File ‹multiseries_expansion.ML›
signature MULTISERIES_EXPANSION = sig
type expansion_thm = thm
type trimmed_thm = thm
type expr = Exp_Log_Expression.expr
type basis = Asymptotic_Basis.basis
datatype trim_mode = Simple_Trim | Pos_Trim | Neg_Trim | Sgn_Trim
datatype zeroness = IsZero | IsNonZero | IsPos | IsNeg
datatype intyness = Nat of thm | Neg_Nat of thm | No_Nat
datatype parity = Even of thm | Odd of thm | Unknown_Parity
datatype limit =
Zero_Limit of bool option
| Finite_Limit of term
| Infinite_Limit of bool option
datatype trim_result =
Trimmed of zeroness * trimmed_thm option
| Aborted of order
val get_intyness : Proof.context -> cterm -> intyness
val get_parity : cterm -> parity
val get_expansion : thm -> term
val get_coeff : term -> term
val get_exponent : term -> term
val get_expanded_fun : thm -> term
val get_eval : term -> term
val expands_to_hd : thm -> thm
val mk_eval_ctxt : Proof.context -> Lazy_Eval.eval_ctxt
val expand : Lazy_Eval.eval_ctxt -> expr -> basis -> expansion_thm * basis
val expand_term : Lazy_Eval.eval_ctxt -> term -> basis -> expansion_thm * basis
val expand_terms : Lazy_Eval.eval_ctxt -> term list -> basis -> expansion_thm list * basis
val limit_of_expansion : bool * bool -> Lazy_Eval.eval_ctxt -> thm * basis -> limit * thm
val compute_limit : Lazy_Eval.eval_ctxt -> term -> limit * thm
val compare_expansions :
Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis ->
order * thm * expansion_thm * expansion_thm
datatype comparison_result =
Cmp_Dominated of order * thm list * zeroness * trimmed_thm * expansion_thm * expansion_thm
| Cmp_Asymp_Equiv of thm * thm
val compare_expansions' :
Lazy_Eval.eval_ctxt ->
thm * thm * Asymptotic_Basis.basis ->
comparison_result
val prove_at_infinity : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_top : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_bot : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_nhds : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_left_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_right_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_smallo : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_bigo : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_bigtheta : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_asymp_equiv : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_asymptotic_relation : Lazy_Eval.eval_ctxt -> thm * thm * basis -> order * thm
val prove_eventually_less : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_eventually_greater : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_eventually_nonzero : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val extract_terms : int * bool -> Lazy_Eval.eval_ctxt -> basis -> term -> term * term option
val check_expansion : Exp_Log_Expression.expr -> expansion_thm -> expansion_thm
val zero_expansion : basis -> expansion_thm
val const_expansion : Lazy_Eval.eval_ctxt -> basis -> term -> expansion_thm
val ln_expansion :
Lazy_Eval.eval_ctxt -> trimmed_thm -> expansion_thm -> basis -> expansion_thm * basis
val exp_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> basis -> expansion_thm * basis
val powr_expansion :
Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm * basis
val powr_const_expansion :
Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val powr_nat_expansion :
Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm * basis
val power_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val root_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val sgn_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis -> expansion_thm
val min_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm
val max_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm
val arctan_expansion : Lazy_Eval.eval_ctxt -> basis -> expansion_thm -> expansion_thm
val ev_zeroness_oracle : Lazy_Eval.eval_ctxt -> term -> thm option
val zeroness_oracle : bool -> trim_mode option -> Lazy_Eval.eval_ctxt -> term -> zeroness * thm option
val whnf_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> term option * expansion_thm * thm
val simplify_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> expansion_thm
val simplify_term : Lazy_Eval.eval_ctxt -> term -> term
val trim_expansion_while_greater :
bool -> term list option -> bool -> trim_mode option -> Lazy_Eval.eval_ctxt ->
thm * Asymptotic_Basis.basis -> thm * trim_result * (zeroness * thm) list
val trim_expansion : bool -> trim_mode option -> Lazy_Eval.eval_ctxt -> expansion_thm * basis ->
expansion_thm * zeroness * trimmed_thm option
val try_drop_leading_term_ex : bool -> Lazy_Eval.eval_ctxt -> expansion_thm -> expansion_thm option
val try_prove_real_eq : bool -> Lazy_Eval.eval_ctxt -> term * term -> thm option
val try_prove_ev_eq : Lazy_Eval.eval_ctxt -> term * term -> thm option
val prove_compare_expansions : order -> thm list -> thm
val simplify_trimmed_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * trimmed_thm ->
expansion_thm * trimmed_thm
val retrim_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis -> expansion_thm * thm
val retrim_pos_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis * trimmed_thm ->
expansion_thm * thm * trimmed_thm
val register_sign_oracle :
binding * (Proof.context -> int -> tactic) -> Context.generic -> Context.generic
val get_sign_oracles :
Context.generic -> (string * (Proof.context -> int -> tactic)) list
val solve_eval_eq : thm -> thm
end
structure Multiseries_Expansion : MULTISERIES_EXPANSION = struct
open Asymptotic_Basis
open Exp_Log_Expression
open Lazy_Eval
structure Data = Generic_Data
(
type T = (Proof.context -> int -> tactic) Name_Space.table;
val empty : T = Name_Space.empty_table "sign_oracle_tactic";
fun merge (tactics1, tactics2) : T = Name_Space.merge_tables (tactics1, tactics2);
);
fun register_sign_oracle (s, tac) ctxt =
Data.map (Name_Space.define ctxt false (s, tac) #> snd) ctxt
fun get_sign_oracles ctxt = Name_Space.fold_table cons (Data.get ctxt) []
fun apply_sign_oracles ctxt tac =
let
val oracles = get_sign_oracles (Context.Proof ctxt)
fun tac' {context = ctxt, concl, ...} =
if Thm.term_of concl = \<^term>‹HOL.Trueprop HOL.False› then
no_tac
else
FIRST (map (fn tac => HEADGOAL (snd tac ctxt)) oracles)
in
tac THEN_ALL_NEW (Subgoal.FOCUS_PREMS tac' ctxt)
end
type expansion_thm = thm
type trimmed_thm = thm
val dest_fun = dest_comb #> fst
val dest_arg = dest_comb #> snd
val concl_of' = Thm.concl_of #> HOLogic.dest_Trueprop
fun get_expansion thm =
thm |> Thm.concl_of |> HOLogic.dest_Trueprop |> Term.dest_comb |> fst |> Term.dest_comb |> snd
fun get_expanded_fun thm = thm |> concl_of' |> dest_fun |> dest_fun |> dest_arg
datatype intyness = Nat of thm | Neg_Nat of thm | No_Nat
fun get_intyness ctxt ct =
if Thm.typ_of_cterm ct = \<^typ>‹Real.real› then
let
val ctxt' = put_simpset HOL_basic_ss ctxt addsimps @{thms intyness_simps}
val conv =
Simplifier.rewrite ctxt then_conv Simplifier.rewrite ctxt'
fun flip (Nat thm) = Neg_Nat (thm RS @{thm intyness_uminus})
| flip _ = No_Nat
fun get_intyness' ct =
case Thm.term_of ct of
\<^term>‹0::real› => Nat @{thm intyness_0}
| \<^term>‹1::real› => Nat @{thm intyness_1}
| Const (\<^const_name>‹numeral›, _) $ _ =>
Nat (Thm.reflexive (Thm.dest_arg ct) RS @{thm intyness_numeral})
| Const (\<^const_name>‹uminus›, _) $ _ => flip (get_intyness' (Thm.dest_arg ct))
| Const (\<^const_name>‹of_nat›, _) $ _ =>
Nat (Thm.reflexive (Thm.dest_arg ct) RS @{thm intyness_of_nat})
| _ => No_Nat
val thm = conv ct
val ct' = thm |> Thm.cprop_of |> Thm.dest_equals_rhs
in
case get_intyness' ct' of
Nat thm' => Nat (Thm.transitive thm thm' RS @{thm HOL.meta_eq_to_obj_eq})
| Neg_Nat thm' => Neg_Nat (Thm.transitive thm thm' RS @{thm HOL.meta_eq_to_obj_eq})
| No_Nat => No_Nat
end
handle CTERM _ => No_Nat
else
No_Nat
datatype parity = Even of thm | Odd of thm | Unknown_Parity
fun get_parity ct =
let
fun inst thm cts =
let
val tvs = Term.add_tvars (Thm.concl_of thm) []
in
case tvs of
[v] =>
let
val thm' = Thm.instantiate (TVars.make1 (v, Thm.ctyp_of_cterm ct), Vars.empty) thm
val vs = take (length cts) (rev (Term.add_vars (Thm.concl_of thm') []))
in
Thm.instantiate (TVars.empty, Vars.make (vs ~~ cts)) thm'
end
| _ => raise THM ("get_parity", 0, [thm])
end
val get_num = Thm.dest_arg o Thm.dest_arg
in
case Thm.term_of ct of
Const (\<^const_name>‹Groups.zero›, _) => Even (inst @{thm even_zero} [])
| Const (\<^const_name>‹Groups.one›, _) => Odd (inst @{thm odd_one} [])
| Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ \<^term>‹Num.One› =>
Odd (inst @{thm odd_Numeral1} [])
| Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ (\<^term>‹Num.Bit0› $ _) =>
Even (inst @{thm even_numeral} [get_num ct])
| Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ (\<^term>‹Num.Bit1› $ _) =>
Odd (inst @{thm odd_numeral} [get_num ct])
| Const (\<^const_name>‹Groups.uminus›, _) $ _ => (
case get_parity (Thm.dest_arg ct) of
Even thm => Even (@{thm even_uminusI} OF [thm])
| Odd thm => Odd (@{thm odd_uminusI} OF [thm])
| _ => Unknown_Parity)
| Const (\<^const_name>‹Groups.plus›, _) $ _ $ _ => (
case apply2 get_parity (Thm.dest_binop ct) of
(Even thm1, Even thm2) => Even (@{thm even_addI(1)} OF [thm1, thm2])
| (Odd thm1, Odd thm2) => Even (@{thm even_addI(2)} OF [thm1, thm2])
| (Even thm1, Odd thm2) => Odd (@{thm odd_addI(1)} OF [thm1, thm2])
| (Odd thm1, Even thm2) => Odd (@{thm odd_addI(2)} OF [thm1, thm2])
| _ => Unknown_Parity)
| Const (\<^const_name>‹Groups.minus›, _) $ _ $ _ => (
case apply2 get_parity (Thm.dest_binop ct) of
