N)(\sharp \# U)$
using $*$ 亿.lambda.disc(16) by presburger
show $\wedge M N x U . \llbracket \Lambda$.Ide $(M \circ N) \Longrightarrow ? P(h d(« x » \# U))(t l(« x » \# U))$;
$\llbracket \neg \Lambda . I d e(M \circ N) ;$. $\operatorname{seq}(M \circ N)(h d(« x » \# U))$;
L.contains-head-reduction ( $M \circ N$ );
M.Ide $((M \circ N) \backslash \Lambda$. head-redex $(M \circ N))$ 】
$\Longrightarrow$ ? P (hd («x»\#U)) (tl («x»\#U));
$\llbracket \neg \Lambda . I d e(M \circ N) ;$. $\mathrm{seq}(M \circ N)(h d(« x » \# U))$;
L.contains-head-reduction ( $M \circ N$ );
$\neg$ M．Ide $((M \circ N) \backslash$ A．head－redex $(M \circ N)) \rrbracket$ $\Longrightarrow$ ？$P((M \circ N) \backslash \Lambda$ ．head－redex $(M \circ N))(« x » \# U)$ ；
$\llbracket \neg$ I．Ide $(M \circ N) ;$ ． $\operatorname{seq}(M \circ N)(h d(« x » \# U)) ;$
$\neg \Lambda$ ．contains－head－reduction $(M \circ N)$ ；
＾．contains－head－reduction（hd（«x» \＃U））；
＾．Ide $((M \circ N) \backslash \Lambda . h e a d-s t r a t e g y ~(M \circ N)) \rrbracket$
$\Longrightarrow$ ？P（ $\Lambda . h e a d-$ strategy $(M \circ N))(t l(\mu x » \# U))$ ；
$\llbracket \neg \Lambda$ ．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(« x » \# U)) ;$
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
\．contains－head－reduction（hd（ «x» \＃U））；
$\neg$ ．Ide $((M \circ N) \backslash$ ．head－strategy $(M \circ N)) \rrbracket$
$\Longrightarrow ? P((M \circ N) \backslash \Lambda . h e a d-$ strategy $(M \circ N))(t l(« x » \# U))$ ；
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d(« x » \# U)) ;$
$\neg$ ．contains－head－reduction $(M \circ N)$ ；
$\neg$ 亿．contains－head－reduction（hd（«x» \＃U））】
$\Longrightarrow$ ？P M（filter notIde（map $\Lambda . u n-A p p 1(« x » \# U))$ ）；
$\llbracket \neg$ M．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(« x » \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
$\neg$ ．．contains－head－reduction $(h d(« x » \# U)) \rrbracket$
$\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(« x » \# U))$ ）】
$\Longrightarrow ? P(M \circ N)(« x » \# U)$
using $*$ प．lambda．disc（17）by presburger
show $\wedge M N P U . \llbracket \Lambda . I d e(M \circ N) \Longrightarrow ? P(h d(\boldsymbol{\lambda}[P] \# U))(t l(\boldsymbol{\lambda}[P] \# U))$ ；
$\llbracket \neg$ I．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\Lambda$ ．contains－head－reduction $(M \circ N)$ ；
M．Ide $((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)) 】$
$\Longrightarrow ? P(h d(\boldsymbol{\lambda}[P] \# U))(t l(\boldsymbol{\lambda}[P] \# U))$ ；
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\Lambda$ ．contains－head－reduction $(M \circ N)$ ；
$\neg$ I．Ide $((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)) \rrbracket$
$\Longrightarrow$ ？P $((M \circ N) \backslash$ ．head－redex $(M \circ N))(\boldsymbol{\lambda}[P] \# U)$ ；
$\llbracket \neg$ ム．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
＾．contains－head－reduction（hd（ $\boldsymbol{\lambda}[P] \# U)$ ）；
ム．Ide $((M \circ N) \backslash \Lambda$ ．head－strategy $(M \circ N)) \rrbracket$
$\Longrightarrow$ ？$P(\Lambda . h e a d-s t r a t e g y ~(~ M ~ ○ ~ N) ~) ~(t l ~(~ \boldsymbol{\lambda}[P] \# U))$ ；
$\llbracket \neg$ К．Ide $(M \circ N) ;$ ．$s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
＾．contains－head－reduction（hd $(\boldsymbol{\lambda}[P] \# U)$ ）；
$\neg$ ．Ide $((M \circ N) \backslash$ ．head－strategy $(M \circ N)) \rrbracket$ $\Longrightarrow ? P(\Lambda . r e s i d(M \circ N)(\Lambda . h e a d-$ strategy $(M \circ N)))(t l(\boldsymbol{\lambda}[P] \# U)) ;$
$\llbracket \neg$ К．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
$\neg$ \．contains－head－reduction $(h d(\boldsymbol{\lambda}[P] \# U)) \rrbracket$ $\Longrightarrow$ ？P $M$（filter notIde（map К．un－App1 $(\boldsymbol{\lambda}[P] \# U))$ ）；
$\llbracket \neg$ И．Ide $(M \circ N) ; \Lambda . s e q(M \circ N)(h d(\boldsymbol{\lambda}[P] \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
$\neg$ \．contains－head－reduction $(h d(\boldsymbol{\lambda}[P] \# U)) \rrbracket$
$\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2(\boldsymbol{\lambda}[P] \# U))$ ）】

