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Abstract

Proof terms are first-order terms that represent reductions in term
rewriting. They were initially introduced in [6] and [5, Chapter 8]
by van Oostrom and de Vrijer to study equivalences of reductions in
left-linear rewrite systems. This entry formalizes proof terms for multi-
steps in first-order term rewrite systems. We define simple proof terms
(i.e., without a composition operator) and establish the correspondence
to multi-steps: each proof term represents a multi-step with the same
source and target, and every multi-step can be expressed as a proof
term. The formalization moreover includes operations on proof terms,
such as residuals, join, and deletion and a method for labeling proof
term sources to identify overlaps between two proof terms.

This formalization is part of the Isabelle Formalization of Rewriting
IsaFoR and is an essential component of several formalized confluence
and commutation results involving multi-steps [2, 3, 4, 1].
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1 Preliminaries
theory Proof-Term-Utils
imports

First-Order-Terms.Matching
First-Order-Rewriting.Term-Impl

begin

1.1 Utilities for Lists
lemma obtain-list-with-property:

assumes ∀ x ∈ set xs. ∃ a. P a x
shows ∃ as. length as = length xs ∧ (∀ i < length xs. P (as!i) (xs!i))
using assms proof(induct xs)
case (Cons a xs)
then show ?case

by (metis length-map nth-map nth-mem)
qed simp

lemma card-Union-Sum:
assumes is-partition (map f [0 ..<length xs])

and ∀ i < length xs. finite (f i)
shows card (

⋃
i<length xs. f i) = (

∑
i<length xs. card (f i))

proof−
from assms(1 ) have disj:pairwise (λs t. disjnt (f s) (f t)) {..<length xs}
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unfolding pairwise-def is-partition-alt is-partition-alt-def disjnt-def by simp
then have pairwise disjnt (f ‘ {..<length xs})

by (metis (mono-tags, lifting) pairwiseD pairwise-imageI )
then have card (

⋃
i<length xs. f i) = sum card (f ‘ {..<length xs})

using assms(2 ) card-Union-disjoint by (metis (mono-tags, lifting) imageE
lessThan-iff )

with disj show ?thesis
using sum-card-image by (metis finite-lessThan)

qed

lemma sum-sum-concat: (
∑

i<length xs.
∑

x←f (xs!i). g x) = (
∑

x←concat (map
f xs). g x)
proof(induct xs)

case (Cons a xs)
then show ?case unfolding list.map concat.simps map-append sum-list-append

by (metis (mono-tags, lifting) length-nth-simps(2 ) nth-Cons-0 nth-Cons-Suc
sum.cong sum.lessThan-Suc-shift)
qed simp

lemma concat-map2-zip:
assumes length xs = length ys

and ∀ i < length xs. length (xs!i) = length (ys!i)
shows concat (map2 zip xs ys) = zip (concat xs) (concat ys)
using assms proof(induct xs arbitrary:ys rule:rev-induct)
case (snoc x xs)
from snoc(2 ) obtain y ys ′ where y:ys = ys ′@[y]

by (metis append-is-Nil-conv length-0-conv neq-Nil-conv rev-exhaust)
moreover with snoc(2 ) have l:length xs = length ys ′ by simp
moreover with snoc(3 ) have l ′:∀ i < length xs. length (xs!i) = length (ys ′!i)
unfolding y by (metis (no-types, lifting) Ex-less-Suc add-Suc-right append.right-neutral

append-Cons-nth-left length-Cons length-append order-less-trans)
ultimately have IH :concat (map2 zip xs ys ′) = zip (concat xs) (concat ys ′)

using snoc(1 ) by presburger
have ∗:concat (map2 zip (xs @ [x]) ys) = concat (map2 zip xs ys ′) @ (zip x y)

unfolding y zip-append[OF l] by simp
have length (concat xs) = length (concat ys ′)

using l l ′ eq-length-concat-nth by blast
then show ?case

unfolding ∗ IH unfolding y concat-append using zip-append by simp
qed simp

lemma sum-list-less:
assumes less:i < j

and i ′j ′:i ′ < length xs j ′ < length xs
and j ′′:j ′′ < length (xs!j ′)
and sums:i = sum-list (map length (take i ′ xs)) + i ′′ j = sum-list (map length

(take j ′ xs)) + j ′′
shows i ′ ≤ j ′

proof(rule ccontr)

3



assume ∗:¬ i ′ ≤ j ′
then have subsums:sum-list (map length (take i ′ xs)) = sum-list (map length

(take j ′ xs)) + sum-list (map length (take (i ′−j ′) (drop j ′ xs)))
by (metis le-add-diff-inverse map-append nat-le-linear sum-list-append take-add)

from ∗ have take (i ′ − j ′) (drop j ′ xs) = xs!j ′ # (take (i ′ − (Suc j ′)) (drop (Suc
j ′) xs))

using i ′j ′ by (metis Cons-nth-drop-Suc Suc-diff-Suc linorder-le-less-linear take-Suc-Cons)

with j ′′ have j ′′ < sum-list (map length (take (i ′−j ′) (drop j ′ xs))) by simp
then show False

using sums subsums less by linarith
qed

lemma zip-symm: (x, y) ∈ set (zip xs ys) =⇒ (y, x) ∈ set (zip ys xs)
by (induct xs ys rule:list-induct2 ′) auto

lemma sum-list-elem:
(
∑

x←[y]. f x) = f y
by simp

lemma sum-list-zero:
assumes ∀ i < length xs. f (xs!i) = 0
shows (

∑
x←xs. f x) = 0

by (metis assms map-eq-conv ′ monoid-add-class.sum-list-0 )

lemma distinct-is-partition:
assumes distinct (concat ts)
shows is-partition (map set ts)
using assms proof(induct ts)
case Nil
then show ?case

using is-partition-Nil by auto
next

case (Cons t ts)
{fix i j assume j:j < length (t#ts) and ij:i < j

have (map set (t#ts))!i ∩ (map set (t#ts))!j = {} proof(cases i)
case 0
show ?thesis using Cons(2 ) unfolding 0

using ij j by force
next

case (Suc n)
from Cons have is-partition (map set ts) by simp
then show ?thesis
unfolding Suc is-partition-def using j ij using Suc Suc-less-eq2 by fastforce

qed
}
then show ?case unfolding is-partition-def by simp

qed
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lemma filter-ex-index:
assumes x = filter f xs ! i i < length (filter f xs)
shows ∃ j. j < length xs ∧ x = xs!j
using assms proof(induct xs arbitrary:i)
case (Cons y ys)
show ?case proof(cases f y)

case True
then have filter :filter f (y#ys) = y#(filter f ys) by simp
show ?thesis proof(cases i)

case 0
from Cons(2 ) show ?thesis unfolding filter 0 by auto

next
case (Suc n)
from Cons(2 ) have x = filter f ys ! n

unfolding Suc filter by simp
moreover from Cons(3 ) have n < length (filter f ys)

unfolding Suc filter by simp
ultimately obtain j where j<length ys and x = ys ! j

using Cons(1 ) by blast
then show ?thesis by auto

qed
next

case False
then have filter :filter f (y#ys) = filter f ys by simp
from Cons obtain j where j<length ys and x = ys ! j

unfolding filter by blast
then show ?thesis by auto

qed
qed simp

lemma filter-index-neq ′:
assumes i < j j < length (filter f xs)
shows ∃ i ′ j ′. i ′ < length xs ∧ j ′ < length xs ∧ i ′ < j ′ ∧ xs ! i ′ = (filter f xs) !

i ∧ xs ! j ′ = (filter f xs) ! j
using assms proof(induct xs arbitrary: i j)
case (Cons x xs)
then show ?case proof(cases f x)

case True
show ?thesis proof(cases i)

case 0
then have i0 :filter f (x#xs) ! i = (x#xs) ! 0

using ‹f x› by simp
from Cons(2 ) obtain j ′ where j = Suc j ′

unfolding 0 using gr0-implies-Suc by blast
with Cons(3 ) have j ′ < length (filter f xs)

unfolding filter .simps using ‹f x› by simp
then obtain j ′′ where j ′′:j ′′ < length xs filter f xs ! j ′ = xs ! j ′′

by (meson filter-ex-index)
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then have filter f (x#xs) ! j = (x#xs) ! (Suc j ′′)
using ‹f x› ‹j = Suc j ′› by simp

with i0 j ′′(1 ) show ?thesis
by (metis length-nth-simps(2 ) not-less-eq zero-less-Suc)

next
case (Suc i ′)
from Cons(2 ) obtain j ′ where j:j = Suc j ′

unfolding Suc using Suc-lessE by auto
from Cons(1 )[of i ′ j ′] Cons(2 ,3 ) obtain i ′′ j ′′ where i ′′ < length xs j ′′ <

length xs i ′′ < j ′′ xs ! i ′′ = filter f xs ! i ′ xs ! j ′′ = filter f xs ! j ′
using Suc True j by auto

then show ?thesis
by (smt (verit) Suc Suc-less-eq True filter .simps(2 ) j length-nth-simps(2 )

nth-Cons-Suc)
qed

next
case False
then have filter f (x#xs) = filter f xs by simp
with Cons show ?thesis

by (metis Suc-less-eq length-nth-simps(2 ) nth-Cons-Suc)
qed

qed simp

lemma filter-index-neq:
assumes i 6= j i < length (filter f xs) j < length (filter f xs)
shows ∃ i ′ j ′. i ′ < length xs ∧ j ′ < length xs ∧ i ′ 6= j ′ ∧ xs ! i ′ = (filter f xs) !

i ∧ xs ! j ′ = (filter f xs) ! j
using assms filter-index-neq ′ proof(cases i < j)

case False
then have ∗:j < i using assms(1 ) by simp
then show ?thesis using filter-index-neq ′[OF ∗ assms(2 )] by blast

qed blast

lemma nth-drop-equal:
assumes length xs = length ys

and ∀ j < length xs. j ≥ i −→ xs!j = ys!j
shows drop i xs = drop i ys

using assms proof (induct i arbitrary: xs ys)
case 0
then show ?case

using nth-equalityI by blast
next

case (Suc i)
then show ?case proof(cases Suc i < length xs)

case True
then obtain x xs ′ where x:xs = x # xs ′

by (metis Suc-length-conv Suc-lessE)
with Suc(2 ) obtain y ys ′ where y:ys = y # ys ′

by (metis length-greater-0-conv nth-drop-0 )
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from Suc(1 )[of xs ′ ys ′] have drop i xs ′ = drop i ys ′

using Suc(2 ,3 ) unfolding x y
by (metis Suc-le-mono length-nth-simps(2 ) linorder-not-le nat.inject nth-Cons-Suc)
then show ?thesis unfolding x y by simp

qed simp
qed

lemma union-take-drop-list:
assumes i < length xs
shows (set (take i xs)) ∪ (set (drop (Suc i) xs)) = {xs!j | j. j < length xs ∧ j 6=

i}
proof−

from assms have i:i ≤ length xs by simp
have set1 :set (take i xs) = {xs ! j |j. j < i}

using nth-image[OF i] unfolding image-def by fastforce
from assms have i:Suc i ≤ length xs by simp
have set2 :set (drop (Suc i) xs) = {xs !j |j. i < j ∧ j < length xs} proof

{fix x assume x ∈ set (drop (Suc i) xs)
then have x ∈ {xs !j |j. i < j ∧ j < length xs}

unfolding set-conv-nth nth-drop[OF i] length-drop by auto
}
then show set (drop (Suc i) xs) ⊆ {xs ! j |j. i < j ∧ j < length xs} by auto
{fix x assume x ∈ {xs !j |j. i < j ∧ j < length xs}

then have x ∈ set (drop (Suc i) xs)
unfolding set-conv-nth nth-drop[OF i] length-drop

by (smt (verit, best) Suc-leI add-diff-inverse-nat i mem-Collect-eq nat-add-left-cancel-less
not-less-eq-eq)

}
then show {xs ! j |j. i < j ∧ j < length xs} ⊆ set (drop (Suc i) xs) by auto

qed
{fix x assume x ∈ set (take i xs) ∪ set (drop (Suc i) xs)

then consider x ∈ set (take i xs) | x ∈ set (drop (Suc i) xs) by blast
then have x ∈ {xs ! j |j. j < length xs ∧ j 6= i} proof(cases)

case 1
with set1 show ?thesis using in-set-idx by fastforce

next
case 2
with set2 show ?thesis using in-set-idx by fastforce

qed
}moreover
{fix x assume x ∈ {xs ! j |j. j < length xs ∧ j 6= i}

then obtain j where x = xs!j and j:j < length xs j 6= i
by blast

then have x ∈ set (take i xs) ∪ set (drop (Suc i) xs)
using set1 set2 using nat-neq-iff by auto

}
ultimately show ?thesis by auto

qed
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lemma list-tl-eq:
assumes length xs = length ys xs 6= []

and ∀ i < length xs. i > 0 −→ xs!i = ys!i
shows tl xs = tl ys
by (metis Suc-le-lessD assms(1 ) assms(3 ) length-greater-0-conv list.sel(3 ) nth-drop-0

nth-drop-equal)

1.1.1 Lists of option
lemma length-those:

assumes those xs = Some ys
shows length xs = length ys
using assms proof(induction xs arbitrary:ys)
case Nil
then show ?case by simp

next
case (Cons a xs)
from Cons(2 ) obtain ys ′ where ys ′:those xs = Some ys ′

by (smt not-None-eq option.case-eq-if option.simps(8 ) those.simps(2 ))
from Cons(2 ) obtain y where y:Some y = a

by (metis option.case-eq-if option.exhaust-sel option.simps(3 ) those.simps(2 ))
from y ys ′ have those (Cons a xs) = Some (Cons y ys ′)

by auto
then show ?case using Cons ys ′

by auto
qed

lemma those-not-none-x: those xs = Some ys =⇒ x ∈ set xs =⇒ x 6= None
proof (induction xs arbitrary: x ys)

case (Cons a xs)
from Cons(2 ) have a 6= None using option.simps(4 ) by fastforce
from this Cons(2 ) have those xs 6= None by auto
then show ?case using Cons(1 ,3 ) ‹a 6= None› by auto

qed (simp)

lemma those-not-none-xs: list-all (λx. x 6= None) xs =⇒ those xs 6= None
by (induction xs) auto

lemma those-some:
assumes length xs = length ys ∀ i < length xs. xs!i = Some (ys!i)
shows those xs = Some ys
using assms by (induct rule:list-induct2 ) (simp, force)

lemma those-some2 :
assumes those xs = Some ys
shows ∀ i < length xs. xs!i = Some (ys!i)

proof−
from assms have length xs = length ys by (simp add: length-those)
then show ?thesis using assms proof(induction xs ys rule:list-induct2 )
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case (Cons x xs y ys)
from Cons(3 ) have x 6= None by (metis list.set-intros(1 ) those-not-none-x)
with Cons(3 ) have ∗:x = Some y by force
with Cons(3 ) have those xs = Some ys by force
with ∗ Cons(2 ) show ?case by (simp add: nth-Cons ′)

qed simp
qed

lemma exists-some-list:
assumes ∀ i < length xs. (∃ y. xs!i = Some y)
shows ∃ ys. (∀ i < length xs. xs!i = Some (ys!i)) ∧ length ys = length xs
by (metis assms length-map nth-map option.sel)

1.2 Results About Linear Terms
lemma linear-term-var-vars-term-list:

assumes linear-term t
shows vars-term-list t = vars-distinct t
using assms linear-term-distinct-vars
by (metis comp-apply distinct-rev remdups-id-iff-distinct rev-rev-ident)

lemma linear-term-unique-vars:
assumes linear-term s

and p ∈ poss s and s|-p = Var x
and q ∈ poss s and s|-q = Var x

shows p = q
proof(rule ccontr)

assume p 6= q
with assms(2−) obtain i j where ij:i < length (var-poss-list s) j < length

(var-poss-list s) i 6= j
var-poss-list s ! i = p var-poss-list s ! j = q
by (metis in-set-idx var-poss-iff var-poss-list-sound)

with assms(3 ,5 ) have vars-term-list s ! i = vars-term-list s ! j
by (metis length-var-poss-list term.inject(1 ) vars-term-list-var-poss-list)

moreover from assms(1 ) have distinct (vars-term-list s)
by (metis distinct-remdups distinct-rev linear-term-var-vars-term-list o-apply)

ultimately show False using ij(1 ,2 ,3 )
by (metis distinct-Ex1 length-var-poss-list nth-mem)

qed

lemma linear-term-ctxt:
assumes linear-term t

and p ∈ poss t
shows vars-ctxt (ctxt-of-pos-term p t) ∩ vars-term (t|-p) = {}
using assms proof(induct p arbitrary:t)
case (Cons i p)
from Cons(3 ) obtain f ts where t:t = Fun f ts i < length ts p ∈ poss (ts!i)

using args-poss by blast
with Cons(1 ,2 ) have IH :vars-ctxt (ctxt-of-pos-term p (ts!i)) ∩ vars-term ((ts!i)
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|- p) = {}
by simp

{fix j assume j:j < length ts j 6= i
with Cons(2 ) have vars-term (ts!j) ∩ vars-term (ts!i |-p) = {}
unfolding t using var-in-linear-args t(2 ,3 ) by (metis (no-types, opaque-lifting)

Int-Un-distrib disjoint-iff sup-bot.neutr-eq-iff vars-ctxt-pos-term)
}
then have

⋃
{vars-term (ts ! j) |j. j < length ts ∧ j 6= i} ∩ vars-term (ts!i |-p)

= {}
by blast

moreover have (
⋃

(vars-term ‘ set (take i ts)) ∪
⋃

(vars-term ‘ set (drop (Suc
i) ts))) = ⋃

{vars-term (ts ! j) |j. j < length ts ∧ j 6= i}
unfolding set-map[symmetric] take-map[symmetric] drop-map[symmetric] Union-Un-distrib[symmetric]
using union-take-drop-list[where xs=(map vars-term ts)] unfolding length-map

using t(2 ) by auto
ultimately show ?case unfolding t ctxt-of-pos-term.simps subt-at.simps using

IH
by (metis (no-types, lifting) bot-eq-sup-iff inf-sup-distrib2 vars-ctxt.simps(2 ))

qed simp

lemma linear-term-obtain-subst:
assumes linear-term (Fun f ts) and l:length ts = length ss

and substs: ∀ i< length ts. (∃σ. ts!i · σ = ss!i)
shows ∃σ. Fun f ts · σ = Fun f ss
using assms proof(induct ts arbitrary: ss)
case (Cons t ts)
from Cons(3 ) obtain s ss ′ where ss:ss = s#ss ′

by (metis length-Suc-conv)
from Cons(2 ) have lin:linear-term (Fun f ts)

unfolding linear-term.simps by (simp add: is-partition-Cons)
from Cons(4 ) have ∀ i<length ts. ∃σ. ts ! i · σ = ss ′ ! i

unfolding ss by (metis length-nth-simps(2 ) not-less-eq nth-Cons-Suc)
then obtain σ where σ:Fun f ts · σ = Fun f ss ′

using Cons(1 )[OF lin, of ss ′] using Cons.prems(2 ) ss by auto
from Cons(4 ) obtain σ1 where σ1 :t · σ1 = s

using ss by auto
let ?σ=λx. if x ∈ vars-term t then σ1 x else σ x
have t:t · ?σ = s

by (simp add: σ1 term-subst-eq)
{fix i assume i < length ts

then have ts!i · ?σ = ss ′!i
by (smt (verit, ccfv-SIG) Cons.prems(1 ) Cons.prems(2 ) Suc-inject Suc-leI σ

σ1 eval-term.simps(2 ) le-imp-less-Suc length-nth-simps(2 ) map-nth-eq-conv nth-Cons-0
nth-Cons-Suc ss term.sel(4 ) term-subst-eq var-in-linear-args zero-less-Suc)

}
with t have Fun f (t#ts) · ?σ = Fun f ss

using Cons.prems(2 ) map-nth-eq-conv ss by auto
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then show ?case by blast
qed simp

lemma linear-ctxt-of-pos-term:
assumes linear-term t and lin-s:linear-term s and p:p ∈ poss t

and vars-term t ∩ vars-term s = {}
shows linear-term (replace-at t p s)

using assms proof(induct t arbitrary:p)
case (Var x)
with p have p = [] by simp
with lin-s show ?case by simp

next
case (Fun f ts)
from lin-s show ?case proof(cases p)

case (Cons i p ′)
with Fun(4 ) have i:i < length ts by simp
with Fun(4 ) have p ′:p ′ ∈ poss (ts!i) unfolding Cons by simp
{fix n assume n:n < length ts n 6= i

with Fun(2 ) have vars-term (ts!n) ∩ vars-term (ts!i) = {}
by (metis disjoint-iff i var-in-linear-args)

then have vars-term (ts!n) ∩ vars-ctxt (ctxt-of-pos-term p ′ (ts!i)) = {}
using p ′ vars-ctxt-pos-term by fastforce

moreover from n Fun(5 ) have vars-term (ts!n) ∩ vars-term s = {}
by (meson disjoint-iff nth-mem term.set-intros(4 ))
ultimately have vars-term (ts!n) ∩ vars-term ((ctxt-of-pos-term p ′ (ts !

i))〈s〉) = {}
unfolding vars-term-ctxt-apply by blast

}
with Fun(2 ) have is-partition (map vars-term (take i ts @ (ctxt-of-pos-term p ′

(ts ! i))〈s〉 # drop (Suc i) ts))
unfolding linear-term.simps is-partition-def by (smt (z3 ) Int-commute ap-

pend-Cons-nth-not-middle i id-take-nth-drop
length-append length-map length-nth-simps(2 ) linorder-neq-iff nth-append-take

nth-map order .strict-implies-order order .strict-trans)
moreover have linear-term ((ctxt-of-pos-term p ′ (ts ! i))〈s〉)
using Fun p ′ by (meson disjoint-iff i linear-term.simps(2 ) nth-mem term.set-intros(4 ))

ultimately show ?thesis
using Fun(2 ) unfolding Cons ctxt-of-pos-term.simps intp-actxt.simps lin-

ear-term.simps
by (metis Un-iff in-set-dropD in-set-takeD set-ConsD set-append)

qed simp
qed

lemma distinct-vars:
assumes

∧
p q x y. p 6= q =⇒ p ∈ poss t =⇒ q ∈ poss t =⇒ t|-p = Var x =⇒

t|-q = Var y =⇒ x 6= y
shows distinct (vars-term-list t)

proof−
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{fix i j assume ij:i 6= j and i:i < length (vars-term-list t) and j:j < length
(vars-term-list t)

let ?p=var-poss-list t ! i and ?q=var-poss-list t ! j
let ?x=vars-term-list t ! i and ?y=vars-term-list t ! j
from ij i j have pq:?p 6= ?q

by (simp add: distinct-var-poss-list length-var-poss-list nth-eq-iff-index-eq)
have p:?p ∈ poss t
by (metis i length-var-poss-list nth-mem var-poss-imp-poss var-poss-list-sound)

have q:?q ∈ poss t
by (metis j length-var-poss-list nth-mem var-poss-imp-poss var-poss-list-sound)

have ?x 6= ?y
using assms[OF pq p q] i j by (simp add: vars-term-list-var-poss-list)

}
then show ?thesis by (meson distinct-conv-nth)

qed

lemma distinct-vars-linear-term:
assumes distinct (vars-term-list t)
shows linear-term t
using assms proof(induct t)
case (Fun f ts)
{fix t assume t:t ∈ set ts

with Fun(2 ) have distinct (vars-term-list t)
unfolding vars-term-list.simps by (simp add: distinct-concat-iff )

with t Fun(1 ) have linear-term t
by auto

}
moreover have is-partition (map vars-term ts)
using Fun(2 ) unfolding vars-term-list.simps using distinct-is-partition set-vars-term-list
by (metis (mono-tags, lifting) length-map map-nth-eq-conv)

ultimately show ?case by simp
qed simp

lemma distinct-vars-eq-linear : linear-term t = distinct (vars-term-list t)
using distinct-vars-linear-term linear-term-distinct-vars by blast

1.3 Results About Substitutions and Contexts
lemma ctxt-apply-term-subst:

assumes linear-term t and i < length (vars-term-list t)
and p = (var-poss-list t)!i

shows (ctxt-of-pos-term p (t · σ))〈s〉 = t · σ((vars-term-list t)!i := s)
proof−

from assms(2 ,3 ) have t|-p = Var ((vars-term-list t)!i)
by (metis vars-term-list-var-poss-list)

with assms show ?thesis
by (smt (verit, ccfv-threshold) filter-cong fun-upd-other fun-upd-same length-var-poss-list

12



linear-term-replace-in-subst nth-mem var-poss-imp-poss var-poss-list-sound)
qed

lemma ctxt-subst-apply:
assumes p ∈ poss t and t|-p = Var x

and linear-term t
shows ((ctxt-of-pos-term p t) ·c σ)〈s〉 = t · σ(x := s)
unfolding ctxt-of-pos-term-subst[symmetric, OF assms(1 )]
using assms
by (smt (verit) fun-upd-apply linear-term-replace-in-subst)

lemma ctxt-of-pos-term-hole-subst:
assumes linear-term t

and i < length (var-poss-list t) and p = var-poss-list t ! i
and ∀ x ∈ vars-term t. x 6= vars-term-list t !i −→ σ x = τ x

shows ctxt-of-pos-term p (t · σ) = ctxt-of-pos-term p (t · τ)
using assms proof(induct p arbitrary: t i)
case (Cons j p)
from Cons(3 ,4 ) have j#p ∈ var-poss t

using nth-mem by force
then obtain f ts where ts:j < length ts t = Fun f ts p ∈ var-poss (ts!j)

by (metis args-poss subt-at.simps(2 ) var-poss-iff )
then obtain i ′ where i ′:i ′ < length (var-poss-list (ts!j)) p = var-poss-list (ts!j)!i ′

using var-poss-list-sound by (metis in-set-conv-nth)
from Cons(3 ,4 ) have Var (vars-term-list t ! i) = t|-(j#p)

by (metis length-var-poss-list vars-term-list-var-poss-list)
also have ... = (ts!j)|-p

unfolding ts(2 ) by simp
also have ... = Var (vars-term-list (ts!j) ! i ′)

using i ′ by (simp add: length-var-poss-list vars-term-list-var-poss-list)
finally have ∗:vars-term-list t ! i = vars-term-list (ts ! j) ! i ′ by simp
with Cons(5 ) have ∀ x∈vars-term (ts!j). x 6= vars-term-list (ts!j) ! i ′ −→ σ x =

τ x
unfolding ts(2 ) using ts(1 ) by auto

with Cons(2 ) i ′ ts have IH :ctxt-of-pos-term p ((ts!j) · σ) = ctxt-of-pos-term p
((ts!j) · τ)

using Cons(1 )[of ts!j i ′] by (meson linear-term.simps(2 ) nth-mem)
{fix j ′ assume j ′:j ′ < length ts j ′ 6= j

with Cons(2 ) have vars-term (ts ! j ′) ∩ vars-term (ts!j) = {}
unfolding ts(2 ) by (metis disjoint-iff ts(1 ) var-in-linear-args)

then have ∀ x ∈ vars-term (ts!j ′). σ x = τ x
using Cons(5 ) j ′ ∗ by (metis disjoint-iff i ′(1 ) length-var-poss-list nth-mem

set-vars-term-list term.set-intros(4 ) ts(2 ))
then have (ts!j ′) · σ = (ts!j ′) · τ

by (meson term-subst-eq)
} note t ′=this

with ts(1 ) have take j (map (λt. t · σ) ts) = take j (map (λt. t · τ) ts)
using nth-take-lemma[of j (map (λt. t · σ) ts) (map (λt. t · τ) ts)] by simp

moreover from t ′ ts(1 ) have (drop (Suc j) (map (λt. t · σ) ts)) = (drop (Suc
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j) (map (λt. t · τ) ts))
using nth-drop-equal[of (map (λt. t · σ) ts) (map (λt. t · τ) ts) Suc j] by auto

ultimately show ?case
unfolding ts(2 ) eval-term.simps ctxt-of-pos-term.simps using IH by (simp

add: ts(1 ))
qed simp

lemma ctxt-apply-ctxt-apply:
assumes p ∈ poss t
shows (ctxt-of-pos-term (p@q) ((ctxt-of-pos-term p t) 〈s〉)) 〈u〉 = (ctxt-of-pos-term

p t)〈(ctxt-of-pos-term q s) 〈u〉〉
by (metis assms ctxt-ctxt ctxt-of-pos-term-append hole-pos-ctxt-of-pos-term hole-pos-id-ctxt

hole-pos-poss replace-at-subt-at)

lemma replace-at-append-subst:
assumes linear-term t

and p ∈ poss t t|-p = Var x
shows (ctxt-of-pos-term (p@q) (t · σ)) 〈s〉 = t · σ(x := (ctxt-of-pos-term q (σ

x)) 〈s〉)
using assms proof(induct p arbitrary:t)
case (Cons i p)
then obtain f ts where t:t = Fun f ts and i:i < length ts and p:p ∈ poss (ts!i)

by (meson args-poss)
from Cons(4 ) have x:(ts!i)|-p = Var x

unfolding t by simp
from Cons(2 ) have lin:linear-term (ts!i)

using i t by simp
have IH :(ctxt-of-pos-term (p@q) ((ts!i) · σ)) 〈s〉 = (ts!i) · σ(x := (ctxt-of-pos-term

q (σ x)) 〈s〉)
using Cons(1 )[OF lin p x] .

let ?σ=σ(x := (ctxt-of-pos-term q (σ x)) 〈s〉)
{fix j assume j:j < length ts j 6= i

from x have x ∈ vars-term (ts!i)
by (metis p subsetD term.set-intros(3 ) vars-term-subt-at)

then have x /∈ vars-term (ts!j)
using j Cons(2 ) unfolding t by (meson i var-in-linear-args)

then have (ts!j) · σ = (ts!j) · ?σ
by (simp add: term-subst-eq-conv)

} note sigma=this
then have take i (map (λt. t · σ) ts) = take i (map (λt. t · ?σ) ts)

using nth-take-lemma[of i (map (λt. t · σ) ts) (map (λt. t · ?σ) ts)] i by simp
moreover from sigma have drop (Suc i) (map (λt. t · σ) ts) = drop (Suc i)

(map (λt. t · ?σ) ts)
using nth-drop-equal[of (map (λt. t · σ) ts) (map (λt. t · ?σ) ts)] i by simp

ultimately show ?case
unfolding t append-Cons eval-term.simps ctxt-of-pos-term.simps intp-actxt.simps

nth-map[OF i] IH
by (metis i id-take-nth-drop length-map nth-map)

qed simp
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lemma replace-at-fun-poss-not-below:
assumes ¬ p ≤p q

and p ∈ poss t and q ∈ fun-poss (replace-at t p s)
shows q ∈ fun-poss t
using assms by (metis ctxt-supt-id fun-poss-ctxt-apply-term hole-pos-ctxt-of-pos-term

less-eq-pos-def )

lemma substitution-subterm-at:
assumes ∀ j < length (vars-term-list l). σ (vars-term-list l ! j) = s |- (var-poss-list

l ! j)
and ∃ τ . l · τ = s

shows l · σ = s
using assms proof(induct l arbitrary:s)
case (Var x)
then show ?case

unfolding vars-term-list.simps poss-list.simps var-poss.simps eval-term.simps
by simp
next

case (Fun f ts)
from Fun(3 ) obtain ss where s:s = Fun f ss and l:length ts = length ss

by fastforce
{fix i assume i:i < length ts

{fix j assume j:j<length (vars-term-list (ts!i))
let ?p=var-poss-list (ts!i) ! j
let ?x=vars-term-list (ts!i) ! j
let ?k=sum-list (map (length ◦ vars-term-list) (take i ts)) + j
from i j have x:?x = vars-term-list (Fun f ts) ! ?k

unfolding vars-term-list.simps by (simp add: concat-nth take-map)
have p:var-poss-list (Fun f ts) ! ?k = i # ?p proof−

from i have i ′:i < length (map2 (λx. map ((#) x)) [0 ..<length ts] (map
var-poss-list ts))

by simp
from i j have j < length ((map var-poss-list ts) ! i)

using length-var-poss-list by (metis (mono-tags, lifting) nth-map)
with i have j ′:j < length (map2 (λx. map ((#) x)) [0 ..<length ts] (map

var-poss-list ts) ! i)
by simp

{fix l assume l < length ts
then have (map length (map2 (λx. map ((#) x)) [0 ..<length ts] (map

var-poss-list ts)))!l = (map (length ◦ vars-term-list) ts) ! l
using length-var-poss-list by simp

}
then have map length (map2 (λx. map ((#) x)) [0 ..<length ts] (map

var-poss-list ts)) = map (length ◦ vars-term-list) ts
using nth-equalityI [where ys=map (length ◦ vars-term-list) ts] by simp
with i have k:sum-list (map length (take i (map2 (λx. map ((#) x))

[0 ..<length ts] (map var-poss-list ts)))) + j = ?k
by (metis take-map)
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then have var-poss-list (Fun f ts) ! ?k = (map2 (λi. map ((#) i)) [0 ..<length
ts] (map var-poss-list ts))!i !j

unfolding var-poss-list.simps using concat-nth[OF i ′ j ′] by presburger
also have ... = (map ((#) i) (var-poss-list (ts!i)))!j using i by simp
also have ... = i # ?p using nth-map j length-var-poss-list by metis
ultimately show ?thesis by simp

qed
from i j have k:?k < length (vars-term-list (Fun f ts))

unfolding vars-term-list.simps by (metis concat-nth-length length-map
map-map nth-map take-map)

from Fun(2 ) k have σ ?x = (ss!i) |- (var-poss-list (ts!i) ! j)
unfolding x s using p by simp

}
then have ∀ j<length (vars-term-list (ts!i)).σ (vars-term-list (ts!i) ! j) = (ss!i)

|- var-poss-list (ts!i) ! j
by simp

moreover from Fun(3 ) have ∃ τ . (ts!i) · τ = ss!i
unfolding eval-term.simps s using i l by (metis nth-map term.inject(2 ))

ultimately have (ts!i) · σ = ss!i
using i Fun(1 ) nth-mem by blast

}
then show ?case unfolding eval-term.simps s

using l by (simp add: map-nth-eq-conv)
qed

lemma vars-map-vars-term:
map f (vars-term-list t) = vars-term-list (map-vars-term f t)

unfolding map-vars-term-eq proof(induct t)
case (Fun g ts)
then have map (λxs. map f xs)(map vars-term-list ts) = map vars-term-list (map

(λt. t · (Var ◦ f )) ts)
by fastforce

then show ?case unfolding vars-term-list.simps eval-term.simps map-map map-concat
by presburger

qed (simp add: vars-term-list.simps)

lemma ctxt-apply-subt-at:
assumes q ∈ poss s
shows (ctxt-of-pos-term p (s|-q)) 〈t〉 = (ctxt-of-pos-term (q@p) s) 〈t〉 |- q

using assms proof(induct q arbitrary: s)
case (Cons i q)
from Cons(2 ) obtain f ss where i:i < length ss and s:s = Fun f ss

by (meson args-poss)
from i Cons show ?case unfolding s

by (metis ctxt-apply-ctxt-apply ctxt-supt-id replace-at-subt-at)
qed simp
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1.3.1 Utilities for mk-subst

We consider the special case of applying mk-subst when the variables in-
volved form a partition.
lemma mk-subst-same:

assumes length xs = length ts distinct xs
shows map (mk-subst f (zip xs ts)) xs = ts
using assms by (simp add: mk-subst-distinct map-nth-eq-conv)

lemma map2-zip: set (map fst (concat (map2 zip xs ys))) ⊆ set (concat xs)
proof

fix x assume x:x ∈ set (map fst (concat (map2 zip xs ys)))
let ?l=min (length xs) (length ys)
from x obtain i where i:i < ?l x ∈ set (map fst (zip (xs!i) (ys!i)))
by (smt (verit) case-prod-conv in-set-conv-nth length-map length-zip min.strict-boundedE

nth-concat-split nth-map nth-zip)
then have x ∈ set (xs!i)

by (metis in-set-takeD map-fst-zip-take)
then show x ∈ set (concat xs)
using i(1 ) by (metis concat-nth concat-nth-length in-set-conv-nth min.strict-boundedE)

qed

lemma mk-subst-partition:
fixes xs :: ′a list list
assumes l:length xs = length ss

and part:is-partition (map set xs)
shows ∀ i < length xs. ∀ x ∈ set (xs!i). (mk-subst f (zip (xs!i) (ss!i))) x =

(mk-subst f (concat (map2 zip xs ss))) x
proof−

{fix i assume i:i < length xs
{fix x assume x:x ∈ set (xs!i)

have concat (map2 zip xs ss) = concat (map2 zip (take i xs) (take i ss)) @
concat (map2 zip (drop i xs) (drop i ss))

by (metis append-take-drop-id concat-append drop-map drop-zip take-map
take-zip)

moreover have concat (map2 zip (drop i xs) (drop i ss)) = concat (zip (xs!i)
(ss!i) # (map2 zip (drop (Suc i) xs) (drop (Suc i) ss)))

using i l by (smt (verit, del-insts) Cons-nth-drop-Suc list.map(2 ) prod.simps(2 )
zip-Cons-Cons)

ultimately have cc:concat (map2 zip xs ss) = concat (map2 zip (take i xs)
(take i ss)) @

concat (zip (xs!i) (ss!i) # (map2 zip (drop (Suc i) xs) (drop (Suc i)
ss))) by presburger

{fix j assume j < length xs and j 6= i
with i x part have x /∈ set (xs!j)

unfolding is-partition-alt is-partition-alt-def by auto
} note part=this
then have x /∈ set (concat (take i xs))
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by (smt (verit) in-set-conv-nth length-take less-length-concat min.strict-boundedE
nth-take order-less-irrefl)

then have x /∈ set (map fst (concat (map2 zip (take i xs) (take i ss))))
using map2-zip in-mono by fastforce
then have subst:(mk-subst f (concat (map2 zip xs ss))) x = (mk-subst f

(concat (zip (xs!i) (ss!i) #
(map2 zip (drop (Suc i) xs)

(drop (Suc i) ss))))) x
unfolding cc using mk-subst-concat by metis

have mk-subst f (zip (xs ! i) (ss ! i)) x = (mk-subst f (concat (map2 zip xs
ss))) x

proof(cases x ∈ set (map fst (zip (xs!i) (ss!i))))
case True
then show ?thesis

using mk-subst-concat-Cons subst by metis
next

case False
{fix j assume j:j < length (drop (Suc i) xs)

then have (drop (Suc i) xs)!j = xs!(Suc i + j)
using Suc-leI i nth-drop by blast

moreover from i j have Suc i + j < length xs
by (metis add.commute length-drop less-diff-conv)

ultimately have x /∈ set ((drop (Suc i) xs)!j)
using part by (metis Suc-n-not-le-n le-add1 )

}
then have x /∈ set (concat (drop (Suc i) xs))

by (smt (verit) in-set-conv-nth length-map length-take less-not-refl2
min.strict-boundedE nth-concat-split nth-map nth-take)

then have x /∈ set (map fst (concat (map2 zip (drop (Suc i) xs) (drop
(Suc i) ss))))

using map2-zip in-mono by fastforce
with False have x /∈ set (map fst (concat (zip (xs!i) (ss!i) # (map2 zip

(drop (Suc i) xs) (drop (Suc i) ss)))))
unfolding concat.simps by (metis Un-iff map-append set-append)

with False show ?thesis
unfolding subst using mk-subst-not-mem ′ by metis

qed
}

}
then show ?thesis by simp

qed

The following lemma is used later to show that A = (to-pterm (lhs α)) · σ
implies A = (to-pterm (lhs α)) · 〈As〉α for some suitable As.
lemma subst-imp-mk-subst:

assumes s = t · σ
shows ∃ ss. t · σ = t · (mk-subst Var (zip (vars-distinct t) ss)) ∧ length ss =

length (vars-distinct t) ∧ (∀ i < length ss. σ (vars-distinct t!i) = ss!i)
proof−
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let ?ss=map σ (vars-distinct t)
let ?τ=(mk-subst Var (zip (vars-distinct t) ?ss))
{fix x assume x ∈ vars-term t

then have σ x = ?τ x unfolding mk-subst-def
by (simp add: map-of-zip-map)

}
then have t · σ = t · ?τ

using term-subst-eq by blast
then show ?thesis by auto

qed

lemma mk-subst-rename:
assumes length (vars-distinct t) = length xs and inj f
shows t · (mk-subst Var (zip (vars-distinct t) xs)) = (map-vars-term f t) ·

(mk-subst Var (zip (vars-distinct (map-vars-term f t)) xs))
proof−

{fix x assume x ∈ vars-term t
then obtain i where i:x = (vars-distinct t)!i i < length (vars-distinct t)

by (metis in-set-conv-nth set-vars-term-list vars-term-list-vars-distinct)
with assms have 1 :(mk-subst Var (zip (vars-distinct t) xs)) x = xs!i

using mk-subst-distinct by (metis comp-apply distinct-remdups distinct-rev)
have vars-distinct (map-vars-term f t) = map f (vars-distinct t)

unfolding vars-map-vars-term[symmetric] comp-apply using assms(2 )
by (metis distinct-map distinct-remdups distinct-remdups-id inj-on-inverseI

remdups-map-remdups rev-map the-inv-f-f )
with assms i have 2 :(mk-subst Var (zip (vars-distinct (map-vars-term f t))

xs)) (f x) = xs!i
by (metis (mono-tags, lifting) comp-apply distinct-remdups distinct-rev length-map

mk-subst-same nth-map)
from 1 2 have (mk-subst Var (zip (vars-distinct t) xs)) x = (mk-subst Var (zip

(vars-distinct (map-vars-term f t)) xs)) (f x)
by presburger

}
then show ?thesis

by (simp add: apply-subst-map-vars-term term-subst-eq-conv)
qed

1.4 Matching Terms

The goal is showing that match (t · σ) t = Some σ whenever the domain
of σ is a subset of the variables in t. For that we need some helper lemmas.
lemma decompose-fst:

assumes decompose (Fun f ss) t = Some us
shows map fst us = ss

proof−
from assms obtain ts where t:t = Fun f ts

by (metis (no-types, lifting) decompose-def option.distinct(1 ) decompose-Some
is-FunE old.prod.case term.case-eq-if )

with assms have length ss = length ts
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by blast
with assms(1 ) t show ?thesis

by auto
qed

lemma decompose-vars-term:
assumes decompose (Fun f ss) t = Some us
shows vars-term (Fun f ss) = (

⋃
(a, b) ∈ set us. vars-term a)

proof−
have vars-term (Fun f ss) = (

⋃
s ∈ set ss. vars-term s)

by (meson Term.term.simps(18 ))
also have ... = (

⋃
s ∈ set (map fst us). vars-term s)

using assms decompose-fst by metis
finally show ?thesis

using image-image by auto
qed

lemma match-term-list-domain:
assumes match-term-list P σ = Some τ
shows ∀ x. x /∈ (

⋃
(a, b) ∈ set P. vars-term a) ∧ σ x = None −→ τ x = None

using assms proof(induct P σ rule:match-term-list.induct)
case (2 x t P σ)
then show ?case

by (metis (mono-tags, lifting) Sup-insert Un-iff case-prod-conv fun-upd-idem-iff
fun-upd-triv fun-upd-twist image-insert list.simps(15 ) match-term-list.simps(2 ) op-
tion.simps(3 ) term.set-intros(3 ))
next

case (3 f ss g ts P σ)
from 3 (2 ) obtain us where us:decompose (Fun f ss) (Fun g ts) = Some us
using match-term-list.simps(3 ) option.distinct(1 ) option.simps(4 ) by fastforce

with 3 (2 ) have ∗:match-term-list (us @ P) σ = Some τ
by auto

from us have (
⋃

(a, b) ∈ set ((Fun f ss, Fun g ts) # P). vars-term a) = (
⋃

s
∈ set ss. vars-term s) ∪ (

⋃
(a, b) ∈ set P. vars-term a)

by simp
also have ... = (

⋃
(a, b) ∈ set (us@P). vars-term a)

using us by (metis (mono-tags, lifting) Term.term.simps(18 ) UN-Un decom-
pose-vars-term set-append)

finally show ?case
using 3 (1 ) us ∗ by metis

qed simp-all

lemma match-subst-domain:
assumes match a b = Some σ
shows subst-domain σ ⊆ vars-term b

proof−
from assms have ∀ x. x /∈ vars-term b −→ σ x = Var x
unfolding match-def match-list-def subst-of-map-def using match-term-list-domain

by fastforce
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then show ?thesis
using subst-domain-def by fastforce

qed

lemma match-trivial:
assumes subst-domain σ ⊆ vars-term t
shows match (t · σ) t = Some σ

proof−
obtain τ where tau:match (t · σ) t = Some τ and 1 :(∀ x∈vars-term t. σ x =

τ x)
by (meson match-complete ′)

from assms have 2 :∀ x. x /∈ vars-term t −→ σ x = Var x
by (meson notin-subst-domain-imp-Var subset-eq)

from tau have 3 :∀ x. x /∈ vars-term t −→ τ x = Var x
using match-subst-domain notin-subst-domain-imp-Var by fastforce

from 1 2 3 show ?thesis
by (metis subst-term-eqI tau term-subst-eq)

qed

end

1.4.1 Matching of Linear Terms
theory Linear-Matching

imports Proof-Term-Utils
begin

For a linear term the matching substitution can simply be computed with
the following definition.
definition match-substs :: ( ′f , ′v) term ⇒ ( ′f , ′v) term ⇒ ( ′v × ( ′f , ′v) term) list

where match-substs t s = (zip (vars-term-list t) (map (λp. s|-p) (var-poss-list
t)))

lemma mk-subst-partition-special:
assumes length ss = length ts

and is-partition (map vars-term ts)
shows ∀ i < length ts. (ts!i) · (mk-subst f (zip (vars-term-list (ts!i)) (ss!i))) =
(ts!i) · (mk-subst f (concat (map2 zip (map vars-term-list ts) ss)))
proof−

let ?xs=map vars-term-list ts
have xs:map vars-term ts = map set (map vars-term-list ts) by simp
from assms(1 ) have l:length ?xs = length ss by simp
{fix i assume i:i < length ts

{fix x assume x ∈ vars-term (ts!i)
then have mk-subst f (zip (map vars-term-list ts ! i) (ss ! i)) x = mk-subst f

(concat (map2 zip (map vars-term-list ts) ss)) x
using i mk-subst-partition[OF l assms(2 )[unfolded xs]] by simp

}
then have ts!i · (mk-subst f (zip (vars-term-list (ts!i)) (ss!i))) = (ts!i) ·
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(mk-subst f (concat (map2 zip (map vars-term-list ts) ss)))
by (simp add: i term-subst-eq-conv)

}
then show ?thesis by fastforce

qed

lemma match-substs-Fun:
assumes l:length ts = length ss
shows match-substs (Fun f ts) (Fun g ss) = concat (map2 zip (map vars-term-list

ts) (map2 (λt s. map ((|-) s) (var-poss-list t)) ts ss))
(is match-substs (Fun f ts) (Fun g ss) = concat (map2 zip ?xs ?terms))

proof−
have l ′:length ?xs = length ?terms using l by simp
{fix i assume i < length ?xs

then have i:i < length ts by simp
with l have zip:(zip ts ss)!i = (ts!i, ss!i) by simp
from i l have length (map vars-term-list ts ! i) = length (map (λp. (ss!i)|-p)

(var-poss-list (ts!i)))
by (simp add: length-var-poss-list)

with zip have length (?xs!i) = length (?terms!i)
using i l ′ by auto

}note l-i=this
have vars-term-list (Fun f ts) = concat ?xs

unfolding vars-term-list.simps by simp
moreover have map ((|-) (Fun g ss)) (var-poss-list (Fun f ts)) = concat ?terms

proof−
have l-map2 :length (map2 (λi. map ((#) i)) [0 ..<length ts] (map var-poss-list

ts)) = length ts
unfolding length-map length-zip by simp

{fix i assume i:i < length ts
with l have length (map2 (λi. map ((#) i)) [0 ..<length ts] (map var-poss-list

ts) !i) = length (map var-poss-list ts!i)
unfolding nth-map[OF i] by simp

}
with l-map2 have length (map ((|-) (Fun g ss)) (var-poss-list (Fun f ts))) =

length (concat (map var-poss-list ts))
unfolding var-poss-list.simps length-map length-concat by (smt (verit, del-insts)

length-map map-nth-eq-conv)
moreover have length (concat ?terms) = length (concat (map var-poss-list ts))

proof−
{fix i assume i < length ts

with l have length (map2 (λt s. map ((|-) s) (var-poss-list t)) ts ss ! i) =
length (map var-poss-list ts!i) by simp

}
moreover have length (map2 (λt s. map ((|-) s) (var-poss-list t)) ts ss) =

length ts using l by simp
ultimately show ?thesis unfolding length-concat by (smt (verit, del-insts)

length-map map-nth-eq-conv)
qed
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ultimately have l ′′:length (map ((|-) (Fun g ss)) (var-poss-list (Fun f ts))) =
length (concat ?terms) by presburger

{fix i assume i:i < length (var-poss-list (Fun f ts))
let ?ps=map2 (λi. map ((#) i)) [0 ..<length ts] (map var-poss-list ts)
let ?p=var-poss-list (Fun f ts) ! i
from l have l-terms:length ?terms = length ts by auto
from l have l-ps:length ?ps = length ts by auto
obtain j k where j:j < length ts and k:k < length (var-poss-list (ts!j)) and

i-sum-list:i = sum-list (map length (take j ?ps)) + k
and ∗:?p = map2 (λi. map ((#) i)) [0 ..<length ts] (map var-poss-list ts) !

j ! k
using less-length-concat[OF i[unfolded var-poss-list.simps]] by auto

let ?p ′=(var-poss-list (ts!j)) ! k
from ∗ k j have p:?p = j # ?p ′ by simp
from j l have 1 :(Fun g ss) |- ?p = (ss!j) |- ?p ′ unfolding p by simp
have i-sum-list2 :i = sum-list (map length (take j ?terms)) + k proof−

{fix n assume n < length ts
with l have length (?terms!n) = length (?ps!n) by auto

}
then have map length ?terms = map length ?ps

using l-terms l-ps by (simp add: map-eq-conv ′)
then show ?thesis unfolding i-sum-list by (metis take-map)

qed
from j k have k < length (?terms ! j) by (smt (verit) l-i length-map

length-var-poss-list nth-map)
with j i-sum-list2 have concat ?terms ! i = ?terms ! j ! k
using concat-nth[of j ?terms k i] unfolding length-map length-zip l min.idem

by auto
then have 2 :concat ?terms ! i = (ss!j) |- ?p ′ using k j l by auto
from 1 2 have map ((|-) (Fun g ss)) (var-poss-list (Fun f ts)) ! i = concat

?terms ! i
unfolding var-poss-list.simps nth-map[OF i[unfolded var-poss-list.simps]]

by simp
}
with l ′′ show ?thesis by (metis length-map nth-equalityI )

qed
ultimately show ?thesis

unfolding match-substs-def using concat-map2-zip[OF l ′] l-i by presburger
qed

If all function symbols in term t coincide with function symbols in term s,
then t matches s.
lemma fun-poss-eq-imp-matches:

fixes s t :: ( ′f , ′v) term
assumes linear-term t and ∀ p ∈ poss t. ∀ f ts. t|-p = Fun f ts −→ (∃ ss. length

ts = length ss ∧ s|-p = Fun f ss)
shows t · (mk-subst Var (match-substs t s)) = s

using assms proof(induct t arbitrary:s)
case (Var x)
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have match-substs (Var x) s = [(x, s)]
unfolding match-substs-def var-poss-list.simps vars-term-list.simps by simp

then show ?case by simp
next

case (Fun f ts)
from Fun(3 ) obtain ss where l:length ts = length ss and s:s = Fun f ss by

auto
let ?σ=mk-subst Var (match-substs (Fun f ts) (Fun f ss))
let ?xs=map vars-term-list ts
let ?ss=map (λ(t, s). map (λp. s|-p) (var-poss-list t)) (zip ts ss)
have concat-zip:match-substs (Fun f ts) (Fun f ss) = concat (map2 zip ?xs ?ss)

unfolding match-substs-Fun[OF l] by simp
from Fun(2 ) have part:is-partition (map set ?xs)

by (smt (verit, ccfv-SIG) length-map linear-term.elims(2 ) map-nth-eq-conv
set-vars-term-list term.distinct(1 ) term.sel(4 ))

have l ′:length ?xs = length ?ss using l by simp
{fix i assume i:i < length ts

with Fun(2 ) have lin:linear-term (ts!i) by simp
let ?σi=mk-subst Var (match-substs (ts!i) (ss!i))
{fix p f ′ ts ′ assume p:p ∈ poss (ts!i) ts!i |- p = Fun f ′ ts ′

from p(1 ) i have i#p ∈ poss (Fun f ts) by simp
moreover from p(2 ) i have (Fun f ts)|-(i#p) = Fun f ′ ts ′ by simp
ultimately obtain ss ′ where length ts ′ = length ss ′ and s|-(i#p) = Fun f ′

ss ′ using Fun(3 ) by blast
then have ∃ ss ′. length ts ′ = length ss ′ ∧ (ss!i)|-p = Fun f ′ ss ′ unfolding s

by simp
}
then have ∀ p ∈ poss (ts!i). ∀ f ′ ts ′. (ts!i)|-p = Fun f ′ ts ′ −→ (∃ ss ′. length ts ′

= length ss ′ ∧ (ss!i)|-p = Fun f ′ ss ′) by simp
with Fun(1 ) lin i have IH :(ts!i) · ?σi = ss!i using nth-mem by blast
have (ts!i) · ?σ = (ts!i) · ?σi proof−

{fix x assume x:x ∈ vars-term (ts!i)
from i l have ∗:map2 (λt s. map ((|-) s) (var-poss-list t)) ts ss ! i = map

((|-) (ss ! i)) (var-poss-list (ts ! i)) by auto
with i x have ?σ x = ?σi x

unfolding concat-zip using mk-subst-partition[OF l ′ part] unfolding s
match-substs-Fun[OF l] match-substs-def length-map

by (smt (verit, best) nth-map set-vars-term-list)
}
then show ?thesis by (simp add: term-subst-eq-conv)

qed
then have (ts!i) · ?σ = ss!i using IH i by presburger

}
then show ?case unfolding s by (simp add: l map-nth-eq-conv)

qed

end
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2 Proof Terms
theory Proof-Terms

imports
First-Order-Terms.Matching
First-Order-Rewriting.Multistep
Proof-Term-Utils

begin

2.1 Definitions

A rewrite rule consists of a pair of terms representing its left-hand side and
right-hand side. We associate a rule symbol with each rewrite rule.
datatype ( ′f , ′v) prule =

Rule (lhs: ( ′f , ′v) term) (rhs: ( ′f , ′v) term) (- → - [51 , 51 ] 52 )

Translate between prule defined here and rule as defined in IsaFoR.
abbreviation to-rule :: ( ′f , ′v) prule ⇒ ( ′f , ′v) rule

where to-rule r ≡ (lhs r , rhs r)

Proof terms are terms built from variables, function symbols, and rules.
type-synonym
( ′f , ′v) pterm = (( ′f , ′v) prule + ′f , ′v) term

type-synonym
( ′f , ′v) pterm-ctxt = (( ′f , ′v) prule + ′f , ′v) ctxt

We provides an easier notation for proof terms (avoiding Inl and Inr).
abbreviation Prule :: ( ′f , ′v) prule ⇒ ( ′f , ′v) pterm list ⇒ ( ′f , ′v) pterm

where Prule α As ≡ Fun (Inl α) As
abbreviation Pfun :: ′f ⇒ ( ′f , ′v) pterm list ⇒ ( ′f , ′v) pterm

where Pfun f As ≡ Fun (Inr f ) As

Also for contexts.
abbreviation Crule :: ( ′f , ′v) prule ⇒ ( ′f , ′v) pterm list ⇒ ( ′f , ′v) pterm-ctxt ⇒
( ′f , ′v) pterm list ⇒( ′f , ′v) pterm-ctxt

where Crule α As1 C As2 ≡ More (Inl α) As1 C As2
abbreviation Cfun :: ′f ⇒ ( ′f , ′v) pterm list ⇒ ( ′f , ′v) pterm-ctxt ⇒ ( ′f , ′v)
pterm list ⇒( ′f , ′v) pterm-ctxt

where Cfun f As1 C As2 ≡ More (Inr f ) As1 C As2

Case analysis on proof terms.
lemma pterm-cases [case-names Var Pfun Prule, cases type: pterm]:
(
∧

x. A = Var x =⇒ P) =⇒ (
∧

f As. A = Pfun f As =⇒ P) =⇒ (
∧
α As. A =

Prule α As =⇒ P) =⇒ P
proof (cases A)

case (Fun x21 x22 )
show

∧
x21 x22 . (

∧
x. A = Var x =⇒ P) =⇒ (

∧
f As. A = Pfun f As =⇒ P)

=⇒ (
∧
α As. A = Prule α As =⇒ P) =⇒ A = Fun x21 x22 =⇒ P
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using sum.exhaust by auto
qed

Induction scheme for proof terms.
lemma

fixes P :: ( ′f , ′v) pterm ⇒ bool
assumes

∧
x. P (Var x)

and
∧

f As. (
∧

a. a ∈ set As =⇒ P a) =⇒ P (Pfun f As)
and

∧
α As. (

∧
a. a ∈ set As =⇒ P a) =⇒ P (Prule α As)

shows pterm-induct [case-names Var Pfun Prule, induct type: pterm]: P A
using assms proof(induct A)
case (Fun f ts)
then show ?case by(cases f ) auto

qed simp

Induction scheme for contexts of proof terms.
lemma

fixes P :: ( ′f , ′v) pterm-ctxt ⇒ bool
assumes P �
and

∧
f ss1 C ss2 . P C =⇒ P (Cfun f ss1 C ss2 )

and
∧
α ss1 C ss2 . P C =⇒ P (Crule α ss1 C ss2 )

shows pterm-ctxt-induct [case-names Hole Cfun Crule, induct type: pterm-ctxt]:
P C

using assms proof(induct C )
case (More f ss1 C ss2 )
then show ?case by(cases f ) auto

qed

Obtain the distinct variables occurring on the left-hand side of a rule in the
order they appear.
abbreviation var-rule :: ( ′f , ′v) prule ⇒ ′v list where var-rule α ≡ vars-distinct
(lhs α)

abbreviation lhs-subst :: ( ′g, ′v) term list ⇒ ( ′f , ′v) prule ⇒ ( ′g, ′v) subst (〈-〉-
[0 ,99 ])

where lhs-subst As α ≡ mk-subst Var (zip (var-rule α) As)

A proof term using only function symbols and variables is an empty step.
fun is-empty-step :: ( ′f , ′v) pterm ⇒ bool where

is-empty-step (Var x) = True
| is-empty-step (Pfun f As) = list-all is-empty-step As
| is-empty-step (Prule α As) = False

fun is-Prule :: ( ′f , ′v) pterm ⇒ bool where
is-Prule (Prule - -) = True
| is-Prule - = False

Source and target
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fun source :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) term where
source (Var x) = Var x
| source (Pfun f As) = Fun f (map source As)
| source (Prule α As) = lhs α · 〈map source As〉α

fun target :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) term where
target (Var x) = Var x
| target (Pfun f As) = Fun f (map target As)
| target (Prule α As) = rhs α · 〈map target As〉α

Source also works for proof term contexts in left-linear TRSs.
fun source-ctxt :: ( ′f , ′v) pterm-ctxt ⇒ ( ′f , ′v) ctxt where

source-ctxt � = �
| source-ctxt (Cfun f As1 C As2 ) = More f (map source As1 ) (source-ctxt C ) (map
source As2 )
| source-ctxt (Crule α As1 C As2 ) =
(let ctxt-pos = (var-poss-list (lhs α))!(length As1 );

placeholder = Var ((vars-term-list (lhs α)) ! (length As1 )) in
ctxt-of-pos-term (ctxt-pos) (lhs α · 〈map source (As1 @ ((placeholder # As2 )))〉α))
◦c (source-ctxt C )

abbreviation co-initial A B ≡ (source A = source B)

Transform simple terms to proof terms.
fun to-pterm :: ( ′f , ′v) term ⇒ ( ′f , ′v) pterm where

to-pterm (Var x) = Var x
| to-pterm (Fun f ts) = Pfun f (map to-pterm ts)

Also for contexts.
fun to-pterm-ctxt :: ( ′f , ′v) ctxt ⇒ ( ′f , ′v) pterm-ctxt where

to-pterm-ctxt � = �
| to-pterm-ctxt (More f ss1 C ss2 ) = Cfun f (map to-pterm ss1 ) (to-pterm-ctxt C )
(map to-pterm ss2 )

2.2 Frequently Used Locales/Contexts

Often certain properties about proof terms only hold when the underlying
TRS does not contain variable left-hand sides and/or variables on the right
are a subset of the variables on the left and/or the TRS is left-linear.
locale left-lin =

fixes R :: ( ′f , ′v) trs
assumes left-lin:left-linear-trs R

locale no-var-lhs =
fixes R :: ( ′f , ′v) trs
assumes no-var-lhs:Ball R (λ(l, r). is-Fun l)

locale var-rhs-subset-lhs =
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fixes R :: ( ′f , ′v) trs
assumes varcond:Ball R (λ(l, r). vars-term r ⊆ vars-term l)

locale wf-trs = no-var-lhs + var-rhs-subset-lhs
locale left-lin-no-var-lhs = left-lin + no-var-lhs
locale left-lin-wf-trs = left-lin + wf-trs

context wf-trs
begin
lemma wf-trs-alt:

shows Trs.wf-trs R
unfolding wf-trs-def ′ using no-var-lhs varcond by auto

end

context left-lin
begin
lemma length-var-rule:

assumes to-rule α ∈ R
shows length (var-rule α) = length (vars-term-list (lhs α))
using assms
by (metis case-prodD left-lin left-linear-trs-def linear-term-var-vars-term-list)

end

2.3 Proof Term Predicates

The number of arguments of a well-defined proof term over a TRS R using
a rule symbol α corresponds to the number of variables in lhs α. Also the
rewrite rule for α must belong to the TRS R.
inductive-set wf-pterm :: ( ′f , ′v) trs ⇒ ( ′f , ′v) pterm set

for R where
[simp]: Var x ∈ wf-pterm R
|[intro]: ∀ t ∈ set ts. t ∈ wf-pterm R =⇒ Pfun f ts ∈ wf-pterm R
|[intro]: (lhs α, rhs α) ∈ R =⇒ length As = length (var-rule α) =⇒

∀ a ∈ set As. a ∈ wf-pterm R =⇒ Prule α As ∈ wf-pterm R

inductive-set wf-pterm-ctxt :: ( ′f , ′v) trs ⇒ ( ′f , ′v) pterm-ctxt set
for R where
[simp]: � ∈ wf-pterm-ctxt R
|[intro]: ∀ s ∈ (set ss1 ) ∪ (set ss2 ). s ∈ wf-pterm R =⇒ C ∈ wf-pterm-ctxt R =⇒

Cfun f ss1 C ss2 ∈ wf-pterm-ctxt R
|[intro]: (lhs α, rhs α) ∈ R =⇒ (length ss1 ) + (length ss2 ) + 1 = length (var-rule
α) =⇒

∀ s ∈ (set ss1 ) ∪ (set ss2 ). s ∈ wf-pterm R =⇒ C ∈ wf-pterm-ctxt R =⇒
Crule α ss1 C ss2 ∈ wf-pterm-ctxt R

lemma fun-well-arg[intro]:
assumes Fun f As ∈ wf-pterm R a ∈ set As
shows a ∈ wf-pterm R
using assms wf-pterm.cases by auto
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lemma trs-well-ctxt-arg[intro]:
assumes More f ss1 C ss2 ∈ wf-pterm-ctxt R s ∈ (set ss1 ) ∪ (set ss2 )
shows s ∈ wf-pterm R
using assms wf-pterm-ctxt.cases by blast

lemma trs-well-ctxt-C [intro]:
assumes More f ss1 C ss2 ∈ wf-pterm-ctxt R
shows C ∈ wf-pterm-ctxt R
using assms wf-pterm-ctxt.cases by auto

context no-var-lhs
begin
lemma lhs-is-Fun:

assumes Prule α Bs ∈ wf-pterm R
shows is-Fun (lhs α)
by (metis Inl-inject assms case-prodD is-FunI is-Prule.simps(1 ) is-Prule.simps(3 )

is-VarI
no-var-lhs.no-var-lhs no-var-lhs-axioms term.inject(2 ) wf-pterm.simps)

end

lemma lhs-subst-var-well-def :
assumes ∀ i < length As. As!i ∈ wf-pterm R
shows (〈As〉α) x ∈ wf-pterm R

proof (cases map-of (zip (var-rule α) As) x)
case None
then show ?thesis unfolding mk-subst-def by simp

next
case (Some a)
then have a ∈ set As

by (meson in-set-zipE map-of-SomeD)
with assms Some show ?thesis

unfolding mk-subst-def using in-set-idx by force
qed

lemma lhs-subst-well-def :
assumes ∀ i < length As. As!i ∈ wf-pterm R B ∈ wf-pterm R
shows B · (〈As〉α) ∈ wf-pterm R
using assms proof(induction B arbitrary: As)
case (Var x)
then show ?case using lhs-subst-var-well-def by simp

next
case (Pfun f Bs)
from Pfun(3 ) have ∀ b ∈ set Bs. b ∈ wf-pterm R

by blast
with Pfun show ?case by fastforce

next
case (Prule β Bs)
from Prule(3 ) have ∀ b ∈ set Bs. b ∈ wf-pterm R

29



by blast
moreover have length (map (λt. t · 〈As〉α) Bs) = length (var-rule β)

using Prule(3 ) wf-pterm.simps by fastforce
moreover from Prule(3 ) have to-rule β ∈ R

using Inl-inject sum.distinct(1 ) wf-pterm.cases by force
ultimately show ?case unfolding eval-term.simps(2 ) using Prule

by (simp add: wf-pterm.intros(3 ))
qed

lemma subt-at-is-wf-pterm:
assumes p ∈ poss A and A ∈ wf-pterm R
shows A|-p ∈ wf-pterm R
using assms proof(induct p arbitrary:A)
case (Cons i p)
then obtain f As where a:A = Fun f As and i:i < length As and p:p ∈ poss

(As!i)
using args-poss by blast

with Cons(3 ) have As!i ∈ wf-pterm R
using nth-mem by blast

with Cons.hyps p a show ?case by simp
qed simp

lemma ctxt-of-pos-term-well:
assumes p ∈ poss A and A ∈ wf-pterm R
shows ctxt-of-pos-term p A ∈ wf-pterm-ctxt R
using assms proof(induct p arbitrary:A)
case (Cons i p)
then obtain fs As where a:A = Fun fs As and i:i < length As and p:p ∈ poss

(As!i)
using args-poss by blast

with Cons(3 ) have as:∀ j < length As. As!j ∈ wf-pterm R
using nth-mem by blast

with Cons.hyps p i have IH :ctxt-of-pos-term p (As!i) ∈ wf-pterm-ctxt R
by blast

then show ?case proof(cases fs)
case (Inl α)
from Cons(3 ) have to-rule α ∈ R unfolding a Inl

using wf-pterm.cases by auto
moreover from Cons(3 ) i have length (take i As) + length (drop (Suc i) As)

+ 1 = length (var-rule α)
unfolding a Inl using wf-pterm.cases by force

ultimately show ?thesis
unfolding a ctxt-of-pos-term.simps Inl using as IH wf-pterm-ctxt.intros(3 )

by (metis (no-types, opaque-lifting) UnE in-set-conv-nth in-set-dropD in-set-takeD)
next

case (Inr f )
show ?thesis

unfolding a ctxt-of-pos-term.simps Inr using as IH wf-pterm-ctxt.intros(2 )
by (metis Cons.prems(2 ) UnE a fun-well-arg in-set-dropD in-set-takeD)
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qed
qed simp

Every normal term is a well-defined proof term.
lemma to-pterm-wf-pterm[simp]: to-pterm t ∈ wf-pterm R

by (induction t) (simp-all add: wf-pterm.intros(2 ,3 ))

lemma to-pterm-trs-ctxt:
assumes p ∈ poss (to-pterm s)
shows ctxt-of-pos-term p (to-pterm s) ∈ wf-pterm-ctxt R
by (simp add: assms ctxt-of-pos-term-well)

lemma to-pterm-ctxt-wf-pterm-ctxt:
shows to-pterm-ctxt C ∈ wf-pterm-ctxt R

proof(induct C )
case (More f xs C ys)
then show ?case unfolding to-pterm-ctxt.simps
by (metis Un-iff fun-well-arg to-pterm.simps(2 ) to-pterm-wf-pterm wf-pterm-ctxt.intros(2 ))

qed simp

lemma ctxt-wf-pterm:
assumes A ∈ wf-pterm R and p ∈ poss A

and B ∈ wf-pterm R
shows (ctxt-of-pos-term p A)〈B〉 ∈ wf-pterm R
using assms proof(induct p arbitrary:A)
case (Cons i p)
from Cons(3 ) obtain f As where A:A = Fun f As i < length As p ∈ poss (As!i)

using args-poss by blast
moreover with Cons(2 ) have As!i ∈ wf-pterm R

using nth-mem by blast
ultimately have IH :(ctxt-of-pos-term p (As!i))〈B〉 ∈ wf-pterm R

using Cons.hyps assms(3 ) by presburger
from Cons(2 ) have as:∀ a ∈ set As. a ∈ wf-pterm R

unfolding A by auto
show ?case proof(cases f )

case (Inl α)
from Cons(2 ) have alpha:to-rule α ∈ R

unfolding A Inl using wf-pterm.simps by fastforce
moreover from Cons(2 ) have length As = length (var-rule α)

unfolding A Inl using wf-pterm.simps by fastforce
ultimately show ?thesis
unfolding Inl A ctxt-of-pos-term.simps intp-actxt.simps using wf-pterm.intros(3 )[OF

alpha] IH as A(2 )
by (smt (verit, ccfv-SIG) id-take-nth-drop in-set-conv-nth le-simps(1 ) length-append

list.size(4 ) nth-append-take nth-append-take-drop-is-nth-conv)
next
case (Inr b)
show ?thesis unfolding Inr A ctxt-of-pos-term.simps intp-actxt.simps using

wf-pterm.intros(2 ) IH as A(2 )
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by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc append-take-drop-id in-set-conv-nth
length-append length-nth-simps(2 ) less-imp-le-nat nth-append-take nth-append-take-drop-is-nth-conv)

qed
qed simp

2.4 ’Normal’ Terms vs. Proof Terms
lemma to-pterm-empty: is-empty-step (to-pterm t)
proof (induction t)

case (Fun f ts)
then have list-all is-empty-step (map to-pterm ts) using list-all-iff by force
then show ?case by simp

qed simp

Variables remain unchanged.
lemma vars-to-pterm: vars-term-list (to-pterm t) = vars-term-list t
proof(induction t)

case (Fun f ts)
then have ∗:map vars-term-list ts = map (vars-term-list ◦ to-pterm) ts by simp
show ?case by (simp add: ∗ vars-term-list.simps(2 ))

qed (simp add: vars-term-list.simps(1 ))

lemma poss-list-to-pterm: poss-list t = poss-list (to-pterm t)
proof(induction t)

case (Fun f ts)
then have ∗:map poss-list ts = map (poss-list ◦ to-pterm) ts by simp
show ?case by (simp add: ∗ poss-list.simps(2 ))

qed (simp add: poss-list.simps(1 ))

lemma p-in-poss-to-pterm:
assumes p ∈ poss t
shows p ∈ poss (to-pterm t)
using assms poss-list-to-pterm by (metis poss-list-sound)

lemma var-poss-to-pterm: var-poss t = var-poss (to-pterm t)
proof(induction t)

case (Fun f ts)
then have ∗:map var-poss ts = map (var-poss ◦ to-pterm) ts by simp
then show ?case unfolding var-poss.simps to-pterm.simps

by auto
qed simp

lemma var-poss-list-to-pterm: var-poss-list (to-pterm t) = var-poss-list t
proof(induct t)

case (Fun f ts)
then show ?case unfolding var-poss-list.simps to-pterm.simps

by (metis (no-types, lifting) length-map map-nth-eq-conv nth-mem)
qed simp

to-pterm distributes over application of substitution.
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lemma to-pterm-subst:
to-pterm (t · σ) = (to-pterm t) · (to-pterm ◦ σ)

by (induct t, auto)

to-pterm distributes over context.
lemma to-pterm-ctxt-of-pos-apply-term:

assumes p ∈ poss s
shows to-pterm ((ctxt-of-pos-term p s) 〈t〉) = (ctxt-of-pos-term p (to-pterm

s))〈to-pterm t〉
using assms proof(induct p arbitrary:s)
case (Cons i p)
then obtain f ss where s:s = Fun f ss and i:i < length ss and p:p ∈ poss (ss!i)

using args-poss by blast
then show ?case unfolding s to-pterm.simps ctxt-of-pos-term.simps intp-actxt.simps

using Cons(1 )
by (simp add: drop-map take-map)

qed simp

Linear terms become linear proof terms.
lemma to-pterm-linear :

assumes linear-term t
shows linear-term (to-pterm t)
using assms proof(induction t)
case (Fun f ts)
have ∗:map vars-term ts = map vars-term (map to-pterm ts)

by (metis (mono-tags, lifting) length-map map-nth-eq-conv set-vars-term-list
vars-to-pterm)

with Fun show ?case by auto
qed simp

lemma lhs-subst-trivial:
shows match (to-pterm (lhs α) · 〈As〉α) (to-pterm (lhs α)) = Some 〈As〉α
using match-trivial
by (smt comp-def mem-Collect-eq mk-subst-not-mem set-remdups set-rev set-vars-term-list

subsetI subst-domain-def vars-to-pterm)

lemma to-pterm-ctxt-apply-term:
to-pterm C 〈t〉 = (to-pterm-ctxt C ) 〈to-pterm t〉
by(induct C ) simp-all

2.5 Substitutions
lemma fun-mk-subst[simp]:

assumes ∀ x. f (Var x) = Var x
shows f ◦ (mk-subst Var (zip vs ts)) = mk-subst Var (zip vs (map f ts))

proof−
have ∀ a. f (case map-of (zip vs ts) a of None ⇒ Var a | Some t ⇒ t)

= (case map-of (zip vs ts) a of None ⇒ Var a | Some t ⇒ f t)
using assms by (simp add: option.case-eq-if )
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moreover have ∀ a. (case map-of (zip vs (map f ts)) a of None ⇒ Var a | Some
x ⇒ x)

= (case (map-of (zip vs ts)) a of None ⇒ Var a | Some t ⇒ f t)
by (simp add:zip-map2 map-of-map option.case-eq-if option.map-sel)

ultimately show ?thesis unfolding mk-subst-def unfolding comp-def by auto
qed

lemma apply-lhs-subst-var-rule:
assumes length ts = length (var-rule α)
shows map (〈ts〉α) (var-rule α) = ts
using assms by (simp add: mk-subst-distinct map-nth-eq-conv)

lemma match-lhs-subst:
assumes match B (to-pterm (lhs α)) = Some σ
shows ∃Bs. length Bs = length (var-rule α) ∧

