Formalizing MLTL in Isabelle/HOL

Zili Wang and Katherine Kosaian

January 28, 2025

Abstract

Building on the formalization of Mission-time Linear Temporal
Logic (MLTL) in Isabelle/HOL, we formalize the correctness of the
algorithms for the WEST tool [1, 2], which converts MLTL formulas
to regular expressions. We use Isabelle/HOL’s code export to generate
Haskell code to validate the existing (unverified) implementation of the
WEST tool.

Contents

1 Key algorithms for WEST
1.1 Custom Types

1.2 Trace Regular Expressions
1.3 WEST Operations

2

3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

AND
Simp
AND and OR operations with WEST-simp
Useful Helper Functions
WEST Temporal Operations
WEST recursive reg Function
Adding padding oL

Some examples and Code Export

WEST Proofs

3.1 Useful Definitions
3.2 Proofs about Traces Matching Regular Expressions
3.3 Facts about the WEST and operator

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Commutative
Identity and Zero
WEST-and-state
WEST-and-trace
WEST-and correct

3.4 Facts about the WEST or operator 59

3.5 Padand Match Facts. 60
3.6 Facts about WEST num vars 65
3.6.1 Facts about num vars for different WEST operators . 68

3.7 Correctness of WEST-simp 88
3.7.1 WEST-count-diff facts 88

3.7.2 Orsimp-trace Facts 99

3.7.3 WEST-orsimp-trace-correct 102

3.7.4 Simp-helper Correct 108

3.7.5 WEST-simp Correct 116

3.8 Correctness of WEST-and-simp/WEST-or-simp 116
3.9 Facts about the WEST future operator 117
3.10 Facts about the WEST global operator. 120
3.11 Facts about the WEST until operator 123
3.12 Facts about the WEST release Operator 127
3.13 Top level result: Shows that WEST reg is correct 135
3.14 Top level result for padded version 147

4 Key algorithms for WEST 151
5 Regex Equivalence Correctness 152

1 Key algorithms for WEST

theory WEST-Algorithms
imports Mission-Time-LTL. MLTL-Properties

begin

1.1 Custom Types

datatype WEST-bit = Zero | One | S
type-synonym state = nat set

type-synonym trace = nat set list

type-synonym state-regex = WEST-bit list
type-synonym trace-regex = WEST-bit list list
type-synonym WEST-regex = WEST-bit list list list

1.2 Trace Regular Expressions

fun WEST-get-bit:: trace-regexr = nat = nat = WEST-bit
where WEST-get-bit regex timestep var = (
if timestep > length regex then S
else let regex-index = regex | timestep in
if var > length regex-index then S
else regex-index ! var

Returns the state at time i, list of variable states

fun WEST-get-state:: trace-regex = nat = nat = state-regex
where WEST-get-state regex time num-vars = (
if time > length regex then (map (A k. S) [0 ..< num-vars])
else regex | time

)
Checks if one state of a trace matches one timeslice of a WEST regex

definition match-timestep:: nat set = state-regex = bool

where match-timestep state regez-state = (¥ z:nat. © < length regez-state —
(

((regex-state | © = One) — z € state) A

((regez-state | © = Zero) — x ¢ state)))

fun trim-reversed-regex:: trace-regexr = trace-regex
where trim-reversed-regex [| = ||
| trim-reversed-regex (h#t) = (if (Vi<length h. (hli) = S5)
then (trim-reversed-regex t) else (h#t))

fun trim-regex:: trace-regex = trace-regex
where trim-regex regex = rev (trim-reversed-regex (rev regez))

definition match-regez:: nat set list = trace-regex = bool
where match-regex trace reger = ((V time<length regez.
(match-timestep (trace | time) (regex | time)))
A(length trace > length regex))

definition match:: nat set list = WEST-regex = bool
where match trace regex-list = (3 i. i < length regex-list N
(match-regex trace (regex-list |)))

lemma match-example:
shows match [{0::nat, 1}, {1}, {0}]
[
[[Zero, Zerol],
[[5,5], [S,One]]
| = True
proof—
let %regexList = [[[Zero,Zeroll,[[S,S], [S,One]]]
let ?trace = [{0::nat,1}, {1}, {0}]
have (match-regex ?trace (?regexList!1))
unfolding match-regez-def
by (simp add: match-timestep-def nth-Cons’)
then show ?thesis
by (metis One-nat-def add.commute le-imp-less-Suc le-numeral-extra(4) list.size(3)
list.size(4) match-def plus-1-eq-Suc)
qged

definition regez-equiv:: WEST-regex = WEST-regex = bool
where regez-equiv i1 12 = (
YV minat set list. (match 7 ril) <— (match m ri2))

lemma (regez-equiv [[[S,5]]]
[[[S, Onel],
[[One, S]],
[[Zero,Zero]]]) = True
proof —
have d1: match « [[[S, Onel], [[One, S]], [[Zero, Zero]]] if match: match 7 [[[S,
S)]] for =
proof —
have match-ss: match-regex 7 [[S, S]]
using match unfolding match-def
by (metis One-nat-def length-Cons less-one list.size(3) nth-Cons-0)
{assume x: = (match-regex © [[S, One]]) A = (match-regex w [[One, S])
have match-regex 7 [[Zero, Zero|]
using match-ss unfolding match-regex-def
by (smt (verit) * One-nat-def WEST-bit.simps(2) length-Cons less-2-cases
less-one list.size(3) match-regex-def match-timestep-def nth-Cons-0 nith-Cons-Suc
numeral-2-eq-2)
}
then show “thesis
unfolding match-def
by (metis length-Cons less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
qed
have d2: match = [[[S, S]] if match: match 7 [[[S, Onel], [[One, S]], [[Zero,
Zero)]] for 7
proof —
{assume *: match-regex 7 [[S, Onel]
then have match-regex m [[S, S]]
unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
} moreover {assume *: match-regex 7 [[One, S|
then have match-regex m [[S, S]]
unfolding match-regez-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons
less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
} moreover {assume x: match-regex 7 [[Zero, Zero|]

then have match-regex = [[S, S]]
unfolding match-regex-def
by (smt (verit) One-nat-def WEST-bit.distinct(5) length-Cons less-2-cases-iff
less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc numeral-2-eq-2)
then have match 7 [[[S, S]]
unfolding match-def by simp
}

ultimately show ?thesis using match unfolding regex-equiv-def
by (smt (verit, del-insts) length-Cons less-Suc-eq-0-disj match-def nth-Cons-0
nth-Cons-Suc)
qed
show ?thesis using d1 d2
unfolding regez-equiv-def by metis
qed

1.3 WEST Operations

1.3.1 AND

fun WEST-and-bitwise:: WEST-bit =
WEST-bit =
WEST-bit option
where WEST-and-bitwise b One = (if b = Zero then None else Some One)
| WEST-and-bitwise b Zero = (if b = One then None else Some Zero)
| WEST-and-bitwise b S = Some b

fun WEST-and-state:: state-regex = state-regex = state-regex option
where WEST-and-state [] [| = Some |]
| WEST-and-state (h1#t1) (h2#t2) =
(case WEST-and-bitwise h1 h2 of
None = None
| Some b = (case WEST-and-state t1 t2 of
None = None
| Some L = Some (b#L)))
| WEST-and-state - - = None

fun WEST-and-trace:: trace-regex = trace-regex = trace-regex option
where WEST-and-trace trace [| = Some trace
| WEST-and-trace || trace = Some trace
| WEST-and-trace (h1#t1) (h2#t2) =
(case WEST-and-state h1 h2 of
None = None
| Some state = (case WEST-and-trace t1 t2 of
None = None
| Some trace = Some (state#trace)))

fun WEST-and-helper:: trace-regex = WEST-regex = WEST-regex
where WEST-and-helper trace [| = ||
| WEST-and-helper trace (t#traces) =
(case WEST-and-trace trace t of
None = WEST-and-helper trace traces
| Some res = res#(WEST-and-helper trace traces))

fun WEST-and:: WEST-regex = WEST-regex = WEST-regex
where WEST-and traceList [| = []
| WEST-and || traceList = ||
| WEST-and (trace#traceListl) traceList2 =
(case WEST-and-helper trace traceList2 of
[| = WEST-and traceListl traceList2
| traceList = traceListQ(WEST-and traceListl traceList2))

1.3.2 Simp

Bitwise simplification operation fun WEST-simp-bitwise:: WEST-bit =
WEST-bit = WEST-bit

where WEST-simp-bitwise b S = §

| WEST-simp-bitwise b Zero = (if b = Zero then Zero else S)

| WEST-simp-bitwise b One = (if b = One then One else S)

fun WEST-simp-state:: state-reger = state-reger = state-regex
where WEST-simp-state s1 s2 = (
map (A k. WEST-simp-bitwise (s1 1 k) (s2 1 k)) [0 ..< (length s1)])

fun WEST-simp-trace:: trace-regex = trace-regex = nat => trace-regex

where WEST-simp-trace tracel trace2 num-vars = (

map (A k. (WEST-simp-state (WEST-get-state tracel k num-vars) (WEST-get-state
trace2 k num-vars)))

[0 ..< (Maz {(length tracel), (length trace2)})])

Helper functions for defining WEST-simp fun count-nonS-trace:: state-regex
= nat

where count-nonS-trace [| = 0

| count-nonS-trace (h#t) = (if (h # S) then (I + (count-nonS-trace t)) else
(count-nonS-trace t))

fun count-diff-state:: state-regex = state-regex = nat

where count-diff-state [| [| = 0

| count-diff-state trace [| = count-nonS-trace trace

| count-diff-state [| trace = count-nonS-trace trace

| count-diff-state (h1#t1) (h2#t2) = (if (hl = h2) then (count-diff-state t1 t2)
else (1 + (count-diff-state t1 t2)))

fun count-diff:: trace-regex = trace-regex = nat
where count-diff [| [| = 0
| count-diff || (h#tt) = (count-diff-state || h) + (count-diff ||)
| count-diff (h#tt) [| = (count-diff-state || h) + (count-diff ||)
| count-diff (h1#tt1) (h24#t2) = (count-diff-state h1 h2) + (count-diff t1 t2)

fun check-simp:: trace-regex = trace-regex = bool
where check-simp tracel trace2 = ((count-diff tracel trace2) < 1 A length tracel
= length trace2)

fun enumerate-pairs :: nat list = (nat * nat) list where
enumerate-pairs [| = || |
enumerate-pairs (z#xs) = map (A\y. (z, y)) zs @ enumerate-pairs zs

fun enum-pairs:: 'a list = (nat x nat) list
where enum-pairs L = enumerate-pairs [0 ..< length L]

fun remove-element-at-index:: nat = 'a list = 'a list
where remove-element-at-index n L = (take n L)Q(drop (n+1) L)

This assumes (fst h) < (snd h)

fun update-L:: WEST-regex = (nat x nat) = nat = WEST-regex

where update-L L h num-vars =
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))Q[WEST-simp-trace
(L!(fst b)) (L!(snd h)) num-vars]