$$
\Longrightarrow ? P(M \circ N)(\boldsymbol{\lambda}[P] \# U)
$$

using $*$ ム．lambda．disc（18）by presburger
show $\bigwedge M N$ P1 P2 $U$ ．$\llbracket \Lambda$ ．Ide $(M \circ N)$
$\Longrightarrow$ ？P $(h d((P 1 \circ P 2) \# U))(t l((P 1 \circ P 2) \# U)) ;$
$\llbracket \neg$ ム．Ide $(M \circ N) ;$ ．seq $(M \circ N)(h d((P 1 \circ P 2) \# U))$ ；
L．contains－head－reduction（ $M \circ N$ ）；
प．Ide $((M \circ N) \backslash \Lambda . h e a d-r e d e x ~(M \circ N)) \rrbracket$ $\Longrightarrow$ ？P $(h d((P 1 \circ P 2) \# U))(t l((P 1 \circ P 2) \# U))$ ；
$\llbracket \neg$ ム．Ide $(M \circ N) ;$ ．$s e q(M \circ N)(h d((P 1 \circ P 2) \# U))$ ；
＾．contains－head－reduction（ $M \circ N$ ）；
$\neg$ M．Ide $((M \circ N) \backslash$ M．head－redex $(M \circ N)) \rrbracket$ $\Longrightarrow ? P((M \circ N) \backslash \Lambda$ ．head－redex $(M \circ N))((P 1 \circ P 2) \# U)$ ；
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d((P 1 \circ P 2) \# U))$ ；
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
ム．contains－head－reduction $(h d((P 1 \circ P 2) \# U))$ ；
ム．Ide $((M \circ N) \backslash$ ．head－strategy $(M \circ N)) \rrbracket$ $\Longrightarrow$ ？$P(\Lambda . h e a d-s t r a t e g y ~(M \circ N))(t l((P 1 \circ P 2) \# U))$ ；
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d((P 1 \circ P 2) \# U)) ;$
$\neg$ \．contains－head－reduction $(M \circ N)$ ；
प．contains－head－reduction（hd（（P1 ○ P2）\＃U））；
$\neg$ M．Ide $((M \circ N) \backslash$ M．head－strategy $(M \circ N)) \rrbracket$ $\Longrightarrow ? P((M \circ N) \backslash \Lambda . h e a d-$ strategy $(M \circ N))(t l((P 1 \circ P 2) \# U)) ;$
$\llbracket \neg$ M．Ide $(M \circ N) ;$ ．$s$ seq $(M \circ N)(h d((P 1 \circ P 2) \# U)) ;$
$\neg$ ．．contains－head－reduction $(M \circ N)$ ；
$\neg$ ．．contains－head－reduction $(h d((P 1 \circ P 2) \# U)) \rrbracket$ $\Longrightarrow$ ？P M（filter notIde（map ．un－App1（（P1 ○ P2）\＃U）））；
$\llbracket \neg \Lambda . I d e(M \circ N) ; \Lambda . s e q(M \circ N)(h d((P 1 \circ P 2) \# U))$ ；
$\neg$ M．contains－head－reduction $(M \circ N)$ ；
$\neg$ ．．contains－head－reduction $(h d((P 1 \circ P 2) \# U)) \rrbracket$ $\Longrightarrow$ ？P $N($ filter notIde（map $\Lambda . u n-A p p 2((P 1 \circ P 2) \# U))) \rrbracket$
$\Longrightarrow$ ？P $(M \circ N)((P 1 \circ P 2) \# U)$
using $*$ К．lambda．disc（19）by presburger
qed