B = (to-pterm (lhs α)) · 〈Bs〉α ∧
(∀ x ∈ set (var-rule α). σ x = (〈Bs〉α) x)

proof−
obtain Bs where Bs:length Bs = length (var-rule α)
∀ i < length (var-rule α). Bs!i = σ ((var-rule α)!i)

using length-map nth-map by blast
then have 2 :(∀ x ∈ set (var-rule α). σ x = (〈Bs〉α) x)

by (smt apply-lhs-subst-var-rule in-set-idx nth-map)
have v:vars-term (to-pterm (lhs α)) = set (var-rule α)

by (metis comp-apply set-remdups set-rev set-vars-term-list vars-to-pterm)
from assms have B = (to-pterm (lhs α)) · σ

using match-matches by blast
also have . . . = (to-pterm (lhs α)) · 〈Bs〉α

by (intro term-subst-eq, insert 2 v, auto)
finally show ?thesis using Bs 2 by auto

qed

lemma apply-subst-wf-pterm:
assumes A ∈ wf-pterm R

and ∀ x ∈ vars-term A. σ x ∈ wf-pterm R
shows A · σ ∈ wf-pterm R
using assms proof(induct A)
case (2 ts f )
{fix t assume t:t ∈ set ts

with 2 (2 ) have (∀ x∈vars-term t. σ x ∈ wf-pterm R)
by (meson term.set-intros(4 ))

with t 2 (1 ) have t · σ ∈ wf-pterm R
by blast

}
then show ?case unfolding eval-term.simps by (simp add: wf-pterm.intros(2 ))

next
case (3 α As)
{fix a assume a:a ∈ set As

with 3 (4 ) have (∀ x∈vars-term a. σ x ∈ wf-pterm R)
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by (meson term.set-intros(4 ))
with a 3 (3 ) have a · σ ∈ wf-pterm R

by blast
}
with 3 (1 ,2 ) show ?case unfolding eval-term.simps by (simp add: wf-pterm.intros(3 ))

qed simp

lemma subst-well-def :
assumes B ∈ wf-pterm R A · σ = B x ∈ vars-term A
shows σ x ∈ wf-pterm R
using assms by (metis (no-types, lifting) poss-imp-subst-poss eval-term.simps(1 )

subt-at-is-wf-pterm subt-at-subst vars-term-poss-subt-at)

lemma lhs-subst-args-wf-pterm:
assumes to-pterm (lhs α) · 〈As〉α ∈ wf-pterm R and length As = length (var-rule

α)
shows ∀ a ∈ set As. a ∈ wf-pterm R

proof−
from assms have map (〈As〉α) (var-rule α) = As

using apply-lhs-subst-var-rule by blast
with assms show ?thesis

by (smt comp-apply in-set-idx map-nth-eq-conv nth-mem set-remdups set-rev
set-vars-term-list subst-well-def vars-to-pterm)
qed

lemma match-well-def :
assumes B ∈ wf-pterm R match B A = Some σ
shows ∀ i < length (vars-distinct A). σ ((vars-distinct A) ! i) ∈ wf-pterm R
using assms subst-well-def match-matches
by (smt comp-apply nth-mem set-remdups set-rev set-vars-term-list)

lemma subst-imp-well-def :
assumes A · σ ∈ wf-pterm R
shows A ∈ wf-pterm R
using assms proof(induct A)
case (Pfun f As)
{fix i assume i:i < length As

with Pfun(2 ) have (As!i) · σ ∈ wf-pterm R
by auto

with Pfun(1 ) i have As!i ∈ wf-pterm R
by simp

}
then show ?case using wf-pterm.intros(2 )

by (metis in-set-idx)
next

case (Prule α As)
{fix i assume i:i < length As

with Prule(2 ) have (As!i) · σ ∈ wf-pterm R
by auto
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with Prule(1 ) i have As!i ∈ wf-pterm R
by simp

}
moreover from Prule(2 ) have to-rule α ∈ R length As = length (var-rule α)

using wf-pterm.cases by force+
ultimately show ?case using wf-pterm.intros(3 ) Prule(2 )

by (metis in-set-idx)
qed simp

lemma lhs-subst-var-i:
assumes x = (var-rule α)!i and i < length (var-rule α) and i < length As
shows (〈As〉α) x = As!i
using assms mk-subst-distinct distinct-remdups by (metis comp-apply distinct-rev)

lemma lhs-subst-not-var-i:
assumes ¬(∃ i < length As. i < length (var-rule α) ∧ x = (var-rule α)!i)
shows (〈As〉α) x = Var x
using assms proof(rule contrapos-np)
{assume (〈As〉α) x 6= Var x

then obtain i where i < length (zip (var-rule α) As) and (var-rule α)!i = x
unfolding mk-subst-def by (smt assms imageE in-set-zip map-of-eq-None-iff

option.case-eq-if )
then show ∃ i<length As. i < length (var-rule α) ∧ x = var-rule α ! i

by auto
}

qed

lemma lhs-subst-upd:
assumes length ss1 < length (var-rule α)
shows ((〈ss1 @ t # ss2 〉α) ((var-rule α)!(length ss1 ) := s)) = 〈ss1 @ s # ss2 〉α

proof
fix x
show ((〈ss1 @ t # ss2 〉α)(var-rule α ! length ss1 := s)) x = (〈ss1 @ s # ss2 〉α)

x proof(cases x = (var-rule α)!(length ss1 ))
case True
with assms have ((〈ss1 @ t # ss2 〉α)(var-rule α ! length ss1 := s)) x = s

by simp
moreover from assms have (〈ss1 @ s # ss2 〉α) x = s unfolding True

by (smt (verit, del-insts) add.commute add-Suc-right le-add-same-cancel2
le-imp-less-Suc length-append length-nth-simps(2 ) lhs-subst-var-i nth-append-length
zero-order(1 ))

ultimately show ?thesis by simp
next

case False
then show ?thesis
by (smt (verit, del-insts) append-Cons-nth-not-middle fun-upd-apply length-append

length-nth-simps(2 ) lhs-subst-not-var-i lhs-subst-var-i)
qed

qed
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lemma eval-lhs-subst:
assumes l:length (var-rule α) = length As
shows (to-pterm (lhs α)) · 〈As〉α · σ = (to-pterm (lhs α)) · 〈map (λa. a · σ)

As〉α
proof−

{fix x assume x ∈ vars-term (to-pterm (lhs α))
then obtain i where i:i < length (var-rule α) (var-rule α) !i = x
using vars-to-pterm by (metis in-set-conv-nth set-vars-term-list vars-term-list-vars-distinct)

with l have (〈As〉α) x = As!i
by (metis lhs-subst-var-i)

then have 1 :(〈As〉α ◦s σ) x = As!i · σ
unfolding subst-compose-def by simp

from i l have (〈map (λa. a · σ) As〉α) x = map (λa. a · σ) As ! i
using lhs-subst-var-i by (metis length-map)

with 1 i l have (〈As〉α ◦s σ) x = (〈map (λa. a · σ) As〉α) x by simp
}
then show ?thesis

by (smt (verit, ccfv-SIG) eval-same-vars-cong subst-subst-compose)
qed

lemma var-rule-pos-subst:
assumes i < length (var-rule α) length ss = length (var-rule α)

and p ∈ poss (lhs α) Var ((var-rule α)!i) = (lhs α)|-p
shows lhs α · 〈ss〉α |- (p@q) = (ss!i)|-q

proof−
from assms(1 ,2 ) have (〈ss〉α) ((var-rule α)!i) = ss!i

using lhs-subst-var-i by force
with assms(3 ,4 ) show ?thesis by auto

qed

lemma lhs-subst-var-rule:
assumes vars-term t ⊆ vars-term (lhs α)
shows t · 〈map σ (var-rule α)〉α = t · σ
using assms by (smt (verit, ccfv-SIG) apply-lhs-subst-var-rule comp-apply length-map

map-eq-conv set-remdups set-rev set-vars-term-list subsetD term-subst-eq-conv)

2.6 Contexts
lemma match-lhs-context:

assumes i < length (vars-term-list t) ∧ p = (var-poss-list t)!i
and linear-term t
and match (((ctxt-of-pos-term p (t · σ)))〈B〉) t = Some τ

shows map τ (vars-term-list t) = (map σ (vars-term-list t))[i := B]
proof−

from assms have (ctxt-of-pos-term p (t · σ))〈B〉 = t · (σ(vars-term-list t!i :=
B))

using ctxt-apply-term-subst by blast
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with assms(3 ) have ∗:(∀ x∈vars-term t. (σ(vars-term-list t!i := B)) x = τ x)
using match-complete ′ by (metis option.inject)

from assms(2 ) have distinct (vars-term-list t)
by (metis distinct-remdups distinct-rev linear-term-var-vars-term-list o-apply)

with ∗ assms(1 ) show ?thesis
by (smt (verit, ccfv-threshold) fun-upd-other fun-upd-same length-list-update

length-map map-nth-eq-conv nth-eq-iff-index-eq nth-list-update nth-mem set-vars-term-list)
qed

lemma ctxt-lhs-subst:
assumes i:i < length (var-poss-list (lhs α)) and l:length As = length (var-rule

α)
and p1 :p1 = var-poss-list (lhs α) ! i and lin:linear-term (lhs α)
and p2 ∈ poss (As!i)

shows (ctxt-of-pos-term (p1 @ p2 ) (to-pterm (lhs α) · 〈As〉α))〈A〉 =
(to-pterm (lhs α)) · 〈take i As @ (ctxt-of-pos-term p2 (As!i))〈A〉 # drop

(Suc i) As〉α
proof−

have l2 :length (var-poss-list (lhs α)) = length (var-rule α)
using lin by (metis length-var-poss-list linear-term-var-vars-term-list)

from p1 i have p1-pos:p1 ∈ poss (to-pterm (lhs α))
by (metis nth-mem var-poss-imp-poss var-poss-list-sound var-poss-to-pterm)

have sub:(to-pterm (lhs α))|-p1 = Var (vars-term-list (lhs α)!i)
by (metis i length-var-poss-list p1 var-poss-list-to-pterm vars-term-list-var-poss-list

vars-to-pterm)
have ∗∗: (to-pterm (lhs α) · 〈As〉α)|-p1 = As!i

unfolding subt-at-subst[OF p1-pos] sub eval-term.simps using i l l2 by (metis
lhs-subst-var-i lin linear-term-var-vars-term-list)
then have ∗:(ctxt-of-pos-term (p1 @ p2 ) (to-pterm (lhs α) · 〈As〉α)) = ((ctxt-of-pos-term

p1 (to-pterm (lhs α))) ·c 〈As〉α) ◦c (ctxt-of-pos-term p2 (As!i))
using ctxt-of-pos-term-append ctxt-of-pos-term-subst by (metis p1-pos poss-imp-subst-poss)

show ?thesis
by (smt (verit, ccfv-threshold) ∗ ∗∗ ctxt-ctxt-compose

ctxt-subst-apply lhs-subst-upd append-Cons-nth-not-middle
i id-take-nth-drop l l2 less-imp-le-nat lin linear-term-var-vars-term-list
nth-append-take p1-pos sub to-pterm-linear
ctxt-of-pos-term-append ctxt-supt-id eval-term.simps(1 ) poss-imp-subst-poss
replace-at-append-subst subt-at-subst)

qed

lemma ctxt-rule-obtain-pos:
assumes iq:i#q ∈ poss (Prule α As)

and p-pos:p ∈ poss (source (Prule α As))
and ctxt:source-ctxt (ctxt-of-pos-term (i#q) (Prule α As)) = ctxt-of-pos-term

p (source (Prule α As))
and lin:linear-term (lhs α)
and l:length As = length (var-rule α)

shows ∃ p1 p2 . p = p1@p2 ∧ p1 = var-poss-list (lhs α)!i ∧ p2 ∈ poss (source
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(As!i))
proof−

from iq have i:i < length As
by simp

let ?p1=var-poss-list (lhs α)!i
have p1 :(var-poss-list (lhs α) ! length (take i As)) = ?p1

using i by fastforce
have p1-pos:?p1 ∈ poss (lhs α)

by (metis i l length-var-poss-list lin linear-term-var-vars-term-list nth-mem
var-poss-imp-poss var-poss-list-sound)
then have ∗:source-ctxt (ctxt-of-pos-term (i # q) (Prule α As)) = ((ctxt-of-pos-term

?p1 (lhs α)) ·c 〈map source (take i As @ Var (vars-term-list (lhs α) ! length (take
i As)) # drop (Suc i) As)〉α) ◦c

source-ctxt (ctxt-of-pos-term q (As ! i))
unfolding ctxt-of-pos-term.simps source-ctxt.simps Let-def p1 by (simp add:

ctxt-of-pos-term-subst)
from ctxt have ?p1 ≤p p
unfolding ∗ using p1-pos p-pos unfolding source.simps using ctxt-subst-comp-pos

by blast
then obtain p2 where p:p = ?p1@p2

using less-eq-pos-def by force
have (lhs α)|-?p1 = Var (vars-term-list (lhs α) !i)

by (metis i l lin linear-term-var-vars-term-list vars-term-list-var-poss-list)
moreover have Var (vars-term-list (lhs α) !i) · 〈map source As〉α = source

(As!i)
unfolding eval-term.simps using lhs-subst-var-i i l by (smt (verit, best)

length-map lin linear-term-var-vars-term-list nth-map)
ultimately have p2 ∈ poss (source (As!i))

using p-pos unfolding p using p1-pos by auto
with p show ?thesis by simp

qed

2.7 Source and Target
lemma source-empty-step:

assumes is-empty-step t
shows to-pterm (source t) = t

using assms by (induction t) (simp-all add: list-all-length map-nth-eq-conv)

lemma empty-coinitial:
shows co-initial A t =⇒ is-empty-step t =⇒ to-pterm (source A) = t
by (simp add: source-empty-step)

lemma source-to-pterm[simp]: source (to-pterm t) = t
by (induction t) (simp-all add: map-nth-eq-conv)

lemma target-to-pterm[simp]: target (to-pterm t) = t
by (induction t) (simp-all add: map-nth-eq-conv)

39



lemma vars-term-source:
assumes A ∈ wf-pterm R
shows vars-term A = vars-term (source A)
using assms proof(induct A)
case (3 α As)
show ?case proof

{fix x assume x ∈ vars-term (Prule α As)
then obtain i where i:i < length As x ∈ vars-term (As!i)

by (metis term.sel(4 ) var-imp-var-of-arg)
from i(1 ) 3 (2 ) obtain j where j:j < length (vars-term-list (lhs α)) vars-term-list

(lhs α)!j = var-rule α !i
by (metis comp-apply in-set-idx nth-mem set-remdups set-rev)

let ?p=(var-poss-list (lhs α)!j)
from j have p:?p ∈ poss (lhs α)
by (metis in-set-conv-nth length-var-poss-list var-poss-imp-poss var-poss-list-sound)

with 3 (2 ) i(1 ) j have source (Prule α As) |- ?p = source (As!i)
using mk-subst-distinct unfolding source.simps

by (smt (verit, best) comp-apply distinct-remdups distinct-rev filter-cong
length-map map-nth-conv mk-subst-same eval-term.simps(1 ) subt-at-subst vars-term-list-var-poss-list)

with 3 (3 ) have x ∈ vars-term (source (Prule α As))
unfolding source.simps using vars-term-subt-at p
by (smt (verit, ccfv-SIG) i nth-mem poss-imp-subst-poss subsetD)

}
then show vars-term (Prule α As) ⊆ vars-term (source (Prule α As))

by blast
{fix x assume x ∈ vars-term (source (Prule α As))

then obtain y where y:y ∈ vars-term (lhs α) x ∈ vars-term ((〈map source
As〉α) y)

using vars-term-subst by force
then obtain i where i:i < length (var-rule α) y = var-rule α!i

by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)
with y(2 ) 3 (2 ) have x ∈ vars-term (source (As!i))

by (simp add: mk-subst-distinct)
with 3 i(1 ) have x ∈ vars-term (Prule α As)

by (metis nth-mem term.set-intros(4 ))
}
then show vars-term (source (Prule α As)) ⊆ vars-term (Prule α As)

by blast
qed

qed auto

context var-rhs-subset-lhs
begin
lemma vars-term-target:

assumes A ∈ wf-pterm R
shows vars-term (target A) ⊆ vars-term A
using assms proof(induct A)
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case (3 α As)
show ?case proof
fix x assume x ∈ vars-term (target (Prule α As))

then obtain y where y:y ∈ vars-term (rhs α) x ∈ vars-term ((〈map target
As〉α) y)

using vars-term-subst by force
then have y ∈ vars-term (lhs α)

using 3 .hyps(1 ) varcond by auto
then obtain i where i:i < length (var-rule α) y = var-rule α!i

by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)
with y(2 ) 3 (2 ) have x ∈ vars-term (target (As!i))

by (simp add: mk-subst-distinct)
with 3 i(1 ) show x ∈ vars-term (Prule α As)

by fastforce
qed

qed auto
end

lemma linear-source-imp-linear-pterm:
assumes A ∈ wf-pterm R linear-term (source A)
shows linear-term A
using assms proof(induct A)
case (2 As f )
then show ?case unfolding source.simps linear-term.simps using vars-term-source
by (smt (verit, ccfv-SIG) in-set-idx length-map map-equality-iff nth-map nth-mem)

next
case (3 α As)
{fix a assume a:a ∈ set As

with 3 (2 ) obtain i where i:i < length (var-rule α) As!i = a
by (metis in-set-idx)

let ?x=var-rule α ! i
from i have ?x ∈ vars-term (lhs α)

by (metis comp-apply nth-mem set-remdups set-rev set-vars-term-list)
then obtain p where p ∈ poss (lhs α) lhs α |-p = Var ?x

by (meson vars-term-poss-subt-at)
then have source (Prule α As) D source a

unfolding source.simps using lhs-subst-var-i[of ?x α i As] i 3 (2 )
by (smt (verit, best) ‹var-rule α ! i ∈ vars-term (lhs α)› apply-lhs-subst-var-rule

eval-term.simps(1 ) length-map map-nth-conv supteq-subst vars-term-supteq)
then have linear-term (source a)

using 3 (4 ) by (metis subt-at-linear supteq-imp-subt-at)
with 3 (3 ) a have linear-term a by simp

}
moreover have is-partition (map vars-term As) proof−

{fix i j assume i:i < length As and j:j < length As and ij:i 6= j
let ?x=var-rule α ! i and ?y=var-rule α ! j
from i j ij 3 (2 ) have xy:?x 6= ?y

by (simp add: nth-eq-iff-index-eq)
from i 3 (2 ) have ?x ∈ vars-term (lhs α)

41



by (metis comp-apply nth-mem set-remdups set-rev set-vars-term-list)
then obtain p where p:p ∈ poss (lhs α) lhs α |-p = Var ?x

by (meson vars-term-poss-subt-at)
from j 3 (2 ) have ?y ∈ vars-term (lhs α)

by (metis comp-apply nth-mem set-remdups set-rev set-vars-term-list)
then obtain q where q:q ∈ poss (lhs α) lhs α |-q = Var ?y

by (meson vars-term-poss-subt-at)
from xy p q have p ⊥ q

using less-eq-pos-def parallel-pos by auto
moreover have source (Prule α As) |-p = source (As!i)
unfolding source.simps by (metis (mono-tags, lifting) 3 .hyps(2 ) eval-term.simps(1 )

i length-map lhs-subst-var-i nth-map p subt-at-subst)
moreover have source (Prule α As) |-q = source (As!j)
unfolding source.simps by (metis (mono-tags, lifting) 3 .hyps(2 ) eval-term.simps(1 )

j length-map lhs-subst-var-i nth-map q subt-at-subst)
ultimately have vars-term (source (As!i)) ∩ vars-term (source (As!j)) = {}

using 3 (4 ) by (metis linear-subterms-disjoint-vars p(1 ) poss-imp-subst-poss
q(1 ) source.simps(3 ))

then have vars-term (As!i) ∩ vars-term (As!j) = {}
using vars-term-source 3 (3 ) i j using nth-mem by blast

}
then show ?thesis

unfolding is-partition-alt is-partition-alt-def by simp
qed

ultimately show ?case unfolding source.simps linear-term.simps by simp
qed simp

context var-rhs-subset-lhs
begin
lemma target-apply-subst:

assumes A ∈ wf-pterm R
shows target (A · σ) = (target A) · (target ◦ σ)

using assms(1 ) proof(induct A)
case (2 ts f )
then have (map target (map (λt. t · σ) ts)) = (map (λt. t · (target ◦ σ)) (map

target ts))
unfolding map-map o-def by auto

then show ?case unfolding eval-term.simps target.simps by simp
next

case (3 α As)
have id:∀ x ∈ vars-term (rhs α). (〈map (target ◦ (λt. t · σ)) As〉α) x = (〈map

target As〉α ◦s (target ◦ σ)) x
proof−

have vars:vars-term (rhs α) ⊆ set (var-rule α)
using 3 (1 ) varcond by auto

{ fix i assume i:i < length (var-rule α)
with 3 have (〈map (target ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) = target

((As!i) · σ)
by (simp add: mk-subst-distinct)
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also have ... = target (As!i) · (target ◦ σ)
using 3 i by (metis nth-mem)

also have ... = (〈map target As〉α ◦s (target ◦ σ)) ((var-rule α)!i)
using 3 i unfolding subst-compose-def by (simp add: mk-subst-distinct)

finally have (〈map (target ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) = (〈map target
As〉α ◦s (target ◦ σ)) ((var-rule α)!i) .

} with vars show ?thesis by (smt (z3 ) in-mono in-set-conv-nth)
qed

have target ((Prule α As) · σ) = (rhs α) · 〈map (target ◦ (λt. t · σ)) As〉α
unfolding eval-term.simps(2 ) by simp

also have ... = (rhs α) · (〈map target As〉α ◦s (target ◦ σ))
using id by (meson term-subst-eq)

also have ... = (target (Prule α As)) · (target ◦ σ) by simp
finally show ?case .

qed simp
end

context var-rhs-subset-lhs
begin
lemma tgt-subst-simp:
assumes A ∈ wf-pterm R

shows target (A · σ) = target ((to-pterm (target A)) · σ)
by (metis assms target-apply-subst target-to-pterm to-pterm-wf-pterm)

end

lemma target-empty-apply-subst:
assumes is-empty-step t
shows target (t · σ) = (target t) · (target ◦ σ)

using assms proof(induction t)
case (Var x)
then show ?case by (metis comp-apply eval-term.simps(1 ) target.simps(1 ))

next
case (Pfun f As)
from Pfun(2 ) have ∀ a ∈ set As. is-empty-step a

by (simp add: Ball-set-list-all)
with Pfun(1 ) show ?case by simp

next
case (Prule α As)
then show ?case

using is-empty-step.simps(3 ) by blast
qed

lemma source-ctxt-comp:source-ctxt (C1 ◦c C2 ) = source-ctxt C1 ◦c source-ctxt
C2

by(induct C1 ) (simp-all add:ctxt-monoid-mult.mult-assoc)

lemma context-source: source (A〈B〉) = source (A〈to-pterm (source B)〉)
proof(induct A rule:actxt.induct)

case (More f ss1 A ss2 )
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then show ?case by(cases f ) simp-all
qed simp

lemma context-target: target (A〈B〉) = target (A〈to-pterm (target B)〉)
proof(induct A rule:actxt.induct)

case (More f ss1 A ss2 )
then show ?case by(cases f ) simp-all

qed simp

lemma source-to-pterm-ctxt:
source ((to-pterm-ctxt C )〈A〉) = C 〈source A〉
by (metis context-source source-to-pterm to-pterm-ctxt-apply-term)

lemma target-to-pterm-ctxt:
target ((to-pterm-ctxt C )〈A〉) = C 〈target A〉
by (metis context-target target-to-pterm to-pterm-ctxt-apply-term)

lemma source-ctxt-to-pterm:
assumes p ∈ poss s
shows source-ctxt (ctxt-of-pos-term p (to-pterm s)) = ctxt-of-pos-term p s

using assms proof(induct p arbitrary:s)
case (Cons i p)
then obtain f ss where s:s = Fun f ss and i < length ss and p ∈ poss (ss!i)

using args-poss by blast
then show ?case

unfolding s to-pterm.simps ctxt-of-pos-term.simps source-ctxt.simps using
Cons(1 )

by (smt (verit, best) drop-map nth-map source.simps(2 ) source-to-pterm take-map
term.inject(2 ) to-pterm.simps(2 ))
qed simp

lemma to-pterm-ctxt-at-pos:
assumes p ∈ poss s
shows ctxt-of-pos-term p (to-pterm s) = to-pterm-ctxt (ctxt-of-pos-term p s)

using assms proof(induct p arbitrary:s)
case (Cons i p)
then obtain f ss where s:s = Fun f ss

using args-poss by blast
with Cons show ?case

using drop-map s take-map by force
qed simp

lemma to-pterm-ctxt-hole-pos: hole-pos C = hole-pos (to-pterm-ctxt C )
by(induct C ) simp-all

lemma source-to-pterm-ctxt ′:
assumes q ∈ poss s
shows source-ctxt (to-pterm-ctxt (ctxt-of-pos-term q s)) = ctxt-of-pos-term q s

using assms proof(induct q arbitrary: s)
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case (Cons i q)
then obtain f ss where s:s = Fun f ss and i:i < length ss

by (meson args-poss)
with Cons have IH :source-ctxt (to-pterm-ctxt (ctxt-of-pos-term q (ss!i))) =

ctxt-of-pos-term q (ss!i)
by auto

with i show ?case unfolding s ctxt-of-pos-term.simps to-pterm-ctxt.simps source-ctxt.simps
using source-to-pterm by (metis source.simps(2 ) term.sel(4 ) to-pterm.simps(2 ))

qed simp

lemma to-pterm-ctxt-comp: to-pterm-ctxt (C ◦c D) = to-pterm-ctxt C ◦c to-pterm-ctxt
D

by(induct C ) simp-all

lemma source-apply-subst:
assumes A ∈ wf-pterm R
shows source (A · σ) = (source A) · (source ◦ σ)

using assms proof(induct A)
case (3 α As)
have id:∀ x ∈ vars-term (lhs α). (〈map (source ◦ (λt. t · σ)) As〉α) x = (〈map

source As〉α ◦s (source ◦ σ)) x
proof−

have vars:vars-term (lhs α) = set (var-rule α) by simp
{ fix i assume i:i < length (var-rule α)

with 3 have (〈map (source ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) = source
((As!i) · σ)

by (simp add: mk-subst-distinct)
also have ... = source (As!i) · (source ◦ σ)

using 3 i by (metis nth-mem)
also have ... = (〈map source As〉α ◦s (source ◦ σ)) ((var-rule α)!i)

using 3 i unfolding subst-compose-def by (simp add: mk-subst-distinct)
finally have (〈map (source ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) = (〈map

source As〉α ◦s (source ◦ σ)) ((var-rule α)!i) .
} with vars show ?thesis by (metis in-set-idx)

qed
have source ((Prule α As) · σ) = (lhs α) · 〈map (source ◦ (λt. t · σ)) As〉α

unfolding eval-term.simps(2 ) by simp
also have ... = (lhs α) · (〈map source As〉α ◦s (source ◦ σ))

using id by (meson term-subst-eq)
also have ... = (source (Prule α As)) · (source ◦ σ) by simp
finally show ?case .

qed simp-all

lemma ctxt-of-pos-term-at-var-subst:
assumes linear-term t

and p ∈ poss t and t|-p = Var x
and ∀ y ∈ vars-term t. y 6= x −→ τ y = σ y

shows ctxt-of-pos-term p (t · τ) = ctxt-of-pos-term p (t · σ)
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using assms proof(induct t arbitrary:p)
case (Fun f ts)
from Fun(3 ,4 ) obtain i p ′ where p:p = i#p ′ and i:i < length ts and p ′:p ′ ∈

poss (ts!i)
by auto

with Fun(4 ) have x:ts!i |-p ′ = Var x
by simp

{fix j assume j:j < length ts j 6= i
from Fun(2 ) have x /∈ vars-term (ts!j)
by (metis i j p ′ subset-eq term.set-intros(3 ) var-in-linear-args vars-term-subt-at

x)
with Fun(5 ) j have ts!j · τ = ts!j · σ

by (metis (no-types, lifting) nth-mem term.set-intros(4 ) term-subst-eq)
then have (map (λt. t · τ) ts)!j = (map (λt. t · σ) ts)!j

by (simp add: j)
}note args=this
from args have args1 :take i (map (λt. t · τ) ts) = take i (map (λt. t · σ) ts)

using nth-take-lemma[of i (map (λt. t · τ) ts) (map (λt. t · σ) ts)] i by simp
from args have args2 :drop (Suc i) (map (λt. t · τ) ts) = drop (Suc i) (map (λt.

t · σ) ts)
using nth-drop-equal[of (map (λt. t · τ) ts) (map (λt. t · σ) ts) Suc i] i by

simp
from Fun(1 ,2 ,5 ) i have IH :ctxt-of-pos-term p ′ ((ts!i) · τ) = ctxt-of-pos-term p ′

((ts!i) · σ)
by (simp add: p ′ x)

with args1 args2 show ?case
unfolding p eval-term.simps ctxt-of-pos-term.simps by (simp add: i)

qed simp

context left-lin
begin

lemma source-ctxt-apply-subst:
assumes C ∈ wf-pterm-ctxt R
shows source-ctxt (C ·c σ) = (source-ctxt C ) ·c (source ◦ σ)

using assms proof(induct C )
case (2 ss1 ss2 C f )
then show ?case

unfolding source-ctxt.simps actxt.simps 2 using source-apply-subst by auto
next

case (3 α ss1 ss2 C )
let ?p=(var-poss-list (lhs α) ! length ss1 )
let ?x=(vars-term-list (lhs α) ! length ss1 )
have var-at-p:(lhs α)|-?p = Var ?x

by (metis 3 .hyps(2 ) add-lessD1 length-remdups-leq length-rev less-add-one
o-apply order-less-le-trans vars-term-list-var-poss-list)

from 3 (2 ) have pos1 :?p ∈ poss (lhs α)
by (metis add-lessD1 comp-apply length-remdups-leq length-rev length-var-poss-list

less-add-one nth-mem order-less-le-trans var-poss-imp-poss var-poss-list-sound)
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then have pos:?p ∈ poss (lhs α · 〈map source (ss1 @ Var (vars-term-list (lhs α)
! length ss1 ) # ss2 )〉α)

using poss-imp-subst-poss by blast
have lin:linear-term (lhs α)

using 3 (1 ) left-lin using left-linear-trs-def by fastforce
{fix y assume y ∈ vars-term (lhs α) and x:y 6= ?x

then obtain i where i:i < length (var-rule α) var-rule α ! i = y
by (metis in-set-idx lin linear-term-var-vars-term-list set-vars-term-list)

with x consider i < length ss1 | i > length ss1 ∧ i < length (var-rule α)
using lin linear-term-var-vars-term-list nat-neq-iff by fastforce

then have (〈map source (map (λt. t · σ) ss1 @ Var ?x # map (λt. t · σ)
ss2 )〉α) y = ((〈map source (ss1 @ Var ?x # ss2 )〉α) y) · (source ◦ σ)

proof(cases)
case 1
with i have (〈map source (map (λt. t · σ) ss1 @ Var ?x # map (λt. t · σ)

ss2 )〉α) y = source ((ss1 !i) · σ)
by (smt (z3 ) 3 .hyps(2 ) One-nat-def add.right-neutral add-Suc-right ap-

pend-Cons-nth-left comp-apply distinct-remdups distinct-rev length-append length-map
length-nth-simps(2 ) map-nth-eq-conv mk-subst-same)

moreover from i 1 have (〈map source (ss1 @ Var ?x # ss2 )〉α) y = source
(ss1 !i)

by (smt (verit, ccfv-threshold) 3 .hyps(2 ) One-nat-def ab-semigroup-add-class.add-ac(1 )
append-Cons-nth-left comp-apply distinct-remdups distinct-rev length-append length-map
list.size(4 ) map-nth-eq-conv mk-subst-distinct)

moreover have ss1 !i ∈ wf-pterm R
using 3 (3 ) 1 by (meson UnCI nth-mem)

ultimately show ?thesis
using source-apply-subst by auto

next
case 2
let ?i=i − ((length ss1 )+1 )
have i ′:?i < length ss2

using 3 (2 ) 2 by (simp add: less-diff-conv2 )
have i1 :(map source (map (λt. t · σ) ss1 @ Var ?x # map (λt. t · σ) ss2 ))!i

= source ((ss2 !?i) · σ) proof−
have i ′′:i = length (map source (map (λt. t · σ) ss1 @ [Var ?x])) + ?i

unfolding length-append length-map using 2 by force
show ?thesis unfolding map-append list.map

using i ′ i ′′ nth-append-length-plus[of (map source (map (λt. t · σ) ss1 @
[Var (vars-term-list (lhs α) ! length ss1 )])) map source (map (λt. t · σ) ss2 )]

by (smt (verit, del-insts) Cons-eq-appendI append-Nil append-assoc
length-map list.simps(9 ) map-append nth-map)

qed
have i2 :map source (ss1 @ Var ?x # ss2 ) ! i = source (ss2 !?i) proof−

have i ′′:i = length (map source (ss1 @ [Var ?x])) + ?i
unfolding length-append length-map using 2 by force

show ?thesis unfolding map-append list.map
using i ′ i ′′ nth-append-length-plus[of (map source (ss1 @ [Var (vars-term-list

(lhs α) ! length ss1 )])) map source ss2 ]
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by (smt (verit, del-insts) append.left-neutral append-Cons append-assoc
length-map list.simps(9 ) map-append nth-map)

qed
from i1 2 have (〈map source (map (λt. t · σ) ss1 @ Var ?x # map (λt. t ·

σ) ss2 )〉α) y = source ((ss2 !?i) · σ)
by (smt (verit, ccfv-threshold) 3 .hyps(2 ) One-nat-def ab-semigroup-add-class.add-ac(1 )

comp-def distinct-remdups distinct-rev i(2 ) length-append length-map list.size(4 )
mk-subst-distinct)

moreover from i2 2 have (〈map source (ss1 @ Var ?x # ss2 )〉α) y = source
(ss2 !?i)

by (metis (no-types, opaque-lifting) 3 .hyps(2 ) One-nat-def add.right-neutral
add-Suc-right comp-apply distinct-remdups distinct-rev i(2 ) length-append length-map
length-nth-simps(2 ) mk-subst-distinct)

moreover have ss2 !?i ∈ wf-pterm R
using 3 (3 ) 2 ‹?i < length ss2 › by (metis UnCI nth-mem)

ultimately show ?thesis
using source-apply-subst by auto

qed
}
then have ctxt-of-pos-term ?p (lhs α · 〈map source (map (λt. t · σ) ss1 @ Var

?x # map (λt. t · σ) ss2 )〉α) =
ctxt-of-pos-term ?p (lhs α · 〈map source (ss1 @ Var ?x # ss2 )〉α · (source

◦ σ))
using ctxt-of-pos-term-at-var-subst[OF lin pos1 var-at-p] unfolding subst-subst

by (smt (verit) subst-compose)
then show ?case unfolding source-ctxt.simps actxt.simps Let-def 3 subst-compose-ctxt-compose-distrib

length-map ctxt-of-pos-term-subst[OF pos, symmetric]
by presburger

qed simp

Needs left-linearity to avoid multihole contexts.
lemma source-ctxt-apply-term:

assumes C ∈ wf-pterm-ctxt R
shows source (C 〈A〉) = (source-ctxt C )〈source A〉

using assms proof(induct C )
case (3 α ss1 ss2 C )
from 3 (1 ) left-lin have lin:linear-term (lhs α)

using left-linear-trs-def by fastforce
from 3 (2 ) have len:length ss1 < length (vars-term-list (lhs α))

by (metis add-lessD1 less-add-one lin linear-term-var-vars-term-list)
have (source-ctxt (Crule α ss1 C ss2 ))〈source A〉 =

lhs α · 〈(map source ss1 ) @ (source-ctxt C )〈source A〉 # (map source ss2 )〉α
unfolding source-ctxt.simps Let-def intp-actxt.simps source.simps ctxt-ctxt-compose
using ctxt-apply-term-subst[OF lin len] lhs-subst-upd
by (smt (verit) len length-map lin linear-term-var-vars-term-list list.simps(9 )

map-append)
with 3 (5 ) show ?case by simp

qed simp-all
end

48



lemma rewrite-tgt:
assumes rstep:(t,v) ∈ (rstep R)∗

shows (target (C 〈(to-pterm t) · σ〉), target (C 〈(to-pterm v) · σ〉)) ∈ (rstep R)∗

proof(induct C )
case Hole
then show ?case
by (simp add: local.rstep rsteps-closed-subst target-empty-apply-subst to-pterm-empty)

next
case (Cfun f ss1 C ss2 )
then show ?case by (simp add: ctxt-closed-one ctxt-closed-rsteps)

next
case (Crule α ss1 C ss2 )
{fix x assume x ∈ vars-term (rhs α)

from Crule have ((〈map target (ss1 @ C 〈to-pterm t · σ〉 # ss2 )〉α) x, (〈map
target (ss1 @ C 〈to-pterm v · σ〉 # ss2 )〉α) x) ∈ (rstep R)∗

proof(cases x ∈ vars-term (lhs α))
case True
then obtain i where i < length (vars-distinct (lhs α)) x = vars-distinct (lhs

α)!i
by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)

then show ?thesis using Crule
by (smt (z3 ) append-Cons-nth-not-middle length-append length-map length-nth-simps(2 )

lhs-subst-not-var-i lhs-subst-var-i map-nth-eq-conv nth-append-length rtrancl.simps)

next
case False
then show ?thesis

by (simp add: mk-subst-not-mem)
qed

}
then show ?case by (simp add: subst-rsteps-imp-rsteps)

qed

2.8 Additional Results
lemma length-args-well-Prule:

assumes Prule α As ∈ wf-pterm R Prule α Bs ∈ wf-pterm S
shows length As = length Bs

proof−
from assms(1 ) have length As = length (var-rule α) using wf-pterm.simps by

fastforce
moreover from assms(2 ) have length Bs = length (var-rule α) using wf-pterm.simps

by fastforce
ultimately show ?thesis by simp

qed

lemma co-initial-Var :
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assumes co-initial (Var x) B
shows B = Var x ∨ (∃α b ′ y. B = Prule α b ′ ∧ lhs α = Var y)

proof−
{assume B 6= Var x

with assms obtain α b ′ where B = Prule α b ′

by (metis is-empty-step.elims(3 ) source.elims source-empty-step term.distinct(1 ))
moreover with assms have ∃ y. lhs α = Var y

by (metis source.simps(1 ) source.simps(3 ) subst-apply-eq-Var)
ultimately have (∃α b ′ y. B = Prule α b ′ ∧ lhs α = Var y)

by blast
}
then show ?thesis

by blast
qed

lemma source-poss:
assumes p:p ∈ poss (source (Pfun f As)) and iq:i#q ∈ poss (Pfun f As)

and ctxt:source-ctxt (ctxt-of-pos-term (i#q) (Pfun f As)) = ctxt-of-pos-term p
(source (Pfun f As))

shows ∃ p ′. p = i#p ′ ∧ p ′ ∈ poss (source (As!i))
proof−

obtain p ′ where hole-pos (source-ctxt (ctxt-of-pos-term (i#q) (Pfun f As))) =
i#p ′

p ′ = hole-pos (source-ctxt (ctxt-of-pos-term q (As ! i)))
unfolding ctxt-of-pos-term.simps source-ctxt.simps take-map drop-map using

iq by auto
with ctxt have p = i#p ′

by (metis hole-pos-ctxt-of-pos-term p)
with p show ?thesis

by auto
qed

lemma simple-pterm-match:
assumes source A = t · σ

and linear-term t
and A · τ1 = to-pterm t · τ2

shows matches A (to-pterm t)
using assms proof(induct t arbitrary: A)
case (Var x)
then show ?case

using matches-iff by force
next

case (Fun f ts)
from Fun(2 ,4 ) show ?case proof(cases A)

case (Pfun g As)
with Fun(2 ) have f :f = g by simp
from Fun(2 ) have l:length ts = length As
unfolding Pfun source.simps f eval-term.simps by (simp add: map-equality-iff )
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{fix i assume i:i < length ts
with Fun(2 ) have source (As ! i) = ts ! i · σ
unfolding Pfun source.simps f eval-term.simps by (simp add: map-equality-iff )
moreover from i Fun(4 ) have As ! i · τ1 = to-pterm (ts ! i) · τ2

unfolding Pfun f to-pterm.simps eval-term.simps using l map-nth-conv by
fastforce

ultimately have matches (As!i) (to-pterm (ts!i))
using Fun(1 )[of ts!i As!i] l i Fun(3 ) by force

then have ∃σ. As!i = (to-pterm (ts!i)) · σ
by (metis matches-iff )

}note IH=this
from Fun(3 ) have lin:linear-term (to-pterm (Fun f ts))

using to-pterm-linear by blast
from linear-term-obtain-subst[OF lin[unfolded to-pterm.simps]] show ?thesis

unfolding Pfun f by (smt (verit, del-insts) IH l length-map matches-iff
nth-map to-pterm.simps(2 ))

qed simp-all
qed

2.9 Proof Terms Represent Multi-Steps
context var-rhs-subset-lhs
begin
lemma mstep-to-pterm:

assumes (s, t) ∈ mstep R
shows ∃A. A ∈ wf-pterm R ∧ source A = s ∧ target A = t
using assms(1 ) proof(induct)
case (Var x)
then show ?case

by (meson source.simps(1 ) target.simps(1 ) wf-pterm.intros(1 ))
next

case (args f n ss ts)
then have ∀ i∈set [0 ..<n]. ∃ a. a ∈ wf-pterm R ∧ source a = ss ! i ∧ target a

= ts ! i
by simp

then obtain As where as:length As = n ∧ (∀ i < n. (As!i) ∈ wf-pterm R ∧
source (As!i) = ss ! i ∧ target (As!i) = ts ! i)

using obtain-list-with-property[where P=λa i. a ∈ wf-pterm R ∧ source a =
ss!i ∧ target a = ts!i and xs=[0 ..<n]]

by (metis add.left-neutral diff-zero length-upt nth-upt set-upt)
with args(1 ) have source (Pfun f As) = Fun f ss

unfolding source.simps by (simp add: map-nth-eq-conv)
moreover from as args(2 ) have target (Pfun f As) = Fun f ts

unfolding target.simps by (simp add: map-nth-eq-conv)
ultimately show ?case

using as by (metis in-set-idx wf-pterm.intros(2 ))
next

case (rule l r σ τ)
let ?α =(l → r)
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have set (vars-distinct l) = vars-term l
by simp

with rule(2 ) obtain As where as:length As = length (vars-distinct l) ∧
(∀ i < length (vars-distinct l). (As!i) ∈ wf-pterm R ∧
source (As!i) = σ ((vars-distinct l) ! i) ∧ target (As!i) = τ ((vars-distinct l) !

i))
using obtain-list-with-property[where P=λa x. a ∈ wf-pterm R ∧ source a =

σ x ∧ target a = τ x] by blast
with rule(1 ) have well:Prule ?α As ∈ wf-pterm R

by (metis in-set-idx prule.sel(1 ) prule.sel(2 ) wf-pterm.simps)
from as have ∀ x ∈ vars-term l. (〈map source As〉?α) x = σ x
by (smt (z3 ) apply-lhs-subst-var-rule in-set-idx length-map map-nth-conv prule.sel(1 )

set-vars-term-list vars-term-list-vars-distinct)
then have s:source (Prule ?α As) = l · σ

by (simp add: term-subst-eq-conv)
from as varcond have ∀ x ∈ vars-term r . (〈map target As〉?α) x = τ x
by (smt (verit, best) apply-lhs-subst-var-rule fst-conv in-set-conv-nth length-map

nth-map prule.sel(1 )
rule.hyps(1 ) set-vars-term-list snd-conv split-beta subsetD vars-term-list-vars-distinct)

then have target (Prule ?α As) = r · τ
by (simp add: term-subst-eq-conv)

with well s show ?case
by blast

qed
end

lemma pterm-to-mstep:
assumes A ∈ wf-pterm R
shows (source A, target A) ∈ mstep R
using assms proof(induct)
case (2 As f )
then show ?case

by (simp add: mstep.args)
next

case (3 α As)
then have ∀ x∈vars-term (lhs α). ((〈map source As〉α) x, (〈map target As〉α) x)
∈ mstep R

by (smt (verit, best) apply-lhs-subst-var-rule comp-def in-set-idx length-map
map-nth-conv nth-mem set-remdups set-rev set-vars-term-list)

with 3 (1 ) show ?case
by (simp add: mstep.rule)

qed simp

lemma co-init-prule:
assumes co-initial (Prule α As) (Prule α Bs)

and Prule α As ∈ wf-pterm R and Prule α Bs ∈ wf-pterm R
shows ∀ i<length As. co-initial (As!i) (Bs!i)

proof−
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from assms have l1 :length As = length (var-rule α)
using wf-pterm.simps by fastforce

from assms have l2 :length Bs = length (var-rule α)
using wf-pterm.simps by fastforce

{fix i assume i:i < length As and co:¬ (co-initial (As!i) (Bs!i))
then have (〈map source As〉α) ((var-rule α)!i) 6= (〈map source Bs〉α) ((var-rule

α)!i)
by (metis l1 l2 length-map lhs-subst-var-i nth-map)

with assms(1 ) have False unfolding source.simps
by (smt (z3 ) comp-apply i l1 nth-mem set-remdups set-rev set-vars-term-list

term-subst-eq-rev)
} then show ?thesis

by blast
qed

3 Operations on Proof Terms

The operations residual, deletion, and join on proof terms all fulfill A ?
(source A) = A which implies several useful results.
locale op-proof-term = left-lin-no-var-lhs +

fixes f :: (( ′a, ′b) prule + ′a, ′b) Term.term ⇒ (( ′a, ′b) prule + ′a, ′b) Term.term
⇒ (( ′a, ′b) prule + ′a, ′b) Term.term option

assumes f-src: A ∈ wf-pterm R =⇒ f A (to-pterm (source A)) = Some A
and f-pfun:f (Pfun g As)(Pfun g Bs) = (if length As = length Bs then

(case those (map2 f As Bs) of
Some xs ⇒ Some (Pfun g xs)
| None ⇒ None) else None)

and f-prule:f (Prule α As) (Pfun g Bs) = (case match (Pfun g Bs) (to-pterm
(lhs α)) of

None ⇒ None
| Some σ ⇒
(case those (map2 f As (map σ (var-rule α))) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None))

begin

notation
f ( ′(? ′)) and
f ((- ? -) [51 , 51 ] 50 )

lemma apply-f-ctxt:
assumes C ∈ wf-pterm-ctxt R

and A ? B = Some D
shows C 〈A〉 ? (to-pterm-ctxt (source-ctxt C ))〈B〉 = Some (C 〈D〉)
using assms proof(induct C rule:pterm-ctxt-induct)
case (Cfun f ss1 C ss2 )

have l:length ((map (to-pterm ◦ source) ss1 ) @ (to-pterm-ctxt (source-ctxt
C ))〈A〉 # (map (to-pterm ◦ source) ss2 ))
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= length (ss1 @ C 〈B〉 # ss2 ) by auto
from Cfun(2 ) have well1 :∀ i < length ss1 . (ss1 !i) ∈ wf-pterm R by auto
from Cfun(2 ) have well2 :∀ i < length ss2 . (ss2 !i) ∈ wf-pterm R by auto
from Cfun have fC :C 〈A〉 ? (to-pterm-ctxt (source-ctxt C ))〈B〉 = Some (C 〈D〉)

by auto
from well1 have f1 :∀ i < length ss1 . ((map2 (?) ss1 (map (to-pterm ◦ source)

ss1 ))!i = Some (ss1 !i))
using f-src to-pterm-empty by fastforce

from well2 have f2 :∀ i < length ss2 . ((map2 (?) ss2 (map (to-pterm ◦ source)
ss2 ))!i = Some (ss2 !i))

using f-src to-pterm-empty by fastforce
{fix i assume i:i < (length ss1 ) + (length ss2 ) +1

have (map2 (?) (ss1 @ (C 〈A〉 # ss2 ))
(map (to-pterm ◦ source) ss1 @ ((to-pterm-ctxt (source-ctxt C ))〈B〉 #

map (to-pterm ◦ source) ss2 )))!i
= Some ((ss1 @ C 〈D〉 # ss2 )!i)

proof−
consider i < length ss1 | i = length ss1 | i > length ss1

using nat-neq-iff by blast
then show ?thesis proof(cases)

case 1
then show ?thesis using f1

by (simp add: append-Cons-nth-left)
next

case 2
then show ?thesis using fC

by (simp add: append-Cons-nth-middle)
next

case 3
with i have l:(map (to-pterm ◦ source) ss1 @ (to-pterm-ctxt (source-ctxt

C ))〈B〉 # map (to-pterm ◦ source) ss2 )!i
= (map (to-pterm ◦ source) ss2 )!(i−(length ss1 + 1 ))

by (metis add.commute length-map less-SucI not-less-eq nth-append-Cons
plus-1-eq-Suc)

from 3 i have r :(ss1 @ (C 〈to-pterm (source B)〉 # ss2 ))!i = ss2 !(i−(length
ss1 + 1 ))

by (metis add.commute less-SucI not-less-eq nth-append-Cons plus-1-eq-Suc)

from l r 3 show ?thesis using f2
by (smt One-nat-def add.right-neutral add-Suc add-Suc-right add-diff-inverse-nat

add-less-cancel-left append-Cons-nth-right i length-append length-map length-zip list.size(4 )
min-less-iff-conj not-less-eq nth-map nth-zip)

qed
qed

}
with l have those ((map2 (?) (ss1 @ (C 〈A〉 # ss2 ))

(map (to-pterm ◦ source) ss1 @ ((to-pterm-ctxt (source-ctxt C ))〈B〉 #
map (to-pterm ◦ source) ss2 ))))
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= Some (ss1 @ C 〈D〉 # ss2 ) by (simp add: those-some)
with l show ?case using f-pfun by simp

next
case (Crule α ss1 C ss2 )
from Crule(2 ) have alpha:to-rule α ∈ R

using wf-pterm-ctxt.cases by auto
then have linear :linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
then have linear ′:linear-term (to-pterm (lhs α))

using to-pterm-linear by blast
have l1 :length ((map (to-pterm ◦ source) ss1 ) @ (to-pterm-ctxt (source-ctxt

C ))〈A〉 # (map (to-pterm ◦ source) ss2 ))
= length (ss1 @ C 〈B〉 # ss2 ) by auto

from Crule(2 ) have l2 :length (ss1 @ C 〈B〉 # ss2 ) = length (var-rule α)
using wf-pterm-ctxt.simps by fastforce

from Crule(2 ) have well1 :∀ i < length ss1 . (ss1 !i) ∈ wf-pterm R by auto
from Crule(2 ) have well2 :∀ i < length ss2 . (ss2 !i) ∈ wf-pterm R by auto
from Crule have fC :C 〈A〉 ? (to-pterm-ctxt (source-ctxt C ))〈B〉 = Some (C 〈D〉)

by auto
from well1 have f1 :∀ i < length ss1 . ((map2 (?) ss1 (map (to-pterm ◦ source)

ss1 ))!i = Some (ss1 !i))
using f-src to-pterm-empty by fastforce

from well2 have f2 :∀ i < length ss2 . ((map2 (?) ss2 (map (to-pterm ◦ source)
ss2 ))!i = Some (ss2 !i))

using f-src to-pterm-empty by fastforce
{fix i assume i:i < (length ss1 ) + (length ss2 ) +1

have (map2 (?) (ss1 @ (C 〈A〉 # ss2 )) (map (to-pterm ◦ source) ss1 @
((to-pterm-ctxt (source-ctxt C ))〈B〉 #

(map (to-pterm ◦ source) ss2 ))) )!i = Some ((ss1 @ C 〈D〉 # ss2 )!i)
proof−

consider i < length ss1 | i = length ss1 | i > length ss1
using nat-neq-iff by blast

then show ?thesis proof(cases)
case 1
then show ?thesis using f1

by (simp add: append-Cons-nth-left)
next

case 2
then show ?thesis using fC

by (simp add: append-Cons-nth-middle)
next

case 3
with i have l:(map (to-pterm ◦ source) ss1 @ (to-pterm-ctxt (source-ctxt

C ))〈B〉 # map (to-pterm ◦ source) ss2 )!i
= (map (to-pterm ◦ source) ss2 )!(i−(length ss1 + 1 ))

by (metis add.commute length-map less-SucI not-less-eq nth-append-Cons
plus-1-eq-Suc)

from 3 i have r :(ss1 @ (C 〈to-pterm (source B)〉 # ss2 ))!i = ss2 !(i−(length
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ss1 + 1 ))
by (metis add.commute less-SucI not-less-eq nth-append-Cons plus-1-eq-Suc)

from l r 3 show ?thesis using f2
by (smt One-nat-def add.right-neutral add-Suc add-Suc-right add-diff-inverse-nat

add-less-cancel-left append-Cons-nth-right i length-append length-map length-zip list.size(4 )
min-less-iff-conj not-less-eq nth-map nth-zip)

qed
qed

}
with l1 have IH :those (map2 (?) (ss1 @ (C 〈A〉 # ss2 )) (map (to-pterm ◦

source) ss1 @ ((to-pterm-ctxt (source-ctxt C ))〈B〉 #
(map (to-pterm ◦ source) ss2 ))) ) = Some (ss1 @ C 〈D〉 #

ss2 ) by (simp add: those-some)
let ?p = (var-poss-list (lhs α) ! length ss1 )
let ?x = vars-term-list (lhs α) ! length ss1
let ?σ = 〈map source (ss1 @ Var (vars-term-list (lhs α) ! length ss1 ) # ss2 )〉α
from l2 linear have l3 :length ss1 < length (var-poss-list (lhs α))
by (metis (no-types, lifting) add-Suc-right append-Cons-nth-left le-imp-less-Suc

length-append length-var-poss-list linear-term-var-vars-term-list linorder-neqE-nat
list.size(3 ) list.size(4 ) not-add-less1 nth-equalityI self-append-conv zero-order(1 ))

then have ?p ∈ poss (lhs α)
using nth-mem var-poss-imp-poss var-poss-list-sound by blast

then have ctxt:(to-pterm-ctxt (source-ctxt (Crule α ss1 C ss2 )))〈B〉 =
(ctxt-of-pos-term ?p (to-pterm (lhs α) · (to-pterm ◦ ?σ)))〈(to-pterm-ctxt

(source-ctxt C ))〈B〉〉
unfolding source-ctxt.simps intp-actxt.simps Let-def ctxt-ctxt-compose to-pterm-ctxt-comp

using to-pterm-ctxt-at-pos[where ?p=?p and ?s=lhs α · ?σ] by (simp add:
to-pterm-subst)

from l3 have l4 :length ss1 < length (vars-term-list (to-pterm (lhs α)))
by (metis length-var-poss-list vars-to-pterm)

have (to-pterm-ctxt (source-ctxt (Crule α ss1 C ss2 )))〈B〉 =
to-pterm (lhs α) · ((to-pterm ◦ ?σ)(?x := (to-pterm-ctxt (source-ctxt

C ))〈B〉))
unfolding ctxt using ctxt-apply-term-subst[where ?p=?p and ?t=to-pterm

(lhs α) and ?i=length ss1 and ?s=(to-pterm-ctxt (source-ctxt C ))〈B〉 and ?σ=(to-pterm
◦ ?σ)]

linear ′ l4 var-poss-list-to-pterm vars-to-pterm by metis
then obtain τ where τ :match (to-pterm-ctxt (source-ctxt (Crule α ss1 C

ss2 )))〈B〉 (to-pterm (lhs α)) = Some τ
unfolding ctxt using ctxt-apply-term-subst linear ′ match-complete ′ option.distinct(1 )

by force
have varr :(var-rule α) = vars-term-list (to-pterm (lhs α))

using linear linear-term-var-vars-term-list unfolding vars-to-pterm by force
have (map (to-pterm ◦ ?σ) (vars-term-list (to-pterm (lhs α)))) = map (to-pterm
◦ source) (ss1 @ Var (vars-term-list (lhs α) ! length ss1 ) # ss2 )

using apply-lhs-subst-var-rule l2 unfolding varr [symmetric] by force
then have (map (to-pterm ◦ ?σ) (vars-term-list (to-pterm (lhs α))))[length ss1
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:= (to-pterm-ctxt (source-ctxt C ))〈B〉] =
(map (to-pterm ◦ source) ss1 @ (to-pterm-ctxt (source-ctxt C ))〈B〉 #

(map (to-pterm ◦ source) ss2 ))
by (metis (no-types, lifting) length-map list.simps(9 ) list-update-length map-append)

with τ have map-tau:map τ (var-rule α) = (map (to-pterm ◦ source) ss1 @
(to-pterm-ctxt (source-ctxt C ))〈B〉 #

(map (to-pterm ◦ source) ss2 ))
using match-lhs-context[where ?t=to-pterm (lhs α) and ?τ=τ and ?σ=(to-pterm

◦ ?σ)]
l4 var-poss-list-to-pterm linear ′ ctxt varr by metis

from alpha no-var-lhs obtain f ts where f :lhs α = Fun f ts
by blast

have [] /∈ var-poss (lhs α)
unfolding f var-poss.simps by force

then obtain i q where iq:?p = i # q using l3
by (metis in-set-conv-nth subt-at.elims var-poss-list-sound)

then obtain ts ′ where root-not-rule:(to-pterm-ctxt (source-ctxt (Crule α ss1 C
ss2 )))〈B〉 = Pfun f ts ′

unfolding ctxt iq unfolding f by simp
then show ?case

using τ f-prule map-tau IH by force
qed simp

end

end
theory Residual-Join-Deletion

imports
Proof-Terms
Linear-Matching

begin

3.1 Residuals

Auxiliary lemma in preparation of termination simp rule.
lemma match-vars-term-size:

assumes match s t = Some σ
and x ∈ vars-term t

shows size (σ x) ≤ size s
using assms vars-term-size by (metis match-matches)

lemma [termination-simp]:
assumes match (Fun f ss) (to-pterm l) = Some σ

and ∗: (s, t) ∈ set (zip (map σ (vars-distinct l)) ts)
shows size s ≤ Suc (size-list size ss)

proof −
from ∗ have s ∈ set (map σ (vars-distinct l)) by (blast elim: in-set-zipE)
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then obtain x where [simp]: s = σ x
and x: x ∈ vars-term (to-pterm l) by (induct l) auto

from match-vars-term-size [OF assms(1 ) x]
show ?thesis by simp

qed

Additional simp rule because we allow variable left-hand sides of rewrite
rules at this point. Then Var x / α and α / Var x are also possible when
evaluating residuals. This might become important when we want to intro-
duce the error rule for residuals of composed proof terms.
lemma [termination-simp]:

assumes match (Var x) (to-pterm l) = Some σ
and (a, b) ∈ set (zip (map σ (vars-distinct l)) ts)

shows size a = 1
proof−

from assms(1 ) have ∗:(to-pterm l) · σ = Var x by (simp add: match-matches)
then obtain y where y:l = Var y by (metis subst-apply-eq-Var term.distinct(1 )

to-pterm.elims)
with ∗ have ∗∗:σ y = Var x by simp
from y have vars-distinct l = [y] by (simp add: vars-term-list.simps(1 ))
with assms(2 ) y have a = Var x by (simp add: ∗∗ in-set-zip)
then show ?thesis by simp

qed

fun residual :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm option (infixr re
70 )

where
Var x re Var y =
(if x = y then Some (Var x) else None)

| Pfun f As re Pfun g Bs =
(if (f = g ∧ length As = length Bs) then
(case those (map2 residual As Bs) of

Some xs ⇒ Some (Pfun f xs)
| None ⇒ None)

else None)
| Prule α As re Prule β Bs =

(if α = β then
(case those (map2 residual As Bs) of

Some xs ⇒ Some ((to-pterm (rhs α)) · 〈xs〉α)
| None ⇒ None)

else None)
| Prule α As re B =

(case match B (to-pterm (lhs α)) of
None ⇒ None
| Some σ ⇒
(case those (map2 residual As (map σ (var-rule α))) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None))

| A re Prule α Bs =
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(case match A (to-pterm (lhs α)) of
None ⇒ None
| Some σ ⇒
(case those (map2 residual (map σ (var-rule α)) Bs) of

Some xs ⇒ Some ((to-pterm (rhs α)) · 〈xs〉α)
| None ⇒ None))

| A re B = None

Since the interesting proofs about residuals always follow the same pattern
of induction on the definition, we introduce the following 6 lemmas corre-
sponding to the step cases.
lemma residual-fun-fun:

assumes (Pfun f As) re (Pfun g Bs) = Some C
shows f = g ∧ length As = length Bs ∧

(∃Cs. C = Pfun f Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re Bs!i = Some (Cs!i)))

proof−
have ∗:f = g ∧ length As = length Bs

using assms residual.simps(2 ) by (metis option.simps(3 ))
then obtain Cs where Cs:those (map2 (re) As Bs) = Some Cs

using assms residual.simps(2 ) option.simps(3 ) option.simps(4 ) by fastforce
hence ∀ i < length As. As!i re Bs!i = Some (Cs!i)

using ∗ those-some2 by fastforce
with ∗ Cs assms(1 ) show ?thesis

using length-those by fastforce
qed

lemma residual-rule-rule:
assumes (Prule α As) re (Prule β Bs) = Some C

(Prule α As) ∈ wf-pterm R
(Prule β Bs) ∈ wf-pterm S

shows α = β ∧ length As = length Bs ∧
(∃Cs. C = to-pterm (rhs α) · 〈Cs〉α ∧
length Cs = length As ∧
(∀ i < length As. As!i re Bs!i = Some (Cs!i)))

proof−
have α = β

using assms(1 ) residual.simps(3 ) by (metis option.simps(3 ))
with assms(2 ,3 ) have l: length As = length Bs

using length-args-well-Prule by blast
from ‹α = β› obtain Cs where Cs:those (map2 (re) As Bs) = Some Cs

using assms by fastforce
hence ∀ i < length As. As!i re Bs!i = Some (Cs!i)

using l those-some2 by fastforce
with ‹α = β› l Cs assms(1 ) show ?thesis

using length-those by fastforce
qed
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lemma residual-rule-var :
assumes (Prule α As) re (Var x) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Var x) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
obtain σ where σ:match (Var x) (to-pterm (lhs α)) = Some σ

using assms(1 ) by fastforce
then obtain Cs where Cs:those (map2 residual As (map σ (var-rule α))) =

Some Cs
using assms(1 ) by fastforce

with l have l2 :length Cs = length As
using length-those by fastforce

from Cs have ∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i)
using l those-some2 by fastforce

with σ Cs assms(1 ) l2 show ?thesis by simp
qed

lemma residual-rule-fun:
assumes (Prule α As) re (Pfun f Bs) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
obtain σ where σ:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ

using assms(1 ) by fastforce
then obtain Cs where Cs:those (map2 residual As (map σ (var-rule α))) =

Some Cs
using assms(1 ) by fastforce

with l have l2 :length Cs = length As
using length-those by fastforce

from Cs have ∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i)
using l those-some2 by fastforce

with σ Cs assms(1 ) l2 show ?thesis by auto
qed

lemma residual-var-rule:
assumes (Var x) re (Prule α As) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Var x) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = (to-pterm (rhs α)) · 〈Cs〉α ∧

60



length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i) re As!i) = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
obtain σ where σ:match (Var x) (to-pterm (lhs α)) = Some σ

using assms(1 ) by fastforce
then obtain Cs where Cs:those (map2 residual (map σ (var-rule α)) As) =

Some Cs
using assms(1 ) by fastforce

with l have l2 :length Cs = length As
using length-those by fastforce

from Cs have ∀ i < length As. (σ (var-rule α ! i)) re As!i = Some (Cs!i)
using l those-some2 by fastforce

with σ Cs assms(1 ) l2 show ?thesis by auto
qed

lemma residual-fun-rule:
assumes (Pfun f Bs) re (Prule α As) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = (to-pterm (rhs α)) · 〈Cs〉α ∧
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) re As!i = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
obtain σ where σ:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ

using assms(1 ) by fastforce
then obtain Cs where Cs:those (map2 residual (map σ (var-rule α)) As) =

Some Cs
using assms(1 ) by fastforce

with l have l2 :length Cs = length As
using length-those by fastforce

with Cs have ∀ i < length As. (σ (var-rule α ! i)) re As!i = Some (Cs!i)
using l those-some2 by fastforce

with σ Cs assms(1 ) l2 show ?thesis by auto
qed

t / A = tgt(A)

lemma res-empty1 :
assumes is-empty-step t co-initial A t A ∈ wf-pterm R
shows t re A = Some (to-pterm (target A))

proof −
from assms(1 ,2 ) have t = to-pterm (source A)

by (simp add: empty-coinitial)
then show ?thesis using assms(3 ) proof (induction A arbitrary: t)

case (Var x)
then show ?case by simp
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next
case (Pfun f As)
let ?ts = (map (to-pterm ◦ source) As)
from Pfun(3 ) have ∀ a ∈ set As. a ∈ wf-pterm R by blast
with Pfun(1 ) have those (map2 residual ?ts As) = Some (map (to-pterm ◦

target) As) by (simp add:those-some)
then show ?case unfolding Pfun(2 ) by simp

next
case (Prule α As)
let ?ts = (map (to-pterm ◦ source) As)
from Prule(3 ) have l:length ?ts = length (var-rule α) using wf-pterm.simps

by fastforce
moreover from Prule(3 ) have well:∀ a ∈ set As. a ∈ wf-pterm R by blast
from Prule(1 ) have args:those (map2 residual ?ts As) = Some (map (to-pterm

◦ target) As) using well by (simp add:those-some)
from Prule(2 ) have t:t = (to-pterm (lhs α)) · 〈?ts〉α by (simp add: to-pterm-subst)

then obtain σ where σ:
match t (to-pterm (lhs α)) = Some σ
(∀ x∈ set (var-rule α). (〈?ts〉α) x = σ x)
using lhs-subst-trivial by blast

from σ(2 ) l have ts:map σ (var-rule α) = ?ts by (smt apply-lhs-subst-var-rule
map-eq-conv)

from Prule(1 ) have those (map2 residual ?ts As) = Some (map (to-pterm ◦
target) As) using well by (simp add:those-some)

with ts have args:those (map2 residual (map σ (var-rule α)) As) = Some (map
(to-pterm ◦ target) As) by simp

show ?case proof (cases t rule:source.cases)
case (1 x)
then show ?thesis using args σ(1 ) by (simp add: to-pterm-subst)

next
case (2 f As)
then show ?thesis using args σ(1 ) by (simp add: to-pterm-subst)

next
case (3 α As)

then show ?thesis using Prule(2 ) by (metis is-empty-step.simps(3 ) to-pterm-empty)
qed

qed
qed

A / t = A
lemma res-empty2 :

assumes A ∈ wf-pterm R
shows A re (to-pterm (source A)) = Some A

using assms proof (induction A)
case (2 As f )
then have those (map2 residual As (map (to-pterm ◦ source) As)) = Some As

by (simp add:those-some)
then show ?case by simp
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next
case (3 α As)
then have σ: match (to-pterm (lhs α · 〈map source As〉α)) (to-pterm (lhs α)) =

Some (〈map (to-pterm ◦ source) As〉α)
by (metis (no-types, lifting) fun-mk-subst lhs-subst-trivial map-map to-pterm.simps(1 )

to-pterm-subst)
from 3 have those (map2 residual As (map (to-pterm ◦ source) As)) = Some

As
by (simp add:those-some)

then have args:those (map2 residual As (map (〈map (to-pterm ◦ source) As〉α)
(var-rule α))) = Some As

by (metis 3 .hyps(2 ) apply-lhs-subst-var-rule length-map)
show ?case proof(cases source (Prule α As))

case (Var x)
then show ?thesis

using σ residual.simps(4 )[of α As x] args by auto
next

case (Fun f ts)
then show ?thesis

using σ residual.simps(5 )[of α As f ] args by auto
qed

qed simp

A / A = tgt(A)

lemma res-same: A re A = Some (to-pterm (target A))
proof(induction A)
case (Var x)
then show ?case by simp
next

case (Pfun f As)
then have list-all (λx. x 6= None) (map2 residual As As) by (simp add: list-all-length)
then obtain xs where xs:those (map2 residual As As) = Some xs using those-not-none-xs

by fastforce
then have l:length As = length xs using length-those by fastforce
from xs have IH :i < length As =⇒ xs!i = to-pterm (target (As!i)) for i using

Pfun those-some2 by force
from IH l have map (to-pterm◦target) As = xs by (simp add: map-nth-eq-conv)
then have to-pterm (target (Pfun f As)) = Pfun f xs by simp
then show ?case using xs by simp

next
case (Prule α As)
then have list-all (λx. x 6= None) (map2 residual As As) by (simp add: list-all-length)
then obtain xs where xs:those (map2 residual As As) = Some xs using those-not-none-xs

by fastforce
then have l:length As = length xs using length-those by fastforce
from xs have IH :i < length As =⇒ xs!i = to-pterm (target (As!i)) for i using

Prule those-some2 by force
from IH l have ∗:map (to-pterm◦target) As = xs by (simp add: map-nth-eq-conv)
have to-pterm (target (Prule α As)) = to-pterm (rhs α · 〈map target As〉α) by
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simp
also have ... = (to-pterm (rhs α)) · (to-pterm ◦ 〈map target As〉α) by (simp add:

to-pterm-subst)
also have ... = (to-pterm (rhs α)) · 〈xs〉α using ∗ by simp
finally show ?case using xs by simp

qed

lemma residual-src-tgt:
assumes A re B = Some C A ∈ wf-pterm R B ∈ wf-pterm S
shows source C = target B
using assms proof(induction A B arbitrary: C rule: residual.induct)
case (1 x y)
then show ?case

by (metis option.distinct(1 ) option.sel residual.simps(1 ) source.simps(1 ) tar-
get.simps(1 ))
next

case (2 f As g Bs)
then obtain Cs where ∗:f = g ∧ length As = length Bs ∧

C = Pfun f Cs ∧ length Cs = length As ∧
(∀ i<length As. As ! i re Bs ! i = Some (Cs ! i))

by (meson residual-fun-fun)
then have length (zip As Bs) = length As by simp
moreover from 2 (3 ) have ∀ a ∈ set As. a ∈ wf-pterm R by blast
moreover from 2 (4 ) have ∀ b ∈ set Bs. b ∈ wf-pterm S by blast
ultimately have ∀ i < length As. source (Cs!i) = target (Bs!i)

using ∗ 2 by (metis nth-mem nth-zip)
with ∗ show ?case by (simp add: nth-map-conv)

next
case (3 α As β Bs)
then obtain Cs where ∗:α = β ∧ length As = length Bs ∧

C = to-pterm (rhs α) · 〈Cs〉α ∧ length Cs = length As ∧
(∀ i<length As. As ! i re Bs ! i = Some (Cs ! i))

by (meson residual-rule-rule)
then have length (zip As Bs) = length As by simp
moreover from 3 (3 ) have ∀ a ∈ set As. a ∈ wf-pterm R by blast
moreover from 3 (4 ) have ∀ b ∈ set Bs. b ∈ wf-pterm S by blast
ultimately have IH :∀ i < length As. source (Cs!i) = target (Bs!i)

using ∗ 3 by (metis nth-mem nth-zip)
from ∗ have source C = (rhs β) · 〈map source Cs〉β

by (simp add: source-apply-subst)
also have ... = (rhs β) · 〈map target Bs〉β

using ∗ IH by (metis nth-map-conv)
finally show ?case by simp

next
case (4-1 α As v)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧ length Cs = length As ∧
(∀ i<length As. As ! i re σ (var-rule α ! i) = Some (Cs ! i))

by (meson residual-rule-var)
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then obtain Bs where Bs:length Bs = length (var-rule α) ∧
Var v = (to-pterm (lhs α)) · 〈Bs〉α ∧
(∀ x ∈ set (var-rule α). σ x = (〈Bs〉α) x)

using match-lhs-subst by blast
from 4-1 (3 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from 4-1 (3 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
with ∗ have well:∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm S

using 4-1 (4 ) by (metis match-well-def vars-to-pterm)
from l have length (zip As (map σ (var-rule α))) = length As by simp
with 4-1 (1 ,3 ) well ∗ l as have IH :∀ i < length As. source (Cs!i) = target (map

(〈Bs〉α) (var-rule α) !i)
using Bs by (smt length-map nth-map nth-mem nth-zip)

from ∗ have source C = (lhs α) · 〈map source Cs〉α
by (simp add: source-apply-subst)

also have ... = (lhs α) · 〈map (target ◦ (〈Bs〉α)) (var-rule α)〉α
using ∗ l IH by (smt map-eq-conv ′ map-map)

also have ... = (lhs α) · (target ◦ (〈Bs〉α))
using Bs by (metis (no-types, lifting) apply-lhs-subst-var-rule fun-mk-subst

map-map target.simps(1 ))
also have ... = target (to-pterm (lhs α) · 〈Bs〉α)

by (metis target-empty-apply-subst target-to-pterm to-pterm-empty)
finally show ?case

using Bs by fastforce
next

case (4-2 α As f Bs)
then obtain Cs σ where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧ length Cs = length As ∧
(∀ i<length As. As ! i re σ (var-rule α ! i) = Some (Cs ! i))

by (meson residual-rule-fun)
then obtain Bs ′ where Bs ′:length Bs ′ = length (var-rule α) ∧

Pfun f Bs = (to-pterm (lhs α)) · 〈Bs ′〉α ∧
(∀ x ∈ set (var-rule α). σ x = (〈Bs ′〉α) x)

using match-lhs-subst by blast
from 4-2 (3 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from 4-2 (3 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
with ∗ have well:∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm S

using 4-2 (4 ) by (metis match-well-def vars-to-pterm)
from l have length (zip As (map σ (var-rule α))) = length As by simp
with 4-2 (1 ,3 ) well ∗ l as have IH :∀ i < length As. source (Cs!i) = target (map

(〈Bs ′〉α) (var-rule α) !i)
using Bs ′ by (smt length-map nth-map nth-mem nth-zip)

from ∗ have source C = (lhs α) · 〈map source Cs〉α
by (simp add: source-apply-subst)

also have ... = (lhs α) · 〈map (target ◦ (〈Bs ′〉α)) (var-rule α)〉α
using ∗ l IH by (smt map-eq-conv ′ map-map)

also have ... = (lhs α) · (target ◦ (〈Bs ′〉α))
using Bs ′ by (metis (no-types, lifting) apply-lhs-subst-var-rule fun-mk-subst
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map-map target.simps(1 ))
also have ... = target (to-pterm (lhs α) · 〈Bs ′〉α)

by (metis target-empty-apply-subst target-to-pterm to-pterm-empty)
finally show ?case

using Bs ′ by fastforce
next

case (5-1 v α As)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = to-pterm (rhs α) · 〈Cs〉α ∧ length Cs = length As ∧
(∀ i<length As. σ (var-rule α ! i) re As ! i = Some (Cs ! i))

by (meson residual-var-rule)
from 5-1 (4 ) have as:∀ a ∈ set As. a ∈ wf-pterm S by blast
from 5-1 (4 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
with ∗ have well:∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-1 (3 ) by (metis match-well-def vars-to-pterm)
from l have length (zip (map σ (var-rule α)) As) = length As by simp
with 5-1 (1 ,4 ) well ∗ l as have IH :∀ i < length As. source (Cs!i) = target (As!i)

by (smt length-map nth-map nth-mem nth-zip)
from ∗ have source C = (rhs α) · 〈map source Cs〉α

by (simp add: source-apply-subst)
also have ... = (rhs α) · 〈map target As〉α

using ∗ IH by (metis (no-types, lifting) map-eq-conv ′)
finally show ?case by simp

next
case (5-2 f Bs α As)

then obtain Cs σ where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧
C = to-pterm (rhs α) · 〈Cs〉α ∧ length Cs = length As ∧
(∀ i<length As. σ (var-rule α ! i) re As ! i = Some (Cs ! i))

by (meson residual-fun-rule)
from 5-2 (4 ) have as:∀ a ∈ set As. a ∈ wf-pterm S by blast
from 5-2 (4 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
with ∗ have well:∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-2 (3 ) by (metis match-well-def vars-to-pterm)
from l have length (zip (map σ (var-rule α)) As) = length As by simp
with 5-2 (1 ,4 ) well ∗ l as have IH :∀ i < length As. source (Cs!i) = target (As!i)

by (smt length-map nth-map nth-mem nth-zip)
from ∗ have source C = (rhs α) · 〈map source Cs〉α

by (simp add: source-apply-subst)
also have ... = (rhs α) · 〈map target As〉α

using ∗ IH by (metis (no-types, lifting) map-eq-conv ′)
finally show ?case by simp

qed simp-all

The following two lemmas are used inside the induction proof for the result
tgt(A / B) = tgt(B / A). Defining them here, outside the main proof makes
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them reusable for the symmetric cases of the proof.
lemma tgt-tgt-rule-var :

assumes
∧
σ a b c d. match (Var v) (to-pterm (lhs α)) = Some σ =⇒

(a,b) ∈ set (zip As (map σ (var-rule α))) =⇒
a re b = Some c =⇒ b re a = Some d =⇒ a ∈ wf-pterm R =⇒ b ∈

wf-pterm S =⇒
target c = target d

Prule α As re Var v = Some C
Var v re Prule α As = Some D
Prule α As ∈ wf-pterm R

shows target C = target D
proof−

from assms(4 ) have l:length As = length (var-rule α)
using wf-pterm.simps by fastforce

from assms(4 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from assms(2 ,4 ) obtain σ where σ:match (Var v) (to-pterm (lhs α)) = Some