Defining and Proving Termination of WEST-simp lemma length-enumerate-pairs:
shows length (enumerate-pairs L) < (length L) 2
proof (induction L)
case Nil
then show ?case by auto
next
case (Cons a L)
have length-L: (length (a # L))?> = (1 + (length L)) "2 by auto
then have length-L: (length (a # L))?> = 1 + 2x(length L) + (length L)"2 by
algebra
have length (map (Pair a) L) < length L
by simp
then show ?case
unfolding enumerate-pairs.simps using Cons length-L by simp
qed

lemma length-enum-pairs:
shows length (enum-pairs L) < (length L)"2
proof—
show ?thesis unfolding enum-pairs.simps using length-enumerate-pairs
by (metis length-upt minus-nat.diff-0)
qged

lemma enumerate-pairs-fact:
assumes V ij. (i < jA i <length L A j < length L) — (L!7) < (L)
shows V pair € set (enumerate-pairs L). (fst pair) < (snd pair)
using assms
proof (induct length L arbitrary:L)
case (
then show ?case by auto
next
case (Suc x)
then obtain h T where obt-hT: L = h#T
by (metis length-Suc-conv)
then have enum-L: enumerate-pairs L = map (Pair h) T Q enumerate-pairs T
using enumerate-pairs.simps obt-hT by blast
then have A pair. pair € set (enumerate-pairs L) = fst pair < snd pair
proof—
fix pair
assume pair € set (enumerate-pairs L)
then have pair € set (map (Pair h) T Q enumerate-pairs T) using enum-L
by auto
then have pair-or: pair € set (map (Pair h) T) V pair € set(enumerate-pairs
7)
by auto
{assume in-base: pair € set (map (Pair h) T)
have Vj. 0 < jAj<length L — h < L!j
using Suc.prems obt-hT by force
then have Vj < length T. h < T!j
using obt-hT by force
then have Vi € set T. h < ¢
using obt-hT by (metis in-set-conv-nth)
then have fst pair < snd pair
using in-base by auto
} moreover {
assume in-rec: pair € set(enumerate-pairs T)
have fst pair < snd pair
using Suc.hyps(1)[of T] Suc.prems obt-hT in-rec
by (smt (verit, ccfo-SIG) Ex-less-Suc Suc.hyps(1) Suc.hyps(2) length-Cons
less-trans-Suc nat.inject nth-Cons-Suc)
}
ultimately show fst pair < snd pair using enum-L obt-hT pair-or by blast
qed
then show ?case by blast
qed

lemma enum-pairs-fact:
shows V pair € set (enum-pairs L). (fst pair) < (snd pair)
unfolding enum-pairs.simps using enumerate-pairs-fact[of [0..<length L]]
by simp

lemma enum-pairs-bound-snd:

assumes pair € set (enumerate-pairs L)
shows (snd pair) € set L
using assms
proof (induct length L arbitrary: L)
case (
then show ?case by auto
next
case (Suc)
then obtain A T where ht: L = h#T
by (metis enumerate-pairs.cases enumerate-pairs.simps(1) in-set-member mem-
ber-rec(2))
then have eo: pair € set (map (Pair h) T) V pair € set (enumerate-pairs T)
using Suc by simp
{assume *: pair € set (map (Pair h) T)
then have ?case
using ht
using imageE by auto
} moreover {assume x: pair € set (enumerate-pairs T')
then have snd pair € set T
using Suc(1)[of T] ht
using Suc.hyps(2) by fastforce
then have ?case using hit
by simp
}

ultimately show ?case using eo by blast
qged

lemma enum-pairs-bound:
shows V pair € set (enum-pairs L). (snd pair) < length L
unfolding enum-pairs.simps enumerate-pairs.simps
proof (induct length L arbitrary: L)
case (
then show ?case by simp
next
case (Suc)
then have enum-L: enumerate-pairs ([0..<length L]) =
map (Pair 0) [1..<length L] Q enumerate-pairs [1..<length L]
using enumerate-pairs.simps(2)[of 0 [1 ..< length L]
by (metis One-nat-def upt-conv-Cons zero-less-Suc)
then have paire€set (enumerate-pairs [0..<length L)) = snd pair < length L
for pair
using enum-pairs-bound-snd[of pair [0..<length L]
by auto
then show ?case unfolding enum-pairs.simps by blast
qed

lemma WEST-simp-terminationl-bound:
fixes a::nat

shows ¢ 3+a"2 < (a+1)738

proof—
have cubed: (a+1)"3 = a"3 + 3%a™2 + 3%a + 1
proof—
have (a+1)73 = (a+1)x(a+1)*(a+1)
by algebra

then show ?thesis
by (simp add: add.commute add-mult-distrib2 mult.commute power2-eq-square
power3-eq-cube)
qged
have 0 < 2xa”2 + 2%a + 1 by simp
then have a”3 + a2 < ™3 + 3xa 2 + 3xa + 1 by simp
then show ?thesis using cubed
by simp
qed

lemma WEST-simp-terminationl :
fixes L:: WEST-regex
assumes — (idz-pairs # enum-pairs L V length idz-pairs < i)
assumes check-simp (L ! fst (idz-pairs | 7)) (L! snd (idz-pairs | 7))
assumes z = update-L L (idz-pairs | ©) num-vars
shows ((z, enum-pairs z, 0, num-vars), L, idx-pairs, i, num-vars)
€ measure (A(L, ida-list, i, num-vars). length L ~ 8 + length idz-list — 1)
proof—
let 70 = fst (idz-pairs ! 7)
let ?j = snd (idz-pairs ! i)
have i-le-j: ?i < ?j using enum-pairs-fact assms
by (metis linorder-le-less-linear nth-mem)
have j-bound: %j < length L
using assms(1) enum-pairs-bound|of L)
by simp
then have i-bound: ?i < (length L)—1
using i-le-j by auto
have len-orsimp: length |[WEST-simp-trace (L ! 2i) (L! %) num-vars] = 1
by simp
have length (remove-element-at-index ?j L) = length L — 1
using assms(3) j-bound by auto
then have length (remove-element-at-index ?i (remove-element-at-index ?j L))
= length L — 2
using assms(3) i-bound j-bound by simp
then have length-z: length © = (length L) — 1
using assms(3) len-orsimp
unfolding update-L.simps|of L idz-pairs | i num-vars]
by (metis (no-types, lifting) add.commute add-diff-inverse-nat diff-diff-left gr-implies-not0
i-bound length-append less-one nat-1-add-1)
have i-bound: i < length idx-pairs using assms by force

{ assume short-L: length L = 0
then have ?thesis using assms

10

using j-bound by linarith
} moreover {
assume long-L: length L > 1
then have length L — 1 > 0 by blast
then have (length L — 1) =8 + (length L — 1) ~ 2 < length L — 3
using WEST-simp-terminationl-bound|of length L—1]
by (metis long-L ordered-cancel-comm-monoid-diff-class.le-imp-diff-is-add)
then have (length L — 1) ~ 8 + length (enumerate-pairs [0..<length z]) <
length L — 8
using length-enumerate-pairs[of [0..<length z]| length-z by auto
then have length © = 8 + length (enumerate-pairs [0..<length z])
< length L ~ 8 + length idz-pairs — i
using i-bound length-x by simp
then have ?thesis by simp
}
ultimately show ?thesis by linarith
qed

function WEST-simp-helper:: WEST-regex = (nat x nat) list = nat = nat =
WEST-regex
where WEST-simp-helper L idz-pairs i num-vars =
(if (idz-pairs # enum-pairs L V i > length idz-pairs) then L else
(if (check-simp (L!(fst (idz-pairs!i))) (L!(snd (idz-pairsli)))) then
(let newL = update-L L (idx-pairs!i) num-vars in
WEST-simp-helper newL (enum-pairs newL) 0 num-vars)
else WEST-simp-helper L idz-pairs (i+1) num-vars))
apply fast by blast
termination
apply (relation measure (A(L , idz-list, i, num-vars). (length L™8 + length idx-list
— i)))

apply simp using WEST-simp-termination! apply blast by auto
declare WEST-simp-helper.simps[simp del]

fun WEST-simp:: WEST-regex = nat = WEST-regex
where WEST-simp L num-vars =
WEST-simp-helper L (enum-pairs L) 0 num-vars

value WEST-simp [[[S, S, One]],[[S, One, S]], [[S, S, Zero]]] 3
value WEST-simp [[[S, One]],[[One, S]], [[Zero, Zero]]] 2
value WEST-simp [[[One, Onell,[[Zero, Zero]], [[One, Zero], [[Zero, Onel]] 2

1.3.3 AND and OR operations with WEST-simp

fun WEST-and-simp:: WEST-regex = WEST-regex = nat = WEST-regex
where WEST-and-simp L1 L2 num-vars = WEST-simp (WEST-and L1 L2)
NUM-vars

11

fun WEST-or-simp:: WEST-regex = WEST-regex = nat = WEST-regex
where WEST-or-simp L1 L2 num-vars = WEST-simp (L1QL2) num-vars

1.3.4 Useful Helper Functions

fun arbitrary-state::nat = state-regex
where arbitrary-state num-vars = map (A k. S) [0 ..< num-vars]

fun arbitrary-trace::nat = nat = trace-regex
where arbitrary-trace num-vars num-pad = map (X k. (arbitrary-state num-vars))
[0 ..< num-pad]

fun shift:: WEST-regex = nat = nat = WEST-regex
where shift traceList num-vars num-pad = map (X trace. (arbitrary-trace num-vars
num-pad)Qtrace) traceList

fun pad:: trace-regex = nat = nat = trace-regex
where pad trace num-vars num-pad = traceQ(arbitrary-trace num-vars num-pad)

1.3.5 WEST Temporal Operations

fun WEST-global:: WEST-regex = nat = nat = nat = WEST-regex
where WEST-global L a b num-vars = (
if (a = b) then (shift L num-vars a)
else (if (a < b) then (WEST-and-simp (shift L num-vars b)
(WEST-global L a (b—1) num-vars) num-vars)

else []))

fun WEST-future:: WEST-regex = nat = nat = nat = WEST-regex
where WEST-future L a b num-vars = (
if (a = b)
then (shift L num-vars a)
else (
if (a <b)
then WEST-or-simp (shift L num-vars b) (WEST-future L a (b—1) num-vars)
num-vars

else []))

fun WEST-until:: WEST-regex = WEST-regex = nat =
nat = nat = WEST-regex
where WEST-until L-o L) a b num-vars = (
if (a=b)
then (WEST-global L-i) a a num-vars)
else (
if (a <b)
then WEST-or-simp (WEST-until L-p L-tp a (b—1) num-vars)
(WEST-and-simp (WEST-global L-p a (b—1) num-vars)
(WEST-global L-tp b b num-vars) num-vars) num-vars

12

else []))

fun WEST-release-helper:: WEST-regex = WEST-regex =
nat = nat = nat = WEST-regex
where WEST-release-helper L-o L) a ub num-vars = (
if (a=ub)
then (WEST-and-simp (WEST-global L-¢ a a num-vars) (WEST-global L a a
nUM-vars) NumM-vars)
else (
if (a < ub)
then WEST-or-simp (WEST-release-helper L-o L-tp a (ub—1) num-vars)
(WEST-and-simp (WEST-global L- a ub num-vars)
(WEST-global L-p ub ub num-vars) num-vars) num-vars
else]))

fun WEST-release:: WEST-regex = WEST-regex = nat
= nat = nat = WEST-regex
where WEST-release L-o L-1p a b num-vars = (
if (b> a)
then (WEST-or-simp (WEST-global L) a b num-vars) (WEST-release-helper
L-o LY a (b—1) num-vars) num-vars)
else (WEST-global Ly a b num-vars))