(Even thm1, Even thm2) => Even (@{thm even_diffI(1)} OF [thm1, thm2])
| (Odd thm1, Odd thm2) => Even (@{thm even_diffI(2)} OF [thm1, thm2])
| (Even thm1, Odd thm2) => Odd (@{thm odd_diffI(1)} OF [thm1, thm2])
| (Odd thm1, Even thm2) => Odd (@{thm odd_diffI(2)} OF [thm1, thm2])
| _ => Unknown_Parity)
| Const (\<^const_name>‹Groups.times›, _) $ _ $ _ => (
case apply2 get_parity (Thm.dest_binop ct) of
(Even thm1, _) => Even (@{thm even_multI(1)} OF [thm1])
| (_, Even thm2) => Even (@{thm even_multI(2)} OF [thm2])
| (Odd thm1, Odd thm2) => Odd (@{thm odd_multI} OF [thm1, thm2])
| _ => Unknown_Parity)
| Const (\<^const_name>‹Power.power›, _) $ _ $ _ =>
let
val (a, n) = Thm.dest_binop ct
in
case get_parity a of
Odd thm => Odd (inst @{thm odd_powerI} [a, n] OF [thm])
| _ => Unknown_Parity
end
| _ => Unknown_Parity
end
fun simplify_term' facts ctxt =
let
val ctxt = Simplifier.add_prems facts ctxt
in
Thm.cterm_of ctxt #> Simplifier.rewrite ctxt #>
Thm.concl_of #> Logic.dest_equals #> snd
end
fun simplify_term ectxt = simplify_term' (get_facts ectxt) (get_ctxt ectxt)
fun simplify_eval ctxt =
simplify_term' [] (put_simpset HOL_basic_ss ctxt addsimps @{thms eval_simps})
datatype zeroness = IsZero | IsNonZero | IsPos | IsNeg
fun try_get_coeff expr =
case expr of
Const (\<^const_name>‹MS›, _) $ (
Const (\<^const_name>‹MSLCons›, _) $ (
Const (\<^const_name>‹Pair›, _) $ c $ _) $ _) $ _ =>
SOME c
| _ => NONE
fun get_coeff expr =
expr |> dest_comb |> fst |> dest_comb |> snd |> dest_comb |> fst |> dest_comb |> snd
|> dest_comb |> fst |> dest_comb |> snd
fun get_lead_coeff expr =
case try_get_coeff expr of
NONE => expr
| SOME c => get_lead_coeff c
fun get_exponent expr =
expr |> dest_comb |> fst |> dest_comb |> snd |> dest_comb |> fst |> dest_comb |> snd
|> dest_comb |> snd
fun get_exponents exp =
if fastype_of exp = \<^typ>‹real› then
[]
else
get_exponent exp :: get_exponents (get_coeff exp)
fun get_eval expr =
if fastype_of expr = \<^typ>‹real› then
Abs ("x", \<^typ>‹real›, expr)
else
expr |> dest_comb |> snd
val eval_simps = @{thms eval_simps [THEN eq_reflection]}
fun ev_zeroness_oracle ectxt t =
let
val ctxt = Lazy_Eval.get_ctxt ectxt
val goal =
betapply (\<^term>‹λf::real ⇒ real. eventually (λx. f x = 0) at_top›, t)
|> HOLogic.mk_Trueprop
fun tac {context = ctxt, ...} =
HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
THEN Local_Defs.unfold_tac ctxt eval_simps
THEN HEADGOAL (Simplifier.asm_full_simp_tac ctxt)
in
try (Goal.prove ctxt [] [] goal) tac
end
datatype trim_mode = Simple_Trim | Pos_Trim | Neg_Trim | Sgn_Trim
fun zeroness_oracle fail mode ectxt exp =
let
val ctxt = Lazy_Eval.get_ctxt ectxt
val eq = (exp, \<^term>‹0::real›) |> HOLogic.mk_eq
val goal1 = (IsZero, eq |> HOLogic.mk_Trueprop)
val goal2 =
case mode of
SOME Pos_Trim =>
(IsPos, \<^term>‹(<) (0::real)› $ exp |> HOLogic.mk_Trueprop)
| SOME Sgn_Trim =>
(IsPos, \<^term>‹(<) (0::real)› $ exp |> HOLogic.mk_Trueprop)
| SOME Neg_Trim =>
(IsNeg, betapply (\<^term>‹λx. x < (0::real)›, exp) |> HOLogic.mk_Trueprop)
| _ =>
(IsNonZero, eq |> HOLogic.mk_not |> HOLogic.mk_Trueprop)
val goals =
(if mode = SOME Sgn_Trim then
[(IsNeg, betapply (\<^term>‹λx. x < (0::real)›, exp) |> HOLogic.mk_Trueprop)]
else
[])
val goals = goal2 :: goals
fun tac {context = ctxt, ...} =
HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
THEN Local_Defs.unfold_tac ctxt eval_simps
THEN HEADGOAL (apply_sign_oracles ctxt (Simplifier.asm_full_simp_tac ctxt))
fun prove (res, goal) = try (fn goal => (res, SOME (Goal.prove ctxt [] [] goal tac))) goal
fun err () =
let
val mode_msg =
case mode of
SOME Simple_Trim => "whether the following constant is zero"
| SOME Pos_Trim => "whether the following constant is zero or positive"
| SOME Neg_Trim => "whether the following constant is zero or negative"
| SOME Sgn_Trim => "the sign of the following constant"
| _ => raise Match
val t = simplify_term' (get_facts ectxt) ctxt exp
val _ =
if #verbose (#ctxt ectxt) then
let
val p = Pretty.str ("real_asymp failed to determine " ^ mode_msg ^ ":")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
in
Pretty.writeln p
end else ()
in
raise TERM ("zeroness_oracle", [t])
end
in
case prove goal1 of
SOME res => res
| NONE =>
if mode = NONE then
(IsNonZero, NONE)
else
case get_first prove (goal2 :: goals) of
NONE => if fail then err () else (IsNonZero, NONE)
| SOME res => res
end
fun try_prove_real_eq fail ectxt (lhs, rhs) =
case zeroness_oracle false NONE ectxt (\<^term>‹(-) :: real => _› $ lhs $ rhs) of
(IsZero, SOME thm) => SOME (thm RS @{thm real_eqI})
| _ =>
if not fail then NONE else
let
val ctxt = get_ctxt ectxt
val ts = map (simplify_term' (get_facts ectxt) ctxt) [lhs, rhs]
val _ =
if #verbose (#ctxt ectxt) then
let
val p =
Pretty.str ("real_asymp failed to prove that the following two numbers are equal:")
val p = Pretty.chunks (p :: map (Pretty.indent 2 o Syntax.pretty_term ctxt) ts)
in
Pretty.writeln p
end else ()
in
raise TERM ("try_prove_real_eq", [lhs, rhs])
end
fun try_prove_ev_eq ectxt (f, g) =
let
val t = Envir.beta_eta_contract (\<^term>‹λ(f::real=>real) g x. f x - g x› $ f $ g)
in
Option.map (fn thm => thm RS @{thm eventually_diff_zero_imp_eq}) (ev_zeroness_oracle ectxt t)
end
fun real_less a b = \<^term>‹(<) :: real ⇒ real ⇒ bool› $ a $ b
fun real_eq a b = \<^term>‹(=) :: real ⇒ real ⇒ bool› $ a $ b
fun real_neq a b = \<^term>‹(≠) :: real ⇒ real ⇒ bool› $ a $ b
fun real_sgn_hook ({pctxt = ctxt, facts, verbose, ...}) t =
let
val get_rhs = Thm.concl_of #> Logic.dest_equals #> snd
fun tac {context = ctxt, ...} =
HEADGOAL (Method.insert_tac ctxt (Net.content facts)
THEN' (apply_sign_oracles ctxt (Simplifier.asm_full_simp_tac ctxt)))
fun prove_first err [] [] =
if not verbose then raise TERM ("real_sgn_hook", [t])
else let val _ = err () in raise TERM ("real_sgn_hook", [t]) end
| prove_first err (goal :: goals) (thm :: thms) =
(case try (Goal.prove ctxt [] [] goal) tac of
SOME thm' =>
let val thm'' = thm' RS thm in SOME (get_rhs thm'', Conv.rewr_conv thm'') end
| NONE => prove_first err goals thms)
| prove_first _ _ _ = raise Match
in
case t of
\<^term>‹(=) :: real => _› $ a $ \<^term>‹0 :: real› =>
let
val goals =
map (fn c => HOLogic.mk_Trueprop (c a \<^term>‹0 :: real›)) [real_neq, real_eq]
fun err () =
let
val facts' = Net.content facts
val a' = simplify_term' facts' ctxt a
val p = Pretty.str ("real_asymp failed to determine whether the following " ^
"constant is zero: ")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt a')]
in
Pretty.writeln p
end
in
prove_first err goals @{thms Eq_FalseI Eq_TrueI}
end
| Const (\<^const_name>‹COMPARE›, _) $ a $ b =>
let
val goals = map HOLogic.mk_Trueprop [real_less a b, real_less b a, real_eq a b]
fun err () =
let
val facts' = Net.content facts
val (a', b') = apply2 (simplify_term' facts' ctxt) (a, b)
val p = Pretty.str ("real_asymp failed to compare" ^
"the following two constants: ")
val p = Pretty.chunks (p :: map (Pretty.indent 2 o Syntax.pretty_term ctxt) [a', b'])
in
Pretty.writeln p
end
in
prove_first err goals @{thms COMPARE_intros}
end
| _ => NONE
end
fun get_constructors ctxt =
let
val thms = Named_Theorems.get ctxt \<^named_theorems>‹exp_log_eval_constructor›
fun go _ [] acc = rev acc
| go f (x :: xs) acc =
case f x of
NONE => go f xs acc
| SOME y => go f xs (y :: acc)
fun map_option f xs = go f xs []
fun dest_constructor thm =
case Thm.concl_of thm of
Const (\<^const_name>‹HOL.Trueprop›, _) $
(Const (\<^const_name>‹REAL_ASYMP_EVAL_CONSTRUCTOR›, _) $ Const (c, T)) =>
SOME (c, length (fst (strip_type T)))
| _ => NONE
in
thms |> map_option dest_constructor
end
fun mk_eval_ctxt ctxt =
let
val eval_eqs = (Named_Theorems.get ctxt \<^named_theorems>‹real_asymp_eval_eqs›)
val constructors = get_constructors ctxt
in
Lazy_Eval.mk_eval_ctxt ctxt constructors eval_eqs
|> add_hook real_sgn_hook
end
val exp_pat =
let
val anypat = AnyPat ("_", 0)
in
ConsPat (\<^const_name>‹MS›,
[ConsPat (\<^const_name>‹MSLCons›,
[ConsPat (\<^const_name>‹Pair›, [anypat, anypat]), anypat]), anypat])
end
fun whnf_expansion ectxt thm =
let
val ctxt = get_ctxt ectxt
val exp = get_expansion thm
val (_, _, conv) = match ectxt exp_pat exp (SOME [])
val eq_thm = conv (Thm.cterm_of ctxt exp)
val exp' = eq_thm |> Thm.concl_of |> Logic.dest_equals |> snd
in
case exp' of
Const (\<^const_name>‹MS›, _) $ (Const (\<^const_name>‹MSLCons›, _) $
(Const (\<^const_name>‹Pair›, _) $ c $ _) $ _) $ _ =>
(SOME c, @{thm expands_to_meta_eq_cong} OF [thm, eq_thm], eq_thm)
| Const (\<^const_name>‹MS›, _) $ Const (\<^const_name>‹MSLNil›, _) $ _ =>
(NONE, @{thm expands_to_meta_eq_cong} OF [thm, eq_thm], eq_thm)
| _ => raise TERM ("whnf_expansion", [exp'])
end
fun try_lift_function ectxt (thm, SEmpty) _ = (NONE, thm)
| try_lift_function ectxt (thm, basis) cont =
case whnf_expansion ectxt thm of
(SOME c, thm, _) =>
let
val f = get_expanded_fun thm
val T = fastype_of c
val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
val t = Term.betapply (Term.betapply (\<^term>‹λ(f::real⇒real) g x. f x - g x›, f), t)
in
case ev_zeroness_oracle ectxt t of
NONE => (NONE, thm)
| SOME zero_thm =>
let
val thm' = cont ectxt (thm RS @{thm expands_to_hd''}, tl_basis basis)
val thm'' = @{thm expands_to_lift_function} OF [zero_thm, thm']
in
(SOME (lift basis thm''), thm)
end
end
| _ => (NONE, thm)
fun expands_to_hd thm = thm RS
(if fastype_of (get_expansion thm) = \<^typ>‹real ms› then
@{thm expands_to_hd'}
else
@{thm expands_to_hd})
fun simplify_expansion ectxt thm =
let
val exp = get_expansion thm
val ctxt = get_ctxt ectxt
