# Verifying a Decision Procedure for Pattern Completeness* 

René Thiemann<br>University of Innsbruck, Austria<br>Akihisa Yamada<br>National Institute of Advanced Industrial Science and Technology, Japan

June 3, 2024


#### Abstract

Pattern completeness is the property that the left-hand sides of a functional program or term rewrite system cover all cases w.r.t. pattern matching. We verify a recent (abstract) decision procedure for pattern completeness that covers the general case, i.e., in particular without the usual restriction of left-linearity. In two refinement steps, we further develop an executable version of that abstract algorithm. On our example suite, this verified implementation is faster than other implementations that are based on alternative (unverified) approaches, including the complement algorithm, tree automata encodings, and even the pattern completeness check of the GHC Haskell compiler.


## Contents

1 Introduction ..... 2
2 Pattern Completeness ..... 3
3 A Set-Based Inference System to Decide Pattern Complete- ness ..... 3
3.1 Definition of Algorithm - Inference Rules ..... 3
3.2 Soundness of the inference rules ..... 6

[^0]4 A Multiset-Based Inference System to Decide Pattern Com- pleteness ..... 28
4.1 Definition of the Inference Rules ..... 28
4.2 The evaluation cannot get stuck ..... 30
4.3 Termination ..... 34
4.4 Partial Correctness via Refinement ..... 44
5 Computing Nonempty and Infinite sorts ..... 47
5.1 Deciding the nonemptyness of all sorts under consideration ..... 47
5.2 Deciding infiniteness of a sort ..... 49
6 A List-Based Implementation to Decide Pattern Complete- ness ..... 55
6.1 Definition of Algorithm ..... 56
6.2 Partial Correctness of the Implementation ..... 59
6.3 Getting the result outside the locale with assumptions ..... 77
7 Pattern-Completeness and Related Properties ..... 79
7.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility and Quasi-Reducibility ..... 85
8 Setup for Experiments ..... 87

## 1 Introduction

This AFP entry includes the formalization of a decision procedure [4] for pattern completeness. It also contains the setup for running the experiments of that paper, i.e., it contains

- a generator for example term rewrite systems and Haskell programs of varying size,
- a connection to an implementation of the complement algorithm [2] within the ground confluence prover AGCP [1], and
- a tree automata encoder of pattern completeness that is linked with the tree automata library FORT-h [3].

Note that some further glue code is required to run the experiments, which is not included in this submission. Here, we just include the glue code that was defined within Isabelle theories.

## 2 Pattern Completeness

Pattern-completeness is the question whether in a given program all terms of the form $\mathrm{f}(\mathrm{c} 1, . ., \mathrm{cn})$ are matched by some lhs of the program, where here each ci is a constructor ground term and f is a defined symbol. This will be represented as a pattern problem of the shape ( $\mathrm{f}(\mathrm{x} 1, \ldots \mathrm{xn}$ ), lhs1, .., lhsn) where the xi will represent arbitrary constructor terms.

## 3 A Set-Based Inference System to Decide Pattern Completeness

This theory contains an algorithm to decide whether pattern problems are complete. It represents the inference rules of the paper on the set-based level.
On this level we prove partial correctness and preservation of well-formed inputs, but not termination.

```
theory Pattern-Completeness-Set
    imports
        First-Order-Terms.Term-More
        Sorted-Terms.Sorted-Contexts
begin
```


### 3.1 Definition of Algorithm - Inference Rules

We first consider matching problems which are sets of term pairs. Note that in the term pairs the type of variables differ: Each left term has natural numbers (with sorts) as variables, so that it is easy to generate new variables, whereas each right term has arbitrary variables of type ' $v$ without any further information. Then pattern problems are sets of matching problems, and we also have sets of pattern problems.
The suffix -set is used to indicate that here these problems are modeled via sets.
type-synonym ('f, $v, ' s)$ match-problem-set $=\left(\left({ }^{\prime} f, n a t \times{ }^{\prime} s\right)\right.$ term $\times\left({ }^{\prime} f, ' v\right)$ term $)$ set
type-synonym $(' f, ' v, ' s)$ pat-problem-set $=(' f, ' v, ' s)$ match-problem-set set
type-synonym $(' f, ' v, ' s)$ pats-problem-set $=\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-set set
abbreviation (input) bottom :: ('f,'v,'s)pats-problem-set where bottom $\equiv\{\}\}$
definition subst-left :: ('f,nat $\times$ 's)subst $\Rightarrow\left((' f, n a t \times ' s)\right.$ term $\times\left({ }^{\prime} f,{ }^{\prime} v\right)$ term $) \Rightarrow$ (('f,nat $\times$ 's)term $\times\left({ }^{\prime} f, ' v\right)$ term $)$ where subst-left $\tau=(\lambda(t, r) .(t \cdot \tau, r))$

A function to compute for a variable $x$ all substitution that instantiate $x$
by $c\left(x_{n}, \ldots, x_{n+a}\right)$ where $c$ is an constructor of arity $a$ and $n$ is a parameter that determines from where to start the numbering of variables.
definition $\tau c::$ nat $\Rightarrow$ nat $\times$ 's $\Rightarrow$ ' $f \times$ 's list $\Rightarrow(' f, n a t \times$ 's)subst where $\tau c n x=(\lambda(f, s s)$. subst $x($ Fun $f($ map $\operatorname{Var}(z i p[n . .<n+$ length ss $]$ ss $))))$

Compute the list of conflicting variables (Some list), or detect a clash (None)
fun conflicts $::\left({ }^{\prime} f, ' v\right)$ term $\Rightarrow\left({ }^{\prime} f, ' v\right)$ term $\Rightarrow$ 'v list option where
conflicts $(\operatorname{Var} x)(\operatorname{Var} y)=($ if $x=y$ then Some [] else Some $[x, y])$
$\mid$ conflicts $($ Var $x)($ Fun - - $)=($ Some $[x])$
$\mid$ conflicts (Fun - -) $(\operatorname{Var} x)=($ Some $[x])$
$\mid$ conflicts $($ Fun $f s s)($ Fun $g t s)=($ if $(f$, length ss $)=(g$, length $t s)$ then map-option concat (those (map2 conflicts ss ts)) else None)
abbreviation Conflict-Var stx E conflicts $s t \neq$ None $\wedge x \in$ set (the (conflicts $s t)$ )
abbreviation Conflict-Clash st $\equiv$ conflicts $s t=$ None
locale pattern-completeness-context $=$
fixes $S::$ 's set - set of sort-names and $C::\left({ }^{\prime} f, ' s\right)$ ssig - sorted signature
and $m::$ nat - upper bound on arities of constructors
and $C l::$ 's ('f $\times$ 's list) list - a function to compute all constructors of given sort as list
and inf-sort $::$ 's $\Rightarrow$ bool - a function to indicate whether a sort is infinite and $t y ~:: ~ ' v$ itself
begin
definition tvars-disj-pp :: nat set $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pat-problem-set $\Rightarrow$ bool where
tvars-disj-pp $V p=(\forall m p \in p . \forall(t i, p i) \in m p . f s t$ 'vars $t i \cap V=\{ \})$
definition inf-var-conflict :: ('f,'v,'s)match-problem-set $\Rightarrow$ bool where
inf-var-conflict $m p=(\exists$ stxy.
$(s, \operatorname{Var} x) \in m p \wedge(t, \operatorname{Var} x) \in m p \wedge$ Conflict-Var sty$\wedge \operatorname{inf-sort}($ snd $y))$
definition tvars-mp :: $\left({ }^{\prime} f, ' v, ' s\right)$ match-problem-set $\Rightarrow(n a t \times ' s)$ set where tvars- $m p m p=(\bigcup(t, l) \in m p$. vars $t)$
definition tvars-pp :: ('f,'v,'s)pat-problem-set $\Rightarrow(n a t \times ' s)$ set where tvars- $p p$ pp $=(\bigcup m p \in p p$. tvars- $m p m p)$
definition subst-match-problem-set :: ('f,nat $\times$ 's) subst $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right.$, 's) match-problem-set $\Rightarrow\left(' f, ' v,{ }^{\prime} s\right)$ match-problem-set where
subst-match-problem-set $\tau$ pp $=$ subst-left $\tau$ ' $p p$
definition subst-pat-problem-set :: ('f,nat $\times$ 's)subst $\Rightarrow\left(' f,{ }^{\prime} v\right.$, 's)pat-problem-set $\Rightarrow\left(' f,{ }^{\prime} v,{ }^{\prime} s\right)$ pat-problem-set where
subst-pat-problem-set $\tau P=$ subst-match-problem-set $\tau$ ' $P$
definition $\tau s::$ nat $\Rightarrow$ nat $\times$ 's $\Rightarrow(' f, n a t \times ' s)$ subst set where $\tau s n x=\{\tau c n x(f, s s) \mid f s s . f: s s \rightarrow$ snd $x$ in $C\}$

The transformation rules of the paper.
The formal definition contains two deviations from the rules in the paper: first, the instantiate-rule can always be applied; and second there is an identity rule, which will simplify later refinement proofs. Both of the deviations cause non-termination.

The formal inference rules further separate those rules that deliver a bottomor top-element from the ones that deliver a transformed problem.
inductive mp-step :: ('f,'v,'s) match-problem-set $\Rightarrow(' f, ' v, ' s)$ match-problem-set $\Rightarrow$ bool
(infix $\rightarrow_{s} 50$ ) where
mp-decompose: length $t s=$ length $l s \Longrightarrow \operatorname{insert}($ Fun $f t s$, Fun $f l s) m p \rightarrow_{s}$ set $(z i p$ ts ls $) \cup m p$
$\mid m p-m a t c h: x \notin \bigcup($ vars'snd' $m p) \Longrightarrow \operatorname{insert}(t, \operatorname{Var} x) m p \rightarrow_{s} m p$
| mp-identity: $m p \rightarrow_{s} m p$
inductive mp-fail :: ('f,'v,'s) match-problem-set $\Rightarrow$ bool where
mp-clash: $(f$, length $t s) \neq(g$,length $l s) \Longrightarrow m p-f a i l$ (insert (Fun $f t s$, Fun g ls) mp)
$\mid m p-$ clash $^{\prime}:$ Conflict-Clash $s t \Longrightarrow m p-f a i l(\{(s, \operatorname{Var} x),(t, \operatorname{Var} x)\} \cup m p)$
inductive pp-step :: ('f,'v,'s) pat-problem-set $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pat-problem-set $\Rightarrow$ bool
(infix $\Rightarrow_{s} 50$ ) where
pp-simp-mp: $m p \rightarrow_{s} m p^{\prime} \Longrightarrow$ insert $m p p p \Rightarrow_{s}$ insert $m p^{\prime} p p$
| $p p$-remove- $m p: m p$-fail $m p \Longrightarrow$ insert $m p p p \Rightarrow_{s} p p$
inductive pp-success :: ('f,'v,'s)pat-problem-set $\Rightarrow$ bool where
pp-success (insert \{\} pp)
inductive $P$-step-set :: ('f, $v, ' s)$ pats-problem-set $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pats-problem-set $\Rightarrow$ bool
(infix $\Rightarrow_{s} 50$ ) where
$P$-fail: insert $\left\} P \Rightarrow_{s}\right.$ bottom
| $P$-simp: $p p \Rightarrow_{s} p p^{\prime} \Longrightarrow$ insert $p p P \Rightarrow_{s}$ insert $p p^{\prime} P$
| $P$-remove-pp: pp-success $p p \Longrightarrow$ insert $p p P \nRightarrow_{s} P$
| P-instantiate: tvars-disj-pp $\{n . .<n+m\} p p \Longrightarrow x \in$ tvars-pp $p p \Longrightarrow$ insert pp $P \Rightarrow_{s}\{$ subst-pat-problem-set $\tau p p \mid . \tau \in \tau s n x\} \cup P$
$\mid P$-failure ${ }^{\prime}: \forall m p \in p p$. inf-var-conflict $m p \Longrightarrow$ finite $p p \Longrightarrow$ insert $p p P \Rightarrow_{s}\{\{ \}\}$
Note that in $P$-failure ${ }^{\prime}$ the conflicts have to be simultaneously occurring. If just some matching problem has such a conflict, then this cannot be deleted immediately!
Example-program: $\mathrm{f}(\mathrm{x}, \mathrm{x})=\ldots, \mathrm{f}(\mathrm{s}(\mathrm{x}), \mathrm{y})=\ldots, \mathrm{f}(\mathrm{x}, \mathrm{s}(\mathrm{y}))=\ldots$ cover all cases of natural numbers, i.e., $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2)$, but if one would immediately delete the matching problem of the first lhs because of the resulting inf-var-conflict in
$(\mathrm{x} 1, \mathrm{x}),(\mathrm{x} 2, \mathrm{x})$ then it is no longer complete.

### 3.2 Soundness of the inference rules

The empty set of variables
definition EMPTY :: 'v $\Rightarrow$ 's option where EMPTY $x=$ None
definition EMPTYn :: nat $\times$ 's $\Rightarrow^{\prime}$ 's option where EMPTYn $x=$ None
A constructor-ground substitution for the fixed set of constructors and set of sorts. Note that variables to instantiate are represented as pairs of (number, sort).
definition cg-subst :: ('f,nat $\times$ 's,'v) gsubst $\Rightarrow$ bool where cg-subst $\sigma=(\forall x$. snd $x \in S \longrightarrow(\sigma x:$ snd $x$ in $\mathcal{T}(C, E M P T Y)))$

A definition of pattern completeness for pattern problems.
definition match-complete-wrt :: ('f,nat $\times$ 's, $v$ ) gsubst $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ match-problem-set $\Rightarrow$ bool where
match-complete-wrt $\sigma m p=(\exists \mu . \forall(t, l) \in m p . t \cdot \sigma=l \cdot \mu)$
definition pat-complete $::\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-set $\Rightarrow$ bool where pat-complete $p p=(\forall \sigma$. cg-subst $\sigma \longrightarrow(\exists m p \in p p$. match-complete-wrt $\sigma m p))$
abbreviation pats-complete $P \equiv \forall p p \in P$. pat-complete $p p$
Well-formed matching and pattern problems: all occurring variables (in lefthand sides of matching problems) have a known sort.

```
definition wf-match :: ('f,'v,'s)match-problem-set \(\Rightarrow\) bool where
    wf-match \(m p=(\) snd' tvars-mp \(m p \subseteq S)\)
definition wf-pat :: ('f,'v,'s)pat-problem-set \(\Rightarrow\) bool where
    wf-pat \(p p=(\forall m p \in p p\).wf-match \(m p)\)
definition wf-pats :: ('f,'v,'s)pats-problem-set \(\Rightarrow\) bool where
    wf-pats \(P=(\forall p p \in P\). wf-pat pp \()\)
end
lemma type-conversion: \(t: s\) in \(\mathcal{T}(C, \emptyset) \Longrightarrow t \cdot \sigma: s\) in \(\mathcal{T}(C, \emptyset)\)
proof (induct \(t\) s rule: hastype-in-Term-induct)
    case (Fun fss \(\sigma s \tau\) )
    then show ? case unfolding eval-term.simps
        by (smt (verit, best) Fun-hastype list-all2-map1 list-all2-mono)
qed auto
lemma ball-insert-un-cong: \(f y=\) Ball zs \(f \Longrightarrow\) Ball (insert y A) \(f=\) Ball \((z s \cup\)
A) \(f\)
    by auto
```

```
lemma bex-insert-cong: fy=fz\LongrightarrowBex(insert y A) f=Bex (insert z A)f
    by auto
lemma not-bdd-above-natD:
    assumes \neg bdd-above (A :: nat set)
    shows }\existsx\inA.x>
    using assms by (meson bdd-above.unfold linorder-le-cases order.strict-iff)
lemma list-eq-nth-eq: xs = ys \longleftrightarrow length xs = length ys }\wedge(\foralli<length ys. xs !
i=ys!i)
    using nth-equalityI by metis
lemma subt-size: p foss t\Longrightarrow size ( }t|-p)\leq\mathrm{ size }
proof (induct p arbitrary: t)
    case (Cons i p t)
    thus ?case
    proof (cases t)
        case (Fun f ss)
        from Cons Fun have i:i<length ss and sub: t |- (i# p)=(ss!i) |-p
            and p\in poss (ss!i) by auto
        with Cons(1)[OF this(3)]
        have size (t |-(i# p))\leq size (ss!i) by auto
        also have ...\leq size t using i unfolding Fun by (simp add: termination-simp)
        finally show ?thesis .
    qed auto
qed auto
lemma conflicts-sym: rel-option ( }\lambda\mathrm{ xs ys. set xs = set ys) (conflicts s t) (conflicts
ts) (is rel-option - (?c s t) -)
proof (induct s t rule: conflicts.induct)
    case (4 f ss g ts)
    define c}\mathrm{ where }c=
    show ?case
    proof (cases (f,length ss)=(g,length ts )}
        case True
    hence len: length ss = length ts
        ((f, length ss ) = (g, length ts )) = True
        ((g, length ts )}=(f,\mathrm{ length ss )})=\mathrm{ True by auto
    show ?thesis using len(1) 4[OF True - refl]
        unfolding conflicts.simps len(2,3) if-True
        unfolding option.rel-map c-def[symmetric] set-concat
    proof (induct ss ts rule: list-induct2, goal-cases)
        case (2 s ss t ts)
        hence IH: rel-option ( }\lambdaxy.\(\mathrm{ set 'set x) = U (set 'set y)) (those (map2
c ss ts)) (those (map2 c ts ss)) by auto
            from 2 have st: rel-option ( }\lambdaxs\mathrm{ ys. set xs = set ys) (cst) (cts) by auto
            from IH st show ?case by (cases c s t; cases c t s; auto simp: option.rel-map)
                (simp add: option.rel-sel)
    qed simp
```

qed auto
qed auto
lemma conflicts: fixes $x::{ }^{\prime} v$

```
    shows Conflict-Clash \(s t \Longrightarrow \exists p . p \in\) poss \(s \wedge p \in\) poss \(t \wedge\) is-Fun \((s \mid-p) \wedge\)
```

is-Fun $(t \mid-p) \wedge \operatorname{root}(s \mid-p) \neq \operatorname{root}(t \mid-p)($ is ?B1 $\Longrightarrow$ ?B2 $)$
and Conflict-Var s $t x \Longrightarrow$
$\exists p . p \in$ poss $s \wedge p \in$ poss $t \wedge s|-p \neq t|-p \wedge(s|-p=\operatorname{Var} x \vee t|-p=$
Var $x$ ) (is ? $C 1 x \Longrightarrow$ ? $C 2 x$ )
and $s \neq t \Longrightarrow \exists x$. Conflict-Clash s $t \vee$ Conflict-Var st $x$
and Conflict-Var st $x \Longrightarrow x \in$ vars $s \cup$ vars $t$
and conflicts $s t=$ Some []$\longleftrightarrow s=t$ (is ?A)
proof -
let ? $B=$ ? B1 $\longrightarrow$ ? B2
let ? $C=\lambda x$.?C1 $x \longrightarrow$ ? $C 2 x$
\{
fix $x::{ }^{\prime} v$
have (conflicts st=Some []$\longrightarrow s=t$ ) $\wedge ? B \wedge ? C x$
proof (induction $s$ arbitrary: $t$ )
case (Var y t)
thus ?case by (cases t, auto)
next
case (Funf sst)
show ?case
proof (cases t)
case $t$ : (Fun $g t s)$
show ?thesis
proof $($ cases $(f$, length ss $)=(g$, length $t s))$
case False
hence res: conflicts (Fun fss) $t=$ None unfolding $t$ by auto
show ?thesis unfolding res unfolding $t$ using False
by (auto intro!: exI[of - Nil])
next
case $f$ : True
let $? s=$ Fun $f s s$
show ?thesis
proof (cases those (map2 conflicts ss ts))
case None
hence res: conflicts ?s $t=$ None unfolding $t$ by auto
from None[unfolded those-eq-None] obtain $i$ where $i: i<l e n g t h$ ss $i<$
length ts and
confl: conflicts $(s s!i)(t s!i)=$ None
using $f$ unfolding set-conv-nth set-zip by auto
from $i$ have ss $!i \in$ set ss by auto
from Fun.IH $[$ OF this, of ts!i] confl obtain $p$
where $p: p \in$ poss $(s s!i) \wedge p \in$ poss $(t s!i) \wedge i s-F u n(s s!i \mid-p) \wedge$
is-Fun $(t s!i \mid-p) \wedge \operatorname{root}(s s!i \mid-p) \neq \operatorname{root}(t s!i \mid-p)$
by auto
from $p$ have $p: \exists p . p \in$ poss ?s $\wedge p \in$ poss $t \wedge i s$-Fun $(? s \mid-p) \wedge i s$-Fun $(t \mid-p) \wedge \operatorname{root}(? s \mid-p) \neq \operatorname{root}(t \mid-p)$
by (intro exI $[$ of $-i \# p]$, unfold $t$, insert if, auto)
from $p$ res show ?thesis by auto
next
case (Some xss)
hence res: conflicts ?s $t=$ Some (concat xss) unfolding $t$ using $f$ by auto
from Some have map2: map2 conflicts ss $t s=$ map Some xss by auto
from arg-cong[OF this, of length] have len: length xss = length ss using $f$ by auto
have rec: $i<$ length $s s \Longrightarrow$ conflicts $(s s!i)(t s!i)=$ Some $(x s s!i)$ for $i$
using arg-cong[OF map2, of $\lambda x s . x s!i]$ len $f$ by auto
\{
assume $x \in$ set (the (conflicts ?s $t$ ))
hence $x \in$ set (concat xss) unfolding res by auto
then obtain $x s$ where $x s: x s \in$ set xss and $x: x \in$ set $x s$ by auto
from $x$ s len obtain $i$ where $i: i<$ length ss and $x s: x s=x s s!i$ by (auto simp: set-conv-nth)
from $i$ have $s s!i \in$ set ss by auto
from Fun.IH[OF this, of ts!i, unfolded rec[OF $i$, folded $x s$ ]] $x$
obtain $p$ where $p \in$ poss $(s s!i) \wedge p \in$ poss $(t s!i) \wedge s s!i \mid-p \neq t s$ $!i \mid-p \wedge(s s!i|-p=\operatorname{Var} x \vee t s!i|-p=\operatorname{Var} x)$
by auto
hence $\exists$ p. $p \in$ poss ? $s \wedge p \in$ poss $t \wedge$ ?s $|-p \neq t|-p \wedge(? s \mid-p=$ Var $x \vee t \mid-p=\operatorname{Var} x)$
by (intro exI[of-i\#p], insert if, auto simp: $t$ )
\}
moreover
\{
assume conflicts ?s $t=$ Some []
with res have empty: concat xss $=[]$ by auto
\{
fix $i$
assume $i: i<$ length ss
from rec $[O F i]$ have conflicts $(s s!i)(t s!i)=$ Some (xss!i).
moreover from empty $i$ len have xss $!i=[]$ by auto
ultimately have res: conflicts $(s s!i)(t s!i)=$ Some [] by simp
from $i$ have $s s!i \in$ set ss by auto
from Fun.IH[OF this, of $t s!i$, unfolded res] have $s s!i=t s!i$ by
auto
\}
with $f$ have ? $s=t$ unfolding $t$ by (auto intro: nth-equalityI)
\}
ultimately show ?thesis unfolding res by auto
qed
qed
qed auto

```
    qed
    } note main = this
    from main show B:?B1 \Longrightarrow?B2 and C: ?C1 }x\Longrightarrow\mathrm{ ?C2 }x\mathrm{ by blast+
    show ?A
    proof
        assume s=t
        with B have conflicts s t}\not=\mathrm{ None by blast
        then obtain xs where res: conflicts s t=Some xs by auto
        show conflicts s t = Some []
        proof (cases xs)
            case Nil
        thus ?thesis using res by auto
    next
        case (Cons x xs)
        with main[of x] res «s=t\rangle show ?thesis by auto
    qed
    qed (insert main, blast)
    {
        assume diff: s\not=t
        show \exists x. Conflict-Clash s t \vee Conflict-Var s t x
        proof (cases conflicts st)
            case (Some xs)
            with \?A`diff obtain x where x set xs by (cases xs,auto)
            thus ?thesis unfolding Some by auto
    qed auto
}
assume Conflict-Var s t x
    with C obtain p where p\in poss s p\in posst (s |-p=Varx\vee 位-p=Var
x)
    by blast
    thus }x\in\mathrm{ vars }s\cup\mathrm{ vars }
    by (metis UnCI subt-at-imp-supteq' subteq-Var-imp-in-vars-term)
qed
declare conflicts.simps[simp del]
lemma conflicts-refl[simp]: conflicts t t = Some []
    using conflicts(5)[of t t] by auto
```

For proving partial correctness we need further properties of the fixed parameters: We assume that $m$ is sufficiently large and that there exists some constructor ground terms. Moreover inf-sort really computes whether a sort has terms of arbitrary size. Further all symbols in $C$ must have sorts of $S$. Finally, $C l$ should precisely compute the constructors of a sort.
locale pattern-completeness-context-with-assms $=$ pattern-completeness-context $S$ $C m C l$ inf-sort ty for $S$ and $C::\left({ }^{\prime} f\right.$, 's $)$ ssig
and $m C l$ inf-sort
and $t y::$ ' $v$ itself +

```
assumes sorts-non-empty: \(\bigwedge\) s.s \(s \Longrightarrow \exists \exists t . t:\) s in \(\mathcal{T}(C, E M P T Y)\)
    and \(C\)-sub- \(S: \bigwedge f\) ss s. \(f:\) ss \(\rightarrow s\) in \(C \Longrightarrow\) insert \(s(\) set \(s s) \subseteq S\)
    and \(m: \bigwedge f\) ss s. \(f: s s \rightarrow s\) in \(C \Longrightarrow\) length \(s s \leq m\)
    and inf-sort-def: \(s \in S \Longrightarrow\) inf-sort \(s=(\neg\) bdd-above (size' \(\{t . t: s\) in
\(\mathcal{T}(C, E M P T Y n)\}))\)
    and \(C l: \bigwedge s . \operatorname{set}(C l s)=\{(f, s s) . f: s s \rightarrow s\) in \(C\}\)
    and Cl -len: \(\wedge \sigma\). Ball (length'snd'set \((C l \sigma))(\lambda a . a \leq m)\)
begin
```

lemmas subst-defs-set $=$
subst-pat-problem-set-def
subst-match-problem-set-def

Preservation of well-formedness

```
lemma \(m p\)-step-wf: \(m p \rightarrow_{s} m p^{\prime} \Longrightarrow\) wf-match \(m p \Longrightarrow\) wf-match \(m p^{\prime}\)
    unfolding wf-match-def tvars-mp-def
proof (induct \(m p m p^{\prime}\) rule: mp-step.induct)
    case ( \(m p\)-decompose \(f\) ts ls \(m p\) )
    then show ?case by (auto dest!: set-zip-leftD)
qed auto
lemma \(p p\)-step-wf: \(p p \Rightarrow_{s} p p^{\prime} \Longrightarrow\) wf-pat \(p p \Longrightarrow\) wf-pat \(p p^{\prime}\)
    unfolding wf-pat-def
proof (induct pp pp' rule: pp-step.induct)
    case ( \(p p\)-simp- \(m p m p m p^{\prime} p p\) )
    then show ?case using mp-step-wf[of \(m p m p]\) by auto
qed auto
theorem \(P\)-step-set-wf: \(P \Rightarrow{ }_{s} P^{\prime} \Longrightarrow\) wf-pats \(P \Longrightarrow\) wf-pats \(P^{\prime}\)
    unfolding wf-pats-def
proof (induct \(P P^{\prime}\) rule: \(P\)-step-set.induct)
    case ( \(P\)-simp pp pp \({ }^{\prime} P\) )
    then show ?case using \(p p\)-step-wf [of pp pp] by auto
next
    case \(*:(P\)-instantiate \(n p x P)\)
    let \(? s=\operatorname{snd} x\)
    from \(*\) have \(s S:\) ?s \(\in S\) and \(p:\) wf-pat \(p\) unfolding wf-pat-def wf-match-def
tvars-pp-def by auto
    \{
    fix \(\tau\)
    assume tau: \(\tau \in \tau s \operatorname{n} x\)
    from tau[unfolded \(\tau s\)-def \(\tau c\)-def, simplified]
        obtain \(f\) sorts where \(f: f:\) sorts \(\rightarrow\) snd \(x\) in \(C\) and \(\tau: \tau=\) subst \(x\) (Fun \(f\)
(map Var \((z i p[n . .<n+\) length sorts \(]\) sorts \()\) )) by auto
    let \(? i=\) length sorts
    let \(? x s=z i p[n . .<n+\) length sorts \(]\) sorts
    from \(C\)-sub- \(S[O F f]\) have \(s S\) : ?s \(\in S\) and \(x s\) : snd' set ? \(x s \subseteq S\)
            unfolding set-conv-nth set-zip by auto
```

```
    {
        fix mp y
        assume mp:mp\inp and y\intvars-mp (subst-left \tau 'mp)
        then obtain st where y:y\invars (s\cdot\tau) and st: (s,t)\inmp
        unfolding tvars-mp-def subst-left-def by auto
        from y have y\in vars s\cup set ?xs unfolding vars-term-subst }
        by (auto simp: subst-def split: if-splits)
    hence snd y\in snd 'vars s U snd ' set ?xs by auto
    also have }\ldots\subseteq\mathrm{ snd ' vars s US using xs by auto
    also have }\ldots\subseteqS\mathrm{ using p mp st
        unfolding wf-pat-def wf-match-def tvars-mp-def by force
    finally have snd y\inS .
    }
    hence wf-pat (subst-pat-problem-set \tau p)
    unfolding wf-pat-def wf-match-def subst-defs-set by auto
}
with * show ?case by auto
qed (auto simp: wf-pat-def)
Soundness requires some preparations
```

```
lemma cg-exists: \(\exists \sigma g\). cg-subst \(\sigma g\)
```

