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Abstract

Building on the formalization of Mission-time Linear Temporal
Logic (MLTL) in Isabelle/HOL, we formalize the correctness of the
algorithms for the WEST tool [1, 2], which converts MLTL formulas
to regular expressions. We use Isabelle/HOL’s code export to generate
Haskell code to validate the existing (unverified) implementation of the
WEST tool.
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1 Key algorithms for WEST

theory WEST-Algorithms
imports Mission-Time-LTL. MLTL-Properties

begin

1.1 Custom Types

datatype WEST-bit = Zero | One | S
type-synonym state = nat set

type-synonym trace = nat set list

type-synonym state-regex = WEST-bit list
type-synonym trace-regex = WEST-bit list list
type-synonym WEST-regex = WEST-bit list list list

1.2 Trace Regular Expressions

fun WEST-get-bit:: trace-regexr = nat = nat = WEST-bit
where WEST-get-bit regex timestep var = (
if timestep > length regex then S
else let regex-index = regex | timestep in
if var > length regex-index then S
else regex-index ! var



Returns the state at time i, list of variable states

fun WEST-get-state:: trace-regex = nat = nat = state-regex
where WEST-get-state regex time num-vars = (
if time > length regex then (map (A k. S) [0 ..< num-vars])
else regex | time

)
Checks if one state of a trace matches one timeslice of a WEST regex

definition match-timestep:: nat set = state-regex = bool

where match-timestep state regez-state = (¥ z:nat. © < length regez-state —
(

((regex-state | © = One) — z € state) A

((regez-state | © = Zero) — x ¢ state)))

fun trim-reversed-regex:: trace-regexr = trace-regex
where trim-reversed-regex [| = ||
| trim-reversed-regex (h#t) = (if (Vi<length h. (hli) = S5)
then (trim-reversed-regex t) else (h#t))

fun trim-regex:: trace-regex = trace-regex
where trim-regex regex = rev (trim-reversed-regex (rev regez))

definition match-regez:: nat set list = trace-regex = bool
where match-regex trace reger = ((V time<length regez.
(match-timestep (trace | time) (regex | time)))
A(length trace > length regex))

definition match:: nat set list = WEST-regex = bool
where match trace regex-list = (3 i. i < length regex-list N
(match-regex trace (regex-list | )))

lemma match-example:
shows match [{0::nat, 1}, {1}, {0}]
[
[[Zero, Zerol],
[[5,5], [S,One]]
| = True
proof—
let %regexList = [[[Zero,Zeroll,[[S,S], [S,One]]]
let ?trace = [{0::nat,1}, {1}, {0}]
have (match-regex ?trace (?regexList!1))
unfolding match-regez-def
by (simp add: match-timestep-def nth-Cons’)
then show ?thesis
by (metis One-nat-def add.commute le-imp-less-Suc le-numeral-extra(4) list.size(3)
list.size(4) match-def plus-1-eq-Suc)
qged



definition regez-equiv:: WEST-regex = WEST-regex = bool
where regez-equiv i1 12 = (
YV minat set list. (match 7 ril) <— (match m ri2))

lemma (regez-equiv [[[S,5]]]
[[[S, Onel],
[[One, S]],
[[Zero,Zero]]]) = True
proof —
have d1: match « [[[S, Onel], [[One, S]], [[Zero, Zero]]] if match: match 7 [[[S,
S)]] for =
proof —
have match-ss: match-regex 7 [[S, S]]
using match unfolding match-def
by (metis One-nat-def length-Cons less-one list.size(3) nth-Cons-0)
{assume x: = (match-regex © [[S, One]]) A = (match-regex w [[One, S])
have match-regex 7 [[Zero, Zero|]
using match-ss unfolding match-regex-def
by (smt (verit) * One-nat-def WEST-bit.simps(2) length-Cons less-2-cases
less-one list.size(3) match-regex-def match-timestep-def nth-Cons-0 nith-Cons-Suc
numeral-2-eq-2)
}
then show “thesis
unfolding match-def
by (metis length-Cons less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
qed
have d2: match = [[[S, S]] if match: match 7 [[[S, Onel], [[One, S]], [[Zero,
Zero)]] for 7
proof —
{assume *: match-regex 7 [[S, Onel]
then have match-regex m [[S, S]]
unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
} moreover {assume *: match-regex 7 [[One, S|
then have match-regex m [[S, S]]
unfolding match-regez-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
} moreover {assume x: match-regex 7 [[Zero, Zero|]



then have match-regex = [[S, S]]
unfolding match-regex-def
by (smt (verit) One-nat-def WEST-bit.distinct(5) length-Cons less-2-cases-iff
less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc numeral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
}

ultimately show ?thesis using match unfolding regex-equiv-def
by (smt (verit, del-insts) length-Cons less-Suc-eq-0-disj match-def nth-Cons-0
nth-Cons-Suc)
qed
show ?thesis using d1 d2
unfolding regez-equiv-def by metis
qed

1.3 WEST Operations

1.3.1 AND

fun WEST-and-bitwise:: WEST-bit =
WEST-bit =
WEST-bit option
where WEST-and-bitwise b One = (if b = Zero then None else Some One)
| WEST-and-bitwise b Zero = (if b = One then None else Some Zero)
| WEST-and-bitwise b S = Some b

fun WEST-and-state:: state-regex = state-regex = state-regex option
where WEST-and-state [] [| = Some |]
| WEST-and-state (h1#t1) (h2#t2) =
(case WEST-and-bitwise h1 h2 of
None = None
| Some b = (case WEST-and-state t1 t2 of
None = None
| Some L = Some (b#L)))
| WEST-and-state - - = None

fun WEST-and-trace:: trace-regex = trace-regex = trace-regex option
where WEST-and-trace trace [| = Some trace
| WEST-and-trace || trace = Some trace
| WEST-and-trace (h1#t1) (h2#t2) =
(case WEST-and-state h1 h2 of
None = None
| Some state = (case WEST-and-trace t1 t2 of
None = None
| Some trace = Some (state#trace)))



fun WEST-and-helper:: trace-regex = WEST-regex = WEST-regex
where WEST-and-helper trace [| = ||
| WEST-and-helper trace (t#traces) =
(case WEST-and-trace trace t of
None = WEST-and-helper trace traces
| Some res = res#( WEST-and-helper trace traces))

fun WEST-and:: WEST-regex = WEST-regex = WEST-regex
where WEST-and traceList [| = []
| WEST-and || traceList = ||
| WEST-and (trace#traceListl) traceList2 =
(case WEST-and-helper trace traceList2 of
[| = WEST-and traceListl traceList2
| traceList = traceListQ( WEST-and traceListl traceList2))

1.3.2 Simp

Bitwise simplification operation fun WEST-simp-bitwise:: WEST-bit =
WEST-bit = WEST-bit

where WEST-simp-bitwise b S = §

| WEST-simp-bitwise b Zero = (if b = Zero then Zero else S)

| WEST-simp-bitwise b One = (if b = One then One else S)

fun WEST-simp-state:: state-reger = state-reger = state-regex
where WEST-simp-state s1 s2 = (
map (A k. WEST-simp-bitwise (s1 1 k) (s2 1 k)) [0 ..< (length s1)])

fun WEST-simp-trace:: trace-regex = trace-regex = nat => trace-regex

where WEST-simp-trace tracel trace2 num-vars = (

map (A k. (WEST-simp-state (WEST-get-state tracel k num-vars) (WEST-get-state
trace2 k num-vars)))

[0 ..< (Maz {(length tracel), (length trace2)})])

Helper functions for defining WEST-simp fun count-nonS-trace:: state-regex
= nat

where count-nonS-trace [| = 0

| count-nonS-trace (h#t) = (if (h # S) then (I + (count-nonS-trace t)) else
(count-nonS-trace t))

fun count-diff-state:: state-regex = state-regex = nat

where count-diff-state [| [| = 0

| count-diff-state trace [| = count-nonS-trace trace

| count-diff-state [| trace = count-nonS-trace trace

| count-diff-state (h1#t1) (h2#t2) = (if (hl = h2) then (count-diff-state t1 t2)
else (1 + (count-diff-state t1 t2)))



fun count-diff:: trace-regex = trace-regex = nat
where count-diff [| [| = 0
| count-diff || (h#tt) = (count-diff-state || h) + (count-diff || )
| count-diff (h#tt) [| = (count-diff-state || h) + (count-diff || )
| count-diff (h1#tt1) (h24#t2) = (count-diff-state h1 h2) + (count-diff t1 t2)

fun check-simp:: trace-regex = trace-regex = bool
where check-simp tracel trace2 = ((count-diff tracel trace2) < 1 A length tracel
= length trace2)

fun enumerate-pairs :: nat list = (nat * nat) list where
enumerate-pairs [| = || |
enumerate-pairs (z#xs) = map (A\y. (z, y)) zs @ enumerate-pairs zs

fun enum-pairs:: 'a list = (nat x nat) list
where enum-pairs L = enumerate-pairs [0 ..< length L]

fun remove-element-at-index:: nat = 'a list = 'a list
where remove-element-at-index n L = (take n L)Q(drop (n+1) L)

This assumes (fst h) < (snd h)

fun update-L:: WEST-regex = (nat x nat) = nat = WEST-regex

where update-L L h num-vars =
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))Q[WEST-simp-trace
(L!(fst b)) (L!(snd h)) num-vars]

