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Abstract

Building on the formalization of Mission-time Linear Temporal
Logic (MLTL) in Isabelle/HOL, we formalize the correctness of the
algorithms for the WEST tool [1, 2], which converts MLTL formulas
to regular expressions. We use Isabelle/HOL’s code export to generate
Haskell code to validate the existing (unverified) implementation of the
WEST tool.
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1 Key algorithms for WEST
theory WEST-Algorithms

imports Mission-Time-LTL.MLTL-Properties

begin

1.1 Custom Types
datatype WEST-bit = Zero | One | S
type-synonym state = nat set
type-synonym trace = nat set list
type-synonym state-regex = WEST-bit list
type-synonym trace-regex = WEST-bit list list
type-synonym WEST-regex = WEST-bit list list list

1.2 Trace Regular Expressions
fun WEST-get-bit:: trace-regex ⇒ nat ⇒ nat ⇒ WEST-bit

where WEST-get-bit regex timestep var = (
if timestep ≥ length regex then S
else let regex-index = regex ! timestep in
if var ≥ length regex-index then S
else regex-index ! var
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)

Returns the state at time i, list of variable states
fun WEST-get-state:: trace-regex ⇒ nat ⇒ nat ⇒ state-regex

where WEST-get-state regex time num-vars = (
if time ≥ length regex then (map (λ k. S) [0 ..< num-vars])
else regex ! time
)

Checks if one state of a trace matches one timeslice of a WEST regex
definition match-timestep:: nat set ⇒ state-regex ⇒ bool

where match-timestep state regex-state = (∀ x::nat. x < length regex-state −→
(
((regex-state ! x = One) −→ x ∈ state) ∧
((regex-state ! x = Zero) −→ x /∈ state)))

fun trim-reversed-regex:: trace-regex ⇒ trace-regex
where trim-reversed-regex [] = []
| trim-reversed-regex (h#t) = (if (∀ i<length h. (h!i) = S)
then (trim-reversed-regex t) else (h#t))

fun trim-regex:: trace-regex ⇒ trace-regex
where trim-regex regex = rev (trim-reversed-regex (rev regex))

definition match-regex:: nat set list ⇒ trace-regex ⇒ bool
where match-regex trace regex = ((∀ time<length regex.
(match-timestep (trace ! time) (regex ! time)))
∧(length trace ≥ length regex))

definition match:: nat set list ⇒ WEST-regex ⇒ bool
where match trace regex-list = (∃ i. i < length regex-list ∧
(match-regex trace (regex-list ! i)))

lemma match-example:
shows match [{0 ::nat,1}, {1}, {0}]
[
[[Zero,Zero]],
[[S ,S ], [S ,One]]

] = True
proof−

let ?regexList = [[[Zero,Zero]],[[S ,S ], [S ,One]]]
let ?trace = [{0 ::nat,1}, {1}, {0}]
have (match-regex ?trace (?regexList!1 ))

unfolding match-regex-def
by (simp add: match-timestep-def nth-Cons ′)

then show ?thesis
by (metis One-nat-def add.commute le-imp-less-Suc le-numeral-extra(4 ) list.size(3 )

list.size(4 ) match-def plus-1-eq-Suc)
qed
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definition regex-equiv:: WEST-regex ⇒ WEST-regex ⇒ bool
where regex-equiv rl1 rl2 = (
∀ π::nat set list. (match π rl1 ) ←→ (match π rl2 ))

lemma (regex-equiv [[[S ,S ]]]
[[[S ,One]],
[[One,S ]],
[[Zero,Zero]]]) = True

proof −
have d1 : match π [[[S , One]], [[One, S ]], [[Zero, Zero]]] if match: match π [[[S ,

S ]]] for π
proof −

have match-ss: match-regex π [[S , S ]]
using match unfolding match-def
by (metis One-nat-def length-Cons less-one list.size(3 ) nth-Cons-0 )

{assume ∗: ¬ (match-regex π [[S , One]]) ∧ ¬ (match-regex π [[One, S ]])
have match-regex π [[Zero, Zero]]

using match-ss unfolding match-regex-def
by (smt (verit) ∗ One-nat-def WEST-bit.simps(2 ) length-Cons less-2-cases

less-one list.size(3 ) match-regex-def match-timestep-def nth-Cons-0 nth-Cons-Suc
numeral-2-eq-2 )

}
then show ?thesis

unfolding match-def
by (metis length-Cons less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)

qed
have d2 : match π [[[S , S ]]] if match: match π [[[S , One]], [[One, S ]], [[Zero,

Zero]]] for π
proof −

{assume ∗: match-regex π [[S , One]]
then have match-regex π [[S , S ]]

unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4 ) length-Cons

less-2-cases less-one list.size(3 ) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2 )

then have match π [[[S , S ]]]
unfolding match-def by simp

} moreover {assume ∗: match-regex π [[One, S ]]
then have match-regex π [[S , S ]]

unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4 ) length-Cons

less-2-cases less-one list.size(3 ) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2 )

then have match π [[[S , S ]]]
unfolding match-def by simp

} moreover {assume ∗: match-regex π [[Zero, Zero]]
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then have match-regex π [[S , S ]]
unfolding match-regex-def

by (smt (verit) One-nat-def WEST-bit.distinct(5 ) length-Cons less-2-cases-iff
less-one list.size(3 ) match-timestep-def nth-Cons-0 nth-Cons-Suc numeral-2-eq-2 )

then have match π [[[S , S ]]]
unfolding match-def by simp

}
ultimately show ?thesis using match unfolding regex-equiv-def

by (smt (verit, del-insts) length-Cons less-Suc-eq-0-disj match-def nth-Cons-0
nth-Cons-Suc)

qed
show ?thesis using d1 d2

unfolding regex-equiv-def by metis
qed

1.3 WEST Operations
1.3.1 AND
fun WEST-and-bitwise::WEST-bit ⇒

WEST-bit ⇒
WEST-bit option

where WEST-and-bitwise b One = (if b = Zero then None else Some One)
| WEST-and-bitwise b Zero = (if b = One then None else Some Zero)
| WEST-and-bitwise b S = Some b

fun WEST-and-state:: state-regex ⇒ state-regex ⇒ state-regex option
where WEST-and-state [] [] = Some []
| WEST-and-state (h1#t1 ) (h2#t2 ) =
(case WEST-and-bitwise h1 h2 of

None ⇒ None
| Some b ⇒ (case WEST-and-state t1 t2 of

None ⇒ None
| Some L ⇒ Some (b#L)))

| WEST-and-state - - = None

fun WEST-and-trace:: trace-regex ⇒ trace-regex ⇒ trace-regex option
where WEST-and-trace trace [] = Some trace
| WEST-and-trace [] trace = Some trace
| WEST-and-trace (h1#t1 ) (h2#t2 ) =
(case WEST-and-state h1 h2 of

None ⇒ None
| Some state ⇒ (case WEST-and-trace t1 t2 of

None ⇒ None
| Some trace ⇒ Some (state#trace)))
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fun WEST-and-helper :: trace-regex ⇒ WEST-regex ⇒ WEST-regex
where WEST-and-helper trace [] = []
| WEST-and-helper trace (t#traces) =
(case WEST-and-trace trace t of

None ⇒ WEST-and-helper trace traces
| Some res ⇒ res#(WEST-and-helper trace traces))

fun WEST-and:: WEST-regex ⇒ WEST-regex ⇒ WEST-regex
where WEST-and traceList [] = []
| WEST-and [] traceList = []
| WEST-and (trace#traceList1 ) traceList2 =
(case WEST-and-helper trace traceList2 of
[] ⇒ WEST-and traceList1 traceList2
| traceList ⇒ traceList@(WEST-and traceList1 traceList2 ))

1.3.2 Simp
Bitwise simplification operation fun WEST-simp-bitwise:: WEST-bit ⇒
WEST-bit ⇒ WEST-bit

where WEST-simp-bitwise b S = S
| WEST-simp-bitwise b Zero = (if b = Zero then Zero else S)
| WEST-simp-bitwise b One = (if b = One then One else S)

fun WEST-simp-state:: state-regex ⇒ state-regex ⇒ state-regex
where WEST-simp-state s1 s2 = (
map (λ k. WEST-simp-bitwise (s1 ! k) (s2 ! k)) [0 ..< (length s1 )])

fun WEST-simp-trace:: trace-regex ⇒ trace-regex ⇒ nat => trace-regex
where WEST-simp-trace trace1 trace2 num-vars = (
map (λ k. (WEST-simp-state (WEST-get-state trace1 k num-vars) (WEST-get-state

trace2 k num-vars)))
[0 ..< (Max {(length trace1 ), (length trace2 )})])

Helper functions for defining WEST-simp fun count-nonS-trace:: state-regex
⇒ nat

where count-nonS-trace [] = 0
| count-nonS-trace (h#t) = (if (h 6= S) then (1 + (count-nonS-trace t)) else

(count-nonS-trace t))

fun count-diff-state:: state-regex ⇒ state-regex ⇒ nat
where count-diff-state [] [] = 0
| count-diff-state trace [] = count-nonS-trace trace
| count-diff-state [] trace = count-nonS-trace trace
| count-diff-state (h1#t1 ) (h2#t2 ) = (if (h1 = h2 ) then (count-diff-state t1 t2 )

else (1 + (count-diff-state t1 t2 )))
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fun count-diff :: trace-regex ⇒ trace-regex ⇒ nat
where count-diff [] [] = 0
| count-diff [] (h#t) = (count-diff-state [] h) + (count-diff [] t)
| count-diff (h#t) [] = (count-diff-state [] h) + (count-diff [] t)
| count-diff (h1#t1 ) (h2#t2 ) = (count-diff-state h1 h2 ) + (count-diff t1 t2 )

fun check-simp:: trace-regex ⇒ trace-regex ⇒ bool
where check-simp trace1 trace2 = ((count-diff trace1 trace2 ) ≤ 1 ∧ length trace1

= length trace2 )

fun enumerate-pairs :: nat list ⇒ (nat ∗ nat) list where
enumerate-pairs [] = [] |
enumerate-pairs (x#xs) = map (λy. (x, y)) xs @ enumerate-pairs xs

fun enum-pairs:: ′a list ⇒ (nat ∗ nat) list
where enum-pairs L = enumerate-pairs [0 ..< length L]

fun remove-element-at-index:: nat ⇒ ′a list ⇒ ′a list
where remove-element-at-index n L = (take n L)@(drop (n+1 ) L)

This assumes (fst h) < (snd h)
fun update-L:: WEST-regex ⇒ (nat × nat) ⇒ nat ⇒ WEST-regex

where update-L L h num-vars =
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))@[WEST-simp-trace
(L!(fst h)) (L!(snd h)) num-vars]

Defining and Proving Termination of WEST-simp lemma length-enumerate-pairs:
shows length (enumerate-pairs L) ≤ (length L)^2

proof (induction L)
case Nil
then show ?case by auto

next
case (Cons a L)
have length-L: (length (a # L))2 = (1 + (length L))^2 by auto
then have length-L: (length (a # L))2 = 1 + 2∗(length L) + (length L)^2 by

algebra
have length (map (Pair a) L) ≤ length L

by simp
then show ?case

unfolding enumerate-pairs.simps using Cons length-L by simp
qed

lemma length-enum-pairs:
shows length (enum-pairs L) ≤ (length L)^2

proof−
show ?thesis unfolding enum-pairs.simps using length-enumerate-pairs

by (metis length-upt minus-nat.diff-0 )
qed
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lemma enumerate-pairs-fact:
assumes ∀ i j. (i < j ∧ i < length L ∧ j < length L) −→ (L!i) < (L!j)
shows ∀ pair ∈ set (enumerate-pairs L). (fst pair) < (snd pair)
using assms

proof(induct length L arbitrary:L)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h T where obt-hT : L = h#T

by (metis length-Suc-conv)
then have enum-L: enumerate-pairs L = map (Pair h) T @ enumerate-pairs T

using enumerate-pairs.simps obt-hT by blast
then have

∧
pair . pair ∈ set (enumerate-pairs L) =⇒ fst pair < snd pair

proof−
fix pair
assume pair ∈ set (enumerate-pairs L)
then have pair ∈ set (map (Pair h) T @ enumerate-pairs T ) using enum-L

by auto
then have pair-or : pair ∈ set (map (Pair h) T ) ∨ pair ∈ set(enumerate-pairs

T )
by auto

{assume in-base: pair ∈ set (map (Pair h) T )
have ∀ j. 0 < j ∧ j < length L −→ h < L ! j

using Suc.prems obt-hT by force
then have ∀ j < length T . h < T !j

using obt-hT by force
then have ∀ t ∈ set T . h < t

using obt-hT by (metis in-set-conv-nth)
then have fst pair < snd pair

using in-base by auto
} moreover {

assume in-rec: pair ∈ set(enumerate-pairs T )
have fst pair < snd pair

using Suc.hyps(1 )[of T ] Suc.prems obt-hT in-rec
by (smt (verit, ccfv-SIG) Ex-less-Suc Suc.hyps(1 ) Suc.hyps(2 ) length-Cons

less-trans-Suc nat.inject nth-Cons-Suc)
}
ultimately show fst pair < snd pair using enum-L obt-hT pair-or by blast

qed
then show ?case by blast

qed

lemma enum-pairs-fact:
shows ∀ pair ∈ set (enum-pairs L). (fst pair) < (snd pair)
unfolding enum-pairs.simps using enumerate-pairs-fact[of [0 ..<length L]]
by simp

lemma enum-pairs-bound-snd:
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assumes pair ∈ set (enumerate-pairs L)
shows (snd pair) ∈ set L
using assms

proof (induct length L arbitrary: L)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h T where ht: L = h#T
by (metis enumerate-pairs.cases enumerate-pairs.simps(1 ) in-set-member mem-

ber-rec(2 ))
then have eo: pair ∈ set (map (Pair h) T ) ∨ pair ∈ set (enumerate-pairs T )

using Suc by simp
{assume ∗: pair ∈ set (map (Pair h) T )

then have ?case
using ht
using imageE by auto

} moreover {assume ∗: pair ∈ set (enumerate-pairs T )
then have snd pair ∈ set T

using Suc(1 )[of T ] ht
using Suc.hyps(2 ) by fastforce

then have ?case using ht
by simp

}
ultimately show ?case using eo by blast

qed

lemma enum-pairs-bound:
shows ∀ pair ∈ set (enum-pairs L). (snd pair) < length L
unfolding enum-pairs.simps enumerate-pairs.simps

proof(induct length L arbitrary: L)
case 0
then show ?case by simp

next
case (Suc x)
then have enum-L: enumerate-pairs ([0 ..<length L]) =

map (Pair 0 ) [1 ..<length L] @ enumerate-pairs [1 ..<length L]
using enumerate-pairs.simps(2 )[of 0 [1 ..< length L]]
by (metis One-nat-def upt-conv-Cons zero-less-Suc)

then have pair∈set (enumerate-pairs [0 ..<length L]) =⇒ snd pair < length L
for pair

using enum-pairs-bound-snd[of pair [0 ..<length L]]
by auto

then show ?case unfolding enum-pairs.simps by blast
qed

lemma WEST-simp-termination1-bound:
fixes a::nat
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shows a^3+a^2 < (a+1 )^3
proof−

have cubed: (a+1 )^3 = a^3 + 3∗a^2 + 3∗a + 1
proof−

have (a+1 )^3 = (a+1 )∗(a+1 )∗(a+1 )
by algebra

then show ?thesis
by (simp add: add.commute add-mult-distrib2 mult.commute power2-eq-square

power3-eq-cube)
qed
have 0 < 2∗a^2 + 2∗a + 1 by simp
then have a^3 + a^2 < a^3 + 3∗a^2 + 3∗a + 1 by simp
then show ?thesis using cubed

by simp
qed

lemma WEST-simp-termination1 :
fixes L::WEST-regex
assumes ¬ (idx-pairs 6= enum-pairs L ∨ length idx-pairs ≤ i)
assumes check-simp (L ! fst (idx-pairs ! i)) (L ! snd (idx-pairs ! i))
assumes x = update-L L (idx-pairs ! i) num-vars
shows ((x, enum-pairs x, 0 , num-vars), L, idx-pairs, i, num-vars)
∈ measure (λ(L, idx-list, i, num-vars). length L ^ 3 + length idx-list − i)

proof−
let ?i = fst (idx-pairs ! i)
let ?j = snd (idx-pairs ! i)
have i-le-j: ?i < ?j using enum-pairs-fact assms

by (metis linorder-le-less-linear nth-mem)
have j-bound: ?j < length L

using assms(1 ) enum-pairs-bound[of L]
by simp

then have i-bound: ?i < (length L)−1
using i-le-j by auto

have len-orsimp: length [WEST-simp-trace (L ! ?i) (L ! ?j) num-vars] = 1
by simp

have length (remove-element-at-index ?j L) = length L − 1
using assms(3 ) j-bound by auto

then have length (remove-element-at-index ?i (remove-element-at-index ?j L))
= length L − 2

using assms(3 ) i-bound j-bound by simp
then have length-x: length x = (length L) − 1

using assms(3 ) len-orsimp
unfolding update-L.simps[of L idx-pairs ! i num-vars]

by (metis (no-types, lifting) add.commute add-diff-inverse-nat diff-diff-left gr-implies-not0
i-bound length-append less-one nat-1-add-1 )

have i-bound: i < length idx-pairs using assms by force

{ assume short-L: length L = 0
then have ?thesis using assms
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using j-bound by linarith
} moreover {

assume long-L: length L ≥ 1
then have length L − 1 ≥ 0 by blast
then have (length L − 1 ) ^ 3 + (length L − 1 ) ^ 2 < length L ^ 3

using WEST-simp-termination1-bound[of length L−1 ]
by (metis long-L ordered-cancel-comm-monoid-diff-class.le-imp-diff-is-add)

then have (length L − 1 ) ^ 3 + length (enumerate-pairs [0 ..<length x]) <
length L ^ 3

using length-enumerate-pairs[of [0 ..<length x]] length-x by auto
then have length x ^ 3 + length (enumerate-pairs [0 ..<length x])
< length L ^ 3 + length idx-pairs − i
using i-bound length-x by simp

then have ?thesis by simp
}
ultimately show ?thesis by linarith

qed

function WEST-simp-helper :: WEST-regex ⇒ (nat × nat) list ⇒ nat ⇒ nat ⇒
WEST-regex

where WEST-simp-helper L idx-pairs i num-vars =
(if (idx-pairs 6= enum-pairs L ∨ i ≥ length idx-pairs) then L else
(if (check-simp (L!(fst (idx-pairs!i))) (L!(snd (idx-pairs!i)))) then
(let newL = update-L L (idx-pairs!i) num-vars in
WEST-simp-helper newL (enum-pairs newL) 0 num-vars)
else WEST-simp-helper L idx-pairs (i+1 ) num-vars))

apply fast by blast
termination
apply (relation measure (λ(L , idx-list, i, num-vars). (length L^3 + length idx-list
− i)))

apply simp using WEST-simp-termination1 apply blast by auto

declare WEST-simp-helper .simps[simp del]

fun WEST-simp:: WEST-regex ⇒ nat ⇒ WEST-regex
where WEST-simp L num-vars =
WEST-simp-helper L (enum-pairs L) 0 num-vars

value WEST-simp [[[S , S , One]],[[S , One, S ]], [[S , S , Zero]]] 3
value WEST-simp [[[S , One]],[[One, S ]], [[Zero, Zero]]] 2
value WEST-simp [[[One, One]],[[Zero, Zero]], [[One, Zero]], [[Zero, One]]] 2

1.3.3 AND and OR operations with WEST-simp
fun WEST-and-simp:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒ WEST-regex

where WEST-and-simp L1 L2 num-vars = WEST-simp (WEST-and L1 L2 )
num-vars
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fun WEST-or-simp:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒ WEST-regex
where WEST-or-simp L1 L2 num-vars = WEST-simp (L1@L2 ) num-vars

1.3.4 Useful Helper Functions
fun arbitrary-state::nat ⇒ state-regex

where arbitrary-state num-vars = map (λ k. S) [0 ..< num-vars]

fun arbitrary-trace::nat ⇒ nat ⇒ trace-regex
where arbitrary-trace num-vars num-pad = map (λ k. (arbitrary-state num-vars))

[0 ..< num-pad]

fun shift:: WEST-regex ⇒ nat ⇒ nat ⇒ WEST-regex
where shift traceList num-vars num-pad = map (λ trace. (arbitrary-trace num-vars

num-pad)@trace) traceList

fun pad:: trace-regex ⇒ nat ⇒ nat ⇒ trace-regex
where pad trace num-vars num-pad = trace@(arbitrary-trace num-vars num-pad)

1.3.5 WEST Temporal Operations
fun WEST-global:: WEST-regex ⇒ nat ⇒ nat ⇒ nat ⇒ WEST-regex
where WEST-global L a b num-vars = (
if (a = b) then (shift L num-vars a)

else ( if (a < b) then (WEST-and-simp (shift L num-vars b)
(WEST-global L a (b−1 ) num-vars) num-vars)

else []))

fun WEST-future:: WEST-regex ⇒ nat ⇒ nat ⇒ nat ⇒ WEST-regex
where WEST-future L a b num-vars = (
if (a = b)
then (shift L num-vars a)
else (

if (a < b)
then WEST-or-simp (shift L num-vars b) (WEST-future L a (b−1 ) num-vars)

num-vars
else []))

fun WEST-until:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒
nat ⇒ nat ⇒ WEST-regex

where WEST-until L-ϕ L-ψ a b num-vars = (
if (a=b)
then (WEST-global L-ψ a a num-vars)
else (

if (a < b)
then WEST-or-simp (WEST-until L-ϕ L-ψ a (b−1 ) num-vars)

(WEST-and-simp (WEST-global L-ϕ a (b−1 ) num-vars)
(WEST-global L-ψ b b num-vars) num-vars) num-vars
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else []))

fun WEST-release-helper :: WEST-regex ⇒ WEST-regex ⇒
nat ⇒ nat ⇒ nat ⇒ WEST-regex

where WEST-release-helper L-ϕ L-ψ a ub num-vars = (
if (a=ub)
then (WEST-and-simp (WEST-global L-ϕ a a num-vars) (WEST-global L-ψ a a

num-vars) num-vars)
else (

if (a < ub)
then WEST-or-simp (WEST-release-helper L-ϕ L-ψ a (ub−1 ) num-vars)

(WEST-and-simp (WEST-global L-ψ a ub num-vars)
(WEST-global L-ϕ ub ub num-vars) num-vars) num-vars

else []))

fun WEST-release:: WEST-regex ⇒ WEST-regex ⇒ nat
⇒ nat ⇒ nat ⇒ WEST-regex

where WEST-release L-ϕ L-ψ a b num-vars = (
if (b > a)
then (WEST-or-simp (WEST-global L-ψ a b num-vars) (WEST-release-helper

L-ϕ L-ψ a (b−1 ) num-vars) num-vars)
else (WEST-global L-ψ a b num-vars))

1.3.6 WEST recursive reg Function
lemma exhaustive:
shows

∧
x:: nat mltl × nat.

∧
P::bool. (

∧
num-vars::nat. x = (True-mltl, num-vars)

=⇒ P) =⇒
(
∧

num-vars::nat. x = (False-mltl, num-vars) =⇒ P) =⇒
(
∧

p num-vars::nat. x = (Prop-mltl p, num-vars) =⇒ P) =⇒
(
∧

p num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) =⇒ P) =⇒
(
∧
ϕ ψ num-vars. x = (Or-mltl ϕ ψ, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ num-vars. x = (And-mltl ϕ ψ, num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Future-mltl ϕ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Global-mltl ϕ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ a b num-vars. x = (Until-mltl ϕ ψ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ a b num-vars. x = (Release-mltl ϕ ψ a b, num-vars) =⇒ P) =⇒

(
∧

num-vars. x = (Not-mltl True-mltl, num-vars) =⇒ P) =⇒
(
∧

num-vars. x = (Not-mltl False-mltl, num-vars) =⇒ P) =⇒
(
∧
ϕ ψ num-vars. x = (Not-mltl (And-mltl ϕ ψ), num-vars) =⇒ P) =⇒

(
∧
ϕ ψ num-vars. x = (Not-mltl (Or-mltl ϕ ψ), num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Not-mltl (Future-mltl ϕ a b), num-vars) =⇒ P)

=⇒
(
∧
ϕ a b num-vars. x = (Not-mltl (Global-mltl ϕ a b), num-vars) =⇒ P)

=⇒
(
∧
ϕ ψ a b num-vars. x = (Not-mltl (Until-mltl ϕ ψ a b), num-vars) =⇒

P) =⇒
(
∧
ϕ ψ a b num-vars. x = (Not-mltl (Release-mltl ϕ ψ a b), num-vars)
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=⇒ P) =⇒
(
∧
ϕ num-vars. x = (Not-mltl (Not-mltl ϕ), num-vars) =⇒ P) =⇒ P

proof −
fix x::nat mltl × nat
fix P:: bool
assume t: (

∧
num-vars::nat. x = (True-mltl, num-vars) =⇒ P)

assume fa: (
∧

num-vars::nat. x = (False-mltl, num-vars) =⇒ P)
assume p: (

∧
p num-vars::nat. x = (Prop-mltl p, num-vars) =⇒ P)

assume n1 : (
∧

p num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) =⇒ P)

assume o: (
∧
ϕ ψ num-vars. x = (Or-mltl ϕ ψ, num-vars) =⇒ P)

assume a: (
∧
ϕ ψ num-vars. x = (And-mltl ϕ ψ, num-vars) =⇒ P)

assume f : (
∧
ϕ a b num-vars. x = (Future-mltl ϕ a b, num-vars) =⇒ P)

assume g: (
∧
ϕ a b num-vars. x = (Global-mltl ϕ a b, num-vars) =⇒ P)

assume u: (
∧
ϕ ψ a b num-vars. x = (Until-mltl ϕ ψ a b, num-vars) =⇒ P)

assume r : (
∧
ϕ ψ a b num-vars. x = (Release-mltl ϕ ψ a b, num-vars) =⇒ P)

assume n2 : (
∧

num-vars. x = (Not-mltl True-mltl, num-vars) =⇒ P)
assume n3 : (

∧
num-vars. x = (Not-mltl False-mltl, num-vars) =⇒ P)

assume n4 : (
∧
ϕ ψ num-vars. x = (Not-mltl (And-mltl ϕ ψ), num-vars) =⇒ P)

assume n5 : (
∧
ϕ ψ num-vars. x = (Not-mltl (Or-mltl ϕ ψ), num-vars) =⇒ P)

assume n6 : (
∧
ϕ a b num-vars. x = (Not-mltl (Future-mltl ϕ a b), num-vars)

=⇒ P)
assume n7 : (

∧
ϕ a b num-vars. x = (Not-mltl (Global-mltl ϕ a b), num-vars)

=⇒ P)
assume n8 : (

∧
ϕ ψ a b num-vars. x = (Not-mltl (Until-mltl ϕ ψ a b), num-vars)

=⇒ P)
assume n9 : (

∧
ϕ ψ a b num-vars. x = (Not-mltl (Release-mltl ϕ ψ a b), num-vars)

=⇒ P)
assume n10 : (

∧
ϕ num-vars. x = (Not-mltl (Not-mltl ϕ), num-vars) =⇒ P)

show P proof (cases fst x)
case True-mltl
then show ?thesis using t

by (metis eq-fst-iff )
next

case False-mltl
then show ?thesis using fa eq-fst-iff by metis

next
case (Prop-mltl p)
then show ?thesis using p

by (metis prod.collapse)
next

case (Not-mltl ϕ)
then have fst-x: fst x = Not-mltl ϕ

by auto
then show ?thesis proof (cases ϕ)

case True-mltl
then show ?thesis using n2

by (metis Not-mltl split-pairs)
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next
case False-mltl
then show ?thesis using n3

by (metis Not-mltl prod.collapse)
next

case (Prop-mltl p)
then show ?thesis using n1

by (metis Not-mltl split-pairs)
next

case (Not-mltl ϕ1 )
then show ?thesis using n10 fst-x

by (metis prod.collapse)
next

case (And-mltl ϕ1 ϕ2 )
then show ?thesis

by (metis Not-mltl n4 prod.collapse)
next

case (Or-mltl ϕ1 ϕ2 )
then show ?thesis using n5 Not-mltl

by (metis prod.collapse)
next

case (Future-mltl a b ϕ1 )
then show ?thesis using n6 Not-mltl

by (metis prod.collapse)
next

case (Global-mltl a b ϕ1 )
then show ?thesis using n7 Not-mltl

by (metis prod.collapse)
next

case (Until-mltl ϕ1 a b ϕ2 )
then show ?thesis using n8 Not-mltl

by (metis prod.collapse)
next

case (Release-mltl ϕ1 a b ϕ2 )
then show ?thesis using n9 Not-mltl

by (metis prod.collapse)
qed

next
case (And-mltl ϕ1 ϕ2 )
then show ?thesis using a

by (metis prod.collapse)
next

case (Or-mltl ϕ1 ϕ2 )
then show ?thesis using o

by (metis prod.collapse)
next

case (Future-mltl a b ϕ1 )
then show ?thesis using f

by (metis split-pairs)
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next
case (Global-mltl a b ϕ1 )
then show ?thesis using g

by (metis prod.collapse)
next

case (Until-mltl ϕ1 a b ϕ2 )
then show ?thesis using u

by (metis split-pairs)
next

case (Release-mltl ϕ1 a b ϕ2 )
then show ?thesis using r

by (metis split-pairs)
qed

qed

fun WEST-termination-measure:: (nat) mltl ⇒ nat
where WEST-termination-measure Truem = 1
| WEST-termination-measure (Notm Truem) = 4
| WEST-termination-measure Falsem = 1
| WEST-termination-measure (Notm Falsem) = 4
| WEST-termination-measure (Propm (p)) = 1
| WEST-termination-measure (Notm (Propm (p))) = 4
| WEST-termination-measure (ϕ Orm ψ) = 1 + (WEST-termination-measure

ϕ) + (WEST-termination-measure ψ)
| WEST-termination-measure (ϕ Andm ψ) = 1 + (WEST-termination-measure

ϕ) + (WEST-termination-measure ψ)
| WEST-termination-measure (Fm [a,b] ϕ) = 1 + (WEST-termination-measure

ϕ)
| WEST-termination-measure (Gm [a,b] ϕ) = 1 + (WEST-termination-measure

ϕ)
|WEST-termination-measure (ϕ Um[a,b] ψ) = 1 + (WEST-termination-measure
ϕ) + (WEST-termination-measure ψ)
|WEST-termination-measure (ϕ Rm[a,b] ψ) = 1 + (WEST-termination-measure
ϕ) + (WEST-termination-measure ψ)
|WEST-termination-measure (Notm (ϕ Orm ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Orm ψ))
|WEST-termination-measure (Notm (ϕ Andm ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Andm ψ))
|WEST-termination-measure (Notm (Fm[a,b] ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Fm[a,b] ϕ))
|WEST-termination-measure (Notm (Gm[a,b] ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Gm[a,b] ϕ))
|WEST-termination-measure (Notm (ϕ Um[a,b] ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Um[a,b] ψ))
|WEST-termination-measure (Notm (ϕ Rm[a,b] ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Rm[a,b] ψ))
|WEST-termination-measure (Notm (Notm ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Notm ϕ))
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lemma WEST-termination-measure-not:
fixes ϕ::(nat) mltl
shows WEST-termination-measure (Not-mltl ϕ) = 1 + 3 ∗ (WEST-termination-measure
ϕ)

apply (induction ϕ) by simp-all

function WEST-reg-aux:: (nat) mltl ⇒ nat ⇒ WEST-regex
where WEST-reg-aux Truem num-vars = [[(map (λ j. S) [0 ..< num-vars])]]
| WEST-reg-aux Falsem num-vars = []
| WEST-reg-aux (Propm (p)) num-vars = [[(map (λ j. (if (p=j) then One else

S)) [0 ..< num-vars])]]
| WEST-reg-aux (Notm (Propm (p))) num-vars = [[(map (λ j. (if (p=j) then

Zero else S)) [0 ..< num-vars])]]
| WEST-reg-aux (ϕ Orm ψ) num-vars = WEST-or-simp (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) num-vars
| WEST-reg-aux (ϕ Andm ψ) num-vars = (WEST-and-simp (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) num-vars)
|WEST-reg-aux (Fm[a,b] ϕ) num-vars = (WEST-future (WEST-reg-aux ϕ num-vars)

a b num-vars)
|WEST-reg-aux (Gm[a,b] ϕ) num-vars = (WEST-global (WEST-reg-aux ϕ num-vars)

a b num-vars)
| WEST-reg-aux (ϕ Um[a,b] ψ) num-vars = (WEST-until (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) a b num-vars)
| WEST-reg-aux (ϕ Rm[a,b] ψ) num-vars = WEST-release (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) a b num-vars
| WEST-reg-aux (Notm Truem) num-vars = WEST-reg-aux Falsem num-vars
| WEST-reg-aux (Notm Falsem) num-vars = WEST-reg-aux Truem num-vars
| WEST-reg-aux (Notm (ϕ Andm ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Orm (Notm ψ)) num-vars
|WEST-reg-aux (Notm (ϕ Orm ψ)) num-vars = WEST-reg-aux ((Notm ϕ) Andm

(Notm ψ)) num-vars
|WEST-reg-aux (Notm (Fm[a,b] ϕ)) num-vars = WEST-reg-aux (Gm[a,b] (Notm
ϕ)) num-vars
|WEST-reg-aux (Notm (Gm[a,b] ϕ)) num-vars = WEST-reg-aux (Fm[a,b] (Notm
ϕ)) num-vars
| WEST-reg-aux (Notm (ϕ Um[a,b] ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Rm[a,b] (Notm ψ)) num-vars
| WEST-reg-aux (Notm (ϕ Rm[a,b] ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Um[a,b] (Notm ψ)) num-vars
| WEST-reg-aux (Notm (Notm ϕ)) num-vars = WEST-reg-aux ϕ num-vars
using exhaustive convert-nnf .cases using exhaustive apply (smt (z3 ))

defer apply blast apply simp-all .
termination

apply (relation measure (λ(F ,num-vars). (WEST-termination-measure F)))
using WEST-termination-measure-not by simp-all
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fun WEST-num-vars:: (nat) mltl ⇒ nat
where WEST-num-vars Truem = 1
| WEST-num-vars Falsem = 1
| WEST-num-vars (Propm (p)) = p+1
| WEST-num-vars (Notm ϕ) = WEST-num-vars ϕ
| WEST-num-vars (ϕ Andm ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}
| WEST-num-vars (ϕ Orm ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars

ψ)}
| WEST-num-vars (Fm[a,b] ϕ) = WEST-num-vars ϕ
| WEST-num-vars (Gm[a,b] ϕ) = WEST-num-vars ϕ
|WEST-num-vars (ϕ Um[a,b] ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}
|WEST-num-vars (ϕ Rm[a,b] ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}

fun WEST-reg:: (nat) mltl ⇒ WEST-regex
where WEST-reg F = (let nnf-F = convert-nnf F in WEST-reg-aux nnf-F

(WEST-num-vars F))

1.3.7 Adding padding
fun pad-WEST-reg:: nat mltl ⇒ WEST-regex

where pad-WEST-reg ϕ = (let unpadded = WEST-reg ϕ in
(let complen = complen-mltl ϕ in
(let num-vars = WEST-num-vars ϕ in

(map (λ L. (if (length L < complen)then (pad L num-vars
(complen−(length L))) else L))) unpadded)))

fun simp-pad-WEST-reg:: nat mltl ⇒ WEST-regex
where simp-pad-WEST-reg ϕ = WEST-simp (pad-WEST-reg ϕ) (WEST-num-vars
ϕ)

2 Some examples and Code Export
Base cases
value WEST-reg Truem
value WEST-reg Falsem
value WEST-reg (Propm (1 ))
value WEST-reg (Notm (Propm (0 )))

Test cases for recursion
value WEST-reg ((Notm (Propm (0 ))) Andm (Propm (1 )))
value WEST-reg (Fm[0 ,2 ] (Propm (1 )))
value WEST-reg ((Notm (Propm (0 ))) Orm (Propm (0 )))

value pad-WEST-reg ((Propm (0 )) Um[0 ,2 ] (Propm (0 )))
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value simp-pad-WEST-reg ((Prop-mltl 0 ) Um[0 ,2 ] (Prop-mltl 0 ))

export-code WEST-reg in Haskell module-name WEST
export-code simp-pad-WEST-reg in Haskell module-name WEST-simp-pad

end

3 WEST Proofs
theory WEST-Proofs

imports WEST-Algorithms

begin

3.1 Useful Definitions
definition trace-of-vars::trace ⇒ nat ⇒ bool

where trace-of-vars trace num-vars = (
∀ k. (k < (length trace) −→ (∀ p∈(trace!k). p < num-vars)))

definition state-regex-of-vars::state-regex ⇒ nat ⇒ bool
where state-regex-of-vars state num-vars = ((length state) = num-vars)

definition trace-regex-of-vars::trace-regex ⇒ nat ⇒ bool
where trace-regex-of-vars trace num-vars =
(∀ i < (length trace). length (trace!i) = num-vars)

definition WEST-regex-of-vars::WEST-regex ⇒ nat ⇒ bool
where WEST-regex-of-vars traceList num-vars =
(∀ k<length traceList. trace-regex-of-vars (traceList!k) num-vars)

3.2 Proofs about Traces Matching Regular Expressions
value match-regex [{0 ::nat}, {0 ,1}, {}] []
lemma arbitrary-regtrace-matches-any-trace:

fixes num-vars::nat
fixes π::trace
assumes π-of-num-vars: trace-of-vars π num-vars
shows match-regex π []

proof−
have get-state-empty: (WEST-get-state [] time num-vars) = (map (λ k. S) [0 ..<

num-vars]) for time
by auto

have match-arbitrary-state: (match-timestep state (map (λ k. S) [0 ..< num-vars]))
= True if state-of-vars:(∀ p∈state. p < num-vars) for state
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using state-of-vars
unfolding match-timestep-def
by simp

have eliminate-forall: match-timestep (π ! time) (WEST-get-state [] time num-vars)
if time-bounded:time < length π for time

using time-bounded π-of-num-vars get-state-empty[of time] match-arbitrary-state[of
π ! time] unfolding match-regex-def trace-of-vars-def

by (metis (mono-tags, lifting))
then show ?thesis

unfolding match-regex-def trace-of-vars-def
by auto

qed

lemma WEST-and-state-difflengths-is-none:
assumes length s1 6= length s2
shows WEST-and-state s1 s2 = None
using assms
proof (induction s1 arbitrary: s2 )

case Nil
then show ?case

apply (induction s2 ) by simp-all
next

case (Cons a s1 )
then show ?case
proof (induction s2 )

case Nil
then show ?case by auto

next
case (Cons b s2 )
have length s1 6= length s2 using Cons.prems(2 )

by auto
then have and-s1-s2-none: WEST-and-state s1 s2 = None using Cons.prems(1 )[of

s2 ]
by simp

{assume ab-none: WEST-and-bitwise a b = None
then have ?case

by simp
}
moreover {assume ab-not-none: WEST-and-bitwise a b 6= None
then have ?case using and-s1-s2-none using WEST-and-state.simps(2 )[of

a s1 b s2 ]
by auto

}
ultimately show ?case

by blast
qed

qed
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3.3 Facts about the WEST and operator
3.3.1 Commutative
lemma WEST-and-bitwise-commutative:

fixes b1 b2 ::WEST-bit
shows WEST-and-bitwise b1 b2 = WEST-and-bitwise b2 b1
apply (cases b2 )

apply (cases b1 ) apply simp-all
apply(cases b1 ) apply simp-all

apply (cases b1 ) by simp-all

fun remove-option-type-bit:: WEST-bit option ⇒ WEST-bit
where remove-option-type-bit (Some i) = i
| remove-option-type-bit - = S

lemma WEST-and-state-commutative:
fixes s1 s2 ::state-regex
assumes same-len: length s1 = length s2
shows WEST-and-state s1 s2 = WEST-and-state s2 s1

proof−
show ?thesis using same-len
proof (induct length s1 arbitrary: s1 s2 )

case 0
then show ?case using WEST-and-state.simps by simp

next
case (Suc x)
obtain h1 T1 where s1 = h1#T1

using Suc.hyps(2 )
by (metis length-Suc-conv)

obtain h2 T2 where s2 = h2#T2
using Suc.prems(1 ) Suc.hyps(2 )
by (metis length-Suc-conv)

then show ?case using WEST-and-bitwise-commutative[of h1 h2 ] WEST-and-state.simps(2 )[of
h1 T1 h2 T2 ]

WEST-and-state.simps(2 )[of h2 T2 h1 T1 ]
by (metis (no-types, lifting) Suc.hyps(1 ) Suc.hyps(2 ) Suc.prems(1 ) Suc-length-conv