σ
by (meson residual-rule-var)

with l have well-def :∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm S
using match-well-def by (metis vars-to-pterm wf-pterm.intros(1 ))

from assms(2 ,4 ) σ obtain Cs where Cs:
C = Prule α Cs ∧ length Cs = length As
(∀ i<length As. As ! i re σ (var-rule α ! i) = Some (Cs ! i))

by (metis option.inject residual-rule-var)
from assms(3 ,4 ) σ obtain Ds where Ds:

D = to-pterm (rhs α) · 〈Ds〉α ∧ length Ds = length As
(∀ i<length As. σ (var-rule α ! i) re As ! i = Some (Ds ! i))

by (metis option.inject residual-var-rule)
from l have length As = length (zip As (map σ (var-rule α)))

by simp
with assms(1 ,4 ) σ l Cs(2 ) Ds(2 ) well-def have IH :∀ i < length As. target (Cs!i)

= target (Ds!i)
using as by (smt length-map nth-map nth-mem nth-zip)

from Cs have target C = (rhs α) · 〈map target Cs〉α by simp
moreover from Ds(1 ) have target D = (rhs α) · 〈map target Ds〉α

using target-empty-apply-subst to-pterm-empty by (metis fun-mk-subst tar-
get.simps(1 ) target-to-pterm)

ultimately show ?thesis
using IH Cs(1 ) Ds(1 ) by (metis nth-map-conv)

qed

lemma tgt-tgt-rule-fun:
assumes

∧
σ a b c d. match (Pfun f Bs) (to-pterm (lhs α)) = Some σ =⇒

(a,b) ∈ set (zip As (map σ (var-rule α))) =⇒
a re b = Some c =⇒ b re a = Some d =⇒ a ∈ wf-pterm R =⇒ b ∈

wf-pterm S =⇒
target c = target d

Prule α As re Pfun f Bs = Some C
Pfun f Bs re Prule α As = Some D
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Prule α As ∈ wf-pterm R
Pfun f Bs ∈ wf-pterm S

shows target C = target D
proof−

from assms(4 ) have l:length As = length (var-rule α)
using wf-pterm.simps by fastforce

from assms(4 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from assms(2 ,4 ) obtain σ where σ:match (Pfun f Bs) (to-pterm (lhs α)) =

Some σ
by (meson residual-rule-fun)

with assms(2 ,5 ) l have well-def :∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm
S

using match-well-def by (metis vars-to-pterm)
from assms(2 ,4 ) σ obtain Cs where Cs:

C = Prule α Cs ∧ length Cs = length As
(∀ i<length As. As ! i re σ (var-rule α ! i) = Some (Cs ! i))

by (metis option.inject residual-rule-fun)
from assms(3 ,4 ) σ obtain Ds where Ds:

D = to-pterm (rhs α) · 〈Ds〉α ∧ length Ds = length As
(∀ i<length As. σ (var-rule α ! i) re As ! i = Some (Ds ! i))

by (metis option.inject residual-fun-rule)
from l have length As = length (zip As (map σ (var-rule α)))

by simp
with assms(1 ,4 ,5 ) σ l Cs(2 ) Ds(2 ) well-def have IH :∀ i < length As. target

(Cs!i) = target (Ds!i)
using as by (smt length-map nth-map nth-mem nth-zip)

from Cs have target C = (rhs α) · 〈map target Cs〉α by simp
moreover from Ds(1 ) have target D = (rhs α) · 〈map target Ds〉α

using target-empty-apply-subst to-pterm-empty by (metis fun-mk-subst tar-
get.simps(1 ) target-to-pterm)

ultimately show ?thesis
using IH Cs(1 ) Ds(1 ) by (metis nth-map-conv)

qed

lemma residual-tgt-tgt:
assumes A re B = Some C B re A = Some D A ∈ wf-pterm R B ∈ wf-pterm S
shows target C = target D
using assms proof(induction A B arbitrary: C D rule:residual.induct)
case (1 x y)
then show ?case by (metis option.sel residual.simps(1 ))

next
case (2 f As g Bs)
from 2 (4 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from 2 (5 ) have bs:∀ b ∈ set Bs. b ∈ wf-pterm S by blast
let ?l = length As
from 2 (2 ) have ∗: f = g ∧ ?l = length Bs

by (meson residual-fun-fun)
from 2 (2 ) obtain Cs where Cs:

C = Pfun f Cs ∧ length Cs = ?l ∧ (∀ i < ?l. As ! i re Bs ! i = Some (Cs ! i))
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by (meson residual-fun-fun)
from 2 (3 ) obtain Ds where Ds:

D = Pfun g Ds ∧ length Ds = ?l ∧ (∀ i < ?l. Bs ! i re As ! i = Some (Ds ! i))
using ∗ by (metis residual-fun-fun)

from ∗ have length (zip As Bs) = ?l by simp
with 2 (1 ,4 ,5 ) ∗ Cs Ds have ∀ i < ?l. target (Cs!i) = target (Ds!i)

using as bs by (metis nth-mem nth-zip)
with ∗ Cs Ds show ?case

by (simp add: map-nth-eq-conv)
next

case (3 α As β Bs)
from 3 (4 ) have as:∀ a ∈ set As. a ∈ wf-pterm R by blast
from 3 (5 ) have bs:∀ b ∈ set Bs. b ∈ wf-pterm S by blast
let ?l = length As
from 3 (2 ,4 ,5 ) have ∗: α = β ∧ ?l = length Bs

by (meson residual-rule-rule)
from 3 (2 ,4 ,5 ) obtain Cs where Cs:

C = to-pterm (rhs α) · 〈Cs〉α ∧ length Cs = ?l ∧ (∀ i < ?l. As ! i re Bs ! i =
Some (Cs ! i))

by (meson residual-rule-rule)
from 3 (3 ,4 ,5 ) obtain Ds where Ds:

D = to-pterm (rhs α) · 〈Ds〉α ∧ length Ds = ?l ∧ (∀ i < ?l. Bs ! i re As ! i =
Some (Ds ! i))

using ∗ by (metis residual-rule-rule)
from ∗ have length (zip As Bs) = ?l by simp
with 3 (1 ,4 ,5 ) ∗ Cs Ds have IH :∀ i < ?l. target (Cs!i) = target (Ds!i)

using as bs by (metis nth-mem nth-zip)
from Cs have target C = (rhs α) · 〈map target Cs〉α

using target-empty-apply-subst to-pterm-empty by (metis fun-mk-subst tar-
get.simps(1 ) target-to-pterm)

moreover from Ds have target D = (rhs α) · 〈map target Ds〉α
using target-empty-apply-subst to-pterm-empty by (metis fun-mk-subst tar-

get.simps(1 ) target-to-pterm)
ultimately show ?case

using IH Cs Ds by (metis nth-map-conv)
next

case (4-1 α As v)
then show ?case using tgt-tgt-rule-var by fastforce

next
case (4-2 α As f Bs)
then show ?case using tgt-tgt-rule-fun by fastforce

next
case (5-1 v α As)
from 5-1 (1 ) have match (Var v) (to-pterm (lhs α)) = Some σ =⇒
(a,b) ∈ set (zip As (map σ (var-rule α))) =⇒
a re b = Some c =⇒ b re a = Some d =⇒ a ∈ wf-pterm S =⇒ b ∈ wf-pterm

R =⇒
target c = target d for σ a b c d
using zip-symm by fastforce
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with 5-1 (2 ,3 ,5 ) have target D = target C using tgt-tgt-rule-var by fastforce
then show ?case by simp

next
case (5-2 f Bs α As)
from 5-2 (1 ) have match (Pfun f Bs) (to-pterm (lhs α)) = Some σ =⇒
(a,b) ∈ set (zip As (map σ (var-rule α))) =⇒
a re b = Some c =⇒ b re a = Some d =⇒ a ∈ wf-pterm S =⇒ b ∈ wf-pterm

R =⇒
target c = target d for σ a b c d
using zip-symm by fastforce

with 5-2 (2 ,3 ,4 ,5 ) have target D = target C using tgt-tgt-rule-fun by fastforce
then show ?case by simp

qed simp-all

lemma rule-residual-lhs:
assumes args:those (map2 (re) As Bs) = Some Cs

and is-Fun:is-Fun (lhs α) and l:length Bs = length (var-rule α)
shows Prule α As re (to-pterm (lhs α) · 〈Bs〉α) = Some (Prule α Cs)

proof−
from is-Fun obtain f ts where lhs α = Fun f ts

by auto
then have f :to-pterm (lhs α) · 〈Bs〉α = Pfun f (map (λt. t · 〈Bs〉α) (map

to-pterm ts))
by simp

then have match:match ((to-pterm (lhs α)) · 〈Bs〉α) (to-pterm (lhs α)) = Some
(〈Bs〉α)

using lhs-subst-trivial by blast
from l have map (〈Bs〉α) (var-rule α) = Bs

using apply-lhs-subst-var-rule by blast
with args have those (map2 (re) As (map (〈Bs〉α) (var-rule α))) = Some Cs

by presburger
then show ?thesis

using residual.simps(5 ) match unfolding f by auto
qed

lemma residual-well-defined:
assumes A ∈ wf-pterm R B ∈ wf-pterm S A re B = Some C
shows C ∈ wf-pterm R
using assms proof(induction A B arbitrary:C rule:residual.induct)
case (1 x y)
then show ?case

by (metis option.distinct(1 ) option.sel residual.simps(1 ))
next

case (2 f As g Bs)
then obtain Cs where f = g ∧ length As = length Bs ∧

C = Pfun f Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re Bs!i = Some (Cs!i))

by (meson residual-fun-fun)
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moreover with 2 have i < length As =⇒ Cs!i ∈ wf-pterm R for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
ultimately show ?case

by (metis in-set-conv-nth wf-pterm.intros(2 ))
next

case (3 α As β Bs)
then obtain Cs where α = β ∧ length As = length Bs ∧

(C = to-pterm (rhs α) · 〈Cs〉α ∧
length Cs = length As ∧
(∀ i < length As. As!i re Bs!i = Some (Cs!i)))

by (meson residual-rule-rule)
moreover with 3 have i < length As =⇒ Cs!i ∈ wf-pterm R for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
ultimately show ?case

by (metis to-pterm-wf-pterm lhs-subst-well-def )
next

case (4-1 α As v)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i))

by (meson residual-rule-var)
from 4-1 (2 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 4-1 (2 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm S

using 4-1 (3 ) by (metis match-well-def vars-to-pterm)
with 4-1 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt (z3 ) l length-map nth-map nth-mem nth-zip)
with 4-1 (2 ) ∗ show ?case

by (smt (verit) Inr-not-Inl in-set-conv-nth term.distinct(1 ) term.inject(2 )
wf-pterm.cases wf-pterm.intros(3 ))
next

case (4-2 α As f Bs)
then obtain σ Cs where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i re (σ (var-rule α ! i)) = Some (Cs!i)))

by (meson residual-rule-fun)
from 4-2 (2 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 4-2 (2 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))
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by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm S

using 4-2 (3 ) by (metis match-well-def vars-to-pterm)
with 4-2 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt l length-map nth-map nth-mem nth-zip)
with 4-2 (2 ) ∗ show ?case

by (smt (verit, ccfv-threshold) Inr-not-Inl in-set-conv-nth term.distinct(1 )
term.inject(2 ) wf-pterm.cases wf-pterm.intros(3 ))
next

case (5-1 v α As)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = to-pterm (rhs α) · 〈Cs〉α ∧
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) re As!i = Some (Cs!i))

by (meson residual-var-rule)
from 5-1 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm S

by auto
from 5-1 (3 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip (map σ (var-rule α)) As)

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-1 (2 ) by (metis match-well-def vars-to-pterm)
with 5-1 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt l length-map nth-map nth-mem nth-zip)
with ∗ show ?case

by (metis lhs-subst-well-def to-pterm-wf-pterm)
next

case (5-2 f Bs α As)
then obtain Cs σ where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

C = to-pterm (rhs α) · 〈Cs〉α ∧
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) re As!i = Some (Cs!i))

by (meson residual-fun-rule)
from 5-2 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm S

by auto
from 5-2 (3 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip (map σ (var-rule α)) As)

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-2 (2 ) by (metis match-well-def vars-to-pterm)
with 5-2 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt l length-map nth-map nth-mem nth-zip)
with ∗ show ?case

by (metis lhs-subst-well-def to-pterm-wf-pterm)
qed simp-all

no-notation sup (infixl t 65 )
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3.2 Join
fun join :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm option (infixr t 70 )

where
Var x t Var y =
(if x = y then Some (Var x) else None)

| Pfun f As t Pfun g Bs =
(if (f = g ∧ length As = length Bs) then
(case those (map2 (t) As Bs) of

Some xs ⇒ Some (Pfun f xs)
| None ⇒ None)

else None)
| Prule α As t Prule β Bs =

(if α = β then
(case those (map2 (t) As Bs) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None)

else None)
| Prule α As t B =

(case match B (to-pterm (lhs α)) of
None ⇒ None
| Some σ ⇒
(case those (map2 (t) As (map σ (var-rule α))) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None))

| A t Prule α Bs =
(case match A (to-pterm (lhs α)) of

None ⇒ None
| Some σ ⇒
(case those (map2 (t) (map σ (var-rule α)) Bs) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None))

| A t B = None

lemma join-sym: A t B = B t A
proof(induct rule:join.induct)

case (2 f As g Bs)
then show ?case proof(cases f = g ∧ length As = length Bs)

case True
with 2 have ∀ (a,b) ∈ set (zip As Bs). a t b = b t a

by auto
with True have (map2 (t) As Bs) = (map2 (t) Bs As)

by (smt case-prod-unfold map-eq-conv ′ map-fst-zip map-snd-zip nth-mem)
then show ?thesis using 2 unfolding join.simps

by auto
qed auto

next
case (3 α As β Bs)
then show ?case proof(cases α = β)

case True
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with 3 have ∗:∀ (a,b) ∈ set (zip As Bs). a t b = b t a
by auto

have length (map2 (t) As Bs) = length (map2 (t) Bs As)
by auto

with ∗ have (map2 (t) As Bs) = (map2 (t) Bs As)
by (smt fst-conv length-map length-zip map-eq-conv ′ min-less-iff-conj nth-mem

nth-zip prod.case-eq-if snd-conv)
then show ?thesis using 3 unfolding join.simps

by auto
qed auto

next
case (4-1 α As v)
then show ?case proof(cases match (Var v) (to-pterm (lhs α)) = None)

case False
then obtain σ where sigma:match (Var v) (to-pterm (lhs α)) = Some σ

by blast
with 4-1 have ∗:∀ (a,b) ∈ set (zip As (map σ (var-rule α))). a t b = b t a

by auto
have length (map2 (t) As (map σ (var-rule α))) = length (map2 (t) (map σ

(var-rule α)) As)
by auto

with ∗ have (map2 (t) As (map σ (var-rule α))) = (map2 (t) (map σ (var-rule
α)) As)

by (smt fst-conv length-map length-zip map-eq-conv ′ min-less-iff-conj nth-mem
nth-zip prod.case-eq-if snd-conv)

then show ?thesis unfolding join.simps sigma
by simp

qed simp
next

case (4-2 α As f Bs)
then show ?case proof(cases match (Pfun f Bs) (to-pterm (lhs α)) = None)

case False
then obtain σ where sigma:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ

by blast
with 4-2 have ∗:∀ (a,b) ∈ set (zip As (map σ (var-rule α))). a t b = b t a

by auto
have length (map2 (t) As (map σ (var-rule α))) = length (map2 (t) (map σ

(var-rule α)) As)
by auto

with ∗ have (map2 (t) As (map σ (var-rule α))) = (map2 (t) (map σ (var-rule
α)) As)

by (smt fst-conv length-map length-zip map-eq-conv ′ min-less-iff-conj nth-mem
nth-zip prod.case-eq-if snd-conv)

then show ?thesis unfolding join.simps sigma
by simp

qed simp
next

case (5-1 v α Bs)
then show ?case proof(cases match (Var v) (to-pterm (lhs α)) = None)
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case False
then obtain σ where sigma:match (Var v) (to-pterm (lhs α)) = Some σ

by blast
with 5-1 have ∗:∀ (a,b) ∈ set (zip (map σ (var-rule α)) Bs). a t b = b t a

by auto
have length (map2 (t) (map σ (var-rule α)) Bs) = length (map2 (t) Bs (map

σ (var-rule α)))
by auto

with ∗ have (map2 (t) (map σ (var-rule α)) Bs) = (map2 (t) Bs (map σ
(var-rule α)))

by (smt fst-conv length-map length-zip map-eq-conv ′ min-less-iff-conj nth-mem
nth-zip prod.case-eq-if snd-conv)

then show ?thesis unfolding join.simps sigma
by simp

qed simp
next

case (5-2 f As α Bs)
then show ?case proof(cases match (Pfun f As) (to-pterm (lhs α)) = None)

case False
then obtain σ where sigma:match (Pfun f As) (to-pterm (lhs α)) = Some σ

by blast
with 5-2 have ∗:∀ (a,b) ∈ set (zip (map σ (var-rule α)) Bs). a t b = b t a

by auto
have length (map2 (t) (map σ (var-rule α)) Bs) = length (map2 (t) Bs (map

σ (var-rule α)))
by auto

with ∗ have (map2 (t) (map σ (var-rule α)) Bs) = (map2 (t) Bs (map σ
(var-rule α)))

by (smt fst-conv length-map length-zip map-eq-conv ′ min-less-iff-conj nth-mem
nth-zip prod.case-eq-if snd-conv)

then show ?thesis unfolding join.simps sigma
by simp

qed simp
qed simp-all

lemma join-with-source:
assumes A ∈ wf-pterm R
shows A t to-pterm (source A) = Some A

using assms proof(induct A)
case (2 As f )
then have ∀ i < length As. (map2 (t) As (map to-pterm (map source As)))!i =

Some (As!i)
by simp

then have those (map2 (t) As (map to-pterm (map source As))) = Some As
by (simp add: those-some)

then show ?case
by simp

next
case (3 α As)
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then have ∀ i < length As. (map2 (t) As (map to-pterm (map source As)))!i =
Some (As!i)

by simp
then have IH :those (map2 (t) As (map to-pterm (map source As))) = Some As

by (simp add: those-some)
from 3 (1 ) have match:match (to-pterm (source (Prule α As))) (to-pterm (lhs

α)) = Some (〈map (to-pterm ◦ source) As〉α)
by (metis (no-types, lifting) fun-mk-subst lhs-subst-trivial map-map source.simps(3 )

to-pterm.simps(1 ) to-pterm-subst)
from 3 (2 ) have (map (〈map (to-pterm ◦ source) As〉α) (var-rule α)) = map

(to-pterm ◦ source) As
by (metis apply-lhs-subst-var-rule length-map)

with IH match join.simps(4 ,5 ) show ?case by(cases source (Prule α As))
simp-all
qed simp

context no-var-lhs
begin

lemma join-subst:
assumes B ∈ wf-pterm R and ∀ x ∈ vars-term B. % x ∈ wf-pterm R

and ∀ x ∈ vars-term B. source (% x) = σ x
shows (B · (to-pterm ◦ σ)) t ((to-pterm (source B)) · %) = Some (B · %)
using assms proof(induct B)
case (1 x)
then show ?case unfolding eval-term.simps source.simps to-pterm.simps o-apply

using join-with-source by (metis term.set-intros(3 ) join-sym)
next

case (2 ts f )
{fix i assume i:i < length ts

with 2 have ((ts!i) · (to-pterm ◦ σ)) t ((to-pterm (source (ts!i))) · %) = Some
(ts!i · %)

by (meson nth-mem term.set-intros(4 ))
then have map2 (t) (map (λt. t · (to-pterm ◦ σ)) ts) (map (λt. t · %) (map

to-pterm (map source ts)))!i = Some ((map (λt. t · %) ts)!i)
using i by fastforce

}
then have those (map2 (t) (map (λt. t · (to-pterm ◦ σ)) ts) (map (λt. t · %)

(map to-pterm (map source ts)))) = Some (map (λt. t · %) ts)
using those-some by (smt (verit) length-map length-zip min.idem)

then show ?case
unfolding source.simps to-pterm.simps eval-term.simps using join.simps(2 )

by auto
next

case (3 α As)
from 3 (1 ) no-var-lhs obtain f ts where f :lhs α = Fun f ts

by fastforce
obtain τ where match:match (to-pterm (lhs α · 〈map source As〉α) · %) (to-pterm

(lhs α)) = Some τ
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and τ :(∀ x∈vars-term (lhs α). τ x = ((to-pterm ◦ 〈map source As〉α) ◦s %) x)
using match-complete ′ unfolding to-pterm-subst by (smt (verit, best) set-vars-term-list

subst-subst vars-to-pterm)
{fix i assume i:i < length (var-rule α)

let ?x =var-rule α ! i
have ((to-pterm ◦ 〈map source As〉α) ◦s %) ?x = to-pterm (source (As!i)) · %

using i 3 (2 ) by (simp add: mk-subst-distinct subst-compose-def )
moreover from 3 have ((As!i) · (to-pterm ◦ σ)) t (to-pterm (source (As!i))

· %) = Some ((As!i) · %)
by (metis (mono-tags, lifting) i nth-mem term.set-intros(4 ))

ultimately have ((As!i) · (to-pterm ◦ σ)) t (τ ?x) = Some ((As!i) · %)
using τ by (metis comp-apply i nth-mem set-remdups set-rev set-vars-term-list)

then have (map2 (t) (map (λt. t · (to-pterm ◦ σ)) As) (map τ (var-rule α)))!i
= Some ((map (λt. t · %) As)!i)

using 3 (2 ) i by auto
}
then have those (map2 (t) (map (λt. t · (to-pterm ◦ σ)) As) (map τ (var-rule

α))) = Some (map (λt. t · %) As)
by (simp add: 3 (2 ) those-some)

then show ?case
using match unfolding source.simps to-pterm.simps eval-term.simps f using

join.simps(5 ) f by auto
qed

end

lemma join-same:
shows A t A = Some A

proof(induct A)
case (Pfun f As)
{fix i assume i:i < length As

with Pfun have As!i t As!i = Some (As!i) by simp
with i have (map2 (t) As As)!i = Some (As!i) by simp

}
then have those (map2 (t) As As) = Some As

by (simp add: those-some)
then show ?case unfolding join.simps by simp

next
case (Prule α As)
{fix i assume i:i < length As

with Prule have As!i t As!i = Some (As!i) by simp
with i have (map2 (t) As As)!i = Some (As!i) by simp

}
then have those (map2 (t) As As) = Some As

by (simp add: those-some)
then show ?case unfolding join.simps by simp

qed simp

Analogous to residuals there are 6 lemmas corresponding to the step cases
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in induction proofs for joins.
lemma join-fun-fun:

assumes (Pfun f As) t (Pfun g Bs) = Some C
shows f = g ∧ length As = length Bs ∧

(∃Cs. C = Pfun f Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i)))

proof−
have ∗:f = g ∧ length As = length Bs

using assms join.simps(2 ) by (metis option.simps(3 ))
then obtain Cs where Cs:those (map2 (t) As Bs) = Some Cs

using assms option.simps(3 ) option.simps(4 ) by fastforce
hence ∀ i < length As. As!i t Bs!i = Some (Cs!i)

using ∗ those-some2 by fastforce
with ∗ Cs assms(1 ) show ?thesis

using length-those by fastforce
qed

lemma join-rule-rule:
assumes (Prule α As) t (Prule β Bs) = Some C

(Prule α As) ∈ wf-pterm R
(Prule β Bs) ∈ wf-pterm R

shows α = β ∧ length As = length Bs ∧
(∃Cs. C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i)))

proof−
have α = β

using assms(1 ) join.simps(3 ) by (metis option.simps(3 ))
with assms(2 ,3 ) have l: length As = length Bs

using length-args-well-Prule by blast
from ‹α = β› obtain Cs where Cs:those (map2 (t) As Bs) = Some Cs

using assms by fastforce
hence ∀ i < length As. As!i t Bs!i = Some (Cs!i)

using l those-some2 by fastforce
with ‹α = β› l Cs assms(1 ) show ?thesis

using length-those by fastforce
qed

lemma join-rule-var :
assumes (Prule α As) t (Var x) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Var x) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.cases by auto
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obtain σ where σ:match (Var x) (to-pterm (lhs α)) = Some σ
using assms(1 ) by fastforce

then obtain Cs where Cs:those (map2 (t) As (map σ (var-rule α))) = Some
Cs

using assms(1 ) by fastforce
with l have l2 :length Cs = length As

using length-those by fastforce
from Cs have ∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)

using l those-some2 by fastforce
with σ Cs assms(1 ) l2 show ?thesis by simp

qed

lemma join-rule-fun:
assumes (Prule α As) t (Pfun f Bs) = Some C

(Prule α As) ∈ wf-pterm R
shows ∃σ. match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(∃Cs. C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)))

proof−
from assms(2 ) have l:length As = length (var-rule α)

using wf-pterm.simps by fastforce
obtain σ where σ:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ

using assms(1 ) by fastforce
then obtain Cs where Cs:those (map2 (t) As (map σ (var-rule α))) = Some

Cs
using assms(1 ) by fastforce

with l have l2 :length Cs = length As
using length-those by fastforce

from Cs have ∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)
using l those-some2 by fastforce

with σ Cs assms(1 ) l2 show ?thesis by auto
qed

lemma join-wf-pterm:
assumes A t B = Some C

and A ∈ wf-pterm R and B ∈ wf-pterm R
shows C ∈ wf-pterm R
using assms proof(induct A B arbitrary:C rule:join.induct)
case (1 x y)
then show ?case

by (metis join.simps(1 ) option.distinct(1 ) option.sel)
next

case (2 f As g Bs)
then obtain Cs where f = g ∧ length As = length Bs ∧

C = Pfun f Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i))

by (meson join-fun-fun)
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moreover with 2 have i < length As =⇒ Cs!i ∈ wf-pterm R for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
ultimately show ?case

by (metis in-set-conv-nth wf-pterm.intros(2 ))
next

case (3 α As β Bs)
then obtain Cs where α = β ∧ length As = length Bs ∧

(C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i)))

by (meson join-rule-rule)
moreover with 3 have i < length As =⇒ Cs!i ∈ wf-pterm R for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
moreover from 3 (3 ) have to-rule α ∈ R

using wf-pterm.simps by fastforce
ultimately show ?case
by (smt (verit, best) 3 .prems(2 ) in-set-idx old.sum.distinct(2 ) term.distinct(1 )

term.inject(2 ) wf-pterm.cases wf-pterm.intros(3 ))
next

case (4-1 α As v)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i))

by (meson join-rule-var)
from 4-1 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 4-1 (3 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 4-1 (4 ) by (metis match-well-def vars-to-pterm)
with 4-1 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt (z3 ) l length-map nth-map nth-mem nth-zip)
with 4-1 (3 ) ∗ show ?case

by (smt (verit) Inr-not-Inl in-set-conv-nth term.distinct(1 ) term.inject(2 )
wf-pterm.cases wf-pterm.intros(3 ))
next

case (4-2 α As f Bs)
then obtain σ Cs where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)))

by (meson join-rule-fun)
from 4-2 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
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from 4-2 (3 ) have l: length As = length (var-rule α)
using wf-pterm.simps by fastforce

then have l2 :length As = length (zip As (map σ (var-rule α)))
by simp

from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R
using 4-2 (4 ) by (metis match-well-def vars-to-pterm)

with 4-2 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R
by (smt l length-map nth-map nth-mem nth-zip)

with 4-2 (3 ) ∗ show ?case
by (smt (verit, ccfv-threshold) Inr-not-Inl in-set-conv-nth term.distinct(1 )

term.inject(2 ) wf-pterm.cases wf-pterm.intros(3 ))
next

case (5-1 v α As)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) t As!i = Some (Cs!i))

using join-rule-var by (metis join-sym)
from 5-1 (4 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 5-1 (4 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-1 (3 ) by (metis match-well-def vars-to-pterm)
with 5-1 (1 ) ∗ wellA l2 l have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt (verit, del-insts) length-map nth-map nth-mem nth-zip zip-symm)
with 5-1 (4 ) ∗ show ?case

by (smt (verit) Inr-not-Inl in-set-conv-nth term.distinct(1 ) term.inject(2 )
wf-pterm.cases wf-pterm.intros(3 ))
next

case (5-2 f Bs α As)
then obtain Cs σ where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) t As!i = Some (Cs!i))

using join-sym join-rule-fun by metis
from 5-2 (4 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 5-2 (4 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip (map σ (var-rule α)) As)

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-2 (3 ) by (metis match-well-def vars-to-pterm)
with 5-2 (1 ) ∗ wellA l2 have ∀ i < length As. Cs!i ∈ wf-pterm R

by (smt l length-map nth-map nth-mem nth-zip)
with ∗ show ?case
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by (metis 5-2 .prems(3 ) Inl-inject Inr-not-Inl in-set-idx l term.distinct(1 ) term.sel(2 )
wf-pterm.cases wf-pterm.intros(3 ))
qed auto

lemma source-join:
assumes A t B = Some C

and A ∈ wf-pterm R and B ∈ wf-pterm R
shows co-initial A C
using assms proof(induct A B arbitrary:C rule:join.induct)
case (1 x y)
then show ?case

by (metis join.simps(1 ) option.discI option.sel)
next

case (2 f As g Bs)
then obtain Cs where f = g ∧ length As = length Bs ∧

C = Pfun f Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i))

by (meson join-fun-fun)
moreover with 2 have i < length As =⇒ co-initial (As!i) (Cs!i) for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
ultimately show ?case

by (simp add: nth-map-conv)
next

case (3 α As β Bs)
then obtain Cs where α = β ∧ length As = length Bs ∧

(C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t Bs!i = Some (Cs!i)))

by (meson join-rule-rule)
moreover with 3 have i < length As =⇒ co-initial (As!i) (Cs!i) for i
using fun-well-arg by (metis (no-types, opaque-lifting) fst-conv in-set-zip nth-mem

snd-conv)
ultimately show ?case

by (metis (mono-tags, lifting) map-eq-conv ′ source.simps(3 ))
next

case (4-1 α As v)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ ∧

C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i))

by (meson join-rule-var)
from 4-1 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 4-1 (3 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
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from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R
using 4-1 (4 ) by (metis match-well-def vars-to-pterm)

with 4-1 (1 ) ∗ wellA l2 have ∀ i < length As. co-initial (As!i) (Cs!i)
by (smt (z3 ) l length-map nth-map nth-mem nth-zip)

with 4-1 (3 ) ∗ show ?case
by (metis nth-map-conv source.simps(3 ))

next
case (4-2 α As f Bs)
then obtain σ Cs where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ ∧

(C = Prule α Cs ∧
length Cs = length As ∧
(∀ i < length As. As!i t (σ (var-rule α ! i)) = Some (Cs!i)))

by (meson join-rule-fun)
from 4-2 (3 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 4-2 (3 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 4-2 (4 ) by (metis match-well-def vars-to-pterm)
with 4-2 (1 ) ∗ wellA l2 have ∀ i < length As. co-initial (As!i) (Cs!i)

by (smt l length-map nth-map nth-mem nth-zip)
with 4-2 (3 ) ∗ show ?case

by (metis nth-map-conv source.simps(3 ))
next

case (5-1 v α As)
then obtain Cs σ where ∗:match (Var v) (to-pterm (lhs α)) = Some σ

C = Prule α Cs
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) t As!i = Some (Cs!i))

using join-rule-var by (metis join-sym)
from 5-1 (4 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 5-1 (4 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-1 (3 ) by (metis match-well-def vars-to-pterm)
with 5-1 (1 ) ∗ wellA l2 l have IH :∀ i < length As. co-initial ((map σ (var-rule

α))!i) (Cs!i)
by (smt (verit, del-insts) length-map nth-map nth-mem nth-zip zip-symm)

moreover have v:Var v = (to-pterm (lhs α)) · 〈(map σ (var-rule α))〉α
using ∗ by (smt (verit, ccfv-threshold) apply-lhs-subst-var-rule map-eq-conv

match-lhs-subst)
show ?case using IH l unfolding v ∗(2 ) source.simps

by (metis ∗(1 ,3 ) fun-mk-subst length-map lhs-subst-trivial nth-map-conv op-
tion.inject source.simps(1 ) source-apply-subst source-to-pterm to-pterm-wf-pterm
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v)
next

case (5-2 f Bs α As)
then obtain Cs σ where ∗:match (Pfun f Bs) (to-pterm (lhs α)) = Some σ

C = Prule α Cs
length Cs = length As ∧
(∀ i < length As. (σ (var-rule α ! i)) t As!i = Some (Cs!i))

using join-rule-fun by (metis join-sym)
from 5-2 (4 ) have wellA:∀ i < length As. As!i ∈ wf-pterm R

by auto
from 5-2 (4 ) have l: length As = length (var-rule α)

using wf-pterm.simps by fastforce
then have l2 :length As = length (zip As (map σ (var-rule α)))

by simp
from l ∗ have ∀ i < length As. σ (var-rule α ! i) ∈ wf-pterm R

using 5-2 (3 ) by (metis match-well-def vars-to-pterm)
with 5-2 (1 ) ∗ wellA l2 l have IH :∀ i < length As. co-initial ((map σ (var-rule

α))!i) (Cs!i)
by (smt (verit, del-insts) length-map nth-map nth-mem nth-zip zip-symm)

moreover have f :Pfun f Bs = (to-pterm (lhs α)) · 〈(map σ (var-rule α))〉α
using ∗ by (smt (verit, ccfv-threshold) apply-lhs-subst-var-rule map-eq-conv

match-lhs-subst)
show ?case using IH l unfolding f ∗(2 ) source.simps
by (metis ∗(3 ) fun-mk-subst length-map nth-map-conv source.simps(1 ) source-apply-subst

source-to-pterm to-pterm-wf-pterm)
qed auto

lemma join-pterm-subst-Some:
fixes A B::( ′f , ′v) pterm
assumes (A · σ) t (A · τ) = Some B
shows ∃ %. (∀ x ∈ vars-term A. σ x t τ x = Some (% x)) ∧ B = A · % ∧ match

B A = Some %
proof−

let ?join-var=λx. the (σ x t τ x)
let ?%=mk-subst Var (zip (vars-distinct A) (map ?join-var (vars-distinct A)))
from assms have B = A · ?% ∧ (∀ x ∈ vars-term A. σ x t τ x = Some (?% x))
∧ match B A = Some ?% proof(induct A arbitrary: B)

case (Var x)
then show ?case
by (smt (verit) comp-apply eval-term.simps(1 ) in-set-conv-nth in-set-simps(2 )

length-map map-nth-conv match-trivial mem-Collect-eq mk-subst-not-mem
mk-subst-same option.sel remdups-id-iff-distinct set-vars-term-list single-var

singleton-rev-conv subsetI subst-domain-def vars-term-list.simps(1 ))
next

case (Pfun f As)
let ?%=mk-subst Var (zip (vars-distinct (Pfun f As)) (map ?join-var (vars-distinct

(Pfun f As))))
have rho-domain:subst-domain ?% ⊆ vars-term (Pfun f As)

by (smt (verit, del-insts) comp-apply mem-Collect-eq mk-subst-not-mem
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set-remdups set-rev set-vars-term-list subsetI subst-domain-def )
from Pfun(2 ) have those (map2 (t) (map (λa. a · σ) As) (map (λa. a · τ)

As)) 6= None
unfolding eval-term.simps join.simps using option.simps(4 ) by fastforce

then obtain Bs where Bs:those (map2 (t) (map (λa. a · σ) As) (map (λa. a
· τ) As)) = Some Bs length As = length Bs

using length-those by fastforce
{fix i assume i < length As

with Bs have Bs-i:((As!i) · σ) t ((As!i) · τ) = Some (Bs!i)
using those-some2 by fastforce

}note Bs-i=this
{fix i assume i:i < length As
let ?%i=mk-subst Var (zip (vars-distinct (As!i)) (map ?join-var (vars-distinct

(As!i))))
have (As!i) · ?% = (As!i) · ?%i
by (smt (verit, ccfv-SIG) comp-apply i map-of-zip-map mk-subst-def nth-mem

set-remdups set-rev set-vars-term-list term.set-intros(4 ) term-subst-eq-conv)
with Pfun(1 )[of As!i] i Bs-i have (As!i) · ?% = Bs!i

by fastforce
}note As-Bs=this
with Bs(2 ) have map-%:map (λa. a · ?%) As = Bs

by (simp add: map-nth-eq-conv)
{fix x assume x:x ∈ vars-term (Pfun f As)

then obtain i where i < length As x ∈ vars-term (As!i)
by (metis term.sel(4 ) var-imp-var-of-arg)

with Pfun(1 )[of As!i] Bs-i As-Bs have σ x t τ x = Some (?% x)
using term-subst-eq-rev by fastforce

}
moreover then have B = Pfun f As · ?%

using Pfun(2 ) unfolding eval-term.simps join.simps Bs using map-% by
auto

moreover then have match B (Pfun f As) = Some ?%
using match-trivial rho-domain by blast

ultimately show ?case by simp
next

case (Prule α As)
let ?%=mk-subst Var (zip (vars-distinct (Prule α As)) (map ?join-var (vars-distinct

(Prule α As))))
have rho-domain:subst-domain ?% ⊆ vars-term (Prule α As)

by (smt (verit, del-insts) comp-apply mem-Collect-eq mk-subst-not-mem
set-remdups set-rev set-vars-term-list subsetI subst-domain-def )

from Prule(2 ) have those (map2 (t) (map (λa. a · σ) As) (map (λa. a · τ)
As)) 6= None

unfolding eval-term.simps join.simps using option.simps(4 ) by fastforce
then obtain Bs where Bs:those (map2 (t) (map (λa. a · σ) As) (map (λa. a

· τ) As)) = Some Bs length As = length Bs
using length-those by fastforce

{fix i assume i < length As
with Bs have Bs-i:((As!i) · σ) t ((As!i) · τ) = Some (Bs!i)
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using those-some2 by fastforce
}note Bs-i=this
{fix i assume i:i < length As
let ?%i=mk-subst Var (zip (vars-distinct (As!i)) (map ?join-var (vars-distinct

(As!i))))
have (As!i) · ?% = (As!i) · ?%i
by (smt (verit, ccfv-SIG) comp-apply i map-of-zip-map mk-subst-def nth-mem

set-remdups set-rev set-vars-term-list term.set-intros(4 ) term-subst-eq-conv)
with Prule(1 )[of As!i] i Bs-i have (As!i) · ?% = Bs!i

by fastforce
}note As-Bs=this
with Bs(2 ) have map-%:map (λa. a · ?%) As = Bs

by (simp add: map-nth-eq-conv)
{fix x assume x:x ∈ vars-term (Prule α As)

then obtain i where i < length As x ∈ vars-term (As!i)
by (metis term.sel(4 ) var-imp-var-of-arg)

with Prule(1 )[of As!i] Bs-i As-Bs have σ x t τ x = Some (?% x)
using term-subst-eq-rev by fastforce

}
moreover then have B = Prule α As · ?%

using Prule(2 ) unfolding eval-term.simps join.simps Bs using map-% by
auto

moreover then have match B (Prule α As) = Some ?%
using match-trivial rho-domain by blast

ultimately show ?case by simp
qed
then show ?thesis by blast

qed

lemma join-pterm-subst-None:
fixes A::( ′f , ′v) pterm
assumes (A · σ) t (A · τ) = None
shows ∃ x ∈ vars-term A. σ x t τ x = None

using assms proof(induct A rule:pterm-induct)
case (Pfun f As)
from Pfun(2 ) obtain i where i:i < length As (map2 (t) (map (λs. s · σ) As)

(map (λs. s · τ) As))!i = None
unfolding eval-term.simps join.simps length-map using those-not-none-xs
by (smt (verit) length-map list-all-length map2-map-map option.case-eq-if op-

tion.distinct(1 ))
then have (As!i · σ) t (As!i · τ) = None by simp
with Pfun(1 ) i(1 ) obtain x where x ∈ vars-term (As!i) and σ x t τ x = None

using nth-mem by blast
then show ?case using i(1 ) by auto

next
case (Prule α As)
from Prule(2 ) obtain i where i:i < length As (map2 (t) (map (λs. s · σ) As)

(map (λs. s · τ) As))!i = None
unfolding eval-term.simps join.simps length-map using those-not-none-xs
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by (smt (verit) length-map list-all-length map2-map-map option.case-eq-if op-
tion.distinct(1 ))

then have (As!i · σ) t (As!i · τ) = None by simp
with Prule(1 ) i(1 ) obtain x where x ∈ vars-term (As!i) and σ x t τ x =

None
using nth-mem by blast

then show ?case using i(1 ) by auto
qed simp

fun mk-subst-from-list :: ( ′v ⇒ ( ′f , ′v) term) list ⇒ ( ′v ⇒ ( ′f , ′v) term) where
mk-subst-from-list [] = Var
| mk-subst-from-list (σ # σs) = (λx. case σ x of

Var x ⇒ mk-subst-from-list σs x
| t ⇒ t)

lemma join-is-Fun:
assumes join:A t B = Some (Pfun f Cs)
shows ∃As. A = Pfun f As ∧ length As = length Cs

proof−
{assume ∃ x. A = Var x

then obtain x where x:A = Var x by blast
from join consider B = Var x | ∃α Bs. B = Prule α Bs

unfolding x by (metis is-Prule.elims(1 ) join.simps(1 ) join.simps(9 ) op-
tion.distinct(1 ))

then have False
using join unfolding x by(cases) (simp, metis (mono-tags, lifting) Inl-Inr-False

join.simps(6 ) option.case-eq-if option.distinct(1 ) option.sel term.inject(2 ))
} moreover {assume ∃α As. A = Prule α As

then obtain α As where A:A = Prule α As by blast
from join consider ∃ x. B = Var x | ∃ g Bs. B = Pfun g Bs

unfolding A by (smt (verit, del-insts) is-Prule.elims(1 ) join.simps(3 ) op-
tion.case-eq-if option.distinct(1 ) option.sel term.inject(2 ))

then have False
using join unfolding A by(cases) (metis (mono-tags, lifting) Inl-Inr-False

join.simps(4 ,5 ) option.case-eq-if option.distinct(1 ) option.sel term.inject(2 ))+
}
ultimately obtain g As where A:A = Pfun g As

by (meson is-Prule.cases)
from join have f = g and length As = length Cs unfolding A

by (smt (verit, ccfv-threshold) Inl-Inr-False Residual-Join-Deletion.join-sym
join.simps(5 ) join.simps(8 ) join-fun-fun not-arg-cong-Inr option.case-eq-if option.inject
option.simps(3 ) pterm-cases term.inject(2 ))+

with A show ?thesis by force
qed

lemma join-obtain-subst:
assumes join:A t B = Some (to-pterm t · σ) and linear-term t
shows (to-pterm t) · mk-subst Var (match-substs (to-pterm t) A) = A

proof−
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from assms(2 ) have lin:linear-term (to-pterm t)
using to-pterm-linear by blast

have ∀ p∈poss (to-pterm t). ∀ f ts. (to-pterm t) |- p = Fun f ts −→ (∃As. length
ts = length As ∧ A |- p = Fun f As)

using assms proof(induct t arbitrary: A B)
case (Fun f ts)
from Fun(2 ) obtain As where A:A = Pfun f As and l-As:length ts = length

As
using join-is-Fun by force

from Fun(2 ) obtain Bs where B:B = Pfun f Bs and l-Bs:length ts = length
Bs

using join-is-Fun join-sym by (smt (verit) eval-term.simps(2 ) length-map
to-pterm.simps(2 ))

{fix p g ts ′ assume p:p ∈ poss (to-pterm (Fun f ts)) (to-pterm (Fun f ts)) |-p
= Fun g ts ′

have ∃As ′. length ts ′ = length As ′ ∧ A|-p = Fun g As ′ proof(cases p)
case Nil
from p(2 ) show ?thesis unfolding A Nil using l-As by force

next
case (Cons i p ′)
from p(1 ) have i:i < length ts unfolding Cons by simp
with p(1 ) have p ′:p ′ ∈ poss (ts!i) unfolding Cons

by (metis poss-Cons-poss poss-list-sound poss-list-to-pterm term.sel(4 ))
from Fun(2 ) have As!i t Bs!i = Some (to-pterm (ts!i) · σ)

unfolding A B to-pterm.simps eval-term.simps using i l-As l-Bs
by (smt (verit, ccfv-threshold) args-poss join-fun-fun local.Cons nth-map

p(1 ) term.sel(4 ) to-pterm.simps(2 ))
moreover from Fun(3 ) i have linear-term (ts!i) by simp
ultimately obtain As ′ where length ts ′ = length As ′ and (As!i)|-p ′ = Fun

g As ′

using Fun(1 ) i p ′ by (smt (verit) local.Cons nth-map nth-mem p(2 )
p-in-poss-to-pterm subt-at.simps(2 ) to-pterm.simps(2 ))

with i l-As show ?thesis unfolding A Cons by simp
qed

}
then show ?case by simp

qed simp
then show ?thesis using fun-poss-eq-imp-matches[OF lin] by presburger

qed

lemma join-pterm-linear-subst:
assumes join:A t B = Some (to-pterm t · σ) and lin:linear-term t
shows ∃ σA σB . A = (to-pterm t · σA) ∧ B = (to-pterm t · σB) ∧ (∀ x ∈

vars-term t. σA x t σB x = Some (σ x))
proof−

let ?σA=mk-subst Var (match-substs (to-pterm t) A)
let ?σB=mk-subst Var (match-substs (to-pterm t) B)
from join-obtain-subst[OF join lin] have A:A = (to-pterm t) · ?σA by simp
from join lin have B:B = (to-pterm t) · ?σB using join-sym join-obtain-subst
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by metis
from join-pterm-subst-Some join A B obtain %

where (∀ x∈vars-term t. ?σA x t ?σB x = Some (% x)) and to-pterm t · σ =
to-pterm t · %

by (metis set-vars-term-list vars-to-pterm)
then show ?thesis

by (smt (verit, best) A B set-vars-term-list term-subst-eq-rev vars-to-pterm)
qed

context no-var-lhs
begin
lemma join-rule-lhs:

assumes wf :Prule α As ∈ wf-pterm R and args:∀ i < length As. As!i t Bs!i 6=
None and l:length Bs = length As

shows Prule α As t (to-pterm (lhs α) · 〈Bs〉α) 6= None
proof−

from wf no-var-lhs obtain f ts where lhs:lhs α = Fun f ts
by (metis Inl-inject Term.term.simps(2 ) Term.term.simps(4 ) case-prodD is-Prule.simps(1 )

is-Prule.simps(3 ) term.collapse(2 ) wf-pterm.simps)
from args l have those (map2 (t) As Bs) 6= None

by (simp add: list-all-length those-not-none-xs)
with wf l have those (map2 (t) As (map (〈Bs〉α) (vars-distinct (Fun f ts)))) 6=

None
using apply-lhs-subst-var-rule by (metis Inl-inject is-Prule.simps(1 ) is-Prule.simps(3 )

lhs term.distinct(1 ) term.inject(2 ) wf-pterm.simps)
with lhs-subst-trivial[of α Bs] show ?thesis

unfolding lhs to-pterm.simps eval-term.simps join.simps by force
qed
end

3.2.1 N-Fold Join

We define a function to recursively join a list of n proof terms. Since each
individual join produces a (( ′f , ′v) prule + ′f , ′v) Term.term option we first
introduce the following helper function.
fun join-opt :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm option ⇒ ( ′f , ′v) pterm option

where
join-opt A (Some B) = A t B
| join-opt - - = None

fun join-list :: ( ′f , ′v) pterm list ⇒ ( ′f , ′v) pterm option (
⊔
)

where
join-list [] = None
| join-list (A # []) = Some A
| join-list (A # As) = join-opt A (join-list As)

context left-lin-no-var-lhs
begin
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lemma join-var-rule:
assumes to-rule α ∈ R
shows Var x t Prule α As = None

proof−
from assms obtain f ts where lhs α = Fun f ts

using no-var-lhs by fastforce
then show ?thesis
by (metis (no-types, lifting) Residual-Join-Deletion.join-sym eval-term.simps(2 )

join.simps(4 ) match-lhs-subst option.case-eq-if option.exhaust term.distinct(1 ) to-pterm.simps(2 ))
qed

lemma var-join:
assumes Var x t B = Some C and B ∈ wf-pterm R
shows B = Var x ∧ C = Var x
using assms proof(cases B)
case (Var y)
with assms(1 ) show ?thesis

by (metis join.simps(1 ) option.sel option.simps(3 ))
next

case (Prule α As)
with assms show ?thesis

by (metis Residual-Join-Deletion.join-sym Term.term.simps(4 ) case-prodD
co-initial-Var is-VarI join.simps(9 )

no-var-lhs.no-var-lhs no-var-lhs-axioms option.distinct(1 ) source-join sum.inject(1 )
term.inject(2 ) wf-pterm.simps)
qed simp

lemma fun-join:
assumes Pfun f As t B = Some C
shows (∃ g Bs. B = Pfun g Bs) ∨ (∃α Bs. B = Prule α Bs)
using assms by(cases B) (simp-all)

lemma rule-join:
assumes Prule α As t B = Some C and Prule α As ∈ wf-pterm R
shows (∃ g Bs. B = Pfun g Bs) ∨ (∃β Bs. B = Prule β Bs)
using assms proof(cases B)
case (Var x)
from assms have False unfolding Var

by (metis Residual-Join-Deletion.join-sym term.distinct(1 ) var-join)
then show ?thesis by simp

qed simp-all

Associativity of join is currently not used in any proofs. But it is still a
valuable result, hence included here.
lemma join-opt-assoc:

assumes A ∈ wf-pterm R B ∈ wf-pterm R C ∈ wf-pterm R
shows join-opt A (B t C ) = join-opt C (A t B)
using assms proof(induct A arbitrary:B C rule:subterm-induct)
case (subterm A)
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from subterm(2 ) show ?case proof(cases A rule:wf-pterm.cases[case-names
VarA FunA RuleA])

case (VarA x)
with subterm(3 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names

VarB FunB RuleB])
case (VarB y)
show ?thesis proof(cases x = y)

case True
then have AB:A t B = Some (Var y) unfolding VarA VarB by simp

with subterm(4 ) VarA VarB show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC z)
with AB VarA VarB ‹x = y› show ?thesis by(cases y = z) simp-all

next
case (RuleC α As)
then have (Var y) t C = None

using join-var-rule by presburger
then show ?thesis unfolding AB unfolding VarA VarB by (simp

add:join-sym)
qed simp

next
case False
then have AB:A t B = None unfolding VarA VarB by simp

with subterm(4 ) VarA VarB show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC z)
with AB VarA VarB ‹x 6= y› show ?thesis by(cases y = z) simp-all

next
case (RuleC α As)
then have (Var y) t C = None

using join-var-rule by presburger
then show ?thesis unfolding AB unfolding VarA VarB by (simp

add:join-sym)
qed simp

qed
next

case (FunB Bs f )
then have AB:A t B = None

unfolding VarA by simp
with subterm(4 ) VarA show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (VarC z)
with AB VarA FunB show ?thesis by(cases x = z) simp-all

next
case (FunC Cs g)
from AB VarA show ?thesis proof(cases B t C )

case (Some BC )
then obtain BCs where BC = Pfun f BCs

by (metis FunB(1 ) FunC (1 ) join-fun-fun)
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then show ?thesis unfolding AB unfolding VarA Some by simp
qed simp

next
case (RuleC α Cs)
from AB VarA show ?thesis proof(cases B t C )

case (Some BC )
then obtain BCs where BC = Prule α BCs

by (metis FunB(1 ) Residual-Join-Deletion.join-sym RuleC (1 ) join-rule-fun
subterm.prems(3 ))

then have Var x t BC = None
using RuleC (2 ) join-var-rule by presburger

then show ?thesis unfolding AB unfolding VarA Some by simp
qed simp

qed
next

case (RuleB α Bs)
then have AB:A t B = None

using VarA join-var-rule by presburger
with subterm(4 ) VarA show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (VarC z)
with RuleB have B t C = None

using join-var-rule join-sym by metis
with AB show ?thesis by simp

next
case (FunC Cs f )
from AB VarA show ?thesis proof(cases B t C )

case (Some BC )
then obtain BCs where BC = Prule α BCs

by (metis FunC (1 ) RuleB(1 ) join-rule-fun subterm.prems(2 ))
then have Var x t BC = None

using RuleB(2 ) join-var-rule by presburger
then show ?thesis unfolding AB unfolding VarA Some by simp

qed simp
next

case (RuleC β Cs)
from AB VarA show ?thesis proof(cases B t C )

case (Some BC )
then obtain BCs where BC = Prule α BCs

using RuleB(1 ) RuleC (1 ) join-rule-rule subterm.prems(2 ) subterm.prems(3 )
by blast

then have Var x t BC = None
using RuleB(2 ) join-var-rule by presburger

then show ?thesis unfolding AB unfolding VarA Some by simp
qed simp

qed
qed

next
case (FunA As f )
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from subterm(3 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names
VarB FunB RuleB])

case (VarB x)
then show ?thesis
by (metis FunA(1 ) join.simps(1 ) join.simps(8 ) join.simps(9 ) join-opt.elims

join-opt.simps(2 ) join-var-rule option.sel subterm.prems(3 ) wf-pterm.simps)
next

case (FunB Bs g)
then show ?thesis proof(cases A t B)

case None
with subterm(4 ) FunB show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (FunC Cs h)
from None show ?thesis proof(cases B t C )

case (Some BC )
then have gh:g = h and l-B-C :length Bs = length Cs

unfolding FunB FunC by (meson join-fun-fun)+
from Some obtain BCs where BC :BC = Pfun g BCs and l-BC-B:length

BCs = length Bs
and args-BC :(∀ i<length Bs. Bs!i t Cs!i = Some (BCs ! i))
unfolding FunC FunB using join-fun-fun by force

{assume fg:f = g and l-A-B:length As = length Bs
{fix i assume i:i < length As

with subterm(1 ) FunA FunB(2 ) FunC (2 ) args-BC l-A-B l-B-C
have join-opt (As!i) ((Bs!i) t (Cs!i)) = join-opt (Cs!i) ((As!i) t

(Bs!i))
by (metis nth-mem supt.arg)

} note IH=this
from fg l-A-B None have those (map2 (t) As Bs) = None
unfolding FunB FunA by (smt (verit) join.simps(2 ) option.case-eq-if

option.distinct(1 ))
then obtain i where i:i < length (map2 (t) As Bs) (map2 (t) As

Bs)!i = None
using those-not-none-xs list-all-length by blast

with l-A-B have A-B-i:(As!i) t (Bs!i) = None by simp
with IH i(1 ) l-B-C have As!i t BCs!i = None using args-BC by

fastforce
with i(1 ) l-BC-B l-B-C l-A-B have those (map2 (t) As BCs) = None

using list-all-length those-some2 by fastforce
}
then show ?thesis

using l-B-C l-BC-B FunA FunB FunC BC gh None Some by auto
qed simp

next
case (RuleC α Cs)
from None show ?thesis proof(cases B t C )

case (Some BC )
then obtain BCs τ where τ :match B (to-pterm (lhs α)) = Some τ and

BC :BC = Prule α BCs
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and l-BCs:length BCs = length Cs and args-BC :∀ i < length Cs. Cs!i
t τ (var-rule α ! i) = Some (BCs ! i)

by (metis FunB(1 ) join-sym RuleC (1 ) join-rule-fun subterm.prems(3 ))

with None Some FunA show ?thesis proof(cases match A (to-pterm
(lhs α)))

case (Some σ)
with τ None obtain x where x:x ∈ vars-term (lhs α) σ x t τ x =

None
using join-pterm-subst-None by (metis lhs-subst-trivial match-lhs-subst

option.sel set-vars-term-list vars-to-pterm)
then obtain i where i:i < length (var-rule α) var-rule α ! i = x

by (metis RuleC (2 ) case-prodD in-set-idx left-lin left-linear-trs-def
linear-term-var-vars-term-list set-vars-term-list)

have subt:A B σ x proof−
obtain g ts where lhs:lhs α = Fun g ts

using RuleC (2 ) no-var-lhs by fastforce
from Some i show ?thesis

unfolding lhs by (metis (no-types, lifting) lhs match-matches
set-vars-term-list subst-image-subterm to-pterm.simps(2 ) vars-to-pterm x(1 ))

qed
have wf-τ -x:τ x ∈ wf-pterm R

using FunB τ i by (metis match-well-def subterm.prems(2 )
vars-to-pterm)

have IH :join-opt (σ x) (τ x t (Cs ! i)) = join-opt (Cs!i) (σ x t τ x)
using subterm(1 ) RuleC (3 ,4 ) i wf-τ -x by (metis Some match-well-def

nth-mem subt subterm.prems(1 ) vars-to-pterm)
have τ x t (Cs ! i) = Some (BCs ! i)
using args-BC i by (metis Residual-Join-Deletion.join-sym RuleC (3 ))

with IH x(2 ) have (σ x) t (BCs ! i) = None by simp
then have (map2 (t) (map σ (var-rule α)) BCs) ! i = None

using l-BCs i by (simp add: RuleC (3 ))
then have those (map2 (t) (map σ (var-rule α)) BCs) = None

using l-BCs i by (metis (no-types, opaque-lifting) RuleC (3 ) length-map
length-zip min.idem not-Some-eq nth-mem those-not-none-x)

then have A t BC = None
using Some i unfolding BC FunA join.simps by simp

then show ?thesis
unfolding None ‹B t C = Some BC › by auto

qed simp
qed simp

qed simp
next

case (Some AB)
then have fg:f = g and l-A-B:length As = length Bs

unfolding FunA FunB by (meson join-fun-fun)+
from Some obtain ABs where AB:AB = Pfun f ABs and l-AB-A:length

ABs = length As
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and args-AB:(∀ i<length Bs. As!i t Bs!i = Some (ABs ! i))
unfolding FunA FunB using join-fun-fun by force

from subterm(4 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC x)
show ?thesis unfolding Some AB unfolding FunA FunB VarC by simp

next
case (FunC Cs h)
show ?thesis proof(cases B t C )

case None
{assume gh:g = h and l-B-C :length Bs = length Cs

{fix i assume i:i < length As
with subterm(1 ) FunA FunB(2 ) FunC (2 ) args-AB l-A-B l-B-C

have join-opt (As!i) ((Bs!i) t (Cs!i)) = join-opt (Cs!i) ((As!i) t
(Bs!i))

by (metis nth-mem supt.arg)
} note IH=this
from gh l-B-C None have those (map2 (t) Bs Cs) = None
unfolding FunB FunC by (smt (verit) join.simps(2 ) option.case-eq-if

option.distinct(1 ))
then obtain i where i:i < length (map2 (t) Bs Cs) (map2 (t) Bs

Cs)!i = None
using those-not-none-xs list-all-length by blast

with l-B-C have B-C-i:(Bs!i) t (Cs!i) = None by simp
with IH i(1 ) l-A-B have Cs!i t ABs!i = None using args-AB by

fastforce
with i(1 ) l-AB-A l-B-C l-A-B have those (map2 (t) Cs ABs) = None

using list-all-length those-some2 by fastforce
}
then show ?thesis

using l-A-B l-AB-A FunA FunB FunC AB fg None Some by auto
next

case (Some BC )
then have gh:g = h and l-B-C :length Bs = length Cs

unfolding FunB FunC by(meson join-fun-fun)+
from Some obtain BCs where BC :BC = Pfun g BCs and l-BC-B:length

BCs = length Bs
and args-BC :(∀ i<length Cs. Bs!i t Cs!i = Some (BCs ! i))
unfolding FunB FunC using join-fun-fun by force

{fix i assume i:i < length As
with subterm(1 ) FunA FunB(2 ) FunC (2 ) args-AB l-A-B l-B-C
have join-opt (As!i) ((Bs!i) t (Cs!i)) = (Cs!i) t (ABs!i)

by (metis join-opt.simps(1 ) nth-mem supt.arg)
with args-BC i l-A-B l-B-C have (As!i) t (BCs!i) = (Cs!i) t (ABs!i)

by simp
} note IH=this
then have those (map2 (t) As BCs) = those (map2 (t) Cs ABs)

by (smt (verit, del-insts) l-AB-A l-A-B l-BC-B l-B-C length-zip
map-equality-iff min-less-iff-conj nth-zip old.prod.case)
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then show ?thesis unfolding Some BC ‹A t B = Some AB› AB
unfolding gh FunA FunC fg join-opt.simps using l-BC-B l-AB-A l-A-B l-B-C by
simp

qed
next

case (RuleC α Cs)
from RuleC (2 ) have lin:linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
from RuleC (2 ) obtain f ′ ts where lhs:lhs α = Fun f ′ ts

using no-var-lhs by fastforce
consider match A (to-pterm (lhs α)) = None | match B (to-pterm (lhs

α)) = None
| (matches) match A (to-pterm (lhs α)) 6= None ∧ match B (to-pterm

(lhs α)) 6= None by linarith
then show ?thesis proof(cases)

case 1
then have match:match AB (to-pterm (lhs α)) = None

using lin by (smt (verit, ccfv-threshold) Some join-pterm-linear-subst
match-complete ′ match-matches not-Some-eq)

then have C t AB = None
unfolding RuleC AB join.simps by simp

moreover have join-opt A (B t C ) = None proof−
consider (∃BCs. B t C = Some (Prule α BCs)) | B t C = None

unfolding FunB RuleC join.simps by (metis (no-types, lifting)
option.case-eq-if )

then show ?thesis using 1 FunA(1 ) by(cases) (force, simp)
qed
ultimately show ?thesis using Some by simp

next
case 2
then have match:match AB (to-pterm (lhs α)) = None

using lin by (smt (verit, ccfv-threshold) Some join-pterm-linear-subst
match-complete ′ match-matches not-Some-eq)

then have C t AB = None
unfolding RuleC AB join.simps by simp

moreover from 2 have B t C = None
unfolding FunB RuleC join.simps by simp

ultimately show ?thesis using Some by simp
next

case matches
from matches obtain σ where sigma:match A (to-pterm (lhs α)) =

Some σ by force
from matches obtain τ where tau:match B (to-pterm (lhs α)) = Some

τ by force
from sigma tau obtain % where rho:(∀ x∈vars-term (to-pterm (lhs α)).

σ x t τ x = Some (% x))
and AB-rho:AB = (to-pterm (lhs α)) · % and match-rho:match AB

(to-pterm (lhs α)) = Some %
using join-pterm-subst-Some match-matches Some by blast
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{fix i assume i:i < length Cs
with sigma RuleC (3 ) have (map σ (var-rule α))!i C A

using lhs by (smt (verit, ccfv-threshold) lin linear-term-var-vars-term-list
match-matches nth-map nth-mem set-vars-term-list subst-image-subterm to-pterm.simps(2 )
vars-to-pterm)

moreover have (map σ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(2 ) sigma] RuleC (3 ) by (simp

add: vars-to-pterm)
moreover have (map τ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(3 ) tau] RuleC (3 ) by (simp add:

vars-to-pterm)
ultimately have join-opt (map σ (var-rule α) ! i) (map τ (var-rule

α) ! i t Cs!i) = Cs ! i t map % (var-rule α) ! i
using subterm(1 ) RuleC (3 ,4 ) i by (smt (verit, best) join-opt.simps(1 )

lin linear-term-var-vars-term-list nth-map nth-mem rho set-vars-term-list vars-to-pterm)

}note IH=this
show ?thesis proof(cases those (map2 (t) (map τ (var-rule α)) Cs))

case None
then obtain i where i:i < length Cs (map τ (var-rule α))!i t Cs!i =

None
using those-not-none-xs by (smt (verit) length-map length-zip

list-all-length map-nth-eq-conv min-less-iff-conj nth-zip old.prod.case)
with IH have Cs!i t map % (var-rule α) ! i = None by force
with i RuleC (3 ) have i < length (map2 (t) Cs (map % (var-rule α)))

(map2 (t) Cs (map % (var-rule α))) ! i = None by simp-all
then have those (map2 (t) Cs (map % (var-rule α))) = None

by (metis nth-mem option.exhaust those-not-none-x)
with None show ?thesis unfolding Some unfolding FunA FunB

RuleC join.simps tau[unfolded FunB] using AB match-rho by auto
next

case (Some BCs)
then have BC :B t C = Some (Prule α BCs)

unfolding FunB RuleC join.simps tau[unfolded FunB] by simp
from Some have l-BCs:length BCs = length Cs

using RuleC (3 ) length-those by fastforce
{fix i assume i < length Cs

with Some IH have (map σ (var-rule α)) ! i t BCs ! i = Cs ! i t
(map % (var-rule α)) ! i

using RuleC (3 ) those-some2 by fastforce
}
then have map2 (t) (map σ (var-rule α)) BCs = map2 (t) Cs (map

% (var-rule α))
using l-BCs by (simp add: RuleC (3 ) map-eq-conv ′)

then show ?thesis unfolding BC ‹A t B = Some AB› unfolding FunA
FunB RuleC join-opt.simps join.simps sigma[unfolded FunA] using AB match-rho
by auto

qed
qed
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qed
qed

next
case (RuleB α Bs)
from RuleB(2 ) have lin:linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
from RuleB(2 ) obtain f ′ ts where lhs:lhs α = Fun f ′ ts

using no-var-lhs by fastforce
show ?thesis proof(cases A t B)

case None
with subterm(4 ) RuleB show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (VarC x)
with subterm(4 ) RuleB FunA show ?thesis

by (metis None join-sym join-opt.simps(2 ) join-var-rule)
next

case (FunC Cs h)
from None show ?thesis proof(cases B t C )

case (Some BC )
obtain BCs τ where τ :match C (to-pterm (lhs α)) = Some τ and

BC :BC = Prule α BCs
and l-BCs:length BCs = length Bs and args-BC :∀ i < length Bs. Bs!i

t τ (var-rule α ! i) = Some (BCs ! i)
using join-rule-fun[OF Some[unfolded RuleB FunC ] subterm(3 )[unfolded

RuleB]] FunC (1 ) by blast
with None Some FunA show ?thesis proof(cases match A (to-pterm

(lhs α)))
case (Some σ)
from None obtain i where i:i < length (var-rule α) map2 (t) (map

σ (var-rule α)) Bs ! i = None
unfolding FunA RuleB join.simps Some[unfolded FunA] option.case

by (smt (verit, ccfv-threshold) length-map length-zip list-all-length
min-less-iff-conj option.case-eq-if option.distinct(1 ) those-not-none-xs)

let ?x=var-rule α ! i
have subt:A B σ ?x using lhs i Some

by (smt (verit, ccfv-SIG) lin linear-term-var-vars-term-list match-matches
nth-mem set-vars-term-list subst-image-subterm to-pterm.simps(2 ) vars-to-pterm)

have wf-τ -x:τ ?x ∈ wf-pterm R
using subterm(4 ) τ i(1 ) by (metis match-well-def vars-to-pterm)

have IH :join-opt (σ ?x) (Bs ! i t τ ?x) = join-opt (τ ?x) (σ ?x t Bs
! i)

using subterm(1 ) i wf-τ -x by (metis RuleB(3 ) RuleB(4 ) Some
match-well-def nth-mem subt subterm.prems(1 ) vars-to-pterm)

have (Bs ! i t τ ?x) = Some (BCs ! i)
using args-BC i RuleB(3 ) by auto

with IH i have (σ ?x) t (BCs ! i) = None
by (simp add: RuleB(3 ))

then have (map2 (t) (map σ (var-rule α)) BCs) ! i = None
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using l-BCs i by (simp add: RuleB(3 ))
then have those (map2 (t) (map σ (var-rule α)) BCs) = None
using l-BCs i by (metis (no-types, opaque-lifting) RuleB(3 ) length-map

length-zip min.idem nth-mem option.exhaust those-not-none-x)
then have A t BC = None

using Some i unfolding BC FunA join.simps by simp
then show ?thesis

unfolding None ‹B t C = Some BC › by auto
qed simp

qed simp
next

case (RuleC β Cs)
from None show ?thesis proof(cases B t C )

case (Some BC )
then have αβ:α = β and l-B-C :length Bs = length Cs

using join-rule-rule[OF Some[unfolded RuleB RuleC ] subterm(3 ,4 )[unfolded
RuleB RuleC ]] by simp+

from Some obtain BCs where BC :BC = Prule α BCs and l-BC-B:length
BCs = length Bs

and args-BC :(∀ i<length Cs. Bs!i t Cs!i = Some (BCs ! i))
using join-rule-rule[OF Some[unfolded RuleB RuleC ] subterm(3 ,4 )[unfolded

RuleB RuleC ]] by force
from Some FunA RuleB BC show ?thesis proof(cases match A (to-pterm

(lhs α)))
case (Some σ)
from None obtain i where i:i < length (var-rule α) map2 (t) (map

σ (var-rule α)) Bs ! i = None
unfolding FunA RuleB join.simps Some[unfolded FunA] option.case

by (smt (verit, ccfv-threshold) length-map length-zip list-all-length
min-less-iff-conj option.case-eq-if option.distinct(1 ) those-not-none-xs)

let ?x=var-rule α ! i
have subt:A B σ ?x using lhs i Some

by (smt (verit, ccfv-SIG) lin linear-term-var-vars-term-list match-matches
nth-mem set-vars-term-list subst-image-subterm to-pterm.simps(2 ) vars-to-pterm)

have IH :join-opt (σ ?x) (Bs ! i t Cs ! i) = join-opt (Cs ! i) (σ ?x t
Bs ! i)

using subterm(1 ) i RuleC by (metis RuleB(3 ) RuleB(4 ) Some αβ
match-well-def nth-mem subt subterm.prems(1 ) vars-to-pterm)

from IH i have (σ ?x) t (BCs ! i) = None
using RuleB(3 ) args-BC l-B-C by auto

then have (map2 (t) (map σ (var-rule α)) BCs) ! i = None
using RuleB(3 ) i(1 ) l-BC-B by force

then have those (map2 (t) (map σ (var-rule α)) BCs) = None
by (metis (no-types, opaque-lifting) RuleB(3 ) i(1 ) l-BC-B length-map

length-zip min.idem not-Some-eq nth-mem those-not-none-x)
then have A t BC = None

using Some i unfolding BC FunA join.simps by simp
then show ?thesis
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unfolding None ‹B t C = Some BC › by auto
qed simp

qed simp
qed

next
case (Some AB)
then obtain σ ABs where sigma:match A (to-pterm (lhs α)) = Some σ

and AB:AB = Prule α ABs and l-ABs:length ABs = length Bs
and args-AB:(∀ i<length Bs. σ (var-rule α ! i) t Bs ! i = Some (ABs ! i))

unfolding FunA RuleB using join-sym join-rule-fun subterm(2 ,3 )[unfolded
FunA RuleB] RuleB(3 ) by (smt (verit, del-insts))

{fix i assume i:i < length Bs
with sigma RuleB(3 ) have (map σ (var-rule α))!i C A
using lhs by (smt (verit, ccfv-threshold) lin linear-term-var-vars-term-list

match-matches nth-map nth-mem set-vars-term-list subst-image-subterm to-pterm.simps(2 )
vars-to-pterm)

}note A-sub=this
from subterm(4 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (VarC x)
have match (Var x) (to-pterm (lhs α)) = None

unfolding lhs to-pterm.simps using match-matches not-None-eq by
fastforce

then show ?thesis
unfolding Some unfolding RuleB VarC AB by simp

next
case (FunC Cs g)
show ?thesis proof(cases match C (to-pterm (lhs α)))

case None
then have B t C = None

unfolding RuleB FunC by simp
moreover from None have AB t C = None

unfolding AB FunC by simp
ultimately show ?thesis

unfolding Some by (simp add: join-sym)
next

case (Some τ)
{fix i assume i:i < length Bs

have (map σ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(2 ) sigma] RuleB(3 ) by (simp

add: vars-to-pterm)
moreover have (map τ (var-rule α))!i ∈ wf-pterm R

using i match-well-def [OF subterm(4 ) Some] RuleB(3 ) by (simp
add: vars-to-pterm)

ultimately have join-opt (map σ (var-rule α) ! i) (Bs!i t map τ
(var-rule α) ! i) = ABs ! i t map τ (var-rule α) ! i

using subterm(1 ) RuleB(3 ,4 ) i args-AB A-sub join-sym by fastforce
}note IH=this
show ?thesis proof(cases those (map2 (t) Bs (map τ (var-rule α))))
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case None
then obtain i where i:i < length Bs Bs!i t (map τ (var-rule α))!i =

None
using those-not-none-xs by (smt (verit) length-map length-zip

list-all-length map-nth-eq-conv min-less-iff-conj nth-zip old.prod.case)
with IH have map τ (var-rule α) ! i t ABs ! i = None

using join-sym by (metis join-opt.simps(2 ))
with i RuleB(3 ) l-ABs have i < length (map2 (t) (map τ (var-rule

α)) ABs) (map2 (t) (map τ (var-rule α)) ABs) ! i = None by simp-all
then have those (map2 (t) (map τ (var-rule α)) ABs) = None

by (metis nth-mem option.exhaust those-not-none-x)
with None show ?thesis

unfolding ‹A t B = Some AB› AB unfolding RuleB FunC
join-opt.simps join.simps Some[unfolded FunC ] option.case None by simp

next
case (Some BCs)
then have BC :B t C = Some (Prule α BCs)

unfolding RuleB FunC join.simps ‹match C (to-pterm (lhs α)) =
Some τ›[unfolded FunC ] by simp

from Some have l-BCs:length BCs = length Bs
using RuleB(3 ) length-those by fastforce

{fix i assume i < length Bs
with Some IH have (map σ (var-rule α)) ! i t BCs!i = (map τ

(var-rule α)) ! i t ABs ! i
using RuleB(3 ) those-some2 join-sym by fastforce

}
then have map2 (t) (map σ (var-rule α)) BCs = map2 (t) (map τ

(var-rule α)) ABs
using l-BCs l-ABs by (simp add: RuleB(3 ) map-eq-conv ′)

then show ?thesis unfolding BC ‹A t B = Some AB› AB unfolding
FunA RuleB FunC AB join-opt.simps join.simps sigma[unfolded FunA]