lemma cg-exists: $\exists \sigma g$. cg-subst $\sigma g$
proof
proof
show cg-subst ( $\lambda x$. SOME t. $t:$ snd $x$ in $\mathcal{T}(C, E M P T Y))$
show cg-subst ( $\lambda x$. SOME t. $t:$ snd $x$ in $\mathcal{T}(C, E M P T Y))$
unfolding cg-subst-def
unfolding cg-subst-def
proof (intro allI impI, goal-cases)
proof (intro allI impI, goal-cases)
case (1 $x$ )
case (1 $x$ )
from someI-ex[OF sorts-non-empty[OF 1]] show ?case by simp
from someI-ex[OF sorts-non-empty[OF 1]] show ?case by simp
qed
qed
qed
qed
definition $\sigma g::\left({ }^{\prime} f, n a t \times{ }^{\prime} s,{ }^{\prime} v\right) g s u b s t$ where $\sigma g=($ SOME $\sigma$. cg-subst $\sigma)$
definition $\sigma g::\left({ }^{\prime} f, n a t \times{ }^{\prime} s,{ }^{\prime} v\right) g s u b s t$ where $\sigma g=($ SOME $\sigma$. cg-subst $\sigma)$
lemma $\sigma g$ :cg-subst $\sigma g$ unfolding $\sigma g$-def using cg-exists by (metis someI-ex)
lemma $\sigma g$ :cg-subst $\sigma g$ unfolding $\sigma g$-def using cg-exists by (metis someI-ex)
lemma pat-complete-empty[simp]: pat-complete $\}=$ False
lemma pat-complete-empty[simp]: pat-complete $\}=$ False
unfolding pat-complete-def using $\sigma g$ by auto
unfolding pat-complete-def using $\sigma g$ by auto
lemma inf-var-conflictD: assumes inf-var-conflict $m p$
lemma inf-var-conflictD: assumes inf-var-conflict $m p$
shows $\exists$ pst $x y$.
shows $\exists$ pst $x y$.
$(s, \operatorname{Var} x) \in m p \wedge(t, \operatorname{Var} x) \in m p \wedge s|-p=\operatorname{Var} y \wedge s|-p \neq t \mid-p \wedge p \in$ poss
$(s, \operatorname{Var} x) \in m p \wedge(t, \operatorname{Var} x) \in m p \wedge s|-p=\operatorname{Var} y \wedge s|-p \neq t \mid-p \wedge p \in$ poss
$s \wedge p \in$ poss $t \wedge$ inf-sort (snd $y$ )
$s \wedge p \in$ poss $t \wedge$ inf-sort (snd $y$ )
proof -
proof -
from assms[unfolded inf-var-conflict-def]
from assms[unfolded inf-var-conflict-def]
obtain $s t x y$ where $(s, \operatorname{Var} x) \in m p \wedge(t, \operatorname{Var} x) \in m p$ and conf: Conflict-Var
obtain $s t x y$ where $(s, \operatorname{Var} x) \in m p \wedge(t, \operatorname{Var} x) \in m p$ and conf: Conflict-Var
st $y$ and $y$ : inf-sort (snd $y$ ) by blast
st $y$ and $y$ : inf-sort (snd $y$ ) by blast
with conflicts(2)[OF conf] show ?thesis by metis
with conflicts(2)[OF conf] show ?thesis by metis
qed
qed
lemma cg-term-vars: $t: s$ in $\mathcal{T}(C, E M P T Y n) \Longrightarrow$ vars $t=\{ \}$

```
lemma cg-term-vars: \(t: s\) in \(\mathcal{T}(C, E M P T Y n) \Longrightarrow\) vars \(t=\{ \}\)
```

```
proof (induct \(t\) s rule: hastype-in-Term-induct)
    case (Var \(v \sigma\) )
    then show? ?ase by (auto simp: EMPTYn-def)
next
    case (Fun f ss \(\sigma s \tau\) )
    then show ?case unfolding term.simps unfolding set-conv-nth list-all2-conv-all-nth
by auto
qed
lemma type-conversion1: \(t: s\) in \(\mathcal{T}(C, E M P T Y n) \Longrightarrow t \cdot \sigma^{\prime}: s\) in \(\mathcal{T}(C, E M P T Y)\)
    unfolding EMPTYn-def EMPTY-def by (rule type-conversion)
lemma type-conversion2: \(t: s\) in \(\mathcal{T}(C, E M P T Y) \Longrightarrow t \cdot \sigma^{\prime}: s\) in \(\mathcal{T}(C, E M P T Y n)\)
    unfolding EMPTYn-def EMPTY-def by (rule type-conversion)
lemma term-of-sort: assumes \(s \in S\)
    shows \(\exists t\). \(t: s\) in \(\mathcal{T}(C, E M P T Y n)\)
proof -
    from \(\sigma g[\) unfolded cg-subst-def] assms
    have \(\exists t\). \(t\) : s in \(\mathcal{T}(C, E M P T Y)\) by force
    with type-conversion2[of \(-s\) ]
    show ?thesis by auto
qed
Main partial correctness theorems on well-formed problems: the transformation rules do not change the semantics of a problem
lemma mp-step-pcorrect: \(m p \rightarrow_{s} m p^{\prime} \Longrightarrow\) match-complete-wrt \(\sigma m p=\) match-complete-wrt
\(\sigma m p^{\prime}\)
proof (induct \(m p m p^{\prime}\) rule: mp-step.induct)
    case \(*\) : ( \(m p\)-decompose \(f\) ts ls \(m p\) )
    show ?case unfolding match-complete-wrt-def
        apply (rule ex-cong1)
        apply (rule ball-insert-un-cong)
        apply (unfold split) using * by (auto simp add: set-zip list-eq-nth-eq)
next
    case \(*:(m p-m a t c h ~ x ~ m p t)\)
    show ? case unfolding match-complete-wrt-def
    proof
        assume \(\exists \mu . \forall(t i, l i) \in m p\). ti \(\cdot \sigma=l i \cdot \mu\)
        then obtain \(\mu\) where eq: \(\wedge t i l i .(t i, l i) \in m p \Longrightarrow t i \cdot \sigma=l i \cdot \mu\) by auto
        let ? \(\mu=\mu(x:=t \cdot \sigma)\)
        have \((t i, l i) \in m p \Longrightarrow t i \cdot \sigma=l i \cdot ? \mu\) for \(t i l i\) using \(* e q[o f t i l i]\)
            by (auto intro!: term-subst-eq)
        thus \(\exists \mu . \forall(t i, l i) \in \operatorname{insert}(t, \operatorname{Var} x) m p . t i \cdot \sigma=l i \cdot \mu\) by (intro exI \([o f-? \mu]\),
auto)
    qed auto
qed auto
```

```
lemma mp-fail-pcorrect: mp-fail mp \Longrightarrow \neg match-complete-wrt \sigma mp
proof (induct mp rule: mp-fail.induct)
    case *:(mp-clash f ts g ls mp)
    {
    assume length ts }\not=\mathrm{ length ls
    hence (map (\lambdat.t | |) ls = map (\lambdat.t | \sigma) ts)= False for \sigma :: ('f,nat }
's,'a)gsubst and }
    by (metis length-map)
    } note len = this
    from * show ?case unfolding match-complete-wrt-def
        by (auto simp: len)
next
    case *:(mp-clash' s t x mp)
    from conflicts(1)[OF *(1)]
    obtain po where *: po \in poss s po \in poss t is-Fun (s |-po) is-Fun (t |-po) root
(s|-po) f root (t |-po)
        by auto
    show ?case
    proof
        assume match-complete-wrt \sigma ({(s, Var x), (t, Var x)}\cupmp)
        from this[unfolded match-complete-wrt-def]
        have s\cdot\sigma=t\cdot\sigma by auto
        hence root (s\cdot\sigma |-po) =root (t\cdot\sigma|-po) by auto
        also have root (s\cdot\sigma -po) = root (s -po \cdot\sigma) using * by auto
        also have ... = root (s |-po) using * by (cases s |- po, auto)
        also have root (t\cdot\sigma |-po) = root (t |-po \cdot \sigma) using * by (cases t |-po, auto)
        also have ... = root (t |-po) using * by (cases t |- po, auto)
        finally show False using * by auto
    qed
qed
lemma pp-step-pcorrect: pp 和 p\mp@subsup{p}{}{\prime}}\Longrightarrow\mathrm{ pat-complete pp = pat-complete pp'
proof (induct pp pp' rule: pp-step.induct)
    case (pp-simp-mp mp mp' pp)
    then show ?case using mp-step-pcorrect[of mp mp ] unfolding pat-complete-def
by auto
next
    case (pp-remove-mp mp pp)
    then show ?case using mp-fail-pcorrect[of mp] unfolding pat-complete-def by
auto
qed
lemma pp-success-pcorrect: pp-success pp \Longrightarrow pat-complete pp
    by (induct pp rule: pp-success.induct, auto simp: pat-complete-def match-complete-wrt-def)
```

theorem $P$-step-set-pcorrect: $P \nRightarrow_{s} P^{\prime} \Longrightarrow$ wf-pats $P \Longrightarrow$

```
    pats-complete P \longleftrightarrow pats-complete P'
proof (induct P P' rule: P-step-set.induct)
    case ( }P\mathrm{ -fail P)
    then show ?case by (auto simp: pat-complete-def)
next
    case ( }P\mathrm{ -simp pp pp' P)
    then show ?case using pp-step-pcorrect[of pp pp] by auto
next
    case (P-remove-pp pp P)
    then show ?case using pp-success-pcorrect[of pp] by auto
next
    case *: (P-instantiate n ppx P)
    note def = pat-complete-def[unfolded match-complete-wrt-def]
    show ?case
    proof (rule ball-insert-un-cong, standard)
    assume complete: pats-complete {subst-pat-problem-set \tau pp |. \tau\in\taus n x}
    show pat-complete pp unfolding def
    proof (intro allI impI)
        fix \sigma :: ('f,nat }\times\mp@subsup{}{}{\prime}s,\mp@subsup{,}{}{\prime}v)gsubs
        from * have wf-pat pp unfolding wf-pats-def by auto
        with *(2) have x: snd x S S unfolding tvars-pp-def tvars-mp-def wf-pat-def
wf-match-def by force
    assume cg:cg-subst \sigma
    from this[unfolded cg-subst-def] x
    have \sigma x: snd x in \mathcal{T}(C,EMPTY) by blast
    then obtain fts \sigmas where f:f:\sigmas-> snd x in C
    and args: ts :l}\mp@subsup{}{l}{}\sigmas\mathrm{ in }\mathcal{T}(C,EMPTY
    and \sigmax:\sigma x = Funfts
    by (induct, auto simp: EMPTY-def)
    from f have f:f:\sigmas-> snd x in C
            by (meson hastype-in-ssig-def)
    let ?l = length ts
    from args have len: length \sigmas=?l
    by (simp add: list-all2-lengthD)
    have l:?l }\leqm\mathrm{ using m[OF f] len by auto
    define }\mp@subsup{\sigma}{}{\prime}\mathrm{ where }\mp@subsup{\sigma}{}{\prime}=(\lambda\mathrm{ ys. let y = fst ys in if n }\leqy\wedgey<n+?l \wedge\sigmas
(y-n)= snd ys then ts! (y-n) else \sigma ys)
    have cg:cg-subst }\mp@subsup{\sigma}{}{\prime}\mathrm{ unfolding cg-subst-def
    proof (intro allI impI)
            fix ys :: nat > 's
            assume ysS: snd ys }\in
            show }\mp@subsup{\sigma}{}{\prime}\mathrm{ ys : snd ys in }\mathcal{T}(C,EMPTY
            proof (cases \mp@subsup{\sigma}{}{\prime}}ys=\sigmays
                    case True
                    thus ?thesis using cg ysS unfolding cg-subst-def by metis
            next
                case False
```

obtain $y s$ where $y s$ : ys $=(y, s)$ by force
with False have $y: y-n<$ ? $n \leq y y<n+? l$ and $a r g: ~ \sigma s!(y-n)$ $=s$ and $\sigma^{\prime}: \sigma^{\prime} y s=t s!(y-n)$
unfolding $\sigma^{\prime}$-def Let-def by (auto split: if-splits)
show ?thesis unfolding $\sigma^{\prime}$ unfolding ys snd-conv arg[symmetric] using $y(1)$ len args

```
            by (metis list-all2-nthD)
        qed
    qed
    define }\tau\mathrm{ where }\tau=\mathrm{ subst x (Funf (map Var (zip [n..<n + ?l] }\sigmas))
```

    from \(f\) have \(\tau \in \tau s n x\) unfolding \(\tau s\)-def \(\tau\)-def \(\tau c\)-def using len[symmetric]
    by auto
hence pat-complete (subst-pat-problem-set $\tau$ pp) using complete by auto
from this[unfolded def, rule-format, OF cg]
obtain $t l \mu$ where $t l: t l \in$ subst-pat-problem-set $\tau p p$
and match: $\bigwedge$ ti li. $(t i, l i) \in t l \Longrightarrow t i \cdot \sigma^{\prime}=l i \cdot \mu$ by force
from $t l[$ unfolded subst-defs-set subst-left-def set-map]
obtain $t l^{\prime}$ where $t l^{\prime}: t l^{\prime} \in p p$ and $t l: t l=\left\{\left(t^{\prime} \cdot \tau, l\right) \mid \cdot\left(t^{\prime}, l\right) \in t l^{\prime}\right\}$ by auto
show $\exists t l \in p p . \exists \mu . \forall(t i, l i) \in t l . t i \cdot \sigma=l i \cdot \mu$
proof (intro bexI[OF - tl' $]$ exI $[o f-\mu]$, clarify)
fix tili
assume $t l i:(t i, l i) \in t l^{\prime}$
hence tlit: $(t i \cdot \tau, l i) \in t l$ unfolding $t l$ by force
from match $[O F$ this $]$ have match: $t i \cdot \tau \cdot \sigma^{\prime}=l i \cdot \mu$ by auto
from $*(1)[$ unfolded tvars-disj-pp-def, rule-format, OF tl' tli]
have vti: fst'vars-term ti $\cap\{n . .<n+m\}=\{ \}$ by auto
have $t i \cdot \sigma=t i \cdot\left(\tau \circ{ }_{s} \sigma^{\prime}\right)$
proof (rule term-subst-eq, unfold subst-compose-def)
fix $y$
assume $y \in$ vars-term ti
with vti have $y$ : fst $y \notin\{n . .<n+m\}$ by auto
show $\sigma y=\tau y \cdot \sigma^{\prime}$
proof (cases $y=x$ )
case False
hence $\tau y \cdot \sigma^{\prime}=\sigma^{\prime} y$ unfolding $\tau$-def subst-def by auto
also have $\ldots=\sigma y$
unfolding $\sigma^{\prime}$-def using $y l$ by auto
finally show ?thesis by simp
next
case True
show ?thesis unfolding True $\tau$-def subst-simps $\sigma x$ eval-term.simps
map-map o-def term.simps
by (intro conjI refl nth-equalityI, auto simp: len $\sigma^{\prime}$-def)
qed
qed
also have $\ldots=l i \cdot \mu$ using match by simp
finally show $t i \cdot \sigma=l i \cdot \mu$ by blast
qed
qed
next assume complete: pat-complete $p p$ \{ fix $\tau$
assume $\tau \in \tau s n x$
from this[unfolded $\tau s$-def $\tau c$-def, simplified]
obtain $f$ sorts where $f: f:$ sorts $\rightarrow$ snd $x$ in $C$ and $\tau: \tau=$ subst $x$ (Fun $f$
(map Var $(z i p[n . .<n+$ length sorts $]$ sorts $))$ ) by auto
let $? i=$ length sorts
let ? $x s=z i p[n . .<n+$ length sorts $]$ sorts
have $i$ : ? $i \leq m$ by (rule $m[O F f]$ )
have pat-complete (subst-pat-problem-set $\tau$ pp) unfolding def proof (intro allI impI)
fix $\sigma::\left(\right.$ ' $\left.f, n a t \times{ }^{\prime} s,{ }^{\prime} v\right)$ gsubst
assume cg: cg-subst $\sigma$
define $\sigma^{\prime}$ where $\sigma^{\prime}=\sigma(x:=\operatorname{Fun} f(\operatorname{map} \sigma$ ? $x s))$
from $C$-sub- $S[O F f]$ have sortsS: set sorts $\subseteq S$ by auto
from $f$ have $f: f:$ sorts $\rightarrow$ snd $x$ in $C$ by (simp add: hastype-in-ssig-def)
hence Fun $f$ (map $\sigma$ ? $x s$ ) : snd $x$ in $\mathcal{T}(C, E M P T Y)$
proof (rule Fun-hastypeI)
show map $\sigma$ ? xs $:_{l}$ sorts in $\mathcal{T}(C, E M P T Y)$
using cg[unfolded cg-subst-def, rule-format, OF set-mp[OF sortsS]]
by (smt (verit) add-diff-cancel-left' length-map length-upt length-zip
list-all2-conv-all-nth min.idem nth-map nth-mem nth-zip prod.sel(2))
qed
hence $c g$ : cg-subst $\sigma^{\prime}$ using $c g f$ unfolding $c g$-subst-def $\sigma^{\prime}$-def by auto
from complete[unfolded def, rule-format, OF this]
obtain $t l \mu$ where $t l: t l \in p p$ and $t l i: \bigwedge t i l i .(t i, l i) \in t l \Longrightarrow t i \cdot \sigma^{\prime}=l i$.
$\mu$ by force
from $t l$ have tlm: $\{(t \cdot \tau, l) \mid .(t, l) \in t l\} \in$ subst-pat-problem-set $\tau p p$ unfolding subst-defs-set subst-left-def by auto
\{
fix tili
assume mem: $(t i, l i) \in t l$
from $*[$ unfolded tvars-disj-pp-def] tl mem have vti: fst' vars-term ti $\cap$
$\{n . .<n+m\}=\{ \}$ by force
from $t l i[O F m e m]$ have $l i \cdot \mu=t i \cdot \sigma^{\prime}$ by auto
also have $\ldots=t i \cdot\left(\tau \circ_{s} \sigma\right)$
proof (intro term-subst-eq, unfold subst-compose-def)
fix $y$
assume $y \in$ vars-term ti
with vti have $y$ : fst $y \notin\{n . .<n+m\}$ by auto
show $\sigma^{\prime} y=\tau y \cdot \sigma$
proof (cases $y=x$ )
case False
hence $\tau y \cdot \sigma=\sigma y$ unfolding $\tau$ subst-def by auto
also have $\ldots=\sigma^{\prime} y$
unfolding $\sigma^{\prime}$-def using False by auto
finally show ?thesis by simp

```
                    next
                    case True
                        show ?thesis unfolding True \tau
                        by (simp add:o-def \sigma'-def)
                    qed
                qed
                finally have ti\cdot\tau\cdot\sigma=li . \mu by auto
            }
            thus \existstl\in subst-pat-problem-set \tau pp. \exists\mu.\forall(ti,li)\intl. ti \cdot\sigma=li . \mu
                by (intro bexI[OF - tlm], auto)
            qed
    }
    thus pats-complete {subst-pat-problem-set \tau pp |.\tau\in\taus n x} by auto
    qed
next
    case *: (P-failure' pp P)
    {
        assume pp: pat-complete pp
        with *(3) have wf: wf-pat pp by (auto simp: wf-pats-def)
        define conft' :: ('f, nat }\times\mathrm{ 's) term }=>('f, nat > 's)term => nat > 's => boo
where confl'}=(\lambda\mathrm{ sp tp y.
            sp=Var y ^ inf-sort (snd y) ^ sp f tp)
    define P1 where P1 = (\lambda mp s t x y p.mp f pp\longrightarrow(s, Var x) \inmp^(t,
Var x) \inmp^p\in poss s ^ p\in poss t ^confl'}(s|-p)(t|-p) y
    {
        fix mp
        assume mp }\inp
        hence inf-var-conflict mp using * by auto
        from inf-var-conflictD[OF this]
        have \exists s t x y p. P1 mp st x y p unfolding P1-def confl'-def by force
    }
    hence }\forallmp.\existsstxyp.P1 mp stx y p unfolding P1-def by blas
    from choice[OF this] obtain s where \forall mp.\exists txyp.P1 mp (s mp) t x y p
by blast
    from choice[OF this] obtain t where }\forallmp.\existsxyp.P1mp(s mp) (t mp)
yp}\mathrm{ by blast
    from choice[OF this] obtain x where }\forallmp.\existsyp.P1mp(s mp) (t mp) (
mp) y p by blast
    from choice[OF this] obtain y where \forallmp.\exists p.P1 mp (s mp) (t mp) (x
mp) (ymp) p by blast
    from choice [OF this] obtain p}\mathrm{ where }\forallmp.P1 mp (s mp) (t mp) (x mp) (
mp) ( }p\textrm{mp}\mathrm{ ) by blast
    note P1 = this[unfolded P1-def, rule-format]
    from *(2) have finite (y'pp) by blast
    from ex-bij-betw-finite-nat[OF this] obtain index and n :: nat where
            bij: bij-betw index (y'pp) {..<n}
            by (auto simp add: atLeastOLessThan)
    define var-ind :: nat => nat }\times\mathrm{ 's }=>\mathrm{ bool where
        var-ind ix = (x\iny'pp^ index }x\in{..<n}-{..<i}) for ix
```

```
    have [simp]: var-ind n x = False for }
        unfolding var-ind-def by auto
    define cg-subst-ind :: nat => ('f,nat }\times\mathrm{ 's)subst }=>\mathrm{ bool where
        cg-subst-ind i }\sigma=(\forallx.(var-ind i x \longrightarrow\sigmax=Var x)
```



```
x in \mathcal{T}(C,EMPTYn))))) for i }
    define confl :: nat }=>('f,nat\times's) term => ('f, nat ×'s)term => bool wher
confl=( }\lambda\mathrm{ isp tp.
(case (sp,tp) of (Var x, Var y) => x = y ^var-ind i x ^ var-ind i y
    | (Var x, Fun --) => var-ind i x
    |(Fun--, Var x) => var-ind i x
    | (Fun f ss, Fung ts) }=>(f,length ss) = (g,length ts ) ) )
    have confl-n: confl n st\Longrightarrow\existsfg ssts.s=Funf ss \wedget=Fungts \wedge(f,length
ss)}\not=(g,length ts) for s
    by (cases s; cases t; auto simp: confl-def)
    {
        fix }
    assume i\leqn
    hence \exists \sigma.cg-subst-ind i \sigma^(\forallmp\inpp.\exists p.p\in poss (s mp | \sigma)\wedge p\in
poss (t mp | \sigma) ^confl i (s mp | \sigma |-p) (t mp | \sigma |-p))
    proof (induction i)
        case 0
            define }\sigma\mathrm{ where }\sigmax=(\mathrm{ (if var-ind 0 x then Var x else if snd x }\inS\mathrm{ then
map-vars undefined ( }\sigmagx\mathrm{ ) else Fun undefined []) for x
            {
            fix x :: nat }\times\mathrm{ 's
            define t where t=\sigmagx
            define s}\mathrm{ where }s=\mathrm{ snd }
            assume snd x }\in
            hence }\sigmagx\mathrm{ : snd x in }\mathcal{T}(C,EMPTY) using \sigmag unfolding cg-subst-def
by blast
            hence map-vars undefined ( }\sigmagx):\mathrm{ snd }x\mathrm{ in }\mathcal{T}(C,EMPTYn) (is ?m : - in
-)
            unfolding t-def[symmetric] s-def[symmetric]
            proof (induct t s rule: hastype-in-Term-induct)
                    case (Var v \sigma)
                    then show ?case by (auto simp: EMPTY-def)
            next
                case (Fun f ss \sigmas \tau)
                then show ?case unfolding term.simps
                        by (smt (verit, best) Fun-hastype list-all2-map1 list-all2-mono)
            qed
        }
            from this cg-term-vars[OF this] have \sigma:cg-subst-ind 0 \sigma unfolding
cg-subst-ind-def \sigma-def by auto
            show ?case
            proof (rule exI, rule conjI[OF \sigma], intro ballI exI conjI)
            fix mp
            assume mp: mp\in pp
```

```
    note P1 = P1[OF this]
    from mp have mem: y mp\in y'pp by auto
    with bij have y: index (y mp) \in{..<n} by (metis bij-betw-apply)
    hence y0: var-ind 0 (y mp) using mem unfolding var-ind-def by auto
    show p mp \in poss (s mp \cdot\sigma) using P1 by auto
    show }pmp\in\mathrm{ poss ( }tmp\cdot\sigma)\mathrm{ using P1 by auto
    let ?t = t mp |- pmp
    define c where c= confl 0(smp | \sigma |-pmp) (tmp | \sigma |-pmp)
    have c = confl 0 (s mp - p mp | ) (?t \cdot\sigma)
        using P1 unfolding c-def by auto
    also have s:s mp |- pmp= Var (y mp) using P1 unfolding confl'-def
by auto
    also have ... · \sigma = Var (ymp) using y0 unfolding }\sigma\mathrm{ -def by auto
    also have confl 0(Var (y mp))(?t | \sigma)
    proof (cases ?t · \sigma)
            case Fun
            thus ?thesis using y0 unfolding confl-def by auto
    next
        case (Var z)
        then obtain u where t:?t = Var u and ssig:\sigmau=Varz
            by (cases ?t, auto)
        from P1[unfolded s] have confl' (Var (y mp)) ?t (y mp) by auto
        from this[unfolded confl'-def t] have uy: y mp \not=u by auto
        show ?thesis
        proof (cases var-ind 0 u)
            case True
            with y0 uy show ?thesis unfolding t \sigma-def confl-def by auto
        next
            case False
            with ssig[unfolded \sigma-def] have uS: snd u}\inS\mathrm{ and contra: map-vars
undefined (\sigmagu)= Var z
            by (auto split: if-splits)
            from \sigmag[unfolded cg-subst-def, rule-format, OF uS] contra
            have False by (cases \sigmag u, auto simp: EMPTY-def)
            thus ?thesis..
            qed
    qed
    finally show confl 0 (s mp | | |-pmp) (t mp | \sigma |- pmp) unfolding
c-def .
    qed
    next
        case (Suc i)
        then obtain \sigma where \sigma:cg-subst-ind i \sigma and confl: ( }\forallmp\inpp.\existsp.p
poss (s mp | \sigma)^ p\in poss (t mp | \sigma) ^ confl i (s mp | \sigma |-p) (t mp | \sigma |-p))
            by auto
    from Suc have i\in{..<n} and i:i<n by auto
    with bij obtain z where z: z\in y'pp index z=i unfolding bij-betw-def
by (metis imageE)
    {
```

from $z$ obtain $m p$ where $m p \in p p$ and index $(y m p)=i$ and $z=y m p$ by auto
with P1[OF this(1), unfolded confl'-def] have inf: inf-sort (snd z) and $*: p m p \in \operatorname{poss}(s m p) s m p \mid-p m p=\operatorname{Var} z(s m p, \operatorname{Var}(x m p)) \in$ $m p$ by auto
from $*(1,2)$ have $z \in$ vars ( $s \mathrm{mp}$ ) using vars-term-subt-at by fastforce
with $*$ (3) have $z \in$ tvars-mp mp unfolding tvars-mp-def by force
with $\langle m p \in p p\rangle w f$ have snd $z \in S$ unfolding wf-pat-def wf-match-def
by auto
from not-bdd-above-natD[OF inf[unfolded inf-sort-def[OF this]]] term-of-sort[OF this]
have $\wedge n . \exists t . t:$ snd $z$ in $\mathcal{T}(C, E M P T Y n) \wedge n<$ size $t$ by auto
$\}$ note $z$-inf $=$ this
define all-st where all-st $=(\lambda m p . s m p \cdot \sigma)$ ' $p p \cup(\lambda m p . t m p \cdot \sigma)$ ' $p p$
have fin-all-st: finite all-st unfolding all-st-def using *(2) by simp
define $d::$ nat where $d=$ Suc (Max (size'all-st))
from $z$-inf $[o f d]$
obtain $u$ where $u: u:$ snd $z$ in $\mathcal{T}(C, E M P T Y n)$ and $d u: d \leq$ size $u$ by auto
have vars-u: vars $u=\{ \}$ by (rule cg-term-vars $[$ OF $u]$ )
define $\sigma^{\prime}$ where $\sigma^{\prime} x=($ if $x=z$ then $u$ else $\sigma x$ ) for $x$
have $\sigma^{\prime}$-def': $\sigma^{\prime} x=\left(\right.$ if $x \in y^{\prime} p p \wedge$ index $x=i$ then $u$ else $\left.\sigma x\right)$ for $x$ unfolding $\sigma^{\prime}$-def by (rule if-cong, insert bij $z$, auto simp: bij-betw-def inj-on-def)
have var-ind-conv: var-ind i $x=(x=z \vee \operatorname{var-ind}(S u c i) x)$ for $x$ proof
assume $x=z \vee$ var-ind (Suc i) $x$
thus var-ind ix using $z i$ unfolding var-ind-def by auto
next
assume var-ind $i x$
hence $x: x \in y^{\prime} p p$ index $x \in\{. .<n\}-\{. .<i\}$ unfolding var-ind-def by
auto
with $i$ have index $x=i \vee$ index $x \in\{. .<n\}-\{. .<$ Suc $i\}$ by auto
thus $x=z \vee$ var-ind (Suc i) $x$
proof
assume index $x=i$
with $x(1) z$ bij have $x=z$ by (auto simp: bij-betw-def inj-on-def)
thus ?thesis by auto
qed (insert $x$, auto simp: var-ind-def)
qed
have [simp]: var-ind $i z$ unfolding var-ind-conv by auto
have [simp]: var-ind (Suc i) $z=$ False unfolding var-ind-def using $z$ by auto
have $\sigma z[\operatorname{simp}]: \sigma z=\operatorname{Var} z$ using $\sigma[$ unfolded cg-subst-ind-def, rule-format, of $z]$ by auto
have $\sigma^{\prime}$-upd: $\sigma^{\prime}=\sigma(z:=u)$ unfolding $\sigma^{\prime}$-def by (intro ext, auto)

```
    have \(\sigma^{\prime}\)-comp: \(\sigma^{\prime}=\sigma \circ_{s} \operatorname{Var}(z:=u)\) unfolding subst-compose-def \(\sigma^{\prime}\)-upd
    proof (intro ext)
    fix \(x\)
    show \((\sigma(z:=u)) x=\sigma x \cdot \operatorname{Var}(z:=u)\)
    proof (cases \(x=z\) )
        case False
        hence \(\sigma x \cdot(\operatorname{Var}(z:=u))=\sigma x \cdot \operatorname{Var}\)
        proof (intro term-subst-eq)
            fix \(y\)
            assume \(y: y \in \operatorname{vars}(\sigma x)\)
            show \((\operatorname{Var}(z:=u)) y=\operatorname{Var} y\)
            proof (cases var-ind \(i x\) )
                case True
                with \(\sigma\) [unfolded cg-subst-ind-def, rule-format, of \(x]\)
                have \(\sigma x=\operatorname{Var} x\) by auto
                with False \(y\) show ?thesis by auto
            next
                case False
                with \(\sigma\) [unfolded cg-subst-ind-def, rule-format, of \(x\) ]
                have vars \((\sigma x)=\{ \}\) by auto
                with \(y\) show ?thesis by auto
            qed
        qed
        thus ?thesis by auto
    qed \(\operatorname{simp}\)
qed
have \(\sigma^{\prime}\) : cg-subst-ind (Suc i) \(\sigma^{\prime}\) unfolding cg-subst-ind-def
proof (intro allI conjI impI)
    fix \(x\)
    assume var-ind (Suc i) \(x\)
    hence var-ind \(i x\) and diff: index \(x \neq i\) unfolding var-ind-def by auto
    hence \(\sigma x=\) Var \(x\) using \(\sigma[\) unfolded cg-subst-ind-def \(]\) by blast
    thus \(\sigma^{\prime} x=\) Var \(x\) unfolding \(\sigma^{\prime}\)-def \({ }^{\prime}\) using diff by auto
next
    fix \(x\)
    assume \(\neg\) var-ind (Suc i) \(x\) and snd \(x \in S\)
    thus \(\sigma^{\prime} x\) : snd \(x\) in \(\mathcal{T}(C, E M P T Y n)\)
        using \(\sigma\) [unfolded cg-subst-ind-def, rule-format, of \(x] u\)
        unfolding \(\sigma^{\prime}\)-def var-ind-conv by auto
    next
        fix \(x\)
        assume \(\neg\) var-ind (Suc i) \(x\)
        hence \(x=z \vee \neg\) var-ind ix unfolding var-ind-conv by auto
    thus vars \(\left(\sigma^{\prime} x\right)=\{ \}\) unfolding \(\sigma^{\prime}\)-upd using \(\sigma\) [unfolded cg-subst-ind-def,
rule-format, of \(x]\) vars- \(u\) by auto
    qed
    show ?case
    proof (intro exI[of - \(\sigma\) ] conjI \(\sigma^{\prime}\) ballI)
        fix \(m p\)
```

```
assume mp: mp \in pp
```



```
define t' where }\mp@subsup{t}{}{\prime}=tmp\cdot
from confl[rule-format, OF mp]
obtain p where p:p\in poss s' p f poss t' and confl: confl i (s'|-p)(t'
|-p) by (auto simp: s'-def t'-def)
    {
    fix s't'::('f, nat }\times\mp@subsup{}{}{\prime}'s) term and pf ss x
    assume *: (s'|-p, t' |-p) =(Fun f ss, Var x) var-ind ix and p:p\in
poss s' p}\in\mathrm{ poss t'
                and range-all-st: s' \in all-st
    hence s': s' \cdot Var (z:=u) |- p=Fun f ss \cdot Var (z:=u) (is - =?s)
    and }\mp@subsup{t}{}{\prime}:\mp@subsup{t}{}{\prime}\cdot\operatorname{Var}(z:=u)|-p=(\mathrm{ if }x=z\mathrm{ then u else Var }x\mathrm{ ) using }p\mathrm{ by
auto
    from range-all-st[unfolded all-st-def]
    have range\sigma: \existsS. s}=S\cdot\sigma\mathrm{ by auto
    define }s\mathrm{ where }s=\mathrm{ ?s
    have \existsp.p\inposs (s'. Var(z:=u))^p\inposs (t'. Var (z:=u))^
confl (Suc i) (s'. Var(z:=u) |-p) (t'}\cdot\operatorname{Var}(z:=u) |-p
    proof (cases x=z)
        case False
        thus ?thesis using * p unfolding s' }\mp@subsup{t}{}{\prime}\mathrm{ by (intro exI [of - p], auto simp:
confl-def var-ind-conv)
    next
            case True
            hence t': t' \cdot Var(z:=u) |- p=u unfolding t' by auto
            have \exists p'. p'\in poss u ^ p'\in poss s ^ confl (Suc i) (s|- p') (u |- p')
            proof (cases \existsx.x\invars s ^var-ind (Suc i) x)
                case True
                    then obtain x where xs: x\in vars s and x:var-ind (Suc i) x by
auto
            from xs obtain p' where p': p
(metis vars-term-poss-subt-at)
            from p' sp vars-u show ?thesis
            proof (induct u arbitrary: p's)
                    case (Fun fus p's)
                    show ?case
                    proof (cases s)
                            case (Var y)
                            with Fun have s: s=Var x by auto
                            with x show ?thesis by (intro exI[of-Nil], auto simp: confl-def)
                    next
                            case s:(Fung ss)
                            with Fun obtain jp where p: p' = j# pj<length ss p \in poss
(ss!j) (ss!j) |-p=Var x by auto
                    show ?thesis
                    proof (cases (f,length us) =(g,length ss )}
                    case False
                    thus ?thesis by (intro exI[of - Nil], auto simp: s confl-def)
```

```
            next
                    case True
                            with p have j:j< length us by auto
                    hence usj: us ! j\in set us by auto
                            with Fun have vars (us!j)={} by auto
                            from Fun(1)[OF usj p(3,4) this] obtain p' where
                    p
p')(us!j|- p') by auto
                            thus ?thesis using j p by (intro exI[of - j# p], auto simp: s)
            qed
        qed
        qed auto
        next
        case False
        from * have fss:Fun f ss = s' |-p by auto
        from range\sigma obtain S where sS: s
        from p have vars (s'|-p)\subseteqvars s' by (metis vars-term-subt-at)
            also have \ldots=(\bigcupy\invars S.vars (\sigmay)) unfolding sS by (simp
add: vars-term-subst)
    also have }\ldots\subseteq(\bigcupy\in\mathrm{ vars S. Collect (var-ind i))
    proof -
        {
            fix }x
            assume x\invars (\sigmay)
            hence var-ind ix
                    using \sigma[unfolded cg-subst-ind-def, rule-format, of y] by auto
            }
            thus ?thesis by auto
        qed
        finally have sub:vars (s' }\mp@subsup{s}{}{\prime}-p)\subseteqCollect (var-ind i) by blas
        have vars s = vars ( s' |-p \cdot Var (z:=u)) unfolding s-def s' fss by
auto
    also have }\ldots=\bigcup(vars'Var(z:=u)'vars (s' |-p)) by (simp add
vars-term-subst)
    also have }\ldots\subseteq\bigcup(vars'\operatorname{Var}(z:=u)'Collect (var-ind i)) using
sub by auto
    also have ...\subseteqCollect (var-ind (Suc i))
    by (auto simp: vars-u var-ind-conv)
    finally have vars-s: vars s={} using False by auto
    {
        assume s=u
        from this[unfolded s-def fss]
        have eq: s' |-p\cdotVar(z:=u)=u by auto
        have False
        proof (cases z \in vars (s'| | p))
            case True
            have diff: s' |-p\not= Var z using * by auto
            from True obtain C where id: s' |- p=C\langleVarz\rangle
```

```
            by (metis ctxt-supt-id vars-term-poss-subt-at)
    with diff have diff: \(C \neq\) Hole by (cases \(C\), auto)
    from eq[unfolded id, simplified] diff
    obtain \(C\) where \(C\langle u\rangle=u\) and \(C \neq H o l e\) by (cases \(C\); force)
    from arg-cong[OF this(1), of size] this(2) show False
        by (simp add: less-not-refl2 size-ne-ctxt)
    next
    case False
    have size: size \(s^{\prime} \in\) size 'all-st using range-all-st by auto
    from False have \(s^{\prime}\left|-p \cdot \operatorname{Var}(z:=u)=s^{\prime}\right|-p \cdot \operatorname{Var}\)
        by (intro term-subst-eq, auto)
    with \(e q\) have \(e q: s^{\prime} \mid-p=u\) by auto
    hence size \(u=\) size \(\left(s^{\prime} \mid-p\right)\) by auto
    also have \(\ldots \leq\) size \(s^{\prime}\) using \(p(1)\)
        by (rule subt-size)
    also have \(\ldots \leq \operatorname{Max}\) (size ' all-st)
        using size fin-all-st by simp
    also have \(\ldots<d\) unfolding \(d\)-def by simp
    also have \(\ldots \leq\) size \(u\) using \(d u\).
    finally show False by simp
    qed
\}
hence \(s \neq u\) by auto
with vars-s vars-u
show ?thesis
proof (induct s arbitrary: u)
    case \(s\) : (Fun fss u)
    then obtain \(g u s\) where \(u: u=\) Fun \(g\) us by (cases \(u\), auto)
    show ?case
    proof \((\) cases \((f\), length ss \()=(g\), length \(u s))\)
    case False
            thus ?thesis unfolding \(u\) by (intro exI [of - Nil], auto simp:
confl-def)
    next
    case True
    with \(s(4)[\) unfolded \(u]\) have \(\exists j<\) length us. ss \(!j \neq u s!j\)
        by (auto simp: list-eq-nth-eq)
        then obtain \(j\) where \(j: j<\) length us and diff: ss \(!j \neq u s!j\)
by auto
    from \(j\) True have mem: ss \(!j \in\) set ss us \(!j \in\) set us by auto
    with \(s(2-) u\) have vars \((s s!j)=\{ \}\) vars \((u s!j)=\{ \}\) by auto
    from \(s(1)[O F \operatorname{mem}(1)\) this diff \(]\) obtain \(p^{\prime}\) where
    \(p^{\prime} \in \operatorname{poss}(u s!j) \wedge p^{\prime} \in \operatorname{poss}(s s!j) \wedge \operatorname{confl}(\) Suc \(i)\left(s s!j \mid-p^{\prime}\right)\)
(us ! \(j \mid-p^{\prime}\) )
            by blast
    thus ?thesis unfolding \(u\) using True \(j\) by (intro exI[of-j\#p \({ }^{\prime}\),
auto)
    qed
    qed auto
```

