Formalizing MLTL in Isabelle/HOL $\,$

Zili Wang and Katherine Kosaian

January 28, 2025

Abstract

Building on the formalization of Mission-time Linear Temporal Logic (MLTL) in Isabelle/HOL, we formalize the correctness of the algorithms for the WEST tool [1, 2], which converts MLTL formulas to regular expressions. We use Isabelle/HOL's code export to generate Haskell code to validate the existing (unverified) implementation of the WEST tool.

Contents

1	Key	algorithms for WEST	2
	1.1	Custom Types	2
	1.2	Trace Regular Expressions	2
	1.3	WEST Operations	5
		1.3.1 AND	5
		1.3.2 Simp	6
		1.3.3 AND and OR operations with WEST-simp	11
		1.3.4 Useful Helper Functions	12
		1.3.5 WEST Temporal Operations	12
		1.3.6 WEST recursive reg Function	13
		1.3.7 Adding padding	18
2	Son	ne examples and Code Export	18
2 3		ne examples and Code Export ST Proofs	18 19
_		ST Proofs	
_	WE	ST Proofs Useful Definitions	19
_	WE 3.1	Useful Definitions	19 19
_	WE 3.1 3.2	Useful Definitions	19 19 19
_	WE 3.1 3.2	Useful Definitions	19 19 19 21
_	WE 3.1 3.2	Useful Definitions	19 19 19 21 21
_	WE 3.1 3.2	Useful Definitions	19 19 19 21 21 30 30
_	WE 3.1 3.2	Useful Definitions	19 19 19 21 21 30

	3.4	Facts about the WEST or operator		
	3.5	Pad and Match Facts		
	3.6	Facts about WEST num vars		
		3.6.1 Facts about num vars for different WEST operators		
	3.7	Correctness of WEST-simp		
		3.7.1 WEST-count-diff facts		
		3.7.2 Orsimp-trace Facts		
		3.7.3 WEST-orsimp-trace-correct		
		3.7.4 Simp-helper Correct		
		3.7.5 WEST-simp Correct		
	3.8	Correctness of WEST-and-simp/WEST-or-simp		
	3.9	Facts about the WEST future operator		
		Facts about the WEST global operator		
		Facts about the WEST until operator		
		Facts about the WEST release Operator		
		Top level result: Shows that WEST reg is correct		
	3.14	Top level result for padded version		
4 5		ex Equivalence Correctness		
1	K	ey algorithms for WEST		
h	eory	$WEST ext{-}Algorithms$		
im	ports	s Mission-Time-LTL.MLTL-Properties		
be	gin			
1.	1 (Custom Types		
\mathbf{ty}	pe-sy	nonym trace = nat set list		
${f type-synonym} \ trace = nat \ set \ list$ ${f type-synonym} \ state-regex = WEST-bit \ list$				
type-synonym trace-regex = WEST-bit list list				
\mathbf{type} -synonym $WEST$ - $regex = WEST$ -bit list list list				

151

152

1.2 Trace Regular Expressions

```
fun WEST-get-bit:: trace-regex \Rightarrow nat \Rightarrow nat \Rightarrow WEST-bit where WEST-get-bit regex timestep var = 0 if timestep \geq length regex then S else let regex-index = regex! timestep in if var \geq length regex-index then S else regex-index! var
```

```
Returns the state at time i, list of variable states
fun WEST-get-state:: trace-regex \Rightarrow nat \Rightarrow nat \Rightarrow state-regex
  where WEST-get-state regex time num-vars = (
  if time \geq length regex then (map (\lambda k. S) [0 ..< num-vars])
  else regex! time
    Checks if one state of a trace matches one timeslice of a WEST regex
definition match-timestep:: nat \ set \Rightarrow state-regex \Rightarrow bool
  where match-timestep state regex-state = (\forall x::nat. x < length regex-state \longrightarrow
  ((regex-state ! x = One) \longrightarrow x \in state) \land
  ((regex-state ! x = Zero) \longrightarrow x \notin state)))
fun trim-reversed-regex:: trace-regex \Rightarrow trace-regex
  where trim-reversed-regex [] = []
  | trim\text{-}reversed\text{-}regex (h\#t) = (if (\forall i < length h. (h!i) = S))
  then (trim\text{-}reversed\text{-}regex\ t)\ else\ (h\#t))
fun trim-regex:: trace-regex \Rightarrow trace-regex
  where trim-regex regex = rev (trim-reversed-regex (rev regex))
definition match\text{-}regex:: nat\ set\ list \Rightarrow\ trace\text{-}regex \Rightarrow\ bool
  where match-regex trace\ regex = ((\forall\ time < length\ regex.
  (match-timestep (trace! time) (regex! time)))
  \land (length\ trace \ge length\ regex))
definition match:: nat\ set\ list \Rightarrow\ WEST\text{-}regex \Rightarrow\ bool
  where match trace regex-list = (\exists i. i < length regex-list \land )
  (match-regex trace (regex-list ! i)))
lemma match-example:
  shows match [\{0::nat,1\}, \{1\}, \{0\}]
    [[Zero, Zero]],
   [[S,S], [S,One]]
 ] = True
proof-
  let ?regexList = [[[Zero, Zero]], [[S,S], [S,One]]]
  let ?trace = [\{0::nat,1\}, \{1\}, \{0\}]
 have (match-regex ?trace (?regexList!1))
   unfolding match-regex-def
   by (simp add: match-timestep-def nth-Cons')
  then show ?thesis
  by (metis One-nat-def add.commute le-imp-less-Suc le-numeral-extra(4) list.size(3)
list.size(4) match-def plus-1-eq-Suc)
\mathbf{qed}
```

```
definition regex-equiv:: WEST-regex \Rightarrow WEST-regex \Rightarrow bool
  where regex-equiv rl1 \ rl2 = (
 \forall \pi :: nat \ set \ list. \ (match \ \pi \ rl1) \longleftrightarrow (match \ \pi \ rl2))
lemma (regex-equiv [[[S,S]]]
  [[[S, One]],
    [[One,S]],
   [[Zero, Zero]]]) = True
proof -
 have d1: match \pi [[[S, One]], [[One, S]], [[Zero, Zero]]] if match: match \pi [[[S,
S]]] for \pi
 proof -
   have match-ss: match-regex \pi [[S, S]]
     using match unfolding match-def
     by (metis One-nat-def length-Cons less-one list.size(3) nth-Cons-0)
   {assume *: \neg (match-regex \pi [[S, One]]) \land \neg (match-regex \pi [[One, S]])
     have match-regex \pi [[Zero, Zero]]
      using match-ss unfolding match-regex-def
       by (smt\ (verit)*One-nat-def\ WEST-bit.simps(2)\ length-Cons\ less-2-cases
less-one\ list.size(3)\ match-regex-def\ match-timestep-def\ nth-Cons-0\ nth-Cons-Succession (3)
numeral-2-eq-2)
   }
   then show ?thesis
     unfolding match-def
     by (metis length-Cons less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
  have d2: match \pi [[[S, S]]] if match: match \pi [[[S, One]], [[One, S]], [[Zero,
Zero]]] for \pi
 proof -
   {assume *: match\text{-}regex \ \pi \ [[S, One]]
     then have match-regex \pi [[S, S]]
      unfolding match-regex-def
         by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
     then have match \pi [[[S, S]]]
       unfolding match-def by simp
   } moreover {assume *: match\text{-}regex \ \pi \ [[One, S]]
     then have match\text{-}regex \ \pi \ [[S, S]]
      unfolding match-regex-def
         by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
     then have match \pi [[[S, S]]]
       unfolding match-def by simp
   } moreover {assume *: match\text{-}regex \ \pi \ [[Zero, Zero]]
```

```
then have match\text{-}regex \ \pi \ [[S, S]]
       unfolding match-regex-def
     by (smt (verit) One-nat-def WEST-bit.distinct(5) length-Cons less-2-cases-iff
less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc numeral-2-eq-2)
     then have match \pi [[[S, S]]]
       unfolding match-def by simp
   ultimately show ?thesis using match unfolding regex-equiv-def
    by (smt (verit, del-insts) length-Cons less-Suc-eq-0-disj match-def nth-Cons-0
nth-Cons-Suc)
 qed
 show ?thesis using d1 d2
   unfolding regex-equiv-def by metis
qed
1.3
       WEST Operations
1.3.1
         AND
fun WEST-and-bitwise::WEST-bit \Rightarrow
                    WEST-bit \Rightarrow
                    WEST-bit option
  where WEST-and-bitwise b One = (if b = Zero then None else Some One)
   WEST-and-bitwise b Zero = (if b = One then None else Some Zero)
   WEST-and-bitwise b S = Some b
\textbf{fun} \ \textit{WEST-and-state::} \ \textit{state-regex} \Rightarrow \textit{state-regex} \Rightarrow \textit{state-regex} \ option
  where WEST-and-state [] [] = Some []
   WEST-and-state (h1 \# t1) (h2 \# t2) =
  (case WEST-and-bitwise h1 h2 of
   None \Rightarrow None
   \mid Some \ b \Rightarrow (case \ WEST-and-state \ t1 \ t2 \ of
                None \Rightarrow None
               | Some L \Rightarrow Some (b\#L)) \rangle
 \mid WEST-and-state - - = None
fun WEST-and-trace:: trace-regex \Rightarrow trace-regex \Rightarrow trace-regex option
  where WEST-and-trace trace [] = Some trace
   WEST-and-trace [] trace = Some \ trace
   WEST-and-trace (h1\#t1) (h2\#t2) =
  (case WEST-and-state h1 h2 of
   None \Rightarrow None
   | Some state \Rightarrow (case WEST-and-trace t1 t2 of
                   None \Rightarrow None
                   | Some trace \Rightarrow Some (state \# trace)))
```

```
fun WEST-and-helper:: trace-regex \Rightarrow WEST-regex
    where WEST-and-helper trace [] = []
    |WEST-and-helper trace (t\#traces) =
    (case WEST-and-trace trace t of
        None \Rightarrow WEST-and-helper trace traces
        | Some res \Rightarrow res\#(WEST-and-helper trace traces))
fun WEST-and:: WEST-regex \Rightarrow WEST-regex \Rightarrow WEST-regex
    where WEST-and traceList [] = []
       WEST-and [] traceList = []
       WEST-and (trace\#traceList1) traceList2 =
    (case WEST-and-helper trace traceList2 of
        ] \Rightarrow WEST-and traceList1 traceList2
        | traceList \Rightarrow traceList@(WEST-and traceList1 traceList2))
                     Simp
1.3.2
Bitwise simplification operation fun WEST-simp-bitwise:: WEST-bit \Rightarrow
 WEST-bit \Rightarrow WEST-bit
   where WEST-simp-bitwise b S = S
       WEST-simp-bitwise b Zero = (if b = Zero then Zero else S)
       WEST-simp-bitwise b One = (if b = One then One else S)
fun WEST-simp-state:: state-regex \Rightarrow state-regex \Rightarrow state-regex
    where WEST-simp-state s1 s2 = (
    map \ (\lambda \ k. \ WEST-simp-bitwise \ (s1 \ ! \ k) \ (s2 \ ! \ k)) \ [0 \ .. < (length \ s1)])
fun WEST-simp-trace:: trace-regex \Rightarrow trace-regex \Rightarrow nat => trace-regex
    where WEST-simp-trace trace1 trace2 num-vars = (
   map \; (\lambda \; k. \; (WEST\text{-}simp\text{-}state \; (WEST\text{-}get\text{-}state \; trace1 \; k \; num\text{-}vars) \; (WEST\text{-}get\text{-}state \; tra
trace2 \ k \ num-vars)))
   [0 ..< (Max \{(length trace1), (length trace2)\})])
Helper functions for defining WEST-simp fun count-nonS-trace:: state-regex
\Rightarrow nat
    where count-nonS-trace [] = 0
     | count-nonS-trace (h\#t) = (if (h \neq S) then (1 + (count-nonS-trace t)) else
(count-nonS-trace\ t))
fun count-diff-state:: state-regex \Rightarrow state-regex \Rightarrow nat
    where count-diff-state [] [] = \theta
       count-diff-state trace = count-nonS-trace trace
        count-diff-state [] trace = count-nonS-trace trace
        count-diff-state (h1\#t1) (h2\#t2) = (if (h1 = h2) then (count-diff-state t1 t2)
else (1 + (count-diff-state t1 t2)))
```

```
\mathbf{fun} \ \mathit{count-diff} :: \ \mathit{trace-regex} \Rightarrow \mathit{trace-regex} \Rightarrow \mathit{nat}
  where count-diff [] [] = \theta
  | count\text{-}diff [ | (h\#t) = (count\text{-}diff\text{-}state [ | h ) + (count\text{-}diff [ | t )
   count-diff (h\# t) = (count-diff-state h + (count-diff t
 | count\text{-}diff (h1\#t1) (h2\#t2) = (count\text{-}diff\text{-}state h1 h2) + (count\text{-}diff t1 t2)
fun check-simp:: trace-regex <math>\Rightarrow trace-regex <math>\Rightarrow bool
 where check-simp trace1 trace2 = ((count\text{-}diff\ trace1\ trace2) \le 1 \land length\ trace1
= length trace2)
fun enumerate-pairs :: nat list \Rightarrow (nat * nat) list where
  enumerate-pairs [] = [] |
  enumerate-pairs (x\#xs) = map(\lambda y.(x, y)) xs @ enumerate-pairs xs
fun enum-pairs:: 'a list \Rightarrow (nat * nat) list
  where enum-pairs L = enumerate-pairs [0 ... < length L]
\mathbf{fun} \ \mathit{remove-element-at-index} :: \ \mathit{nat} \ \Rightarrow \ 'a \ \mathit{list} \ \Rightarrow \ 'a \ \mathit{list}
  where remove-element-at-index n L = (take \ n \ L)@(drop \ (n+1) \ L)
    This assumes (fst h) < (snd h)
fun update-L:: WEST-regex \Rightarrow (nat \times nat) \Rightarrow nat \Rightarrow WEST-regex
  where update-L L h num-vars =
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))@[WEST-simp-trace
(L!(fst\ h))\ (L!(snd\ h))\ num-vars
Defining and Proving Termination of WEST-simp lemma length-enumerate-pairs:
 shows length (enumerate-pairs L) \leq (length L) \hat{}2
proof (induction L)
 case Nil
  then show ?case by auto
next
  case (Cons\ a\ L)
 have length-L: (length (a \# L))^2 = (1 + (length L))^2 by auto
  then have length-L: (length (a \# L))^2 = 1 + 2*(length L) + (length L)^2 by
algebra
 have length (map\ (Pair\ a)\ L) \leq length\ L
   by simp
 then show ?case
   unfolding enumerate-pairs.simps using Cons length-L by simp
lemma length-enum-pairs:
 shows length (enum-pairs L) \leq (length L) \hat{}2
 show ?thesis unfolding enum-pairs.simps using length-enumerate-pairs
   by (metis length-upt minus-nat.diff-0)
qed
```

```
lemma enumerate-pairs-fact:
 assumes \forall i j. (i < j \land i < length L \land j < length L) \longrightarrow (L!i) < (L!j)
 shows \forall pair \in set (enumerate-pairs L). (fst pair) < (snd pair)
 using assms
proof(induct length L arbitrary:L)
  case \theta
  then show ?case by auto
next
 case (Suc \ x)
  then obtain h T where obt-hT: L = h \# T
   by (metis length-Suc-conv)
  then have enum-L: enumerate-pairs L = map (Pair h) T @ enumerate-pairs T
   using enumerate-pairs.simps obt-hT by blast
 then have \bigwedge pair. pair \in set (enumerate-pairs L) \Longrightarrow fst pair < snd pair
 proof-
   fix pair
   assume pair \in set (enumerate-pairs L)
   then have pair \in set \ (map \ (Pair \ h) \ T @ enumerate-pairs \ T) \ using enum-L
   then have pair-or: pair \in set (map (Pair h) T) \lor pair \in set(enumerate-pairs
T
     by auto
   {assume in\text{-}base: pair \in set (map (Pair h) T)}
     have \forall j. \ 0 < j \land j < length L \longrightarrow h < L ! j
       using Suc.prems \ obt-hT by force
     then have \forall j < length \ T. \ h < T!j
      using obt-hT by force
     then have \forall t \in set T. h < t
      using obt-hT by (metis\ in\text{-}set\text{-}conv\text{-}nth)
     then have fst pair < snd pair
      using in-base by auto
   } moreover {
     assume in-rec: pair \in set(enumerate-pairs T)
     have fst \ pair < snd \ pair
      using Suc.hyps(1)[of T] Suc.prems obt-hT in-rec
      by (smt (verit, ccfv-SIG) Ex-less-Suc Suc.hyps(1) Suc.hyps(2) length-Cons
less-trans-Suc nat.inject nth-Cons-Suc)
   ultimately show fst pair < snd pair using enum-L obt-hT pair-or by blast
 qed
 then show ?case by blast
\mathbf{qed}
lemma enum-pairs-fact:
 shows \forall pair \in set (enum-pairs L). (fst pair) < (snd pair)
 unfolding enum-pairs.simps using enumerate-pairs-fact[of [0..<length L]]
 by simp
```

8

lemma enum-pairs-bound-snd:

```
assumes pair \in set (enumerate-pairs L)
 shows (snd \ pair) \in set \ L
 using assms
proof (induct length L arbitrary: L)
 case \theta
 then show ?case by auto
next
 case (Suc \ x)
 then obtain h T where ht: L = h \# T
  by (metis enumerate-pairs.cases enumerate-pairs.simps(1) in-set-member mem-
ber-rec(2)
 then have eo: pair \in set (map (Pair h) T) \lor pair \in set (enumerate-pairs T)
   using Suc by simp
 {assume *: pair \in set (map (Pair h) T)
   then have ?case
     using ht
     using imageE by auto
 } moreover {assume *: pair \in set (enumerate-pairs T)
   then have snd\ pair \in set\ T
     using Suc(1)[of T] ht
     using Suc.hyps(2) by fastforce
   then have ?case using ht
     by simp
 ultimately show ?case using eo by blast
qed
lemma enum-pairs-bound:
 shows \forall pair \in set (enum-pairs L). (snd pair) < length L
 unfolding enum-pairs.simps enumerate-pairs.simps
proof(induct\ length\ L\ arbitrary:\ L)
 case \theta
 then show ?case by simp
next
 case (Suc \ x)
 then have enum-L: enumerate-pairs ([0..< length L]) =
   map\ (Pair\ 0)\ [1... < length\ L]\ @\ enumerate-pairs\ [1... < length\ L]
   using enumerate-pairs.simps(2)[of 0 [1 ..< length L]]
   by (metis One-nat-def upt-conv-Cons zero-less-Suc)
 then have pair \in set (enumerate-pairs [0..< length L]) \Longrightarrow snd pair < length L
{\bf for}\ pair
   using enum-pairs-bound-snd[of pair [0..< length L]]
   by auto
 then show ?case unfolding enum-pairs.simps by blast
qed
{f lemma} WEST-simp-termination1-bound:
 fixes a::nat
```

```
shows a^3+a^2 < (a+1)^3
proof-
 have cubed: (a+1)^3 = a^3 + 3*a^2 + 3*a + 1
 proof-
   have (a+1)^3 = (a+1)*(a+1)*(a+1)
    bv algebra
   then show ?thesis
    by (simp add: add.commute add-mult-distrib2 mult.commute power2-eq-square
power3-eq-cube)
 qed
 have 0 < 2*a^2 + 2*a + 1 by simp
 then have a^3 + a^2 < a^3 + 3*a^2 + 3*a + 1 by simp
 then show ?thesis using cubed
   by simp
qed
lemma WEST-simp-termination1:
 fixes L::WEST-regex
 assumes \neg (idx-pairs \neq enum-pairs L \lor length idx-pairs \leq i)
 assumes check-simp (L! fst (idx-pairs! i)) (L! snd (idx-pairs! i))
 assumes x = update-L \ L \ (idx-pairs \ ! \ i) \ num-vars
 shows ((x, enum-pairs x, 0, num-vars), L, idx-pairs, i, num-vars)
     \in measure (\lambda(L, idx\text{-}list, i, num\text{-}vars)). length L \cap 3 + length idx\text{-}list - i)
proof-
 let ?i = fst (idx-pairs ! i)
 let ?j = snd (idx-pairs ! i)
 have i-le-j: ?i < ?j using enum-pairs-fact assms
   by (metis linorder-le-less-linear nth-mem)
 have j-bound: ?j < length L
   using assms(1) enum-pairs-bound[of L]
   by simp
 then have i-bound: ?i < (length L)-1
   using i-le-j by auto
 have len-orsimp: length [WEST-simp-trace (L!?i) (L!?j) num-vars] = 1
   by simp
 have length (remove-element-at-index ?j L) = length L - 1
   using assms(3) j-bound by auto
 then have length (remove-element-at-index ?i (remove-element-at-index ?j L))
= length L - 2
   using assms(3) i-bound j-bound by simp
 then have length-x: length x = (length L) - 1
   using assms(3) len-orsimp
   unfolding update-L.simps[of L idx-pairs! i num-vars]
  by (metis (no-types, lifting) add.commute add-diff-inverse-nat diff-diff-left gr-implies-not0
i-bound length-append less-one nat-1-add-1)
 have i-bound: i < length idx-pairs using assms by force
 { assume short-L: length L = 0
   then have ?thesis using assms
```

```
using j-bound by linarith
 } moreover {
   assume long-L: length L \geq 1
   then have length L-1 \geq 0 by blast
   then have (length L - 1) \hat{3} + (length L - 1) \hat{2} < length L \hat{3}
     using WEST-simp-termination1-bound[of length L-1]
     by (metis long-L ordered-cancel-comm-monoid-diff-class.le-imp-diff-is-add)
    then have (length L - 1) \hat{\ } 3 + length (enumerate-pairs [0..< length x]) <
length L ^3
     using length-enumerate-pairs [of [0...<length x] length-x by auto
   then have length x \cap 3 + length (enumerate-pairs [0..< length \ x])
     < length L ^3 + length idx-pairs - i
     using i-bound length-x by simp
   then have ?thesis by simp
 ultimately show ?thesis by linarith
qed
function WEST-simp-helper:: WEST-regex \Rightarrow (nat \times nat) list \Rightarrow nat \Rightarrow nat
WEST-regex
 where WEST-simp-helper L idx-pairs i num-vars =
 (if (idx-pairs \neq enum-pairs L \vee i \geq length idx-pairs) then L else
   (if (check-simp (L!(fst (idx-pairs!i))) (L!(snd (idx-pairs!i)))) then
   (let \ newL = update-L \ L \ (idx-pairs!i) \ num-vars \ in
   WEST-simp-helper newL (enum-pairs newL) 0 num-vars)
   else WEST-simp-helper L idx-pairs (i+1) num-vars))
 apply fast by blast
termination
 apply (relation measure (\lambda(L, idx\text{-}list, i, num\text{-}vars)). (length L^3 + length idx\text{-}list
-i)))
   apply simp using WEST-simp-termination1 apply blast by auto
declare WEST-simp-helper.simps[simp del]
fun WEST-simp:: WEST-regex \Rightarrow nat \Rightarrow WEST-regex
 where WEST-simp L num-vars =
 WEST-simp-helper L (enum-pairs L) 0 num-vars
value WEST-simp [[[S, S, One]], [[S, One, S]], [[S, S, Zero]]] 3
value WEST-simp [[[S, One]], [[One, S]], [[Zero, Zero]]] 2
value WEST-simp [[[One, One]], [[Zero, Zero]], [[One, Zero]], [[Zero, One]]] 2
1.3.3
        AND and OR operations with WEST-simp
fun WEST-and-simp:: WEST-regex \Rightarrow WEST-regex \Rightarrow nat \Rightarrow WEST-regex
  where WEST-and-simp L1 L2 num-vars = WEST-simp (WEST-and L1 L2)
```

num-vars

```
fun WEST-or-simp:: WEST-regex \Rightarrow WEST-regex \Rightarrow nat \Rightarrow WEST-regex where WEST-or-simp L1 L2 num-vars = WEST-simp (L1@L2) num-vars
```

1.3.4 Useful Helper Functions

```
fun arbitrary-state::nat \Rightarrow state-regex
 where arbitrary-state num-vars = map (\lambda k. S) [0 ..< num-vars]
fun arbitrary-trace::nat \Rightarrow nat \Rightarrow trace-regex
 where arbitrary-trace num-vars num-pad = map (\lambda k. (arbitrary-state num-vars))
[0 ..< num-pad]
fun shift:: WEST-regex \Rightarrow nat \Rightarrow nat \Rightarrow WEST-regex
 where shift traceList num-vars num-pad = map (\lambda trace. (arbitrary-trace num-vars
num-pad)@trace) traceList
fun pad:: trace\text{-}regex \Rightarrow nat \Rightarrow nat \Rightarrow trace\text{-}regex
 where pad trace num-vars num-pad = trace@(arbitrary-trace\ num-vars\ num-pad)
1.3.5
         WEST Temporal Operations
fun WEST-global:: WEST-regex \Rightarrow nat \Rightarrow nat \Rightarrow nat \Rightarrow wEST-regex
where WEST-global L a b num-vars = (
if (a = b) then (shift L num-vars a)
   else ( if (a < b) then (WEST-and-simp (shift L num-vars b)
               (WEST-global\ L\ a\ (b-1)\ num-vars)\ num-vars)
     else []))
fun WEST-future:: WEST-regex \Rightarrow nat \Rightarrow nat \Rightarrow nat \Rightarrow wEST-regex
  where WEST-future L a b num-vars = (
  if (a = b)
  then (shift L num-vars a)
  else (
    if (a < b)
   then WEST-or-simp (shift L num-vars b) (WEST-future L a (b-1) num-vars)
num-vars
   else []))
fun WEST-until:: WEST-regex \Rightarrow WEST-regex \Rightarrow nat \Rightarrow
                nat \Rightarrow nat \Rightarrow WEST\text{-}regex
  where WEST-until L-\varphi L-\psi a b num-vars = (
  then (WEST-global L-\psi a a num-vars)
  else (
   if (a < b)
   then WEST-or-simp (WEST-until L-\varphi L-\psi a (b-1) num-vars)
        (WEST-and-simp (WEST-global L-\varphi a (b-1) num-vars)
                  (WEST-global L-\psi b b num-vars) num-vars) num-vars
```

```
else []))
```

```
fun WEST-release-helper:: WEST-regex \Rightarrow WEST-regex \Rightarrow
                 nat \Rightarrow nat \Rightarrow nat \Rightarrow WEST\text{-}regex
  where WEST-release-helper L-\varphi L-\psi a ub num-vars = (
  if (a=ub)
  then (WEST-and-simp (WEST-global L-\varphi a a num-vars) (WEST-global L-\psi a a
num-vars) num-vars)
  else (
   if (a < ub)
   then WEST-or-simp (WEST-release-helper L-\varphi L-\psi a (ub-1) num-vars)
        (WEST-and-simp (WEST-global L-\psi a ub num-vars)
                 (WEST-global L-\varphi ub ub num-vars) num-vars) num-vars
   else []))
fun WEST-release:: WEST-regex \Rightarrow WEST-regex \Rightarrow nat
                  \Rightarrow nat \Rightarrow nat \Rightarrow WEST\text{-}regex
  where WEST-release L-\varphi L-\psi a b num-vars = (
  if (b > a)
  then (WEST-or-simp (WEST-global L-\psi a b num-vars) (WEST-release-helper
L-\varphi L-\psi a (b-1) num-vars) num-vars)
  else (WEST-global L-\psi a b num-vars))
1.3.6
         WEST recursive reg Function
lemma exhaustive:
```

```
shows \land x:: nat \ mltl \times nat. \land P::bool. (\land num-vars::nat. \ x = (True-mltl, num-vars))
\Longrightarrow P) \Longrightarrow
                  (\land num\text{-}vars::nat.\ x = (False\text{-}mltl,\ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge p \ num\text{-}vars::nat. \ x = (Prop\text{-}mltl \ p, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge p \ num\text{-}vars::nat. \ x = (Not\text{-}mltl \ (Prop\text{-}mltl \ p), \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge \varphi \ \psi \ num\text{-}vars. \ x = (Or\text{-}mltl \ \varphi \ \psi, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge \varphi \ \psi \ num\text{-}vars. \ x = (And\text{-}mltl \ \varphi \ \psi, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge \varphi \ a \ b \ num\text{-}vars. \ x = (Future\text{-}mltl \ \varphi \ a \ b, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge \varphi \ a \ b \ num\text{-}vars. \ x = (Global\text{-}mltl \ \varphi \ a \ b, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\bigwedge \varphi \ \psi \ a \ b \ num\text{-}vars. \ x = (Until\text{-}mltl \ \varphi \ \psi \ a \ b, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\land \varphi \ \psi \ a \ b \ num\text{-}vars. \ x = (Release\text{-}mltl \ \varphi \ \psi \ a \ b, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\land num\text{-}vars. \ x = (Not\text{-}mltl \ True\text{-}mltl, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\land num\text{-}vars. \ x = (Not\text{-}mltl \ False\text{-}mltl, \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\land \varphi \ \psi \ num\text{-}vars. \ x = (Not\text{-}mltl \ (And\text{-}mltl \ \varphi \ \psi), \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                  (\land \varphi \ \psi \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Or\text{-}mltl \ \varphi \ \psi), \ num\text{-}vars) \Longrightarrow P) \Longrightarrow
                 (\bigwedge \varphi \ a \ b \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Future\text{-}mltl \ \varphi \ a \ b), \ num\text{-}vars) \Longrightarrow P)
                 (\bigwedge \varphi \ a \ b \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Global\text{-}mltl \ \varphi \ a \ b), \ num\text{-}vars) \Longrightarrow P)
                 (\bigwedge \varphi \ \psi \ a \ b \ num\text{-}vars. \ x = (Not\text{-}mltl \ (\textit{Until-mltl} \ \varphi \ \psi \ a \ b), \ num\text{-}vars) \Longrightarrow
                   (\land \varphi \ \psi \ a \ b \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Release\text{-}mltl \ \varphi \ \psi \ a \ b), \ num\text{-}vars)
```

```
\Longrightarrow P) \Longrightarrow
             (\bigwedge \varphi \text{ num-vars. } x = (Not\text{-mltl } (Not\text{-mltl } \varphi), \text{ num-vars}) \Longrightarrow P) \Longrightarrow P
proof -
  \mathbf{fix} \ x::nat \ mltl \times nat
  fix P:: bool
  assume t: (\land num\text{-}vars::nat. \ x = (True\text{-}mltl, num\text{-}vars) \Longrightarrow P)
  assume fa: (  num\text{-}vars::nat. \ x = (False\text{-}mltl, num\text{-}vars) \Longrightarrow P )
  assume p: (\bigwedge p \ num\text{-}vars::nat. \ x = (Prop\text{-}mltl \ p, \ num\text{-}vars) \Longrightarrow P)
  assume n1: (\bigwedge p \ num - vars:: nat. \ x = (Not - mltl \ (Prop - mltl \ p), \ num - vars) \Longrightarrow P)
  assume o: (\bigwedge \varphi \ \psi \ num\text{-}vars. \ x = (Or\text{-}mltl \ \varphi \ \psi, \ num\text{-}vars) \Longrightarrow P)
  assume a: (\bigwedge \varphi \ \psi \ num\text{-}vars. \ x = (And\text{-}mltl \ \varphi \ \psi, \ num\text{-}vars) \Longrightarrow P)
  assume f: (\bigwedge \varphi \ a \ b \ num\text{-}vars. \ x = (Future\text{-}mltl \ \varphi \ a \ b, \ num\text{-}vars) \Longrightarrow P)
  assume g: (\bigwedge \varphi \ a \ b \ num-vars. \ x = (Global-mltl \ \varphi \ a \ b, \ num-vars) \Longrightarrow P)
  assume u: (\bigwedge \varphi \ \psi \ a \ b \ num-vars. \ x = (Until-mltl \ \varphi \ \psi \ a \ b, \ num-vars) \Longrightarrow P)
  assume r: (\bigwedge \varphi \ \psi \ a \ b \ num-vars. \ x = (Release-mltl \ \varphi \ \psi \ a \ b, \ num-vars) \Longrightarrow P)
  assume n2: (\land num\text{-}vars. \ x = (Not\text{-}mltl\ True\text{-}mltl,\ num\text{-}vars) \Longrightarrow P)
  assume n3: (\land num\text{-}vars. \ x = (Not\text{-}mltl \ False\text{-}mltl, \ num\text{-}vars) \Longrightarrow P)
  assume n4: (\bigwedge \varphi \psi num\text{-}vars. \ x = (Not\text{-}mltl \ (And\text{-}mltl \ \varphi \ \psi), \ num\text{-}vars) \Longrightarrow P)
  assume n5: (\bigwedge \varphi \ \psi \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Or\text{-}mltl \ \varphi \ \psi), \ num\text{-}vars) \Longrightarrow P)
  assume n6: (\bigwedge \varphi \ a \ b \ num-vars. \ x = (Not-mltl \ (Future-mltl \ \varphi \ a \ b), \ num-vars)
  assume n7: (\bigwedge \varphi \ a \ b \ num-vars. \ x = (Not-mltl \ (Global-mltl \ \varphi \ a \ b), \ num-vars)
\Longrightarrow P
  assume n8: (\bigwedge \varphi \psi \ a \ b \ num-vars. \ x = (Not-mltl \ (Until-mltl \ \varphi \psi \ a \ b), \ num-vars)
 assume n9: (\bigwedge \varphi \ \psi \ a \ b \ num-vars. \ x = (Not-mltl \ (Release-mltl \ \varphi \ \psi \ a \ b), \ num-vars)
  assume n10: (\bigwedge \varphi \ num\text{-}vars. \ x = (Not\text{-}mltl \ (Not\text{-}mltl \ \varphi), \ num\text{-}vars) \Longrightarrow P)
  show P proof (cases fst x)
     case True-mltl
     then show ?thesis using t
       by (metis eq-fst-iff)
  next
     case False-mltl
     then show ?thesis using fa eq-fst-iff by metis
     case (Prop-mltl\ p)
     then show ?thesis using p
       by (metis prod.collapse)
  \mathbf{next}
     case (Not-mltl \varphi)
     then have fst-x: fst x = Not\text{-mltl } \varphi
       by auto
     then show ?thesis proof (cases \varphi)
       case True-mltl
       then show ?thesis using n2
         by (metis Not-mltl split-pairs)
```

```
next
   case False-mltl
   then show ?thesis using n3
     by (metis Not-mltl prod.collapse)
 next
   case (Prop-mltl\ p)
   then show ?thesis using n1
     by (metis Not-mltl split-pairs)
 next
   case (Not-mltl \varphi 1)
   then show ?thesis using n10 fst-x
     by (metis prod.collapse)
 \mathbf{next}
   case (And-mltl \varphi 1 \varphi 2)
   then show ?thesis
     by (metis Not-mltl n4 prod.collapse)
   case (Or-mltl \varphi 1 \varphi 2)
   then show ?thesis using n5 Not-mltl
     by (metis prod.collapse)
   case (Future-mltl a \ b \ \varphi 1)
   then show ?thesis using n6 Not-mltl
     by (metis prod.collapse)
 \mathbf{next}
   case (Global-mltl a b \varphi 1)
   then show ?thesis using n7 Not-mltl
     by (metis prod.collapse)
 \mathbf{next}
   case (Until-mltl \varphi 1 a b \varphi 2)
   then show ?thesis using n8 Not-mltl
     by (metis prod.collapse)
 next
   case (Release-mltl \varphi 1 a b \varphi 2)
   then show ?thesis using n9 Not-mltl
     by (metis prod.collapse)
 qed
next
 case (And-mltl \varphi 1 \varphi 2)
 then show ?thesis using a
   by (metis prod.collapse)
next
 case (Or-mltl \varphi 1 \varphi 2)
 then show ?thesis using o
   by (metis prod.collapse)
\mathbf{next}
 case (Future-mltl a b \varphi 1)
 then show ?thesis using f
   by (metis split-pairs)
```

```
next
   case (Global-mltl a b \varphi 1)
   then show ?thesis using g
     by (metis prod.collapse)
  next
   case (Until-mltl \varphi 1 a b \varphi 2)
   then show ?thesis using u
     by (metis split-pairs)
  next
   case (Release-mltl \varphi 1 a b \varphi 2)
   then show ?thesis using r
     by (metis split-pairs)
 qed
qed
fun WEST-termination-measure:: (nat) mltl \Rightarrow nat
  where WEST-termination-measure True_m = 1
    WEST-termination-measure (Not_m \ True_m) = 4
    WEST-termination-measure False_m = 1
   WEST-termination-measure (Not_m \ False_m) = 4
   WEST-termination-measure (Prop_m (p)) = 1
   WEST-termination-measure (Not_m (Prop_m (p))) = 4
    WEST-termination-measure (\varphi \ Or_m \ \psi) = 1 + (WEST-termination-measure
\varphi) + (WEST-termination-measure \psi)
   WEST-termination-measure (\varphi \ And_m \ \psi) = 1 + (WEST\text{-}termination\text{-}measure}
\varphi) + (WEST-termination-measure \psi)
   WEST-termination-measure (F_m [a,b] \varphi) = 1 + (WEST-termination-measure
\varphi)
   WEST-termination-measure (G_m [a,b] \varphi) = 1 + (WEST\text{-termination-measure})
\varphi)
 | WEST-termination-measure (\varphi \ U_m[a,b] \ \psi) = 1 + (WEST-termination-measure
\varphi) + (WEST-termination-measure \psi)
 | WEST-termination-measure (\varphi R_m[a,b] \psi) = 1 + (WEST-termination-measure
\varphi) + (WEST-termination-measure \psi)
 | WEST-termination-measure (Not<sub>m</sub> (\varphi Or<sub>m</sub> \psi)) = 1 + 3 * (WEST-termination-measure
(\varphi \ Or_m \ \psi))
  WEST-termination-measure (Not_m (\varphi And_m \psi)) = 1 + 3 * (WEST-termination-measure)
(\varphi \ And_m \ \psi))
  WEST-termination-measure (Not_m (F_m[a,b] \varphi)) = 1 + 3 * (WEST\text{-}termination\text{-}measure)
(F_m[a,b] \varphi)
 |WEST\text{-}termination\text{-}measure (Not_m (G_m[a,b]\varphi)) = 1 + 3 * (WEST\text{-}termination\text{-}measure)
(G_m[a,b|\varphi))
 | WEST-termination-measure (Not<sub>m</sub> (\varphi U_m[a,b] \psi)) = 1 + 3 * (WEST-termination-measure
(\varphi \ U_m[a,b] \ \psi))
 | WEST-termination-measure (Not<sub>m</sub> (\varphi R<sub>m</sub>[a,b] \psi)) = 1 + 3 * (WEST-termination-measure
(\varphi R_m[a,b] \psi)
  WEST-termination-measure (Not<sub>m</sub> (Not<sub>m</sub> \varphi)) = 1 + 3 * (WEST-termination-measure
(Not_m \varphi))
```

```
{f lemma} WEST-termination-measure-not:
  fixes \varphi::(nat) mltl
 shows WEST-termination-measure (Not-mltl \varphi) = 1 + 3 * (WEST-termination-measure
  apply (induction \varphi) by simp-all
function WEST-reg-aux:: (nat) mltl \Rightarrow nat \Rightarrow WEST-regex
  where WEST-reg-aux True_m num-vars = [[(map (\lambda j. S) [0 .. < num-vars])]]
    WEST-reg-aux False_m num-vars = \lfloor
  |WEST\text{-reg-aux}(Prop_m(p))| num-vars = ||(map(\lambda j. (if(p=j) then One else))|
S)) [0 ..< num-vars])]]
  | WEST-reg-aux (Not<sub>m</sub> (Prop<sub>m</sub> (p))) num-vars = [[(map (\lambda j. (if (p=j) then j))]]
Zero else S)) [0 ..< num-vars])]]
   |WEST\text{-}reg\text{-}aux \ (\varphi \ Or_m \ \psi) \ num\text{-}vars = WEST\text{-}or\text{-}simp \ (WEST\text{-}reg\text{-}aux \ \varphi)
num-vars) (WEST-reg-aux \psi num-vars) num-vars
  | WEST-reg-aux (\varphi And<sub>m</sub> \psi) num-vars = (WEST-and-simp (WEST-reg-aux \varphi
num\text{-}vars) (WEST-reg-aux \psi num\text{-}vars) num\text{-}vars)
 |WEST\text{-}reg\text{-}aux\ (F_m[a,b]\ \varphi)\ num\text{-}vars = (WEST\text{-}future\ (WEST\text{-}reg\text{-}aux\ \varphi\ num\text{-}vars)
a b num-vars)
 |WEST\text{-}reg\text{-}aux\ (G_m[a,b]\ \varphi)\ num\text{-}vars = (WEST\text{-}global\ (WEST\text{-}reg\text{-}aux\ \varphi\ num\text{-}vars)
a b num-vars)
   |WEST\text{-}reg\text{-}aux\ (\varphi\ U_m[a,b]\ \psi)\ num\text{-}vars = (WEST\text{-}until\ (WEST\text{-}reg\text{-}aux\ \varphi)
num\text{-}vars) (WEST-reg-aux \psi num\text{-}vars) a b num\text{-}vars)
  |WEST\text{-}reg\text{-}aux\ (\varphi\ R_m[a,b]\ \psi)\ num\text{-}vars = WEST\text{-}release\ (WEST\text{-}reg\text{-}aux\ \varphi)
num\text{-}vars) (WEST-reg-aux \psi num-vars) a b num-vars
    WEST-reg-aux (Not_m \ True_m) \ num-vars = WEST-reg-aux False_m \ num-vars
    WEST-reg-aux (Not_m \ False_m) \ num-vars = WEST-reg-aux True_m \ num-vars
   |WEST\text{-}reg\text{-}aux\ (Not_m\ (\varphi\ And_m\ \psi))\ num\text{-}vars = WEST\text{-}reg\text{-}aux\ ((Not_m\ \varphi))
Or_m (Not_m \psi)) num-vars
  |WEST\text{-}reg\text{-}aux\ (Not_m\ (\varphi\ Or_m\ \psi))\ num\text{-}vars = WEST\text{-}reg\text{-}aux\ ((Not_m\ \varphi)\ And_m
(Not_m \ \psi)) \ num-vars
 |WEST\text{-}reg\text{-}aux\ (Not_m\ (F_m[a,b]\ \varphi))\ num\text{-}vars = WEST\text{-}reg\text{-}aux\ (G_m[a,b]\ (Not_m\ \varphi))
\varphi)) num-vars
 |WEST\text{-}reg\text{-}aux\ (Not_m\ (G_m[a,b]\ \varphi))\ num\text{-}vars = WEST\text{-}reg\text{-}aux\ (F_m[a,b]\ (Not_m))
\varphi)) num-vars
  | WEST-reg-aux (Not<sub>m</sub> (\varphi U_m[a,b] \psi)) num-vars = WEST-reg-aux ((Not<sub>m</sub> \varphi)
R_m[a,b] (Not<sub>m</sub> \psi)) num-vars
  \mid WEST\text{-}reg\text{-}aux \ (Not_m \ (\varphi \ R_m[a,b] \ \psi)) \ num\text{-}vars = WEST\text{-}reg\text{-}aux \ ((Not_m \ \varphi))
U_m[a,b] (Not_m \psi)) num-vars
  |WEST\text{-}reg\text{-}aux\ (Not_m\ (Not_m\ \varphi))\ num\text{-}vars = WEST\text{-}reg\text{-}aux\ \varphi\ num\text{-}vars
   using exhaustive convert-nnf.cases using exhaustive apply (smt (z3))
  defer apply blast apply simp-all.
termination
  apply (relation measure (\lambda(F,num\text{-}vars)). (WEST-termination-measure F)))
  using WEST-termination-measure-not by simp-all
```

```
fun WEST-num-vars:: (nat) mltl \Rightarrow nat
  where WEST-num-vars True_m = 1
   WEST-num-vars False_m = 1
   WEST-num-vars (Prop_m(p)) = p+1
   WEST-num-vars (Not_m \varphi) = WEST-num-vars \varphi
   WEST-num-vars (\varphi \ And_m \ \psi) = Max \{(WEST-num-vars \ \varphi), (WEST-num-vars \ \varphi)\}
\psi)}
   WEST-num-vars (\varphi \ Or_m \ \psi) = Max \{ (WEST-num-vars \ \varphi), (WEST-num-vars \ \varphi) \}
\psi)}
   WEST-num-vars (F_m[a,b] \varphi) = WEST-num-vars \varphi
   WEST-num-vars (G_m[a,b] \varphi) = WEST-num-vars \varphi
 WEST-num-vars (\varphi \ U_m[a,b] \ \psi) = Max \{ (WEST-num-vars \varphi), (WEST-num-vars
\psi)}
|WEST\text{-}num\text{-}vars|(\varphi R_m[a,b] \psi) = Max \{(WEST\text{-}num\text{-}vars \varphi), (WEST\text{-}num\text{-}vars \varphi)\}
\mathbf{fun} \ \mathit{WEST-reg} {::} \ (\mathit{nat}) \ \mathit{mltl} \Rightarrow \mathit{WEST-regex}
  where WEST-reg F = (let nnf-F = convert-nnf F in WEST-reg-aux nnf-F)
(WEST-num-vars\ F))
         Adding padding
1.3.7
fun pad\text{-}WEST\text{-}regex nat \ mltl \Rightarrow WEST\text{-}regex
  where pad-WEST-reg \varphi = (let unpadded = WEST-reg \varphi in
                             (let\ complen = complen-mltl\ \varphi\ in
                              (let num-vars = WEST-num-vars \varphi in
                           (map \ (\lambda \ L. \ (if \ (length \ L < complen) then \ (pad \ L \ num-vars
(complen - (length L))) \ else \ L))) \ unpadded)))
fun simp-pad-WEST-reg:: nat mltl <math>\Rightarrow WEST-regex
 where simp-pad-WEST-reg \varphi = WEST-simp (pad-WEST-reg \varphi) (WEST-num-vars
\varphi)
\mathbf{2}
      Some examples and Code Export
Base cases
value WEST-reg True_m
value WEST-reg False_m
value WEST-reg (Prop_m (1))
value WEST-reg (Not<sub>m</sub> (Prop<sub>m</sub> (\theta)))
    Test cases for recursion
value WEST-reg ((Not_m (Prop_m (0))) And_m (Prop_m (1)))
value WEST-reg (F_m[0,2] (Prop_m (1)))
value WEST-reg ((Not_m (Prop_m (\theta))) Or_m (Prop_m (\theta)))
value pad-WEST-reg ((Prop_m (0)) \ U_m[0,2] \ (Prop_m (0)))
```

```
value simp\text{-}pad\text{-}WEST\text{-}reg ((Prop\text{-}mltl 0) U_m[0,2] (Prop\text{-}mltl 0)) export-code WEST\text{-}reg in Haskell module-name WEST export-code simp\text{-}pad\text{-}WEST\text{-}reg in Haskell module-name WEST\text{-}simp\text{-}pad end
```

3 WEST Proofs

```
\begin{tabular}{ll} \textbf{theory} & \textit{WEST-Proofs} \\ \\ \textbf{imports} & \textit{WEST-Algorithms} \\ \\ \textbf{begin} \\ \end{tabular}
```

3.1 Useful Definitions

```
definition trace-of-vars::trace \Rightarrow nat \Rightarrow bool

where trace-of-vars trace num-vars = (

\forall k. \ (k < (length \ trace) \longrightarrow (\forall \ p \in (trace!k). \ p < num-vars)))

definition state-regex-of-vars::state-regex \Rightarrow nat \Rightarrow bool

where state-regex-of-vars state num-vars = ((length \ state) = num-vars)

definition trace-regex-of-vars::trace-regex \Rightarrow nat \Rightarrow bool

where trace-regex-of-vars trace num-vars = (\forall \ i < (length \ trace). \ length \ (trace!i) = num-vars)

definition WEST-regex-of-vars::WEST-regex \Rightarrow nat \Rightarrow bool

where WEST-regex-of-vars traceList \ num-vars = (\forall \ k<length \ traceList. \ trace-regex-of-vars (traceList!k) num-vars)
```

3.2 Proofs about Traces Matching Regular Expressions

```
value match-regex [\{\theta::nat\}, \{\theta,1\}, \{\}]] []
lemma arbitrary-regtrace-matches-any-trace:
fixes num-vars::nat
fixes \pi::trace
assumes \pi-of-num-vars: trace-of-vars \pi num-vars
shows match-regex \pi []
proof—
have get-state-empty: (WEST-get-state [] time num-vars) = (map (\lambda k. S) [\theta ...<
num-vars]) for time
by auto
have match-arbitrary-state: (match-timestep state (map (\lambda k. S) [\theta ...< num-vars]))
= True if state-of-vars:(\forall p \in state. p < num-vars) for state
```

```
using state-of-vars
   unfolding match-timestep-def
   \mathbf{by} \ simp
 have eliminate-forall: match-timestep (\pi! time) (WEST-qet-state [] time num-vars)
if time-bounded:time < length \pi for time
  using time-bounded \pi-of-num-vars get-state-empty[of time] match-arbitrary-state[of
\pi! time] unfolding match-regex-def trace-of-vars-def
   by (metis (mono-tags, lifting))
 then show ?thesis
   unfolding match-regex-def trace-of-vars-def
   by auto
qed
\mathbf{lemma}\ \textit{WEST-and-state-difflengths-is-none}:
 assumes length s1 \neq length s2
 shows WEST-and-state s1 \ s2 = None
 using assms
 proof (induction s1 arbitrary: s2)
   case Nil
   then show ?case
    apply (induction s2) by simp-all
 next
   case (Cons a s1)
   then show ?case
   proof (induction s2)
    case Nil
    then show ?case by auto
   next
    case (Cons b s2)
    have length s1 \neq length \ s2 \ using \ Cons.prems(2)
   then have and-s1-s2-none: WEST-and-state s1 s2 = None using Cons.prems(1)[of
s2
      by simp
    {assume ab-none: WEST-and-bitwise ab = None
      then have ?case
        by simp
    moreover {assume ab-not-none: WEST-and-bitwise a b \neq None
     then have ?case using and-s1-s2-none using WEST-and-state.simps(2)[of
a s1 b s2]
        by auto
    }
    ultimately show ?case
      by blast
   qed
 qed
```

