
Formalizing MLTL in Isabelle/HOL

Zili Wang and Katherine Kosaian

January 28, 2025

Abstract

Building on the formalization of Mission-time Linear Temporal
Logic (MLTL) in Isabelle/HOL, we formalize the correctness of the
algorithms for the WEST tool [1, 2], which converts MLTL formulas
to regular expressions. We use Isabelle/HOL’s code export to generate
Haskell code to validate the existing (unverified) implementation of the
WEST tool.

Contents
1 Key algorithms for WEST 2

1.1 Custom Types . 2
1.2 Trace Regular Expressions . 2
1.3 WEST Operations . 5

1.3.1 AND . 5
1.3.2 Simp . 6
1.3.3 AND and OR operations with WEST-simp 11
1.3.4 Useful Helper Functions 12
1.3.5 WEST Temporal Operations 12
1.3.6 WEST recursive reg Function 13
1.3.7 Adding padding . 18

2 Some examples and Code Export 18

3 WEST Proofs 19
3.1 Useful Definitions . 19
3.2 Proofs about Traces Matching Regular Expressions 19
3.3 Facts about the WEST and operator 21

3.3.1 Commutative . 21
3.3.2 Identity and Zero . 30
3.3.3 WEST-and-state . 30
3.3.4 WEST-and-trace . 42
3.3.5 WEST-and correct . 55

1

3.4 Facts about the WEST or operator 59
3.5 Pad and Match Facts . 60
3.6 Facts about WEST num vars 65

3.6.1 Facts about num vars for different WEST operators . 68
3.7 Correctness of WEST-simp 88

3.7.1 WEST-count-diff facts 88
3.7.2 Orsimp-trace Facts . 99
3.7.3 WEST-orsimp-trace-correct 102
3.7.4 Simp-helper Correct 108
3.7.5 WEST-simp Correct 116

3.8 Correctness of WEST-and-simp/WEST-or-simp 116
3.9 Facts about the WEST future operator 117
3.10 Facts about the WEST global operator 120
3.11 Facts about the WEST until operator 123
3.12 Facts about the WEST release Operator 127
3.13 Top level result: Shows that WEST reg is correct 135
3.14 Top level result for padded version 147

4 Key algorithms for WEST 151

5 Regex Equivalence Correctness 152

1 Key algorithms for WEST
theory WEST-Algorithms

imports Mission-Time-LTL.MLTL-Properties

begin

1.1 Custom Types
datatype WEST-bit = Zero | One | S
type-synonym state = nat set
type-synonym trace = nat set list
type-synonym state-regex = WEST-bit list
type-synonym trace-regex = WEST-bit list list
type-synonym WEST-regex = WEST-bit list list list

1.2 Trace Regular Expressions
fun WEST-get-bit:: trace-regex ⇒ nat ⇒ nat ⇒ WEST-bit

where WEST-get-bit regex timestep var = (
if timestep ≥ length regex then S
else let regex-index = regex ! timestep in
if var ≥ length regex-index then S
else regex-index ! var

2

)

Returns the state at time i, list of variable states
fun WEST-get-state:: trace-regex ⇒ nat ⇒ nat ⇒ state-regex

where WEST-get-state regex time num-vars = (
if time ≥ length regex then (map (λ k. S) [0 ..< num-vars])
else regex ! time
)

Checks if one state of a trace matches one timeslice of a WEST regex
definition match-timestep:: nat set ⇒ state-regex ⇒ bool

where match-timestep state regex-state = (∀ x::nat. x < length regex-state −→
(
((regex-state ! x = One) −→ x ∈ state) ∧
((regex-state ! x = Zero) −→ x /∈ state)))

fun trim-reversed-regex:: trace-regex ⇒ trace-regex
where trim-reversed-regex [] = []
| trim-reversed-regex (h#t) = (if (∀ i<length h. (h!i) = S)
then (trim-reversed-regex t) else (h#t))

fun trim-regex:: trace-regex ⇒ trace-regex
where trim-regex regex = rev (trim-reversed-regex (rev regex))

definition match-regex:: nat set list ⇒ trace-regex ⇒ bool
where match-regex trace regex = ((∀ time<length regex.
(match-timestep (trace ! time) (regex ! time)))
∧(length trace ≥ length regex))

definition match:: nat set list ⇒ WEST-regex ⇒ bool
where match trace regex-list = (∃ i. i < length regex-list ∧
(match-regex trace (regex-list ! i)))

lemma match-example:
shows match [{0 ::nat,1}, {1}, {0}]
[
[[Zero,Zero]],
[[S ,S], [S ,One]]