qed
then obtain $p^{\prime}$ where $p^{\prime}: p^{\prime} \in$ poss $u p^{\prime} \in$ poss $s$ and confl: confl (Suc i) $\left(s \mid-p^{\prime}\right)\left(u \mid-p^{\prime}\right)$ by auto
have $s^{\prime \prime}: s^{\prime} \cdot \operatorname{Var}(z:=u)\left|-\left(p @ p^{\prime}\right)=s\right|-p^{\prime}$ unfolding $s$-def $s^{\prime}\left[\right.$ symmetric] using $p p^{\prime}$ by auto
have $t^{\prime \prime}: t^{\prime} \cdot \operatorname{Var}(z:=u)\left|-\left(p @ p^{\prime}\right)=u\right|-p^{\prime}$ using $t^{\prime} p p^{\prime}$ by auto
show ? thesis
proof (intro exI[of -p@p], unfold $s^{\prime \prime} t^{\prime \prime}$, intro conjI conff)
have $p \in \operatorname{poss}\left(s^{\prime} \cdot \operatorname{Var}(z:=u)\right)$ using $p$ by auto moreover have $p^{\prime} \in \operatorname{poss}\left(\left(s^{\prime} \cdot \operatorname{Var}(z:=u)\right) \mid-p\right)$ using $s^{\prime} p^{\prime} p$ unfolding $s$-def by auto
ultimately show $p @ p^{\prime} \in \operatorname{poss}\left(s^{\prime} \cdot \operatorname{Var}(z:=u)\right)$ by simp
have $p \in$ poss $\left(t^{\prime} \cdot \operatorname{Var}(z:=u)\right)$ using $p$ by auto
moreover have $p^{\prime} \in \operatorname{poss}\left(\left(t^{\prime} \cdot \operatorname{Var}(z:=u)\right) \mid-p\right)$ using $t^{\prime} p^{\prime} p$ by
auto
ultimately show $p$ @ $p^{\prime} \in \operatorname{poss}\left(t^{\prime} \cdot \operatorname{Var}(z:=u)\right)$ by $\operatorname{simp}$
qed
qed
\} note main $=$ this
consider (FF) fg ss ts where $\left(s^{\prime}\left|-p, t^{\prime}\right|-p\right)=($ Fun $f$ ss, Fun $g t s)$ $(f$, length $s s) \neq(g$, length $t s)$
$\mid(F V) f$ ss $x$ where $\left(s^{\prime}\left|-p, t^{\prime}\right|-p\right)=($ Fun $f$ ss, Var $x$ ) var-ind $i x$
$\mid(V F) f$ ss $x$ where $\left(s^{\prime}\left|-p, t^{\prime}\right|-p\right)=(\operatorname{Var} x$, Fun $f$ ss) var-ind i $x$
$\mid(V V) x x^{\prime}$ where $\left(s^{\prime}\left|-p, t^{\prime}\right|-p\right)=\left(\right.$ Var $x$, Var $\left.x^{\prime}\right) x \neq x^{\prime}$ var-ind $i x$ var-ind $i x^{\prime}$
using confl by (auto simp: confl-def split: term.splits)
hence $\exists p$. $p \in \operatorname{poss}\left(s^{\prime} \cdot \operatorname{Var}(z:=u)\right) \wedge p \in \operatorname{poss}\left(t^{\prime} \cdot \operatorname{Var}(z:=u)\right) \wedge$ confl (Suc $i)\left(s^{\prime} \cdot \operatorname{Var}(z:=u) \mid-p\right)\left(t^{\prime} \cdot \operatorname{Var}(z:=u) \mid-p\right)$
proof cases
case (FF fg st ts)
thus ?thesis using $p$ by (intro exI $[$ of $-p]$, auto simp: confl-def)
next
case ( $F V f$ ss $x$ )
have $s^{\prime} \in$ all-st unfolding $s^{\prime}$-def using mp all-st-def by auto
from main[OF FV p this] show ?thesis by auto
next
case ( $V F f$ ss $x$ )
have $t^{\prime}: t^{\prime} \in$ all-st unfolding $t^{\prime}$-def using $m p$ all-st-def by auto
from $V F$ have $\left(t^{\prime}\left|-p, s^{\prime}\right|-p\right)=($ Fun $f$ ss, Var $x$ ) var-ind $i x$ by auto from main[OF this $\left.p(2,1) t^{\prime}\right]$
obtain $p$ where $p \in \operatorname{poss}\left(t^{\prime} \cdot \operatorname{Var}(z:=u)\right) p \in$ poss $\left(s^{\prime} \cdot \operatorname{Var}(z:=u)\right)$
confl (Suc $i)\left(t^{\prime} \cdot \operatorname{Var}(z:=u) \mid-p\right)\left(s^{\prime} \cdot \operatorname{Var}(z:=u) \mid-p\right)$
by auto
thus ?thesis by (intro exI[of - p], auto simp: confl-def split: term.splits) next
case ( $V V x^{\prime}$ )
thus ?thesis using $p$ vars- $u$ by (intro exI $[$ of $-p]$, cases $u$, auto simp: confl-def var-ind-conv)
qed
thus $\exists p . p \in \operatorname{poss}\left(s m p \cdot \sigma^{\prime}\right) \wedge p \in \operatorname{poss}\left(t m p \cdot \sigma^{\prime}\right) \wedge$ confl (Suc $\left.i\right)(s$ $\left.m p \cdot \sigma^{\prime} \mid-p\right)\left(t m p \cdot \sigma^{\prime} \mid-p\right)$
unfolding $\sigma^{\prime}$-comp subst-subst-compose $s^{\prime}$-def $t^{\prime}$-def by auto qed
qed
\}
from this[of $n$ ]
obtain $\sigma$ where $\sigma$ : cg-subst-ind $n \sigma$ and confl: $\wedge m p . m p \in p p \Longrightarrow \exists p . p \in$ poss $(s m p \cdot \sigma) \wedge p \in \operatorname{poss}(t m p \cdot \sigma) \wedge$ confl $n(s m p \cdot \sigma \mid-p)(t m p \cdot \sigma \mid-p)$
by blast
define $\sigma^{\prime}::\left({ }^{\prime} f, n a t \times{ }^{\prime} s,^{\prime} v\right)$ gsubst where $\sigma^{\prime} x=\operatorname{Var}$ undefined for $x$
let ? $\sigma=\sigma \circ_{s} \sigma^{\prime}$
have cg-subst ? $\sigma$ unfolding cg-subst-def subst-compose-def
proof (intro allI impI)
fix $x$ :: nat $\times$ 's
assume snd $x \in S$
with $\sigma$ [unfolded cg-subst-ind-def, rule-format, of $x]$
have $\sigma x:$ snd $x$ in $\mathcal{T}(C, E M P T Y n)$ by auto
thus $\sigma x \cdot \sigma^{\prime}$ : snd $x$ in $\mathcal{T}(C, E M P T Y)$ by (rule type-conversion1)
qed
from $p p[$ unfolded pat-complete-def match-complete-wrt-def, rule-format, OF this]
obtain $m p \mu$ where $m p: m p \in p p$ and match: $\wedge t i l i .(t i, l i) \in m p \Longrightarrow t i \cdot ? \sigma$ $=l i \cdot \mu$ by force
from P1[OF this(1)]
have $(s m p, \operatorname{Var}(x m p)) \in m p(t m p, \operatorname{Var}(x m p)) \in m p$ by auto
from match[OF this(1)] match[OF this(2)] have ident: $s m p \cdot ? \sigma=t m p \cdot ? \sigma$
by auto
from confl $[O F m p]$ obtain $p$
where $p: p \in$ poss $(s \mathrm{mp} \cdot \sigma) p \in$ poss $(t \mathrm{mp} \cdot \sigma)$ and confl: confl $n(\mathrm{smp}$.
$\sigma \mid-p)(t m p \cdot \sigma \mid-p)$
by auto
let ?s $=s m p \cdot \sigma$ let $? t=t m p \cdot \sigma$
from confl-n $[O F$ confl $]$ obtain $f g$ ss ts where confl: ?s $\mid-p=$ Fun $f$ ss ?t $\mid-p=$ Fun $g$ ts and diff: $(f$, length ss $) \neq(g$ length
$t s)$ by auto
define $s^{\prime}$ where $s^{\prime}=s m p \cdot \sigma$
define $t^{\prime}$ where $t^{\prime}=t m p \cdot \sigma$
from confl $p$ ident
have False
unfolding subst-subst-compose $s^{\prime}$-def[symmetric] $t^{\prime}$-def[symmetric]
proof (induction $p$ arbitrary: $s^{\prime} t^{\prime}$ )
case Nil
then show ?case using diff by (auto simp: list-eq-nth-eq)

## next

case (Cons ipst)
from Cons obtain h1 us1 where $s: s=$ Fun h1 us1 by (cases s, auto)
from Cons obtain h2 us2 where $t: t=$ Fun h2 us2 by (cases $t$, auto)
from Cons(2,4)[unfolded s] have si: (us1!i)|-p=Fun fss poss (us1

```
! i) and i1: i< length us1 by auto
    from Cons(3,5)[unfolded t] have ti:(us2!i) |-p=Fun g ts p f poss(us2
! i) and i2: i< length us2 by auto
```



```
simp: list-eq-nth-eq)
    from Cons.IH[OF si(1) ti(1) si(2) ti(2) this]
    show False.
    qed
    }
    thus ?case by auto
qed
end
end
```


## 4 A Multiset-Based Inference System to Decide Pattern Completeness

theory Pattern-Completeness-Multiset imports<br>Pattern-Completeness-Set<br>LP-Duality.Minimum-Maximum<br>Polynomial-Factorization.Missing-List<br>First-Order-Terms.Term-Pair-Multiset<br>begin

### 4.1 Definition of the Inference Rules

We next switch to a multiset based implementation of the inference rules. At this level, termination is proven and further, that the evaluation cannot get stuck. The inference rules closely mimic the ones in the paper, though there is one additional inference rule for getting rid of duplicates (which are automatically removed when working on sets).
type-synonym $\left({ }^{\prime} f, ' v, ' s\right)$ match-problem-mset $=\left(\left(' f\right.\right.$, nat $\times$ 's)term $\times\left({ }^{\prime} f, ' v\right)$ term $)$ multiset
type-synonym $\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-mset $=(' f, ' v, ' s)$ match-problem-mset multiset
type-synonym $\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ pats-problem-mset $=(' f, ' v, ' s)$ pat-problem-mset multiset
abbreviation mp-mset :: ('f,'v,'s)match-problem-mset $\Rightarrow\left({ }^{\prime} f,^{\prime} v, ' s\right)$ match-problem-set
where $m p-m s e t \equiv s e t-m s e t$
abbreviation pat-mset :: ('f,'v,'s)pat-problem-mset $\Rightarrow\left({ }^{\prime} f,^{\prime} v,{ }^{\prime}\right.$ 's) pat-problem-set
where pat-mset $\equiv$ image mp-mset o set-mset
abbreviation pats-mset :: ('f,'v,'s)pats-problem-mset $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ pats-problem-set
where pats-mset $\equiv$ image pat-mset o set-mset
abbreviation (input) bottom-mset :: (' $f,{ }^{\prime} v$, 's)pats-problem-mset where bottom-mset $\equiv\{\#\{\#\} \#\}$
context pattern-completeness-context
begin
A terminating version of $\left(\Rightarrow_{s}\right)$ working on multisets that also treats the transformation on a more modular basis.
definition subst-match-problem-mset :: ('f,nat $\times$ 's) subst $\Rightarrow(' f, ' v, ' s)$ match-problem-mset $\Rightarrow(' f, ' v, ' s)$ match-problem-mset where subst-match-problem-mset $\tau=$ image-mset (subst-left $\tau$ )
definition subst-pat-problem-mset :: ('f,nat $\times$ 's) subst $\Rightarrow(' f, ' v, ' s)$ pat-problem-mset
$\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-mset where subst-pat-problem-mset $\tau=$ image-mset (subst-match-problem-mset $\tau$ )
definition $\tau s$-list :: nat $\Rightarrow$ nat $\times$ 's $\Rightarrow($ 'f,nat $\times$ 's) subst list where $\tau s$-list $n x=\operatorname{map}(\tau c n x)(C l($ snd $x))$
inductive mp-step-mset :: ('f,'v,'s) match-problem-mset $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ match-problem-mset $\Rightarrow$ bool (infix $\rightarrow_{m} 50$ )where
match-decompose: $(f$, length $t s)=(g$, length $l s)$
$\Longrightarrow a d d$-mset (Fun fts, Fun g ls) $m p \rightarrow_{m} m p+\operatorname{mset}(z i p t s l s)$
| match-match: $x \notin \bigcup$ (vars 'snd' set-mset mp)
$\Longrightarrow$ add-mset ( $t$, Var $x) m p \rightarrow_{m} m p$
| match-duplicate: add-mset pair (add-mset pair $m p) \rightarrow_{m}$ add-mset pair $m p$
inductive match-fail :: ('f,'v,'s) match-problem-mset $\Rightarrow$ bool where
match-clash: $(f, l e n g t h ~ t s) \neq(g$,length $l s)$
$\Longrightarrow$ match-fail (add-mset (Fun fts, Fun g ls) mp)
| match-clash': Conflict-Clash s $t \Longrightarrow$ match-fail (add-mset ( $s$, Var $x$ ) (add-mset $(t, \operatorname{Var} x) m p))$
inductive pp-step-mset :: ('f,'v,'s)pat-problem-mset $\Rightarrow\left({ }^{\prime} f,^{\prime} v, ' s\right)$ pats-problem-mset $\Rightarrow$ bool
(infix $\Rightarrow_{m} 50$ ) where
pat-remove-pp: add-mset $\{\#\} p p \Rightarrow_{m}\{\#\}$
| pat-simp-mp: mp-step-mset $m p m p^{\prime} \Longrightarrow$ add-mset $m p p p \Rightarrow_{m}\left\{\#\right.$ (add-mset $m p^{\prime}$ pp) \#\}
| pat-remove-mp: match-fail $m p \Longrightarrow$ add-mset $m p p p \Rightarrow_{m}\{\# p p \#\}$
| pat-instantiate: tvars-disj-pp $\{n . .<n+m\}($ pat-mset (add-mset mp pp)) $\Longrightarrow$
$($ Var $x, l) \in m p-m s e t ~ m p \wedge i s$-Fun $l \vee$
$(s, \operatorname{Var} y) \in m p-m s e t m p \wedge(t, \operatorname{Var} y) \in m p-m s e t m p \wedge$ Conflict-Var st $x \wedge \neg$ inf-sort (snd $x$ ) $\Longrightarrow$
add-mset $m p$ pp $\Rightarrow_{m}$ mset (map ( $\lambda \tau$. subst-pat-problem-mset $\tau$ (add-mset mp $p p))(\tau s$-list $n x))$
inductive pat-fail :: ('f,'v,'s) pat-problem-mset $\Rightarrow$ bool where pat-failure': Ball (pat-mset pp) inf-var-conflict $\Longrightarrow$ pat-fail pp
| pat-empty: pat-fail \{\#\}
inductive $P$-step-mset $::\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pats-problem-mset $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pats-problem-mset $\Rightarrow$ bool
(infix $\Rightarrow{ }_{m} 50$ )where
$P$-failure: pat-fail $p p \Longrightarrow$ add-mset $p p P \neq$ bottom-mset $\Longrightarrow$ add-mset $p p P \Rightarrow_{m}$
bottom-mset
| P-simp-pp: $p p \Rightarrow_{m} p p^{\prime} \Longrightarrow$ add-mset $p p P \Rightarrow_{m} p p^{\prime}+P$
The relation (encoded as predicate) is finally wrapped in a set
definition $P$-step :: $\left((' f, ' v, ' s)\right.$ pats-problem-mset $\times\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pats-problem-mset $)$ set $(\Rightarrow)$ where
$\Rightarrow=\left\{\left(P, P^{\prime}\right) . P \Rightarrow{ }_{m} P^{\prime}\right\}$

### 4.2 The evaluation cannot get stuck

```
lemmas subst-defs =
    subst-pat-problem-mset-def
    subst-pat-problem-set-def
    subst-match-problem-mset-def
    subst-match-problem-set-def
lemma pat-mset-fresh-vars:
    \exists n. tvars-disj-pp {n..<n +m}(pat-mset p)
proof -
    define p' where p'= pat-mset p
    define V where V =fst ' U (vars ' (fst ' U p'))
    have finite V unfolding V-def p'-def by auto
    define n where n=Suc (Max V)
    {
        fix mptl
        assume mp\in p
        hence sub: fst'vars t\subseteqV unfolding V-def by force
        {
            fix }
            assume x ffst 'vars t
            with sub have }x\inV\mathrm{ by auto
            with 〈finite V\rangle have x \leqMax V by simp
            also have ...<n unfolding n-def by simp
            finally have }x<n\mathrm{ .
        }
        hence fst' vars t\cap{n..<n+m}={} by force
    }
    thus ?thesis unfolding tvars-disj-pp-def p'-def[symmetric]
        by (intro exI[of - n] ballI, force)
qed
```

```
lemma pat-fail-or-trans:
    pat-fail p\vee (\exists ps. p 盾 ps)
proof (cases p={#})
    case True
    with pat-empty show ?thesis by auto
next
    case pne: False
    from pat-mset-fresh-vars obtain n where fresh: tvars-disj-pp {n..<n +m}
(pat-mset p) by blast
    show ?thesis
    proof (cases {#}\in# p)
        case True
        then obtain p}\mp@subsup{p}{}{\prime}\mathrm{ where p=add-mset {#} p' by (rule mset-add)
        with pat-remove-pp show ?thesis by auto
    next
        case empty-p: False
        show ?thesis
        proof (cases \exists mp st. mp\in# p\wedge(s,t)\in# mp\wedge is-Fun t)
            case True
            then obtain mp st where mp: mp\in# p and (s,t)\in# mp and is-Fun t by
auto
            then obtain gts where mem: (s,Fun gts)\in# mp by (cases t, auto)
            from mp obtain p' where p: p=add-mset mp p' by (rule mset-add)
            from mem obtain mp' where mp:mp=add-mset (s, Fungts) mp' by (rule
mset-add)
            show ?thesis
            proof (cases s)
                case s:(Funfss)
            from pat-simp-mp[OF match-decompose, of fss] pat-remove-mp[OF match-clash,
of f ss]
            show ?thesis unfolding pmp s by blast
            next
                case (Var x)
                from Var mem obtain l where (Var x,l)\in#mp\wedge is-Fun l by auto
                from pat-instantiate[OF fresh[unfolded p] disjI1[OF this]]
                show ?thesis unfolding p by auto
            qed
    next
            case False
            hence rhs-vars: \ mp s l. mp\in# p\Longrightarrow(s,l)\in#mp\Longrightarrow is-Var l by auto
            let ?single-var = (\exists mptx.add-mset (t,Var x) mp\in# p\wedge x\not\in\bigcup (vars'
snd ' set-mset mp))
    let ?duplicate =(\exists mp pair. add-mset pair (add-mset pair mp) }\in#p
    show ?thesis
    proof (cases ?single-var \vee ?duplicate)
        case True
        thus ?thesis
        proof
```

assume ? single-var
then obtain $m p t x$ where $m p: a d d-m s e t(t, \operatorname{Var} x) m p \in \# p$ and $x: x \notin$ $\bigcup$ (vars' snd' set-mset $m p$ )
by auto
from $m p$ obtain $p^{\prime}$ where $p=a d d-m s e t(a d d-m s e t(t, V a r x) m p) p^{\prime}$ by (rule mset-add)
with pat-simp-mp[OF match-match[OF x]] show ?thesis by auto
next
assume ?duplicate
then obtain $m p$ pair where add-mset pair (add-mset pair $m p$ ) $\in \# p$ (is ?dup $\in \# p$ ) by auto
from mset-add $\left[\right.$ OF this] obtain $p^{\prime}$ where
$p: p=a d d$-mset ? dup $p^{\prime}$.
from pat-simp-mp[OF match-duplicate[of pair]] show ?thesis unfolding $p$ by auto
qed
next
case False
hence ndup: $\neg$ ? duplicate and nsvar: ᄀ? single-var by auto \{
fix $m p$
assume $m p p: m p \in \# p$
with empty-p have $m p-e: m p \neq\{\#\}$ by auto
obtain $s l$ where $s l:(s, l) \in \# m p$ using $m p-e$ by auto
from rhs-vars[OF mpp sl] sl obtain $x$ where $s x:(s, \operatorname{Var} x) \in \# m p$ by (cases l, auto)
from $m p p$ obtain $p^{\prime}$ where $p: p=a d d-m s e t ~ m p p^{\prime}$ by (rule mset-add)
from $s x$ obtain $m p^{\prime}$ where $m p: m p=\operatorname{add-mset}(s, \operatorname{Var} x) m p^{\prime}$ by (rule mset-add)
from nsvar[simplified, rule-format, OF mpp[unfolded mp]]
obtain $t l$ where $(t, l) \in \# m p^{\prime}$ and $x \in \operatorname{vars}($ snd $(t, l))$ by force
with rhs-vars[OF mpp, of $t$ l] have $t x:(t, \operatorname{Var} x) \in \# m p^{\prime}$ unfolding $m p$ by auto
then obtain $m p^{\prime \prime}$ where $m p^{\prime}: m p^{\prime}=a d d-m s e t(t, \operatorname{Var} x) m p^{\prime \prime}$ by (rule mset-add)
from ndup[simplified, rule-format] $m p p$ have $s \neq t$ unfolding $m p m p^{\prime}$ by auto
hence $\exists$ st $x m p^{\prime} . m p=\operatorname{add-mset}(s, \operatorname{Var} x)\left(\operatorname{add}-m s e t(t, \operatorname{Var} x) m p^{\prime}\right)$ $\wedge s \neq t$ unfolding $m p m p^{\prime}$ by auto
$\}$ note two $=$ this
show ?thesis
proof (cases $\exists m p s t x y$. add-mset ( $s$, Var $x$ ) (add-mset $(t, \operatorname{Var} x) m p)$
$\in \# p \wedge$ Conflict-Var st $y \wedge \neg \inf$-sort (snd $y)$ )
case True
then obtain mpstxy where
$m p: a d d-m s e t(s, \operatorname{Var} x)(a d d-m s e t(t, \operatorname{Var} x) m p) \in \# p($ is $? m p \in \#-)$
and conf: Conflict-Var st $y$ and $y$ : $\neg$ inf-sort (snd $y$ )
by blast
from conflicts(4)[OF conf] have $y \in$ vars $s \cup$ vars $t$ by auto
with $m p$ have $y \in$ tvars-mp ( $m p-m s e t$ ? $m p$ ) unfolding tvars-mp-def by
from $m p$ obtain $p^{\prime}$ where $p: p=a d d-m s e t ? m p p^{\prime}$ by (rule mset-add) let ${ }^{2} m p=a d d-m s e t(s, \operatorname{Var} x)($ add-mset $(t, \operatorname{Var} x) m p)$
from pat-instantiate[OF - disjI2, of $n$ ? mp $p^{\prime}$ s xty, folded $p$, OF fresh] show ?thesis using $y$ conf by auto next
case no-non-inf: False
show ?thesis
proof (cases $\exists m p s t x$. add-mset ( $s$, Var $x)(\operatorname{add-mset}(t, \operatorname{Var} x) m p)$
$\in \# p \wedge$ Conflict-Clash st)
case True
then obtain $m p$ st $x$ where
$m p:$ add-mset $(s, \operatorname{Var} x)($ add-mset $(t, \operatorname{Var} x) m p) \in \# p$ (is $? m p \in \#$
-) and conf: Conflict-Clash st
by blast
from pat-remove-mp[OF match-clash'[OF conf, of $x$ mp]]
show ?thesis using mset-add $[O F m p]$ by metis
next
case no-clash: False
show ?thesis
proof (intro disjI1 pat-failure' ballI)
fix $m p$
assume $m p: m p \in$ pat-mset $p$
then obtain $m p^{\prime}$ where $m p^{\prime}: m p^{\prime} \in \# p$ and $m p: m p=m p-m s e t ~ m p^{\prime}$
by auto
from two [OF $m p$ ']
obtain $s t x \mathrm{mp}^{\prime \prime}$
where $m p^{\prime \prime}: m p^{\prime}=a d d-m s e t(s, \operatorname{Var} x)\left(a d d-m s e t(t, \operatorname{Var} x) m p^{\prime \prime}\right)$
and diff: $s \neq t$ by auto
from conflicts(3)[OF diff $]$ obtain $y$ where Conflict-Clash s $t \vee$
Conflict-Var sty by auto
with no-clash $m p^{\prime \prime} m p^{\prime}$ have conf: Conflict-Var sty by force
with no-non-inf $m p^{\prime}$ [unfolded $\left.m p^{\prime \prime}\right]$ have inf: inf-sort (snd $y$ ) by blast
show inf-var-conflict mp unfolding inf-var-conflict-def mp mp"
apply (rule exI $[o f-s]$, rule exI $[o f-t]$ )
apply (intro exI[of - x] exI[of-y])
using insert inf conf by auto
qed
qed
qed
qed
qed
qed
qed

Pattern problems just have two normal forms: empty set (solvable) or bottom (not solvable)
theorem $P$-step-NF:

```
    assumes NF: P \inNF=>
    shows }P\in{{#},\mathrm{ bottom-mset}
proof (rule ccontr)
    assume nNF: P\not\in{{#}, bottom-mset}
    from NF have NF:\neg(\exists Q.P 汭 Q) unfolding P-step-def by blast
    from nNF obtain p P' where P: P=add-mset p P'
    using multiset-cases by auto
from pat-fail-or-trans
obtain ps where pat-fail p\vee p 祘 ps by auto
with P-simp-pp[of p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P', folded P] nNF NF show False by auto
qed
end
```