WEST-and-bitwise-commutative ‹s1 = h1 # T1 › list.inject option.simps(4 ) op-
tion.simps(5 ) remove-option-type-bit.cases)

qed
qed

lemma WEST-and-trace-commutative:
fixes num-vars::nat
fixes regtrace1 ::trace-regex
fixes regtrace2 ::trace-regex
assumes regtrace1-of-num-vars: trace-regex-of-vars regtrace1 num-vars
assumes regtrace2-of-num-vars: trace-regex-of-vars regtrace2 num-vars
shows (WEST-and-trace regtrace1 regtrace2 ) = (WEST-and-trace regtrace2 reg-
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trace1 )
proof−
have WEST-and-bitwise-commutative: WEST-and-bitwise b1 b2 = WEST-and-bitwise

b2 b1 for b1 b2
apply (cases b2 )

apply (cases b1 ) apply simp-all
apply(cases b1 ) apply simp-all

apply (cases b1 ) by simp-all
then have WEST-and-state-commutative: WEST-and-state s1 s2 = WEST-and-state

s2 s1 if same-len: (length s1 ) = (length s2 ) for s1 s2
using same-len
proof (induct length s1 arbitrary: s1 s2 )

case 0
then show ?case using WEST-and-state.simps by simp

next
case (Suc x)
obtain h1 T1 where s1 = h1#T1

using Suc.hyps(2 )
by (metis length-Suc-conv)

obtain h2 T2 where s2 = h2#T2
using Suc.prems(2 ) Suc.hyps(2 )
by (metis length-Suc-conv)

then show ?case using WEST-and-bitwise-commutative[of h1 h2 ] WEST-and-state.simps(2 )[of
h1 T1 h2 T2 ]

WEST-and-state.simps(2 )[of h2 T2 h1 T1 ]
by (metis (no-types, lifting) Suc.hyps(1 ) Suc.hyps(2 ) Suc.prems(2 ) Suc-length-conv

WEST-and-bitwise-commutative ‹s1 = h1 # T1 › list.inject option.simps(4 ) op-
tion.simps(5 ) remove-option-type-bit.cases)

qed
show ?thesis using regtrace1-of-num-vars regtrace2-of-num-vars
proof (induction regtrace1 arbitrary: regtrace2 )

case Nil
then show ?case using WEST-and-trace.simps(1−2 )

by (metis neq-Nil-conv)
next

case (Cons h1 T1 )
{assume ∗: regtrace2 = []

then have ?case using WEST-and-trace.simps
by simp

} moreover {assume ∗: regtrace2 6= []
then obtain h2 T2 where h2T2 : regtrace2 = h2#T2

by (meson list.exhaust)
have comm-1 : WEST-and-trace T1 T2 = WEST-and-trace T2 T1

using Cons h2T2
unfolding trace-regex-of-vars-def
by (metis Suc-less-eq length-Cons nth-Cons-Suc)

have comm-2 : WEST-and-state h1 h2 = WEST-and-state h2 h1
using WEST-and-state-commutative[of h1 h2 ] h2T2
Cons(2−3 ) unfolding trace-regex-of-vars-def
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by (metis WEST-and-state-difflengths-is-none)
have ?case using WEST-and-trace.simps(3 )[of h1 T1 h2 T2 ]

h2T2 WEST-and-trace.simps(3 )[of h2 T2 h1 T1 ] comm-1 comm-2
by presburger

}
ultimately show ?case by blast

qed
qed

lemma WEST-and-helper-subset:
shows set (WEST-and-helper h L) ⊆ set (WEST-and-helper h (a # L))

proof −
{assume ∗: WEST-and-trace h a = None

then have WEST-and-helper h L = WEST-and-helper h (a # L)
using WEST-and-helper .simps(2 )[of h a L] by auto

then have ?thesis by simp
}
moreover {assume ∗: WEST-and-trace h a 6= None

then obtain res where WEST-and-trace h a = Some res
by auto

then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper .simps(2 )[of h a L] by auto

then have ?thesis by auto
}
ultimately show ?thesis by blast

qed

lemma WEST-and-helper-set-member-converse:
fixes regtrace h::trace-regex
fixes L::WEST-regex
assumes assumption: (∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h

(L ! loc) = Some sometrace ∧ regtrace = sometrace))
shows regtrace ∈ set (WEST-and-helper h L)

proof −
show ?thesis using assumption
proof (induct L)

case Nil
then show ?case using WEST-and-helper .simps(1 )

by simp
next

case (Cons a L)
then obtain loc sometrace where obt: loc < length (a#L) ∧ WEST-and-trace

h ((a#L) ! loc) = Some sometrace ∧ regtrace = sometrace
by blast

{assume ∗: loc = 0
then have WEST-and-trace h a = Some sometrace ∧ regtrace = sometrace

using obt
by simp
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then have ?case using WEST-and-helper .simps(2 )[of h a L]
by auto

} moreover {assume ∗: loc > 0
then have loc: loc−1 < length L ∧

WEST-and-trace h (L ! (loc−1 )) = Some sometrace ∧ regtrace = sometrace
using obt by auto

have set (WEST-and-helper h L) ⊆ set (WEST-and-helper h (a # L))
using WEST-and-helper-subset by blast

then have ?case using Cons(1 ) loc by blast
}
ultimately show ?case by auto

qed
qed

lemma WEST-and-helper-set-member-forward:
fixes regtrace h::trace-regex
fixes L::WEST-regex
assumes regtrace ∈ set (WEST-and-helper h L)
shows (∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h (L ! loc) =

Some sometrace ∧ regtrace = sometrace))
using assms proof (induction L)

case Nil
then show ?case by simp

next
case (Cons a L)
{assume ∗: WEST-and-trace h a = None

then have ?case using WEST-and-helper .simps(2 )[of h a L] Cons
by force

} moreover {assume ∗: WEST-and-trace h a 6= None
then obtain res where res: WEST-and-trace h a = Some res

by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L

using WEST-and-helper .simps(2 )[of h a L] by auto
then have eo: regtrace = res ∨ regtrace ∈ set (WEST-and-helper h L)

using Cons(2 )
by auto

{assume ∗: regtrace = res
then have ?case using res by auto

} moreover {assume ∗: regtrace ∈ set (WEST-and-helper h L)
then obtain loc where loc-prop: loc<length L ∧
(∃ sometrace. WEST-and-trace h (L ! loc) = Some sometrace ∧ regtrace =

sometrace)
using Cons.IH by blast

then have loc+1<length (a#L) ∧
(∃ sometrace. WEST-and-trace h ((a#L) ! (loc+1 )) = Some sometrace ∧

regtrace = sometrace)
by auto

then have ?case by blast
}
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ultimately have ?case using eo
by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-helper-set-member :
fixes regtrace h::trace-regex
fixes L::WEST-regex
shows regtrace ∈ set (WEST-and-helper h L) ←→
(∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h (L ! loc) = Some

sometrace ∧ regtrace = sometrace))
using WEST-and-helper-set-member-forward WEST-and-helper-set-member-converse
by blast

lemma WEST-and-set-member-dir1 :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace ∈ set (WEST-and L1 L2 )
shows (∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧

(∃ sometrace. WEST-and-trace (L1 ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace))

using assms proof (induct L1 arbitrary: L2 )
case Nil
then show ?case using WEST-and.simps(2 ) WEST-and.simps(1 )

by (metis list.distinct(1 ) list.exhaust list.set-cases)
next

case (Cons head tail)
{assume L2-empty: L2 = []

then have ?case
using Cons.prems(3 ) by auto

}
moreover { assume L2-not-empty: L2 6= []

{assume regtrace-in-head-L2 : regtrace ∈ set (WEST-and-helper head L2 )
then obtain loc2 where (loc2<length L2 ∧
(∃ sometrace. WEST-and-trace head (L2 ! loc2 ) = Some sometrace ∧ regtrace

= sometrace))
using WEST-and-helper-set-member [of regtrace head L2 ]
by blast

then have 0 < length (head # tail) ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((head # tail) ! 0 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace)

using regtrace-in-head-L2
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by simp
then have ?case

by blast
}
moreover {assume regtrace-notin-head-L2 : regtrace /∈ set (WEST-and-helper

head L2 )
obtain h2 T2 where h2T2 :L2 = h2#T2 using L2-not-empty

by (meson list.exhaust)
{assume ∗: WEST-and-helper head (h2 # T2 ) = []

then have WEST-and (head # tail) L2 = WEST-and tail L2
using WEST-and.simps(3 )[of head tail h2 T2 ] h2T2 by simp

}
moreover {assume ∗: WEST-and-helper head (h2 # T2 ) 6= []

then have WEST-and (head # tail) L2 = (WEST-and-helper head L2 ) @
WEST-and tail L2

using WEST-and.simps(3 )[of head tail h2 T2 ] h2T2
by (simp add: list.case-eq-if )

}
ultimately have e-o: WEST-and (head # tail) L2 = WEST-and tail L2 ∨

WEST-and (head # tail) L2 = (WEST-and-helper head L2 ) @ WEST-and tail L2
by blast
have regtrace-in: regtrace ∈ set (WEST-and tail L2 ) using L2-not-empty

regtrace-notin-head-L2 Cons.prems(3 ) h2T2 e-o
by fastforce

have ∀ k<length (head # tail). trace-regex-of-vars ((head # tail) ! k) num-vars
using Cons.prems(1 ) unfolding WEST-regex-of-vars-def by argo

then have regtracelist-tail: WEST-regex-of-vars tail num-vars
unfolding WEST-regex-of-vars-def by auto

obtain loc1 loc2 where loc1 < length tail ∧
loc2 < length L2 ∧ (∃ sometrace. WEST-and-trace (tail ! loc1 ) (L2 ! loc2 )

= Some sometrace ∧ regtrace = sometrace)
using Cons.hyps[OF regtracelist-tail Cons.prems(2 ) regtrace-in] by blast

then have loc1+1 < length (head # tail) ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((head # tail) ! (loc1+1 )) (L2 ! loc2 ) = Some sometrace
∧

regtrace = sometrace)
by simp

then have ?case
by blast

}
ultimately have ?case

by blast
}
ultimately show ?case

by blast
qed
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lemma WEST-and-subset:
shows set (WEST-and T1 L2 ) ⊆ set (WEST-and (h1#T1 ) L2 )

proof −
{assume ∗: L2 = []

then have ?thesis by auto
} moreover {assume ∗: L2 6= []

then obtain h2 T2 where L2 = h2#T2
using list.exhaust-sel by blast

then have ?thesis
using WEST-and.simps(3 )[of h1 T1 h2 T2 ]
by (simp add: list.case-eq-if )

}
ultimately show ?thesis by blast

qed

lemma WEST-and-set-member-dir2 :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes exists-locs: (∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧

(∃ sometrace. WEST-and-trace (L1 ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace))

shows regtrace ∈ set (WEST-and L1 L2 ) using assms
proof (induct L1 arbitrary: L2 )

case Nil
then show ?case by auto

next
case (Cons h1 T1 )
then obtain loc1 loc2 where loc1loc2 : loc1 < length (h1 # T1 ) ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((h1 # T1 ) ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace) by blast

{assume ∗: L2 = []
then have ?case using Cons by auto

} moreover {assume ∗: L2 6= []
then obtain h2 T2 where h2T2 : L2 = h2#T2

using list.exhaust-sel by blast
have ∀ k<length (h1 # T1 ). trace-regex-of-vars ((h1 # T1 ) ! k) num-vars

using Cons.prems(1 ) unfolding WEST-regex-of-vars-def by argo
then have regtraceList-T1 : WEST-regex-of-vars T1 num-vars

unfolding WEST-regex-of-vars-def by auto
{assume ∗∗: WEST-and-helper h1 L2 = []

then have loc1 > 0
using loc1loc2

by (metis WEST-and-helper .simps(1 ) WEST-and-helper-set-member gr-implies-not-zero
list.size(3 ) not-gr0 nth-Cons-0 )
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then have exi: ∃ loc1 loc2 .
loc1 < length T1 ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (T1 ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace)

using loc1loc2
by (metis One-nat-def Suc-pred bot-nat-0 .not-eq-extremum length-Cons

nat-add-left-cancel-less nth-Cons ′ plus-1-eq-Suc)
then have ?case

using Cons.hyps[OF regtraceList-T1 Cons(3 ) exi] WEST-and-subset
by auto

} moreover {assume ∗∗: WEST-and-helper h1 L2 6= []
then have WEST-and (h1 # T1 ) (h2 # T2 ) = WEST-and-helper h1 (h2

# T2 ) @ WEST-and T1 (h2 # T2 )
by (simp add: list.case-eq-if )

then have ?case
using Cons.hyps[OF regtraceList-T1 Cons.prems(2 )]

by (metis One-nat-def Suc-pred Un-iff WEST-and-helper-set-member-converse
gr-implies-not-zero h2T2 length-Cons linorder-neqE-nat loc1loc2 nat-add-left-cancel-less
nth-Cons ′ plus-1-eq-Suc set-append)

}
ultimately have ?case

by auto
}
ultimately show ?case

by auto
qed

lemma WEST-and-set-member :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regtrace ∈ set (WEST-and L1 L2 ) ←→
(∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧
(∃ sometrace. WEST-and-trace (L1 ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧

regtrace = sometrace))
using WEST-and-set-member-dir1 WEST-and-set-member-dir2 assms by blast

lemma WEST-and-commutative-sets-member :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace-in: regtrace ∈ set (WEST-and L1 L2 )
shows regtrace ∈ set (WEST-and L2 L1 )
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proof −
obtain loc1 loc2 where loc1loc2 : loc1 < length L1 ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (L1 ! loc1 ) (L2 ! loc2 ) = Some sometrace ∧
regtrace = sometrace)

using WEST-and-set-member [OF L1-of-num-vars L2-of-num-vars] regtrace-in
by auto
have loc1 : trace-regex-of-vars (L1 ! loc1 ) num-vars

using L1-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)

have loc2 : trace-regex-of-vars (L2 ! loc2 ) num-vars
using L2-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)
have loc1 < length L1 ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (L2 ! loc2 ) (L1 ! loc1 ) = Some sometrace ∧
regtrace = sometrace)

using loc1loc2 WEST-and-trace-commutative[OF loc1 loc2 ]
by simp

then show ?thesis using loc1loc2
using WEST-and-set-member [OF L2-of-num-vars L1-of-num-vars]
by blast

qed

lemma WEST-and-commutative-sets:
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows set (WEST-and L1 L2 ) = set (WEST-and L2 L1 )
using WEST-and-commutative-sets-member [OF L1-of-num-vars L2-of-num-vars]

WEST-and-commutative-sets-member [OF L2-of-num-vars L1-of-num-vars]
by blast

lemma WEST-and-commutative:
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regex-equiv (WEST-and L1 L2 ) (WEST-and L2 L1 )

proof −
have set (WEST-and L1 L2 ) = set (WEST-and L2 L1 )

using WEST-and-commutative-sets assms
by blast

then have match π (WEST-and L1 L2 ) = match π (WEST-and L2 L1 ) for π
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using match-def match-regex-def
by (metis in-set-conv-nth)

then show ?thesis
unfolding regex-equiv-def by auto

qed

3.3.2 Identity and Zero
lemma WEST-and-helper-identity:

shows WEST-and-helper [] trace = trace
proof (induct trace)

case Nil
then show ?case by auto

next
case (Cons h T )
then show ?case

using WEST-and-helper .simps(2 )[of [] h T ]
by (smt (verit) WEST-and-trace.elims list.discI option.simps(5 ))

qed

lemma WEST-and-identity: WEST-and [[]] L = L
proof−

{assume ∗: L = []
then have ?thesis

by auto
} moreover {assume ∗: L 6= []

then obtain h T where hT : L = h#T
using list.exhaust by auto

then have ?thesis using WEST-and.simps(3 )[of [] [] h T ]
using hT
by (metis (no-types, lifting) WEST-and.simps(2 ) WEST-and-helper-identity

append.right-neutral list.simps(5 ))
}
ultimately show ?thesis by linarith

qed

lemma WEST-and-zero: WEST-and L [] = []
by simp

3.3.3 WEST-and-state
Well Defined fun advance-state:: state ⇒ state

where advance-state state = {x−1 | x. (x∈state ∧ x 6= 0 )}

lemma advance-state-elt-bound:
fixes state::state
fixes num-vars::nat
assumes ∀ x∈state. x < num-vars
shows ∀ x∈(advance-state state). x < (num-vars−1 )
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using assms advance-state.simps by auto

lemma advance-state-elt-member :
fixes state::state
fixes x::nat
assumes x+1 ∈ state
shows x ∈ advance-state state
using assms advance-state.simps by force

lemma advance-state-match-timestep:
fixes h::WEST-bit
fixes t::state-regex
fixes state::state
assumes match-timestep state (h#t)
shows match-timestep (advance-state state) t

proof−
have (∀ x<length (h # t).

((h # t) ! x = One −→ x ∈ state) ∧ ((h # t) ! x = Zero −→ x /∈ state))
using assms unfolding match-timestep-def by argo

then have ∀ x<length t.
((h # t) ! (x+1 ) = One −→ (x+1 ) ∈ state) ∧ ((h # t) ! (x+1 ) = Zero

−→ (x+1 ) /∈ state) by auto
then have ∀ x<length t.

(t ! x = One −→ x ∈ (advance-state state)) ∧ (t ! x = Zero −→ x /∈
(advance-state state))

using advance-state.simps advance-state-elt-member by fastforce
then show ?thesis using assms unfolding match-timestep-def by metis

qed

lemma WEST-and-state-well-defined:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes π-match-r1-r2 : match-timestep state s1 ∧ match-timestep state s2
shows WEST-and-state s1 s2 6= None

proof−
have same-length: length s1 = length s2

using assms unfolding state-regex-of-vars-def by simp
have (∀ x. x < num-vars −→ (((s1 ! x = One) −→ x ∈ state) ∧ ((s1 ! x =

Zero) −→ x /∈ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis

then have match-timestep-s1-unfold: ∀ x∈state. x < num-vars −→ ((s1 ! x =
One) ∨ (s1 ! x = S))

using assms by (meson WEST-bit.exhaust)
then have x-in-state-s1 : ∀ x. (x < num-vars ∧ x ∈ state) −→ ((s1 ! x = One)
∨ (s1 ! x = S)) by blast
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then have x-notin-state-s1 : ∀ x. (x < num-vars ∧ x /∈ state) −→ ((s1 ! x =
Zero) ∨ (s1 ! x = S))

using match-timestep-s1-unfold
by (meson WEST-bit.exhaust ‹∀ x<num-vars. (s1 ! x = One −→ x ∈ state) ∧

(s1 ! x = Zero −→ x /∈ state)›)
have match-timestep-s2-unfold: (∀ x. x < num-vars −→ (((s2 ! x = One) −→ x
∈ state) ∧ ((s2 ! x = Zero) −→ x /∈ state)))

using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have ∀ x∈state. x < num-vars −→ ((s2 ! x = One) ∨ (s2 ! x = S))

using assms by (meson WEST-bit.exhaust)
then have x-in-state-s2 : ∀ x. (x < num-vars ∧ x ∈ state) −→ ((s2 ! x = One)
∨ (s2 ! x = S)) by blast

then have x-notin-state-s2 : ∀ x. (x < num-vars ∧ x /∈ state) −→ ((s2 ! x =
Zero) ∨ (s2 ! x = S))

using match-timestep-s1-unfold
by (meson WEST-bit.exhaust ‹∀ x<num-vars. (s2 ! x = One −→ x ∈ state) ∧

(s2 ! x = Zero −→ x /∈ state)›)
have no-contradictory-bits1 : ∀ x∈state. x < num-vars −→WEST-and-bitwise (s1

! x) (s2 ! x) 6= None
using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
by (metis match-timestep-s2-unfold not-Some-eq)

then have no-contradictory-bits2 : ∀ x. (x /∈ state ∧ x < num-vars) −→WEST-and-bitwise
(s1 ! x) (s2 ! x) 6= None

using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
by fastforce

have no-contradictory-bits: ∀ x. x < num-vars −→ WEST-and-bitwise (s1 ! x)
(s2 ! x) 6= None

using no-contradictory-bits1 no-contradictory-bits2
by blast

show ?thesis using same-length no-contradictory-bits assms
proof (induct s1 arbitrary: s2 num-vars state)

case Nil
then show ?case by auto

next
case (Cons a s1 )
then have num-vars-bound: num-vars = (length s1 ) + 1

unfolding state-regex-of-vars-def by simp
then have len-s2 : length s2 = num-vars using Cons by simp
then have length s2 ≥ 1 using num-vars-bound by simp
then have s2-ht-exists: ∃ h t. s2 = h#t
by (metis Suc-eq-plus1 Suc-le-length-iff ‹length s2 = num-vars› not-less-eq-eq

num-vars-bound)
obtain h t where s2-ht: s2 = h#t using s2-ht-exists by blast
{assume ∗: WEST-and-bitwise a h = None

then have ?case using WEST-and-state.simps(2 )
using Cons.prems(2 ) ‹length s2 = num-vars› s2-ht by force

} moreover {assume ∗∗: WEST-and-bitwise a h 6= None
have h1 : length s1 = length t

using len-s2 num-vars-bound s2-ht by simp
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obtain num-var-minus1 where nvm1-def : num-var-minus1 = num-vars −
1 by simp

then have ∀ x<(num-vars−1 ). WEST-and-bitwise ((a#s1 ) ! (x+1 )) ((h#t)
! (x+1 )) 6= None

using Cons.prems(2 )
using num-vars-bound s2-ht by auto

then have h2 : ∀ x<num-var-minus1 . WEST-and-bitwise (s1 ! x) (t ! x) 6=
None

using nvm1-def by simp
obtain adv-state where adv-state-def : adv-state = advance-state state by

simp
have h4 : state-regex-of-vars s1 num-var-minus1

using Cons.prems unfolding state-regex-of-vars-def
by (simp add: add-implies-diff num-vars-bound nvm1-def )

have h5 : state-regex-of-vars t num-var-minus1
using h4 h1 unfolding state-regex-of-vars-def by simp

have h6 : match-timestep adv-state s1 ∧ match-timestep adv-state t
using Cons.prems(5 ) s2-ht adv-state-def
using advance-state-match-timestep by blast

have ih: WEST-and-state s1 t 6= None
using Cons.hyps[of t num-var-minus1 adv-state] h1 h2 h4 h5 h6 by auto

have ?case using WEST-and-state.simps(2 )[of a s1 h t] ∗∗ ih s2-ht by auto
}
ultimately show ?case

by blast
qed

qed

Correct Forward lemma WEST-and-state-length:
fixes s1 s2 ::state-regex
assumes samelen: length s1 = length s2
assumes r-exists: (WEST-and-state s1 s2 ) 6= None
shows ∃ r . length r = length s1 ∧ WEST-and-state s1 s2 = Some r

proof−
have s1s2-exists: ∃ r . WEST-and-state s1 s2 = Some r

using assms by simp
then obtain r where s1s2-obt: WEST-and-state s1 s2 = Some r by auto
let ?n = length s1
have s1s2-length-n: length r = ?n

using assms s1s2-obt
proof (induct ?n arbitrary: s1 s2 r)

case 0
then show ?case using WEST-and-state.simps(1 ) by simp

next
case (Suc x)
have length s1 ≥ 1 using Suc.hyps(2 ) by simp
then have ∃ h1 t1 . s1 = h1 # t1 by (simp add: Suc-le-length-iff )
then obtain h1 t1 where h1t1 : s1 = h1 # t1 by blast
have length s2 ≥ 1 using Suc.hyps(2 ) Suc.prems(1 ) by auto
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then have ∃ h2 t2 . s2 = h2 # t2 by (simp add: Suc-le-length-iff )
then obtain h2 t2 where h2t2 : s2 = h2 # t2 by blast
have WEST-and-bitwise h1 h2 6= None

using Suc.prems h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
by (metis option.simps(4 ))

then obtain h1h2 where h1h2-and: Some h1h2 = WEST-and-bitwise h1 h2
by auto

have WEST-and-state t1 t2 6= None
using Suc.prems h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
by (metis (no-types, lifting) not-None-eq option.simps(4 ) option.simps(5 ))

then obtain t1t2 where t1t2-and: Some t1t2 = WEST-and-state t1 t2 by
auto

have cond1 : x = length t1 using h1t1 Suc.hyps(2 ) by auto
have cond2 : length t1 = length t2 using h1t1 h2t2 Suc.prems(1 ) by auto
have len-t1t2 : length t1t2 = length t1

using Suc.hyps(1 )[of t1 t2 t1t2 ] using cond1 cond2 t1t2-and
using ‹WEST-and-state t1 t2 6= None› by fastforce

have r-decomp: r = h1h2 # t1t2
using Suc.prems(3 ) h1h2-and t1t2-and WEST-and-state.simps(2 )
by (metis h1t1 h2t2 option.inject option.simps(5 ))

show ?case using r-decomp len-t1t2 h1t1 h2t2 by auto
qed
then show ?thesis using assms s1s2-obt s1s2-exists by simp

qed

lemma index-shift:
fixes a::WEST-bit
fixes t::state-regex
fixes state::state
assumes (a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)
assumes ∀ x<length t. ((t!x) = One −→ x + 1 ∈ state) ∧ ((t!x) = Zero −→ x

+ 1 /∈ state)
shows ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x = Zero
−→ x /∈ state)
proof−

have (a = One −→ 0 ∈ state) using assms by auto
then have a-one: (a#t)!0 = One −→ 0 ∈ state by simp
have t-one: ∀ x<length t. (t!x) = One −→ x + 1 ∈ state using assms by auto
have ∀ x<(length t)+1 . (x 6= 0 ∧ (a#t)!x = One) −→ x ∈ state

using t-one assms(2 )
by (metis (no-types, lifting) Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel

gr-zeroI less-numeral-extra(1 ) linordered-semidom-class.add-diff-inverse nth-Cons ′

verit-comp-simplify1 (1 ))
then have at-one: ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state)

using a-one t-one by (simp add: nth-Cons ′)
have (a = Zero −→ 0 /∈ state) using assms by auto
then have a-zero: (a#t)!0 = Zero −→ 0 /∈ state by simp
have t-zero: ∀ x<length t. (t!x) = Zero −→ x + 1 /∈ state using assms by auto
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have ∀ x<(length t)+1 . (x 6= 0 ∧ (a#t)!x = Zero) −→ x /∈ state
using t-zero assms(2 )

by (metis Nat.add-0-right Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel
less-one not-gr-zero nth-Cons ′)

then have at-zero: ∀ x<length (a#t). ((a#t) ! x = Zero −→ x /∈ state)
using a-zero t-zero by (simp add: nth-Cons ′)

show ?thesis using at-one at-zero by blast
qed

lemma index-shift-reverse:
fixes a::WEST-bit
fixes t::state-regex
fixes state::state
assumes ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x =

Zero −→ x /∈ state)
shows ∀ x<length t. ((t!x) = One −→ x + 1 ∈ state) ∧ ((t!x) = Zero −→ x +

1 /∈ state)
proof−

have length (a#t) = (length t) + 1 by simp
then have ∀ x<(length t)+1 . ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x =

Zero −→ x /∈ state)
using assms by metis

then show ?thesis by simp
qed

lemma WEST-and-state-correct-forward:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-both: match-timestep state s1 ∧ match-timestep state s2
shows ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state s1 s2 )

= Some somestate
proof−

have WEST-and-state s1 s2 6= None
using WEST-and-state-well-defined assms by simp

then have ∃ somestate. WEST-and-state s1 s2 = Some somestate by auto
then obtain somestate where somestate-obt: WEST-and-state s1 s2 = Some

somestate by auto
have samelength: length s1 = length s2 using assms(1 , 2 ) unfolding state-regex-of-vars-def

by auto
have len-s1 : length s1 = num-vars using assms unfolding state-regex-of-vars-def

by auto
have len-s2 : length s2 = num-vars using samelength len-s1 by auto
have len-somestate: length somestate = num-vars
using samelength somestate-obt WEST-and-state.simps WEST-and-state-length
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using len-s1 len-s2
by fastforce

have s1-bits: ∀ x<num-vars. (s1 ! x = One −→ x ∈ state) ∧ (s1 ! x = Zero −→
x /∈ state)

using assms(3 ) len-s1 unfolding match-timestep-def by metis
have s2-bits: ∀ x<num-vars. (s2 ! x = One −→ x ∈ state) ∧ (s2 ! x = Zero −→

x /∈ state)
using assms(3 ) len-s2 unfolding match-timestep-def len-s2 by metis

have somestate-bits: ∀ x<num-vars. (somestate ! x = One −→ x ∈ state)
∧ (somestate ! x = Zero −→ x /∈ state)

using s1-bits s2-bits somestate-obt len-s1 len-s2 len-somestate assms(1 )
proof(induct somestate arbitrary: s1 s2 num-vars state)

case Nil
then show ?case

by (metis less-nat-zero-code list.size(3 ))
next

case (Cons a t)
have length s1 ≥ 1 using Cons.prems(4 , 5 , 6 ) by auto
then have ∃ h1 t1 . s1 = h1 # t1 by (simp add: Suc-le-length-iff )
then obtain h1 t1 where h1t1 : s1 = h1 # t1 by auto
have length s2 ≥ 1 using Cons.prems(4 , 5 , 6 ) by auto
then have ∃ h2 t2 . s2 = h2 # t2 by (simp add: Suc-le-length-iff )
then obtain h2 t2 where h2t2 : s2 = h2 # t2 by auto
have h1h2-not-none: WEST-and-bitwise h1 h2 6= None

using Cons.prems(3 ) h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
by (metis option.discI option.simps(4 ))

then have t1t2-not-none: WEST-and-state t1 t2 6= None
using Cons.prems(3 ) h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
by (metis option.case-eq-if option.distinct(1 ))

have h1h2-is-a: WEST-and-bitwise h1 h2 = Some a
using Cons.prems(3 ) h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
using t1t2-not-none h1h2-not-none by auto

have t1t2-is-t: WEST-and-state t1 t2 = Some t
using Cons.prems(3 ) h1t1 h2t2 WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
using t1t2-not-none h1h2-not-none by auto

let ?num-vars-m1 = num-vars − 1
have len-t: Suc (length t) = num-vars

using Cons.prems(1−6 ) by simp
then have length-t: length t = ?num-vars-m1 by simp
then have length-t1 : length t1 = ?num-vars-m1 using Cons.prems(1−6 ) h1t1

by simp
then have length-t2 : length t2 = ?num-vars-m1 using Cons.prems(1−6 ) h2t2

by simp
have (a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)

using h1h2-is-a Cons.prems(1 , 2 ) h1t1 h2t2 WEST-and-bitwise.simps
by (smt (verit) WEST-and-bitwise.elims len-t nth-Cons-0 option.inject zero-less-Suc)
then have a-fact: ((a # t) ! 0 = One −→ 0 ∈ state) ∧ ((a # t) ! 0 = Zero

−→ 0 /∈ state) by auto
let ?adv-state = advance-state state
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have ∀ x<num-vars.((h1#t1 ) ! x = One −→ x ∈ state) ∧ ((h1#t1 ) ! x = Zero
−→ x /∈ state)

using Cons.prems(1 ) h1t1 advance-state.simps[of state] by blast
then have cond1 : ∀ x<num-vars−1 .(t1 ! x = One −→ (x+1 ) ∈ state) ∧ (t1

! x = Zero −→ (x+1 ) /∈ state)
using index-shift-reverse[of h1 t1 ] by simp

then have cond1 : ∀ x<num-vars−1 .(t1 ! x = One −→ x ∈ ?adv-state) ∧ (t1
! x = Zero −→ x /∈ ?adv-state)

using advance-state-elt-member by fastforce
have ∀ x<num-vars.((h2#t2 ) ! x = One −→ x ∈ state) ∧ ((h2#t2 ) ! x = Zero

−→ x /∈ state)
using Cons.prems(2 ) h2t2 advance-state.simps[of state] by blast

then have ∀ x<num-vars−1 .(t2 ! x = One −→ (x+1 ) ∈ state) ∧ (t2 ! x =
Zero −→ (x+1 ) /∈ state)

using index-shift-reverse[of h2 t2 ] by simp
then have cond2 : ∀ x<num-vars−1 .(t2 ! x = One −→ x ∈ ?adv-state) ∧ (t2

! x = Zero −→ x /∈ ?adv-state)
using advance-state-elt-member by fastforce

have t-fact: ∀ x < length t. (t ! x = One −→ x ∈ ?adv-state) ∧ (t ! x = Zero
−→ x /∈ ?adv-state)

using Cons.hyps[of ?num-vars-m1 t1 ?adv-state t2 ]
using length-t length-t1 length-t2 t1t2-is-t cond1 cond2
by (metis (mono-tags, opaque-lifting) state-regex-of-vars-def )

then have t-fact: ∀ x < length t. (t ! x = One −→ (x+1 ) ∈ state) ∧ (t ! x =
Zero −→ (x+1 ) /∈ state)

using advance-state-elt-member by auto
have cons-index: ∀ x < length (a#t). (t ! x) = (a#t)!(x+1 ) by auto
have somestate-fact: ∀ x<length (a#t). ((a # t) ! x = One −→ x ∈ state) ∧

((a # t) ! x = Zero −→ x /∈ state)
using a-fact t-fact index-shift[of a state] Cons.prems(5 ,6 )
using ‹(a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)› by blast

show ?case
using somestate-fact len-t by auto

qed
have match-somestate: match-timestep state somestate

using somestate-obt assms somestate-bits
using len-s2 len-somestate
unfolding match-timestep-def
by metis

then show ?thesis using somestate-obt by simp
qed

Correct Converse lemma WEST-and-state-indices:
fixes s s1 s2 ::state-regex
assumes WEST-and-state s1 s2 = Some s
assumes length s1 = length s2
assumes x<length s
shows Some (s!x) = WEST-and-bitwise (s1 !x) (s2 !x)
using assms
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proof(induct s arbitrary: s1 s2 x)
case Nil
then show ?case by simp

next
case (Cons h t)
then obtain h1 t1 where h1t1 : s1 = h1 # t1

by (metis WEST-and-state.simps(1 ) length-greater-0-conv neq-Nil-conv op-
tion.inject)

obtain h2 t2 where h2t2 : s2 = h2 # t2
using Cons

by (metis WEST-and-state.simps(1 ) length-greater-0-conv neq-Nil-conv op-
tion.inject)

have notnone1 : WEST-and-bitwise h1 h2 6= None using h1t1 h2t2 Cons(2 )
WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]

by (metis option.distinct(1 ) option.simps(4 ))
have notnone2 : WEST-and-state t1 t2 6= None using h1t1 h2t2 Cons(2 )

WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
by (metis option.case-eq-if option.discI )

have someh: WEST-and-bitwise h1 h2 = Some h using h1t1 h2t2 Cons(2 )
WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]

notnone1 notnone2 by auto
have somet: WEST-and-state t1 t2 = Some t using h1t1 h2t2 Cons(2 ) WEST-and-state.simps(2 )[of

h1 t1 h2 t2 ]
notnone1 notnone2 by auto

then have some-t: x < length t =⇒ Some (t ! x) = WEST-and-bitwise (t1 ! x)
(t2 ! x) for x

using h1t1 h2t2 Cons(1 )[OF somet] Cons(3 )
by simp

have some-zero: Some ((h # t) ! 0 ) = WEST-and-bitwise (s1 ! 0 ) (s2 ! 0 )
using someh h1t1 h2t2 by simp

{assume ∗: x = 0
then have ?case

using some-zero by auto
} moreover {assume ∗: x > 0

then have xminus-lt: x−1 < length t
using Cons(4 ) by simp

have Some ((h # t) ! x) = Some (t ! (x−1 ))
using ∗
by auto

then have ?case
using some-t[OF xminus-lt] h1t1 h2t2
by (simp add: ∗)

}
ultimately show ?case

by blast
qed

lemma WEST-and-state-correct-converse-s1 :
fixes num-vars::nat
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fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state

s1 s2 ) = Some somestate
shows match-timestep state s1

proof−
have s1-bits: (∀ x<length s1 . (s1 ! x = One −→ x ∈ state) ∧ (s1 ! x = Zero −→

x /∈ state))
using assms

proof(induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto

next
case (Cons h1 t1 )
obtain somestate where
somestate-obt: (match-timestep state somestate) ∧ (WEST-and-state (h1#t1 )

s2 ) = Some somestate
using Cons.prems(3 ) by auto

have len-s1 : length (h1#t1 ) = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp

have len-s2 : length s2 = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp

then obtain h2 t2 where h2t2 : s2=h2#t2
by (metis WEST-and-state.simps(3 ) neq-Nil-conv not-Some-eq somestate-obt)

have len-somestate: length somestate = num-vars
using somestate-obt WEST-and-state-length[of - s2 ] unfolding state-regex-of-vars-def

len-s2
using len-s1 by fastforce

then obtain h t where ht: somestate = h#t using len-s1
by (metis Ex-list-of-length Zero-not-Suc length-Cons neq-Nil-conv)

have somestate-bits: (∀ x<length somestate. (somestate ! x = One −→ x ∈
state) ∧ (somestate ! x = Zero −→ x /∈ state))

using somestate-obt unfolding match-timestep-def by argo
then have somestate-bits-conv: (∀ x<length somestate. (x ∈ state −→ (somestate

! x = One ∨ somestate ! x = S)) ∧
(x /∈ state −→ (somestate ! x = Zero ∨ somestate ! x

= S)))
by (meson WEST-bit.exhaust)

have WEST-and-state (h1#t1 ) s2 = Some somestate using somestate-obt by
blast

then have somestate-and: WEST-and-state (h1#t1 ) (h2#t2 ) = Some (h#t)
using h2t2 ht by simp

have (somestate ! 0 = One −→ 0 ∈ state) ∧ (somestate ! 0 = Zero −→ 0 /∈
state)
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using somestate-bits len-somestate len-s1 by simp
then have somestate-bit0 : (h = One −→ 0 ∈ state) ∧ (h = Zero −→ 0 /∈

state)
using ht by simp

have h1h2-not-none: WEST-and-bitwise h1 h2 6= None
using somestate-and WEST-and-state.simps(2 )[of h1 t1 h2 t2 ] h2t2
using option.simps(4 ) by fastforce

have t1t2-not-none: WEST-and-state t1 t2 6= None
using h1h2-not-none somestate-and WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]
using option.simps(4 ) by fastforce

then have h1h2-is-h: WEST-and-bitwise h1 h2 = Some h
using somestate-and WEST-and-state.simps(2 )[of h1 t1 h2 t2 ] h1h2-not-none

by auto
have h-fact-converse: (0 ∈ state −→ (h1 = One ∨ h1 = S)) ∧ (0 /∈ state −→

(h1 = Zero ∨ h1 = S))
using somestate-bit0 h1h2-is-h WEST-and-bitwise.simps[of h1 ] h1h2-not-none
by (metis (full-types) WEST-and-bitwise.elims option.inject)

then have h-fact: (h1 = One −→ 0 ∈ state) ∧ (h1 = Zero −→ 0 /∈ state) by
auto

have somestate-bits-t: ∀ x<length t. (t!x = One −→ (x+1 ) ∈ state) ∧ (t!x =
Zero −→ (x+1 ) /∈ state)

using index-shift-reverse[of h t] Cons.prems(1 ) somestate-bits len-somestate
len-s1 ht by blast

have t1t2-is-t: WEST-and-state t1 t2 = Some t
using somestate-and WEST-and-state.simps(2 )[of h1 t1 h2 t2 ] t1t2-not-none

h1h2-not-none by auto
then have t1t2-is-t-indices: ∀ x<length t. Some (t!x) = WEST-and-bitwise

(t1 !x) (t2 !x)
using WEST-and-state-indices[of t1 t2 t] len-s1 len-s2 h2t2 by simp

have t-fact-converse1 :
∧

x. x<length t1 =⇒ (((x+1 ) ∈ state −→ (t1 !x = One
∨ t1 !x = S)) ∧ ((x+1 ) /∈ state −→ (t1 !x = Zero ∨ t1 !x = S)))

proof −
fix x
assume x-lt: x<length t1
have ∗:(t!x = One −→ (x+1 ) ∈ state) ∧ (t!x = Zero −→ (x+1 ) /∈ state)

using x-lt somestate-bits-t len-s1 len-somestate ht by auto
have ∗∗: Some (t ! x) = WEST-and-bitwise (t1 ! x) (t2 ! x)

using x-lt somestate-bits-t len-s1 len-somestate ht t1t2-is-t-indices by auto

{assume case1 : (x+1 ) ∈ state
then have t!x = One ∨ t1 !x = S

using ∗
by (smt (verit) ∗∗ WEST-and-bitwise.elims WEST-and-bitwise.simps(2 )

option.distinct(1 ) option.inject)
then have (t1 !x = One ∨ t1 !x = S)

using x-lt WEST-and-bitwise.simps[of t1 !x] ∗ ∗∗
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)

} moreover {assume case2 : (x+1 ) /∈ state
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then have t!x = Zero ∨ t1 !x = S
using ∗
by (smt (verit) ∗∗ WEST-and-bitwise.elims WEST-and-bitwise.simps(2 )

option.distinct(1 ) option.inject)
then have (t1 !x = Zero ∨ t1 !x = S)

using x-lt WEST-and-bitwise.simps[of t1 !x] ∗ ∗∗
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)

}
ultimately show (((x+1 ) ∈ state −→ (t1 !x = One ∨ t1 !x = S)) ∧ ((x+1 )