val eq_thm = Simplifier.rewrite ctxt (Thm.cterm_of ctxt exp)
in
@{thm expands_to_meta_eq_cong} OF [thm, eq_thm]
end
fun simplify_trimmed_expansion ectxt (thm, trimmed_thm) =
let
val exp = get_expansion thm
val ctxt = get_ctxt ectxt
val eq_thm = Simplifier.rewrite ctxt (Thm.cterm_of ctxt exp)
val trimmed_cong_thm =
case trimmed_thm |> concl_of' |> dest_fun of
Const (\<^const_name>‹trimmed›, _) => @{thm trimmed_eq_cong}
| Const (\<^const_name>‹trimmed_pos›, _) => @{thm trimmed_pos_eq_cong}
| Const (\<^const_name>‹trimmed_neg›, _) => @{thm trimmed_neg_eq_cong}
| _ => raise THM ("simplify_trimmed_expansion", 2, [thm, trimmed_thm])
in
(@{thm expands_to_meta_eq_cong} OF [thm, eq_thm],
trimmed_cong_thm OF [trimmed_thm, eq_thm])
end
fun retrim_expansion ectxt (thm, basis) =
let
val (c, thm, eq_thm) = whnf_expansion ectxt thm
in
case c of
NONE => (thm, eq_thm)
| SOME c =>
if fastype_of c = \<^typ>‹real› then
(thm, eq_thm)
else
let
val c_thm = thm RS @{thm expands_to_hd''}
val (c_thm', eq_thm') = retrim_expansion ectxt (c_thm, tl_basis basis)
val thm = @{thm expands_to_trim_cong} OF [thm, c_thm']
in
(thm, @{thm trim_lift_eq} OF [eq_thm, eq_thm'])
end
end
fun retrim_pos_expansion ectxt (thm, basis, trimmed_thm) =
let
val (thm', eq_thm) = retrim_expansion ectxt (thm, basis)
in
(thm', eq_thm, @{thm trimmed_pos_eq_cong} OF [trimmed_thm, eq_thm])
end
fun try_drop_leading_term_ex fail ectxt thm =
let
val exp = get_expansion thm
in
if fastype_of exp = \<^typ>‹real› then
NONE
else if fastype_of (get_coeff exp) = \<^typ>‹real› then
case zeroness_oracle fail (SOME Simple_Trim) ectxt (get_coeff exp) of
(IsZero, SOME zero_thm) => SOME (@{thm drop_zero_ms'} OF [zero_thm, thm])
| _ => NONE
else
let
val c = get_coeff exp
val T = fastype_of c
val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
in
case ev_zeroness_oracle ectxt t of
SOME zero_thm => SOME (@{thm expands_to_drop_zero} OF [zero_thm, thm])
| _ => NONE
end
end
fun try_drop_leading_term ectxt thm =
let
fun err () =
let
val ctxt = get_ctxt ectxt
val exp = get_expansion thm
val c = get_coeff exp
val t =
if fastype_of c = \<^typ>‹real› then c else c |> dest_arg
val t = simplify_term' (get_facts ectxt) ctxt t
val _ =
if #verbose (#ctxt ectxt) then
let
val p = Pretty.str ("real_asymp failed to prove that the following term is zero: ")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
in
Pretty.writeln p
end else ()
in
raise TERM ("try_drop_leading_term", [t])
end
in
case try_drop_leading_term_ex true ectxt thm of
NONE => err ()
| SOME thm => thm
end
datatype trim_result =
Trimmed of zeroness * trimmed_thm option
| Aborted of order
fun cstrip_assms ct =
case Thm.term_of ct of
\<^term>‹(==>)› $ _ $ _ => cstrip_assms (snd (Thm.dest_implies ct))
| _ => ct
fun trim_expansion_while_greater strict es fail mode ectxt (thm, basis) =
let
val (_, thm, _) = whnf_expansion ectxt thm
val thm = simplify_expansion ectxt thm
val cexp = thm |> Thm.cprop_of |> cstrip_assms |> Thm.dest_arg |> Thm.dest_fun |> Thm.dest_arg
val c = try_get_coeff (get_expansion thm)
fun lift_trimmed_thm nz thm =
let
val cexp = thm |> Thm.cprop_of |> cstrip_assms |> Thm.dest_arg |> Thm.dest_fun |> Thm.dest_arg
val lift_thm =
case nz of
IsNonZero => @{thm trimmed_eq_cong[rotated, OF _ lift_trimmed]}
| IsPos => @{thm trimmed_pos_eq_cong[rotated, OF _ lift_trimmed_pos]}
| IsNeg => @{thm trimmed_neg_eq_cong[rotated, OF _ lift_trimmed_neg]}
| _ => raise TERM ("Unexpected zeroness result in trim_expansion", [])
in
Thm.reflexive cexp RS lift_thm
end
fun trimmed_real_thm nz = Thm.reflexive cexp RS (
case nz of
IsNonZero => @{thm trimmed_eq_cong[rotated, OF _ lift_trimmed[OF trimmed_realI]]}
| IsPos => @{thm trimmed_pos_eq_cong[rotated, OF _ lift_trimmed_pos[OF trimmed_pos_realI]]}
| IsNeg => @{thm trimmed_neg_eq_cong[rotated, OF _ lift_trimmed_neg[OF trimmed_neg_realI]]}
| _ => raise TERM ("Unexpected zeroness result in trim_expansion", []))
fun do_trim es =
let
val c = the c
val T = fastype_of c
val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
in
if T = \<^typ>‹real› then (
case zeroness_oracle fail mode ectxt c of
(IsZero, SOME zero_thm) =>
trim_expansion_while_greater strict es fail mode ectxt
(@{thm drop_zero_ms'} OF [zero_thm, thm], basis)
| (nz, SOME nz_thm) => (thm, Trimmed (nz, SOME (nz_thm RS trimmed_real_thm nz)), [])
| (nz, NONE) => (thm, Trimmed (nz, NONE), []))
else
case trim_expansion_while_greater strict (Option.map tl es) fail mode ectxt
(thm RS @{thm expands_to_hd''}, tl_basis basis) of
(c_thm', Aborted ord, thms) =>
(@{thm expands_to_trim_cong} OF [thm, c_thm'], Aborted ord, thms)
| (c_thm', Trimmed (nz, trimmed_thm), thms) =>
let
val thm = (@{thm expands_to_trim_cong} OF [thm, c_thm'])
fun err () =
raise TERM ("trim_expansion: zero coefficient should have been trimmed", [c])
in
case (nz, trimmed_thm) of
(IsZero, _) =>
if #verbose (#ctxt ectxt) then
let
val ctxt = get_ctxt ectxt
val t' = t |> simplify_eval ctxt |> simplify_term' (get_facts ectxt) ctxt
val p = Pretty.str ("trim_expansion failed to recognise zeroness of " ^
"the following term:")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t')]
val _ = Pretty.writeln p
in
err ()
end
else err ()
| (_, SOME trimmed_thm) =>
(thm, Trimmed (nz, SOME (trimmed_thm RS lift_trimmed_thm nz thm)), thms)
| (_, NONE) => (thm, Trimmed (nz, NONE), thms)
end
end
val minus = \<^term>‹(-) :: real => real => real›
in
case (c, es) of
(NONE, _) => (thm, Trimmed (IsZero, NONE), [])
| (SOME c, SOME (e' :: _)) =>
let
val e = get_exponent (get_expansion thm)
in
case zeroness_oracle true (SOME Sgn_Trim) ectxt (minus $ e $ e') of
(IsPos, SOME pos_thm) => (
case try_drop_leading_term_ex false ectxt thm of
SOME thm =>
trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
| NONE => do_trim NONE |> @{apply 3(3)} (fn thms => (IsPos, pos_thm) :: thms))
| (IsNeg, SOME neg_thm) => (thm, Aborted LESS, [(IsNeg, neg_thm)])
| (IsZero, SOME zero_thm) =>
if not strict andalso fastype_of c = \<^typ>‹real› then
(thm, Aborted EQUAL, [(IsZero, zero_thm)])
else (
case try_drop_leading_term_ex false ectxt thm of
SOME thm => trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
| NONE => (do_trim es |> @{apply 3(3)} (fn thms => (IsZero, zero_thm) :: thms)))
| _ => do_trim NONE
end
| _ => (
case try_drop_leading_term_ex false ectxt thm of
SOME thm => trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
| NONE => do_trim NONE)
end
fun trim_expansion fail mode ectxt (thm, basis) =
case trim_expansion_while_greater false NONE fail mode ectxt (thm, basis) of
(thm, Trimmed (zeroness, trimmed_thm), _) => (thm, zeroness, trimmed_thm)
| _ => raise Match
fun determine_trimmed_sgn ectxt exp =
if fastype_of exp = \<^typ>‹real› then
(case zeroness_oracle true (SOME Sgn_Trim) ectxt exp of
(IsPos, SOME thm) => (IsPos, thm RS @{thm trimmed_pos_realI})
| (IsNeg, SOME thm) => (IsNeg, thm RS @{thm trimmed_neg_realI})
| _ => raise TERM ("determine_trimmed_sgn", []))
else
let
val ct = Thm.cterm_of (get_ctxt ectxt) exp
in
(case determine_trimmed_sgn ectxt (get_coeff exp) of
(IsPos, thm) => (IsPos, @{thm lift_trimmed_pos'} OF [thm, Thm.reflexive ct])
| (IsNeg, thm) => (IsNeg, @{thm lift_trimmed_neg'} OF [thm, Thm.reflexive ct])
| _ => raise TERM ("determine_trimmed_sgn", []))
end
fun mk_compare_expansions_const T =
Const (\<^const_name>‹compare_expansions›,
T --> T --> \<^typ>‹cmp_result × real × real›)
datatype comparison_result =
Cmp_Dominated of order * thm list * zeroness * trimmed_thm * expansion_thm * expansion_thm
| Cmp_Asymp_Equiv of thm * thm
fun compare_expansions' _ (thm1, thm2, SEmpty) = Cmp_Asymp_Equiv (thm1, thm2)
| compare_expansions' ectxt (thm1, thm2, basis) =
let
fun lift_trimmed_thm nz =
case nz of
IsPos => @{thm lift_trimmed_pos}
| IsNeg => @{thm lift_trimmed_neg}
| _ => raise TERM ("Unexpected zeroness result in compare_expansions'", [])
val (e1, e2) = apply2 (get_expansion #> get_exponent) (thm1, thm2)
val e = \<^term>‹(-) :: real => _› $ e1 $ e2
fun trim thm = trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis)
val try_drop = Option.map (whnf_expansion ectxt #> #2) o try_drop_leading_term_ex false ectxt
fun handle_result ord zeroness trimmed_thm thm1 thm2 =
let
val (e1, e2) = apply2 (get_expansion #> get_exponent) (thm1, thm2)
val e = \<^term>‹(-) :: real => _› $ e1 $ e2
val mode = if ord = LESS then Neg_Trim else Pos_Trim
in
case zeroness_oracle true (SOME mode) ectxt e of
(_, SOME e_thm) => Cmp_Dominated (ord, [e_thm], zeroness, trimmed_thm, thm1, thm2)
| _ => raise Match
end
fun recurse e_zero_thm =
case basis of
SNE (SSng _) => Cmp_Asymp_Equiv (thm1, thm2)
| _ =>
let
val (thm1', thm2') = apply2 (fn thm => thm RS @{thm expands_to_hd''}) (thm1, thm2)
val (thm1', thm2') = apply2 (whnf_expansion ectxt #> #2) (thm1', thm2')
in
case compare_expansions' ectxt (thm1', thm2', tl_basis basis) of
Cmp_Dominated (order, e_thms, zeroness, trimmed_thm, thm1', thm2') =>
Cmp_Dominated (order, e_zero_thm :: e_thms, zeroness,
trimmed_thm RS lift_trimmed_thm zeroness,
@{thm expands_to_trim_cong} OF [thm1, thm1'],
@{thm expands_to_trim_cong} OF [thm2, thm2'])
| Cmp_Asymp_Equiv (thm1', thm2') => Cmp_Asymp_Equiv
(@{thm expands_to_trim_cong} OF [thm1, thm1'],
@{thm expands_to_trim_cong} OF [thm2, thm2'])
end
in
case zeroness_oracle false (SOME Sgn_Trim) ectxt e of
(IsPos, SOME _) => (
case try_drop thm1 of
SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => (
case trim thm1 of
(thm1, zeroness, SOME trimmed_thm) =>
handle_result GREATER zeroness trimmed_thm thm1 thm2
| _ => raise TERM ("compare_expansions", map get_expansion [thm1, thm2])))
