
Negatively Associated Random Variables

Emin Karayel

January 20, 2025

Abstract

Negative Association is a generalization of independence for ran-
dom variables, that retains some of the key properties of independent
random variables. In particular closure properties, such as composi-
tion with monotone functions, as well as, the well-known Chernoff-
Hoeffding bounds.

This entry introduces the concept and verifies the most important
closure properties, as well as, the concentration inequalities. It also
verifies the FKG inequality, which is a generalization of Chebyshev’s
sum inequality for distributive lattices and a key tool for establishing
negative association, but has also many applications beyond the con-
text of negative association, in particular, statistical physics and graph
theory.

As an example, permutation distributions are shown to be nega-
tively associated, from which many more sets of negatively random
variables can be derived, such as, e.g., n-subsets, or the the balls-into-
bins process.

Finally, the entry derives a correct false-positive rate for Bloom
filters using the library.

Contents
1 Preliminary Definitions and Lemmas 2

2 Definition 9

3 Chernoff-Hoeffding Bounds 31

4 The FKG inequality 46

5 Preliminary Results on Lattices 54

6 Permutation Distributions 62

7 Application: Bloom Filters 89

1

1 Preliminary Definitions and Lemmas
theory Negative-Association-Util

imports
Concentration-Inequalities.Concentration-Inequalities-Preliminary
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF

begin

abbreviation (input) flip :: ‹(′a ⇒ ′b ⇒ ′c) ⇒ ′b ⇒ ′a ⇒ ′c› where
‹flip f x y ≡ f y x›

Additional introduction rules for boundedness:
lemma bounded-const-min:

fixes f :: ′a ⇒ real
assumes bdd-below (f ‘ M)
shows bounded ((λx. min c (f x)) ‘ M)

proof −
obtain h where

∧
x. x ∈ M =⇒ f x ≥ h using assms(1) unfolding bdd-below-def

by auto
thus ?thesis by (intro boundedI [where B=max |c| |−h|]) force

qed

lemma bounded-prod:
fixes f :: ′i ⇒ ′a ⇒ real
assumes finite I
assumes

∧
i. i ∈ I =⇒ bounded (f i ‘ T)

shows bounded ((λx. (
∏

i ∈ I . f i x)) ‘ T)
using assms by (induction I) (auto intro:bounded-mult-comp bounded-const)

lemma bounded-vec-mult-comp:
fixes f g :: ′a ⇒ real
assumes bounded (f ‘ T) bounded (g ‘ T)
shows bounded ((λx. (f x) ∗R (g x)) ‘ T)
using bounded-mult-comp[OF assms] by simp

lemma bounded-max:
fixes f :: ′a ⇒ real
assumes bounded ((λx. f x) ‘ T)
shows bounded ((λx. max c (f x)) ‘ T)

proof −
obtain m where norm (f x) ≤ m if x ∈ T for x

using assms unfolding bounded-iff by auto

thus ?thesis by (intro boundedI [where B=max m c]) fastforce
qed

lemma bounded-of-bool: bounded (range of-bool) by auto

2

lemma bounded-range-imp:
assumes bounded (range f)
shows bounded ((λω. f (h ω)) ‘ S)
by (intro bounded-subset[OF assms]) auto

The following allows to state integrability and conditions about the integral
simultaneously, e.g. has-int-that M f (λx. x ≤ c) says f is integrable on M
and the integral smaller or equal to c.
definition has-int-that where

has-int-that M f P = (integrable M f ∧ (P (
∫
ω. f ω ∂M)))

lemma true-eq-iff : P =⇒ True = P by auto
lemma le-trans: y ≤ z =⇒ x ≤ y −→ x ≤ (z :: ′a :: order) by auto

lemma has-int-that-mono:
assumes

∧
x. P x −→ Q x

shows has-int-that M f P ≤ has-int-that M f Q
using assms unfolding has-int-that-def by auto

lemma has-int-thatD:
assumes has-int-that M f P
shows integrable M f P (integralL M f)
using assms has-int-that-def by auto

This is useful to specify which components a functional depends on.
definition depends-on :: ((′a ⇒ ′b) ⇒ ′c) ⇒ ′a set ⇒ bool

where depends-on f I = (∀ x y. restrict x I = restrict y I −→ f x = f y)

lemma depends-onI :
assumes

∧
x. f x = f (λi. if i ∈ I then (x i) else undefined)

shows depends-on f I
proof −

have f x = f y if restrict x I = restrict y I for x y
proof −

have f x = f (restrict x I) using assms unfolding restrict-def by simp
also have ... = f (restrict y I) using that by simp
also have ... = f y using assms unfolding restrict-def by simp
finally show ?thesis by simp

qed
thus ?thesis unfolding depends-on-def by blast

qed

lemma depends-on-comp:
assumes depends-on f I
shows depends-on (g ◦ f) I
using assms unfolding depends-on-def by (metis o-apply)

lemma depends-on-comp-2:
assumes depends-on f I

3

shows depends-on (λx. g (f x)) I
using assms unfolding depends-on-def by metis

lemma depends-onD:
assumes depends-on f I
shows f ω = f (λi∈I . (ω i))
using assms unfolding depends-on-def by (metis extensional-restrict restrict-extensional)

lemma depends-onD2:
assumes depends-on f I restrict x I = restrict y I
shows f x = f y
using assms unfolding depends-on-def by metis

lemma depends-on-empty:
assumes depends-on f {}
shows f ω = f undefined
by (intro depends-onD2[OF assms]) auto

lemma depends-on-mono:
assumes I ⊆ J depends-on f I
shows depends-on f J
using assms unfolding depends-on-def by (metis restrict-restrict Int-absorb1)

abbreviation square-integrable M f ≡ integrable M ((power2 :: real ⇒ real) ◦ f)

There are many results in the field of negative association, where a statement
is true for simultaneously monotone or anti-monotone functions. With the
below construction, we introduce a mechanism where we can parameterize
on the direction of a relation:
datatype RelDirection = Fwd | Rev

definition dir-le :: RelDirection ⇒ ((′d::order) ⇒ (′d :: order) ⇒ bool) (infixl
≤≥ı 60)

where dir-le η = (if η = Fwd then (≤) else (≥))

lemma dir-le[simp]:
(≤≥Fwd) = (≤)
(≤≥Rev) = (≥)
by (auto simp:dir-le-def)

definition dir-sign :: RelDirection ⇒ ′a::{one,uminus} (±ı)
where dir-sign η = (if η = Fwd then 1 else (−1))

lemma dir-le-refl: x ≤≥η x
by (cases η) auto

lemma dir-sign[simp]:
(±Fwd) = (1)
(±Rev) = (−1)

4

by (auto simp:dir-sign-def)

lemma conv-rel-to-sign:
fixes f :: ′a::order ⇒ real
shows monotone (≤) (≤≥η) f = mono ((∗)(±η) ◦ f)
by (cases η) (simp-all add:monotone-def)

instantiation RelDirection :: times
begin
definition times-RelDirection :: RelDirection⇒ RelDirection⇒ RelDirection where

times-RelDirection-def : times-RelDirection x y = (if x = y then Fwd else Rev)

instance by standard
end

lemmas rel-dir-mult[simp] = times-RelDirection-def

lemma dir-mult-hom: (±σ ∗ τ) = (±σ) ∗ ((±τ)::real)
unfolding dir-sign-def times-RelDirection-def by (cases σ,auto intro:RelDirection.exhaust)

Additional lemmas about clamp for the specific case on reals.
lemma clamp-eqI2:

assumes x ∈ {a..b::real}
shows x = clamp a b x
using assms unfolding clamp-def by simp

lemma clamp-eqI :
assumes |x| ≤ (a::real)
shows x = clamp (−a) a x
using assms by (intro clamp-eqI2) auto

lemma clamp-real-def :
fixes x :: real
shows clamp a b x = max a (min x b)

proof −
consider (i) x < a | (ii) x ≥ a x ≤ b | (iii) x > b by linarith
thus ?thesis unfolding clamp-def by (cases) auto

qed

lemma clamp-range:
assumes a ≤ b
shows

∧
x. clamp a b x ≥ a

∧
x. clamp a b x ≤ b range (clamp a b) ⊆ {a..b::real}

using assms by (auto simp: clamp-real-def)

lemma clamp-abs-le:
assumes a ≥ (0::real)
shows |clamp (−a) a x| ≤ |x|
using assms unfolding clamp-real-def by simp

5

lemma bounded-clamp:
fixes a b :: real
shows bounded ((clamp a b ◦ f) ‘ S)

proof (cases a ≤ b)
case True
show ?thesis using clamp-range[OF True] bounded-closed-interval bounded-subset

by (metis image-comp image-mono subset-UNIV)
next

case False
hence clamp a b (f x) = a for x unfolding clamp-def by (simp add: max-def)
hence (clamp a b ◦ f) ‘ S ⊆ {a..a} by auto
thus ?thesis using bounded-subset bounded-closed-interval by metis

qed

lemma bounded-clamp-alt:
fixes a b :: real
shows bounded ((λx. clamp a b (f x)) ‘ S)
using bounded-clamp by (auto simp:comp-def)

lemma clamp-borel[measurable]:
fixes a b :: ′a::{euclidean-space,second-countable-topology}
shows clamp a b ∈ borel-measurable borel
unfolding clamp-def by measurable

lemma monotone-clamp:
assumes monotone (≤) (≤≥η) f
shows monotone (≤) (≤≥η) (λω. clamp a (b::real) (f ω))
using assms unfolding monotone-def clamp-real-def by (cases η) force+

This part introduces the term KL-div as the Kullback-Leibler divergence
between a pair of Bernoulli random variables. The expression is useful to
express some of the Chernoff bounds more concisely [12, Th. 1].
lemma radon-nikodym-pmf :

assumes set-pmf p ⊆ set-pmf q
defines f ≡ (λx. ennreal (pmf p x / pmf q x))
shows

AE x in measure-pmf q. RN-deriv q p x = f x (is ?R1)
AE x in measure-pmf p. RN-deriv q p x = f x (is ?R2)

proof −
have pmf p x = 0 if pmf q x = 0 for x

using assms(1) that by (meson pmf-eq-0-set-pmf subset-iff)
hence a:(pmf q x ∗ (pmf p x / pmf q x)) = pmf p x for x by simp
have emeasure (density q f) A = emeasure p A (is ?L = ?R) for A
proof −

have ?L = set-nn-integral (measure-pmf q) A f
by (subst emeasure-density) auto

also have . . . = (
∫

+ x∈A. ennreal (pmf q x) ∗ f x ∂count-space UNIV)
by (simp add: ac-simps nn-integral-measure-pmf)

also have . . . = (
∫

+x∈A. ennreal (pmf p x) ∂count-space UNIV)

6

using a unfolding f-def by (subst ennreal-mult ′[symmetric]) simp-all
also have . . . = emeasure (bind-pmf p return-pmf) A

unfolding emeasure-bind-pmf nn-integral-measure-pmf by simp
also have . . . = ?R by simp
finally show ?thesis by simp

qed
hence density (measure-pmf q) f = measure-pmf p by (intro measure-eqI) auto
hence AE x in measure-pmf q. f x = RN-deriv q p x by (intro measure-pmf .RN-deriv-unique)

simp
thus ?R1 unfolding AE-measure-pmf-iff by auto
thus ?R2 using assms unfolding AE-measure-pmf-iff by auto

qed

lemma KL-divergence-pmf :
assumes set-pmf q ⊆ set-pmf p
shows KL-divergence b (measure-pmf p) (measure-pmf q) = (

∫
x. log b (pmf q x

/ pmf p x) ∂q)
unfolding KL-divergence-def entropy-density-def
by (intro integral-cong-AE AE-mp[OF radon-nikodym-pmf (2)[OF assms(1)] AE-I2])

auto

definition KL-div :: real ⇒ real ⇒ real where
KL-div p q = KL-divergence (exp 1) (bernoulli-pmf q) (bernoulli-pmf p)

lemma KL-div-eq:
assumes q ∈ {0<..<1} p ∈ {0..1}
shows KL-div p q = p ∗ ln (p/q) + (1−p) ∗ ln ((1−p)/(1−q)) (is ?L = ?R)

proof −
have set-pmf (bernoulli-pmf p) ⊆ set-pmf (bernoulli-pmf q)

using assms(1) set-pmf-bernoulli by auto
hence ?L = (

∫
x. ln (pmf (bernoulli-pmf p) x / pmf (bernoulli-pmf q) x)

∂bernoulli-pmf p)
unfolding KL-div-def by (subst KL-divergence-pmf) (simp-all add:log-ln[symmetric])
also have . . . = ?R

using assms(1,2) by (subst integral-bernoulli-pmf) auto
finally show ?thesis by simp

qed

lemma KL-div-swap:
assumes q ∈ {0<..<1} p ∈ {0..1}
shows KL-div p q = KL-div (1−p) (1−q)
using assms by (subst (1 2) KL-div-eq) auto

A few results about independent random variables:
lemma (in prob-space) indep-vars-const:

assumes
∧

i. i ∈ I =⇒ c i ∈ space (N i)
shows indep-vars N (λi -. c i) I

proof −
have rv: random-variable (N i) (λ-. c i) if i ∈ I for i using assms[OF that]

7

by simp
have b:indep-sets (λi. {space M , {}}) I
proof (intro indep-setsI , goal-cases)

case (1 i) thus ?case by simp
next

case (2 A J)
show ?case
proof (cases ∀ j ∈ J . A j = space M)

case True thus ?thesis using 2(1) by (simp add:prob-space)
next

case False
then obtain i where i:A i = {} i ∈ J using 2 by auto
hence prob (

⋂
(A ‘ J)) = prob {} by (intro arg-cong[where f=prob]) auto

also have . . . = 0 by simp
also have . . . = (

∏
j∈J . prob (A j))

using i by (intro prod-zero[symmetric] 2 bexI [where x=i]) auto
finally show ?thesis by simp

qed
qed
have {(λ-. c i) −‘ A ∩ space M |A. A ∈ sets (N i)} = {space M , {}} (is ?L =

?R) if i ∈ I for i
proof

show ?L ⊆ ?R by auto
next

have (λA. (λ-. c i) −‘ A ∩ space M) {} = {} {} ∈ N i by auto
hence {} ∈ ?L unfolding image-Collect[symmetric] by blast
moreover have (λA. (λ-. c i) −‘ A ∩ space M) (space (N i)) = space M space

(N i) ∈ N i
using assms[OF that] by auto

hence space M ∈ ?L unfolding image-Collect[symmetric] by blast
ultimately show ?R ⊆ ?L by simp

qed
hence indep-sets (λi. {(λ-. c i) −‘ A ∩ space M |A. A ∈ sets (N i)}) I

using iffD2[OF indep-sets-cong b] b by simp
thus ?thesis unfolding indep-vars-def2 by (intro conjI rv ballI)

qed

lemma indep-vars-map-pmf :
assumes prob-space.indep-vars (measure-pmf p) (λ-. discrete) (λi. X i ◦ f) I
shows prob-space.indep-vars (map-pmf f p) (λ-. discrete) X I
using assms unfolding map-pmf-rep-eq by (intro measure-pmf .indep-vars-distr)

auto

lemma indep-var-pair-pmf :
fixes x y :: ′a pmf
shows prob-space.indep-var (pair-pmf x y) discrete fst discrete snd

proof −
have split-bool-univ: UNIV = insert True {False} by auto

8

have pair-prod: pair-pmf x y = map-pmf (λω. (ω True, ω False)) (prod-pmf UNIV
(case-bool x y))

unfolding split-bool-univ by (subst Pi-pmf-insert)
(simp-all add:map-pmf-comp Pi-pmf-singleton pair-map-pmf2 case-prod-beta)

have case-bool-eq: case-bool discrete discrete = (λ-. discrete)
by (intro ext) (simp add: bool.case-eq-if)

have prob-space.indep-vars (prod-pmf UNIV (case-bool x y)) (λ-. discrete) (λi ω.
ω i) UNIV

by (intro indep-vars-Pi-pmf) auto
moreover have (λi. (case-bool fst snd i) ◦ (λω. ((ω True):: ′a, ω False))) = (λi

ω. ω i)
by (auto intro!:ext split:bool.splits)

ultimately show ?thesis
unfolding prob-space.indep-var-def [OF prob-space-measure-pmf] pair-prod case-bool-eq
by (intro indep-vars-map-pmf) simp

qed

lemma measure-pair-pmf : measure (pair-pmf p q) (A × B) = measure p A ∗
measure q B (is ?L = ?R)
proof −

have ?L = measure (pair-pmf p q) ((A ∩ set-pmf p) × (B ∩ set-pmf q))
by (intro measure-eq-AE AE-pmfI) auto

also have . . . = measure p (A ∩ set-pmf p) ∗ measure q (B ∩ set-pmf q)
by (intro measure-pmf-prob-product) auto

also have . . . = ?R by (intro arg-cong2[where f=(∗)] measure-eq-AE AE-pmfI)
auto

finally show ?thesis by simp
qed

instance bool :: second-countable-topology
proof

show ∃B::bool set set. countable B ∧ open = generate-topology B
by (intro exI [of - range lessThan ∪ range greaterThan]) (auto simp: open-bool-def)

qed

end

2 Definition

This section introduces the concept of negatively associated random vari-
ables (RVs). The definition follows, as closely as possible, the original de-
scription by Joag-Dev and Proschan [13].
However, the following modifications have been made:
Singleton and empty sets of random variables are considered negatively asso-
ciated. This is useful because it simplifies many of the induction proofs. The

9

second modification is that the RV’s don’t have to be real valued. Instead
the range can be into any linearly ordered space with the borel σ-algebra.
This is a major enhancement compared to the original work, as well as re-
sults by following authors [6, 7, 8, 14, 17].
theory Negative-Association-Definition

imports
Concentration-Inequalities.Bienaymes-Identity
Negative-Association-Util

begin

context prob-space
begin

definition neg-assoc :: (′i ⇒ ′a ⇒ ′c :: {linorder-topology}) ⇒ ′i set ⇒ bool
where neg-assoc X I = (
(∀ i ∈ I . random-variable borel (X i)) ∧
(∀ (f ::nat ⇒ (′i ⇒ ′c) ⇒ real) J . J ⊆ I ∧
(∀ ι<2. bounded (range (f ι)) ∧ mono(f ι) ∧ depends-on (f ι) ([J ,I−J]!ι) ∧
f ι ∈ PiM ([J ,I−J]!ι) (λ-. borel) →M borel) −→
covariance (f 0 ◦ flip X) (f 1 ◦ flip X) ≤ 0))

lemma neg-assocI :
assumes

∧
i. i ∈ I =⇒ random-variable borel (X i)

assumes
∧

f g J . J ⊆ I
=⇒ depends-on f J =⇒ depends-on g (I−J)
=⇒ mono f =⇒ mono g
=⇒ bounded (range f ::real set) =⇒ bounded (range g)
=⇒ f ∈ PiM J (λ-. borel) →M borel =⇒ g ∈ PiM (I−J) (λ-. borel) →M borel
=⇒ covariance (f ◦ flip X) (g ◦ flip X) ≤ 0

shows neg-assoc X I
using assms unfolding neg-assoc-def by (auto simp:numeral-eq-Suc All-less-Suc)

lemma neg-assocI2:
assumes [measurable]:

∧
i. i ∈ I =⇒ random-variable borel (X i)

assumes
∧

f g J . J ⊆ I
=⇒ depends-on f J =⇒ depends-on g (I−J)
=⇒ mono f =⇒ mono g
=⇒ bounded (range f) =⇒ bounded (range g)
=⇒ f ∈ PiM J (λ-. borel) →M (borel :: real measure)
=⇒ g ∈ PiM (I−J) (λ-. borel) →M (borel :: real measure)
=⇒ (

∫
ω. f (λi. X i ω) ∗ g(λi. X i ω) ∂M)≤(

∫
ω. f (λi. X i ω)∂M)∗(

∫
ω. g(λi.

X i ω) ∂M)
shows neg-assoc X I

proof (rule neg-assocI ,goal-cases)
case (1 i) thus ?case using assms(1) by auto

next
case (2 f g J)

note [measurable] = 2(8,9)

10

note bounded = integrable-bounded bounded-intros

have [measurable]: random-variable borel (λω. f (λi. X i ω))
using subsetD[OF 2(1)] by (subst depends-onD[OF 2(2)]) measurable

moreover have [measurable]: random-variable borel (λω. g (λi. X i ω))
by (subst depends-onD[OF 2(3)]) measurable

moreover have integrable M (λω. ((f ◦ (λx y. X y x)) ω)2)
unfolding comp-def by (intro bounded bounded-subset[OF 2(6)]) auto

moreover have integrable M (λω. ((g ◦ (λx y. X y x)) ω)2)
unfolding comp-def by (intro bounded bounded-subset[OF 2(7)]) auto

ultimately show ?case using assms(2)[OF 2(1−9)]
by (subst covariance-eq) (auto simp:comp-def)

qed

lemma neg-assoc-empty:
neg-assoc X {}

proof (intro neg-assocI2, goal-cases)
case (1 i)
then show ?case by simp

next
case (2 f g J)
define fc gc where fc:fc = f undefined and gc:gc = g undefined

have depends-on f {} depends-on g {} using 2 by auto
hence fg-simps: f = (λx. fc) g = (λx. gc) unfolding fc gc using depends-on-empty

by auto
then show ?case unfolding fg-simps by (simp add:prob-space)

qed

lemma neg-assoc-singleton:
assumes random-variable borel (X i)
shows neg-assoc X {i}

proof (rule neg-assocI2, goal-cases)
case (1 i)
then show ?case using assms by auto

next
case (2 f g J)
show ?case
proof (cases J = {})

case True
define fc where fc = f undefined
have f :f = (λ-. fc)

unfolding fc-def by (intro ext depends-onD2[OF 2(2)]) (auto simp:True)
then show ?thesis unfolding f by (simp add:prob-space)

next
case False
hence J : J = {i} using 2(1) by auto
define gc where gc = g undefined
have g:g = (λ-. gc)

11

unfolding gc-def by (intro ext depends-onD2[OF 2(3)]) (auto simp:J)
then show ?thesis unfolding g by (simp add:prob-space)

qed
qed

lemma neg-assoc-imp-measurable:
assumes neg-assoc X I
assumes i ∈ I
shows random-variable borel (X i)
using assms unfolding neg-assoc-def by auto

Even though the assumption was that defining property is true for pairs of
monotone functions over the random variables, it is also true for pairs of
anti-monotone functions.
lemma neg-assoc-imp-mult-mono-bounded:

fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I
assumes J ⊆ I
assumes bounded (range f) bounded (range g)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes [measurable]: f ∈ borel-measurable (PiM J (λ-. borel))
assumes [measurable]: g ∈ borel-measurable (PiM (I−J) (λ-. borel))
shows

covariance (f ◦ flip X) (g ◦ flip X) ≤ 0
(
∫
ω. f (λi. X i ω) ∗ g (λi. X i ω) ∂M) ≤ expectation (λx. f (λy. X y x)) ∗

expectation (λx. g(λy. X y x))
(is ?L ≤ ?R)

proof −
define q where q ι = (if ι = 0 then f else g) for ι :: nat
define h where h ι = ((∗) (±η)) ◦ (q ι) for ι :: nat

note [measurable] = neg-assoc-imp-measurable[OF assms(1)]
note bounded = integrable-bounded bounded-intros

have 1:bounded (range ((∗) (±η) ◦ q ι)) depends-on (q ι) ([J ,I−J]!ι)
q ι ∈ PiM ([J ,I−J]!ι) (λ-. borel) →M borel mono ((∗) (±η) ◦ q ι) if ι ∈ {0,1}

for ι
using that assms unfolding q-def conv-rel-to-sign by (auto intro:bounded-mult-comp)

have 2: ((∗) (±η::real)) ∈ borel →M borel by simp

have 3:∀ ι<Suc (Suc 0). bounded (range (h ι))∧mono(h ι) ∧ depends-on (h ι)
([J ,I−J]!ι) ∧

h ι ∈ PiM ([J ,I−J]!ι) (λ-. borel) →M borel unfolding All-less-Suc h-def
by (intro conjI 1 depends-on-comp measurable-comp[OF - 2]) auto

have covariance (f ◦ flip X) (g ◦ flip X) = covariance (q 0 ◦ flip X) (q 1 ◦ flip
X)

12

unfolding q-def by simp
also have . . . = covariance (h 0 ◦ flip X) (h 1 ◦ flip X)
unfolding h-def covariance-def comp-def by (cases η) (auto simp:algebra-simps)

also have ... ≤ 0 using 3 assms(1,2) numeral-2-eq-2 unfolding neg-assoc-def
by metis

finally show covariance (f ◦ flip X) (g ◦ flip X) ≤ 0 by simp

moreover have m-f : random-variable borel (λx. f (λi. X i x))
using subsetD[OF assms(2)] by (subst depends-onD[OF assms(7)]) measurable

moreover have m-g: random-variable borel (λx. g(λi. X i x))
by (subst depends-onD[OF assms(8)]) measurable

moreover have integrable M (λω. ((f ◦ (λx y. X y x)) ω)2) unfolding comp-def
by (intro bounded bounded-subset[OF assms(3)] measurable-compose[OF m-f])

auto
moreover have integrable M (λω. ((g ◦ (λx y. X y x)) ω)2) unfolding comp-def

by (intro bounded bounded-subset[OF assms(4)] measurable-compose[OF m-g])
auto

ultimately show ?L ≤ ?R by (subst (asm) covariance-eq) (auto simp:comp-def)
qed

lemma lim-min-n: (λn. min (real n) x) −−−−→ x
proof −

define m where m = nat dxe
have min (real (n+m)) x = x for n unfolding m-def by (intro min-absorb2)

linarith
hence (λn. min (real (n+m)) x) −−−−→ x by simp
thus ?thesis using LIMSEQ-offset[where k=m] by fast

qed

lemma lim-clamp-n: (λn. clamp (−real n) (real n) x) −−−−→ x
proof −

define m where m = nat d|x|e
have clamp (−real (n+m)) (real (n+m)) x = x for n unfolding m-def

by (intro clamp-eqI [symmetric]) linarith
hence (λn. clamp (−real (n+m)) (real (n+m)) x) −−−−→ x by simp
thus ?thesis using LIMSEQ-offset[where k=m] by fast

qed

lemma neg-assoc-imp-mult-mono:
fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I
assumes J ⊆ I
assumes square-integrable M (f ◦ flip X) square-integrable M (g ◦ flip X)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes [measurable]: f ∈ borel-measurable (PiM J (λ-. borel))
assumes [measurable]: g ∈ borel-measurable (PiM (I−J) (λ-. borel))

shows (
∫
ω. f (λi. X i ω) ∗ g (λi. X i ω) ∂M) ≤ (

∫
x. f (λy. X y x)∂M) ∗ (

∫
x.