/∈ state −→ (t1 !x = Zero ∨ t1 !x = S)))
by blast

qed
then have t-fact: ∀ x<length t1 . (t1 !x = One −→ (x+1 )∈state) ∧ (t1 !x =

Zero −→ (x+1 )/∈state)
by force

show ?case
using h-fact t-fact Cons.prems len-s2 len-somestate index-shift[of h1 state]
unfolding state-regex-of-vars-def by blast

qed

show ?thesis
using s1-bits assms(1 ) unfolding match-timestep-def
using state-regex-of-vars-def s1-of-num-vars by presburger

qed

lemma WEST-and-state-correct-converse:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state

s1 s2 ) = Some somestate
shows match-timestep state s1 ∧ match-timestep state s2

proof−
have match-s1 : match-timestep state s1 using assms WEST-and-state-correct-converse-s1

by simp
have match-s2 : match-timestep state s2
using assms WEST-and-state-correct-converse-s1 WEST-and-state-commutative
by (simp add: state-regex-of-vars-def )

show ?thesis using match-s1 match-s2 by simp
qed

lemma WEST-and-state-correct:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
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assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
shows (match-timestep state s1 ∧ match-timestep state s2 ) ←→ (∃ somestate.

match-timestep state somestate ∧ (WEST-and-state s1 s2 ) = Some somestate)
using assms WEST-and-state-correct-converse

WEST-and-state-correct-forward by metis

3.3.4 WEST-and-trace
Well Defined lemma WEST-and-trace-well-defined:

fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes π-match-r1-r2 : match-regex π r1 ∧ match-regex π r2
shows WEST-and-trace r1 r2 6= None

proof−
show ?thesis using assms
proof(induct r1 arbitrary: r2 π num-vars)

case Nil
{assume r2-empty:r2 = []

then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2 6=[]

then obtain h2 t2 where r2 = h2#t2
by (metis trim-reversed-regex.cases)

then have?case using WEST-and-trace.simps(2 )[of h2 t2 ] by blast
}
ultimately show ?case by blast

next
case (Cons h1 t1 )
{assume r2-empty:r2 = []

then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2 6=[]

then obtain h2 t2 where h2t2 : r2 = h2#t2
by (metis trim-reversed-regex.cases)

have h1t1-nv: ∀ i<length (h1 # t1 ). length ((h1 # t1 ) ! i) = num-vars
using Cons.prems(1 ) unfolding trace-regex-of-vars-def by argo

then have length ((h1 # t1 ) ! 0 ) = num-vars by blast
then have h1-nv: state-regex-of-vars h1 num-vars

unfolding state-regex-of-vars-def by simp
have h2t2-nv: ∀ i<length (h2 # t2 ). length ((h2 # t2 ) ! i) = num-vars

using Cons.prems(2 ) h2t2 unfolding trace-regex-of-vars-def by metis
then have length ((h2 # t2 ) ! 0 ) = num-vars by blast
then have h2-nv: state-regex-of-vars h2 num-vars

unfolding state-regex-of-vars-def by simp

have match-timestep (π ! 0 ) h1 ∧ match-timestep (π ! 0 ) h2
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using Cons(4 ) unfolding match-regex-def
by (metis h2t2 length-greater-0-conv list.distinct(1 ) nth-Cons-0 )

then have h1h2-notnone: WEST-and-state h1 h2 6= None
using WEST-and-state-well-defined[of h1 num-vars h2 π!0 , OF h1-nv h2-nv]

by blast

have t1-nv: trace-regex-of-vars t1 num-vars
using h1t1-nv unfolding trace-regex-of-vars-def by auto

have t2-nv: trace-regex-of-vars t2 num-vars
using h2t2-nv unfolding trace-regex-of-vars-def by auto

have unfold-prem3 : (∀ time<length (h1 # t1 ). match-timestep (π ! time) ((h1
# t1 ) ! time)) ∧

length (h1 # t1 ) ≤ length π ∧ (∀ time<length r2 . match-timestep (π ! time)
(r2 ! time)) ∧ length r2 ≤ length π

using Cons.prems(3 ) unfolding match-regex-def by argo

have unfold-prem3-bounds: length (h1 # t1 ) ≤ length π ∧ length r2 ≤ length
π

using unfold-prem3 by blast
have π-drop1-len: length (drop 1 π) = (length π)−1 by simp

have len-t1t2 : length t1 = length (h1#t1 )−1 ∧ length t2 = length (h2#t2 )−1
by simp

have bounds: length t1 ≤ length (drop 1 π) ∧ length t2 ≤ length (drop 1 π)
using unfold-prem3-bounds h2t2 π-drop1-len len-t1t2 h2t2
by (metis diff-le-mono)

have unfold-prem3-matches: (∀ time<length (h1 # t1 ). match-timestep (π !
time) ((h1 # t1 ) ! time)) ∧

(∀ time<length (h2 # t2 ). match-timestep (π ! time)
((h2 # t2 ) ! time))

using unfold-prem3 h2t2 by blast

have h1t1-match:(∀ time<length (h1 # t1 ). match-timestep (π ! time) ((h1
# t1 ) ! time))

using unfold-prem3-matches by blast
then have (

∧
time. time<length t1 =⇒ match-timestep (drop 1 π ! time) (t1

! time))
proof−

fix time
assume time-bound: time < length t1
have time+1 < length (h1#t1 ) using time-bound by auto
then have match-timestep (π ! (time+1 )) ((h1 # t1 ) ! (time+1 )) using

h1t1-match by auto
then show match-timestep (drop 1 π ! time) (t1 ! time)

using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
qed
then have t1-match: (∀ time<length t1 . match-timestep (drop 1 π ! time) (t1

! time))
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by blast

have h2t2-match: ∀ time < length (h2 # t2 ). match-timestep (π ! time) ((h2
# t2 ) ! time)

using unfold-prem3-matches by blast
then have (

∧
time. time<length t2 =⇒ match-timestep (drop 1 π ! time) (t2

! time))
proof−
fix time
assume time-bound: time < length t2
have time+1 < length (h2#t2 ) using time-bound by auto
then have match-timestep (π ! (time+1 )) ((h2 # t2 ) ! (time+1 )) using

h2t2-match by auto
then show match-timestep (drop 1 π ! time) (t2 ! time)

using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
qed
then have t2-match: (∀ time<length t2 . match-timestep (drop 1 π ! time) (t2

! time))
by blast

then have matches: (∀ time<length t1 . match-timestep (drop 1 π ! time) (t1
! time)) ∧

(∀ time<length t2 . match-timestep (drop 1 π ! time) (t2 ! time))
using t1-match t2-match by blast

have match-regex (drop 1 π) t1 ∧ match-regex (drop 1 π) t2
using bounds matches unfolding match-regex-def h2t2 by auto

then have t1t2-notnone: WEST-and-trace t1 t2 6= None
using Cons.hyps[of num-vars t2 drop 1 π, OF t1-nv t2-nv] by simp

have WEST-and-trace (h1 # t1 ) (h2 # t2 ) 6= None
using h1h2-notnone t1t2-notnone WEST-and-trace.simps(3 ) by auto

then have ?case using h2t2 by auto
}
ultimately show ?case by blast

qed
qed

Correct Forward lemma WEST-and-trace-correct-forward-aux:
assumes match-regex π (h#t)
shows match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t

proof −
have ind-h: (∀ time<length (h#t). match-timestep (π ! time) ((h#t) ! time)) ∧

length (h#t) ≤ length π
using assms unfolding match-regex-def by metis

then have part1 : match-timestep (π ! 0 ) h
by auto

have part2 : match-timestep (drop 1 π ! time) (t ! time) if time-lt: time<length
t for time

proof −
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have match: match-timestep (π ! (time+1 )) ((h # t) ! (time+1 ))
using ind-h time-lt by auto

have (π ! (time + 1 )) = (drop 1 π ! time)
using add.commute add-gr-0 impossible-Cons ind-h less-add-same-cancel2

less-eq-iff-succ-less by auto
then show ?thesis using match by auto

qed
have part3 : length t ≤ length (drop 1 π)

using ind-h by auto
show ?thesis using part1 part2 part3 unfolding match-regex-def by simp

qed

lemma WEST-and-trace-correct-forward-aux-converse:
assumes π = hxi#txi
assumes match-timestep (hxi) h
assumes match-regex txi t
shows match-regex π (h#t)

proof−
have all-time-t: ∀ time<length t. match-timestep (txi ! time) (t ! time)

using assms(3 ) unfolding match-regex-def by argo
have len-t-leq: length t ≤ length txi

using assms(3 ) unfolding match-regex-def by argo
have match-ht: match-timestep (π ! time) ((h # t) ! time) if time-ht: time<length

(h # t)
for time

proof −
{assume ∗: time = 0

then have ?thesis
using assms(2 ) assms(1 )
by auto

} moreover {assume ∗: time > 0
then have ?thesis
using time-ht all-time-t assms(1 )
by auto

}
ultimately show ?thesis

by blast
qed
have len-condition: length (h # t) ≤ length π

using assms(1 ) len-t-leq by auto
then show ?thesis

using match-ht len-condition unfolding match-regex-def by simp
qed

lemma WEST-and-trace-correct-forward-empty-trace:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
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assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match1 : match-regex [] r1
assumes match2 : match-regex [] r2
shows ∃ sometrace. match-regex [] sometrace ∧ (WEST-and-trace r1 r2 ) = Some

sometrace
proof −

have r1-empty: length r1 ≤ length []
using match1 unfolding match-regex-def
by (metis list.size(3 ))

have r2-empty: length r2 ≤ length []
using match2 unfolding match-regex-def

by (metis list.size(3 ))
have r1r2 : r1 = [] ∧ r2 = []

using r1-empty r2-empty by simp
have match-regex [] [] ∧ (WEST-and-trace [] []) = Some []

unfolding WEST-and-trace.simps match-regex-def by simp
then show ?thesis using r1r2

by blast
qed

lemma WEST-and-trace-correct-forward-nonempty-trace:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∧ match-regex π r2
assumes length π > 0
shows ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2 ) = Some

sometrace
proof−

have WEST-and-trace r1 r2 6= None
using WEST-and-trace-well-defined[of r1 num-vars r2 π] assms by blast

then obtain sometrace where sometrace-obt: WEST-and-trace r1 r2 = Some
sometrace by blast

have match-regex π sometrace
using assms sometrace-obt

proof(induct sometrace arbitrary: r1 r2 π)
case Nil
then show ?case unfolding match-regex-def by auto

next
case (Cons h t)

have match-r1 : (∀ time<length r1 . match-timestep (π ! time) (r1 ! time))
using Cons.prems(3 ) unfolding match-regex-def by argo

have match-r2 : (∀ time<length r2 . match-timestep (π ! time) (r2 ! time))
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using Cons.prems(3 ) unfolding match-regex-def by argo

have match-h-match-t: match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t
proof−

{assume r1r2-empty: r1 = [] ∧ r2 = []
have WEST-and-trace r1 r2 = Some []

using WEST-and-trace.simps r1r2-empty by blast
then have ht-empty: h = [] ∧ t = []

using Cons.prems by simp
have match-timestep (π!0 ) [] ∧ match-regex (drop 1 π) []

unfolding match-regex-def match-timestep-def by simp
then have match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t

using ht-empty by simp
} moreover {

assume r1-empty: r1 = [] ∧ r2 6= []
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r1-empty)
have WEST-and-trace r1 r2 = Some (h2#t2 )

using r1-empty WEST-and-trace.simps(2 )[of h2 t2 ] h2t2 by blast
then have hh2-tt2 : h=h2 ∧ t=t2

using Cons.prems by simp
have match-timestep (π!0 ) h2 ∧ match-regex (drop 1 π) t2

using WEST-and-trace-correct-forward-aux[of π h2 t2 ] Cons(4 ) h2t2 by
auto

then have match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t
using hh2-tt2 by simp

} moreover {
assume r2-empty: r2 = [] ∧ r1 6= []
obtain h1 t1 where h1t1 : r1 = h1#t1

by (meson neq-Nil-conv r2-empty)
have WEST-and-trace r1 r2 = Some (h1#t1 )

using r2-empty WEST-and-trace.simps(1 )[of r1 ] h1t1
by blast

then have hh1-tt1 : h=h1 ∧ t=t1
using Cons.prems by simp

have match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t
using WEST-and-trace-correct-forward-aux[of π h1 t1 ] Cons(4 ) h1t1

hh1-tt1
by blast

} moreover {
assume r1r2-nonempty: r1 6= [] ∧ r2 6= []
obtain h1 t1 where h1t1 : r1 = h1#t1

by (meson neq-Nil-conv r1r2-nonempty)
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r1r2-nonempty)

have ht: WEST-and-trace (h1#t1 ) (h2#t2 ) = Some (h # t)
using Cons(6 ) h1t1 h2t2 by blast

then have h1h2-notnone: WEST-and-state h1 h2 6= None
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using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ]
using not-None-eq by fastforce

then have t1t2-notnone: WEST-and-trace t1 t2 6= None
using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ]
using not-None-eq

using ‹WEST-and-trace (h1 # t1 ) (h2 # t2 ) = Some (h # t)› by fastforce
have h-is: (WEST-and-state h1 h2 ) = Some h
using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] h1h2-notnone t1t2-notnone

ht
by auto

have t-is: (WEST-and-trace t1 t2 ) = Some t
using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] h1h2-notnone t1t2-notnone

ht
by auto

have h1t1-nv: ∀ i<length (h1#t1 ). length ((h1#t1 ) ! i) = num-vars
using Cons.prems(1 ) h1t1 unfolding trace-regex-of-vars-def by meson

then have hyp1 : trace-regex-of-vars t1 num-vars
unfolding trace-regex-of-vars-def by auto

have h2t2-nv: ∀ i<length (h2#t2 ). length ((h2#t2 ) ! i) = num-vars
using Cons.prems(2 ) h2t2 unfolding trace-regex-of-vars-def by meson

then have hyp2 : trace-regex-of-vars t2 num-vars
unfolding trace-regex-of-vars-def by auto

have hyp3a: match-regex (drop 1 π) t1
using WEST-and-trace-correct-forward-aux[of π h1 t1 ] h1t1 Cons.prems(3 )

by blast
have hyp3b: match-regex (drop 1 π) t2
using WEST-and-trace-correct-forward-aux[of π h2 t2 ] h2t2 Cons.prems(3 )

by blast
have hyp3 : match-regex (drop 1 π) t1 ∧ match-regex (drop 1 π) t2

using hyp3a hyp3b by auto

have match-regex (drop 1 π) t if [] = (drop 1 π)
using WEST-and-trace-correct-forward-empty-trace[of t1 num-vars t2 ]
using hyp3a hyp3b hyp1 hyp2
using t-is that by auto

then have match-t: match-regex (drop 1 π) t
using Cons.hyps[of t1 t2 (drop 1 π), OF hyp1 hyp2 hyp3 ] t-is
by fastforce

have h1-nv: state-regex-of-vars h1 num-vars
using h1t1-nv unfolding state-regex-of-vars-def by auto

have h2-nv: state-regex-of-vars h2 num-vars
using h2t2-nv unfolding state-regex-of-vars-def by auto

have match-h1 : match-timestep (π ! 0 ) h1
using Cons.prems(3 ) h1t1 unfolding match-regex-def
using Cons.prems(3 ) WEST-and-trace-correct-forward-aux by blast
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have match-h2 : match-timestep (π ! 0 ) h2
using Cons.prems(3 ) h2t2 unfolding match-regex-def
using Cons.prems(3 ) WEST-and-trace-correct-forward-aux by blast

have match-h: match-timestep (π!0 ) h
using WEST-and-state-correct-forward[of h1 num-vars h2 π!0 , OF h1-nv

h2-nv] h-is
using match-h1 match-h2 by simp

have match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t
using match-h match-t by blast

}
ultimately show match-timestep (π!0 ) h ∧ match-regex (drop 1 π) t

by blast
qed

have match-h: match-timestep (π!0 ) h
using match-h-match-t by auto

have match-t: match-regex (drop 1 π) t
using match-h-match-t by auto

have len-π: length (drop 1 π) = (length π)−1 by auto
have len-ht: length t = length (h#t)−1 by auto
have length t ≤ length (drop 1 π) using match-t unfolding match-regex-def

by argo
then have (length (h#t))−1 ≤ (length π)−1 using len-π len-ht by argo
then have ht-less-π: length (h#t) ≤ length π

using Cons.prems(4 )
by linarith

have (
∧

time. time<length (h # t) =⇒ (match-timestep (π ! time) ((h # t) !
time)) ∧

length (h # t) ≤ length π)
proof−

fix time
assume time-bound: time<length (h # t)
{assume ∗:time=0

have (match-timestep (π ! 0 ) h) ∧ length (h # t) ≤ length π
using match-h ht-less-π by simp

then have (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h # t) ≤
length π

using ∗ by simp
} moreover {

assume ∗∗: time > 0
have time-m1 : time−1 < length t

using time-bound
using ∗∗ len-ht by linarith

have (∀ time<length t. match-timestep (drop 1 π ! time) (t ! time))
using match-t unfolding match-regex-def by argo

then have fact0 : match-timestep (drop 1 π ! (time−1 )) (t ! (time−1 ))
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using time-m1 by blast
have fact1 : (t ! (time−1 )) = ((h # t) ! time)

by (simp add: ∗∗)
have fact2 : (drop 1 π ! (time−1 )) = (π ! time)

using ∗∗ time-m1 ht-less-π by force

then have (match-timestep (π ! time) ((h # t) ! time))
using fact1 fact2 fact0 by simp

then have (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h # t) ≤
length π

using ht-less-π by simp
}
ultimately show (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h #

t) ≤ length π
by (metis bot-nat-0 .not-eq-extremum)

qed
then show ?case unfolding match-regex-def by auto

qed
then show ?thesis using sometrace-obt by blast

qed

lemma WEST-and-trace-correct-forward:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∧ match-regex π r2
shows ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2 ) = Some

sometrace
using WEST-and-trace-correct-forward-empty-trace WEST-and-trace-correct-forward-nonempty-trace
assms by fast

Correct Converse lemma WEST-and-trace-nonempty-args:
fixes h1 h2 ::state-regex
fixes t t1 t2 ::trace-regex
assumes WEST-and-trace (h1 # t1 ) (h2 # t2 ) = Some (h # t)
shows WEST-and-state h1 h2 = Some h ∧ WEST-and-trace t1 t2 = Some t

proof−
have h1h2-nn: (WEST-and-state h1 h2 ) 6= None

using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] assms
using option.simps(4 ) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using assms WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ]

by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1 ) option.simps(4 ) option.simps(5 ))

have nn: WEST-and-trace (h1 # t1 ) (h2 # t2 ) 6= None using assms by blast
then have h-fact: WEST-and-state h1 h2 = Some h
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using h1h2-nn t1t2-nn assms WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] by auto
then have t-fact: WEST-and-trace t1 t2 = Some t

using t1t2-nn h1h2-nn assms WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] nn by
auto

show ?thesis using h-fact t-fact by blast
qed

lemma WEST-and-trace-lengths-r1 :
assumes trace-regex-of-vars r1 n
assumes trace-regex-of-vars r2 n
assumes (WEST-and-trace r1 r2 ) = Some sometrace
shows length sometrace ≥ length r1
using assms

proof(induction r1 arbitrary:r2 sometrace)
case Nil
then show ?case by simp

next
case (Cons h1 t1 )
{assume r2-empty: r2 = []

have WEST-and-trace (h1 # t1 ) r2 = Some (h1 # t1 )
using Cons WEST-and-trace.simps(1 ) r2-empty by blast

then have ?case using Cons by simp
} moreover {

assume r2-nonempty: r2 6= []
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r2-nonempty)
have h1t1-and-h2t2 : WEST-and-trace (h1 # t1 ) (h2 # t2 ) = Some sometrace

using Cons WEST-and-trace.simps(3 ) h2t2 by blast
then have h1h2-nn: (WEST-and-state h1 h2 ) 6= None

using WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ]
using option.simps(4 ) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using h1t1-and-h2t2 WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ]

by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1 ) option.simps(4 ) option.simps(5 ))

obtain h where h-obt: WEST-and-state h1 h2 = Some h using h1h2-nn by
blast

obtain t where t-obt: WEST-and-trace t1 t2 = Some t using t1t2-nn by blast
then have ∗: sometrace = h # t

using h-obt t-obt h1t1-and-h2t2 by auto
then have sometrace-ht: WEST-and-trace (h1 # t1 ) (h2 # t2 ) = Some (h #

t)
using h2t2 h1t1-and-h2t2 by blast

have ∀ i<length (h1 # t1 ). length ((h1 # t1 ) ! i) = n
using Cons.prems unfolding trace-regex-of-vars-def by argo

then have hyp1 : trace-regex-of-vars t1 n
unfolding trace-regex-of-vars-def by auto

have ∀ i<length (h2 # t2 ). length ((h2 # t2 ) ! i) = n
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using Cons.prems h2t2 unfolding trace-regex-of-vars-def by meson
then have hyp2 : trace-regex-of-vars t2 n

unfolding trace-regex-of-vars-def by auto

have length t ≥ length t1
using Cons(1 )[of t2 t, OF hyp1 hyp2 t-obt] by simp

then have ?case using ∗ by simp
}
ultimately show ?case by blast

qed

lemma WEST-and-trace-lengths:
assumes trace-regex-of-vars r1 n
assumes trace-regex-of-vars r2 n
assumes (WEST-and-trace r1 r2 ) = Some sometrace
shows length sometrace ≥ length r1 ∧ length sometrace ≥ length r2
using assms WEST-and-trace-lengths-r1 WEST-and-trace-commutative

proof−
have lenr1 : length r1 ≤ length sometrace

using assms WEST-and-trace-lengths-r1 [of r1 n r2 sometrace] by blast
have WEST-and-trace r1 r2 = WEST-and-trace r2 r1

using WEST-and-trace-commutative assms by blast
then have lenr2 : length r2 ≤ length sometrace

using WEST-and-trace-lengths-r1 [of r2 n r1 sometrace] assms by auto
show ?thesis using lenr1 lenr2 by auto

qed

lemma WEST-and-trace-correct-converse-r1 :
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes (∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2 ) =

Some sometrace)
shows match-regex π r1
using assms

proof(induct r1 arbitrary: r2 π)
case Nil

then show ?case
unfolding match-regex-def by auto

next
case (Cons h1 t1 )

obtain sometrace where sometrace-obt: match-regex π sometrace ∧ (WEST-and-trace
(h1#t1 ) r2 ) = Some sometrace

using Cons.prems by blast
have match-sometrace-pre: match-regex π sometrace using sometrace-obt by

simp
have r1r2-is-sometrace: (WEST-and-trace (h1#t1 ) r2 ) = Some sometrace
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using sometrace-obt by simp
have match-sometrace: ∀ time<length sometrace. match-timestep (π ! time)

(sometrace ! time)
using match-sometrace-pre unfolding match-regex-def by argo

have len-r1 : length (h1#t1 ) ≤ length π
using Cons.prems sometrace-obt WEST-and-trace-lengths
by (meson le-trans match-regex-def )

{assume empty-trace: π = []
then have ?case using len-r1 by simp

} moreover {
assume nonempty-trace: π 6= []
{assume r2-empty: r2 = []

have WEST-and-trace (h1#t1 ) r2 = Some (h1#t1 )
using sometrace-obt WEST-and-trace.simps r2-empty by simp

then have ?case using sometrace-obt
unfolding match-regex-def by force

} moreover {
assume r2-nonempty: r2 6= []

obtain hxi txi where hxitxi: π = hxi#txi using nonempty-trace by (meson
list.exhaust)

obtain h2 t2 where h2t2 : r2 = h2#t2 using r2-nonempty by (meson
list.exhaust)

have not-none: WEST-and-trace (h1#t1 ) (h2#t2 ) = Some sometrace
using sometrace-obt h2t2 by blast

have h1h2-nn: WEST-and-state h1 h2 6= None
using not-none WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] not-none
using option.simps(4 ) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using not-none WEST-and-trace.simps(3 )[of h1 t1 h2 t2 ] not-none
using option.simps(4 ) by fastforce

obtain h t where sometrace-ht: sometrace = h#t
using not-none h1h2-nn t1t2-nn by auto

have h1h2-h: WEST-and-state h1 h2 = Some h
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-

trace-ht
by blast

have t1t2-t: WEST-and-trace t1 t2 = Some t
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-

trace-ht
by blast

have match-ht: ∀ time<length (h#t). match-timestep ((hxi # txi) ! time)
(((h#t)) ! time)

using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
by meson

have h1-nv: state-regex-of-vars h1 num-vars
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using Cons.prems unfolding trace-regex-of-vars-def state-regex-of-vars-def
by (metis Ex-list-of-length append-self-conv2 arbitrary-regtrace-matches-any-trace

bot-nat-0 .not-eq-extremum le-0-eq less-nat-zero-code list.pred-inject(2 ) list-all-length
list-ex-length list-ex-simps(1 ) match-regex-def nth-append-length trace-of-vars-def )

have h2-nv: state-regex-of-vars h2 num-vars
using Cons.prems unfolding trace-regex-of-vars-def h2t2 state-regex-of-vars-def
by (metis Ex-list-of-length append-self-conv2 arbitrary-regtrace-matches-any-trace

bot-nat-0 .not-eq-extremum le-0-eq less-nat-zero-code list.pred-inject(2 ) list-all-length
list-ex-length list-ex-simps(1 ) match-regex-def nth-append-length trace-of-vars-def )

have match-h: match-timestep hxi h
using match-ht unfolding match-regex-def by auto

have match-h1 : match-timestep hxi h1
using WEST-and-state-correct-converse-s1 [of h1 num-vars h2 hxi, OF

h1-nv h2-nv]
using sometrace-ht h1h2-h match-h by blast

have ∀ i<length (h1 # t1 ). length ((h1 # t1 ) ! i) = num-vars
using Cons.prems unfolding trace-regex-of-vars-def by argo

then have t1-nv: trace-regex-of-vars t1 num-vars
unfolding trace-regex-of-vars-def by auto

have ∀ i<length (h2 # t2 ). length ((h2 # t2 ) ! i) = num-vars
using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis

then have t2-nv: trace-regex-of-vars t2 num-vars
unfolding trace-regex-of-vars-def h2t2 by auto

have match-regex π (h # t)
using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
by blast

then have match-regex txi t
using hxitxi WEST-and-trace-correct-forward-aux[of π h t]
unfolding match-regex-def by fastforce

then have match-t1 : match-regex txi t1
using Cons.hyps[of t2 txi, OF t1-nv t2-nv] t1t2-t by blast

have ?case
using match-h1 match-t1 len-r1

using WEST-and-trace-correct-forward-aux-converse[OF - match-h1
match-t1 , of π] hxitxi

by blast
}
ultimately have ?case by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-trace-correct-converse:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
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assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes (∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2 ) =

Some sometrace)
shows match-regex π r1 ∧ match-regex π r2

proof−
show ?thesis using WEST-and-trace-correct-converse-r1 WEST-and-trace-commutative

using assms(3 ) r1-of-num-vars r2-of-num-vars by presburger
qed

lemma WEST-and-trace-correct:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
shows match-regex π r1 ∧ match-regex π r2 ←→ (∃ sometrace. match-regex π

sometrace ∧ (WEST-and-trace r1 r2 ) = Some sometrace)
using WEST-and-trace-correct-forward WEST-and-trace-correct-converse assms

by blast

3.3.5 WEST-and correct
Correct Forward lemma WEST-and-helper-subset-of-WEST-and:

assumes List.member L1 elem
shows set (WEST-and-helper elem (h2#T2 )) ⊆ set (WEST-and L1 (h2#T2 ))
using assms

proof (induct L1 )
case Nil
then show ?case

by (simp add: member-rec(2 ))
next

case (Cons h1 T1 )
{assume ∗: h1 = elem

then have ?case using WEST-and.simps(3 )[of h1 T1 h2 T2 ]
by (simp add: list.case-eq-if )

} moreover {assume ∗: h1 6= elem
then have List.member T1 elem

using Cons
by (simp add: member-rec(1 ))

then have ?case using Cons WEST-and-subset by blast
}
ultimately show ?case by blast

qed

lemma WEST-and-trace-element-of-WEST-and-helper :
assumes List.member L2 elem2
assumes (WEST-and-trace elem1 elem2 ) = Some sometrace
shows sometrace ∈ set (WEST-and-helper elem1 L2 )
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using assms
proof (induct L2 )

case Nil
then show ?case

by (simp add: member-rec(2 ))
next

case (Cons h2 T2 )
{assume ∗: elem2 = h2

then have ?case
using WEST-and-helper .simps(2 )[of elem1 h2 t2 ]
using assms(2 ) by fastforce

} moreover {assume ∗: elem2 6= h2
then have List.member T2 elem2 using Cons(2 )

by (simp add: member-rec(1 ))
then have ?case using Cons(1 , 3 ) WEST-and-helper-subset

by blast
}

ultimately show ?case by blast
qed

lemma index-of-L-in-L:
assumes i < length L
shows List.member L (L ! i)
using assms in-set-member by force

lemma WEST-and-indices:
fixes L1 L2 ::WEST-regex
fixes sometrace::trace-regex
assumes ∃ i1 i2 . i1 < length L1 ∧ i2 < length L2 ∧ WEST-and-trace (L1 ! i1 )

(L2 ! i2 ) = Some sometrace
shows ∃ i<length (WEST-and L1 L2 ). WEST-and L1 L2 ! i = sometrace

proof−
obtain i1 i2 where i1-e2-prop: i1 < length L1 ∧ i2 < length L2 ∧WEST-and-trace

(L1 ! i1 ) (L2 ! i2 ) = Some sometrace
using assms by blast

then have elem: List.member L1 (L1 ! i1 )
using index-of-L-in-L i1-e2-prop by blast

have elem2 : List.member L2 (L2 ! i2 )
using index-of-L-in-L i1-e2-prop by blast

let ?L = WEST-and L1 L2
have L1-nonempty: L1 6= []

using i1-e2-prop by fastforce
have L2-nonempty: L2 6= []

using i1-e2-prop by fastforce

obtain h1 t1 where h1t1 : L1 = h1#t1 using L1-nonempty using list.exhaust
by blast
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obtain h2 t2 where h2t2 : L2 = h2#t2 using L2-nonempty using list.exhaust
by blast

then have set-subset: set (WEST-and-helper (L1 ! i1 ) L2 ) ⊆ set (WEST-and
L1 L2 )

using h2t2 WEST-and-helper-subset-of-WEST-and[of L1 (L1 ! i1 ) h2 t2 ] elem
by blast

have sometrace-in: sometrace ∈ set (WEST-and-helper (L1 ! i1 ) L2 )
using WEST-and-trace-element-of-WEST-and-helper [OF elem2 , of (L1 ! i1 )

sometrace]
i1-e2-prop by blast

show ?thesis using set-subset sometrace-in
by (simp add: in-set-conv-nth subset-code(1 ))

qed

lemma WEST-and-correct-forward:
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π L1 ∧ match π L2
shows match π (WEST-and L1 L2 )

proof−
have L1-nonempty: L1 6= []

using assms(3 ) unfolding match-def by auto
have L2-nonempty: L2 6= []

using assms(3 ) unfolding match-def by auto

obtain i1 i2 where ∗:i1 < length L1 ∧ i2 < length L2 ∧ match-regex π (L1 !i1 )
∧ match-regex π (L2 !i2 )

using assms(3 ) unfolding match-def by metis

let ?r1 = L1 !i1
let ?r2 = L2 !i2
have bounds: i1 < length L1 ∧ i2 < length L2 using ∗ by auto
have match-r1r2 : match-regex π ?r1 ∧ match-regex π ?r2 using ∗ by simp

have r1-nv: trace-regex-of-vars (L1 ! i1 ) n
using bounds assms(1 ) unfolding WEST-regex-of-vars-def by metis

have r2-nv: trace-regex-of-vars (L2 ! i2 ) n
using bounds assms(2 ) unfolding WEST-regex-of-vars-def by metis

have ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace ?r1 ?r2 ) = Some
sometrace

using WEST-and-trace-correct-forward[of ?r1 n ?r2 π, OF r1-nv r2-nv match-r1r2 ]
by blast
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then obtain sometrace where sometrace-obt: match-regex π sometrace ∧ (WEST-and-trace
?r1 ?r2 ) = Some sometrace

by auto

have ∃ i1 i2 .
i1 < length L1 ∧
i2 < length L2 ∧ WEST-and-trace (L1 ! i1 ) (L2 ! i2 ) = Some sometrace

using bounds sometrace-obt by blast
then have ∃ i < length (WEST-and L1 L2 ). (WEST-and L1 L2 )!i = sometrace

using WEST-and-indices[of L1 L2 sometrace]
using sometrace-obt by force

then obtain i where sometrace-index: i < length (WEST-and L1 L2 ) ∧ (WEST-and
L1 L2 )!i = sometrace

by blast
have sometrace-match: match-regex π sometrace using sometrace-obt by auto
have ∃ i<length (WEST-and L1 L2 ). match-regex π (WEST-and L1 L2 ! i)

using sometrace-index sometrace-match by blast
then show?thesis

unfolding match-def by simp
qed

Correct Converse lemma WEST-and-correct-converse-L1 :
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π (WEST-and L1 L2 )
shows match π L1

proof−
have ∃ i<length (WEST-and L1 L2 ). match-regex π ((WEST-and L1 L2 ) ! i)

using assms unfolding match-def by argo
then obtain i where i-obt: i<length (WEST-and L1 L2 ) ∧

match-regex π ((WEST-and L1 L2 ) ! i) by auto
then obtain i1 i2 where i1i2 : i1 < length L1 ∧ i2 < length L2 ∧ Some

((WEST-and L1 L2 )!i) = WEST-and-trace (L1 !i1 ) (L2 !i2 )
using WEST-and.simps WEST-and-helper .simps
by (metis L1-of-num-vars L2-of-num-vars WEST-and-set-member nth-mem)

have i1-L1 : i1 < length L1 using i1i2 by auto
have i2-L2 : i2 < length L2 using i1i2 by auto

let ?r1 = L1 !i1
let ?r2 = L2 !i2
let ?r = WEST-and L1 L2 ! i

have r1-of-nv: trace-regex-of-vars (L1 ! i1 ) n using assms(1 ) i1-L1
unfolding WEST-regex-of-vars-def by metis
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have r2-of-nv: trace-regex-of-vars (L2 ! i2 ) n using assms(2 ) i2-L2
unfolding WEST-regex-of-vars-def by metis

have match-regex π ?r
using WEST-and-trace-correct-converse[of ?r1 n ?r2 π, OF r1-of-nv r2-of-nv]
using i-obt i1i2 by auto

then have match-regex π (WEST-and L1 L2 ! i) unfolding match-def by simp
then have match-r1r2 : (match-regex π (L1 ! i1 ) ∧ match-regex π (L2 ! i2 ))

using WEST-and-trace-correct-converse[of ?r1 n ?r2 π, OF r1-of-nv r2-of-nv]
using i1i2 i-obt by force

then have ∃ i<length [L1 ! i1 ]. match-regex π ([L1 ! i1 ] ! i) unfolding match-def
by auto

then have ∃ i<1 . match-regex π ([L1 ! i1 ] ! i) unfolding match-def by auto
then have match-regex π (L1 ! i1 ) by simp
then show?thesis using i1-L1

unfolding match-def by auto
qed

lemma WEST-and-correct-converse:
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π (WEST-and L1 L2 )
shows match π L1 ∧ match π L2

proof−
show?thesis using WEST-and-correct-converse-L1 WEST-and-commutative assms

by (meson regex-equiv-def )
qed

lemma WEST-and-correct:
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
shows match π L1 ∧ match π L2 ←→ match π (WEST-and L1 L2 )

proof−
show?thesis using WEST-and-correct-forward WEST-and-correct-converse assms

by blast
qed

3.4 Facts about the WEST or operator
lemma WEST-or-correct:

fixes π::trace
fixes L1 L2 ::WEST-regex
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shows match π (L1@L2 ) ←→ (match π L1 ) ∨ (match π L2 )
proof−

have forward: match π (L1@L2 ) −→ (match π L1 ) ∨ (match π L2 )
unfolding match-def

by (metis add-diff-inverse-nat length-append nat-add-left-cancel-less nth-append)

have converse: (match π L1 ) ∨ (match π L2 ) −→ match π (L1@L2 )
unfolding match-def by (metis list-ex-append list-ex-length)

show ?thesis
using forward converse by blast

qed

3.5 Pad and Match Facts
lemma shift-match-regex:

assumes length π ≥ a
assumes match-regex π ((arbitrary-trace num-vars a)@L)
shows match-regex (drop a π) (drop a ((arbitrary-trace num-vars a)@L))

proof−
have drop-a: (drop a ((arbitrary-trace num-vars a)@L)) = L

using arbitrary-trace.simps[of num-vars a] by simp
let ?padL = (arbitrary-trace num-vars a)@L
have length (arbitrary-trace num-vars a @ L) = a + (length L)

by auto
then have match-all: ∀ time<a+(length L). match-timestep (π ! time) (?padL !

time)
using assms(2 ) arbitrary-trace.simps[of num-vars a]
unfolding match-regex-def by metis

have len-xi: length π ≥ a + (length L)
using assms(2 ) arbitrary-trace.simps[of num-vars a]
unfolding match-regex-def
using ‹length (arbitrary-trace num-vars a @ L) = a + length L› by argo

then have match-drop-a: match-timestep (drop a π ! time) (L ! time)
if time-le: time < length L for time

proof−
have time + a < a + (length L) using time-le by simp
then have fact1 : match-timestep (π ! (time + a)) (?padL ! (time + a))

using match-all by blast
have fact2 : (π ! (time + a)) = (drop a π ! time)

using time-le len-xi
by (simp add: add.commute)

have fact3 : (?padL ! (time + a)) = (L ! time)
using time-le len-xi

by (metis ‹length (arbitrary-trace num-vars a @ L) = a + length L› add.commute
drop-a le-add1 nth-drop)

show ?thesis
using fact1 fact2 fact3 by argo
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qed

have len-L-drop-a: length L ≤ length (drop a π)
using assms(2 ) unfolding match-regex-def
by (metis assms(1 ) diff-add drop-a drop-drop drop-eq-Nil length-drop)

then have match-regex (drop a π) L unfolding match-regex-def
using match-drop-a by metis

then show ?thesis using drop-a assms by argo
qed

lemma match-regex:
assumes length π ≥ a
assumes length L1 = a
assumes match-regex π (L1@L2 )
shows match-regex (drop a π) (drop a (L1@L2 ))

proof −
have time-h: ∀ time<length (L1 @ L2 ). match-timestep (π ! time) ((L1 @ L2 ) !

time)
using assms unfolding match-regex-def by argo

then have time: match-timestep (drop a π ! time) ((drop a (L1 @ L2 )) ! time)
if time-lt: time<length (drop a (L1 @ L2 )) for time

proof −
have time + a < length (L1@L2 )

using time-lt assms(2 ) by auto
then have h0 : match-timestep (π ! (time + a)) ((L1 @ L2 ) ! (time + a))

using time-h by blast
have h1 : π ! (time + a) = (drop a π) ! time

using assms(1 )
by (simp add: add.commute)

have h2 : ((L1 @ L2 ) ! (time + a)) = (drop a (L1 @ L2 )) ! time
using assms(2 )
by (metis add.commute append-eq-conv-conj nth-append-length-plus)

then show ?thesis using assms h0 h1 h2 by simp
qed
have len-h: length (L1 @ L2 ) ≤ length π

using assms unfolding match-regex-def by argo
then have len: length (drop a (L1 @ L2 )) ≤ length (drop a π)

using assms(1−2 ) by auto
show ?thesis

using len time unfolding match-regex-def
by argo

qed

lemma match-regex-converse:
assumes length π ≥ a
assumes L1 = (arbitrary-trace num-vars a)
assumes match-regex (drop a π) (drop a (L1@L2 ))
shows match-regex π (L1@L2 )
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proof−
have length (drop a (L1 @ L2 )) = length L2

using arbitrary-trace.simps[of num-vars a] assms by simp
then have match-L2 :

∧
time. time<length L2 =⇒ match-timestep ((drop a π) !

time) (L2 ! time)
proof−

fix time
assume time-lt: time<length L2
then have time-lt-dropa-L1L2 : time < length (drop a (L1 @ L2 ))

using assms(2 ) arbitrary-trace.simps[of num-vars a] by auto
have ∀ time<length (drop a (L1 @ L2 )). match-timestep (drop a π ! time) (drop

a (L1 @ L2 ) ! time)
using assms unfolding match-regex-def by metis

then have match-timestep (drop a π ! time) (drop a (L1 @ L2 ) ! time)
using time-lt-dropa-L1L2 by blast

then show match-timestep (drop a π ! time) (L2 ! time)
using assms(2 ) arbitrary-trace.simps[of num-vars a] by simp

qed
have match-L1L2 : match-timestep (π ! time) ((L1 @ L2 ) ! time) if time-le-L1L2 :

time<length (L1 @ L2 ) for time
proof−

{assume time-le-L1 : time < length L1
{assume L1-empty: L1 = []

have match-timestep (π ! time) (L2 ! time)
using assms unfolding match-regex-def arbitrary-trace.simps
using L1-empty time-le-L1 by auto

then have ?thesis using L1-empty by simp
} moreover {

assume L1-nonempty: L1 6= []
have L1-arb: (L1 !time) = arbitrary-state num-vars

using assms unfolding arbitrary-trace.simps time-le-L1
using time-le-L1 by auto

have match-timestep (π ! time) (arbitrary-state num-vars)
unfolding arbitrary-state.simps match-timestep-def by auto

then have match-L1 : match-timestep (π ! time) (L1 !time)
using L1-arb by auto

have (L1 @ L2 ) ! time = L1 !time
using time-le-L1L2 time-le-L1 L1-nonempty by (meson nth-append)

then have ?thesis using match-L1 by auto
}
ultimately have ?thesis by blast

} moreover {
assume time-geq-L1 : time ≥ length L1
then have time-minus-a-le-L2 : time − a < length L2

using assms(2 ) time-le-L1L2 unfolding arbitrary-trace.simps by simp
then have match-time-minus-a: match-timestep ((drop a π) ! (time − a))