] = True
proof−

let ?regexList = [[[Zero,Zero]],[[S ,S], [S ,One]]]
let ?trace = [{0 ::nat,1}, {1}, {0}]
have (match-regex ?trace (?regexList!1))

unfolding match-regex-def
by (simp add: match-timestep-def nth-Cons ′)

then show ?thesis
by (metis One-nat-def add.commute le-imp-less-Suc le-numeral-extra(4) list.size(3)

list.size(4) match-def plus-1-eq-Suc)
qed

3

definition regex-equiv:: WEST-regex ⇒ WEST-regex ⇒ bool
where regex-equiv rl1 rl2 = (
∀ π::nat set list. (match π rl1) ←→ (match π rl2))

lemma (regex-equiv [[[S ,S]]]
[[[S ,One]],
[[One,S]],
[[Zero,Zero]]]) = True

proof −
have d1 : match π [[[S , One]], [[One, S]], [[Zero, Zero]]] if match: match π [[[S ,

S]]] for π
proof −

have match-ss: match-regex π [[S , S]]
using match unfolding match-def
by (metis One-nat-def length-Cons less-one list.size(3) nth-Cons-0)

{assume ∗: ¬ (match-regex π [[S , One]]) ∧ ¬ (match-regex π [[One, S]])
have match-regex π [[Zero, Zero]]

using match-ss unfolding match-regex-def
by (smt (verit) ∗ One-nat-def WEST-bit.simps(2) length-Cons less-2-cases

less-one list.size(3) match-regex-def match-timestep-def nth-Cons-0 nth-Cons-Suc
numeral-2-eq-2)

}
then show ?thesis

unfolding match-def
by (metis length-Cons less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)

qed
have d2 : match π [[[S , S]]] if match: match π [[[S , One]], [[One, S]], [[Zero,

Zero]]] for π
proof −

{assume ∗: match-regex π [[S , One]]
then have match-regex π [[S , S]]

unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons

less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)

then have match π [[[S , S]]]
unfolding match-def by simp

} moreover {assume ∗: match-regex π [[One, S]]
then have match-regex π [[S , S]]

unfolding match-regex-def
by (smt (verit, ccfv-SIG) One-nat-def WEST-bit.simps(4) length-Cons

less-2-cases less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc nu-
meral-2-eq-2)

then have match π [[[S , S]]]
unfolding match-def by simp

} moreover {assume ∗: match-regex π [[Zero, Zero]]

4

then have match-regex π [[S , S]]
unfolding match-regex-def

by (smt (verit) One-nat-def WEST-bit.distinct(5) length-Cons less-2-cases-iff
less-one list.size(3) match-timestep-def nth-Cons-0 nth-Cons-Suc numeral-2-eq-2)

then have match π [[[S , S]]]
unfolding match-def by simp

}
ultimately show ?thesis using match unfolding regex-equiv-def

by (smt (verit, del-insts) length-Cons less-Suc-eq-0-disj match-def nth-Cons-0
nth-Cons-Suc)

qed
show ?thesis using d1 d2

unfolding regex-equiv-def by metis
qed

1.3 WEST Operations
1.3.1 AND
fun WEST-and-bitwise::WEST-bit ⇒

WEST-bit ⇒
WEST-bit option

where WEST-and-bitwise b One = (if b = Zero then None else Some One)
| WEST-and-bitwise b Zero = (if b = One then None else Some Zero)
| WEST-and-bitwise b S = Some b

fun WEST-and-state:: state-regex ⇒ state-regex ⇒ state-regex option
where WEST-and-state [] [] = Some []
| WEST-and-state (h1#t1) (h2#t2) =
(case WEST-and-bitwise h1 h2 of

