
Negatively Associated Random Variables

Emin Karayel

January 20, 2025

Abstract

Negative Association is a generalization of independence for ran-
dom variables, that retains some of the key properties of independent
random variables. In particular closure properties, such as composi-
tion with monotone functions, as well as, the well-known Chernoff-
Hoeffding bounds.

This entry introduces the concept and verifies the most important
closure properties, as well as, the concentration inequalities. It also
verifies the FKG inequality, which is a generalization of Chebyshev’s
sum inequality for distributive lattices and a key tool for establishing
negative association, but has also many applications beyond the con-
text of negative association, in particular, statistical physics and graph
theory.

As an example, permutation distributions are shown to be nega-
tively associated, from which many more sets of negatively random
variables can be derived, such as, e.g., n-subsets, or the the balls-into-
bins process.

Finally, the entry derives a correct false-positive rate for Bloom
filters using the library.

Contents
1 Preliminary Definitions and Lemmas 2

2 Definition 7

3 Chernoff-Hoeffding Bounds 12

4 The FKG inequality 15

5 Preliminary Results on Lattices 17

6 Permutation Distributions 20

7 Application: Bloom Filters 25

1

1 Preliminary Definitions and Lemmas
theory Negative-Association-Util

imports
Concentration-Inequalities.Concentration-Inequalities-Preliminary
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF

begin

abbreviation (input) flip :: ‹(′a ⇒ ′b ⇒ ′c) ⇒ ′b ⇒ ′a ⇒ ′c› where
‹flip f x y ≡ f y x›

Additional introduction rules for boundedness:
lemma bounded-const-min:

fixes f :: ′a ⇒ real
assumes bdd-below (f ‘ M)
shows bounded ((λx. min c (f x)) ‘ M)
〈proof 〉

lemma bounded-prod:
fixes f :: ′i ⇒ ′a ⇒ real
assumes finite I
assumes

∧
i. i ∈ I =⇒ bounded (f i ‘ T)

shows bounded ((λx. (
∏

i ∈ I . f i x)) ‘ T)
〈proof 〉

lemma bounded-vec-mult-comp:
fixes f g :: ′a ⇒ real
assumes bounded (f ‘ T) bounded (g ‘ T)
shows bounded ((λx. (f x) ∗R (g x)) ‘ T)
〈proof 〉

lemma bounded-max:
fixes f :: ′a ⇒ real
assumes bounded ((λx. f x) ‘ T)
shows bounded ((λx. max c (f x)) ‘ T)
〈proof 〉

lemma bounded-of-bool: bounded (range of-bool) 〈proof 〉

lemma bounded-range-imp:
assumes bounded (range f)
shows bounded ((λω. f (h ω)) ‘ S)
〈proof 〉

The following allows to state integrability and conditions about the integral
simultaneously, e.g. has-int-that M f (λx. x ≤ c) says f is integrable on M
and the integral smaller or equal to c.
definition has-int-that where

2

has-int-that M f P = (integrable M f ∧ (P (
∫
ω. f ω ∂M)))

lemma true-eq-iff : P =⇒ True = P 〈proof 〉
lemma le-trans: y ≤ z =⇒ x ≤ y −→ x ≤ (z :: ′a :: order) 〈proof 〉

lemma has-int-that-mono:
assumes

∧
x. P x −→ Q x

shows has-int-that M f P ≤ has-int-that M f Q
〈proof 〉

lemma has-int-thatD:
assumes has-int-that M f P
shows integrable M f P (integralL M f)
〈proof 〉

This is useful to specify which components a functional depends on.
definition depends-on :: ((′a ⇒ ′b) ⇒ ′c) ⇒ ′a set ⇒ bool

where depends-on f I = (∀ x y. restrict x I = restrict y I −→ f x = f y)

lemma depends-onI :
assumes

∧
x. f x = f (λi. if i ∈ I then (x i) else undefined)

shows depends-on f I
〈proof 〉

lemma depends-on-comp:
assumes depends-on f I
shows depends-on (g ◦ f) I
〈proof 〉

lemma depends-on-comp-2:
assumes depends-on f I
shows depends-on (λx. g (f x)) I
〈proof 〉

lemma depends-onD:
assumes depends-on f I
shows f ω = f (λi∈I . (ω i))
〈proof 〉

lemma depends-onD2:
assumes depends-on f I restrict x I = restrict y I
shows f x = f y
〈proof 〉

lemma depends-on-empty:
assumes depends-on f {}
shows f ω = f undefined
〈proof 〉

3

lemma depends-on-mono:
assumes I ⊆ J depends-on f I
shows depends-on f J
〈proof 〉

abbreviation square-integrable M f ≡ integrable M ((power2 :: real ⇒ real) ◦ f)

There are many results in the field of negative association, where a statement
is true for simultaneously monotone or anti-monotone functions. With the
below construction, we introduce a mechanism where we can parameterize
on the direction of a relation:
datatype RelDirection = Fwd | Rev

definition dir-le :: RelDirection ⇒ ((′d::order) ⇒ (′d :: order) ⇒ bool) (infixl
≤≥ı 60)

where dir-le η = (if η = Fwd then (≤) else (≥))

lemma dir-le[simp]:
(≤≥Fwd) = (≤)
(≤≥Rev) = (≥)
〈proof 〉

definition dir-sign :: RelDirection ⇒ ′a::{one,uminus} (±ı)
where dir-sign η = (if η = Fwd then 1 else (−1))

lemma dir-le-refl: x ≤≥η x
〈proof 〉

lemma dir-sign[simp]:
(±Fwd) = (1)
(±Rev) = (−1)
〈proof 〉

lemma conv-rel-to-sign:
fixes f :: ′a::order ⇒ real
shows monotone (≤) (≤≥η) f = mono ((∗)(±η) ◦ f)
〈proof 〉

instantiation RelDirection :: times
begin
definition times-RelDirection :: RelDirection⇒ RelDirection⇒ RelDirection where

times-RelDirection-def : times-RelDirection x y = (if x = y then Fwd else Rev)

instance 〈proof 〉
end

lemmas rel-dir-mult[simp] = times-RelDirection-def

lemma dir-mult-hom: (±σ ∗ τ) = (±σ) ∗ ((±τ)::real)