| (IsNeg, SOME _) => (
case try_drop thm2 of
SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => (
case trim thm2 of
(thm2, zeroness, SOME trimmed_thm) =>
handle_result LESS zeroness trimmed_thm thm1 thm2
| _ => raise TERM ("compare_expansions", map get_expansion [thm1, thm2])))
| (IsZero, SOME e_zero_thm) => (
case try_drop thm1 of
SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => (
case try_drop thm2 of
SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => recurse e_zero_thm))
| _ =>
case try_drop thm1 of
SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => (
case try_drop thm2 of
SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
| NONE => raise TERM ("compare_expansions", [e1, e2]))
end
fun prove_compare_expansions ord [thm] = (
case ord of
LESS => @{thm compare_expansions_LT_I} OF [thm]
| GREATER => @{thm compare_expansions_GT_I} OF [thm]
| EQUAL => @{thm compare_expansions_same_exp[OF _ compare_expansions_real]} OF [thm])
| prove_compare_expansions ord (thm :: thms) =
@{thm compare_expansions_same_exp} OF [thm, prove_compare_expansions ord thms]
| prove_compare_expansions _ [] = raise Match
val ev_zero_pos_thm = Eventuallize.eventuallize \<^context>
@{lemma "∀x::real. f x = 0 ⟶ g x > 0 ⟶ f x < g x" by auto} NONE
OF @{thms _ expands_to_imp_eventually_pos}
val ev_zero_neg_thm = Eventuallize.eventuallize \<^context>
@{lemma "∀x::real. f x = 0 ⟶ g x < 0 ⟶ f x > g x" by auto} NONE
OF @{thms _ expands_to_imp_eventually_neg}
val ev_zero_zero_thm = Eventuallize.eventuallize \<^context>
@{lemma "∀x::real. f x = 0 ⟶ g x = 0 ⟶ f x = g x" by auto} NONE
fun compare_expansions_trivial ectxt (thm1, thm2, basis) =
case try_prove_ev_eq ectxt (apply2 get_expanded_fun (thm1, thm2)) of
SOME thm => SOME (EQUAL, thm, thm1, thm2)
| NONE =>
case apply2 (ev_zeroness_oracle ectxt o get_expanded_fun) (thm1, thm2) of
(NONE, NONE) => NONE
| (SOME zero1_thm, NONE) => (
case trim_expansion true (SOME Sgn_Trim) ectxt (thm2, basis) of
(thm2, IsPos, SOME trimmed2_thm) =>
SOME (LESS, ev_zero_pos_thm OF
[zero1_thm, get_basis_wf_thm basis, thm2, trimmed2_thm], thm1, thm2)
| (thm2, IsNeg, SOME trimmed2_thm) =>
SOME (GREATER, ev_zero_neg_thm OF
[zero1_thm, get_basis_wf_thm basis, thm2, trimmed2_thm], thm1, thm2)
| _ => raise TERM ("Unexpected zeroness result in compare_expansions", []))
| (NONE, SOME zero2_thm) => (
case trim_expansion true (SOME Sgn_Trim) ectxt (thm1, basis) of
(thm1, IsPos, SOME trimmed1_thm) =>
SOME (GREATER, ev_zero_pos_thm OF
[zero2_thm, get_basis_wf_thm basis, thm1, trimmed1_thm], thm1, thm2)
| (thm1, IsNeg, SOME trimmed1_thm) =>
SOME (LESS, ev_zero_neg_thm OF
[zero2_thm, get_basis_wf_thm basis, thm1, trimmed1_thm], thm1, thm2)
| _ => raise TERM ("Unexpected zeroness result in compare_expansions", []))
| (SOME zero1_thm, SOME zero2_thm) =>
SOME (EQUAL, ev_zero_zero_thm OF [zero1_thm, zero2_thm] , thm1, thm2)
fun compare_expansions ectxt (thm1, thm2, basis) =
case compare_expansions_trivial ectxt (thm1, thm2, basis) of
SOME res => res
| NONE =>
let
val (_, thm1, _) = whnf_expansion ectxt thm1
val (_, thm2, _) = whnf_expansion ectxt thm2
in
case compare_expansions' ectxt (thm1, thm2, basis) of
Cmp_Dominated (order, e_thms, zeroness, trimmed_thm, thm1, thm2) =>
let
val wf_thm = get_basis_wf_thm basis
val cmp_thm = prove_compare_expansions order e_thms
val trimmed_thm' = trimmed_thm RS
(if zeroness = IsPos then @{thm trimmed_pos_imp_trimmed}
else @{thm trimmed_neg_imp_trimmed})
val smallo_thm =
(if order = LESS then @{thm compare_expansions_LT} else @{thm compare_expansions_GT}) OF
[cmp_thm, trimmed_thm', thm1, thm2, wf_thm]
val thm' =
if zeroness = IsPos then @{thm smallo_trimmed_imp_eventually_less}
else @{thm smallo_trimmed_imp_eventually_greater}
val result_thm =
thm' OF [smallo_thm, if order = LESS then thm2 else thm1, wf_thm, trimmed_thm]
in
(order, result_thm, thm1, thm2)
end
| Cmp_Asymp_Equiv (thm1, thm2) =>
let
val thm = @{thm expands_to_minus} OF [get_basis_wf_thm basis, thm1, thm2]
val (order, result_thm) =
case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
(thm, IsPos, SOME pos_thm) => (GREATER,
@{thm expands_to_imp_eventually_gt} OF [get_basis_wf_thm basis, thm, pos_thm])
| (thm, IsNeg, SOME neg_thm) => (LESS,
@{thm expands_to_imp_eventually_lt} OF [get_basis_wf_thm basis, thm, neg_thm])
| _ => raise TERM ("Unexpected zeroness result in prove_eventually_less", [])
in
(order, result_thm, thm1, thm2)
end
end
fun raise_trimming_error ectxt thm =
let
val ctxt = get_ctxt ectxt
fun lead_coeff exp =
if fastype_of exp = \<^typ>‹real› then exp else lead_coeff (get_coeff exp)
val c = lead_coeff (get_expansion thm)
fun err () =
let
val t = simplify_term' (get_facts ectxt) ctxt c
val _ =
if #verbose (#ctxt ectxt) then
let
val p = Pretty.str
("real_asymp failed to determine whether the following constant is zero:")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
in
Pretty.writeln p
end else ()
in
raise TERM ("zeroness_oracle", [t])
end
in
err ()
end
fun solve_eval_eq thm =
case try (fn _ => @{thm refl} RS thm) () of
SOME thm' => thm'
| NONE =>
case try (fn _ => @{thm eval_real_def} RS thm) () of
SOME thm' => thm'
| NONE => @{thm eval_ms.simps} RS thm
fun ln_expansion _ _ _ SEmpty = raise TERM ("ln_expansion: empty basis", [])
| ln_expansion ectxt trimmed_thm thm (SNE basis) =
let
fun trailing_exponent expr (SSng _) = get_exponent expr
| trailing_exponent expr (SCons (_, _, tl)) = trailing_exponent (get_coeff expr) tl
val e = trailing_exponent (get_expansion thm) basis
fun ln_expansion_aux trimmed_thm zero_thm thm basis =
let
val t = betapply (\<^term>‹λ(f::real ⇒ real) x. f x - 1 :: real›, get_expanded_fun thm)
in
case ev_zeroness_oracle ectxt t of
NONE => ln_expansion_aux' trimmed_thm zero_thm thm basis
| SOME zero_thm =>
@{thm expands_to_ln_eventually_1} OF
[get_basis_wf_thm' basis, mk_expansion_level_eq_thm' basis, zero_thm]
end
and ln_expansion_aux' trimmed_thm zero_thm thm (SSng {wf_thm, ...}) =
( @{thm expands_to_ln} OF
[trimmed_thm, wf_thm, thm,
@{thm expands_to_ln_aux_0} OF [zero_thm, @{thm expands_to_ln_const}]])
|> solve_eval_eq
| ln_expansion_aux' trimmed_thm zero_thm thm (SCons ({wf_thm, ...}, {ln_thm, ...}, basis')) =
let
val c_thm =
ln_expansion_aux (trimmed_thm RS @{thm trimmed_pos_hd_coeff}) zero_thm
(expands_to_hd thm) basis'
val e = get_exponent (get_expansion thm)
val c_thm' =
case zeroness_oracle true NONE ectxt e of
(IsZero, SOME thm) =>
@{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux_0]} OF [thm,c_thm]
| _ =>
case try_prove_real_eq false ectxt (e, \<^term>‹1::real›) of
SOME thm =>
@{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux_1]}
OF [thm, wf_thm, c_thm, ln_thm]
| NONE =>
@{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux]}
OF [wf_thm, c_thm, ln_thm]
in
(@{thm expands_to_ln} OF [trimmed_thm, wf_thm, thm, c_thm'])
|> solve_eval_eq
end
in
case zeroness_oracle true NONE ectxt e of
(IsZero, SOME zero_thm) => (ln_expansion_aux trimmed_thm zero_thm thm basis, SNE basis)
| _ =>
let
val basis' = insert_ln (SNE basis)
val lifting = mk_lifting (get_basis_list' basis) basis'
val thm' = lift_expands_to_thm lifting thm
val trimmed_thm' = lift_trimmed_pos_thm lifting trimmed_thm
val (thm'', eq_thm) = retrim_expansion ectxt (thm', basis')
val trimmed_thm'' = @{thm trimmed_pos_eq_cong} OF [trimmed_thm', eq_thm]
in
ln_expansion ectxt trimmed_thm'' thm'' basis'
end
end
fun adjust_exp_basis basis basis' ln_smallo_thm =
if length (get_basis_list basis) = length (get_basis_list basis') + 1 then
basis
else
let
val SNE (SCons (info, ln_info, tail)) = basis
val SNE tail' = basis'
val wf_thms = map get_basis_wf_thm [basis, basis']
val wf_thm' =
case
get_first (fn f => try f ())
[fn _ => @{thm basis_wf_lift_modification} OF wf_thms,
fn _ => @{thm basis_wf_insert_exp_near} OF (wf_thms @ [ln_smallo_thm]),
fn _ => @{thm basis_wf_insert_exp_near} OF (wf_thms @
[ln_smallo_thm RS @{thm basis_wf_insert_exp_uminus'}])] of
SOME wf_thm => wf_thm
| _ => raise TERM ("Lifting basis modification in exp_expansion failed.", map Thm.concl_of (wf_thms @ [ln_smallo_thm]))
val info' = {wf_thm = wf_thm', head = #head info}
val lifting = mk_lifting (get_basis_list' tail) basis'
val ln_info' =
{trimmed_thm = lift_trimmed_pos_thm lifting (#trimmed_thm ln_info),
ln_thm = lift_expands_to_thm lifting (#ln_thm ln_info)}
in
SNE (SCons (info', ln_info', tail'))
end
fun insert_exp _ _ _ _ _ SEmpty = raise TERM ("insert_exp", [])
| insert_exp t ln_thm ln_smallo_thm ln_trimmed_thm lim_thm (SNE basis) =
let
val head = Envir.beta_eta_contract (\<^term>‹λ(f::real⇒real) x. exp (f x)› $ t)
val ln_smallo_thm = ln_smallo_thm RS @{thm ln_smallo_ln_exp}
val wf_thm = @{thm basis_wf_manyI} OF [lim_thm, ln_smallo_thm, get_basis_wf_thm' basis]
val basis' = SNE (SCons ({wf_thm = wf_thm, head = head},
{ln_thm = ln_thm, trimmed_thm = ln_trimmed_thm} , basis))
in
check_basis basis'
end
fun exp_expansion _ thm SEmpty = (thm RS @{thm expands_to_exp_real}, SEmpty)
| exp_expansion ectxt thm basis =
let
val (_, thm, _) = whnf_expansion ectxt thm
in
case ev_zeroness_oracle ectxt (get_eval (get_expansion thm)) of
SOME zero_thm =>
(@{thm expands_to_exp_zero} OF
[thm, zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)
| NONE =>
let
val ln =
Option.map (fn x => (#ln_thm x, #trimmed_thm x)) (get_ln_info basis)
val ln = Option.map (fn (x, y) => retrim_pos_expansion ectxt (x, basis, y)) ln
val es' = \<^term>‹0::real› :: (
case ln of
NONE => []
| SOME (ln_thm, _, _) => get_exponents (get_expansion ln_thm))
