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Abstract

Pattern completeness is the property that the left-hand sides of a
functional program or term rewrite system cover all cases w.r.t. pattern
matching. We verify a recent (abstract) decision procedure for pattern
completeness that covers the general case, i.e., in particular without
the usual restriction of left-linearity. In two refinement steps, we fur-
ther develop an executable version of that abstract algorithm. On our
example suite, this verified implementation is faster than other im-
plementations that are based on alternative (unverified) approaches,
including the complement algorithm, tree automata encodings, and
even the pattern completeness check of the GHC Haskell compiler.
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1 Introduction

This AFP entry includes the formalization of a decision procedure [4] for
pattern completeness. It also contains the setup for running the experiments
of that paper, i.e., it contains

• a generator for example term rewrite systems and Haskell programs of
varying size,

• a connection to an implementation of the complement algorithm [2]
within the ground confluence prover AGCP [1], and

• a tree automata encoder of pattern completeness that is linked with
the tree automata library FORT-h [3].

Note that some further glue code is required to run the experiments, which
is not included in this submission. Here, we just include the glue code that
was defined within Isabelle theories.
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2 Pattern Completeness

Pattern-completeness is the question whether in a given program all terms
of the form f(c1,..,cn) are matched by some lhs of the program, where here
each ci is a constructor ground term and f is a defined symbol. This will
be represented as a pattern problem of the shape (f(x1,...xn), lhs1, ..., lhsn)
where the xi will represent arbitrary constructor terms.

3 A Set-Based Inference System to Decide Pat-
tern Completeness

This theory contains an algorithm to decide whether pattern problems are
complete. It represents the inference rules of the paper on the set-based
level.
On this level we prove partial correctness and preservation of well-formed
inputs, but not termination.
theory Pattern-Completeness-Set

imports
First-Order-Terms.Term-More
Sorted-Terms.Sorted-Contexts

begin

3.1 Definition of Algorithm – Inference Rules

We first consider matching problems which are sets of term pairs. Note
that in the term pairs the type of variables differ: Each left term has natural
numbers (with sorts) as variables, so that it is easy to generate new variables,
whereas each right term has arbitrary variables of type ′v without any further
information. Then pattern problems are sets of matching problems, and we
also have sets of pattern problems.
The suffix -set is used to indicate that here these problems are modeled via
sets.
type-synonym ( ′f , ′v, ′s)match-problem-set = (( ′f ,nat × ′s)term × ( ′f , ′v)term) set

type-synonym ( ′f , ′v, ′s)pat-problem-set = ( ′f , ′v, ′s)match-problem-set set
type-synonym ( ′f , ′v, ′s)pats-problem-set = ( ′f , ′v, ′s)pat-problem-set set

abbreviation (input) bottom :: ( ′f , ′v, ′s)pats-problem-set where bottom ≡ {{}}

definition subst-left :: ( ′f ,nat × ′s)subst ⇒ (( ′f ,nat × ′s)term × ( ′f , ′v)term) ⇒
(( ′f ,nat × ′s)term × ( ′f , ′v)term) where

subst-left τ = (λ(t,r). (t · τ , r))

A function to compute for a variable x all substitution that instantiate x
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by c(xn, ..., xn+a) where c is an constructor of arity a and n is a parameter
that determines from where to start the numbering of variables.
definition τc :: nat ⇒ nat × ′s ⇒ ′f × ′s list ⇒ ( ′f ,nat × ′s)subst where
τc n x = (λ(f ,ss). subst x (Fun f (map Var (zip [n ..< n + length ss] ss))))

Compute the list of conflicting variables (Some list), or detect a clash (None)
fun conflicts :: ( ′f , ′v)term ⇒ ( ′f , ′v)term ⇒ ′v list option where

conflicts (Var x) (Var y) = (if x = y then Some [] else Some [x,y])
| conflicts (Var x) (Fun - -) = (Some [x])
| conflicts (Fun - -) (Var x) = (Some [x])
| conflicts (Fun f ss) (Fun g ts) = (if (f ,length ss) = (g,length ts)

then map-option concat (those (map2 conflicts ss ts))
else None)

abbreviation Conflict-Var s t x ≡ conflicts s t 6= None ∧ x ∈ set (the (conflicts
s t))
abbreviation Conflict-Clash s t ≡ conflicts s t = None

locale pattern-completeness-context =
fixes S :: ′s set — set of sort-names

and C :: ( ′f , ′s)ssig — sorted signature
and m :: nat — upper bound on arities of constructors
and Cl :: ′s ⇒ ( ′f × ′s list)list — a function to compute all constructors of

given sort as list
and inf-sort :: ′s ⇒ bool — a function to indicate whether a sort is infinite
and ty :: ′v itself

begin

definition tvars-disj-pp :: nat set ⇒ ( ′f , ′v, ′s)pat-problem-set ⇒ bool where
tvars-disj-pp V p = (∀ mp ∈ p. ∀ (ti,pi) ∈ mp. fst ‘ vars ti ∩ V = {})

definition inf-var-conflict :: ( ′f , ′v, ′s)match-problem-set ⇒ bool where
inf-var-conflict mp = (∃ s t x y.
(s,Var x) ∈ mp ∧ (t,Var x) ∈ mp ∧ Conflict-Var s t y ∧ inf-sort (snd y))

definition tvars-mp :: ( ′f , ′v, ′s)match-problem-set ⇒ (nat × ′s) set where
tvars-mp mp = (

⋃
(t,l) ∈ mp. vars t)

definition tvars-pp :: ( ′f , ′v, ′s)pat-problem-set ⇒ (nat × ′s) set where
tvars-pp pp = (

⋃
mp ∈ pp. tvars-mp mp)

definition subst-match-problem-set :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)match-problem-set
⇒ ( ′f , ′v, ′s)match-problem-set where

subst-match-problem-set τ pp = subst-left τ ‘ pp

definition subst-pat-problem-set :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)pat-problem-set
⇒ ( ′f , ′v, ′s)pat-problem-set where

subst-pat-problem-set τ P = subst-match-problem-set τ ‘ P
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definition τs :: nat ⇒ nat × ′s ⇒ ( ′f ,nat × ′s)subst set where
τs n x = {τc n x (f ,ss) | f ss. f : ss → snd x in C}

The transformation rules of the paper.
The formal definition contains two deviations from the rules in the paper:
first, the instantiate-rule can always be applied; and second there is an iden-
tity rule, which will simplify later refinement proofs. Both of the deviations
cause non-termination.
The formal inference rules further separate those rules that deliver a bottom-
or top-element from the ones that deliver a transformed problem.
inductive mp-step :: ( ′f , ′v, ′s)match-problem-set ⇒ ( ′f , ′v, ′s)match-problem-set ⇒
bool
(infix →s 50 ) where

mp-decompose: length ts = length ls =⇒ insert (Fun f ts, Fun f ls) mp →s set
(zip ts ls) ∪ mp
| mp-match: x /∈

⋃
(vars ‘ snd ‘ mp) =⇒ insert (t, Var x) mp →s mp

| mp-identity: mp →s mp

inductive mp-fail :: ( ′f , ′v, ′s)match-problem-set ⇒ bool where
mp-clash: (f ,length ts) 6= (g,length ls) =⇒ mp-fail (insert (Fun f ts, Fun g ls)

mp)
| mp-clash ′: Conflict-Clash s t =⇒ mp-fail ({(s,Var x),(t, Var x)} ∪ mp)

inductive pp-step :: ( ′f , ′v, ′s)pat-problem-set ⇒ ( ′f , ′v, ′s)pat-problem-set ⇒ bool
(infix ⇒s 50 ) where

pp-simp-mp: mp →s mp ′ =⇒ insert mp pp ⇒s insert mp ′ pp
| pp-remove-mp: mp-fail mp =⇒ insert mp pp ⇒s pp

inductive pp-success :: ( ′f , ′v, ′s)pat-problem-set ⇒ bool where
pp-success (insert {} pp)

inductive P-step-set :: ( ′f , ′v, ′s)pats-problem-set ⇒ ( ′f , ′v, ′s)pats-problem-set ⇒
bool
(infix Vs 50 ) where

P-fail: insert {} P Vs bottom
| P-simp: pp ⇒s pp ′ =⇒ insert pp P Vs insert pp ′ P
| P-remove-pp: pp-success pp =⇒ insert pp P Vs P
| P-instantiate: tvars-disj-pp {n ..< n+m} pp =⇒ x ∈ tvars-pp pp =⇒

insert pp P Vs {subst-pat-problem-set τ pp |. τ ∈ τs n x} ∪ P
| P-failure ′: ∀mp ∈ pp. inf-var-conflict mp =⇒ finite pp =⇒ insert pp P Vs {{}}

Note that in P-failure ′ the conflicts have to be simultaneously occurring. If
just some matching problem has such a conflict, then this cannot be deleted
immediately!
Example-program: f(x,x) = ..., f(s(x),y) = ..., f(x,s(y)) = ... cover all cases
of natural numbers, i.e., f(x1,x2), but if one would immediately delete the
matching problem of the first lhs because of the resulting inf-var-conflict in
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(x1,x),(x2,x) then it is no longer complete.

3.2 Soundness of the inference rules

The empty set of variables
definition EMPTY :: ′v ⇒ ′s option where EMPTY x = None
definition EMPTYn :: nat × ′s ⇒ ′s option where EMPTYn x = None

A constructor-ground substitution for the fixed set of constructors and set of
sorts. Note that variables to instantiate are represented as pairs of (number,
sort).
definition cg-subst :: ( ′f ,nat × ′s, ′v)gsubst ⇒ bool where

cg-subst σ = (∀ x. snd x ∈ S −→ (σ x : snd x in T (C ,EMPTY )))

A definition of pattern completeness for pattern problems.
definition match-complete-wrt :: ( ′f ,nat × ′s, ′v)gsubst ⇒ ( ′f , ′v, ′s)match-problem-set
⇒ bool where

match-complete-wrt σ mp = (∃ µ. ∀ (t,l) ∈ mp. t · σ = l · µ)

definition pat-complete :: ( ′f , ′v, ′s)pat-problem-set ⇒ bool where
pat-complete pp = (∀σ. cg-subst σ −→ (∃ mp ∈ pp. match-complete-wrt σ mp))

abbreviation pats-complete P ≡ ∀ pp ∈ P. pat-complete pp

Well-formed matching and pattern problems: all occurring variables (in left-
hand sides of matching problems) have a known sort.
definition wf-match :: ( ′f , ′v, ′s)match-problem-set ⇒ bool where

wf-match mp = (snd ‘ tvars-mp mp ⊆ S)

definition wf-pat :: ( ′f , ′v, ′s)pat-problem-set ⇒ bool where
wf-pat pp = (∀mp ∈ pp. wf-match mp)

definition wf-pats :: ( ′f , ′v, ′s)pats-problem-set ⇒ bool where
wf-pats P = (∀ pp ∈ P. wf-pat pp)

end

lemma type-conversion: t : s in T (C ,∅) =⇒ t · σ : s in T (C ,∅)
proof (induct t s rule: hastype-in-Term-induct)

case (Fun f ss σs τ)
then show ?case unfolding eval-term.simps

by (smt (verit, best) Fun-hastype list-all2-map1 list-all2-mono)
qed auto

lemma ball-insert-un-cong: f y = Ball zs f =⇒ Ball (insert y A) f = Ball (zs ∪
A) f

by auto
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lemma bex-insert-cong: f y = f z =⇒ Bex (insert y A) f = Bex (insert z A) f
by auto

lemma not-bdd-above-natD:
assumes ¬ bdd-above (A :: nat set)
shows ∃ x ∈ A. x > n
using assms by (meson bdd-above.unfold linorder-le-cases order .strict-iff )

lemma list-eq-nth-eq: xs = ys ←→ length xs = length ys ∧ (∀ i < length ys. xs !
i = ys ! i)

using nth-equalityI by metis

lemma subt-size: p ∈ poss t =⇒ size (t |- p) ≤ size t
proof (induct p arbitrary: t)

case (Cons i p t)
thus ?case
proof (cases t)

case (Fun f ss)
from Cons Fun have i: i < length ss and sub: t |- (i # p) = (ss ! i) |- p

and p ∈ poss (ss ! i) by auto
with Cons(1 )[OF this(3 )]
have size (t |- (i # p)) ≤ size (ss ! i) by auto
also have . . . ≤ size t using i unfolding Fun by (simp add: termination-simp)
finally show ?thesis .

qed auto
qed auto

lemma conflicts-sym: rel-option (λ xs ys. set xs = set ys) (conflicts s t) (conflicts
t s) (is rel-option - (?c s t) -)
proof (induct s t rule: conflicts.induct)

case (4 f ss g ts)
define c where c = ?c
show ?case
proof (cases (f ,length ss) = (g,length ts))

case True
hence len: length ss = length ts
((f , length ss) = (g, length ts)) = True
((g, length ts) = (f , length ss)) = True by auto

show ?thesis using len(1 ) 4 [OF True - refl]
unfolding conflicts.simps len(2 ,3 ) if-True
unfolding option.rel-map c-def [symmetric] set-concat

proof (induct ss ts rule: list-induct2 , goal-cases)
case (2 s ss t ts)
hence IH : rel-option (λx y.

⋃
(set ‘ set x) =

⋃
(set ‘ set y)) (those (map2

c ss ts)) (those (map2 c ts ss)) by auto
from 2 have st: rel-option (λxs ys. set xs = set ys) (c s t) (c t s) by auto

from IH st show ?case by (cases c s t; cases c t s; auto simp: option.rel-map)
(simp add: option.rel-sel)

qed simp
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qed auto
qed auto

lemma conflicts: fixes x :: ′v
shows Conflict-Clash s t =⇒ ∃ p. p ∈ poss s ∧ p ∈ poss t ∧ is-Fun (s |-p) ∧

is-Fun (t |-p) ∧ root (s |-p) 6= root (t |- p) (is ?B1 =⇒ ?B2 )
and Conflict-Var s t x =⇒
∃ p . p ∈ poss s ∧ p ∈ poss t ∧ s |-p 6= t |-p ∧ (s |-p = Var x ∨ t |-p =

Var x) (is ?C1 x =⇒ ?C2 x)
and s 6= t =⇒ ∃ x. Conflict-Clash s t ∨ Conflict-Var s t x
and Conflict-Var s t x =⇒ x ∈ vars s ∪ vars t
and conflicts s t = Some [] ←→ s = t (is ?A)

proof −
let ?B = ?B1 −→ ?B2
let ?C = λ x. ?C1 x −→ ?C2 x
{

fix x :: ′v
have (conflicts s t = Some [] −→ s = t) ∧ ?B ∧ ?C x
proof (induction s arbitrary: t)

case (Var y t)
thus ?case by (cases t, auto)

next
case (Fun f ss t)
show ?case
proof (cases t)

case t: (Fun g ts)
show ?thesis
proof (cases (f ,length ss) = (g,length ts))

case False
hence res: conflicts (Fun f ss) t = None unfolding t by auto
show ?thesis unfolding res unfolding t using False

by (auto intro!: exI [of - Nil])
next

case f : True
let ?s = Fun f ss
show ?thesis
proof (cases those (map2 conflicts ss ts))

case None
hence res: conflicts ?s t = None unfolding t by auto
from None[unfolded those-eq-None] obtain i where i: i < length ss i <

length ts and
confl: conflicts (ss ! i) (ts ! i) = None
using f unfolding set-conv-nth set-zip by auto

from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i] confl obtain p

where p: p ∈ poss (ss ! i) ∧ p ∈ poss (ts ! i) ∧ is-Fun (ss ! i |- p) ∧
is-Fun (ts ! i |- p) ∧ root (ss ! i |- p) 6= root (ts ! i |- p)

by auto
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from p have p: ∃ p. p ∈ poss ?s ∧ p ∈ poss t ∧ is-Fun (?s |- p) ∧ is-Fun
(t |- p) ∧ root (?s |- p) 6= root (t |- p)

by (intro exI [of - i # p], unfold t, insert i f , auto)
from p res show ?thesis by auto

next
case (Some xss)
hence res: conflicts ?s t = Some (concat xss) unfolding t using f by

auto
from Some have map2 : map2 conflicts ss ts = map Some xss by auto
from arg-cong[OF this, of length] have len: length xss = length ss using

f by auto
have rec: i < length ss =⇒ conflicts (ss ! i) (ts ! i) = Some (xss ! i) for

i
using arg-cong[OF map2 , of λ xs. xs ! i] len f by auto

{
assume x ∈ set (the (conflicts ?s t))
hence x ∈ set (concat xss) unfolding res by auto
then obtain xs where xs: xs ∈ set xss and x: x ∈ set xs by auto
from xs len obtain i where i: i < length ss and xs: xs = xss ! i by

(auto simp: set-conv-nth)
from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i, unfolded rec[OF i, folded xs]] x
obtain p where p ∈ poss (ss ! i) ∧ p ∈ poss (ts ! i) ∧ ss ! i |- p 6= ts

! i |- p ∧ (ss ! i |- p = Var x ∨ ts ! i |- p = Var x)
by auto

hence ∃ p. p ∈ poss ?s ∧ p ∈ poss t ∧ ?s |- p 6= t |- p ∧ (?s |- p =
Var x ∨ t |- p = Var x)

by (intro exI [of - i # p], insert i f , auto simp: t)
}
moreover
{

assume conflicts ?s t = Some []
with res have empty: concat xss = [] by auto
{

fix i
assume i: i < length ss
from rec[OF i] have conflicts (ss ! i) (ts ! i) = Some (xss ! i) .
moreover from empty i len have xss ! i = [] by auto
ultimately have res: conflicts (ss ! i) (ts ! i) = Some [] by simp
from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i, unfolded res] have ss ! i = ts ! i by

auto
}
with f have ?s = t unfolding t by (auto intro: nth-equalityI )

}
ultimately show ?thesis unfolding res by auto

qed
qed

qed auto
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qed
} note main = this
from main show B: ?B1 =⇒ ?B2 and C : ?C1 x =⇒ ?C2 x by blast+
show ?A
proof

assume s = t
with B have conflicts s t 6= None by blast
then obtain xs where res: conflicts s t = Some xs by auto
show conflicts s t = Some []
proof (cases xs)

case Nil
thus ?thesis using res by auto

next
case (Cons x xs)
with main[of x] res ‹s = t› show ?thesis by auto

qed
qed (insert main, blast)
{

assume diff : s 6= t
show ∃ x. Conflict-Clash s t ∨ Conflict-Var s t x
proof (cases conflicts s t)

case (Some xs)
with ‹?A› diff obtain x where x ∈ set xs by (cases xs, auto)
thus ?thesis unfolding Some by auto

qed auto
}
assume Conflict-Var s t x
with C obtain p where p ∈ poss s p ∈ poss t (s |- p = Var x ∨ t |- p = Var

x)
by blast

thus x ∈ vars s ∪ vars t
by (metis UnCI subt-at-imp-supteq ′ subteq-Var-imp-in-vars-term)

qed

declare conflicts.simps[simp del]

lemma conflicts-refl[simp]: conflicts t t = Some []
using conflicts(5 )[of t t] by auto

For proving partial correctness we need further properties of the fixed pa-
rameters: We assume that m is sufficiently large and that there exists some
constructor ground terms. Moreover inf-sort really computes whether a sort
has terms of arbitrary size. Further all symbols in C must have sorts of S.
Finally, Cl should precisely compute the constructors of a sort.
locale pattern-completeness-context-with-assms = pattern-completeness-context S
C m Cl inf-sort ty

for S and C :: ( ′f , ′s)ssig
and m Cl inf-sort
and ty :: ′v itself +
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assumes sorts-non-empty:
∧

s. s ∈ S =⇒ ∃ t. t : s in T (C , EMPTY )
and C-sub-S :

∧
f ss s. f : ss → s in C =⇒ insert s (set ss) ⊆ S

and m:
∧

f ss s. f : ss → s in C =⇒ length ss ≤ m
and inf-sort-def : s ∈ S =⇒ inf-sort s = (¬ bdd-above (size ‘ {t . t : s in

T (C ,EMPTYn)}))
and Cl:

∧
s. set (Cl s) = {(f ,ss). f : ss → s in C}

and Cl-len:
∧

σ. Ball (length ‘ snd ‘ set (Cl σ)) (λ a. a ≤ m)
begin

lemmas subst-defs-set =
subst-pat-problem-set-def
subst-match-problem-set-def

Preservation of well-formedness
lemma mp-step-wf : mp →s mp ′ =⇒ wf-match mp =⇒ wf-match mp ′

unfolding wf-match-def tvars-mp-def
proof (induct mp mp ′ rule: mp-step.induct)

case (mp-decompose f ts ls mp)
then show ?case by (auto dest!: set-zip-leftD)

qed auto

lemma pp-step-wf : pp ⇒s pp ′ =⇒ wf-pat pp =⇒ wf-pat pp ′

unfolding wf-pat-def
proof (induct pp pp ′ rule: pp-step.induct)

case (pp-simp-mp mp mp ′ pp)
then show ?case using mp-step-wf [of mp mp ′] by auto

qed auto

theorem P-step-set-wf : P Vs P ′ =⇒ wf-pats P =⇒ wf-pats P ′

unfolding wf-pats-def
proof (induct P P ′ rule: P-step-set.induct)

case (P-simp pp pp ′ P)
then show ?case using pp-step-wf [of pp pp ′] by auto

next
case ∗: (P-instantiate n p x P)
let ?s = snd x
from ∗ have sS : ?s ∈ S and p: wf-pat p unfolding wf-pat-def wf-match-def

tvars-pp-def by auto
{

fix τ
assume tau: τ ∈ τs n x
from tau[unfolded τs-def τc-def , simplified]
obtain f sorts where f : f : sorts → snd x in C and τ : τ = subst x (Fun f

(map Var (zip [n..<n + length sorts] sorts))) by auto
let ?i = length sorts
let ?xs = zip [n..<n + length sorts] sorts
from C-sub-S [OF f ] have sS : ?s ∈ S and xs: snd ‘ set ?xs ⊆ S

unfolding set-conv-nth set-zip by auto
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{
fix mp y
assume mp: mp ∈ p and y ∈ tvars-mp (subst-left τ ‘ mp)
then obtain s t where y: y ∈ vars (s · τ) and st: (s,t) ∈ mp

unfolding tvars-mp-def subst-left-def by auto
from y have y ∈ vars s ∪ set ?xs unfolding vars-term-subst τ

by (auto simp: subst-def split: if-splits)
hence snd y ∈ snd ‘ vars s ∪ snd ‘ set ?xs by auto
also have . . . ⊆ snd ‘ vars s ∪ S using xs by auto
also have . . . ⊆ S using p mp st

unfolding wf-pat-def wf-match-def tvars-mp-def by force
finally have snd y ∈ S .

}
hence wf-pat (subst-pat-problem-set τ p)

unfolding wf-pat-def wf-match-def subst-defs-set by auto
}
with ∗ show ?case by auto

qed (auto simp: wf-pat-def )

Soundness requires some preparations
lemma cg-exists: ∃ σg. cg-subst σg
proof

show cg-subst (λ x. SOME t. t : snd x in T (C , EMPTY ))
unfolding cg-subst-def

proof (intro allI impI , goal-cases)
case (1 x)
from someI-ex[OF sorts-non-empty[OF 1 ]] show ?case by simp

qed
qed

definition σg :: ( ′f ,nat × ′s, ′v)gsubst where σg = (SOME σ. cg-subst σ)

lemma σg: cg-subst σg unfolding σg-def using cg-exists by (metis someI-ex)

lemma pat-complete-empty[simp]: pat-complete {} = False
unfolding pat-complete-def using σg by auto

lemma inf-var-conflictD: assumes inf-var-conflict mp
shows ∃ p s t x y.
(s,Var x) ∈ mp ∧ (t,Var x) ∈ mp ∧ s |-p = Var y ∧ s |- p 6= t |-p ∧ p ∈ poss

s ∧ p ∈ poss t ∧ inf-sort (snd y)
proof −

from assms[unfolded inf-var-conflict-def ]
obtain s t x y where (s, Var x) ∈ mp ∧ (t, Var x) ∈ mp and conf : Conflict-Var

s t y and y: inf-sort (snd y) by blast
with conflicts(2 )[OF conf ] show ?thesis by metis

qed

lemma cg-term-vars: t : s in T (C ,EMPTYn) =⇒ vars t = {}
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proof (induct t s rule: hastype-in-Term-induct)
case (Var v σ)
then show ?case by (auto simp: EMPTYn-def )

next
case (Fun f ss σs τ)
then show ?case unfolding term.simps unfolding set-conv-nth list-all2-conv-all-nth

by auto
qed

lemma type-conversion1 : t : s in T (C ,EMPTYn) =⇒ t · σ ′ : s in T (C ,EMPTY )

unfolding EMPTYn-def EMPTY-def by (rule type-conversion)

lemma type-conversion2 : t : s in T (C ,EMPTY ) =⇒ t · σ ′ : s in T (C ,EMPTYn)

unfolding EMPTYn-def EMPTY-def by (rule type-conversion)

lemma term-of-sort: assumes s ∈ S
shows ∃ t. t : s in T (C ,EMPTYn)

proof −
from σg[unfolded cg-subst-def ] assms
have ∃ t. t : s in T (C ,EMPTY ) by force
with type-conversion2 [of - s]
show ?thesis by auto

qed

Main partial correctness theorems on well-formed problems: the transforma-
tion rules do not change the semantics of a problem
lemma mp-step-pcorrect: mp→s mp ′=⇒ match-complete-wrt σ mp = match-complete-wrt
σ mp ′

proof (induct mp mp ′ rule: mp-step.induct)
case ∗: (mp-decompose f ts ls mp)
show ?case unfolding match-complete-wrt-def

apply (rule ex-cong1 )
apply (rule ball-insert-un-cong)
apply (unfold split) using ∗ by (auto simp add: set-zip list-eq-nth-eq)

next
case ∗: (mp-match x mp t)
show ?case unfolding match-complete-wrt-def
proof

assume ∃µ. ∀ (ti, li)∈mp. ti · σ = li · µ
then obtain µ where eq:

∧
ti li. (ti, li)∈mp =⇒ ti · σ = li · µ by auto

let ?µ = µ(x := t · σ)
have (ti, li) ∈ mp =⇒ ti · σ = li · ?µ for ti li using ∗ eq[of ti li]

by (auto intro!: term-subst-eq)
thus ∃µ. ∀ (ti, li)∈insert (t, Var x) mp. ti · σ = li · µ by (intro exI [of - ?µ],

auto)
qed auto

qed auto
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lemma mp-fail-pcorrect: mp-fail mp =⇒ ¬ match-complete-wrt σ mp
proof (induct mp rule: mp-fail.induct)

case ∗: (mp-clash f ts g ls mp)
{

assume length ts 6= length ls
hence (map (λt. t · µ) ls = map (λt. t · σ) ts) = False for σ :: ( ′f ,nat ×

′s, ′a)gsubst and µ
by (metis length-map)

} note len = this
from ∗ show ?case unfolding match-complete-wrt-def

by (auto simp: len)
next

case ∗: (mp-clash ′ s t x mp)
from conflicts(1 )[OF ∗(1 )]
obtain po where ∗: po ∈ poss s po ∈ poss t is-Fun (s |- po) is-Fun (t |- po) root

(s |- po) 6= root (t |- po)
by auto

show ?case
proof

assume match-complete-wrt σ ({(s, Var x), (t, Var x)} ∪ mp)
from this[unfolded match-complete-wrt-def ]
have s · σ = t · σ by auto
hence root (s · σ |-po) = root (t · σ |-po) by auto
also have root (s · σ |-po) = root (s |-po · σ) using ∗ by auto
also have . . . = root (s |-po) using ∗ by (cases s |- po, auto)
also have root (t · σ |-po) = root (t |-po · σ) using ∗ by (cases t |- po, auto)
also have . . . = root (t |-po) using ∗ by (cases t |- po, auto)
finally show False using ∗ by auto

qed
qed

lemma pp-step-pcorrect: pp ⇒s pp ′ =⇒ pat-complete pp = pat-complete pp ′

proof (induct pp pp ′ rule: pp-step.induct)
case (pp-simp-mp mp mp ′ pp)
then show ?case using mp-step-pcorrect[of mp mp ′] unfolding pat-complete-def

by auto
next

case (pp-remove-mp mp pp)
then show ?case using mp-fail-pcorrect[of mp] unfolding pat-complete-def by

auto
qed

lemma pp-success-pcorrect: pp-success pp =⇒ pat-complete pp
by (induct pp rule: pp-success.induct, auto simp: pat-complete-def match-complete-wrt-def )

theorem P-step-set-pcorrect: P Vs P ′ =⇒ wf-pats P =⇒
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pats-complete P ←→ pats-complete P ′

proof (induct P P ′ rule: P-step-set.induct)
case (P-fail P)
then show ?case by (auto simp: pat-complete-def )

next
case (P-simp pp pp ′ P)
then show ?case using pp-step-pcorrect[of pp pp ′] by auto

next
case (P-remove-pp pp P)
then show ?case using pp-success-pcorrect[of pp] by auto

next
case ∗: (P-instantiate n pp x P)
note def = pat-complete-def [unfolded match-complete-wrt-def ]
show ?case
proof (rule ball-insert-un-cong, standard)

assume complete: pats-complete {subst-pat-problem-set τ pp |. τ ∈ τs n x}
show pat-complete pp unfolding def
proof (intro allI impI )

fix σ :: ( ′f ,nat × ′s, ′v)gsubst

from ∗ have wf-pat pp unfolding wf-pats-def by auto
with ∗(2 ) have x: snd x ∈ S unfolding tvars-pp-def tvars-mp-def wf-pat-def

wf-match-def by force

assume cg: cg-subst σ
from this[unfolded cg-subst-def ] x
have σ x : snd x in T (C ,EMPTY ) by blast
then obtain f ts σs where f : f : σs → snd x in C

and args: ts :l σs in T (C ,EMPTY )
and σx: σ x = Fun f ts
by (induct, auto simp: EMPTY-def )

from f have f : f : σs → snd x in C
by (meson hastype-in-ssig-def )

let ?l = length ts
from args have len: length σs = ?l

by (simp add: list-all2-lengthD)
have l: ?l ≤ m using m[OF f ] len by auto
define σ ′ where σ ′ = (λ ys. let y = fst ys in if n ≤ y ∧ y < n + ?l ∧ σs !

