
Ramsey Number Bounds

Lawrence C. Paulson

2 September 2024

Abstract

Ramsey’s theorem [1] implies that for any given natural numbers k
and l, there exists some R(k, l) such that a graph having at least R(k, l)
vertices must have either a clique of cardinality k or an anticlique
(independent set) of cardinality l. Equivalently, for a complete graph
of size R(k, l), every red/blue colouring of the edges must yield an
entirely red k-clique or an entirely blue l-clique. Although R(k, l) is
for practical purposes impossible to calculate from k and l, some upper
and lower bounds are known. The celebrated probabilistic argument
by Paul Erdős is formalised here, with various of its consequences.

1

Contents

1 Lower bounds for Ramsey numbers 3
1.1 Preliminaries . 3
1.2 Relating cliques to graphs; Ramsey numbers 4
1.3 Elementary properties of Ramsey numbers 9
1.4 The product lower bound . 11
1.5 A variety of upper bounds, including a stronger Erdős–Szekeres 13
1.6 Probabilistic lower bounds: the main theorem and applications 15

Acknowledgements Many thanks to Andrew Thomason and Chelsea Ed-
monds for their help with the probabilistic proofs, and to Bhavik Mehta for
making his large Ramsey development available online. The author was
supported by the ERC Advanced Grant ALEXANDRIA (Project 742178),
funded by the European Research Council.

2

1 Lower bounds for Ramsey numbers

Probabilistic proofs of lower bounds for Ramsey numbers. Variations and
strengthenings of the classical Erdős–Szekeres upper bound, which is proved
in the original Ramsey theory Also a number of simple properties of Ramsey
numbers, including the equivalence of the clique/anticlique and edge colour-
ing definitions.

theory Ramsey-Bounds
imports

HOL−Library .Ramsey
HOL−Library .Infinite-Typeclass
HOL−Probability .Probability
Undirected-Graph-Theory .Undirected-Graph-Basics

begin

1.1 Preliminaries

Elementary facts involving binomial coefficients

lemma choose-two-real : of-nat (n choose 2) = real n ∗ (real n − 1) / 2
proof (cases even n)
case True
then show ?thesis
by (auto simp: choose-two dvd-def)

next
case False
then have even (n−1)
by simp

then show ?thesis
by (auto simp: choose-two dvd-def)

qed

lemma add-choose-le-power : (n + k) choose n ≤ Suc k ^ n
proof −
have ∗: (

∏
i<n. of-nat (n+k − i) / of-nat (n − i)) ≤ (

∏
i<n. real (Suc k))

proof (intro prod-mono conjI)
fix i
assume i : i ∈ {..<n}
then have real (n + k − i) / real (n − i) = 1 + k/real(n−i)
by (auto simp: divide-simps)

also have . . . ≤ 1 + real k
using i by (simp add : divide-inverse inverse-le-1-iff mult-left-le)

finally show real (n + k − i) / real (n − i) ≤ real (Suc k)
by simp

qed auto
then have real((n + k) choose n) ≤ real (Suc k ^ n)
by (simp add : binomial-altdef-of-nat lessThan-atLeast0)

then show ?thesis
by linarith

3

qed

lemma choose-le-power : m choose k ≤ (Suc m − k) ^ k
by (metis Suc-diff-le add-choose-le-power add-diff-inverse-nat binomial-eq-0-iff

less-le-not-le nle-le zero-le)

lemma sum-nsets-one: (
∑

U∈[V]Suc 0. f U) = (
∑

x∈V . f {x})
proof −
have bij : bij-betw (λx . {x}) V ([V]Suc 0)
by (auto simp: inj-on-def bij-betw-def nsets-one)

show ?thesis
using sum.reindex-bij-betw [OF bij] by (metis (no-types, lifting) sum.cong)

qed

1.2 Relating cliques to graphs; Ramsey numbers

When talking about Ramsey numbers, sometimes cliques are best, sometimes
colour maps

lemma nsets2-eq-all-edges: [A]2 = all-edges A
using card-2-iff ′ unfolding nsets-def all-edges-def
by fastforce

lemma indep-eq-clique-compl : indep R E = clique R (all-edges R − E)
by (auto simp: indep-def clique-def all-edges-def)

lemma all-edges-subset-iff-clique: all-edges K ⊆ E ←→ clique K E
by (fastforce simp: card-2-iff clique-def all-edges-def)

definition clique-indep ≡ λm n K E . card K = m ∧ clique K E ∨ card K = n ∧
indep K E

lemma clique-all-edges-iff : clique K (E ∩ all-edges K) ←→ clique K E
by (simp add : clique-def all-edges-def)

lemma indep-all-edges-iff : indep K (E ∩ all-edges K) ←→ indep K E
by (simp add : indep-def all-edges-def)

lemma clique-indep-all-edges-iff : clique-indep s t K (E ∩ all-edges K) = clique-indep
s t K E
by (simp add : clique-all-edges-iff clique-indep-def indep-all-edges-iff)

identifying Ramsey numbers (possibly not the minimum) for a given type
and pair of integers

definition is-clique-RN where
is-clique-RN ≡ λU :: ′a itself . λm n r .

