Relational Characterisations of Paths

Walter Guttmann and Peter Höfner

May 26, 2024

Abstract

Binary relations are one of the standard ways to encode, characterise and reason about graphs. Relation algebras provide equational axioms for a large fragment of the calculus of binary relations. Although relations are standard tools in many areas of mathematics and computing, researchers usually fall back to point-wise reasoning when it comes to arguments about paths in a graph. We present a purely algebraic way to specify different kinds of paths in Kleene relation algebras, which are relation algebras equipped with an operation for reflexive transitive closure. We study the relationship between paths with a designated root vertex and paths without such a vertex. Since we stay in first-order logic this development helps with mechanising proofs. To demonstrate the applicability of the algebraic framework we verify the correctness of three basic graph algorithms.

Contents

1 (More) Relation Algebra 2
1.1 Relation algebras satisfying the Tarski rule 8
1.2 Relation algebras satisfying the point axiom 14
2 Relational Characterisation of Paths 25
2.1 Consequences without the Tarski rule 26
2.2 Consequences with the Tarski rule 45
3 Relational Characterisation of Rooted Paths 74
3.1 Consequences without the Tarski rule 76
3.2 Consequences with the Tarski rule 84
3.3 Consequences with the Tarski rule and the point axiom 96
4 Correctness of Path Algorithms 102
4.1 Construction of a path 102
4.2 Topological sorting 109
4.3 Construction of a tree 115
4.4 Construction of a non-empty cycle 119

Overview

A path in a graph can be defined as a connected subgraph of edges where each vertex has at most one incoming edge and at most one outgoing edge [3, 12]. We develop a theory of paths based on this representation and use it for algorithm verification. All reasoning is done in variants of relation algebras and Kleene algebras $[8,9,11]$.

Section 1 presents fundamental results that hold in relation algebras. Relation-algebraic characterisations of various kinds of paths are introduced and compared in Section 2. We extend this to paths with a designated root in Section 3. Section 4 verifies the correctness of a few basic graph algorithms.

These Isabelle/HOL theories formally verify results in [2]. See this paper for further details and related work.

1 (More) Relation Algebra

This theory presents fundamental properties of relation algebras, which are not present in the AFP entry on relation algebras but could be integrated there [1]. Many theorems concern vectors and points.
theory More-Relation-Algebra
imports Relation-Algebra.Relation-Algebra-RTC
Relation-Algebra.Relation-Algebra-Functions
begin
no-notation
trancl ((-+) [1000] 999)
context relation-algebra
begin
notation
converse ((- $\left.{ }^{T}\right)$ [102] 101)
abbreviation bijective
where bijective $x \equiv i s$-inj $x \wedge i s$-sur x
abbreviation reflexive
where reflexive $R \equiv 1^{\prime} \leq R$
abbreviation symmetric
where symmetric $R \equiv R=R^{T}$
abbreviation transitive
where transitive $R \equiv R ; R \leq R$
General theorems
lemma x-leq-triple-x:
$x \leq x ; x^{T} ; x$
proof -
have $x=x ; 1^{\prime} \cdot 1$
by simp
also have $\ldots \leq\left(x \cdot 1 ; 1^{T}\right) ;\left(1^{\prime} \cdot x^{T} ; 1\right)$
by (rule dedekind)
also have $\ldots=x ;\left(x^{T} ; 1 \cdot 1^{\prime}\right)$
by (simp add: inf.commute)
also have $\ldots \leq x ;\left(x^{T} \cdot 1^{\prime} ; 1^{T}\right) ;\left(1 \cdot\left(x^{T}\right)^{T} ; 1^{\prime}\right)$
by (metis comp-assoc dedekind mult-isol)
also have $\ldots \leq x ; x^{T} ; x$ by simp
finally show ?thesis.
qed
lemma inj-triple:
assumes is-inj x
shows $x=x ; x^{T} ; x$
by (metis assms order.eq-iff inf-absorb2 is-inj-def mult-1-left mult-subdistr x-leq-triple-x)
lemma p-fun-triple:
assumes is-p-fun x
shows $x=x ; x^{T} ; x$
by (metis assms comp-assoc order.eq-iff is-p-fun-def mult-isol mult-oner
x-leq-triple-x)
lemma loop-backward-forward:
$x^{T} \leq-\left(1^{\prime}\right)+x$
by (metis conv-e conv-times inf.cobounded2 test-dom test-domain test-eq-conv
galois-2 inf.commute sup.commute)
lemma inj-sur-semi-swap:
assumes is-sur z
and is-inj x
shows $z \leq y ; x \Longrightarrow x \leq y^{T} ; z$
proof -
assume $z \leq y ; x$
hence $z ; x^{T} \leq y ;\left(x ; x^{T}\right)$
by (metis mult-isor mult-assoc)
hence $z ; x^{T} \leq y$
using 〈is-inj $x\rangle$ unfolding is-inj-def
by (metis mult-isol order.trans mult-1-right)
hence $\left(z^{T} ; z\right) ; x^{T} \leq z^{T} ; y$

```
    by (metis mult-isol mult-assoc)
    hence }\mp@subsup{x}{}{T}\leq\mp@subsup{z}{}{T};
    using <is-sur z> unfolding is-sur-def
    by (metis mult-isor order.trans mult-1-left)
    thus ?thesis
    using conv-iso by fastforce
qed
lemma inj-sur-semi-swap-short:
    assumes is-sur z
        and is-inj x
    shows z\leq y ; ; \Longrightarrow x\leqy;z
proof -
    assume as:z\leq yT;x
    hence z;\mp@subsup{x}{}{T}\leq\mp@subsup{y}{}{T}
    using <z \leq y ; ;x\rangle\langleis-inj x> unfolding is-inj-def
    by (metis assms(2) conv-invol inf.orderI inf-absorb1 inj-p-fun ss-422iii)
    hence }\mp@subsup{x}{}{T}\leq\mp@subsup{z}{}{T};\mp@subsup{y}{}{T
    using 〈is-sur z> unfolding is-sur-def
    by (metis as assms inj-sur-semi-swap conv-contrav conv-invol conv-iso)
    thus }x\leqy;
    using conv-iso by fastforce
qed
lemma bij-swap:
    assumes bijective z
        and bijective x
    shows }z\leq\mp@subsup{y}{}{T};x\longleftrightarrowx\leqy;
by (metis assms inj-sur-semi-swap conv-invol)
    The following result is [10, Proposition 4.2.2(iv)].
lemma ss42Riv:
    assumes is-p-fun y
        and }x\leq
        and y;1\leqx;1
    shows }x=
proof -
    have }y\leq(x;1)\cdot
        using assms(3) le-infI maddux-20 order-trans by blast
    also have ... }\leqx;\mp@subsup{x}{}{T};
        by (metis inf-top-left modular-1-var comp-assoc)
    also have ... }\leqx;\mp@subsup{y}{}{T};
    using assms(2) conv-iso mult-double-iso by blast
    also have ... }\leq
        using assms(1) comp-assoc is-p-fun-def mult-isol mult-1-right
        by fastforce
    finally show ?thesis
        by (simp add: assms(2) order.antisym)
qed
```

The following results are variants of [10, Proposition 4.2.3].
lemma ss423conv:
assumes bijective x
shows $x ; y \leq z \longleftrightarrow y \leq x^{T} ; z$
by (metis assms conv-contrav conv-iso inj-p-fun is-map-def ss423 sur-total)

lemma ss423bij:

assumes bijective x
shows $y ; x^{T} \leq z \longleftrightarrow y \leq z ; x$
by (simp add: assms is-map-def p-fun-inj ss423 total-sur)
lemma inj-distr:
assumes $i s-i n j z$
shows $(x \cdot y) ; z=(x ; z) \cdot(y ; z)$
apply (rule order.antisym)
using mult-subdistr-var apply blast
using assms conv-iso inj-p-fun p-fun-distl by fastforce
lemma test-converse:
$x \cdot 1^{\prime}=x^{T} \cdot 1^{\prime}$
by (metis conv-e conv-times inf-le2 is-test-def test-eq-conv)
lemma injective-down-closed:
assumes is-inj x
and $y \leq x$
shows is-inj y
by (meson assms conv-iso dual-order.trans is-inj-def mult-isol-var)

lemma injective-sup:

assumes is-inj t
and $e ; t^{T} \leq 1^{\prime}$ and is-inj e shows is-inj $(t+e)$
proof -
have 1: $t ; e^{T} \leq 1^{\prime}$ using assms(2) conv-contrav conv-e conv-invol conv-iso by fastforce
have $(t+e) ;(t+e)^{T}=t ; t^{T}+t ; e^{T}+e ; t^{T}+e ; e^{T}$
by (metis conv-add distrib-left distrib-right' sup-assoc)
also have $\ldots \leq 1^{\prime}$
using 1 assms by (simp add: is-inj-def le-supI)
finally show ?thesis unfolding is-inj-def.
qed
Some (more) results about vectors
lemma vector-meet-comp:
assumes is-vector v
and is-vector w shows $v ; w^{T}=v \cdot w^{T}$
by (metis assms conv-contrav conv-one inf-top-right is-vector-def vector-1)
lemma vector-meet-comp':
assumes is-vector v
shows $v ; v^{T}=v \cdot v^{T}$
using assms vector-meet-comp by blast
lemma vector-meet-comp-x:

$$
x ; 1 ; x^{T}=x ; 1 \cdot 1 ; x^{T}
$$

by (metis comp-assoc inf-top.right-neutral is-vector-def one-idem-mult vector-1)
lemma vector-meet-comp-x':
$x ; 1 ; x=x ; 1 \cdot 1 ; x$
by (metis inf-commute inf-top.right-neutral ra-1)
lemma vector-prop1:
assumes is-vector v
shows $-v^{T} ; v=0$
by (metis assms compl-inf-bot inf-top.right-neutral one-compl one-idem-mult vector-2)

The following results and a number of others in this theory are from [5].
lemma $e e$:
assumes is-vector v
and $e \leq v ;-v^{T}$
shows $e ; e=0$
proof -
have $e ; v \leq 0$
by (metis assms annir mult-isor vector-prop1 comp-assoc)
thus ?thesis
by (metis assms(2) annil order.antisym bot-least comp-assoc mult-isol)
qed
lemma et:
assumes is-vector v
and $e \leq v ;-v^{T}$
and $t \leq v ; v^{T}$
shows $e ; t=0$
and $e ; t^{T}=0$
proof -
have $e ; t \leq v ;-v^{T} ; v ; v^{T}$
by (metis assms(2-3) mult-isol-var comp-assoc)
thus $e ; t=0$
by (simp add: assms(1) comp-assoc le-bot vector-prop1)
next
have $t^{T} \leq v ; v^{T}$
using assms(3) conv-iso by fastforce
hence $e ; t^{T} \leq v ;-v^{T} ; v ; v^{T}$
by (metis assms(2) mult-isol-var comp-assoc)

```
thus e;t'T}=
    by (simp add: assms(1) comp-assoc le-bot vector-prop1)
qed
    Some (more) results about points
definition point
    where point x \equivis-vector x ^ bijective x
lemma point-swap:
    assumes point p
        and point q
    shows }p\leqx;q\longleftrightarrowqu\\mp@subsup{x}{}{T};
by (metis assms conv-invol inj-sur-semi-swap point-def)
    Some (more) results about singletons
abbreviation singleton
    where singleton x = bijective (x;1)^ bijective ( }\mp@subsup{x}{}{T};1
lemma singleton-injective:
    assumes singleton x
    shows is-inj x
using assms injective-down-closed maddux-20 by blast
lemma injective-inv:
    assumes is-vector v
        and singleton e
        and e}\leqv;-\mp@subsup{v}{}{T
        and t\leqv;v\mp@subsup{v}{}{T}
        and is-inj t
    shows is-inj (t+e)
by (metis assms singleton-injective injective-sup bot-least et(2))
lemma singleton-is-point:
    assumes singleton p
        shows point (p;1)
by (simp add: assms comp-assoc is-vector-def point-def)
lemma singleton-transp:
    assumes singleton p
        shows singleton ( }\mp@subsup{p}{}{T}\mathrm{ )
by (simp add: assms)
lemma point-to-singleton:
    assumes singleton p
        shows singleton ( }\mp@subsup{1}{}{\prime}\cdotp;\mp@subsup{p}{}{T}
using assms dom-def-aux-var dom-one is-vector-def point-def by fastforce
lemma singleton-singletonT:
    assumes singleton p
```

```
    shows p;\mp@subsup{p}{}{T}\leq\mp@subsup{1}{}{\prime}
using assms singleton-injective is-inj-def by blast
    Minimality
abbreviation minimum
    where minimum x v\equivv\cdot-(\mp@subsup{x}{}{T};v)
    Regressively finite
abbreviation regressively-finite
    where regressively-finite }x\equiv\forallv. is-vector v ^v\leq 夰;v\longrightarrowv=
lemma regressively-finite-minimum:
    regressively-finite R\Longrightarrow is-vector v\Longrightarrowv\not=0\Longrightarrow minimum R v}=
using galois-aux2 by blast
lemma regressively-finite-irreflexive:
    assumes regressively-finite }
        shows }x\leq-1
proof -
    have 1: is-vector ((\mp@subsup{x}{}{T}\cdot\mp@subsup{1}{}{\prime});1)
    by (simp add: is-vector-def mult-assoc)
    have ( }\mp@subsup{x}{}{T}\cdot\mp@subsup{1}{}{\prime});1=(\mp@subsup{x}{}{T}\cdot\mp@subsup{1}{}{\prime});(\mp@subsup{x}{}{T}\cdot\mp@subsup{1}{}{\prime});
            by (simp add: is-test-def test-comp-eq-mult)
    with 1 have ( }\mp@subsup{x}{}{T}\cdot\mp@subsup{1}{}{\prime});1=
    by (metis assms comp-assoc mult-subdistr)
    thus ?thesis
    by (metis conv-e conv-invol conv-times conv-zero galois-aux ss-p18)
qed
end
```


1.1 Relation algebras satisfying the Tarski rule

```
class relation-algebra-tarski \(=\) relation-algebra +
assumes tarski: \(x \neq 0 \longleftrightarrow 1 ; x ; 1=1\)
begin
Some (more) results about points
lemma point-equations:
assumes is-point \(p\)
shows \(p ; 1=p\)
and \(1 ; p=1\)
and \(p^{T} ; 1=1\)
and \(1 ; p^{T}=p^{T}\)
apply (metis assms is-point-def is-vector-def)
using assms is-point-def is-vector-def tarski vector-comp apply fastforce
apply (metis assms conv-contrav conv-one conv-zero is-point-def is-vector-def tarski)
by (metis assms conv-contrav conv-one is-point-def is-vector-def)
```

The following result is [10, Proposition 2.4.5(i)].

```
lemma point-singleton:
    assumes is-point \(p\)
        and is-vector \(v\)
        and \(v \neq 0\)
        and \(v \leq p\)
    shows \(v=p\)
proof -
    have \(1 ; v=1\)
        using assms(2,3) comp-assoc is-vector-def tarski by fastforce
    hence \(p=1 ; v \cdot p\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq\left(1 \cdot p ; v^{T}\right) ;\left(v \cdot 1^{T} ; p\right)\)
        using dedekind by blast
    also have \(\ldots \leq p ; v^{T} ; v\)
        by (simp add: mult-subdistl)
    also have \(\ldots \leq p ; p^{T} ; v\)
        using assms(4) conv-iso mult-double-iso by blast
    also have \(\ldots \leq v\)
        by (metis assms(1) is-inj-def is-point-def mult-isor mult-onel)
    finally show ?thesis
        using \(\operatorname{assms}\) (4) by \(\operatorname{simp}\)
qed
lemma point-not-equal-aux:
    assumes is-point \(p\)
        and is-point \(q\)
    shows \(p \neq q \longleftrightarrow p \cdot-q \neq 0\)
proof
    show \(p \neq q \Longrightarrow p \cdot-q \neq 0\)
    proof (rule contrapos-nn)
        assume \(p \cdot-q=0\)
        thus \(p=q\)
        using assms galois-aux2 is-point-def point-singleton by fastforce
    qed
next
    show \(p \cdot-q \neq 0 \Longrightarrow p \neq q\)
        using inf-compl-bot by blast
qed
```

The following result is part of [10, Proposition 2.4.5(ii)].
lemma point-not-equal:
assumes is-point p
and is-point q
shows $p \neq q \longleftrightarrow p \leq-q$
and $p \leq-q \longleftrightarrow p ; q^{T} \leq-1^{\prime}$
and $p ; q^{T} \leq-1^{\prime} \longleftrightarrow p^{T} ; q \leq 0$
proof -
have $p \neq q \Longrightarrow p \leq-q$
by (metis assms point-not-equal-aux is-point-def vector-compl vector-mult point-singleton

> inf.orderI inf.cobounded1)
thus $p \neq q \longleftrightarrow p \leq-q$
by (metis assms(1) galois-aux inf.orderE is-point-def order.refl)
next
show $(p \leq-q)=\left(p ; q^{T} \leq-1^{\prime}\right)$
by (simp add: conv-galois-2)
next
show $\left(p ; q^{T} \leq-1^{\prime}\right)=\left(p^{T} ; q \leq 0\right)$
by (metis assms(2) compl-bot-eq conv-galois-2 galois-aux maddux-141
mult-1-right point-equations(4))
qed
lemma point-is-point:
point $x \longleftrightarrow$ is-point x
apply (rule iffI)
apply (simp add: is-point-def point-def surj-one tarski)
using is-point-def is-vector-def mult-assoc point-def sur-def-var1 tarski by fastforce
lemma point-in-vector-or-complement:
assumes point p
and is-vector v
shows $p \leq v \vee p \leq-v$
proof (cases $p \leq-v$)
assume $p \leq-v$
thus ?thesis
by simp
next
assume $\neg(p \leq-v)$
hence $p \cdot v \neq 0$
by (simp add: galois-aux)
hence $1 ;(p \cdot v)=1$
using assms comp-assoc is-vector-def point-def tarski vector-mult by fastforce
hence $p \leq p ;(p \cdot v)^{T} ;(p \cdot v)$
by (metis inf-top.left-neutral modular-2-var)
also have $\ldots \leq p ; p^{T} ; v$
by (simp add: mult-isol-var)
also have...$\leq v$
using assms(1) comp-assoc point-def ss423conv by fastforce
finally show ?thesis ..
qed
lemma point-in-vector-or-complement-iff:
assumes point p
and is-vector v
shows $p \leq v \longleftrightarrow \neg(p \leq-v)$
by (metis assms annir compl-top-eq galois-aux inf.orderE one-compl point-def ss423conv tarski
top-greatest point-in-vector-or-complement)
lemma different-points-consequences:
assumes point p
and point q
and $p \neq q$
shows $p^{T} ;-q=1$
and $-q^{T} ; p=1$
and $-\left(p^{T} ;-q\right)=0$
and $-\left(-q^{T} ; p\right)=0$
proof -
have $p \leq-q$
by (metis assms compl-le-swap1 inf.absorb1 inf.absorb2 point-def
point-in-vector-or-complement)
thus $1: p^{T} ;-q=1$
using assms(1) by (metis is-vector-def point-def ss423conv top-le)
thus 2: $-q^{T} ; p=1$
using conv-compl conv-one by force
from 1 show $-\left(p^{T} ;-q\right)=0$
by simp
from 2 show $-\left(-q^{T} ; p\right)=0$
by simp
qed
Some (more) results about singletons
lemma singleton-pq:
assumes point p
and point q
shows singleton $\left(p ; q^{T}\right)$
using assms comp-assoc point-def point-equations $(1,3)$ point-is-point by fastforce
lemma singleton-equal-aux:
assumes singleton p
and singleton q
and $q \leq p$
shows $p \leq q ; 1$
proof -
have $p L p: p ; 1 ; p^{T} \leq 1^{\prime}$
by (simp add: assms(1) maddux-21 ss423conv)
have $p=1 ;\left(q^{T} ; q ; 1\right) \cdot p$
using tarski
by (metis assms(2) annir singleton-injective inf.commute inf-top.right-neutral inj-triple

```
mult-assoc surj-one)
```

also have $\ldots \leq\left(1 \cdot p ;\left(q^{T} ; q ; 1\right)^{T}\right) ;\left(q^{T} ; q ; 1 \cdot 1 ; p\right)$
using dedekind by (metis conv-one)

```
    also have \(\ldots \leq p ; 1 ; q^{T} ; q ; q^{T} ; q ; 1\)
    by (simp add: comp-assoc mult-isol)
    also have \(\ldots \leq p ; 1 ; p^{T} ; q ; q^{T} ; q ; 1\)
    using assms(3) by (metis comp-assoc conv-iso mult-double-iso)
    also have ... \(\leq 1^{\prime} ; q ; q^{T} ; q ; 1\)
    using \(p L p\) using mult-isor by blast
    also have...\(\leq q ; 1\)
    using assms(2) singleton-singletonT by (simp add: comp-assoc mult-isol)
    finally show ?thesis .
qed
lemma singleton-equal:
    assumes singleton \(p\)
        and singleton \(q\)
        and \(q \leq p\)
    shows \(q=p\)
proof -
    have \(p 1: p \leq q ; 1\)
        using assms by (rule singleton-equal-aux)
    have \(p^{T} \leq q^{T} ; 1\)
        using assms singleton-equal-aux singleton-transp conv-iso by fastforce
    hence \(p 2: p \leq 1 ; q\)
        using conv-iso by force
    have \(p \leq q ; 1 \cdot 1 ; q\)
        using \(p 1\) p2 inf.boundedI by blast
    also have \(\ldots \leq(q \cdot 1 ; q ; 1) ;\left(1 \cdot q^{T} ; 1 ; q\right)\)
        using dedekind by (metis comp-assoc conv-one)
    also have \(\ldots \leq q ; q^{T} ; 1 ; q\)
    by (simp add: mult-isor comp-assoc)
    also have \(\ldots \leq q ; 1^{\prime}\)
    by (metis assms(2) conv-contrav conv-invol conv-one is-inj-def mult-assoc
mult-isol
                one-idem-mult)
    also have \(\ldots \leq q\)
    by \(\operatorname{simp}\)
    finally have \(p \leq q\).
    thus \(q=p\)
    using assms(3) by simp
qed
lemma singleton-nonsplit:
    assumes singleton \(p\)
        and \(x \leq p\)
    shows \(x=0 \vee x=p\)
proof (cases \(x=0\) )
    assume \(x=0\)
    thus ?thesis ..
next
```

```
    assume 1: \(x \neq 0\)
    have singleton \(x\)
    proof (safe)
    show is-inj \((x ; 1)\)
        using assms injective-down-closed mult-isor by blast
    show is-inj ( \(x^{T} ; 1\) )
        using assms conv-iso injective-down-closed mult-isol-var by blast
    show is-sur \((x ; 1)\)
        using 1 comp-assoc sur-def-var1 tarski by fastforce
    thus is-sur ( \(x^{T} ; 1\) )
        by (metis conv-contrav conv-one mult.semigroup-axioms sur-def-var1
semigroup.assoc)
    qed
    thus ?thesis
    using assms singleton-equal by blast
qed
lemma singleton-nonzero:
    assumes singleton \(p\)
        shows \(p \neq 0\)
proof
    assume \(p=0\)
    hence point 0
        using assms singleton-is-point by fastforce
    thus False
    by (simp add: is-point-def point-is-point)
qed
lemma singleton-sum:
    assumes singleton \(p\)
        shows \(p \leq x+y \longleftrightarrow(p \leq x \vee p \leq y)\)
proof
    show \(p \leq x+y \Longrightarrow p \leq x \vee p \leq y\)
    proof -
        assume as: \(p \leq x+y\)
    show \(p \leq x \vee p \leq y\)
    proof (cases \(p \leq x\) )
            assume \(p \leq x\)
            thus ?thesis..
    next
            assume \(a: \neg(p \leq x)\)
            hence \(p \cdot x \neq p\)
                using a inf.orderI by fastforce
            hence \(p \leq-x\)
                using assms singleton-nonsplit galois-aux inf-le1 by blast
            hence \(p \leq y\)
            using as by (metis galois-1 inf.orderE)
            thus ?thesis
                by \(\operatorname{simp}\)
```

```
        qed
    qed
next
    show }p\leqx\veep\leqy\Longrightarrowp\leqx+
        using sup.coboundedI1 sup.coboundedI2 by blast
qed
```

lemma singleton-iff:
singleton $x \longleftrightarrow x \neq 0 \wedge x^{T} ; 1 ; x+x ; 1 ; x^{T} \leq 1^{\prime}$
by (smt comp-assoc conv-contrav conv-invol conv-one is-inj-def le-sup-iff
one-idem-mult sur-def-var1 tarski)
lemma singleton-not-atom-in-relation-algebra-tarski:
assumes $p \neq 0$ and $\forall x . x \leq p \longrightarrow x=0 \vee x=p$
shows singleton p
nitpick [expect=genuine] oops

end

1.2 Relation algebras satisfying the point axiom

class relation-algebra-point $=$ relation-algebra +
assumes point-axiom: $x \neq 0 \longrightarrow\left(\exists y z\right.$. point $y \wedge$ point $\left.z \wedge y ; z^{T} \leq x\right)$
begin
Some (more) results about points
lemma point-exists:
$\exists x$. point x
by (metis (full-types) order.eq-iff is-inj-def is-sur-def is-vector-def point-axiom
point-def)
lemma point-below-vector:
assumes is-vector v and $v \neq 0$
shows $\exists x$. point $x \wedge x \leq v$
proof -
from $\operatorname{assms}(2)$ obtain y and z where 1: point $y \wedge$ point $z \wedge y ; z^{T} \leq v$ using point-axiom by blast
have $z^{T} ; 1=(1 ; z)^{T}$
using conv-contrav conv-one by simp
hence $y ;(1 ; z)^{T} \leq v$
using 1 by (metis assms(1) comp-assoc is-vector-def mult-isor)
thus ?thesis
using 1 by (metis conv-one is-vector-def point-def sur-def-var1)
qed
end

```
class relation-algebra-tarski-point = relation-algebra-tarski +
relation-algebra-point
begin
lemma atom-is-singleton:
    assumes p\not=0
        and }\forallx.x\leqp\longrightarrowx=0\veex=
    shows singleton p
by (metis assms singleton-nonzero singleton-pq point-axiom)
lemma singleton-iff-atom:
    singleton }p\longleftrightarrowp\not=0\wedge(\forallx.x\leqp\longrightarrowx=0\veex=p
using singleton-nonsplit singleton-nonzero atom-is-singleton by blast
lemma maddux-tarski:
    assumes }x\not=
    shows }\existsy.y\not=0\wedgey\leqx\wedgeis-p-fun y
proof -
    obtain pq where 1: point p\wedge point q\wedge p;\mp@subsup{q}{}{T}\leqx
        using assms point-axiom by blast
    hence 2: }p:\mp@subsup{q}{}{T}\not=
        by (simp add: singleton-nonzero singleton-pq)
    have is-p-fun ( }p;\mp@subsup{q}{}{T}\mathrm{ )
        using 1 by (meson singleton-singletonT singleton-pq singleton-transp
is-inj-def p-fun-inj)
    thus ?thesis
        using 1 2 by force
qed
    Intermediate Point Theorem [10, Proposition 2.4.8]
lemma intermediate-point-theorem:
    assumes point p
            and point r
        shows }p\leqx;y;r\longleftrightarrow(\existsq.point q\wedgep\leqx;q\wedgeq\leqy;r
proof
    assume 1:p\leqx;y;r
    let ?v= x }\mp@subsup{\mp@code{T}}{}{T}p\cdoty;
    have 2: is-vector ?v
        using assms comp-assoc is-vector-def point-def vector-mult by fastforce
    have ?v}=
        using 1 by (metis assms(1) inf.absorb2 is-point-def maddux-141
point-is-point mult.assoc)
    hence }\existsq\mathrm{ . point q}\wedgeq\leq?
        using 2 point-below-vector by blast
    thus \existsq. point q\wedgep\leqx;q\wedge q\leqy;r
        using assms(1) point-swap by auto
next
    assume }\existsq.\mathrm{ point }q\wedgep\leqx;q\wedgeq\leqy;
    thus }p\leqx;y;
```

using comp-assoc mult-isol order-trans by fastforce
qed
end

context relation-algebra

begin
lemma unfoldl-inductl-implies-unfoldr:
assumes $\bigwedge x .1^{\prime}+x ;(r t c x) \leq r t c x$
and $\bigwedge x$ y $z . x+y ; z \leq z \Longrightarrow r t c(y) ; x \leq z$
shows $1^{\prime}+r t c(x) ; x \leq r t c x$
by (metis assms le-sup-iff mult-oner order.trans subdistl-eq sup-absorb2 sup-ge1)
lemma star-transpose-swap:
assumes $\bigwedge x .1^{\prime}+x ;(r t c x) \leq r t c x$
and $\bigwedge x y z . x+y ; z \leq z \Longrightarrow r t c(y) ; x \leq z$
shows $r t c\left(x^{T}\right)=(r t c x)^{T}$
apply (simp only: order.eq-iff; rule conjI)
apply (metis assms conv-add conv-contrav conv-e conv-iso mult-1-right unfoldl-inductl-implies-unfoldr)
by (metis assms conv-add conv-contrav conv-e conv-invol conv-iso mult-1-right unfoldl-inductl-implies-unfoldr)
lemma unfoldl-inductl-implies-inductr:
assumes $\bigwedge x .1^{\prime}+x ;(r t c x) \leq r t c x$
and $\bigwedge x y z . x+y ; z \leq z \Longrightarrow r t c(y) ; x \leq z$
shows $x+z ; y \leq z \Longrightarrow x ; r t c(y) \leq z$
by (metis assms conv-add conv-contrav conv-iso star-transpose-swap)
end
context relation-algebra-rtc
begin
abbreviation $t c\left(\left(-^{+}\right)[101] 100\right)$ where $t c x \equiv x ; x^{\star}$
abbreviation is-acyclic
where is-acyclic $x \equiv x^{+} \leq-1^{\prime}$
General theorems
lemma star-denest-10:
assumes $x ; y=0$
shows $(x+y)^{\star}=y ; y^{\star} ; x^{\star}+x^{\star}$
using assms bubble-sort sup.commute by auto
lemma star-star-plus:

```
    \(x^{\star}+y^{\star}=x^{+}+y^{\star}\)
by (metis (full-types) sup.left-commute star-plus-one star-unfoldl-eq sup.commute)
```

The following two lemmas are from [6].

lemma cancel-separate:

$$
\text { assumes } x ; y \leq 1^{\prime}
$$

$$
\text { shows } x^{\star} ; y^{\star} \leq x^{\star}+y^{\star}
$$

proof -
have $x ; y^{\star}=x+x ; y ; y^{\star}$
by (metis comp-assoc conway.dagger-unfoldl-distr distrib-left mult-oner)
also have $\ldots \leq x+y^{\star}$
by (metis assms join-isol star-invol star-plus-one star-subdist-var-2
sup.absorb2 sup.assoc)
also have ... $\leq x^{\star}+y^{\star}$
using join-iso by fastforce
finally have $x ;\left(x^{\star}+y^{\star}\right) \leq x^{\star}+y^{\star}$
by (simp add: distrib-left le-supI1)
thus ?thesis
by (simp add: rtc-inductl)
qed
lemma cancel-separate-inj-converse:
assumes $i s-i n j x$
shows $x^{\star} ; x^{T \star}=x^{\star}+x^{T \star}$
apply (rule order.antisym)
using assms cancel-separate is-inj-def apply blast
by (metis conway.dagger-unfoldl-distr le-supI mult-1-right mult-isol
sup.cobounded1)
lemma cancel-separate-p-fun-converse:
assumes is-p-fun x
shows $x^{T \star} ; x^{\star}=x^{\star}+x^{T \star}$
using sup-commute assms cancel-separate-inj-converse p-fun-inj by fastforce
lemma cancel-separate-converse-idempotent:
assumes $i s-i n j x$
and is-p-fun x
shows $\left(x^{\star}+x^{T \star}\right) ;\left(x^{\star}+x^{T \star}\right)=x^{\star}+x^{T \star}$
by (metis assms cancel-separate cancel-separate-p-fun-converse
church-rosser-equiv is-inj-def
star-denest-var-6)
lemma triple-star:
assumes $i s-i n j x$
and is-p-fun x
shows $x^{\star} ; x^{T \star} ; x^{\star}=x^{\star}+x^{T \star}$
by (simp add: assms cancel-separate-inj-converse cancel-separate-p-fun-converse)
lemma inj-xxts:

```
    assumes is-inj \(x\)
    shows \(x ; x^{T \star} \leq x^{\star}+x^{T \star}\)
by (metis assms cancel-separate-inj-converse distrib-right less-eq-def star-ext)
lemma plus-top:
    \(x^{+} ; 1=x ; 1\)
by (metis comp-assoc conway.dagger-unfoldr-distr sup-top-left)
lemma top-plus:
    \(1 ; x^{+}=1 ; x\)
by (metis comp-assoc conway.dagger-unfoldr-distr star-denest-var-2 star-ext
star-slide-var
                sup-top-left top-unique)
lemma plus-conv:
    \(\left(x^{+}\right)^{T}=x^{T+}\)
by (simp add: star-conv star-slide-var)
lemma inj-implies-step-forwards-backwards:
    assumes is-inj \(x\)
        shows \(x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq x^{T} ; 1\)
proof -
    have \(\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq\left(x^{\star} \cdot x^{T}\right) ;\left(x \cdot\left(x^{\star}\right)^{T}\right) ; 1\)
        by (metis conv-contrav conv-e dedekind mult-1-right mult-isor star-slide-var)
    also have \(\ldots \leq\left(x^{\star} \cdot x^{T}\right) ; 1\)
        by (simp add: comp-assoc mult-isol)
    finally have \(1:\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq\left(x^{\star} \cdot x^{T}\right) ; 1\).
    have \(x ;\left(x^{\star} \cdot x^{T}\right) ; 1 \leq\left(x^{+} \cdot x ; x^{T}\right) ; 1\)
        by (metis inf-idem meet-interchange mult-isor)
    also have \(\ldots \leq\left(x^{+} .1^{\prime}\right) ; 1\)
        using assms is-inj-def meet-isor mult-isor by fastforce
    finally have \(x ;\left(x^{\star} \cdot x^{T}\right) ; 1 \leq\left(x^{\star} \cdot x^{T}\right) ; 1\)
        using 1 by fastforce
    hence \(x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq\left(x^{\star} \cdot x^{T}\right) ; 1\)
        using 1 by (simp add: comp-assoc rtc-inductl)
    thus \(x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq x^{T} ; 1\)
        using inf.cobounded2 mult-isor order-trans by blast
qed
```