(y − n) = snd ys then ts ! (y − n) else σ ys)
have cg: cg-subst σ ′ unfolding cg-subst-def
proof (intro allI impI )

fix ys :: nat × ′s
assume ysS : snd ys ∈ S
show σ ′ ys : snd ys in T (C ,EMPTY )
proof (cases σ ′ ys = σ ys)

case True
thus ?thesis using cg ysS unfolding cg-subst-def by metis

next
case False
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obtain y s where ys: ys = (y,s) by force
with False have y: y − n < ?l n ≤ y y < n + ?l and arg: σs ! (y − n)

= s and σ ′: σ ′ ys = ts ! (y − n)
unfolding σ ′-def Let-def by (auto split: if-splits)

show ?thesis unfolding σ ′ unfolding ys snd-conv arg[symmetric] using
y(1 ) len args

by (metis list-all2-nthD)
qed

qed
define τ where τ = subst x (Fun f (map Var (zip [n..<n + ?l] σs)))

from f have τ ∈ τs n x unfolding τs-def τ -def τc-def using len[symmetric]
by auto

hence pat-complete (subst-pat-problem-set τ pp) using complete by auto
from this[unfolded def , rule-format, OF cg]
obtain tl µ where tl: tl ∈ subst-pat-problem-set τ pp

and match:
∧

ti li. (ti, li) ∈ tl =⇒ ti · σ ′ = li · µ by force
from tl[unfolded subst-defs-set subst-left-def set-map]
obtain tl ′ where tl ′: tl ′ ∈ pp and tl: tl = {(t ′ · τ , l) |. (t ′,l) ∈ tl ′} by auto
show ∃ tl∈ pp. ∃µ. ∀ (ti, li)∈ tl. ti · σ = li · µ
proof (intro bexI [OF - tl ′] exI [of - µ], clarify)

fix ti li
assume tli: (ti, li) ∈ tl ′
hence tlit: (ti · τ , li) ∈ tl unfolding tl by force
from match[OF this] have match: ti · τ · σ ′ = li · µ by auto
from ∗(1 )[unfolded tvars-disj-pp-def , rule-format, OF tl ′ tli]
have vti: fst ‘ vars-term ti ∩ {n..<n + m} = {} by auto
have ti · σ = ti · (τ ◦s σ ′)
proof (rule term-subst-eq, unfold subst-compose-def )

fix y
assume y ∈ vars-term ti
with vti have y: fst y /∈ {n..<n + m} by auto
show σ y = τ y · σ ′

proof (cases y = x)
case False
hence τ y · σ ′ = σ ′ y unfolding τ -def subst-def by auto
also have . . . = σ y

unfolding σ ′-def using y l by auto
finally show ?thesis by simp

next
case True

show ?thesis unfolding True τ -def subst-simps σx eval-term.simps
map-map o-def term.simps

by (intro conjI refl nth-equalityI , auto simp: len σ ′-def )
qed

qed
also have . . . = li · µ using match by simp
finally show ti · σ = li · µ by blast

qed
qed
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next
assume complete: pat-complete pp
{

fix τ
assume τ ∈ τs n x
from this[unfolded τs-def τc-def , simplified]
obtain f sorts where f : f : sorts → snd x in C and τ : τ = subst x (Fun f

(map Var (zip [n..<n + length sorts] sorts))) by auto
let ?i = length sorts
let ?xs = zip [n..<n + length sorts] sorts
have i: ?i ≤ m by (rule m[OF f ])
have pat-complete (subst-pat-problem-set τ pp) unfolding def
proof (intro allI impI )

fix σ :: ( ′f ,nat × ′s, ′v)gsubst
assume cg: cg-subst σ
define σ ′ where σ ′ = σ(x := Fun f (map σ ?xs))
from C-sub-S [OF f ] have sortsS : set sorts ⊆ S by auto
from f have f : f : sorts → snd x in C by (simp add: hastype-in-ssig-def )
hence Fun f (map σ ?xs) : snd x in T (C ,EMPTY )
proof (rule Fun-hastypeI )

show map σ ?xs :l sorts in T (C ,EMPTY )
using cg[unfolded cg-subst-def , rule-format, OF set-mp[OF sortsS ]]

by (smt (verit) add-diff-cancel-left ′ length-map length-upt length-zip
list-all2-conv-all-nth min.idem nth-map nth-mem nth-zip prod.sel(2 ))

qed
hence cg: cg-subst σ ′ using cg f unfolding cg-subst-def σ ′-def by auto
from complete[unfolded def , rule-format, OF this]
obtain tl µ where tl: tl ∈ pp and tli:

∧
ti li. (ti, li)∈ tl =⇒ ti · σ ′ = li ·

µ by force
from tl have tlm: {(t · τ , l) |. (t,l) ∈ tl} ∈ subst-pat-problem-set τ pp

unfolding subst-defs-set subst-left-def by auto
{

fix ti li
assume mem: (ti, li) ∈ tl
from ∗[unfolded tvars-disj-pp-def ] tl mem have vti: fst ‘ vars-term ti ∩

{n..<n + m} = {} by force
from tli[OF mem] have li · µ = ti · σ ′ by auto
also have . . . = ti · (τ ◦s σ)
proof (intro term-subst-eq, unfold subst-compose-def )

fix y
assume y ∈ vars-term ti
with vti have y: fst y /∈ {n..<n + m} by auto
show σ ′ y = τ y · σ
proof (cases y = x)

case False
hence τ y · σ = σ y unfolding τ subst-def by auto
also have . . . = σ ′ y

unfolding σ ′-def using False by auto
finally show ?thesis by simp
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next
case True
show ?thesis unfolding True τ

by (simp add: o-def σ ′-def )
qed

qed
finally have ti · τ · σ = li · µ by auto

}
thus ∃ tl ∈ subst-pat-problem-set τ pp. ∃µ. ∀ (ti, li)∈tl. ti · σ = li · µ

by (intro bexI [OF - tlm], auto)
qed

}
thus pats-complete {subst-pat-problem-set τ pp |. τ ∈ τs n x} by auto

qed
next

case ∗: (P-failure ′ pp P)
{

assume pp: pat-complete pp
with ∗(3 ) have wf : wf-pat pp by (auto simp: wf-pats-def )
define confl ′ :: ( ′f , nat × ′s) term ⇒ ( ′f , nat × ′s)term ⇒ nat × ′s ⇒ bool

where confl ′ = (λ sp tp y.
sp = Var y ∧ inf-sort (snd y) ∧ sp 6= tp)

define P1 where P1 = (λ mp s t x y p. mp ∈ pp −→ (s, Var x) ∈ mp ∧ (t,
Var x) ∈ mp ∧ p ∈ poss s ∧ p ∈ poss t ∧ confl ′ (s |- p) (t |- p) y)

{
fix mp
assume mp ∈ pp
hence inf-var-conflict mp using ∗ by auto
from inf-var-conflictD[OF this]
have ∃ s t x y p. P1 mp s t x y p unfolding P1-def confl ′-def by force

}
hence ∀ mp. ∃ s t x y p. P1 mp s t x y p unfolding P1-def by blast
from choice[OF this] obtain s where ∀ mp. ∃ t x y p. P1 mp (s mp) t x y p

by blast
from choice[OF this] obtain t where ∀ mp. ∃ x y p. P1 mp (s mp) (t mp) x

y p by blast
from choice[OF this] obtain x where ∀ mp. ∃ y p. P1 mp (s mp) (t mp) (x

mp) y p by blast
from choice[OF this] obtain y where ∀ mp. ∃ p. P1 mp (s mp) (t mp) (x

mp) (y mp) p by blast
from choice[OF this] obtain p where ∀ mp. P1 mp (s mp) (t mp) (x mp) (y

mp) (p mp) by blast
note P1 = this[unfolded P1-def , rule-format]
from ∗(2 ) have finite (y ‘ pp) by blast
from ex-bij-betw-finite-nat[OF this] obtain index and n :: nat where

bij: bij-betw index (y ‘ pp) {..<n}
by (auto simp add: atLeast0LessThan)

define var-ind :: nat ⇒ nat × ′s ⇒ bool where
var-ind i x = (x ∈ y ‘ pp ∧ index x ∈ {..<n} − {..<i}) for i x
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have [simp]: var-ind n x = False for x
unfolding var-ind-def by auto

define cg-subst-ind :: nat ⇒ ( ′f ,nat × ′s)subst ⇒ bool where
cg-subst-ind i σ = (∀ x. (var-ind i x −→ σ x = Var x)

∧ (¬ var-ind i x −→ (vars-term (σ x) = {} ∧ (snd x ∈ S −→ σ x : snd
x in T (C ,EMPTYn))))) for i σ

define confl :: nat ⇒ ( ′f , nat × ′s) term ⇒ ( ′f , nat × ′s)term ⇒ bool where
confl = (λ i sp tp.

(case (sp,tp) of (Var x, Var y) ⇒ x 6= y ∧ var-ind i x ∧ var-ind i y
| (Var x, Fun - -) ⇒ var-ind i x
| (Fun - -, Var x) ⇒ var-ind i x
| (Fun f ss, Fun g ts) ⇒ (f ,length ss) 6= (g,length ts)))

have confl-n: confl n s t =⇒ ∃ f g ss ts. s = Fun f ss ∧ t = Fun g ts ∧ (f ,length
ss) 6= (g,length ts) for s t

by (cases s; cases t; auto simp: confl-def )
{

fix i
assume i ≤ n
hence ∃ σ. cg-subst-ind i σ ∧ (∀ mp ∈ pp. ∃ p. p ∈ poss (s mp · σ) ∧ p ∈

poss (t mp · σ) ∧ confl i (s mp · σ |- p) (t mp · σ |- p))
proof (induction i)

case 0
define σ where σ x = (if var-ind 0 x then Var x else if snd x ∈ S then

map-vars undefined (σg x) else Fun undefined []) for x
{

fix x :: nat × ′s
define t where t = σg x
define s where s = snd x
assume snd x ∈ S
hence σg x : snd x in T (C ,EMPTY ) using σg unfolding cg-subst-def

by blast
hence map-vars undefined (σg x) : snd x in T (C ,EMPTYn) (is ?m : - in

-)
unfolding t-def [symmetric] s-def [symmetric]

proof (induct t s rule: hastype-in-Term-induct)
case (Var v σ)
then show ?case by (auto simp: EMPTY-def )

next
case (Fun f ss σs τ)
then show ?case unfolding term.simps

by (smt (verit, best) Fun-hastype list-all2-map1 list-all2-mono)
qed

}
from this cg-term-vars[OF this] have σ: cg-subst-ind 0 σ unfolding

cg-subst-ind-def σ-def by auto
show ?case
proof (rule exI , rule conjI [OF σ], intro ballI exI conjI )

fix mp
assume mp: mp ∈ pp
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note P1 = P1 [OF this]
from mp have mem: y mp ∈ y ‘ pp by auto
with bij have y: index (y mp) ∈ {..<n} by (metis bij-betw-apply)
hence y0 : var-ind 0 (y mp) using mem unfolding var-ind-def by auto
show p mp ∈ poss (s mp · σ) using P1 by auto
show p mp ∈ poss (t mp · σ) using P1 by auto
let ?t = t mp |- p mp
define c where c = confl 0 (s mp · σ |- p mp) (t mp · σ |- p mp)
have c = confl 0 (s mp |- p mp · σ) (?t · σ)

using P1 unfolding c-def by auto
also have s: s mp |- p mp = Var (y mp) using P1 unfolding confl ′-def

by auto
also have . . . · σ = Var (y mp) using y0 unfolding σ-def by auto
also have confl 0 (Var (y mp)) (?t · σ)
proof (cases ?t · σ)

case Fun
thus ?thesis using y0 unfolding confl-def by auto

next
case (Var z)
then obtain u where t: ?t = Var u and ssig: σ u = Var z

by (cases ?t, auto)
from P1 [unfolded s] have confl ′ (Var (y mp)) ?t (y mp) by auto
from this[unfolded confl ′-def t] have uy: y mp 6= u by auto
show ?thesis
proof (cases var-ind 0 u)

case True
with y0 uy show ?thesis unfolding t σ-def confl-def by auto

next
case False
with ssig[unfolded σ-def ] have uS : snd u ∈ S and contra: map-vars

undefined (σg u) = Var z
by (auto split: if-splits)

from σg[unfolded cg-subst-def , rule-format, OF uS ] contra
have False by (cases σg u, auto simp: EMPTY-def )
thus ?thesis ..

qed
qed
finally show confl 0 (s mp · σ |- p mp) (t mp · σ |- p mp) unfolding

c-def .
qed

next
case (Suc i)
then obtain σ where σ: cg-subst-ind i σ and confl: (∀mp∈pp. ∃ p. p ∈

poss (s mp · σ) ∧ p ∈ poss (t mp · σ) ∧ confl i (s mp · σ |- p) (t mp · σ |- p))
by auto

from Suc have i ∈ {..< n} and i: i < n by auto
with bij obtain z where z: z ∈ y ‘ pp index z = i unfolding bij-betw-def

by (metis imageE)
{
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from z obtain mp where mp ∈ pp and index (y mp) = i and z = y mp
by auto

with P1 [OF this(1 ), unfolded confl ′-def ] have inf : inf-sort (snd z)
and ∗: p mp ∈ poss (s mp) s mp |- p mp = Var z (s mp, Var (x mp)) ∈

mp
by auto

from ∗(1 ,2 ) have z ∈ vars (s mp) using vars-term-subt-at by fastforce
with ∗(3 ) have z ∈ tvars-mp mp unfolding tvars-mp-def by force
with ‹mp ∈ pp› wf have snd z ∈ S unfolding wf-pat-def wf-match-def

by auto
from not-bdd-above-natD[OF inf [unfolded inf-sort-def [OF this]]] term-of-sort[OF

this]
have

∧
n. ∃ t. t : snd z in T (C ,EMPTYn) ∧ n < size t by auto

} note z-inf = this

define all-st where all-st = (λ mp. s mp · σ) ‘ pp ∪ (λ mp. t mp · σ) ‘ pp
have fin-all-st: finite all-st unfolding all-st-def using ∗(2 ) by simp
define d :: nat where d = Suc (Max (size ‘ all-st))
from z-inf [of d]
obtain u where u: u : snd z in T (C ,EMPTYn) and du: d ≤ size u by

auto
have vars-u: vars u = {} by (rule cg-term-vars[OF u])

define σ ′ where σ ′ x = (if x = z then u else σ x) for x
have σ ′-def ′: σ ′ x = (if x ∈ y ‘ pp ∧ index x = i then u else σ x) for x

unfolding σ ′-def by (rule if-cong, insert bij z, auto simp: bij-betw-def
inj-on-def )

have var-ind-conv: var-ind i x = (x = z ∨ var-ind (Suc i) x) for x
proof

assume x = z ∨ var-ind (Suc i) x
thus var-ind i x using z i unfolding var-ind-def by auto

next
assume var-ind i x
hence x: x ∈ y ‘ pp index x ∈ {..<n} − {..<i} unfolding var-ind-def by

auto
with i have index x = i ∨ index x ∈ {..<n} − {..<Suc i} by auto
thus x = z ∨ var-ind (Suc i) x
proof

assume index x = i
with x(1 ) z bij have x = z by (auto simp: bij-betw-def inj-on-def )
thus ?thesis by auto

qed (insert x, auto simp: var-ind-def )
qed
have [simp]: var-ind i z unfolding var-ind-conv by auto
have [simp]: var-ind (Suc i) z = False unfolding var-ind-def using z by

auto
have σz[simp]: σ z = Var z using σ[unfolded cg-subst-ind-def , rule-format,

of z] by auto
have σ ′-upd: σ ′ = σ(z := u) unfolding σ ′-def by (intro ext, auto)
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have σ ′-comp: σ ′ = σ ◦s Var(z := u) unfolding subst-compose-def σ ′-upd
proof (intro ext)

fix x
show (σ(z := u)) x = σ x · Var(z := u)
proof (cases x = z)

case False
hence σ x · (Var(z := u)) = σ x · Var
proof (intro term-subst-eq)

fix y
assume y: y ∈ vars (σ x)
show (Var(z := u)) y = Var y
proof (cases var-ind i x)

case True
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have σ x = Var x by auto
with False y show ?thesis by auto

next
case False
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have vars (σ x) = {} by auto
with y show ?thesis by auto

qed
qed
thus ?thesis by auto

qed simp
qed
have σ ′: cg-subst-ind (Suc i) σ ′ unfolding cg-subst-ind-def
proof (intro allI conjI impI )

fix x
assume var-ind (Suc i) x
hence var-ind i x and diff : index x 6= i unfolding var-ind-def by auto
hence σ x = Var x using σ[unfolded cg-subst-ind-def ] by blast
thus σ ′ x = Var x unfolding σ ′-def ′ using diff by auto

next
fix x
assume ¬ var-ind (Suc i) x and snd x ∈ S
thus σ ′ x : snd x in T (C ,EMPTYn)

using σ[unfolded cg-subst-ind-def , rule-format, of x] u
unfolding σ ′-def var-ind-conv by auto

next
fix x
assume ¬ var-ind (Suc i) x
hence x = z ∨ ¬ var-ind i x unfolding var-ind-conv by auto

thus vars (σ ′ x) = {} unfolding σ ′-upd using σ[unfolded cg-subst-ind-def ,
rule-format, of x] vars-u by auto

qed
show ?case
proof (intro exI [of - σ ′] conjI σ ′ ballI )

fix mp
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assume mp: mp ∈ pp
define s ′ where s ′ = s mp · σ
define t ′ where t ′ = t mp · σ
from confl[rule-format, OF mp]
obtain p where p: p ∈ poss s ′ p ∈ poss t ′ and confl: confl i (s ′ |- p) (t ′

|- p) by (auto simp: s ′-def t ′-def )
{

fix s ′ t ′ :: ( ′f , nat × ′s) term and p f ss x
assume ∗: (s ′ |- p, t ′ |-p) = (Fun f ss, Var x) var-ind i x and p: p ∈

poss s ′ p ∈ poss t ′

and range-all-st: s ′ ∈ all-st
hence s ′: s ′ · Var(z := u) |- p = Fun f ss · Var(z := u) (is - = ?s)
and t ′: t ′ · Var(z := u) |- p = (if x = z then u else Var x) using p by

auto
from range-all-st[unfolded all-st-def ]
have rangeσ: ∃ S . s ′ = S · σ by auto
define s where s = ?s
have ∃ p. p ∈ poss (s ′ · Var(z := u)) ∧ p ∈ poss (t ′ · Var(z := u)) ∧

confl (Suc i) (s ′ · Var(z := u) |- p) (t ′ · Var(z := u) |- p)
proof (cases x = z)

case False
thus ?thesis using ∗ p unfolding s ′ t ′ by (intro exI [of - p], auto simp:

confl-def var-ind-conv)
next

case True
hence t ′: t ′ · Var(z := u) |- p = u unfolding t ′ by auto
have ∃ p ′. p ′ ∈ poss u ∧ p ′ ∈ poss s ∧ confl (Suc i) (s |- p ′) (u |- p ′)
proof (cases ∃ x. x ∈ vars s ∧ var-ind (Suc i) x)

case True
then obtain x where xs: x ∈ vars s and x: var-ind (Suc i) x by

auto
from xs obtain p ′ where p ′: p ′ ∈ poss s and sp: s |- p ′ = Var x by

(metis vars-term-poss-subt-at)
from p ′ sp vars-u show ?thesis
proof (induct u arbitrary: p ′ s)

case (Fun f us p ′ s)
show ?case
proof (cases s)

case (Var y)
with Fun have s: s = Var x by auto
with x show ?thesis by (intro exI [of - Nil], auto simp: confl-def )

next
case s: (Fun g ss)
with Fun obtain j p where p: p ′ = j # p j < length ss p ∈ poss

(ss ! j) (ss ! j) |- p = Var x by auto
show ?thesis
proof (cases (f ,length us) = (g,length ss))

case False
thus ?thesis by (intro exI [of - Nil], auto simp: s confl-def )
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next
case True
with p have j: j < length us by auto
hence usj: us ! j ∈ set us by auto
with Fun have vars (us ! j) = {} by auto
from Fun(1 )[OF usj p(3 ,4 ) this] obtain p ′ where

p ′ ∈ poss (us ! j) ∧ p ′ ∈ poss (ss ! j) ∧ confl (Suc i) (ss ! j |-
p ′) (us ! j |- p ′) by auto

thus ?thesis using j p by (intro exI [of - j # p ′], auto simp: s)
qed

qed
qed auto

next
case False
from ∗ have fss: Fun f ss = s ′ |- p by auto
from rangeσ obtain S where sS : s ′ = S · σ by auto
from p have vars (s ′ |- p) ⊆ vars s ′ by (metis vars-term-subt-at)
also have . . . = (

⋃
y∈vars S . vars (σ y)) unfolding sS by (simp

add: vars-term-subst)
also have . . . ⊆ (

⋃
y∈vars S . Collect (var-ind i))

proof −
{

fix x y
assume x ∈ vars (σ y)
hence var-ind i x

using σ[unfolded cg-subst-ind-def , rule-format, of y] by auto
}
thus ?thesis by auto

qed
finally have sub: vars (s ′ |- p) ⊆ Collect (var-ind i) by blast
have vars s = vars (s ′ |- p · Var(z := u)) unfolding s-def s ′ fss by

auto
also have . . . =

⋃
(vars ‘ Var(z := u) ‘ vars (s ′ |- p)) by (simp add:

vars-term-subst)
also have . . . ⊆

⋃
(vars ‘ Var(z := u) ‘ Collect (var-ind i)) using

sub by auto
also have . . . ⊆ Collect (var-ind (Suc i))

by (auto simp: vars-u var-ind-conv)
finally have vars-s: vars s = {} using False by auto

{
assume s = u
from this[unfolded s-def fss]
have eq: s ′ |- p · Var(z := u) = u by auto
have False
proof (cases z ∈ vars (s ′ |- p))

case True
have diff : s ′ |- p 6= Var z using ∗ by auto
from True obtain C where id: s ′ |- p = C 〈 Var z 〉
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by (metis ctxt-supt-id vars-term-poss-subt-at)
with diff have diff : C 6= Hole by (cases C , auto)
from eq[unfolded id, simplified] diff
obtain C where C 〈u〉 = u and C 6= Hole by (cases C ; force)
from arg-cong[OF this(1 ), of size] this(2 ) show False

by (simp add: less-not-refl2 size-ne-ctxt)
next

case False
have size: size s ′ ∈ size ‘ all-st using range-all-st by auto
from False have s ′ |- p · Var(z := u) = s ′ |- p · Var

by (intro term-subst-eq, auto)
with eq have eq: s ′ |- p = u by auto
hence size u = size (s ′ |- p) by auto
also have . . . ≤ size s ′ using p(1 )

by (rule subt-size)
also have . . . ≤ Max (size ‘ all-st)

using size fin-all-st by simp
also have . . . < d unfolding d-def by simp
also have . . . ≤ size u using du .
finally show False by simp

qed
}
hence s 6= u by auto
with vars-s vars-u
show ?thesis
proof (induct s arbitrary: u)

case s: (Fun f ss u)
then obtain g us where u: u = Fun g us by (cases u, auto)
show ?case
proof (cases (f ,length ss) = (g,length us))

case False
thus ?thesis unfolding u by (intro exI [of - Nil], auto simp:

confl-def )
next

case True
with s(4 )[unfolded u] have ∃ j < length us. ss ! j 6= us ! j

by (auto simp: list-eq-nth-eq)
then obtain j where j: j < length us and diff : ss ! j 6= us ! j

by auto
from j True have mem: ss ! j ∈ set ss us ! j ∈ set us by auto
with s(2−) u have vars (ss ! j) = {} vars (us ! j) = {} by auto
from s(1 )[OF mem(1 ) this diff ] obtain p ′ where
p ′ ∈ poss (us ! j) ∧ p ′ ∈ poss (ss ! j) ∧ confl (Suc i) (ss ! j |- p ′)