13

g(λy. X y x)∂M)
(is ?L ≤ ?R)

proof −
let ?cf = λn x. clamp (−real n) (real n) (f x)
let ?cg = λn x. clamp (−real n) (real n) (g x)

note [measurable] = neg-assoc-imp-measurable[OF assms(1)]

have m-f : random-variable borel (λx. f (λi. X i x))
using subsetD[OF assms(2)] by (subst depends-onD[OF assms(7)]) measurable

have m-g: random-variable borel (λx. g(λi. X i x))
by (subst depends-onD[OF assms(8)]) measurable

note intro-rules = borel-measurable-times measurable-compose[OF - clamp-borel]
AE-I2

measurable-compose[OF - borel-measurable-norm] lim-clamp-n m-f m-g

have a: (λn. (
∫
ω. ?cf n (λi. X i ω) ∗ ?cg n (λi. X i ω) ∂M)) −−−−→ ?L using

assms(3,4)
by (intro integral-dominated-convergence[where w=λω. norm (f (λi. X i ω))∗norm

(g(λi. X i ω))]
intro-rules tendsto-mult cauchy-schwartz(1)[where M=M])
(auto intro!: clamp-abs-le mult-mono simp add:comp-def abs-mult)

have (λn. (
∫

x. ?cf n (λy. X y x)∂M)) −−−−→ (
∫

x. f (λy. X y x)∂M)
using square-integrable-imp-integrable[OF m-f] assms(3) unfolding comp-def
by (intro integral-dominated-convergence[where w = λω. norm (f (λi. X i ω))]

intro-rules)
(simp-all add:clamp-abs-le)

moreover have (λn. (
∫

x. ?cg n (λy. X y x)∂M)) −−−−→ (
∫

x. g(λy. X y x)∂M)
using square-integrable-imp-integrable[OF m-g] assms(4) unfolding comp-def
by (intro integral-dominated-convergence[where w = λω. norm (g(λi. X i ω))]

intro-rules)
(simp-all add:clamp-abs-le)

ultimately have b: (λn. (
∫

x. ?cf n (λy. X y x)∂M) ∗ (
∫

x. ?cg n (λy. X y x)
∂M)) −−−−→ ?R

by (rule tendsto-mult)

show ?thesis
by (intro lim-mono[OF - a b, where N=0] bounded-clamp-alt assms(5,6,9,10)

monotone-clamp
neg-assoc-imp-mult-mono-bounded[OF assms(1,2), where η=η] depends-on-comp-2[OF

assms(7)]
measurable-compose[OF - clamp-borel] depends-on-comp-2[OF assms(8)])

qed

Property P4 [13]

14

lemma neg-assoc-subset:
assumes J ⊆ I
assumes neg-assoc X I
shows neg-assoc X J

proof (rule neg-assocI ,goal-cases)
case (1 i)
then show ?case using neg-assoc-imp-measurable[OF assms(2)] assms(1) by

auto
next

case (2 f g K)
have a:K ⊆ I using 2 assms(1) by auto

have g = g ◦ (λm. restrict m (J−K))
using 2 depends-onD unfolding comp-def by (intro ext) auto

also have ... ∈ borel-measurable (PiM (I − K) (λ-. borel))
using 2 assms(1) by (intro measurable-comp[OF measurable-restrict-subset])

auto
finally have g ∈ borel-measurable (PiM (I − K) (λ-. borel)) by simp
moreover have depends-on g (I−K) using depends-on-mono assms(1) 2

by (metis Diff-mono dual-order .eq-iff)
ultimately show covariance (f ◦ flip X) (g ◦ flip X) ≤ 0

using 2 by (intro neg-assoc-imp-mult-mono-bounded[OF assms(2) a, where
η=Fwd]) simp-all
qed

lemma neg-assoc-imp-mult-mono-nonneg:
fixes f g :: (′i ⇒ ′c::linorder-topology) ⇒ real
assumes neg-assoc X I J ⊆ I
assumes range f ⊆ {0..} range g ⊆ {0..}
assumes integrable M (f ◦ flip X) integrable M (g ◦ flip X)
assumes monotone (≤) (≤≥η) f monotone (≤) (≤≥η) g
assumes depends-on f J depends-on g (I−J)
assumes f ∈ borel-measurable (PiM J (λ-. borel)) g ∈ borel-measurable (PiM

(I−J) (λ-. borel))
shows has-int-that M (λω. f (flip X ω) ∗ g (flip X ω))
(λr . r ≤ expectation (f ◦ flip X) ∗ expectation (g ◦ flip X))

proof −
let ?cf = (λn x. min (real n) (f x))
let ?cg = (λn x. min (real n) (g x))

define u where u = (λω. f (λi. X i ω) ∗ g (λi. X i ω))
define h where h n ω = ?cf n (λi. X i ω) ∗ ?cg n (λi. X i ω) for n ω
define x where x = (SUP n. expectation (h n))

note borel-intros = borel-measurable-times borel-measurable-const borel-measurable-min
borel-measurable-power

note bounded-intros ′ = integrable-bounded bounded-intros bounded-const-min

have f-meas: random-variable borel (λx. f (λi. X i x))

15

using borel-measurable-integrable[OF assms(5)] by (simp add:comp-def)
have g-meas: random-variable borel (λx. g (λi. X i x))

using borel-measurable-integrable[OF assms(6)] by (simp add:comp-def)

have h-int: integrable M (h n) for n
unfolding h-def using assms(3,4) by (intro bounded-intros ′ borel-intros f-meas

g-meas) fast+

have exp-h-le-R: expectation (h n) ≤ expectation (f ◦flip X) ∗ expectation (g◦flip
X) for n

proof −
have square-integrable M ((λa. min (real n) (f a)) ◦ (λx y. X y x))

using assms(3) unfolding comp-def
by (intro bounded-intros ′ bdd-belowI [where m=0] borel-intros f-meas) auto

moreover have square-integrable M ((λa. min (real n) (g a)) ◦ (λx y. X y x))
using assms(4) unfolding comp-def
by (intro bounded-intros ′ bdd-belowI [where m=0] borel-intros g-meas) auto

moreover have monotone (≤) (≤≥η) ((λa. min (real n) (f a)))
using monotoneD[OF assms(7)] unfolding comp-def min-mult-distrib-left
by (intro monotoneI) (cases η, fastforce+)

moreover have monotone (≤) (≤≥η) ((λa. min (real n) (g a)))
using monotoneD[OF assms(8)] unfolding comp-def min-mult-distrib-left
by (intro monotoneI) (cases η, fastforce+)

ultimately have expectation (h n) ≤ expectation (?cf n◦flip X) ∗ expectation
(?cg n◦flip X)

unfolding h-def comp-def
by (intro neg-assoc-imp-mult-mono[OF assms(1−2)] borel-intros assms(11,12)

depends-on-comp-2[OF assms(10)] depends-on-comp-2[OF assms(9)]) (auto
simp:comp-def)

also have ... ≤ expectation (f ◦flip X) ∗ expectation (g◦flip X)
using assms(3,4) by (intro mult-mono integral-nonneg-AE AE-I2 inte-

gral-mono ′ assms(5,6)) auto
finally show ?thesis by simp

qed

have h-mono-ptw: AE ω in M . mono (λn. h n ω)
using assms(3,4) unfolding h-def by (intro AE-I2 monoI mult-mono) auto

have h-mono: mono (λn. expectation (h n))
by (intro monoI integral-mono-AE AE-mp[OF h-mono-ptw AE-I2] h-int) (simp

add:mono-def)

have random-variable borel u using f-meas g-meas unfolding u-def by (intro
borel-intros)

moreover have AE ω in M . (λn. h n ω) −−−−→ u ω
unfolding h-def u-def by (intro tendsto-mult lim-min-n AE-I2)

moreover have bdd-above (range (λn. expectation (h n)))
using exp-h-le-R by (intro bdd-aboveI) auto

hence (λn. expectation (h n)) −−−−→ x
using LIMSEQ-incseq-SUP[OF - h-mono] unfolding x-def by simp

16

ultimately have has-bochner-integral M u x using h-int h-mono-ptw
by (intro has-bochner-integral-monotone-convergence[where f=h])

moreover have x ≤ expectation (f ◦flip X) ∗ expectation (g◦flip X)
unfolding x-def by (intro cSUP-least exp-h-le-R) simp

ultimately show ?thesis unfolding has-bochner-integral-iff u-def has-int-that-def
by auto
qed

Property P2 [13]
lemma neg-assoc-imp-prod-mono:

fixes f :: ′i ⇒ (′c::linorder-topology) ⇒ real
assumes finite I
assumes neg-assoc X I
assumes

∧
i. i ∈ I =⇒ integrable M (λω. f i (X i ω))

assumes
∧

i. i ∈ I =⇒ monotone (≤) (≤≥η) (f i)
assumes

∧
i. i ∈ I =⇒ range (f i)⊆{0..}

assumes
∧

i. i ∈ I =⇒ f i ∈ borel-measurable borel
shows has-int-that M (λω. (

∏
i∈I . f i (X i ω))) (λr . r≤(

∏
i∈ I . expectation

(λω. f i (X i ω))))
using assms

proof (induction I rule:finite-induct)
case empty then show ?case by (simp add:has-int-that-def)

next
case (insert x F)

define g where g v = f x (v x) for v
define h where h v = (

∏
i∈F . f i (v i)) for v

have 0: {x} ⊆ insert x F by auto

have ran-g: range g ⊆ {0..} using insert(7) unfolding g-def by auto

have True = has-int-that M (λω.
∏

i∈F . f i(X i ω)) (λr . r≤(
∏

i∈F . expecta-
tion(λω. f i(X i ω))))

by (intro true-eq-iff insert neg-assoc-subset[OF - insert(4)]) auto
also have ... = has-int-that M (h ◦ flip X) (λr . r ≤ (

∏
i∈F . expectation (λω. f

i (X i ω))))
unfolding h-def by (intro arg-cong2[where f=has-int-that M] refl)(simp

add:comp-def)
finally have 2: has-int-that M (h ◦ flip X) (λr . r ≤ (

∏
i∈F . expectation (λω. f

i (X i ω))))
by simp

have (
∏

i∈F . f i (v i)) ≥ 0 for v using insert(7) by (intro prod-nonneg) auto
hence range h ⊆ {0..} unfolding h-def by auto
moreover have integrable M (g ◦ flip X) unfolding g-def using insert(5) by

(auto simp:comp-def)
moreover have 3:monotone (≤) (≤≥η) (f x) using insert(6) by simp
have monotone (≤) (≤≥η) g using monotoneD[OF 3]

17

unfolding g-def by (intro monotoneI) (auto simp:comp-def le-fun-def)
moreover have 4:monotone (≤) (≤≥η) (f i)

∧
x. f i x ≥ 0 if i ∈ F for i

using that insert(6,7) by force+
hence monotone (≤) (≤≥η) h using monotoneD[OF 4(1)] unfolding h-def

by (intro monotoneI) (cases η, auto intro:prod-mono simp:comp-def le-fun-def)
moreover have depends-on g {x} unfolding g-def by (intro depends-onI) force
moreover have depends-on h F

unfolding h-def by (intro depends-onI prod.cong refl) force
hence depends-on h (F − {x}) using insert(2) by simp
moreover have g ∈ borel-measurable (PiM {x} (λ-. borel)) unfolding g-def

by (intro measurable-compose[OF - insert(8)] measurable-component-singleton)
auto

moreover have h ∈ borel-measurable (PiM F (λ-. borel))
unfolding h-def by (intro borel-measurable-prod measurable-compose[OF -

insert(8)]
measurable-component-singleton) auto

hence h ∈ borel-measurable (PiM (F − {x}) (λ-. borel)) using insert(2) by simp
ultimately have True = has-int-that M (λω. g (flip X ω) ∗ h (flip X ω))
(λr . r ≤ expectation (g ◦ flip X) ∗ expectation (h ◦ flip X))
by (intro true-eq-iff neg-assoc-imp-mult-mono-nonneg[OF insert(4) 0, where

η=η]
ran-g has-int-thatD[OF 2]) simp-all

also have . . . = has-int-that M (λω. (
∏

i∈insert x F . f i (X i ω)))
(λr . r ≤ expectation (g ◦ flip X) ∗ expectation (h ◦ flip X))

unfolding g-def h-def using insert(1,2) by (intro arg-cong2[where f=has-int-that
M] refl) simp

also have . . . ≤ has-int-that M (λω. (
∏

i∈insert x F . f i (X i ω)))
(λr . r ≤ expectation (g ◦ flip X) ∗ (

∏
i ∈ F . expectation (f i ◦ X i)))

using ran-g has-int-thatD[OF 2] by (intro has-int-that-mono le-trans mult-left-mono
integral-nonneg-AE AE-I2) (auto simp: comp-def)

also have . . . = has-int-that M
(λω.

∏
i∈insert x F . f i (X i ω)) (λr . r ≤ (

∏
i∈insert x F . expectation (f i ◦

X i)))
using insert(1,2) by (intro arg-cong2[where f=has-int-that M] refl) (simp

add:g-def comp-def)
finally show ?case using le-boolE by (simp add:comp-def)

qed

Property P5 [13]
lemma neg-assoc-compose:

fixes f :: ′j ⇒ (′i ⇒ (′c::linorder-topology)) ⇒ (′d ::linorder-topology)
assumes finite I
assumes neg-assoc X I
assumes

∧
j. j ∈ J =⇒ deps j ⊆ I

assumes
∧

j1 j2. j1 ∈ J =⇒ j2 ∈ J =⇒ j1 6= j2 =⇒ deps j1 ∩ deps j2 = {}
assumes

∧
j. j ∈ J =⇒ monotone (≤) (≤≥η) (f j)

assumes
∧

j. j ∈ J =⇒ depends-on (f j) (deps j)
assumes

∧
j. j ∈ J =⇒ f j ∈ borel-measurable (PiM (deps j) (λ-. borel))

shows neg-assoc (λj ω. f j (λi. X i ω)) J

18

proof (rule neg-assocI , goal-cases)
case (1 i)
note [measurable] = neg-assoc-imp-measurable[OF assms(2)] assms(7)[OF 1]
note 3 = assms(3)[OF 1]
have 2: f i (λi. X i ω) = f i (λi∈deps i. X i ω) for ω

using 3 by (intro depends-onD2[OF assms(6)] 1) fastforce
show ?case unfolding 2 by measurable (rule subsetD[OF 3])

next
case (2 g h K)

let ?g = (λω. g (λj. f j ω))
let ?h = (λω. h (λj. f j ω))

note dep-f = depends-onD[OF depends-on-mono[OF - assms(6)],symmetric]

have g-alt-1: ?g = (λω. g (λj ∈ J . f j ω))
using 2(1) by (intro ext depends-onD[OF depends-on-mono[OF - 2(2)]]) auto

have g-alt-2: ?g = (λω. g (λj ∈ K . f j ω))
by (intro ext depends-onD[OF 2(2)])

have g-alt-3: ?g = (λω. g (λj ∈ K . f j (restrict ω (deps j)))) unfolding g-alt-2
using 2(1)

by (intro restrict-ext ext arg-cong[where f=g] depends-onD[OF assms(6)]) auto

have h-alt-1: ?h = (λω. h (λj ∈ J . f j ω))
by (intro ext depends-onD[OF depends-on-mono[OF - 2(3)]]) auto

have h-alt-2: ?h = (λω. h (λj ∈ J−K . f j ω))
by (intro ext depends-onD[OF 2(3)])

have h-alt-3: ?h = (λω. h (λj ∈ J−K . f j (restrict ω (deps j)))) unfolding
h-alt-2

by (intro restrict-ext ext arg-cong[where f=h] depends-onD[OF assms(6)]) auto

have 3:
⋃

(deps ‘ (J−K)) ⊆ I −
⋃

(deps ‘ K) using assms(3,4) 2(1) by blast

have
⋃

(deps ‘ K) ⊆ I using 2(1) assms(3) by auto
moreover have bounded (range ?g) bounded (range ?h)

using 2(6,7) by (auto intro: bounded-subset)
moreover have monotone (≤) (≤≥η) ?g

unfolding g-alt-1 using monotoneD[OF assms(5)]
by (intro monotoneI) (cases η, auto intro!:monoD[OF 2(4)] le-funI)

moreover have monotone (≤) (≤≥η) ?h
unfolding h-alt-1 using monotoneD[OF assms(5)]
by (intro monotoneI) (cases η, auto intro!:monoD[OF 2(5)] le-funI)

moreover have depends-on ?g (
⋃

(deps ‘ K))
using 2(1) unfolding g-alt-2

by (intro depends-onI arg-cong[where f=g] restrict-ext depends-onD2[OF
assms(6)]) auto

moreover have depends-on ?h (
⋃

(deps ‘ (J−K)))
unfolding h-alt-2

by (intro depends-onI arg-cong[where f=h] restrict-ext depends-onD2[OF

19

assms(6)]) auto
hence depends-on ?h (I −

⋃
(deps ‘ K)) using depends-on-mono[OF 3] by auto

moreover have ?g ∈ borel-measurable (PiM (
⋃

(deps ‘ K)) (λ-. borel))
unfolding g-alt-3 using 2(1)
by (intro measurable-compose[OF - 2(8)] measurable-compose[OF - assms(7)]

measurable-restrict measurable-component-singleton) auto
moreover have ?h ∈ borel-measurable (PiM (I −

⋃
(deps ‘ K)) (λ-. borel))

unfolding h-alt-3 using 3
by (intro measurable-compose[OF - 2(9)] measurable-compose[OF - assms(7)]

measurable-restrict
measurable-component-singleton) auto

ultimately have covariance (?g ◦ flip X) (?h ◦ flip X) ≤ 0
by (rule neg-assoc-imp-mult-mono-bounded[OF assms(2), where J=

⋃
(deps ‘

K) and η=η])
thus covariance (g ◦ (λx y. f y (λi. X i x))) (h ◦ (λx y. f y (λi. X i x))) ≤ 0

by (simp add:comp-def)
qed

lemma neg-assoc-compose-simple:
fixes f :: ′i ⇒ (′c::linorder-topology) ⇒ (′d ::linorder-topology)
assumes finite I
assumes neg-assoc X I
assumes

∧
i. i ∈ I =⇒ monotone (≤) (≤≥η) (f i)

assumes [measurable]:
∧

i. i ∈ I =⇒ f i ∈ borel-measurable borel
shows neg-assoc (λi ω. f i (X i ω)) I

proof −
have depends-on (λω. f i (ω i)) {i} if i ∈ I for i

by (intro depends-onI) auto
moreover have monotone (≤) (≤≥η) (λω. f i (ω i)) if i ∈ I for i

using monotoneD[OF assms(3)[OF that]] by (intro monotoneI) (cases η, auto
dest:le-funE)

ultimately show ?thesis
by (intro neg-assoc-compose[OF assms(1,2), where deps=λi. {i} and η=η])

simp-all
qed

lemma covariance-distr :
fixes f g :: ′b ⇒ real
assumes [measurable]: ϕ ∈M →M N f ∈ borel-measurable N g ∈ borel-measurable

N
shows prob-space.covariance (distr M N ϕ) f g = covariance (f ◦ ϕ) (g ◦ ϕ) (is

?L = ?R)
proof −

let ?M ′ = distr M N ϕ
have ps-distr : prob-space ?M ′ by (intro prob-space-distr) measurable
interpret p2: prob-space ?M ′

using ps-distr by auto
have ?L = expectation (λx. (f (ϕ x)−expectation (λx. f (ϕ x)))∗(g(ϕ x)−expectation
(λx. g(ϕ x))))

20

unfolding p2.covariance-def by (subst (1 2 3) integral-distr) measurable
also have . . . = ?R

unfolding covariance-def comp-def by simp
finally show ?thesis by simp

qed

lemma neg-assoc-iff-distr :
assumes [measurable]:

∧
i. i ∈ I =⇒ X i ∈ borel-measurable M

shows neg-assoc X I ←→
prob-space.neg-assoc (distr M (PiM I (λ-. borel)) (λω. λi∈I . X i ω)) (flip id) I
(is ?L ←→ ?R)

proof
let ?M ′ = distr M (PiM I (λ-. borel)) (λω. λi∈I . X i ω)
have ps-distr : prob-space ?M ′

by (intro prob-space-distr) measurable

interpret p2: prob-space ?M ′

using ps-distr by auto

show ?R if ?L
proof (rule p2.neg-assocI , goal-cases)

case (1 i)
thus ?case using assms that unfolding id-def by measurable

next
case (2 f g J)

have dep-I : depends-on f I depends-on g I
using depends-on-mono[OF Diff-subset[of I J]] depends-on-mono[OF 2(1)]

2(2−3) by auto

have f-meas[measurable]: (λx. f x) ∈ borel-measurable (PiM I (λ-. borel))
by (subst depends-onD[OF 2(2)]) (intro 2 measurable-compose[OF measur-

able-restrict-subset])

have g-meas[measurable]: (λx. g x) ∈ borel-measurable (PiM I (λ-. borel))
by (subst depends-onD[OF 2(3)])
(intro 2 measurable-compose[OF measurable-restrict-subset], auto)

have covariance (f ◦ id ◦ (λω. λi∈I . X i ω)) (g ◦ id ◦ (λω. λi∈I . X i ω)) =
covariance (f ◦ flip X) (g ◦ flip X)

using depends-onD[OF dep-I (2)] depends-onD[OF dep-I (1)] by (simp add:comp-def)
also have . . . ≤ 0
using 2 by (intro neg-assoc-imp-mult-mono-bounded[OF that 2(1,6,7), where

η=Fwd]) simp-all
finally have covariance (f ◦ id ◦ (λω. λi∈I . X i ω)) (g ◦ id ◦ (λω. λi∈I . X i

ω)) ≤ 0 by simp
thus ?case by (subst covariance-distr) measurable

qed

21

show ?L if ?R
proof (rule neg-assocI , goal-cases)

case (1 i)
then show ?case by measurable

next
case (2 f g J)

have dep-I : depends-on f I depends-on g I
using depends-on-mono[OF Diff-subset[of I J]] depends-on-mono[OF 2(1)]

2(2−3) by auto

have f-meas[measurable]: (λx. f x) ∈ borel-measurable (PiM I (λ-. borel))
by (subst depends-onD[OF 2(2)]) (intro 2 measurable-compose[OF measur-

able-restrict-subset])

have g-meas[measurable]: (λx. g x) ∈ borel-measurable (PiM I (λ-. borel))
by (subst depends-onD[OF 2(3)])
(intro 2 measurable-compose[OF measurable-restrict-subset], auto)

note [measurable] = 2(8,9)
have covariance (f ◦ (λx y. X y x)) (g ◦ (λx y. X y x)) =

covariance (f ◦ (λω. λi∈I . X i ω)) (g ◦ (λω. λi∈I . X i ω))
using depends-onD[OF dep-I (2)] depends-onD[OF dep-I (1)] by (simp add:comp-def)
also have . . . = p2.covariance (f ◦ id) (g ◦ id) by (subst covariance-distr)

measurable
also have . . . ≤ 0
using 2 by (intro p2.neg-assoc-imp-mult-mono-bounded[OF that 2(1), where

η=Fwd])
(simp-all add:comp-def)

finally show ?case by simp
qed

qed

lemma neg-assoc-cong:
assumes finite I
assumes [measurable]:

∧
i. i ∈ I =⇒ Y i ∈ borel-measurable M

assumes neg-assoc X I
∧

i. i ∈ I =⇒ AE ω in M . X i ω = Y i ω
shows neg-assoc Y I

proof −
have [measurable]:

∧
i. i ∈ I =⇒ X i ∈ borel-measurable M

using neg-assoc-imp-measurable[OF assms(3)] by auto

let ?B = (λ-. borel)
have a:AE x in M . (∀ i∈I . (X i x = Y i x)) by (intro AE-finite-allI assms)
have AE x in M . (λi∈I . X i x) = (λi∈I . Y i x) by (intro AE-mp[OF a AE-I2])

auto
hence b:distr M (PiM I ?B) (λω. λi∈I . X i ω) = distr M (PiM I ?B) (λω. λi∈I .

Y i ω)
by (intro distr-cong-AE refl) measurable

22

have prob-space.neg-assoc (distr M (PiM I (λ-. borel)) (λω. λi∈I . X i ω)) (flip
id) I

using assms(2,3) by (intro iffD1[OF neg-assoc-iff-distr]) measurable
thus ?thesis unfolding b using assms(2)

by (intro iffD2[OF neg-assoc-iff-distr [where I=I]]) auto
qed

lemma neg-assoc-reindex-aux:
assumes inj-on h I
assumes neg-assoc X (h ‘ I)
shows neg-assoc (λk. X (h k)) I

proof (rule neg-assocI , goal-cases)
case (1 i) thus ?case using neg-assoc-imp-measurable[OF assms(2)] by simp

next
case (2 f g J)
let ?f = (λω. f (compose J ω h))
let ?g = (λω. g (compose (I−J) ω h))

note neg-assoc-imp-mult-mono-intros =
neg-assoc-imp-mult-mono-bounded(1)[OF assms(2), where J=h‘J and η=Fwd]
measurable-compose[OF - 2(8)] measurable-compose[OF - 2(9)]
measurable-compose[OF - measurable-finmap-compose]
bounded-range-imp[OF 2(6)] bounded-range-imp[OF 2(7)]

have [simp]:h ‘ I − h ‘ J = h ‘ (I−J)
using assms(1) 2(1) by (simp add: inj-on-image-set-diff)

have covariance (f ◦(λx y. X(h y)x)) (g◦(λx y. X(h y)x)) = covariance (?f ◦ flip
X) (?g ◦ flip X)

unfolding comp-def
by (intro arg-cong2[where f=covariance] ext depends-onD2[OF 2(2)] de-

pends-onD2[OF 2(3)])
(auto simp:compose-def)

also have . . . ≤ 0 using 2(1)
by (intro neg-assoc-imp-mult-mono-intros monotoneI depends-onI) (auto intro!:

monoD[OF 2(4)] monoD[OF 2(5)] simp:le-fun-def compose-def restrict-def
cong:if-cong)

finally show ?case by simp
qed

lemma neg-assoc-reindex:
assumes inj-on h I finite I
shows neg-assoc X (h ‘ I) ←→ neg-assoc (λk. X (h k)) I (is ?L ←→ ?R)

proof
assume ?L
thus ?R using neg-assoc-reindex-aux[OF assms(1)] by blast

next
note inv-h-inj = inj-on-the-inv-into[OF assms(1)]
assume a:?R

23

hence b:neg-assoc (λk. X (h (the-inv-into I h k))) (h ‘ I)
using the-inv-into-onto[OF assms(1)] by (intro neg-assoc-reindex-aux[OF inv-h-inj])

auto
show ?L

using f-the-inv-into-f [OF assms(1)] neg-assoc-imp-measurable[OF a] assms(2)
by (intro neg-assoc-cong[OF - - b]) auto

qed

lemma measurable-compose-merge-1:
assumes depends-on h K
assumes h ∈ PiM K M ′→M N K ⊆ I ∪ J
assumes (λx. restrict (fst (f x)) (K ∩ I)) ∈ A →M PiM (K ∩ I) M ′

assumes (λx. restrict (snd (f x)) (K ∩ J)) ∈ A →M PiM (K ∩ J) M ′

shows (λx. h(merge I J (f x))) ∈ A →M N
proof −

let ?f1 = λx. fst (f x)
let ?f2 = λx. snd (f x)
let ?g1 = λx. restrict (fst (f x)) (K ∩ I)
let ?g2 = λx. restrict (snd (f x)) (K ∩ J)

have a1:(λx. merge I J (?g1 x, ?g2 x) i) ∈ A →M M ′ i if i ∈ K ∩ I for i
using that measurable-compose[OF assms(4) measurable-component-singleton[OF

that]]
by (simp add:merge-def)

have a2:(λx. merge I J (?g1 x, ?g2 x) i) ∈ A →M M ′ i if i ∈ K ∩ J i /∈ I for i
using that measurable-compose[OF assms(5) measurable-component-singleton[OF

that(1)]]
by (simp add:merge-def)

have a:(λx. merge I J (?g1 x, ?g2 x) i) ∈ A →M M ′ i if i ∈ K for i
using assms(3) a1 a2 that by auto

have (λx. h(merge I J (f x))) = (λx. h(merge I J (?f1 x, ?f2 x))) by simp
also have . . . = (λx. h(λi ∈ K . merge I J (?f1 x, ?f2 x) i))

using depends-onD[OF assms(1)] by simp
also have . . . = (λx. h(λi ∈ K . merge I J (?g1 x, ?g2 x) i))

by (intro ext arg-cong[where f=h]) (auto simp:comp-def restrict-def merge-def
case-prod-beta)

also have . . . ∈ A →M N
by (intro measurable-compose[OF - assms(2)] measurable-restrict a)

finally show ?thesis by simp
qed

lemma measurable-compose-merge-2:
assumes depends-on h K h ∈ PiM K M ′→M N K ⊆ I ∪ J
assumes (λx. restrict (f x) (K ∩ I)) ∈ A →M PiM (K ∩ I) M ′

assumes (λx. restrict (g x) (K ∩ J)) ∈ A →M PiM (K ∩ J) M ′

shows (λx. h(merge I J (f x, g x))) ∈ A →M N

24

using assms by (intro measurable-compose-merge-1[OF assms(1−3)]) simp-all

lemma neg-assoc-combine:
fixes I I1 I2 :: ′i set
fixes X :: ′i ⇒ ′a ⇒ (′b::linorder-topology)
assumes finite I I1 ∪ I2 = I I1 ∩ I2 = {}
assumes indep-var (PiM I1 (λ-. borel)) (λω. λi∈I1. X i ω) (PiM I2 (λ-. borel))

(λω. λi∈I2. X i ω)
assumes neg-assoc X I1
assumes neg-assoc X I2
shows neg-assoc X I

proof −
define X ′ where X ′ i = (if i ∈ I then X i else (λ-. undefined)) for i

have X-measurable: random-variable borel (X i) if i ∈ I for i
using that assms(2) neg-assoc-imp-measurable[OF assms(5)]

neg-assoc-imp-measurable[OF assms(6)] by auto

have rv[measurable]: random-variable borel (X ′ i) for i
unfolding X ′-def using X-measurable by auto

have na-I1: neg-assoc X ′ I1 using neg-assoc-cong
unfolding X ′-def using assms(1,2) neg-assoc-imp-measurable[OF assms(5)]
by (intro neg-assoc-cong[OF - - assms(5)] AE-I2) auto

have na-I2: neg-assoc X ′ I2 using neg-assoc-cong
unfolding X ′-def using assms(1,2) neg-assoc-imp-measurable[OF assms(6)]
by (intro neg-assoc-cong[OF - - assms(6)] AE-I2) auto

have iv:indep-var(PiM I1 (λ-. borel))(λω. λi∈I1. X ′ i ω)(PiM I2 (λ-. borel))(λω.
λi∈I2. X ′ i ω)

using assms(2,4) unfolding indep-var-def X ′-def by (auto simp add:restrict-def
cong:if-cong)

let ?N = PiM I1 (λ-. borel)
⊗

M PiM I2 (λ-. borel)
let ?A = distr M (PiM I1 (λ-. borel)) (λω. λi∈I1. X ′ i ω)
let ?B = distr M (PiM I2 (λ-. borel)) (λω. λi∈I2. X ′ i ω)
let ?H = distr M ?N (λω. (λi∈I1. X ′ i ω, λi∈I2. X ′ i ω))

have indep: ?H = (?A
⊗

M ?B)
and rvs: random-variable (PiM I1 (λ-. borel)) (λω. λi∈I1. X ′ i ω)

random-variable (PiM I2 (λ-. borel)) (λω. λi∈I2. X ′ i ω)
using iffD1[OF indep-var-distribution-eq iv] by auto

interpret pa: prob-space ?A by (intro prob-space-distr rvs)
interpret pb: prob-space ?B by (intro prob-space-distr rvs)
interpret pair-sigma-finite ?A ?B
using pa.sigma-finite-measure pb.sigma-finite-measure by (intro pair-sigma-finite.intro)