None ⇒ None
| Some b ⇒ (case WEST-and-state t1 t2 of

None ⇒ None
| Some L ⇒ Some (b#L)))

| WEST-and-state - - = None

fun WEST-and-trace:: trace-regex ⇒ trace-regex ⇒ trace-regex option
where WEST-and-trace trace [] = Some trace
| WEST-and-trace [] trace = Some trace
| WEST-and-trace (h1#t1) (h2#t2) =
(case WEST-and-state h1 h2 of

None ⇒ None
| Some state ⇒ (case WEST-and-trace t1 t2 of

None ⇒ None
| Some trace ⇒ Some (state#trace)))

5

fun WEST-and-helper :: trace-regex ⇒ WEST-regex ⇒ WEST-regex
where WEST-and-helper trace [] = []
| WEST-and-helper trace (t#traces) =
(case WEST-and-trace trace t of

None ⇒ WEST-and-helper trace traces
| Some res ⇒ res#(WEST-and-helper trace traces))

fun WEST-and:: WEST-regex ⇒ WEST-regex ⇒ WEST-regex
where WEST-and traceList [] = []
| WEST-and [] traceList = []
| WEST-and (trace#traceList1) traceList2 =
(case WEST-and-helper trace traceList2 of
[] ⇒ WEST-and traceList1 traceList2
| traceList ⇒ traceList@(WEST-and traceList1 traceList2))

1.3.2 Simp
Bitwise simplification operation fun WEST-simp-bitwise:: WEST-bit ⇒
WEST-bit ⇒ WEST-bit

where WEST-simp-bitwise b S = S
| WEST-simp-bitwise b Zero = (if b = Zero then Zero else S)
| WEST-simp-bitwise b One = (if b = One then One else S)

fun WEST-simp-state:: state-regex ⇒ state-regex ⇒ state-regex
where WEST-simp-state s1 s2 = (
map (λ k. WEST-simp-bitwise (s1 ! k) (s2 ! k)) [0 ..< (length s1)])

fun WEST-simp-trace:: trace-regex ⇒ trace-regex ⇒ nat => trace-regex
where WEST-simp-trace trace1 trace2 num-vars = (
map (λ k. (WEST-simp-state (WEST-get-state trace1 k num-vars) (WEST-get-state

trace2 k num-vars)))
[0 ..< (Max {(length trace1), (length trace2)})])

Helper functions for defining WEST-simp fun count-nonS-trace:: state-regex
⇒ nat

where count-nonS-trace [] = 0
| count-nonS-trace (h#t) = (if (h 6= S) then (1 + (count-nonS-trace t)) else

(count-nonS-trace t))

fun count-diff-state:: state-regex ⇒ state-regex ⇒ nat
where count-diff-state [] [] = 0
| count-diff-state trace [] = count-nonS-trace trace
| count-diff-state [] trace = count-nonS-trace trace
| count-diff-state (h1#t1) (h2#t2) = (if (h1 = h2) then (count-diff-state t1 t2)

else (1 + (count-diff-state t1 t2)))

6

fun count-diff :: trace-regex ⇒ trace-regex ⇒ nat
where count-diff [] [] = 0
| count-diff [] (h#t) = (count-diff-state [] h) + (count-diff [] t)
| count-diff (h#t) [] = (count-diff-state [] h) + (count-diff [] t)
| count-diff (h1#t1) (h2#t2) = (count-diff-state h1 h2) + (count-diff t1 t2)

fun check-simp:: trace-regex ⇒ trace-regex ⇒ bool
where check-simp trace1 trace2 = ((count-diff trace1 trace2) ≤ 1 ∧ length trace1

