Mutually Recursive Partial Functions*

René Thiemann

May 26, 2024

Abstract

We provide a wrapper around the partial-function command which supports mutual recursion.

Our results have been used to simplify the development of mutually recursive parsers, e.g., a parser to convert external proofs given in XML into some mutually recursive datatype within Isabelle/HOL.

Contents

1 Introduction

2 Implementation 4
2.1 Known limitations 4
2.2 Register the partial-function-mr command 4
2.3 Register the "option"-monad 4
2.4 Register the "tailrec"-monad 6
3 Examples 6
3.1 Collatz function 6
3.2 Evaluating expressions 7
3.3 An example with contexts 8

1 Introduction

The partial function command of Krauss [1] turns monotone monadic function specifications into equational theorems. Here, monadic means that the output type of the function must be a monad like the option-monad. This is required to prohibit specifications like

$$
f x=1+f x
$$

[^0]which would immediately lead to a contradiction. Since the command produces unconditional equations, it is extremely helpful in writing possibly nonterminating functions which are amenable to code generation. For example, using partial-function, one can write a recursive parser in Isabelle/HOL and can then use it in several target languages - without having to struggle with a tedious termination proof which might have to reason about the internal state of the parser.

Unfortunately, the command currently does not support mutually recursive functions, which however would be a convenient feature when writing parsers for mutually recursive datatypes. To be more precise, a specification of a partial function has to be of the following shape

$$
\begin{equation*}
f \overrightarrow{x s}=F f \overrightarrow{x s} \tag{1}
\end{equation*}
$$

where $\overrightarrow{x s}$ is a sequence of distinct variables and F is an arbitrary monotone functional that may depend on f and $\overrightarrow{x s}$.

For mutually recursive functions we would like to specify functions in the more general form

$$
\begin{align*}
& f_{1} \overrightarrow{x s_{1}}=F_{1} \overrightarrow{f_{s}} \overrightarrow{x s_{1}} \\
& \vdots \tag{2}\\
& f_{n} \overrightarrow{x s_{n}}=F_{n} \overrightarrow{f_{s}} \overrightarrow{x s_{n}}
\end{align*}
$$

where $\overrightarrow{f_{s}}=f_{1}, \ldots, f_{n}$ and $\overrightarrow{x s_{i}}$ are the individual arguments to each of the functions f_{i}.

In the following, we describe our wrapper around the partial function command which supports mutual recursion. We first synthesize a global function g from the specifications in (2) which itself has a defining equation in the form of (1). Then we register g and derive the defining equation for g as theorem in Isabelle/HOL using partial-function. Afterwards, it will be easy to define each f_{i} in terms of g, and finally derive the equations in (2) as theorems.

Let us now consider the details. Assume each f_{i} has a type $i n_{i, 1} \Rightarrow$ $\ldots \Rightarrow i n_{i, \operatorname{ar}\left(f_{i}\right)} \Rightarrow$ out $_{f_{i}}$ monad, where for each $f, \operatorname{ar}(f)$ is the arity of f, and monad is the common monad. For g there will only be one input, and this input has type $\left(i n_{f_{1}}\right)+\ldots+\left(i n_{f_{n}}\right)$: each sequence of input types $i n_{i, 1}, \ldots, i n_{i, a r\left(f_{i}\right)}$ is first transformed into a single argument of type $\left(i n_{f_{i}}\right):=$ $i n_{i, 1} \times \ldots \times i n_{i, a r\left(f_{i}\right)}$, and afterwards the sum type is used to distinguish between the inputs of the individual functions. Similarly, the output type of g will be $\left(\right.$ out $_{f_{1}}+\ldots+$ out $\left._{f_{n}}\right)$ monad. Note that we did not choose out $_{f_{1}}$ monad $+\ldots+$ out $_{f_{n}}$ monad as output of g as it is not monadic, and thus, g would not be definable via partial-function.