Acyclic relations
The following result is from [4]
lemma acyclic-inv:
assumes is-acyclic t
and is-vector v
and $e \leq v ;-v^{T}$
and $t \leq v ; v^{T}$
shows is-acyclic $(t+e)$
proof -

```
have \(t^{+} ; e \leq t^{+} ; v ;-v^{T}\)
    by (simp add: assms(3) mult-assoc mult-isol)
also have \(\ldots \leq v ; v^{T} ; t^{\star} ; v ;-v^{T}\)
    by (simp add: assms(4) mult-isor)
also have \(\ldots \leq v ;-v^{T}\)
    by (metis assms(2) mult-double-iso top-greatest is-vector-def mult-assoc)
also have \(\ldots \leq-1^{\prime}\)
    by (simp add: conv-galois-1)
finally have \(1: t^{+} ; e \leq-1^{\prime}\).
have \(e \leq v ;-v^{T}\)
    using \(\operatorname{assms}(3)\) by \(\operatorname{simp}\)
also have \(\ldots \leq-1^{\prime}\)
    by (simp add: conv-galois-1)
finally have \(2: t^{+} ; e+e \leq-1^{\prime}\)
    using 1 by simp
have 3: \(e ; t^{\star}=e\)
    by (metis assms(2-4) et(1) independence2)
have 4 : \(e^{\star}=1^{\prime}+e\)
    using assms(2-3) ee boffa-var bot-least by blast
have \((t+e)^{+}=(t+e) ; t^{\star} ;\left(e ; t^{\star}\right)^{\star}\)
    by (simp add: comp-assoc)
also have \(\ldots=(t+e) ; t^{\star} ;\left(1^{\prime}+e\right)\)
    using 34 by simp
also have \(\ldots=t^{+} ;\left(1^{\prime}+e\right)+e ; t^{\star} ;\left(1^{\prime}+e\right)\)
    by \(\operatorname{simp}\)
also have \(\ldots=t^{+} ;\left(1^{\prime}+e\right)+e ;\left(1^{\prime}+e\right)\)
    using 3 by \(\operatorname{simp}\)
also have \(\ldots=t^{+} ;\left(1^{\prime}+e\right)+e\)
    using \(4 \operatorname{assms}(2-3)\) ee independence2 by fastforce
also have \(\ldots=t^{+}+t^{+} ; e+e\)
    by (simp add: distrib-left)
also have \(\ldots \leq-1^{\prime}\)
    using \(\operatorname{assms}(1) 2\) by \(\operatorname{simp}\)
finally show? ?thesis .
qed
lemma acyclic-single-step:
    assumes is-acyclic \(x\)
    shows \(x \leq-1\) '
by (metis assms dual-order.trans mult-isol mult-oner star-ref)
lemma acyclic-reachable-points:
    assumes is-point \(p\)
        and is-point \(q\)
        and \(p \leq x ; q\)
        and is-acyclic \(x\)
    shows \(p \neq q\)
proof
    assume \(p=q\)
```

```
    hence \(p \leq x ; q \cdot q\)
    by (simp add: assms(3) order.eq-iff inf.absorb2)
    also have \(\ldots=\left(x \cdot 1^{\prime}\right) ; q\)
    using assms(2) inj-distr is-point-def by simp
    also have \(\ldots \leq\left(-1^{\prime} \cdot 1^{\prime}\right) ; q\)
    using acyclic-single-step assms(4) by (metis abel-semigroup.commute
inf.abel-semigroup-axioms
        meet-isor mult-isor)
    also have \(\ldots=0\)
    by \(\operatorname{simp}\)
    finally have \(p \leq 0\).
    thus False
    using assms(1) bot-unique is-point-def by blast
qed
lemma acyclic-trans:
    assumes is-acyclic \(x\)
    shows \(x \leq-\left(x^{T+}\right)\)
proof -
    have \(\exists c \geq x . c \leq-\left(x^{+}\right)^{T}\)
    by (metis assms compl-mono conv-galois-2 conv-iso double-compl mult-onel
star-1l)
    thus ?thesis
    by (metis dual-order.trans plus-conv)
qed
lemma acyclic-trans':
    assumes is-acyclic \(x\)
    shows \(x^{\star} \leq-\left(x^{T+}\right)\)
proof -
have \(x^{\star} \leq-\left(-\left(-\left(x^{T} ;-\left(-1^{\prime}\right)\right)\right) ;\left(x^{\star}\right)^{T}\right)\)
    by (metis assms conv-galois-1 conv-galois-2 order-trans star-trans)
    then show ?thesis
    by (simp add: star-conv)
qed
        Regressively finite
lemma regressively-finite-acyclic:
    assumes regressively-finite \(x\)
        shows is-acyclic \(x\)
proof -
    have 1: is-vector \(\left(\left(x^{+} .1^{\prime}\right) ; 1\right)\)
        by (simp add: is-vector-def mult-assoc)
    have \(\left(x^{+} \cdot 1^{\prime}\right) ; 1=\left(x^{T+} \cdot 1^{\prime}\right) ; 1\)
    by (metis plus-conv test-converse)
    also have \(\ldots \leq x^{T} ;\left(1^{\prime} ; x^{T \star} \cdot x\right) ; 1\)
    by (metis conv-invol modular-1-var mult-isor mult-oner mult-onel)
    also have \(\ldots \leq x^{T} ;\left(1^{\prime} \cdot x^{+}\right) ; x^{T \star} ; 1\)
    by (metis comp-assoc conv-invol modular-2-var mult-isol mult-isor star-conv)
```

```
    also have ... = 稆;(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime});1
    by (metis comp-assoc conway.dagger-unfoldr-distr inf.commute
sup.cobounded1 top-le)
    finally have ( }\mp@subsup{x}{}{+}\cdot\mp@subsup{1}{}{\prime});1=
    using 1 assms by (simp add: comp-assoc)
    thus ?thesis
    by (simp add: galois-aux ss-p18)
qed
notation power (infixr \uparrow 80)
lemma power-suc-below-plus:
    x\uparrowSuc n \leq x +
    apply (induct n)
using mult-isol star-ref apply fastforce
by (simp add: mult-isol-var order-trans)
end
class relation-algebra-rtc-tarski = relation-algebra-rtc + relation-algebra-tarski
begin
lemma point-loop-not-acyclic:
    assumes is-point p
            and p\leqx\uparrow Suc n;p
        shows \neg is-acyclic x
proof -
    have p\leq x+};
        by (meson assms dual-order.trans point-def point-is-point ss423bij
power-suc-below-plus)
    hence p; p
            using assms(1) point-def point-is-point ss423bij by blast
    thus ?thesis
        using assms(1) order.trans point-not-equal(1) point-not-equal(2) by blast
qed
end
class relation-algebra-rtc-point = relation-algebra-rtc + relation-algebra-point
class relation-algebra-rtc-tarski-point = relation-algebra-rtc-tarski +
relation-algebra-rtc-point +
```


relation-algebra-tarski-point

Finite graphs: the axiom says the algebra has finitely many elements. This means the relations have a finite base set.
class relation-algebra-rtc-tarski-point-finite $=$ relation-algebra-rtc-tarski-point + finite
begin

For a finite acyclic relation, the powers eventually vanish.

```
lemma acyclic-power-vanishes:
    assumes is-acyclic \(x\)
        shows \(\exists n . x \uparrow\) Suc \(n=0\)
proof -
    let \(? n=\operatorname{card}\{p\). is-point \(p\}\)
    let ? \(p=x \uparrow\) ? \(n\)
    have \(? p=0\)
    proof (rule ccontr)
        assume \(? p \neq 0\)
        from this obtain \(p q\) where 1 : point \(p \wedge\) point \(q \wedge p ; q^{T} \leq ? p\)
            using point-axiom by blast
    hence 2: \(p \leq ? p ; q\)
            using point-def ss423bij by blast
    have \(\forall n \leq\) ? \(n .(\exists f . \forall i \leq n . i s-p o i n t(f i) \wedge(\forall j \leq i . p \leq x \uparrow(? n-i) ; f i \wedge f i \leq\)
\(x \uparrow(i-j) ; f j))\)
    proof
            fix \(n\)
            show \(n \leq ? n \longrightarrow(\exists f . \forall i \leq n . i s-p o i n t(f i) \wedge(\forall j \leq i . p \leq x \uparrow(? n-i) ; f i \wedge f\)
\(i \leq x \uparrow(i-j) ; f j))\)
            proof (induct n)
                case 0
                thus ?case
                using 12 point-is-point by fastforce
            next
                case (Suc n)
                fix \(n\)
                assume 3: \(n \leq ? n \longrightarrow(\exists f . \forall i \leq n . i s\) - point \((f i) \wedge(\forall j \leq i . p \leq x \uparrow(? n-i)\)
\(; f i \wedge f i \leq x \uparrow(i-j) ; f j))\)
            show Suc \(n \leq ? n \longrightarrow(\exists f . \forall i \leq S u c n . i s-p o i n t(f i) \wedge(\forall j \leq i . p \leq x \uparrow\)
\((? n-i) ; f i \wedge f i \leq x \uparrow(i-j) ; f j))\)
            proof
                    assume 4: Suc \(n \leq ? n\)
                            from this obtain \(f\) where 5 : \(\forall i \leq n\). is-point \((f i) \wedge(\forall j \leq i . p \leq x \uparrow\)
\((? n-i) ; f i \wedge f i \leq x \uparrow(i-j) ; f j)\)
            using 3 by auto
            have \(p \leq x \uparrow(? n-n) ; f n\)
                using 5 by blast
            also have \(\ldots=x \uparrow(? n-n-\) one-class.one \() ; x ; f n\)
                    using 4 by (metis (no-types) Suc-diff-le diff-Suc-1 diff-Suc-Suc
power-Suc2)
            finally obtain \(r\) where 6 : point \(r \wedge p \leq x \uparrow(? n-S u c n) ; r \wedge r \leq x ; f\)
\(n\)
            using 15 intermediate-point-theorem point-is-point by fastforce
            let \(? g=\lambda m\). if \(m=\) Suc \(n\) then \(r\) else \(f m\)
            have \(\forall i \leq S u c n\). is-point \((? g i) \wedge(\forall j \leq i . p \leq x \uparrow(? n-i) ; ? g i \wedge ? g i\)
\(\leq x \uparrow(i-j) ; ? g j)\)
        proof
            fix \(i\)
```

```
    show i\leqSuc n\longrightarrowis-point (?g i) ^(\forallj\leqi.p\leqx f(?n-i);?gi^?g
i\leqx\uparrow(i-j);?g j)
    proof (cases i\leqn)
        case True
        thus ?thesis
            using 5 by simp
    next
        case False
        have is-point (?g (Suc n)) ^(\forallj\leqSuc n . p \leq x \uparrow (?n-Suc n);?g
(Suc n)^?g (Suc n) \leqx \uparrow(Suc n-j) ; ?g j)
    proof
        show is-point (?g (Suc n))
            using 6 point-is-point by fastforce
        next
            show \forallj\leqSuc n.p\leqx { (?n-Suc n);?g(Suc n)^?g (Suc n)\leq
x\uparrow(Suc n-j);?g j
            proof
                fix }
            show j\leqSuc n\longrightarrowp\leqx\uparrow(?n-Suc n);?g(Suc n)^?g(Suc n)
\leqx\uparrow(Suc n-j);?gj
            proof
                            assume 7: j\leqSuc n
                            show }p\leqx\uparrow(?n-Suc n);?g(Suc n)\wedge?g(Suc n)\leqx\uparrow(Su
n-j);?g j
                    proof
                        show p}\leqx\uparrow(?n-Suc n);?g(Suc n
                        using 6 by simp
                    next
                        show ?g (Suc n) \leq x \uparrow (Suc n-j) ; ?g j
                        proof (cases j=Suc n)
                        case True
                        thus ?thesis
                        by simp
                    next
                    case False
                        hence fn\leqx\uparrow(n-j);fj
                        using 5 7 by fastforce
                            hence }x;fn\leqx\uparrow(Suc n-j);f
                            using 7 False Suc-diff-le comp-assoc mult-isol by fastforce
                    thus ?thesis
                        using 6 False by fastforce
                    qed
                    qed
                qed
            qed
            qed
            thus ?thesis
                by (simp add: False le-Suc-eq)
            qed
```

```
            qed
            thus \existsf.\foralli\leqSuc n.is-point (fi)^(\forallj\leqi.p\leqx\uparrow(?n-i);fi\wedgefi
\leqx\uparrow(i-j); fj)
            by auto
        qed
        qed
    qed
    from this obtain f where 8: \foralli\leq?n . is-point (f i)\wedge(\forallj\leqi.p\leqx\uparrow
(?n-i);fi\wedgefi\leqx\uparrow(i-j);fj)
        by fastforce
    let ?A={k. k\leq?n }
    have f'?A\subseteq{p. is-point p}
        using 8 by blast
    hence card (f'?}A)\leq?
        by (simp add: card-mono)
    hence }\neg\mathrm{ inj-on f?A
        by (simp add: pigeonhole)
    from this obtain ij where 9:i\leq? n ^j\leq? n ^i\not=j^fi=fj
        by (metis (no-types, lifting) inj-on-def mem-Collect-eq)
    show False
        apply (cases i<j)
    using }89\mathrm{ apply (metis Suc-diff-le Suc-leI assms diff-Suc-Suc
order-less-imp-le
                                    point-loop-not-acyclic)
using 89 by (metis assms neqE point-loop-not-acyclic Suc-diff-le Suc-leI assms diff-Suc-Suc
                                    order-less-imp-le)
    qed
    thus ?thesis
        by (metis annir power.simps(2))
qed
```

Hence finite acyclic relations are regressively finite.
lemma acyclic-regressively-finite:
assumes is-acyclic x
shows regressively-finite x

proof

have is-acyclic (x^{T})
using assms acyclic-trans' compl-le-swap1 order-trans star-ref by blast
from this obtain n where $1: x^{T} \uparrow$ Suc $n=0$
using acyclic-power-vanishes by fastforce
fix v
show is-vector $v \wedge v \leq x^{T} ; v \longrightarrow v=0$
proof
assume 2: is-vector $v \wedge v \leq x^{T} ; v$
have $v \leq x^{T} \uparrow$ Suc $n ; v$
proof (induct n)
case 0
thus ?case

```
            using 2 by simp
    next
            case (Suc n)
            hence }\mp@subsup{x}{}{T};v\leq\mp@subsup{x}{}{T}\uparrow\mathrm{ Suc (Suc n) ; v
            by (simp add: comp-assoc mult-isol)
            thus ?case
            using 2 dual-order.trans by blast
    qed
    thus }v=
        using 1 by (simp add: le-bot)
    qed
qed
lemma acyclic-is-regressively-finite:
    is-acyclic }x\longleftrightarrow\mathrm{ regressively-finite }
using acyclic-regressively-finite regressively-finite-acyclic by blast
end
end
```


2 Relational Characterisation of Paths

This theory provides the relation-algebraic characterisations of paths, as defined in Sections 3-5 of [2].
theory Paths
imports More-Relation-Algebra
begin

```
context relation-algebra-tarski
begin
lemma path-concat-aux-0:
    assumes is-vector \(v\)
        and \(v \neq 0\)
        and \(w ; v^{T} \leq x\)
        and \(v ; z \leq y\)
        shows \(w ; 1 ; z \leq x ; y\)
proof -
    from tarski \(\operatorname{assms}(1,2)\) have \(1=1 ; v^{T} ; v ; 1\)
        by (metis conv-contrav conv-one eq-refl inf-absorb1 inf-top-left is-vector-def
ra-2)
    hence \(w ; 1 ; z=w ; 1 ; v^{T} ; v ; 1 ; z\)
        by (simp add: mult-isor mult-isol mult-assoc)
    also from \(\operatorname{assms}(1)\) have \(\ldots=w ; v^{T} ; v ; z\)
    by (metis is-vector-def comp-assoc conv-contrav conv-one)
```

```
    also from assms(3) have ... \leqx;v;z
```

 by (simp add: mult-isor)
 also from \(\operatorname{assms}(4)\) have \(\ldots \leq x ; y\)
 by (simp add: mult-isol mult-assoc)
 finally show ?thesis .
 qed
end

2.1 Consequences without the Tarski rule

context relation-algebra-rtc
begin
Definitions for path classifications
abbreviation connected
where connected $x \equiv x ; 1 ; x \leq x^{\star}+x^{T \star}$
abbreviation many-strongly-connected
where many-strongly-connected $x \equiv x^{\star}=x^{T \star}$
abbreviation one-strongly-connected
where one-strongly-connected $x \equiv x^{T} ; 1 ; x^{T} \leq x^{\star}$
definition path
where path $x \equiv$ connected $x \wedge i s-p$-fun $x \wedge i s$-inj x
abbreviation cycle
where cycle $x \equiv$ path $x \wedge$ many-strongly-connected x
abbreviation start-points
where start-points $x \equiv x ; 1 \cdot-\left(x^{T} ; 1\right)$
abbreviation end-points
where end-points $x \equiv x^{T} ; 1 \cdot-(x ; 1)$
abbreviation no-start-points
where no-start-points $x \equiv x ; 1 \leq x^{T} ; 1$
abbreviation no-end-points
where no-end-points $x \equiv x^{T} ; 1 \leq x ; 1$
abbreviation no-start-end-points
where no-start-end-points $x \equiv x ; 1=x^{T} ; 1$
abbreviation has-start-points
where has-start-points $x \equiv 1=-(1 ; x) ; x ; 1$
abbreviation has-end-points
where has-end-points $x \equiv 1=1 ; x ;-(x ; 1)$
abbreviation has-start-end-points
where has-start-end-points $x \equiv 1=-(1 ; x) ; x ; 1 \cdot 1 ; x ;-(x ; 1)$
abbreviation backward-terminating
where backward-terminating $x \equiv x \leq-(1 ; x) ; x ; 1$
abbreviation forward-terminating
where forward-terminating $x \equiv x \leq 1 ; x ;-(x ; 1)$
abbreviation terminating
where terminating $x \equiv x \leq-(1 ; x) ; x ; 1 \cdot 1 ; x ;-(x ; 1)$
abbreviation backward-finite
where backward-finite $x \equiv x \leq x^{T \star}+-(1 ; x) ; x ; 1$
abbreviation forward-finite
where forward-finite $x \equiv x \leq x^{T \star}+1 ; x ;-(x ; 1)$
abbreviation finite
where finite $x \equiv x \leq x^{T \star}+(-(1 ; x) ; x ; 1 \cdot 1 ; x ;-(x ; 1))$
abbreviation no-start-points-path
where no-start-points-path $x \equiv$ path $x \wedge$ no-start-points x
abbreviation no-end-points-path
where no-end-points-path $x \equiv$ path $x \wedge$ no-end-points x
abbreviation no-start-end-points-path
where no-start-end-points-path $x \equiv$ path $x \wedge$ no-start-end-points x
abbreviation has-start-points-path
where has-start-points-path $x \equiv$ path $x \wedge$ has-start-points x
abbreviation has-end-points-path
where has-end-points-path $x \equiv$ path $x \wedge$ has-end-points x
abbreviation has-start-end-points-path
where has-start-end-points-path $x \equiv$ path $x \wedge$ has-start-end-points x
abbreviation backward-terminating-path
where backward-terminating-path $x \equiv$ path $x \wedge$ backward-terminating x
abbreviation forward-terminating-path
where forward-terminating-path $x \equiv$ path $x \wedge$ forward-terminating x
abbreviation terminating-path
where terminating-path $x \equiv$ path $x \wedge$ terminating x
abbreviation backward-finite-path
where backward-finite-path $x \equiv$ path $x \wedge$ backward-finite x
abbreviation forward-finite-path
where forward-finite-path $x \equiv$ path $x \wedge$ forward-finite x
abbreviation finite-path
where finite-path $x \equiv$ path $x \wedge$ finite x
General properties
lemma reachability-from-z-in-y:
assumes $x \leq y^{\star} ; z$
and $x \cdot z=0$
shows $x \leq y^{+} ; z$
by (metis assms conway.dagger-unfoldl-distr galois-1 galois-aux inf.orderE)
lemma reachable-imp:
assumes point p
and point q
and $p^{\star} ; q \leq p^{T \star} ; p$
shows $p \leq p^{\star} ; q$
by (metis assms conway.dagger-unfoldr-distr le-supE point-swap star-conv)
Basic equivalences
lemma no-start-end-points-iff:
no-start-end-points $x \longleftrightarrow$ no-start-points $x \wedge$ no-end-points x
by fastforce
lemma has-start-end-points-iff:
has-start-end-points $x \longleftrightarrow$ has-start-points $x \wedge$ has-end-points x
by (metis inf-eq-top-iff)
lemma terminating-iff:
terminating $x \longleftrightarrow$ backward-terminating $x \wedge$ forward-terminating x by simp
lemma finite-iff:
finite $x \longleftrightarrow$ backward-finite $x \wedge$ forward-finite x
by (simp add: sup-inf-distrib1 inf.boundedI)
lemma no-start-end-points-path-iff:
no-start-end-points-path $x \longleftrightarrow$ no-start-points-path $x \wedge$ no-end-points-path x by fastforce
lemma has-start-end-points-path-iff:
has-start-end-points-path $x \longleftrightarrow$ has-start-points-path $x \wedge$ has-end-points-path x using has-start-end-points-iff by blast
lemma terminating-path-iff:

```
    terminating-path }x\longleftrightarrow\mathrm{ backward-terminating-path }x\wedge\mathrm{ forward-terminating-path
x
by fastforce
lemma finite-path-iff:
    finite-path }x\longleftrightarrow\mathrm{ backward-finite-path x ^ forward-finite-path x
using finite-iff by fastforce
    Closure under converse
lemma connected-conv:
    connected }x\longleftrightarrow\mathrm{ connected ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-add conv-contrav conv-iso conv-one star-conv)
lemma conv-many-strongly-connected:
    many-strongly-connected }x\longleftrightarrow\mathrm{ many-strongly-connected ( }\mp@subsup{x}{}{T}\mathrm{ )
by fastforce
lemma conv-one-strongly-connected:
    one-strongly-connected }x\longleftrightarrow\mathrm{ one-strongly-connected ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-contrav conv-iso conv-one star-conv)
lemma conv-path:
    path }x\longleftrightarrow\mathrm{ path ( }\mp@subsup{x}{}{T}\mathrm{ )
using connected-conv inj-p-fun path-def by fastforce
lemma conv-cycle:
    cycle }x\longleftrightarrow\mathrm{ cycle ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-path by fastforce
lemma conv-no-start-points:
    no-start-points }x\longleftrightarrow\mathrm{ no-end-points ( }\mp@subsup{x}{}{T}\mathrm{ )
by simp
lemma conv-no-start-end-points:
    no-start-end-points }x\longleftrightarrow\mathrm{ no-start-end-points ( }\mp@subsup{x}{}{T}\mathrm{ )
by fastforce
lemma conv-has-start-points:
    has-start-points }x\longleftrightarrow\mathrm{ has-end-points ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one)
lemma conv-has-start-end-points:
    has-start-end-points }x\longleftrightarrow\mathrm{ has-start-end-points ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one inf-eq-top-iff)
lemma conv-backward-terminating:
    backward-terminating x &orward-terminating ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-compl conv-contrav conv-iso conv-one)
```

```
lemma conv-terminating:
    terminating }x\longleftrightarrow\mathrm{ terminating ( }\mp@subsup{x}{}{T}\mathrm{ )
    apply (rule iffI)
apply (metis conv-compl conv-contrav conv-one conv-times inf.commute le-iff-inf
mult-assoc)
by (metis conv-compl conv-contrav conv-invol conv-one conv-times inf.commute
le-iff-inf mult-assoc)
lemma conv-backward-finite:
    backward-finite }x\longleftrightarrow\mathrm{ forward-finite ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis comp-assoc conv-add conv-compl conv-contrav conv-iso conv-one
star-conv)
lemma conv-finite:
    finite }x\longleftrightarrow\mathrm{ finite ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis finite-iff conv-backward-finite conv-invol)
lemma conv-no-start-points-path:
    no-start-points-path }x\longleftrightarrow\mathrm{ no-end-points-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-path by fastforce
lemma conv-no-start-end-points-path:
    no-start-end-points-path }x\longleftrightarrow\mathrm{ no-start-end-points-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-path by fastforce
lemma conv-has-start-points-path:
    has-start-points-path }x\longleftrightarrow\mathrm{ has-end-points-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-has-start-points conv-path by fastforce
lemma conv-has-start-end-points-path:
    has-start-end-points-path }x\longleftrightarrow\mathrm{ has-start-end-points-path (x
using conv-has-start-end-points conv-path by fastforce
lemma conv-backward-terminating-path:
    backward-terminating-path }x\longleftrightarrow\mathrm{ forward-terminating-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-backward-terminating conv-path by fastforce
lemma conv-terminating-path:
    terminating-path }x\longleftrightarrow\mathrm{ terminating-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-path conv-terminating by fastforce
lemma conv-backward-finite-path:
    backward-finite-path }x\longleftrightarrow\mathrm{ forward-finite-path (xT)
using conv-backward-finite conv-path by fastforce
lemma conv-finite-path:
    finite-path }x\longleftrightarrow\mathrm{ finite-path ( }\mp@subsup{x}{}{T}\mathrm{ )
using conv-finite conv-path by blast
Equivalences for connected
```

```
lemma connected-iff2:
    assumes is-inj \(x\)
        and is-p-fun \(x\)
        shows connected \(x \longleftrightarrow x ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
proof
    assume 1: connected \(x\)
    have \(x ; 1 ; x^{T} \leq x ; 1 ; x ; x^{T}\)
        by (metis conv-invol modular-var-3 vector-meet-comp-x \({ }^{\prime}\) )
    also have \(\ldots \leq\left(x^{+}+x^{T \star}\right) ; x^{T}\)
        using 1 mult-isor star-star-plus by fastforce
    also have \(\ldots \leq x^{\star} ; x ; x^{T}+x^{T \star}\)
        using join-isol star-slide-var by simp
    also from \(\operatorname{assms}(1)\) have \(\ldots \leq x^{\star}+x^{T \star}\)
        by (metis is-inj-def comp-assoc join-iso mult-1-right mult-isol)
    finally show \(x ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\).
next
    assume 2: \(x ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
    have \(x ; 1 ; x \leq x ; 1 ; x^{T} ; x\)
        by (simp add: modular-var-3 vector-meet-comp-x)
    also have \(\ldots \leq\left(x^{\star}+x^{T+}\right) ; x\)
        using 2 by (metis mult-isor star-star-plus sup-commute)
    also have \(\ldots \leq x^{\star}+x^{T \star} ; x^{T} ; x\)
        using join-iso star-slide-var by simp
    also from \(\operatorname{assms}\) (2) have \(\ldots \leq x^{\star}+x^{T \star}\)
        by (metis comp-assoc is-p-fun-def join-isol mult-1-right mult-isol)
    finally show connected \(x\).
qed
lemma connected-iff3:
    assumes is-inj \(x\)
        and is-p-fun \(x\)
    shows connected \(x \longleftrightarrow x^{T} ; 1 ; x \leq x^{\star}+x^{T \star}\)
by (metis assms connected-conv connected-iff2 inj-p-fun p-fun-inj conv-invol
add-commute)
lemma connected-iff4:
connected \(x \longleftrightarrow x^{T} ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
by (metis connected-conv conv-invol add-commute)
lemma connected-iff5:
connected \(x \longleftrightarrow x^{+} ; 1 ; x^{+} \leq x^{\star}+x^{T \star}\)
using comp-assoc plus-top top-plus by fastforce
lemma connected-iff6:
assumes is-inj \(x\)
and is-p-fun \(x\)
shows connected \(x \longleftrightarrow x^{+} ; 1 ;\left(x^{+}\right)^{T} \leq x^{\star}+x^{T \star}\)
using assms connected-iff2 comp-assoc plus-conv plus-top top-plus by fastforce
```

lemma connected-iff7:
assumes is-inj x
and is-p-fun x
shows connected $x \longleftrightarrow\left(x^{+}\right)^{T} ; 1 ; x^{+} \leq x^{\star}+x^{T \star}$
by (metis assms connected-iff3 conv-contrav conv-invol conv-one top-plus vector-meet-comp-x)
lemma connected-iff8:
connected $x \longleftrightarrow\left(x^{+}\right)^{T} ; 1 ;\left(x^{+}\right)^{T} \leq x^{\star}+x^{T \star}$
by (metis connected-iff 4 comp-assoc conv-contrav conv-invol conv-one plus-conv star-conv top-plus)