25

interpret pab: prob-space (?A
⊗

M ?B)
by (intro prob-space-pair pa.prob-space-axioms pb.prob-space-axioms)

have pa-na: pa.neg-assoc (λx y. y x) I1
using assms(2) iffD1[OF neg-assoc-iff-distr na-I1] by fastforce

have pb-na: pb.neg-assoc (λx y. y x) I2
using assms(2) iffD1[OF neg-assoc-iff-distr na-I2] by fastforce

have na-X ′: neg-assoc X ′ I
proof (rule neg-assocI2, goal-cases)

case (1 i) thus ?case by measurable
next

case (2 f g K)

note bounded-intros =
bounded-range-imp[OF 2(6)] bounded-range-imp[OF 2(7)] pa.integrable-bounded
pb.integrable-bounded pab.integrable-bounded bounded-intros pb.finite-measure-axioms

have [measurable]:
restrict x I ∈ space (PiM I (λ-. borel)) for x :: (′i ⇒ ′b) and I by (simp

add:space-PiM)

have a: K ⊆ I1 ∪ I2 using 2 assms(2) by auto
have b: I−K ⊆ I1 ∪ I2 using assms(2) by auto

note merge-1 = measurable-compose-merge-2[OF 2(2,8) a] measurable-compose-merge-2[OF
2(3,9) b]

note merge-2 = measurable-compose-merge-1[OF 2(2,8) a] measurable-compose-merge-1[OF
2(3,9) b]

have merge-mono:
merge I1 I2 (w, y) ≤ merge I1 I2 (x, z) if w ≤ x y ≤ z for w x y z :: ′i ⇒ ′b

using le-funD[OF that(1)] le-funD[OF that(2)] unfolding merge-def by (intro
le-funI) auto

have split-h: h ◦ flip X ′ = (λω. h (merge I1 I2 (λi∈I1. X ′ i ω, λi∈I2. X ′ i ω)))
if depends-on h I for h :: - ⇒ real
using assms(2) unfolding comp-def
by (intro ext depends-onD2[OF that]) (auto simp:restrict-def merge-def)

have depends-on f I depends-on g I
using 2(1) by (auto intro:depends-on-mono[OF - 2(2)] depends-on-mono[OF

- 2(3)])
note split = split-h[OF this(1)] split-h[OF this(2)]

have step-1: (
∫

y. f (merge I1 I2 (x, y)) ∗ g (merge I1 I2 (x, y)) ∂?B) ≤
(
∫

y. f (merge I1 I2 (x, y))∂ ?B) ∗ (
∫

y. g (merge I1 I2 (x, y)) ∂?B) (is ?L1
≤ ?R1)

26

for x
proof −

have step1-1: monotone (≤) (≤≥Fwd) (λa. f (merge I1 I2 (x, a)))
unfolding dir-le by (intro monoI monoD[OF 2(4)] merge-mono) simp

have step1-2: monotone (≤) (≤≥Fwd) (λa. g (merge I1 I2 (x, a)))
unfolding dir-le by (intro monoI monoD[OF 2(5)] merge-mono) simp

have step1-3: depends-on (λa. f (merge I1 I2 (x, a))) (K ∩ I2)
by (subst depends-onD[OF 2(2)])
(auto intro:depends-onI simp:merge-def restrict-def cong:if-cong)

have step1-4: depends-on (λa. g (merge I1 I2 (x, a))) (I2 − K ∩ I2)
by (subst depends-onD[OF 2(3)])
(auto intro:depends-onI simp:merge-def restrict-def cong:if-cong)

show ?thesis
by (intro pb.neg-assoc-imp-mult-mono-bounded(2)[OF pb-na, where η=Fwd

and J=K ∩ I2]
bounded-intros merge-1 step1-1 step1-2 step1-3 step1-4) measurable

qed

have step2-1: monotone (≤) (≤≥Fwd) (λa. pb.expectation (λy. f (merge I1 I2
(a,y))))

unfolding dir-le
by (intro monoI integral-mono bounded-intros merge-1 monoD[OF 2(4)]

merge-mono) measurable

have step2-2: monotone (≤) (≤≥Fwd) (λa. pb.expectation (λy. g (merge I1 I2
(a,y))))

unfolding dir-le
by (intro monoI integral-mono bounded-intros merge-1 monoD[OF 2(5)]

merge-mono) measurable

have step2-3: depends-on (λa. pb.expectation (λy. f (merge I1 I2 (a, y)))) (K
∩ I1)

by (subst depends-onD[OF 2(2)])
(auto intro:depends-onI simp:merge-def restrict-def cong:if-cong)

have step2-4: depends-on (λa. pb.expectation (λy. g (merge I1 I2 (a, y))))
(I1−K∩I1)

by (subst depends-onD[OF 2(3)])
(auto intro:depends-onI simp:merge-def restrict-def cong:if-cong)

have (
∫
ω. (f ◦flip X ′) ω ∗ (g◦flip X ′) ω ∂M) = (

∫
ω. f (merge I1 I2 ω) ∗

g(merge I1 I2 ω) ∂?H)
unfolding split by (intro integral-distr [symmetric] merge-2 borel-measurable-times)

measurable
also have . . . = (

∫
ω. f (merge I1 I2 ω) ∗ g(merge I1 I2 ω) ∂ (?A

⊗
M ?B))

unfolding indep by simp
also have . . . = (

∫
x. (

∫
y. f (merge I1 I2 (x,y)) ∗ g(merge I1 I2 (x,y)) ∂?B)

∂?A)
by (intro integral-fst ′[symmetric] bounded-intros merge-2 borel-measurable-times)

27

measurable
also have . . . ≤ (

∫
x. (

∫
y. f (merge I1 I2 (x,y)) ∂?B) ∗ (

∫
y. g(merge I1 I2

(x,y)) ∂?B) ∂?A)
by (intro integral-mono-AE bounded-intros step-1 AE-I2 pb.borel-measurable-lebesgue-integral

borel-measurable-times iffD2[OF measurable-split-conv] merge-2) measurable
also have . . . ≤(

∫
x.(

∫
y. f (merge I1 I2 (x,y))∂?B)∂?A)∗(

∫
x.(

∫
y. g(merge I1

I2(x,y))∂?B)∂?A)
by (intro pa.neg-assoc-imp-mult-mono-bounded[OF pa-na, where η=Fwd and

J=K ∩ I1]
bounded-intros pb.borel-measurable-lebesgue-integral iffD2[OF measur-

able-split-conv]
merge-2 step2-1 step2-2 step2-3 step2-4) measurable

also have . . . = (
∫
ω. f (merge I1 I2 ω) ∂(?A

⊗
M ?B)) ∗ (

∫
ω. g(merge I1 I2

ω) ∂(?A
⊗

M ?B))
by (intro arg-cong2[where f=(∗)] integral-fst ′ merge-2 bounded-intros) mea-

surable
also have . . . = (

∫
ω. f (merge I1 I2 ω) ∂?H) ∗ (

∫
ω. g(merge I1 I2 ω) ∂?H)

unfolding indep by simp
also have . . . = (

∫
ω. (f ◦flip X ′) ω ∂M) ∗ (

∫
ω. (g◦flip X ′) ω ∂M)

unfolding split by (intro arg-cong2[where f=(∗)] integral-distr merge-2)
measurable

finally show ?case by (simp add:comp-def)
qed
show ?thesis by (intro neg-assoc-cong[OF assms(1) X-measurable na-X ′]) (simp-all

add:X ′-def)
qed

Property P7 [13]
lemma neg-assoc-union:

fixes I :: ′i set
fixes p :: ′j ⇒ ′i set
fixes X :: ′i ⇒ ′a ⇒ (′b::linorder-topology)
assumes finite I

⋃
(p ‘ J) = I

assumes indep-vars (λj. PiM (p j) (λ-. borel)) (λj ω. λi ∈ p j. X i ω) J
assumes

∧
j. j ∈ J =⇒ neg-assoc X (p j)

assumes disjoint-family-on p J
shows neg-assoc X I

proof −
let ?B = (λ-. borel)
define T where T = {j ∈ J . p j 6= {}}

define g where g i = (THE j. j ∈ J ∧ i ∈ p j) for i
have g: g i = j if i ∈ p j j ∈ J for i j unfolding g-def
proof (rule the1-equality)

show ∃ !j. j ∈ J ∧ i ∈ p j
using assms(5) that unfolding bex1-def disjoint-family-on-def by auto

show j ∈ J ∧ i ∈ p j using that by auto
qed

28

have ran-T : T ⊆ J unfolding T-def by simp
hence disjoint-family-on p T using assms(5) disjoint-family-on-mono by metis
moreover have finite (

⋃
(p ‘ T)) using ran-T assms(1,2)

by (meson Union-mono finite-subset image-mono)
moreover have

∧
i. i ∈ T =⇒ p i 6= {} unfolding T-def by auto

ultimately have fin-T : finite T using infinite-disjoint-family-imp-infinite-UNION
by auto

have neg-assoc X (
⋃
(p ‘ T))

using fin-T ran-T
proof (induction T rule:finite-induct)

case empty thus ?case using neg-assoc-empty by simp
next

case (insert x F)

note r = indep-var-compose[OF indep-var-restrict[OF assms(3), where A=F
and B={x}] -]

have a: (λω. λi∈
⋃
(p‘F). X i ω) = (λω. λi∈

⋃
(p‘F). ω (g i) i) ◦ (λω. λi∈F .

λi∈p i. X i ω)
using insert(4) g by (intro restrict-ext ext) auto

have b: (λω. λi∈p x. X i ω) = (λω i. ω x i) ◦ (λω. λi∈{x}. λi∈p i. X i ω)
by (simp add:comp-def restrict-def)

have c:(λx. x (g i) i) ∈ borel-measurable (PiM F (λj. PiM (p j) ?B)) if i ∈
(
⋃
(p‘F)) for i
proof −

have h: i ∈ p (g i) and q: g i ∈ F using g that insert(4) by auto
thus ?thesis

by (intro measurable-compose[OF measurable-component-singleton[OF q]])
measurable

qed

have finite (
⋃

(p ‘ insert x F)) using assms(1,2) insert(4)
by (meson Sup-subset-mono image-mono infinite-super)

moreover have
⋃

(p ‘ F) ∪ p x =
⋃

(p ‘ insert x F) by auto
moreover have

⋃
(p ‘ F) ∩ p x = {}

using assms(5) insert(2,4) unfolding disjoint-family-on-def by fast
moreover have

indep-var (PiM (
⋃
(p‘F)) ?B) (λω. λi∈

⋃
(p‘F). X i ω) (PiM (p x) ?B) (λω.

λi∈p x. X i ω)
unfolding a b using insert(1,2,4) by (intro r measurable-restrict c) simp-all

moreover have neg-assoc X (
⋃

(p ‘ F)) using insert(4) by (intro insert(3))
auto

moreover have neg-assoc X (p x) using insert(4) by (intro assms(4)) auto
ultimately show ?case by (rule neg-assoc-combine)

qed
moreover have (

⋃
(p ‘ T)) = I using assms(2) unfolding T-def by auto

ultimately show ?thesis by auto

29

qed

Property P5 [13]
lemma indep-imp-neg-assoc:

assumes finite I
assumes indep-vars (λ-. borel) X I
shows neg-assoc X I

proof −
have a:neg-assoc X {i} if i ∈ I for i

using that assms(2) unfolding indep-vars-def
by (intro neg-assoc-singleton) auto

have b: (
⋃

j∈I . {j}) = I by auto
have c: indep-vars (λj. PiM {j} (λ-. borel)) (λj ω. λi∈{j}. X j ω) I

by (intro indep-vars-compose2[OF assms(2)]) measurable
have d: indep-vars (λj. PiM {j} (λ-. borel)) (λj ω. λi∈{j}. X i ω) I

by (intro iffD2[OF indep-vars-cong c] restrict-ext ext) auto
show ?thesis by (intro neg-assoc-union[OF assms(1) b d a]) (auto simp:disjoint-family-on-def)

qed

end

lemma neg-assoc-map-pmf :
shows measure-pmf .neg-assoc (map-pmf f p) X I = measure-pmf .neg-assoc p (λi
ω. X i (f ω)) I

(is ?L ←→ ?R)
proof −

let ?d1 = distr (measure-pmf (map-pmf f p)) (PiM I (λ-. borel)) (λω. λi∈I . X
i ω)

let ?d2 = distr (measure-pmf p) (PiM I (λ-. borel)) (λω. λi∈I . X i (f ω))

have emeasure ?d1 A = emeasure ?d2 A if A ∈ sets (PiM I (λ-. borel)) for A
proof −

have emeasure ?d1 A = emeasure (measure-pmf p) {x. (λi∈I . X i (f x)) ∈ A}
using that by (subst emeasure-distr) (simp-all add:vimage-def space-PiM)

also have . . . = emeasure ?d2 A
using that by (subst emeasure-distr) (simp-all add:space-PiM vimage-def)

finally show ?thesis by simp
qed

hence a:?d1 = ?d2 by (intro measure-eqI) auto

have ?L ←→ prob-space.neg-assoc ?d1 (λx y. y x) I
by (subst measure-pmf .neg-assoc-iff-distr) auto

also have . . . ←→ prob-space.neg-assoc ?d2 (λx y. y x) I
unfolding a by simp

also have . . . ←→ ?R
by (subst measure-pmf .neg-assoc-iff-distr) auto

finally show ?thesis by simp
qed

30

end

3 Chernoff-Hoeffding Bounds

This section shows that all the well-known Chernoff-Hoeffding bounds hold
also for negatively associated random variables. The proofs follow the deriva-
tions by Hoeffding [11], as well as, Motwani and Raghavan [16, Ch. 4], with
the modification that the crucial steps, where the classic proofs use inde-
pendence, are replaced with the application of Property P2 for negatively
associated RV’s.
theory Negative-Association-Chernoff-Bounds

imports
Negative-Association-Definition
Concentration-Inequalities.McDiarmid-Inequality
Weighted-Arithmetic-Geometric-Mean.Weighted-Arithmetic-Geometric-Mean

begin

context prob-space
begin

context
fixes I :: ′i set
fixes X :: ′i ⇒ ′a ⇒ real
assumes na-X : neg-assoc X I
assumes fin-I : finite I

begin

private lemma transfer-to-clamped-vars:
assumes (∀ i∈I . AE ω in M . X i ω ∈ {a i..b i} ∧ a i ≤ b i)
assumes X -def : X = (λi. clamp (a i) (b i) ◦ X i)
shows neg-assoc X I (is ?A)

and
∧

i. i ∈ I =⇒ expectation (X i) = expectation (X i)
and P(ω in M . (

∑
i ∈ I . X i ω) ≤≥η c) = P(ω in M . (

∑
i ∈ I . X i ω) ≤≥η

c) (is ?C)
and

∧
i ω. i ∈ I =⇒ X i ω ∈ {a i..b i}

and
∧

i S . i ∈ I =⇒ bounded (X i ‘ S)
and

∧
i. i ∈ I =⇒ expectation (X i) ∈ {a i..b i}

proof −
note [measurable] = clamp-borel
note rv-X = neg-assoc-imp-measurable[OF na-X]

hence rv-X : random-variable borel (X i) if i ∈ I for i
unfolding X -def using rv-X [OF that] by measurable

have a:AE x in M . X i x = X i x if i ∈ I for i
unfolding X -def using clamp-eqI2 by (intro AE-mp[OF bspec[OF assms(1)

31

that] AE-I2]) auto

hence b:AE x in M . (∀ i ∈ I . X i x = X i x)
by (intro AE-finite-allI [OF fin-I]) simp

show ?A
using a by (intro neg-assoc-cong[OF fin-I rv-X na-X]) force+

show expectation (X i) = expectation (X i) if i ∈ I for i
by (intro integral-cong-AE a rv-X rv-X that)

have {ω ∈ space M . (
∑

i∈I . X i ω) ≤≥η c} ∈ events using rv-X by (cases η)
simp-all

moreover have {ω ∈ space M . (
∑

i∈I . X i ω) ≤≥η c} ∈ events using rv-X
by (cases η) simp-all

ultimately show ?C by (intro measure-eq-AE AE-mp[OF b AE-I2]) auto

show c:X i ω ∈ {a i..b i} if i ∈ I for ω i
unfolding X -def comp-def using assms(1) clamp-range that by simp

show d:bounded (X i ‘ S) if i ∈ I for S i
using c[OF that] assms(2) bounded-clamp by blast

show expectation (X i) ∈ {a i..b i} if i ∈ I for i
unfolding atLeastAtMost-iff using c[OF that] rv-X [OF that]
by (intro conjI integral-ge-const integral-le-const AE-I2 integrable-bounded d[OF

that]) auto
qed

lemma ln-one-plus-x-lower-bound:
assumes x ≥ (0::real)
shows 2∗x/(2+x) ≤ ln (1 + x)

proof −
define v where v x = ln(1+x) − 2 ∗ x/ (2+x) for x :: real
define v ′ where v ′ x = 1/(1+x) − 4/(2+x)^2 for x :: real

have v-deriv: (v has-real-derivative (v ′ x)) (at x) if x ≥ 0 for x
using that unfolding v-def v ′-def power2-eq-square by (auto intro!:derivative-eq-intros)
have v-deriv-nonneg: v ′ x ≥ 0 if x ≥ 0 for x

using that unfolding v ′-def
by (simp add:divide-simps power2-eq-square) (simp add:algebra-simps)

have v-mono: v x ≤ v y if x ≤ y x ≥ 0 for x y
using v-deriv v-deriv-nonneg that order-trans
by (intro DERIV-nonneg-imp-nondecreasing[OF that(1)]) blast

have 0 = v 0 unfolding v-def by simp
also have . . . ≤ v x using v-mono assms by auto
finally have v x ≥ 0 by simp

32

thus ?thesis unfolding v-def by simp
qed

Based on Theorem 4.1 by Motwani and Raghavan [16].
theorem multiplicative-chernoff-bound-upper :

assumes δ > 0
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . (

∑
i ∈ I . X i ω) ≥ (1+δ) ∗ µ) ≤ (exp δ/((1+δ) powr (1+δ)))

powr µ (is ?L ≤ ?R)
and P(ω in M . (

∑
i ∈ I . X i ω) ≥ (1+δ) ∗ µ) ≤ exp (−(δ^2) ∗ µ / (2+δ))

(is - ≤ ?R1)
proof −

define X where X = (λi. clamp 0 1 ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {0 .. 1} ∧ 0
≤ (1::real))

using assms(2) by auto
note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]
note [measurable] = neg-assoc-imp-measurable[OF ttcv(1)]

define t where t = ln (1+δ)
have t-gt-0: t > 0 using assms(1) unfolding t-def by simp

let ?h = (λx. 1 + (exp t − 1) ∗ x)

note bounded ′= integrable-bounded bounded-prod bounded-vec-mult-comp bounded-intros
ttcv(5)

have int: integrable M (X i) if i ∈ I for i
using that by (intro bounded ′) simp-all

have 2∗δ ≤ (2+δ)∗ ln (1 + δ)
using assms(1) ln-one-plus-x-lower-bound[OF less-imp-le[OF assms(1)]] by

(simp add:field-simps)
hence (1+δ)∗(2∗δ) ≤ (1 + δ) ∗(2+δ)∗ ln (1 + δ) using assms(1) by simp
hence a:(δ − (1 + δ) ∗ ln (1 + δ)) ≤ − (δ^2)/(2+δ)

using assms(1) by (simp add:field-simps power2-eq-square)

have µ-ge-0: µ ≥ 0 unfolding µ-def using ttcv(2,6) by (intro sum-nonneg)
auto

note X -prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
ttcv(1), where η=Fwd]]

have ?L = P(ω in M . (
∑

i ∈ I . X i ω) ≥ (1+δ) ∗ µ) using ttcv(3)[where
η=Rev] by simp

also have . . . = P(ω in M . (
∏

i ∈ I . exp (t ∗ X i ω)) ≥ exp (t ∗ (1+δ) ∗ µ))
using t-gt-0 by (simp add: sum-distrib-left[symmetric] exp-sum[OF fin-I ,symmetric])
also have . . . ≤ expectation (λω. (

∏
i ∈ I . exp (t ∗ X i ω))) / exp (t∗(1+δ)∗µ)

33

by (intro integral-Markov-inequality-measure[where A={}] bounded ′ AE-I2
prod-nonneg fin-I)

simp-all
also have . . . ≤ (

∏
i ∈ I . expectation (λω. exp (t∗X i ω))) / exp (t∗(1+δ)∗µ)

using t-gt-0 by (intro divide-right-mono X -prod-mono bounded ′ image-subsetI
monotoneI) simp-all

also have . . . = (
∏

i ∈ I . expectation (λω. exp ((1−X i ω) ∗R 0+ X i ω ∗R
t))) / exp (t∗(1+δ)∗µ)

by (simp add:ac-simps)
also have . . . ≤ (

∏
i ∈ I . expectation (λω. (1−X i ω) ∗ exp 0 + X i ω ∗ exp

t)) / exp (t∗(1+δ)∗µ)
using ttcv(4)

by (intro divide-right-mono prod-mono integral-mono conjI bounded ′ con-
vex-onD[OF exp-convex])

simp-all
also have . . . = (

∏
i ∈ I . ?h (expectation (X i))) / exp (t∗(1+δ)∗µ)

using int by (simp add:algebra-simps prob-space cong:prod.cong)
also have . . . ≤ (

∏
i ∈ I . exp((exp t−1)∗ expectation (X i))) / exp (t∗(1+δ)∗µ)

using t-gt-0 ttcv(4)
by (intro divide-right-mono prod-mono exp-ge-add-one-self conjI add-nonneg-nonneg

mult-nonneg-nonneg) simp-all
also have . . . = exp ((exp t−1)∗ µ) / exp (t∗(1+δ)∗µ)
unfolding exp-sum[OF fin-I , symmetric] µ-def by (simp add:ttcv(2) sum-distrib-left)
also have . . . = exp (δ ∗ µ) / exp (ln (1+δ)∗(1+δ) ∗ µ)

using assms(1) unfolding µ-def t-def by (simp add:sum-distrib-left)
also have . . . = exp δ powr µ / exp (ln(1+δ)∗(1+δ)) powr µ

unfolding powr-def by (simp add:ac-simps)
also have . . . = ?R using assms(1) by (subst powr-divide) (simp-all add:powr-def)
finally show ?L ≤ ?R by simp
also have . . . = exp (µ ∗ ln (exp δ / exp ((1 + δ) ∗ ln (1 + δ))))

using assms unfolding powr-def by simp
also have . . . = exp (µ ∗ (δ − (1 + δ) ∗ ln (1 + δ))) by (subst ln-div) simp-all
also have . . . ≤ exp (µ ∗ (−(δ^2)/(2+δ)))

by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono a µ-ge-0)
also have . . . = ?R1 by simp
finally show ?L ≤ ?R1 by simp

qed

lemma ln-one-minus-x-lower-bound:
assumes x ∈ {(0::real)..<1}
shows (x^2/2−x)/(1−x) ≤ ln (1 − x)

proof −
define v where v x = ln(1−x) − (x^2/2−x) / (1−x) for x :: real
define v ′ where v ′ x = −1/(1−x) − (−(x^2)/2+x−1)/((1−x)^2) for x :: real

have v-deriv: (v has-real-derivative (v ′ x)) (at x) if x ∈ {0..<1} for x
using that unfolding v-def v ′-def power2-eq-square
by (auto intro!:derivative-eq-intros simp:algebra-simps)

have v-deriv-nonneg: v ′ x ≥ 0 if x ≥ 0 for x

34

using that unfolding v ′-def by (simp add:divide-simps power2-eq-square)

have v-mono: v x ≤ v y if x ≤ y x ≥ 0 y < 1 for x y
using v-deriv v-deriv-nonneg that unfolding atLeastLessThan-iff
by (intro DERIV-nonneg-imp-nondecreasing[OF that(1)])

(metis (mono-tags, opaque-lifting) Ico-eq-Ico ivl-subset linorder-not-le or-
der-less-irrefl)

have 0 = v 0 unfolding v-def by simp
also have . . . ≤ v x using v-mono assms by auto
finally have v x ≥ 0 by simp
thus ?thesis unfolding v-def by simp

qed

Based on Theorem 4.2 by Motwani and Raghavan [16].
theorem multiplicative-chernoff-bound-lower :

assumes δ ∈ {0<..<1}
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . (

∑
i ∈ I . X i ω) ≤ (1−δ)∗µ) ≤ (exp (−δ)/(1−δ) powr (1−δ))

powr µ (is ?L ≤ ?R)
and P(ω in M . (

∑
i ∈ I . X i ω) ≤ (1−δ)∗µ) ≤ (exp (−(δ^2)∗µ/2)) (is - ≤

?R1)
proof −

define X where X = (λi. clamp 0 1 ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {0 .. 1} ∧ 0
≤ (1::real))

using assms(2) by auto
note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]
note [measurable] = neg-assoc-imp-measurable[OF ttcv(1)]

define t where t = ln (1−δ)
have t-lt-0: t < 0 using assms(1) unfolding t-def by simp

let ?h = (λx. 1 + (exp t − 1) ∗ x)

note bounded ′= integrable-bounded bounded-prod bounded-vec-mult-comp bounded-intros
ttcv(5)

have µ-ge-0: µ ≥ 0 unfolding µ-def using ttcv(2,6) by (intro sum-nonneg)
auto

have int: integrable M (X i) if i ∈ I for i
using that by (intro bounded ′) simp-all

note X -prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
ttcv(1), where η=Rev]]

have 0: 0 ≤ 1 + (exp t − 1) ∗ expectation (X i) if i ∈ I for i

35

proof −
have 0 ≤ 1 + (exp t − 1) ∗ 1 by simp
also have . . . ≤ 1 + (exp t − 1) ∗ expectation (X i)

using t-lt-0 ttcv(6)[OF that] by (intro add-mono mult-left-mono-neg) auto
finally show ?thesis by simp

qed

have δ ∈ {0..<1} using assms(1) by simp
from ln-one-minus-x-lower-bound[OF this]
have δ2 / 2 − δ ≤ (1 − δ) ∗ ln (1 − δ) using assms(1) by (simp add:field-simps)
hence 1: − δ − (1 − δ) ∗ ln (1 − δ) ≤ − δ2 / 2 by (simp add:algebra-simps)

have ?L = P(ω in M . (
∑

i ∈ I . X i ω) ≤ (1−δ) ∗ µ) using ttcv(3)[where
η=Fwd] by simp

also have . . . = P(ω in M . (
∏

i ∈ I . exp (t ∗ X i ω)) ≥ exp (t ∗ (1−δ) ∗ µ))
using t-lt-0 by (simp add: sum-distrib-left[symmetric] exp-sum[OF fin-I ,symmetric])
also have . . . ≤ expectation (λω. (

∏
i ∈ I . exp (t ∗ X i ω))) / exp (t∗(1−δ)∗µ)

by (intro integral-Markov-inequality-measure[where A={}] bounded ′ AE-I2
prod-nonneg fin-I)

simp-all
also have . . . ≤ (

∏
i ∈ I . expectation (λω. exp (t∗X i ω))) / exp (t∗(1−δ)∗µ)

using t-lt-0 by (intro divide-right-mono X -prod-mono bounded ′ image-subsetI
monotoneI) simp-all

also have . . . = (
∏

i ∈ I . expectation (λω. exp ((1−X i ω) ∗R 0+ X i ω ∗R
t))) / exp (t∗(1−δ)∗µ)

by (simp add:ac-simps)
also have . . . ≤ (

∏
i ∈ I . expectation (λω. (1−X i ω) ∗ exp 0 + X i ω ∗ exp

t)) / exp (t∗(1−δ)∗µ)
using ttcv(4)

by (intro divide-right-mono prod-mono integral-mono conjI bounded ′ con-
vex-onD[OF exp-convex])

simp-all
also have . . . = (

∏
i ∈ I . ?h (expectation (X i))) / exp (t∗(1−δ)∗µ)

using int by (simp add:algebra-simps prob-space cong:prod.cong)
also have . . . ≤ (