(L2 ! (time − a))

62



using match-L2 by blast

have length (drop a (L1 @ L2 )) ≤ length (drop a π)
using assms unfolding match-regex-def by metis

then have L2-le-dropa-xi: length L2 ≤ length (drop a π)
using assms unfolding arbitrary-trace.simps by simp

then have fact1-h1 : length L2 ≤ length π − a by auto
have fact1-h2 : length L1 ≤ time using time-geq-L1 by blast
have fact1-h3 : time − a < length L2 using time-minus-a-le-L2 by auto
have fact1-h4 : time < length L1 + length L2 using time-le-L1L2 by simp
have length L2 ≤ length π − a =⇒

length L1 ≤ time =⇒
time − a < length L2 =⇒
time < length L1 + length L2 =⇒ π ! (a + (time − a)) = π ! time

using fact1-h1 fact1-h2 fact1-h3 fact1-h4 time-geq-L1 assms
unfolding arbitrary-trace.simps by simp

then have fact1 : drop a π ! (time − a) = π ! time
using time-geq-L1 time-minus-a-le-L2 time-le-L1L2 L2-le-dropa-xi by simp

have L1-a: length L1 = a using assms unfolding arbitrary-trace.simps by
auto

then have fact2 : L2 ! (time − a) = (L1 @ L2 ) ! time
using fact1-h2 fact1-h3 fact1-h4 time-geq-L1
by (metis le-add-diff-inverse nth-append-length-plus)

have ?thesis using fact1 fact2 match-time-minus-a by auto
}
ultimately show ?thesis by force

qed
have length (drop a (L1 @ L2 )) ≤ length (drop a π)

using assms(2 ) arbitrary-trace.simps[of num-vars num-pad]
by (metis assms(3 ) match-regex-def )

then have length (L1 @ L2 ) ≤ length π
using assms unfolding match-regex-def by simp

then show ?thesis using match-L1L2 unfolding match-regex-def by simp
qed

lemma shift-match:
assumes length π ≥ a
assumes match π (shift L num-vars a)
shows match (drop a π) L

proof−
obtain i where i-obt: i<length (shift L num-vars a) ∧ match-regex π (shift L

num-vars a ! i)
using assms unfolding match-def by force

have (shift L num-vars a ! i) = (arbitrary-trace num-vars a)@(L!i)
using shift.simps
using ‹i < length (shift L num-vars a) ∧ match-regex π (shift L num-vars a !
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i)› by auto

then have match: match-regex π ((arbitrary-trace num-vars a)@(L!i))
using i-obt by argo

have len-at: length (arbitrary-trace num-vars a) = a
unfolding arbitrary-trace.simps by simp

have drop-a: (drop a (arbitrary-trace num-vars a)@(L!i)) = L!i
using arbitrary-trace.simps[of num-vars a] by simp

then have match-regex (drop a π) (drop a (arbitrary-trace num-vars a)@(L!i))
using match using match-regex[OF assms(1 ) len-at] by simp

then have match-regex (drop a π) (L ! i)
using drop-a by argo

then show ?thesis using assms i-obt unfolding match-def by auto
qed

lemma shift-match-converse:
assumes length π ≥ a
assumes match (drop a π) L
shows match π (shift L num-vars a)

proof−
obtain i where i-obt: match-regex (drop a π) (L!i) ∧ i < length L

using assms unfolding match-def by metis
then have match-padLi: match-regex π ((arbitrary-trace num-vars a)@(L!i))

using match-regex-converse assms by auto
have i-bound: i<length (shift L num-vars a)

using shift.simps i-obt by auto
have (shift L num-vars a ! i) = (arbitrary-trace num-vars a)@(L!i)

unfolding shift.simps
by (simp add: i-obt)

then have ∃ i<length (shift L num-vars a). match-regex π (shift L num-vars a !
i)

using assms match-padLi i-bound by metis
then show ?thesis unfolding match-def by argo

qed

lemma pad-zero:
shows shift L2 num-vars 0 = L2
unfolding shift.simps arbitrary-trace.simps

proof −
have ∃wsss. L2 = wsss ∧ (@) ([]::trace-regex) = (λwss. wss) ∧ L2 = wsss

by blast
then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0 ])) L2 = L2

by simp
qed
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3.6 Facts about WEST num vars
lemma regtrace-append:

assumes trace-regex-of-vars L1 k
assumes trace-regex-of-vars L2 k
shows trace-regex-of-vars (L1@L2 ) k
using assms unfolding trace-regex-of-vars-def
by (simp add: nth-append)

lemma WEST-num-vars-subformulas:
assumes G ∈ subformulas F
shows (WEST-num-vars F) ≥ WEST-num-vars G
using assms

proof (induct F)
case True-mltl
then show ?case unfolding subformulas.simps by auto

next
case False-mltl
then show ?case unfolding subformulas.simps by auto

next
case (Prop-mltl x)
then show ?case unfolding subformulas.simps by auto

next
case (Not-mltl F)
then show ?case unfolding subformulas.simps by auto

next
case (And-mltl F1 F2 )
then show ?case unfolding subformulas.simps by auto

next
case (Or-mltl F1 F2 )
then show ?case unfolding subformulas.simps by auto

next
case (Future-mltl F x2 x3a)
then show ?case unfolding subformulas.simps by auto

next
case (Global-mltl F x2 x3a)
then show ?case unfolding subformulas.simps by auto

next
case (Until-mltl F1 F2 x3a x4a)
then show ?case unfolding subformulas.simps by auto

next
case (Release-mltl F1 F2 x3a x4a)
then show ?case unfolding subformulas.simps by auto

qed

lemma WEST-num-vars-nnf :
shows (WEST-num-vars ϕ) = WEST-num-vars (convert-nnf ϕ)

proof (induction depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)
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case True-mltl
then show ?thesis by auto

next
case False-mltl
then show ?thesis by auto

next
case (Prop-mltl x3 )
then show ?thesis by auto

next
case (Not-mltl p)
then show ?thesis proof (induct p)

case True-mltl
then show ?case using Not-mltl less by auto

next
case False-mltl
then show ?case using Not-mltl less by auto

next
case (Prop-mltl x)
then show ?case using Not-mltl less by auto

next
case (Not-mltl p)
then show ?case using Not-mltl less by auto

next
case (And-mltl ϕ1 ϕ2 )
then have phi-is: ϕ = Not-mltl (And-mltl ϕ1 ϕ2 )

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2 ))

using less[of Not-mltl ϕ2 ] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Or-mltl ϕ1 ϕ2 )
then have phi-is: ϕ = Not-mltl (Or-mltl ϕ1 ϕ2 )

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2 ))

using less[of Not-mltl ϕ2 ] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Future-mltl a b ϕ1 )
then have phi-is: ϕ = Not-mltl (Future-mltl a b ϕ1 )
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using Not-mltl
by auto
have ind1 : WEST-num-vars ϕ = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

then show ?case using ind1 phi-is
by auto

next
case (Global-mltl a b ϕ1 )
then have phi-is: ϕ = Not-mltl (Global-mltl a b ϕ1 )

using Not-mltl
by auto
have ind1 : WEST-num-vars ϕ = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

then show ?case using ind1 phi-is
by auto

next
case (Until-mltl ϕ1 a b ϕ2 )
then have phi-is: ϕ = Not-mltl (Until-mltl ϕ1 a b ϕ2 )

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2 ))

using less[of Not-mltl ϕ2 ] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Release-mltl ϕ1 a b ϕ2 )
then have phi-is: ϕ = Not-mltl (Release-mltl ϕ1 a b ϕ2 )

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1 ))
using less[of Not-mltl ϕ1 ] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2 ))

using less[of Not-mltl ϕ2 ] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
qed

next
case (And-mltl ϕ1 ϕ2 )
then show ?thesis using less by auto

next
case (Or-mltl ϕ1 ϕ2 )
then show ?thesis using less by auto

next

67



case (Future-mltl a b ϕ)
then show ?thesis using less by auto

next
case (Global-mltl a b ϕ)
then show ?thesis using less by auto

next
case (Until-mltl ϕ1 a b ϕ2 )
then show ?thesis using less by auto

next
case (Release-mltl ϕ1 a b ϕ2 )
then show ?thesis using less by auto

qed
qed

3.6.1 Facts about num vars for different WEST operators
lemma length-WEST-and:

assumes length state1 = k
assumes length state2 = k
assumes WEST-and-state state1 state2 = Some state
shows length state = k
using assms

proof (induct length state1 arbitrary: state1 state2 k state rule: less-induct)
case less
{assume ∗: k = 0

then have ?case using less(2−3 ) less(4 ) WEST-and-state.simps(1 )
by auto

} moreover {assume ∗: k > 0
obtain h1 t1 where h1t1 : state1 = h1#t1

using ∗ less(2 )
using list.exhaust by auto

obtain h2 t2 where h2t2 : state2 = h2#t2
using ∗ less(3 )
using list.exhaust by auto

have WEST-and-bitwise h1 h2 6= None
by (metis WEST-and-state.simps(2 ) h1t1 h2t2 less.prems(3 ) option.discI

option.simps(4 ))
then obtain h where someh: WEST-and-bitwise h1 h2 = Some h

by blast
have WEST-and-state t1 t2 6= None
by (metis (no-types, lifting) WEST-and-state.simps(2 ) h1t1 h2t2 less.prems(3 )

option.case-eq-if option.discI )
then obtain t where somet: WEST-and-state t1 t2 = Some t

by blast
then have length t = k−1

using less(1 )[of t1 k−1 t2 ] h1t1 h2t2
by (metis WEST-and-state-difflengths-is-none diff-Suc-1 length-Cons less.prems(1 )

lessI option.distinct(1 ))
then have ?case using less WEST-and-state.simps(2 )[of h1 t1 h2 t2 ]

68



using someh somet
by (metis WEST-and-state-length option.discI option.inject)

}
ultimately show ?case

by auto
qed

lemma WEST-and-trace-num-vars:
assumes trace-regex-of-vars r1 k
assumes trace-regex-of-vars r2 k
assumes (WEST-and-trace r1 r2 ) = Some sometrace
shows trace-regex-of-vars sometrace k
using assms

proof(induct r1 arbitrary: r2 sometrace)
case Nil
then have sometrace = r2

using WEST-and-trace.simps(2 )
by (metis WEST-and-trace.simps(1 ) WEST-and-trace-commutative option.inject)

then show ?case using Nil unfolding trace-regex-of-vars-def by blast
next

case (Cons h1 t1 )
{assume r2-empty: r2 = []

then have sometrace = (h1#t1 )
using WEST-and-trace.simps WEST-and-trace-commutative(1 ) Cons.prems

by auto
then have ?case using Cons

unfolding trace-regex-of-vars-def by blast
} moreover {

assume r2-nonempty: r2 6= []
then obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson trim-reversed-regex.cases)
{assume sometrace-empty: sometrace = []

then have ?case unfolding trace-regex-of-vars-def by simp
} moreover {

assume sometrace-nonempty: sometrace 6= []
then obtain h t where ht-obt: WEST-and-state h1 h2 = Some h ∧WEST-and-trace

t1 t2 = Some t
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 ] Cons.prems(3 )
by (metis ‹r2 = h2 # t2 › trim-reversed-regex.cases)

then have sometrace-ht: sometrace = h#t
using Cons.prems(3 ) unfolding h2t2 by auto

have h1t1-nv: ∀ i<length (h1 # t1 ). length ((h1 # t1 ) ! i) = k
using Cons.prems unfolding trace-regex-of-vars-def by argo

have h1-nv: length h1 = k
using h1t1-nv by auto

have t1-nv: trace-regex-of-vars t1 k
using h1t1-nv unfolding trace-regex-of-vars-def by auto

have h2t2-nv: ∀ i<length (h2 # t2 ). length ((h2 # t2 ) ! i) = k
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using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis
have h2-nv: length h2 = k

using h2t2-nv by auto
have t2-nv: trace-regex-of-vars t2 k

using h2t2-nv unfolding trace-regex-of-vars-def by auto

have h1h2-h: WEST-and-state h1 h2 = Some h
using ht-obt by simp

then have h-nv: length h = k using h1-nv h2-nv
using length-WEST-and by blast

have t1t2-t: WEST-and-trace t1 t2 = Some t
using ht-obt by simp

then have t-nv: trace-regex-of-vars t k
using Cons.hyps[of t2 t, OF t1-nv t2-nv] by blast

have t-nv-unfold: ∀ i<length t. length (t ! i) = k
using h-nv t-nv sometrace-ht unfolding trace-regex-of-vars-def by presburger

then have length (sometrace ! i) = k if i-lt: i<length sometrace for i
using i-lt sometrace-ht h-nv

proof−
{assume ∗: i = 0

then have ?thesis
using sometrace-ht h-nv by auto

} moreover {assume ∗: i > 0
then have sometrace ! i = t ! (i−1 )

using i-lt sometrace-ht by simp

then have ?thesis
using t-nv-unfold i-lt sometrace-ht
by (metis ∗ One-nat-def Suc-less-eq Suc-pred length-Cons)

}
ultimately show ?thesis by auto

qed
then have ?case unfolding trace-regex-of-vars-def by auto

}
ultimately have ?case by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-and L1 L2 ) k

proof−
{assume L1L2-empty: (WEST-and L1 L2 ) = []
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then have ?thesis unfolding WEST-regex-of-vars-def by simp
} moreover {

assume L1L2-nonempty: WEST-and L1 L2 6= []

have trace-regex-of-vars (WEST-and L1 L2 ! i) k if i-index: i < length
(WEST-and L1 L2 ) for i

proof−
obtain sometrace where sometrace-obt: (WEST-and L1 L2 )!i = sometrace

using L1L2-nonempty by simp
then obtain i1 i2 where i1i2-obt: i1 < length L1 ∧ i2 < length L2 ∧ Some

sometrace = WEST-and-trace (L1 !i1 ) (L2 !i2 )
using WEST-and.simps WEST-and-helper .simps

by (metis WEST-and-set-member-dir1 assms(1 ) assms(2 ) i-index nth-mem)

let ?r1 = L1 !i1
let ?r2 = L2 !i2
have r1r2-sometrace: Some sometrace = WEST-and-trace (L1 !i1 ) (L2 !i2 )

using i1i2-obt by blast
have r1-nv: trace-regex-of-vars ?r1 k

using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
have r2-nv: trace-regex-of-vars ?r2 k

using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
have trace-regex-of-vars sometrace k

using r1-nv r2-nv r1r2-sometrace WEST-and-trace-num-vars[of ?r1 k ?r2 ]
by metis

then show ?thesis
using sometrace-obt by blast

qed
then have ?thesis unfolding WEST-regex-of-vars-def by simp

}
ultimately show ?thesis by blast

qed

lemma WEST-or-num-vars:
assumes L1-nv: WEST-regex-of-vars L1 k
assumes L2-nv: WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (L1@L2 ) k

proof−
let ?L = L1@L2
have trace-regex-of-vars (?L!i) k if i-lt: i < length ?L for i
proof−

{assume in-L1 : i < length L1
then have L1-i-nv: trace-regex-of-vars (L1 !i) k

using L1-nv unfolding WEST-regex-of-vars-def by metis
have ?L!i = L1 !i

using in-L1
by (simp add: nth-append)

then have ?thesis using L1-i-nv by simp

71



} moreover {
assume in-L2 : i ≥ length L1
then have i − length L1 < length L2

using i-lt by auto
then have L2-i-nv: trace-regex-of-vars (L2 !(i − length L1 )) k

using L2-nv unfolding WEST-regex-of-vars-def by metis
have (?L ! i) = L2 !(i − length L1 )

using in-L2
by (simp add: nth-append)

then have ?thesis using L2-i-nv by simp
}
ultimately show ?thesis by fastforce

qed

then show ?thesis unfolding WEST-regex-of-vars-def by simp
qed

lemma regtraceList-cons-num-vars:
assumes trace-regex-of-vars h num-vars
assumes WEST-regex-of-vars T num-vars
shows WEST-regex-of-vars (h#T ) num-vars

proof−
let ?H = [h]
have WEST-regex-of-vars ?H num-vars

using assms unfolding WEST-regex-of-vars-def by auto
then have WEST-regex-of-vars (?H@T ) num-vars

using WEST-or-num-vars[of ?H num-vars T ] assms by simp
then show ?thesis by simp

qed

lemma WEST-simp-state-num-vars:
assumes length s1 = num-vars
assumes length s2 = num-vars
shows length (WEST-simp-state s1 s2 ) = num-vars
using assms WEST-simp-state.simps by auto

lemma WEST-get-state-length:
assumes trace-regex-of-vars r num-vars
shows length (WEST-get-state r k num-vars) = num-vars
using assms unfolding trace-regex-of-vars-def
using WEST-get-state.simps[of r k num-vars]
by (metis leI length-map length-upt minus-nat.diff-0 )

lemma WEST-simp-trace-num-vars:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
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shows trace-regex-of-vars (WEST-simp-trace r1 r2 num-vars) num-vars
using WEST-simp-state-num-vars assms
unfolding WEST-simp-trace.simps trace-regex-of-vars-def
using WEST-get-state-length assms(1 ) by auto

lemma remove-element-at-index-preserves-nv:
assumes i < length L
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (remove-element-at-index i L) num-vars

proof−
have length (take i L @ drop (i + 1 ) L) = length L−1

using assms by simp
have take-nv: WEST-regex-of-vars (take i L) num-vars

using assms unfolding WEST-regex-of-vars-def
by (metis in-set-conv-nth in-set-takeD)

have drop-nv: WEST-regex-of-vars (drop (i + 1 ) L) num-vars
using assms unfolding WEST-regex-of-vars-def
by (metis add.commute length-drop less-diff-conv less-iff-succ-less-eq nth-drop)

then show ?thesis
using take-nv drop-nv WEST-or-num-vars by simp

qed

lemma update-L-length:
assumes h ∈ set (enum-pairs L)
shows length (update-L L h num-var) = length L − 1

proof−
have length L ≤ 1 −→ enum-pairs L = []

unfolding enum-pairs.simps using enumerate-pairs.simps
by (simp add: upt-rec)

then have len-L: length L ≥ 2
using assms by auto

let ?i = fst h
let ?j = snd h
have i-le-j: ?i < ?j using enum-pairs-fact assms(1 )

by metis
have j-bound: ?j < length L

using assms(1 ) enum-pairs-bound[of L]
by metis

then have i-bound: ?i < (length L)−1
using i-le-j by auto

have len-orsimp: length [WEST-simp-trace (L ! fst h) (L ! snd h) num-var ] = 1
by simp

have length (remove-element-at-index (snd h) L) = length L − 1
using assms j-bound by auto

then have length (remove-element-at-index (fst h) (remove-element-at-index (snd
h) L)) = length L − 2

using assms i-bound j-bound by simp
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then show ?thesis
using len-orsimp len-L

using length-append[of (remove-element-at-index (fst h) (remove-element-at-index
(snd h) L)) [WEST-simp-trace (L ! fst h) (L ! snd h) num-var ]]

unfolding update-L.simps by linarith
qed

lemma update-L-preserves-num-vars:
assumes WEST-regex-of-vars L num-var
assumes h ∈ set (enum-pairs L)
assumes K = update-L L h num-var
shows WEST-regex-of-vars K num-var

proof−
have simp-nv: trace-regex-of-vars (WEST-simp-trace (L ! fst h) (L ! snd h)

num-var) num-var
using WEST-simp-trace-num-vars assms unfolding WEST-regex-of-vars-def
by (metis enum-pairs-bound enum-pairs-fact order .strict-trans)

then have simp-nv: WEST-regex-of-vars [WEST-simp-trace (L ! fst h) (L ! snd
h) num-var ] num-var

unfolding WEST-regex-of-vars-def by auto
have ∗:WEST-regex-of-vars (remove-element-at-index (snd h) L) num-var

using assms remove-element-at-index-preserves-nv
using enum-pairs-fact[of L] enum-pairs-bound[of L]
using remove-element-at-index-preserves-nv by blast

let ?La = (remove-element-at-index (snd h) L)
have fst h < length (remove-element-at-index (snd h) L)

using enum-pairs-fact[of L] enum-pairs-bound[of L] assms(2 )
by auto

then have WEST-regex-of-vars (remove-element-at-index (fst h) (remove-element-at-index
(snd h) L)) num-var

using remove-element-at-index-preserves-nv[of fst h ?La num-var ] ∗
by blast

then show ?thesis
using simp-nv assms(3 ) unfolding update-L.simps using WEST-or-num-vars
using WEST-regex-of-vars-def by blast

qed

lemma WEST-simp-helper-can-simp:
assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

assumes min-j = Min {j. j < length (enum-pairs L) ∧ j ≥ i ∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}
assumes newL = update-L L (enum-pairs L ! min-j) num-vars
assumes i < length (enum-pairs L)
shows simp-L = WEST-simp-helper newL (enum-pairs newL) 0 num-vars

proof−
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let ?j-set = {j. j < length (enum-pairs L) ∧ j ≥ i ∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}
have cond1 : finite ?j-set

by fast
have cond2 : ?j-set 6= {}

using assms(2 ) by blast
have min-j ∈ ?j-set

using Min-in[OF cond1 cond2 ] assms(3 ) by blast
then have min-j-props: min-j < length (enum-pairs L) ∧ min-j ≥ i

∧ check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

by blast
have minimality: ¬ (check-simp (L ! fst (enum-pairs L ! k))

(L ! snd (enum-pairs L ! k)))
if k-prop: (k < min-j ∧ k < length (enum-pairs L) ∧ k ≥ i)
for k

proof−
have k /∈ ?j-set

using assms(3 ) Min-gr-iff [of ?j-set k] k-prop
by (metis (no-types, lifting) empty-iff finite-nat-set-iff-bounded mem-Collect-eq

order-less-imp-not-eq2 )
then show ?thesis using k-prop by blast

qed
then have minimality: ∀ k. (k < min-j ∧ k < length (enum-pairs L) ∧ k ≥ i)
−→

¬ (check-simp (L ! fst (enum-pairs L ! k))
(L ! snd (enum-pairs L ! k)))

by blast
show ?thesis

using assms(1 , 4 , 5 ) minimality min-j-props
proof(induction min-j − i arbitrary: min-j i L simp-L newL)

case 0
then have check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))
by force

then show ?case
using 0 WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by (metis diff-diff-cancel diff-zero linorder-not-less)

next
case (Suc x)
have min-j-eq: min-j − i = x+1

using Suc.hyps(2 ) by auto
then have min-j > i

by auto
then have cant-match-i: ¬ (check-simp (L ! fst (enum-pairs L ! i))

(L ! snd (enum-pairs L ! i)))
using Suc by fast

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
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let ?simp-Lnext = WEST-simp-helper L (enum-pairs L) (i+1 ) num-vars
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have simp-L-eq: ?simp-L = ?simp-Lnext
using cant-match-i WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]

Suc.prems(3 )
by auto

have cond1 : x = min-j − (i+1 )
using min-j-eq by auto

have cond2 : ?simp-Lnext = WEST-simp-helper L (enum-pairs L) (i+1 ) num-vars
by simp

have cond3 : ?newL = update-L L (enum-pairs L ! min-j) num-vars
by simp

have cond4 : i + 1 < length (enum-pairs L)
using Suc by linarith

have cond5 : ∀ k. k < min-j ∧ k < length (enum-pairs L) ∧ i + 1 ≤ k −→
¬ check-simp (L ! fst (enum-pairs L ! k))

(L ! snd (enum-pairs L ! k))
using Suc
using add-leD1 by blast

have cond6 : min-j < length (enum-pairs L) ∧ i + 1 ≤ min-j ∧
check-simp (L ! fst (enum-pairs L ! min-j))

(L ! snd (enum-pairs L ! min-j))
using Suc by linarith

have ?simp-Lnext = WEST-simp-helper newL (enum-pairs newL) 0 num-vars
using Suc.hyps(1 )[OF cond1 cond2 cond3 cond4 cond5 cond6 ]
using Suc.prems by blast

then show ?case
using simp-L-eq Suc.prems(1 ) by argo

qed
qed

lemma WEST-simp-helper-cant-simp:
assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

shows simp-L = L
using assms

proof(induct length (enum-pairs L) − i arbitrary: simp-L L i )
case 0
then have i ≥ length (enum-pairs L)

by simp
then show ?case

using 0 (2 ) WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by auto

next
case (Suc x)
then have i-eq: i = length (enum-pairs L) − (x+1 )
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by simp
let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
let ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i+1 ) num-vars
have simp-L-eq: ?simp-L = ?simp-nextL

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
using i-eq Suc
by (metis diff-is-0-eq le-refl nat.distinct(1 ) zero-less-Suc zero-less-diff )

have cond1 : x = length (enum-pairs L) − (i+1 )
using Suc.hyps(2 ) by auto

have cond2 : ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i + 1 ) num-vars
by blast

have cond3 : ¬ (∃ j<length (enum-pairs L).
i + 1 ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

using Suc by auto
have ?simp-nextL = L

using Suc.hyps(1 )[OF cond1 cond2 cond3 ] by auto
then show ?case

using Suc.prems(1 ) simp-L-eq by argo
qed

lemma WEST-simp-helper-length:
shows length (WEST-simp-helper L (enum-pairs L) i num-vars) ≤ length L

proof(induct length L arbitrary: L i rule: less-induct)
case less

{assume i-geq: length (enum-pairs L) ≤ i
then have WEST-simp-helper L (enum-pairs L) i num-vars = L

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

then have ?case
by auto

} moreover {
assume i-le: length (enum-pairs L) > i

then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
=

(if check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))

then let newL = update-L L (enum-pairs L ! i) num-vars
in WEST-simp-helper newL (enum-pairs newL) 0 num-vars

else WEST-simp-helper L (enum-pairs L) (i + 1 ) num-vars)
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
{assume can-simp: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs
L) ∧ j ≥ i ∧
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check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
using obt-min-j can-simp i-le by blast

have min-j-bounds: min-j < length (enum-pairs L) ∧ min-j ≥ i
using can-simp obt-min-j Min-in[of {j. j < length (enum-pairs L) ∧ j ≥ i

∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}]
by fastforce

have length ?newL < length L
using update-L-length[of enum-pairs L ! min-j L num-vars]
using min-j-bounds
by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem

zero-less-one)
then have ?case
using less(1 )[of ?newL] less.prems min-j-bounds update-L-preserves-num-vars
by (metis (no-types, lifting) ‹WEST-simp-helper L (enum-pairs L) i num-vars

= WEST-simp-helper (update-L L (enum-pairs L ! min-j) num-vars) (enum-pairs
(update-L L (enum-pairs L ! min-j) num-vars)) 0 num-vars› leD le-trans nat-le-linear)

} moreover {
assume cant-simp: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have ?simp-L = L
using WEST-simp-helper-cant-simp i-le by blast

then have ?case by simp
}
ultimately have ?case using WEST-simp-helper-eq by blast

}
ultimately show ?case

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by fastforce

qed

lemma WEST-simp-helper-num-vars:
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (WEST-simp-helper L (enum-pairs L) i num-vars)

num-vars
using assms

proof(induct length L arbitrary: L i rule: less-induct)
case less
{assume i-geq: length (enum-pairs L) ≤ i

then have WEST-simp-helper L (enum-pairs L) i num-vars = L
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp
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then have ?case
using less by argo

} moreover {
assume i-le: length (enum-pairs L) > i

then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
=

(if check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))

then let newL = update-L L (enum-pairs L ! i) num-vars
in WEST-simp-helper newL (enum-pairs newL) 0 num-vars

else WEST-simp-helper L (enum-pairs L) (i + 1 ) num-vars)
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
{assume can-simp: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs
L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
using obt-min-j can-simp i-le by blast

have min-j-bounds: min-j < length (enum-pairs L) ∧ min-j ≥ i
using can-simp obt-min-j Min-in[of {j. j < length (enum-pairs L) ∧ j ≥ i

∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}]
by fastforce

have length ?newL < length L
using update-L-length[of enum-pairs L ! min-j L num-vars]
using min-j-bounds
by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem

zero-less-one)
then have ?case
using less(1 )[of ?newL] less.prems min-j-bounds update-L-preserves-num-vars
by (metis ‹WEST-simp-helper L (enum-pairs L) i num-vars = WEST-simp-helper

(update-L L (enum-pairs L ! min-j) num-vars) (enum-pairs (update-L L (enum-pairs
L ! min-j) num-vars)) 0 num-vars› nth-mem)

} moreover {
assume cant-simp: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have ?simp-L = L
using WEST-simp-helper-cant-simp i-le by blast

then have ?case using less by simp
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}
ultimately have ?case using WEST-simp-helper-eq by blast

}
ultimately show ?case

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by fastforce

qed

lemma WEST-simp-num-vars:
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (WEST-simp L num-vars) num-vars
unfolding WEST-simp.simps
using WEST-simp-helper-num-vars assms by blast

lemma WEST-and-simp-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-and-simp L1 L2 k) k
unfolding WEST-and-simp.simps
using WEST-simp-num-vars WEST-and-num-vars assms by blast

lemma WEST-or-simp-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-or-simp L1 L2 k) k
unfolding WEST-or-simp.simps
using WEST-simp-num-vars WEST-or-num-vars assms by blast

lemma shift-num-vars:
fixes L::WEST-regex
fixes a k::nat
assumes WEST-regex-of-vars L k
shows WEST-regex-of-vars (shift L k a) k
using assms

proof(induct L)
case Nil
then show ?case

unfolding WEST-regex-of-vars-def by auto
next

case (Cons h t)
let ?padding = arbitrary-trace k a
let ?padh = ?padding @ h
let ?padt = shift t k a
have padding-nv: ∀ i<length (arbitrary-trace k a). length (arbitrary-trace k a ! i)

= k
unfolding trace-regex-of-vars-def by auto

have h-nv: trace-regex-of-vars h k
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using Cons.prems unfolding WEST-regex-of-vars-def
by (metis length-greater-0-conv list.distinct(1 ) nth-Cons-0 )

then have h-nv: ∀ i<length h. length (h ! i) = k
unfolding trace-regex-of-vars-def by metis

have length ((?padding @ h) ! i) = k if i-lt: i < length (?padding @ h) for i
proof−

{assume in-padding: i < length ?padding
then have ?thesis

using padding-nv
by (metis nth-append)

} moreover {
assume in-h: i ≥ length ?padding
let ?index = i − (length ?padding)
have i − (length ?padding) < length h

using i-lt in-h by auto
then have h!?index = (?padding@h)!i

using i-lt in-h by (simp add: nth-append)
then have ?thesis using h-nv

by (metis ‹i − length (arbitrary-trace k a) < length h›)
}
ultimately show ?thesis by fastforce

qed
then have padh-nv: trace-regex-of-vars ?padh k

unfolding trace-regex-of-vars-def by simp
have ∀ ka<length (h # t). trace-regex-of-vars ((h # t) ! ka) k

using Cons.prems unfolding WEST-regex-of-vars-def by metis
then have WEST-regex-of-vars t k

unfolding WEST-regex-of-vars-def by auto
then have padt-nv: WEST-regex-of-vars ?padt k

using Cons.hyps by simp
then show ?case using padh-nv padt-nv

using regtraceList-cons-num-vars[of ?padh k ?padt] by simp
qed

lemma WEST-future-num-vars:
assumes WEST-regex-of-vars L k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-future L a b k) k
using assms

proof(induct b−a arbitrary: L a b)
case 0
then have a = b by simp
then have WEST-future-base: (WEST-future L a b k) = shift L k a

using WEST-future.simps[of L a b k] by auto
have WEST-regex-of-vars (shift L k a) k

using shift-num-vars 0 by blast
then show ?case using WEST-future-base by simp

next
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case (Suc x)
then have b = a + (Suc x) by auto
then have west-future: WEST-future L a b k = WEST-or-simp (shift L k b)

(WEST-future L a (b − 1 ) k) k
using WEST-future.simps[of L a b k]
by (metis Suc.hyps(2 ) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq ′ linorder-le-less-linear)
have fact: WEST-regex-of-vars (shift L k b) k

using shift-num-vars Suc by blast
have indh: WEST-regex-of-vars (WEST-future L a (b − 1 ) k) k

using Suc.hyps Suc.prems by simp
show ?case

using west-future WEST-or-simp-num-vars fact indh by metis
qed

lemma WEST-global-num-vars:
assumes WEST-regex-of-vars L k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-global L a b k) k
using assms

proof(induct b−a arbitrary: L a b)
case 0
then have a = b by simp
then have WEST-global-base: (WEST-global L a b k) = shift L k a

using WEST-global.simps[of L a b k] by auto
have WEST-regex-of-vars (shift L k a) k

using shift-num-vars 0 by blast
then show ?case using WEST-global-base by simp

next
case (Suc x)
then have b = a + (Suc x) by auto
then have west-global: WEST-global L a b k = WEST-and-simp (shift L k b)

(WEST-global L a (b − 1 ) k) k
using WEST-global.simps[of L a b k]

by (metis Suc.hyps(2 ) Suc.prems(2 ) add-leE cancel-comm-monoid-add-class.diff-cancel
le-numeral-extra(3 ) nat-less-le not-one-le-zero plus-1-eq-Suc)

have fact: WEST-regex-of-vars (shift L k b) k
using shift-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-global L a (b − 1 ) k) k
using Suc.hyps Suc.prems by simp

show ?case
using west-global WEST-and-simp-num-vars fact indh
by metis

qed

lemma WEST-until-num-vars:
assumes WEST-regex-of-vars L1 k
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assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-until L1 L2 a b k) k
using assms

proof(induct b−a arbitrary: L1 L2 a b)
case 0
then have a = b by auto
have WEST-until L1 L2 a b k = WEST-global L2 a a k

using WEST-until.simps[of L1 L2 a b k] 0 by auto
then show ?case using 0 WEST-global-num-vars[of L2 k a b] by simp

next
case (Suc x)
then have b = a + (Suc x) by auto
then have west-until: WEST-until L1 L2 a b k = WEST-or-simp (WEST-until

L1 L2 a (b − 1 ) k)
(WEST-and-simp (WEST-global L1 a (b

− 1 ) k) (WEST-global L2 b b k) k) k
using WEST-until.simps[of L1 L2 a b k]
by (metis Suc.prems(3 ) Zero-neq-Suc add-eq-self-zero order-neq-le-trans)

have fact1 : WEST-regex-of-vars (WEST-global L1 a (b − 1 ) k) k
using WEST-global-num-vars Suc by auto

have fact2 : WEST-regex-of-vars (WEST-global L2 b b k) k
using WEST-global-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-until L1 L2 a (b − 1 ) k) k
using Suc.hyps Suc.prems by simp

show ?case
using west-until WEST-and-num-vars fact1 fact2 indh
using WEST-and-simp-num-vars WEST-or-simp-num-vars by metis

qed

lemma WEST-release-helper-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-release-helper L1 L2 a b k) k
using assms

proof(induct b−a arbitrary: L1 L2 a b)
case 0
then have a = b by auto
then have WEST-release-helper L1 L2 a b k = WEST-and-simp (WEST-global

L1 a a k) (WEST-global L2 a a k) k
using WEST-release-helper .simps[of L1 L2 a b k] by argo

have fact1 : WEST-regex-of-vars (WEST-global L1 a a k) k
using WEST-global-num-vars[of L1 k a a] 0 by blast

have fact2 : WEST-regex-of-vars (WEST-global L2 a a k) k
using WEST-global-num-vars[of L2 k a a] 0 by blast

then show ?case using WEST-release-helper .simps[of L1 L2 a b k] 0
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using fact1 fact2 WEST-and-simp-num-vars by auto
next

case (Suc x)
then have b = a + (Suc x) by auto
then have west-release-helper : WEST-release-helper L1 L2 a b k = WEST-or-simp

(WEST-release-helper L1 L2 a (b − 1 ) k)
(WEST-and-simp (WEST-global L2 a b k) (WEST-global L1 b b k) k) k

using WEST-release-helper .simps[of L1 L2 a b k]
by (metis Suc.hyps(2 ) Suc.prems(3 ) add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel

le-neq-implies-less plus-1-eq-Suc zero-neq-one)

have fact1 : WEST-regex-of-vars ((WEST-global L2 a b k)) k
using WEST-global-num-vars Suc by auto

have fact2 : WEST-regex-of-vars (WEST-global L1 b b k) k
using WEST-global-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-release-helper L1 L2 a (b − 1 ) k) k
using Suc.hyps Suc.prems by simp

show ?case using WEST-release-helper .simps[of L1 L2 a b k]
using fact1 fact2 indh WEST-and-simp-num-vars WEST-or-simp-num-vars Suc
by presburger

qed

lemma WEST-release-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-release L1 L2 a b k) k
using assms

proof−
{assume a-eq-b: a = b

then have WEST-release L1 L2 a b k = WEST-global L2 a b k
using WEST-release.simps[of L1 L2 a b k] by auto

then have ?thesis using WEST-global-num-vars assms by auto
} moreover {

assume a-neq-b: a 6= b
then have b-pos: b > 0 using assms by simp
have a-leq-bm1 : a ≤ b−1 using a-neq-b assms by auto
then have a-le-b: a < b using b-pos by auto
have WEST-release L1 L2 a b k = WEST-or-simp (WEST-global L2 a b k)

(WEST-release-helper L1 L2 a (b − 1 ) k) k
using WEST-release.simps[of L1 L2 a b k] a-le-b by argo

then have ?thesis
using WEST-global-num-vars[of L2 a b k]
using WEST-release-helper-num-vars[of L1 k L2 a b]

using WEST-or-simp-num-vars[of WEST-global L2 a b k k WEST-release-helper
L1 L2 a (b − 1 ) k]

using WEST-global-num-vars WEST-release-helper-num-vars a-leq-bm1 assms(1 )
assms(2 ) assms(3 ) by presburger
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}
ultimately show ?thesis by blast

qed

lemma WEST-reg-aux-num-vars:
assumes is-nnf : ∃ ψ. F1 = (convert-nnf ψ)
assumes k ≥ WEST-num-vars F1
assumes intervals-welldef F1
shows WEST-regex-of-vars (WEST-reg-aux F1 k) k
using assms

proof (induct F1 rule: nnf-induct)
case nnf
then show ?case using is-nnf by simp

next
case True
then show ?case using WEST-reg-aux.simps(1 )[of k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case False
show ?case using WEST-reg-aux.simps(2 )

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (Prop p)
then show ?case using WEST-reg-aux.simps(3 )[of p k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (NotProp F p)
then show ?case using WEST-reg-aux.simps(3 )[of p k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (And F F1 F2 )
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using And(1 , 4 )

by (metis convert-nnf .simps(4 ) convert-nnf-convert-nnf mltl.inject(3 ))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using And by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ
by (metis And.hyps(1 ) And.prems(1 ) convert-nnf .simps(4 ) convert-nnf-convert-nnf

mltl.inject(3 ))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using And by auto
have nv-F1 : WEST-num-vars F1 ≤ k

using WEST-num-vars-subformulas[of F1 And-mltl F1 F2 ] And(1 ,5 ) unfold-
ing subformulas.simps

by simp
have nv-F2 : WEST-num-vars F2 ≤ k

using WEST-num-vars-subformulas[of F2 And-mltl F1 F2 ] And(1 ,5 ) unfold-
ing subformulas.simps

by simp
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show ?case
using WEST-reg-aux.simps(6 )[of F1 F2 k] And And(2 )[OF nnf-F1 nv-F1 ]

And(3 )[OF nnf-F2 nv-F2 ]
using WEST-and-simp-num-vars[of (WEST-reg-aux F1 k) k (WEST-reg-aux

F2 k)]
by auto

next
case (Or F F1 F2 )
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Or

by (metis convert-nnf .simps(5 ) convert-nnf-convert-nnf mltl.inject(4 ))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using Or by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ
by (metis Or .hyps(1 ) Or .prems(1 ) convert-nnf .simps(5 ) convert-nnf-convert-nnf

mltl.inject(4 ))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using Or by auto
let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have WEST-regex-of-vars ?L1 k

using Or nnf-F1 by simp
then have L1-nv: ∀ i<length (WEST-reg-aux F1 k). trace-regex-of-vars (WEST-reg-aux

F1 k ! i) k
unfolding WEST-regex-of-vars-def by metis

have WEST-regex-of-vars ?L2 k
using Or nnf-F2 by simp

then have L2-nv: ∀ j<length (WEST-reg-aux F2 k). trace-regex-of-vars (WEST-reg-aux
F2 k ! j) k

unfolding WEST-regex-of-vars-def by metis

have L1L2-L: WEST-reg-aux F k = WEST-or-simp ?L1 ?L2 k
using WEST-reg-aux.simps(5 )[of F1 F2 k] Or by blast

let ?L = ?L1@?L2
show ?case

using WEST-or-simp-num-vars[of ?L1 k ?L2 , OF ] L1-nv L2-nv L1L2-L
unfolding WEST-regex-of-vars-def by auto

next
case (Final F F1 a b)
let ?L1 = WEST-reg-aux F1 k
have F1-nnf : ∃ψ. F1 = convert-nnf ψ using Final

by (metis convert-nnf .simps(6 ) convert-nnf-convert-nnf mltl.inject(5 ))
then have L1-nv: WEST-regex-of-vars ?L1 k

using Final by simp
have WEST-reg-future: WEST-reg-aux (Future-mltl a b F1 ) k = WEST-future