‹match C (to-pterm (lhs α)) = Some τ›[unfolded FunC ] option.case
by simp

qed
qed

next
case (RuleC β Cs)
show ?thesis proof(cases α = β)

case True
with RuleB(3 ) RuleC (3 ) have l-Bs-Cs:length Bs = length Cs by simp
{fix i assume i:i < length Bs

have (map σ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(2 ) sigma] RuleB(3 ) by (simp

add: vars-to-pterm)
then have join-opt (map σ (var-rule α) ! i) (Bs!i t Cs ! i) = Cs ! i

t ABs ! i
using subterm(1 ) RuleB(3 ,4 ) RuleC (3 ,4 ) i args-AB A-sub True by

simp
}note IH=this
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show ?thesis proof(cases those (map2 (t) Bs Cs))
case None
then obtain i where i:i < length Bs Bs!i t Cs!i = None

using those-not-none-xs by (smt (verit) length-map length-zip
list-all-length map-nth-eq-conv min-less-iff-conj nth-zip old.prod.case)

with IH have Cs ! i t ABs ! i = None by force
with i RuleB(3 ) l-ABs l-Bs-Cs have i < length (map2 (t) Cs ABs)

(map2 (t) Cs ABs) ! i = None by simp-all
then have those (map2 (t) Cs ABs) = None

by (metis nth-mem option.exhaust those-not-none-x)
with None show ?thesis unfolding ‹A t B = Some AB› AB unfolding

RuleB RuleC by simp
next

case (Some BCs)
then have BC :B t C = Some (Prule α BCs)

unfolding RuleB RuleC True by simp
from Some have l-BCs:length BCs = length Bs

using l-Bs-Cs length-those by fastforce
{fix i assume i < length Bs

with Some IH have (map σ (var-rule α)) ! i t BCs!i = Cs ! i t
ABs ! i

using those-some2 l-Bs-Cs by fastforce
}
then have map2 (t) (map σ (var-rule α)) BCs = map2 (t) Cs ABs

using l-Bs-Cs RuleB(3 ) l-ABs l-BCs by (simp add: RuleC (3 )
map-eq-conv ′)

then show ?thesis
unfolding BC ‹A t B = Some AB› AB unfolding FunA RuleB

RuleC join-opt.simps join.simps sigma[unfolded FunA] unfolding True by simp
qed

next
case False
then show ?thesis
unfolding ‹A t B = Some AB› unfolding RuleB RuleC AB join.simps

by simp
qed

qed
qed

qed
next

case (RuleA α As)
from RuleA(2 ) have lin:linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
from RuleA(2 ) obtain f ′ ts where lhs:lhs α = Fun f ′ ts

using no-var-lhs by fastforce
from subterm(3 ,2 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names

VarB FunB RuleB])
case (VarB x)
have match (Var x) (to-pterm (lhs α)) = None
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unfolding lhs using match-matches not-Some-eq by fastforce
then show ?thesis unfolding RuleA VarB
by (metis join-sym RuleA(2 ) join.simps(1 ) join.simps(9 ) join-opt.simps(1 )

join-opt.simps(2 )
left-lin-no-var-lhs.join-var-rule left-lin-no-var-lhs-axioms subterm.prems(3 )

wf-pterm.simps)
next

case (FunB Bs f )
show ?thesis proof(cases A t B)

case None
with subterm(4 ) FunB show ?thesis proof(cases C rule:wf-pterm.cases[case-names

VarC FunC RuleC ])
case (VarC x)
with subterm(4 ) FunB RuleA None show ?thesis

by auto
next

case (FunC Cs h)
from None show ?thesis proof(cases B t C )

case (Some BC )
have fh:f = h and l-B-C :length Bs = length Cs

using join-fun-fun[OF Some[unfolded FunB FunC ]] by simp+
obtain BCs where BC :BC = Pfun f BCs and l-BC-B:length BCs =

length Bs
and args-BC :(∀ i<length Bs. Bs!i t Cs!i = Some (BCs ! i))
using join-fun-fun[OF Some[unfolded FunB FunC ]] by blast

show ?thesis proof(cases match B (to-pterm (lhs α)))
case None
then have ¬ matches BC (to-pterm (lhs α))

using join-pterm-linear-subst ‹B t C = Some BC › lin by (metis
match-complete ′ matches-iff option.simps(3 ))

then have A t BC = None unfolding RuleA BC
by (smt (verit) join.simps(5 ) match-matches matches-iff not-Some-eq

option.simps(4 ))
then show ?thesis

unfolding ‹A t B = None› ‹B t C = Some BC › by simp
next

case (Some σ)
with None have those (map2 (t) As (map σ (var-rule α))) = None

unfolding RuleA FunB using not-None-eq by fastforce
then obtain i where i:i < length (var-rule α) map2 (t) As (map σ

(var-rule α)) ! i = None
by (smt (verit, best) RuleA(3 ) length-map length-zip list-all-length

min.idem those-not-none-xs)
let ?x=var-rule α ! i
from i have none-at-i:As ! i t σ ?x = None

using RuleA(3 ) by simp
show ?thesis proof(cases match C (to-pterm (lhs α)))

case None
then have ¬ matches BC (to-pterm (lhs α))
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using join-pterm-linear-subst ‹B t C = Some BC › lin by (metis
match-complete ′ matches-iff option.simps(3 ))

then have A t BC = None unfolding RuleA BC
by (smt (verit) join.simps(5 ) match-matches matches-iff not-Some-eq

option.simps(4 ))
then show ?thesis

unfolding ‹A t B = None› ‹B t C = Some BC › by simp
next

case (Some τ)
then obtain % where rho:(∀ x∈vars-term (to-pterm (lhs α)). σ x t

τ x = Some (% x))
and BC-rho:BC = (to-pterm (lhs α)) · % and match-rho:match BC

(to-pterm (lhs α)) = Some %
using join-pterm-subst-Some match-matches ‹match B (to-pterm

(lhs α)) = Some σ› ‹B t C = Some BC › by blast
have σ ?x ∈ wf-pterm R

using i(1 ) ‹match B (to-pterm (lhs α)) = Some σ› subterm(3 ) by
(metis match-well-def vars-to-pterm)

moreover have τ ?x ∈ wf-pterm R
using i(1 ) Some subterm(4 ) by (metis match-well-def vars-to-pterm)

ultimately have IH :join-opt (As ! i) (σ ?x t τ ?x) = join-opt (τ
?x) (As ! i t σ ?x)

using subterm(1 ) i(1 ) RuleA(3 ) by (metis RuleA(1 ) RuleA(4 )
nth-mem supt.arg)

then have (As ! i) t (% ?x) = None
using none-at-i rho by (metis i(1 ) join-opt.simps(1 ) join-opt.simps(2 )

lin linear-term-var-vars-term-list nth-mem set-vars-term-list vars-to-pterm)
then have (map2 (t) As (map % (var-rule α))) ! i = None

using RuleA(3 ) i(1 ) by auto
then have those (map2 (t) As (map % (var-rule α))) = None

by (metis (no-types, opaque-lifting) RuleA(3 ) i(1 ) length-map
length-zip min.idem not-Some-eq nth-mem those-not-none-x)

then have A t BC = None
using BC RuleA(1 ) match-rho by force

then show ?thesis
unfolding ‹A t B = None› ‹B t C = Some BC › by simp

qed
qed

qed simp
next

case (RuleC β Cs)
from None show ?thesis proof(cases B t C )

case (Some BC )
obtain BCs τ where τ :match B (to-pterm (lhs β)) = Some τ and

BC :BC = Prule β BCs
and l-BCs:length BCs = length Cs and args-BC :∀ i < length Cs. τ

(var-rule β ! i) t Cs!i = Some (BCs ! i)
using join-rule-fun Some[unfolded RuleC FunB] subterm(4 )[unfolded
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RuleC ] FunB(1 ) by (metis Residual-Join-Deletion.join-sym)
show ?thesis proof(cases match B (to-pterm (lhs α)))

case None
with ‹A t B = None› Some BC RuleA(1 ) τ show ?thesis by fastforce

next
case (Some σ)

from None obtain i where i:i < length (var-rule α) map2 (t) As
(map σ (var-rule α)) ! i = None

unfolding FunB RuleA join.simps Some[unfolded FunB] option.case
by (smt (verit, ccfv-threshold) length-map length-zip list-all-length

min-less-iff-conj option.case-eq-if option.distinct(1 ) those-not-none-xs)
let ?x=var-rule α ! i
have wf-σ-x:σ ?x ∈ wf-pterm R
using subterm(3 ) Some i(1 ) by (metis match-well-def vars-to-pterm)

from BC None ‹B t C = Some BC › RuleA show ?thesis proof(cases
α = β)

case True
then have σ = τ

using Some τ by auto
have IH :join-opt (As ! i) (τ ?x t Cs ! i) = join-opt (Cs ! i) (As ! i

t τ ?x)
using subterm(1 ) i wf-σ-x args-BC by (metis RuleA(1 ) RuleA(3 )

RuleA(4 ) RuleC (3 ) RuleC (4 ) True ‹σ = τ› nth-mem supt.arg)
have τ ?x t Cs ! i = Some (BCs ! i)

using args-BC i RuleC (3 ) True by force
with IH i have (As ! i) t (BCs ! i) = None

by (simp add: RuleA(3 ) ‹σ = τ›)
then have (map2 (t) As BCs) ! i = None

using l-BCs i by (simp add: RuleA(3 ) RuleC (3 ) True)
then have those (map2 (t) As BCs) = None
using l-BCs i those-not-none-x by (metis RuleA(3 ) RuleC (3 ) True

length-map length-zip min.idem nth-mem option.exhaust)
then have A t BC = None

by (simp add: BC RuleA(1 ))
then show ?thesis

unfolding None ‹B t C = Some BC › by auto
qed simp

qed
qed simp

qed
next

case (Some AB)
obtain σ ABs where sigma:match B (to-pterm (lhs α)) = Some σ

and AB:AB = Prule α ABs and l-ABs:length ABs = length As
and args-AB:(∀ i<length As. As!i t σ (var-rule α ! i) = Some (ABs ! i))

using join-sym join-rule-fun[OF Some[unfolded FunB RuleA]] using
FunB(1 ) RuleA(1 ) subterm.prems(1 ) by blast

from subterm(4 ) FunB(1 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
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VarC FunC RuleC ])
case (VarC x)
have match (Var x) (to-pterm (lhs α)) = None

unfolding lhs using match-matches not-Some-eq by fastforce
then show ?thesis unfolding Some unfolding RuleA FunB AB VarC

by simp
next

case (FunC Cs g)
show ?thesis proof(cases f = g ∧ length Bs = length Cs)

case True
show ?thesis proof(cases match C (to-pterm (lhs α)))

case None
then have ∗:C t AB = None

unfolding AB FunC by simp
with Some show ?thesis proof(cases B t C )

case (Some BC )
with None have match BC (to-pterm (lhs α)) = None

by (metis (no-types, lifting) domD domIff join-pterm-linear-subst
lin match-complete ′ match-lhs-subst option.simps(3 ))

moreover obtain BCs where BC = Pfun f BCs
by (metis FunB(1 ) FunC (1 ) Some join-fun-fun)

ultimately show ?thesis
using ∗ unfolding ‹A t B = Some AB› AB unfolding RuleA

Some unfolding FunC by (simp add: join-sym)
qed simp

next
case (Some τ)
{fix i assume i:i < length As

have (map σ (var-rule α)) ! i ∈ wf-pterm R
using i match-well-def [OF subterm(3 ) sigma] RuleA(3 ) by (simp

add: vars-to-pterm)
moreover have (map τ (var-rule α)) ! i ∈ wf-pterm R

using i match-well-def [OF subterm(4 ) Some] RuleA(3 ) by (simp
add: vars-to-pterm)

ultimately have join-opt (As ! i) ((map σ (var-rule α) ! i) t (map
τ (var-rule α) ! i)) = (map τ (var-rule α) ! i) t ABs ! i

using subterm(1 ) RuleA(1 ,3 ,4 ) i args-AB True by (metis (no-types,
lifting) join-opt.simps(1 ) nth-map nth-mem supt.arg)

}note IH=this
show ?thesis proof(cases B t C )

case None
with sigma Some obtain x where x ∈ vars-term (lhs α) and σ x t

τ x = None
using join-pterm-subst-None by (metis lhs-subst-trivial match-lhs-subst

option.sel set-vars-term-list vars-to-pterm)
then obtain i where i:i < length (var-rule α) (map σ (var-rule α)

! i) t (map τ (var-rule α) ! i) = None
by (metis (no-types, opaque-lifting) in-set-idx lin linear-term-var-vars-term-list

nth-map set-vars-term-list)
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with IH have map2 (t) (map τ (var-rule α)) ABs ! i = None
using RuleA(3 ) l-ABs by fastforce

with i(1 ) have those (map2 (t) (map τ (var-rule α)) ABs) = None
using those-not-none-x by (metis (no-types, opaque-lifting) RuleA(3 )

l-ABs length-map length-zip min.idem nth-mem option.exhaust)
with Some show ?thesis unfolding ‹A t B = Some AB› AB None

unfolding FunC by simp
next

case (Some BC )
from sigma Some obtain % where rho:(∀ x∈vars-term (to-pterm (lhs

α)). σ x t τ x = Some (% x))
and BC-rho:BC = (to-pterm (lhs α)) · % and match-rho:match BC

(to-pterm (lhs α)) = Some %
using join-pterm-subst-Some match-matches ‹match C (to-pterm

(lhs α)) = Some τ› by blast
{fix i assume i:i < length As

with rho have (map σ (var-rule α)) ! i t (map τ (var-rule α)) ! i
= Some ((map % (var-rule α)) ! i)

by (metis (no-types, lifting) RuleA(3 ) lin linear-term-var-vars-term-list
nth-map nth-mem set-vars-term-list vars-to-pterm)

with i IH have As ! i t (map % (var-rule α)) ! i = (map τ (var-rule
α)) ! i t ABs ! i

by force
}
then have map2 (t) As (map % (var-rule α)) = map2 (t) (map τ

(var-rule α)) ABs
by (simp add: RuleA(3 ) l-ABs map-equality-iff )

with match-rho ‹match C (to-pterm (lhs α)) = Some τ›
show ?thesis unfolding ‹A t B = Some AB› AB Some

unfolding RuleA BC-rho join-opt.simps to-pterm.simps FunC by
(simp add: lhs)

qed
qed

next
case False
then consider (fg) f 6= g | (length) length Bs 6= length Cs by fastforce
then show ?thesis proof(cases)

case fg
from sigma have f ′ = f
unfolding FunB lhs to-pterm.simps using match-matches by fastforce

with fg have match C (to-pterm (lhs α)) = None
unfolding lhs FunC using domIff match-matches by fastforce
with fg show ?thesis unfolding ‹A t B = Some AB› unfolding

RuleA FunB FunC AB by simp
next

case length
from sigma have length ts = length Bs

using FunB(1 ) lhs match-matches by fastforce
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then have match C (to-pterm (lhs α)) = None
unfolding FunC lhs using length

by (smt (verit, del-insts) eval-term.simps(2 ) length-map match-matches
option.exhaust term.inject(2 ) to-pterm.simps(2 ))

with length show ?thesis unfolding ‹A t B = Some AB› unfolding
RuleA FunB FunC AB by simp

qed
qed

next
case (RuleC β Cs)
show ?thesis proof(cases α = β)

case True
{fix i assume i:i < length As

have (map σ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(3 ) sigma] RuleA(3 ) by (simp

add: vars-to-pterm)
then have join-opt (As!i) ((map σ (var-rule α) ! i) t Cs ! i) = Cs ! i

t ABs ! i
using subterm(1 ) RuleA(1 ,3 ,4 ) RuleC i args-AB True by (metis

(no-types, lifting) join-opt.simps(1 ) nth-map nth-mem supt.arg)
}note IH=this
show ?thesis proof(cases those (map2 (t) (map σ (var-rule α)) Cs))

case None
with sigma have BC :B t C = None

unfolding FunB RuleC True by simp
from None obtain i where i:i < length (map2 (t) (map σ (var-rule

α)) Cs) and (map2 (t) (map σ (var-rule α)) Cs) ! i = None
using list-all-length those-not-none-xs by blast

with IH have (map2 (t) Cs ABs)!i = None
using RuleA(3 ) l-ABs RuleC (3 ) by fastforce

with i(1 ) have those (map2 (t) Cs ABs) = None
using l-ABs RuleA(3 ) RuleC (3 ) those-not-none-x unfolding True
by (metis length-map length-zip not-Some-eq nth-mem)
then show ?thesis unfolding BC ‹A t B = Some AB› unfolding

AB RuleC True by simp
next

case (Some BCs)
with sigma have BC :B t C = Some (Prule α BCs)

unfolding FunB RuleC True by simp
{fix i assume i:i < length As
with Some have (map σ (var-rule α)) ! i t Cs ! i = Some (BCs ! i)

using RuleA(3 ) RuleC (3 ) True those-some2 by fastforce
with i IH have As ! i t BCs ! i = Cs ! i t ABs ! i

by force
}
moreover have length Cs = length BCs

using RuleC (3 ) Some True length-those by fastforce
ultimately have map2 (t) As BCs = map2 (t) Cs ABs

using RuleA(3 ) l-ABs map-equality-iff
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by (smt (verit, ccfv-threshold) RuleC (3 ) Some True length-map
length-those length-zip nth-zip old.prod.case)

then show ?thesis unfolding ‹A t B = Some AB› BC AB unfolding
RuleA RuleC True by simp

qed
next

case False
show ?thesis proof(cases B t C )

case None
show ?thesis unfolding None ‹A t B = Some AB› unfolding AB

RuleC using False by simp
next

case (Some BC )
then obtain BCs where BC = Prule β BCs

unfolding RuleC FunB by (metis Residual-Join-Deletion.join-sym
RuleC (1 ) join-rule-fun subterm.prems(3 ))

with False show ?thesis unfolding ‹A t B = Some AB› Some AB
unfolding RuleC RuleA by simp

qed
qed

qed
qed

next
case (RuleB β Bs)
show ?thesis proof(cases A t B)

case None
then show ?thesis proof(cases α = β)

case True
then have l-As-Bs:length As = length Bs

by (simp add: RuleA(3 ) RuleB(3 ))
with None obtain i where i:i < length As As ! i t Bs ! i = None

unfolding True RuleA RuleB unfolding join.simps by (smt (verit)
RuleB(3 ) length-map length-zip list-all-length

map-nth-eq-conv min-less-iff-conj nth-zip old.prod.case option.case-eq-if
option.distinct(1 ) those-not-none-xs)

from subterm(4 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC x)
show ?thesis unfolding RuleA RuleB VarC

by (metis None Residual-Join-Deletion.join-sym RuleA(1 ) RuleB(1 )
RuleB(2 ) join-opt.simps(2 ) left-lin-no-var-lhs.join-var-rule left-lin-no-var-lhs-axioms)

next
case (FunC Cs f )
from None show ?thesis proof(cases B t C )

case (Some BC )
obtain BCs τ where τ :match C (to-pterm (lhs β)) = Some τ and

BC :BC = Prule β BCs
and l-BCs:length BCs = length Bs and args-BC :∀ i < length Bs. Bs !

i t τ (var-rule β ! i) = Some (BCs ! i)
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using join-rule-fun Some[unfolded RuleB FunC ] subterm(3 )[unfolded
RuleB] FunC (1 ) by metis

let ?x=var-rule β ! i
have IH :join-opt (As ! i) (Bs ! i t τ ?x) = join-opt (τ ?x) (As ! i t

Bs ! i)
by (metis RuleA(1 ) RuleA(3 ) RuleA(4 ) RuleB(3 ) RuleB(4 ) True τ i(1 )

match-well-def nth-mem subterm.hyps subterm.prems(3 ) supt.arg vars-to-pterm)
with i have join-opt (As ! i) (Bs ! i t τ ?x) = None

by simp
then have As ! i t BCs ! i = None

using args-BC i(1 ) l-As-Bs by auto
then have (map2 (t) As BCs) ! i = None

using i(1 ) l-As-Bs l-BCs by force
then have those (map2 (t) As BCs) = None

by (metis i(1 ) l-As-Bs l-BCs length-map length-zip min.idem not-None-eq
nth-mem those-not-none-x)

then show ?thesis
using None RuleA(1 ) True BC Some by auto

qed simp
next

case (RuleC γ Cs)
from None show ?thesis proof(cases B t C )

case (Some BC )
then have β = γ
unfolding RuleB RuleC by (metis join.simps(3 ) option.distinct(1 ))

from Some obtain BCs where BC :BC = Prule β BCs and l-BCs:length
BCs = length Bs and

args-BC :∀ i < length Bs. Bs ! i t Cs ! i = Some (BCs ! i)
using RuleB(1 ) RuleC (1 ) join-rule-rule subterm.prems(2 ) sub-

term.prems(3 ) by blast
have IH :join-opt (As ! i) (Bs ! i t Cs ! i) = join-opt (Cs ! i) (As ! i

t Bs ! i)
using subterm(1 ) by (metis RuleA(1 ) RuleA(3 ) RuleA(4 ) RuleB(4 )

RuleC (3 ) RuleC (4 ) True ‹β = γ› i(1 ) l-As-Bs nth-mem supt.arg)
then have As ! i t BCs ! i = None

using args-BC i(1 ) l-As-Bs i(2 ) by fastforce
then have (map2 (t) As BCs) ! i = None

using i(1 ) l-As-Bs l-BCs by force
then have those (map2 (t) As BCs) = None

by (metis i(1 ) l-As-Bs l-BCs length-map length-zip min.idem not-None-eq
nth-mem those-not-none-x)

then show ?thesis
using None RuleA(1 ) True BC Some by auto

qed simp
qed

next
case False
then show ?thesis proof(cases C )

case (Var x)
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show ?thesis unfolding RuleA RuleB Var
by (metis None Residual-Join-Deletion.join-sym RuleA(1 ) RuleB(1 )

RuleB(2 ) join-opt.simps(2 ) join-var-rule)
next

case (Pfun f Cs)
show ?thesis unfolding RuleA RuleB Pfun
by (metis (no-types, lifting) False RuleB(1 ) join.simps(3 ) join-opt.elims

join-opt.simps(2 ) join-rule-fun subterm.prems(2 ))
next

case (Prule γ Cs)
show ?thesis unfolding RuleA RuleB Prule

by (smt (verit, ccfv-threshold) False Prule RuleA(1 ) RuleB(1 )
join-opt.elims join-rule-rule join-wf-pterm subterm.prems(1 ) subterm.prems(2 ) sub-
term.prems(3 ))

qed
qed

next
case (Some AB)
then have alpha-beta:β = α

unfolding RuleA RuleB by (metis join.simps(3 ) option.distinct(1 ))
with Some obtain ABs where AB:AB = Prule α ABs and l-AB-A:length

ABs = length As
and args-AB:(∀ i<length Bs. As!i t Bs!i = Some (ABs ! i))

by (smt (verit, ccfv-SIG) RuleA(1 ) RuleB(1 ) join-rule-rule subterm.prems(1 )
subterm.prems(2 ))

from subterm(4 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC x)
have match (Var x) (to-pterm (Fun f ′ ts)) = None

by (metis case-optionE match-matches option.disc-eq-case(2 ) subst-apply-eq-Var
term.distinct(1 ) to-pterm.simps(2 ))

then show ?thesis unfolding Some AB unfolding RuleB VarC join.simps
alpha-beta by (simp add: lhs)

next
case (FunC Cs f )
show ?thesis proof(cases match C (to-pterm (lhs α)))

case None
then show ?thesis unfolding Some AB unfolding RuleB alpha-beta

FunC by simp
next

case (Some σ)
{fix i assume i:i < length As

have (map σ (var-rule α))!i ∈ wf-pterm R
using i match-well-def [OF subterm(4 ) Some] RuleA(3 ) by (simp

add: vars-to-pterm)
with i have join-opt (As ! i) (Bs ! i t (map σ (var-rule α) ! i)) =

map σ (var-rule α) ! i t ABs ! i
using subterm(1 ) RuleA RuleB by (metis alpha-beta args-AB

join-opt.simps(1 ) nth-mem supt.arg)
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}note IH=this
show ?thesis proof(cases those (map2 (t) Bs (map σ (var-rule α))))

case None
from None obtain i where i:i < length (map2 (t) Bs (map σ (var-rule

α))) and (map2 (t) Bs (map σ (var-rule α))) ! i = None
using list-all-length those-not-none-xs by blast

with IH have (map2 (t) (map σ (var-rule α)) ABs)!i = None
using RuleA(3 ) l-AB-A by fastforce

with i(1 ) have those (map2 (t) (map σ (var-rule α)) ABs) = None
using l-AB-A RuleA(3 ) those-not-none-x by (metis RuleB(3 ) alpha-beta

length-map length-zip nth-mem option.exhaust)
with ‹A t B = Some AB› Some None show ?thesis unfolding AB

RuleB FunC alpha-beta by fastforce
next

case (Some BCs)
then have BC :B t C = Some (Prule α BCs)

unfolding RuleB FunC alpha-beta using ‹match C (to-pterm (lhs
α)) = Some σ› by (simp add: FunC (1 ))

then have l-BCs:length BCs = length As
using RuleA(3 ) RuleB(3 ) Some alpha-beta length-those by force

{fix i assume i < length As
then have As!i t BCs!i = (map σ (var-rule α)) ! i t ABs ! i

using IH Some l-BCs length-those those-some2 by fastforce
}
then have map2 (t) As BCs = map2 (t) (map σ (var-rule α)) ABs

by (simp add: RuleA(3 ) l-AB-A l-BCs map-equality-iff )
then show ?thesis using ‹match C (to-pterm (lhs α)) = Some σ›

unfolding ‹A t B = Some AB› AB BC unfolding RuleA FunC
join-opt.simps join.simps by simp

qed
qed

next
case (RuleC γ Cs)
show ?thesis proof(cases α = γ)

case True
{fix i assume i:i < length As

then have join-opt (As ! i) (Bs ! i t Cs ! i) = Cs ! i t ABs ! i
using subterm(1 ) RuleA RuleB RuleC True alpha-beta args-AB by

(metis join-opt.simps(1 ) nth-mem supt.arg)
}note IH=this
show ?thesis proof(cases those (map2 (t) Bs Cs))

case None
then obtain i where i:i < length (map2 (t) Bs Cs) (map2 (t) Bs

Cs)!i = None
using list-all-length those-not-none-xs by blast

with IH have map2 (t) Cs ABs ! i = None
using RuleA(3 ) RuleC (3 ) True l-AB-A by fastforce

with i(1 ) have those (map2 (t) Cs ABs) = None
by (metis RuleA(3 ) RuleB(3 ) RuleC (3 ) True alpha-beta l-AB-A
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length-map length-zip not-Some-eq nth-mem those-not-none-x)
with None show ?thesis unfolding Some AB unfolding RuleC RuleB

True alpha-beta by simp
next

case (Some BCs)
then have BC :B t C = Some (Prule α BCs)

by (simp add: RuleB(1 ) RuleC (1 ) True alpha-beta)
{fix i assume i < length As

with IH have As!i t BCs!i = Cs!i t ABs!i
using RuleA(3 ) RuleB(3 ) RuleC (3 ) Some True alpha-beta those-some2

by fastforce
}
moreover have length BCs = length As
using RuleA(3 ) RuleB(3 ) RuleC (3 ) Some True alpha-beta length-those

by force
ultimately have those (map2 (t) As BCs) = those (map2 (t) Cs

ABs)
by (smt (verit, ccfv-SIG) RuleA(3 ) RuleB(3 ) RuleC (3 ) Some

True alpha-beta l-AB-A length-map length-those length-zip map-equality-iff nth-zip
old.prod.case)

then show ?thesis unfolding ‹A t B = Some AB› AB BC unfolding
RuleA RuleC True alpha-beta by simp

qed
next

case False
then show ?thesis unfolding ‹A t B = Some AB› AB unfolding

RuleA RuleB RuleC
by (simp add: alpha-beta)

qed
qed

qed
qed

qed
qed

Preparation for well-definedness result for
⊔

.
lemma join-triple-defined:

assumes A ∈ wf-pterm R B ∈ wf-pterm R C ∈ wf-pterm R
and A t B 6= None B t C 6= None A t C 6= None

shows join-opt A (B t C ) 6= None
using assms proof(induct A arbitrary:B C rule:subterm-induct)
case (subterm A)
from subterm(5 ) obtain AB where joinAB:A t B = Some AB by blast
from subterm(6 ) obtain BC where joinBC :B t C = Some BC by blast
from subterm(7 ) obtain AC where joinAC :A t C = Some AC by blast
from subterm(2 ) show ?case proof(cases A rule:wf-pterm.cases[case-names

VarA FunA RuleA])
case (VarA x)

from subterm(3 ,5 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names
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VarB FunB RuleB])
case (VarB y)

from subterm(5 ) have x:x = y unfolding VarA VarB by (meson join.simps(1 ))

from subterm(4 ,6 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC z)
from subterm(6 ) show ?thesis unfolding VarA VarB x VarC

by (metis join.simps(1 ) join-opt.simps(1 ))
next

case (RuleC α Cs)
from subterm(5−) show ?thesis unfolding VarA VarB RuleC x

by (metis Residual-Join-Deletion.join-sym RuleC (1 ) VarA join-opt.elims
join-with-source option.sel source.simps(1 ) source-join subterm.prems(1 ) subterm.prems(3 )
to-pterm.simps(1 ) x)

qed (simp add: VarB)
next

case (RuleB α Bs)
from subterm(2−) VarA no-var-lhs RuleB show ?thesis
by (metis join-sym join-opt.elims join-wf-pterm join-with-source source.simps(1 )

source-join to-pterm.simps(1 ))
qed (simp add: VarA)

next
case (FunA As f )

from subterm(3 ,5 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names
VarB FunB RuleB])

case (FunB Bs g)
from subterm(5 ) have fg:f = g and l-A-B:length As = length Bs

unfolding FunA FunB by (meson join.simps(2 ))+
obtain ABs where AB:AB = Pfun f ABs and l-AB-A:length ABs = length

As
and args-AB:(∀ i<length Bs. As!i t Bs!i = Some (ABs ! i))
using join-fun-fun[OF joinAB[unfolded FunA FunB]] by fastforce

from subterm(4 ,6 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (FunC Cs h)
from subterm(6 ) have gh:g = h and l-B-C :length Bs = length Cs

unfolding FunB FunC by (meson join.simps(2 ))+
from subterm(7 ) have fh:f = h and l-A-C :length As = length Cs

unfolding FunA FunC by (meson join.simps(2 ))+
obtain BCs where BC :BC = Pfun g BCs and l-BC-B:length BCs = length

Bs
and args-BC :(∀ i<length BCs. Bs!i t Cs!i = Some (BCs ! i))
using join-fun-fun[OF joinBC [unfolded FunB FunC ]] by fastforce

obtain ACs where AC :AC = Pfun h ACs and l-AC-C :length ACs = length
Cs

and args-AC :(∀ i<length ACs. As!i t Cs!i = Some (ACs ! i))
using join-fun-fun[OF joinAC [unfolded FunA FunC ]] by fastforce

have those (map2 (t) As BCs) 6= None proof−
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{fix i assume i:i < length (zip As BCs)
from FunA FunB FunC i have join-opt (As!i) ((Bs!i) t (Cs!i)) 6= None

using subterm(1 ) l-A-B l-B-C l-AC-C by (smt (verit, ccfv-threshold)
args-AB args-AC args-BC length-zip min-less-iff-conj nth-mem option.distinct(1 )
supt.arg)

then have (map2 (t) As BCs)!i 6= None
using i args-BC by simp

}
then show ?thesis

by (simp add: list-all-length those-not-none-xs)
qed
then show ?thesis

unfolding joinBC BC unfolding FunA fg gh join-opt.simps
by (simp add: l-A-B l-BC-B option.case-eq-if )

next
case (RuleC α Cs)

from joinBC subterm(4 ) obtain σ BCs where match-lhs-B:match B
(to-pterm (lhs α)) = Some σ

and BC :BC = Prule α BCs and l-BC-C :length BCs = length Cs
and args-BC :(∀ i<length Cs. Cs ! i t σ (var-rule α ! i) = Some (BCs ! i))

unfolding FunB RuleC using join-rule-fun RuleC (1 ,2 ,3 ) join-sym by
metis

from joinAC subterm(4 ) obtain τ ACs where match-lhs-A:match A
(to-pterm (lhs α)) = Some τ

and AC :AC = Prule α ACs and l-AC-C :length ACs = length Cs
and args-AC :(∀ i<length Cs. Cs ! i t τ (var-rule α ! i) = Some (ACs ! i))
unfolding FunA RuleC using join-rule-fun RuleC (3 ) join-sym by metis

have those (map2 (t) (map τ (var-rule α)) BCs) 6= None proof−
{fix i assume i:i < length (zip (map τ (var-rule α)) BCs)

from i obtain x where x:var-rule α ! i = x x ∈ vars-term (to-pterm
(lhs α))

by (metis (no-types, lifting) comp-apply length-map length-zip
min-less-iff-conj nth-mem set-remdups set-rev set-vars-term-list vars-to-pterm)

have τ (var-rule α ! i) C A proof−
from RuleC (2 ) no-var-lhs obtain f ′ ts where lhs α = Fun f ′ ts by

fastforce
with x show ?thesis

using subst-image-subterm[of x] match-lhs-A unfolding FunA
by (smt (verit) match-matches to-pterm.simps(2 ))

qed
moreover have τ (var-rule α ! i) ∈ wf-pterm R

using i match-well-def [OF subterm(2 ) match-lhs-A] by (simp add:
vars-to-pterm)

moreover have σ (var-rule α ! i) ∈ wf-pterm R
using i match-well-def [OF subterm(3 ) match-lhs-B] by (simp add:

vars-to-pterm)
moreover have τ (var-rule α ! i) t σ (var-rule α ! i) 6= None
using join-pterm-subst-Some x match-lhs-B match-lhs-A match-matches

subterm.prems(4 ) x by blast
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moreover have τ (var-rule α ! i) t (Cs!i) 6= None
using args-AC by (metis join-sym RuleC (3 ) i length-map length-zip

min-less-iff-conj option.distinct(1 ))
moreover have σ (var-rule α ! i) t (Cs!i) 6= None

using args-BC by (metis join-sym RuleC (3 ) i length-map length-zip
min-less-iff-conj option.distinct(1 ))

ultimately have IH :join-opt (τ (var-rule α ! i)) (σ (var-rule α ! i) t
(Cs!i)) 6= None

using RuleC (3 ,4 ) subterm(1 ) i by simp
from IH have (τ (var-rule α ! i)) t (BCs!i) 6= None

using i args-BC l-BC-C join-sym by (metis (no-types, opaque-lifting)
join-opt.simps(1 ) length-zip min-less-iff-conj)

then have (map2 (t) (map τ (var-rule α)) BCs)!i 6= None
unfolding nth-map[OF i] using i by auto

}
then show ?thesis by (simp add: list-all-length those-not-none-xs)

qed
with match-lhs-A show ?thesis

unfolding joinBC BC FunA unfolding fg join-opt.simps join.simps(7 )
by force

qed (simp add:FunB)
next

case (RuleB α Bs)
from joinAB have ∗:Prule α Bs t Pfun f As = Some AB unfolding FunA

RuleB using join-sym by metis
obtain σ ABs where match-lhs-A:match A (to-pterm (lhs α)) = Some σ

and AB:AB = Prule α ABs and l-A-AB:length ABs = length Bs
and args-AB:(∀ i<length Bs. Bs ! i t σ (var-rule α ! i) = Some (ABs ! i))

unfolding FunA RuleB using join-rule-fun[OF ∗ subterm(3 )[unfolded FunA
RuleB]] RuleB(3 ) by fastforce

from subterm(4 ,7 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (FunC Cs g)
from joinBC have ∗:Prule α Bs t Pfun g Cs = Some BC unfolding FunC

RuleB by metis
from subterm(3 ) obtain τ BCs where match-lhs-C :match C (to-pterm (lhs

α)) = Some τ
and BC :BC = Prule α BCs and l-BC-B:length BCs = length Bs

and args-BC :(∀ i<length Bs. Bs ! i t τ (var-rule α ! i) = Some (BCs ! i))
unfolding FunC RuleB using join-rule-fun[OF joinBC [unfolded FunC

RuleB]] RuleB(3 ) by fastforce
have those (map2 (t) (map σ (var-rule α)) BCs) 6= None proof−

{fix i assume i:i < length (zip (map τ (var-rule α)) BCs)
from i obtain x where x:var-rule α ! i = x x ∈ vars-term (to-pterm

(lhs α))
by (metis (no-types, lifting) comp-apply length-map length-zip

min-less-iff-conj nth-mem set-remdups set-rev set-vars-term-list vars-to-pterm)
have σ (var-rule α ! i) C A proof−

from RuleB(2 ) no-var-lhs obtain f ′ ts where lhs α = Fun f ′ ts by
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fastforce
with x show ?thesis

using subst-image-subterm[of x] match-lhs-A unfolding FunA
by (smt (verit) match-matches to-pterm.simps(2 ))

qed
moreover have σ (var-rule α ! i) ∈ wf-pterm R

using i match-well-def [OF subterm(2 ) match-lhs-A] by (simp add:
vars-to-pterm)

moreover have τ (var-rule α ! i) ∈ wf-pterm R
using i match-well-def [OF subterm(4 ) match-lhs-C ] by (simp add:

vars-to-pterm)
moreover have σ (var-rule α ! i) t τ (var-rule α ! i) 6= None
using join-pterm-subst-Some x match-lhs-C match-lhs-A match-matches

subterm.prems(6 ) x by blast
moreover have (Bs!i) t τ (var-rule α ! i) 6= None

using args-BC i by (metis RuleB(3 ) i length-map length-zip min-less-iff-conj
option.distinct(1 ))

moreover have σ (var-rule α ! i) t (Bs!i) 6= None
using args-AB by (metis join-sym RuleB(3 ) i length-map length-zip

min-less-iff-conj option.distinct(1 ))
moreover have σ (var-rule α ! i) t τ (var-rule α ! i) 6= None
using join-pterm-subst-Some x match-lhs-C match-lhs-A match-matches

subterm.prems(6 ) x by blast
ultimately have IH :join-opt (σ (var-rule α ! i)) ((Bs!i) t τ (var-rule

α ! i)) 6= None
using RuleB(3 ,4 ) subterm(1 ) i by simp

then have (map2 (t) (map σ (var-rule α)) BCs)!i 6= None
using i args-BC l-BC-B unfolding nth-map[OF i] using i by auto

}
then show ?thesis by (simp add: list-all-length those-not-none-xs)

qed
with match-lhs-A show ?thesis

unfolding joinBC BC FunA unfolding join-opt.simps join.simps(7 ) by
force

next
case (RuleC β Cs)
obtain BCs where α:α = β and l-B-C :length Bs = length Cs

and BC :BC = Prule α BCs and l-BC-B:length BCs = length Bs and
args-BC :(∀ i<length Bs. Bs ! i t Cs ! i = Some (BCs ! i))

using join-rule-rule joinBC subterm(3 ,4 ) unfolding RuleB(1 ) RuleC (1 )
by blast

from joinAC match-lhs-A have args-AC :∀ i<length Cs. Cs ! i t σ (var-rule
α ! i) 6= None

using join-rule-fun by (metis (no-types, lifting) FunA(1 ) Residual-Join-Deletion.join-sym
RuleC (1 ) α option.distinct(1 ) option.inject subterm.prems(3 ))

have those (map2 (t) (map σ (var-rule α)) BCs) 6= None proof−
{fix i assume i:i < length (zip (map σ (var-rule α)) BCs)

from i obtain x where x:var-rule α ! i = x x ∈ vars-term (to-pterm
(lhs α))
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by (metis (no-types, lifting) comp-apply length-map length-zip
min-less-iff-conj nth-mem set-remdups set-rev set-vars-term-list vars-to-pterm)

have σ (var-rule α ! i) C A proof−
from RuleB(2 ) no-var-lhs obtain f ′ ts where lhs α = Fun f ′ ts by

fastforce
with x show ?thesis

using subst-image-subterm[of x] match-lhs-A unfolding FunA
by (smt (verit) match-matches to-pterm.simps(2 ))

qed
moreover have σ (var-rule α ! i) ∈ wf-pterm R

using i match-well-def [OF subterm(2 ) match-lhs-A] by (simp add:
vars-to-pterm)

moreover have σ (var-rule α ! i) t (Bs!i) 6= None
using args-AB by (metis join-sym RuleB(3 ) i length-map length-zip

min-less-iff-conj option.distinct(1 ))
moreover have (Bs!i) t (Cs!i) 6= None

using args-BC i by (simp add: l-BC-B)
moreover have σ (var-rule α ! i) t (Cs!i) 6= None
using args-AC by (metis join-sym RuleC (3 ) α i length-map length-zip

min-less-iff-conj)
ultimately have IH :join-opt (σ (var-rule α ! i)) ((Bs!i) t (Cs!i)) 6=

None
using RuleB(3 ,4 ) RuleC (3 ,4 ) subterm(1 ) i l-B-C by auto

then have (map2 (t) (map σ (var-rule α)) BCs)!i 6= None
using i args-BC l-BC-B unfolding nth-map[OF i] using i by auto

}
then show ?thesis by (simp add: list-all-length those-not-none-xs)

qed
with match-lhs-A show ?thesis

unfolding joinBC BC FunA unfolding join-opt.simps join.simps(7 ) by
force

qed (simp add: FunA)
qed (simp add: FunA)

next
case (RuleA α As)

from subterm(3 ,5 ) show ?thesis proof(cases B rule:wf-pterm.cases[case-names
VarB FunB RuleB])

case (VarB x)
from subterm(2−) show ?thesis
by (metis join-sym VarB joinBC join-opt.simps(1 ) join-with-source source.simps(1 )

source-join to-pterm.simps(1 ))
next

case (FunB Bs f )
from subterm(2 ) obtain σ ABs where match-lhs-B:match B (to-pterm (lhs

α)) = Some σ
and AB:AB = Prule α ABs and l-A-AB:length ABs = length As
and args-AB:(∀ i<length As. As ! i t σ (var-rule α ! i) = Some (ABs ! i))

unfolding RuleA FunB using join-rule-fun[OF joinAB[unfolded RuleA
FunB]] RuleA(1 ,3 ) by fastforce
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from subterm(4 ,6 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (FunC Cs g)
from subterm(2 ) obtain τ ACs where match-lhs-C :match C (to-pterm (lhs

α)) = Some τ
and AC :AC = Prule α ACs and l-A-AC :length ACs = length As

and args-AC :(∀ i<length As. As ! i t τ (var-rule α ! i) = Some (ACs ! i))
unfolding RuleA FunC using join-rule-fun[OF joinAC [unfolded RuleA

FunC ]] RuleA(1 ,3 ) by fastforce
from joinBC obtain % where ∀ x∈vars-term (to-pterm (lhs α)). σ x t τ x

= Some (% x) and BC = to-pterm (lhs α) · %
using join-pterm-subst-Some[of to-pterm (lhs α)] match-lhs-C match-lhs-B

by (smt (verit) match-matches)
then obtain BCs where args-BC :(∀ i<length As. σ (var-rule α ! i) t τ

(var-rule α ! i) = Some (BCs ! i))
and BC :BC = (to-pterm (lhs α)) · 〈BCs〉α and l-A-BC :length As = length

BCs
using subst-imp-mk-subst[of BC to-pterm (lhs α)] RuleA(3 )

by (smt (verit, del-insts) comp-apply nth-mem set-remdups set-rev
set-vars-term-list vars-to-pterm)

from RuleA(2 ) no-var-lhs obtain f ′ ts where lhs:lhs α = Fun f ′ ts by
fastforce

{fix i assume i:i < length As
from i obtain x where x:var-rule α ! i = x x ∈ vars-term (to-pterm (lhs

α))
by (metis RuleA(3 ) comp-apply nth-mem set-remdups set-rev set-vars-term-list

vars-to-pterm)
have σ (var-rule α ! i) ∈ wf-pterm R

using RuleA(3 ) i match-well-def [OF subterm(3 ) match-lhs-B] by (simp
add: vars-to-pterm)

moreover have τ (var-rule α ! i) ∈ wf-pterm R
using RuleA(3 ) i match-well-def [OF subterm(4 ) match-lhs-C ] by (simp

add: vars-to-pterm)
moreover have As!i t σ (var-rule α ! i) 6= None

using args-AB i by auto
moreover have As!i t τ (var-rule α ! i) 6= None

using args-AC i by auto
moreover have σ (var-rule α ! i) t τ (var-rule α ! i) 6= None

using args-BC i by auto
ultimately have IH :join-opt (As!i) (σ (var-rule α ! i) t τ (var-rule α !

i)) 6= None
using RuleA(3 ,4 ) subterm(1 ) i by (metis RuleA(1 ) nth-mem supt.arg)

then have As!i t BCs!i 6= None
using i args-BC by auto

}
with subterm(2 ) show ?thesis

unfolding joinBC BC RuleA(1 ) unfolding join-opt.simps using join-rule-lhs
l-A-BC by auto

next
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case (RuleC β Cs)
from joinBC subterm(4 ) obtain τ BCs where match-lhs-B2 :match B

(to-pterm (lhs β)) = Some τ
and BC :BC = Prule β BCs and l-BC-C :length BCs = length Cs

and args-BC :(∀ i<length Cs. Cs ! i t τ (var-rule β ! i) = Some (BCs ! i))
unfolding FunB RuleC using join-rule-fun RuleC (1 ,2 ,3 ) join-sym by

metis
from joinAC have α:α = β and l-A-C :length As = length Cs

unfolding RuleA RuleC by(metis join.simps(3 ) option.distinct(1 ))+
have those (map2 (t) As BCs) 6= None proof−

{fix i assume i:i < length (zip As BCs)
moreover have τ (var-rule β ! i) ∈ wf-pterm R

using i match-well-def [OF subterm(3 ) match-lhs-B2 ] by (simp add:
RuleA(3 ) α vars-to-pterm)

moreover have As!i t τ (var-rule β ! i) 6= None
using join-pterm-subst-Some match-lhs-B subterm(5 ) α args-AB i

match-lhs-B2 by auto
moreover have (As!i) t (Cs!i) 6= None

using joinAC RuleA(1 ) RuleC (1 ) i join-rule-rule subterm.prems(1 )
subterm.prems(3 ) by fastforce

moreover have τ (var-rule β ! i) t (Cs!i) 6= None
using args-BC i by (simp add: join-sym l-A-C )

ultimately have IH :join-opt (As!i) (τ (var-rule β ! i) t (Cs!i)) 6= None

using RuleA(1 ,3 ,4 ) RuleC (3 ,4 ) subterm(1 ) i α by simp
from IH have (As!i) t (BCs!i) 6= None

using i args-BC by (simp add: join-sym l-BC-C )
then have (map2 (t) As BCs)!i 6= None

unfolding nth-map[OF i] using i by auto
}
then show ?thesis by (simp add: list-all-length those-not-none-xs)

qed
then show ?thesis

unfolding joinBC BC RuleA α unfolding join-opt.simps join.simps(7 )
by force

qed (simp add:FunB)
next

case (RuleB β Bs)
from joinAB have αβ:α = β and l-A-B:length As = length Bs

unfolding RuleA RuleB by(metis join.simps(3 ) option.distinct(1 ))+
obtain ABs where AB:AB = Prule α ABs and l-AB-B:length ABs = length

Bs
and args-AB:(∀ i<length ABs. As!i t Bs!i = Some (ABs ! i))

using join-rule-rule[OF joinAB[unfolded RuleA RuleB]] subterm(2 ,3 )
RuleA(1 ) RuleB(1 ) by metis

from subterm(4 ,6 ) show ?thesis proof(cases C rule:wf-pterm.cases[case-names
VarC FunC RuleC ])

case (VarC x)
from joinBC RuleB(2 ) no-var-lhs show ?thesis unfolding VarC RuleB
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by (metis Residual-Join-Deletion.join-sym RuleB(1 ) VarC join-opt.simps(1 )
join-with-source source.simps(1 ) source-join subterm.prems(2 ) subterm.prems(3 )
subterm.prems(4 ) to-pterm.simps(1 ))

next
case (FunC Cs f )
from subterm(3 ) obtain σ BCs where match-lhs-C :match C (to-pterm

(lhs β)) = Some σ
and BC :BC = Prule β BCs and l-BC-C :length BCs = length Bs

and args-BC :(∀ i<length Bs. Bs ! i t σ (var-rule β ! i) = Some (BCs ! i))
unfolding RuleB using join-rule-fun[OF joinBC [unfolded RuleB FunC ]]

RuleB(1 ,2 ,3 ) by (metis FunC (1 ))
have those (map2 (t) As BCs) 6= None proof−

{fix i assume i:i < length (zip As BCs)
have σ (var-rule β ! i) ∈ wf-pterm R

using i match-well-def [OF subterm(4 ) match-lhs-C ] by (simp add:
RuleA(3 ) αβ vars-to-pterm)

moreover have As!i t σ (var-rule β ! i) 6= None
using match-lhs-C joinAC αβ args-AB i unfolding RuleA(1 ) FunC

by (metis (no-types, lifting) RuleA(1 ) join-rule-fun length-zip
min-less-iff-conj option.distinct(1 ) option.sel subterm.prems(1 ))

ultimately have IH :join-opt (As!i) ((Bs!i) t (σ (var-rule β ! i))) 6=
None

using RuleA(1 ,3 ,4 ) subterm(1 ) i args-AB args-BC
by (metis (no-types, lifting) RuleB(4 ) l-AB-B l-A-B length-zip

min-less-iff-conj nth-mem option.distinct(1 ) supt.arg)
from IH have (As!i) t (BCs!i) 6= None

using i args-BC by (simp add: join-sym l-BC-C )
then have (map2 (t) As BCs)!i 6= None

unfolding nth-map[OF i] using i by auto
}
then show ?thesis by (simp add: list-all-length those-not-none-xs)

qed
then show ?thesis

unfolding joinBC BC RuleA αβ unfolding join-opt.simps join.simps(7 )
by force

next
case (RuleC γ Cs)
from joinBC have βγ:β = γ and l-B-C :length Bs = length Cs

using RuleB RuleC join-rule-rule by blast+
obtain BCs where BC :BC = Prule β BCs and l-BC-B:length BCs =

length Bs
and args-BC :(∀ i<length BCs. Bs!i t Cs!i = Some (BCs ! i))

using join-rule-rule[OF joinBC [unfolded RuleB RuleC ]] subterm(3 ,4 )
RuleB(1 ) RuleC (1 ) by metis

obtain ACs where AC :AC = Prule α ACs and l-AC-C :length ACs =
length Cs

and args-AC :(∀ i<length ACs. As!i t Cs!i = Some (ACs ! i))
using join-rule-rule[OF joinAC [unfolded RuleA RuleC ]] subterm(2 ,4 )

RuleA(1 ) RuleC (1 ) by metis
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have those (map2 (t) As BCs) 6= None proof−
{fix i assume i:i < length (zip As BCs)
from RuleA(1 ,4 ) RuleB(1 ,4 ) RuleC (1 ,4 ) i have join-opt (As!i) ((Bs!i)

t (Cs!i)) 6= None
using subterm(1 ) l-A-B l-B-C l-AC-C l-AB-B args-AB args-AC args-BC

by (smt (verit) length-zip min-less-iff-conj nth-mem option.distinct(1 )
supt.arg)

then have (map2 (t) As BCs)!i 6= None
using i args-BC by simp

}
then show ?thesis

by (simp add: list-all-length those-not-none-xs)
qed
then show ?thesis
unfolding joinBC BC unfolding RuleA αβ join-opt.simps by (simp add:

option.case-eq-if )
qed

qed
qed

qed

lemma join-list-defined:
assumes ∀ a1 a2 . a1 ∈ set As ∧ a2 ∈ set As −→ a1 t a2 6= None

and ∀ a ∈ set As. a ∈ wf-pterm R and As 6= []
shows ∃ D. join-list As = Some D ∧ D ∈ wf-pterm R

using assms proof(induct length As arbitrary:As rule:full-nat-induct)
case 1
then show ?case proof(cases As rule:list.exhaust[case-names empty As])

case (As A1 As ′)
with 1 show ?thesis proof(cases As ′ rule:list.exhaust[case-names empty As ′])

case (As ′ A2 As ′′)
have A1-wf :A1 ∈ wf-pterm R and A2-wf :A2 ∈ wf-pterm R

using 1 (3 ) unfolding As As ′ by auto
from As ′ 1 (2 ) obtain A12 where A12 :A1 t A2 = Some A12

unfolding As by fastforce
with A1-wf A2-wf have A12-wf :A12 ∈ wf-pterm R

by (simp add: join-wf-pterm)
show ?thesis proof(cases As ′′ = [])

case True
show ?thesis

unfolding As As ′ True join-list.simps using A12 A12-wf by simp
next

case False
from 1 obtain D ′ where D ′:join-list As ′′ = Some D ′ D ′ ∈ wf-pterm R

unfolding As As ′ by (metis False Suc-le-length-iff impossible-Cons
list.set-intros(2 ) nat-le-linear)

from 1 (2 ) have ∀ a1 a2 . a1 ∈ set (A2 # As ′′) ∧ a2 ∈ set (A2 # As ′′)
−→ a1 t a2 6= None

unfolding As As ′ by force
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moreover have Suc (length (A2 # As ′′)) ≤ length As
unfolding As As ′ by simp

moreover have (∀ a∈set (A2 # As ′′). a ∈ wf-pterm R)
using 1 (3 ) unfolding As As ′ by simp

moreover have A2 # As ′′ 6= [] by simp
ultimately obtain D where join-list (A2 # As ′′) = Some D and D-wf :D

∈ wf-pterm R
using 1 (1 ) by blast

then have D:A2 t D ′ = Some D
using D ′ False using join-list.elims by force

moreover have A1 t D ′ 6= None proof−
from 1 (2 ) have ∀ a1 a2 . a1 ∈ set (A1 # As ′′) ∧ a2 ∈ set (A1 # As ′′)

−→ a1 t a2 6= None
unfolding As As ′ by force

moreover have Suc (length (A1 # As ′′)) ≤ length As
unfolding As As ′ by simp

moreover have (∀ a∈set (A1 # As ′′). a ∈ wf-pterm R)
using 1 (3 ) unfolding As As ′ by simp

moreover have A1 # As ′′ 6= [] by simp
ultimately have join-list (A1 # As ′′) 6= None

using 1 (1 ) by (metis option.simps(3 ))
with D ′ show ?thesis

by (metis False join-list.simps(3 ) join-opt.simps(1 ) list.exhaust)
qed
moreover have A1 t A2 6= None

using 1 (2 ) unfolding As As ′ by simp
ultimately have join-opt A1 (A2 t D ′) 6= None

using join-triple-defined D ′ A1-wf A2-wf unfolding join-list.simps by
blast

moreover have join-list As = join-opt A1 (A2 t D ′)
unfolding As As ′ using False by (metis D ′(1 ) join-list.simps(3 )

join-opt.simps(1 ) neq-Nil-conv)
ultimately show ?thesis

unfolding D join-opt.simps using D-wf A1-wf join-wf-pterm by fastforce
qed

qed simp
qed simp

qed

lemma join-list-wf-pterm:
assumes ∀ a ∈ set As. a ∈ wf-pterm R

and join-list As = Some B
shows B ∈ wf-pterm R
using assms proof(induct As arbitrary:B)
case (Cons A As)
then show ?case proof(cases As = [])

case True
from Cons(2 ,3 ) show ?thesis unfolding join-list.simps True by simp

next
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case False
with Cons(3 ) obtain B ′ where B ′:join-list As = Some B ′

by (smt (verit, ccfv-threshold) join-list.elims join-opt.elims list.inject)
with Cons have B ′ ∈ wf-pterm R

by simp
then show ?thesis using B ′ Cons
by (metis False join-list.simps(3 ) join-opt.simps(1 ) join-wf-pterm list.set-intros(1 )

neq-Nil-conv)
qed

qed simp

lemma source-join-list:
assumes join-list As = Some B and ∀ a ∈ set As. a ∈ wf-pterm R
shows

∧
A. A ∈ set As =⇒ source A = source B

proof−
fix Ai assume Ai ∈ set As
then show co-initial Ai B using assms proof(induct As arbitrary: B)

case Nil
then show ?case by (simp add: source-join)

next
case (Cons A As)
show ?case proof(cases As = [])

case True
from Cons show ?thesis unfolding True

by (simp add: source-join)
next

case False
have wf :A ∈ wf-pterm R ∀ a∈set As. a ∈ wf-pterm R

using Cons(4 ) by simp-all
from Cons(2 ,3 )obtain B ′ where B ′:join-list As = Some B ′ join-list (A#As)

= join-opt A (Some B ′)
by (metis False join-list.simps(3 ) join-opt.simps(2 ) list.exhaust option.exhaust)
show ?thesis proof(cases Ai = A)

case True
show ?thesis unfolding True

using B ′ Cons(3 ) False source-join wf by (metis join-list-wf-pterm
join-opt.simps(1 ))

next
case False
then have Ai ∈ set As

using Cons(2 ) by simp
with Cons(1 ) B ′(1 ) wf (2 ) have co-initial Ai B ′

by simp
moreover from B ′(1 ) wf have B ′ ∈ wf-pterm R

using join-list-wf-pterm by blast
ultimately show ?thesis

by (metis B ′(2 ) Cons.prems(2 ) Residual-Join-Deletion.join-sym join-opt.simps(1 )
local.wf (1 ) source-join)

qed
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qed
qed

qed

end

3.3 Deletion
fun deletion :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm option (infixr −p

70 )
where
Var x −p Var y =
(if x = y then Some (Var x) else None)

| Pfun f As −p Pfun g Bs =
(if (f = g ∧ length As = length Bs) then
(case those (map2 (−p) As Bs) of

Some xs ⇒ Some (Pfun f xs)
| None ⇒ None)

else None)
| Prule α As −p Prule β Bs =

(if α = β then
(case those (map2 (−p) As Bs) of

Some xs ⇒ Some ((to-pterm (lhs α)) · 〈xs〉α)
| None ⇒ None)

else None)
| Prule α As −p B =

(case match B (to-pterm (lhs α)) of
None ⇒ None
| Some σ ⇒
(case those (map2 (−p) As (map σ (var-rule α))) of

Some xs ⇒ Some (Prule α xs)
| None ⇒ None))

| A −p B = None

lemma del-empty:
assumes A ∈ wf-pterm R
shows A −p (to-pterm (source A)) = Some A

using assms proof (induction A)
case (2 As f )
then have those (map2 deletion As (map (to-pterm ◦ source) As)) = Some As

by (simp add:those-some)
then show ?case by simp

next
case (3 α As)
then have σ: match (to-pterm (lhs α · 〈map source As〉α)) (to-pterm (lhs α)) =

Some (〈map (to-pterm ◦ source) As〉α)
by (metis (no-types, lifting) fun-mk-subst lhs-subst-trivial map-map to-pterm.simps(1 )

to-pterm-subst)
from 3 have those (map2 deletion As (map (to-pterm ◦ source) As)) = Some
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As
by (simp add:those-some)

then have args:those (map2 deletion As (map (〈map (to-pterm ◦ source) As〉α)
(var-rule α))) = Some As

by (metis 3 .hyps(2 ) apply-lhs-subst-var-rule length-map)
show ?case proof(cases source (Prule α As))

case (Var x)
then show ?thesis

using σ residual.simps(4 )[of α As x] args by auto
next

case (Fun f ts)
then show ?thesis

using σ residual.simps(5 )[of α As f ] args by auto
qed

qed simp

context no-var-lhs
begin
lemma deletion-source:
assumes A ∈ wf-pterm R B ∈ wf-pterm R

and A −p B = Some C
shows source C = source A
using assms proof(induct A arbitrary:B C )
case (1 x)
then show ?case proof (cases B)

case (1 y)
then show ?thesis

by (metis 1 .prems(2 ) deletion.simps(1 ) option.distinct(1 ) option.inject)
next

case (3 α As)
with 1 no-var-lhs show ?thesis

by simp
qed simp

next
case (2 As f )
then show ?case proof(cases B)

case (Pfun g Bs)
from 2 (3 ) have f :f = g

unfolding Pfun by (metis deletion.simps(2 ) not-None-eq)
from 2 (3 ) have l:length As = length Bs

unfolding Pfun by (metis deletion.simps(2 ) not-None-eq)
from 2 (3 ) obtain Cs where cs:those (map2 (−p) As Bs) = Some Cs

unfolding Pfun f using l by fastforce
with 2 (3 ) have c:C = Pfun g Cs

unfolding Pfun by (simp add: f l)
from cs l have l-cs:length Cs = length As

using length-those by force
{fix i assume i:i < length As

with 2 (2 ) have Bs!i ∈ wf-pterm R
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by (metis Pfun fun-well-arg l nth-mem)
moreover from 2 (3 ) i cs have As!i −p Bs!i = Some (Cs!i)

using l those-some2 by fastforce
ultimately have source (Cs!i) = source (As!i)

using 2 (1 ) using i nth-mem by blast
}
then show ?thesis unfolding c f

using l-cs by (simp add: map-nth-eq-conv)
qed simp-all

next
case (3 α As)
from 3 (1 ) no-var-lhs obtain f ts where f :lhs α = Fun f ts

by blast
then show ?case proof(cases B)

case (Var x)
have match (Var x) (to-pterm (lhs α)) = None

unfolding f by (smt (verit, ccfv-SIG) Term.term.simps(4 ) match-matches
not-Some-eq source.simps(1 ) source-to-pterm subst-apply-eq-Var)

with 3 (5 ) show ?thesis
unfolding Var using f deletion.simps(4 ) by simp

next
case (Pfun g Bs)
from 3 (5 ) obtain σ where sigma:match B (to-pterm (lhs α)) = Some σ

unfolding Pfun using deletion.simps(5 ) by fastforce
with 3 (5 ) obtain Cs where cs:those (map2 (−p) As (map σ (var-rule α))) =

Some Cs
unfolding Pfun by fastforce

with 3 (5 ) have c:C = Prule α Cs
using sigma unfolding Pfun by simp

from cs 3 (2 ) have l-cs:length Cs = length As
using length-those by force

{fix x assume x ∈ vars-term (lhs α)
then obtain i where i:i < length (var-rule α) var-rule α !i = x

by (metis in-set-conv-nth set-vars-term-list vars-term-list-vars-distinct)
then have σ (var-rule α ! i) ∈ wf-pterm R

using match-well-def [OF 3 (4 ) sigma] by (metis vars-to-pterm)
moreover from i cs have As!i −p σ (var-rule α ! i) = Some (Cs!i)

using those-some2 3 .hyps(2 ) by fastforce
ultimately have source (Cs!i) = source (As!i)

using 3 (3 ) using i nth-mem 3 .hyps(2 ) by force
then have source ((〈As〉α) x) = source ((〈Cs〉α) x) using i

by (metis 3 .hyps(2 ) l-cs lhs-subst-var-i)
}
then show ?thesis unfolding c using l-cs 3 (2 ) unfolding source.simps
by (smt (verit, best) apply-lhs-subst-var-rule comp-def in-set-conv-nth length-map

nth-map set-remdups set-rev set-vars-term-list term-subst-eq-conv)
next

case (Prule β Bs)
from 3 (5 ) have alpha:α = β
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unfolding Prule by (metis deletion.simps(3 ) option.distinct(1 ))
with 3 have l:length As = length Bs

unfolding Prule using wf-pterm.cases by force
from 3 (5 ) obtain Cs where cs:those (map2 (−p) As Bs) = Some Cs

unfolding Prule alpha by fastforce
with 3 (5 ) have c:C = to-pterm (lhs α) · 〈Cs〉α

unfolding Prule alpha by simp
from cs l have l-cs:length Cs = length As

using length-those by force
{fix i assume i:i < length As

with 3 (4 ) have Bs!i ∈ wf-pterm R
unfolding Prule by (metis fun-well-arg l nth-mem)

moreover from i cs have As!i −p Bs!i = Some (Cs!i)
using l those-some2 by fastforce

ultimately have source (Cs!i) = source (As!i)
using 3 (3 ) using i nth-mem by blast

}
then show ?thesis

unfolding c using l-cs unfolding source.simps using source-apply-subst
by (metis fun-mk-subst nth-map-conv source.simps(1 ) source-to-pterm to-pterm-wf-pterm)

qed
qed
end

3.4 Computations With Single Redexes

When a proof term contains only a single rule symbol, we say it is a *single
redex.
definition ll-single-redex :: ( ′f , ′v) term ⇒ pos ⇒ ( ′f , ′v) prule ⇒ ( ′f , ′v) pterm

where ll-single-redex s p α = (ctxt-of-pos-term p (to-pterm s))〈Prule α (map
(to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs α)))〉

The ll in ll-single-redex stands for *left−linear, since this definition only
makes sense for left-linear rules.
lemma source-single-redex:

assumes p ∈ poss s
shows source (ll-single-redex s p α) = (ctxt-of-pos-term p s)〈(lhs α) · 〈map (λpi.

s|-(p@pi)) (var-poss-list (lhs α))〉α〉
proof−

have source (Prule α (map (to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs α))))
= (lhs α) · 〈map (λpi. s|-(p@pi)) (var-poss-list (lhs α))〉α

unfolding source.simps using map-nth-eq-conv by fastforce
with assms show ?thesis
unfolding ll-single-redex-def by (metis context-source source-to-pterm to-pterm-ctxt-of-pos-apply-term)

qed

lemma target-single-redex:
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assumes p ∈ poss s
shows target (ll-single-redex s p α) = (ctxt-of-pos-term p s)〈(rhs α) · 〈map (λpi.

s|-(p@pi)) (var-poss-list (lhs α))〉α〉
proof−

have target (Prule α (map (to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs α))))
= (rhs α) · 〈map (λpi. s|-(p@pi)) (var-poss-list (lhs α))〉α

unfolding target.simps by (metis (no-types, lifting) fun-mk-subst map-map tar-
get-empty-apply-subst target-to-pterm to-pterm.simps(1 ) to-pterm-empty to-pterm-subst)

with assms show ?thesis
unfolding ll-single-redex-def using target-to-pterm-ctxt to-pterm-ctxt-at-pos

by metis
qed

lemma single-redex-rstep:
assumes to-rule α ∈ R p ∈ poss s
shows (source (ll-single-redex s p α), target (ll-single-redex s p α)) ∈ rstep R
using source-single-redex target-single-redex assms by blast

lemma single-redex-neq:
assumes (α, p) 6= (β, q) p ∈ poss s q ∈ poss s
shows ll-single-redex s p α 6= ll-single-redex s q β

proof−
from assms(1 ) consider α 6= β ∧ p = q | p 6= q

by fastforce
then show ?thesis proof(cases)

case 1
then have Prule α (map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list (lhs

α))) 6= Prule β (map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list (lhs α)))
by simp

with 1 show ?thesis
using assms(2 ,3 ) unfolding ll-single-redex-def by simp

next
case 2
show ?thesis proof(cases p ∈ poss (ll-single-redex s q β))

case True
from 2 consider (qp) q <p p | (par) q ⊥ p | (pq) p <p q

using pos-cases by force
then show ?thesis proof(cases)

case qp
then obtain i r where r :q@(i#r) = p

using less-pos-def ′ by (metis neq-Nil-conv)
with ‹p ∈ poss (ll-single-redex s q β)› have i#r ∈ poss (Prule β (map

(to-pterm ◦ (λpi. s |- (q @ pi))) (var-poss-list (lhs β))))
unfolding ll-single-redex-def using assms(3 ) by (metis hole-pos-ctxt-of-pos-term

hole-pos-poss-conv poss-list-sound poss-list-to-pterm)
then have i:i < length (var-poss-list (lhs β)) and r ∈ poss (map (to-pterm

◦ (λpi. s |- (q @ pi))) (var-poss-list (lhs β))!i)
by auto

then have r ∈ poss (to-pterm (s |- (q @ (var-poss-list (lhs β)!i))))
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by simp
then obtain s ′ where (Prule β (map (to-pterm ◦ (λpi. s |- (q @ pi)))

(var-poss-list (lhs β))))|-(i#r) = to-pterm s ′

by (metis (no-types, lifting) comp-apply ctxt-supt-id i nth-map poss-list-sound
poss-list-to-pterm subt-at.simps(2 ) subt-at-hole-pos to-pterm-ctxt-of-pos-apply-term)

then have (Prule β (map (to-pterm ◦ (λpi. s |- (q @ pi))) (var-poss-list
(lhs β))))|-(i#r) 6= Prule α (map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list
(lhs α)))

using to-pterm.elims by auto
then show ?thesis using r assms(2 ,3 ) unfolding ll-single-redex-def

by (smt (verit, del-insts) hole-pos-ctxt-of-pos-term hole-pos-poss p-in-poss-to-pterm
replace-at-subt-at subt-at-append)

next
case par
then have ll-single-redex s q β |- p = to-pterm s |-p

using True unfolding ll-single-redex-def
by (simp add: assms(2 ,3 ) p-in-poss-to-pterm parallel-replace-at-subt-at)

then show ?thesis
using assms(2 ,3 ) unfolding ll-single-redex-def

by (metis ctxt-supt-id hole-pos-ctxt-of-pos-term is-empty-step.simps(3 )
p-in-poss-to-pterm subt-at-hole-pos to-pterm-ctxt-of-pos-apply-term to-pterm-empty)

next
case pq
then obtain r where r :q = p@r r 6= []

using less-pos-def ′ by blast
then have ∗:ll-single-redex s q β |- p = (ctxt-of-pos-term r (to-pterm

(s|-p)))〈Prule β (map (to-pterm ◦ (λpi. s |- (q @ pi))) (var-poss-list (lhs β)))〉
using True unfolding ll-single-redex-def r by (metis (no-types, lift-

ing) assms(2 ) ctxt-apply-subt-at ctxt-supt-id p-in-poss-to-pterm replace-at-subt-at
to-pterm-ctxt-of-pos-apply-term)

from r(2 ) assms(3 ) obtain f ts i r ′ where f :s|-p = Fun f ts and r ′:r =
i#r ′

unfolding r by (metis args-poss neq-Nil-conv poss-append-poss)
have ll-single-redex s q β |- p 6= Prule α (map (to-pterm ◦ (λpi. s |- (p @

pi))) (var-poss-list (lhs α)))
unfolding ∗ unfolding ll-single-redex-def f to-pterm.simps r ′ ctxt-of-pos-term.simps

intp-actxt.simps by simp
then show ?thesis

using assms(2 ) unfolding ll-single-redex-def
by (metis p-in-poss-to-pterm replace-at-subt-at)

qed
next

case False
then show ?thesis unfolding ll-single-redex-def using assms(2 )

by (metis hole-pos-ctxt-of-pos-term hole-pos-poss p-in-poss-to-pterm)
qed

qed
qed
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context left-lin-wf-trs
begin
lemma rstep-exists-single-redex:

assumes (s, t) ∈ rstep R
shows ∃ A p α. A = (ll-single-redex s p α) ∧ source A = s ∧ target A = t ∧

to-rule α ∈ R ∧ p ∈ poss s
proof−

from assms obtain C σ l r where lr :(l, r) ∈ R and s:s = C 〈l · σ〉 and t: t =
C 〈r · σ〉

by blast
from s obtain p where p:p ∈ poss s and C :C = ctxt-of-pos-term p s

using hole-pos-poss by fastforce
let ?subst=〈map (λpi. s |- (p @ pi)) (var-poss-list l)〉(l →r)
{fix x assume x ∈ vars-term l

then obtain i where i:i < length (vars-term-list l) vars-term-list l ! i = x
by (metis in-set-idx set-vars-term-list)

with left-lin lr have var-l:vars-distinct l ! i = x
using linear-term-var-vars-term-list left-linear-trs-def by fastforce

let ?p=var-poss-list l ! i
from i have l |- ?p = Var x using vars-term-list-var-poss-list by auto
moreover have l · σ = s|-p using s C p replace-at-subt-at by fastforce
ultimately have left:σ x = (s |-p) |- ?p

by (metis eval-term.simps(1 ) i(1 ) length-var-poss-list nth-mem subt-at-subst
var-poss-imp-poss var-poss-list-sound)

from i have map (λpi. s |- (p @ pi)) (var-poss-list l) !i = (s |-p) |- ?p
by (simp add: length-var-poss-list p)

with left var-l have σ x = ?subst x unfolding mk-subst-def prule.sel
by (smt (verit, best) case-prodE comp-apply distinct-rev i(1 ) left-lin left-linear-trs-def

length-map length-var-poss-list linear-term-var-vars-term-list lr mk-subst-def mk-subst-distinct
prod.sel(1 ) remdups-id-iff-distinct rev-rev-ident)

}note subst=this
then have (ctxt-of-pos-term p s)〈l · 〈map (λpi. s |- (p @ pi)) (var-poss-list

l)〉(l→r)〉 = C 〈l · σ〉
using C by (simp add: eval-same-vars)

then have source (ll-single-redex s p (Rule l r)) = s
using source-single-redex[OF p] s by auto

moreover have target (ll-single-redex s p (l → r)) = t
using subst varcond lr target-single-redex[OF p] eval-same-vars-cong unfolding

t C
by (smt (verit) case-prodD prule.sel(1 ) prule.sel(2 ) vars-term-subset-subst-eq)

ultimately show ?thesis using lr p by fastforce
qed
end

lemma single-redex-wf-pterm:
assumes to-rule α ∈ R and lin:linear-term (lhs α)

and p:p ∈ poss s
shows ll-single-redex s p α ∈ wf-pterm R
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proof−
from lin have l:length (map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list (lhs

α))) = length (var-rule α)
using length-var-poss-list linear-term-var-vars-term-list by fastforce

have Prule α (map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list (lhs α))) ∈
wf-pterm R

using wf-pterm.intros(3 )[OF assms(1 ) l] to-pterm-wf-pterm by force
then show ?thesis unfolding ll-single-redex-def

using ctxt-wf-pterm p to-pterm-wf-pterm by (metis p-in-poss-to-pterm)
qed

Interaction of a single redex ∆, contained in A with the proof term A.
locale single-redex = left-lin-no-var-lhs +

fixes A ∆ p q α
assumes a-well:A ∈ wf-pterm R

and p:p ∈ poss (source A) and q:q ∈ poss A
and pq:ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term q A)
and delta:∆ = ll-single-redex (source A) p α
and aq:A|-q = Prule α (map (λi. A|-(q@[i])) [0 ..<length (var-rule α)])

begin

interpretation residual-op:op-proof-term R residual
using op-proof-term.intro[OF left-lin-no-var-lhs-axioms] op-proof-term-axioms.intro[of

R residual] res-empty2 by force

interpretation deletion-op:op-proof-term R deletion
using op-proof-term.intro[OF left-lin-no-var-lhs-axioms] op-proof-term-axioms.intro[of

R deletion] del-empty by force

abbreviation As ≡ (map (λi. A|-(q@[i])) [0 ..<length (var-rule α)])

lemma length-as:length As = length (var-rule α)
by simp

lemma as-well:∀ i < length As. As!i ∈ wf-pterm R
using subt-at-is-wf-pterm a-well aq q
by (metis fun-well-arg nth-mem)

lemma a:A = (ctxt-of-pos-term q A)〈Prule α As〉
using aq by (simp add: q replace-at-ident)

lemma rule-in-TRS : to-rule α ∈ R
proof−

from a-well a q have Prule α As ∈ wf-pterm R
by (metis subt-at-ctxt-of-pos-term subt-at-is-wf-pterm)

then show ?thesis
using wf-pterm.cases by force

qed
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lemma lin-lhs:linear-term (lhs α)
using rule-in-TRS left-lin left-linear-trs-def by fastforce

lemma source-at-pq:source (A|-q) = (source A)|-p
proof−

from a-well q have (ctxt-of-pos-term q A) ∈ wf-pterm-ctxt R
by (simp add: ctxt-of-pos-term-well)

then have source A = (source-ctxt (ctxt-of-pos-term q A)) 〈source (A|-q)〉
using source-ctxt-apply-term q by (metis ctxt-supt-id)

moreover from p have source A = (ctxt-of-pos-term p (source A)) 〈(source
A)|-p〉

by (simp add: replace-at-ident)
ultimately show ?thesis

using pq p q by simp
qed

lemma single-redex-pterm:
shows ∆ = (ctxt-of-pos-term p (to-pterm (source A)))〈Prule α (map (to-pterm
◦ source) As)〉
proof−

from lin-lhs have l2 :length (var-poss-list (lhs α)) = length (var-rule α)
by (metis length-var-poss-list linear-term-var-vars-term-list)