(us ! j |- p ′)
by blast

thus ?thesis unfolding u using True j by (intro exI [of - j # p ′],
auto)

qed
qed auto
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qed
then obtain p ′ where p ′: p ′ ∈ poss u p ′ ∈ poss s and confl: confl (Suc

i) (s |- p ′) (u |- p ′) by auto
have s ′′: s ′ · Var(z := u) |- (p @ p ′) = s |- p ′ unfolding s-def

s ′[symmetric] using p p ′ by auto
have t ′′: t ′ · Var(z := u) |- (p @ p ′) = u |- p ′ using t ′ p p ′ by auto
show ?thesis
proof (intro exI [of - p @ p ′], unfold s ′′ t ′′, intro conjI confl)

have p ∈ poss (s ′ · Var(z := u)) using p by auto
moreover have p ′ ∈ poss ((s ′ · Var(z := u)) |- p) using s ′ p ′ p

unfolding s-def by auto
ultimately show p @ p ′ ∈ poss (s ′ · Var(z := u)) by simp
have p ∈ poss (t ′ · Var(z := u)) using p by auto
moreover have p ′ ∈ poss ((t ′ · Var(z := u)) |- p) using t ′ p ′ p by

auto
ultimately show p @ p ′ ∈ poss (t ′ · Var(z := u)) by simp

qed
qed

} note main = this
consider (FF) f g ss ts where (s ′ |- p, t ′ |- p) = (Fun f ss, Fun g ts)

(f ,length ss) 6= (g,length ts)
| (FV ) f ss x where (s ′ |- p, t ′ |- p) = (Fun f ss, Var x) var-ind i x
| (VF) f ss x where (s ′ |- p, t ′ |- p) = (Var x, Fun f ss) var-ind i x
| (VV ) x x ′ where (s ′ |- p, t ′ |- p) = (Var x, Var x ′) x 6= x ′ var-ind i x

var-ind i x ′

using confl by (auto simp: confl-def split: term.splits)
hence ∃ p. p ∈ poss (s ′ · Var(z := u)) ∧ p ∈ poss (t ′ · Var(z := u)) ∧

confl (Suc i) (s ′ · Var(z := u) |- p) (t ′ · Var(z := u) |- p)
proof cases

case (FF f g ss ts)
thus ?thesis using p by (intro exI [of - p], auto simp: confl-def )

next
case (FV f ss x)
have s ′ ∈ all-st unfolding s ′-def using mp all-st-def by auto
from main[OF FV p this] show ?thesis by auto

next
case (VF f ss x)
have t ′: t ′ ∈ all-st unfolding t ′-def using mp all-st-def by auto
from VF have (t ′ |- p, s ′ |- p) = (Fun f ss, Var x) var-ind i x by auto
from main[OF this p(2 ,1 ) t ′]
obtain p where p ∈ poss (t ′ · Var(z := u)) p ∈ poss (s ′ · Var(z := u))

confl (Suc i) (t ′ · Var(z := u) |- p) (s ′ · Var(z := u) |- p)
by auto

thus ?thesis by (intro exI [of - p], auto simp: confl-def split: term.splits)
next

case (VV x x ′)
thus ?thesis using p vars-u by (intro exI [of - p], cases u, auto simp:

confl-def var-ind-conv)
qed
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thus ∃ p. p ∈ poss (s mp · σ ′) ∧ p ∈ poss (t mp · σ ′) ∧ confl (Suc i) (s
mp · σ ′ |- p) (t mp · σ ′ |- p)

unfolding σ ′-comp subst-subst-compose s ′-def t ′-def by auto
qed

qed
}
from this[of n]
obtain σ where σ: cg-subst-ind n σ and confl:

∧
mp. mp ∈ pp =⇒ ∃ p. p ∈

poss (s mp · σ) ∧ p ∈ poss (t mp · σ) ∧ confl n (s mp · σ |- p) (t mp · σ |- p)
by blast

define σ ′ :: ( ′f ,nat × ′s, ′v)gsubst where σ ′ x = Var undefined for x
let ?σ = σ ◦s σ ′

have cg-subst ?σ unfolding cg-subst-def subst-compose-def
proof (intro allI impI )

fix x :: nat × ′s
assume snd x ∈ S
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have σ x : snd x in T (C ,EMPTYn) by auto
thus σ x · σ ′ : snd x in T (C ,EMPTY ) by (rule type-conversion1 )

qed
from pp[unfolded pat-complete-def match-complete-wrt-def , rule-format, OF

this]
obtain mp µ where mp: mp ∈ pp and match:

∧
ti li. (ti, li)∈ mp =⇒ ti · ?σ

= li · µ by force
from P1 [OF this(1 )]
have (s mp, Var (x mp)) ∈ mp (t mp, Var (x mp)) ∈ mp by auto
from match[OF this(1 )] match[OF this(2 )] have ident: s mp · ?σ = t mp · ?σ

by auto
from confl[OF mp] obtain p

where p: p ∈ poss (s mp · σ) p ∈ poss (t mp · σ) and confl: confl n (s mp ·
σ |- p) (t mp · σ |- p)

by auto
let ?s = s mp · σ let ?t = t mp · σ
from confl-n[OF confl] obtain f g ss ts where

confl: ?s |-p = Fun f ss ?t |-p = Fun g ts and diff : (f ,length ss) 6= (g,length
ts) by auto

define s ′ where s ′ = s mp · σ
define t ′ where t ′ = t mp · σ
from confl p ident
have False

unfolding subst-subst-compose s ′-def [symmetric] t ′-def [symmetric]
proof (induction p arbitrary: s ′ t ′)

case Nil
then show ?case using diff by (auto simp: list-eq-nth-eq)

next
case (Cons i p s t)
from Cons obtain h1 us1 where s: s = Fun h1 us1 by (cases s, auto)
from Cons obtain h2 us2 where t: t = Fun h2 us2 by (cases t, auto)
from Cons(2 ,4 )[unfolded s] have si: (us1 ! i) |- p = Fun f ss p ∈ poss (us1
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! i) and i1 : i < length us1 by auto
from Cons(3 ,5 )[unfolded t] have ti: (us2 ! i) |- p = Fun g ts p ∈ poss (us2

! i) and i2 : i < length us2 by auto
from Cons(6 )[unfolded s t] i1 i2 have us1 ! i · σ ′ = us2 ! i · σ ′ by (auto

simp: list-eq-nth-eq)
from Cons.IH [OF si(1 ) ti(1 ) si(2 ) ti(2 ) this]
show False .

qed
}
thus ?case by auto

qed
end
end

4 A Multiset-Based Inference System to Decide
Pattern Completeness

theory Pattern-Completeness-Multiset
imports

Pattern-Completeness-Set
LP-Duality.Minimum-Maximum
Polynomial-Factorization.Missing-List
First-Order-Terms.Term-Pair-Multiset

begin

4.1 Definition of the Inference Rules

We next switch to a multiset based implementation of the inference rules.
At this level, termination is proven and further, that the evaluation cannot
get stuck. The inference rules closely mimic the ones in the paper, though
there is one additional inference rule for getting rid of duplicates (which are
automatically removed when working on sets).
type-synonym ( ′f , ′v, ′s)match-problem-mset = (( ′f ,nat × ′s)term × ( ′f , ′v)term)
multiset
type-synonym ( ′f , ′v, ′s)pat-problem-mset = ( ′f , ′v, ′s)match-problem-mset multiset

type-synonym ( ′f , ′v, ′s)pats-problem-mset = ( ′f , ′v, ′s)pat-problem-mset multiset

abbreviation mp-mset :: ( ′f , ′v, ′s)match-problem-mset ⇒ ( ′f , ′v, ′s)match-problem-set

where mp-mset ≡ set-mset

abbreviation pat-mset :: ( ′f , ′v, ′s)pat-problem-mset ⇒ ( ′f , ′v, ′s)pat-problem-set
where pat-mset ≡ image mp-mset o set-mset

abbreviation pats-mset :: ( ′f , ′v, ′s)pats-problem-mset ⇒ ( ′f , ′v, ′s)pats-problem-set
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where pats-mset ≡ image pat-mset o set-mset

abbreviation (input) bottom-mset :: ( ′f , ′v, ′s)pats-problem-mset where bottom-mset
≡ {# {#} #}

context pattern-completeness-context
begin

A terminating version of (Vs) working on multisets that also treats the
transformation on a more modular basis.
definition subst-match-problem-mset :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)match-problem-mset
⇒ ( ′f , ′v, ′s)match-problem-mset where

subst-match-problem-mset τ = image-mset (subst-left τ)

definition subst-pat-problem-mset :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)pat-problem-mset
⇒ ( ′f , ′v, ′s)pat-problem-mset where

subst-pat-problem-mset τ = image-mset (subst-match-problem-mset τ)

definition τs-list :: nat ⇒ nat × ′s ⇒ ( ′f ,nat × ′s)subst list where
τs-list n x = map (τc n x) (Cl (snd x))

inductive mp-step-mset :: ( ′f , ′v, ′s)match-problem-mset ⇒ ( ′f , ′v, ′s)match-problem-mset
⇒ bool (infix →m 50 )where

match-decompose: (f ,length ts) = (g,length ls)
=⇒ add-mset (Fun f ts, Fun g ls) mp →m mp + mset (zip ts ls)

| match-match: x /∈
⋃

(vars ‘ snd ‘ set-mset mp)
=⇒ add-mset (t, Var x) mp →m mp

| match-duplicate: add-mset pair (add-mset pair mp) →m add-mset pair mp

inductive match-fail :: ( ′f , ′v, ′s)match-problem-mset ⇒ bool where
match-clash: (f ,length ts) 6= (g,length ls)
=⇒ match-fail (add-mset (Fun f ts, Fun g ls) mp)

| match-clash ′: Conflict-Clash s t =⇒ match-fail (add-mset (s, Var x) (add-mset
(t, Var x) mp))

inductive pp-step-mset :: ( ′f , ′v, ′s)pat-problem-mset ⇒ ( ′f , ′v, ′s)pats-problem-mset
⇒ bool
(infix ⇒m 50 ) where
pat-remove-pp: add-mset {#} pp ⇒m {#}
| pat-simp-mp: mp-step-mset mp mp ′ =⇒ add-mset mp pp ⇒m {# (add-mset mp ′

pp) #}
| pat-remove-mp: match-fail mp =⇒ add-mset mp pp ⇒m {# pp #}
| pat-instantiate: tvars-disj-pp {n ..< n+m} (pat-mset (add-mset mp pp)) =⇒

(Var x, l) ∈ mp-mset mp ∧ is-Fun l ∨
(s,Var y) ∈ mp-mset mp ∧ (t,Var y) ∈ mp-mset mp ∧ Conflict-Var s t x ∧ ¬

inf-sort (snd x) =⇒
add-mset mp pp ⇒m mset (map (λ τ. subst-pat-problem-mset τ (add-mset mp

pp)) (τs-list n x))
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inductive pat-fail :: ( ′f , ′v, ′s)pat-problem-mset ⇒ bool where
pat-failure ′: Ball (pat-mset pp) inf-var-conflict =⇒ pat-fail pp
| pat-empty: pat-fail {#}

inductive P-step-mset :: ( ′f , ′v, ′s)pats-problem-mset ⇒ ( ′f , ′v, ′s)pats-problem-mset
⇒ bool
(infix Vm 50 )where
P-failure: pat-fail pp =⇒ add-mset pp P 6= bottom-mset =⇒ add-mset pp P Vm

bottom-mset
| P-simp-pp: pp ⇒m pp ′ =⇒ add-mset pp P Vm pp ′ + P

The relation (encoded as predicate) is finally wrapped in a set
definition P-step :: (( ′f , ′v, ′s)pats-problem-mset × ( ′f , ′v, ′s)pats-problem-mset)set
(V) where
V = {(P,P ′). P Vm P ′}

4.2 The evaluation cannot get stuck
lemmas subst-defs =

subst-pat-problem-mset-def
subst-pat-problem-set-def
subst-match-problem-mset-def
subst-match-problem-set-def

lemma pat-mset-fresh-vars:
∃ n. tvars-disj-pp {n..<n + m} (pat-mset p)

proof −
define p ′ where p ′ = pat-mset p
define V where V = fst ‘

⋃
(vars ‘ (fst ‘

⋃
p ′))

have finite V unfolding V-def p ′-def by auto
define n where n = Suc (Max V )
{

fix mp t l
assume mp ∈ p ′ (t,l) ∈ mp
hence sub: fst ‘ vars t ⊆ V unfolding V-def by force
{

fix x
assume x ∈ fst ‘ vars t
with sub have x ∈ V by auto
with ‹finite V › have x ≤ Max V by simp
also have . . . < n unfolding n-def by simp
finally have x < n .

}
hence fst ‘ vars t ∩ {n..<n + m} = {} by force

}
thus ?thesis unfolding tvars-disj-pp-def p ′-def [symmetric]

by (intro exI [of - n] ballI , force)
qed
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lemma pat-fail-or-trans:
pat-fail p ∨ (∃ ps. p ⇒m ps)

proof (cases p = {#})
case True
with pat-empty show ?thesis by auto

next
case pne: False
from pat-mset-fresh-vars obtain n where fresh: tvars-disj-pp {n..<n + m}

(pat-mset p) by blast
show ?thesis
proof (cases {#} ∈# p)

case True
then obtain p ′ where p = add-mset {#} p ′ by (rule mset-add)
with pat-remove-pp show ?thesis by auto

next
case empty-p: False
show ?thesis
proof (cases ∃ mp s t. mp ∈# p ∧ (s,t) ∈# mp ∧ is-Fun t)

case True
then obtain mp s t where mp: mp ∈# p and (s,t) ∈# mp and is-Fun t by

auto
then obtain g ts where mem: (s,Fun g ts) ∈# mp by (cases t, auto)
from mp obtain p ′ where p: p = add-mset mp p ′ by (rule mset-add)
from mem obtain mp ′ where mp: mp = add-mset (s, Fun g ts) mp ′ by (rule

mset-add)
show ?thesis
proof (cases s)

case s: (Fun f ss)
from pat-simp-mp[OF match-decompose, of f ss] pat-remove-mp[OF match-clash,

of f ss]
show ?thesis unfolding p mp s by blast

next
case (Var x)
from Var mem obtain l where (Var x, l) ∈# mp ∧ is-Fun l by auto
from pat-instantiate[OF fresh[unfolded p] disjI1 [OF this]]
show ?thesis unfolding p by auto

qed
next

case False
hence rhs-vars:

∧
mp s l. mp ∈# p =⇒ (s,l) ∈# mp =⇒ is-Var l by auto

let ?single-var = (∃ mp t x. add-mset (t,Var x) mp ∈# p ∧ x /∈
⋃

(vars ‘
snd ‘ set-mset mp))

let ?duplicate = (∃ mp pair . add-mset pair (add-mset pair mp) ∈# p)
show ?thesis
proof (cases ?single-var ∨ ?duplicate)

case True
thus ?thesis
proof
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assume ?single-var
then obtain mp t x where mp: add-mset (t,Var x) mp ∈# p and x: x /∈⋃

(vars ‘ snd ‘ set-mset mp)
by auto

from mp obtain p ′ where p = add-mset (add-mset (t,Var x) mp) p ′ by
(rule mset-add)

with pat-simp-mp[OF match-match[OF x]] show ?thesis by auto
next

assume ?duplicate
then obtain mp pair where add-mset pair (add-mset pair mp) ∈# p (is

?dup ∈# p) by auto
from mset-add[OF this] obtain p ′ where

p: p = add-mset ?dup p ′ .
from pat-simp-mp[OF match-duplicate[of pair ]] show ?thesis unfolding

p by auto
qed

next
case False
hence ndup: ¬ ?duplicate and nsvar : ¬ ?single-var by auto
{

fix mp
assume mpp: mp ∈# p
with empty-p have mp-e: mp 6= {#} by auto
obtain s l where sl: (s,l) ∈# mp using mp-e by auto
from rhs-vars[OF mpp sl] sl obtain x where sx: (s, Var x) ∈# mp by

(cases l, auto)
from mpp obtain p ′ where p: p = add-mset mp p ′ by (rule mset-add)
from sx obtain mp ′ where mp: mp = add-mset (s, Var x) mp ′ by (rule

mset-add)
from nsvar [simplified, rule-format, OF mpp[unfolded mp]]
obtain t l where (t,l) ∈# mp ′ and x ∈ vars (snd (t,l)) by force
with rhs-vars[OF mpp, of t l] have tx: (t,Var x) ∈# mp ′ unfolding mp

by auto
then obtain mp ′′ where mp ′: mp ′ = add-mset (t, Var x) mp ′′ by (rule

mset-add)
from ndup[simplified, rule-format] mpp have s 6= t unfolding mp mp ′ by

auto
hence ∃ s t x mp ′. mp = add-mset (s, Var x) (add-mset (t, Var x) mp ′)

∧ s 6= t unfolding mp mp ′ by auto
} note two = this
show ?thesis
proof (cases ∃ mp s t x y. add-mset (s, Var x) (add-mset (t, Var x) mp)

∈# p ∧ Conflict-Var s t y ∧ ¬ inf-sort (snd y))
case True
then obtain mp s t x y where

mp: add-mset (s, Var x) (add-mset (t, Var x) mp) ∈# p (is ?mp ∈# -)
and conf : Conflict-Var s t y and y: ¬ inf-sort (snd y)

by blast
from conflicts(4 )[OF conf ] have y ∈ vars s ∪ vars t by auto
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with mp have y ∈ tvars-mp (mp-mset ?mp) unfolding tvars-mp-def by
auto

from mp obtain p ′ where p: p = add-mset ?mp p ′ by (rule mset-add)
let ?mp = add-mset (s, Var x) (add-mset (t, Var x) mp)
from pat-instantiate[OF - disjI2 , of n ?mp p ′ s x t y, folded p, OF fresh]
show ?thesis using y conf by auto

next
case no-non-inf : False
show ?thesis
proof (cases ∃ mp s t x. add-mset (s, Var x) (add-mset (t, Var x) mp)

∈# p ∧ Conflict-Clash s t)
case True
then obtain mp s t x where

mp: add-mset (s, Var x) (add-mset (t, Var x) mp) ∈# p (is ?mp ∈#
-) and conf : Conflict-Clash s t

by blast
from pat-remove-mp[OF match-clash ′[OF conf , of x mp]]
show ?thesis using mset-add[OF mp] by metis

next
case no-clash: False
show ?thesis
proof (intro disjI1 pat-failure ′ ballI )

fix mp
assume mp: mp ∈ pat-mset p
then obtain mp ′ where mp ′: mp ′ ∈# p and mp: mp = mp-mset mp ′

by auto
from two[OF mp ′]
obtain s t x mp ′′

where mp ′′: mp ′ = add-mset (s, Var x) (add-mset (t, Var x) mp ′′)
and diff : s 6= t by auto

from conflicts(3 )[OF diff ] obtain y where Conflict-Clash s t ∨
Conflict-Var s t y by auto

with no-clash mp ′′ mp ′ have conf : Conflict-Var s t y by force
with no-non-inf mp ′[unfolded mp ′′] have inf : inf-sort (snd y) by blast
show inf-var-conflict mp unfolding inf-var-conflict-def mp mp ′′

apply (rule exI [of - s], rule exI [of - t])
apply (intro exI [of - x] exI [of - y])
using insert inf conf by auto

qed
qed

qed
qed

qed
qed

qed

Pattern problems just have two normal forms: empty set (solvable) or bot-
tom (not solvable)
theorem P-step-NF :
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assumes NF : P ∈ NF V
shows P ∈ {{#}, bottom-mset}

proof (rule ccontr)
assume nNF : P /∈ {{#}, bottom-mset}
from NF have NF : ¬ (∃ Q. P Vm Q) unfolding P-step-def by blast
from nNF obtain p P ′ where P: P = add-mset p P ′

using multiset-cases by auto
from pat-fail-or-trans
obtain ps where pat-fail p ∨ p ⇒m ps by auto
with P-simp-pp[of p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P ′, folded P] nNF NF show False by auto

qed
end

4.3 Termination

A measure to count the number of function symbols of the first argument
that don’t occur in the second argument
fun fun-diff :: ( ′f , ′v)term ⇒ ( ′f , ′w)term ⇒ nat where

fun-diff l (Var x) = num-funs l
| fun-diff (Fun g ls) (Fun f ts) = (if f = g ∧ length ts = length ls then

sum-list (map2 fun-diff ls ts) else 0 )
| fun-diff l t = 0

lemma fun-diff-Var [simp]: fun-diff (Var x) t = 0
by (cases t, auto)

lemma add-many-mult: (
∧

y. y ∈# N =⇒ (y,x) ∈ R) =⇒ (N + M , add-mset x
M ) ∈ mult R
by (metis add.commute add-mset-add-single multi-member-last multi-self-add-other-not-self

one-step-implies-mult)

lemma fun-diff-num-funs: fun-diff l t ≤ num-funs l
proof (induct l t rule: fun-diff .induct)

case (2 f ls g ts)
show ?case
proof (cases f = g ∧ length ts = length ls)

case True
have sum-list (map2 fun-diff ls ts) ≤ sum-list (map num-funs ls)

by (intro sum-list-mono2 , insert True 2 , (force simp: set-zip)+)
with 2 show ?thesis by auto

qed auto
qed auto

lemma fun-diff-subst: fun-diff l (t · σ) ≤ fun-diff l t
proof (induct l arbitrary: t)

case l: (Fun f ls)
show ?case
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proof (cases t)
case t: (Fun g ts)
show ?thesis unfolding t using l by (auto intro: sum-list-mono2 )

next
case t: (Var x)
show ?thesis unfolding t using fun-diff-num-funs[of Fun f ls] by auto

qed
qed auto

lemma fun-diff-num-funs-lt: assumes t ′: t ′ = Fun c cs
and is-Fun l

shows fun-diff l t ′ < num-funs l
proof −

from assms obtain g ls where l: l = Fun g ls by (cases l, auto)
show ?thesis
proof (cases c = g ∧ length cs = length ls)

case False
thus ?thesis unfolding t ′ l by auto

next
case True
have sum-list (map2 fun-diff ls cs) ≤ sum-list (map num-funs ls)

apply (rule sum-list-mono2 ; (intro impI )?)
subgoal using True by auto
subgoal for i using True by (auto intro: fun-diff-num-funs)
done

thus ?thesis unfolding t ′ l using True by auto
qed

qed

lemma sum-union-le-nat: sum (f :: ′a ⇒ nat) (A ∪ B) ≤ sum f A + sum f B
by (metis finite-Un le-iff-add sum.infinite sum.union-inter zero-le)

lemma sum-le-sum-list-nat: sum f (set xs) ≤ (sum-list (map f xs) :: nat)
proof (induct xs)

case (Cons x xs)
thus ?case

by (cases x ∈ set xs, auto simp: insert-absorb)
qed auto

lemma bdd-above-has-Maximum-nat: bdd-above (A :: nat set) =⇒ A 6= {} =⇒
has-Maximum A

unfolding has-Maximum-def
by (meson Max-ge Max-in bdd-above-nat)

context pattern-completeness-context-with-assms
begin

lemma τs-list: set (τs-list n x) = τs n x
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unfolding τs-list-def τs-def using Cl by auto

abbreviation (input) sum-ms :: ( ′a ⇒ nat) ⇒ ′a multiset ⇒ nat where
sum-ms f ms ≡ sum-mset (image-mset f ms)

definition meas-diff :: ( ′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-diff = sum-ms (sum-ms (λ (t,l). fun-diff l t))

definition max-size :: ′s ⇒ nat where
max-size s = (if s ∈ S ∧ ¬ inf-sort s then Maximum (size ‘ {t. t : s in T (C ,EMPTYn)})

else 0 )

definition meas-finvars :: ( ′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-finvars = sum-ms (λ mp. sum (max-size o snd) (tvars-mp (mp-mset mp)))

definition meas-symbols :: ( ′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-symbols = sum-ms size-mset

definition meas-setsize :: ( ′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-setsize p = sum-ms (sum-ms (λ -. 1 )) p + size p

definition rel-pat :: (( ′f , ′v, ′s)pat-problem-mset × ( ′f , ′v, ′s)pat-problem-mset)set (≺)
where
(≺) = inv-image ({(x, y). x < y} <∗lex∗> {(x, y). x < y} <∗lex∗> {(x, y). x