(∀V :: ′a set . ∀E . finite V −→ card V ≥ r −→ (∃K⊆V . clique-indep m n K
E))

could be generalised to allow e.g. any hereditarily finite set

4

abbreviation is-Ramsey-number :: [nat ,nat ,nat] ⇒ bool where
is-Ramsey-number m n r ≡ partn-lst {..<r} [m,n] 2

lemma is-clique-RN-imp-partn-lst :
fixes U :: ′a itself
assumes r : is-clique-RN U m n r and inf : infinite (UNIV :: ′a set)
shows partn-lst {..<r} [m,n] 2
unfolding partn-lst-def

proof (intro strip)
fix f
assume f : f ∈ [{..<r}]2 → {..<length [m,n]}
obtain V :: ′a set where finite V and V : card V = r
by (metis inf infinite-arbitrarily-large)

then obtain φ where φ: bij-betw φ V {..<r}
using to-nat-on-finite by blast

have φ-iff : φ v = φ w ←→ v=w if v∈V w∈V for v w
by (metis φ bij-betw-inv-into-left that)

define E where E ≡ {e. ∃ x∈V . ∃ y∈V . e = {x ,y} ∧ x ̸= y ∧ f {φ x , φ y} =
0}
obtain K where K⊆V and K : clique-indep m n K E
by (metis r V ‹finite V › is-clique-RN-def nle-le)

then consider (0) card K = m clique K E | (1) card K = n indep K E
by (meson clique-indep-def)

then have ∃ i<2 . monochromatic {..<r} ([m, n] ! i) 2 f i
proof cases
case 0
have f e = 0
if e: e ⊆ φ ‘ K finite e card e = 2 for e :: nat set

proof −
obtain x y where x∈V y∈V e = {φ x , φ y} ∧ x ̸= y
using e ‹K⊆V › φ by (fastforce simp: card-2-iff)

then show ?thesis
using e 0
apply (simp add : φ-iff clique-def E-def doubleton-eq-iff image-iff)
by (metis φ-iff insert-commute)

qed
moreover have φ ‘ K ∈ [{..<r}]m
unfolding nsets-def

proof (intro conjI CollectI)
show φ ‘ K ⊆ {..<r}
by (metis ‹K ⊆ V › φ bij-betw-def image-mono)

show finite (φ ‘ K)
using ‹φ ‘ K ⊆ {..<r}› finite-nat-iff-bounded by auto

show card (φ ‘ K) = m
by (metis 0 (1) ‹K ⊆ V › φ bij-betw-same-card bij-betw-subset)

qed
ultimately show ?thesis
apply (simp add : image-subset-iff monochromatic-def)
by (metis (mono-tags, lifting) mem-Collect-eq nsets-def nth-Cons-0 pos2)

5

next
case 1
have f e = Suc 0

if e: e ⊆ φ ‘ K finite e card e = 2 for e :: nat set
proof −
obtain x y where x∈V y∈V e = {φ x , φ y} ∧ x ̸= y
using e ‹K⊆V › φ by (fastforce simp: card-2-iff)

then show ?thesis
using e 1 f bij-betw-imp-surj-on [OF φ]
apply (simp add : indep-def E-def card-2-iff Pi-iff doubleton-eq-iff image-iff)

by (metis ‹K ⊆ V › doubleton-in-nsets-2 imageI in-mono less-2-cases-iff
less-irrefl numeral-2-eq-2)

qed
then have f ‘ [φ ‘ K]2 ⊆ {Suc 0}
by (simp add : image-subset-iff nsets-def)

moreover have φ ‘ K ∈ [{..<r}]n
unfolding nsets-def

proof (intro conjI CollectI)
show φ ‘ K ⊆ {..<r}
by (metis ‹K ⊆ V › φ bij-betw-def image-mono)

show finite (φ ‘ K)
using ‹φ ‘ K ⊆ {..<r}› finite-nat-iff-bounded by auto

show card (φ ‘ K) = n
by (metis 1 (1) ‹K ⊆ V › φ bij-betw-same-card bij-betw-subset)

qed
ultimately show ?thesis
by (metis less-2-cases-iff monochromatic-def nth-Cons-0 nth-Cons-Suc)

qed
then show ∃ i<length [m,n]. monochromatic {..<r} ([m, n] ! i) 2 f i
by (simp add : numeral-2-eq-2)

qed

lemma partn-lst-imp-is-clique-RN :
fixes U :: ′a itself
assumes partn-lst {..<r} [m,n] 2
shows is-clique-RN U m n r
unfolding is-clique-RN-def

proof (intro strip)
fix V :: ′a set and E :: ′a set set
assume V : finite V r ≤ card V
obtain φ where φ: bij-betw φ {..<card V } V
using ‹finite V › bij-betw-from-nat-into-finite by blast

define f :: nat set ⇒ nat where f ≡ λe. if φ‘e ∈ E then 0 else 1
have f : f ∈ nsets {..<r} 2 → {..<2}
by (simp add : f-def)

obtain i H where i<2 and H : H ⊆ {..<r} finite H card H = [m,n] ! i
and mono: f ‘ (nsets H 2) ⊆ {i}
using partn-lstE [OF assms f]
by (metis (mono-tags, lifting) length-Cons list .size(3) mem-Collect-eq nsets-def

6

numeral-2-eq-2)
have [simp]:

∧
v w . [[v ∈ H ; w ∈ H]] =⇒ φ v = φ w ←→ v=w

using bij-betw-imp-inj-on [OF φ] H
by (meson V (2) inj-on-def inj-on-subset lessThan-subset-iff)

define K where K ≡ φ ‘ H
have [simp]:

∧
v w . [[v ∈ K ; w ∈ K]] =⇒ inv-into {..<card V } φ v = inv-into

{..<card V } φ w ←→ v=w
using bij-betw-inv-into-right [OF φ] H V φ
by (metis K-def image-mono inv-into-injective lessThan-subset-iff subset-iff)

have K ⊆ V
using H φ V bij-betw-imp-surj-on by (fastforce simp: K-def nsets-def)

have [simp]: card (φ ‘ H) = card H
using H by (metis V (2) φ bij-betw-same-card bij-betw-subset lessThan-subset-iff)
consider (0) i=0 | (1) i=1
using ‹i<2 › by linarith

then have clique-indep m n K E
proof cases
case 0
have {v , w} ∈ E if v ∈ K and w ∈ K and v ̸= w for v w
proof −
have ∗: {inv-into {..<card V } φ v , inv-into {..<card V } φ w} ∈ [H]2

using that bij-betw-inv-into-left [OF φ] H (1) V (2)
by (auto simp: nsets-def card-insert-if K-def)

show ?thesis
using 0 ‹K ⊆ V › mono bij-betw-inv-into-right [OF φ] that
apply (simp add : f-def image-subset-iff)
by (metis ∗ image-empty image-insert subsetD)