{fix i assume i:i < length (var-poss-list (lhs α))
let ?pi=var-poss-list (lhs α)!i
from i have ∗:(lhs α)|-?pi = Var ((var-rule α)!i)

using lin-lhs by (metis linear-term-var-vars-term-list length-var-poss-list
vars-term-list-var-poss-list)

from source-at-pq have source A |- (p @ ?pi) = source (Prule α As)|-?pi
by (metis a p q subt-at-append subt-at-ctxt-of-pos-term)

also have ... = Var ((var-rule α)!i) · 〈map source As〉α
unfolding source.simps using subt-at-subst ∗ i nth-mem var-poss-imp-poss

by fastforce
also have ... = source (As!i)

unfolding eval-term.simps using i lhs-subst-var-i length-as l2 by (metis
(no-types, lifting) length-map nth-map)

finally have source A |- (p @ ?pi) = source (As!i) .
}
with l2 show ?thesis

unfolding delta ll-single-redex-def by (simp add: nth-map-conv)
qed

lemma delta-trs-wf-pterm:
shows ∆ ∈ wf-pterm R

proof−
have well2 :Prule α (map (to-pterm ◦ source) As) ∈ wf-pterm R proof−

from a-well a q have Prule α As ∈ wf-pterm R
by (metis subt-at-ctxt-of-pos-term subt-at-is-wf-pterm)

then have to-rule α ∈ R
using wf-pterm.cases by auto
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then show ?thesis
by (simp add: wf-pterm.intros(3 ))

qed
show ?thesis unfolding single-redex-pterm

using p well2 by (simp add: p-in-poss-to-pterm ctxt-wf-pterm)
qed

lemma source-delta: source ∆ = source A
proof−

have src:source (Prule α (map (to-pterm ◦ source) As)) = source (Prule α As)
unfolding source.simps by (metis (no-types, lifting) comp-eq-dest-lhs list.map-comp

list.map-cong0 source-to-pterm)
moreover have source-ctxt (ctxt-of-pos-term p (to-pterm (source A))) = source-ctxt

(ctxt-of-pos-term q A)
using pq by (metis p source-to-pterm-ctxt ′ to-pterm-ctxt-at-pos)

ultimately show ?thesis unfolding single-redex-pterm
using p p q by (metis aq p-in-poss-to-pterm pq replace-at-ident source-at-pq

source-ctxt-apply-term to-pterm-trs-ctxt)
qed

lemma residual:
shows A re ∆ = Some ((ctxt-of-pos-term q A)〈(to-pterm (rhs α)) · 〈As〉α〉)

proof−
have l:length (map2 (re) As (map (to-pterm ◦ source) As)) = length As

by simp
{fix i assume i:i < length As

with as-well have As!i re (to-pterm ◦ source) (As!i) = Some (As!i)
by (metis (no-types, lifting) o-apply res-empty2 )

then have map2 (re) As (map (to-pterm ◦ source) As) ! i = Some (As ! i)
using i by force

}
then have ∗:those (map2 (re) As (map (to-pterm ◦ source) As)) = Some As

using those-some[OF l] using l by presburger
then have (Prule α As) re (Prule α (map (to-pterm ◦ source) As)) = Some

((to-pterm (rhs α)) · 〈As〉α)
using residual.simps(3 )[of α As α (map (to-pterm ◦ source) As)] by simp

moreover from single-redex-pterm have ∆ = (to-pterm-ctxt (source-ctxt (ctxt-of-pos-term
q A)))〈(Prule α (map (to-pterm ◦ source) As))〉

unfolding delta ll-single-redex-def pq[symmetric] by (simp add: p to-pterm-ctxt-at-pos)
ultimately show ?thesis

using a residual-op.apply-f-ctxt by (metis a-well ctxt-of-pos-term-well q)
qed

lemma residual-well:
the (A re ∆) ∈ wf-pterm R
using a-well by (metis delta-trs-wf-pterm option.sel residual residual-well-defined)

lemma target-residual:target (the (A re ∆)) = target A
apply(subst (2 ) a)
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unfolding residual option.sel
apply(subst (1 2 ) context-target)
by (metis fun-mk-subst target.simps(1 ) target.simps(3 ) target-empty-apply-subst

target-to-pterm to-pterm-empty)

lemma deletion:
shows A −p ∆ = Some ((ctxt-of-pos-term q A)〈(to-pterm (lhs α)) · 〈As〉α〉)

proof−
have l:length (map2 (−p) As (map (to-pterm ◦ source) As)) = length As
by simp

{fix i assume i:i < length As
with as-well have As!i −p (to-pterm ◦ source) (As!i) = Some (As!i)

by (metis (no-types, lifting) o-apply del-empty)
then have map2 (−p) As (map (to-pterm ◦ source) As) ! i = Some (As ! i)

using i by force
}
then have ∗:those (map2 (−p) As (map (to-pterm ◦ source) As)) = Some As

using those-some[OF l] using l by presburger
then have (Prule α As) −p (Prule α (map (to-pterm ◦ source) As)) = Some

((to-pterm (lhs α)) · 〈As〉α)
using deletion.simps(3 )[of α As α (map (to-pterm ◦ source) As)] by simp

moreover from single-redex-pterm have ∆ = (to-pterm-ctxt (source-ctxt (ctxt-of-pos-term
q A)))〈(Prule α (map (to-pterm ◦ source) As))〉

unfolding delta ll-single-redex-def pq[symmetric] by (simp add: p to-pterm-ctxt-at-pos)
ultimately show ?thesis

using a deletion-op.apply-f-ctxt by (metis a-well ctxt-of-pos-term-well q)
qed

lemma deletion-well:
shows the (A −p ∆) ∈ wf-pterm R

proof−
have ∀ a ∈ set As. a ∈ wf-pterm R

by (metis a a-well fun-well-arg q subt-at-ctxt-of-pos-term subt-at-is-wf-pterm)
then have to-pterm (lhs α) · 〈As〉α ∈ wf-pterm R

by (meson lhs-subst-well-def nth-mem to-pterm-wf-pterm)
then show ?thesis unfolding deletion option.sel

by (simp add: a-well ctxt-wf-pterm q)
qed

end

locale single-redex ′ = left-lin-wf-trs +
fixes A ∆ p q α σ
assumes a-well:A ∈ wf-pterm R and rule-in-TRS :to-rule α ∈ R

and p:p ∈ poss (source A) and q:q ∈ poss A
and pq:ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term q A)
and delta:∆ = ll-single-redex (source A) p α
and aq:A|-q = (to-pterm (lhs α)) · σ
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begin

interpretation residual-op:op-proof-term R residual proof−
have ∗:left-lin-no-var-lhs R

by (simp add: left-lin-axioms left-lin-no-var-lhs.intro no-var-lhs-axioms)
then show op-proof-term R (re)
using op-proof-term.intro[OF ∗] op-proof-term-axioms.intro[of R residual] res-empty2

by force
qed

lemma a:A = (ctxt-of-pos-term q A)〈(to-pterm (lhs α)) · σ〉
using aq by (simp add: q replace-at-ident)

lemma lin-lhs:linear-term (lhs α)
using rule-in-TRS left-lin left-linear-trs-def by fastforce

lemma is-fun-lhs:is-Fun (lhs α)
using rule-in-TRS using no-var-lhs by blast

abbreviation As ≡ map σ (var-rule α)

lemma lhs-subst: (to-pterm (lhs α)) · σ = (to-pterm (lhs α)) · 〈As〉α
proof−

{fix x assume x ∈ vars-term (to-pterm (lhs α))
then obtain i where x = var-rule α!i and i < length (var-rule α)
by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct vars-to-pterm)
then have σ x = (〈As〉α) x

by (metis (mono-tags, lifting) apply-lhs-subst-var-rule length-map nth-map)
}
then show ?thesis

using term-subst-eq-conv by blast
qed

lemma rhs-subst: (to-pterm (rhs α)) · σ = (to-pterm (rhs α)) · 〈As〉α
proof−

{fix x assume x ∈ vars-term (to-pterm (rhs α))
then have x ∈ vars-term (to-pterm (lhs α))
using no-var-lhs varcond rule-in-TRS set-vars-term-list subsetD vars-to-pterm

by (metis case-prodD)
then obtain i where x = var-rule α!i and i < length (var-rule α)
by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct vars-to-pterm)
then have σ x = (〈As〉α) x

by (metis (mono-tags, lifting) apply-lhs-subst-var-rule length-map nth-map)
}
then show ?thesis

using term-subst-eq-conv by blast
qed

lemma as-well:∀ i < length As. As!i ∈ wf-pterm R
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using a-well aq by (metis length-map lhs-subst lhs-subst-args-wf-pterm nth-mem
q subt-at-is-wf-pterm)

lemma source-at-pq:source (A|-q) = (source A)|-p
proof−

from a-well q have (ctxt-of-pos-term q A) ∈ wf-pterm-ctxt R
by (simp add: ctxt-of-pos-term-well)

then have source A = (source-ctxt (ctxt-of-pos-term q A)) 〈source (A|-q)〉
using source-ctxt-apply-term q by (metis ctxt-supt-id)

moreover from p have source A = (ctxt-of-pos-term p (source A)) 〈(source
A)|-p〉

by (simp add: replace-at-ident)
ultimately show ?thesis

using pq p q by simp
qed

lemma single-redex-pterm:
shows ∆ = (ctxt-of-pos-term p (to-pterm (source A)))〈Prule α (map (to-pterm
◦ source) As)〉
proof−

from lin-lhs have l2 :length (var-poss-list (lhs α)) = length (var-rule α)
by (metis length-var-poss-list linear-term-var-vars-term-list)

{fix i assume i:i < length (var-poss-list (lhs α))
let ?pi=var-poss-list (lhs α)!i
from i have ∗:(lhs α)|-?pi = Var ((var-rule α)!i)

using lin-lhs by (metis linear-term-var-vars-term-list length-var-poss-list
vars-term-list-var-poss-list)

from source-at-pq have source A |- (p @ ?pi) = source ((to-pterm (lhs α)) ·
〈As〉α)|-?pi

using lhs-subst by (metis a p q subt-at-append subt-at-ctxt-of-pos-term)
also have ... = Var ((var-rule α)!i) · 〈map source As〉α

using subt-at-subst ∗
by (metis (no-types, lifting) fun-mk-subst i nth-mem source.simps(1 ) source-apply-subst

source-to-pterm to-pterm-wf-pterm var-poss-imp-poss var-poss-list-sound)
also have ... = source (As!i)

unfolding eval-term.simps using i lhs-subst-var-i l2 by (metis (no-types,
lifting) length-map nth-map)

finally have source A |- (p @ ?pi) = source (As!i) .
}
with l2 show ?thesis

unfolding delta ll-single-redex-def by (simp add: map-eq-conv ′)
qed

lemma residual:
shows A re ∆ = Some ((ctxt-of-pos-term q A)〈(to-pterm (rhs α)) · σ〉)

proof−
have l:length (map2 (re) As (map (to-pterm ◦ source) As)) = length As

by simp
{fix i assume i:i < length As
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with as-well have As!i re (to-pterm ◦ source) (As!i) = Some (As!i)
by (metis comp-apply res-empty2 )

then have map2 (re) As (map (to-pterm ◦ source) As) ! i = Some (As ! i)
using i by force

}
then have ∗:those (map2 (re) As (map (to-pterm ◦ source) As)) = Some As

using those-some[OF l] using l by presburger
from is-fun-lhs obtain f As ′ where f :(to-pterm (lhs α) · 〈As〉α) = Pfun f As ′

by fastforce
then have match:match (Pfun f As ′) (to-pterm (lhs α)) = Some (〈As〉α)

by (metis lhs-subst-trivial)
have map:map (〈As〉α) (var-rule α) = As

using apply-lhs-subst-var-rule length-map by blast
have ((to-pterm (lhs α)) · σ) re (Prule α (map (to-pterm ◦ source) As)) = Some

((to-pterm (rhs α)) · σ)
unfolding rhs-subst lhs-subst using residual.simps(7 )[of f As ′ α (map (to-pterm

◦ source) As)]
unfolding match f using ∗ map by (metis option.simps(5 ))

moreover from single-redex-pterm have ∆ = (to-pterm-ctxt (source-ctxt (ctxt-of-pos-term
q A)))〈(Prule α (map (to-pterm ◦ source) As))〉

unfolding delta ll-single-redex-def pq[symmetric] by (simp add: p to-pterm-ctxt-at-pos)
ultimately show ?thesis

using a residual-op.apply-f-ctxt by (metis a-well ctxt-of-pos-term-well q)
qed

end

end

4 Orthogonal Proof Terms
theory Orthogonal-PT
imports

Residual-Join-Deletion
begin

inductive orthogonal::( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm ⇒ bool (infixl ⊥p 50 )
where
Var x ⊥p Var x
| length As = length Bs =⇒ ∀ i < length As. As!i ⊥p Bs!i =⇒ Fun f As ⊥p Fun f
Bs
| length As = length Bs =⇒ ∀ (a,b) ∈ set(zip As Bs). a ⊥p b =⇒ (Prule α As) ⊥p

(to-pterm (lhs α)) · 〈Bs〉α
| length As = length Bs =⇒ ∀ (a,b) ∈ set(zip As Bs). a ⊥p b =⇒ (to-pterm (lhs
α)) · 〈As〉α ⊥p (Prule α Bs)
lemmas orthogonal.intros[intro]

lemma orth-symp: symp (⊥p)
proof
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{fix A B::( ′f , ′v) pterm assume A ⊥p B
then show B ⊥p A proof(induct)

case (3 As Bs α)
then show ?case using orthogonal.intros(4 )[where α=α and Bs=As and

As=Bs]
using zip-symm by fastforce

next
case (4 As Bs α)
then show ?case using orthogonal.intros(3 )[where α=α and As=Bs and

Bs=As]
using zip-symm by fastforce

qed (simp-all add:orthogonal.intros)
}

qed

lemma equal-imp-orthogonal:
shows A ⊥p A
by(induct A) (simp-all add: orthogonal.intros)

lemma source-orthogonal:
assumes source A = t
shows A ⊥p to-pterm t
using assms proof(induct A arbitrary:t)
case (Prule α As)
then have t:to-pterm t = (to-pterm (lhs α)) · 〈map (to-pterm ◦ source) As〉α
by (metis fun-mk-subst list.map-comp source.simps(3 ) to-pterm.simps(1 ) to-pterm-subst)

from Prule(1 ) have ∀ (a,b) ∈ set (zip As (map (to-pterm ◦ source) As)). a ⊥p b
by (metis (mono-tags, lifting) case-prod-beta ′ comp-def in-set-zip nth-map

zip-fst)
with t show ?case

using orthogonal.intros(3 ) by (metis length-map)
qed (simp-all add:orthogonal.intros)

lemma orth-imp-co-initial:
assumes A ⊥p B
shows co-initial A B
using assms proof(induct rule: orthogonal.induct)
case (2 As Bs f )
show ?case proof(cases f )

case (Inr g)
with 2 show ?thesis unfolding Inr

by (simp add: nth-map-conv)
next

case (Inl α)
with 2 show ?thesis unfolding Inl

by (metis nth-map-conv source.simps(3 ))
qed

next
case (3 As Bs α)
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then have l:length (zip As Bs) = length As
by simp

with 3 have IH :∀ i < length As. source (As!i) = source (Bs!i)
by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)

have src:source ((to-pterm (lhs α)) · 〈Bs〉α) = (lhs α) · 〈map source Bs〉α
by (simp add: source-apply-subst)

from 3 (1 ) l IH show ?case unfolding src source.simps
by (metis nth-map-conv)

next
case (4 As Bs α)
then have l:length (zip As Bs) = length As

by simp
with 4 have IH :∀ i < length As. source (As!i) = source (Bs!i)

by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)
have src:source ((to-pterm (lhs α)) · 〈As〉α) = (lhs α) · 〈map source As〉α

by (simp add: source-apply-subst)
from 4 (1 ) l IH show ?case unfolding src source.simps

by (metis nth-map-conv)
qed simp

If two proof terms are orthogonal then residual and join are well-defined.
lemma orth-imp-residual-defined:

assumes varcond:
∧

l r . (l, r) ∈ R =⇒ is-Fun l
∧

l r . (l, r) ∈ S =⇒ is-Fun l
and A ⊥p B
and A ∈ wf-pterm R and B ∈ wf-pterm S

shows A re B 6= None
using assms(3−) proof(induct)
case (2 As Bs f )
from 2 (3 ) have wellAs:∀ a ∈ set As. a ∈ wf-pterm R

by blast
from 2 (4 ) have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm S

by blast
from 2 (1 ,2 ) wellAs wellBs have c:∀ i < length As. (∃C . As!i re Bs!i = Some

C )
by auto

from 2 (1 ) have l:length As = length (map2 (re) As Bs)
by simp

from 2 (1 ) have ∀ i < length As. As!i re Bs!i = (map2 (re) As Bs)!i
by simp

with c obtain Cs where ∀ i < length As. As!i re Bs!i = Some (Cs!i) and length
Cs = length As

using exists-some-list l by (metis (no-types, lifting))
with 2 have ∗:those (map2 (re) As Bs) = Some Cs

by (simp add: those-some)
show ?case proof(cases f )

case (Inr g)
show ?thesis unfolding Inr residual.simps 2 (1 ) ∗ by simp

next
case (Inl α)
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show ?thesis unfolding Inl residual.simps 2 (1 ) ∗ by simp
qed

next
case (3 As Bs α)
from 3 (3 ) varcond obtain g ts where g:lhs α = Fun g ts
by (metis Inl-inject is-Fun-Fun-conv sum.simps(4 ) term.distinct(1 ) term.sel(2 )

wf-pterm.cases)
then have ∗:to-pterm (lhs α) · 〈Bs〉α = Pfun g (map (λt. t · 〈Bs〉α) (map

to-pterm ts))
by simp

from 3 (3 ) have l1 :length As = length (var-rule α)
using wf-pterm.simps by fastforce

from 3 (3 ) have wellAs:∀ a ∈ set As. a ∈ wf-pterm R
by blast

from 3 (1 ,4 ) l1 have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm S
by (simp add: lhs-subst-args-wf-pterm)

from 3 (1 ) have l2 :length (zip As Bs) = length As
by simp

with 3 (1 ,2 ) wellAs wellBs have ∀ i < length As. As ! i re Bs ! i 6= None
by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)

then have c:∀ i < length As. (∃C . As!i re Bs!i = Some C )
by blast

from 3 (1 ) have ∀ i < length As. As!i re Bs!i = (map2 (re) As Bs)!i
by simp

with c obtain Cs where ∀ i < length As. As!i re Bs!i = Some (Cs!i) and length
Cs = length As

using exists-some-list l2 by (metis (no-types, lifting) length-map)
with 3 have cs:those (map2 (re) As Bs) = Some Cs

by (simp add: those-some)
have bs:match (to-pterm (lhs α) · 〈Bs〉α) (to-pterm (lhs α)) = Some (〈Bs〉α)

using lhs-subst-trivial by blast
then have (map (〈Bs〉α) (var-rule α)) = Bs

using 3 (1 ) l1 apply-lhs-subst-var-rule by force
then show ?case using residual.simps(5 ) using bs cs g unfolding ∗

by simp
next

case (4 As Bs α)
from 4 (4 ) varcond obtain g ts where g:lhs α = Fun g ts
by (metis Inl-inject is-Fun-Fun-conv sum.simps(4 ) term.distinct(1 ) term.sel(2 )

wf-pterm.cases)
then have ∗:to-pterm (lhs α) · 〈As〉α = Pfun g (map (λt. t · 〈As〉α) (map

to-pterm ts))
by simp

from 4 (4 ) have l1 :length Bs = length (var-rule α)
using wf-pterm.simps by fastforce

from 4 (1 ,3 ) l1 have wellAs:∀ a ∈ set As. a ∈ wf-pterm R
by (simp add: lhs-subst-args-wf-pterm)

from 4 (4 ) have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm S
by blast
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from 4 (1 ) have l2 :length (zip As Bs) = length As
by simp

with 4 (1 ,2 ) wellAs wellBs have ∀ i < length As. As ! i re Bs ! i 6= None
by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)

then have c:∀ i < length As. (∃C . As!i re Bs!i = Some C )
by blast

from 4 (1 ) have ∀ i < length As. As!i re Bs!i = (map2 (re) As Bs)!i
by simp

with c obtain Cs where ∀ i < length As. As!i re Bs!i = Some (Cs!i) and length
Cs = length As

using exists-some-list l2 by (metis (no-types, lifting) length-map)
with 4 have cs:those (map2 (re) As Bs) = Some Cs

by (simp add: those-some)
have bs:match (to-pterm (lhs α) · 〈As〉α) (to-pterm (lhs α)) = Some (〈As〉α)

using lhs-subst-trivial by blast
have (map (〈As〉α) (var-rule α)) = As

using 4 (1 ) l1 apply-lhs-subst-var-rule by force
then show ?case using residual.simps(7 ) using bs cs g unfolding ∗

by simp
qed simp

lemma orth-imp-join-defined:
assumes varcond:

∧
l r . (l, r) ∈ R =⇒ is-Fun l

and A ⊥p B
and A ∈ wf-pterm R and B ∈ wf-pterm R

shows A t B 6= None
using assms(2−) proof(induct)
case (2 As Bs f )
from 2 (3 ) have wellAs:∀ a ∈ set As. a ∈ wf-pterm R

by blast
from 2 (4 ) have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm R

by blast
from 2 (1 ,2 ) wellAs wellBs have c:∀ i < length As. (∃C . As!i t Bs!i = Some

C )
by auto

from 2 (1 ) have l:length As = length (map2 (t) As Bs)
by simp

from 2 (1 ) have ∀ i < length As. As!i t Bs!i = (map2 (t) As Bs)!i
by simp

with c obtain Cs where ∀ i < length As. As!i t Bs!i = Some (Cs!i) and length
Cs = length As

using exists-some-list l by (metis (no-types, lifting))
with 2 have ∗:those (map2 (t) As Bs) = Some Cs

by (simp add: those-some)
show ?case proof(cases f )

case (Inr g)
show ?thesis unfolding Inr join.simps 2 (1 ) ∗ by simp

next
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case (Inl α)
show ?thesis unfolding Inl join.simps 2 (1 ) ∗ by simp

qed
next

case (3 As Bs α)
from 3 (3 ) varcond obtain g ts where g:lhs α = Fun g ts
by (metis Inl-inject is-Fun-Fun-conv sum.simps(4 ) term.distinct(1 ) term.sel(2 )

wf-pterm.cases)
then have ∗:to-pterm (lhs α) · 〈Bs〉α = Pfun g (map (λt. t · 〈Bs〉α) (map

to-pterm ts))
by simp

from 3 (3 ) have l1 :length As = length (var-rule α)
using wf-pterm.simps by fastforce

from 3 (3 ) have wellAs:∀ a ∈ set As. a ∈ wf-pterm R
by blast

from 3 (1 ,4 ) l1 have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm R
by (simp add: lhs-subst-args-wf-pterm)

from 3 (1 ) have l2 :length (zip As Bs) = length As
by simp

with 3 (1 ,2 ) wellAs wellBs have ∀ i < length As. As ! i t Bs ! i 6= None
by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)

then have c:∀ i < length As. (∃C . As!i t Bs!i = Some C )
by blast

from 3 (1 ) have ∀ i < length As. As!i t Bs!i = (map2 (t) As Bs)!i
by simp

with c obtain Cs where ∀ i < length As. As!i t Bs!i = Some (Cs!i) and length
Cs = length As

using exists-some-list l2 by (metis (no-types, lifting) length-map)
with 3 have cs:those (map2 (t) As Bs) = Some Cs

by (simp add: those-some)
have bs:match (to-pterm (lhs α) · 〈Bs〉α) (to-pterm (lhs α)) = Some (〈Bs〉α)

using lhs-subst-trivial by blast
then have (map (〈Bs〉α) (var-rule α)) = Bs

using 3 (1 ) l1 apply-lhs-subst-var-rule by force
then show ?case using residual.simps(5 ) using bs cs g unfolding ∗

by simp
next

case (4 As Bs α)
from 4 (4 ) varcond obtain g ts where g:lhs α = Fun g ts
by (metis Inl-inject is-Fun-Fun-conv sum.simps(4 ) term.distinct(1 ) term.sel(2 )

wf-pterm.cases)
then have ∗:to-pterm (lhs α) · 〈As〉α = Pfun g (map (λt. t · 〈As〉α) (map

to-pterm ts))
by simp

from 4 (4 ) have l1 :length Bs = length (var-rule α)
using wf-pterm.simps by fastforce

from 4 (1 ,3 ) l1 have wellAs:∀ a ∈ set As. a ∈ wf-pterm R
by (simp add: lhs-subst-args-wf-pterm)

from 4 (4 ) have wellBs:∀ b ∈ set Bs. b ∈ wf-pterm R
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by blast
from 4 (1 ) have l2 :length (zip As Bs) = length As

by simp
with 4 (1 ,2 ) wellAs wellBs have ∀ i < length As. As ! i t Bs ! i 6= None

by (metis (mono-tags, lifting) case-prod-conv nth-mem nth-zip)
then have c:∀ i < length As. (∃C . As!i t Bs!i = Some C )

by blast
from 4 (1 ) have ∀ i < length As. As!i t Bs!i = (map2 (t) As Bs)!i

by simp
with c obtain Cs where ∀ i < length As. As!i t Bs!i = Some (Cs!i) and length

Cs = length As
using exists-some-list l2 by (metis (no-types, lifting) length-map)

with 4 have cs:those (map2 (t) As Bs) = Some Cs
by (simp add: those-some)

have bs:match (to-pterm (lhs α) · 〈As〉α) (to-pterm (lhs α)) = Some (〈As〉α)
using lhs-subst-trivial by blast

have (map (〈As〉α) (var-rule α)) = As
using 4 (1 ) l1 apply-lhs-subst-var-rule by force

then show ?case using residual.simps(7 ) using bs cs g unfolding ∗
by simp

qed simp

context no-var-lhs
begin
lemma orth-imp-residual-defined:

assumes A ⊥p B and A ∈ wf-pterm R and B ∈ wf-pterm R
shows A re B 6= None
using orth-imp-residual-defined assms no-var-lhs by fastforce

lemma orth-imp-join-defined:
assumes A ⊥p B and A ∈ wf-pterm R and B ∈ wf-pterm R
shows A t B 6= None
using orth-imp-join-defined assms no-var-lhs by fastforce

lemma orthogonal-ctxt:
assumes C 〈A〉 ⊥p C 〈B〉 C ∈ wf-pterm-ctxt R
shows A ⊥p B
using assms proof(induct C )
case (Cfun f ss1 C ss2 )
from Cfun(2 ) have ∀ i<length (ss1 @ C 〈A〉 # ss2 ). (ss1 @ C 〈A〉 # ss2 ) ! i
⊥p (ss1 @ C 〈B〉 # ss2 ) ! i

unfolding intp-actxt.simps using orthogonal.simps by (smt (verit) is-Prule.simps(1 )
is-Prule.simps(3 ) term.distinct(1 ) term.sel(4 ))

then have C 〈A〉 ⊥p C 〈B〉
by (metis append.right-neutral length-append length-greater-0-conv length-nth-simps(1 )

list.discI nat-add-left-cancel-less nth-append-length)
with Cfun(1 ,3 ) show ?case by auto

next
case (Crule α ss1 C ss2 )
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from Crule(3 ) obtain f ts where lhs α = Fun f ts
using no-var-lhs by (smt (verit, del-insts) Inl-inject Inr-not-Inl case-prodD

actxt.distinct(1 ) actxt.inject term.collapse(2 ) wf-pterm-ctxt.simps)
with Crule(2 ) have ∀ i<length (ss1 @ C 〈A〉 # ss2 ). (ss1 @ C 〈A〉 # ss2 ) ! i
⊥p (ss1 @ C 〈B〉 # ss2 ) ! i

unfolding intp-actxt.simps using orthogonal.simps
by (smt (verit, ccfv-threshold) Inl-inject Inr-not-Inl eval-term.simps(2 ) term.distinct(1 )

term.inject(2 ) to-pterm.simps(2 ))
then have C 〈A〉 ⊥p C 〈B〉
by (metis intp-actxt.simps(2 ) hole-pos.simps(2 ) hole-pos-poss nth-append-length

poss-Cons-poss term.sel(4 ))
with Crule(1 ,3 ) show ?case by auto

qed simp

end

context left-lin-no-var-lhs
begin

lemma orthogonal-subst:
assumes A · σ ⊥p B · σ source A = source B

and A ∈ wf-pterm R B ∈ wf-pterm R
shows A ⊥p B
using assms(3 ,4 ,1 ,2 ) proof(induct A arbitrary:B rule:subterm-induct)
case (subterm A)
show ?case proof(cases A)

case (Var x)
with subterm no-var-lhs have B = Var x
by (metis Inl-inject Inr-not-Inl case-prodD co-initial-Var is-VarI term.distinct(1 )

term.inject(2 ) wf-pterm.simps)
then show ?thesis

unfolding Var by (simp add: orthogonal.intros(1 ))
next

case (Pfun f As)
with subterm(5 ) show ?thesis proof(cases B)

case (Pfun g Bs)
from subterm(5 ) have f :f = g

unfolding ‹A = Pfun f As› Pfun by simp
from subterm(5 ) have l:length As = length Bs

unfolding ‹A = Pfun f As› Pfun using map-eq-imp-length-eq by auto
{fix i assume i:i < length As

with subterm(4 ) have As!i · σ ⊥p Bs!i · σ
unfolding ‹A = Pfun f As› Pfun eval-term.simps f
by (smt (verit) is-Prule.simps(1 ) is-Prule.simps(3 ) length-map nth-map

orthogonal.simps term.distinct(1 ) term.sel(4 ))
moreover from i subterm(5 ) have source (As!i) = source (Bs!i)

unfolding ‹A = Pfun f As› Pfun eval-term.simps f by (simp add:
map-equality-iff )

moreover from i l subterm(2 ,3 ) have As!i ∈ wf-pterm R Bs!i ∈ wf-pterm
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R
unfolding ‹A = Pfun f As› Pfun by auto

moreover from i have As!i C A
unfolding ‹A = Pfun f As› by simp

ultimately have As!i ⊥p Bs!i
using subterm(1 ) by simp

}
with l show ?thesis

unfolding f ‹A = Pfun f As› Pfun by (simp add: orthogonal.intros(2 ))
next

case (Prule β Bs)
with subterm(3 ) have lin:linear-term (lhs β)

using left-lin left-linear-trs-def wf-pterm.cases by fastforce
from subterm(3 ) obtain g ts where lhs:lhs β = Fun g ts

unfolding Prule using no-var-lhs by (metis Inl-inject case-prodD is-FunE
is-Prule.simps(1 ) is-Prule.simps(3 ) term.distinct(1 ) term.inject(2 ) wf-pterm.simps)

with subterm(4 ) obtain τ1 where A · σ = to-pterm (lhs β) · τ1
unfolding Prule Pfun eval-term.simps using orthogonal.simps by (smt

(verit, ccfv-SIG) Inl-inject Inr-not-Inl term.inject(2 ))
with subterm(4 ,5 ) obtain τ where τ2 :A = to-pterm (lhs β) · τ
unfolding Prule Pfun source.simps using simple-pterm-match lin by (metis

matches-iff source.simps(2 ))
let ?As=map τ (var-rule β)
have l:length Bs = length (var-rule β)

using Prule subterm.prems(2 ) wf-pterm.simps by fastforce
from τ2 have A:A = to-pterm (lhs β) · 〈?As〉β

by (metis lhs-subst-var-rule set-vars-term-list subsetI vars-to-pterm)
{fix i assume i:i < length Bs

have subt:?As!i C A
using i l by (metis (no-types, lifting) τ2 comp-apply lhs nth-map nth-mem

set-remdups set-rev set-vars-term-list subst-image-subterm to-pterm.simps(2 ) vars-to-pterm)
have wf :?As!i ∈ wf-pterm R

using i l by (metis A length-map lhs-subst-args-wf-pterm nth-mem sub-
term.prems(1 ))

have l ′:length (var-rule β) = length ?As
by simp

from subterm(4 ) A Prule lhs have orth:?As!i · σ ⊥p Bs!i · σ proof(cases)
case (4 As ′ Bs ′ β ′)
then have Bs ′:Bs ′ = map (λs. s · σ) Bs and β ′:β ′ = β

unfolding Prule by simp-all
have As ′:As ′ = map (λs. s · σ) ?As proof−
have l ′′:length As ′ = length ?As using 4 (3 ) l unfolding Bs ′ length-map

by simp
{fix j assume j:j < length As ′ and neq:As ′!j 6= map (λs. s · σ) ?As ! j

let ?x=var-rule β!j
from j have x:?x ∈ vars-term (lhs β)

by (metis comp-apply l ′ l ′′ nth-mem set-remdups set-rev set-vars-term-list)
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then obtain p where p:p ∈ poss (lhs β) lhs β |-p = Var ?x
by (meson vars-term-poss-subt-at)

from j have 1 :(〈As ′〉β ′) ?x = As ′!j
using β ′ l ′′ lhs-subst-var-i by force

from j have 2 :(〈map (λs. s · σ) ?As〉β) ?x = map (λs. s · σ) ?As ! j
using lhs-subst-var-i by (metis l ′′ length-map)

then have False using 4 (1 ) 1 2 p unfolding A eval-lhs-subst[OF l ′]
β ′

by (smt (verit, del-insts) x neq set-vars-term-list term-subst-eq-rev
vars-to-pterm)

}
then show ?thesis

using l ′′ by (metis (mono-tags, lifting) map-nth-eq-conv nth-map)
qed
have i ′:i < length (zip (map (λa. a · σ) (map τ (var-rule β))) (map (λb.

b · σ) Bs))
using i l by simp

from 4 (4 ) have map (λa. a · σ) (map τ (var-rule β)) ! i ⊥p map (λb. b
· σ) Bs !i

unfolding As ′ Bs ′ using i ′ by (metis case-prodD i l length-map nth-mem
nth-zip)

then show ?thesis
using i l by auto

qed simp-all
have co-init:source (?As!i) = source (Bs!i) proof(rule ccontr)

assume neq:source (?As!i) 6= source (Bs!i)
let ?x=var-rule β!i
from i l have x:?x ∈ vars-term (lhs β)

by (metis comp-apply nth-mem set-remdups set-rev set-vars-term-list)
then obtain p where p:p ∈ poss (lhs β) lhs β |-p = Var ?x

by (meson vars-term-poss-subt-at)
from i have 1 :(〈map source ?As〉β) ?x = source (?As!i)

using l lhs-subst-var-i by (metis length-map nth-map)
from i have 2 :(〈map source Bs〉β) ?x = source (Bs!i)

using l lhs-subst-var-i by (metis length-map nth-map)
from subterm(5 ) show False using neq 1 2 p

unfolding Prule A source.simps source-apply-subst[OF to-pterm-wf-pterm[of
lhs β]] source-to-pterm

using term-subst-eq-rev x by fastforce
qed
from subterm(1 ) subt wf orth co-init have ?As!i ⊥p Bs!i

using i subterm(3 ) unfolding Prule by (meson fun-well-arg nth-mem)
}
then show ?thesis unfolding A Prule
by (smt (verit, best) case-prodI2 in-set-idx l length-map length-zip min-less-iff-conj

nth-zip orthogonal.intros(4 ) prod.sel(1 ) snd-conv)
qed simp

next
case (Prule α As)
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with subterm(2 ) have lin:linear-term (lhs α)
using left-lin left-linear-trs-def wf-pterm.cases by fastforce

from subterm(2 ) obtain f ts where lhs:lhs α = Fun f ts
by (metis Inr-not-Inl Prule case-prodD is-FunE no-var-lhs sum.inject(1 )

term.distinct(1 ) term.inject(2 ) wf-pterm.simps)
with subterm(5 ) show ?thesis proof(cases B)

case (Var x)
then show ?thesis

using source-orthogonal subterm.prems(4 ) by fastforce
next

case (Pfun g Bs)
with subterm(4 ) obtain τ1 where B · σ = to-pterm (lhs α) · τ1

unfolding Prule Pfun eval-term.simps using orthogonal.simps by (smt
(verit, ccfv-SIG) Inl-inject Inr-not-Inl term.inject(2 ))

with subterm(4 ,5 ) obtain τ where τ2 :B = to-pterm (lhs α) · τ
unfolding Prule Pfun source.simps using simple-pterm-match lin by (metis

matches-iff source.simps(2 ))
let ?Bs=map τ (var-rule α)
have l:length As = length (var-rule α)

using Prule subterm.prems(1 ) wf-pterm.simps by fastforce
from τ2 have B:B = to-pterm (lhs α) · 〈?Bs〉α

by (metis lhs-subst-var-rule set-vars-term-list subsetI vars-to-pterm)
have l ′:length (var-rule α) = length ?Bs

by simp
{fix i assume i:i < length As

from subterm(4 ) B Prule lhs have orth:As!i · σ ⊥p ?Bs!i · σ proof(cases)
case (3 As ′ Bs ′ α ′)
then have As ′:As ′ = map (λs. s · σ) As and α ′:α ′ = α

unfolding Prule by simp-all
have Bs ′:Bs ′ = map (λs. s · σ) ?Bs proof−
have l ′′:length Bs ′ = length ?Bs using 3 (3 ) l unfolding As ′ length-map

by simp
{fix j assume j:j < length Bs ′ and neq:Bs ′!j 6= map (λs. s · σ) ?Bs ! j

let ?x=var-rule α!j
from j have x:?x ∈ vars-term (lhs α)

by (metis comp-apply l ′′ length-map nth-mem set-remdups set-rev
set-vars-term-list)

then obtain p where p:p ∈ poss (lhs α) lhs α |-p = Var ?x
by (meson vars-term-poss-subt-at)

from j have 1 :(〈Bs ′〉α ′) ?x = Bs ′!j
using α ′ l ′′ lhs-subst-var-i by force

from j have 2 :(〈map (λs. s · σ) ?Bs〉α) ?x = map (λs. s · σ) ?Bs ! j
using lhs-subst-var-i by (metis l ′′ length-map)

then have False using 3 (1 ) 1 2 p unfolding B eval-lhs-subst[OF l ′]
α ′

by (smt (verit, ccfv-SIG) 3 (2 ) B α ′ eval-lhs-subst l ′ map-eq-conv neq
set-vars-term-list term-subst-eq-rev vars-to-pterm x)

}
then show ?thesis
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using l ′′ by (metis (mono-tags, lifting) map-nth-eq-conv nth-map)
qed

have i ′:i < length (zip (map (λb. b · σ) As) (map (λa. a · σ) (map τ
(var-rule α))))

using i l by simp
from 3 (4 ) have map (λb. b · σ) As ! i ⊥p map (λa. a · σ) (map τ (var-rule

α)) ! i
unfolding As ′ Bs ′ using i ′ by (metis case-prodD i l length-map nth-mem

nth-zip)
then show ?thesis

using i l by auto
qed simp-all
have co-init:source (As!i) = source (?Bs!i) proof(rule ccontr)

assume neq:source (As!i) 6= source (?Bs!i)
let ?x=var-rule α!i
from i l have x:?x ∈ vars-term (lhs α)

by (metis comp-apply nth-mem set-remdups set-rev set-vars-term-list)
then obtain p where p:p ∈ poss (lhs α) lhs α |-p = Var ?x

by (meson vars-term-poss-subt-at)
from i have 1 :(〈map source ?Bs〉α) ?x = source (?Bs!i)

using l lhs-subst-var-i by (metis length-map nth-map)
from i have 2 :(〈map source As〉α) ?x = source (As!i)

using l lhs-subst-var-i by (metis length-map nth-map)
from subterm(5 ) show False using neq 1 2 p

unfolding Prule B source.simps source-apply-subst[OF to-pterm-wf-pterm[of
lhs α]] source-to-pterm

using term-subst-eq-rev x by fastforce
qed
from subterm(1 ,2 ,3 ) co-init have As!i ⊥p ?Bs!i

using i l ′ orth unfolding Prule by (metis B fun-well-arg l lhs-subst-args-wf-pterm
nth-mem orth supt.arg)

}
then show ?thesis unfolding B Prule

by (smt (verit, best) case-prodI2 fst-conv in-set-zip l l ′ orthogonal.intros(3 )
snd-conv)

next
case (Prule β Bs)
from subterm(4 ) have α:α = β
unfolding Prule ‹A = Prule α As› eval-term.simps using orthogonal.simps

by (smt (verit) Inl-inject Prule eval-term.simps(2 ) is-Prule.simps(1 )
is-Prule.simps(3 ) lhs no-var-lhs.lhs-is-Fun

no-var-lhs-axioms subterm.prems(2 ) term.collapse(2 ) term.sel(2 )
to-pterm.simps(2 ))

from subterm(2 ,3 ) have l:length As = length Bs
unfolding ‹A = Prule α As› Prule using α length-args-well-Prule by blast

{fix i assume i:i < length As
with subterm(4 ) have As!i · σ ⊥p Bs!i · σ

unfolding ‹A = Prule α As› Prule eval-term.simps α by (smt (verit,
ccfv-threshold) Inl-inject
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Inr-not-Inl α eval-term.simps(2 ) length-map lhs nth-map orthogonal.simps
term.distinct(1 ) term.inject(2 ) to-pterm.simps(2 ))

moreover from i subterm(5 ) have source (As!i) = source (Bs!i)
using Prule α ‹A = Prule α As› co-init-prule subterm.prems(1 ) sub-

term.prems(2 ) by blast
moreover from i l subterm(2 ,3 ) have As!i ∈ wf-pterm R Bs!i ∈ wf-pterm

R
unfolding Prule ‹A = Prule α As› by auto

moreover from i have As!i C A
unfolding ‹A = Prule α As› by simp

ultimately have As!i ⊥p Bs!i
using subterm(1 ) by simp

}
with l show ?thesis

unfolding α ‹A = Prule α As› Prule by (simp add: orthogonal.intros(2 ))
qed

qed
qed

end

end

5 Labels and Overlaps
theory Labels-and-Overlaps
imports

Orthogonal-PT
Well-Quasi-Orders.Almost-Full-Relations

begin

5.1 Labeled Proof Terms

The idea is to label function symbols in the source of a proof term that
are affected by a rule symbol α with α and the distance from the root to
α. Therefore, a label is a pair consisting of a rule symbol and a natural
number, or it can be None. A labeled term is a term, where each function
symbol additionally has a label associated with it.
type-synonym
( ′f , ′v) label = (( ′f , ′v) prule × nat) option

type-synonym
( ′f , ′v) term-lab = ( ′f × ( ′f , ′v) label, ′v) term

fun label-term :: ( ′f , ′v) prule ⇒ nat ⇒ ( ′f , ′v) term ⇒ ( ′f , ′v) term-lab
where
label-term α i (Var x) = Var x
| label-term α i (Fun f ts) = Fun (f , Some (α, i)) (map (label-term α (i+1 )) ts)
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abbreviation labeled-lhs :: ( ′f , ′v) prule ⇒ ( ′f , ′v) term-lab
where labeled-lhs α ≡ label-term α 0 (lhs α)

fun labeled-source :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) term-lab
where
labeled-source (Var x) = Var x
| labeled-source (Pfun f As) = Fun (f , None) (map labeled-source As)
| labeled-source (Prule α As) = (labeled-lhs α) · 〈map labeled-source As〉α

fun term-lab-to-term :: ( ′f , ′v) term-lab ⇒ ( ′f , ′v) term
where
term-lab-to-term (Var x) = Var x
| term-lab-to-term (Fun f ts) = Fun (fst f ) (map term-lab-to-term ts)

fun term-to-term-lab :: ( ′f , ′v) term ⇒ ( ′f , ′v) term-lab
where
term-to-term-lab (Var x) = Var x
| term-to-term-lab (Fun f ts) = Fun (f , None) (map term-to-term-lab ts)

fun get-label :: ( ′f , ′v) term-lab ⇒ ( ′f , ′v) label
where
get-label (Var x) = None
| get-label (Fun f ts) = snd f

fun labelposs :: ( ′f , ′v) term-lab ⇒ pos set
where

labelposs (Var x) = {}
| labelposs (Fun (f , None) ts) = (

⋃
i<length ts. {i # p | p. p ∈ labelposs (ts ! i)})

| labelposs (Fun (f , Some l) ts) = {[]} ∪ (
⋃

i<length ts. {i # p | p. p ∈ labelposs
(ts ! i)})

abbreviation possL :: ( ′f , ′v) pterm ⇒ pos set
where possL A ≡ labelposs (labeled-source A)

lemma labelposs-term-to-term-lab: labelposs (term-to-term-lab t) = {}
by(induct t) simp-all

lemma term-lab-to-term-lab[simp]: term-lab-to-term (term-to-term-lab t) = t
proof(induct t)

case (Fun f ts)
then show ?case

unfolding term-lab-to-term.simps term-to-term-lab.simps fst-conv by (simp
add: map-nth-eq-conv)
qed simp

lemma term-lab-to-term-subt-at:
assumes p ∈ poss t
shows term-lab-to-term t |-p = term-lab-to-term (t|-p)
using assms proof(induct p arbitrary:t)
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case (Cons i p)
from args-poss[OF Cons(2 )] obtain f ts where f :t = Fun f ts and

p:p ∈ poss (ts ! i) and i:i < length ts by blast
from Cons(1 )[OF p] i show ?case

unfolding f term-lab-to-term.simps by simp
qed simp

lemma vars-term-labeled-lhs: vars-term (label-term α i t) = vars-term t
by (induct t arbitrary:i) simp-all

lemma vars-term-list-labeled-lhs: vars-term-list (label-term α i t) = vars-term-list
t
proof (induct t arbitrary:i)

case (Fun f ts)
show ?case unfolding label-term.simps vars-term-list.simps using Fun

by (metis (mono-tags, lifting) length-map map-nth-eq-conv nth-mem)
qed (simp add: vars-term-list.simps(1 ))

lemma var-poss-list-labeled-lhs: var-poss-list (label-term α i t) = var-poss-list t
proof (induct t arbitrary:i)

case (Fun f ts)
then have ts:map (var-poss-list ◦ label-term α (i + 1 )) ts = map var-poss-list

ts
by auto

then show ?case
unfolding label-term.simps var-poss-list.simps map-map ts by simp

qed (simp add: poss-list.simps(1 ))

lemma var-labeled-lhs[simp]: vars-distinct (label-term α i t) = vars-distinct t
by (simp add: vars-term-list-labeled-lhs)

lemma labelposs-subt-at:
assumes q ∈ poss t p ∈ labelposs (t|-q)
shows q@p ∈ labelposs t
using assms proof(induct t arbitrary:q)
case (Fun f ts)
then show ?case proof(cases q)

case (Cons i q ′)
with Fun(2 ) have i:i < length ts and q ′:q ′ ∈ poss (ts!i)

by simp+
with Fun(3 ) have p ∈ labelposs ((ts!i)|-q ′)

unfolding Cons by simp
with Fun(1 ) i q ′ have IH :q ′@p ∈ labelposs (ts!i)

using nth-mem by blast
obtain f ′ lab where f :f = (f ′, lab)

by fastforce
then show ?thesis proof(cases lab)

case None
show ?thesis
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unfolding f Cons None labelposs.simps using i IH by simp
next

case (Some a)
then show ?thesis

unfolding f Cons Some labelposs.simps using i IH by simp
qed

qed simp
qed simp

lemma var-label-term:
assumes p ∈ poss t and t|-p = Var x
shows label-term α n t |-p = Var x
using assms proof(induct t arbitrary:p n)
case (Fun f ts)
then obtain i p ′ where p ′:i < length ts p = i#p ′ p ′ ∈ poss (ts!i)

by auto
then show ?case

unfolding label-term.simps p ′(2 ) subt-at.simps using Fun(1 ,3 ) p ′(2 ) by force
qed simp

lemma get-label-label-term:
assumes p ∈ fun-poss t
shows get-label (label-term α n t|-p) = Some (α, n + size p)
using assms proof(induct t arbitrary: n p)
case (Fun f ts)
show ?case proof(cases p)

case (Cons i p ′)
with Fun(2 ) have i:i < length ts and p ′:p ′ ∈ fun-poss (ts!i) by simp+
with Fun(1 ) have get-label (label-term α (n+1 ) (ts!i) |- p ′) = Some (α, n +

1 + size p ′) by simp
then show ?thesis unfolding Cons label-term.simps subt-at.simps using i by

auto
qed simp

qed simp

lemma linear-label-term:
assumes linear-term t
shows linear-term (label-term α n t)
using assms proof(induct t arbitrary:n)
case (Fun f ts)
from Fun(2 ) have (is-partition (map vars-term ts))

by simp
then have is-partition (map vars-term (map (label-term α (Suc n)) ts))
by (metis (mono-tags, lifting) length-map map-nth-eq-conv vars-term-labeled-lhs)

moreover {fix t assume t:t ∈ set ts
with Fun(2 ) have linear-term t

by simp
with Fun(1 ) have linear-term (label-term α (Suc n) t)

using t by blast
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}
ultimately show ?case unfolding label-term.simps by simp

qed simp

lemma var-term-lab-to-term:
assumes p ∈ poss t and t|-p = Var x
shows term-lab-to-term t |-p = Var x
using assms proof(induct t arbitrary:p)
case (Fun f ts)
then obtain i p ′ where p ′:i < length ts p = i#p ′ p ′ ∈ poss (ts!i)

by auto
then show ?case

unfolding term-lab-to-term.simps p ′(2 ) subt-at.simps using Fun(1 ,3 ) p ′(2 )
by force
qed simp

lemma poss-term-lab-to-term[simp]: poss t = poss (term-lab-to-term t)
by(induct t) auto

lemma fun-poss-term-lab-to-term[simp]: fun-poss t = fun-poss (term-lab-to-term
t)

by(induct t) auto

lemma vars-term-list-term-lab-to-term: vars-term-list t = vars-term-list (term-lab-to-term
t)
proof(induct t)

case (Var x)
then show ?case

by (simp add: vars-term-list.simps(1 ))
next

case (Fun f ts)
then show ?case unfolding vars-term-list.simps term-lab-to-term.simps

by (smt (verit, best) length-map map-eq-conv ′ nth-map nth-mem)
qed

lemma vars-term-list-term-to-term-lab: vars-term-list (term-to-term-lab t) = vars-term-list
t
proof(induct t)

case (Var x)
then show ?case

by (simp add: vars-term-list.simps(1 ))
next

case (Fun f ts)
then show ?case unfolding vars-term-list.simps term-to-term-lab.simps

by (metis (mono-tags, lifting) length-map map-nth-eq-conv nth-mem)
qed

lemma linear-term-to-term-lab:
assumes linear-term t
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shows linear-term (term-to-term-lab t)
using assms proof(induct t)
case (Fun f ts)
then show ?case unfolding term-to-term-lab.simps linear-term.simps
by (smt (verit, best) imageE length-map list.set-map map-nth-eq-conv set-vars-term-list

vars-term-list-term-to-term-lab)
qed simp

lemma var-poss-list-term-lab-to-term: var-poss-list t = var-poss-list (term-lab-to-term
t)
proof(induct t)

case (Var x)
then show ?case

by (simp add: poss-list.simps(1 ))
next

case (Fun f ts)
then have ∗:(map var-poss-list ts) = (map var-poss-list (map term-lab-to-term

ts))
by auto

then show ?case unfolding term-lab-to-term.simps var-poss-list.simps length-map
∗

by blast
qed

lemma label-poss-labeled-lhs:
assumes p ∈ fun-poss (label-term α n t)
shows p ∈ labelposs (label-term α n t)
using assms proof(induct t arbitrary:p n)
case (Fun f ts)
then show ?case proof(cases p)

case (Cons i p ′)
from Fun(2 ) have i:i < length ts

unfolding Cons by simp
with Fun(2 ) have p ′ ∈ fun-poss (label-term α (n+1 ) (ts!i))

unfolding Cons by auto
with i have p ′ ∈ labelposs (label-term α (n+1 ) (ts!i))

using Fun(1 ) by simp
with i show ?thesis

unfolding Cons label-term.simps labelposs.simps by simp
qed simp

qed simp

lemma labeled-var :
assumes source A = Var x
shows labeled-source A = Var x
using assms proof(induct A)
case (Prule α As)
then show ?case proof(cases As = [])

case True
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from Prule(2 ) have lhs α = Var x
unfolding source.simps True list.map by simp

with True show ?thesis
by simp

next
case False
then obtain a as where as:As = a # as

using list.exhaust by blast
from Prule(2 ) obtain y where y:lhs α = Var y

using is-Var-def by fastforce
from Prule(2 ) have source a = Var x

unfolding source.simps y as single-var by simp
with Prule(1 ) as have labeled-source a = Var x

by simp
then show ?thesis

unfolding labeled-source.simps as y single-var by simp
qed

qed simp-all

lemma labelposs-subs-fun-poss: labelposs t ⊆ fun-poss t
proof(induct t)

case (Fun fl ts)
then show ?case proof(cases snd fl)

case None
then obtain f where f :fl = (f , None)

by (metis prod.collapse)
then have labelposs (Fun fl ts) = (

⋃
i<length ts. {i # p |p. p ∈ labelposs (ts !

i)})
by simp

also have ... ⊆ (
⋃

i<length ts. {i # p |p. p ∈ fun-poss (ts ! i)}) using Fun
by (smt SUP-mono basic-trans-rules(31 ) lessThan-iff mem-Collect-eq nth-mem

subsetI )
finally show ?thesis

by auto
next

case (Some l)
then obtain f where f :fl = (f , Some l)

by (metis prod.collapse)
then have labelposs (Fun fl ts) = {[]} ∪ (

⋃
i<length ts. {i # p |p. p ∈ labelposs

(ts ! i)})
by simp

also have ... ⊆ {[]} ∪ (
⋃

i<length ts. {i # p |p. p ∈ fun-poss (ts ! i)}) using
Fun

by (smt SUP-mono basic-trans-rules(31 ) lessThan-iff mem-Collect-eq nth-mem
subsetI sup-mono)

finally show ?thesis
by auto

qed
qed simp
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lemma labelposs-subs-poss[simp]: labelposs t ⊆ poss t
using labelposs-subs-fun-poss fun-poss-imp-poss by blast

lemma get-label-imp-labelposs:
assumes p ∈ poss t and get-label (t|-p) 6= None
shows p ∈ labelposs t
using assms proof(induct p arbitrary:t)
case Nil
then show ?case unfolding subt-at.simps
by (smt UnCI get-label.elims insert-iff labelposs.elims prod.sel(2 ) term.distinct(1 )

term.inject(2 ))
next

case (Cons i p)
then obtain f ts where t:t = Fun f ts and p ∈ poss (ts ! i) and i:i < length ts

using args-poss by blast
with Cons(1 ,3 ) have p ∈ labelposs (ts!i)

by simp
with i have p:i # p ∈ (

⋃
i<length ts. {i # p |p. p ∈ labelposs (ts ! i)})

by blast
then show ?case proof(cases snd f )

case None
with p show ?thesis unfolding t using labelposs.simps(2 )

by (metis (mono-tags, lifting) prod.collapse)
next

case (Some a)
with p show ?thesis unfolding t using labelposs.simps(3 )

by (smt UN-iff Un-iff mem-Collect-eq prod.collapse)
qed

qed

lemma labelposs-obtain-label:
assumes p ∈ labelposs t
shows ∃α m. get-label (t|-p) = Some(α, m)
using assms proof(induct t arbitrary: p)
case (Fun fl ts)
then show ?case proof(cases p)

case Nil
{fix f assume f :fl = (f , None)

from Fun(2 ) have False unfolding Nil f labelposs.simps(2 )
by blast

}
with Nil show ?thesis

by (metis eq-snd-iff get-label.simps(2 ) option.exhaust subt-at.simps(1 ))
next

case (Cons i q)
with Fun(2 ) have iq:i # q ∈ labelposs (Fun fl ts)

by simp
then have i:i < length ts
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using labelposs-subs-poss by fastforce
with iq have i # q ∈ {i # p |p. p ∈ labelposs (ts ! i)} proof(cases snd fl)

case (Some a)
then obtain f α n where f :fl = (f , Some (α, n))

by (metis eq-snd-iff )
from iq show ?thesis unfolding f labelposs.simps

by blast
qed (smt UN-iff labelposs.simps(2 ) list.inject mem-Collect-eq prod.collapse)
with i Fun(1 ) Cons show ?thesis

by simp
qed

qed simp

lemma possL-obtain-label:
assumes p ∈ possL A
shows ∃α m. get-label ((labeled-source A)|-p) = Some(α, m)
using assms labelposs-obtain-label by blast

lemma labeled-source-apply-subst:
assumes A ∈ wf-pterm R
shows labeled-source (A · σ) = (labeled-source A) · (labeled-source ◦ σ)

using assms proof(induct A)
case (3 α As)
have id:∀ x ∈ vars-term (labeled-lhs α). (〈map (labeled-source ◦ (λt. t · σ)) As〉α)

x = (〈map labeled-source As〉α ◦s (labeled-source ◦ σ)) x
proof−
have vars:vars-term (labeled-lhs α) = set (var-rule α) using vars-term-labeled-lhs

by simp
{ fix i assume i:i < length (var-rule α)

with 3 have (〈map (labeled-source ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) =
labeled-source ((As!i) · σ)

by (simp add: mk-subst-distinct)
also have ... = labeled-source (As!i) · (labeled-source ◦ σ)

using 3 i by (metis nth-mem)
also have ... = (〈map labeled-source As〉α ◦s (labeled-source ◦ σ)) ((var-rule

α)!i)
using 3 i unfolding subst-compose-def by (simp add: mk-subst-distinct)
finally have (〈map (labeled-source ◦ (λt. t · σ)) As〉α) ((var-rule α)!i) =

(〈map labeled-source As〉α ◦s (labeled-source ◦ σ)) ((var-rule α)!i) .
} with vars show ?thesis by (metis in-set-idx)

qed
have labeled-source ((Prule α As) · σ) = (labeled-lhs α) · 〈map (labeled-source ◦

(λt. t · σ)) As〉α
unfolding eval-term.simps(2 ) by simp

also have ... = (labeled-lhs α) · (〈map labeled-source As〉α ◦s (labeled-source ◦
σ))

using id by (meson term-subst-eq)
also have ... = (labeled-source (Prule α As)) · (labeled-source ◦ σ) by simp
finally show ?case .
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qed simp-all

lemma labelposs-apply-subst:
labelposs (s · σ) = labelposs s ∪ {p@q| p q x. p ∈ var-poss s ∧ s|-p = Var x ∧ q
∈ labelposs (σ x)}
proof(induct s)

case (Fun f ts)
obtain f ′ l where f :f = (f ′, l) by fastforce
let ?lp1=

⋃
i<length ts. {i # p |p. p ∈ labelposs (ts ! i)}

let ?lp2=
⋃

i<length ts. {i#(p@q)| p q x. p ∈ var-poss (ts!i) ∧ (ts!i)|-p = Var x
∧ q ∈ labelposs (σ x)}

{fix i assume i:i < length ts
with Fun have {i # p |p. p ∈ labelposs (ts ! i · σ)} = {i # p| p. p ∈ labelposs

(ts!i) ∪ {p@q| p q x. p ∈ var-poss (ts!i) ∧ (ts!i)|-p = Var x ∧ q ∈ labelposs (σ x)}}
by auto

then have {i # p |p. p ∈ labelposs (map (λs. s · σ) ts ! i)} = {i # p| p. p ∈
labelposs (ts!i)} ∪ {i#(p@q)| p q x. p ∈ var-poss (ts!i) ∧ (ts!i)|-p = Var x ∧ q ∈
labelposs (σ x)}

unfolding Un-iff using i by auto
}note IH=this
{fix i assume i:i < length ts

let ?l={i#(p@q)| p q x . p ∈ var-poss (ts!i) ∧ (ts!i)|-p = Var x ∧ q ∈ labelposs
(σ x)}

let ?r={p@q| p q x. p ∈ {i # p |p. p ∈ var-poss (ts ! i)} ∧ (Fun f ts)|-p = Var
x ∧ q ∈ labelposs (σ x)}

have ?l = ?r proof
show ?l ⊆ ?r

by (smt (verit, ccfv-SIG) Collect-mono-iff Cons-eq-appendI mem-Collect-eq
subt-at.simps(2 ))

show ?r ⊆ ?l
by (smt (verit, best) Collect-mono-iff Cons-eq-appendI mem-Collect-eq

subt-at.simps(2 ))
qed

}
then have lp2 :{p@q| p q x. p ∈ var-poss (Fun f ts) ∧ (Fun f ts)|-p = Var x ∧ q
∈ labelposs (σ x)} = ?lp2

unfolding var-poss.simps by auto
show ?case proof(cases l)

case None
have labelposs (Fun f ts · σ) = ?lp1 ∪ ?lp2

unfolding eval-term.simps f None labelposs.simps length-map using IH by
auto

moreover have labelposs (Fun f ts) = ?lp1
unfolding f None by simp

ultimately show ?thesis using lp2 by simp
next

case (Some a)
have labelposs (Fun f ts · σ) = {[]} ∪ ?lp1 ∪ ?lp2

unfolding eval-term.simps f Some labelposs.simps length-map using IH by
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auto
moreover have labelposs (Fun f ts) = {[]} ∪ ?lp1

unfolding f Some by simp
ultimately show ?thesis using lp2 by simp

qed
qed simp

lemma possL-apply-subst:
assumes A · σ ∈ wf-pterm R
shows possL (A · σ) = possL A ∪ {p@q| p q x . p ∈ var-poss (labeled-source A)
∧ (labeled-source A)|-p = Var x ∧ q ∈ possL (σ x)}
proof−

from assms have ∗:labeled-source (A · σ) = labeled-source A · (labeled-source ◦
σ)

using labeled-source-apply-subst subst-imp-well-def by blast
then show ?thesis unfolding ∗ labelposs-apply-subst

by auto
qed

lemma label-term-to-term[simp]: term-lab-to-term (label-term α n t) = t
by(induct t arbitrary:α n)(simp-all add: map-nth-eq-conv)

lemma fun-poss-label-term: p ∈ fun-poss (label-term β n t) ←→ p ∈ fun-poss t
proof

{assume p ∈ fun-poss (label-term β n t)
then show p ∈ fun-poss t proof(induct t arbitrary:n p)

case (Fun f ts)
then show ?case by(cases p) auto

qed simp
}
{assume p ∈ fun-poss t

then show p ∈ fun-poss (label-term β n t) proof(induct t arbitrary:n p)
case (Fun f ts)
then show ?case by(cases p) auto

qed simp
}

qed

lemma term-lab-to-term-subst: term-lab-to-term (t · σ) = term-lab-to-term t ·
(term-lab-to-term ◦ σ)
proof(induct t)

case (Fun f As)
then show ?case unfolding eval-term.simps(2 ) term-lab-to-term.simps

by fastforce
qed simp

lemma labeled-source-to-term[simp]: term-lab-to-term (labeled-source A) = source
A
proof(induct A)
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case (Prule α As)
have term-lab-to-term ◦ 〈map labeled-source As〉α = 〈map (term-lab-to-term ◦

labeled-source) As〉α
by simp

also have ... = 〈map source As〉α using Prule
by (metis (mono-tags, lifting) comp-apply map-eq-conv)

finally show ?case unfolding labeled-source.simps source.simps
by (simp add: term-lab-to-term-subst)

qed simp-all

lemma possL-subset-poss-source: possL A ⊆ poss (source A)
using poss-term-lab-to-term labeled-source-to-term labelposs-subs-poss
by metis

lemma labeled-source-pos:
assumes p ∈ poss s and term-lab-to-term t = s
shows term-lab-to-term (t|-p) = s|-p

using assms proof(induct p arbitrary:s t)
case (Cons i p)
from Cons(2 ) obtain f ss where s:s = Fun f ss

using args-poss by blast
with Cons(2 ) have p:p ∈ poss (ss!i)

by force
from Cons(3 ) s obtain label ts where t:t = Fun (f , label) ts
by (metis args-poss local.Cons(2 ) poss-term-lab-to-term prod.collapse term.inject(2 )

term-lab-to-term.simps(2 ))
with Cons(2 ,3 ) s have term-lab-to-term (ts!i) = ss!i

by auto
with Cons(1 ) p show ?case unfolding s t

by simp
qed simp

lemma get-label-at-fun-poss-subst:
assumes p ∈ fun-poss t
shows get-label ((t · σ)|-p) = get-label (t|-p)
using assms fun-poss-fun-conv fun-poss-imp-poss by fastforce

lemma labeled-source-simple-pterm:possL (to-pterm t) = {}
by(induct t) simp-all

lemma label-term-increase:
assumes s = (label-term α n t) · σ and p ∈ fun-poss t
shows get-label (s|-p) = Some (α, n + length p)
using assms proof(induct p arbitrary: s t n)
case Nil
then obtain f ts where t = Fun f ts
by (metis fun-poss-list.simps(1 ) in-set-simps(3 ) is-FunE is-Var-def set-fun-poss-list)

with Nil(1 ) show ?case
by simp
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next
case (Cons i p)
then obtain f ts where f :t = Fun f ts and i:i<length ts

by (meson args-poss fun-poss-imp-poss)
with Cons(3 ) have p:p ∈ fun-poss (ts!i)

by auto
let ?s ′ = (label-term α (n+1 ) (ts!i)) · σ
from Cons(1 ) p have get-label (?s ′|- p) = Some (α, n + 1 + length p)

by blast
with i show ?case unfolding Cons(2 ) f

by simp
qed

The number attached to a labeled function symbol cannot exceed the depth
of that function symbol.
lemma label-term-max-value:

assumes p ∈ poss (labeled-source A) and get-label ((labeled-source A)|-p) = Some
(α, n)

and A ∈ wf-pterm R
shows n ≤ length p
using assms proof(induct A arbitrary: p)
case (Pfun f As)
then show ?case proof(cases p)

case (Cons i q)
with Pfun(2 ) have i:i < length As by simp
with Pfun(3 ) have lab:get-label (labeled-source (As!i) |- q) = Some (α, n)

unfolding Cons by simp
with Pfun(2 ) i have q ∈ poss (labeled-source (As!i))

unfolding Cons by auto
with Pfun(1 ,4 ) Cons i lab show ?thesis

using nth-mem fun-well-arg by fastforce
qed simp

next
case (Prule β As)
from Prule(2 ) consider p ∈ fun-poss (labeled-lhs β) | (∃ p1 p2 x. p = p1@p2

∧ p1 ∈ poss (labeled-lhs β) ∧ (labeled-lhs β)|-p1 =
Var x

∧ p2 ∈ poss ((〈map labeled-source As〉β) x)
∧ (labeled-source (Prule β As))|-p = ((〈map

labeled-source As〉β) x)|-p2 )
unfolding labeled-source.simps by (meson poss-is-Fun-fun-poss poss-subst-choice)

then show ?case proof(cases)
case 1
then have p ∈ fun-poss (lhs β)

by (simp add: fun-poss-label-term)
then have get-label ((labeled-source (Prule β As))|-p) = Some (β, length p)

unfolding labeled-source.simps by (simp add: label-term-increase)
with Prule(3 ) show ?thesis by auto

next
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case 2
then obtain p1 p2 x where p1p2 :p = p1 @ p2 and x:p1 ∈ poss (labeled-lhs

β) ∧ labeled-lhs β |- p1 = Var x
and p2 :p2 ∈ poss ((〈map labeled-source As〉β) x)
and lab:labeled-source (Prule β As) |- p = (〈map labeled-source As〉β) x |- p2
by blast

from Prule(4 ) have l:length As = length (var-rule β)
using wf-pterm.simps by fastforce

from x have x ∈ vars-term (lhs β)
by (metis subt-at-imp-supteq subteq-Var-imp-in-vars-term vars-term-labeled-lhs)
with x obtain i where i:i < length (var-rule β) ∧ (var-rule β)!i = x

by (metis in-set-conv-nth set-vars-term-list vars-term-list-vars-distinct)
with l have ∗:(〈map labeled-source As〉β) x = labeled-source (As!i)

by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map)
with Prule(3 ) lab have get-label ((labeled-source (As!i))|-p2 ) = Some (α, n)

by simp
with Prule(1 ,4 ) p2 ∗ i l have n ≤ length p2

by (metis fun-well-arg nth-mem)
with ∗ p1p2 lab i l show ?thesis by force

qed
qed simp

The labels decrease when moving up towards the root from a labeled function
symbol.
lemma label-decrease:

assumes p@q ∈ poss (labeled-source A)
and get-label ((labeled-source A)|-(p@q)) = Some (α, length q + n)
and A ∈ wf-pterm R

shows get-label ((labeled-source A)|-p) = Some (α, n)
using assms proof(induct A arbitrary: p q)
case (Pfun f As)
then show ?case proof(cases p)

case Nil
from Pfun(2 ,3 ) obtain i q ′ where iq ′:q = i#q ′ and i:i < length As and q ′:q ′

∈ poss (labeled-source (As!i))
unfolding Nil by auto

with Pfun(2 ,3 ) have get-label (labeled-source (As!i) |- (q ′)) = Some (α, length
q + n)

unfolding Nil by auto
with iq ′ q ′ have False

using label-term-max-value Pfun(4 ) i fun-well-arg by (metis le-imp-less-Suc
length-nth-simps(2 ) not-add-less1 nth-mem)

then show ?thesis by simp
next

case (Cons i p ′)
with Pfun(2 ) have ip ′:p = i#p ′ and i:i < length As

by auto
with Pfun(2 ) have p ′:p ′@q ∈ poss (labeled-source (As!i))

by simp
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from Pfun(3 ) i ip ′ have get-label (labeled-source (As!i) |- (p ′@q)) = Some (α,
length q + n)

by simp
with Pfun(1 ,4 ) p ′ i have get-label ((labeled-source (As!i))|-p ′) = Some (α, n)

by (metis fun-well-arg nth-mem)
then show ?thesis

using i ip ′ by fastforce
qed

next
case (Prule β As)
from Prule(2 ) consider p@q ∈ fun-poss (labeled-lhs β) | (∃ p1 p2 x. p@q =

p1@p2
∧ p1 ∈ poss (labeled-lhs β) ∧ (labeled-lhs β)|-p1 =

Var x
∧ p2 ∈ poss ((〈map labeled-source As〉β) x)
∧ (labeled-source (Prule β As))|-(p@q) = ((〈map

labeled-source As〉β) x)|-p2 )
unfolding labeled-source.simps by (meson poss-is-Fun-fun-poss poss-subst-choice)

then show ?case proof(cases)
case 1
then have lab:get-label ((labeled-source (Prule β As))|-(p@q)) = Some (β,

length p + length q)
by (simp add: fun-poss-label-term label-term-increase)

from 1 have p ∈ fun-poss (labeled-lhs β) proof(cases q)
case (Cons a list)
then show ?thesis

using 1 fun-poss-append-poss fun-poss-imp-poss by blast
qed simp
with Prule(3 ) lab show ?thesis

by (simp add: fun-poss-label-term label-term-increase)
next

case 2
then obtain p1 p2 x where p1p2 :p@q = p1 @ p2 and x:p1 ∈ poss (labeled-lhs

β) ∧ labeled-lhs β |- p1 = Var x
and p2 :p2 ∈ poss ((〈map labeled-source As〉β) x)
and lab:labeled-source (Prule β As) |-(p@q) = (〈map labeled-source As〉β) x

|- p2
by blast

from Prule(4 ) have l:length As = length (var-rule β)
using wf-pterm.simps by fastforce

from x have x ∈ vars-term (lhs β)
by (metis subt-at-imp-supteq subteq-Var-imp-in-vars-term vars-term-labeled-lhs)
then obtain i where i:i < length (var-rule β) ∧ (var-rule β)!i = x

by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)
with l have ∗:(〈map labeled-source As〉β) x = labeled-source (As!i)

by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map)
with Prule(3 ) lab have as-i:get-label ((labeled-source (As!i))|-p2 ) = Some (α,

length q + n)
by simp
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have p1-above-p:p1 ≤p p proof(rule ccontr)
assume ¬ p1 ≤p p
with p1p2 have length p < length p1

by (metis less-eq-pos-simps(1 ) pos-cases pos-less-eq-append-not-parallel pre-
fix-smaller)

with p1p2 have le:length p2 < length q
using length-append by (metis add.commute less-add-eq-less)

with as-i Prule(4 ) ∗ i l p2 have length q + n ≤ length p2
by (metis fun-well-arg label-term-max-value nth-mem)

with le show False by linarith
qed
let ?p ′=the (remove-prefix p1 p)
from p1-above-p p1p2 have p2 ′:p2 = ?p ′ @ q

by (metis append-assoc pos-diff-def prefix-pos-diff same-append-eq)
then have lab ′:labeled-source (Prule β As) |-(p1@?p ′) = (〈map labeled-source

As〉β) x |-?p ′

using x p1p2 Prule(2 ) unfolding labeled-source.simps
by (metis (mono-tags, lifting) labeled-source.simps(3 ) poss-append-poss eval-term.simps(1 )

subt-at-subst subterm-poss-conv)
from p2 ′ Prule(1 ,4 ) p2 ∗ i l as-i have get-label ((labeled-source (As!i))|-?p ′)

= Some (α, n)
by (metis fun-well-arg nth-mem)

with lab ′ ∗ show ?thesis
by (metis p1-above-p pos-diff-def prefix-pos-diff )

qed
qed simp

If a function symbol is labeled with (α, n), then the function symbol n
positions above it is labeled with (α, 0 ).
lemma obtain-label-root:

assumes p ∈ poss (labeled-source A)
and get-label ((labeled-source A)|-p) = Some (α, n)
and A ∈ wf-pterm R

shows get-label ((labeled-source A)|-(take (length p − n) p)) = Some (α, 0 ) ∧
take (length p − n) p ∈ poss (labeled-source A)
proof−

from assms have n:n ≤ length p
using label-term-max-value by blast

with assms show ?thesis
by (metis (no-types, lifting) add.right-neutral append-take-drop-id diff-diff-cancel

label-decrease length-drop poss-append-poss)
qed

lemma label-ctxt-apply-term:
assumes get-label (labeled-source A |- p) = l q ∈ poss s
shows get-label (labeled-source ((ctxt-of-pos-term q (to-pterm s)) 〈A〉) |- (q@p))

= l
using assms(2 ) proof(induct s arbitrary:q)

case (Var x)
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then have q:q = [] by simp
from assms(1 ) show ?case unfolding q by simp

next
case (Fun f ts)
then show ?case proof(cases q)

case Nil
from assms(1 ) show ?thesis unfolding Nil by simp

next
case (Cons i q ′)
with Fun(2 ) have i:i < length ts and q ′:q ′ ∈ poss (ts!i) by auto

with Fun(1 ) have get-label (labeled-source (ctxt-of-pos-term q ′ (to-pterm (ts!i)))〈A〉
|- (q ′ @ p)) = l by simp

then show ?thesis
unfolding to-pterm.simps Cons ctxt-of-pos-term.simps labeled-source.simps

append-Cons intp-actxt.simps subt-at.simps
by (metis (no-types, lifting) Cons-nth-drop-Suc append-take-drop-id i length-append

length-map less-imp-le-nat list.size(4 ) nth-append-take nth-map)
qed

qed

lemma single-redex-at-p-label:
assumes p ∈ poss s and is-Fun (lhs α)
shows get-label (labeled-source (ll-single-redex s p α) |-p) = Some(α, 0 )

proof−
from assms(2 ) obtain f ts where f :lhs α = Fun f ts

by blast
have get-label (labeled-source (Prule α (map (to-pterm ◦ (λpi. s |- (p @ pi)))