Next, we define g via a single equation which can then be passed to partial-function. Here, we have to

- convert between tuples and sequences of arguments via currying and uncurrying. To this end, we use the predefined curry-function for currying and for uncurrying we perform pattern matching in expressions like $\lambda(x s) . h \overrightarrow{x s}$ which take a tuple of variables as argument and then feed these variables sequentially to some function h.
- convert between argument and sum-types. To this end, we use constructors $i n j_{i}$ of type $\alpha_{i} \Rightarrow \alpha_{1}+\ldots+\alpha_{i}+\ldots \alpha_{n}$, and destructors $p r o j_{i}$ which work in exactly the opposite direction. Moreover, we perform case-analyses via pattern matching on the $i n j_{i}$'s. Note that internally each $i n j_{i}$ is encoded via repeated usage of the constructors Inl and Inr of Isabelle/HOL's sum-type, and similarly we nest Projl and Projr to encode arbitrary proj $_{i}$-functions.
- work within the monad to combine the various result types into a single one. To this end, we demand that there is some map-monad-function which lifts an operation $\alpha \Rightarrow \beta$ to a function of type α monad \Rightarrow β monad. In general, these mappings may also take several functions as input, depending on the number of type-variables of the monadconstructor. For each kind of monad that should be supported by our method, a user-defined map-monad function can be registered. It is important, to also register a monotonicity lemma of each map-monad function within the partial function package. Otherwise, monotonicity proofs for g will most likely fail.

Putting everything together, we setup the following equation

$$
\begin{align*}
g x= & \text { case } x \text { of } \\
& \quad i n j_{1} x s_{t} \Rightarrow \text { map-monad } i n j_{1}\left(\left(\lambda(x s) \cdot F_{1} \overrightarrow{f_{s}^{\prime}} \overrightarrow{x s}\right) x s_{t}\right) \\
& \mid \cdots \tag{3}\\
& \mid i n j_{n} x s_{t} \Rightarrow \text { map-monad } i n j_{n}\left(\left(\lambda(x s) \cdot F_{n} \overrightarrow{f_{s}^{\prime}} \overrightarrow{x s}\right) x s_{t}\right)
\end{align*}
$$

where $\overrightarrow{f s^{\prime}}$ is the sequence of abbreviations $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ and where

$$
\begin{equation*}
f_{i}^{\prime}=\operatorname{curry}\left(\lambda x s_{t} . \text { map-monad } \operatorname{proj}_{i}\left(g\left(i n j_{i} x s_{t}\right)\right)\right) \tag{4}
\end{equation*}
$$

Once, g has been defined using partial-function, we obtain Equality (3) as a theorem. Afterwards, it is easy to define

$$
\begin{equation*}
f_{i}=\operatorname{curry}\left(\lambda x s_{t} . \text { map-monad } \operatorname{proj}_{i}\left(g\left(i n j_{i} x s_{t}\right)\right)\right) \tag{5}
\end{equation*}
$$

and it remains to derive the equations in (2) as theorems. To this end, first note the difference in (4) and (5). In the former, g is a free variable which should be defined as a constant at that point, whereas g is already the newly defined constant in (5). Obviously, at this point one can now replace the
abbreviations (4) in Equation (3) by the real constants f_{i} via the defining equations (5). This yields the following modified theorem for g where now $\overrightarrow{f_{s}}$ is the sequence f_{1}, \ldots, f_{n}.

$$
\begin{align*}
& g x=\text { case } x \text { of } \\
& \qquad \begin{array}{ll}
& \quad i n j_{1} x s_{t} \Rightarrow \text { map-monad } \operatorname{inj}_{1}\left(\left(\lambda(x s) \cdot F_{1} \overrightarrow{f_{s}} \overrightarrow{x s}\right) x s_{t}\right) \\
& \mid \text { inj }_{n} x s_{t} \Rightarrow \text { map-monad } \operatorname{inj}_{n}\left(\left(\lambda(x s) \cdot F_{n} \overrightarrow{f_{s}} \overrightarrow{x s}\right) x s_{t}\right)
\end{array}
\end{align*}
$$

Now it is indeed easy to derive the desired equations in (2):

$$
\begin{aligned}
f_{i} \overrightarrow{x s} & \stackrel{(5)}{=}\left(\text { curry }\left(\lambda x s_{t} . \text { map-monad } \operatorname{proj}_{i}\left(g\left(\text { inj }_{i} x s_{t}\right)\right)\right)\right) \overrightarrow{x s} \\
& \left.\stackrel{(\star)}{=} \text { map-monad proj} j_{i}\left(g\left(\text { inj }_{i}(\overrightarrow{x s})\right)\right)\right) \\
& \left.\stackrel{(6)}{=}{\text { map-monad } \operatorname{proj}_{i}\left(\text { map-monad } i n j_{i}\right.}\left(F_{i} \overrightarrow{f_{s}} \overrightarrow{x s}\right)\right) \\
& \stackrel{(\star \star)}{=} F_{i} \overrightarrow{f_{s}} \overrightarrow{x s}
\end{aligned}
$$

Here, (\star) used the definition of curry and splitting of tuples, and for ($\star \star$) we demand that map-monad is compositional and that map-monad applied on the identity function is the identity function itself.