val trim_result =
trim_expansion_while_greater true (SOME es') false (SOME Simple_Trim) ectxt (thm, basis)
in
exp_expansion' ectxt trim_result ln basis
end
end
and exp_expansion' _ (thm, _, _) _ SEmpty = (thm RS @{thm expands_to_exp_real}, SEmpty)
| exp_expansion' ectxt (thm, trim_result, e_thms) ln basis =
let
val exp = get_expansion thm
val wf_thm = get_basis_wf_thm basis
val f = get_expanded_fun thm
fun exp_expansion_insert ln_smallo_thm = (
case determine_trimmed_sgn ectxt exp of
(IsPos, trimmed_thm) =>
let
val [lim_thm, ln_thm', thm'] =
@{thms expands_to_exp_insert_pos}
|> map (fn thm' => thm' OF [thm, wf_thm, trimmed_thm, ln_smallo_thm])
val basis' = insert_exp f ln_thm' ln_smallo_thm trimmed_thm lim_thm basis
in
(thm', basis')
end
| (IsNeg, trimmed_thm) =>
let
val [lim_thm, ln_thm', ln_trimmed_thm, thm'] =
@{thms expands_to_exp_insert_neg}
|> map (fn thm' => thm' OF [thm, wf_thm, trimmed_thm, ln_smallo_thm])
val ln_smallo_thm = ln_smallo_thm RS @{thm basis_wf_insert_exp_uminus}
val f' = Envir.beta_eta_contract (\<^term>‹λ(f::real⇒real) x. -f x› $ f)
val basis' = insert_exp f' ln_thm' ln_smallo_thm ln_trimmed_thm lim_thm basis
in
(thm', basis')
end
| _ => raise TERM ("Unexpected zeroness result in exp_expansion", []))
fun lexord (IsNeg :: _) = LESS
| lexord (IsPos :: _) = GREATER
| lexord (IsZero :: xs) = lexord xs
| lexord [] = EQUAL
| lexord _ = raise Match
val compare_result = lexord (map fst e_thms)
in
case (trim_result, e_thms, compare_result) of
(Aborted _, (IsNeg, e_neg_thm) :: _, _) =>
(@{thm expands_to_exp_neg} OF [thm, get_basis_wf_thm basis, e_neg_thm], basis)
| (Trimmed (_, SOME trimmed_thm), (IsPos, e_pos_thm) :: _, GREATER) =>
let
val ln_smallo_thm =
@{thm basis_wf_insert_exp_pos} OF [thm, get_basis_wf_thm basis, trimmed_thm, e_pos_thm]
in
exp_expansion_insert ln_smallo_thm
end
| (Trimmed (_, SOME trimmed_thm), _, GREATER) =>
let
val ln_thm =
case ln of
SOME (ln_thm, _, _) => ln_thm
| NONE => raise TERM ("TODO blubb", [])
val ln_thm = @{thm expands_to_lift''} OF [get_basis_wf_thm basis, ln_thm]
val ln_smallo_thm =
@{thm compare_expansions_GT} OF [prove_compare_expansions GREATER (map snd e_thms),
trimmed_thm, thm, ln_thm, get_basis_wf_thm basis]
in
exp_expansion_insert ln_smallo_thm
end
| (Aborted LESS, (IsZero, e_zero_thm) :: e_thms', _) =>
let
val (ln_thm, trimmed_thm) =
case ln of
SOME (ln_thm, _, trimmed_thm) =>
(ln_thm, trimmed_thm RS @{thm trimmed_pos_imp_trimmed})
| NONE => raise TERM ("TODO foo", [])
val c_thm = expands_to_hd thm
val ln_smallo_thm =
@{thm compare_expansions_LT} OF [prove_compare_expansions LESS (map snd e_thms'),
trimmed_thm, c_thm, ln_thm, get_basis_wf_thm (tl_basis basis)]
val (c_thm, c_basis) = exp_expansion ectxt c_thm (tl_basis basis)
val basis' = adjust_exp_basis basis c_basis ln_smallo_thm
val wf_thm = get_basis_wf_thm basis'
val thm' = lift basis' thm
val (thm'', _) = retrim_expansion ectxt (thm', basis')
in
(@{thm expands_to_exp_0} OF [thm'', wf_thm, e_zero_thm, c_thm], basis')
end
| (Trimmed _, [(IsZero, e_zero_thm)], EQUAL) =>
(@{thm expands_to_exp_0_real} OF [thm, wf_thm, e_zero_thm], basis)
| (Trimmed _, (_, e_zero_thm) :: _, EQUAL) =>
let
val ln_thm =
case ln of
SOME (ln_thm, _, _) => ln_thm
| NONE => raise TERM ("TODO blargh", [])
val c =
case (thm, ln_thm) |> apply2 (get_expansion #> get_lead_coeff) of
(c1, c2) => \<^term>‹(/) :: real => _› $ c1 $ c2
val c = Thm.cterm_of (get_ctxt ectxt) c
val thm' =
@{thm expands_to_exp_0_pull_out1}
OF [thm, ln_thm, wf_thm, e_zero_thm, Thm.reflexive c]
val (thm'', basis') = exp_expansion ectxt thm' basis
val pat = ConsPat ("MS", [AnyPat ("_", 0), AnyPat ("_", 0)])
val (_, _, conv) = match ectxt pat (get_expansion thm'') (SOME [])
val eq_thm = conv (Thm.cterm_of (get_ctxt ectxt) (get_expansion thm''))
val thm''' = @{thm expands_to_meta_eq_cong} OF [thm'', eq_thm]
val thm'''' =
case get_intyness (get_ctxt ectxt) c of
No_Nat =>
@{thm expands_to_exp_0_pull_out2} OF [thm''', get_basis_wf_thm basis']
| Nat nat_thm =>
@{thm expands_to_exp_0_pull_out2_nat} OF
[thm''', get_basis_wf_thm basis', nat_thm]
| Neg_Nat nat_thm =>
@{thm expands_to_exp_0_pull_out2_neg_nat} OF
[thm''', get_basis_wf_thm basis', nat_thm]
in
(thm'''', basis')
end
| (Trimmed (IsZero, _), [], _) =>
(@{thm expands_to_exp_MSLNil} OF [thm, get_basis_wf_thm basis], basis)
| (Trimmed (_, NONE), _, GREATER) =>
raise_trimming_error ectxt thm
| _ => raise Match
end
fun powr_expansion ectxt (thm1, thm2, basis) =
case ev_zeroness_oracle ectxt (get_expanded_fun thm1) of
SOME zero_thm =>
(@{thm expands_to_powr_0} OF
[zero_thm, Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) (get_expanded_fun thm2)),
get_basis_wf_thm basis, mk_expansion_level_eq_thm basis],
basis)
| NONE =>
let
val (thm1, _, SOME trimmed_thm) =
trim_expansion true (SOME Pos_Trim) ectxt (thm1, basis)
val (ln_thm, basis') = ln_expansion ectxt trimmed_thm thm1 basis
val thm2' = lift basis' thm2 |> simplify_expansion ectxt
val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis', ln_thm, thm2']
val (exp_thm, basis'') = exp_expansion ectxt mult_thm basis'
val thm = @{thm expands_to_powr} OF
[trimmed_thm, get_basis_wf_thm basis, thm1, exp_thm]
in
(thm, basis'')
end
fun powr_nat_expansion ectxt (thm1, thm2, basis) =
case ev_zeroness_oracle ectxt (get_expanded_fun thm1) of
SOME zero_thm => (
case ev_zeroness_oracle ectxt (get_expanded_fun thm2) of
SOME zero'_thm => (@{thm expands_to_powr_nat_0_0} OF
[zero_thm, zero'_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)
| NONE => (
case trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis) of
(thm2, _, SOME trimmed_thm) =>
(@{thm expands_to_powr_nat_0} OF [zero_thm, thm2, trimmed_thm,
get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)))
| NONE =>
let
val (thm1, _, SOME trimmed_thm) =
trim_expansion true (SOME Pos_Trim) ectxt (thm1, basis)
val (ln_thm, basis') = ln_expansion ectxt trimmed_thm thm1 basis
val thm2' = lift basis' thm2 |> simplify_expansion ectxt
val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis', ln_thm, thm2']
val (exp_thm, basis'') = exp_expansion ectxt mult_thm basis'
val thm = @{thm expands_to_powr_nat} OF
[trimmed_thm, get_basis_wf_thm basis, thm1, exp_thm]
in
(thm, basis'')
end
fun is_numeral t =
let
val _ = HOLogic.dest_number t
in
true
end
handle TERM _ => false
fun power_expansion ectxt (thm, n, basis) =
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => @{thm expands_to_power_0} OF
[zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis,
Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) n)]
| NONE => (
case trim_expansion true (SOME Simple_Trim) ectxt (thm, basis) of
(thm', _, SOME trimmed_thm) =>
let
val ctxt = get_ctxt ectxt
val thm =
if is_numeral n then @{thm expands_to_power[where abort = True]}
else @{thm expands_to_power[where abort = False]}
val thm =
Drule.infer_instantiate' ctxt [NONE, NONE, NONE, SOME (Thm.cterm_of ctxt n)] thm
in
thm OF [trimmed_thm, get_basis_wf_thm basis, thm']
end
| _ => raise TERM ("Unexpected zeroness result in power_expansion", []))
fun powr_const_expansion ectxt (thm, p, basis) =
let
val pthm = Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) p)
in
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => @{thm expands_to_powr_const_0} OF
[zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis, pthm]
| NONE =>
case trim_expansion true (SOME Pos_Trim) ectxt (thm, basis) of
(_, _, NONE) => raise TERM ("Unexpected zeroness result for powr", [])
| (thm, _, SOME trimmed_thm) =>
(if is_numeral p then @{thm expands_to_powr_const[where abort = True]}
else @{thm expands_to_powr_const[where abort = False]})
OF [trimmed_thm, get_basis_wf_thm basis, thm, pthm]
end
fun sgn_expansion ectxt (thm, basis) =
let
val thms = [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
in
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => @{thm expands_to_sgn_zero} OF (zero_thm :: thms)
| NONE =>
case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
(thm, IsPos, SOME trimmed_thm) =>
@{thm expands_to_sgn_pos} OF ([trimmed_thm, thm] @ thms)
| (thm, IsNeg, SOME trimmed_thm) =>
@{thm expands_to_sgn_neg} OF ([trimmed_thm, thm] @ thms)
| _ => raise TERM ("Unexpected zeroness result in sgn_expansion", [])
end
fun sin_cos_expansion _ thm SEmpty =
(thm RS @{thm expands_to_sin_real}, thm RS @{thm expands_to_cos_real})
| sin_cos_expansion ectxt thm basis =
let
val exp = get_expansion thm
val e = get_exponent exp
in
case zeroness_oracle true (SOME Sgn_Trim) ectxt e of
(IsPos, _) => raise THM ("sin_cos_expansion", 0, [thm])
| (IsNeg, SOME e_thm) =>
let
val [thm1, thm2] =
map (fn thm' => thm' OF [e_thm, get_basis_wf_thm basis, thm])
@{thms expands_to_sin_ms_neg_exp expands_to_cos_ms_neg_exp}
in
(thm1, thm2)
end
| (IsZero, SOME e_thm) =>
let
val (sin_thm, cos_thm) = (sin_cos_expansion ectxt (expands_to_hd thm) (tl_basis basis))
fun mk_thm thm' =
(thm' OF [e_thm, get_basis_wf_thm basis, thm, sin_thm, cos_thm]) |> solve_eval_eq
val [thm1, thm2] =
map mk_thm @{thms expands_to_sin_ms_zero_exp expands_to_cos_ms_zero_exp}
in
(thm1, thm2)
end
| _ => raise TERM ("Unexpected zeroness result in sin_exp_expansion", [])
end
fun abconv (t, t') = Envir.beta_eta_contract t aconv Envir.beta_eta_contract t'
fun check_expansion e thm =
if abconv (expr_to_term e, get_expanded_fun thm) then
thm
else
let val _ = \<^print> e
val _ = \<^print> (get_expanded_fun thm)
in
raise TERM ("check_expansion", [Thm.concl_of thm, expr_to_term e])
end
fun minmax_expansion max [less_thm, eq_thm, gt_thm] ectxt (thm1, thm2, basis) = (