< y} <∗lex∗> {(x, y). x < y})
(λ mp. (meas-diff mp, meas-finvars mp, meas-symbols mp, meas-setsize mp))

abbreviation gt-rel-pat (infix � 50 ) where
pp � pp ′ ≡ (pp ′,pp) ∈ ≺

definition rel-pats :: (( ′f , ′v, ′s)pats-problem-mset × ( ′f , ′v, ′s)pats-problem-mset)set
(≺mul) where
≺mul = mult (≺)

abbreviation gt-rel-pats (infix �mul 50 ) where
P �mul P ′ ≡ (P ′,P) ∈ ≺mul

lemma wf-rel-pat: wf ≺
unfolding rel-pat-def
by (intro wf-inv-image wf-lex-prod wf-less)

lemma wf-rel-pats: wf ≺mul
unfolding rel-pats-def
by (intro wf-inv-image wf-mult wf-rel-pat)

lemma tvars-mp-fin:
finite (tvars-mp (mp-mset mp))
unfolding tvars-mp-def by auto
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lemmas meas-def = meas-finvars-def meas-diff-def meas-symbols-def meas-setsize-def

lemma tvars-mp-mono: mp ⊆# mp ′ =⇒ tvars-mp (mp-mset mp) ⊆ tvars-mp
(mp-mset mp ′)

unfolding tvars-mp-def
by (intro image-mono subset-refl set-mset-mono UN-mono)

lemma meas-finvars-mono: assumes tvars-mp (mp-mset mp) ⊆ tvars-mp (mp-mset
mp ′)

shows meas-finvars {#mp#} ≤ meas-finvars {#mp ′#}
using tvars-mp-fin[of mp ′] assms
unfolding meas-def by (auto intro: sum-mono2 )

lemma rel-mp-sub: {# add-mset p mp#} � {# mp #}
proof −

let ?mp ′ = add-mset p mp
have mp ⊆# ?mp ′ by auto
from meas-finvars-mono[OF tvars-mp-mono[OF this]]
show ?thesis unfolding meas-def rel-pat-def by auto

qed

lemma rel-mp-mp-step-mset:
assumes mp →m mp ′

shows {#mp#} � {#mp ′#}
using assms

proof cases
case ∗: (match-decompose f ts g ls mp ′′)
have meas-finvars {#mp ′#} ≤ meas-finvars {#mp#}
proof (rule meas-finvars-mono)

show tvars-mp (mp-mset mp ′) ⊆ tvars-mp (mp-mset mp)
unfolding tvars-mp-def ∗ using ∗(3 ) by (auto simp: set-zip set-conv-nth)

qed
moreover
have id: (case case x of (x, y) ⇒ (y, x) of (t, l) ⇒ f t l) = (case x of (a,b) ⇒ f

b a) for
x :: ( ′f , ′v) Term.term × ( ′f , nat × ′s) Term.term and f :: - ⇒ - ⇒ nat
by (cases x, auto)

have meas-diff {#mp ′#} ≤ meas-diff {#mp#}
unfolding meas-def ∗ using ∗(3 )

by (auto simp: sum-mset-sum-list[symmetric] zip-commute[of ts ls] image-mset.compositionality
o-def id)

moreover have meas-symbols {#mp ′#} < meas-symbols {#mp#}
unfolding meas-def ∗ using ∗(3 ) size-mset-Fun-less[of ts ls g g]
by (auto simp: sum-mset-sum-list)

ultimately show ?thesis unfolding rel-pat-def by auto
next

case ∗: (match-match x t)
show ?thesis unfolding ∗
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by (rule rel-mp-sub)
next

case ∗: (match-duplicate pair mp)
show ?thesis unfolding ∗

by (rule rel-mp-sub)
qed

lemma sum-ms-image: sum-ms f (image-mset g ms) = sum-ms (f o g) ms
by (simp add: multiset.map-comp)

lemma meas-diff-subst-le: meas-diff (subst-pat-problem-mset τ p) ≤ meas-diff p
unfolding meas-def subst-match-problem-set-def subst-defs subst-left-def
unfolding sum-ms-image o-def
apply (rule sum-mset-mono, rule sum-mset-mono)
apply clarify
unfolding map-prod-def split id-apply
by (rule fun-diff-subst)

lemma meas-sub: assumes sub: p ′ ⊆# p
shows meas-diff p ′ ≤ meas-diff p

meas-finvars p ′ ≤ meas-finvars p
meas-symbols p ′ ≤ meas-symbols p

proof −
from sub obtain p ′′ where p: p = p ′ + p ′′ by (metis subset-mset.less-eqE)
show meas-diff p ′ ≤ meas-diff p meas-finvars p ′ ≤ meas-finvars p meas-symbols

p ′ ≤ meas-symbols p
unfolding meas-def p by auto

qed

lemma meas-sub-rel-pat: assumes sub: p ′ ⊂# p
shows p � p ′

proof −
from sub obtain x p ′′ where p: p = add-mset x p ′ + p ′′

by (metis multi-nonempty-split subset-mset.lessE union-mset-add-mset-left union-mset-add-mset-right)
hence lt: meas-setsize p ′ < meas-setsize p unfolding meas-def by auto
from sub have p ′ ⊆# p by auto
from lt meas-sub[OF this]
show ?thesis unfolding rel-pat-def by auto

qed

lemma max-size-term-of-sort: assumes sS : s ∈ S and inf : ¬ inf-sort s
shows ∃ t. t : s in T (C ,EMPTYn) ∧ max-size s = size t ∧ (∀ t ′. t ′ : s in
T (C ,EMPTYn) −→ size t ′ ≤ size t)
proof −

let ?set = λ s. size ‘ {t. t : s in T (C ,EMPTYn)}
have m: max-size s = Maximum (?set s) unfolding o-def max-size-def using

inf sS by auto

from inf [unfolded inf-sort-def [OF sS ]] have bdd-above (?set s) by auto
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moreover from sorts-non-empty[OF sS ] type-conversion2 have ?set s 6= {} by
auto

ultimately have has-Maximum (?set s) by (rule bdd-above-has-Maximum-nat)
from has-MaximumD[OF this, folded m] show ?thesis by auto

qed

lemma max-size-max: assumes sS : s ∈ S
and inf : ¬ inf-sort s
and sort: t : s in T (C ,EMPTYn)

shows size t ≤ max-size s
using max-size-term-of-sort[OF sS inf ] sort by auto

lemma finite-sort-size: assumes c: c : map snd vs → s in C
and inf : ¬ inf-sort s

shows sum (max-size o snd) (set vs) < max-size s
proof −

from c have vsS : insert s (set (map snd vs)) ⊆ S using C-sub-S
by (metis (mono-tags))

hence sS : s ∈ S by auto
let ?m = max-size s
show ?thesis
proof (cases ∃ v ∈ set vs. inf-sort (snd v))

case True
{

fix v
assume v ∈ set vs
with vsS have v: snd v ∈ S by auto
note term-of-sort[OF this]

}
hence ∀ v. ∃ t. v ∈ set vs −→ t : snd v in T (C ,EMPTYn) by auto
from choice[OF this] obtain t where

t:
∧

v. v ∈ set vs =⇒ t v : snd v in T (C ,EMPTYn) by blast
from True vsS obtain vl where vl: vl ∈ set vs and vlS : snd vl ∈ S and inf-vl:

inf-sort (snd vl) by auto
from not-bdd-above-natD[OF inf-vl[unfolded inf-sort-def [OF vlS ]], of ?m] t[OF

vl]
obtain tl where
tl: tl : snd vl in T (C ,EMPTYn) and large: ?m ≤ size tl by fastforce

let ?t = Fun c (map (λ v. if v = vl then tl else t v) vs)
have ?t : s in T (C ,EMPTYn)

by (intro Fun-hastypeI [OF c] list-all2-map-map, insert tl t, auto)
from max-size-max[OF sS inf this]
have False using large split-list[OF vl] by auto
thus ?thesis ..

next
case False
{

fix v
assume v: v ∈ set vs
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with False have inf : ¬ inf-sort (snd v) by auto
from vsS v have snd v ∈ S by auto
from max-size-term-of-sort[OF this inf ]
have ∃ t. t : snd v in T (C ,EMPTYn) ∧ size t = max-size (snd v) by auto

}
hence ∀ v. ∃ t. v ∈ set vs −→ t : snd v in T (C ,EMPTYn) ∧ size t = max-size

(snd v) by auto
from choice[OF this] obtain t where

t: v ∈ set vs =⇒ t v : snd v in T (C ,EMPTYn) ∧ size (t v) = max-size (snd
v) for v by blast

let ?t = Fun c (map t vs)
have ?t : s in T (C ,EMPTYn)

by (intro Fun-hastypeI [OF c] list-all2-map-map, insert t, auto)
from max-size-max[OF sS inf this]
have size ?t ≤ max-size s .

have sum (max-size ◦ snd) (set vs) = sum (size o t) (set vs)
by (rule sum.cong[OF refl], unfold o-def , insert t, auto)

also have . . . ≤ sum-list (map (size o t) vs)
by (rule sum-le-sum-list-nat)

also have . . . ≤ size-list (size o t) vs by (induct vs, auto)
also have . . . < size ?t by simp
also have . . . ≤ max-size s by fact
finally show ?thesis .

qed
qed

lemma rel-pp-step-mset:
assumes p ⇒m ps
and p ′ ∈# ps

shows p � p ′

using assms
proof induct

case ∗: (pat-simp-mp mp mp ′ p)
hence p ′: p ′ = add-mset mp ′ p by auto
from rel-mp-mp-step-mset[OF ∗(1 )]
show ?case unfolding p ′ rel-pat-def meas-def by auto

next
case (pat-remove-mp mp p)
hence p ′: p ′ = p by auto
show ?case unfolding p ′

by (rule meas-sub-rel-pat, auto)
next

case ∗: (pat-instantiate n mp p x l s y t)
from ∗(2 ) have ∃ s t. (s,t) ∈# mp ∧ (s = Var x ∧ is-Fun t

∨ (x ∈ vars s ∧ ¬ inf-sort (snd x)))
proof

assume ∗: (s, Var y) ∈# mp ∧ (t, Var y) ∈# mp ∧ Conflict-Var s t x ∧ ¬
inf-sort (snd x)
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hence Conflict-Var s t x and ¬ inf-sort (snd x) by auto
from conflicts(4 )[OF this(1 )] this(2 ) ∗
show ?thesis by auto

qed auto
then obtain s t where st: (s,t) ∈# mp and choice: s = Var x ∧ is-Fun t ∨ x
∈ vars s ∧ ¬ inf-sort (snd x)

by auto
let ?p = add-mset mp p
let ?s = snd x
from ∗(3 ) τs-list
obtain τ where τ : τ ∈ τs n x and p ′: p ′ = subst-pat-problem-mset τ ?p by auto

let ?tau-mset = subst-pat-problem-mset τ
let ?tau = subst-match-problem-mset τ
from τ [unfolded τs-def τc-def List.maps-def ]
obtain c sorts where c: c : sorts → ?s in C and tau: τ = subst x (Fun c (map

Var (zip [n..<n + length sorts] sorts)))
by auto

with C-sub-S have sS : ?s ∈ S and sorts: set sorts ⊆ S by auto
define vs where vs = zip [n..<n + length sorts] sorts
have τ : τ = subst x (Fun c (map Var vs)) unfolding tau vs-def by auto
have snd ‘ vars (τ y) ⊆ insert (snd y) S for y

using sorts unfolding tau by (auto simp: subst-def set-zip set-conv-nth)
hence vars-sort: (a,b) ∈ vars (τ y) =⇒ b ∈ insert (snd y) S for a b y by fastforce

from st obtain mp ′ where mp: mp = add-mset (s,t) mp ′ by (rule mset-add)
from choice have ?p � ?tau-mset ?p
proof

assume s = Var x ∧ is-Fun t
then obtain f ts where s: s = Var x and t: t = Fun f ts by (cases t, auto)
have meas-diff (?tau-mset ?p) =

meas-diff (?tau-mset (add-mset mp ′ p)) + fun-diff t (s · τ)
unfolding meas-def subst-defs subst-left-def mp by simp

also have . . . ≤ meas-diff (add-mset mp ′ p) + fun-diff t (τ x) using meas-diff-subst-le[of
τ ] s by auto

also have . . . < meas-diff (add-mset mp ′ p) + fun-diff t s
proof (rule add-strict-left-mono)

have fun-diff t (τ x) < num-funs t
unfolding tau subst-simps fun-diff .simps
by (rule fun-diff-num-funs-lt[OF refl], auto simp: t)

thus fun-diff t (τ x) < fun-diff t s by (auto simp: s t)
qed
also have . . . = meas-diff ?p unfolding mp meas-def by auto
finally show ?thesis unfolding rel-pat-def by auto

next
assume x ∈ vars s ∧ ¬ inf-sort (snd x)
hence x: x ∈ vars s and inf : ¬ inf-sort (snd x) by auto
from meas-diff-subst-le[of τ ]
have fd: meas-diff p ′ ≤ meas-diff ?p unfolding p ′ .
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have meas-finvars (?tau-mset ?p) = meas-finvars (?tau-mset {#mp#}) +
meas-finvars (?tau-mset p)

unfolding subst-defs meas-def by auto
also have . . . < meas-finvars {#mp#} + meas-finvars p
proof (rule add-less-le-mono)
have vars-τ -var : vars (τ y) = (if x = y then set vs else {y}) for y unfolding

τ subst-def by auto
have vars-τ : vars (t · τ) = vars t − {x} ∪ (if x ∈ vars t then set vs else {})

for t
unfolding vars-term-subst image-comp o-def vars-τ -var by auto

have tvars-mp-subst: tvars-mp (mp-mset (?tau mp)) =
tvars-mp (mp-mset mp) − {x} ∪ (if x ∈ tvars-mp (mp-mset mp) then set

vs else {}) for mp
unfolding subst-defs subst-left-def tvars-mp-def
by (auto simp:vars-τ split: if-splits prod.split)

have id1 : meas-finvars (?tau-mset {#mp#}) = (
∑

x∈ tvars-mp (mp-mset
(?tau mp)). max-size (snd x)) for mp

unfolding meas-def subst-defs by auto
have id2 : meas-finvars {#mp#} = (

∑
x∈tvars-mp (mp-mset mp). max-size

(snd x)) for mp
unfolding meas-def subst-defs by simp

have eq: x /∈ tvars-mp (mp-mset mp) =⇒ meas-finvars (?tau-mset {# mp
#}) = meas-finvars {#mp#} for mp

unfolding id1 id2 by (rule sum.cong[OF - refl], auto simp: tvars-mp-subst)
{

fix mp

assume xmp: x ∈ tvars-mp (mp-mset mp)
let ?mp = (mp-mset mp)
have fin: finite (tvars-mp ?mp) by (rule tvars-mp-fin)
define Mp where Mp = tvars-mp ?mp − {x}
from xmp have 1 : tvars-mp (mp-mset (?tau mp)) = set vs ∪ Mp

unfolding tvars-mp-subst Mp-def by auto
from xmp have 2 : tvars-mp ?mp = insert x Mp and xMp: x /∈ Mp unfolding

Mp-def by auto
from fin have fin: finite Mp unfolding Mp-def by auto
have meas-finvars (?tau-mset {# mp #}) = sum (max-size ◦ snd) (set vs

∪ Mp) (is - = sum ?size -)
unfolding id1 id2 using 1 by auto

also have . . . ≤ sum ?size (set vs) + sum ?size Mp by (rule sum-union-le-nat)
also have . . . < ?size x + sum ?size Mp
proof −

have sS : ?s ∈ S by fact
have sorts: sorts = map snd vs unfolding vs-def by (intro nth-equalityI ,

auto)
have sum ?size (set vs) < ?size x

using finite-sort-size[OF c[unfolded sorts] inf ] by auto
thus ?thesis by auto

qed
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also have . . . = meas-finvars {#mp#} unfolding id2 2 using fin xMp by
auto

finally have meas-finvars (?tau-mset {# mp #}) < meas-finvars {#mp#}
.

} note less = this
have le: meas-finvars (?tau-mset {# mp #}) ≤ meas-finvars {#mp#} for

mp
using eq[of mp] less[of mp] by linarith

show meas-finvars (?tau-mset {#mp#}) < meas-finvars {#mp#} using x
by (intro less, unfold mp, force simp: tvars-mp-def )

show meas-finvars (?tau-mset p) ≤ meas-finvars p
unfolding subst-pat-problem-mset-def meas-finvars-def sum-ms-image o-def
apply (rule sum-mset-mono)

subgoal for mp using le[of mp] unfolding meas-finvars-def o-def subst-defs
by auto

done
qed
also have . . . = meas-finvars ?p unfolding p ′ meas-def by simp
finally show ?thesis using fd unfolding rel-pat-def p ′ by auto

qed
thus ?case unfolding p ′ .

next
case ∗: (pat-remove-pp p)
thus ?case by (intro meas-sub-rel-pat, auto)

qed

finally: the transformation is terminating w.r.t. (�mul)
lemma rel-P-trans:

assumes P Vm P ′

shows P �mul P ′

using assms
proof induct

case ∗: (P-failure p P)
from ∗ have p 6= {#} ∨ p = {#} ∧ P 6= {#} by auto
thus ?case
proof

assume p 6= {#}
then obtain mp p ′ where p: p = add-mset mp p ′ by (cases p, auto)
have p � {#} unfolding p by (intro meas-sub-rel-pat, auto)
thus ?thesis unfolding rel-pats-def using

one-step-implies-mult[of add-mset p P {#{#}#} - {#}]
by auto

next
assume ∗: p = {#} ∧ P 6= {#} then obtain p ′ P ′ where p: p = {#} and

P: P = add-mset p ′ P ′ by (cases P, auto)
show ?thesis unfolding P p unfolding rel-pats-def

by (simp add: subset-implies-mult)
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qed
next

case ∗: (P-simp-pp p ps P)
from rel-pp-step-mset[OF ∗]
show ?case unfolding rel-pats-def by (metis add-many-mult)

qed

termination of the multiset based implementation
theorem SN-P-step: SN V
proof −

have sub: V ⊆ ≺mul^−1
using rel-P-trans unfolding P-step-def by auto

show ?thesis
apply (rule SN-subset[OF - sub])
using wf-rel-pats by (simp add: wf-imp-SN )

qed

4.4 Partial Correctness via Refinement

Obtain partial correctness via a simulation property, that the multiset-based
implementation is a refinement of the set-based implementation.
lemma mp-step-cong: mp1 →s mp2 =⇒ mp1 = mp1 ′ =⇒ mp2 = mp2 ′ =⇒ mp1 ′

→s mp2 ′ by auto

lemma mp-step-mset-mp-trans: mp →m mp ′ =⇒ mp-mset mp →s mp-mset mp ′

proof (induct mp mp ′ rule: mp-step-mset.induct)
case ∗: (match-decompose f ts g ls mp)
show ?case by (rule mp-step-cong[OF mp-decompose], insert ∗, auto)

next
case ∗: (match-match x mp t)
show ?case by (rule mp-step-cong[OF mp-match], insert ∗, auto)

next
case (match-duplicate pair mp)
show ?case by (rule mp-step-cong[OF mp-identity], auto)

qed

lemma mp-fail-cong: mp-fail mp =⇒ mp = mp ′ =⇒ mp-fail mp ′ by auto

lemma match-fail-mp-fail: match-fail mp =⇒ mp-fail (mp-mset mp)
proof (induct mp rule: match-fail.induct)

case ∗: (match-clash f ts g ls mp)
show ?case by (rule mp-fail-cong[OF mp-clash], insert ∗, auto)

next
case ∗: (match-clash ′ s t x mp)
show ?case by (rule mp-fail-cong[OF mp-clash ′], insert ∗, auto)

qed

lemma P-step-set-cong: P Vs Q =⇒ P = P ′ =⇒ Q = Q ′ =⇒ P ′ Vs Q ′ by auto
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lemma P-step-mset-imp-set: assumes P Vm Q
shows pats-mset P Vs pats-mset Q
using assms

proof (induct)
case ∗: (P-failure p P)
let ?P = insert (pat-mset p) (pats-mset P)
from ∗(1 )
have ?P Vs bottom
proof induct

case (pat-failure ′ p)
from P-failure ′[OF this]
show ?case by auto

next
case pat-empty
show ?case using P-fail by auto

qed
thus ?case by auto

next
case ∗: (P-simp-pp p ps P)
note conv = o-def image-mset-union image-empty image-mset-add-mset Un-empty-left

set-mset-add-mset-insert set-mset-union image-Un image-insert set-mset-empty
set-mset-mset set-image-mset
set-map image-comp insert-is-Un[symmetric]

define P ′ where P ′ = {mp-mset ‘ set-mset x |. x ∈ set-mset P}
from ∗(1 )
have insert (pat-mset p) (pats-mset P) Vs pats-mset ps ∪ pats-mset P

unfolding conv P ′-def [symmetric]
proof induction

case (pat-remove-pp p)
show ?case unfolding conv

by (intro P-remove-pp pp-success.intros)
next

case ∗: (pat-simp-mp mp mp ′ p)
from P-simp[OF pp-simp-mp[OF mp-step-mset-mp-trans[OF ∗]]]
show ?case by auto

next
case ∗: (pat-remove-mp mp p)
from P-simp[OF pp-remove-mp[OF match-fail-mp-fail[OF ∗]]]
show ?case by simp

next
case ∗: (pat-instantiate n mp p x l s y t)
from ∗(2 ) have x ∈ tvars-mp (mp-mset mp)

using conflicts(4 )[of s t x] unfolding tvars-mp-def
by (auto intro!:term.set-intros(3 ))

hence x: x ∈ tvars-pp (pat-mset (add-mset mp p)) unfolding tvars-pp-def
using ∗(2 ) by auto

show ?case unfolding conv τs-list
apply (rule P-step-set-cong[OF P-instantiate[OF ∗(1 ) x]])
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by (unfold conv subst-defs set-map image-comp, auto)
qed
thus ?case unfolding conv .

qed

lemma P-step-pp-trans: assumes (P,Q) ∈ V
shows pats-mset P Vs pats-mset Q
by (rule P-step-mset-imp-set, insert assms, unfold P-step-def , auto)

theorem P-step-pcorrect: assumes wf : wf-pats (pats-mset P) and step: (P,Q) ∈
P-step
shows wf-pats (pats-mset Q) ∧ (pats-complete (pats-mset P) = pats-complete (pats-mset
Q))
proof −

note step = P-step-pp-trans[OF step]
from P-step-set-pcorrect[OF step] P-step-set-wf [OF step] wf
show ?thesis by auto

qed

corollary P-steps-pcorrect: assumes wf : wf-pats (pats-mset P)
and step: (P,Q) ∈ V∗

shows wf-pats (pats-mset Q) ∧ (pats-complete (pats-mset P) ←→ pats-complete
(pats-mset Q))

using step by induct (insert wf P-step-pcorrect, auto)

Gather all results for the multiset-based implementation: decision procedure
on well-formed inputs (termination was proven before)
theorem P-step:

assumes wf : wf-pats (pats-mset P) and NF : (P,Q) ∈ V!

shows Q = {#} ∧ pats-complete (pats-mset P) — either the result is and input
P is complete
∨ Q = bottom-mset ∧ ¬ pats-complete (pats-mset P) — or the result = bot and

P is not complete
proof −

from NF have steps: (P,Q) ∈ V^∗ and NF : Q ∈ NF P-step by auto
from P-steps-pcorrect[OF wf steps]
have wf : wf-pats (pats-mset Q) and

sound: pats-complete (pats-mset P) = pats-complete (pats-mset Q)
by blast+

from P-step-NF [OF NF ] have Q ∈ {{#},bottom-mset} .
thus ?thesis unfolding sound by auto

qed

end
end
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5 Computing Nonempty and Infinite sorts

This theory provides two algorithms, which both take a description of a
set of sorts with their constructors. The first algorithm computes the set
of sorts that are nonempty, i.e., those sorts that are inhabited by ground
terms; and the second algorithm computes the set of sorts that are infinite,
i.e., where one can build arbitrary large ground terms.
theory Compute-Nonempty-Infinite-Sorts

imports
Sorted-Terms.Sorted-Terms
LP-Duality.Minimum-Maximum
Matrix.Utility

begin

5.1 Deciding the nonemptyness of all sorts under consider-
ation

function compute-nonempty-main :: ′τ set ⇒ (( ′f × ′τ list) × ′τ) list ⇒ ′τ set
where

compute-nonempty-main ne ls = (let rem-ls = filter (λ f . snd f /∈ ne) ls in
case partition (λ ((-,args),-). set args ⊆ ne) rem-ls of
(new, rem) ⇒ if new = [] then ne else compute-nonempty-main (ne ∪ set

(map snd new)) rem)
by pat-completeness auto

termination
proof (relation measure (length o snd), goal-cases)

case (2 ne ls rem-ls new rem)
have length new + length rem = length rem-ls

using 2 (2 ) sum-length-filter-compl[of - rem-ls] by (auto simp: o-def )
with 2 (3 ) have length rem < length rem-ls by (cases new, auto)
also have . . . ≤ length ls using 2 (1 ) by auto
finally show ?case by simp

qed simp

declare compute-nonempty-main.simps[simp del]

definition compute-nonempty-sorts :: (( ′f × ′τ list) × ′τ) list ⇒ ′τ set where
compute-nonempty-sorts Cs = compute-nonempty-main {} Cs

lemma compute-nonempty-sorts:
assumes distinct (map fst Cs)
and map-of Cs = C

shows compute-nonempty-sorts Cs = {τ . ∃ t :: ( ′f , ′v)term. t : τ in T (C ,∅)} (is -
= ?NE)
proof −

let ?TC = T (C ,(∅ :: ′v ⇒ -))
have ne ⊆ ?NE =⇒ set ls ⊆ set Cs =⇒ snd ‘ (set Cs − set ls) ⊆ ne =⇒
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compute-nonempty-main ne ls = ?NE for ne ls
proof (induct ne ls rule: compute-nonempty-main.induct)

case (1 ne ls)
note ne = 1 (2 )
define rem-ls where rem-ls = filter (λ f . snd f /∈ ne) ls
have rem-ls: set rem-ls ⊆ set Cs

snd ‘ (set Cs − set rem-ls) ⊆ ne
using 1 (2−) by (auto simp: rem-ls-def )

obtain new rem where part: partition (λ((f , args), target). set args ⊆ ne)
rem-ls = (new,rem) by force

have [simp]: compute-nonempty-main ne ls = (if new = [] then ne else com-
pute-nonempty-main (ne ∪ set (map snd new)) rem)

unfolding compute-nonempty-main.simps[of ne ls] Let-def rem-ls-def [symmetric]
part by auto

have new: set (map snd new) ⊆ ?NE
proof

fix τ
assume τ ∈ set (map snd new)
then obtain f args where ((f ,args),τ) ∈ set rem-ls and args: set args ⊆ ne

using part by auto
with rem-ls have ((f ,args),τ) ∈ set Cs by auto
with assms have C (f ,args) = Some τ by auto
hence fC : f : args → τ in C by (simp add: hastype-in-ssig-def )
from args ne have ∀ tau. ∃ t. tau ∈ set args −→ t : tau in ?TC by auto
from choice[OF this] obtain ts where

∧
tau. tau ∈ set args =⇒ ts tau : tau

in ?TC by auto
hence Fun f (map ts args) : τ in ?TC

apply (intro Fun-hastypeI [OF fC ])
by (simp add: list-all2-conv-all-nth)

thus τ ∈ ?NE by auto
qed
show ?case
proof (cases new = [])

case False
note IH = 1 (1 )[OF rem-ls-def part[symmetric] False]

have compute-nonempty-main ne ls = compute-nonempty-main (ne ∪ set
(map snd new)) rem using False by simp

also have . . . = ?NE
proof (rule IH )

show ne ∪ set (map snd new) ⊆ ?NE using new ne by auto
show set rem ⊆ set Cs using rem-ls part by auto
show snd ‘ (set Cs − set rem) ⊆ ne ∪ set (map snd new)
proof

fix τ
assume τ ∈ snd ‘ (set Cs − set rem)

then obtain f args where in-ls: ((f ,args),τ) ∈ set Cs and nrem: ((f ,args),τ)
/∈ set rem by force

thus τ ∈ ne ∪ set (map snd new) using new part rem-ls by force
qed
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qed
finally show ?thesis .

next
case True
have compute-nonempty-main ne ls = ne using True by simp
also have . . . = ?NE
proof (rule ccontr)

assume ¬ ?thesis
with ne obtain τ t where counter : t : τ in ?TC τ /∈ ne by auto
thus False
proof (induct t τ)

case (Fun f ts τs τ)
from Fun(1 ) have C (f ,τs) = Some τ by (simp add: hastype-in-ssig-def )
with assms(2 ) have mem: ((f ,τs),τ) ∈ set Cs by (meson map-of-SomeD)
from Fun(3 ) have τs: set τs ⊆ ne by (induct, auto)
from rem-ls mem Fun(4 ) have ((f ,τs),τ) ∈ set rem-ls by auto
with τs have ((f ,τs),τ) ∈ set new using part by auto
with True show ?case by auto

qed auto
qed
finally show ?thesis .