2 Implementation

2.1 Known limitations

- The method does only provide equational theorems. It does not convert the induction rule for the global function g from the partial function command into an induction rule for the set of mutually recursive functions.

```
theory Partial-Function-MR
imports Main
keywords partial-function-mr :: thy-decl
begin
```


2.2 Register the partial-function-mr command

ML-file 〈partial-function-mr.ML〉

2.3 Register the "option"-monad

Obviously, the map-function for the option-monad is map-option.

First, derive the required identity lemma.

```
lemma option-map-id: map-option ( }\lambdax.x)x=
    by (cases x, auto)
Second, register map-option as being monotone.
lemma option-map-mono[partial-function-mono]:
assumes mf: mono-option \(B\)
shows mono-option ( \(\lambda f\). map-option \(h(B f)\) )
proof (rule monotoneI)
fix \(f g:: ' a \Rightarrow\) ' \(b\) option assume \(f g\) : fun-ord option-ord \(f g\)
with \(m f\)
have option-ord \((B f)(B g)\) by (rule monotoneD[of---fg])
then show option-ord (map-option \(h(B f)\) ) (map-option \(h(B g))\)
unfolding flat-ord-def by auto
qed
```

And finally perform the registration. We need

- a constructor for map: it takes a monadic term $m t$ of type $m t T$, a list of functions t-to-ss with corresponding types in t-to-sTs, a resulting monadic type $m s T$, and it should return a monad term $m s$ of type $m s T$ which is obtained by applying the functions on $m t$. Although for the option-monad, the lengths of the lists will always be one, there might be more elements for monads having more than one type-parameter.
- a function to perform type-construction for monads: it takes a list of fixed parameters and a list of flexible parameters and has to construct a monadic type out of these parameters. The user can freely choose which parameters should be fixed, and which are flexible. Only flexible parameters can be changes in the return type of each set of mutual recursive functions. Since in the option-monad we would like to be able to change the type-parameter, we ignore the fixed parameters here.
- a function to deconstruct monadic types into fixed and flexible type arguments.
- a compositionality theorem of the form $\operatorname{map} f(\operatorname{map} g x)=\operatorname{map}(f \circ$ g) x
- an identity theorem of the form $\operatorname{map}(\lambda x . x) m=m$

```
declaration 〈Partial-Function-MR.init
    option
    \((f n(m t, t-t o-s s, m t T, m s T, t-t o-s T s)=>\)
        list-comb (Const (@\{const-name map-option\}, t-to-sTs ---> mtT -->
\(m s T), t\)-to-ss) \$ \(m t\) )
    \((\) fn \((-, \arg T s)=>\) Type \((@\{t y p e-n a m e ~ o p t i o n\}, \operatorname{argTs}))\)
    ( \(\mathrm{fn} m \mathrm{~T}=>([]\), Term.dest-Type \(m T \mid>\) \#2) \()\)
```

```
    @ {thms option.map-comp}
    @{thms option-map-id}
>
```


2.4 Register the "tailrec"-monad

For the "tailrec"-monad (which is the identity monad) we take the identity function as map, there are no flexible parameters, and the monadic type itself is the (only) fixed argument. As a consequence, we can only define tail-recursive and mutual recursive functions which share the same return type.

```
declaration<Partial-Function-MR.init
    tailrec
    (fn (mt,t-to-ss,mtT,msT,t-to-sTs) => mt)
    (fn (commonT,-) => hd commonT)
    (fn mT => ([mT],[]))
    []
    []
>
end
```


3 Examples

```
theory Partial-Function-MR-Examples
imports
    Partial-Function-MR
    HOL-Library.Monad-Syntax
    HOL.Rat
begin
```