?L1 a b k
using WEST-reg-aux.simps(7 )[of a b F1 k] by blast

let ?L = WEST-future ?L1 a b k
have WEST-regex-of-vars ?L k

using L1-nv WEST-future-num-vars[of ?L1 k a b] Final by auto
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then show ?case using WEST-reg-future Final by simp
next

case (Global F F1 a b)
let ?L1 = WEST-reg-aux F1 k
have F1-nnf : ∃ψ. F1 = convert-nnf ψ using Global

by (metis convert-nnf .simps(7 ) convert-nnf-convert-nnf mltl.inject(6 ))
then have L1-nv: WEST-regex-of-vars ?L1 k

using Global by simp
have WEST-regex-of-vars (WEST-global ?L1 a b k) k

using L1-nv WEST-global-num-vars[of ?L1 k a b] Global by simp
then show ?case using WEST-reg-aux.simps(8 )[of a b F1 k] Global(1 ) by simp

next
case (Until F F1 F2 a b)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Until

by (metis convert-nnf .simps(8 ) convert-nnf-convert-nnf mltl.inject(7 ))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using Until by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ using Until

by (metis convert-nnf .simps(8 ) convert-nnf-convert-nnf mltl.inject(7 ))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using Until by auto
let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have L1-nv:WEST-regex-of-vars ?L1 k

using Until nnf-F1 by simp
have L2-nv:WEST-regex-of-vars ?L2 k

using Until nnf-F2 by simp

have WEST-regex-of-vars (WEST-until (WEST-reg-aux F1 k) (WEST-reg-aux
F2 k) a b k) k

using WEST-until-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Until by auto
then show ?case using Until(1 ) WEST-reg-aux.simps(9 )[of F1 a b F2 k] by

auto
next

case (Release F F1 F2 a b)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Release

by (metis convert-nnf .simps(9 ) convert-nnf-convert-nnf mltl.inject(8 ))

then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
using Release by auto

have nnf-F2 : ∃ψ. F2 = convert-nnf ψ using Release
by (metis convert-nnf .simps(9 ) convert-nnf-convert-nnf mltl.inject(8 ))

then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
using Release by auto

let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have L1-nv:WEST-regex-of-vars ?L1 k

using Release nnf-F1 by simp
have L2-nv:WEST-regex-of-vars ?L2 k
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using Release nnf-F2 by simp

have WEST-regex-of-vars (WEST-release (WEST-reg-aux F1 k) (WEST-reg-aux
F2 k) a b k) k

using WEST-release-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Release by
auto

then show ?case using WEST-reg-aux.simps(10 )[of F1 a b F2 k] Release by
argo
qed

lemma nnf-intervals-welldef :
assumes intervals-welldef F1
shows intervals-welldef (convert-nnf F1 )
using assms

proof (induct depth-mltl F1 arbitrary: F1 rule: less-induct)
case less
have iwd: intervals-welldef F2 =⇒

F1 = Not-mltl F2 =⇒
intervals-welldef (convert-nnf (Not-mltl F2 ))

for F2 apply (cases F2 ) using less by simp-all
then show ?case using less

apply (cases F1 ) by simp-all
qed

lemma WEST-reg-num-vars:
assumes intervals-welldef F1
shows WEST-regex-of-vars (WEST-reg F1 ) (WEST-num-vars F1 )

proof −
have WEST-num-vars (convert-nnf F1 ) = WEST-num-vars F1

using WEST-num-vars-nnf by presburger
then have wnv: WEST-num-vars (convert-nnf F1 ) ≤ (WEST-num-vars F1 )

by simp
have iwd: intervals-welldef (convert-nnf F1 )

using assms nnf-intervals-welldef
by auto

show ?thesis
using assms WEST-reg-aux-num-vars[OF - wnv iwd]
unfolding WEST-reg.simps
by auto

qed

3.7 Correctness of WEST-simp
3.7.1 WEST-count-diff facts
lemma count-diff-property-aux:

assumes k < length r1 ∧ k < length r2
shows count-diff r1 r2 ≥ count-diff-state (r1 ! k) (r2 ! k)
using assms

proof (induct length r1 arbitrary: r1 r2 k)
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case 0
then show ?case by simp

next
case (Suc x)
obtain h1 t1 h2 t2 where r1r2 : r1 = h1#t1 r2 = h2#t2

using Suc
by (metis length-0-conv not-less-zero trim-reversed-regex.cases)

have cd: count-diff r1 r2 = count-diff-state h1 h2 + count-diff t1 t2
using r1r2 count-diff .simps(4 )[of h1 t1 h2 t2 ] by simp

{assume ∗: k = 0
have count-diff r1 r2 ≥ count-diff-state h1 h2

using cd
by auto

then have ?case using ∗ r1r2
by auto

} moreover {assume ∗: k > 0
have t1t2 : t1 ! (k−1 ) = r1 ! k ∧ t2 ! (k−1 ) = r2 ! k

using Suc(3 ) ∗ r1r2
by simp

have count-diff-state (t1 ! (k − 1 )) (t2 ! (k − 1 ))
≤ count-diff t1 t2

using ∗ Suc(1 )[of t1 k−1 t2 ]
Suc(2−3 ) r1r2
by (metis One-nat-def Suc-less-eq Suc-pred diff-Suc-1 ′ length-Cons)

then have ?case using cd t1t2
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-state-property:
assumes count-diff-state t1 t2 = 0
assumes ka < length t1 ∧ ka < length t2
shows t1 ! ka = t2 ! ka

using assms
proof (induct length t1 arbitrary: t1 t2 ka)

case 0
then show ?case by simp

next
case (Suc x)
obtain h1 T1 h2 T2 where t1t2 : t1 = h1#T1 t2 = h2#T2
using Suc
by (metis count-nonS-trace.cases length-0-conv less-nat-zero-code)

have cd: h1 = h2 ∧ count-diff-state t1 t2 = count-diff-state T1 T2
using t1t2 count-diff-state.simps(4 )[of h1 T1 h2 T2 ]
Suc(3 ) by presburger

then have ind0 : count-diff-state T1 T2 = 0
using Suc(3 ) by auto

{assume ∗: ka = 0
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then have ?case using cd t1t2
by auto

} moreover {assume ∗: ka > 0
have T1T2 : T1 ! (ka−1 ) = t1 ! ka ∧ T2 ! (ka−1 ) = t2 ! ka

using Suc(3 ) ∗ t1t2
by simp

have T1 ! (ka−1 ) = T2 ! (ka−1 )
using ∗ Suc(1 )[OF - ind0 , of ka]
Suc(2−3 ) t1t2

by (metis Suc.hyps(1 ) Suc.prems(2 ) Suc-less-eq Suc-pred diff-Suc-1 ind0
length-Cons)

then have ?case using T1T2
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-property:
assumes count-diff r1 r2 = 0
assumes k < length r1 ∧ k < length r2
assumes ka < length (r1 ! k) ∧ ka < length (r2 ! k)
shows r2 ! k ! ka = r1 ! k ! ka

proof −
have count-diff r1 r2 ≥ count-diff-state (r1 ! k) (r2 ! k)

using count-diff-property-aux[OF assms(2 )]
by auto

then have cdt: count-diff-state (r1 ! k) (r2 ! k) = 0
using assms by auto

show ?thesis
using count-diff-state-property[OF cdt assms(3 )]
by auto

qed

lemma count-nonS-trace-0-allS :
assumes length h = num-vars
assumes count-nonS-trace h = 0
shows h = map (λt. S) [0 ..<num-vars]
using assms

proof(induct num-vars arbitrary: h)
case 0
then show ?case by simp

next
case (Suc num-vars)
then obtain head tail where head-tail: h = head#tail

by (meson length-Suc-conv)
have tail = map (λt. S) [0 ..<num-vars]

using Suc(1 )[of tail] head-tail Suc.prems
by (metis Zero-not-Suc count-nonS-trace.simps(2 ) length-Cons nat.inject

plus-1-eq-Suc)
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then have count-nonS-trace tail = 0
using count-nonS-trace.simps Suc.prems(2 )
by (metis Suc.prems(2 ) add-is-0 head-tail)

then show ?case
using count-nonS-trace.simps(2 )[of head tail] head-tail

proof −
have f1 : 0 = Suc 0 + 0 ∨ head = S
using One-nat-def Suc.prems(2 ) ‹count-nonS-trace (head # tail) = (if head

6= S then 1 + count-nonS-trace tail else count-nonS-trace tail)› ‹count-nonS-trace
tail = 0 › head-tail by argo

have map (λn. S) [0 ..<Suc num-vars] = S # map (λn. S) [0 ..<num-vars]
using map-upt-Suc by blast

then show ?thesis
using f1 ‹tail = map (λt. S) [0 ..<num-vars]› head-tail by presburger

qed
qed

lemma trace-tail-num-vars:
assumes trace-regex-of-vars (h # trace) num-vars
shows trace-regex-of-vars trace num-vars

proof−
have

∧
i. i<length trace =⇒ length (trace ! i) = num-vars

proof−
fix i
assume i-le: i<length trace
have i+1 < length (h#trace)

using Cons
by (meson i-le impossible-Cons leI le-trans less-iff-succ-less-eq)

then have length ((h # trace) ! (i+1 )) = num-vars
using assms unfolding trace-regex-of-vars-def by meson

then show length (trace ! i) = num-vars
by auto

qed
then show ?thesis

unfolding trace-regex-of-vars-def by auto
qed

lemma count-diff-property-S-aux:
assumes count-diff trace [] = 0
assumes k < length trace
assumes trace-regex-of-vars trace num-vars
assumes 1 ≤ num-vars
shows trace ! k = map (λt. S) [0 ..< num-vars]
using assms

proof(induct trace arbitrary: k num-vars)
case Nil
then show ?case by simp

next
case (Cons h trace)
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{assume k-zero: k = 0
have cond1 : length h = num-vars

using Cons.prems(3 ) unfolding trace-regex-of-vars-def
by (metis Cons.prems(2 ) k-zero nth-Cons-0 )

have cond2 : count-nonS-trace h = 0
using Cons.prems(1 ) count-diff .simps
by (metis add-is-0 count-diff-state.simps(3 ) count-nonS-trace.elims)

have h = map (λt. S) [0 ..<num-vars]
using count-nonS-trace-0-allS [OF cond1 cond2 ] by simp

then have ?case
by (simp add: k-zero)

} moreover {
assume k-ge-zero: k > 0
have cond1 : count-diff trace [] = 0
by (metis Cons.prems(1 ) count-diff .simps(2 ) count-diff .simps(3 ) neq-Nil-conv

zero-eq-add-iff-both-eq-0 )
have cond2 : k−1 < length trace

using k-ge-zero Cons.prems(2 ) by auto
have cond3 : trace-regex-of-vars trace num-vars

using trace-tail-num-vars Cons(4 )
unfolding trace-regex-of-vars-def
by blast

have trace ! (k−1 ) = map (λt. S) [0 ..< num-vars]
using Cons.hyps[OF cond1 cond2 cond3 ] Cons.prems by blast

then have ?case
using k-ge-zero by simp

}
ultimately show ?case by blast

qed

lemma count-diff-property-S :
assumes count-diff r1 r2 = 0
assumes k < length r1 ∧ length r2 ≤ k
assumes trace-regex-of-vars r1 num-vars
assumes num-vars ≥ 1
assumes ka < num-vars
shows r1 ! k = map (λt. S) [0 ..<num-vars]

proof−
have length r1 > length r2

using assms by simp
let ?tail = drop (length r2 ) r1
have cond1 : count-diff ?tail [] = 0

using assms(1 , 2 )
proof(induct r2 arbitrary: r1 k)

case Nil
then show ?case by simp

next
case (Cons a r2 )
then obtain h T where obt-hT : r1 = h#T
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by (metis length-0-conv less-nat-zero-code trim-reversed-regex.cases)
have count-diff-state h a = 0

using count-diff .simps(4 )[of h T a r2 ] Cons.prems obt-hT by simp
then have cond1 : count-diff T r2 = 0

using count-diff .simps(4 )[of h T a r2 ] Cons.prems obt-hT by simp
have count-diff (drop (length r2 ) T ) [] = 0

using Cons.hyps[OF cond1 ] Cons.prems obt-hT
by (metis count-diff .simps(1 ) drop-all linorder-le-less-linear order-refl)

then show ?case
using obt-hT by simp

qed
have cond2 : (k − length r2 ) < length (drop (length r2 ) r1 )

using assms by auto
have cond3 : trace-regex-of-vars (drop (length r2 ) r1 ) num-vars

using assms(3 , 2 ) unfolding trace-regex-of-vars-def
by (metis ‹length r2 < length r1 › add.commute leI length-drop less-diff-conv

nth-drop order .asym)
have ?tail ! (k − length r2 ) = map (λt. S) [0 ..< num-vars]

using count-diff-property-S-aux[OF cond1 cond2 cond3 ] assms by blast
then show ?thesis

using assms by auto
qed

lemma count-diff-state-commutative:
shows count-diff-state e1 e2 = count-diff-state e2 e1
proof (induct e1 arbitrary: e2 )

case Nil
then show ?case using count-diff-state.simps

by (metis count-nonS-trace.cases)
next

case (Cons h1 t1 )
then show ?case

by (smt (verit) count-diff-state.elims list.inject null-rec(1 ) null-rec(2 ))
qed

lemma count-diff-commutative:
shows count-diff r1 r2 = count-diff r2 r1

proof (induct r1 arbitrary: r2 )
case Nil
then show ?case using count-diff .simps

by (metis trim-reversed-regex.cases)
next

case (Cons h1 t1 )
{assume ∗: r2 = []

then have ?case
using count-diff .simps by auto

} moreover {
assume ∗: r2 6= []
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then obtain h2 t2 where r2 = h2#t2
by (meson neq-Nil-conv)

then have ?case using count-diff .simps(4 )[of h1 t1 h2 t2 ]
Cons[of t2 ] ∗ count-diff-state-commutative
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-same-trace:
shows count-diff trace trace = 0

proof(induct trace)
case Nil
then show ?case by simp

next
case (Cons a trace)
have count-diff-state a a = 0
proof(induct a)

case Nil
then show ?case by simp

next
case (Cons a1 a2 )
then show ?case by simp

qed
then show ?case

using Cons count-diff .simps(4 )[of a trace a trace] by auto
qed

lemma count-diff-state-0 :
assumes count-diff-state h1 h2 = 0
assumes length h1 = length h2
shows h1 = h2
using assms

proof(induct h1 arbitrary: h2 )
case Nil
then show ?case by simp

next
case (Cons a h1 )
then show ?case

by (metis count-diff-state-property nth-equalityI )
qed

lemma count-diff-state-1 :
assumes length h1 = length h2
assumes count-diff-state h1 h2 = 1
shows ∃ ka<length h1 . h1 !ka 6= h2 !ka
using assms
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proof(induct h1 arbitrary: h2 )
case Nil
then show ?case by simp

next
case (Cons a h1 )
then obtain head tail where obt-headtail: h2 = head#tail

by (metis length-0-conv neq-Nil-conv)
{assume head-equal: a = head

then have count-diff-state h1 tail = 1
using count-diff-state.simps(4 )[of a h1 head tail]
using Cons.prems(2 ) obt-headtail by auto

then have ∃ ka<length h1 . h1 ! ka 6= tail ! ka
using Cons.hyps[of tail] Cons.prems
by (simp add: obt-headtail)

then have ?case using obt-headtail by auto
} moreover {

assume head-notequal: a 6= head
then have ?case using obt-headtail by auto

}
ultimately show ?case by blast

qed

lemma count-diff-state-other-states:
assumes count-diff-state h1 h2 = 1
assumes length h1 = length h2
assumes h1 !k 6= h2 !k
assumes k < length h1
shows ∀ i<length h1 . k 6=i −→ h1 !i = h2 !i
using assms

proof(induct h1 arbitrary: h2 k)
case Nil
then show ?case by simp

next
case (Cons a h1 )
then obtain head tail where headtail: h2 = head#tail

by (metis Suc-length-conv)
{assume k0 : k = 0

then have count-diff-state h1 tail = 0
using Cons.prems headtail count-diff-state.simps(4 )[of a h1 head tail] by auto

then have h1 = tail
using count-diff-state-0 Cons.prems headtail by simp

then have ?case using k0 headtail by simp
} moreover {

assume k-not0 : k 6= 0
then have head-eq: a = head

using Cons headtail count-diff-state.simps(4 )[of a h1 head tail]
by (metis One-nat-def Suc-inject count-diff-state-0 length-Cons nth-Cons ′

plus-1-eq-Suc)
then have count-diff-state h1 tail = 1
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using Cons headtail count-diff-state.simps(4 )[of a h1 head tail] by argo
then have induction: ∀ i<length h1 . k−1 6= i −→ h1 ! i = tail ! i

using Cons.hyps[of h2 k−1 ] Cons.prems headtail
by (smt (verit) Cons.hyps Suc-less-eq add-diff-inverse-nat k-not0 length-Cons

less-one nth-Cons ′ old.nat.inject plus-1-eq-Suc)
have

∧
i. (i<length (a # h1 ) ∧ k 6= i) =⇒ (a # h1 ) ! i = h2 ! i

proof−
fix i
assume i-facts: (i<length (a # h1 ) ∧ k 6= i)
{assume i0 : i = 0

then have (a # h1 ) ! i = h2 ! i
using headtail head-eq by simp

} moreover {
assume i-not0 : i 6= 0
then have (a # h1 ) ! i = h2 ! i

using induction k-not0 i-facts
using headtail length-Cons nth-Cons ′ zero-less-diff by auto

}
ultimately show (a # h1 ) ! i = h2 ! i by blast

qed
then have ?case by blast

}
ultimately show ?case by blast

qed

lemma count-diff-same-len:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff r1 r2 = 0
assumes length r1 = length r2
shows r1 = r2
using assms

proof(induct r1 arbitrary: r2 )
case Nil
then show ?case by simp

next
case (Cons h1 r1 )
then obtain h T where obt-hT : r2 = h#T

by (metis length-0-conv list.exhaust)
have cond1 : trace-regex-of-vars r1 num-vars

using trace-tail-num-vars Cons.prems by blast
have cond2 : trace-regex-of-vars T num-vars

using trace-tail-num-vars Cons.prems obt-hT by blast
have h1-h-samelen: length h1 = length h

using Cons.prems obt-hT unfolding trace-regex-of-vars-def
by (metis length-greater-0-conv nth-Cons-0 )

have r1-eq-T : r1 = T
using Cons.hyps[OF cond1 cond2 ] Cons.prems
by (simp add: obt-hT )

96



then have count-diff r1 T = 0
using count-diff-same-trace by auto

then have count-diff-state h1 h = 0
using Cons.prems(3 ) obt-hT count-diff .simps(4 )[of h1 r1 h T ] by simp

then have h = h1 using h1-h-samelen
proof(induct h arbitrary: h1 )

case Nil
then show ?case by simp

next
case (Cons a h)
then show ?case using count-diff-state.simps

Suc-inject count-diff-state.elims length-Cons less-iff-Suc-add not-less-eq
by (metis (no-types, opaque-lifting) count-diff-state-0 )

qed
then show ?case

using r1-eq-T obt-hT by blast
qed

lemma count-diff-1 :
assumes count-diff r1 r2 = 1
assumes length r1 = length r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows ∃ k<length r1 . count-diff-state (r1 !k) (r2 !k) = 1
using assms

proof(induct length r1 arbitrary: r1 r2 )
case 0
then show ?case by auto

next
case (Suc x)
obtain h1 T1 where obt-h1T1 : r1 = h1#T1 using Suc

by (metis length-Suc-conv)
obtain h2 T2 where obt-h2T2 : r2 = h2#T2 using Suc

by (metis length-Suc-conv)
{assume h1h2-same: h1 = h2

have count-diff-state h1 h2 = 0
using h1h2-same count-diff-state-0
by (metis Nat.add-0-right count-diff .simps(4 ) count-diff-same-trace)

then have cond2 : count-diff T1 T2 = 1
using h1h2-same Suc.prems(1 ) obt-h1T1 obt-h2T2
using count-diff .simps(4 )[of h1 T1 h2 T2 ] by simp

have ∃ k<length T1 . count-diff-state (T1 ! k) (T2 ! k) = 1
using Suc obt-h1T1 obt-h2T2 h1h2-same
by (metis cond2 length-Cons nat.inject trace-tail-num-vars)

then have ?case using obt-h1T1 obt-h2T2
by fastforce

} moreover {
assume h1h2-notsame: h1 6= h2
have h1h2-nv: length h1 = length h2
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using Suc.prems(3 , 4 ) unfolding trace-regex-of-vars-def
by (metis Suc.hyps(2 ) Suc.prems(2 ) nth-Cons-0 obt-h1T1 obt-h2T2 zero-less-Suc)
then have count-diff-state h1 h2 > 0

using count-diff-state-0 h1h2-notsame by auto
then have count-diff-state h1 h2 = 1

using count-diff .simps(4 )[of h1 T1 h2 T2 ] Suc obt-h1T1 obt-h2T2 by auto
then have ?case using obt-h1T1 obt-h2T2 by auto

}
ultimately show ?case by blast

qed

lemma count-diff-1-other-states:
assumes count-diff r1 r2 = 1
assumes length r1 = length r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff-state (r1 !k) (r2 !k) = 1
shows ∀ i<length r1 . k 6=i −→ r1 !i = r2 !i
using assms

proof(induct length r1 arbitrary: r1 r2 k)
case 0
then show ?case by auto

next
case (Suc x)
obtain h1 T1 where obt-h1T1 : r1 = h1#T1 using Suc

by (metis length-Suc-conv)
obtain h2 T2 where obt-h2T2 : r2 = h2#T2 using Suc

by (metis length-Suc-conv)
{assume k0 : k = 0

have count-diff T1 T2 = 0
using Suc count-diff .simps(4 )[of h1 T1 h2 T2 ] obt-h1T1 obt-h2T2 k0
by auto

then have ∀ i<length T1 . T1 ! i = T2 ! i
using Suc.prems count-diff-same-len trace-tail-num-vars
by (metis Suc-inject length-Cons obt-h1T1 obt-h2T2 )

then have ?case using obt-h1T1 obt-h2T2 k0
using length-Cons by auto

} moreover {
assume k-not0 : k 6= 0
then have T1T2-diffby1 : count-diff T1 T2 = 1

using Suc.prems obt-h1T1 obt-h2T2 count-diff .simps(4 )[of h1 T1 h2 T2 ]
by (metis One-nat-def add-right-imp-eq count-diff-same-len count-diff-state-1

list.size(4 ) not-gr-zero nth-Cons-pos one-is-add trace-tail-num-vars)
then have h1h2-same: h1 = h2
using k-not0 count-diff .simps(4 )[of h1 T1 h2 T2 ] Suc.prems obt-h1T1 obt-h2T2

unfolding trace-regex-of-vars-def
by (metis Suc.hyps(2 ) add-cancel-right-left count-diff-state-0 nth-Cons-0

zero-less-Suc)
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have induction: ∀ i<length T1 . (k−1 ) 6= i −→ T1 ! i = T2 ! i
using Suc.hyps(1 )[of T1 T2 k−1 ] Suc.hyps(2 ) Suc.prems T1T2-diffby1

by (metis (mono-tags, lifting) k-not0 length-Cons nth-Cons ′ obt-h1T1 obt-h2T2
old.nat.inject trace-tail-num-vars)

then have ?case using obt-h1T1 obt-h2T2 k-not0 h1h2-same
by (simp add: nth-Cons ′)

}
ultimately show ?case by blast

qed

3.7.2 Orsimp-trace Facts
lemma WEST-simp-bitwise-identity:

assumes b1 = b2
shows WEST-simp-bitwise b1 b2 = b1
using assms WEST-simp-bitwise.simps
by (metis WEST-bit.exhaust)

lemma WEST-simp-bitwise-commutative:
shows WEST-simp-bitwise b1 b2 = WEST-simp-bitwise b2 b1
using WEST-simp-bitwise.simps
by (metis (full-types) WEST-simp-bitwise.elims)

lemma WEST-simp-state-commutative:
assumes length s1 = num-vars
assumes length s2 = num-vars
shows WEST-simp-state s1 s2 = WEST-simp-state s2 s1
using WEST-simp-state.simps[of s1 s2 ]
using WEST-simp-bitwise-commutative assms by simp

lemma WEST-simp-trace-commutative:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows WEST-simp-trace r1 r2 num-vars = WEST-simp-trace r2 r1 num-vars

proof−
have r1-vars: ∀ k. length (WEST-get-state r1 k num-vars) = num-vars

using assms WEST-get-state-length by blast
have r2-vars: ∀ k. length (WEST-get-state r2 k num-vars) = num-vars

using assms WEST-get-state-length by blast
have (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) = (λk. WEST-simp-state (WEST-get-state
r2 k num-vars)

(WEST-get-state r1 k num-vars))
using WEST-simp-state-commutative r1-vars r2-vars by fast

then show ?thesis
unfolding WEST-simp-trace.simps[of r1 r2 num-vars]
unfolding WEST-simp-trace.simps[of r2 r1 num-vars]
by (simp add: insert-commute)
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qed

lemma WEST-simp-trace-identity:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff r1 r2 = 0
assumes length r1 ≥ length r2
shows WEST-simp-trace r1 r2 num-vars = r1

proof−
have of-vars: ∀ i<length r1 . length (r1 ! i) = num-vars

using assms unfolding trace-regex-of-vars-def by argo
have mapmap: map (λk. map (λka. (r1 !k)!ka)

[0 ..< num-vars]) [0 ..<length r1 ] = r1
using assms(1 ) unfolding trace-regex-of-vars-def [of r1 num-vars]
by (smt (verit) length-map list-eq-iff-nth-eq map-nth nth-map)

have r1-k-ka:
∧

ka. ka < num-vars =⇒
WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka
if k-lt: k<length r1 for k

proof −
fix ka
assume ka-lt: ka < num-vars
{assume ∗: k < length r2

have length (r1 ! k) = num-vars ∧ length (r2 ! k) = num-vars
using assms unfolding trace-regex-of-vars-def ∗ ka-lt
using ∗ that by presburger

then have (r2 ! k) ! ka = (r1 ! k) ! ka
using ∗ ka-lt using assms(3 )
using count-diff-property-aux
using count-diff-property that by presburger
then have WEST-get-state r2 k num-vars ! ka = WEST-get-state r1 k

num-vars ! ka
unfolding WEST-get-state.simps using ∗ ka-lt
using leD that by auto

then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)
(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka

using WEST-simp-bitwise-identity that by force
} moreover {assume ∗: k ≥ length r2
then have WEST-get-state r2 k num-vars = (map (λ k. S) [0 ..< num-vars])

by simp
then have r2-k-ka-S : (WEST-get-state r2 k num-vars ! ka) = S

using ka-lt by simp

have r1-k-ka: (WEST-get-state r1 k num-vars ! ka) = r1 !k!ka
using k-lt by simp

have (r1 !k!ka) = S
using count-diff-property-S
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using ∗ ka-lt assms(1 , 3 , 4 )
using that
by simp

then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)
S = r1 !k!ka

using r1-k-ka by simp
then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka
using r2-k-ka-S by simp

}
ultimately show WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka by auto
qed
have len-lhs: length (map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1 ]) = length r1 for f :: nat ⇒ nat list ⇒ WEST-bit list

by auto
have aux-helper :

∧
i. i < length r1 =⇒ (map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1 ])! i= r1 ! i if f-prop: ∀ k<length r1 . (f k)

[0 ..< num-vars] = r1 !k for f
proof −

fix i
assume i < length r1
show map (λk. f k [0 ..<num-vars]) [0 ..<length r1 ] ! i = r1 ! i
using f-prop
by (simp add: ‹i < length r1 ›)

qed
have map-prop: map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1 ] = r1 if f-prop: ∀ k<length r1 . (f k)

[0 ..< num-vars] = r1 !k for f
using len-lhs[of f ] aux-helper [of f ] f-prop
by (metis nth-equalityI )

let ?f = λi. map (λka. WEST-simp-bitwise (WEST-get-state r1 i num-vars ! ka)
(WEST-get-state r2 i num-vars ! ka))

have ∀ k<length r1 . map (λka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)

(WEST-get-state r2 k num-vars ! ka))
[0 ..< num-vars] = r1 !k

using r1-k-ka
by (smt (z3 ) length-map length-upt minus-nat.diff-0 nth-equalityI nth-map-upt

of-vars plus-nat.add-0 )

then have ∀ k<length r1 . (?f k)
[0 ..< num-vars] = r1 !k

by blast
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then have map (λk. (?f k)
[0 ..< num-vars])

[0 ..<length r1 ] = r1
using map-prop[of ?f ]
by blast

then have map (λk. map (λka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)

(WEST-get-state r2 k num-vars ! ka))
[0 ..< num-vars])

[0 ..<length r1 ] = r1
using of-vars
by blast

then show ?thesis
unfolding WEST-simp-trace.simps WEST-simp-state.simps
using WEST-simp-bitwise-identity assms WEST-get-state-length
by simp

qed

lemma WEST-simp-trace-length:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes length r1 = length r2
shows length (WEST-simp-trace r1 r2 num-vars) = length r1
using assms by simp

3.7.3 WEST-orsimp-trace-correct
lemma WEST-simp-trace-correct-forward:

assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes match-regex π (WEST-simp-trace r1 r2 num-vars)
shows match-regex π r1 ∨ match-regex π r2

proof−
{assume diff0 : count-diff r1 r2 = 0

then have ∗: (WEST-simp-trace r1 r2 num-vars) = r1
using WEST-simp-trace-identity assms diff0 by fastforce

have r1 = r2
using count-diff-same-len assms diff0 by force

then have ?thesis using assms ∗ by simp
} moreover {

assume diff1 : count-diff r1 r2 = 1
then obtain k where obt-k: k < length r1 ∧ count-diff-state (r1 !k) (r2 !k) =

1
using count-diff-1 [of r1 r2 num-vars] assms by fastforce

then have length (r1 ! k) = length (r2 ! k)
using assms unfolding trace-regex-of-vars-def
by (metis check-simp.simps)

then obtain ka where obt-ka: ka < length (r1 !k) ∧ (r1 !k!ka) 6= (r2 !k!ka)
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using count-diff-state-1 [of r1 !k r2 !k] obt-k assms by blast

let ?r1r2 = (WEST-simp-trace r1 r2 num-vars)
have rest-of-states: ∀ i<length r1 . i 6=k −→ r1 !i = r2 !i

using count-diff-1-other-states assms obt-k
by (metis (no-types, opaque-lifting) check-simp.elims(2 ) diff1 )

have fact1 :
∧

i. (i<length r1 ∧ i 6=k) =⇒
((match-timestep (π!i) (r1 !i)) ∨ (match-timestep (π!i) (r2 !i)))

proof−
fix i
assume i-assms: i<length r1 ∧ i 6=k
then have states-eq: r1 !i = r2 !i using rest-of-states by blast
have ?r1r2 = map (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) [0 ..<length r1 ]
using assms(1 ) unfolding check-simp.simps WEST-simp-trace.simps
by (metis (mono-tags, lifting) Max-singleton insert-absorb2 )

then have ?r1r2 !i = WEST-simp-state (WEST-get-state r1 i num-vars)
(WEST-get-state r2 i num-vars)

using i-assms by simp
then have ?r1r2 !i = WEST-simp-state (r1 !i) (r2 !i)

using WEST-get-state.simps i-assms
by (metis assms(1 ) check-simp.elims(2 ) leD)

then have ?r1r2 !i = r1 !i
using WEST-simp-state.simps states-eq
using WEST-simp-bitwise.simps
using WEST-simp-bitwise-identity map-nth by fastforce

then show ((match-timestep (π!i) (r1 !i)) ∨ (match-timestep (π!i) (r2 !i)))
using assms states-eq unfolding match-regex-def
by (metis WEST-simp-trace-length check-simp.elims(2 ) i-assms)

qed
have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)
using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force

then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)
using obt-k assms by auto

then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)
using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)
(WEST-get-state r2 k num-vars)

using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force
then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)

using obt-k assms by auto
then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)

using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have state-fact1 :
∧

i. (i<length (r1 !k) ∧ i 6=ka) =⇒ (?r1r2 !k!i) = (r1 !k!i)
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proof−
fix i
assume i-fact: i<length (r1 !k) ∧ i 6=ka
have length (r1 ! k) = length (r2 ! k)

using assms obt-k unfolding trace-regex-of-vars-def
by (simp add: ‹length (r1 ! k) = length (r2 ! k)›)

then show (?r1r2 !k!i) = (r1 !k!i)
using WEST-simp-state.simps[of r1 !k r2 !k] i-fact r1r2-k
by (simp add: WEST-simp-bitwise-identity ‹length (r1 ! k) = length (r2 !

k)› map-nth other-states)
qed
have r1r2-k-ka: ?r1r2 !k!ka = WEST-simp-bitwise (r1 ! k ! ka) (r2 ! k ! ka)

using WEST-simp-state.simps[of r1 !k r2 !k] r1r2-k obt-ka by simp
then have state-fact2 : ?r1r2 !k!ka = S

using obt-ka WEST-simp-bitwise.elims
by (metis (full-types))

then have cases: (r1 !k!ka = S) ∨ (r2 !k!ka = S)
∨(r1 !k!ka = One ∧ r2 !k!ka = Zero)
∨(r1 !k!ka = Zero ∧ r2 !k!ka = One)

using r1r2-k-ka
by (metis (full-types) WEST-bit.exhaust obt-ka)

have
∧

x. x<length (?r1r2 ! k) =⇒
(((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero −→ x /∈ π ! k))
∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))

using state-fact1 state-fact2
proof−

fix x
assume x-fact: x < length (?r1r2 !k)
{assume x-is-ka: x = ka

then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero
−→ x /∈ π ! k))

using state-fact2 by simp
} moreover {

assume x-not-ka: x 6= ka
then have ?r1r2 !k!x = r1 !k!x

using state-fact1 [of x] x-fact x-not-ka
using assms(3 ) check-simp.simps obt-k trace-regex-of-vars-def by fastforce

then have (((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero −→ x
/∈ π ! k))

∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))
using cases assms WEST-simp-trace-length check-simp.elims obt-k x-fact
unfolding match-timestep-def
by (metis (mono-tags, lifting) match-regex-def match-timestep-def )

}
ultimately show (((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero

−→ x /∈ π ! k))
∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))

by (metis obt-ka)
qed
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then have fact2 : ((match-timestep (π!k) (r1 !k)) ∨ (match-timestep (π!k)
(r2 !k)))

unfolding match-timestep-def
by (metis WEST-simp-state-num-vars ‹length (r1 ! k) = length (r2 ! k)›

other-states r1r2-k)

have ∀ time<length ?r1r2 . ((match-timestep (π!time) (r1 !time)) ∨ (match-timestep
(π!time) (r2 !time)))

using fact1 fact2 assms
by (metis WEST-simp-trace-length check-simp.elims(2 ))

then have ?thesis
using assms WEST-simp-trace-length unfolding match-regex-def
by (smt (verit) check-simp.elims(2 ) rest-of-states)

}
ultimately show ?thesis

using check-simp.simps[of r1 r2 ] assms(1 ) by force
qed

lemma WEST-simp-trace-correct-converse:
assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∨ match-regex π r2
shows match-regex π (WEST-simp-trace r1 r2 num-vars)

proof−
{assume diff0 : count-diff r1 r2 = 0

then have ∗: (WEST-simp-trace r1 r2 num-vars) = r1
using WEST-simp-trace-identity assms diff0 by fastforce

have r1 = r2
using count-diff-same-len assms diff0 by force

then have ?thesis using assms ∗ by simp
} moreover {

assume diff1 : count-diff r1 r2 = 1
then obtain k where obt-k: k < length r1 ∧ count-diff-state (r1 !k) (r2 !k) =

1
using count-diff-1 [of r1 r2 num-vars] assms by fastforce

then have length (r1 ! k) = length (r2 ! k)
using assms unfolding trace-regex-of-vars-def
by (metis check-simp.simps)

then obtain ka where obt-ka: ka < length (r1 !k) ∧ (r1 !k!ka) 6= (r2 !k!ka)
using count-diff-state-1 [of r1 !k r2 !k] obt-k assms by blast

let ?r1r2 = (WEST-simp-trace r1 r2 num-vars)
have rest-of-states: ∀ i<length r1 . i 6=k −→ r1 !i = r2 !i

using count-diff-1-other-states assms obt-k
by (metis (no-types, opaque-lifting) check-simp.elims(2 ) diff1 )

have fact1 :
∧

i. (i<length r1 ∧ i 6=k) =⇒ match-timestep (π!i) (?r1r2 !i)
proof−

fix i
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assume i-assms: i<length r1 ∧ i 6=k
then have states-eq: r1 !i = r2 !i using rest-of-states by blast
have ?r1r2 = map (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) [0 ..<length r1 ]
using assms(1 ) unfolding check-simp.simps WEST-simp-trace.simps
by (metis (mono-tags, lifting) Max-singleton insert-absorb2 )

then have ?r1r2 !i = WEST-simp-state (WEST-get-state r1 i num-vars)
(WEST-get-state r2 i num-vars)

using i-assms by simp
then have ?r1r2 !i = WEST-simp-state (r1 !i) (r2 !i)

using WEST-get-state.simps i-assms
by (metis assms(1 ) check-simp.elims(2 ) leD)

then have ?r1r2 !i = r1 !i
using WEST-simp-state.simps states-eq
using WEST-simp-bitwise.simps
using WEST-simp-bitwise-identity map-nth by fastforce

then show match-timestep (π!i) (?r1r2 !i)
using assms(4 ) states-eq unfolding match-regex-def
by (metis assms(1 ) check-simp.elims(2 ) i-assms)

qed
have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)
using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force

then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)
using obt-k assms by auto

then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)
using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have state-fact1 :
∧

i. (i<length (r1 !k) ∧ i 6=ka) =⇒ (?r1r2 !k!i) = (r1 !k!i)
proof−

fix i
assume i-fact: i<length (r1 !k) ∧ i 6=ka
have length (r1 ! k) = length (r2 ! k)

using assms obt-k unfolding trace-regex-of-vars-def
by (simp add: ‹length (r1 ! k) = length (r2 ! k)›)

then show (?r1r2 !k!i) = (r1 !k!i)
using WEST-simp-state.simps[of r1 !k r2 !k] i-fact r1r2-k
by (simp add: WEST-simp-bitwise-identity ‹length (r1 ! k) = length (r2 !

k)› map-nth other-states)
qed
have ?r1r2 !k!ka = WEST-simp-bitwise (r1 ! k ! ka) (r2 ! k ! ka)

using WEST-simp-state.simps[of r1 !k r2 !k] r1r2-k obt-ka by simp
then have state-fact2 : ?r1r2 !k!ka = S

using obt-ka WEST-simp-bitwise.elims
by (metis (full-types))

have match-state: match-timestep (π!k) (r1 !k) ∨ match-timestep (π!k) (r2 !k)
using assms(4 ) obt-k unfolding match-regex-def
by (metis assms(1 ) check-simp.elims(2 ))
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have
∧

x. x<length (?r1r2 ! k) =⇒
((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero −→ x /∈ π !

k))
using state-fact1 state-fact2 match-state

proof−
fix x
assume x-fact: x < length (?r1r2 !k)
{assume x-is-ka: x = ka

then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero
−→ x /∈ π ! k))

using state-fact2 by simp
} moreover {

assume x-not-ka: x 6= ka
then have ?r1r2 !k!x = r1 !k!x

using state-fact1 [of x] x-fact x-not-ka
using assms(3 ) check-simp.simps obt-k trace-regex-of-vars-def by fastforce
then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero

−→ x /∈ π ! k))
using match-state unfolding match-timestep-def
by (smt (verit, best) WEST-simp-trace-length WEST-simp-trace-num-vars

‹∀ i<length (r1 ! k). i 6= ka −→ r1 ! k ! i = r2 ! k ! i› assms(1 ) assms(2 ) assms(3 )
check-simp.simps obt-k trace-regex-of-vars-def x-fact x-not-ka)

}
ultimately show ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x =

Zero −→ x /∈ π ! k))
by blast

qed
then have fact2 : match-timestep (π ! k) (?r1r2 ! k)

unfolding match-timestep-def by argo
have ∀ time<length ?r1r2 . match-timestep (π ! time) (?r1r2 ! time)

using fact1 fact2 assms
by (metis WEST-simp-trace-length check-simp.elims(2 ))

then have ?thesis
using assms WEST-simp-trace-length unfolding match-regex-def
by (metis (no-types, lifting) check-simp.simps)

}
ultimately show ?thesis using check-simp.simps[of r1 r2 ] assms(1 ) by force

qed

lemma WEST-simp-trace-correct:
assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows match-regex π (WEST-simp-trace r1 r2 num-vars) ←→ match-regex π r1
∨ match-regex π r2
using assms WEST-simp-trace-correct-forward WEST-simp-trace-correct-converse

by metis
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3.7.4 Simp-helper Correct
lemma WEST-simp-helper-can-simp-bound:

assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

assumes i < length (enum-pairs L)
shows length simp-L < length L

proof−
obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs L) ∧ j
≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
then have min-j-props: min-j < length (enum-pairs L) ∧ min-j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using Min-in[of {j. j < length (enum-pairs L) ∧
i ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}]

by (smt (verit, ccfv-threshold) assms(2 ) empty-Collect-eq finite-nat-set-iff-bounded
mem-Collect-eq)

let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have length-newL: length ?newL = length L − 1

using update-L-length assms min-j-props by auto
have simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars
using WEST-simp-helper-can-simp[OF assms(1 ) assms(2 ) obt-min-j, of ?newL]

assms
by blast

then show ?thesis
using assms WEST-simp-helper-length length-newL

by (metis add-le-cancel-right enum-pairs-bound gen-length-def le-neq-implies-less
length-code less-nat-zero-code less-one linordered-semidom-class.add-diff-inverse nth-mem)
qed

lemma WEST-simp-helper-same-length:
assumes WEST-regex-of-vars L num-vars
assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
assumes length K = length L
shows L = K
using WEST-simp-helper-can-simp[of K L 0 num-vars] assms WEST-simp-helper-cant-simp
by (metis (no-types, lifting) WEST-simp-helper-can-simp-bound gr-zeroI less-irrefl-nat

less-nat-zero-code)

lemma WEST-simp-helper-less-length:
assumes WEST-regex-of-vars L num-vars
assumes length K < length L
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assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
shows ∃min-j.