1.3.6 WEST recursive reg Function

lemma exhaustive:
shows Az:: nat mltl x nat. A\ P::bool. (Anum-vars::nat. z = (True-mltl, num-vars)
= P) =
(Anum-vars::nat. x = (False-mltl, num-vars) = P) =
(Ap num-vars::nat. x = (Prop-mitl p, num-vars) — P) =
(Ap num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) = P) =
(Ae ¢ num-vars. © = (Or-mltl ¢ 1, num-vars) = P) =
(Ae ¢ num-vars. © = (And-mltl ¢ ¥, num-vars) = P) =
(A a b num-vars. x = (Future-mltl ¢ a b, num-vars) = P) =
(A¢ a b num-vars. x = (Global-mlitl ¢ a b, num-vars) = P) =
(Ae ¥ a b num-vars. = (Until-mltl ¢ ¢ a b, num-vars) = P) =
(Ae ¥ a b num-vars. © = (Release-mltl ¢ 1 a b, num-vars) = P) =
(Anum-vars. x = (Not-mltl True-mltl, num-vars) = P) =
(Anum-vars. x = (Not-mltl False-mltl, num-vars) = P) =
(Ae ¥ num-vars. z = (Not-mltl (And-mltl ¢ ¥), num-vars) = P) =
(Ae ¥ num-vars. = (Not-mlitl (Or-mitl ¢ ©), num-vars) — P) =
(Ap a b num-vars. z = (Not-mltl (Future-mltl ¢ a b), num-vars) = P)

—
(A¢ a b num-vars. x = (Not-mltl (Global-mitl ¢ a b), num-vars) = P)
=
(A¢ ¥ a b num-vars. x = (Not-mltl (Until-mltl ¢ ¥ a b), num-vars) =
P) =

(A¢ ¥ a b num-vars. x = (Not-mitl (Release-mltl ¢ 1 a b), num-vars)

13

= P) =
(Ae num-vars. x = (Not-mltl (Not-mltl ©), num-vars) = P) = P

proof —
fix z::nat mltl x nat
fix P:: bool

assume ¢: (A\num-vars::nat. x = (True-mltl, num-vars) = P)

assume fa: (A\num-vars::nat. ¥ = (False-mltl, num-vars) = P)

assume p: (Ap num-vars:nat. © = (Prop-mltl p, num-vars) = P)

assume nl: (Ap num-vars::nat. x = (Not-mitl (Prop-mltl p), num-vars) = P)

assume o: (A¢ ¥ num-vars. x = (Or-mltl ¢ 1, num-vars) = P)

assume a: (A ¥ num-vars. x = (And-mltl ¢ 1, num-vars) = P)

assume f: (A¢ a b num-vars. x = (Future-mltl ¢ a b, num-vars) = P)
assume g: (A¢ a b num-vars. © = (Global-mltl ¢ a b, num-vars) = P)
assume u: (A ¥ a b num-vars. © = (Until-mltl ¢ ¢ a b, num-vars) = P)
assume 7: (A ¢ a b num-vars. © = (Release-mltl ¢ ¢ a b, num-vars) = P)
assume n2: (Anum-vars. x = (Not-mltl True-mitl, num-vars) = P)

assume n3: (A\num-vars. x = (Not-mltl False-mltl, num-vars) = P)

assume n4: (Ap ¢ num-vars. x = (Not-mitl (And-mlitl ¢), num-vars) => P)

assume n5: (A ¥ num-vars. x = (Not-mltl (Or-mitl ¢), num-vars) = P)
assume n6: (A¢ a b num-vars. z = (Not-mitl (Future-mltl ¢ a b), num-vars)
= P)
assume n7: (Ap a b num-vars. x = (Not-mltl (Global-mltl ¢ a b), num-vars)
= P)
assume n8: (A ¥ a b num-vars. x = (Not-mltl (Until-mltl ¢ ¥ a b), num-vars)
= P)
assume n9: (A ¢ a b num-vars. x = (Not-mltl (Release-mltl ¢ 1 a b), num-vars)
= P)
assume n10: (A¢ num-vars. x = (Not-mltl (Not-mltl ¢), num-vars) = P)
show P proof (cases fst)
case True-mltl
then show ¢thesis using t
by (metis eq-fst-iff)
next
case False-mltl
then show “thesis using fa eq-fst-iff by metis
next
case (Prop-mltl p)
then show #thesis using p
by (metis prod.collapse)
next
case (Not-mltl @)
then have fst-z: fst © = Not-mltl ¢
by auto
then show %thesis proof (cases @)
case True-mltl
then show ?thesis using n2
by (metis Not-mltl split-pairs)

14

next
case False-mltl
then show ?thesis using n3
by (metis Not-mltl prod.collapse)
next
case (Prop-mltl p)
then show ?thesis using nl
by (metis Not-mltl split-pairs)
next
case (Not-mltl ¢1)
then show ?thesis using n10 fst-z
by (metis prod.collapse)
next
case (And-mltl p1 p2)
then show ?thesis
by (metis Not-mitl n4 prod.collapse)
next
case (Or-mitl p1 ¢2)
then show ?thesis using n5 Not-mltl
by (metis prod.collapse)
next
case (Future-mltl a b 1)
then show ?thesis using n6 Not-mlt
by (metis prod.collapse)
next
case (Global-mltl a b ¢1)
then show ?thesis using n7 Not-mlt
by (metis prod.collapse)
next
case (Until-mltl ©1 a b ¢2)
then show %thesis using n8 Not-mltl
by (metis prod.collapse)
next
case (Release-mitl p1 a b p2)
then show ?thesis using n9 Not-mltl
by (metis prod.collapse)
qged
next
case (And-mltl p1 ¢2)
then show #thesis using a
by (metis prod.collapse)
next
case (Or-mitl 1 p2)
then show ?thesis using o
by (metis prod.collapse)
next
case (Future-mltl a b 1)
then show ?thesis using f
by (metis split-pairs)

15

next
case (Global-mltl a b 1)
then show #thesis using ¢
by (metis prod.collapse)
next
case (Until-mltl o1 a b ©2)
then show ?thesis using u
by (metis split-pairs)
next
case (Release-mitl p1 a b p2)
then show ?thesis using r
by (metis split-pairs)
qed
qed

fun WEST-termination-measure:: (nat) miltl = nat

where WEST-termination-measure True,, = 1

| WEST-termination-measure (Not,, Truen,) = 4

| WEST-termination-measure False,, = 1

| WEST-termination-measure (Not,, Falsen,) = 4

| WEST-termination-measure (Prop,, (p)) = 1

| WEST-termination-measure (Noty, (Propm, (p))) = 4

| WEST-termination-measure (¢ Orpy ¢) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1))

| WEST-termination-measure (¢ And,, ¥) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1)

| WEST-termination-measure (F., [a,b]) = 1 + (WEST-termination-measure
¢)

| WEST-termination-measure (G, [a,b]) = 1 + (WEST-termination-measure
%)

| WEST-termination-measure (¢ Up,[a,b] ¥) = 1 + (WEST-termination-measure
) + (WEST-termination-measure 1)

| WEST-termination-measure (¢ Ru,[a,b]) = 1 + (WEST-termination-measure
¢) + (WEST-termination-measure 1))

| WEST-termination-measure (Not,, (¢ Orpy, 1)) = 1 + 3 % (WEST-termination-measure
(¢ Ory, 1))

| WEST-termination-measure (Not,, (¢ And,, ¥)) = 1 + 3 x (WEST-termination-measure
(¢ And,)

| WEST-termination-measure (Not,, (Fnla,b] ¢)) =1 + 3 % (WEST-termination-measure
(Flat])

| WEST-termination-measure (Not,, (Gn[a,b] ¢)) = 1 + 8 x (WEST-termination-measure
(Glat] 9))

| WEST-termination-measure (Not,, (¢ Unla,b] ¥)) = 1 + & x (WEST-termination-measure
(¢ Unlat])

| WEST-termination-measure (Not,, (¢ Rnla,bl ¥)) =1 + 3 * (WEST-termination-measure
(¢ Bmla,0] 1))

| WEST-termination-measure (Not,, (Not,, v)) =1 + 3 * (WEST-termination-measure
(Notm)

16

lemma WEST-termination-measure-not:
fixes ::(nat) mlitl
shows WEST-termination-measure (Not-mltl o) = 1 + 3 x (WEST-termination-measure

)
apply (induction ¢) by simp-all

function WEST-reg-aux:: (nat) mltl = nat = WEST-regex

where WEST-reg-aux True,, num-vars = [[(map (X j. S) [0 ..< num-vars])]]

| WEST-reg-auzx False,, num-vars = ||

| WEST-reg-auz (Prop,, (p)) num-vars = [[(map (X j. (if (p=j) then One else
S)) [0 ..< num-vars])]]

| WEST-reg-auzx (Not,, (Prop,, (p))) num-vars = [[(map (X j. (if (p=j) then
Zero else S)) [0 ..< num-vars))]]

| WEST-reg-auz (¢ Orpy ¢) num-vars = WEST-or-simp (WEST-reg-auz ¢
num-vars) (WEST-reg-auz 1) num-vars) num-vars

| WEST-reg-aux (¢ And, ¢) num-vars = (WEST-and-simp (WEST-reg-auz ¢
num-vars) (WEST-reg-auz) num-vars) num-vars)

| WEST-reg-aux (Fp|a,b] @) num-vars = (WEST-future (WEST-reg-auz ¢ num-vars)
a b num-vars)

| WEST-reg-aux (G,]a,b] p) num-vars = (WEST-global (WEST-reg-aux @ num-vars)
a b num-vars)

| WEST-reg-auz (¢ Upla,b]) num-vars = (WEST-until (WEST-reg-aux ¢
num-vars) (WEST-reg-auz v num-vars) a b num-vars)

| WEST-reg-aux (¢ Rp[a,b]) num-vars = WEST-release (WEST-reg-auz ¢
num-vars) (WEST-reg-auz ¥ num-vars) a b num-vars

| WEST-reg-aux (Not,, Truem,) num-vars = WEST-reg-auz False,, num-vars

| WEST-reg-aux (Noty, Falsen,) num-vars = WEST-reg-aux True,, num-vars

| WEST-reg-aux (Not,, (¢ Andy,) num-vars = WEST-reg-auz ((Not,, ¢)
Ory, (Notpy, ©)) num-vars

| WEST-reg-auz (Not,, (p Ory, ¥)) num-vars = WEST-reg-aux ((Not,, ¢) And,
(Noty,) num-vars

| WEST-reg-aux (Not,, (Fp,[a,b] ¢)) num-vars = WEST-reg-auz (Gpla,b] (Noty,
©)) num-vars

| WEST-reg-aux (Not,, (Gpla,b] ¢)) num-vars = WEST-reg-aux (Fo,]a,b] (Not,y,
) num-vars

| WEST-reg-aux (Noty, (¢ Umla,b] ¥)) num-vars = WEST-reg-auz ((Noty, ¢)
Ry [a,b] (Noty, ©¥)) num-vars

| WEST-reg-auxz (Noty, (¢ Rmla,b] ¥)) num-vars = WEST-reg-auz ((Noty, ¢)
Unmla,b] (Noty, ©¥)) num-vars

| WEST-reg-aux (Not,, (Not,, ¢)) num-vars = WEST-reg-aux ¢ num-vars

using exhaustive convert-nnf.cases using ezhaustive apply (smt (23))

defer apply blast apply simp-all .
termination

apply (relation measure (A F,num-vars). (WEST-termination-measure F)))

using WEST-termination-measure-not by simp-all

17

fun WEST-num-vars:: (nat) mltl = nat

where WEST-num-vars True,, = 1

| WEST-num-vars False,, = 1

| WEST-num-vars (Prop,, (p)) = p+1

| WEST-num-vars (Not,, ¢) = WEST-num-vars ¢

| WEST-num-vars (¢ And,, ¥) = Maz {(WEST-num-vars @), (WEST-num-vars
¥)}

| WEST-num-vars (¢ Ory, ¥) = Maz {(WEST-num-vars @), (WEST-num-vars
)}

| WEST-num-vars (Fp,[a,b] o) = WEST-num-vars ¢

| WEST-num-vars (Gpla,b] ¢) = WEST-num-vars ¢
| WEST-num-vars (¢ Upla,b] ¢) = Max {(WEST-num-vars @), (WEST-num-vars

