
Rabin’s Closest Pair of Points Algorithm

Emin Karayel Zixuan Fan

September 23, 2024

Abstract

This entry formalizes Rabin’s randomized algorithm for the closest
pair of points problem with expected linear running time. Remarkable
is that the best-known deterministic algorithms have super-linear run-
ning times. Hence this algorithm is one of the first known examples of
randomized algorithms that outperform deterministic algorithms.

The formalization also introduces a probabilistic time monad, which
builds on the existing deterministic time monad.

Contents
1 Introduction 1

1.1 Preliminary Algorithms in the Time Monad 3
1.2 Probabilistic Time Monad . 4
1.3 Randomized Closest Points Algorithm 6

2 Correctness 8

3 Growth of Close Points 11

4 Speed 14

1 Introduction

This entry formalizes Rabin’s randomized closest points algorithm [6], with
expected linear run-time.
Given a sequence of points in euclidean space, the algorithm finds the pair
of points with the smallest distance between them.
Remarkable is that the best known deterministic algorithm for this problem
has running time O(n log n) for n points [1, Section 1]. Some of them have
been formalized in Isabelle by Rau and Nipkow [7, 8].
The algorithm starts by choosing a grid-distance d, and storing the points
in a square-grid whose cells have that side-length.

1

Then it traverses the points, computing the distance of each with the points
in the same (or neighboring) cells in the square grid. (Two cells are consid-
ered neighboring, if they share an edge or a vertex.)
The fundamental dilemma of the algorithm is the correct choice of d. If it is
too small, then it could happen that the two closest points of the sequence
are not in neighboring cells. This means d must be chosen larger or equal to
the closest-point distance of the sequence. On the other hand, if d is chosen
too large, it may cause too many points ending up in the same cell, which
increases the running time.
The original algorithm by Rabin, chooses d by sampling n2/3 points and
using the minimum distance of those points. This can be computed using
recursion (or a sub-quadratic deterministic algorithm.)
An improvement to the algorithm, has been observed in a blog-post by
Richard Lipton [5]. Instead of obtaining a sub-sample of the points in the
first step to chose d, he observes that it is possible to sample n independent
point pairs and computing the minimum distance of the pairs. The refined
algorithm is considerably simpler, avoiding the need for recursion. Similarly,
the running time proof is simpler. (This entry formalizes this later version.)
In either case, the algorithm always returns the correct result with expected
linear running time.
Note that, as far as I can tell, the proof of this new version has not been
published. As such this entry contains an informal proof for the results in
each section.
Something that should be noted is that we assume a hypothetical data struc-
ture for the square-grid, i.e., a mapping from a pair of integers identifying
the cell to the points located in the cell, that can be initialized in time O(n)
and access time proportional to the count of points in the cell (or O(1) if
the cell is empty.) A naive implementation of such a data structure would
however have unbounded intialization time, if some points are really far
apart.
The above was a discussion point that was raised by Fortune and Hopcroft [3].
Later Dietzfelbinger [2] resolved the issue by providing a concrete implemen-
tation of the data structure using a hash table, with a hash function chosen
randomly from a pair-wise independent family, to guarantee the presumed
costs of the hypothetical data structure in expectation. However, for the
sake of simplicity and consistency with Rabin’s paper, we omit this imple-
mentation detail, and pretend the hypothetical data structure exists.
Note also that, even with the hash table, it would not be possible to imple-
ment the algorithm in linear time in Isabelle directly as it requires random-
access arrays.
The following introduces a few primitive algorithms for the time monad,
which will be followed by the construction of the probabilistic time monad,

2

which is necessary for the verification of the expected running time. After
which the algorithm will be formalized. Its properties will be verified in the
following sections.