Equivalences and implications for many-strongly-connected
lemma many-strongly-connected-iff-1:
many-strongly-connected $x \longleftrightarrow x^{T} \leq x^{\star}$
apply (rule iffI,simp)
by (metis conv-invol conv-iso order.eq-iff star-conv star-invol star-iso)
lemma many-strongly-connected-iff-2: many-strongly-connected $x \longleftrightarrow x^{T} \leq x^{+}$

proof

assume as: many-strongly-connected x
hence $x^{T} \leq x^{\star} \cdot\left(-\left(1^{\prime}\right)+x\right)$
by (metis many-strongly-connected-iff-1 loop-backward-forward inf-greatest)
also have $\ldots \leq\left(x^{\star} \cdot-\left(1^{\prime}\right)\right)+\left(x^{\star} \cdot x\right)$
by (simp add: inf-sup-distrib1)
also have $\ldots \leq x^{+}$
by (metis as order.eq-iff mult-1-right mult-isol star-ref sup.absorb1 conv-invol eq-refl galois-1
inf.absorb-iff1 inf.commute star-unfoldl-eq sup-mono
many-strongly-connected-iff-1)
finally show $x^{T} \leq x^{+}$.
next
show $x^{T} \leq x^{+} \Longrightarrow$ many-strongly-connected x
using order-trans star-1l many-strongly-connected-iff-1 by blast
qed
lemma many-strongly-connected-iff-3:
many-strongly-connected $x \longleftrightarrow x \leq x^{T \star}$
by (metis conv-invol many-strongly-connected-iff-1)
lemma many-strongly-connected-iff-4:
many-strongly-connected $x \longleftrightarrow x \leq x^{T+}$
by (metis conv-invol many-strongly-connected-iff-2)
lemma many-strongly-connected-iff-5:
many-strongly-connected $x \longleftrightarrow x^{\star} ; x^{T} \leq x^{+}$
by (metis comp-assoc conv-contrav conway.dagger-unfoldr-distr star-conv star-denest-var-2
star-invol star-trans-eq star-unfoldl-eq sup.boundedE many-strongly-connected-iff-2)
lemma many-strongly-connected-iff-6:
many-strongly-connected $x \longleftrightarrow x^{T} ; x^{\star} \leq x^{+}$
by (metis dual-order.trans star-1l star-conv star-inductl-star star-invol star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-5)
lemma many-strongly-connected-iff-7:
many-strongly-connected $x \longleftrightarrow x^{T+}=x^{+}$
by (metis order.antisym conv-invol star-slide-var star-unfoldl-eq many-strongly-connected-iff-5)
lemma many-strongly-connected-iff-5-eq:
many-strongly-connected $x \longleftrightarrow x^{\star} ; x^{T}=x^{+}$
by (metis order.refl star-slide-var many-strongly-connected-iff-5
many-strongly-connected-iff-7)
lemma many-strongly-connected-iff- 6 -eq:
many-strongly-connected $x \longleftrightarrow x^{T} ; x^{\star}=x^{+}$
using many-strongly-connected-iff- 6 many-strongly-connected-iff-7 by force
lemma many-strongly-connected-implies-no-start-end-points:
assumes many-strongly-connected x shows no-start-end-points x
by (metis assms conway.dagger-unfoldl-distr mult-assoc sup-top-left conv-invol many-strongly-connected-iff-7)
lemma many-strongly-connected-implies-8:
assumes many-strongly-connected x shows $x ; x^{T} \leq x^{+}$
by (simp add: assms mult-isol)
lemma many-strongly-connected-implies-9:
assumes many-strongly-connected x shows $x^{T} ; x \leq x^{+}$
by (metis assms eq-refl phl-cons1 star-ext star-slide-var)
lemma many-strongly-connected-implies-10:
assumes many-strongly-connected x shows $x ; x^{T} ; x^{\star} \leq x^{+}$
by (simp add: assms comp-assoc mult-isol)
lemma many-strongly-connected-implies-10-eq:
assumes many-strongly-connected x shows $x ; x^{T} ; x^{\star}=x^{+}$
proof (rule order.antisym)
show $x ; x^{T} ; x^{\star} \leq x^{+}$

```
    by (simp add: assms comp-assoc mult-isol)
next
    have }\mp@subsup{x}{}{+}\leqx;\mp@subsup{x}{}{T};x;\mp@subsup{x}{}{\star
    using mult-isor x-leq-triple-x by blast
    thus }\mp@subsup{x}{}{+}\leqx;\mp@subsup{x}{}{T};\mp@subsup{x}{}{\star
    by (simp add: comp-assoc mult-isol order-trans)
qed
lemma many-strongly-connected-implies-11:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{\star};\mp@subsup{x}{}{T};x\leq\mp@subsup{x}{}{+
by (metis assms conv-contrav conv-iso mult-isol star-1l star-slide-var)
lemma many-strongly-connected-implies-11-eq:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{\star};\mp@subsup{x}{}{T};x=\mp@subsup{x}{}{+
by (metis assms comp-assoc conv-invol many-strongly-connected-iff-5-eq
        many-strongly-connected-implies-10-eq)
lemma many-strongly-connected-implies-12:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{\star};x;\mp@subsup{x}{}{T}\leq\mp@subsup{x}{}{+
by (metis assms comp-assoc mult-isol star-1l star-slide-var)
lemma many-strongly-connected-implies-12-eq:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{\star};x;\mp@subsup{x}{}{T}=\mp@subsup{x}{}{+
by (metis assms comp-assoc star-slide-var many-strongly-connected-implies-10-eq)
lemma many-strongly-connected-implies-13:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{T};x;\mp@subsup{x}{}{\star}\leq\mp@subsup{x}{}{+
by (metis assms star-slide-var many-strongly-connected-implies-11 mult.assoc)
lemma many-strongly-connected-implies-13-eq:
    assumes many-strongly-connected x
        shows }\mp@subsup{x}{}{T};x;\mp@subsup{x}{}{\star}=\mp@subsup{x}{}{+
by (metis assms conv-invol many-strongly-connected-iff-7
many-strongly-connected-implies-10-eq)
lemma many-strongly-connected-iff-8:
    assumes is-p-fun x
        shows many-strongly-connected }x\longleftrightarrowx;\mp@subsup{x}{}{T}\leq\mp@subsup{x}{}{+
    apply (rule iffI)
    apply (simp add: mult-isol)
    apply (simp add: many-strongly-connected-iff-1)
by (metis comp-assoc conv-invol dual-order.trans mult-isol x-leq-triple-x assms
comp-assoc
        dual-order.trans is-p-fun-def order.refl prod-star-closure star-ref)
```

lemma many-strongly-connected-iff-9:
assumes is-inj x
shows many-strongly-connected $x \longleftrightarrow x^{T} ; x \leq x^{+}$
by (metis assms conv-contrav conv-iso inj-p-fun star-conv star-slide-var many-strongly-connected-iff-1 many-strongly-connected-iff-8)
lemma many-strongly-connected-iff-10:
assumes is-p-fun x
shows many-strongly-connected $x \longleftrightarrow x ; x^{T} ; x^{\star} \leq x^{+}$
apply (rule iffI)
apply (simp add: comp-assoc mult-isol)
by (metis assms mult-isol mult-oner order-trans star-ref
many-strongly-connected-iff-8)
lemma many-strongly-connected-iff-10-eq:
assumes is-p-fun x
shows many-strongly-connected $x \longleftrightarrow x ; x^{T} ; x^{\star}=x^{+}$
using assms many-strongly-connected-iff-10
many-strongly-connected-implies-10-eq by fastforce
lemma many-strongly-connected-iff-11:
assumes is-inj x
shows many-strongly-connected $x \longleftrightarrow x^{\star} ; x^{T} ; x \leq x^{+}$
by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun plus-conv star-conv many-strongly-connected-iff-10 many-strongly-connected-iff-2)
lemma many-strongly-connected-iff-11-eq:
assumes is-inj x
shows many-strongly-connected $x \longleftrightarrow x^{\star} ; x^{T} ; x=x^{+}$
using assms many-strongly-connected-iff-11
many-strongly-connected-implies-11-eq by fastforce
lemma many-strongly-connected-iff-12:
assumes is-p-fun x
shows many-strongly-connected $x \longleftrightarrow x^{\star} ; x ; x^{T} \leq x^{+}$
by (metis assms dual-order.trans mult-double-iso mult-oner star-ref star-slide-var many-strongly-connected-iff-8 many-strongly-connected-implies-12)
lemma many-strongly-connected-iff-12-eq:
assumes is-p-fun x
shows many-strongly-connected $x \longleftrightarrow x^{\star} ; x ; x^{T}=x^{+}$
using assms many-strongly-connected-iff-12
many-strongly-connected-implies-12-eq by fastforce
lemma many-strongly-connected-iff-13:
assumes is-inj x
shows many-strongly-connected $x \longleftrightarrow x^{T} ; x ; x^{\star} \leq x^{+}$
by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun star-conv
star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-12)
lemma many-strongly-connected-iff-13-eq:
assumes is-inj x
shows many-strongly-connected $x \longleftrightarrow x^{T} ; x ; x^{\star}=x^{+}$
using assms many-strongly-connected-iff-13
many-strongly-connected-implies-13-eq by fastforce
Equivalences and implications for one-strongly-connected
lemma one-strongly-connected-iff:
one-strongly-connected $x \longleftrightarrow$ connected $x \wedge$ many-strongly-connected x
apply (rule iffi)
apply (metis top-greatest x-leq-triple-x mult-double-iso top-greatest dual-order.trans
many-strongly-connected-iff-1 comp-assoc conv-contrav conv-invol
conv-iso le-supI2
star-conv)
by (metis comp-assoc conv-contrav conv-iso conv-one conway.dagger-denest star-conv star-invol
star-sum-unfold star-trans-eq)
lemma one-strongly-connected-iff-1:
one-strongly-connected $x \longleftrightarrow x^{T} ; 1 ; x^{T} \leq x^{+}$
proof
assume 1: one-strongly-connected x
have $x^{T} ; 1 ; x^{T} \leq x^{T} ; x ; x^{T} ; 1 ; x^{T}$
by (metis conv-invol mult-isor x-leq-triple- x)
also from 1 have $\ldots \leq x^{T} ; x ; x^{\star}$
by (metis distrib-left mult-assoc sup.absorb-iff1)
also from 1 have $\ldots \leq x^{+}$
using many-strongly-connected-implies-13 one-strongly-connected-iff by blast finally show $x^{T} ; 1 ; x^{T} \leq x^{+}$
next
assume $x^{T} ; 1 ; x^{T} \leq x^{+}$
thus one-strongly-connected x
using dual-order.trans star-1l by blast
qed
lemma one-strongly-connected-iff-1-eq:
one-strongly-connected $x \longleftrightarrow x^{T} ; 1 ; x^{T}=x^{+}$
apply (rule iffI, simp-all)
by (metis comp-assoc conv-contrav conv-invol mult-double-iso plus-conv
star-slide-var top-greatest
top-plus many-strongly-connected-implies-10-eq one-strongly-connected-iff order.eq-iff one-strongly-connected-iff-1)
lemma one-strongly-connected-iff-2:
one-strongly-connected $x \longleftrightarrow x ; 1 ; x \leq x^{T \star}$
by (metis conv-invol eq-refl less-eq-def one-strongly-connected-iff)
lemma one-strongly-connected-iff-3:
one-strongly-connected $x \longleftrightarrow x ; 1 ; x \leq x^{T+}$
by (metis comp-assoc conv-contrav conv-invol conv-iso conv-one star-conv one-strongly-connected-iff-1)
lemma one-strongly-connected-iff-3-eq:
one-strongly-connected $x \longleftrightarrow x ; 1 ; x=x^{T+}$
by (metis conv-invol one-strongly-connected-iff-1-eq one-strongly-connected-iff-2)
lemma one-strongly-connected-iff-4-eq:
one-strongly-connected $x \longleftrightarrow x^{T} ; 1 ; x=x^{+}$
apply (rule iffI)
apply (metis comp-assoc top-plus many-strongly-connected-iff-7
one-strongly-connected-iff
one-strongly-connected-iff-1-eq)
by (metis comp-assoc conv-contrav conv-invol conv-one plus-conv top-plus one-strongly-connected-iff-1-eq)
lemma one-strongly-connected-iff-5-eq:
one-strongly-connected $x \longleftrightarrow x ; 1 ; x^{T}=x^{+}$
using comp-assoc conv-contrav conv-invol conv-one plus-conv top-plus
many-strongly-connected-iff-7
one-strongly-connected-iff one-strongly-connected-iff-3-eq by metis
lemma one-strongly-connected-iff-6-aux:
$x ; x^{+} \leq x ; 1 ; x$
by (metis comp-assoc maddux-21 mult-isol top-plus)
lemma one-strongly-connected-implies-6-eq:
assumes one-strongly-connected x
shows $x ; 1 ; x=x ; x^{+}$
by (metis assms comp-assoc many-strongly-connected-iff- 7
many-strongly-connected-implies-10-eq one-strongly-connected-iff one-strongly-connected-iff-3-eq)
lemma one-strongly-connected-iff-7-aux: $x^{+} \leq x ; 1 ; x$
by (metis le-infI maddux-20 maddux-21 plus-top top-plus vector-meet-comp-x')
lemma one-strongly-connected-implies-7-eq:
assumes one-strongly-connected x
shows $x ; 1 ; x=x^{+}$
using assms many-strongly-connected-iff-7 one-strongly-connected-iff one-strongly-connected-iff-3-eq
by force
lemma one-strongly-connected-implies-8:
assumes one-strongly-connected x
shows $x ; 1 ; x \leq x^{\star}$
using assms one-strongly-connected-iff by fastforce
lemma one-strongly-connected-iff-4:
assumes is-inj x
shows one-strongly-connected $x \longleftrightarrow x^{T} ; 1 ; x \leq x^{+}$
proof
assume one-strongly-connected x
thus $x^{T} ; 1 ; x \leq x^{+}$
by (simp add: one-strongly-connected-iff-4-eq)
next
assume $1: x^{T} ; 1 ; x \leq x^{+}$
hence $x^{T} ; 1 ; x^{T} \leq x^{\star} ; x ; x^{T}$
by (metis mult-isor star-slide-var comp-assoc conv-invol modular-var-3
vector-meet-comp-x order.trans)
also from assms have $\ldots \leq x^{\star}$
using comp-assoc is-inj-def mult-isol mult-oner by fastforce
finally show one-strongly-connected x
using dual-order.trans star-1l by fastforce
qed
lemma one-strongly-connected-iff-5:
assumes is-p-fun x
shows one-strongly-connected $x \longleftrightarrow x ; 1 ; x^{T} \leq x^{+}$
apply (rule iffI)
using one-strongly-connected-iff-5-eq apply simp
by (metis assms comp-assoc mult-double-iso order.trans star-slide-var top-greatest top-plus
many-strongly-connected-iff-12 many-strongly-connected-iff-7
one-strongly-connected-iff-3)
lemma one-strongly-connected-iff-6:
assumes is-p-fun x and is-inj x
shows one-strongly-connected $x \longleftrightarrow x ; 1 ; x \leq x ; x^{+}$

proof

assume one-strongly-connected x
thus $x ; 1 ; x \leq x ; x^{+}$
by (simp add: one-strongly-connected-implies- 6 -eq)
next
assume 1: $x ; 1 ; x \leq x ; x^{+}$
have $x^{T} ; 1 ; x \leq x^{T} ; x ; x^{T} ; 1 ; x$
by (metis conv-invol mult-isor x-leq-triple-x)
also have...$\leq x^{T} ; x ; 1 ; x$
by (metis comp-assoc mult-double-iso top-greatest)

```
    also from 1 have ... \leq 秙;x;\mp@subsup{x}{}{+}
    by (simp add: comp-assoc mult-isol)
    also from assms(1) have ... \leq x +
    by (metis comp-assoc is-p-fun-def mult-isor mult-onel)
    finally show one-strongly-connected x
    using assms(2) one-strongly-connected-iff-4 by blast
qed
lemma one-strongly-connected-iff-6-eq:
    assumes is-p-fun x
        and is-inj x
    shows one-strongly-connected }x\longleftrightarrowx;1;x=x;\mp@subsup{x}{}{+
    apply (rule iffI)
    using one-strongly-connected-implies-6-eq apply blast
by (simp add: assms one-strongly-connected-iff-6)
    Start points and end points
lemma start-end-implies-terminating:
    assumes has-start-points x
        and has-end-points x
    shows terminating x
using assms by simp
lemma start-points-end-points-conv:
    start-points x = end-points ( }\mp@subsup{x}{}{T}\mathrm{ )
by simp
lemma start-point-at-most-one:
    assumes path x
    shows is-inj (start-points x)
proof -
    have isvec: is-vector ( }x;1\cdot-(\mp@subsup{x}{}{T};1)
        by (simp add: comp-assoc is-vector-def one-compl vector-1)
```

 have \(x ; 1 \cdot 1 ; x^{T} \leq x ; 1 ; x ; x^{T}\)
 by (metis comp-assoc conv-contrav conv-one inf.cobounded2 mult-1-right
 mult-isol one-conv ra-2)
also have $\ldots \leq\left(x^{\star}+x^{T \star}\right) ; x^{T}$
using 〈path $x\rangle$ by (metis path-def mult-isor)
also have $\ldots=x^{T}+x^{+} ; x^{T}+x^{T+}$
by (simp add: star-slide-var)
also have $\ldots \leq x^{T+}+x^{+} ; x^{T}+x^{T+}$
by (metis add-iso mult-1-right star-unfoldl-eq subdistl)
also have $\ldots \leq x^{\star} ; x ; x^{T}+x^{T+}$
by (simp add: star-slide-var add-comm)
also have $\ldots \leq x^{\star} ; 1^{\prime}+x^{T+}$
using \langle path $\bar{x}\rangle$ by (metis path-def is-inj-def comp-assoc distrib-left join-iso
less-eq-def)
also have $\ldots=1^{\prime}+x^{\star} ; x+x^{T} ; x^{T \star}$

```
    by simp
    also have .. \leq 1'+1;x+ x ; ;1
    by (metis join-isol mult-isol mult-isor sup.mono top-greatest)
```



```
    from aux have x;1 \cdot 1;\mp@subsup{x}{}{T}\cdot-(\mp@subsup{x}{}{T};1)\cdot-(1;x)\leq1'
    by (simp add: galois-1 sup-commute)
    hence (x;1 \cdot -( (x ;1)) \cdot (x;1 \cdot -( (x ;1) )T}\leq\mp@subsup{1}{}{\prime
    by (simp add: conv-compl inf.assoc inf.left-commute)
    with isvec have (x;1 - -( (\mp@subsup{x}{}{T};1));(x;1\cdot-(\mp@subsup{x}{}{T};1)\mp@subsup{)}{}{T}\leq\mp@subsup{1}{}{\prime}
    by (metis vector-meet-comp')
thus is-inj (start-points x)
    by (simp add: conv-compl is-inj-def)
qed
lemma start-point-zero-point:
assumes path x
    shows start-points x = 0 \vee is-point (start-points x)
using assms start-point-at-most-one comp-assoc is-point-def is-vector-def
vector-compl vector-mult
by simp
lemma start-point-iff1:
    assumes path x
```



```
using assms start-point-zero-point galois-aux2 is-point-def by blast
lemma end-point-at-most-one:
    assumes path x
    shows is-inj (end-points x)
by (metis assms conv-path compl-bot-eq conv-invol inj-def-var1 is-point-def
top-greatest
        start-point-zero-point)
lemma end-point-zero-point:
    assumes path x
        shows end-points x = 0 \vee is-point (end-points x)
using assms conv-path start-point-zero-point by fastforce
lemma end-point-iff1:
    assumes path x
        shows is-point (end-points x)\longleftrightarrow \longleftrightarrow (no-end-points x)
using assms end-point-zero-point galois-aux2 is-point-def by blast
lemma predecessor-point':
    assumes path x
        and point s
        and point e
        and e;\mp@subsup{s}{}{T}\leqx
```

```
    shows \(x ; s=e\)
proof (rule order.antisym)
    show 1: \(e \leq x ; s\)
    using assms(2,4) point-def ss423bij by blast
    show \(x ; s \leq e\)
    proof -
        have \(e^{T} ;(x ; s)=1\)
            using 1 by (metis assms(3) order.eq-iff is-vector-def point-def ss423conv
top-greatest)
    thus ?thesis
            by (metis assms (1-3) comp-assoc conv-contrav conv-invol order.eq-iff
inj-compose is-vector-def
                mult-isol path-def point-def ss423conv sur-def-var1 top-greatest)
    qed
qed
lemma predecessor-point:
    assumes path \(x\)
        and point \(s\)
        and point \(e\)
        and \(e ; s^{T} \leq x\)
    shows point \((x ; s)\)
using predecessor-point' assms by blast
lemma points-of-path-iff:
    shows \(\left(x+x^{T}\right) ; 1=x^{T} ; 1+\operatorname{start-points}(x)\)
    and \(\left(x+x^{T}\right) ; 1=x ; 1+\) end-points \((x)\)
using aux9 inf.commute sup.commute by auto
    Path concatenation preliminaries
lemma path-concat-aux-1:
    assumes \(x ; 1 \cdot y ; 1 \cdot y^{T} ; 1=0\)
        and end-points \(x=\) start-points \(y\)
        shows \(x ; 1 \cdot y ; 1=0\)
proof -
    have \(x ; 1 \cdot y ; 1=\left(x ; 1 \cdot y ; 1 \cdot y^{T} ; 1\right)+\left(x ; 1 \cdot y ; 1 \cdot-\left(y^{T} ; 1\right)\right)\)
    by \(\operatorname{simp}\)
    also from \(\operatorname{assms}(1)\) have \(\ldots=x ; 1 \cdot y ; 1 \cdot-\left(y^{T} ; 1\right)\)
        by (metis aux6-var de-morgan-3 inf.left-commute inf-compl-bot inf-sup-absorb)
    also from \(\operatorname{assms}(2)\) have \(\ldots=x ; 1 \cdot x^{T} ; 1 \cdot-(x ; 1)\)
        by (simp add: inf.assoc)
    also have \(\ldots=0\)
    by (simp add: inf.commute inf.assoc)
    finally show ?thesis .
qed
lemma path-concat-aux-2:
    assumes \(x ; 1 \cdot x^{T} ; 1 \cdot y^{T} ; 1=0\)
        and end-points \(x=\) start-points \(y\)
```

```
    shows \(x^{T} ; 1 \cdot y^{T} ; 1=0\)
proof -
    have \(y^{T} ; 1 \cdot x^{T} ; 1 \cdot\left(x^{T}\right)^{T} ; 1=0\)
    using assms(1) inf.assoc inf.commute by force
    thus ?thesis
    by (metis assms(2) conv-invol inf.commute path-concat-aux-1)
qed
lemma path-concat-aux3-1:
    assumes path \(x\)
        shows \(x ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
proof -
    have \(x ; 1 ; x^{T} \leq x ; 1 ; x^{T} ; x ; x^{T}\)
    by (metis comp-assoc conv-invol mult-isol \(x\)-leq-triple-x)
    also have \(\ldots \leq x ; 1 ; x ; x^{T}\)
    by (metis mult-isol mult-isor mult-assoc top-greatest)
    also from assms have \(\ldots \leq\left(x^{\star}+x^{T \star}\right) ; x^{T}\)
    using path-def comp-assoc mult-isor by blast
    also have \(\ldots=x^{\star} ; x ; x^{T}+x^{T \star} ; x^{T}\)
    by (simp add: star-slide-var star-star-plus)
    also have \(\ldots \leq x^{\star} ; 1^{\prime}+x^{T \star} ; x^{T}\)
    by (metis assms path-def is-inj-def join-iso mult-isol mult-assoc)
    also have \(\ldots \leq x^{\star}+x^{T \star}\)
        using join-isol by simp
    finally show? thesis.
qed
lemma path-concat-aux3-2:
    assumes path \(x\)
    shows \(x^{T} ; 1 ; x \leq x^{\star}+x^{T \star}\)
proof -
    have \(x^{T} ; 1 ; x \leq x^{T} ; x ; x^{T} ; 1 ; x\)
    by (metis comp-assoc conv-invol mult-isor \(x\)-leq-triple- \(x\) )
    also have \(\ldots \leq x^{T} ; x ; 1 ; x\)
    by (metis mult-isol mult-isor mult-assoc top-greatest)
    also from assms have \(\ldots \leq x^{T} ;\left(x^{\star}+x^{T \star}\right)\)
    by (simp add: comp-assoc mult-isol path-def)
    also have \(\ldots=x^{T} ; x ; x^{\star}+x^{T} ; x^{T \star}\)
    by (simp add: comp-assoc distrib-left star-star-plus)
    also have \(\ldots \leq 1^{\prime} ; x^{\star}+x^{T} ; x^{T \star}\)
    by (metis assms path-def is-p-fun-def join-iso mult-isor mult-assoc)
    also have \(\ldots \leq x^{\star}+x^{T \star}\)
    using join-isol by simp
    finally show ?thesis.
qed
lemma path-concat-aux3-3:
    assumes path \(x\)
    shows \(x^{T} ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
```

```
proof -
    have \(x^{T} ; 1 ; x^{T} \leq x^{T} ; x ; x^{T} ; 1 ; x^{T}\)
    by (metis comp-assoc conv-invol mult-isor \(x\)-leq-triple- \(x\) )
    also have \(\ldots \leq x^{T} ; x ; 1 ; x^{T}\)
        by (metis mult-isol mult-isor mult-assoc top-greatest)
    also from assms have \(\ldots \leq x^{T} ;\left(x^{\star}+x^{T \star}\right)\)
    using path-concat-aux3-1 by (simp add: mult-assoc mult-isol)
    also have \(\ldots=x^{T} ; x ; x^{\star}+x^{T} ; x^{T \star}\)
    by (simp add: comp-assoc distrib-left star-star-plus)
    also have \(\ldots \leq 1^{\prime} ; x^{\star}+x^{T} ; x^{T \star}\)
        by (metis assms path-def is-p-fun-def join-iso mult-isor mult-assoc)
    also have \(\ldots \leq x^{\star}+x^{T \star}\)
        using join-isol by simp
    finally show ?thesis.
qed
lemma path-concat-aux-3:
    assumes path \(x\)
        and \(y \leq x^{+}+x^{T+}\)
        and \(z \leq x^{+}+x^{T+}\)
    shows \(y ; 1 ; z \leq x^{\star}+x^{T \star}\)
proof -
    from \(\operatorname{assms}(2,3)\) have \(y ; 1 ; z \leq\left(x^{+}+x^{T+}\right) ; 1 ;\left(x^{+}+x^{T+}\right)\)
        using mult-isol-var mult-isor by blast
    also have \(\ldots=x^{+} ; 1 ; x^{+}+x^{+} ; 1 ; x^{T+}+x^{T+} ; 1 ; x^{+}+x^{T+} ; 1 ; x^{T+}\)
        by (simp add: distrib-left sup-commute sup-left-commute)
    also have \(\ldots=x ; x^{\star} ; 1 ; x^{\star} ; x+x ; x^{\star} ; 1 ; x^{T \star} ; x^{T}+x^{T} ; x^{T \star} ; 1 ; x^{\star} ; x+\)
\(x^{T} ; x^{T \star} ; 1 ; x^{T \star} ; x^{T}\)
    by (simp add: comp-assoc star-slide-var)
    also have \(\ldots \leq x ; 1 ; x+x ; x^{\star} ; 1 ; x^{T \star} ; x^{T}+x^{T} ; x^{T \star} ; 1 ; x^{\star} ; x+x^{T} ; x^{T \star} ; 1 ; x^{T \star} ; x^{T}\)
    by (metis comp-assoc mult-double-iso top-greatest join-iso)
    also have \(\ldots \leq x ; 1 ; x+x ; 1 ; x^{T}+x^{T} ; x^{T \star} ; 1 ; x^{\star} ; x+x^{T} ; x^{T \star} ; 1 ; x^{T \star} ; x^{T}\)
    by (metis comp-assoc mult-double-iso top-greatest join-iso join-isol)
    also have \(\ldots \leq x ; 1 ; x+x ; 1 ; x^{T}+x^{T} ; 1 ; x+x^{T} ; x^{T \star} ; 1 ; x^{T \star} ; x^{T}\)
    by (metis comp-assoc mult-double-iso top-greatest join-iso join-isol)
    also have...\(\leq x ; 1 ; x+x ; 1 ; x^{T}+x^{T} ; 1 ; x+x^{T} ; 1 ; x^{T}\)
    by (metis comp-assoc mult-double-iso top-greatest join-isol)
    also have \(\ldots \leq x^{\star}+x^{T \star}\)
    using assms(1) path-def path-concat-aux3-1 path-concat-aux3-2
path-concat-aux3-3 join-iso join-isol
    by \(\operatorname{simp}\)
    finally show? ?thesis.
qed
lemma path-concat-aux-4:
    \(x^{\star}+x^{T \star} \leq x^{\star}+x^{T} ; 1\)
by (metis star-star-plus add-comm join-isol mult-isol top-greatest)
```

lemma path-concat-aux-5:
assumes path x and $y \leq$ start-points x and $z \leq x+x^{T}$
shows $y ; 1 ; z \leq x^{\star}$
proof -
from assms(1) have $x ; 1 ; x \leq x^{\star}+x^{T} ; 1$
using path-def path-concat-aux-4 dual-order.trans by blast
hence aux1: x;1;x• $-\left(x^{T} ; 1\right) \leq x^{\star}$
by (simp add: galois-1 sup-commute)
from assms(1) have $x ; 1 ; x^{T} \leq x^{\star}+x^{T} ; 1$
using dual-order.trans path-concat-aux3-1 path-concat-aux-4 by blast
hence aux2: $x ; 1 ; x^{T} \cdot-\left(x^{T} ; 1\right) \leq x^{\star}$
by (simp add: galois-1 sup-commute)
from $\operatorname{assms}(2,3)$ have $y ; 1 ; z \leq\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right) ; 1 ;\left(x+x^{T}\right)$
by (simp add: mult-isol-var mult-isor)
also have $\ldots=\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right) ; 1 ; x+\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right) ; 1 ; x^{T}$
using distrib-left by blast
also have $\ldots=\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot 1 ; x\right)+\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right) ; 1 ; x^{T}$
by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1 vector-compl)
also have $\ldots=\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot 1 ; x\right)+\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot 1 ; x^{T}\right)$
by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1 vector-compl)
also have $\ldots=\left(x ; 1 ; x \cdot-\left(x^{T} ; 1\right)\right)+\left(x ; 1 ; x^{T}-\left(x^{T} ; 1\right)\right)$
using vector-meet-comp-x vector-meet-comp- x^{\prime} diff-eq inf.assoc inf.commute
by simp
also from aux1 aux2 have $\ldots \leq x^{\star}$
by (simp add: diff-eq join-iso)
finally show ?thesis.
qed
lemma path-conditions-disjoint-points-iff:
$x ; 1 \cdot\left(x^{T} ; 1+y ; 1\right) \cdot y^{T} ; 1=0 \wedge$ start-points $x \cdot$ end-points $y=0 \longleftrightarrow x ; 1$.
$y^{T} ; 1=0$
proof
assume $1: x ; 1 \cdot y^{T} ; 1=0$
hence $g 1: x ; 1 \cdot\left(x^{T} ; 1+y ; 1\right) \cdot y^{T} ; 1=0$
by (metis inf.left-commute inf-bot-right inf-commute)
have $g 2$: start-points $x \cdot$ end-points $y=0$
using 1 by (metis compl-inf-bot inf.assoc inf.commute inf.left-idem)
show $x ; 1 \cdot\left(x^{T} ; 1+y ; 1\right) \cdot y^{T} ; 1=0 \wedge$ start-points $x \cdot$ end-points $y=0$ using $g 1$ and $g 2$ by simp
next
assume a : $x ; 1 \cdot\left(x^{T} ; 1+y ; 1\right) \cdot y^{T} ; 1=0 \wedge$ start-points $x \cdot$ end-points $y=0$
from a have $a 1: x ; 1 \cdot x^{T} ; 1 \cdot y^{T} ; 1=0$
by (simp add: inf.commute inf-sup-distrib1)
from a have $a 2: x ; 1 \cdot y ; 1 \cdot y^{T} ; 1=0$
by (simp add: inf.commute inf-sup-distrib1)
from a have a3: start-points $x \cdot$ end-points $y=0$
by blast
have $x ; 1 \cdot y^{T} ; 1=x ; 1 \cdot x^{T} ; 1 \cdot y^{T} ; 1+x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot y^{T} ; 1$
by (metis aux4 inf-sup-distrib2)
also from $a 1$ have $\ldots=x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot y^{T} ; 1$
using sup-bot-left by blast
also have $\ldots=x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot y ; 1 \cdot y^{T} ; 1+x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-(y ; 1) \cdot y^{T} ; 1$
by (metis aux4 inf-sup-distrib2)
also have $\ldots \leq x ; 1 \cdot y ; 1 \cdot y^{T} ; 1+x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-(y ; 1) \cdot y^{T} ; 1$
using join-iso meet-iso by simp
also from $a 2$ have $\ldots=$ start-points $x \cdot$ end-points y
using sup-bot-left inf.commute inf.left-commute by simp
also from $a 3$ have $\ldots=0$
by blast
finally show $x ; 1 \cdot y^{T} ; 1=0$
using le-bot by blast
qed
end

2.2 Consequences with the Tarski rule

```
context relation-algebra-rtc-tarski
begin
    General theorems
lemma reachable-implies-predecessor:
    assumes p\not=q
        and point p
        and point q
        and }\mp@subsup{x}{}{\star};q\leq\mp@subsup{x}{}{T\star};
    shows }x;q\not=
proof
    assume contra: x;q=0
    with assms(4) have q\leq x T**p
    by (simp add: independence1)
    hence }p\leq\mp@subsup{x}{}{\star};
    by (metis assms(2,3) point-swap star-conv)
    with contra assms(2,3) have p=q
    by (simp add: independence1 is-point-def point-singleton point-is-point)
    with assms(1) show False
        by simp
qed
lemma acyclic-imp-one-step-different-points:
    assumes is-acyclic x
    and point p
    and point q
```

and $p \leq x ; q$
shows $p \leq-q$ and $p \neq q$
using acyclic-reachable-points assms point-is-point point-not-equal(1) by auto
Start points and end points
lemma start-point-iff2:
assumes path x
shows is-point (start-points $x) \longleftrightarrow$ has-start-points x
proof -
have has-start-points $x \longleftrightarrow 1 \leq-(1 ; x) ; x ; 1$
by (simp add: order.eq-iff)
also have $\ldots \longleftrightarrow 1 \leq 1 ; x^{T} ;-\left(x^{T} ; 1\right)$
by (metis comp-assoc conv-compl conv-contrav conv-iso conv-one)
also have $\ldots \longleftrightarrow 1 \leq 1 ;\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right)$
by (metis (no-types) conv-contrav conv-one inf.commute is-vector-def
one-idem-mult ra-2 vector-1
vector-meet-comp-x)
also have $\ldots \longleftrightarrow 1=1 ;\left(x ; 1 \cdot-\left(x^{T} ; 1\right)\right)$
by (simp add: order.eq-iff)
also have $\ldots \longleftrightarrow x ; 1 \cdot-\left(x^{T} ; 1\right) \neq 0$
by (metis tarski comp-assoc one-compl ra-1 ss-p18)
also have $\ldots \longleftrightarrow$ is-point (start-points x)
using assms is-point-def start-point-zero-point by blast
finally show ?thesis ..
qed
lemma end-point-iff2:
assumes path x
shows is-point (end-points x) \longleftrightarrow has-end-points x
by (metis assms conv-invol conv-has-start-points conv-path start-point-iff2)
lemma edge-is-path:
assumes is-point p
and is-point q
shows path $\left(p ; q^{T}\right)$
apply (unfold path-def; intro conjI)
apply (metis assms comp-assoc is-point-def le-supI1 star-ext vector-rectangle point-equations(3))
apply (metis is-p-fun-def assms comp-assoc conv-contrav conv-invol is-inj-def
is-point-def vector-2-var vector-meet-comp-x' point-equations)
by (metis is-inj-def assms conv-invol conv-times is-point-def p-fun-mult-var vector-meet-comp)
lemma edge-start:
assumes is-point p
and is-point q
and $p \neq q$
shows start-points $\left(p ; q^{T}\right)=p$
using assms by (simp add: comp-assoc point-equations(1,3) point-not-equal inf.absorb1)
lemma edge-end:
assumes is-point p
and is-point q
and $p \neq q$
shows end-points $\left(p ; q^{T}\right)=q$
using assms edge-start by simp
lemma loop-no-start:
assumes is-point p
shows start-points $\left(p ; p^{T}\right)=0$
by simp
lemma loop-no-end:
assumes is-point p
shows end-points $\left(p ; p^{T}\right)=0$
by simp
lemma start-point-no-predecessor:
$x ;$ start-points $(x)=0$
by (metis inf-top.right-neutral modular-1-aux')
lemma end-point-no-successor:
$x^{T} ;$ end-points $(x)=0$
by (metis conv-invol start-point-no-predecessor)
lemma start-to-end:
assumes path x shows start-points(x);end-points $(x)^{T} \leq x^{\star}$
proof (cases end-points $(x)=0$)
assume end-points $(x)=0$
thus ?thesis by simp
next
assume ass: end-points $(x) \neq 0$
hence $n z$: $x ;$ end-points $(x) \neq 0$
by (metis comp-res-aux compl-bot-eq inf.left-idem)
have a : x;end-points $(x) ;$ end-points $(x)^{T} \leq x+x^{T}$
by (metis end-point-at-most-one assms(1) is-inj-def comp-assoc mult-isol mult-oner le-supI1)
have start-points $(x) ;$ end-points $(x)^{T}=$ start-points $(x) ; 1 ;$ end-points $(x)^{T}$
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)
also have $\ldots=\operatorname{start-points}(x) ; 1 ; x ;$ end-points $(x) ; 1 ;$ end-points $(x)^{T}$
using $n z$ tarski by (simp add: comp-assoc)
also have $\ldots=\operatorname{start-points}(x) ; 1 ; x ;$ end-points $(x) ;$ end-points $(x)^{T}$
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)

```
    also with a assms(1) have ... \leq x
    using path-concat-aux-5 comp-assoc eq-refl by simp
    finally show ?thesis.
qed
lemma path-acyclic:
    assumes has-start-points-path x
        shows is-acyclic x
proof -
    let ?r = start-points(x)
    have pt: point(?r)
            using assms point-is-point start-point-iff2 by blast
    have }\mp@subsup{x}{}{+}\cdot\mp@subsup{1}{}{\prime}=(\mp@subsup{x}{}{+}\mp@subsup{)}{}{T}\cdot\mp@subsup{x}{}{+}\cdot\mp@subsup{1}{}{\prime
            by (metis conv-e conv-times inf.assoc inf.left-idem inf-le2
many-strongly-connected-iff-7
                mult-oner star-subid)
    also have ... \leq 秙;1 种+.1'
    by (metis conv-contrav inf.commute maddux-20 meet-double-iso plus-top
star-conv star-slide-var)
    finally have ?r;( (\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime})\leq?r;(\mp@subsup{x}{}{T};1\cdot\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime})
            using mult-isol by blast
    also have ... = (?r.1;x);(\mp@subsup{x}{}{+}\cdot\mp@subsup{1}{}{\prime})
            by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one
inf.assoc
                    is-vector-def one-idem-mult vector-2)
    also have ... = ? r; ; ;( ( + . .1')
            by (metis comp-assoc inf-top.right-neutral is-vector-def one-compl
one-idem-mult vector-1)
    also have ... }\leq(\mp@subsup{x}{}{\star}+\mp@subsup{x}{}{T\star});(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime}
        using assms(1) mult-isor
    by (meson connected-iff4 dual-order.trans mult-subdistr path-concat-aux3-3)
    also have ... = 秋;(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime})+\mp@subsup{x}{}{T+};(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime})
    by (metis distrib-right star-star-plus sup.commute)
    also have ... }\leq\mp@subsup{x}{}{\star};(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime})+\mp@subsup{x}{}{T};
    by (metis join-isol mult-isol plus-top top-greatest)
    finally have ? }r;(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime});1\leq\mp@subsup{x}{}{\star};(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime});1+\mp@subsup{x}{}{T};
    by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult)
    hence 1:? ? ; ( ( + . 1');1\leq x 要;1
    using assms(1) path-def inj-implies-step-forwards-backwards sup-absorb2 by
simp
    have }\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime}\leq(\mp@subsup{x}{}{+}.\mp@subsup{1}{}{\prime});
    by (simp add: maddux-20)
    also have ... }\leq\mathrm{ ? rr T;?r;(种.1 );1
    using pt comp-assoc point-def ss423conv by fastforce
    also have ... \leq? ?r T ; 种;1
        using 1 by (simp add: comp-assoc mult-isol)
    also have ... = 0
    by (metis start-point-no-predecessor annil conv-contrav conv-zero)
    finally show ?thesis
```