¥)}
| WEST-num-vars (¢ Ry,[a,b] ¥) = Maz {(WEST-num-vars), (WEST-num-vars

¥)}

fun WEST-reg:: (nat) mitl = WEST-regex
where WEST-reg F = (let nnf-F = convert-nnf F in WEST-reg-auz nnf-F
(WEST-num-vars F))

1.3.7 Adding padding

fun pad-WEST-reg:: nat mitl = WEST-regex
where pad-WEST-reg ¢ = (let unpadded = WEST-reg ¢ in
(let complen = complen-mltl ¢ in
(let num-vars = WEST-num-vars ¢ in
(map (A L. (if (length L < complen)then (pad L num-vars
(complen—(length L))) else L))) unpadded)))

fun simp-pad-WEST-reg:: nat mitl = WEST-regex
where simp-pad-WEST-reqg o = WEST-simp (pad-WEST-req p) (WEST-num-vars

®)

2 Some examples and Code Export

Base cases

value WEST-reg True,,

value WEST-reg False,,

value WEST-reg (Prop,, (1))

value WEST-reg (Not,, (Prop, (0)))

Test cases for recursion

value WEST-reg ((Noty, (Propm (0))) And,y, (Propm, (1)))
value WEST-reg (F,,[0,2] (Prop,, (1)))
value WEST-reg ((Not,, (Prop, (0))) Ory, (Propm, (0)))

value pad-WEST-reg ((Propm, (0)) Un[0,2] (Prop., (0)))

18

value simp-pad-WEST-reg ((Prop-mitl 0) U,,[0,2] (Prop-mitl 0))

export-code WEST-reg in Haskell module-name WEST
export-code simp-pad-WEST-reg in Haskell module-name WEST-simp-pad

end

3 WEST Proofs

theory WEST-Proofs
imports WEST-Algorithms

begin

3.1 Useful Definitions

definition trace-of-vars::trace = nat = bool
where trace-of-vars trace num-vars = (
Vk. (k < (length trace) — (¥ pe(tracelk). p < num-vars)))

definition state-regex-of-vars::state-regex = mat = bool
where state-regex-of-vars state num-vars = ((length state) = num-vars)

definition trace-regex-of-vars::trace-regex = nat = bool
where trace-regex-of-vars trace num-vars =
(V i < (length trace). length (traceli) = num-vars)

definition WEST-regezx-of-vars:: WEST-regex = nat = bool
where WEST-regex-of-vars traceList num-vars =
(V k<length traceList. trace-regex-of-vars (traceList\k) num-vars)

3.2 Proofs about Traces Matching Regular Expressions
value match-regex [{0::nat}, {0,1}, {}] []

lemma arbitrary-regtrace-matches-any-trace:

fixes num-vars::nat

fixes m::trace

assumes m-of-num-vars: trace-of-vars ™ num-vars

shows match-regex ||
proof—

have get-state-empty: (WEST-get-state [| time num-vars) = (map (A k. S) [0 ..<
num-vars]) for time

by auto

have match-arbitrary-state: (match-timestep state (map (A k. S) [0 ..< num-vars]))

= True if state-of-vars:(¥ pEstate. p < num-vars) for state

19

using state-of-vars
unfolding match-timestep-def
by simp
have eliminate-forall: match-timestep (| time) (WEST-get-state [| time num-vars)
if time-bounded:time < length 7 for time
using time-bounded 7-of-num-vars get-state-empty|of time] match-arbitrary-state|of
7 | time] unfolding match-regezx-def trace-of-vars-def
by (metis (mono-tags, lifting))
then show ?thesis
unfolding match-regex-def trace-of-vars-def
by auto
qed

lemma WEST-and-state-difflengths-is-none:
assumes length s1 # length s2
shows WEST-and-state s1 s2 = None
using assms
proof (induction s1 arbitrary: s2)
case Nil
then show ?case
apply (induction s2) by simp-all
next
case (Cons a sl)
then show ?case
proof (induction s2)
case Nil
then show ?case by auto
next
case (Cons b s2)
have length s1 # length s2 using Cons.prems(2)
by auto
then have and-s1-s2-none: WEST-and-state s1 s2 = None using Cons.prems(1)[of
s2]
by simp
{assume ab-none: WEST-and-bitwise a b = None
then have ?case
by simp
}
moreover {assume ab-not-none: WEST-and-bitwise a b # None
then have ?case using and-s1-s2-none using WEST-and-state.simps(2)[of
a slb s2)
by auto
}
ultimately show Zcase
by blast
qed
qed

20

3.3 Facts about the WEST and operator

3.3.1 Commutative

lemma WEST-and-bitwise-commutative:
fixes b1 b2:: WEST-bit
shows WEST-and-bitwise b1 b2 = WEST-and-bitwise b2 b1
apply (cases b2)
apply (cases b1) apply simp-all
apply(cases b1) apply simp-all
apply (cases b1) by simp-all

fun remove-option-type-bit:: WEST-bit option = WEST-bit
where remove-option-type-bit (Some i) = i
| remove-option-type-bit - = S

lemma WEST-and-state-commutative:
fixes s1 s2::state-regex
assumes same-len: length s1 = length s2
shows WEST-and-state s1 s2 = WEST-and-state s2 sl
proof—
show ?thesis using same-len
proof (induct length sl arbitrary: s1 s2)
case (
then show ?case using WEST-and-state.simps by simp
next
case (Suc)
obtain h! T1 where s1 = h1#T1
using Suc.hyps(2)
by (metis length-Suc-conv)
obtain h2 T2 where s2 = h2+# T2
using Suc.prems(1) Suc.hyps(2)
by (metis length-Suc-conv)
then show Zcase using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
hi T1 h2 T2
WEST-and-state.simps(2)[of h2 T2 hi1 T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(1) Suc-length-conv
WEST-and-bitwise-commutative <s1 = h1 # T1) list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)
qed
qed

lemma WEST-and-trace-commutative:
fixes num-vars::nat
fixes regtracel::trace-regex
fixes regtrace2::trace-regex
assumes regtracel-of-num-vars: trace-regez-of-vars regtracel num-vars
assumes regtrace2-of-num-vars: trace-regex-of-vars regtrace?2 num-vars
shows (WEST-and-trace regtracel regtrace2) = (WEST-and-trace regtrace2 reg-

21

tracel)
proof—
have WEST-and-bitwise-commutative: WEST-and-bitwise b1 b2 = WEST-and-bitwise
b2 b1 for b1 b2
apply (cases b2)
apply (cases b1) apply simp-all
apply(cases b1) apply simp-all
apply (cases b1) by simp-all
then have WEST-and-state-commutative: WEST-and-state s1 s2 = WEST-and-state
s2 s1 if same-len: (length s1) = (length s2) for sI s2
using same-len
proof (induct length s1 arbitrary: sl s2)
case 0
then show ?case using WEST-and-state.simps by simp
next
case (Suc x)
obtain h! T1 where s1 = h1#T1
using Suc.hyps(2)
by (metis length-Suc-conv)
obtain h2 T2 where s2 = h2#T2
using Suc.prems(2) Suc.hyps(2)
by (metis length-Suc-conv)
then show Zcase using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
h1 T1 h2 T2]
WEST-and-state.simps(2)[of h2 T2 hi T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(2) Suc-length-conv
WEST-and-bitwise-commutative <s1 = h1 # T1» list.inject option.simps(4) op-
tion.simps(H) remove-option-type-bit.cases)
qed
show %thesis using regtracel-of-num-vars regtrace2-of-num-vars
proof (induction regtracel arbitrary: regtrace2)
case Nil
then show Zcase using WEST-and-trace.simps(1—2)
by (metis neg-Nil-conv)
next
case (Cons h1 T1)
{assume x*: regtrace2 = [|
then have ?case using WEST-and-trace.simps
by simp
} moreover {assume *: regtrace2 # [|
then obtain 72 T2 where h2T2: regtrace2 = h2# T2
by (meson list.exhaust)
have comm-1: WEST-and-trace T1 T2 = WEST-and-trace T2 T1
using Cons h2T2
unfolding trace-regez-of-vars-def
by (metis Suc-less-eq length-Cons nth-Cons-Suc)
have comm-2: WEST-and-state h1 h2 = WEST-and-state h2 hl
using WEST-and-state-commutative[of h1 h2] h2T2
Cons(2—23) unfolding trace-regex-of-vars-def

22

by (metis WEST-and-state-difflengths-is-none)
have ?case using WEST-and-trace.simps(3)[of h1 T1 h2 T2]

h2T2 WEST-and-trace.simps(8)[of h2 T2 h1 T1] comm-1 comm-2
by presburger

}

ultimately show ?case by blast

qed
qed

lemma WEST-and-helper-subset:
shows set (WEST-and-helper h L) C set (WEST-and-helper h (a # L))
proof —
{assume x: WEST-and-trace h a = None
then have WEST-and-helper h L = WEST-and-helper h (a # L)
using WEST-and-helper.simps(2)[of h a L] by auto
then have ?thesis by simp
}
moreover {assume x: WEST-and-trace h a # None
then obtain res where WEST-and-trace h a = Some res
by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper.simps(2)[of h a L] by auto
then have ?thesis by auto
}
ultimately show ¢thesis by blast
qged

lemma WEST-and-helper-set-member-converse:
fixes regtrace h::trace-regex
fixes L:: WEST-regex
assumes assumption: (3 loc. loc < length L A (3 sometrace. WEST-and-trace h
(L !'loc) = Some sometrace A regtrace = sometrace))
shows regtrace € set (WEST-and-helper h L)
proof —
show ?thesis using assumption
proof (induct L)
case Nil
then show ?case using WEST-and-helper.simps(1)
by simp
next
case (Cons a L)
then obtain loc sometrace where obt: loc < length (a#L) N WEST-and-trace
h ((a#L) ! loc) = Some sometrace N regtrace = sometrace
by blast