Related Work: Closely related is a recursive meshing based approach
developed by Khuller and Matias [4] in 1995. Banyassady and Mulzer have
given a new analysis of the expected running time [1] of Rabin’s algorithm
in 2007. However, this work follows Rabin’s original paper.
theory Randomized-Closest-Pair

imports
HOL−Probability.Probability-Mass-Function
Root-Balanced-Tree.Time-Monad
Karatsuba.Main-TM
Closest-Pair-Points.Common

begin

hide-const (open) Giry-Monad.return

1.1 Preliminary Algorithms in the Time Monad

Time Monad version of min-list.
fun min-list-tm :: ′a::ord list ⇒ ′a tm where

min-list-tm (x # y # zs) =1
do {

r ← min-list-tm (y#zs);
Time-Monad.return (min x r)
} |
min-list-tm (x#[]) =1 Time-Monad.return x |
min-list-tm [] =1 undefined

lemma val-min-list: xs 6= [] =⇒ val (min-list-tm xs) = min-list xs
〈proof 〉

lemma time-min-list: xs 6= [] =⇒ time (min-list-tm xs) = length xs
〈proof 〉

Time Monad version of remove1.
fun remove1-tm :: ′a ⇒ ′a list ⇒ ′a list tm

where
remove1-tm x (y#ys) =1 (

if x = y then
return ys

else
remove1-tm x ys >>= (λr . return (y#r))

) |
remove1-tm x [] =1 return []

3

lemma val-remove1 : val (remove1-tm x ys) = remove1 x ys
〈proof 〉

lemma time-remove1 : time (remove1-tm x ys) ≤ 1 + length ys
〈proof 〉

The following is a substitute for accounting for operations, where it was
not possible to do directly. One reason for this is that we abstract away
the data structure of the grid (an infinite 2D-table), which properly im-
plemented, would required the use of a hash table and 2-independent hash
functions. A second reason is that we need to transfer the resource usage
in the bind operation of the probabilistic time monad (See below in the
definition bind-tpmf).
fun custom-tick :: nat ⇒ unit tm

where
custom-tick (Suc n) =1 custom-tick n |
custom-tick 0 = return ()

lemma time-custom-tick: time (custom-tick n) = n 〈proof 〉

1.2 Probabilistic Time Monad

The following defines the probabilistic time monad using the type ′a tm
pmf, i.e., the algorithm returns a probability space of pairs of values and
time-consumptions.
Note that the alternative type ′a pmf tm, i.e., a constant time consumption
with a value-distribution does not work since the running time may depend
on random choices.
type-synonym ′a tpmf = ′a tm pmf

definition bind-tpmf :: ′a tpmf ⇒ (′a ⇒ ′b tpmf) ⇒ ′b tpmf
where bind-tpmf m f =

do {
x ← m;
r ← f (val x);
return-pmf (custom-tick (time x) >>= (λ-. r))
}

definition return-tpmf :: ′a ⇒ ′a tpmf
where return-tpmf x = return-pmf (return x)

The following allows the lifting of a deterministic algorithm in the time
monad into the probabilistic time monad.
definition lift-tm :: ′a tm ⇒ ′a tpmf

where lift-tm x = return-pmf x

4

The following allows the lifting of a randomized algorithm into the proba-
bilisitc time monad. Note this should only be done, for primitive cases, as
it requires accounting of the time usage.
definition lift-pmf :: nat ⇒ ′a pmf ⇒ ′a tpmf

where lift-pmf k m = map-pmf (λx. custom-tick k >>= (λ-. return x)) m

adhoc-overloading Monad-Syntax.bind bind-tpmf

lemma val-bind-tpmf :
map-pmf val (bind-tpmf m f) = map-pmf val m >>= (λx. map-pmf val (f x))
(is ?L = ?R)
〈proof 〉