(var-poss-list (lhs α))))) = Some (α, 0 )
unfolding f labeled-source.simps label-term.simps eval-term.simps get-label.simps

by simp
then show ?thesis
unfolding ll-single-redex-def using label-ctxt-apply-term[where p=[]] assms(1 )
by (smt (verit) self-append-conv subt-at.simps(1 ))

qed

Whenever a function symbol at position p has label (α, 0 ) or no label in
labeled-source A, then we know that there exists a position q in A such that
A |- q = α As for appropriate As. Moreover, taking the source of the context
at position q must be the same as first computing the source of A and then
taking the context at p.
context left-lin
begin
lemma poss-labeled-source:
assumes p ∈ poss (labeled-source A)

and get-label ((labeled-source A)|-p) = Some (α, 0 )
and A ∈ wf-pterm R

shows ∃ q ∈ poss A. ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term
q A) ∧

A|-q = Prule α (map (λi. A|-(q@[i])) [0 ..<length (var-rule α)])
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using assms proof(induct A arbitrary:p)
case (Var x)
then have p = [] by simp
with Var(2 ) have False unfolding labeled-source.simps by simp
then show ?case by blast

next
case (Pfun f As)
then show ?case proof(cases p)

case (Cons i p ′)
with Pfun(2 ) have ip ′:p = i#p ′ and i:i < length As

by auto
with Pfun(2 ) have p ′:p ′ ∈ poss (labeled-source (As!i))

by simp
from Pfun(3 ) i ip ′ have get-label (labeled-source (As!i) |- p ′) = Some (α, 0 )

by simp
with Pfun(1 ,4 ) p ′ i obtain q where q:q ∈ poss (As!i) and ctxt-of-pos-term

p ′ (source (As!i)) = source-ctxt (ctxt-of-pos-term q (As!i))
and prule:(As!i)|-q = Prule α (map (λj. (As!i)|-(q@[j])) [0 ..<length (var-rule

α)])
using nth-mem by blast

then have ctxt-of-pos-term p (source (Pfun f As)) = source-ctxt (ctxt-of-pos-term
(i#q) (Pfun f As))

unfolding ip ′ using i by(simp add: take-map drop-map)
then show ?thesis

using q(1 ) i prule by fastforce
qed simp

next
case (Prule β As)
have l:length As = length (var-rule β)

using Prule(4 ) using wf-pterm.simps by fastforce
from Prule(2 ) consider p ∈ fun-poss (labeled-lhs β) | (∃ p1 p2 x. p = p1@p2

∧ p1 ∈ poss (labeled-lhs β) ∧ (labeled-lhs β)|-p1 =
Var x

∧ p2 ∈ poss ((〈map labeled-source As〉β) x)
∧ (labeled-source (Prule β As))|-p = ((〈map

labeled-source As〉β) x)|-p2 )
unfolding labeled-source.simps by (meson poss-is-Fun-fun-poss poss-subst-choice)

then show ?case proof(cases)
case 1
then have p ∈ fun-poss (lhs β)

by (simp add: fun-poss-label-term)
then have get-label ((labeled-source (Prule β As))|-p) = Some (β, length p)

unfolding labeled-source.simps by (simp add: label-term-increase)
with Prule(3 ) have p:p = [] and α:α = β by simp+
have As = (map (λi. Prule β As |- ([i])) [0 ..<length As])

by (simp add: map-nth)
then have As = (map (λi. Prule β As |- ([] @ [i])) [0 ..<length (var-rule α)])

unfolding α using l by force
then show ?thesis unfolding p α by auto
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next
case 2
then obtain p1 p2 x where p1p2 :p = p1 @ p2 and x:p1 ∈ poss (labeled-lhs

β) ∧ labeled-lhs β |- p1 = Var x
and p2 :p2 ∈ poss ((〈map labeled-source As〉β) x)
and lab:labeled-source (Prule β As) |- p = (〈map labeled-source As〉β) x |- p2
by blast

from Prule(4 ) have l:length As = length (var-rule β)
using wf-pterm.simps by fastforce

from Prule(4 ) have to-rule β ∈ R
using wf-pterm.cases by force

with left-lin have lin:linear-term (lhs β)
using left-linear-trs-def by fastforce

from x have p1 :p1 ∈ poss (lhs β) by simp
then have p1 ′:p1 ∈ poss ((lhs β) · 〈map source As〉β) by simp
from p1 x have x ′:lhs β |- p1 = Var x

by (metis label-term-to-term labeled-source-pos term-lab-to-term.simps(1 ))
from p1 x ′ obtain i where i:i < length (vars-term-list (lhs β)) var-poss-list

(lhs β) ! i = p1 vars-term-list (lhs β) ! i = x
by (metis in-set-idx length-var-poss-list term.inject(1 ) var-poss-iff var-poss-list-sound

vars-term-list-var-poss-list)
with lin have i ′:i < length (var-rule β) ∧ (var-rule β)!i = x

by (metis linear-term-var-vars-term-list)
with l have ∗:(〈map labeled-source As〉β) x = labeled-source (As!i)

by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map)
with Prule(3 ) lab have get-label ((labeled-source (As!i))|-p2 ) = Some (α, 0 )

by simp
with Prule(1 ,4 ) p2 ∗ i ′ l obtain q where q:q∈poss (As!i) ctxt-of-pos-term p2

(source (As!i)) = source-ctxt (ctxt-of-pos-term q (As!i))
(As!i) |- q = Prule α (map (λj. (As!i) |- (q @ [j])) [0 ..<length (var-rule α)])
by (smt (verit, ccfv-SIG) fun-well-arg map-eq-conv nth-mem)

have p1 ′′:(var-poss-list (lhs β) ! length (take i As)) = p1
using i l by (metis id-take-nth-drop length-take length-var-poss-list lin lin-

ear-term-var-vars-term-list nth-append-length)
have x-sub:Var x · 〈map source As〉β = source (As!i)
by (metis (no-types, lifting) i ′ l length-map lhs-subst-var-i nth-map eval-term.simps(1 ))
have ctxt-of-pos-term p (source (Prule β As)) = source-ctxt (ctxt-of-pos-term

(i#q) (Prule β As)) proof−
{fix y assume y ∈ vars-term (lhs β) y 6= vars-term-list (lhs β) ! i

then obtain j where j:j < length (var-rule β) y = (var-rule β) ! j j 6= i
by (metis in-set-conv-nth lin linear-term-var-vars-term-list set-vars-term-list)
have x:(vars-term-list (lhs β) ! length (take i As)) = x
by (metis i ′ id-take-nth-drop l length-take lin linear-term-var-vars-term-list

nth-append-length)
from j have (〈map source (take i As @ Var x # drop (Suc i) As)〉β) y =

source (As!j)
using apply-lhs-subst-var-rule l
by (smt (verit, best) Cons-nth-drop-Suc append-Cons-nth-not-middle ap-

pend-take-drop-id i ′ length-append length-map length-nth-simps(2 ) lin linear-term-var-vars-term-list
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nth-map x)
then have (〈map source (take i As @ Var (vars-term-list (lhs β) ! length

(take i As)) # drop (Suc i) As)〉β) y = (〈map source As〉β) y
unfolding x by (metis (no-types, lifting) j(1 ,2 ) l length-map lhs-subst-var-i

nth-map)
}
then have ∗:ctxt-of-pos-term p1 (lhs β) ·c 〈map source As〉β =

ctxt-of-pos-term p1 (lhs β · 〈map source (take i As @ Var (vars-term-list
(lhs β) ! length (take i As)) # drop (Suc i) As)〉β)

using i
unfolding ctxt-of-pos-term-subst[OF p1 , symmetric]
apply (intro ctxt-of-pos-term-hole-subst[OF lin, of i])
subgoal by (metis length-var-poss-list)
by auto

then show ?thesis
unfolding source.simps p1p2 ctxt-of-pos-term-append[OF p1 ′] ctxt-of-pos-term-subst[OF

p1 ] subt-at-subst[OF p1 ] x ′ ctxt-of-pos-term.simps source-ctxt.simps Let-def x-sub
q(2 ) ∗ p1 ′′

by simp
qed
moreover from q(3 ) have Prule β As |- (i#q) = Prule α (map (λj. Prule β

As |- ((i#q) @ [j])) [0 ..<length (var-rule α)])
by simp

ultimately show ?thesis
using i ′ q(1 ) l by (metis poss-Cons-poss term.sel(4 ))

qed
qed

lemma poss-labeled-source-None:
assumes p ∈ poss (labeled-source A)

and get-label ((labeled-source A)|-p) = None
and A ∈ wf-pterm R

shows ∃ q ∈ poss A. ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term
q A)
using assms proof(induct A arbitrary:p)

case (Pfun f As)
then show ?case proof(cases p)

case (Cons i p ′)
with Pfun(2 ) have ip ′:p = i#p ′ and i:i < length As

by auto
with Pfun(2 ) have p ′:p ′ ∈ poss (labeled-source (As!i))

by simp
from Pfun(3 ) have get-label (labeled-source (As ! i) |- p ′) = None

unfolding ip ′ labeled-source.simps using i by simp
with Pfun(1 ,4 ) p ′ i obtain q where q:q ∈ poss (As!i) and ctxt-of-pos-term

p ′ (source (As!i)) = source-ctxt (ctxt-of-pos-term q (As!i))
using nth-mem by blast

then have ctxt-of-pos-term p (source (Pfun f As)) = source-ctxt (ctxt-of-pos-term
(i#q) (Pfun f As))
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unfolding ip ′ using i by(simp add: take-map drop-map)
then show ?thesis

using q(1 ) i by fastforce
qed simp

next
case (Prule β As)
have l:length As = length (var-rule β)

using Prule(4 ) using wf-pterm.simps by fastforce
from Prule(2 ) consider p ∈ fun-poss (labeled-lhs β) | (∃ p1 p2 x. p = p1@p2

∧ p1 ∈ poss (labeled-lhs β) ∧ (labeled-lhs β)|-p1 =
Var x

∧ p2 ∈ poss ((〈map labeled-source As〉β) x)
∧ (labeled-source (Prule β As))|-p = ((〈map

labeled-source As〉β) x)|-p2 )
unfolding labeled-source.simps by (meson poss-is-Fun-fun-poss poss-subst-choice)

then show ?case proof(cases)
case 1
then have p ∈ fun-poss (lhs β)

by (simp add: fun-poss-label-term)
then have get-label ((labeled-source (Prule β As))|-p) = Some (β, length p)

unfolding labeled-source.simps by (simp add: label-term-increase)
then show ?thesis

using Prule(3 ) by simp
next

case 2
then obtain p1 p2 x where p1p2 :p = p1 @ p2 and x:p1 ∈ poss (labeled-lhs

β) ∧ labeled-lhs β |- p1 = Var x
and p2 :p2 ∈ poss ((〈map labeled-source As〉β) x)
and lab:labeled-source (Prule β As) |- p = (〈map labeled-source As〉β) x |- p2
by blast

from Prule(4 ) have l:length As = length (var-rule β)
using wf-pterm.simps by fastforce

from Prule(4 ) have to-rule β ∈ R
using wf-pterm.cases by force

with left-lin have lin:linear-term (lhs β)
using left-linear-trs-def by fastforce

from x have p1 :p1 ∈ poss (lhs β) by simp
then have p1 ′:p1 ∈ poss ((lhs β) · 〈map source As〉β) by simp
from p1 x have x ′:lhs β |- p1 = Var x

by (metis label-term-to-term labeled-source-pos term-lab-to-term.simps(1 ))
from p1 x ′ obtain i where i:i < length (vars-term-list (lhs β)) var-poss-list

(lhs β) ! i = p1 vars-term-list (lhs β) ! i = x
by (metis in-set-idx length-var-poss-list term.inject(1 ) var-poss-iff var-poss-list-sound

vars-term-list-var-poss-list)
with lin have i ′:i < length (var-rule β) ∧ (var-rule β)!i = x

by (metis linear-term-var-vars-term-list)
with l have ∗:(〈map labeled-source As〉β) x = labeled-source (As!i)

by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map)
with Prule(3 ) lab have get-label ((labeled-source (As!i))|-p2 ) = None
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by simp
with Prule(1 ,4 ) p2 ∗ i ′ l obtain q where q:q∈poss (As!i) ctxt-of-pos-term p2

(source (As!i)) = source-ctxt (ctxt-of-pos-term q (As!i))
by (smt (verit, ccfv-SIG) fun-well-arg map-eq-conv nth-mem)

have p1 ′′:(var-poss-list (lhs β) ! length (take i As)) = p1
using i l by (metis id-take-nth-drop length-take length-var-poss-list lin lin-

ear-term-var-vars-term-list nth-append-length)
have x-sub:Var x · 〈map source As〉β = source (As!i)
by (metis (no-types, lifting) i ′ l length-map lhs-subst-var-i nth-map eval-term.simps(1 ))
have ctxt-of-pos-term p (source (Prule β As)) = source-ctxt (ctxt-of-pos-term

(i#q) (Prule β As)) proof−
{fix y assume y ∈ vars-term (lhs β) y 6= vars-term-list (lhs β) ! i

then obtain j where j:j < length (var-rule β) y = (var-rule β) ! j j 6= i
by (metis in-set-conv-nth lin linear-term-var-vars-term-list set-vars-term-list)
have x:(vars-term-list (lhs β) ! length (take i As)) = x
by (metis i ′ id-take-nth-drop l length-take lin linear-term-var-vars-term-list

nth-append-length)
from j have (〈map source (take i As @ Var x # drop (Suc i) As)〉β) y =

source (As!j)
using apply-lhs-subst-var-rule l
by (smt (verit, best) Cons-nth-drop-Suc append-Cons-nth-not-middle ap-

pend-take-drop-id i ′ length-append length-map length-nth-simps(2 ) lin linear-term-var-vars-term-list
nth-map x)

then have (〈map source (take i As @ Var (vars-term-list (lhs β) ! length
(take i As)) # drop (Suc i) As)〉β) y = (〈map source As〉β) y

unfolding x by (metis (no-types, lifting) j(1 ,2 ) l length-map lhs-subst-var-i
nth-map)

}
then have ∗:ctxt-of-pos-term p1 (lhs β) ·c 〈map source As〉β =

ctxt-of-pos-term p1 (lhs β · 〈map source (take i As @ Var (vars-term-list
(lhs β) ! length (take i As)) # drop (Suc i) As)〉β)

using i
unfolding ctxt-of-pos-term-subst[OF p1 , symmetric]
apply (intro ctxt-of-pos-term-hole-subst[OF lin, of i])
subgoal by (metis length-var-poss-list)
by auto

then show ?thesis
unfolding source.simps p1p2 ctxt-of-pos-term-append[OF p1 ′] ctxt-of-pos-term-subst[OF

p1 ] subt-at-subst[OF p1 ] x ′ ctxt-of-pos-term.simps source-ctxt.simps Let-def x-sub
q(2 ) ∗ p1 ′′

by simp
qed
then show ?thesis

using i ′ q(1 ) l by (metis poss-Cons-poss term.sel(4 ))
qed

qed simp
end

If we know that some part of a term does not contain labels (i.e., is coming
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from a simple proof term t) then we know that the label originates below
some variable position of t.
lemma labeled-source-to-pterm-subst:

assumes p-pos:p ∈ possL (to-pterm t · σ) and well:∀ x ∈ vars-term t. σ x ∈
wf-pterm R

shows ∃ p1 p2 x γ. p1 ∈ poss t ∧ t|-p1 = Var x ∧ p1@p2 ≤p p
∧ p2 ∈ possL (σ x) ∧ get-label ((labeled-source (σ x))|-p2 ) = Some (γ, 0 )

proof−
{assume p:p ∈ fun-poss (labeled-source (to-pterm t))

then have get-label ((labeled-source (to-pterm t))|-p) = None
using labeled-source-simple-pterm by (metis empty-iff fun-poss-imp-poss

get-label-imp-labelposs)
moreover have get-label ((labeled-source ((to-pterm t) · σ))|-p) = get-label

((labeled-source (to-pterm t))|-p)
by (metis get-label-at-fun-poss-subst labeled-source-apply-subst p to-pterm-wf-pterm)
ultimately have False using p-pos possL-obtain-label by fastforce

}
with p-pos obtain p1 r x where p:p = p1@r and p1 :p1 ∈ poss t and t:(labeled-source

(to-pterm t))|-p1 = Var x
by (smt (z3 ) labeled-source-apply-subst labeled-source-to-term possL-subset-poss-source

poss-subst-apply-term poss-term-lab-to-term source-to-pterm subset-eq to-pterm-wf-pterm)
then have x:t|-p1 = Var x
by (metis labeled-source-pos labeled-source-to-term source-to-pterm term-lab-to-term.simps(1 ))

from p-pos have r-pos:r ∈ poss (labeled-source (σ x))
unfolding p using p1 t labeled-source-apply-subst

by (smt (z3 ) comp-apply labeled-source-to-term labelposs-subs-poss less-eq-pos-def
less-eq-pos-simps(1 ) p poss-append-poss poss-term-lab-to-term source-to-pterm sub-
set-eq eval-term.simps(1 ) subt-at-subst to-pterm-wf-pterm)

from p-pos obtain γ n where lab:get-label ((labeled-source (σ x))|-r) = Some
(γ, n)

unfolding p labeled-source-apply-subst[OF to-pterm-wf-pterm] using t p1 p
by (smt (verit, ccfv-SIG) comp-apply fun-poss-imp-poss labeled-source-to-term

labelposs-obtain-label labelposs-subs-fun-poss poss-term-lab-to-term source-to-pterm
subset-eq eval-term.simps(1 ) subt-at-subst subterm-poss-conv)

let ?p2=take (length r − n) r
have ?p2 ≤p r by (metis append-take-drop-id less-eq-pos-simps(1 ))
then have p1@?p2 ≤p p unfolding p by simp
moreover have get-label ((labeled-source (σ x))|-?p2 ) = Some (γ, 0 ) ∧ ?p2 ∈

poss (labeled-source (σ x))
using obtain-label-root[OF r-pos lab] well p1 x by (metis in-mono term.set-intros(3 )

vars-term-subt-at)
moreover then have ?p2 ∈ possL (σ x) using get-label-imp-labelposs by blast
ultimately show ?thesis using p1 x by blast

qed

lemma labelposs-subst:
assumes p ∈ labelposs (t · σ)
shows p ∈ labelposs t ∨ (∃ p1 p2 x. p = p1@p2 ∧ p1 ∈ poss t ∧ t|-p1 = Var x
∧ p2 ∈ labelposs (σ x))
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using assms proof(induct t arbitrary:p)
case (Fun fl ts)
then show ?case proof(cases p)

case Nil
from Fun(2 ) obtain f l where fl = (f , Some l)
unfolding eval-term.simps Nil by (metis get-label.simps(2 ) labelposs-obtain-label

subt-at.simps(1 ) surjective-pairing)
then show ?thesis

unfolding Nil by simp
next

case (Cons i p ′)
from Fun(2 ) have i:i < length ts

unfolding Cons eval-term.simps using labelposs-subs-poss by fastforce
with Fun(2 ) have p ′ ∈ labelposs (ts!i · σ)
unfolding Cons eval-term.simps by (metis (no-types, lifting) get-label-imp-labelposs

labelposs-obtain-label labelposs-subs-poss nth-map option.simps(3 ) poss-Cons-poss
subset-eq subt-at.simps(2 ) term.sel(4 ))

with Fun(1 ) i consider p ′ ∈ labelposs (ts!i) | (∃ p1 p2 x. p ′ = p1 @ p2 ∧ p1
∈ poss (ts!i) ∧ (ts!i) |- p1 = Var x ∧ p2 ∈ labelposs (σ x))

by (meson nth-mem)
then show ?thesis proof(cases)

case 1
with i show ?thesis unfolding Cons
by (metis (no-types, lifting) get-label-imp-labelposs labelposs-obtain-label label-

poss-subs-poss option.simps(3 ) poss-Cons-poss subsetD subt-at.simps(2 ) term.sel(4 ))
next

case 2
then obtain p1 p2 x where p ′:p ′ = p1 @ p2 and p1 :p1 ∈ poss (ts ! i) ts !

i |- p1 = Var x and p2 ∈ labelposs (σ x)
by blast

with i show ?thesis unfolding Cons
by (metis append-Cons poss-Cons-poss subt-at.simps(2 ) term.sel(4 ))

qed
qed

qed simp

lemma set-labelposs-subst:
labelposs (t · σ) = labelposs t ∪ (

⋃
i< length (vars-term-list t). {(var-poss-list

t!i)@q | q. q ∈ labelposs (σ (vars-term-list t ! i))}) (is ?ps = ?qs)
proof

{fix p assume p ∈ ?ps
then consider p ∈ labelposs t | (∃ p1 p2 x. p = p1@p2 ∧ p1 ∈ poss t ∧ t|-p1

= Var x ∧ p2 ∈ labelposs (σ x))
using labelposs-subst by blast

then have p ∈ ?qs proof(cases)
case 2
then obtain p1 p2 x where p = p1@p2 ∧ p1 ∈ poss t ∧ t|-p1 = Var x ∧

p2 ∈ labelposs (σ x)
by blast
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moreover then obtain i where i:i < length (vars-term-list t) vars-term-list
t ! i = x var-poss-list t ! i = p1

by (metis in-set-idx length-var-poss-list term.inject(1 ) var-poss-iff var-poss-list-sound
vars-term-list-var-poss-list)

ultimately have p ∈ {var-poss-list t ! i @ q |q. q ∈ labelposs (σ (vars-term-list
t ! i))}

by blast
with i(1 ) show ?thesis

by blast
qed simp

}
then show ?ps ⊆ ?qs

by blast
{fix q assume q ∈ ?qs
then consider q ∈ labelposs t | q ∈ (

⋃
i< length (vars-term-list t). {(var-poss-list

t!i)@q | q. q ∈ labelposs (σ (vars-term-list t ! i))})
by blast

then have q ∈ ?ps proof(cases)
case 1
then show ?thesis proof(induct t arbitrary:q)

case (Fun f ts)
then show ?case proof(cases q)

case Nil
with Fun(2 ) obtain f ′ lab where f ′:f = (f ′, Some lab)

by (metis get-label.simps(2 ) labelposs-obtain-label prod.exhaust-sel
subt-at.simps(1 ))

show ?thesis unfolding Nil f ′ by simp
next

case (Cons i q ′)
obtain f ′ lab where f ′:f = (f ′, lab)

by fastforce
show ?thesis proof(cases lab)

case None
from Fun(2 ) have i:i < length ts

unfolding f ′ Cons None labelposs.simps by simp
from Fun(2 ) have q ′ ∈ labelposs (ts!i)

unfolding f ′ Cons None by simp
with Fun(1 ) i have q ′ ∈ labelposs (ts!i · σ)

by simp
with i show ?thesis

unfolding f ′ Cons None eval-term.simps labelposs.simps by simp
next

case (Some a)
from Fun(2 ) have i:i < length ts

unfolding f ′ Cons Some labelposs.simps by simp
from Fun(2 ) have q ′ ∈ labelposs (ts!i)

unfolding f ′ Cons Some by simp
with Fun(1 ) i have q ′ ∈ labelposs (ts!i · σ)

by simp
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with i show ?thesis
unfolding f ′ Cons Some eval-term.simps labelposs.simps by simp

qed
qed

qed simp
next

case 2
then show ?thesis proof(induct t arbitrary:q)

case (Var x)
have var-poss-list (Var x) = [[]]

unfolding poss-list.simps var-poss.simps by simp
with Var show ?case unfolding vars-term-list.simps

by (smt (verit, ccfv-SIG) One-nat-def UN-iff bot-nat-0 .not-eq-extremum
length-0-conv length-nth-simps(2 ) lessThan-iff mem-Collect-eq not-less-eq nth-Cons-0
self-append-conv2 eval-term.simps(1 ))

next
case (Fun fl ts)
from Fun(2 ) obtain i q ′ where q:q = var-poss-list (Fun fl ts) ! i @ q ′ q ′ ∈

labelposs (σ (vars-term-list (Fun fl ts) ! i)) and i:i < length (vars-term-list (Fun
fl ts))

by blast
then have i ′:i < length (var-poss-list (Fun fl ts))

by (metis length-var-poss-list)
then obtain j r where j:j < length ts var-poss-list (Fun fl ts) ! i = j#r

unfolding var-poss-list.simps by (smt (z3 ) add.left-neutral diff-zero
length-map length-upt length-zip map-nth-eq-conv min.idem nth-concat-split nth-upt
nth-zip prod.simps(2 ))

with i obtain x where x:Fun fl ts |-(j#r) = Var x
by (metis vars-term-list-var-poss-list)

from j i ′ have j#r ∈ var-poss (Fun fl ts)
by (metis nth-mem var-poss-list-sound)

then have r ∈ var-poss (ts!j)
by simp
then obtain i ′ where r :i ′<length (var-poss-list (ts!j)) r = var-poss-list

(ts!j) ! i ′
by (metis in-set-conv-nth var-poss-list-sound)

moreover then have (vars-term-list (Fun fl ts) ! i) = (vars-term-list (ts!j)
! i ′)

using x by (metis i j(2 ) length-var-poss-list subt-at.simps(2 ) term.inject(1 )
vars-term-list-var-poss-list)

ultimately have r@q ′ ∈ (
⋃

i<length (vars-term-list (ts!j)). {var-poss-list
(ts!j) ! i @ q |q. q ∈ labelposs (σ (vars-term-list (ts!j) ! i))})

using q(2 ) unfolding length-var-poss-list by auto
with Fun(1 ) j(1 ) have r-pos:r@q ′ ∈ labelposs ((ts!j) · σ)

using nth-mem by blast
obtain f lab where f :fl = (f , lab)

using surjective-pairing by blast
then show ?case proof(cases lab)

case None
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from r-pos have j#r@q ′ ∈ labelposs (Fun fl ts · σ)
unfolding eval-term.simps f None labelposs.simps length-map using j(1 )

by simp
then show ?thesis unfolding q j(2 ) by simp

next
case (Some a)

from r-pos have j#r@q ′ ∈ labelposs (Fun fl ts · σ)
unfolding eval-term.simps f Some labelposs.simps length-map using j(1 )

by simp
then show ?thesis unfolding q j(2 ) by simp

qed
qed

qed
}
then show ?qs ⊆ ?ps

by blast
qed

The labeled positions in a proof term Prule α As are the function positions
of lhs α together with all labeled positions in the arguments As.
lemma possl-rule:

assumes length As = length (var-rule α) linear-term (lhs α)
shows possL (Prule α As) = fun-poss (lhs α) ∪ (

⋃
i< (length As). {(var-poss-list

(lhs α)!i)@q | q. q ∈ possL(As!i)})
proof−

from assms(1 ,2 ) have l:length (vars-term-list (labeled-lhs α)) = length As
by (metis linear-term-var-vars-term-list vars-term-list-labeled-lhs)

have labelposs (labeled-lhs α) = fun-poss (lhs α)
by (metis fun-poss-term-lab-to-term label-poss-labeled-lhs label-term-to-term la-

belposs-subs-fun-poss subsetI subset-antisym)
moreover from assms(1 ,2 ) have i < length As =⇒ (〈map labeled-source As〉α)

(vars-term-list (labeled-lhs α) ! i) = labeled-source (As!i) for i
using lhs-subst-var-i linear-term-var-vars-term-list by (smt (verit, best) length-map

nth-map vars-term-list-labeled-lhs)
ultimately show ?thesis using set-labelposs-subst[of labeled-lhs α] unfolding l

var-poss-list-labeled-lhs by force
qed

lemma labelposs-subs-fun-poss-source:
assumes p ∈ possL A
shows p ∈ fun-poss (source A)

proof−
have p ∈ fun-poss (labeled-source A)

using assms labelposs-subs-fun-poss by blast
then show ?thesis using fun-poss-term-lab-to-term

by auto
qed

The labeled source of a context (obtained from some proof term A) applied
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to some proof term B is the labeled source of the context applied to the
labeled source of the proof term B.
context left-lin
begin
lemma label-source-ctxt:

assumes A ∈ wf-pterm R
and ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term p ′ A)
and p ∈ poss (source A) and p ′ ∈ poss A
shows labeled-source (ctxt-of-pos-term p ′ A)〈B〉 = (ctxt-of-pos-term p (labeled-source

A))〈labeled-source B〉
using assms proof(induct p ′ arbitrary:p A)
case Nil
then have p:p = []

using hole-pos-ctxt-of-pos-term by force
then show ?case by simp

next
case (Cons i p ′)
then obtain fl As where a:A = Fun fl As and i:i < length As and p ′:p ′ ∈ poss

(As!i)
by (meson args-poss)

then show ?case proof(cases fl)
case (Inl α)
from Cons(2 ) have l:length As = length (var-rule α)

unfolding a Inl using wf-pterm.cases by auto
have to-rule α ∈ R

using Cons(2 ) unfolding a Inl using wf-pterm.cases by force
with left-lin have lin:linear-term (lhs α)

using left-linear-trs-def by fastforce
let ?p1=var-poss-list (lhs α) ! i
from i l lin have p1 :(lhs α)|-?p1 = Var (var-rule α ! i)

by (metis linear-term-var-vars-term-list vars-term-list-var-poss-list)
from i l have p1-pos:?p1 ∈ poss (lhs α)
by (metis comp-apply length-remdups-leq length-rev length-var-poss-list nth-mem

order-less-le-trans var-poss-imp-poss var-poss-list-sound)
let ?p2=hole-pos (source-ctxt (ctxt-of-pos-term p ′ (As ! i)))
have hole-pos (source-ctxt (ctxt-of-pos-term (i # p ′) A)) = ?p1@?p2

unfolding a Inl source.simps ctxt-of-pos-term.simps source-ctxt.simps Let-def
hole-pos-ctxt-compose using p1-pos Cons(5 ) a by force

with Cons(3 ) have p:p = ?p1@?p2
by (metis Cons.prems(3 ) hole-pos-ctxt-of-pos-term)

have at-p1 :(source A)|-?p1 = source (As!i)
unfolding a Inl source.simps using p1

by (smt (verit, best) Inl i l length-map lhs-subst-var-i nth-map p1-pos eval-term.simps(1 )
subt-at-subst)

with Cons(4 ) have p2-pos:?p2 ∈ poss (source (As!i))
unfolding p by simp

from at-p1 have ∗:ctxt-of-pos-term p (source A) = (ctxt-of-pos-term ?p1 (source
A) ◦c (ctxt-of-pos-term ?p2 (source (As ! i))))

unfolding p using ctxt-of-pos-term-append using Cons.prems(3 ) p by fast-
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force
from Cons(3 ) have ctxt-of-pos-term ?p2 (source (As!i)) = source-ctxt (ctxt-of-pos-term

p ′ (As!i))
unfolding ∗ unfolding a Inl source.simps ctxt-of-pos-term.simps source-ctxt.simps

Let-def using ctxt-comp-equals Cons(5 ) p1-pos
by (smt (verit, ccfv-SIG) a ctxt-of-pos-term.simps(2 ) hole-pos.simps(2 )

hole-pos-ctxt-of-pos-term list.inject poss-imp-subst-poss)
with Cons(1 ,2 ) i p2-pos p ′ a Inl have IH :labeled-source (ctxt-of-pos-term p ′

(As!i))〈B〉 = (ctxt-of-pos-term ?p2 (labeled-source (As!i)))〈labeled-source B〉
by (meson fun-well-arg nth-mem)

then have list-IH :map labeled-source (take i As @ (ctxt-of-pos-term p ′ (As !
i))〈B〉 # drop (Suc i) As) =

map labeled-source (take i As) @ (ctxt-of-pos-term ?p2 (labeled-source (As !
i)))〈labeled-source B〉 # map labeled-source (drop (Suc i) As)

using i by fastforce
from lin have lin ′:linear-term (labeled-lhs α)

using linear-label-term by blast
from p1-pos have p1-pos:?p1 ∈ poss (labeled-lhs α)

by simp
from p1 have x:labeled-lhs α |- var-poss-list (lhs α) ! i = Var (var-rule α ! i)

by (metis label-term-to-term p1-pos poss-term-lab-to-term var-label-term)
have (〈map labeled-source As〉α)((var-rule α ! i) := (ctxt-of-pos-term ?p2 ((〈map

labeled-source As〉α) (var-rule α ! i)))〈labeled-source B〉)
= 〈(take i (map labeled-source As)) @ (ctxt-of-pos-term ?p2 (labeled-source

(As!i)))〈labeled-source B〉 # (drop (Suc i) (map labeled-source As))〉α
using i by (smt (verit, best) Cons.prems(4 ) a ctxt-of-pos-term.simps(2 )

hole-pos.simps(2 ) hole-pos-ctxt-of-pos-term id-take-nth-drop l length-map lhs-subst-upd
lhs-subst-var-i list.inject nth-map take-map)

then show ?thesis unfolding a Inl ctxt-of-pos-term.simps labeled-source.simps
intp-actxt.simps p list-IH

using replace-at-append-subst[OF lin ′ p1-pos x] by (smt (verit) drop-map
take-map)

next
case (Inr f )
from Cons(3 ,4 ,5 ) obtain p2 where p:p = i#p2 and p2 :p2 ∈ poss (source

(As!i)) and ctxt:ctxt-of-pos-term p2 (source (As!i)) = source-ctxt (ctxt-of-pos-term
p ′ (As!i))

unfolding a Inr source.simps ctxt-of-pos-term.simps source-ctxt.simps by (smt
(verit, best) Cons.prems(2 ) Cons.prems(3 ) Inr a actxt.inject ctxt-of-pos-term.simps(2 )
i nth-map source-poss)

from Cons(1 ,2 ) ctxt p2 p ′ have IH :labeled-source (ctxt-of-pos-term p ′ (As!i))〈B〉
= (ctxt-of-pos-term p2 (labeled-source (As!i)))〈labeled-source B〉

using a i nth-mem by blast
then have list-IH :map labeled-source (take i As @ (ctxt-of-pos-term p ′ (As !

i))〈B〉 # drop (Suc i) As) =
map labeled-source (take i As) @ (ctxt-of-pos-term p2 (labeled-source (As !

i)))〈labeled-source B〉 # map labeled-source (drop (Suc i) As)
using i by fastforce
show ?thesis unfolding a Inr ctxt-of-pos-term.simps p labeled-source.simps
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intp-actxt.simps list-IH
by (simp add: drop-map i take-map)

qed
qed
end

lemma labeled-ctxt-above:
assumes p ∈ poss A and r ∈ poss A and ¬ p ≤p r
shows get-label ((ctxt-of-pos-term p A)〈labeled-source B〉 |-r) = get-label (A |-r)

using assms proof(induct A arbitrary:r p)
case (Fun f As)
then have p 6= []

by blast
with Fun(2 ) obtain i p ′ where i:i < length As and p ′:p ′ ∈ poss (As!i) and p:p

= i#p ′

by auto
from Fun(4 ) consider r <p p | r ⊥ p

using parallel-pos by fastforce
then show ?case proof(cases)

case 1
then show ?thesis proof(cases r)

case Nil
show ?thesis unfolding p Nil by simp

next
case (Cons j r ′)
from 1 have j:j = i

unfolding p Cons by simp
with Fun(1 ) have get-label ((ctxt-of-pos-term p ′ (As!i))〈labeled-source B〉 |-

r ′) = get-label ((As!i) |- r ′)
using i p ′ Fun(3 ,4 ) unfolding Cons j p by simp

then show ?thesis
unfolding Cons p subt-at.simps ctxt-of-pos-term.simps intp-actxt.simps by

(metis i j nat-less-le nth-append-take)
qed

next
case 2
then obtain j r ′ where r :r = j#r ′

unfolding p by (metis parallel-pos.elims(2 ))
then show ?thesis proof(cases i = j)

case True
from Fun(1 ) 2 i have get-label ((ctxt-of-pos-term p ′ (As!i))〈labeled-source B〉

|- r ′) = get-label ((As!i) |- r ′)
using Fun.prems(2 ) Fun.prems(3 ) True p p ′ r by force

then show ?thesis using p r True
by (metis 2 Fun.prems(1 ) Fun.prems(2 ) parallel-pos parallel-replace-at-subt-at)

next
case False
then show ?thesis
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unfolding p r subt-at.simps ctxt-of-pos-term.simps intp-actxt.simps by
(metis i nth-list-update upd-conv-take-nth-drop)

qed
qed

qed simp

The labeled positions of a context (obtained from some proof term A) ap-
plied to some proof term B are the labeled positions of the context together
with the labeled positions of the proof term B.
context left-lin
begin
lemma label-ctxt:

assumes A ∈ wf-pterm R
and ctxt-of-pos-term p (source A) = source-ctxt (ctxt-of-pos-term p ′ A)
and p ∈ poss (source A) and p ′ ∈ poss A
shows possL (ctxt-of-pos-term p ′ A)〈B〉 = {q. q ∈ possL A ∧ ¬p ≤p q} ∪ {p@q|

q. q ∈ possL B}
using assms proof(induct p ′ arbitrary:p A)
case Nil
then have p:p = []

using hole-pos-ctxt-of-pos-term by force
then have {q ∈ possL A. ¬ p ≤p q} = {}

by simp
then show ?case

unfolding Nil ctxt-of-pos-term.simps p by simp
next

case (Cons i p ′)
then obtain fl As where a:A = Fun fl As and i:i < length As and p ′:p ′ ∈ poss

(As!i)
by (meson args-poss)

then show ?case proof(cases fl)
case (Inl α)
from Cons(2 ) have l:length As = length (var-rule α)

unfolding a Inl using wf-pterm.cases by auto
have to-rule α ∈ R

using Cons(2 ) unfolding a Inl using wf-pterm.cases by force
with left-lin have lin:linear-term (lhs α)

using left-linear-trs-def by fastforce
let ?p1=var-poss-list (lhs α) ! i
from i l lin have p1 :(lhs α)|-?p1 = Var (var-rule α ! i)

by (metis linear-term-var-vars-term-list vars-term-list-var-poss-list)
from i l have p1-pos:?p1 ∈ poss (lhs α)
by (metis comp-apply length-remdups-leq length-rev length-var-poss-list nth-mem

order-less-le-trans var-poss-imp-poss var-poss-list-sound)
let ?p2=hole-pos (source-ctxt (ctxt-of-pos-term p ′ (As ! i)))
have hole-pos (source-ctxt (ctxt-of-pos-term (i # p ′) A)) = ?p1@?p2

unfolding a Inl source.simps ctxt-of-pos-term.simps source-ctxt.simps Let-def
hole-pos-ctxt-compose using p1-pos Cons(5 ) a by force

with Cons(3 ) have p:p = ?p1@?p2
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by (metis Cons.prems(3 ) hole-pos-ctxt-of-pos-term)
have at-p1 :(source A)|-?p1 = source (As!i)

unfolding a Inl source.simps using p1
by (smt (verit, best) Inl i l length-map lhs-subst-var-i nth-map p1-pos eval-term.simps(1 )

subt-at-subst)
with Cons(4 ) have p2-pos:?p2 ∈ poss (source (As!i))

unfolding p by simp
from at-p1 have ∗:ctxt-of-pos-term p (source A) = (ctxt-of-pos-term ?p1 (source

A) ◦c (ctxt-of-pos-term ?p2 (source (As ! i))))
unfolding p using ctxt-of-pos-term-append using Cons.prems(3 ) p by fast-

force
from Cons(3 ) have ctxt-of-pos-term ?p2 (source (As!i)) = source-ctxt (ctxt-of-pos-term

p ′ (As!i))
unfolding ∗ unfolding a Inl source.simps ctxt-of-pos-term.simps source-ctxt.simps

Let-def using ctxt-comp-equals Cons(5 ) p1-pos
by (smt (verit, ccfv-SIG) a ctxt-of-pos-term.simps(2 ) hole-pos.simps(2 )

hole-pos-ctxt-of-pos-term list.inject poss-imp-subst-poss)
with Cons(1 ,2 ) i p2-pos p ′ a Inl have IH :possL (ctxt-of-pos-term p ′ (As!i))〈B〉

= {q ∈ possL (As!i). ¬ ?p2 ≤p q} ∪ {?p2 @ q |q. q ∈ possL B}
by (meson fun-well-arg nth-mem)

let ?a1=fun-poss (lhs α)
let ?a2=(

⋃
j ∈ {k. k < length As ∧ k 6= i}. {(var-poss-list (lhs α)!j)@q | q. q

∈ possL(As!j)})
let ?a3={?p1@q | q. q ∈ possL (As!i) ∧ ¬ ?p2 ≤p q}
let ?a4={?p1 @ ?p2 @ q |q. q ∈ possL B}
let ?b1={q ∈ possL A. ¬ p ≤p q}
have ?a1 ∪ ?a2 ∪ ?a3 = ?b1 proof

{fix x assume x:x ∈ ?a1
then have ¬ ?p1 ≤p x

by (metis append.right-neutral fun-poss-append-poss fun-poss-fun-conv
fun-poss-imp-poss p1 prefix-pos-diff term.distinct(1 ))

then have ¬ p ≤p x
unfolding p using less-eq-pos-simps(1 ) order-pos.order .trans by blast

with x have x ∈ ?b1
unfolding a Inl using possl-rule l lin by auto

} moreover {fix x assume x ∈ ?a2
then obtain j q where j:j < length As j 6= i and q:q ∈ possL (As ! j) and

x:x = var-poss-list (lhs α) ! j @ q
by blast

from j have j ′:j < length (var-poss-list (lhs α))
using l lin by (metis length-var-poss-list linear-term-var-vars-term-list)

with j(2 ) have ?p1 6= (var-poss-list (lhs α)) !j
by (metis (mono-tags, lifting) distinct-remdups distinct-rev i j(1 ) l lin lin-

ear-term-var-vars-term-list nth-eq-iff-index-eq o-apply term.inject(1 ) vars-term-list-var-poss-list)
with j ′ have ?p1 ⊥ var-poss-list (lhs α) ! j

using var-poss-parallel by (metis nth-mem p1 p1-pos var-poss-iff var-poss-list-sound)
then have ¬ p ≤p x

unfolding p x using less-eq-pos-simps(1 ) order-pos.order-trans pos-less-eq-append-not-parallel
by blast
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then have x ∈ ?b1
unfolding a Inl possl-rule[OF l lin] x using j(1 ) q by blast

} moreover {fix x assume x ∈ ?a3
then obtain q where x:x = ?p1@q q ∈ possL (As ! i) ¬ ?p2 ≤p q

by blast
from x(3 ) have ¬ p ≤p x

unfolding p x(1 ) using less-eq-pos-simps(2 ) by blast
with x(2 ) have x ∈ ?b1

unfolding a Inl possl-rule[OF l lin] x(1 ) using i by auto
}
ultimately show ?a1 ∪ ?a2 ∪ ?a3 ⊆ ?b1 by blast
{fix x assume b1 :x ∈ ?b1
then consider x ∈ fun-poss (lhs α) | x ∈ (

⋃
i<length As. {var-poss-list (lhs

α) ! i @ q |q. q ∈ possL (As ! i)})
unfolding a Inl possl-rule[OF l lin] by blast

then have x ∈ ?a1 ∪ ?a2 ∪ ?a3 proof(cases)
case 2
then obtain j q where j:j < length As and x:x = var-poss-list (lhs α) !

j @ q and q:q ∈ possL (As!j)
by blast

then show ?thesis proof(cases j = i)
case True
from b1 have ¬ ?p2 ≤p q

unfolding p x True using less-eq-pos-simps(2 ) by blast
then show ?thesis using j x q by auto

qed auto
qed simp

}
then show ?b1 ⊆ ?a1 ∪ ?a2 ∪ ?a3 by blast

qed
moreover have possL (ctxt-of-pos-term (i # p ′) A)〈B〉 = ?a1 ∪ ?a2 ∪ ?a3 ∪

?a4 proof−
from l i have l ′:length (take i As @ (ctxt-of-pos-term p ′ (As ! i))〈B〉 # drop

(Suc i) As) = length (var-rule α)
by simp

have set:{j. j < length As} = {j. j < length As ∧ j 6= i} ∪ {i}
using i Collect-disj-eq by auto

let ?args=(take i As @ (ctxt-of-pos-term p ′ (As ! i))〈B〉 # drop (Suc i) As)
{fix j assume j < length As ∧ j 6= i

with i have ?args ! j = As!j
by (meson nat-less-le nth-append-take-drop-is-nth-conv)

} moreover have ?args!i = (ctxt-of-pos-term p ′ (As ! i))〈B〉 using i
by (simp add: nth-append-take)

moreover from set have (
⋃

j<length As. {var-poss-list (lhs α) ! j @ q |q. q
∈ possL (?args ! j)}) =

(
⋃

j ∈ {j. j < length As ∧ j 6= i}. {var-poss-list (lhs α) ! j @ q |q. q
∈ possL (?args ! j)}) ∪ {?p1 @ q |q. q ∈ possL (?args!i)}

by force
ultimately have (

⋃
j<length As. {var-poss-list (lhs α) ! j @ q |q. q ∈ possL
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(?args ! j)}) =
(
⋃

j ∈ {j. j < length As ∧ j 6= i}. {var-poss-list (lhs α) ! j @ q |q. q
∈ possL (As ! j)}) ∪ {?p1 @ q |q. q ∈ possL (ctxt-of-pos-term p ′ (As ! i))〈B〉}

by simp
moreover have possL (ctxt-of-pos-term (i # p ′) A)〈B〉 = fun-poss (lhs α) ∪

(
⋃

j<length As. {var-poss-list (lhs α) ! j @ q |q. q ∈ possL (?args !
j)})

unfolding a Inl ctxt-of-pos-term.simps intp-actxt.simps using possl-rule[OF
l ′ lin] i by force

ultimately show ?thesis unfolding IH by auto
qed
ultimately show ?thesis using p by force

next
case (Inr f )
from Cons(3 ,4 ,5 ) obtain p2 where p:p = i#p2 and p2 ∈ poss (source

(As!i)) and ctxt:ctxt-of-pos-term p2 (source (As!i)) = source-ctxt (ctxt-of-pos-term
p ′ (As!i))

unfolding a Inr source.simps ctxt-of-pos-term.simps source-ctxt.simps by (smt
(verit, best) Cons.prems(2 ) Cons.prems(3 ) Inr a actxt.inject ctxt-of-pos-term.simps(2 )
i nth-map source-poss)

with Cons(1 ,2 ) i p ′ have IH :possL (ctxt-of-pos-term p ′ (As!i))〈B〉 = {q ∈
possL (As!i). ¬ p2 ≤p q} ∪ {p2 @ q |q. q ∈ possL B}

unfolding a Inr by (meson fun-well-arg nth-mem)
let ?a2=(

⋃
j ∈ {k. k < length As ∧ k 6= i}. {j # q | q. q ∈ possL(As!j)})

let ?a3={i#q | q. q ∈ possL (As!i) ∧ ¬ p2 ≤p q}
let ?a4={i # p2 @ q |q. q ∈ possL B}
let ?b1={q ∈ possL A. ¬ p ≤p q}
have ?a2 ∪ ?a3 = ?b1 proof

{fix x assume x ∈ ?a2
then obtain j q where j:j < length As j 6= i and q:q ∈ possL (As ! j) and

x:x = j # q
by blast

from j q have j#q ∈ possL A
unfolding a Inr by simp

then have x ∈ ?b1
unfolding x p using j(2 ) by simp

} moreover {fix x assume x ∈ ?a3
then obtain q where x:x = i#q q ∈ possL (As ! i) ¬ p2 ≤p q

by blast
from x(3 ) have ¬ p ≤p x

unfolding p x(1 ) using less-eq-pos-simps(2 ) by simp
with x(2 ) have x ∈ ?b1

unfolding a Inr x(1 ) using i by auto
}
ultimately show ?a2 ∪ ?a3 ⊆ ?b1 by blast
{fix x assume b1 :x ∈ ?b1

then have x ∈ possL A
by simp

then obtain j q where j:j < length As and x:x = j # q and q:q ∈ possL
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(As!j)
unfolding a Inr labeled-source.simps labelposs.simps length-map by force

then have x ∈ ?a2 ∪ ?a3 proof(cases j = i)
case True
with b1 have ¬ p2 ≤p q

unfolding p x using less-eq-pos-simps(2 ) by simp
then show ?thesis using j x q b1 by auto

qed simp
}

then show ?b1 ⊆ ?a2 ∪ ?a3 by blast
qed
moreover have possL (ctxt-of-pos-term (i # p ′) A)〈B〉 = ?a2 ∪ ?a3 ∪ ?a4

proof−
have l:length (take i As @ (ctxt-of-pos-term p ′ (As ! i))〈B〉 # drop (Suc i)

As) = length As
using i by simp

{fix j assume j < length As
then have (map labeled-source (take i As @ (ctxt-of-pos-term p ′ (As ! i))〈B〉

# drop (Suc i) As) ! j) = labeled-source ((take i As @ (ctxt-of-pos-term p ′ (As !
i))〈B〉 # drop (Suc i) As) ! j)

using nth-map l by metis
}note map-lab=this
have set:{j. j < length As} = {j. j < length As ∧ j 6= i} ∪ {i}

using i Collect-disj-eq by auto
let ?args=(take i As @ (ctxt-of-pos-term p ′ (As ! i))〈B〉 # drop (Suc i) As)
{fix j assume j < length As ∧ j 6= i

with i have ?args ! j = As!j
by (meson nat-less-le nth-append-take-drop-is-nth-conv)

} moreover have ?args!i = (ctxt-of-pos-term p ′ (As ! i))〈B〉 using i
by (simp add: nth-append-take)

moreover from set have (
⋃

j<length As. {j # q |q. q ∈ possL (?args ! j)})
=

(
⋃

j ∈ {j. j < length As ∧ j 6= i}. {j # q |q. q ∈ possL (?args !
j)}) ∪ {i # q |q. q ∈ possL (?args!i)}

by force
ultimately have (

⋃
j<length As. {j # q |q. q ∈ possL (?args ! j)}) =

(
⋃

j ∈ {j. j < length As ∧ j 6= i}. {j # q |q. q ∈ possL (As ! j)}) ∪
{i # q |q. q ∈ possL (ctxt-of-pos-term p ′ (As ! i))〈B〉}

by simp
moreover have possL (ctxt-of-pos-term (i # p ′) A)〈B〉 = (

⋃
j<length As. {j

# q |q. q ∈ possL (?args ! j)})
unfolding a Inr ctxt-of-pos-term.simps intp-actxt.simps labeled-source.simps

labelposs.simps length-map l using map-lab by force
ultimately show ?thesis unfolding IH by auto

qed
ultimately show ?thesis using p by force

qed
qed
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lemma single-redex-possL:
assumes to-rule α ∈ R p ∈ poss s
shows possL (ll-single-redex s p α) = {p @ q |q. q ∈ fun-poss (lhs α)}

proof−
let ?∆=ll-single-redex s p α
have ∗:possL (Prule α (map (to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs α))))

= labelposs (labeled-lhs α)
proof−

{fix x
have labelposs ((〈map labeled-source (map (to-pterm ◦ (λpi. s |- (p @ pi)))

(var-poss-list (lhs α)))〉α) x) = {}
by (smt (verit) comp-apply labeled-source-simple-pterm labelposs.simps(1 )

length-map lhs-subst-not-var-i lhs-subst-var-i map-nth-eq-conv)
}
then show ?thesis unfolding labeled-source.simps labelposs-apply-subst by

blast
qed
have possL ?∆ = {q ∈ possL (to-pterm s). ¬ p ≤p q} ∪ {p @ q |q. q ∈ possL

(Prule α (map (to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs α))))}
using label-ctxt assms by (simp add: ll-single-redex-def p-in-poss-to-pterm

source-ctxt-to-pterm)
also have ...= {p @ q |q. q ∈ possL (Prule α (map (to-pterm ◦ (λpi. s|-(p@pi)))

(var-poss-list (lhs α))))}
using labeled-source-simple-pterm by auto

also have ...= {p @ q |q. q ∈ labelposs (labeled-lhs α)}
unfolding ∗ by simp

finally show ?thesis
using label-poss-labeled-lhs labelposs-subs-fun-poss by fastforce

qed

end

lemma labeled-poss-in-lhs:
assumes p-pos:p ∈ poss (source (Prule α As)) and well:Prule α As ∈ wf-pterm

R
and get-label ((labeled-source (Prule α As))|-p) = Some (α, length p) is-Fun

(lhs α)
shows p ∈ fun-poss (lhs α)

proof−
from p-pos consider p ∈ fun-poss (lhs α) | ∃ p1 p2 x. p = p1 @ p2 ∧ p1 ∈ poss

(lhs α) ∧ (lhs α)|-p1 = Var x ∧ p2 ∈ poss ((〈map source As〉α) x)
unfolding source.simps using poss-subst-apply-term by metis

then show ?thesis proof(cases)
case 2
then obtain p1 p2 x where p:p = p1 @ p2 and p1 :p1 ∈ poss (lhs α) (lhs

α)|-p1 = Var x and p2 :p2 ∈ poss ((〈map source As〉α) x)
by blast

then obtain i where i:i < length (var-rule α) var-rule α!i = x
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by (metis in-set-conv-nth set-vars-term-list subt-at-imp-supteq subteq-Var-imp-in-vars-term
vars-term-list-vars-distinct)

from p1 have p1-pos ′:p1 ∈ poss (labeled-lhs α)
by simp

from p1 have p1-pos:p1 ∈ poss (labeled-lhs α · 〈map labeled-source As〉α)
by (metis labeled-source.simps(3 ) labeled-source-to-term p p-pos poss-append-poss

poss-term-lab-to-term)
from p1 have x:labeled-lhs α |-p1 = Var x

by (metis fun-poss-term-lab-to-term label-term-to-term labeled-source-pos
poss-simps(4 ) poss-term-lab-to-term term.sel(1 ) term-lab-to-term.simps(1 ) var-poss-iff )

from well have l:length As = length (var-rule α)
using wf-pterm.cases by auto

with well i have asi:As!i ∈ wf-pterm R
by (metis fun-well-arg nth-mem)

from l have lab:labeled-source (Prule α As) |-p = labeled-source (As!i) |-p2
unfolding p labeled-source.simps subt-at-append[OF p1-pos] subt-at-subst[OF

p1-pos ′] x using i
by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map eval-term.simps(1 ))
moreover from assms(4 ) p1 have length p2 < length p

unfolding p by auto
moreover from p2 have p2 ∈ poss (labeled-source (As!i))

using l i by (metis (no-types, lifting) labeled-source-to-term length-map
lhs-subst-var-i nth-map poss-term-lab-to-term)

ultimately have False using assms(3 ) asi by (simp add: label-term-max-value
leD)

then show ?thesis by simp
qed simp

qed

context left-lin-no-var-lhs
begin
lemma get-label-Prule:

assumes Prule α As ∈ wf-pterm R and p ∈ poss (source (Prule α As)) and
get-label (labeled-source (Prule α As) |- p) = Some (β, 0 )

shows (p = [] ∧ α = β) ∨
(∃ p1 p2 i. p = p1@p2 ∧ i < length As ∧ var-poss-list (lhs α)!i = p1 ∧

p2 ∈ poss (source (As!i)) ∧ get-label (labeled-source (As!i)|-p2 ) = Some
(β, 0 ))
proof−

from assms(1 ) have α:to-rule α ∈ R
using wf-pterm.simps by fastforce

with no-var-lhs obtain f ts where lhs:lhs α = Fun f ts by fastforce
from assms(1 ) have l1 :length (var-rule α) = length As

using wf-pterm.cases by force
then have l2 :length (var-poss-list (lhs α)) = length As
using left-lin.length-var-rule[OF left-lin-axioms α] by (simp add: length-var-poss-list)

from left-lin have var-rule:var-rule α = vars-term-list (lhs α)
using α left-linear-trs-def linear-term-var-vars-term-list by fastforce
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then show ?thesis proof(cases p=[])
case True

from assms(3 ) have β = α unfolding True labeled-source.simps lhs la-
bel-term.simps eval-term.simps subt-at.simps by simp

then show ?thesis unfolding True by simp
next

case False
from assms(3 ) have possL:p ∈ possL (Prule α As)
by (metis assms(2 ) get-label-imp-labelposs labeled-source-to-term option.distinct(1 )

poss-term-lab-to-term)
{assume p ∈ fun-poss (lhs α)

then have get-label (labeled-source (Prule α As) |- p) = Some (α, length p)
unfolding labeled-source.simps lhs using label-term-increase by (metis

add-0 )
with assms(3 ) False have False by simp

}
with assms(2 ) obtain p1 p2 x where p:p = p1@p2 and p1 :p1 ∈ poss (lhs α)

lhs α |- p1 = Var x and p2 :p2 ∈ poss ((〈map source As〉α) x)
unfolding source.simps using poss-subst-apply-term[of p lhs α] by metis

then have p1 ∈ var-poss (lhs α) using var-poss-iff by blast
with p1 obtain i where i:i < length As vars-term-list (lhs α) !i = x var-poss-list

(lhs α) ! i = p1
using l2 by (metis in-set-conv-nth length-var-poss-list term.inject(1 ) var-poss-list-sound

vars-term-list-var-poss-list)
with p2 l1 have p2-poss:p2 ∈ poss (source (As!i))

by (smt (verit, del-insts) α case-prodD left-lin left-linear-trs-def length-map
lhs-subst-var-i linear-term-var-vars-term-list nth-map)

from p1 have labeled-source (Prule α As) |- p = ((〈map labeled-source As〉α)
x)|-p2

unfolding labeled-source.simps p by (smt (verit) assms(2 ) eval-term.simps(1 )
label-term-to-term labeled-source.simps(3 ) labeled-source-to-term p poss-term-lab-to-term
subt-at-subst subterm-poss-conv var-label-term)

moreover from var-rule have map (〈map labeled-source As〉α) (vars-term-list
(lhs α)) = map labeled-source As

by (metis apply-lhs-subst-var-rule l1 length-map)
ultimately have labeled-source (Prule α As) |- p = (labeled-source (As!i))|-p2

using i by (metis map-nth-conv)
with assms(3 ) have get-label (labeled-source (As ! i) |- p2 ) = Some (β, 0 ) by

force
with p2-poss i p show ?thesis by blast

qed
qed
end

If the labeled source of a proof term A has the shape t · σ where all function
symbols in t are unlabeled, then A matches t with some substitution τ .
context no-var-lhs
begin
lemma pterm-source-substitution:
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assumes A ∈ wf-pterm R
and source A = t · σ and linear-term t
and ∀ p ∈ fun-poss t. p /∈ possL A

shows A = (to-pterm t) · (mk-subst Var (match-substs (to-pterm t) A))
using assms proof(induct A arbitrary:t σ)
case (1 x)
from 1 (1 ) obtain y where y:t = Var y

using subst-apply-eq-Var by (metis source.simps(1 ))
have match:match-substs (Var y) (Var x) = [(y, Var x)]

unfolding match-substs-def vars-term-list.simps poss-list.simps by simp
show ?case unfolding y to-pterm.simps match

by simp
next

case (2 As f )
show ?case proof(cases t)

case (Var x)
have match:match-substs (Var x) (Pfun f As) = [(x, Pfun f As)]

unfolding match-substs-def vars-term-list.simps poss-list.simps by simp
then show ?thesis unfolding Var to-pterm.simps match by simp

next
case (Fun g ts)
from 2 (2 ) have f :f = g

unfolding Fun by simp
from 2 (2 ) have l:length ts = length As

unfolding Fun eval-term.simps using map-eq-imp-length-eq by fastforce
{fix i assume i:i < length As

from 2 (2 ) i have source (As!i) = (ts!i) · σ
unfolding Fun f by (smt (verit, best) eval-term.simps(2 ) l nth-map

source.simps(2 ) term.sel(4 ))
moreover from 2 (3 ) i l have lin-tsi:linear-term (ts!i)

unfolding Fun by simp
moreover have (∀ p∈fun-poss (ts!i). p /∈ possL (As!i)) proof

fix p assume p ∈ fun-poss (ts!i)
then have i#p ∈ fun-poss (Fun f ts)

using i l by simp
with 2 (4 ) have i#p /∈ possL (Pfun f As)

unfolding Fun f by fastforce
then show p /∈ possL (As!i)

using i unfolding labeled-source.simps labelposs.simps by simp
qed
ultimately have IH :As!i = to-pterm (ts!i) · mk-subst Var (match-substs

(to-pterm (ts!i)) (As!i))
using 2 (1 ) i nth-mem by blast

have As!i = to-pterm (ts!i) · mk-subst Var (match-substs (to-pterm t) (Pfun
g As)) proof−

{fix x assume x ∈ vars-term (to-pterm (ts!i))
then obtain j where j:vars-term-list (ts!i) !j = x j < length (vars-term-list

(ts!i))
by (metis in-set-conv-nth set-vars-term-list vars-to-pterm)
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then have j ′:j < length (map ((|-) (As ! i)) (var-poss-list (to-pterm (ts !
i))))

by (metis length-map length-var-poss-list var-poss-list-to-pterm)
let ?qj=var-poss-list (to-pterm (ts!i)) !j

have map-j:(map ((|-) (As ! i)) (var-poss-list (to-pterm (ts ! i))))!j =
(As!i)|-?qj

using j ′ by simp
have distinct (vars-term-list (ts!i))

using lin-tsi by (metis distinct-remdups distinct-rev linear-term-var-vars-term-list
o-apply)

then have dist1 :distinct (map fst (match-substs (to-pterm (ts!i)) (As!i)))
unfolding match-substs-def by (metis length-map length-var-poss-list

map-fst-zip vars-to-pterm)
have distinct (vars-term-list t)

by (metis 2 .prems(2 ) distinct-remdups distinct-rev linear-term-var-vars-term-list
o-apply)

then have dist2 :distinct (map fst (match-substs (to-pterm t) (Pfun g As)))
unfolding match-substs-def by (metis length-map length-var-poss-list

map-fst-zip vars-to-pterm)
have (x, (As!i)|-?qj) ∈ set (match-substs (to-pterm (ts!i)) (As!i))
unfolding match-substs-def using map-j j j ′ by (metis (no-types, lifting)

in-set-conv-nth length-zip min-less-iff-conj nth-zip vars-to-pterm)
then have sub1 :mk-subst Var (match-substs (to-pterm (ts!i)) (As!i)) x =

As!i |- ?qj
using dist1 map-of-eq-Some-iff unfolding mk-subst-def by simp

let ?j ′=(sum-list (map (length ◦ vars-term-list) (take i ts)) + j)
have x2 :vars-term-list t ! ?j ′ = x

unfolding Fun vars-term-list.simps using j(1 ) by (smt (verit, best)
concat-nth i j(2 ) l length-map map-map nth-map take-map)

have lj ′:?j ′ < length (vars-term-list (to-pterm t)) unfolding vars-to-pterm
unfolding Fun to-pterm.simps vars-term-list.simps

using i j(2 ) l concat-nth-length by (metis List.map.compositionality
length-map nth-map take-map)

then have j ′-var-poss:?j ′ < length (var-poss-list (to-pterm t))
by (metis length-var-poss-list)

then have lj ′′:?j ′ < length (map ((|-) (Pfun g As)) (var-poss-list (to-pterm
t)))

by (metis length-map length-var-poss-list)
have var-poss-list (to-pterm t) ! ?j ′ = i#?qj
proof−
have l-zip:i < length (zip [0 ..<length (map to-pterm ts)] (map var-poss-list

(map to-pterm ts)))
by (simp add: i l)
have zip:zip [0 ..<length (map to-pterm ts)] (map var-poss-list (map

to-pterm ts)) ! i = (i, var-poss-list (to-pterm (ts ! i)))
using nth-zip by (simp add: i l)

have map2 :map2 (λi. map ((#) i)) [0 ..<length (map to-pterm ts)] (map
var-poss-list (map to-pterm ts)) ! i ! j = i#?qj

unfolding nth-map[OF l-zip] zip using j ′ by auto
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from l-zip have i ′′:i < length (map2 (λx. map ((#) x)) [0 ..<length (map
to-pterm ts)] (map var-poss-list (map to-pterm ts)))

by simp
have j ′′:j < length (map2 (λx. map ((#) x)) [0 ..<length (map to-pterm

ts)] (map var-poss-list (map to-pterm ts)) ! i)
unfolding nth-map[OF l-zip] zip using j(2 ) by (metis case-prod-conv

length-map length-var-poss-list vars-to-pterm)
{fix k assume k:k < length ts

then have zip:zip [0 ..<length (map to-pterm ts)] (map var-poss-list
(map to-pterm ts)) ! k = (k, var-poss-list (to-pterm (ts ! k)))

using nth-zip by simp
then have map2 (λx. map ((#) x)) [0 ..<length (map to-pterm ts)]

(map var-poss-list (map to-pterm ts)) ! k =
map ((#) k) (var-poss-list (to-pterm (ts ! k)))
using k by simp

then have length ((map2 (λx. map ((#) x)) [0 ..<length (map to-pterm
ts)] (map var-poss-list (map to-pterm ts)))!k) =

length (vars-term-list (ts!k))
using length-var-poss-list vars-to-pterm by (metis length-map)

with k have (map length (map2 (λx. map ((#) x)) [0 ..<length (map
to-pterm ts)] (map var-poss-list (map to-pterm ts))))!k =

(map (length ◦ vars-term-list) ts) ! k by simp
}

moreover have length (map length (map2 (λx. map ((#) x)) [0 ..<length
(map to-pterm ts)] (map var-poss-list (map to-pterm ts)))) = length ts

by simp
ultimately have (map length (map2 (λx. map ((#) x)) [0 ..<length

(map to-pterm ts)] (map var-poss-list (map to-pterm ts)))) =
(map (length ◦ vars-term-list) ts) by (simp add: map-nth-eq-conv)

then show ?thesis
unfolding Fun to-pterm.simps var-poss-list.simps using concat-nth[OF

i ′′ j ′′] unfolding map2 take-map[symmetric] by simp
qed
with lj ′′ have (map ((|-) (Pfun g As)) (var-poss-list (to-pterm t)))!?j ′ =

Pfun g As |- (i#?qj)
by force

with x2 have (x, Pfun g As |-(i#?qj)) ∈ set (match-substs (to-pterm t)
(Pfun g As))

unfolding match-substs-def using lj ′ lj ′′ by (metis (no-types, lifting)
in-set-conv-nth length-zip min-less-iff-conj nth-zip vars-to-pterm)

then have sub2 :mk-subst Var (match-substs (to-pterm t) (Pfun g As)) x
= Pfun g As |- (i#?qj)

using dist2 map-of-eq-Some-iff unfolding mk-subst-def by simp
from sub1 sub2 have mk-subst Var (match-substs (to-pterm (ts!i)) (As!i))

x = mk-subst Var (match-substs (to-pterm t) (Pfun g As)) x
by simp

}
then show ?thesis using IH

using term-subst-eq by force
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qed
}
then show ?thesis
unfolding Fun f eval-term.simps to-pterm.simps using l by (metis (mono-tags,

lifting) length-map map-nth-eq-conv)
qed

next
case (3 α As)
show ?case proof(cases t)

case (Var x)
have match:match-substs (Var x) (Prule α As) = [(x, Prule α As)]

unfolding match-substs-def vars-term-list.simps poss-list.simps by simp
then show ?thesis unfolding Var to-pterm.simps match by simp

next
case (Fun g ts)
from 3 (1 ) no-var-lhs obtain f ss where lhsa:lhs α = Fun f ss

by blast
have [] ∈ possL (Prule α As)
unfolding labeled-source.simps lhsa label-term.simps labelposs.simps eval-term.simps

by simp
with 3 (6 ) have False unfolding Fun by simp
then show ?thesis by simp

qed
qed

lemma unlabeled-source-to-pterm:
assumes labeled-source A = s · τ

and linear-term s and A ∈ wf-pterm R
and labelposs s = {}

shows ∃As. A = to-pterm (term-lab-to-term s) · (mk-subst Var (zip (vars-term-list
s) As)) ∧ length (vars-term-list s) = length As

using assms proof(induct s arbitrary:A)
case (Var x)
let ?As =[A]
have A = to-pterm (term-lab-to-term (Var x)) · mk-subst Var (zip (vars-term-list

(Var x)) ?As)
unfolding term-lab-to-term.simps to-pterm.simps vars-term-list.simps zip-Cons-Cons

zip-Nil mk-subst-def by simp
then show ?case

by (smt (verit) length-nth-simps(1 ) list.size(4 ) vars-term-list.simps(1 ))
next

case (Fun fl ts)
from Fun(5 ) obtain f where f :fl = (f , None)

by (metis empty-iff empty-pos-in-poss get-label.simps(2 ) get-label-imp-labelposs
prod.exhaust-sel subt-at.simps(1 ))

with Fun(2 ) have ∃As. A = Pfun f As ∧ length As = length ts proof(cases A)
case (Pfun g As)
from Fun(2 ) show ?thesis

unfolding Pfun f labeled-source.simps using map-eq-imp-length-eq by auto
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next
case (Prule α As)
from Fun(4 ) no-var-lhs obtain g ss where lhs:lhs α = Fun g ss
by (metis Inl-inject Prule case-prodD is-FunE is-Prule.simps(1 ) is-Prule.simps(3 )

term.distinct(1 ) term.sel(2 ) wf-pterm.simps)
from Fun(2 ) show ?thesis

unfolding Prule f lhs labeled-source.simps by force
qed simp
then obtain As where as:A = Pfun f As and l:length As = length ts

by blast
{fix i assume i:i < length ts

with Fun(2 ) have labeled-source (As!i) = (ts!i) · τ
unfolding as by (smt (verit, best) eval-term.simps(2 ) l labeled-source.simps(2 )

nth-map term.inject(2 ))
moreover from i Fun(3 ) have linear-term (ts!i)

by simp
moreover from i Fun(4 ) have As!i ∈ wf-pterm R

unfolding as by (metis l fun-well-arg nth-mem)
moreover from i Fun(5 ) have labelposs (ts!i) = {}

unfolding f labelposs.simps by blast
ultimately have ∃As ′. (As!i) = to-pterm (term-lab-to-term (ts!i)) · mk-subst

Var (zip (vars-term-list (ts!i)) As ′) ∧ length (vars-term-list (ts!i)) = length As ′

using Fun(1 ) i by force
}
then obtain As ′ where l ′′:length As ′ = length ts

and IH :(∀ i < length ts. (As!i) = to-pterm (term-lab-to-term (ts!i)) · mk-subst
Var (zip (vars-term-list (ts!i)) (As ′!i)) ∧ length (vars-term-list (ts!i)) = length
(As ′!i))

using Ex-list-of-length-P[where P=λAs ′ i. As ! i = to-pterm (term-lab-to-term
(ts ! i)) · mk-subst Var (zip (vars-term-list (ts ! i)) As ′) ∧ length (vars-term-list
(ts!i)) = length As ′] l by blast

then have l ′:length As ′ = length (map to-pterm (map term-lab-to-term ts))
by simp

have vars-list:map vars-term-list (map to-pterm (map term-lab-to-term ts)) =
map vars-term-list ts

by (smt (verit, best) length-map map-nth-eq-conv vars-term-list-term-lab-to-term
vars-to-pterm)

have map vars-term (map to-pterm (map term-lab-to-term ts)) = map vars-term
ts

using vars-term-list-term-lab-to-term by (smt (verit, ccfv-threshold) length-map
map-nth-eq-conv set-vars-term-list vars-to-pterm)
then have part:is-partition (map vars-term (map to-pterm (map term-lab-to-term

ts)))
using Fun(3 ) by (metis linear-term.simps(2 ))

have ∗:∀ i < length ts. to-pterm (term-lab-to-term (ts!i)) · mk-subst Var (concat
(map2 zip (map vars-term-list (map to-pterm (map term-lab-to-term ts))) As ′)) =
As!i

using mk-subst-partition-special[OF l ′ part] unfolding length-map using nth-map
IH
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by (smt (verit, best) length-map vars-term-list-term-lab-to-term vars-to-pterm)
from IH have ∀ i < length ts. length (vars-term-list (to-pterm (term-lab-to-term

(ts! i)))) = length (As ′ ! i)
by (metis vars-term-list-term-lab-to-term vars-to-pterm)

then have ls:∀ i < length ts. length (map vars-term-list (map to-pterm (map
term-lab-to-term ts)) ! i) = length (As ′ ! i)

using nth-map by simp
then have cc:concat (map2 zip (map vars-term-list (map to-pterm (map term-lab-to-term

ts))) As ′) = zip (concat (map vars-term-list ts)) (concat As ′)
unfolding vars-list using concat-map2-zip by (metis l ′ length-map)

have A = to-pterm (term-lab-to-term (Fun fl ts)) · mk-subst Var (zip (vars-term-list
(Fun fl ts)) (concat As ′))

unfolding f term-lab-to-term.simps to-pterm.simps fst-conv eval-term.simps as
vars-term-list.simps cc[symmetric] using ∗ by (simp add: l list-eq-iff-nth-eq)

moreover have length (vars-term-list (Fun fl ts)) = length (concat As ′)
unfolding vars-term-list.simps
using l ′′ ls by (metis eq-length-concat-nth length-map vars-list)

ultimately show ?case by auto
qed
end

lemma labels-intersect-label-term:
assumes term-lab-to-term A = t · (term-lab-to-term ◦ σ)

and linear-term t
and labelposs A ∩ labelposs ((label-term α n t) · σ) = {}

shows ∃As. A = term-to-term-lab t · (mk-subst Var (zip (vars-term-list t) As)) ∧
length As = length (vars-term-list t)

using assms proof(induct t arbitrary:A n)
case (Var x)
have A = mk-subst Var (zip [x] [A]) x

unfolding mk-subst-def by simp
then show ?case unfolding term-to-term-lab.simps eval-term.simps vars-term-list.simps

by fastforce
next

case (Fun f ts)
from Fun(2 ) obtain lab ss where a:A = Fun (f , lab) ss
using term-lab-to-term.simps by (smt (verit, ccfv-threshold) eroot.cases fst-conv

old.prod.exhaust eval-term.simps(2 ) term.distinct(1 ) term.sel(2 ))
from Fun(4 ) have lab:lab = None

unfolding a using insertCI by auto
from Fun(2 ) have l:length ts = length ss
unfolding a by (metis length-map eval-term.simps(2 ) term.sel(4 ) term-lab-to-term.simps(2 ))

{fix i assume i:i < length ts
with Fun(2 ) have term-lab-to-term (ss!i) = ts!i · (term-lab-to-term ◦ σ)

unfolding a term-lab-to-term.simps eval-term.simps fst-conv by (metis l
nth-map term.inject(2 ))

moreover from i Fun(3 ) have linear-term (ts!i)
by simp

moreover have labelposs (ss!i) ∩ labelposs (label-term α (n+1 ) (ts!i) · σ) =
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{}
proof−

{fix q assume q1 :q ∈ labelposs (ss!i) and q2 :q ∈ labelposs (label-term α
(n+1 ) (ts!i) · σ)

from q1 i l have i#q ∈ labelposs A
unfolding a lab label-term.simps labelposs.simps by simp

moreover from q2 i have i#q ∈ labelposs ((label-term α n (Fun f ts)) · σ)
unfolding label-term.simps eval-term.simps labelposs.simps length-map by

simp
ultimately have False

using Fun(4 ) by blast
}
then show ?thesis

by blast
qed
ultimately have ∃As. ss!i = term-to-term-lab (ts!i) · (mk-subst Var (zip

(vars-term-list (ts!i)) As)) ∧ length As = length (vars-term-list (ts!i))
using Fun(1 ) i nth-mem by blast