qed
qed
from this[of {} Cs] show ?thesis unfolding compute-nonempty-sorts-def by

auto
qed

definition decide-nonempty-sorts :: ′t list ⇒ (( ′f × ′t list) × ′t)list ⇒ ′t option
where

decide-nonempty-sorts τs Cs = (let ne = compute-nonempty-sorts Cs in
find (λ τ. τ /∈ ne) τs)

lemma decide-nonempty-sorts:
assumes distinct (map fst Cs)
and map-of Cs = C

shows decide-nonempty-sorts τs Cs = None =⇒ ∀ τ ∈ set τs. ∃ t :: ( ′f , ′v)term.
t : τ in T (C ,∅)

decide-nonempty-sorts τs Cs = Some τ =⇒ τ ∈ set τs ∧ ¬ (∃ t :: ( ′f , ′v)term. t
: τ in T (C ,∅))

unfolding decide-nonempty-sorts-def Let-def compute-nonempty-sorts[OF assms,
where ? ′v = ′v]

find-None-iff find-Some-iff by auto

5.2 Deciding infiniteness of a sort

We provide an algorithm, that given a list of sorts with constructors, com-
putes the set of those sorts that are infinite. Here a sort is defined as infinite
iff there is no upper bound on the size of the ground terms of that sort.
function compute-inf-main :: ′τ set ⇒ ( ′τ × ( ′f × ′τ list)list) list ⇒ ′τ set where
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compute-inf-main m-inf ls = (
let (fin, ls ′) =

partition (λ (τ ,fs). ∀ τs ∈ set (map snd fs). ∀ τ ∈ set τs. τ /∈ m-inf ) ls
in if fin = [] then m-inf else compute-inf-main (m-inf − set (map fst fin)) ls ′)

by pat-completeness auto

termination
proof (relation measure (length o snd), goal-cases)

case (2 m-inf ls pair fin ls ′)
have length fin + length ls ′ = length ls

using 2 sum-length-filter-compl[of - ls] by (auto simp: o-def )
with 2 (3 ) have length ls ′ < length ls by (cases fin, auto)
thus ?case by auto

qed simp

lemma compute-inf-main: fixes E :: ′v ⇀ ′t and C :: ( ′f , ′t)ssig
assumes E : E = ∅
and C-Cs: C = map-of Cs ′

and Cs ′: set Cs ′ = set (concat (map ((λ (τ , fs). map (λ f . (f ,τ)) fs)) Cs))
and arg-types-inhabitet: ∀ f τs τ τ ′. f : τs → τ in C −→ τ ′ ∈ set τs −→ (∃ t.

t : τ ′ in T (C ,E))
and dist: distinct (map fst Cs) distinct (map fst Cs ′)
and inhabitet: ∀ τ fs. (τ ,fs) ∈ set Cs −→ set fs 6= {}
and ∀ τ . τ /∈ m-inf −→ bdd-above (size ‘ {t. t : τ in T (C ,E)})
and set ls ⊆ set Cs
and fst ‘ (set Cs − set ls) ∩ m-inf = {}
and m-inf ⊆ fst ‘ set ls

shows compute-inf-main m-inf ls = {τ . ¬ bdd-above (size ‘ {t. t : τ in T (C ,E)})}

using assms(8−)
proof (induct m-inf ls rule: compute-inf-main.induct)

case (1 m-inf ls)
let ?fin = λ τ. bdd-above (size ‘ {t. t : τ in T (C ,E)})
define crit where crit = (λ (τ :: ′t,fs :: ( ′f × ′t list) list). ∀ τs ∈ set (map snd

fs). ∀ τ ∈ set τs. τ /∈ m-inf )
define S where S τ ′ = size ‘ {t. t : τ ′ in T (C ,E)} for τ ′

define M where M τ ′ = Maximum (S τ ′) for τ ′

define M ′ where M ′ σs = sum-list (map M σs) + (1 + length σs) for σs
define L where L = [ σs . (τ ,cs) <− Cs, (f ,σs) <− cs]
define N where N = max-list (map M ′ L)
obtain fin ls ′ where part: partition crit ls = (fin, ls ′) by force
{

fix τ cs
assume inCs: (τ ,cs) ∈ set Cs
have nonempty:∃ t. t : τ in T (C ,E)
proof −

from inhabitet[rule-format, OF inCs] obtain f σs where (f ,σs) ∈ set cs by
(cases cs,auto )

with inCs have ((f ,σs),τ) ∈ set Cs ′ unfolding Cs ′ by auto
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hence fC : f : σs → τ in C using dist(2 ) unfolding C-Cs
by (meson hastype-in-ssig-def map-of-is-SomeI )

hence ∀σ. ∃ t. σ ∈ set σs −→ t : σ in T (C ,E) using arg-types-inhabitet[rule-format,
of f σs τ ] by auto

from choice[OF this] obtain t where σ ∈ set σs =⇒ t σ : σ in T (C ,E) for
σ by auto

hence Fun f (map t σs) : τ in T (C ,E) using list-all2-conv-all-nth
apply (intro Fun-hastypeI [OF fC ]) by (simp add: list-all2-conv-all-nth)

then show ?thesis by auto
qed

} note inhabited = this
{

fix τ
assume asm: τ ∈ fst ‘ set fin
hence ?fin τ
proof(cases τ ∈ m-inf )

case True
then obtain fs where taufs:(τ , fs) ∈ set fin using asm by auto
{

fix τ ′ and t and args
assume ∗: τ ′ ∈ set args args ∈ snd ‘ set fs t : τ ′ in T (C ,E)
from ∗ have τ ′ /∈ m-inf using taufs unfolding compute-inf-main.simps[of

m-inf ]
using crit-def part by fastforce

hence ?fin τ ′ using crit-def part 1 (2 ) by auto
hence hM : bdd-above (S τ ′) unfolding S-def .
from ∗(3 ) have size t ∈ S τ ′ unfolding S-def by auto

from this hM have size t ≤M τ ′ unfolding M-def by (metis bdd-above-Maximum-nat)
} note arg-type-bounds = this
{

fix t
assume t: t : τ in T (C ,E)
then obtain f ts where tF : t = Fun f ts unfolding E by (induct, auto)
from t[unfolded tF Fun-hastype]
obtain σs where f : f : σs → τ in C and args: ts :l σs in T (C ,E) by auto
from part[simplified] asm 1 (3 ) obtain cs where inCs: (τ ,cs) ∈ set Cs and

crit: crit (τ ,cs) by auto
{

from f [unfolded hastype-in-ssig-def C-Cs]
have map-of Cs ′ (f , σs) = Some τ by auto
hence ((f ,σs), τ) ∈ set Cs ′ by (metis map-of-SomeD)
from this[unfolded Cs ′, simplified] obtain cs ′ where 2 : (τ ,cs ′) ∈ set Cs

and mem: (f ,σs) ∈ set cs ′ by auto
from inCs 2 dist have cs ′ = cs by (metis eq-key-imp-eq-value)
with mem have mem: (f ,σs) ∈ set cs by auto

} note mem = this
from mem inCs have inL: σs ∈ set L unfolding L-def by force
{

fix σ ti
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assume σ ∈ set σs and ti: ti : σ in T (C ,E)
with mem crit have σ /∈ m-inf unfolding crit-def by auto
hence ?fin σ using 1 (2 ) by auto
hence hM : bdd-above (S σ) unfolding S-def .
from ti have size ti ∈ S σ unfolding S-def by auto

from this hM have size ti ≤M σ unfolding M-def by (metis bdd-above-Maximum-nat)
} note arg-bound = this

have len: length σs = length ts using args by (auto simp: list-all2-conv-all-nth)
have size t = sum-list (map size ts) + (1 + length ts) unfolding tF by

(simp add: size-list-conv-sum-list)
also have . . . ≤ sum-list (map M σs) + (1 + length ts) unfolding tF args
proof −

have id1 : map size ts = map (λ i. size (ts ! i)) [0 ..< length ts] by (intro
nth-equalityI , auto)

have id2 : map M σs = map (λ i. M (σs ! i)) [0 ..< length ts] using len
by (intro nth-equalityI , auto)

have sum-list (map size ts) ≤ sum-list (map M σs) unfolding id1 id2
apply (rule sum-list-mono) using arg-bound args
by (auto, simp add: list-all2-conv-all-nth)

thus ?thesis by auto
qed

also have . . . = sum-list (map M σs) + (1 + length σs) using args
unfolding M-def using list-all2-lengthD by auto

also have . . . = M ′ σs unfolding M ′-def by auto
also have . . . ≤ max-list (map M ′ L)

by (rule max-list, insert inL, auto)
also have . . . = N unfolding N-def ..
finally have size t ≤ N .

}
hence

∧
s. s ∈ S τ =⇒ s ≤ N unfolding S-def by auto

hence finite (S τ)
using finite-nat-set-iff-bounded-le by auto

moreover
have nonempty:∃ t. t : τ in T (C ,E)
proof −

from part[simplified] asm 1 (3 ) obtain cs where inCs: (τ ,cs) ∈ set Cs by
auto

thus ?thesis using inhabited by auto
qed
hence S τ 6= {} unfolding S-def by auto

ultimately show ?thesis unfolding S-def [symmetric] by (metis Max-ge
bdd-above-def )

next
case False
then show ?thesis using 1 (2 ) by simp

qed
} note fin = this
show ?case
proof (cases fin = [])
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case False
hence compute-inf-main m-inf ls = compute-inf-main (m-inf − set (map fst

fin)) ls ′

unfolding compute-inf-main.simps[of m-inf ] part[unfolded crit-def ] by auto
also have . . . = {τ . ¬ ?fin τ}
proof (rule 1 (1 )[OF refl part[unfolded crit-def , symmetric] False])

show set ls ′ ⊆ set Cs using 1 (3 ) part by auto
show fst ‘ (set Cs − set ls ′) ∩ (m-inf − set (map fst fin)) = {} using 1 (3−4 )

part by force
show ∀ τ . τ /∈ m-inf − set (map fst fin) −→ ?fin τ using 1 (2 ) fin by force
show m-inf − set (map fst fin) ⊆ fst ‘ set ls ′ using 1 (5 ) part by force

qed
finally show ?thesis .

next
case True
hence compute-inf-main m-inf ls = m-inf

unfolding compute-inf-main.simps[of m-inf ] part[unfolded crit-def ] by auto
also have . . . = {τ . ¬ ?fin τ}
proof

show {τ . ¬ ?fin τ} ⊆ m-inf using fin 1 (2 ) by auto
{

fix τ
assume τ ∈ m-inf
with 1 (5 ) obtain cs where mem: (τ ,cs) ∈ set ls by auto
from part True have ls ′: ls ′ = ls by (induct ls arbitrary: ls ′, auto)
from partition-P[OF part, unfolded ls ′]
have

∧
e. e ∈ set ls =⇒ ¬ crit e by auto

from this[OF mem, unfolded crit-def split]
obtain c τs τ ′ where ∗: (c,τs) ∈ set cs τ ′ ∈ set τs τ ′ ∈ m-inf by auto
from mem 1 (2−) have (τ ,cs) ∈ set Cs by auto
with ∗ have ((c,τs),τ) ∈ set Cs ′ unfolding Cs ′ by force
with dist(2 ) have map-of Cs ′ ((c,τs)) = Some τ by simp

from this[folded C-Cs] have c: c : τs → τ in C unfolding hastype-in-ssig-def
.

from arg-types-inhabitet this have ∀ σ. ∃ t. σ ∈ set τs −→ t : σ in T (C ,E)
by auto

from choice[OF this] obtain t where
∧

σ. σ ∈ set τs =⇒ t σ : σ in
T (C ,E) by auto

hence list: map t τs :l τs in T (C ,E) by (simp add: list-all2-conv-all-nth)
with c have Fun c (map t τs) : τ in T (C ,E) by (intro Fun-hastypeI )

with ∗ c list have ∃ c τs τ ′ ts. Fun c ts : τ in T (C ,E) ∧ ts :l τs in T (C ,E)
∧ c : τs → τ in C ∧ τ ′ ∈ set τs ∧ τ ′ ∈ m-inf

by blast
} note m-invD = this
{

fix n :: nat
have τ ∈ m-inf =⇒ ∃ t. t : τ in T (C ,E) ∧ size t ≥ n for τ
proof (induct n arbitrary: τ)

case (0 τ)
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from m-invD[OF 0 ] show ?case by blast
next

case (Suc n τ)
from m-invD[OF Suc(2 )] obtain c τs τ ′ ts

where ∗: ts :l τs in T (C ,E) c : τs → τ in C τ ′ ∈ set τs τ ′ ∈ m-inf
by auto

from ∗(1 )[unfolded list-all2-conv-all-nth] ∗(3 )[unfolded set-conv-nth]
obtain i where i: i < length τs and tsi:ts ! i : τ ′ in T (C ,E) and len:

length ts = length τs by auto
from Suc(1 )[OF ∗(4 )] obtain t where t:t : τ ′ in T (C ,E) and ns:n ≤

size t by auto
define ts ′ where ts ′ = ts[i := t]
have ts ′ :l τs in T (C ,E) using list-all2-conv-all-nth unfolding ts ′-def

by (metis ∗(1 ) tsi has-same-type i list-all2-update-cong list-update-same-conv
t(1 ))

hence ∗∗:Fun c ts ′ : τ in T (C ,E) apply (intro Fun-hastypeI [OF ∗(2 )])
by fastforce

have t ∈ set ts ′ unfolding ts ′-def using t
by (simp add: i len set-update-memI )

hence size (Fun c ts ′) ≥ Suc n using ∗
by (simp add: size-list-estimation ′ ns)

thus ?case using ∗∗ by blast
qed

} note main = this
show m-inf ⊆ {τ . ¬ ?fin τ}
proof (standard, standard)

fix τ
assume asm: τ ∈ m-inf
have ∃ t. t : τ in T (C ,E) ∧ n < size t for n using main[OF asm, of Suc

n] by auto
thus ¬ ?fin τ
by (metis bdd-above-Maximum-nat imageI mem-Collect-eq order .strict-iff )

qed
qed
finally show ?thesis .

qed
qed

definition compute-inf-sorts :: (( ′f × ′t list) × ′t)list ⇒ ′t set where
compute-inf-sorts Cs = (let

Cs ′ = map (λ τ. (τ , map fst (filter(λf . snd f = τ) Cs))) (remdups (map snd
Cs))

in compute-inf-main (set (map fst Cs ′)) Cs ′)

lemma compute-inf-sorts:
fixes E :: ′v ⇀ ′t and C :: ( ′f , ′t)ssig
assumes E : E = ∅
and C-Cs: C = map-of Cs
and arg-types-inhabitet: ∀ f τs τ τ ′. f : τs → τ in C −→ τ ′ ∈ set τs −→ (∃ t.
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t : τ ′ in T (C ,E))
and dist: distinct (map fst Cs)

shows compute-inf-sorts Cs = {τ . ¬ bdd-above (size ‘ {t. t : τ in T (C ,E)})}
proof −

define taus where taus = remdups (map snd Cs)
define Cs ′ where Cs ′ = map (λ τ. (τ , map fst (filter(λf . snd f = τ) Cs))) taus
have compute-inf-sorts Cs = compute-inf-main (set (map fst Cs ′)) Cs ′

unfolding compute-inf-sorts-def taus-def Cs ′-def Let-def by auto
also have . . . = {τ . ¬ bdd-above (size ‘ {t. t : τ in T (C ,E)})}
proof (rule compute-inf-main[OF E C-Cs - arg-types-inhabitet - dist - - sub-

set-refl])
have distinct taus unfolding taus-def by auto
thus distinct (map fst Cs ′) unfolding Cs ′-def map-map o-def fst-conv by auto
show set Cs = set (concat (map (λ(τ , fs). map (λf . (f , τ)) fs) Cs ′))

unfolding Cs ′-def taus-def by force
show ∀ τ fs. (τ , fs) ∈ set Cs ′ −→ set fs 6= {}

unfolding Cs ′-def taus-def by (force simp: filter-empty-conv)
show fst ‘ (set Cs ′ − set Cs ′) ∩ set (map fst Cs ′) = {} by auto
show set (map fst Cs ′) ⊆ fst ‘ set Cs ′ by auto
show ∀ τ . τ /∈ set (map fst Cs ′) −→ bdd-above (size ‘ {t. t : τ in T (C ,E)})
proof (intro allI impI )

fix τ
assume τ /∈ set (map fst Cs ′)
hence τ /∈ snd ‘ set Cs unfolding Cs ′-def taus-def by auto
hence diff : C f 6= Some τ for f unfolding C-Cs

by (metis Some-eq-map-of-iff dist imageI snd-conv)
{

fix t
assume t : τ in T (C ,E)
hence False using diff unfolding E
proof induct

case (Fun f ss σs τ)
from Fun(1 ,4 ) show False unfolding hastype-in-ssig-def by auto

qed auto
}
hence id: {t. t : τ in T (C ,E)} = {} by auto
show bdd-above (size ‘ {t. t : τ in T (C ,E)}) unfolding id by auto

qed
qed
finally show ?thesis .

qed
end

6 A List-Based Implementation to Decide Pattern
Completeness

theory Pattern-Completeness-List
imports

55



Pattern-Completeness-Multiset
Compute-Nonempty-Infinite-Sorts
HOL−Library.AList

begin

6.1 Definition of Algorithm

We refine the non-deterministic multiset based implementation to a deter-
ministic one which uses lists as underlying data-structure. For matching
problems we distinguish several different shapes.
type-synonym ( ′a, ′b)alist = ( ′a × ′b)list
type-synonym ( ′f , ′v, ′s)match-problem-list = (( ′f ,nat × ′s)term × ( ′f , ′v)term)
list — mp with arbitrary pairs
type-synonym ( ′f , ′v, ′s)match-problem-lx = ((nat × ′s) × ( ′f , ′v)term) list — mp
where left components are variable
type-synonym ( ′f , ′v, ′s)match-problem-rx = ( ′v,( ′f ,nat × ′s)term list) alist × bool
— mp where right components are variables
type-synonym ( ′f , ′v, ′s)match-problem-lr = ( ′f , ′v, ′s)match-problem-lx × ( ′f , ′v, ′s)match-problem-rx
— a partitioned mp
type-synonym ( ′f , ′v, ′s)pat-problem-list = ( ′f , ′v, ′s)match-problem-list list
type-synonym ( ′f , ′v, ′s)pat-problem-lr = ( ′f , ′v, ′s)match-problem-lr list
type-synonym ( ′f , ′v, ′s)pats-problem-list = ( ′f , ′v, ′s)pat-problem-list list
type-synonym ( ′f , ′v, ′s)pat-problem-set-impl = (( ′f ,nat × ′s)term × ( ′f , ′v)term)
list list

abbreviation mp-list :: ( ′f , ′v, ′s)match-problem-list ⇒ ( ′f , ′v, ′s)match-problem-mset

where mp-list ≡ mset

abbreviation mp-lx :: ( ′f , ′v, ′s)match-problem-lx ⇒ ( ′f , ′v, ′s)match-problem-list
where mp-lx ≡ map (map-prod Var id)

definition mp-rx :: ( ′f , ′v, ′s)match-problem-rx ⇒ ( ′f , ′v, ′s)match-problem-mset
where mp-rx mp = mset (List.maps (λ (x,ts). map (λ t. (t,Var x)) ts) (fst mp))

definition mp-rx-list :: ( ′f , ′v, ′s)match-problem-rx ⇒ ( ′f , ′v, ′s)match-problem-list
where mp-rx-list mp = List.maps (λ (x,ts). map (λ t. (t,Var x)) ts) (fst mp)

definition mp-lr :: ( ′f , ′v, ′s)match-problem-lr ⇒ ( ′f , ′v, ′s)match-problem-mset
where mp-lr pair = (case pair of (lx,rx) ⇒ mp-list (mp-lx lx) + mp-rx rx)

definition mp-lr-list :: ( ′f , ′v, ′s)match-problem-lr ⇒ ( ′f , ′v, ′s)match-problem-list
where mp-lr-list pair = (case pair of (lx,rx) ⇒ mp-lx lx @ mp-rx-list rx)

definition pat-lr :: ( ′f , ′v, ′s)pat-problem-lr ⇒ ( ′f , ′v, ′s)pat-problem-mset
where pat-lr ps = mset (map mp-lr ps)

definition pat-mset-list :: ( ′f , ′v, ′s)pat-problem-list ⇒ ( ′f , ′v, ′s)pat-problem-mset
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where pat-mset-list ps = mset (map mp-list ps)

definition pat-list :: ( ′f , ′v, ′s)pat-problem-list ⇒ ( ′f , ′v, ′s)pat-problem-set
where pat-list ps = set ‘ set ps

abbreviation pats-mset-list :: ( ′f , ′v, ′s)pats-problem-list ⇒ ( ′f , ′v, ′s)pats-problem-mset

where pats-mset-list ≡ mset o map pat-mset-list

definition subst-match-problem-list :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)match-problem-list
⇒ ( ′f , ′v, ′s)match-problem-list where

subst-match-problem-list τ = map (subst-left τ)

definition subst-pat-problem-list :: ( ′f ,nat × ′s)subst ⇒ ( ′f , ′v, ′s)pat-problem-list
⇒ ( ′f , ′v, ′s)pat-problem-list where

subst-pat-problem-list τ = map (subst-match-problem-list τ)

definition match-var-impl :: ( ′f , ′v, ′s)match-problem-lr ⇒ ( ′f , ′v, ′s)match-problem-lr
where

match-var-impl mp = (case mp of (xl,(rx,b)) ⇒
let xs = remdups (List.maps (vars-term-list o snd) xl)
in (xl,(filter (λ (x,ts). tl ts 6= [] ∨ x ∈ set xs) rx),b))

definition find-var :: ( ′f , ′v, ′s)match-problem-lr list ⇒ - where find-var p = (case
concat (map (λ (lx,-). lx) p) of

(x,t) # - ⇒ x
| [] ⇒ let (-,rx,b) = hd (filter (Not o snd o snd) p)

in case hd rx of (x, s # t # -) ⇒ hd (the (conflicts s t)))

definition empty-lr :: ( ′f , ′v, ′s)match-problem-lr ⇒ bool where
empty-lr mp = (case mp of (lx,rx,-) ⇒ lx = [] ∧ rx = [])

context pattern-completeness-context
begin

insert an element into the part of the mp that stores pairs of form (t,x) for
variables x. Internally this is represented as maps (assoc lists) from x to
terms t1,t2,... so that linear terms are easily identifiable. Duplicates will be
removed and clashes will be immediately be detected and result in None.
definition insert-rx :: ( ′f ,nat × ′s)term ⇒ ′v ⇒ ( ′f , ′v, ′s)match-problem-rx ⇒
( ′f , ′v, ′s)match-problem-rx option where

insert-rx t x rxb = (case rxb of (rx,b) ⇒ (case map-of rx x of
None ⇒ Some (((x,[t]) # rx, b))
| Some ts ⇒ (case those (map (conflicts t) ts)

of None ⇒ None — clash
| Some cs ⇒ if [] ∈ set cs then Some rxb — empty conflict means (t,x) was

already part of rxb
else Some ((AList.update x (t # ts) rx, b ∨ (∃ y ∈ set (concat cs). inf-sort

(snd y))))
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)))

lemma size-zip[termination-simp]: length ts = length ls =⇒ size-list (λp. size (snd
p)) (zip ts ls)
< Suc (size-list size ls)
by (induct ts ls rule: list-induct2 , auto)

Decomposition applies decomposition, duplicate and clash rule to classify
all remaining problems as being of kind (x,f(l1,..,ln)) or (t,x).
fun decomp-impl :: ( ′f , ′v, ′s)match-problem-list ⇒ ( ′f , ′v, ′s)match-problem-lr option
where

decomp-impl [] = Some ([],([],False))
| decomp-impl ((Fun f ts, Fun g ls) # mp) = (if (f ,length ts) = (g,length ls) then

decomp-impl (zip ts ls @ mp) else None)
| decomp-impl ((Var x, Fun g ls) # mp) = (case decomp-impl mp of Some (lx,rx)
⇒ Some ((x,Fun g ls) # lx,rx)

| None ⇒ None)
| decomp-impl ((t, Var y) # mp) = (case decomp-impl mp of Some (lx,rx) ⇒

(case insert-rx t y rx of Some rx ′⇒ Some (lx,rx ′) | None ⇒ None)
| None ⇒ None)

definition match-steps-impl :: ( ′f , ′v, ′s)match-problem-list ⇒ ( ′f , ′v, ′s)match-problem-lr
option where

match-steps-impl mp = map-option match-var-impl (decomp-impl mp)

fun pat-inner-impl :: ( ′f , ′v, ′s)pat-problem-list ⇒ ( ′f , ′v, ′s)pat-problem-lr ⇒ ( ′f , ′v, ′s)pat-problem-lr
option where

pat-inner-impl [] pd = Some pd
| pat-inner-impl (mp # p) pd = (case match-steps-impl mp of

None ⇒ pat-inner-impl p pd
| Some mp ′⇒ if empty-lr mp ′ then None

else pat-inner-impl p (mp ′ # pd))

definition pat-impl :: nat ⇒ ( ′f , ′v, ′s)pat-problem-list ⇒ ( ′f , ′v, ′s)pat-problem-list
list option where

pat-impl n p = (case pat-inner-impl p [] of None ⇒ Some []
| Some p ′ ⇒ (if (∀ mp ∈ set p ′. snd (snd mp)) then None — detected

inf-var-conflict (or empty mp)
else let p ′l = map mp-lr-list p ′;

x = find-var p ′

in
Some (map (λ τ. subst-pat-problem-list τ p ′l) (τs-list n x))))

partial-function (tailrec) pats-impl :: nat ⇒ ( ′f , ′v, ′s)pats-problem-list ⇒ bool
where

pats-impl n ps = (case ps of [] ⇒ True
| p # ps1 ⇒ (case pat-impl n p of

None ⇒ False
| Some ps2 ⇒ pats-impl (n + m) (ps2 @ ps1 )))
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definition pat-complete-impl :: ( ′f , ′v, ′s)pats-problem-list ⇒ bool where
pat-complete-impl ps = (let

n = Suc (max-list (List.maps (map fst o vars-term-list o fst) (concat (concat
ps))))

in pats-impl n ps)
end

lemmas pat-complete-impl-code =
pattern-completeness-context.pat-complete-impl-def
pattern-completeness-context.pats-impl.simps
pattern-completeness-context.pat-impl-def
pattern-completeness-context.τs-list-def
pattern-completeness-context.insert-rx-def
pattern-completeness-context.decomp-impl.simps
pattern-completeness-context.match-steps-impl-def
pattern-completeness-context.pat-inner-impl.simps

declare pat-complete-impl-code[code]

6.2 Partial Correctness of the Implementation

We prove that the list-based implementation is a refinement of the multiset-
based one.
lemma mset-concat-union:

mset (concat xs) =
∑

# (mset (map mset xs))
by (induct xs, auto simp: union-commute)

lemma in-map-mset[intro]:
a ∈# A =⇒ f a ∈# image-mset f A
unfolding in-image-mset by simp

lemma mset-update: map-of xs x = Some y =⇒
mset (AList.update x z xs) = (mset xs − {# (x,y) #}) + {# (x,z) #}
by (induction xs, auto)

lemma set-update: map-of xs x = Some y =⇒ distinct (map fst xs) =⇒
set (AList.update x z xs) = insert (x,z) (set xs − {(x,y)})
by (induction xs, auto)

context pattern-completeness-context-with-assms
begin

Various well-formed predicates for intermediate results
definition wf-ts :: ( ′f , nat × ′s) term list ⇒ bool where

wf-ts ts = (ts 6= [] ∧ distinct ts ∧ (∀ j < length ts. ∀ i < j. conflicts (ts ! i) (ts
! j) 6= None))
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definition wf-ts2 :: ( ′f , nat × ′s) term list ⇒ bool where
wf-ts2 ts = (length ts ≥ 2 ∧ distinct ts ∧ (∀ j < length ts. ∀ i < j. conflicts (ts