## The Standardization Theorem

Using the function standardize，we can now prove the Standardization Theorem．There is still a little bit more work to do，because we have to deal with various cases in which the reduction path to be standardized is empty or consists entirely of identities．
theorem standardization－theorem：
shows Arr $T \Longrightarrow$ Std（standardize $T) \wedge($ Ide $T \longrightarrow$ standardize $T=[]) \wedge$
$(\neg$ Ide $T \longrightarrow$ cong（standardize $T) T$ ）
proof（induct $T$ ）
show $\operatorname{Arr}[] \Longrightarrow$ Std（standardize［］）$\wedge($ Ide []$\longrightarrow$ standardize［］$=[]) \wedge$
（ $\neg$ Ide［］$\longrightarrow$ cong（standardize［］）［］）
by simp
fix $t T$
assume ind：Arr $T \Longrightarrow$ Std（standardize $T) \wedge($ Ide $T \longrightarrow$ standardize $T=[]) \wedge$
$(\neg$ Ide $T \longrightarrow$ cong（standardize $T) T$ ）

```
assume \(t T: \operatorname{Arr}(t \# T)\)
have \(t\) : \(\Lambda\).Arr \(t\)
 using \(t T\) Arr-imp-arr-hd by force
show Std (standardize \((t \# T)) \wedge(\) Ide \((t \# T) \longrightarrow\) standardize \((t \# T)=[]) \wedge\)
 \((\neg \operatorname{Ide}(t \# T) \longrightarrow\) cong \((\) standardize \((t \# T))(t \# T))\)
proof (cases \(T=[]\))
 show \(T=[] \Longrightarrow\) ?thesis
 using \(t\) tT Ide-iff-standard-development-empty Std-standard-development
 cong-standard-development
 by \(\operatorname{simp}\)
 assume 0: \(T \neq[]\)
 hence \(T\) : Arr \(T\)
 using \(t T\)
 by (metis Arr-imp-Arr-tl list.sel(3))
 show ?thesis
 proof (intro conjI)
 show Std (standardize \((t \# T))\)
 proof -
 have 1: \(\neg\) Ide \(T \Longrightarrow\) seq \([t]\) (standardize \(T\))
 using \(t T\) ind 0 ide-char Con-implies-Arr(1)
 apply (intro seqI \(\Lambda_{\Lambda P}\))
 apply simp
 apply (metis Con-implies-Arr(1) Ide.simps(1) ide-char)
 by (metis Src-hd-eqI Trg-last-Src-hd-eqI \(\langle T \neq[]\rangle\) append-Cons arr \(I_{P}\)
 arr-append-imp-seq list.distinct(1) self-append-conv2 \(t T\))
 show ?thesis
 using \(T 1\) ind Std-standard-development stdz-insert-correctness by auto
 qed
 show Ide \((t \# T) \longrightarrow\) standardize \((t \# T)=[]\)
 using Ide-consE Ide-iff-standard-development-empty Ide-implies-Arr ind
 ム.Ide-implies-Arr \(\Lambda . i d e-c h a r\)
 by (metis list.sel \((1,3)\) standardize.simps(1-2) stdz-insert.simps(1))
 show \(\neg\) Ide \((t \# T) \longrightarrow\) standardize \((t \# T){ }^{*} \sim^{*} t \# T\)
 proof
 assume 1: ᄀIde \((t \# T)\)
 show standardize \((t \# T)^{*} \sim^{*} t \# T\)
 proof (cases \(\Lambda\).Ide \(t\))
 assume \(t\) : \(\Lambda\).Ide \(t\)
 have 2: ᄀIde T
 using \(1 t t T\) by fastforce
 have standardize \((t \# T)=\) stdz-insert \(t\) (standardize \(T)\)
 by \(\operatorname{simp}\)
 also have...\({ }^{*} \sim^{*} t \# T\)
 proof -
 have 3: Std (standardize \(T\)) \(\wedge\) standardize \(T^{*} \sim^{*} T\)
 using \(T 2\) ind by blast
 have stdz-insert \(t\) (standardize \(T)=\)
 stdz-insert (hd (standardize \(T)\)) (tl (standardize \(T)\))
 proof -
```

```
 have seq[t] (standardize T)
 using 0 2 tT ind
 by (metis Arr.elims(2) Con-imp-eq-Srcs Con-implies-Arr(1) Ide.simps(1-2)
 Ide-implies-Arr Trgs.simps(2) ide-char \Lambda.ide-char list.inject
 seq-char seq-implies-Trgs-eq-Srcs t)
 thus ?thesis
 using t 3 stdz-insert-Ide-Std by blast
qed
also have ... * ~* hd (standardize T) # tl (standardize T)
proof -
 have }\neg\mathrm{ Ide (standardize T)
 using 2 3 ide-backward-stable ide-char by blast
 moreover have tl (standardize T)}\not=[]
 seq [hd (standardize T)] (tl (standardize T)) ^
 Std (tl (standardize T))
 by (metis 3 Std-consE Std-imp-Arr append.left-neutral append-Cons
 arr-append-imp-seq arr-char hd-Cons-tl list.discI tl-Nil)
 ultimately show ?thesis
 by (metis 2 Ide.simps(2) Resid.simps(1) Std-consE T cong-standard-development
 ide-char ind \Lambda.ide-char list.exhaust-sel stdz-insert.simps(1)
 stdz-insert-correctness)
qed
also have hd (standardize T) # tl (standardize T) = standardize T
 by (metis 3 Arr.simps(1) Con-implies-Arr(2) Ide.simps(1) ide-char
 list.exhaust-sel)
 also have standardize T *** T
 using 3 by simp
also have T **** # T
 using 0ttT arr-append-imp-seq arr-char cong-cons-ideI(2) by simp
finally show ?thesis by blast
qed
thus ?thesis by auto
next
assume t:\neg \Lambda.Ide t
show ?thesis
proof (cases Ide T)
 assume T: Ide T
 have standardize (t # T) = standard-development t
 using t T Ide-implies-Arr ind by simp
also have ... * ~* [t]
 using t T tT cong-standard-development [of t] by blast
also have [t] *** [t] @ T
 using t T tT cong-append-ideI(4) [of [t] T]
 by (simp add: 0 arrIP arr-append-imp-seq ide-char)
finally show ?thesis by auto
next
assume T: ᄀ Ide T
have 1: Std (standardize T) ^ standardize T * ~* T
 using T<Arr T〉 ind by blast
```

```
 have 2: seq [t] (standardize T)
 by (metis 0 Arr.simps(2) Arr.simps(3) Con-imp-eq-Srcs Con-implies-Arr(2)
 Ide.elims(3) Ide.simps(1) T Trgs.simps(2) ide-char ind
 seq-char seq-implies-Trgs-eq-Srcs tT)
 have stdz-insert t (standardize T) * ~* t # standardize T
 using t 1 2 stdz-insert-correctness [of t standardize T] by blast
 also have t# standardize T T***
 using 12
 by (meson Arr.simps(2) \Lambda.prfx-reflexive cong-cons seq-char)
 finally show ?thesis by auto
 qed
 qed
 qed
 qed
 qed
qed
```