Defining and Proving Termination of WEST-simp lemma length-enumerate-pairs:
shows length (enumerate-pairs L) < (length L) 2
proof (induction L)
case Nil
then show ?case by auto
next
case (Cons a L)
have length-L: (length (a # L))?> = (1 + (length L)) "2 by auto
then have length-L: (length (a # L))?> = 1 + 2x(length L) + (length L)"2 by
algebra
have length (map (Pair a) L) < length L
by simp
then show ?case
unfolding enumerate-pairs.simps using Cons length-L by simp
qed

lemma length-enum-pairs:
shows length (enum-pairs L) < (length L)"2
proof—
show ?thesis unfolding enum-pairs.simps using length-enumerate-pairs
by (metis length-upt minus-nat.diff-0)
qged



lemma enumerate-pairs-fact:
assumes V ij. (i < jA i <length L A j < length L) — (L!7) < (L)
shows V pair € set (enumerate-pairs L). (fst pair) < (snd pair)
using assms
proof (induct length L arbitrary:L)
case (
then show ?case by auto
next
case (Suc x)
then obtain h T where obt-hT: L = h#T
by (metis length-Suc-conv)
then have enum-L: enumerate-pairs L = map (Pair h) T Q enumerate-pairs T
using enumerate-pairs.simps obt-hT by blast
then have A pair. pair € set (enumerate-pairs L) = fst pair < snd pair
proof—
fix pair
assume pair € set (enumerate-pairs L)
then have pair € set (map (Pair h) T Q enumerate-pairs T) using enum-L
by auto
then have pair-or: pair € set (map (Pair h) T) V pair € set(enumerate-pairs
7)
by auto
{assume in-base: pair € set (map (Pair h) T)
have Vj. 0 < jAj<length L — h < L!j
using Suc.prems obt-hT by force
then have Vj < length T. h < T!j
using obt-hT by force
then have Vi € set T. h < ¢
using obt-hT by (metis in-set-conv-nth)
then have fst pair < snd pair
using in-base by auto
} moreover {
assume in-rec: pair € set(enumerate-pairs T)
have fst pair < snd pair
using Suc.hyps(1)[of T] Suc.prems obt-hT in-rec
by (smt (verit, ccfo-SIG) Ex-less-Suc Suc.hyps(1) Suc.hyps(2) length-Cons
less-trans-Suc nat.inject nth-Cons-Suc)
}
ultimately show fst pair < snd pair using enum-L obt-hT pair-or by blast
qed
then show ?case by blast
qed

lemma enum-pairs-fact:
shows V pair € set (enum-pairs L). (fst pair) < (snd pair)
unfolding enum-pairs.simps using enumerate-pairs-fact[of [0..<length L]]
by simp

lemma enum-pairs-bound-snd:



assumes pair € set (enumerate-pairs L)
shows (snd pair) € set L
using assms
proof (induct length L arbitrary: L)
case (
then show ?case by auto
next
case (Suc )
then obtain A T where ht: L = h#T
by (metis enumerate-pairs.cases enumerate-pairs.simps(1) in-set-member mem-
ber-rec(2))
then have eo: pair € set (map (Pair h) T) V pair € set (enumerate-pairs T)
using Suc by simp
{assume *: pair € set (map (Pair h) T)
then have ?case
using ht
using imageE by auto
} moreover {assume x: pair € set (enumerate-pairs T')
then have snd pair € set T
using Suc(1)[of T] ht
using Suc.hyps(2) by fastforce
then have ?case using hit
by simp
}

ultimately show ?case using eo by blast
qged

lemma enum-pairs-bound:
shows V pair € set (enum-pairs L). (snd pair) < length L
unfolding enum-pairs.simps enumerate-pairs.simps
proof (induct length L arbitrary: L)
case (
then show ?case by simp
next
case (Suc )
then have enum-L: enumerate-pairs ([0..<length L]) =
map (Pair 0) [1..<length L] Q enumerate-pairs [1..<length L]
using enumerate-pairs.simps(2)[of 0 [1 ..< length L]
by (metis One-nat-def upt-conv-Cons zero-less-Suc)
then have paire€set (enumerate-pairs [0..<length L)) = snd pair < length L
for pair
using enum-pairs-bound-snd[of pair [0..<length L]
by auto
then show ?case unfolding enum-pairs.simps by blast
qed

lemma WEST-simp-terminationl-bound:
fixes a::nat



shows ¢ 3+a"2 < (a+1)738

proof—
have cubed: (a+1)"3 = a"3 + 3%a™2 + 3%a + 1
proof—
have (a+1)73 = (a+1)x(a+1)*(a+1)
by algebra

then show ?thesis
by (simp add: add.commute add-mult-distrib2 mult.commute power2-eq-square
power3-eq-cube)
qged
have 0 < 2xa”2 + 2%a + 1 by simp
then have a”3 + a2 < ™3 + 3xa 2 + 3xa + 1 by simp
then show ?thesis using cubed
by simp
qed

lemma WEST-simp-terminationl :
fixes L:: WEST-regex
assumes — (idz-pairs # enum-pairs L V length idz-pairs < i)
assumes check-simp (L ! fst (idz-pairs | 7)) (L! snd (idz-pairs | 7))
assumes z = update-L L (idz-pairs | ©) num-vars
shows ((z, enum-pairs z, 0, num-vars), L, idx-pairs, i, num-vars)
€ measure (A(L, ida-list, i, num-vars). length L ~ 8 + length idz-list — 1)
proof—
let 70 = fst (idz-pairs ! 7)
let ?j = snd (idz-pairs ! i)
have i-le-j: ?i < ?j using enum-pairs-fact assms
by (metis linorder-le-less-linear nth-mem)
have j-bound: %j < length L
using assms(1) enum-pairs-bound|of L)
by simp
then have i-bound: ?i < (length L)—1
using i-le-j by auto
have len-orsimp: length |[WEST-simp-trace (L ! 2i) (L! %) num-vars] = 1
by simp
have length (remove-element-at-index ?j L) = length L — 1
using assms(3) j-bound by auto
then have length (remove-element-at-index ?i (remove-element-at-index ?j L))
= length L — 2
using assms(3) i-bound j-bound by simp
then have length-z: length © = (length L) — 1
using assms(3) len-orsimp
unfolding update-L.simps|of L idz-pairs | i num-vars]
by (metis (no-types, lifting) add.commute add-diff-inverse-nat diff-diff-left gr-implies-not0
i-bound length-append less-one nat-1-add-1)
have i-bound: i < length idx-pairs using assms by force

{ assume short-L: length L = 0
then have ?thesis using assms

10



using j-bound by linarith
} moreover {
assume long-L: length L > 1
then have length L — 1 > 0 by blast
then have (length L — 1) =8 + (length L — 1) ~ 2 < length L — 3
using WEST-simp-terminationl-bound|of length L—1]
by (metis long-L ordered-cancel-comm-monoid-diff-class.le-imp-diff-is-add)
then have (length L — 1) ~ 8 + length (enumerate-pairs [0..<length z]) <
length L — 8
using length-enumerate-pairs[of [0..<length z]| length-z by auto
then have length © = 8 + length (enumerate-pairs [0..<length z])
< length L ~ 8 + length idz-pairs — i
using i-bound length-x by simp
then have ?thesis by simp
}
ultimately show ?thesis by linarith
qed

function WEST-simp-helper:: WEST-regex = (nat x nat) list = nat = nat =
WEST-regex
where WEST-simp-helper L idz-pairs i num-vars =
(if (idz-pairs # enum-pairs L V i > length idz-pairs) then L else
(if (check-simp (L!(fst (idz-pairs!i))) (L!(snd (idz-pairsli)))) then
(let newL = update-L L (idx-pairs!i) num-vars in
WEST-simp-helper newL (enum-pairs newL) 0 num-vars)
else WEST-simp-helper L idz-pairs (i+1) num-vars))
apply fast by blast
termination
apply (relation measure (A(L , idz-list, i, num-vars). (length L™8 + length idx-list
— i)))

apply simp using WEST-simp-termination! apply blast by auto
declare WEST-simp-helper.simps[simp del]

fun WEST-simp:: WEST-regex = nat = WEST-regex
where WEST-simp L num-vars =
WEST-simp-helper L (enum-pairs L) 0 num-vars

value WEST-simp [[[S, S, One]],[[S, One, S]], [[S, S, Zero]]] 3
value WEST-simp [[[S, One]],[[One, S]], [[Zero, Zero]]] 2
value WEST-simp [[[One, Onell,[[Zero, Zero]], [[One, Zero], [[Zero, Onel]] 2

1.3.3 AND and OR operations with WEST-simp

fun WEST-and-simp:: WEST-regex = WEST-regex = nat = WEST-regex
where WEST-and-simp L1 L2 num-vars = WEST-simp (WEST-and L1 L2)
NUM-vars

11



fun WEST-or-simp:: WEST-regex = WEST-regex = nat = WEST-regex
where WEST-or-simp L1 L2 num-vars = WEST-simp (L1QL2) num-vars

1.3.4 Useful Helper Functions

fun arbitrary-state::nat = state-regex
where arbitrary-state num-vars = map (A k. S) [0 ..< num-vars]

fun arbitrary-trace::nat = nat = trace-regex
where arbitrary-trace num-vars num-pad = map (X k. (arbitrary-state num-vars))
[0 ..< num-pad]

fun shift:: WEST-regex = nat = nat = WEST-regex
where shift traceList num-vars num-pad = map (X trace. (arbitrary-trace num-vars
num-pad)Qtrace) traceList

fun pad:: trace-regex = nat = nat = trace-regex
where pad trace num-vars num-pad = traceQ(arbitrary-trace num-vars num-pad)

1.3.5 WEST Temporal Operations

fun WEST-global:: WEST-regex = nat = nat = nat = WEST-regex
where WEST-global L a b num-vars = (
if (a = b) then (shift L num-vars a)
else (if (a < b) then (WEST-and-simp (shift L num-vars b)
(WEST-global L a (b—1) num-vars) num-vars)

else []))

fun WEST-future:: WEST-regex = nat = nat = nat = WEST-regex
where WEST-future L a b num-vars = (
if (a = b)
then (shift L num-vars a)
else (
if (a <b)
then WEST-or-simp (shift L num-vars b) (WEST-future L a (b—1) num-vars)
num-vars

else []))

fun WEST-until:: WEST-regex = WEST-regex = nat =
nat = nat = WEST-regex
where WEST-until L-o L) a b num-vars = (
if (a=b)
then (WEST-global L-i) a a num-vars)
else (
if (a <b)
then WEST-or-simp (WEST-until L-p L-tp a (b—1) num-vars)
(WEST-and-simp (WEST-global L-p a (b—1) num-vars)
(WEST-global L-tp b b num-vars) num-vars) num-vars

12



else []))

fun WEST-release-helper:: WEST-regex = WEST-regex =
nat = nat = nat = WEST-regex
where WEST-release-helper L-o L) a ub num-vars = (
if (a=ub)
then (WEST-and-simp (WEST-global L-¢ a a num-vars) (WEST-global L a a
nUM-vars) NumM-vars)
else (
if (a < ub)
then WEST-or-simp (WEST-release-helper L-o L-tp a (ub—1) num-vars)
(WEST-and-simp (WEST-global L- a ub num-vars)
(WEST-global L-p ub ub num-vars) num-vars) num-vars
else ]))

fun WEST-release:: WEST-regex = WEST-regex = nat
= nat = nat = WEST-regex
where WEST-release L-o L-1p a b num-vars = (
if (b> a)
then (WEST-or-simp (WEST-global L) a b num-vars) (WEST-release-helper
L-o LY a (b—1) num-vars) num-vars)
else (WEST-global Ly a b num-vars))

1.3.6 WEST recursive reg Function

lemma exhaustive:
shows Az:: nat mltl x nat. A\ P::bool. (Anum-vars::nat. z = ( True-mltl, num-vars)
= P) =
(Anum-vars::nat. x = (False-mltl, num-vars) = P) =
(Ap num-vars::nat. x = (Prop-mitl p, num-vars) — P) =
(Ap num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) = P) =
(Ae ¢ num-vars. © = (Or-mltl ¢ 1, num-vars) = P) =
(Ae ¢ num-vars. © = (And-mltl ¢ ¥, num-vars) = P) =
(A a b num-vars. x = (Future-mltl ¢ a b, num-vars) = P) =
(A¢ a b num-vars. x = (Global-mlitl ¢ a b, num-vars) = P) =
(Ae ¥ a b num-vars. = (Until-mltl ¢ ¢ a b, num-vars) = P) =
(Ae ¥ a b num-vars. © = (Release-mltl ¢ 1 a b, num-vars) = P) =
(Anum-vars. x = (Not-mltl True-mltl, num-vars) = P) =
(Anum-vars. x = (Not-mltl False-mltl, num-vars) = P) =
(Ae ¥ num-vars. z = (Not-mltl (And-mltl ¢ ¥), num-vars) = P) =
(Ae ¥ num-vars. = (Not-mlitl (Or-mitl ¢ ©), num-vars) — P) =
(Ap a b num-vars. z = (Not-mltl (Future-mltl ¢ a b), num-vars) = P)