using galois-aux le-bot by blast
qed
Equivalences for terminating
lemma backward-terminating-iff1:
assumes path x
shows backward-terminating $x \longleftrightarrow$ has-start-points $x \vee x=0$
proof
assume backward-terminating x
hence $1 ; x ; 1 \leq 1 ;-(1 ; x) ; x ; 1 ; 1$
by (metis mult-isor mult-isol comp-assoc)
also have $\ldots=-(1 ; x) ; x ; 1$
by (metis conv-compl conv-contrav conv-invol conv-one mult-assoc one-compl one-idem-mult)
finally have $1 ; x ; 1 \leq-(1 ; x) ; x ; 1$.
with tarski show has-start-points $x \vee x=0$ by (metis top-le)
next
show has-start-points $x \vee x=0 \Longrightarrow$ backward-terminating x by fastforce
qed
lemma backward-terminating-iff2-aux:
assumes path x
shows $x ; 1 \cdot 1 ; x^{T} \cdot-(1 ; x) \leq x^{T \star}$
proof -
have $x ; 1 \cdot 1 ; x^{T} \leq x ; 1 ; x ; x^{T}$
by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp-x')
also from assms have $\ldots \leq\left(x^{\star}+x^{T \star}\right) ; x^{T}$
using path-def mult-isor by blast
also have $\ldots \leq x^{\star} ; x ; x^{T}+x^{T \star} ; x^{T}$
by (simp add: star-star-plus star-slide-var add-comm)
also from assms have $\ldots \leq x^{\star} ; 1^{\prime}+x^{T \star} ; x^{T}$
by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
also have $\ldots=x^{+}+x^{T *}$
by (metis mult-1-right star-slide-var star-star-plus sup.commute)
also have $\ldots \leq x^{T \star}+1 ; x$
by (metis join-iso mult-isor star-slide-var top-greatest add-comm)
finally have $x ; 1 \cdot 1 ; x^{T} \leq x^{T \star}+1 ; x$.
thus ?thesis
by (simp add: galois-1 sup.commute)
qed
lemma backward-terminating-iff2:
assumes path x
shows backward-terminating $x \longleftrightarrow x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
proof
assume backward-terminating x
with assms have has-start-points $x \vee x=0$
by (simp add: backward-terminating-iff1)
thus $x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
proof
assume $x=0$
thus ?thesis
by simp
next
assume has-start-points x
hence aux1: $1=1 ; x^{T} ;-\left(x^{T} ; 1\right)$
by (metis comp-assoc conv-compl conv-contrav conv-one)
have $x=x \cdot 1$
by simp
also have $\ldots \leq\left(x ;-(1 ; x) \cdot 1 ; x^{T}\right) ;-\left(x^{T} ; 1\right)$
by (metis inf.commute aux1 conv-compl conv-contrav conv-invol conv-one
modular-2-var)
also have $\ldots=\left(x ; 1 \cdot-(1 ; x) \cdot 1 ; x^{T}\right) ;-\left(x^{T} ; 1\right)$
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one
inf.commute inf-top-left one-compl ra-1)
also from assms have $\ldots \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
using backward-terminating-iff2-aux inf.commute inf.assoc mult-isor by
fastforce
finally show $x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$.
qed
next
assume $x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
hence $x \leq \bar{x}^{T \star} ;-\left(x^{T} ; 1\right) \cdot x$
by simp
also have $\ldots=\left(x^{T \star} \cdot-(1 ; x)\right) ; 1 \cdot x$
by (metis one-compl conv-compl conv-contrav conv-invol conv-one inf-top-left ra-2)
also have $\ldots \leq\left(x^{T \star} \cdot-(1 ; x)\right) ;\left(1 \cdot\left(x^{\star} \cdot-(1 ; x)^{T}\right) ; x\right)$
by (metis (mono-tags) conv-compl conv-invol conv-times modular-1-var
star-conv)
also have $\ldots \leq-(1 ; x) ; x^{\star} ; x$
by (simp add: mult-assoc mult-isol-var)
also have $\ldots \leq-(1 ; x) ; x ; 1$
by (simp add: mult-assoc mult-isol star-slide-var)
finally show backward-terminating x.
qed
lemma backward-terminating-iff3-aux:
assumes path x
shows $x^{T} ; 1 \cdot 1 ; x^{T} \cdot-(1 ; x) \leq x^{T \star}$
proof -
have $x^{T} ; 1 \cdot 1 ; x^{T} \leq x^{T} ; 1 ; x ; x^{T}$
by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp- x^{\prime})
also from assms have $\ldots \leq\left(x^{\star}+x^{T \star}\right) ; x^{T}$
using mult-isor path-concat-aux3-2 by blast
also have $\ldots \leq x^{\star} ; x ; x^{T}+x^{T \star} ; x^{T}$
by (simp add: star-star-plus star-slide-var add-comm)
also from assms have $\ldots \leq x^{\star} ; 1^{\prime}+x^{T \star} ; x^{T}$
by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
also have $\ldots=x^{+}+x^{T \star}$
by (metis mult-1-right star-slide-var star-star-plus sup.commute)
also have $\ldots \leq x^{T \star}+1 ; x$
by (metis join-iso mult-isor star-slide-var top-greatest add-comm)
finally have $x^{T} ; 1 \cdot 1 ; x^{T} \leq x^{T \star}+1 ; x$.
thus ?thesis
by (simp add: galois-1 sup.commute)
qed
lemma backward-terminating-iff3:
assumes path x
shows backward-terminating $x \longleftrightarrow x^{T} \leq x^{T \star} ;-\left(x^{T} ; 1\right)$

proof

assume backward-terminating x
with assms have has-start-points $x \vee x=0$
by (simp add: backward-terminating-iff1)
thus $x^{T} \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
proof
assume $x=0$
thus ?thesis
by simp
next
assume has-start-points x
hence aux1: $1=1 ; x^{T} ;-\left(x^{T} ; 1\right)$
by (metis comp-assoc conv-compl conv-contrav conv-one)
have $x^{T}=x^{T} \cdot 1$
by simp
also have $\ldots \leq\left(x^{T} ;-(1 ; x) \cdot 1 ; x^{T}\right) ;-\left(x^{T} ; 1\right)$
by (metis inf.commute aux1 conv-compl conv-contrav conv-invol conv-one
modular-2-var)
also have $\ldots=\left(x^{T} ; 1 \cdot-(1 ; x) \cdot 1 ; x^{T}\right) ;-\left(x^{T} ; 1\right)$
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one
inf.commute inf-top-left one-compl ra-1)
also from assms have $\ldots \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
using backward-terminating-iff3-aux inf.commute inf.assoc mult-isor by fastforce
finally show $x^{T} \leq x^{T \star} ;-\left(x^{T} ; 1\right)$.
qed
next
have 1: $-(1 ; x) \cdot x=0$
by (simp add: galois-aux2 inf.commute maddux-21)
assume $x^{T} \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
hence $x=-(1 ; x) ; x^{\star} \cdot x$
by (metis (mono-tags, lifting) conv-compl conv-contrav conv-iso conv-one

```
inf.absorb2 star-conv)
    also have ... = (-(1;x);\mp@subsup{x}{}{+}+-(1;x);\mp@subsup{1}{}{\prime})\cdotx
        by (metis distrib-left star-unfoldl-eq sup-commute)
    also have ... = - (1;x);\mp@subsup{x}{}{+}\cdotx+-(1;x)\cdotx
        by (simp add: inf-sup-distrib2)
    also have .. \leq - (1;x);\mp@subsup{x}{}{+}
    using 1 by simp
    also have ... }\leq-(1;x);x;
    by (simp add: mult-assoc mult-isol star-slide-var)
    finally show backward-terminating x .
qed
lemma backward-terminating-iff4:
    assumes path x
        shows backward-terminating }x\longleftrightarrowx\leq-(1;x);\mp@subsup{x}{}{\star
apply (subst backward-terminating-iff3)
    apply (rule assms)
    by (metis (mono-tags, lifting) conv-compl conv-iso star-conv conv-contrav
conv-one)
lemma forward-terminating-iff1:
    assumes path x
    shows forward-terminating }x\longleftrightarrow\mathrm{ has-end-points }x\veex=
by (metis comp-assoc eq-refl le-bot one-compl tarski top-greatest)
lemma forward-terminating-iff2:
    assumes path x
    shows forward-terminating }x\longleftrightarrow\mp@subsup{x}{}{T}\leq\mp@subsup{x}{}{\star};-(x;1
by (metis assms backward-terminating-iff1 backward-terminating-iff2
end-point-iff2
    forward-terminating-iff1 compl-bot-eq conv-compl conv-invol conv-one
conv-path
            double-compl start-point-iff2)
```

lemma forward-terminating-iff3:
assumes path x
shows forward-terminating $x \longleftrightarrow x \leq x^{\star} ;-(x ; 1)$
by (metis assms backward-terminating-iff1 backward-terminating-iff3
end-point-iff2
forward-terminating-iff1 compl-bot-eq conv-compl conv-invol conv-one
conv-path
double-compl start-point-iff2)
lemma forward-terminating-iff4:
assumes path x
shows forward-terminating $x \longleftrightarrow x \leq-\left(1 ; x^{T}\right) ; x^{T \star}$
using forward-terminating-iff2 conv-contrav conv-iso star-conv assms conv-compl
by force

lemma terminating-iff1:

assumes path x
shows terminating $x \longleftrightarrow$ has-start-end-points $x \vee x=0$
using assms backward-terminating-iff1 forward-terminating-iff1 by fastforce
lemma terminating-iff2:
assumes path x
shows terminating $x \longleftrightarrow x \leq x^{T \star} ;-\left(x^{T} ; 1\right) \cdot-\left(1 ; x^{T}\right) ; x^{T \star}$
using assms backward-terminating-iff2 forward-terminating-iff2 conv-compl conv-iso star-conv
by force
lemma terminating-iff3:
assumes path x
shows terminating $x \longleftrightarrow x \leq x^{\star} ;-(x ; 1) \cdot-(1 ; x) ; x^{\star}$
using assms backward-terminating-iff4 forward-terminating-iff3 by fastforce
lemma backward-terminating-path-irreflexive:
assumes backward-terminating-path x shows $x \leq-1^{\prime}$
proof -
have $1: x ; x^{T} \leq 1^{\prime}$
using assms is-inj-def path-def by blast
have $x ;\left(x^{T} \cdot 1^{\prime}\right) \leq x ; x^{T} \cdot x$
by (metis inf.bounded-iff inf.commute mult-1-right mult-subdistl)
also have $\ldots \leq 1^{\prime} \cdot x$
using 1 meet-iso by blast
also have $\ldots=1^{\prime} \cdot x^{T}$
by (metis conv-e conv-times inf.cobounded1 is-test-def test-eq-conv)
finally have 2: $x^{T} ;-\left(x^{T} \cdot 1^{\prime}\right) \leq-\left(x^{T} \cdot 1^{\prime}\right)$
by (metis compl-le-swap1 conv-galois-1 inf.commute)
have $x^{T} \cdot 1^{\prime} \leq x^{T} ; 1$
by (simp add: le-infI1 maddux-20)
hence $-\left(x^{T} ; 1\right) \leq-\left(x^{T} \cdot 1^{\prime}\right)$
using compl-mono by blast
hence $x^{T} ;-\left(x^{T} \cdot 1^{\prime}\right)+-\left(x^{T} ; 1\right) \leq-\left(x^{T} \cdot 1^{\prime}\right)$
using 2 by (simp add: le-supI)
hence $x^{T \star} ;-\left(x^{T} ; 1\right) \leq-\left(x^{T} \cdot 1^{\prime}\right)$
by (simp add: rtc-inductl)
hence $x^{T} \cdot 1^{\prime} \cdot x^{T \star} ;-\left(x^{T} ; 1\right)=0$
by (simp add: compl-le-swap1 galois-aux)
hence $x^{T} \cdot 1^{\prime}=0$
using assms backward-terminating-iff3 inf.order-iff le-infI1 by blast
hence $x \cdot 1^{\prime}=0$
by (simp add: conv-self-conjugate)
thus ?thesis
by (simp add: galois-aux)
qed
lemma forward-terminating-path-end-points-1 :
assumes forward-terminating-path x
shows $x \leq x^{+}$;end-points x
proof -
have 1: $-(x ; 1) \cdot x=0$
by (simp add: galois-aux maddux-20)
have $x=x^{\star} ;-(x ; 1) \cdot x$
using assms forward-terminating-iff3 inf.absorb2 by fastforce
also have $\ldots=\left(x^{+} ;-(x ; 1)+1^{\prime} ;-(x ; 1)\right) \cdot x$
by (simp add: sup.commute)
also have $\ldots=x^{+} ;-(x ; 1) \cdot x+-(x ; 1) \cdot x$
using inf-sup-distrib2 by fastforce
also have $\ldots=x^{+} ;-(x ; 1) \cdot x$
using 1 by simp
also have $\ldots \leq x^{+} ;\left(-(x ; 1) \cdot\left(x^{+}\right)^{T} ; x\right)$
using modular-1-var by blast
also have $\ldots=x^{+} ;\left(-(x ; 1) \cdot x^{T+} ; x\right)$
using plus-conv by fastforce
also have $\ldots \leq x^{+}$;end-points x
by (metis inf-commute inf-top-right modular-1' mult-subdistl plus-conv plus-top)
finally show ?thesis.
qed
lemma forward-terminating-path-end-points-2:
assumes forward-terminating-path x shows $x^{T} \leq x^{\star} ;$ end-points x
proof -
have $x^{T} \leq x^{T} ; x ; x^{T}$
by (metis conv-invol x-leq-triple- x)
also have $\ldots \leq x^{T} ; x ; 1$
using mult-isol top-greatest by blast
also have $\ldots \leq x^{T} ; x^{+} ;$end-points $x ; 1$
by (metis assms forward-terminating-path-end-points-1 comp-assoc mult-isol mult-isor)
also have $\ldots=x^{T} ; x^{+} ;$end-points x
by (metis inf-commute mult-assoc one-compl ra-1)
also have $\ldots \leq x^{\star}$; end-points x
by (metis assms comp-assoc compl-le-swap1 conv-galois-1 conv-invol
p-fun-compl path-def)
finally show? ?thesis.
qed
lemma forward-terminating-path-end-points-3:
assumes forward-terminating-path x
shows start-points $x \leq x^{+}$;end-points x
proof -
have start-points $x \leq x^{+} ;$end-points $x ; 1$
using assms forward-terminating-path-end-points-1 comp-assoc mult-isor

```
inf.coboundedI1
    by blast
    also have ... = 种;end-points x
    by (metis inf-commute mult-assoc one-compl ra-1 )
    finally show ?thesis.
qed
```

lemma backward-terminating-path-start-points-1:
assumes backward-terminating-path x
shows $x^{T} \leq x^{T+} ;$ start-points x
using assms forward-terminating-path-end-points-1
conv-backward-terminating-path by fastforce
lemma backward-terminating-path-start-points-2:
assumes backward-terminating-path x
shows $x \leq x^{T *}$;start-points x
using assms forward-terminating-path-end-points-2
conv-backward-terminating-path by fastforce
lemma backward-terminating-path-start-points-3:
assumes backward-terminating-path x
shows end-points $x \leq x^{T+}$;start-points x
using assms forward-terminating-path-end-points-3
conv-backward-terminating-path by fastforce
lemma path-aux1a:
assumes forward-terminating-path x
shows $x \neq 0 \longleftrightarrow$ end-points $x \neq 0$
using assms end-point-iff2 forward-terminating-iff1 end-point-iff1 galois-aux2 by
force
lemma path-aux1b:
assumes backward-terminating-path y
shows $y \neq 0 \longleftrightarrow$ start-points $y \neq 0$
using assms start-point-iff2 backward-terminating-iff1 start-point-iff1 galois-aux2 by force
lemma path-aux1:
assumes forward-terminating-path x and backward-terminating-path y
shows $x \neq 0 \vee y \neq 0 \longleftrightarrow$ end-points $x \neq 0 \vee$ start-points $y \neq 0$
using assms path-aux1a path-aux1b by blast
Equivalences for finite
lemma backward-finite-iff-msc:
backward-finite $x \longleftrightarrow$ many-strongly-connected $x \vee$ backward-terminating x

```
proof
    assume 1: backward-finite x
    thus many-strongly-connected x \vee backward-terminating x
    proof (cases - (1;x);x;1 = 0)
        assume - (1;x);x;1=0
        thus many-strongly-connected x \vee backward-terminating x
            using 1 by (metis conv-invol many-strongly-connected-iff-1 sup-bot-right)
    next
        assume - (1;x);x;1\not=0
        hence 1;-(1;x);x;1=1
            by (simp add: comp-assoc tarski)
    hence - (1;x);x;1=1
            by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one
one-compl)
        thus many-strongly-connected x \vee backward-terminating x
            using 1 by simp
    qed
next
    assume many-strongly-connected }x\vee\mathrm{ backward-terminating x
    thus backward-finite x
        by (metis star-ext sup.coboundedI1 sup.coboundedI2)
qed
lemma forward-finite-iff-msc:
    forward-finite }x\longleftrightarrow\mathrm{ many-strongly-connected }x\vee\mathrm{ forward-terminating }
by (metis backward-finite-iff-msc conv-backward-finite conv-backward-terminating
conv-invol)
lemma finite-iff-msc:
    finite }x\longleftrightarrow\mathrm{ many-strongly-connected }x\vee\mathrm{ terminating }
using backward-finite-iff-msc forward-finite-iff-msc finite-iff by fastforce
        Path concatenation
lemma path-concatenation:
    assumes forward-terminating-path x
        and backward-terminating-path y
        and end-points x = start-points y
        and}x;1\cdot(\mp@subsup{x}{}{T};1+y;1)\cdot\mp@subsup{y}{}{T};1=
    shows path (x+y)
proof (cases y = 0)
    assume y=0
    thus ?thesis
        using assms(1) by fastforce
next
    assume as: y =0
    show ?thesis
    proof (unfold path-def; intro conjI)
        from assms(4) have a: x;1 秙;1 \cdot y 
            by (simp add: inf-sup-distrib1 inf-sup-distrib2)
```

```
    hence aux1: \(x ; 1 \cdot x^{T} ; 1 \cdot y^{T} ; 1=0\)
        using sup-eq-bot-iff by blast
    from \(a\) have aux2: \(x ; 1 \cdot y ; 1 \cdot y^{T} ; 1=0\)
        using sup-eq-bot-iff by blast
    show is-inj \((x+y)\)
    proof (unfold is-inj-def; auto simp add: distrib-left)
    show \(x ; x^{T} \leq 1^{\prime}\)
        using assms(1) path-def is-inj-def by blast
    show \(y ; y^{T} \leq 1^{\prime}\)
        using assms(2) path-def is-inj-def by blast
    have \(y ; x^{T}=0\)
        by (metis assms(3) aux1 annir comp-assoc conv-one le-bot modular-var-2
one-idem-mult
            path-concat-aux-2 schroeder-2)
    thus \(y ; x^{T} \leq 1^{\prime}\)
        using bot-least le-bot by blast
    thus \(x ; y^{T} \leq 1^{\prime}\)
        using conv-iso by force
    qed
    show is-p-fun \((x+y)\)
    proof (unfold is-p-fun-def; auto simp add: distrib-left)
    show \(x^{T} ; x \leq 1^{\prime}\)
        using assms(1) path-def is-p-fun-def by blast
    show \(y^{T} ; y \leq 1^{\prime}\)
        using assms(2) path-def is-p-fun-def by blast
    have \(y^{T} ; x \leq y^{T} ;(y ; 1 \cdot x ; 1)\)
    by (metis conjugation-prop2 inf.commute inf-top.left-neutral maddux-20
mult-isol order-trans
                schroeder-1-var)
    also have ... = 0
    using assms(3) aux2 annir inf-commute path-concat-aux-1 by fastforce
    finally show \(y^{T} ; x \leq 1^{\prime}\)
    using bot-least le-bot by blast
    thus \(x^{T} ; y \leq 1^{\prime}\)
    using conv-iso by force
qed
show connected \((x+y)\)
proof (auto simp add: distrib-left)
    have \(x ; 1 ; x \leq x^{\star}+x^{T \star}\)
        using assms(1) path-def by simp
    also have \(\ldots \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}\)
    using join-iso join-isol star-subdist by simp
    finally show \(x ; 1 ; x \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}\).
    have \(y ; 1 ; y \leq y^{\star}+y^{T \star}\)
        using assms(2) path-def by simp
    also have \(\ldots \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}\)
```

> by (metis star-denest star-subdist sup.mono sup-commute)
finally show $y ; 1 ; y \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}$.
show $y ; 1 ; x \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}$
proof -
have $(y ; 1) ; 1 ;(1 ; x) \leq y^{T \star} ; x^{T \star}$
proof (rule-tac $v=$ start-points y in path-concat-aux-0)
show is-vector (start-points y)
by (metis is-vector-def comp-assoc one-compl one-idem-mult ra-1)
show start-points $y \neq 0$
using as
by (metis assms(2) conv-compl conv-contrav conv-one inf.orderE inf-bot-right inf-top.right-neutral maddux-141)
have (start-points y) $; 1 ; y^{T} \leq y^{\star}$
by (rule path-concat-aux-5) (simp-all add: assms(2))
thus $y ; 1 ;(\text { start-points } y)^{T} \leq y^{T \star}$
by (metis (mono-tags, lifting) conv-iso comp-assoc conv-contrav
conv-invol conv-one
star-conv)
have end-points $x ; 1 ; x \leq x^{T \star}$
apply (rule path-concat-aux-5)
using assms(1) conv-path by simp-all
thus start-points $y ;(1 ; x) \leq x^{T \star}$
by (metis assms(3) mult-assoc)
qed
thus ?thesis
by (metis comp-assoc le-supI2 less-eq-def one-idem-mult star-denest star-subdist-var-1
sup.commute)
qed
show $x ; 1 ; y \leq\left(x^{\star} ; y^{\star}\right)^{\star}+\left(x^{T \star} ; y^{T \star}\right)^{\star}$
proof -
have $(x ; 1) ; 1 ;(1 ; y) \leq x^{\star} ; y^{\star}$
proof (rule-tac $v=$ start-points y in path-concat-aux-0)
show is-vector (start-points y)
by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
show start-points $y \neq 0$
using as assms (2,4) backward-terminating-iff1 galois-aux2
start-point-iff1 start-point-iff2
by blast
have end-points $x ; 1 ; x^{T} \leq x^{T \star}$
apply (rule path-concat-aux-5)
using assms(1) conv-path by simp-all
hence (end-points $\left.x ; 1 ; x^{T}\right)^{T} \leq\left(x^{T \star}\right)^{T}$
using conv-iso by blast
thus $x ; 1 ;(\text { start-points } y)^{T} \leq x^{\star}$
by (simp add: assms(3) comp-assoc star-conv)

```
                have start-points y;1;y\leq y^
                    by (rule path-concat-aux-5) (simp-all add:assms(2))
                    thus start-points y;(1;y)\leq y*
                    by (simp add: mult-assoc)
            qed
            thus ?thesis
                by (metis comp-assoc dual-order.trans le-supI1 one-idem-mult star-ext)
        qed
    qed
    qed
qed
lemma path-concatenation-with-edge:
    assumes }x\not=
        and forward-terminating-path x
        and is-point q
        and q\leq-(1;x)
    shows path (x+(end-points }x);\mp@subsup{q}{}{T}
proof (rule path-concatenation)
    from assms(1,2) have 1: is-point(end-points x)
    using end-point-zero-point path-aux1a by blast
    show 2: backward-terminating-path ((end-points x);\mp@subsup{q}{}{T})
    apply (intro conjI)
    apply (metis edge-is-path 1 assms(3))
    by (metis assms(2-4) 1 bot-least comp-assoc compl-le-swap1 conv-galois-2
double-compl
                            end-point-iff1 le-supE point-equations(1) tarski top-le)
    thus end-points x = start-points ((end-points x);\mp@subsup{q}{}{T})
    by (metis assms(3) 1 edge-start comp-assoc compl-top-eq double-compl
inf.absorb-iff2 inf.commute
    inf-top-right modular-2-aux' point-equations(2))
    show }x;1\cdot(\mp@subsup{x}{}{T};1+((\mathrm{ end-points }x);\mp@subsup{q}{}{T});1)\cdot((\mathrm{ end-points }x);\mp@subsup{q}{}{T}\mp@subsup{)}{}{T};1=
    using 2 by (metis assms(3,4) annir compl-le-swap1 compl-top-eq
conv-galois-2 double-compl
                    inf.absorb-iff2 inf.commute modular-1' modular-2-aux'
point-equations(2))
    show forward-terminating-path x
    by (simp add: assms(2))
qed
lemma path-concatenation-cycle-free:
    assumes forward-terminating-path x
            and backward-terminating-path y
            and end-points x = start-points y
            and}x;1\cdot\mp@subsup{y}{}{T};1=
    shows path (x+y)
apply (rule path-concatenation,simp-all add: assms)
by (metis assms(4) inf.left-commute inf-bot-right inf-commute)
```

```
lemma path-concatenation-start-points-approx:
    assumes end-points \(x=\) start-points \(y\)
        shows start-points \((x+y) \leq\) start-points \(x\)
proof -
    have start-points \((x+y)=x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)+y ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)\)
        by (simp add: inf.assoc inf-sup-distrib2)
    also with \(\operatorname{assms}(1)\) have \(\ldots=x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)+x^{T} ; 1 \cdot-\left(x^{T} ; 1\right)\).
\(-(x ; 1)\)
    by (metis inf.assoc inf.left-commute)
    also have \(\ldots=x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq\) start-points \(x\)
        using inf-le1 by blast
    finally show ?thesis .
qed
lemma path-concatenation-end-points-approx:
    assumes end-points \(x=\) start-points \(y\)
        shows end-points \((x+y) \leq\) end-points \(y\)
proof -
    have end-points \((x+y)=x^{T} ; 1 \cdot-(x ; 1) \cdot-(y ; 1)+y^{T} ; 1 \cdot-(x ; 1) \cdot-(y ; 1)\)
    by (simp add: inf.assoc inf-sup-distrib2)
    also from \(\operatorname{assms}(1)\) have \(\ldots=y ; 1 \cdot-\left(y^{T} ; 1\right) \cdot-(y ; 1)+y^{T} ; 1 \cdot-(x ; 1)\).
\(-(y ; 1)\)
    by \(\operatorname{simp}\)
    also have \(\ldots=y^{T} ; 1 \cdot-(x ; 1) \cdot-(y ; 1)\)
        by (simp add: inf.commute)
    also have \(\ldots \leq\) end-points \(y\)
        using inf-le1 meet-iso by blast
    finally show? ?hesis .
qed
lemma path-concatenation-start-points:
    assumes end-points \(x=\) start-points \(y\)
        and \(x ; 1 \cdot y^{T} ; 1=0\)
    shows start-points \((x+y)=\) start-points \(x\)
proof -
    from \(\operatorname{assms}(2)\) have \(a u x: x ; 1 \cdot-\left(y^{T} ; 1\right)=x ; 1\)
        by (simp add: galois-aux inf.absorb1)
    have start-points \((x+y)=\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)\right)+\left(y ; 1 \cdot-\left(x^{T} ; 1\right)\right.\).
\(\left.-\left(y^{T} ; 1\right)\right)\)
    by (simp add: inf-sup-distrib2 inf.assoc)
    also from \(\operatorname{assms}(1)\) have \(\ldots=\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)\right)+\left(x^{T} ; 1 \cdot-(x ; 1)\right.\).
\(\left.-\left(x^{T} ; 1\right)\right)\)
    using inf.assoc inf.commute by simp
    also have \(\ldots=\left(x ; 1 \cdot-\left(x^{T} ; 1\right) \cdot-\left(y^{T} ; 1\right)\right)\)
    by (simp add: inf.assoc)
    also from aux have \(\ldots=x ; 1 \cdot-\left(x^{T} ; 1\right)\)
```

```
    by (metis inf.assoc inf.commute)
    finally show ?thesis.
qed
lemma path-concatenation-end-points:
    assumes end-points x = start-points y
        and }x;1\cdot\mp@subsup{y}{}{T};1=
    shows end-points (x+y) = end-points y
proof -
    from assms(2) have aux: yT};1\cdot-(x;1)=\mp@subsup{y}{}{T};
        using galois-aux inf.absorb1 inf-commute by blast
    have end-points }(x+y)=(\mp@subsup{x}{}{T};1+\mp@subsup{y}{}{T};1)\cdot-(x;1)\cdot-(y;1
    using inf.assoc by simp
    also from assms(1) have ... = (y;1 . - (y %;1) . - (y;1)) + (yT;1 \cdot -(x;1) .
-(y;1))
    by (simp add: inf-sup-distrib2)
    also have ... = yT};1\cdot-(x;1)\cdot-(y;1
    by (simp add: inf.assoc)
    also from aux have ... = y T;1 . - (y;1)
    by (metis inf.assoc inf.commute)
    finally show ?thesis.
qed
lemma path-concatenation-cycle-free-complete:
    assumes forward-terminating-path x
        and backward-terminating-path y
        and end-points x = start-points y
        and}x;1\cdot\mp@subsup{y}{}{T};1=
    shows path (x+y)^ start-points (x+y)= start-points x}\wedge\mathrm{ end-points (x+y)
= end-points y
using assms path-concatenation-cycle-free path-concatenation-end-points
path-concatenation-start-points
by blast
    Path restriction (path from a given point)
lemma reachable-points-iff:
    assumes point p
    shows (x }\mp@subsup{x}{}{T\star};p\cdotx)=(\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});
proof (rule order.antisym)
    show ( }\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});x\leq\mp@subsup{x}{}{T\star};p\cdot
    proof (rule le-infI)
    show ( }\mp@subsup{x}{}{T\star};p\cdot1);x\leq\mp@subsup{x}{}{T\star};
    proof -
        have ( }\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});x\leq\mp@subsup{x}{}{T\star};p;
            by (simp add: mult-isol-var)
            also have ... \leq 秙*;p
            using assms by (simp add: comp-assoc order.eq-iff point-equations(1)
point-is-point)
```

```
            finally show ?thesis.
    qed
    show ( }\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});x\leq
    by (metis inf-le2 mult-isor mult-onel)
    qed
    show }\mp@subsup{x}{}{T\star};p\cdotx\leq(\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});
    proof -
    have ( }\mp@subsup{x}{}{T\star};p);\mp@subsup{x}{}{T}\leq\mp@subsup{x}{}{T\star};p+-\mp@subsup{1}{}{\prime
    by (metis assms comp-assoc is-vector-def mult-isol point-def sup.coboundedI1
top-greatest)
    hence aux: (-(\mp@subsup{x}{}{T*};p)\cdot\mp@subsup{1}{}{\prime});x\leq-(\mp@subsup{x}{}{T*};p)
        using compl-mono conv-galois-2 by fastforce
    have }x=(\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});x+(-(\mp@subsup{x}{}{T\star};p)\cdot\mp@subsup{1}{}{\prime});
        by (metis aux4 distrib-right inf-commute mult-1-left)
    also with aux have ... \leq ( }\mp@subsup{x}{}{T\star};p\cdot1');x+-(\mp@subsup{x}{}{T\star};p
        using join-isol by blast
    finally have }x\leq(\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime});x+-(\mp@subsup{x}{}{T*};p)
    thus ?thesis
        using galois-2 inf.commute by fastforce
    qed
qed
lemma path-from-given-point:
    assumes path x
            and point p
        shows path( }\mp@subsup{x}{}{T\star};p\cdotx
            and start-points( }\mp@subsup{x}{}{T*};p\cdotx)\leq
            and end-points( }\mp@subsup{x}{}{T\star};p\cdotx)\leqend-points(x
proof (unfold path-def; intro conjI)
    show uni: is-p-fun ( }\mp@subsup{x}{}{T\star};p\cdotx
            by (metis assms(1) inf-commute is-p-fun-def p-fun-mult-var path-def)
    show inj: is-inj ( }\mp@subsup{x}{}{T\star};p\cdotx
            by (metis abel-semigroup.commute assms(1) conv-times
inf.abel-semigroup-axioms inj-p-fun
                is-p-fun-def p-fun-mult-var path-def)
    show connected ( }\mp@subsup{x}{}{T\star};p\cdotx
    proof -
        let ?t=\mp@subsup{x}{}{T\star};p\cdot\mp@subsup{1}{}{\prime}
        let ?u=-(\mp@subsup{x}{}{T\star};p)\cdot1'
    have t-plus-u: ?t + ?u = 1'
            by (simp add: inf.commute)
    have t-times-u: ?t ; ?u \leq 0
            by (simp add: inf.left-commute is-test-def test-comp-eq-mult)
    have t-conv: ?t }\mp@subsup{}{}{T}=
            using inf.cobounded2 is-test-def test-eq-conv by blast
    have txu-zero: ?t;x;?u\leq0
    proof -
            have }\mp@subsup{x}{}{T};?t;1\leq-?
```