}
then obtain Ass where l ′:length Ass = length ts

and IH :(∀ i < length ts. (ss!i) = (term-to-term-lab (ts!i)) · mk-subst Var (zip
(vars-term-list (ts!i)) (Ass!i)) ∧ length (Ass!i) = length (vars-term-list (ts!i)))

using Ex-list-of-length-P[where P=λAss i. ss ! i = (term-to-term-lab (ts ! i)) ·
mk-subst Var (zip (vars-term-list (ts ! i)) Ass) ∧ length Ass = length (vars-term-list
(ts!i))] l by blast

let ?As=concat Ass
from l ′ have l ′′:length Ass = length (map term-to-term-lab ts)

by simp
have vars-list:map vars-term-list (map term-to-term-lab ts) = map vars-term-list

ts
using vars-term-list-term-to-term-lab by auto

have map vars-term (map term-to-term-lab ts) = map vars-term ts
using vars-term-list-term-to-term-lab by (smt (verit, ccfv-threshold) length-map

map-nth-eq-conv set-vars-term-list vars-to-pterm)
then have part:is-partition (map vars-term (map term-to-term-lab ts))

using Fun(3 ) by (metis linear-term.simps(2 ))
have ∗:∀ i < length ts. (term-to-term-lab (ts!i)) · mk-subst Var (concat (map2

zip (map vars-term-list (map term-to-term-lab ts)) Ass)) = ss!i
using mk-subst-partition-special[OF l ′′ part] unfolding length-map using

nth-map IH
by (smt (verit, best) length-map vars-term-list-term-to-term-lab vars-to-pterm)

from IH have ∀ i < length ts. length (vars-term-list (term-to-term-lab (ts! i)))
= length (Ass ! i)

by (metis vars-term-list-term-to-term-lab)
then have ls:∀ i < length ts. length (map vars-term-list (map term-to-term-lab

ts) ! i) = length (Ass ! i)
using nth-map by simp

then have cc:concat (map2 zip (map vars-term-list (map term-to-term-lab ts))
Ass) = zip (concat (map vars-term-list ts)) (concat Ass)
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unfolding vars-list using concat-map2-zip by (metis l ′ length-map)
have A = term-to-term-lab (Fun f ts) · mk-subst Var (zip (vars-term-list (Fun f

ts)) ?As)
unfolding term-to-term-lab.simps eval-term.simps vars-term-list.simps a lab

cc[symmetric] using ∗ by (simp add: l list-eq-iff-nth-eq)
moreover from IH l ′ have l ′′:length ?As = length (vars-term-list (Fun f ts))

unfolding vars-term-list.simps by (simp add: eq-length-concat-nth)
ultimately show ?case

by blast
qed

lemma labeled-wf-pterm-rule-in-TRS :
assumes A ∈ wf-pterm R and p ∈ poss (labeled-source A)

and get-label (labeled-source A |- p) = Some (α, n)
shows to-rule α ∈ R
using assms proof(induct A arbitrary: p n)
case (2 ts f )
from 2 (2 ,3 ) obtain i p ′ where p:p = i#p ′ i < length ts p ′ ∈ poss (labeled-source

(ts!i)) get-label (labeled-source (ts!i) |- p ′) = Some (α, n)
unfolding labeled-source.simps get-label.simps by auto

with 2 (1 ) show ?case
using nth-mem by blast

next
case (3 β As)
from 3 (4 ) consider p ∈ fun-poss (labeled-lhs β) | (∃ p1 p2 x. p = p1@p2

∧ p1 ∈ poss (labeled-lhs β) ∧ (labeled-lhs β)|-p1 =
Var x

∧ p2 ∈ poss ((〈map labeled-source As〉β) x)
∧ (labeled-source (Prule β As))|-p = ((〈map

labeled-source As〉β) x)|-p2 )
unfolding labeled-source.simps by (meson poss-is-Fun-fun-poss poss-subst-choice)

then show ?case proof(cases)
case 1
then have p ∈ fun-poss (lhs β)

by (simp add: fun-poss-label-term)
then have get-label ((labeled-source (Prule β As))|-p) = Some (β, length p)

unfolding labeled-source.simps by (simp add: label-term-increase)
with 3 (1 ,5 ) show ?thesis by auto

next
case 2
then obtain p1 p2 x where p1p2 :p = p1 @ p2 and x:p1 ∈ poss (labeled-lhs

β) ∧ labeled-lhs β |- p1 = Var x
and p2 :p2 ∈ poss ((〈map labeled-source As〉β) x)
and lab:labeled-source (Prule β As) |- p = (〈map labeled-source As〉β) x |- p2
by blast

from x have x ∈ vars-term (lhs β)
by (metis subt-at-imp-supteq subteq-Var-imp-in-vars-term vars-term-labeled-lhs)
with x obtain i where i:i < length (var-rule β) ∧ (var-rule β)!i = x

by (metis in-set-conv-nth set-vars-term-list vars-term-list-vars-distinct)
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with 3 (2 ) have ∗:(〈map labeled-source As〉β) x = labeled-source (As!i)
by (metis (no-types, lifting) length-map lhs-subst-var-i nth-map)

with 3 (5 ) lab have get-label ((labeled-source (As!i))|-p2 ) = Some (α, n)
by simp

with 3 (3 ) p2 i 3 (2 ) ∗ show ?thesis by force
qed

qed simp

context no-var-lhs
begin
lemma unlabeled-above-p:

assumes A ∈ wf-pterm R
and p ∈ poss (source A)
and ∀ r . r <p p −→ r /∈ possL A

shows p ∈ poss A ∧ labeled-source A|-p = labeled-source (A|-p)
using assms proof(induct p arbitrary: A)
case (Cons i p)
from Cons(3 ) obtain f ts where f :source A = Fun f ts and i:i < length ts and

p:p ∈ poss (ts!i)
using args-poss by blast

from Cons(4 ) have [] /∈ possL A
by (simp add: order-pos.less-le)

then have no-lab:get-label (labeled-source A) = None
by (metis empty-pos-in-poss get-label-imp-labelposs subt-at.simps(1 ))

from Cons(3 ) obtain f ′ As where a:A = Fun f ′ As
by (metis Cons-poss-Var eroot.cases source.simps(1 ))

then have f ′:f ′ = Inr f proof(cases A)
case (Pfun g Bs)
then show ?thesis using f Pfun a by simp

next
case (Prule α Bs)
with Cons(2 ) obtain g ss where g:lhs α = Fun g ss
using no-var-lhs by (metis Inl-inject case-prodD is-Prule.simps(1 ) is-Prule.simps(3 )

term.collapse(2 ) term.distinct(1 ) term.sel(2 ) wf-pterm.simps)
then show ?thesis using no-lab unfolding Prule by simp

qed simp
from i a have i ′:i < length As

using f f ′ by force
from Cons(3 ) have p ∈ poss (source (As!i))

unfolding a f ′ by auto
moreover
{fix r assume r ∈ poss (source (As!i)) and le:r <p p

then have i#r ∈ poss (labeled-source A)
unfolding a f ′ using i ′ by simp

moreover from le have i#r <p i#p
by simp

ultimately have i#r /∈ possL A
using Cons(4 ) by blast

then have r /∈ possL (As!i)

196



unfolding a f ′ labeled-source.simps using i ′ by force
}
ultimately have p ∈ poss (As!i) ∧ labeled-source (As!i) |- p = labeled-source

((As!i) |- p)
using Cons(1 ,2 ) i ′ unfolding a f ′ by (meson fun-well-arg nth-mem possL-subset-poss-source

subsetD)
with i ′ a f ′ show ?case

by simp
qed simp
end

lemma (in single-redex) labeled-source-at-pq:labeled-source (A|-q) = (labeled-source
A)|-p

using a pq q p a-well proof(induct q arbitrary:p A)
case Nil
then have p = []

by (simp add: subt-at-ctxt-of-pos-term subt-at-id-imp-eps)
then show ?case

by simp
next

case (Cons i q)
from Cons(4 ) obtain fs Bs where a:A = Fun fs Bs and i:i < length Bs and

q:q ∈ poss (Bs!i)
using args-poss by blast

let ?As = map (λj. (Bs!i) |- (q @ [j])) [0 ..<length (var-rule α)]
have (map (λia. A |- ((i # q) @ [ia])) [0 ..<length (var-rule α)]) = ?As

unfolding a by simp
with a i q Cons(2 ,4 ) have bsi:Bs!i = (ctxt-of-pos-term q (Bs!i))〈Prule α ?As〉

by (metis ctxt-supt-id subt-at.simps(2 ) subt-at-ctxt-of-pos-term)
from Cons(6 ) have bi-well:Bs ! i ∈ wf-pterm R

unfolding a by (meson fun-well-arg i nth-mem)
show ?case proof(cases fs)

case (Inl β)
from Cons(6 ) have lin:linear-term (lhs β)
unfolding a Inl using left-lin left-linear-trs-def term.inject(2 ) wf-pterm.cases

by fastforce
from Cons(6 ) have is-Fun:is-Fun (lhs β)

unfolding a Inl using no-var-lhs using wf-pterm.cases by auto
from Cons(6 ) have l-bs:length Bs = length (var-rule β)

unfolding a Inl using wf-pterm.cases by auto
obtain p1 p2 where p:p = p1@p2 and p1 :p1 = var-poss-list (lhs β) ! i and

p2 :p2 ∈ poss (source (Bs!i))
using ctxt-rule-obtain-pos Cons(4 ,5 ,3 ) lin l-bs unfolding a Inl by metis

have ctxt:ctxt-of-pos-term p2 (source (Bs ! i)) = source-ctxt (ctxt-of-pos-term
q (Bs ! i))

proof−
from p1 have p1-pos:p1 ∈ poss (lhs β)

using i l-bs lin by (metis length-var-poss-list linear-term-var-vars-term-list
nth-mem var-poss-imp-poss var-poss-list-sound)
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from p1-pos have p1 ′:p1 ∈ poss (lhs β · 〈map source Bs〉β)
by simp

from p1 have p1 ′′:var-poss-list (lhs β) ! length (take i Bs) = p1
using i by force

have ∗:lhs β · 〈map source Bs〉β |- p1 = source (Bs!i)
unfolding p1 using l-bs i
by (smt (verit) length-map lhs-subst-var-i lin linear-term-var-vars-term-list

nth-map p1 p1-pos eval-term.simps(1 ) subt-at-subst vars-term-list-var-poss-list)
from Cons(3 ) show ?thesis

unfolding a Inl p source.simps ctxt-of-pos-term.simps source-ctxt.simps
Let-def ctxt-of-pos-term-append[OF p1 ′] ∗ p1 ′′

using ctxt-comp-equals[OF p1 ′] p1-pos using poss-imp-subst-poss by blast
qed
from Cons(1 )[OF bsi ctxt q p2 bi-well] have IH : labeled-source (Bs ! i |- q) =

labeled-source (Bs ! i) |- p2
by presburger

from p1 have p1 = var-poss-list (labeled-lhs β) ! i
by (simp add: var-poss-list-labeled-lhs)

moreover then have (labeled-lhs β)|-p1 = Var (vars-term-list (lhs β)!i)
by (metis i l-bs lin linear-term-var-vars-term-list vars-term-list-labeled-lhs

vars-term-list-var-poss-list)
ultimately show ?thesis

unfolding a Inl using i IH unfolding subt-at.simps p labeled-source.simps
by (smt (verit, ccfv-threshold) apply-lhs-subst-var-rule filter-cong l-bs length-map

length-var-poss-list lin linear-term-var-vars-term-list map-nth-conv nth-mem poss-imp-subst-poss
eval-term.simps(1 ) subt-at-append subt-at-subst var-poss-imp-poss var-poss-list-sound
vars-term-list-labeled-lhs)

next
case (Inr f )
from Cons(3 ,5 ) obtain p ′ where p:p = i#p ′ and p ′:p ′ ∈ poss (source (Bs!i))

by (metis Cons.prems(3 ) Inr a source-poss)
from Cons(3 ) have ctxt:ctxt-of-pos-term p ′ (source (Bs ! i)) = source-ctxt

(ctxt-of-pos-term q (Bs ! i))
unfolding a Inr p by (simp add: i)

from Cons(1 )[OF bsi ctxt q p ′ bi-well] have IH :labeled-source (Bs ! i |- q) =
labeled-source (Bs ! i) |- p ′

by presburger
then show ?thesis

unfolding a Inr p using i by simp
qed

qed

context left-lin
begin
lemma single-redex-label:

assumes ∆ = ll-single-redex s p α p ∈ poss s q ∈ poss (source ∆) to-rule α ∈ R
and get-label (labeled-source ∆ |-q) = Some (β, n)

shows α = β ∧ (∃ q ′. q = p@q ′ ∧ length q ′ = n ∧ q ′ ∈ fun-poss (lhs α))
proof−
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from assms have wf :∆ ∈ wf-pterm R
using single-redex-wf-pterm left-lin left-linear-trs-def by fastforce

from assms have q ∈ possL ∆
using get-label-imp-labelposs by force

then obtain q ′ where q:q = p@q ′ and q ′:q ′ ∈ fun-poss (lhs α)
unfolding assms(1 ) using single-redex-possL[OF assms(4 ,2 )] by auto

from assms have labeled-source ∆ = (ctxt-of-pos-term p (labeled-source (to-pterm
s)))〈labeled-source (Prule α (map (to-pterm ◦ (λpi. s|-(p@pi))) (var-poss-list (lhs
α))))〉

using label-source-ctxt by (simp add: ll-single-redex-def p-in-poss-to-pterm
source-ctxt-to-pterm)

then have labeled-source ∆ |-q = labeled-source (Prule α (map (to-pterm ◦ (λpi.
s|-(p@pi))) (var-poss-list (lhs α)))) |-q ′

unfolding q using assms(2 ) by (metis hole-pos-ctxt-of-pos-term hole-pos-poss
labeled-source-to-term poss-term-lab-to-term replace-at-subt-at source-to-pterm subt-at-append)

then have get-label (labeled-source ∆ |-q) = get-label (labeled-lhs α|-q ′)
using get-label-at-fun-poss-subst q ′ by force

also have ... = Some (α, size q ′)
using get-label-label-term q ′ by fastforce

finally show ?thesis using assms q q ′ by force
qed
end

5.2 Measuring Overlap
abbreviation measure-ov :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm ⇒ nat

where measure-ov A B ≡ card ((possL A) ∩ (possL B))

lemma finite-labelposs: finite (labelposs A)
by (meson finite-fun-poss labelposs-subs-fun-poss rev-finite-subset)

lemma finite-possL: finite (possL A)
by (simp add: finite-labelposs)

lemma measure-ov-symm: measure-ov A B = measure-ov B A
by (simp add: Int-commute)

lemma measure-lhs-subst:
assumes l:length As = length Bs
shows card ((labelposs ((label-term α j t) · 〈map labeled-source As〉α)) ∩

(labelposs (labeled-source (to-pterm t) · 〈map labeled-source Bs〉α)))
= (

∑
x←vars-term-list t. measure-ov ((〈As〉α) x) ((〈Bs〉α) x))

using assms proof(induct t arbitrary:j)
case (Var x)

show ?case proof(cases ∃ i < length As. i < length (var-rule α) ∧ x = (var-rule
α)!i)

case True
then obtain i where i:x = (var-rule α)!i and il:i < length As and il2 :i <
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length (var-rule α) by auto
then have a:(〈map labeled-source As〉α) x = labeled-source (As!i)

using lhs-subst-var-i by (metis (no-types, lifting) length-map nth-map)
from i il il2 l have b:(〈map labeled-source Bs〉α) x = labeled-source (Bs!i)

using lhs-subst-var-i by (metis (no-types, lifting) length-map nth-map)
from i show ?thesis unfolding vars-term-list.simps sum-list-elem
unfolding to-pterm.simps label-term.simps labeled-source.simps eval-term.simps

unfolding a b using lhs-subst-var-i l il il2 by metis
next

case False
then have a:(〈map labeled-source As〉α) x = Var x

using lhs-subst-not-var-i by (metis length-map)
from False l have b:(〈map labeled-source Bs〉α) x = Var x

using lhs-subst-not-var-i by (metis length-map)
from False l have possL ((〈As〉α) x) ∩ possL ((〈Bs〉α) x) = {}

unfolding term.set(3 ) using lhs-subst-not-var-i
by (metis inf .idem labeled-source.simps(1 ) labelposs.simps(1 ))

then show ?thesis unfolding label-term.simps to-pterm.simps labeled-source.simps
eval-term.simps a b

by auto
qed

next
case (Fun f ts)
let ?as=(map (λt. t · 〈map labeled-source As〉α) (map (label-term α (j + 1 )) ts))
let ?bs=(map (λt. t · 〈map labeled-source Bs〉α) (map labeled-source (map to-pterm

ts)))
let ?f=(λi. ({i # p |p. p ∈ labelposs (?as ! i)} ∩ {i # p |p. p ∈ labelposs (?bs !

i)}))
have {[]} ∩ (

⋃
i<length ts. {i # p |p. p ∈ labelposs (map (λt. t · 〈map la-

beled-source Bs〉α) (map labeled-source (map to-pterm ts)) ! i)}) = {}
by blast

then have ∗:labelposs (label-term α j (Fun f ts) · 〈map labeled-source As〉α) ∩
labelposs (labeled-source (to-pterm (Fun f ts)) · 〈map labeled-source Bs〉α)

= (
⋃

i<length ts. (?f i))
unfolding label-term.simps to-pterm.simps labeled-source.simps eval-term.simps

labelposs.simps by auto
have is-partition (map ?f [0 ..<length ts]) proof−

{fix i j assume j:j < length ts and i:i < j
have ?f i ∩ ?f j = {} unfolding Int-def using i

by fastforce
}
then show ?thesis unfolding is-partition-def by auto

qed
moreover have ∀ i<length ts. finite (?f i) by (simp add: finite-labelposs)
ultimately have ∗∗:card (

⋃
i<length ts. (?f i)) = (

∑
i<length ts. card (?f i))

unfolding ∗ using card-Union-Sum by blast
{fix i assume i:i < length ts

have ?f i = {i # p |p. p ∈ labelposs (?as ! i) ∩ labelposs (?bs ! i)}
unfolding Int-def by blast
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then have card (?f i) = card (labelposs (?as ! i) ∩ labelposs (?bs ! i))
unfolding Setcompr-eq-image using card-image by (metis (no-types, lifting)

inj-on-Cons1 )
with Fun i have card (?f i) = (

∑
x←vars-term-list (ts!i). measure-ov ((〈As〉α)

x) ((〈Bs〉α) x))
by simp

}
then show ?case unfolding vars-term-list.simps ∗ ∗∗

by (simp add: sum-sum-concat)
qed

lemma measure-lhs-args-zero:
assumes l:length As = length Bs

and empty:∀ i < length As. measure-ov (As!i) (Bs!i) = 0
shows measure-ov (Prule α As) ((to-pterm (lhs α)) · 〈Bs〉α) = 0

proof−
let ?xs=vars-term-list (lhs α)
have sum:measure-ov (Prule α As) ((to-pterm (lhs α)) · 〈Bs〉α)

= (
∑

x←vars-term-list (lhs α). measure-ov ((〈As〉α) x) ((〈Bs〉α) x))
using labeled-source-apply-subst measure-lhs-subst[OF l]

by (metis (mono-tags, lifting) fun-mk-subst labeled-source.simps(1 ) labeled-source.simps(3 )
to-pterm-wf-pterm)

{fix i assume i:i < length ?xs
have measure-ov ((〈As〉α) (?xs ! i)) ((〈Bs〉α) (?xs ! i)) = 0
proof(cases (∃ j<length As. j < length (var-rule α) ∧ (?xs!i) = var-rule α ! j))

case True
then obtain j where j:j < length As j < length (var-rule α) and ij:?xs!i =

(var-rule α)!j
by blast

then show ?thesis
unfolding ij using empty by (metis j l lhs-subst-var-i)

next
case False
then have (〈As〉α) (?xs!i) = Var (?xs!i)

using lhs-subst-not-var-i by metis
moreover have (〈Bs〉α) (?xs!i) = Var (?xs!i)

using l False lhs-subst-not-var-i by metis
ultimately show ?thesis by simp

qed}
then show ?thesis

using sum by (simp add: sum-list-zero)
qed

lemma measure-zero-subt-at:
assumes term-lab-to-term A = term-lab-to-term B

and labelposs A ∩ labelposs B = {}
and p ∈ poss A

shows labelposs (A|-p) ∩ labelposs (B|-p) = {}
using assms proof(induct p arbitrary: A B)
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case (Cons i p)
from Cons(4 ) obtain f a ts where a:A = Fun (f , a) ts and i:i < length ts and

p:p ∈ poss (ts!i)
using args-poss by (metis old.prod.exhaust)

with Cons(2 ) obtain b ss where b:B = Fun (f , b) ss
by (metis (no-types, opaque-lifting) Cons.prems(3 ) Term.term.simps(2 ) args-poss

old.prod.exhaust poss-term-lab-to-term prod.sel(1 ) term-lab-to-term.simps(2 ))
have ts:(

⋃
i<length ts. {i # p | p. p ∈ labelposs (ts ! i)}) ⊆ labelposs A unfolding

a by(cases a) auto
have ss:(

⋃
i<length ss. {i # p | p. p ∈ labelposs (ss ! i)}) ⊆ labelposs B un-

folding b by(cases b) auto
from ss ts b i Cons(2 ,3 ,4 ) have labelposs (ts!i) ∩ labelposs (ss!i) = {} by auto
with Cons(1 ,2 ) p i show ?case

unfolding a b by (simp add: map-eq-conv ′)
qed simp

lemma empty-step-imp-measure-zero:
assumes is-empty-step A
shows measure-ov A B = 0
by (metis assms card-eq-0-iff inf-bot-left labeled-source-simple-pterm source-empty-step)

lemma measure-ov-to-pterm:
shows measure-ov A (to-pterm t) = 0
by (simp add: labeled-source-simple-pterm)

lemma measure-zero-imp-orthogonal:
assumes R:left-lin-no-var-lhs R and S :left-lin-no-var-lhs S
and co-initial A B A ∈ wf-pterm R B ∈ wf-pterm S
and measure-ov A B = 0

shows A ⊥p B
using assms(3−) proof(induct A arbitrary:B rule:subterm-induct)
case (subterm A)
then show ?case proof(cases A)

case (Var x)
with subterm show ?thesis proof(cases B)

case (Prule α Bs)
from subterm(2 ) Var obtain y where y:lhs α = Var y
unfolding Prule by (metis source.simps(1 ) source.simps(3 ) subst-apply-eq-Var)
from subterm(4 ) Prule S have is-Fun (lhs α)

unfolding left-lin-no-var-lhs-def no-var-lhs-def
by (metis Inl-inject case-prodD is-FunI is-Prule.simps(1 ) is-Prule.simps(3 )

is-VarI term.inject(2 ) wf-pterm.simps)
with y show ?thesis by simp

qed (simp-all add: orthogonal.intros(1 ))
next

case (Pfun f As)
note A=this
with subterm show ?thesis proof(cases B)
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case (Pfun g Bs)
from subterm(2 ) have f :f = g

unfolding Pfun A by simp
from subterm(2 ) have l:length As = length Bs

unfolding A Pfun using map-eq-imp-length-eq by auto
{fix i assume i:i < length As

then have As!i C A
unfolding A by simp

moreover from i subterm(2 ) l have co-initial (As!i) (Bs!i)
by (metis (mono-tags, lifting) A Pfun nth-map source.simps(2 ) term.inject(2 ))
moreover from i subterm(3 ) have As!i ∈ wf-pterm R

using A by auto
moreover from i subterm(4 ) l have Bs!i ∈ wf-pterm S

using Pfun by auto
moreover have measure-ov (As!i) (Bs!i) = 0 proof−

{fix p assume a:p ∈ possL (As!i) and b:p ∈ possL (Bs!i)
with i have i#p ∈ possL A

unfolding A labeled-source.simps labelposs.simps by simp
moreover from b i l have i#p ∈ possL B

unfolding Pfun labeled-source.simps labelposs.simps by simp
ultimately have False using subterm(4 )

by (metis card-gt-0-iff disjoint-iff finite-Int finite-possL less-numeral-extra(3 )
subterm.prems(4 ))

}
then show ?thesis

by (metis card.empty disjoint-iff )
qed
ultimately have As!i ⊥p Bs!i

using subterm(1 ) by blast
}
then show ?thesis

unfolding A Pfun f using l by auto
next

case (Prule β Bs)
from subterm(4 ) S have lin:linear-term (lhs β)

unfolding Prule left-lin-no-var-lhs-def left-lin-def left-linear-trs-def using
wf-pterm.cases by fastforce

have isfun:is-Fun (lhs β)
using subterm(4 ) S no-var-lhs.lhs-is-Fun unfolding Prule left-lin-no-var-lhs-def

by blast
have (lhs β) · (term-lab-to-term ◦ (〈map labeled-source Bs〉β)) = lhs β · 〈map

source Bs〉β
by (metis label-term-to-term labeled-source.simps(3 ) labeled-source-to-term

source.simps(3 ) term-lab-to-term-subst)
with subterm(2 ) have co-init:term-lab-to-term (labeled-source A) = lhs β ·

(term-lab-to-term ◦ 〈map labeled-source Bs〉β)
unfolding Prule by simp

from subterm(5 ) have possL A ∩ possL B = {}
by (simp add: finite-possL)
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then obtain τ where labeled-source A = term-to-term-lab (lhs β) · τ
unfolding labeled-source.simps(3 ) Prule using labels-intersect-label-term[OF

co-init lin] by blast
moreover have labelposs (term-to-term-lab (lhs β)) = {}

using labelposs-term-to-term-lab by blast
moreover from lin have linear-term (term-to-term-lab (lhs β))

using linear-term-to-term-lab by blast
moreover have term-lab-to-term (term-to-term-lab (lhs β)) = lhs β

by simp
ultimately obtain σ where sigma:A = to-pterm (lhs β) · σ
using no-var-lhs.unlabeled-source-to-pterm subterm(3 ) R unfolding left-lin-no-var-lhs-def

by metis
let ?As=map σ (var-rule β)
from sigma have a:A = (to-pterm (lhs β)) · 〈?As〉β
by (smt (verit, best) apply-lhs-subst-var-rule comp-apply length-map map-eq-conv

set-remdups set-rev set-vars-term-list term-subst-eq vars-to-pterm)
{fix i assume i:i < length (var-rule β)

let ?xi=var-rule β!i
from i obtain i ′ where i ′:i ′ < length (vars-term-list (lhs β)) ?xi =

vars-term-list (lhs β)!i ′
by (metis comp-apply in-set-conv-nth set-remdups set-rev)

have l:length Bs = length (var-rule β)
using subterm(4 ) unfolding Prule using wf-pterm.cases by force

from i have asi:?As!i = σ ?xi
by simp

then have ?As!i C A
using a sigma subst-image-subterm i ′ by (metis is-FunE isfun nth-mem

set-vars-term-list to-pterm.simps(2 ) vars-to-pterm)
moreover from i subterm(2 ) have co-initial (?As!i) (Bs!i)
unfolding a Prule source.simps source-apply-subst[OF to-pterm-wf-pterm[of

lhs β]] source-to-pterm using l
by (smt (verit, best) apply-lhs-subst-var-rule comp-def i ′(1 ) i ′(2 ) length-map

nth-map nth-mem set-vars-term-list term-subst-eq-conv)
moreover have measure-ov (?As!i) (Bs!i) = 0 proof−

{fix p assume p:p ∈ possL (?As!i)
let ?pi=var-poss-list (labeled-source (to-pterm (lhs β)))!i ′
have pi:?pi=var-poss-list (labeled-lhs β) !i ′

by (simp add: var-poss-list-term-lab-to-term)
have xi:?xi=vars-term-list (labeled-lhs β) !i ′

by (metis i ′(2 ) vars-term-list-labeled-lhs)
have xi ′:?xi=vars-term-list (labeled-source (to-pterm (lhs β))) ! i ′

using vars-term-list-term-lab-to-term i ′(2 ) by (metis labeled-source-to-term
source-to-pterm)

have i ′l:i ′ < length (vars-term-list (labeled-lhs β))
by (simp add: i ′(1 ) vars-term-list-labeled-lhs)

have i ′l ′:i ′ < length (vars-term-list (labeled-source (to-pterm (lhs β))))
by (simp add: i ′(1 ) vars-term-list-term-lab-to-term)

have (labeled-source (to-pterm (lhs β))) |-?pi = Var ?xi
using i ′ using i ′l ′ vars-term-list-var-poss-list xi ′ by auto
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moreover have possL A = labelposs ((labeled-source (to-pterm (lhs β)))
· (labeled-source ◦ σ))

using labeled-source-apply-subst to-pterm-wf-pterm unfolding sigma
by metis

with p have ?pi@p ∈ possL A
unfolding set-labelposs-subst asi xi ′ using i ′l ′ by fastforce

with subterm(5 ) have ?pi@p /∈ possL B
by (meson card-eq-0-iff disjoint-iff finite-Int finite-labelposs)

moreover {assume p ∈ possL (Bs!i)
then have ?pi@p ∈ {?pi @ q |q. q ∈ labelposs ((〈map labeled-source

Bs〉β) ?xi)}
by (smt (verit) Inl-inject Inr-Inl-False Prule apply-lhs-subst-var-rule i

length-map map-nth-conv mem-Collect-eq subterm.prems(3 ) term.distinct(1 ) term.inject(2 )
wf-pterm.cases)

then have ?pi@p ∈ possL B
unfolding Prule labeled-source.simps set-labelposs-subst xi pi using

i ′l by blast
}
ultimately have p /∈ possL (Bs!i)

by blast
}
then have possL (?As!i) ∩ possL (Bs!i) = {}

by blast
then show ?thesis by simp

qed
ultimately have ?As!i ⊥p Bs!i

using subterm(1 ,3 ,4 ) i unfolding a Prule
by (smt (verit, best) Inr-Inl-False Term.term.simps(4 ) length-map

lhs-subst-args-wf-pterm nth-mem sum.inject(1 ) term.inject(2 ) wf-pterm.simps)
}
then show ?thesis unfolding a Prule using orthogonal.intros(4 )[of ?As Bs]

by (smt (verit, best) Prule Term.term.simps(4 ) in-set-zip length-map
old.sum.inject(1 ) prod.case-eq-if subterm.prems(3 ) sum.distinct(1 ) term.inject(2 )
wf-pterm.cases)

qed simp
next

case (Prule α As)
then have A:A = Prule α As

by simp
from Prule subterm(3 ) R have lin:linear-term (lhs α)

unfolding left-lin-no-var-lhs-def left-lin-def left-linear-trs-def
using wf-pterm.simps by fastforce

obtain f ts where f :lhs α = Fun f ts
using subterm(3 ) R no-var-lhs.lhs-is-Fun unfolding left-lin-no-var-lhs-def

Prule by blast
show ?thesis proof(cases B)

case (Var x)
then show ?thesis
by (metis source.simps(1 ) source-orthogonal subterm.prems(1 ) to-pterm.simps(1 ))
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next
case (Pfun g Bs)
have (lhs α) · (term-lab-to-term ◦ (〈map labeled-source As〉α)) = lhs α · 〈map

source As〉α
by (metis label-term-to-term labeled-source.simps(3 ) labeled-source-to-term

source.simps(3 ) term-lab-to-term-subst)
with subterm(2 ) have co-init:term-lab-to-term (labeled-source B) = lhs α ·

(term-lab-to-term ◦ 〈map labeled-source As〉α)
unfolding Prule by simp

from subterm(5 ) have possL A ∩ possL B = {}
by (simp add: finite-possL)

then obtain τ where labeled-source B = term-to-term-lab (lhs α) · τ
unfolding labeled-source.simps(3 ) Prule using labels-intersect-label-term[OF

co-init lin] by blast
moreover have labelposs (term-to-term-lab (lhs α)) = {}

using labelposs-term-to-term-lab by blast
moreover from lin have linear-term (term-to-term-lab (lhs α))

using linear-term-to-term-lab by auto
moreover have term-lab-to-term (term-to-term-lab (lhs α)) = lhs α

by simp
ultimately obtain σ where sigma:B = to-pterm (lhs α) · σ
using no-var-lhs.unlabeled-source-to-pterm S subterm(4 ) unfolding left-lin-no-var-lhs-def

by metis
let ?Bs=map σ (var-rule α)
from sigma have b:B = (to-pterm (lhs α)) · 〈?Bs〉α
by (smt (verit, best) apply-lhs-subst-var-rule comp-apply length-map map-eq-conv

set-remdups set-rev set-vars-term-list term-subst-eq vars-to-pterm)
{fix i assume i:i < length (var-rule α)

let ?xi=var-rule α!i
from i obtain i ′ where i ′:i ′ < length (vars-term-list (lhs α)) ?xi =

vars-term-list (lhs α)!i ′
by (metis comp-apply in-set-conv-nth set-remdups set-rev)

from i have asi:?Bs!i = σ ?xi
by simp

moreover have l:length As = length (var-rule α)
using subterm(3 ) unfolding A using wf-pterm.cases by force

then have As!i C A
using i unfolding A by simp

moreover from i subterm(2 ) have co-initial (As!i) (?Bs!i)
unfolding b Prule source.simps source-apply-subst[OF to-pterm-wf-pterm[of

lhs α]] source-to-pterm using l
by (smt (verit, best) apply-lhs-subst-var-rule comp-def i ′(1 ) i ′(2 ) length-map

nth-map nth-mem set-vars-term-list term-subst-eq-conv)
moreover have measure-ov (As!i) (?Bs!i) = 0 proof−

{fix p assume p:p ∈ possL (?Bs!i)
let ?pi=var-poss-list (labeled-source (to-pterm (lhs α)))!i ′
have pi:?pi=var-poss-list (labeled-lhs α) !i ′

by (simp add: var-poss-list-term-lab-to-term)
have xi:?xi=vars-term-list (labeled-lhs α) !i ′
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by (metis i ′(2 ) vars-term-list-labeled-lhs)
have xi ′:?xi=vars-term-list (labeled-source (to-pterm (lhs α))) ! i ′

using vars-term-list-term-lab-to-term i ′(2 ) by (metis labeled-source-to-term
source-to-pterm)

have i ′l:i ′ < length (vars-term-list (labeled-lhs α))
by (simp add: i ′(1 ) vars-term-list-labeled-lhs)

have i ′l ′:i ′ < length (vars-term-list (labeled-source (to-pterm (lhs α))))
by (simp add: i ′(1 ) vars-term-list-term-lab-to-term)

have (labeled-source (to-pterm (lhs α))) |-?pi = Var ?xi
using i ′ using i ′l ′ vars-term-list-var-poss-list xi ′ by auto

moreover have possL B = labelposs ((labeled-source (to-pterm (lhs α)))
· (labeled-source ◦ σ))

using labeled-source-apply-subst to-pterm-wf-pterm unfolding sigma
by metis

with p have ?pi@p ∈ possL B
unfolding set-labelposs-subst asi xi ′ using i ′l ′ by fastforce

with subterm(5 ) have ?pi@p /∈ possL A
by (meson card-eq-0-iff disjoint-iff finite-Int finite-labelposs)

moreover {assume p ∈ possL (As!i)
then have ?pi@p ∈ {?pi @ q |q. q ∈ labelposs ((〈map labeled-source

As〉α) ?xi)}
by (smt (verit) Inl-inject Inr-Inl-False Prule apply-lhs-subst-var-rule i

length-map map-nth-conv mem-Collect-eq subterm.prems(2 ) term.distinct(1 ) term.inject(2 )
wf-pterm.cases)

then have ?pi@p ∈ possL A
unfolding Prule labeled-source.simps set-labelposs-subst xi pi using

i ′l by blast
}
ultimately have p /∈ possL (As!i)

by blast
}
then have possL (As!i) ∩ possL (?Bs!i) = {}

by blast
then show ?thesis by simp

qed
ultimately have As!i ⊥p ?Bs!i

using subterm(1 ,3 ,4 ) i unfolding b Prule
by (smt (verit, best) Inr-Inl-False Term.term.simps(4 ) length-map

lhs-subst-args-wf-pterm nth-mem sum.inject(1 ) term.inject(2 ) wf-pterm.simps)
}
then show ?thesis unfolding b Prule using orthogonal.intros(3 )[of As ?Bs]

by (smt (verit, best) Prule Term.term.simps(4 ) in-set-zip length-map
old.sum.inject(1 ) prod.case-eq-if subterm.prems(2 ) sum.distinct(1 ) term.inject(2 )
wf-pterm.cases)

next
case (Prule β Bs)
from subterm(4 ) S obtain g ss where g:lhs β = Fun g ss

unfolding Prule left-lin-no-var-lhs-def using no-var-lhs.lhs-is-Fun by blast
have [] ∈ possL A

207



unfolding A f labeled-source.simps label-term.simps eval-term.simps label-
poss.simps by blast

moreover have [] ∈ possL B
unfolding Prule g labeled-source.simps label-term.simps eval-term.simps

labelposs.simps by blast
ultimately show ?thesis

using subterm(5 ) by (simp add: disjoint-iff finite-labelposs)
qed

qed
qed

5.3 Collecting Overlapping Positions
abbreviation overlaps-pos :: ( ′f , ′v) term-lab ⇒ ( ′f , ′v) term-lab ⇒ (pos × pos)
set

where overlaps-pos A B ≡ Set.filter (λ(p,q). get-label (A|-p) 6= None ∧ get-label
(B|-q) 6= None ∧

snd (the (get-label (A|-p))) = 0 ∧ snd (the (get-label (B|-q))) = 0 ∧
(p <p q ∧ get-label (A|-q) 6= None ∧ fst (the (get-label (A|-q))) = fst

(the (get-label (A|-p))) ∧ snd (the (get-label (A|-q))) = length (the (remove-prefix
p q)) ∨

(q ≤p p ∧ get-label (B|-p) 6= None ∧ fst (the (get-label (B|-q))) = fst
(the (get-label (B|-p))) ∧ snd (the (get-label (B|-p))) = length (the (remove-prefix
q p)))))

(fun-poss A × fun-poss B)

lemma overlaps-pos-symmetric:
assumes (p,q) ∈ overlaps-pos A B
shows (q,p) ∈ overlaps-pos B A
using SigmaI assms less-pos-def by auto

lemma overlaps-pos-intro:
assumes q@q ′ ∈ fun-poss A and q ∈ fun-poss B

and get-label (A|-(q@q ′)) = Some (γ, 0 )
and get-label (B|-q) = Some (β, 0 )
and get-label (B|-(q@q ′)) = Some (β, length q ′)

shows (q@q ′, q) ∈ overlaps-pos A B
using assms by force

Define the partial order on overlaps
definition less-eq-overlap :: pos × pos ⇒ pos × pos ⇒ bool (infix ≤o 50 )

where p ≤o q ←→ (fst p ≤p fst q) ∧ (snd p ≤p snd q)

definition less-overlap :: pos × pos ⇒ pos × pos ⇒ bool (infix <o 50 )
where p <o q ←→ p ≤o q ∧ p 6= q

interpretation order-overlaps: order less-eq-overlap less-overlap
proof

show
∧

x. x ≤o x
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by (simp add: less-eq-overlap-def )
show

∧
x y z. x ≤o y =⇒ y ≤o z =⇒ x ≤o z

by (smt (z3 ) less-eq-overlap-def less-overlap-def less-pos-def less-pos-def ′ less-pos-simps(5 )
order-pos.dual-order .trans)

show
∧

x y. (x <o y) = strict (≤o) x y
using less-eq-overlap-def less-overlap-def by fastforce

thus
∧

x y. x ≤o y =⇒ y ≤o x =⇒ x = y
by (meson less-overlap-def )

qed

lemma overlaps-pos-finite: finite (overlaps-pos A B)
by (meson finite-SigmaI finite-filter finite-fun-poss)

lemma labeled-sources-imp-measure-not-zero:
assumes p ∈ poss (labeled-source A) p ∈ poss (labeled-source B)
and get-label ((labeled-source A)|-p) 6= None ∧ get-label ((labeled-source B)|-p)
6= None

shows measure-ov A B > 0
using assms
by (metis card-gt-0-iff disjoint-iff finite-Int finite-possL get-label-imp-labelposs)

lemma measure-zero-imp-empty-overlaps:
assumes measure-ov A B = 0 and co-init:co-initial A B
shows overlaps-pos (labeled-source A) (labeled-source B) = {}

using assms(1 ) proof(rule contrapos-pp)
{assume overlaps-pos (labeled-source A) (labeled-source B) 6= {}
then obtain p q where pq:(p, q) ∈ overlaps-pos (labeled-source A) (labeled-source

B)
by (meson equals0D pred-equals-eq2 )

then have get-label ((labeled-source A)|-p) 6= None ∧ get-label ((labeled-source
B)|-q) 6= None

∧ (get-label ((labeled-source A)|-q) 6= None ∨ get-label ((labeled-source
B)|-p) 6= None)

by auto
moreover from pq have p ∈ poss (labeled-source A) and q ∈ poss (labeled-source

B)
by (meson fun-poss-imp-poss mem-Sigma-iff member-filter)+

ultimately show measure-ov A B 6= 0
using labeled-sources-imp-measure-not-zero co-init
by (metis labeled-source-to-term less-numeral-extra(3 ) poss-term-lab-to-term)

}
qed

lemma empty-overlaps-imp-measure-zero:
assumes A ∈ wf-pterm R and B ∈ wf-pterm S
and overlaps-pos (labeled-source A) (labeled-source B) = {}
shows measure-ov A B = 0
using assms(3 ) proof(rule contrapos-pp)
{assume measure-ov A B 6= 0
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then obtain p where p:p ∈ possL A ∧ p ∈ possL B
using Int-emptyI by force

then obtain α n where a:get-label ((labeled-source A)|-p) = Some(α, n)
using possL-obtain-label by blast

let ?p1=take (length p − n) p
obtain q1 where q1 :p = ?p1@q1

by (metis append-take-drop-id)
from a p assms(1 ) have alpha:get-label (labeled-source A |- ?p1 ) = Some (α,

0 ) and ?p1 ∈ poss (labeled-source A)
using labelposs-subs-poss obtain-label-root by blast+

then have p1-pos:?p1 ∈ fun-poss (labeled-source A)
using get-label-imp-labelposs labelposs-subs-fun-poss by blast

from p obtain β m where b:get-label ((labeled-source B)|-p) = Some(β, m)
using possL-obtain-label by blast

let ?p2=take (length p − m) p
obtain q2 where q2 :p = ?p2@q2

by (metis append-take-drop-id)
from b p assms(2 ) have beta:get-label (labeled-source B |- ?p2 ) = Some (β, 0 )

and ?p2 ∈ poss (labeled-source B)
using labelposs-subs-poss obtain-label-root by blast+

then have p2-pos:?p2 ∈ fun-poss (labeled-source B)
using get-label-imp-labelposs labelposs-subs-fun-poss by blast

then show overlaps-pos (labeled-source A) (labeled-source B) 6= {} proof(cases
?p1 ≤p ?p2 )

case True
then obtain p3 where p2 :?p2 = ?p1@p3

by (metis less-eq-pos-def )
with q2 have p = ?p1 @ p3 @ q2

by simp
with q1 have p3 :q1 = p3@q2

by (metis same-append-eq)
from a alpha q1 have n = length q1
by (metis (no-types, lifting) add-diff-cancel-left ′ append-take-drop-id assms(1 )

label-term-max-value labelposs-subs-poss length-drop ordered-cancel-comm-monoid-diff-class.diff-add
p same-append-eq subsetD)

with p3 have n = length p3 + length q2
by auto

then have get-label ((labeled-source A)|-(?p1@p3 )) = Some (α, length p3 )
using label-decrease[of ?p1@p3 q2 A] p1-pos a assms(1 )

by (metis add.commute fun-poss-imp-poss fun-poss-term-lab-to-term la-
beled-source-to-term labelposs-subs-fun-poss-source p p2 q2 )

then have (?p2 , ?p1 ) ∈ overlaps-pos (labeled-source B) (labeled-source A)
using overlaps-pos-intro p1-pos p2-pos p2 alpha beta by simp

then show ?thesis using overlaps-pos-symmetric by blast
next

case False
with q1 q2 have ?p2 <p ?p1

by (metis less-eq-pos-simps(1 ) pos-cases pos-less-eq-append-not-parallel)
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then obtain p3 where p2 :?p1 = ?p2@p3
using less-pos-def ′ by blast

with q1 have p = ?p2 @ p3 @ q1
by simp

with q2 have p3 :q2 = p3@q1
by (metis same-append-eq)

from b beta q2 have m = length q2
by (metis (no-types, lifting) add-diff-cancel-left ′ append-take-drop-id assms(2 )

label-term-max-value labelposs-subs-poss length-drop ordered-cancel-comm-monoid-diff-class.diff-add
p same-append-eq subsetD)

with p3 have m = length p3 + length q1
by auto

then have get-label ((labeled-source B)|-(?p2@p3 )) = Some (β, length p3 )
using label-decrease[of ?p2@p3 q1 B] p2-pos b assms(2 )

by (metis add.commute fun-poss-imp-poss fun-poss-term-lab-to-term la-
beled-source-to-term labelposs-subs-fun-poss-source p p2 q1 )

then have (?p1 , ?p2 ) ∈ overlaps-pos (labeled-source A) (labeled-source B)
using overlaps-pos-intro p1-pos p2-pos p2 alpha beta by simp

then show ?thesis by blast
qed

}
qed

lemma obtain-overlap:
assumes p ∈ possL A p ∈ possL B

and get-label (labeled-source A|-p) = Some (γ, n)
and get-label (labeled-source B|-p) = Some (δ, m)
and n ≤ length p m ≤ length p
and rγ = take (length p − n) p
and rδ = take (length p − m) p
and rδ ≤p rγ
and a-well:A ∈ wf-pterm R and b-well:B ∈ wf-pterm S

shows (rγ, rδ) ∈ overlaps-pos (labeled-source A) (labeled-source B)
proof−

from assms(9 ) obtain r ′ where r ′:rγ = rδ @ r ′

using prefix-pos-diff by metis
have rδ @ r ′ ∈ fun-poss (labeled-source A)
using assms(1 ,7 ) unfolding r ′ by (metis append-take-drop-id fun-poss-append-poss ′

labelposs-subs-fun-poss subsetD)
moreover have rδ ∈ fun-poss (labeled-source B)

using assms(2 ,4 ,8 ) by (metis append-take-drop-id fun-poss-append-poss ′ label-
poss-subs-fun-poss subsetD)

moreover have get-label ((labeled-source A) |- (rδ @ r ′)) = Some (γ, 0 )
using assms(1 ,3 ,5 ,7 ) a-well unfolding r ′ using label-decrease[of take (length

p − n) p drop (length p− n) p]
by (smt (verit, best) add.right-neutral add-diff-cancel-left ′ append-assoc ap-

pend-take-drop-id labelposs-subs-poss le-add-diff-inverse2 length-drop subsetD)
moreover have get-label ((labeled-source B) |- (rδ)) = Some (δ, 0 )
using assms(2 ,4 ,6 ,8 ) b-well using label-decrease[of take (length p − m) p drop
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(length p− m) p]
by (smt (verit, best) add.right-neutral add-diff-cancel-left ′ append-assoc ap-

pend-take-drop-id labelposs-subs-poss le-add-diff-inverse2 length-drop subsetD)
moreover have get-label ((labeled-source B) |- (rδ@r ′)) = Some (δ, length r ′)

using assms(2 ,4 ,6 ,8 ) b-well unfolding r ′ using label-decrease[of take (length
p − length r ′) p drop (length p− length r ′) p]

by (smt (verit, del-insts) Nat.add-diff-assoc add-diff-cancel-left ′ append.assoc ap-
pend-take-drop-id assms(7 ) diff-diff-cancel diff-le-self fun-poss-imp-poss fun-poss-term-lab-to-term
label-decrease labeled-source-to-term labelposs-subs-fun-poss-source le-add1 le-add-diff-inverse
length-append length-take min.absorb2 r ′)

ultimately show ?thesis using overlaps-pos-intro unfolding r ′

by (smt (verit, ccfv-threshold) append.assoc case-prodI fst-conv less-eq-pos-simps(1 )
mem-Sigma-iff member-filter option.distinct(1 ) option.sel remove-prefix-append snd-conv)
qed

end

6 Redex Patterns
theory Redex-Patterns
imports

Labels-and-Overlaps
begin

Collect all rule symbols of a proof term together with the position in its
source where they appear. This is used to split a proof term into a set of
single steps, whose union (

⊔
) is the whole proof term again.

The redex patterns are collected in leftmost outermost order.
fun redex-patterns :: ( ′f , ′v) pterm ⇒ (( ′f , ′v) prule × pos) list

where
redex-patterns (Var x) = []
| redex-patterns (Pfun f ss) = concat (map (λ (i, rps). map (λ (α, p). (α, i#p))
rps)

(zip [0 ..< length ss] (map redex-patterns ss)))
| redex-patterns (Prule α ss) = (α, []) # concat (map (λ (p1 , rps). map (λ (α, p2 ).
(α, p1@p2 )) rps)

(zip (var-poss-list (lhs α)) (map redex-patterns ss)))

interpretation lexord-linorder :
linorder ord.lexordp-eq ((<) :: nat ⇒ nat ⇒ bool)

ord.lexordp ((<) :: nat ⇒ nat ⇒ bool)
using linorder .lexordp-linorder [OF linorder-class.linorder-axioms] by simp

lemma lexord-prefix-diff :
assumes (ord.lexordp ((<) :: nat ⇒ nat ⇒ bool)) xs ys and ¬ prefix xs ys
shows (ord.lexordp (<)) (xs@us) (ys@vs)

using assms proof(induct xs arbitrary:ys)
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case (Cons x xs ′)
from Cons(2 ) obtain y ys ′ where ys:ys = y#ys ′

by (metis list.exhaust-sel ord.lexordp-simps(2 ))
consider x < y | x = y ∧ ord.lexordp (<) xs ′ ys ′

using Cons(2 ) ord.lexordp-eq.simps unfolding Cons ys by force
then show ?case proof(cases)

case 1
then show ?thesis unfolding ys by simp

next
case 2
with Cons(3 ) have ¬ prefix xs ′ ys ′

unfolding ys by simp
with Cons(1 ) 2 have (ord.lexordp (<)) (xs ′@us) (ys ′@vs)

by auto
then show ?thesis unfolding ys using 2 by simp

qed
qed simp

lemma var-poss-list-sorted: sorted-wrt (ord.lexordp ((<) :: nat ⇒ nat ⇒ bool))
(var-poss-list t)
proof(induct t)

case (Fun f ts)
let ?poss=(map2 (λi. map ((#) i)) [0 ..<length ts] (map var-poss-list ts))
{fix i j assume i:i < length (var-poss-list (Fun f ts)) and j:j < i

let ?p=concat ?poss ! i
let ?q=concat ?poss ! j
from i obtain i ′ i ′′ where p:?p = ?poss!i ′!i ′′ and i ′:i ′ < length ts and i ′′:i ′′

< length (?poss!i ′)
and i-sum:i = sum-list (map length (take i ′ ?poss)) + i ′′

using less-length-concat[OF i[unfolded var-poss-list.simps]] unfolding length-map
by auto

from p have p2 :?p = i ′# (var-poss-list (ts!i ′) ! i ′′)
using i ′ i ′′ by simp

from j obtain j ′ j ′′ where q:?q = ?poss!j ′!j ′′ and j ′:j ′ < length ts and j ′′:j ′′
< length (?poss!j ′)

and j-sum:j = sum-list (map length (take j ′ ?poss)) + j ′′
using less-length-concat i j length-map unfolding var-poss-list.simps

by (smt (verit, ccfv-threshold) diff-le-self length-take length-upt length-zip
map-upt-len-conv order .strict-trans take-all)

from q have q2 :?q = j ′# (var-poss-list (ts!j ′) ! j ′′)
using j ′ j ′′ by simp

have (ord.lexordp (<)) (var-poss-list (Fun f ts) ! j) (var-poss-list (Fun f ts) ! i)
proof(cases i ′ = j ′)

case True
have l:length (map2 (λx. map ((#) x)) [0 ..<length ts] (map var-poss-list ts)

! j ′) = length (var-poss-list (ts!j ′))
using j ′ by auto

from True j j-sum i-sum have j ′′ < i ′′
using nat-add-left-cancel-less by blast
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with Fun(1 )[of ts!j ′] i ′ i ′′ j ′′ have (ord.lexordp (<)) (var-poss-list (ts!j ′) !
j ′′) (var-poss-list (ts!i ′) ! i ′′)

unfolding True l by (simp add: sorted-wrt-iff-nth-less)
then have (ord.lexordp (<)) ?q ?p

unfolding p2 q2 True by simp
then show ?thesis unfolding var-poss-list.simps by fastforce

next
case False
then have j ′ < i ′

using i ′′ i ′ j ′ i-sum j-sum sum-list-less[OF j]
by (smt (verit, best) i j le-neq-implies-less length-concat linorder-le-less-linear

not-add-less1 order .strict-trans take-all var-poss-list.simps(2 ))
then have (ord.lexordp (<)) ?q ?p

unfolding p2 q2 by simp
then show ?thesis unfolding var-poss-list.simps by fastforce

qed
}
then show ?case

using sorted-wrt-iff-nth-less by blast
qed simp

context left-lin-no-var-lhs
begin

lemma redex-patterns-sorted:
assumes A ∈ wf-pterm R
shows sorted-wrt (ord.lexordp (<)) (map snd (redex-patterns A))

proof−
{fix i j assume i < j j < length (redex-patterns A)
with assms have (ord.lexordp (<)) (snd (redex-patterns A ! i)) (snd (redex-patterns

A ! j))
proof(induct A arbitrary: i j)

case (2 As f )
let ?poss=map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length As] (map re-

dex-patterns As)
from 2 (2 ,3 ) obtain α p1 where ap:redex-patterns (Pfun f As) ! i = (α, p1 )

by (metis surj-pair)
from 2 (3 ) obtain β p2 where bp:redex-patterns (Pfun f As) ! j = (β, p2 )

by (metis surj-pair)
have l:length (zip [0 ..<length As] (map redex-patterns As)) = length As by

simp
from 2 (2 ,3 ) have ∗:i < length (concat ?poss) by simp
from ap obtain i ′ i ′′ where ap1 :(α, p1 ) = ?poss!i ′!i ′′ and i ′:i ′ < length As

and i ′′:i ′′ < length (?poss!i ′)
and i:i = sum-list (map length (take i ′ ?poss)) + i ′′
unfolding redex-patterns.simps using less-length-concat[OF ∗] by (metis l

length-map)
have poss-i ′:?poss!i ′ = map (λ(α, p). (α, i ′ # p)) (redex-patterns (As!i ′))

using i ′ nth-zip[of i ′] by fastforce
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from ap1 i ′′ obtain p1 ′ where p1 ′:p1 = i ′#p1 ′ (α, p1 ′) = redex-patterns
(As!i ′) ! i ′′

unfolding poss-i ′ by (smt (z3 ) case-prod-conv length-map nth-map old.prod.inject
surj-pair)

from bp obtain j ′ j ′′ where ap2 :(β, p2 ) = ?poss!j ′!j ′′ and j ′:j ′ < length As
and j ′′:j ′′ < length (?poss!j ′)

and j:j = sum-list (map length (take j ′ ?poss)) + j ′′
unfolding redex-patterns.simps using less-length-concat[OF 2 (3 )[unfolded

redex-patterns.simps]] by (metis l length-map)
have poss-j ′:?poss!j ′ = map (λ(α, p). (α, j ′ # p)) (redex-patterns (As!j ′))

using j ′ nth-zip[of j ′] by fastforce
from ap2 j ′′ obtain p2 ′ where p2 ′:p2 = j ′#p2 ′ (β, p2 ′) = redex-patterns

(As!j ′) ! j ′′
unfolding poss-j ′ by (smt (z3 ) case-prod-conv length-map nth-map old.prod.inject

surj-pair)
show ?case proof(cases i ′ = j ′)

case True
from i j 2 have i ′′ < j ′′ unfolding True by linarith
moreover from j ′′ have j ′′ < length (redex-patterns (As!j ′)) unfolding

poss-j ′ by auto
ultimately have ord.lexordp (<) p1 ′ p2 ′ using 2 (1 ) j ′ True p1 ′(2 ) p2 ′(2 )

by (metis nth-mem snd-eqD)
then show ?thesis unfolding ap bp p1 ′ p2 ′ True by auto

next
case False
with 2 (2 ) i j have i ′ < j ′ using sum-list-less[OF 2 (2 )] i ′ j ′ j ′′

by (smt (verit, best) ∗ 2 .prems(2 ) le-neq-implies-less length-concat
linorder-le-less-linear not-add-less1 redex-patterns.simps(2 ) take-all)

then show ?thesis unfolding ap bp p1 ′ p2 ′ by fastforce
qed

next
case (3 γ As)
from 3 (2 ,3 ) obtain α p1 where ap:redex-patterns (Prule γ As) ! i = (α,

p1 )
by (metis surj-pair)

from 3 (3 ) obtain β p2 where bp:redex-patterns (Prule γ As) ! j = (β, p2 )
by (metis surj-pair)

show ?case proof(cases i)
case 0
from 3 (1 ) no-var-lhs obtain f ts where lhs:lhs γ = Fun f ts

by fastforce
from bp 3 (4 ) 0 obtain j ′ where concat (map2 (λp1 . map (λ(α, p2 ). (α,

p1 @ p2 ))) (var-poss-list (lhs γ)) (map redex-patterns As)) ! j ′ = (β, p2 )
j ′ < length (concat (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list

(lhs γ)) (map redex-patterns As)))
unfolding redex-patterns.simps using 3 .prems(2 ) by force

then obtain j1 j2 where j1 :j1 < length (map2 (λp1 . map (λ(α, p2 ). (α,
p1 @ p2 ))) (var-poss-list (lhs γ)) (map redex-patterns As))

and j2 :j2 < length (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))
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(var-poss-list (lhs γ)) (map redex-patterns As) ! j1 )
and j1j2 :(map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs

γ)) (map redex-patterns As) ! j1 ) ! j2 = (β, p2 )
using nth-concat-split by metis

let ?p ′=var-poss-list (lhs γ)!j1
let ?rdp=(map redex-patterns As ! j1 )
from j1 have zip:zip (var-poss-list (lhs γ)) (map redex-patterns As) ! j1 =

(?p ′, ?rdp)
unfolding length-map length-zip using nth-zip by force

with j1j2 have (β, p2 ) = map (λ(α, p2 ). (α, ?p ′ @ p2 )) ?rdp !j2
using nth-map j1 unfolding length-map by force

moreover from j2 have j2 < length (map (λ(α, p2 ). (α, ?p ′ @ p2 )) ?rdp)

unfolding nth-map[OF j1 [unfolded length-map]] zip by force
ultimately have (β, p2 ) ∈ set (map (λ(α, p2 ). (α, ?p ′ @ p2 )) ?rdp)

by simp
moreover have ?p ′ 6= [] proof−

from j1 have ?p ′ ∈ var-poss (lhs γ)
unfolding length-map length-zip using nth-mem by fastforce

then show ?thesis unfolding lhs var-poss.simps by force
qed
ultimately have p2 6= []

by auto
moreover from 0 ap have p1 = [] by simp
ultimately show ?thesis unfolding ap bp by simp

next
case (Suc n)
let ?poss=(map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs

γ)) (map redex-patterns As))
from 3 (1 ,2 ) have l:length (var-poss-list (lhs γ)) = length As

using linear-term-var-vars-term-list left-lin unfolding left-linear-trs-def
using length-var-poss-list length-var-rule by auto

from 3 (4 ,5 ) have ∗:n < length (concat ?poss) unfolding Suc by simp
from ap have concat (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))

(var-poss-list (lhs γ)) (map redex-patterns As)) ! n = (α, p1 )
unfolding Suc by simp

then obtain i ′ i ′′ where ap1 :(α, p1 ) = ?poss!i ′!i ′′ and i ′:i ′ < length ?poss
and i ′′:i ′′ < length (?poss!i ′)

and n:n = sum-list (map length (take i ′ ?poss)) + i ′′
using less-length-concat[OF ∗] by metis

from i ′ have i ′2 :i ′ < length (var-poss-list (lhs γ)) by simp
obtain p11 where p11 :?poss!i ′= map (λ(α, p). (α, p11 @ p)) (redex-patterns

(As!i ′)) var-poss-list (lhs γ) !i ′ = p11
using i ′ nth-zip[of i ′] by fastforce

from ap1 i ′′ obtain p12 where p12 :p1 = p11@p12 (α, p12 ) = redex-patterns
(As!i ′) ! i ′′

unfolding p11 by (smt (z3 ) case-prod-conv length-map nth-map old.prod.inject
surj-pair)

from 3 (4 ,5 ) Suc obtain n ′ where j:j = Suc n ′ by (meson Suc-lessE)
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from 3 (5 ) have ∗:n ′ < length (concat ?poss) unfolding j by simp
from bp have concat (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))

(var-poss-list (lhs γ)) (map redex-patterns As)) ! n ′ = (β, p2 )
unfolding j by simp

then obtain j ′ j ′′ where ap2 :(β, p2 ) = ?poss!j ′!j ′′ and j ′:j ′ < length ?poss
and j ′′:j ′′ < length (?poss!j ′)

and n ′:n ′ = sum-list (map length (take j ′ ?poss)) + j ′′
using less-length-concat[OF ∗] by metis

from j ′ have j ′2 :j ′ < length (var-poss-list (lhs γ)) by simp
obtain p21 where p21 :?poss!j ′= map (λ(α, p). (α, p21 @ p)) (redex-patterns

(As!j ′)) var-poss-list (lhs γ) !j ′ = p21
using j ′ nth-zip[of j ′] by fastforce

from ap2 j ′′ obtain p22 where p22 :p2 = p21@p22 (β, p22 ) = redex-patterns
(As!j ′) ! j ′′

unfolding p21 by (smt (z3 ) case-prod-conv length-map nth-map old.prod.inject
surj-pair)

show ?thesis proof(cases i ′ = j ′)
case True
from n n ′ 3 (4 ) have ij:i ′′ < j ′′ unfolding True Suc j by linarith
moreover from j ′′ have j ′′ < length (redex-patterns (As!j ′)) unfolding

p21 by auto
moreover from j ′ l have j ′ < length As unfolding length-map by simp

ultimately have ord.lexordp (<) p12 p22 using 3 (3 ) p22 p12 j ′ unfolding
True by (metis nth-mem snd-conv)

with p21 (2 ) p11 (2 ) show ?thesis unfolding ap bp p22 p12 True by
(simp add: ord.lexordp-append-leftI )

next
case False
then have i ′ < j ′

using sum-list-less[OF 3 (4 ), where i ′=i ′ and j ′=j ′]
by (smt (verit) 3 .prems(1 ) Suc Suc-less-SucD i ′ j j ′ j ′′ le-neq-implies-less

n n ′ sum-list-less)
then have ord.lexordp (<) p11 p21

using p11 (2 ) p21 (2 ) var-poss-list-sorted[of lhs γ] i ′2 j ′2 using
sorted-wrt-nth-less by blast

moreover have ¬ prefix p11 p21 proof−
from False j ′ i ′ have parallel-pos (var-poss-list (lhs γ) !i ′) (var-poss-list

(lhs γ) !j ′)
unfolding length-map length-zip using var-poss-parallel var-poss-list-sound

distinct-var-poss-list
by (metis l min.idem nth-eq-iff-index-eq nth-mem)

then show ?thesis using p11 (2 ) p21 (2 )
by (metis less-eq-pos-simps(1 ) parallel-pos prefix-def )

qed
ultimately show ?thesis unfolding ap bp p12 p22 using lexord-prefix-diff

by simp
qed

qed
qed simp
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}
then show ?thesis

by (metis (mono-tags, lifting) sorted-wrt-iff-nth-less sorted-wrt-map)
qed

corollary distinct-snd-rdp:
assumes A ∈ wf-pterm R
shows distinct (map snd (redex-patterns A))
using redex-patterns-sorted[OF assms] lexord-linorder .strict-sorted-iff by simp

lemma redex-patterns-equal:
assumes wf :A ∈ wf-pterm R

and sorted:sorted-wrt (ord.lexordp (<)) (map snd xs) and eq:set xs = set
(redex-patterns A)

shows xs = redex-patterns A
proof−
have linord:class.linorder (ord.lexordp-eq ((<) :: nat ⇒ nat ⇒ bool)) (ord.lexordp

(<))
using linorder .lexordp-linorder [OF linorder-class.linorder-axioms] by simp

then have map snd xs = map snd (redex-patterns A)
using linorder .strict-sorted-equal[OF linord redex-patterns-sorted[OF wf ] sorted]

eq by simp
with eq distinct-snd-rdp[OF wf ] show ?thesis
using distinct-map by (metis (mono-tags, opaque-lifting) inj-onD list.inj-map-strong)

qed

lemma redex-patterns-order :
assumes A ∈ wf-pterm R and i < j and j < length (redex-patterns A)

and redex-patterns A ! i = (α, p1 ) and redex-patterns A ! j = (β, p2 )
shows ¬ p2 ≤p p1

proof−
have (ord.lexordp (<)) p1 p2
using redex-patterns-sorted[OF assms(1 )] assms sorted-wrt-nth-less by fastforce

then show ?thesis
by (metis less-eq-pos-def lexord-linorder .less-le-not-le ord.lexordp-eq-pref )

qed

end

context left-lin-no-var-lhs
begin
lemma redex-patterns-label:

assumes A ∈ wf-pterm R
shows (α, p) ∈ set (redex-patterns A) ←→ p ∈ poss (source A) ∧ get-label

(labeled-source A |- p) = Some (α, 0 )
proof

{assume (α, p) ∈ set (redex-patterns A)
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with assms show p ∈ poss (source A) ∧ get-label (labeled-source A |- p) =
Some (α, 0 ) proof(induct arbitrary:p)

case (2 ts f )
have l:length (map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length ts] (map

redex-patterns ts)) = length ts
unfolding length-map length-zip by simp

with 2 (2 ) obtain i where i:i < length ts and ap:(α, p) ∈ set ((map2 (λi.
map (λ(α, p). (α, i # p))) [0 ..<length ts] (map redex-patterns ts))!i)

unfolding redex-patterns.simps using in-set-idx by (metis nth-concat-split
nth-mem)

have (map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length ts] (map redex-patterns
ts))!i = map (λ(α, p). (α, i # p)) (redex-patterns (ts!i))

using nth-zip i by fastforce
with ap obtain p ′ where p ′:p = i#p ′ and (α, p ′) ∈ set (redex-patterns (ts

!i)) by auto
with 2 (1 ) i have p ′ ∈ poss (source (ts!i)) and get-label (labeled-source

(ts!i)|-p ′) = Some (α, 0 )
using nth-mem by blast+

with i show ?case unfolding p ′ by simp
next

case (3 β As)
from no-var-lhs 3 (1 ) obtain f ts where lhs:lhs β = Fun f ts by fastforce
from 3 (2 ) have l:length (var-poss-list (lhs β)) = length As
using left-lin.length-var-rule[OF left-lin-axioms 3 (1 )] by (simp add: length-var-poss-list)

from 3 (4 ) consider (root) (α, p) = (β, []) | (arg) (α, p) ∈ set (concat (map2
(λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs β)) (map redex-patterns
As)))

unfolding redex-patterns.simps by (meson set-ConsD)
then show ?case proof(cases)

case root
then have α = β and p = [] by simp+
then show ?thesis by (simp add: lhs)

next
case arg
then obtain i where i:i < length As and ap:(α, p) ∈ set ((map2 (λp1 .

map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs β)) (map redex-patterns As))!i)
using in-set-idx l by (metis (no-types, lifting) length-map map-snd-zip

nth-concat-split nth-mem)
let ?p1=(var-poss-list (lhs β))!i
have (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs β))

(map redex-patterns As))!i = map (λ(α, p). (α, ?p1 @ p)) (redex-patterns (As!i))
using nth-zip i l by fastforce

with ap obtain p2 where p2 :p = ?p1@p2 and ap2 :(α, p2 ) ∈ set
(redex-patterns (As !i)) by auto

with 3 (3 ) i have poss:p2 ∈ poss (source (As!i)) and label:get-label
(labeled-source (As!i)|-p2 ) = Some (α, 0 )

using nth-mem by blast+
have p1-poss:?p1 ∈ poss (lhs β) using i l
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by (metis nth-mem var-poss-imp-poss var-poss-list-sound)
then have 1 :p ∈ poss (source (Prule β As))

using poss 3 (2 ) i l unfolding source.simps p2
by (smt (verit, ccfv-SIG) append-eq-append-conv2 comp-apply length-map

length-remdups-eq length-rev length-var-poss-list nth-map poss-append-poss poss-imp-subst-poss
rev-swap var-rule-pos-subst vars-term-list-var-poss-list)

have labeled-source (Prule β As) |-p = labeled-source (As!i) |-p2 proof−
have (〈map labeled-source As〉β) (var-rule β ! i) = labeled-source (As!i)

using i 3 (2 ) by (metis length-map lhs-subst-var-i nth-map)
moreover have labeled-lhs β |- ?p1 = Var (var-rule β ! i)

using 3 (1 ) i l by (metis case-prodD left-lin left-linear-trs-def length-var-poss-list
linear-term-var-vars-term-list p1-poss var-label-term vars-term-list-var-poss-list)

ultimately show ?thesis unfolding p2 labeled-source.simps
by (smt (verit, best) eval-term.simps(1 ) label-term-to-term p1-poss

poss-imp-subst-poss poss-term-lab-to-term subt-at-append subt-at-subst)
qed
with label have 2 :get-label (labeled-source (Prule β As)|-p) = Some (α, 0 )

by presburger
from 1 2 show ?thesis by simp

qed
qed simp

}
{assume p ∈ poss (source A) ∧ get-label (labeled-source A |- p) = Some (α, 0 )

with assms show (α, p) ∈ set (redex-patterns A) proof(induct arbitrary:p)
case (2 ts f )
from 2 (2 ) have p 6= [] unfolding labeled-source.simps by auto
with 2 (2 ) obtain i p ′ where p ′:p = i#p ′ p ′ ∈ poss (source (ts!i)) and i:i

< length ts
unfolding source.simps by fastforce

with 2 (2 ) have get-label (labeled-source (ts!i) |- p ′) = Some (α, 0 )
unfolding p ′ labeled-source.simps by auto

with 2 (1 ) i p ′ have IH :(α, p ′) ∈ set (redex-patterns (ts!i))
using nth-mem by blast

from i have i-zip:i < length (zip [0 ..<length ts] (map redex-patterns ts)) by
simp

from i have zip [0 ..<length ts] (map redex-patterns ts) ! i = (i, redex-patterns
(ts!i))

using nth-zip by simp
then have (map2 (λx. map (λ(α, p). (α, x # p))) [0 ..<length ts] (map

redex-patterns ts)) ! i = map (λ(α, p). (α, i # p)) (redex-patterns (ts!i))
unfolding nth-map[OF i-zip] by simp

with p ′(2 ) IH have (α, p) ∈ set ((map2 (λi. map (λ(α, p). (α, i # p)))
[0 ..<length ts] (map redex-patterns ts))!i)

unfolding p ′ by auto
with i-zip show ?case using i unfolding redex-patterns.simps set-concat by

(metis (no-types, lifting) UN-I length-map nth-mem)
next

case (3 β As)
with get-label-Prule consider (1 )p = [] ∧ α = β | (∃ p1 p2 i. p = p1 @ p2
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∧ i < length As ∧ var-poss-list (lhs β) ! i = p1
∧ p2 ∈ poss (source (As ! i)) ∧ get-label (labeled-source (As ! i) |- p2 ) =

Some (α, 0 ))
by (metis wf-pterm.intros(3 ))

then show ?case proof(cases)
case 1
then show ?thesis unfolding redex-patterns.simps by simp

next
case 2
from 3 (1 ,2 ) left-lin have l:length (var-poss-list (lhs β)) = length As

using length-var-poss-list length-var-rule by auto
from 2 obtain p1 p2 i where p:p = p1 @ p2 and i:i < length As and

p1 :var-poss-list (lhs β) ! i = p1
and p2 :p2 ∈ poss (source (As ! i)) and lab:get-label (labeled-source (As !

i) |- p2 ) = Some (α, 0 )
by blast

from i l have i ′:i < length (zip (var-poss-list (lhs β)) (map redex-patterns
As)) by simp

from i p2 lab 3 (3 ) have (α, p2 ) ∈ set (redex-patterns (As!i)) using nth-mem
by blast

then have (α, p) ∈ set (map (λ(α, p2 ). (α, p1 @ p2 )) (redex-patterns
(As!i))) using p by force

then have (α, p) ∈ set ((map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))
(var-poss-list (lhs β)) (map redex-patterns As))!i)

unfolding nth-map[OF i ′] p using p1 by (simp add: i l)
then have (α, p) ∈ set (concat (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))

(var-poss-list (lhs β)) (map redex-patterns As)))
unfolding set-concat by (metis (no-types, lifting) UN-I i ′ length-map

nth-mem)
then show ?thesis unfolding redex-patterns.simps by (meson list.set-intros(2 ))
qed

qed simp
}

qed

lemma redex-pattern-rule-symbol:
assumes A ∈ wf-pterm R (α, p) ∈ set (redex-patterns A)
shows to-rule α ∈ R

proof−
from redex-patterns-label[OF assms(1 )] have p ∈ poss (source A) and get-label

(labeled-source A |- p) = Some (α, 0 )
using assms(2 ) by simp+

then show ?thesis
using assms(1 ) labeled-wf-pterm-rule-in-TRS by fastforce

qed

lemma redex-patterns-subset-possL:
assumes A ∈ wf-pterm R
shows set (map snd (redex-patterns A)) ⊆ possL A
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using redex-patterns-label[OF assms]
by (smt (verit) get-label-imp-labelposs imageE labeled-source-to-term list.set-map

option.simps(3 ) poss-term-lab-to-term prod.collapse subsetI )
end

lemma redex-poss-empty-imp-empty-step:
assumes redex-patterns A = []
shows is-empty-step A
using assms proof(induct A)
case (Pfun f As)
{fix i assume i:i < length As

then have i-zip:i < length (zip [0 ..<length As] (map redex-patterns As)) by
simp

{fix x xs assume redex-patterns (As!i) = x#xs
with i have zip [0 ..<length As] (map redex-patterns As) ! i = (i, x#xs) by

simp
then have (map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length As] (map

redex-patterns As))!i 6= []
using nth-map i-zip by simp

with Pfun(2 ) have False unfolding redex-patterns.simps using i-zip con-
cat-nth-length

by (metis (no-types, lifting) length-0-conv length-greater-0-conv length-map
less-nat-zero-code)

}
then have redex-patterns (As!i) = []

by (meson list.exhaust)
with Pfun(1 ) i have is-empty-step (As!i)

by simp
}
then show ?case

by (simp add: list-all-length)
qed simp-all

lemma overlap-imp-redex-poss:
assumes A ∈ wf-pterm R B ∈ wf-pterm R

and measure-ov A B 6= 0
shows redex-patterns A 6= []

proof
assume redex-patterns A = []
then have is-empty-step A

by (simp add: redex-poss-empty-imp-empty-step)
with assms(3 ) show False

by (simp add: empty-step-imp-measure-zero)
qed

lemma redex-patterns-to-pterm:
shows redex-patterns (to-pterm s) = []

proof(induct s)
case (Fun f ts)
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have l:length (map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length (map to-pterm
ts)] (map redex-patterns (map to-pterm ts))) = length ts

by simp
{fix i assume i < length ts
with Fun have (map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length (map to-pterm

ts)] (map redex-patterns (map to-pterm ts)))!i = []
by simp

}
with l show ?case unfolding to-pterm.simps redex-patterns.simps
by (metis length-greater-0-conv length-nth-simps(1 ) less-nat-zero-code nth-concat-split)

qed simp

lemma redex-patterns-elem-fun:
assumes (α, p) ∈ set (redex-patterns (Pfun f As))
shows ∃ i p ′. i < length As ∧ p = i#p ′ ∧ (α, p ′) ∈ set (redex-patterns (As!i))

proof−
let ?xs=map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length As] (map redex-patterns