3.1 Collatz function

In the following, we define the Collatz function, which is artificially encoded via mutually recursive functions. As second argument we store the intermediate values. It is currently unknown whether this function is terminating for all inputs or not.

```
partial-function-mr (tailrec) collatz and even-case and odd-case where
    collatz ( \(x\) :: int) \(x s=\)
        (if \((x \leq 1)\) then rev \((x \# x s)\) else
        (if \((x \bmod 2=0)\) then even-case \(x(x \# x s)\)
        else odd-case \(x\) xs))
| even-case \(x\) xs \(=\) collatz ( \(x\) div 2) \(x s\)
\(\mid[\) simp \(]:\) odd-case \(x\) xs \(=\) collatz \((3 * x+1)(x \# x s)\)
```

The equations are registered as code-equations.
lemma length $($ collatz 327 []) $=144$ by eval

The equations are accessible via .simps, but are not put in the standard simpset.
lemma collatz 5[]$=[5,16,8,4,2,1]$ by (simp add: collatz.simps even-case.simps)

3.2 Evaluating expressions

Note that we also provide a least fixpoint operator. Hence, the evaluation function will clearly be partial. The example also illustrates the usage of polymorphism and of different return types.

In the following datatype, Mubfa encodes the least n such that $b\left(f^{n}(a)\right)$.

```
datatype 'a bexp =
```

 BConst bool
 | Less 'a aexp 'a aexp
| Eq 'a aexp 'a aexp
| And 'a bexp 'a bexp
and 'a aexp =
Plus ' a aexp ' $a \operatorname{aexp}$
| Div 'a aexp 'a aexp
| IfThenElse 'a bexp 'a aexp 'a aexp
| AConst 'a
$\mid M u{ }^{\prime} a \Rightarrow{ }^{\prime} a b \exp { }^{\prime} a \Rightarrow{ }^{\prime} a \operatorname{aexp}{ }^{\prime} a \operatorname{aexp}$
partial-function-mr (option)
b-eval and a-eval and mu-eval where
b-eval bexp $=$ (case bexp of
BConst $b \Rightarrow$ Some b
| Less a1 a2 \Rightarrow do \{
$x 1 \leftarrow$ a-eval a1;
$x 2 \leftarrow$ a-eval a2;
Some $(x 1<x 2)$
\}
| Eq a1 a2 \Rightarrow do \{
$x 1 \leftarrow$ a-eval a1;
$x 2 \leftarrow$ a-eval a2;
Some $(x 1=x 2)$
\}
| And be1 be2 \Rightarrow do \{
b1 \leftarrow b-eval be 1 ;
$b 2 \leftarrow b$-eval be2;
Some $(b 1 \wedge b 2)$
\}
)
| a-eval aexp $=$ (case aexp of
AConst $x \Rightarrow$ Some x
| Plus a1 a2 \Rightarrow do \{
$x 1 \leftarrow a$-eval a1;
x2 \leftarrow a-eval a2;
Some $(x 1+x 2)$

```
        }
        | Div a1 a2 # do {
            x1}\leftarrowa\mathrm{ -eval a1;
            x2 \leftarrowa-eval a2;
            if (x2 = 0) then None else Some (x1 / x2)
        }
        | IfThenElse bexp a1 a2 =>d do {
            b}b\mathrm{ -eval bexp;
            (if b then a-eval a1 else a-eval a2)
        }
    | Mu b f a m do {
            mu-eval b f a 0
        }
    )
| mu-eval b f a n = do {
    x\leftarrowa-eval a;
        check }\leftarrowb\mathrm{ -eval (b x);
        (if check then Some (of-nat n) else
        mu-eval b f(f x) (Suc n))
    }
definition
five-minus-two = a-eval (Mu ( \lambda x. Eq (AConst 5) (AConst x)) (\lambda x. Plus (AConst
x) (AConst 1)) (AConst (2 :: rat)))
value five-minus-two
```


3.3 An example with contexts

Mutual recursive partial functions also work within contexts.

```
context
    fixes y :: int
begin
partial-function-mr (tailrec) foo and bar where
    foo }x=(\mathrm{ if }x=y\mathrm{ then foo (x-1) else (bar x (y-1)))
|ar x z = foo (x+(1 :: int) + y)
end
```

end

References

[1] A. Krauss. Recursive definitions of monadic functions. In Proc. of the International Workshop on Partiality and Recursion in Interactive Theorem Proving, volume 43 of EPTCS, pages 1-13, 2010. doi:10.4204/ EPTCS.43.1.

[^0]: *This research is supported by FWF (Austrian Science Fund) project P22767-N13. We thank Makarius Wenzel for several hints on how to properly localize our wrapper.