3.3 Facts about the WEST and operator

3.3.1 Commutative

```
{f lemma} WEST-and-bitwise-commutative:
 fixes b1 b2::WEST-bit
 shows WEST-and-bitwise b1 b2 = WEST-and-bitwise b2 b1
 apply (cases b2)
    apply (cases b1) apply simp-all
    apply(cases \ b1) \ apply \ simp-all
 apply (cases \ b1) by simp-all
fun remove-option-type-bit:: WEST-bit option \Rightarrow WEST-bit
 where remove-option-type-bit (Some i) = i
 | remove-option-type-bit - = S
{\bf lemma}\ \textit{WEST-and-state-commutative}:
 fixes s1 s2::state-regex
 assumes same-len: length s1 = length s2
 shows WEST-and-state s1 s2 = WEST-and-state s2 s1
proof-
 show ?thesis using same-len
 proof (induct length s1 arbitrary: s1 s2)
   then show ?case using WEST-and-state.simps by simp
 next
   case (Suc \ x)
   obtain h1 T1 where s1 = h1 \# T1
    using Suc.hyps(2)
    by (metis length-Suc-conv)
   obtain h2 T2 where s2 = h2 \# T2
    using Suc.prems(1) Suc.hyps(2)
    by (metis length-Suc-conv)
  then show ?case using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
h1 T1 h2 T2]
     WEST-and-state.simps(2)[of h2 T2 h1 T1]
   by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(1) Suc-length-conv
WEST-and-bitwise-commutative \langle s1 = h1 \# T1 \rangle list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)
 qed
qed
{f lemma} WEST-and-trace-commutative:
 fixes num-vars::nat
 fixes regtrace1::trace-regex
 fixes regtrace2::trace-regex
 assumes regtrace1-of-num-vars: trace-regex-of-vars regtrace1 num-vars
 assumes regtrace2-of-num-vars: trace-regex-of-vars regtrace2 num-vars
 shows (WEST-and-trace regtrace1 regtrace2) = (WEST-and-trace regtrace2 reg-
```

```
trace1)
proof-
 have WEST-and-bitwise-commutative: WEST-and-bitwise b1\ b2 = WEST-and-bitwise
b2 b1 for b1 b2
   apply (cases b2)
    apply (cases b1) apply simp-all
    apply(cases \ b1) \ apply \ simp-all
   apply (cases b1) by simp-all
 then have WEST-and-state-commutative: WEST-and-state s1 s2 = WEST-and-state
s2 \ s1 \ \textbf{if} \ same-len: (length \ s1) = (length \ s2) \ \textbf{for} \ s1 \ s2
 using same-len
 proof (induct length s1 arbitrary: s1 s2)
   case \theta
   then show ?case using WEST-and-state.simps by simp
 next
   case (Suc \ x)
   obtain h1 T1 where s1 = h1 \# T1
    using Suc.hyps(2)
    by (metis\ length-Suc-conv)
   obtain h2 T2 where s2 = h2 \# T2
    using Suc.prems(2) Suc.hyps(2)
    by (metis\ length-Suc-conv)
  then show ?case using WEST-and-bitwise-commutative [of h1 h2] WEST-and-state.simps(2) [of
h1 T1 h2 T2
     WEST-and-state.simps(2)[of h2 T2 h1 T1]
   by (metis\ (no\text{-}types,\ lifting)\ Suc.hyps(1)\ Suc.hyps(2)\ Suc.prems(2)\ Suc.length-conv
WEST-and-bitwise-commutative \langle s1 = h1 \# T1 \rangle list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)
 show ?thesis using regtrace1-of-num-vars regtrace2-of-num-vars
 proof (induction regtrace1 arbitrary: regtrace2)
   then show ?case using WEST-and-trace.simps(1-2)
    by (metis neq-Nil-conv)
 next
   case (Cons h1 T1)
   {assume *: regtrace2 = []
    then have ?case using WEST-and-trace.simps
      by simp
   } moreover {assume *: regtrace2 \neq []
    then obtain h2\ T2 where h2T2: regtrace2 = h2 \# T2
      by (meson list.exhaust)
    have comm-1: WEST-and-trace T1 T2 = WEST-and-trace T2 T1
      using Cons h2T2
      unfolding trace-regex-of-vars-def
      by (metis Suc-less-eq length-Cons nth-Cons-Suc)
    have comm-2: WEST-and-state h1\ h2 = WEST-and-state h2\ h1
      using WEST-and-state-commutative[of h1 h2] h2T2
      Cons(2-3) unfolding trace-regex-of-vars-def
```

```
by (metis WEST-and-state-difflengths-is-none)
     have ?case using WEST-and-trace.simps(3)[of h1 T1 h2 T2]
      h2T2 WEST-and-trace.simps(3)[of h2 T2 h1 T1] comm-1 comm-2
      by presburger
   ultimately show ?case by blast
 qed
qed
{f lemma} WEST-and-helper-subset:
 shows set (WEST-and-helper h(L) \subseteq set(WEST-and-helper h(a \# L))
proof -
 {assume *: WEST-and-trace h \ a = None
   then have WEST-and-helper h L = WEST-and-helper h (a \# L)
     using WEST-and-helper.simps(2)[of\ h\ a\ L] by auto
   then have ?thesis by simp
 moreover {assume *: WEST-and-trace h \ a \neq None
   then obtain res where WEST-and-trace h a = Some res
   then have WEST-and-helper h (a\#L) = res \# WEST-and-helper h L
     \mathbf{using}\ \mathit{WEST-and-helper.simps}(2)[\mathit{of}\ h\ a\ \mathit{L}]\ \mathbf{by}\ \mathit{auto}
   then have ?thesis by auto
 ultimately show ?thesis by blast
qed
\mathbf{lemma}\ \textit{WEST-and-helper-set-member-converse}:
 fixes regtrace \ h::trace-regex
 fixes L:: WEST-regex
 assumes assumption: (\exists loc. loc < length L \land (\exists sometrace. WEST-and-trace h
(L ! loc) = Some \ sometrace \land regtrace = sometrace))
 shows regtrace \in set (WEST-and-helper h L)
proof -
 show ?thesis using assumption
 proof (induct L)
   \mathbf{case}\ \mathit{Nil}
   then show ?case using WEST-and-helper.simps(1)
     by simp
 next
   case (Cons\ a\ L)
   then obtain loc sometrace where obt: loc < length(a\#L) \land WEST-and-trace
h((a\#L)!loc) = Some\ sometrace \land regtrace = sometrace
     by blast
   \{assume *: loc = 0\}
     then have WEST-and-trace h a = Some \ sometrace \land \ regtrace = sometrace
      using obt
      by simp
```

```
then have ?case using WEST-and-helper.simps(2)[of h a L]
      by auto
   } moreover {assume *: loc > 0
    then have loc: loc-1 < length L \wedge
      WEST-and-trace h(L!(loc-1)) = Some \ sometrace \land regtrace = sometrace
      using obt by auto
    have set (WEST-and-helper h(L) \subseteq set(WEST-and-helper h(a \# L))
      using WEST-and-helper-subset by blast
    then have ?case using Cons(1) loc by blast
   ultimately show ?case by auto
 qed
qed
lemma WEST-and-helper-set-member-forward:
 fixes regtrace h::trace-regex
 fixes L::WEST-regex
 assumes regtrace \in set (WEST-and-helper \ h \ L)
 shows (\exists loc. loc < length L \land (\exists sometrace. WEST-and-trace h (L! loc) =
Some\ sometrace \land regtrace = sometrace))
using assms proof (induction L)
 case Nil
 then show ?case by simp
next
 case (Cons\ a\ L)
 {assume *: WEST-and-trace h \ a = None
   then have ?case using WEST-and-helper.simps(2)[of h a L] Cons
    bv force
 } moreover {assume *: WEST-and-trace h \ a \neq None
   then obtain res where res: WEST-and-trace h a = Some res
    by auto
   then have WEST-and-helper h (a\#L) = res \# WEST-and-helper h L
    using WEST-and-helper.simps(2)[of\ h\ a\ L] by auto
   then have eo: regtrace = res \lor regtrace \in set (WEST-and-helper h L)
    using Cons(2)
    by auto
   \{assume *: regtrace = res
    then have ?case using res by auto
   } moreover {assume *: regtrace \in set (WEST-and-helper \ h \ L)
    then obtain loc where loc-prop: loc<length L \wedge
      (\exists sometrace. WEST-and-trace\ h\ (L\ !\ loc) = Some\ sometrace\ \land\ regtrace =
sometrace)
      using Cons.IH by blast
    then have loc+1 < length (a \# L) \land
      (\exists sometrace. WEST-and-trace\ h\ ((a\#L)\ !\ (loc+1)) = Some\ sometrace\ \land
regtrace = sometrace)
      by auto
    then have ?case by blast
   }
```

```
ultimately have ?case using eo
     by blast
 ultimately show ?case by blast
ged
lemma WEST-and-helper-set-member:
 fixes regtrace h::trace-regex
 fixes L:: WEST-regex
 shows regtrace \in set (WEST-and-helper \ h \ L) \longleftrightarrow
   (\exists loc. loc < length L \land (\exists sometrace. WEST-and-trace h (L! loc) = Some
sometrace \land regtrace = sometrace))
 {\bf using}\ WEST\text{-} and\text{-} helper\text{-} set\text{-} member\text{-} forward\ WEST\text{-} and\text{-} helper\text{-} set\text{-} member\text{-} converse
 by blast
lemma WEST-and-set-member-dir1:
 fixes num-vars::nat
 fixes L1::WEST-regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 assumes regtrace \in set (WEST-and L1 L2)
 shows (\exists loc1 loc2. loc1 < length L1 \land loc2 < length L2 \land
    (\exists sometrace. WEST-and-trace\ (L1 ! loc1)\ (L2 ! loc2) = Some\ sometrace\ \land
regtrace = sometrace))
 using assms proof (induct L1 arbitrary: L2)
 case Nil
 then show ?case using WEST-and.simps(2) WEST-and.simps(1)
   by (metis list.distinct(1) list.exhaust list.set-cases)
next
 case (Cons head tail)
 {assume L2-empty: L2 = []
   then have ?case
     using Cons.prems(3) by auto
 moreover { assume L2-not-empty: L2 \neq []
   {assume regtrace-in-head-L2: regtrace \in set (WEST-and-helper head L2)
     then obtain loc2 where (loc2 < length L2 \land
     (\exists sometrace. WEST-and-trace\ head\ (L2!\ loc2) = Some\ sometrace\ \land\ regtrace
= sometrace)
      using WEST-and-helper-set-member[of regtrace head L2]
      by blast
     then have \theta < length (head \# tail) \land
     loc2 < length L2 \wedge
      (\exists sometrace.
         WEST-and-trace ((head \# tail) ! 0) (L2 ! loc2) = Some sometrace \land
         regtrace = sometrace)
      using regtrace-in-head-L2
```

```
by simp
    then have ?case
      by blast
   moreover {assume regtrace-notin-head-L2: regtrace \notin set (WEST-and-helper
head L2)
    obtain h2 T2 where h2T2:L2 = h2 \# T2 using L2-not-empty
      by (meson list.exhaust)
     {assume *: WEST-and-helper head (h2 \# T2) = []
      then have WEST-and (head \# tail) L2 = WEST-and tail L2
        using WEST-and.simps(3)[of head tail h2 T2] h2T2 by simp
    moreover {assume *: WEST-and-helper head (h2 # T2) \neq []
      then have WEST-and (head # tail) L2 = (WEST-and-helper head L2) @
WEST-and tail L2
        using WEST-and.simps(3)[of head tail h2 T2] h2T2
        by (simp add: list.case-eq-if)
    ultimately have e-o: WEST-and (head \# tail) L2 = WEST-and tail L2 \vee
WEST-and (head # tail) L2 = (WEST-and-helper head L2) @ WEST-and tail L2
      have regtrace-in: regtrace \in set (WEST-and tail L2) using L2-not-empty
regtrace-notin-head-L2 Cons.prems(3) h2T2 e-o
      by fastforce
   have \forall k < length (head \# tail). trace-regex-of-vars ((head \# tail) ! k) num-vars
      \mathbf{using} \ \mathit{Cons.prems}(1) \ \mathbf{unfolding} \ \mathit{WEST-regex-of-vars-def} \ \mathbf{by} \ \mathit{argo}
    then have regtracelist-tail: WEST-regex-of-vars tail num-vars
      unfolding WEST-regex-of-vars-def by auto
    obtain loc1 loc2 where loc1 < length tail \land
      loc2 < length L2 \land (\exists sometrace. WEST-and-trace (tail ! loc1) (L2 ! loc2)
= Some \ sometrace \land regtrace = sometrace)
      using Cons.hyps[OF regtracelist-tail Cons.prems(2) regtrace-in] by blast
    then have loc1+1 < length (head # tail) \wedge
     loc2 < length L2 \wedge
     (\exists sometrace.
        WEST-and-trace ((head \# tail) ! (loc1+1)) (L2 ! loc2) = Some sometrace
Λ
         regtrace = sometrace)
      by simp
    then have ?case
      by blast
   ultimately have ?case
    by blast
 ultimately show ?case
   by blast
qed
```

```
lemma WEST-and-subset:
 shows set (WEST\text{-}and\ T1\ L2) \subseteq set\ (WEST\text{-}and\ (h1\#T1)\ L2)
proof -
 {assume *: L2 = []
   then have ?thesis by auto
 } moreover {assume *: L2 \neq []
   then obtain h2 T2 where L2 = h2 \# T2
     using list.exhaust-sel by blast
   then have ?thesis
    using WEST-and.simps(3)[of h1 T1 h2 T2]
    by (simp add: list.case-eq-if)
 ultimately show ?thesis by blast
qed
lemma WEST-and-set-member-dir2:
 fixes num-vars::nat
 fixes L1::WEST-regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 assumes exists-locs: (\exists loc1 loc2. loc1 < length L1 \land loc2 < length L2 \land
    (\exists sometrace. WEST-and-trace\ (L1 ! loc1)\ (L2 ! loc2) = Some\ sometrace\ \land
regtrace = sometrace))
 shows regtrace \in set (WEST-and L1 L2) using assms
proof (induct L1 arbitrary: L2)
 case Nil
 then show ?case by auto
next
 case (Cons h1 T1)
 then obtain loc1\ loc2 where loc1loc2: loc1 < length\ (h1\ \#\ T1)\ \land
     loc2 < length L2 \wedge
     (\exists sometrace.
         WEST-and-trace ((h1 \# T1) ! loc1) (L2 ! loc2) = Some sometrace \land
        regtrace = sometrace) by blast
 {assume *: L2 = []
   then have ?case using Cons by auto
 } moreover {assume *: L2 \neq []
   then obtain h2 T2 where h2T2: L2 = h2 \# T2
    using list.exhaust-sel by blast
   have \forall k < length (h1 \# T1). trace-regex-of-vars ((h1 \# T1) ! k) num-vars
    using Cons.prems(1) unfolding WEST-regex-of-vars-def by argo
   then have regtraceList-T1: WEST-regex-of-vars T1 num-vars
    unfolding WEST-regex-of-vars-def by auto
   {assume **: WEST-and-helper h1 L2 = []
    then have loc1 > 0
      using loc1loc2
    by (metis WEST-and-helper.simps(1) WEST-and-helper-set-member qr-implies-not-zero
list.size(3) not-gr0 nth-Cons-0)
```

```
then have exi: \exists loc1 loc2.
     loc1 < length T1 \wedge
     loc2 < length L2 \wedge
     (\exists sometrace.
         WEST-and-trace (T1 ! loc1) (L2 ! loc2) = Some sometrace \land
        regtrace = sometrace)
      using loc1loc2
        by (metis One-nat-def Suc-pred bot-nat-0.not-eq-extremum length-Cons
nat-add-left-cancel-less nth-Cons' plus-1-eq-Suc)
    then have ?case
      using Cons.hyps[OF regtraceList-T1 Cons(3) exi] WEST-and-subset
      by auto
   } moreover {assume **: WEST-and-helper h1 L2 \neq []
     then have WEST-and (h1 \# T1) (h2 \# T2) = WEST-and-helper h1 (h2
# T2) @ WEST-and T1 (h2 # T2)
      by (simp add: list.case-eq-if)
    then have ?case
      using Cons.hyps[OF regtraceList-T1 Cons.prems(2)]
    by (metis One-nat-def Suc-pred Un-iff WEST-and-helper-set-member-converse
qr-implies-not-zero h2T2 length-Cons linorder-negE-nat loc1loc2 nat-add-left-cancel-less
nth-Cons' plus-1-eq-Suc set-append)
   }
   ultimately have ?case
    by auto
 ultimately show ?case
   by auto
qed
{f lemma} WEST-and-set-member:
 fixes num-vars::nat
 fixes L1::WEST-regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 shows regtrace \in set (WEST-and L1 L2) \longleftrightarrow
   (\exists loc1 loc2. loc1 < length L1 \land loc2 < length L2 \land
    (\exists sometrace. WEST-and-trace\ (L1\ !\ loc1)\ (L2\ !\ loc2) = Some\ sometrace\ \land
regtrace = sometrace))
 using WEST-and-set-member-dir1 WEST-and-set-member-dir2 assms by blast
\mathbf{lemma}\ \textit{WEST-and-commutative-sets-member}:
 fixes num-vars::nat
 fixes L1::WEST\text{-}regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 assumes regtrace-in: regtrace \in set (WEST-and L1 L2)
 shows regtrace \in set (WEST-and L2 L1)
```

```
proof -
 obtain loc1 loc2 where loc1loc2: loc1 < length L1 \land
      loc2 < length L2 \wedge
      (\exists sometrace.
         WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace \land
         regtrace = sometrace)
 using WEST-and-set-member[OF L1-of-num-vars L2-of-num-vars] regtrace-in
 by auto
 have loc1: trace-regex-of-vars (L1 ! loc1) num-vars
   using L1-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
   by (meson less-imp-le-nat)
 have loc2: trace-regex-of-vars (L2 ! loc2) num-vars
   using L2-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
   by (meson less-imp-le-nat)
   have loc1 < length L1 \wedge
      loc2 < length L2 \wedge
      (\exists sometrace.
         WEST-and-trace (L2 ! loc2) (L1 ! loc1) = Some sometrace \land
         regtrace = sometrace)
   using loc1loc2 WEST-and-trace-commutative[OF loc1 loc2]
   by simp
 then show ?thesis using loc1loc2
   using WEST-and-set-member[OF L2-of-num-vars L1-of-num-vars]
   by blast
qed
{f lemma} WEST-and-commutative-sets:
 fixes num-vars::nat
 fixes L1::WEST-regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 shows set (WEST-and L1 L2) = set (WEST-and L2 L1)
 using WEST-and-commutative-sets-member [OF L1-of-num-vars L2-of-num-vars]
   WEST-and-commutative-sets-member [OF L2-of-num-vars L1-of-num-vars]
 by blast
lemma WEST-and-commutative:
 fixes num-vars::nat
 fixes L1::WEST-regex
 fixes L2::WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
 assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
 shows regex-equiv (WEST-and L1 L2) (WEST-and L2 L1)
proof -
 have set (WEST-and L1 L2) = set (WEST-and L2 L1)
   using \ WEST-and-commutative-sets assms
   by blast
 then have match \pi (WEST-and L1 L2) = match \pi (WEST-and L2 L1) for \pi
```

```
using match-def match-regex-def
   by (metis in-set-conv-nth)
 then show ?thesis
   unfolding regex-equiv-def by auto
qed
3.3.2
        Identity and Zero
lemma WEST-and-helper-identity:
 shows WEST-and-helper [] trace = trace
proof (induct trace)
 case Nil
 then show ?case by auto
\mathbf{next}
 case (Cons\ h\ T)
 then show ?case
   using WEST-and-helper.simps(2)[of [] h T]
   by (smt\ (verit)\ WEST-and-trace.elims\ list.discI\ option.simps(5))
qed
lemma WEST-and-identity: WEST-and [[]] L = L
proof-
 {assume *: L = []
   then have ?thesis
     by auto
 } moreover {assume *: L \neq []
   then obtain h T where hT: L = h \# T
     using list.exhaust by auto
   then have ?thesis using WEST-and.simps(3)[of [] [] h T]
     using hT
     by (metis (no-types, lifting) WEST-and.simps(2) WEST-and-helper-identity
append.right-neutral\ list.simps(5))
 ultimately show ?thesis by linarith
qed
lemma WEST-and-zero: WEST-and L \parallel = \parallel
 by simp
3.3.3
        WEST-and-state
Well Defined fun advance-state:: state \Rightarrow state
 where advance-state state = \{x-1 \mid x. \ (x \in state \land x \neq 0)\}
lemma advance-state-elt-bound:
 \mathbf{fixes} state::state
 fixes num-vars::nat
 assumes \forall x \in state. \ x < num-vars
 shows \forall x \in (advance\text{-}state \ state). \ x < (num\text{-}vars-1)
```

```
using assms advance-state.simps by auto
```

```
{f lemma} advance-state-elt-member:
 \mathbf{fixes} state::state
 fixes x::nat
 assumes x+1 \in state
 shows x \in advance\text{-state state}
 using assms advance-state.simps by force
lemma advance-state-match-timestep:
 fixes h::WEST-bit
 fixes t::state-regex
 fixes state::state
 assumes match-timestep state (h\#t)
 shows match-timestep (advance-state state) t
proof-
 have (\forall x < length (h \# t).
         ((h \# t) ! x = One \longrightarrow x \in state) \land ((h \# t) ! x = Zero \longrightarrow x \notin state))
using assms unfolding match-timestep-def by argo
 then have \forall x < length t.
          ((h \# t) ! (x+1) = One \longrightarrow (x+1) \in state) \land ((h \# t) ! (x+1) = Zero
\longrightarrow (x+1) \notin state by auto
 then have \forall x < length t.
           (t ! x = One \longrightarrow x \in (advance\text{-state state})) \land (t ! x = Zero \longrightarrow x \notin Aero)
(advance-state\ state))
   using advance-state.simps advance-state-elt-member by fastforce
  then show ?thesis using assms unfolding match-timestep-def by metis
qed
lemma WEST-and-state-well-defined:
 fixes num-vars::nat
 fixes state::state
 fixes s1 s2:: state-regex
 assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
 assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
 assumes \pi-match-r1-r2: match-timestep state s1 \wedge match-timestep state s2
 shows WEST-and-state s1 \ s2 \neq None
proof-
  have same-length: length s1 = length s2
   using assms unfolding state-regex-of-vars-def by simp
  have (\forall x. \ x < num-vars \longrightarrow (((s1 ! x = One) \longrightarrow x \in state) \land ((s1 ! x = One) ))
Zero) \longrightarrow x \notin state)))
   using assms unfolding match-timestep-def state-regex-of-vars-def by metis
  then have match-timestep-s1-unfold: \forall x \in state. \ x < num-vars \longrightarrow ((s1 ! x = state))
One) \lor (s1 ! x = S))
   using assms bv (meson WEST-bit.exhaust)
  then have x-in-state-s1: \forall x. (x < num-vars \land x \in state) \longrightarrow ((s1 ! x = One))
\vee (s1 ! x = S)) by blast
```

```
then have x-notin-state-s1: \forall x. (x < num-vars \land x \notin state) \longrightarrow ((s1 ! x = state))
Zero) \lor (s1 ! x = S))
   using match-timestep-s1-unfold
   by (meson WEST-bit.exhaust \forall x < num\text{-}vars. (s1 ! x = One \longrightarrow x \in state) \land
(s1 ! x = Zero \longrightarrow x \notin state))
 have match-timestep-s2-unfold: (\forall x. \ x < num-vars \longrightarrow (((s2 \ ! \ x = One) \longrightarrow x)))
\in state) \land ((s2 ! x = Zero) \longrightarrow x \notin state)))
    using assms unfolding match-timestep-def state-regex-of-vars-def by metis
  then have \forall x \in state. \ x < num-vars \longrightarrow ((s2 ! x = One) \lor (s2 ! x = S))
   \mathbf{using} \ assms \ \mathbf{by} \ (meson \ WEST\text{-}bit.exhaust)
  then have x-in-state-s2: \forall x. (x < num-vars \land x \in state) \longrightarrow ((s2! x = One))
\vee (s2 ! x = S)) by blast
  then have x-notin-state-s2: \forall x. (x < num-vars \land x \notin state) \longrightarrow ((s2 ! x = state))
Zero) \lor (s2 ! x = S))
   using match-timestep-s1-unfold
   by (meson WEST-bit.exhaust \forall x < num-vars. (s2! x = One \longrightarrow x \in state) \land
(s2 ! x = Zero \longrightarrow x \notin state))
 have no-contradictory-bits1: \forall x \in state. \ x < num-vars \longrightarrow WEST-and-bitwise (s1
! x) (s2 ! x) \neq None
  using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
   by (metis match-timestep-s2-unfold not-Some-eq)
 then have no-contradictory-bits2: \forall x. (x \notin state \land x < num-vars) \longrightarrow WEST-and-bitwise
(s1 ! x) (s2 ! x) \neq None
  using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
   by fastforce
  have no-contradictory-bits: \forall x. \ x < num-vars \longrightarrow WEST-and-bitwise (s1 ! x)
(s2!x) \neq None
   using no-contradictory-bits1 no-contradictory-bits2
   by blast
 show ?thesis using same-length no-contradictory-bits assms
  proof (induct s1 arbitrary: s2 num-vars state)
   case Nil
   then show ?case by auto
  next
   case (Cons a s1)
   then have num-vars-bound: num-vars = (length \ s1) + 1
     unfolding state-regex-of-vars-def by simp
   then have len-s2: length s2 = num-vars using Cons by simp
   then have length s2 \geq 1 using num-vars-bound by simp
   then have s2-ht-exists: \exists h \ t. \ s2 = h\#t
     by (metis Suc-eq-plus 1 Suc-le-length-iff \langle length \ s2 = num-vars \rangle not-less-eq-eq
num-vars-bound)
   obtain h t where s2-ht: s2 = h\#t using s2-ht-exists by blast
   {assume *: WEST-and-bitwise a h = None
     then have ?case using WEST-and-state.simps(2)
       using Cons.prems(2) \land length \ s2 = num-vars \land s2-ht \ by force
    } moreover {assume **: WEST-and-bitwise a h \neq None
     have h1: length s1 = length t
       using len-s2 num-vars-bound s2-ht by simp
```

```
obtain num-var-minus1 where nvm1-def: num-var-minus1 = num-vars -
1 by simp
    then have \forall x < (num - vars - 1). WEST-and-bitwise ((a \# s1) ! (x+1)) ((h \# t))
!(x+1) \neq None
      using Cons.prems(2)
      using num-vars-bound s2-ht by auto
     then have h2: \forall x < num - var - minus 1. WEST-and-bitwise (s1 ! x) (t ! x) \neq
None
      using nvm1-def by simp
     obtain adv-state where adv-state-def: adv-state = advance-state state by
simp
    have h4: state-regex-of-vars s1 num-var-minus1
      using Cons.prems unfolding state-regex-of-vars-def
      by (simp add: add-implies-diff num-vars-bound nvm1-def)
    have h5: state-regex-of-vars t num-var-minus1
      using h4 h1 unfolding state-regex-of-vars-def by simp
    have h6: match-timestep adv-state s1 \wedge match-timestep adv-state t
      using Cons.prems(5) s2-ht adv-state-def
      using advance-state-match-timestep by blast
    have ih: WEST-and-state s1 t \neq None
      using Cons.hyps[of t num-var-minus1 adv-state] h1 h2 h4 h5 h6 by auto
    have ?case using WEST-and-state.simps(2)[of a s1 h t] ** ih s2-ht by auto
   ultimately show ?case
    by blast
 qed
qed
Correct Forward lemma WEST-and-state-length:
 fixes s1 s2::state-regex
 assumes samelen: length s1 = length s2
 assumes r-exists: (WEST-and-state s1 \ s2) \neq None
 shows \exists r. length \ r = length \ s1 \land WEST-and-state \ s1 \ s2 = Some \ r
proof-
 have s1s2-exists: \exists r. WEST-and-state s1 \ s2 = Some \ r
   using assms by simp
 then obtain r where s1s2-obt: WEST-and-state s1 s2 = Some r by auto
 let ?n = length s1
 have s1s2-length-n: length r = ?n
   using assms s1s2-obt
 proof (induct ?n arbitrary: s1 s2 r)
   then show ?case using WEST-and-state.simps(1) by simp
 next
   case (Suc \ x)
   have length s1 \ge 1 using Suc.hyps(2) by simp
   then have \exists h1 \ t1. \ s1 = h1 \ \# \ t1 by (simp add: Suc-le-length-iff)
   then obtain h1\ t1 where h1t1: s1 = h1\ \#\ t1 by blast
   have length s2 \ge 1 using Suc.hyps(2) Suc.prems(1) by auto
```

```
then have \exists h2 \ t2. \ s2 = h2 \ \# \ t2 by (simp add: Suc-le-length-iff)
   then obtain h2 t2 where h2t2: s2 = h2 \# t2 by blast
   have WEST-and-bitwise h1 h2 \neq None
     using Suc. prems h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     by (metis\ option.simps(4))
    then obtain h1h2 where h1h2-and: Some h1h2 = WEST-and-bitwise h1 h2
by auto
   have WEST-and-state t1\ t2 \neq None
     using Suc. prems h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     by (metis\ (no\text{-types},\ lifting)\ not\text{-None-eq option.} simps(4)\ option.simps(5))
    then obtain t1t2 where t1t2-and: Some t1t2 = WEST-and-state t1 t2 by
   have cond1: x = length \ t1 using h1t1 \ Suc.hyps(2) by auto
   have cond2: length t1 = length t2 using h1t1 h2t2 Suc.prems(1) by auto
   have len-t1t2: length t1t2 = length t1
     using Suc.hyps(1)[of t1 t2 t1t2] using cond1 cond2 t1t2-and
     using \langle WEST-and-state t1 t2 \neq None\rangle by fastforce
   have r-decomp: r = h1h2 \# t1t2
     using Suc. prems(3) h1h2-and t1t2-and WEST-and-state.simps(2)
     by (metis h1t1 \ h2t2 \ option.inject \ option.simps(5))
   show ?case using r-decomp len-t1t2 h1t1 h2t2 by auto
  qed
  then show ?thesis using assms s1s2-obt s1s2-exists by simp
qed
lemma index-shift:
  fixes a::WEST-bit
 fixes t::state-regex
 fixes state::state
 assumes (a = One \longrightarrow 0 \in state) \land (a = Zero \longrightarrow 0 \notin state)
 assumes \forall x < length \ t. \ ((t!x) = One \longrightarrow x + 1 \in state) \land ((t!x) = Zero \longrightarrow x
+1 \notin state
 shows \forall x < length (a\#t). ((a\#t)! x = One \longrightarrow x \in state) \land ((a\#t)! x = Zero
\longrightarrow x \notin state
proof-
 have (a = One \longrightarrow 0 \in state) using assms by auto
  then have a-one: (a\#t)!\theta = One \longrightarrow \theta \in state by simp
 have t-one: \forall x < length \ t. \ (t!x) = One \longrightarrow x + 1 \in state \ using \ assms \ by \ auto
 have \forall x < (length\ t) + 1.\ (x \neq 0 \land (a\#t)!x = One) \longrightarrow x \in state
   using t-one assms(2)
  by (metis (no-types, lifting) Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel
qr-zeroI less-numeral-extra(1) linordered-semidom-class.add-diff-inverse nth-Cons
verit-comp-simplify1(1))
  then have at-one: \forall x < length (a\#t). ((a\#t)! x = One \longrightarrow x \in state)
   using a-one t-one by (simp add: nth-Cons')
 have (a = Zero \longrightarrow 0 \notin state) using assms by auto
  then have a-zero: (a\#t)!0 = Zero \longrightarrow 0 \notin state by simp
 have t-zero: \forall x < length \ t. \ (t!x) = Zero \longrightarrow x + 1 \notin state \ using \ assms \ by \ auto
```

```
have \forall x < (length\ t) + 1.\ (x \neq 0 \land (a \# t)! x = Zero) \longrightarrow x \notin state
   using t-zero assms(2)
  by (metis Nat.add-0-right Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel
less-one not-gr-zero nth-Cons')
  then have at-zero: \forall x < length (a\#t). ((a\#t)! x = Zero \longrightarrow x \notin state)
   using a-zero t-zero by (simp add: nth-Cons')
 show ?thesis using at-one at-zero by blast
qed
lemma index-shift-reverse:
 fixes a:: WEST-bit
 fixes t::state-regex
 fixes state::state
  assumes \forall x < length (a\#t). ((a\#t) ! x = One \longrightarrow x \in state) \land ((a\#t) ! x = One)
Zero \longrightarrow x \notin state
 shows \forall x < length t. ((t!x) = One \longrightarrow x + 1 \in state) \land ((t!x) = Zero \longrightarrow x + 1 \in state)
1 \notin state
proof-
 have length (a\#t) = (length\ t) + 1 by simp
  then have \forall x < (length\ t) + 1. ((a\#t) ! x = One \longrightarrow x \in state) \land ((a\#t) ! x = One)
Zero \longrightarrow x \notin state
   using assms by metis
  then show ?thesis by simp
qed
{f lemma} WEST-and-state-correct-forward:
 fixes num-vars::nat
 fixes state::state
 fixes s1 s2:: state-regex
 assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
 assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
 assumes match-both: match-timestep state s1 \land match-timestep state s2
 shows \exists somestate. (match-timestep state somestate) \land (WEST-and-state s1 s2)
= Some some state
proof-
 have WEST-and-state s1 s2 \neq None
   using WEST-and-state-well-defined assms by simp
  then have \exists somestate. WEST-and-state s1 s2 = Some somestate by auto
  then obtain somestate where somestate-obt: WEST-and-state s1 s2 = Some
somestate by auto
 have samelength: length s1 = length \ s2 using assms(1, 2) unfolding state-regex-of-vars-def
by auto
have len-s1: length s1 = num-vars using assms unfolding state-regex-of-vars-def
by auto
 have len-s2: length s2 = num-vars using samelength len-s1 by auto
 have len-some state: length some state = num-vars
  using samelength somestate-obt WEST-and-state.simps WEST-and-state-length
```

```
using len-s1 len-s2
   by fastforce
 have s1-bits: \forall x < num\text{-}vars. (s1! x = One \longrightarrow x \in state) \land (s1! x = Zero \longrightarrow
x \notin state
   using assms(3) len-s1 unfolding match-timestep-def by metis
 have s2\text{-}bits: \forall x < num\text{-}vars. (s2 ! x = One \longrightarrow x \in state) \land (s2 ! x = Zero \longrightarrow x \in state)
x \notin state
   using assms(3) len-s2 unfolding match-timestep-def len-s2 by metis
  have somestate-bits: \forall x < num-vars. (somestate! x = One \longrightarrow x \in state)
                                \land (somestate ! x = Zero \longrightarrow x \notin state)
   using s1-bits s2-bits somestate-obt len-s1 len-s2 len-somestate assms(1)
  proof(induct somestate arbitrary: s1 s2 num-vars state)
   case Nil
   then show ?case
     by (metis\ less-nat-zero-code\ list.size(3))
  next
   case (Cons\ a\ t)
   have length s1 \ge 1 using Cons.prems(4, 5, 6) by auto
   then have \exists h1 \ t1. \ s1 = h1 \ \# \ t1 by (simp add: Suc-le-length-iff)
   then obtain h1\ t1 where h1t1: s1 = h1\ \#\ t1 by auto
   have length s2 \ge 1 using Cons.prems(4, 5, 6) by auto
   then have \exists h2 \ t2. \ s2 = h2 \ \# \ t2 by (simp add: Suc-le-length-iff)
   then obtain h2 t2 where h2t2: s2 = h2 \# t2 by auto
   have h1h2-not-none: WEST-and-bitwise h1\ h2 \neq None
     using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     by (metis\ option.discI\ option.simps(4))
   then have t1t2-not-none: WEST-and-state t1\ t2 \neq None
     using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     by (metis option.case-eq-if option.distinct(1))
   have h1h2-is-a: WEST-and-bitwise h1\ h2 = Some\ a
     using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     using t1t2-not-none h1h2-not-none by auto
   have t1t2-is-t: WEST-and-state t1 t2 = Some t
     using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
     using t1t2-not-none h1h2-not-none by auto
   let ?num-vars-m1 = num-vars - 1
   have len-t: Suc\ (length\ t) = num\text{-}vars
     using Cons.prems(1-6) by simp
   then have length-t: length t = ?num-vars-m1 by simp
   then have length-t1: length t1 = ?num-vars-m1 using Cons.prems(1-6) h1t1
by simp
   then have length-t2: length t2 = ?num-vars-m1 using Cons.prems(1-6) h2t2
by simp
   have (a = One \longrightarrow 0 \in state) \land (a = Zero \longrightarrow 0 \notin state)
     using h1h2-is-a Cons.prems(1, 2) h1t1 h2t2 WEST-and-bitwise.simps
   by (smt (verit) WEST-and-bitwise.elims len-t nth-Cons-0 option.inject zero-less-Suc)
   then have a-fact: ((a \# t) ! 0 = One \longrightarrow 0 \in state) \land ((a \# t) ! 0 = Zero
   \rightarrow 0 \notin state) by auto
   let ?adv-state = advance-state state
```

```
have \forall x < num - vars.((h1 \# t1) ! x = One \longrightarrow x \in state) \land ((h1 \# t1) ! x = Zero
\longrightarrow x \notin state
     using Cons.prems(1) h1t1 advance-state.simps[of state] by blast
    then have cond1: \forall x < num-vars-1.(t1 ! x = One \longrightarrow (x+1) \in state) \land (t1
! x = Zero \longrightarrow (x+1) \notin state)
     using index-shift-reverse[of h1 t1] by simp
    then have cond1: \forall x < num - vars - 1.(t1 ! x = One \longrightarrow x \in ?adv - state) \land (t1)
! x = Zero \longrightarrow x \notin ?adv-state)
     using advance-state-elt-member by fastforce
   have \forall x < num - vars.((h2 \# t2) ! x = One \longrightarrow x \in state) \land ((h2 \# t2) ! x = Zero
\longrightarrow x \notin state
     using Cons.prems(2) h2t2 advance-state.simps[of state] by blast
    then have \forall x < num - vars - 1.(t2 ! x = One \longrightarrow (x+1) \in state) \land (t2 ! x = One)
Zero \longrightarrow (x+1) \notin state
     using index-shift-reverse [of h2\ t2] by simp
   then have cond2: \forall x < num-vars-1.(t2! x = One \longrightarrow x \in ?adv-state) \land (t2)
! \ x = Zero \longrightarrow x \notin ?adv\text{-}state)
     using advance-state-elt-member by fastforce
    have t-fact: \forall x < length \ t. \ (t ! x = One \longrightarrow x \in ?adv-state) \land (t ! x = Zero
\longrightarrow x \notin ?adv\text{-}state)
     using Cons.hyps[of?num-vars-m1 t1?adv-state t2]
     using length-t length-t1 length-t2 t1t2-is-t cond1 cond2
     by (metis (mono-tags, opaque-lifting) state-regex-of-vars-def)
    then have t-fact: \forall x < length \ t. \ (t ! x = One \longrightarrow (x+1) \in state) \land (t ! x = One)
Zero \longrightarrow (x+1) \notin state
     using advance-state-elt-member by auto
   have cons-index: \forall x < length (a\#t). (t!x) = (a\#t)!(x+1) by auto
    have somestate-fact: \forall x < length (a \# t) . ((a \# t) ! x = One \longrightarrow x \in state) \land
((a \# t) ! x = Zero \longrightarrow x \notin state)
     using a-fact t-fact index-shift[of a state] Cons.prems(5,6)
     using \langle (a = One \longrightarrow 0 \in state) \land (a = Zero \longrightarrow 0 \notin state) \rangle by blast
   show ?case
     using somestate-fact len-t by auto
  have match-somestate: match-timestep state somestate
   using somestate-obt assms somestate-bits
   using len-s2 len-somestate
   unfolding match-timestep-def
   by metis
  then show ?thesis using somestate-obt by simp
qed
Correct Converse lemma WEST-and-state-indices:
  fixes s s1 s2::state-regex
  assumes WEST-and-state s1 \ s2 = Some \ s
  assumes length s1 = length s2
  assumes x < length s
  shows Some (s!x) = WEST-and-bitwise (s1!x) (s2!x)
  using assms
```

```
proof(induct \ s \ arbitrary: \ s1 \ s2 \ x)
 case Nil
 then show ?case by simp
next
 case (Cons\ h\ t)
 then obtain h1\ t1 where h1t1:\ s1=h1\ \#\ t1
    by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)
 obtain h2 t2 where h2t2: s2 = h2 \# t2
   using Cons
    by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)
 have not none1: WEST-and-bitwise h1 h2 \neq None using h1t1 h2t2 Cons(2)
WEST-and-state.simps(2)[of\ h1\ t1\ h2\ t2]
   by (metis\ option.distinct(1)\ option.simps(4))
  have notnone2: WEST-and-state t1 t2 \neq None using h1t1 h2t2 Cons(2)
WEST-and-state.simps(2)[of\ h1\ t1\ h2\ t2]
   by (metis option.case-eq-if option.discI)
  have someh: WEST-and-bitwise h1 \ h2 = Some \ h \ using \ h1t1 \ h2t2 \ Cons(2)
WEST-and-state.simps(2)[of\ h1\ t1\ h2\ t2]
   notnone1 notnone2 by auto
 have somet: WEST-and-state t1 t2 = Some \ t \ using \ h1t1 \ h2t2 \ Cons(2) \ WEST-and-state.simps(2)[of
h1 t1 h2 t2]
   notnone1 notnone2 by auto
 then have some-t: x < length \ t \Longrightarrow Some \ (t \mid x) = WEST-and-bitwise (t1 \mid x)
(t2 ! x) for x
   using h1t1 \ h2t2 \ Cons(1)[OF \ somet] \ Cons(3)
   bv simp
 have some-zero: Some ((h \# t) ! \theta) = WEST-and-bitwise (s1 ! \theta) (s2 ! \theta)
   using someh h1t1 h2t2 by simp
 {assume *: x = 0
   then have ?case
    using some-zero by auto
 } moreover {assume *: x > \theta
   then have xminus-lt: x-1 < length t
    using Cons(4) by simp
   have Some ((h \# t) ! x) = Some (t ! (x-1))
    using *
    by auto
   then have ?case
    using some-t[OF xminus-lt] h1t1 h2t2
    by (simp \ add: *)
 ultimately show ?case
   by blast
qed
lemma WEST-and-state-correct-converse-s1:
 fixes num-vars::nat
```

```
fixes state::state
  fixes s1 s2:: state-regex
 assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
 assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
 assumes match-and: \exists some state. (match-time step state some state) <math>\land (WEST-and-state
s1 \ s2) = Some \ some state
  shows match-timestep state s1
proof-
 have s1-bits: (\forall x < length \ s1. \ (s1 ! x = One \longrightarrow x \in state) \land (s1 ! x = Zero \longrightarrow setate) \land (s1 ! x = Zero \longrightarrow setate)
x \notin state)
   using assms
 proof(induct s1 arbitrary: s2 num-vars state)
   then show ?case by auto
 next
   case (Cons h1 t1)
   obtain somestate where
    somestate-obt: (match-timestep\ state\ somestate) \land (WEST-and-state\ (h1\#t1)
s2) = Some some state
     using Cons.prems(3) by auto
  have len-s1: length (h1 # t1) = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp
  have len-s2: length s2 = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp
   then obtain h2 t2 where h2t2: s2=h2\#t2
    by (metis WEST-and-state.simps(3) neq-Nil-conv not-Some-eq somestate-obt)
   \mathbf{have}\ \mathit{len-somestate}:\ \mathit{length}\ \mathit{somestate}=\ \mathit{num-vars}
    using some state-obt\ WEST-and-state-length[of-s2] unfolding state-regex-of-vars-def
len-s2
     using len-s1 by fastforce
   then obtain h t where ht: somestate = h\#t using len-s1
     by (metis Ex-list-of-length Zero-not-Suc length-Cons neq-Nil-conv)
    have some state-bits: (\forall x < length some state. (some state! x = One \longrightarrow x \in
state) \land (somestate ! x = Zero \longrightarrow x \notin state))
     using somestate-obt unfolding match-timestep-def by argo
  then have some state-bits-conv: (\forall x < length some state. (x \in state \longrightarrow (some state)))
! x = One \lor somestate ! x = S)) \land
                                (x \notin state \longrightarrow (somestate ! x = Zero \lor somestate ! x)
= S)))
     by (meson WEST-bit.exhaust)
   have WEST-and-state (h1#t1) s2 = Some \ some state \ using \ some state-obt \ by
blast
   then have some state-and: WEST-and-state (h1\#t1) (h2\#t2) = Some (h\#t)
     using h2t2 ht by simp
   have (somestate! 0 = One \longrightarrow 0 \in state) \land (somestate! 0 = Zero \longrightarrow 0 \notin State)
state
```

```
then have somestate-bit0: (h = One \longrightarrow 0 \in state) \land (h = Zero \longrightarrow 0 \notin state)
state
     using ht by simp
   have h1h2-not-none: WEST-and-bitwise h1\ h2 \neq None
     using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h2t2
     using option.simps(4) by fastforce
   have t1t2-not-none: WEST-and-state t1\ t2 \neq None
    using h1h2-not-none somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2]
     using option.simps(4) by fastforce
   then have h1h2-is-h: WEST-and-bitwise h1 h2 = Some h
    using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h1h2-not-none
by auto
   have h-fact-converse: (0 \in state \longrightarrow (h1 = One \lor h1 = S)) \land (0 \notin state \longrightarrow fact-converse)
(h1 = Zero \lor h1 = S))
    using somestate-bit0 h1h2-is-h WEST-and-bitwise.simps[of h1] h1h2-not-none
     by (metis (full-types) WEST-and-bitwise.elims option.inject)
   then have h-fact: (h1 = One \longrightarrow 0 \in state) \land (h1 = Zero \longrightarrow 0 \notin state) by
auto
   have somestate-bits-t: \forall x < length \ t. \ (t!x = One \longrightarrow (x+1) \in state) \land (t!x = One)
Zero \longrightarrow (x+1) \notin state
      using index-shift-reverse[of\ h\ t]\ Cons.prems(1)\ somestate-bits\ len-somestate
len-s1 ht by blast
   have t1t2-is-t: WEST-and-state t1 t2 = Some t
     using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] t1t2-not-none
h1h2-not-none by auto
    then have t1t2-is-t-indices: \forall x < length t. Some (t!x) = WEST-and-bitwise
(t1!x) (t2!x)
     using WEST-and-state-indices of t1 t2 t len-s1 len-s2 h2t2 by simp
   have t-fact-converse1: \bigwedge x. \ x < length \ t1 \Longrightarrow (((x+1) \in state \longrightarrow (t1!x = One)))
\lor t1!x = S)) \land ((x+1) \notin state \longrightarrow (t1!x = Zero \lor t1!x = S)))
   proof -
     \mathbf{fix} \ x
     assume x-lt: x<length t1
     have *:(t!x = One \longrightarrow (x+1) \in state) \land (t!x = Zero \longrightarrow (x+1) \notin state)
       using x-lt somestate-bits-t len-s1 len-somestate ht by auto
     have **: Some (t ! x) = WEST-and-bitwise (t1 ! x) (t2 ! x)
       using x-lt somestate-bits-t len-s1 len-somestate ht t1t2-is-t-indices by auto
     {assume case1: (x+1) \in state
       then have t!x = One \lor t1!x = S
         using *
         by (smt (verit) ** WEST-and-bitwise.elims WEST-and-bitwise.simps(2)
option.distinct(1) \ option.inject)
       then have (t1!x = One \lor t1!x = S)
         using x-lt WEST-and-bitwise.simps[of t1!x] * **
         by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
     } moreover {assume case2: (x+1) \notin state
```

using somestate-bits len-somestate len-s1 by simp

```
then have t!x = Zero \lor t1!x = S
          using *
         by (smt\ (verit)**WEST-and-bitwise.elims\ WEST-and-bitwise.simps(2)
option.distinct(1) option.inject)
      then have (t1!x = Zero \lor t1!x = S)
        using x-lt WEST-and-bitwise.simps[of t1!x] * **
        by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
     ultimately show (((x+1) \in state \longrightarrow (t1!x = One \lor t1!x = S)) \land ((x+1))
\notin state \longrightarrow (t1!x = Zero \lor t1!x = S)))
      by blast
    then have t-fact: \forall x < length \ t1. (t1!x = One \longrightarrow (x+1) \in state) \land (t1!x = One)
Zero \longrightarrow (x+1) \notin state
     by force
   show ?case
     using h-fact t-fact Cons.prems len-s2 len-somestate index-shift[of h1 state]
     unfolding state-regex-of-vars-def by blast
 qed
 show ?thesis
   using s1-bits assms(1) unfolding match-timestep-def
   using state-regex-of-vars-def s1-of-num-vars by presburger
qed
lemma WEST-and-state-correct-converse:
 fixes num-vars::nat
 fixes state::state
 fixes s1 s2:: state-regex
 assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
 assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
 assumes match-and: \exists some state. (match-time step state some state) <math>\land (WEST-and-state
s1 \ s2) = Some \ some state
 shows match-timestep state s1 \land match-timestep state s2
proof-
 have match-s1: match-timestep state s1 using assms WEST-and-state-correct-converse-s1
by simp
 have match-s2: match-timestep state s2
  using assms WEST-and-state-correct-converse-s1 WEST-and-state-commutative
   by (simp add: state-regex-of-vars-def)
 show ?thesis using match-s1 match-s2 by simp
qed
\mathbf{lemma}\ \mathit{WEST-and-state-correct}\colon
 fixes num-vars::nat
 fixes state::state
 fixes s1 s2:: state-regex
```

```
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
shows (match-timestep state s1 \land match-timestep state s2) \longleftrightarrow (\exists somestate.
match-timestep state somestate \land (WEST-and-state s1 s2) = Some somestate)
using assms WEST-and-state-correct-converse
WEST-and-state-correct-forward by metis
```