—
(A¢ a b num-vars. x = (Not-mltl (Global-mitl ¢ a b), num-vars) = P)
=
(A¢ ¥ a b num-vars. x = (Not-mltl (Until-mltl ¢ ¥ a b), num-vars) =
P) =

(A¢ ¥ a b num-vars. x = (Not-mitl (Release-mltl ¢ 1 a b), num-vars)
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= P) =
(Ae num-vars. x = (Not-mltl (Not-mltl ©), num-vars) = P) = P

proof —
fix z::nat mltl x nat
fix P:: bool

assume ¢: (A\num-vars::nat. x = (True-mltl, num-vars) = P)

assume fa: (A\num-vars::nat. ¥ = (False-mltl, num-vars) = P)

assume p: (Ap num-vars:nat. © = (Prop-mltl p, num-vars) = P)

assume nl: (Ap num-vars::nat. x = (Not-mitl (Prop-mltl p), num-vars) = P)

assume o: (A¢ ¥ num-vars. x = (Or-mltl ¢ 1, num-vars) = P)

assume a: (A ¥ num-vars. x = (And-mltl ¢ 1, num-vars) = P)

assume f: (A¢ a b num-vars. x = (Future-mltl ¢ a b, num-vars) = P)
assume g: (A¢ a b num-vars. © = (Global-mltl ¢ a b, num-vars) = P)
assume u: (A ¥ a b num-vars. © = (Until-mltl ¢ ¢ a b, num-vars) = P)
assume 7: (A ¢ a b num-vars. © = (Release-mltl ¢ ¢ a b, num-vars) = P)
assume n2: (Anum-vars. x = (Not-mltl True-mitl, num-vars) = P)

assume n3: (A\num-vars. x = (Not-mltl False-mltl, num-vars) = P)

assume n4: (Ap ¢ num-vars. x = (Not-mitl (And-mlitl ¢ ), num-vars) => P)

assume n5: (A ¥ num-vars. x = (Not-mltl (Or-mitl ¢ ), num-vars) = P)
assume n6: (A¢ a b num-vars. z = (Not-mitl (Future-mltl ¢ a b), num-vars)
= P)
assume n7: (Ap a b num-vars. x = (Not-mltl (Global-mltl ¢ a b), num-vars)
= P)
assume n8: (A ¥ a b num-vars. x = (Not-mltl (Until-mltl ¢ ¥ a b), num-vars)
= P)
assume n9: (A ¢ a b num-vars. x = (Not-mltl (Release-mltl ¢ 1 a b), num-vars)
= P)
assume n10: (A¢ num-vars. x = (Not-mltl (Not-mltl ¢), num-vars) = P)
show P proof (cases fst )
case True-mltl
then show ¢thesis using t
by (metis eq-fst-iff)
next
case False-mltl
then show “thesis using fa eq-fst-iff by metis
next
case (Prop-mltl p)
then show #thesis using p
by (metis prod.collapse)
next
case (Not-mltl @)
then have fst-z: fst © = Not-mltl ¢
by auto
then show %thesis proof (cases @)
case True-mltl
then show ?thesis using n2
by (metis Not-mltl split-pairs)
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next
case False-mltl
then show ?thesis using n3
by (metis Not-mltl prod.collapse)
next
case (Prop-mltl p)
then show ?thesis using nl
by (metis Not-mltl split-pairs)
next
case (Not-mltl ¢1)
then show ?thesis using n10 fst-z
by (metis prod.collapse)
next
case (And-mltl p1 p2)
then show ?thesis
by (metis Not-mitl n4 prod.collapse)
next
case (Or-mitl p1 ¢2)
then show ?thesis using n5 Not-mltl
by (metis prod.collapse)
next
case (Future-mltl a b 1)
then show ?thesis using n6 Not-mlt
by (metis prod.collapse)
next
case (Global-mltl a b ¢1)
then show ?thesis using n7 Not-mlt
by (metis prod.collapse)
next
case (Until-mltl ©1 a b ¢2)
then show %thesis using n8 Not-mltl
by (metis prod.collapse)
next
case (Release-mitl p1 a b p2)
then show ?thesis using n9 Not-mltl
by (metis prod.collapse)
qged
next
case (And-mltl p1 ¢2)
then show #thesis using a
by (metis prod.collapse)
next
case (Or-mitl 1 p2)
then show ?thesis using o
by (metis prod.collapse)
next
case (Future-mltl a b 1)
then show ?thesis using f
by (metis split-pairs)
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next
case (Global-mltl a b 1)
then show #thesis using ¢
by (metis prod.collapse)
next
case (Until-mltl o1 a b ©2)
then show ?thesis using u
by (metis split-pairs)
next
case (Release-mitl p1 a b p2)
then show ?thesis using r
by (metis split-pairs)
qed
qed

fun WEST-termination-measure:: (nat) miltl = nat

where WEST-termination-measure True,, = 1

| WEST-termination-measure (Not,, Truen,) = 4

| WEST-termination-measure False,, = 1

| WEST-termination-measure (Not,, Falsen,) = 4

| WEST-termination-measure (Prop,, (p)) = 1

| WEST-termination-measure (Noty, (Propm, (p))) = 4

| WEST-termination-measure (¢ Orpy ¢) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1))

| WEST-termination-measure (¢ And,, ¥) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1)

| WEST-termination-measure (F., [a,b] ) = 1 + (WEST-termination-measure
¢)

| WEST-termination-measure (G, [a,b] ) = 1 + (WEST-termination-measure
%)

| WEST-termination-measure (¢ Up,[a,b] ¥) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1)

| WEST-termination-measure (¢ Ru,[a,b] ) = 1 + (WEST-termination-measure
¢) + (WEST-termination-measure 1))

| WEST-termination-measure (Not,, (¢ Orpy, 1)) = 1 + 3 % (WEST-termination-measure
(¢ Ory, 1))

| WEST-termination-measure (Not,, (¢ And,, ¥)) = 1 + 3 x (WEST-termination-measure
(¢ And, )

| WEST-termination-measure (Not,, (Fnla,b] ¢)) =1 + 3 % (WEST-termination-measure
(Flat] )

| WEST-termination-measure (Not,, (Gn[a,b] ¢)) = 1 + 8 x (WEST-termination-measure
(Glat] 9))

| WEST-termination-measure (Not,, (¢ Unla,b] ¥)) = 1 + & x (WEST-termination-measure
(¢ Unlat] )

| WEST-termination-measure (Not,, (¢ Rnla,bl ¥)) =1 + 3 * (WEST-termination-measure
(¢ Bmla,0] 1))

| WEST-termination-measure (Not,, (Not,, v)) =1 + 3 * (WEST-termination-measure
(Notm )
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lemma WEST-termination-measure-not:
fixes ::(nat) mlitl
shows WEST-termination-measure (Not-mltl o) = 1 + 3 x (WEST-termination-measure

)
apply (induction ¢) by simp-all

function WEST-reg-aux:: (nat) mltl = nat = WEST-regex

where WEST-reg-aux True,, num-vars = [[(map (X j. S) [0 ..< num-vars])]]

| WEST-reg-auzx False,, num-vars = ||

| WEST-reg-auz (Prop,, (p)) num-vars = [[(map (X j. (if (p=j) then One else
S)) [0 ..< num-vars])]]

| WEST-reg-auzx (Not,, (Prop,, (p))) num-vars = [[(map (X j. (if (p=j) then
Zero else S)) [0 ..< num-vars))]]

| WEST-reg-auz (¢ Orpy ¢) num-vars = WEST-or-simp (WEST-reg-auz ¢
num-vars) (WEST-reg-auz 1) num-vars) num-vars

| WEST-reg-aux (¢ And, ¢) num-vars = (WEST-and-simp (WEST-reg-auz ¢
num-vars) (WEST-reg-auz ) num-vars) num-vars)

| WEST-reg-aux (Fp|a,b] @) num-vars = (WEST-future (WEST-reg-auz ¢ num-vars)
a b num-vars)

| WEST-reg-aux (G,]a,b] p) num-vars = (WEST-global (WEST-reg-aux @ num-vars)
a b num-vars)

| WEST-reg-auz (¢ Upla,b] ) num-vars = (WEST-until (WEST-reg-aux ¢
num-vars) (WEST-reg-auz v num-vars) a b num-vars)

| WEST-reg-aux (¢ Rp[a,b] ) num-vars = WEST-release (WEST-reg-auz ¢
num-vars) (WEST-reg-auz ¥ num-vars) a b num-vars

| WEST-reg-aux (Not,, Truem,) num-vars = WEST-reg-auz False,, num-vars

| WEST-reg-aux (Noty, Falsen,) num-vars = WEST-reg-aux True,, num-vars

| WEST-reg-aux (Not,, (¢ Andy, ) num-vars = WEST-reg-auz ((Not,, ¢)
Ory, (Notpy, ©)) num-vars

| WEST-reg-auz (Not,, (p Ory, ¥)) num-vars = WEST-reg-aux ((Not,, ¢) And,
(Noty, ) num-vars

| WEST-reg-aux (Not,, (Fp,[a,b] ¢)) num-vars = WEST-reg-auz (Gpla,b] (Noty,
©)) num-vars

| WEST-reg-aux (Not,, (Gpla,b] ¢)) num-vars = WEST-reg-aux (Fo,]a,b] (Not,y,
) num-vars

| WEST-reg-aux (Noty, (¢ Umla,b] ¥)) num-vars = WEST-reg-auz ((Noty, ¢)
Ry [a,b] (Noty, ©¥)) num-vars

| WEST-reg-auxz (Noty, (¢ Rmla,b] ¥)) num-vars = WEST-reg-auz ((Noty, ¢)
Unmla,b] (Noty, ©¥)) num-vars

| WEST-reg-aux (Not,, (Not,, ¢)) num-vars = WEST-reg-aux ¢ num-vars

using exhaustive convert-nnf.cases using ezhaustive apply (smt (23))

defer apply blast apply simp-all .
termination

apply (relation measure (A F,num-vars). (WEST-termination-measure F)))

using WEST-termination-measure-not by simp-all
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fun WEST-num-vars:: (nat) mltl = nat

where WEST-num-vars True,, = 1

| WEST-num-vars False,, = 1

| WEST-num-vars (Prop,, (p)) = p+1

| WEST-num-vars (Not,, ¢) = WEST-num-vars ¢

| WEST-num-vars (¢ And,, ¥) = Maz {( WEST-num-vars @), (WEST-num-vars
¥)}

| WEST-num-vars (¢ Ory, ¥) = Maz {( WEST-num-vars @), (WEST-num-vars
)}

| WEST-num-vars (Fp,[a,b] o) = WEST-num-vars ¢

| WEST-num-vars (Gpla,b] ¢) = WEST-num-vars ¢
| WEST-num-vars (¢ Upla,b] ¢) = Max {( WEST-num-vars @), ( WEST-num-vars