## The Leftmost Reduction Theorem

In this section we prove the Leftmost Reduction Theorem, which states that leftmost reduction is a normalizing strategy.

We first show that if a standard reduction path reaches a normal form, then the path must be the one produced by following the leftmost reduction strategy. This is because, in a standard reduction path, once a leftmost redex is skipped, all subsequent reductions occur "to the right of it", hence they are all non-leftmost reductions that do not contract the skipped redex, which remains in the leftmost position.

The Leftmost Reduction Theorem then follows from the Standardization Theorem. If a term is normalizable, there is a reduction path from that term to a normal form. By the Standardization Theorem we may as well assume that path is standard. But a standard reduction path to a normal form is the path generated by following the leftmost reduction strategy, hence leftmost reduction reaches a normal form after a finite number of steps.

```
lemma sseq-reflects-leftmost-reduction:
assumes \(\Lambda\).sseq \(t u\) and \(\Lambda\).is-leftmost-reduction \(u\)
shows \(\Lambda\).is-leftmost-reduction \(t\)
proof -
 have \(*: \bigwedge u . u=\Lambda\).leftmost-strategy \((\Lambda . S r c t) \backslash t \Longrightarrow \neg \Lambda . s s e q ~ t u\) for \(t\)
 proof (induct t)
 show \(\bigwedge u\). \(\neg \Lambda\).sseq \(\sharp u\)
 using \(\Lambda\).sseq-imp-seq by blast
 show \(\bigwedge x u\). \(\neg\).sseq «x» u
```



```
 show \(\wedge t u . \llbracket \bigwedge u . u=\Lambda . l e f t m o s t-s t r a t e g y ~(\Lambda . S r c ~ t) ~ \backslash t \Longrightarrow \neg \Lambda . s s e q ~ t u ;\)
 \(u=\Lambda\). leftmost-strategy \((\Lambda . S r c ~ \boldsymbol{\lambda}[t]) \backslash \boldsymbol{\lambda}[t] \rrbracket\)
 \(\Longrightarrow \neg \Lambda\).sseq \(\boldsymbol{\lambda}[t] u\)
 by auto
 show \(\wedge t 1\) t2 \(u . \llbracket \wedge u . u=\Lambda\).leftmost-strategy \((\Lambda . S r c t 1) \backslash t 1 \Longrightarrow \neg \Lambda . s s e q t 1 u ;\)
```

```
\(\bigwedge u . u=\) 亿.leftmost-strategy (\(\Lambda\). Src t2) \(\backslash t 2 \Longrightarrow \neg\). 2 sseq t2 \(u ;\)
\(u=\Lambda\). leftmost-strategy \((\Lambda . S r c(\boldsymbol{\lambda}[t 1] \bullet t 2)) \backslash(\boldsymbol{\lambda}[t 1] \bullet t 2) \rrbracket\)
 \(\Longrightarrow \neg \Lambda . s s e q(\boldsymbol{\lambda}[t 1] \bullet t 2) u\)
```