{assume *: loc = 0

then have WEST-and-trace h a = Some sometrace A regtrace = sometrace
using obt
by simp

23

then have Zcase using WEST-and-helper.simps(2)[of h a L]
by auto
} moreover {assume *: loc > 0
then have loc: loc—1 < length L N
WEST-and-trace h (L! (loc—1)) = Some sometrace A regtrace = sometrace
using obt by auto
have set (WEST-and-helper h L) C set (WEST-and-helper h (a # L))
using WEST-and-helper-subset by blast
then have ?case using Cons(1) loc by blast
}
ultimately show ?case by auto
qed
qed

lemma WEST-and-helper-set-member-forward:
fixes regtrace h::trace-regex
fixes L:: WEST-regex
assumes regtrace € set (WEST-and-helper h L)
shows (3 loc. loc < length L A (3 sometrace. WEST-and-trace h (L ! loc) =
Some sometrace A\ regtrace = sometrace))
using assms proof (induction L)
case Nil
then show ?case by simp
next
case (Cons a L)
{assume x: WEST-and-trace h a = None
then have ?case using WEST-and-helper.simps(2)[of h a L] Cons
by force
} moreover {assume x: WEST-and-trace h a # None
then obtain res where res: WEST-and-trace h a = Some res
by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper.simps(2)[of h a L] by auto
then have eo: regtrace = res V regtrace € set (WEST-and-helper h L)
using Cons(2)
by auto
{assume x: regtrace = res
then have ?case using res by auto
} moreover {assume x: regtrace € set (WEST-and-helper h L)
then obtain loc where loc-prop: loc<length L A
(3 sometrace. WEST-and-trace h (L ! loc) = Some sometrace A regtrace =
sometrace)
using Cons.IH by blast
then have loc+1<length (a#L) A
(3 sometrace. WEST-and-trace h ((a#L) ! (loc+1)) = Some sometrace A
regtrace = sometrace)
by auto
then have ?case by blast

}

24

ultimately have ?case using eo
by blast
}

ultimately show ?case by blast
qed

lemma WEST-and-helper-set-member:

fixes regtrace h::trace-regex

fixes L:: WEST-regex

shows regtrace € set (WEST-and-helper h L) +—

(3 loc. loc < length L A (3 sometrace. WEST-and-trace h (L ! loc) = Some

sometrace A regtrace = sometrace))

using WEST-and-helper-set-member-forward WEST-and-helper-set-member-converse

by blast

lemma WEST-and-set-member-dirl :
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace € set (WEST-and L1 L2)
shows (3 locl loc2. locl < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace))
using assms proof (induct L1 arbitrary: L2)
case Nil
then show ?case using WEST-and.simps(2) WEST-and.simps(1)
by (metis list.distinct(1) list.exhaust list.set-cases)
next
case (Cons head tail)
{assume L2-empty: L2 = []
then have ?case
using Cons.prems(3) by auto
}

moreover { assume L2-not-empty: L2 # ||
{assume regtrace-in-head-L2: regtrace € set (WEST-and-helper head L2)
then obtain loc2 where (loc2<length L2 A
(3 sometrace. WEST-and-trace head (L2 ! loc2) = Some sometrace N\ regtrace
= sometrace))
using WEST-and-helper-set-member|of regtrace head L2)
by blast
then have 0 < length (head # tail) A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace ((head # tail) ! 0) (L2 ! loc2) = Some sometrace N
regtrace = sometrace)
using regtrace-in-head-L2

25

by simp
then have ?case
by blast
}

moreover {assume regtrace-notin-head-L2: regtrace ¢ set (WEST-and-helper
head L2)
obtain h2 T2 where h2T2:L2 = h2# T2 using L2-not-empty
by (meson list.ezhaust)
{assume x: WEST-and-helper head (h2 # T2) = ||
then have WEST-and (head # tail) L2 = WEST-and tail L2
using WEST-and.simps(3)[of head tail h2 T2] h2T2 by simp
}
moreover {assume x: WEST-and-helper head (h2 # T2) # ||
then have WEST-and (head # tail) L2 = (WEST-and-helper head L2) @
WEST-and tail L2
using WEST-and.simps(3)[of head tail h2 T2] h2T2
by (simp add: list.case-eq-if)

ultimately have e-o: WEST-and (head # tail) L2 = WEST-and tail L2 V
WEST-and (head # tail) L2 = (WEST-and-helper head L2) @ WEST-and tail L2
by blast
have regtrace-in: regtrace € set (WEST-and tail L2) using L2-not-empty
regtrace-notin-head-L2 Cons.prems(3) h2T2 e-o
by fastforce
have V k<length (head # tail). trace-regex-of-vars ((head # tail) ! k) num-vars
using Cons.prems(1) unfolding WEST-regez-of-vars-def by argo
then have regtracelist-tail: WEST-regez-of-vars tail num-vars
unfolding WEST-regex-of-vars-def by auto
obtain loc1 loc2 where loc1 < length tail N
loc2 < length L2 A (3 sometrace. WEST-and-trace (tail ! loc1) (L2 ! loc2)
= Some sometrace N regtrace = sometrace)
using Cons.hyps[OF regtracelist-tail Cons.prems(2) regtrace-in] by blast
then have loc1+1 < length (head # tail) A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace ((head # tail) ! (loc1+1)) (L2 ! loc2) = Some sometrace

regtrace = sometrace)
by simp
then have ?case
by blast
}

ultimately have ?case
by blast
}

ultimately show ?case

by blast
qed

26

lemma WEST-and-subset:
shows set (WEST-and T1 L2) C set (WEST-and (h1#T1) L2)
proof —
{assume x: L2 = ||
then have ?thesis by auto
} moreover {assume x: L2 # ||
then obtain h2 T2 where L2 = h2# T2
using list.exhaust-sel by blast
then have ?thesis
using WEST-and.simps(3)[of h1 T1 h2 T2]
by (simp add: list.case-eq-if)

ultimately show ?thesis by blast
qed

lemma WEST-and-set-member-dir2:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes ezists-locs: (3 locl loc2. locl < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace))
shows regtrace € set (WEST-and L1 L2) using assms
proof (induct L1 arbitrary: L2)
case Nil
then show ?case by auto
next
case (Cons h1 T1)
then obtain loc! loc2 where loclloc2: locl < length (h1 # T1) A
loc2 < length L2 A
(3 sometrace.
WEST-and-trace ((h1 # T1)!locl) (L2 ! loc2) = Some sometrace A
regtrace = sometrace) by blast
{assume *: L2 = |]
then have ?case using Cons by auto
} moreover {assume x: L2 # |]
then obtain h2 T2 where h2T2: L2 = h2+#T2
using list.exhaust-sel by blast
have V k<length (h1 # T1). trace-regez-of-vars ((h1 # T1)! k) num-vars
using Cons.prems(1) unfolding WEST-regez-of-vars-def by argo
then have regtracelList-T1: WEST-regex-of-vars T1 num-vars
unfolding WEST-regex-of-vars-def by auto
{assume xx: WEST-and-helper h1 L2 = |]
then have loc! > 0
using loc1loc2
by (metis WEST-and-helper.simps(1) WEST-and-helper-set-member gr-implies-not-zero
list.size(8) not-gr0 nth-Cons-0)

27

then have exi: 3locl loc2.
loc1 < length T1 A
loc2 < length L2 N
(3 sometrace.
WEST-and-trace (T1 ! loc1) (L2 ! loc2) = Some sometrace A
regtrace = sometrace)
using loc1loc2
by (metis One-nat-def Suc-pred bot-nat-0.not-eg-extremum length-Cons
nat-add-left-cancel-less nth-Cons’ plus-1-eq-Suc)
then have ?case
using Cons.hyps[OF regtraceList-T1 Cons(3) exi] WEST-and-subset
by auto
} moreover {assume xx: WEST-and-helper h1 L2 #]
then have WEST-and (h1 # T1) (h2 # T2) = WEST-and-helper hi1 (h2
T2) Q WEST-and T1 (h2 # T2)
by (simp add: list.case-eq-if)
then have ?case
using Cons.hyps|OF regtraceList-T1 Cons.prems(2)]
by (metis One-nat-def Suc-pred Un-iff WEST-and-helper-set-member-converse
gr-implies-not-zero h2T2 length-Cons linorder-neqE-nat loc1loc2 nat-add-left-cancel-less
nth-Cons’ plus-1-eq-Suc set-append)
}
ultimately have ?case
by auto
}

ultimately show “case
by auto
qed

lemma WEST-and-set-member:
fixes num-vars:nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regtrace € set (WEST-and L1 L2) +—
(3 loct loc2. loc1 < length L1 A loc2 < length L2 A
(3 sometrace. WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace N
regtrace = sometrace))
using WEST-and-set-member-dirl WEST-and-set-member-dir2 assms by blast

lemma WEST-and-commutative-sets-member:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace-in: regtrace € set (WEST-and L1 L2)
shows regtrace € set (WEST-and L2 L1)

28

proof —
obtain loc1 loc2 where lociloc2: loc1 < length L1 A
loc2 < length L2 A
(3 sometrace.
WEST-and-trace (L1 ! locl) (L2 ! loc2) = Some sometrace N\
regtrace = sometrace)
using WEST-and-set-member[OF L1-of-num-vars L2-of-num-vars| regtrace-in
by auto
have locl: trace-regex-of-vars (L1 ! locl) num-vars
using L1-of-num-vars loclloc2 unfolding WEST-regez-of-vars-def
by (meson less-imp-le-nat)
have loc2: trace-regex-of-vars (L2 ! loc2) num-vars
using L2-of-num-vars loclloc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)
have loc1 < length L1 N
loc2 < length L2 A
(3 sometrace.
WEST-and-trace (L2 ! loc2) (L1 ! locl) = Some sometrace A
regtrace = sometrace)
using loc1loc2 WEST-and-trace-commutative[OF locl loc2]
by simp
then show ?thesis using loc1loc2
using WEST-and-set-member[OF L2-of-num-vars L1-of-num-vars|
by blast
qed

lemma WEST-and-commutative-sets:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows set (WEST-and L1 L2) = set (WEST-and L2 L1)
using WEST-and-commutative-sets-member[OF L1-of-num-vars L2-of-num-vars]
WEST-and-commutative-sets-member| OF L2-of-num-vars L1-of-num-vars]
by blast

lemma WEST-and-commutative:
fixes num-vars::nat
fixes L1::WEST-regex
fixes L2:: WEST-regex
assumes LI-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regez-equiv (WEST-and L1 L2) (WEST-and L2 L1)
proof —
have set (WEST-and L1 L2) = set (WEST-and L2 L1)
using WEST-and-commutative-sets assms
by blast
then have match 7 (WEST-and L1 L2) = match # (WEST-and L2 L1) for

29

using match-def match-regez-def
by (metis in-set-conv-nth)
then show ?thesis
unfolding regez-equiv-def by auto
qed