proof -
have $x^{T} ; ? t ; 1 \leq x^{T} ; x^{T \star} ; p$
using assms(2)
by (simp add: is-vector-def mult.semigroup-axioms mult-isol-var mult-subdistr order.refl
point-def semigroup.assoc)
also have $\ldots \leq-$? u
by (simp add: le-supI1 mult-isor)
finally show ?thesis.
qed
thus ?thesis
by (metis compl-bot-eq compl-le-swap1 conv-contrav conv-galois-1 t-conv)
qed
hence txux-zero: ? $t ; x ; ? u ; x \leq 0$
using annil le-bot by fastforce
have $t x$-leq: ? $; ; x^{\star} \leq(? t ; x)^{\star}$
proof -
have $? t ; x^{\star}=? t ;(? t ; x+? u ; x)^{\star}$
using t-plus- u by (metis distrib-right' mult-onel)
also have $\ldots=? t ;\left(? u ; x ;(? u ; x)^{\star} ;(? t ; x)^{\star}+(? t ; x)^{\star}\right)$
using txux-zero star-denest-10 by (simp add: comp-assoc le-bot)
also have $\ldots=? t ; ? u ; x ;(? u ; x)^{\star} ;(? t ; x)^{\star}+? t ;(? t ; x)^{\star}$
by (simp add: comp-assoc distrib-left)
also have $\ldots \leq 0 ; x ;(? u ; x)^{\star} ;(? t ; x)^{\star}+? t ;(? t ; x)^{\star}$
using le-bot t-times-u by blast
also have $\ldots \leq(? t ; x)^{\star}$
by (metis annil inf.commute inf-bot-right le-supI mult-onel mult-subdistr)
finally show ?thesis.
qed
hence aux: ? $t ; x^{\star} ; ? t \leq(? t ; x)^{\star}$
using inf.cobounded2 order.trans prod-star-closure star-ref by blast
with t-conv have aux-trans: ? $; x^{T \star} ; ? t \leq(? t ; x)^{T \star}$
by (metis comp-assoc conv-contrav conv-self-conjugate-var g-iso star-conv)
from aux aux-trans have ? $t ;\left(x^{\star}+x^{T \star}\right) ; ? t \leq(? t ; x)^{\star}+(? t ; x)^{T \star}$
by (metis sup-mono distrib-right' distrib-left)
with assms (1) path-concat-aux3-1 have ? $t ;\left(x ; 1 ; x^{T}\right) ; ? t \leq(? t ; x)^{\star}+(? t ; x)^{T \star}$ using dual-order.trans mult-double-iso by blast
with t-conv have $(? t ; x) ; 1 ;(? t ; x)^{T} \leq(? t ; x)^{\star}+(? t ; x)^{T \star}$
using comp-assoc conv-contrav by fastforce
with connected-iff2 show ?thesis
using assms(2) inj reachable-points-iff uni by fastforce
qed
next
show start-points $\left(x^{T \star} ; p \cdot x\right) \leq p$
proof -

```
    have 1: is-vector \(\left(x^{T \star} ; p\right)\)
        using assms(2) by (simp add: is-vector-def mult-assoc point-def)
    hence \(\left(x^{T \star} ; p \cdot x\right) ; 1 \leq x^{T \star} ; p\)
    by (simp add: inf.commute vector-1-comm)
    also have \(\ldots=x^{T+} ; p+p\)
        by (simp add: sup.commute)
    finally have 2: \(\left(x^{T \star} ; p \cdot x\right) ; 1 \cdot-\left(x^{T+} ; p\right) \leq p\)
        using galois-1 by blast
    have \(\left(x^{T \star} ; p \cdot x\right)^{T} ; 1=\left(x^{T} \cdot\left(x^{T \star} ; p\right)^{T}\right) ; 1\)
        by (simp add: inf.commute)
    also have \(\ldots=x^{T} ;\left(x^{T \star} ; p \cdot 1\right)\)
        using 1 vector-2 by blast
    also have \(\ldots=x^{T+} ; p\)
        by (simp add: comp-assoc)
    finally show start-points \(\left(x^{T \star} ; p \cdot x\right) \leq p\)
        using 2 by \(\operatorname{simp}\)
    qed
next
    show end-points \(\left(x^{T \star} ; p \cdot x\right) \leq e n d-p o i n t s(x)\)
    proof -
    have 1: is-vector \(\left(x^{T \star} ; p\right)\)
        using assms(2) by (simp add: is-vector-def mult-assoc point-def)
    have \(\left(x^{T \star} ; p \cdot x\right)^{T} ; 1=\left(\left(x^{T \star} ; p\right)^{T} \cdot x^{T}\right) ; 1\)
            by (simp add: star-conv)
    also have \(\ldots=x^{T} ;\left(x^{T \star} ; p \cdot 1\right)\)
        using 1 vector-2 inf.commute by fastforce
    also have \(\ldots \leq x^{T \star} ; p\)
        using comp-assoc mult-isor by fastforce
    finally have \(2:\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot-\left(x^{T \star} ; p\right)=0\)
        using galois-aux2 by blast
    have \(\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot-\left(\left(x^{T \star} ; p \cdot x\right) ; 1\right)=\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot\left(-\left(x^{T \star} ; p\right)+\right.\)
\(-(x ; 1))\)
            using 1 vector-1 by fastforce
    also have \(\ldots=\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot-\left(x^{T \star} ; p\right)+\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot-(x ; 1)\)
        using inf-sup-distrib1 by blast
    also have \(\ldots=\left(x^{T \star} ; p \cdot x\right)^{T} ; 1 \cdot-(x ; 1)\)
        using 2 by \(\operatorname{simp}\)
    also have \(\ldots \leq x^{T} ; 1 \cdot-(x ; 1)\)
        using meet-iso mult-subdistr-var by fastforce
    finally show ?thesis .
    qed
qed
lemma path-from-given-point':
assumes has-start-points-path \(x\)
    and point \(p\)
    and \(p \leq x ; 1\)
    shows path \(\left(x^{T \star} ; p \cdot x\right)\)
    and \(\operatorname{start-points}\left(x^{T \star} ; p \cdot x\right)=p\)
```

```
    and end-points( }\mp@subsup{x}{}{T*};p\cdotx)=end-points(x
proof -
    show path( }\mp@subsup{x}{}{T\star};p\cdotx
        using assms path-from-given-point(1) by blast
next
    show start-points( }\mp@subsup{x}{}{T\star};p\cdotx)=
    proof (simp only: order.eq-iff; rule conjI)
    show start-points( }\mp@subsup{x}{}{T\star};p\cdotx)\leq
        using assms path-from-given-point(2) by blast
    show p\leqstart-points(x **;p
    proof -
        have 1: is-vector ( }\mp@subsup{x}{}{T\star};p
            using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point
by fastforce
    hence a: p\leq( }\mp@subsup{x}{}{T\star};p\cdotx);
            by (metis vector-1 assms(3) conway.dagger-unfoldl-distr inf.orderI
inf-greatest
                inf-sup-absorb)
            have }\mp@subsup{x}{}{T+};p\cdotp\leq(\mp@subsup{x}{}{T+}\cdot1');
            using assms(2) inj-distr point-def by fastforce
            also have ... }\leq(-\mp@subsup{1}{}{T}\cdot\mp@subsup{1}{}{\prime});
            using assms(1) path-acyclic
            by (metis conv-contrav conv-e meet-iso mult-isor star-conv star-slide-var
test-converse)
            also have ... \leq0
                by simp
            finally have 2: 秙+; p \cdot p\leq0.
            have b: }p\leq-((\mp@subsup{x}{}{T\star};p\cdotx\mp@subsup{)}{}{T};1
            proof -
                have }(\mp@subsup{x}{}{T\star};p\cdotx\mp@subsup{)}{}{T};1=((\mp@subsup{x}{}{T\star};p\mp@subsup{)}{}{T}\cdot\mp@subsup{x}{}{T});
                by (simp add: star-conv)
            also have ... = 稆;(\mp@subsup{x}{}{T\star};p\cdot1)
                using 1 vector-2 inf.commute by fastforce
            also have ... = 㘯; 䑤*;p
                by (simp add: comp-assoc)
            also have ... \leq-p
                using 2 galois-aux le-bot by blast
                finally show ?thesis
                using compl-le-swap1 by blast
            qed
            with a show ?thesis
                by simp
    qed
    qed
next
    show end-points( }\mp@subsup{x}{}{T\star};p\cdotx)=end-points(x
    proof (simp only: order.eq-iff; rule conjI)
```

```
show end-points(x }\mp@subsup{x}{}{T\star};p\cdotx)\leqend-points(x
```

 using assms path-from-given-point(3) by blast
 show end-points \((x) \leq \operatorname{end-points}\left(x^{T \star} ; p \cdot x\right)\)
 proof -
have 1: is-vector ($x^{T \star} ; p$)
using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point
by fastforce
have 2: is-vector (end-points (x))
by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
have a : end-points $(x) \leq\left(x^{T \star} ; p \cdot x\right)^{T} ; 1$
proof -
have $x^{T} ; 1 \cdot 1 ; x^{T}=x^{T} ; 1 ; x^{T}$
by (simp add: vector-meet-comp-x')
also have $\ldots \leq x^{T \star}+x^{\star}$
using assms(1) path-concat-aux3-3 sup.commute by fastforce
also have $\ldots=x^{T \star}+x^{+}$
by (simp add: star-star-plus sup.commute)
also have $\ldots \leq x^{T \star}+x ; 1$
using join-isol mult-isol by fastforce
finally have end-points $(x) \cdot 1 ; x^{T} \leq x^{T \star}$
by (metis galois-1 inf.assoc inf.commute sup-commute)
hence end-points $(x) \cdot p^{T} \leq x^{T \star}$
using assms(3)
by (metis conv-contrav conv-iso conv-one dual-order.trans inf.cobounded1
inf.right-idem
inf-mono)
hence end-points $(x) ; p^{T} \leq x^{T \star}$
using assms(2) 2 by (simp add: point-def vector-meet-comp)
hence end-points $(x) \leq x^{T \star} ; p$
using assms(2) point-def ss423bij by blast
hence $x^{T} ; 1 \leq x^{T \star} ; p+x ; 1$
by (simp add: galois-1 sup-commute)
hence $x^{T} ; 1 \leq x^{T+} ; p+p+x ; 1$
by (metis conway.dagger-unfoldl-distr sup-commute)
hence $x^{T} ; 1 \leq x^{T+} ; p+x ; 1$
by (simp add: assms(3) sup.absorb2 sup.assoc)
hence end-points $(x) \leq x^{T+} ; p$
by (simp add: galois-1 sup-commute)
also have $\ldots=\left(x^{T \star} ; p \cdot x\right)^{T} ; 1$
using 1 inf-commute mult-assoc vector-2 by fastforce
finally show ?thesis .
qed
have $x^{T} ; 1 \cdot\left(x^{T \star} ; p \cdot x\right) ; 1 \leq x ; 1$
by (simp add: le-infI2 mult-isor)
hence b : end-points $(x) \leq-\left(\left(x^{T \star} ; p \cdot x\right) ; 1\right)$
using galois-1 galois-2 by blast
with a show ?thesis
by simp
qed
qed
qed
Cycles
lemma selfloop-is-cycle:
assumes is-point x
shows cycle $\left(x ; x^{T}\right)$
by (simp add: assms edge-is-path)
lemma start-point-no-cycle:
assumes has-start-points-path x
shows \neg cycle x
using assms many-strongly-connected-implies-no-start-end-points
no-start-end-points-iff
start-point-iff1 start-point-iff2 by blast
lemma end-point-no-cycle:
assumes has-end-points-path x
shows \neg cycle x
using assms end-point-iff2 end-point-iff1
many-strongly-connected-implies-no-start-end-points
no-start-end-points-iff by blast
lemma cycle-no-points:
assumes cycle x
shows start-points $x=0$
and end-points $x=0$
by (metis assms inf-compl-bot
many-strongly-connected-implies-no-start-end-points)+
Path concatenation to cycle
lemma path-path-equals-cycle-aux:
assumes has-start-end-points-path x and has-start-end-points-path y and start-points $x=$ end-points y and end-points $x=$ start-points y
shows $x \leq(x+y)^{T \star}$
proof -
let $? e=\operatorname{end-points}(x)$
let ?s $=\operatorname{start}$-points (x)
have $s p$: is-point (?s)
using assms(1) start-point-iff2 has-start-end-points-path-iff by blast
have $e p$: is-point (?e)
using assms(1) end-point-iff2 has-start-end-points-path-iff by blast
have $x \leq x^{T \star} ; ? s ; 1 \cdot 1 ; ? e^{T} ; x^{T \star}$
by (metis assms(1) backward-terminating-path-start-points-2 end-point-iff2 ep forward-terminating-iff1 forward-terminating-path-end-points-2
comp-assoc
conv-contrav conv-invol conv-iso inf.boundedI point-equations(1)
point-equations(4)
star-conv sp start-point-iff2)
also have $\ldots=x^{T \star} ; ? s ; 1 ; ? e^{T} ; x^{T \star}$
by (metis inf-commute inf-top-right ra-1)
also have $\ldots=x^{T \star} ; ? s ; ? e^{T} ; x^{T \star}$
by (metis ep comp-assoc point-equations(4))
also have $\ldots \leq x^{T \star} ; y^{T \star} ; x^{T \star}$
by (metis (mono-tags, lifting) assms(2-4) start-to-end comp-assoc
conv-contrav conv-invol
conv-iso mult-double-iso star-conv)
also have $\ldots=\left(x^{\star} ; y^{\star} ; x^{\star}\right)^{T}$
by (simp add: comp-assoc star-conv)
also have...$\leq\left((x+y)^{\star} ;(x+y)^{\star} ;(x+y)^{\star}\right)^{T}$
by (metis conv-invol conv-iso prod-star-closure star-conv star-denest star-ext
star-iso
star-trans-eq sup-ge1)
also have $\ldots=(x+y)^{T \star}$
by (metis star-conv star-trans-eq)
finally show $x: x \leq(x+y)^{T *}$.
qed
lemma path-path-equals-cycle:
assumes has-start-end-points-path x
and has-start-end-points-path y
and start-points $x=$ end-points y
and end-points $x=$ start-points y
and $x ; 1 \cdot\left(x^{T} ; 1+y ; 1\right) \cdot y^{T} ; 1=0$
shows cycle $(x+y)$
proof (intro conjI)
show path $(x+y)$
apply (rule path-concatenation)
using assms by (simp-all add:has-start-end-points-iff)
show many-strongly-connected $(x+y)$
by (metis path-path-equals-cycle-aux assms (1-4) sup.commute le-supI
many-strongly-connected-iff-3)
qed
lemma path-edge-equals-cycle:
assumes has-start-end-points-path x
shows cycle $\left(x+\right.$ end-points $\left.(x) ;(\text { start-points } x)^{T}\right)$
proof (rule path-path-equals-cycle)
let $? s=$ start-points x
let $? e=$ end-points x
let $? y=\left(? e ; ? s^{T}\right)$
have $s p$: is-point (?s)
using start-point-iff2 assms has-start-end-points-path-iff by blast
have $e p$: is-point (?e)
using end-point-iff2 assms has-start-end-points-path-iff by blast
show has-start-end-points-path x
using assms by blast
show has-start-end-points-path ?y
using edge-is-path
by (metis assms edge-end edge-start end-point-iff2 end-point-iff1 galois-aux2
has-start-end-points-iff inf.left-idem inf-compl-bot-right start-point-iff $)$
show ?s = end-points ?y
by (metis sp ep edge-end annil conv-zero inf.left-idem inf-compl-bot-right)
thus ? $e=$ start-points ?y
by (metis edge-start ep conv-contrav conv-invol sp)
show $x ; 1 \cdot\left(x^{T} ; 1+? e ; ? s^{T} ; 1\right) \cdot\left(? e ; ? s^{T}\right)^{T} ; 1=0$
proof -
have $x ; 1 \cdot\left(x^{T} ; 1+? e ; ? s^{T} ; 1\right) \cdot\left(? e ; ? s^{T}\right)^{T} ; 1=x ; 1 \cdot\left(x^{T} ; 1+? e ; 1 ; ? s^{T} ; 1\right) \cdot$ (?s;? e^{T});1
using sp comp-assoc point-equations(3) by fastforce
also have $\ldots=x ; 1 \cdot\left(x^{T} ; 1+? e ; 1\right) \cdot ? s ; 1$
by (metis sp ep comp-assoc point-equations $(1,3)$)
also have $\ldots \leq 0$
by (simp add: sp ep inf.assoc point-equations(1))
finally show ?thesis
using bot-unique by blast
qed
qed
Break cycles
lemma cycle-remove-edge:
assumes cycle x
and point s
and point e
and $e ; s^{T} \leq x$
shows path $\left(x \cdot-\left(e ; s^{T}\right)\right)$
and start-points $\left(x \cdot-\left(e ; s^{T}\right)\right) \leq s$
and end-points $\left(x \cdot-\left(e ; s^{T}\right)\right) \leq e$
proof -
show path $\left(x \cdot-\left(e ; s^{T}\right)\right)$
proof (unfold path-def; intro conjI)
show 1: is-p-fun $\left(x \cdot-\left(e ; s^{T}\right)\right)$
using assms(1) path-def is-p-fun-def p-fun-mult-var by blast
show 2: $\operatorname{is-inj}\left(x \cdot-\left(e ; s^{T}\right)\right)$
using assms(1) path-def inf.cobounded1 injective-down-closed by blast
show connected $\left(x \cdot-\left(e ; s^{T}\right)\right)$
proof -
have $x^{\star}=\left(\left(x \cdot-\left(e ; s^{T}\right)\right)+e ; s^{T}\right)^{\star}$
by (metis assms(4) aux4-comm inf.absorb2)
also have $\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ;\left(e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}\right)^{\star}$
by simp
also have $\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ;\left(1^{\prime}+e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ;\left(e ; s^{T} ;(x \cdot\right.\right.$
by fastforce
also have $\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ;\left(e ; s^{T} ;\right.$
$\left.\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}\right)^{\star}$
by (simp add: distrib-left mult-assoc)
also have $\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ;\left(s^{T} ;(x\right.$. $\left.\left.-\left(e ; s^{T}\right)\right)^{\star} ; e\right)^{\star} ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}$
by (simp add: comp-assoc star-slide)
also have $\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; 1 ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}$
using top-greatest join-isol mult-double-iso by (metis mult-assoc)
also have $\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}$
using assms(3) by (simp add: comp-assoc is-vector-def point-def)
finally have $3: x^{\star} \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}$.
from $\operatorname{assms}(4)$ have $e ; s^{T} \leq e ; e^{T} ; x$
using assms(3) comp-assoc mult-isol point-def ss423conv by fastforce also have $\ldots \leq e ; e^{T} ;\left(x^{\star}\right)^{T}$
using assms(1) many-strongly-connected-iff-3 mult-isol star-conv by fastforce
also have $\ldots \leq e ; e^{T} ;\left(\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; s^{T} ;(x\right.$. $\left.\left.-\left(e ; s^{T}\right)\right)^{\star}\right)^{T}$
using 3 conv-iso mult-isol by blast
also have $\ldots \leq e ; e^{T} ;\left(\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star} ; s ; e^{T} ;(x\right.$. $\left.\left.-\left(e ; s^{T}\right)\right)^{T \star}\right)$
by (simp add: star-conv comp-assoc)
also have...$\leq e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}+e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star} ; s ; e^{T} ;(x$. $\left.-\left(e ; s^{T}\right)\right)^{T \star}$
by (simp add: comp-assoc distrib-left)
also have $\ldots \leq e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}+e ; 1 ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
by (metis comp-assoc join-isol mult-isol mult-isor top-greatest)
also have $\ldots \leq e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}+e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
using assms(3) by (simp add: point-equations(1) point-is-point)
also have $\ldots=e ; e^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
by simp
also have $\ldots \leq 1^{\prime} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
using assms(3) is-inj-def point-def join-iso mult-isor by blast
finally have $4: e ; s^{T} \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
by simp
have $\left(x \cdot-\left(e ; s^{T}\right)\right) ; 1 ;\left(x \cdot-\left(e ; s^{T}\right)\right) \leq x ; 1 ; x$
by (simp add: mult-isol-var)
also have $\ldots \leq x^{\star}$
using assms(1) connected-iff4 one-strongly-connected-iff one-strongly-connected-implies-8
path-concat-aux3-3 by blast
also have $\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ; e ; s^{T} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}$
by (rule 3)
also have $\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star} ;\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star} ;(x$. $\left.-\left(e ; s^{T}\right)\right)^{\star}$
using 4 by (metis comp-assoc join-isol mult-isol mult-isor)
also have $\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{\star}+\left(x \cdot-\left(e ; s^{T}\right)\right)^{T \star}$
using 12 triple-star by force
finally show ?thesis . qed
qed
next
show start-points $\left(x \cdot-\left(e ; s^{T}\right)\right) \leq s$
proof -
have 1: is-vector $(-s)$
using assms(2) by (simp add: point-def vector-compl)
have $\left(x \cdot-\left(e ; s^{T}\right)\right) ; 1 \cdot-s \leq x ; 1 \cdot-s$
using meet-iso mult-subdistr by blast
also have $\ldots \leq x^{T} ; 1 \cdot-s$
using assms(1) many-strongly-connected-implies-no-start-end-points meet-iso no-start-end-points-path-iff by blast
also have $\ldots \leq\left(x^{T} \cdot-s\right) ; 1$
using 1 by (simp add: vector-1-comm)
also have $\ldots \leq\left(x^{T} \cdot-\left(s ; e^{T}\right)\right) ; 1$
by (metis 1 galois-aux inf.boundedI inf.cobounded1 inf.commute mult-isor schroeder-2

```
                vector-1-comm)
```

 also have \(\ldots=\left(x \cdot-\left(e ; s^{T}\right)\right)^{T} ; 1\)
 by (simp add: conv-compl)
 finally show ?thesis
 by (simp add: galois-1 sup-commute)
 qed
 next
show end-points $\left(x \cdot-\left(e ; s^{T}\right)\right) \leq e$
proof -
have 1: is-vector ($-e$)
using assms(3) by (simp add: point-def vector-compl)
have $\left(x \cdot-\left(e ; s^{T}\right)\right)^{T} ; 1 \cdot-e \leq x^{T} ; 1 \cdot-e$
using meet-iso mult-subdistr by simp
also have $\ldots \leq x ; 1 .-e$
using assms(1) many-strongly-connected-implies-no-start-end-points meet-iso
no-start-end-points-path-iff by blast
also have $\ldots \leq(x \cdot-e) ; 1$
using 1 by (simp add: vector-1-comm)
also have $\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right) ; 1$
by (metis 1 galois-aux inf.boundedI inf.cobounded1 inf.commute mult-isor
schroeder-2
vector-1-comm)
finally show ?thesis
by (simp add: galois-1 sup-commute)
qed
qed
lemma cycle-remove-edge':

```
assumes cycle \(x\)
    and point s
    and point \(e\)
    and \(s \neq e\)
    and \(e ; s^{T} \leq x\)
    shows path \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
    and \(s=\) start-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
    and \(e=\) end-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
proof -
    show path \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
        using \(\operatorname{assms}(1,2,3,5)\) cycle-remove-edge(1) by blast
next
    show \(s=\) start-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
    proof (simp only: order.eq-iff; rule conjI)
        show \(s \leq\) start-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
        proof -
        have \(a: s \leq\left(x \cdot-\left(e ; s^{T}\right)\right) ; 1\)
        proof -
            have 1: is-vector \((-e)\)
            using assms(3) point-def vector-compl by blast
            from \(\operatorname{assms}(2-4)\) have \(s=s \cdot-e\)
                    using comp-assoc edge-end point-equations(1) point-equations(3)
point-is-point by fastforce
            also have \(\ldots \leq x^{T} ; e \cdot-e\)
            using assms \((3,5)\) conv-iso meet-iso point-def ss423conv by fastforce
            also have ... \(\leq x ; 1 \cdot-e\)
                    by (metis assms(1) many-strongly-connected-implies-no-start-end-points
meet-iso mult-isol
                top-greatest)
            also have \(\ldots \leq(x \cdot-e) ; 1\)
                using 1 by (simp add: vector-1-comm)
            also have \(\ldots \leq\left(x \cdot-\left(e ; s^{T}\right)\right) ; 1\)
                by (metis assms(3) comp-anti is-vector-def meet-isor mult-isol mult-isor
point-def
                top-greatest)
            finally show ?thesis
qed
have \(b: s \leq-\left(\left(x \cdot-\left(e ; s^{T}\right)\right)^{T} ; 1\right)\)
proof -
            have \(1: x ; s=e\)
            using assms predecessor-point' by blast
            have \(s \cdot x^{T}=s ;\left(e^{T}+-\left(e^{T}\right)\right) \cdot x^{T}\)
                using assms(2) point-equations(1) point-is-point by fastforce
            also have \(\ldots=s ; e^{T} \cdot x^{T}\)
            by (metis 1 conv-contrav inf.commute inf-sup-absorb modular-1')
            also have \(\ldots \leq e^{T}\)
            by (metis assms(3) inf.coboundedI1 mult-isor point-equations(4)
point-is-point
                top-greatest)
```

```
    finally have \(s \cdot x^{T} \leq s \cdot e^{T}\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq s ; e^{T}\)
        using assms(2,3) by (simp add: point-def vector-meet-comp)
    finally have 2: \(s \cdot x^{T} \cdot-\left(s ; e^{T}\right)=0\)
    using galois-aux2 by blast
    thus ?thesis
    proof -
        have \(s ; e^{T}=e^{T} \cdot s\)
        using assms(2,3) inf-commute point-def vector-meet-comp by force
    thus ?thesis
            using 2
            by (metis assms \((2,3)\) conv-compl conv-invol conv-one conv-times
galois-aux
                inf.assoc point-def point-equations(1) point-is-point schroeder-2
                vector-meet-comp)
            qed
        qed
        with \(a\) show ?thesis
        by \(\operatorname{simp}\)
    qed
    show start-points \(\left(x \cdot-\left(e ; s^{T}\right)\right) \leq s\)
        using \(\operatorname{assms}(1,2,3,5)\) cycle-remove-edge(2) by blast
    qed
next
    show \(e=\) end-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
    proof (simp only: order.eq-iff; rule conjI)
        show \(e \leq\) end-points \(\left(x \cdot-\left(e ; s^{T}\right)\right)\)
    proof -
        have \(a: e \leq\left(x \cdot-\left(e ; s^{T}\right)\right)^{T} ; 1\)
        proof -
            have 1: is-vector \((-s)\)
            using assms(2) point-def vector-compl by blast
            from \(\operatorname{assms}(2-4)\) have \(e=e \cdot-s\)
                    using comp-assoc edge-end point-equations(1) point-equations(3)
point-is-point by fastforce
            also have \(\ldots \leq x ; s \cdot-s\)
                    using assms(2,5) meet-iso point-def ss423bij by fastforce
            also have \(\ldots \leq x^{T} ; 1 \cdot-s\)
            by (metis assms(1) many-strongly-connected-implies-no-start-end-points
meet-iso mult-isol
                    top-greatest)
            also have \(\ldots \leq\left(x^{T} \cdot-s\right) ; 1\)
            using 1 by (simp add: vector-1-comm)
            also have \(\ldots \leq\left(x^{T} \cdot-\left(s ; e^{T}\right)\right) ; 1\)
            by (metis assms(2) comp-anti is-vector-def meet-isor mult-isol mult-isor
point-def
                top-greatest)
```

```
        finally show ?thesis
        by (simp add: conv-compl)
    qed
    have b: e\leq-((x.- (e; s
    proof -
        have 1: x ; ;e=s
        using assms predecessor-point' by (metis conv-contrav conv-invol conv-iso
conv-path)
        have e}e\cdotx=e;(\mp@subsup{s}{}{T}+-(\mp@subsup{s}{}{T}))\cdot
            using assms(3) point-equations(1) point-is-point by fastforce
    also have ... =e;s\mp@subsup{s}{}{T}\cdotx
        by (metis 1 conv-contrav conv-invol inf.commute inf-sup-absorb
modular-1')
    also have ... \leq s s
            by (metis assms(2) inf.coboundedI1 mult-isor point-equations(4)
point-is-point top-greatest)
    finally have }e\cdotx\leqe\cdots\mp@subsup{s}{}{T
        by simp
        also have ... \leqe; s
            using assms(2,3) by (simp add: point-def vector-meet-comp)
            finally have 2: e}\cdotx\cdot-(e;\mp@subsup{s}{}{T})=
            using galois-aux2 by blast
            thus ?thesis
            proof -
            have e; s
            using assms(2,3) inf-commute point-def vector-meet-comp by force
            thus ?thesis
                    using 2
                    by (metis assms(2,3) conv-one galois-aux inf.assoc point-def
point-equations(1)
                                    point-is-point schroeder-2 vector-meet-comp)
            qed
            qed
            with a show ?thesis
            by simp
    qed
    show end-points (x ·- (e; sT}))\leq
        using assms(1,2,3,5) cycle-remove-edge(3) by blast
    qed
qed
end
end
```


3 Relational Characterisation of Rooted Paths

We characterise paths together with a designated root. This is important as often algorithms start with a single vertex, and then build up a path, a tree or another structure. An example is Dijkstra's shortest path algorithm.

```
theory Rooted-Paths
imports Paths
begin
context relation-algebra
begin
    General theorems
lemma step-has-target:
    assumes }x;r\not=
        shows }\mp@subsup{x}{}{T};1\not=
using assms inf.commute inf-bot-right schroeder-1 by fastforce
lemma end-point-char:
    \mp@subsup{x}{}{T};p=0\longleftrightarrowp\leq-(x;1)
using order.antisym bot-least compl-bot-eq conv-galois-1 by fastforce
end
context relation-algebra-tarski
begin
    General theorems concerning points
lemma successor-point:
    assumes is-inj x
        and point r
        and }x;r\not=
    shows point (x;r)
using assms
by (simp add: inj-compose is-point-def is-vector-def mult-assoc point-is-point)
lemma no-end-point-char:
    assumes point p
        shows }\mp@subsup{x}{}{T};p\not=0\longleftrightarrowp\leqx;
by (simp add: assms comp-assoc end-point-char is-vector-def
point-in-vector-or-complement-iff)
lemma no-end-point-char-converse:
    assumes point p
        shows }x;p\not=0\longleftrightarrowp\leq\mp@subsup{x}{}{T};
using assms no-end-point-char by force
end
```


3.1 Consequences without the Tarski rule

context relation-algebra-rtc
 begin

Definitions for path classifications
definition path-root
where path-root $r x \equiv r ; x \leq x^{\star}+x^{T \star} \wedge i s$-inj $x \wedge i s$-p-fun $x \wedge$ point r
abbreviation connected-root
where connected-root $r x \equiv r ; x \leq x^{+}$
definition backward-finite-path-root
where backward-finite-path-root $r x \equiv$ connected-root $r x \wedge i s-i n j x \wedge$ is-p-fun x \wedge point r
abbreviation backward-terminating-path-root
where backward-terminating-path-root $r x \equiv$ backward-finite-path-root $r x \wedge x ; r$ $=0$
abbreviation cycle-root
where cycle-root $r x \equiv r ; x \leq x^{+} \cdot x^{T} ; 1 \wedge$ is-inj $x \wedge i s$ - p-fun $x \wedge$ point r
abbreviation non-empty-cycle-root
where non-empty-cycle-root $r x \equiv$ backward-finite-path-root $r x \wedge r \leq x^{T} ; 1$
abbreviation finite-path-root-end
where finite-path-root-end r $x e \equiv$ backward-finite-path-root $r x \wedge$ point $e \wedge r \leq$ $x^{\star} ; e$
abbreviation terminating-path-root-end where terminating-path-root-end rxe $\begin{aligned} & \text { finite-path-root-end } r x e \wedge x^{T} ; e=0 \\ & e\end{aligned}$

Equivalent formulations of connected-root
lemma connected-root-iff1:
assumes point r
shows connected-root $r x \longleftrightarrow 1 ; x \leq r^{T} ; x^{+}$
by (metis assms comp-assoc is-vector-def point-def ss423conv)
lemma connected-root-iff2:
assumes point r
shows connected-root $r x \longleftrightarrow x^{T} ; 1 \leq x^{T+} ; r$
by (metis assms conv-contrav conv-invol conv-iso conv-one star-conv star-slide-var connected-root-iff1)
lemma connected-root-aux:
$x^{T+} ; r \leq x^{T} ; 1$
by (simp add: comp-assoc mult-isol)
lemma connected-root-iff3:
assumes point r
shows connected-root $r x \longleftrightarrow x^{T} ; 1=x^{T+} ; r$
using assms order.antisym connected-root-aux connected-root-iff2 by fastforce
lemma connected-root-iff4:
assumes point r
shows connected-root $r x \longleftrightarrow 1 ; x=r^{T} ; x^{+}$
by (metis assms conv-contrav conv-invol conv-one star-conv star-slide-var connected-root-iff3)