∏
i ∈ I . exp((exp t−1)∗ expectation (X i))) / exp (t∗(1−δ)∗µ)

using 0 by (intro divide-right-mono prod-mono exp-ge-add-one-self conjI)
simp-all

also have . . . = exp ((exp t−1)∗ µ) / exp (t∗(1−δ)∗µ)
unfolding exp-sum[OF fin-I , symmetric] µ-def by (simp add:ttcv(2) sum-distrib-left)
also have . . . = exp ((−δ) ∗ µ) / exp (ln (1−δ)∗(1−δ) ∗ µ)

using assms(1) unfolding µ-def t-def by (simp add:sum-distrib-left)
also have . . . = exp (−δ) powr µ / exp (ln(1−δ)∗(1−δ)) powr µ

unfolding powr-def by (simp add:ac-simps)
also have . . . = ?R using assms(1) by (subst powr-divide) (simp-all add:powr-def)
finally show ?L ≤ ?R by simp
also have . . . = exp (µ ∗ (− δ − (1 − δ) ∗ ln (1 − δ)))

using assms(1) unfolding powr-def by (simp add:ln-div)
also have . . . ≤ exp (µ ∗ (−(δ^2) / 2))

by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono µ-ge-0 1)

36

finally show ?L ≤ ?R1 by (simp add:ac-simps)
qed

theorem multiplicative-chernoff-bound-two-sided:
assumes δ ∈ {0<..<1}
assumes

∧
i. i ∈ I =⇒ AE ω in M . X i ω ∈ {0..1}

defines µ ≡ (
∑

i ∈ I . expectation (X i))
shows P(ω in M . |(

∑
i ∈ I . X i ω) − µ| ≥ δ∗µ) ≤ 2∗(exp (−(δ^2)∗µ/3)) (is

?L ≤ ?R)
proof −

define X where X = (λi. clamp 0 1 ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {0 .. 1} ∧ 0
≤ (1::real))

using assms(2) by auto
note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]

have µ-ge-0: µ ≥ 0 unfolding µ-def using ttcv(2,6) by (intro sum-nonneg)
auto

note [measurable] = neg-assoc-imp-measurable[OF na-X]

have ?L = P(ω in M . (
∑

i∈I . X i ω) ≥ (1+δ)∗µ ∨ (
∑

i∈I . X i ω) ≤ (1−δ)∗µ)
unfolding abs-real-def

by (intro arg-cong[where f=prob] Collect-cong) (auto simp:algebra-simps)
also have . . . =measure M ({ω∈space M .(

∑
i∈I . X i ω)≥(1+δ)∗µ}∪{ω∈space

M . (
∑

i∈I . X i ω)≤(1−δ)∗µ})
by (intro arg-cong[where f=prob]) auto

also have . . . ≤ P(ω in M . (
∑

i∈I . X i ω) ≥ (1+δ)∗µ) + P(ω in M .(
∑

i∈I . X
i ω) ≤ (1−δ)∗µ)

by (intro measure-Un-le) measurable
also have . . . ≤ exp (−(δ^2)∗µ/(2+δ)) + exp (−(δ^2)∗µ/2)

unfolding µ-def using assms(1,2)
by (intro multiplicative-chernoff-bound-lower multiplicative-chernoff-bound-upper

add-mono) auto
also have . . . ≤ exp (−(δ^2)∗µ/3) + exp (−(δ^2)∗µ/3)

using assms(1) µ-ge-0 by (intro iffD2[OF exp-le-cancel-iff] add-mono di-
vide-left-mono-neg) auto

also have . . . = ?R by simp
finally show ?thesis by simp

qed

lemma additive-chernoff-bound-upper-aux:
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes δ ∈ {0<..<1−µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ (µ+δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ+δ) µ)
(is ?L ≤ ?R)

proof −

37

define X where X = (λi. clamp 0 1 ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {0..1} ∧ 0 ≤

(1::real))
using assms(1) by auto

note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]
note [measurable] = neg-assoc-imp-measurable[OF ttcv(1)]

define t :: real where t = ln ((µ+δ)/µ) − ln ((1−µ−δ)/(1−µ))
let ?h = λx. 1 + (exp t − 1) ∗ x
let ?n = real (card I)

have n-gt-0: ?n > 0 using assms(2) fin-I by auto

have a: (1 − µ − δ) > 0 µ > 0 1 − µ > 0 µ + δ > 0
using assms(4,5) by auto

have ln ((1 − µ − δ) / (1 − µ)) < 0 using a assms(4) by (intro ln-less-zero)
auto

moreover have ln ((µ + δ) / µ) > 0 using a assms(4) by (intro ln-gt-zero)
auto

ultimately have t-gt-0: t > 0 unfolding t-def by simp

note bounded ′= integrable-bounded bounded-prod bounded-vec-mult-comp bounded-intros
ttcv(5)

note X -prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
ttcv(1), where η=Fwd]]

have int: integrable M (X i) if i ∈ I for i
using that by (intro bounded ′) simp-all

have 0: 0 ≤ 1 + (exp t − 1) ∗ expectation (X i) if i ∈ I for i
using t-gt-0 ttcv(6)[OF that] by (intro add-nonneg-nonneg mult-nonneg-nonneg)

auto

have 1 + (exp t − 1) ∗ µ = 1 + ((µ + δ) ∗ (1 − µ) / (µ ∗ (1 − µ − δ)) − 1) ∗
µ

using a unfolding t-def exp-diff by simp
also have . . . = 1 + (δ / (µ ∗ (1 − µ − δ))) ∗ µ

using a by (subst divide-diff-eq-iff) (simp, simp add:algebra-simps)
also have . . . = (1−µ−δ)/(1−µ−δ) + (δ / (1−µ−δ)) using a by simp
also have . . . = (1−µ) / (1−µ−δ)

unfolding add-divide-distrib[symmetric] by (simp add:algebra-simps)
also have . . . = inverse ((1−µ−δ) / (1−µ)) using a by simp
also have . . . = exp (ln (inverse ((1−µ−δ) / (1−µ)))) using a by simp
also have . . . = exp (− ln((1−µ−δ) / (1−µ))) using a by (subst ln-inverse)

(simp-all)
finally have 1: 1 + (exp t − 1) ∗ µ = exp (− ln((1−µ−δ) / (1−µ))) by simp

38

have ?L = P(ω in M . (
∑

i ∈ I . X i ω) ≥ (µ+δ) ∗ ?n) using ttcv(3)[where
η=Rev] by simp

also have . . . = P(ω in M . (
∏

i ∈ I . exp (t ∗ X i ω)) ≥ exp (t ∗ (µ+δ) ∗ ?n))
using t-gt-0 by (simp add: sum-distrib-left[symmetric] exp-sum[OF fin-I ,symmetric])
also have . . . ≤ expectation (λω. (

∏
i ∈ I . exp (t ∗ X i ω))) / exp (t ∗ (µ+δ) ∗

?n)
by (intro integral-Markov-inequality-measure[where A={}] bounded ′ AE-I2

prod-nonneg fin-I)
simp-all

also have . . . ≤ (
∏

i ∈ I . expectation (λω. exp (t∗X i ω))) / exp (t ∗ (µ+δ) ∗
?n)

using t-gt-0 by (intro divide-right-mono X -prod-mono bounded ′ image-subsetI
monotoneI) simp-all

also have . . . = (
∏

i ∈ I . expectation (λω. exp ((1−X i ω) ∗R 0 + X i ω ∗R
t))) / exp (t∗(µ+δ)∗?n)

by (simp add:ac-simps)
also have . . . ≤ (

∏
i∈I . expectation (λω. (1−X i ω)∗exp 0 + X i ω ∗ exp t)) /

exp (t ∗ (µ+δ) ∗ ?n)
using ttcv(4)

by (intro divide-right-mono prod-mono integral-mono conjI bounded ′ con-
vex-onD[OF exp-convex])

simp-all
also have . . . = (

∏
i ∈ I . ?h (expectation (X i))) / exp (t ∗ (µ+δ) ∗ ?n)

using int by (simp add:algebra-simps prob-space cong:prod.cong)
also have . . . = (root (card I) (

∏
i∈I . 1+(exp t−1)∗expectation (X i)))^(card

I) / exp (t∗(µ+δ)∗?n)
using n-gt-0
by (intro arg-cong2[where f=(/)] real-root-pow-pos2[symmetric] prod-nonneg

refl 0) auto
also have . . . ≤ ((

∑
i ∈ I . 1 + (exp t − 1) ∗ expectation (X i)) / ?n)^ (card I)

/ exp (t∗(µ+δ)∗?n)
by (intro divide-right-mono power-mono arithmetic-geometric-mean[OF fin-I]

real-root-ge-zero
prod-nonneg 0) simp-all

also have . . . ≤ ((
∑

i ∈ I . 1 + (exp t − 1) ∗ expectation (X i)) / ?n) powr ?n
/ exp (t∗(µ+δ)∗?n)

using n-gt-0 0 by (subst powr-realpow ′) (auto intro!:sum-nonneg divide-nonneg-pos
0)

also have . . . ≤ ((
∑

i ∈ I . 1 + (exp t − 1) ∗ expectation (X i)) / ?n) powr ?n
/ exp (t∗(µ+δ)∗?n)

using ttcv(2) by (simp cong:sum.cong)
also have . . . = (1 + (exp t − 1) ∗ µ) powr ?n / exp (t∗(µ+δ)∗?n)

using n-gt-0 unfolding µ-def sum.distrib sum-distrib-left[symmetric] by (simp
add:divide-simps)

also have . . . = (1 + (exp t − 1) ∗ µ) powr ?n / exp (t∗(µ+δ)) powr ?n
unfolding powr-def by simp

also have . . . = ((1 + (exp t − 1) ∗ µ)/exp(t∗(µ+δ))) powr ?n
using a t-gt-0 by (auto intro: powr-divide[symmetric] add-nonneg-nonneg

mult-nonneg-nonneg)

39

also have . . . = (exp (− ln((1−µ−δ) / (1−µ))) ∗ exp(−(t ∗ (µ+δ)))) powr ?n
unfolding 1 exp-minus inverse-eq-divide by simp

also have . . . = exp (−ln((1 − µ−δ)/(1 − µ))− t ∗ (µ+δ)) powr ?n
unfolding exp-add[symmetric] by simp

also have . . . = exp (−ln((1 − µ−δ)/(1 − µ))− (ln ((µ+δ)/µ) − ln ((1−µ−δ)/(1−µ)))∗(µ+δ))
powr ?n

using a unfolding t-def by (simp add:divide-simps)
also have . . . = exp(−KL-div (µ+δ) µ) powr ?n

using a by (subst KL-div-eq) (simp-all add:field-simps)
also have . . . = ?R unfolding powr-def by simp
finally show ?thesis by simp

qed

lemma additive-chernoff-bound-upper-aux-2:
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ real (card I)) ≤ exp (−real (card I) ∗ KL-div

1 µ)
(is ?L ≤ ?R)

proof −
define X where X = (λi. clamp 0 1 ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {0..1} ∧ 0 ≤

(1::real))
using assms(1) by auto

note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]
note [measurable] = neg-assoc-imp-measurable[OF ttcv(1)]

let ?n = real (card I)

have n-gt-0: ?n > 0 using assms(2) fin-I by auto

note bounded ′= integrable-bounded bounded-prod bounded-vec-mult-comp bounded-intros
ttcv(5)

bounded-max

note X -prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
ttcv(1), where η=Fwd]]

have a2:(
∏

i ∈ I . max 0 (X i ω)) ≥ 1 if (
∑

i ∈ I . X i ω) ≥ ?n for ω
proof −

have (
∑

i ∈ I . 1 − X i ω) ≤ 0 using that by (simp add:sum-subtractf)
moreover have (

∑
i ∈ I . 1 − X i ω) ≥ 0 using ttcv(4) by (intro sum-nonneg)

simp
ultimately have (

∑
i ∈ I . 1 − X i ω) = 0 by simp

with iffD1[OF sum-nonneg-eq-0-iff [OF fin-I] this]
have ∀ i ∈ I . 1 − X i ω = 0 using ttcv(4) by simp
hence X i ω = 1 if i ∈ I for i using that by auto
thus ?thesis by (intro prod-ge-1) fastforce

40

qed

have ?L = P(ω in M . (
∑

i ∈ I . X i ω) ≥ ?n) using ttcv(3)[where η=Rev] by
simp

also have . . . ≤ P(ω in M . (
∏

i ∈ I . max 0 (X i ω)) ≥ 1)
using a2 by (intro finite-measure-mono) auto

also have . . . ≤ expectation (λω. (
∏

i ∈ I . max 0 (X i ω))) / 1
by (intro integral-Markov-inequality-measure[where A={}] bounded ′ AE-I2

prod-nonneg fin-I)
auto

also have . . . ≤ (
∏

i ∈ I . expectation (λω. max 0 (X i ω))) / 1
by (intro divide-right-mono X -prod-mono bounded ′ image-subsetI monotoneI)

simp-all
also have . . . ≤ (

∏
i ∈ I . expectation (X i)) using ttcv(4) by simp

also have . . . = (root (card I) (
∏

i∈I . expectation (X i)))^(card I)
using n-gt-0 ttcv(6) by (intro real-root-pow-pos2[symmetric] prod-nonneg refl)

auto
also have . . . ≤ ((

∑
i ∈ I . expectation (X i)) / ?n)^ (card I)

using ttcv(6) by (intro power-mono arithmetic-geometric-mean[OF fin-I]
real-root-ge-zero

prod-nonneg) auto
also have . . . ≤ ((

∑
i ∈ I . expectation (X i)) / ?n) powr ?n

using n-gt-0 ttcv(6) by (subst powr-realpow ′) (auto intro!:sum-nonneg di-
vide-nonneg-pos)

also have . . . ≤ µ powr ?n using ttcv(2) unfolding µ-def by simp
also have . . . = ?R using assms(4) unfolding powr-def by (subst KL-div-eq)

(auto simp:ln-div)
finally show ?thesis by simp

qed

Based on Theorem 1 by Hoeffding [11].
lemma additive-chernoff-bound-upper :

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}
defines µ ≡ (

∑
i∈I . expectation (X i)) / real (card I)

assumes δ ∈ {0..1−µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≥ (µ+δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ+δ) µ)
(is ?L ≤ ?R)

proof −
note [measurable] = neg-assoc-imp-measurable[OF na-X]

let ?n = real (card I)
have n-gt-0: ?n > 0 using assms fin-I by auto

note X-prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
na-X , where η=Fwd]]

have b:AE x in M . (∀ i ∈ I . X i x ∈ {0..1})
using assms(1) by (intro AE-finite-allI [OF fin-I]) simp

41

hence c:AE x in M . (
∑

i∈I . 1 − X i x) ≥ 0
by (intro AE-mp[OF b AE-I2] impI sum-nonneg) auto

consider (i) δ=0 | (ii) δ ∈ {0<..<1−µ} | (iii) 1−µ=δ using assms(4) by
fastforce

thus ?thesis
proof (cases)

case i
hence KL-div (µ+δ) µ = 0 using assms(4,5) by (subst KL-div-eq) auto
thus ?thesis by simp

next
case ii

thus ?thesis unfolding µ-def using assms by (intro additive-chernoff-bound-upper-aux)
auto

next
case iii
hence a:µ+δ=1 by simp
thus ?thesis unfolding a mult-1 unfolding µ-def using assms

by (intro additive-chernoff-bound-upper-aux-2) auto
qed

qed

Based on Theorem 2 by Hoeffding [11].
lemma hoeffding-bound-upper :

assumes
∧

i. i∈I =⇒ a i ≤ b i
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i}

defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . (

∑
i∈I . X i ω) ≥ µ + δ ∗ n) ≤ exp (−2∗(n∗δ)^2 / (

∑
i∈I .

(b i − a i)^2))
(is ?L ≤ ?R)

proof (cases δ=0)
case True thus ?thesis by simp

next
case False
define X where X = (λi. clamp (a i) (b i) ◦ X i)
have transfer-to-clamped-vars-assms: (∀ i∈I . AE ω in M . X i ω ∈ {a i.. b i} ∧

a i ≤ b i)
using assms(1,2) by auto

note ttcv = transfer-to-clamped-vars[OF transfer-to-clamped-vars-assms X -def]
note [measurable] = neg-assoc-imp-measurable[OF ttcv(1)]

define s where s = (
∑

i∈I . (b i − a i)^2)
have s-gt-0: s > 0 using assms unfolding s-def by auto

have I-ne: I 6= {} using assms(6) by auto

have n-gt-0: n > 0 using I-ne fin-I unfolding n-def by auto

42

define t where t = 4 ∗ δ ∗ n / s

have t-gt-0: t > 0 unfolding t-def using False n-gt-0 s-gt-0 assms by auto

note bounded ′= integrable-bounded bounded-prod bounded-vec-mult-comp bounded-intros
ttcv(5)

note X -prod-mono = has-int-thatD(2)[OF neg-assoc-imp-prod-mono[OF fin-I
ttcv(1), where η=Fwd]]

have int: integrable M (X i) if i ∈ I for i
using that by (intro bounded ′) simp-all

define ν where ν i = expectation (X i) for i
have 1: expectation (λx. X i x − ν i) = 0 if i ∈ I for i
unfolding ν-def using int[OF that] ttcv(2)[OF that] by (simp add:prob-space)

have ?L = P(ω in M . (
∑

i ∈ I . X i ω) ≥ µ+δ ∗ n) using ttcv(3)[where η=Rev]
by simp

also have . . . = P(ω in M . (
∑

i ∈ I . X i ω − ν i) ≥ δ ∗ n)
using n-gt-0 unfolding µ-def ν-def by (simp add:algebra-simps sum-subtractf)

also have . . . = P(ω in M . (
∏

i ∈ I . exp (t ∗ (X i ω − ν i))) ≥ exp (t ∗ δ ∗ n))
using t-gt-0 by (simp add: sum-distrib-left[symmetric] exp-sum[OF fin-I ,symmetric])
also have . . . ≤ expectation (λω. (

∏
i ∈ I . exp (t ∗ (X i ω − ν i)))) / exp (t ∗

δ ∗ n)
by (intro integral-Markov-inequality-measure[where A={}] bounded ′ AE-I2

prod-nonneg fin-I)
simp-all

also have . . . ≤ (
∏

i ∈ I . expectation (λω. exp (t∗(X i ω − ν i)))) / exp (t ∗ δ
∗ n)

using t-gt-0 by (intro divide-right-mono X -prod-mono bounded ′ image-subsetI
monotoneI) simp-all

also have . . . ≤ (
∏

i ∈ I . exp (t^2 ∗ ((b i − ν i) − (a i−ν i))2 / 8)) / exp
(t∗δ∗n)

using ttcv(4) 1
by (intro divide-right-mono prod-mono conjI Hoeffdings-lemma-bochner t-gt-0

AE-I2) simp-all
also have . . . = (

∏
i ∈ I . exp (t^2 ∗ (b i − a i)2 / 8)) / exp (t∗δ∗n) by simp

also have . . . = exp((t^2/8)∗ (
∑

i ∈ I . (b i − a i)^2)) / exp (t∗δ∗n)
unfolding exp-sum[OF fin-I , symmetric] by (simp add:algebra-simps sum-distrib-left)
also have . . . = exp((t^2/8)∗ s− t∗δ∗n)

unfolding exp-diff s-def by simp
also have . . . = exp(−2 ∗(n∗δ)^2 / s)

using s-gt-0 unfolding t-def by (simp add:divide-simps power2-eq-square)
also have . . . = ?R unfolding s-def by simp
finally show ?thesis by simp

qed

end

43

Dual and two-sided versions of Theorem 1 and 2 by Hoeffding [11].
lemma additive-chernoff-bound-lower :

assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ AE ω in M . X i ω ∈ {0..1} I 6= {}

defines µ ≡ (
∑

i∈I . expectation (X i)) / real (card I)
assumes δ ∈ {0..µ} µ ∈ {0<..<1}
shows P(ω in M . (

∑
i∈I . X i ω) ≤ (µ−δ)∗real (card I)) ≤ exp (−real (card I)

∗ KL-div (µ−δ) µ)
(is ?L ≤ ?R)

proof −
note [measurable] = neg-assoc-imp-measurable[OF assms(1)]

have int[simp]: integrable M (X i) if i ∈ I for i
using that by (intro integrable-const-bound[where B=1] AE-mp[OF assms(3)[OF

that] AE-I2]) auto
have n-gt-0: real (card I) > 0 using assms by auto

hence 0: (1−µ) = (
∑

i∈I . expectation (λω. 1 − X i ω)) / real (card I)
unfolding µ-def by (simp add:prob-space sum-subtractf divide-simps)

have 1: neg-assoc (λi ω. 1 − X i ω) I
by (intro neg-assoc-compose-simple[OF assms(2,1), where η=Rev]) (auto in-

tro:antimonoI)

have 2: δ ≤ (1 − (1 − µ)) δ ≥ 0 using assms by auto
have 3: 1−µ ∈ {0<..<1} using assms by auto
have ?L = P(ω in M . (

∑
i∈I . 1 − X i ω) ≥ ((1−µ)+δ)∗real (card I))

by (simp add:sum-subtractf algebra-simps)
also have . . . ≤ exp (−real (card I) ∗ KL-div ((1−µ)+δ) (1−µ))

using assms(3) 1 2 3 unfolding 0 by (intro additive-chernoff-bound-upper
assms(2,4)) auto

also have . . . = exp (−real (card I) ∗ KL-div (1−(µ−δ)) (1−µ)) by (simp
add:algebra-simps)
also have . . . = ?R using assms(6,7) by (subst KL-div-swap) (simp-all add:algebra-simps)
finally show ?thesis by simp

qed

lemma hoeffding-bound-lower :
assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ a i ≤ b i

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i}
defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . (

∑
i∈I . X i ω) ≤ µ−δ∗n) ≤ exp (−2∗(n∗δ)^2 / (

∑
i∈I . (b i

− a i)^2))
(is ?L ≤ ?R)

proof −
have 0: −µ = (

∑
i∈I . expectation (λω. − X i ω)) unfolding µ-def by (simp

add:sum-negf)

44

have 1: neg-assoc (λi ω. − X i ω) I
by (intro neg-assoc-compose-simple[OF assms(2,1), where η=Rev]) (auto in-

tro:antimonoI)

have ?L = P(ω in M . (
∑

i∈I . −X i ω) ≥ (−µ)+δ∗n) by (simp add:algebra-simps
sum-negf)

also have . . . ≤ exp (−2∗(n∗δ)^2 / (
∑

i∈I . ((−a i) − (−b i))^2))
using assms(3,4,8) unfolding 0 n-def by (intro hoeffding-bound-upper [OF 1]

assms(2,4,7)) auto
also have . . .= ?R by simp
finally show ?thesis by simp

qed

lemma hoeffding-bound-two-sided:
assumes neg-assoc X I finite I
assumes

∧
i. i∈I =⇒ a i ≤ b i

assumes
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i} I 6= {}
defines n ≡ real (card I)
defines µ ≡ (

∑
i∈I . expectation (X i))

assumes δ ≥ 0 (
∑

i∈I . (b i − a i)^2) > 0
shows P(ω in M . |(

∑
i∈I . X i ω)−µ| ≥ δ∗n) ≤ 2∗exp (−2∗(n∗δ)^2 / (

∑
i∈I .

(b i − a i)^2))
(is ?L ≤ ?R)

proof −
note [measurable] = neg-assoc-imp-measurable[OF assms(1)]

have ?L = P(ω in M . (
∑

i∈I . X i ω) ≥ µ+δ∗n ∨ (
∑

i∈I . X i ω) ≤ µ−δ∗n)
unfolding abs-real-def by (intro arg-cong[where f=prob] Collect-cong) auto

also have . . . = measure M ({ω∈space M . (
∑

i∈I . X i ω)≥µ+δ∗n}∪{ω∈space
M . (

∑
i∈I . X i ω)≤µ−δ∗n})

by (intro arg-cong[where f=prob]) auto
also have . . . ≤ P(ω in M . (

∑
i∈I . X i ω) ≥ µ+δ∗n) + P(ω in M .(

∑
i∈I . X

i ω) ≤ µ−δ∗n)
by (intro measure-Un-le) measurable

also have . . . ≤ exp (−2∗(n∗δ)^2 / (
∑

i∈I . (b i−a i)^2)) + exp (−2∗(n∗δ)^2
/ (

∑
i∈I . (b i−a i)^2))

unfolding n-def µ-def by (intro hoeffding-bound-lower hoeffding-bound-upper
add-mono assms)

also have . . . = ?R by simp
finally show ?thesis by simp

qed

end

end

45

4 The FKG inequality

The FKG inequality [9] is a generalization of Chebyshev’s less known other
inequality. It is sometimes referred to as Chebyshev’s sum inequality. Al-
though there is a also a continuous version, which can be stated as:

E[fg] ≥ E[f]E[g]

where f , g are continuous simultaneously monotone or simultaneously an-
timonotone functions on the Lebesgue probability space [a, b] ⊆ R. (Ef
denotes the expectation of the function.)
Note that the inequality is also true for totally ordered discrete probability
spaces, for example: {1, . . . , n} with uniform probabilities.
The FKG inequality is essentially a generalization of the above to not nec-
essarily totally ordered spaces, but finite distributive lattices.
The proof follows the derivation in the book by Alon and Spencer [2, Ch.
6].
theory Negative-Association-FKG-Inequality

imports
Negative-Association-Util
Birkhoff-Finite-Distributive-Lattices.Birkhoff-Finite-Distributive-Lattices

begin

theorem four-functions-helper :
fixes ϕ :: nat ⇒ ′a set ⇒ real
assumes finite I
assumes

∧
i. i ∈ {0..3} =⇒ ϕ i ∈ Pow I → {0..}

assumes
∧

A B. A ⊆ I =⇒ B ⊆ I =⇒ ϕ 0 A ∗ ϕ 1 B ≤ ϕ 2 (A ∪ B) ∗ ϕ 3 (A
∩ B)

shows (
∑

A∈Pow I . ϕ 0 A)∗(
∑

B∈Pow I . ϕ 1 B) ≤ (
∑

C∈Pow I . ϕ 2
C)∗(

∑
D∈Pow I . ϕ 3 D)

using assms
proof (induction I arbitrary:ϕ rule:finite-induct)

case empty
then show ?case using empty by auto

next
case (insert x I)
define ϕ ′ where ϕ ′ i A = ϕ i A + ϕ i (A ∪ {x}) for i A

have a:(
∑

A∈Pow (insert x I). ϕ i A) = (
∑

A∈Pow I . ϕ ′ i A) (is ?L1 = ?R1)
for i

proof −
have ?L1 = (

∑
A∈Pow I . ϕ i A) + (

∑
A∈insert x ‘ Pow I . ϕ i A)

using insert(1,2) unfolding Pow-insert by (intro sum.union-disjoint) auto
also have . . . = (

∑
A∈Pow I . ϕ i A) + (

∑
A∈Pow I . ϕ i (insert x A))

using insert(2) by (subst sum.reindex) (auto intro!:inj-onI)
also have . . . = ?R1 using insert(1) unfolding ϕ ′-def sum.distrib by simp

46

finally show ?thesis by simp
qed

have ϕ-int: ϕ 0 A ∗ ϕ 1 B ≤ ϕ 2 C ∗ ϕ 3 D
if C = A ∪ B D = A ∩ B A ⊆ insert x I B ⊆ insert x I for A B C D
using that insert(5) by auto

have ϕ-nonneg: ϕ i A ≥ 0 if A ⊆ insert x I i ∈ {0..3} for i A
using that insert(4) by auto

have ϕ ′ 0 A ∗ ϕ ′ 1 B ≤ ϕ ′ 2 (A ∪ B) ∗ ϕ ′ 3 (A ∩ B) if A ⊆ I B ⊆ I for A B
proof −

define a0 a1 where a: a0 = ϕ 0 A a1 = ϕ 0 (insert x A)
define b0 b1 where b: b0 = ϕ 1 B b1 = ϕ 1 (insert x B)
define c0 c1 where c: c0 = ϕ 2 (A ∪ B) c1 = ϕ 2 (insert x (A ∪ B))
define d0 d1 where d: d0 = ϕ 3 (A ∩ B) d1 = ϕ 3 (insert x (A ∩ B))

have 0:a0 ∗ b0 ≤ c0 ∗ d0 using that unfolding a b c d by (intro ϕ-int) auto
have 1:a0 ∗ b1 ≤ c1 ∗ d0 using that insert(2) unfolding a b c d by (intro

ϕ-int) auto
have 2:a1 ∗ b0 ≤ c1 ∗ d0 using that insert(2) unfolding a b c d by (intro

ϕ-int) auto
have 3:a1 ∗ b1 ≤ c1 ∗ d1 using that insert(2) unfolding a b c d by (intro

ϕ-int) auto
have 4:a0 ≥ 0 a1 ≥ 0 b0 ≥ 0 b1 ≥ 0 using that unfolding a b by (auto intro!:

ϕ-nonneg)
have 5:c0 ≥ 0 c1 ≥ 0 d0 ≥ 0 d1 ≥ 0 using that unfolding c d by (auto

intro!: ϕ-nonneg)

consider (a) c1 = 0 | (b) d0 = 0 | (c) c1 > 0 d0 > 0 using 4 5 by argo

then have (a0 + a1) ∗ (b0 + b1) ≤ (c0 + c1) ∗ (d0 + d1)
proof (cases)

case a
hence a0 ∗ b1 = 0 a1 ∗ b0 = 0 a1 ∗ b1 = 0

using 1 2 3 by (intro order-antisym mult-nonneg-nonneg 4 5;simp-all)+
then show ?thesis unfolding distrib-left distrib-right

using 0 4 5 by (metis add-mono mult-nonneg-nonneg)
next

case b
hence a0 ∗ b0 = 0 a0 ∗ b1 = 0 a1 ∗ b0 = 0

using 0 1 2 by (intro order-antisym mult-nonneg-nonneg 4 5;simp-all)+
then show ?thesis unfolding distrib-left distrib-right

using 3 4 5 by (metis add-mono mult-nonneg-nonneg)
next

case c
have 0 ≤ (c1∗d0−a0∗b1) ∗ (c1∗d0 − a1∗b0)

using 1 2 by (intro mult-nonneg-nonneg) auto
hence (a0 + a1) ∗ (b0 + b1)∗d0∗c1 ≤ (a0∗b0 + c1∗d0) ∗ (c1∗d0 + a1∗b1)

47

by (simp add:algebra-simps)
hence (a0 + a1) ∗ (b0 + b1) ≤ ((a0∗b0)/d0 + c1) ∗ (d0 + (a1∗b1)/c1)

using c 4 5 by (simp add:field-simps)
also have . . . ≤ (c0 + c1) ∗ (d0 + d1)
using 0 3 c 4 5 by (intro mult-mono add-mono order .refl) (simp add:field-simps)+
finally show ?thesis by simp

qed

thus ?thesis unfolding ϕ ′-def a b c d by auto
qed

moreover have ϕ ′ i ∈ Pow I → {0..} if i ∈ {0..3} for i
using insert(4)[OF that] unfolding ϕ ′-def by (auto intro!:add-nonneg-nonneg)

ultimately show ?case unfolding a by (intro insert(3)) auto
qed

The following is the Ahlswede-Daykin inequality [1] also referred to by Alon
and Spencer as the four functions theorem [2, Th. 6.1.1].
theorem four-functions:

fixes α β γ δ :: ′a set ⇒ real
assumes finite I
assumes α ∈ Pow I → {0..} β ∈ Pow I → {0..} γ ∈ Pow I → {0..} δ ∈ Pow I
→ {0..}

assumes
∧

A B. A ⊆ I =⇒ B ⊆ I =⇒ α A ∗ β B ≤ γ (A ∪ B) ∗ δ (A ∩ B)
assumes M ⊆ Pow I N ⊆ Pow I
shows (

∑
A∈M . α A)∗(

∑
B∈N . β B) ≤ (

∑
C | ∃A∈M . ∃B∈N . C=A∪B. γ

C)∗(
∑

D| ∃A∈M . ∃B∈N . D=A∩B. δ D)
(is ?L ≤ ?R)

proof −
define α ′ where α ′ A = (if A ∈ M then α A else 0) for A
define β ′ where β ′ B = (if B ∈ N then β B else 0) for B
define γ ′ where γ ′ C = (if ∃A∈M . ∃B∈N . C=A∪B then γ C else 0) for C
define δ ′ where δ ′ D = (if ∃A∈M . ∃B∈N . D=A∩B then δ D else 0) for D

define ϕ where ϕ i = [α ′,β ′,γ ′,δ ′] ! i for i

have list-all (λi. ϕ i ∈ Pow I → {0..}) [0..<4]
unfolding ϕ-def α ′-def β ′-def γ ′-def δ ′-def using assms(2−5)
by (auto simp add:numeral-eq-Suc)

hence ϕ-nonneg: ϕ i ∈ Pow I → {0..} if i ∈ {0..3} for i
unfolding list.pred-set using that by auto

have 0: ϕ 0 A ∗ ϕ 1 B ≤ ϕ 2 (A ∪ B) ∗ ϕ 3 (A ∩ B) (is ?L1 ≤ ?R1) if A ⊆ I
B ⊆ I for A B

proof (cases A ∈ M ∧ B ∈ N)
case True
have ?L1 = α A ∗ β B using True unfolding ϕ-def α ′-def β ′-def by auto
also have . . . ≤ γ (A ∪ B) ∗ δ (A ∩ B) by(intro that assms(6))
also have . . . = ?R1 using True unfolding γ ′-def δ ′-def ϕ-def by auto

48

finally show ?thesis by simp
next

case False
hence ?L1 = 0 unfolding α ′-def β ′-def ϕ-def by auto
also have . . . ≤ ?R1 using ϕ-nonneg[of 2] ϕ-nonneg[of 3] that

by (intro mult-nonneg-nonneg) auto
finally show ?thesis by simp

qed

have fin-pow: finite (Pow I) using assms(1) by simp

have ?L = (
∑

A ∈ Pow I . α ′ A) ∗ (
∑

B ∈ Pow I . β ′ B)
unfolding α ′-def β ′-def using assms(1,7 ,8) by (simp add: sum.If-cases

Int-absorb1)
also have . . . = (

∑
A ∈ Pow I . ϕ 0 A) ∗ (

∑
A ∈ Pow I . ϕ 1 A) unfolding

ϕ-def by simp
also have . . . ≤ (

∑
A ∈ Pow I . ϕ 2 A) ∗ (

∑
A ∈ Pow I . ϕ 3 A)

by (intro four-functions-helper assms(1) ϕ-nonneg 0) auto
also have . . . = (

∑
A ∈ Pow I . γ ′ A) ∗ (

∑
B ∈ Pow I . δ ′ B) unfolding ϕ-def

by simp
also have . . . = ?R

unfolding γ ′-def δ ′-def sum.If-cases[OF fin-pow] sum.neutral-const add-0-right
using assms(7 ,8)

by (intro arg-cong2[where f=(∗)] sum.cong refl) auto
finally show ?thesis by simp

qed

Using Birkhoff’s Representation Theorem [3, 5] it is possible to generalize
the previous to finite distributive lattices [2, Cor. 6.1.2].
lemma four-functions-in-lattice:

fixes α β γ δ :: ′a :: finite-distrib-lattice ⇒ real
assumes range α ⊆ {0..} range β ⊆ {0..} range γ ⊆ {0..} range δ ⊆ {0..}
assumes

∧
x y. α x ∗ β y ≤ γ (x t y) ∗ δ (x u y)

shows (
∑

x∈M . α x)∗(
∑

y∈N . β y) ≤ (
∑

c| ∃ x∈M . ∃ y∈N . c=xty. γ c)∗(
∑

d|
∃ x∈M . ∃ y∈N . d=xuy. δ d)

(is ?L ≤ ?R)
proof −

let ?e = λx:: ′a. {| x |}
let ?f = the-inv ?e

have ran-e: range ?e = OJ by (rule bij-betw-imp-surj-on[OF birkhoffs-theorem])
have inj-e: inj ?e by (rule bij-betw-imp-inj-on[OF birkhoffs-theorem])

define conv :: (′a ⇒ real) ⇒ ′a set ⇒ real
where conv ϕ I = (if I ∈ OJ then ϕ(?f I) else 0) for ϕ I

define α ′ β ′ γ ′ δ ′ where prime-def :α ′ = conv α β ′ = conv β γ ′ = conv γ δ ′ =
conv δ

49

have 1:conv ϕ ∈ Pow J → {0..} if range ϕ ⊆ {(0::real)..} for ϕ
using that unfolding conv-def by (intro Pi-I) auto

have 0:α ′ A ∗ β ′ B ≤ γ ′ (A ∪ B) ∗ δ ′ (A ∩ B) if A ⊆ J B ⊆ J for A B
proof (cases A ∈ OJ ∧ B ∈ OJ)

case True
define x y where xy: x = ?f A y = ?f B

have p0:?e (x t y) = A ∪ B
using True ran-e unfolding join-irreducibles-join-homomorphism xy
by (subst (1 2) f-the-inv-into-f [OF inj-e]) auto

hence p1:A ∪ B ∈ OJ using ran-e by auto

have p2:?e (x u y) = A ∩ B
using True ran-e unfolding join-irreducibles-meet-homomorphism xy
by (subst (1 2) f-the-inv-into-f [OF inj-e]) auto

hence p3:A ∩ B ∈ OJ using ran-e by auto

have α ′ A ∗ β ′ B = α (?f A) ∗ β (?f B) using True unfolding prime-def
conv-def by simp

also have . . . ≤ γ (?f A t ?f B) ∗ δ (?f A u ?f B) by (intro assms(5))
also have . . . = γ (x t y) ∗ δ (x u y) unfolding xy by simp
also have . . . = γ (?f (?e (x t y))) ∗ δ (?f (?e (x u y))) by (simp add:

the-inv-f-f [OF inj-e])
also have . . . = γ (?f (A ∪ B)) ∗ δ (?f (A ∩ B)) unfolding p0 p2 by auto
also have . . . = γ ′ (A ∪ B) ∗ δ ′ (A ∩ B) using p1 p3 unfolding prime-def

conv-def by auto
finally show ?thesis by simp

next
case False
hence α ′ A ∗ β ′ B = 0 unfolding prime-def conv-def by simp
also have . . . ≤ γ ′ (A ∪ B) ∗ δ ′ (A ∩ B) unfolding prime-def

using 1 that assms(3,4) by (intro mult-nonneg-nonneg) auto
finally show ?thesis by simp

qed

define M ′ where M ′ = (λx. {| x |}) ‘ M
define N ′ where N ′ = (λx. {| x |}) ‘ N

have ran1: M ′ ⊆ OJ N ′ ⊆ OJ unfolding M ′-def N ′-def using ran-e by auto
hence ran2: M ′ ⊆ Pow J N ′ ⊆ Pow J unfolding down-irreducibles-def by

auto

have ?f ∈ ?e ‘ S → S for S using inj-e by (simp add: Pi-iff the-inv-f-f)
hence bij-betw: bij-betw ?f (?e ‘ S) S for S :: ′a set

by (intro bij-betwI [where g=?e] the-inv-f-f f-the-inv-into-f inj-e) auto

have a: {C . ∃A∈M ′. ∃B∈N ′. C = A ∪ B} = ?e ‘ {c. ∃ x∈M . ∃ y∈N . c=xty}
unfolding M ′-def N ′-def Set.bex-simps join-irreducibles-join-homomorphism[symmetric]

50

by auto
have b: {D. ∃A∈M ′. ∃B∈N ′. D = A ∩ B} = ?e ‘ {c. ∃ x∈M . ∃ y∈N . c=xuy}
unfolding M ′-def N ′-def Set.bex-simps join-irreducibles-meet-homomorphism[symmetric]

by auto

have M ′-N ′-un-ran: {C . ∃A∈M ′. ∃B∈N ′. C = A ∪ B} ⊆ OJ
unfolding a using ran-e by auto

have M ′-N ′-int-ran: {C . ∃A∈M ′. ∃B∈N ′. C = A ∩ B} ⊆ OJ
unfolding b using ran-e by auto

have ?L =(
∑

A∈M ′. α (?f A)) ∗ (
∑

A∈N ′. β (?f A))
unfolding M ′-def N ′-def
by (intro arg-cong2[where f=(∗)] sum.reindex-bij-betw[symmetric] bij-betw)

also have . . . = (
∑

A∈M ′. α ′ A)∗(
∑

A∈N ′. β ′ A)
unfolding prime-def conv-def using ran1 by (intro arg-cong2[where f=(∗)]

sum.cong refl) auto
also have . . . ≤ (

∑
C | ∃A∈M ′. ∃B∈N ′. C = A ∪ B. γ ′ C) ∗ (

∑
D | ∃A∈M ′.

∃B∈N ′. D = A ∩ B. δ ′ D)
using ran2 by (intro four-functions[where I=J] 0) (auto intro!:1 assms

simp:prime-def)
also have . . . = (

∑
C |∃A∈M ′. ∃B∈N ′. C=A∪B. γ(?f C))∗(

∑
D|∃A∈M ′.∃B∈N ′.

D=A∩B. δ(?f D))
using M ′-N ′-un-ran M ′-N ′-int-ran unfolding prime-def conv-def
by (intro arg-cong2[where f=(∗)] sum.cong refl) auto

also have . . . = ?R
unfolding a b by (intro arg-cong2[where f=(∗)] sum.reindex-bij-betw bij-betw)

finally show ?thesis by simp
qed

theorem fkg-inequality:
fixes µ :: ′a :: finite-distrib-lattice ⇒ real
assumes range µ ⊆ {0..} range f ⊆ {0..} range g ⊆ {0..}
assumes

∧
x y. µ x ∗ µ y ≤ µ (x t y) ∗ µ (x u y)

assumes mono f mono g
shows (

∑
x∈UNIV . µ x∗f x) ∗ (

∑
x∈UNIV . µ x∗g x) ≤ (

∑
x∈UNIV . µ x∗f

x∗g x) ∗ sum µ UNIV
(is ?L ≤ ?R)

proof −
define α where α x = µ x ∗ f x for x
define β where β x = µ x ∗ g x for x
define γ where γ x = µ x ∗ f x ∗ g x for x
define δ where δ x = µ x for x

have 0:f x ≥ 0 if range f ⊆ {0..} for f :: ′a ⇒ real and x
using that by auto

note µfg-nonneg = 0[OF assms(1)] 0[OF assms(2)] 0[OF assms(3)]

have 1:α x ∗ β y ≤ γ (x t y) ∗ δ (x u y) (is ?L1 ≤ ?R1) for x y

51

proof −
have ?L1 = (µ x ∗ µ y) ∗ (f x ∗ g y) unfolding α-def β-def by (simp

add:ac-simps)
also have . . . ≤ (µ (x t y) ∗ µ (x u y)) ∗ (f x ∗ g y)

using assms(2,3) by (intro mult-right-mono assms(4) mult-nonneg-nonneg)
auto

also have . . . ≤ (µ (x t y) ∗ µ (x u y)) ∗ (f (x t y) ∗ g (x t y))
using µfg-nonneg

by (intro mult-left-mono mult-mono monoD[OF assms(5)] monoD[OF assms(6)]
mult-nonneg-nonneg)

simp-all
also have . . . = ?R1 unfolding γ-def δ-def by simp
finally show ?thesis by simp

qed

have ?L = (
∑

x∈UNIV . α x) ∗ (
∑

y∈UNIV . β y) unfolding α-def β-def by
simp

also have . . . ≤ (
∑

c| ∃ x∈UNIV . ∃ y∈UNIV . c=xty. γ c)∗(
∑

d| ∃ x∈UNIV .
∃ y∈UNIV . d=xuy. δ d)

using µfg-nonneg by (intro four-functions-in-lattice 1) (auto simp:α-def β-def
γ-def δ-def)

also have . . . = (
∑

x∈UNIV . γ x) ∗ (
∑

x∈UNIV . δ x)
using sup.idem[where ′a= ′a] inf .idem[where ′a= ′a]

by (intro arg-cong2[where f=(∗)] sum.cong refl UNIV-eq-I [symmetric] CollectI)
(metis UNIV-I)+

also have . . . = ?R unfolding γ-def δ-def by simp
finally show ?thesis by simp

qed

theorem fkg-inequality-gen:
fixes µ :: ′a :: finite-distrib-lattice ⇒ real
assumes range µ ⊆ {0..}
assumes

∧
x y. µ x ∗ µ y ≤ µ (x t y) ∗ µ (x u y)

assumes monotone (≤) (≤≥τ) f monotone (≤) (≤≥σ) g
shows (

∑
x∈UNIV . µ x∗f x) ∗ (

∑
x∈UNIV . µ x∗g x) ≤≥τ∗σ (

∑
x∈UNIV . µ

x∗f x∗g x) ∗ sum µ UNIV
(is ?L ≤≥?x ?R)

proof −
define a where a = max (MAX x. −f x∗(±τ)) (MAX x. −g x∗(±σ))

define f ′ where f ′ x = a + f x∗(±τ) for x
define g ′ where g ′ x = a + g x∗(±σ) for x

have f ′-mono: mono f ′ unfolding f ′-def using monotoneD[OF assms(3)]
by (intro monoI add-mono order .refl) (cases τ , auto simp:comp-def ac-simps)

have g ′-mono: mono g ′ unfolding g ′-def using monotoneD[OF assms(4)]
by (intro monoI add-mono order .refl) (cases σ, auto simp:comp-def ac-simps)

52

have f ′-nonneg: f ′ x ≥ 0 for x
unfolding f ′-def a-def max-add-distrib-left
by (intro max.coboundedI1) (auto intro!:Max.coboundedI simp: algebra-simps

real-0-le-add-iff)

have g ′-nonneg: g ′ x ≥ 0 for x
unfolding g ′-def a-def max-add-distrib-left
by (intro max.coboundedI2) (auto intro!:Max.coboundedI simp: algebra-simps

real-0-le-add-iff)

let ?M = (
∑

x ∈ UNIV . µ x)
let ?sum = (λf . (

∑
x∈UNIV . µ x ∗ f x))

have (±τ∗σ) ∗ ?L = ?sum (λx. f x∗(±τ)) ∗ ?sum (λx. g x∗(±σ))
by (simp add:ac-simps sum-distrib-left[symmetric] dir-mult-hom del:rel-dir-mult)

also have . . . = (?sum (λx. (f x∗(±τ)+a))−?M∗a) ∗ (?sum (λx. (g x∗(±σ)+a))−?M∗a)
by (simp add:algebra-simps sum.distrib sum-distrib-left)

also have . . . = (?sum f ′)∗(?sum g ′) − ?M∗a∗?sum f ′− ?M∗a∗?sum g ′ +
?M∗?M∗a∗a

unfolding f ′-def g ′-def by (simp add:algebra-simps)
also have . . . ≤ ((

∑
x∈UNIV . µ x∗f ′ x∗g ′ x)∗?M) − ?M∗a∗?sum f ′− ?M∗a∗?sum

g ′ + ?M∗?M∗a∗a
using f ′-nonneg g ′-nonneg

by (intro diff-mono add-mono order .refl fkg-inequality assms(1,2) f ′-mono
g ′-mono) auto

also have . . . = ?sum (λx. (f x∗(±τ))∗(g x∗(±σ)))∗?M
unfolding f ′-def g ′-def by (simp add:algebra-simps sum.distrib sum-distrib-left[symmetric])
also have . . . = (±τ∗σ) ∗ ?R

by (simp add:ac-simps sum.distrib sum-distrib-left[symmetric] dir-mult-hom
del:rel-dir-mult)

finally have (±τ∗σ) ∗ ?L ≤ (±τ∗σ) ∗ ?R by simp
thus ?thesis by (cases τ∗σ, auto)

qed

theorem fkg-inequality-pmf :
fixes M :: (′a :: finite-distrib-lattice) pmf
fixes f g :: ′a ⇒ real
assumes

∧
x y. pmf M x ∗ pmf M y ≤ pmf M (x t y) ∗ pmf M (x u y)

assumes monotone (≤) (≤≥τ) f monotone (≤) (≤≥σ) g
shows (

∫
x. f x ∂M) ∗ (

∫
x. g x ∂M) ≤≥τ ∗ σ (

∫
x. f x ∗ g x ∂M)

(is ?L ≤≥- ?R)
proof −

have 0:?L = (
∑

a∈UNIV . pmf M a ∗ f a) ∗ (
∑

a∈UNIV . pmf M a ∗ g a)
by (subst (1 2) integral-measure-pmf-real[where A=UNIV]) (auto simp:ac-simps)
have ?R = ?R ∗ (

∫
x. 1 ∂M) by simp

also have . . . = (
∑

a∈UNIV . pmf M a∗f a∗g a) ∗ sum (pmf M) UNIV
by (subst (1 2) integral-measure-pmf-real[where A=UNIV]) (auto simp:ac-simps)

finally have 1: ?R = (
∑

a∈UNIV . pmf M a∗f a∗g a) ∗ sum (pmf M) UNIV by
simp

53

thus ?thesis unfolding 0 1
by (intro fkg-inequality-gen assms) auto

qed

end

5 Preliminary Results on Lattices

This entry establishes a few missing lemmas for the set-based theory of
lattices from “HOL-Algebra”. In particular, it introduces the sublocale for
distributive lattices.
More crucially, a transfer theorem which can be used in conjunction with
the Types-To-Sets mechanism to be able to work with locally defined finite
distributive lattices.
This is being needed for the verification of the negative association of per-
mutation distributions in Section 6.
theory Negative-Association-More-Lattices

imports HOL−Algebra.Lattice
begin

Lemma 1 Birkhoff Lattice Theory, p.8, L3
lemma (in lattice) meet-assoc-law:

assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows x u (y u z) = (x u y) u z
using assms by (metis (full-types) eq-is-equal weak-meet-assoc)

Lemma 1 Birkhoff Lattice Theory, p.8, L3
lemma (in lattice) join-assoc-law:

assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows x t (y t z) = (x t y) t z
using assms by (metis (full-types) eq-is-equal weak-join-assoc)

Lemma 1 Birkhoff Lattice Theory, p.8, L4
lemma (in lattice) absorbtion-law:

assumes x ∈ carrier L y ∈ carrier L
shows x u (x t y) = x x t (x u y) = x

proof −
have x v x t y using assms join-left by auto
hence x = x u (x t y) using assms by (intro iffD1[OF le-iff-join]) auto
thus x u (x t y) = x by simp

have x u y v x using assms meet-left by auto
hence (x u y) t x = x using assms le-iff-meet by (intro iffD1[OF le-iff-meet])

auto
thus x t (x u y) = x using join-comm by metis

qed

54

Theorem 9 Birkhoff Lattice Theory, p.11
lemma (in lattice) distrib-laws-equiv:

defines meet-distrib ≡ (∀ x y z. {x,y,z}⊆carrier L −→ (x u (y t z)) = (x u y)
t (x u z))

defines join-distrib ≡ (∀ x y z. {x,y,z}⊆carrier L −→ (x t (y u z)) = (x t y)
u (x t z))

shows meet-distrib ←→ join-distrib
proof

assume a:meet-distrib
have (x t y) u (x t z)= x t (y u z) (is ?L = ?R) if {x,y,z} ⊆ carrier L for x

y z
proof −
have ?L = ((x t y) u x) t ((x t y) u z) using a that unfolding meet-distrib-def

by simp
also have . . . = x t (z u (x t y)) using that absorbtion-law meet-comm by

(metis insert-subset)
also have . . . = x t ((z u x) t (z u y)) using a that unfolding meet-distrib-def

by simp
also have . . . = (x t (z u x)) t (z u y) using that meet-assoc-law join-assoc-law

by simp
also have . . . = x t (z u y) using that absorbtion-law meet-comm by (metis

insert-subset)
also have . . . = ?R by (metis meet-comm)
finally show ?thesis by simp

qed
thus join-distrib unfolding join-distrib-def by auto

next
assume a:join-distrib
have (x u y) t (x u z)= x u (y t z) (is ?L = ?R) if {x,y,z} ⊆ carrier L for x

y z
proof −
have ?L = ((x u y) t x) u ((x u y) t z) using a that unfolding join-distrib-def

by simp
also have . . . = x u (z t (x u y)) using that absorbtion-law join-comm by

(metis insert-subset)
also have . . . = x u ((z t x) u (z t y)) using a that unfolding join-distrib-def

by simp
also have . . . = (x u (z t x)) u (z t y) using that meet-assoc-law join-assoc-law

by simp
also have . . . = x u (z t y) using that absorbtion-law join-comm by (metis

insert-subset)
also have . . . = ?R by (metis join-comm)
finally show ?thesis by simp

qed
thus meet-distrib unfolding meet-distrib-def by auto

qed

lemma (in lattice) lub-unique-set:
assumes is-lub L z S

55

shows z =
⊔

S
proof −

have a:is-lub L z ′ S =⇒ z = z ′ for z ′

using least-unique assms by simp
show ?thesis

unfolding sup-def
by (rule someI2[where a=z], rule assms(1), rule a)

qed

lemma (in lattice) lub-unique:
assumes is-lub L z {x,y}
shows z = x t y
using lub-unique-set[OF assms] unfolding join-def by auto

lemma (in lattice) glb-unique-set:
assumes is-glb L z S
shows z =

d
S

proof −
have a:is-glb L z ′ S =⇒ z = z ′ for z ′

using greatest-unique assms(1) by simp
show ?thesis

unfolding meet-def inf-def
by (rule someI2[where a=z], rule assms(1), rule a)

qed

lemma (in lattice) glb-unique:
assumes is-glb L z {x,y}
shows z = x u y
using glb-unique-set[OF assms] unfolding meet-def by auto

lemma (in lattice) inf-lower :
assumes S ⊆ carrier L s ∈ S finite S
shows

d
S v s

proof −
have is-glb L (

d
S) S using assms(2) by (intro finite-inf-greatest assms(1,3))

auto
hence (

d
S) ∈ Lower L S using greatest-mem by metis

thus ?thesis using assms(1,2) by auto
qed

lemma (in lattice) sup-upper :
assumes S ⊆ carrier L s ∈ S finite S
shows s v

⊔
S

proof −
have is-lub L (

⊔
S) S using assms(2) by (intro finite-sup-least assms(1,3)) auto

hence (
⊔

S) ∈ Upper L S using least-mem by metis
thus ?thesis using assms(1,2) by auto

qed

56

locale distrib-lattice = lattice +
assumes max-distrib:

x ∈ carrier L =⇒ y ∈ carrier L =⇒ z ∈ carrier L =⇒ (x u (y t z)) = (x u
y) t (x u z)
begin

lemma min-distrib:
assumes x ∈ carrier L y ∈ carrier L z ∈ carrier L
shows (x t (y u z)) = (x t y) u (x t z)

proof −
have a:∀ x y z. {x, y, z} ⊆ carrier L −→ x u (y t z) = x u y t x u z using

max-distrib by auto
show ?thesis using iffD1[OF distrib-laws-equiv a] assms by simp

qed

end

locale finite-ne-distrib-lattice = distrib-lattice +
assumes non-empty-carrier : carrier L 6= {}
assumes finite-carrier : finite (carrier L)

begin

lemma bounded-lattice-axioms-1: ∃ x. least L x (carrier L)
proof −

have
d

carrier L ∈ Lower L (carrier L)
by (intro greatest-mem[where L=L] finite-inf-greatest[OF finite-carrier - non-empty-carrier])

auto
hence ∀ x ∈ carrier L. (

d
carrier L)vx unfolding Lower-def by auto

moreover have
d

carrier L ∈ carrier L
using finite-inf-closed[OF finite-carrier - non-empty-carrier] by auto

ultimately have least L (
d

carrier L) (carrier L)
unfolding least-def by auto

thus ?thesis by auto
qed

lemma bounded-lattice-axioms-2: ∃ x. greatest L x (carrier L)
proof −

have
⊔

carrier L ∈ Upper L (carrier L)
by (intro least-mem[where L=L] finite-sup-least[OF finite-carrier - non-empty-carrier])

auto
hence ∀ x ∈ carrier L. x v (

⊔
carrier L) unfolding Upper-def by auto

moreover have
⊔

carrier L ∈ carrier L
using finite-sup-closed[OF finite-carrier - non-empty-carrier] by auto

ultimately have greatest L (
⊔

carrier L) (carrier L)
unfolding greatest-def by auto

thus ?thesis by auto
qed

57

sublocale bounded-lattice
using bounded-lattice-axioms-1 bounded-lattice-axioms-2
by (unfold-locales) auto

lemma inf-empty:
d
{} = >

proof −
have is-glb L > {} using top-greatest by simp
thus ?thesis using glb-unique-set by auto

qed

lemma inf-closed: S ⊆ carrier L =⇒
d

S ∈ carrier L
using finite-carrier inf-empty top-closed finite-inf-closed
by (metis finite-subset)

lemma inf-insert:
assumes x ∈ carrier L S ⊆ carrier L
shows

d
(insert x S) = x u (

d
S)

proof −
have fin-S : finite S using finite-carrier assms(2) finite-subset by metis
have inf-S-carr :

d
S ∈ carrier L using inf-closed[OF assms(2)] by force

have x u (
d

S) v s if s ∈ S for s
proof −

have
d

S v s using that fin-S assms(2)
by (metis empty-iff finite-inf-greatest greatest-Lower-below)

moreover have x u (
d

S) v
d

S using inf-S-carr assms(1) meet-right by
metis

ultimately show ?thesis using inf-S-carr meet-closed
by (meson assms le-trans subsetD that)

qed
moreover have x u (

d
S) v x using inf-S-carr assms(1) meet-left by metis

ultimately have x u (
d

S) ∈ Lower L (insert x S)
using assms(1) meet-closed inf-S-carr unfolding Lower-def by auto

moreover have y v (x u (
d

S)) if y ∈ Lower L (insert x S) for y
proof−

have y-carr : y ∈ carrier L using that assms unfolding Lower-def by auto
have y-lb: y v x using that assms unfolding Lower-def by auto

moreover have y ∈ Lower L S using that unfolding Lower-def by auto
hence y v

d
S using finite-inf-greatest[OF fin-S assms(2)]

by (metis greatest-le inf-empty top-higher y-carr)
ultimately show ?thesis

using y-carr inf-S-carr assms(1) meet-le by simp
qed
ultimately have is-glb L (x u (

d
S)) (insert x S) by (simp add: greatest-def)

thus ?thesis by (intro glb-unique-set[symmetric])
qed

58

lemma sup-empty:
⊔
{} = ⊥

proof −
have is-lub L ⊥ {} using bottom-least by simp
thus ?thesis using lub-unique-set by auto

qed

lemma sup-closed: S ⊆ carrier L =⇒
⊔

S ∈ carrier L
using finite-carrier sup-empty bottom-closed finite-sup-closed
by (metis finite-subset)

lemma sup-insert:
assumes x ∈ carrier L S ⊆ carrier L
shows

⊔
(insert x S) = x t (

⊔
S)

proof −
have fin-S : finite S using finite-carrier assms(2) finite-subset by metis
have sup-S-carr :