¥)}
| WEST-num-vars (¢ Ry,[a,b] ¥) = Maz {( WEST-num-vars ), (WEST-num-vars

¥)}

fun WEST-reg:: (nat) mitl = WEST-regex
where WEST-reg F = (let nnf-F = convert-nnf F in WEST-reg-auz nnf-F
(WEST-num-vars F))

1.3.7 Adding padding

fun pad-WEST-reg:: nat mitl = WEST-regex
where pad-WEST-reg ¢ = (let unpadded = WEST-reg ¢ in
(let complen = complen-mltl ¢ in
(let num-vars = WEST-num-vars ¢ in
(map (A L. (if (length L < complen)then (pad L num-vars
(complen—(length L))) else L))) unpadded)))

fun simp-pad-WEST-reg:: nat mitl = WEST-regex
where simp-pad-WEST-reqg o = WEST-simp (pad-WEST-req p) (WEST-num-vars

®)

2 Some examples and Code Export

Base cases

value WEST-reg True,,

value WEST-reg False,,

value WEST-reg (Prop,, (1))

value WEST-reg (Not,, (Prop, (0)))

Test cases for recursion

value WEST-reg ((Noty, (Propm (0))) And,y, (Propm, (1)))
value WEST-reg (F,,[0,2] (Prop,, (1)))
value WEST-reg ((Not,, (Prop, (0))) Ory, (Propm, (0)))

value pad-WEST-reg ((Propm, (0)) Un[0,2] (Prop., (0)))
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value simp-pad-WEST-reg ((Prop-mitl 0) U,,[0,2] (Prop-mitl 0))

export-code WEST-reg in Haskell module-name WEST
export-code simp-pad-WEST-reg in Haskell module-name WEST-simp-pad

end

3 WEST Proofs

theory WEST-Proofs
imports WEST-Algorithms

begin

3.1 Useful Definitions

definition trace-of-vars::trace = nat = bool
where trace-of-vars trace num-vars = (
Vk. (k < (length trace) — (¥ pe(tracelk). p < num-vars)))

definition state-regex-of-vars::state-regex = mat = bool
where state-regex-of-vars state num-vars = ((length state) = num-vars)

definition trace-regex-of-vars::trace-regex = nat = bool
where trace-regex-of-vars trace num-vars =
(V i < (length trace). length (traceli) = num-vars)

definition WEST-regezx-of-vars:: WEST-regex = nat = bool
where WEST-regex-of-vars traceList num-vars =
(V k<length traceList. trace-regex-of-vars (traceList\k) num-vars)

3.2 Proofs about Traces Matching Regular Expressions
value match-regex [{0::nat}, {0,1}, {}] []

lemma arbitrary-regtrace-matches-any-trace:

fixes num-vars::nat

fixes m::trace

assumes m-of-num-vars: trace-of-vars ™ num-vars

shows match-regex ||
proof—

have get-state-empty: (WEST-get-state [| time num-vars) = (map (A k. S) [0 ..<
num-vars]) for time

by auto

have match-arbitrary-state: (match-timestep state (map (A k. S) [0 ..< num-vars]))

= True if state-of-vars:(¥ pEstate. p < num-vars) for state
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using state-of-vars
unfolding match-timestep-def
by simp
have eliminate-forall: match-timestep (| time) (WEST-get-state [| time num-vars)
if time-bounded:time < length 7 for time
using time-bounded 7-of-num-vars get-state-empty|of time] match-arbitrary-state|of
7 | time] unfolding match-regezx-def trace-of-vars-def
by (metis (mono-tags, lifting))
then show ?thesis
unfolding match-regex-def trace-of-vars-def
by auto
qed

lemma WEST-and-state-difflengths-is-none:
assumes length s1 # length s2
shows WEST-and-state s1 s2 = None
using assms
proof (induction s1 arbitrary: s2)
case Nil
then show ?case
apply (induction s2) by simp-all
next
case (Cons a sl)
then show ?case
proof (induction s2)
case Nil
then show ?case by auto
next
case (Cons b s2)
have length s1 # length s2 using Cons.prems(2)
by auto
then have and-s1-s2-none: WEST-and-state s1 s2 = None using Cons.prems(1)[of
s2]
by simp
{assume ab-none: WEST-and-bitwise a b = None
then have ?case
by simp
}
moreover {assume ab-not-none: WEST-and-bitwise a b # None
then have ?case using and-s1-s2-none using WEST-and-state.simps(2)[of
a slb s2)
by auto
}
ultimately show Zcase
by blast
qed
qed
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3.3 Facts about the WEST and operator

3.3.1 Commutative

lemma WEST-and-bitwise-commutative:
fixes b1 b2:: WEST-bit
shows WEST-and-bitwise b1 b2 = WEST-and-bitwise b2 b1
apply (cases b2)
apply (cases b1) apply simp-all
apply(cases b1) apply simp-all
apply (cases b1) by simp-all

fun remove-option-type-bit:: WEST-bit option = WEST-bit
where remove-option-type-bit (Some i) = i
| remove-option-type-bit - = S

lemma WEST-and-state-commutative:
fixes s1 s2::state-regex
assumes same-len: length s1 = length s2
shows WEST-and-state s1 s2 = WEST-and-state s2 sl
proof—
show ?thesis using same-len
proof (induct length sl arbitrary: s1 s2)
case (
then show ?case using WEST-and-state.simps by simp
next
case (Suc )
obtain h! T1 where s1 = h1#T1
using Suc.hyps(2)
by (metis length-Suc-conv)
obtain h2 T2 where s2 = h2+# T2
using Suc.prems(1) Suc.hyps(2)
by (metis length-Suc-conv)
then show Zcase using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
hi T1 h2 T2
WEST-and-state.simps(2)[of h2 T2 hi1 T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(1) Suc-length-conv
WEST-and-bitwise-commutative <s1 = h1 # T1) list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)
qed
qed

lemma WEST-and-trace-commutative:
fixes num-vars::nat
fixes regtracel::trace-regex
fixes regtrace2::trace-regex
assumes regtracel-of-num-vars: trace-regez-of-vars regtracel num-vars
assumes regtrace2-of-num-vars: trace-regex-of-vars regtrace?2 num-vars
shows (WEST-and-trace regtracel regtrace2) = (WEST-and-trace regtrace2 reg-
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tracel)
proof—
have WEST-and-bitwise-commutative: WEST-and-bitwise b1 b2 = WEST-and-bitwise
b2 b1 for b1 b2
apply (cases b2)
apply (cases b1) apply simp-all
apply(cases b1) apply simp-all
apply (cases b1) by simp-all
then have WEST-and-state-commutative: WEST-and-state s1 s2 = WEST-and-state
s2 s1 if same-len: (length s1) = (length s2) for sI s2
using same-len
proof (induct length s1 arbitrary: sl s2)
case 0
then show ?case using WEST-and-state.simps by simp
next
case (Suc x)
obtain h! T1 where s1 = h1#T1
using Suc.hyps(2)
by (metis length-Suc-conv)
obtain h2 T2 where s2 = h2#T2
using Suc.prems(2) Suc.hyps(2)
by (metis length-Suc-conv)
then show Zcase using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
h1 T1 h2 T2]
WEST-and-state.simps(2)[of h2 T2 hi T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(2) Suc-length-conv
WEST-and-bitwise-commutative <s1 = h1 # T1» list.inject option.simps(4) op-
tion.simps(H) remove-option-type-bit.cases)
qed
show %thesis using regtracel-of-num-vars regtrace2-of-num-vars
proof (induction regtracel arbitrary: regtrace2)
case Nil
then show Zcase using WEST-and-trace.simps(1—2)
by (metis neg-Nil-conv)
next
case (Cons h1 T1)
{assume x*: regtrace2 = [|
then have ?case using WEST-and-trace.simps
by simp
} moreover {assume *: regtrace2 # [|
then obtain 72 T2 where h2T2: regtrace2 = h2# T2
by (meson list.exhaust)
have comm-1: WEST-and-trace T1 T2 = WEST-and-trace T2 T1
using Cons h2T2
unfolding trace-regez-of-vars-def
by (metis Suc-less-eq length-Cons nth-Cons-Suc)
have comm-2: WEST-and-state h1 h2 = WEST-and-state h2 hl
using WEST-and-state-commutative[of h1 h2] h2T2
Cons(2—23) unfolding trace-regex-of-vars-def
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by (metis WEST-and-state-difflengths-is-none)
have ?case using WEST-and-trace.simps(3)[of h1 T1 h2 T2]

h2T2 WEST-and-trace.simps(8)[of h2 T2 h1 T1] comm-1 comm-2
by presburger

}

ultimately show ?case by blast

qed
qed

lemma WEST-and-helper-subset:
shows set (WEST-and-helper h L) C set (WEST-and-helper h (a # L))
proof —
{assume x: WEST-and-trace h a = None
then have WEST-and-helper h L = WEST-and-helper h (a # L)
using WEST-and-helper.simps(2)[of h a L] by auto
then have ?thesis by simp
}
moreover {assume x: WEST-and-trace h a # None
then obtain res where WEST-and-trace h a = Some res
by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper.simps(2)[of h a L] by auto
then have ?thesis by auto
}
ultimately show ¢thesis by blast
qged

lemma WEST-and-helper-set-member-converse:
fixes regtrace h::trace-regex
fixes L:: WEST-regex
assumes assumption: (3 loc. loc < length L A (3 sometrace. WEST-and-trace h
(L !'loc) = Some sometrace A regtrace = sometrace))
shows regtrace € set (WEST-and-helper h L)
proof —
show ?thesis using assumption
proof (induct L)
case Nil
then show ?case using WEST-and-helper.simps(1)
by simp
next
case (Cons a L)
then obtain loc sometrace where obt: loc < length (a#L) N WEST-and-trace
h ((a#L) ! loc) = Some sometrace N regtrace = sometrace
by blast