As)
from assms obtain k where k:k < length (redex-patterns (Pfun f As)) re-

dex-patterns (Pfun f As) ! k = (α, p)
by (metis in-set-idx)

then obtain i j where i < length ?xs and j:j < length (?xs!i) ?xs ! i ! j = (α,
p)

using nth-concat-split[OF k(1 )[unfolded redex-patterns.simps]] by force
then have i:i < length As by auto
then have zip [0 ..<length As] (map redex-patterns As) !i = (i, redex-patterns

(As!i))
using nth-zip by auto

then have ?xs!i = map (λ(α, p). (α, i#p)) (redex-patterns (As!i)) using nth-map
i by auto

with j obtain p ′ where p = i#p ′ and (α, p ′) ∈ set (redex-patterns (As!i))
by (smt (verit, ccfv-threshold) case-prod-beta fst-conv imageE list.set-map

nth-mem prod.collapse snd-conv)
with i show ?thesis by simp

qed

lemma redex-patterns-elem-rule:
assumes (α, p) ∈ set (redex-patterns (Prule β As))
shows p = [] ∨ (∃ i p ′. i < length As ∧ i < length (var-poss-list (lhs β))
∧ p = (var-poss-list (lhs β)!i)@p ′ ∧ (α, p ′) ∈ set (redex-patterns (As!i)))

proof−
let ?xs=map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs β)) (map

redex-patterns As)
from assms obtain k where k:k < length (redex-patterns (Prule β As)) re-

dex-patterns (Prule β As) ! k = (α, p)
by (metis in-set-idx)

show ?thesis proof(cases p = [])
case False
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with k have k 6= 0
unfolding redex-patterns.simps by (metis nth-Cons-0 prod.inject)

with k obtain i j where i < length ?xs and j:j < length (?xs!i) ?xs ! i ! j =
(α, p)

using nth-concat-split less-Suc-eq-0-disj unfolding redex-patterns.simps by
force

then have i:i < length As i < length (var-poss-list (lhs β)) by auto
let ?p=(var-poss-list (lhs β))!i

from i have zip (var-poss-list (lhs β)) (map redex-patterns As) !i = (?p,
redex-patterns (As!i))

using nth-zip by auto
then have ?xs!i = map (λ(α, p). (α, ?p@p)) (redex-patterns (As!i)) using

nth-map i by auto
with j obtain p ′ where p = ?p@p ′ and (α, p ′) ∈ set (redex-patterns (As!i))

by (smt (verit, ccfv-threshold) case-prod-beta fst-conv imageE list.set-map
nth-mem prod.collapse snd-conv)

with i show ?thesis by blast
qed simp

qed

lemma redex-patterns-elem-fun ′:
assumes (α, p) ∈ set (redex-patterns (As!i)) and i:i < length As
shows (α, i#p) ∈ set (redex-patterns (Pfun f As))

proof−
let ?xs=map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length As] (map redex-patterns

As)
from i have zip [0 ..<length As] (map redex-patterns As) !i = (i, redex-patterns

(As!i))
using nth-zip by auto

then have ?xs!i = map (λ(α, p). (α, i#p)) (redex-patterns (As!i)) using nth-map
i by auto

with assms have (α, i#p) ∈ set (?xs!i) by fastforce
moreover from i have i < length ?xs by simp
ultimately have ∗:(α, i#p) ∈ set (concat ?xs)

unfolding set-concat by (meson UN-iff nth-mem)
then show ?thesis by simp

qed

lemma redex-patterns-elem-rule ′:
assumes (β, p) ∈ set (redex-patterns (As!i)) and i:i < length As i < length

(var-poss-list (lhs α))
shows (β, (var-poss-list (lhs α) ! i)@p) ∈ set (redex-patterns (Prule α As))

proof−
let ?xs=map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list (lhs α)) (map

redex-patterns As)
let ?p=var-poss-list (lhs α) ! i
from i have zip (var-poss-list (lhs α)) (map redex-patterns As) !i = (?p, re-

dex-patterns (As!i))
using nth-zip by auto
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then have ?xs!i = map (λ(α, p). (α, ?p@p)) (redex-patterns (As!i)) using
nth-map i by auto

with assms have (β, ?p@p) ∈ set (?xs!i) by fastforce
moreover from i have i < length ?xs by simp
ultimately have ∗:(β, ?p@p) ∈ set (concat ?xs)

unfolding set-concat by (meson UN-iff nth-mem)
then show ?thesis by simp

qed

lemma redex-patterns-elem-subst:
assumes (α, p) ∈ set (redex-patterns ((to-pterm t) · σ))
shows ∃ p1 p2 x. p = p1@p2 ∧ (α, p2 ) ∈ set (redex-patterns (σ x)) ∧ p1 ∈

var-poss t ∧ t|-p1 = Var x
using assms proof(induct t arbitrary: p)
case (Var x)
then show ?case unfolding to-pterm.simps eval-term.simps by force

next
case (Fun f ts)
from Fun(2 ) obtain j where j:j < length (redex-patterns (to-pterm (Fun f ts)
· σ)) (redex-patterns (to-pterm (Fun f ts) · σ))!j = (α, p)

by (metis in-set-idx)
from j obtain i k where i:i < length ts

and k:k < length (map (λ(α, p). (α, i # p)) (redex-patterns (to-pterm (ts!i) ·
σ)))

and rdp:(map (λ(α, p). (α, i # p)) (redex-patterns (to-pterm (ts!i) · σ)))!k =
(α, p)

using nth-concat-split unfolding length-map to-pterm.simps eval-term.simps
redex-patterns.simps by force

from rdp k obtain p ′ where p:p = i#p ′

by (smt (verit, del-insts) case-prod-conv list.sel(3 ) map-eq-imp-length-eq map-ident
nth-map prod.inject surj-pair)

from k rdp have (α, p ′) ∈ set (redex-patterns (to-pterm (ts!i) · σ))
unfolding p by (smt (verit, del-insts) case-prod-conv list.sel(3 ) map-eq-imp-length-eq

map-ident nth-map nth-mem prod.inject surj-pair)
with Fun(1 ) i obtain p1 p2 x where p ′:p ′ = p1@p2 and rdp2 :(α, p2 ) ∈ set

(redex-patterns (σ x)) and p1 ∈ var-poss (ts!i) and (ts!i)|-p1 = Var x
by (meson nth-mem)

with i have i#p1 ∈ var-poss (Fun f ts) Fun f ts |- (i#p1 ) = Var x
by auto

with p ′ rdp2 show ?case
unfolding p by (meson Cons-eq-appendI )

qed

context left-lin-no-var-lhs
begin

lemma redex-patterns-rule ′′:
assumes rdp:(β, p @ q) ∈ set (redex-patterns (Prule α As))

and wf :Prule α As ∈ wf-pterm R
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and p:p = var-poss-list (lhs α)!i
and i:i < length As

shows (β, q) ∈ set (redex-patterns (As!i))
proof−

from wf obtain f ts where lhs:lhs α = Fun f ts
by (metis Inl-inject case-prodD is-FunE is-Prule.simps(1 ) is-Prule.simps(3 )

no-var-lhs term.distinct(1 ) term.inject(2 ) wf-pterm.simps)
from wf i have l:length As = length (var-poss-list (lhs α))

by (metis Inl-inject is-Prule.simps(1 ) is-Prule.simps(3 ) length-var-poss-list
length-var-rule term.distinct(1 ) term.inject(2 ) wf-pterm.simps)

with i p have p ∈ var-poss (Fun f ts)
by (metis lhs nth-mem var-poss-list-sound)

then have p 6= [] by force
then obtain j p ′ where j:j < length As and p ′:p@q = var-poss-list (lhs α) ! j

@ p ′ (β, p ′) ∈ set (redex-patterns (As!j))
using redex-patterns-elem-rule[OF rdp] by blast

{assume j 6= i
then have p ⊥ var-poss-list (lhs α) ! j

unfolding p using i j by (metis distinct-var-poss-list l nth-eq-iff-index-eq
nth-mem var-poss-list-sound var-poss-parallel)

with p ′(1 ) have False
by (metis less-eq-pos-simps(1 ) pos-less-eq-append-not-parallel)

}
with p ′(1 ) p have j = i and p ′ = q by fastforce+
with p ′(2 ) show ?thesis by simp

qed

lemma redex-patterns-elem-subst ′:
assumes (α, p2 ) ∈ set (redex-patterns (σ x)) and p1 :p1 ∈ poss t t|-p1 = Var x
shows (α, p1@p2 ) ∈ set (redex-patterns ((to-pterm t) · σ))

using assms proof(induct t arbitrary: p1 )
case (Var x)
then show ?case unfolding to-pterm.simps eval-term.simps by force

next
case (Fun f ts)
from Fun(3 ,4 ) obtain i p1 ′ where i:i < length ts and p1 :p1 = i#p1 ′ and

p1 ′:p1 ′ ∈ poss (ts!i) (ts!i)|-p1 ′ = Var x
by auto

with Fun(1 ,2 ) have (α, p1 ′ @ p2 ) ∈ set (redex-patterns (to-pterm (ts!i) · σ))
using nth-mem by blast

then obtain j where j:j < length (redex-patterns (to-pterm (ts!i) · σ)) re-
dex-patterns (to-pterm (ts!i) · σ)!j = (α, p1 ′ @ p2 )

by (metis in-set-idx)
let ?xs=map2 (λi. map (λ(α, p). (α, i # p))) [0 ..<length (map (λs. s · σ) (map

to-pterm ts))] (map redex-patterns (map (λs. s · σ) (map to-pterm ts)))
from i j have rdp:?xs!i!j = (α, p1@p2 )

unfolding p1 by auto
let ?i=sum-list (map length (take i ?xs)) + j
from rdp i j(1 ) have (redex-patterns ((to-pterm (Fun f ts)) · σ)) ! ?i = (α,
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p1@p2 )
using concat-nth[of i ?xs j] unfolding length-map by force

moreover from i j(1 ) have ?i < length (redex-patterns (to-pterm (Fun f ts) ·
σ))

using concat-nth-length[of i ?xs j] unfolding length-map by force
ultimately show ?case

using nth-mem by fastforce
qed

lemma redex-patterns-join:
assumes A ∈ wf-pterm R B ∈ wf-pterm R A t B = Some C
shows set (redex-patterns C ) = set (redex-patterns A) ∪ set (redex-patterns B)
using assms proof(induct A arbitrary: B C rule:subterm-induct)
case (subterm A)
from subterm(2 ) show ?case proof(cases A)

case (1 x)
from subterm(2 ,3 ,4 ) var-join show ?thesis

unfolding 1 by auto
next

case (2 As f )
with subterm(4 ) consider (Pfun) ∃ g Bs. B = Pfun g Bs | (Prule) ∃α Bs. B

= Prule α Bs by (meson fun-join)
then show ?thesis proof(cases)

case Pfun
then obtain g Bs where B:B = Pfun g Bs by blast
from subterm(4 ) join-fun-fun obtain Cs where fg:f = g and l-As-Bs:length

As = length Bs and
C :C = Pfun f Cs and l-Cs-As:length Cs = length As and Cs:(∀ i<length

As. As ! i t Bs ! i = Some (Cs ! i))
unfolding 2 B by force

{fix i assume i:i < length As
with subterm(3 ) have Bs!i ∈ wf-pterm R

using B l-As-Bs by auto
with subterm(1 ) i 2 Cs have set (redex-patterns (Cs!i)) = set (redex-patterns

(As!i)) ∪ set (redex-patterns (Bs!i))
by (meson nth-mem supt.arg)

}note IH=this
{fix α p assume (α, p) ∈ set (redex-patterns C )

then obtain i p ′ where i:i < length Cs and p:p = i#p ′ and (α, p ′) ∈ set
(redex-patterns (Cs!i))

unfolding C by (meson redex-patterns-elem-fun)
with IH consider (α, p ′) ∈ set (redex-patterns (As!i)) | (α, p ′) ∈ set

(redex-patterns (Bs!i))
using l-Cs-As by fastforce

then have (α, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
proof(cases)

case 1
with i have (α, p) ∈ set (redex-patterns A)

unfolding 2 p l-Cs-As by (meson redex-patterns-elem-fun ′)
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then show ?thesis by simp
next

case 2
with i have (α, p) ∈ set (redex-patterns B)

unfolding B l-Cs-As l-As-Bs p by (meson redex-patterns-elem-fun ′)
then show ?thesis by simp

qed
}
moreover
{fix α p assume (α, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
then consider (α, p) ∈ set (redex-patterns A) | (α, p) ∈ set (redex-patterns

B) by force
then have (α, p) ∈ set (redex-patterns C ) proof(cases)

case 1
then obtain i p ′ where i:i < length As and p:p = i#p ′ and (α, p ′) ∈

set (redex-patterns (As!i))
unfolding 2 by (meson redex-patterns-elem-fun)

with IH have (α, p ′) ∈ set (redex-patterns (Cs!i)) by blast
with i l-Cs-As show ?thesis unfolding C p

by (metis redex-patterns-elem-fun ′)
next

case 2
then obtain i p ′ where i:i < length Bs and p:p = i#p ′ and (α, p ′) ∈

set (redex-patterns (Bs!i))
unfolding B by (meson redex-patterns-elem-fun)

with IH l-As-Bs have (α, p ′) ∈ set (redex-patterns (Cs!i)) by simp
with i l-Cs-As l-As-Bs show ?thesis unfolding C p

by (metis redex-patterns-elem-fun ′)
qed

}
ultimately show ?thesis by auto

next
case Prule
then obtain α Bs where B:B = Prule α Bs by blast
from B subterm(3 ) have alpha:to-rule α ∈ R

using wf-pterm.simps by fastforce
then obtain f ′ ts where lhs:lhs α = Fun f ′ ts

using no-var-lhs by fastforce
from alpha have lin:linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
from B subterm(3 ,4 ) obtain σ Cs where sigma:match A (to-pterm (lhs α))

= Some σ
and C :C = Prule α Cs and l-Cs-Bs:length Cs = length Bs and Cs:(∀ i<length

Bs. σ (var-rule α ! i) t (Bs ! i) = Some (Cs ! i))
unfolding 2 using join-rule-fun join-sym by (smt (verit, best))

from B subterm(3 ) have l-Bs:length Bs = length (var-rule α)
using wf-pterm.simps by fastforce

from sigma have A:A = (to-pterm (lhs α) · σ)
by (simp add: match-matches)
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{fix i assume i:i < length Bs
with sigma lhs l-Bs have σ (var-rule α ! i) C A
by (smt (verit, best) comp-def match-lhs-subst nth-mem set-remdups set-rev

set-vars-term-list subst-image-subterm to-pterm.simps(2 ) vars-to-pterm)
moreover have σ (var-rule α ! i) ∈ wf-pterm R

using subterm(2 ) by (metis i l-Bs match-well-def sigma vars-to-pterm)
moreover from i subterm(3 ) have Bs!i ∈ wf-pterm R

using B nth-mem by blast
ultimately have set (redex-patterns (Cs!i)) = set (redex-patterns (σ (var-rule

α ! i))) ∪ set (redex-patterns (Bs!i))
using subterm(1 ) Cs l-Cs-Bs i by presburger

}note IH=this
{fix β p assume rdp:(β, p) ∈ set (redex-patterns C )

then have (β, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
proof(cases p=[])

case True
with rdp have α = β

unfolding C using lhs by (metis (no-types, lifting) C join-wf-pterm
list.set-intros(1 ) option.sel

prod.inject redex-patterns.simps(3 ) redex-patterns-label subterm.prems(1 )
subterm.prems(2 ) subterm.prems(3 ))

then show ?thesis unfolding B redex-patterns.simps True by simp
next

case False
with rdp obtain i p ′ where i:i < length Cs i < length (var-poss-list (lhs

α))
and p:p = (var-poss-list (lhs α) ! i)@p ′ and ∗:(β, p ′) ∈ set (redex-patterns

(Cs!i))
unfolding C by (meson redex-patterns-elem-rule)

let ?p=var-poss-list (lhs α) ! i
from ∗ i IH consider (β, p ′) ∈ set (redex-patterns (σ (var-rule α ! i))) |

(β, p ′) ∈ set (redex-patterns (Bs!i))
using l-Cs-Bs by fastforce

then show ?thesis proof(cases)
case 1
let ?x=var-rule α ! i
from i(2 ) have p-pos:?p ∈ poss (lhs α)

by (metis nth-mem var-poss-iff var-poss-list-sound)
from i(2 ) have p-x:(lhs α)|-?p = Var ?x

by (metis ‹to-rule α ∈ R› case-prodD left-lin left-linear-trs-def
length-var-poss-list linear-term-var-vars-term-list vars-term-list-var-poss-list)

from i(2 ) have (β, p) ∈ set (redex-patterns A)
unfolding p A using redex-patterns-elem-subst ′[of β p ′ σ ?x, OF 1

p-pos p-x] by simp
then show ?thesis by simp

next
case 2
from i have (β, p) ∈ set (redex-patterns B)

unfolding B p l-Cs-Bs using redex-patterns-elem-rule ′[OF 2 ] by

229



presburger
then show ?thesis by simp

qed
qed

}
moreover
{fix β p assume (β, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
then consider (β, p) ∈ set (redex-patterns A) | (β, p) ∈ set (redex-patterns

B) by force
then have (β, p) ∈ set (redex-patterns C ) proof(cases)

case 1
then obtain p1 p2 x where p:p = p1@p2 and rdp2 :(β, p2 ) ∈ set

(redex-patterns (σ x))
and p1 :p1 ∈ var-poss (lhs α) lhs α|-p1 = Var x
unfolding A using redex-patterns-elem-subst by metis

then obtain i where i:i < length (var-rule α) (var-rule α)!i = x
using lin by (metis in-set-conv-nth length-var-poss-list linear-term-var-vars-term-list

term.inject(1 ) var-poss-list-sound vars-term-list-var-poss-list)
with p1 lin have p1 :p1 = var-poss-list (lhs α) ! i

by (metis length-var-poss-list linear-term-unique-vars linear-term-var-vars-term-list
nth-mem var-poss-imp-poss var-poss-list-sound vars-term-list-var-poss-list)

from i IH rdp2 have (β, p2 ) ∈ set (redex-patterns (Cs!i))
by (simp add: l-Bs)

with i(1 ) show ?thesis unfolding C p
using redex-patterns-elem-rule ′ p1 by (metis alpha l-Bs l-Cs-Bs

length-var-poss-list length-var-rule)
next

case 2
show ?thesis proof(cases p=[])

case True
from 2 have α = β

unfolding B True using lhs by (metis (no-types, lifting) B list.set-intros(1 )
option.sel

prod.inject redex-patterns.simps(3 ) redex-patterns-label subterm.prems(2 ))

then show ?thesis unfolding C redex-patterns.simps True by simp
next

case False
with 2 obtain i p ′ where i:i < length Bs i < length (var-poss-list (lhs

α))
and p:p = (var-poss-list (lhs α) ! i)@p ′ and ∗:(β, p ′) ∈ set (redex-patterns

(Bs!i))
unfolding B by (meson redex-patterns-elem-rule)

with IH l-Cs-Bs have (β, p ′) ∈ set (redex-patterns (Cs!i)) by simp
with i l-Cs-Bs show ?thesis unfolding C p

by (metis redex-patterns-elem-rule ′)
qed

qed
}
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ultimately show ?thesis by auto
qed

next
case (3 α As)
from 3 (2 ) obtain f ′ ts where lhs:lhs α = Fun f ′ ts

using no-var-lhs by fastforce
from 3 (2 ) have lin:linear-term (lhs α)

using left-lin left-linear-trs-def by fastforce
from 3 subterm(2 ,4 ) consider (Pfun) ∃ g Bs. B = Pfun g Bs | (Prule) ∃β Bs.

B = Prule β Bs by (meson rule-join)
then show ?thesis proof(cases)

case Pfun
then obtain f Bs where B:B = Pfun f Bs by blast
from subterm(2 ,4 ) obtain σ Cs where sigma:match B (to-pterm (lhs α)) =

Some σ
and C :C = Prule α Cs and l-Cs-As:length Cs = length As and As:(∀ i<length

As. (As ! i) t σ (var-rule α ! i) = Some (Cs ! i))
unfolding 3 B using 3 (3 ) join-rule-fun by metis

{fix i assume i:i < length As
have σ (var-rule α ! i) ∈ wf-pterm R

using subterm(3 ) by (metis 3 (3 ) i match-well-def sigma vars-to-pterm)
then have set (redex-patterns (Cs!i)) = set (redex-patterns (As!i)) ∪ set

(redex-patterns (σ (var-rule α ! i)))
using subterm(1 ) 3 by (meson As i nth-mem supt.arg)

}note IH=this
{fix β p assume rdp:(β, p) ∈ set (redex-patterns C )

then have (β, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
proof(cases p=[])

case True
with rdp have α = β

unfolding C using lhs by (metis (no-types, lifting) C join-wf-pterm
list.set-intros(1 ) option.sel

prod.inject redex-patterns.simps(3 ) redex-patterns-label subterm.prems(1 )
subterm.prems(2 ) subterm.prems(3 ))

then show ?thesis unfolding 3 redex-patterns.simps True by simp
next

case False
with rdp obtain i p ′ where i:i < length Cs i < length (var-poss-list (lhs

α))
and p:p = (var-poss-list (lhs α) ! i)@p ′ and ∗:(β, p ′) ∈ set (redex-patterns

(Cs!i))
unfolding C by (meson redex-patterns-elem-rule)

let ?p=var-poss-list (lhs α) ! i
from ∗ i IH consider (β, p ′) ∈ set (redex-patterns (σ (var-rule α ! i))) |

(β, p ′) ∈ set (redex-patterns (As!i))
using l-Cs-As by auto

then show ?thesis proof(cases)
case 1
let ?x=var-rule α ! i
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from i(2 ) have p-pos:?p ∈ poss (lhs α)
by (metis nth-mem var-poss-iff var-poss-list-sound)

from i(2 ) have p-x:(lhs α)|-?p = Var ?x
by (metis 3 (2 ) case-prodD left-lin left-linear-trs-def length-var-poss-list

linear-term-var-vars-term-list vars-term-list-var-poss-list)
from sigma have (β, p) ∈ set (redex-patterns B)
unfolding p using redex-patterns-elem-subst ′[of β p ′ σ ?x, OF 1 p-pos

p-x] by (simp add: match-matches)
then show ?thesis by simp

next
case 2
from i have (β, p) ∈ set (redex-patterns A)

unfolding 3 (1 ) p l-Cs-As using redex-patterns-elem-rule ′[OF 2 ] by
presburger

then show ?thesis by simp
qed

qed
}
moreover
{fix β p assume (β, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)
then consider (β, p) ∈ set (redex-patterns B) | (β, p) ∈ set (redex-patterns

A) by force
then have (β, p) ∈ set (redex-patterns C ) proof(cases)

case 1
then obtain p1 p2 x where p:p = p1@p2 and rdp2 :(β, p2 ) ∈ set

(redex-patterns (σ x))
and p1 :p1 ∈ var-poss (lhs α) lhs α|-p1 = Var x
using sigma redex-patterns-elem-subst using match-matches by blast

then obtain i where i:i < length (var-rule α) (var-rule α)!i = x
using lin by (metis in-set-conv-nth length-var-poss-list linear-term-var-vars-term-list

term.inject(1 ) var-poss-list-sound vars-term-list-var-poss-list)
with p1 lin have p1 :p1 = var-poss-list (lhs α) ! i

by (metis length-var-poss-list linear-term-unique-vars linear-term-var-vars-term-list
nth-mem var-poss-imp-poss var-poss-list-sound vars-term-list-var-poss-list)

from i IH rdp2 have (β, p2 ) ∈ set (redex-patterns (Cs!i))
by (simp add: 3 (3 ))

with i(1 ) show ?thesis unfolding C p
using redex-patterns-elem-rule ′ p1 by (metis 3 (2 ) 3 (3 ) l-Cs-As

length-var-poss-list length-var-rule)
next

case 2
show ?thesis proof(cases p=[])

case True
from 2 have α = β

unfolding True using lhs by (metis 3 (1 ) list.set-intros(1 ) option.sel
prod.sel(1 ) redex-patterns.simps(3 ) redex-patterns-label subterm.prems(1 ))

then show ?thesis unfolding C redex-patterns.simps True by simp
next

case False
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with 2 obtain i p ′ where i:i < length As i < length (var-poss-list (lhs
α))

and p:p = (var-poss-list (lhs α) ! i)@p ′ and ∗:(β, p ′) ∈ set (redex-patterns
(As!i))

using 3 (1 ) redex-patterns-elem-rule by blast
with IH l-Cs-As have (β, p ′) ∈ set (redex-patterns (Cs!i)) by simp
with i l-Cs-As show ?thesis unfolding C p

by (metis redex-patterns-elem-rule ′)
qed

qed
}
ultimately show ?thesis by auto

next
case Prule
then obtain β Bs where B:B = Prule β Bs by blast
obtain Cs where alpha-beta:α = β and l-As-Bs:length As = length Bs

and C :C = Prule α Cs and l-Cs-As:length Cs = length As and args:∀ i <
length As. As ! i t Bs ! i = Some (Cs ! i)

using join-rule-rule[OF subterm(4 ,2 ,3 )[unfolded B 3 ]] using 3 (3 ) by
fastforce

{fix i assume i < length As
from subterm(1 ) have set (redex-patterns (Cs!i)) = set (redex-patterns

(As!i)) ∪ set (redex-patterns (Bs!i))
by (metis 3 (1 ) 3 (4 ) B ‹i < length As› fun-well-arg l-As-Bs local.args

nth-mem subterm.prems(2 ) supt.arg)
}note IH=this
{fix γ p assume rdp:(γ, p) ∈ set (redex-patterns C )

have (γ, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B) proof(cases
p = [])

case True
from rdp have α = γ unfolding C True using lhs

by (metis (no-types, lifting) C join-wf-pterm list.set-intros(1 ) option.sel
prod.inject redex-patterns.simps(3 ) redex-patterns-label subterm(2 ,3 ,4 ))

then show ?thesis unfolding 3 True by simp
next

case False
then obtain p2 i where i:i < length Cs i < length (var-poss-list (lhs α))

and p:p = var-poss-list (lhs α) ! i @p2 and (γ, p2 ) ∈ set (redex-patterns
(Cs!i))

using C rdp redex-patterns-elem-rule by blast
with IH consider (γ, p2 ) ∈ set (redex-patterns (As!i)) | (γ, p2 ) ∈ set

(redex-patterns (Bs!i))
using l-Cs-As by fastforce

then show ?thesis proof(cases)
case 1
with i have (γ, p) ∈ set (redex-patterns A)

unfolding 3 p l-Cs-As by (metis 3 (3 ) redex-patterns-elem-rule ′)
then show ?thesis by simp

next
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case 2
with i have (γ, p) ∈ set (redex-patterns B)

unfolding B l-Cs-As l-As-Bs p alpha-beta using redex-patterns-elem-rule ′

by blast
then show ?thesis by simp

qed
qed

}
moreover
{fix γ p assume rdp:(γ, p) ∈ set (redex-patterns A) ∪ set (redex-patterns B)

have (γ, p) ∈ set (redex-patterns C ) proof(cases p = [])
case True
from rdp lhs have γ = α

unfolding 3 B alpha-beta True
by (metis 3 (1 ) B Un-iff alpha-beta list.set-intros(1 ) option.inject prod.inject

redex-patterns.simps(3 ) redex-patterns-label subterm.prems(1 ) subterm.prems(2 ))
then show ?thesis unfolding C True by simp

next
case False

from rdp consider (γ, p) ∈ set (redex-patterns A) | (γ, p) ∈ set
(redex-patterns B) by force

then show ?thesis proof(cases)
case 1
then obtain p2 i where i:i < length As i < length (var-poss-list (lhs

α))
and p:p = var-poss-list (lhs α) ! i @p2 and (γ, p2 ) ∈ set (redex-patterns

(As!i))
using 3 redex-patterns-elem-rule False by blast

with IH have (γ, p2 ) ∈ set (redex-patterns (Cs!i)) by blast
with i l-Cs-As show ?thesis unfolding C p

by (metis redex-patterns-elem-rule ′)
next

case 2
then obtain p2 i where i:i < length Bs i < length (var-poss-list (lhs

α))
and p:p = var-poss-list (lhs α) ! i @p2 and (γ, p2 ) ∈ set (redex-patterns

(Bs!i))
using B alpha-beta redex-patterns-elem-rule False by blast

with IH have (γ, p2 ) ∈ set (redex-patterns (Cs!i)) using l-As-Bs by
simp

with i l-Cs-As l-As-Bs show ?thesis unfolding C p
by (metis redex-patterns-elem-rule ′)

qed
qed

}
ultimately show ?thesis by auto

qed
qed

qed
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lemma redex-patterns-join-list:
assumes join-list As = Some A and ∀ a ∈ set As. a ∈ wf-pterm R
shows set (redex-patterns A) =

⋃
(set (map (set ◦ redex-patterns) As))

using assms proof(induct As arbitrary:A)
case (Cons a As)
show ?case proof(cases As = [])

case True
from Cons(2 ,3 ) have a = A

unfolding True join-list.simps by (simp add: join-with-source)
then show ?thesis unfolding True by simp

next
case False
then have ∗:join-list (a#As) = join-opt a (join-list As)

using join-list.elims by blast
with Cons(2 ) obtain A ′ where A ′:join-list As = Some A ′ by fastforce

with Cons(1 ,3 ) have set (redex-patterns A ′) =
⋃

(set (map (set ◦ re-
dex-patterns) As))

by simp
then show ?thesis using redex-patterns-join ∗ Cons(2 ,3 ) unfolding A ′ join-opt.simps

by (metis (no-types, opaque-lifting) A ′ Sup-insert insert-iff join-list-wf-pterm
list.set(2 ) list.simps(9 ) o-apply)

qed
qed simp

lemma redex-patterns-context:
assumes p ∈ poss s
shows redex-patterns ((ctxt-of-pos-term p (to-pterm s)) 〈A〉) = map (λ(α, q).

(α,p@q)) (redex-patterns A)
using assms proof(induct p arbitrary:s)
case (Cons i p ′)
from Cons(2 ) obtain f ss where s:s = Fun f ss

by (meson args-poss)
from Cons(2 ) have i:i < length ss and p ′:p ′ ∈ poss (ss!i)

unfolding s by auto
with Cons(1 ) have IH :redex-patterns (ctxt-of-pos-term p ′ (to-pterm (ss!i)))〈A〉

=
map (λ(α, q). (α,p ′@q)) (redex-patterns A) by simp

from i have l:length (take i (map to-pterm ss) @ (ctxt-of-pos-term p ′ (map
to-pterm ss ! i))〈A〉 # drop (Suc i) (map to-pterm ss)) = length ss

by simp
let ?take-i=take i (map to-pterm ss)
let ?ith=(ctxt-of-pos-term p ′ (map to-pterm ss ! i))〈A〉
let ?drop-i=drop (Suc i) (map to-pterm ss)
let ?xs=take i (map to-pterm ss) @ (ctxt-of-pos-term p ′ (map to-pterm ss ! i))〈A〉

# drop (Suc i) (map to-pterm ss)
let ?zip=zip [0 ..<length ss] (map redex-patterns ?xs)
from i have l-zip:length ?zip = length ss by auto
let ?zip1=zip [0 ..<i] (map redex-patterns ?take-i)
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let ?zip2=zip [Suc i..<length ss] (map redex-patterns ?drop-i)
have zip:?zip = ?zip1 @ ((i, redex-patterns ?ith) # ?zip2 )

unfolding map-append zip-append2 using i by (simp add: upt-conv-Cons)
{fix j assume j:j < length (map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip1 )

with i have (map redex-patterns ?take-i)!j = []
by (simp add: redex-patterns-to-pterm)

with j have ?zip1 ! j = (j, [])
by simp

with j have map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip1 ! j = []
by simp

}
then have 1 :concat (map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip1 ) = []
by (metis length-0-conv length-greater-0-conv less-nat-zero-code nth-concat-split)

{fix j assume j:j < length (map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip2 )
with i have (map redex-patterns ?drop-i)!j = []

by (simp add: redex-patterns-to-pterm)
with j have ?zip2 ! j = (j+Suc i, [])

by simp
with j have map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip2 ! j = []

by simp
}
then have 2 :concat (map (λ(x, y). map (λ(α, p). (α, x # p)) y) ?zip2 ) = []
by (metis length-0-conv length-greater-0-conv less-nat-zero-code nth-concat-split)

show ?case unfolding s to-pterm.simps ctxt-of-pos-term.simps intp-actxt.simps
redex-patterns.simps l zip

unfolding map-append concat-append 1 list.map(2 ) concat.simps 2 using IH
i by simp
qed simp

lemma redex-patterns-prule:
assumes l:length ts = length (var-poss-list (lhs α))
shows redex-patterns (Prule α (map to-pterm ts)) = [(α, [])]

proof−
{fix x assume x:x ∈ set (map2 (λx. map (λ(α, p2 ). (α, x @ p2 ))) (var-poss-list

(lhs α)) (map redex-patterns (map to-pterm ts)))
from l have length (map2 (λx. map (λ(α, p2 ). (α, x @ p2 ))) (var-poss-list

(lhs α)) (map redex-patterns (map to-pterm ts))) = length (var-poss-list (lhs α))
by simp

with x obtain i where i:i < length (var-poss-list (lhs α)) x = (map2 (λx. map
(λ(α, p2 ). (α, x @ p2 ))) (var-poss-list (lhs α)) (map redex-patterns (map to-pterm
ts)))!i

by (metis in-set-idx)
from i l have x = []

using redex-patterns-to-pterm by simp
}
then show ?thesis

unfolding redex-patterns.simps using concat-eq-Nil-conv by blast

236



qed

lemma redex-patterns-single:
assumes p ∈ poss s and to-rule α ∈ R
shows redex-patterns (ll-single-redex s p α) = [(α, p)]

proof−
let ?As=map (to-pterm ◦ (λpi. s |- (p @ pi))) (var-poss-list (lhs α))
let ?A=Prule α ?As
have redex-patterns ?A = [(α, [])]

using redex-patterns-prule using length-map by fastforce
moreover have set (redex-patterns (ll-single-redex s p α)) = set (map (λ (α, q).

(α,p@q)) (redex-patterns ?A))
using redex-patterns-context assms redex-patterns-to-pterm[of s] unfolding

ll-single-redex-def using p-in-poss-to-pterm by fastforce
ultimately have set:set (redex-patterns (ll-single-redex s p α)) = {(α, p)}

by simp
have wf :ll-single-redex s p α ∈ wf-pterm R

using assms left-lin left-linear-trs-def single-redex-wf-pterm by fastforce
have sorted:sorted-wrt (ord.lexordp (<)) (map snd [(α, p)]) by simp
show ?thesis using redex-patterns-equal[OF wf sorted] set by simp

qed

lemma get-label-imp-rdp:
assumes get-label (labeled-source A |- p) = Some (α, 0 )

and A ∈ wf-pterm R
and p ∈ poss (labeled-source A)

shows (α, p) ∈ set (redex-patterns A)
using assms proof(induct A arbitrary:p)
case (Pfun f As)
then show ?case proof(cases p)

case (Cons i p ′)
from Pfun(4 ) have i:i < length As

unfolding Cons by simp
moreover from Pfun(2 ,4 ) have get-label (labeled-source (As!i) |- p ′) = Some

(α, 0 )
unfolding Cons by simp

moreover from Pfun(4 ) have p ′ ∈ poss (labeled-source (As!i))
unfolding Cons using i by simp

ultimately have (α, p ′) ∈ set (redex-patterns (As!i))
using Pfun(1 ,3 ) using nth-mem by blast

then show ?thesis
unfolding Cons redex-patterns.simps using i by (metis redex-patterns.simps(2 )

redex-patterns-elem-fun ′)
qed simp

next
case (Prule β As)
from Prule(3 ) obtain f ts where lhs:lhs β = Fun f ts
by (metis Inl-inject Term.term.simps(4 ) case-prodD is-Prule.simps(1 ) is-Prule.simps(3 )

no-var-lhs term.collapse(2 ) term.sel(2 ) wf-pterm.simps)
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then show ?case proof(cases p)
case Nil
from Prule(2 ,3 ,4 ) show ?thesis
unfolding Nil labeled-source.simps lhs label-term.simps eval-term.simps subt-at.simps

get-label.simps by simp
next

case (Cons i ′ p ′)
from Prule(3 ) have l:length As = length (var-poss-list (lhs β))

by (metis Inl-inject is-Prule.simps(1 ) is-Prule.simps(3 ) length-var-poss-list
length-var-rule term.distinct(1 ) term.inject(2 ) wf-pterm.simps)

from Prule obtain i p2 where p:p = var-poss-list (lhs β)!i @ p2 and i:i <
length As and p2 :p2 ∈ poss (labeled-source (As!i))

by (smt (verit) labeled-source-to-term left-lin-no-var-lhs.get-label-Prule left-lin-no-var-lhs-axioms
list.distinct(1 ) local.Cons poss-term-lab-to-term)

let ?x=vars-term-list (lhs β) ! i
let ?p1=var-poss-list (lhs β) ! i
have p1 :?p1 ∈ poss (labeled-lhs β)
by (metis i l label-term-to-term nth-mem poss-term-lab-to-term var-poss-imp-poss

var-poss-list-sound)
have labeled-lhs β |- ?p1 = Var ?x
using i l by (metis length-var-poss-list var-poss-list-labeled-lhs vars-term-list-labeled-lhs

vars-term-list-var-poss-list)
then have labeled-source (Prule β As) |- ?p1 = labeled-source (As!i)

unfolding labeled-source.simps subt-at-subst[OF p1 ]
by (smt (verit) Inl-inject Prule.prems(2 ) apply-lhs-subst-var-rule comp-eq-dest-lhs

eval-term.simps(1 ) i is-Prule.simps(1 ) is-Prule.simps(3 )
l length-map length-remdups-eq length-rev length-var-poss-list map-nth-conv

rev-rev-ident term.distinct(1 ) term.inject(2 ) wf-pterm.simps)
with Prule(2 ,4 ) have get-label (labeled-source (As!i)|-p2 ) = Some (α, 0 )

unfolding p labeled-source.simps by auto
then have (α, p2 ) ∈ set (redex-patterns (As!i))
using Prule(1 )[of As!i p2 ] p2 Prule(3 ) i by (meson fun-well-arg nth-mem)

then show ?thesis unfolding p redex-patterns.simps using i
by (metis l redex-patterns.simps(3 ) redex-patterns-elem-rule ′)

qed
qed simp

lemma redex-pattern-proof-term-equality:
assumes A ∈ wf-pterm R B ∈ wf-pterm R

and set (redex-patterns A) = set (redex-patterns B)
and source A = source B

shows A = B
using assms proof(induct A arbitrary:B)
case (1 x)
then show ?case

using redex-poss-empty-imp-empty-step source-empty-step by force
next

case (2 As f )
then show ?case proof(cases B)
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case (Pfun g Bs)
from 2 (4 ) have f :f = g

unfolding Pfun by fastforce
from 2 (4 ) have len:length As = length Bs

unfolding Pfun f by (metis length-map source.simps(2 ) term.inject(2 ))
{fix i assume i:i < length As

have set (redex-patterns (As!i)) = set (redex-patterns (Bs!i)) proof(rule
ccontr)

assume set (redex-patterns (As!i)) 6= set (redex-patterns (Bs!i))
then consider ∃ r . r ∈ set (redex-patterns (As!i)) ∧ r /∈ set (redex-patterns

(Bs!i)) |
∃ r . r ∈ set (redex-patterns (Bs!i)) ∧ r /∈ set (redex-patterns

(As!i))
by blast

then show False proof(cases)
case 1
then obtain p α where (α, p) ∈ set (redex-patterns (As!i)) and B:(α, p)

/∈ set (redex-patterns (Bs!i))
by force

then have (α, i#p) ∈ set (redex-patterns (Pfun f As))
by (meson i redex-patterns-elem-fun ′)

moreover from B have (α, i#p) /∈ set (redex-patterns (Pfun f Bs))
by (metis list.inject redex-patterns-elem-fun)

ultimately show ?thesis
using 2 .prems(2 ) Pfun f by blast

next
case 2
then obtain p α where (α, p) ∈ set (redex-patterns (Bs!i)) and A:(α,

p) /∈ set (redex-patterns (As!i))
by force

then have (α, i#p) ∈ set (redex-patterns (Pfun f Bs))
by (metis i len redex-patterns-elem-fun ′)

moreover from A have (α, i#p) /∈ set (redex-patterns (Pfun f As))
by (metis list.inject redex-patterns-elem-fun)

ultimately show ?thesis
using 2 .prems(2 ) Pfun f by blast

qed
qed
moreover have (Bs!i) ∈ wf-pterm R

using 2 (2 ) Pfun i len by auto
ultimately have As!i = Bs!i

using 2 (1 ,4 ) by (metis Pfun i len nth-map nth-mem source.simps(2 )
term.inject(2 ))

}
then show ?thesis

unfolding Pfun f using len using nth-equalityI by blast
next

case (Prule α Bs)
with 2 (3 ) show ?thesis
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by (metis list.distinct(1 ) list.set-intros(1 ) redex-patterns.simps(3 ) redex-patterns-elem-fun)

qed simp
next

case (3 α As)
then show ?case proof(cases B)

case (Pfun g Bs)
with 3 (5 ) show ?thesis
by (metis list.distinct(1 ) list.set-intros(1 ) redex-patterns.simps(3 ) redex-patterns-elem-fun)

next
case (Prule β Bs)
from 3 (5 ) have α:α = β

unfolding Prule using distinct-snd-rdp
by (metis 3 .prems(1 ) Pair-inject Prule left-lin-no-var-lhs.redex-patterns-label

left-lin-no-var-lhs-axioms list.set-intros(1 ) option.inject redex-patterns.simps(3 ))
from 3 have len:length As = length Bs

using Prule α by (metis length-args-well-Prule wf-pterm.intros(3 ))
have len2 :length (var-poss-list (lhs β)) = length Bs

by (metis 3 .hyps(1 ) 3 .hyps(2 ) α len length-var-poss-list length-var-rule)
{fix i assume i:i < length As

obtain pi where pi:var-poss-list (lhs β) ! i = pi
by auto
have set (redex-patterns (As!i)) = set (redex-patterns (Bs!i)) proof(rule

ccontr)
assume set (redex-patterns (As!i)) 6= set (redex-patterns (Bs!i))
then consider ∃ r . r ∈ set (redex-patterns (As!i)) ∧ r /∈ set (redex-patterns

(Bs!i)) |
∃ r . r ∈ set (redex-patterns (Bs!i)) ∧ r /∈ set (redex-patterns

(As!i))
by blast

then show False proof(cases)
case 1
then obtain p β where (β, p) ∈ set (redex-patterns (As!i)) and B:(β, p)

/∈ set (redex-patterns (Bs!i))
by force

then show False
using 3 (4 ,5 ) by (metis Prule α i len len2 redex-patterns-elem-rule ′

redex-patterns-rule ′′)
next

case 2
then obtain p β where (β, p) ∈ set (redex-patterns (Bs!i)) and A:(β,

p) /∈ set (redex-patterns (As!i))
by force

then show False
using 3 by (metis Prule α i len len2 redex-patterns-elem-rule ′ re-

dex-patterns-rule ′′ wf-pterm.intros(3 ))
qed

qed
moreover have (Bs!i) ∈ wf-pterm R
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using 3 .prems(1 ) Prule i len by auto
moreover have co-initial (As!i) (Bs!i)

using 3 by (metis Prule α co-init-prule i wf-pterm.intros(3 ))
ultimately have As!i = Bs!i

using 3 (3 ) by (simp add: i)
}
then show ?thesis

unfolding Prule α using len using nth-equalityI by blast
qed simp

qed

end

abbreviation single-steps :: ( ′f , ′v) pterm ⇒ ( ′f , ′v) pterm list
where single-steps A ≡ map (λ (α, p). ll-single-redex (source A) p α) (redex-patterns

A)

context left-lin-wf-trs
begin

lemma ll-no-var-lhs: left-lin-no-var-lhs R
by (simp add: left-lin-axioms left-lin-no-var-lhs-def no-var-lhs-axioms)

lemma single-step-redex-patterns:
assumes A ∈ wf-pterm R ∆ ∈ set (single-steps A)
shows ∃ p α. ∆ = ll-single-redex (source A) p α ∧ (α, p) ∈ set (redex-patterns

A) ∧ redex-patterns ∆ = [(α, p)]
proof−

from assms obtain p α where ∆:∆ = ll-single-redex (source A) p α and rdp:(α,
p) ∈ set (redex-patterns A)

by auto
moreover have to-rule α ∈ R
using rdp assms(1 ) labeled-wf-pterm-rule-in-TRS left-lin-no-var-lhs.redex-patterns-label

ll-no-var-lhs by fastforce
moreover have p ∈ poss (source A)

using assms rdp left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs by blast
ultimately show ?thesis

using ∆ left-lin-no-var-lhs.redex-patterns-single[OF ll-no-var-lhs] by blast
qed

lemma single-step-wf :
assumes A ∈ wf-pterm R and ∆ ∈ set (single-steps A)
shows ∆ ∈ wf-pterm R

proof−
from assms obtain p α where p:p ∈ poss (source A) ∆ = ll-single-redex (source

A) p α and get-label ((labeled-source A)|-p) = Some (α, 0 )
using left-lin-no-var-lhs.redex-patterns-label left-lin-no-var-lhs.redex-patterns-subset-possL

possL-subset-poss-source ll-no-var-lhs by fastforce
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then have to-rule α ∈ R
using assms(1 ) labeled-wf-pterm-rule-in-TRS by fastforce

with p show ?thesis using single-redex-wf-pterm
using left-lin left-linear-trs-def by fastforce

qed

lemma source-single-step:
assumes ∆:∆ ∈ set (single-steps A) and wf :A ∈ wf-pterm R
shows source ∆ = source A

proof−
let ?s=source A
from ∆ obtain p α where pa:∆ = ll-single-redex ?s p α (α, p) ∈ set (redex-patterns

A)
by auto

from pa have lab-p:get-label (labeled-source A |-p) = Some (α, 0 ) and p:p ∈
poss ?s

using left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs wf by blast+
from lab-p p obtain p ′ where p ′:p ′∈poss A and ctxt:ctxt-of-pos-term p (source

A) = source-ctxt (ctxt-of-pos-term p ′ A)
and Ap ′:A |- p ′ = Prule α (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule α)])
using poss-labeled-source wf by force

have l:length (var-rule α) = length (var-poss-list (lhs α))
using wf by (metis Ap ′ Inl-inject Term.term.simps(4 ) is-Prule.simps(1 ) is-Prule.simps(3 )

length-var-poss-list length-var-rule p ′ subt-at-is-wf-pterm term.inject(2 ) wf-pterm.simps)
{fix i assume i:i < length (var-rule α)

let ?pi=var-poss-list (lhs α)!i
obtain x where x:lhs α |- ?pi = Var x var-rule α!i = x

by (metis comp-apply i l length-remdups-eq length-rev length-var-poss-list
rev-rev-ident vars-term-list-var-poss-list)

have ?s|-p = lhs α · 〈map source (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule
α)])〉α

using Ap ′ ctxt by (metis ctxt-of-pos-term-well ctxt-supt-id local.wf p p ′ re-
place-at-subt-at source.simps(3 ) source-ctxt-apply-term)

moreover have lhs α · 〈map source (map (λi. A |- (p ′ @ [i])) [0 ..<length
(var-rule α)])〉α |- ?pi = map source (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule
α)])!i

using x by (smt (verit, ccfv-SIG) diff-zero eval-term.simps(1 ) i l length-upt
lhs-subst-var-i map-eq-imp-length-eq map-nth nth-mem subt-at-subst var-poss-imp-poss
var-poss-list-sound)

ultimately have ?s|-(p@?pi) = source (A |- (p ′ @ [i])) using i p by auto
then have map source (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule α)]) !i

= map (λpi. source A |- (p @ pi)) (var-poss-list (lhs α)) ! i
using l i by auto

}
with l have map source (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule α)]) =

map (λpi. source A |- (p @ pi)) (var-poss-list (lhs α))
by (simp add: map-equality-iff )

then have source (A|-p ′) = lhs α · 〈map (λpi. ?s |- (p @ pi)) (var-poss-list (lhs
α))〉α

242



unfolding Ap ′ source.simps by simp
with ctxt show ?thesis unfolding pa(1 ) source-single-redex[OF p] using p ′

by (metis ctxt-of-pos-term-well ctxt-supt-id wf source-ctxt-apply-term)
qed

lemma single-redex-single-step:
assumes ∆:∆ = ll-single-redex s p α

and p:p ∈ poss s and α:to-rule α ∈ R
and src:source ∆ = s

shows single-steps ∆ = [∆]
using src unfolding ∆ left-lin-no-var-lhs.redex-patterns-single[OF ll-no-var-lhs

p α] by simp

lemma single-step-label-imp-label:
assumes ∆:∆ ∈ set (single-steps A) and q:q ∈ poss (labeled-source ∆) and wf :A
∈ wf-pterm R

and lab:get-label (labeled-source ∆|-q) = Some l
shows get-label (labeled-source A |-q) = Some l

proof−
let ?s=source A
from ∆ obtain p α where pa:∆ = ll-single-redex ?s p α (α, p) ∈ set (redex-patterns

A)
by auto

from pa have lab-p:get-label (labeled-source A |-p) = Some (α, 0 ) and p:p ∈
poss (source A)

using left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs wf by blast+
from pa lab obtain q ′ where l:l = (α, size q ′) and q ′:q = p@q ′ q ′ ∈ fun-poss

(lhs α)
using single-redex-label[OF pa(1 ) p] q pa(2 ) wf

by (metis labeled-source-to-term labeled-wf-pterm-rule-in-TRS left-lin-no-var-lhs.redex-patterns-label
ll-no-var-lhs poss-term-lab-to-term prod.collapse)

from lab-p p obtain p ′ where p ′∈poss A and ctxt-of-pos-term p (source A) =
source-ctxt (ctxt-of-pos-term p ′ A) and A |- p ′ = Prule α (map (λi. A |- (p ′ @ [i]))
[0 ..<length (var-rule α)])

using poss-labeled-source wf by force
then have labeled-source A = (ctxt-of-pos-term p (labeled-source A))〈labeled-source

(Prule α (map (λi. A |- (p ′ @ [i])) [0 ..<length (var-rule α)]))〉
using label-source-ctxt p wf by (metis ctxt-supt-id)

then have labeled-source A|-q = labeled-lhs α · 〈map labeled-source (map (λi. A
|- (p ′ @ [i])) [0 ..<length (var-rule α)])〉α |-q ′

unfolding q ′ labeled-source.simps by (metis labeled-source.simps(3 ) labeled-source-to-term
p poss-term-lab-to-term subt-at-append subt-at-ctxt-of-pos-term)

then have get-label (labeled-source A|-q) = Some (α, size q ′)
using q ′(2 ) by (simp add: label-term-increase)

with l show ?thesis by simp
qed

lemma single-steps-measure:
assumes ∆1 :∆1 ∈ set (single-steps A) and ∆2 :∆2 ∈ set (single-steps A)
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and wf :A ∈ wf-pterm R and neq:∆1 6= ∆2
shows measure-ov ∆1 ∆2 = 0

proof−
let ?s=source A
from ∆1 obtain p α where pa:∆1 = ll-single-redex ?s p α (α, p) ∈ set

(redex-patterns A)
by auto

from ∆2 obtain q β where qb:∆2 = ll-single-redex ?s q β (β, q) ∈ set
(redex-patterns A)

by auto
from neq have pq:p 6= q ∨ α 6= β

using pa(1 ) qb(1 ) by force
{assume measure-ov ∆1 ∆2 6= 0

then obtain r where r1 :r ∈ possL ∆1 and r2 :r ∈ possL ∆2
by (metis card.empty disjoint-iff )

from r1 obtain p ′ where p ′:r = p@p ′ and l1 :get-label (labeled-source ∆1 |-r)
= Some (α, size p ′)

using single-redex-label[OF pa(1 )] wf
by (smt (verit, ccfv-SIG) labeled-source-to-term labeled-wf-pterm-rule-in-TRS

left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs pa(2 ) possL-obtain-label possL-subset-poss-source
poss-term-lab-to-term subsetD)

from r2 obtain q ′ where q ′:r = q@q ′ and l2 :get-label (labeled-source ∆2 |-r)
= Some (β, size q ′)

using single-redex-label[OF qb(1 )] wf
by (smt (verit, ccfv-SIG) labeled-source-to-term labeled-wf-pterm-rule-in-TRS

left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs qb(2 ) possL-obtain-label possL-subset-poss-source
poss-term-lab-to-term subsetD)

from l1 have get-label (labeled-source A |-r) = Some (α, size p ′)
using ∆1 labelposs-subs-poss wf r1 single-step-label-imp-label by blast

moreover from l2 have get-label (labeled-source A |-r) = Some (β, size q ′)
using ∆2 labelposs-subs-poss wf r2 single-step-label-imp-label by blast

moreover from pq have p ′ 6= q ′ ∨ α 6= β
using p ′ q ′ by blast

ultimately have False using p ′ q ′ by auto
}
then show ?thesis by auto

qed

lemma single-steps-orth:
assumes ∆1 :∆1 ∈ set (single-steps A) and ∆2 :∆2 ∈ set (single-steps A) and

wf :A ∈ wf-pterm R
shows ∆1 ⊥p ∆2
using single-steps-measure[OF ∆1 ∆2 wf ] equal-imp-orthogonal
by (metis ∆1 ∆2 ll-no-var-lhs local.wf measure-zero-imp-orthogonal single-step-wf

source-single-step)

lemma redex-patterns-below:
assumes wf :A ∈ wf-pterm R
and (α, p) ∈ set (redex-patterns A)
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and (β, p@q) ∈ set (redex-patterns A) and q 6= []
shows q /∈ fun-poss (lhs α)
proof−

let ?∆1=ll-single-redex (source A) p α
let ?∆2=ll-single-redex (source A) (p@q) β
from assms have ∆1 :?∆1 ∈ set (single-steps A)

by force
from assms have ∆2 :?∆2 ∈ set (single-steps A)

by force
from assms(1 ,2 ) have possL1 :possL ?∆1 = {p@p ′ | p ′. p ′ ∈ fun-poss (lhs α)}
by (metis (no-types, lifting) left-lin-no-var-lhs.redex-pattern-rule-symbol left-lin-no-var-lhs.redex-patterns-label

ll-no-var-lhs single-redex-possL)
from assms(1 ,3 ) have possL2 :possL ?∆2 = {(p@q)@p ′ | p ′. p ′ ∈ fun-poss (lhs

β)}
using left-lin.single-redex-possL left-lin-axioms left-lin-no-var-lhs.redex-pattern-rule-symbol

left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs by blast
from assms have neq:?∆1 6= ?∆2
by (metis Pair-inject left-lin-no-var-lhs.redex-patterns-label ll-no-var-lhs self-append-conv

single-redex-neq)
from single-steps-measure[OF ∆1 ∆2 wf neq] have possL ?∆1 ∩ possL ?∆2 =
{}

by (simp add: finite-possL)
moreover have [] ∈ fun-poss (lhs β) proof−

have to-rule β ∈ R
using assms(1 ) assms(3 ) left-lin-no-var-lhs.redex-pattern-rule-symbol ll-no-var-lhs

by blast
then show ?thesis

using wf-trs-alt wf-trs-imp-lhs-Fun by fastforce
qed
ultimately show ?thesis

unfolding possL1 possL2 by auto
qed

lemma single-steps-singleton:
assumes A-wf :A ∈ wf-pterm R and ∆:single-steps A = [∆]
shows A = ∆

proof−
obtain p α where rdp-∆:∆ = ll-single-redex (source A) p α (α, p) ∈ set

(redex-patterns A) redex-patterns ∆ = [(α, p)]
using single-step-redex-patterns[OF A-wf ] ∆ by auto

then have rdp-A:redex-patterns A = [(α, p)]
by (smt (verit) ∆ in-set-simps(2 ) list.map-disc-iff map-eq-Cons-D)

then show ?thesis
using left-lin-no-var-lhs.redex-pattern-proof-term-equality[OF ll-no-var-lhs A-wf ]
by (metis A-wf ∆ list.set-intros(1 ) rdp-∆(3 ) single-step-wf source-single-step)

qed
end

context left-lin-no-var-lhs
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begin
lemma measure-ov-imp-single-step-ov:

assumes measure-ov A B 6= 0 and wf :A ∈ wf-pterm R
shows ∃∆ ∈ set (single-steps A). measure-ov ∆ B 6= 0

proof−
from assms obtain r where r1 :r ∈ possL A and r2 :r ∈ possL B

by (metis card.empty disjoint-iff )
then obtain α n where lab:get-label (labeled-source A |- r) = Some (α, n)

using possL-obtain-label by blast
with wf r1 obtain r1 r2 where r :r = r1@r2 and lab-r1 :get-label (labeled-source

A |-r1 ) = Some (α, 0 ) and n:length r2 = n
by (metis (no-types, lifting) append-take-drop-id diff-diff-cancel label-term-max-value

labelposs-subs-poss length-drop obtain-label-root subsetD)
from r r1 have r1-pos:r1 ∈ poss (labeled-source A)

using labelposs-subs-poss poss-append-poss by blast
then obtain q where q:q∈poss A and ctxt:ctxt-of-pos-term r1 (source A) =

source-ctxt (ctxt-of-pos-term q A)
and Aq:A |- q = Prule α (map (λi. A |- (q @ [i])) [0 ..<length (var-rule α)])
using poss-labeled-source wf lab-r1 by blast

with r r1 have r2-pos:r2 ∈ poss (source (Prule α (map (λi. A |- (q @ [i]))
[0 ..<length (var-rule α)])))

by (metis (no-types, lifting) ctxt-supt-id fun-poss-imp-poss label-source-ctxt
labeled-source-to-term labelposs-subs-fun-poss-source local.wf poss-term-lab-to-term
r1-pos replace-at-subt-at subterm-poss-conv)

from Aq q wf have Prule α (map (λi. A |- (q @ [i])) [0 ..<length (var-rule α)])
∈ wf-pterm R

using subt-at-is-wf-pterm by auto
moreover then have is-Fun (lhs α) using no-var-lhs

using wf-pterm.cases by fastforce
moreover from lab ctxt have get-label (labeled-source (Prule α (map (λi. A |-

(q @ [i])) [0 ..<length (var-rule α)])) |-r2 ) = Some (α, n)
by (metis (no-types, lifting) Aq ctxt-supt-id label-source-ctxt labeled-source-to-term

local.wf poss-term-lab-to-term q r r1-pos replace-at-subt-at subt-at-append)
ultimately have r2-funposs:r2 ∈ fun-poss (lhs α)

using labeled-poss-in-lhs[OF r2-pos] n by blast
let ?∆=ll-single-redex (source A) r1 α
from lab-r1 r1-pos have rdp:(α, r1 ) ∈ set (redex-patterns A)

using redex-patterns-label wf by auto
then have ∆:?∆ ∈ set (single-steps A) by force
from r2 have measure-ov ?∆ B 6= 0

by (smt (verit, ccfv-threshold) rdp labeled-sources-imp-measure-not-zero la-
beled-wf-pterm-rule-in-TRS labelposs-subs-poss wf mem-Collect-eq option.simps(3 )
possL-obtain-label r r1-pos r2-funposs redex-patterns-label rel-simps(70 ) single-redex-possL
subsetD)

with ∆ show ?thesis by blast
qed
end

context left-lin-no-var-lhs
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begin
lemma label-single-step:

assumes p ∈ poss (labeled-source A) A ∈ wf-pterm R
and get-label (labeled-source A |- p) = Some (α, n)

shows ∃Ai. Ai ∈ set (single-steps A) ∧ get-label (labeled-source Ai |- p) = Some
(α, n)
proof−

let ?p1=take (length p − n) p
let ?p2=drop (length p − n) p
let ?xs=map (to-pterm ◦ (λpi. (source A)|-(p@pi))) (var-poss-list (lhs α))
from assms(1 ) have p1-pos:?p1 ∈ poss (labeled-source A)

by (metis append-take-drop-id poss-append-poss)
have lab:get-label (labeled-source A |- ?p1 ) = Some (α, 0 )

using obtain-label-root[OF assms(1 ) assms(3 ) assms(2 )] by simp
with assms have rdp:(α, ?p1 ) ∈ set (redex-patterns A)

using redex-patterns-label[OF assms(2 )] by (metis labeled-source-to-term ob-
tain-label-root poss-term-lab-to-term)

then have ll-single-redex (source A) ?p1 α ∈ set (single-steps A) by force
then obtain Ai where Ai:Ai ∈ set (single-steps A) Ai = ll-single-redex (source

A) ?p1 α
by presburger

from rdp obtain p ′ As where p ′:A|-p ′ = Prule α As p ′ ∈ poss A ctxt-of-pos-term
?p1 (source A) = source-ctxt (ctxt-of-pos-term p ′ A)

using poss-labeled-source[OF p1-pos] lab assms(2 ) by blast
from p ′ assms(2 ) have A|-p ′ ∈ wf-pterm R

using subt-at-is-wf-pterm by blast
moreover from p ′ assms have get-label (labeled-source (A|-p ′) |- ?p2 ) = Some

(α, n)
by (smt (verit, ccfv-SIG) append-take-drop-id ctxt-supt-id label-source-ctxt

p1-pos rdp redex-patterns-label replace-at-subt-at subterm-poss-conv)
ultimately have p2-pos:?p2 ∈ fun-poss (lhs α)

using labeled-poss-in-lhs no-var-lhs assms p ′

by (smt (verit, ccfv-threshold) append-take-drop-id case-prod-conv ctxt-of-pos-term-well
ctxt-supt-id diff-diff-cancel label-term-max-value

labeled-source-to-term labeled-wf-pterm-rule-in-TRS length-drop poss-append-poss
poss-term-lab-to-term replace-at-subt-at source-ctxt-apply-term)

then have l:get-label (labeled-source (Prule α ?xs) |- ?p2 ) = Some (α, n)
using label-term-increase assms by (metis (no-types, lifting) add-0 diff-diff-cancel

label-term-max-value labeled-source.simps(3 ) length-drop)
from p1-pos have ?p1 ∈ poss (source A) by simp
then have get-label (labeled-source Ai |- p) = Some (α, n)

unfolding Ai(2 ) by (metis p2-pos append-take-drop-id l label-ctxt-apply-term
label-term-increase labeled-source.simps(3 ) ll-single-redex-def )

with Ai show ?thesis
by blast

qed

lemma proof-term-matches:
assumes A ∈ wf-pterm R B ∈ wf-pterm R linear-term A
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and
∧
α r . (α, r) ∈ set (redex-patterns A) = ((α, r) ∈ set (redex-patterns B)

∧ r ∈ fun-poss (source A))
and source A · σ = source B

shows A · (mk-subst Var (match-substs A B)) = B
proof−

{fix p g ts assume p ∈ poss A A|-p = Fun g ts
with assms have ∃ Bs. length ts = length Bs ∧ B|-p = Fun g Bs

using assms proof(induct A arbitrary: B p rule:pterm-induct)
case (Pfun f As)
then have

∧
α. (α, []) /∈ set (redex-patterns (Pfun f As))

by (meson list.distinct(1 ) redex-patterns-elem-fun)
with Pfun(5 ) have ¬ (is-Prule B)

by (metis empty-pos-in-poss is-FunI is-Prule.elims(2 ) list.set-intros(1 )
poss-is-Fun-fun-poss redex-patterns.simps(3 ) source.simps(2 ) subt-at.simps(1 ))

with Pfun(6 ) obtain Bs where B:B = Pfun f Bs and l:length Bs = length
As

by (smt (verit, del-insts) eval-term.simps(2 ) is-Prule.elims(3 ) length-map
source.simps(1 ) source.simps(2 ) term.distinct(1 ) term.inject(2 ))

then show ?case proof(cases p)
case Nil
from Pfun(8 ) show ?thesis unfolding Nil B using l by simp

next
case (Cons i p ′)
from Pfun(7 ) have i:i < length As and p ′:p ′ ∈ poss (As!i) and a:As!i ∈

set As
unfolding Cons by simp-all

from Pfun(8 ) have at-p ′:(As!i)|-p ′ = Fun g ts
unfolding Cons by simp

from Pfun(2 ) have a-wf :As!i ∈ wf-pterm R
using i nth-mem by blast

from Pfun(3 ) have b-wf :Bs!i ∈ wf-pterm R
unfolding B using i l by auto

from Pfun(4 ) have a-lin:linear-term (As!i)
using i by simp

{fix α r assume (α, r) ∈ set (redex-patterns (As!i))
then have (α, i#r) ∈ set (redex-patterns (Pfun f As))

by (meson i redex-patterns-elem-fun ′)
with Pfun(5 ) have (α, r) ∈ set (redex-patterns (Bs!i)) ∧ i#r ∈ fun-poss

(source (Pfun f As))
unfolding B by (metis list.inject redex-patterns-elem-fun)
then have (α, r) ∈ set (redex-patterns (Bs!i)) ∧ r ∈ fun-poss (source

(As!i))
using i by simp

} moreover {fix α r assume (α, r) ∈ set (redex-patterns (Bs!i)) and r :r
∈ fun-poss (source (As!i))

then have (α, i#r) ∈ set (redex-patterns B)
unfolding B using i l by (metis redex-patterns-elem-fun ′)

moreover from r have i#r ∈ fun-poss (source (Pfun f As))
using i unfolding source.simps fun-poss.simps length-map by simp
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ultimately have (α, r) ∈ set (redex-patterns (As!i))
using Pfun(5 ) i by (metis list.inject redex-patterns-elem-fun)

}
ultimately have rdp:

∧
α r . ((α, r) ∈ set (redex-patterns (As ! i))) = ((α,

r) ∈ set (redex-patterns (Bs ! i)) ∧ r ∈ fun-poss (source (As ! i)))
by blast

from Pfun(6 ) have sigma:source (As!i) · σ = source (Bs!i)
unfolding B source.simps eval-term.simps using i l using map-nth-conv

by fastforce
from Pfun(1 )[OF a a-wf b-wf a-lin rdp sigma p ′ at-p ′ a-wf b-wf a-lin rdp

sigma]
obtain ss where length ts = length ss and Bs!i |- p ′ = Fun g ss by blast

then show ?thesis unfolding B Cons using i l by simp
qed

next
case (Prule α As)
from Prule(5 ) have (α, []) ∈ set (redex-patterns B)

by auto
then obtain Bs where B:B = Prule α Bs

by (smt (verit, ccfv-threshold) Prule.prems(2 ) in-set-idx in-set-simps(3 )
redex-patterns-elem-fun less-nat-zero-code list.distinct(1 )

nat-neq-iff nth-Cons-0 order-pos.dual-order .refl prod.inject redex-patterns.simps(1 )
redex-patterns.simps(3 ) redex-patterns-order wf-pterm.simps)

with Prule(2 ,3 ) have l:length As = length Bs
using length-args-well-Prule by blast

show ?case proof(cases p)
case Nil
from Prule(8 ) show ?thesis unfolding Nil B using l by simp

next
case (Cons i p ′)
from Prule(7 ) have i:i < length As and p ′:p ′ ∈ poss (As!i) and a:As!i ∈

set As
unfolding Cons by simp-all

from Prule(8 ) have at-p ′:(As!i)|-p ′ = Fun g ts
unfolding Cons by simp

from Prule(2 ) have a-wf :As!i ∈ wf-pterm R
using i nth-mem by blast

from Prule(3 ) have b-wf :Bs!i ∈ wf-pterm R
unfolding B using i l by auto

from Prule(4 ) have a-lin:linear-term (As!i)
using i by simp

let ?pi=var-poss-list (lhs α) ! i
let ?xi=vars-term-list (lhs α) ! i
have i ′:i < length (var-poss-list (lhs α))

using i Prule(2 ) by (metis Inl-inject is-Prule.simps(1 ) is-Prule.simps(3 )
length-var-poss-list length-var-rule term.distinct(1 ) term.inject(2 ) wf-pterm.simps)

have eval-lhs ′:
∧
σ. lhs α · σ |- ?pi = σ ?xi

by (metis eval-term.simps(1 ) i ′ length-var-poss-list nth-mem subt-at-subst
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var-poss-imp-poss var-poss-list-sound vars-term-list-var-poss-list)
then have eval-lhs:

∧
σ q. lhs α · σ |- (?pi@q) = σ ?xi |- q

by (smt (verit) i ′ nth-mem poss-imp-subst-poss subt-at-append var-poss-imp-poss
var-poss-list-sound)

have i < length (map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 ))) (var-poss-list
(lhs α)) (map redex-patterns Bs))

unfolding length-map length-zip using i l i ′ by simp
moreover have zip (var-poss-list (lhs α)) (map redex-patterns Bs) ! i =

(?pi, redex-patterns (Bs!i))
using i i ′ l by force
ultimately have map-rdp:(map2 (λp1 . map (λ(α, p2 ). (α, p1 @ p2 )))

(var-poss-list (lhs α)) (map redex-patterns Bs))!i = map (λ(α, p2 ). (α, ?pi @
p2 )) (redex-patterns (Bs!i))

by simp
have l ′:length (var-rule α) = length (vars-term-list (lhs α))

using B Prule.prems(2 ) left-lin.length-var-rule left-lin-axioms wf-pterm.simps
by fastforce

{fix β r assume βr :(β, r) ∈ set (redex-patterns (As!i))
from i ′ have (β, ?pi@r) ∈ set (redex-patterns (Prule α As))

using redex-patterns-elem-rule ′[OF βr i] by simp
with Prule(5 ) have 1 :(β, ?pi@r) ∈ set (redex-patterns B) and 2 :?pi@r

∈ fun-poss (source (Prule α As))
by presburger+

from 1 have (β, r) ∈ set (redex-patterns (Bs!i))
using redex-patterns-rule ′′ by (metis B Prule.prems(2 ) i l)

moreover have r ∈ fun-poss (source (As!i))
by (metis βr a-wf get-label-imp-labelposs labeled-source-to-term label-

poss-subs-fun-poss-source left-lin-no-var-lhs.redex-patterns-label left-lin-no-var-lhs-axioms
option.distinct(1 ) poss-term-lab-to-term)

ultimately have (β, r) ∈ set (redex-patterns (Bs!i)) ∧ r ∈ fun-poss (source
(As!i))

by simp
} moreover {fix β r assume βr :(β, r) ∈ set (redex-patterns (Bs!i)) and

r :r ∈ fun-poss (source (As!i))
let ?x=var-rule α ! i
from l ′ have x:lhs α |- ?pi = Var ?x

using i by (metis comp-apply eval-lhs ′ length-remdups-eq length-rev
rev-rev-ident subst-apply-term-empty)

with r have r :r ∈ fun-poss (lhs α |- ?pi · 〈map source As〉α)
using lhs-subst-var-i l ′ i i ′ by (metis (mono-tags, lifting) eval-term.simps(1 )

length-map length-var-poss-list nth-map)
from βr have (β, ?pi@r) ∈ set (redex-patterns B)
unfolding B using i l using redex-patterns-elem-rule ′[OF βr i[unfolded

l] i ′] by simp
moreover from r x have ?pi@r ∈ fun-poss (source (Prule α As))

using i unfolding source.simps fun-poss.simps
by (metis (no-types, lifting) eval-lhs eval-lhs ′ fun-poss-fun-conv fun-poss-imp-poss

i ′ is-FunI nth-mem
pos-append-poss poss-imp-subst-poss poss-is-Fun-fun-poss subt-at-subst
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var-poss-imp-poss var-poss-list-sound)
ultimately have (β, ?pi @ r) ∈ set (redex-patterns (Prule α As))

using Prule(5 ) by presburger
then have (β, r) ∈ set (redex-patterns (As!i))

using i redex-patterns-rule ′′ Prule.prems(1 ) by blast
}
ultimately have rdp:

∧
α r . ((α, r) ∈ set (redex-patterns (As ! i))) = ((α,

r) ∈ set (redex-patterns (Bs ! i)) ∧ r ∈ fun-poss (source (As ! i)))
by blast

from Prule(6 ) have sigma:source (As!i) · σ = source (Bs!i)
unfolding B source.simps eval-term.simps using i l map-nth-conv
by (smt (verit, best) B Inl-inject Prule.prems(2 ) apply-lhs-subst-var-rule

comp-apply eval-lhs ′ i ′ is-Prule.simps(1 ) is-Prule.simps(3 ) length-map length-remdups-eq
length-rev length-var-rule nth-mem poss-imp-subst-poss rev-swap subt-at-subst term.distinct(1 )
term.inject(2 ) var-poss-imp-poss var-poss-list-sound wf-pterm.simps)

from Prule(1 )[OF a a-wf b-wf a-lin rdp sigma p ′ at-p ′ a-wf b-wf a-lin rdp
sigma]

obtain ss where length ts = length ss and Bs!i |- p ′ = Fun g ss by blast
then show ?thesis unfolding B Cons using i l by simp

qed
qed simp

}
then show ?thesis using fun-poss-eq-imp-matches[OF assms(3 )] by simp

qed
end

context left-lin-wf-trs
begin
lemma join-single-steps-wf :

assumes A ∈ wf-pterm R
and As = filter f (single-steps A) and As 6= []
shows ∃D. join-list As = Some D ∧ D ∈ wf-pterm R

proof−
{fix a1 a2 assume a1 :a1 ∈ set (single-steps A) and a2 :a2 ∈ set (single-steps

A)
with assms(1 ,2 ) have a1 ⊥p a2 ∨ a1 = a2

using single-steps-orth by presburger
moreover from a1 have a1 ∈ wf-pterm R

using single-step-wf [OF assms(1 )] assms(2 ) by presburger
moreover from a2 have a2 ∈ wf-pterm R

using single-step-wf [OF assms(1 )] assms(2 ) by presburger
ultimately have a1 t a2 6= None

using join-same orth-imp-join-defined no-var-lhs by fastforce
}
then show ?thesis using left-lin-no-var-lhs.join-list-defined[OF ll-no-var-lhs]

assms(2 ,3 ) single-step-wf [OF assms(1 )] by simp
qed

lemma single-steps-join-list:
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assumes join-list As = Some A and ∀ a ∈ set As. a ∈ wf-pterm R
shows set (single-steps A) =

⋃
(set (map (set ◦ single-steps) As))

proof−
have rdp:set (redex-patterns A) =

⋃
(set (map (set ◦ redex-patterns) As))

using left-lin-no-var-lhs.redex-patterns-join-list assms ll-no-var-lhs by blast
{fix a assume a ∈ set (single-steps A)

then obtain α p where a:a = ll-single-redex (source A) p α and (α, p) ∈ set
(redex-patterns A) by auto

with rdp obtain Ai where Ai:Ai ∈ set As and (α, p) ∈ set (redex-patterns
Ai) by auto

then have a ∈ set (single-steps Ai)
unfolding a using left-lin-no-var-lhs.source-join-list[OF ll-no-var-lhs assms]

by force
with Ai have a ∈

⋃
(set (map (set ◦ single-steps) As)) by auto

} moreover
{fix a assume a ∈

⋃
(set (map (set ◦ single-steps) As))

then obtain Ai where Ai:Ai ∈ set As a ∈ set (single-steps Ai)
by (smt (verit, best) UnionE comp-def in-set-idx length-map map-nth-eq-conv

nth-mem)
then obtain α p where a:a = ll-single-redex (source Ai) p α and (α, p) ∈ set

(redex-patterns Ai) by auto
with rdp Ai have (α, p) ∈ set (redex-patterns A) by auto
then have a ∈ set (single-steps A)

unfolding a using left-lin-no-var-lhs.source-join-list[OF ll-no-var-lhs assms]
Ai by force

}
ultimately show ?thesis by fastforce

qed
end

end
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