Consequences of connected-root

lemma has-root-contra:
assumes connected-root $r x$
and point r
and $x^{T} ; r=0$
shows $x=0$
using assms comp-assoc independence1 conv-zero ss-p18 connected-root-iff3 by force
lemma has-root:
assumes connected-root $r x$
and point r
and $x \neq 0$
shows $x^{T} ; r \neq 0$
using has-root-contra assms by blast
lemma connected-root-move-root:
assumes connected-root $r x$
and $q \leq x^{\star} ; r$
shows connected-root $q x$
by (metis assms comp-assoc mult-isol phl-cons1 star-slide-var star-trans-eq)
lemma root-cycle-converse:
assumes connected-root r x
and point r
and $x ; r \neq 0$
shows $x^{T} ; r \neq 0$
using assms conv-zero has-root by fastforce
Rooted paths
lemma path-iff-aux-1:
assumes bijective r
shows $r ; x \leq x^{\star}+x^{T \star} \longleftrightarrow x \leq r^{T} ;\left(x^{\star}+x^{T \star}\right)$
by (simp add: assms ss423conv)
lemma path-iff-aux-2:
assumes bijective r
shows $r ; x \leq x^{\star}+x^{T \star} \longleftrightarrow x^{T} \leq\left(x^{\star}+x^{T \star}\right) ; r$
proof -

```
    have \(\left(\left(x^{\star}+x^{T \star}\right) ; r\right)^{T}=r^{T} ;\left(x^{\star}+x^{T \star}\right)\)
    by (metis conv-add conv-contrav conv-invol star-conv sup.commute)
    thus ?thesis
    by (metis assms conv-invol conv-iso path-iff-aux-1)
qed
lemma path-iff-backward:
    assumes is-inj \(x\)
        and is-p-fun \(x\)
        and point \(r\)
        and \(r ; x \leq x^{\star}+x^{T \star}\)
    shows connected \(x\)
proof -
    have \(x^{T} ; 1 ; x^{T} \leq\left(x^{\star}+x^{T \star}\right) ; r ; 1 ; x^{T}\)
    using assms (3,4) path-iff-aux-2 mult-isor point-def by blast
    also have \(\ldots=\left(x^{\star}+x^{T \star}\right) ; r ; 1 ; x^{T} ; x ; x^{T}\)
    using assms(1) comp-assoc inj-p-fun p-fun-triple by fastforce
    also have \(\ldots \leq\left(x^{\star}+x^{T \star}\right) ; r ; x ; x^{T}\)
    by (metis assms(3) mult-double-iso top-greatest point-def is-vector-def
comp-assoc)
    also have \(\ldots \leq\left(x^{\star}+x^{T \star}\right) ;\left(x^{\star}+x^{T \star}\right) ; x^{T}\)
        by (metis assms(4) comp-assoc mult-double-iso)
    also have \(\ldots \leq\left(x^{\star}+x^{T \star}\right) ;\left(x^{\star}+x^{T \star}\right) ;\left(x^{\star}+x^{T \star}\right)\)
        using le-supI2 mult-isol star-ext by blast
    also have \(\ldots=x^{\star}+x^{T \star}\)
        using assms (1,2) cancel-separate-converse-idempotent by fastforce
    finally show ?thesis
        by (metis conv-add conv-contrav conv-invol conv-one mult-assoc star-conv
sup.orderE sup.orderI
                sup-commute)
qed
lemma empty-path-root-end:
    assumes terminating-path-root-end r \(x\) e
    shows \(e=r \longleftrightarrow x=0\)
    \(\operatorname{apply}\) (standard)
using assms has-root backward-finite-path-root-def apply blast
by (metis assms order.antisym conv-e conv-zero independence1 is-inj-def
mult-oner point-swap
                backward-finite-path-root-def ss423conv sur-def-var1 \(x\)-leq-triple-x)
lemma path-root-acyclic:
    assumes path-root \(r x\)
        and \(x ; r=0\)
    shows is-acyclic \(x\)
proof -
    have \(x^{+} \cdot 1^{\prime}=\left(x^{+}\right)^{T} \cdot x^{+} \cdot 1^{\prime}\)
            by (metis conv-e conv-times inf.assoc inf.left-idem inf-le2
many-strongly-connected-iff-7 mult-oner star-subid)
```

```
    also have \(\ldots \leq x^{T} ; 1 \cdot x^{+} \cdot 1^{\prime}\)
    by (metis conv-contrav inf.commute maddux-20 meet-double-iso plus-top
star-conv star-slide-var)
    finally have \(r ;\left(x^{+} \cdot 1^{\prime}\right) \leq r ;\left(x^{T} ; 1 \cdot x^{+} \cdot 1^{\prime}\right)\)
    using mult-isol by blast
    also have \(\ldots=(r \cdot 1 ; x) ;\left(x^{+} \cdot 1^{\prime}\right)\)
    by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one
inf.assoc is-vector-def one-idem-mult vector-2)
    also have \(\ldots=r ; x ;\left(x^{+} .1^{\prime}\right)\)
    by (metis assms(1) path-root-def point-def inf-top-right vector-1)
    also have \(\ldots \leq\left(x^{\star}+x^{T \star}\right) ;\left(x^{+} \cdot 1^{\prime}\right)\)
    using assms(1) mult-isor path-root-def by blast
    also have \(\ldots=x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right)+x^{T+} ;\left(x^{+} .1^{\prime}\right)\)
    by (metis distrib-right star-star-plus sup.commute)
    also have \(\ldots \leq x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right)+x^{T} ; 1\)
    by (metis join-isol mult-isol plus-top top-greatest)
    finally have \(r ;\left(x^{+} \cdot 1^{\prime}\right) ; 1 \leq x^{\star} ;\left(x^{+} \cdot 1^{\prime}\right) ; 1+x^{T} ; 1\)
    by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult)
    hence \(1: r ;\left(x^{+} .1^{\prime}\right) ; 1 \leq x^{T} ; 1\)
    by (metis assms(1) inj-implies-step-forwards-backwards sup-absorb2
path-root-def)
    have \(x^{+} .1^{\prime} \leq\left(x^{+} .1^{\prime}\right) ; 1\)
    by (simp add: maddux-20)
    also have ... \(\leq r^{T} ; r ;\left(x^{+} .1^{\prime}\right) ; 1\)
    by (metis assms(1) comp-assoc order.refl point-def ss423conv path-root-def)
    also have \(\ldots \leq r^{T} ; x^{T} ; 1\)
    using 1 by (simp add: comp-assoc mult-isol)
    also have \(\ldots=0\)
    using assms(2) annil conv-contrav conv-zero by force
    finally show ?thesis
    using galois-aux le-bot by blast
qed
    Start points and end points
lemma start-points-in-root-aux:
    assumes backward-finite-path-root \(r x\)
    shows \(x ; 1 \leq x^{T \star} ; r\)
proof -
    have \(x ; 1 \leq x ; x^{T+} ; r\)
    by (metis assms inf-top.left-neutral modular-var-2 mult-assoc
connected-root-iff3
                backward-finite-path-root-def)
    also have \(\ldots \leq 1^{\prime} ; x^{T \star} ; r\)
    by (metis assms is-inj-def mult-assoc mult-isor backward-finite-path-root-def)
    finally show ?thesis
    by \(\operatorname{simp}\)
qed
lemma start-points-in-root:
```

assumes backward-finite-path-root $r x$
shows start-points $x \leq r$
using assms galois-1 sup-commute connected-root-iff3
backward-finite-path-root-def
start-points-in-root-aux by fastforce
lemma start-points-not-zero-contra:
assumes connected-root $r x$
and point r
and start-points $x=0$
and $x ; r=0$
shows $x=0$
proof -
have $x ; 1 \leq x^{T} ; 1$
using assms(3) galois-aux by force
also have $\ldots \leq-r$
using assms(4) comp-res compl-bot-eq by blast
finally show ?thesis
using $\operatorname{assms}(1,2)$ has-root-contra galois-aux schroeder-1 by force
qed
lemma start-points-not-zero:
assumes connected-root $r x$
and point r
and $x \neq 0$
and $x ; r=0$
shows start-points $x \neq 0$
using assms start-points-not-zero-contra by blast
Backwards terminating and backwards finite
lemma backward-terminating-path-root-aux:
assumes backward-terminating-path-root $r x$
shows $x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
proof -
have $x^{T \star} ; r \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
using assms comp-res compl-bot-eq compl-le-swap1 mult-isol by blast
thus ?thesis
using assms dual-order.trans maddux-20 start-points-in-root-aux by blast
qed
lemma backward-finite-path-connected-aux:
assumes backward-finite-path-root $r x$
shows $x^{T} ; r ; x^{T} \leq x^{\star}+x^{T \star}$
proof -
have $x^{T} ; r ; x^{T} \cdot r^{T}=x^{T} ; r ;\left(x^{T} \cdot r^{T}\right)$
by (metis conv-invol conv-times vector-1-comm comp-assoc conv-contrav assms backward-finite-path-root-def point-def)
also have $\ldots \leq x^{T} ; r ; r^{T}$
by (simp add: mult-isol)
also have 1: $\ldots \leq x^{T}$
by (metis assms comp-assoc is-inj-def mult-1-right mult-isol point-def backward-finite-path-root-def)
also have $\ldots \leq x^{T \star}$
by simp
finally have 2: $x^{T} ; r ; x^{T} \cdot r^{T} \leq x^{T \star}$.
let $? v=x ; 1 \cdot-r$
have $? v \leq x^{T+} ; r$
by (simp add: assms galois-1 start-points-in-root-aux)
hence $r^{T} ; x \cdot ? v \leq r^{T} ; x \cdot x^{T+} ; r$
using meet-isor by blast
also have 3: ... $=x^{T+} ; r \cdot 1 ; r^{T} ; x$
by (metis assms conv-contrav conv-one inf-commute is-vector-def point-def backward-finite-path-root-def)
also have $\ldots=\left(x^{T+} ; r \cdot 1\right) ; r^{T} ; x$
using 3 by (metis comp-assoc inf-commute is-vector-def star-conv vector-1
assms
backward-finite-path-root-def point-def)
also have $\ldots=x^{T+} ; r ; r^{T} ; x$
by simp
also have $\ldots \leq x^{T+} ; x$
using 1 by (metis mult-assoc mult-isol mult-isor star-slide-var)
also have $\ldots=x^{T \star} ; x^{T} ; x$
by (simp add: star-slide-var)
also have $\ldots \leq x^{T \star}$
by (metis assms backward-finite-path-root-def is-p-fun-def mult-1-right
mult-assoc mult-isol-var
star-1l star-inductl-star)
finally have $4: x^{T} ; r \cdot ? v^{T} \leq x^{\star}$
using conv-iso star-conv by force
have $x^{T} ; r ; x^{T} \cdot-r^{T}=\left(x^{T} ; r \cdot 1\right) ; x^{T} \cdot-r^{T}$
by simp
also have $\ldots=x^{T} ; r \cdot 1 ; x^{T} \cdot-r^{T}$
by (metis inf.commute is-vector-def comp-assoc vector-1 assms
backward-finite-path-root-def
point-def)
also have $\ldots \leq x^{\star}$
using 4 by (simp add: conv-compl inf.assoc)
finally have $\left(x^{T} ; r ; x^{T} \cdot-r^{T}\right)+\left(x^{T} ; r ; x^{T} \cdot r^{T}\right) \leq x^{\star}+x^{T \star}$
using 2 sup.mono by blast
thus ?thesis
by fastforce
qed
lemma backward-finite-path-connected:
assumes backward-finite-path-root r x
shows connected x
proof -
from assms obtain r where 1: backward-finite-path-root r x..

```
have \(x^{T} ;\left(x^{\star}+x^{T \star}\right)=x^{T} ;\left(1^{\prime}+x^{+}\right)+x^{T+}\)
    by (simp add: distrib-left)
    also have \(\ldots=x^{T} ; x^{+}+x^{T+}\)
    using calculation distrib-left star-star-plus by fastforce
    also have \(\ldots \leq 1^{\prime} ; x^{\star}+x^{T+}\)
    using 1 by (metis add-iso comp-assoc is-p-fun-def mult-isor
backward-finite-path-root-def)
    also have \(\ldots \leq x^{\star}+x^{T \star}\)
    using join-isol by fastforce
    finally have \(x^{T} ; r ; x^{T}+x^{T} ;\left(x^{\star}+x^{T \star}\right) \leq x^{\star}+x^{T \star}\)
    using 1 backward-finite-path-connected-aux by simp
    hence \(x^{T \star} ; x^{T} ; r ; x^{T} \leq x^{\star}+x^{T \star}\)
    using star-inductl comp-assoc by simp
    hence \(x^{T} ; 1 ; x^{T} \leq x^{\star}+x^{T \star}\)
    using 1 backward-finite-path-root-def connected-root-iff3 star-slide-var by
fastforce
    thus ?thesis
    by (metis (mono-tags, lifting) sup.commute comp-assoc conv-add conv-contrav
conv-invol conv-iso
                conv-one star-conv)
qed
lemma backward-finite-path-root-path:
    assumes backward-finite-path-root r x
    shows path \(x\)
using assms path-def backward-finite-path-connected backward-finite-path-root-def
by blast
lemma backward-finite-path-root-path-root:
    assumes backward-finite-path-root \(r x\)
    shows path-root \(r x\)
using assms backward-finite-path-root-def le-supI1 star-star-plus path-root-def by
fastforce
lemma zero-backward-terminating-path-root:
    assumes point \(r\)
        shows backward-terminating-path-root r 0
by (simp add: assms is-inj-def is-p-fun-def backward-finite-path-root-def)
lemma backward-finite-path-root-move-root:
    assumes backward-finite-path-root r x
        and point \(q\)
        and \(q \leq x^{\star} ; r\)
    shows backward-finite-path-root \(q\) x
using assms connected-root-move-root backward-finite-path-root-def by blast
```

 Cycle
 lemma non-empty-cycle-root-var-axioms-1:
non-empty-cycle-root $r x \longleftrightarrow x^{T} ; 1 \leq x^{T+} ; r \wedge i s$-inj $x \wedge i s$-p-fun $x \wedge$ point $r \wedge$

$$
r \leq x^{T} ; 1
$$

using connected-root-iff2 backward-finite-path-root-def by blast
lemma non-empty-cycle-root-loop:
assumes non-empty-cycle-root $r x$ shows $r \leq x^{T+} ; r$
using assms connected-root-iff3 backward-finite-path-root-def by fastforce
lemma cycle-root-end-empty:
assumes terminating-path-root-end r $x e$ and many-strongly-connected x
shows $x=0$
by (metis assms has-root-contra point-swap backward-finite-path-root-def backward-finite-path-root-move-root star-conv)
lemma cycle-root-end-empty-var:
assumes terminating-path-root-end r $x e$ and $x \neq 0$
shows \neg many-strongly-connected x
using assms cycle-root-end-empty by blast
Terminating path
lemma terminating-path-root-end-connected:
assumes terminating-path-root-end $r x e$
shows $x ; 1 \leq x^{+} ; e$
proof -
have $x ; 1 \leq x ; x^{T} ; 1$
by (metis comp-assoc inf-top.left-neutral modular-var-2)
also have $\ldots=x ; x^{T+} ; r$
using assms backward-finite-path-root-def connected-root-iff3 comp-assoc by
fastforce
also have $\ldots \leq x ; x^{T+} ; x^{\star} ; e$
by (simp add: assms comp-assoc mult-isol)
also have $\ldots=x ; x^{T} ;\left(x^{\star}+x^{T \star}\right) ; e$
using assms cancel-separate-p-fun-converse comp-assoc
backward-finite-path-root-def by fastforce
also have $\ldots=x ; x^{T} ;\left(x^{+}+x^{T \star}\right) ; e$ by (simp add: star-star-plus)
also have $\ldots=x ; x^{T} ; x^{+} ; e+x ; x^{T+} ; e$
by (simp add: comp-assoc distrib-left)
also have $\ldots=x ; x^{T} ; x^{+} ; e$
by (simp add: assms comp-assoc independence1)
also have $\ldots \leq x^{+} ; e$
by (metis assms annil independence1 is-inj-def mult-isor mult-oner
backward-finite-path-root-def)
finally show ?thesis .
qed
lemma terminating-path-root-end-forward-finite:
assumes terminating-path-root-end $r x e$
shows backward-finite-path-root e $\left(x^{T}\right)$
using assms terminating-path-root-end-connected inj-p-fun connected-root-iff2 backward-finite-path-root-def by force
end

3.2 Consequences with the Tarski rule

context relation-algebra-rtc-tarski
begin
Some (more) results about points
lemma point-reachable-converse:
assumes is-vector v
and $v \neq 0$
and point r
and $v \leq x^{T+} ; r$
shows $r \leq x^{+} ; v$
proof -
have $v^{T} ; v \neq 0$
by (metis assms(2) inf.idem inf-bot-right mult-1-right schroeder-1)
hence $1 ; v^{T} ; v=1$
using assms(1) is-vector-def mult-assoc tarski by force
hence 1: $r=r ; v^{T} ; v$
by (metis assms(3) is-vector-def mult-assoc point-def)
have $v ; r^{T} \leq x^{T+}$
using $\operatorname{assms}(3,4)$ point-def ss423bij by simp
hence $r ; v^{T} \leq x^{+}$
by (metis conv-contrav conv-invol conv-iso star-conv star-slide-var)
thus ?thesis
using 1 by (metis mult-isor)
qed
Roots
lemma root-in-start-points:
assumes connected-root $r x$
and is-vector r
and $x \neq 0$
and $x ; r=0$
shows $r \leq$ start-points x
proof -
have $r=r ; x ; 1$
by (metis assms(2,3) comp-assoc is-vector-def tarski)
also have..$\leq x ; 1$
by (metis assms(1) comp-assoc one-idem-mult phl-seq top-greatest)
finally show ?thesis
using assms(4) comp-res compl-bot-eq compl-le-swap1 inf.boundedI by blast qed

lemma root-equals-start-points:

assumes backward-terminating-path-root $r x$ and $x \neq 0$
shows $r=$ start-points x
using assms order.antisym point-def backward-finite-path-root-def
start-points-in-root root-in-start-points
by fastforce
lemma root-equals-end-points:
assumes backward-terminating-path-root $r\left(x^{T}\right)$ and $x \neq 0$
shows $r=$ end-points x
by (metis assms conv-invol step-has-target ss-p18 root-equals-start-points)
lemma root-in-edge-sources:
assumes connected-root r x
and $x \neq 0$
and is-vector r
shows $r \leq x ; 1$
proof -
have $r ; 1 ; x ; 1 \leq x^{+} ; 1$
using $\operatorname{assms}(1,3)$ is-vector-def mult-isor by fastforce
thus ?thesis
by (metis assms(2) comp-assoc conway.dagger-unfoldl-distr dual-order.trans maddux-20 sup.commute sup-absorb2 tarski top-greatest)
qed
Rooted Paths
lemma non-empty-path-root-iff-aux:
assumes path-root r x
and $x \neq 0$
shows $r \leq\left(x+x^{T}\right) ; 1$
proof -
have $\left(r ; x \cdot 1^{\prime}\right) ; 1=\left(x^{T} ; r^{T} \cdot 1^{\prime}\right) ; 1$
by (metis conv-contrav conv-e conv-times inf.cobounded2 is-test-def test-eq-conv)
also have $\ldots \leq x^{T} ; r^{T} ; 1$
using mult-subdistr by blast
also have ... $\leq x^{T} ; 1$
by (metis mult-assoc mult-double-iso one-idem-mult top-greatest)
finally have $1:\left(r ; x \cdot 1^{\prime}\right) ; 1 \leq x^{T} ; 1$.
have $r \leq r ; 1 ; x ; 1$
using assms(2) comp-assoc maddux-20 tarski by fastforce
also have $\ldots=r ; x ; 1$
using assms(1) path-root-def point-def is-vector-def by simp
also have $\ldots=\left(r ; x \cdot\left(x^{\star}+x^{T \star}\right)\right) ; 1$
using assms(1) path-root-def by (simp add: inf.absorb-iff1)
also have $\ldots=\left(r ; x \cdot\left(x^{+}+x^{T+}+1^{\prime}\right)\right) ; 1$

```
    by (metis star-star-plus star-unfoldl-eq sup-commute sup-left-commute)
    also have ... \leq (x+}+\mp@subsup{x}{}{T+}+(r;x\cdot\mp@subsup{1}{}{\prime}));
    by (metis inf-le2 inf-sup-distrib1 mult-isor order-refl sup-mono)
    also have ... }\leqx;1+\mp@subsup{x}{}{T};1+(r;x\cdot\mp@subsup{1}{}{\prime});
    by (simp add: plus-top)
    also have ... = x;1 + + x ; 1
    using 1 sup.coboundedI2 sup.order-iff by fastforce
    finally show ?thesis
    by simp
qed
Backwards terminating and backwards finite
lemma backward-terminating-path-root-2:
assumes backward-terminating-path-root r \(x\)
shows backward-terminating \(x\)
using assms backward-terminating-iff2 path-def
backward-terminating-path-root-aux
backward-finite-path-connected backward-finite-path-root-def by blast
lemma backward-terminating-path-root:
assumes backward-terminating-path-root r \(x\)
shows backward-terminating-path \(x\)
using assms backward-finite-path-root-path backward-terminating-path-root-2 by fastforce
```

(Non-empty) Cycle
lemma cycle-iff:
assumes point r
shows $x ; r \neq 0 \longleftrightarrow r \leq x^{T} ; 1$
by (simp add: assms no-end-point-char-converse)
lemma non-empty-cycle-root-iff:
assumes connected-root $r x$
and point r
shows $x ; r \neq 0 \longleftrightarrow r \leq x^{T+} ; r$
using assms connected-root-iff3 cycle-iff by simp
lemma backward-finite-path-root-terminating-or-cycle:
backward-finite-path-root $r x \longleftrightarrow$ backward-terminating-path-root $r x \vee$
non-empty-cycle-root r x
using cycle-iff backward-finite-path-root-def by blast
lemma non-empty-cycle-root-msc:
assumes non-empty-cycle-root $r x$
shows many-strongly-connected x
proof -
let ? $p=x^{T} ; r$
have 1: is-point ?p
unfolding is-point-def
using conjI assms is-vector-def mult-assoc point-def inj-compose p-fun-inj cycle-iff backward-finite-path-root-def root-cycle-converse by fastforce
have ? $p \leq x^{T+} ; ? p$
by (metis assms comp-assoc mult-isol star-slide-var non-empty-cycle-root-loop)
hence ? $p \leq x^{+} ; ? p$
using 1 bot-least point-def point-is-point point-reachable-converse by blast also have $\ldots=x^{\star} ;\left(x ; x^{T}\right) ; r$
by (metis comp-assoc star-slide-var)
also have ... $\leq x^{\star} ; 1^{\prime} ; r$
using assms is-inj-def mult-double-iso backward-finite-path-root-def by blast
finally have $2: ? p \leq x^{\star} ; r$
by simp
have $x^{T} ; x^{\star} ; r=? p+x^{T} ; x^{+} ; r$
by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)
also have $\ldots \leq ? p+1^{\prime} ; x^{\star} ; r$
by (metis assms is-p-fun-def join-isol mult-assoc mult-isor
backward-finite-path-root-def)
also have $\ldots=x^{\star} ; r$
using 2 by (simp add: sup-absorb2)
finally have $3: x^{T \star} ; r \leq x^{\star} ; r$
by (metis star-inductl comp-assoc conway.dagger-unfoldl-distr le-supI order-prop)
have $x^{T} \leq x^{T+} ; r$
by (metis assms maddux-20 connected-root-iff3 backward-finite-path-root-def)
also have $\ldots \leq x^{\star} ; r$
using 3 by (metis assms conway.dagger-unfoldl-distr sup-absorb2
non-empty-cycle-root-loop)
finally have $4: x^{T} \leq x^{\star} ; r$.
have $x^{T} \leq x^{T} ; x ; x^{T}$
by (metis conv-invol x-leq-triple-x)
also have $\ldots \leq 1 ; x ; x^{T}$
by (simp add: mult-isor)
also have $\ldots=r^{T} ; x^{+} ; x^{T}$
using assms connected-root-iff4 backward-finite-path-root-def by fastforce
also have $\ldots \leq r^{T} ; x^{\star}$
by (metis assms is-inj-def mult-1-right mult-assoc mult-isol
backward-finite-path-root-def
star-slide-var)
finally have $x^{T} \leq x^{\star} ; r \cdot r^{T} ; x^{\star}$
using 4 by simp
also have $\ldots=x^{\star} ; r \cdot 1 ; r^{T} ; x^{\star}$
by (metis assms conv-contrav conv-one is-vector-def point-def
backward-finite-path-root-def)
also have $\ldots=\left(x^{\star} ; r \cdot 1\right) ; r^{T} ; x^{\star}$
by (metis (no-types, lifting) assms is-vector-def mult-assoc point-def backward-finite-path-root-def vector-1)
also have $\ldots=x^{\star} ; r ; r^{T} ; x^{\star}$
by simp
also have $\ldots \leq x^{\star} ; x^{\star}$
by (metis assms is-inj-def mult-1-right mult-assoc mult-isol mult-isor point-def backward-finite-path-root-def)
also have $\ldots \leq x^{\star}$
by simp
finally show ?thesis
by (simp add: many-strongly-connected-iff-1)
qed
lemma non-empty-cycle-root-msc-cycle:
assumes non-empty-cycle-root $r x$
shows cycle x
using assms backward-finite-path-root-path non-empty-cycle-root-msc by fastforce
lemma non-empty-cycle-root-non-empty:
assumes non-empty-cycle-root r x
shows $x \neq 0$
using assms cycle-iff annil backward-finite-path-root-def by blast
lemma non-empty-cycle-root-rtc-symmetric:
assumes non-empty-cycle-root $r x$
shows $x^{\star} ; r=x^{T \star} ; r$
using assms non-empty-cycle-root-msc by fastforce
lemma non-empty-cycle-root-point-exchange:
assumes non-empty-cycle-root $r x$ and point p
shows $r \leq x^{\star} ; p \longleftrightarrow p \leq x^{\star} ; r$
by (metis assms $(1,2)$ inj-sur-semi-swap point-def non-empty-cycle-root-msc backward-finite-path-root-def star-conv)
lemma non-empty-cycle-root-rtc-tc:
assumes non-empty-cycle-root $r x$ shows $x^{\star} ; r=x^{+} ; r$
proof (rule order.antisym)
have $r \leq x^{+} ; r$
using assms many-strongly-connected-iff-7 non-empty-cycle-root-loop
non-empty-cycle-root-msc
by simp
thus $x^{\star} ; r \leq x^{+} ; r$
using sup-absorb2 by fastforce
next
show $x^{+} ; r \leq x^{\star} ; r$
by (simp add: mult-isor)
qed
lemma non-empty-cycle-root-no-start-end-points:
assumes non-empty-cycle-root r x
shows $x ; 1=x^{T} ; 1$
using assms many-strongly-connected-implies-no-start-end-points
non-empty-cycle-root-msc by blast
lemma non-empty-cycle-root-move-root:
assumes non-empty-cycle-root $r x$ and point q and $q \leq x^{\star} ; r$
shows non-empty-cycle-root $q x$
by (metis assms cycle-iff dual-order.trans backward-finite-path-root-move-root start-points-in-root root-equals-start-points non-empty-cycle-root-non-empty)
lemma non-empty-cycle-root-loop-converse:
assumes non-empty-cycle-root $r x$
shows $r \leq x^{+} ; r$
using assms less-eq-def non-empty-cycle-root-rtc-tc by fastforce
lemma non-empty-cycle-root-move-root-same-reachable:
assumes non-empty-cycle-root $r x$
and point q
and $q \leq x^{\star} ; r$
shows $x^{\star} ; r=x^{\star} ; q$
by (metis assms many-strongly-connected-iff-7 connected-root-iff3
connected-root-move-root
backward-finite-path-root-def non-empty-cycle-root-msc
non-empty-cycle-root-rtc-tc)
lemma non-empty-cycle-root-move-root-same-reachable-2:
assumes non-empty-cycle-root $r x$
and point q
and $q \leq x^{\star} ; r$
shows $x^{\star} ; r=x^{T \star} ; q$
using assms non-empty-cycle-root-move-root-same-reachable non-empty-cycle-root-msc by simp
lemma non-empty-cycle-root-move-root-msc:
assumes non-empty-cycle-root $r x$
shows $x^{T \star} ; q=x^{\star} ; q$
using assms non-empty-cycle-root-msc by simp
lemma non-empty-cycle-root-move-root-rtc-tc:
assumes non-empty-cycle-root $r x$
and point q
and $q \leq x^{\star} ; r$
shows $x^{\star} ; q=x^{+} ; q$
using assms non-empty-cycle-root-move-root non-empty-cycle-root-rtc-tc by blast
lemma non-empty-cycle-root-move-root-loop-converse:
assumes non-empty-cycle-root $r x$
and point q
and $q \leq x^{\star} ; r$
shows $q \leq x^{T+} ; q$
using assms non-empty-cycle-root-loop non-empty-cycle-root-move-root by blast
lemma non-empty-cycle-root-move-root-loop:
assumes non-empty-cycle-root r x
and point q
and $q \leq x^{\star} ; r$
shows $q \leq x^{+} ; q$
using assms non-empty-cycle-root-loop-converse non-empty-cycle-root-move-root by blast
lemma non-empty-cycle-root-msc-plus:
assumes non-empty-cycle-root $r x$
shows $x^{+} ; r=x^{T+} ; r$
using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc by fastforce
lemma non-empty-cycle-root-tc-start-points:
assumes non-empty-cycle-root $r x$
shows $x^{+} ; r=x ; 1$
by (metis assms connected-root-iff3 backward-finite-path-root-def
non-empty-cycle-root-msc-plus non-empty-cycle-root-no-start-end-points)
lemma non-empty-cycle-root-rtc-start-points:
assumes non-empty-cycle-root r x
shows $x^{\star} ; r=x ; 1$
by (simp add: assms non-empty-cycle-root-rtc-tc
non-empty-cycle-root-tc-start-points)
lemma non-empty-cycle-root-converse-start-end-points:
assumes non-empty-cycle-root r x
shows $x^{T} \leq x ; 1 ; x$
by (metis assms conv-contrav conv-invol conv-one inf.boundedI maddux-20
maddux-21 vector-meet-comp-x
non-empty-cycle-root-no-start-end-points)
lemma non-empty-cycle-root-start-end-points-plus:
assumes non-empty-cycle-root r x
shows $x ; 1 ; x \leq x^{+}$
using assms order.eq-iff one-strongly-connected-iff one-strongly-connected-implies-7-eq
backward-finite-path-connected non-empty-cycle-root-msc by blast
lemma non-empty-cycle-root-converse-plus:
assumes non-empty-cycle-root $r x$
shows $x^{T} \leq x^{+}$
using assms many-strongly-connected-iff-2 non-empty-cycle-root-msc by blast
lemma non-empty-cycle-root-plus-converse:
assumes non-empty-cycle-root $r x$
shows $x^{+}=x^{T+}$
using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc by fastforce
lemma non-empty-cycle-root-converse:
assumes non-empty-cycle-root r x
shows non-empty-cycle-root $r\left(x^{T}\right)$
by (metis assms conv-invol inj-p-fun connected-root-iff3
backward-finite-path-root-def
non-empty-cycle-root-msc-plus non-empty-cycle-root-tc-start-points)
lemma non-empty-cycle-root-move-root-forward:
assumes non-empty-cycle-root $r x$
and point q and $r \leq x^{\star} ; q$
shows non-empty-cycle-root $q x$
by (metis assms backward-finite-path-root-move-root
non-empty-cycle-root-no-start-end-points non-empty-cycle-root-point-exchange non-empty-cycle-root-rtc-start-points)
lemma non-empty-cycle-root-move-root-forward-cycle:
assumes non-empty-cycle-root r x
and point q
and $r \leq x^{\star} ; q$
shows $x ; q \neq 0 \wedge x^{T} ; q \neq 0$
by (metis assms comp-assoc independence1 ss-p18
non-empty-cycle-root-move-root-forward non-empty-cycle-root-msc-plus non-empty-cycle-root-non-empty non-empty-cycle-root-tc-start-points)
lemma non-empty-cycle-root-equivalences:
assumes non-empty-cycle-root r x
and point q
shows $\left(r \leq x^{\star} ; q \longleftrightarrow q \leq x^{\star} ; r\right)$
and $\left(r \leq x^{\star} ; q \longleftrightarrow x ; q \neq 0\right)$
and $\left(r \leq x^{\star} ; q \longleftrightarrow x^{T} ; q \neq 0\right)$
and $\left(r \leq x^{\star} ; q \longleftrightarrow q \leq x ; 1\right)$
and $\left(r \leq x^{\star} ; q \longleftrightarrow q \leq x^{T} ; 1\right)$
using assms cycle-iff no-end-point-char non-empty-cycle-root-no-start-end-points non-empty-cycle-root-point-exchange non-empty-cycle-root-rtc-start-points
by metis+
lemma non-empty-cycle-root-chord:
assumes non-empty-cycle-root $r x$
and point p
and point q
and $r \leq x^{\star} ; p$
and $r \leq x^{\star} ; q$
shows $p \leq x^{\star} ; q$
using assms non-empty-cycle-root-move-root-same-reachable
non-empty-cycle-root-point-exchange
by fastforce
lemma non-empty-cycle-root-var-axioms-2:
non-empty-cycle-root $r x \longleftrightarrow x ; 1 \leq x^{+} ; r \wedge$ is-inj $x \wedge$ is-p-fun $x \wedge$ point $r \wedge r$ $\leq x ; 1$
apply (rule iffI)
apply (metis order.eq-iff backward-finite-path-root-def
non-empty-cycle-root-no-start-end-points non-empty-cycle-root-tc-start-points)
by (metis conv-invol p-fun-inj connected-root-iff2 connected-root-iff3 non-empty-cycle-root-var-axioms-1 non-empty-cycle-root-msc-plus non-empty-cycle-root-rtc-start-points non-empty-cycle-root-rtc-tc)
lemma non-empty-cycle-root-var-axioms-3:
non-empty-cycle-root $r x \longleftrightarrow x ; 1 \leq x^{+} ; r \wedge$ is-inj $x \wedge$ is-p-fun $x \wedge$ point $r \wedge r$ $\leq x^{+} ; x ; 1$
apply (rule iffI)
apply (metis comp-assoc eq-refl backward-finite-path-root-def star-inductl-var-eq2 non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points non-empty-cycle-root-tc-start-points)
by (metis annir comp-assoc conv-contrav no-end-point-char non-empty-cycle-root-var-axioms-2)
lemma non-empty-cycle-root-subset-equals:
assumes non-empty-cycle-root $r x$
and non-empty-cycle-root $r y$
and $x \leq y$
shows $x=y$
proof -
have $y ; x^{T \star} ; r=y ; x^{T+} ; r$
using assms(1) comp-assoc non-empty-cycle-root-msc
non-empty-cycle-root-msc-plus
non-empty-cycle-root-rtc-tc by fastforce
also have...$\leq y ; y^{T} ; x^{T \star} ; r$
using assms(3) comp-assoc conv-iso mult-double-iso by fastforce
also have $\ldots \leq x^{T \star} ; r$
using assms(2) backward-finite-path-root-def is-inj-def
by (meson dual-order.trans mult-isor order.refl prod-star-closure star-ref)
finally have $r+y ; x^{T \star} ; r \leq x^{T \star} ; r$
by (metis conway.dagger-unfoldl-distr le-supI sup.cobounded1)
hence $y^{\star} ; r \leq x^{T \star} ; r$
by (simp add: comp-assoc rtc-inductl)
hence $y ; 1 \leq x ; 1$
using $\operatorname{assms}(1,2)$ non-empty-cycle-root-msc
non-empty-cycle-root-rtc-start-points by fastforce

```
    thus ?thesis
    using assms(2,3) backward-finite-path-root-def ss422iv by blast
qed
lemma non-empty-cycle-root-subset-equals-change-root:
    assumes non-empty-cycle-root r x
        and non-empty-cycle-root q y
        and }x\leq
    shows }x=
proof -
    have r\leqy;1
    by (metis assms(1,3) dual-order.trans mult-isor
non-empty-cycle-root-no-start-end-points)
    hence non-empty-cycle-root r y
    by (metis assms(1,2) connected-root-move-root backward-finite-path-root-def
                                    non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points)
    thus ?thesis
        using assms(1,3) non-empty-cycle-root-subset-equals by blast
qed
lemma non-empty-cycle-root-equivalences-2:
    assumes non-empty-cycle-root r x
        shows (v\leq \mp@subsup{x}{}{\star};r\longleftrightarrowv\leq\mp@subsup{x}{}{T};1)
            and (v\leq\mp@subsup{x}{}{\star};r\longleftrightarrowv\leqx;1)
using assms non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points
by metis+
lemma cycle-root-non-empty:
    assumes }x\not=
        shows cycle-root r x \longleftrightarrow non-empty-cycle-root r x
proof
    assume 1: cycle-root r x
    have }r\leqr;1;x;
        using assms comp-assoc maddux-20 tarski by fastforce
    also have ... }\leq(\mp@subsup{x}{}{+}.\mp@subsup{x}{}{T};1);
        using 1 by (simp add: is-vector-def mult-isor point-def)
    also have ... \leq 秋;1
        by (simp add: ra-1)
    finally show non-empty-cycle-root r }
    using 1 backward-finite-path-root-def inf.boundedE by blast
next
    assume non-empty-cycle-root r x
    thus cycle-root r x
    by (metis backward-finite-path-root-def inf.orderE maddux-20
non-empty-cycle-root-plus-converse
                ra-1)
qed
```