{assume *: loc = 0

then have WEST-and-trace h a = Some sometrace A regtrace = sometrace
using obt
by simp
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then have Zcase using WEST-and-helper.simps(2)[of h a L]
by auto
} moreover {assume *: loc > 0
then have loc: loc—1 < length L N
WEST-and-trace h (L! (loc—1)) = Some sometrace A regtrace = sometrace
using obt by auto
have set (WEST-and-helper h L) C set (WEST-and-helper h (a # L))
using WEST-and-helper-subset by blast
then have ?case using Cons(1) loc by blast
}
ultimately show ?case by auto
qed
qed

lemma WEST-and-helper-set-member-forward:
fixes regtrace h::trace-regex
fixes L:: WEST-regex
assumes regtrace € set (WEST-and-helper h L)
shows (3 loc. loc < length L A (3 sometrace. WEST-and-trace h (L ! loc) =
Some sometrace A\ regtrace = sometrace))
using assms proof (induction L)
case Nil
then show ?case by simp
next
case (Cons a L)
{assume x: WEST-and-trace h a = None
then have ?case using WEST-and-helper.simps(2)[of h a L] Cons
by force
} moreover {assume x: WEST-and-trace h a # None
then obtain res where res: WEST-and-trace h a = Some res
by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper.simps(2)[of h a L] by auto
then have eo: regtrace = res V regtrace € set (WEST-and-helper h L)
using Cons(2)
by auto
{assume x: regtrace = res
then have ?case using res by auto
} moreover {assume x: regtrace € set (WEST-and-helper h L)
then obtain loc where loc-prop: loc<length L A
(3 sometrace. WEST-and-trace h (L ! loc) = Some sometrace A regtrace =
sometrace)
using Cons.IH by blast
then have loc+1<length (a#L) A
(3 sometrace. WEST-and-trace h ((a#L) ! (loc+1)) = Some sometrace A
regtrace = sometrace)
by auto
then have ?case by blast

}
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ultimately have ?case using eo
by blast
}

ultimately show ?case by blast
qed

lemma WEST-and-helper-set-member:

fixes regtrace h::trace-regex

fixes L:: WEST-regex

shows regtrace € set (WEST-and-helper h L) +—

(3 loc. loc < length L A (3 sometrace. WEST-and-trace h (L ! loc) = Some

sometrace A regtrace = sometrace))

using WEST-and-helper-set-member-forward WEST-and-helper-set-member-converse

by blast

lemma WEST-and-set-member-dirl :
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace € set (WEST-and L1 L2)
shows (3 locl loc2. locl < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace))
using assms proof (induct L1 arbitrary: L2)
case Nil
then show ?case using WEST-and.simps(2) WEST-and.simps(1)
by (metis list.distinct(1) list.exhaust list.set-cases)
next
case (Cons head tail)
{assume L2-empty: L2 = []
then have ?case
using Cons.prems(3) by auto
}

moreover { assume L2-not-empty: L2 # ||
{assume regtrace-in-head-L2: regtrace € set (WEST-and-helper head L2)
then obtain loc2 where (loc2<length L2 A
(3 sometrace. WEST-and-trace head (L2 ! loc2) = Some sometrace N\ regtrace
= sometrace))
using WEST-and-helper-set-member|of regtrace head L2)
by blast
then have 0 < length (head # tail) A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace ((head # tail) ! 0) (L2 ! loc2) = Some sometrace N
regtrace = sometrace)
using regtrace-in-head-L2
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by simp
then have ?case
by blast
}

moreover {assume regtrace-notin-head-L2: regtrace ¢ set (WEST-and-helper
head L2)
obtain h2 T2 where h2T2:L2 = h2# T2 using L2-not-empty
by (meson list.ezhaust)
{assume x: WEST-and-helper head (h2 # T2) = ||
then have WEST-and (head # tail) L2 = WEST-and tail L2
using WEST-and.simps(3)[of head tail h2 T2] h2T2 by simp
}
moreover {assume x: WEST-and-helper head (h2 # T2) # ||
then have WEST-and (head # tail) L2 = (WEST-and-helper head L2) @
WEST-and tail L2
using WEST-and.simps(3)[of head tail h2 T2] h2T2
by (simp add: list.case-eq-if)

ultimately have e-o: WEST-and (head # tail) L2 = WEST-and tail L2 V
WEST-and (head # tail) L2 = (WEST-and-helper head L2) @ WEST-and tail L2
by blast
have regtrace-in: regtrace € set (WEST-and tail L2) using L2-not-empty
regtrace-notin-head-L2 Cons.prems(3) h2T2 e-o
by fastforce
have V k<length (head # tail). trace-regex-of-vars ((head # tail) ! k) num-vars
using Cons.prems(1) unfolding WEST-regez-of-vars-def by argo
then have regtracelist-tail: WEST-regez-of-vars tail num-vars
unfolding WEST-regex-of-vars-def by auto
obtain loc1 loc2 where loc1 < length tail N
loc2 < length L2 A (3 sometrace. WEST-and-trace (tail ! loc1) (L2 ! loc2)
= Some sometrace N regtrace = sometrace)
using Cons.hyps[OF regtracelist-tail Cons.prems(2) regtrace-in] by blast
then have loc1+1 < length (head # tail) A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace ((head # tail) ! (loc1+1)) (L2 ! loc2) = Some sometrace

regtrace = sometrace)
by simp
then have ?case
by blast
}

ultimately have ?case
by blast
}

ultimately show ?case

by blast
qed
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lemma WEST-and-subset:
shows set (WEST-and T1 L2) C set (WEST-and (h1#T1) L2)
proof —
{assume x: L2 = ||
then have ?thesis by auto
} moreover {assume x: L2 # ||
then obtain h2 T2 where L2 = h2# T2
using list.exhaust-sel by blast
then have ?thesis
using WEST-and.simps(3)[of h1 T1 h2 T2]
by (simp add: list.case-eq-if)

ultimately show ?thesis by blast
qed

lemma WEST-and-set-member-dir2:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes ezists-locs: (3 locl loc2. locl < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace))
shows regtrace € set (WEST-and L1 L2) using assms
proof (induct L1 arbitrary: L2)
case Nil
then show ?case by auto
next
case (Cons h1 T1)
then obtain loc! loc2 where loclloc2: locl < length (h1 # T1) A
loc2 < length L2 A
(3 sometrace.
WEST-and-trace ((h1 # T1)!locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace) by blast
{assume *: L2 = |]
then have ?case using Cons by auto
} moreover {assume x: L2 # |]
then obtain h2 T2 where h2T2: L2 = h2+#T2
using list.exhaust-sel by blast
have V k<length (h1 # T1). trace-regez-of-vars ((h1 # T1)! k) num-vars
using Cons.prems(1) unfolding WEST-regez-of-vars-def by argo
then have regtracelList-T1: WEST-regex-of-vars T1 num-vars
unfolding WEST-regex-of-vars-def by auto
{assume xx: WEST-and-helper h1 L2 = |]
then have loc! > 0
using loc1loc2
by (metis WEST-and-helper.simps(1) WEST-and-helper-set-member gr-implies-not-zero
list.size(8) not-gr0 nth-Cons-0)
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then have exi: 3locl loc2.
loc1 < length T1 A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace (T1 ! loc1) (L2 ! loc2) = Some sometrace A
regtrace = sometrace)
using loc1loc2
by (metis One-nat-def Suc-pred bot-nat-0.not-eg-extremum length-Cons
nat-add-left-cancel-less nth-Cons’ plus-1-eq-Suc)
then have ?case
using Cons.hyps[OF regtraceList-T1 Cons(3) exi] WEST-and-subset
by auto
} moreover {assume xx: WEST-and-helper h1 L2 # ]
then have WEST-and (h1 # T1) (h2 # T2) = WEST-and-helper hi1 (h2
# T2) Q WEST-and T1 (h2 # T2)
by (simp add: list.case-eq-if)
then have ?case
using Cons.hyps|OF regtraceList-T1 Cons.prems(2)]
by (metis One-nat-def Suc-pred Un-iff WEST-and-helper-set-member-converse
gr-implies-not-zero h2T2 length-Cons linorder-neqE-nat loc1loc2 nat-add-left-cancel-less
nth-Cons’ plus-1-eq-Suc set-append)
}
ultimately have ?case
by auto
}

ultimately show “case
by auto
qed

lemma WEST-and-set-member:
fixes num-vars:nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regtrace € set (WEST-and L1 L2) +—
(3 loct loc2. loc1 < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace N
regtrace = sometrace))
using WEST-and-set-member-dirl WEST-and-set-member-dir2 assms by blast

lemma WEST-and-commutative-sets-member:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace-in: regtrace € set (WEST-and L1 L2)
shows regtrace € set (WEST-and L2 L1)
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proof —
obtain loc1 loc2 where lociloc2: loc1 < length L1 A
loc2 < length L2 A
(3 sometrace.
WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace N\
regtrace = sometrace)
using WEST-and-set-member[OF L1-of-num-vars L2-of-num-vars| regtrace-in
by auto
have locl: trace-regex-of-vars (L1 ! locl) num-vars
using L1-of-num-vars loclloc2 unfolding WEST-regez-of-vars-def
by (meson less-imp-le-nat)
have loc2: trace-regex-of-vars (L2 ! loc2) num-vars
using L2-of-num-vars loclloc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)
have loc1 < length L1 N
loc2 < length L2 A
(3 sometrace.
WEST-and-trace (L2 ! loc2) (L1 ! locl) = Some sometrace A
regtrace = sometrace)
using loc1loc2 WEST-and-trace-commutative[OF locl loc2]
by simp
then show ?thesis using loc1loc2
using WEST-and-set-member[OF L2-of-num-vars L1-of-num-vars|
by blast
qed

lemma WEST-and-commutative-sets:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows set (WEST-and L1 L2) = set (WEST-and L2 L1)
using WEST-and-commutative-sets-member[OF L1-of-num-vars L2-of-num-vars]
WEST-and-commutative-sets-member| OF L2-of-num-vars L1-of-num-vars]
by blast

lemma WEST-and-commutative:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regez-equiv (WEST-and L1 L2) (WEST-and L2 L1)
proof —
have set (WEST-and L1 L2) = set (WEST-and L2 L1)
using WEST-and-commutative-sets assms
by blast
then have match 7 (WEST-and L1 L2) = match # (WEST-and L2 L1) for
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using match-def match-regez-def
by (metis in-set-conv-nth)
then show ?thesis
unfolding regez-equiv-def by auto
qed