### 4.3 Termination

A measure to count the number of function symbols of the first argument that don't occur in the second argument
fun fun-diff :: ('f,'v)term $\Rightarrow\left(' f,{ }^{\prime} w\right)$ term $\Rightarrow$ nat where
fun-diff $l($ Var $x)=$ num-funs $l$
$\mid$ fun-diff $($ Fun $g l s)($ Fun $f t s)=($ if $f=g \wedge$ length $t s=$ length ls then sum-list (map2 fun-diff ls ts) else 0)
| fun-diff $l t=0$
lemma fun-diff-Var[simp]: fun-diff (Var $x$ ) $t=0$
by (cases $t$, auto)
lemma add-many-mult: $(\bigwedge y . y \in \# N \Longrightarrow(y, x) \in R) \Longrightarrow(N+M$, add-mset $x$
$M) \in$ mult $R$
by (metis add.commute add-mset-add-single multi-member-last multi-self-add-other-not-self one-step-implies-mult)
lemma fun-diff-num-funs: fun-diff $l t \leq$ num-funs $l$
proof (induct lt rule: fun-diff.induct)
case (2f ls gts)
show? case
proof (cases $f=g \wedge$ length $t s=$ length ls)
case True
have sum-list (map2 fun-diff ls ts) $\leq$ sum-list (map num-funs ls)
by (intro sum-list-mono2, insert True 2, (force simp: set-zip)+)
with 2 show ?thesis by auto
qed auto
qed auto
lemma fun-diff-subst: fun-diff $l(t \cdot \sigma) \leq$ fun-diff $l t$
proof (induct l arbitrary: t)
case $l$ : (Fun $f l s$ )
show? case

```
    proof (cases t)
        case t:(Fungts)
        show ?thesis unfolding t using l by (auto intro: sum-list-mono2)
    next
        case t:(Var x)
        show ?thesis unfolding t using fun-diff-num-funs[of Fun fls] by auto
    qed
qed auto
lemma fun-diff-num-funs-lt: assumes }\mp@subsup{t}{}{\prime}:\mp@subsup{t}{}{\prime}=Fun c c
    and is-Fun l
shows fun-diff l t' < num-funs l
proof -
    from assms obtain gls where l:l=Fun gls by (cases l,auto)
    show ?thesis
    proof (cases c = g^ length cs = length ls)
        case False
        thus ?thesis unfolding t' l by auto
    next
        case True
        have sum-list (map2 fun-diff ls cs) \leq sum-list (map num-funs ls)
            apply (rule sum-list-mono2; (intro impI)?)
            subgoal using True by auto
            subgoal for i using True by (auto intro: fun-diff-num-funs)
            done
        thus ?thesis unfolding t' l using True by auto
    qed
qed
lemma sum-union-le-nat: sum (f :: 'a m nat) (A\cupB)\leq\operatorname{sum f A + sum f B}
    by (metis finite-Un le-iff-add sum.infinite sum.union-inter zero-le)
lemma sum-le-sum-list-nat: sum f(set xs) \leq(sum-list (map fxs) :: nat)
proof (induct xs)
    case (Cons x xs)
    thus ?case
        by (cases x set xs, auto simp: insert-absorb)
qed auto
lemma bdd-above-has-Maximum-nat: bdd-above ( }A::\mathrm{ nat set) }\LongrightarrowA\not={}
has-Maximum A
    unfolding has-Maximum-def
    by (meson Max-ge Max-in bdd-above-nat)
context pattern-completeness-context-with-assms
begin
lemma \taus-list: set (\taus-list n x) = \taus n x
```

unfolding $\tau s$-list-def $\tau s$-def using $C l$ by auto
abbreviation (input) sum-ms :: (' $a \Rightarrow n a t) \Rightarrow{ }^{\prime} a$ multiset $\Rightarrow$ nat where sum-ms $f$ ms $\equiv$ sum-mset (image-mset $f$ ms)
definition meas-diff :: ('f,'v,'s)pat-problem-mset $\Rightarrow$ nat where
meas-diff $=$ sum-ms (sum-ms $(\lambda(t, l)$. fun-diff l t))
definition max-size :: 's $\Rightarrow$ nat where
max-size $s=($ if $s \in S \wedge \neg$ inf-sort s then Maximum (size' $\{t . t: s$ in $\mathcal{T}(C, E M P T Y n)\})$ else 0)
definition meas-finvars :: ('f,'v,'s) pat-problem-mset $\Rightarrow$ nat where meas-finvars $=$ sum-ms $(\lambda m p . \operatorname{sum}($ max-size o snd $)($ tvars-mp $(m p-m s e t ~ m p)))$
definition meas-symbols :: ('f,'v,'s)pat-problem-mset $\Rightarrow$ nat where
meas-symbols $=$ sum-ms size-mset
definition meas-setsize :: ('f,'v,'s)pat-problem-mset $\Rightarrow$ nat where meas-setsize $p=$ sum-ms (sum-ms $(\lambda-1)) p+$ size $p$
definition rel-pat :: (('f,'v,'s) pat-problem-mset $\times\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pat-problem-mset $)$ set $(\prec)$ where
$(\prec)=$ inv-image $(\{(x, y) . x<y\}<* l e x *>\{(x, y) . x<y\}<* l e x *>\{(x, y) . x$ $<y\}<*$ lex $*>\{(x, y) . x<y\})$
( $\lambda \mathrm{mp}$. (meas-diff $m p$, meas-finvars $m p$, meas-symbols $m p$, meas-setsize $m p$ ))
abbreviation gt-rel-pat (infix $\succ 50$ ) where

$$
p p \succ p p^{\prime} \equiv\left(p p^{\prime}, p p\right) \in \prec
$$

definition rel-pats :: (('f,'v,'s)pats-problem-mset $\times\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pats-problem-mset $)$ set ( $\prec m u l)$ where

$$
\prec m u l=\text { mult }(\prec)
$$

abbreviation gt-rel-pats (infix $\succ$ mul 50) where
$P \succ m u l P^{\prime} \equiv\left(P^{\prime}, P\right) \in \prec m u l$
lemma wf-rel-pat: wf $\prec$
unfolding rel-pat-def
by (intro wf-inv-image wf-lex-prod wf-less)
lemma wf-rel-pats: wf $\prec m u l$
unfolding rel-pats-def
by (intro wf-inv-image wf-mult wf-rel-pat)
lemma tvars-mp-fin:
finite (tvars-mp (mp-mset mp))
unfolding tvars-mp-def by auto
lemmas meas-def $=$ meas-finvars-def meas-diff-def meas-symbols-def meas-setsize-def

```
lemma tvars-mp-mono: mp\subseteq# mp' \Longrightarrow tvars-mp (mp-mset mp)\subseteq tvars-mp
(mp-mset mp')
    unfolding tvars-mp-def
    by (intro image-mono subset-refl set-mset-mono UN-mono)
lemma meas-finvars-mono: assumes tvars-mp (mp-mset mp)\subseteq tvars-mp (mp-mset
mp')
    shows meas-finvars {#mp#}}\leq\mathrm{ meas-finvars {#mp'#}
    using tvars-mp-fin[of mp] assms
    unfolding meas-def by (auto intro: sum-mono2)
lemma rel-mp-sub: {# add-mset p mp#}}\succ{#mp#
proof -
    let ?mp' = add-mset p mp
    have mp\subseteq# ?mp' by auto
    from meas-finvars-mono[OF tvars-mp-mono[OF this]]
    show ?thesis unfolding meas-def rel-pat-def by auto
qed
lemma rel-mp-mp-step-mset:
    assumes mp ->m}mm\mp@subsup{p}{}{\prime
    shows {#mp#}}\succ{#m\mp@subsup{p}{}{\prime}#
    using assms
proof cases
    case *: (match-decompose f ts g ls mp '')
    have meas-finvars {#mp'#}\leqmeas-finvars {#mp#}
    proof (rule meas-finvars-mono)
        show tvars-mp (mp-mset mp')\subseteq tvars-mp (mp-mset mp)
            unfolding tvars-mp-def * using *(3) by (auto simp: set-zip set-conv-nth)
    qed
    moreover
    have id: (case case x of (x,y)=>(y,x) of (t,l)=>ftl)=(case x of (a,b) =>f
b a) for
    x :: ('f,'v) Term.term }\times('f,nat \times 's) Term.term and f :: - = - = na
    by (cases x, auto)
    have meas-diff {#mp'#} \leqmeas-diff {#mp#}
        unfolding meas-def * using *(3)
    by (auto simp: sum-mset-sum-list[symmetric] zip-commute[of ts ls] image-mset.compositionality
o-def id)
    moreover have meas-symbols {#mp'#} < meas-symbols {#mp#}
    unfolding meas-def * using *(3) size-mset-Fun-less[of ts ls g g]
    by (auto simp: sum-mset-sum-list)
    ultimately show ?thesis unfolding rel-pat-def by auto
next
    case *: (match-match x t)
    show ?thesis unfolding *
```

```
    by (rule rel-mp-sub)
next
    case *: (match-duplicate pair mp)
    show ?thesis unfolding *
        by (rule rel-mp-sub)
qed
lemma sum-ms-image: sum-ms f (image-mset g ms) = sum-ms (fog) ms
    by (simp add: multiset.map-comp)
lemma meas-diff-subst-le: meas-diff (subst-pat-problem-mset \tau p) \leq meas-diff p
    unfolding meas-def subst-match-problem-set-def subst-defs subst-left-def
    unfolding sum-ms-image o-def
    apply (rule sum-mset-mono, rule sum-mset-mono)
    apply clarify
    unfolding map-prod-def split id-apply
    by (rule fun-diff-subst)
lemma meas-sub: assumes sub: p' }\subseteq#
shows meas-diff p'}\leq\mathrm{ meas-diff p
    meas-finvars p'}\leq\mathrm{ meas-finvars p
    meas-symbols p'\leq meas-symbols p
proof -
    from sub obtain p'\prime}\mathrm{ where p: p= p' + p'l}\mathbf{by (metis subset-mset.less-eqE)
    show meas-diff p}\mp@subsup{p}{}{\prime}\leq\mathrm{ meas-diff p meas-finvars }\mp@subsup{p}{}{\prime}\leq\mathrm{ meas-finvars p meas-symbols
p
    unfolding meas-def p by auto
qed
lemma meas-sub-rel-pat: assumes sub: p'\subset# p
    shows p}\succ\mp@subsup{p}{}{\prime
proof -
    from sub obtain x p '\prime where p: p=add-mset x p' + p'\prime
    by (metis multi-nonempty-split subset-mset.lessE union-mset-add-mset-left union-mset-add-mset-right)
    hence lt: meas-setsize p}\mp@subsup{p}{}{\prime}<\mathrm{ meas-setsize p unfolding meas-def by auto
    from sub have p}\mp@subsup{p}{}{\prime}\subseteq#p\mathrm{ by auto
    from lt meas-sub[OF this]
    show ?thesis unfolding rel-pat-def by auto
qed
lemma max-size-term-of-sort: assumes sS:s\inS and inf:\neg inf-sort s
    shows \exists t. t:s in \mathcal{T}(C,EMPTYn)}\wedge max-size s= size t ^ (\forall t'. t' : s in
T}(C,EMPTYn)\longrightarrow\mathrm{ size }\mp@subsup{t}{}{\prime}\leq\mathrm{ size }t
proof -
    let ?set = \lambda s.size ' {t.t:s in \mathcal{T}(C,EMPTYn)}
    have m: max-size s= Maximum (?set s) unfolding o-def max-size-def using
inf sS by auto
```

from inf[unfolded inf-sort-def[OF sS]] have bdd-above (?set s) by auto

```
    moreover from sorts-non-empty[OF sS] type-conversion2 have ?set s }={}\mathrm{ by
auto
    ultimately have has-Maximum (?set s) by (rule bdd-above-has-Maximum-nat)
    from has-MaximumD[OF this, folded m] show ?thesis by auto
qed
lemma max-size-max: assumes sS:s\inS
    and inf:\neg inf-sort s
    and sort: t:s in \mathcal{T}(C,EMPTYn)
shows size t\leqmax-size s
    using max-size-term-of-sort[OF sS inf] sort by auto
lemma finite-sort-size: assumes c:c:map snd vs }->s\mathrm{ in }
    and inf: \neg inf-sort s
shows sum (max-size o snd) (set vs) < max-size s
proof -
    from c have vsS: insert s (set (map snd vs)) \subseteqS using C-sub-S
        by (metis (mono-tags))
    hence sS: s\inS by auto
    let ?m = max-size s
    show ?thesis
    proof (cases \existsv\in set vs.inf-sort (snd v))
        case True
        {
            fix v
            assume v\in set vs
            with vsS have v: snd v\inS by auto
            note term-of-sort[OF this
    }
    hence }\forallv.\existst.v\in\mathrm{ set vs }\longrightarrowt:\mathrm{ snd v in }\mathcal{T}(C,EMPTYn) by aut
    from choice[OF this] obtain t where
                t:\bigwedgev.v\in set vs\Longrightarrowtv:snd v in \mathcal{T}(C,EMPTYn) by blast
    from True vsS obtain vl where vl:vl\in set vs and vlS: snd vl\inS and inf-vl:
inf-sort (snd vl) by auto
    from not-bdd-above-natD[OF inf-vl[unfolded inf-sort-def[OF vlS]], of ?m] t[OF
vl]
            obtain tl where
                tl: tl : snd vl in \mathcal{T}(C,EMPTYn) and large:?m \leq size tl by fastforce
    let ?t = Fun c (map ( }\lambdav.\mathrm{ if }v=vl then tl else t v) vs
    have ?t:s in \mathcal{T}(C,EMPTYn)
            by (intro Fun-hastypeI[OF c] list-all2-map-map, insert tl t, auto)
    from max-size-max[OF sS inf this]
    have False using large split-list[OF vl] by auto
    thus ?thesis ..
    next
    case False
    {
        fix v
        assume v:v\in set vs
```

with False have inf: $\neg$ inf-sort (snd $v$ ) by auto
from $v s S v$ have snd $v \in S$ by auto
from max-size-term-of-sort[OF this inf]
have $\exists t$. $t$ : snd $v$ in $\mathcal{T}(C, E M P T Y n) \wedge$ size $t=\max -$ size $($ snd $v)$ by auto \}
hence $\forall v . \exists t . v \in$ set $v s \longrightarrow t:$ snd $v$ in $\mathcal{T}(C, E M P T Y n) \wedge$ size $t=$ max-size (snd $v$ ) by auto
from choice $[O F$ this $]$ obtain $t$ where
$t: v \in$ set $v s \Longrightarrow t v:$ snd $v$ in $\mathcal{T}(C, E M P T Y n) \wedge$ size $(t v)=$ max-size $($ snd
$v$ ) for $v$ by blast
let $? t=$ Fun $c(\operatorname{map} t v s)$
have ?t:s in $\mathcal{T}(C, E M P T Y n)$
by (intro Fun-hastypeI[OF c] list-all2-map-map, insert t, auto)
from max-size-max[OF sS inf this]
have size ?t $\leq$ max-size $s$.
have sum (max-size $\circ$ snd $)($ set vs $)=\operatorname{sum}($ size ot) $($ set vs $)$
by (rule sum.cong $[$ OF refl $]$, unfold o-def, insert $t$, auto)
also have $\ldots \leq$ sum-list (map (size ot) vs)
by (rule sum-le-sum-list-nat)
also have $\ldots \leq$ size-list (size ot) vs by (induct vs, auto)
also have $\ldots<$ size ? $t$ by simp
also have $\ldots \leq$ max-size $s$ by fact
finally show? thesis.
qed
qed
lemma rel-pp-step-mset:
assumes $p \Rightarrow_{m} p s$
and $p^{\prime} \in \# p s$
shows $p \succ p^{\prime}$
using assms
proof induct
case $*:\left(\right.$ pat-simp-mp $\left.m p m p^{\prime} p\right)$
hence $p^{\prime}: p^{\prime}=a d d-m s e t m p^{\prime} p$ by auto
from rel-mp-mp-step-mset[OF *(1)]
show ?case unfolding $p^{\prime}$ rel-pat-def meas-def by auto
next
case (pat-remove-mp mp $p$ )
hence $p^{\prime}: p^{\prime}=p$ by auto
show ? case unfolding $p^{\prime}$
by (rule meas-sub-rel-pat, auto)
next
case $*$ : (pat-instantiate $n m p p x l s y t)$
from $*$ (2) have $\exists s t$. $(s, t) \in \# m p \wedge(s=\operatorname{Var} x \wedge i s$-Fun $t$ $\vee(x \in \operatorname{vars} s \wedge \neg \inf$-sort $($ snd $x)))$
proof
assume $*:(s, \operatorname{Var} y) \in \# m p \wedge(t, \operatorname{Var} y) \in \# m p \wedge$ Conflict-Var st $x \wedge \neg$ inf-sort (snd $x$ )
hence Conflict-Var stx and $\neg \inf$-sort (snd $x$ ) by auto
from conflicts(4)[OF this(1)] this(2) *
show ?thesis by auto
qed auto
then obtain $s t$ where st: $(s, t) \in \# m p$ and choice: $s=\operatorname{Var} x \wedge i s-F u n t \vee x$ $\in \operatorname{vars} s \wedge \neg \inf$-sort (snd $x$ )
by auto
let $? p=$ add-mset $m p p$
let ? $s=s n d x$
from $*$ (3) $\tau s$-list
obtain $\tau$ where $\tau: \tau \in \tau s n x$ and $p^{\prime}: p^{\prime}=$ subst-pat-problem-mset $\tau$ ?p by auto
let ?tau-mset $=$ subst-pat-problem-mset $\tau$
let ?tau $=$ subst-match-problem-mset $\tau$
from $\tau[$ unfolded $\tau s$-def $\tau c$-def List.maps-def]
obtain $c$ sorts where $c: c:$ sorts $\rightarrow$ ?s in $C$ and tau: $\tau=$ subst $x$ (Fun c (map
$\operatorname{Var}(z i p[n . .<n+$ length sorts $]$ sorts $))$ )
by auto
with $C$-sub- $S$ have $s S:$ ?s $\in S$ and sorts: set sorts $\subseteq S$ by auto
define vs where vs $=z i p[n . .<n+$ length sorts $]$ sorts
have $\tau: \tau=$ subst $x$ (Fun c (map Var vs)) unfolding tau vs-def by auto
have snd'vars ( $\tau y$ ) $\subseteq$ insert (snd $y$ ) $S$ for $y$
using sorts unfolding tau by (auto simp: subst-def set-zip set-conv-nth)
hence vars-sort: $(a, b) \in \operatorname{vars}(\tau y) \Longrightarrow b \in \operatorname{insert}$ (snd $y) S$ for $a b y$ by fastforce
from st obtain $m p^{\prime}$ where $m p: m p=a d d-m s e t(s, t) m p^{\prime}$ by (rule mset-add)
from choice have ?p $\succ$ ?tau-mset ?p
proof
assume $s=\operatorname{Var} x \wedge i s$-Fun $t$
then obtain $f$ ts where $s: s=\operatorname{Var} x$ and $t: t=\operatorname{Fun} f$ ts by (cases t, auto)
have meas-diff (?tau-mset ?p) $=$ meas-diff (?tau-mset (add-mset $\left.\left.m p^{\prime} p\right)\right)+$ fun-diff $t(s \cdot \tau)$
unfolding meas-def subst-defs subst-left-def $m p$ by simp
also have $\ldots \leq$ meas-diff $\left(\right.$ add-mset $\left.m p^{\prime} p\right)+$ fun-diff $t(\tau x)$ using meas-diff-subst-le[of $\tau] s$ by auto
also have $\ldots<$ meas-diff (add-mset $\left.m p^{\prime} p\right)+$ fun-diff $t s$
proof (rule add-strict-left-mono)
have fun-diff $t(\tau x)<$ num-funs $t$
unfolding tau subst-simps fun-diff.simps
by (rule fun-diff-num-funs-lt [OF refl], auto simp: $t$ )
thus fun-diff $t(\tau x)<$ fun-diff $t s$ by (auto simp: $s t$ )
qed
also have $\ldots=$ meas-diff ? $p$ unfolding mp meas-def by auto
finally show ?thesis unfolding rel-pat-def by auto
next
assume $x \in$ vars $s \wedge \neg$ inf-sort (snd $x$ )
hence $x: x \in$ vars $s$ and inf: $\neg \inf$-sort ( $\operatorname{snd} x$ ) by auto
from meas-diff-subst-le[of $\tau]$
have fd: meas-diff $p^{\prime} \leq$ meas-diff ?p unfolding $p^{\prime}$.

```
    have meas-finvars (?tau-mset ?p) = meas-finvars (?tau-mset {#mp#}) +
meas-finvars (?tau-mset p)
            unfolding subst-defs meas-def by auto
    also have ...< meas-finvars {#mp#} + meas-finvars p
    proof (rule add-less-le-mono)
    have vars-\tau-var: vars (\tau y) = (if x=y then set vs else {y}) for }y\mathrm{ unfolding
\tau ~ s u b s t - d e f ~ b y ~ a u t o
    have vars-\tau:vars (t\cdot\tau)= vars t-{x}\cup(if x\in vars t then set vs else {})
for }
            unfolding vars-term-subst image-comp o-def vars-\tau-var by auto
    have tvars-mp-subst: tvars-mp (mp-mset (?tau mp)) =
        tvars-mp (mp-mset mp)-{x}\cup(if x\in tvars-mp (mp-mset mp) then set
vs else {}) for mp
    unfolding subst-defs subst-left-def tvars-mp-def
    by (auto simp:vars-\tau split: if-splits prod.split)
    have id1: meas-finvars (?tau-mset {#mp#}) = (\sumx\in tvars-mp (mp-mset
(?tau mp)). max-size (snd x)) for mp
    unfolding meas-def subst-defs by auto
    have id2: meas-finvars {#mp#} = (\sumx\intvars-mp (mp-mset mp). max-size
(snd x)) for mp
    unfolding meas-def subst-defs by simp
    have eq: x & tvars-mp (mp-mset mp)\Longrightarrow meas-finvars (?tau-mset {# mp
#})= meas-finvars {#mp#} for mp
    unfolding id1 id2 by (rule sum.cong[OF - refl], auto simp: tvars-mp-subst)
    {
        fix mp
    assume xmp: x t tvars-mp (mp-mset mp)
    let ?mp = (mp-mset mp)
    have fin: finite (tvars-mp ?mp) by (rule tvars-mp-fin)
    define Mp where Mp = tvars-mp ?mp - {x}
    from xmp have 1: tvars-mp (mp-mset (?tau mp)) = set vs \cupMp
        unfolding tvars-mp-subst Mp-def by auto
    from xmp have 2: tvars-mp ?mp = insert x Mp and xMp: x\not\inMp unfolding
Mp-def by auto
    from fin have fin: finite Mp unfolding Mp-def by auto
    have meas-finvars (?tau-mset {# mp #}) = sum (max-size \circ snd) (set vs
\cupMp)(is - = sum ?size -)
        unfolding id1 id2 using 1 by auto
    also have .. S sum?size (set vs) + sum ?size Mp by (rule sum-union-le-nat)
        also have \ldots< ?size x + sum ?size Mp
        proof -
            have sS: ?s }\inS\mathrm{ by fact
            have sorts: sorts = map snd vs unfolding vs-def by (intro nth-equalityI,
auto)
            have sum ?size (set vs)< ?size x
            using finite-sort-size[OF c[unfolded sorts] inf] by auto
            thus ?thesis by auto
        qed
```

also have $\ldots=$ meas-finvars $\{\# m p \#\}$ unfolding id2 2 using fin $x M p$ by auto
finally have meas-finvars (?tau-mset $\{\# m p \#\})<$ meas-finvars $\{\# m p \#\}$
\} note less $=$ this
have le: meas-finvars (?tau-mset $\{\# m p \#\}) \leq$ meas-finvars $\{\# m p \#\}$ for $m p$ using eq[of $m p]$ less $[o f m p]$ by linarith
show meas-finvars (?tau-mset $\{\# m p \#\})<$ meas-finvars $\{\# m p \#\}$ using $x$ by (intro less, unfold $m p$, force simp: tvars-mp-def)
show meas-finvars (?tau-mset $p$ ) $\leq$ meas-finvars $p$
unfolding subst-pat-problem-mset-def meas-finvars-def sum-ms-image o-def apply (rule sum-mset-mono)
subgoal for $m p$ using le[of $m p]$ unfolding meas-finvars-def o-def subst-defs by auto
done
qed
also have $\ldots=$ meas-finvars ?p unfolding $p^{\prime}$ meas-def by simp
finally show ?thesis using fd unfolding rel-pat-def $p^{\prime}$ by auto
qed
thus ? case unfolding $p^{\prime}$.
next
case $*$ : (pat-remove-pp $p$ )
thus ?case by (intro meas-sub-rel-pat, auto)
qed
finally: the transformation is terminating w.r.t. ( $\succ m u l$ )
lemma rel- $P$-trans:
assumes $P \Rightarrow{ }_{m} P^{\prime}$
shows $P \succ m u l P^{\prime}$
using assms
proof induct
case $*:(P$-failure $p P)$
from $*$ have $p \neq\{\#\} \vee p=\{\#\} \wedge P \neq\{\#\}$ by auto
thus ?case
proof
assume $p \neq\{\#\}$
then obtain $m p p^{\prime}$ where $p: p=a d d-m s e t ~ m p p^{\prime}$ by (cases $p$, auto)
have $p \succ\{\#\}$ unfolding $p$ by (intro meas-sub-rel-pat, auto)
thus ?thesis unfolding rel-pats-def using
one-step-implies-mult [of add-mset p P $\{\#\{\#\} \#\}-\{\#\}]$
by auto
next
assume $*: p=\{\#\} \wedge P \neq\{\#\}$ then obtain $p^{\prime} P^{\prime}$ where $p: p=\{\#\}$ and
$P: P=$ add-mset $p^{\prime} P^{\prime}$ by (cases $P$, auto)
show ?thesis unfolding $P$ unfolding rel-pats-def
by (simp add: subset-implies-mult)

```
    qed
next
    case *: (P-simp-pp p ps P)
    from rel-pp-step-mset[OF *]
    show ?case unfolding rel-pats-def by (metis add-many-mult)
qed
```

termination of the multiset based implementation
theorem $S N$-P-step: $S N \Rightarrow$
proof -
have sub: $\Rightarrow \subseteq \prec m u l \_-1$
using rel-P-trans unfolding $P$-step-def by auto
show ?thesis
apply (rule $S N$-subset [OF - sub])
using wf-rel-pats by (simp add: wf-imp-SN)
qed

### 4.4 Partial Correctness via Refinement

Obtain partial correctness via a simulation property, that the multiset-based implementation is a refinement of the set-based implementation.
lemma $m p$-step-cong: $m p 1 \rightarrow_{s} m p 2 \Longrightarrow m p 1=m p 1^{\prime} \Longrightarrow m p 2=m p 2^{\prime} \Longrightarrow m p 1^{\prime}$ $\rightarrow_{s} m p 2^{\prime}$ by auto
lemma mp-step-mset-mp-trans: $m p \rightarrow_{m} m p^{\prime} \Longrightarrow$ mp-mset $m p \rightarrow_{s} m p-m s e t m p^{\prime}$ proof (induct $m p m p^{\prime}$ rule: mp-step-mset.induct)
case *: (match-decompose fts g ls mp)
show ?case by (rule mp-step-cong[OF mp-decompose], insert *, auto)
next
case $*$ : (match-match $x$ mpt)
show ? case by (rule mp-step-cong[OF mp-match], insert *, auto)
next
case (match-duplicate pair mp)
show? case by (rule mp-step-cong[OF mp-identity], auto)
qed
lemma $m p$-fail-cong: $m p$-fail $m p \Longrightarrow m p=m p^{\prime} \Longrightarrow m p$-fail $m p^{\prime}$ by auto
lemma match-fail-mp-fail: match-fail $m p \Longrightarrow m p-f a i l ~(m p-m s e t ~ m p) ~$
proof (induct $m p$ rule: match-fail.induct)
case *: (match-clash fts g ls mp)
show ?case by (rule mp-fail-cong[OF mp-clash], insert *, auto)
next
case *: (match-clash'st x mp)
show ?case by (rule mp-fail-cong[OF mp-clash ], insert *, auto)
qed
lemma $P$-step-set-cong: $P \Rightarrow_{s} Q \Longrightarrow P=P^{\prime} \Longrightarrow Q=Q^{\prime} \Longrightarrow P^{\prime} \Rightarrow_{s} Q^{\prime}$ by auto

```
lemma \(P\)-step-mset-imp-set: assumes \(P \Rightarrow_{m} Q\)
    shows pats-mset \(P \Rightarrow_{s}\) pats-mset \(Q\)
    using assms
proof (induct)
    case \(*\) : \((P\)-failure \(p P)\)
    let \(? P=\) insert \((\) pat-mset \(p)(\) pats-mset \(P)\)
    from \(*(1)\)
    have \(? P \Rightarrow_{s}\) bottom
    proof induct
        case (pat-failure' \(p\) )
        from \(P\)-failure \({ }^{\prime}[O F\) this]
        show ?case by auto
    next
        case pat-empty
        show ?case using \(P\)-fail by auto
    qed
    thus ?case by auto
next
    case \(*:(P-s i m p-p p ~ p ~ p s ~ P)\)
    note conv \(=o\)-def image-mset-union image-empty image-mset-add-mset Un-empty-left
        set-mset-add-mset-insert set-mset-union image-Un image-insert set-mset-empty
        set-mset-mset set-image-mset
        set-map image-comp insert-is-Un[symmetric]
    define \(P^{\prime}\) where \(P^{\prime}=\{m p-m s e t '\) set-mset \(x \mid . x \in\) set-mset \(P\}\)
    from \(*(1)\)
    have \(\operatorname{insert}(\) pat-mset \(p)(\) pats-mset \(P) \nRightarrow s\) pats-mset \(p s \cup\) pats-mset \(P\)
    unfolding conv \(P^{\prime}\)-def[symmetric]
    proof induction
    case (pat-remove-pp p)
    show ?case unfolding conv
        by (intro P-remove-pp pp-success.intros)
    next
        case *: (pat-simp-mp \(\left.m p m p^{\prime} p\right)\)
        from \(P\)-simp[OF pp-simp-mp[OF mp-step-mset-mp-trans[OF *]]]
        show ?case by auto
    next
        case \(*\) : (pat-remove-mp \(m p\) p)
        from \(P\)-simp[OF pp-remove-mp[OF match-fail-mp-fail[OF *]]]
        show ?case by simp
    next
    case *: (pat-instantiate \(n m p\) p l s y t)
    from \(*(2)\) have \(x \in\) tvars- \(m p\) ( \(m p\)-mset \(m p\) )
        using conflicts(4)[of st x] unfolding tvars-mp-def
        by (auto intro!:term.set-intros(3))
    hence \(x: x \in\) tvars-pp (pat-mset (add-mset mp \(p\) )) unfolding tvars-pp-def
        using \(*(2)\) by auto
    show ?case unfolding conv \(\tau s\)-list
        apply (rule P-step-set-cong[OF P-instantiate \([\) OF *(1) x]])
```

```
        by (unfold conv subst-defs set-map image-comp, auto)
    qed
    thus ?case unfolding conv .
qed
lemma P-step-pp-trans: assumes (P,Q) \in =>
    shows pats-mset P #}\mp@subsup{|}{\mathrm{ s pats-mset }Q}{
    by (rule P-step-mset-imp-set, insert assms, unfold P-step-def, auto)
theorem P-step-pcorrect: assumes wf:wf-pats (pats-mset P) and step: (P,Q)\in
P-step
shows wf-pats (pats-mset Q)^(pats-complete (pats-mset P) = pats-complete (pats-mset
Q))
proof -
    note step =P-step-pp-trans[OF step]
    from P-step-set-pcorrect[OF step] P-step-set-wf[OF step] wf
    show ?thesis by auto
qed
corollary P-steps-pcorrect: assumes wf:wf-pats (pats-mset P)
    and step:}(P,Q)\in\not=\mp@subsup{}{}{*
shows wf-pats (pats-mset Q) ^(pats-complete (pats-mset P) \longleftrightarrow pats-complete
(pats-mset Q))
    using step by induct (insert wf P-step-pcorrect, auto)
Gather all results for the multiset-based implementation: decision procedure on well-formed inputs (termination was proven before)
```

```
theorem P-step:
```

theorem P-step:
assumes wf:wf-pats (pats-mset P) and NF: (P,Q) \in =>!
assumes wf:wf-pats (pats-mset P) and NF: (P,Q) \in =>!
shows }Q={\#}\wedge pats-complete (pats-mset P) - either the result is and inpu
shows }Q={\#}\wedge pats-complete (pats-mset P) - either the result is and inpu
P}\mathrm{ is complete
P}\mathrm{ is complete
\vee \mp@code { Q ~ b o t t o m - m s e t ~ } \wedge \neg pats-complete (pats-mset P) - or the result = bot and
\vee \mp@code { Q ~ b o t t o m - m s e t ~ } \wedge \neg pats-complete (pats-mset P) - or the result = bot and
P}\mathrm{ is not complete
P}\mathrm{ is not complete
proof -
proof -
from NF have steps: (P,Q) \in =>`* and NF:Q \inNF P-step by auto     from NF have steps: (P,Q) \in =>`* and NF:Q \inNF P-step by auto
from P-steps-pcorrect[OF wf steps]
from P-steps-pcorrect[OF wf steps]
have wf: wf-pats (pats-mset Q) and
have wf: wf-pats (pats-mset Q) and
sound: pats-complete (pats-mset P) = pats-complete (pats-mset Q)
sound: pats-complete (pats-mset P) = pats-complete (pats-mset Q)
by blast+
by blast+
from P-step-NF[OF NF] have Q}\in{{\#},bottom-mset } .
from P-step-NF[OF NF] have Q}\in{{\#},bottom-mset } .
thus ?thesis unfolding sound by auto
thus ?thesis unfolding sound by auto
qed
qed
end
end
end

```
end
```


## 5 Computing Nonempty and Infinite sorts

This theory provides two algorithms, which both take a description of a set of sorts with their constructors. The first algorithm computes the set of sorts that are nonempty, i.e., those sorts that are inhabited by ground terms; and the second algorithm computes the set of sorts that are infinite, i.e., where one can build arbitrary large ground terms.

```
theory Compute-Nonempty-Infinite-Sorts
    imports
        Sorted-Terms.Sorted-Terms
        LP-Duality.Minimum-Maximum
        Matrix.Utility
begin
```


### 5.1 Deciding the nonemptyness of all sorts under consideration

function compute-nonempty-main $:: ~ ' \tau$ set $\Rightarrow\left(\left({ }^{\prime} f \times{ }^{\prime} \tau\right.\right.$ list $\left.) \times{ }^{\prime} \tau\right)$ list $\Rightarrow{ }^{\prime} \tau$ set where
compute-nonempty-main ne $l s=($ let rem-ls $=$ filter $(\lambda f$. snd $f \notin n e)$ ls in case partition $(\lambda((-$, args $),-)$. set args $\subseteq$ ne) rem-ls of
(new, rem) $\Rightarrow$ if new $=[]$ then ne else compute-nonempty-main (ne $\cup$ set (map snd new)) rem)
by pat-completeness auto
termination
proof (relation measure (length o snd), goal-cases)
case (2 ne ls rem-ls new rem)
have length new + length rem $=$ length rem-ls
using 2(2) sum-length-filter-compl[of - rem-ls] by (auto simp: o-def)
with 2(3) have length rem < length rem-ls by (cases new, auto)
also have $\ldots \leq$ length $l s$ using 2(1) by auto
finally show? case by simp
qed $\operatorname{simp}$
declare compute-nonempty-main.simps[simp del]
definition compute-nonempty-sorts :: (('f $\times$ ' $\tau$ list $\left.) \times{ }^{\prime} \tau\right)$ list $\Rightarrow^{\prime} \tau$ set where compute-nonempty-sorts $C s=$ compute-nonempty-main $\}$ Cs
lemma compute-nonempty-sorts:
assumes distinct (map fst Cs)
and map-of $C s=C$
shows compute-nonempty-sorts $C s=\left\{\tau . \exists t::\left({ }^{\prime} f,{ }^{\prime} v\right)\right.$ term. $t: \tau$ in $\left.\mathcal{T}(C, \emptyset)\right\}$ (is -
$=? N E)$
proof -
let $? T C=\mathcal{T}\left(C,\left(\emptyset::{ }^{\prime} v \Rightarrow-\right)\right)$
have $n e \subseteq ? N E \Longrightarrow$ set $l s \subseteq$ set $C s \Longrightarrow s n d$ ' $($ set $C s-s e t l s) \subseteq n e \Longrightarrow$

```
    compute-nonempty-main ne ls = ?NE for ne ls
    proof (induct ne ls rule: compute-nonempty-main.induct)
    case (1 ne ls)
    note ne=1(2)
    define rem-ls where rem-ls = filter ( }\lambda\textrm{f}.\mathrm{ snd f}\not\inne) l
    have rem-ls: set rem-ls\subseteq set Cs
        snd '(set Cs - set rem-ls)\subseteqne
        using 1(2-) by (auto simp: rem-ls-def)
        obtain new rem where part: partition ( }\lambda((f,\mathrm{ args ), target). set args }\subseteqne
rem-ls = (new,rem) by force
    have [simp]: compute-nonempty-main ne ls = (if new = [] then ne else com-
pute-nonempty-main (ne U set (map snd new)) rem)
    unfolding compute-nonempty-main.simps[of ne ls] Let-def rem-ls-def[symmetric]
part by auto
    have new: set (map snd new)\subseteq?NE
    proof
    fix }
    assume }\tau\in\mathrm{ set (map snd new)
    then obtain fargs where ((f,args),\tau)\in set rem-ls and args: set args }\subseteqn
using part by auto
    with rem-ls have ((f,args),\tau) \in set Cs by auto
    with assms have C (f,args) = Some \tau by auto
    hence fC: f: args }->\tau\mathrm{ in C by (simp add: hastype-in-ssig-def)
    from args ne have }\forall\mathrm{ tau. ヨ t. tau }\in\mathrm{ set args }\longrightarrowt: tau in ?TC by aut
    from choice[OF this] obtain ts where }\\mathrm{ tau. tau }\in\mathrm{ set args }\Longrightarrow\mathrm{ ts tau:tau
in ?TC by auto
            hence Fun f (map ts args):\tau in ?TC
            apply (intro Fun-hastypeI[OF fC])
            by (simp add: list-all2-conv-all-nth)
        thus }\tau\in?NE by aut
    qed
    show ?case
    proof (cases new = [])
        case False
    note IH = 1(1)[OF rem-ls-def part[symmetric] False]
            have compute-nonempty-main ne ls = compute-nonempty-main (ne \cup set
(map snd new)) rem using False by simp
    also have ... = ?NE
    proof (rule IH)
            show ne U set (map snd new) \subseteq?NE using new ne by auto
            show set rem \subseteq set Cs using rem-ls part by auto
            show snd'(set Cs - set rem) \subseteqne\cup set (map snd new)
            proof
                fix }
                    assume }\tau\in\mathrm{ snd '(set Cs - set rem)
            then obtain fargs where in-ls: ((f,args),\tau) \in set Cs and nrem: ((f,args),\tau)
& set rem by force
            thus }\tau\in\mathrm{ ne U set (map snd new) using new part rem-ls by force
        qed
```

```
        qed
        finally show ?thesis.
        next
            case True
            have compute-nonempty-main ne ls = ne using True by simp
            also have ... = ?NE
            proof (rule ccontr)
            assume }\neg\mathrm{ ?thesis
            with ne obtain \taut where counter: t:\tau in ?TC \tau & ne by auto
            thus False
            proof (induct t \tau)
                    case (Funfts \taus \tau)
                from Fun(1) have C (f,\taus)=Some \tau by (simp add: hastype-in-ssig-def)
                with assms(2) have mem: ((f,\taus),\tau)\in set Cs by (meson map-of-SomeD)
                    from Fun(3) have \taus: set \taus\subseteq ne by (induct, auto)
                    from rem-ls mem Fun(4) have ((f,\taus),\tau) \in set rem-ls by auto
                    with \taus have ((f,\taus),\tau)\in set new using part by auto
                    with True show ?case by auto
            qed auto
        qed
        finally show?thesis.
    qed
qed
    from this[of {} Cs] show ?thesis unfolding compute-nonempty-sorts-def by
auto
qed
definition decide-nonempty-sorts :: 't list \(\Rightarrow\left(\left({ }^{\prime} f \times\right.\right.\) 't list \() \times\) 't)list \(\Rightarrow\) 't option where
                            decide-nonempty-sorts \taus Cs = (let ne = compute-nonempty-sorts Cs in
        find (\lambda\tau.\tau\not\inne) \taus)
lemma decide-nonempty-sorts:
    assumes distinct (map fst Cs)
    and map-of Cs=C
shows decide-nonempty-sorts \taus Cs = None \Longrightarrow\forall\tau\in set \taus.\existst:: ('f,'v)term.
t:\tau in \mathcal{T}(C,\emptyset)
    decide-nonempty-sorts \taus Cs = Some \tau\Longrightarrow\tau\in set \taus ^\neg(\exists t:: ('f,'v)term. t
: \tau in \mathcal{T}(C,\emptyset))
    unfolding decide-nonempty-sorts-def Let-def compute-nonempty-sorts[OF assms,
where ?'v = 'v]
    find-None-iff find-Some-iff by auto
```