Start points and end points
lemma start-points-path-aux:
assumes backward-finite-path-root r x and start-points $x \neq 0$
shows $x ; r=0$
by (metis assms compl-inf-bot inf.commute
non-empty-cycle-root-no-start-end-points backward-finite-path-root-terminating-or-cycle)
lemma start-points-path:
assumes backward-finite-path-root r x
and start-points $x \neq 0$
shows backward-terminating-path-root $r x$
by (simp add: assms start-points-path-aux)
lemma root-in-start-points-2:
assumes backward-finite-path-root r x
and start-points $x \neq 0$
shows $r \leq$ start-points x
by (metis assms conv-zero eq-refl galois-aux2 root-equals-start-points
start-points-path-aux)
lemma root-equals-start-points-2:
assumes backward-finite-path-root $r x$
and start-points $x \neq 0$
shows $r=$ start-points x
by (metis assms inf-bot-left ss-p18 root-equals-start-points start-points-path)
lemma start-points-injective:
assumes backward-finite-path-root r x
shows is-inj (start-points x)
by (metis assms compl-bot-eq inj-def-var1 point-def backward-finite-path-root-def top-greatest root-equals-start-points-2)
lemma backward-terminating-path-root-aux-2:
assumes backward-finite-path-root r x
and start-points $x \neq 0 \vee x=0$
shows $x \leq x^{T \star} ;-\left(x^{T} ; 1\right)$
using assms bot-least backward-terminating-path-root-aux start-points-path by blast
lemma start-points-not-zero-iff:
assumes backward-finite-path-root r x
shows $x ; r=0 \wedge x \neq 0 \longleftrightarrow$ start-points $x \neq 0$
by (metis assms conv-zero inf-compl-bot backward-finite-path-root-def
start-points-not-zero-contra start-points-path-aux)

Backwards terminating and backwards finite: Part II
lemma backward-finite-path-root-acyclic-terminating-aux:
assumes backward-finite-path-root r x
and is-acyclic x
shows $x ; r=0$
proof (cases $x=0$)
assume $x=0$
thus ?thesis
by simp
next
assume $x \neq 0$
hence $1: r \leq x ; 1$
using assms(1) has-root-contra no-end-point-char backward-finite-path-root-def
by blast
have $r \cdot\left(x^{T} ; 1\right)=r \cdot\left(x^{T+} ; r\right)$
using assms(1) connected-root-iff3 backward-finite-path-root-def by fastforce
also have $\ldots \leq r \cdot\left(-1^{\prime} ; r\right)$
by (metis assms(2) conv-compl conv-contrav conv-e conv-iso meet-isor
mult-isor star-conv
star-slide-var)
also have ... $=0$
by (metis (no-types) assms(1) inj-distr annil inf-compl-bot mult-1-left point-def backward-finite-path-root-def)
finally have $r \leq$ start-points x
using 1 galois-aux inf.boundedI le-bot by blast
thus ?thesis
using assms(1) annir le-bot start-points-path by blast
qed
lemma backward-finite-path-root-acyclic-terminating-iff:
assumes backward-finite-path-root $r x$
shows is-acyclic $x \longleftrightarrow x ; r=0$
apply (rule iffI)
apply (simp add: assms backward-finite-path-root-acyclic-terminating-aux)
using assms backward-finite-path-root-path-root path-root-acyclic by blast
lemma backward-finite-path-root-acyclic-terminating:
assumes backward-finite-path-root $r x$
and is-acyclic x
shows backward-terminating-path-root $r x$
by (simp add: assms backward-finite-path-root-acyclic-terminating-aux)
lemma non-empty-cycle-root-one-strongly-connected:
assumes non-empty-cycle-root r x
shows one-strongly-connected x
by (metis assms one-strongly-connected-iff order-trans star-1l star-star-plus
sup.absorb2 non-empty-cycle-root-msc non-empty-cycle-root-start-end-points-plus)
lemma backward-finite-path-root-nodes-reachable:
assumes backward-finite-path-root $r x$
and $v \leq x ; 1+x^{T} ; 1$
and is-sur v
shows $r \leq x^{\star} ; v$
proof -
have $v \leq x ; 1+x^{T+} ; r$
using assms connected-root-iff3 backward-finite-path-root-def by fastforce
also have $\ldots \leq x^{T *} ; r+x^{T+} ; r$
using assms(1) join-iso start-points-in-root-aux by blast
also have $\ldots=x^{T \star} ; r$
using mult-isor sup.absorb1 by fastforce
finally show ?thesis
using $\operatorname{assms}(1,3)$
by (simp add: inj-sur-semi-swap point-def backward-finite-path-root-def
star-conv
inj-sur-semi-swap-short)
qed
lemma terminating-path-root-end-backward-terminating:
assumes terminating-path-root-end r x e shows backward-terminating-path-root r x
using assms non-empty-cycle-root-move-root-forward-cycle backward-finite-path-root-terminating-or-cycle by blast
lemma terminating-path-root-end-converse:
assumes terminating-path-root-end rxe
shows terminating-path-root-end e $\left(x^{T}\right) r$
by (metis assms terminating-path-root-end-backward-terminating
backward-finite-path-root-def conv-invol terminating-path-root-end-forward-finite point-swap star-conv)
lemma terminating-path-root-end-forward-terminating:
assumes terminating-path-root-end $r x e$
shows backward-terminating-path-root e $\left(x^{T}\right)$
using assms terminating-path-root-end-converse by blast
end

```
3.3 Consequences with the Tarski rule and the point axiom
context relation-algebra-rtc-tarski-point
begin
Rooted paths
lemma path-root-iff:
\((\exists r \cdot\) path-root \(r x) \longleftrightarrow\) path \(x\)
proof
assume \(\exists r\). path-root \(r x\)
thus path \(x\)
```

using path-def path-iff-backward point-def path-root-def by blast

next

assume 1: path x
show $\exists r$. path-root $r x$
proof (cases $x=0$)
assume $x=0$
thus?thesis
by (simp add: is-inj-def is-p-fun-def point-exists path-root-def)
next
assume $\neg(x=0)$
hence $x ; 1 \neq 0$
by (simp add: ss-p18)
from this obtain r where 2: point $r \wedge r \leq x ; 1$
using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
hence $r ; x \leq x ; 1 ; x$
by (simp add: mult-isor)
also have $\ldots \leq x^{\star}+x^{T \star}$
using 1 path-def by blast
finally show ?thesis
using 12 path-def path-root-def by blast
qed
qed
lemma non-empty-path-root-iff:
$\left(\exists r\right.$. path-root $\left.r x \wedge r \leq\left(x+x^{T}\right) ; 1\right) \longleftrightarrow$ path $x \wedge x \neq 0$
apply (rule iffI)
using non-empty-cycle-root-non-empty path-root-def
zero-backward-terminating-path-root path-root-iff
apply fastforce
using path-root-iff non-empty-path-root-iff-aux by blast
(Non-empty) Cycle
lemma non-empty-cycle-root-iff:
$(\exists r$. non-empty-cycle-root $r x) \longleftrightarrow$ cycle $x \wedge x \neq 0$
proof
assume $\exists r$. non-empty-cycle-root $r x$
thus cycle $x \wedge x \neq 0$
using non-empty-cycle-root-msc-cycle non-empty-cycle-root-non-empty by
fastforce
next
assume 1: cycle $x \wedge x \neq 0$
hence $x^{T} ; 1 \neq 0$
using many-strongly-connected-implies-no-start-end-points ss-p18 by blast
from this obtain r where 2: point $r \wedge r \leq x^{T} ; 1$
using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
have $3: x^{T} ; 1 ; x^{T} \leq x^{\star}$
using 1 one-strongly-connected-iff path-def by blast
have $r ; x \leq x^{T} ; 1 ; x$
using 2 by (simp add: is-vector-def mult-isor point-def)

```
    also have \(\ldots \leq x^{T} ; 1 ; x ; x^{T} ; x\)
    using comp-assoc mult-isol \(x\)-leq-triple-x by fastforce
    also have \(\ldots \leq x^{T} ; 1 ; x^{T} ; x\)
    by (metis mult-assoc mult-double-iso top-greatest)
    also have \(\ldots \leq x^{\star} ; x\)
    using 3 mult-isor by blast
    finally have connected-root \(r x\)
    by (simp add: star-slide-var)
    hence non-empty-cycle-root r \(x\)
    using 12 path-def backward-finite-path-root-def by fastforce
    thus \(\exists r\). non-empty-cycle-root r \(x\)..
qed
lemma non-empty-cycle-subset-equals:
    assumes cycle \(x\)
        and cycle \(y\)
        and \(x \leq y\)
        and \(x \neq 0\)
    shows \(x=y\)
by (metis assms le-bot non-empty-cycle-root-subset-equals-change-root
non-empty-cycle-root-iff)
lemma cycle-root-iff:
    \((\exists r\). cycle-root \(r x) \longleftrightarrow\) cycle \(x\)
proof (cases \(x=0\) )
    assume \(x=0\)
    thus ?thesis
        using path-def point-exists by fastforce
next
    assume \(x \neq 0\)
    thus ?thesis
        using cycle-root-non-empty non-empty-cycle-root-iff by simp
qed
    Backwards terminating and backwards finite
lemma backward-terminating-path-root-iff:
    \((\exists r\). backward-terminating-path-root \(r x) \longleftrightarrow\) backward-terminating-path \(x\)
proof
    assume \(\exists r\). backward-terminating-path-root \(r x\)
    thus backward-terminating-path \(x\)
        using backward-terminating-path-root by fastforce
next
    assume 1: backward-terminating-path \(x\)
    show \(\exists r\). backward-terminating-path-root \(r x\)
    proof (cases \(x=0\) )
        assume \(x=0\)
        thus ?thesis
            using point-exists zero-backward-terminating-path-root by blast
    next
```

```
    let ?r = start-points }
    assume }x\not=
    hence 2: is-point ?r
    using 1 start-point-iff2 backward-terminating-iff1 by fastforce
    have 3:x;?r=0
    by (metis inf-top.right-neutral modular-1-aux')
    have }x;1;x\leqx;1;x;\mp@subsup{x}{}{T};
    using comp-assoc mult-isol x-leq-triple-x by fastforce
    also have ... \leq ( }\mp@subsup{x}{}{\star}+\mp@subsup{x}{}{T\star});\mp@subsup{x}{}{T};
        using }1\mathrm{ mult-isor path-def by blast
    also have ... = (1'}+\mp@subsup{x}{}{+}+\mp@subsup{x}{}{T+});\mp@subsup{x}{}{T};
    by (metis star-star-plus star-unfoldl-eq sup.commute)
    also have ... = 稆;x+ 和;\mp@subsup{x}{}{T};x+\mp@subsup{x}{}{T+};\mp@subsup{x}{}{T};x
    by (metis distrib-right' mult-onel)
```



```
        using comp-assoc distrib-left sup.commute sup.assoc by simp
    also have ... \leq 秙;1+ x+;\mp@subsup{x}{}{T};x
    using join-iso mult-isol by fastforce
    also have ... \leq 矢; ;1+ 和;1'
        using 1 by (metis comp-assoc join-isol mult-isol path-def is-p-fun-def)
    finally have - (x (x;1) \cdot x;1;x\leq x +
        by (simp add: galois-1 inf.commute)
    hence ? }r;x\leq\mp@subsup{x}{}{+
        by (metis inf-commute one-compl ra-1)
    hence backward-terminating-path-root ?r x
        using 1 2 3 by (simp add: point-is-point backward-finite-path-root-def
path-def)
    thus ?thesis ..
    qed
qed
lemma non-empty-backward-terminating-path-root-iff:
    backward-terminating-path-root (start-points x) x \longleftrightarrow
backward-terminating-path }x\wedgex\not=
apply (rule iffI)
    apply (metis backward-finite-path-root-path backward-terminating-path-root-2
conv-zero
            inf.cobounded1 non-empty-cycle-root-non-empty)
using backward-terminating-path-root-iff root-equals-start-points by blast
lemma non-empty-backward-terminating-path-root-iff ':
    backward-finite-path-root (start-points }x\mathrm{ ) }x\longleftrightarrow\mathrm{ backward-terminating-path x }\wedge
\not=0
using start-point-no-predecessor non-empty-backward-terminating-path-root-iff by
simp
lemma backward-finite-path-root-iff:
    (\existsr.backward-finite-path-root r x) \longleftrightarrow backward-finite-path x
proof
```

```
    assume \(\exists r\). backward-finite-path-root \(r x\)
    thus backward-finite-path \(x\)
    by (meson backward-finite-iff-msc non-empty-cycle-root-msc
backward-finite-path-root-path
                        backward-finite-path-root-terminating-or-cycle
backward-terminating-path-root)
next
    assume backward-finite-path \(x\)
    thus \(\exists r\). backward-finite-path-root \(r x\)
    by (metis backward-finite-iff-msc point-exists non-empty-cycle-root-iff
                zero-backward-terminating-path-root backward-terminating-path-root-iff)
qed
lemma non-empty-backward-finite-path-root-iff:
    \((\exists r\). backward-finite-path-root \(r x \wedge r \leq x ; 1) \longleftrightarrow\) backward-finite-path \(x \wedge x \neq\)
0
apply (rule iffI)
    apply (metis backward-finite-path-root-iff annir backward-finite-path-root-def
le-bot
    no-end-point-char ss-p18)
using backward-finite-path-root-iff backward-finite-path-root-def point-def
root-in-edge-sources by blast
    Terminating
lemma terminating-path-root-end-aux:
    assumes terminating-path \(x\)
        shows \(\exists r e\). terminating-path-root-end \(r x e\)
proof (cases \(x=0\) )
    assume \(x=0\)
    thus ?thesis
        using point-exists zero-backward-terminating-path-root by fastforce
next
    assume 1: \(\neg(x=0)\)
    have 2: backward-terminating-path \(x\)
        using assms by simp
    from this obtain \(r\) where 3: backward-terminating-path-root \(r x\)
        using backward-terminating-path-root-iff by blast
    have backward-terminating-path \(\left(x^{T}\right)\)
        using 2 by (metis assms backward-terminating-iff1
conv-backward-terminating-path conv-invol
                        conv-zero inf-top.left-neutral)
    from this obtain \(e\) where 4: backward-terminating-path-root \(e\left(x^{T}\right)\)
        using backward-terminating-path-root-iff by blast
    have \(r \leq x ; 1\)
        using 13 root-in-edge-sources backward-finite-path-root-def point-def by
fastforce
    also have \(\ldots=x^{+} ; e\)
        using 4 connected-root-iff3 backward-finite-path-root-def by fastforce
    also have \(\ldots \leq x^{\star} ; e\)
```

```
    by (simp add: mult-isor)
    finally show ?thesis
    using 3 & backward-finite-path-root-def by blast
qed
lemma terminating-path-root-end-iff:
    (\existsre .terminating-path-root-end rxe)\longleftrightarrow terminating-path x
proof
    assume 1: \existsre.terminating-path-root-end rxe
    show terminating-path x
    proof (cases x=0)
        assume x = 0
    thus ?thesis
        by (simp add: is-inj-def is-p-fun-def path-def)
    next
    assume }\neg(x=0
    hence 2: ᄀ many-strongly-connected x
        using 1 cycle-root-end-empty by blast
    hence 3: backward-terminating-path x
            using 1 backward-terminating-path-root
terminating-path-root-end-backward-terminating by blast
    have \existse.backward-finite-path-root e( (x}\mp@subsup{)}{}{T
            using 1 terminating-path-root-end-converse by blast
    hence backward-terminating-path ( }\mp@subsup{x}{}{T}\mathrm{ )
            using 1 backward-terminating-path-root terminating-path-root-end-converse
by blast
    hence forward-terminating-path x
            by (simp add: conv-backward-terminating-path)
    thus ?thesis
        using 3 by (simp add: inf.boundedI)
    qed
next
    assume terminating-path x
    thus \existsre.terminating-path-root-end r x e
        using terminating-path-root-end-aux by blast
qed
lemma non-empty-terminating-path-root-end-iff:
    terminating-path-root-end (start-points x) x (end-points x)\longleftrightarrow terminating-path
x\wedge x = 0
apply (rule iffI)
    apply (metis conv-zero non-empty-backward-terminating-path-root-iff
terminating-path-root-end-iff)
using terminating-path-root-end-iff terminating-path-root-end-forward-terminating
    root-equals-end-points terminating-path-root-end-backward-terminating
root-equals-start-points
by blast
lemma non-empty-finite-path-root-end-iff:
```

```
    finite-path-root-end (start-points x) x (end-points x) \longleftrightarrow terminating-path x}\wedge
#0
using non-empty-terminating-path-root-end-iff end-point-no-successor by simp
end
end
```


4 Correctness of Path Algorithms

To show that our theory of paths integrates with verification tasks, we verify the correctness of three basic path algorithms. Algorithms at the presented level are executable and can serve prototyping purposes. Data refinement can be carried out to move from such algorithms to more efficient programs. The total-correctness proofs use a library developed in [7].
theory Path-Algorithms
imports HOL-Hoare.Hoare-Logic Rooted-Paths

begin

```
no-notation
    trancl ((-+) [1000] 999)
class choose-singleton-point-signature =
    fixes choose-singleton :: ' }a>>'\mp@code{'
    fixes choose-point :: ' }a=>'\mp@code{
class relation-algebra-rtc-tarski-choose-point =
    relation-algebra-rtc-tarski + choose-singleton-point-signature +
    assumes choose-singleton-singleton: }x\not=0\Longrightarrow\mathrm{ singleton (choose-singleton x)
    assumes choose-singleton-decreasing: choose-singleton }x\leq
    assumes choose-point-point: is-vector }x\Longrightarrowx\not=0\Longrightarrow\mathrm{ point (choose-point x)
    assumes choose-point-decreasing: choose-point x \leqx
begin
no-notation
    composition (infixl ; 75) and
    times(infixl * 70)
notation
    composition (infixl * 75)
```


4.1 Construction of a path

Our first example is a basic greedy algorithm that constructs a path from a vertex x to a different vertex y of a directed acyclic graph D.
abbreviation construct-path-inv q x y $D W \equiv$
is-acyclic $D \wedge$ point $x \wedge$ point $y \wedge$ point $q \wedge$
$D^{\star} * q \leq D^{T \star} * x \wedge W \leq D \wedge$ terminating-path $W \wedge$
$(W=0 \longleftrightarrow q=y) \wedge(W \neq 0 \longleftrightarrow q=$ start-points $W \wedge y=$ end-points $W)$
abbreviation construct-path-inv-simp q x y $D W \equiv$
is-acyclic $D \wedge$ point $x \wedge$ point $y \wedge$ point $q \wedge$
$D^{\star} * q \leq D^{T \star} * x \wedge W \leq D \wedge$ terminating-path $W \wedge$
$q=$ start-points $W \wedge y=$ end-points W
lemma construct-path-pre:
assumes is-acyclic D
and point y
and point x
and $D^{\star} * y \leq D^{T \star} * x$
shows construct-path-inv y x y D 0
apply (intro conjI, simp-all add: assms is-inj-def is-p-fun-def path-def)
using assms(2) cycle-iff by fastforce
The following three lemmas are auxiliary lemmas for construct-path-inv.
They are pulled out of the main proof to have more structure.
lemma path-inv-points:
assumes construct-path-inv $q x$ y $D W \wedge q \neq x$
shows point q
and point (choose-point $(D * q)$)
using assms apply blast
by (metis assms choose-point-point comp-assoc is-vector-def point-def reachable-implies-predecessor)
lemma path-inv-choose-point-decrease:
assumes construct-path-inv q x y $D W \wedge q \neq x$
shows $W \neq 0 \Longrightarrow$ choose-point $(D * q) \leq-((W+$ choose-point $(D * q) *$
$\left.q^{T}\right)^{T} * 1$)
proof -
let ? $q=$ choose-point $(D * q)$
let ? $W=W+? q * q^{T}$
assume $a s: W \neq 0$
hence $q * W \leq W^{+}$
by (metis assms conv-contrav conv-invol conv-iso conv-terminating-path forward-terminating-path-end-points-1 plus-conv point-def ss423bij terminating-path-iff)
hence $? q \cdot W^{T} * 1 \leq D * q \cdot W^{T+} * q$
using choose-point-decreasing meet-iso meet-isor inf-mono assms
connected-root-iff2 by simp
also have $\ldots \leq\left(D \cdot D^{T+}\right) * q$
by (metis assms inj-distr point-def conv-contrav conv-invol conv-iso meet-isor mult-isol-var mult-isor star-conv star-slide-var star-subdist
sup.commute sup.orderE)
also have $\ldots \leq 0$
by (metis acyclic-trans assms conv-zero step-has-target order.eq-iff galois-aux ss-p18)
finally have $a: ? q \leq-\left(W^{T} * 1\right)$
using galois-aux le-bot by blast
have point ?q
using assms by(rule path-inv-points(2))
hence $? q \leq-\left(q * ? q^{T} * 1\right)$
by (metis assms acyclic-imp-one-step-different-points(2) point-is-point choose-point-decreasing edge-end end-point-char end-point-no-successor)
with a show ?thesis
by (simp add: inf.boundedI)
qed
lemma end-points:
assumes construct-path-inv $q x$ y $D W \wedge q \neq x$
shows choose-point $(D * q)=$ start-points $\left(W+\right.$ choose-point $\left.(D * q) * q^{T}\right)$
and $y=$ end-points $\left(W+\right.$ choose-point $\left.(D * q) * q^{T}\right)$
proof -
let ? $q=$ choose-point $(D * q)$
let ? $W=W+? q * q^{T}$
show 1: ? $q=$ start-points ? W
proof (rule order.antisym)
show start-points? $W \leq ? q$
by (metis assms(1) path-inv-points(2)
acyclic-imp-one-step-different-points(2)
choose-point-decreasing edge-end edge-start sup.commute path-concatenation-start-points-approx point-is-point order.eq-iff
sup-bot-left)
show ?q \leq start-points ? W
proof -
have $a: ? q=? q * q^{T} * 1$
by (metis assms(1) comp-assoc point-equations(1) point-is-point aux4
conv-zero
choose-point-decreasing choose-point-point conv-contrav conv-one point-def

> inf.orderE inf-compl-bot inf-compl-bot-right is-vector-def maddux-142 sup-bot-left sur-def-var1)
hence $? q=(q \cdot-q)+\left(? q \cdot-q \cdot-\left(? W^{T} * 1\right)\right)$
by (metis assms path-inv-points(2) path-inv-choose-point-decrease
acyclic-imp-one-step-different-points(1) choose-point-decreasing
inf.orderE
inf-compl-bot sup-inf-absorb edge-start point-is-point sup-bot-left)
also have $\ldots \leq\left(W * 1 \cdot-\left(? W^{T} * 1\right) \cdot-q\right)+\left(? q \cdot-q \cdot-\left(? W^{T} * 1\right)\right)$
by simp
also have $\ldots=(W * 1+? q) \cdot-\left(q+? W^{T} * 1\right)$
by (metis compl-sup inf-sup-distrib2 meet-assoc sup.commute)
also have $\ldots \leq$? $W * 1 \cdot-\left(? W^{T} * 1\right)$
using a by (metis inf.left-commute distrib-right' compl-sup inf.cobounded2)

```
            finally show ?q \leq start-points ?W .
    qed
qed
show }y=\mathrm{ end-points ?W
proof -
    have point-nq: point ?q
        using assms by(rule path-inv-points(2))
    hence yp: y\leq-?q
    using 1 assms
    by (metis acyclic-imp-one-step-different-points(2) choose-point-decreasing
cycle-no-points(1)
                            finite-iff finite-iff-msc forward-finite-iff-msc path-aux1a
path-edge-equals-cycle
                            point-is-point point-not-equal(1) terminating-iff1)
    have }y=y+(W*1\cdot-(\mp@subsup{W}{}{T}*1)\cdot-(W*1)
        by (simp add: inf.commute)
    also have ... = y+(q\cdot-(W*1))
        using assms by fastforce
    also have ... = y +(q\cdot-(W*1)\cdot-?q)
        by (metis calculation sup-assoc sup-inf-absorb)
    also have ... = (y\cdot-?q) +(q\cdot-(W*1) \cdot -?q)
        using yp by (simp add: inf.absorb1)
    also have ... = ( W'T*1 \cdot -(W*1) - -?q) +(q\cdot-(W*1) - -?q)
        using assms by fastforce
    also have ... = ( WT*1 + q) \cdot -(W*1) \cdot -?q
        by (simp add: inf-sup-distrib2)
    also have ... = ( W'T*1 +q)}\cdot-(W*1+?q
        by (simp add: inf.assoc)
    also have ... =( }\mp@subsup{W}{}{T}*1+q*?\mp@subsup{q}{}{T}*1)\cdot-(W*1+?q*\mp@subsup{q}{}{T}*1
        using point-nq
        by(metis assms(1) comp-assoc conv-contrav conv-one is-vector-def point-def
sur-def-var1)
    also have ... = ??W}\mp@subsup{W}{}{T})*1\cdot-(?W*1
        by simp
    finally show ?thesis .
    qed
qed
lemma construct-path-inv:
    assumes construct-path-inv q x y DW^q\not=x
    shows construct-path-inv (choose-point (D*q)) x y D (W+ choose-point
(D*q)*q}\mp@subsup{}{}{T}
proof (intro conjI)
    let ?q = choose-point ( D*q)
    let ?W W W + ? q* q
    show is-acyclic D
    using assms by blast
    show point-y: point y
    using assms by blast
```


show point x

using assms by blast
show ? $W \leq D$
using assms choose-point-decreasing le-sup-iff point-def ss423bij inf.boundedE
by blast
show $D^{\star} * ? q \leq D^{T \star} * x$
proof -
have $D^{+} * q \leq D^{T \star} * x$
using assms conv-galois-2 order-trans star-1l by blast
thus ?thesis
by (metis choose-point-decreasing comp-assoc dual-order.trans mult-isol
star-slide-var)
qed
show point-nq: point ?q
using assms by(rule path-inv-points(2))
show path W : path ? W
proof (cases $W=0$)
assume $W=0$
thus ?thesis
using assms edge-is-path point-is-point point-nq by simp
next
assume $a: W \neq 0$
have $b: ? q * q^{T} \leq 1 * ? q * q^{T} *-\left(? q * q^{T} * 1\right)$
proof -
have ? $q * q^{T} \leq 1$ by simp
thus ?thesis
using assms point-nq
by (metis different-points-consequences(1) point-def sur-def-var1 acyclic-imp-one-step-different-points(2) choose-point-decreasing
comp-assoc
is-vector-def point-def point-equations $(3,4)$ point-is-point)
qed
have $c: W \leq-(1 * W) * W * 1$
using assms terminating-path-iff by blast
have $d:\left(? q * q^{T}\right)^{T} * 1 \cdot-\left(\left(? q * q^{T}\right) * 1\right)=W * 1 \cdot-\left(W^{T} * 1\right)$
using a
by (metis assms path-inv-points(2) acyclic-reachable-points
choose-point-decreasing
edge-end point-is-point comp-assoc point-def sur-total total-one)
have e : ? $q * q^{T} * 1 \cdot W^{T} * 1=0$
proof -
have ? $q * q^{T} * 1 \cdot W^{T} * 1=? q \cdot W^{T} * 1$
using assms point-nq
by (metis comp-assoc conv-contrav conv-one is-vector-def point-def
sur-def-var1)
also have $\ldots \leq-\left(? W^{T} * 1\right) \cdot ? W^{T} * 1$
using assms path-inv-choose-point-decrease
by (smt a conv-contrav conv-iso conv-one inf-mono less-eq-def subdistl-eq)
also have ... ≤ 0
using compl-inf-bot eq-refl by blast
finally show ?thesis
using bot-unique by blast
qed
show ?thesis
using $b c d e$ by (metis assms comp-assoc edge-is-path
path-concatenation-cycle-free
point-is-point sup.commute point-nq)
qed
show ? $W=0 \longleftrightarrow$? $q=y$
apply (rule iffI)
apply (metis assms conv-zero dist-alt edge-start inf-compl-bot-right
modular-1-aux' modular-2-aux'
point-is-point sup.left-idem sup-bot-left point-nq)
by (smt assms end-points(1) conv-contrav conv-invol cycle-no-points(1) end-point-iff2 has-start-end-points-iff path-aux1b path-edge-equals-cycle point-is-point start-point-iff2 sup-bot-left top-greatest path W)

```
    show ? \(W \neq 0 \longleftrightarrow\) ? \(q=\) start-points ? \(W \wedge y=\) end-points ? \(W\)
        apply (rule iffI)
    using assms end-points apply blast
    using assms by force
    show terminating ?W
    by (smt assms end-points end-point-iff2 has-start-end-points-iff point-is-point
start-point-iff2
                terminating-iff1 path \(W\) point-nq)
qed
```

theorem construct-path-partial: VARS p q W
$\left\{\right.$ is-acyclic $D \wedge$ point $y \wedge$ point $\left.x \wedge D^{\star} * y \leq D^{T \star} * x\right\}$
$W:=0$;
$q:=y$;
WHILE $q \neq x$
INV \{ construct-path-inv q x y D W \}
DO p := choose-point ($D * q$);
$W:=W+p * q^{T} ;$
$q:=p$
$O D$
$\{W \leq D \wedge$ terminating-path $W \wedge(W=0 \longleftrightarrow x=y) \wedge(W \neq 0 \longleftrightarrow x=$
start-points $W \wedge y=$ end-points $W)\}$
apply $v c g$
using construct-path-pre apply blast
using construct-path-inv apply blast
by fastforce
end

For termination, we additionally need finiteness.