! i) (ts ! j) 6= None))

definition wf-lx :: ( ′f , ′v, ′s)match-problem-lx ⇒ bool where
wf-lx lx = (Ball (snd ‘ set lx) is-Fun)

definition wf-rx :: ( ′f , ′v, ′s)match-problem-rx ⇒ bool where
wf-rx rx = (distinct (map fst (fst rx)) ∧ (Ball (snd ‘ set (fst rx)) wf-ts) ∧ snd rx

= inf-var-conflict (set-mset (mp-rx rx)))

definition wf-rx2 :: ( ′f , ′v, ′s)match-problem-rx ⇒ bool where
wf-rx2 rx = (distinct (map fst (fst rx)) ∧ (Ball (snd ‘ set (fst rx)) wf-ts2 ) ∧ snd

rx = inf-var-conflict (set-mset (mp-rx rx)))

definition wf-lr :: ( ′f , ′v, ′s)match-problem-lr ⇒ bool
where wf-lr pair = (case pair of (lx,rx) ⇒ wf-lx lx ∧ wf-rx rx)

definition wf-lr2 :: ( ′f , ′v, ′s)match-problem-lr ⇒ bool
where wf-lr2 pair = (case pair of (lx,rx) ⇒ wf-lx lx ∧ (if lx = [] then wf-rx2 rx

else wf-rx rx))

definition wf-pat-lr :: ( ′f , ′v, ′s)pat-problem-lr ⇒ bool where
wf-pat-lr mps = (Ball (set mps) (λ mp. wf-lr2 mp ∧ ¬ empty-lr mp))

lemma mp-step-mset-cong:
assumes (→m)∗∗ mp mp ′

shows (add-mset (add-mset mp p) P, add-mset (add-mset mp ′ p) P) ∈ V∗

using assms
proof induct

case (step mp ′ mp ′′)
from P-simp-pp[OF pat-simp-mp[OF step(2 ), of p], of P]
have (add-mset (add-mset mp ′ p) P, add-mset (add-mset mp ′′ p) P) ∈ P-step

unfolding P-step-def by auto
with step(3 )
show ?case by simp

qed auto

lemma mp-step-mset-vars: assumes mp →m mp ′

shows tvars-mp (mp-mset mp) ⊇ tvars-mp (mp-mset mp ′)
using assms by induct (auto simp: tvars-mp-def set-zip)

lemma mp-step-mset-steps-vars: assumes (→m)∗∗ mp mp ′

shows tvars-mp (mp-mset mp) ⊇ tvars-mp (mp-mset mp ′)
using assms by (induct, insert mp-step-mset-vars, auto)

Continue with properties of the sub-algorithms
lemma insert-rx: assumes res: insert-rx t x rxb = res
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and wf : wf-rx rxb
and mp: mp = (ls,rxb)
shows res = Some rx ′ =⇒ (→m)∗∗ (add-mset (t,Var x) (mp-lr mp + M )) (mp-lr

(ls,rx ′) + M ) ∧ wf-rx rx ′

res = None =⇒ match-fail (add-mset (t,Var x) (mp-lr mp + M ))
proof −

obtain rx b where rxb: rxb = (rx,b) by force
note [simp] = List.maps-def
note res = res[unfolded insert-rx-def ]
{

assume ∗: res = None
with res rxb obtain ts where look: map-of rx x = Some ts by (auto split:

option.splits)
with res[unfolded look Let-def rxb split] ∗ obtain t ′ where t ′: t ′ ∈ set ts and

clash: Conflict-Clash t t ′

by (auto split: if-splits option.splits)
from map-of-SomeD[OF look] t ′ have (t ′,Var x) ∈# mp-rx rxb

unfolding mp-rx-def rxb by auto
hence (t ′,Var x) ∈# mp-lr mp + M unfolding mp mp-lr-def by auto
then obtain mp ′ where mp: mp-lr mp + M = add-mset (t ′,Var x) mp ′ by

(rule mset-add)
show match-fail (add-mset (t,Var x) (mp-lr mp + M )) unfolding mp

by (rule match-clash ′[OF clash])
}
{

assume res = Some rx ′

note res = res[unfolded this rxb split]
show mp-step-mset^∗∗ (add-mset (t,Var x) (mp-lr mp + M )) (mp-lr (ls,rx ′) +

M ) ∧ wf-rx rx ′

proof (cases map-of rx x)
case look: None
from res[unfolded this]
have rx ′: rx ′ = ((x,[t]) # rx, b) by auto
have id: mp-rx rx ′ = add-mset (t, Var x) (mp-rx rxb)

using look unfolding mp-rx-def mset-concat-union mset-map rx ′ o-def rxb
by auto

have [simp]: (x, t) /∈ set rx for t using look
using weak-map-of-SomeI by force

have inf-var-conflict (mp-mset (mp-rx ((x, [t]) # rx, b))) = inf-var-conflict
(mp-mset (mp-rx (rx, b)))

unfolding mp-rx-def fst-conv inf-var-conflict-def
by (intro ex-cong1 , auto)

hence wf : wf-rx rx ′ using wf look unfolding wf-rx-def rx ′ rxb by (auto simp:
wf-ts-def )

show ?thesis unfolding mp mp-lr-def split id
using wf unfolding rx ′ by auto

next
case look: (Some ts)
from map-of-SomeD[OF look] have mem: (x,ts) ∈ set rx by auto
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note res = res[unfolded look option.simps Let-def ]
from res obtain cs where those: those (map (conflicts t) ts) = Some cs by

(auto split: option.splits)
note res = res[unfolded those option.simps]
from arg-cong[OF those[unfolded those-eq-Some], of set] have confl: conflicts

t ‘ set ts = Some ‘ set cs by auto
show ?thesis
proof (cases [] ∈ set cs)

case True
with res have rx ′: rx ′ = rxb by (auto split: if-splits simp: mp rxb those)
from True confl obtain t ′ where t ′ ∈ set ts and conflicts t t ′ = Some []

by force
hence t: t ∈ set ts using conflicts(5 )[of t t ′] by auto
hence (t, Var x) ∈# mp-rx rxb unfolding mp-rx-def rxb using mem by

auto
hence (t, Var x) ∈# mp-lr mp + M unfolding mp mp-lr-def by auto
then obtain sub where id: mp-lr mp + M = add-mset (t, Var x) sub by

(rule mset-add)
show ?thesis unfolding id rx ′ mp[symmetric] using match-duplicate[of (t,

Var x) sub] wf by auto
next

case False
with res have rx ′: rx ′ = (AList.update x (t # ts) rx, b ∨ (∃ y∈set (concat

cs). inf-sort (snd y))) by (auto split: if-splits)
from split-list[OF mem] obtain rx1 rx2 where rx: rx = rx1 @ (x,ts) #

rx2 by auto
have id: mp-rx rx ′ = add-mset (t, Var x) (mp-rx rxb)

unfolding rx ′ mp-rx-def rxb by (simp add: mset-update[OF look] mset-concat-union,
auto simp: rx)

from wf [unfolded wf-rx-def ] rx rxb have ts: wf-ts ts and b: b = inf-var-conflict
(mp-mset (mp-rx rxb)) by auto

from False confl conflicts(5 )[of t t] have t: t /∈ set ts by force
from confl have None /∈ set (map (conflicts t) ts) by auto
with ts t have ts ′: wf-ts (t # ts) unfolding wf-ts-def

apply clarsimp
subgoal for j i by (cases j, force, cases i; force simp: set-conv-nth)
done
have b: (b ∨ (∃ y∈set (concat cs). inf-sort (snd y))) = inf-var-conflict

(mp-mset (add-mset (t, Var x) (mp-rx rxb))) (is - = ?ivc)
proof (standard, elim disjE bexE)

show b =⇒ ?ivc unfolding b inf-var-conflict-def by force
{

fix y
assume y: y ∈ set (concat cs) and inf : inf-sort (snd y)
from y confl obtain t ′ ys where t ′: t ′ ∈ set ts and c: conflicts t t ′ =

Some ys and y: y ∈ set ys unfolding set-concat
by (smt (verit, del-insts) UnionE image-iff )

have y: Conflict-Var t t ′ y using c y by auto
from mem t ′ have (t ′,Var x) ∈# mp-rx rxb unfolding rxb mp-rx-def
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by auto
thus ?ivc unfolding inf-var-conflict-def using inf y by fastforce

}
assume ?ivc
from this[unfolded inf-var-conflict-def ]
obtain s1 s2 x ′ y

where ic: (s1 , Var x ′) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ (s2 , Var
x ′) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ Conflict-Var s1 s2 y ∧ inf-sort (snd y)

by blast
show b ∨ (∃ y∈set (concat cs). inf-sort (snd y))
proof (cases (s1 , Var x ′) ∈# mp-rx rxb ∧ (s2 , Var x ′) ∈# mp-rx rxb)

case True
with ic have b unfolding b inf-var-conflict-def by blast
thus ?thesis ..

next
case False
with ic have (s1 ,Var x ′) = (t,Var x) ∨ (s2 ,Var x ′) = (t,Var x) by auto

hence ∃ s y. (s, Var x) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ Conflict-Var
t s y ∧ inf-sort (snd y)

proof
assume (s1 , Var x ′) = (t, Var x)
thus ?thesis using ic by blast

next
assume ∗: (s2 , Var x ′) = (t, Var x)
with ic have Conflict-Var s1 t y by auto

hence Conflict-Var t s1 y using conflicts-sym[of s1 t] by (cases conflicts
s1 t; cases conflicts t s1 , auto)

with ic ∗ show ?thesis by blast
qed
then obtain s y where sx: (s, Var x) ∈# add-mset (t, Var x) (mp-rx

rxb) and y: Conflict-Var t s y and inf : inf-sort (snd y)
by blast
from wf have dist: distinct (map fst rx) unfolding wf-rx-def rxb by

auto
from y have s 6= t by auto
with sx have (s, Var x) ∈# mp-rx rxb by auto

hence s ∈ set ts unfolding mp-rx-def rxb using mem eq-key-imp-eq-value[OF
dist] by auto

with y confl have y ∈ set (concat cs) by (cases conflicts t s; force)
with inf show ?thesis by auto

qed
qed
have wf : wf-rx rx ′ using wf ts ′ unfolding wf-rx-def id unfolding rx ′ rxb

snd-conv b by (auto simp: distinct-update set-update[OF look])
show ?thesis using wf id unfolding mp by (auto simp: mp-lr-def )

qed
qed

}
qed
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lemma decomp-impl: decomp-impl mp = res =⇒
(res = Some mp ′ −→ (→m)∗∗ (mp-list mp + M ) (mp-lr mp ′ + M ) ∧ wf-lr mp ′)
∧ (res = None −→ (∃ mp ′. (→m)∗∗ (mp-list mp + M ) mp ′ ∧ match-fail mp ′))

proof (induct mp arbitrary: res M mp ′ rule: decomp-impl.induct)
case 1
thus ?case by (auto simp: mp-lr-def mp-rx-def List.maps-def wf-lr-def wf-lx-def

wf-rx-def inf-var-conflict-def )
next

case (2 f ts g ls mp res M mp ′)
have id: mp-list ((Fun f ts, Fun g ls) # mp) + M = add-mset (Fun f ts, Fun g

ls) (mp-list mp + M )
by auto

show ?case
proof (cases (f ,length ts) = (g,length ls))

case False
with 2 (2−) have res: res = None by auto
from match-clash[OF False, of (mp-list mp + M ), folded id]
show ?thesis unfolding res by blast

next
case True
have id2 : mp-list (zip ts ls @ mp) + M = mp-list mp + M + mp-list (zip ts

ls)
by auto

from True 2 (2−) have res: decomp-impl (zip ts ls @ mp) = res by auto
note IH = 2 (1 )[OF True this, of mp ′ M ]
note step = match-decompose[OF True, of mp-list mp + M , folded id id2 ]
from IH step show ?thesis by (meson converse-rtranclp-into-rtranclp)

qed
next

case (3 x g ls mp res M mp ′)
note res = 3 (2 )[unfolded decomp-impl.simps]
show ?case
proof (cases decomp-impl mp)

case None
from 3 (1 )[OF None, of mp ′ add-mset (Var x, Fun g ls) M ] None res show

?thesis by auto
next

case (Some mpx)
then obtain lx rx where decomp: decomp-impl mp = Some (lx,rx) by (cases

mpx, auto)
from res[unfolded decomp option.simps split] have res: res = Some ( (x, Fun

g ls) # lx, rx) by auto
from 3 (1 )[OF decomp, of (lx, rx) add-mset (Var x, Fun g ls) M ] res
show ?thesis by (auto simp: mp-lr-def wf-lr-def wf-lx-def )

qed
next

case (4 t y mp res M mp ′)
note res = 4 (2 )[unfolded decomp-impl.simps]
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show ?case
proof (cases decomp-impl mp)

case None
from 4 (1 )[OF None, of mp ′ add-mset (t, Var y) M ] None res show ?thesis

by auto
next

case (Some mpx)
then obtain lx rx where decomp: decomp-impl mp = Some (lx,rx) by (cases

mpx, auto)
note res = res[unfolded decomp option.simps split]
from 4 (1 )[OF decomp, of ( lx, rx) add-mset (t, Var y) M ]
have IH : (→m)∗∗ (mp-list ((t, Var y) # mp) + M ) (mp-lr ( lx, rx) + add-mset

(t, Var y) M )
wf-lr ( lx, rx) by auto

from IH have wf-rx: wf-rx rx unfolding wf-lr-def by auto
show ?thesis
proof (cases insert-rx t y rx)

case None
with res have res: res = None by auto
from insert-rx(2 )[OF None wf-rx refl refl, of lx M ]

IH res show ?thesis by auto
next

case (Some rx ′)
with res have res: res = Some ( lx, rx ′) by auto
from insert-rx(1 )[OF Some wf-rx refl refl, of lx M ]
have wf-rx: wf-rx rx ′

and steps: (→m)∗∗ (mp-lr ( lx, rx) + add-mset (t, Var y) M ) (mp-lr ( lx,
rx ′) + M )

by auto
from IH (1 ) steps
have steps: (→m)∗∗ (mp-list ((t, Var y) # mp) + M ) (mp-lr ( lx, rx ′) + M )

by auto
from wf-rx IH (2−) have wf : wf-lr ( lx, rx ′)

unfolding wf-lr-def by auto
from res wf steps show ?thesis by auto

qed
qed

qed

lemma match-var-impl: assumes wf : wf-lr mp
shows (→m)∗∗ (mp-lr mp) (mp-lr (match-var-impl mp))

and wf-lr2 (match-var-impl mp)
proof −

note [simp] = List.maps-def
let ?mp ′ = match-var-impl mp
from assms obtain xl rx b where mp3 : mp = (xl,(rx,b)) by (cases mp, auto)
define xs where xs = remdups (List.maps (vars-term-list o snd) xl)
have xs: xl = [] =⇒ xs = [] unfolding xs-def by auto
define f where f = (λ (x,ts :: ( ′f , nat × ′s)term list). tl ts 6= [] ∨ x ∈ set xs)
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define mp ′ where mp ′ = mp-rx (filter f rx, b) + mp-list (mp-lx xl)
define deleted where deleted = mp-rx (filter (Not o f ) rx, b)
have mp ′: mp-lr ?mp ′ = mp ′ ?mp ′ = (xl, (filter f rx,b))

unfolding mp3 mp ′-def match-var-impl-def split xs-def f-def mp-lr-def by auto
have mp-rx (rx,b) = mp-rx (filter f rx, b) + mp-rx (filter (Not o f ) rx, b)

unfolding mp-rx-def List.maps-def by (induct rx, auto)
hence mp: mp-lr mp = deleted + mp ′ unfolding mp3 mp-lr-def mp ′-def deleted-def

by auto
have inf-var-conflict (mp-mset (mp-rx (filter f rx, b))) = inf-var-conflict (mp-mset

(mp-rx (rx, b))) (is ?ivcf = ?ivc)
proof
show ?ivcf =⇒ ?ivc unfolding inf-var-conflict-def mp-rx-def fst-conv List.maps-def

by force
assume ?ivc
from this[unfolded inf-var-conflict-def ]
obtain s t x y where s: (s, Var x) ∈# mp-rx (rx, b) and t: (t, Var x) ∈#

mp-rx (rx, b) and c: Conflict-Var s t y and inf : inf-sort (snd y)
by blast

from c conflicts(5 )[of s t] have st: s 6= t by auto
from s[unfolded mp-rx-def List.maps-def ]
obtain ss where xss: (x,ss) ∈ set rx and s: s ∈ set ss by auto
from t[unfolded mp-rx-def List.maps-def ]
obtain ts where xts: (x,ts) ∈ set rx and t: t ∈ set ts by auto
from wf [unfolded mp3 wf-lr-def wf-rx-def ] have distinct (map fst rx) by auto
from eq-key-imp-eq-value[OF this xss xts] t have t: t ∈ set ss by auto
with s st have f (x,ss) unfolding f-def by (cases ss; cases tl ss; auto)
hence (x, ss) ∈ set (filter f rx) using xss by auto
with s t have (s, Var x) ∈# mp-rx (filter f rx, b) (t, Var x) ∈# mp-rx (filter

f rx, b)
unfolding mp-rx-def List.maps-def by auto

with c inf
show ?ivcf unfolding inf-var-conflict-def by blast

qed
also have . . . = b using wf unfolding mp3 wf-lr-def wf-rx-def by auto
finally have ivcf : ?ivcf = b .
show wf-lr2 (match-var-impl mp)
proof (cases xl = [])

case False
from ivcf False wf [unfolded mp3 ] show ?thesis
unfolding mp ′ wf-lr2-def wf-lr-def split wf-rx-def by (auto simp: distinct-map-filter)

next
case True
with xs have xs = [] by auto
with True wf [unfolded mp3 ]
show ?thesis

unfolding wf-lr2-def mp ′ split wf-rx2-def wf-rx-def ivcf
unfolding mp ′ wf-lr2-def wf-lr-def split wf-rx-def wf-rx2-def wf-ts-def wf-ts2-def

f-def
apply (clarsimp simp: distinct-map-filter)
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subgoal for x ts by (cases ts; cases tl ts; force)
done

qed
{

fix xt t
assume del: (t, xt) ∈# deleted
from this[unfolded deleted-def mp-rx-def , simplified]
obtain x ts where mem: (x,ts) ∈ set rx and nf : ¬ f (x, ts) and t: t ∈ set ts

and xt: xt = Var x by force
note del = del[unfolded xt]
from nf [unfolded f-def split] t have xxs: x /∈ set xs and ts: ts = [t] by (cases

ts; cases tl ts, auto)+
from split-list[OF mem[unfolded ts]] obtain rx1 rx2 where rx: rx = rx1 @

(x,[t]) # rx2 by auto
from wf [unfolded wf-lr-def mp3 ] have wf : wf-rx (rx,b) by auto
hence distinct (map fst rx) unfolding wf-rx-def by auto
with rx have xrx: x /∈ fst ‘ set rx1 ∪ fst ‘ set rx2 by auto
define mp ′′ where mp ′′ = mp-rx (filter (Not ◦ f ) (rx1 @ rx2 ), b)
have eq: deleted = add-mset (t, Var x) mp ′′

unfolding deleted-def mp ′′-def rx mp-rx-def List.maps-def mset-concat-union
using nf ts by auto

have ∃ x mp ′′. xt = Var x ∧ deleted = add-mset (t, Var x) mp ′′ ∧ x /∈
⋃

(vars
‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))

proof (intro exI conjI , rule xt, rule eq, intro notI )
assume x ∈

⋃
(vars ‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))

then obtain s t ′ where st: (s,t ′) ∈ mp-mset (mp ′ + mp ′′) and xt: x ∈ vars
t ′ by force

from xrx have (s,t ′) /∈ mp-mset mp ′′ using xt unfolding mp ′′-def mp-rx-def
by force

with st have (s,t ′) ∈ mp-mset mp ′ by auto
with xxs have (s, t ′) ∈# mp-rx (filter f rx, b) using xt unfolding xs-def

mp ′-def mp-rx-def
by auto

with xt nf show False unfolding mp-rx-def f-def split ts list.sel
by auto (metis Un-iff ‹¬ (tl ts 6= [] ∨ x ∈ set xs)› fst-conv image-eqI

prod.inject rx set-ConsD set-append ts xrx)
qed

} note lin-vars = this
show (→m)∗∗ (mp-lr mp) (mp-lr (match-var-impl mp)) unfolding mp mp ′(1 )

using lin-vars
proof (induct deleted)

case (add pair deleted)
obtain t xt where pair : pair = (t,xt) by force
hence (t,xt) ∈# add-mset pair deleted by auto
from add(2 )[OF this] pair
obtain x where add-mset pair deleted + mp ′ = add-mset (t, Var x) (deleted

+ mp ′)
and x: x /∈

⋃
(vars ‘ snd ‘ (mp-mset (deleted + mp ′)))

and pair : pair = (t, Var x)
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by auto
from match-match[OF this(2 ), of t, folded this(1 )]
have one: add-mset pair deleted + mp ′→m (deleted + mp ′) .
have two: (→m)∗∗ (deleted + mp ′) mp ′

proof (rule add(1 ), goal-cases)
case (1 s yt)
hence (s,yt) ∈# add-mset pair deleted by auto
from add(2 )[OF this]
obtain y mp ′′ where yt: yt = Var y add-mset pair deleted = add-mset (s,

Var y) mp ′′

y /∈
⋃

(vars ‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))
by auto

from 1 [unfolded yt] have y ∈
⋃

(vars ‘ snd ‘ (mp-mset (deleted + mp ′)))
by force

with x have x 6= y by auto
with pair yt have pair 6= (s,Var y) by auto
with yt(2 ) have del: deleted = add-mset (s, Var y) (mp ′′ − {#pair#})

by (meson add-eq-conv-diff )
show ?case

by (intro exI conjI , rule yt, rule del, rule contra-subsetD[OF - yt(3 )])
(intro UN-mono, auto dest: in-diffD)

qed
from one two show ?case by auto

qed auto
qed

lemma match-steps-impl: assumes match-steps-impl mp = res
shows res = Some mp ′ =⇒ (→m)∗∗ (mp-list mp) (mp-lr mp ′) ∧ wf-lr2 mp ′

and res = None =⇒ ∃ mp ′. (→m)∗∗ (mp-list mp) mp ′ ∧ match-fail mp ′

proof (atomize (full), goal-cases)
case 1
obtain res ′ where decomp: decomp-impl mp = res ′ by auto
note res = assms[unfolded match-steps-impl-def decomp]
note decomp = decomp-impl[OF decomp, of - {#}, unfolded empty-neutral]
show ?case
proof (cases res ′)

case None
with decomp res show ?thesis by auto

next
case (Some mp ′′)
with decomp[of mp ′′]
have steps: (→m)∗∗ (mp-list mp) (mp-lr mp ′′) and wf : wf-lr mp ′′ by auto
from res[unfolded Some] have res: res = Some (match-var-impl mp ′′) by auto
from match-var-impl[OF wf ] steps res show ?thesis by auto

qed
qed

lemma pat-inner-impl: assumes pat-inner-impl p pd = res
and wf-pat-lr pd
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and tvars-pp (pat-mset (pat-mset-list p + pat-lr pd)) ⊆ V
shows res = None =⇒ (add-mset (pat-mset-list p + pat-lr pd) P, P) ∈ V+

and res = Some p ′ =⇒ (add-mset (pat-mset-list p + pat-lr pd) P, add-mset
(pat-lr p ′) P) ∈ V∗

∧ wf-pat-lr p ′ ∧ tvars-pp (pat-mset (pat-lr p ′)) ⊆ V
proof (atomize(full), insert assms, induct p arbitrary: pd res p ′)

case Nil
then show ?case by (auto simp: wf-pat-lr-def pat-mset-list-def pat-lr-def )

next
case (Cons mp p pd res p ′)
let ?p = pat-mset-list p + pat-lr pd
have id: pat-mset-list (mp # p) + pat-lr pd = add-mset (mp-list mp) ?p unfold-

ing pat-mset-list-def by auto
show ?case
proof (cases match-steps-impl mp)

case (Some mp ′)
from match-steps-impl(1 )[OF Some refl]
have steps: (→m)∗∗ (mp-list mp) (mp-lr mp ′) and wf : wf-lr2 mp ′ by auto
have id2 : pat-mset-list p + pat-lr (mp ′ # pd) = add-mset (mp-lr mp ′) ?p

unfolding pat-lr-def by auto
from mp-step-mset-steps-vars[OF steps] Cons(4 )
have vars: tvars-pp (pat-mset (pat-mset-list p + pat-lr (mp ′ # pd))) ⊆ V

unfolding id2 by (auto simp: tvars-pp-def pat-mset-list-def )
note steps = mp-step-mset-cong[OF steps, of ?p P, folded id]
note res = Cons(2 )[unfolded pat-inner-impl.simps Some option.simps]
show ?thesis
proof (cases empty-lr mp ′)

case False
with Cons(3 ) wf have wf : wf-pat-lr (mp ′ # pd) unfolding wf-pat-lr-def by

auto
from res False have pat-inner-impl p (mp ′ # pd) = res by auto
from Cons(1 )[OF this wf , of p ′, OF vars, unfolded id2 ] steps
show ?thesis by auto

next
case True
with wf have id3 : mp-lr mp ′ = {#} unfolding wf-lr2-def empty-lr-def by

(cases mp ′, auto simp: mp-lr-def mp-rx-def List.maps-def )
from True res have res: res = None by auto
have (add-mset (add-mset (mp-lr mp ′) ?p) P, P) ∈ P-step

unfolding id3 P-step-def using P-simp-pp[OF pat-remove-pp[of ?p], of P]
by auto

with res steps show ?thesis by auto
qed

next
case None
from match-steps-impl(2 )[OF None refl] obtain mp ′ where
(→m)∗∗ (mp-list mp) mp ′ and fail: match-fail mp ′ by auto

note steps = mp-step-mset-cong[OF this(1 ), of ?p P, folded id]
from P-simp-pp[OF pat-remove-mp[OF fail, of ?p], of P]

69



have (add-mset (add-mset mp ′ ?p) P, add-mset ?p P) ∈ P-step
unfolding P-step-def by auto
with steps have steps: (add-mset (pat-mset-list (mp # p) + pat-lr pd) P,

add-mset ?p P) ∈ P-step^∗ by auto
note res = Cons(2 )[unfolded pat-inner-impl.simps None option.simps]
have vars: tvars-pp (pat-mset (pat-mset-list p + pat-lr pd)) ⊆ V

using Cons(4 ) unfolding tvars-pp-def pat-mset-list-def by auto
from Cons(1 )[OF res Cons(3 ), of p ′, OF vars] steps
show ?thesis by auto

qed
qed

lemma pat-mset-list: pat-mset (pat-mset-list p) = pat-list p
unfolding pat-list-def pat-mset-list-def by (auto simp: image-comp)

Main simulation lemma for a single pat-impl step.
lemma pat-impl: assumes pat-impl n p = res

and vars: fst ‘ tvars-pp (pat-list p) ⊆ {..<n}
shows res = None =⇒ ∃ p ′. (add-mset (pat-mset-list p) P, add-mset p ′ P) ∈

V∗ ∧ pat-fail p ′

and res = Some ps =⇒ (add-mset (pat-mset-list p) P, mset (map pat-mset-list
ps) + P) ∈ V+