3.3.4 WEST-and-trace

```
Well Defined lemma WEST-and-trace-well-defined:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
 assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes \pi-match-r1-r2: match-regex \pi r1 \wedge match-regex \pi r2
 shows WEST-and-trace r1 \ r2 \neq None
proof-
 show ?thesis using assms
 \mathbf{proof}(induct\ r1\ arbitrary:\ r2\ \pi\ num-vars)
   case Nil
   {assume r2-empty:r2 = []
    then have ?case using WEST-and-trace.simps by blast
   } moreover {assume r2-nonempty: r2 \neq []
    then obtain h2\ t2 where r2 = h2\#t2
      by (metis trim-reversed-regex.cases)
    then have?case using WEST-and-trace.simps(2)[of h2 t2] by blast
    }
    ultimately show ?case by blast
 next
   case (Cons h1 t1)
   {assume r2-empty:r2 = []
    then have ?case using WEST-and-trace.simps by blast
   } moreover {assume r2-nonempty: r2 \neq []
    then obtain h2 t2 where h2t2: r2 = h2 \# t2
      by (metis trim-reversed-regex.cases)
    have h1t1-nv: \forall i < length (h1 \# t1). length ((h1 \# t1)! i) = num-vars
      using Cons.prems(1) unfolding trace-regex-of-vars-def by argo
    then have length ((h1 \# t1) ! \theta) = num\text{-}vars by blast
    then have h1-nv: state-regex-of-vars h1 num-vars
      unfolding state-regex-of-vars-def by simp
    have h2t2-nv: \forall i < length (h2 \# t2). length ((h2 \# t2) ! i) = num-vars
      using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by metis
    then have length ((h2 \# t2) ! \theta) = num\text{-}vars by blast
    then have h2-nv: state-regex-of-vars h2 num-vars
      unfolding state-regex-of-vars-def by simp
```

have match-timestep $(\pi ! 0)$ h1 \land match-timestep $(\pi ! 0)$ h2

```
using Cons(4) unfolding match-regex-def
      by (metis h2t2 length-greater-0-conv list.distinct(1) nth-Cons-0)
     then have h1h2-notnone: WEST-and-state h1\ h2 \neq None
     using WEST-and-state-well-defined of h1 num-vars h2 \pi!0, OF h1-nv h2-nv
by blast
     have t1-nv: trace-regex-of-vars t1 num-vars
       using h1t1-nv unfolding trace-regex-of-vars-def by auto
     have t2-nv: trace-regex-of-vars t2 num-vars
      using h2t2-nv unfolding trace-regex-of-vars-def by auto
    have unfold-prem3: (\forall time < length (h1 \# t1). match-timestep (<math>\pi ! time) ((h1
\# t1) ! time)) \land
     length (h1 # t1) \leq length \pi \wedge (\forall time < length r2. match-timestep (<math>\pi ! time)
(r2 \mid time)) \land length \ r2 < length \ \pi
      using Cons.prems(3) unfolding match-regex-def by argo
    have unfold-prem3-bounds: length (h1 \# t1) \leq length \pi \wedge length r2 \leq length
      using unfold-prem3 by blast
     have \pi-drop1-len: length (drop 1 \pi) = (length \pi)-1 by simp
    have len-t1t2: length t1 = length (h1 \# t1) - 1 \land length t2 = length (h2 \# t2) - 1
     have bounds: length t1 \leq length (drop 1 \pi) \wedge length t2 \leq length (drop 1 \pi)
       using unfold-prem3-bounds h2t2 \pi-drop1-len len-t1t2 h2t2
      by (metis diff-le-mono)
     have unfold-prem3-matches: (\forall time < length (h1 \# t1). match-timestep (\pi !
time) ((h1 \# t1) ! time)) \land
                              (\forall time < length (h2 \# t2). match-timestep (\pi ! time)
((h2 \# t2) ! time))
      using unfold-prem3 h2t2 by blast
     have h1t1-match:(\forall time < length (h1 \# t1). match-timestep (\pi ! time) ((h1
# t1)! time))
      using unfold-prem3-matches by blast
    then have (\land time < length \ t1 \implies match-time step \ (drop \ 1 \ \pi \ ! \ time) (t1
! time))
     proof-
      fix time
      assume time-bound: time < length t1
      have time+1 < length (h1 \# t1) using time-bound by auto
       then have match-timestep (\pi ! (time+1)) ((h1 \# t1) ! (time+1)) using
h1t1-match by auto
      then show match-timestep (drop 1 \pi ! time) (t1 ! time)
        using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
    then have t1-match: (\forall time < length \ t1. \ match-time step \ (drop \ 1 \ \pi \ ! \ time) \ (t1
! time))
```

```
by blast
```

```
have h2t2-match: \forall time < length (h2 \# t2). match-timestep (\pi ! time) ((h2
# t2)! time)
      using unfold-prem3-matches by blast
    then have (\land time. time < length t2 \implies match-timestep (drop 1 <math>\pi ! time) (t2
! time))
      proof-
      fix time
      assume time-bound: time < length t2
      have time+1 < length (h2\#t2) using time-bound by auto
       then have match-timestep (\pi ! (time+1)) ((h2 \# t2) ! (time+1)) using
h2t2-match by auto
      then show match-timestep (drop 1 \pi ! time) (t2 ! time)
        using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
    then have t2-match: (\forall time < length \ t2. \ match-time step \ (drop \ 1 \ \pi \ ! \ time) \ (t2
! time))
      by blast
    then have matches: (\forall time < length \ t1. \ match-time step \ (drop \ 1 \ \pi \ ! \ time) \ (t1
! time)) \land
                  (\forall time < length \ t2. \ match-time step \ (drop \ 1 \ \pi \ ! \ time) \ (t2 \ ! \ time))
       using t1-match t2-match by blast
     have match-regex (drop 1 \pi) t1 \wedge match-regex (drop 1 \pi) t2
      using bounds matches unfolding match-regex-def h2t2 by auto
     then have t1t2-notnone: WEST-and-trace t1\ t2 \neq None
      using Cons.hyps[of num-vars t2 drop 1 \pi, OF t1-nv t2-nv] by simp
     have WEST-and-trace (h1 # t1) (h2 # t2) \neq None
      using h1h2-notnone t1t2-notnone WEST-and-trace.simps(3) by auto
     then have ?case using h2t2 by auto
   ultimately show ?case by blast
 qed
qed
Correct Forward lemma WEST-and-trace-correct-forward-aux:
 assumes match-regex \pi (h\#t)
 shows match-timestep (\pi!0) h \land match-regex (drop 1 \pi) t
proof -
 have ind-h: (\forall time < length (h\#t). match-timestep (\pi ! time) ((h\#t) ! time)) \land
length (h\#t) \leq length \pi
   using assms unfolding match-regex-def by metis
 then have part1: match-timestep (\pi ! \theta) h
  by auto
 have part2: match-timestep (drop 1 \pi! time) (t! time) if time-lt: time<length
t for time
 proof -
```

```
have match: match-timestep (\pi ! (time+1)) ((h \# t) ! (time+1))
     using ind-h time-lt by auto
   have (\pi ! (time + 1)) = (drop 1 \pi ! time)
      using add.commute add-gr-0 impossible-Cons ind-h less-add-same-cancel2
less-eq-iff-succ-less by auto
   then show ?thesis using match by auto
 qed
 have part3: length t \leq length (drop 1 \pi)
   using ind-h by auto
 show ?thesis using part1 part2 part3 unfolding match-regex-def by simp
qed
{\bf lemma}\ \textit{WEST-and-trace-correct-forward-aux-converse}:
 assumes \pi = hxi\#txi
 assumes match-timestep (hxi) h
 assumes match-regex txi t
 shows match\text{-}regex \ \pi \ (h\#t)
proof-
 have all-time-t: \forall time < length t. match-timestep (txi! time) (t! time)
    using assms(3) unfolding match-regex-def by argo
 have len-t-leq: length \ t \leq length \ txi
   using assms(3) unfolding match-regex-def by argo
 have match-th: match-timestep (\pi ! time) ((h \# t) ! time) if time-th: time<length
(h \# t)
   \quad \mathbf{for} \ time
 proof -
   {assume *: time = 0
     then have ?thesis
      using assms(2) assms(1)
      by auto
   } moreover {assume *: time > 0
      then have ?thesis
      using time-ht all-time-t assms(1)
      by auto
   ultimately show ?thesis
    by blast
 qed
 have len-condition: length (h \# t) \leq length \pi
   using assms(1) len-t-leq by auto
 then show ?thesis
   using match-ht len-condition unfolding match-regex-def by simp
{\bf lemma}\ \textit{WEST-and-trace-correct-forward-empty-trace}:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
```

```
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes match1: match-regex [] r1
 assumes match2: match-regex [] r2
 shows \exists sometrace. match-regex \lceil \rceil sometrace \land (WEST-and-trace r1 r2) = Some
sometrace
proof -
 have r1-empty: length r1 \leq length []
   \mathbf{using}\ \mathit{match1}\ \mathbf{unfolding}\ \mathit{match-regex-def}
   by (metis\ list.size(3))
 have r2-empty: length r2 \leq length
   using match2 unfolding match-regex-def
 by (metis\ list.size(3))
 have r1r2: r1 = [] \land r2 = []
   using r1-empty r2-empty by simp
 have match-regex [] [] \land (WEST-and-trace [] [] ) = Some []
   {\bf unfolding}\ \textit{WEST-and-trace.simps match-regex-def by simp}
  then show ?thesis using r1r2
   by blast
qed
{\bf lemma}\ WEST- and-trace-correct-forward-nonempty-trace:
  fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
 assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes match-regex \pi r1 \land match-regex \pi r2
 assumes length \pi > 0
 shows \exists sometrace. match-regex \pi sometrace \land (WEST-and-trace r1 r2) = Some
sometrace
proof-
 have WEST-and-trace r1 \ r2 \neq None
   using WEST-and-trace-well-defined of r1 num-vars r2 \pi assms by blast
  then obtain sometrace where sometrace-obt: WEST-and-trace r1 r2 = Some
sometrace by blast
 have match-regex \pi sometrace
   using assms sometrace-obt
  \mathbf{proof}(induct\ sometrace\ arbitrary:\ r1\ r2\ \pi)
   case Nil
   then show ?case unfolding match-regex-def by auto
   case (Cons \ h \ t)
   have match-r1: (\forall time < length \ r1. \ match-time step \ (\pi \ ! \ time) \ (r1 \ ! \ time))
     using Cons.prems(3) unfolding match-regex-def by argo
   have match-r2: (\forall time < length \ r2. \ match-timestep \ (\pi \ ! \ time) \ (r2 \ ! \ time))
```

```
using Cons.prems(3) unfolding match-regex-def by argo
   have match-h-match-t: match-timestep (\pi!0) h \land match-regex (drop 1 \pi) t
   proof-
     {assume r1r2-empty: r1 = [] \land r2 = []
      have WEST-and-trace r1 \ r2 = Some
        using WEST-and-trace.simps r1r2-empty by blast
      then have ht-empty: h = [] \land t = []
        using Cons. prems by simp
      have match-timestep (\pi!0) [] \land match-regex (drop \ 1 \ \pi) []
        unfolding match-regex-def match-timestep-def by simp
      then have match-timestep (\pi!0) h \wedge match-regex (drop 1 \pi) t
        using ht-empty by simp
    } moreover {
      assume r1-empty: r1 = [] \land r2 \neq []
      obtain h2 t2 where h2t2: r2 = h2\#t2
        by (meson neg-Nil-conv r1-empty)
      have WEST-and-trace r1\ r2 = Some\ (h2\#t2)
        using r1-empty WEST-and-trace.simps(2)[of h2 t2] h2t2 by blast
      then have hh2-tt2: h=h2 \land t=t2
        using Cons. prems by simp
      have match-timestep (\pi!0) h2 \wedge match-regex (drop \ 1 \ \pi) t2
        using WEST-and-trace-correct-forward-aux[of \pi h2 t2] Cons(4) h2t2 by
auto
      then have match-timestep (\pi!0) h \wedge match-regex (drop 1 \pi) t
        using hh2-tt2 by simp
    } moreover {
      assume r2-empty: r2 = [] \land r1 \neq []
      obtain h1\ t1 where h1t1: r1 = h1\#t1
        by (meson neq-Nil-conv r2-empty)
      have WEST-and-trace r1 \ r2 = Some \ (h1 \# t1)
        using r2-empty WEST-and-trace.simps(1)[of r1] h1t1
        by blast
      then have hh1-tt1: h=h1 \land t=t1
        using Cons.prems by simp
      have match-timestep (\pi!0) h \wedge match-regex (drop 1 \pi) t
          using WEST-and-trace-correct-forward-aux[of \pi h1 t1] Cons(4) h1t1
hh1-tt1
        by blast
    } moreover {
      assume r1r2-nonempty: r1 \neq [] \land r2 \neq []
      obtain h1 t1 where h1t1: r1 = h1 \# t1
```

```
using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
        using not-None-eq by fastforce
      then have t1t2-notnone: WEST-and-trace t1\ t2 \neq None
        using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
        using not-None-eq
      using \langle WEST-and-trace (h1 \# t1) (h2 \# t2) = Some (h \# t) \rangle by fastforce
      have h-is: (WEST-and-state h1 h2) = Some h
      using WEST-and-trace.simps(3)[of h1 t1 h2 t2] h1h2-notnone t1t2-notnone
ht
        by auto
      have t-is: (WEST-and-trace t1\ t2) = Some\ t
      using WEST-and-trace.simps(3)[of h1 t1 h2 t2] h1h2-notnone t1t2-notnone
ht
        by auto
      have h1t1-nv: \forall i < length (h1\#t1). length ((h1\#t1)! i) = num-vars
        using Cons.prems(1) h1t1 unfolding trace-regex-of-vars-def by meson
      then have hyp1: trace-regex-of-vars t1 num-vars
        unfolding trace-regex-of-vars-def by auto
      have h2t2-nv: \forall i < length (h2\#t2). length ((h2\#t2)!i) = num-vars
        using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by meson
      then have hyp2: trace-regex-of-vars t2 num-vars
        unfolding trace-regex-of-vars-def by auto
      have hyp3a: match-regex (drop 1 \pi) t1
      using WEST-and-trace-correct-forward-aux[of \pi h1 t1] h1t1 Cons.prems(3)
by blast
      have hyp3b: match-regex (drop 1 \pi) t2
      using WEST-and-trace-correct-forward-aux[of \pi h2 t2] h2t2 Cons.prems(3)
by blast
      have hyp3: match-regex (drop 1 \pi) t1 \wedge match-regex (drop 1 \pi) t2
        using hyp3a hyp3b by auto
      have match-regex (drop 1 \pi) t if [] = (drop 1 \pi)
        using WEST-and-trace-correct-forward-empty-trace[of t1 num-vars t2]
        using hyp3a hyp3b hyp1 hyp2
        using t-is that by auto
      then have match-t: match-regex (drop 1 \pi) t
        using Cons.hyps[of\ t1\ t2\ (drop\ 1\ \pi),\ OF\ hyp1\ hyp2\ hyp3]\ t-is
        by fastforce
      have h1-nv: state-regex-of-vars h1 num-vars
        using h1t1-nv unfolding state-regex-of-vars-def by auto
      have h2-nv: state-regex-of-vars h2 num-vars
        using h2t2-nv unfolding state-regex-of-vars-def by auto
      have match-h1: match-timestep (\pi ! 0) h1
        using Cons.prems(3) h1t1 unfolding match-regex-def
        using Cons.prems(3) WEST-and-trace-correct-forward-aux by blast
```

```
have match-h2: match-timestep (\pi ! 0) h2
        using Cons.prems(3) h2t2 unfolding match-regex-def
        using Cons.prems(3) WEST-and-trace-correct-forward-aux by blast
      have match-h: match-timestep (\pi!0) h
        using WEST-and-state-correct-forward of h1 num-vars h2 \pi!0, OF h1-nv
h2-nv] h-is
        using match-h1 match-h2 by simp
      have match-timestep (\pi!0) h \land match-regex (drop 1 \pi) t
        using match-h match-t by blast
     ultimately show match-timestep (\pi!0) h \land match-regex (drop 1 \pi) t
   qed
   have match-h: match-timestep (\pi!\theta) h
     using match-h-match-t by auto
   have match-t: match-regex (drop 1 \pi) t
     using match-h-match-t by auto
   have len-\pi: length (drop 1 \pi) = (length \pi)-1 by auto
   have len-ht: length t = length (h\#t)-1 by auto
   have length t \leq length (drop 1 \pi) using match-t unfolding match-regex-def
by argo
   then have (length (h\#t))-1 \le (length \pi)-1 using len-\pi len-ht by argo
   then have ht-less-\pi: length (h\#t) \leq length \pi
     using Cons.prems(4)
     by linarith
   have (\land time. time<length (h # t) \Longrightarrow (match-timestep (\pi! time) ((h # t)!
time)) \wedge
      length (h \# t) \leq length \pi
   proof-
     \mathbf{fix} \ time
     assume time-bound: time < length (h # t)
     {assume *:time=0
      have (match\text{-}timestep\ (\pi\ !\ \theta)\ h) \land length\ (h\ \#\ t) \leq length\ \pi
        using match-h ht-less-\pi by simp
      then have (match-timestep (\pi ! time) ((h \# t) ! time)) \land length (h \# t) \le
length \pi
        using * by simp
     } moreover {
      assume **: time > 0
      have time-m1: time-1 < length t
        \mathbf{using}\ \mathit{time-bound}
        using ** len-ht by linarith
      have (\forall time < length \ t. \ match-timestep \ (drop \ 1 \ \pi \ ! \ time) \ (t \ ! \ time))
        using match-t unfolding match-regex-def by argo
      then have fact0: match-timestep (drop 1 \pi! (time-1)) (t! (time-1))
```

```
using time-m1 by blast
      have fact1: (t ! (time-1)) = ((h \# t) ! time)
        by (simp add: **)
      have fact2: (drop \ 1 \ \pi \ ! \ (time-1)) = (\pi \ ! \ time)
        using ** time-m1 ht-less-\pi by force
      then have (match-timestep (\pi ! time) ((h \# t) ! time))
        using fact1 fact2 fact0 by simp
      then have (match-timestep (\pi ! time) ((h \# t) ! time)) \land length (h \# t) \le
length \pi
        using ht-less-\pi by simp
    ultimately show (match-timestep (\pi ! time) ((h \# t) ! time)) \land length (h \#
t) \leq length \pi
      by (metis bot-nat-0.not-eq-extremum)
   then show ?case unfolding match-regex-def by auto
 qed
 then show ?thesis using sometrace-obt by blast
qed
lemma WEST-and-trace-correct-forward:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
 assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes match-regex \pi r1 \land match-regex \pi r2
 shows \exists sometrace. match-regex \pi sometrace \land (WEST-and-trace r1 r2) = Some
sometrace
 {\bf using}\ WEST- and -trace-correct-forward-empty-trace\ WEST- and -trace-correct-forward-nonempty-trace
 assms by fast
Correct Converse lemma WEST-and-trace-nonempty-args:
 fixes h1 h2::state-regex
 fixes t t1 t2::trace-regex
 assumes WEST-and-trace (h1 \# t1) (h2 \# t2) = Some (h \# t)
 shows WEST-and-state h1 h2 = Some h \land WEST-and-trace t1 t2 = Some t
proof-
 have h1h2-nn: (WEST-and-state h1 h2) \neq None
   using WEST-and-trace.simps(3)[of h1 t1 h2 t2] assms
   using option.simps(4) by fastforce
 then have t1t2-nn: WEST-and-trace t1 t2 \neq None
   using assms WEST-and-trace.simps(3)[of h1 t1 h2 t2]
  by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1) \ option.simps(4) \ option.simps(5))
 have nn: WEST-and-trace (h1 # t1) (h2 # t2) \neq None using assms by blast
 then have h-fact: WEST-and-state h1\ h2 = Some\ h
```

```
using h1h2-nn t1t2-nn assms WEST-and-trace.simps(3)[of h1 t1 h2 t2] by auto
 then have t-fact: WEST-and-trace t1\ t2 = Some\ t
   using t1t2-nn h1h2-nn assms WEST-and-trace.simps(3)[of h1 t1 h2 t2] nn by
 show ?thesis using h-fact t-fact by blast
qed
lemma WEST-and-trace-lengths-r1:
 assumes trace-regex-of-vars r1 n
 assumes trace-regex-of-vars r2 n
 assumes (WEST-and-trace r1 \ r2) = Some sometrace
 shows length sometrace \geq length r1
 using assms
proof(induction r1 arbitrary:r2 sometrace)
 case Nil
 then show ?case by simp
next
 case (Cons h1 t1)
 {assume r2-empty: r2 = []
   have WEST-and-trace (h1 \# t1) r2 = Some (h1 \# t1)
    using Cons WEST-and-trace.simps(1) r2-empty by blast
   then have ?case using Cons by simp
 } moreover {
   assume r2-nonempty: r2 \neq []
   obtain h2\ t2 where h2t2: r2 = h2\#t2
    by (meson neq-Nil-conv r2-nonempty)
   have h1t1-and-h2t2: WEST-and-trace (h1 \# t1) (h2 \# t2) = Some sometrace
    using Cons WEST-and-trace.simps(3) h2t2 by blast
   then have h1h2-nn: (WEST-and-state h1\ h2) \neq None
    using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
    using option.simps(4) by fastforce
   then have t1t2-nn: WEST-and-trace t1 t2 \neq None
    using h1t1-and-h2t2 WEST-and-trace.simps(3)[of h1 t1 h2 t2]
   by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1) \ option.simps(4) \ option.simps(5))
   obtain h where h-obt: WEST-and-state h1 h2 = Some h using h1h2-nn by
blast
  obtain t where t-obt: WEST-and-trace t1\ t2 = Some\ t using t1t2-nn by blast
   then have *: sometrace = h \# t
    using h-obt t-obt h1t1-and-h2t2 by auto
   then have sometrace-ht: WEST-and-trace (h1 \# t1) (h2 \# t2) = Some (h \#
t)
    using h2t2 \ h1t1-and-h2t2 \ by blast
   have \forall i < length (h1 \# t1). length ((h1 \# t1) ! i) = n
    using Cons.prems unfolding trace-regex-of-vars-def by argo
   then have hyp1: trace-regex-of-vars t1 n
    unfolding trace-regex-of-vars-def by auto
   have \forall i < length (h2 \# t2). length ((h2 \# t2) ! i) = n
```

```
using Cons.prems h2t2 unfolding trace-regex-of-vars-def by meson
   then have hyp2: trace-regex-of-vars t2 n
    unfolding trace-regex-of-vars-def by auto
   have length t \ge length t1
    using Cons(1)[of\ t2\ t,\ OF\ hyp1\ hyp2\ t\text{-}obt] by simp
   then have ?case using * by simp
 ultimately show ?case by blast
\mathbf{qed}
lemma WEST-and-trace-lengths:
 assumes trace-regex-of-vars r1 n
 assumes trace-regex-of-vars r2 n
 assumes (WEST-and-trace r1 \ r2) = Some sometrace
 shows length sometrace \geq length r1 \wedge length sometrace \geq length r2
 using assms WEST-and-trace-lengths-r1 WEST-and-trace-commutative
proof-
 have lenr1: length r1 \leq length sometrace
   using assms WEST-and-trace-lengths-r1 [of r1 n r2 sometrace] by blast
 have WEST-and-trace r1 \ r2 = WEST-and-trace r2 \ r1
   using WEST-and-trace-commutative assms by blast
 then have lenr2: length r2 \leq length sometrace
   using WEST-and-trace-lengths-r1[of r2 n r1 sometrace] assms by auto
 show ?thesis using lenr1 lenr2 by auto
qed
lemma WEST-and-trace-correct-converse-r1:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
 assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes (\exists sometrace. match-regex \pi sometrace \land (WEST-and-trace r1 r2) =
Some sometrace)
 shows match-regex \pi r1
 using assms
proof(induct r1 arbitrary: r2 \pi)
   case Nil
 then show ?case
   unfolding match-regex-def by auto
 \mathbf{next}
   case (Cons\ h1\ t1)
  obtain sometrace where sometrace-obt: match-regex \pi sometrace \wedge (WEST-and-trace
(h1\#t1) \ r2) = Some \ sometrace
    using Cons.prems by blast
   have match-sometrace-pre: match-regex \pi sometrace using sometrace-obt by
simp
    have r1r2-is-sometrace: (WEST-and-trace (h1 \# t1) \ r2) = Some \ sometrace
```

```
using sometrace-obt by simp
    have match-sometrace: \forall time < length sometrace. match-timestep (\pi ! time)
(sometrace! time)
    using match-sometrace-pre unfolding match-regex-def by argo
   have len-r1: length (h1 \# t1) \le length \pi
    using Cons.prems sometrace-obt WEST-and-trace-lengths
    by (meson le-trans match-regex-def)
   {assume empty-trace: \pi = []
    then have ?case using len-r1 by simp
   } moreover {
    assume nonempty-trace: \pi \neq []
     {assume r2-empty: r2 = []
      have WEST-and-trace (h1\#t1) r2 = Some (h1\#t1)
        using sometrace-obt WEST-and-trace.simps r2-empty by simp
      then have ?case using sometrace-obt
        unfolding match-regex-def by force
    } moreover {
      assume r2-nonempty: r2 \neq []
     obtain hxi txi where hxitxi: \pi = hxi\#txi using nonempty-trace by (meson
list.exhaust)
       obtain h2 t2 where h2t2: r2 = h2 \# t2 using r2-nonempty by (meson
list.exhaust)
      have not-none: WEST-and-trace (h1\#t1) (h2\#t2) = Some \ sometrace
        using sometrace-obt h2t2 by blast
      have h1h2-nn: WEST-and-state h1\ h2 \neq None
        using not-none WEST-and-trace.simps(3)[of h1 t1 h2 t2] not-none
        using option.simps(4) by fastforce
      then have t1t2-nn: WEST-and-trace t1 t2 \neq None
        using not-none WEST-and-trace.simps(3)[of h1 t1 h2 t2] not-none
        using option.simps(4) by fastforce
      obtain h t where sometrace-ht: sometrace = h\#t
        using not-none h1h2-nn t1t2-nn by auto
      have h1h2-h: WEST-and-state h1\ h2 = Some\ h
        using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-
trace-ht
        bv blast
      have t1t2-t: WEST-and-trace t1 t2 = Some t
        using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-
trace-ht
        by blast
       have match-ht: \forall time < length (h\#t). match-timestep ((hxi \# txi) ! time)
(((h\#t)) ! time)
        using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
        by meson
      \mathbf{have}\ \mathit{h1-nv}\colon \mathit{state-regex-of-vars}\ \mathit{h1}\ \mathit{num-vars}
```

```
using Cons.prems unfolding trace-regex-of-vars-def state-regex-of-vars-def
      \mathbf{by}\ (\textit{metis Ex-list-of-length append-self-conv2 arbitrary-regtrace-matches-any-trace}
bot-nat-0.not-eq-extremum\ le-0-eq\ less-nat-zero-code\ list.pred-inject(2)\ list-all-length
list-ex-length list-ex-simps(1) match-regex-def nth-append-length trace-of-vars-def)
      have h2-nv: state-regex-of-vars h2 num-vars
      using Cons.prems unfolding trace-regex-of-vars-def h2t2 state-regex-of-vars-def
      \mathbf{by}\ (metis\ Ex\ -list\ -of\ -length\ append\ -self\ -conv2\ arbitrary\ -regtrace\ -matches\ -any\ -trace
bot-nat-0.not-eq-extremum\ le-0-eq\ less-nat-zero-code\ list.pred-inject(2)\ list-all-length
list-ex-length list-ex-simps(1) match-regex-def nth-append-length trace-of-vars-def)
      have match-h: match-timestep hxi h
        using match-ht unfolding match-regex-def by auto
      have match-h1: match-timestep hxi h1
          using WEST-and-state-correct-converse-s1 of h1 num-vars h2 hxi, OF
h1-nv h2-nv
        using sometrace-ht h1h2-h match-h by blast
      have \forall i < length (h1 \# t1). length ((h1 \# t1) ! i) = num-vars
        using Cons.prems unfolding trace-regex-of-vars-def by argo
      then have t1-nv: trace-regex-of-vars t1 num-vars
        unfolding trace-regex-of-vars-def by auto
      have \forall i < length (h2 \# t2). length ((h2 \# t2) ! i) = num-vars
        using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis
      then have t2-nv: trace-regex-of-vars t2 num-vars
        unfolding trace-regex-of-vars-def h2t2 by auto
      have match\text{-}regex\ \pi\ (h\ \#\ t)
        using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
        bv blast
      then have match-regex txi t
        using hxitxi WEST-and-trace-correct-forward-aux[of \pi h t]
        unfolding match-regex-def by fastforce
      then have match-t1: match-regex txi t1
        using Cons.hyps[of t2 txi, OF t1-nv t2-nv] t1t2-t by blast
      have ?case
        using match-h1 match-t1 len-r1
            using WEST-and-trace-correct-forward-aux-converse[OF - match-h1
match-t1, of \pi] hxitxi
        by blast
     ultimately have ?case by blast
   ultimately show ?case by blast
 qed
\mathbf{lemma}\ \textit{WEST-and-trace-correct-converse}:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
```

```
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 assumes (\exists sometrace. match-regex \pi sometrace \land (WEST-and-trace r1 r2) =
Some sometrace)
 shows match-regex \pi r1 \land match-regex \pi r2
proof-
 show ?thesis using WEST-and-trace-correct-converse-r1 WEST-and-trace-commutative
   using assms(3) r1-of-num-vars r2-of-num-vars by presburger
qed
{f lemma} WEST-and-trace-correct:
 fixes num-vars::nat
 fixes \pi::trace
 fixes r1 r2:: trace-regex
 assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
 assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
 shows match-regex \pi r1 \wedge match-regex \pi r2 \longleftrightarrow (\exists sometrace. match-regex \pi
sometrace \land (WEST-and-trace \ r1 \ r2) = Some \ sometrace)
 using WEST-and-trace-correct-forward WEST-and-trace-correct-converse assms
by blast
        WEST-and correct
3.3.5
Correct Forward lemma WEST-and-helper-subset-of-WEST-and:
 assumes List.member\ L1\ elem
 shows set (WEST-and-helper elem (h2\#T2)) \subseteq set (WEST-and L1 (h2\#T2))
 using assms
proof (induct L1)
 case Nil
 then show ?case
   by (simp\ add:\ member-rec(2))
\mathbf{next}
 case (Cons h1 T1)
 \{assume *: h1 = elem \}
   then have ?case using WEST-and.simps(3)[of h1 T1 h2 T2]
    by (simp add: list.case-eq-if)
 } moreover {assume *: h1 \neq elem
   then have List.member T1 elem
    using Cons
    by (simp\ add:\ member-rec(1))
   then have ?case using Cons WEST-and-subset by blast
 ultimately show ?case by blast
qed
lemma WEST-and-trace-element-of-WEST-and-helper:
 assumes List.member\ L2\ elem2
 assumes (WEST-and-trace elem1 elem2) = Some sometrace
 shows sometrace \in set (WEST-and-helper elem 1 L2)
```

```
using assms
proof (induct L2)
 case Nil
 then show ?case
   by (simp\ add:\ member-rec(2))
 case (Cons h2 T2)
 {assume *: elem2 = h2
   then have ?case
    using WEST-and-helper.simps(2)[of elem1 h2 t2]
    using assms(2) by fastforce
 } moreover {assume *: elem2 \neq h2
   then have List.member T2 elem2 using Cons(2)
    by (simp\ add:\ member-rec(1))
   then have ?case using Cons(1, 3) WEST-and-helper-subset
    by blast
}
 ultimately show ?case by blast
qed
lemma index-of-L-in-L:
 assumes i < length L
 shows List.member\ L\ (L\ !\ i)
 using assms in-set-member by force
{f lemma} WEST-and-indices:
 fixes L1 L2::WEST-regex
 fixes sometrace::trace-regex
 assumes \exists i1 \ i2. \ i1 < length \ L1 \land i2 < length \ L2 \land WEST-and-trace (L1 ! i1)
(L2 ! i2) = Some \ sometrace
 shows \exists i < length (WEST-and L1 L2). WEST-and L1 L2! i = sometrace
proof-
 obtain i1 i2 where i1-e2-prop: i1 < length L1 \wedge i2 < length L2 \wedge WEST-and-trace
(L1 ! i1) (L2 ! i2) = Some sometrace
   using assms by blast
 then have elem: List.member L1 (L1!i1)
   using index-of-L-in-L i1-e2-prop by blast
 have elem2: List.member L2 (L2!i2)
   using index-of-L-in-L i1-e2-prop by blast
 let ?L = WEST-and L1 L2
 have L1-nonempty: L1 \neq []
   using i1-e2-prop by fastforce
 have L2-nonempty: L2 \neq []
   using i1-e2-prop by fastforce
 obtain h1 t1 where h1t1: L1 = h1#t1 using L1-nonempty using list.exhaust
by blast
```

```
obtain h2\ t2 where h2t2: L2 = h2\#t2 using L2-nonempty using list.exhaust
by blast
 then have set-subset: set (WEST-and-helper (L1 ! i1) L2) \subseteq set (WEST-and
   using h2t2 WEST-and-helper-subset-of-WEST-and[of L1 (L1!i1) h2 t2] elem
   by blast
 have sometrace-in: sometrace \in set (WEST-and-helper (L1 ! i1) L2)
   using WEST-and-trace-element-of-WEST-and-helper[OF elem2, of (L1!i1)
sometrace
    i1-e2-prop by blast
 show ?thesis using set-subset sometrace-in
   by (simp\ add:\ in\text{-}set\text{-}conv\text{-}nth\ subset\text{-}code(1))
qed
lemma WEST-and-correct-forward:
 fixes n::nat
 fixes \pi::trace
 fixes L1 L2:: WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 n
 assumes L2-of-num-vars: WEST-regex-of-vars L2 n
 assumes match \pi L1 \wedge match \pi L2
 shows match \pi (WEST-and L1 L2)
proof-
 have L1-nonempty: L1 \neq []
   using assms(3) unfolding match-def by auto
 have L2-nonempty: L2 \neq []
   using assms(3) unfolding match-def by auto
 obtain i1 i2 where *:i1 < length L1 \wedge i2 < length L2 \wedge match-regex \pi (L1!i1)
\wedge match-regex \pi (L2!i2)
   using assms(3) unfolding match-def by metis
 let ?r1 = L1!i1
 let ?r2 = L2!i2
 have bounds: i1 < length L1 \wedge i2 < length L2 using * by auto
 have match-regex \pi ?r1 \wedge match-regex \pi ?r2 using * by simp
 have r1-nv: trace-regex-of-vars (L1 ! i1) n
   using bounds assms(1) unfolding WEST-regex-of-vars-def by metis
 have r2-nv: trace-regex-of-vars (L2 ! i2) n
   using bounds assms(2) unfolding WEST-regex-of-vars-def by metis
 have \exists sometrace. match-regex \pi sometrace \land (WEST-and-trace ?r1 ?r2) = Some
sometrace
  using WEST-and-trace-correct-forward[of ?r1 n ?r2 π, OF r1-nv r2-nv match-r1r2]
\mathbf{by} blast
```

```
then obtain sometrace where sometrace-obt: match-regex \pi sometrace \wedge (WEST-and-trace
 ?r1 ?r2) = Some \ sometrace
       by auto
   have \exists i1 i2.
         i1 < length L1 \wedge
         i2 < length \ L2 \land WEST-and-trace (L1 ! i1) (L2 ! i2) = Some sometrace
       using bounds sometrace-obt by blast
   then have \exists i < length (WEST-and L1 L2). (WEST-and L1 L2)!i = sometrace
       using WEST-and-indices[of L1 L2 sometrace]
       using sometrace-obt by force
  then obtain i where sometrace-index: i < length (WEST-and L1 L2) \land (
L1 L2)!i = sometrace
       by blast
   have sometrace-match: match-regex \pi sometrace using sometrace-obt by auto
   have \exists i < length (WEST-and L1 L2). match-regex \pi (WEST-and L1 L2! i)
       using sometrace-index sometrace-match by blast
    then show?thesis
       unfolding match-def by simp
\mathbf{qed}
Correct Converse lemma WEST-and-correct-converse-L1:
   fixes n::nat
   fixes \pi::trace
   fixes L1 L2:: WEST-regex
   assumes L1-of-num-vars: WEST-regex-of-vars L1 n
   assumes L2-of-num-vars: WEST-regex-of-vars L2 n
   assumes match \pi (WEST-and L1 L2)
   shows match \pi L1
proof-
   have \exists i < length (WEST-and L1 L2). match-regex \pi ((WEST-and L1 L2) ! i)
       using assms unfolding match-def by argo
    then obtain i where i-obt: i < length (WEST-and L1 L2) \land
                                          match-regex \pi ((WEST-and L1 L2)! i) by auto
    then obtain i1 i2 where i1i2: i1 < length L1 \wedge i2 < length L2 \wedge Some
((WEST-and\ L1\ L2)!i) = WEST-and-trace\ (L1!i1)\ (L2!i2)
       using WEST-and.simps WEST-and-helper.simps
       by (metis L1-of-num-vars L2-of-num-vars WEST-and-set-member nth-mem)
   have i1-L1: i1 < length L1 using i1i2 by auto
   have i2\text{-}L2: i2 < length L2 using i1i2 by auto
   let ?r1 = L1!i1
   let ?r2 = L2!i2
   let ?r = WEST-and L1 L2! i
   have r1-of-nv: trace-regex-of-vars (L1!i1) n using assms(1) i1-L1
       unfolding WEST-regex-of-vars-def by metis
```

```
have r2-of-nv: trace-regex-of-vars (L2 ! i2) n using assms(2) i2-L2
   unfolding WEST-regex-of-vars-def by metis
 have match\text{-}regex \pi ?r
   using WEST-and-trace-correct-converse of ?r1 n ?r2 \pi, OF r1-of-nv r2-of-nv
   using i-obt i1i2 by auto
 then have match-regex \pi (WEST-and L1 L2 ! i) unfolding match-def by simp
 then have match-r1r2: (match-regex \pi (L1 ! i1) \wedge match-regex \pi (L2 ! i2))
   using WEST-and-trace-correct-converse of ?r1 n ?r2 \pi, OF r1-of-nv r2-of-nv
   using i1i2 i-obt by force
 then have \exists i < length [L1!i1]. match-regex \pi ([L1!i1]!i) unfolding match-def
 then have \exists i < 1. match-regex \pi ([L1 ! i1] ! i) unfolding match-def by auto
 then have match-regex \pi (L1 ! i1) by simp
 then show?thesis using i1-L1
   unfolding match-def by auto
qed
\mathbf{lemma}\ \textit{WEST-and-correct-converse} :
 fixes n::nat
 fixes \pi::trace
 fixes L1 L2:: WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 n
 assumes L2-of-num-vars: WEST-regex-of-vars L2 n
 assumes match \pi (WEST-and L1 L2)
 shows match \pi L1 \wedge match \pi L2
proof-
 {\bf show}\ ? the sis\ {\bf using}\ WEST- and-correct-converse-L1\ WEST- and-commutative\ assms
   by (meson regex-equiv-def)
qed
lemma WEST-and-correct:
 fixes \pi::trace
 fixes L1 L2:: WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 n
 assumes L2-of-num-vars: WEST-regex-of-vars L2 n
 shows match \pi L1 \wedge match \pi L2 \longleftrightarrow match \pi (WEST-and L1 L2)
 {\bf show}\ ? the sis\ {\bf using}\ WEST- and-correct-forward\ WEST- and-correct-converse\ assms
   by blast
qed
3.4
      Facts about the WEST or operator
{f lemma} WEST-or-correct:
 fixes \pi::trace
 fixes L1 L2::WEST-regex
```

```
shows match \pi (L1@L2) \longleftrightarrow (match \pi L1) \lor (match \pi L2)
proof —
have forward: match \pi (L1@L2) \longrightarrow (match \pi L1) \lor (match \pi L2)
unfolding match\text{-}def
by (metis \ add\text{-}diff\text{-}inverse\text{-}nat \ length\text{-}append \ nat\text{-}add\text{-}left\text{-}cancel\text{-}less \ nth\text{-}append)
have converse: (match \pi L1) \lor (match \pi L2) \longrightarrow match \pi (L1@L2)
unfolding match\text{-}def by (metis \ list\text{-}ex\text{-}append \ list\text{-}ex\text{-}length)
show ?thesis
using forward converse by blast
qed
```

3.5 Pad and Match Facts

```
lemma shift-match-regex:
 assumes length \pi \geq a
 assumes match-regex \pi ((arbitrary-trace num-vars a)@L)
 shows match-regex (drop a \pi) (drop a ((arbitrary-trace num-vars a)@L))
proof-
 have drop-a: (drop\ a\ ((arbitrary-trace\ num-vars\ a)@L)) = L
   using arbitrary-trace.simps[of num-vars a] by simp
 let ?padL = (arbitrary-trace\ num-vars\ a)@L
 have length (arbitrary-trace num-vars a \otimes L) = a + (length L)
   by auto
 then have match-all: \forall time < a + (length \ L). match-timestep (\pi ! time) (?padL!
time)
   using assms(2) arbitrary-trace.simps[of num-vars a]
   unfolding match-regex-def by metis
 have len-xi: length \pi > a + (length L)
   using assms(2) arbitrary-trace.simps[of num-vars a]
   unfolding match-regex-def
   using \langle length \ (arbitrary-trace num-vars \ a @ L) = a + length \ L \rangle by argo
 then have match-drop-a: match-timestep (drop a \pi! time) (L! time)
   if time-le: time < length L for time
 proof-
   have time + a < a + (length L) using time-le by simp
   then have fact1: match-timestep (\pi ! (time + a)) (?padL! (time + a))
     using match-all by blast
   have fact2: (\pi ! (time + a)) = (drop \ a \ \pi ! \ time)
     using time-le len-xi
     by (simp add: add.commute)
   have fact3: (?padL!(time + a)) = (L!time)
     using time-le len-xi
   by (metis (length (arbitrary-trace num-vars a @ L) = a + length L) add.commute
drop-a le-add1 nth-drop)
   show ?thesis
     using fact1 fact2 fact3 by argo
```

```
qed
 have len-L-drop-a: length L \leq length \ (drop \ a \ \pi)
   using assms(2) unfolding match-regex-def
   by (metis assms(1) diff-add drop-a drop-drop drop-eq-Nil length-drop)
 then have match-regex (drop a \pi) L unfolding match-regex-def
   using match-drop-a by metis
 then show ?thesis using drop-a assms by argo
qed
lemma match-regex:
 assumes length \pi \geq a
 assumes length L1 = a
 assumes match-regex \pi (L1@L2)
 shows match-regex (drop a \pi) (drop a (L1@L2))
proof -
 have time-h: \forall time<length (L1 @ L2). match-timestep (\pi! time) ((L1 @ L2)!
time)
   using assms unfolding match-regex-def by argo
 then have time: match-timestep (drop a \pi! time) ((drop a (L1 @ L2))! time)
if time-lt: time<length (drop a (L1 @ L2)) for time
 proof -
   have time + a < length (L1@L2)
    using time-lt \ assms(2) by auto
   then have h0: match-timestep (\pi ! (time + a)) ((L1 @ L2) ! (time + a))
    using time-h by blast
   have h1: \pi ! (time + a) = (drop \ a \ \pi) ! time
    using assms(1)
    by (simp add: add.commute)
   have h2: ((L1 @ L2) ! (time + a)) = (drop \ a \ (L1 @ L2)) ! \ time
    using assms(2)
    by (metis add.commute append-eq-conv-conj nth-append-length-plus)
   then show ?thesis using assms h0 h1 h2 by simp
 qed
 have len-h: length (L1 @ L2) \leq length \pi
   using assms unfolding match-regex-def by argo
 then have len: length (drop a (L1 @ L2)) \leq length (drop a \pi)
   using assms(1-2) by auto
 show ?thesis
   using len time unfolding match-regex-def
   by argo
qed
lemma match-regex-converse:
 assumes length \pi \geq a
 assumes L1 = (arbitrary-trace num-vars a)
 assumes match-regex (drop\ a\ \pi)\ (drop\ a\ (L1@L2))
 shows match-regex \pi (L1@L2)
```

```
proof-
 have length (drop a (L1 @ L2)) = length L2
   using arbitrary-trace.simps[of num-vars a] assms by simp
 then have match-L2: \land time. time < length L2 \implies match-time step ((drop a \pi)!
time) (L2! time)
 proof-
   fix time
   assume time-lt: time<length L2
   then have time-lt-dropa-L1L2: time < length (drop a (L1 @ L2))
    using assms(2) arbitrary-trace.simps[of num-vars a] by auto
  have \forall time < length (drop \ a \ (L1 \ @ \ L2)). \ match-time step (drop \ a \ \pi \ ! \ time) (drop
a (L1 @ L2)! time)
    using assms unfolding match-regex-def by metis
   then have match-timestep (drop a \pi! time) (drop a (L1 @ L2)! time)
    using time-lt-dropa-L1L2 by blast
   then show match-timestep (drop a \pi! time) (L2! time)
    using assms(2) arbitrary-trace.simps[of num-vars a] by simp
 aed
 have match-L1L2: match-timestep (\pi ! time) ((L1 @ L2) ! time) if time-le-L1L2:
time<length (L1 @ L2) for time
 proof-
   {assume time-le-L1: time < length L1
    \{assume\ L1-empty:\ L1=[]
      have match-timestep (\pi ! time) (L2 ! time)
       using assms unfolding match-regex-def arbitrary-trace.simps
       using L1-empty time-le-L1 by auto
      then have ?thesis using L1-empty by simp
    } moreover {
      assume L1-nonempty: L1 \neq []
      have L1-arb: (L1!time) = arbitrary-state num-vars
       using assms unfolding arbitrary-trace.simps time-le-L1
       using time-le-L1 by auto
      have match-timestep (\pi! time) (arbitrary-state num-vars)
       unfolding arbitrary-state.simps match-timestep-def by auto
      then have match-L1: match-timestep (\pi! time) (L1!time)
       using L1-arb by auto
      have (L1 @ L2) ! time = L1!time
       using time-le-L1L2 time-le-L1 L1-nonempty by (meson nth-append)
      then have ?thesis using match-L1 by auto
    ultimately have ?thesis by blast
   } moreover {
    assume time-geq-L1: time \ge length L1
    then have time-minus-a-le-L2: time-a < length L2
      using assms(2) time-le-L1L2 unfolding arbitrary-trace.simps by simp
     then have match-time-minus-a: match-timestep ((drop a \pi)! (time -a))
(L2 ! (time - a))
```

```
using match-L2 by blast
     have length (drop a (L1 @ L2)) \leq length (drop a \pi)
      using assms unfolding match-regex-def by metis
     then have L2-le-dropa-xi: length L2 \leq length (drop \ a \ \pi)
      using assms unfolding arbitrary-trace.simps by simp
     then have fact1-h1: length L2 \leq length \pi - a by auto
     have fact1-h2: length L1 \leq time using time-geq-L1 by blast
     have fact1-h3: time - a < length L2 using time-minus-a-le-L2 by auto
     have fact1-h4: time < length L1 + length L2 using time-le-L1L2 by simp
     have length L2 \leq length \ \pi - a \Longrightarrow
          length L1 \leq time \Longrightarrow
          time - a < length L2 \Longrightarrow
          time < length L1 + length L2 \Longrightarrow \pi ! (a + (time - a)) = \pi ! time
      using fact1-h1 fact1-h2 fact1-h3 fact1-h4 time-qeq-L1 assms
      unfolding arbitrary-trace.simps by simp
     then have fact1: drop a \pi ! (time - a) = \pi ! time
      using time-geq-L1 time-minus-a-le-L2 time-le-L1L2 L2-le-dropa-xi by simp
     have L1-a: length L1 = a using assms unfolding arbitrary-trace.simps by
auto
     then have fact2: L2! (time - a) = (L1 @ L2)! time
      using fact1-h2 fact1-h3 fact1-h4 time-geq-L1
      by (metis le-add-diff-inverse nth-append-length-plus)
     have ?thesis using fact1 fact2 match-time-minus-a by auto
   }
   ultimately show ?thesis by force
 qed
 have length (drop a (L1 @ L2)) \leq length (drop a \pi)
   using assms(2) arbitrary-trace.simps[of num-vars num-pad]
   by (metis\ assms(3)\ match-regex-def)
 then have length (L1 @ L2) \leq length \pi
   using assms unfolding match-regex-def by simp
 then show ?thesis using match-L1L2 unfolding match-regex-def by simp
qed
lemma shift-match:
 assumes length \pi \geq a
 assumes match \pi (shift L num-vars a)
 shows match (drop a \pi) L
proof-
 obtain i where i-obt: i < length (shift L num-vars a) \wedge match-regex \pi (shift L
num-vars \ a \ ! \ i)
   using assms unfolding match-def by force
 have (shift L num-vars a ! i) = (arbitrary-trace num-vars a)@(L!i)
```

using $\langle i < length (shift L num-vars a) \wedge match-regex \pi (shift L num-vars a!$

using shift.simps

```
i) by auto
 then have match: match-regex \pi ((arbitrary-trace num-vars a)@(L!i))
   using i-obt by argo
 have len-at: length (arbitrary-trace num-vars a) = a
   unfolding arbitrary-trace.simps by simp
 have drop-a: (drop\ a\ (arbitrary-trace\ num-vars\ a)@(L!i)) = L!i
   using arbitrary-trace.simps[of num-vars a] by simp
 then have match-regex (drop\ a\ \pi)\ (drop\ a\ (arbitrary-trace num-vars a)@(L!i)
   using match using match-regex[OF assms(1) len-at] by simp
 then have match\text{-}regex\ (drop\ a\ \pi)\ (L\ !\ i)
   using drop-a by argo
 then show ?thesis using assms i-obt unfolding match-def by auto
qed
lemma shift-match-converse:
 assumes length \pi \geq a
 assumes match (drop a \pi) L
 shows match \pi (shift L num-vars a)
proof-
 obtain i where i-obt: match-regex (drop a \pi) (L!i) \wedge i < length L
   using assms unfolding match-def by metis
 then have match-padLi: match-regex \pi ((arbitrary-trace num-vars a)@(L!i))
   using match-regex-converse assms by auto
 have i-bound: i<length (shift L num-vars a)
   using shift.simps i-obt by auto
 have (shift\ L\ num\text{-}vars\ a\ !\ i) = (arbitrary\text{-}trace\ num\text{-}vars\ a)@(L!i)
   unfolding shift.simps
   by (simp \ add: i\text{-}obt)
 then have \exists i < length (shift \ L \ num-vars \ a). match-regex \pi (shift \ L \ num-vars \ a \ !
   using assms match-padLi i-bound by metis
 then show ?thesis unfolding match-def by argo
qed
lemma pad-zero:
 shows shift L2 num-vars \theta = L2
 unfolding shift.simps arbitrary-trace.simps
 have \exists wsss. L2 = wsss \land (@) ([]::trace-regex) = (\lambda wss. wss) \land L2 = wsss
   by blast
 then show map ((@) (map (\lambda n.\ arbitrary-state num-vars) [0..<0])) L2 = L2
   by simp
qed
```