⊔
S ∈ carrier L using sup-closed[OF assms(2)] by force

have s v x t (
⊔

S) if s ∈ S for s
proof −

have s v
⊔

S using that fin-S assms(2)
by (metis empty-iff finite-sup-least least-Upper-above)

moreover have
⊔

S v x t (
⊔

S) using sup-S-carr assms(1) join-right by
metis

ultimately show ?thesis using sup-S-carr join-closed assms
by (meson le-trans subsetD that)

qed
moreover have x v x t (

⊔
S) using sup-S-carr assms(1) join-left by metis

ultimately have x t (
⊔

S) ∈ Upper L (insert x S)
using assms(1) sup-S-carr unfolding Upper-def by auto

moreover have x t (
⊔

S) v y if y ∈ Upper L (insert x S) for y
proof−

have y-carr : y ∈ carrier L using that assms unfolding Lower-def by auto
have y-lb: x v y using that assms by auto

moreover have y ∈ Upper L S using that unfolding Upper-def by auto
hence

⊔
S v y using finite-sup-least[OF fin-S assms(2)]

using least-le sup-empty bottom-lower y-carr by metis
ultimately show ?thesis

using y-carr sup-S-carr assms(1) join-le by simp
qed
ultimately have is-lub L (x t (

⊔
S)) (insert x S) by (simp add: least-def)

thus ?thesis by (intro lub-unique-set[symmetric])
qed

lemma inf-carrier :
d

(carrier L) = ⊥
proof −

have
d

carrier L ∈ Lower L (carrier L)
by (intro greatest-mem[where L=L] finite-inf-greatest[OF finite-carrier - non-empty-carrier])

auto

59

hence ∀ x ∈ carrier L. (
d

carrier L)vx unfolding Lower-def by auto
moreover have

d
carrier L ∈ carrier L

using finite-inf-closed[OF finite-carrier - non-empty-carrier] by auto
ultimately show ?thesis by (intro bottom-eq) auto

qed

lemma sup-carrier :
⊔

(carrier L) = >
proof −

have
⊔

carrier L ∈ Upper L (carrier L)
by (intro least-mem[where L=L] finite-sup-least[OF finite-carrier - non-empty-carrier])

auto
hence ∀ x ∈ carrier L. xv (

⊔
carrier L) unfolding Upper-def by auto

moreover have
⊔

carrier L ∈ carrier L
using finite-sup-closed[OF finite-carrier - non-empty-carrier] by auto

ultimately show ?thesis by (intro top-eq) auto
qed

lemma transfer-to-type:
assumes finite (carrier L) type-definition Rep Abs (carrier L)
defines inf ′ ≡ (λM . Abs (

d
Rep ‘ M))

defines sup ′ ≡ (λM . Abs (
⊔

Rep ‘ M))
defines join ′ ≡ (λx y. Abs (Rep x u Rep y))
defines le ′ ≡ (λx y. (Rep x v Rep y))
defines less ′ ≡ (λx y. (Rep x @ Rep y))
defines meet ′ ≡ (λx y. (Abs (Rep x t Rep y)))
defines bot ′≡ (Abs ⊥ :: ′c)
defines top ′ ≡ Abs >
shows class.finite-distrib-lattice inf ′ sup ′ join ′ le ′ less ′ meet ′ bot ′ top ′

proof −
interpret type-definition Rep Abs (carrier L)

using assms(2) by auto

note defs = inf ′-def sup ′-def join ′-def le ′-def less ′-def meet ′-def bot ′-def bot ′-def
top ′-def
note td = Rep Rep-inverse Abs-inverse inf-closed sup-closed meet-closed join-closed

Rep-range

have class-lattice: class.lattice join ′ le ′ less ′ meet ′
unfolding defs using td

proof (unfold-locales, goal-cases)
case 1 thus ?case unfolding l less-eq by auto

next
case 2 thus ?case by (metis le-refl)

next
case 3 thus ?case by (metis le-trans)

next
case 4 thus ?case by (meson Rep-inject local.le-antisym)

next

60

case 5 thus ?case by (metis meet-left)
next

case 6 thus ?case by (metis meet-right)
next

case 7 thus ?case by (metis meet-le)
next

case 8 thus ?case by (metis join-left)
next

case 9 thus ?case by (metis join-right)
next

case 10 thus ?case by (metis join-le)
qed

have class-distrib-lattice: class.distrib-lattice join ′ le ′ less ′ meet ′
unfolding class.distrib-lattice-def eqTrueI [OF class-lattice]
unfolding defs class.distrib-lattice-axioms-def using td
using min-distrib by auto

have class-finite: class.finite TYPE(′c)
by (unfold-locales) (metis assms(1) Abs-image finite-imageI)

have class-finite-lattice: class.finite-lattice inf ′ sup ′ join ′ le ′ less ′ meet ′ bot ′ top ′

unfolding class.finite-lattice-def eqTrueI [OF class-lattice] eqTrueI [OF class-finite]
unfolding defs class.distrib-lattice-axioms-def class.finite-lattice-axioms-def us-

ing td
proof (intro conjI TrueI , goal-cases)

case 1 thus ?case using sup-carrier inf-empty by simp
next

case 2 thus ?case unfolding image-insert by (metis inf-insert image-subsetI)
next

case 3 thus ?case using inf-carrier sup-empty by simp
next
case 4 thus ?case unfolding image-insert by (metis sup-insert image-subsetI)

next
case 5 thus ?case using inf-carrier by simp

next
case 6 thus ?case using sup-carrier by simp

qed

show ?thesis
using class-finite-lattice class-distrib-lattice
unfolding class.finite-distrib-lattice-def by auto

qed

end

end

61

6 Permutation Distributions

One of the fundamental examples for negatively associated random variables
are permutation distributions.
Let x1, . . . , xn be n (not-necessarily) distinct values from a totally ordered
set, then we choose a permutation σ : {0, . . . , n − 1} → {0, . . . , n − 1}
uniformly at random Then the random variables defined by Xi(σ) = xσ(i)
are negatively associated.
An important special case is the case where x consists of 1 one and (n− 1)
zeros, modelling randomly putting a ball into one of n bins. Of course
the process can be repeated independently, the resulting distribution is also
referred to as the balls into bins process. Because of the closure properties
established before, it is possible to conclude that the number of hits of each
bin in such a process are also negatively associated random variables.
In this section, we will derive that permutation distributions are negatively
associated. The proof follows Dubashi [8, Th. 10] closely. A very short proof
was presented in the work by Joag-Dev [13], however after close inspection
that proof seemed to missing a lot of details. In fact, I don’t think it is
correct.
theory Negative-Association-Permutation-Distributions

imports
Negative-Association-Definition
Negative-Association-FKG-Inequality
Negative-Association-More-Lattices
Finite-Fields.Finite-Fields-More-PMF
HOL−Types-To-Sets.Types-To-Sets
Executable-Randomized-Algorithms.Randomized-Algorithm
Twelvefold-Way.Card-Bijections

begin

The following introduces a lattice for n-element subsets of a finite set (with
size larger or equal to n.) A subset x is smaller or equal to y, if the smallest
element of x is smaller or equal to the smallest element of y, the second
smallest element of x is smaller or equal to the second smallest element of
y, etc.)
The lattice is introduced without name by Dubashi [?, Example 7].
definition le-ordered-set-lattice :: (′a::linorder) set ⇒ ′a set ⇒ bool
where le-ordered-set-lattice S T = list-all2 (≤) (sorted-list-of-set S) (sorted-list-of-set

T)

definition ordered-set-lattice :: (′a :: linorder) set ⇒ nat ⇒ ′a set gorder
where ordered-set-lattice S n =
(| carrier = {T . T ⊆ S ∧ finite T ∧ card T = n},

eq = (=),
le = le-ordered-set-lattice |)

62

definition osl-repr :: (′a :: linorder) set ⇒ nat ⇒ ′a set ⇒ nat ⇒ ′a
where osl-repr S n e = (λi ∈ {..<n}. sorted-list-of-set e ! i)

lemma osl-carr-sorted-list-of-set:
assumes finite S n ≤ card S
assumes s ∈ carrier (ordered-set-lattice S n)
defines t ≡ sorted-list-of-set s
shows finite s card s = n s ⊆ S length t = n set t = s sorted-wrt (<) t
using assms unfolding ordered-set-lattice-def by auto

lemma ordered-set-lattice-carrier-intro:
assumes finite S n ≤ card S
assumes set s ⊆ S distinct s length s = n
shows set s ∈ carrier (ordered-set-lattice S n)
using assms distinct-card unfolding ordered-set-lattice-def by auto

lemma osl-list-repr-inj:
assumes finite S n ≤ card S
assumes s ∈ carrier (ordered-set-lattice S n)
assumes t ∈ carrier (ordered-set-lattice S n)
assumes

∧
i. osl-repr S n s i = osl-repr S n t i

shows s = t
proof −

note c1 = osl-carr-sorted-list-of-set[OF assms(1,2,3)]
note c2 = osl-carr-sorted-list-of-set[OF assms(1,2,4)]

have sorted-list-of-set s ! i = sorted-list-of-set t ! i if i < n for i
using assms(5) that unfolding osl-repr-def lessThan-iff restrict-def by metis

hence sorted-list-of-set s = sorted-list-of-set t
using c1(4) c2(4) by (intro nth-equalityI) auto

thus s = t
using c1(1) c2(1) sorted-list-of-set-inject by auto

qed

lemma osl-leD:
assumes finite S n ≤ card S
assumes e ∈ carrier (ordered-set-lattice S n)
assumes f ∈ carrier (ordered-set-lattice S n)
shows e vordered-set-lattice S n f ←→ (∀ i. osl-repr S n e i ≤ osl-repr S n f i) (is

?L = ?R)
proof −

note c1 = osl-carr-sorted-list-of-set[OF assms(1,2,3)]
note c2 = osl-carr-sorted-list-of-set[OF assms(1,2,4)]

have ?L = list-all2 (≤) (sorted-list-of-set e) (sorted-list-of-set f)
unfolding ordered-set-lattice-def le-ordered-set-lattice-def by simp

also have . . . = ?R using c1(4) c2(4) unfolding list-all2-conv-all-nth osl-repr-def
by simp

63

finally show ?thesis by simp
qed

lemma ordered-set-lattice-partial-order :
fixes S :: (′a :: linorder) set
assumes finite S n ≤ card S
shows partial-order (ordered-set-lattice S n)

proof −
let ?L = ordered-set-lattice S n

note osl-list-repr-inj = osl-list-repr-inj[OF assms]
note osl-leD = osl-leD[OF assms]

have ref :x v?L x if x ∈ carrier ?L for x
using osl-leD that by auto

have antisym:x = y if x v?L y y v?L x x ∈ carrier ?L y ∈ carrier ?L for x y
using osl-leD osl-list-repr-inj that by (metis order-antisym)

have trans:x v?L z
if x v?L y y v?L z x ∈ carrier ?L y ∈ carrier ?L z ∈ carrier ?L for x y z
using osl-leD that by (meson order-trans)

have eq-eq: (.= ?L) = (=) unfolding ordered-set-lattice-def by simp

show partial-order ?L
using ref antisym trans eq-eq by (unfold-locales) presburger+

qed

lemma map2-max-mono:
fixes xs :: (′a :: linorder) list
assumes length xs = length ys
assumes sorted-wrt (<) xs sorted-wrt (<) ys
shows sorted-wrt (<) (map2 max xs ys)
using assms

proof (induction xs ys rule:list-induct2)
case Nil
then show ?case by simp

next
case (Cons x xs y ys)
have max x y < max a b if (a,b) ∈ set (zip xs ys) for a b
proof −

have x < a using set-zip-leftD[OF that] Cons(3) by auto
moreover have y < b using set-zip-rightD[OF that] Cons(4) by auto

ultimately show ?thesis by (auto intro: max.strict-coboundedI1 max.strict-coboundedI2)
qed
moreover have sorted-wrt (<) (map2 max xs ys)

using Cons(3,4) by (intro Cons(2)) auto
ultimately show ?case by auto

64

qed

lemma map2-min-mono:
fixes xs :: (′a :: linorder) list
assumes length xs = length ys
assumes sorted-wrt (<) xs sorted-wrt (<) ys
shows sorted-wrt (<) (map2 min xs ys)
using assms

proof (induction xs ys rule:list-induct2)
case Nil
then show ?case by simp

next
case (Cons x xs y ys)
have min x y < min a b if (a,b) ∈ set (zip xs ys) for a b
proof −

have x < a using set-zip-leftD[OF that] Cons(3) by auto
moreover have y < b using set-zip-rightD[OF that] Cons(4) by auto

ultimately show ?thesis by (auto intro: min.strict-coboundedI1 min.strict-coboundedI2)
qed
moreover have sorted-wrt (<) (map2 min xs ys)

using Cons(3,4) by (intro Cons(2)) auto
ultimately show ?case by auto

qed

lemma ordered-set-lattice-carrier-finite-ne:
assumes finite S n ≤ card S
shows carrier (ordered-set-lattice S n) 6= {} finite (carrier (ordered-set-lattice S

n))
proof −

let ?C = carrier (ordered-set-lattice S n)

have 0 < (card S choose n) by (intro zero-less-binomial assms(2))
also have . . . = card {T . T ⊆ S ∧ card T = n} unfolding n-subsets[OF

assms(1)] by simp
also have . . . = card {T . T ⊆ S ∧ finite T ∧ card T = n}

using assms(1) finite-subset by (intro arg-cong[where f=card] Collect-cong)
auto

also have . . . = card ?C unfolding ordered-set-lattice-def by simp
finally have card ?C > 0 by simp
thus ?C 6= {} finite ?C unfolding card-gt-0-iff by auto

qed

lemma ordered-set-lattice-lattice:
fixes S :: (′a :: linorder) set
assumes finite S n ≤ card S
shows finite-ne-distrib-lattice (ordered-set-lattice S n)

proof −
let ?L = ordered-set-lattice S n

65

note osl-leD = osl-leD[OF assms]
note osl-list-repr-inj = osl-list-repr-inj[OF assms]

interpret partial-order ?L by (intro ordered-set-lattice-partial-order assms)

define lmax where lmax x y = set (map2 max (sorted-list-of-set x) (sorted-list-of-set
y))

for x y :: ′a set

define lmin where lmin x y = set (map2 min (sorted-list-of-set x) (sorted-list-of-set
y))

for x y :: ′a set

have lmax-1:
osl-repr S n (lmax s t) i = max (osl-repr S n s i) (osl-repr S n t i) (is ?L1 =

?R1)
lmax s t ∈ carrier ?L
if s ∈ carrier ?L t ∈ carrier ?L for s t i

proof −
note s-carr = osl-carr-sorted-list-of-set[OF assms that(1)]
note t-carr = osl-carr-sorted-list-of-set[OF assms that(2)]

have s:sorted-wrt (<) (map2 max (sorted-list-of-set s) (sorted-list-of-set t))
using s-carr t-carr by (intro map2-max-mono) auto

hence ?L1 = (λi ∈ {..<n}. (map2 max (sorted-list-of-set s) (sorted-list-of-set
t)) ! i) i

unfolding lmax-def osl-repr-def strict-sorted-iff
by (subst linorder-class.sorted-list-of-set.idem-if-sorted-distinct) auto

also have . . . = (λi ∈ {..<n}. max (sorted-list-of-set s ! i) (sorted-list-of-set t
! i)) i

using s-carr t-carr by simp
also have . . . = ?R1 unfolding osl-repr-def by auto
finally show ?L1 = ?R1 by simp

have set (zip (sorted-list-of-set s) (sorted-list-of-set t)) ⊆ S × S
using s-carr(3,5) t-carr(3,5) by (auto intro:set-zip-leftD set-zip-rightD)

hence set (map2 max (sorted-list-of-set s) (sorted-list-of-set t)) ⊆ S
by (auto simp:max-def)

thus lmax s t ∈ carrier ?L
using s-carr t-carr s unfolding lmax-def strict-sorted-iff
by (intro ordered-set-lattice-carrier-intro[OF assms]) auto

qed

have lmin-1:
osl-repr S n (lmin s t) i = min (osl-repr S n s i) (osl-repr S n t i) (is ?L1 =

?R1)
lmin s t ∈ carrier ?L
if s ∈ carrier ?L t ∈ carrier ?L for s t i

proof −

66

note s-carr = osl-carr-sorted-list-of-set[OF assms that(1)]
note t-carr = osl-carr-sorted-list-of-set[OF assms that(2)]

have s:sorted-wrt (<) (map2 min (sorted-list-of-set s) (sorted-list-of-set t))
using s-carr t-carr by (intro map2-min-mono) auto

hence ?L1 = (λi ∈ {..<n}. (map2 min (sorted-list-of-set s) (sorted-list-of-set
t)) ! i) i

unfolding lmin-def osl-repr-def strict-sorted-iff
by (subst linorder-class.sorted-list-of-set.idem-if-sorted-distinct) auto

also have . . . = (λi ∈ {..<n}. min (sorted-list-of-set s ! i) (sorted-list-of-set t
! i)) i

using s-carr t-carr by simp
also have . . . = ?R1 unfolding osl-repr-def by auto
finally show ?L1 = ?R1 by simp

have set (zip (sorted-list-of-set s) (sorted-list-of-set t)) ⊆ S × S
using s-carr(3,5) t-carr(3,5) by (auto intro:set-zip-leftD set-zip-rightD)

hence set (map2 min (sorted-list-of-set s) (sorted-list-of-set t)) ⊆ S
by (auto simp:min-def)

thus lmin s t ∈ carrier ?L
using s-carr t-carr s unfolding lmin-def strict-sorted-iff
by (intro ordered-set-lattice-carrier-intro[OF assms]) auto

qed

have lmax: is-lub ?L (lmax x y) {x,y} if x ∈ carrier ?L y ∈ carrier ?L for x y
using that lmax-1 osl-leD by (intro least-UpperI) (auto simp:Upper-def)

hence ∃ s. is-lub ?L s {x, y} if x ∈ carrier ?L y ∈ carrier ?L for x y
using that by auto

hence 1: upper-semilattice ?L by (unfold-locales) auto

have lmin: is-glb ?L (lmin x y) {x,y} if x ∈ carrier ?L y ∈ carrier ?L for x y
using that lmin-1 osl-leD by (intro greatest-LowerI) (auto simp:Lower-def)

hence ∃ s. is-glb ?L s {x, y} if x ∈ carrier ?L y ∈ carrier ?L for x y
using that by auto

hence 2: lower-semilattice ?L by (unfold-locales) auto

have 4:lattice ?L using 1 2 unfolding lattice-def by auto
interpret lattice ?L using 4 by simp

have join-eq: x u?L y = lmin x y if x ∈ carrier ?L y ∈ carrier ?L for x y
by (intro glb-unique[symmetric] that lmin)

have meet-eq: x t?L y = lmax x y if x ∈ carrier ?L y ∈ carrier ?L for x y
by (intro lub-unique[symmetric] that lmax)

have (x u?L (y t?L z)) = (x u?L y) t?L (x u?L z)
if x ∈ carrier ?L y ∈ carrier ?L z ∈ carrier ?L for x y z

proof −
have osl-repr S n (lmin x (lmax y z)) i = osl-repr S n (lmax (lmin x y) (lmin

67

x z)) i for i
using lmax-1 that lmin-1 by (simp add:min-max-distrib2)

hence lmin x (lmax y z) = lmax (lmin x y) (lmin x z)
by (intro osl-list-repr-inj lmax-1 lmin-1 that allI)

thus ?thesis using that by (simp add: meet-eq join-eq lmax-1 lmin-1)
qed
thus ?thesis using 4 ordered-set-lattice-carrier-finite-ne[OF assms(1,2)] by (unfold-locales)

auto
qed

lemma insort-eq:
fixes xs :: (′a :: linorder) list
assumes sorted xs
shows ∃ ys zs. insort e xs = ys@e#zs ∧ ys@zs=xs ∧ set ys ⊆ {..<e} ∧ set zs ⊆
{e..}
proof −

let ?ys = takeWhile (λx. x < e) xs
let ?zs = dropWhile (λx. x < e) xs

have a:insort e xs = ?ys@e#?zs by (induction xs) auto

have sorted (?ys@e#?zs) unfolding a[symmetric] using assms sorted-insort by
auto

hence sorted ([e]@?zs) by (simp add: sorted-append)
hence set ?zs ⊆ {e..} unfolding sorted-append by auto
moreover have set ?ys ⊆ {..<e} by (metis lessThan-iff set-takeWhileD subset-eq)
moreover have ?ys @ ?zs = xs by simp
ultimately show ?thesis using a by blast

qed

lemma list-all2-insort:
fixes xs ys :: (′a :: linorder) list
assumes length xs = length ys sorted xs sorted ys
shows list-all2 (≤) xs ys ←→ list-all2 (≤) (insort e xs) (insort e ys)

proof −
obtain x1 x3 where xs:

xs = x1@x3 insort e xs = x1@e#x3 set x1 ⊆ {..<e} set x3 ⊆ {e..}
using insort-eq[OF assms(2)] by blast

obtain y1 y3 where ys: ys = y1@y3
insort e ys = y1@e#y3 set y1 ⊆ {..<e} set y3 ⊆ {e..}
using insort-eq[OF assms(3)] by blast

have l: length y1 + length y3 = length x1 + length x3 using assms(1) xs(1) ys(1)
by simp

have list-all2 (≤) xs ys ←→ list-all2 (≤) (x1@x3) (y1@y3) by (simp add: xs ys)
also have . . . ←→ list-all2 (≤) (x1@e#x3) (y1@e#y3) (is ?L ←→ ?R)
proof (cases length x1 < length y1)

case True

68

have length x3 > 0 using l True by linarith

hence (x1@x3) ! length x1 ≥ e
using xs(4) nth-mem in-mono unfolding nth-append by fastforce

moreover have (y1@y3) ! length x1 < e
using True ys(3) nth-mem unfolding nth-append by auto

moreover have length x1 < length (x1@x3) using l True by auto
ultimately have 1:?L = False

unfolding xs ys list-all2-conv-all-nth by (meson leD order .trans)

have (y1@e#y3) ! length x1 < e
using True ys(3) nth-mem unfolding nth-append by auto

moreover have (x1@e#x3) ! length x1 = e by simp
moreover have length x1 < length (x1@e#x3) using l True by auto
ultimately have ?R = False

unfolding xs(2) ys(2) list-all2-conv-all-nth by (metis leD)

thus ?thesis using 1 by auto
next

case False
let ?x1 = take (length y1) x1
define x2 where [simp]: x2 = drop (length y1) x1

define y2 where [simp]: y2 = take (length x1−length y1) y3
let ?y3 = drop (length x1−length y1) y3

have l2: length x2 = length y2 using False l by simp
have set-x2: set x2 ⊆ {..<e}

unfolding x2-def using xs(3) set-drop-subset subset-trans by metis
have set-y2: set y2 ⊆ {e..}

unfolding y2-def using ys(4) set-take-subset subset-trans by metis

have set (x2@[e]) ⊆ {..e} set (e#y2) ⊆ {e..}
using set-x2 set-y2 by auto

hence a ′:list-all2 (λx y. x ≤ e ∧ e ≤ y) (x2@[e]) (e#y2)
using l2 set-zip-leftD set-zip-rightD by (intro list-all2I conjI ballI case-prodI2)

fastforce+
have a:list-all2 (≤) (x2@[e]) (e#y2) by (intro list-all2-mono[OF a ′]) auto

have b ′:list-all2 (λx y. x ≤ e ∧ e ≤ y) x2 y2
using l2 set-x2 set-y2 set-zip-leftD set-zip-rightD by (intro list-all2I conjI

ballI case-prodI2) fastforce+
have b:list-all2 (≤) x2 y2 by (intro list-all2-mono[OF b ′]) auto

have ?L ←→ list-all2 (≤) ((?x1@x2)@x3) (y1@y2@?y3) by simp
also have . . . ←→ list-all2 (≤) (?x1@x2@x3) (y1@y2@?y3) using append-assoc

by metis
also have . . . ←→ list-all2 (≤) ?x1 y1 ∧ list-all2 (≤) (x2@x3) (y2@?y3)

using False by (intro list-all2-append) auto

69

also have . . . ←→ list-all2 (≤) ?x1 y1 ∧ (list-all2 (≤) x2 y2 ∧ list-all2 (≤) x3
?y3)

using l False by (intro arg-cong2[where f=(∧)] refl list-all2-append) simp
also have . . . ←→ list-all2 (≤) ?x1 y1∧(list-all2 (≤) (x2@[e]) (e#y2)∧list-all2

(≤) x3 ?y3)
using a b by simp

also have . . . ←→ list-all2 (≤) ?x1 y1 ∧ (list-all2 (≤) ((x2@[e])@x3) ((e#y2)@?y3))
using l False by (intro arg-cong2[where f=(∧)] refl list-all2-append[symmetric])

simp
also have . . . ←→ list-all2 (≤) (?x1@((x2@[e])@x3)) (y1@((e#y2)@?y3))

using False by (intro list-all2-append[symmetric]) auto
also have . . . ←→ list-all2 (≤) ((?x1@x2)@(e#x3)) (y1@e#(y2@?y3))

using append-assoc by (intro arg-cong2[where f=list-all2 (≤)]) simp-all
also have . . . ←→ ?R by simp
finally show ?thesis by simp

qed
also have . . . ←→ list-all2 (≤) (insort e xs) (insort e ys) using xs ys by simp
finally show ?thesis by simp

qed

lemma le-ordered-set-lattice-diff :
fixes x y :: (′a :: linorder) set
assumes finite x finite y card x = card y
shows le-ordered-set-lattice x y ←→ le-ordered-set-lattice (x − y) (y − x)

proof −
let ?le = le-ordered-set-lattice
define u v S where vars:u = x − y v = y − x S = x ∩ y

have fins: finite S finite u finite v unfolding vars using assms by auto

have disj: S ∩ u = {} S ∩ v = {} unfolding vars by auto

have cards: card u = card v unfolding vars using assms
by (simp add: card-le-sym-Diff order-antisym)

have ?le x y = ?le (u ∪ S) (v ∪ S) unfolding vars by (intro arg-cong2[where
f=?le]) auto

also have . . . = ?le u v using fins(1) disj
proof (induction S rule:finite-induct)

case empty thus ?case by simp
next

case (insert x F)
define us where us = sorted-list-of-set (u ∪ F)
define vs where vs = sorted-list-of-set (v ∪ F)

have card (u ∪ F) = card u + card F using insert fins by (intro card-Un-disjoint)
auto

also have . . . = card v + card F using cards by auto
also have . . . = card (v ∪ F) using insert fins by (intro card-Un-disjoint[symmetric])

auto

70

finally have cards ′: card (u ∪ F) = card (v ∪ F) by simp

have ?le (u ∪ insert x F) (v ∪ insert x F) = ?le (insert x (u ∪ F)) (insert x
(v ∪ F))

by simp
also have . . . = list-all2 (≤) (insort x us) (insort x vs)

unfolding le-ordered-set-lattice-def us-def vs-def using insert fins(2,3)
by (intro arg-cong2[where f=list-all2 (≤)] sorted-list-of-set-insert) auto

also have . . . = list-all2 (≤) us vs
using cards ′ by (intro list-all2-insort[symmetric]) (simp-all add:us-def vs-def)

also have . . . = ?le (u ∪ F) (v ∪ F)
unfolding le-ordered-set-lattice-def us-def vs-def by simp

also have . . . = ?le u v using insert by (intro insert) auto
finally show ?case by simp

qed
also have . . . = ?le (x− y) (y−x) unfolding vars by simp
finally show ?thesis by simp

qed

lemma ordered-set-lattice-carrier :
assumes T ∈ carrier (ordered-set-lattice S n)
shows finite T card T = n T ⊆ S
using assms unfolding ordered-set-lattice-def by auto

lemma ordered-set-lattice-dual:
assumes finite S n ≤ card S
defines L ≡ ordered-set-lattice S n
defines M ≡ ordered-set-lattice S (card S − n)
shows∧

x. x ∈ carrier L =⇒ (S−x) ∈ carrier M∧
x. x ∈ carrier M =⇒ (S−x) ∈ carrier L∧
x y. x ∈ carrier L ∧ y ∈ carrier L =⇒ x vL y ←→ (S−y) vM (S−x)

proof (goal-cases)
case (1 x)
thus ?case using assms(1,2) unfolding ordered-set-lattice-def M-def L-def

by (auto intro:card-Diff-subset)
next

case (2 x)
thus ?case using assms(1,2) unfolding ordered-set-lattice-def M-def L-def

by (auto simp:card-Diff-subset-Int Int-absorb1)
next

case (3 x y)
hence a:finite x finite y card x = card y x ⊆ S y ⊆ S

unfolding ordered-set-lattice-def M-def L-def by auto

have b:card (S − m) = card S − card m if m ⊆ S for m
using that assms(1) card-Diff-subset finite-subset[OF - assms(1)] by auto

have le-ordered-set-lattice x y = le-ordered-set-lattice (x−y) (y−x)