lemma val-return-tpmf :
map-pmf val (return-tpmf x) = return-pmf x
〈proof 〉

lemma val-lift-tpmf : map-pmf val (lift-pmf k x) = x
〈proof 〉

lemma val-lift-tm:
map-pmf val (lift-tm x) = return-pmf (val x)
〈proof 〉

lemmas val-tpmf-simps = val-bind-tpmf val-lift-tpmf val-return-tpmf val-lift-tm

lemma time-return-tpmf : map-pmf time (return-tpmf x) = return-pmf 0
〈proof 〉

lemma time-lift-pmf : map-pmf time (lift-pmf x p) = return-pmf x
〈proof 〉

lemma time-bind-tpmf : map-pmf time (bind-tpmf m f) =
do {

x ← m;
y ← f (val x);
return-pmf (time x + time y)
}
〈proof 〉

lemma bind-return-tm: bind-tm (Time-Monad.return x) f = f x
〈proof 〉

lemma bind-return-tpmf : bind-tpmf (return-tpmf x) f = (f x)
〈proof 〉

Version of replicate-pmf for the probabilistic time monad.
fun replicate-tpmf :: nat ⇒ ′a tpmf ⇒ ′a list tpmf

where

5

replicate-tpmf 0 p = return-tpmf [] |
replicate-tpmf (Suc n) p =

do {
x ← p;
y ← replicate-tpmf n p;
return-tpmf (x#y)
}

lemma time-replicate-tpmf :
map-pmf time (replicate-tpmf n p) = map-pmf sum-list (replicate-pmf n (map-pmf

time p))
〈proof 〉

lemma val-replicate-tpmf :
map-pmf val (replicate-tpmf n x) = replicate-pmf n (map-pmf val x)
〈proof 〉

lemma set-val-replicate-tpmf :
assumes xs ∈ set-pmf (replicate-tpmf n p)
shows length (val xs) = n set (val xs) ⊆ val ‘ set-pmf p
〈proof 〉

lemma replicate-return-pmf [simp]: replicate-pmf n (return-pmf x) = return-pmf
(replicate n x)
〈proof 〉

1.3 Randomized Closest Points Algorithm

Using the above we can express the randomized closests points algorithm in
the probabilistic time monad.
type-synonym point = real^2

record grid =
g-dist :: real
g-lookup :: int ∗ int ⇒ point list tm

definition to-grid :: real ⇒ point ⇒ int ∗ int
where to-grid d x = (bx $ 1/dc,bx $ 2/dc)

This represents the grid data-structure mentioned before. We assume the
build time is linear to the number of points stored and the access time is at
least O(1) and proportional to the number of points in the cell. (In practice
this would be implemented using hash functions.)
definition build-grid :: point list ⇒ real ⇒ grid tm where

build-grid xs d =
do {

- ← custom-tick (length xs);

6

return (|
g-dist = d,
g-lookup = (λq. map-tm return (filter (λx. to-grid d x = q) xs))
|)
}

definition sample-distance :: point list ⇒ real tpmf where
sample-distance ps = do {

i ← lift-pmf 1 (pmf-of-set {i. fst i < snd i ∧ snd i < length ps});
return-tpmf (dist (ps ! (fst i)) (ps ! (snd i)))
}

lemma val-sample-distance:
map-pmf val (sample-distance ps) = map-pmf (λi. dist (ps ! (fst i)) (ps ! (snd

i)))
(pmf-of-set {i. fst i < snd i ∧ snd i < length ps})
〈proof 〉

definition first-phase :: point list ⇒ real tpmf where
first-phase ps = do {

ds ← replicate-tpmf (length ps) (sample-distance ps);
lift-tm (min-list-tm ds)
}

definition lookup-neighborhood :: grid ⇒ point ⇒ point list tm
where lookup-neighborhood grid p =

do {
d ← tick (g-dist grid);
q ← tick (to-grid d p);
cs ← map-tm (λx. tick (x + q)) [(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)];
map-tm (g-lookup grid) cs >>= concat-tm >>= remove1-tm p
}