3.3.2 Identity and Zero

lemma WEST-and-helper-identity:
shows WEST-and-helper || trace = trace
proof (induct trace)
case Nil
then show ?case by auto
next
case (Cons h T)
then show Zcase
using WEST-and-helper.simps(2)[of [] h T]
by (smt (verit) WEST-and-trace.elims list.discI option.simps(5))
qed

lemma WEST-and-identity: WEST-and [[]] L = L
proof—
{assume *x: L = []
then have ?thesis
by auto
} moreover {assume *: L # ||
then obtain h T where hT: L = h#T
using list.exhaust by auto
then have ?thesis using WEST-and.simps(3)[of [ [| b T
using hT
by (metis (no-types, lifting) WEST-and.simps(2) WEST-and-helper-identity
append.right-neutral list.simps(5))
}
ultimately show ?thesis by linarith
qed

lemma WEST-and-zero: WEST-and L || = |]
by simp

3.3.3 WEST-and-state

Well Defined fun advance-state:: state = state
where advance-state state = {z—1 | z. (z€state A z # 0)}

lemma advance-state-elt-bound:
fixes state::state
fixes num-vars::nat
assumes VY zE€state. x < num-vars
shows V z€(advance-state state). © < (num-vars—1)
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using assms advance-state.simps by auto

lemma advance-state-elt-member:
fixes state::state
fixes x::nat
assumes z+1 € state
shows z € advance-state state
using assms advance-state.simps by force

lemma advance-state-match-timestep:
fixes h:: WEST-bit
fixes t::state-regex
fixes state::state
assumes match-timestep state (h#tt)
shows match-timestep (advance-state state) t
proof—
have (Vz<length (h # t).
((h# t) z = One — x € state) A (h # t) ! & = Zero — x ¢ state))
using assms unfolding match-timestep-def by argo
then have V z<length t.
((h# t)! (xz+1) = One — (z+1) € state) A (b # t) ! (z+1) = Zero
— (z+1) ¢ state) by auto
then have V z<length t.
(t !z = One — z € (advance-state state)) A (t ! @ = Zero — ¢ ¢
(advance-state state))
using advance-state.simps advance-state-elt-member by fastforce
then show ?thesis using assms unfolding match-timestep-def by metis
qed

lemma WEST-and-state-well-defined:
fixes num-vars::nat
fixes state::state
fixes s1 s2:: state-regex
assumes sl-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes mw-match-ri-r2: match-timestep state s1 N\ match-timestep state s2
shows WEST-and-state s1 s2 # None
proof—
have same-length: length s1 = length s2
using assms unfolding state-regex-of-vars-def by simp
have (V z. z < num-vars — (((sI ! z = One) — x € state) A ((s1 ! z =
Zero) — x ¢ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have match-timestep-s1-unfold: ¥ z€state. x < num-vars — ((s1 ! z =
One) V (s1 !z =279))
using assms by (meson WEST-bit.exhaust)
then have z-in-state-s1: Vz. (x < num-vars A x € state) — ((s1 ! z = One)
V (sl !z =25)) by blast
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then have z-notin-state-s1: Vz. (z < num-vars A = ¢ state) — ((s1 ! z =
Zero) V (s1 1z = 9))
using match-timestep-s1-unfold
by (meson WEST-bit.exzhaust <V z<num-vars. (s1 | © = One — z € state) A
(s1 'z = Zero — x ¢ state)y)
have match-timestep-s2-unfold: (V z. x < num-vars — (((s2 ! z = One) — z
€ state) A ((s2 ! © = Zero) — x ¢ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have Vzestate. z < num-vars — ((s2 !z = One) V (s2 ! z = 5))
using assms by (meson WEST-bit.exhaust)
then have z-in-state-s2: Vz. (x < num-vars A x € state) — ((s2 ! z = One)
V (s2 !z =25)) by blast
then have z-notin-state-s2: Vz. (z < num-vars A = ¢ state) — ((s2 ! z =
Zero) V (s2 !z = 9))
using match-timestep-s1-unfold
by (meson WEST-bit.exhaust <V z<num-vars. (s2 ! x = One — z € state) A
(s2 'z = Zero — x ¢ state)))
have no-contradictory-bits1: ¥V z€state. x < num-vars — WEST-and-bitwise (s1
l'z) (s2 ! x) # None
using z-in-state-s1 z-notin-state-s1 z-in-state-s2 z-notin-state-s2 WEST-and-bitwise.simps
by (metis match-timestep-s2-unfold not-Some-eq)
then have no-contradictory-bits2: V z. (z ¢ state A\ x < num-vars) — WEST-and-bitwise
(st V'z) (s2 ! z) # None
using z-in-state-s1 z-notin-state-s1 x-in-state-s2 z-notin-state-s2 WEST-and-bitwise.simps
by fastforce
have no-contradictory-bits: ¥V x. x < num-vars — WEST-and-bitwise (s ! x)
(s2 ! z) # None
using no-contradictory-bits1 no-contradictory-bits2
by blast
show ?thesis using same-length no-contradictory-bits assms
proof (induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto
next
case (Cons a sl)
then have num-vars-bound: num-vars = (length s1) + 1
unfolding state-regez-of-vars-def by simp
then have len-s2: length s2 = num-vars using Cons by simp
then have length s2 > 1 using num-vars-bound by simp
then have s2-ht-exists: Ih t. s2 = h#t
by (metis Suc-eq-plusl Suc-le-length-iff <length s2 = num-vars> not-less-eq-eq
num-vars-bound)
obtain % t where s2-ht: s2 = h#t using s2-ht-exists by blast
{assume x: WEST-and-bitwise a h = None
then have Zcase using WEST-and-state.simps(2)
using Cons.prems(2) <length s2 = num-vars) s2-ht by force
} moreover {assume xx: WEST-and-bitwise a h # None
have hi: length s1 = length t
using len-s2 num-vars-bound s2-ht by simp
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obtain num-var-minus! where nvmi-def: num-var-minusl = num-vars —
1 by simp
then have YV z<(num-vars—1). WEST-and-bitwise ((a#s1) ! (z+1)) ((h#t)
!'(z+1)) # None
using Cons.prems(2)
using num-vars-bound s2-ht by auto
then have h2: Vz<num-var-minusl. WEST-and-bitwise (s1 ! z) (¢ | x) #
None
using nvmli-def by simp
obtain adv-state where adv-state-def: adv-state = advance-state state by
stmp
have hj: state-regex-of-vars s1 num-var-minusi
using Cons.prems unfolding state-regezx-of-vars-def
by (simp add: add-implies-diff num-vars-bound nvmI-def)
have h5: state-regez-of-vars t num-var-minusi
using h4 h1 unfolding state-regex-of-vars-def by simp
have h6: match-timestep adv-state s1 N match-timestep adv-state t
using Cons.prems(5) s2-ht adv-state-def
using advance-state-match-timestep by blast
have ih: WEST-and-state s1 t #= None
using Cons.hyps[of t num-var-minus! adv-state] h1 h2 h{ h5 h6 by auto
have ?case using WEST-and-state.simps(2)[of a s1 h t] xx ih s2-ht by auto
}
ultimately show Zcase
by blast
qed
qed

Correct Forward lemma WEST-and-state-length:
fixes sl s2::state-regex
assumes samelen: length s1 = length s2
assumes r-exists: (WEST-and-state s1 s2) # None
shows 3 r. length r = length s1 N WEST-and-state s1 s2 = Some r
proof—
have si1s2-exists: 3r. WEST-and-state s1 s2 = Some r
using assms by simp
then obtain r where s1s2-obt: WEST-and-state s1 s2 = Some r by auto
let ?n = length s1
have si1s2-length-n: length r = ?n
using assms s1s2-obt
proof (induct ?n arbitrary: s1 s2 )
case (
then show ?case using WEST-and-state.simps(1) by simp
next
case (Suc x)
have length s1 > 1 using Suc.hyps(2) by simp
then have 3h1 t1. s1 = h1 # t1 by (simp add: Suc-le-length-iff)
then obtain hi t1 where hitl: s1 = hl # t1 by blast
have length s2 > 1 using Suc.hyps(2) Suc.prems(1) by auto
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then have 3h2 t2. s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2: s2 = h2 # t2 by blast
have WEST-and-bitwise h1 h2 # None
using Suc.prems h1tl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.simps(4))
then obtain hi1h2 where hi1h2-and: Some h1h2 = WEST-and-bitwise h1 h2
by auto
have WEST-and-state t1 t2 # None
using Suc.prems h1tl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis (no-types, lifting) not-None-eq option.simps(4) option.simps(5))
then obtain t1t2 where t1t2-and: Some t1t2 = WEST-and-state t1 t2 by
auto
have cond1: x = length t1 using h1t1 Suc.hyps(2) by auto
have cond2: length t1 = length t2 using hitl h2t2 Suc.prems(1) by auto
have len-t1t2: length t1t2 = length t1
using Suc.hyps(1)[of t1 t2 t1t2] using condl cond?2 t1t2-and
using « WEST-and-state t1 t2 # None> by fastforce
have r-decomp: r = h1h2 # tit2
using Suc.prems(3) h1h2-and t1t2-and WEST-and-state.simps(2)
by (metis h1t1 h2t2 option.inject option.simps(5))
show ?case using r-decomp len-t1t2 hitl h2t2 by auto
qed
then show ?thesis using assms s1s2-obt s1s2-exists by simp
qed

lemma index-shift:

fixes a:: WEST-bit

fixes t::state-regex

fixes state::state

assumes (a = One — 0 € state) A (a = Zero — 0 ¢ state)

assumes Vz<length t. ((t!z) = One — x + 1 € state) A ((tlz) = Zero — =z
+ 1 ¢ state)

shows V z<length (a#t). ((a#t) ! £ = One — z € state) N ((a#t) | z = Zero
— z ¢ state)
proof—

have (a = One — 0 € state) using assms by auto

then have a-one: (a#t)!0 = One — 0 € state by simp

have t-one: Va<length t. (t!lz) = One — z + 1 € state using assms by auto

have Vz<(length t)+1. (x # 0 A (a#t)lx = One) — z € state

using t-one assms(2)

by (metis (no-types, lifting) Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class. diff-cancel
gr-zerol less-numeral-extra(1) linordered-semidom-class.add-diff-inverse nth-Cons’
verit-comp-simplify1 (1))

then have at-one: Vz<length (a#t). ((a#t) ! © = One — x € state)

using a-one t-one by (simp add: nth-Cons’)

have (a = Zero — 0 ¢ state) using assms by auto

then have a-zero: (a#t)!0 = Zero — 0 ¢ state by simp

have t-zero: ¥V z<length t. (tlx) = Zero — x + 1 ¢ state using assms by auto
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have Vz<(length t)+1. (x # 0 A (a#t)lx = Zero) — x ¢ state
using t-zero assms(2)
by (metis Nat.add-0-right Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class. diff-cancel
less-one not-gr-zero nth-Cons’)
then have at-zero: V z<length (a#t). ((a#t) | © = Zero — z ¢ state)
using a-zero t-zero by (simp add: nth-Cons’)
show ?thesis using at-one at-zero by blast
qed

lemma index-shift-reverse:

fixes a:: WEST-bit

fixes t::state-regex

fixes state::state

assumes Vz<length (a#t). ((a#t) ! © = One — z € state) A ((a#t) | x =
Zero — x ¢ state)

shows Vz<length t. ((t!z) = One — z + 1 € state) A ((tlx) = Zero — = +
1 ¢ state)
proof—

have length (a#t) = (length t) + 1 by simp

then have Vz<(length t)+1. ((a#t) ! © = One — x € state) A ((a#t) ! z =
Zero — x ¢ state)

using assms by metis

then show ?thesis by simp

qed

lemma WEST-and-state-correct-forward:

fixes num-vars::nat

fixes state::state

fixes sl s2:: state-regex

assumes si1-of-num-vars: state-regez-of-vars sl num-vars

assumes s2-of-num-vars: state-regex-of-vars s2 num-vars

assumes match-both: match-timestep state s1 N match-timestep state s2

shows J somestate. (match-timestep state somestate) A (WEST-and-state s1 s2)
= Some somestate
proof—

have WEST-and-state s1 s2 # None

using WEST-and-state-well-defined assms by simp

then have Jsomestate. WEST-and-state s1 s2 = Some somestate by auto

then obtain somestate where somestate-obt: WEST-and-state sl s2 = Some
somestate by auto

have samelength: length s1 = length s2 using assms(1, 2) unfolding state-regex-of-vars-def
by auto

have len-s1: length s1 = num-vars using assms unfolding state-regex-of-vars-def
by auto

have len-s2: length s2 = num-vars using samelength len-s1 by auto

have len-somestate: length somestate = num-vars

using samelength somestate-obt WEST-and-state.simps WEST-and-state-length
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using len-s1 len-s2
by fastforce
have s1-bits: Vx<num-vars. (s1 | v = One — x € state) A (s1 | ©z = Zero —
x ¢ state)
using assms(3) len-s1 unfolding match-timestep-def by metis
have s2-bits: V z<num-vars. (s2 ! £ = One — = € state) A (s2 ! x = Zero —
x ¢ state)
using assms(3) len-s2 unfolding match-timestep-def len-s2 by metis
have somestate-bits: ¥ x<num-vars. (somestate ! x = One — € state)
A (somestate | © = Zero — x ¢ state)
using s1-bits s2-bits somestate-obt len-s1 len-s2 len-somestate assms(1)
proof (induct somestate arbitrary: sl s2 num-vars state)
case Nil
then show ?case
by (metis less-nat-zero-code list.size(8))
next
case (Cons a t)
have length s1 > 1 using Cons.prems(4, 5, 6) by auto
then have 3h1 t1. s1 = hi # t1 by (simp add: Suc-le-length-iff)
then obtain hi t1 where hitl: s1 = hl # tI by auto
have length s2 > 1 using Cons.prems(4, 5, 6) by auto
then have 312 t2. s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2: s2 = h2 # t2 by auto
have h1h2-not-none: WEST-and-bitwise h1 h2 # None
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2)
by (metis option.discl option.simps(4))
then have t1t2-not-none: WEST-and-state t1 t2 # None
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.distinct(1))
have hih2-is-a: WEST-and-bitwise h1 h2 = Some a
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto
have ti1t2-is-t: WEST-and-state t1 t2 = Some t
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto
let num-vars-m1 = num-vars — 1
have len-t: Suc (length t) = num-vars
using Cons.prems(1—6) by simp
then have length-t: length t = ?num-vars-ml1 by simp
then have length-t1: length t1 = ?num-vars-m1 using Cons.prems(1—06) hi1t!
by simp
then have length-t2: length t2 = ?num-vars-m1 using Cons.prems(1—6) h2t2
by simp
have (a = One — 0 € state) A (a = Zero — 0 ¢ state)
using h1h2-is-a Cons.prems(1, 2) h1tl h2t2 WEST-and-bitwise.simps
by (smt (verit) WEST-and-bitwise.elims len-t nth-Cons-0 option.inject zero-less-Suc)
then have a-fact: ((a # t) ! 0 = One — 0 € state) A ((a # t) ! 0 = Zero
— 0 ¢ state) by auto
let 2adv-state = advance-state state
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have V z<num-vars.((h1#t1) | x = One — z € state) A ((h1#t1) ! x = Zero
— z ¢ state)
using Cons.prems(1) hi1tl advance-state.simps|of state] by blast
then have cond!: Vz<num-vars—1.(t1 ! © = One — (z+1) € state) A (t1
o = Zero — (x+1) ¢ state)
using index-shift-reverse[of h1 t1] by simp
then have cond!: Vz<num-vars—1.(t1 ! v = One — z € Zadv-state) N (t1
V' = Zero — z ¢ Zadv-state)
using advance-state-elt-member by fastforce
have V z<num-vars.((h24#t2) | x = One — z € state) A ((h2#t2) | x = Zero
— x ¢ state)
using Cons.prems(2) h2t2 advance-state.simps|of state] by blast
then have Vz<num-vars—1.(t2 !z = One — (z+1) € state) A (12 ! z =
Zero — (z+1) ¢ state)
using index-shift-reverse[of h2 t2] by simp
then have cond2: Vz<num-vars—1.(t2 ! © = One — x € %adv-state) A (12
V' = Zero — x ¢ Padv-state)
using advance-state-elt-member by fastforce
have t-fact: Vo < length t. (t ! x = One — z € %adv-state) N (t ! x = Zero
— x ¢ Zadv-state)
using Cons.hyps[of ?num-vars-m1 t1 ?adv-state t2]
using length-t length-t1 length-t2 t1t2-is-t cond1 cond?2
by (metis (mono-tags, opaque-lifting) state-regex-of-vars-def)
then have i-fact: Vo < length t. (t ! © = One — (z+1) € state) A (t ! z =
Zero — (z+1) ¢ state)
using advance-state-elt-member by auto
have cons-index: ¥z < length (a#t). (t ! z) = (a#t)!(z+1) by auto
have somestate-fact: ¥ z<length (a#t). ((a # t) ! © = One — z € state) A
((a # t) 'z = Zero — z ¢ state)
using a-fact t-fact index-shift[of a state] Cons.prems(5,6)
using «(a = One — 0 € state) A\ (a = Zero — 0 ¢ state)» by blast
show ?Zcase
using somestate-fact len-t by auto
qed
have match-somestate: match-timestep state somestate
using somestate-obt assms somestate-bits
using len-s2 len-somestate
unfolding match-timestep-def
by metis
then show ?thesis using somestate-obt by simp
qed

Correct Converse lemma WEST-and-state-indices:
fixes s sl s2::state-regex
assumes WEST-and-state s1 s2 = Some s
assumes length s1 = length s2
assumes z<length s
shows Some (slz) = WEST-and-bitwise (s1lx) (s2!x)
using assms
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proof (induct s arbitrary: s1 s2 x)
case Nil
then show ?case by simp
next
case (Cons h t)
then obtain h! t1 where hitl: s1 = hl # t1
by (metis WEST-and-state.simps(1) length-greater-0-conv neg-Nil-conv op-
tion.inject)
obtain h2 t2 where h2t2: s2 = h2 # t2
using Cons
by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)
have notnonel: WEST-and-bitwise hl1 h2 # None using hitl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.distinct(1) option.simps(4))
have notnone2: WEST-and-state t1 t2 # None using hltl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.discl)
have someh: WEST-and-bitwise h1 h2 = Some h using hitl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
notnonel notnone2 by auto
have somet: WEST-and-state t1 t2 = Some t using h1t1 h2t2 Cons(2) WEST-and-state.simps(2)[of
h1 t1 h2 t2]
notnonel notnone2 by auto
then have some-t: z < length t = Some (t ! ) = WEST-and-bitwise (t1 ! x)
(t2 1 z) for z
using h1t! h2t2 Cons(1)[OF somet] Cons(3)
by simp
have some-zero: Some ((h # t) | 0) = WEST-and-bitwise (s1 ! 0) (s2! 0)
using someh h1t1 h2t2 by simp
{assume *: z = (
then have ?case
using some-zero by auto
} moreover {assume x: z > 0
then have zminus-lt: z—1 < length t
using Cons(4) by simp
have Some ((h # t) ! ) = Some (t! (z—1))
using *
by auto
then have ?case
using some-t[OF zminus-lt] h1tl h2t2
by (simp add: *)
}
ultimately show ?case
by blast
qed

lemma WEST-and-state-correct-converse-s1:
fixes num-vars::nat
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fixes state::state
fixes s1 s2:: state-regex
assumes sI-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: 3 somestate. (match-timestep state somestate) N (WEST-and-state
s1 s2) = Some somestate
shows match-timestep state sl1
proof—
have s1-bits: (Va<length s1. (s1 | x = One — z € state) A (s1 ! © = Zero —
x ¢ state))
using assms
proof (induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto
next
case (Cons h1 t1)
obtain somestate where
somestate-obt: (match-timestep state somestate) N (WEST-and-state (h1#t1)
s2) = Some somestate
using Cons.prems(3) by auto

have len-s1: length (h1#t1) = num-vars using Cons.prems unfolding state-regez-of-vars-def
by simp
have len-s2: length s2 = num-vars using Cons.prems unfolding state-regez-of-vars-def
by simp
then obtain h2 t2 where h2t2: s2=h2+#t2
by (metis WEST-and-state.simps(3) neg-Nil-conv not-Some-eq somestate-obt)
have len-somestate: length somestate = num-vars
using somestate-obt WEST-and-state-length|of - s2] unfolding state-regezx-of-vars-def
len-s2
using len-s1 by fastforce
then obtain h t where ht: somestate = h#t using len-s1
by (metis Ex-list-of-length Zero-not-Suc length-Cons neg-Nil-conv)

have somestate-bits: (¥ z<length somestate. (somestate | © = One — x €
state) A (somestate | © = Zero — x & state))
using somestate-obt unfolding match-timestep-def by argo
then have somestate-bits-conv: (V¥ x<length somestate. (x € state — (somestate
Iz = One V somestate | . = §)) A
(x ¢ state — (somestate | © = Zero V somestate | ©
=9)))

by (meson WEST-bit.exhaust)
have WEST-and-state (h14tt1) s2 = Some somestate using somestate-obt by
blast
then have somestate-and: WEST-and-state (h1#t1) (h2#t2) = Some (h#t)
using h2t2 ht by simp

have (somestate | 0 = One — 0 € state) A (somestate ! 0 = Zero — 0 ¢
state)
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using somestate-bits len-somestate len-s1 by simp
then have somestate-bit0: (h = One — 0 € state) A (h = Zero — 0 ¢
state)
using ht by simp
have hih2-not-none: WEST-and-bitwise h1 h2 # None
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h2t2
using option.simps(4) by fastforce
have t1t2-not-none: WEST-and-state t1 t2 # None
using h1h2-not-none somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2]
using option.simps(4) by fastforce
then have h1h2-is-h: WEST-and-bitwise h1 h2 = Some h
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h1h2-not-none
by auto
have h-fact-converse: (0 € state — (hl = One V h1 = 5)) A (0 ¢ state —
(h1 = Zero V h1 = S))
using somestate-bit0 h1h2-is-h WEST-and-bitwise.simps[of h1] h1h2-not-none
by (metis (full-types) WEST-and-bitwise.elims option.inject)
then have h-fact: (h1 = One — 0 € state) A (hl = Zero — 0 ¢ state) by
auto

have somestate-bits-t: ¥ z<length t. (t!z = One — (x+1) € state) A (tlz =
Zero — (z+1) ¢ state)
using indez-shift-reverse[of h t] Cons.prems(1) somestate-bits len-somestate
len-s1 ht by blast
have t1t2-is-t: WEST-and-state t1 t2 = Some t
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] t1t2-not-none
h1h2-not-none by auto
then have t1t2-is-t-indices: V x<length t. Some (tlz) = WEST-and-bitwise
(t1'z) (t2!x)
using WEST-and-state-indices[of t1 t2 ] len-s1 len-s2 h2t2 by simp
have t-fact-conversel: N\z. x<length t1 = (((z+1) € state — (t1!z = One
Vitlle = 9)) A ((z+1) ¢ state — (t1lx = Zero V t1lz = 9)))
proof —
fix z
assume z-lt: x<length t1
have x:(tlz = One — (x+1) € state) A (tlx = Zero — (z+1) ¢ state)
using z-lt somestate-bits-t len-s1 len-somestate ht by auto
have *x: Some (¢t | ©) = WEST-and-bitwise (t1 ! z) (12 ! z)
using z-lt somestate-bits-t len-s1 len-somestate ht t1t2-is-t-indices by auto