qed
then show ?thesis
unfolding clique-indep-def clique-def
by (simp add : 0 H (3) K-def)

next
case 1
have {v , w} /∈ E if v ∈ K and w ∈ K and v ̸= w for v w
proof −
have ∗: {inv-into {..<card V } φ v , inv-into {..<card V } φ w} ∈ [H]2

using that bij-betw-inv-into-left [OF φ] H (1) V (2)
by (auto simp: nsets-def card-insert-if K-def)

show ?thesis
using 1 ‹K ⊆ V › mono bij-betw-inv-into-right [OF φ] that
apply (simp add : f-def image-subset-iff)
by (metis ∗ image-empty image-insert subsetD)

qed
then show ?thesis
unfolding clique-indep-def indep-def
by (simp add : 1 H (3) K-def)

qed
with ‹K ⊆ V › show ∃K . K ⊆ V ∧ clique-indep m n K E by blast

qed

7

All complete graphs of a given cardinality are the same

lemma is-clique-RN-any-type:
assumes is-clique-RN (U :: ′a itself) m n r infinite (UNIV :: ′a set)
shows is-clique-RN (V :: ′b::infinite itself) m n r
by (metis partn-lst-imp-is-clique-RN is-clique-RN-imp-partn-lst assms)

lemma is-Ramsey-number-le:
assumes is-Ramsey-number m n r and le: m ′ ≤ m n ′ ≤ n
shows is-Ramsey-number m ′ n ′ r
using partn-lst-less [where α = [m,n] and α ′ = [m ′,n ′]] assms
by (force simp: less-Suc-eq)

definition RN where
RN ≡ λm n. LEAST r . is-Ramsey-number m n r

lemma is-Ramsey-number-RN : partn-lst {..< (RN m n)} [m,n] 2
by (metis LeastI-ex RN-def ramsey2-full)

lemma RN-le: [[is-Ramsey-number m n r]] =⇒ RN m n ≤ r
by (simp add : Least-le RN-def)

lemma RN-le-ES : RN i j ≤ ES 2 i j
by (simp add : RN-le ramsey2-full)

lemma RN-mono:
assumes m ′ ≤ m n ′ ≤ n
shows RN m ′ n ′ ≤ RN m n
by (meson RN-le assms is-Ramsey-number-RN is-Ramsey-number-le)

lemma indep-iff-clique [simp]: K ⊆ V =⇒ indep K (all-edges V − E) ←→ clique
K E
by (auto simp: clique-def indep-def all-edges-def)

lemma clique-iff-indep [simp]: K ⊆ V =⇒ clique K (all-edges V − E) ←→ indep
K E
by (auto simp: clique-def indep-def all-edges-def)

lemma is-Ramsey-number-commute-aux :
assumes is-Ramsey-number m n r
shows is-Ramsey-number n m r
unfolding partn-lst-def

proof (intro strip)
fix f
assume f : f ∈ [{..<r}]2 → {..<length [n, m]}
define f ′ where f ′ ≡ λA. 1 − f A
then have f ′ ∈ [{..<r}]2 → {..<2}
by (auto simp: f ′-def)

then obtain i H where i<2 and H : H ∈ [{..<r}]([m,n] ! i) f ′ ‘ [H]2 ⊆ {i}
using assms by (auto simp: partn-lst-def monochromatic-def numeral-2-eq-2)

8

then have H ⊆ {..<r}
by (auto simp: nsets-def)

then have fless2 : ∀ x∈[H]2. f x < Suc (Suc 0)
using funcset-mem [OF f] nsets-mono by force

show ∃ i<length [n, m]. monochromatic {..<r} ([n,m] ! i) 2 f i
unfolding monochromatic-def

proof (intro exI bexI conjI)
show f ‘ [H]2 ⊆ {1−i}
using H fless2 by (fastforce simp: f ′-def)

show H ∈ [{..<r}]([n, m] ! (1−i))

using ‹i<2 › H by (fastforce simp: less-2-cases-iff f ′-def image-subset-iff)
qed auto

qed

1.3 Elementary properties of Ramsey numbers
lemma is-Ramsey-number-commute: is-Ramsey-number m n r ←→ is-Ramsey-number
n m r
by (meson is-Ramsey-number-commute-aux)

lemma RN-commute-aux : RN n m ≤ RN m n
using RN-le is-Ramsey-number-RN is-Ramsey-number-commute by blast

lemma RN-commute: RN m n = RN n m
by (simp add : RN-commute-aux le-antisym)

lemma RN-le-choose: RN k l ≤ (k+l choose k)
by (metis ES2-choose ramsey2-full RN-le)

lemma RN-le-choose ′: RN k l ≤ (k+l choose l)
by (metis RN-commute RN-le-choose add .commute)

lemma RN-0 [simp]: RN 0 m = 0
unfolding RN-def

proof (intro Least-equality)
show is-Ramsey-number 0 m 0
by (auto simp: partn-lst-def monochromatic-def nsets-def)

qed auto

lemma RN-1 [simp]:
assumes m>0 shows RN (Suc 0) m = Suc 0
unfolding RN-def

proof (intro Least-equality)
have [simp]: [{..<Suc 0}]2 = {} [{}]2 = {}
by (auto simp: nsets-def card-2-iff)

show is-Ramsey-number (Suc 0) m (Suc 0)
by (auto simp: partn-lst-def monochromatic-def)

fix i

9

assume i : is-Ramsey-number (Suc 0) m i
show i ≥ Suc 0
proof (cases i=0)
case True
with i assms show ?thesis
by (auto simp: partn-lst-def monochromatic-def nsets-empty-iff less-Suc-eq)

qed auto
qed

lemma RN-0 ′ [simp]: RN m 0 = 0 and RN-1 ′ [simp]: m>0 =⇒ RN m (Suc 0)
= Suc 0
using RN-1 RN-commute by auto