context finite

begin

```
lemma decrease-set:
    assumes }\forallx:\mp@subsup{:}{}{\prime}a.Qx\longrightarrowP
        and Pw
        and }\negQ
    shows card {x.Q x }< card {x.P P }
by (metis Collect-mono assms card-seteq finite mem-Collect-eq not-le)
end
class relation-algebra-rtc-tarski-choose-point-finite =
    relation-algebra-rtc-tarski-choose-point +
relation-algebra-rtc-tarski-point-finite
begin
lemma decrease-variant:
    assumes }y\leq
        and w\leqz
        and }\negw\leq
    shows card { x. x \leq y }< card {x.x\leqz}
by (metis Collect-mono assms card-seteq linorder-not-le dual-order.trans
finite-code mem-Collect-eq)
lemma construct-path-inv-termination:
    assumes construct-path-inv q x y D W^q\not=x
        shows card {z.z\leq-(W+choose-point (D*q)*\mp@subsup{q}{}{T})}<card {z.z\leq-W
}
proof -
    let ?q = choose-point ( }D*q
    let ?W W W + ? q* q
    show ?thesis
    proof (rule decrease-variant)
        show - ?W \leq -W
        by simp
    show ?q* q}\mp@subsup{q}{}{T}\leq-
            by (metis assms galois-aux inf-compl-bot-right maddux-142 mult-isor
order-trans top-greatest)
    show }\neg(?q*\mp@subsup{q}{}{T}\leq-?W
            using assms end-points(1)
            by (smt acyclic-imp-one-step-different-points(2) choose-point-decreasing
compl-sup inf.absorb1
                    inf-compl-bot-right sup.commute sup-bot.left-neutral conv-zero
end-points(2))
    qed
qed
theorem construct-path-total: VARS p q W
    [ is-acyclic D ^ point y ^ point x}\wedge D**y \leq D D***x
    W:= 0;
```

```
\(q:=y ;\)
    WHILE \(q \neq x\)
        INV \(\{\) construct-path-inv \(q x\) y \(D W\}\)
        \(V A R\{\operatorname{card}\{z . z \leq-W\}\}\)
        DO p := choose-point ( \(D * q\) );
            \(W:=W+p * q^{T} ;\)
            \(q:=p\)
        \(O D\)
    [ \(W \leq D \wedge\) terminating-path \(W \wedge(W=0 \longleftrightarrow x=y) \wedge(W \neq 0 \longleftrightarrow x=\)
start-points \(W \wedge y=\) end-points \(W)]\)
    apply \(v c g-t c\)
    using construct-path-pre apply blast
    apply (rule CollectI, rule conjI)
    using construct-path-inv apply blast
    using construct-path-inv-termination apply clarsimp
    by fastforce
```

end

4.2 Topological sorting

In our second example we look at topological sorting. Given a directed acyclic graph, the problem is to construct a linear order of its vertices that contains x before y for each edge (x, y) of the graph. If the input graph models dependencies between tasks, the output is a linear schedule of the tasks that respects all dependencies.

```
context relation-algebra-rtc-tarski-choose-point
```

begin

```
abbreviation topological-sort-inv
    where topological-sort-inv qv R W\equiv
```

 regressively-finite \(R \wedge R \cdot v * v^{T} \leq W^{+} \wedge\) terminating-path \(W \wedge W * 1=\)
 $v-q \wedge$
$(W=0 \vee q=$ end-points $W) \wedge$ point $q \wedge R * v \leq v \wedge q \leq v \wedge$ is-vector v
lemma topological-sort-pre:
assumes regressively-finite R
shows topological-sort-inv (choose-point (minimum R 1)) (choose-point
(minimum $R 1$)) $R 0$
proof (intro conjI,simp-all add:assms)
let ? $q=$ choose-point $\left(-\left(R^{T} * 1\right)\right)$
show point-q: point? q
using assms by (metis (full-types) annir choose-point-point galois-aux2
is-inj-def is-sur-def
is-vector-def one-idem-mult point-def ss-p18 inf-top-left
one-compl)
show $R \cdot ? q * ? q^{T} \leq 0$
by (metis choose-point-decreasing conv-invol end-point-char order.eq-iff inf-bot-left schroeder-2)
show path 0
by (simp add: is-inj-def is-p-fun-def path-def)
show $R * ? q \leq ? q$
by (metis choose-point-decreasing compl-bot-eq conv-galois-1 inf-compl-bot-left2 le-inf-iff)
show is-vector ? q
using point-q point-def by blast
qed
lemma topological-sort-inv:
assumes $v \neq 1$
and topological-sort-inv $q v R W$
shows topological-sort-inv (choose-point (minimum $R(-v)))(v+$ choose-point (minimum $R(-v))) R(W+q *$ choose-point
$\left.(\text { minimum } R(-v))^{T}\right)$
proof (intro conjI)
let ? $p=$ choose-point (minimum $R(-v)$)
let ? $W=W+q *$? p^{T}
let ? $v=v+$? p
show point-p: point?p
using assms
by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc is-vector-def
vector-compl vector-mult)
hence ep-np: end-points $\left(q * ? p^{T}\right)=? p$
using assms(2)
by (metis aux4 choose-point-decreasing edge-end le-supI1
point-in-vector-or-complement-iff

> point-is-point)
hence sp-q: start-points $\left(q * ? p^{T}\right)=q$
using assms(2) point-p
by (metis (no-types, lifting) conv-contrav conv-invol edge-start point-is-point)
hence ep-sp: $W \neq 0 \Longrightarrow$ end-points $W=$ start-points $\left(q * ? p^{T}\right)$
using assms(2) by force
have $W * 1 \cdot\left(q * ? p^{T}\right)^{T} * 1=v \cdot-q \cdot ? p$
using assms(2) point-p is-vector-def mult-assoc point-def point-equations(3)
point-is-point
by auto
hence 1: $W * 1 \cdot\left(q * ? p^{T}\right)^{T} * 1=0$
by (metis choose-point-decreasing dual-order.trans galois-aux inf.cobounded2 inf.commute)
show regressively-finite R
using $\operatorname{assms}(2)$ by blast
show $R \cdot ? v * ? v^{T} \leq ? W^{+}$
proof -
have $a: R \cdot v * v^{T} \leq ? W^{+}$
using assms(2) by (meson mult-isol-var order.trans order-prop star-subdist)
have $b: R \cdot v * ? p^{T} \leq ? W^{+}$
proof -
have $R \cdot v * ? p^{T} \leq W * 1 * ? p^{T}+q * ? p^{T}$
by (metis inf-le2 assms(2) aux4 double-compl inf-absorb2 distrib-right)
also have $\ldots=W * ? p^{T}+q * ? p^{T}$
using point-p by (metis conv-contrav conv-one is-vector-def mult-assoc point-def)
also have $\ldots \leq W^{+} * e n d$-points $W * ? p^{T}+q *$? p^{T}
using assms(2)
by (meson forward-terminating-path-end-points-1 join-iso mult-isor
terminating-path-iff)
also have $\ldots \leq W^{+} * q * ? p^{T}+q * ? p^{T}$
using assms(2) by (metis annil eq-refl)
also have $\ldots=W^{\star} * q *$? p^{T}
using conway.dagger-unfoldl-distr mult-assoc sup-commute by fastforce
also have $\ldots \leq$? W^{+}
by (metis mult-assoc mult-isol-var star-slide-var star-subdist sup-ge2)
finally show ?thesis .
qed
have $c: R \cdot ? p * v^{T} \leq ? W^{+}$
proof -
have $v \leq-? p$
using choose-point-decreasing compl-le-swap1 inf-le1 order-trans by blast
hence $R * v \leq-? p$
using assms(2) order.trans by blast
thus ?thesis
by (metis galois-aux inf-le2 schroeder-2)
qed
have $d: R \cdot ? p * ? p^{T} \leq ? W^{+}$
proof -
have $R \cdot ? p * ? p^{T} \leq R \cdot 1^{\prime}$
using point-p is-inj-def meet-isor point-def by blast
also have $\ldots=0$
using assms(2) regressively-finite-irreflexive galois-aux by blast
finally show ?thesis
using bot-least inf.absorb-iff2 by simp
qed
have $R \cdot ? v * ? v^{T}=\left(R \cdot v * v^{T}\right)+\left(R \cdot v * ? p^{T}\right)+\left(R \cdot ? p * v^{T}\right)+\left(R \cdot ? p * ? p^{T}\right)$
by (metis conv-add distrib-left distrib-right inf-sup-distrib1 sup.commute
sup.left-commute)
also have $\ldots \leq$? W^{+}
using abced by (simp add: le-sup-iff)
finally show ?thesis .
qed
show path W : path ? W
proof (cases $W=0$)
assume $W=0$
thus ?thesis
using assms(2) point-p edge-is-path point-is-point sup-bot-left by auto next
assume $a 1: W \neq 0$
have fw-path: forward-terminating-path W
using assms(2) terminating-iff by blast
have bw-path: backward-terminating-path $\left(q * ? p^{T}\right)$
using assms point-p sp-q
by (metis conv-backward-terminating conv-has-start-points conv-path edge-is-path
forward-terminating-iff1 point-is-point start-point-iff2)
show ?thesis
using fw-path bw-path ep-sp 1 a1 path-concatenation-cycle-free by blast

qed

show terminating? W
proof (rule start-end-implies-terminating)
show has-start-points ?W
apply (cases $W=0$)
using assms(2) sp-q path W
apply (metis (no-types, lifting) point-is-point start-point-iff2
sup-bot.left-neutral)
using assms(2) ep-sp 1 path W
by (metis has-start-end-points-iff path-concatenation-start-points
start-point-iffe
terminating-iff1)
show has-end-points?W
apply (cases $W=0$)
using point-p ep-np ep-sp path W end-point-iff2 point-is-point apply force
using point-p ep-np ep-sp 1 path W
by (metis end-point-iff2 path-concatenation-end-points point-is-point)
qed
show ? $W * 1=? v \cdot-? p$
proof -
have ? $W * 1=v$
by (metis assms(2) point-p is-vector-def mult-assoc point-def
point-equations(3)
point-is-point aux4 distrib-right' inf-absorb2 sup.commute)
also have..$=v-$? p
by (metis choose-point-decreasing compl-le-swap1 inf.cobounded1 inf.orderE order-trans)
finally show ?thesis by (simp add: inf-sup-distrib2)
qed
show ? $W=0 \vee ? p=e n d-p o i n t s ? W$
using ep-np ep-sp 1 by (metis path-concatenation-end-points sup-bot-left)
show $R * ? v \leq$?v
using assms(2)
by (meson choose-point-decreasing conv-galois-1 inf.cobounded2 order.trans sup.coboundedI1
sup-least)

```
    show ?p}\leq?
    by simp
    show is-vector ?v
    using assms(2) point-p point-def vector-add by blast
qed
lemma topological-sort-post:
    assumes }\negv\not=
        and topological-sort-inv q v R W
    shows }R\leq\mp@subsup{W}{}{+}\wedge\mathrm{ terminating-path W ^(W + W W})*1=-1'*
proof (intro conjI,simp-all add:assms)
    show }R\leq\mp@subsup{W}{}{+
        using assms by force
    show backward-terminating W^W\leq1*W*(-v+q)
    using assms by force
    show v.-q+ W}\mp@subsup{W}{}{T}*1=-\mp@subsup{1}{}{\prime}*
    proof (cases W=0)
            assume W=0
            thus ?thesis
                using assms
                by (metis compl-bot-eq conv-one conv-zero double-compl inf-top.left-neutral
is-inj-def
                    le-bot mult-1-right one-idem-mult point-def ss-p18 star-zero
sup.absorb2 top-le)
    next
        assume a1: W\not=0
        hence - 1' }=
                using assms backward-terminating-path-irreflexive le-bot by fastforce
            hence 1 = 1*-1'*1
                by (simp add: tarski)
            also have ... = -1'*1
                by (metis comp-assoc distrib-left mult-1-left sup-top-left distrib-right
sup-compl-top)
            finally have a: 1 = - 1'*1 .
            have W*1+ WT}*1=
                using assms a1 by (metis double-compl galois-aux4 inf.absorb-iff2
inf-top.left-neutral)
            thus ?thesis
                using a by (simp add: assms(2))
            qed
qed
theorem topological-sort-partial: VARS p q v W
    { regressively-finite R }
    W:= 0;
    q:= choose-point (minimum R 1);
    v:= q;
    WHILE v}\not=
            INV { topological-sort-inv q v R W}
```

```
    DO p:= choose-point (minimum R (-v));
        W:=W+q*p
        q:= p;
        v:=v+p
    OD
    {R\leq W + ^ terminating-path W^(W+ W'T)*1=-1'*1}
    apply vcg
    using topological-sort-pre apply blast
    using topological-sort-inv apply blast
    using topological-sort-post by blast
end
context relation-algebra-rtc-tarski-choose-point-finite
begin
lemma topological-sort-inv-termination:
    assumes v\not=1
        and topological-sort-inv qv R W
    shows card {z.z\leq-(v+ choose-point (minimum R (-v)))}<card {z.z
\leq-v}
proof (rule decrease-variant)
    let ?p = choose-point (minimum R (-v))
    let ?v=v+?p
    show -?v\leq-v
    by simp
    show ?p}\leq-
    using choose-point-decreasing inf.boundedE by blast
    have point?p
    using assms
    by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc
is-vector-def
            vector-compl vector-mult)
    thus \neg(?p}\leq-?v
    by (metis annir compl-sup inf.absorb1 inf-compl-bot-right maddux-20
no-end-point-char)
qed
```

Use precondition is-acyclic instead of regressively-finite. They are equivalent for finite graphs.
theorem topological-sort-total: VARS p q v W
[is-acyclic R]
$W:=0$;
$q:=$ choose-point (minimum $R 1$);
$v:=q$;
WHILE $v \neq 1$
INV \{ topological-sort-inv q $v R W\}$
$\operatorname{VAR}\{\operatorname{card}\{z . z \leq-v\}\}$
DO $p:=$ choose-point (minimum $R(-v)$);

```
    \(W:=W+q * p^{T} ;\)
    \(q:=p ;\)
    \(v:=v+p\)
    \(O D\)
    \(\left[R \leq W^{+} \wedge\right.\) terminating-path \(\left.W \wedge\left(W+W^{T}\right) * 1=-1^{\prime} * 1\right]\)
    apply \(v c g-t c\)
    apply (drule acyclic-regressively-finite)
    using topological-sort-pre apply blast
    apply (rule CollectI, rule conjI)
    using topological-sort-inv apply blast
    using topological-sort-inv-termination apply auto[1]
    using topological-sort-post by blast
end
```


4.3 Construction of a tree

Our last application is a correctness proof of an algorithm that constructs a non-empty cycle for a given directed graph. This works in two steps. The first step is to construct a directed tree from a given root along the edges of the graph.
context relation-algebra-rtc-tarski-choose-point
begin
abbreviation construct-tree-pre
where construct-tree-pre x y $R \equiv y \leq R^{T \star} * x \wedge$ point x
abbreviation construct-tree-inv
where construct-tree-inv vx y $D R \equiv$ construct-tree-pre x y $R \wedge$ is-acyclic $D \wedge$ is-inj $D \wedge$

$$
D \leq R \wedge D * x=0 \wedge v=x+D^{T} * 1 \wedge x * v^{T} \leq
$$

$D^{\star} \wedge D \leq v * v^{T} \wedge$

$$
i s \text {-vector } v
$$

abbreviation construct-tree-post
where construct-tree-post x y $D R \equiv$ is-acyclic $D \wedge$ is-inj $D \wedge D \leq R \wedge D * x=$ $0 \wedge D^{T} * 1 \leq D^{T \star} * x \wedge$

$$
D^{\star} * y \leq D^{T \star} * x
$$

lemma construct-tree-pre:
assumes construct-tree-pre x y R shows construct-tree-inv x x y $0 R$
using assms by (simp add: is-inj-def point-def)
lemma construct-tree-inv-aux:
assumes $\neg y \leq v$ and construct-tree-inv $v x$ y $D R$
shows singleton (choose-singleton $\left(v *-v^{T} \cdot R\right)$)
proof (rule choose-singleton-singleton, rule notI)
assume $v *-v^{T} \cdot R=0$
hence $R^{T *} * v \leq v$

```
    by (metis galois-aux conv-compl conv-galois-1 conv-galois-2 conv-invol
double-compl
            star-inductl-var)
    hence }y=
    using assms by (meson mult-isol order-trans sup.cobounded1)
    thus False
    using assms point-is-point by auto
qed
lemma construct-tree-inv:
    assumes }\negy\leq
    and construct-tree-inv v x y D R
    shows construct-tree-inv (v+choose-singleton (v*-v\mp@subsup{v}{}{T}\cdotR\mp@subsup{)}{}{T}*1)xy(D+
        choose-singleton (v*-vT}\cdotR))
proof (intro conjI)
    let ?e = choose-singleton (v*-vT}\cdotR
    let ?D = D + ?e
    let ?v=v+? ? T *1
    have 1:?e}\leqv*-\mp@subsup{v}{}{T
    using choose-singleton-decreasing inf.boundedE by blast
    show point x
    by (simp add: assms)
    show }y\leq\mp@subsup{R}{}{T*}*
    by (simp add: assms)
    show is-acyclic ?D
    using 1 assms acyclic-inv by fastforce
    show is-inj ?D
    using 1 construct-tree-inv-aux assms injective-inv by blast
    show ? D \leq R
    apply (rule sup.boundedI)
    using assms apply blast
    using choose-singleton-decreasing inf.boundedE by blast
    show ? D*x = 0
    proof -
    have ? D*x = ? e*x
        by (simp add: assms)
    also have ... \leq? e*v
        by (simp add: assms mult-isol)
    also have ... }\leqv*-\mp@subsup{v}{}{T}*
        using 1 mult-isor by blast
    also have ... = 0
        by (metis assms(2) annir comp-assoc vector-prop1)
    finally show ?thesis
        using le-bot by blast
    qed
    show ?v = x +? D}\mp@subsup{D}{}{T}*
    by (simp add: assms sup-assoc)
    show }x*?\mp@subsup{v}{}{T}\leq?\mp@subsup{D}{}{\star
    proof -
```

```
    have \(x * ? v^{T}=x * v^{T}+x * 1 * ? e\)
    by (simp add: distrib-left mult-assoc)
    also have \(\ldots \leq D^{\star}+x * 1 *\left(? e \cdot v *-v^{T}\right)\)
    using 1 by (metis assms(2) inf.absorb1 join-iso)
    also have \(\ldots=D^{\star}+x * 1 *\left(? e \cdot v \cdot-v^{T}\right)\)
    by (metis assms(2) comp-assoc conv-compl inf.assoc vector-compl
vector-meet-comp)
    also have \(\ldots \leq D^{\star}+x * 1 *(? e \cdot v)\)
        using join-isol mult-subdistl by fastforce
    also have \(\ldots=D^{\star}+x *\left(1 \cdot v^{T}\right) *\) ? \(e\)
        by (metis assms(2) inf.commute mult-assoc vector-2)
    also have \(\ldots=D^{\star}+x * v^{T} * ? e\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq D^{\star}+D^{\star} *\) ? \(e\)
        using assms join-isol mult-isor by blast
    also have ... \(\leq\) ? \(D^{\star}\)
        by (meson le-sup-iff prod-star-closure star-ext star-subdist)
    finally show?thesis.
qed
show ? \(D \leq ? v * ? v^{T}\)
proof (rule sup.boundedI)
    show \(D \leq ? v * ? v^{T}\)
        using assms
        by (meson conv-add distrib-left le-supI1 conv-iso dual-order.trans
mult-isol-var order-prop)
    have ? \(e \leq v *\left(-v^{T} \cdot v^{T} * ? e\right)\)
        using 1 inf.absorb-iff2 modular-1' by fastforce
    also have \(\ldots \leq v * 1 *\) ? e
        by (simp add: comp-assoc le-infI2 mult-isol-var)
    also have \(\ldots \leq ? v * ? v^{T}\)
        by (metis conv-contrav conv-invol conv-iso conv-one mult-assoc mult-isol-var
sup.cobounded1
                sup-ge2)
    finally show \(? e \leq ? v * ? v^{T}\)
        by \(\operatorname{simp}\)
    qed
    show is-vector ?v
    using assms comp-assoc is-vector-def by fastforce
qed
lemma construct-tree-post:
    assumes \(y \leq v\)
            and construct-tree-inv vx y \(D R\)
    shows construct-tree-post x y \(D R\)
proof -
    have \(v * x^{T} \leq D^{T \star}\)
    by (metis (no-types, lifting) assms(2) conv-contrav conv-invol conv-iso
star-conv)
    hence 1: \(v \leq D^{T \star} * x\)
```

using assms point-def ss423bij by blast
hence 2: $D^{T} * 1 \leq D^{T \star} * x$
using assms le-supE by blast
have $D^{\star} * y \leq D^{T \star} * x$
proof (rule star-inductl, rule sup.boundedI)
show $y \leq D^{T \star} * x$
using 1 assms order.trans by blast
next
have $D *\left(D^{T \star} * x\right)=D * x+D * D^{T+} * x$
by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)
also have $\ldots=D * D^{T+} * x$
using assms by simp
also have $\ldots \leq 1^{\prime} * D^{T \star} * x$
by (metis assms(2) is-inj-def mult-assoc mult-isor)
finally show $D *\left(D^{T \star} * x\right) \leq D^{T \star} * x$
by simp
qed
thus construct-tree-post x y $D R$
using 2 assms by simp
qed

```
theorem construct-tree-partial: VARS e v D
    { construct-tree-pre x y R }
D := 0;
v:= x;
    WHILE \neg y \leqv
    INV { construct-tree-inv v x y D R}
            DO e := choose-singleton (v*-v}\mp@subsup{v}{}{T}\cdotR)
            D:= D + e;
            v:=v+e\mp@subsup{e}{}{T}*1
            OD
    { construct-tree-post x y D R }
apply vcg
using construct-tree-pre apply blast
using construct-tree-inv apply blast
using construct-tree-post by blast
end
context relation-algebra-rtc-tarski-choose-point-finite
begin
lemma construct-tree-inv-termination:
assumes }\negy\leq
    and construct-tree-inv v x y D R
```



```
z\leq-v}
proof (rule decrease-variant)
    let ?e = choose-singleton (v*-vT}\cdotR
```

```
let ? \(v=v+? e^{T} * 1\)
have 1: ? \(e \leq v *-v^{T}\)
    using choose-singleton-decreasing inf.boundedE by blast
    have 2: singleton ?e
    using construct-tree-inv-aux assms by auto
    show - ? \(v \leq-v\)
    by \(\operatorname{simp}\)
    have ? \(e^{T} \leq-v * v^{T}\)
    using 1 conv-compl conv-iso by force
    also have \(\ldots \leq-v * 1\)
    by (simp add: mult-isol)
finally show ? \(e^{T} * 1 \leq-v\)
    using assms by (metis is-vector-def mult-isor one-compl)
thus \(\neg\left(? e^{T} * 1 \leq-? v\right)\)
    using 2 by (metis annir compl-sup inf.absorb1 inf-compl-bot-right surj-one
tarski)
qed
theorem construct-tree-total: VARS e v D
    [ construct-tree-pre x y \(R\) ]
\(D:=0\);
\(v:=x\);
WHILE \(\neg y \leq v\)
    INV \(\{\) construct-tree-inv \(v\) x y \(D R\}\)
    \(\operatorname{VAR}\{\operatorname{card}\{z \cdot z \leq-v\}\}\)
    \(D O\) e \(:=\) choose-singleton \(\left(v *-v^{T} \cdot R\right)\);
        \(D:=D+e ;\)
        \(v:=v+e^{T} * 1\)
        \(O D\)
[ construct-tree-post \(x\) y \(D R\) ]
apply \(v c g-t c\)
using construct-tree-pre apply blast
apply (rule CollectI, rule conjI)
using construct-tree-inv apply blast
using construct-tree-inv-termination apply force
using construct-tree-post by blast
end
```


4.4 Construction of a non-empty cycle

The second step is to construct a path from the root to a given vertex in the tree. Adding an edge back to the root gives the cycle.
context relation-algebra-rtc-tarski-choose-point
begin
abbreviation comment
where comment $-\equiv$ SKIP
abbreviation construct-cycle-inv
where construct-cycle-inv v x y $D R \equiv$ construct-tree-inv v x y $D R \wedge$ point y \wedge $y * x^{T} \leq R$
lemma construct-cycle-pre:
assumes \neg is-acyclic R
and $y=$ choose-point $\left(\left(R^{+} \cdot 1^{\prime}\right) * 1\right)$
and $x=$ choose-point $\left(R^{\star} * y \cdot R^{T} * y\right)$
shows construct-cycle-inv x x y $0 R$
proof (rule conjI, rule-tac [2] conjI)
show point-y: point y
using assms by (simp add: choose-point-point is-vector-def mult-assoc
galois-aux ss-p18)
have $R^{\star} * y \cdot R^{T} * y \neq 0$
proof
have $R^{+} \cdot 1^{\prime}=\left(R^{+}\right)^{T} \cdot 1^{\prime}$
by (metis (mono-tags, opaque-lifting) conv-e conv-times inf.cobounded1
inf.commute
many-strongly-connected-iff-6-eq mult-oner star-subid)
also have $\ldots=R^{T+} .1^{\prime}$
using plus-conv by fastforce
also have $\ldots \leq\left(R^{T \star} \cdot R\right) * R^{T}$
by (metis conv-contrav conv-e conv-invol modular-2-var mult-oner
star-slide-var)
also have $\ldots \leq\left(R^{T \star} \cdot R\right) * 1$
by (simp add: mult-isol)
finally have $a:\left(R^{+} \cdot 1\right) * 1 \leq\left(R^{T \star} \cdot R\right) * 1$
by (metis mult-assoc mult-isor one-idem-mult)
assume $R^{\star} * y \cdot R^{T} * y=0$
hence $\left(R^{\star} \cdot R^{T}\right) * y=0$
using point-y inj-distr point-def by blast
hence $\left(R^{\star} \cdot R^{T}\right)^{T} * 1 \leq-y$
by (simp add: conv-galois-1)
hence $y \leq-\left(\left(R^{\star} \cdot R^{T}\right)^{T} * 1\right)$
using compl-le-swap1 by blast
also have $\ldots=-\left(\left(R^{T \star} \cdot R\right) * 1\right)$
by (simp add: star-conv)
also have $\ldots \leq-\left(\left(R^{+} \cdot 1^{\prime}\right) * 1\right)$
using a comp-anti by blast
also have $\ldots \leq-y$
by (simp add: assms galois-aux ss-p18 choose-point-decreasing)
finally have $y=0$
using inf.absorb2 by fastforce
thus False
using point-y annir point-equations(2) point-is-point tarski by force
qed
hence point-x: point x
by (metis point-y assms(3) inj-distr is-vector-def mult-assoc point-def choose-point-point)
hence $y \leq R^{T \star} * x$

```
    by (metis assms(3) point-y choose-point-decreasing inf-le1 order.trans
point-swap star-conv)
    thus tree-inv: construct-tree-inv x x y 0 R
    using point-x construct-tree-pre by blast
    show y* x
    proof -
    have }x\leq\mp@subsup{R}{}{\star}*y\cdot\mp@subsup{R}{}{T}*
            using assms(3) choose-point-decreasing by blast
    also have ... = ( }\mp@subsup{R}{}{\star}\cdot\mp@subsup{R}{}{T})*
        using point-y inj-distr point-def by fastforce
    finally have }x*\mp@subsup{y}{}{T}\leq\mp@subsup{R}{}{\star}\cdot\mp@subsup{R}{}{T
        using point-y point-def ss423bij by blast
    also have ... \leq R
        by simp
    finally show ?thesis
        using conv-iso by force
    qed
qed
lemma construct-cycle-pre2:
    assumes y\leqv
        and construct-cycle-inv v x y D R
    shows construct-path-inv y x y D 0^D\leqR^D*x=0^y* 走\leqR
proof(intro conjI, simp-all add: assms)
    show }\mp@subsup{D}{}{\star}*y\leq\mp@subsup{D}{}{T\star}*
    using assms construct-tree-post by blast
    show path 0
        by (simp add: is-inj-def is-p-fun-def path-def)
    show }y\not=
        using assms(2) is-point-def point-is-point by blast
qed
lemma construct-cycle-post
    assumes }\negq\not=
            and (construct-path-inv q x y D W ^D\leqR\wedgeD*x=0^y* xT}\leqR
    shows}W+y*\mp@subsup{x}{}{T}\not=0\wedgeW+y*\mp@subsup{x}{}{T}\leqR\wedge\operatorname{cycle}(W+y*\mp@subsup{x}{}{T}
proof(intro conjI)
    let ?C = W + y*x
    show ?C }\not=
    by (metis assms acyclic-imp-one-step-different-points(2) no-trivial-inverse
point-def ss423bij
                    sup-bot.monoid-axioms monoid.left-neutral)
    show ?C }\leq
    using assms(2) order-trans sup.boundedI by blast
    show path (W+y*\mp@subsup{x}{}{T})
    by (metis assms construct-tree-pre edge-is-path less-eq-def
path-edge-equals-cycle
                    point-is-point terminating-iff1)
    show many-strongly-connected ( W + y* 椟)
```

by (metis assms construct-tree-pre bot-least conv-zero less-eq-def path-edge-equals-cycle star-conv star-subid terminating-iff1)
qed
theorem construct-cycle-partial: VARS e p q v x y C D W
$\{\neg$ is-acyclic $R\}$
$y:=$ choose-point $\left(\left(R^{+} \cdot 1^{\prime}\right) * 1\right)$;
$x:=$ choose-point $\left(R^{\star} * y \cdot R^{T} * y\right)$;
$D:=0$;
$v:=x$;
WHILE $\neg y \leq v$
INV \{ construct-cycle-inv v x y $D R\}$
$D O e:=$ choose-singleton $\left(v *-v^{T} \cdot R\right)$;
$D:=D+e ;$
$v:=v+e^{T} * 1$
$O D$;
comment $\left\{\right.$ is-acyclic $D \wedge$ point $y \wedge$ point $\left.x \wedge D^{\star} * y \leq D^{T \star} * x\right\}$;
$W:=0$;
$q:=y$;
WHILE $q \neq x$
INV \{ construct-path-inv $q x$ y $\left.D W \wedge D \leq R \wedge D * x=0 \wedge y * x^{T} \leq R\right\}$
DO p := choose-point ($D * q$);
$W:=W+p * q^{T} ;$
$q:=p$
$O D$;
comment $\{W \leq D \wedge$ terminating-path $W \wedge(W=0 \longleftrightarrow q=y) \wedge(W \neq 0$
$\longleftrightarrow q=$ start-points $W \wedge y=$ end-points $W)\} ;$
$C:=W+y * x^{T}$
$\{C \neq 0 \wedge C \leq R \wedge$ cycle $C\}$
apply $v c g$
using construct-cycle-pre apply blast
using construct-tree-inv apply blast
using construct-cycle-pre2 apply blast
using construct-path-inv apply blast
using construct-cycle-post by blast
end
context relation-algebra-rtc-tarski-choose-point-finite
begin
theorem construct-cycle-total: VARS e p q v x y C D W
[\neg is-acyclic R]
$y:=$ choose-point $\left(\left(R^{+} \cdot 1^{\prime}\right) * 1\right)$;
$x:=$ choose-point $\left(R^{\star} * y \cdot R^{T} * y\right)$;
$D:=0$;
$v:=x$;
WHILE $\neg y \leq v$
INV \{ construct-cycle-inv v x y $D R\}$

```
    \(\operatorname{VAR}\{\operatorname{card}\{z . z \leq-v\}\}\)
    \(D O e:=\) choose-singleton \(\left(v *-v^{T} \cdot R\right)\);
        \(D:=D+e ;\)
        \(v:=v+e^{T} * 1\)
    \(O D\);
    comment \(\left\{\right.\) is-acyclic \(D \wedge\) point \(y \wedge\) point \(\left.x \wedge D^{\star} * y \leq D^{T *} * x\right\}\);
    \(W:=0 ;\)
    \(q:=y\);
    WHILE \(q \neq x\)
        INV \{ construct-path-inv q x y \(\left.D W \wedge D \leq R \wedge D * x=0 \wedge y * x^{T} \leq R\right\}\)
    \(\operatorname{VAR}\{\operatorname{card}\{z \cdot z \leq-W\}\}\)
    DO p := choose-point ( \(D * q\) );
        \(W:=W+p * q^{T} ;\)
        \(q:=p\)
        \(O D\);
    comment \(\{W \leq D \wedge\) terminating-path \(W \wedge(W=0 \longleftrightarrow q=y) \wedge(W \neq 0\)
\(\longleftrightarrow q=\) start-points \(W \wedge y=\) end-points \(W)\} ;\)
    \(C:=W+y * x^{T}\)
    \([C \neq 0 \wedge C \leq R \wedge\) cycle \(C]\)
    apply \(v c g-t c\)
    using construct-cycle-pre apply blast
    apply (rule CollectI, rule conjI)
    using construct-tree-inv apply blast
    using construct-tree-inv-termination apply force
    using construct-cycle-pre2 apply blast
    apply (rule CollectI, rule conjI)
    using construct-path-inv apply blast
    using construct-path-inv-termination apply clarsimp
    using construct-cycle-post by blast
end
end
```


References

[1] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra. Archive of Formal Proofs, 2014.
[2] R. Berghammer, H. Furusawa, W. Guttmann, and P. Höfner. Relational characterisations of paths. Journal of Logical and Algebraic Methods in Programming, 117:100590, 2020.
[3] R. Diestel. Graph Theory. Springer, third edition, 2005.
[4] W. Guttmann. Stone-Kleene relation algebras. Archive of Formal Proofs, 2017.
[5] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.
[6] W. Guttmann. An algebraic framework for minimum spanning tree problems. Theoretical Comput. Sci., 744:37-55, 2018.
[7] W. Guttmann. Verifying minimum spanning tree algorithms with Stone relation algebras. Journal of Logical and Algebraic Methods in Programming, 101:132-150, 2018.
[8] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation, 110(2):366-390, 1994.
[9] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California, Berkeley, 1984.
[10] G. Schmidt and T. Ströhlein. Relations and Graphs. Springer, 1993.
[11] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, $6(3): 73-89,1941$.
[12] G. Tinhofer. Methoden der angewandten Graphentheorie. Springer, 1976.