apply $\operatorname{simp}$

 show $\bigwedge t 1 t 2 . \llbracket \bigwedge u . u=\Lambda$ ．leftmost－strategy $(\Lambda . S r c ~ t 1) \backslash t 1 \Longrightarrow \neg \Lambda$ ．sseq $t 1 u$ ； $\Lambda u . u=\Lambda$ ．leftmost－strategy $(\Lambda . S r c$ t2 $) \backslash t 2 \Longrightarrow \neg \Lambda . s s e q ~ t 2 ~ u ; ~$ $u=$ К．leftmost－strategy（ $\Lambda . S r c(\Lambda . A p p ~ t 1 ~ t 2)) ~ \ \Lambda . A p p ~ t 1 ~ t 2 】 ~$

$$
\Longrightarrow \neg \Lambda . \operatorname{seq}(\Lambda . A p p t 1 t 2) u \text { for } u
$$

apply（cases $u$ ）
apply simp－all
apply（metis $\Lambda . e l e m e n t a r y-r e d u c t i o n . \operatorname{simps}(2)$（1．sseq－imp－elementary－reduction2）
apply（metis $\Lambda . S r c . \operatorname{simps}(3) \Lambda . S r c-r e s i d ~ \Lambda . T r g . \operatorname{simps}(3) \Lambda . l a m b d a . \operatorname{distinct}(15)$
＾．lambda．distinct（3））
proof－
show $\bigwedge$ t1 t2 u1 u2．



$u=\Lambda . l e f t m o s t-$ strategy $(\Lambda . A p p(\Lambda . S r c ~ t 1) ~(\Lambda . S r c ~ t 2)) ~ \ \Lambda . A p p ~ t 1 ~ t 2 】 ~] ~$
$\Longrightarrow \neg \Lambda . s s e q(\Lambda . A p p t 1$ t2）




प．lambda．discI（3） ．lambda．distinct（7）
ム．leftmost－strategy－selects－head－reduction $\Lambda$ ．resid－Arr－self
＾．sseq－preserves－App－and－no－head－reduction）
show $\wedge u 1 u 2$ ．



$u=$ К．leftmost－strategy（ $\Lambda . A p p(\Lambda . S r c ~ t 1) ~(\Lambda . S r c ~ t 2)) ~ \ \Lambda . A p p ~ t 1 ~ t 2 】 ~] ~$ $\Longrightarrow \neg \Lambda . s s e q$（ $\Lambda . A p p$ t1 t2）

for $t 1$ t2
apply（cases $\neg$ К．Arr t1）
apply simp－all
apply（meson $\Lambda . \operatorname{Arr} . \operatorname{simps}(4)$（4．seq－char $\Lambda . s s e q-i m p-s e q)$
apply（cases $\neg$ К．Arr t2）
apply simp－all

using $\Lambda$ ．Arr－not－Nil
apply（cases t1）
apply simp－all
using $\Lambda . N F$－iff－has－no－redex $\Lambda$ ．has－redex－iff－not－Ide－leftmost－strategy
प．Ide－iff－Src－self $\Lambda$ ．Ide－iff－Trg－self


```
 \Lambda.leftmost-strategy-is-reduction-strategy \Lambda.reduction-strategy-def
 \Lambda.resid-Arr-Src
 apply simp
 apply (metis \Lambda.Arr.simps(4) \Lambda.Ide.simps(4) \Lambda.Ide-Trg \Lambda.Src.simps(4)
 \Lambda.sseq-imp-elementary-reduction2)
 by (metis \Lambda.Ide-Trg \Lambda.elementary-reduction-not-ide \Lambda.ide-char)
 qed
 qed
 have t}\not=\Lambda\mathrm{ \leftmost-strategy (}\Lambda.Src t)\Longrightarrow False
 proof -
 assume 1: t = \Lambda.leftmost-strategy (\Lambda.Src t)
 have 2: ᄀ \Lambda.Ide (\Lambda.leftmost-strategy (\Lambda.Src t))
 by (meson assms(1) \Lambda.NF-def \Lambda.NF-iff-has-no-redex \Lambda.arr-char
 \Lambda.elementary-reduction-is-arr \Lambda.elementary-reduction-not-ide
 \Lambda.has-redex-iff-not-Ide-leftmost-strategy \Lambda.ide-char
 \Lambda.sseq-imp-elementary-reduction1)
 have \Lambda.is-leftmost-reduction (\Lambda.leftmost-strategy (\Lambda.Src t) \t)
 proof -
 have \Lambda.is-leftmost-reduction (\Lambda.leftmost-strategy (\Lambda.Src t))
 by (metis assms(1) 2 \Lambda.Ide-Src \Lambda.Ide-iff-Src-self \Lambda.arr-char
 \Lambda.elementary-reduction-is-arr \Lambda.elementary-reduction-leftmost-strategy
 \Lambda.is-leftmost-reduction-def \Lambda.leftmost-strategy-is-reduction-strategy
 \Lambda.reduction-strategy-def \Lambda.sseq-imp-elementary-reduction1)
 moreover have 3: \Lambda.elementary-reduction t
 using assms \Lambda.sseq-imp-elementary-reduction1 by simp
 moreover have }\neg\Lambda\mathrm{ .is-leftmost-reduction t
 using 1 \Lambda.is-leftmost-reduction-def by auto
 moreover have \Lambda.coinitial (\Lambda.leftmost-strategy (\Lambda.Src t)) t
 using 3 \Lambda.leftmost-strategy-is-reduction-strategy \Lambda.reduction-strategy-def
 \Lambda.Ide-Src \Lambda.elementary-reduction-is-arr
 by force
 ultimately show ?thesis
 using 1 \Lambda.leftmost-reduction-preservation by blast
 qed
 moreover have \Lambda.coinitial (\Lambda.leftmost-strategy (\Lambda.Src t)\t)u
 using assms(1) calculation \Lambda.Arr-not-Nil \Lambda.Src-resid \Lambda.elementary-reduction-is-arr
 \Lambda.is-leftmost-reduction-def \Lambda.seq-char \Lambda.sseq-imp-seq
 by force
 moreover have }\Lambdav.\llbracket\Lambda.is-leftmost-reduction v; \Lambda.coinitial v u\rrbracket\Longrightarrowv=
 by (metis \Lambda.arr-iff-has-source \Lambda.arr-resid-iff-con \Lambda.confluence assms(2)
 \Lambda.Arr-not-Nil \Lambda.Coinitial-iff-Con \Lambda.is-leftmost-reduction-def \Lambda.sources-char_)
 ultimately have \Lambda.leftmost-strategy (\Lambda.Src t) \t=u
 by blast
 thus ?thesis
 using assms(1) * by blast
 qed
 thus ?thesis
 using assms(1) \Lambda.is-leftmost-reduction-def \Lambda.sseq-imp-elementary-reduction1 by force
qed
```