### 5.2 Deciding infiniteness of a sort

We provide an algorithm, that given a list of sorts with constructors, computes the set of those sorts that are infinite. Here a sort is defined as infinite iff there is no upper bound on the size of the ground terms of that sort.
function compute-inf-main $:: ~ ' \tau$ set $\Rightarrow(' \tau \times(' f \times ' \tau$ list $)$ list $)$ list $\Rightarrow$ ' $\tau$ set where

```
compute-inf-main m-inf ls =(
    let (fin,ls') =
            partition (\lambda (\tau,fs).\forall\taus\in set (map snd fs).}\forall\tau\in\mathrm{ set }\taus.\tau\not\inm-inf) l
    in if fin =[] then m-inf else compute-inf-main (m-inf - set (map fst fin))ls')
by pat-completeness auto
```


## termination

```
proof (relation measure (length o snd), goal-cases)
    case (2 m-inf ls pair fin ls')
    have length fin + length ls' = length ls
        using 2 sum-length-filter-compl[of-ls] by (auto simp: o-def)
    with 2(3) have length ls' < length ls by (cases fin, auto)
    thus ?case by auto
qed simp
```

lemma compute-inf-main: fixes $E::{ }^{\prime} v \rightharpoonup{ }^{\prime} t$ and $C::\left({ }^{\prime} f, ' t\right)$ ssig
assumes $E: E=\emptyset$
and $C$-Cs: $C=$ map-of $C s^{\prime}$
and $C s^{\prime}$ : set $C s^{\prime}=\operatorname{set}(\operatorname{concat}(\operatorname{map}((\lambda(\tau, f s) . \operatorname{map}(\lambda f .(f, \tau)) f s)) C s))$
and arg-types-inhabitet: $\forall f \tau s \tau \tau^{\prime} . f: \tau s \rightarrow \tau$ in $C \longrightarrow \tau^{\prime} \in$ set $\tau s \longrightarrow(\exists t$.
$t: \tau^{\prime}$ in $\left.\mathcal{T}(C, E)\right)$
and dist: distinct (map fst Cs) distinct (map fst Cs')
and inhabitet: $\forall \tau$ fs. $(\tau, f s) \in$ set Cs $\longrightarrow$ set $f s \neq\{ \}$
and $\forall \tau . \tau \notin m$-inf $\longrightarrow$ bdd-above (size ' $\{t . t: \tau$ in $\mathcal{T}(C, E)\}$ )
and set $l s \subseteq$ set $C s$
and $f s t$ ' $($ set $C s-s e t l s) \cap m$-inf $=\{ \}$
and $m$-inf $\subseteq f s t$ ' set ls
shows compute-inf-main m-inf $l s=\{\tau$. $\neg$ bdd-above (size' $\{t . t: \tau$ in $\mathcal{T}(C, E)\})\}$
using $\operatorname{assms}(8-)$
proof (induct m-inf ls rule: compute-inf-main.induct)
case (1 m-inf ls)
let ?fin $=\lambda \tau$. bdd-above (size' $\{t . t: \tau$ in $\mathcal{T}(C, E)\})$
define crit where crit $=(\lambda(\tau:: ' t, f s::(' f \times ' t$ list $)$ list). $\forall \tau s \in \operatorname{set}(m a p$ snd
$\left.f_{s}\right) . \forall \tau \in$ set $\tau s . \tau \notin m$-inf)
define $S$ where $S \tau^{\prime}=$ size ' $\left\{t . t: \tau^{\prime}\right.$ in $\left.\mathcal{T}(C, E)\right\}$ for $\tau^{\prime}$
define $M$ where $M \tau^{\prime}=\operatorname{Maximum}\left(S \tau^{\prime}\right.$ ) for $\tau^{\prime}$
define $M^{\prime}$ where $M^{\prime} \sigma s=$ sum-list $(\operatorname{map} M \sigma s)+(1+$ length $\sigma s)$ for $\sigma s$
define $L$ where $L=[\sigma s .(\tau, c s)<-C s,(f, \sigma s)<-c s]$
define $N$ where $N=\max$-list ( $\operatorname{map} M^{\prime} L$ )
obtain fin $l s^{\prime}$ where part: partition crit $l s=\left(f i n, l s^{\prime}\right)$ by force
\{
fix $\tau c s$
assume inCs: $(\tau, c s) \in$ set Cs
have nonempty: $\exists$ t. $t: \tau$ in $\mathcal{T}(C, E)$
proof -
from inhabitet[rule-format, OF inCs] obtain $f \sigma s$ where $(f, \sigma s) \in$ set $c s$ by
(cases cs,auto )
with inCs have $((f, \sigma s), \tau) \in$ set $C s^{\prime}$ unfolding $C s^{\prime}$ by auto

```
    hence \(f C: f: \sigma s \rightarrow \tau\) in \(C\) using \(\operatorname{dist(2)}\) unfolding \(C\) - \(C s\)
            by (meson hastype-in-ssig-def map-of-is-SomeI)
    hence \(\forall \sigma . \exists t . \sigma \in\) set \(\sigma s \longrightarrow t: \sigma\) in \(\mathcal{T}(C, E)\) using arg-types-inhabitet[rule-format,
of \(f \sigma s \tau\) ] by auto
    from choice \([O F\) this \(]\) obtain \(t\) where \(\sigma \in\) set \(\sigma s \Longrightarrow t \sigma: \sigma\) in \(\mathcal{T}(C, E)\) for
\(\sigma\) by auto
    hence Fun \(f(\operatorname{map} t \sigma s): \tau\) in \(\mathcal{T}(C, E)\) using list-all2-conv-all-nth
            apply (intro Fun-hastypeI \([O F f C]\) ) by (simp add: list-all2-conv-all-nth)
            then show ?thesis by auto
    qed
    \(\}\) note inhabited \(=\) this
    \{
        fix \(\tau\)
        assume asm: \(\tau \in f\) st' set fin
        hence ?fin \(\tau\)
        proof (cases \(\tau \in\) m-inf)
            case True
            then obtain \(f s\) where taufs: \((\tau, f s) \in\) set fin using asm by auto
            \{
            fix \(\tau^{\prime}\) and \(t\) and args
            assume \(*: \tau^{\prime} \in\) set args args \(\in\) snd' set fs \(t: \tau^{\prime}\) in \(\mathcal{T}(C, E)\)
            from \(*\) have \(\tau^{\prime} \notin m\)-inf using taufs unfolding compute-inf-main.simps[of
\(m\)-inf]
            using crit-def part by fastforce
            hence ?fin \(\tau^{\prime}\) using crit-def part 1 (2) by auto
            hence \(h M\) : bdd-above ( \(S \tau^{\prime}\) ) unfolding \(S\)-def .
            from \(*(3)\) have size \(t \in S \tau^{\prime}\) unfolding \(S\)-def by auto
    from this \(h M\) have size \(t \leq M \tau^{\prime}\) unfolding \(M\)-def by (metis bdd-above-Maximum-nat)
    \} note arg-type-bounds \(=\) this
    \{
        fix \(t\)
        assume \(t: t: \tau\) in \(\mathcal{T}(C, E)\)
        then obtain \(f\) ts where \(t F: t=F u n f\) ts unfolding \(E\) by (induct, auto)
        from \(t\) [unfolded \(t F\) Fun-hastype]
        obtain \(\sigma s\) where \(f: f: \sigma s \rightarrow \tau\) in \(C\) and args: ts \({ }_{{ }_{l}} \sigma s\) in \(\mathcal{T}(C, E)\) by auto
        from part[simplified] asm 1(3) obtain cs where inCs: \((\tau, c s) \in\) set Cs and
        crit: crit ( \(\tau, c s\) ) by auto
    \{
        from \(f\) [unfolded hastype-in-ssig-def \(C\) - \(C s]\)
        have map-of \(C s^{\prime}(f, \sigma s)=\) Some \(\tau\) by auto
        hence \(((f, \sigma s), \tau) \in\) set \(C s^{\prime}\) by (metis map-of-SomeD)
        from this[unfolded \(C s^{\prime}\), simplified] obtain \(c s^{\prime}\) where 2: \(\left(\tau, c s^{\prime}\right) \in\) set \(C s\)
and mem: \((f, \sigma s) \in\) set \(c s^{\prime}\) by auto
    from inCs 2 dist have \(c s^{\prime}=c s\) by (metis eq-key-imp-eq-value)
    with mem have mem: \((f, \sigma s) \in\) set \(c s\) by auto
    \(\}\) note \(m e m=t h i s\)
    from mem inCs have inL: \(\sigma s \in\) set \(L\) unfolding \(L\)-def by force
    \{
        fix \(\sigma t i\)
```

```
            assume }\sigma\in\mathrm{ set }\sigmas\mathrm{ and ti: ti: }\sigma\mathrm{ in }\mathcal{T}(C,E
            with mem crit have }\sigma\not\inm\mathrm{ -inf unfolding crit-def by auto
            hence ?fin \sigma using 1(2) by auto
            hence hM: bdd-above ( }S\sigma\mathrm{ ) unfolding S-def .
            from ti have size ti }S\sigma\mathrm{ unfolding S-def by auto
    from this hM have size ti\leqM \sigma unfolding M-def by (metis bdd-above-Maximum-nat)
        } note arg-bound = this
    have len: length \sigmas = length ts using args by (auto simp: list-all2-conv-all-nth)
        have size t = sum-list (map size ts) + (1 + length ts) unfolding tF by
(simp add: size-list-conv-sum-list)
    also have ... \leq sum-list (map M \sigmas) + (1 + length ts) unfolding tF args
    proof -
        have id1: map size ts = map ( }\lambda\mathrm{ i. size (ts ! i)) [0 ..< length ts] by (intro
nth-equalityI, auto)
            have id2: map M \sigmas = map ( }\lambda\mathrm{ i. M ( }\sigmas!i))[0 ..< length ts] using len
by (intro nth-equalityI, auto)
            have sum-list (map size ts) \leq sum-list (map M \sigmas) unfolding id1 id2
                    apply (rule sum-list-mono) using arg-bound args
            by (auto, simp add: list-all2-conv-all-nth)
            thus ?thesis by auto
        qed
            also have ... = sum-list (map M \sigmas) + (1 + length \sigmas) using args
unfolding M-def using list-all2-lengthD by auto
            also have ... = M'\sigmas unfolding M'-def by auto
            also have .. . \leq max-list (map M'L)
            by (rule max-list, insert inL, auto)
            also have ... = N unfolding N-def ..
            finally have size t\leqN.
    }
    hence }\s.s\inS\tau\Longrightarrows\leqN\mathrm{ unfolding S-def by auto
    hence finite (S \tau)
        using finite-nat-set-iff-bounded-le by auto
    moreover
    have nonempty:\exists t. t:\tau in \mathcal{T}(C,E)
    proof -
        from part[simplified] asm 1(3) obtain cs where inCs: (\tau,cs) \in set Cs by
auto
            thus ?thesis using inhabited by auto
    qed
    hence S \tau\not={} unfolding S-def by auto
        ultimately show ?thesis unfolding S-def[symmetric] by (metis Max-ge
bdd-above-def)
    next
        case False
        then show ?thesis using 1(2) by simp
    qed
} note fin = this
show ?case
proof (cases fin = [])
```

```
    case False
    hence compute-inf-main m-inf ls = compute-inf-main (m-inf - set (map fst
fin)) ls
    unfolding compute-inf-main.simps[of m-inf] part[unfolded crit-def] by auto
    also have ... ={\tau. ᄀ?fin \tau}
    proof (rule 1(1)[OF refl part[unfolded crit-def, symmetric] False])
        show set ls'}\subseteq\subseteq\mathrm{ set Cs using 1(3) part by auto
        show fst''(set Cs - set ls')\cap(m-inf - set (map fst fin )) ={} using 1(3-4)
part by force
        show }\forall\tau.\tau\not\inm-inf - set (map fst fin) \longrightarrow? ?fin \tau using 1(2) fin by forc
        show m-inf - set (map fst fin)\subseteqfst' set ls' using 1(5) part by force
    qed
    finally show ?thesis .
next
    case True
    hence compute-inf-main m-inf ls = m-inf
        unfolding compute-inf-main.simps[of m-inf] part[unfolded crit-def] by auto
    also have ... ={\tau.\neg?fin \tau}
    proof
        show {\tau.\neg?fin \tau}\subseteqm-inf using fin 1(2) by auto
        {
            fix }
            assume }\tau\inm\mathrm{ -inf
            with 1(5) obtain cs where mem: (\tau,cs)\in set ls by auto
            from part True have ls':ls'}=ls\mathrm{ by (induct ls arbitrary:ls', auto)
            from partition-P[OF part, unfolded ls']
            have }\bigwedgee.e\in set ls \Longrightarrow\neg crit e by aut
            from this[OF mem, unfolded crit-def split]
            obtain c \taus 片 where *: (c,\taus) &et cs \mp@subsup{\tau}{}{\prime}\in\mathrm{ set }\taus\mp@subsup{\tau}{}{\prime}\inm\mathrm{ -inf by auto}
            from mem 1(2-) have ( }\tau,cs)\in\mathrm{ set Cs by auto
            with * have ((c,\taus),\tau) \in set Cs' unfolding Cs' by force
            with dist(2) have map-of Cs'}((c,\taus))=Some \tau by sim
            from this[folded C-Cs] have c:c:\taus->\tau in C unfolding hastype-in-ssig-def
            from arg-types-inhabitet this have }\forall\sigma.\existst.\sigma\in\mathrm{ set }\taus\longrightarrowt:\sigma\mathrm{ in }\mathcal{T}(C,E
by auto
            from choice[OF this] obtain t where }\\sigma.\sigma\in set \taus\Longrightarrowt \sigma:\sigma in
T}(C,E) by aut
            hence list: map t \taus :l \taus in \mathcal{T}(C,E) by (simp add: list-all2-conv-all-nth)
            with c have Fun c (map t \taus):\tau in \mathcal{T}(C,E) by (intro Fun-hastypeI)
            with * c list have }\existsc\taus\mp@subsup{\tau}{}{\prime}\mathrm{ ts. Fun c ts : }\tau\mathrm{ in }\mathcal{T}(C,E)\wedgets:\mp@subsup{}{l}{l}\taus\mathrm{ in }\mathcal{T}(C,E
\wedge c:\taus->\tau in C\wedge \tau
            by blast
            } note m-invD = this
    {
        fix n :: nat
            have}\tau\inm\mathrm{ -inf "ヨt.t: }~\mathrm{ in }\mathcal{T}(C,E)\wedge size t\geqn for 
            proof (induct n arbitrary: \tau)
            case (0 \tau)
```

from m-invD[ $O F$ 0] show ?case by blast
next
case (Suc $n \tau$ )
from $m$-invD $\left[\right.$ OF Suc(2)] obtain $c \tau s \tau^{\prime}$ ts where $*: t s:_{l} \tau s$ in $\mathcal{T}(C, E) c: \tau s \rightarrow \tau$ in $C \tau^{\prime} \in$ set $\tau s \tau^{\prime} \in m$-inf by auto
from $*(1)[$ unfolded list-all2-conv-all-nth] $*(3)[$ unfolded set-conv-nth]
obtain $i$ where $i: i<$ length $\tau s$ and tsi:ts ! $i: \tau^{\prime}$ in $\mathcal{T}(C, E)$ and len:
length $t s=$ length $\tau s$ by auto
from $\operatorname{Suc}(1)[O F *(4)]$ obtain $t$ where $t: t: \tau^{\prime}$ in $\mathcal{T}(C, E)$ and $n s: n \leq$ size $t$ by auto
define $t s^{\prime}$ where $t s^{\prime}=t s[i:=t]$
have $t s^{\prime}{ }^{\prime}{ }_{l} \tau s$ in $\mathcal{T}(C, E)$ using list-all2-conv-all-nth unfolding $t s^{\prime}$-def
by (metis $*(1)$ tsi has-same-type i list-all2-update-cong list-update-same-conv $t(1))$
hence $* *:$ Fun $c t s^{\prime}: \tau$ in $\mathcal{T}(C, E)$ apply (intro Fun-hastypeI[OF *(2)])
by fastforce
have $t \in$ set $t s^{\prime}$ unfolding $t s^{\prime}$-def using $t$
by (simp add: i len set-update-memI)
hence size (Fun cts') $\geq$ Suc $n$ using *
by (simp add: size-list-estimation' $n s$ )
thus ?case using $* *$ by blast
qed
$\}$ note main $=$ this
show $m$-inf $\subseteq\{\tau$. $\neg$ ? fin $\tau\}$
proof (standard, standard)
fix $\tau$
assume asm: $\tau \in m$-inf
have $\exists t . t: \tau$ in $\mathcal{T}(C, E) \wedge n<$ size $t$ for $n$ using main[OF asm, of Suc $n]$ by auto
thus $\neg$ ? fin $\tau$
by (metis bdd-above-Maximum-nat imageI mem-Collect-eq order.strict-iff) qed
qed
finally show ?thesis .
qed
qed
definition compute-inf-sorts :: (('f $\times$ 't list $) \times$ ' $t)$ list $\Rightarrow$ 't set where
compute-inf-sorts Cs $=$ (let
$C s^{\prime}=\operatorname{map}(\lambda \tau .(\tau$, map fst $(f i l t e r(\lambda f$. snd $f=\tau) C s)))($ remdups (map snd Cs))
in compute-inf-main (set (map fst $\left.\left.\left.C s^{\prime}\right)\right) C s^{\prime}\right)$
lemma compute-inf-sorts:
fixes $E::{ }^{\prime} v \rightharpoonup{ }^{\prime} t$ and $C::\left({ }^{\prime} f, ' t\right) s s i g$
assumes $E$ : $E=\emptyset$
and $C$-Cs: $C=$ map-of $C s$
and arg-types-inhabitet: $\forall f \tau s \tau \tau^{\prime} . f: \tau s \rightarrow \tau$ in $C \longrightarrow \tau^{\prime} \in$ set $\tau s \longrightarrow(\exists t$.

```
t:\mp@subsup{\tau}{}{\prime}}\mathrm{ in }\mathcal{T}(C,E)
    and dist: distinct (map fst Cs)
shows compute-inf-sorts Cs ={\tau.\neg bdd-above(size '{t.t:\tau in \mathcal{T}(C,E)})}
proof -
    define taus where taus= remdups (map snd Cs)
    define Cs' where Cs' = map ( }\lambda\tau.(\tau,\mathrm{ map fst (filter ( }\lambdaf.\mathrm{ snd f = v) Cs))) taus
    have compute-inf-sorts Cs = compute-inf-main (set (map fst Cs')) Cs'
    unfolding compute-inf-sorts-def taus-def Cs'-def Let-def by auto
    also have ... ={\tau.\neg bdd-above (size' {t.t:\tau in \mathcal{T}(C,E)})}
    proof (rule compute-inf-main[OF E C-Cs - arg-types-inhabitet - dist - - sub-
set-refl])
    have distinct taus unfolding taus-def by auto
    thus distinct (map fst Cs') unfolding Cs'-def map-map o-def fst-conv by auto
    show set Cs = set (concat (map ( }\lambda(\tau,fs).\operatorname{map}(\lambdaf.(f,\tau))fs)Cs')
        unfolding Cs'-def taus-def by force
    show }\forall\taufs.(\tau,fs)\in\mathrm{ set Cs' }\longrightarrow\mathrm{ set fs }\not={
        unfolding Cs'-def taus-def by (force simp: filter-empty-conv)
    show fst ' (set Cs' - set Cs') \cap set (map fst Cs') = {} by auto
    show set (map fst Cs')\subseteqfst' set Cs' by auto
    show }\forall\tau.\tau\not\in\mathrm{ set (map fst Cs')}\longrightarrow\mathrm{ bdd-above (size '{t.t: }\tau\mathrm{ in }\mathcal{T}(C,E)}
    proof (intro allI impI)
        fix }
        assume \tau\not\in set (map fst Cs')
        hence }\tau\not\in\mathrm{ snd 'set Cs unfolding Cs'-def taus-def by auto
        hence diff: Cf\not=Some \tau for f unfolding C-Cs
            by (metis Some-eq-map-of-iff dist imageI snd-conv)
        {
            fix }
            assume t:\tau in \mathcal{T}(C,E)
            hence False using diff unfolding E
            proof induct
                case (Funf ss \sigmas \tau)
                    from Fun(1,4) show False unfolding hastype-in-ssig-def by auto
            qed auto
        }
        hence id: {t.t:\tau in \mathcal{T}(C,E)}={} by auto
        show bdd-above (size' {t.t:\tau in \mathcal{T}(C,E)}) unfolding id by auto
    qed
    qed
    finally show ?thesis .
qed
end
```


## 6 A List-Based Implementation to Decide Pattern Completeness

```
theory Pattern-Completeness-List
    imports
```

Pattern-Completeness-Multiset
Compute-Nonempty-Infinite-Sorts
HOL-Library.AList
begin

### 6.1 Definition of Algorithm

We refine the non-deterministic multiset based implementation to a deterministic one which uses lists as underlying data-structure. For matching problems we distinguish several different shapes.

```
type-synonym('a,'b)alist = ('a < 'b)list
type-synonym('f,'v,'s)match-problem-list = (('f,nat × 's)term }\times(\mp@subsup{}{}{\prime}f,'v)\mathrm{ term)
list - mp with arbitrary pairs
type-synonym ('f,'v,'s)match-problem-lx = ((nat ×'s) \times ('f,'v)term) list - mp
where left components are variable
type-synonym ('f,'v,'s)match-problem-rx = ('v,('f,nat }\times\mathrm{ 's)term list) alist }\times\mathrm{ bool
- mp where right components are variables
type-synonym ('f,'v,'s)match-problem-lr = ('f,'v,'s)match-problem-lx \times ('f,'v,'s)match-problem-rx
- a partitioned mp
type-synonym('f,'v,'s)pat-problem-list = ('f,'v,'s)match-problem-list list
type-synonym ('f,'v,'s)pat-problem-lr = ('f,'v,'s) match-problem-lr list
type-synonym ('f,'v,'s)pats-problem-list = ('f,'v,'s)pat-problem-list list
type-synonym ('f,'v,'s)pat-problem-set-impl = (('f,nat }\times\mathrm{ ''s)term }\times(\mp@subsup{'}{}{\prime}f,'v)term
list list
```

abbreviation mp-list :: ('f,'v,'s) match-problem-list $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ match-problem-mset
where $m p$-list $\equiv$ mset
abbreviation $m p-l x::\left({ }^{\prime} f,,^{\prime} v, ' s\right)$ match-problem-lx $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ match-problem-list where $m p-l x \equiv \operatorname{map}$ (map-prod Var id)
definition mp-rx :: ('f,'v,'s)match-problem-rx $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ match-problem-mset where $m p-r x m p=m s e t($ List.maps $(\lambda(x, t s) . \operatorname{map}(\lambda t .(t, \operatorname{Var} x)) t s)(f s t m p))$
definition mp-rx-list :: ('f,'v,'s)match-problem-rx $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ match-problem-list where $m p-r x$-list $m p=$ List.maps $(\lambda(x, t s) . \operatorname{map}(\lambda t$. $(t, \operatorname{Var} x))$ ts) $(f s t m p)$
definition mp-lr :: ('f,'v,'s) match-problem-lr $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ match-problem-mset where $m p-l r$ pair $=($ case pair of $(l x, r x) \Rightarrow m p-l i s t(m p-l x l x)+m p-r x r x)$
definition mp-lr-list :: ('f,'v,'s)match-problem-lr $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ match-problem-list where $m p$-lr-list pair $=($ case pair of $(l x, r x) \Rightarrow m p-l x l x @ m p-r x-l i s t r x)$
definition pat-lr :: ('f,'v,'s)pat-problem-lr $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-mset where pat-lr ps $=$ mset ( map mp -lr ps)
definition pat-mset-list :: ('f,'v,'s)pat-problem-list $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ pat-problem-mset
where pat-mset-list $p s=m s e t(m a p m p-l i s t ~ p s)$
definition pat-list :: ('f,'v,'s)pat-problem-list $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-set
where pat-list $p s=$ set ' set ps
abbreviation pats-mset-list :: ('f,'v,'s) pats-problem-list $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pats-problem-mset
where pats-mset-list $\equiv$ mset o map pat-mset-list
definition subst-match-problem-list $::($ ' $f, n a t \times ' s)$ subst $\Rightarrow(' f, ' v, ' s)$ match-problem-list $\Rightarrow(' f, ' v, ' s)$ match-problem-list where subst-match-problem-list $\tau=$ map (subst-left $\tau$ )
definition subst-pat-problem-list :: ('f,nat $\times$ 's)subst $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v, ' s\right)$ pat-problem-list $\Rightarrow(' f, ' v, ' s)$ pat-problem-list where
subst-pat-problem-list $\tau=$ map (subst-match-problem-list $\tau$ )
definition match-var-impl :: ('f,'v,'s)match-problem-lr $\Rightarrow(' f, ' v, ' s) m a t c h-p r o b l e m-l r$ where
match-var-impl $m p=($ case $m p$ of $(x l,(r x, b)) \Rightarrow$

$$
\text { let } x s=\text { remdups }(\text { List.maps }(\text { vars-term-list o snd }) x l)
$$

$$
\text { in }(x l,(\text { filter }(\lambda(x, t s) . t l t s \neq[] \vee x \in \operatorname{set} x s) r x), b))
$$

definition find-var :: ('f,'v,'s) match-problem-lr list $\Rightarrow$ - where find-var $p=($ case concat (map ( $\lambda(l x,-) . l x) p$ ) of

$$
(x, t) \#-\Rightarrow x
$$

| [] $\Rightarrow$ let $(-, r x, b)=h d($ filter (Not o snd o snd) $p$ )
in case hd rx of $(x, s \# t \#-) \Rightarrow h d($ the $($ conflicts $s t)))$
definition empty-lr :: ('f,'v,'s) match-problem-lr $\Rightarrow$ bool where empty-lr $m p=($ case $m p$ of $(l x, r x,-) \Rightarrow l x=[] \wedge r x=[])$
context pattern-completeness-context
begin
insert an element into the part of the mp that stores pairs of form ( $\mathrm{t}, \mathrm{x}$ ) for variables x . Internally this is represented as maps (assoc lists) from x to terms $\mathrm{t} 1, \mathrm{t} 2, \ldots$ so that linear terms are easily identifiable. Duplicates will be removed and clashes will be immediately be detected and result in None.
definition insert-rx $::\left(' f, n a t \times{ }^{\prime} s\right)$ term $\Rightarrow{ }^{\prime} v \Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime} s\right)$ match-problem-rx $\Rightarrow$ ( $' f,{ }^{\prime} v$, 's) match-problem-rx option where
insert-rx $t x r x b=($ case rxb of $(r x, b) \Rightarrow$ (case map-of rx $x$ of None $\Rightarrow$ Some $(((x,[t]) \# r x, b))$
| Some $t s \Rightarrow$ (case those (map (conflicts $t$ ) ts)
of None $\Rightarrow$ None - clash
$\mid$ Some $c s \Rightarrow$ if []$\in$ set cs then Some rxb - empty conflict means ( $\mathrm{t}, \mathrm{x}$ ) was already part of rxb
else Some ((AList.update $x(t \# t s) r x, b \vee(\exists y \in$ set (concat cs). inf-sort $(\operatorname{snd} y))))$
)))
lemma size-zip $[$ termination-simp $]$ : length $t s=$ length $l s \Longrightarrow$ size-list $(\lambda p$. size (snd p)) (zip ts ls)
<Suc (size-list size ls)
by (induct ts ls rule: list-induct2, auto)
Decomposition applies decomposition, duplicate and clash rule to classify all remaining problems as being of kind $(\mathrm{x}, \mathrm{f}(\mathrm{l}, \ldots, \ln ))$ or $(\mathrm{t}, \mathrm{x})$.
fun decomp-impl :: ('f,'v,'s)match-problem-list $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ match-problem-lr option where

```
decomp-impl []\(=\) Some ([],([],False))
\(\mid\) decomp-impl \(((\) Fun \(f t s\), Fun \(g l s) \# m p)=(\) if \((f\), length \(t s)=(g\) length ls) then
    decomp-impl (zip ts ls @ mp) else None)
\(\mid\) decomp-impl ((Var \(x\), Fun \(g\) ls) \# mp) \(=\) (case decomp-impl mp of Some (lx,rx)
\(\Rightarrow\) Some ((x,Fun g ls) \# lx,rx)
    \(\mid\) None \(\Rightarrow\) None)
\(\mid\) decomp-impl \(((t, \operatorname{Var} y) \# m p)=\) (case decomp-impl mp of Some \((l x, r x) \Rightarrow\)
    (case insert-rx t y rx of Some \(r x^{\prime} \Rightarrow\) Some \(\left(l x, r x^{\prime}\right) \mid\) None \(\Rightarrow\) None)
    | None \(\Rightarrow\) None)
```

definition match-steps-impl $::\left({ }^{\prime} f, ' v, ' s\right)$ match-problem-list $\Rightarrow\left(' f,{ }^{\prime} v,{ }^{\prime} s\right)$ match-problem-lr option where
match-steps-impl $m p=$ map-option match-var-impl (decomp-impl mp)
fun pat-inner-impl :: ('f,'v,'s)pat-problem-list $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-lr $\Rightarrow\left({ }^{\prime} f, ' v, ' s\right)$ pat-problem-lr option where
pat-inner-impl [] pd $=$ Some $p d$
$\mid$ pat-inner-impl $(m p \# p) p d=$ (case match-steps-impl mp of None $\Rightarrow$ pat-inner-impl $p$ pd
| Some $m p^{\prime} \Rightarrow$ if empty-lr $m p^{\prime}$ then None else pat-inner-impl p (mp' \# pd))
definition pat-impl :: nat $\Rightarrow(' f, ' v, ' s)$ pat-problem-list $\Rightarrow(' f, ' v, ' s)$ pat-problem-list list option where
pat-impl n $p=($ case pat-inner-impl $p$ [] of None $\Rightarrow$ Some []
| Some $p^{\prime} \Rightarrow\left(\right.$ if $\left(\forall m p \in \operatorname{set} p^{\prime}\right.$. snd $($ snd $\left.m p)\right)$ then None - detected
inf-var-conflict (or empty mp )
else let $p^{\prime} l=$ map $m p-l r$-list $p^{\prime}$;
$x=$ find-var $p^{\prime}$
in
Some (map $\left(\lambda \tau\right.$. subst-pat-problem-list $\left.\tau p^{\prime} l\right)(\tau s$-list $\left.\left.\left.n x)\right)\right)\right)$
partial-function (tailrec) pats-impl :: nat $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v,{ }^{\prime}\right.$ s) pats-problem-list $\Rightarrow$ bool where

$$
\text { pats-impl } n \text { ps }=(\text { case ps of }[] \Rightarrow \text { True }
$$