3.3.2 Identity and Zero

lemma WEST-and-helper-identity:
shows WEST-and-helper || trace = trace
proof (induct trace)
case Nil
then show ?case by auto
next
case (Cons h T)
then show Zcase
using WEST-and-helper.simps(2)[of [] h T]
by (smt (verit) WEST-and-trace.elims list.discI option.simps(5))
qed

lemma WEST-and-identity: WEST-and [[]] L = L
proof—
{assume *x: L = []
then have ?thesis
by auto
} moreover {assume *: L # ||
then obtain h T where hT: L = h#T
using list.exhaust by auto
then have ?thesis using WEST-and.simps(3)[of [[| b T
using hT
by (metis (no-types, lifting) WEST-and.simps(2) WEST-and-helper-identity
append.right-neutral list.simps(5))
}
ultimately show ?thesis by linarith
qed

lemma WEST-and-zero: WEST-and L || = |]
by simp

3.3.3 WEST-and-state

Well Defined fun advance-state:: state = state
where advance-state state = {z—1 | z. (z€state A z # 0)}

lemma advance-state-elt-bound:
fixes state::state
fixes num-vars::nat
assumes VY zE€state. x < num-vars
shows V z€(advance-state state). © < (num-vars—1)

30

using assms advance-state.simps by auto

lemma advance-state-elt-member:
fixes state::state
fixes x::nat
assumes z+1 € state
shows z € advance-state state
using assms advance-state.simps by force

lemma advance-state-match-timestep:
fixes h:: WEST-bit
fixes t::state-regex
fixes state::state
assumes match-timestep state (h#tt)
shows match-timestep (advance-state state) t
proof—
have (Vz<length (h # t).
((h# t) z = One — x € state) A (h # t) ! & = Zero — x ¢ state))
using assms unfolding match-timestep-def by argo
then have V z<length t.
((h# t)! (xz+1) = One — (z+1) € state) A (b # t) ! (z+1) = Zero
— (z+1) ¢ state) by auto
then have V z<length t.
(t !z = One — z € (advance-state state)) A (t ! @ = Zero — ¢ ¢
(advance-state state))
using advance-state.simps advance-state-elt-member by fastforce
then show ?thesis using assms unfolding match-timestep-def by metis
qed

lemma WEST-and-state-well-defined:
fixes num-vars::nat
fixes state::state
fixes s1 s2:: state-regex
assumes sl-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes mw-match-ri-r2: match-timestep state s1 N\ match-timestep state s2
shows WEST-and-state s1 s2 # None
proof—
have same-length: length s1 = length s2
using assms unfolding state-regex-of-vars-def by simp
have (V z. z < num-vars — (((sI ! z = One) — x € state) A ((s1 ! z =
Zero) — x ¢ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have match-timestep-s1-unfold: ¥ z€state. x < num-vars — ((s1 ! z =
One) V (s1 !z =279))
using assms by (meson WEST-bit.exhaust)
then have z-in-state-s1: Vz. (x < num-vars A x € state) — ((s1 ! z = One)
V (sl !z =25)) by blast

31

then have z-notin-state-s1: Vz. (z < num-vars A = ¢ state) — ((s1 ! z =
Zero) V (s1 1z = 9))
using match-timestep-s1-unfold
by (meson WEST-bit.exzhaust <V z<num-vars. (s1 | © = One — z € state) A
(s1 'z = Zero — x ¢ state)y)
have match-timestep-s2-unfold: (V z. x < num-vars — (((s2 ! z = One) — z
€ state) A ((s2 ! © = Zero) — x ¢ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have Vzestate. z < num-vars — ((s2 !z = One) V (s2 ! z = 5))
using assms by (meson WEST-bit.exhaust)
then have z-in-state-s2: Vz. (x < num-vars A x € state) — ((s2 ! z = One)
V (s2 !z =25)) by blast
then have z-notin-state-s2: Vz. (z < num-vars A = ¢ state) — ((s2 ! z =
Zero) V (s2 !z = 9))
using match-timestep-s1-unfold
by (meson WEST-bit.exhaust <V z<num-vars. (s2 ! x = One — z € state) A
(s2 'z = Zero — x ¢ state)))
have no-contradictory-bits1: ¥V z€state. x < num-vars — WEST-and-bitwise (s1
l'z) (s2 ! x) # None
using z-in-state-s1 z-notin-state-s1 z-in-state-s2 z-notin-state-s2 WEST-and-bitwise.simps
by (metis match-timestep-s2-unfold not-Some-eq)
then have no-contradictory-bits2: V z. (z ¢ state A\ x < num-vars) — WEST-and-bitwise
(st V'z) (s2 ! z) # None
using z-in-state-s1 z-notin-state-s1 x-in-state-s2 z-notin-state-s2 WEST-and-bitwise.simps
by fastforce
have no-contradictory-bits: ¥V x. x < num-vars — WEST-and-bitwise (s ! x)
(s2 ! z) # None
using no-contradictory-bits1 no-contradictory-bits2
by blast
show ?thesis using same-length no-contradictory-bits assms
proof (induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto
next
case (Cons a sl)
then have num-vars-bound: num-vars = (length s1) + 1
unfolding state-regez-of-vars-def by simp
then have len-s2: length s2 = num-vars using Cons by simp
then have length s2 > 1 using num-vars-bound by simp
then have s2-ht-exists: Ih t. s2 = h#t
by (metis Suc-eq-plusl Suc-le-length-iff <length s2 = num-vars> not-less-eq-eq
num-vars-bound)
obtain % t where s2-ht: s2 = h#t using s2-ht-exists by blast
{assume x: WEST-and-bitwise a h = None
then have Zcase using WEST-and-state.simps(2)
using Cons.prems(2) <length s2 = num-vars) s2-ht by force
} moreover {assume xx: WEST-and-bitwise a h # None
have hi: length s1 = length t
using len-s2 num-vars-bound s2-ht by simp

32

obtain num-var-minus! where nvmi-def: num-var-minusl = num-vars —
1 by simp
then have YV z<(num-vars—1). WEST-and-bitwise ((a#s1) ! (z+1)) ((h#t)
!'(z+1)) # None
using Cons.prems(2)
using num-vars-bound s2-ht by auto
then have h2: Vz<num-var-minusl. WEST-and-bitwise (s1 ! z) (¢ | x) #
None
using nvmli-def by simp
obtain adv-state where adv-state-def: adv-state = advance-state state by
stmp
have hj: state-regex-of-vars s1 num-var-minusi
using Cons.prems unfolding state-regezx-of-vars-def
by (simp add: add-implies-diff num-vars-bound nvmI-def)
have h5: state-regez-of-vars t num-var-minusi
using h4 h1 unfolding state-regex-of-vars-def by simp
have h6: match-timestep adv-state s1 N match-timestep adv-state t
using Cons.prems(5) s2-ht adv-state-def
using advance-state-match-timestep by blast
have ih: WEST-and-state s1 t #= None
using Cons.hyps[of t num-var-minus! adv-state] h1 h2 h{ h5 h6 by auto
have ?case using WEST-and-state.simps(2)[of a s1 h t] xx ih s2-ht by auto
}
ultimately show Zcase
by blast
qed
qed

Correct Forward lemma WEST-and-state-length:
fixes sl s2::state-regex
assumes samelen: length s1 = length s2
assumes r-exists: (WEST-and-state s1 s2) # None
shows 3 r. length r = length s1 N WEST-and-state s1 s2 = Some r
proof—
have si1s2-exists: 3r. WEST-and-state s1 s2 = Some r
using assms by simp
then obtain r where s1s2-obt: WEST-and-state s1 s2 = Some r by auto
let ?n = length s1
have si1s2-length-n: length r = ?n
using assms s1s2-obt
proof (induct ?n arbitrary: s1 s2)
case (
then show ?case using WEST-and-state.simps(1) by simp
next
case (Suc x)
have length s1 > 1 using Suc.hyps(2) by simp
then have 3h1 t1. s1 = h1 # t1 by (simp add: Suc-le-length-iff)
then obtain hi t1 where hitl: s1 = hl # t1 by blast
have length s2 > 1 using Suc.hyps(2) Suc.prems(1) by auto

33

then have 3h2 t2. s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2: s2 = h2 # t2 by blast
have WEST-and-bitwise h1 h2 # None
using Suc.prems h1tl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.simps(4))
then obtain hi1h2 where hi1h2-and: Some h1h2 = WEST-and-bitwise h1 h2
by auto
have WEST-and-state t1 t2 # None
using Suc.prems h1tl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis (no-types, lifting) not-None-eq option.simps(4) option.simps(5))
then obtain t1t2 where t1t2-and: Some t1t2 = WEST-and-state t1 t2 by
auto
have cond1: x = length t1 using h1t1 Suc.hyps(2) by auto
have cond2: length t1 = length t2 using hitl h2t2 Suc.prems(1) by auto
have len-t1t2: length t1t2 = length t1
using Suc.hyps(1)[of t1 t2 t1t2] using condl cond?2 t1t2-and
using « WEST-and-state t1 t2 # None> by fastforce
have r-decomp: r = h1h2 # tit2
using Suc.prems(3) h1h2-and t1t2-and WEST-and-state.simps(2)
by (metis h1t1 h2t2 option.inject option.simps(5))
show ?case using r-decomp len-t1t2 hitl h2t2 by auto
qed
then show ?thesis using assms s1s2-obt s1s2-exists by simp
qed

lemma index-shift:

fixes a:: WEST-bit

fixes t::state-regex

fixes state::state

assumes (a = One — 0 € state) A (a = Zero — 0 ¢ state)

assumes Vz<length t. ((t!z) = One — x + 1 € state) A ((tlz) = Zero — =z
+ 1 ¢ state)

shows V z<length (a#t). ((a#t) ! £ = One — z € state) N ((a#t) | z = Zero
— z ¢ state)
proof—

have (a = One — 0 € state) using assms by auto

then have a-one: (a#t)!0 = One — 0 € state by simp

have t-one: Va<length t. (t!lz) = One — z + 1 € state using assms by auto

have Vz<(length t)+1. (x # 0 A (a#t)lx = One) — z € state

using t-one assms(2)

by (metis (no-types, lifting) Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class. diff-cancel
gr-zerol less-numeral-extra(1) linordered-semidom-class.add-diff-inverse nth-Cons’
verit-comp-simplify1 (1))

then have at-one: Vz<length (a#t). ((a#t) ! © = One — x € state)

using a-one t-one by (simp add: nth-Cons’)

have (a = Zero — 0 ¢ state) using assms by auto

then have a-zero: (a#t)!0 = Zero — 0 ¢ state by simp

have t-zero: ¥V z<length t. (tlx) = Zero — x + 1 ¢ state using assms by auto

34

have Vz<(length t)+1. (x # 0 A (a#t)lx = Zero) — x ¢ state
using t-zero assms(2)
by (metis Nat.add-0-right Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class. diff-cancel
less-one not-gr-zero nth-Cons’)
then have at-zero: V z<length (a#t). ((a#t) | © = Zero — z ¢ state)
using a-zero t-zero by (simp add: nth-Cons’)
show ?thesis using at-one at-zero by blast
qed

lemma index-shift-reverse:

fixes a:: WEST-bit

fixes t::state-regex

fixes state::state

assumes Vz<length (a#t). ((a#t) ! © = One — z € state) A ((a#t) | x =
Zero — x ¢ state)