lemma is-clique-RN-2 : is-clique-RN TYPE (nat) 2 m m
unfolding is-clique-RN-def

proof (intro strip)
fix V :: ′a set and E
assume finite V
and m ≤ card V

show ∃K . K ⊆ V ∧ clique-indep 2 m K E
proof (cases ∃K . K ⊆ V ∧ card K = 2 ∧ clique K E)
case False
then have indep V E
apply (clarsimp simp: clique-def indep-def card-2-iff)
by (smt (verit , best) doubleton-eq-iff insert-absorb insert-iff subset-iff)

then show ?thesis
unfolding clique-indep-def
by (meson ‹m ≤ card V › card-Ex-subset smaller-indep)

qed (metis clique-indep-def)
qed

lemma RN-2 [simp]:
shows RN 2 m = m

proof (cases m>1)
case True
show ?thesis
unfolding RN-def

proof (intro Least-equality)
show is-Ramsey-number 2 m m
using is-clique-RN-imp-partn-lst is-clique-RN-2 by blast

fix i
assume is-Ramsey-number 2 m i
then have i : is-clique-RN TYPE (nat) 2 m i
using partn-lst-imp-is-clique-RN by blast

obtain V :: nat set where V : card V = i finite V
by force

show i ≥ m
proof (cases i<m)
case True

10

then have ¬ (∃K⊆V . card K = 2 ∧ clique K {})
by (auto simp: clique-def card-2-iff ′)

with i V True show ?thesis
unfolding is-clique-RN-def clique-indep-def by (metis card-mono dual-order .refl)

qed auto
qed

next
case False
then show ?thesis
by (metis RN-0 ′ RN-1 ′ Suc-1 less-2-cases-iff not-less-eq)

qed

lemma RN-2 ′ [simp]:
shows RN m 2 = m
using RN-2 RN-commute by force

lemma RN-3plus:
assumes k ≥ 3
shows RN k m ≥ m

proof −
have RN 2 m = m
using assms by auto

with RN-mono[of 2 k m m] assms show ?thesis
by force

qed

lemma RN-3plus ′:
assumes k ≥ 3
shows RN m k ≥ m
using RN-3plus RN-commute assms by presburger

lemma clique-iff : F ⊆ all-edges K =⇒ clique K F ←→ F = all-edges K
by (auto simp: clique-def all-edges-def card-2-iff)

lemma indep-iff : F ⊆ all-edges K =⇒ indep K F ←→ F = {}
by (auto simp: indep-def all-edges-def card-2-iff)

lemma all-edges-empty-iff : all-edges K = {} ←→ (∃ v . K ⊆ {v})
using clique-iff [OF empty-subsetI] by (metis clique-def empty-iff singleton-iff

subset-iff)

lemma Ramsey-number-zero: ¬ is-Ramsey-number (Suc m) (Suc n) 0
by (metis RN-1 RN-le is-Ramsey-number-le not-one-le-zero Suc-le-eq One-nat-def

zero-less-Suc)

1.4 The product lower bound
lemma Ramsey-number-times-lower : ¬ is-clique-RN (TYPE (nat∗nat)) (Suc m)
(Suc n) (m∗n)

11

proof
define edges where edges ≡ {{(x ,y),(x ′,y)}| x x ′ y . x<m ∧ x ′<m ∧ y<n}
assume is-clique-RN (TYPE (nat∗nat)) (Suc m) (Suc n) (m∗n)
then obtain K where K : K ⊆ {..<m} × {..<n} and clique-indep (Suc m)

(Suc n) K edges
unfolding is-clique-RN-def

by (metis card-cartesian-product card-lessThan finite-cartesian-product finite-lessThan
le-refl)
then consider card K = Suc m ∧ clique K edges | card K = Suc n ∧ indep K

edges
by (meson clique-indep-def)

then show False
proof cases
case 1
then have inj-on fst K fst ‘ K ⊆ {..<m}
using K by (auto simp: inj-on-def clique-def edges-def doubleton-eq-iff)

then have card K ≤ m
by (metis card-image card-lessThan card-mono finite-lessThan)

then show False
by (simp add : 1)

next
case 2
then have snd-eq : snd u ̸= snd v if u ∈ K v ∈ K u ̸= v for u v
using that K unfolding edges-def indep-def

by (smt (verit , best) lessThan-iff mem-Collect-eq mem-Sigma-iff prod .exhaust-sel
subsetD)

then have inj-on snd K
by (meson inj-onI)

moreover have snd ‘ K ⊆ {..<n}
using comp-sgraph.wellformed K by auto

ultimately show False
by (metis 2 Suc-n-not-le-n card-inj-on-le card-lessThan finite-lessThan)

qed
qed

theorem RN-times-lower :
shows RN (Suc m) (Suc n) > m∗n
by (metis partn-lst-imp-is-clique-RN Ramsey-number-times-lower is-Ramsey-number-RN

partn-lst-greater-resource linorder-le-less-linear)

corollary RN-times-lower ′:
shows [[m>0 ; n>0]] =⇒ RN m n > (m−1)∗(n−1)
using RN-times-lower gr0-conv-Suc by force

lemma RN-eq-0-iff : RN m n = 0 ←→ m=0 ∨ n=0
by (metis RN-0 RN-0 ′ RN-times-lower ′ gr0I not-less-zero)

lemma RN-gt1 :

12

assumes 2 ≤ k 3 ≤ l shows k < RN k l
using RN-times-lower ′ [of k l] RN-3plus ′[of l k] assms
apply (simp add : eval-nat-numeral)
by (metis Suc-le-eq Suc-pred leD n-less-n-mult-m nat-less-le zero-less-diff)

lemma RN-gt2 :
assumes 2 ≤ k 3 ≤ l shows k < RN l k
by (simp add : RN-commute assms RN-gt1)