$\mid p \# p s 1 \Rightarrow$ (case pat-impl $n$ p of
None $\Rightarrow$ False
|Some ps2 $\Rightarrow$ pats-impl $(n+m)(p s 2 @ p s 1)))$

```
definition pat-complete-impl :: ('f,'v,'s)pats-problem-list }=>\mathrm{ bool where
    pat-complete-impl ps = (let
        n=Suc (max-list (List.maps (map fst o vars-term-list o fst) (concat (concat
ps))))
    in pats-impl n ps)
end
lemmas pat-complete-impl-code =
    pattern-completeness-context.pat-complete-impl-def
    pattern-completeness-context.pats-impl.simps
    pattern-completeness-context.pat-impl-def
    pattern-completeness-context.\taus-list-def
    pattern-completeness-context.insert-rx-def
    pattern-completeness-context.decomp-impl.simps
    pattern-completeness-context.match-steps-impl-def
    pattern-completeness-context.pat-inner-impl.simps
declare pat-complete-impl-code[code]
```


### 6.2 Partial Correctness of the Implementation

We prove that the list-based implementation is a refinement of the multisetbased one.
lemma mset-concat-union:
mset $($ concat $x s)=\sum_{\#}($ mset $($ map mset $x s))$
by (induct xs, auto simp: union-commute)
lemma in-map-mset[intro]:
$a \in \# A \Longrightarrow f a \in \#$ image-mset $f A$
unfolding in-image-mset by simp
lemma mset-update: map-of xs $x=$ Some $y \Longrightarrow$
mset $($ AList.update $x$ z xs $)=($ mset $x s-\{\#(x, y) \#\})+\{\#(x, z) \#\}$
by (induction xs, auto)
lemma set-update: map-of xs $x=$ Some $y \Longrightarrow d i s t i n c t ~(m a p ~ f s t ~ x s) ~ \Longrightarrow ~$ set $($ AList.update $x z x s)=$ insert $(x, z)($ set xs $-\{(x, y)\})$
by (induction xs, auto)
context pattern-completeness-context-with-assms
begin
Various well-formed predicates for intermediate results

```
definition wf-ts :: ('f, nat \(\times\) 's) term list \(\Rightarrow\) bool where
    wf-ts ts \(=(\) ts \(\neq[] \wedge\) distinct \(t s \wedge(\forall j<\) length \(t s . \forall i<j\). conflicts \((t s!i)(t s\)
! \(j) \neq\) None) \()\)
```

```
definition wf-ts2 :: ('f,nat }\times\mathrm{ 's) term list }=>\mathrm{ bool where
    wf-ts2 ts = (length ts \geq2 ^ distinct ts ^(\forallj< length ts.}\foralli<j. conflicts (t
!i)}(ts!j)\not= None)
definition wf-lx :: ('f,'v,'s)match-problem-lx => bool where
    w-lx lx = (Ball (snd'set lx) is-Fun)
definition wf-rx :: ('f,'v,'s)match-problem-rx => bool where
    wf-rx rx = (distinct (map fst (fst rx)) ^(Ball (snd' set (fst rx)) wf-ts) ^ snd rx
= inf-var-conflict (set-mset (mp-rx rx)))
definition wf-rx2 :: ('f,'v,'s)match-problem-rx }=>\mathrm{ bool where
```



```
rx = inf-var-conflict (set-mset (mp-rx rx)))
definition wf-lr :: ('f,'v,'s)match-problem-lr }=>\mathrm{ bool
    where wf-lr pair = (case pair of (lx,rx)=>wf-lx lx}\wedgewf-rx rx
definition wf-lr2 :: ('f,'v,'s)match-problem-lr mbool
    where wf-lr2 pair = (case pair of (lx,rx) => wf-lx lx ^(if lx = [] then wf-rx2 rx
else wf-rx rx))
definition wf-pat-lr :: ('f,'v,'s)pat-problem-lr => bool where
    wf-pat-lr mps = (Ball (set mps) (\lambda mp.wf-lr2 mp ^\neg empty-lr mp))
lemma mp-step-mset-cong:
    assumes ( }\mp@subsup{->}{m}{\prime}\mp@subsup{)}{}{**}mpm\mp@subsup{p}{}{\prime
    shows (add-mset (add-mset mp p) P, add-mset (add-mset mp' p)P)\in=>*
    using assms
proof induct
    case (step mp' mp'')
    from P-simp-pp[OF pat-simp-mp[OF step(2), of p], of P]
    have (add-mset (add-mset mp' p) P, add-mset (add-mset mp" p) P) \inP-step
        unfolding P-step-def by auto
    with step(3)
    show ?case by simp
qed auto
lemma mp-step-mset-vars: assumes mp ->m}m\mp@subsup{m}{}{\prime
    shows tvars-mp (mp-mset mp) \supseteq tvars-mp (mp-mset mp')
    using assms by induct (auto simp: tvars-mp-def set-zip)
lemma mp-step-mset-steps-vars: assumes ( }\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}mpmp
    shows tvars-mp (mp-mset mp) \supseteq tvars-mp (mp-mset mp')
    using assms by (induct, insert mp-step-mset-vars, auto)
Continue with properties of the sub-algorithms
lemma insert-rx: assumes res: insert-rx t \(x\) rxb \(=\) res
```

and $w f: w f-r x r x b$
and $m p: m p=(l s, r x b)$
shows res $=$ Some $r x^{\prime} \Longrightarrow\left(\rightarrow_{m}\right)^{* *}($ add-mset $(t, \operatorname{Var} x)(m p-l r m p+M))(m p-l r$ $\left.\left(l s, r x^{\prime}\right)+M\right) \wedge w f-r x r x^{\prime}$
res $=$ None $\Longrightarrow$ match-fail $(a d d-m s e t(t$, Var $x)(m p-l r m p+M))$
proof -
obtain $r x b$ where $r x b$ : $r x b=(r x, b)$ by force
note $[$ simp $]=$ List.maps-def
note res $=$ res[unfolded insert-rx-def]
\{
assume $*$ : res $=$ None
with res rxb obtain $t s$ where look: map-of rx $x=$ Some ts by (auto split: option.splits)
with res[unfolded look Let-def rxb split] $*$ obtain $t^{\prime}$ where $t^{\prime}: t^{\prime} \in$ set $t s$ and clash: Conflict-Clash $t t^{\prime}$
by (auto split: if-splits option.splits)
from map-of-Some $D[O F$ look $] t^{\prime}$ have $\left(t^{\prime}\right.$, Var $\left.x\right) \in \# m p-r x$ rxb
unfolding mp-rx-def rxb by auto
hence $\left(t^{\prime}\right.$, Var $\left.x\right) \in \# m p-l r m p+M$ unfolding $m p m p-l r-d e f$ by auto
then obtain $m p^{\prime}$ where $m p: m p-l r m p+M=a d d-m s e t\left(t^{\prime}, \operatorname{Var} x\right) m p^{\prime}$ by (rule mset-add)
show match-fail (add-mset ( $t$, Var $x$ ) ( $m p-l r m p+M$ ) ) unfolding $m p$
by (rule match-clash' ${ }^{[ }$OF clash $\left.]\right)$
\}
\{
assume res $=$ Some $r x^{\prime}$
note res $=$ res[unfolded this rxb split]
show mp-step-mset $* *(a d d-m s e t(t, V a r x)(m p-l r m p+M))\left(m p-l r\left(l s, r x^{\prime}\right)+\right.$ M) $\wedge w f-r x r x^{\prime}$
proof (cases map-of rx $x$ )
case look: None
from res[unfolded this]
have $r x^{\prime}: r x^{\prime}=((x,[t]) \# r x, b)$ by auto
have id: mp-rx rx' = add-mset ( $t$, Var $x$ ) ( $m p-r x r x b$ )
using look unfolding mp-rx-def mset-concat-union mset-map rx' o-def rxb by auto
have $[\operatorname{simp}]:(x, t) \notin$ set $r x$ for $t$ using look using weak-map-of-SomeI by force
have inf-var-conflict (mp-mset (mp-rx $((x,[t]) \# r x, b)))=$ inf-var-conflict (mp-mset (mp-rx (rx,b)))
unfolding mp-rx-def fst-conv inf-var-conflict-def by (intro ex-cong1, auto)
hence $w f$ : $w f-r x r x^{\prime}$ using $w f$ look unfolding $w f-r x$-def $r x^{\prime} r x b$ by (auto simp: $w f-t s-d e f$ )
show ?thesis unfolding mp mp-lr-def split id
using wf unfolding $r x^{\prime}$ by auto
next
case look: (Some ts)
from map-of-SomeD[OF look] have mem: $(x, t s) \in$ set $r x$ by auto
note res $=$ res[unfolded look option.simps Let-def]
from res obtain $c s$ where those: those (map (conflicts t) ts) $=$ Some cs by (auto split: option.splits)
note res $=$ res[unfolded those option.simps]
from arg-cong[OF those[unfolded those-eq-Some], of set] have confl: conflicts $t$ ' set ts = Some' set cs by auto
show ?thesis
proof (cases []$\in$ set cs)
case True
with res have $r x^{\prime}: r x^{\prime}=r x b$ by (auto split: if-splits simp: $m p$ rxb those)
from True confl obtain $t^{\prime}$ where $t^{\prime} \in$ set ts and conflicts $t t^{\prime}=$ Some [] by force
hence $t: t \in$ set ts using conflicts(5)[of $\left.t t^{\prime}\right]$ by auto
hence $(t, \operatorname{Var} x) \in \# m p-r x r x b$ unfolding $m p-r x$-def rxb using mem by auto
hence $(t, \operatorname{Var} x) \in \# m p-l r m p+M$ unfolding $m p m p-l r$-def by auto
then obtain sub where $i d$ : $m p-l r m p+M=a d d-m s e t$ ( $t$, Var $x$ ) sub by (rule mset-add)
show ?thesis unfolding id $r x^{\prime} m p[$ symmetric] using match-duplicate[of ( $t$, Var $x$ ) sub] wf by auto
next
case False
with res have $r x^{\prime}: r x^{\prime}=($ AList.update $x(t \# t s) r x, b \vee(\exists y \in$ set (concat cs). inf-sort (snd $y$ ))) by (auto split: if-splits)
from split-list[OF mem] obtain rx1 rx2 where $r x: r x=r x 1$ @ $(x, t s) \#$ rx2 by auto
have $i d$ : $m p-r x r x^{\prime}=a d d-m s e t(t, \operatorname{Var} x)(m p-r x r x b)$
unfolding $r x^{\prime} m p-r x$-def $r x b$ by (simp add: mset-update[OF look] mset-concat-union, auto simp: $r x$ )
from $w f[u n f o l d e d ~ w f-r x$-def] $r x r x b$ have $t s$ : wf-ts ts and $b: b=i n f$-var-conflict ( $m p-m s e t$ ( $m p-r x r x b$ )) by auto
from False confl conflicts(5)[of $t t]$ have $t: t \notin$ set $t$ sy force
from confl have None $\notin$ set (map (conflicts $t$ ) ts) by auto
with $t s t$ have $t s^{\prime}$ : wf-ts ( $t \# t s$ ) unfolding $w f-t s$-def
apply clarsimp
subgoal for $j i$ by (cases $j$, force, cases $i$; force simp: set-conv-nth)
done
have $b:(b \vee(\exists y \in \operatorname{set}($ concat cs). inf-sort $($ snd $y)))=$ inf-var-conflict (mp-mset (add-mset $(t, \operatorname{Var} x)(m p-r x r x b)))($ is $-=$ ?ivc)
proof (standard, elim disjE bexE)
show $b \Longrightarrow$ ? ivc unfolding $b$ inf-var-conflict-def by force
\{
fix $y$
assume $y: y \in \operatorname{set}$ (concat cs) and inf: inf-sort (snd y)
from $y$ confl obtain $t^{\prime} y s$ where $t^{\prime}: t^{\prime} \in$ set $t s$ and $c:$ conflicts $t t^{\prime}=$ Some ys and $y: y \in$ set $y s$ unfolding set-concat
by (smt (verit, del-insts) UnionE image-iff)
have $y$ : Conflict-Var $t t^{\prime} y$ using $c y$ by auto
from mem $t^{\prime}$ have $\left(t^{\prime}, \operatorname{Var} x\right) \in \# m p-r x r x b$ unfolding $r x b m p-r x-d e f$

```
by auto
            thus ?ivc unfolding inf-var-conflict-def using inf y by fastforce
            }
            assume ?ivc
            from this[unfolded inf-var-conflict-def]
            obtain s1 s2 x' y
            where ic: (s1, Var x') \in# add-mset (t, Var x) (mp-rx rxb) ^(s2, Var
x})\in# add-mset (t,Var x) (mp-rx rxb) ^ Conflict-Var s1 s2 y ^ inf-sort (snd y)
            by blast
            show b\vee (\existsy\inset (concat cs). inf-sort (snd y))
            proof (cases (s1, Var x') \in# mp-rx rxb ^(s2, Var x') \in# mp-rx rxb)
            case True
            with ic have b unfolding b inf-var-conflict-def by blast
            thus ?thesis ..
            next
                case False
            with ic have (s1,Var x') = (t, Var x)\vee (s2, Var x') = (t,Var x ) by auto
            hence \existssy.(s,Var x)\in# add-mset (t, Var x) (mp-rx rxb) ^ Conflict-Var
ts y ^inf-sort (snd y)
            proof
            assume (s1, Var x') = (t, Var x)
            thus ?thesis using ic by blast
            next
                    assume *: (s2, Var x})=(t,\operatorname{Var}x
                    with ic have Conflict-Var s1 t y by auto
                            hence Conflict-Vart s1 y using conflicts-sym[of s1 t] by (cases conflicts
s1t; cases conflicts t s1, auto)
                    with ic * show ?thesis by blast
                    qed
                            then obtain s y where sx: (s, Var x) \in# add-mset (t, Var x) (mp-rx
rxb) and y:Conflict-Var t s y and inf: inf-sort (snd y)
            by blast
                    from wf have dist: distinct (map fst rx) unfolding wf-rx-def rxb by
auto
            from }y\mathrm{ have s}\not=t\mathrm{ by auto
            with sx have (s, Var x) \in# mp-rx rxb by auto
            hence s\in set ts unfolding mp-rx-def rxb using mem eq-key-imp-eq-value[OF
dist] by auto
                            with y confl have y fet (concat cs) by (cases conflicts t s; force)
                    with inf show ?thesis by auto
            qed
            qed
            have wf:wf-rx rx' using wf ts' unfolding wf-rx-def id unfolding rx' rxb
snd-conv b by (auto simp: distinct-update set-update[OF look])
            show ?thesis using wf id unfolding mp by (auto simp: mp-lr-def)
        qed
    qed
    }
qed
```

```
lemma decomp-impl:decomp-impl mp = res \Longrightarrow
    (res =Some mp'\longrightarrow( }\mp@subsup{->}{m}{\prime}\mp@subsup{)}{}{**}(mp-list mp + M) (mp-lr mp' + M)^wf-lr mp'
    \wedge(res = None \longrightarrow( }\existsm\mp@subsup{p}{}{\prime}.(\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-list mp +M)m\mp@subsup{p}{}{\prime}\wedge match-fail mp')
proof (induct mp arbitrary: res M mp' rule: decomp-impl.induct)
    case 1
    thus ?case by (auto simp: mp-lr-def mp-rx-def List.maps-def wf-lr-def wf-lx-def
wf-rx-def inf-var-conflict-def)
next
    case (2 f ts g ls mp res M mp')
    have id: mp-list ((Funfts,Fungls) #mp) +M=add-mset (Fun fts, Fung
ls) (mp-list mp + M)
    by auto
    show ?case
    proof (cases (f,length ts) = (g,length ls))
    case False
    with 2(2-) have res: res = None by auto
    from match-clash[OF False, of (mp-list mp + M), folded id]
    show ?thesis unfolding res by blast
    next
        case True
        have id2:mp-list (zip ts ls @ mp) + M =mp-list mp + M +mp-list (zip ts
ls)
            by auto
        from True 2(2-) have res: decomp-impl (zip ts ls @mp) = res by auto
        note IH = 2(1)[OF True this, of mp' M]
        note step = match-decompose[OF True, of mp-list mp + M, folded id id2]
        from IH step show ?thesis by (meson converse-rtranclp-into-rtranclp)
    qed
next
    case (3 x g ls mp res M mp')
    note res = 3(2)[unfolded decomp-impl.simps]
    show ?case
    proof (cases decomp-impl mp)
        case None
        from 3(1)[OF None, of mp' add-mset (Var x, Fun g ls) M] None res show
?thesis by auto
    next
        case (Some mpx)
        then obtain lx rx where decomp: decomp-impl mp =Some (lx,rx) by (cases
mpx, auto)
    from res[unfolded decomp option.simps split] have res: res = Some ( (x, Fun
g ls) # lx, rx) by auto
        from 3(1)[OF decomp, of (lx,rx) add-mset (Var x, Fungls)M] res
        show ?thesis by (auto simp: mp-lr-def wf-lr-def wf-lx-def)
    qed
next
    case (4 t y mp res M mp')
    note res = 4(2)[unfolded decomp-impl.simps]
```

```
    show ?case
    proof (cases decomp-impl mp)
    case None
    from 4(1)[OF None, of mp' add-mset (t, Var y) M] None res show ?thesis
by auto
    next
    case (Some mpx)
    then obtain lx rx where decomp: decomp-impl mp =Some (lx,rx) by (cases
mpx, auto)
    note res = res[unfolded decomp option.simps split]
    from 4(1)[OF decomp, of ( lx, rx) add-mset (t, Var y) M]
    have IH: ( }\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-list ((t,Var y) #mp)+M) (mp-lr (lx,rx) + add-mset
(t, Var y) M)
            wf-lr ( lx, rx) by auto
    from IH have wf-rx:wf-rx rx unfolding wf-lr-def by auto
    show ?thesis
    proof (cases insert-rx t y rx)
            case None
            with res have res: res = None by auto
            from insert-rx(2)[OF None wf-rx refl refl, of lx M]
                IH res show ?thesis by auto
    next
        case (Some rx')
        with res have res: res = Some ( lx, rx') by auto
        from insert-rx(1)[OF Some wf-rx refl refl, of lx M]
        have wf-rx:wf-rx rx'
        and steps: }(\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-lr (lx,rx)+add-mset (t, Var y)M) (mp-lr (lx
rx')}+M
                by auto
            from IH(1) steps
            have steps: }(\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-list ((t,Var y)#mp)+M)(mp-lr (lx,rx')+M
by auto
            from wf-rx IH(2-) have wf:wf-lr ( lx, rx')
                unfolding wf-lr-def by auto
            from res wf steps show ?thesis by auto
    qed
    qed
qed
lemma match-var-impl: assumes wf: wf-lr mp
shows ( }\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-lr mp) (mp-lr (match-var-impl mp))
    and wf-lr2 (match-var-impl mp)
proof -
    note [simp] = List.maps-def
    let ?mp' = match-var-impl mp
    from assms obtain xl rx b where mp3: mp = (xl,(rx,b)) by (cases mp,auto)
    define xs where xs = remdups (List.maps (vars-term-list o snd) xl)
    have xs: }xl=[]\Longrightarrowxs=[] unfolding xs-def by aut
    define f}\mathrm{ where f=( ( (x,ts:: ('f, nat }\times\mathrm{ ''s)term list). tl ts }\not=[]\veex\in set xs
```

define $m p^{\prime}$ where $m p^{\prime}=m p-r x($ filter $f r x, b)+m p-l i s t(m p-l x x l)$
define deleted where deleted $=m p-r x($ filter (Not of $f) r x, b)$
have $m p^{\prime}: m p-l r ? m p^{\prime}=m p^{\prime} ? m p^{\prime}=(x l$, (filter frx,b))
unfolding mp3 $m p^{\prime}$-def match-var-impl-def split xs-def f-def mp-lr-def by auto
have $m p-r x(r x, b)=m p-r x($ filter $f r x, b)+m p-r x($ filter $(N o t ~ o f) r x, b)$
unfolding mp-rx-def List.maps-def by (induct rx, auto)
hence $m p$ : $m p$-lr $m p=$ deleted $+m p^{\prime}$ unfolding $m p 3$ $m p$-lr-def $m p^{\prime}$-def deleted-def by auto
have inf-var-conflict (mp-mset $(m p-r x(f i l t e r f r x, b)))=$ inf-var-conflict ( $m p-m s e t$ $(m p-r x(r x, b)))($ is $? i v c f=? i v c)$
proof
show ? ivcf $\Longrightarrow$ ? ivc unfolding inf-var-conflict-def mp-rx-def fst-conv List.maps-def
by force
assume ?ivc
from this[unfolded inf-var-conflict-def]
obtain $s t x y$ where $s:(s, \operatorname{Var} x) \in \# m p-r x(r x, b)$ and $t:(t, \operatorname{Var} x) \in \#$
$m p-r x(r x, b)$ and $c:$ Conflict-Var st $y$ and inf: inf-sort (snd $y$ )
by blast
from $c$ conflicts (5) [of $s t]$ have $s t: s \neq t$ by auto
from $s$ [unfolded $m p$-rx-def List.maps-def]
obtain $s s$ where $x s s:(x, s s) \in$ set $r x$ and $s: s \in$ set ss by auto
from $t[$ unfolded $m p-r x$-def List.maps-def]
obtain $t s$ where $x t s:(x, t s) \in$ set $r x$ and $t: t \in$ set ts by auto
from wf[unfolded mp3 wf-lr-def wf-rx-def] have distinct (map fst rx) by auto
from eq-key-imp-eq-value[OF this xss xts] $t$ have $t: t \in$ set ss by auto
with $s$ st have $f(x, s s)$ unfolding $f$-def by (cases ss; cases tl ss; auto)
hence $(x$, ss $) \in \operatorname{set}($ filter $f r x)$ using $x s s$ by auto
with $s t$ have $(s, \operatorname{Var} x) \in \# m p-r x($ filter $f r x, b)(t, \operatorname{Var} x) \in \# m p-r x$ (filter $f r x, b$ )
unfolding mp-rx-def List.maps-def by auto
with $c$ inf
show ?ivcf unfolding inf-var-conflict-def by blast
qed
also have $\ldots=b$ using $w f$ unfolding mp3 wf-lr-def $w f-r x$-def by auto
finally have ivcf: ? ivcf $=b$.
show wf-lr2 ( match-var-impl mp)
proof (cases $x l=[])$
case False
from ivcf False wf[unfolded mp3] show ?thesis
unfolding $m p^{\prime}$ wf-lr2-def wf-lr-def split wf-rx-def by (auto simp: distinct-map-filter)
next
case True
with $x s$ have $x s=[]$ by auto
with True wf[unfolded mp3]
show ?thesis
unfolding wf-lr2-def mp' split wf-rx2-def wf-rx-def ivcf
unfolding $m p^{\prime}$ wf-lr2-def wf-lr-def split wf-rx-def wf-rx2-def wf-ts-def wf-ts2-def
$f$-def
apply (clarsimp simp: distinct-map-filter)

```
        subgoal for x ts by (cases ts; cases tl ts; force)
        done
    qed
    {
    fix xt t
    assume del: (t,xt) \in# deleted
    from this[unfolded deleted-def mp-rx-def, simplified]
    obtain x ts where mem: (x,ts) \in set rx and nf:\negf(x,ts) and t:t\in set ts
and xt:xt = Var x by force
    note del = del[unfolded xt]
    from nf[unfolded f-def split] t have xxs: x & set xs and ts: ts = [t] by (cases
ts; cases tl ts, auto)+
    from split-list[OF mem[unfolded ts]] obtain rx1 rx2 where rx: rx = rx1 @
(x,[t]) # rx2 by auto
    from wf[unfolded wf-lr-def mp3] have wf: wf-rx (rx,b) by auto
    hence distinct (map fst rx) unfolding wf-rx-def by auto
    with rx have xrx: x\not\infst' set rx1 \cupfst' set rx2 by auto
    define mp"' where mp'\prime}=mp-rx (filter (Not \circf) (rx1 @ rx2),b)
    have eq: deleted = add-mset ( }t,\operatorname{Var}x)m\mp@subsup{p}{}{\prime\prime
        unfolding deleted-def mp'\prime-def rx mp-rx-def List.maps-def mset-concat-union
using nf ts by auto
```



```
' snd ' (mp-mset mp''\cup mp-mset mp'))
    proof (intro exI conjI, rule xt, rule eq, intro notI)
            assume x \ (vars 'snd '(mp-mset mp''\cup mp-mset mp'))
            then obtain s t' where st: (s,t')\inmp-mset (m\mp@subsup{p}{}{\prime}+m\mp@subsup{p}{}{\prime\prime})\mathrm{ and xt: x f vars}\\mp@code{v}
t' by force
    from xrx have (s,\mp@subsup{t}{}{\prime})\not\inmp-mset mp" using xt unfolding mp"'def mp-rx-def
by force
            with st have ( }s,\mp@subsup{t}{}{\prime})\inmp\mathrm{ -mset mp' by auto
            with xxs have ( }s,\mp@subsup{t}{}{\prime}\mathrm{ ) }\in# mp-rx (filter f rx,b) using xt unfolding xs-de
mp'-def mp-rx-def
            by auto
            with xt nf show False unfolding mp-rx-def f-def split ts list.sel
                by auto (metis Un-iff «\neg(tl ts \not=[] \vee x \in set xs)> fst-conv image-eqI
prod.inject rx set-ConsD set-append ts xrx)
            qed
    } note lin-vars = this
    show ( }\mp@subsup{->}{m}{\prime}\mp@subsup{)}{}{**}(mp-lr mp) (mp-lr (match-var-impl mp)) unfolding mp mp'(1
using lin-vars
    proof (induct deleted)
    case (add pair deleted)
    obtain txt where pair: pair = (t,xt) by force
    hence (t,xt) \in# add-mset pair deleted by auto
    from add(2)[OF this] pair
    obtain x where add-mset pair deleted +m\mp@subsup{p}{}{\prime}=add-mset (t,Var x) (deleted
+ mp')
            and x: x\not\in\bigcup (vars' snd '(mp-mset (deleted + mp')))
            and pair: pair = (t, Var x)
```

```
    by auto
    from match-match[OF this(2), of t, folded this(1)]
    have one: add-mset pair deleted +m\mp@subsup{p}{}{\prime}\mp@subsup{->}{m}{}(\mathrm{ deleted }+mp').
    have two: }(\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(\mathrm{ deleted +mp') mp'
    proof (rule add(1), goal-cases)
    case (1 s yt)
    hence (s,yt) \in# add-mset pair deleted by auto
    from add(2)[OF this]
    obtain y mp'\prime}\mathrm{ where yt: yt = Var y add-mset pair deleted = add-mset (s,
Var y) mp"'
                y\not\in\bigcup(vars ' snd '(mp-mset mp''\cup mp-mset mp'))
            by auto
    from 1[unfolded yt] have y\inU(vars'snd'(mp-mset (deleted +mp')))
by force
    with }x\mathrm{ have }x\not=y\mathrm{ by auto
    with pair yt have pair }\not=(s,Var y) by aut
    with yt(2) have del: deleted = add-mset (s,Var y) (mp" - {#pair#})
        by (meson add-eq-conv-diff)
    show ?case
            by (intro exI conjI, rule yt, rule del, rule contra-subsetD[OF - yt(3)])
            (intro UN-mono, auto dest: in-diffD)
    qed
    from one two show ?case by auto
    qed auto
qed
lemma match-steps-impl: assumes match-steps-impl mp = res
    shows res = Some mp'\Longrightarrow( }\mp@subsup{->}{m}{\prime}\mp@subsup{)}{}{**}(mp-list mp) (mp-lr mp')^ wf-lr2 mp'\
    and res =None \Longrightarrow\existsmp'.( }\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-list mp)m\mp@subsup{p}{}{\prime}\wedge match-fail mp'
proof (atomize (full), goal-cases)
    case 1
    obtain res' where decomp: decomp-impl mp = res' by auto
    note res = assms[unfolded match-steps-impl-def decomp]
    note decomp = decomp-impl[OF decomp, of - {#}, unfolded empty-neutral]
    show ?case
    proof (cases res')
        case None
        with decomp res show ?thesis by auto
    next
        case (Some mp'')
        with decomp[of mp']
        have steps: }(\mp@subsup{->}{m}{}\mp@subsup{)}{}{**}(mp-list mp) (mp-lr mp '') and wf:wf-lr mp'" by aut
        from res[unfolded Some] have res: res = Some (match-var-impl mp')}\mathrm{ ) by auto
        from match-var-impl[OF wf] steps res show ?thesis by auto
    qed
qed
lemma pat-inner-impl: assumes pat-inner-impl p pd = res
    and wf-pat-lr pd
```

and tvars-pp $($ pat-mset $($ pat-mset-list $p+$ pat-lr $p d)) \subseteq V$
shows res $=$ None $\Longrightarrow($ add-mset (pat-mset-list $p+$ pat-lr pd) $P, P) \in \Rightarrow^{+}$
and res $=$ Some $p^{\prime} \Longrightarrow($ add-mset $($ pat-mset-list $p+$ pat-lr pd) $P$, add-mset $\left(\right.$ pat-lr $\left.\left.p^{\prime}\right) P\right) \in \Rightarrow^{*}$

$$
\wedge w f-p a t-l r p^{\prime} \wedge t v a r s-p p\left(\text { pat-mset }\left(\text { pat-lr } p^{\prime}\right)\right) \subseteq V
$$

proof (atomize(full), insert assms, induct $p$ arbitrary: pd res $p^{\prime}$ )
case Nil
then show ?case by (auto simp: wf-pat-lr-def pat-mset-list-def pat-lr-def)
next
case (Cons mp p pd res $p^{\prime}$ )
let ? $p=$ pat-mset-list $p+$ pat-lr pd
have id: pat-mset-list ( $m p \# p$ ) + pat-lr $p d=a d d-m s e t(m p-l i s t ~ m p) ~ ? p$ unfolding pat-mset-list-def by auto
show ? case
proof (cases match-steps-impl mp)
case (Some $m p^{\prime}$ )
from match-steps-impl(1)[OF Some refl]
have steps: $\left(\rightarrow_{m}\right)^{* *}(m p-l i s t ~ m p)(m p-l r ~ m p \prime)$ and $w f: w f-l r 2 ~ m p^{\prime}$ by auto
have id2: pat-mset-list $p+\operatorname{pat}-l r\left(m p^{\prime} \# p d\right)=$ add-mset ( $m p-l r m p$ ) ?p
unfolding pat-lr-def by auto
from mp-step-mset-steps-vars[OF steps] Cons(4)
have vars: tvars-pp $\left(\right.$ pat-mset $\left(\right.$ pat-mset-list $\left.\left.p+\operatorname{pat-lr}\left(m p^{\prime} \# p d\right)\right)\right) \subseteq V$
unfolding id2 by (auto simp: tvars-pp-def pat-mset-list-def)
note steps $=m p-$ step-mset-cong $[O F$ steps, of ?p $P$, folded id]
note res $=\operatorname{Cons}(2)[$ unfolded pat-inner-impl.simps Some option.simps]
show ?thesis
proof (cases empty-lr mp')
case False
with Cons(3) wf have wf: wf-pat-lr ( $m p^{\prime} \# p d$ ) unfolding $w f$-pat-lr-def by auto
from res False have pat-inner-impl $p\left(m p^{\prime} \# p d\right)=$ res by auto
from Cons(1)[OF this wf, of $p^{\prime}$, OF vars, unfolded id2] steps
show ?thesis by auto
next
case True
with $w f$ have $i d 3: m p-l r m p^{\prime}=\{\#\}$ unfolding $w f$-lr2-def empty-lr-def by (cases $m p^{\prime}$, auto simp: mp-lr-def mp-rx-def List.maps-def)
from True res have res: res $=$ None by auto
have (add-mset (add-mset ( $m p-l r m p^{\prime}$ ) ? $p$ ) $\left.P, P\right) \in P$-step
unfolding id3 $P$-step-def using $P$-simp-pp[OF pat-remove-pp $[o f ? p]$, of $P]$
by auto
with res steps show ?thesis by auto
qed
next
case None
from match-steps-impl(2)[OF None refl] obtain $m p^{\prime}$ where
$\left(\rightarrow_{m}\right)^{* *}(m p-l i s t ~ m p) m p^{\prime}$ and fail: match-fail $m p^{\prime}$ by auto
note steps $=m p-$ step-mset-cong $[O F$ this(1), of ? $p$ P, folded id]
from $P$-simp-pp[OF pat-remove-mp[OF fail, of ?p], of $P]$

```
    have (add-mset (add-mset mp' ?p) P, add-mset ?p P)\inP-step
        unfolding P-step-def by auto
    with steps have steps: (add-mset (pat-mset-list (mp # p) + pat-lr pd)P,
add-mset ?p P) \inP-step * by auto
    note res = Cons(2)[unfolded pat-inner-impl.simps None option.simps]
    have vars: tvars-pp (pat-mset (pat-mset-list p + pat-lr pd))\subseteqV
            using Cons(4) unfolding tvars-pp-def pat-mset-list-def by auto
    from Cons(1)[OF res Cons(3), of p',OF vars] steps
    show ?thesis by auto
    qed
qed
lemma pat-mset-list: pat-mset (pat-mset-list p) = pat-list p
    unfolding pat-list-def pat-mset-list-def by (auto simp: image-comp)
Main simulation lemma for a single pat-impl step.
lemma pat-impl: assumes pat-impl \(n p=\) res
and vars: fst' tvars-pp (pat-list p) \(\subseteq\{. .<n\}\)
shows res \(=\) None \(\Longrightarrow \exists p^{\prime} .\left(\right.\) add-mset \((\) pat-mset-list \(p) P\), add-mset \(\left.p^{\prime} P\right) \in\) \(\Rightarrow{ }^{*} \wedge\) pat-fail \(p^{\prime}\)
and res \(=\) Some \(p s \Longrightarrow\) (add-mset (pat-mset-list \(p\) ) P, mset (map pat-mset-list
ps)+P)}\in\mp@subsup{=>}{}{+
                ^fst'tvars-pp (U(pat-list'set ps))\subseteq{..<n+m}
proof (atomize(full), goal-cases)
    case 1
    have wf:wf-pat-lr [] unfolding wf-pat-lr-def by auto
    have fst ' tvars-pp (pat-mset (pat-mset-list p))\subseteq{..<n}
        using vars unfolding pat-mset-list .
    hence vars: tvars-pp (pat-mset (pat-mset-list p))\subseteq{..<n}\timesUNIV by force
    have pat-mset-list p + pat-lr [] = pat-mset-list p unfolding pat-lr-def by auto
    note pat-inner = pat-inner-impl[OF refl wf, of p, unfolded this, OF vars]
    note res = assms(1)[unfolded pat-impl-def]
    show ?case
    proof (cases pat-inner-impl p [])
        case None
        from pat-inner(1)[OF this, of P] res[unfolded None option.simps] vars
        show ?thesis by (auto simp: tvars-pp-def)
    next
    case (Some p')
    from pat-inner(2)[OF this, of P]
    have steps:(add-mset (pat-mset-list p)P, add-mset (pat-lr p') P) }\in\mp@subsup{#}{}{*}\mathrm{ and
wf:wf-pat-lr p'
            and varsp': tvars-pp (pat-mset (pat-lr p}))\subseteq{..<n}\timesUNIV by aut
    note res = res[unfolded Some option.simps]
    show ?thesis
    proof (cases }\forallmp\inset p'. snd (snd mp)
            case True
            with res have res: res = None by auto
            have pat-fail (pat-lr p')
```

```
    proof (intro pat-failure' ballI)
        fix mps
        assume mps \in pat-mset (pat-lr p')
    then obtain mp where mem: mp\in set p' and mps:mps=mp-mset (mp-lr
mp) by (auto simp: pat-lr-def)
    obtain lx rx b where mp:mp=(lx,rx,b) by (cases mp, auto)
    from mp mem True have b by auto
        with wf[unfolded wf-pat-lr-def, rule-format, OF mem, unfolded wf-lrD-def
mp split]
    have inf-var-conflict (set-mset (mp-rx (rx,b))) unfolding wf-rx-def wf-rx2-def
by (auto split: if-splits)
            thus inf-var-conflict mps unfolding mps mp-lr-def mp split
            unfolding inf-var-conflict-def by fastforce
    qed
    with steps res
    show ?thesis by auto
    next
    case False
    define }\mp@subsup{p}{}{\prime}l\mathrm{ where }\mp@subsup{p}{}{\prime}l=map mp-lr-list p'
    define }x\mathrm{ where }x=\mathrm{ find-var p'
    define ps where ps=map ( }\lambda\tau\mathrm{ . subst-pat-problem-list }\tau\mp@subsup{p}{}{\prime}l)(\taus-list n x
    have id: pat-lr p' = pat-mset-list p'l unfolding pat-mset-list-def pat-lr-def
p'l-def map-map o-def
    by (intro arg-cong[of-- mset] map-cong refl, auto simp: mp-lr-def mp-lr-list-def
mp-rx-def mp-rx-list-def)
    from False have ( }\forallmp\inset p'. snd (snd mp)) = False by aut
    from res[unfolded this if-False Let-def, folded p'l-def x-def, folded ps-def]
    have res: res = Some ps by auto
    have step: (add-mset (pat-lr p})P,mset (map pat-mset-list ps)+P)\in
        unfolding P-step-def
    proof (standard, unfold split, intro P-simp-pp)
        note }x=x\mathrm{ -def[unfolded find-var-def]
        let ?concat = concat (map ( }\lambda(lx,-).lx) p'
        have disj: tvars-disj-pp {n..<n+m} (pat-mset (pat-lr p}\mp@subsup{p}{}{\prime})
            using varsp' unfolding tvars-pp-def tvars-disj-pp-def tvars-mp-def by
force
            have subst: map ( }\lambda\tau.\mathrm{ subst-pat-problem-mset }\tau(\mathrm{ pat-lr p')) ( }\tau\mathrm{ s-list n x ) =
map pat-mset-list ps
            unfolding id
                    unfolding ps-def subst-pat-problem-list-def subst-pat-problem-mset-def
subst-match-problem-mset-def
                subst-match-problem-list-def map-map o-def
    by (intro list.map-cong0, auto simp: pat-mset-list-def o-def image-mset.compositionality)
    show pat-lr p' }\mp@subsup{=>}{m}{}\mathrm{ mset (map pat-mset-list ps)
    proof (cases?concat)
        case (Cons pair list)
            with x obtain t where concat: ?concat = (x,t) # list by (cases pair,
auto)
```