(min-j < length (enum-pairs L) ∧
K =
WEST-simp-helper (update-L L (enum-pairs L ! min-j) num-vars)
(enum-pairs
(update-L L (enum-pairs L ! min-j) num-vars))

0 num-vars
∧ check-simp (L ! fst (enum-pairs L ! min-j)) (L ! snd (enum-pairs L !

min-j)))
using assms

proof−
have ∃ j<length (enum-pairs L).

0 ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

using assms WEST-simp-helper-can-simp[of K L 0 num-vars]
by (metis (no-types, lifting) WEST-simp-helper-cant-simp less-irrefl-nat)

then obtain min-j where obt-min-j: min-j = Min{j. j<length (enum-pairs L)
∧

0 ≤ j ∧ check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
then have min-j-props: min-j<length (enum-pairs L) ∧

0 ≤ min-j ∧ check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using Min-in
by (smt (verit) ‹∃ j<length (enum-pairs L). 0 ≤ j ∧ check-simp (L ! fst

(enum-pairs L ! j)) (L ! snd (enum-pairs L ! j))› empty-def finite-nat-set-iff-bounded
mem-Collect-eq)

let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have K = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using obt-min-j assms
using WEST-simp-helper-can-simp ‹∃ j<length (enum-pairs L). 0 ≤ j ∧ check-simp

(L ! fst (enum-pairs L ! j)) (L ! snd (enum-pairs L ! j))› dual-order .strict-trans2
by blast

then show ?thesis
using assms min-j-props by blast

qed

lemma remove-element-at-index-subset:
fixes i::nat
assumes i < length L
shows set (remove-element-at-index i L) ⊆ set L

proof−
have fact1 : set (take i L) ⊆ set L

using assms unfolding remove-element-at-index.simps
by (meson set-take-subset)

have fact2 : set (drop (i + 1 ) L) ⊆ set L

109



using assms unfolding remove-element-at-index.simps
by (simp add: set-drop-subset)

have set (take i L @ drop (i + 1 ) L) = set (take i L) ∪ set (drop (i + 1 ) L)
by simp

then show ?thesis
using fact1 fact2 unfolding remove-element-at-index.simps
by blast

qed

lemma WEST-simp-helper-correct-forward:
assumes WEST-regex-of-vars L num-vars
assumes match π K
assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
shows match π L
using assms

proof (induct length L − length K arbitrary: K L num-vars rule: less-induct)
case less
{assume same-len: length K = length L

then have K = L
using WEST-simp-helper-same-length[OF less.prems(1 ) less.prems(3 )] by

blast
then have ?case using less by blast

} moreover {
assume diff-len: length K 6= length L
then have K-le-L: length L > length K

using less(4 ) WEST-simp-helper-length[of L 0 num-vars] by simp

then obtain min-j where obt-min-j: min-j < length (enum-pairs L) ∧
K = WEST-simp-helper
(update-L L ((enum-pairs L)!min-j) num-vars)
(enum-pairs (update-L L ((enum-pairs L)!min-j) num-vars))
0 num-vars
∧ check-simp (L ! fst (enum-pairs L ! min-j)) (L ! snd (enum-pairs L ! min-j))
using WEST-simp-helper-less-length less.prems by blast

let ?nextL = (update-L L ((enum-pairs L)!min-j) num-vars)
let ?simp-nextL = WEST-simp-helper ?nextL (enum-pairs ?nextL) 0 num-vars
have length ?nextL = length L − 1

using update-L-length obt-min-j by force
then have cond1 : length ?nextL − length K < length L − length K

using obt-min-j
by (metis K-le-L Suc-diff-Suc diff-Suc-eq-diff-pred lessI )

have cond2 : WEST-regex-of-vars (update-L L (enum-pairs L ! min-j) num-vars)
num-vars

using update-L-preserves-num-vars[of L num-vars (enum-pairs L)!min-j
?nextL]

using less
using nth-mem obt-min-j by blast

let ?h = (enum-pairs L ! min-j)
let ?updateL = (update-L L ?h num-vars)
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have match π ?updateL
using less.hyps[OF cond1 cond2 less.prems(2 )] obt-min-j by blast

have updateL-eq: ?updateL = remove-element-at-index (fst ?h)
(remove-element-at-index (snd ?h) L) @
[WEST-simp-trace (L ! fst ?h) (L ! snd ?h) num-vars]

using update-L.simps[of L ?h num-vars] by blast
have fst-le-snd: fst ?h < snd ?h

using enum-pairs-fact nth-mem obt-min-j by blast
have h-bound: snd ?h < length L

using enum-pairs-bound[of L] obt-min-j
using nth-mem by blast

{assume match-simped-part: match π [WEST-simp-trace (L ! fst ?h) (L ! snd
?h) num-vars]

have cond1 : check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using obt-min-j by blast
have cond2 : trace-regex-of-vars (L ! fst (enum-pairs L ! min-j)) num-vars

using less.prems(1 ) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
by (meson order-less-trans)

have cond3 : trace-regex-of-vars (L ! snd (enum-pairs L ! min-j)) num-vars
using less.prems(1 ) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
by (meson order-less-trans)

have match-either : match-regex π (L ! fst ?h) ∨ match-regex π (L ! snd ?h)
using WEST-simp-trace-correct-forward[OF cond1 cond2 cond3 ]
using match-simped-part unfolding match-def by force

then have ?case unfolding match-def
using fst-le-snd h-bound
by (meson Suc-lessD less-trans-Suc)

} moreover {
let ?other-part = (remove-element-at-index (fst ?h)

(remove-element-at-index (snd ?h) L))
assume match-other-part: match π ?other-part
have set (remove-element-at-index (fst (enum-pairs L ! min-j))

(remove-element-at-index (snd (enum-pairs L ! min-j)) L))
⊆ set (remove-element-at-index (snd (enum-pairs L ! min-j)) L)

using fst-le-snd h-bound remove-element-at-index-subset
[of fst (enum-pairs L ! min-j) (remove-element-at-index (snd (enum-pairs

L ! min-j)) L)]
by simp

then have other-part-subset: set ?other-part ⊆ set L
using fst-le-snd h-bound remove-element-at-index-subset

[of snd (enum-pairs L ! min-j) L] by blast
then obtain idx where obt-idx: match-regex π (?other-part!idx) ∧ idx <

length ?other-part
using match-other-part unfolding match-def by metis

then have (?other-part!idx) ∈ set L
using updateL-eq fst-le-snd h-bound other-part-subset
by (meson in-mono nth-mem)

then have ?case
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using obt-idx unfolding match-def
by (metis in-set-conv-nth)

}
ultimately have ?case using updateL-eq WEST-or-correct

by (metis ‹match π (update-L L (enum-pairs L ! min-j) num-vars)›)
}
ultimately show ?case by blast

qed

lemma remove-element-at-index-fact:
assumes j1 < j2
assumes j2 < length L
assumes i < length L
assumes i 6= j1
assumes i 6= j2
shows L ! i
∈ set (remove-element-at-index j1 (remove-element-at-index j2 L))

proof−
{assume L-small: length L ≤ 2

then have (remove-element-at-index j1 (remove-element-at-index j2 L)) = []
unfolding remove-element-at-index.simps using assms by simp

then have ?thesis using assms by auto
} moreover {

assume L-big: length L ≥ 3
then have length (remove-element-at-index j1 (remove-element-at-index j2 L))

≥ 1
unfolding remove-element-at-index.simps using assms by auto

{assume in-front: i < j1
then have i-bound: i < length (take j2 L)

using assms by simp
have L!i = (take j1 L)!i

using in-front assms by auto
then have L!i ∈ set (take j1 L)

using in-front assms
by (metis length-take min-less-iff-conj nth-mem)

then have Li-in: L!i ∈ set (take j1 (take j2 L))
using assms by auto

have set (take j1 (take j2 L @ drop (j2 + 1 ) L)) = set (take j1 (take j2 L))
using assms(1 ) assms(2 ) by simp

then have L!i ∈ set (take j1 (take j2 L @ drop (j2 + 1 ) L))
using Li-in by blast

then have ?thesis unfolding remove-element-at-index.simps
by auto

} moreover {
assume in-middle: j1 < i ∧ i < j2
then have i-len: i < length (take j2 L)

using assms by auto
then have Li-eq: L!i = (take j2 L)!i
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by simp
then have L!i ∈ set (take j2 L)

by (metis ‹i < length (take j2 L)› in-set-member index-of-L-in-L)
have i−(j1+1 ) < length (drop (j1 + 1 ) (take j2 L @ drop (j2 + 1 ) L))

using assms i-len in-middle by auto
then have L!i = (drop (j1 + 1 ) (take j2 L)) ! (i−(j1+1 ))

using assms i-len in-middle Li-eq by auto
then have L!i ∈ set (drop (j1 + 1 ) (take j2 L))

by (metis diff-less-mono i-len in-middle length-drop less-iff-succ-less-eq
nth-mem)

then have ?thesis
unfolding remove-element-at-index.simps by auto

} moreover {
assume in-back: j2 < i
then have i−(j2+1 ) < length (drop (j2 + 1 ) L)

using assms by auto
then have Li-eq: L!i = (drop (j2 + 1 ) L)!(i−(j2+1 ))

using assms in-back by auto
then have L!i ∈ set (drop (j2 + 1 ) L)

by (metis ‹i − (j2 + 1 ) < length (drop (j2 + 1 ) L)› nth-mem)
then have L!i ∈ set(drop (j1 + 1 ) (take j2 L @ drop (j2 + 1 ) L))

using assms by auto
then have ?thesis unfolding remove-element-at-index.simps

by auto
}
ultimately have ?thesis unfolding remove-element-at-index.simps

using assms L-big by linarith
}
ultimately show ?thesis by linarith

qed

lemma update-L-match:
assumes WEST-regex-of-vars L num-var
assumes match π L
assumes h ∈ set (enum-pairs L)
assumes check-simp (L!(fst h)) (L!(snd h))
shows match π (update-L L h num-var)

proof−
obtain i where i-obt: i < length L ∧ match-regex π (L!i)

using assms(2 ) unfolding match-def by metis
have fst-le-snd: fst h < snd h

using assms enum-pairs-fact by auto
have h-bound: snd h < length L

using assms enum-pairs-bound
by blast

{assume in-simped: i = fst h ∨ i = snd h
let ?r1 = (L!(fst h))
let ?r2 = (L!(snd h))
have match-regex π (WEST-simp-trace (L ! fst h) (L ! snd h) num-var)
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using WEST-simp-trace-correct-converse[of ?r1 ?r2 num-var ]
using assms unfolding WEST-regex-of-vars-def

by (metis (mono-tags, lifting) WEST-simp-trace-correct-converse i-obt enum-pairs-bound
enum-pairs-fact in-simped order .strict-trans)

then have ?thesis
unfolding update-L.simps match-regex-def

by (metis (no-types, lifting) WEST-or-correct ‹match-regex π (WEST-simp-trace
(L ! fst h) (L ! snd h) num-var)› append.right-neutral append-eq-append-conv2 im-
possible-Cons le-eq-less-or-eq match-def nat-le-linear nth-append-length same-append-eq)

} moreover {
assume in-rest: i 6= fst h ∧ i 6= snd h
have L!i ∈ set L

using i-obt by simp
have L!i ∈ set (remove-element-at-index (fst h) (remove-element-at-index (snd

h) L))
using fst-le-snd h-bound i-obt in-rest
using remove-element-at-index-fact by blast

then have match π
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))
unfolding match-def using i-obt
by (metis in-set-conv-nth)

then have ?thesis unfolding update-L.simps match-def
using WEST-or-correct match-def by blast

}
ultimately show ?thesis by blast

qed

lemma WEST-simp-helper-correct-converse:
assumes WEST-regex-of-vars L num-vars
assumes match π L
assumes K = WEST-simp-helper L (enum-pairs L) i num-vars
shows match π K
using assms
proof (induct length L arbitrary: K L i num-vars rule: less-induct)

case less
{assume ∗: length (enum-pairs L) ≤ i

then have K = L
using less(4 )
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by argo

then have ?case
using less(3 )
by blast

} moreover {assume ∗: length (enum-pairs L) > i
{assume ∗∗: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧ check-simp (L ! fst

(enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain j-min where j-min-obt: j-min = Min {j. j < length (enum-pairs
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L) ∧ j ≥ i ∧ check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
have j-min-props: j-min < length (enum-pairs L) ∧ j-min ≥ i ∧ check-simp

(L ! fst (enum-pairs L ! j-min))
(L ! snd (enum-pairs L ! j-min))

using j-min-obt Min-in
by (metis (mono-tags, lifting) ∗∗ Collect-empty-eq finite-nat-set-iff-bounded

mem-Collect-eq)
have K-eq: K = (let newL =

update-L L (enum-pairs L ! j-min)
num-vars

in WEST-simp-helper newL
(enum-pairs newL) 0 num-vars)

using less(4 ) ∗ ∗∗ WEST-simp-helper .simps[of L (enum-pairs L) j-min
num-vars]

using WEST-simp-helper-can-simp
by (metis (no-types, lifting) j-min-obt)

let ?h = (enum-pairs L ! j-min)
have cond1 : length (update-L L (enum-pairs L ! j-min) num-vars) < length

L
using update-L-length[of ?h L num-vars] j-min-props

by (metis diff-less enum-pairs-bound less-nat-zero-code less-one not-gr-zero
nth-mem)

have cond2 : WEST-regex-of-vars (update-L L (enum-pairs L ! j-min)
num-vars) num-vars

using update-L-preserves-num-vars[of L num-vars ?h K ] less
using j-min-props nth-mem update-L-preserves-num-vars by blast

have cond3 : match π (update-L L (enum-pairs L ! j-min) num-vars)
using update-L-match[OF less(2 ) less(3 ), of ?h] j-min-props
by fastforce

have ?case
using less(1 )[OF cond1 cond2 , of K ]
using K-eq
by (metis cond3 )

}
moreover {assume ∗∗: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧ check-simp

(L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have K-eq: K = L
using WEST-simp-helper-cant-simp less.prems(3 )
by presburger

then have ?case
using less(3 )

by blast
}
ultimately have ?case

by blast
}
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ultimately show ?case
by linarith

qed

3.7.5 WEST-simp Correct
lemma simp-correct-forward:

assumes WEST-regex-of-vars L num-vars
assumes match π (WEST-simp L num-vars)
shows match π L
unfolding WEST-simp.simps using WEST-simp-helper-correct-forward assms
by (metis WEST-simp.elims)

lemma simp-correct-converse:
assumes WEST-regex-of-vars L num-vars
assumes match π L
shows match π (WEST-simp L num-vars)
unfolding WEST-simp.simps using WEST-simp-helper-correct-converse assms
by blast

lemma simp-correct:
assumes WEST-regex-of-vars L num-vars
shows match π (WEST-simp L num-vars) ←→ match π L
using simp-correct-forward simp-correct-converse assms
by blast

3.8 Correctness of WEST-and-simp/WEST-or-simp
lemma WEST-and-simp-correct:

fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
shows match π L1 ∧ match π L2 ←→ match π (WEST-and-simp L1 L2 n)

proof−
show ?thesis

using simp-correct[of WEST-and L1 L2 n π] assms WEST-and-correct[of L1 n
L2 π]

unfolding WEST-and-simp.simps
using WEST-and-num-vars by blast

qed

lemma WEST-or-simp-correct:
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
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shows match π L1 ∨ match π L2 ←→ match π (WEST-or-simp L1 L2 n)
proof−

show ?thesis
using simp-correct[of L1@L2 n π]
using assms WEST-or-correct[of π L1 L2 ]
unfolding WEST-or-simp.simps
using WEST-or-num-vars by blast

qed

3.9 Facts about the WEST future operator
lemma WEST-future-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes match π (WEST-future L a b num-vars)
shows π |=m (Fm [a,b] F)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have WEST-future L a b num-vars = shift L num-vars a

using WEST-future.simps[of L a b num-vars] by simp
then have match π (shift L num-vars a)

using 0 by simp
then have match-dropa-L: match (drop a π) L

using shift-match[of a π L num-vars] 0 a-eq-b by auto

have complen-mltl F ≤ length (drop a π)
using 0 (2 )[of (drop a π)] 0 (6 ) a-eq-b complen-geq-one[of F ] by simp

then have semantics-mltl (drop a π) F
using 0 (2 )[of (drop a π)] match-dropa-L by blast

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
using a-eq-b by blast

then show ?case unfolding semantics-mltl.simps
using 0 (1 , 6 ) a-eq-b complen-geq-one[of F ] by simp

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (b − 1 ) num-vars) num-vars
using WEST-future.simps[of L a b num-vars]

by (metis Suc.hyps(2 ) Suc.prems(4 ) add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
nat-less-le plus-1-eq-Suc zero-neq-one)

then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars
b) (WEST-future L a (a + x) num-vars) num-vars
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using b-asucx
by (metis add-diff-cancel-left ′ le-add1 ordered-cancel-comm-monoid-diff-class.diff-add-assoc

plus-1-eq-Suc)
{assume match-head: match π (shift L num-vars b)

then obtain i where match-regex π (shift L num-vars b ! i)
unfolding match-def by metis

have match (drop b π) L
using shift-match[of b π L num-vars] Suc(7 ) match-head by auto

then have semantics-mltl (drop b π) F
using Suc by simp

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
using Suc.prems(4 ) by auto

} moreover {
assume match-tail: match π (WEST-future L a (a + x) num-vars)
have hyp1 : x = b − 1 − a using Suc by simp
have hyp2 : (

∧
π. complen-mltl F ≤ length π −→ match π L = semantics-mltl

π F)
using Suc.prems by blast

have hyp3 : WEST-regex-of-vars L num-vars using Suc.prems by simp
have hyp4 : WEST-num-vars F ≤ num-vars using Suc.prems by blast
have hyp5 : a ≤ b − 1 using Suc.prems Suc.hyps by auto
have hyp6 : complen-mltl F + (b − 1 ) ≤ length π using Suc.prems by simp
have hyp7 : match π (WEST-future L a (b − 1 ) num-vars)

using match-tail Suc.hyps(2 )
using b-asucx by fastforce

have semantics-mltl π (Future-mltl a (a+x) F)
using Suc.hyps(1 )[of b−1 a F L π, OF hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 ]
using b-asucx by simp

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
unfolding semantics-mltl.simps b-asucx by auto

}
ultimately have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F

unfolding match-def
by (metis Nat.add-diff-assoc Suc.prems(2 ) Suc.prems(6 ) WEST-future-num-vars

WEST-or-simp-correct shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp
(shift L num-vars b) (WEST-future L a (b − 1 ) num-vars) num-vars› ‹match π
(WEST-future L a (a + x) num-vars) =⇒ ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl
(drop i π) F› ‹match π (shift L num-vars b) =⇒ ∃ i. (a ≤ i ∧ i ≤ b) ∧ seman-
tics-mltl (drop i π) F› b-asucx diff-add-inverse le-add1 plus-1-eq-Suc)

then show ?case
using Suc unfolding semantics-mltl.simps by auto

qed

lemma WEST-future-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
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assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes π |=m (Future-mltl a b F)
shows match π (WEST-future L a b num-vars)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have west-future-aa: WEST-future L a b num-vars = shift L num-vars a

using WEST-future.simps[of L a b num-vars] by simp
have match (drop a π) L

using assms(1 )[of drop a π] assms complen-geq-one
using 0 .prems(1 ) 0 .prems(5 ) 0 .prems(6 ) a-eq-b le-antisym length-drop seman-

tics-mltl.simps(7 ) by auto
then have match π (shift L num-vars a)

using shift-match-converse 0 by auto
then show ?case using west-future-aa by simp

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (b − 1 ) num-vars) num-vars
using WEST-future.simps[of L a b num-vars]
by (metis Suc.hyps(2 ) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq ′ linorder-le-less-linear)
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (a + x) num-vars) num-vars
using b-asucx
by (metis add-Suc-right diff-Suc-1 )

{assume sat-b: semantics-mltl (drop b π) F
then have match (drop b π) L using Suc by simp
then have match π (shift L num-vars b)

using shift-match Suc
by (metis add.commute add-leD1 shift-match-converse)

then have ?case using WEST-future.simps[of L a b num-vars] Suc
by (metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct

shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b − 1 ) num-vars) num-vars› b-asucx le-add1 plus-1-eq-Suc)

} moreover {
assume sat-before-b: semantics-mltl π (Future-mltl a (a+x) F)
have match π (WEST-future L a (a + x) num-vars)

using Suc.hyps(1 )[of a+x a F L π] Suc sat-before-b by simp
have ?case

using WEST-future.simps[of L a b num-vars] Suc
by (metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct

shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b − 1 ) num-vars) num-vars› ‹match π (WEST-future L a
(a + x) num-vars)› diff-add-inverse le-add1 plus-1-eq-Suc)
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}
ultimately show ?case using b-asucx

by (metis (no-types, lifting) Suc.prems(6 ) add-Suc-right le-SucE le-antisym
semantics-mltl.simps(7 ))
qed

lemma WEST-future-correct:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
shows match π (WEST-future L a b num-vars) ←→

semantics-mltl π (Future-mltl a b F)
using assms WEST-future-correct-forward WEST-future-correct-converse by blast

3.10 Facts about the WEST global operator
lemma WEST-global-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes match π (WEST-global L a b num-vars)
shows semantics-mltl π (Global-mltl a b F)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have WEST-global L a b num-vars = shift L num-vars a

using assms WEST-global.simps[of L a b num-vars] by auto
then have match π (shift L num-vars a) using 0 by simp
then have match (drop a π) L

using shift-match[of a π L num-vars] 0 by auto
then have semantics-mltl (drop a π) F

using 0 (2 )[of (drop a π)] complen-geq-one[of F ] 0 a-eq-b by auto
then show ?case using 0

unfolding semantics-mltl.simps by auto
next

case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-global L a b num-vars) = WEST-and-simp (shift L num-vars

b) (WEST-global L a (a + x) num-vars) num-vars
using WEST-global.simps[of L a b num-vars]

by (metis add-diff-cancel-left ′ cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
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less-eq-Suc-le not-less-eq-eq ordered-cancel-comm-monoid-diff-class.diff-add-assoc plus-1-eq-Suc
zero-eq-add-iff-both-eq-0 )

have nv1 : WEST-regex-of-vars (shift L num-vars b) num-vars
using shift-num-vars Suc by blast

have nv2 : WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
using WEST-global-num-vars Suc b-asucx
by (metis le-iff-add)

have match-h: match π (shift L num-vars b)
using WEST-and-correct-converse nv1 nv2 Suc

by (metis WEST-and-simp-correct ‹WEST-global L a b num-vars = WEST-and-simp
(shift L num-vars b) (WEST-global L a (a + x) num-vars) num-vars›)

then have match (drop b π) L
using shift-match Suc
using add-leD2 by blast

then have sat-b: semantics-mltl (drop b π) F using Suc by auto

have match-t: match π (WEST-global L a (a + x) num-vars)
using Suc.hyps(1 )[of a+x a F L π] Suc b-asucx

by (metis WEST-and-simp-correct ‹WEST-global L a b num-vars = WEST-and-simp
(shift L num-vars b) (WEST-global L a (a + x) num-vars) num-vars› nv1 nv2 )

then have semantics-mltl π (Global-mltl a (a+x) F)
using Suc by fastforce

then have sat-before-b: ∀ i. a ≤ i ∧ i ≤ a + x −→ semantics-mltl (drop i π) F
using Suc unfolding semantics-mltl.simps by auto

have ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F
using sat-b sat-before-b unfolding semantics-mltl.simps
by (metis add-Suc-right b-asucx le-antisym not-less-eq-eq)

then show ?case using Suc
unfolding semantics-mltl.simps by blast

qed

lemma WEST-global-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes semantics-mltl π (Global-mltl a b F)
shows match π (WEST-global L a b num-vars)
using assms

using assms
proof(induct b−a arbitrary: π L F a b)

case 0
then have a-eq-b: a = b by simp
then have west-global-aa: WEST-global L a b num-vars = shift L num-vars a

using WEST-global.simps[of L a b num-vars] by simp
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have match (drop a π) L
using assms(1 )[of drop a π] assms complen-geq-one

by (metis (mono-tags, lifting) 0 .prems(1 ) 0 .prems(5 ) 0 .prems(6 ) a-eq-b add-le-imp-le-diff
drop-all le-trans length-0-conv length-drop not-one-le-zero semantics-mltl.simps(8 ))

then have match π (shift L num-vars a)
using shift-match-converse 0 by auto

then show ?case using west-global-aa by simp
next

case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have west-global: (WEST-global L a b num-vars) = WEST-and-simp (shift

L num-vars b) (WEST-global L a (a + x) num-vars) num-vars
using WEST-global.simps[of L a b num-vars]

by (metis add-diff-cancel-left ′ add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq less-eq-Suc-le not-less-eq-eq ordered-cancel-comm-monoid-diff-class.diff-add-assoc
plus-1-eq-Suc)

have sat-b: semantics-mltl (drop b π) F
using Suc unfolding semantics-mltl.simps by auto

then have match (drop b π) L using Suc by simp
then have match-head: match π (shift L num-vars b)

using shift-match Suc
by (metis add.commute add-leD1 shift-match-converse)

have sat-before-b: semantics-mltl π (Future-mltl a (a+x) F)
using Suc unfolding semantics-mltl.simps by auto

have match-tail: match π (WEST-global L a (a + x) num-vars)
using Suc.hyps(1 )[of a+x a F L π] Suc sat-before-b
by (simp add: b-asucx nle-le not-less-eq-eq)

have nv1 : WEST-regex-of-vars (shift L num-vars b) num-vars
using shift-num-vars Suc by blast

have nv2 : WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
using WEST-global-num-vars Suc b-asucx
by (metis le-iff-add)

show ?case using b-asucx match-head match-tail
using west-global WEST-and-simp-correct nv1 nv2 by metis

qed

lemma WEST-global-correct:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
shows match π (WEST-global L a b num-vars) ←→
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semantics-mltl π (Global-mltl a b F)
using assms WEST-global-correct-forward WEST-global-correct-converse by blast

3.11 Facts about the WEST until operator
lemma WEST-until-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Until-mltl F1 a b F2 )
assumes match π (WEST-until L1 L2 a b num-vars)
shows semantics-mltl π (Until-mltl F1 a b F2 )
using assms

proof(induct b−a arbitrary: π L1 L2 F1 F2 a b)
case 0
then have a-eq-b: b = a by simp
have len-xi: complen-mltl F2 + a ≤ length π

using 0 complen-geq-one by auto
have until-aa: WEST-until L1 L2 a b num-vars = WEST-global L2 a a num-vars

using WEST-until.simps[of L1 L2 a b num-vars] a-eq-b by auto
then have WEST-global L2 a a num-vars = shift L2 num-vars a by auto
then have match π (shift L2 num-vars a)

using until-aa 0 by argo
then have match (drop a π) L2

using shift-match[of a π L2 num-vars] 0 by simp
then have semantics-mltl (drop a π) F2 using 0 by auto
then have sem-until: (∃ i. (a ≤ i ∧ i ≤ a) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1 ))

by auto
have max (complen-mltl F1 − 1 ) (complen-mltl F2 ) ≥ 1

using complen-geq-one[of F2 ] by auto
then have a < length π

using 0 (9 ) using a-eq-b
unfolding complen-mltl.simps
by linarith

then show ?case using sem-until
unfolding a-eq-b semantics-mltl.simps
by blast

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2 a
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(a + x) num-vars)
(WEST-and-simp (WEST-global L1 a (a + x) num-vars) (WEST-global

L2 b b num-vars) num-vars) num-vars
using WEST-until.simps[of L1 L2 a b num-vars] Suc b-asucx
by (metis add-Suc-right cancel-comm-monoid-add-class.diff-cancel diff-Suc-1

less-add-Suc1 n-not-Suc-n zero-diff )

let ?rec = WEST-until L1 L2 a (a + x) num-vars
let ?base = WEST-and-simp (WEST-global L1 a (a + x) num-vars) (WEST-global

L2 b b num-vars) num-vars
have sem-until: (∃ i. (a ≤ i ∧ i ≤ b) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1 ))

proof−
{assume match-base: match π ?base

have nv1 : WEST-regex-of-vars (WEST-global L2 b b num-vars) num-vars
using WEST-global-num-vars[of L2 num-vars b b] Suc by simp
have nv2 : WEST-regex-of-vars (WEST-global L1 a (a + x) num-vars)

num-vars
using WEST-global-num-vars[of L1 num-vars a a+x] Suc by auto

have match π (WEST-global L2 b b num-vars)
using match-base WEST-and-simp-correct Suc nv1 nv2 by blast

then have match π (shift L2 num-vars b)
using WEST-global.simps[of L2 b b num-vars] by simp

then have cond1 : semantics-mltl (drop b π) F2
using shift-match[of b π L2 num-vars] Suc by simp

have match π (WEST-global L1 a (a + x) num-vars)
using match-base WEST-and-simp-correct Suc nv1 nv2 by blast

then have semantics-mltl π (Global-mltl a (a+x) F1 )
using WEST-global-correct[of F1 L1 num-vars a a+x π] Suc by auto

then have ∀ i. a ≤ i ∧ i ≤ a + x −→ semantics-mltl (drop i π) F1
using Suc by auto

then have cond2 : ∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1
using b-asucx by auto

have semantics-mltl (drop b π) F2 ∧
(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1 )

using cond1 cond2 by auto
then have ?thesis using Suc by blast

} moreover {
assume match-rec: match π ?rec
then have semantics-mltl π (Until-mltl F1 a (a+x) F2 )

using Suc.hyps(1 )[of a+x a F1 L1 F2 L2 π] Suc by auto
then obtain i where i-obt: (a ≤ i ∧ i ≤ (a+x)) ∧
semantics-mltl (drop i π) F2 ∧ (∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop

j π) F1 )
by auto

have ?thesis using i-obt b-asucx by auto
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}
ultimately show ?thesis using WEST-until.simps[of L1 L2 a b num-vars] Suc

using WEST-or-simp-correct
using ‹WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1

L2 a (a + x) num-vars) (WEST-and-simp (WEST-global L1 a (a + x) num-vars)
(WEST-global L2 b b num-vars) num-vars) num-vars›

by (metis (no-types, lifting) WEST-and-simp-num-vars WEST-global-num-vars
WEST-until-num-vars le-add1 order-refl)

qed
have a < length π

using Suc(10 ) using b-asucx complen-geq-one by auto
then show ?case using sem-until

unfolding semantics-mltl.simps by auto
qed

lemma WEST-until-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl (Until-mltl F1 a b F2 ))
assumes semantics-mltl π (Until-mltl F1 a b F2 )
shows match π (WEST-until L1 L2 a b num-vars)
using assms

proof(induct b−a arbitrary: π L1 L2 F1 F2 a b)
case 0
then have a-eq-b: b = a using 0 by simp
then have semantics-mltl (drop a π) F2

using assms unfolding semantics-mltl.simps
by (metis 0 .prems(9 ) le-antisym semantics-mltl.simps(9 ))

then have match (drop a π) L2
using 0 by simp

then have match π (WEST-global L2 a a num-vars)
using shift-match-converse[of a π L2 num-vars] 0 by auto

then show ?case using WEST-until.simps[of L1 L2 a a num-vars] a-eq-b by
simp
next

case (Suc x)
have max (complen-mltl F1 − 1 ) (complen-mltl F2 ) ≥ 1

using complen-geq-one[of F2 ] by auto
then have b-lt: b ≤ length π using Suc.prems(8 ) unfolding complen-mltl.simps

by linarith
have b-asucx: b = a + (Suc x) using Suc by simp
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{assume sat-b: semantics-mltl (drop b π) F2 ∧
(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1 )

have match (drop b π) L2
using sat-b Suc by auto

then have match π (shift L2 num-vars b)
using shift-match[of b π L2 ] shift-match-converse[OF b-lt] by auto

then have match-L2 : match π (WEST-global L2 b b num-vars)
using WEST-global.simps[of L2 b b num-vars] by simp

have semantics-mltl π (Global-mltl a (b−1 ) F1 )
using sat-b Suc unfolding semantics-mltl.simps by auto

then have match-L1 : match π (WEST-global L1 a (b−1 ) num-vars)
using WEST-global-correct[of F1 L1 num-vars a b−1 π] Suc by auto

have nv1 : WEST-regex-of-vars (WEST-global L1 a (b − 1 ) num-vars) num-vars
using WEST-global-num-vars[of L1 num-vars a b−1 ] Suc by auto

have nv2 : WEST-regex-of-vars ((WEST-global L2 b b num-vars)) num-vars
using WEST-global-num-vars[of L2 num-vars b b] Suc by auto

have match π (WEST-and-simp (WEST-global L1 a (b − 1 ) num-vars) (WEST-global
L2 b b num-vars) num-vars)

using match-L2 match-L1 nv1 nv2 WEST-and-simp-correct by blast
then have ?case

using WEST-until.simps[of L1 L2 a b num-vars]
by (metis Suc.prems(3 ) Suc.prems(4 ) Suc.prems(7 ) WEST-and-simp-num-vars

WEST-or-simp-correct WEST-until-num-vars ‹semantics-mltl π (Global-mltl a (b
− 1 ) F1 )› le-antisym linorder-not-less match-L2 nv1 nv2 semantics-mltl.simps(8 ))

} moreover {
assume ¬(semantics-mltl (drop b π) F2 ∧

(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1 ))
then have sab-before-b: (∃ i. (a ≤ i ∧ i ≤ (a+x)) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1 ))

using Suc(11 ) b-asucx unfolding semantics-mltl.simps
by (metis add-Suc-right le-antisym not-less-eq-eq)

then have semantics-mltl π (Until-mltl F1 a (b − 1 ) F2 )
using Suc b-asucx
unfolding semantics-mltl.simps by auto

then have match-rec: match π (WEST-until L1 L2 a (b − 1 ) num-vars)
using Suc.hyps(1 )[of b−1 a F1 L1 F2 L2 π] Suc by auto

have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2
a (b − 1 ) num-vars)

(WEST-and-simp (WEST-global L1 a (b − 1 ) num-vars)
(WEST-global L2 b b num-vars) num-vars)

num-vars
using WEST-until.simps[of L1 L2 a b num-vars] Suc
by (metis add-eq-self-zero b-asucx nat.discI nless-le)

then have ?case
using match-rec Suc WEST-or-simp-correct
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by (metis WEST-and-simp-num-vars WEST-global-num-vars WEST-until-num-vars
‹semantics-mltl π (Until-mltl F1 a (b − 1 ) F2 )› eq-imp-le semantics-mltl.simps(9 ))

}
ultimately show ?case by blast

qed

lemma WEST-until-correct:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Until-mltl F1 a b F2 )
shows match π (WEST-until L1 L2 a b num-vars) ←→

semantics-mltl π (Until-mltl F1 a b F2 )
using WEST-until-correct-forward[OF assms(1 ) assms(2 ) assms(3 ) assms(4 )

assms(5 ) assms(6 ) assms(7 ) assms(8 )]
WEST-until-correct-converse[OF assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 )

assms(6 ) assms(7 ) assms(8 )]
by blast

3.12 Facts about the WEST release Operator
lemma WEST-release-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a-leq-b: a ≤ b
assumes len: length π ≥ complen-mltl (Release-mltl F1 a b F2 )
assumes match π (WEST-release L1 L2 a b num-vars)
shows semantics-mltl π (Release-mltl F1 a b F2 )

proof−
{assume match-base: match π (WEST-global L2 a b num-vars)

{assume ∗ : a = 0 ∧ b = 0
then have WEST-global L2 a b num-vars = L2

using WEST-global.simps pad-zero by simp
then have matchL2 : match π L2

using match-base by auto
have complen-mltl F2 ≤ length π
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using assms(8 ) by auto
then have (semantics-mltl π F2 )

using matchL2 assms(2 )[of π] ∗
by blast

then have ?thesis using ∗ by simp
} moreover {assume ∗ : b > 0
then have semantics-mltl π (Global-mltl a b F2 )

using match-base WEST-global-correct[of F2 L2 num-vars a b π] assms by
auto

then have ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F2
unfolding semantics-mltl.simps using assms ∗ add-cancel-right-left com-

plen-geq-one le-add2 le-trans max-nat.neutr-eq-iff nle-le not-one-le-zero
by (smt (verit, best) add-diff-cancel-left ′ complen-mltl.simps(9 ) diff-is-0-eq ′)

then have ?thesis unfolding semantics-mltl.simps using assms by blast
} ultimately have ?thesis using a-leq-b by blast

} moreover {
assume no-match-base: match π (WEST-release-helper L1 L2 a (b−1 ) num-vars)

∧ a < b
have a-le-b: a < b using no-match-base by simp

have no-match: match π (WEST-release-helper L1 L2 a (b−1 ) num-vars) using
no-match-base by blast

have (∃ j≥a. j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2 ))

using assms a-le-b no-match
proof(induct b−a−1 arbitrary: π L1 L2 F1 F2 a b)

case 0
have max (complen-mltl F1 − 1 ) (complen-mltl F2 ) ≥ 0

by force
then have a-leq: a ≤ length π

using 0 (8−9 ) unfolding complen-mltl.simps
by auto

have b-aplus1 : b = a+1 using 0 by presburger
then have match-rec: match π (WEST-release-helper L1 L2 a a num-vars)
using 0 (10 ) using WEST-release.simps[of L1 L2 a b num-vars] WEST-or-correct

0
by (metis diff-add-inverse2 )
then have match π (WEST-and-simp (WEST-global L1 a a num-vars)

(WEST-global L2 a a num-vars) num-vars)
using 0 WEST-release-helper .simps by metis

then have match π (WEST-global L1 a a num-vars) ∧ match π (WEST-global
L2 a a num-vars)

using WEST-and-simp-correct 0
using WEST-global-num-vars[of L1 num-vars a a] WEST-global-num-vars[of

L2 num-vars a a]
by blast

then have match π (shift L1 num-vars a) ∧ match π (shift L1 num-vars a)
by auto

then have match-L1L2 : match (drop a π) L1 ∧ match (drop a π) L2
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using shift-match 0 a-leq
by (metis WEST-global.simps ‹match π (WEST-global L1 a a num-vars) ∧

match π (WEST-global L2 a a num-vars)›)
have b − a + max (complen-mltl F1 − 1 ) (complen-mltl F2 ) ≤ length (drop

a π)
using 0 (9 ) unfolding complen-mltl.simps using 0 (1 , 8 ) by auto

then have b − a + complen-mltl F1 − 1 ≤ length (drop a π)
unfolding complen-mltl.simps using 0 (1 ) by auto

then have complen-mltl F1 ≤ length (drop a π)
using 0 (1 ) complen-geq-one[of F1 ]
by (simp add: b-aplus1 )
then have F1-equiv: semantics-mltl (drop a π) F1 = match π (shift L1

num-vars a)
using 0
using ‹match π (shift L1 num-vars a) ∧ match π (shift L1 num-vars a)›

match-L1L2 by blast
have b − a + max (complen-mltl F2 − 1 ) (complen-mltl F2 ) ≤ length (drop

a π)
using 0 (9 ) unfolding complen-mltl.simps using 0 (1 , 8 ) by auto

then have b − a + complen-mltl F2 ≤ length (drop a π)
unfolding complen-mltl.simps using 0 (1 ) by auto

then have complen-mltl F2 ≤ length (drop a π)
using 0 (1 ) complen-geq-one[of F1 ]
by (simp add: b-aplus1 )
then have F2-equiv: semantics-mltl (drop a π) F2 = match π (shift L2

num-vars a)
using 0 a-leq match-L1L2 shift-match-converse by blast

have semantics-mltl (drop a π) F1 ∧ semantics-mltl (drop a π) F2
using F1-equiv F2-equiv match-L1L2
using a-leq shift-match-converse by blast

then show ?case using b-aplus1 by auto
next

case (Suc x)
then have b-aplus2 : b = a+x+2 by linarith

then have match-rec: match π (WEST-release-helper L1 L2 a (a+x+1 )
num-vars)

using WEST-release.simps[of L1 L2 a a+x+2 num-vars] WEST-or-correct
Suc

by (metis Suc-1 Suc-eq-plus1 add-Suc-shift add-diff-cancel-right ′)
have west-release-helper : WEST-release-helper L1 L2 a (a+x+1 ) num-vars