This function collects all points in the cell of the given point and those
from the neighboring cells. Here it is relevant to note that only half of the
neighboring cells are taken. This is because of symmetry, i.e., if point p is
north-east of point q, then q is south-west of point q. Since all points are
being traversed it is enough to restrict the neighbor set.
definition calc-dists-neighborhood :: grid ⇒ point ⇒ real list tm

where calc-dists-neighborhood grid p =
do {

ns ← lookup-neighborhood grid p;
map-tm (tick ◦ dist p) ns
}

definition second-phase :: real ⇒ point list ⇒ real tm where
second-phase d ps = do {

grid ← build-grid ps d;
ns ← map-tm (calc-dists-neighborhood grid) ps;

7

concat-tm ns >>= min-list-tm
}

definition closest-pair :: point list ⇒ real tpmf where
closest-pair ps = do {

d ← first-phase ps;
if d = 0 then

lift-tm (tick 0)
else

lift-tm (second-phase d ps)
}

end

2 Correctness

This section verifies that the algorithm always returns the correct result.
Because the algorithm checks every pair of points in the same or in neigh-
boring cells. It is enough to establish that the grid distance is at least the
distance of the closest pair.
The latter is true by construction, because the grid distance is chosen as a
minimum of actually occurring point distances.
theory Randomized-Closest-Pair-Correct

imports Randomized-Closest-Pair
begin

definition min-dist :: (′a::metric-space) list ⇒ real
where min-dist xs = Min {dist x y|x y. {# x, y#} ⊆# mset xs}

For a list with length at least two, the result is the minimum distance be-
tween the points of any two elements of the list. This means that min-dist
xs = 0, if and only if the same point occurs twice in the list.
Note that this means, we won’t assume the distinctness of the input list,
and show the correctness of the algorithm in the above sense.
lemma image-conv-2 : {f x y|x y. p x y} = (case-prod f) ‘ {(x,y). p x y} 〈proof 〉

lemma min-dist-set-fin: finite {dist x y|x y. {#x, y#} ⊆# mset xs}
〈proof 〉

lemma min-dist-ne: length xs ≥ 2 ←→ {dist x y|x y. {# x,y#} ⊆# mset xs} 6=
{} (is ?L ←→ ?R)
〈proof 〉
lemmas min-dist-neI = iffD1 [OF min-dist-ne]

lemma min-dist-nonneg:
assumes length xs ≥ 2

8

shows min-dist xs ≥ 0
〈proof 〉

lemma min-dist-pos-iff :
assumes length xs ≥ 2
shows distinct xs ←→ 0 < min-dist xs
〈proof 〉

lemma multiset-filter-mono-2 :
assumes

∧
x. x ∈ set-mset xs =⇒ P x =⇒ Q x

shows filter-mset P xs ⊆# filter-mset Q xs (is ?L ⊆# ?R)
〈proof 〉

lemma filter-mset-disj:
filter-mset (λx. p x ∨ q x) xs = filter-mset (λx. p x ∧ ¬ q x) xs + filter-mset q xs
〈proof 〉

lemma size-filter-mset-decompose:
assumes finite T
shows size (filter-mset (λx. f x ∈ T) xs) = (

∑
t ∈ T . size (filter-mset (λx. f x

= t) xs))
〈proof 〉

lemma size-filter-mset-decompose ′:
size (filter-mset (λx. f x ∈ T) xs) = sum ′ (λt. size (filter-mset (λx. f x = t) xs))

T
(is ?L = ?R)
〈proof 〉

lemma filter-product:
filter (λx. P (fst x)∧Q (snd x)) (List.product xs ys) = List.product (filter P xs)

(filter Q ys)
〈proof 〉

lemma floor-diff-bound: |bxc−byc| ≤ d|x − (y::real)|e 〈proof 〉

lemma power2-strict-mono:
fixes x y :: ′a :: linordered-idom
assumes |x| < |y|
shows x^2 < y^2
〈proof 〉

definition grid ps d = (| g-dist = d, g-lookup = (λq. map-tm return (filter (λx.
to-grid d x = q) ps)) |)

lemma build-grid-val: val (build-grid ps d) = grid ps d
〈proof 〉

9

lemma lookup-neighborhood:
mset (val (lookup-neighborhood (grid ps d) p)) =
filter-mset (λx. to-grid d x − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)})