            hence \((x, t) \in\) set ?concat by auto
    then obtain $m p$ where $m p \in \operatorname{set} p^{\prime}$ and $(x, t) \in \operatorname{set}((\lambda(l x,-) . l x) m p)$ by auto
then obtain $l x r x$ where mem: $(l x, r x) \in$ set $p^{\prime}$ and $x t:(x, t) \in$ set $l x$ by auto
from $w f$ mem have $w f: w f-l x l x$ unfolding $w f-p a t-l r-d e f w f-l r 2-d e f$ by auto with $x t$ have $t$ : is-Fun $t$ unfolding $w f-l x$-def by auto
from mem obtain $p^{\prime \prime}$ where pat: pat-lr $p^{\prime}=$ add-mset $(m p-l r(l x, r x)) p^{\prime \prime}$ unfolding pat-lr-def by simp (metis in-map-mset mset-add set-mset-mset) from $x t$ have $x t:(\operatorname{Var} x, t) \in \# m p-l r(l x, r x)$ unfolding $m p-l r-d e f$ by force
from pat-instantiate $[O F-\operatorname{disjI1}[O F$ conjI[OF xt $t]]$, of $n p^{\prime \prime}$, folded pat, OF disj]
show ?thesis unfolding subst.
next
case Nil
let ?fp $=$ filter $(N o t \circ$ snd $\circ$ snd $) p^{\prime}$
from False have set?fp $\neq\{ \}$ unfolding $o$-def filter-empty-conv set-empty by auto
then obtain $m p p^{\prime \prime}$ where $f p$ : ? $f p=m p \# p^{\prime \prime}$ by (cases ?fp) auto
obtain $l x r x b$ where $m p: m p=(l x, r x, b)$ by (cases $m p$ ) auto
have $m p p: m p \in$ set $p^{\prime}$ using arg-cong $[O F f p$, of set $]$ by auto
from $m p$ mpp Nil have $l x: l x=[]$ by auto
from $f p$ have $(l x, r x, b) \in s e t$ ? $f p$ unfolding $m p$ by auto
hence $\neg b$ unfolding o-def by auto
with $m p l x$ have $m p$ : $m p=([], r x$, False $)$ by auto
from wf mpp have wf: wf-lr2 $m p$ and $n e: \neg$ empty-lr $m p$ unfolding
wf-pat-lr-def by auto
from $w f$ [unfolded $w f$-lr2-def $m p$ split] $m p$
have wf: wf-rx2 (rx, False) and $m p: m p=([], r x$, False $)$ by auto
from ne[unfolded empty-lr-def mp split] obtain $y$ ts $r x^{\prime}$
where $r x: r x=(y, t s) \# r x^{\prime}$ by (cases $r x$, auto)
from $w f[$ unfolded $w f-r x 2$-def] have ninf: $\neg$ inf-var-conflict (mp-mset (mp-rx (rx, False)))
and $w f: w f-t s 2$ ts unfolding $r x$ by auto
from wf[unfolded wf-ts2-def] obtain $s t t s^{\prime}$ where $t s: t s=s \# t \# t s^{\prime}$
and
diff: $s \neq t$ and conf: conflicts s $t \neq$ None
by (cases ts; cases tl ts, auto)
from conf obtain xs where conf: conflicts st=Some xs by (cases conflicts st, auto)
with conflicts(5)[of st] diff have $x s \neq[]$ by auto
with $x[$ unfolded Nil list.simps fp list.sel mp split Let-def rx ts conf option.sel] obtain $x s^{\prime}$ where $x s: x s=x \# x s^{\prime}$ by (cases xs) auto
from conf $x s$ have confl: Conflict-Var s $t x$ by auto
from ts rx have sty: $(s, \operatorname{Var} y) \in \# m p-r x(r x$, False $)(t, \operatorname{Var} y) \in \# m p-r x$ (rx,False)
by (auto simp: mp-rx-def List.maps-def)
with confl ninf have $\neg$ inf-sort (snd $x$ ) unfolding inf-var-conflict-def by blast
with sty confl $r x$ have main: $(s, \operatorname{Var} y) \in \# m p-l r m p \wedge(t, \operatorname{Var} y) \in \#$ $m p-l r m p \wedge$ Conflict-Var st $x \wedge \neg \operatorname{inf-sort}$ (snd $x$ )
unfolding $m p$ by (auto simp: mp-lr-def)
from $m p p$ obtain $p^{\prime \prime}$ where pat: pat-lr $p^{\prime}=a d d-m s e t(m p-l r m p) p^{\prime \prime}$ unfolding pat-lr-def by simp (metis in-map-mset mset-add set-mset-mset) from pat-instantiate[OF - disjI2[OF main], of $n p^{\prime \prime}$, folded pat, OF disj] show ?thesis unfolding subst .
qed
qed
have fst' tvars-pp $(\bigcup($ pat-list' set $p s)) \subseteq\{. .<n+m\}$
proof
fix $y n$
assume $y n \in$ fst ' tvars-pp $(\bigcup$ ( pat-list ' set ps))
then obtain pi y $m p$ where $p i: p i \in$ set $p s$ and $m p: m p \in s e t p i$ and $y: y$
$\in$ tvars- $m p$ (set $m p$ ) and $y n: y n=f s t y$
unfolding tvars-pp-def pat-list-def by force
from pi[unfolded ps-def set-map subst-pat-problem-list-def subst-match-problem-list-def,
simplified]
obtain $\tau$ where tau: $\tau \in \operatorname{set}(\tau s-l i s t n x)$ and pi: pi = map (map (subst-left
$\tau)$ ) $p^{\prime} l$ by auto
from tau[unfolded $\tau s$-list-def]
obtain info where info $\in \operatorname{set}(C l($ snd $x))$ and tau: $\tau=\tau c n x$ info by
auto
from Cl-len [of snd $x$ ] this(1) have len: length (snd info) $\leq m$ by force
from $m p$ [unfolded pi set-map] obtain $m p^{\prime}$ where $m p^{\prime}: m p^{\prime} \in$ set $p^{\prime} l$ and
$m p: m p=m a p($ subst-left $\tau) m p^{\prime}$ by auto
from $y$ [unfolded $m p$ tvars-mp-def image-comp o-def set-map]
obtain pair where $*$ : pair $\in$ set $m p^{\prime} y \in \operatorname{vars}(f s t($ subst-left $\tau$ pair $)$ by
auto
obtain $s t$ where pair: pair $=(s, t)$ by force
from $*[$ unfolded pair $]$ have st: $(s, t) \in$ set $m p^{\prime}$ and $y: y \in \operatorname{vars}(s \cdot \tau)$
unfolding subst-left-def by auto
from $y$ [unfolded vars-term-subst, simplified] obtain $z$ where $z: z \in$ vars $s$
and $y: y \in \operatorname{vars}(\tau z)$ by auto
obtain $f$ ss where info: info $=(f, s s)$ by (cases info, auto)
with len have len: length ss $\leq m$ by auto
define $t s::(' f,-)$ term list where $t s=$ map Var (zip $[n . .<n+$ length ss] ss)
from tau[unfolded $\tau c$-def info split] have tau: $\tau=\operatorname{subst} x$ (Fun $f$ ts)
unfolding ts-def by auto
have $f s t$ 'vars (Fun $f t s) \subseteq\{. .<n+$ length ss $\}$ unfolding $t s$-def by (auto
simp: set-zip)
also have $\ldots \subseteq\{. .<n+m\}$ using len by auto
finally have subst: $f s t$ ' vars (Fun $f$ ts) $\subseteq\{. .<n+m\}$ by auto
show $y n \in\{. .<n+m\}$
proof (cases $z=x$ )
case True
with $y$ subst tau yn show ?thesis by auto
next
case False

```
            hence }\tauz=Varz\mathrm{ unfolding tau by (auto simp: subst-def)
            with }y\mathrm{ have z=y by auto
            with z have y:y\in vars s by auto
            with st have y tvars-mp (set mp') unfolding tvars-mp-def by force
            with mp' have }y\in\mathrm{ tvars-pp (set' set p'l) unfolding tvars-pp-def by auto
            also have ... = tvars-pp (pat-mset (pat-mset-list p'l))
            by (rule arg-cong[of - -tvars-pp], auto simp: pat-mset-list-def image-comp)
            also have ... = tvars-pp (pat-mset (pat-lr p')) unfolding id[symmetric]
by simp
            also have ...\subseteq{..<n} > UNIV using varsp' .
            finally show ?thesis using yn by auto
            qed
        qed
        with step steps res show ?thesis by auto
        qed
    qed
qed
```

The simulation property for pats-impl, proven by induction on the terminating relation of the multiset-implementation.
lemma pats-impl-P-step: assumes Ball (set ps) ( $\lambda$ p. fst' tvars-pp (pat-list p) $\subseteq$ $\{. .<n\}$ )
shows

- if result is True, then one can reach empty set
pats-impl $n$ ps $\Longrightarrow$ (pats-mset-list ps, $\{\#\}) \in \Rightarrow^{*}$
- if result is False, then one can reach bottom
$\neg$ pats-impl $n$ ps $\Longrightarrow$ (pats-mset-list ps, bottom-mset $) \in \Rightarrow^{*}$
proof (atomize(full), insert assms, induct ps arbitrary: $n$ rule: $S N$-induct[OF SN-inv-image[OF SN-imp-SN-trancl[OF SN-P-step]], of pats-mset-list])
case (1 ps n)
show ?case
proof (cases ps)
case Nil
show ?thesis unfolding pats-impl.simps[of $n$ ps] unfolding Nil by auto
next
case (Cons p ps1)
hence $i d$ : pats-mset-list $p s=a d d-m s e t($ pat-mset-list $p)($ pats-mset-list ps1) by auto
note res $=$ pats-impl.simps[of $n$ ps, unfolded Cons list.simps, folded Cons]
from 1 (2)[rule-format, of $p]$ Cons have $f$ st' tvars-pp (pat-list $p$ ) $\subseteq\{. .<n\}$ by auto
note pat-impl $=$ pat-impl[OF refl this]
show ?thesis
proof (cases pat-impl $n$ p)
case None
with res have res: pats-impl $n$ ps $=$ False by auto
from pat-impl(1)[OF None, of pats-mset-list ps1, folded id]
obtain $p^{\prime}$ where steps: (pats-mset-list ps, add-mset $p^{\prime}($ pats-mset-list ps1)) $\in$ $\Rightarrow{ }^{*}$ and fail: pat-fail $p^{\prime}$

```
            by auto
            show ?thesis
            proof (cases add-mset p}\mp@subsup{p}{}{\prime}(\mathrm{ pats-mset-list ps1) = bottom-mset)
            case True
            with res steps show ?thesis by auto
    next
            case False
            from P-failure[OF fail False]
            have (add-mset p' (pats-mset-list ps1), bottom-mset) }\in=>\mathrm{ unfolding
P-step-def by auto
            with steps res show ?thesis by simp
            qed
    next
            case (Some ps2)
    with res have res: pats-impl n ps = pats-impl ( n +m) (ps2 @ ps1) by auto
    from pat-impl(2)[OF Some, of pats-mset-list ps1, folded id]
    have steps: (pats-mset-list ps,mset (map pat-mset-list (ps2 @ ps1))) \in 和
                and vars: fst'tvars-pp (U (pat-list' set ps2)) \subseteq{..<n+m} by auto
    hence rel: (ps,ps2 @ ps1) \in inv-image (P-step }\mp@subsup{}{}{+})\mathrm{ pats-mset-list by auto
    have vars: }\forallp\inset (ps2 @ ps1). fst'tvars-pp (pat-list p)\subseteq{..<n+m
    proof
                fix p
        assume p f set (ps2 @ ps1)
        hence p\in set ps2 \vee p\in set ps1 by auto
        thus fst'tvars-pp (pat-list p)\subseteq{..<n+m}
        proof
            assume p\in set ps2
            hence fst ' tvars-pp (pat-list p)\subseteq fst 'tvars-pp (U (pat-list' set psQ))
                    unfolding tvars-pp-def by auto
                with vars show ?thesis by auto
            next
                assume p\in set ps1
                hence p}\in\mathrm{ set ps unfolding Cons by auto
                from 1(2)[rule-format, OF this] show ?thesis by auto
            qed
    qed
        show ?thesis using 1(1)[OF rel vars] steps unfolding res[symmetric] by
auto
    qed
    qed
qed
Consequence: partial correctness of the list-based implementation on wellformed inputs
theorem pats-impl: assumes wf: \(\forall p p \in\) pat-list'set \(P\). wf-pat pp
    and n:\forallp\inset P.fst'tvars-pp (pat-list p)\subseteq{..<n}
    shows pats-impl n P < pats-complete (pat-list' set P)
proof -
    from wf have wf:wf-pats (pat-list' set P) by (auto simp:wf-pats-def)
```

```
    have id: pats-mset (pats-mset-list P) = pat-list' set P unfolding pat-list-def
    by (auto simp: pat-mset-list-def image-comp)
{
    assume pats-impl n P
    from pats-impl-P-step(1)[OF n this]
    have (pats-mset-list P,{#}) \in 韦 by auto
    from P-steps-pcorrect[OF - this, unfolded id, OF wf]
    have pats-complete (pat-list'set P) by auto
}
moreover
{
    assume \neg pats-impl n P
    from pats-impl-P-step(2)[OF n this]
    have (pats-mset-list P,{#{#}#}) \in 友* by auto
    from P-steps-pcorrect[OF - this, unfolded id, OF wf]
    have }\neg\mathrm{ pats-complete (pat-list' set P) by auto
}
ultimately show ?thesis by auto
qed
corollary pat-complete-impl:
    assumes wf: snd 'U (vars 'fst' set (concat (concat P)))\subseteqS
    shows pat-complete-impl P}\longleftrightarrow pats-complete (pat-list'set P
proof -
    have wf: Ball (pat-list'set P) wf-pat
        unfolding pat-list-def wf-pat-def wf-match-def tvars-mp-def using wf[unfolded
set-concat image-comp] by force
    let ?l = (List.maps (map fst o vars-term-list o fst) (concat (concat P)))
    define n where n=Suc (max-list ?l)
    have n:\forallp\inset P.fst' tvars-pp (pat-list p)\subseteq{..<n}
    proof (intro ballI subsetI)
        fix px
        assume p}\in\mathrm{ set P and x f fst 'tvars-pp (pat-list p)
        hence }x\in\mathrm{ set ?l unfolding List.maps-def tvars-pp-def tvars-mp-def pat-list-def
            by force
        from max-list[OF this] have }x<n\mathrm{ unfolding n-def by auto
        thus }x\in{..<n} by aut
    qed
    have pat-complete-impl P = pats-impl n P
        unfolding pat-complete-impl-def n-def Let-def ..
    from pats-impl[OF wf n, folded this]
    show ?thesis.
qed
end
```


### 6.3 Getting the result outside the locale with assumptions

We next lift the results for the list-based implementation out of the locale. Here, we use the existing algorithms to decide non-empty sorts de-cide-nonempty-sorts and to compute the infinite sorts compute-inf-sorts.

```
context pattern-completeness-context
begin
lemma pat-complete-impl-wrapper: assumes C-Cs: C = map-of Cs
    and dist: distinct (map fst Cs)
    and inhabited: decide-nonempty-sorts Sl Cs = None
    and S-Sl: S = set Sl
    and inf-sort: inf-sort = (\lambda s.s c compute-inf-sorts Cs)
    and C:\bigwedgef\sigmas\sigma.((f,\sigmas),\sigma)\in set Cs\Longrightarrow length \sigmas\leqm^ set (\sigma#\sigmas)\subseteqS
    and Cl: \s.Cl s=map fst (filter ((=) s o snd) Cs)
    and P: snd ' U (vars 'fst' set (concat (concat P)))\subseteqS
    shows pat-complete-impl P = pats-complete (pat-list'set P)
proof -
    from decide-nonempty-sorts(1)[OF dist C-Cs[symmetric] inhabited, folded S-Sl]
    have}S:^\sigma.\sigma\inS\Longrightarrow\existst.t:\sigma in \mathcal{T}(C,EMPTY
    \ \sigma.\sigma S \Longrightarrow\existst.t:\sigma in \mathcal{T}(C,EMPTYn) unfolding EMPTY-def EMP-
TYn-def by auto
    {
        fix f ss s
        assume f:ss }->s\mathrm{ sin C
            hence ((f,ss),s) \in set Cs unfolding C-Cs by (auto dest!: hastype-in-ssigD
map-of-SomeD)
    from C[OF this] have insert s (set ss)\subseteqS length ss \leqm by auto
    } note Cons = this
    {
        fix f ss s
        assume (f,ss) \in set (Cls)
        hence ((f,ss),s)\in set Cs unfolding Cl by auto
        from C[OF this] have length ss }\leqm\mathrm{ by auto
    }
    hence m: }\foralla\inlength'snd'set (Cls).a\leqm for s by aut
    have En: EMPTYn = \emptyset unfolding EMPTYn-def by auto
    have}\forallfsss\mp@subsup{s}{}{\prime}.f:ss->s\mathrm{ in }C\longrightarrow\mp@subsup{s}{}{\prime}\in\mathrm{ set ss }\longrightarrow(\existst.t:\mp@subsup{s}{}{\prime}\mathrm{ in }\mathcal{T}(C,EMPTYn)
    proof (intro allI impI)
    fix f ss s s'
    assume f:ss }->s\mathrm{ in C and s'}\in\mathrm{ set ss
    hence s'}\inS\mathrm{ using Cons(1)[of f ss s] by (auto simp: hastype-in-ssig-def)
    from S[OF this] show \existst. t: s' in \mathcal{T}(C,EMPTYn) by auto
    qed
    from compute-inf-sorts[OF En C-Cs this dist] inf-sort
    have inf-sort: inf-sort s =(\negbdd-above (size' {t.t:s in \mathcal{T}(C,EMPTYn)})) for
s \text { unfolding inf-sort by auto}
    have Cl: set (Cls)={(f,ss).f:ss->s in C} for s
        unfolding Cl set-map o-def C-Cs using dist
```

```
    by (force simp: hastype-in-ssig-def)
interpret pattern-completeness-context-with-assms
    apply unfold-locales
    subgoal by (rule S(1))
    subgoal by (rule Cons)
    subgoal by (rule Cons)
    subgoal by (rule inf-sort)
    subgoal by (rule Cl)
    subgoal by (rule m)
    done
show ?thesis by (rule pat-complete-impl[OF P])
qed
end
```

Next we are also leaving the locale that fixed the common parameters, and chooses suitable values.
extract all sorts from a ssignature (input and target sorts)
definition sorts-of-ssig-list :: (('f $\times$ 's list $) \times$ 's)list $\Rightarrow$ 's list where
sorts-of-ssig-list Cs $=$ remdups $($ List.maps $(\lambda((f, s s), s) . s \# s s) C s)$
definition decide-pat-complete $::((' f \times$ 's list $) \times$ 's)list $\Rightarrow(' f, ' v, ' s)$ pats-problem-list $\Rightarrow$ bool where
decide-pat-complete Cs $P=($ let $S l=$ sorts-of-ssig-list $C s$;
$m=$ max-list (map (length o snd o fst) Cs);
$C l=(\lambda$ s. map fst $($ filter $((=) s \circ$ snd $) C s)) ;$
$I S=$ compute-inf-sorts Cs
in pattern-completeness-context.pat-complete-impl $m C l(\lambda s . s \in I S)) P$
abbreviation (input) pat-complete where
pat-complete $\equiv$ pattern-completeness-context.pat-complete
abbreviation (input) pats-complete where
pats-complete $\equiv$ pattern-completeness-context.pats-complete
Finally: a pattern completeness decision procedure for arbitrary inputs, assuming sensible inputs
theorem decide-pat-complete: assumes $C$-Cs: $C=$ map-of $C s$
and dist: distinct (map fst Cs)
and non-empty-sorts: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs $=$ None
and $S: S=$ set (sorts-of-ssig-list Cs)
and $P$ : snd ' $\bigcup($ vars 'fst' set (concat $($ concat $P))) \subseteq S$
shows decide-pat-complete Cs $P=$ pats-complete $S C$ (pat-list'set $P$ )
unfolding decide-pat-complete-def Let-def
proof (rule pattern-completeness-context.pat-complete-impl-wrapper[OF C-Cs dist
non-empty-sorts $S$ refl-refl $P]$ )
fix $f \sigma s \sigma$
assume mem: $((f, \sigma s), \sigma) \in$ set $C s$
hence length $\sigma s \in \operatorname{set}(m a p$ (length $\circ$ snd $\circ f s t)$ Cs) by force

```
    from max-list[OF this] mem
    show length \sigmas\leqmax-list (map (length ○ snd \circfst)Cs)\wedge set (\sigma# # %s)\subseteqS
    unfolding S sorts-of-ssig-list-def List.maps-def by force
qed
end
```


## 7 Pattern-Completeness and Related Properties

We use the core decision procedure for pattern completeness and connect it to other properties like pattern completeness of programs (where the lhss are given), or (strong) quasi-reducibility.

```
theory Pattern-Completeness
    imports
        Pattern-Completeness-List
    Show.Shows-Literal
    Certification-Monads.Check-Monad
begin
```

A pattern completeness decision procedure for a set of lhss
definition basic-terms :: ('f,'s)ssig $\Rightarrow\left({ }^{\prime} f, ' s\right)$ ssig $\Rightarrow\left(' v \rightharpoonup{ }^{\prime} s\right) \Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)$ term set ( $\left.\mathcal{B}^{\prime}\left(-,-,-{ }^{\prime}\right)\right)$ where

$$
\mathcal{B}(C, D, V)=\left\{\text { Fun } f t s \mid f \text { ss sts.f:ss } \rightarrow s \text { in } D \wedge t s:_{l} \text { ss in } \mathcal{T}(C, V)\right\}
$$

definition matches :: ('f,'v)term $\Rightarrow(' f, ' v)$ term $\Rightarrow$ bool (infix matches 50$)$ where $l$ matches $t=(\exists \sigma . t=l \cdot \sigma)$
definition pat-complete-lhss :: ('f,'s)ssig $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} s\right)$ ssig $\Rightarrow\left({ }^{\prime} f, ' v\right)$ term set $\Rightarrow$ bool where

```
    pat-complete-lhss C D L = (\forallt\in\mathcal{B}(C,D,\emptyset). \existsl\inL.l matches t)
```

definition decide-pat-complete-lhss ::
$((' f \times$ 's list $) \times$ 's $)$ list $\Rightarrow\left(\left({ }^{\prime} f \times\right.\right.$ 's list $) \times$ 's)list $\Rightarrow\left({ }^{\prime} f, ' v\right)$ term list $\Rightarrow$ showsl + bool where
decide-pat-complete-lhss $C$ D lhss $=$ do $\{$
check (distinct (map fst C)) (showsl-lit (STR "constructor information contains duplicate $\left.{ }^{\prime \prime}\right)$ );
check (distinct (map fst D)) (showsl-lit (STR "defined symbol information contains duplicate $\left.{ }^{\prime \prime}\right)$ );
let $S=$ sorts-of-ssig-list $C$;
check-allm $(\lambda((f, s s),-)$. check-allm ( $\lambda$ s. check $(s \in$ set $S)$
(showsl-lit (STR "a defined symbol has argument sort that is not known in constructors' $\left.{ }^{\prime}\right)$ )) ss) $D$;
(case (decide-nonempty-sorts $S C$ ) of None $\Rightarrow$ return () $\mid$ Some $s \Rightarrow$ error (showsl-lit (STR "some sort is empty")));
let pats $=[$ Fun $f(\operatorname{map} \operatorname{Var}($ zip $[0 . .<$ length ss $]$ ss $)) .((f, s s), s) \leftarrow D]$;
let $P=[[[($ pat,$l h s)]$. lhs $\leftarrow l h s s]$. pat $\leftarrow$ pats $]$;

```
    return (decide-pat-complete C P)
}
theorem decide-pat-complete-lhss:
    assumes decide-pat-complete-lhss C D (lhss :: ('f,'v)term list) = return b
    shows b = pat-complete-lhss (map-of C) (map-of D) (set lhss)
proof -
    let ?EMPTY = pattern-completeness-context.EMPTY
    let ?cg-subst = pattern-completeness-context.cg-subst
    let ?C = map-of C
    let ?D = map-of D
    define S where S=sorts-of-ssig-list C
    define pats where pats = map (\lambda ((f,ss),s). Fun f (map Var (zip [0..<length
ss] ss))) D
    define P where P = map ( }\lambda\mathrm{ pat. map ( }\lambda\mathrm{ lhs. [(pat,lhs)]) lhss) pats
    let ?match-lhs = \lambdat. \existsl\in set lhss.l matches t
    note ass = assms(1)[unfolded decide-pat-complete-lhss-def, folded S-def,
        unfolded Let-def, folded pats-def, folded P-def, simplified]
    from ass have dec: decide-nonempty-sorts S C = None (is ?e = -) by (cases
?e, auto)
    note ass = ass[unfolded dec, simplified]
    from ass have b: b = decide-pat-complete C P and dist: distinct (map fst C)
distinct (map fst D) by auto
    have b= decide-pat-complete C P by fact
    also have ... = pats-complete (set S) ?C (pat-list'set P)
    proof (rule decide-pat-complete[OF refl dist(1) dec[unfolded S-def]], unfold S-def[symmetric])
    {
        fix i sif ss s
            assume mem: ((f,ss),s)\in set D and isi: (i,si)\in set (zip [0..<length ss]
ss)
            from isi have si: si\in set ss by (metis in-set-zipE)
            from mem si ass
            have si\in set S by auto
    }
                            thus snd ' U(vars 'fst'set (concat (concat P)))\subseteq set S unfolding P-def
pats-def by force
    qed simp
    also have pat-list'set P}={{{(\mathrm{ pat,lhs)}| lhs.lhs }\in\mathrm{ set lhss}| pat. pat }\in\mathrm{ set
pats}
            unfolding pat-list-def P-def by (auto simp: image-comp)
    also have pats-complete (set S) ?C \ldots\longleftrightarrow
            Ball { pat \cdot\sigma | pat \sigma. pat \in set pats ^ ?cg-subst (set S) ?C \sigma} ?match-lhs (is
- = Ball ?L -)
    unfolding pattern-completeness-context.pat-complete-def
            pattern-completeness-context.match-complete-wrt-def matches-def
    by auto (smt (verit, best) case-prod-conv mem-Collect-eq singletonI, blast)
    also have ?L = \mathcal{B}(?C,?D,\emptyset) (is - = ?R)
    proof
    {
```

fix pat and $\sigma::\left({ }^{\prime} f,-,{ }^{\prime} v\right)$ gsubst
assume pat: pat $\in$ set pats and subst: ?cg-subst (set S) ?C $\sigma$
from pat[unfolded pats-def] obtain $f$ ss $s$ where pat: pat $=\operatorname{Fun} f($ map Var (zip [0..<length ss] ss))
and inDs: $((f, s s), s) \in$ set $D$ by auto
from dist(2) inDs have $f: f: s s \rightarrow s$ in ?D unfolding hastype-in-ssig-def
by $\operatorname{simp}$
\{
fix $i$
assume $i: i<$ length ss
hence ss $!i \in$ set ss by auto
with inDs ass have ss ! i $i \in$ set $S$ by auto
with subst have $\sigma(i, s s!i): s s!i$ in $\mathcal{T}(? C, \emptyset)$ unfolding pattern-completeness-context.cg-subst-def
pattern-completeness-context.EMPTY-def by auto
$\}$ note ssigma $=$ this
define $t s$ where $t s=(\operatorname{map}(\lambda i . \sigma(i, s s!i))[0 . .<$ length $s s])$
have ts: ts $:_{l}$ ss in $\mathcal{T}(? C, \emptyset)$ unfolding list-all2-conv-all-nth ts-def using ssigma by auto
have pat: pat $\cdot \sigma=$ Fun $f$ ts
unfolding pat ts-def by (auto intro: nth-equalityI)
from pat $f$ ts have pat $\cdot \sigma \in$ ? $R$ unfolding basic-terms-def by auto
\}
thus $? L \subseteq ? R$ by blast
\{
fix $f s s s$ and $t s::\left({ }^{\prime} f, ' v\right)$ term list
assume $f: f: s s \rightarrow s$ in ? $D$ and $t s: t s:_{l}$ ss in $\mathcal{T}(? C, \emptyset)$
from $t$ s have len: length $t s=$ length ss by (metis list-all2-lengthD)
define pat where pat $=\operatorname{Fun} f(\operatorname{map} \operatorname{Var}(z i p[0 . .<$ length ss] ss $))$
from $f$ have $((f, s s), s) \in$ set $D$ unfolding hastype-in-ssig-def by (metis map-of-SomeD)
hence pat: pat $\in$ set pats unfolding pat-def pats-def by force
define $\sigma$ where $\sigma x=($ case $x$ of $(i, s) \Rightarrow$ if $i<$ length $s s \wedge s=s s!i$ then ts ! i else
(SOME t. $t: s$ in $\mathcal{T}(? C, ? E M P T Y))$ ) for $x$
have id: Fun $f$ ts $=$ pat $\cdot \sigma$ unfolding pat-def using len
by (auto intro!: nth-equalityI simp: $\sigma$-def)
have ssigma: ?cg-subst (set S) ?C $\sigma$
unfolding pattern-completeness-context.cg-subst-def
proof (intro allI impI)
fix $x$ :: nat $\times-$
assume snd $x \in$ set $S$
then obtain $i s$ where $x: x=(i, s)$ and $s: s \in \operatorname{set} S$ by (cases $x$, auto)
show $\sigma x:$ snd $x$ in $\mathcal{T}(? C, ? E M P T Y)$
proof (cases $i<$ length ss $\wedge s=s s!i)$
case True
hence $i d: \sigma x=t s!i$ unfolding $x \sigma$-def by auto
from ts True show ?thesis unfolding id unfolding $x$ snd-conv pat-tern-completeness-context.EMPTY-def