= WEST-or-simp (WEST-release-helper L1 L2 a (a + x) num-vars)
(WEST-and-simp (WEST-global L2 a (a + x + 1 ) num-vars)

(WEST-global L1 (a + x + 1 ) (a + x + 1 ) num-vars) num-vars) num-vars
using WEST-release-helper .simps[of L1 L2 a a+x+1 num-vars]

by (metis add.commute add-diff-cancel-right ′ less-add-Suc1 less-add-one
not-add-less1 plus-1-eq-Suc)

let ?rec = WEST-release-helper L1 L2 a (a + x) num-vars
let ?base = WEST-and-simp (WEST-global L2 a (a + x + 1 ) num-vars)

(WEST-global L1 (a + x + 1 ) (a + x + 1 ) num-vars) num-vars
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have match-rec-or-base: match π ?rec ∨ match π ?base
using WEST-or-simp-correct WEST-release-helper-num-vars WEST-and-simp-num-vars

WEST-global-num-vars
by (metis (mono-tags, lifting) Suc.prems(3 ) Suc.prems(4 ) ab-semigroup-add-class.add-ac(1 )

eq-imp-le le-add1 match-rec west-release-helper)
have ∃ j≥a. j ≤ a+x+1 ∧

semantics-mltl (drop j π) F1 ∧ (∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl
(drop k π) F2 )

proof−
{assume match-rec: match π (WEST-release-helper L1 L2 a (a + x)

num-vars)
have x-is: x = a + x + 1 − a − 1

by auto
have a-leq: a ≤ a + x + 1

by simp
have a-lt: a < a + x + 1

by auto
have complen: complen-mltl (Release-mltl F1 a (a + x + 1 ) F2 ) ≤ length

π
using Suc(10 ) Suc(2 ) by simp

have sum: a + x + 1 = b − 1
using Suc(2 ) by auto
have important-match: match π (WEST-release-helper L1 L2 a (b−2 )

num-vars)
using match-rec sum b-aplus2 by simp
have match π (WEST-or-simp (WEST-global L2 a (b − 1 ) num-vars)

(WEST-release-helper L1 L2 a (b − 2 ) num-vars) num-vars)
using important-match b-aplus2

using WEST-or-simp-correct[of WEST-global L2 a (b − 1 ) num-vars
num-vars WEST-release-helper L1 L2 a (b − 2 ) num-vars π]

by (metis Suc.prems(3 ) Suc.prems(4 ) WEST-global-num-vars WEST-release-helper-num-vars
a-leq diff-add-inverse2 le-add1 sum)

then have match1 : match π (WEST-release L1 L2 a (a + x + 1 ) num-vars)
unfolding WEST-release.simps
using b-aplus2 sum
by (metis (full-types) Suc-1 a-lt diff-diff-left plus-1-eq-Suc)

have match2 : match π (WEST-release-helper L1 L2 a (a + x + 1 − 1 )
num-vars)

using important-match b-aplus2 by auto
have ∃ j≥a. j ≤ a + x ∧

semantics-mltl (drop j π) F1 ∧ (∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl
(drop k π) F2 )

using Suc.hyps(1 )[OF x-is Suc(3 ) Suc(4 ) Suc(5 ) Suc(6 ) Suc(7 ) Suc(8 )
a-leq complen - a-lt ]

match1 match2
by (metis add-diff-cancel-right ′)

then have ?case using b-aplus2 by auto
} moreover {

assume match-base: match π (WEST-and-simp (WEST-global L2 a (a +

130



x + 1 ) num-vars)
(WEST-global L1 (a + x + 1 ) (a + x + 1 ) num-vars)

num-vars)
have match π (WEST-global L2 a (a + x + 1 ) num-vars)

using match-base WEST-and-simp-correct WEST-global-num-vars
by (metis Suc.prems(3 ) Suc.prems(4 ) add.commute eq-imp-le less-add-Suc1

order-less-le plus-1-eq-Suc)
then have semantics-mltl π (Global-mltl a (a + x + 1 ) F2 )

using WEST-global-correct[of F2 L2 num-vars a a + x + 1 π]
using Suc.prems(2 , 4 , 6 , 8 ) Suc.hyps(2 ) by simp

then have fact2 : (∀ k. a ≤ k ∧ k ≤ (a + x + 1 ) −→ semantics-mltl (drop
k π) F2 )

unfolding semantics-mltl.simps using Suc.prems(8 , 10 )
unfolding complen-mltl.simps by simp

have match π (WEST-global L1 (a + x + 1 ) (a + x + 1 ) num-vars)
using match-base WEST-and-simp-correct WEST-global-num-vars

by (metis Suc.prems(3 ) Suc.prems(4 ) add.commute eq-imp-le less-add-Suc1
order-less-le plus-1-eq-Suc)

then have match π (shift L1 num-vars (a + x + 1 ))
using WEST-global.simps[of L1 a + x + 1 a + x + 1 num-vars] by

metis
then have match (drop (a + x + 1 ) π) L1

using shift-match[of a + x + 1 π L1 num-vars]
using Suc.prems(8 ) unfolding complen-mltl.simps using b-aplus2 by

simp
then have fact1 : semantics-mltl (drop (a + x + 1 ) π) F1

using Suc.prems(1 )[of drop (a + x + 1 ) π]
using Suc.prems(8 ) unfolding complen-mltl.simps using b-aplus2 by

auto
have ?case using b-aplus2 fact1 fact2

by (smt (verit) Suc.hyps(2 ) Suc.prems(10 ) Suc-diff-Suc ab-semigroup-add-class.add-ac(1 )
add.commute add-diff-cancel-left ′ antisym-conv1 le-iff-add order-less-imp-le plus-1-eq-Suc)

}
ultimately show ?thesis using match-rec-or-base
by (smt (verit, best) Suc.hyps(2 ) Suc-eq-plus1 add.assoc diff-right-commute

le-trans ordered-cancel-comm-monoid-diff-class.add-diff-inverse)
qed
then show ?case using b-aplus2 by simp

qed

then have ?thesis unfolding semantics-mltl.simps by auto
}
ultimately show ?thesis using WEST-release.simps assms(9 )
by (smt (verit, ccfv-SIG) WEST-global-num-vars WEST-or-simp-correct WEST-release-helper-num-vars

a-leq-b add-leD2 add-le-cancel-right assms(3 ) assms(4 ) diff-add less-iff-succ-less-eq)
qed

lemma WEST-release-correct-converse:
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assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Release-mltl F1 a b F2 )
assumes semantics-mltl π (Release-mltl F1 a b F2 )
shows match π (WEST-release L1 L2 a b num-vars)

proof−
have len-xi: a < length π

using assms(7 , 8 ) unfolding complen-mltl.simps
by (metis (no-types, lifting) add-leD1 complen-geq-one diff-add-inverse diff-is-0-eq ′

le-add-diff-inverse le-neq-implies-less le-zero-eq less-numeral-extra(4 ) less-one max-nat.eq-neutr-iff )

{assume case1 : ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F2
then have match π (WEST-global L2 a b num-vars)

using WEST-global-correct-converse assms by fastforce
then have ?thesis unfolding WEST-release.simps

using WEST-or-simp-correct
by (smt (verit) WEST-global-num-vars WEST-release-helper-num-vars add-leE

add-le-cancel-right assms(3 ) assms(4 ) diff-add less-iff-succ-less-eq)
} moreover {

assume case2 : ∃ j≥a. j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2 )

then obtain j where obtain-j: a ≤ j ∧ j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2 )

by blast
{

assume a-eq-b: a = b
then have ?thesis using case2

using calculation le-antisym by blast
} moreover {

assume a-le-b: a < b

have semantics-mltl π (Global-mltl j j F1 ) using obtain-j
by auto

have (complen-mltl F1 − 1 ) + b ≤ length π
using assms(8 ) obtain-j unfolding complen-mltl.simps by auto

then have complen-mltl F1 + j ≤ length π
using obtain-j a-le-b by auto

then have match-global1 : match π (WEST-global L1 j j num-vars)
using WEST-global-correct-converse[of F1 L1 num-vars j j π] assms
using ‹semantics-mltl π (Global-mltl j j F1 )› by blast
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have len-xi-f2j: complen-mltl F2 + j ≤ length π
using assms(8 ) obtain-j by auto

have a ≤ j
using a-le-b obtain-j by blast

then have semantics-mltl π (Global-mltl a j F2 )
using obtain-j a-le-b
unfolding semantics-mltl.simps by blast

then have match-global2 : match π (WEST-global L2 a j num-vars)
using WEST-global-correct-converse[of F2 L2 num-vars a j π] len-xi-f2j

assms
by simp

have j-bounds: a ≤ j ∧ j ≤ b − 1 using obtain-j by blast
have match π (WEST-release-helper L1 L2 a (b − 1 ) num-vars)

using match-global1 match-global2 a-le-b j-bounds assms(1−6 )
proof(induct b−1−a arbitrary: a b L1 L2 F1 F2 )

case 0
then have match π (WEST-and-simp (WEST-global L1 a a num-vars)

(WEST-global L2 a a num-vars) num-vars)
using WEST-and-simp-correct
by (metis WEST-global-num-vars diff-is-0-eq ′ diffs0-imp-equal le-trans)

then show ?case
using WEST-release-helper .simps[of L1 L2 a b−1 num-vars] 0
by (metis diff-diff-cancel diff-zero le-trans)

next
case (Suc x)
have match-helper : match π (WEST-or-simp (WEST-release-helper L1 L2

a (b − 1 − 1 ) num-vars)
(WEST-and-simp (WEST-global L2 a (b − 1 ) num-vars)
(WEST-global L1 (b − 1 ) (b − 1 ) num-vars) num-vars) num-vars)

using Suc
proof−

{assume j-eq-bm1 : j = b−1
then have match π (WEST-and-simp (WEST-global L2 a (b − 1 )

num-vars)
(WEST-global L1 (b − 1 ) (b − 1 ) num-vars) num-vars)
using Suc WEST-and-simp-correct
by (meson WEST-global-num-vars)

then have ?thesis using WEST-or-simp-correct
by (metis Suc.hyps(2 ) Suc.prems(4 ) Suc.prems(7 ) Suc.prems(8 )

WEST-and-simp-num-vars WEST-global-num-vars WEST-release-helper-num-vars
cancel-comm-monoid-add-class.diff-cancel diff-less-Suc j-eq-bm1 le-SucE le-add1 not-add-less1
ordered-cancel-comm-monoid-diff-class.add-diff-inverse plus-1-eq-Suc)

} moreover {
assume j-le-bm1 : j < b−1
have match π (WEST-release-helper L1 L2 a (b − 1 − 1 ) num-vars)

using Suc.hyps(1 )[of b−1 a L1 L2 F1 F2 ] Suc
by (smt (verit) Suc-leI diff-Suc-1 diff-le-mono diff-right-commute

j-le-bm1 le-eq-less-or-eq not-less-eq-eq)
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then have ?thesis using WEST-or-simp-correct
using Suc.hyps(2 ) Suc.prems(4 ) Suc.prems(7 ) Suc.prems(8 ) WEST-and-simp-num-vars

WEST-global-num-vars WEST-release-helper-num-vars
by (smt (verit, del-insts) Nat.lessE Suc-leI diff-Suc-1 j-le-bm1 le-Suc-eq

le-trans)
}
ultimately show ?thesis using Suc(6 )

by (meson le-neq-implies-less)
qed

have a < b−1 using Suc(2 ) by simp
then show ?case
using WEST-release-helper .simps[of L1 L2 a b−1 num-vars] match-helper
by presburger

qed

then have match π (WEST-or-simp (WEST-global L2 a b num-vars) (WEST-release-helper
L1 L2 a (b − 1 ) num-vars) num-vars)

using WEST-or-simp-correct assms
by (meson WEST-global-num-vars WEST-release-helper-num-vars j-bounds

le-trans)
then have ?thesis using a-le-b unfolding WEST-release.simps

by presburger
}
ultimately have ?thesis using assms(7 ) by fastforce

}
ultimately show ?thesis unfolding semantics-mltl.simps using len-xi assms(9 )

by fastforce
qed

lemma WEST-release-correct:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1 ))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2 ))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Release-mltl F1 a b F2 )
shows semantics-mltl π (Release-mltl F1 a b F2 ) ←→ match π (WEST-release

L1 L2 a b num-vars)
using WEST-release-correct-converse[OF assms(1−8 )] WEST-release-correct-forward[OF

assms(1−8 )]
by blast
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3.13 Top level result: Shows that WEST reg is correct
lemma WEST-reg-aux-correct:

assumes π-long-enough: length π ≥ complen-mltl F
assumes is-nnf : ∃ ψ. F = (convert-nnf ψ)
assumes ϕ-nv: WEST-num-vars F ≤ num-vars
assumes intervals-welldef F
shows match π (WEST-reg-aux F num-vars) ←→ semantics-mltl π F
using assms
proof (induction F arbitrary: π rule: nnf-induct)
case nnf
then show ?case using is-nnf by auto

next
case True
have semantics-true: semantics-mltl π True-mltl = True by simp
have WEST-reg-aux True-mltl num-vars = [[map (λj. S) [0 ..<num-vars]]]

using WEST-reg-aux.simps(1 ) by blast
have match-state: match-timestep (π ! 0 ) (map (λj. S) [0 ..<num-vars])

unfolding match-timestep-def by auto
have length π ≥ 1 using True by auto
then have match-regex π [(map (λj. S) [0 ..<num-vars])] = True

using True match-state unfolding match-regex-def by simp
then have match π (WEST-reg-aux True-mltl num-vars) = True

using WEST-reg-aux.simps(1 )[of num-vars] unfolding match-def by simp
then show ?case

using semantics-true by auto
next

case False
have semantics-false: semantics-mltl π False-mltl = False by simp
have match π [] = False

unfolding match-def by simp
then show ?case

using semantics-false by simp
next

case (Prop p)
have trace-nonempty: length π ≥ 1 using Prop by simp
let ?state = π!0
{assume p-in: p ∈ ?state

then have semantics-prop-true: semantics-mltl π (Prop-mltl p) = True
using semantics-mltl.simps(3 )[of π] trace-nonempty by auto

have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (λj. if p
= j then One else S) [0 ..<num-vars]]]

using WEST-reg-aux.simps(3 ) by blast
have p < num-vars =⇒ p ∈ π ! 0

using p-in Prop by blast
then have match-timestep ?state (map (λj. if p = j then One else S) [0 ..<num-vars])

= True
unfolding match-timestep-def p-in by auto

then have match-regex π (WEST-reg-aux (Prop-mltl p) num-vars ! 0 ) = True
using trace-nonempty WEST-prop unfolding match-regex-def by auto
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then have match π (WEST-reg-aux (Prop-mltl p) num-vars) = True
unfolding match-def by auto

then have ?case using semantics-prop-true by blast
} moreover {

assume p-notin: p /∈ ?state
then have semantics-prop-false: semantics-mltl π (Prop-mltl p) = False

using semantics-mltl.simps(3 )[of π] trace-nonempty by auto
have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (λj. if p

= j then One else S) [0 ..<num-vars]]]
using WEST-reg-aux.simps(3 ) by blast

have p < num-vars ∧ p /∈ π ! 0
using p-notin Prop by auto

then have match-timestep ?state (map (λj. if p = j then One else S) [0 ..<num-vars])
= False

unfolding match-timestep-def p-notin by auto
then have match-regex π (WEST-reg-aux (Prop-mltl p) num-vars ! 0 ) = False

using trace-nonempty WEST-prop unfolding match-regex-def by auto
then have match π (WEST-reg-aux (Prop-mltl p) num-vars) = False

unfolding match-def by auto
then have ?case using semantics-prop-false by blast

}
ultimately show ?case by blast

next
case (NotProp F p)
have trace-nonempty: length π ≥ 1 using NotProp by simp
let ?state = π!0
{assume p-in: p ∈ ?state

then have semantics-prop-true: semantics-mltl π (Not-mltl (Prop-mltl p)) =
False

using semantics-mltl.simps trace-nonempty by auto
have WEST-prop: (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = [[map

(λj. if p = j then Zero else S) [0 ..<num-vars]]]
using WEST-reg-aux.simps by blast

have p < num-vars ∧ p ∈ π ! 0
using p-in NotProp by simp

then have match-timestep ?state (map (λj. if p = j then Zero else S) [0 ..<num-vars])
= False

unfolding match-timestep-def p-in by auto
then have match-regex π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars !

0 ) = False
using trace-nonempty WEST-prop unfolding match-regex-def by auto

then have match π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = False
unfolding match-def by auto

then have ?case using semantics-prop-true NotProp by blast
} moreover {

assume p-notin: p /∈ ?state
then have semantics-prop-false: semantics-mltl π (Not-mltl (Prop-mltl p)) =

True
using semantics-mltl.simps(3 )[of π] trace-nonempty by auto
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have WEST-prop: (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = [[map
(λj. if p = j then Zero else S) [0 ..<num-vars]]]

using WEST-reg-aux.simps by blast
have p < num-vars ∧ p /∈ π ! 0

using p-notin NotProp by auto
then have match-timestep ?state (map (λj. if p = j then Zero else S) [0 ..<num-vars])

= True
unfolding match-timestep-def p-notin by auto

then have match-regex π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars !
0 ) = True

using trace-nonempty WEST-prop unfolding match-regex-def by auto
then have match π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = True

unfolding match-def by simp
then have ?case using semantics-prop-false NotProp by blast

}
ultimately show ?case by blast

next
case (And F F1 F2 )
have subformula1 : WEST-num-vars F1 ≤ num-vars

using WEST-num-vars-subformulas[of F1 F ] And(1 ,6 ) by simp
have subformula2 : WEST-num-vars F2 ≤ num-vars

using WEST-num-vars-subformulas[of F2 F ] And(1 ,6 ) by simp
have complen-mltl F1 ≤ complen-mltl F

using And(1 ) complen-mltl.simps(5 )[of F1 F2 ] by auto
then have cp-F1 : complen-mltl F1 ≤ length π

using And.prems by auto
have h2 : match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1

using And(2 )[OF cp-F1 ] subformula1
by (metis And.hyps And.prems(2 ) And.prems(4 ) convert-nnf .simps(4 ) con-

vert-nnf-convert-nnf intervals-welldef .simps(5 ) mltl.inject(3 ))
have complen-mltl F2 ≤ complen-mltl F

using And(1 ) complen-mltl.simps(5 )[of F2 F2 ] by simp
then have cp-F2 : complen-mltl F2 ≤ length π

using And.prems by auto
have h1 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2

using And.prems(2 ) And(1 ) And(3 )[OF cp-F2 ] subformula2
by (metis And.prems(4 ) convert-nnf .simps(4 ) convert-nnf-convert-nnf inter-

vals-welldef .simps(5 ) mltl.inject(3 ))
let ?n = num-vars
have F1-nv: WEST-regex-of-vars (WEST-reg-aux F1 num-vars) num-vars
using WEST-reg-aux-num-vars[of F1 num-vars] subformula1 And(1 ) And.prems(2 )
using WEST-num-vars-subformulas
by (metis And.prems(4 ) convert-nnf .simps(4 ) convert-nnf-convert-nnf inter-

vals-welldef .simps(5 ) mltl.inject(3 ))
have F2-nv: WEST-regex-of-vars (WEST-reg-aux F2 num-vars) num-vars
using WEST-reg-aux-num-vars[of F2 num-vars] subformula1 And(1 ) And.prems(2 )
using WEST-num-vars-subformulas
by (metis And.prems(4 ) convert-nnf .simps(4 ) convert-nnf-convert-nnf inter-

vals-welldef .simps(5 ) mltl.inject(3 ) subformula2 )
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have match: match π (WEST-and (WEST-reg-aux F1 ?n) (WEST-reg-aux F2
?n)) = (match π (WEST-reg-aux F1 ?n) ∧ match π (WEST-reg-aux F2 ?n))

using WEST-and-correct[of WEST-reg-aux F1 ?n ?n WEST-reg-aux F2 ?n π,
OF F1-nv F2-nv]

by blast
have WEST-reg-F : WEST-reg-aux F num-vars = WEST-and-simp (WEST-reg-aux

F1 num-vars) (WEST-reg-aux F2 num-vars) num-vars
using And(1 ) WEST-reg-aux.simps(6 )[of F1 F2 num-vars] by argo

have semantics-F : semantics-mltl π (And-mltl F1 F2 ) = (semantics-mltl π F1
∧ semantics-mltl π F2 )

using semantics-mltl.simps(5 )[of π F1 F2 ] by blast
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using And(1 ) And(5 ) nnf-subformulas[of F - F1 ]
by (metis convert-nnf .simps(4 ) convert-nnf-convert-nnf mltl.inject(3 ))

have F1-correct: match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1
using And(2 )[OF cp-F1 F1-nnf ] WEST-num-vars-subformulas And by auto

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using And(1 ) And(5 ) nnf-subformulas[of F - F2 ]
by (metis convert-nnf .simps(4 ) convert-nnf-convert-nnf mltl.inject(3 ))

have F2-correct: match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using And(3 )[OF cp-F2 F2-nnf ] WEST-num-vars-subformulas And by auto

show ?case
using WEST-reg-F F1-correct F2-correct
using semantics-mltl.simps(5 )[of π F1 F2 ] And(1 ) match
by (metis F1-nv F2-nv WEST-and-simp-correct)

next
case (Or F F1 F2 )
have cp-F1 : complen-mltl F1 ≤ length π

using Or complen-mltl.simps(6 )[of F1 F2 ] by simp
have cp-F2 : complen-mltl F2 ≤ length π

using Or complen-mltl.simps(6 )[of F1 F2 ] by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Or(1 ) nnf-subformulas[of F - F1 ]
by (metis Or .prems(2 ) convert-nnf .simps(5 ) convert-nnf-convert-nnf mltl.inject(4 ))

have F1-correct: match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1
using Or(2 )[OF cp-F1 F1-nnf ] WEST-num-vars-subformulas Or by simp

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using Or nnf-subformulas[of F - F2 ]
by (metis convert-nnf .simps(5 ) convert-nnf-convert-nnf mltl.inject(4 ))

have F2-correct: match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Or(3 )[OF cp-F2 F2-nnf ] WEST-num-vars-subformulas Or by simp

let ?L1 = (WEST-reg-aux F1 num-vars)
let ?L2 = (WEST-reg-aux F2 num-vars)
have L1-nv: WEST-regex-of-vars ?L1 num-vars

using WEST-reg-aux-num-vars[of F1 num-vars, OF F1-nnf ]
using Or(1 , 6 , 7 ) by auto

have L2-nv: WEST-regex-of-vars ?L2 num-vars
using WEST-reg-aux-num-vars[of F2 num-vars, OF F2-nnf ]
using Or(1 , 6 , 7 ) by auto
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have (match π ?L1 ∨ match π ?L2 ) = match π (WEST-or-simp ?L1 ?L2
num-vars)

using WEST-or-simp-correct[of ?L1 num-vars ?L2 π, OF L1-nv L2-nv] by
blast

then show ?case
using F1-correct F2-correct
using semantics-mltl.simps(6 )[of π F1 F2 ]
unfolding Or(1 ) unfolding WEST-reg-aux.simps by blast

next
case (Final F F1 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Final by auto
have cp-F1 : complen-mltl F1 ≤ length π

using Final by simp
then have len-xi: length π ≥ (complen-mltl F1 ) + b using Final by auto
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Final
by (metis convert-nnf .simps(6 ) convert-nnf-convert-nnf mltl.inject(5 ))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Final(2 )[OF cp-F1 F1-nnf F1-nv] Final by auto
have intervals-welldef-F1 : intervals-welldef F1

using Final by auto
have a-le-b: a ≤ b

using Final by simp
show ?case using WEST-reg-aux.simps(7 )[of a b F1 num-vars] Final

using match-F1 WEST-future-correct F1-nv len-xi
using a-le-b intervals-welldef-F1
by (metis F1-nnf WEST-reg-aux-num-vars)

next
case (Global F F1 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Global by auto
have cp-F1 : complen-mltl F1 ≤ length π

using Global by simp
then have len-xi: length π ≥ (complen-mltl F1 ) + b using Global by auto
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Global
by (metis convert-nnf .simps(7 ) convert-nnf-convert-nnf mltl.inject(6 ))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Global(2 )[OF cp-F1 F1-nnf F1-nv] Global by auto
then show ?case using WEST-reg-aux.simps(8 )[of a b F1 num-vars] Global

using match-F1 WEST-global-correct F1-nv
by (metis F1-nnf WEST-reg-aux-num-vars intervals-welldef .simps(8 ) len-xi)

next
case (Until F F1 F2 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Until by auto
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{assume ∗: a = 0 ∧ b = 0
have complen-leq: complen-mltl F2 ≤ length π

using Until(1 ) Until.prems(1 ) by simp
have some-nnf : ∃ψ. F2 = convert-nnf ψ

using Until(1 ) Until.prems(2 )
by (metis convert-nnf .simps(8 ) convert-nnf-convert-nnf mltl.inject(7 ))

have F2 ∈ subformulas (Until-mltl F1 a b F2 )
unfolding subformulas.simps by blast

then have num-vars: WEST-num-vars F2 ≤ num-vars
using Until(1 ) Until.prems(3 ) WEST-num-vars-subformulas[of F2 F ]
by auto

have match-F2 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Until(1 ) Until(3 )[OF complen-leq some-nnf num-vars] Until.prems
by simp

have max (complen-mltl F1 − 1 ) (complen-mltl F2 ) >= 1
using complen-geq-one[of F2 ] by auto

then have len-gt: length π > 0
using Until.prems(1 ) Until(1 ) by auto

have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift
(WEST-reg-aux F2 num-vars) num-vars 0

using WEST-global.simps[of - 0 0 ] by auto
have map (λk. arbitrary-state num-vars) [0 ..<0 ] = []

by simp
then have padis: shift (WEST-reg-aux F2 num-vars) num-vars 0 = WEST-reg-aux

F2 num-vars
unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8 )

map-ident upt-0
proof −

have (@) (map (λn. arbitrary-state num-vars) ([]::nat list)) = (λwss. wss)
by blast

then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0 ])) (WEST-reg-aux
F2 num-vars) = WEST-reg-aux F2 num-vars

by simp
qed

then have match π (WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars)
=

(semantics-mltl π F2 )
using match-F2 global padis by simp

then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 num-vars) 0 0 num-vars) =

(semantics-mltl π F2 )
using WEST-until.simps[of - - 0 0 num-vars] by auto

then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 num-vars) 0 0 num-vars) =

(semantics-mltl (drop 0 π) F2 ∧ (∀ j. 0 ≤ j ∧ j < 0 −→ semantics-mltl (drop
j π) F1 ))

by auto
then have match π (WEST-reg-aux (Until-mltl F1 0 0 F2 ) num-vars) =

semantics-mltl π (Until-mltl F1 0 0 F2 )
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using len-gt ∗
unfolding semantics-mltl.simps WEST-reg-aux.simps by auto

then have ?case using Until(1 ) ∗ by auto
} moreover {assume ∗: b > 0
then have cp-F1 : complen-mltl F1 ≤ length π

using complen-mltl.simps(10 )[of F1 a b F2 ] Until by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Until
by (metis convert-nnf .simps(8 ) convert-nnf-convert-nnf mltl.inject(7 ))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Until(2 )[OF cp-F1 F1-nnf F1-nv] Until by auto
have F2-nv: WEST-num-vars F2 ≤ num-vars

using Until by auto
have cp-F2 : complen-mltl F2 ≤ length π

using complen-mltl.simps(10 )[of F1 a b F2 ] Until by simp
have F2-nnf : ∃ψ. F2 = convert-nnf ψ

using Until
by (metis convert-nnf .simps(8 ) convert-nnf-convert-nnf mltl.inject(7 ))

let ?L2 = (WEST-reg-aux F2 num-vars)
have match-F2 : match π ?L2 = semantics-mltl π F2

using Until(3 )[OF cp-F2 F2-nnf F2-nv] Until by simp
have len-xi: length π ≥ complen-mltl (Until-mltl F1 a b F2 ) using Until by auto
then have ?case using WEST-until-correct[of F1 ?L1 F2 ?L2 num-vars a b π]

using Until F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2
using WEST-reg-aux.simps(9 )[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
by (metis (no-types, lifting) intervals-welldef .simps(9 ))

}
ultimately show ?case using Until.prems(4 ) Until(1 )

by fastforce
next

case (Release F F1 F2 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Release by auto
{assume ∗: a = 0 ∧ b = 0

have complen-leq: complen-mltl F2 ≤ length π
using Release(1 ) Release.prems(1 ) by simp

have some-nnf : ∃ψ. F2 = convert-nnf ψ
using Release(1 ) Release.prems(2 )
by (metis convert-nnf .simps(9 ) convert-nnf-convert-nnf mltl.inject(8 ))

have F2 ∈ subformulas (Until-mltl F1 a b F2 )
unfolding subformulas.simps by blast

then have num-vars: WEST-num-vars F2 ≤ num-vars
using Release(1 ) Release.prems(3 ) WEST-num-vars-subformulas[of F2 F ]
by auto

have match-F2 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Release(1 ) Release(3 )[OF complen-leq some-nnf num-vars] Release.prems

by simp
have max (complen-mltl F1 − 1 ) (complen-mltl F2 ) >= 1
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using complen-geq-one[of F2 ] by auto
then have len-gt: length π > 0

using Release.prems(1 ) Release(1 ) by auto
have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift

(WEST-reg-aux F2 num-vars) num-vars 0
using WEST-global.simps[of - 0 0 ] by auto

have map (λk. arbitrary-state num-vars) [0 ..<0 ] = []
by simp

then have padis: shift (WEST-reg-aux F2 num-vars) num-vars 0 = WEST-reg-aux
F2 num-vars

unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8 )
map-ident upt-0

proof −
have (@) (map (λn. arbitrary-state num-vars) ([]::nat list)) = (λwss. wss)

by blast
then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0 ])) (WEST-reg-aux

F2 num-vars) = WEST-reg-aux F2 num-vars
by simp

qed
then have match π (WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars)

=
(semantics-mltl π F2 )

using match-F2 global padis by simp
then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux

F2 num-vars) 0 0 num-vars) =
(semantics-mltl π F2 )

using WEST-until.simps[of - - 0 0 num-vars] by auto
then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux

F2 num-vars) 0 0 num-vars) =
(semantics-mltl (drop 0 π) F2 ∧ (∀ j. 0 ≤ j ∧ j < 0 −→ semantics-mltl (drop

j π) F1 ))
by auto

then have match π (WEST-reg-aux (Release-mltl F1 0 0 F2 ) num-vars) =
semantics-mltl π (Release-mltl F1 0 0 F2 )

using len-gt ∗
unfolding semantics-mltl.simps WEST-reg-aux.simps by auto

then have ?case using Release(1 ) ∗
by auto

} moreover {assume ∗: b > 0
then have cp-F1 : complen-mltl F1 ≤ length π

using complen-mltl.simps(10 )[of F1 a b F2 ] Release by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Release
by (metis convert-nnf .simps(9 ) convert-nnf-convert-nnf mltl.inject(8 ))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Release(2 )[OF cp-F1 F1-nnf F1-nv] Release by auto
have F2-nv: WEST-num-vars F2 ≤ num-vars

using Release by auto
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have cp-F2 : complen-mltl F2 ≤ length π
using complen-mltl.simps(10 )[of F1 a b F2 ] Release by simp

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using Release
by (metis convert-nnf .simps(9 ) convert-nnf-convert-nnf mltl.inject(8 ))

let ?L2 = (WEST-reg-aux F2 num-vars)
have match-F2 : match π ?L2 = semantics-mltl π F2

using Release(3 )[OF cp-F2 F2-nnf F2-nv] Release by simp
have len-xi: length π ≥ (max ((complen-mltl F1 )−1 ) (complen-mltl F2 )) + b

using ∗ Release
by auto

have ?case using WEST-release-correct[of F1 ?L1 F2 ?L2 num-vars a b π]
using Release F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2

using WEST-reg-aux.simps(10 )[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
by (metis (full-types) intervals-welldef .simps(10 ))

}
ultimately show ?case using Release(7 ) Release(1 ) by fastforce

qed

lemma complen-convert-nnf :
shows complen-mltl (convert-nnf ϕ) = complen-mltl ϕ

proof(induction depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)

case True-mltl
then show ?thesis by simp

next
case False-mltl
then show ?thesis by simp

next
case (Prop-mltl p)
then show ?thesis by simp

next
case (Not-mltl p)
then show ?thesis proof (induct p)

case True-mltl
then show ?case using Not-mltl less by auto

next
case False-mltl
then show ?case using Not-mltl less by auto

next
case (Prop-mltl x)
then show ?case using Not-mltl less by auto

next
case (Not-mltl p)
then show ?case using Not-mltl less by auto

next
case (And-mltl p1 p2 )
then show ?case using Not-mltl less by auto
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next
case (Or-mltl p1 p2 )
then show ?case using Not-mltl less by auto

next
case (Future-mltl a b x)
then show ?case using Not-mltl less by auto

next
case (Global-mltl a b x)
then show ?case using Not-mltl less by auto

next
case (Until-mltl x a b y)
then show ?case using Not-mltl less by auto

next
case (Release-mltl x a b y)
then show ?case using Not-mltl less by auto

qed
next

case (And-mltl x y)
then show ?thesis using less by auto

next
case (Or-mltl x y)
then show ?thesis using less by auto

next
case (Future-mltl a b x)
then show ?thesis using less by auto

next
case (Global-mltl a b x)
then show ?thesis using less by auto

next
case (Until-mltl x a b y)
then show ?thesis using less by auto

next
case (Release-mltl x a b y)
then show ?thesis using less by auto

qed
qed

lemma nnf-int-welldef :
assumes intervals-welldef ϕ
shows intervals-welldef (convert-nnf ϕ)
using assms

proof (induct depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)

case True-mltl
then show ?thesis by simp

next
case False-mltl
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then show ?thesis by simp
next

case (Prop-mltl p)
then show ?thesis by simp

next
case (Not-mltl ψ)
then have phi-is: ϕ = Not-mltl ψ

by auto
show ?thesis proof (cases ψ)

case True-mltl
then show ?thesis using Not-mltl by simp

next
case False-mltl
then show ?thesis using Not-mltl by simp

next
case (Prop-mltl p)
then show ?thesis using Not-mltl by simp

next
case (Not-mltl F)
then have iwd: intervals-welldef (convert-nnf F)

using phi-is less by simp
have ϕ = Not-mltl (Not-mltl F)

using phi-is Not-mltl by auto
then show ?thesis using iwd

convert-nnf .simps(13 )[of F ] by simp
next

case (And-mltl x y)
then show ?thesis using Not-mltl less by simp

next
case (Or-mltl x y)
then show ?thesis using Not-mltl less by simp

next
case (Future-mltl a b x)
then show ?thesis using Not-mltl less by simp

next
case (Global-mltl a b x)
then show ?thesis using Not-mltl less by simp

next
case (Until-mltl x a b y)
then show ?thesis using Not-mltl less by simp

next
case (Release-mltl x a b y)
then show ?thesis using Not-mltl less by simp

qed
next

case (And-mltl x y)
then show ?thesis using less by simp

next
case (Or-mltl x y)
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then show ?thesis using less by simp
next

case (Future-mltl a b x)
then show ?thesis using less by simp

next
case (Global-mltl a b x)
then show ?thesis using less by simp

next
case (Until-mltl x a b y)
then show ?thesis using less by simp

next
case (Release-mltl x a b y)
then show ?thesis using less by simp

qed
qed

lemma WEST-correct:
fixes ϕ::(nat) mltl
fixes π::trace
assumes int-welldef : intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl (convert-nnf ϕ)
shows match π (WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof−
let ?n = WEST-num-vars ϕ
have match π (WEST-reg-aux (convert-nnf ϕ) (WEST-num-vars ϕ)) = seman-

tics-mltl π (convert-nnf ϕ)
using WEST-reg-aux-correct[OF assms(2 ) - - nnf-int-welldef , of WEST-num-vars

ϕ] WEST-num-vars-nnf [of ϕ]
using int-welldef by auto

then show ?thesis
unfolding WEST-reg.simps

using WEST-num-vars-nnf [of ϕ] convert-nnf-preserves-semantics[OF assms(1 )]
by simp

qed

lemma WEST-correct-v2 :
fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof−
show ?thesis

using WEST-correct complen-convert-nnf
by (metis π-long-enough assms(1 ))

qed
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3.14 Top level result for padded version
lemma WEST-correct-pad-aux:

fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (pad-WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof −
let ?unpadded = WEST-reg ϕ
let ?complen = complen-mltl ϕ
let ?num-vars = WEST-num-vars ϕ
let ?len = length (WEST-reg ϕ)
have pwr-is: pad-WEST-reg ϕ = (map (λL. if length L < ?complen

then L @ arbitrary-trace ?num-vars (?complen − length L)
else L) ?unpadded)

unfolding pad-WEST-reg.simps
by (metis (no-types, lifting) map-equality-iff pad.elims)

then have length ?unpadded = length (pad-WEST-reg ϕ)
by auto

then have pwr-k-is: (pad-WEST-reg ϕ ! k) = (if length (?unpadded!k) < ?complen
then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen −

length (?unpadded!k))
else (?unpadded!k)) if k-lt: k<length (pad-WEST-reg ϕ) for k

using k-lt pwr-is
by fastforce

have same-len: length (pad-WEST-reg ϕ) = length (WEST-reg ϕ)
unfolding pad-WEST-reg.simps
by (meson length-map)

have match-regex π (if length (WEST-reg ϕ ! k) < complen-mltl ϕ
then WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))

else WEST-reg ϕ ! k) =
match-regex π (WEST-reg ϕ ! k) if k-lt: k < ?len for k

proof −
{assume ∗: length (WEST-reg ϕ ! k) < complen-mltl ϕ

then have len-is: length (WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) =

complen-mltl ϕ
by auto

have univ-prop:
∧

A B:: ′a list. (∀ time<length
(A @ B). (time ≥ length A −→

P time)) =⇒ ((∀ time<length
(A @ B). P time) = (∀ time<length
A . P time)) for P::nat ⇒ bool

by auto
have match-timestep (π ! time)

((WEST-reg ϕ ! k @
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arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

if time-prop: time < length (WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)

(complen-mltl ϕ − length (WEST-reg ϕ ! k))) ∧ time ≥ length
(WEST-reg ϕ ! k)

for time
proof −

have access: ((WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

= (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! (time − (length (WEST-reg ϕ ! k)))

using time-prop
by (meson leD nth-append)

have (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! (time − (length (WEST-reg ϕ ! k)))

= arbitrary-state (WEST-num-vars ϕ)
unfolding arbitrary-trace.simps using ∗ time-prop
by (metis diff-less-mono diff-zero len-is nth-map-upt)

then have access2 : ((WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

= arbitrary-state (WEST-num-vars ϕ)
using access
by auto

have match-timestep (π ! time) (arbitrary-state (WEST-num-vars ϕ))
unfolding arbitrary-state.simps
match-timestep-def by simp

then show ?thesis using access2 by auto
qed

then have (∀ time<length
(WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))).

match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time)) =
(∀ time<length

(WEST-reg ϕ ! k).
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match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time))
using univ-prop[of WEST-reg ϕ ! k arbitrary-trace (WEST-num-vars ϕ)

(complen-mltl ϕ −
length (WEST-reg ϕ ! k))]

by auto
then have (∀ time<length

(WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))).

match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time)) =
(∀ time<length (WEST-reg ϕ ! k).

match-timestep (π ! time)
(WEST-reg ϕ ! k ! time))

by (simp add: nth-append)
then have match-regex π (WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) =

match-regex π (WEST-reg ϕ ! k)
using len-is π-long-enough ∗
unfolding match-regex-def
by auto

then have ?thesis
using ∗ by auto

}
moreover {assume ∗: length (WEST-reg ϕ ! k) ≥ complen-mltl ϕ

then have ?thesis by simp
}
ultimately show ?thesis

by argo
qed
then have match-regex π (pad-WEST-reg ϕ ! k) =

match-regex π (WEST-reg ϕ ! k) if k-lt: k < ?len for k
using pwr-k-is k-lt same-len by presburger

then have match π (pad-WEST-reg ϕ) ←→ match π (WEST-reg ϕ)
using π-long-enough same-len
unfolding match-def
by auto

then show ?thesis
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using assms WEST-correct-v2
by blast

qed

lemma WEST-correct-pad:
fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (simp-pad-WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof −
let ?unpadded = WEST-reg ϕ
let ?complen = complen-mltl ϕ
let ?num-vars = WEST-num-vars ϕ
have pwr-is: pad-WEST-reg ϕ = (map (λL. if length L < ?complen

then L @ arbitrary-trace ?num-vars (?complen − length L)
else L) ?unpadded)

unfolding pad-WEST-reg.simps
by (metis (no-types, lifting) map-equality-iff pad.elims)

then have length ?unpadded = length (pad-WEST-reg ϕ)
by auto

then have pwr-k-is: (pad-WEST-reg ϕ ! k) = (if length (?unpadded!k) < ?complen
then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen −

length (?unpadded!k))
else (?unpadded!k)) if k-lt: k<length (pad-WEST-reg ϕ) for k

using k-lt pwr-is
by fastforce

have length (pad-WEST-reg ϕ ! k ! i) =
WEST-num-vars ϕ if i-is: i<length (pad-WEST-reg ϕ ! k) ∧k<length