3.6 Facts about WEST num vars

```
lemma regtrace-append:
 assumes trace-regex-of-vars L1 k
 assumes trace-regex-of-vars L2 k
 shows trace-regex-of-vars (L1@L2) k
 using assms unfolding trace-regex-of-vars-def
 by (simp add: nth-append)
{f lemma} WEST-num-vars-subformulas:
 assumes G \in subformulas F
 shows (WEST-num-vars\ F) > WEST-num-vars\ G
 using assms
proof (induct F)
 case True-mltl
 then show ?case unfolding subformulas.simps by auto
next
 case False-mltl
 then show ?case unfolding subformulas.simps by auto
next
 case (Prop-mltl\ x)
 then show ?case unfolding subformulas.simps by auto
next
 case (Not-mltl F)
 then show ?case unfolding subformulas.simps by auto
\mathbf{next}
 case (And\text{-}mltl\ F1\ F2)
 then show ?case unfolding subformulas.simps by auto
 case (Or-mltl F1 F2)
 then show ?case unfolding subformulas.simps by auto
next
 case (Future-mltl F x2 x3a)
 then show ?case unfolding subformulas.simps by auto
 case (Global-mltl F x2 x3a)
 then show ?case unfolding subformulas.simps by auto
 case (Until-mltl F1 F2 x3a x4a)
 then show ?case unfolding subformulas.simps by auto
next
 case (Release-mltl F1 F2 x3a x4a)
 then show ?case unfolding subformulas.simps by auto
qed
lemma WEST-num-vars-nnf:
 shows (WEST-num-vars \varphi) = WEST-num-vars (convert-nnf \varphi)
proof (induction depth-mltl \varphi arbitrary: \varphi rule: less-induct)
 case less
 then show ?case proof (cases \varphi)
```

```
case True-mltl
   then show ?thesis by auto
  next
   case False-mltl
   then show ?thesis by auto
  next
   case (Prop-mltl \ x3)
   then show ?thesis by auto
  next
   case (Not\text{-}mltl\ p)
   then show ?thesis proof (induct p)
     case True-mltl
     then show ?case using Not-mltl less by auto
   next
     case False-mltl
     then show ?case using Not-mltl less by auto
     case (Prop-mltl\ x)
     then show ?case using Not-mltl less by auto
     case (Not-mltl p)
     then show ?case using Not-mltl less by auto
     case (And-mltl \varphi 1 \varphi 2)
     then have phi-is: \varphi = Not\text{-mltl} \ (And\text{-mltl} \ \varphi 1 \ \varphi 2)
       using Not-mltl by auto
     have ind1: WEST-num-vars \varphi 1 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
     have ind2: WEST-num-vars \varphi 2 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 2))
       using less[of Not-mltl \varphi 2] phi-is by auto
     then show ?case using ind1 ind2 phi-is
      by auto
   \mathbf{next}
     case (Or-mltl \varphi 1 \varphi 2)
     then have phi-is: \varphi = Not\text{-mltl} (Or\text{-mltl} \varphi 1 \varphi 2)
       using Not-mltl by auto
     have ind1: WEST-num-vars \varphi 1 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
      have ind2: WEST-num-vars \varphi 2 = WEST-num-vars (convert-nnf (Not-mltl
       using less[of Not-mltl \varphi 2] phi-is by auto
     then show ?case using ind1 ind2 phi-is
      by auto
     case (Future-mltl a b \varphi 1)
     then have phi-is: \varphi = Not\text{-mltl} (Future-mltl a b \varphi 1)
```

```
using Not-mltl
       by auto
      have ind1: WEST-num-vars \varphi = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
     then show ?case using ind1 phi-is
       by auto
   \mathbf{next}
     case (Global-mltl a b \varphi 1)
     then have phi-is: \varphi = Not\text{-mltl} (Global\text{-mltl} \ a \ b \ \varphi 1)
       using Not-mltl
       by auto
      have ind1: WEST-num-vars \varphi = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
     then show ?case using ind1 phi-is
       by auto
   \mathbf{next}
     case (Until-mltl \varphi 1 a b \varphi 2)
     then have phi-is: \varphi = Not\text{-mltl} (Until\text{-mltl} \varphi 1 \ a \ b \ \varphi 2)
       using Not-mltl by auto
     have ind1: WEST-num-vars \varphi 1 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
      have ind2: WEST-num-vars \varphi 2 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 2))
       using less[of Not-mltl \varphi 2] phi-is by auto
     then show ?case using ind1 ind2 phi-is
       by auto
   \mathbf{next}
     case (Release-mltl \varphi 1 a b \varphi 2)
     then have phi-is: \varphi = Not\text{-mltl} \ (Release\text{-mltl} \ \varphi 1 \ a \ b \ \varphi 2)
       using Not-mltl by auto
      have ind1: WEST-num-vars \varphi 1 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 1))
       using less[of Not-mltl \varphi 1] phi-is by auto
      have ind2: WEST-num-vars \varphi 2 = WEST-num-vars (convert-nnf (Not-mltl
\varphi 2))
       using less[of Not-mltl \varphi 2] phi-is by auto
     then show ?case using ind1 ind2 phi-is
       by auto
   qed
 next
   case (And-mltl \varphi 1 \varphi 2)
   then show ?thesis using less by auto
  next
   case (Or-mltl \varphi 1 \varphi 2)
   then show ?thesis using less by auto
 next
```

```
case (Future-mltl a b \varphi)
then show ?thesis using less by auto
next
case (Global-mltl a b \varphi)
then show ?thesis using less by auto
next
case (Until-mltl \varphi1 a b \varphi2)
then show ?thesis using less by auto
next
case (Release-mltl \varphi1 a b \varphi2)
then show ?thesis using less by auto
qed
qed
```

3.6.1 Facts about num vars for different WEST operators

```
lemma length-WEST-and:
 assumes length state1 = k
 assumes length state2 = k
 assumes WEST-and-state state1 state2 = Some state
 shows length state = k
 using assms
proof (induct length state1 arbitrary: state1 state2 k state rule: less-induct)
 case less
 {assume *: k = 0
   then have ?case using less(2-3) less(4) WEST-and-state.simps(1)
    by auto
 } moreover {assume *: k > \theta
   obtain h1\ t1 where h1t1: state1 = h1\#t1
    using * less(2)
    using list.exhaust by auto
   obtain h2\ t2 where h2t2: state2 = h2\#t2
    using * less(3)
    using list.exhaust by auto
   have WEST-and-bitwise h1 h2 \neq None
      by (metis WEST-and-state.simps(2) h1t1 h2t2 less.prems(3) option.discI
option.simps(4))
   then obtain h where someh: WEST-and-bitwise h1 h2 = Some h
    bv blast
   have WEST-and-state t1\ t2 \neq None
   by (metis (no-types, lifting) WEST-and-state.simps(2) h1t1 h2t2 less.prems(3)
option.case-eq-if option.discI)
   then obtain t where somet: WEST-and-state t1\ t2 = Some\ t
    by blast
   then have length t = k-1
    using less(1)[of\ t1\ k-1\ t2]\ h1t1\ h2t2
   by (metis WEST-and-state-difflengths-is-none diff-Suc-1 length-Cons less.prems(1)
lessI \ option.distinct(1))
   then have ?case using less WEST-and-state.simps(2)[of h1 t1 h2 t2]
```

```
using someh somet
    by (metis WEST-and-state-length option.discI option.inject)
 ultimately show ?case
   by auto
\mathbf{qed}
lemma WEST-and-trace-num-vars:
 assumes trace-regex-of-vars r1 k
 assumes trace-regex-of-vars r2 k
 assumes (WEST-and-trace r1 \ r2) = Some sometrace
 shows trace-regex-of-vars sometrace k
 using assms
proof(induct r1 arbitrary: r2 sometrace)
 case Nil
 then have sometrace = r2
   using WEST-and-trace.simps(2)
  by (metis WEST-and-trace.simps(1) WEST-and-trace-commutative option.inject)
 then show ?case using Nil unfolding trace-regex-of-vars-def by blast
next
 case (Cons\ h1\ t1)
 {assume r2-empty: r2 = []
   then have sometrace = (h1 \# t1)
     using WEST-and-trace.simps WEST-and-trace-commutative(1) Cons.prems
by auto
   then have ?case using Cons
    unfolding trace-regex-of-vars-def by blast
 } moreover {
   assume r2-nonempty: r2 \neq []
   then obtain h2 t2 where h2t2: r2 = h2 \# t2
    by (meson trim-reversed-regex.cases)
   \{assume\ sometrace-empty:\ sometrace=[]
    then have ?case unfolding trace-regex-of-vars-def by simp
   } moreover {
    assume sometrace-nonempty: sometrace \neq []
   then obtain h t where ht-obt: WEST-and-state h1 h2 = Some h \land WEST-and-trace
t1 \ t2 = Some \ t
      using WEST-and-trace-nonempty-args[of h1 t1 h2 t2] Cons.prems(3)
      by (metis \langle r2 = h2 \# t2 \rangle trim-reversed-regex.cases)
    then have sometrace-ht: sometrace = h\#t
      using Cons.prems(3) unfolding h2t2 by auto
    have h1t1-nv: \forall i < length (h1 \# t1). length ((h1 \# t1) ! i) = k
      using Cons.prems unfolding trace-regex-of-vars-def by argo
    have h1-nv: length h1 = k
      using h1t1-nv by auto
    have t1-nv: trace-regex-of-vars t1 k
      using h1t1-nv unfolding trace-regex-of-vars-def by auto
    have h2t2-nv: \forall i < length (h2 \# t2). length ((h2 \# t2) ! i) = k
```

```
using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis
    have h2-nv: length h2 = k
      using h2t2-nv by auto
    have t2-nv: trace-regex-of-vars t2 k
      using h2t2-nv unfolding trace-regex-of-vars-def by auto
    have h1h2-h: WEST-and-state h1\ h2 = Some\ h
      using ht-obt by simp
    then have h-nv: length h = k using h1-nv h2-nv
      using length-WEST-and by blast
    have t1t2-t: WEST-and-trace t1 t2 = Some t
      using ht-obt by simp
    then have t-nv: trace-regex-of-vars t k
      using Cons.hyps[of t2 t, OF t1-nv t2-nv] by blast
    have t-nv-unfold: \forall i < length \ t. \ length \ (t ! i) = k
    using h-nv t-nv sometrace-ht unfolding trace-regex-of-vars-def by presburger
    then have length (sometrace ! i) = k if i-lt: i<length sometrace for i
      using i-lt sometrace-ht h-nv
    proof-
      {assume *: i = 0
       then have ?thesis
         using sometrace-ht h-nv by auto
      } moreover {assume *: i > 0
       then have sometrace ! i = t ! (i-1)
         using i-lt sometrace-ht by simp
       then have ?thesis
         using t-nv-unfold i-lt sometrace-ht
         by (metis * One-nat-def Suc-less-eq Suc-pred length-Cons)
      }
      ultimately show ?thesis by auto
    then have ?case unfolding trace-regex-of-vars-def by auto
   ultimately have ?case by blast
 ultimately show ?case by blast
qed
\mathbf{lemma}\ \mathit{WEST-and-num-vars}\colon
 assumes WEST-regex-of-vars L1\ k
 assumes WEST-regex-of-vars L2 k
 shows WEST-regex-of-vars (WEST-and L1 L2) k
proof-
 {assume L1L2-empty: (WEST-and L1 L2) = []
```

```
then have ?thesis unfolding WEST-regex-of-vars-def by simp
 } moreover {
   assume L1L2-nonempty: WEST-and L1 L2 \neq []
    have trace-regex-of-vars (WEST-and L1 L2 ! i) k if i-index: i < length
(WEST-and L1 L2) for i
   proof-
    obtain sometrace where sometrace-obt: (WEST-and L1 L2)!i = sometrace
      using L1L2-nonempty by simp
    then obtain i1 i2 where i1i2-obt: i1 < length L1 \wedge i2 < length L2 \wedge Some
sometrace = WEST-and-trace (L1!i1) (L2!i2)
      using WEST-and.simps WEST-and-helper.simps
     by (metis WEST-and-set-member-dir1 assms(1) assms(2) i-index nth-mem)
    let ?r1 = L1!i1
    let ?r2 = L2!i2
    have r1r2-sometrace: Some sometrace = WEST-and-trace (L1!i1) (L2!i2)
      using i1i2\text{-}obt by blast
    have r1-nv: trace-regex-of-vars ?r1 k
      using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
    have r2-nv: trace-regex-of-vars ?r2 k
      using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
    have trace-regex-of-vars sometrace k
      using r1-nv r2-nv r1r2-sometrace WEST-and-trace-num-vars[of ?r1 k ?r2]
by metis
    then show ?thesis
      using sometrace-obt by blast
   then have ?thesis unfolding WEST-regex-of-vars-def by simp
 ultimately show ?thesis by blast
qed
lemma WEST-or-num-vars:
 assumes L1-nv: WEST-regex-of-vars L1 k
 assumes L2-nv: WEST-regex-of-vars L2 k
 shows WEST-regex-of-vars (L1@L2) k
proof-
 let ?L = L1@L2
 have trace-regex-of-vars (?L!i) k if i-lt: i < length ?L for i
 proof-
   {assume in-L1: i < length L1
    then have L1-i-nv: trace-regex-of-vars (L1!i) k
      using L1-nv unfolding WEST-regex-of-vars-def by metis
    have ?L!i = L1!i
      using in-L1
      by (simp add: nth-append)
    then have ?thesis using L1-i-nv by simp
```

```
} moreover {
    assume in-L2: i \ge length L1
    then have i - length L1 < length L2
      using i-lt by auto
    then have L2-i-nv: trace-regex-of-vars (L2!(i - length L1)) k
      using L2-nv unfolding WEST-regex-of-vars-def by metis
    have (?L!i) = L2!(i - length L1)
      using in-L2
      by (simp add: nth-append)
    then have ?thesis using L2-i-nv by simp
   ultimately show ?thesis by fastforce
 qed
 then show ?thesis unfolding WEST-regex-of-vars-def by simp
qed
{f lemma}\ regtraceList\text{-}cons\text{-}num\text{-}vars:
 assumes trace-regex-of-vars h num-vars
 assumes WEST-regex-of-vars T num-vars
 shows WEST-regex-of-vars (h \# T) num-vars
proof-
 let ?H = [h]
 have WEST-regex-of-vars?H num-vars
   using assms unfolding WEST-regex-of-vars-def by auto
 then have WEST-regex-of-vars (?H@T) num-vars
   using WEST-or-num-vars[of ?H num-vars T] assms by simp
 then show ?thesis by simp
qed
lemma WEST-simp-state-num-vars:
 assumes length s1 = num\text{-}vars
 assumes length s2 = num-vars
 shows length (WEST-simp-state s1 s2) = num-vars
 using assms WEST-simp-state.simps by auto
lemma WEST-get-state-length:
 assumes trace-regex-of-vars r num-vars
 shows length (WEST-get-state r k num-vars) = num-vars
 using assms unfolding trace-regex-of-vars-def
 using WEST-get-state.simps[of r \ k \ num-vars]
 by (metis leI length-map length-upt minus-nat.diff-0)
lemma\ WEST-simp-trace-num-vars:
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
```

```
shows trace-regex-of-vars (WEST-simp-trace r1 r2 num-vars) num-vars
 using WEST-simp-state-num-vars assms
 {\bf unfolding}\ \textit{WEST-simp-trace.simps trace-regex-of-vars-def}
 using WEST-get-state-length assms(1) by auto
{f lemma} remove-element-at-index-preserves-nv:
 assumes i < length L
 assumes WEST-regex-of-vars L num-vars
 shows WEST-regex-of-vars (remove-element-at-index i L) num-vars
proof-
 have length (take i L @ drop (i + 1) L) = length L-1
   using assms by simp
 have take-nv: WEST-regex-of-vars (take i L) num-vars
   using assms unfolding WEST-regex-of-vars-def
   by (metis in-set-conv-nth in-set-takeD)
 have drop-nv: WEST-regex-of-vars (drop (i + 1) L) num-vars
   using assms unfolding WEST-regex-of-vars-def
   by (metis add.commute length-drop less-diff-conv less-iff-succ-less-eq nth-drop)
 then show ?thesis
   using take-nv drop-nv WEST-or-num-vars by simp
\mathbf{qed}
lemma update-L-length:
 assumes h \in set (enum\text{-}pairs L)
 shows length (update-L \ L \ h \ num-var) = length \ L - 1
proof-
 have length L \leq 1 \longrightarrow enum-pairs L = []
   unfolding enum-pairs.simps using enumerate-pairs.simps
   by (simp add: upt-rec)
 then have len-L: length L \geq 2
   using assms by auto
 let ?i = fst h
 let ?j = snd h
 have i-le-j: ?i < ?j using enum-pairs-fact assms(1)
   by metis
 have j-bound: ?j < length L
   using assms(1) enum-pairs-bound[of L]
   by metis
 then have i-bound: ?i < (length L)-1
   using i-le-j by auto
 have len-orsimp: length [WEST-simp-trace (L ! fst h) (L ! snd h) num-var] = 1
   by simp
 have length (remove-element-at-index (snd h) L) = length L-1
   using assms j-bound by auto
 then have length (remove-element-at-index (fst h) (remove-element-at-index (snd
h(L) = length L - 2
   using assms i-bound j-bound by simp
```

```
then show ?thesis
   using len-orsimp len-L
  using length-append[of (remove-element-at-index (fst h) (remove-element-at-index
(snd\ h)\ L))\ [WEST-simp-trace\ (L\ !\ fst\ h)\ (L\ !\ snd\ h)\ num-var]]
   unfolding update-L.simps by linarith
qed
lemma update-L-preserves-num-vars:
 assumes WEST-regex-of-vars L num-var
 assumes h \in set (enum\text{-}pairs L)
 assumes K = update-L L h num-var
 shows WEST-regex-of-vars K num-var
proof-
  have simp-nv: trace-regex-of-vars (WEST-simp-trace (L! fst h) (L! snd h)
num-var) num-var
   using WEST-simp-trace-num-vars assms unfolding WEST-regex-of-vars-def
   by (metis enum-pairs-bound enum-pairs-fact order.strict-trans)
 then have simp-nv: WEST-regex-of-vars [WEST-simp-trace (L! fst h) (L! snd
h) num-var num-var
   unfolding WEST-regex-of-vars-def by auto
 have *: WEST-regex-of-vars (remove-element-at-index (snd h) L) num-var
   using assms remove-element-at-index-preserves-nv
   using enum-pairs-fact[of L] enum-pairs-bound[of L]
   using remove-element-at-index-preserves-nv by blast
 let ?La = (remove-element-at-index (snd h) L)
 have fst \ h < length \ (remove-element-at-index \ (snd \ h) \ L)
   using enum-pairs-fact[of L] enum-pairs-bound[of L] assms(2)
   by auto
 then have WEST-regex-of-vars (remove-element-at-index (fst h) (remove-element-at-index
(snd\ h)\ L))\ num-var
   using remove-element-at-index-preserves-nv[of fst h ?La num-var] *
   by blast
 then show ?thesis
   using simp-nv assms(3) unfolding update-L.simps using WEST-or-num-vars
   using WEST-regex-of-vars-def by blast
qed
lemma WEST-simp-helper-can-simp:
 assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
 assumes \exists j. j < length (enum-pairs L) \land j \geq i \land
                  check-simp (L ! fst (enum-pairs L ! j))
                           (L ! snd (enum-pairs L ! j))
 assumes min-j = Min \{j. j < length (enum-pairs L) \land j \ge i \land j \ge i \}
                  check-simp (L ! fst (enum-pairs L ! j))
                           (L ! snd (enum-pairs L ! j))
 assumes newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
 assumes i < length (enum-pairs L)
 shows simp-L = WEST-simp-helper newL (enum-pairs newL) 0 num-vars
proof-
```

```
let ?j-set = \{j, j < length (enum-pairs L) \land j \geq i \land \}
              check-simp (L ! fst (enum-pairs L ! j))
                        (L ! snd (enum-pairs L ! j))
 have cond1: finite ?j-set
   bv fast
 have cond2: ?j-set \neq \{\}
   using assms(2) by blast
 have min-j \in ?j-set
   using Min-in[OF cond1 cond2] assms(3) by blast
 then have min-j-props: min-j < length (enum-pairs L) \land min-j \geq i
                     \land check-simp (L! fst (enum-pairs L! min-j))
                                (L ! snd (enum-pairs L ! min-j))
   by blast
 have minimality: \neg (check-simp (L ! fst (enum-pairs L ! k)))
                              (L ! snd (enum-pairs L ! k)))
   if k-prop: (k < min-j \land k < length (enum-pairs L) \land k > i)
   for k
 proof-
   have k \notin ?j-set
     using assms(3) Min-gr-iff[of ?j-set k] k-prop
    by (metis (no-types, lifting) empty-iff finite-nat-set-iff-bounded mem-Collect-eq
order-less-imp-not-eq2)
   then show ?thesis using k-prop by blast
 qed
 then have minimality: \forall k. (k < min-j \land k < length (enum-pairs L) \land k \ge i)
                    \neg (check-simp (L! fst (enum-pairs L! k))
                                (L ! snd (enum-pairs L ! k)))
   by blast
 show ?thesis
   using assms(1, 4, 5) minimality min-j-props
 \mathbf{proof}(induction\ min-j-i\ arbitrary:\ min-j\ i\ L\ simp-L\ newL)
   case \theta
   then have check-simp (L ! fst (enum-pairs L ! i))
    (L ! snd (enum-pairs L ! i))
     by force
   then show ?case
     \mathbf{using} \ 0 \ WEST\text{-}simp\text{-}helper.simps[of \ L \ (enum\text{-}pairs \ L) \ i \ num\text{-}vars]
     by (metis diff-diff-cancel diff-zero linorder-not-less)
 next
   case (Suc \ x)
   have min-j-eq: min-j-i=x+1
     using Suc.hyps(2) by auto
   then have min-j > i
     by auto
   then have cant-match-i: \neg (check-simp (L ! fst (enum-pairs L ! i))
                                 (L ! snd (enum-pairs L ! i)))
     using Suc by fast
   \mathbf{let} \ ?simp\text{-}L = \ WEST\text{-}simp\text{-}helper \ L \ (enum\text{-}pairs \ L) \ i \ num\text{-}vars
```

```
let ?simp-Lnext = WEST-simp-helper\ L\ (enum-pairs\ L)\ (i+1)\ num-vars
   let ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
   have simp-L-eq: ?simp-L = ?simp-Lnext
    using cant-match-i WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
Suc.prems(3)
    by auto
   have cond1: x = min-j - (i+1)
     using min-j-eq by auto
  have cond2: ?simp-Lnext = WEST-simp-helper\ L\ (enum-pairs\ L)\ (i+1)\ num-vars
     by simp
   have cond3: ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
     by simp
   have cond4: i + 1 < length (enum-pairs L)
    using Suc by linarith
   have cond5: \forall k. \ k < min-j \land k < length (enum-pairs L) \land i + 1 \leq k \longrightarrow
     \neg check-simp (L ! fst (enum-pairs L ! k))
        (L ! snd (enum-pairs L ! k))
    using Suc
     using add-leD1 by blast
   have cond6: min-j < length (enum-pairs L) \land i + 1 \leq min-j \land
              check-simp (L ! fst (enum-pairs L ! min-j))
                      (L ! snd (enum-pairs L ! min-j))
     using Suc by linarith
   have ?simp-Lnext = WEST-simp-helper newL (enum-pairs newL) 0 num-vars
     using Suc.hyps(1)[OF cond1 cond2 cond3 cond4 cond5 cond6]
     using Suc. prems by blast
   then show ?case
     using simp-L-eq\ Suc.prems(1) by argo
 qed
qed
lemma WEST-simp-helper-cant-simp:
 assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
 assumes \neg(\exists j. j < length (enum-pairs L) \land j \geq i \land
                   check-simp (L ! fst (enum-pairs L ! j))
                           (L ! snd (enum-pairs L ! j)))
 shows simp-L = L
 using assms
proof(induct\ length\ (enum-pairs\ L)\ -\ i\ arbitrary:\ simp-L\ L\ i\ )
 case \theta
 then have i \ge length (enum-pairs L)
   by simp
 then show ?case
   using \theta(2) WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
   by auto
next
 case (Suc \ x)
 then have i-eq: i = length (enum-pairs L) - (x+1)
```

```
by simp
 let ?simp-L = WEST-simp-helper\ L\ (enum-pairs\ L)\ i\ num-vars
 \mathbf{let} ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i+1) num-vars
 have simp-L-eq: ?simp-L = ?simp-nextL
   using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
   using i-eq Suc
   by (metis diff-is-0-eq le-refl nat.distinct(1) zero-less-Suc zero-less-diff)
 have cond1: x = length (enum-pairs L) - (i+1)
   using Suc.hyps(2) by auto
 have cond2: ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i + 1) num-vars
   by blast
 have cond3: \neg (\exists j < length (enum-pairs L).
       i+1 \leq j \wedge
       check-simp (L ! fst (enum-pairs L ! j))
        (L ! snd (enum-pairs L ! j)))
   using Suc by auto
 have ?simp-nextL = L
   using Suc.hyps(1)[OF\ cond1\ cond2\ cond3] by auto
 then show ?case
   using Suc.prems(1) simp-L-eq by argo
\mathbf{qed}
\textbf{lemma} \ \textit{WEST-simp-helper-length}:
 shows length (WEST-simp-helper L (enum-pairs L) i num-vars) \leq length L
proof(induct length L arbitrary: L i rule: less-induct)
case less
 {assume i-geq: length (enum-pairs L) \leq i
   then have WEST-simp-helper L (enum-pairs L) i num-vars = L
     using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
     by simp
   then have ?case
     by auto
 } moreover {
   assume i-le: length (enum-pairs L) > i
  then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
        (if \ check\text{-}simp\ (L \ ! \ fst\ (enum\text{-}pairs\ L \ ! \ i))
           (L ! snd (enum-pairs L ! i))
        then let newL = update-L \ L \ (enum-pairs \ L \ ! \ i) \ num-vars
            in WEST-simp-helper newL (enum-pairs newL) 0 num-vars
        else WEST-simp-helper L (enum-pairs L) (i + 1) num-vars)
     using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
     by simp
   let ?simp-L = WEST-simp-helper\ L\ (enum-pairs\ L)\ i\ num-vars
   {assume can-simp: \exists j. j < length (enum-pairs L) \land j \geq i \land
                   check-simp (L ! fst (enum-pairs L ! j))
                            (L ! snd (enum-pairs L ! j))
    then obtain min-j where obt-min-j: min-j = Min \{j. j < length (enum-pairs = 1)\}
L) \wedge j \geq i \wedge
```

```
check-simp (L ! fst (enum-pairs L ! j))
                             (L ! snd (enum-pairs L ! j))
      by blast
     let ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
     have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars
      using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
       using obt-min-j can-simp i-le by blast
     have min-j-bounds: min-j < length (enum-pairs L) \land min-j \ge i
       using can-simp obt-min-j Min-in[of \{j, j < length (enum-pairs L) \land j \geq i \}
\wedge
                    check-simp (L ! fst (enum-pairs L ! j))
                             (L ! snd (enum-pairs L ! j))
      by fastforce
     have length ?newL < length L
      using update-L-length[of enum-pairs L! min-j L num-vars]
      using min-j-bounds
      by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem
zero-less-one)
     then have ?case
     using less(1)[of ?newL] less.prems min-j-bounds update-L-preserves-num-vars
     by (metis\ (no-types,\ lifting)\ \langle WEST-simp-helper\ L\ (enum-pairs\ L)\ i\ num-vars
= WEST-simp-helper (update-L L (enum-pairs L! min-j) num-vars) (enum-pairs
(update-L L (enum-pairs L! min-j) num-vars)) 0 num-vars> leD le-trans nat-le-linear)
   } moreover {
     assume cant-simp: \neg(\exists j. \ j < length \ (enum-pairs \ L) \land j \geq i \land )
                    check-simp (L ! fst (enum-pairs L ! j))
                             (L ! snd (enum-pairs L ! j)))
     then have ?simp-L = L
       \mathbf{using}\ \mathit{WEST-simp-helper-cant-simp}\ \mathit{i-le}\ \mathbf{by}\ \mathit{blast}
     then have ?case by simp
   ultimately have ?case using WEST-simp-helper-eq by blast
  ultimately show ?case
   using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
   by fastforce
\mathbf{qed}
lemma WEST-simp-helper-num-vars:
  assumes WEST-regex-of-vars L num-vars
  \mathbf{shows} \ \ \mathit{WEST-regex-of-vars} \ \ (\mathit{WEST-simp-helper} \ \ \mathit{L} \ \ (\mathit{enum-pairs} \ \ \mathit{L}) \ \ \mathit{i} \ \ \mathit{num-vars})
num-vars
 using assms
proof(induct length L arbitrary: L i rule: less-induct)
  case less
  {assume i-geq: length (enum-pairs L) \leq i
   then have WEST-simp-helper L (enum-pairs L) i num-vars = L
     using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
     by simp
```

```
then have ?case
     using less by argo
 } moreover {
   assume i-le: length (enum-pairs L) > i
  then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
        (if \ check\text{-}simp\ (L \ ! \ fst\ (enum\text{-}pairs\ L \ ! \ i))
            (L ! snd (enum-pairs L ! i))
        then let newL = update-L \ L \ (enum-pairs \ L \ ! \ i) \ num-vars
            in WEST-simp-helper newL (enum-pairs newL) 0 num-vars
        else WEST-simp-helper L (enum-pairs L) (i + 1) num-vars)
     using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
     by simp
   let ?simp-L = WEST-simp-helper\ L\ (enum-pairs\ L)\ i\ num-vars
   {assume can-simp: \exists j. j < length (enum-pairs L) \land j \geq i \land
                   check-simp (L ! fst (enum-pairs L ! j))
                            (L ! snd (enum-pairs L ! j))
    then obtain min-j where obt-min-j: min-j = Min \{j, j < length (enum-pairs )\}
L) \wedge j \geq i \wedge
                   check-simp (L ! fst (enum-pairs L ! j))
                            (L ! snd (enum-pairs L ! j))
      by blast
     let ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
     have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars
      using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
      using obt-min-j can-simp i-le by blast
     have min-j-bounds: min-j < length (enum-pairs L) \land min-j \ge i
       using can-simp obt-min-j Min-in[of \{j.\ j < length\ (enum-pairs\ L) \land j \geq i
\land
                   check-simp (L ! fst (enum-pairs L ! j))
                             (L ! snd (enum-pairs L ! j))
      by fastforce
     have length ?newL < length L
      using update-L-length[of\ enum-pairs\ L\ !\ min-j\ L\ num-vars]
      using min-j-bounds
      by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem
zero-less-one)
     then have ?case
     using less(1)[of?newL] less.prems min-j-bounds update-L-preserves-num-vars
     by (metis \land WEST\text{-}simp\text{-}helper\ L\ (enum\text{-}pairs\ L)\ i\ num\text{-}vars = WEST\text{-}simp\text{-}helper\ L
(update-L L (enum-pairs L! min-j) num-vars) (enum-pairs (update-L L (enum-pairs
L ! min-j) num-vars)) 0 num-vars nth-mem)
   } moreover {
     assume cant-simp: \neg(\exists j. j < length (enum-pairs L) \land j \geq i \land
                   check-simp (L ! fst (enum-pairs L ! j))
                            (L ! snd (enum-pairs L ! j)))
     then have ?simp-L = L
      using WEST-simp-helper-cant-simp i-le by blast
     then have ?case using less by simp
```

```
ultimately have ?case using WEST-simp-helper-eq by blast
 ultimately show ?case
   using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
   by fastforce
qed
\mathbf{lemma}\ WEST\text{-}simp\text{-}num\text{-}vars:
 assumes WEST-regex-of-vars L num-vars
 shows WEST-regex-of-vars (WEST-simp L num-vars) num-vars
 unfolding WEST-simp.simps
 using WEST-simp-helper-num-vars assms by blast
{f lemma} WEST-and-simp-num-vars:
 assumes WEST-regex-of-vars L1 k
 assumes WEST-regex-of-vars L2 k
 shows WEST-regex-of-vars (WEST-and-simp L1 L2 k) k
 unfolding WEST-and-simp.simps
 using WEST-simp-num-vars WEST-and-num-vars assms by blast
lemma WEST-or-simp-num-vars:
 assumes WEST-regex-of-vars L1 k
 assumes WEST-regex-of-vars L2 k
 shows WEST-regex-of-vars (WEST-or-simp L1 L2 k) k
 unfolding WEST-or-simp.simps
 using WEST-simp-num-vars WEST-or-num-vars assms by blast
lemma shift-num-vars:
 fixes L::WEST-regex
 fixes a k :: nat
 assumes WEST-regex-of-vars L k
 shows WEST-regex-of-vars (shift L \ k \ a) \ k
 using assms
proof(induct L)
 case Nil
 then show ?case
   unfolding WEST-regex-of-vars-def by auto
next
 case (Cons \ h \ t)
 let ?padding = arbitrary\text{-}trace\ k\ a
 let ?padh = ?padding @ h
 let ?padt = shift \ t \ k \ a
 have padding-nv: \forall i < length (arbitrary-trace k a). length (arbitrary-trace k a! i)
   unfolding trace-regex-of-vars-def by auto
 have h-nv: trace-regex-of-vars <math>h k
```

```
by (metis length-greater-0-conv list.distinct(1) nth-Cons-0)
 then have h-nv: \forall i < length \ h. length \ (h!i) = k
   unfolding trace-regex-of-vars-def by metis
 have length ((?padding @ h) ! i) = k \text{ if } i\text{-lt: } i < length (?padding @ h) for i
 proof-
   {assume in-padding: i < length ?padding
     then have ?thesis
      using padding-nv
      by (metis nth-append)
   } moreover {
     assume in-h: i \geq length ?padding
     let ?index = i - (length ?padding)
     have i - (length ?padding) < length h
      using i-lt in-h by auto
     then have h!?index = (?padding@h)!i
      using i-lt in-h by (simp add: nth-append)
     then have ?thesis using h-nv
      by (metis \langle i - length (arbitrary-trace k a) < length h))
   ultimately show ?thesis by fastforce
 qed
 then have padh-nv: trace-regex-of-vars ?padh k
   unfolding trace-regex-of-vars-def by simp
 have \forall ka < length (h \# t). trace\text{-}regex\text{-}of\text{-}vars ((h \# t) ! ka) k
   using Cons.prems unfolding WEST-regex-of-vars-def by metis
 then have WEST-regex-of-vars t k
   unfolding WEST-regex-of-vars-def by auto
 then have padt-nv: WEST-regex-of-vars ?padt k
   using Cons.hyps by simp
 then show ?case using padh-nv padt-nv
   using regtraceList-cons-num-vars[of ?padh k ?padt] by simp
qed
{f lemma} WEST-future-num-vars:
 assumes WEST-regex-of-vars L k
 assumes a \leq b
 shows WEST-regex-of-vars (WEST-future L a b k) k
 using assms
\mathbf{proof}(induct\ b-a\ arbitrary:\ L\ a\ b)
 case \theta
 then have a = b by simp
 then have WEST-future-base: (WEST-future L \ a \ b \ k) = shift \ L \ k \ a
   using WEST-future.simps[of L a b k] by auto
 have WEST-regex-of-vars (shift L \ k \ a) \ k
   using shift-num-vars 0 by blast
 then show ?case using WEST-future-base by simp
next
```

using Cons.prems unfolding WEST-regex-of-vars-def

```
case (Suc \ x)
 then have b = a + (Suc \ x) by auto
  then have west-future: WEST-future L a b k = WEST-or-simp (shift L k b)
(WEST-future L a (b-1) k) k
   using WEST-future.simps[of L a b k]
   by (metis Suc.hyps(2) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq' linorder-le-less-linear)
 have fact: WEST-regex-of-vars (shift L \ k \ b) \ k
   using shift-num-vars Suc by blast
 have indh: WEST-regex-of-vars (WEST-future L a (b-1) k) k
   using Suc.hyps Suc.prems by simp
 show ?case
   using west-future WEST-or-simp-num-vars fact indh by metis
qed
{f lemma} WEST-qlobal-num-vars:
 assumes WEST-regex-of-vars L k
 assumes a \leq b
 shows WEST-regex-of-vars (WEST-global L a b k) k
 using assms
\mathbf{proof}(induct\ b-a\ arbitrary:\ L\ a\ b)
 case \theta
 then have a = b by simp
 then have WEST-global-base: (WEST-global L \ a \ b \ k) = shift \ L \ k \ a
   using WEST-global.simps[of L a b k] by auto
 have WEST-regex-of-vars (shift L k a) k
   using shift-num-vars 0 by blast
 then show ?case using WEST-global-base by simp
next
 case (Suc \ x)
 then have b = a + (Suc \ x) by auto
 then have west-global: WEST-global L a b k = WEST-and-simp (shift L k b)
(WEST-global\ L\ a\ (b-1)\ k)\ k
   using WEST-global.simps[of L a b k]
  by (metis Suc.hyps(2) Suc.prems(2) add-leE cancel-comm-monoid-add-class.diff-cancel
le-numeral-extra(3) nat-less-le not-one-le-zero plus-1-eq-Suc)
 have fact: WEST-regex-of-vars (shift L \ k \ b) \ k
   using shift-num-vars Suc by blast
 have indh: WEST-regex-of-vars (WEST-global L a (b-1) k) k
   using Suc.hyps Suc.prems by simp
 show ?case
   using west-global WEST-and-simp-num-vars fact indh
   by metis
qed
lemma WEST-until-num-vars:
 assumes WEST-regex-of-vars L1 k
```

```
assumes WEST-regex-of-vars L2 k
 assumes a \leq b
 shows WEST-regex-of-vars (WEST-until L1 L2 a b k) k
 using assms
\mathbf{proof}(induct\ b-a\ arbitrary:\ L1\ L2\ a\ b)
 case \theta
 then have a = b by auto
 have WEST-until L1 L2 a b k = WEST-global L2 a a k
   using WEST-until.simps[of L1 L2 a b k] 0 by auto
 then show ?case using 0 WEST-global-num-vars[of L2 k a b] by simp
next
 case (Suc \ x)
 then have b = a + (Suc \ x) by auto
 then have west-until: WEST-until L1 L2 a b k= WEST-or-simp (WEST-until
L1 \ L2 \ a \ (b-1) \ k
                                       (WEST-and-simp (WEST-global L1 a (b
-1) k) (WEST-global L2 b b k) k) k
   using WEST-until.simps[of L1 L2 a b k]
   by (metis Suc.prems(3) Zero-neq-Suc add-eq-self-zero order-neq-le-trans)
 have fact1: WEST-regex-of-vars (WEST-global L1 a (b-1) k) k
   using WEST-global-num-vars Suc by auto
 have fact2: WEST-regex-of-vars (WEST-global L2 b b k) k
   using WEST-global-num-vars Suc by blast
 have indh: WEST-regex-of-vars (WEST-until L1 L2 a (b-1) k) k
   using Suc.hyps Suc.prems by simp
 show ?case
   using west-until WEST-and-num-vars fact1 fact2 indh
   using WEST-and-simp-num-vars WEST-or-simp-num-vars by metis
qed
{f lemma} WEST-release-helper-num-vars:
 assumes WEST-regex-of-vars L1 k
 assumes WEST-regex-of-vars L2 k
 assumes a \leq b
 shows WEST-regex-of-vars (WEST-release-helper L1 L2 a b k) k
 using assms
\mathbf{proof}(induct\ b-a\ arbitrary:\ L1\ L2\ a\ b)
 case \theta
 then have a = b by auto
 then have WEST-release-helper L1 L2 a b k = WEST-and-simp (WEST-global
L1 \ a \ a \ k) (WEST-global L2 \ a \ a \ k) k
   using WEST-release-helper.simps[of L1 L2 a b k] by argo
 have fact1: WEST-regex-of-vars (WEST-global L1 a a k) k
   using WEST-global-num-vars[of L1 k a a] 0 by blast
 have fact2: WEST-regex-of-vars (WEST-global L2 a a k) k
   using WEST-global-num-vars[of L2 k a a] 0 by blast
 then show ?case using WEST-release-helper.simps[of L1 L2 a b k] 0
```

```
using fact1 fact2 WEST-and-simp-num-vars by auto
next
 case (Suc \ x)
 then have b = a + (Suc \ x) by auto
 then have west-release-helper: WEST-release-helper L1 L2 a b k = WEST-or-simp
(WEST\text{-release-helper }L1\ L2\ a\ (b-1)\ k)
           (WEST	ext{-}and	ext{-}simp\ (WEST	ext{-}global\ L2\ a\ b\ k)\ (WEST	ext{-}global\ L1\ b\ b\ k)\ k)\ k
   using WEST-release-helper.simps[of L1 L2 a b k]
  \mathbf{by}\ (\mathit{metis}\ \mathit{Suc.hyps}(2)\ \mathit{Suc.prems}(3)\ \mathit{add-eq-0-iff-both-eq-0}\ \mathit{cancel-comm-monoid-add-class.diff-cancel})
le-neq-implies-less plus-1-eq-Suc zero-neq-one)
 have fact1: WEST-regex-of-vars ((WEST-global L2\ a\ b\ k)) k
   using WEST-global-num-vars Suc by auto
 have fact2: WEST-regex-of-vars (WEST-global L1 b b k) k
   using WEST-global-num-vars Suc by blast
 have indh: WEST-regex-of-vars (WEST-release-helper L1 L2 a (b-1) k) k
   using Suc.hyps Suc.prems by simp
 show ?case using WEST-release-helper.simps[of L1 L2 a b k]
  using fact1 fact2 indh WEST-and-simp-num-vars WEST-or-simp-num-vars Suc
   by presburger
qed
{f lemma} WEST-release-num-vars:
 assumes WEST-regex-of-vars L1 k
 assumes WEST-regex-of-vars L2 k
 assumes a \leq b
 shows WEST-regex-of-vars (WEST-release L1 L2 a b k) k
 using assms
proof-
 {assume a-eq-b: a = b
   then have WEST-release L1 L2 a b k = WEST-global L2 a b k
     using WEST-release.simps[of L1 L2 a b k] by auto
   then have ?thesis using WEST-global-num-vars assms by auto
 } moreover {
   assume a-neg-b: a \neq b
   then have b-pos: b > 0 using assms by simp
   have a-leq-bm1: a < b-1 using a-neq-b assms by auto
   then have a-le-b: a < b using b-pos by auto
   have WEST-release L1 L2 a b k = WEST-or-simp (WEST-global L2 a b k)
(WEST\text{-}release\text{-}helper\ L1\ L2\ a\ (b-1)\ k)\ k
     using WEST-release.simps[of L1 L2 a b k] a-le-b by argo
   then have ?thesis
     using WEST-global-num-vars[of L2 a b k]
     using WEST-release-helper-num-vars[of L1 k L2 a b]
   \mathbf{using}\ WEST\text{-}or\text{-}simp\text{-}num\text{-}vars[of\ WEST\text{-}global\ L2\ a\ b\ k\ WEST\text{-}release\text{-}helper
L1 \ L2 \ a \ (b-1) \ k
   using WEST-global-num-vars WEST-release-helper-num-vars a-leq-bm1 assms(1)
assms(2) \ assms(3) \ by \ presburger
```

```
ultimately show ?thesis by blast
qed
{f lemma} WEST-reg-aux-num-vars:
 assumes is-nnf: \exists \psi. F1 = (convert-nnf \psi)
 assumes k \geq WEST-num-vars F1
 assumes intervals-welldef F1
 shows WEST-regex-of-vars (WEST-reg-aux F1 k) k
 using assms
proof (induct F1 rule: nnf-induct)
 case nnf
 then show ?case using is-nnf by simp
next
 case True
 then show ?case using WEST-reg-aux.simps(1)[of k]
   unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
 case False
 show ?case using WEST-reg-aux.simps(2)
   unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next
 case (Prop \ p)
 then show ?case using WEST-reg-aux.simps(3)[of p k]
   unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next
 case (NotProp \ F \ p)
 then show ?case using WEST-reg-aux.simps(3)[of p k]
   unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next
 case (And F F1 F2)
 have nnf-F1: \exists \psi. F1 = convert-nnf \psi using And(1, 4)
   by (metis\ convert\text{-}nnf.simps(4)\ convert\text{-}nnf\text{-}convert\text{-}nnf\ mltl.inject(3))
 then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
   using And by auto
 have nnf-F2: \exists \psi. F2 = convert-nnf \psi
  by (metis And.hyps(1) And.prems(1) convert-nnf.simps(4) convert-nnf-convert-nnf
mltl.inject(3)
 then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
   using And by auto
 have nv-F1: WEST-num-vars F1 \le k
  using WEST-num-vars-subformulas[of F1 And-mltl F1 F2] And(1,5) unfold-
ing \ subformulas.simps
   \mathbf{by} \ simp
 have nv-F2: WEST-num-vars F2 \le k
   using WEST-num-vars-subformulas[of F2 And-mltl F1 F2] And(1,5) unfold-
ing subformulas.simps
   by simp
```

```
show ?case
    using WEST-reg-aux.simps(6)[of F1 F2 k] And And(2)[OF nnf-F1 nv-F1]
And(3)[OF nnf-F2 nv-F2]
   using WEST-and-simp-num-vars[of (WEST-reg-aux F1 k) k (WEST-reg-aux
F2(k)
   by auto
\mathbf{next}
 case (Or F F1 F2)
 have nnf-F1: \exists \psi. F1 = convert-nnf \psi using Or
   by (metis convert-nnf.simps(5) convert-nnf-convert-nnf mltl.inject(4))
 then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
   using Or by auto
 have nnf-F2: \exists \psi. F2 = convert-nnf \psi
  by (metis\ Or.hyps(1)\ Or.prems(1)\ convert-nnf.simps(5)\ convert-nnf-convert-nnf
mltl.inject(4)
 then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
   using Or by auto
 let ?L1 = (WEST\text{-}reg\text{-}aux\ F1\ k)
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 k)
 have WEST-regex-of-vars ?L1 k
   using Or nnf-F1 by simp
 then have L1-nv: \forall i < length (WEST-reg-aux F1 k). trace-regex-of-vars (WEST-reg-aux
F1 \ k \mid i) \ k
   unfolding WEST-regex-of-vars-def by metis
 have WEST-regex-of-vars ?L2 k
   using Or nnf-F2 by simp
 then have L2-nv: \forall j < length (WEST-reg-aux F2 k). trace-regex-of-vars (WEST-reg-aux
F2 k ! j) k
   unfolding WEST-regex-of-vars-def by metis
 have L1L2-L: WEST-reg-aux F k = WEST-or-simp ?L1 ?L2 k
   using WEST-reg-aux.simps(5)[of\ F1\ F2\ k]\ Or\ by\ blast
 let ?L = ?L1@?L2
 show ?case
   using WEST-or-simp-num-vars[of ?L1 k ?L2, OF] L1-nv L2-nv L1L2-L
   unfolding WEST-regex-of-vars-def by auto
next
 case (Final\ F\ F1\ a\ b)
 let ?L1 = WEST-reg-aux F1 k
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi using Final
   \mathbf{by}\ (\mathit{metis}\ \mathit{convert-nnf}.\mathit{simps}(6)\ \mathit{convert-nnf-convert-nnf}\ \mathit{mltl.inject}(5))
 then have L1-nv: WEST-regex-of-vars ?L1 k
   using Final by simp
 have WEST-reg-future: WEST-reg-aux (Future-mltl a b F1) k = WEST-future
?L1 a b k
   using WEST-reg-aux.simps(7)[of a b F1 k] by blast
 let ?L = WEST-future ?L1 \ a \ b \ k
 have WEST-regex-of-vars ?L k
   using L1-nv WEST-future-num-vars[of ?L1 k a b] Final by auto
```

```
then show ?case using WEST-reg-future Final by simp
next
  case (Global \ F \ F1 \ a \ b)
 let ?L1 = WEST-reg-aux F1 k
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi using Global
   by (metis convert-nnf.simps(7) convert-nnf-convert-nnf mltl.inject(6))
  then have L1-nv: WEST-regex-of-vars ?L1 k
   using Global by simp
  have WEST-regex-of-vars (WEST-global ?L1 \ a \ b \ k) k
   using L1-nv WEST-global-num-vars[of ?L1 k a b] Global by simp
 then show ?case using WEST-reg-aux.simps(8)[of a b F1 k] Global(1) by simp
next
 case (Until F F1 F2 a b)
 have nnf-F1: \exists \psi. F1 = convert-nnf \psi using Until
   \mathbf{by}\ (\mathit{metis}\ \mathit{convert-nnf}.\mathit{simps}(8)\ \mathit{convert-nnf-convert-nnf}\ \mathit{mltl.inject}(7))
  then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
   using Until by auto
 have nnf-F2: \exists \psi. F2 = convert-nnf \psi using Until
   by (metis\ convert\text{-}nnf.simps(8)\ convert\text{-}nnf\text{-}convert\text{-}nnf\ mltl.inject(7))
  then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
   using Until by auto
 let ?L1 = (WEST\text{-}reg\text{-}aux\ F1\ k)
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 k)
 have L1-nv: WEST-regex-of-vars ?L1 k
   using Until nnf-F1 by simp
 have L2-nv: WEST-regex-of-vars ?L2 k
   using Until nnf-F2 by simp
  \mathbf{have} \ \ WEST\text{-}regex\text{-}of\text{-}vars \ (WEST\text{-}until \ (WEST\text{-}reg\text{-}aux \ F1 \ k) \ (WEST\text{-}reg\text{-}aux \ F1 \ k)
F2 k) a b k) k
   using WEST-until-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Until by auto
  then show ?case using Until(1) WEST-reg-aux.simps(9)[of F1 a b F2 k] by
auto
next
 case (Release F F1 F2 a b)
 have nnf-F1: \exists \psi. F1 = convert-nnf \psi using Release
   by (metis\ convert-nnf.simps(9)\ convert-nnf-convert-nnf\ mltl.inject(8))
  then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
   using Release by auto
  have nnf-F2: \exists \psi. F2 = convert-nnf \psi using Release
   by (metis\ convert-nnf.simps(9)\ convert-nnf-convert-nnf\ mltl.inject(8))
  then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
   using Release by auto
 let ?L1 = (WEST\text{-}reg\text{-}aux\ F1\ k)
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 k)
  have L1-nv: WEST-regex-of-vars ?L1 k
   using Release nnf-F1 by simp
 have L2-nv: WEST-regex-of-vars ?L2 k
```

```
using Release nnf-F2 by simp
 have WEST-regex-of-vars (WEST-release (WEST-reg-aux F1 k) (WEST-reg-aux
F2 k) a b k) k
   using WEST-release-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Release by
auto
 then show ?case using WEST-reg-aux.simps(10)[of F1 a b F2 k] Release by
qed
lemma nnf-intervals-welldef:
 assumes intervals-welldef F1
 shows intervals-welldef (convert-nnf F1)
 using assms
proof (induct depth-mltl F1 arbitrary: F1 rule: less-induct)
 case less
 have iwd: intervals-welldef F2 \Longrightarrow
       F1 = Not\text{-}mltl \ F2 \Longrightarrow
       intervals-welldef (convert-nnf (Not-mltl F2))
   for F2 apply (cases F2) using less by simp-all
 then show ?case using less
   apply (cases F1) by simp-all
qed
lemma WEST-reg-num-vars:
 assumes intervals-welldef F1
 shows WEST-regex-of-vars (WEST-reg F1) (WEST-num-vars F1)
proof
 have WEST-num-vars (convert-nnf F1) = WEST-num-vars F1
   using WEST-num-vars-nnf by presburger
 then have wnv: WEST-num-vars (convert-nnf F1) \leq (WEST-num-vars F1)
   by simp
 have iwd: intervals-welldef (convert-nnf F1)
   using assms nnf-intervals-welldef
   by auto
 show ?thesis
   using assms WEST-reg-aux-num-vars[OF - wnv iwd]
   unfolding WEST-reg.simps
   by auto
qed
3.7
      Correctness of WEST-simp
3.7.1
        WEST-count-diff facts
lemma count-diff-property-aux:
 assumes k < length \ r1 \ \land \ k < length \ r2
 shows count-diff r1 \ r2 \ge count-diff-state (r1 \ ! \ k) \ (r2 \ ! \ k)
```