1.5 A variety of upper bounds, including a stronger Erdős–
Szekeres

lemma RN-1-le: RN (Suc 0) l ≤ Suc 0
by (metis RN-0 ′ RN-1 gr-zeroI le-cases less-imp-le)

lemma is-Ramsey-number-add :
assumes i>1 j>1
and n1 : is-Ramsey-number (i − 1) j n1
and n2 : is-Ramsey-number i (j − 1) n2

shows is-Ramsey-number i j (n1+n2)
proof −
have partn-lst {..<Suc (n1 + n2 − 1)} [i , j] (Suc (Suc 0))
using ramsey-induction-step [of n1 i j 1 n2 n1+n2−1] ramsey1-explicit assms
by (simp add : numeral-2-eq-2)

moreover have n1>0
using assms
by (metis Ramsey-number-zero Suc-pred ′ gr0I not-less-iff-gr-or-eq zero-less-diff)

ultimately show ?thesis
by (metis One-nat-def Suc-1 Suc-pred ′ add-gr-0)

qed

lemma RN-le-add-RN-RN :
assumes i>1 j>1
shows RN i j ≤ RN (i − Suc 0) j + RN i (j − Suc 0)
using is-Ramsey-number-add RN-le assms is-Ramsey-number-RN
by simp

Cribbed from Bhavik Mehta

lemma RN-le-choose-strong : RN k l ≤ (k + l − 2) choose (k − 1)
proof (induction n ≡ k+l arbitrary : k l)
case 0
then show ?case
by simp

next
case (Suc n)
have ∗: RN k l ≤ k + l − 2 choose (k − 1) if k ≤ Suc 0
using that by (metis One-nat-def RN-1-le RN-le-choose Suc-pred binomial-n-0

neq0-conv diff-is-0-eq ′)
show ?case

13

proof (cases k ≤ Suc 0 ∨ l ≤ Suc 0)
case True
with ∗ show ?thesis
using le-Suc-eq by fastforce

next
case False
then have 2 : k > 1 l > 1
by auto

have RN (k − Suc 0) l ≤ k − Suc 0 + l − 2 choose (k − Suc 0 − Suc 0)
by (metis False Nat .add-diff-assoc2 One-nat-def Suc diff-Suc-1 nat-le-linear)

moreover
have RN k (l − Suc 0) ≤ k − Suc 0 + l − 2 choose (k − Suc 0)

by (metis False Nat .diff-add-assoc2 Suc diff-Suc-1 nat-le-linear One-nat-def
diff-add-assoc)

ultimately
show ?thesis
using RN-le-add-RN-RN [OF 2] 2 by (simp add : choose-reduce-nat eval-nat-numeral)

qed
qed

lemma RN-le-power2 : RN i j ≤ 2 ^ (i+j−2)
by (meson RN-le-choose-strong binomial-le-pow2 le-trans)

lemma RN-le-power4 : RN i i ≤ 4 ^ (i−1)
proof −
have (i + i − 2) = 2 ∗ (i−1)
by simp

then show ?thesis
using RN-le-power2 [of i i] by (simp add : power-mult)

qed

Bhavik Mehta again

lemma RN-le-argpower : RN i j ≤ j ^ (i−1)
proof (cases i=0 ∨ j=0)
case True
then show ?thesis
by auto

next
case False
then show ?thesis
using RN-le-choose-strong [of i j] add-choose-le-power [of i−1 j−1]
by (simp add : numeral-2-eq-2)

qed

lemma RN-le-argpower ′: RN j i ≤ j ^ (i−1)
using RN-commute RN-le-argpower by presburger

14

1.6 Probabilistic lower bounds: the main theorem and appli-
cations

General probabilistic setup, omitting the actual probability calculation. An-
drew Thomason’s proof (private communication)

theorem Ramsey-number-lower-gen:
fixes n k ::nat and p::real
assumes n: (n choose k) ∗ p ^ (k choose 2) + (n choose l) ∗ (1 − p) ^ (l choose

2) < 1
assumes p01 : 0<p p<1
shows ¬ is-Ramsey-number k l n

proof
assume con: is-Ramsey-number k l n
define W where W ≡ {..<n}
have finite W and cardW : card W = n
by (auto simp: W-def)

— Easier to represent the state as maps from edges to colours, not sets of coloured
edges

— colour the edges randomly
define Ω :: (nat set ⇒ nat) set where Ω ≡ (all-edges W) →E {..<2}
have cardΩ: card Ω = 2 ^ (n choose 2)
by (simp add : Ω-def ‹finite W › W-def card-all-edges card-funcsetE finite-all-edges)
define coloured where coloured ≡ λF . λf ::nat set ⇒ nat . λc. {e ∈ F . f e = c}
have finite-coloured [simp]: finite (coloured F f c) if finite F for f c F
using coloured-def that by auto

define pr where pr ≡ λF f . p ^ card (coloured F f 0) ∗ (1−p) ^ card (coloured
F f 1)
have pr01 : 0 < pr U f pr U f ≤ 1 for U f — the inequality could be strict
using ‹0<p› ‹p<1 › by (auto simp: mult-le-one power-le-one pr-def cardΩ)

define M where M ≡ point-measure Ω (pr (all-edges W))
have space-eq : space M = Ω
by (simp add : M-def space-point-measure)

have sets-eq : sets M = Pow Ω
by (simp add : M-def sets-point-measure)

have fin-Ω[simp]: finite Ω
by (simp add : Ω-def finite-PiE ‹finite W › finite-all-edges)

have coloured-insert :
coloured (insert e F) f c = (if f e = c then insert e (coloured F f c) else coloured

F f c)
for f e c F
by (auto simp: coloured-def)

have eq2 : {..<2} = {0 , Suc 0}
by (simp add : insert-commute lessThan-Suc numeral-2-eq-2)

have sum-pr-1 [simp]: sum (pr U) (U →E {..<2}) = 1 if finite U for U
using that

proof (induction U)
case empty
then show ?case
by (simp add : pr-def coloured-def)