4

〈proof 〉

Additional lemmas about clamp for the specific case on reals.
lemma clamp-eqI2:

assumes x ∈ {a..b::real}
shows x = clamp a b x
〈proof 〉

lemma clamp-eqI :
assumes |x| ≤ (a::real)
shows x = clamp (−a) a x
〈proof 〉

lemma clamp-real-def :
fixes x :: real
shows clamp a b x = max a (min x b)
〈proof 〉

lemma clamp-range:
assumes a ≤ b
shows

∧
x. clamp a b x ≥ a

∧
x. clamp a b x ≤ b range (clamp a b) ⊆ {a..b::real}

〈proof 〉

lemma clamp-abs-le:
assumes a ≥ (0::real)
shows |clamp (−a) a x| ≤ |x|
〈proof 〉

lemma bounded-clamp:
fixes a b :: real
shows bounded ((clamp a b ◦ f) ‘ S)
〈proof 〉

lemma bounded-clamp-alt:
fixes a b :: real
shows bounded ((λx. clamp a b (f x)) ‘ S)
〈proof 〉

lemma clamp-borel[measurable]:
fixes a b :: ′a::{euclidean-space,second-countable-topology}
shows clamp a b ∈ borel-measurable borel
〈proof 〉

lemma monotone-clamp:
assumes monotone (≤) (≤≥η) f
shows monotone (≤) (≤≥η) (λω. clamp a (b::real) (f ω))
〈proof 〉

This part introduces the term KL-div as the Kullback-Leibler divergence

5

between a pair of Bernoulli random variables. The expression is useful to
express some of the Chernoff bounds more concisely [12, Th. 1].
lemma radon-nikodym-pmf :

assumes set-pmf p ⊆ set-pmf q
defines f ≡ (λx. ennreal (pmf p x / pmf q x))
shows

AE x in measure-pmf q. RN-deriv q p x = f x (is ?R1)
AE x in measure-pmf p. RN-deriv q p x = f x (is ?R2)

〈proof 〉

lemma KL-divergence-pmf :
assumes set-pmf q ⊆ set-pmf p
shows KL-divergence b (measure-pmf p) (measure-pmf q) = (

∫
x. log b (pmf q x

/ pmf p x) ∂q)
〈proof 〉

definition KL-div :: real ⇒ real ⇒ real where
KL-div p q = KL-divergence (exp 1) (bernoulli-pmf q) (bernoulli-pmf p)

lemma KL-div-eq:
assumes q ∈ {0<..<1} p ∈ {0..1}
shows KL-div p q = p ∗ ln (p/q) + (1−p) ∗ ln ((1−p)/(1−q)) (is ?L = ?R)
〈proof 〉

lemma KL-div-swap:
assumes q ∈ {0<..<1} p ∈ {0..1}
shows KL-div p q = KL-div (1−p) (1−q)
〈proof 〉

A few results about independent random variables:
lemma (in prob-space) indep-vars-const:

assumes
∧

i. i ∈ I =⇒ c i ∈ space (N i)
shows indep-vars N (λi -. c i) I
〈proof 〉

lemma indep-vars-map-pmf :
assumes prob-space.indep-vars (measure-pmf p) (λ-. discrete) (λi. X i ◦ f) I
shows prob-space.indep-vars (map-pmf f p) (λ-. discrete) X I
〈proof 〉

lemma indep-var-pair-pmf :
fixes x y :: ′a pmf
shows prob-space.indep-var (pair-pmf x y) discrete fst discrete snd
〈proof 〉

lemma measure-pair-pmf : measure (pair-pmf p q) (A × B) = measure p A ∗
measure q B (is ?L = ?R)
〈proof 〉

6

instance bool :: second-countable-topology
〈proof 〉

end

2 Definition

This section introduces the concept of negatively associated random vari-
ables (RVs). The definition follows, as closely as possible, the original de-
scription by Joag-Dev and Proschan [13].
However, the following modifications have been made:
Singleton and empty sets of random variables are considered negatively asso-
ciated. This is useful because it simplifies many of the induction proofs. The
second modification is that the RV’s don’t have to be real valued. Instead
the range can be into any linearly ordered space with the borel σ-algebra.
This is a major enhancement compared to the original work, as well as re-
sults by following authors [6, 7, 8, 14, 17].
theory Negative-Association-Definition

imports
Concentration-Inequalities.Bienaymes-Identity
Negative-Association-Util

begin

context prob-space
begin

definition neg-assoc :: (′i ⇒ ′a ⇒ ′c :: {linorder-topology}) ⇒ ′i set ⇒ bool
where neg-assoc X I = (
(∀ i ∈ I . random-variable borel (X i)) ∧
(∀ (f ::nat ⇒ (′i ⇒ ′c) ⇒ real) J . J ⊆ I ∧
(∀ ι<2. bounded (range (f ι)) ∧ mono(f ι) ∧ depends-on (f ι) ([J ,I−J]!ι) ∧
f ι ∈ PiM ([J ,I−J]!ι) (λ-. borel) →M borel) −→
covariance (f 0 ◦ flip X) (f 1 ◦ flip X) ≤ 0))

lemma neg-assocI :
assumes

∧
i. i ∈ I =⇒ random-variable borel (X i)

assumes
∧

f g J . J ⊆ I
=⇒ depends-on f J =⇒ depends-on g (I−J)
=⇒ mono f =⇒ mono g
=⇒ bounded (range f ::real set) =⇒ bounded (range g)
=⇒ f ∈ PiM J (λ-. borel) →M borel =⇒ g ∈ PiM (I−J) (λ-. borel) →M borel
=⇒ covariance (f ◦ flip X) (g ◦ flip X) ≤ 0

shows neg-assoc X I
〈proof 〉

lemma neg-assocI2:

7

assumes [measurable]:
∧

i. i ∈ I =⇒ random-variable borel (X i)
assumes

∧
f g J . J ⊆ I

=⇒ depends-on f J =⇒ depends-on g (I−J)
=⇒ mono f =⇒ mono g
=⇒ bounded (range f) =⇒ bounded (range g)
=⇒ f ∈ PiM J (λ-. borel) →M (borel :: real measure)
=⇒ g ∈ PiM (I−J) (λ-. borel) →M (borel :: real measure)
=⇒ (

∫
ω. f (λi. X i ω) ∗ g(λi. X i ω) ∂M)≤(

∫
ω. f (λi. X i ω)∂M)∗(

∫
ω. g(λi.