using assms

proof (induct length r1 arbitrary: r1 r2 k)

```
case \theta
 then show ?case by simp
next
 case (Suc \ x)
 obtain h1 t1 h2 t2 where r1r2: r1 = h1#t1 r2 = h2#t2
   using Suc
   by (metis length-0-conv not-less-zero trim-reversed-regex.cases)
 have cd: count-diff r1 r2 = count-diff-state h1 h2 + count-diff t1 t2
    using r1r2 count-diff.simps(4)[of\ h1\ t1\ h2\ t2] by simp
 {assume *: k = 0
   have count-diff r1 \ r2 \ge count-diff-state h1 \ h2
    using cd
    by auto
   then have ?case using *r1r2
    by auto
 } moreover {assume *: k > 0
   have t1t2: t1!(k-1) = r1!k \wedge t2!(k-1) = r2!k
    using Suc(3) * r1r2
    by simp
    have count-diff-state (t1 ! (k-1)) (t2 ! (k-1))
   \leq count-diff t1 t2
    using * Suc(1)[of\ t1\ k-1\ t2]
    Suc(2-3) r1r2
    by (metis One-nat-def Suc-less-eq Suc-pred diff-Suc-1' length-Cons)
   then have ?case using cd t1t2
    by auto
 ultimately show ?case by blast
qed
lemma count-diff-state-property:
  assumes count-diff-state t1 \ t2 = 0
  assumes ka < length \ t1 \land ka < length \ t2
  shows t1 ! ka = t2 ! ka
 using assms
 proof (induct length t1 arbitrary: t1 t2 ka)
   case \theta
   then show ?case by simp
 next
   case (Suc \ x)
   obtain h1 T1 h2 T2 where t1t2: t1 = h1 \# T1 \ t2 = h2 \# T2
   using Suc
   by (metis count-nonS-trace.cases length-0-conv less-nat-zero-code)
 have cd: h1 = h2 \land count-diff-state t1 \ t2 = count-diff-state T1 \ T2
   using t1t2 count-diff-state.simps(4)[of h1 T1 h2 T2]
   Suc(3) by presburger
 then have ind\theta: count-diff-state T1 T2 = \theta
   using Suc(3) by auto
 {assume *: ka = 0
```

```
then have ?case using cd t1t2
    \mathbf{by} auto
 } moreover {assume *: ka > 0
   have T1T2: T1!(ka-1) = t1!ka \wedge T2!(ka-1) = t2!ka
    using Suc(3) * t1t2
    by simp
    have T1 ! (ka-1) = T2 ! (ka-1)
    using * Suc(1)[OF - ind0, of ka]
    Suc(2-3) t1t2
      by (metis Suc.hyps(1) Suc.prems(2) Suc-less-eq Suc-pred diff-Suc-1 ind0
length-Cons)
   then have ?case using T1T2
    by auto
 ultimately show ?case by blast
qed
lemma count-diff-property:
 assumes count-diff r1 \ r2 = 0
 assumes k < length \ r1 \ \land \ k < length \ r2
 assumes ka < length (r1 ! k) \land ka < length (r2 ! k)
 shows r2 ! k ! ka = r1 ! k ! ka
proof -
 have count-diff r1 \ r2 \ge count-diff-state (r1 \ ! \ k) \ (r2 \ ! \ k)
   using count-diff-property-aux[OF\ assms(2)]
   by auto
 then have cdt: count-diff-state (r1 ! k) (r2 ! k) = 0
   using assms by auto
 show ?thesis
   using count-diff-state-property[OF cdt \ assms(3)]
   by auto
qed
lemma count-nonS-trace-0-allS:
 assumes length h = num-vars
 assumes count-nonS-trace h = 0
 shows h = map (\lambda t. S) [\theta..< num-vars]
 using assms
proof(induct num-vars arbitrary: h)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc num-vars)
 then obtain head tail where head-tail: h = head\#tail
    by (meson\ length-Suc-conv)
   have tail = map (\lambda t. S) [0.. < num-vars]
    using Suc(1)[of\ tail]\ head-tail\ Suc.prems
      by (metis Zero-not-Suc count-nonS-trace.simps(2) length-Cons nat.inject
plus-1-eq-Suc)
```

```
then have count-nonS-trace tail = 0
     using count-nonS-trace.simps\ Suc.prems(2)
     by (metis Suc.prems(2) add-is-0 head-tail)
   then show ?case
     using count-nonS-trace.simps(2)[of head tail] head-tail
   proof -
     have f1: \theta = Suc \theta + \theta \lor head = S
      using One-nat-def Suc.prems(2) \land count-nonS-trace (head \# tail) = (if head
\neq S \ then \ 1 + count-nonS-trace \ tail \ else \ count-nonS-trace \ tail) > \langle count-nonS-trace \ tail \rangle
tail = 0 head-tail by argo
     have map (\lambda n. S) [0..<Suc\ num-vars] = S \# map\ (\lambda n. S) [0..<num-vars]
       using map-upt-Suc by blast
     then show ?thesis
       using f1 \langle tail = map (\lambda t. S) [0..\langle num\text{-}vars] \rangle head-tail by presburger
   qed
qed
lemma trace-tail-num-vars:
 assumes trace-regex-of-vars (h \# trace) num-vars
 shows trace-regex-of-vars trace num-vars
proof-
  have \bigwedge i. i < length\ trace \implies length\ (trace ! i) = num-vars
 proof-
   \mathbf{fix} i
   assume i-le: i<length trace
   have i+1 < length (h\#trace)
     using Cons
     by (meson i-le impossible-Cons leI le-trans less-iff-succ-less-eq)
   then have length ((h \# trace) ! (i+1)) = num\text{-}vars
     using assms unfolding trace-regex-of-vars-def by meson
   then show length (trace ! i) = num-vars
     by auto
 qed
 then show ?thesis
   unfolding trace-regex-of-vars-def by auto
qed
lemma count-diff-property-S-aux:
 assumes count-diff trace [] = 0
 assumes k < length trace
 {\bf assumes}\ \textit{trace-regex-of-vars}\ \textit{trace}\ \textit{num-vars}
 assumes 1 \leq num-vars
 shows trace! k = map(\lambda t. S) [0 ..< num-vars]
 using assms
proof(induct trace arbitrary: k num-vars)
  case Nil
  then show ?case by simp
next
 case (Cons h trace)
```

```
{assume k-zero: k = 0
   have cond1: length h = num\text{-}vars
    using Cons.prems(3) unfolding trace-regex-of-vars-def
    by (metis\ Cons.prems(2)\ k\text{-}zero\ nth\text{-}Cons\text{-}0)
   have cond2: count-nonS-trace h = 0
    using Cons.prems(1) count-diff.simps
    by (metis add-is-0 count-diff-state.simps(3) count-nonS-trace.elims)
   have h = map (\lambda t. S) [0..< num-vars]
    using count-nonS-trace-0-allS[OF cond1 cond2] by simp
   then have ?case
    by (simp add: k-zero)
 } moreover {
   assume k-ge-zero: k > 0
   have cond1: count-diff trace [] = 0
   by (metis Cons.prems(1) count-diff.simps(2) count-diff.simps(3) neq-Nil-conv
zero-eq-add-iff-both-eq-0)
   have cond2: k-1 < length trace
    using k-ge-zero Cons.prems(2) by auto
   have cond3: trace-regex-of-vars trace num-vars
    using trace-tail-num-vars Cons(4)
    unfolding trace-regex-of-vars-def
    by blast
   have trace ! (k-1) = map (\lambda t. S) [0 ..< num-vars]
    using Cons.hyps[OF cond1 cond2 cond3] Cons.prems by blast
   then have ?case
    using k-ge-zero by simp
 ultimately show ?case by blast
qed
lemma count-diff-property-S:
 assumes count-diff r1 \ r2 = 0
 assumes k < length \ r1 \land length \ r2 \le k
 assumes trace-regex-of-vars r1 num-vars
 assumes num-vars \ge 1
 assumes ka < num-vars
 shows r1 ! k = map(\lambda t. S) [0..< num-vars]
proof-
 have length r1 > length r2
   using assms by simp
 let ?tail = drop (length r2) r1
 have cond1: count-diff ?tail [] = 0
   using assms(1, 2)
 \mathbf{proof}(induct\ r2\ arbitrary:\ r1\ k)
   {\bf case}\ Nil
   then show ?case by simp
   case (Cons a r2)
   then obtain h T where obt-hT: r1 = h \# T
```

```
by (metis length-0-conv less-nat-zero-code trim-reversed-regex.cases)
   have count-diff-state h \ a = 0
     using count-diff.simps(4)[of h T a r2] Cons.prems obt-hT by simp
   then have cond1: count-diff T r2 = 0
     using count-diff.simps(4)[of h T a r2] Cons.prems obt-hT by simp
   have count-diff (drop (length r2) T) [] = 0
     \mathbf{using}\ \mathit{Cons.hyps}[\mathit{OF}\ \mathit{cond1}]\ \mathit{Cons.prems}\ \mathit{obt-hT}
     by (metis count-diff.simps(1) drop-all linorder-le-less-linear order-reft)
   then show ?case
     using obt-hT by simp
  qed
 have cond2: (k - length \ r2) < length \ (drop \ (length \ r2) \ r1)
   using assms by auto
 have cond3: trace-regex-of-vars (drop (length r2) r1) num-vars
   using assms(3, 2) unfolding trace-regex-of-vars-def
    by (metis \langle length \ r2 \rangle \langle length \ r1 \rangle add.commute leI length-drop less-diff-conv
nth-drop order.asym)
 have ?tail!(k - length r2) = map(\lambda t. S)[0 .. < num-vars]
   using count-diff-property-S-aux[OF cond1 cond2 cond3] assms by blast
  then show ?thesis
   using assms by auto
\mathbf{qed}
{f lemma}\ count	ext{-} diff	ext{-} state	ext{-} commutative:
 shows count-diff-state e1 e2 = count-diff-state e2 e1
 proof (induct e1 arbitrary: e2)
   case Nil
   then show ?case using count-diff-state.simps
     by (metis count-nonS-trace.cases)
 next
   case (Cons h1 t1)
   then show ?case
     by (smt\ (verit)\ count\ diff\ state.elims\ list.inject\ null\ rec(1)\ null\ rec(2))
 qed
lemma count-diff-commutative:
 shows count-diff r1 r2 = count-diff r2 r1
proof (induct r1 arbitrary: r2)
 case Nil
 then show ?case using count-diff.simps
   by (metis trim-reversed-regex.cases)
 case (Cons h1 t1)
  {assume *: r2 = []
   then have ?case
     using count-diff.simps by auto
  } moreover {
   assume *: r2 \neq [
```

```
then obtain h2\ t2 where r2 = h2\#t2
    by (meson neq-Nil-conv)
   then have ?case using count-diff.simps(4)[of h1 t1 h2 t2]
     Cons[of\ t2]* count-diff-state-commutative
     by auto
 ultimately show ?case by blast
qed
\mathbf{lemma}\ \textit{count-diff-same-trace} :
 shows count-diff trace trace = 0
proof(induct trace)
 \mathbf{case}\ \mathit{Nil}
 then show ?case by simp
next
 case (Cons a trace)
 have count-diff-state a = 0
 proof(induct a)
   case Nil
   then show ?case by simp
 next
   case (Cons a1 a2)
   then show ?case by simp
 qed
 then show ?case
   using Cons count-diff.simps(4)[of a trace a trace] by auto
lemma count-diff-state-0:
 assumes count-diff-state h1 \ h2 = 0
 assumes length h1 = length h2
 shows h1 = h2
 using assms
proof(induct h1 arbitrary: h2)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons a h1)
 then show ?case
   by (metis count-diff-state-property nth-equalityI)
qed
\mathbf{lemma}\ \mathit{count-diff-state-1}\colon
 assumes length h1 = length h2
 assumes count-diff-state h1 \ h2 = 1
 shows \exists ka < length h1. h1!ka \neq h2!ka
 using assms
```

```
proof(induct h1 arbitrary: h2)
 case Nil
 then show ?case by simp
next
 case (Cons a h1)
 then obtain head tail where obt-headtail: h2 = head\#tail
   by (metis length-0-conv neg-Nil-conv)
 {assume head-equal: a = head
   then have count-diff-state h1 tail = 1
     using count-diff-state.simps(4)[of a h1 head tail]
     using Cons.prems(2) obt-headtail by auto
   then have \exists ka < length \ h1. \ h1 \ ! \ ka \neq tail \ ! \ ka
     using Cons.hyps[of tail] Cons.prems
     \mathbf{by}\ (simp\ add\colon obt\text{-}headtail)
   then have ?case using obt-headtail by auto
 } moreover {
   assume head-notegual: a \neq head
   then have ?case using obt-headtail by auto
 ultimately show ?case by blast
qed
lemma count-diff-state-other-states:
 assumes count-diff-state h1 \ h2 = 1
 assumes length h1 = length h2
 assumes h1!k \neq h2!k
 assumes k < length h1
 shows \forall i < length \ h1. \ k \neq i \longrightarrow h1!i = h2!i
 using assms
proof(induct \ h1 \ arbitrary: \ h2 \ k)
 case Nil
 then show ?case by simp
next
 case (Cons a h1)
 then obtain head tail where headtail: h2 = head\#tail
   by (metis Suc-length-conv)
 {assume k\theta: k=\theta
   then have count-diff-state h1 \ tail = 0
    using Cons.prems headtail count-diff-state.simps(4)[of a h1 head tail] by auto
   then have h1 = tail
     using count-diff-state-0 Cons.prems headtail by simp
   then have ?case using k0 headtail by simp
 } moreover {
   assume k-not0: k \neq 0
   then have head-eq: a = head
     using Cons headtail count-diff-state.simps(4)[of a h1 head tail]
      by (metis One-nat-def Suc-inject count-diff-state-0 length-Cons nth-Cons'
plus-1-eq-Suc)
   then have count-diff-state h1 tail = 1
```

```
using Cons headtail count-diff-state.simps(4)[of a h1 head tail] by argo
   then have induction: \forall i < length \ h1. \ k-1 \neq i \longrightarrow h1 \ ! \ i = tail \ ! \ i
     using Cons.hyps[of h2 k-1] Cons.prems headtail
    by (smt (verit) Cons.hyps Suc-less-eq add-diff-inverse-nat k-not0 length-Cons
less-one nth-Cons' old.nat.inject plus-1-eq-Suc)
   have \bigwedge i. (i < length (a \# h1) \land k \neq i) \Longrightarrow (a \# h1) ! i = h2 ! i
   proof-
     \mathbf{fix} i
    assume i-facts: (i < length (a \# h1) \land k \neq i)
     {assume i\theta: i = \theta
      then have (a \# h1) ! i = h2 ! i
        using headtail head-eq by simp
     } moreover {
      assume i-not0: i \neq 0
      then have (a \# h1) ! i = h2 ! i
        using induction k-not0 i-facts
        using headtail length-Cons nth-Cons' zero-less-diff by auto
     ultimately show (a \# h1) ! i = h2 ! i by blast
   then have ?case by blast
 ultimately show ?case by blast
qed
lemma count-diff-same-len:
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes count-diff r1 \ r2 = 0
 assumes length r1 = length r2
 shows r1 = r2
 using assms
proof(induct r1 arbitrary: r2)
 case Nil
 then show ?case by simp
 case (Cons h1 r1)
 then obtain h T where obt-hT: r2 = h \# T
   by (metis length-0-conv list.exhaust)
 have cond1: trace-regex-of-vars r1 num-vars
   using trace-tail-num-vars Cons.prems by blast
 have cond2: trace-regex-of-vars T num-vars
   using trace-tail-num-vars Cons.prems obt-hT by blast
 have h1-h-samelen: length h1 = length h
   using Cons.prems obt-hT unfolding trace-regex-of-vars-def
   by (metis length-greater-0-conv nth-Cons-0)
 have r1-eq-T: r1 = T
   using Cons.hyps[OF cond1 cond2] Cons.prems
   by (simp \ add: \ obt-hT)
```

```
then have count-diff r1 T = 0
   using count-diff-same-trace by auto
 then have count-diff-state h1 h = 0
   using Cons.prems(3) obt-hT count-diff.simps(4)[of h1 \ r1 \ h \ T] by simp
 then have h = h1 using h1-h-samelen
 proof(induct h arbitrary: h1)
   case Nil
   then show ?case by simp
 next
   case (Cons \ a \ h)
   then show ?case using count-diff-state.simps
     Suc-inject count-diff-state.elims length-Cons less-iff-Suc-add not-less-eq
    by (metis (no-types, opaque-lifting) count-diff-state-0)
   qed
 then show ?case
   using r1-eq-T obt-hT by blast
qed
lemma count-diff-1:
 assumes count-diff r1 \ r2 = 1
 assumes length r1 = length r2
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 shows \exists k < length \ r1. count-diff-state (r1!k) \ (r2!k) = 1
 using assms
proof(induct length r1 arbitrary: r1 r2)
 case \theta
 then show ?case by auto
next
 case (Suc \ x)
 obtain h1 T1 where obt-h1T1: r1 = h1 \# T1 using Suc
   by (metis\ length-Suc-conv)
 obtain h2 T2 where obt-h2T2: r2 = h2 \# T2 using Suc
   by (metis length-Suc-conv)
 {assume h1h2-same: h1 = h2
   have count-diff-state h1 \ h2 = 0
    using h1h2-same count-diff-state-0
    by (metis Nat.add-0-right count-diff.simps(4) count-diff-same-trace)
   then have cond2: count-diff T1 T2 = 1
    using h1h2-same Suc.prems(1) obt-h1T1 obt-h2T2
    using count-diff.simps(4)[of h1 T1 h2 T2] by simp
   have \exists k < length T1. count-diff-state (T1 ! k) (T2 ! k) = 1
    using Suc obt-h1T1 obt-h2T2 h1h2-same
    by (metis cond2 length-Cons nat.inject trace-tail-num-vars)
   then have ?case using obt-h1T1 obt-h2T2
    by fastforce
 } moreover {
   assume h1h2-notsame: h1 \neq h2
   have h1h2-nv: length h1 = length h2
```

```
using Suc.prems(3, 4) unfolding trace-regex-of-vars-def
   by (metis Suc.hyps(2) Suc.prems(2) nth-Cons-0 obt-h1T1 obt-h2T2 zero-less-Suc)
   then have count-diff-state h1 \ h2 > 0
     using count-diff-state-0 h1h2-notsame by auto
   then have count-diff-state h1 \ h2 = 1
     using count-diff.simps(4)[of h1 T1 h2 T2] Suc obt-h1T1 obt-h2T2 by auto
   then have ?case using obt-h1T1 obt-h2T2 by auto
 ultimately show ?case by blast
\mathbf{qed}
\mathbf{lemma}\ \mathit{count-diff-1-other-states} \colon
 assumes count-diff r1 r2 = 1
 assumes length r1 = length r2
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes count-diff-state (r1!k) (r2!k) = 1
 shows \forall i < length \ r1. \ k \neq i \longrightarrow r1!i = r2!i
 using assms
proof(induct length r1 arbitrary: r1 r2 k)
 case \theta
 then show ?case by auto
\mathbf{next}
 case (Suc \ x)
 obtain h1 T1 where obt-h1T1: r1 = h1 \# T1 using Suc
   by (metis length-Suc-conv)
 obtain h2 T2 where obt-h2T2: r2 = h2 \# T2 using Suc
   by (metis length-Suc-conv)
 {assume k\theta: k=\theta
   have count-diff T1 T2 = 0
     using Suc count-diff.simps(4)[of h1 T1 h2 T2] obt-h1T1 obt-h2T2 k0
     \mathbf{by} auto
   then have \forall i < length T1. T1 ! i = T2 ! i
     using Suc. prems count-diff-same-len trace-tail-num-vars
     by (metis Suc-inject length-Cons obt-h1T1 obt-h2T2)
   then have ?case using obt-h1T1 obt-h2T2 k0
     using length-Cons by auto
 } moreover {
   assume k-not\theta: k \neq \theta
   then have T1T2-diffby1: count-diff T1 T2 = 1
     using Suc.prems obt-h1T1 obt-h2T2 count-diff.simps(4)[of h1 T1 h2 T2]
     by (metis One-nat-def add-right-imp-eq count-diff-same-len count-diff-state-1
list.size(4) not-gr-zero nth-Cons-pos one-is-add trace-tail-num-vars)
   then have h1h2-same: h1 = h2
   using k-not0 count-diff.simps(4)[of h1 T1 h2 T2] Suc.prems obt-h1T1 obt-h2T2
     unfolding trace-regex-of-vars-def
       by (metis Suc.hyps(2) add-cancel-right-left count-diff-state-0 nth-Cons-0
zero-less-Suc)
```

```
have induction: \forall i < length \ T1. \ (k-1) \neq i \longrightarrow T1 \ ! \ i = T2 \ ! \ i
     \mathbf{using} \ \mathit{Suc.hyps}(1)[\mathit{of} \ \mathit{T1} \ \mathit{T2} \ \mathit{k-1}] \ \mathit{Suc.hyps}(2) \ \mathit{Suc.prems} \ \mathit{T1T2-diffby1}
   by (metis (mono-tags, lifting) k-not0 length-Cons nth-Cons' obt-h1T1 obt-h2T2
old.nat.inject trace-tail-num-vars)
   then have ?case using obt-h1T1 obt-h2T2 k-not0 h1h2-same
     by (simp add: nth-Cons')
 ultimately show ?case by blast
qed
3.7.2
         Orsimp-trace Facts
{f lemma} WEST-simp-bitwise-identity:
 assumes b1 = b2
 shows WEST-simp-bitwise b1 b2 = b1
 using assms WEST-simp-bitwise.simps
 by (metis WEST-bit.exhaust)
lemma WEST-simp-bitwise-commutative:
 shows WEST-simp-bitwise b1 b2 = WEST-simp-bitwise b2 b1
 using WEST-simp-bitwise.simps
 by (metis (full-types) WEST-simp-bitwise.elims)
{f lemma} WEST-simp-state-commutative:
 assumes length s1 = num-vars
 assumes length \ s2 = num-vars
 shows WEST-simp-state s1 \ s2 = WEST-simp-state s2 \ s1
 using WEST-simp-state.simps[of s1 s2]
 using WEST-simp-bitwise-commutative assms by simp
{\bf lemma}\ \textit{WEST-simp-trace-commutative}:
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 shows WEST-simp-trace r1 r2 num-vars = WEST-simp-trace r2 r1 num-vars
proof-
 have r1-vars: \forall k. length (WEST-get-state r1 k num-vars) = num-vars
   using assms WEST-qet-state-length by blast
 have r2-vars: \forall k. length (WEST-get-state r2 k num-vars) = num-vars
   using assms WEST-get-state-length by blast
 have (\lambda k. WEST-simp-state (WEST-get-state r1 k num-vars)
         (WEST\text{-}qet\text{-}state \ r2\ k\ num\text{-}vars)) = (\lambda k.\ WEST\text{-}simp\text{-}state\ (WEST\text{-}qet\text{-}state
r2 \ k \ num-vars)
            (WEST-get-state r1 k num-vars))
   using WEST-simp-state-commutative r1-vars r2-vars by fast
 then show ?thesis
   unfolding WEST-simp-trace.simps[of r1 r2 num-vars]
   unfolding WEST-simp-trace.simps[of r2 r1 num-vars]
   by (simp add: insert-commute)
```

```
lemma\ WEST-simp-trace-identity:
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes count-diff r1 \ r2 = 0
 assumes length \ r1 \ge length \ r2
 shows WEST-simp-trace r1 r2 num-vars = r1
proof-
 have of-vars: \forall i < length \ r1. length \ (r1 ! i) = num-vars
   using assms unfolding trace-regex-of-vars-def by argo
 have mapmap: map (\lambda k. map (\lambda ka. (r1!k)!ka)
            [0.. < num-vars]) [0.. < length r1] = r1
   using assms(1) unfolding trace-regex-of-vars-def[of r1 num-vars]
   by (smt (verit) length-map list-eq-iff-nth-eq map-nth nth-map)
 have r1-k-ka: \bigwedge ka. ka < num-vars \Longrightarrow
       WEST-simp-bitwise (WEST-get-state r1 k num-vars! ka)
                       (WEST\text{-}get\text{-}state\ r2\ k\ num\text{-}vars\ !\ ka) = r1!k!ka
   if k-lt: k<length r1 for k
 proof -
   \mathbf{fix} ka
   assume ka-lt: ka < num-vars
   {assume *: k < length r2
     have length (r1 ! k) = num\text{-}vars \land length (r2 ! k) = num\text{-}vars
      using assms unfolding trace-regex-of-vars-def * ka-lt
      using * that by presburger
     then have (r2 ! k) ! ka = (r1 ! k) ! ka
      using * ka-lt using assms(3)
      using count-diff-property-aux
      using count-diff-property that by presburger
       then have WEST-get-state r2\ k num-vars! ka = WEST-get-state r1\ k
num-vars! ka
      unfolding WEST-get-state.simps using * ka-lt
      using leD that by auto
     then have WEST-simp-bitwise (WEST-get-state r1 k num-vars! ka)
                       (WEST\text{-}qet\text{-}state \ r2 \ k \ num\text{-}vars \ ! \ ka) = r1!k!ka
       using WEST-simp-bitwise-identity that by force
   } moreover {assume *: k \ge length \ r2
    then have WEST-get-state r2\ k\ num-vars = (map\ (\lambda\ k.\ S)\ [0\ ..< num-vars])
      by simp
     then have r2-k-ka-S: (WEST-get-state r2 k num-vars! ka) = S
      using ka-lt by simp
     have r1-k-ka: (WEST-get-state r1 \ k \ num-vars \ ! \ ka) = r1!k!ka
      using k-lt by simp
     have (r1!k!ka) = S
      using count-diff-property-S
```

```
using * ka-lt \ assms(1, 3, 4)
       using that
       by simp
     then have WEST-simp-bitwise (WEST-get-state r1 k num-vars! ka)
                         S = r1!k!ka
       using r1-k-ka by simp
     then have WEST-simp-bitwise (WEST-get-state r1 k num-vars! ka)
                          (WEST\text{-}get\text{-}state\ r2\ k\ num\text{-}vars\ !\ ka) = r1!k!ka
       using r2-k-ka-S by simp
   }
   ultimately show WEST-simp-bitwise (WEST-get-state r1 k num-vars! ka)
                         (WEST-get-state \ r2 \ k \ num-vars \ ! \ ka) = r1!k!ka \ by \ auto
 qed
 have len-lhs: length (map (\lambda k. (f k)
             [0.. < num-vars])
    [0... < length \ r1]) = length \ r1 \ for \ f :: nat \Rightarrow nat \ list \Rightarrow WEST-bit \ list
   bv auto
have aux-helper: \bigwedge i. i < length \ r1 \Longrightarrow (map \ (\lambda k. \ (f \ k)
             [\theta .. < num-vars])
    [0..< length \ r1])! \ i=\ r1 \ ! \ i \ if f-prop: \ \forall \ k< length \ r1. \ (f\ k)
             [0.. < num-vars] = r1!k for f
  proof -
    \mathbf{fix} i
    assume i < length r1
    show map (\lambda k. f k [0..< num-vars]) [0..< length r1] ! i = r1 ! i
     using f-prop
     by (simp add: \langle i < length \ r1 \rangle)
 ged
 have map-prop: map (\lambda k. (f k))
               [0.. < num-vars])
      [0..< length \ r1] = r1 if f-prop: \forall k < length \ r1. \ (f \ k)
                [0.. < num-vars] = r1!k for f
     using len-lhs[of f] aux-helper[of f] f-prop
     by (metis\ nth\text{-}equalityI)
 let ?f = \lambda i. map (\lambda ka. WEST-simp-bitwise (WEST-qet-state r1 i num-vars! ka)
                       (WEST-get-state r2 i num-vars! ka))
 have \forall k < length \ r1. map (\lambda ka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)
                       (WEST-get-state r2 k num-vars ! ka))
             [0.. < num-vars] = r1!k
   using r1-k-ka
   by (smt (z3) length-map length-upt minus-nat.diff-0 nth-equalityI nth-map-upt
of-vars plus-nat.add-0)
  then have \forall k < length \ r1. (?f k)
              [0.. < num-vars] = r1!k
   bv blast
```

```
then have map (\lambda k. (?f k)
            [0.. < num-vars])
    [0..< length r1] = r1
   using map-prop[of ?f]
   by blast
 then have map (\lambda k. map (\lambda ka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)
                    (WEST-get-state r2 k num-vars ! ka))
            [0.. < num-vars])
    [0..< length \ r1] = r1
   using of-vars
   by blast
 then show ?thesis
   {f unfolding}\ WEST\mbox{-}simp\mbox{-}trace.simps\ WEST\mbox{-}simp\mbox{-}state.simps
   using WEST-simp-bitwise-identity assms WEST-get-state-length
   by simp
qed
lemma WEST-simp-trace-length:
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes length r1 = length r2
 shows length (WEST-simp-trace r1 r2 num-vars) = length r1
 using assms by simp
3.7.3
        WEST-orsimp-trace-correct
\mathbf{lemma}\ \textit{WEST-simp-trace-correct-forward}\colon
 assumes check-simp r1 r2
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes match-regex \pi (WEST-simp-trace r1 r2 num-vars)
 shows match-regex \pi r1 \lor match-regex \pi r2
proof-
 {assume diff0: count\text{-}diff r1 r2 = 0}
   then have *: (WEST\text{-}simp\text{-}trace\ r1\ r2\ num\text{-}vars) = r1
     using WEST-simp-trace-identity assms diff0 by fastforce
   have r1 = r2
     using count-diff-same-len assms diff0 by force
   then have ?thesis using assms * by simp
 } moreover {
   assume diff1: count-diff r1 \ r2 = 1
   then obtain k where obt-k: k < length \ r1 \land count-diff-state \ (r1!k) \ (r2!k) =
1
    using count-diff-1 [of r1 r2 num-vars] assms by fastforce
   then have length (r1 ! k) = length (r2 ! k)
     using assms unfolding trace-regex-of-vars-def
     by (metis check-simp.simps)
   then obtain ka where obt-ka: ka < length (r1!k) \wedge (r1!k!ka) \neq (r2!k!ka)
```

```
using count-diff-state-1 [of r1!k r2!k] obt-k assms by blast
let ?r1r2 = (WEST\text{-}simp\text{-}trace\ r1\ r2\ num\text{-}vars)
have rest-of-states: \forall i < length \ r1. \ i \neq k \longrightarrow r1!i = r2!i
 using count-diff-1-other-states assms obt-k
 by (metis (no-types, opaque-lifting) check-simp.elims(2) diff1)
have fact1: \bigwedge i. (i < length \ r1 \ \land \ i \neq k) \Longrightarrow
            ((match-timestep (\pi!i) (r1!i)) \vee (match-timestep (\pi!i) (r2!i)))
proof-
 \mathbf{fix} \ i
 assume i-assms: i < length \ r1 \land i \neq k
 then have states-eq: r1!i = r2!i using rest-of-states by blast
 have ?r1r2 = map (\lambda k. WEST\text{-}simp\text{-}state (WEST\text{-}get\text{-}state r1 k num-vars)}
          (WEST\text{-}get\text{-}state\ r2\ k\ num\text{-}vars))\ [0...< length\ r1]
   using assms(1) unfolding check-simp.simps WEST-simp-trace.simps
   by (metis (mono-tags, lifting) Max-singleton insert-absorb2)
 then have ?r1r2!i = WEST-simp-state (WEST-get-state r1 i num-vars)
          (WEST-get-state r2 i num-vars)
   using i-assms by simp
 then have ?r1r2!i = WEST\text{-}simp\text{-}state\ (r1!i)\ (r2!i)
   using WEST-get-state.simps i-assms
   by (metis\ assms(1)\ check-simp.elims(2)\ leD)
  then have ?r1r2!i = r1!i
   using WEST-simp-state.simps states-eq
   using WEST-simp-bitwise.simps
   using WEST-simp-bitwise-identity map-nth by fastforce
 then show ((match-timestep (\pi!i) (r1!i)) \vee (match-timestep (\pi!i) (r2!i)))
   using assms states-eq unfolding match-regex-def
   by (metis WEST-simp-trace-length check-simp.elims(2) i-assms)
qed
have ?r1r2!k = WEST\text{-}simp\text{-}state (WEST\text{-}get\text{-}state r1 k num-vars)
        (WEST\text{-}qet\text{-}state \ r2 \ k \ num\text{-}vars)
   using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force
then have r1r2-k: ?r1r2!k = WEST-simp-state (r1!k) (r2!k)
 using obt-k assms by auto
then have other-states: \forall i < length (r1!k). i \neq ka \longrightarrow (r1!k!i) = (r2!k!i)
 using count-diff-state-other-states[of r1!k r2!k ka]
 using obt-ka obt-k assms fact1
  using \langle length (r1 \mid k) = length (r2 \mid k) \rangle by blast
have ?r1r2!k = WEST\text{-}simp\text{-}state (WEST\text{-}get\text{-}state r1 k num-vars)
        (WEST\text{-}get\text{-}state\ r2\ k\ num\text{-}vars)
   using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force
then have r1r2-k: ?r1r2!k = WEST-simp-state (r1!k) (r2!k)
 using obt-k assms by auto
then have other-states: \forall i < length (r1!k). i \neq ka \longrightarrow (r1!k!i) = (r2!k!i)
 using count-diff-state-other-states[of r1!k r2!k ka]
 using obt-ka obt-k assms fact1
 using \langle length (r1 ! k) = length (r2 ! k) \rangle by blast
```

have state-fact1: $\bigwedge i$. $(i < length (r1!k) \land i \neq ka) \implies (?r1r2!k!i) = (r1!k!i)$

```
proof-
      \mathbf{fix} i
      assume i-fact: i < length(r1!k) \land i \neq ka
      have length (r1 ! k) = length (r2 ! k)
       using assms obt-k unfolding trace-regex-of-vars-def
       by (simp add: \langle length (r1 ! k) = length (r2 ! k) \rangle)
      then show (?r1r2!k!i) = (r1!k!i)
        using WEST-simp-state.simps[of r1!k r2!k] i-fact r1r2-k
        by (simp add: WEST-simp-bitwise-identity \langle length (r1 ! k) = length (r2 ! k) \rangle
k) \rightarrow map-nth \ other-states)
   qed
   have r1r2-k-ka: ?r1r2!k!ka = WEST-simp-bitwise (r1!k!ka) (r2!k!ka)
      using WEST-simp-state.simps[of r1!k r2!k] r1r2-k obt-ka by simp
   then have state-fact2: ?r1r2!k!ka = S
      using obt-ka WEST-simp-bitwise.elims
      by (metis (full-types))
   then have cases: (r1!k!ka = S) \vee (r2!k!ka = S)
              \vee (r1!k!ka = One \wedge r2!k!ka = Zero)
              \vee (r1!k!ka = Zero \wedge r2!k!ka = One)
      using r1r2-k-ka
      by (metis (full-types) WEST-bit.exhaust obt-ka)
   have \bigwedge x. x < length (?r1r2 ! k) \Longrightarrow
          (((\mathit{r1} \mathrel{!} k \mathrel{!} x = \mathit{One} \longrightarrow x \in \pi \mathrel{!} k) \land (\mathit{r1} \mathrel{!} k \mathrel{!} x = \mathit{Zero} \longrightarrow x \notin \pi \mathrel{!} k))
         \vee ((r2 ! k ! x = One \longrightarrow x \in \pi ! k) \wedge (r2 ! k ! x = Zero \longrightarrow x \notin \pi ! k)))
      using state-fact1 state-fact2
   proof-
      \mathbf{fix} \ x
      assume x-fact: x < length (?r1r2!k)
      {assume x-is-ka: x = ka
        then have ((?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (?r1r2 ! k ! x = Zero
  \rightarrow x \notin \pi ! k)
          using state-fact2 by simp
      } moreover {
       assume x-not-ka: x \neq ka
       then have ?r1r2!k!x = r1!k!x
          using state-fact1[of x] x-fact x-not-ka
         using assms(3) check-simp.simps obt-k trace-regex-of-vars-def by fastforce
        then have (((r1 ! k ! x = One \longrightarrow x \in \pi ! k) \land (r1 ! k ! x = Zero \longrightarrow x))
\notin \pi ! k)
         \vee ((r2 ! k ! x = One \longrightarrow x \in \pi ! k) \wedge (r2 ! k ! x = Zero \longrightarrow x \notin \pi ! k)))
          using cases assms WEST-simp-trace-length check-simp.elims obt-k x-fact
          unfolding match-timestep-def
          by (metis (mono-tags, lifting) match-regex-def match-timestep-def)
      }
      ultimately show (((r1 ! k ! x = One \longrightarrow x \in \pi ! k) \land (r1 ! k ! x = Zero
  \rightarrow x \notin \pi ! k)
        \forall ((r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (r2 ! k ! x = Zero \longrightarrow x \notin \pi ! k)))
       by (metis obt-ka)
   qed
```

```
then have fact2: ((match-timestep (\pi!k) (r1!k)) \vee (match-timestep (\pi!k))
(r2!k)))
     unfolding match-timestep-def
      by (metis WEST-simp-state-num-vars \langle length (r1 ! k) = length (r2 ! k) \rangle
other-states r1r2-k)
  have \forall time<length ?r1r2. ((match-timestep (\pi!time)) (r1!time)) \vee (match-timestep
(\pi!time) (r2!time)))
     using fact1 fact2 assms
     \mathbf{by}\ (\mathit{metis}\ \mathit{WEST-simp-trace-length}\ \mathit{check-simp.elims}(2))
   then have ?thesis
     using assms WEST-simp-trace-length unfolding match-regex-def
     by (smt (verit) check-simp.elims(2) rest-of-states)
 ultimately show ?thesis
   using check-simp.simps[of r1 r2] assms(1) by force
qed
lemma WEST-simp-trace-correct-converse:
 assumes check-simp r1 r2
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 assumes match-regex \pi r1 \lor match-regex \pi r2
 shows match-regex \pi (WEST-simp-trace r1 r2 num-vars)
proof-
  {assume diff0: count-diff\ r1\ r2 = 0
   then have *: (WEST\text{-}simp\text{-}trace\ r1\ r2\ num\text{-}vars) = r1
     using WEST-simp-trace-identity assms diff0 by fastforce
   have r1 = r2
     using count-diff-same-len assms diff0 by force
   then have ?thesis using assms * by simp
  } moreover {
   assume diff1: count-diff r1 \ r2 = 1
   then obtain k where obt-k: k < length \ r1 \land count-diff-state \ (r1!k) \ (r2!k) =
     using count-diff-1 [of r1 r2 num-vars] assms by fastforce
   then have length (r1 ! k) = length (r2 ! k)
     using assms unfolding trace-regex-of-vars-def
     by (metis check-simp.simps)
   then obtain ka where obt-ka: ka < length (r1!k) \land (r1!k!ka) \neq (r2!k!ka)
     using count-diff-state-1 [of r1!k r2!k] obt-k assms by blast
   let ?r1r2 = (WEST\text{-}simp\text{-}trace r1 r2 num\text{-}vars)
   have rest-of-states: \forall i < length \ r1. \ i \neq k \longrightarrow r1!i = r2!i
     using count-diff-1-other-states assms obt-k
     by (metis (no-types, opaque-lifting) check-simp.elims(2) diff1)
   have fact1: \bigwedge i. (i < length \ r1 \ \land \ i \neq k) \Longrightarrow match-timestep \ (\pi!i) (?r1r2!i)
   proof-
     \mathbf{fix} i
```

```
assume i-assms: i < length \ r1 \land i \neq k
     then have states-eq: r1!i = r2!i using rest-of-states by blast
     have ?r1r2 = map (\lambda k. WEST\text{-}simp\text{-}state (WEST\text{-}get\text{-}state r1 k num\text{-}vars))
             (WEST-get-state \ r2 \ k \ num-vars)) \ [0... < length \ r1]
       using assms(1) unfolding check-simp.simps WEST-simp-trace.simps
       by (metis (mono-tags, lifting) Max-singleton insert-absorb2)
     then have ?r1r2!i = WEST\text{-}simp\text{-}state (WEST\text{-}get\text{-}state r1 i num-vars)}
             (WEST-get-state r2 i num-vars)
       using i-assms by simp
     then have ?r1r2!i = WEST\text{-}simp\text{-}state\ (r1!i)\ (r2!i)
       using WEST-get-state.simps i-assms
       by (metis\ assms(1)\ check-simp.elims(2)\ leD)
     then have ?r1r2!i = r1!i
       using WEST-simp-state.simps states-eq
       using WEST-simp-bitwise.simps
       using WEST-simp-bitwise-identity map-nth by fastforce
     then show match-timestep (\pi!i) (?r1r2!i)
       using assms(4) states-eq unfolding match-regex-def
       by (metis \ assms(1) \ check-simp.elims(2) \ i-assms)
   have ?r1r2!k = WEST-simp-state (WEST-get-state r1 k num-vars)
           (WEST-get-state \ r2 \ k \ num-vars)
       using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force
   then have r1r2-k: ?r1r2!k = WEST-simp-state (r1!k) (r2!k)
     using obt-k assms by auto
   then have other-states: \forall i < length (r1!k). i \neq ka \longrightarrow (r1!k!i) = (r2!k!i)
     using count-diff-state-other-states[of r1!k r2!k ka]
     using obt-ka obt-k assms fact1
     using \langle length (r1 ! k) = length (r2 ! k) \rangle by blast
   have state-fact1: \bigwedge i. (i < length (r1!k) \land i \neq ka) \implies (?r1r2!k!i) = (r1!k!i)
   proof-
     \mathbf{fix} i
     assume i-fact: i < length(r1!k) \land i \neq ka
     have length (r1 ! k) = length (r2 ! k)
       using assms obt-k unfolding trace-regex-of-vars-def
       by (simp add: \langle length (r1 ! k) = length (r2 ! k) \rangle)
     then show (?r1r2!k!i) = (r1!k!i)
       using WEST-simp-state.simps[of r1!k r2!k] i-fact r1r2-k
       by (simp add: WEST-simp-bitwise-identity \langle length (r1 \mid k) \rangle = length (r2 \mid k)
k) \rightarrow map-nth \ other-states)
   qed
   have ?r1r2!k!ka = WEST-simp-bitwise (r1 ! k ! ka) (r2 ! k ! ka)
     using WEST-simp-state.simps[of r1!k r2!k] r1r2-k obt-ka by simp
   then have state-fact2: ?r1r2!k!ka = S
     \mathbf{using}\ obt\text{-}ka\ WEST\text{-}simp\text{-}bitwise.elims
     by (metis (full-types))
   have match-state: match-timestep (\pi!k) (r1!k) \vee match-timestep (\pi!k) (r2!k)
     using assms(4) obt-k unfolding match-regex-def
     by (metis\ assms(1)\ check-simp.elims(2))
```

```
have \bigwedge x. x < length (?r1r2 ! k) \Longrightarrow
         ((?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (?r1r2 ! k ! x = Zero \longrightarrow x \notin \pi !
k))
     using state-fact1 state-fact2 match-state
   proof-
     \mathbf{fix} \ x
     assume x-fact: x < length (?r1r2!k)
     {assume x-is-ka: x = ka
        then have ((?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (?r1r2 ! k ! x = Zero
\longrightarrow x \notin \pi ! k)
         using state-fact2 by simp
     } moreover {
       assume x-not-ka: x \neq ka
       then have ?r1r2!k!x = r1!k!x
         using state-fact1[of x] x-fact x-not-ka
        using assms(3) check-simp.simps obt-k trace-regex-of-vars-def by fastforce
        then have ((?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (?r1r2 ! k ! x = Zero
\longrightarrow x \notin \pi ! k)
         using match-state unfolding match-timestep-def
        by (smt (verit, best) WEST-simp-trace-length WEST-simp-trace-num-vars
\forall i < length (r1 ! k). i \neq ka \longrightarrow r1 ! k ! i = r2 ! k ! i \rangle assms(1) assms(2) assms(3)
check-simp.simps obt-k trace-regex-of-vars-def x-fact x-not-ka)
     ultimately show ((?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k) \land (?r1r2 ! k ! x = One \longrightarrow x \in \pi ! k)
Zero \longrightarrow x \notin \pi ! k)
       by blast
   ged
   then have fact2: match-timestep (\pi ! k) (?r1r2 ! k)
     unfolding match-timestep-def by argo
   have \forall time < length ?r1r2. match-timestep (<math>\pi ! time) (?r1r2 ! time)
     using fact1 fact2 assms
     by (metis\ WEST\text{-}simp\text{-}trace\text{-}length\ check\text{-}simp\text{.}elims(2))
   then have ?thesis
     using assms WEST-simp-trace-length unfolding match-regex-def
     by (metis (no-types, lifting) check-simp.simps)
 ultimately show ?thesis using check-simp.simps[of r1 r2] assms(1) by force
qed
\mathbf{lemma}\ \textit{WEST-simp-trace-correct}\colon
 assumes check-simp r1 r2
 assumes trace-regex-of-vars r1 num-vars
 assumes trace-regex-of-vars r2 num-vars
 shows match-regex \pi (WEST-simp-trace r1 r2 num-vars) \longleftrightarrow match-regex \pi r1
\vee match-regex \pi r2
 using assms WEST-simp-trace-correct-forward WEST-simp-trace-correct-converse
by metis
```