(mset ps) − {#p#}
〈proof 〉

lemma fin-nat-pairs: finite {(i, j). i < j ∧ j < (n::nat)}
〈proof 〉

lemma mset-list-subset:
assumes distinct ys set ys ⊆ {..<length xs}
shows mset (map ((!) xs) ys) ⊆# mset xs (is ?L ⊆# ?R)
〈proof 〉

lemma sample-distance:
assumes length ps ≥ 2
shows AE d in map-pmf val (sample-distance ps). min-dist ps ≤ d
〈proof 〉

lemma first-phase:
assumes length ps ≥ 2
shows AE d in map-pmf val (first-phase ps). min-dist ps ≤ d
〈proof 〉

definition grid-lex-ord :: int ∗ int ⇒ int ∗ int ⇒ bool
where grid-lex-ord x y = (fst x < fst y ∨ (fst x = fst y ∧ snd x ≤ snd y))

lemma grid-lex-order-antisym: grid-lex-ord x y ∨ grid-lex-ord y x
〈proof 〉

lemma grid-dist:
fixes p q :: point
assumes d > 0
shows |bp $ k/dc − bq $ k/dc| ≤ ddist p q/de
〈proof 〉

lemma grid-dist-2 :
fixes p q :: point
assumes d > 0
assumes ddist p q/de ≤ s
shows to-grid d p − to-grid d q ∈ {−s..s}×{−s..s}
〈proof 〉

lemma grid-dist-3 :
fixes p q :: point
assumes d > 0
assumes ddist q p/de ≤ 1 grid-lex-ord (to-grid d p) (to-grid d q)
shows to-grid d q − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}
〈proof 〉

10

lemma second-phase-aux:
assumes d > 0 min-dist ps ≤ d length ps ≥ 2
obtains u v where

min-dist ps = dist u v
{#u, v#} ⊆# mset ps
grid-lex-ord (to-grid d u) (to-grid d v)
u ∈ set ps v ∈ set (val (lookup-neighborhood (grid ps d) u))

〈proof 〉

lemma second-phase:
assumes d > 0 min-dist ps ≤ d length ps ≥ 2
shows val (second-phase d ps) = min-dist ps (is ?L = ?R)
〈proof 〉

Main result of this section:
theorem closest-pair-correct:

assumes length ps ≥ 2
shows AE r in map-pmf val (closest-pair ps). r = min-dist ps
〈proof 〉

end

3 Growth of Close Points

This section verifies a result similar to (but more general than) Lemma 2
by Rabin [6]. Let N(d) denote the number of pairs from the point sequence
p1, . . . , pn, with distance less than d:

N(d) := |{(i, j)|d(pi, pj) < d ∧ 1 ≤ i, j ≤ n}|

Obviously, N(d) is monotone. It is possible to show that the growth of N(d)
is bounded.
In particular:

N(ad) ≤ (2a
√
2 + 3)2N(d)

for all a > 0, d > 0. As far as we can tell the proof below is new.
Proof: Consider a 2D-grid with size α := d√

2
and let us denote by G(x, y)

the number of points that fall in the cell (x, y) ∈ Z× Z, i.e.:

G(x, y) :=
∣∣∣{i∣∣∣ ⌊pi,1

α

⌋
= x ∧

⌊pi,2
α

⌋
= x

}∣∣∣ ,

where pi,1 (resp. pi,2) denote the first (resp. second) component of point p.
Let also s := da

√
2e.