15

next
case (insert e F)
then have [simp]: e /∈ coloured F f c coloured F (f (e := c)) c ′ = coloured F f

c ′ for f c c ′

by (auto simp: coloured-def)
have inj : inj-on (λ(y , g). g(e := y)) ({..<2} × (F →E {..<2}))
using ‹e /∈ F› by (fastforce simp: inj-on-def fun-eq-iff)

show ?case
using insert
apply (simp add : pr-def coloured-insert PiE-insert-eq sum.reindex [OF inj]

sum.cartesian-product ′)
apply (simp add : eq2 mult-ac flip: sum-distrib-left)
done

qed

interpret P : prob-space M
proof
have sum (pr (all-edges W)) Ω = 1
using Ω-def sum-pr-1 ‹finite W › finite-all-edges by blast

with pr01 show emeasure M (space M) = 1
unfolding M-def
by (metis fin-Ω prob-space.emeasure-space-1 prob-space-point-measure zero-le
ennreal-1 linorder-not-less nle-le sum-ennreal)

qed
— the event to avoid: monochromatic cliques, given K ⊆ W ; we are considering

edges over the entire graph W
define mono where mono ≡ λc K . {f ∈ Ω. all-edges K ⊆ coloured (all-edges

W) f c}
have mono-ev : mono c K ∈ P .events if c<2 for K c
by (auto simp: sets-eq mono-def Ω-def)

have mono-sub-Ω: mono c K ⊆ Ω if c<2 for K c
using mono-ev sets-eq that by auto

have emeasure-eq : emeasure M C = (if C ⊆ Ω then (
∑

a∈C . ennreal (pr
(all-edges W) a)) else 0) for C

by (simp add : M-def emeasure-notin-sets emeasure-point-measure-finite sets-point-measure)
define pc where pc ≡ λc::nat . if c=0 then p else 1−p
have pc0 : 0 ≤ pc c for c
using p01 pc-def by auto

have coloured-upd : coloured F (λl∈F . if l ∈ G then c else f l) c ′

= (if c=c ′ then G ∪ coloured (F−G) f c ′ else coloured (F−G) f c ′) if G ⊆
F for F G f c c ′

using that by (auto simp: coloured-def)

have prob-mono: P .prob (mono c K) = pc c ^ (r choose 2)
if K ∈ nsets W r c<2 for r K c

proof −
let ?EWK = all-edges W − all-edges K
have §: K ⊆ W finite K card K = r

16

using that by (auto simp: nsets-def)
have ∗: {f ∈ Ω. all-edges K ⊆ coloured (all-edges W) f c} =

(
⋃

g ∈ ?EWK →E {..<2}. {λl ∈ all-edges W . if l ∈ all-edges K then c
else g l})

(is ?L = ?R)
proof

have ∃ g∈?EWK →E {..<2}. f = (λl∈all-edges W . if l ∈ all-edges K then
c else g l)

if f : f ∈ Ω and c: all-edges K ⊆ coloured (all-edges W) f c for f
using that
apply (intro bexI [where x=restrict f ?EWK])
apply (force simp: Ω-def coloured-def subset-iff)+
done

then show ?L ⊆ ?R by auto
show ?R ⊆ ?L
using that all-edges-mono[OF ‹K ⊆ W ›] by (auto simp: coloured-def Ω-def

nsets-def PiE-iff)
qed

have [simp]: card (all-edges K ∪ coloured ?EWK f c)
= (r choose 2) + card (coloured ?EWK f c) for f c

using § ‹finite W ›
by (subst card-Un-disjoint) (auto simp: finite-all-edges coloured-def card-all-edges)
have pr-upd : pr (all-edges W) (λl ∈ all-edges W . if l ∈ all-edges K then c else

f l)
= pc c ^ (r choose 2) ∗ pr ?EWK f

if f ∈ ?EWK →E {..<2} for f
using that all-edges-mono[OF ‹K ⊆ W ›] p01 ‹c<2 › §
by (simp add : pr-def coloured-upd pc-def power-add)

have emeasure M (mono c K) = (
∑

f ∈ mono c K . ennreal (pr (all-edges W)
f))

using that by (simp add : emeasure-eq mono-sub-Ω)
also have . . . = (

∑
f ∈(

⋃
g∈?EWK →E {..<2}.

{λe∈all-edges W . if e ∈ all-edges K then c else g e}).
ennreal (pr (all-edges W) f))

by (simp add : mono-def ∗)
also have . . . = (

∑
g∈?EWK →E {..<2}.∑

f ∈{λe∈all-edges W . if e ∈ all-edges K then c else g e}.
ennreal (pr (all-edges W) f))

proof (rule sum.UNION-disjoint-family)
show finite (?EWK →E {..<2 ::nat})
by (simp add : ‹finite W › finite-PiE finite-all-edges)

show disjoint-family-on (λg . {λe∈all-edges W . if e ∈ all-edges K then c else
g e}) (?EWK →E {..<2})

apply (simp add : disjoint-family-on-def fun-eq-iff)
by (metis DiffE PiE-E)

qed auto
also have . . . = (

∑
x∈?EWK →E {..<2}. ennreal (pc c ^ (r choose 2) ∗ pr

?EWK x))

17

by (simp add : pr-upd)
also have . . . = ennreal (

∑
f ∈?EWK →E {..<2}.

pc c ^ (r choose 2) ∗ pr ?EWK f)
using pr01 pc0 sum.cong sum-ennreal by (smt (verit) mult-nonneg-nonneg

zero-le-power)
also have . . . = ennreal (pc c ^ (r choose 2))
by (simp add : ‹finite W › finite-all-edges flip: sum-distrib-left)

finally have emeasure M (mono c K) = ennreal (pc c ^ (r choose 2)) .
then show ?thesis
using p01 that by (simp add : measure-eq-emeasure-eq-ennreal pc-def)

qed
define Reds where Reds ≡ (

⋃
K ∈ nsets W k . mono 0 K)

define Blues where Blues ≡ (
⋃

K ∈ nsets W l . mono 1 K)
have Uev :

⋃
(mono c ‘ [W]r) ∈ P .events for c r

by (simp add : local .mono-def sets-eq subset-iff)
then have Reds ∈ P .events Blues ∈ P .events
by (auto simp: Reds-def Blues-def)

have prob-0 : P .prob Reds ≤ (n choose k) ∗ (p ^ (k choose 2))
proof −
have P .prob Reds ≤ (