(pad-WEST-reg ϕ)
for i k

proof −
{assume ∗: length (?unpadded!k) < ?complen

then have pad-is: (pad-WEST-reg ϕ ! k) = (?unpadded!k) @ arbitrary-trace
?num-vars (?complen − length (?unpadded!k))

using pwr-k-is that by presburger
have regtrace1 : trace-regex-of-vars (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) (WEST-num-vars ϕ)

unfolding arbitrary-trace.simps
trace-regex-of-vars-def
by auto

have regtrace2 : trace-regex-of-vars (WEST-reg ϕ ! k) (WEST-num-vars ϕ)
using WEST-reg-num-vars[OF assms(1 )]

by (metis ‹length (WEST-reg ϕ) = length (pad-WEST-reg ϕ)› WEST-regex-of-vars-def
that)

have ?thesis
using pad-is
using regtrace-append[OF regtrace1 regtrace2 ]
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by (metis regtrace1 regtrace2 regtrace-append trace-regex-of-vars-def that)
} moreover {assume ∗: length (?unpadded!k) ≥ ?complen

then have (pad-WEST-reg ϕ ! k) = (?unpadded!k)
using pwr-k-is that by presburger

then have ?thesis
using WEST-reg-num-vars[OF assms(1 )]

by (metis ‹length (WEST-reg ϕ) = length (pad-WEST-reg ϕ)› WEST-regex-of-vars-def
trace-regex-of-vars-def that)

}
ultimately show ?thesis by linarith

qed
then have trace-regex-of-vars (pad-WEST-reg ϕ ! k)

(WEST-num-vars ϕ) if k-lt: k<length (pad-WEST-reg ϕ) for k
unfolding trace-regex-of-vars-def
using k-lt by auto

then have WEST-regex-of-vars (pad-WEST-reg ϕ)
(WEST-num-vars ϕ)

unfolding WEST-regex-of-vars-def
by blast

then show ?thesis
using WEST-correct-pad-aux[OF assms]
unfolding simp-pad-WEST-reg.simps
using simp-correct[of (pad-WEST-reg ϕ) (WEST-num-vars ϕ) π]
by blast

qed

end

4 Key algorithms for WEST
theory Regex-Equivalence

imports WEST-Algorithms WEST-Proofs

begin

fun depth-dataype-list:: state-regex ⇒ nat
where depth-dataype-list [] = 0
| depth-dataype-list (One#T ) = 1 + depth-dataype-list T
| depth-dataype-list (Zero#T ) = 1 + depth-dataype-list T
| depth-dataype-list (S#T ) = 2 + 2∗(depth-dataype-list T )

function enumerate-list:: state-regex ⇒ trace-regex
where enumerate-list [] = [[]]
| enumerate-list (One#T ) = (map (λx. One#x) (enumerate-list T ))
| enumerate-list (Zero#T ) = (map (λx. Zero#x) (enumerate-list T ))
| enumerate-list (S#T ) = (enumerate-list (Zero#T ))@(enumerate-list (One#T ))
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apply (metis WEST-and-bitwise.elims list.exhaust)
by simp-all

termination apply (relation measure (λL. depth-dataype-list L))
by simp-all

fun flatten-list:: ′a list list ⇒ ′a list
where flatten-list L = foldr (@) L []

value flatten-list [[12 , 13 ::nat], [15 ]]

value flatten-list (let enumerate-H = enumerate-list [S , One] in
let enumerate-T = [[]] in
map (λt. (map (λh. h#t) enumerate-H )) enumerate-T )

fun enumerate-trace:: trace-regex ⇒ WEST-regex
where enumerate-trace [] = [[]]
| enumerate-trace (H#T ) = flatten-list
(let enumerate-H = enumerate-list H in
let enumerate-T = enumerate-trace T in
map (λt. (map (λh. h#t) enumerate-H )) enumerate-T )

value enumerate-trace [[S , One], [S ], [One]]
value enumerate-trace [[]]

fun enumerate-sets:: WEST-regex ⇒ trace-regex set
where enumerate-sets [] = {}
| enumerate-sets (h#T ) = (set (enumerate-trace h)) ∪ (enumerate-sets T )

fun naive-equivalence:: WEST-regex ⇒ WEST-regex ⇒ bool
where naive-equivalence A B = (A = B ∨ (enumerate-sets A) = (enumerate-sets

B))

5 Regex Equivalence Correctness
lemma enumerate-list-len-alt:

shows ∀ state ∈ set (enumerate-list state-regex).
length state = length state-regex

proof(induct state-regex)
case Nil
then show ?case by simp

next
case (Cons a state-regex)
{assume zero: a = Zero

then have ∀ state ∈ set (enumerate-list state-regex).
length state = length state-regex

using Cons by blast
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then have ?case unfolding zero
by simp

} moreover {
assume one: a = One
then have ∀ state ∈ set (enumerate-list state-regex).

length state = length state-regex
using Cons by blast

then have ?case unfolding one
by simp

} moreover {
assume s: a = S
then have ∀ state ∈ set (enumerate-list state-regex).

length state = length state-regex
using Cons by blast

then have ?case unfolding s by auto
}
ultimately show ?case

using WEST-bit.exhaust by blast
qed

lemma enumerate-list-len:
assumes state ∈ set (enumerate-list state-regex)
shows length state = length state-regex
using assms enumerate-list-len-alt by blast

lemma enumerate-list-prop:
assumes (

∧
k. List.member j k =⇒ k 6= S)

shows enumerate-list j = [j]
using assms

proof (induct j)
case Nil
then show ?case by auto

next
case (Cons h t)
then have elt: enumerate-list t = [t]

by (simp add: member-rec(1 ))
then have h = One ∨ h = Zero

using Cons
by (meson WEST-bit.exhaust member-rec(1 ))

then show ?case using enumerate-list.simps(2−3 ) elt
by fastforce

qed

lemma enumerate-fixed-trace:
fixes h1 :: trace-regex
assumes

∧
j. List.member h1 j =⇒ (

∧
k. List.member j k =⇒ k 6= S)
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shows (enumerate-trace h1 ) = [h1 ]
using assms

proof (induct h1 )
case Nil
then show ?case by auto

next
case (Cons h t)
then have ind: enumerate-trace t = [t]

by (meson member-rec(1 ))
have enumerate-list h = [h]

using enumerate-list-prop Cons
by (meson member-rec(1 ))

then show ?case
using Cons ind unfolding enumerate-trace.simps
by auto

qed

If we have two state regexs that don’t contain S’s, then enumerate trace
on each is different.
lemma enum-trace-prop:

fixes h1 h2 :: trace-regex
assumes

∧
j. List.member h1 j =⇒ (

∧
k. List.member j k =⇒ k 6= S)

assumes
∧

j. List.member h2 j =⇒ (
∧

k. List.member j k =⇒ k 6= S)
assumes (set h1 ) 6= (set h2 )
shows set (enumerate-trace h1 ) 6= set (enumerate-trace h2 )
using enumerate-fixed-trace[of h1 ] enumerate-fixed-trace[of h2 ] assms
by auto

lemma enumerate-list-tail-in:
assumes head-t#tail-t ∈ set (enumerate-list (h#trace))
shows tail-t ∈ set (enumerate-list trace)

proof−
{assume one: h = One

have ?thesis
using assms unfolding one enumerate-list.simps by auto

} moreover {
assume zero: h = Zero
have ?thesis

using assms unfolding zero enumerate-list.simps by auto
} moreover {

assume s: h = S
have ?thesis

using assms unfolding s enumerate-list.simps by auto
}
ultimately show ?thesis using WEST-bit.exhaust by blast

qed

lemma enumerate-list-fixed:
assumes t ∈ set (enumerate-list trace)
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shows (∀ k. List.member t k −→ k 6= S)
using assms

proof (induct trace arbitrary: t)
case Nil
then show ?case using member-rec(2 ) by force

next
case (Cons h trace)
obtain head-t tail-t where obt: t = head-t#tail-t

using Cons.prems enumerate-list-len
by (metis length-0-conv neq-Nil-conv)

have tail-t ∈ set (enumerate-list trace)
using enumerate-list.simps obt Cons.prems enumerate-list-tail-in by blast

then have hyp: ∀ k. List.member tail-t k −→ k 6= S
using Cons.hyps(1 )[of tail-t] by auto

{assume one: h = One
then have head-t = One

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (simp add: member-rec(1 ))

} moreover {
assume zero: h = Zero
then have head-t = Zero

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (simp add: member-rec(1 ))

} moreover {
assume s: h = S
then have head-t = Zero ∨ head-t = One

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (metis calculation(1 ) calculation(2 ) member-rec(1 ) s)

}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma map-enum-list-nonempty:
fixes t::WEST-bit list list
fixes head::WEST-bit list
shows map (λh. h # t) (enumerate-list head) 6= []

proof(induct head arbitrary: t)
case Nil
then show ?case by simp

next
case (Cons a head)
{assume a: a = One
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then have ?case unfolding a enumerate-list.simps
using Cons by auto

} moreover {
assume a: a = Zero
then have ?case unfolding a enumerate-list.simps

using Cons by auto
} moreover {

assume a: a = S
then have ?case unfolding a enumerate-list.simps

using Cons by auto
}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma length-of-flatten-list:
assumes flat =

foldr (@)
(map (λt. map (λh. h # t) H ) T ) []

shows length flat = length T ∗ length H
using assms

proof (induct T arbitrary: flat)
case Nil
then show ?case by auto

next
case (Cons t1 T2 )
then have flat = foldr (@)

(map (λt. map (λh. h # t) H ) (t1 # T2 )) []
by auto

then have flat = foldr (@)
(map (λh. h # t1 ) H #(map (λt. map (λh. h # t) H ) T2 )) []
by auto

then have flat = map (λh. h # t1 ) H @ (foldr (@) (map (λt. map (λh. h # t)
H ) T2 )) []

by simp
then have length flat = length H + length (T2 ) ∗ length H

using Cons by auto
then show ?case by simp

qed

lemma flatten-list-idx:
assumes flat = flatten-list (map (λt. map (λh. h # t) head) tail)
assumes i < length tail
assumes j < length head
shows (head!j)#(tail!i) = flat!(i∗(length head) + j) ∧ i∗(length head) + j <

length flat
using assms

156



proof(induct tail arbitrary: head i j flat)
case Nil
then show ?case

by auto
next

case (Cons a tail)
let ?flat = flatten-list (map (λt. map (λh. h # t) head) tail)
have cond1 : ?flat = ?flat by auto
have equiv: (map (λt. map (λh. h # t) head) (a # tail)) =

(map (λh. h # a) head) # (map (λt. map (λh. h # t) head) tail)
by auto

then have flat-is: flat = (map (λh. h # a) head) @ flatten-list (map (λt. map
(λh. h # t) head) tail)

using Cons(2 ) unfolding flatten-list.simps by simp

{assume i0 : i = 0
then have bound: i ∗ length head + j < length flat

using Cons by simp
have length (map (λh. h # a) head) > j
using Cons(4 ) by auto

then have (map (λh. h # a) head) ! j = flat ! j
using flat-is
by (simp add: nth-append)

then have (head ! j)#a = flat ! j
using Cons(4 ) by simp

then have head ! j # (a # tail) ! i = flat ! (i ∗ length head + j)
unfolding i0 by simp

then have ?case using bound by auto
} moreover {

assume i-ge-0 : i > 0
have len-flat: length flat = length head ∗ length (a # tail)
using Cons(3−4 ) length-of-flatten-list[of flat head a#tail]
Cons(2 ) unfolding flatten-list.simps

by simp
have i ∗ length head ≤ (length (a # tail) − 1 )∗length head

using Cons(3 ) by auto
then have i ∗ length head ≤ (length (a # tail))∗length head − length head

by auto
then have i ∗ length head + j < (length (a # tail))∗length head − length head

+ length head
using Cons(4 ) by linarith

then have i ∗ length head + j < (length (a # tail))∗length head
by auto

then have bound: i ∗ length head + j < length flat
using len-flat
by (simp add: mult.commute)

have i-minus: i − 1 < length tail
using i-ge-0 Cons(3 )
by auto
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have flat ! (i ∗ length head + j) = flat ! ((i−1 ) ∗ length head + j + length
head)

using i-ge-0
by (smt (z3 ) add.commute bot-nat-0 .not-eq-extremum group-cancel.add1

mult-eq-if )
then have flat ! (i ∗ length head + j) = flatten-list
(map (λt. map (λh. h # t) head) tail) !
((i − 1 ) ∗ length head + j)

using flat-is
by (smt (verit, ccfv-threshold) add.commute length-map nth-append-length-plus)
then have flat ! (i ∗ length head + j) = head ! j # tail ! (i − 1 )

using Cons.hyps[OF cond1 i-minus Cons(4 )]
by argo

then have access: head ! j # (a # tail) ! i =
flat ! (i ∗ length head + j)

using i-ge-0
by simp

have ?case
using bound access
by auto

}
ultimately show ?case by blast

qed

lemma flatten-list-shape:
assumes List.member flat x1
assumes flat = flatten-list (map (λt. map (λh. h # t) H ) T )
shows ∃ x1-head x1-tail. x1 = x1-head#x1-tail ∧ List.member H x1-head ∧

List.member T x1-tail
using assms

proof(induction T arbitrary: flat H )
case Nil
have flat = (flatten-list (map (λt. map (λh. h # t) H ) []))

using Nil(1 ) unfolding Nil by blast
then have flat = []

by simp
then show ?case

using Nil
by (simp add: member-rec(2 ))

next
case (Cons a T )
have ∃ k. x1 = flat ! k ∧ k < length flat

using Cons(2 )
by (metis in-set-conv-nth member-def )

then obtain k where k-is: x1 = flat ! k ∧ k < length flat
by auto

have len-flat: length flat = (length (a#T )∗length H )
using Cons(3 ) length-of-flatten-list
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by auto
let ?j = k mod (length H )
have ∃ i . k = (i∗(length H )+?j)

by (meson mod-div-decomp)
then obtain i where i-is: k = (i∗(length H )+?j)

by auto
then have i-lt: i < length (a#T )

using len-flat k-is
by (metis add-lessD1 mult-less-cancel2 )

have j-lt: ?j < length H
by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor

mult-0-right)
have ∃ i < length (a # T ). k = (i∗(length H )+?j)

using i-is i-lt by blast
then have ∃ i < length (a # T ). ∃ j < length H . k = (i∗(length H )+j)

using j-lt by blast
then obtain i j where ij-props: i < length (a#T ) j < length H k = (i∗(length

H )+j)
by blast

then have flat ! k = H ! j # (a # T ) ! i
using flatten-list-idx[OF Cons(3 ) ij-props(1 ) ij-props(2 ) ]

Cons(2 ) k-is ij-props(3 )
by argo

then obtain x1-head x1-tail where x1 = x1-head#x1-tail
and List.member H x1-head and List.member (a#T ) x1-tail

using ij-props
by (simp add: index-of-L-in-L k-is)

then show ?case
using Cons(3 ) by simp

qed

lemma flatten-list-len:
assumes

∧
t. List.member T t =⇒ length t = n

assumes flat = flatten-list (map (λt. map (λh. h # t) H ) T )
shows

∧
x1 . List.member flat x1 =⇒ length x1 = n+1

using assms
proof(induction T arbitrary: flat n H )

case Nil
have flat = (flatten-list (map (λt. map (λh. h # t) H ) []))

using Nil(1 ) unfolding Nil(3 ) by blast
then have flat = []

by simp
then show ?case

using Nil by (simp add: member-rec(2 ))
next

case (Cons a T )
have ∃ k. x1 = flat ! k ∧ k < length flat

using Cons(2 )
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by (metis in-set-conv-nth member-def )
then obtain k where k-is: x1 = flat ! k ∧ k < length flat

by auto
have len-flat: length flat = (length (a#T )∗length H )

using Cons(4 ) length-of-flatten-list
by auto

let ?j = k mod (length H )
have ∃ i . k = (i∗(length H )+?j)

by (meson mod-div-decomp)
then obtain i where i-is: k = (i∗(length H )+?j)

by auto
then have i-lt: i < length (a#T )

using len-flat k-is
by (metis add-lessD1 mult-less-cancel2 )

have j-lt: ?j < length H
by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor

mult-0-right)
have ∃ i < length (a # T ). k = (i∗(length H )+?j)

using i-is i-lt by blast
then have ∃ i < length (a # T ). ∃ j < length H . k = (i∗(length H )+j)

using j-lt by blast
then obtain i j where ij-props: i < length (a#T ) j < length H k = (i∗(length

H )+j)
by blast

then have flat ! k = H ! j # (a # T ) ! i
using flatten-list-idx[OF Cons(4 ) ij-props(1 ) ij-props(2 ) ]

Cons(2 ) k-is ij-props(3 )
by argo

then obtain x1-head x1-tail where x1 = x1-head#x1-tail
and List.member H x1-head and List.member (a#T ) x1-tail

using ij-props
by (simp add: index-of-L-in-L k-is)

then show ?case
using Cons(3 ) by simp

qed

lemma flatten-list-lemma:
assumes

∧
x1 . List.member to-flatten x1 =⇒ (

∧
x2 . List.member x1 x2 =⇒

length x2 = length trace)
assumes a ∈ set (flatten-list to-flatten)
shows length a = length trace
using assms proof (induct to-flatten)
case Nil
then show ?case by auto

next
case (Cons h t)
have a-in: a ∈ set h ∨ a ∈ set (flatten-list t)

using Cons(3 ) unfolding flatten-list.simps foldr-def by simp
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{assume ∗: a ∈ set h
then have ?case

using Cons(2 )[of h]
by (simp add: in-set-member member-rec(1 ))

} moreover {assume ∗: a ∈ set (flatten-list t)
have ind-h-setup: (

∧
x1 x2 . List.member t x1 =⇒ List.member x1 x2 =⇒

length x2 = length trace)
using Cons(2 ) by (meson member-rec(1 ))

have a ∈ set (flatten-list t) =⇒ length a = length trace
using Cons(1 ) ind-h-setup
by auto

then have ?case
using ∗ by auto

}
ultimately show ?case

using a-in by blast
qed

lemma enumerate-trace-len:
assumes a ∈ set (enumerate-trace trace)
shows length a = length trace
using assms

proof(induct length trace arbitrary: trace a)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h t where trace-is: trace = h#t

by (meson Suc-length-conv)
obtain i where (enumerate-trace trace)!i = a

using Suc.prems
by (meson in-set-conv-nth)

let ?enumerate-H = enumerate-list h
let ?enumerate-t = enumerate-trace t
have enum-tr-is: enumerate-trace trace =

flatten-list (map (λt. map (λh. h # t) ?enumerate-H ) ?enumerate-t)
using trace-is by auto

let ?to-flatten = map (λt. map (λh. h # t) ?enumerate-H ) ?enumerate-t

have all-w: (
∧

w. List.member (enumerate-trace t) w =⇒ length w = length t)
using Suc(1 )[of t] Suc(2 ) trace-is
by (simp add: in-set-member)

have a-mem: List.member (enumerate-trace trace) a
using Suc(3 ) in-set-member by fast

show ?case
using flatten-list-len[OF - enum-tr-is a-mem, of length t] all-w
trace-is by simp

qed
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definition regex-zeros-and-ones:: trace-regex ⇒ bool
where regex-zeros-and-ones tr =
(∀ j. List.member tr j −→ (∀ k. List.member j k −→ k 6= S))

lemma match-enumerate-state-aux-first-bit:
assumes a-head = Zero ∨ a-head = One
assumes a-head # a-tail ∈ set (enumerate-list (h-head # h))
shows h-head = a-head ∨ h-head = S

proof−
{assume h-head: h-head = One

then have ?thesis
using assms unfolding h-head enumerate-list.simps by auto

} moreover {
assume h-head: h-head = Zero
then have ?thesis

using assms unfolding h-head enumerate-list.simps by auto
} moreover {

assume h-head = S
then have ?thesis by auto

}
ultimately show ?thesis using WEST-bit.exhaust by blast

qed

lemma advance-state-iff :
assumes x > 0
shows x ∈ state ←→ (x−1 ) ∈ advance-state state

proof−
have forward: x ∈ state −→ (x−1 ) ∈ advance-state state

using assms by auto
have converse: (x−1 ) ∈ advance-state state −→ x ∈ state

unfolding advance-state.simps using assms
by (smt (verit, best) Suc-diff-1 diff-0-eq-0 diff-Suc-1 ′ diff-self-eq-0 less-one

mem-Collect-eq nat.distinct(1 ) not0-implies-Suc not-gr-zero old.nat.exhaust)
show ?thesis using forward converse by blast

qed

lemma match-enumerate-state-aux:
assumes a ∈ set (enumerate-list h)
assumes match-timestep state a
shows match-timestep state h
using assms

proof(induct h arbitrary: state a)
case Nil
have a = []

using Nil by auto
then show ?case using Nil by blast

next
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case (Cons h-head h)
then obtain a-head a-tail where obt: a = a-head#a-tail

using enumerate-list-len Cons
by (metis length-0-conv list.exhaust)

let ?adv-state = advance-state state
{assume in-state: 0 ∈ state

then have a-head = One
using Cons.prems(2 ) unfolding obt match-timestep-def
using enumerate-list-fixed

by (metis WEST-bit.exhaust Cons(2 ) length-pos-if-in-set list.set-intros(1 )
member-rec(1 ) nth-Cons-0 obt)

then have h-head: h-head = One ∨ h-head = S
using Cons.prems(1 ) unfolding obt
using match-enumerate-state-aux-first-bit by blast

have match-adv: match-timestep (advance-state state) h
using Cons.hyps[of a-tail ?adv-state]
using Cons.prems(1 ) Cons.prems(2 ) advance-state-match-timestep enumer-

ate-list-tail-in obt by blast
have

∧
x. x<length (h-head # h) =⇒

((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (h-head # h)
let ?thesis = ((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

{assume x0 : x = 0
then have ?thesis unfolding x0 using h-head in-state by auto

} moreover {
assume x-ge-0 : x > 0
then have x−1 < length h

using x by simp
then have ∗:(h ! (x−1 ) = One −→ (x−1 ) ∈ advance-state state) ∧

(h ! (x−1 ) = Zero −→ (x−1 ) /∈ advance-state state)
using match-adv unfolding match-timestep-def by blast

have h ! (x−1 ) = (h-head # h) ! x using x-ge-0 by auto
then have ∗: ((h-head # h) ! x = One −→ (x−1 ) ∈ advance-state state) ∧

((h-head # h) ! x = Zero −→ (x−1 ) /∈ advance-state state)
using ∗ by argo

then have ?thesis using advance-state-iff x-ge-0 by blast
}
ultimately show ?thesis by blast

qed
then have ?case

using h-head unfolding match-timestep-def by blast
} moreover {

assume not-in: 0 /∈ state
then have a-head = Zero

using Cons.prems(2 ) unfolding obt match-timestep-def
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using enumerate-list-fixed
by (metis WEST-bit.exhaust Cons(2 ) length-pos-if-in-set list.set-intros(1 )

member-rec(1 ) nth-Cons-0 obt)
then have h-head: h-head = Zero ∨ h-head = S

using Cons.prems(1 ) unfolding obt
using match-enumerate-state-aux-first-bit by blast

have match-adv: match-timestep (advance-state state) h
using Cons.hyps[of a-tail ?adv-state]
using Cons.prems(1 ) Cons.prems(2 ) advance-state-match-timestep enumer-

ate-list-tail-in obt by blast
have

∧
x. x<length (h-head # h) =⇒

((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (h-head # h)
let ?thesis = ((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

{assume x0 : x = 0
then have ?thesis unfolding x0 using h-head not-in by auto

} moreover {
assume x-ge-0 : x > 0
then have x−1 < length h

using x by simp
then have ∗:(h ! (x−1 ) = One −→ (x−1 ) ∈ advance-state state) ∧

(h ! (x−1 ) = Zero −→ (x−1 ) /∈ advance-state state)
using match-adv unfolding match-timestep-def by blast

have h ! (x−1 ) = (h-head # h) ! x using x-ge-0 by auto
then have ∗: ((h-head # h) ! x = One −→ (x−1 ) ∈ advance-state state) ∧

((h-head # h) ! x = Zero −→ (x−1 ) /∈ advance-state state)
using ∗ by argo

then have ?thesis using advance-state-iff x-ge-0 by blast
}
ultimately show ?thesis by blast

qed
then have ?case

using h-head unfolding match-timestep-def by blast
}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma enumerate-list-index-one:
assumes j < length (enumerate-list a)
shows One # enumerate-list a ! j = enumerate-list (S # a) ! (length (enumerate-list

a) + j) ∧
(length (enumerate-list a) + j < length (enumerate-list (S # a)))

using assms
proof(induct a arbitrary: j)
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case Nil
then show ?case by auto

next
case (Cons a1 a2 )
then show ?case unfolding enumerate-list.simps

by (metis (mono-tags, lifting) length-append length-map nat-add-left-cancel-less
nth-append-length-plus nth-map)
qed

lemma list-concat-index:
assumes j < length L1
shows (L1@L2 )!j = L1 !j
using assms
by (simp add: nth-append)

lemma enumerate-list-index-zero:
assumes j < length (enumerate-list a)
shows Zero # enumerate-list a ! j = enumerate-list (S # a) ! j ∧

j < length (enumerate-list (S # a))
using assms unfolding enumerate-list.simps

proof(induct a arbitrary: j)
case Nil
then show ?case by simp

next
case (Cons a1 a2 )
then have j-bound: j < length (enumerate-list (S # a1 # a2 ))

by simp
let ?subgoal = Zero # enumerate-list (a1 # a2 ) ! j = enumerate-list (S # a1

# a2 ) ! j
have j < length (map ((#) Zero) (enumerate-list (a1 # a2 )))

using j-bound Cons by simp
then have (((map ((#) Zero) (enumerate-list (a1 # a2 )) @

map ((#) One) (enumerate-list (a1 # a2 )))) !
j) = (map ((#) Zero) (enumerate-list (a1 # a2 )))!j
using Cons.prems j-bound list-concat-index by blast

then have ?subgoal using Cons unfolding enumerate-list.simps
by simp

then show ?case using j-bound by auto
qed

lemma match-enumerate-list:
assumes match-timestep state a
shows ∃ j<length (enumerate-list a).

match-timestep state (enumerate-list a ! j)
using assms

proof(induct a arbitrary: state)
case Nil
then show ?case by simp

165



next
case (Cons head a)
let ?adv-state = advance-state state
{assume in-state: 0 ∈ state

then have (head # a) ! 0 6= Zero
using Cons.prems unfolding match-timestep-def by blast

then have head: head = One ∨ head = S
using WEST-bit.exhaust by auto

have match-timestep ?adv-state a
using Cons.prems
using advance-state-match-timestep by auto

then obtain j where obt: match-timestep ?adv-state (enumerate-list a ! j)
∧ j < length (enumerate-list a)

using Cons.hyps[of ?adv-state] by blast
let ?state = (enumerate-list a ! j)
{assume headcase: head = One

let ?s = One # ?state
have

∧
x. x<length ?s =⇒

((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using in-state by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (One = One −→ 0 ∈ state) ∧ (One = Zero −→ 0 /∈ state)

using in-state by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (One # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of One state ?state, OF cond1 cond2 ] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase in-state unfolding match-timestep-def by blast
have (map ((#) One) (enumerate-list a) ! j) = One # (enumerate-list a ! j)

using obt by simp
then have ?case unfolding headcase enumerate-list.simps

using match obt by auto
} moreover {

assume headcase: head = S
let ?s = One # ?state
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have
∧

x. x<length ?s =⇒
((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))

proof−
fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using in-state by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (One = One −→ 0 ∈ state) ∧ (One = Zero −→ 0 /∈ state)

using in-state by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (One # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of One state ?state, OF cond1 cond2 ] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase in-state unfolding match-timestep-def by blast
have

∧
x. x<length (S # enumerate-list a ! j) =⇒

((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (S # enumerate-list a ! j)
let ?thesis = ((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)
{assume x0 : x = 0

then have ?thesis by auto
} moreover {

assume x-ge-0 : x > 0
then have ?thesis using x match unfolding match-timestep-def by simp

}
ultimately show ?thesis by blast

qed
then have match-S : match-timestep state (S # enumerate-list a ! j)

using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)

using obt by blast
have ?s = enumerate-list (S # a)!((length (enumerate-list a))+j)

∧ (length (enumerate-list a))+j < length (enumerate-list (S # a))
using j-bound enumerate-list-index-one by blast

then have ?case unfolding headcase
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using match obt match-S by metis
}
ultimately have ?case using head by blast

} moreover {
assume not-in: 0 /∈ state
then have (head # a) ! 0 6= One

using Cons.prems unfolding match-timestep-def by blast
then have head: head = Zero ∨ head = S

using WEST-bit.exhaust by auto
have match-timestep ?adv-state a

using Cons.prems
using advance-state-match-timestep by auto

then obtain j where obt: match-timestep ?adv-state (enumerate-list a ! j)
∧ j < length (enumerate-list a)

using Cons.hyps[of ?adv-state] by blast
let ?state = (enumerate-list a ! j)
{assume headcase: head = Zero

let ?s = Zero # ?state
have

∧
x. x<length ?s =⇒

((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using not-in headcase by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (Zero = One −→ 0 ∈ state) ∧ (Zero = Zero −→ 0 /∈ state)

using not-in by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (Zero # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of Zero state ?state, OF cond1 cond2 ] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase not-in unfolding match-timestep-def by blast
have ?case unfolding headcase enumerate-list.simps

using match obt by auto
} moreover {

assume headcase: head = S
let ?s = Zero # ?state
have

∧
x. x<length ?s =⇒
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((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using not-in by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (Zero = One −→ 0 ∈ state) ∧ (Zero = Zero −→ 0 /∈ state)

using not-in by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (Zero # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of Zero state ?state, OF cond1 cond2 ] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase not-in unfolding match-timestep-def by blast
have

∧
x. x<length (S # enumerate-list a ! j) =⇒

((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (S # enumerate-list a ! j)
let ?thesis = ((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)
{assume x0 : x = 0

then have ?thesis by auto
} moreover {

assume x-ge-0 : x > 0
then have ?thesis using x match unfolding match-timestep-def by simp

}
ultimately show ?thesis by blast

qed
then have match-S : match-timestep state (S # enumerate-list a ! j)

using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)

using obt by blast
have ?s = enumerate-list (S # a)!(j)

∧ j < length (enumerate-list (S # a))
using j-bound enumerate-list-index-zero by blast

then have ?case unfolding headcase
using match obt match-S by metis
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}
ultimately have ?case using head by blast

}
ultimately show ?case by blast

qed

lemma enumerate-trace-head-in:
assumes a-head # a-tail ∈ set (enumerate-trace (h # trace))
shows a-head ∈ set (enumerate-list h)

proof −
let ?flat = flatten-list
(map (λt. map (λh. h # t)

(enumerate-list h))
(enumerate-trace trace))

have flat-is: ?flat = ?flat
by auto

have mem: List.member
?flat
(a-head # a-tail)
using assms unfolding enumerate-trace.simps
using in-set-member by metis

then obtain x1-head x1-tail where
x1-props: a-head # a-tail = x1-head # x1-tail ∧

List.member (enumerate-list h) x1-head ∧
List.member (enumerate-trace trace) x1-tail
using flatten-list-shape[OF mem flat-is] by auto

then have a-head = x1-head
by auto

then have List.member (enumerate-list h) a-head
using x1-props
by auto

then show ?thesis
using in-set-member
by fast

qed

lemma enumerate-trace-tail-in:
assumes a-head # a-tail ∈ set (enumerate-trace (h # trace))
shows a-tail ∈ set (enumerate-trace trace)

proof −
let ?flat = flatten-list
(map (λt. map (λh. h # t)

(enumerate-list h))
(enumerate-trace trace))

have flat-is: ?flat = ?flat
by auto

have mem: List.member
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?flat
(a-head # a-tail)
using assms unfolding enumerate-trace.simps
using in-set-member by metis

then obtain x1-head x1-tail where
x1-props: a-head # a-tail = x1-head # x1-tail ∧

List.member (enumerate-list h) x1-head ∧
List.member (enumerate-trace trace) x1-tail
using flatten-list-shape[OF mem flat-is] by auto

then have a-tail = x1-tail
by auto

then have List.member (enumerate-trace trace) a-tail
using x1-props
by auto

then show ?thesis
using in-set-member
by fast

qed

Intuitively, this says that the traces in enumerate trace h are “more
specific” than h, which is “more generic”—i.e., h matches everything that
each element of enumerate trace h matches.
lemma match-enumerate-trace-aux:

assumes a ∈ set (enumerate-trace trace)
assumes match-regex π a
shows match-regex π trace

proof −
show ?thesis using assms proof (induct trace arbitrary: a π)

case Nil
then show ?case by auto

next
case (Cons h trace)
then obtain a-head a-tail where obt-a: a = a-head#a-tail

using enumerate-trace-len
by (metis length-0-conv neq-Nil-conv)

have length π > 0
using Cons unfolding match-regex-def obt-a by auto

then obtain π-head π-tail where obt-π: π = π-head#π-tail
using min-list.cases by auto

have cond1 : a-tail ∈ set (enumerate-trace trace)
using Cons.prems(1 ) unfolding obt-a
using enumerate-trace-tail-in by blast

have cond2 : match-regex π-tail a-tail
using Cons.prems(2 ) unfolding obt-a obt-π match-regex-def by auto

have match-tail: match-regex π-tail trace
using Cons.hyps[OF cond1 cond2 ] by blast

have a-head: a-head ∈ set (enumerate-list h)
using Cons.prems(1 ) unfolding obt-a
using enumerate-trace-head-in by blast

171



have match-timestep π-head a-head
using Cons.prems(2 ) unfolding obt-π match-regex-def
using obt-a by auto

then have match-head: match-timestep π-head h
using match-enumerate-state-aux[of a-head h π-head] a-head by blast

have
∧

time. time<length (h # trace) =⇒
match-timestep ((π-head # π-tail) ! time) ((h # trace) ! time)

proof−
fix time
assume time: time<length (h # trace)
let ?thesis = match-timestep ((π-head # π-tail) ! time) ((h # trace) ! time)
{assume time0 : time = 0

then have ?thesis using match-head by simp
} moreover {

assume time-ge-0 : time > 0
then have ?thesis

using match-tail time-ge-0 time unfolding match-regex-def by simp
}
ultimately show ?thesis by blast

qed
then show ?case using match-tail unfolding match-regex-def obt-a obt-π

by simp
qed

qed

lemma match-enumerate-trace:
assumes a ∈ set (enumerate-trace h) ∧ match-regex π a
shows match π (h # T )

proof−
show ?thesis

unfolding match-def
using match-enumerate-trace-aux assms
by auto

qed

lemma match-enumerate-sets1 :
assumes (∃ r ∈ (enumerate-sets R). match-regex π r)
shows (match π R)
using assms

proof (induct R)
case Nil
then show ?case by simp

next
case (Cons h T )
then obtain a where a-prop: a∈set (enumerate-trace h) ∪ enumerate-sets T ∧

match-regex π a
by auto
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{ assume ∗: a ∈ set (enumerate-trace h)
then have ?case

using match-enumerate-trace a-prop
by blast

} moreover {assume ∗: a ∈ enumerate-sets T
then have match π T

using Cons a-prop by blast
then have ?case

by (metis Suc-leI le-imp-less-Suc length-Cons match-def nth-Cons-Suc)
}
ultimately show ?case

using a-prop by auto
qed

lemma match-cases:
assumes match π (a # R)
shows match π [a] ∨ match π R

proof−
obtain i where obt: match-regex π ((a # R)!i) ∧ i < length (a # R)

using assms unfolding match-def by blast
{assume i0 : i = 0

then have ?thesis
using assms unfolding match-def using obt by simp

} moreover {
assume i-ge-0 : i > 0
then have match-regex π (R ! (i−1 ))

using assms obt unfolding match-def by simp
then have match π R

unfolding match-def using obt i-ge-0
by (metis Suc-diff-1 Suc-less-eq length-Cons)

then have ?thesis by blast
}
ultimately show ?thesis using assms unfolding match-def by blast

qed

lemma enumerate-trace-decompose:
assumes state ∈ set (enumerate-list h)
assumes trace ∈ set (enumerate-trace T )
shows state#trace ∈ set (enumerate-trace (h#T ))

proof−
let ?enumh = enumerate-list h
let ?enumT = enumerate-trace T
let ?flat = flatten-list (map (λt. map (λh. h # t) ?enumh) ?enumT )
have enum: enumerate-trace (h#T ) = ?flat

unfolding enumerate-trace.simps by simp
obtain i where i: ?enumT !i = trace ∧ i < length ?enumT

using assms(2 ) by (meson in-set-conv-nth)
obtain j where j: ?enumh!j = state ∧ j < length ?enumh
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using assms(1 ) by (meson in-set-conv-nth)
have enumerate-list h ! j # enumerate-trace T ! i =

flatten-list (map (λt. map (λh. h # t) (enumerate-list h)) (enumerate-trace T ))
!

(i ∗ length (enumerate-list h) + j) ∧
i ∗ length (enumerate-list h) + j
< length

(flatten-list
(map (λt. map (λh. h # t) (enumerate-list h)) (enumerate-trace T )))

using flatten-list-idx[of ?flat ?enumh ?enumT i j] enum i j by blast
then show ?thesis

using i j enum by simp
qed

lemma match-enumerate-trace-aux-converse:
assumes match-regex π trace
shows match π (enumerate-trace trace)
using assms

proof(induct trace arbitrary: π)
case Nil
have enum: enumerate-trace [] = [[]]

by simp
show ?case unfolding enum match-def match-regex-def by auto

next
case (Cons a trace)
have length π > 0

using Cons.prems unfolding match-regex-def by auto
then obtain pi-head pi-tail where pi-obt: π = pi-head#pi-tail

using list.exhaust by auto
have cond: match-regex pi-tail trace

using Cons.prems pi-obt unfolding match-regex-def by auto
then have match-tail: match pi-tail (enumerate-trace trace)

using Cons.hyps by blast
then obtain i where obt-i: match-regex pi-tail (enumerate-trace trace ! i) ∧

i<length (enumerate-trace trace)
unfolding match-def by blast

let ?enum-tail = (enumerate-trace trace ! i)

have match-head: match-timestep pi-head a
using Cons.prems unfolding match-regex-def
by (metis Cons.prems WEST-and-trace-correct-forward-aux nth-Cons ′ pi-obt)

then have ∃ j < length (enumerate-list a).
match-timestep pi-head ((enumerate-list a)!j)

using match-enumerate-list by blast
then obtain j where obt-j: match-timestep pi-head ((enumerate-list a)!j) ∧

j < length (enumerate-list a)
by blast

let ?enum-head = (enumerate-list a)!j
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have (?enum-head#?enum-tail) ∈ set(enumerate-trace (a # trace))
using enumerate-trace-decompose
by (meson in-set-conv-nth obt-i obt-j)

have match-tail: match-regex pi-tail ?enum-tail
using obt-i by blast

have match-head: match-timestep pi-head ((enumerate-list a)!j)
using obt-j by blast

have match: match-regex π (?enum-head#?enum-tail)
using match-head match-tail

using WEST-and-trace-correct-forward-aux-converse[OF pi-obt match-head match-tail]
by auto

let ?flat = flatten-list
(map (λt. map (λh. h # t) (enumerate-list a))
(enumerate-trace trace))

have enumerate-list a ! j # enumerate-trace trace ! i =
flatten-list
(map (λt. map (λh. h # t) (enumerate-list a)) (enumerate-trace trace)) !
(i ∗ length (enumerate-list a) + j) ∧
i ∗ length (enumerate-list a) + j
< length

(flatten-list
(map (λt. map (λh. h # t) (enumerate-list a)) (enumerate-trace trace)))

using flatten-list-idx[of ?flat enumerate-list a enumerate-trace trace i j]
using obt-i obt-j by blast

then show ?case
unfolding match-def using match
by auto

qed

lemma match-enumerate-sets2 :
assumes (match π R)
shows (∃ r ∈ enumerate-sets R. match-regex π r)
using assms

proof(induct R arbitrary: π)
case Nil
then show ?case unfolding match-def by auto

next
case (Cons a R)
have enumerate-sets (a # R) = set (enumerate-trace a) ∪ enumerate-sets R

unfolding enumerate-sets.simps by blast
{assume match-a: match π [a]

then have match-regex π a
unfolding match-def by simp

then have match π (enumerate-trace a)
using match-enumerate-trace-aux
using match-enumerate-trace-aux-converse by blast

then have ∃ b ∈ set (enumerate-trace a). match-regex π b
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unfolding match-def by auto
then have ?case by auto

} moreover {
assume match-R: match π R
then have ?case

using Cons by auto
}
ultimately show ?case

using Cons.prems match-cases by blast
qed

lemma match-enumerate-sets:
shows (∃ r ∈ enumerate-sets R. match-regex π r) ←→ (match π R)
using match-enumerate-sets1 match-enumerate-sets2
by blast

lemma regex-equivalence-correct1 :
assumes (naive-equivalence A B)
shows match π A = match π B
unfolding regex-equiv-def
using match-enumerate-sets[of A π] match-enumerate-sets[of B π]
using assms
unfolding naive-equivalence.simps
by blast

lemma regex-equivalence-correct:
shows (naive-equivalence A B) −→ (regex-equiv A B)
using regex-equivalence-correct1
unfolding regex-equiv-def
by metis

export-code naive-equivalence in Haskell module-name regex-equiv

end
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