3.7.4 Simp-helper Correct

```
{f lemma} WEST-simp-helper-can-simp-bound:
 assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
 assumes \exists j. j < length (enum-pairs L) \land j \geq i \land
                  check-simp (L ! fst (enum-pairs L ! j))
                           (L ! snd (enum-pairs L ! j))
 assumes i < length (enum-pairs L)
 shows length \ simp-L < length \ L
proof-
 obtain min-j where obt-min-j: min-j = Min \{j, j < length (enum-pairs L) \land j\}
>i \wedge
                  check-simp (L ! fst (enum-pairs L ! j))
                           (L ! snd (enum-pairs L ! j))
   by blast
 then have min-j-props: min-j < length (enum-pairs L) \land min-j \geq i \land
                  check-simp (L ! fst (enum-pairs L ! min-j))
                           (L ! snd (enum-pairs L ! min-j))
   using Min-in[of \{j. j < length (enum-pairs L) \land
         i \leq j \wedge
         check-simp (L ! fst (enum-pairs L ! j))
          (L ! snd (enum-pairs L ! j))
  by (smt (verit, ccfv-threshold) assms(2) empty-Collect-eq finite-nat-set-iff-bounded
mem-Collect-eq)
 let ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
 have length-newL: length ?newL = length L - 1
   using update-L-length assms min-j-props by auto
 have simp-L = WEST-simp-helper?newL (enum-pairs?newL) 0 num-vars
  using WEST-simp-helper-can-simp[OF assms(1) assms(2) obt-min-j, of ?newL]
assms
   by blast
 then show ?thesis
   using assms WEST-simp-helper-length length-newL
  by (metis add-le-cancel-right enum-pairs-bound gen-length-def le-neq-implies-less
length-code less-nat-zero-code less-one linordered-semidom-class.add-diff-inverse nth-mem)
qed
lemma WEST-simp-helper-same-length:
 assumes WEST-regex-of-vars L num-vars
 assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
 assumes length K = length L
 shows L = K
 using WEST-simp-helper-can-simp[of K L 0 num-vars] assms WEST-simp-helper-cant-simp
 by (metis (no-types, lifting) WEST-simp-helper-can-simp-bound qr-zeroI less-irreft-nat
less-nat-zero-code)
lemma WEST-simp-helper-less-length:
 assumes WEST-regex-of-vars L num-vars
```

assumes length K < length L

```
assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
 shows \exists min-j.
       (min-j < length (enum-pairs L) \land
       K =
       WEST-simp-helper (update-L L (enum-pairs L! min-j) num-vars)
        (enum-pairs
          (update-L\ L\ (enum-pairs\ L\ !\ min-j)\ num-vars))
        0 num-vars
         \land check-simp (L! fst (enum-pairs L! min-j)) (L! snd (enum-pairs L!
min-j)))
 using assms
proof-
 have \exists j < length (enum-pairs L).
      0 \leq j \wedge
      check-simp (L ! fst (enum-pairs L ! j))
       (L ! snd (enum-pairs L ! j))
   \mathbf{using} \ assms \ WEST\text{-}simp\text{-}helper\text{-}can\text{-}simp\lceil of \ K \ L \ 0 \ num\text{-}vars \rceil
   by (metis (no-types, lifting) WEST-simp-helper-cant-simp less-irreft-nat)
  then obtain min-j where obt-min-j: min-j = Min\{j, j < length (enum-pairs L)\}
      0 \leq j \wedge check\text{-}simp\ (L ! fst\ (enum\text{-}pairs\ L\ !\ j))
                        (L ! snd (enum-pairs L ! j))
   by blast
  then have min-j-props: min-j<length (enum-pairs L) \wedge
      0 \leq min-j \wedge check-simp (L ! fst (enum-pairs L ! min-j))
                        (L ! snd (enum-pairs L ! min-j))
   using Min-in
     by (smt\ (verit)\ \langle\exists\ j < length\ (enum-pairs\ L).\ 0 \le j \land check-simp\ (L\ !\ fst
(enum\text{-}pairs\ L\ !\ j))\ (L\ !\ snd\ (enum\text{-}pairs\ L\ !\ j)) \land\ empty\text{-}def\ finite\text{-}nat\text{-}set\text{-}iff\text{-}bounded
mem-Collect-eq)
 let ?newL = update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars
 have K = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars
   using obt-min-j assms
  using WEST-simp-helper-can-simp \forall \exists j < length (enum-pairs L). \ 0 \leq j \land check-simp
(L \mid fst \ (enum-pairs \ L \mid j)) \ (L \mid snd \ (enum-pairs \ L \mid j)) \land dual-order.strict-trans2
by blast
 then show ?thesis
    using assms min-j-props by blast
qed
\mathbf{lemma}\ \mathit{remove-element-at-index-subset}:
  fixes i::nat
 assumes i < length L
 shows set (remove-element-at-index \ i \ L) \subseteq set \ L
proof-
 have fact1: set\ (take\ i\ L) \subseteq set\ L
   using assms unfolding remove-element-at-index.simps
   by (meson\ set\text{-}take\text{-}subset)
 have fact2: set (drop\ (i+1)\ L) \subseteq set\ L
```

```
using assms unfolding remove-element-at-index.simps
   by (simp add: set-drop-subset)
 have set (take i L @ drop (i + 1) L) = set (take <math>i L) \cup set (drop (i + 1) L)
   by simp
 then show ?thesis
   using fact1 fact2 unfolding remove-element-at-index.simps
   by blast
qed
{\bf lemma}\ \textit{WEST-simp-helper-correct-forward}:
 assumes WEST-regex-of-vars L num-vars
 assumes match \pi K
 assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
 shows match \pi L
 using assms
proof (induct length L – length K arbitrary: K L num-vars rule: less-induct)
 case less
 {assume same-len: length K = length L
   then have K = L
      using WEST-simp-helper-same-length [OF less.prems(1) less.prems(3)] by
blast
   then have ?case using less by blast
 } moreover {
   assume diff-len: length K \neq length L
   then have K-le-L: length L > length K
    using less(4) WEST-simp-helper-length[of L 0 num-vars] by simp
   then obtain min-j where obt-min-j: min-j < length (enum-pairs L) \wedge
   K = WEST-simp-helper
   (update-L\ L\ ((enum-pairs\ L)!min-j)\ num-vars)
   (enum-pairs (update-L L ((enum-pairs L)!min-j) num-vars))
   0 num-vars
   \land check-simp (L! fst (enum-pairs L! min-j)) (L! snd (enum-pairs L! min-j))
    using WEST-simp-helper-less-length less.prems by blast
   let ?nextL = (update-L \ L \ ((enum-pairs \ L)!min-j) \ num-vars)
   let ?simp-nextL = WEST-simp-helper ?nextL (enum-pairs ?nextL) 0 num-vars
   have length ?nextL = length L - 1
    using update-L-length obt-min-j by force
   then have cond1: length ?nextL - length K < length L - length K
    using obt-min-j
    by (metis K-le-L Suc-diff-Suc diff-Suc-eq-diff-pred lessI)
  have cond2: WEST-regex-of-vars (update-L L (enum-pairs L! min-j) num-vars)
      using update-L-preserves-num-vars[of L num-vars (enum-pairs L)!min-j
?nextL
    using less
    using nth-mem obt-min-j by blast
   let ?h = (enum-pairs L ! min-j)
   let ?updateL = (update-L \ L \ ?h \ num-vars)
```

```
have match \pi ?updateL
     using less.hyps[OF cond1 cond2 less.prems(2)] obt-min-j by blast
   have updateL-eq: ?updateL = remove-element-at-index (fst ?h)
                (remove-element-at-index (snd ?h) L) @
                [WEST-simp-trace (L! fst?h) (L! snd?h) num-vars]
     using update-L.simps[of L?h num-vars] by blast
   have fst-le-snd: fst ?h < snd ?h
      using enum-pairs-fact nth-mem obt-min-j by blast
   have h-bound: snd ?h < length L
     using enum-pairs-bound[of L] obt-min-j
     using nth-mem by blast
   {assume match-simped-part: match \pi [WEST-simp-trace (L! fst ?h) (L! snd
?h) num-vars
    have cond1: check-simp (L ! fst (enum-pairs <math>L ! min-j))
    (L ! snd (enum-pairs L ! min-j))
      using obt-min-j by blast
     have cond2: trace-regex-of-vars (L! fst (enum-pairs L! min-j)) num-vars
      using less.prems(1) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
      by (meson order-less-trans)
     have cond3: trace-regex-of-vars (L! snd (enum-pairs L! min-j)) num-vars
      using less.prems(1) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
      by (meson order-less-trans)
     have match-either: match-regex \pi (L! fst ?h) \vee match-regex \pi (L! snd ?h)
      using WEST-simp-trace-correct-forward[OF cond1 cond2 cond3]
      using match-simped-part unfolding match-def by force
     then have ?case unfolding match-def
      using fst-le-snd h-bound
      by (meson Suc-lessD less-trans-Suc)
   } moreover {
     let ?other-part = (remove-element-at-index (fst ?h))
                (remove-element-at-index (snd ?h) L))
     assume match-other-part: match \pi ?other-part
     have set (remove-element-at-index (fst (enum-pairs L! min-j))
        (remove-element-at-index (snd (enum-pairs L ! min-j)) L))
        \subseteq set (remove-element-at-index (snd (enum-pairs L \mid min-j)) L)
      using fst-le-snd h-bound remove-element-at-index-subset
          [of\ fst\ (enum\mbox{-}pairs\ L\ !\ min\mbox{-}j)\ (remove\mbox{-}element\mbox{-}at\mbox{-}index\ (snd\ (enum\mbox{-}pairs\ label{eq:condition})
L \mid min-j) \mid L \mid
      by simp
     then have other-part-subset: set ?other-part \subseteq set L
      using fst-le-snd h-bound remove-element-at-index-subset
           [of snd (enum-pairs L ! min-j) L] by blast
      then obtain idx where obt-idx: match-regex \pi (?other-part!idx) \wedge idx <
length ?other-part
      using match-other-part unfolding match-def by metis
     then have (?other-part!idx) \in set L
      using updateL-eq fst-le-snd h-bound other-part-subset
      by (meson in-mono nth-mem)
     then have ?case
```

```
using obt-idx unfolding match-def
      by (metis in-set-conv-nth)
   ultimately have ?case using updateL-eq WEST-or-correct
    by (metis \ (match \ \pi \ (update-L \ L \ (enum-pairs \ L \ ! \ min-j) \ num-vars)))
 ultimately show ?case by blast
qed
lemma remove-element-at-index-fact:
 assumes j1 < j2
 assumes j2 < length L
 assumes i < length L
 assumes i \neq j1
 assumes i \neq j2
 shows L!i
   \in set (remove-element-at-index j1 (remove-element-at-index j2 L))
 {assume L-small: length L \leq 2
   then have (remove-element-at-index\ j1\ (remove-element-at-index\ j2\ L)) = []
    unfolding remove-element-at-index.simps using assms by simp
   then have ?thesis using assms by auto
 } moreover {
   assume L-big: length L \geq 3
   then have length (remove-element-at-index j1 (remove-element-at-index j2 L))
    unfolding remove-element-at-index.simps using assms by auto
   {assume in-front: i < j1
    then have i-bound: i < length (take j2 L)
      using assms by simp
    have L!i = (take \ j1 \ L)!i
      using in-front assms by auto
    then have L!i \in set (take j1 L)
      using in-front assms
      by (metis length-take min-less-iff-conj nth-mem)
    then have Li-in: L!i \in set (take j1 (take j2 L))
      using assms by auto
    have set (take j1 (take j2 L @ drop (j2 + 1) L)) = set (take j1 (take j2 L))
      using assms(1) assms(2) by simp
    then have L!i \in set (take j1 (take j2 L @ drop (j2 + 1) L))
      using Li-in by blast
    then have ?thesis unfolding remove-element-at-index.simps
      by auto
   } moreover {
    assume in-middle: j1 < i \land i < j2
    then have i-len: i < length (take j2 L)
      using assms by auto
    then have Li-eq: L!i = (take \ j2 \ L)!i
```

```
by simp
     then have L!i \in set (take j2 \ L)
      by (metis \ \langle i < length \ (take \ j2 \ L) \rangle \ in-set-member \ index-of-L-in-L)
     have i-(j1+1) < length (drop (j1+1) (take j2 L @ drop (j2+1) L))
      using assms i-len in-middle by auto
     then have L!i = (drop (j1 + 1) (take j2 L))! (i-(j1+1))
      using assms i-len in-middle Li-eq by auto
     then have L!i \in set (drop (j1 + 1) (take j2 L))
         by (metis diff-less-mono i-len in-middle length-drop less-iff-succ-less-eq
nth-mem)
    then have ?thesis
      unfolding remove-element-at-index.simps by auto
   } moreover {
     assume in\text{-}back: j2 < i
     then have i-(j2+1) < length (drop (j2+1) L)
      using assms by auto
     then have Li\text{-}eq: L!i = (drop\ (j2 + 1)\ L)!(i-(j2+1))
      using assms in-back by auto
     then have L!i \in set (drop (j2 + 1) L)
      by (metis \langle i - (j2 + 1) \rangle \langle length (drop (j2 + 1) L) \rangle nth-mem)
     then have L!i \in set(drop\ (j1+1)\ (take\ j2\ L\ @\ drop\ (j2+1)\ L))
      using assms by auto
     then have ?thesis unfolding remove-element-at-index.simps
      by auto
   ultimately have ?thesis unfolding remove-element-at-index.simps
     using assms L-big by linarith
 ultimately show ?thesis by linarith
qed
lemma update-L-match:
 assumes WEST-regex-of-vars L num-var
 assumes match \pi L
 assumes h \in set (enum\text{-}pairs L)
 assumes check-simp (L!(fst\ h))\ (L!(snd\ h))
 shows match \pi (update-L \ L \ h \ num-var)
proof-
 obtain i where i-obt: i < length L \land match-regex \pi (L!i)
   using assms(2) unfolding match-def by metis
 have fst-le-snd: fst h < snd h
   using assms enum-pairs-fact by auto
 have h-bound: snd h < length L
   using assms enum-pairs-bound
   \mathbf{by} blast
 {assume in-simped: i = fst \ h \lor i = snd \ h
   let ?r1 = (L!(fst h))
   let ?r2 = (L!(snd h))
   have match-regex \pi (WEST-simp-trace (L ! fst h) (L ! snd h) num-var)
```

```
using WEST-simp-trace-correct-converse[of ?r1 ?r2 num-var]
    using assms unfolding WEST-regex-of-vars-def
   by (metis (mono-tags, lifting) WEST-simp-trace-correct-converse i-obt enum-pairs-bound
enum-pairs-fact in-simped order.strict-trans)
   then have ?thesis
    unfolding update-L.simps match-regex-def
   by (metis (no-types, lifting) WEST-or-correct (match-regex \pi (WEST-simp-trace
(L! fst h) (L! snd h) num-var) append.right-neutral append-eq-append-conv2 im-
possible-Cons le-eq-less-or-eq match-def nat-le-linear nth-append-length same-append-eq)
 } moreover {
   assume in-rest: i \neq fst \ h \land i \neq snd \ h
   have L!i \in set L
    using i-obt by simp
  have L!i \in set (remove-element-at-index (fst h) (remove-element-at-index (snd
h) L))
    using fst-le-snd h-bound i-obt in-rest
    using remove-element-at-index-fact by blast
   then have match \pi
    (remove-element-at-index (fst h) (remove-element-at-index (snd h) L))
    unfolding match-def using i-obt
    by (metis in-set-conv-nth)
   then have ?thesis unfolding update-L.simps match-def
    using WEST-or-correct match-def by blast
 ultimately show ?thesis by blast
qed
{f lemma} WEST-simp-helper-correct-converse:
 assumes WEST-regex-of-vars L num-vars
 assumes match \pi L
 assumes K = WEST-simp-helper L (enum-pairs L) i num-vars
 shows match \pi K
 using assms
 proof (induct length L arbitrary: K L i num-vars rule: less-induct)
   case less
   {assume *: length (enum-pairs L) \le i
    then have K = L
      using less(4)
      using WEST-simp-helper.simps[of L (enum-pairs L) i num-vars]
      by argo
    then have ?case
      using less(3)
      by blast
   } moreover {assume *: length (enum-pairs L) > i
     {assume **: \exists j. j < length (enum-pairs L) \land j \geq i \land check-simp (L! fst)
(enum-pairs L ! j))
           (L ! snd (enum-pairs L ! j))
     then obtain j-min where j-min-obt: j-min = Min \{j. j < length (enum-pairs \} \}
```

```
L) \land j \geq i \land check\text{-}simp\ (L ! fst\ (enum\text{-}pairs\ L\ !\ j))
            (L ! snd (enum-pairs L ! j))
        by blast
      have j-min-props: j-min < length (enum-pairs L) \land j-min \geq i \land check-simp
(L ! fst (enum-pairs L ! j-min))
            (L ! snd (enum-pairs L ! j-min))
        using j-min-obt Min-in
       by (metis (mono-tags, lifting) ** Collect-empty-eq finite-nat-set-iff-bounded
mem-Collect-eq)
      have K-eq: K = (let \ newL =
                   update-L \ L \ (enum-pairs \ L \ ! \ j-min)
                    num-vars
              in\ WEST\mbox{-}simp\mbox{-}helper\ newL
                 (enum\text{-}pairs\ newL)\ 0\ num\text{-}vars)
         using less(4) * ** WEST-simp-helper.simps[of L (enum-pairs L) j-min]
num-vars
        using WEST-simp-helper-can-simp
        by (metis (no-types, lifting) j-min-obt)
      let ?h = (enum\text{-}pairs \ L \ ! \ j\text{-}min)
      have cond1: length (update-L L (enum-pairs L!j-min) num-vars) < length
L
        using update-L-length[of ?h L num-vars] j-min-props
       by (metis diff-less enum-pairs-bound less-nat-zero-code less-one not-gr-zero
nth-mem)
         have cond2: WEST-regex-of-vars (update-L L (enum-pairs L! j-min)
num-vars) num-vars
        using update-L-preserves-num-vars[of L num-vars ?h K] less
        using j-min-props nth-mem update-L-preserves-num-vars by blast
      have cond3: match \pi (update-L L (enum-pairs L! j-min) num-vars)
        using update-L-match[OF\ less(2)\ less(3),\ of\ ?h]\ j-min-props
        by fastforce
      have ?case
        using less(1)[OF \ cond1 \ cond2, \ of \ K]
        using K-eq
        by (metis cond3)
    moreover {assume **: \neg(\exists j. j < length (enum-pairs L) \land j \geq i \land check-simp)
(L ! fst (enum-pairs L ! j))
            (L ! snd (enum-pairs L ! j)))
      then have K-eq: K = L
        using WEST-simp-helper-cant-simp less.prems(3)
        by presburger
      then have ?case
        using less(3)
      \mathbf{by} blast
     ultimately have ?case
      by blast
   }
```

```
ultimately show ?case
    by linarith
 \mathbf{qed}
3.7.5
        WEST-simp Correct
lemma simp-correct-forward:
 assumes WEST-regex-of-vars L num-vars
 assumes match \pi (WEST\text{-}simp L num\text{-}vars)
 shows match \pi L
 unfolding WEST-simp.simps using WEST-simp-helper-correct-forward assms
 by (metis WEST-simp.elims)
lemma simp-correct-converse:
 assumes WEST-regex-of-vars L num-vars
 assumes match \pi L
 shows match \pi (WEST\text{-}simp L num\text{-}vars)
 unfolding WEST-simp.simps using WEST-simp-helper-correct-converse assms
 by blast
lemma simp-correct:
 assumes WEST-regex-of-vars L num-vars
 shows match \pi (WEST\text{-}simp \ L \ num\text{-}vars) \longleftrightarrow match \pi \ L
 using simp-correct-forward simp-correct-converse assms
 by blast
      Correctness of WEST-and-simp/WEST-or-simp
3.8
\mathbf{lemma}\ \textit{WEST-and-simp-correct}:
 fixes \pi::trace
 fixes L1 L2:: WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 n
 assumes L2-of-num-vars: WEST-regex-of-vars L2 n
 shows match \pi L1 \wedge match \pi L2 \longleftrightarrow match \pi (WEST-and-simp L1 L2 n)
proof-
 show ?thesis
   using simp-correct[of\ WEST-and\ L1\ L2\ n\ \pi]\ assms\ WEST-and-correct[of\ L1\ n
   unfolding WEST-and-simp.simps
   using WEST-and-num-vars by blast
qed
lemma WEST-or-simp-correct:
 fixes \pi::trace
 fixes L1 L2:: WEST-regex
 assumes L1-of-num-vars: WEST-regex-of-vars L1 n
```

assumes L2-of-num-vars: WEST-regex-of-vars L2 n

```
shows match \pi L1 \vee match \pi L2 \longleftrightarrow match \pi (WEST-or-simp L1 L2 n) proof—
show ?thesis
using simp-correct[of L1@L2 n \pi]
using assms WEST-or-correct[of \pi L1 L2]
unfolding WEST-or-simps
using WEST-or-num-vars by blast
qed
```

3.9 Facts about the WEST future operator

```
lemma WEST-future-correct-forward:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
 assumes WEST-regex-of-vars L num-vars
 assumes WEST-num-vars F \leq num-vars
 assumes a \leq b
 assumes length \pi > (complen-mltl\ F) + b
 assumes match \pi (WEST\text{-}future \ L \ a \ b \ num\text{-}vars)
 shows \pi \models_m (F_m [a,b] F)
 using assms
proof(induct b-a arbitrary: \pi L F a b)
 case \theta
 then have a-eq-b: a = b by simp
 then have WEST-future L a b num-vars = shift L num-vars a
   using WEST-future.simps[of L a b num-vars] by simp
 then have match \pi (shift \ L \ num-vars \ a)
   using \theta by simp
 then have match-dropa-L: match (drop a \pi) L
   using shift-match[of a \pi L num-vars] 0 a-eq-b by auto
 have complen-mltl F \leq length (drop \ a \ \pi)
   using \theta(2)[of (drop \ a \ \pi)] \ \theta(6) a-eq-b complen-geq-one [of F] by simp
 then have semantics-mltl (drop a \pi) F
   using \theta(2)[of (drop \ a \ \pi)] match-dropa-L by blast
 then have \exists i. (a \leq i \land i \leq b) \land semantics\text{-mltl } (drop \ i \ \pi) \ F
   using a-eq-b by blast
 then show ?case unfolding semantics-mltl.simps
   using \theta(1, 6) a-eq-b complen-geq-one of F by simp
\mathbf{next}
 case (Suc \ x)
 then have b-asucx: b = a + (Suc \ x) by simp
 then have (WEST-future L a b num-vars) = WEST-or-simp (shift\ L\ num-vars)
b) (WEST-future L a (b-1) num-vars) num-vars
   using WEST-future.simps[of L a b num-vars]
  by (metis Suc.hyps(2) Suc.prems(4) add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
nat-less-le plus-1-eq-Suc zero-neq-one)
 then have (WEST-future L a b num-vars) = WEST-or-simp (shift\ L\ num-vars)
b) (WEST-future L a (a + x) num-vars) num-vars
```

```
 \mathbf{by} \ (metis\ add\text{-}diff\text{-}cancel\text{-}left'\ le\text{-}add1\ ordered\text{-}cancel\text{-}comm\text{-}monoid\text{-}diff\text{-}class.} diff\text{-}add\text{-}assoc
plus-1-eq-Suc)
  {assume match-head: match \pi (shift L num-vars b)
   then obtain i where match-regex \pi (shift L num-vars b! i)
     unfolding match-def by metis
   have match (drop b \pi) L
     using shift-match[of b \pi L num-vars] Suc(7) match-head by auto
   then have semantics-mltl (drop b \pi) F
     using Suc by simp
   then have \exists i. (a \leq i \land i \leq b) \land semantics\text{-mltl } (drop \ i \ \pi) \ F
     using Suc.prems(4) by auto
  } moreover {
   assume match-tail: match \pi (WEST-future L a (a + x) num-vars)
   have hyp1: x = b - 1 - a using Suc by simp
   have hyp2: (\Lambda \pi. complen-mltl\ F \leq length\ \pi \longrightarrow match\ \pi\ L = semantics-mltl
\pi F
     using Suc. prems by blast
   have hyp3: WEST-regex-of-vars L num-vars using Suc.prems by simp
   have hyp4: WEST-num-vars F \leq num-vars using Suc.prems by blast
   have hyp5: a \le b - 1 using Suc.prems Suc.hyps by auto
   have hyp6: complen-mltl F + (b - 1) \le length \pi using Suc. prems by simp
   have hyp7: match \pi (WEST-future L a (b-1) num-vars)
     using match-tail Suc.hyps(2)
     using b-asucx by fastforce
   have semantics-mltl \pi (Future-mltl a (a+x) F)
     using Suc.hyps(1)[of b-1 \ a \ F \ L \ \pi, \ OF \ hyp1 \ hyp2 \ hyp3 \ hyp4 \ hyp5 \ hyp6 \ hyp7]
     using b-asucx by simp
   then have \exists i. (a \leq i \land i \leq b) \land semantics\text{-mltl } (drop \ i \ \pi) \ F
     unfolding semantics-mltl.simps b-asucx by auto
  ultimately have \exists i. (a \leq i \land i \leq b) \land semantics\text{-mltl } (drop \ i \ \pi) \ F
   unfolding match-def
  by (metis Nat.add-diff-assoc Suc.prems(2) Suc.prems(6) WEST-future-num-vars
WEST-or-simp-correct shift-num-vars \langle WEST-future L a b num-vars = WEST-or-simp
(shift L num-vars b) (WEST-future L a (b-1) num-vars) num-vars \land match \pi
(WEST-future\ L\ a\ (a+x)\ num-vars) \Longrightarrow \exists\ i.\ (a\leq i\ \land\ i\leq b)\ \land\ semantics-mltl
(drop \ i \ \pi) \ F \land (match \ \pi \ (shift \ L \ num-vars \ b) \Longrightarrow \exists i. \ (a < i \land i < b) \land seman-
tics-mltl (drop i \pi) F > b-asucx diff-add-inverse le-add1 plus-1-eq-Suc)
  then show ?case
   using Suc unfolding semantics-mltl.simps by auto
qed
lemma WEST-future-correct-converse:
  assumes \Lambda \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
\pi F)
 assumes WEST-regex-of-vars L num-vars
```

using b-asucx

```
assumes WEST-num-vars F < num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl\ F) + b
 assumes \pi \models_m (Future\text{-}mltl\ a\ b\ F)
 shows match \pi (WEST-future L a b num-vars)
 using assms
\mathbf{proof}(induct\ b-a\ arbitrary:\ \pi\ L\ F\ a\ b)
 case \theta
 then have a-eq-b: a = b by simp
 then have west-future-aa: WEST-future L a b num-vars = shift L num-vars a
   using WEST-future.simps[of L a b num-vars] by simp
 have match (drop a \pi) L
   using assms(1)[of\ drop\ a\ \pi] assms complen-geq-one
  using 0.prems(1) 0.prems(5) 0.prems(6) a-eq-b le-antisym length-drop seman-
tics-mltl.simps(7) by auto
 then have match \pi (shift L num-vars a)
   using shift-match-converse \theta by auto
 then show ?case using west-future-aa by simp
next
 case (Suc \ x)
 then have b-asucx: b = a + (Suc \ x) by simp
 then have (WEST-future L a b num-vars) = WEST-or-simp (shift\ L\ num-vars)
b) (WEST-future L a (b-1) num-vars) num-vars
   using WEST-future.simps[of L a b num-vars]
   by (metis Suc.hyps(2) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq' linorder-le-less-linear)
 then have (WEST-future L a b num-vars) = WEST-or-simp (shift\ L\ num-vars
b) (WEST-future L a (a + x) num-vars) num-vars
   using b-asucx
   by (metis add-Suc-right diff-Suc-1)
 {assume sat-b: semantics-mltl (drop b \pi) F
   then have match (drop b \pi) L using Suc by simp
   then have match \pi (shift L num-vars b)
    using shift-match Suc
    by (metis add.commute add-leD1 shift-match-converse)
   then have ?case using WEST-future.simps[of L a b num-vars] Suc
      \mathbf{by} \ (\textit{metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct} \\
shift-num-vars \land WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b-1) num-vars) num-vars> b-asucx le-add1 plus-1-eq-Suc)
 } moreover {
   assume sat-before-b: semantics-mltl \pi (Future-mltl a (a+x) F)
   have match \pi (WEST-future L a (a + x) num-vars)
    using Suc.hyps(1)[of a+x \ a \ F \ L \ \pi] Suc \ sat-before-b \ by \ simp
   have ?case
    using WEST-future.simps[of L a b num-vars] Suc
     by (metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct
shift-num-vars \land WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b-1) num-vars) num-vars> \langle match \pi (WEST\text{-future } L \ a) \rangle
(a + x) num-vars \rightarrow diff-add-inverse le-add1 plus-1-eq-Suc
```

```
ultimately show ?case using b-asucx
    by (metis (no-types, lifting) Suc.prems(6) add-Suc-right le-SucE le-antisym
semantics-mltl.simps(7))
ged
lemma WEST-future-correct:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
 assumes WEST-regex-of-vars L num-vars
 assumes WEST-num-vars F \leq num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl\ F) + b
 shows match \pi (WEST-future L a b num-vars) \longleftrightarrow
               semantics-mltl \pi (Future-mltl a b F)
 using assms WEST-future-correct-forward WEST-future-correct-converse by blast
        Facts about the WEST global operator
{f lemma} WEST-global-correct-forward:
 assumes \wedge \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
 assumes WEST-regex-of-vars L num-vars
 assumes WEST-num-vars F \leq num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl\ F) + b
 assumes match \pi (WEST-global \ L \ a \ b \ num-vars)
 shows semantics-mltl \pi (Global-mltl a b F)
 using assms
proof(induct b-a arbitrary: \pi L F a b)
 case \theta
 then have a-eq-b: a = b by simp
 then have WEST-global L a b num-vars = shift L num-vars a
   using assms WEST-global.simps[of L a b num-vars] by auto
 then have match \pi (shift L num-vars a) using \theta by simp
 then have match (drop a \pi) L
   using shift-match[of a \pi L num-vars] \theta by auto
 then have semantics-mltl (drop a \pi) F
   using \theta(2)[of\ (drop\ a\ \pi)] complen-geq-one[of F] \theta a-eq-b by auto
 then show ?case using \theta
   unfolding semantics-mltl.simps by auto
next
 case (Suc \ x)
 then have b-asucx: b = a + (Suc \ x) by simp
 then have (WEST-global\ L\ a\ b\ num-vars) = WEST-and-simp\ (shift\ L\ num-vars
b) (WEST-global L a (a + x) num-vars) num-vars
   using WEST-global.simps[of L a b num-vars]
  by (metis add-diff-cancel-left' cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
```

 $less-eq-Suc-le \ not-less-eq-eq \ ordered-cancel-comm-monoid-diff-class. diff-add-assoc \ plus-1-eq-Suc \ zero-eq-add-iff-both-eq-0)$

have nv1: WEST-regex-of-vars (shift L num-vars b) num-vars

```
using shift-num-vars Suc by blast
 have nv2: WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
   using WEST-global-num-vars Suc\ b-asucx
   by (metis le-iff-add)
 have match-h: match \pi (shift L num-vars b)
   using WEST-and-correct-converse nv1 nv2 Suc
  by (metis WEST-and-simp-correct \forall WEST-global L a b num-vars = WEST-and-simp
(shift\ L\ num-vars\ b)\ (WEST-global\ L\ a\ (a+x)\ num-vars)\ num-vars))
 then have match (drop b \pi) L
   using shift-match Suc
   using add-leD2 by blast
 then have sat-b: semantics-mltl (drop b \pi) F using Suc by auto
 have match-t: match \pi (WEST-global L a (a + x) num-vars)
   using Suc.hyps(1)[of a+x \ a \ F \ L \ \pi] \ Suc \ b-asucx
  by (metis WEST-and-simp-correct \forall WEST-global L a b num-vars = WEST-and-simp
(shift\ L\ num-vars\ b)\ (WEST-global\ L\ a\ (a+x)\ num-vars)\ num-vars > nv1\ nv2)
 then have semantics-mltl \pi (Global-mltl a (a+x) F)
   using Suc by fastforce
 then have sat-before-b: \forall i. \ a \leq i \land i \leq a + x \longrightarrow semantics-mltl \ (drop \ i \ \pi) \ F
   using Suc unfolding semantics-mltl.simps by auto
 have \forall i. \ a \leq i \land i \leq b \longrightarrow semantics-mltl\ (drop\ i\ \pi)\ F
   using sat-b sat-before-b unfolding semantics-mltl.simps
   by (metis add-Suc-right b-asucx le-antisym not-less-eq-eq)
 then show ?case using Suc
   unfolding semantics-mltl.simps by blast
qed
lemma WEST-global-correct-converse:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
 assumes WEST-regex-of-vars L num-vars
 assumes WEST-num-vars F \leq num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl\ F) + b
 assumes semantics-mltl \pi (Global-mltl a b F)
 shows match \pi (WEST-global L \ a \ b \ num-vars)
 using assms
using assms
proof(induct\ b-a\ arbitrary:\ \pi\ L\ F\ a\ b)
 case \theta
 then have a-eq-b: a = b by simp
 then have west-global-aa: WEST-global L a b num-vars = shift L num-vars a
   using WEST-global.simps[of L a b num-vars] by simp
```

```
have match (drop a \pi) L
   using assms(1)[of\ drop\ a\ \pi]\ assms\ complen-geq-one
  by (metis (mono-tags, lifting) 0.prems(1) 0.prems(5) 0.prems(6) a-eq-b add-le-imp-le-diff
drop-all\ le-trans\ length-0-conv\ length-drop\ not-one-le-zero\ semantics-mltl.simps(8))
 then have match \pi (shift L num-vars a)
   using shift-match-converse 0 by auto
 then show ?case using west-global-aa by simp
next
 case (Suc \ x)
 then have b-asucx: b = a + (Suc \ x) by simp
 then have west-global: (WEST\text{-}global\ L\ a\ b\ num\text{-}vars) = WEST\text{-}and\text{-}simp\ (shift
L \ num\text{-}vars \ b) (WEST-global L \ a \ (a + x) \ num\text{-}vars) num\text{-}vars
   using WEST-global.simps[of L a b num-vars]
  by (metis add-diff-cancel-left' add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq less-eq-Suc-le not-less-eq-eq ordered-cancel-comm-monoid-diff-class. diff-add-assoc
plus-1-eq-Suc)
 have sat-b: semantics-mltl (drop b \pi) F
   using Suc unfolding semantics-mltl.simps by auto
 then have match (drop b \pi) L using Suc by simp
 then have match-head: match \pi (shift L num-vars b)
   using shift-match Suc
   by (metis add.commute add-leD1 shift-match-converse)
 have sat-before-b: semantics-mltl \pi (Future-mltl a (a+x) F)
   using Suc unfolding semantics-mltl.simps by auto
 have match-tail: match \pi (WEST-global L a (a + x) num-vars)
   using Suc.hyps(1)[of a+x \ a \ F \ L \ \pi] Suc sat-before-b
   by (simp add: b-asucx nle-le not-less-eq-eq)
 have nv1: WEST-regex-of-vars (shift L num-vars b) num-vars
   using shift-num-vars Suc by blast
 have nv2: WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
   using WEST-global-num-vars Suc b-asucx
   by (metis le-iff-add)
 show ?case using b-asucx match-head match-tail
   using west-global WEST-and-simp-correct nv1 nv2 by metis
qed
lemma WEST-global-correct:
 assumes \wedge \pi. (length \pi \geq complen-mltl\ F \longrightarrow (match\ \pi\ L \longleftrightarrow semantics-mltl
\pi F)
 assumes WEST-regex-of-vars L num-vars
 assumes WEST-num-vars F \leq num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl\ F) + b
 shows match \pi (WEST-global L a b num-vars) \longleftrightarrow
```

3.11 Facts about the WEST until operator

```
lemma WEST-until-correct-forward:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
\pi F1))
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
  assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 \leq num-vars
 assumes WEST-num-vars F2 \leq num-vars
 assumes a \leq b
 assumes length \pi \geq complen\text{-}mltl (Until\text{-}mltl F1 a b F2)
 assumes match \pi (WEST-until L1 L2 \ a \ b \ num-vars)
 shows semantics-mltl \pi (Until-mltl F1 a b F2)
  using assms
proof(induct b-a arbitrary: \pi L1 L2 F1 F2 a b)
 case \theta
  then have a-eq-b: b = a by simp
 have len-xi: complen-mltl F2 + a \leq length \pi
   using 0 complen-geq-one by auto
 have until-aa: WEST-until L1 L2 a b num-vars = WEST-global L2 a a num-vars
   using WEST-until.simps[of L1 L2 a b num-vars] a-eq-b by auto
  then have WEST-global L2 a a num-vars = shift L2 num-vars a by auto
  then have match \pi (shift L2 num-vars a)
   using until-aa 0 by argo
  then have match (drop a \pi) L2
   using shift-match[of a \pi L2 num-vars] 0 by simp
  then have semantics-mltl (drop a \pi) F2 using \theta by auto
  then have sem-until: (\exists i. (a \leq i \land i \leq a) \land a)
       semantics-mltl (drop i \pi) F2 \wedge
        (\forall j. \ a \leq j \land j < i \longrightarrow semantics-mltl \ (drop \ j \ \pi) \ F1))
 have max \ (complen-mltl \ F1 - 1) \ (complen-mltl \ F2) \ge 1
   using complen-geq-one[of F2] by auto
  then have a < length \pi
   using \theta(9) using a-eq-b
   unfolding complen-mltl.simps
   by linarith
  then show ?case using sem-until
   unfolding a-eq-b semantics-mltl.simps
   by blast
\mathbf{next}
  case (Suc \ x)
 then have b-asucx: b = a + (Suc \ x) by simp
 have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2 a
```

```
(a + x) num-vars)
           (WEST-and-simp\ (WEST-global\ L1\ a\ (a+x)\ num-vars)\ (WEST-global\ L1\ a\ (a+x)\ num-vars)
L2 b b num-vars) num-vars) num-vars
   using WEST-until.simps[of L1 L2 a b num-vars] Suc b-asucx
    by (metis add-Suc-right cancel-comm-monoid-add-class.diff-cancel diff-Suc-1
less-add-Suc1 n-not-Suc-n zero-diff)
 let ?rec = WEST-until L1 L2 a (a + x) num-vars
 let ?base = WEST-and-simp (WEST-global L1 \ a \ (a + x) \ num-vars) (WEST-global
L2 b b num-vars) num-vars
 have sem-until: (\exists i. (a \leq i \land i \leq b) \land
       semantics-mltl (drop i \pi) F2 \wedge
       (\forall j. \ a \leq j \land j < i \longrightarrow semantics-mltl \ (drop \ j \ \pi) \ F1))
 proof-
   {assume match-base: match \pi ?base
     have nv1: WEST-regex-of-vars (WEST-global L2 b b num-vars) num-vars
       using WEST-qlobal-num-vars[of L2 num-vars b b] Suc by simp
       have nv2: WEST-regex-of-vars (WEST-global L1 a (a + x) num-vars)
num-vars
       using WEST-global-num-vars of L1 num-vars a a+x Suc by auto
     have match \pi (WEST-global L2 \ b \ b \ num-vars)
       using match-base WEST-and-simp-correct Suc nv1 nv2 by blast
     then have match \pi (shift L2 num-vars b)
       using WEST-global.simps[of L2 b b num-vars] by simp
     then have cond1: semantics-mltl (drop b \pi) F2
       using shift-match[of b \pi L2 num-vars] Suc by simp
     have match \pi (WEST-global L1 \ a \ (a + x) \ num-vars)
       using match-base WEST-and-simp-correct Suc nv1 nv2 by blast
     then have semantics-mltl \pi (Global-mltl a (a+x) F1)
       using WEST-global-correct of F1 L1 num-vars a a+x \pi Suc by auto
     then have \forall i. \ a \leq i \land i \leq a + x \longrightarrow semantics\text{-mltl (drop } i \ \pi) \ F1
       using Suc by auto
     then have cond2: \forall j. \ a \leq j \land j < b \longrightarrow semantics-mltl (drop <math>j \pi) F1
       using b-asucx by auto
     have semantics-mltl (drop b \pi) F2 \wedge
        (\forall j. \ a \leq j \land j < b \longrightarrow semantics\text{-mltl} \ (drop \ j \ \pi) \ F1)
       using cond1 cond2 by auto
     then have ?thesis using Suc by blast
   } moreover {
     assume match-rec: match \pi ?rec
     then have semantics-mltl \pi (Until-mltl F1 a (a+x) F2)
       using Suc.hyps(1)[of a+x \ a \ F1 \ L1 \ F2 \ L2 \ \pi] Suc by auto
     then obtain i where i-obt: (a \le i \land i \le (a+x)) \land
      semantics-mltl (drop i \pi) F2 \wedge (\forall j. \ a \leq j \wedge j < i \longrightarrow semantics-mltl (drop i)
j\pi) F1)
       by auto
     have ?thesis using i-obt b-asucx by auto
```

```
ultimately show ?thesis using WEST-until.simps[of L1 L2 a b num-vars] Suc
    using WEST-or-simp-correct
    L2\ a\ (a+x)\ num\text{-}vars)\ (WEST\text{-}and\text{-}simp\ (WEST\text{-}global\ L1\ a\ (a+x)\ num\text{-}vars)
(WEST-global L2 b b num-vars) num-vars) num-vars)
   by (metis (no-types, lifting) WEST-and-simp-num-vars WEST-global-num-vars
WEST-until-num-vars le-add1 order-refl)
 qed
 have a < length \pi
   using Suc(10) using b-asucx complen-geq-one by auto
 then show ?case using sem-until
   unfolding semantics-mltl.simps by auto
qed
lemma WEST-until-correct-converse:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
 assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 \leq num-vars
 assumes WEST-num-vars F2 \leq num-vars
 assumes a \leq b
 assumes length \pi \geq (complen-mltl \ (Until-mltl \ F1 \ a \ b \ F2))
 assumes semantics-mltl \pi (Until-mltl F1 a b F2)
 shows match \pi (WEST-until L1 L2 a b num-vars)
 using assms
proof(induct b-a arbitrary: \pi L1 L2 F1 F2 a b)
 case \theta
 then have a-eq-b: b = a using \theta by simp
 then have semantics-mltl (drop a \pi) F2
   using assms unfolding semantics-mltl.simps
   by (metis\ 0.prems(9)\ le-antisym\ semantics-mltl.simps(9))
 then have match (drop a \pi) L2
   using \theta by simp
 then have match \pi (WEST-global L2 a a num-vars)
   using shift-match-converse of a \pi L2 num-vars 0 by auto
  then show ?case using WEST-until.simps[of L1 L2 a a num-vars] a-eq-b by
simp
next
 case (Suc \ x)
 have max (complen-mltl F1 - 1) (complen-mltl F2) \geq 1
   using complen-geq-one[of F2] by auto
 then have b-lt: b \leq length \pi using Suc.prems(8) unfolding complen-mltl.simps
   by linarith
 have b-asucx: b = a + (Suc \ x) using Suc \ by \ simp
```

```
{assume sat-b: semantics-mltl (drop b \pi) F2 \land
                (\forall j. \ a \leq j \land j < b \longrightarrow semantics-mltl \ (drop \ j \ \pi) \ F1)
     have match (drop b \pi) L2
        using sat-b Suc by auto
     then have match \pi (shift L2 num-vars b)
        using shift-match[of b \pi L2] shift-match-converse[OF b-lt] by auto
     then have match-L2: match \pi (WEST-global L2 b b num-vars)
        using WEST-global.simps[of L2 b b num-vars] by simp
     have semantics-mltl \pi (Global-mltl a (b-1) F1)
        using sat-b Suc unfolding semantics-mltl.simps by auto
     then have match-L1: match \pi (WEST-global L1 a (b-1) num-vars)
        using WEST-global-correct[of F1 L1 num-vars a b-1 \pi] Suc by auto
    have nv1: WEST-regex-of-vars (WEST-global L1 a (b-1) num-vars) num-vars
        using WEST-global-num-vars [of L1 num-vars a b-1] Suc by auto
     have nv2: WEST-regex-of-vars ((WEST-global L2 b b num-vars)) num-vars
        using WEST-global-num-vars[of L2 num-vars b b] Suc by auto
    have match \pi (WEST-and-simp (WEST-global L1 a (b-1) num-vars) (WEST-glob
L2 b b num-vars) num-vars)
        using match-L2 match-L1 nv1 nv2 WEST-and-simp-correct by blast
     then have ?case
         using WEST-until.simps[of L1 L2 a b num-vars]
      by (metis Suc.prems(3) Suc.prems(4) Suc.prems(7) WEST-and-simp-num-vars
WEST-or-simp-correct WEST-until-num-vars (semantics-mltl \pi (Global-mltl a (b
(-1) F1) (-1) le-antisym linorder-not-less match-L2 nv1 nv2 semantics-mltl.simps(8))
  } moreover {
     assume \neg(semantics\text{-}mltl\ (drop\ b\ \pi)\ F2\ \land
                (\forall j. \ a \leq j \land j < b \longrightarrow semantics\text{-mltl} (drop \ j \ \pi) \ F1))
     then have sab-before-b: (\exists i. (a \leq i \land i \leq (a+x)) \land
             semantics-mltl (drop i \pi) F2 \wedge
             (\forall j. \ a \leq j \land j < i \longrightarrow semantics-mltl \ (drop \ j \ \pi) \ F1))
        using Suc(11) b-asucx unfolding semantics-mltl.simps
        by (metis add-Suc-right le-antisym not-less-eq-eq)
     then have semantics-mltl \pi (Until-mltl F1 a (b-1) F2)
        using Suc b-asucx
        unfolding semantics-mltl.simps by auto
     then have match-rec: match \pi (WEST-until L1 L2 a (b-1) num-vars)
         using Suc.hyps(1)[of b-1 \ a \ F1 \ L1 \ F2 \ L2 \ \pi] \ Suc by auto
      have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2
a (b - 1) num-vars
                       (WEST-and-simp (WEST-global L1 a (b-1) num-vars)
                           (WEST-global L2 b b num-vars) num-vars)
                       num-vars
         using WEST-until.simps[of L1 L2 a b num-vars] Suc
        by (metis add-eq-self-zero b-asucx nat.discI nless-le)
     then have ?case
        using match-rec Suc WEST-or-simp-correct
```

```
by (metis WEST-and-simp-num-vars WEST-qlobal-num-vars WEST-until-num-vars
\langle semantics\text{-}mltl \ \pi \ (Until\text{-}mltl \ F1 \ a \ (b-1) \ F2) \rangle \ eq\text{-}imp\text{-}le \ semantics\text{-}mltl.simps(9))
 ultimately show ?case by blast
ged
lemma WEST-until-correct:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
 assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 < num-vars
 assumes WEST-num-vars F2 < num-vars
 assumes a \leq b
 assumes length \pi \geq complen-mltl (Until-mltl F1 a b F2)
 shows match \pi (WEST-until L1 L2 a b num-vars) \longleftrightarrow
                semantics-mltl \pi (Until-mltl F1 a b F2)
  \mathbf{using} \ \ WEST\text{-}until\text{-}correct\text{-}forward[OF \ assms(1) \ assms(2) \ assms(3) \ assms(4)
assms(5) \ assms(6) \ assms(7) \ assms(8)
   WEST-until-correct-converse [OF assms(1) assms(2) assms(3) assms(4) assms(5)
assms(6) \ assms(7) \ assms(8)
 by blast
         Facts about the WEST release Operator
3.12
lemma WEST-release-correct-forward:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
\pi F1)
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
 assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 \leq num-vars
 assumes WEST-num-vars F2 \leq num-vars
 assumes a-leq-b: a < b
 assumes len: length \pi \geq complen\text{-}mltl (Release-mltl F1 a b F2)
 assumes match \pi (WEST\text{-}release L1 L2 a b num-vars)
  shows semantics-mltl \pi (Release-mltl F1 a b F2)
proof-
  {assume match-base: match \pi (WEST-global L2 a b num-vars)
   {assume *: a = 0 \land b = 0
     then have WEST-global L2 a b num-vars = L2
       using WEST-global.simps pad-zero by simp
     then have matchL2: match \pi L2
       using match-base by auto
     have complen-mltl F2 < length \pi
```

```
using assms(8) by auto
     then have (semantics-mltl \pi F2)
      using matchL2 \ assms(2)[of \ \pi] *
      by blast
     then have ?thesis using * by simp
   } moreover {assume *: b > 0
   then have semantics-mltl \pi (Global-mltl a b F2)
     using match-base WEST-global-correct of F2 L2 num-vars a b \pi assms by
auto
   then have \forall i. \ a \leq i \land i \leq b \longrightarrow semantics\text{-mltl } (drop \ i \ \pi) \ F2
       unfolding semantics-mltl.simps using assms * add-cancel-right-left com-
plen-geq-one le-add2 le-trans max-nat.neutr-eq-iff nle-le not-one-le-zero
     by (smt (verit, best) add-diff-cancel-left' complen-mltl.simps(9) diff-is-0-eq')
   then have ?thesis unfolding semantics-mltl.simps using assms by blast
  } ultimately have ?thesis using a-leq-b by blast
} moreover {
  assume no-match-base: match \pi (WEST-release-helper L1 L2 a (b-1) num-vars)
\wedge a < b
   have a-le-b: a < b using no-match-base by simp
  have no-match: match \pi (WEST-release-helper L1 L2 a (b-1) num-vars) using
no-match-base by blast
   have (\exists j \ge a. j \le b - 1 \land
           semantics-mltl\ (drop\ j\ \pi)\ F1\ \land
           (\forall k. \ a \leq k \land k \leq j \longrightarrow semantics\text{-mltl}\ (drop\ k\ \pi)\ F2))
     using assms a-le-b no-match
   proof(induct b-a-1 arbitrary: \pi L1 L2 F1 F2 a b)
     case \theta
     have max (complen-mltl F1 - 1) (complen-mltl F2) \ge 0
      by force
     then have a-leq: a \leq length \pi
       using \theta(8-9) unfolding complen-mltl.simps
     have b-aplus1: b = a+1 using \theta by presburger
     then have match-rec: match \pi (WEST-release-helper L1 L2 a a num-vars)
    using \theta(10) using WEST-release.simps of L1 L2 a b num-vars WEST-or-correct
      by (metis diff-add-inverse2)
       then have match \pi (WEST-and-simp (WEST-global L1 a a num-vars)
(WEST-global L2 a a num-vars) num-vars)
       using 0 WEST-release-helper.simps by metis
    then have match \pi (WEST-global L1 \ a \ a \ num-vars) \land match \pi (WEST-global L1 \ a \ num-vars) \land match \pi (WEST-global L1 \ a \ num-vars)
L2 a a num-vars)
      using WEST-and-simp-correct \theta
      using WEST-global-num-vars[of L1 num-vars a a] WEST-global-num-vars[of
L2 num-vars \ a \ a
      by blast
     then have match \pi (shift L1 num-vars a) \wedge match \pi (shift L1 num-vars a)
      by auto
     then have match-L1L2: match (drop a \pi) L1 \wedge match (drop a \pi) L2
```

```
using shift-match 0 a-leq
      by (metis WEST-global.simps (match \pi (WEST-global L1 a a num-vars) \wedge
match \pi (WEST-global L2 \ a \ a \ num-vars))
    have b-a+max (complen-mltl F1-1) (complen-mltl F2) \leq length (drop
a\pi
      using \theta(9) unfolding complen-mltl.simps using \theta(1, 8) by auto
     then have b-a+complen-mltl\ F1-1\leq length\ (drop\ a\ \pi)
      unfolding complen-mltl.simps using \theta(1) by auto
     then have complen-mltl F1 \leq length (drop \ a \ \pi)
      using \theta(1) complen-geq-one[of F1]
      by (simp add: b-aplus1)
      then have F1-equiv: semantics-mltl (drop a \pi) F1 = match \pi (shift L1
num-vars a)
      using \theta
       using \langle match \ \pi \ (shift \ L1 \ num-vars \ a) \land match \ \pi \ (shift \ L1 \ num-vars \ a) \rangle
match-L1L2 by blast
    have b-a+max (complen-mltl F2-1) (complen-mltl F2) \leq length (drop
a\pi
      using \theta(9) unfolding complen-mltl.simps using \theta(1, 8) by auto
     then have b - a + complen-mltl F2 \leq length (drop a \pi)
      unfolding complen-mltl.simps using \theta(1) by auto
     then have complen-mltl F2 \leq length (drop \ a \ \pi)
      using \theta(1) complen-geq-one[of F1]
      by (simp add: b-aplus1)
      then have F2-equiv: semantics-mltl (drop a \pi) F2 = match \pi (shift L2
num-vars a)
      using 0 a-leq match-L1L2 shift-match-converse by blast
     have semantics-mltl (drop a \pi) F1 \wedge semantics-mltl (drop a \pi) F2
      using F1-equiv F2-equiv match-L1L2
      using a-leq shift-match-converse by blast
     then show ?case using b-aplus1 by auto
     case (Suc \ x)
     then have b-aplus2: b = a+x+2 by linarith
      then have match-rec: match \pi (WEST-release-helper L1 L2 a (a+x+1)
num-vars)
      using WEST-release.simps[of L1 L2 a a+x+2 num-vars] WEST-or-correct
Suc
      by (metis Suc-1 Suc-eq-plus1 add-Suc-shift add-diff-cancel-right')
     have west-release-helper: WEST-release-helper L1 L2 a (a+x+1) num-vars
= WEST-or-simp (WEST-release-helper L1 L2 a (a + x) num-vars)
                (WEST-and-simp\ (WEST-global\ L2\ a\ (a\ +\ x\ +\ 1)\ num-vars)
(WEST-global\ L1\ (a+x+1)\ (a+x+1)\ num-vars)\ num-vars)\ num-vars
      using WEST-release-helper.simps[of L1 L2 a a+x+1 num-vars]
        \mathbf{by}\ (\mathit{metis}\ \mathit{add.commute}\ \mathit{add-diff-cancel-right'}\ \mathit{less-add-Suc1}\ \mathit{less-add-one}
not-add-less1 plus-1-eq-Suc)
     let ?rec = WEST-release-helper L1 L2 a (a + x) num-vars
     let ?base = WEST-and-simp (WEST-global L2 a (a + x + 1) num-vars)
(WEST-global L1 (a + x + 1) (a + x + 1) num-vars) num-vars
```

```
have match-rec-or-base: match \pi ?rec \vee match \pi ?base
         {\bf using}\ WEST-or-simp-correct\ WEST-release-helper-num-vars\ WEST-and-simp-num-vars\ WEST-and-simp
 WEST-global-num-vars
         by (metis\ (mono-tags,\ lifting)\ Suc.prems(3)\ Suc.prems(4)\ ab-semigroup-add-class.add-ac(1)
eq-imp-le le-add1 match-rec west-release-helper)
          have \exists j \geq a. j \leq a+x+1 \land
                    semantics-mltl (drop j \pi) F1 \land (\forall k. \ a \leq k \land k \leq j \longrightarrow semantics-mltl
(drop \ k \ \pi) \ F2)
         proof-
                   {assume match-rec: match \pi (WEST-release-helper L1 L2 a (a + x)
num-vars)
                 have x-is: x = a + x + 1 - a - 1
                   by auto
                 have a-leq: a \le a + x + 1
                    by simp
                 have a-lt: a < a + x + 1
                   bv auto
               have complen: complen-mltl (Release-mltl F1 a (a + x + 1) F2) \leq length
\pi
                    using Suc(10) Suc(2) by simp
                 have sum: a + x + 1 = b - 1
                    using Suc(2) by auto
                    have important-match: match \pi (WEST-release-helper L1 L2 a (b-2)
num-vars)
                    using match-rec sum b-aplus2 by simp
                   have match \pi (WEST-or-simp (WEST-global L2 a (b-1) num-vars)
(WEST-release-helper L1 L2 a (b-2) num-vars) num-vars)
                    using important-match b-aplus2
                       \mathbf{using} \ \mathit{WEST-or-simp-correct}[\mathit{of} \ \mathit{WEST-global} \ \mathit{L2} \ \mathit{a} \ (\mathit{b} \ - \ \mathit{1}) \ \mathit{num-vars}
num-vars WEST-release-helper L1 L2 a (b-2) num-vars \pi
              by (metis\ Suc.prems(3)\ Suc.prems(4)\ WEST-global-num-vars\ WEST-release-helper-num-vars
a-leq diff-add-inverse2 le-add1 sum)
             then have match1: match \pi (WEST-release L1 L2 a (a + x + 1) num-vars)
                    unfolding WEST-release.simps
                    using b-aplus2 sum
                    by (metis (full-types) Suc-1 a-lt diff-diff-left plus-1-eq-Suc)
                 have match2: match \pi (WEST-release-helper L1 L2 a (a + x + 1 - 1)
num-vars)
                    using important-match b-aplus2 by auto
                 have \exists j \geq a. j \leq a + x \land
                   semantics-mltl (drop j \pi) F1 \land (\forall k. \ a \leq k \land k \leq j \longrightarrow semantics-mltl
(drop \ k \ \pi) \ F2)
                   \mathbf{using} \ \mathit{Suc.hyps}(1) [\mathit{OF} \ \mathit{x-is} \ \mathit{Suc}(3) \ \mathit{Suc}(4) \ \mathit{Suc}(5) \ \mathit{Suc}(6) \ \mathit{Suc}(7) \ \mathit{Suc}(8)
a-leq complen - a-lt ]
                    match1\ match2
                    by (metis add-diff-cancel-right')
                 then have ?case using b-aplus2 by auto
              } moreover {
                 assume match-base: match \pi (WEST-and-simp (WEST-global L2 a (a +
```

```
x + 1) num-vars)
                           (WEST-global L1 (a + x + 1) (a + x + 1) num-vars)
num-vars)
        have match \pi (WEST-global L2 \ a \ (a + x + 1) \ num-vars)
         using match-base WEST-and-simp-correct WEST-global-num-vars
       by (metis Suc.prems(3) Suc.prems(4) add.commute eq-imp-le less-add-Suc1
order-less-le plus-1-eq-Suc)
        then have semantics-mltl \pi (Global-mltl a (a + x + 1) F2)
         using WEST-global-correct[of F2 L2 num-vars a a + x + 1 \pi]
         using Suc.prems(2, 4, 6, 8) Suc.hyps(2) by simp
       then have fact2: (\forall k. \ a \leq k \land k \leq (a + x + 1) \longrightarrow semantics\text{-mltl } (drop
k \pi) F2)
         unfolding semantics-mltl.simps using Suc.prems(8, 10)
         unfolding complen-mltl.simps by simp
        have match \pi (WEST-global L1 (a + x + 1) (a + x + 1) num-vars)
         using match-base WEST-and-simp-correct WEST-global-num-vars
       by (metis Suc.prems(3) Suc.prems(4) add.commute eq-imp-le less-add-Suc1
order-less-le plus-1-eq-Suc)
        then have match \pi (shift L1 num-vars (a + x + 1))
           using WEST-global.simps of L1 a + x + 1 a + x + 1 num-vars by
metis
        then have match (drop (a + x + 1) \pi) L1
         using shift-match[of a + x + 1 \pi L1 num-vars]
          using Suc.prems(8) unfolding complen-mltl.simps using b-aplus2 by
simp
        then have fact1: semantics-mltl (drop (a + x + 1) \pi) F1
         using Suc.prems(1)[of\ drop\ (a+x+1)\ \pi]
          using Suc.prems(8) unfolding complen-mltl.simps using b-aplus2 by
auto
        have ?case using b-aplus2 fact1 fact2
      by (smt\ (verit)\ Suc.hyps(2)\ Suc.prems(10)\ Suc-diff-Suc\ ab-semigroup-add-class.add-ac(1)
add.commute add-diff-cancel-left' antisym-conv1 le-iff-add order-less-imp-le plus-1-eq-Suc)
      }
      ultimately show ?thesis using match-rec-or-base
      by (smt (verit, best) Suc.hyps(2) Suc-eq-plus1 add.assoc diff-right-commute
le-trans ordered-cancel-comm-monoid-diff-class.add-diff-inverse)
    aed
    then show ?case using b-aplus2 by simp
   qed
   then have ?thesis unfolding semantics-mltl.simps by auto
 }
 ultimately show ?thesis using WEST-release.simps assms(9)
  by (smt (verit, ccfv-SIG) WEST-global-num-vars WEST-or-simp-correct WEST-release-helper-num-vars
a-leq-b add-leD2 add-le-cancel-right assms(3) assms(4) diff-add less-iff-succ-less-eq)
qed
```