X i ω) ∂M)
shows neg-assoc X I
〈proof 〉

lemma neg-assoc-empty:
neg-assoc X {}
〈proof 〉

lemma neg-assoc-singleton:
assumes random-variable borel (X i)
shows neg-assoc X {i}
〈proof 〉

lemma neg-assoc-imp-measurable:
assumes neg-assoc X I
assumes i ∈ I
shows random-variable borel (X i)
〈proof 〉

Even though the assumption was that defining property is true for pairs of
monotone functions over the random variables, it is also true for pairs of
anti-monotone functions.
lemma neg-assoc-imp-mult-mono-bounded:

fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I
assumes J ⊆ I
assumes bounded (range f) bounded (range g)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes [measurable]: f ∈ borel-measurable (PiM J (λ-. borel))
assumes [measurable]: g ∈ borel-measurable (PiM (I−J) (λ-. borel))
shows

covariance (f ◦ flip X) (g ◦ flip X) ≤ 0
(
∫
ω. f (λi. X i ω) ∗ g (λi. X i ω) ∂M) ≤ expectation (λx. f (λy. X y x)) ∗

expectation (λx. g(λy. X y x))
(is ?L ≤ ?R)

〈proof 〉

lemma lim-min-n: (λn. min (real n) x) −−−−→ x
〈proof 〉

8

lemma lim-clamp-n: (λn. clamp (−real n) (real n) x) −−−−→ x
〈proof 〉

lemma neg-assoc-imp-mult-mono:
fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I
assumes J ⊆ I
assumes square-integrable M (f ◦ flip X) square-integrable M (g ◦ flip X)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes [measurable]: f ∈ borel-measurable (PiM J (λ-. borel))
assumes [measurable]: g ∈ borel-measurable (PiM (I−J) (λ-. borel))

shows (
∫
ω. f (λi. X i ω) ∗ g (λi. X i ω) ∂M) ≤ (

∫
x. f (λy. X y x)∂M) ∗ (

∫
x.

g(λy. X y x)∂M)
(is ?L ≤ ?R)

〈proof 〉

Property P4 [13]
lemma neg-assoc-subset:

assumes J ⊆ I
assumes neg-assoc X I
shows neg-assoc X J
〈proof 〉

lemma neg-assoc-imp-mult-mono-nonneg:
fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I J ⊆ I
assumes range f ⊆ {0..} range g ⊆ {0..}
assumes integrable M (f ◦ flip X) integrable M (g ◦ flip X)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes f ∈ borel-measurable (PiM J (λ-. borel)) g ∈ borel-measurable (PiM

(I−J) (λ-. borel))
shows has-int-that M (λω. f (flip X ω) ∗ g (flip X ω))
(λr . r ≤ expectation (f ◦ flip X) ∗ expectation (g ◦ flip X))

〈proof 〉

Property P2 [13]
lemma neg-assoc-imp-prod-mono:

fixes f :: ′i ⇒ (′c::linorder-topology) ⇒ real
assumes finite I
assumes neg-assoc X I
assumes

∧
i. i ∈ I =⇒ integrable M (λω. f i (X i ω))

assumes
∧

i. i ∈ I =⇒ monotone (≤) (≤≥η) (f i)
assumes

∧
i. i ∈ I =⇒ range (f i)⊆{0..}

assumes
∧

i. i ∈ I =⇒ f i ∈ borel-measurable borel
shows has-int-that M (λω. (

∏
i∈I . f i (X i ω))) (λr . r≤(

∏
i∈ I . expectation

(λω. f i (X i ω))))
〈proof 〉

9

Property P5 [13]
lemma neg-assoc-compose:

fixes f :: ′j ⇒ (′i ⇒ (′c::linorder-topology)) ⇒ (′d ::linorder-topology)
assumes finite I
assumes neg-assoc X I
assumes

∧
j. j ∈ J =⇒ deps j ⊆ I

assumes
∧

j1 j2. j1 ∈ J =⇒ j2 ∈ J =⇒ j1 6= j2 =⇒ deps j1 ∩ deps j2 = {}
assumes

∧
j. j ∈ J =⇒ monotone (≤) (≤≥η) (f j)

assumes
∧

j. j ∈ J =⇒ depends-on (f j) (deps j)
assumes

∧
j. j ∈ J =⇒ f j ∈ borel-measurable (PiM (deps j) (λ-. borel))

shows neg-assoc (λj ω. f j (λi. X i ω)) J
〈proof 〉

lemma neg-assoc-compose-simple:
fixes f :: ′i ⇒ (′c::linorder-topology) ⇒ (′d ::linorder-topology)
assumes finite I
assumes neg-assoc X I
assumes

∧
i. i ∈ I =⇒ monotone (≤) (≤≥η) (f i)

assumes [measurable]:
∧

i. i ∈ I =⇒ f i ∈ borel-measurable borel
shows neg-assoc (λi ω. f i (X i ω)) I
〈proof 〉

lemma covariance-distr :
fixes f g :: ′b ⇒ real
assumes [measurable]: ϕ ∈M →M N f ∈ borel-measurable N g ∈ borel-measurable

N
shows prob-space.covariance (distr M N ϕ) f g = covariance (f ◦ ϕ) (g ◦ ϕ) (is

?L = ?R)
〈proof 〉

lemma neg-assoc-iff-distr :
assumes [measurable]:

∧
i. i ∈ I =⇒ X i ∈ borel-measurable M

shows neg-assoc X I ←→
prob-space.neg-assoc (distr M (PiM I (λ-. borel)) (λω. λi∈I . X i ω)) (flip id) I
(is ?L ←→ ?R)

〈proof 〉

lemma neg-assoc-cong:
assumes finite I
assumes [measurable]:

∧
i. i ∈ I =⇒ Y i ∈ borel-measurable M

assumes neg-assoc X I
∧

i. i ∈ I =⇒ AE ω in M . X i ω = Y i ω
shows neg-assoc Y I
〈proof 〉

lemma neg-assoc-reindex-aux:
assumes inj-on h I
assumes neg-assoc X (h ‘ I)
shows neg-assoc (λk. X (h k)) I
〈proof 〉

10

lemma neg-assoc-reindex:
assumes inj-on h I finite I
shows neg-assoc X (h ‘ I) ←→ neg-assoc (λk. X (h k)) I (is ?L ←→ ?R)
〈proof 〉

lemma measurable-compose-merge-1:
assumes depends-on h K
assumes h ∈ PiM K M ′→M N K ⊆ I ∪ J
assumes (λx. restrict (fst (f x)) (K ∩ I)) ∈ A →M PiM (K ∩ I) M ′

assumes (λx. restrict (snd (f x)) (K ∩ J)) ∈ A →M PiM (K ∩ J) M ′

shows (λx. h(merge I J (f x))) ∈ A →M N
〈proof 〉

lemma measurable-compose-merge-2:
assumes depends-on h K h ∈ PiM K M ′→M N K ⊆ I ∪ J
assumes (λx. restrict (f x) (K ∩ I)) ∈ A →M PiM (K ∩ I) M ′

assumes (λx. restrict (g x) (K ∩ J)) ∈ A →M PiM (K ∩ J) M ′

shows (λx. h(merge I J (f x, g x))) ∈ A →M N
〈proof 〉

lemma neg-assoc-combine:
fixes I I1 I2 :: ′i set
fixes X :: ′i ⇒ ′a ⇒ (′b::linorder-topology)
assumes finite I I1 ∪ I2 = I I1 ∩ I2 = {}
assumes indep-var (PiM I1 (λ-. borel)) (λω. λi∈I1. X i ω) (PiM I2 (λ-. borel))

