File ‹real_asymp.ML›
signature REAL_ASYMP = sig
val tac : bool -> Proof.context -> int -> tactic
end
functor Real_Asymp (Exp : EXPANSION_INTERFACE) : REAL_ASYMP = struct
open Lazy_Eval
val dest_arg = dest_comb #> snd
fun prove_limit_at_top ectxt f filter =
let
val ctxt = get_ctxt ectxt
val basis = Asymptotic_Basis.default_basis
val prover =
case filter of
Const (\<^const_name>‹Topological_Spaces.nhds›, _) $ _ => SOME Exp.prove_nhds
| \<^term>‹at (0 :: real)› => SOME Exp.prove_at_0
| \<^term>‹at_left (0 :: real)› => SOME Exp.prove_at_left_0
| \<^term>‹at_right (0 :: real)› => SOME Exp.prove_at_right_0
| \<^term>‹at_infinity :: real filter› => SOME Exp.prove_at_infinity
| \<^term>‹at_top :: real filter› => SOME Exp.prove_at_top
| \<^term>‹at_bot :: real filter› => SOME Exp.prove_at_bot
| _ => NONE
val lim_thm = Option.map (fn prover => prover ectxt (Exp.expand_term ectxt f basis)) prover
in
case lim_thm of
NONE => no_tac
| SOME lim_thm =>
HEADGOAL (
resolve_tac ctxt [lim_thm, lim_thm RS @{thm filterlim_mono'}]
THEN_ALL_NEW (TRY o resolve_tac ctxt @{thms at_within_le_nhds at_within_le_at nhds_leI}))
end
fun prove_eventually_at_top ectxt p =
case Envir.eta_long [] p of
Abs (x, \<^typ>‹Real.real›, Const (rel, _) $ f $ g) => ((
let
val (f, g) = apply2 (fn t => Abs (x, \<^typ>‹Real.real›, t)) (f, g)
val _ = if rel = \<^const_name>‹Orderings.less›
orelse rel = \<^const_name>‹Orderings.less_eq› then ()
else raise TERM ("prove_eventually_at_top", [p])
val ctxt = get_ctxt ectxt
val basis = Asymptotic_Basis.default_basis
val ([thm1, thm2], basis) = Exp.expand_terms ectxt [f, g] basis
val thm = Exp.prove_eventually_less ectxt (thm1, thm2, basis)
in
HEADGOAL (resolve_tac ctxt [thm, thm RS @{thm eventually_lt_imp_eventually_le}])
end)
handle TERM _ => no_tac | THM _ => no_tac)
| _ => raise TERM ("prove_eventually_at_top", [p])
fun prove_landau ectxt l f g =
let
val ctxt = get_ctxt ectxt
val l' = l |> dest_Const |> fst
val basis = Asymptotic_Basis.default_basis
val ([thm1, thm2], basis) = Exp.expand_terms ectxt [f, g] basis
val prover =
case l' of
\<^const_name>‹smallo› => Exp.prove_smallo
| \<^const_name>‹bigo› => Exp.prove_bigo
| \<^const_name>‹bigtheta› => Exp.prove_bigtheta
| \<^const_name>‹asymp_equiv› => Exp.prove_asymp_equiv
| _ => raise TERM ("prove_landau", [f, g])
in
HEADGOAL (resolve_tac ctxt [prover ectxt (thm1, thm2, basis)])
end
val filter_substs =
@{thms at_left_to_top at_right_to_top at_left_to_top' at_right_to_top' at_bot_mirror}
val filterlim_substs = map (fn thm => thm RS @{thm filterlim_conv_filtermap}) filter_substs
val eventually_substs = map (fn thm => thm RS @{thm eventually_conv_filtermap}) filter_substs
fun preproc_exp_log_natintfun_conv ctxt =
let
fun reify_power_conv x _ ct =
let
val thm = Conv.rewr_conv @{thm reify_power} ct
in
if exists_subterm (fn t => t aconv x) (Thm.term_of ct |> dest_arg) then
thm
else
raise CTERM ("reify_power_conv", [ct])
end
fun conv (x, ctxt) =
let
val thms1 =
Named_Theorems.get ctxt \<^named_theorems>‹real_asymp_nat_reify›
val thms2 =
Named_Theorems.get ctxt \<^named_theorems>‹real_asymp_int_reify›
val ctxt' = put_simpset HOL_basic_ss ctxt addsimps (thms1 @ thms2)
in
Conv.repeat_changed_conv
(Simplifier.rewrite ctxt'
then_conv Conv.bottom_conv (Conv.try_conv o reify_power_conv (Thm.term_of x)) ctxt)
end
in
Thm.eta_long_conversion
then_conv Conv.abs_conv conv ctxt
then_conv Thm.eta_conversion
end
fun preproc_tac ctxt =
let
fun natint_tac {context = ctxt, concl = goal, ...} =
let