lemma elementary－reduction－to－NF－is－leftmost：
shows $\llbracket \Lambda . e l e m e n t a r y-r e d u c t i o n ~ t ; ~ \Lambda . N F ~(T r g ~[t]) \rrbracket \Longrightarrow \Lambda . l e f t m o s t-s t r a t e g y ~(\Lambda . S r c ~ t)=t$ proof（induct t）
show $\Lambda . l e f t m o s t-s t r a t e g y ~(\Lambda . S r c ~ \sharp)=\sharp$
by $\operatorname{simp}$
show $\Lambda x . \llbracket \Lambda . e l e m e n t a r y-r e d u c t i o n ~ « x » ; \Lambda . N F(\operatorname{Trg}[« x »]) \rrbracket$ $\Longrightarrow$ 亿．leftmost－strategy（ $\Lambda$. Src $« x »)=« x »$
by auto
show $\wedge t$ ．【［ム．elementary－reduction $t ; \Lambda . N F(\operatorname{Trg}[t]) \rrbracket$

$$
\Longrightarrow \text { ム.leftmost-strategy }(\Lambda . S r c t)=t ;
$$

L．elementary－reduction $\boldsymbol{\lambda}[t] ; \Lambda . N F(\operatorname{Trg}[\boldsymbol{\lambda}[t]]) \rrbracket$
$\Longrightarrow$ 亿．leftmost－strategy $(\Lambda . S r c ~ \lambda[t])=\boldsymbol{\lambda}[t]$
using lambda－calculus．NF－Lam－iff lambda－calculus．elementary－reduction－is－arr by force
show $\wedge$ t1 t2．【【ム．elementary－reduction t1；$\Lambda . N F(T r g[t 1]) \rrbracket$
$\Longrightarrow$ ．leftmost－strategy $(\Lambda . S r c ~ t 1)=t 1$ ；
【ム．elementary－reduction t2；$\Lambda . N F(\operatorname{Trg}[t 2]) \rrbracket$

人．elementary－reduction $(\boldsymbol{\lambda}[t 1] \bullet t 2) ; \Lambda . N F(\operatorname{Trg}[\boldsymbol{\lambda}[t 1] \bullet t 2])]$

$$
\Longrightarrow \text { 亿.leftmost-strategy }(\Lambda . S r c(\boldsymbol{\lambda}[t 1] \bullet t 2))=\boldsymbol{\lambda}[t 1] \bullet t 2
$$