(λω. λi∈I2. X i ω)
assumes neg-assoc X I1
assumes neg-assoc X I2
shows neg-assoc X I
〈proof 〉

Property P7 [13]
lemma neg-assoc-union:

fixes I :: ′i set
fixes p :: ′j ⇒ ′i set
fixes X :: ′i ⇒ ′a ⇒ (′b::linorder-topology)
assumes finite I

⋃
(p ‘ J) = I

assumes indep-vars (λj. PiM (p j) (λ-. borel)) (λj ω. λi ∈ p j. X i ω) J
assumes

∧
j. j ∈ J =⇒ neg-assoc X (p j)

assumes disjoint-family-on p J
shows neg-assoc X I
〈proof 〉

Property P5 [13]
lemma indep-imp-neg-assoc:

assumes finite I
assumes indep-vars (λ-. borel) X I
shows neg-assoc X I

11

〈proof 〉

end

lemma neg-assoc-map-pmf :
shows measure-pmf .neg-assoc (map-pmf f p) X I = measure-pmf .neg-assoc p (λi
ω. X i (f ω)) I

(is ?L ←→ ?R)
〈proof 〉

end

3 Chernoff-Hoeffding Bounds

This section shows that all the well-known Chernoff-Hoeffding bounds hold
also for negatively associated random variables. The proofs follow the deriva-
tions by Hoeffding [11], as well as, Motwani and Raghavan [16, Ch. 4], with
the modification that the crucial steps, where the classic proofs use inde-
pendence, are replaced with the application of Property P2 for negatively
associated RV’s.
theory Negative-Association-Chernoff-Bounds

imports
Negative-Association-Definition
Concentration-Inequalities.McDiarmid-Inequality
Weighted-Arithmetic-Geometric-Mean.Weighted-Arithmetic-Geometric-Mean

begin

context prob-space
begin

context
fixes I :: ′i set
fixes X :: ′i ⇒ ′a ⇒ real
assumes na-X : neg-assoc X I
assumes fin-I : finite I

begin

private lemma transfer-to-clamped-vars:
assumes (∀ i∈I . AE ω in M . X i ω ∈ {a i..b i} ∧ a i ≤ b i)
assumes X -def : X = (λi. clamp (a i) (b i) ◦ X i)
shows neg-assoc X I (is ?A)

and
∧

i. i ∈ I =⇒ expectation (X i) = expectation (X i)
and P(ω in M . (

∑
i ∈ I . X i ω) ≤≥η c) = P(ω in M . (

∑
i ∈ I . X i ω) ≤≥η

c) (is ?C)
and

∧
i ω. i ∈ I =⇒ X i ω ∈ {a i..b i}

and
∧

i S . i ∈ I =⇒ bounded (X i ‘ S)
and

∧
i. i ∈ I =⇒ expectation (X i) ∈ {a i..b i}

12

〈proof 〉

lemma ln-one-plus-x-lower-bound:
assumes x ≥ (0::real)
shows 2∗x/(2+x) ≤ ln (1 + x)
〈proof 〉

Based on Theorem 4.1 by Motwani and Raghavan [16].
theorem multiplicative-chernoff-bound-upper :

assumes δ > 0
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . (

∑
i ∈ I . X i ω) ≥ (1+δ) ∗ µ) ≤ (exp δ/((1+δ) powr (1+δ)))

powr µ (is ?L ≤ ?R)
and P(ω in M . (

∑
i ∈ I . X i ω) ≥ (1+δ) ∗ µ) ≤ exp (−(δ^2) ∗ µ / (2+δ))

(is - ≤ ?R1)
〈proof 〉

lemma ln-one-minus-x-lower-bound:
assumes x ∈ {(0::real)..<1}
shows (x^2/2−x)/(1−x) ≤ ln (1 − x)
〈proof 〉

Based on Theorem 4.2 by Motwani and Raghavan [16].
theorem multiplicative-chernoff-bound-lower :

assumes δ ∈ {0<..<1}
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . (

∑
i ∈ I . X i ω) ≤ (1−δ)∗µ) ≤ (exp (−δ)/(1−δ) powr (1−δ))

powr µ (is ?L ≤ ?R)
and P(ω in M . (

∑
i ∈ I . X i ω) ≤ (1−δ)∗µ) ≤ (exp (−(δ^2)∗µ/2)) (is - ≤

?R1)
〈proof 〉

theorem multiplicative-chernoff-bound-two-sided:
assumes δ ∈ {0<..<1}
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . |(

∑
i ∈ I . X i ω) − µ| ≥ δ∗µ) ≤ 2∗(exp (−(δ^2)∗µ/3)) (is

?L ≤ ?R)
〈proof 〉

lemma additive-chernoff-bound-upper-aux:
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes δ ∈ {0<..<1−µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ (µ+δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ+δ) µ)
(is ?L ≤ ?R)

13

〈proof 〉

lemma additive-chernoff-bound-upper-aux-2:
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ real (card I)) ≤ exp (−real (card I) ∗ KL-div

1 µ)
(is ?L ≤ ?R)

〈proof 〉

Based on Theorem 1 by Hoeffding [11].
lemma additive-chernoff-bound-upper :

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}
defines µ ≡ (

∑
i∈I . expectation (X i)) / real (card I)

assumes δ ∈ {0..1−µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ (µ+δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ+δ) µ)
(is ?L ≤ ?R)

〈proof 〉

Based on Theorem 2 by Hoeffding [11].
lemma hoeffding-bound-upper :

assumes
∧

i. i∈I =⇒ a i ≤ b i
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i}

defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . (

∑
i∈I . X i ω) ≥ µ + δ ∗ n) ≤ exp (−2∗(n∗δ)^2 / (

∑
i∈I .

(b i − a i)^2))
(is ?L ≤ ?R)

〈proof 〉

end

Dual and two-sided versions of Theorem 1 and 2 by Hoeffding [11].
lemma additive-chernoff-bound-lower :

assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes δ ∈ {0..µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≤ (µ−δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ−δ) µ)
(is ?L ≤ ?R)

〈proof 〉

lemma hoeffding-bound-lower :
assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ a i ≤ b i

14

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i}
defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . (

∑
i∈I . X i ω) ≤ µ−δ∗n) ≤ exp (−2∗(n∗δ)^2 / (

∑
i∈I . (b i

− a i)^2))
(is ?L ≤ ?R)

〈proof 〉

lemma hoeffding-bound-two-sided:
assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ a i ≤ b i

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i} I 6= {}
defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . |(

∑
i∈I . X i ω)−µ| ≥ δ∗n) ≤ 2∗exp (−2∗(n∗δ)^2 / (

∑
i∈I .