11

Then we can observe that

N(ad) ≤
∑

(x,y)∈Z×Z

s∑
i=−s

s∑
j=−s

G(x, y)G(x+ i, y + j)

=
s∑

i=−s

s∑
j=−s

∑
(x,y)∈Z×Z

G(x, y)G(x+ i, y + j)

≤
s∑

i=−s

s∑
j=−s

 ∑
(x,y)∈Z×Z

G(x, y)2

 ∑
(x,y)∈Z×Z

G(x+ i, y + j)2

1/2

≤
s∑

i=−s

s∑
j=−s

 ∑
(x,y)∈Z×Z

G(x, y)2

 ∑
(x,y)∈Z×Z

G(x, y)2

1/2

≤ (2s+ 1)2
∑

(x,y)∈Z×Z

G(x, y)2

≤ (2a
√
(2) + 3)2

∑
(x,y)∈Z×Z

G(x, y)2

≤ (2a
√
(2) + 3)2N(d)

The first inequality follows from the fact that if two points are ad close, their
x-coordinates and y-coordinates will differ by at most ad. I.e. their grid
coordinates will differ at most by s. This means the pair will be accounted
for in the right hand side of the inequality.
The third inequality is an application of the Cauchy–Schwarz inequality.
The last inequality follows from the fact that the largest possible distance
of two points in the same grid cell is d.
theory Randomized-Closest-Pair-Growth

imports
HOL−Library.Sublist
Randomized-Closest-Pair-Correct

begin

lemma inj-translate:
fixes a b :: int
shows inj (λx. (fst x + a, snd x + b))
〈proof 〉

lemma of-nat-sum ′:
(of-nat (sum ′ f S) :: (′a :: {semiring-char-0})) = sum ′ (λx. of-nat (f x)) S
〈proof 〉

lemma sum ′-nonneg:
fixes f :: ′a ⇒ ′b :: {ordered-comm-monoid-add}

12

assumes
∧

x. x ∈ S =⇒ f x ≥ 0
shows sum ′ f S ≥ 0
〈proof 〉

lemma sum ′-mono:
fixes f :: ′a ⇒ ′b :: {ordered-comm-monoid-add}
assumes

∧
x. x ∈ S =⇒ f x ≤ g x

assumes finite {x ∈ S . f x 6= 0}
assumes finite {x ∈ S . g x 6= 0}
shows sum ′ f S ≤ sum ′ g S (is ?L ≤ ?R)
〈proof 〉

lemma cauchy-schwarz ′:
assumes finite {i ∈ S . f i 6= 0}
assumes finite {i ∈ S . g i 6= 0}
shows sum ′ (λi. f i ∗ g i) S ≤ sqrt (sum ′ (λi. f i^2) S) ∗ sqrt (sum ′ (λi. g i^2)

S)
(is ?L ≤ ?R)

〈proof 〉

context comm-monoid-set
begin

lemma reindex-bij-betw ′:
assumes bij-betw h S T
shows G (λx. g (h x)) S = G g T
〈proof 〉

end

definition close-point-size xs d = length (filter (λ(p,q). dist p q < d) (List.product
xs xs))

lemma grid-dist-upper :
fixes p q :: point
assumes d > 0
shows dist p q < sqrt (

∑
i∈UNIV .(d∗(|bp$i/dc−bq$i/dc|+1))^2)

(is ?L < ?R)
〈proof 〉

lemma grid-dist-upperI :
fixes p q :: point
fixes d :: real
assumes d > 0
assumes

∧
k. |bp$k/dc−bq$k/dc| ≤ s

shows dist p q < d ∗ (s+1) ∗ sqrt 2
〈proof 〉

13

lemma close-point-approx-upper :
fixes xs :: point list
fixes G :: int × int ⇒ real
assumes d > 0 e > 0
defines s ≡ dd / ee
defines G ≡ (λx. real (length (filter (λp. to-grid e p = x) xs)))
shows close-point-size xs d ≤ (