case compare_expansions ectxt (thm1, thm2, basis) of
(LESS, less_thm', thm1, thm2) => less_thm OF [if max then thm2 else thm1, less_thm']
| (GREATER, gt_thm', thm1, thm2) => gt_thm OF [if max then thm1 else thm2, gt_thm']
| (EQUAL, eq_thm', thm1, _) => eq_thm OF [thm1, eq_thm'])
| minmax_expansion _ _ _ _ = raise Match
val min_expansion =
minmax_expansion false @{thms expands_to_min_lt expands_to_min_eq expands_to_min_gt}
val max_expansion =
minmax_expansion true @{thms expands_to_max_lt expands_to_max_eq expands_to_max_gt}
fun zero_expansion basis =
@{thm expands_to_zero} OF [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
fun const_expansion _ basis \<^term>‹0 :: real› = zero_expansion basis
| const_expansion ectxt basis t =
let
val ctxt = get_ctxt ectxt
val thm = Drule.infer_instantiate' ctxt [NONE, SOME (Thm.cterm_of ctxt t)]
@{thm expands_to_const}
in
thm OF [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
end
fun root_expansion ectxt (thm, n, basis) =
let
val ctxt = get_ctxt ectxt
fun tac {context = ctxt, ...} =
HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
THEN Local_Defs.unfold_tac ctxt eval_simps
THEN HEADGOAL (Simplifier.asm_full_simp_tac ctxt)
fun prove goal =
try (Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (Term.betapply (goal, n)))) tac
fun err () =
let
val t = simplify_term' (get_facts ectxt) ctxt n
val _ =
if #verbose (#ctxt ectxt) then
let
val p = Pretty.str ("real_asymp failed to determine whether the following constant " ^
"is zero or not:")
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
in
Pretty.writeln p
end else ()
in
raise TERM ("zeroness_oracle", [n])
end
fun aux nz_thm =
case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
(thm, IsPos, SOME trimmed_thm) =>
@{thm expands_to_root} OF [nz_thm, trimmed_thm, get_basis_wf_thm basis, thm]
| (thm, IsNeg, SOME trimmed_thm) =>
@{thm expands_to_root_neg} OF [nz_thm, trimmed_thm, get_basis_wf_thm basis, thm]
| _ => raise TERM ("Unexpected zeroness result in root_expansion", [])
in
case prove \<^term>‹λn::nat. n = 0› of
SOME zero_thm =>
@{thm expands_to_0th_root} OF
[zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis,
Thm.reflexive (Thm.cterm_of ctxt (get_expanded_fun thm))]
| NONE =>
case prove \<^term>‹λn::nat. n > 0› of
NONE => err ()
| SOME nz_thm =>
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => @{thm expands_to_root_0} OF
[nz_thm, zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
| NONE => aux nz_thm
end
fun arctan_expansion _ SEmpty thm =
@{thm expands_to_real_compose[where g = arctan]} OF [thm]
| arctan_expansion ectxt basis thm =
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => @{thm expands_to_arctan_zero} OF [zero_expansion basis, zero_thm]
| NONE =>
let
val (thm, _, _) = trim_expansion true (SOME Simple_Trim) ectxt (thm, basis)
val e = get_exponent (get_expansion thm)
fun cont ectxt (thm, basis) = arctan_expansion ectxt basis thm
in
case zeroness_oracle true (SOME Sgn_Trim) ectxt e of
(IsNeg, SOME neg_thm) =>
@{thm expands_to_arctan_ms_neg_exp} OF [neg_thm, get_basis_wf_thm basis, thm]
| (IsPos, SOME e_pos_thm) => (
case determine_trimmed_sgn ectxt (get_expansion thm) of
(IsPos, trimmed_thm) =>
@{thm expands_to_arctan_ms_pos_exp_pos} OF
[e_pos_thm, trimmed_thm, get_basis_wf_thm basis, thm]
| (IsNeg, trimmed_thm) =>
@{thm expands_to_arctan_ms_pos_exp_neg} OF
[e_pos_thm, trimmed_thm, get_basis_wf_thm basis, thm]
| _ => raise TERM ("Unexpected trim result during expansion of arctan", []))
| (IsZero, _) => (
case try_lift_function ectxt (thm, basis) cont of
(SOME thm', _) => thm'
| _ =>
let
val _ = if get_verbose ectxt then
writeln "Unsupported occurrence of arctan" else ()
in
raise TERM ("Unsupported occurrence of arctan", [])
end)
| _ => raise TERM ("Unexpected trim result during expansion of arctan", [])
end
fun expand_basic _ t SEmpty = raise TERM ("expand_basic", [t])
| expand_basic thm t basis =
if abconv (get_basis_head basis, t) then
thm (get_basis_wf_thm basis) (mk_expansion_level_eq_thm (tl_basis basis))
else
@{thm expands_to_lift'} OF [get_basis_wf_thm basis, expand_basic thm t (tl_basis basis)]
fun expand_unary ectxt thm e basis =
let
val (thm', basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
in
(thm OF [get_basis_wf_thm basis', thm'], basis')
end
and expand_binary ectxt thm (e1, e2) basis =
let
val (thm1, basis') = expand' ectxt e1 basis |> apfst (simplify_expansion ectxt)
val (thm2, basis'') = expand' ectxt e2 basis' |> apfst (simplify_expansion ectxt)
val thm1 = lift basis'' thm1 |> simplify_expansion ectxt
in
(thm OF [get_basis_wf_thm basis'', thm1, thm2], basis'')
end
and trim_nz mode ectxt e basis =
let
val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
val (thm', nz, trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis')
in
case trimmed_thm of
NONE => raise TERM ("expand: zero denominator", [get_expansion thm])
| SOME trimmed_thm => (thm', basis', nz, trimmed_thm)
end
and expand'' ectxt (ConstExpr c) basis = (const_expansion ectxt basis c, basis)
| expand'' _ X basis = (lift basis @{thm expands_to_X}, basis)
| expand'' ectxt (Uminus e) basis = expand_unary ectxt @{thm expands_to_uminus} e basis
| expand'' ectxt (Add e12) basis = expand_binary ectxt @{thm expands_to_add} e12 basis
| expand'' ectxt (Minus e12) basis = expand_binary ectxt @{thm expands_to_minus} e12 basis
| expand'' ectxt (Mult e12) basis = expand_binary ectxt @{thm expands_to_mult} e12 basis
| expand'' ectxt (Powr' (e, p)) basis =
let
val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
in
(powr_const_expansion ectxt (thm, p, basis'), basis')
end
| expand'' ectxt (Powr (e1, e2)) basis =
let
val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
val (thm1, basis2) = expand' ectxt e1 basis1 |> apfst (simplify_expansion ectxt)
in
powr_expansion ectxt (thm1, thm2, basis2)
end
| expand'' ectxt (Powr_Nat (e1, e2)) basis =
let
val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
val (thm1, basis2) = expand' ectxt e1 basis1 |> apfst (simplify_expansion ectxt)
in
powr_nat_expansion ectxt (thm1, thm2, basis2)
end
| expand'' ectxt (LnPowr (e1, e2)) basis =
let
val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
val (thm1, basis2, _, trimmed_thm) = trim_nz Pos_Trim ectxt e1 basis1
val (ln_thm, basis3) = ln_expansion ectxt trimmed_thm thm1 basis2
val thm2' = lift basis3 thm2 |> simplify_expansion ectxt
val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis3, ln_thm, thm2']
val thm = @{thm expands_to_ln_powr} OF
[trimmed_thm, get_basis_wf_thm basis2, thm1, mult_thm]
in
(thm, basis3)
end
| expand'' ectxt (ExpLn e) basis =
let
val (thm, basis', _, trimmed_thm) = trim_nz Pos_Trim ectxt e basis
val thm = @{thm expands_to_exp_ln} OF [trimmed_thm, get_basis_wf_thm basis', thm]
in
(thm, basis')
end
| expand'' ectxt (Power (e, n)) basis =
let
val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
in
(power_expansion ectxt (thm, n, basis'), basis')
end
| expand'' ectxt (Root (e, n)) basis =
let
val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
in
(root_expansion ectxt (thm, n, basis'), basis')
end
| expand'' ectxt (Inverse e) basis =
(case trim_nz Simple_Trim ectxt e basis of
(thm, basis', _, trimmed_thm) =>
(@{thm expands_to_inverse} OF [trimmed_thm, get_basis_wf_thm basis', thm], basis'))
| expand'' ectxt (Div (e1, e2)) basis =
let
val (thm1, basis') = expand' ectxt e1 basis
val (thm2, basis'', _, trimmed_thm) = trim_nz Simple_Trim ectxt e2 basis'
val thm1 = lift basis'' thm1
in
(@{thm expands_to_divide} OF [trimmed_thm, get_basis_wf_thm basis'', thm1, thm2], basis'')
end
| expand'' ectxt (Ln e) basis =
let
val (thm, basis', _, trimmed_thm) = trim_nz Pos_Trim ectxt e basis
in
ln_expansion ectxt trimmed_thm thm basis'
end
| expand'' ectxt (Exp e) basis =
let
val (thm, basis') = expand' ectxt e basis
in
exp_expansion ectxt thm basis'
end
| expand'' ectxt (Absolute e) basis =
let
val (thm, basis', nz, trimmed_thm) = trim_nz Sgn_Trim ectxt e basis
val thm' =
case nz of
IsPos => @{thm expands_to_abs_pos}
| IsNeg => @{thm expands_to_abs_neg}
| _ => raise TERM ("Unexpected trim result during expansion of abs", [])
in
(thm' OF [trimmed_thm, get_basis_wf_thm basis', thm], basis')
end
| expand'' ectxt (Sgn e) basis =
let
val (thm, basis') = expand' ectxt e basis
in
(sgn_expansion ectxt (thm, basis'), basis')
end
| expand'' ectxt (Min (e1, e2)) basis = (
case try_prove_ev_eq ectxt (apply2 expr_to_term (e1, e2)) of
SOME eq_thm =>
expand' ectxt e1 basis
|> apfst (fn thm => @{thm expands_to_min_eq} OF [thm, eq_thm])
| NONE =>
let
val (thm1, basis') = expand' ectxt e1 basis
val (thm2, basis'') = expand' ectxt e2 basis'
val thm1' = lift basis'' thm1
in
(min_expansion ectxt (thm1', thm2, basis''), basis'')
end)
| expand'' ectxt (Max (e1, e2)) basis = (
case try_prove_ev_eq ectxt (apply2 expr_to_term (e1, e2)) of
SOME eq_thm =>
expand' ectxt e1 basis
|> apfst (fn thm => @{thm expands_to_max_eq} OF [thm, eq_thm])
| NONE =>
let
val (thm1, basis') = expand' ectxt e1 basis
val (thm2, basis'') = expand' ectxt e2 basis'
val thm1' = lift basis'' thm1
in
(max_expansion ectxt (thm1', thm2, basis''), basis'')
end)
| expand'' ectxt (Sin e) basis =
let
val (thm, basis', _, _) = trim_nz Simple_Trim ectxt e basis
in
(sin_cos_expansion ectxt thm basis' |> fst, basis')
end
| expand'' ectxt (Cos e) basis =
let
val (thm, basis', _, _) = trim_nz Simple_Trim ectxt e basis
in
(sin_cos_expansion ectxt thm basis' |> snd, basis')
end
| expand'' _ (Floor _) _ =
raise TERM ("floor not supported.", [])
| expand'' _ (Ceiling _) _ =