apply $\operatorname{simp}$
by（metis $\Lambda . I d e-i f f-S r c-s e l f ~ \Lambda . I d e-i m p l i e s-A r r) ~$
fix $t 1$ t2
assume ind1：$\llbracket \Lambda$ ．elementary－reduction $\mathrm{t1} ; \mathrm{\Lambda} . \mathrm{NF}(\operatorname{Trg}[t 1]) \rrbracket$
$\Longrightarrow$ 亿．leftmost－strategy $(\Lambda . S r c ~ t 1)=t 1$
assume ind2：【ム．elementary－reduction t2；$\Lambda . N F(\operatorname{Trg}[t 2]) \rrbracket$
$\Longrightarrow$ 亿．leftmost－strategy $(\Lambda . S r c ~ t 2)=t 2$
assume $t$ ：$\Lambda$ ．elementary－reduction（ $\Lambda . A p p$ t1 t2）
have $t 1$ ：$\Lambda$ ．Arr $t 1$

have t2：$\Lambda$ ．Arr t2
using $t$＾．Arr．simps（4） ．elementary－reduction－is－arr by blast
assume $N F: \Lambda . N F(\operatorname{Trg}[\Lambda . A p p t 1 t 2])$
have 1：$\neg$ ．is－Lam t1
using $N F \Lambda . N F-d e f$
apply（cases t1）
apply simp－all
by（metis（mono－tags）$\Lambda . I d e . \operatorname{simps}(1) \Lambda . N F-A p p-i f f ~ \Lambda . T r g . \operatorname{simps}(2-3) ~ \Lambda . l a m b d a . d i s c I(2))$
have 2：$\Lambda . N F(\Lambda . \operatorname{Trg} t 1) \wedge \Lambda . N F(\Lambda . \operatorname{Trg} t 2)$
using NF t1 t2 1 I．NF－App－iff by simp
show ．leftmost－strategy（ $\Lambda . \operatorname{Src}(\Lambda . \operatorname{App} t 1$ t2 $))=$ ．App t1 t2
using $t$ t1 t2 12 ind1 ind2
apply（cases t1）
apply simp－all