∑
K ∈ nsets W k . P .prob (mono 0 K))

by (simp add : Reds-def ‹finite W › finite-imp-finite-nsets measure-UNION-le
mono-ev)

also have . . . ≤ (n choose k) ∗ (p ^ (k choose 2))
by (simp add : prob-mono pc-def cardW)

finally show ?thesis .
qed
moreover
have prob-1 : P .prob Blues ≤ (n choose l) ∗ ((1−p) ^ (l choose 2))
proof −
have P .prob Blues ≤ (

∑
K ∈ nsets W l . P .prob (mono 1 K))

by (simp add : Blues-def ‹finite W › finite-imp-finite-nsets measure-UNION-le
mono-ev)

also have . . . ≤ (n choose l) ∗ ((1−p) ^ (l choose 2))
by (simp add : prob-mono pc-def cardW)

finally show ?thesis .
qed
ultimately have P .prob (Reds ∪ Blues) < 1
using P .finite-measure-subadditive ‹Blues ∈ P .events› ‹Reds ∈ P .events› n
by fastforce

with P .prob-space Uev sets-eq obtain F where F : F ∈ Ω − (Reds ∪ Blues)
unfolding Reds-def Blues-def space-eq
by (smt (verit , del-insts) Pow-iff Un-subset-iff equalityI Diff-iff subset-iff)

have False if i < 2 H ∈ [W]([k , l] ! i) F ‘ [H]2 ⊆ {i} for i H
proof −

have ¬ all-edges H ⊆ {e ∈ all-edges W . F e = 0} ¬ all-edges H ⊆ {e ∈
all-edges W . F e = 1}

using F that
by (auto simp: less-2-cases-iff nsets2-eq-all-edges Ω-def Reds-def Blues-def

mono-def coloured-def image-subset-iff)

18

moreover have H ⊆ W
using that by (auto simp: nsets-def)

ultimately show False
using that all-edges-mono [OF ‹H ⊆ W ›] by (auto simp: less-2-cases-iff

nsets2-eq-all-edges)
qed
moreover have F ∈ [{..<n}]2 → {..<2}
using F by (auto simp: W-def Ω-def nsets2-eq-all-edges)

ultimately show False
using con by (force simp: W-def partn-lst-def monochromatic-def numeral-2-eq-2)

qed

Andrew’s calculation for the Ramsey lower bound. Symmetric, so works
for both colours

lemma Ramsey-lower-calc:
fixes s::nat and t ::nat and p::real
assumes s ≥ 3 t ≥ 3 n > 4
and n: real n ≤ exp ((real s − 1) ∗ (real t − 1) / (2∗(s+t)))

defines p ≡ real s / (real s + real t)
shows (n choose s) ∗ p ^ (s choose 2) < 1/2

proof −
have p01 : 0<p p<1
using assms by (auto simp: p-def)

have exp ((real s − 1) ∗ (real t − 1) / (2∗(s+t))) ≤ exp (t / (s+t)) powr
((s−1)/2)

using ‹s ≥ 3 › by (simp add : mult-ac divide-simps of-nat-diff exp-powr-real)
with assms p01 have n ≤ exp (t / (s+t)) powr ((s−1)/2)
by linarith

then have n ∗ p powr ((s−1)/2) ≤ (exp (t / (s+t)) ∗ p) powr ((s−1)/2)
using ‹0<p› by (simp add : powr-mult)

also have . . . < 1
proof −
have exp (real t / real (s+t)) ∗ p < 1
proof −
have p = 1 − t / (s+t)
using assms by (simp add : p-def divide-simps)

also have . . . < exp (− real t / real (s+t))
using assms by (simp add : exp-minus-greater)

finally show ?thesis
by (simp add : exp-minus divide-simps mult .commute)

qed
then show ?thesis
using powr01-less-one assms(1) p01 (1) by auto

qed
finally have n ∗ p powr ((s−1)/2) < 1 .
then have (n ∗ p powr ((s−1)/2)) ^ s < 1
using ‹s ≥ 3 › by (simp add : power-less-one-iff)

then have B : n^s ∗ p ^ (s choose 2) < 1
using ‹0<p› ‹4 < n› ‹s ≥ 3 ›

19

by (simp add : choose-two-real powr-powr powr-mult of-nat-diff mult .commute
flip: powr-realpow)
have (n choose s) ∗ p ^ (s choose 2) ≤ n^s / fact s ∗ p ^ (s choose 2)
proof (intro mult-right-mono)
show real (n choose s) ≤ real (n ^ s) / fact s
using binomial-fact-pow [of n s] of-nat-mono
by (fastforce simp: divide-simps mult .commute)

qed (use p01 in auto)
also have . . . < 1 / fact s
using B by (simp add : divide-simps)

also have . . . ≤ 1/2
by (smt (verit , best) One-nat-def Suc-1 Suc-leD assms fact-2 fact-mono frac-less2

numeral-3-eq-3)
finally show ?thesis .

qed

Andrew Thomason’s specific example

corollary Ramsey-number-lower-off-diag :
fixes n k ::nat
assumes k ≥ 3 l ≥ 3 and n: real n ≤ exp ((real k − 1) ∗ (real l − 1) /

(2∗(k+l)))
shows ¬ is-Ramsey-number k l n

proof
assume con: is-Ramsey-number k l n
then have (k − 1) ∗ (l − 1) < n
using RN-times-lower ′ [of k l] assms by (metis RN-le numeral-3-eq-3 order-less-le-trans

zero-less-Suc)
moreover have 2∗2 ≤ (k − 1) ∗ (l − 1)
using assms by (intro mult-mono) auto

ultimately have n > 4
by simp

define p where p ≡ k / (k+l)
have p01 : 0<p p<1
using assms by (auto simp: p-def)

have real (n choose k) ∗ p ^ (k choose 2) < 1/2
using Ramsey-lower-calc ‹4 < n› assms n p-def by auto

moreover
have 1−p = real l / (real l + real k)
using ‹k ≥ 3 › by (simp add : p-def divide-simps)

with assms have (n choose l) ∗ (1−p) ^ (l choose 2) < 1/2
by (metis Ramsey-lower-calc add .commute mult .commute ‹4 < n›)

ultimately show False
using con Ramsey-number-lower-gen p01 by force

qed

theorem RN-lower-off-diag :
assumes s ≥ 3 t ≥ 3
shows RN s t > exp ((real s − 1) ∗ (real t − 1) / (2∗(s+t)))
using Ramsey-number-lower-off-diag [OF assms] is-Ramsey-number-RN by force