raise TERM ("ceiling not supported.", [])
| expand'' _ (Frac _) _ =
raise TERM ("frac not supported.", [])
| expand'' _ (NatMod _) _ =
raise TERM ("mod not supported.", [])
| expand'' ectxt (ArcTan e) basis =
let
val (thm, basis') = expand' ectxt e basis
in
(arctan_expansion ectxt basis' thm, basis')
end
| expand'' ectxt (Custom (name, t, args)) basis =
let
fun expand_args acc basis [] = (rev acc, basis)
| expand_args acc basis (arg :: args) =
case expand' ectxt arg basis of
(thm, basis') => expand_args (thm :: acc) basis' args
in
case expand_custom (get_ctxt ectxt) name of
NONE => raise TERM ("Unsupported custom function: " ^ name, [t])
| SOME e => e ectxt t (expand_args [] basis args)
end
and expand' ectxt (e' as (Inverse e)) basis =
let
val t = expr_to_term e
fun thm wf_thm len_thm =
@{thm expands_to_basic_inverse} OF [wf_thm, len_thm]
in
if member abconv (get_basis_list basis) t then
(expand_basic thm t basis, basis) |> apfst (check_expansion e')
else
expand'' ectxt e' basis |> apfst (check_expansion e')
end
| expand' ectxt (Div (e1, e2)) basis =
let
val (thm1, basis') = expand' ectxt e1 basis
val t = expr_to_term e2
fun thm wf_thm len_thm =
@{thm expands_to_basic_inverse} OF [wf_thm, len_thm]
in
if member abconv (get_basis_list basis') t then
(@{thm expands_to_div'} OF [get_basis_wf_thm basis', thm1, expand_basic thm t basis'],
basis')
else
let
val (thm2, basis'', _, trimmed_thm) = trim_nz Simple_Trim ectxt e2 basis'
val thm1 = lift basis'' thm1
in
(@{thm expands_to_divide} OF [trimmed_thm, get_basis_wf_thm basis'', thm1, thm2],
basis'')
end
end
| expand' ectxt (e' as (Powr' (e, p))) basis =
let
val t = expr_to_term e
val ctxt = get_ctxt ectxt
fun thm wf_thm len_thm =
(Drule.infer_instantiate' ctxt [NONE, NONE, SOME (Thm.cterm_of ctxt p)]
@{thm expands_to_basic_powr}) OF [wf_thm, len_thm]
in
if member abconv (get_basis_list basis) t then
(expand_basic thm t basis, basis) |> apfst (check_expansion e')
else
expand'' ectxt e' basis |> apfst (check_expansion e')
end
| expand' ectxt e basis =
let
val t = expr_to_term e
fun thm wf_thm len_thm = @{thm expands_to_basic} OF [wf_thm, len_thm]
in
if member abconv (get_basis_list basis) t then
(expand_basic thm t basis, basis) |> apfst (check_expansion e)
else
expand'' ectxt e basis |> apfst (check_expansion e)
end
fun expand ectxt e basis =
expand' ectxt e basis
|> apfst (simplify_expansion ectxt)
|> apfst (check_expansion e)
fun expand_term ectxt t basis =
let
val ctxt = get_ctxt ectxt
val (e, eq_thm) = reify ctxt t
val (thm, basis) = expand ectxt e basis
in
(@{thm expands_to_meta_eq_cong'} OF [thm, eq_thm], basis)
end
fun expand_terms ectxt ts basis =
let
val ctxt = get_ctxt ectxt
val e_eq_thms = map (reify ctxt) ts
fun step (e, eq_thm) (thms, basis) =
let
val (thm, basis) = expand' ectxt e basis
val thm = @{thm expands_to_meta_eq_cong'} OF [simplify_expansion ectxt thm, eq_thm]
in
(thm :: thms, basis)
end
val (thms, basis) = fold step e_eq_thms ([], basis)
fun lift thm = lift_expands_to_thm (mk_lifting (extract_basis_list thm) basis) thm
in
(map lift (rev thms), basis)
end
datatype limit =
Zero_Limit of bool option
| Finite_Limit of term
| Infinite_Limit of bool option
fun is_empty_expansion (Const (\<^const_name>‹MS›, _) $ Const (\<^const_name>‹MSLNil›, _) $ _) = true
| is_empty_expansion _ = false
fun limit_of_expansion_aux ectxt basis thm =
let
val n = length (get_basis_list basis)
val (thm, res, e_thms) =
trim_expansion_while_greater false (SOME (replicate n \<^term>‹0::real›)) true
(SOME Simple_Trim) ectxt (thm, basis)
val trimmed_thm = case res of Trimmed (_, trimmed_thm) => trimmed_thm | _ => NONE
val res = case res of Trimmed _ => GREATER | Aborted res => res
val exp = get_expansion thm
val _ = if res = GREATER andalso is_none trimmed_thm andalso not (is_empty_expansion exp) then
raise TERM ("limit_of_expansion", [get_expansion thm]) else ()
fun go thm _ _ [] = (
case zeroness_oracle false (SOME Simple_Trim) ectxt (get_expansion thm) of
(IsZero, _) => (Zero_Limit NONE, @{thm expands_to_real_imp_filterlim} OF [thm])
| _ => (Finite_Limit \<^term>‹0::real›, @{thm expands_to_real_imp_filterlim} OF [thm]))
| go thm _ basis ((IsNeg, neg_thm) :: _) = (Zero_Limit NONE,
@{thm expands_to_neg_exponent_imp_filterlim} OF
[thm, get_basis_wf_thm basis, neg_thm RS @{thm compare_reals_diff_sgnD(1)}])
| go thm trimmed_thm basis ((IsPos, pos_thm) :: _) = (Infinite_Limit NONE,
@{thm expands_to_pos_exponent_imp_filterlim} OF
[thm, the trimmed_thm, get_basis_wf_thm basis,
pos_thm RS @{thm compare_reals_diff_sgnD(3)}])
| go thm trimmed_thm basis ((IsZero, zero_thm) :: e_thms) =
let
val thm' = thm RS @{thm expands_to_hd''}
val trimmed_thm' = Option.map (fn thm => thm RS @{thm trimmed_hd}) trimmed_thm
val (lim, lim_thm) = go thm' trimmed_thm' (tl_basis basis) e_thms
val lim_lift_thm =
case lim of
Infinite_Limit _ => @{thm expands_to_zero_exponent_imp_filterlim(1)}
| _ => @{thm expands_to_zero_exponent_imp_filterlim(2)}
val lim_thm' =
lim_lift_thm OF [thm, get_basis_wf_thm basis,
zero_thm RS @{thm compare_reals_diff_sgnD(2)}, lim_thm]
in
(lim, lim_thm')
end
| go _ _ _ _ = raise Match
in
if is_empty_expansion exp then
(Zero_Limit NONE, thm RS @{thm expands_to_MSLNil_imp_filterlim}, thm)
else
case go thm trimmed_thm basis e_thms of
(lim, lim_thm) => (lim, lim_thm, thm)
end
fun limit_of_expansion (sgn_zero, sgn_inf) ectxt (thm, basis) =
let
val (lim, lim_thm, thm) = limit_of_expansion_aux ectxt basis thm
in
case lim of
Zero_Limit _ => (
if sgn_zero then
case trim_expansion false (SOME Sgn_Trim) ectxt (thm, basis) of
(thm, IsPos, SOME pos_thm) => (Zero_Limit (SOME true),
@{thm tendsto_imp_filterlim_at_right[OF _ expands_to_imp_eventually_pos]} OF
[lim_thm, get_basis_wf_thm basis, thm, pos_thm])
| (thm, IsNeg, SOME neg_thm) => (Zero_Limit (SOME false),
@{thm tendsto_imp_filterlim_at_left[OF _ expands_to_imp_eventually_neg]} OF
[lim_thm, get_basis_wf_thm basis, thm, neg_thm])
| _ => (Zero_Limit NONE, lim_thm)
else (Zero_Limit NONE, lim_thm))
| Infinite_Limit _ => (
if sgn_inf then
case trim_expansion false (SOME Sgn_Trim) ectxt (thm, basis) of
(thm, IsPos, SOME pos_thm) => (Infinite_Limit (SOME true),
(@{thm filterlim_at_infinity_imp_filterlim_at_top[OF _ expands_to_imp_eventually_pos]} OF
[lim_thm, get_basis_wf_thm basis, thm, pos_thm]))
| (thm, IsNeg, SOME neg_thm) => (Infinite_Limit (SOME false),
@{thm filterlim_at_infinity_imp_filterlim_at_bot[OF _ expands_to_imp_eventually_neg]} OF
[lim_thm, get_basis_wf_thm basis, thm, neg_thm])
| _ => (Infinite_Limit NONE, lim_thm)
else (Infinite_Limit NONE, lim_thm))
| Finite_Limit c => (Finite_Limit c, lim_thm)
end
fun compute_limit ectxt t =
case expand_term ectxt t default_basis of
(thm, basis) => limit_of_expansion (true, true) ectxt (thm, basis)
fun prove_at_infinity ectxt (thm, basis) =
let
fun err () = raise TERM ("prove_at_infinity", [get_expanded_fun thm])
val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm, basis)
fun go basis thm trimmed_thm =
if fastype_of (get_expansion thm) = \<^typ>‹real› then
err ()
else
case zeroness_oracle true (SOME Pos_Trim) ectxt (get_exponent (get_expansion thm)) of
(IsPos, SOME pos_thm) =>
@{thm expands_to_pos_exponent_imp_filterlim} OF
[thm, trimmed_thm, get_basis_wf_thm basis, pos_thm]
| (IsZero, SOME zero_thm) =>
@{thm expands_to_zero_exponent_imp_filterlim(1)} OF
[thm, get_basis_wf_thm basis, zero_thm,
go (tl_basis basis) (thm RS @{thm expands_to_hd''})
(trimmed_thm RS @{thm trimmed_hd})]
| _ => err ()
in
go basis thm trimmed_thm
end
fun prove_at_top_at_bot mode ectxt (thm, basis) =
let
val s = if mode = Pos_Trim then "prove_at_top" else "prove_at_bot"
fun err () = raise TERM (s, [get_expanded_fun thm])
val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis)
val trimmed_thm' = trimmed_thm RS
(if mode = Pos_Trim then @{thm trimmed_pos_imp_trimmed} else @{thm trimmed_neg_imp_trimmed})
fun go basis thm trimmed_thm =
if fastype_of (get_expansion thm) = \<^typ>‹real› then
err ()
else
case zeroness_oracle true (SOME Pos_Trim) ectxt (get_exponent (get_expansion thm)) of
(IsPos, SOME pos_thm) =>
@{thm expands_to_pos_exponent_imp_filterlim} OF
[thm, trimmed_thm, get_basis_wf_thm basis, pos_thm]
| (IsZero, SOME zero_thm) =>
@{thm expands_to_zero_exponent_imp_filterlim(1)} OF
[thm, get_basis_wf_thm basis, zero_thm,
go (tl_basis basis) (thm RS @{thm expands_to_hd''})
(trimmed_thm RS @{thm trimmed_hd})]
| _ => err ()
val lim_thm = go basis thm trimmed_thm'
val add_sign_thm =
if mode = Pos_Trim then
@{thm filterlim_at_infinity_imp_filterlim_at_top[OF _ expands_to_imp_eventually_pos]}
else
@{thm filterlim_at_infinity_imp_filterlim_at_bot[OF _ expands_to_imp_eventually_neg]}
in
add_sign_thm OF [lim_thm, get_basis_wf_thm basis, thm, trimmed_thm]
end
val prove_at_top = prove_at_top_at_bot Pos_Trim
val prove_at_bot = prove_at_top_at_bot Neg_Trim
fun prove_at_aux mode ectxt (thm, basis) =
let
val (s, add_sign_thm) =
case mode of
Simple_Trim =>
("prove_at_0", @{thm Topological_Spaces.filterlim_atI[OF _ expands_to_imp_eventually_nz]})
| Pos_Trim =>
("prove_at_right_0",
@{thm tendsto_imp_filterlim_at_right[OF _ expands_to_imp_eventually_pos]})
| Neg_Trim =>
("prove_at_left_0",
@{thm tendsto_imp_filterlim_at_left[OF _ expands_to_imp_eventually_neg]})
fun err () = raise TERM (s, [get_expanded_fun thm])
val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis)
fun go basis thm =
if fastype_of (get_expansion thm) = \<^typ>‹real› then
err ()
else
case zeroness_oracle true (SOME Neg_Trim) ectxt (get_exponent (get_expansion thm)) of