val conv = preproc_exp_log_natintfun_conv ctxt
val conv =
case Thm.term_of goal of
\<^term>‹HOL.Trueprop› $ t => (case t of
Const (\<^const_name>‹Filter.filterlim›, _) $ _ $ _ $ _ =>
Conv.fun_conv (Conv.fun_conv (Conv.arg_conv conv))
| Const (\<^const_name>‹Filter.eventually›, _) $ _ $ _ =>
Conv.fun_conv (Conv.arg_conv conv)
| Const (\<^const_name>‹Set.member›, _) $ _ $ (_ $ _ $ _) =>
Conv.combination_conv (Conv.arg_conv conv) (Conv.arg_conv conv)
| Const (\<^const_name>‹Landau_Symbols.asymp_equiv›, _) $ _ $ _ $ _ =>
Conv.combination_conv (Conv.fun_conv (Conv.arg_conv conv)) conv
| _ => Conv.all_conv)
| _ => Conv.all_conv
in
HEADGOAL (CONVERSION (Conv.try_conv (Conv.arg_conv conv)))
end
in
SELECT_GOAL (Local_Defs.unfold_tac ctxt @{thms real_asymp_preproc})
THEN' TRY o resolve_tac ctxt @{thms real_asymp_real_nat_transfer real_asymp_real_int_transfer}
THEN' TRY o resolve_tac ctxt
@{thms filterlim_at_leftI filterlim_at_rightI filterlim_atI' landau_reduce_to_top}
THEN' TRY o resolve_tac ctxt @{thms smallo_imp_smallomega bigo_imp_bigomega}
THEN' TRY o Subgoal.FOCUS_PREMS natint_tac ctxt
THEN' TRY o resolve_tac ctxt @{thms real_asymp_nat_intros real_asymp_int_intros}
end
datatype ('a, 'b) sum = Inl of 'a | Inr of 'b
fun prove_eventually ectxt p filter =
case filter of
\<^term>‹Filter.at_top :: real filter› => (prove_eventually_at_top ectxt p
handle TERM _ => no_tac | THM _ => no_tac)
| _ => HEADGOAL (CONVERSION (Conv.rewrs_conv eventually_substs)
THEN' tac' (#verbose (#ctxt ectxt)) (Inr ectxt))
and prove_limit ectxt f filter filter' =
case filter' of
\<^term>‹Filter.at_top :: real filter› => (prove_limit_at_top ectxt f filter
handle TERM _ => no_tac | THM _ => no_tac)
| _ => HEADGOAL (CONVERSION (Conv.rewrs_conv filterlim_substs)
THEN' tac' (#verbose (#ctxt ectxt)) (Inr ectxt))
and tac' verbose ctxt_or_ectxt =
let
val ctxt = case ctxt_or_ectxt of Inl ctxt => ctxt | Inr ectxt => get_ctxt ectxt
fun tac {context = ctxt, prems, concl = goal, ...} =
(if verbose then print_tac ctxt "real_asymp: Goal after preprocessing" else all_tac) THEN
let
val ectxt =
case ctxt_or_ectxt of
Inl _ =>
Multiseries_Expansion.mk_eval_ctxt ctxt |> add_facts prems |> set_verbose verbose
| Inr ectxt => ectxt
in
case Thm.term_of goal of
\<^term>‹HOL.Trueprop› $ t => ((case t of
\<^term>‹Filter.filterlim :: (real ⇒ real) ⇒ _› $ f $ filter $ filter' =>
(prove_limit ectxt f filter filter' handle TERM _ => no_tac | THM _ => no_tac)
| \<^term>‹Filter.eventually :: (real ⇒ bool) ⇒ _› $ p $ filter =>
(prove_eventually ectxt p filter handle TERM _ => no_tac | THM _ => no_tac)
| \<^term>‹Set.member :: (real => real) => _› $ f $
(l $ \<^term>‹at_top :: real filter› $ g) =>
(prove_landau ectxt l f g handle TERM _ => no_tac | THM _ => no_tac)
| (l as \<^term>‹Landau_Symbols.asymp_equiv :: (real⇒real)⇒_›) $ f $ _ $ g =>
(prove_landau ectxt l f g handle TERM _ => no_tac | THM _ => no_tac)
| _ => no_tac) THEN distinct_subgoals_tac)
| _ => no_tac
end
fun tac' i = Subgoal.FOCUS_PREMS tac ctxt i handle TERM _ => no_tac | THM _ => no_tac
val at_tac =
HEADGOAL (resolve_tac ctxt
@{thms filterlim_split_at eventually_at_left_at_right_imp_at landau_at_top_imp_at
asymp_equiv_at_top_imp_at})
THEN PARALLEL_ALLGOALS tac'
in
(preproc_tac ctxt
THEN' preproc_tac ctxt
THEN' (SELECT_GOAL at_tac ORELSE' tac'))
THEN_ALL_NEW (TRY o SELECT_GOAL (SOLVE (HEADGOAL (Simplifier.asm_full_simp_tac ctxt))))
end
and tac verbose ctxt = tac' verbose (Inl ctxt)
end
structure Real_Asymp_Basic = Real_Asymp(Multiseries_Expansion_Basic)