∧ fst ‘ tvars-pp (
⋃

(pat-list ‘ set ps)) ⊆ {..<n+m}
proof (atomize(full), goal-cases)

case 1
have wf : wf-pat-lr [] unfolding wf-pat-lr-def by auto
have fst ‘ tvars-pp (pat-mset (pat-mset-list p)) ⊆ {..<n}

using vars unfolding pat-mset-list .
hence vars: tvars-pp (pat-mset (pat-mset-list p)) ⊆ {..<n} × UNIV by force
have pat-mset-list p + pat-lr [] = pat-mset-list p unfolding pat-lr-def by auto
note pat-inner = pat-inner-impl[OF refl wf , of p, unfolded this, OF vars]
note res = assms(1 )[unfolded pat-impl-def ]
show ?case
proof (cases pat-inner-impl p [])

case None
from pat-inner(1 )[OF this, of P] res[unfolded None option.simps] vars
show ?thesis by (auto simp: tvars-pp-def )

next
case (Some p ′)
from pat-inner(2 )[OF this, of P]
have steps: (add-mset (pat-mset-list p) P, add-mset (pat-lr p ′) P) ∈ V∗ and

wf : wf-pat-lr p ′

and varsp ′: tvars-pp (pat-mset (pat-lr p ′)) ⊆ {..<n} × UNIV by auto
note res = res[unfolded Some option.simps]
show ?thesis
proof (cases ∀mp∈set p ′. snd (snd mp))

case True
with res have res: res = None by auto
have pat-fail (pat-lr p ′)
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proof (intro pat-failure ′ ballI )
fix mps
assume mps ∈ pat-mset (pat-lr p ′)

then obtain mp where mem: mp ∈ set p ′ and mps: mps = mp-mset (mp-lr
mp) by (auto simp: pat-lr-def )

obtain lx rx b where mp: mp = (lx,rx,b) by (cases mp, auto)
from mp mem True have b by auto
with wf [unfolded wf-pat-lr-def , rule-format, OF mem, unfolded wf-lr2-def

mp split]
have inf-var-conflict (set-mset (mp-rx (rx,b))) unfolding wf-rx-def wf-rx2-def

by (auto split: if-splits)
thus inf-var-conflict mps unfolding mps mp-lr-def mp split

unfolding inf-var-conflict-def by fastforce
qed
with steps res
show ?thesis by auto

next
case False
define p ′l where p ′l = map mp-lr-list p ′

define x where x = find-var p ′

define ps where ps = map (λτ. subst-pat-problem-list τ p ′l) (τs-list n x)
have id: pat-lr p ′ = pat-mset-list p ′l unfolding pat-mset-list-def pat-lr-def

p ′l-def map-map o-def
by (intro arg-cong[of - - mset] map-cong refl, auto simp: mp-lr-def mp-lr-list-def

mp-rx-def mp-rx-list-def )
from False have (∀mp∈set p ′. snd (snd mp)) = False by auto
from res[unfolded this if-False Let-def , folded p ′l-def x-def , folded ps-def ]
have res: res = Some ps by auto
have step: (add-mset (pat-lr p ′) P, mset (map pat-mset-list ps) + P) ∈ V

unfolding P-step-def
proof (standard, unfold split, intro P-simp-pp)

note x = x-def [unfolded find-var-def ]
let ?concat = concat (map (λ (lx,-). lx) p ′)
have disj: tvars-disj-pp {n..<n + m} (pat-mset (pat-lr p ′))

using varsp ′ unfolding tvars-pp-def tvars-disj-pp-def tvars-mp-def by
force

have subst: map (λτ. subst-pat-problem-mset τ (pat-lr p ′)) (τs-list n x) =
map pat-mset-list ps

unfolding id
unfolding ps-def subst-pat-problem-list-def subst-pat-problem-mset-def

subst-match-problem-mset-def
subst-match-problem-list-def map-map o-def

by (intro list.map-cong0 , auto simp: pat-mset-list-def o-def image-mset.compositionality)
show pat-lr p ′⇒m mset (map pat-mset-list ps)
proof (cases ?concat)

case (Cons pair list)
with x obtain t where concat: ?concat = (x,t) # list by (cases pair ,

auto)
hence (x,t) ∈ set ?concat by auto
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then obtain mp where mp ∈ set p ′ and (x,t) ∈ set ((λ (lx,-). lx) mp)
by auto

then obtain lx rx where mem: (lx,rx) ∈ set p ′ and xt: (x,t) ∈ set lx by
auto

from wf mem have wf : wf-lx lx unfolding wf-pat-lr-def wf-lr2-def by auto
with xt have t: is-Fun t unfolding wf-lx-def by auto

from mem obtain p ′′ where pat: pat-lr p ′ = add-mset (mp-lr (lx,rx)) p ′′

unfolding pat-lr-def by simp (metis in-map-mset mset-add set-mset-mset)
from xt have xt: (Var x, t) ∈# mp-lr (lx,rx) unfolding mp-lr-def by

force
from pat-instantiate[OF - disjI1 [OF conjI [OF xt t]], of n p ′′, folded pat,

OF disj]
show ?thesis unfolding subst .

next
case Nil
let ?fp = filter (Not ◦ snd ◦ snd) p ′

from False have set ?fp 6= {} unfolding o-def filter-empty-conv set-empty
by auto

then obtain mp p ′′ where fp: ?fp = mp # p ′′ by (cases ?fp) auto
obtain lx rx b where mp: mp = (lx,rx,b) by (cases mp) auto
have mpp: mp ∈ set p ′ using arg-cong[OF fp, of set] by auto
from mp mpp Nil have lx: lx = [] by auto
from fp have (lx,rx,b) ∈ set ?fp unfolding mp by auto
hence ¬ b unfolding o-def by auto
with mp lx have mp: mp = ([],rx,False) by auto

from wf mpp have wf : wf-lr2 mp and ne: ¬ empty-lr mp unfolding
wf-pat-lr-def by auto

from wf [unfolded wf-lr2-def mp split] mp
have wf : wf-rx2 (rx, False) and mp: mp = ([],rx,False) by auto
from ne[unfolded empty-lr-def mp split] obtain y ts rx ′

where rx: rx = (y,ts) # rx ′ by (cases rx, auto)
from wf [unfolded wf-rx2-def ] have ninf : ¬ inf-var-conflict (mp-mset (mp-rx

(rx, False)))
and wf : wf-ts2 ts unfolding rx by auto

from wf [unfolded wf-ts2-def ] obtain s t ts ′ where ts: ts = s # t # ts ′

and
diff : s 6= t and conf : conflicts s t 6= None
by (cases ts; cases tl ts, auto)
from conf obtain xs where conf : conflicts s t = Some xs by (cases

conflicts s t, auto)
with conflicts(5 )[of s t] diff have xs 6= [] by auto

with x[unfolded Nil list.simps fp list.sel mp split Let-def rx ts conf option.sel]
obtain xs ′ where xs: xs = x # xs ′ by (cases xs) auto
from conf xs have confl: Conflict-Var s t x by auto

from ts rx have sty: (s, Var y) ∈# mp-rx (rx, False) (t, Var y) ∈# mp-rx
(rx,False)

by (auto simp: mp-rx-def List.maps-def )
with confl ninf have ¬ inf-sort (snd x) unfolding inf-var-conflict-def by

blast
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with sty confl rx have main: (s, Var y) ∈# mp-lr mp ∧ (t, Var y) ∈#
mp-lr mp ∧ Conflict-Var s t x ∧ ¬ inf-sort (snd x)

unfolding mp by (auto simp: mp-lr-def )
from mpp obtain p ′′ where pat: pat-lr p ′ = add-mset (mp-lr mp) p ′′

unfolding pat-lr-def by simp (metis in-map-mset mset-add set-mset-mset)
from pat-instantiate[OF - disjI2 [OF main], of n p ′′, folded pat, OF disj]
show ?thesis unfolding subst .

qed
qed
have fst ‘ tvars-pp (

⋃
(pat-list ‘ set ps)) ⊆ {..<n + m}

proof
fix yn
assume yn ∈ fst ‘ tvars-pp (

⋃
(pat-list ‘ set ps))

then obtain pi y mp where pi: pi ∈ set ps and mp: mp ∈ set pi and y: y
∈ tvars-mp (set mp) and yn: yn = fst y

unfolding tvars-pp-def pat-list-def by force
from pi[unfolded ps-def set-map subst-pat-problem-list-def subst-match-problem-list-def ,

simplified]
obtain τ where tau: τ ∈ set (τs-list n x) and pi: pi = map (map (subst-left

τ)) p ′l by auto
from tau[unfolded τs-list-def ]
obtain info where info ∈ set (Cl (snd x)) and tau: τ = τc n x info by

auto
from Cl-len[of snd x] this(1 ) have len: length (snd info) ≤ m by force
from mp[unfolded pi set-map] obtain mp ′ where mp ′: mp ′ ∈ set p ′l and

mp: mp = map (subst-left τ) mp ′ by auto
from y[unfolded mp tvars-mp-def image-comp o-def set-map]
obtain pair where ∗: pair ∈ set mp ′ y ∈ vars (fst (subst-left τ pair)) by

auto
obtain s t where pair : pair = (s,t) by force

from ∗[unfolded pair ] have st: (s,t) ∈ set mp ′ and y: y ∈ vars (s · τ)
unfolding subst-left-def by auto

from y[unfolded vars-term-subst, simplified] obtain z where z: z ∈ vars s
and y: y ∈ vars (τ z) by auto

obtain f ss where info: info = (f ,ss) by (cases info, auto)
with len have len: length ss ≤ m by auto
define ts :: ( ′f ,-)term list where ts = map Var (zip [n..<n + length ss] ss)

from tau[unfolded τc-def info split] have tau: τ = subst x (Fun f ts)
unfolding ts-def by auto

have fst ‘ vars (Fun f ts) ⊆ {..< n + length ss} unfolding ts-def by (auto
simp: set-zip)

also have . . . ⊆ {..< n + m} using len by auto
finally have subst: fst ‘ vars (Fun f ts) ⊆ {..< n + m} by auto
show yn ∈ {..<n + m}
proof (cases z = x)

case True
with y subst tau yn show ?thesis by auto

next
case False
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hence τ z = Var z unfolding tau by (auto simp: subst-def )
with y have z = y by auto
with z have y: y ∈ vars s by auto
with st have y ∈ tvars-mp (set mp ′) unfolding tvars-mp-def by force

with mp ′ have y ∈ tvars-pp (set ‘ set p ′l) unfolding tvars-pp-def by auto
also have . . . = tvars-pp (pat-mset (pat-mset-list p ′l))
by (rule arg-cong[of - - tvars-pp], auto simp: pat-mset-list-def image-comp)
also have . . . = tvars-pp (pat-mset (pat-lr p ′)) unfolding id[symmetric]

by simp
also have . . . ⊆ {..<n} × UNIV using varsp ′ .
finally show ?thesis using yn by auto

qed
qed
with step steps res show ?thesis by auto

qed
qed

qed

The simulation property for pats-impl, proven by induction on the terminat-
ing relation of the multiset-implementation.
lemma pats-impl-P-step: assumes Ball (set ps) (λ p. fst ‘ tvars-pp (pat-list p) ⊆
{..<n})

shows
— if result is True, then one can reach empty set
pats-impl n ps =⇒ (pats-mset-list ps, {#}) ∈ V∗

— if result is False, then one can reach bottom
¬ pats-impl n ps =⇒ (pats-mset-list ps, bottom-mset) ∈ V∗

proof (atomize(full), insert assms, induct ps arbitrary: n rule: SN-induct[OF SN-inv-image[OF
SN-imp-SN-trancl[OF SN-P-step]], of pats-mset-list])

case (1 ps n)
show ?case
proof (cases ps)

case Nil
show ?thesis unfolding pats-impl.simps[of n ps] unfolding Nil by auto

next
case (Cons p ps1 )
hence id: pats-mset-list ps = add-mset (pat-mset-list p) (pats-mset-list ps1 ) by

auto
note res = pats-impl.simps[of n ps, unfolded Cons list.simps, folded Cons]
from 1 (2 )[rule-format, of p] Cons have fst ‘ tvars-pp (pat-list p) ⊆ {..<n} by

auto
note pat-impl = pat-impl[OF refl this]
show ?thesis
proof (cases pat-impl n p)

case None
with res have res: pats-impl n ps = False by auto
from pat-impl(1 )[OF None, of pats-mset-list ps1 , folded id]
obtain p ′ where steps: (pats-mset-list ps, add-mset p ′ (pats-mset-list ps1 )) ∈

V∗ and fail: pat-fail p ′
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by auto
show ?thesis
proof (cases add-mset p ′ (pats-mset-list ps1 ) = bottom-mset)

case True
with res steps show ?thesis by auto

next
case False
from P-failure[OF fail False]

have (add-mset p ′ (pats-mset-list ps1 ), bottom-mset) ∈ V unfolding
P-step-def by auto

with steps res show ?thesis by simp
qed

next
case (Some ps2 )
with res have res: pats-impl n ps = pats-impl (n + m) (ps2 @ ps1 ) by auto
from pat-impl(2 )[OF Some, of pats-mset-list ps1 , folded id]
have steps: (pats-mset-list ps, mset (map pat-mset-list (ps2 @ ps1 ))) ∈ V+

and vars: fst ‘ tvars-pp (
⋃

(pat-list ‘ set ps2 )) ⊆ {..<n + m} by auto
hence rel: (ps, ps2 @ ps1 ) ∈ inv-image (P-step+) pats-mset-list by auto
have vars: ∀ p∈set (ps2 @ ps1 ). fst ‘ tvars-pp (pat-list p) ⊆ {..<n + m}
proof

fix p
assume p ∈ set (ps2 @ ps1 )
hence p ∈ set ps2 ∨ p ∈ set ps1 by auto
thus fst ‘ tvars-pp (pat-list p) ⊆ {..<n + m}
proof

assume p ∈ set ps2
hence fst ‘ tvars-pp (pat-list p) ⊆ fst ‘ tvars-pp (

⋃
(pat-list ‘ set ps2 ))

unfolding tvars-pp-def by auto
with vars show ?thesis by auto

next
assume p ∈ set ps1
hence p ∈ set ps unfolding Cons by auto
from 1 (2 )[rule-format, OF this] show ?thesis by auto

qed
qed
show ?thesis using 1 (1 )[OF rel vars] steps unfolding res[symmetric] by

auto
qed

qed
qed

Consequence: partial correctness of the list-based implementation on well-
formed inputs
theorem pats-impl: assumes wf : ∀ pp ∈ pat-list ‘ set P. wf-pat pp

and n: ∀ p∈set P. fst ‘ tvars-pp (pat-list p) ⊆ {..<n}
shows pats-impl n P ←→ pats-complete (pat-list ‘ set P)

proof −
from wf have wf : wf-pats (pat-list ‘ set P) by (auto simp: wf-pats-def )
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have id: pats-mset (pats-mset-list P) = pat-list ‘ set P unfolding pat-list-def
by (auto simp: pat-mset-list-def image-comp)

{
assume pats-impl n P
from pats-impl-P-step(1 )[OF n this]
have (pats-mset-list P, {#}) ∈ V∗ by auto
from P-steps-pcorrect[OF - this, unfolded id, OF wf ]
have pats-complete (pat-list ‘ set P) by auto

}
moreover
{

assume ¬ pats-impl n P
from pats-impl-P-step(2 )[OF n this]
have (pats-mset-list P, {#{#}#}) ∈ V∗ by auto
from P-steps-pcorrect[OF - this, unfolded id, OF wf ]
have ¬ pats-complete (pat-list ‘ set P) by auto

}
ultimately show ?thesis by auto

qed

corollary pat-complete-impl:
assumes wf : snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ S

shows pat-complete-impl P ←→ pats-complete (pat-list ‘ set P)
proof −

have wf : Ball (pat-list ‘ set P) wf-pat
unfolding pat-list-def wf-pat-def wf-match-def tvars-mp-def using wf [unfolded

set-concat image-comp] by force
let ?l = (List.maps (map fst o vars-term-list o fst) (concat (concat P)))
define n where n = Suc (max-list ?l)
have n: ∀ p∈set P. fst ‘ tvars-pp (pat-list p) ⊆ {..<n}
proof (intro ballI subsetI )

fix p x
assume p ∈ set P and x ∈ fst ‘ tvars-pp (pat-list p)
hence x ∈ set ?l unfolding List.maps-def tvars-pp-def tvars-mp-def pat-list-def

by force
from max-list[OF this] have x < n unfolding n-def by auto
thus x ∈ {..<n} by auto

qed
have pat-complete-impl P = pats-impl n P

unfolding pat-complete-impl-def n-def Let-def ..
from pats-impl[OF wf n, folded this]
show ?thesis .

qed
end
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6.3 Getting the result outside the locale with assumptions

We next lift the results for the list-based implementation out of the lo-
cale. Here, we use the existing algorithms to decide non-empty sorts de-
cide-nonempty-sorts and to compute the infinite sorts compute-inf-sorts.
context pattern-completeness-context
begin
lemma pat-complete-impl-wrapper : assumes C-Cs: C = map-of Cs

and dist: distinct (map fst Cs)
and inhabited: decide-nonempty-sorts Sl Cs = None
and S-Sl: S = set Sl
and inf-sort: inf-sort = (λ s. s ∈ compute-inf-sorts Cs)
and C :

∧
f σs σ. ((f ,σs),σ) ∈ set Cs =⇒ length σs ≤ m ∧ set (σ # σs) ⊆ S

and Cl:
∧

s. Cl s = map fst (filter ((=) s o snd) Cs)
and P: snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ S

shows pat-complete-impl P = pats-complete (pat-list ‘ set P)
proof −

from decide-nonempty-sorts(1 )[OF dist C-Cs[symmetric] inhabited, folded S-Sl]
have S :

∧
σ. σ ∈ S =⇒ ∃ t. t : σ in T (C ,EMPTY )∧

σ. σ ∈ S =⇒ ∃ t. t : σ in T (C ,EMPTYn) unfolding EMPTY-def EMP-
TYn-def by auto

{
fix f ss s
assume f : ss → s in C
hence ((f ,ss),s) ∈ set Cs unfolding C-Cs by (auto dest!: hastype-in-ssigD

map-of-SomeD)
from C [OF this] have insert s (set ss) ⊆ S length ss ≤ m by auto

} note Cons = this
{

fix f ss s
assume (f ,ss) ∈ set (Cl s)
hence ((f ,ss),s) ∈ set Cs unfolding Cl by auto
from C [OF this] have length ss ≤ m by auto

}
hence m: ∀ a∈length ‘ snd ‘ set (Cl s). a ≤ m for s by auto
have En: EMPTYn = ∅ unfolding EMPTYn-def by auto
have ∀ f ss s s ′. f : ss → s in C −→ s ′ ∈ set ss −→ (∃ t. t : s ′ in T (C ,EMPTYn))

proof (intro allI impI )
fix f ss s s ′

assume f : ss → s in C and s ′ ∈ set ss
hence s ′ ∈ S using Cons(1 )[of f ss s] by (auto simp: hastype-in-ssig-def )
from S [OF this] show ∃ t. t : s ′ in T (C ,EMPTYn) by auto

qed
from compute-inf-sorts[OF En C-Cs this dist] inf-sort
have inf-sort: inf-sort s = (¬ bdd-above (size ‘ {t. t : s in T (C ,EMPTYn)})) for

s unfolding inf-sort by auto
have Cl: set (Cl s) = {(f ,ss). f : ss → s in C} for s

unfolding Cl set-map o-def C-Cs using dist
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by (force simp: hastype-in-ssig-def )
interpret pattern-completeness-context-with-assms

apply unfold-locales
subgoal by (rule S(1 ))
subgoal by (rule Cons)
subgoal by (rule Cons)
subgoal by (rule inf-sort)
subgoal by (rule Cl)
subgoal by (rule m)
done

show ?thesis by (rule pat-complete-impl[OF P])
qed
end

Next we are also leaving the locale that fixed the common parameters, and
chooses suitable values.

extract all sorts from a ssignature (input and target sorts)
definition sorts-of-ssig-list :: (( ′f × ′s list) × ′s)list ⇒ ′s list where

sorts-of-ssig-list Cs = remdups (List.maps (λ ((f ,ss),s). s # ss) Cs)

definition decide-pat-complete :: (( ′f × ′s list) × ′s)list ⇒ ( ′f , ′v, ′s)pats-problem-list
⇒ bool where

decide-pat-complete Cs P = (let Sl = sorts-of-ssig-list Cs;
m = max-list (map (length o snd o fst) Cs);
Cl = (λ s. map fst (filter ((=) s ◦ snd) Cs));
IS = compute-inf-sorts Cs

in pattern-completeness-context.pat-complete-impl m Cl (λ s. s ∈ IS)) P

abbreviation (input) pat-complete where
pat-complete ≡ pattern-completeness-context.pat-complete

abbreviation (input) pats-complete where
pats-complete ≡ pattern-completeness-context.pats-complete

Finally: a pattern completeness decision procedure for arbitrary inputs, as-
suming sensible inputs
theorem decide-pat-complete: assumes C-Cs: C = map-of Cs

and dist: distinct (map fst Cs)
and non-empty-sorts: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs = None
and S : S = set (sorts-of-ssig-list Cs)
and P: snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ S

shows decide-pat-complete Cs P = pats-complete S C (pat-list ‘ set P)
unfolding decide-pat-complete-def Let-def

proof (rule pattern-completeness-context.pat-complete-impl-wrapper [OF C-Cs dist
non-empty-sorts S refl - refl P])

fix f σs σ
assume mem: ((f , σs), σ) ∈ set Cs
hence length σs ∈ set (map (length ◦ snd ◦ fst) Cs) by force
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from max-list[OF this] mem
show length σs ≤ max-list (map (length ◦ snd ◦ fst) Cs) ∧ set (σ # σs) ⊆ S

unfolding S sorts-of-ssig-list-def List.maps-def by force
qed

end

7 Pattern-Completeness and Related Properties

We use the core decision procedure for pattern completeness and connect it
to other properties like pattern completeness of programs (where the lhss
are given), or (strong) quasi-reducibility.
theory Pattern-Completeness

imports
Pattern-Completeness-List
Show.Shows-Literal
Certification-Monads.Check-Monad

begin

A pattern completeness decision procedure for a set of lhss
definition basic-terms :: ( ′f , ′s)ssig ⇒ ( ′f , ′s)ssig ⇒ ( ′v ⇀ ′s) ⇒ ( ′f , ′v)term set
(B ′(-,-,- ′)) where
B(C ,D,V ) = { Fun f ts | f ss s ts . f : ss → s in D ∧ ts :l ss in T (C ,V )}

definition matches :: ( ′f , ′v)term ⇒ ( ′f , ′v)term ⇒ bool (infix matches 50 ) where
l matches t = (∃ σ. t = l · σ)

definition pat-complete-lhss :: ( ′f , ′s)ssig ⇒ ( ′f , ′s)ssig ⇒ ( ′f , ′v)term set ⇒ bool
where

pat-complete-lhss C D L = (∀ t ∈ B(C ,D,∅). ∃ l ∈ L. l matches t)

definition decide-pat-complete-lhss ::
(( ′f × ′s list) × ′s)list ⇒ (( ′f × ′s list) × ′s)list ⇒ ( ′f , ′v)term list ⇒ showsl +

bool where
decide-pat-complete-lhss C D lhss = do {
check (distinct (map fst C )) (showsl-lit (STR ′′constructor information contains

duplicate ′′));
check (distinct (map fst D)) (showsl-lit (STR ′′defined symbol information

contains duplicate ′′));
let S = sorts-of-ssig-list C ;
check-allm (λ ((f ,ss),-). check-allm (λ s. check (s ∈ set S)

(showsl-lit (STR ′′a defined symbol has argument sort that is not known in
constructors ′′))) ss) D;

(case (decide-nonempty-sorts S C ) of None ⇒ return () | Some s ⇒ error
(showsl-lit (STR ′′some sort is empty ′′)));

let pats = [Fun f (map Var (zip [0 ..<length ss] ss)). ((f ,ss),s) ← D];
let P = [[[(pat,lhs)]. lhs ← lhss]. pat ← pats];
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return (decide-pat-complete C P)
}

theorem decide-pat-complete-lhss:
assumes decide-pat-complete-lhss C D (lhss :: ( ′f , ′v)term list) = return b
shows b = pat-complete-lhss (map-of C ) (map-of D) (set lhss)

proof −
let ?EMPTY = pattern-completeness-context.EMPTY
let ?cg-subst = pattern-completeness-context.cg-subst
let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
define pats where pats = map (λ ((f ,ss),s). Fun f (map Var (zip [0 ..<length

ss] ss))) D
define P where P = map (λ pat. map (λ lhs. [(pat,lhs)]) lhss) pats
let ?match-lhs = λt. ∃ l ∈ set lhss. l matches t
note ass = assms(1 )[unfolded decide-pat-complete-lhss-def , folded S-def ,

unfolded Let-def , folded pats-def , folded P-def , simplified]
from ass have dec: decide-nonempty-sorts S C = None (is ?e = -) by (cases

?e, auto)
note ass = ass[unfolded dec, simplified]
from ass have b: b = decide-pat-complete C P and dist: distinct (map fst C )

distinct (map fst D) by auto
have b = decide-pat-complete C P by fact
also have . . . = pats-complete (set S) ?C (pat-list ‘ set P)
proof (rule decide-pat-complete[OF refl dist(1 ) dec[unfolded S-def ]], unfold S-def [symmetric])

{
fix i si f ss s
assume mem: ((f , ss), s) ∈ set D and isi: (i, si) ∈ set (zip [0 ..<length ss]

ss)
from isi have si: si ∈ set ss by (metis in-set-zipE)
from mem si ass
have si ∈ set S by auto

}
thus snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set S unfolding P-def

pats-def by force
qed simp
also have pat-list ‘ set P = { { {(pat,lhs)} | lhs. lhs ∈ set lhss} | pat. pat ∈ set

pats}
unfolding pat-list-def P-def by (auto simp: image-comp)

also have pats-complete (set S) ?C . . . ←→
Ball { pat · σ | pat σ. pat ∈ set pats ∧ ?cg-subst (set S) ?C σ} ?match-lhs (is

- = Ball ?L -)
unfolding pattern-completeness-context.pat-complete-def

pattern-completeness-context.match-complete-wrt-def matches-def
by auto (smt (verit, best) case-prod-conv mem-Collect-eq singletonI , blast)

also have ?L = B(?C ,?D,∅) (is - = ?R)
proof

{
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fix pat and σ :: ( ′f ,-, ′v)gsubst
assume pat: pat ∈ set pats and subst: ?cg-subst (set S) ?C σ
from pat[unfolded pats-def ] obtain f ss s where pat: pat = Fun f (map Var

(zip [0 ..<length ss] ss))
and inDs: ((f ,ss),s) ∈ set D by auto

from dist(2 ) inDs have f : f : ss → s in ?D unfolding hastype-in-ssig-def
by simp