shows Vz<length t. ((t!z) = One — z + 1 € state) A ((tlx) = Zero — = +
1 ¢ state)
proof—

have length (a#t) = (length t) + 1 by simp

then have Vz<(length t)+1. ((a#t) ! © = One — x € state) A ((a#t) ! z =
Zero — x ¢ state)

using assms by metis

then show ?thesis by simp

qed

lemma WEST-and-state-correct-forward:

fixes num-vars::nat

fixes state::state

fixes sl s2:: state-regex

assumes si1-of-num-vars: state-regez-of-vars sl num-vars

assumes s2-of-num-vars: state-regex-of-vars s2 num-vars

assumes match-both: match-timestep state s1 N match-timestep state s2

shows J somestate. (match-timestep state somestate) A (WEST-and-state s1 s2)
= Some somestate
proof—

have WEST-and-state s1 s2 # None

using WEST-and-state-well-defined assms by simp

then have Jsomestate. WEST-and-state s1 s2 = Some somestate by auto

then obtain somestate where somestate-obt: WEST-and-state sl s2 = Some
somestate by auto

have samelength: length s1 = length s2 using assms(1, 2) unfolding state-regex-of-vars-def
by auto

have len-s1: length s1 = num-vars using assms unfolding state-regex-of-vars-def
by auto

have len-s2: length s2 = num-vars using samelength len-s1 by auto

have len-somestate: length somestate = num-vars

using samelength somestate-obt WEST-and-state.simps WEST-and-state-length

35

using len-s1 len-s2
by fastforce
have s1-bits: Vx<num-vars. (s1 | v = One — x € state) A (s1 | ©z = Zero —
x ¢ state)
using assms(3) len-s1 unfolding match-timestep-def by metis
have s2-bits: V z<num-vars. (s2 ! £ = One — = € state) A (s2 ! x = Zero —
x ¢ state)
using assms(3) len-s2 unfolding match-timestep-def len-s2 by metis
have somestate-bits: ¥ x<num-vars. (somestate ! x = One — € state)
A (somestate | © = Zero — x ¢ state)
using s1-bits s2-bits somestate-obt len-s1 len-s2 len-somestate assms(1)
proof (induct somestate arbitrary: sl s2 num-vars state)
case Nil
then show ?case
by (metis less-nat-zero-code list.size(8))
next
case (Cons a t)
have length s1 > 1 using Cons.prems(4, 5, 6) by auto
then have 3h1 t1. s1 = hi # t1 by (simp add: Suc-le-length-iff)
then obtain hi t1 where hitl: s1 = hl # tI by auto
have length s2 > 1 using Cons.prems(4, 5, 6) by auto
then have 312 t2. s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2: s2 = h2 # t2 by auto
have h1h2-not-none: WEST-and-bitwise h1 h2 # None
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2)
by (metis option.discl option.simps(4))
then have t1t2-not-none: WEST-and-state t1 t2 # None
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.distinct(1))
have hih2-is-a: WEST-and-bitwise h1 h2 = Some a
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto
have ti1t2-is-t: WEST-and-state t1 t2 = Some t
using Cons.prems(3) hitl h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto
let num-vars-m1 = num-vars — 1
have len-t: Suc (length t) = num-vars
using Cons.prems(1—6) by simp
then have length-t: length t = ?num-vars-ml1 by simp
then have length-t1: length t1 = ?num-vars-m1 using Cons.prems(1—06) hi1t!
by simp
then have length-t2: length t2 = ?num-vars-m1 using Cons.prems(1—6) h2t2
by simp
have (a = One — 0 € state) A (a = Zero — 0 ¢ state)
using h1h2-is-a Cons.prems(1, 2) h1tl h2t2 WEST-and-bitwise.simps
by (smt (verit) WEST-and-bitwise.elims len-t nth-Cons-0 option.inject zero-less-Suc)
then have a-fact: ((a # t) ! 0 = One — 0 € state) A ((a # t) ! 0 = Zero
— 0 ¢ state) by auto
let 2adv-state = advance-state state

36

have V z<num-vars.((h1#t1) | x = One — z € state) A ((h1#t1) ! x = Zero
— z ¢ state)
using Cons.prems(1) hi1tl advance-state.simps|of state] by blast
then have cond!: Vz<num-vars—1.(t1 ! © = One — (z+1) € state) A (t1
o = Zero — (x+1) ¢ state)
using index-shift-reverse[of h1 t1] by simp
then have cond!: Vz<num-vars—1.(t1 ! v = One — z € Zadv-state) N (t1
V' = Zero — z ¢ Zadv-state)
using advance-state-elt-member by fastforce
have V z<num-vars.((h24#t2) | x = One — z € state) A ((h2#t2) | x = Zero
— x ¢ state)
using Cons.prems(2) h2t2 advance-state.simps|of state] by blast
then have Vz<num-vars—1.(t2 !z = One — (z+1) € state) A (12 ! z =
Zero — (z+1) ¢ state)
using index-shift-reverse[of h2 t2] by simp
then have cond2: Vz<num-vars—1.(t2 ! © = One — x € %adv-state) A (12
V' = Zero — x ¢ Padv-state)
using advance-state-elt-member by fastforce
have t-fact: Vo < length t. (t ! x = One — z € %adv-state) N (t ! x = Zero
— x ¢ Zadv-state)
using Cons.hyps[of ?num-vars-m1 t1 ?adv-state t2]
using length-t length-t1 length-t2 t1t2-is-t cond1 cond?2
by (metis (mono-tags, opaque-lifting) state-regex-of-vars-def)
then have i-fact: Vo < length t. (t ! © = One — (z+1) € state) A (t ! z =
Zero — (z+1) ¢ state)
using advance-state-elt-member by auto
have cons-index: ¥z < length (a#t). (t ! z) = (a#t)!(z+1) by auto
have somestate-fact: ¥ z<length (a#t). ((a # t) ! © = One — z € state) A
((a # t) 'z = Zero — z ¢ state)
using a-fact t-fact index-shift[of a state] Cons.prems(5,6)
using «(a = One — 0 € state) A\ (a = Zero — 0 ¢ state)» by blast
show ?Zcase
using somestate-fact len-t by auto
qed
have match-somestate: match-timestep state somestate
using somestate-obt assms somestate-bits
using len-s2 len-somestate
unfolding match-timestep-def
by metis
then show ?thesis using somestate-obt by simp
qed

Correct Converse lemma WEST-and-state-indices:
fixes s sl s2::state-regex
assumes WEST-and-state s1 s2 = Some s
assumes length s1 = length s2
assumes z<length s
shows Some (slz) = WEST-and-bitwise (s1lx) (s2!x)
using assms

37

proof (induct s arbitrary: s1 s2 x)
case Nil
then show ?case by simp
next
case (Cons h t)
then obtain h! t1 where hitl: s1 = hl # t1
by (metis WEST-and-state.simps(1) length-greater-0-conv neg-Nil-conv op-
tion.inject)
obtain h2 t2 where h2t2: s2 = h2 # t2
using Cons
by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)
have notnonel: WEST-and-bitwise hl1 h2 # None using hitl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.distinct(1) option.simps(4))
have notnone2: WEST-and-state t1 t2 # None using hltl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.discl)
have someh: WEST-and-bitwise h1 h2 = Some h using hitl h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]
notnonel notnone2 by auto
have somet: WEST-and-state t1 t2 = Some t using h1t1 h2t2 Cons(2) WEST-and-state.simps(2)[of
h1 t1 h2 t2]
notnonel notnone2 by auto
then have some-t: z < length t = Some (t !) = WEST-and-bitwise (t1 ! x)
(t2 1 z) for z
using h1t! h2t2 Cons(1)[OF somet] Cons(3)
by simp
have some-zero: Some ((h # t) | 0) = WEST-and-bitwise (s1 ! 0) (s2! 0)
using someh h1t1 h2t2 by simp
{assume *: z = (
then have ?case
using some-zero by auto
} moreover {assume x: z > 0
then have zminus-lt: z—1 < length t
using Cons(4) by simp
have Some ((h # t) !) = Some (t! (z—1))
using *
by auto
then have ?case
using some-t[OF zminus-lt] h1tl h2t2
by (simp add: *)
}
ultimately show ?case
by blast
qed

lemma WEST-and-state-correct-converse-s1:
fixes num-vars::nat

38

fixes state::state
fixes s1 s2:: state-regex
assumes sI-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: 3 somestate. (match-timestep state somestate) N (WEST-and-state
s1 s2) = Some somestate
shows match-timestep state sl1
proof—
have s1-bits: (Va<length s1. (s1 | x = One — z € state) A (s1 ! © = Zero —
x ¢ state))
using assms
proof (induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto
next
case (Cons h1 t1)
obtain somestate where
somestate-obt: (match-timestep state somestate) N (WEST-and-state (h1#t1)
s2) = Some somestate
using Cons.prems(3) by auto

have len-s1: length (h1#t1) = num-vars using Cons.prems unfolding state-regez-of-vars-def
by simp
have len-s2: length s2 = num-vars using Cons.prems unfolding state-regez-of-vars-def
by simp
then obtain h2 t2 where h2t2: s2=h2+#t2
by (metis WEST-and-state.simps(3) neg-Nil-conv not-Some-eq somestate-obt)
have len-somestate: length somestate = num-vars
using somestate-obt WEST-and-state-length|of - s2] unfolding state-regezx-of-vars-def
len-s2
using len-s1 by fastforce
then obtain h t where ht: somestate = h#t using len-s1
by (metis Ex-list-of-length Zero-not-Suc length-Cons neg-Nil-conv)

have somestate-bits: (¥ z<length somestate. (somestate | © = One — x €
state) A (somestate | © = Zero — x & state))
using somestate-obt unfolding match-timestep-def by argo
then have somestate-bits-conv: (V¥ x<length somestate. (x € state — (somestate
Iz = One V somestate | . = §)) A
(x ¢ state — (somestate | © = Zero V somestate | ©
=9)))

by (meson WEST-bit.exhaust)
have WEST-and-state (h14tt1) s2 = Some somestate using somestate-obt by
blast
then have somestate-and: WEST-and-state (h1#t1) (h2#t2) = Some (h#t)
using h2t2 ht by simp

have (somestate | 0 = One — 0 € state) A (somestate ! 0 = Zero — 0 ¢
state)