> by (simp add: list-all2-conv-all-nth)

## next

 case Falsehence id: $\sigma x=(S O M E$ t. $t: s$ in $\mathcal{T}(? C, ? E M P T Y))$ unfolding $x \sigma$-def
by auto
from decide-nonempty-sorts(1)[OF dist(1) refl dec] $s$
have $\exists t$. $t$ : s in $\mathcal{T}(? C, ? E M P T Y)$ unfolding pattern-completeness-context.EMPTY-def by auto
from someI-ex[OF this] have $\sigma x: s$ in $\mathcal{T}(? C, ? E M P T Y)$ unfolding id. thus ?thesis unfolding $x$ by auto
qed
qed
from pat id ssigma
have Fun $f$ ts $\in$ ? $L$ by auto
\}
thus ? $R \subseteq$ ?L unfolding basic-terms-def by auto
qed
finally show ?thesis unfolding pat-complete-lhss-def by blast
qed
Definition of strong quasi-reducibility and a corresponding decision procedure
definition strong-quasi-reducible :: ('f,'s)ssig $\Rightarrow\left({ }^{\prime} f, ' s\right)$ ssig $\Rightarrow\left({ }^{\prime} f, ' v\right)$ term set $\Rightarrow$ bool where
strong-quasi-reducible $C D L=$
$(\forall t \in \mathcal{B}(C, D, \emptyset) . \exists$ ti $\operatorname{set}(t \#$ args $t) . \exists l \in L$. $l$ matches ti)
definition term-and-args :: 'f $\Rightarrow(' f, ' v)$ term list $\Rightarrow(' f, ' v)$ term list where
term-and-args $f$ ts $=$ Fun $f$ ts $\# t s$
definition decide-strong-quasi-reducible ::
$((' f \times$ 's list $) \times$ 's $)$ list $\Rightarrow((1 f \times$ 's list $) \times$ 's $)$ list $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)$ term list $\Rightarrow$ showsl + bool where
decide-strong-quasi-reducible $C$ lhss $=$ do \{
check (distinct (map fst C)) (showsl-lit (STR "constructor information contains duplicate $\left.{ }^{\prime \prime}\right)$ );
check (distinct (map fst D)) (showsl-lit (STR ' ${ }^{\prime}$ defined symbol information contains duplicate ${ }^{\prime \prime}$ ));
let $S=$ sorts-of-ssig-list $C$;
check-allm $(\lambda((f, s s),-)$. check-allm $(\lambda$ s. check $(s \in$ set $S)$
(showsl-lit (STR "defined symbol f has argument sort s that is not known in constructors $\left.{ }^{\prime \prime}\right)$ )) ss) $D$;
(case (decide-nonempty-sorts $S C$ ) of None $\Rightarrow$ return () | Some $s \Rightarrow$ error (showsl-lit (STR "sort s is empty")));
let pats $=\operatorname{map}(\lambda((f, s s), s)$. term-and-args $f(\operatorname{map} \operatorname{Var}(z i p[0 . .<$ length ss] ss $)))$ D;
let $P=$ map (List.maps ( $\lambda$ pat. map ( $\lambda$ lhs. $[($ pat,lhs $)])$ lhss $)$ ) pats;
return (decide-pat-complete C P)

## \}

lemma decide-strong-quasi-reducible:
assumes decide-strong-quasi-reducible C $D$ (lhss :: ('f,'v)term list) $=$ return $b$
shows $b=$ strong-quasi-reducible (map-of $C)($ map-of $D)($ set lhss)
proof -
let ?EMPTY = pattern-completeness-context.EMPTY
let ?cg-subst $=$ pattern-completeness-context.cg-subst
let ? $C=$ map-of $C$
let $? D=$ map-of $D$
define $S$ where $S=$ sorts-of-ssig-list $C$
define pats where pats $=\operatorname{map}(\lambda((f, s s), s)$. term-and-args $f$ (map Var (zip $[0 . .<$ length ss $]$ ss))) $D$
define $P$ where $P=$ map (List.maps ( $\lambda$ pat. map ( $\lambda$ lhs. $[($ pat,lhs $)])$ lhss)) pats let ?match-lhs $=\lambda t . \exists l \in$ set lhss. $l$ matches $t$
note ass $=$ assms(1)[unfolded decide-strong-quasi-reducible-def, folded $S$-def, folded pats-def,
unfolded Let-def, folded P-def]
from ass have dec: decide-nonempty-sorts $S C=$ None (is ? $e=-$ ) by (cases ?e, auto)
note ass $=$ ass[unfolded dec, simplified]
from ass have $b: b=$ decide-pat-complete $C P$ and dist: distinct (map fst $C$ )
distinct (map fst D) by auto
have $b=$ decide-pat-complete $C P$ by fact
also have $\ldots=$ pats-complete (set $S$ ) ?C (pat-list'set $P$ )
proof (rule decide-pat-complete[OF refl dist(1) dec[unfolded $S$-def]], unfold $S$-def [symmetric])
\{
fix $f$ ss $s i$ si
assume mem: $((f, s s), s) \in \operatorname{set} D$ and isi: $(i, s i) \in \operatorname{set}(z i p[0 . .<l e n g t h s s]$
ss)
from isi have si: si $\in$ set ss by (metis in-set-zipE)
from mem si ass
have si $\in$ set $S$ by auto
\}
thus snd ' $\cup($ vars ' fst' set (concat (concat $P))$ ) $\subseteq$ set $S$ unfolding $P$-def pats-def term-and-args-def List.maps-def
by fastforce
qed $\operatorname{simp}$
also have pat-list'set $P=\{\{\{($ pat,lhs $)\} \mid$ lhs pat. pat $\in$ set patL $\wedge$ lhs $\in$ set lhss $\} \mid$ patL. pat $L \in$ set pats $\}$
unfolding pat-list-def $P$-def List.maps-def by (auto simp: image-comp) force+
also have pats-complete (set $S$ ) ? $C \ldots \longleftrightarrow$
$(\forall$ patsL $\sigma$. patsL $\in$ set pats $\longrightarrow$ ?cg-subst $($ set $S)$ ? $C \sigma \longrightarrow(\exists$ pat $\in$ set patsL. ?match-lhs $($ pat $\cdot \sigma))$ ) (is $-\longleftrightarrow$ ?L)
unfolding pattern-completeness-context.pat-complete-def
pattern-completeness-context.match-complete-wrt-def matches-def
by auto
(smt (verit, best) case-prod-conv mem-Collect-eq singletonI, metis (mono-tags, lifting) case-prod-conv singleton-iff)
also have ? $L$
$\longleftrightarrow\left(\forall f\right.$ ss $s\left(t s::\left({ }^{\prime} f, ' v\right)\right.$ term list $) . f: s s \rightarrow s$ in ? $D \longrightarrow t s:_{l}$ ss in $\mathcal{T}(? C, \emptyset)$
$\qquad$
$(\exists$ ti $\in \operatorname{set}($ term-and-args $f t s)$ ? ?match-lhs ti) $)($ is $-=? R)$
proof (standard; intro allI impI)
fix patL and $\sigma::\left({ }^{\prime} f,-,{ }^{\prime} v\right)$ gsubst
assume patL: patL $\in$ set pats and subst: ?cg-subst (set $S$ ) ? $C \sigma$ and $R:$ ?R
from patL[unfolded pats-def] obtain $f$ ss $s$ where patL: patL $=$ term-and-args $f($ map $\operatorname{Var}(z i p[0 . .<$ length ss $] s s))$ and inDs: $((f, s s), s) \in$ set $D$ by auto
from dist(2) inDs have $f: f: s s \rightarrow s$ in ?D unfolding hastype-in-ssig-def by simp
\{
fix $i$
assume $i: i<$ length ss
hence $s s!i \in$ set $s s$ by auto
with inDs ass have ss $!i \in$ set $S$ by auto
with subst have $\sigma(i, s s!i): s s!i$ in $\mathcal{T}(? C, \emptyset)$
unfolding pattern-completeness-context.cg-subst-def pattern-completeness-context.EMPTY-def
by auto
$\}$ note $s$ sigma $=$ this
define $t s$ where $t s=(\operatorname{map}(\lambda i . \sigma(i, s s!i))[0 . .<$ length $s s])$
have $t s: t s:_{l}$ ss in $\mathcal{T}(? C, \emptyset)$ unfolding list-all2-conv-all-nth ts-def using ssigma by auto
from $R[$ rule-format, OF $f t s]$ obtain $t i$ where $t i$ : $t i \in$ set (term-and-args $f$ ts) and match: ?match-lhs ti by auto
have map $(\lambda$ pat. pat $\cdot \sigma)$ patL $=$ term-and-args $f t s$ unfolding patL term-and-args-def $t s$-def
by (auto intro: nth-equalityI)
from $t i[$ folded this] match
show $\exists$ pat set patL. ?match-lhs $(p a t \cdot \sigma)$ by auto
next
fix $f$ ss $s$ and $t s::\left({ }^{\prime} f, ' v\right)$ term list
assume $f: f: s s \rightarrow s$ in ? $D$ and $t s: t s:_{l}$ ss in $\mathcal{T}(? C, \emptyset)$ and $L: ? L$
from $t$ have len: length $t s=$ length ss by (metis list-all2-lengthD)
define pat $L$ where pat $L=$ term-and-args $f($ map Var $(z i p[0 . .<$ length ss $]$ ss $))$
from $f$ have $((f, s s), s) \in$ set $D$ unfolding hastype-in-ssig-def by (metis map-of-SomeD)
hence patL: patL $\in$ set pats unfolding patL-def pats-def by force
define $\sigma$ where $\sigma x=($ case $x$ of $(i, s) \Rightarrow$ if $i<$ length ss $\wedge s=s s!i$ then ts ! i else
(SOME t. $t: s$ in $\mathcal{T}(? C, ? E M P T Y))$ ) for $x$
have ssigma: ?cg-subst (set S) ?C $\sigma$
unfolding pattern-completeness-context.cg-subst-def
proof (intro allI impI)
fix $x$ :: nat $\times$ -
assume snd $x \in$ set $S$
then obtain is where $x: x=(i, s)$ and $s: s \in \operatorname{set} S$ by (cases $x$, auto)
show $\sigma x:$ snd $x$ in $\mathcal{T}(? C, ? E M P T Y)$

```
    proof (cases i< length ss \wedges=ss!i)
```

    case True
    hence \(i d: \sigma x=t s!i\) unfolding \(x \sigma\)-def by auto
                            from ts True show ?thesis unfolding id unfolding \(x\) snd-conv pat-
    tern-completeness-context.EMPTY-def
by (simp add: list-all2-conv-all-nth)
next
case False
hence $i d: \sigma x=(S O M E t . t: s$ in $\mathcal{T}(? C, ? E M P T Y))$ unfolding $x \sigma$-def
by auto
from decide-nonempty-sorts(1)[OF dist(1) refl dec] $s$
have $\exists t$. $t: s$ in $\mathcal{T}(? C, ? E M P T Y)$ unfolding pattern-completeness-context.EMPTY-def
by auto
from someI-ex[OF this] have $\sigma x: s$ in $\mathcal{T}(? C, ? E M P T Y)$ unfolding id.
thus ?thesis unfolding $x$ by auto
qed
qed
from $L[$ rule-format, OF patL ssigma]
obtain pat where pat: pat $\in$ set patL and match: ? match-lhs $($ pat $\cdot \sigma)$ by auto
have id: map $(\lambda$ pat. pat $\cdot \sigma$ ) patL $=$ term-and-args $f$ ts unfolding patL-def
term-and-args-def using len
by (auto intro!: nth-equalityI simp: $\sigma$-def)
show $\exists t i \in$ set (term-and-args $f$ ts). ?match-lhs ti unfolding id[symmetric]
using pat match by auto
qed
also have $\ldots=(\forall t . t \in \mathcal{B}(? C, ? D, \emptyset) \longrightarrow(\exists$ ti $\in$ set $(t \#$ args $t)$. ?match-lhs
ti))
unfolding basic-terms-def term-and-args-def by force
finally show ?thesis unfolding strong-quasi-reducible-def by blast
qed

### 7.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility and Quasi-Reducibility

definition quasi-reducible :: ('f,'s)ssig $\Rightarrow(' f, ' s)$ ssig $\Rightarrow(' f, ' v)$ term set $\Rightarrow$ bool where

```
    quasi-reducible C D L = (\forallt\in\mathcal{B}(C,D,\emptyset).\existstp\unlhdt.\existsl\inL.l matches tp}
```

lemma pat-complete-imp-strong-quasi-reducible:
pat-complete-lhss $C D L \Longrightarrow$ strong-quasi-reducible $C D L$
unfolding pat-complete-lhss-def strong-quasi-reducible-def by force
lemma $\arg -i m p-s u b t: s \in \operatorname{set}(\operatorname{args} t) \Longrightarrow t \unrhd s$
by (cases $t$, auto)
lemma strong-quasi-reducible-imp-quasi-reducible: strong-quasi-reducible $C D L \Longrightarrow$ quasi-reducible $C D L$
unfolding strong-quasi-reducible-def quasi-reducible-def
by (force dest: arg-imp-subt)

If no root symbol of a left-hand sides is a constructor, then pattern completeness and quasi-reducibility coincide.
lemma quasi-reducible-iff-pat-complete: fixes $L::\left({ }^{\prime} f, ' v\right)$ term set
assumes $\bigwedge l f l s \tau s \tau . l \in L \Longrightarrow l=$ Fun $f l s \Longrightarrow \neg f: \tau s \rightarrow \tau$ in $C$
shows pat-complete-lhss $C D L \longleftrightarrow$ quasi-reducible CD $L$
proof (standard, rule strong-quasi-reducible-imp-quasi-reducible[OF pat-complete-imp-strong-quasi-reducible])
assume $q$ : quasi-reducible C D L
show pat-complete-lhss C D L
unfolding pat-complete-lhss-def
proof
fix $t::\left({ }^{\prime} f,{ }^{\prime} v\right)$ term
assume $t: t \in \mathcal{B}(C, D, \emptyset)$
from $q$ [unfolded quasi-reducible-def, rule-format, OF this]
obtain $t p$ where $t p: t \unrhd t p$ and match: $\exists l \in L$. l matches $t p$ by auto
show $\exists l \in L$. $l$ matches $t$
proof (cases $t=t p$ )
case True
thus ?thesis using match by auto
next
case False
from $t[$ unfolded basic-terms-def] obtain $f$ ts ss where $t: t=F u n f$ ts and $t s: t s:_{l}$ ss in $\mathcal{T}(C, \emptyset)$ by auto
from $t$ False $t p$ obtain $t i$ where $t i: t i \in$ set ts and subt: $t i \unrhd t p$
by (meson Fun-supteq)
from subt obtain $C C$ where ctxt: $t i=C C\langle t p\rangle$ by auto
from ti ts obtain $s$ where $t i: s$ in $\mathcal{T}(C, \emptyset)$ unfolding list-all2-conv-all-nth set-conv-nth by auto
from hastype-context-decompose[OF this[unfolded ctxt]] obtain $s$ where $t p$ :
tp : s in $\mathcal{T}(C, \emptyset)$ by blast
from match[unfolded matches-def] obtain $l \sigma$ where $l: l \in L$ and match: $t p$
$=l \cdot \sigma$ by auto
show ?thesis
proof (cases l)
case (Var $x$ )
with $l$ show ?thesis unfolding matches-def by (auto intro!: bexI[of - l])
next
case (Fun $f l s$ )
from $t p[$ unfolded match this, simplified] obtain ss where $f: s s \rightarrow s$ in $C$
by (meson Fun-hastype hastype-def hastype-in-ssig-def)
with assms [OF l Fun, of ss s] show ?thesis by auto
qed
qed
qed
qed
end

## 8 Setup for Experiments

```
theory Test-Pat-Complete
    imports
        Pattern-Completeness
        HOL-Library.Code-Abstract-Char
        HOL-Library.Code-Target-Numeral
begin
turn error message into runtime error
definition pat-complete-alg :: (('f x 's list ) × 's)list }=>(('f\times's list) > 's)list =
('f,'v)term list }=>\mathrm{ bool where
    pat-complete-alg C D lhss = (
    case decide-pat-complete-lhss C D lhss of Inl err }=>\mathrm{ Code.abort (err (STR ''/'))
(\lambda -. True)
    Inr res }=>\mathrm{ res)
```

turn error message into runtime error
definition strong-quasi-reducible-alg :: (('f×'s list) $\times$ 's)list $\Rightarrow((1 f \times$ 's list $) \times$
's)list $\Rightarrow(' f, ' v)$ term list $\Rightarrow$ bool where
strong-quasi-reducible-alg C D lhss $=($
case decide-strong-quasi-reducible $C$ D lhss of Inl err $\Rightarrow$ Code.abort (err (STR
$\left.{ }^{\prime \prime \prime \prime}\right)$ ) ( $\lambda$-. True)
| Inr res $\Rightarrow$ res)
Examples
definition nat-bool $=[$
(('zero", []), "nat"),
(('succ",$\left.\left.\left[{ }^{\prime \prime} n a t^{\prime \prime}\right]\right),{ }^{\prime \prime} n a t^{\prime \prime}\right)$,
(('true", []), '"bool'),
(('false", []), '"bool')
]
definition int-bool $=[$
(("zero", []), "int"),
(('succ"), ["int']), "int'),
(("pred"', ["int']), "int'),
(('true", []), '"bool'),
(('false", []), "bool")
]
definition even-nat $=[$
(( ${ }^{\prime \prime}$ even" $\left.{ }^{\prime \prime},\left[{ }^{\prime \prime} n a t^{\prime \prime}\right]\right),{ }^{\prime \prime}$ bool' $\left.{ }^{\prime \prime}\right)$
]
definition even-int $=[$
(('even'", ["int'] $),{ }^{\prime \prime}$ bool')
]

```
definition even-lhss = [
    Fun "'even" [Fun 'zero'" []],
    Fun "even" [Fun "succ" [Fun ''zero" []]],
    Fun "even" [Fun "succ" [Fun 'succ" [Var "'x'\]]
    ]
definition even-lhss-int = [
    Fun ''even" [Fun ''zero'" []],
    Fun "'even" [Fun "succ" [Fun ''zero" []]],
    Fun ''even' [Fun "'succ'" [Fun ''succ"' [Var ''x'\eta]],
    Fun "even" [Fun "pred" [Fun "zero" []]],
    Fun "'even" [Fun ''pred" [Fun '"pred" [Var ''x'\]],
    Fun "succ" [Fun "pred" [Var ''x'\eta],
    Fun '"pred" [Fun "succ" [Var "'x'I]}
    ]
lemma decide-pat-complete-wrapper:
    assumes (case decide-pat-complete-lhss C D lhss of Inr b = Some b|Inl - =
None) = Some res
    shows pat-complete-lhss (map-of C) (map-of D) (set lhss) = res
    using decide-pat-complete-lhss[of C D lhss] assms by (auto split: sum.splits)
lemma decide-strong-quasi-reducible-wrapper:
    assumes (case decide-strong-quasi-reducible C D lhss of Inr b = Some b | Inl -
# None) = Some res
    shows strong-quasi-reducible (map-of C) (map-of D) (set lhss) = res
    using decide-strong-quasi-reducible[of C D lhss] assms by (auto split: sum.splits)
lemma pat-complete-lhss (map-of nat-bool) (map-of even-nat) (set even-lhss)
    apply (subst decide-pat-complete-wrapper[of - - True])
    by eval+
lemma }\neg\mathrm{ pat-complete-lhss (map-of int-bool) (map-of even-int) (set even-lhss-int)
    apply (subst decide-pat-complete-wrapper[of - - False])
    by eval+
lemma strong-quasi-reducible (map-of int-bool) (map-of even-int) (set even-lhss-int)
    apply (subst decide-strong-quasi-reducible-wrapper[of - - True])
    by eval+
definition non-lin-lhss = [
    Fun '"f" [Var "x', Var "'x", Var "'y'],
    Fun ''f'"[Var ''x", Var " y", Var "' }\mp@subsup{x}{}{\prime\prime}
    Fun "'f"[Var '" y', Var '' }\mp@subsup{x}{}{\prime\prime}\mathrm{ , Var '" }\mp@subsup{x}{}{\prime\prime}
]
```

```
lemma pat-complete-lhss (map-of nat-bool) (map-of [(('f \(\left.\left.\left.\left.{ }^{\prime \prime},\left[{ }^{\prime \prime} b o o l{ }^{\prime \prime},{ }^{\prime \prime} b o o l^{\prime \prime},{ }^{\prime \prime} b o o l^{\prime \prime}\right]\right),{ }^{\prime \prime} b o o l^{\prime \prime}\right)\right]\right)\)
(set non-lin-lhss)
    apply (subst decide-pat-complete-wrapper \([\) of - - True \(]\) )
    by eval+
lemma \(\neg\) pat-complete-lhss (map-of nat-bool) (map-of [(('ff",["nat",,"nat",'nat'才), '"bool")])
(set non-lin-lhss)
    apply (subst decide-pat-complete-wrapper[of - - False])
    by eval+
definition testproblem ( \(c::\) nat) \(n=(\) let \(s=\) String.implode; \(s=i d\);
    \(c 1=\) even \(c ;\)
    \(c \mathcal{2}=\operatorname{even}(c \operatorname{div} 2) ;\)
    \(c 3=\operatorname{even}(c \operatorname{div} 4) ;\)
    \(c_{4}=\operatorname{even}(c \operatorname{div} 8) ;\)
    revo \(=(\) if \(c 4\) then id else rev \() ;\)
    \(n n=[0 . .<n] ;\)
    \(r n n=(\) if c4 then id \(n n\) else rev \(n n)\);
    \(b=s^{\prime \prime} b^{\prime \prime} ; t=s^{\prime \prime} t t^{\prime \prime} ; f=s^{\prime \prime} f f^{\prime \prime} ; g=s^{\prime \prime} g^{\prime \prime} ;\)
    \(g g=(\lambda\) ts. Fun \(g(\) revo \(t s))\);
    \(f f=\operatorname{Fun} f[] ;\)
    \(t t=\) Fun \(t\) [];
    \(C=[((t,[]::\) string list \(), b),((f,[]), b)] ;\)
    \(D=[((g\), replicate \((2 * n) b), b)] ;\)
    \(x=\left(\lambda i\right.\) :: nat. Var \(\left(s\left({ }^{\prime \prime} x^{\prime \prime} @\right.\right.\) show \(\left.\left.\left.i\right)\right)\right)\);
    \(y=\left(\lambda i::\right.\) nat. Var \(\left(s\left({ }^{\prime \prime} y^{\prime \prime} @\right.\right.\) show \(\left.\left.\left.i\right)\right)\right)\);
    lhsF \(=g g\) (if c1 then List.maps \((\lambda i\). [ff, y i] ) rnn else (replicate \(n\) ff @ map
y rnn));
    lhs \(T=(\lambda b j . g g\) (if c1 then List.maps \((\lambda i\). if \(i=j\) then \([t t, b]\) else \([x i, y i])\)
rnn else
(map \((\lambda\). if \(i=j\) then tt else \(x i)\) rnn @ map \((\lambda i\). if \(i=j\) then \(b\) else y i) rnn)));
lhss \(T=(\) if c2 then List.maps \((\lambda i .[l h s T\) tt \(i\), lhsT ff \(i]) n n\) else List.maps \((\lambda\) b. map (lhsT b) nn) [tt,ff]);
lhss \(=(\) if c3 then \([l h s F] @\) lhssT else lhssT @ \([l h s F])\)
in \((C, D, l h s s))\)
definition test-problem c n perms \(=(\) if \(c<16\) then testproblem \(c n\)
else let \((C, D\), lhss \()=\) testproblem \(0 n\);
\((\) permRow,permCol \()=\) perms \(!(c-16)\);
permRows \(=\operatorname{map}(\lambda i\). lhss \(!i)\) permRow;
\(p \mathrm{Col}=(\lambda t\). case \(t\) of Fun \(g t s \Rightarrow\) Fun \(g(\operatorname{map}(\lambda i . t s!i)\) permCol \())\)
in ( \(C, D\), map pCol permRows))
definition test-problem-integer where
test-problem-integer c n perms \(=\) test-problem (nat-of-integer \(c)\) (nat-of-integer
\(n)(\) map (map-prod (map nat-of-integer) (map nat-of-integer)) perms)
fun term-to-haskell where
```

```
    term-to-haskell (Var x) = String.implode x
| term-to-haskell (Fun fts) = (if f = "tt" then STR "TT" else if f = "ff" then
STR "FF" else String.implode f)
    + foldr (\lambda tr.STR "'\prime + term-to-haskell t + r) ts (STR '"\prime)
definition createHaskellInput :: integer }=>\mathrm{ integer }=>\mathrm{ (integer list }\times\mathrm{ integer list)
list => String.literal where
    createHaskellInput c n perms = (case test-problem-integer c n perms
    of
    (-,-,lhss) = STR 'module Test(g) where }\hookleftarrow|\mathrm{ data B = TT | FF }
+
    foldr (\lambda l s. (term-to-haskell l + STR '' = TT 知 + s)) lhss (STR '\prime\prime\prime))
definition pat-complete-alg-test :: integer }=>\mathrm{ integer }=>\mathrm{ (integer list * integer
list)list }=>\mathrm{ bool where
    pat-complete-alg-test c n perms = (case test-problem-integer c n perms of
    (C,D,lhss) => pat-complete-alg C D lhss)
definition show-pat-complete-test :: integer }=>\mathrm{ integer }=>\mathrm{ (integer list * integer
list)list }=>\mathrm{ String.literal where
    show-pat-complete-test c n perms = (case test-problem-integer c n perms of (-,-,lhss)
    => showsl-lines (STR "'empty") lhss (STR '"'))
```

definition create-agcp-input :: (String.literal $\left.\Rightarrow{ }^{\prime} t\right) \Rightarrow$ integer $\Rightarrow$ integer $\Rightarrow$ (integer
list $*$ integer list)list $\Rightarrow$
't list list * 't list list where
create-agcp-input term $C N$ perms $=($ let
$n=$ nat-of-integer $N$;
$c=$ nat-of-integer $C$;
lhss $=($ snd o snd $)($ test-problem-integer $C$ N perms $) ;$
$t t=\left(\lambda t\right.$. case $t$ of $(\operatorname{Var} x) \Rightarrow$ term (String.implode ( ${ }^{\prime \prime}$ ? ${ }^{\prime \prime} @ x$ @ ": $\left.B^{\prime \prime}\right)$ )
| Fun $f[] \Rightarrow$ term (String.implode $f$ ));
pslist $=\operatorname{map}\left(\lambda\right.$ i.tt $\left(\operatorname{Var}\left({ }^{\prime \prime} x^{\prime \prime} @\right.\right.$ show $\left.\left.\left.i\right)\right)\right)[0 . .<2 * n]$;
patlist $=\operatorname{map}(\lambda t$. case $t$ of Fun $-p s \Rightarrow$ map tt ps $)$ lhss
in ([pslist], patlist))
connection to AGCP, which is written in SML, and SML-export of verified pattern completeness algorithm

```
export-code
    pat-complete-alg-test
    show-pat-complete-test
    create-agcp-input
    pat-complete-alg
    strong-quasi-reducible-alg
    Var
    in SML module-name Pat-Complete
```

tree automata encoding
We assume that there are certain interface-functions from the tree-automata library.

```
context
    fixes cState :: String.literal }=>\mathrm{ 'state - create a state from name
    and cSym :: String.literal }=>\mathrm{ integer }=>\mp@subsup{}{}{\prime}\mathrm{ 'sym - create a symbol from name and
arity
    and cRule :: 'sym => 'state list }=>\mathrm{ 'state }=>\mathrm{ 'rule - create a transition-rule
    and cAut :: 'sym list => 'state list }=>\mathrm{ 'state list }=>\mathrm{ 'rule list }=>\mathrm{ 'aut
        - create an automaton given the signature, the list of all states, the list of final
states, and the transitions
    and checkSubset :: 'aut }=>\mathrm{ 'aut }=>\mathrm{ bool - check language inclusion
begin
```

we further fix the parameters to generate the example TRSs

```
context
    fixes c n :: integer
    and perms :: (integer list }\times\mathrm{ integer list) list
begin
definition tt = cSym (STR ''tt') 0
definition ff = cSym (STR ''ff')}
definition g=cSym(STR ''g')}(2*n
definition qt = cState (STR "'qt')
definition qf = cState (STR ''qf')
definition qb = cState (STR '' qb")
definition qfin =cState (STR "qFin')
definition tRule = ( }\lambda\mathrm{ q. cRule tt [] q)
definition fRule = (\lambda q. cRule ff [] q)
definition qbRules = [tRule qb, fRule qb]
definition stdRules = qbRules @ [tRule qt, fRule qf]
definition leftStates = [qb,qfin]
definition rightStates = [qt,qf]@ leftStates
definition finStates = [qfin]
definition signature = [tt, ff,g]
fun argToState where
    argToState (Var -) = qb
| argToState (Fun s []) = (if s= 'tt" then qt else if s= ''ff" then qf
        else Code.abort (STR "unknown') (\lambda -. qf))
fun termToRule where
    termToRule (Fun - ts) = cRule g (map argToState ts) qfin
definition automataLeft = cAut signature leftStates finStates (cRule g (replicate
(2 * nat-of-integer n) qb) qfin # qbRules)
definition automataRight = (case test-problem-integer c n perms of
```

$(-,-$, lhss $) \Rightarrow$ cAut signature rightStates finStates (map termToRule lhss @ stdRules))
definition encodeAutomata $=($ automataLeft, automataRight $)$
definition patCompleteAutomataTest $=($ checkSubset automataLeft automataRight $)$
end
end
definition string-append $::$ String.literal $\Rightarrow$ String.literal $\Rightarrow$ String.literal (infixr $+++65)$ where
string-append $s t=$ String.implode (String.explode s @ String.explode $t$ )
code-printing constant string-append -
(Haskell) infixr $5++$
fun paren where
paren elrs []$=e$
$\mid$ paren elrs $(x \# x s)=l+++x+++$ foldr $(\lambda y r . s+++y+++r) x s r$
definition showAutomata where showAutomata $n$ c perms $=$ (case encodeAutomata id ( $\lambda$ na.n)
$\left(\lambda f q s q\right.$. paren $f\left(f+++S T R^{\prime \prime}\left({ }^{\prime \prime}\right)\left(S T R{ }^{\prime \prime}\right)^{\prime \prime}\right)\left(S T R{ }^{\prime \prime},{ }^{\prime \prime}\right) q s+++S T R{ }^{\prime \prime}->$ $\left.{ }^{\prime \prime}+++q\right)$
( $\lambda \operatorname{sig} Q$ Qfin rls.
STR "tree-automata has final states: " +++ paren $\left(S T R{ }^{\prime \prime}\{ \}^{\prime \prime}\right)\left(S T R{ }^{\prime \prime}\left\{{ }^{\prime \prime}\right)\right.$
$\left.\left(S T R{ }^{\prime \prime}\right\}^{\prime \prime}\right)\left(S T R{ }^{\prime \prime},{ }^{\prime \prime}\right)$ Qfin $+++S T R{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$
$+++S T R R^{\prime \prime}$ and transitions: $\hookleftarrow^{\prime \prime}+++$ paren $\left(S T R{ }^{\prime \prime \prime \prime}\right)\left(S T R^{\prime \prime \prime \prime}\right)\left(S T R{ }^{\prime \prime \prime \prime}\right)$ $\left(S T R \quad ' \hookleftarrow{ }^{\prime}\right)$ rls $\left.+++S T R R^{\prime \prime} \hookleftarrow \mid \hookleftarrow{ }^{\prime \prime}\right)$ n c perms
of (all,pats) $\Rightarrow S T R^{\prime \prime}$ decide whether language of first automaton is subset of the second automaton $\hookleftarrow \mid \hookleftarrow^{\prime \prime}$

$$
+++S T R{ }^{\prime \prime} \text { first "' }+++ \text { all }+++S T R{ }^{\prime} \longleftarrow \text { and second }{ }^{\prime \prime}+++ \text { pats }
$$

value showAutomata 44 []
value show-pat-complete-test 44 []
value createHaskellInput 44 []
connection to FORT-h, generation of Haskell-examples, and Haskell tests of verified pattern completeness algorithm

```
export-code encodeAutomata
    showAutomata
    patCompleteAutomataTest
    show-pat-complete-test
    pat-complete-alg-test
    createHaskellInput
    in Haskell module-name Pat-Test-Generated
```

end

## References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In D. Kesner and B. Pientka, editors, 1 st International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 33:1-33:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
[2] A. Lazrek, P. Lescanne, and J. Thiel. Tools for proving inductive equalities, relative completeness, and omega-completeness. Inf. Comput., 84(1):47-70, 1990.
[3] A. Middeldorp, A. Lochmann, and F. Mitterwallner. First-order theory of rewriting for linear variable-separated rewrite systems: Automation, formalization, certification. J. Autom. Reason., 67(2):14, 2023.
[4] R. Thiemann and A. Yamada. A verified algorithm for deciding pattern completeness. In J. Rehof, editor, 9th International Conference on Formal Structures for Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. To appear.


[^0]:    *This research was supported by the Austrian Science Fund (FWF) project I 5943.