lemma WEST-release-correct-converse:

```
assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
 assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 \leq num-vars
 assumes WEST-num-vars F2 \leq num-vars
 assumes a \leq b
 assumes length \pi \geq complen-mltl (Release-mltl F1 a b F2)
 assumes semantics-mltl \pi (Release-mltl F1 a b F2)
 shows match \pi (WEST-release L1 L2 a b num-vars)
proof-
 have len-xi: a < length \pi
   using assms(7, 8) unfolding complen-mltl.simps
  by (metis (no-types, lifting) add-leD1 complen-qeq-one diff-add-inverse diff-is-0-eq'
le-add-diff-inverse le-neq-implies-less le-zero-eq less-numeral-extra(4) less-one max-nat.eq-neutr-iff)
  {assume case1: \forall i. \ a \leq i \land i \leq b \longrightarrow semantics\text{-mltl (drop } i \pi) \ F2
   then have match \pi (WEST-global L2 a b num-vars)
     using WEST-global-correct-converse assms by fastforce
   then have ?thesis unfolding WEST-release.simps
     using WEST-or-simp-correct
    by (smt (verit) WEST-global-num-vars WEST-release-helper-num-vars add-leE
add-le-cancel-right assms(3) assms(4) diff-add less-iff-succ-less-eq)
  } moreover {
   assume case2: \exists j \geq a. j \leq b - 1 \land
          semantics\text{-}mltl\ (drop\ j\ \pi)\ F1\ \land
          (\forall k. \ a \leq k \land k \leq j \longrightarrow semantics\text{-mltl } (drop \ k \ \pi) \ F2)
   then obtain j where obtain-j: a \leq j \wedge j \leq b-1 \wedge j
          semantics-mltl (drop j \pi) F1 \wedge
          (\forall k. \ a \leq k \land k \leq j \longrightarrow semantics\text{-}mltl \ (drop \ k \ \pi) \ F2)
     by blast
     assume a-eq-b: a = b
     then have ?thesis using case2
       using calculation le-antisym by blast
   } moreover {
     assume a-le-b: a < b
     have semantics-mltl \pi (Global-mltl j j F1) using obtain-j
       by auto
     have (complen-mltl\ F1-1)+b\leq length\ \pi
       using assms(8) obtain-j unfolding complen-mltl.simps by auto
     then have complen-mltl F1 + j \leq length \pi
       using obtain-j a-le-b by auto
     then have match-global1: match \pi (WEST-global L1 j j num-vars)
       using WEST-global-correct-converse of F1 L1 num-vars j j \pi assms
       using \langle semantics\text{-}mltl \ \pi \ (Global\text{-}mltl \ j \ j \ F1) \rangle by blast
```

```
have len-xi-f2j: complen-mltl F2 + j \leq length \pi
      using assms(8) obtain-j by auto
    have a \leq j
      using a-le-b obtain-j by blast
    then have semantics-mltl \pi (Global-mltl a j F2)
      using obtain-j a-le-b
      unfolding semantics-mltl.simps by blast
    then have match-global2: match \pi (WEST-global L2 a j num-vars)
       using WEST-global-correct-converse of F2 L2 num-vars a j \pi len-xi-f2j
assms
      by simp
    have j-bounds: a \le j \land j \le b - 1 using obtain-j by blast
    have match \pi (WEST-release-helper L1 L2 a (b-1) num-vars)
      using match-qlobal1 match-qlobal2 a-le-b j-bounds assms(1-6)
    \mathbf{proof}(induct\ b-1-a\ arbitrary:\ a\ b\ L1\ L2\ F1\ F2)
      case \theta
       then have match \pi (WEST-and-simp (WEST-global L1 a a num-vars)
(WEST-global L2 a a num-vars) num-vars)
       using WEST-and-simp-correct
       by (metis WEST-global-num-vars diff-is-0-eq' diffs0-imp-equal le-trans)
      then show ?case
       using WEST-release-helper.simps[of L1 L2 a b-1 num-vars] 0
       by (metis diff-diff-cancel diff-zero le-trans)
    next
      case (Suc \ x)
      have match-helper: match \pi (WEST-or-simp (WEST-release-helper L1 L2
a (b - 1 - 1) num-vars
          (WEST-and-simp (WEST-global L2 a (b-1) num-vars)
           (WEST-global\ L1\ (b-1)\ (b-1)\ num-vars)\ num-vars)\ num-vars)
       using Suc
      proof-
        {assume j-eq-bm1: j = b-1
            then have match \pi (WEST-and-simp (WEST-global L2 a (b-1)
num-vars)
           (WEST-global\ L1\ (b-1)\ (b-1)\ num-vars)\ num-vars)
          using Suc WEST-and-simp-correct
          by (meson WEST-global-num-vars)
         then have ?thesis using WEST-or-simp-correct
              by (metis\ Suc.hyps(2)\ Suc.prems(4)\ Suc.prems(7)\ Suc.prems(8)
WEST-and-simp-num-vars WEST-global-num-vars WEST-release-helper-num-vars
cancel-comm-monoid-add-class. diff-cancel\ diff-less-Suc\ j-eq-bm1\ le-SucE\ le-add1\ not-add-less1
ordered-cancel-comm-monoid-diff-class.add-diff-inverse plus-1-eq-Suc)
       } moreover {
         assume j-le-bm1: j < b-1
         have match \pi (WEST-release-helper L1 L2 a (b-1-1) num-vars)
           using Suc.hyps(1)[of b-1 \ a \ L1 \ L2 \ F1 \ F2] \ Suc
              by (smt (verit) Suc-leI diff-Suc-1 diff-le-mono diff-right-commute
j-le-bm1 le-eq-less-or-eq not-less-eq-eq)
```

```
then have ?thesis using WEST-or-simp-correct
        using Suc.hyps(2) Suc.prems(4) Suc.prems(7) Suc.prems(8) WEST-and-simp-num-vars
WEST\mbox{-}global\mbox{-}num\mbox{-}vars\ WEST\mbox{-}release\mbox{-}helper\mbox{-}num\mbox{-}vars
           by (smt (verit, del-insts) Nat.lessE Suc-leI diff-Suc-1 j-le-bm1 le-Suc-eq
le-trans)
        ultimately show ?thesis using Suc(6)
          by (meson le-neq-implies-less)
      \mathbf{qed}
      have a < b-1 using Suc(2) by simp
      then show ?case
        using WEST-release-helper.simps[of L1 L2 a b-1 num-vars] match-helper
        by presburger
     qed
   then have match \pi (WEST-or-simp (WEST-global L2 a b num-vars) (WEST-release-helper
L1 L2 a (b - 1) num-vars) num-vars)
      using WEST-or-simp-correct assms
      by (meson WEST-global-num-vars WEST-release-helper-num-vars j-bounds
le-trans)
     then have ?thesis using a-le-b unfolding WEST-release.simps
      by presburger
   ultimately have ?thesis using assms(7) by fastforce
 ultimately show ?thesis unfolding semantics-mltl.simps using len-xi assms(9)
   by fastforce
\mathbf{qed}
lemma WEST-release-correct:
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F1 \longrightarrow (match\ \pi\ L1 \longleftrightarrow semantics-mltl
 assumes \Lambda \pi. (length \pi \geq complen-mltl\ F2 \longrightarrow (match\ \pi\ L2 \longleftrightarrow semantics-mltl
\pi F2)
 assumes WEST-regex-of-vars L1 num-vars
 assumes WEST-regex-of-vars L2 num-vars
 assumes WEST-num-vars F1 \leq num-vars
 assumes WEST-num-vars F2 \leq num-vars
 assumes a \leq b
 assumes length \pi \geq complen\text{-mltl} (Release\text{-mltl } F1 \ a \ b \ F2)
 shows semantics-mltl \pi (Release-mltl F1 a b F2) \longleftrightarrow match \pi (WEST-release
L1 L2 a b num-vars
 using WEST-release-correct-converse [OF assms(1-8)] WEST-release-correct-forward [OF
assms(1-8)
 by blast
```

3.13 Top level result: Shows that WEST reg is correct

```
lemma WEST-reg-aux-correct:
 assumes \pi-long-enough: length \pi \geq complen-mltl F
 assumes is-nnf: \exists \psi. F = (convert\text{-nnf } \psi)
 assumes \varphi-nv: WEST-num-vars F \leq num-vars
 assumes intervals-welldef F
 shows match \pi (WEST-reg-aux F num-vars) \longleftrightarrow semantics-mltl \pi F
 using assms
 proof (induction F arbitrary: \pi rule: nnf-induct)
 case nnf
 then show ?case using is-nnf by auto
next
 {\bf case}\ {\it True}
 have semantics-true: semantics-mltl \pi True-mltl = True by simp
 have WEST-reg-aux True-mltl num-vars = [[map (\lambda j. S) [0..< num-vars]]]
   using WEST-reg-aux.simps(1) by blast
 have match-state: match-timestep (\pi ! \theta) (map (\lambda j. S) [\theta...< num-vars])
   unfolding match-timestep-def by auto
 have length \pi \geq 1 using True by auto
 then have match-regex \pi [(map (\lambda j. S) [0..<num-vars])] = True
   using True match-state unfolding match-regex-def by simp
 then have match \pi (WEST-reg-aux True-mltl num-vars) = True
   using WEST-reg-aux.simps(1)[of num-vars] unfolding match-def by simp
 then show ?case
   using semantics-true by auto
next
 case False
 have semantics-false: semantics-mltl \pi False-mltl = False by simp
 have match \pi [] = False
   unfolding match-def by simp
 then show ?case
   using semantics-false by simp
next
 case (Prop \ p)
 have trace-nonempty: length \pi \geq 1 using Prop by simp
 let ?state = \pi!\theta
 {assume p-in: p \in ?state
   then have semantics-prop-true: semantics-mltl \pi (Prop-mltl p) = True
     using semantics-mltl.simps(3)[of \pi] trace-nonempty by auto
   have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (\lambda j. if p)]
= j then One else S) [0..< num-vars]]]
     using WEST-req-aux.simps(3) by blast
   have p < num\text{-}vars \Longrightarrow p \in \pi ! \theta
     using p-in Prop by blast
  then have match-timestep ?state (map (\lambda j. if p = j then One else S) [0..<num-vars])
     unfolding match-timestep-def p-in by auto
   then have match-regex \pi (WEST-reg-aux (Prop-mltl p) num-vars! 0) = True
     using trace-nonempty WEST-prop unfolding match-regex-def by auto
```

```
then have match \pi (WEST-reg-aux (Prop-mltl p) num-vars) = True
     unfolding match-def by auto
   then have ?case using semantics-prop-true by blast
 } moreover {
   assume p-notin: p \notin ?state
   then have semantics-prop-false: semantics-mltl \pi (Prop-mltl p) = False
     using semantics-mltl.simps(3)[of \pi] trace-nonempty by auto
   have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (\lambda j. if p)]
= j then One else S) [0..< num-vars]]]
     using WEST-reg-aux.simps(3) by blast
   have p < num-vars \land p \notin \pi ! \theta
     using p-notin Prop by auto
  then have match-timestep ?state (map (\lambda j. if p = j then One else S) [0..<num-vars])
= False
     unfolding match-timestep-def p-notin by auto
   then have match-regex \pi (WEST-reg-aux (Prop-mltl p) num-vars! \theta) = False
     using trace-nonempty WEST-prop unfolding match-regex-def by auto
   then have match \pi (WEST-reg-aux (Prop-mltl p) num-vars) = False
     unfolding match-def by auto
   then have ?case using semantics-prop-false by blast
 ultimately show ?case by blast
 case (NotProp \ F \ p)
 have trace-nonempty: length \pi \geq 1 using NotProp by simp
 let ?state = \pi!0
 {assume p-in: p \in ?state
   then have semantics-prop-true: semantics-mltl \pi (Not-mltl (Prop-mltl p)) =
False
     using semantics-mltl.simps trace-nonempty by auto
  have WEST-prop: (WEST\text{-reg-aux} (Not\text{-mltl} (Prop\text{-mltl} p)) num\text{-vars}) = [[map]
(\lambda j. if p = j then Zero else S) [0..< num-vars]]]
     using WEST-reg-aux.simps by blast
   have p < num-vars \land p \in \pi ! \theta
     using p-in NotProp by simp
  then have match-timestep ?state (map (\lambda j. if p = j then Zero else S) [0..<num-vars])
= False
     unfolding match-timestep-def p-in by auto
   then have match-regex \pi (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars!
\theta) = False
     using trace-nonempty WEST-prop unfolding match-regex-def by auto
  then have match \pi (WEST\text{-}reg\text{-}aux (Not\text{-}mltl (Prop\text{-}mltl p)) num\text{-}vars) = False
     unfolding match-def by auto
   then have ?case using semantics-prop-true NotProp by blast
 } moreover {
   assume p-notin: p \notin ?state
   then have semantics-prop-false: semantics-mltl \pi (Not-mltl (Prop-mltl p)) =
True
     using semantics-mltl.simps(3)[of \pi] trace-nonempty by auto
```

```
have WEST-prop: (WEST\text{-reg-aux} (Not\text{-mltl} (Prop\text{-mltl} p)) num\text{-vars}) = [[map]
(\lambda j. if p = j then Zero else S) [0..<num-vars]]]
           using WEST-reg-aux.simps by blast
       have p < num-vars \land p \notin \pi ! \theta
           using p-notin NotProp by auto
     then have match-timestep ?state (map (\lambda j. if p = j then Zero else S) [0..<num-vars])
= True
            unfolding match-timestep-def p-notin by auto
       then have match-regex \pi (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars!
\theta) = True
           using trace-nonempty WEST-prop unfolding match-regex-def by auto
      then have match \pi (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = True
           unfolding match-def by simp
       then have ?case using semantics-prop-false NotProp by blast
    ultimately show ?case by blast
next
    case (And \ F \ F1 \ F2)
    have subformula1: WEST-num-vars F1 \leq num-vars
       using WEST-num-vars-subformulas of F1 F And (1,6) by simp
    have subformula2: WEST-num-vars F2 \le num-vars
        using WEST-num-vars-subformulas[of F2 F] And(1,6) by simp
    have complen-mltl\ F1 \leq complen-mltl\ F
        using And(1) complen-mltl.simps(5)[of F1 F2] by auto
    then have cp-F1: complen-mltl F1 \leq length \pi
        using And.prems by auto
    have h2: match \pi (WEST-reg-aux F1 num-vars) = semantics-mltl \pi F1
       using And(2)[OF\ cp\text{-}F1]\ subformula1
         by (metis And.hyps And.prems(2) And.prems(4) convert-nnf.simps(4) con-
vert-nnf-convert-nnf intervals-welldef.simps(5) mltl.inject(3))
    have complen-mltl F2 \leq complen-mltl F
        using And(1) complen-mltl.simps(5)[of F2 F2] by simp
    then have cp-F2: complen-mltl F2 \leq length \pi
       using And.prems by auto
    have h1: match \pi (WEST-reg-aux F2 num-vars) = semantics-mltl \pi F2
       using And.prems(2) And(1) And(3)[OF cp-F2] subformula2
         \mathbf{by} \ (\mathit{metis} \ \mathit{And}.\mathit{prems}(4) \ \mathit{convert-nnf}.\mathit{simps}(4) \ \mathit{convert-nnf-convert-nnf} \ \mathit{inter-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-convert-nnf-c
vals-welldef.simps(5) mltl.inject(3))
    let ?n = num\text{-}vars
    have F1-nv: WEST-regex-of-vars (WEST-reg-aux F1 num-vars) num-vars
     using WEST-reg-aux-num-vars [of F1 num-vars] subformula 1 And 1 A
       using WEST-num-vars-subformulas
         by (metis And.prems(4) convert-nnf.simps(4) convert-nnf-convert-nnf inter-
vals-welldef.simps(5) \ mltl.inject(3))
    have F2-nv: WEST-regex-of-vars (WEST-reg-aux F2 num-vars) num-vars
     using WEST-reg-aux-num-vars of F2 num-vars subformula And(1) And.prems(2)
        using WEST-num-vars-subformulas
         by (metis\ And.prems(4)\ convert-nnf.simps(4)\ convert-nnf-convert-nnf\ inter-
vals-welldef.simps(5) \ mltl.inject(3) \ subformula2)
```

```
have match: match π (WEST-and (WEST-reg-aux F1 ?n) (WEST-reg-aux F2
(2n) = (match \ \pi \ (WEST\text{-}reg\text{-}aux \ F1 \ ?n) \land match \ \pi \ (WEST\text{-}reg\text{-}aux \ F2 \ ?n))
   using WEST-and-correct[of WEST-reg-aux F1 ?n ?n WEST-reg-aux F2 ?n \pi,
OF \ F1-nv \ F2-nv
   by blast
 have WEST-reg-F: WEST-reg-aux\ F\ num-vars = WEST-and-simp\ (WEST-reg-aux
F1 num-vars) (WEST-reg-aux F2 num-vars) num-vars
   using And(1) WEST-reg-aux.simps(6)[of F1 F2 num-vars] by argo
 have semantics-F: semantics-mltl \pi (And-mltl F1 F2) = (semantics-mltl \pi F1
\land semantics-mltl \pi F2)
   using semantics-mltl.simps(5)[of \pi F1 F2] by blast
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using And(1) And(5) nnf-subformulas[of F - F1]
   by (metis\ convert-nnf.simps(4)\ convert-nnf-convert-nnf\ mltl.inject(3))
 have F1-correct: match \pi (WEST-reg-aux F1 num-vars) = semantics-mltl \pi F1
   using And(2)[OF cp-F1 F1-nnf] WEST-num-vars-subformulas And by auto
 have F2-nnf: \exists \psi. F2 = convert-nnf \psi
   using And(1) And(5) nnf-subformulas [of F - F2]
   by (metis\ convert\text{-}nnf.simps(4)\ convert\text{-}nnf\text{-}convert\text{-}nnf\ mltl.inject(3))
 have F2-correct: match \pi (WEST-reg-aux F2 num-vars) = semantics-mltl \pi F2
   using And(3)[OF cp-F2 F2-nnf] WEST-num-vars-subformulas And by auto
 show ?case
   using WEST-reg-F F1-correct F2-correct
   using semantics-mltl.simps(5)[of \pi F1 F2] And(1) match
   by (metis F1-nv F2-nv WEST-and-simp-correct)
next
 case (Or F F1 F2)
 have cp-F1: complen-mltl F1 < length \pi
   using Or\ complen-mltl.simps(6)[of\ F1\ F2] by simp
 have cp-F2: complen-mltl F2 \leq length \pi
   using Or\ complen-mltl.simps(6)[of\ F1\ F2] by simp
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using Or(1) nnf-subformulas [of F - F1]
  by (metis\ Or.prems(2)\ convert-nnf.simps(5)\ convert-nnf-convert-nnf\ mltl.inject(4))
 have F1-correct: match \pi (WEST-reg-aux F1 num-vars) = semantics-mltl \pi F1
   using Or(2)[OF\ cp\text{-}F1\ F1\text{-}nnf]\ WEST\text{-}num\text{-}vars\text{-}subformulas}\ Or\ \mathbf{by}\ simp
 have F2-nnf: \exists \psi. F2 = convert-nnf \psi
   using Or nnf-subformulas [of F - F2]
   by (metis convert-nnf.simps(5) convert-nnf-convert-nnf mltl.inject(4))
 have F2-correct: match \pi (WEST-reg-aux F2 num-vars) = semantics-mltl \pi F2
   using Or(3)[OF\ cp	ext{-}F2\ F2	ext{-}nnf]\ WEST	ext{-}num	ext{-}vars	ext{-}subformulas}\ Or\ \mathbf{by}\ simp
 let ?L1 = (WEST\text{-}reg\text{-}aux\ F1\ num\text{-}vars)
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 num\text{-}vars)
 have L1-nv: WEST-regex-of-vars ?L1 num-vars
   using WEST-reg-aux-num-vars[of F1 num-vars, OF F1-nnf]
   using Or(1, 6, 7) by auto
 have L2-nv: WEST-regex-of-vars ?L2 num-vars
   using WEST-reg-aux-num-vars[of F2 num-vars, OF F2-nnf]
   using Or(1, 6, 7) by auto
```

```
have (match \pi ?L1 \lor match \pi ?L2) = match \pi (WEST-or-simp ?L1 ?L2)
num-vars)
    using WEST-or-simp-correct[of ?L1 num-vars ?L2 \pi, OF L1-nv L2-nv] by
blast
 then show ?case
   using F1-correct F2-correct
   using semantics-mltl.simps(6)[of \pi F1 F2]
   unfolding Or(1) unfolding WEST-reg-aux.simps by blast
next
 case (Final\ F\ F1\ a\ b)
 have F1-nv: WEST-num-vars F1 \leq num-vars
   using Final by auto
 have cp-F1: complen-mltl F1 \leq length \pi
   using Final by simp
 then have len-xi: length \pi \geq (complen-mltl\ F1) + b using Final by auto
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using Final
   by (metis\ convert-nnf.simps(6)\ convert-nnf-convert-nnf\ mltl.inject(5))
 let ?L1 = (WEST\text{-}reg\text{-}aux F1 num\text{-}vars)
 have match-F1: match \pi ?L1 = semantics-mltl \pi F1
   using Final(2)[OF cp-F1 F1-nnf F1-nv] Final by auto
 have intervals-welldef-F1: intervals-welldef F1
   using Final by auto
 have a-le-b: a \leq b
   using Final by simp
 show ?case using WEST-reg-aux.simps(7)[of a b F1 num-vars] Final
   using match-F1 WEST-future-correct F1-nv len-xi
   using a-le-b intervals-welldef-F1
   by (metis F1-nnf WEST-reg-aux-num-vars)
\mathbf{next}
 case (Global\ F\ F1\ a\ b)
 have F1-nv: WEST-num-vars F1 \leq num-vars
   using Global by auto
 have cp-F1: complen-mltl F1 \leq length \pi
   using Global by simp
 then have len-xi: length \pi > (complen-mltl \ F1) + b using Global by auto
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using Global
   by (metis convert-nnf.simps(7) convert-nnf-convert-nnf mltl.inject(6))
 let ?L1 = (WEST\text{-}reg\text{-}aux\ F1\ num\text{-}vars)
 have match-F1: match \pi ?L1 = semantics-mltl \pi F1
   using Global(2)[OF\ cp\text{-}F1\ F1\text{-}nnf\ F1\text{-}nv]\ Global\ by auto
 then show ?case using WEST-reg-aux.simps(8)[of a b F1 num-vars] Global
   using match-F1 WEST-global-correct F1-nv
   by (metis F1-nnf WEST-reg-aux-num-vars intervals-welldef.simps(8) len-xi)
next
 case (Until F F1 F2 a b)
 have F1-nv: WEST-num-vars F1 \leq num-vars
   using Until by auto
```

```
{assume *: a = 0 \land b = 0
   have complen-leq: complen-mltl F2 \leq length \pi
     using Until(1) Until.prems(1) by simp
   have some-nnf: \exists \psi. F2 = convert-nnf \psi
     using Until(1) Until.prems(2)
     by (metis convert-nnf.simps(8) convert-nnf-convert-nnf mltl.inject(7))
   have F2 \in subformulas (Until-mltl F1 \ a \ b \ F2)
     unfolding subformulas.simps by blast
   then have num-vars: WEST-num-vars F2 \leq num-vars
     using Until(1) Until.prems(3) WEST-num-vars-subformulas[of F2 F]
     by auto
   have match-F2: match \pi (WEST-reg-aux F2 num-vars) = semantics-mltl \pi F2
     using Until(1) Until(3)[OF complen-leq some-nnf num-vars] Until.prems
     by simp
   have max (complen-mltl F1 - 1) (complen-mltl F2) >= 1
     using complen-qeq-one of F2 by auto
   then have len-qt: length \pi > 0
     using Until.prems(1) Until(1) by auto
   have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift
(WEST-reg-aux F2 num-vars) num-vars 0
     using WEST-global.simps[of - 0 \ 0] by auto
   have map (\lambda k. \ arbitrary\text{-state num-vars}) \ [\theta..<\theta] = []
     by simp
  then have padis: shift (WEST-reg-aux F2 num-vars) num-vars \theta = WEST-reg-aux
F2 num-vars
   unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8)
map-ident upt-0
   proof -
     have (@) (map\ (\lambda n.\ arbitrary\text{-state num-vars})\ ([]::nat\ list)) = (\lambda wss.\ wss)
   then show map ((@) (map (\lambda n. arbitrary-state num-vars) [0..<0])) (WEST-reg-aux
F2 num-vars) = WEST-reg-aux F2 num-vars
      by simp
   qed
  then have match \pi (WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars)
   (semantics-mltl \pi F2)
     using match-F2 global padis by simp
  then have match \pi (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 \ num-vars) \ 0 \ 0 \ num-vars) =
   (semantics-mltl \pi F2)
     using WEST-until.simps[of - - 0 0 num-vars] by auto
  then have match \pi (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 \ num-vars) \ 0 \ 0 \ num-vars) =
   (semantics-mltl (drop 0 \pi) F2 \wedge (\forall j. 0 \leq j \wedge j < 0 \longrightarrow semantics-mltl (drop
j(\pi)(F1)
    by auto
    then have match \pi (WEST-reg-aux (Until-mltl F1 0 0 F2) num-vars) =
semantics-mltl \pi (Until-mltl F1 0 0 F2)
```

```
using len-qt *
     unfolding semantics-mltl.simps WEST-reg-aux.simps by auto
   then have ?case using Until(1) * by auto
 } moreover {assume *: b > \theta
 then have cp-F1: complen-mltl F1 < length \pi
   using complen-mltl.simps(10)[of F1 a b F2] Until by simp
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using Until
   by (metis convert-nnf.simps(8) convert-nnf-convert-nnf mltl.inject(7))
 let ?L1 = (WEST\text{-}reg\text{-}aux F1 num\text{-}vars)
 have match-F1: match \pi ?L1 = semantics-mltl \pi F1
   using Until(2)[OF\ cp\text{-}F1\ F1\text{-}nnf\ F1\text{-}nv]\ Until\ \mathbf{by}\ auto
 have F2-nv: WEST-num-vars F2 \le num-vars
   using Until by auto
 have cp-F2: complen-mltl F2 < length \pi
   using complen-mltl.simps(10)[of F1 a b F2] Until by simp
 have F2-nnf: \exists \psi. F2 = convert-nnf \psi
   using Until
   by (metis convert-nnf.simps(8) convert-nnf-convert-nnf mltl.inject(7))
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 num\text{-}vars)
 have match-F2: match \pi ?L2 = semantics-mltl \pi F2
   using Until(3)[OF cp-F2 F2-nnf F2-nv] Until by simp
 have len-xi: length \pi \geq complen-mltl (Until-mltl F1 a b F2) using Until by auto
 then have ?case using WEST-until-correct[of F1 ?L1 F2 ?L2 num-vars a b \pi]
   using Until F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2
  using WEST-reg-aux.simps(9)[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
   by (metis\ (no-types,\ lifting)\ intervals-welldef.simps(9))
 }
 ultimately show ?case using Until.prems(4) Until(1)
   by fastforce
next
 case (Release F F1 F2 a b)
 have F1-nv: WEST-num-vars F1 \leq num-vars
   using Release by auto
 {assume *: a = \theta \land b = \theta
   have complen-leg: complen-mltl F2 < length \pi
     using Release(1) Release.prems(1) by simp
   have some-nnf: \exists \psi. F2 = convert-nnf \psi
     using Release(1) Release.prems(2)
     by (metis\ convert-nnf.simps(9)\ convert-nnf-convert-nnf\ mltl.inject(8))
   have F2 \in subformulas (Until-mltl F1 \ a \ b \ F2)
     unfolding subformulas.simps by blast
   then have num-vars: WEST-num-vars F2 \leq num-vars
     using Release(1) Release.prems(3) WEST-num-vars-subformulas[of F2 F]
     by auto
   have match-F2: match \pi (WEST-reg-aux F2 num-vars) = semantics-mltl \pi F2
   using Release(1) Release(3)[OF complen-leq some-nnf num-vars] Release.prems
     by simp
   have max (complen-mltl F1 - 1) (complen-mltl F2) >= 1
```

```
using complen-qeq-one of F2 by auto
   then have len-gt: length \pi > 0
     using Release.prems(1) Release(1) by auto
   have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift
(WEST-reg-aux F2 num-vars) num-vars 0
     using WEST-global.simps[of - 0 0] by auto
   have map (\lambda k. \ arbitrary\text{-state num-vars}) \ [\theta..<\theta] = []
  then have padis: shift (WEST-reg-aux F2 num-vars) num-vars \theta = WEST-reg-aux
F2 num-vars
   unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8)
map-ident upt-0
   proof -
     have (@) (map\ (\lambda n.\ arbitrary\text{-state num-vars})\ ([]::nat\ list)) = (\lambda wss.\ wss)
      by blast
   then show map((@) (map(\lambda n. arbitrary-state num-vars) [0..<0])) (WEST-reg-aux
F2 num-vars) = WEST-reg-aux F2 num-vars
      by simp
   qed
  then have match \pi (WEST\text{-}global (WEST\text{-}reg\text{-}aux F2 num\text{-}vars) 0 0 num\text{-}vars)
   (semantics-mltl \pi F2)
     using match-F2 global padis by simp
  then have match \pi (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 \ num-vars) \ 0 \ 0 \ num-vars) =
   (semantics-mltl \pi F2)
     using WEST-until.simps[of - - 0 0 num-vars] by auto
  then have match \pi (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 \ num-vars) \ 0 \ 0 \ num-vars) =
   (semantics-mltl (drop 0 \pi) F2 \wedge (\forall j. 0 \leq j \wedge j < 0 \longrightarrow semantics-mltl (drop
j(\pi)(F1)
    by auto
    then have match \pi (WEST-reg-aux (Release-mltl F1 0 0 F2) num-vars) =
semantics-mltl \pi (Release-mltl F1 0 0 F2)
     using len-gt *
     unfolding semantics-mltl.simps WEST-req-aux.simps by auto
   then have ?case using Release(1) *
     by auto
 } moreover {assume *: b > \theta
 then have cp-F1: complen-mltl F1 \leq length \pi
   using complen-mltl.simps(10)[of F1 a b F2] Release by simp
 have F1-nnf: \exists \psi. F1 = convert-nnf \psi
   using Release
   by (metis\ convert-nnf.simps(9)\ convert-nnf-convert-nnf\ mltl.inject(8))
 let ?L1 = (WEST\text{-}reg\text{-}aux F1 num\text{-}vars)
 have match-F1: match \pi ?L1 = semantics-mltl \pi F1
   using Release(2)[OF cp-F1 F1-nnf F1-nv] Release by auto
 have F2-nv: WEST-num-vars F2 \le num-vars
   using Release by auto
```

```
have cp-F2: complen-mltl F2 \leq length \pi
   using complen-mltl.simps(10)[of F1 a b F2] Release by simp
 have F2-nnf: \exists \psi. F2 = convert-nnf \psi
   using Release
   by (metis convert-nnf.simps(9) convert-nnf-convert-nnf mltl.inject(8))
 let ?L2 = (WEST\text{-}reg\text{-}aux F2 num\text{-}vars)
 have match-F2: match \pi ?L2 = semantics-mltl \pi F2
   using Release(3)[OF cp-F2 F2-nnf F2-nv] Release by simp
  have len-xi: length \pi \ge (max \ ((complen-mltl \ F1)-1) \ (complen-mltl \ F2)) + b
using * Release
   by auto
 have ?case using WEST-release-correct[of F1 ?L1 F2 ?L2 num-vars a b \pi]
   using Release F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2
  using WEST-reg-aux.simps(10)[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
   by (metis (full-types) intervals-welldef.simps(10))
 ultimately show ?case using Release(7) Release(1) by fastforce
qed
lemma complen-convert-nnf:
 shows complen-mltl (convert-nnf \varphi) = complen-mltl \varphi
\mathbf{proof}(induction\ depth\text{-}mltl\ \varphi\ arbitrary:\ \varphi\ rule:\ less\mbox{-}induct)
 case less
 then show ?case proof (cases \varphi)
   {\bf case}\ {\it True-mltl}
   then show ?thesis by simp
 next
   case False-mltl
   then show ?thesis by simp
 next
   case (Prop-mltl\ p)
   then show ?thesis by simp
 next
   case (Not-mltl p)
   then show ?thesis proof (induct p)
    case True-mltl
    then show ?case using Not-mltl less by auto
     case False-mltl
     then show ?case using Not-mltl less by auto
   \mathbf{next}
     case (Prop-mltl\ x)
     then show ?case using Not-mltl less by auto
   next
     case (Not\text{-}mltl\ p)
     then show ?case using Not-mltl less by auto
     case (And-mltl p1 p2)
     then show ?case using Not-mltl less by auto
```

```
then show ?case using Not-mltl less by auto
     case (Future-mltl \ a \ b \ x)
     then show ?case using Not-mltl less by auto
   next
     case (Global-mltl \ a \ b \ x)
     then show ?case using Not-mltl less by auto
   \mathbf{next}
     case (Until-mltl \ x \ a \ b \ y)
     then show ?case using Not-mltl less by auto
   \mathbf{next}
     case (Release-mltl \ x \ a \ b \ y)
     then show ?case using Not-mltl less by auto
   qed
 next
   case (And\text{-}mltl\ x\ y)
   then show ?thesis using less by auto
 next
   case (Or\text{-}mltl\ x\ y)
   then show ?thesis using less by auto
   case (Future-mltl a \ b \ x)
   then show ?thesis using less by auto
 next
   case (Global-mltl \ a \ b \ x)
   then show ?thesis using less by auto
 \mathbf{next}
   case (Until-mltl \ x \ a \ b \ y)
   then show ?thesis using less by auto
   case (Release-mltl \ x \ a \ b \ y)
   then show ?thesis using less by auto
 qed
qed
lemma nnf-int-welldef:
 assumes intervals-welldef \varphi
 shows intervals-welldef (convert-nnf \varphi)
 using assms
proof (induct depth-mltl \varphi arbitrary: \varphi rule: less-induct)
 case less
 then show ?case proof (cases \varphi)
   {f case}\ \mathit{True\text{-}mltl}
   then show ?thesis by simp
 next
   case False-mltl
```

next

case (Or-mltl p1 p2)

```
then show ?thesis by simp
next
 case (Prop\text{-}mltl\ p)
 then show ?thesis by simp
 case (Not-mltl \psi)
 then have phi-is: \varphi = Not\text{-mltl }\psi
   by auto
 show ?thesis proof (cases \psi)
   {\bf case} \ \mathit{True-mltl}
   then show ?thesis using Not-mltl by simp
 next
   {f case}\ {\it False-mltl}
   then show ?thesis using Not-mltl by simp
 next
   case (Prop-mltl\ p)
   then show ?thesis using Not-mltl by simp
 \mathbf{next}
   case (Not-mltl F)
   then have iwd: intervals-welldef (convert-nnf F)
     using phi-is less by simp
   have \varphi = Not\text{-}mltl \ (Not\text{-}mltl \ F)
     using phi-is Not-mltl by auto
   then show ?thesis using iwd
     convert-nnf.simps(13)[of F] by simp
 \mathbf{next}
   case (And\text{-}mltl\ x\ y)
   then show ?thesis using Not-mltl less by simp
 next
   case (Or\text{-}mltl\ x\ y)
   then show ?thesis using Not-mltl less by simp
   case (Future-mltl a \ b \ x)
   then show ?thesis using Not-mltl less by simp
   case (Global-mltl \ a \ b \ x)
   then show ?thesis using Not-mltl less by simp
   case (Until-mltl \ x \ a \ b \ y)
   then show ?thesis using Not-mltl less by simp
 \mathbf{next}
   case (Release-mltl \ x \ a \ b \ y)
   then show ?thesis using Not-mltl less by simp
 qed
next
 case (And\text{-}mltl\ x\ y)
 then show ?thesis using less by simp
next
 case (Or\text{-}mltl\ x\ y)
```

```
then show ?thesis using less by simp
 next
   case (Future-mltl \ a \ b \ x)
   then show ?thesis using less by simp
  next
   case (Global-mltl \ a \ b \ x)
   then show ?thesis using less by simp
   case (Until-mltl \ x \ a \ b \ y)
   then show ?thesis using less by simp
 next
   case (Release-mltl \ x \ a \ b \ y)
   then show ?thesis using less by simp
 qed
qed
{f lemma} WEST-correct:
 fixes \varphi::(nat) mltl
 fixes \pi::trace
 assumes int-well
def: intervals-well
def \varphi
 assumes \pi-long-enough: length \pi \geq complen-mltl (convert-nnf \varphi)
 shows match \ \pi \ (WEST\text{-}reg \ \varphi) \longleftrightarrow semantics\text{-}mltl \ \pi \ \varphi
proof-
let ?n = WEST-num-vars \varphi
 have match \pi (WEST-reg-aux (convert-nnf \varphi) (WEST-num-vars \varphi)) = seman-
tics-mltl \pi (convert-nnf \varphi)
  using WEST-reg-aux-correct OF assms(2) - - nnf-int-welldef, of WEST-num-vars
\varphi | WEST-num-vars-nnf[of \varphi]
   using int-welldef by auto
  then show ?thesis
   unfolding WEST-req.simps
  using WEST-num-vars-nnf[of \varphi] convert-nnf-preserves-semantics[OF assms(1)]
   by simp
qed
lemma WEST-correct-v2:
 fixes \varphi::(nat) mltl
 fixes \pi::trace
 assumes intervals-welldef \varphi
 assumes \pi-long-enough: length \pi \geq complen-mltl \varphi
 shows match \pi (WEST-reg \varphi) \longleftrightarrow semantics-mltl \pi \varphi
proof-
 show ?thesis
   using WEST-correct complen-convert-nnf
   by (metis \pi-long-enough assms(1))
qed
```

3.14 Top level result for padded version

```
{f lemma} WEST-correct-pad-aux:
 fixes \varphi::(nat) mltl
 fixes \pi::trace
 assumes intervals-welldef \varphi
 assumes \pi-long-enough: length \pi \geq complen-mltl \varphi
 shows match \pi (pad-WEST-reg \varphi) \longleftrightarrow semantics-mltl \pi \varphi
proof -
 let ?unpadded = WEST-reg \varphi
 let ?complen = complen-mltl \varphi
 let ?num-vars = WEST-num-vars \varphi
 let ?len = length (WEST-reg \varphi)
 have pwr-is: pad-WEST-reg \varphi = (map \ (\lambda L. \ if \ length \ L < ?complen
                  then L @ arbitrary-trace ?num-vars (?complen - length L)
                  else\ L)\ ?unpadded)
   unfolding pad-WEST-reg.simps
   by (metis (no-types, lifting) map-equality-iff pad.elims)
  then have length ?unpadded = length (pad-WEST-reg \varphi)
 then have pwr-k-is: (pad-WEST-req \varphi! k) = (if length (?unpadded!k) < ?complen
                      then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen -
length (?unpadded!k))
                  else (?unpadded!k)) if k-lt: k < length (pad-WEST-reg \varphi) for k
   using k-lt pwr-is
   by fastforce
  have same-len: length (pad-WEST-reg \varphi) = length (WEST-reg \varphi)
   unfolding pad-WEST-reg.simps
   by (meson length-map)
have match-regex \pi (if length (WEST-reg \varphi ! k) < complen-mltl \varphi
   then WEST-req \varphi ! k @
       arbitrary-trace (WEST-num-vars \varphi)
        (complen-mltl \varphi - length (WEST-reg \varphi ! k))
   else WEST-reg \varphi! k) =
   match-regex \pi (WEST-reg \varphi! k) if k-lt: k < ?len for k
proof -
   {assume *: length (WEST-reg \varphi! k) < complen-mltl \varphi
    then have len-is: length (WEST-reg \varphi ! k @
     arbitrary-trace (WEST-num-vars \varphi)
      (complen-mltl \varphi - length (WEST-reg \varphi ! k))) =
     complen-mltl \varphi
      by auto
    have univ-prop: \bigwedge A B::'a list. (\forall time < length)
              (A @ B). (time > length A \longrightarrow
           P \ time)) \Longrightarrow ((\forall \ time < length))
              (A @ B). P time) = (\forall time < length)
              A \cdot P \ time)) \ \mathbf{for} \ P :: nat \Rightarrow bool
      by auto
    have match-timestep (\pi ! time)
            ((WEST-reg \varphi ! k @
```

```
arbitrary-trace (WEST-num-vars \varphi)
              (complen-mltl \varphi -
               length (WEST-reg \varphi ! k))) ! time)
           if time-prop: time < length (WEST-reg \varphi! k @
               arbitrary-trace (WEST-num-vars \varphi)
                   (complen-mltl \ \varphi - length \ (WEST-reg \ \varphi \ ! \ k))) \land time \ge length
(WEST-reg \varphi \mid k)
      for time
    proof -
      have access: ((WEST-reg \varphi ! k @
             arbitrary-trace (WEST-num-vars \varphi)
              (complen-mltl \varphi -
               length (WEST-reg \varphi ! k))) ! time)
        = (arbitrary-trace\ (WEST-num-vars\ \varphi)
              (complen-mltl \varphi -
               length (WEST-req \varphi ! k))) ! (time - (length (WEST-req \varphi ! k)))
        using time-prop
        by (meson leD nth-append)
      have (arbitrary-trace\ (WEST-num-vars\ \varphi)
              (complen-mltl \varphi -
               length (WEST-reg \varphi ! k))) ! (time - (length (WEST-reg \varphi ! k)))
       = arbitrary-state (WEST-num-vars \varphi)
        {f unfolding} \ arbitrary-trace.simps \ {f using} * time-prop
        by (metis diff-less-mono diff-zero len-is nth-map-upt)
      then have access2: ((WEST-reg \varphi ! k @
             arbitrary-trace (WEST-num-vars \varphi)
              (complen-mltl \varphi -
               length (WEST-reg \varphi ! k))) ! time)
         = arbitrary-state (WEST-num-vars \varphi)
        using access
        by auto
      have match-timestep (\pi! time) (arbitrary-state (WEST-num-vars \varphi))
        unfolding arbitrary-state.simps
        match-timestep-def by simp
      then show ?thesis using access2 by auto
    qed
 then have (\forall time < length)
              (WEST-req \varphi ! k @
               arbitrary-trace (WEST-num-vars \varphi)
                (complen-mltl \varphi -
                 length (WEST-reg \varphi ! k))).
           match-timestep (\pi ! time)
           ((WEST-reg \varphi ! k @
             arbitrary-trace (WEST-num-vars \varphi)
              (complen-mltl \varphi -
               length (WEST-reg \varphi ! k))) !
            time)) =
     (\forall time < length)
              (WEST-reg \varphi \mid k).
```

```
match-timestep (\pi! time)
          ((WEST-reg \varphi ! k @
            arbitrary-trace (WEST-num-vars \varphi)
             (complen-mltl \varphi –
              length (WEST-reg \varphi ! k))) !
           time))
  using univ-prop[of\ WEST-reg\ \varphi\ !\ k\ arbitrary-trace\ (WEST-num-vars\ \varphi)
               (complen-mltl \varphi -
                length (WEST-reg \varphi ! k))]
    by auto
  then have (\forall time < length)
             (WEST-reg \varphi! k @
              arbitrary-trace (WEST-num-vars \varphi)
               (complen-mltl \varphi –
                length (WEST-reg \varphi! k))).
          match-timestep (\pi! time)
           ((WEST-req \varphi ! k @
            arbitrary-trace (WEST-num-vars \varphi)
             (complen-mltl \varphi -
              length (WEST-reg \varphi ! k))) !
           time)) =
  (\forall time < length (WEST-reg \varphi ! k).
          match-timestep (\pi ! time)
           (WEST\text{-}reg \varphi ! k ! time))
     by (simp add: nth-append)
   then have match\text{-}regex\ \pi (WEST-reg \varphi ! k @
      arbitrary-trace (WEST-num-vars \varphi)
       (complen-mltl \varphi - length (WEST-reg \varphi ! k))) =
  match-regex \pi (WEST-reg \varphi! k)
     using len-is \pi-long-enough *
     unfolding match-regex-def
     by auto
   then have ?thesis
     using * by auto
 moreover {assume *: length (WEST-reg \varphi \mid k) \geq complen-mltl \varphi
   then have ?thesis by simp
 ultimately show ?thesis
   by argo
\mathbf{qed}
then have match-regex \pi (pad-WEST-reg \varphi ! k) =
  match-regex \pi (WEST-reg \varphi! k) if k-lt: k < ?len for k
  using pwr-k-is k-lt same-len by presburger
 then have match \pi (pad-WEST-reg \varphi) \longleftrightarrow match \pi (WEST-reg \varphi)
  using \pi-long-enough same-len
  unfolding match-def
  by auto
 then show ?thesis
```

```
using assms WEST-correct-v2
   by blast
\mathbf{qed}
lemma WEST-correct-pad:
  fixes \varphi::(nat) mltl
 fixes \pi::trace
 assumes intervals-welldef \varphi
 assumes \pi-long-enough: length \pi \geq complen-mltl \varphi
 shows match \pi (simp-pad-WEST-reg \varphi) \longleftrightarrow semantics-mltl \pi \varphi
proof -
 let ?unpadded = WEST-reg \varphi
 let ?complen = complen-mltl \varphi
 let ?num\text{-}vars = WEST\text{-}num\text{-}vars \varphi
 have pwr-is: pad-WEST-reg \varphi = (map \ (\lambda L. \ if \ length \ L < ?complen
                 then L @ arbitrary-trace ?num-vars (?complen - length L)
                 else\ L)\ ?unpadded)
   unfolding pad-WEST-reg.simps
   by (metis (no-types, lifting) map-equality-iff pad.elims)
  then have length ?unpadded = length (pad-WEST-reg \varphi)
   by auto
 then have pwr-k-is: (pad-WEST-reg \varphi ! k) = (if length (?unpadded!k) < ?complen
                     then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen -
length (?unpadded!k))
                  else (?unpadded!k)) if k-lt: k < length (pad-WEST-reg \varphi) for k
   using k-lt pwr-is
   by fastforce
 have length (pad-WEST-reg \varphi ! k ! i) =
         WEST-num-vars \varphi if i-is: i<length (pad-WEST-reg \varphi! k) \landk<length
(pad-WEST-reg \varphi)
   for i k
 proof -
   \{assume *: length (?unpadded!k) < ?complen
     then have pad-is: (pad\text{-}WEST\text{-}reg\ \varphi\ !\ k) = (?unpadded!k)\ @\ arbitrary\text{-}trace
?num-vars (?complen - length (?unpadded!k))
       using pwr-k-is that by presburger
     have regtrace1: trace-regex-of-vars (arbitrary-trace (WEST-num-vars \varphi)
    (complen-mltl \varphi - length (WEST-reg \varphi ! k))) (WEST-num-vars \varphi)
       unfolding arbitrary-trace.simps
       trace-regex-of-vars-def
      by auto
     have regtrace2: trace-regex-of-vars (WEST-reg \varphi! k) (WEST-num-vars \varphi)
       using WEST-reg-num-vars[OF\ assms(1)]
     by (metis \langle length (WEST-reg \varphi) \rangle = length (pad-WEST-reg \varphi) \rangle WEST-regex-of-vars-def
that)
     have ?thesis
       using pad-is
       using regtrace-append[OF regtrace1 regtrace2]
```

```
by (metis regtrace1 regtrace2 regtrace-append trace-regex-of-vars-def that)
   } moreover {assume *: length (?unpadded!k) \geq ?complen
    then have (pad\text{-}WEST\text{-}reg\ \varphi\ !\ k) = (?unpadded!k)
      using pwr-k-is that by presburger
    then have ?thesis
      using WEST-reg-num-vars[OF\ assms(1)]
    trace-regex-of-vars-def that)
   }
   ultimately show ?thesis by linarith
 qed
 then have trace-regex-of-vars (pad-WEST-reg \varphi \mid k)
      (WEST-num-vars \varphi) if k-lt: k<length (pad-WEST-reg \varphi) for k
   unfolding trace-regex-of-vars-def
   using k-lt by auto
 then have WEST-regex-of-vars (pad-WEST-reg \varphi)
    (WEST-num-vars \varphi)
   unfolding WEST-regex-of-vars-def
   by blast
 then show ?thesis
   using WEST-correct-pad-aux[OF assms]
   unfolding \ simp-pad-WEST-reg. simps
   using simp\text{-}correct[of\ (pad\text{-}WEST\text{-}reg\ \varphi)\ (WEST\text{-}num\text{-}vars\ \varphi)\ \pi]
   by blast
\mathbf{qed}
end
     Key algorithms for WEST
4
theory Regex-Equivalence
imports WEST-Algorithms WEST-Proofs
begin
fun depth-dataype-list:: state-regex <math>\Rightarrow nat
 where depth-dataype-list [] = 0
   depth-dataype-list (One \# T) = 1 + depth-dataype-list T
   depth-dataype-list (Zero \# T) = 1 + depth-dataype-list T
 | depth-dataype-list (S\#T) = 2 + 2*(depth-dataype-list T)
function enumerate-list:: state-regex \Rightarrow trace-regex
 where enumerate-list [] = [[]]
 | enumerate-list (One \# T) = (map (\lambda x. One \# x) (enumerate-list T))
 | enumerate-list (Zero \# T) = (map (\lambda x. Zero \# x) (enumerate-list T))
 | enumerate-list (S \# T) = (enumerate-list (Zero \# T))@(enumerate-list (One \# T))
```

```
apply (metis WEST-and-bitwise.elims list.exhaust)
 by simp-all
termination apply (relation measure (\lambda L. depth-dataype-list L))
 by simp-all
fun flatten-list:: 'a list list \Rightarrow 'a list
  where flatten-list L = foldr (@) L []
value flatten-list [[12, 13::nat], [15]]
value flatten-list (let enumerate-H = enumerate-list [S, One] in
let \ enumerate - T = [[]] \ in
map \ (\lambda t. \ (map \ (\lambda h. \ h\#t) \ enumerate-H)) \ enumerate-T)
fun enumerate-trace:: trace-regex \Rightarrow WEST-regex
 where enumerate-trace [] = []]
  | enumerate-trace (H \# T) = flatten-list
 (let\ enumerate-H=\ enumerate-list\ H\ in
  let\ enumerate-T=enumerate-trace\ T\ in
  map \ (\lambda t. \ (map \ (\lambda h. \ h\#t) \ enumerate-H)) \ enumerate-T)
value enumerate-trace [[S, One], [S], [One]]
value enumerate-trace [[]]
fun enumerate-sets:: WEST-regex \Rightarrow trace-regex set
 where enumerate-sets [] = \{\}
 \mid enumerate\text{-sets } (h\#T) = (set (enumerate\text{-trace } h)) \cup (enumerate\text{-sets } T)
fun naive-equivalence:: WEST-regex \Rightarrow WEST-regex \Rightarrow bool
 where naive-equivalence A B = (A = B \lor (enumerate-sets A) = (enumerate-sets A)
B))
5
     Regex Equivalence Correctness
lemma enumerate-list-len-alt:
 shows \forall state \in set (enumerate-list state-regex).
        length\ state = length\ state{-regex}
proof(induct state-regex)
 case Nil
 then show ?case by simp
next
```

then have $\forall state \in set (enumerate-list state-regex)$.