∑
i ∈ {−s..s}×{−s..s}. sum ′ (λx. G x ∗ G (x+i))

UNIV)
(is ?L ≤ ?R)

〈proof 〉

lemma close-point-approx-lower :
fixes xs :: point list
fixes G :: int × int ⇒ real
fixes d :: real
assumes d > 0
defines G ≡ (λx. real (length (filter (λp. to-grid d p = x) xs)))
shows sum ′ (λx. G x ^ 2) UNIV ≤ close-point-size xs (d ∗ sqrt 2)
(is ?L ≤ ?R)

〈proof 〉

lemma build-grid-finite:
assumes inj f
shows finite {x. filter (λp. to-grid d p = f x) xs 6= []}
〈proof 〉

Main result of this section:
lemma growth-lemma:

fixes xs :: point list
assumes a > 0 d > 0
shows close-point-size xs (a ∗ d) ≤ (2 ∗ sqrt 2 ∗ a + 3)^2 ∗ close-point-size xs

d
(is ?L ≤ ?R)

〈proof 〉

end

4 Speed

In this section, we verify that the running time of the algorithm is linear
with respect to the length of the point sequence p1, . . . , pn.
Proof: It is easy to see that the first phase and construction of the grid
requires time proportional to n. It is also easy to see that the number of
point-comparisons is a bound for the number of operations in the second
phase. It is also possible to observe that the algorithm never compares a
point pair if they are in non-adjacent cells, i.e., if their distance is at least
2d
√
2.

14

This means we need to show that the expectation of N(2d
√
2) is proportional

to n when d is chosen according to the algorithm in the first phase. Because
of the observation from the last section, i.e., N(2d

√
2) ≤ 112N(d), it is

enough to verify that the expectation of N(d) is linear.
Let us consider all pair distances: d1 := d(p1, p2), d2 := d(p1, p3), . . . , dm :=

d(pn−1, pn) where m = n(n−1)
2 .

Then we can find a permutation σ : {1, . . . ,m} → {1, . . . ,m}, s.t., the
distances are ordered, i.e., dσ(i) ≤ dσ(j) if 1 ≤ i ≤ j ≤ m.
The key observation is that N(dσ(i)) ≤ i−1, because N counts the number of
point pairs which are closer than dσ(i), which can only be those corresponding
to dσ(1), dσ(2), . . . , dσ(i−1).
On the other hand the algorithm chooses the smallest of n random samples
from d1, . . . , dm. So the problem reduces to the computation of the expec-
tation of the smallest element from n random samples from 1, . . . ,m. The
mean of this can be estimated to be m+1

n+1 which is in O(n).
theory Randomized-Closest-Pair-Time

imports
Randomized-Closest-Pair-Growth
Approximate-Model-Counting.ApproxMCAnalysis
Distributed-Distinct-Elements.Distributed-Distinct-Elements-Balls-and-Bins

begin

lemma time-sample-distance: map-pmf time (sample-distance ps) = return-pmf 1
〈proof 〉

lemma time-first-phase:
assumes length ps ≥ 2
shows map-pmf time (first-phase ps) = return-pmf (2∗length ps) (is ?L = ?R)
〈proof 〉

lemma time-build-grid: time (build-grid ps d) = length ps
〈proof 〉

lemma time-lookup-neighborhood:
time (lookup-neighborhood (grid ps d) p) ≤ 39+3∗(length(val(lookup-neighborhood

(grid ps d) p)))
(is ?L ≤ ?R)
〈proof 〉

lemma time-calc-dists-neighborhood:
time (calc-dists-neighborhood (grid ps d) p) ≤
40 + 5 ∗ (length (val (lookup-neighborhood (grid ps d) p))) (is ?L ≤ ?R)
〈proof 〉

lemma time-second-phase:
fixes ps :: point list

15

assumes d > 0 min-dist ps ≤ d length ps ≥ 2
shows time (second-phase d ps) ≤ 2 + 44 ∗ length ps + 7 ∗ close-point-size ps