71

by (intro le-ordered-set-lattice-diff a)
also have . . . = le-ordered-set-lattice ((S−y)−(S−x)) ((S−x)−(S−y))

using a by (intro arg-cong2[where f=le-ordered-set-lattice]) auto
also have . . . = le-ordered-set-lattice (S − y) (S − x)

using a b assms(1) by (intro le-ordered-set-lattice-diff [symmetric]) auto
finally have le-ordered-set-lattice x y = le-ordered-set-lattice (S − y) (S − x)

by simp
thus ?case unfolding ordered-set-lattice-def M-def L-def by simp

qed

lemma bij-betw-ord-set-lattice-pairs:
assumes finite S n ≤ card S
defines L ≡ ordered-set-lattice S n
assumes x ∈ carrier L y ∈ carrier L x vL y
shows ∃ϕ. bij-betw ϕ x y ∧ strict-mono-on x ϕ ∧ (∀ e. ϕ e ≥ e)

proof −
let ?xs = sorted-list-of-set x
let ?ys = sorted-list-of-set y

let ?p1 = the-inv-into {..<n} (λi. ?xs ! i)
let ?p2 = (λi. ?ys ! i)

have x: card x = n finite x using assms(4) unfolding L-def ordered-set-lattice-def
by auto
have y: card y = n finite y using assms(5) unfolding L-def ordered-set-lattice-def

by auto
have l-xs: length ?xs = n using length-sorted-list-of-set x by simp
have l-ys: length ?ys = n using length-sorted-list-of-set y by simp

have le: ?xs ! i ≤ ?ys ! i if i ∈ {..<n} for i
using assms(6) l-xs l-ys that unfolding L-def ordered-set-lattice-def le-ordered-set-lattice-def
by (auto simp add:list-all2-conv-all-nth)

have xs-strict-mono: strict-mono-on {..<n} ((!) ?xs)
using strict-sorted-list-of-set
by (metis l-xs lessThan-iff sorted-wrt-iff-nth-less strict-mono-onI)

hence inj-xs: inj-on ((!) ?xs) {..<n} using strict-mono-on-imp-inj-on by auto
have set ?xs = x using set-sorted-list-of-set x by simp
hence ran-xs: ((!) ?xs) ‘ {..<n} = x using set-conv-nth unfolding l-xs[symmetric]

by fast

have set ?ys = y using set-sorted-list-of-set y by simp
hence ran-ys: ((!) ?ys) ‘ {..<n} = y using set-conv-nth unfolding l-ys[symmetric]

by fast

have p1-strict-mono: strict-mono-on x ?p1
proof (rule strict-mono-onI)

fix r s assume a: r ∈ x s ∈ x r < s

72

have ?p1 r ∈ {..<n} using a ran-xs by (intro the-inv-into-into[OF inj-xs])
auto

moreover have ?p1 s ∈ {..<n} using a ran-xs by (intro the-inv-into-into[OF
inj-xs]) auto

moreover have ?xs ! (?p1 r) = r using a ran-xs by (intro f-the-inv-into-f [OF
inj-xs]) auto

moreover have ?xs ! (?p1 s) = s using a ran-xs by (intro f-the-inv-into-f [OF
inj-xs]) auto

ultimately show ?p1 r < ?p1 s using a(3) strict-mono-on-leD[OF xs-strict-mono]
by fastforce

qed

have ran-p1: ?p1 ‘ x = {..<n} using ran-xs the-inv-into-onto[OF inj-xs] by simp

have p2-strict-mono: strict-mono-on {..<n} ?p2
using strict-sorted-list-of-set
by (metis l-ys lessThan-iff sorted-wrt-iff-nth-less strict-mono-onI)

define ϕ where ϕ = (λe. if e ∈ x then (?p2 (?p1 e)) else e)

have strict-mono-on x (?p2 ◦ ?p1)
proof (rule strict-mono-onI)

fix r s assume a: r ∈ x s ∈ x r < s
have ?p1 r < ?p1 s using a strict-mono-onD[OF p1-strict-mono] by auto
moreover have ?p1 r ∈ {..<n} ?p1 s ∈ {..<n} using a ran-p1 by auto
ultimately show (?p2 ◦ ?p1) r < (?p2 ◦ ?p1) s

using strict-mono-onD[OF p2-strict-mono] by simp
qed

hence ϕ-strict-mono: strict-mono-on x ϕ unfolding ϕ-def strict-mono-on-def
by simp

hence ϕ-inj: inj-on ϕ x using strict-mono-on-imp-inj-on by auto

have ϕ ‘ x ⊆ y using ran-p1 ran-ys unfolding ϕ-def by auto
hence ϕ ‘ x = y using card-image[OF ϕ-inj] x y by (intro card-seteq) auto
hence bij-betw ϕ x y using ϕ-inj unfolding bij-betw-def by auto

moreover have ϕ e ≥ e for e
proof (cases e ∈ x)

case True
have e = ?xs ! (?p1 e)

using True ran-xs by (intro f-the-inv-into-f [symmetric] inj-xs) auto
also have . . . ≤ ?p2 (?p1 e) using ran-p1 True by (intro le) auto
also have . . . = ϕ e using True by (simp add:ϕ-def)
finally show ?thesis by simp

next
case False
then show ?thesis unfolding ϕ-def by simp

qed

73

ultimately show ?thesis using ϕ-strict-mono by auto
qed

definition bij-pmf I F = pmf-of-set {f . bij-betw f I F ∧ f ∈ extensional I}

lemma card-bijections ′:
assumes finite A finite B card A = card B
shows card {f . bij-betw f A B ∧ f ∈ extensional A} = fact (card A) (is ?L =

?R)
proof −

have ?L = card {f ∈ A →E B. bij-betw f A B}
using bij-betw-imp-surj-on[where A=A and B=B]
by (intro arg-cong[where f=card] Collect-cong) (auto simp:PiE-def Pi-def)

also have . . . = fact (card A) using card-bijections[OF assms] assms(3) by simp
finally show ?thesis by simp

qed

lemma bij-betw-non-empty-finite:
assumes finite I finite F card I = card F
shows

finite {f . bij-betw f I F ∧ f ∈ extensional I} (is ?T1)
{f . bij-betw f I F ∧ f ∈ extensional I} 6= {} (is ?T2)

proof −
have fact (card I) > (0::nat) using fact-gt-zero by simp
thus ?T1 ?T2

using card-bijections ′[OF assms] card-gt-0-iff by force+
qed

lemma bij-pmf :
assumes finite I finite F card I = card F
shows

set-pmf (bij-pmf I F) = {f . bij-betw f I F ∧ f ∈ extensional I}
finite (set-pmf (bij-pmf I F))

using bij-betw-non-empty-finite[OF assms] unfolding bij-pmf-def by auto

lemma expectation-ge-eval-at-point:
assumes

∧
y. y ∈ set-pmf p =⇒ f y ≥ (0::real)

assumes integrable p f
shows pmf p x ∗ f x ≤ (

∫
x. f x ∂p) (is ?L ≤ ?R)

proof −
have ?L = (

∑
a∈{x}. f a ∗ of-bool(a=x) ∗ pmf p a) by simp

also have . . . = (
∫

a. f a ∗ of-bool (a = x) ∂p)
by (intro integral-measure-pmf-real[symmetric]) auto

also have . . . ≤ ?R
using assms by (intro integral-mono-AE ′ AE-pmfI) auto

finally show ?thesis by simp
qed

74

lemma split-bij-pmf :
assumes finite I finite F card I = card F J ⊆ I
shows bij-pmf I F =

do {
S ← pmf-of-set {S . card S = card J ∧ S ⊆ F};
ϕ ← bij-pmf J S ;
ψ ← bij-pmf (I−J) (F−S);
return-pmf (merge J (I−J) (ϕ, ψ))
} (is ?L = ?R)

proof (rule pmf-eq-iff-le)
fix x

let ?p1 = pmf-of-set {S . card S = card J ∧ S ⊆ F}
let ?p2 = bij-pmf J
let ?p3 = (λS . bij-pmf (I−J) (F−S))

have f0: finite J using finite-subset assms(1,4) by metis
have f1: finite (I−J) using finite-subset assms(1,4) by force

note pos1 = pmf-of-set[OF bij-betw-non-empty-finite(2,1)[OF assms(1−3)]]

show pmf (bij-pmf I F) x ≤ pmf ?R x
proof (cases x ∈ set-pmf ?L)

case True
hence a:bij-betw x I F x ∈ extensional I

using bij-pmf [OF assms(1−3)] by auto

define T where T = x ‘ J
define y where y = restrict x J
define z where z = restrict x (I−J)

have x-on-compl: x ‘ (I−J) = (F−T) using a assms(4) unfolding T-def
bij-betw-def

by (subst inj-on-image-set-diff [where C=I]) auto

have T-F : T ⊆ F using bij-betw-imp-surj-on[OF a(1)] assms(4) unfolding
T-def by auto

have f2: finite T using assms(2) T-F finite-subset by auto
have f3: finite (F − T) using assms(2) T-F finite-subset by auto
have c1: card J = card T

unfolding T-def using assms(4) inj-on-subset bij-betw-imp-inj-on[OF a(1)]
by (intro card-image[symmetric]) auto

have c2: card (I−J) = card (F−T)
unfolding x-on-compl[symmetric] using inj-on-subset bij-betw-imp-inj-on[OF

a(1)]
by (intro card-image[symmetric]) force

have restrict x (J ∪ (I − J)) = restrict x I using assms(4) by force

75

also have . . . = x using a extensional-restrict by auto
finally have b:restrict x (J ∪ (I − J)) = x by simp

have y: y ∈ extensional J bij-betw y J T
using assms(4) inj-on-subset a y-def unfolding bij-betw-def T-def by auto

have z ‘ (I−J) = (F−T) using x-on-compl unfolding z-def by auto
hence z: z ∈ extensional (I−J) bij-betw z (I−J) (F−T)

using a z-def unfolding bij-betw-def T-def by (auto intro:inj-on-diff)

have pos-assms2: {S . card S = card J ∧ S ⊆ F} 6= {} finite {S . card S = card
J ∧ S ⊆ F}

using T-F c1 by (auto intro!: finite-subset[OF - iffD2[OF finite-Pow-iff
assms(2)]])

note pos3 =
pmf-of-set[OF bij-betw-non-empty-finite(2,1)[OF f0 f2 c1]]
pmf-of-set[OF bij-betw-non-empty-finite(2,1)[OF f1 f3 c2]]

have fin-pmf1: finite (set-pmf ?p1) using pos-assms2 set-pmf-of-set by simp
note [simp] = integrable-measure-pmf-finite[OF fin-pmf1, where ′b=real]

have fin-pmf2: finite (set-pmf (?p2 T)) by (intro bij-pmf [OF f0 f2 c1])
note [simp] = integrable-measure-pmf-finite[OF fin-pmf2, where ′b=real]

have fin-pmf3: finite (set-pmf (?p3 T)) by (intro bij-pmf [OF f1 f3 c2])
note [simp] = integrable-measure-pmf-finite[OF fin-pmf3, where ′b=real]

have pmf ?L x = 1 / real (card {f . bij-betw f I F ∧ f ∈ extensional I})
using a pos1 unfolding bij-pmf-def by simp

also have . . . = 1 / real (fact (card I)) using assms by (simp add: card-bijections ′)
also have . . . = 1 / real (fact (card J) ∗ fact (card I−card J) ∗ (card I choose

card J))
using assms(1,4) card-mono by (subst binomial-fact-lemma) auto

also have . . . = 1 / real ((card F choose card J) ∗ fact (card J) ∗ fact (card
(I−J)))

using assms(3) card-Diff-subset[OF f0 assms(4)] by simp
also have . . . = 1/real(card {S . S⊆F∧card S=card J} ∗ card {f . bij-betw f J

T∧f∈extensional J} ∗
card {f . bij-betw f (I−J) (F−T)∧f∈extensional (I−J)})
using f0 f1 f2 f3 assms(2) c1 c2 by (simp add:card-bijections ′ n-subsets)

also have . . . = pmf ?p1 T ∗ pmf (?p2 T) y ∗ pmf (?p3 T) z
using y z c1 T-F unfolding bij-pmf-def pos3 pmf-of-set[OF pos-assms2]
by (simp add:conj-commute)

also have . . . = pmf ?p1 T ∗ (pmf (?p2 T) y ∗ (pmf (?p3 T) z ∗ of-bool(merge
J (I−J) (y, z) = x)))

unfolding y-def z-def merge-restrict merge-x-x-eq-restrict b by simp
also have . . . ≤ pmf ?p1 T ∗ (pmf (?p2 T) y ∗ (

∫
ψ. of-bool(merge J (I−J)

(y, ψ) = x) ∂?p3 T))

76

by (intro mult-left-mono expectation-ge-eval-at-point integral-nonneg-AE
AE-pmfI) simp-all

also have . . . ≤ pmf ?p1 T ∗ (
∫
ϕ. (

∫
ψ. of-bool(merge J (I−J) (ϕ, ψ) = x)

∂?p3 T) ∂?p2 T)
by (intro mult-left-mono expectation-ge-eval-at-point integral-nonneg-AE

AE-pmfI) simp-all
also have . . . ≤ (

∫
S . (

∫
ϕ. (

∫
ψ. of-bool(merge J (I−J) (ϕ, ψ) = x) ∂?p3 S)

∂?p2 S) ∂?p1)
by (intro expectation-ge-eval-at-point integral-nonneg-AE AE-pmfI) simp-all

also have . . . = pmf ?R x unfolding pmf-bind by (simp add:indicator-def)
finally show ?thesis by simp

next
case False
hence pmf ?L x = 0 by (simp add: set-pmf-iff)
also have . . . ≤ pmf ?R x by simp
finally show ?thesis by simp

qed
qed

lemma map-bij-pmf :
assumes finite I finite F card I = card F inj-on ϕ F
shows map-pmf (λf . (λx∈I . ϕ(f x))) (bij-pmf I F) = bij-pmf I (ϕ ‘ F)

proof−
let ?h = the-inv-into F ϕ

have h-bij: bij-betw ?h (ϕ ‘ F) F
using assms(4) by (simp add: bij-betw-the-inv-into inj-on-imp-bij-betw)

have bij-betw (λf . (λx∈I . ϕ(f x)))
{f . bij-betw f I F ∧ f ∈ extensional I} {f . bij-betw f I (ϕ ‘ F) ∧ f ∈ extensional

I}
proof (intro bij-betwI [where g=(λf . (λx∈I . ?h(f x)))], goal-cases)

case 1 thus ?case
using bij-betw-trans[OF - inj-on-imp-bij-betw[OF assms(4)], where A=I]
by (auto simp:comp-def)

next
case 2 thus ?case

using bij-betw-trans[OF - h-bij, where A=I] by (auto simp:comp-def)
next

case (3 x)
hence x ∈ I → F x ∈ extensional I using bij-betw-imp-surj-on by auto
hence (λω∈I . ?h ((λy∈I . ϕ (x y)) ω)) ω = x ω for ω
by (auto intro!:the-inv-into-f-f [OF assms(4)] simp: restrict-def extensional-def)
thus ?case by auto

next
case (4 y)
hence y ∈ I → (ϕ ‘ F) y ∈ extensional I using bij-betw-imp-surj-on by blast+
hence (λx∈I . ϕ ((λx∈I . the-inv-into F ϕ (y x)) x)) ω = y ω for ω
by (auto intro!:f-the-inv-into-f [OF assms(4)] simp: restrict-def extensional-def)

77

thus ?case by auto
qed
thus ?thesis
unfolding bij-pmf-def by (intro map-pmf-of-set-bij-betw bij-betw-non-empty-finite

assms)
qed

lemma pmf-of-multiset-eq-pmf-of-setI :
assumes c > 0 x 6= {#}
assumes

∧
i. i ∈ y =⇒ count x i = c

assumes
∧

i. i ∈# x =⇒ i ∈ y
shows pmf-of-multiset x = pmf-of-set y

proof (rule pmf-eqI)
fix i

have a:set-mset x = y using assms(1,3,4) count-eq-zero-iff by force
hence y-ne: y 6= {} finite y using assms(2) by auto

have size x = sum (count x) y unfolding size-multiset-overloaded-eq a by simp
also have . . . = sum (λ-. c) y by (intro sum.cong refl assms(3)) auto
also have . . . = c ∗card y using y-ne by simp
finally have c ∗ card y = size x by simp
hence rel: real (size x)/real c = real (card y)

using assms(1) by (simp add:field-simps flip:of-nat-mult)

have pmf (pmf-of-multiset x) i = real (count x i) / real (size x)
using assms(2) by simp

also have . . . = real c ∗ of-bool(i ∈ y) / real (size x)
using assms by (auto simp:of-bool-def count-eq-zero-iff)

also have . . . = of-bool(i ∈ y) / real (card y)
unfolding rel[symmetric] by simp

also have . . . = pmf (pmf-of-set y) i
using y-ne by simp

finally show pmf (pmf-of-multiset x) i = pmf (pmf-of-set y) i by simp
qed

lemma card-multi-bij:
assumes finite J
assumes I =

⋃
(A ‘ J) disjoint-family-on A J

assumes
∧

j. j ∈ J =⇒ finite (A j) ∧ finite (B j) ∧ card (A j) = card (B j)
shows card {f . (∀ j∈J . bij-betw f (A j) (B j)) ∧ f∈extensional I} = (

∏
i∈J .

fact (card (A i)))
(is card ?L = ?R)

proof −
define g where g i = (THE j. j ∈ J ∧ i ∈ A j) for i
have g: g i = j if i ∈ A j j ∈ J for i j unfolding g-def
proof (rule the1-equality)

show ∃ !j. j ∈ J ∧ i ∈ A j
using assms(3) that unfolding bex1-def disjoint-family-on-def by auto

78

show j ∈ J ∧ i ∈ A j using that by auto
qed

have bij-betw (λϕ. (λi∈I . ϕ (g i) i))
(PiE J (λj. {f . bij-betw f (A j) (B j) ∧ f∈extensional (A j)})) ?L

proof (intro bij-betwI [where g= λx. λi∈J . restrict x (A i)] Pi-I , goal-cases)
case (1 x)
have bij-betw (λi∈I . x (g i) i) (A j) (B j) if j ∈ J for j
proof −

have last:bij-betw (x j) (A j) (B j) using that 1 by auto
have A j ⊆ I using that assms(2) by auto
thus ?thesis using g that by (intro iffD2[OF bij-betw-cong last]) auto

qed
thus ?case using 1 by auto

next
case (2 x)
thus ?case by (intro iffD2[OF restrict-PiE-iff] ballI) simp

next
case (3 x)
have restrict (λi∈I . x (g i) i) (A j) = x j if j ∈ J for j
proof −

have A j ⊆ I using that assms(2) by auto
moreover have x j ∈ extensional (A j) using that 3 by auto
hence restrict (λi. x (g i) i) (A j) = x j

using g that unfolding restrict-def extensional-def by auto
ultimately show ?thesis unfolding restrict-restrict using Int-absorb1 by

metis
qed
thus ?case using 3 unfolding extensional-def PiE-def by auto

next
case (4 y)
have (λj∈J . restrict y (A j)) (g i) i = y i if that ′:i ∈ I for i
proof −

obtain j where i ∈ A j j ∈ J using that ′ assms(2) by auto
thus ?thesis using g by simp

qed
thus ?case using 4 unfolding extensional-def by auto

qed

hence card ?L = card (PiE J (λj. {f . bij-betw f (A j) (B j)∧ f∈extensional (A
j)}))

using bij-betw-same-card[symmetric] by auto
also have . . . = (

∏
i∈J . card {f . bij-betw f (A i) (B i) ∧ f ∈ extensional (A

i)})
unfolding card-PiE [OF assms(1)] by simp

also have . . . = (
∏

i∈J . fact (card (A i)))
using assms(4) by (intro prod.cong card-bijections ′) auto

finally show ?thesis by simp
qed

79

lemma map-bij-pmf-non-inj:
fixes I :: ′a set
fixes F :: ′b set
fixes ϕ :: ′b ⇒ ′c
assumes finite I finite F card I = card F
defines q ≡ {f . f ∈ extensional I ∧ {#f x. x ∈# mset-set I#} = {#ϕ x. x∈#

mset-set F#}}
shows map-pmf (λf . (λx∈I . ϕ(f x))) (bij-pmf I F) = pmf-of-set q (is ?L = -)

proof −
let ?G = {# ϕ x. x ∈# mset-set F #}
let ?G ′ = set-mset ?G
define c :: nat where c = (

∏
i ∈ set-mset ?G. fact (count ?G i))

note ne = bij-betw-non-empty-finite[OF assms(1−3)]
note cim = count-image-mset-eq-card-vimage

have c ≥ 1 unfolding c-def by (intro prod-ge-1) auto
hence c-gt-0: c > 0 by simp

have ?L = pmf-of-multiset {#λx∈I . ϕ (f x). f ∈# mset-set {f . bij-betw f I
F∧f∈extensional I}#}

unfolding bij-pmf-def by (intro map-pmf-of-set[OF ne])
also have . . . = pmf-of-set q unfolding q-def
proof (rule pmf-of-multiset-eq-pmf-of-setI [OF c-gt-0],goal-cases)

case 1
have card {f . bij-betw f I F ∧ f ∈ extensional I} > 0 using ne by fastforce
thus ?case by (simp add:nonempty-has-size)

next
case (2 f)

hence a: image-mset f (mset-set I) = image-mset ϕ (mset-set F) by simp
hence card {x ∈ F . ϕ x = g} = card {x ∈ I . f x = g} for g

using cim[OF assms(1)] cim[OF assms(2)] by metis
hence b: card (ϕ −‘ {g} ∩ F) = card (f −‘ {g} ∩ I) for g

by (auto simp add:Int-def conj-commute)

have c:bij-betw ω I F ∧ (λi∈I . ϕ (ω i))=f ←→ (∀ g∈?G ′. bij-betw ω (f −‘{g}
∩I) (ϕ−‘{g} ∩F))

(is ?L1 = ?R1) for ω
proof

assume ?L1
hence d:bij-betw ω I F and e: ∀ i ∈ I . ϕ (ω i) = f i by auto
have bij-betw ω (f −‘{g} ∩ I) (ϕ −‘ {g} ∩ F) if g ∈ ?G ′ for g
proof −

have card (ϕ −‘ {g} ∩ F) = card (ω ‘ (f −‘ {g} ∩ I))
unfolding b using d

by (intro card-image[symmetric]) (simp add: bij-betw-imp-inj-on inj-on-Int)
hence ω ‘ (f −‘ {g} ∩ I) = ϕ −‘ {g} ∩ F

80

using assms(2) e bij-betw-imp-surj-on[OF d] by (intro card-seteq im-
age-subsetI) auto

thus ?thesis by (intro bij-betw-subset[OF d]) auto
qed
thus ?R1 by auto

next
assume f :?R1

have g: ϕ (ω i) = f i if i ∈ I for i
proof −

have f i ∈ ?G ′ unfolding a[symmetric] using that assms(1) by auto
hence ω ‘ (f −‘ {f i} ∩ I) = (ϕ −‘ {f i} ∩ F)

using bij-betw-imp-surj-on using f by metis
thus ?thesis using that by (auto simp add:vimage-def)

qed
have x = y if x ∈ I y ∈ I ω x = ω y for x y
proof −

have f x ∈ ?G ′ unfolding a[symmetric] using that assms(1) by auto
hence inj-on ω (f −‘ {f x} ∩ I) using f bij-betw-imp-inj-on by blast
moreover have f x = f y using that g by metis

ultimately show x = y using that(1,2,3) inj-onD[where f=ω, OF -
that(3)] by fastforce

qed
hence h:inj-on ω I by (rule inj-onI)

have i: ω ‘ I ⊆ F
proof (rule image-subsetI)

fix x assume x ∈ I
hence f x ∈ ?G ′ x ∈ (f −‘ {f x} ∩ I) using assms(1) unfolding a[symmetric]

by auto
thus ω x ∈ F using bij-betw-imp-surj-on f by fast

qed
have bij-betw ω I F

using card-image[OF h] assms(3) unfolding bij-betw-def
by (intro conjI card-seteq i h assms) auto

thus ?L1 using g 2 unfolding restrict-def extensional-def by auto
qed

have j: f ‘ I ⊆ ϕ ‘ F using a
by (metis assms(1,2) finite-set-mset-mset-set multiset.set-map set-eq-subset)

have c = (
∏

g ∈ ?G ′. fact (card (f −‘ {g} ∩ I)))
unfolding b[symmetric] c-def cim[OF assms(2)]
by (simp add:vimage-def Int-def conj-commute)

also have . . . = card {ω. (∀ g ∈ ?G ′. bij-betw ω (f−‘{g} ∩ I) (ϕ−‘{g} ∩ F))
∧ ω ∈ extensional I}

using assms(1,2) j b
by (intro card-multi-bij[symmetric]) (auto simp: vimage-def disjoint-family-on-def)
also have . . . = card {ω. bij-betw ω I F ∧ ω ∈ extensional I ∧ (λi∈I . ϕ (ω i))

81

= f }
using c by (intro arg-cong[where f=card] Collect-cong) auto

finally show ?case using ne by (subst count-image-mset-eq-card-vimage) auto
next

case (3 f)
then obtain u where u-def :bij-betw u I F u ∈ extensional I f = (λx. λxa∈I .