(b i − a i)^2))
(is ?L ≤ ?R)

〈proof 〉

end

end

4 The FKG inequality

The FKG inequality [9] is a generalization of Chebyshev’s less known other
inequality. It is sometimes referred to as Chebyshev’s sum inequality. Al-
though there is a also a continuous version, which can be stated as:

E[fg] ≥ E[f]E[g]

where f , g are continuous simultaneously monotone or simultaneously an-
timonotone functions on the Lebesgue probability space [a, b] ⊆ R. (Ef
denotes the expectation of the function.)
Note that the inequality is also true for totally ordered discrete probability
spaces, for example: {1, . . . , n} with uniform probabilities.
The FKG inequality is essentially a generalization of the above to not nec-
essarily totally ordered spaces, but finite distributive lattices.
The proof follows the derivation in the book by Alon and Spencer [2, Ch.
6].
theory Negative-Association-FKG-Inequality

imports
Negative-Association-Util
Birkhoff-Finite-Distributive-Lattices.Birkhoff-Finite-Distributive-Lattices

15

begin

theorem four-functions-helper :
fixes ϕ :: nat ⇒ ′a set ⇒ real
assumes finite I
assumes

∧
i. i ∈ {0..3} =⇒ ϕ i ∈ Pow I → {0..}

assumes
∧

A B. A ⊆ I =⇒ B ⊆ I =⇒ ϕ 0 A ∗ ϕ 1 B ≤ ϕ 2 (A ∪ B) ∗ ϕ 3 (A
∩ B)

shows (
∑

A∈Pow I . ϕ 0 A)∗(
∑

B∈Pow I . ϕ 1 B) ≤ (
∑

C∈Pow I . ϕ 2
C)∗(

∑
D∈Pow I . ϕ 3 D)

〈proof 〉

The following is the Ahlswede-Daykin inequality [1] also referred to by Alon
and Spencer as the four functions theorem [2, Th. 6.1.1].
theorem four-functions:

fixes α β γ δ :: ′a set ⇒ real
assumes finite I
assumes α ∈ Pow I → {0..} β ∈ Pow I → {0..} γ ∈ Pow I → {0..} δ ∈ Pow I
→ {0..}

assumes
∧

A B. A ⊆ I =⇒ B ⊆ I =⇒ α A ∗ β B ≤ γ (A ∪ B) ∗ δ (A ∩ B)
assumes M ⊆ Pow I N ⊆ Pow I
shows (

∑
A∈M . α A)∗(

∑
B∈N . β B) ≤ (

∑
C | ∃A∈M . ∃B∈N . C=A∪B. γ

C)∗(
∑

D| ∃A∈M . ∃B∈N . D=A∩B. δ D)
(is ?L ≤ ?R)

〈proof 〉

Using Birkhoff’s Representation Theorem [3, 5] it is possible to generalize
the previous to finite distributive lattices [2, Cor. 6.1.2].
lemma four-functions-in-lattice:

fixes α β γ δ :: ′a :: finite-distrib-lattice ⇒ real
assumes range α ⊆ {0..} range β ⊆ {0..} range γ ⊆ {0..} range δ ⊆ {0..}
assumes

∧
x y. α x ∗ β y ≤ γ (x t y) ∗ δ (x u y)

shows (
∑

x∈M . α x)∗(
∑

y∈N . β y) ≤ (
∑

c| ∃ x∈M . ∃ y∈N . c=xty. γ c)∗(
∑

d|
∃ x∈M . ∃ y∈N . d=xuy. δ d)

(is ?L ≤ ?R)
〈proof 〉

theorem fkg-inequality:
fixes µ :: ′a :: finite-distrib-lattice ⇒ real
assumes range µ ⊆ {0..} range f ⊆ {0..} range g ⊆ {0..}
assumes

∧
x y. µ x ∗ µ y ≤ µ (x t y) ∗ µ (x u y)

assumes mono f mono g
shows (

∑
x∈UNIV . µ x∗f x) ∗ (

∑
x∈UNIV . µ x∗g x) ≤ (

∑
x∈UNIV . µ x∗f

x∗g x) ∗ sum µ UNIV
(is ?L ≤ ?R)

〈proof 〉

theorem fkg-inequality-gen:
fixes µ :: ′a :: finite-distrib-lattice ⇒ real

16

assumes range µ ⊆ {0..}
assumes

∧
x y. µ x ∗ µ y ≤ µ (x t y) ∗ µ (x u y)

assumes monotone (≤) (≤≥τ) f monotone (≤) (≤≥σ) g
shows (

∑
x∈UNIV . µ x∗f x) ∗ (

∑
x∈UNIV . µ x∗g x) ≤≥τ∗σ (

∑
x∈UNIV . µ

x∗f x∗g x) ∗ sum µ UNIV
(is ?L ≤≥?x ?R)

〈proof 〉

theorem fkg-inequality-pmf :
fixes M :: (′a :: finite-distrib-lattice) pmf
fixes f g :: ′a ⇒ real
assumes

∧
x y. pmf M x ∗ pmf M y ≤ pmf M (x t y) ∗ pmf M (x u y)

assumes monotone (≤) (≤≥τ) f monotone (≤) (≤≥σ) g
shows (

∫
x. f x ∂M) ∗ (

∫
x. g x ∂M) ≤≥τ ∗ σ (

∫
x. f x ∗ g x ∂M)

(is ?L ≤≥- ?R)
〈proof 〉

end

5 Preliminary Results on Lattices

This entry establishes a few missing lemmas for the set-based theory of
lattices from “HOL-Algebra”. In particular, it introduces the sublocale for
distributive lattices.
More crucially, a transfer theorem which can be used in conjunction with
the Types-To-Sets mechanism to be able to work with locally defined finite
distributive lattices.
This is being needed for the verification of the negative association of per-
mutation distributions in Section 6.
theory Negative-Association-More-Lattices

imports HOL−Algebra.Lattice
begin

Lemma 1 Birkhoff Lattice Theory, p.8, L3
lemma (in lattice) meet-assoc-law:

assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows x u (y u z) = (x u y) u z
〈proof 〉

Lemma 1 Birkhoff Lattice Theory, p.8, L3
lemma (in lattice) join-assoc-law:

assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows x t (y t z) = (x t y) t z
〈proof 〉