39

using somestate-bits len-somestate len-s1 by simp
then have somestate-bit0: (h = One — 0 € state) A (h = Zero — 0 ¢
state)
using ht by simp
have hih2-not-none: WEST-and-bitwise h1 h2 # None
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h2t2
using option.simps(4) by fastforce
have t1t2-not-none: WEST-and-state t1 t2 # None
using h1h2-not-none somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2]
using option.simps(4) by fastforce
then have h1h2-is-h: WEST-and-bitwise h1 h2 = Some h
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h1h2-not-none
by auto
have h-fact-converse: (0 € state — (hl = One V h1 = 5)) A (0 ¢ state —
(h1 = Zero V h1 = S))
using somestate-bit0 h1h2-is-h WEST-and-bitwise.simps[of h1] h1h2-not-none
by (metis (full-types) WEST-and-bitwise.elims option.inject)
then have h-fact: (h1 = One — 0 € state) A (hl = Zero — 0 ¢ state) by
auto

have somestate-bits-t: ¥ z<length t. (t!z = One — (x+1) € state) A (tlz =
Zero — (z+1) ¢ state)
using indez-shift-reverse[of h t] Cons.prems(1) somestate-bits len-somestate
len-s1 ht by blast
have t1t2-is-t: WEST-and-state t1 t2 = Some t
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] t1t2-not-none
h1h2-not-none by auto
then have t1t2-is-t-indices: V x<length t. Some (tlz) = WEST-and-bitwise
(t1'z) (t2!x)
using WEST-and-state-indices[of t1 t2] len-s1 len-s2 h2t2 by simp
have t-fact-conversel: N\z. x<length t1 = (((z+1) € state — (t1!z = One
Vitlle = 9)) A ((z+1) ¢ state — (t1lx = Zero V t1lz = 9)))
proof —
fix z
assume z-lt: x<length t1
have x:(tlz = One — (x+1) € state) A (tlx = Zero — (z+1) ¢ state)
using z-lt somestate-bits-t len-s1 len-somestate ht by auto
have *x: Some (¢t | ©) = WEST-and-bitwise (t1 ! z) (12 ! z)
using z-lt somestate-bits-t len-s1 len-somestate ht t1t2-is-t-indices by auto

{assume casel: (z+1) € state
then have tlz = One Vv tllz = §
using x
by (smt (verit) xx WEST-and-bitwise.elims WEST-and-bitwise.simps(2)
option.distinct(1) option.inject)
then have (t1!z = One Vv t1lz = S)
using z-lt WEST-and-bitwise.simps[of t1!x] * xx
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
} moreover {assume case2: (z+1) ¢ state

40

then have tlz = Zero V tilz = S
using x
by (smt (verit) xx WEST-and-bitwise.elims WEST-and-bitwise.simps(2)
option.distinct(1) option.inject)
then have (t1lz = Zero Vv t1lx = S)
using z-lt WEST-and-bitwise.simps|of t11x] * %%
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)
}
ultimately show (((z+1) € state — (t1lz = One V t1lx = S)) A ((z+1)
¢ state — (t1lx = Zero V t1lz = 5)))
by blast
qed
then have t-fact: Va<length t1. (t1lx = One — (z+1)€state) N (t1lz =
Zero — (z+1)¢ state)
by force

show ?case
using h-fact t-fact Cons.prems len-s2 len-somestate index-shift[of h1 state)
unfolding state-regex-of-vars-def by blast
qed

show ?thesis
using s1-bits assms(1) unfolding match-timestep-def
using state-regex-of-vars-def s1-of-num-vars by presburger
qed

lemma WEST-and-state-correct-converse:
fixes num-vars::nat
fixes state::state
fixes s1 s2:: state-regex
assumes sl-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: 3 somestate. (match-timestep state somestate) A (WEST-and-state
s1 s2) = Some somestate
shows match-timestep state s1 N match-timestep state s2
proof—
have match-s1: match-timestep state s1 using assms WEST-and-state-correct-converse-si
by simp
have match-s2: match-timestep state s2
using assms WEST-and-state-correct-converse-s1 WEST-and-state-commutative
by (simp add: state-regezx-of-vars-def)
show ?thesis using match-s1 match-s2 by simp
qged

lemma WEST-and-state-correct:
fixes num-vars::nat
fixes state::state
fixes sl s2:: state-regex

41

assumes sI-of-num-vars: state-regez-of-vars s1 num-vars
assumes s2-of-num-vars: state-regez-of-vars s2 num-vars
shows (match-timestep state s1 A match-timestep state s2) <— (3 somestate.
match-timestep state somestate A (WEST-and-state s1 s2) = Some somestate)
using assms WEST-and-state-correct-converse
WEST-and-state-correct-forward by metis

3.3.4 WEST-and-trace
Well Defined lemma WEST-and-trace-well-defined:

fixes num-vars::nat
fixes m::trace
fixes r1 r2:: trace-regex
assumes rl-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes m-match-r1-r2: match-regex ™ r1 N\ match-regex ™ r2
shows WEST-and-trace r1 2 # None
proof—
show ?thesis using assms
proof (induct r1 arbitrary: r2 m num-vars)
case Nil
{assume r2-empty:r2 = ||
then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2#||
then obtain h2 t2 where r2 = h2#t2
by (metis trim-reversed-regez.cases)
then have?case using WEST-and-trace.simps(2)[of h2 t2] by blast
}
ultimately show ?case by blast
next
case (Cons h1 t1)
{assume r2-empty:r2 = ||
then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2#[|
then obtain 72 t2 where h2t2: r2 = h2#t2
by (metis trim-reversed-regex.cases)

have hiti-nv: Vi<length (hl # t1). length ((h1 # t1)! i) = num-vars
using Cons.prems(1) unfolding trace-regex-of-vars-def by argo

then have length ((h1 # t1)! 0) = num-vars by blast

then have hi-nv: state-regex-of-vars hl num-vars
unfolding state-regez-of-vars-def by simp

have h2t2-nv: Vi<length (h2 # t2). length ((h2 # t2) ! i) = num-vars
using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by metis

then have length ((h2 # t2) ! 0) = num-vars by blast

then have h2-nv: state-regex-of-vars h2 num-vars
unfolding state-regez-of-vars-def by simp

have match-timestep (m ! 0) h1 A match-timestep (7w ! 0) h2

42

using Cons(4) unfolding match-regex-def
by (metis h2t2 length-greater-0-conv list.distinct(1) nth-Cons-0)
then have hih2-notnone: WEST-and-state h1 h2 # None
using WEST-and-state-well-defined|[of h1 num-vars h2 !0, OF h1-nv h2-nv]
by blast

have t1-nv: trace-regezx-of-vars t1 num-vars

using hl1tl-nv unfolding trace-regex-of-vars-def by auto
have t2-nv: trace-regex-of-vars t2 num-vars

using h2t2-nv unfolding trace-regex-of-vars-def by auto

have unfold-prem3: (¥ time<length (h1 # t1). match-timestep (w ! time) ((h1
t1) ! time)) A
length (h1 # t1) < length m A (V¥ time<length 2. match-timestep (w | time)
(r2 ! time)) A length r2 < length w
using Cons.prems(83) unfolding match-regez-def by argo

have unfold-prem3-bounds: length (h1 # t1) < length w A length r2 < length

using unfold-prem3 by blast
have w-drop1-len: length (drop 1) = (length m)—1 by simp
have len-t1t2: length t1 = length (h14tt1)—1 A length t2 = length (h24t2)—1
by simp
have bounds: length t1 < length (drop 1 7) A length t2 < length (drop 1 m)
using unfold-prem3-bounds h2t2 w-drop1-len len-t1t2 h2t2
by (metis diff-le-mono)

have unfold-prem3-matches: (¥ time<length (h1 # t1). match-timestep (w !
time) ((h1 # t1) ! time)) A
(V time<length (h2 # t2). match-timestep (7 ! time)
((h2 # t2) | time))
using unfold-prem3 h2t2 by blast

have hit1-match:(V time<length (h1 # t1). match-timestep (7 ! time) ((h1
t1) ! time))
using unfold-prem3-matches by blast
then have (Atime. time<length t1 = match-timestep (drop 1 ! time) (¢1
! time))
proof—
fix time
assume time-bound: time < length t1
have time+1 < length (hl1#t1) using time-bound by auto
then have match-timestep (7 ! (time+1)) ((h1 # t1) ! (time+1)) using
h1ti-match by auto
then show match-timestep (drop 1 7! time) (t1 ! time)
using cancel-comm-monoid-add-class. diff-cancel unfold-prem3 by auto
qed
then have t1-match: (V time<length t1. match-timestep (drop 1 7 ! time) (t1
! time))

43

by blast

have h2t2-match: ¥V time < length (h2 # t2). match-timestep (7 ! time) ((h2
t2) | time)
using unfold-prem3-matches by blast
then have (Atime. time<length t2 = match-timestep (drop 1 ! time) (t2
! time))
proof—
fix time
assume time-bound: time < length t2
have time+1 < length (h24t2) using time-bound by auto
then have match-timestep (w ! (time+1)) ((h2 # t2) ! (time+1)) using
h2t2-match by auto
then show match-timestep (drop 1 = ! time) (¢2 ! time)
using cancel-comm-monoid-add-class. diff-cancel unfold-prem3 by auto
qed
then have t2-match: (V¥ time<length t2. match-timestep (drop 1 © | time) (2
! time))
by blast

then have matches: (¥ time<length t1. match-timestep (drop 1 m ! time) (t1
! time)) A
(V time<length t2. match-timestep (drop 1 ! time) (t2 | time))
using tI-match t2-match by blast
have match-regex (drop 1 m) t1 A match-regex (drop 1) t2
using bounds matches unfolding match-regex-def h2t2 by auto
then have t1t2-notnone: WEST-and-trace t1 t2 # None
using Cons.hyps[of num-vars t2 drop 1 w, OF t1-nv t2-nv] by simp

have WEST-and-trace (h1 # t1) (h2 # t2) # None
using h1h2-notnone t1t2-notnone WEST-and-trace.simps(3) by auto
then have ?case using h2t2 by auto
}
ultimately show ?case by blast
qed
qed

Correct Forward lemma WEST-and-trace-correct-forward-auz:

assumes match-regex m (h#tt)

shows match-timestep (w!0) h A match-regex (drop 1) t
proof —

have ind-h: (¥ time<length (h#t). match-timestep (w | time) ((h#t) ! time)) A
length (h#t) < length w

using assms unfolding match-regex-def by metis

then have part!: match-timestep (w ! 0) h

by auto

have part2: match-timestep (drop 1 w ! time) (¢ ! time) if time-lt: time<length
t for time

proof —

44

have match: match-timestep (mw ! (time+1)) ((h # t) ! (time+1))
using ind-h time-It by auto
have (7 ! (time + 1)) = (drop 1 7! time)
using add.commute add-gr-0 impossible-Cons ind-h less-add-same-cancel?
less-eq-iff-succ-less by auto
then show ?thesis using match by auto
qed
have part3: length t < length (drop 1)
using ind-h by auto
show ?thesis using part! part2 part3 unfolding match-regez-def by simp
qged

lemma WEST-and-trace-correct-forward-auz-converse:
assumes 7 = hxiFtri
assumes match-timestep (hai) h
assumes match-regex ti t
shows match-regex m (h#tt)
proof—
have all-time-t: V¥ time<length t. match-timestep (tzi ! time) (¢t ! time)
using assms(3) unfolding match-regez-def by argo
have len-t-leq: length t < length tzi
using assms(3) unfolding match-regex-def by argo
have match-ht: match-timestep (7! time) ((h # t) | time) if time-ht: time<length
(h # 1)
for time
proof —
{assume x: time = 0
then have ?thesis
using assms(2) assms(1)
by auto
} moreover {assume x*: time > 0
then have ?thesis
using time-ht all-time-t assms(1)
by auto
}
ultimately show %thesis
by blast
qed
have len-condition: length (h # t) < length 7
using assms(1) len-t-leq by auto
then show ?thesis
using match-ht len-condition unfoldi