 $length\ state = length\ state{-regex}$

case ($Cons\ a\ state\text{-}regex$) {assume $zero:\ a=Zero$

using Cons by blast

```
then have ?case unfolding zero
     \mathbf{by} \ simp
 } moreover {
   assume one: a = One
   then have \forall state \in set (enumerate-list state-regex).
       length\ state = length\ state{-regex}
     using Cons by blast
   then have ?case unfolding one
     by simp
 } moreover {
   assume s: a = S
   then have \forall state \in set (enumerate-list state-regex).
       length\ state = length\ state{-regex}
     using Cons by blast
   then have ?case unfolding s by auto
 ultimately show ?case
   using WEST-bit.exhaust by blast
lemma enumerate-list-len:
 assumes state \in set (enumerate-list state-regex)
 shows length state = length state-regex
 using assms enumerate-list-len-alt by blast
lemma enumerate-list-prop:
 assumes (\bigwedge k. List.member j k \Longrightarrow k \neq S)
 shows enumerate-list j = [j]
 using assms
proof (induct j)
 case Nil
 then show ?case by auto
next
 case (Cons\ h\ t)
 then have elt: enumerate-list t = [t]
   by (simp\ add:\ member-rec(1))
 then have h = One \lor h = Zero
   using Cons
   by (meson\ WEST\text{-}bit.exhaust\ member-rec(1))
 then show ?case using enumerate-list.simps(2-3) elt
   by fastforce
qed
lemma enumerate-fixed-trace:
 fixes h1:: trace\text{-}regex
 assumes \bigwedge j. List.member h1 j \Longrightarrow (\bigwedge k. List.member j \ k \Longrightarrow k \neq S)
```

```
shows (enumerate-trace h1) = [h1]
 using assms
proof (induct h1)
 case Nil
 then show ?case by auto
\mathbf{next}
 case (Cons \ h \ t)
 then have ind: enumerate-trace t = [t]
   by (meson\ member-rec(1))
 have enumerate-list h = [h]
   using enumerate-list-prop Cons
   by (meson\ member-rec(1))
 then show ?case
   using Cons ind unfolding enumerate-trace.simps
   by auto
qed
    If we have two state regexs that don't contain S's, then enumerate trace
on each is different.
lemma enum-trace-prop:
 fixes h1 h2:: trace-regex
 assumes \bigwedge j. List.member h1 j \Longrightarrow (\bigwedge k. List.member j \ k \Longrightarrow k \neq S)
 assumes \bigwedge j. List.member h2 j \Longrightarrow (\bigwedge k. List.member j k \Longrightarrow k \neq S)
 assumes (set h1) \neq (set h2)
 shows set (enumerate-trace h1) \neq set (enumerate-trace h2)
 using enumerate-fixed-trace[of h1] enumerate-fixed-trace[of h2] assms
 by auto
lemma enumerate-list-tail-in:
 assumes head-t\#tail-t \in set (enumerate-list (h\#trace))
 shows tail-t \in set (enumerate-list trace)
proof-
 {assume one: h = One
   have ?thesis
     using assms unfolding one enumerate-list.simps by auto
 } moreover {
   assume zero: h = Zero
   have ?thesis
    using assms unfolding zero enumerate-list.simps by auto
 } moreover {
   assume s: h = S
   have ?thesis
     using assms unfolding s enumerate-list.simps by auto
 ultimately show ?thesis using WEST-bit.exhaust by blast
qed
lemma enumerate-list-fixed:
 assumes t \in set (enumerate-list trace)
```

```
shows (\forall k. \ List.member \ t \ k \longrightarrow k \neq S)
 using assms
proof (induct trace arbitrary: t)
 case Nil
 then show ?case using member-rec(2) by force
next
 case (Cons\ h\ trace)
 obtain head-t tail-t where obt: t = head-t#tail-t
   using Cons.prems enumerate-list-len
   by (metis length-0-conv neq-Nil-conv)
 have tail-t \in set (enumerate-list trace)
   using enumerate-list.simps obt Cons.prems enumerate-list-tail-in by blast
 then have hyp: \forall k. List.member tail-t k \longrightarrow k \neq S
   using Cons.hyps(1)[of\ tail-t] by auto
 {assume one: h = One
   then have head-t = One
    using obt Cons.prems unfolding enumerate-list.simps by auto
   then have ?case
    using hyp obt
    by (simp\ add:\ member-rec(1))
 } moreover {
   assume zero: h = Zero
   then have head-t = Zero
    using obt Cons.prems unfolding enumerate-list.simps by auto
   then have ?case
    using hyp obt
    by (simp\ add:\ member-rec(1))
 } moreover {
   assume s: h = S
   then have head-t = Zero \lor head-t = One
    using obt Cons.prems unfolding enumerate-list.simps by auto
   then have ?case
    using hyp obt
    by (metis\ calculation(1)\ calculation(2)\ member-rec(1)\ s)
 ultimately show ?case using WEST-bit.exhaust by blast
qed
lemma map-enum-list-nonempty:
 fixes t::WEST-bit list list
 fixes head::WEST-bit list
 shows map (\lambda h. h \# t) (enumerate-list head) \neq []
proof(induct head arbitrary: t)
 case Nil
 then show ?case by simp
 case (Cons a head)
 {assume a: a = One
```

```
then have ?case unfolding a enumerate-list.simps
     using Cons by auto
  } moreover {
   assume a: a = Zero
   then have ?case unfolding a enumerate-list.simps
     using Cons by auto
  } moreover {
   assume a: a = S
   then have ?case unfolding a enumerate-list.simps
     using Cons by auto
 ultimately show ?case using WEST-bit.exhaust by blast
qed
\mathbf{lemma}\ \mathit{length-of-flatten-list}\colon
assumes flat =
 foldr (@)
  (map (\lambda t. map (\lambda h. h \# t) H) T)
shows length flat = length T * length H
 using assms
proof (induct T arbitrary: flat)
 case Nil
  then show ?case by auto
\mathbf{next}
 case (Cons t1 T2)
 then have flat = foldr (@)
    (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ H)\ (t1\ \#\ T2))\ []
   by auto
 then have flat = foldr (@)
   (map (\lambda h. h \# t1) H \#(map (\lambda t. map (\lambda h. h \# t) H) T2)) []
   by auto
 then have flat = map (\lambda h. h \# t1) H @ (foldr (@) (map (\lambda t. map (\lambda h. h \# t)
H) T2)) <math>[]
   by simp
 then have length flat = length H + length (T2) * length H
   using Cons by auto
  then show ?case by simp
qed
lemma flatten-list-idx:
 assumes flat = flatten-list \ (map \ (\lambda t. \ map \ (\lambda h. \ h \ \# \ t) \ head) \ tail)
 assumes i < length tail
 assumes j < length head
  shows (head!j)\#(tail!i) = flat!(i*(length head) + j) \land i*(length head) + j <
length flat
 using assms
```

```
proof(induct tail arbitrary: head i j flat)
     case Nil
     then show ?case
         by auto
next
     case (Cons a tail)
     let ?flat = flatten-list (map (\lambda t. map (\lambda h. h \# t) head) tail)
     have cond1: ?flat = ?flat by auto
     have equiv: (map (\lambda t. map (\lambda h. h \# t) head) (a \# tail)) =
              (map\ (\lambda h.\ h\ \#\ a)\ head)\ \#\ (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ head)\ tail)
              by auto
     then have flat-is: flat = (map (\lambda h. h \# a) head) @ flatten-list (map (\lambda t. map (\lambda
(\lambda h. h \# t) head) tail)
         using Cons(2) unfolding flatten-list.simps by simp
     {assume i\theta: i = \theta
          then have bound: i * length head + j < length flat
              using Cons by simp
            have length (map (\lambda h. h \# a) head) > j
              using Cons(4) by auto
         then have (map (\lambda h. h \# a) head) ! j = flat ! j
              using flat-is
              by (simp add: nth-append)
         then have (head ! j)\#a = flat ! j
              using Cons(4) by simp
         then have head !j \# (a \# tail) ! i = flat ! (i * length head + j)
              unfolding i\theta by simp
         then have ?case using bound by auto
     } moreover {
         assume i-ge-\theta: i > \theta
         have len-flat: length flat = length head * length (a # tail)
            using Cons(3-4) length-of-flatten-list[of flat head a\#tail]
              Cons(2) unfolding flatten-list.simps
            by simp
       have i * length head \leq (length (a \# tail) - 1)*length head
            using Cons(3) by auto
       then have i * length head \leq (length (a \# tail))*length head - length head
            by auto
       then have i * length head + j < (length (a # tail))*length head - length head
+ length head
            using Cons(4) by linarith
       then have i * length head + j < (length (a # tail)) * length head
         then have bound: i * length head + j < length flat
              using len-flat
              by (simp add: mult.commute)
         have i-minus: i - 1 < length tail
              using i-ge-\theta Cons(3)
              by auto
```

```
have flat! (i * length head + j) = flat! ((i-1) * length head + j + length
head)
     using i-ge-\theta
       by (smt (z3) add.commute bot-nat-0.not-eq-extremum group-cancel.add1
mult-eq-if)
   then have flat ! (i * length head + j) = flatten-list
    (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ head)\ tail)!
   ((i-1)*length head + j)
     using flat-is
   by (smt (verit, ccfv-threshold) add.commute length-map nth-append-length-plus)
   then have flat ! (i * length head + j) = head ! j # tail ! (i - 1)
        using Cons.hyps[OF\ cond1\ i\text{-}minus\ Cons(4)]
        by argo
   then have access: head ! j \# (a \# tail) ! i =
   flat ! (i * length head + j)
     using i-qe-\theta
     by simp
   have ?case
     using bound access
     by auto
 ultimately show ?case by blast
qed
lemma flatten-list-shape:
 assumes List.member flat x1
 assumes flat = flatten-list \ (map \ (\lambda t. \ map \ (\lambda h. \ h \ \# \ t) \ H) \ T)
  shows \exists x1-head x1-tail. x1 = x1-head \#x1-tail \land List.member H x1-head \land
List.member\ T\ x1-tail
 using assms
proof(induction \ T \ arbitrary: flat \ H)
 case Nil
 have flat = (flatten-list (map (<math>\lambda t. map (\lambda h. h \# t) H) []))
   using Nil(1) unfolding Nil by blast
 then have flat = []
   by simp
  then show ?case
   using Nil
   by (simp\ add:\ member-rec(2))
\mathbf{next}
  case (Cons\ a\ T)
 have \exists k. \ x1 = flat ! k \land k < length flat
    using Cons(2)
    by (metis in-set-conv-nth member-def)
  then obtain k where k-is: x1 = flat \mid k \land k < length flat
 have len-flat: length flat = (length (a\#T)*length H)
   using Cons(3) length-of-flatten-list
```

```
by auto
 let ?j = k \mod (length H)
 have \exists i . k = (i*(length H) + ?j)
   by (meson mod-div-decomp)
  then obtain i where i-is: k = (i*(length\ H) + ?j)
   by auto
  then have i-lt: i < length (a \# T)
   using len-flat k-is
   by (metis add-lessD1 mult-less-cancel2)
 have j-lt: ?j < length H
  by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor
mult-0-right)
 have \exists i < length (a \# T). k = (i*(length H)+?j)
   using i-is i-lt by blast
 then have \exists i < length (a \# T). \exists j < length H. k = (i*(length H)+j)
   using j-lt by blast
  then obtain i j where ij-props: i < length (a\#T) j < length H k = (i*(length
H)+j)
   by blast
  then have flat ! k = H ! j \# (a \# T) ! i
   using flatten-list-idx[OF\ Cons(3)\ ij-props(1)\ ij-props(2)]
     Cons(2) k-is ij-props(3)
   by argo
  then obtain x1-head x1-tail where x1 = x1-head \#x1-tail
 and List.member H x1-head and List.member (a \# T) x1-tail
   using ij-props
   by (simp add: index-of-L-in-L k-is)
  then show ?case
   using Cons(3) by simp
qed
lemma flatten-list-len:
 assumes \bigwedge t. List.member T t \Longrightarrow length t = n
 assumes flat = flatten-list \ (map \ (\lambda t. \ map \ (\lambda h. \ h \ \# \ t) \ H) \ T)
 shows \bigwedge x1. List.member flat x1 \Longrightarrow length \ x1 = n+1
 using assms
proof(induction \ T \ arbitrary: flat \ n \ H)
  case Nil
 have flat = (flatten-list (map (<math>\lambda t. map (\lambda h. h \# t) H) \parallel))
   using Nil(1) unfolding Nil(3) by blast
  then have flat = []
   by simp
  then show ?case
   using Nil by (simp \ add: member-rec(2))
\mathbf{next}
 case (Cons a T)
 have \exists k. \ x1 = flat ! k \land k < length flat
    using Cons(2)
```

```
by (metis in-set-conv-nth member-def)
 then obtain k where k-is: x1 = flat \mid k \land k < length flat
   by auto
 have len-flat: length flat = (length (a \# T)*length H)
   using Cons(4) length-of-flatten-list
   by auto
 let ?j = k \mod (length H)
 have \exists i . k = (i*(length H) + ?j)
   by (meson mod-div-decomp)
 then obtain i where i-is: k = (i*(length\ H) + ?j)
   by auto
 then have i-lt: i < length (a \# T)
   using len-flat k-is
   by (metis add-lessD1 mult-less-cancel2)
 have j-lt: ?j < length H
  by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor
mult-0-right)
 have \exists i < length (a \# T). k = (i*(length H)+?j)
   using i-is i-lt by blast
 then have \exists i < length (a \# T). \exists j < length H. k = (i*(length H)+j)
   using j-lt by blast
 then obtain i j where ij-props: i < length (a\#T) j < length H k = (i*(length
H)+j)
   by blast
 then have flat! k = H!j \# (a \# T)!i
   using flatten-list-idx[OF Cons(4) ij-props(1) ij-props(2)]
     Cons(2) k-is ij-props(3)
   by argo
 then obtain x1-head x1-tail where x1 = x1-head \#x1-tail
 and List.member H x1-head and List.member (a\#T) x1-tail
   using ij-props
   by (simp add: index-of-L-in-L k-is)
 then show ?case
   using Cons(3) by simp
qed
lemma flatten-list-lemma:
  assumes \bigwedge x1. List.member to-flatten x1 \implies (\bigwedge x2. List.member x1 x2 \implies
length x2 = length trace
 assumes a \in set (flatten-list to-flatten)
 shows length a = length trace
 using assms proof (induct to-flatten)
 case Nil
 then show ?case by auto
\mathbf{next}
 case (Cons \ h \ t)
  have a-in: a \in set \ h \lor a \in set \ (flatten-list \ t)
    using Cons(3) unfolding flatten-list.simps foldr-def by simp
```

```
{assume *: a \in set h
   then have ?case
     using Cons(2)[of h]
     by (simp add: in-set-member member-rec(1))
 } moreover {assume *: a \in set (flatten-list t)
   have ind-h-setup: (\bigwedge x1 \ x2. List.member t \ x1 \Longrightarrow List.member \ x1 \ x2 \Longrightarrow
      length x2 = length trace
     using Cons(2) by (meson\ member-rec(1))
   have a \in set (flatten-list t) \Longrightarrow length a = length trace
     using Cons(1) ind-h-setup
     by auto
   then have ?case
     using * by auto
 ultimately show ?case
   using a-in by blast
qed
lemma enumerate-trace-len:
 assumes a \in set (enumerate-trace trace)
 shows length a = length trace
 using assms
proof(induct length trace arbitrary: trace a)
 case \theta
 then show ?case by auto
next
 case (Suc \ x)
 then obtain h t where trace-is: trace = h\#t
   by (meson Suc-length-conv)
 obtain i where (enumerate-trace trace)!i = a
   using Suc.prems
   by (meson in-set-conv-nth)
 let ?enumerate-H = enumerate-list h
 let ?enumerate-t = enumerate-trace t
 have enum-tr-is: enumerate-trace trace =
     flatten-list (map (\lambda t. map (\lambda h. h \# t) ?enumerate-H) ?enumerate-t)
   using trace-is by auto
 let ?to-flatten = map (\lambda t. map (\lambda h. h \# t) ?enumerate-H) ?enumerate-t
 have all-w: (\bigwedge w.\ List.member\ (enumerate-trace\ t)\ w \Longrightarrow length\ w = length\ t)
   using Suc(1)[of\ t]\ Suc(2)\ trace-is
   by (simp add: in-set-member)
 have a-mem: List.member (enumerate-trace trace) a
   using Suc(3) in-set-member by fast
 show ?case
   using flatten-list-len[OF - enum-tr-is a-mem, of length t] all-w
   trace-is by simp
qed
```

```
definition regex-zeros-and-ones:: trace-regex <math>\Rightarrow bool
  where regex-zeros-and-ones tr =
   (\forall j. \ List.member \ tr \ j \longrightarrow (\forall k. \ List.member \ j \ k \longrightarrow k \neq S))
lemma match-enumerate-state-aux-first-bit:
 assumes a-head = Zero \lor a-head = One
 assumes a-head \# a-tail \in set (enumerate-list (h-head \# h))
 shows h-head = a-head \vee h-head = S
proof-
  {assume h-head: h-head = One
   then have ?thesis
     using assms unfolding h-head enumerate-list.simps by auto
  } moreover {
   assume h-head: h-head = Zero
   then have ?thesis
     using assms unfolding h-head enumerate-list.simps by auto
  } moreover {
   assume h-head = S
   then have ?thesis by auto
  ultimately show ?thesis using WEST-bit.exhaust by blast
qed
lemma advance-state-iff:
 assumes x > \theta
 shows x \in state \longleftrightarrow (x-1) \in advance\text{-}state state
proof-
 have forward: x \in state \longrightarrow (x-1) \in advance\text{-}state state
   using assms by auto
 have converse: (x-1) \in advance\text{-state state} \longrightarrow x \in state
   unfolding advance-state.simps using assms
    \mathbf{by}\ (\mathit{smt}\ (\mathit{verit},\ \mathit{best})\ \mathit{Suc-diff-1}\ \mathit{diff-0-eq-0}\ \mathit{diff-Suc-1'}\ \mathit{diff-self-eq-0}\ \mathit{less-one}
mem-Collect-eq nat.distinct(1) not0-implies-Suc not-gr-zero old.nat.exhaust)
 show ?thesis using forward converse by blast
qed
lemma match-enumerate-state-aux:
 assumes a \in set (enumerate-list h)
 assumes match-timestep state a
 shows match-timestep state h
 using assms
proof(induct h arbitrary: state a)
  case Nil
 have a = [
   using Nil by auto
  then show ?case using Nil by blast
next
```

```
case (Cons\ h-head\ h)
  then obtain a-head a-tail where obt: a = a-head\#a-tail
   using enumerate-list-len Cons
   by (metis length-0-conv list.exhaust)
  let ?adv-state = advance-state state
  {assume in-state: 0 \in state
   then have a-head = One
     using Cons.prems(2) unfolding obt match-timestep-def
     using enumerate-list-fixed
       by (metis\ WEST-bit.exhaust\ Cons(2)\ length-pos-if-in-set\ list.set-intros(1)
member-rec(1) nth-Cons-0 obt)
   then have h-head: h-head = One \lor h-head = S
     using Cons.prems(1) unfolding obt
     using match-enumerate-state-aux-first-bit by blast
   have match-adv: match-timestep (advance-state state) h
     using Cons.hyps[of a-tail ?adv-state]
     using Cons.prems(1) Cons.prems(2) advance-state-match-timestep enumer-
ate-list-tail-in obt by blast
   have \bigwedge x. x < length (h-head \# h) \Longrightarrow
      ((h\text{-}head \# h) ! x = One \longrightarrow x \in state) \land
      ((h\text{-}head \# h) ! x = Zero \longrightarrow x \notin state)
   proof-
     \mathbf{fix} \ x
     assume x: x < length (h-head # h)
     let ?thesis = ((h\text{-}head \# h) ! x = One \longrightarrow x \in state) \land
      ((h-head \# h) ! x = Zero \longrightarrow x \notin state)
     {assume x\theta: x = \theta
       then have ?thesis unfolding x0 using h-head in-state by auto
     } moreover {
       assume x-ge-\theta: x > \theta
       then have x-1 < length h
         using x by simp
       then have *:(h ! (x-1) = One \longrightarrow (x-1) \in advance-state state) \land
                 (h!(x-1) = Zero \longrightarrow (x-1) \notin advance\text{-state state})
         using match-adv unfolding match-timestep-def by blast
       have h!(x-1) = (h-head \# h)! x using x-qe-\theta by auto
       then have *: ((h\text{-}head \# h) ! x = One \longrightarrow (x-1) \in advance\text{-}state state) \land
                 ((h\text{-}head \# h) ! x = Zero \longrightarrow (x-1) \notin advance\text{-}state state)
         using * by argo
       then have ?thesis using advance-state-iff x-ge-0 by blast
     ultimately show ?thesis by blast
   then have ?case
     using h-head unfolding match-timestep-def by blast
  } moreover {
   assume not-in: 0 \notin state
   then have a-head = Zero
     \mathbf{using} \ \mathit{Cons.prems}(2) \ \mathbf{unfolding} \ \mathit{obt} \ \mathit{match-timestep-def}
```

```
using enumerate-list-fixed
       by (metis WEST-bit.exhaust Cons(2) length-pos-if-in-set list.set-intros(1)
member-rec(1) nth-Cons-0 obt)
   then have h-head: h-head = Zero \lor h-head = S
     using Cons.prems(1) unfolding obt
     using match-enumerate-state-aux-first-bit by blast
   have match-adv: match-timestep (advance-state state) h
     using Cons.hyps[of a-tail ?adv-state]
      using Cons.prems(1) Cons.prems(2) advance-state-match-timestep enumer-
ate-list-tail-in obt by blast
   have \bigwedge x. x < length (h-head \# h) \Longrightarrow
      ((h\text{-}head \# h) ! x = One \longrightarrow x \in state) \land
      ((h\text{-}head \# h) ! x = Zero \longrightarrow x \notin state)
   proof-
     \mathbf{fix} \ x
     assume x: x < length (h-head # h)
     let ?thesis = ((h\text{-}head \# h) ! x = One \longrightarrow x \in state) \land
      ((h\text{-}head \# h) ! x = Zero \longrightarrow x \notin state)
     {assume x\theta: x = \theta
       then have ?thesis unfolding x0 using h-head not-in by auto
     } moreover {
       assume x-ge-\theta: x > \theta
       then have x-1 < length h
         using x by simp
       then have *:(h!(x-1) = One \longrightarrow (x-1) \in advance\text{-state state}) \land
                 (h!(x-1) = Zero \longrightarrow (x-1) \notin advance\text{-state state})
         using match-adv unfolding match-timestep-def by blast
       have h!(x-1) = (h-head \# h)! x using x-ge-0 by auto
       then have *: ((h\text{-}head \# h) ! x = One \longrightarrow (x-1) \in advance\text{-}state state) \land
                 ((h\text{-}head \# h) ! x = Zero \longrightarrow (x-1) \notin advance\text{-}state state)
         using * by argo
       then have ?thesis using advance-state-iff x-ge-0 by blast
     ultimately show ?thesis by blast
   qed
   then have ?case
     using h-head unfolding match-timestep-def by blast
  ultimately show ?case using WEST-bit.exhaust by blast
qed
lemma enumerate-list-index-one:
 assumes j < length (enumerate-list a)
 shows One \# enumerate-list a ! j = enumerate-list (S \# a) ! (length (enumerate-list
a) + j) \wedge
   (length\ (enumerate-list\ a) + j < length\ (enumerate-list\ (S\ \#\ a)))
  using assms
proof(induct a arbitrary: j)
```

```
case Nil
 then show ?case by auto
next
 case (Cons a1 a2)
 then show ?case unfolding enumerate-list.simps
  by (metis (mono-tags, lifting) length-append length-map nat-add-left-cancel-less
nth-append-length-plus nth-map)
qed
lemma list-concat-index:
 assumes j < length L1
 shows (L1@L2)!j = L1!j
 using assms
 by (simp add: nth-append)
lemma enumerate-list-index-zero:
 assumes j < length (enumerate-list a)
 shows Zero \# enumerate-list a ! j = enumerate-list (S \# a) ! j \land
   j < length (enumerate-list (S \# a))
 using assms unfolding enumerate-list.simps
proof(induct a arbitrary: j)
 case Nil
 then show ?case by simp
next
 case (Cons a1 a2)
 then have j-bound: j < length (enumerate-list (S # a1 # a2))
 let ?subgoal = Zero # enumerate-list (a1 # a2) ! j = enumerate-list (S # a1
# a2)! j
 have j < length (map ((\#) Zero) (enumerate-list (a1 \# a2)))
   using j-bound Cons by simp
 then have (((map\ ((\#)\ Zero)\ (enumerate-list\ (a1\ \#\ a2))\ @
    map\ ((\#)\ One)\ (enumerate-list\ (a1\ \#\ a2))))\ !
   j) = (map ((\#) Zero) (enumerate-list (a1 \# a2)))!j
   using Cons.prems j-bound list-concat-index by blast
 then have ?subqoal using Cons unfolding enumerate-list.simps
   by simp
 then show ?case using j-bound by auto
qed
lemma match-enumerate-list:
 assumes match-timestep state a
 shows \exists j < length (enumerate-list a).
       match-timestep state (enumerate-list a! j)
 using assms
proof(induct a arbitrary: state)
 case Nil
 then show ?case by simp
```

```
next
 case (Cons head a)
 \mathbf{let} \ ?adv\text{-}state = advance\text{-}state \ state
  {assume in-state: 0 \in state
   then have (head \# a) ! 0 \neq Zero
     using Cons. prems unfolding match-timestep-def by blast
   then have head: head = One \lor head = S
     using WEST-bit.exhaust by auto
   have match-timestep ?adv-state a
     using Cons.prems
     using advance-state-match-timestep by auto
   then obtain j where obt: match-timestep ?adv-state (enumerate-list a! j)
                         \land j < length (enumerate-list a)
     using Cons.hyps[of ?adv-state] by blast
   let ?state = (enumerate-list \ a \ ! \ j)
   \{assume\ headcase:\ head=One\}
     let ?s = One \# ?state
     have \bigwedge x. x < length ?s \Longrightarrow
      ((?s! x = One \longrightarrow x \in state) \land (?s! x = Zero \longrightarrow x \notin state))
     proof-
       \mathbf{fix} \ x
       assume x: x < length ?s
      let ?thesis = ((?s! x = One \longrightarrow x \in state) \land (?s! x = Zero \longrightarrow x \notin state))
       {assume x\theta: x = \theta
         then have ?thesis using in-state by simp
       } moreover {
         assume x-ge-\theta: x > \theta
         have cond1: (One = One \longrightarrow 0 \in state) \land (One = Zero \longrightarrow 0 \notin state)
          using in-state by blast
         have cond2: \forall x < length (enumerate-list a ! j).
      (enumerate-list \ a \ ! \ j \ ! \ x = One \longrightarrow x + 1 \in state) \land
      (enumerate-list a ! j ! x = Zero \longrightarrow x + 1 \notin state)
          using obt unfolding match-timestep-def advance-state-iff by fastforce
         have x < length (One \# enumerate-list a ! j)
          using x by blast
         then have ?thesis
          using index-shift[of One state ?state, OF cond1 cond2] by blast
       ultimately show ?thesis by blast
     qed
     then have match: match-timestep state % s
       using obt headcase in-state unfolding match-timestep-def by blast
     have (map ((\#) One) (enumerate-list a) ! j) = One \# (enumerate-list a ! j)
       using obt by simp
     then have ?case unfolding headcase enumerate-list.simps
       using match obt by auto
   } moreover {
     assume headcase: head = S
     let ?s = One \# ?state
```

```
have \bigwedge x. x < length ?s \Longrightarrow
((?s ! x = One \longrightarrow x \in state) \land (?s ! x = Zero \longrightarrow x \notin state))
proof-
 \mathbf{fix} \ x
 assume x: x < length ?s
let ?thesis = ((?s \mid x = One \longrightarrow x \in state) \land (?s \mid x = Zero \longrightarrow x \notin state))
 {assume x\theta: x = \theta
   then have ?thesis using in-state by simp
  } moreover {
   assume x-ge-\theta: x > \theta
   have cond1: (One = One \longrightarrow 0 \in state) \land (One = Zero \longrightarrow 0 \notin state)
     using in-state by blast
   have cond2: \forall x < length (enumerate-list a ! j).
(enumerate-list\ a\ !\ j\ !\ x=One\longrightarrow x+1\in state)\ \land
(enumerate-list a ! j ! x = Zero \longrightarrow x + 1 \notin state)
     using obt unfolding match-timestep-def advance-state-iff by fastforce
   have x < length (One \# enumerate-list a ! j)
     using x by blast
   then have ?thesis
     using index-shift[of One state ?state, OF cond1 cond2] by blast
 }
 ultimately show ?thesis by blast
qed
then have match: match-timestep state ?s
 using obt headcase in-state unfolding match-timestep-def by blast
have \bigwedge x. x < length (S \# enumerate-list a ! j) \Longrightarrow
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = One \longrightarrow x \in state) \land
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = Zero \longrightarrow x \notin state)
proof-
 \mathbf{fix} \ x
 assume x: x < length (S \# enumerate-list a ! j)
 let ?thesis = ((S \# enumerate-list a ! j) ! x = One \longrightarrow x \in state) \land
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = Zero \longrightarrow x \notin state)
  {assume x\theta: x = \theta
   then have ?thesis by auto
  } moreover {
   assume x-ge-\theta: x > \theta
   then have ?thesis using x match unfolding match-timestep-def by simp
 ultimately show ?thesis by blast
qed
then have match-S: match-timestep state (S \# enumerate-list \ a \ ! \ j)
 using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)
 using obt by blast
have ?s = enumerate-list (S \# a)!((length (enumerate-list a))+j)
     \land (length (enumerate-list a))+j < length (enumerate-list (S # a))
 using j-bound enumerate-list-index-one by blast
then have ?case unfolding headcase
```

```
using match obt match-S by metis
 }
 ultimately have ?case using head by blast
} moreover {
 assume not-in: 0 \notin state
 then have (head \# a) ! 0 \neq One
   using Cons. prems unfolding match-timestep-def by blast
 then have head: head = Zero \lor head = S
   using WEST-bit.exhaust by auto
 have match-timestep ?adv-state a
   using Cons.prems
   using advance-state-match-timestep by auto
 then obtain j where obt: match-timestep ?adv-state (enumerate-list a! j)
                      \land j < length (enumerate-list a)
   using Cons.hyps[of ?adv-state] by blast
 let ?state = (enumerate-list \ a \ ! \ j)
 \{assume\ headcase:\ head=Zero
   let ?s = Zero \# ?state
   have \bigwedge x. x < length ?s \Longrightarrow
    ((?s! x = One \longrightarrow x \in state) \land (?s! x = Zero \longrightarrow x \notin state))
   proof-
    \mathbf{fix} \ x
     assume x: x < length ?s
    let ?thesis = ((?s \mid x = One \longrightarrow x \in state) \land (?s \mid x = Zero \longrightarrow x \notin state))
     {assume x\theta: x = \theta
      then have ?thesis using not-in headcase by simp
     } moreover {
      assume x-ge-\theta: x > \theta
      have cond1: (Zero = One \longrightarrow 0 \in state) \land (Zero = Zero \longrightarrow 0 \notin state)
        using not-in by blast
      have cond2: \forall x < length (enumerate-list a ! j).
    (enumerate-list\ a\ !\ j\ !\ x=One\longrightarrow x+1\in state)\land
    (enumerate-list\ a\ !\ j\ !\ x=Zero\longrightarrow x+1\notin state)
        using obt unfolding match-timestep-def advance-state-iff by fastforce
      have x < length (Zero \# enumerate-list a ! j)
        using x by blast
      then have ?thesis
        using index-shift[of Zero state ?state, OF cond1 cond2] by blast
     ultimately show ?thesis by blast
   qed
   then have match: match-timestep state ?s
     using obt headcase not-in unfolding match-timestep-def by blast
   have ?case unfolding headcase enumerate-list.simps
     using match obt by auto
 } moreover {
   assume headcase: head = S
   let ?s = Zero \# ?state
   have \bigwedge x. x < length ?s \Longrightarrow
```

```
((?s! x = One \longrightarrow x \in state) \land (?s! x = Zero \longrightarrow x \notin state))
proof-
 \mathbf{fix} \ x
 assume x: x < length ?s
let ?thesis = ((?s ! x = One \longrightarrow x \in state) \land (?s ! x = Zero \longrightarrow x \notin state))
 {assume x\theta: x = \theta
   then have ?thesis using not-in by simp
  } moreover {
   assume x-ge-\theta: x > \theta
   have cond1: (Zero = One \longrightarrow 0 \in state) \land (Zero = Zero \longrightarrow 0 \notin state)
     using not-in by blast
   have cond2: \forall x < length (enumerate-list a ! j).
(enumerate-list\ a\ !\ j\ !\ x=One\longrightarrow x+1\in state)\ \land
(enumerate-list a ! j ! x = Zero \longrightarrow x + 1 \notin state)
     using obt unfolding match-timestep-def advance-state-iff by fastforce
   have x < length (Zero \# enumerate-list a ! j)
     using x by blast
   then have ?thesis
     using index-shift[of Zero state ?state, OF cond1 cond2] by blast
 ultimately show ?thesis by blast
qed
then have match: match-timestep state ?s
 using obt headcase not-in unfolding match-timestep-def by blast
have \bigwedge x. x < length (S \# enumerate-list <math>a ! j) \Longrightarrow
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = One \longrightarrow x \in state) \land
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = Zero \longrightarrow x \notin state)
proof-
 \mathbf{fix} \ x
 assume x: x < length (S \# enumerate-list a ! j)
 let ?thesis = ((S \# enumerate-list a ! j) ! x = One \longrightarrow x \in state) \land
((S \# enumerate-list \ a \ ! \ j) \ ! \ x = Zero \longrightarrow x \notin state)
 {assume x\theta: x = \theta
   then have ?thesis by auto
  } moreover {
   assume x-qe-\theta: x > \theta
   then have ?thesis using x match unfolding match-timestep-def by simp
 ultimately show ?thesis by blast
qed
then have match-S: match-timestep state (S \# enumerate-list \ a \ ! \ j)
 using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)
 using obt by blast
have ?s = enumerate-list (S \# a)!(j)
     \land j < length (enumerate-list (S \# a))
 using j-bound enumerate-list-index-zero by blast
then have ?case unfolding headcase
 using match obt match-S by metis
```

```
ultimately have ?case using head by blast
 ultimately show ?case by blast
qed
lemma enumerate-trace-head-in:
 assumes a-head \# a-tail \in set (enumerate-trace (h \# trace))
 shows a-head \in set (enumerate-list h)
proof -
   let ?flat = flatten-list
    (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)
              (enumerate-list h))
      (enumerate-trace trace))
   have flat-is: ?flat = ?flat
     by auto
   have mem: List.member
    ?flat
    (a-head \# a-tail)
     using assms unfolding enumerate-trace.simps
     using in-set-member by metis
   then obtain x1-head x1-tail where
     x1-props: a-head \# a-tail = x1-head \# x1-tail \land
    List.member (enumerate-list h) x1-head \land
    List.member (enumerate-trace trace) x1-tail
    using flatten-list-shape[OF mem flat-is] by auto
  then have a-head = x1-head
    by auto
  then have List.member (enumerate-list h) a-head
    using x1-props
    by auto
  then show ?thesis
   using in-set-member
   by fast
\mathbf{qed}
\mathbf{lemma} \ enumerate\text{-}trace\text{-}tail\text{-}in:
 assumes a-head \# a-tail \in set (enumerate-trace (h \# trace))
 shows a-tail \in set (enumerate-trace trace)
proof -
   let ?flat = flatten-list
    (map (\lambda t. map (\lambda h. h \# t))
              (enumerate-list h))
      (enumerate-trace\ trace))
   have flat-is: ?flat = ?flat
     by auto
   have mem: List.member
```

```
?flat
    (a-head \# a-tail)
    using assms unfolding enumerate-trace.simps
    using in-set-member by metis
   then obtain x1-head x1-tail where
    x1-props: a-head \# a-tail = x1-head \# x1-tail \land
    List.member (enumerate-list h) x1-head \land
    List.member (enumerate-trace trace) x1-tail
    using flatten-list-shape[OF mem flat-is] by auto
  then have a-tail = x1-tail
    by auto
  then have List.member (enumerate-trace trace) a-tail
    using x1-props
    by auto
  then show ?thesis
   using in-set-member
   by fast
qed
```

Intuitively, this says that the traces in enumerate trace h are "more specific" than h, which is "more generic"—i.e., h matches everything that each element of enumerate trace h matches.

```
\mathbf{lemma}\ \mathit{match-enumerate-trace-aux}:
 assumes a \in set (enumerate-trace trace)
 assumes match-regex \pi a
 shows match-regex \pi trace
proof -
 show ?thesis using assms proof (induct trace arbitrary: a \pi)
   then show ?case by auto
 next
   case (Cons\ h\ trace)
   then obtain a-head a-tail where obt-a: a = a-head\#a-tail
     using enumerate-trace-len
     by (metis length-0-conv neq-Nil-conv)
   have length \pi > 0
     using Cons unfolding match-regex-def obt-a by auto
   then obtain \pi-head \pi-tail where obt-\pi: \pi = \pi-head \#\pi-tail
     using min-list.cases by auto
   have cond1: a\text{-}tail \in set \ (enumerate\text{-}trace \ trace)
     using Cons.prems(1) unfolding obt-a
     using enumerate-trace-tail-in by blast
   have cond2: match-regex \pi-tail a-tail
     using Cons.prems(2) unfolding obt-a obt-\pi match-regex-def by auto
   have match-tail: match-regex \pi-tail trace
     using Cons.hyps[OF cond1 cond2] by blast
   have a-head: a-head \in set (enumerate-list h)
     using Cons.prems(1) unfolding obt-a
     using enumerate-trace-head-in by blast
```

```
have match-timestep \pi-head a-head
     using Cons.prems(2) unfolding obt-\pi match-regex-def
     using obt-a by auto
   then have match-head: match-timestep \pi-head h
     using match-enumerate-state-aux[of a-head h \pi-head] a-head by blast
   have \land time.\ time < length\ (h \# trace) \Longrightarrow
      match-timestep ((\pi-head \# \pi-tail) ! time) ((h \# trace) ! time)
   proof-
    fix time
    assume time: time < length (h \# trace)
    let ?thesis = match-timestep ((\pi-head \# \pi-tail) ! time) ((h \# trace) ! time)
     {assume time\theta: time = \theta
      then have ?thesis using match-head by simp
     } moreover {
      assume time-ge-\theta: time > \theta
      then have ?thesis
        using match-tail time-ge-0 time unfolding match-regex-def by simp
     ultimately show ?thesis by blast
   then show ?case using match-tail unfolding match-regex-def obt-a obt-\pi
    by simp
 qed
qed
lemma match-enumerate-trace:
 assumes a \in set (enumerate-trace h) \land match-regex \pi a
 shows match \pi (h \# T)
proof-
 show ?thesis
   unfolding match-def
   using match-enumerate-trace-aux assms
   by auto
qed
lemma match-enumerate-sets1:
 assumes (\exists r \in (enumerate\text{-}sets R). match\text{-}regex \pi r)
 shows (match \pi R)
 using assms
proof (induct R)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons \ h \ T)
 then obtain a where a-prop: a \in set (enumerate-trace h) \cup enumerate-sets T \wedge a \in set
match-regex \pi a
   by auto
```

```
{ assume *: a \in set (enumerate-trace h)}
   then have ?case
    using match-enumerate-trace a-prop
    by blast
 } moreover {assume *: a \in enumerate\text{-sets } T
   then have match \pi T
    using Cons a-prop by blast
   then have ?case
    by (metis Suc-leI le-imp-less-Suc length-Cons match-def nth-Cons-Suc)
 ultimately show ?case
   using a-prop by auto
qed
lemma match-cases:
 assumes match \pi (a \# R)
 shows match \pi [a] \vee match \pi R
proof-
 obtain i where obt: match-regex \pi ((a # R)!i) \wedge i < length (a # R)
   using assms unfolding match-def by blast
 {assume i\theta: i = \theta
   then have ?thesis
    using assms unfolding match-def using obt by simp
 } moreover {
   assume i-ge-\theta: i > \theta
   then have match-regex \pi (R! (i-1))
    using assms obt unfolding match-def by simp
   then have match \pi R
    unfolding match-def using obt i-ge-0
    by (metis Suc-diff-1 Suc-less-eq length-Cons)
   then have ?thesis by blast
 ultimately show ?thesis using assms unfolding match-def by blast
qed
{f lemma} enumerate-trace-decompose:
 assumes state \in set (enumerate-list h)
 assumes trace \in set (enumerate-trace T)
 shows state\#trace \in set \ (enumerate-trace \ (h\#T))
proof-
 let ?enumh = enumerate-list h
 let ?enumT = enumerate-trace\ T
 let ?flat = flatten-list (map (\lambda t. map (\lambda h. h \# t) ?enumh) ?enumT)
 have enum: enumerate-trace (h \# T) = ?flat
   unfolding enumerate-trace.simps by simp
 obtain i where i: ?enumT!i = trace \land i < length ?enumT
   using assms(2) by (meson\ in\text{-}set\text{-}conv\text{-}nth)
 obtain j where j: ?enumh!j = state \land j < length ?enumh
```

```
using assms(1) by (meson in-set-conv-nth)
 have enumerate-list h ! j \# enumerate-trace T ! i =
   flatten-list (map (\lambda t. map (\lambda h. h \# t) (enumerate-list h)) (enumerate-trace T))
!
   (i * length (enumerate-list h) + j) \land
   i * length (enumerate-list h) + j
   < length
      (flatten-list
       (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ (enumerate-list\ h))\ (enumerate-trace\ T)))
   using flatten-list-idx[of ?flat ?enumh ?enumT i j] enum i j by blast
 then show ?thesis
   using i j enum by simp
qed
lemma match-enumerate-trace-aux-converse:
 assumes match-regex \pi trace
 shows match \pi (enumerate-trace trace)
 using assms
\mathbf{proof}(induct\ trace\ arbitrary:\ \pi)
  case Nil
 have enum: enumerate-trace [] = []]
 show ?case unfolding enum match-def match-regex-def by auto
\mathbf{next}
  case (Cons a trace)
 have length \pi > 0
   using Cons.prems unfolding match-regex-def by auto
  then obtain pi-head pi-tail where pi-obt: \pi = pi-head \#pi-tail
   using list.exhaust by auto
 have cond: match-regex pi-tail trace
   using Cons.prems pi-obt unfolding match-regex-def by auto
  then have match-tail: match pi-tail (enumerate-trace trace)
   using Cons.hyps by blast
  then obtain i where obt-i: match-regex pi-tail (enumerate-trace trace ! i) \wedge
       i < length (enumerate-trace trace)
   unfolding match-def by blast
 let ?enum-tail = (enumerate-trace trace ! i)
  have match-head: match-timestep pi-head a
   using Cons.prems unfolding match-regex-def
   by (metis Cons.prems WEST-and-trace-correct-forward-aux nth-Cons' pi-obt)
  then have \exists j < length (enumerate-list a).
           match-timestep pi-head ((enumerate-list a)!j)
   using match-enumerate-list by blast
  then obtain j where obt-j: match-timestep pi-head ((enumerate-list a)!j) \land
                   j < length (enumerate-list a)
   by blast
 let ?enum-head = (enumerate-list \ a)!j
```

```
have (?enum-head\#?enum-tail) \in set(enumerate-trace (a \# trace))
   {\bf using} \ enumerate\text{-}trace\text{-}decompose
   by (meson in-set-conv-nth obt-i obt-j)
  have match-tail: match-regex pi-tail ?enum-tail
   using obt-i by blast
  have match-head: match-timestep pi-head ((enumerate-list a)!j)
   using obt-j by blast
  have match: match-regex \pi (?enum-head#?enum-tail)
   using match-head match-tail
  \textbf{using} \ \textit{WEST-and-trace-correct-forward-aux-converse} [\textit{OF} \ pi\text{-}obt \ match-head} \ match-tail]
by auto
 let ?flat = flatten-list
    (map (\lambda t. map (\lambda h. h \# t) (enumerate-list a))
      (enumerate-trace trace))
 have enumerate-list a! j \# enumerate-trace trace! i =
 flatten-list
  (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ (enumerate-list\ a))\ (enumerate-trace\ trace))\ !
  (i * length (enumerate-list a) + j) \land
  i * length (enumerate-list a) + j
  < length
    (flatten-list
      (map\ (\lambda t.\ map\ (\lambda h.\ h\ \#\ t)\ (enumerate-list\ a))\ (enumerate-trace\ trace)))
   using flatten-list-idx[of ?flat enumerate-list a enumerate-trace trace i j]
   using obt-i obt-j by blast
  then show ?case
   unfolding match-def using match
   by auto
qed
lemma match-enumerate-sets2:
 assumes (match \pi R)
 shows (\exists r \in enumerate\text{-sets } R. match\text{-regex } \pi r)
 using assms
proof(induct R \ arbitrary: \pi)
 case Nil
  then show ?case unfolding match-def by auto
next
  case (Cons\ a\ R)
 have enumerate-sets (a \# R) = set (enumerate-trace a) \cup enumerate-sets R
   unfolding enumerate-sets.simps by blast
  {assume match-a: match \pi [a]
   then have match-regex \pi a
     unfolding match-def by simp
   then have match \pi (enumerate-trace a)
     using match-enumerate-trace-aux
     using match-enumerate-trace-aux-converse by blast
   then have \exists b \in set \ (enumerate\text{-}trace \ a). \ match\text{-}regex \ \pi \ b
```

```
unfolding match-def by auto
   then have ?case by auto
 } moreover {
   assume match-R: match \pi R
   then have ?case
     using Cons by auto
 ultimately show ?case
   using Cons.prems match-cases by blast
qed
{f lemma}\ match-enumerate-sets:
 shows (\exists r \in enumerate\text{-sets } R. \ match\text{-regex } \pi \ r) \longleftrightarrow (match \ \pi \ R)
 using match-enumerate-sets1 match-enumerate-sets2
 by blast
lemma regex-equivalence-correct1:
 assumes (naive-equivalence A B)
 shows match \pi A = match \pi B
 unfolding regex-equiv-def
 using match-enumerate-sets[of A \pi] match-enumerate-sets[of B \pi]
 using assms
 unfolding naive-equivalence.simps
 by blast
lemma regex-equivalence-correct:
 shows (naive-equivalence A B) \longrightarrow (regex-equiv A B)
 using regex-equivalence-correct1
 unfolding regex-equiv-def
 by metis
```

end

export-code naive-equivalence in Haskell module-name regex-equiv

References

- J. Elwing, L. Gamboa-Guzman, J. Sorkin, C. Travesset, Z. Wang, and K. Y. Rozier. Mission-time LTL (MLTL) formula validation via regular expressions. In P. Herber and A. Wijs, editors, iFM, volume 14300 of LNCS, pages 279–301. Springer, 2023.
- [2] Z. Wang, L. P. Gamboa-Guzman, and K. Y. Rozier. WEST: Interactive Validation of Mission-time Linear Temporal Logic (MLTL). 2024.