ϕ (x xa)) u
using ne by auto

have image-mset f (mset-set I) = image-mset ϕ (image-mset u (mset-set I))
using assms(1) unfolding u-def (3) multiset.map-comp by (intro image-mset-cong)

auto
also have . . . = image-mset ϕ (mset-set F) using image-mset-mset-set u-def (1)

unfolding bij-betw-def by (intro arg-cong2[where f=image-mset] refl) auto
finally have image-mset f (mset-set I) = image-mset ϕ (mset-set F) by simp

moreover have f ∈ extensional I unfolding u-def (3) by auto
ultimately show ?case by simp

qed
finally show ?thesis by simp

qed

lemmas fkg-inequality-pmf-internalized = fkg-inequality-pmf [unoverload-type ′a]

lemma permutation-distributions-are-neg-associated:
fixes F :: (′a :: linorder-topology) set
fixes I :: ′b set
assumes finite F finite I card I = card F
shows measure-pmf .neg-assoc (bij-pmf I F) (λi ω. ω i) I

proof (rule measure-pmf .neg-assocI2, goal-cases)
case (1 i) thus ?case by simp

next
case (2 f g J)

have fin-J : finite J using 2(1) assms(2) finite-subset by metis
have fin-I-J : finite (I−J) using 2(1) assms(2) finite-subset by blast

define k where k = card J

have k-le-F : k ≤ card F unfolding k-def using 2(1) assms(2,3) card-mono by
force

let ?p0 = bij-pmf I F
let ?p1 = pmf-of-set {S . card S = card J ∧ S ⊆ F}
let ?p2 = λS . bij-pmf J S
let ?p3 = λS . bij-pmf (I − J) (F − S)

note set-pmf-p0 = bij-pmf [OF assms(2,1,3)]

82

note integrable-p0[simp] = integrable-measure-pmf-finite[OF set-pmf-p0(2), where
′b=real]

note dep-f = 2(2)
note dep-g = 2(3)

have bounded-f : bounded (f ‘ S) for S using bounded-subset[OF 2(6) image-mono]
by simp

have bounded-g: bounded (g ‘ S) for S using bounded-subset[OF 2(7) im-
age-mono] by simp

note mono-f = 2(4)
note mono-g = 2(5)

let ?L = ordered-set-lattice F k

define f ′ where f ′ S = (
∫
ϕ. f ϕ ∂?p2 S) for S

define g ′ where g ′ S = (
∫
ϕ. g ϕ ∂?p3 S) for S

interpret L: finite-ne-distrib-lattice ordered-set-lattice F k
by (intro ordered-set-lattice-lattice assms(1) k-le-F)

have carr-L-ne: carrier ?L 6= {} and fin-L: finite (carrier ?L)
using ordered-set-lattice-carrier-finite-ne[OF assms(1) k-le-F] by auto

have mono-f ′: monotone-on (carrier ?L) (v?L) (≤) f ′

proof (rule monotone-onI)
fix S T
assume a:S v?L T S ∈ carrier ?L T ∈ carrier ?L
then obtain % where %-bij: bij-betw % S T and %-inc:

∧
e. % e ≥ e

using bij-betw-ord-set-lattice-pairs[OF assms(1) k-le-F] by blast

note S-carr = ordered-set-lattice-carrier [OF a(2)]
have c:card J = card S using S-carr k-def by auto

note set-pmf-p2 = bij-pmf [OF fin-J S-carr(1) c]
note int = integrable-measure-pmf-finite[OF set-pmf-p2(2)]

have f ′ S = (
∫
ϕ. f (λω∈J . ϕ ω) ∂?p2 S) unfolding f ′-def

using set-pmf-p2 extensional-restrict by (intro integral-cong-AE AE-pmfI)
force+

also have . . . ≤ (
∫
ϕ. f (λω∈J . %(ϕ ω)) ∂?p2 S) unfolding f ′-def

using %-inc unfolding restrict-def
by (intro integral-mono-AE AE-pmfI monoD[OF mono-f] int) (auto simp:

le-fun-def)
also have . . . = (

∫
ϕ. f ϕ ∂(map-pmf (λϕ. (λω∈J . %(ϕ ω))) (?p2 S))) by simp

also have . . . = (
∫
ϕ. f ϕ ∂(?p2 (% ‘ S)))

using ordered-set-lattice-carrier [OF a(2)] k-def
by (intro arg-cong2[where f=measure-pmf .expectation] map-bij-pmf refl

83

bij-betw-imp-inj-on[OF %-bij] fin-J) auto
also have . . . = (

∫
ϕ. f ϕ ∂?p2 T) using bij-betw-imp-surj-on[OF %-bij] by

simp
finally show f ′ S ≤ f ′ T unfolding f ′-def by simp

qed

have mono-g ′: monotone-on (carrier ?L) (v?L) (≤) ((∗)(−1) ◦ g ′)
proof (rule monotone-onI)

fix S T
let ?M = ordered-set-lattice F (card F−k)
assume a:S v?L T S ∈ carrier ?L T ∈ carrier ?L
hence a ′: (F−T) v?M (F−S) (F−S) ∈ carrier ?M (F−T) ∈ carrier ?M

using ordered-set-lattice-dual[OF assms(1) k-le-F] by auto
then obtain % where %-bij: bij-betw % (F−T) (F−S) and %-inc:

∧
e. % e ≥ e

using bij-betw-ord-set-lattice-pairs[OF assms(1)] k-le-F by (meson diff-le-self)
note T-carr = ordered-set-lattice-carrier [OF a ′(3)]

have c: card (I−J) = card (F−T)
using assms ordered-set-lattice-carrier [OF a(3)] k-def 2(1) fin-J
by (simp add: card-Diff-subset)

note set-pmf-p3 = bij-pmf [OF fin-I-J T-carr(1) c]
note int = integrable-measure-pmf-finite[OF set-pmf-p3(2)]

have g ′ T = (
∫
ϕ. g (λω∈I−J . ϕ ω) ∂?p3 T) unfolding g ′-def

using set-pmf-p3 extensional-restrict by (intro integral-cong-AE AE-pmfI)
force+

also have . . . ≤ (
∫
ϕ. g (λω∈I−J . %(ϕ ω)) ∂?p3 T) unfolding g ′-def restrict-def

using %-inc
by (intro integral-mono-AE AE-pmfI monoD[OF mono-g] int) (auto simp:

le-fun-def)
also have . . . = (

∫
ϕ. g ϕ ∂(map-pmf (λϕ. (λω∈I−J . %(ϕ ω))) (?p3 T))) by

simp
also have . . . = (

∫
ϕ. g ϕ ∂(bij-pmf (I − J) (% ‘ (F−T)))) using assms

by (intro arg-cong2[where f=measure-pmf .expectation] map-bij-pmf refl
bij-betw-imp-inj-on[OF %-bij] fin-J c) auto

also have . . . = (
∫
ϕ. g ϕ ∂?p3 S) using bij-betw-imp-surj-on[OF %-bij] by

simp
finally have g ′ T ≤ g ′ S unfolding g ′-def by simp
thus ((∗) (− 1) ◦ g ′) S ≤ ((∗) (− 1) ◦ g ′) T by simp

qed

have (
∫

S . f ′ S ∗ g ′ S ∂?p1) ≤ (
∫

S . f ′ S ∂?p1) ∗ (
∫

S . g ′ S ∂?p1)
if td: ∃ (Rep :: ′x ⇒ ′a set) Abs. type-definition Rep Abs (carrier ?L)

proof −
obtain Rep :: ′x ⇒ ′a set and Abs where td:type-definition Rep Abs (carrier

?L)
using td by auto

interpret type-definition Rep Abs carrier ?L using td by auto

84

have carr-L: carrier ?L = {S . card S = card J ∧ S ⊆ F}
using finite-subset[OF - assms(1)] unfolding ordered-set-lattice-def k-def
by (auto simp add:set-eq-iff)

have Rep-bij: bij-betw Rep UNIV {S . card S = card J ∧ S ⊆ F}
using Rep-range Rep-inject carr-L unfolding bij-betw-def by (intro conjI

inj-onI) auto

have fin-UNIV : finite (UNIV :: ′x set)
using fin-L carr-L Rep-bij bij-betw-finite by metis

let ?p1 ′ = pmf-of-set (UNIV :: ′x set)
have rep-p1: ?p1 = map-pmf Rep ?p1 ′

by (intro UNIV-not-empty map-pmf-of-set-bij-betw[symmetric] Rep-bij fin-UNIV)

note ∗ = L.transfer-to-type[OF fin-L td]

note fkg = fkg-inequality-pmf-internalized[OF ∗]

have mono-rep-f ′: monotone (λS T . Rep S v?L Rep T) (≤) (f ′ ◦ Rep)
using mono-f ′ Rep unfolding monotone-on-def by simp

have mono-rep-g ′: monotone (λS T . Rep S v?L Rep T) (≥) (g ′ ◦ Rep)
using mono-g ′ Rep unfolding monotone-on-def by simp

have pmf-const: pmf ?p1 ′ x = 1/(real (CARD(′x))) for x
by (subst pmf-of-set[OF - fin-UNIV]) auto

have (
∫

S . f ′ S ∗ g ′ S ∂?p1) = (
∫

S . f ′ (Rep S) ∗ g ′ (Rep S) ∂?p1 ′)
unfolding rep-p1 by simp

also have . . . ≤ (
∫

S . f ′ (Rep S) ∂?p1 ′) ∗ (
∫

S . g ′ (Rep S) ∂?p1 ′)
using mono-rep-f ′ mono-rep-g ′

by (intro fkg[where τ=Fwd and σ=Rev, simplified]) (simp-all add:comp-def
pmf-const)

also have . . . = (
∫

S . f ′ S ∂?p1) ∗ (
∫

S . g ′ S ∂?p1)
unfolding rep-p1 by simp

finally show (
∫

S . f ′ S ∗ g ′ S ∂?p1) ≤ (
∫

S . f ′ S ∂?p1) ∗ (
∫

S . g ′ S ∂?p1) by
simp

qed

note core-result = this[cancel-type-definition, OF carr-L-ne]

note split-p0 = split-bij-pmf [OF assms(2,1,3) 2(1)]

have (
∫

x. f x ∗ g x ∂bij-pmf I F) =
(
∫

S . (
∫
ϕ. (

∫
ψ. f (merge J (I−J) (ϕ,ψ))∗g(merge J (I−J) (ϕ,ψ)) ∂?p3 S)

∂?p2 S) ∂?p1)
unfolding k-def by (simp add:split-p0 bounded-intros bounded-f bounded-g

integral-bind-pmf)
also have . . . = (

∫
S . (

∫
ϕ. (

∫
ψ. f ϕ∗g ψ ∂?p3 S) ∂?p2 S) ∂?p1)

by (intro integral-cong-AE AE-pmfI arg-cong2[where f=(∗)] depends-onD2[OF

85

dep-f]
depends-onD2[OF dep-g]) simp-all

also have . . . = (
∫

S . (
∫
ϕ. f ϕ ∂?p2 S) ∗ (

∫
ψ. g ψ ∂?p3 S) ∂?p1) by simp

also have . . . ≤ (
∫

S . (
∫
ϕ. f ϕ ∂?p2 S) ∂?p1) ∗ (

∫
S . (

∫
ϕ. g ϕ ∂?p3 S) ∂?p1)

using core-result unfolding f ′-def g ′-def by simp
also have . . . = (

∫
S .(

∫
ϕ.(

∫
ψ. f ϕ ∂?p3 S) ∂?p2 S) ∂?p1) ∗ (

∫
S .(

∫
ϕ.(

∫
ψ. g

ψ ∂?p3 S) ∂?p2 S) ∂?p1)
by simp

also have . . . =
(
∫

S . (
∫
ϕ. (

∫
ψ. f (merge J (I−J) (ϕ,ψ)) ∂?p3 S) ∂?p2 S) ∂?p1) ∗

(
∫

S . (
∫
ϕ. (

∫
ψ. g (merge J (I−J) (ϕ,ψ)) ∂?p3 S) ∂?p2 S) ∂?p1)

by (intro arg-cong2[where f=(∗)] integral-cong-AE AE-pmfI depends-onD2[OF
dep-f]

depends-onD2[OF dep-g]) simp-all
also have . . . = (

∫
x. f x ∂?p0) ∗ (

∫
x. g x ∂?p0)

unfolding k-def by (simp add:split-p0 bounded-intros bounded-f bounded-g
integral-bind-pmf)

finally show (
∫

x. f x ∗ g x ∂?p0) ≤ (
∫

x. f x ∂?p0)∗(
∫

x. g x ∂?p0) by simp
qed

lemma multiset-permutation-distributions-are-neg-associated:
fixes F :: (′a :: linorder-topology) multiset
fixes I :: ′b set
assumes finite I card I = size F
defines p ≡ pmf-of-set {ϕ. ϕ ∈ extensional I ∧ image-mset ϕ (mset-set I) = F}
shows measure-pmf .neg-assoc p (λi ω. ω i) I

proof −
let ?xs = sorted-list-of-multiset F
define α where α k = ?xs ! (min k (length ?xs −1)) for k

let ?N = {..<size F}
let ?h = (λf . (λi∈I . α (f i)))

have sorted-xs: sorted ?xs by (induction F , auto simp:sorted-insort)

have mono-α: mono α
proof (cases ?xs = [])

case True thus ?thesis unfolding α-def by simp
next

case False thus ?thesis unfolding α-def
by (intro monoI sorted-nth-mono[OF sorted-xs]) (simp-all add: min.strict-coboundedI2)

qed

have l-xs: length ?xs = size F by (metis mset-sorted-list-of-multiset size-mset)

have image-mset α (mset-set {..<size F}) = image-mset ((!) ?xs) (mset-set
{..<size F})

unfolding α-def l-xs[symmetric] by (intro image-mset-cong) auto
also have . . . = mset ?xs unfolding l-xs[symmetric]

86

by (metis map-nth mset-map mset-set-upto-eq-mset-upto)
also have . . . = F by simp
finally have 0:image-mset α (mset-set {..<size F}) = F by simp

have map-pmf (λf . (λi∈I . α (f i))) (bij-pmf I ?N) =
pmf-of-set {f ∈ extensional I . image-mset f (mset-set I) = image-mset α

(mset-set {..<size F})}
using assms by (intro map-bij-pmf-non-inj) auto

also have . . . = p unfolding p-def 0 by simp
finally have 1:map-pmf (λf . (λi∈I . α (f i))) (bij-pmf I ?N) = p by simp

have 2:measure-pmf .neg-assoc (bij-pmf I {..<size F}) (λi ω. ω i) I
using assms(1,2) by (intro permutation-distributions-are-neg-associated) auto

have measure-pmf .neg-assoc (bij-pmf I {..<size F}) (λi ω. if i ∈ I then α(ω i)
else undefined) I

using mono-α by (intro measure-pmf .neg-assoc-compose-simple[OF assms(1)
2, where η=Fwd]

borel-measurable-continuous-onI) simp-all
hence measure-pmf .neg-assoc (map-pmf (λf . (λi∈I . α(f i))) (bij-pmf I {..<size

F})) (λi ω. ω i) I
by (simp add:neg-assoc-map-pmf restrict-def if-distrib if-distribR)

thus ?thesis unfolding 1 by simp
qed

lemma n-subsets-prob:
assumes d ≤ card S finite S s ∈ S
shows

measure-pmf .prob (pmf-of-set {a. a ⊆ S ∧ card a = d}) {ω. s /∈ ω} = (1 − real
d/card S)

measure-pmf .prob (pmf-of-set {a. a ⊆ S ∧ card a = d}) {ω. s ∈ ω} = real
d/card S
proof −

let ?C = {a. a ⊆ S ∧ card a = d}

have card ?C > 0 unfolding n-subsets[OF assms(2)] using zero-less-binomial[OF
assms(1)] by simp

hence ne:?C 6= {} finite ?C using card-gt-0-iff by blast+

have card-S-gt-0: card S > 0 using assms(2,3) card-gt-0-iff by auto

have measure (pmf-of-set ?C) {x. s /∈ x} = real (card {T . T⊆S ∧ card T = d
∧ s /∈ T}) / card ?C

by (subst measure-pmf-of-set[OF ne]) (simp-all add:Int-def)
also have . . . = real (card {T . T⊆(S−{s}) ∧ card T = d}) / card ?C

by (intro arg-cong2[where f=(λx y. real (card x)/y)] Collect-cong) auto
also have . . . = real(card (S − {s}) choose d) / real (card S choose d)

using assms(1,2) by (subst (1 2) n-subsets) auto
also have . . . = real((card S − 1) choose d) / real (card S choose d) using

87

assms by simp
also have . . . = real(card S ∗((card S−1) choose d)) / real (card S ∗ (card S

choose d))
using card-S-gt-0 by simp

also have . . . = real (card S − d) / real (card S)
unfolding binomial-absorb-comp[symmetric] by simp

also have . . . = (real (card S) − real d) / real (card S)
using assms by (subst of-nat-diff) auto

also have . . . = (1 − real d/card S) using card-S-gt-0 by (simp add:field-simps)
finally show measure (pmf-of-set ?C) {x. s /∈ x} = (1 − real d/card S) by simp

hence ‹1−measure (pmf-of-set ?C) {x. s /∈ x} = real d/card S› by simp
thus measure-pmf .prob (pmf-of-set ?C) {ω. s ∈ ω} = real d/card S
by (subst (asm) measure-pmf .prob-compl[symmetric]) (auto simp:diff-eq Compl-eq)

qed

lemma n-subsets-distribution-neg-assoc:
assumes finite S k ≤ card S
defines p ≡ pmf-of-set {T . T ⊆ S ∧ card T = k}
shows measure-pmf .neg-assoc p (∈) S

proof −
define F :: bool multiset where F = replicate-mset k True + replicate-mset (card

S − k) False
let ?qset = { ϕ ∈ extensional S . image-mset ϕ (mset-set S) = F }
define q where q = pmf-of-set ?qset

have a: card S = size F unfolding F-def using assms(2) by simp

have b: image-mset ϕ (mset-set S) = F ←→ card (ϕ −‘ {True} ∩ S) = k
(is ?L ←→ ?R) for ϕ

proof −
have de:card (ϕ−‘{False}∩S) + card (ϕ−‘{True}∩S) = card S
using assms(1) by (subst card-Un-disjoint[symmetric]) (auto intro:arg-cong[where

f=card])

have ?L ←→ (∀ i. count {#ϕ x. x∈#mset-set S#} i = count F i) using
multiset-eq-iff by blast

also have . . . ←→ (∀ i. card (ϕ −‘ {i} ∩ S) = count F i)
unfolding count-image-mset-eq-card-vimage[OF assms(1)] vimage-def Int-def
by (simp add:conj-commute)

also have . . . ←→ card (ϕ −‘ {True} ∩ S) = k ∧ card (ϕ −‘ {False} ∩ S) =
(card S−k)

unfolding F-def using assms(1) by auto
also have . . . ←→ ?R using assms(2) de by auto
finally show ?thesis by simp

qed

have bij-betw (λω. λs∈S . s∈ω) {T . T⊆S ∧ card T = k} ?qset unfolding b
by (intro bij-betwI [where g=λϕ. {x. x ∈ S ∧ ϕ x}] Pi-I ext)

88

(auto intro: arg-cong[where f=card] simp:extensional-def vimage-def Int-def
conj-commute)

moreover have card {T . T ⊆ S ∧ card T = k} > 0
unfolding n-subsets[OF assms(1)] by (intro zero-less-binomial assms(2))

hence {T . T ⊆ S ∧ card T = k} 6= {} ∧ finite {T . T ⊆ S ∧ card T = k}
using card-gt-0-iff by blast

ultimately have c: map-pmf (λω. λs∈S . s∈ω) p = q
unfolding p-def q-def by (intro map-pmf-of-set-bij-betw) auto

have measure-pmf .neg-assoc (map-pmf (λω. λs∈S . s∈ω) p) (λi ω. ω i) S
unfolding c q-def by (intro multiset-permutation-distributions-are-neg-associated

a assms(1))
hence d:measure-pmf .neg-assoc p (λs ω. if s ∈ S then (s ∈ ω) else undefined) S

unfolding neg-assoc-map-pmf by (simp add:restrict-def cong:if-cong)
show ?thesis by (intro measure-pmf .neg-assoc-cong[OF assms(1) - d] AE-pmfI)

auto
qed

end

7 Application: Bloom Filters

The false positive probability of Bloom Filters is a case where negative
association is really useful. Traditionally it is derived only approximately.
Bloom [4] first derives the expected number of bits set to true given the
number of elements inserted, then the false positive probability is computed,
pretending that the expected number of bits is the actual number of bits.
Both Blooms original derivation and Mitzenmacher and Upfal [15] use this
method.
A more correct approach would be to derive a tail bound for the number of
set bits and derive a false-positive probability based on that, which unfor-
tunately leads to a complex formula.
An exact result has later been derived using combinatorial methods by
Gopinathan and Sergey [10]. However their formula is less useful, as it
consists of a sum with Stirling numbers and binomial coefficients.
It is however easy to see that the original bound derived by Bloom is a correct
upper bound for the false positive probability using negative association.
(This is pointed out by Bao et al. [?].)
In this section, we derive the same bound using this library as an example
for the applicability of this library.
theory Negative-Association-Bloom-Filters

imports Negative-Association-Permutation-Distributions
begin

fun bloom-filter-pmf where

89

bloom-filter-pmf 0 d N = return-pmf {} |
bloom-filter-pmf (Suc n) d N = do {

h ← bloom-filter-pmf n d N ;
a ← pmf-of-set {a. a ⊆ {..<(N ::nat)} ∧ card a = d};
return-pmf (a ∪ h)
}

lemma bloom-filter-neg-assoc:
assumes d ≤ N
shows measure-pmf .neg-assoc (bloom-filter-pmf n d N) (λi ω. i ∈ ω) {..<N}

proof (induction n)
case 0

have a:measure-pmf .neg-assoc (bloom-filter-pmf 0 d N) (λ- -. False) {..<N}
by (intro measure-pmf .indep-imp-neg-assoc measure-pmf .indep-vars-const) auto

show ?case by (intro measure-pmf .neg-assoc-cong[OF - - a] AE-pmfI) simp-all
next

case (Suc n)
let ?l = bloom-filter-pmf n d N
let ?r = pmf-of-set {a. a ⊆ {..<N} ∧ card a = d}

define f where f j ω = (ω (True,j) ∨ ω (False,j)) for ω and j :: nat

have f-borel: f i ∈ borel-measurable (PiM (UNIV × {i}) (λ-. borel)) (is ?L ∈
?R) for i

proof −
have f i = (λω. max(fst ω) (snd ω)) ◦ (λω. (ω (True,i),ω (False,i))) unfolding

f-def by auto
also have . . . ∈ ?R by (intro measurable-comp[where N=borel

⊗
M borel])

measurable
finally show ?thesis by simp

qed

have 0:{True} ×{..<N} ∪ {False} ×{..<N} = UNIV×{..<N} by auto

have s:{b} × {..<N} = Pair b ‘ {..<N} for b :: bool by auto

have measure-pmf .neg-assoc (map-pmf snd (pair-pmf ?l ?r)) (λi ω. i ∈ ω)
({..<N})

unfolding map-snd-pair-pmf using assms by (intro n-subsets-distribution-neg-assoc)
auto

hence na-l:
measure-pmf .neg-assoc (pair-pmf ?l ?r) (λi ω. snd i ∈ case-bool fst snd (fst i)

ω) ({False} × {..<N})
unfolding s neg-assoc-map-pmf by (subst measure-pmf .neg-assoc-reindex) (auto

intro:inj-onI)

have measure-pmf .neg-assoc (map-pmf fst (pair-pmf ?l ?r)) (∈) ({..<N})
unfolding map-fst-pair-pmf using Suc by simp

90

hence na-r :
measure-pmf .neg-assoc (pair-pmf ?l ?r) (λi ω. snd i ∈ case-bool fst snd (fst i)

ω) ({True} × {..<N})
unfolding s neg-assoc-map-pmf by (subst measure-pmf .neg-assoc-reindex) (auto

intro:inj-onI)

have c: prob-space.indep-var (pair-pmf ?l ?r)
(PiM ({True} × {..<N}) (λ-. borel)) x (PiM ({False} × {..<N}) (λ-. borel))

y
if x = ((λω. λi∈{True} × {..<N}. snd i∈ ω)◦fst) y=((λω. λi∈{False} ×

{..<N}. snd i ∈ ω)◦snd)
for x y

unfolding that by (intro prob-space.indep-var-compose[OF - indep-var-pair-pmf]
prob-space-measure-pmf)

(auto simp:space-PiM)

have a:measure-pmf .neg-assoc (pair-pmf ?l ?r) (λi ω. snd i ∈ case-bool fst snd
(fst i) ω) (UNIV × {..<N})

by (intro measure-pmf .neg-assoc-combine[OF - 0] na-l na-r c) (auto simp:
restrict-def mem-Times-iff)

have measure-pmf .neg-assoc (pair-pmf ?l ?r) (λi ω. f i (λi. snd i ∈ case-bool fst
snd (fst i) ω)) {..<N}

by (intro measure-pmf .neg-assoc-compose[OF - a, where deps=λj. UNIV×{j}
and η=Fwd]

monotoneI depends-onI f-borel) (auto simp:f-def)
hence measure-pmf .neg-assoc (pair-pmf ?l ?r) (λi ω. i ∈ fst ω ∨ i ∈ snd ω)
{..<N}

unfolding f-def by (simp add:case-prod-beta ′)
hence measure-pmf .neg-assoc (map-pmf (case-prod (∪)) (pair-pmf ?l ?r)) (∈)
{..<N}

unfolding neg-assoc-map-pmf by (simp add:case-prod-beta ′)
thus ?case by (simp add:pair-pmf-def map-bind-pmf Un-commute)

qed

lemma bloom-filter-cell-prob:
assumes d ≤ N i < N
shows measure (bloom-filter-pmf n d N) {ω. i ∈ ω} = 1 − (1 − real d/real N)^n

proof −
have measure (bloom-filter-pmf n d N) {ω. i /∈ ω} = (1 − real d/real N)^n
proof (induction n)

case 0 thus ?case by simp
next

case (Suc n)
let ?p = pair-pmf (bloom-filter-pmf n d N) (pmf-of-set {a. a ⊆ {..<N} ∧ card

a = d})

have a: {ω. i /∈ fst ω ∧ i /∈ snd ω} = ({ω. i /∈ ω}) × ({ω. i /∈ ω}) by auto

have measure ?p {ω. i /∈ fst ω ∧ i /∈ snd ω} = (1−real d/N) ^ n ∗ (1−real

91

d/card {..<N})
using assms unfolding a measure-pair-pmf
by (intro Suc n-subsets-prob(1) arg-cong2[where f=(∗)]) auto

also have . . . = (1−real d/N) ^ (n+1) by simp
finally have measure ?p {ω. i /∈ fst ω ∧ i /∈ snd ω} = (1−real d/N) ^ (n+1)

by simp

hence measure (map-pmf (λω. snd ω ∪ fst ω) ?p) {ω. i /∈ ω} = (1−real
d/N)^(n+1)

by (simp add:disj-commute)
thus ?case by (simp add:pair-pmf-def map-bind-pmf)

qed
hence 1 − measure (bloom-filter-pmf n d N) {ω. i ∈ ω} = (1 − real d/real N)^n

by (subst measure-pmf .prob-compl[symmetric]) (auto simp:set-diff-eq)
thus ?thesis by simp

qed

lemma bloom-filter-false-positive-prob:
assumes d ≤ N T ⊆ {..<N} card T = d
shows measure (bloom-filter-pmf n d N) {ω. T ⊆ ω} ≤ (1 − (1 − real d/real

N)^n)^d
(is ?L ≤ ?R)

proof −
let ?p = bloom-filter-pmf n d N
have na: measure-pmf .neg-assoc (bloom-filter-pmf n d N) (λi ω. i ∈ ω) T

by (intro measure-pmf .neg-assoc-subset[OF assms(2) bloom-filter-neg-assoc]
assms(1))

have fin-T : finite T using assms(2) finite-subset by auto
hence a: of-bool (T ⊆ y) = (

∏
t∈T . of-bool (t ∈ y)::real) for y

by (induction T) auto

have ?L = measure ?p ({ω. T ⊆ ω} ∩ space ?p) by simp
also have . . . = (

∫
ω. (

∏
t ∈ T . of-bool(t ∈ ω)) ∂?p)

unfolding Bochner-Integration.integral-indicator [symmetric] indicator-def
using a by (intro integral-cong-AE AE-pmfI) auto

also have . . . ≤ (
∏

t ∈ T . (
∫
ω. of-bool(t ∈ ω) ∂?p))

by (intro has-int-thatD(2)[OF measure-pmf .neg-assoc-imp-prod-mono[OF - na,
where η=Fwd]]

integrable-bounded-pmf bounded-range-imp[OF bounded-of-bool] fin-T
borel-measurable-continuous-onI) (auto intro:monoI)

also have . . . = (
∏

t ∈ T . measure ?p ({ω. t ∈ ω} ∩ space ?p))
unfolding Bochner-Integration.integral-indicator [symmetric] indicator-def by

simp
also have . . . = (

∏
t ∈ T . measure ?p {ω. t ∈ ω}) by simp

also have . . . = (
∏

t ∈ T . 1 − (1 − real d/real N)^n)
using assms(1,2) by (intro prod.cong bloom-filter-cell-prob) auto

also have . . . = ?R using assms(3) by simp
finally show ?thesis by simp

92

qed

end

References

[1] R. Ahlswede and D. E. Daykin. An inequality for the weights of
two families of sets, their unions and intersections. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 43:183–185, 1978.

[2] N. Alon and J. H. Spencer. The Probabilistic Method, Second Edition.
John Wiley & Sons, Ltd, 2nd edition, 2000.

[3] G. Birkhoff. Lattice Theory. AMS, 3rd edition, 1967.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Commun. ACM, 13(7):422–426, July 1970.

[5] M. Doty. Birkhoff’s representation theorem for finite distributive lat-
tices. Archive of Formal Proofs, December 2022. https://isa-afp.org/
entries/Birkhoff_Finite_Distributive_Lattices.html, Formal proof de-
velopment.

[6] D. Dubhashi, J. Jonasson, and D. Ranjan. Positive influence and
negative dependence. Combinatorics, Probability and Computing,
16(1):29––41, 2007.

[7] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative
dependence. Random Structures & Algorithms, 13(2):99–124, 1998.

[8] D. P. Dubhashi, V. Priebe, and D. Ranjan. Negative dependence
through the fkg inequality. BRICS Report Series, 3, 1996.

[9] C. Fortuin, P. Kastelyn, and J. Ginibre. Correlation inequalities on
some partially ordered sets. Commun. Math. Phys., 22:89–103, jun
1971.

[10] K. Gopinathan and I. Sergey. Certifying certainty and uncertainty
in approximate membership query structures. In S. K. Lahiri and
C. Wang, editors, Computer Aided Verification, pages 279–303, Cham,
2020. Springer International Publishing.

[11] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

93

https://isa-afp.org/entries/Birkhoff_Finite_Distributive_Lattices.html
https://isa-afp.org/entries/Birkhoff_Finite_Distributive_Lattices.html

[12] R. Impagliazzo and V. Kabanets. Constructive proofs of concentra-
tion bounds. In M. Serna, R. Shaltiel, K. Jansen, and J. Rolim, edi-
tors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 617–631, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[13] K. Joag-Dev and F. Proschan. Negative association of random variables
with applications. Annals of Statistics, 11:286–295, 1983.

[14] S. Lisawadi and T.-C. Hu. On the negative association property for
the dependent bootstrap random variables. Lobachevskii Journal of
Mathematics, 32:32–38, 2011.

[15] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, USA, 2nd edition, 2017.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[17] R. Pemantle. Towards a theory of negative dependence. Journal of
Mathematical Physics, 41(3):1371–1390, 03 2000.

94

	Preliminary Definitions and Lemmas
	Definition
	Chernoff-Hoeffding Bounds
	The FKG inequality
	Preliminary Results on Lattices
	Permutation Distributions
	Application: Bloom Filters