(IsNeg, SOME neg_thm) =>
@{thm expands_to_neg_exponent_imp_filterlim} OF
[thm, get_basis_wf_thm basis, neg_thm]
| (IsZero, SOME zero_thm) =>
@{thm expands_to_zero_exponent_imp_filterlim(2)} OF
[thm, get_basis_wf_thm basis, zero_thm,
go (tl_basis basis) (thm RS @{thm expands_to_hd''})]
| _ => err ()
val lim_thm = go basis thm
in
add_sign_thm OF [lim_thm, get_basis_wf_thm basis, thm, trimmed_thm]
end
val prove_at_0 = prove_at_aux Simple_Trim
val prove_at_left_0 = prove_at_aux Neg_Trim
val prove_at_right_0 = prove_at_aux Pos_Trim
fun prove_nhds ectxt (thm, basis) =
let
fun simplify (a, b, c) = (a, simplify_expansion ectxt b, c)
fun go thm basis =
if fastype_of (get_expansion thm) = \<^typ>‹real› then
@{thm expands_to_real_imp_filterlim} OF [thm]
else
case whnf_expansion ectxt thm |> simplify of
(NONE, thm, _) => @{thm expands_to_MSLNil_imp_filterlim} OF [thm]
| (SOME _, thm, _) => (
case zeroness_oracle true (SOME Sgn_Trim) ectxt (get_exponent (get_expansion thm)) of
(IsZero, SOME zero_thm) =>
@{thm expands_to_zero_exponent_imp_filterlim(2)} OF
[thm, get_basis_wf_thm basis, zero_thm,
go (thm RS @{thm expands_to_hd''}) (tl_basis basis)]
| (IsNeg, SOME neg_thm) =>
@{thm expands_to_neg_exponent_imp_filterlim} OF
[thm, get_basis_wf_thm basis, neg_thm]
| (IsPos, _) =>
go (try_drop_leading_term ectxt thm) basis
| _ => raise TERM ("Unexpected zeroness result in prove_nhds",
[get_exponent (get_expansion thm)]))
in
go thm basis
end
fun prove_equivalent theta ectxt (thm1, thm2, basis) =
let
val ((thm1, _, SOME trimmed_thm1), (thm2, _, SOME trimmed_thm2)) =
apply2 (trim_expansion true (SOME Simple_Trim) ectxt) ((thm1, basis), (thm2, basis))
val pat = ConsPat (\<^const_name>‹Pair›, [ConsPat (\<^const_name>‹Lazy_Eval.cmp_result.EQ›, []),
ConsPat (\<^const_name>‹Pair›, [AnyPat ("_", 0), AnyPat ("_", 0)])])
val (exp1, exp2) = apply2 get_expansion (thm1, thm2)
val T = fastype_of exp1
val t = mk_compare_expansions_const T $ exp1 $ exp2
fun eq_thm conv = HOLogic.mk_obj_eq (conv (Thm.cterm_of (get_ctxt ectxt) t))
val imp_thm =
if theta then @{thm compare_expansions_EQ_imp_bigtheta}
else @{thm compare_expansions_EQ_same}
in
case match ectxt pat t (SOME []) of
(SOME _, t, conv) =>
let
val [_, c1, c2] = HOLogic.strip_tuple t
val c12_thm = if theta then [] else [the (try_prove_real_eq true ectxt (c1, c2))]
in
imp_thm OF ([eq_thm conv, trimmed_thm1, trimmed_thm2, thm1, thm2, get_basis_wf_thm basis]
@ c12_thm)
end
| _ => raise TERM ("prove_equivalent", map get_expanded_fun [thm1, thm2])
end
val prove_bigtheta = prove_equivalent true
val prove_asymp_equiv = prove_equivalent false
fun print_trimming_error s ectxt exp =
let
val c = get_coeff exp
val t = if fastype_of c = \<^typ>‹real› then c else get_eval c
in
if #verbose (#ctxt ectxt) then
let
val ctxt = get_ctxt ectxt
val p = Pretty.str "real_asymp failed to show zeroness of the following expression:"
val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
val _ = Pretty.writeln p
in
raise TERM (s, [t])
end
else
raise TERM (s, [t])
end
fun prove_smallo ectxt (thm1, thm2, basis) =
let
val (thm2, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis)
val es = get_exponents (get_expansion thm2)
in
case trim_expansion_while_greater true (SOME es) false NONE ectxt (thm1, basis) of
(thm1, Aborted LESS, thms) =>
@{thm compare_expansions_LT} OF [prove_compare_expansions LESS (map snd thms),
trimmed_thm, thm1, thm2, get_basis_wf_thm basis]
| (thm1, Aborted _, _) =>
print_trimming_error "prove_smallo" ectxt (get_expansion thm1)
| (thm1, Trimmed _, _) =>
print_trimming_error "prove_smallo" ectxt (get_expansion thm1)
end
fun prove_bigo ectxt (thm1, thm2, basis) =
let
val (thm2, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis)
val es = get_exponents (get_expansion thm2)
in
case trim_expansion_while_greater false (SOME es) false NONE ectxt (thm1, basis) of
(thm1, Aborted LESS, thms) =>
@{thm landau_o.small_imp_big[OF compare_expansions_LT]} OF
[prove_compare_expansions LESS (map snd thms), trimmed_thm, thm1, thm2,
get_basis_wf_thm basis]
| (thm1, Aborted EQ, thms) =>
@{thm compare_expansions_EQ_imp_bigo} OF [prove_compare_expansions EQ (map snd thms),
trimmed_thm, thm1, thm2, get_basis_wf_thm basis]
| (thm1, Trimmed _, _) =>
print_trimming_error "prove_bigo" ectxt (get_expansion thm1)
end
fun prove_asymptotic_relation_aux mode f ectxt (thm1, thm2, basis) = f (
let
val thm = @{thm expands_to_minus} OF [get_basis_wf_thm basis, thm1, thm2]
in
case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
SOME zero_thm => (EQUAL, zero_thm RS @{thm eventually_diff_zero_imp_eq})
| _ => (
case trim_expansion true (SOME mode) ectxt (thm, basis) of
(thm, IsPos, SOME pos_thm) =>
(GREATER, @{thm expands_to_imp_eventually_gt} OF [get_basis_wf_thm basis, thm, pos_thm])
| (thm, IsNeg, SOME neg_thm) =>
(LESS, @{thm expands_to_imp_eventually_lt} OF [get_basis_wf_thm basis, thm, neg_thm])
| _ => raise TERM ("Unexpected zeroness result in prove_asymptotic_relation", []))
end)
val prove_eventually_greater = prove_asymptotic_relation_aux Pos_Trim snd
val prove_eventually_less = prove_asymptotic_relation_aux Neg_Trim snd
val prove_asymptotic_relation = prove_asymptotic_relation_aux Sgn_Trim I
fun prove_eventually_nonzero ectxt (thm, basis) =
case trim_expansion true (SOME Simple_Trim) ectxt (thm, basis) of
(thm, _, SOME trimmed_thm) =>
@{thm expands_to_imp_eventually_nz} OF [get_basis_wf_thm basis, thm, trimmed_thm]
| _ => raise TERM ("prove_eventually_nonzero", [get_expanded_fun thm])
fun extract_terms (n, strict) ectxt basis t =
let
val bs = get_basis_list basis
fun mk_constfun c = (Abs ("x", \<^typ>‹real›, c))
val const_0 = mk_constfun \<^term>‹0 :: real›
val const_1 = mk_constfun \<^term>‹1 :: real›
fun uminus t = Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, t)
fun betapply2 a b c = Term.betapply (Term.betapply (a, b), c)
fun mk_sum' [] acc = acc
| mk_sum' ((t, sgn) :: ts) acc = mk_sum' ts (
if sgn then
betapply2 \<^term>‹%(f::real=>real) g x. f x - g x› acc t
else
betapply2 \<^term>‹%(f::real=>real) g x. f x + g x› acc t)
fun mk_sum [] = const_0
| mk_sum ((t, sgn) :: ts) = mk_sum' ts (if sgn then uminus t else t)
fun mk_mult a b =
if a aconv const_0 then
const_0
else if b aconv const_0 then
const_0
else if a aconv \<^term>‹λ_::real. 1 :: real› then
b
else if b aconv \<^term>‹λ_::real. 1 :: real› then
a
else if a aconv \<^term>‹λ_::real. -1 :: real› then
Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, b)
else if b aconv \<^term>‹λ_::real. -1 :: real› then
Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, a)
else
Abs ("x", \<^typ>‹real›, \<^term>‹(*) :: real => _› $
(Term.betapply (a, Bound 0)) $ (Term.betapply (b, Bound 0)))
fun mk_powr b e =
if e = \<^term>‹0 :: real› then
const_1
else
let
val n = HOLogic.dest_number e |> snd
in
if n >= 0 then
Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x ^ e›, b),
HOLogic.mk_number \<^typ>‹nat› n)
else
Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x powr e›, b), e)
end
handle TERM _ =>
Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x powr e›, b), e)
fun mk_scale_elem b e acc =
let
val e = simplify_term ectxt e
in
if e = \<^term>‹0 :: real› then
acc
else if e = \<^term>‹1 :: real› then
mk_mult acc b
else
mk_mult acc (mk_powr b e)
end
fun mk_scale_elems [] _ acc = acc
| mk_scale_elems (b :: bs) (e :: es) acc =
mk_scale_elems bs es (mk_scale_elem b e acc)
| mk_scale_elems _ _ _ = raise Match
fun mk_summand c es =
let
val es = mk_scale_elems bs es \<^term>‹λ_::real. 1 :: real›
in
case c of
Const (\<^const_name>‹uminus›, _) $ c => ((c, true), es)
| _ => ((c, false), es)
end
fun go _ _ _ acc 0 = (acc, 0)
| go 0 es t acc n =
let
val c = simplify_term ectxt t
in
if strict andalso c = \<^term>‹0 :: real› then
(acc, n)
else
(mk_summand c (rev es) :: acc, n - 1)
end
| go m es t acc n =
case Lazy_Eval.whnf ectxt t |> fst of
Const (\<^const_name>‹MS›, _) $ cs $ _ =>
go' m es (simplify_term ectxt cs) acc n
| _ => raise TERM("extract_terms", [t])
and go' _ _ _ acc 0 = (acc, 0)
| go' m es cs acc n =
case Lazy_Eval.whnf ectxt cs |> fst of
Const (\<^const_name>‹MSLNil›, _) => (acc, n)
| Const (\<^const_name>‹MSLCons›, _) $ c $ cs => (
case Lazy_Eval.whnf ectxt c |> fst |> HOLogic.dest_prod of
(c, e) =>
case go (m - 1) (e :: es) c acc n of
(acc, n) => go' m es (simplify_term ectxt cs) acc n)
| _ => raise TERM("extract_terms", [t])
val (summands, remaining) = go (basis_size basis) [] t [] (n + 1)
val (summands, error) =
if remaining = 0 then (rev (tl summands), SOME (snd (hd summands))) else (rev summands, NONE)
val summands = map (fn ((c, sgn), es) => (mk_mult (mk_constfun c) es, sgn)) summands
val error = Option.map (fn err => Term.betapply (\<^term>‹λf::real⇒real. O(f)›, err)) error
val expansion = mk_sum summands
in
(expansion, error)
end
end
structure Multiseries_Expansion_Basic : EXPANSION_INTERFACE =
struct
open Multiseries_Expansion;
type T = expansion_thm
val expand_term = expand_term
val expand_terms = expand_terms
val prove_nhds = prove_nhds
val prove_at_infinity = prove_at_infinity
val prove_at_top = prove_at_top
val prove_at_bot = prove_at_bot
val prove_at_0 = prove_at_0
val prove_at_right_0 = prove_at_right_0
val prove_at_left_0 = prove_at_left_0
val prove_eventually_nonzero = prove_eventually_nonzero
val prove_eventually_less = prove_eventually_less
val prove_eventually_greater = prove_eventually_greater
val prove_smallo = prove_smallo
val prove_bigo = prove_bigo
val prove_bigtheta = prove_bigtheta
val prove_asymp_equiv = prove_asymp_equiv
end