20

The original Ramsey number lower bound, by Erdős

proposition Ramsey-number-lower :
fixes n s::nat
assumes s ≥ 3 and n: real n ≤ 2 powr (s/2)
shows ¬ is-Ramsey-number s s n

proof
assume con: is-Ramsey-number s s n
then have s ≤ n
using RN-3plus ′ RN-le assms(1) le-trans by blast

have s > 1 using assms by arith
have n>0
using ‹1 < s› ‹s ≤ n› by linarith

have (n choose s) ≤ n^s / fact s — probability calculation
using binomial-fact-pow [of n s]

by (smt (verit) fact-gt-zero of-nat-fact of-nat-mono of-nat-mult pos-divide-less-eq)

then have (n choose s) ∗ (2 / 2^(s choose 2)) ≤ 2 ∗ n^s / (fact s ∗ 2 ^ (s ∗
(s−1) div 2))

by (simp add : choose-two divide-simps)
also have . . . ≤ 2 powr (1 + s/2) / fact s
proof −
have [simp]: real (s ∗ (s − Suc 0) div 2) = real s ∗ (real s − 1) / 2
by (subst real-of-nat-div) auto

have n powr s ≤ (2 powr (s/2)) powr s
using n by (simp add : powr-mono2)

then have n powr s ≤ 2 powr (s ∗ s / 2)
using ‹n>0 › assms by (simp add : power2-eq-square powr-powr)

then have 2 ∗ n powr s ≤ 2 powr ((2 + s ∗ s) / 2)
by (simp add : add-divide-distrib powr-add)

then show ?thesis
using n ‹n>0 › by (simp add : divide-simps flip: powr-realpow powr-add) argo

qed
also have . . . < 1
proof −
have 2 powr (1 + (k+3)/2) < fact (k+3) for k
proof (induction k)
case 0
have 2 powr (5/2) = sqrt (2^5)
by (simp add : powr-half-sqrt-powr)

also have . . . < sqrt 36
by (intro real-sqrt-less-mono) auto

finally show ?case
by (simp add : eval-nat-numeral)

next
case (Suc k)
have 2 powr (1 + real (Suc k + 3) / 2) = 2 powr (1/2) ∗ 2 powr (1 +

(k+3)/2)
by (simp add : powr-add powr-half-sqrt-powr flip: real-sqrt-mult)

also have . . . ≤ sqrt 2 ∗ fact (k+3)

21

using Suc.IH by (simp add : powr-half-sqrt)
also have . . . < real(k + 4) ∗ fact (k + 3)
using sqrt2-less-2 by simp

also have . . . = fact (Suc (k + 3))
unfolding fact-Suc by simp

finally show ?case by simp
qed
then have 2 powr (1 + s/2) < fact s
by (metis add .commute ‹s≥3 › le-Suc-ex)

then show ?thesis
by (simp add : divide-simps)

qed
finally have less-1 : real (n choose s) ∗ (2 / 2 ^ (s choose 2)) < 1 .
then have ¬ is-Ramsey-number s s n
by (intro Ramsey-number-lower-gen [where p=1/2]) (auto simp: power-one-over)
with con show False by blast

qed

theorem RN-lower :
assumes k ≥ 3
shows RN k k > 2 powr (k/2)
using Ramsey-number-lower assms is-Ramsey-number-RN by force

and trivially, off the diagonal too

corollary RN-lower-nodiag :
assumes k ≥ 3 l ≥ k
shows RN k l > 2 powr (k/2)
by (meson RN-lower RN-mono assms less-le-trans le-refl of-nat-mono)

lemma powr-half-ge:
fixes x ::real
assumes x≥4
shows x ≤ 2 powr (x/2)

proof −
define f where f ≡ λx ::real . 2 powr (x/2) − x
have f 4 ≤ f x
proof (intro DERIV-nonneg-imp-nondecreasing [of concl : f] exI conjI assms)
show (f has-real-derivative ln 2 ∗ (2 powr (y/2 − 1)) − 1) (at y) for y
unfolding f-def by (rule derivative-eq-intros refl | simp add : powr-diff)+

show ln 2 ∗ (2 powr (y/2 − 1)) − 1 ≥ 0 if 4 ≤ y for y ::real
proof −
have 1 ≤ ln 2 ∗ 2 powr ((4 − 2) / (2 ::real))
using ln2-ge-two-thirds by simp

also have . . . ≤ ln 2 ∗ (2 powr (y/2 − 1))
using that by (intro mult-left-mono powr-mono) auto

finally show ?thesis by simp
qed

qed
moreover have f 4 = 0 by (simp add : f-def)

22

ultimately show ?thesis
by (simp add : f-def)

qed

corollary RN-lower-self :
assumes k ≥ 3
shows RN k k > k

proof (cases k=3)
case False
with assms have k≥4 by linarith
then have k ≤ 2 powr (k/2)
using powr-half-ge numeral-le-real-of-nat-iff by blast

also have . . . < RN k k
using assms by (intro RN-lower) auto

finally show ?thesis
by fastforce

qed (simp add : RN-gt2)

end

References

[1] B. Bollobás. Graph Theory: An Introductory Course. Springer, 1979.

23

	Lower bounds for Ramsey numbers
	Preliminaries
	Relating cliques to graphs; Ramsey numbers
	Elementary properties of Ramsey numbers
	The product lower bound
	A variety of upper bounds, including a stronger Erdős–Szekeres
	Probabilistic lower bounds: the main theorem and applications