Lemma 1 Birkhoff Lattice Theory, p.8, L4

17

lemma (in lattice) absorbtion-law:
assumes x ∈ carrier L y ∈ carrier L
shows x u (x t y) = x x t (x u y) = x
〈proof 〉

Theorem 9 Birkhoff Lattice Theory, p.11
lemma (in lattice) distrib-laws-equiv:

defines meet-distrib ≡ (∀ x y z. {x,y,z}⊆carrier L −→ (x u (y t z)) = (x u y)
t (x u z))

defines join-distrib ≡ (∀ x y z. {x,y,z}⊆carrier L −→ (x t (y u z)) = (x t y)
u (x t z))

shows meet-distrib ←→ join-distrib
〈proof 〉

lemma (in lattice) lub-unique-set:
assumes is-lub L z S
shows z =

⊔
S

〈proof 〉

lemma (in lattice) lub-unique:
assumes is-lub L z {x,y}
shows z = x t y
〈proof 〉

lemma (in lattice) glb-unique-set:
assumes is-glb L z S
shows z =

d
S

〈proof 〉

lemma (in lattice) glb-unique:
assumes is-glb L z {x,y}
shows z = x u y
〈proof 〉

lemma (in lattice) inf-lower :
assumes S ⊆ carrier L s ∈ S finite S
shows

d
S v s

〈proof 〉

lemma (in lattice) sup-upper :
assumes S ⊆ carrier L s ∈ S finite S
shows s v

⊔
S

〈proof 〉

locale distrib-lattice = lattice +
assumes max-distrib:

x ∈ carrier L =⇒ y ∈ carrier L =⇒ z ∈ carrier L =⇒ (x u (y t z)) = (x u
y) t (x u z)
begin

18

lemma min-distrib:
assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows (x t (y u z)) = (x t y) u (x t z)
〈proof 〉

end

locale finite-ne-distrib-lattice = distrib-lattice +
assumes non-empty-carrier : carrier L 6= {}
assumes finite-carrier : finite (carrier L)

begin

lemma bounded-lattice-axioms-1: ∃ x. least L x (carrier L)
〈proof 〉

lemma bounded-lattice-axioms-2: ∃ x. greatest L x (carrier L)
〈proof 〉

sublocale bounded-lattice
〈proof 〉

lemma inf-empty:
d
{} = >

〈proof 〉

lemma inf-closed: S ⊆ carrier L =⇒
d

S ∈ carrier L
〈proof 〉

lemma inf-insert:
assumes x ∈ carrier L S ⊆ carrier L
shows

d
(insert x S) = x u (

d
S)

〈proof 〉

lemma sup-empty:
⊔
{} = ⊥

〈proof 〉

lemma sup-closed: S ⊆ carrier L =⇒
⊔

S ∈ carrier L
〈proof 〉

lemma sup-insert:
assumes x ∈ carrier L S ⊆ carrier L
shows

⊔
(insert x S) = x t (

⊔
S)

〈proof 〉

lemma inf-carrier :
d

(carrier L) = ⊥
〈proof 〉

lemma sup-carrier :
⊔

(carrier L) = >
〈proof 〉

19

lemma transfer-to-type:
assumes finite (carrier L) type-definition Rep Abs (carrier L)
defines inf ′ ≡ (λM . Abs (

d
Rep ‘ M))

defines sup ′ ≡ (λM . Abs (
⊔

Rep ‘ M))
defines join ′ ≡ (λx y. Abs (Rep x u Rep y))
defines le ′ ≡ (λx y. (Rep x v Rep y))
defines less ′ ≡ (λx y. (Rep x @ Rep y))
defines meet ′ ≡ (λx y. (Abs (Rep x t Rep y)))
defines bot ′≡ (Abs ⊥ :: ′c)
defines top ′ ≡ Abs >
shows class.finite-distrib-lattice inf ′ sup ′ join ′ le ′ less ′ meet ′ bot ′ top ′

〈proof 〉

end

end

6 Permutation Distributions

One of the fundamental examples for negatively associated random variables
are permutation distributions.
Let x1, . . . , xn be n (not-necessarily) distinct values from a totally ordered
set, then we choose a permutation σ : {0, . . . , n − 1} → {0, . . . , n − 1}
uniformly at random Then the random variables defined by Xi(σ) = xσ(i)
are negatively associated.
An important special case is the case where x consists of 1 one and (n− 1)
zeros, modelling randomly putting a ball into one of n bins. Of course
the process can be repeated independently, the resulting distribution is also
referred to as the balls into bins process. Because of the closure properties
established before, it is possible to conclude that the number of hits of each
bin in such a process are also negatively associated random variables.
In this section, we will derive that permutation distributions are negatively
associated. The proof follows Dubashi [8, Th. 10] closely. A very short proof
was presented in the work by Joag-Dev [13], however after close inspection
that proof seemed to missing a lot of details. In fact, I don’t think it is
correct.
theory Negative-Association-Permutation-Distributions

imports
Negative-Association-Definition
Negative-Association-FKG-Inequality
Negative-Association-More-Lattices
Finite-Fields.Finite-Fields-More-PMF
HOL−Types-To-Sets.Types-To-Sets

20

Executable-Randomized-Algorithms.Randomized-Algorithm
Twelvefold-Way.Card-Bijections

begin

The following introduces a lattice for n-element subsets of a finite set (with
size larger or equal to n.) A subset x is smaller or equal to y, if the smallest
element of x is smaller or equal to the smallest element of y, the second
smallest element of x is smaller or equal to the second smallest element of
y, etc.)
The lattice is introduced without name by Dubashi [?, Example 7].
definition le-ordered-set-lattice :: (′a::linorder) set ⇒ ′a set ⇒ bool
where le-ordered-set-lattice S T = list-all2 (≤) (sorted-list-of-set S) (sorted-list-of-set

T)

definition ordered-set-lattice :: (′a :: linorder) set ⇒ nat ⇒ ′a set gorder
where ordered-set-lattice S n =
(| carrier = {T . T ⊆ S ∧ finite T ∧ card T = n},

eq = (=),
le = le-ordered-set-lattice |)

definition osl-repr :: (′a :: linorder) set ⇒ nat ⇒ ′a set ⇒ nat ⇒ ′a
where osl-repr S n e = (λi ∈ {..<n}. sorted-list-of-set e ! i)

lemma osl-carr-sorted-list-of-set:
assumes finite S n ≤ card S
assumes s ∈ carrier (ordered-set-lattice S n)
defines t ≡ sorted-list-of-set s
shows finite s card s = n s ⊆ S length t = n set t = s sorted-wrt (<) t
〈proof 〉

lemma ordered-set-lattice-carrier-intro:
assumes finite S n ≤ card S
assumes set s ⊆ S distinct s length s = n
shows set s ∈ carrier (ordered-set-lattice S n)
〈proof 〉

lemma osl-list-repr-inj:
assumes finite S n ≤ card S
assumes s ∈ carrier (ordered-set-lattice S n)
assumes t ∈ carrier (ordered-set-lattice S n)
assumes