(2 ∗ sqrt 2 ∗ d)
(is ?L ≤ ?R)

〈proof 〉

lemma mono-close-point-size: mono (close-point-size ps)
〈proof 〉

lemma close-point-size-bound: close-point-size ps x ≤ length ps^2
〈proof 〉

lemma map-product: map (map-prod f g) (List.product xs ys) = List.product (map
f xs) (map g ys)
〈proof 〉

lemma close-point-size-bound-2 :
close-point-size ps d ≤ length ps + 2 ∗ card {(u,v). dist (ps!u) (ps!v)<d ∧ u<v
∧ v<length ps}
(is ?L ≤ ?R)
〈proof 〉

lemma card-card-estimate:
fixes f :: ′a ⇒ (′b :: linorder)
assumes finite S
shows card {x ∈ S . a ≤ card {y ∈ S . f y < f x }} ≤ card S − a (is ?L ≤ ?R)
〈proof 〉

lemma finite-map-pmf :
assumes finite (set-pmf S)
shows finite (set-pmf (map-pmf f S))
〈proof 〉

lemma finite-replicate-pmf :
assumes finite (set-pmf S)
shows finite (set-pmf (replicate-pmf n S))
〈proof 〉

lemma power-sum-approx: (
∑

k<m. (real k)^n) ≤ m^(n+1)/real (n+1)
〈proof 〉

lemma exp-close-point-size:
assumes length ps ≥ 2
shows (

∫
d. real (close-point-size ps d) ∂(map-pmf val (first-phase ps))) ≤ 2∗

real (length ps)
(is ?L ≤ ?R)

〈proof 〉

definition time-closest-pair :: real ⇒ real

16

where time-closest-pair n = 2 + 1740 ∗ n

Main results of this section:
theorem time-closest-pair :

assumes length ps ≥ 2
shows (

∫
x. real (time x) ∂closest-pair ps) ≤ time-closest-pair (length ps) (is ?L

≤ ?R)
〈proof 〉

theorem asymptotic-time-closest-pair :
time-closest-pair ∈ O(λx. x)
〈proof 〉

end

References

[1] B. Banyassady and W. Mulzer. A simple analysis of rabins algorithm for
finding closest pairs. In European Workshop on Computational Geometry
(EuroCG), 2007.

[2] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of
Algorithms, 25(1):19–51, 1997.

[3] S. Fortune and J. Hopcroft. A note on rabin’s nearest-neighbor algo-
rithm. Information Processing Letters, 8(1):20–23, 1979.

[4] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the
closest-pair problem. Information and Computation, 118(1):34–37, 1995.

[5] R. Lipton. Rabin flips a coin. https://rjlipton.com/2009/03/01/
rabin-flips-a-coin/, 2009. Accessed: 2024-08-31.

[6] M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity:
New Directions and Recent Results, pages 21–39, USA, 1976. Academic
Press, Inc.

[7] M. Rau and T. Nipkow. Closest pair of points algorithms. Archive
of Formal Proofs, January 2020. https://isa-afp.org/entries/Closest_
Pair_Points.html, Formal proof development.

[8] M. Rau and T. Nipkow. Verification of closest pair of points algorithms.
In N. Peltier and V. Sofronie-Stokkermans, editors, Automated Reason-
ing, pages 341–357, Cham, 2020. Springer International Publishing.

17

https://rjlipton.com/2009/03/01/rabin-flips-a-coin/
https://rjlipton.com/2009/03/01/rabin-flips-a-coin/
https://isa-afp.org/entries/Closest_Pair_Points.html
https://isa-afp.org/entries/Closest_Pair_Points.html

	Introduction
	Preliminary Algorithms in the Time Monad
	Probabilistic Time Monad
	Randomized Closest Points Algorithm

	Correctness
	Growth of Close Points
	Speed