{
fix i
assume i: i < length ss
hence ss ! i ∈ set ss by auto
with inDs ass have ss ! i ∈ set S by auto

with subst have σ (i, ss ! i) : ss ! i in T (?C ,∅) unfolding pattern-completeness-context.cg-subst-def

pattern-completeness-context.EMPTY-def by auto
} note ssigma = this
define ts where ts = (map (λ i. σ (i, ss ! i)) [0 ..<length ss])
have ts: ts :l ss in T (?C ,∅) unfolding list-all2-conv-all-nth ts-def using

ssigma by auto
have pat: pat · σ = Fun f ts

unfolding pat ts-def by (auto intro: nth-equalityI )
from pat f ts have pat · σ ∈ ?R unfolding basic-terms-def by auto

}
thus ?L ⊆ ?R by blast
{

fix f ss s and ts :: ( ′f , ′v)term list
assume f : f : ss → s in ?D and ts: ts :l ss in T (?C ,∅)
from ts have len: length ts = length ss by (metis list-all2-lengthD)
define pat where pat = Fun f (map Var (zip [0 ..<length ss] ss))

from f have ((f ,ss),s) ∈ set D unfolding hastype-in-ssig-def by (metis
map-of-SomeD)

hence pat: pat ∈ set pats unfolding pat-def pats-def by force
define σ where σ x = (case x of (i,s) ⇒ if i < length ss ∧ s = ss ! i then

ts ! i else
(SOME t. t : s in T (?C ,?EMPTY ))) for x

have id: Fun f ts = pat · σ unfolding pat-def using len
by (auto intro!: nth-equalityI simp: σ-def )

have ssigma: ?cg-subst (set S) ?C σ
unfolding pattern-completeness-context.cg-subst-def

proof (intro allI impI )
fix x :: nat × -
assume snd x ∈ set S
then obtain i s where x: x = (i,s) and s: s ∈ set S by (cases x, auto)
show σ x : snd x in T (?C ,?EMPTY )
proof (cases i < length ss ∧ s = ss ! i)

case True
hence id: σ x = ts ! i unfolding x σ-def by auto

from ts True show ?thesis unfolding id unfolding x snd-conv pat-
tern-completeness-context.EMPTY-def
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by (simp add: list-all2-conv-all-nth)
next

case False
hence id: σ x = (SOME t. t : s in T (?C ,?EMPTY )) unfolding x σ-def

by auto
from decide-nonempty-sorts(1 )[OF dist(1 ) refl dec] s

have ∃ t. t : s in T (?C ,?EMPTY ) unfolding pattern-completeness-context.EMPTY-def
by auto

from someI-ex[OF this] have σ x : s in T (?C ,?EMPTY ) unfolding id .
thus ?thesis unfolding x by auto

qed
qed
from pat id ssigma
have Fun f ts ∈ ?L by auto

}
thus ?R ⊆ ?L unfolding basic-terms-def by auto

qed
finally show ?thesis unfolding pat-complete-lhss-def by blast

qed

Definition of strong quasi-reducibility and a corresponding decision proce-
dure
definition strong-quasi-reducible :: ( ′f , ′s)ssig ⇒ ( ′f , ′s)ssig ⇒ ( ′f , ′v)term set ⇒
bool where

strong-quasi-reducible C D L =
(∀ t ∈ B(C ,D,∅). ∃ ti ∈ set (t # args t). ∃ l ∈ L. l matches ti)

definition term-and-args :: ′f ⇒ ( ′f , ′v)term list ⇒ ( ′f , ′v)term list where
term-and-args f ts = Fun f ts # ts

definition decide-strong-quasi-reducible ::
(( ′f × ′s list) × ′s)list ⇒ (( ′f × ′s list) × ′s)list ⇒ ( ′f , ′v)term list ⇒ showsl +

bool where
decide-strong-quasi-reducible C D lhss = do {
check (distinct (map fst C )) (showsl-lit (STR ′′constructor information contains

duplicate ′′));
check (distinct (map fst D)) (showsl-lit (STR ′′defined symbol information

contains duplicate ′′));
let S = sorts-of-ssig-list C ;
check-allm (λ ((f ,ss),-). check-allm (λ s. check (s ∈ set S)
(showsl-lit (STR ′′defined symbol f has argument sort s that is not known in

constructors ′′))) ss) D;
(case (decide-nonempty-sorts S C ) of None ⇒ return () | Some s ⇒ error

(showsl-lit (STR ′′sort s is empty ′′)));
let pats = map (λ ((f ,ss),s). term-and-args f (map Var (zip [0 ..<length ss] ss)))

D;
let P = map (List.maps (λ pat. map (λ lhs. [(pat,lhs)]) lhss)) pats;
return (decide-pat-complete C P)

82



}

lemma decide-strong-quasi-reducible:
assumes decide-strong-quasi-reducible C D (lhss :: ( ′f , ′v)term list) = return b
shows b = strong-quasi-reducible (map-of C ) (map-of D) (set lhss)

proof −
let ?EMPTY = pattern-completeness-context.EMPTY
let ?cg-subst = pattern-completeness-context.cg-subst
let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
define pats where pats = map (λ ((f ,ss),s). term-and-args f (map Var (zip

[0 ..<length ss] ss))) D
define P where P = map (List.maps (λ pat. map (λ lhs. [(pat,lhs)]) lhss)) pats
let ?match-lhs = λt. ∃ l ∈ set lhss. l matches t
note ass = assms(1 )[unfolded decide-strong-quasi-reducible-def , folded S-def ,

folded pats-def ,
unfolded Let-def , folded P-def ]

from ass have dec: decide-nonempty-sorts S C = None (is ?e = -) by (cases
?e, auto)

note ass = ass[unfolded dec, simplified]
from ass have b: b = decide-pat-complete C P and dist: distinct (map fst C )

distinct (map fst D) by auto
have b = decide-pat-complete C P by fact
also have . . . = pats-complete (set S) ?C (pat-list ‘ set P)
proof (rule decide-pat-complete[OF refl dist(1 ) dec[unfolded S-def ]], unfold S-def [symmetric])

{
fix f ss s i si
assume mem: ((f , ss), s) ∈ set D and isi: (i, si) ∈ set (zip [0 ..<length ss]

ss)
from isi have si: si ∈ set ss by (metis in-set-zipE)
from mem si ass
have si ∈ set S by auto

}
thus snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set S unfolding P-def

pats-def term-and-args-def List.maps-def
by fastforce

qed simp
also have pat-list ‘ set P = { { {(pat,lhs)} | lhs pat. pat ∈ set patL ∧ lhs ∈ set

lhss} | patL. patL ∈ set pats}
unfolding pat-list-def P-def List.maps-def by (auto simp: image-comp) force+

also have pats-complete (set S) ?C . . . ←→
(∀ patsL σ. patsL ∈ set pats −→ ?cg-subst (set S) ?C σ −→ (∃ pat ∈ set

patsL. ?match-lhs (pat · σ))) (is - ←→ ?L)
unfolding pattern-completeness-context.pat-complete-def

pattern-completeness-context.match-complete-wrt-def matches-def
by auto
(smt (verit, best) case-prod-conv mem-Collect-eq singletonI ,

metis (mono-tags, lifting) case-prod-conv singleton-iff )
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also have ?L
←→ (∀ f ss s (ts :: ( ′f , ′v)term list). f : ss → s in ?D −→ ts :l ss in T (?C ,∅)

−→
(∃ ti ∈ set (term-and-args f ts). ?match-lhs ti)) (is - = ?R)

proof (standard; intro allI impI )
fix patL and σ :: ( ′f ,-, ′v)gsubst
assume patL: patL ∈ set pats and subst: ?cg-subst (set S) ?C σ and R: ?R
from patL[unfolded pats-def ] obtain f ss s where patL: patL = term-and-args

f (map Var (zip [0 ..<length ss] ss))
and inDs: ((f ,ss),s) ∈ set D by auto

from dist(2 ) inDs have f : f : ss → s in ?D unfolding hastype-in-ssig-def by
simp

{
fix i
assume i: i < length ss
hence ss ! i ∈ set ss by auto
with inDs ass have ss ! i ∈ set S by auto
with subst have σ (i, ss ! i) : ss ! i in T (?C ,∅)
unfolding pattern-completeness-context.cg-subst-def pattern-completeness-context.EMPTY-def

by auto
} note ssigma = this
define ts where ts = (map (λ i. σ (i, ss ! i)) [0 ..<length ss])

have ts: ts :l ss in T (?C ,∅) unfolding list-all2-conv-all-nth ts-def using ssigma
by auto

from R[rule-format, OF f ts] obtain ti where ti: ti ∈ set (term-and-args f ts)
and match: ?match-lhs ti by auto

have map (λ pat. pat · σ) patL = term-and-args f ts unfolding patL term-and-args-def
ts-def

by (auto intro: nth-equalityI )
from ti[folded this] match
show ∃ pat∈set patL. ?match-lhs (pat · σ) by auto

next
fix f ss s and ts :: ( ′f , ′v)term list
assume f : f : ss → s in ?D and ts: ts :l ss in T (?C ,∅) and L: ?L
from ts have len: length ts = length ss by (metis list-all2-lengthD)
define patL where patL = term-and-args f (map Var (zip [0 ..<length ss] ss))

from f have ((f ,ss),s) ∈ set D unfolding hastype-in-ssig-def by (metis
map-of-SomeD)

hence patL: patL ∈ set pats unfolding patL-def pats-def by force
define σ where σ x = (case x of (i,s) ⇒ if i < length ss ∧ s = ss ! i then ts

! i else
(SOME t. t : s in T (?C ,?EMPTY ))) for x

have ssigma: ?cg-subst (set S) ?C σ
unfolding pattern-completeness-context.cg-subst-def

proof (intro allI impI )
fix x :: nat × -
assume snd x ∈ set S
then obtain i s where x: x = (i,s) and s: s ∈ set S by (cases x, auto)
show σ x : snd x in T (?C ,?EMPTY )
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proof (cases i < length ss ∧ s = ss ! i)
case True
hence id: σ x = ts ! i unfolding x σ-def by auto

from ts True show ?thesis unfolding id unfolding x snd-conv pat-
tern-completeness-context.EMPTY-def

by (simp add: list-all2-conv-all-nth)
next

case False
hence id: σ x = (SOME t. t : s in T (?C ,?EMPTY )) unfolding x σ-def

by auto
from decide-nonempty-sorts(1 )[OF dist(1 ) refl dec] s

have ∃ t. t : s in T (?C ,?EMPTY ) unfolding pattern-completeness-context.EMPTY-def
by auto

from someI-ex[OF this] have σ x : s in T (?C ,?EMPTY ) unfolding id .
thus ?thesis unfolding x by auto

qed
qed
from L[rule-format, OF patL ssigma]
obtain pat where pat: pat ∈ set patL and match: ?match-lhs (pat · σ) by auto
have id: map (λ pat. pat · σ) patL = term-and-args f ts unfolding patL-def

term-and-args-def using len
by (auto intro!: nth-equalityI simp: σ-def )

show ∃ ti ∈ set (term-and-args f ts). ?match-lhs ti unfolding id[symmetric]
using pat match by auto

qed
also have . . . = (∀ t. t ∈ B(?C ,?D,∅) −→ (∃ ti ∈ set (t # args t). ?match-lhs

ti))
unfolding basic-terms-def term-and-args-def by force

finally show ?thesis unfolding strong-quasi-reducible-def by blast
qed

7.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility
and Quasi-Reducibility

definition quasi-reducible :: ( ′f , ′s)ssig ⇒ ( ′f , ′s)ssig ⇒ ( ′f , ′v)term set ⇒ bool
where

quasi-reducible C D L = (∀ t ∈ B(C ,D,∅). ∃ tp E t. ∃ l ∈ L. l matches tp)

lemma pat-complete-imp-strong-quasi-reducible:
pat-complete-lhss C D L =⇒ strong-quasi-reducible C D L
unfolding pat-complete-lhss-def strong-quasi-reducible-def by force

lemma arg-imp-subt: s ∈ set (args t) =⇒ t D s
by (cases t, auto)

lemma strong-quasi-reducible-imp-quasi-reducible:
strong-quasi-reducible C D L =⇒ quasi-reducible C D L
unfolding strong-quasi-reducible-def quasi-reducible-def
by (force dest: arg-imp-subt)
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If no root symbol of a left-hand sides is a constructor, then pattern com-
pleteness and quasi-reducibility coincide.
lemma quasi-reducible-iff-pat-complete: fixes L :: ( ′f , ′v)term set

assumes
∧

l f ls τs τ . l ∈ L =⇒ l = Fun f ls =⇒ ¬ f : τs → τ in C
shows pat-complete-lhss C D L ←→ quasi-reducible C D L

proof (standard, rule strong-quasi-reducible-imp-quasi-reducible[OF pat-complete-imp-strong-quasi-reducible])
assume q: quasi-reducible C D L
show pat-complete-lhss C D L

unfolding pat-complete-lhss-def
proof

fix t :: ( ′f , ′v)term
assume t: t ∈ B(C ,D,∅)
from q[unfolded quasi-reducible-def , rule-format, OF this]
obtain tp where tp: t D tp and match: ∃ l ∈ L. l matches tp by auto
show ∃ l ∈ L. l matches t
proof (cases t = tp)

case True
thus ?thesis using match by auto

next
case False
from t[unfolded basic-terms-def ] obtain f ts ss where t: t = Fun f ts and

ts: ts :l ss in T (C ,∅) by auto
from t False tp obtain ti where ti: ti ∈ set ts and subt: ti D tp

by (meson Fun-supteq)
from subt obtain CC where ctxt: ti = CC 〈 tp 〉 by auto
from ti ts obtain s where ti : s in T (C ,∅) unfolding list-all2-conv-all-nth

set-conv-nth by auto
from hastype-context-decompose[OF this[unfolded ctxt]] obtain s where tp:

tp : s in T (C ,∅) by blast
from match[unfolded matches-def ] obtain l σ where l: l ∈ L and match: tp

= l · σ by auto
show ?thesis
proof (cases l)

case (Var x)
with l show ?thesis unfolding matches-def by (auto intro!: bexI [of - l])

next
case (Fun f ls)
from tp[unfolded match this, simplified] obtain ss where f : ss → s in C

by (meson Fun-hastype hastype-def hastype-in-ssig-def )
with assms[OF l Fun, of ss s] show ?thesis by auto

qed
qed

qed
qed

end
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8 Setup for Experiments
theory Test-Pat-Complete

imports
Pattern-Completeness
HOL−Library.Code-Abstract-Char
HOL−Library.Code-Target-Numeral

begin

turn error message into runtime error
definition pat-complete-alg :: (( ′f × ′s list) × ′s)list ⇒ (( ′f × ′s list) × ′s)list ⇒
( ′f , ′v)term list ⇒ bool where

pat-complete-alg C D lhss = (
case decide-pat-complete-lhss C D lhss of Inl err ⇒ Code.abort (err (STR ′′′′))

(λ -. True)
| Inr res ⇒ res)

turn error message into runtime error
definition strong-quasi-reducible-alg :: (( ′f × ′s list) × ′s)list ⇒ (( ′f × ′s list) ×
′s)list ⇒ ( ′f , ′v)term list ⇒ bool where

strong-quasi-reducible-alg C D lhss = (
case decide-strong-quasi-reducible C D lhss of Inl err ⇒ Code.abort (err (STR

′′′′)) (λ -. True)
| Inr res ⇒ res)

Examples
definition nat-bool = [

(( ′′zero ′′, []), ′′nat ′′),
(( ′′succ ′′, [ ′′nat ′′]), ′′nat ′′),
(( ′′true ′′, []), ′′bool ′′),
(( ′′false ′′, []), ′′bool ′′)
]

definition int-bool = [
(( ′′zero ′′, []), ′′int ′′),
(( ′′succ ′′, [ ′′int ′′]), ′′int ′′),
(( ′′pred ′′, [ ′′int ′′]), ′′int ′′),
(( ′′true ′′, []), ′′bool ′′),
(( ′′false ′′, []), ′′bool ′′)
]

definition even-nat = [
(( ′′even ′′, [ ′′nat ′′]), ′′bool ′′)

]

definition even-int = [
(( ′′even ′′, [ ′′int ′′]), ′′bool ′′)

]
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definition even-lhss = [
Fun ′′even ′′ [Fun ′′zero ′′ []],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′succ ′′ [Var ′′x ′′]]]
]

definition even-lhss-int = [
Fun ′′even ′′ [Fun ′′zero ′′ []],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′succ ′′ [Var ′′x ′′]]],
Fun ′′even ′′ [Fun ′′pred ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′pred ′′ [Fun ′′pred ′′ [Var ′′x ′′]]],
Fun ′′succ ′′ [Fun ′′pred ′′ [Var ′′x ′′]],
Fun ′′pred ′′ [Fun ′′succ ′′ [Var ′′x ′′]]
]

lemma decide-pat-complete-wrapper :
assumes (case decide-pat-complete-lhss C D lhss of Inr b ⇒ Some b | Inl - ⇒

None) = Some res
shows pat-complete-lhss (map-of C ) (map-of D) (set lhss) = res
using decide-pat-complete-lhss[of C D lhss] assms by (auto split: sum.splits)

lemma decide-strong-quasi-reducible-wrapper :
assumes (case decide-strong-quasi-reducible C D lhss of Inr b ⇒ Some b | Inl -
⇒ None) = Some res

shows strong-quasi-reducible (map-of C ) (map-of D) (set lhss) = res
using decide-strong-quasi-reducible[of C D lhss] assms by (auto split: sum.splits)

lemma pat-complete-lhss (map-of nat-bool) (map-of even-nat) (set even-lhss)
apply (subst decide-pat-complete-wrapper [of - - - True])
by eval+

lemma ¬ pat-complete-lhss (map-of int-bool) (map-of even-int) (set even-lhss-int)

apply (subst decide-pat-complete-wrapper [of - - - False])
by eval+

lemma strong-quasi-reducible (map-of int-bool) (map-of even-int) (set even-lhss-int)

apply (subst decide-strong-quasi-reducible-wrapper [of - - - True])
by eval+

definition non-lin-lhss = [
Fun ′′f ′′ [Var ′′x ′′, Var ′′x ′′, Var ′′y ′′],
Fun ′′f ′′ [Var ′′x ′′, Var ′′y ′′, Var ′′x ′′],
Fun ′′f ′′ [Var ′′y ′′, Var ′′x ′′, Var ′′x ′′]
]
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lemma pat-complete-lhss (map-of nat-bool) (map-of [(( ′′f ′′,[ ′′bool ′′, ′′bool ′′, ′′bool ′′]), ′′bool ′′)])
(set non-lin-lhss)

apply (subst decide-pat-complete-wrapper [of - - - True])
by eval+

lemma ¬ pat-complete-lhss (map-of nat-bool) (map-of [(( ′′f ′′,[ ′′nat ′′, ′′nat ′′, ′′nat ′′]), ′′bool ′′)])
(set non-lin-lhss)

apply (subst decide-pat-complete-wrapper [of - - - False])
by eval+

definition testproblem (c :: nat) n = (let s = String.implode; s = id;
c1 = even c;
c2 = even (c div 2 );
c3 = even (c div 4 );
c4 = even (c div 8 );
revo = (if c4 then id else rev);
nn = [0 ..< n];
rnn = (if c4 then id nn else rev nn);
b = s ′′b ′′; t = s ′′tt ′′; f = s ′′ff ′′; g = s ′′g ′′;
gg = (λ ts. Fun g (revo ts));
ff = Fun f [];
tt = Fun t [];
C = [((t, [] :: string list), b), ((f , []), b)];
D = [((g, replicate (2 ∗ n) b), b)];
x = (λ i :: nat. Var (s ( ′′x ′′ @ show i)));
y = (λ i :: nat. Var (s ( ′′y ′′ @ show i)));
lhsF = gg (if c1 then List.maps (λ i. [ff , y i] ) rnn else (replicate n ff @ map

y rnn));
lhsT = (λ b j. gg (if c1 then List.maps (λ i. if i = j then [tt, b] else [x i, y i] )

rnn else
(map (λ i. if i = j then tt else x i) rnn @ map (λ i. if i = j then b else

y i) rnn)));
lhssT = (if c2 then List.maps (λ i. [lhsT tt i, lhsT ff i]) nn else List.maps (λ

b. map (lhsT b) nn) [tt,ff ]);
lhss = (if c3 then [lhsF ] @ lhssT else lhssT @ [lhsF ])

in (C , D, lhss))

definition test-problem c n perms = (if c < 16 then testproblem c n
else let (C , D, lhss) = testproblem 0 n;

(permRow,permCol) = perms ! (c − 16 );
permRows = map (λ i. lhss ! i) permRow;
pCol = (λ t. case t of Fun g ts ⇒ Fun g (map (λ i. ts ! i) permCol))

in (C , D, map pCol permRows))

definition test-problem-integer where
test-problem-integer c n perms = test-problem (nat-of-integer c) (nat-of-integer

n) (map (map-prod (map nat-of-integer) (map nat-of-integer)) perms)

fun term-to-haskell where
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term-to-haskell (Var x) = String.implode x
| term-to-haskell (Fun f ts) = (if f = ′′tt ′′ then STR ′′TT ′′ else if f = ′′ff ′′ then
STR ′′FF ′′ else String.implode f )

+ foldr (λ t r . STR ′′ ′′ + term-to-haskell t + r) ts (STR ′′′′)

definition createHaskellInput :: integer ⇒ integer ⇒ (integer list × integer list)
list ⇒ String.literal where

createHaskellInput c n perms = (case test-problem-integer c n perms
of
(-,-,lhss) ⇒ STR ′′module Test(g) where ←↩ ←↩ data B = TT | FF ←↩ ←↩ ′′

+
foldr (λ l s. (term-to-haskell l + STR ′′ = TT ←↩ ′′ + s)) lhss (STR ′′′′))

definition pat-complete-alg-test :: integer ⇒ integer ⇒ (integer list ∗ integer
list)list ⇒ bool where

pat-complete-alg-test c n perms = (case test-problem-integer c n perms of
(C ,D,lhss) ⇒ pat-complete-alg C D lhss)

definition show-pat-complete-test :: integer ⇒ integer ⇒ (integer list ∗ integer
list)list ⇒ String.literal where
show-pat-complete-test c n perms = (case test-problem-integer c n perms of (-,-,lhss)

⇒ showsl-lines (STR ′′empty ′′) lhss (STR ′′′′))

definition create-agcp-input :: (String.literal ⇒ ′t)⇒ integer ⇒ integer ⇒ (integer
list ∗ integer list)list ⇒

′t list list ∗ ′t list list where
create-agcp-input term C N perms = (let

n = nat-of-integer N ;
c = nat-of-integer C ;
lhss = (snd o snd) (test-problem-integer C N perms);
tt = (λ t. case t of (Var x) ⇒ term (String.implode ( ′′? ′′ @ x @ ′′:B ′′))
| Fun f [] ⇒ term (String.implode f ));

pslist = map (λ i. tt (Var ( ′′x ′′ @ show i))) [0 ..< 2 ∗ n];

patlist = map (λ t. case t of Fun - ps ⇒ map tt ps) lhss
in ([pslist], patlist))

connection to AGCP, which is written in SML, and SML-export of verified
pattern completeness algorithm
export-code

pat-complete-alg-test
show-pat-complete-test
create-agcp-input
pat-complete-alg
strong-quasi-reducible-alg
Var
in SML module-name Pat-Complete
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tree automata encoding

We assume that there are certain interface-functions from the tree-automata
library.
context

fixes cState :: String.literal ⇒ ′state — create a state from name
and cSym :: String.literal ⇒ integer ⇒ ′sym — create a symbol from name and

arity
and cRule :: ′sym ⇒ ′state list ⇒ ′state ⇒ ′rule — create a transition-rule
and cAut :: ′sym list ⇒ ′state list ⇒ ′state list ⇒ ′rule list ⇒ ′aut

— create an automaton given the signature, the list of all states, the list of final
states, and the transitions

and checkSubset :: ′aut ⇒ ′aut ⇒ bool — check language inclusion
begin

we further fix the parameters to generate the example TRSs
context

fixes c n :: integer
and perms :: (integer list × integer list) list

begin

definition tt = cSym (STR ′′tt ′′) 0
definition ff = cSym (STR ′′ff ′′) 0
definition g = cSym (STR ′′g ′′) (2 ∗ n)
definition qt = cState (STR ′′qt ′′)
definition qf = cState (STR ′′qf ′′)
definition qb = cState (STR ′′qb ′′)
definition qfin = cState (STR ′′qFin ′′)
definition tRule = (λ q. cRule tt [] q)
definition fRule = (λ q. cRule ff [] q)

definition qbRules = [tRule qb, fRule qb]
definition stdRules = qbRules @ [tRule qt, fRule qf ]
definition leftStates = [qb, qfin]
definition rightStates = [qt, qf ] @ leftStates
definition finStates = [qfin]
definition signature = [tt, ff , g]

fun argToState where
argToState (Var -) = qb
| argToState (Fun s []) = (if s = ′′tt ′′ then qt else if s = ′′ff ′′ then qf

else Code.abort (STR ′′unknown ′′) (λ -. qf ))

fun termToRule where
termToRule (Fun - ts) = cRule g (map argToState ts) qfin

definition automataLeft = cAut signature leftStates finStates (cRule g (replicate
(2 ∗ nat-of-integer n) qb) qfin # qbRules)
definition automataRight = (case test-problem-integer c n perms of

91



(-,-,lhss)⇒ cAut signature rightStates finStates (map termToRule lhss @ stdRules))

definition encodeAutomata = (automataLeft, automataRight)

definition patCompleteAutomataTest = (checkSubset automataLeft automataRight)

end
end

definition string-append :: String.literal ⇒ String.literal ⇒ String.literal (infixr
+++ 65 ) where

string-append s t = String.implode (String.explode s @ String.explode t)

code-printing constant string-append ⇀
(Haskell) infixr 5 ++

fun paren where
paren e l r s [] = e
| paren e l r s (x # xs) = l +++ x +++ foldr (λ y r . s +++ y +++ r) xs r

definition showAutomata where showAutomata n c perms = (case encodeAu-
tomata id (λ n a. n)
(λ f qs q. paren f (f +++ STR ′′( ′′) (STR ′′) ′′) (STR ′′, ′′) qs +++ STR ′′ −>

′′ +++ q)
(λ sig Q Qfin rls.

STR ′′tree−automata has final states: ′′ +++ paren (STR ′′{} ′′) (STR ′′{ ′′)
(STR ′′} ′′) (STR ′′, ′′) Qfin +++ STR ′′←↩ ′′

+++ STR ′′and transitions: ←↩ ′′ +++ paren (STR ′′′′) (STR ′′′′) (STR ′′′′)
(STR ′′←↩ ′′) rls +++ STR ′′←↩ ←↩ ′′) n c perms

of (all,pats) ⇒ STR ′′decide whether language of first automaton is subset of the
second automaton ←↩ ←↩ ′′

+++ STR ′′first ′′ +++ all +++ STR ′′←↩ and second ′′ +++ pats)

value showAutomata 4 4 []

value show-pat-complete-test 4 4 []

value createHaskellInput 4 4 []

connection to FORT-h, generation of Haskell-examples, and Haskell tests of
verified pattern completeness algorithm
export-code encodeAutomata

showAutomata
patCompleteAutomataTest
show-pat-complete-test
pat-complete-alg-test
createHaskellInput
in Haskell module-name Pat-Test-Generated
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end
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