∧
i. osl-repr S n s i = osl-repr S n t i

shows s = t
〈proof 〉

lemma osl-leD:
assumes finite S n ≤ card S
assumes e ∈ carrier (ordered-set-lattice S n)
assumes f ∈ carrier (ordered-set-lattice S n)

21

shows e vordered-set-lattice S n f ←→ (∀ i. osl-repr S n e i ≤ osl-repr S n f i) (is
?L = ?R)
〈proof 〉

lemma ordered-set-lattice-partial-order :
fixes S :: (′a :: linorder) set
assumes finite S n ≤ card S
shows partial-order (ordered-set-lattice S n)
〈proof 〉

lemma map2-max-mono:
fixes xs :: (′a :: linorder) list
assumes length xs = length ys
assumes sorted-wrt (<) xs sorted-wrt (<) ys
shows sorted-wrt (<) (map2 max xs ys)
〈proof 〉

lemma map2-min-mono:
fixes xs :: (′a :: linorder) list
assumes length xs = length ys
assumes sorted-wrt (<) xs sorted-wrt (<) ys
shows sorted-wrt (<) (map2 min xs ys)
〈proof 〉

lemma ordered-set-lattice-carrier-finite-ne:
assumes finite S n ≤ card S
shows carrier (ordered-set-lattice S n) 6= {} finite (carrier (ordered-set-lattice S

n))
〈proof 〉

lemma ordered-set-lattice-lattice:
fixes S :: (′a :: linorder) set
assumes finite S n ≤ card S
shows finite-ne-distrib-lattice (ordered-set-lattice S n)
〈proof 〉

lemma insort-eq:
fixes xs :: (′a :: linorder) list
assumes sorted xs
shows ∃ ys zs. insort e xs = ys@e#zs ∧ ys@zs=xs ∧ set ys ⊆ {..<e} ∧ set zs ⊆
{e..}
〈proof 〉

lemma list-all2-insort:
fixes xs ys :: (′a :: linorder) list
assumes length xs = length ys sorted xs sorted ys
shows list-all2 (≤) xs ys ←→ list-all2 (≤) (insort e xs) (insort e ys)
〈proof 〉

22

lemma le-ordered-set-lattice-diff :
fixes x y :: (′a :: linorder) set
assumes finite x finite y card x = card y
shows le-ordered-set-lattice x y ←→ le-ordered-set-lattice (x − y) (y − x)
〈proof 〉

lemma ordered-set-lattice-carrier :
assumes T ∈ carrier (ordered-set-lattice S n)
shows finite T card T = n T ⊆ S
〈proof 〉

lemma ordered-set-lattice-dual:
assumes finite S n ≤ card S
defines L ≡ ordered-set-lattice S n
defines M ≡ ordered-set-lattice S (card S − n)
shows∧

x. x ∈ carrier L =⇒ (S−x) ∈ carrier M∧
x. x ∈ carrier M =⇒ (S−x) ∈ carrier L∧
x y. x ∈ carrier L ∧ y ∈ carrier L =⇒ x vL y ←→ (S−y) vM (S−x)

〈proof 〉

lemma bij-betw-ord-set-lattice-pairs:
assumes finite S n ≤ card S
defines L ≡ ordered-set-lattice S n
assumes x ∈ carrier L y ∈ carrier L x vL y
shows ∃ϕ. bij-betw ϕ x y ∧ strict-mono-on x ϕ ∧ (∀ e. ϕ e ≥ e)
〈proof 〉

definition bij-pmf I F = pmf-of-set {f . bij-betw f I F ∧ f ∈ extensional I}

lemma card-bijections ′:
assumes finite A finite B card A = card B
shows card {f . bij-betw f A B ∧ f ∈ extensional A} = fact (card A) (is ?L =

?R)
〈proof 〉

lemma bij-betw-non-empty-finite:
assumes finite I finite F card I = card F
shows

finite {f . bij-betw f I F ∧ f ∈ extensional I} (is ?T1)
{f . bij-betw f I F ∧ f ∈ extensional I} 6= {} (is ?T2)

〈proof 〉

lemma bij-pmf :
assumes finite I finite F card I = card F
shows

set-pmf (bij-pmf I F) = {f . bij-betw f I F ∧ f ∈ extensional I}
finite (set-pmf (bij-pmf I F))
〈proof 〉

23

lemma expectation-ge-eval-at-point:
assumes

∧
y. y ∈ set-pmf p =⇒ f y ≥ (0::real)

assumes integrable p f
shows pmf p x ∗ f x ≤ (

∫
x. f x ∂p) (is ?L ≤ ?R)

〈proof 〉

lemma split-bij-pmf :
assumes finite I finite F card I = card F J ⊆ I
shows bij-pmf I F =

do {
S ← pmf-of-set {S . card S = card J ∧ S ⊆ F};
ϕ ← bij-pmf J S ;
ψ ← bij-pmf (I−J) (F−S);
return-pmf (merge J (I−J) (ϕ, ψ))
} (is ?L = ?R)

〈proof 〉

lemma map-bij-pmf :
assumes finite I finite F card I = card F inj-on ϕ F
shows map-pmf (λf . (λx∈I . ϕ(f x))) (bij-pmf I F) = bij-pmf I (ϕ ‘ F)
〈proof 〉

lemma pmf-of-multiset-eq-pmf-of-setI :
assumes c > 0 x 6= {#}
assumes

∧
i. i ∈ y =⇒ count x i = c

assumes
∧

i. i ∈# x =⇒ i ∈ y
shows pmf-of-multiset x = pmf-of-set y
〈proof 〉

lemma card-multi-bij:
assumes finite J
assumes I =

⋃
(A ‘ J) disjoint-family-on A J

assumes
∧

j. j ∈ J =⇒ finite (A j) ∧ finite (B j) ∧ card (A j) = card (B j)
shows card {f . (∀ j∈J . bij-betw f (A j) (B j)) ∧ f∈extensional I} = (

∏
i∈J .

fact (card (A i)))
(is card ?L = ?R)