ム．NF－iff－has－no－redex $\Lambda$ ．elementary－reduction－not－ide $\Lambda . e q-I d e-a r e-c o n g$
ム．has－redex－iff－not－Ide－leftmost－strategy $\Lambda$. resid－Arr－Src t1）
using $\Lambda$ ．Ide－iff－Src－self by blast
qed

```
lemma Std-path-to-NF-is-leftmost:
shows \llbracketStd T; \Lambda.NF (Trg T)\rrbracket\Longrightarrow set T\subseteqCollect \Lambda.is-leftmost-reduction
proof -
 have 1: \Lambdat. \llbracketStd (t # T); \Lambda.NF (Trg (t # T))\rrbracket\Longrightarrow \Lambda.is-leftmost-reduction t for T
 proof (induct T)
 show }\t.\llbracketStd[t];\Lambda.NF(\operatorname{Trg}[t])\rrbracket\Longrightarrow\Lambda.is-leftmost-reduction t
 using elementary-reduction-to-NF-is-leftmost \Lambda.is-leftmost-reduction-def by simp
 fix tuT
 assume ind: \t. \llbracketStd (t# T); \Lambda.NF (Trg (t # T))\rrbracket\Longrightarrow \Lambda.is-leftmost-reduction t
 assume Std: Std (t#u# T)
 assume \Lambda.NF (Trg (t#u# T))
 show \Lambda.is-leftmost-reduction t
 using Std <\Lambda.NF (Trg (t#u # T))` ind sseq-reflects-leftmost-reduction by auto
 qed
 show \llbracketStd T; \Lambda.NF (Trg T)\rrbracket\Longrightarrow set T\subseteq Collect \Lambda.is-leftmost-reduction
 proof (induct T)
 show 2: set []\subseteq Collect \Lambda.is-leftmost-reduction
 by simp
 fix }t
 assume ind:\llbracketStd T; \Lambda.NF (Trg T)\rrbracket\Longrightarrow set T\subseteq Collect \Lambda.is-leftmost-reduction
 assume Std: Std (t# T) and NF: \Lambda.NF (Trg (t# T))
 show set (t # T)\subseteq Collect \Lambda.is-leftmost-reduction
 by(metis 12 NF Std Std-consE Trg.elims ind insert-subset list.inject list.simps(15)
 mem-Collect-eq)
 qed
qed
theorem leftmost-reduction-theorem:
shows \Lambda.normalizing-strategy \Lambda.leftmost-strategy
proof (unfold \Lambda.normalizing-strategy-def, intro allI impI)
 fix }
 assume a: \Lambda.normalizable a
 show \existsn. \Lambda.NF (\Lambda.reduce \Lambda.leftmost-strategy a n)
 proof (cases \Lambda.NF a)
 show \Lambda.NF a\Longrightarrow ?thesis
 by (metis lambda-calculus.reduce.simps(1))
 assume 1: ᄀ \Lambda.NF a
 obtain T where T: Arr T^Src T=a^\Lambda.NF (Trg T)
 using a \Lambda.normalizable-def red-iff by auto
 have 2: ᄀ Ide T
 using T 1 Ide-imp-Src-eq-Trg by fastforce
 obtain U where U}\mathrm{ : Std U ^ cong T U
 using T 2 standardization-theorem by blast
 have 3: set U\subseteq Collect \Lambda.is-leftmost-reduction
 using 1 U Std-path-to-NF-is-leftmost
 by (metis Con-Arr-self Resid-parallel Src-resid T cong-implies-coinitial)
 have }\U.\llbracketArr U; length U = n; set U\subseteq Collect \Lambda.is-leftmost-reduction\rrbracket
 U = apply-strategy \Lambda.leftmost-strategy (Src U) (length U) for n
```

```
 proof (induct n)
 show \U.\llbracketArr U; length U = 0; set U\subseteq Collect \Lambda.is-leftmost-reduction\rrbracket
 \Longrightarrow U = \text { apply-strategy } \Lambda . l e f t m o s t - s t r a t e g y ~ (S r c ~ U) ~ (l e n g t h ~ U)
 by simp
 fix n U
 assume ind: \U.\llbracketArr U; length U = n; set U\subseteq Collect \Lambda.is-leftmost-reduction\rrbracket
 \Longrightarrow U = \text { apply-strategy \.leftmost-strategy (Src U) (length U)}
 assume U: Arr U
 assume n: length U S Suc n
 assume set: set U\subseteq Collect \Lambda.is-leftmost-reduction
 show U = apply-strategy \Lambda.leftmost-strategy (Src U) (length U)
 proof (cases n=0)
 show }n=0\Longrightarrow\mathrm{ ?thesis
 using Un 1 set \Lambda.is-leftmost-reduction-def
 by (cases U) auto
 assume 5: n\not=0
 have 4:hd U = \Lambda.leftmost-strategy (Src U)
 using n U set \Lambda.is-leftmost-reduction-def
 by (cases U) auto
 have 6: tl U\not=[]
 using 4 5 n U
 by (metis Suc-length-conv list.sel(3) list.size(3))
 show ?thesis
 using 4 5 6 n U set ind [of tl U]
 apply (cases n)
 apply simp-all
 by (metis (no-types, lifting) Arr-consE Nil-tl Nitpick.size-list-simp(2)
 ind [of tl U] \Lambda.arr-char \Lambda.trg-char list.collapse list.set-sel(2)
 old.nat.inject reduction-paths.apply-strategy.simps(2) subset-code(1))
 qed
 qed
 hence U = apply-strategy \Lambda.leftmost-strategy (Src U) (length U)
 by (metis 3 Con-implies-Arr(1) Ide.simps(1) U ide-char)
 moreover have Src U =a
 using TU cong-implies-coinitial
 by (metis Con-imp-eq-Srcs Con-implies-Arr(2) Ide.simps(1) Srcs-simp PWE empty-set
 ex-un-Src ide-char list.set-intros(1) list.simps(15))
 ultimately have Trg U = \Lambda.reduce \Lambda.leftmost-strategy a (length U)
 using reduce-eq-Trg-apply-strategy
 by (metis Arr.simps(1) Con-implies-Arr(1) Ide.simps(1) U a ide-char
 \Lambda.leftmost-strategy-is-reduction-strategy \Lambda.normalizable-def length-greater-0-conv)
 thus ?thesis
 by (metis Ide.simps(1) Ide-imp-Src-eq-Trg Src-resid T Trg-resid-sym U ide-char)
 qed
 qed
end
end
```


## Bibliography

[1] H. Barendregt. The Lambda-calculus: Its Syntax and Semantics. North-Holland, 1984.
[2] M. Copes. A machine-checked proof of the standardization theorem in lambda calculus using multiple substitution. Master's thesis, Universidad ORT Uruguay, 2018. https://dspace.ort.edu.uy/bitstream/handle/20.500.11968/3725/Material\% 20completo.pdf.
[3] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958.
[4] N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. Indagationes Mathematicae (Proceedings), 34(5):381-392, 1972.
[5] R. de Vrijer. A direct proof of the finite developments theorem. The Journal of Symbolic Logic, 50(2):339-343, June 1985.
[6] R. Hindley. Reductions of residuals are finite. Transactions of the American Mathematical Society, 240:345-361, June 1978.
[7] G. Huet. Residual theory in $\lambda$-calculus: A formal development. Journal of Functional Programming, 4(3):371-394, 1994.
[8] J.-J. Lévy. Réductions correctes et optimales dans le $\lambda$-calcul. PhD thesis, U. Paris VII, 1978. Thèse d'Etat.
[9] D. E. Schroer. The Church-Rosser Theorem. PhD thesis, Cornell University, 1965.
[10] E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221-269, July 1989.
[11] E. W. Stark. Category theory with adjunctions and limits. Archive of Formal Proofs, June 2016. http://isa-afp.org/entries/Category3.shtml, Formal proof development.