{assume casel: (z+1) € state
then have tlz = One Vv tllz = §
using x
by (smt (verit) xx WEST-and-bitwise.elims WEST-and-bitwise.simps(2)
option.distinct(1) option.inject)
then have (t1!z = One Vv t1lz = S)
using z-lt WEST-and-bitwise.simps[of t1!x] * xx
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
} moreover {assume case2: (z+1) ¢ state
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then have tlz = Zero V tilz = S
using x
by (smt (verit) xx WEST-and-bitwise.elims WEST-and-bitwise.simps(2)
option.distinct(1) option.inject)
then have (t1lz = Zero Vv t1lx = S)
using z-lt WEST-and-bitwise.simps|of t11x] * %%
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
}
ultimately show (((z+1) € state — (t1lz = One V t1lx = S)) A ((z+1)
¢ state — (t1lx = Zero V t1lz = 5)))
by blast
qed
then have t-fact: Va<length t1. (t1lx = One — (z+1)€state) N (t1lz =
Zero — (z+1)¢ state)
by force

show ?case
using h-fact t-fact Cons.prems len-s2 len-somestate index-shift[of h1 state)
unfolding state-regex-of-vars-def by blast
qed

show ?thesis
using s1-bits assms(1) unfolding match-timestep-def
using state-regex-of-vars-def s1-of-num-vars by presburger
qed

lemma WEST-and-state-correct-converse:
fixes num-vars::nat
fixes state::state
fixes s1 s2:: state-regex
assumes sl-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: 3 somestate. (match-timestep state somestate) A (WEST-and-state
s1 s2) = Some somestate
shows match-timestep state s1 N match-timestep state s2
proof—
have match-s1: match-timestep state s1 using assms WEST-and-state-correct-converse-si
by simp
have match-s2: match-timestep state s2
using assms WEST-and-state-correct-converse-s1 WEST-and-state-commutative
by (simp add: state-regezx-of-vars-def)
show ?thesis using match-s1 match-s2 by simp
qged

lemma WEST-and-state-correct:
fixes num-vars::nat
fixes state::state
fixes sl s2:: state-regex
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assumes sI-of-num-vars: state-regez-of-vars s1 num-vars
assumes s2-of-num-vars: state-regez-of-vars s2 num-vars
shows (match-timestep state s1 A match-timestep state s2) <— (3 somestate.
match-timestep state somestate A (WEST-and-state s1 s2) = Some somestate)
using assms WEST-and-state-correct-converse
WEST-and-state-correct-forward by metis

3.3.4 WEST-and-trace
Well Defined lemma WEST-and-trace-well-defined:

fixes num-vars::nat
fixes m::trace
fixes r1 r2:: trace-regex
assumes rl-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes m-match-r1-r2: match-regex ™ r1 N\ match-regex ™ r2
shows WEST-and-trace r1 2 # None
proof—
show ?thesis using assms
proof (induct r1 arbitrary: r2 m num-vars)
case Nil
{assume r2-empty:r2 = ||
then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2#||
then obtain h2 t2 where r2 = h2#t2
by (metis trim-reversed-regez.cases)
then have?case using WEST-and-trace.simps(2)[of h2 t2] by blast
}
ultimately show ?case by blast
next
case (Cons h1 t1)
{assume r2-empty:r2 = ||
then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2#[|
then obtain 72 t2 where h2t2: r2 = h2#t2
by (metis trim-reversed-regex.cases)

have hiti-nv: Vi<length (hl # t1). length ((h1 # t1)! i) = num-vars
using Cons.prems(1) unfolding trace-regex-of-vars-def by argo

then have length ((h1 # t1)! 0) = num-vars by blast

then have hi-nv: state-regex-of-vars hl num-vars
unfolding state-regez-of-vars-def by simp

have h2t2-nv: Vi<length (h2 # t2). length ((h2 # t2) ! i) = num-vars
using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by metis

then have length ((h2 # t2) ! 0) = num-vars by blast

then have h2-nv: state-regex-of-vars h2 num-vars
unfolding state-regez-of-vars-def by simp

have match-timestep (m ! 0) h1 A match-timestep (7w ! 0) h2
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using Cons(4) unfolding match-regex-def
by (metis h2t2 length-greater-0-conv list.distinct(1) nth-Cons-0)
then have hih2-notnone: WEST-and-state h1 h2 # None
using WEST-and-state-well-defined|[of h1 num-vars h2 !0, OF h1-nv h2-nv]
by blast

have t1-nv: trace-regezx-of-vars t1 num-vars

using hl1tl-nv unfolding trace-regex-of-vars-def by auto
have t2-nv: trace-regex-of-vars t2 num-vars

using h2t2-nv unfolding trace-regex-of-vars-def by auto

have unfold-prem3: (¥ time<length (h1 # t1). match-timestep (w ! time) ((h1
# t1) ! time)) A
length (h1 # t1) < length m A (V¥ time<length 2. match-timestep (w | time)
(r2 ! time)) A length r2 < length w
using Cons.prems(83) unfolding match-regez-def by argo

have unfold-prem3-bounds: length (h1 # t1) < length w A length r2 < length

using unfold-prem3 by blast
have w-drop1-len: length (drop 1 ) = (length m)—1 by simp
have len-t1t2: length t1 = length (h14tt1)—1 A length t2 = length (h24t2)—1
by simp
have bounds: length t1 < length (drop 1 7) A length t2 < length (drop 1 m)
using unfold-prem3-bounds h2t2 w-drop1-len len-t1t2 h2t2
by (metis diff-le-mono)

have unfold-prem3-matches: (¥ time<length (h1 # t1). match-timestep (w !
time) ((h1 # t1) ! time)) A
(V time<length (h2 # t2). match-timestep (7 ! time)
((h2 # t2) | time))
using unfold-prem3 h2t2 by blast

have hit1-match:(V time<length (h1 # t1). match-timestep (7 ! time) ((h1
# t1) ! time))
using unfold-prem3-matches by blast
then have (Atime. time<length t1 = match-timestep (drop 1 ! time) (¢1
! time))
proof—
fix time
assume time-bound: time < length t1
have time+1 < length (hl1#t1) using time-bound by auto
then have match-timestep (7 ! (time+1)) ((h1 # t1) ! (time+1)) using
h1ti-match by auto
then show match-timestep (drop 1 7! time) (t1 ! time)
using cancel-comm-monoid-add-class. diff-cancel unfold-prem3 by auto
qed
then have t1-match: (V time<length t1. match-timestep (drop 1 7 ! time) (t1
! time))
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by blast

have h2t2-match: ¥V time < length (h2 # t2). match-timestep (7 ! time) ((h2
# t2) | time)
using unfold-prem3-matches by blast
then have (Atime. time<length t2 = match-timestep (drop 1 ! time) (t2
! time))
proof—
fix time
assume time-bound: time < length t2
have time+1 < length (h24t2) using time-bound by auto
then have match-timestep (w ! (time+1)) ((h2 # t2) ! (time+1)) using
h2t2-match by auto
then show match-timestep (drop 1 = ! time) (¢2 ! time)
using cancel-comm-monoid-add-class. diff-cancel unfold-prem3 by auto
qed
then have t2-match: (V¥ time<length t2. match-timestep (drop 1 © | time) (2
! time))
by blast

then have matches: (¥ time<length t1. match-timestep (drop 1 m ! time) (t1
! time)) A
(V time<length t2. match-timestep (drop 1 ! time) (t2 | time))
using tI-match t2-match by blast
have match-regex (drop 1 m) t1 A match-regex (drop 1 ) t2
using bounds matches unfolding match-regex-def h2t2 by auto
then have t1t2-notnone: WEST-and-trace t1 t2 # None
using Cons.hyps[of num-vars t2 drop 1 w, OF t1-nv t2-nv] by simp

have WEST-and-trace (h1 # t1) (h2 # t2) # None
using h1h2-notnone t1t2-notnone WEST-and-trace.simps(3) by auto
then have ?case using h2t2 by auto
}
ultimately show ?case by blast
qed
qed

Correct Forward lemma WEST-and-trace-correct-forward-auz:

assumes match-regex m (h#tt)

shows match-timestep (w!0) h A match-regex (drop 1 ) t
proof —

have ind-h: (¥ time<length (h#t). match-timestep (w | time) ((h#t) ! time)) A
length (h#t) < length w

using assms unfolding match-regex-def by metis

then have part!: match-timestep (w ! 0) h

by auto

have part2: match-timestep (drop 1 w ! time) (¢ ! time) if time-lt: time<length
t for time

proof —
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have match: match-timestep (mw ! (time+1)) ((h # t) ! (time+1))
using ind-h time-It by auto
have (7 ! (time + 1)) = (drop 1 7! time)
using add.commute add-gr-0 impossible-Cons ind-h less-add-same-cancel?
less-eq-iff-succ-less by auto
then show ?thesis using match by auto
qed
have part3: length t < length (drop 1 )
using ind-h by auto
show ?thesis using part! part2 part3 unfolding match-regez-def by simp
qged

lemma WEST-and-trace-correct-forward-auz-converse:
assumes 7 = hxiFtri
assumes match-timestep (hai) h
assumes match-regex ti t
shows match-regex m (h#tt)
proof—
have all-time-t: V¥ time<length t. match-timestep (tzi ! time) (¢t ! time)
using assms(3) unfolding match-regez-def by argo
have len-t-leq: length t < length tzi
using assms(3) unfolding match-regex-def by argo
have match-ht: match-timestep (7! time) ((h # t) | time) if time-ht: time<length
(h # 1)
for time
proof —
{assume x: time = 0
then have ?thesis
using assms(2) assms(1)
by auto
} moreover {assume x*: time > 0
then have ?thesis
using time-ht all-time-t assms(1)
by auto
}
ultimately show %thesis
by blast
qed
have len-condition: length (h # t) < length 7
using assms(1) len-t-leq by auto
then show ?thesis
using match-ht len-condition unfoldi