〈proof 〉

lemma map-bij-pmf-non-inj:
fixes I :: ′a set
fixes F :: ′b set
fixes ϕ :: ′b ⇒ ′c
assumes finite I finite F card I = card F
defines q ≡ {f . f ∈ extensional I ∧ {#f x. x ∈# mset-set I#} = {#ϕ x. x∈#

mset-set F#}}
shows map-pmf (λf . (λx∈I . ϕ(f x))) (bij-pmf I F) = pmf-of-set q (is ?L = -)
〈proof 〉

24

lemmas fkg-inequality-pmf-internalized = fkg-inequality-pmf [unoverload-type ′a]

lemma permutation-distributions-are-neg-associated:
fixes F :: (′a :: linorder-topology) set
fixes I :: ′b set
assumes finite F finite I card I = card F
shows measure-pmf .neg-assoc (bij-pmf I F) (λi ω. ω i) I
〈proof 〉

lemma multiset-permutation-distributions-are-neg-associated:
fixes F :: (′a :: linorder-topology) multiset
fixes I :: ′b set
assumes finite I card I = size F
defines p ≡ pmf-of-set {ϕ. ϕ ∈ extensional I ∧ image-mset ϕ (mset-set I) = F}
shows measure-pmf .neg-assoc p (λi ω. ω i) I
〈proof 〉

lemma n-subsets-prob:
assumes d ≤ card S finite S s ∈ S
shows

measure-pmf .prob (pmf-of-set {a. a ⊆ S ∧ card a = d}) {ω. s /∈ ω} = (1 − real
d/card S)

measure-pmf .prob (pmf-of-set {a. a ⊆ S ∧ card a = d}) {ω. s ∈ ω} = real
d/card S
〈proof 〉

lemma n-subsets-distribution-neg-assoc:
assumes finite S k ≤ card S
defines p ≡ pmf-of-set {T . T ⊆ S ∧ card T = k}
shows measure-pmf .neg-assoc p (∈) S
〈proof 〉

end

7 Application: Bloom Filters

The false positive probability of Bloom Filters is a case where negative
association is really useful. Traditionally it is derived only approximately.
Bloom [4] first derives the expected number of bits set to true given the
number of elements inserted, then the false positive probability is computed,
pretending that the expected number of bits is the actual number of bits.
Both Blooms original derivation and Mitzenmacher and Upfal [15] use this
method.
A more correct approach would be to derive a tail bound for the number of
set bits and derive a false-positive probability based on that, which unfor-
tunately leads to a complex formula.

25

An exact result has later been derived using combinatorial methods by
Gopinathan and Sergey [10]. However their formula is less useful, as it
consists of a sum with Stirling numbers and binomial coefficients.
It is however easy to see that the original bound derived by Bloom is a correct
upper bound for the false positive probability using negative association.
(This is pointed out by Bao et al. [?].)
In this section, we derive the same bound using this library as an example
for the applicability of this library.
theory Negative-Association-Bloom-Filters

imports Negative-Association-Permutation-Distributions
begin

fun bloom-filter-pmf where
bloom-filter-pmf 0 d N = return-pmf {} |
bloom-filter-pmf (Suc n) d N = do {

h ← bloom-filter-pmf n d N ;
a ← pmf-of-set {a. a ⊆ {..<(N ::nat)} ∧ card a = d};
return-pmf (a ∪ h)
}

lemma bloom-filter-neg-assoc:
assumes d ≤ N
shows measure-pmf .neg-assoc (bloom-filter-pmf n d N) (λi ω. i ∈ ω) {..<N}
〈proof 〉

lemma bloom-filter-cell-prob:
assumes d ≤ N i < N
shows measure (bloom-filter-pmf n d N) {ω. i ∈ ω} = 1 − (1 − real d/real N)^n
〈proof 〉

lemma bloom-filter-false-positive-prob:
assumes d ≤ N T ⊆ {..<N} card T = d
shows measure (bloom-filter-pmf n d N) {ω. T ⊆ ω} ≤ (1 − (1 − real d/real

N)^n)^d
(is ?L ≤ ?R)

〈proof 〉

end

References

[1] R. Ahlswede and D. E. Daykin. An inequality for the weights of
two families of sets, their unions and intersections. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 43:183–185, 1978.

26

[2] N. Alon and J. H. Spencer. The Probabilistic Method, Second Edition.
John Wiley & Sons, Ltd, 2nd edition, 2000.

[3] G. Birkhoff. Lattice Theory. AMS, 3rd edition, 1967.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Commun. ACM, 13(7):422–426, July 1970.

[5] M. Doty. Birkhoff’s representation theorem for finite distributive lat-
tices. Archive of Formal Proofs, December 2022. https://isa-afp.org/
entries/Birkhoff_Finite_Distributive_Lattices.html, Formal proof de-
velopment.

[6] D. Dubhashi, J. Jonasson, and D. Ranjan. Positive influence and
negative dependence. Combinatorics, Probability and Computing,
16(1):29––41, 2007.

[7] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative
dependence. Random Structures & Algorithms, 13(2):99–124, 1998.

[8] D. P. Dubhashi, V. Priebe, and D. Ranjan. Negative dependence
through the fkg inequality. BRICS Report Series, 3, 1996.

[9] C. Fortuin, P. Kastelyn, and J. Ginibre. Correlation inequalities on
some partially ordered sets. Commun. Math. Phys., 22:89–103, jun
1971.

[10] K. Gopinathan and I. Sergey. Certifying certainty and uncertainty
in approximate membership query structures. In S. K. Lahiri and
C. Wang, editors, Computer Aided Verification, pages 279–303, Cham,
2020. Springer International Publishing.

[11] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

[12] R. Impagliazzo and V. Kabanets. Constructive proofs of concentra-
tion bounds. In M. Serna, R. Shaltiel, K. Jansen, and J. Rolim, edi-
tors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 617–631, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[13] K. Joag-Dev and F. Proschan. Negative association of random variables
with applications. Annals of Statistics, 11:286–295, 1983.

[14] S. Lisawadi and T.-C. Hu. On the negative association property for
the dependent bootstrap random variables. Lobachevskii Journal of
Mathematics, 32:32–38, 2011.

27

https://isa-afp.org/entries/Birkhoff_Finite_Distributive_Lattices.html
https://isa-afp.org/entries/Birkhoff_Finite_Distributive_Lattices.html

[15] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, USA, 2nd edition, 2017.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[17] R. Pemantle. Towards a theory of negative dependence. Journal of
Mathematical Physics, 41(3):1371–1390, 03 2000.

28

	Preliminary Definitions and Lemmas
	Definition
	Chernoff-Hoeffding Bounds
	The FKG inequality
	Preliminary Results on Lattices
	Permutation Distributions
	Application: Bloom Filters