= length trace2)

fun enumerate-pairs :: nat list ⇒ (nat ∗ nat) list where
enumerate-pairs [] = [] |
enumerate-pairs (x#xs) = map (λy. (x, y)) xs @ enumerate-pairs xs

fun enum-pairs:: ′a list ⇒ (nat ∗ nat) list
where enum-pairs L = enumerate-pairs [0 ..< length L]

fun remove-element-at-index:: nat ⇒ ′a list ⇒ ′a list
where remove-element-at-index n L = (take n L)@(drop (n+1) L)

This assumes (fst h) < (snd h)
fun update-L:: WEST-regex ⇒ (nat × nat) ⇒ nat ⇒ WEST-regex

where update-L L h num-vars =
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))@[WEST-simp-trace
(L!(fst h)) (L!(snd h)) num-vars]

Defining and Proving Termination of WEST-simp lemma length-enumerate-pairs:
shows length (enumerate-pairs L) ≤ (length L)^2

proof (induction L)
case Nil
then show ?case by auto

next
case (Cons a L)
have length-L: (length (a # L))2 = (1 + (length L))^2 by auto
then have length-L: (length (a # L))2 = 1 + 2∗(length L) + (length L)^2 by

algebra
have length (map (Pair a) L) ≤ length L

by simp
then show ?case

unfolding enumerate-pairs.simps using Cons length-L by simp
qed

lemma length-enum-pairs:
shows length (enum-pairs L) ≤ (length L)^2

proof−
show ?thesis unfolding enum-pairs.simps using length-enumerate-pairs

by (metis length-upt minus-nat.diff-0)
qed

7

lemma enumerate-pairs-fact:
assumes ∀ i j. (i < j ∧ i < length L ∧ j < length L) −→ (L!i) < (L!j)
shows ∀ pair ∈ set (enumerate-pairs L). (fst pair) < (snd pair)
using assms

proof(induct length L arbitrary:L)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h T where obt-hT : L = h#T

by (metis length-Suc-conv)
then have enum-L: enumerate-pairs L = map (Pair h) T @ enumerate-pairs T

using enumerate-pairs.simps obt-hT by blast
then have

∧
pair . pair ∈ set (enumerate-pairs L) =⇒ fst pair < snd pair

proof−
fix pair
assume pair ∈ set (enumerate-pairs L)
then have pair ∈ set (map (Pair h) T @ enumerate-pairs T) using enum-L

by auto
then have pair-or : pair ∈ set (map (Pair h) T) ∨ pair ∈ set(enumerate-pairs

T)
by auto

{assume in-base: pair ∈ set (map (Pair h) T)
have ∀ j. 0 < j ∧ j < length L −→ h < L ! j

using Suc.prems obt-hT by force
then have ∀ j < length T . h < T !j

using obt-hT by force
then have ∀ t ∈ set T . h < t

using obt-hT by (metis in-set-conv-nth)
then have fst pair < snd pair

using in-base by auto
} moreover {

assume in-rec: pair ∈ set(enumerate-pairs T)
have fst pair < snd pair

using Suc.hyps(1)[of T] Suc.prems obt-hT in-rec
by (smt (verit, ccfv-SIG) Ex-less-Suc Suc.hyps(1) Suc.hyps(2) length-Cons

less-trans-Suc nat.inject nth-Cons-Suc)
}
ultimately show fst pair < snd pair using enum-L obt-hT pair-or by blast

qed
then show ?case by blast

qed

lemma enum-pairs-fact:
shows ∀ pair ∈ set (enum-pairs L). (fst pair) < (snd pair)
unfolding enum-pairs.simps using enumerate-pairs-fact[of [0 ..<length L]]
by simp

lemma enum-pairs-bound-snd:

8

assumes pair ∈ set (enumerate-pairs L)
shows (snd pair) ∈ set L
using assms

proof (induct length L arbitrary: L)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h T where ht: L = h#T
by (metis enumerate-pairs.cases enumerate-pairs.simps(1) in-set-member mem-

ber-rec(2))
then have eo: pair ∈ set (map (Pair h) T) ∨ pair ∈ set (enumerate-pairs T)

using Suc by simp
{assume ∗: pair ∈ set (map (Pair h) T)

then have ?case
using ht
using imageE by auto

} moreover {assume ∗: pair ∈ set (enumerate-pairs T)
then have snd pair ∈ set T

using Suc(1)[of T] ht
using Suc.hyps(2) by fastforce

then have ?case using ht
by simp

}
ultimately show ?case using eo by blast

qed

lemma enum-pairs-bound:
shows ∀ pair ∈ set (enum-pairs L). (snd pair) < length L
unfolding enum-pairs.simps enumerate-pairs.simps

proof(induct length L arbitrary: L)
case 0
then show ?case by simp

next
case (Suc x)
then have enum-L: enumerate-pairs ([0 ..<length L]) =

map (Pair 0) [1 ..<length L] @ enumerate-pairs [1 ..<length L]
using enumerate-pairs.simps(2)[of 0 [1 ..< length L]]
by (metis One-nat-def upt-conv-Cons zero-less-Suc)

then have pair∈set (enumerate-pairs [0 ..<length L]) =⇒ snd pair < length L
for pair

using enum-pairs-bound-snd[of pair [0 ..<length L]]
by auto

then show ?case unfolding enum-pairs.simps by blast
qed

lemma WEST-simp-termination1-bound:
fixes a::nat

9

shows a^3+a^2 < (a+1)^3
proof−

have cubed: (a+1)^3 = a^3 + 3∗a^2 + 3∗a + 1
proof−

have (a+1)^3 = (a+1)∗(a+1)∗(a+1)
by algebra

then show ?thesis
by (simp add: add.commute add-mult-distrib2 mult.commute power2-eq-square

power3-eq-cube)
qed
have 0 < 2∗a^2 + 2∗a + 1 by simp
then have a^3 + a^2 < a^3 + 3∗a^2 + 3∗a + 1 by simp
then show ?thesis using cubed

by simp
qed

lemma WEST-simp-termination1 :
fixes L::WEST-regex
assumes ¬ (idx-pairs 6= enum-pairs L ∨ length idx-pairs ≤ i)
assumes check-simp (L ! fst (idx-pairs ! i)) (L ! snd (idx-pairs ! i))
assumes x = update-L L (idx-pairs ! i) num-vars
shows ((x, enum-pairs x, 0 , num-vars), L, idx-pairs, i, num-vars)
∈ measure (λ(L, idx-list, i, num-vars). length L ^ 3 + length idx-list − i)

proof−
let ?i = fst (idx-pairs ! i)
let ?j = snd (idx-pairs ! i)
have i-le-j: ?i < ?j using enum-pairs-fact assms

by (metis linorder-le-less-linear nth-mem)
have j-bound: ?j < length L

using assms(1) enum-pairs-bound[of L]
by simp

then have i-bound: ?i < (length L)−1
using i-le-j by auto

have len-orsimp: length [WEST-simp-trace (L ! ?i) (L ! ?j) num-vars] = 1
by simp

have length (remove-element-at-index ?j L) = length L − 1
using assms(3) j-bound by auto

then have length (remove-element-at-index ?i (remove-element-at-index ?j L))
= length L − 2

using assms(3) i-bound j-bound by simp
then have length-x: length x = (length L) − 1

using assms(3) len-orsimp
unfolding update-L.simps[of L idx-pairs ! i num-vars]

by (metis (no-types, lifting) add.commute add-diff-inverse-nat diff-diff-left gr-implies-not0
i-bound length-append less-one nat-1-add-1)

have i-bound: i < length idx-pairs using assms by force

{ assume short-L: length L = 0
then have ?thesis using assms

10

using j-bound by linarith
} moreover {

assume long-L: length L ≥ 1
then have length L − 1 ≥ 0 by blast
then have (length L − 1) ^ 3 + (length L − 1) ^ 2 < length L ^ 3

using WEST-simp-termination1-bound[of length L−1]
by (metis long-L ordered-cancel-comm-monoid-diff-class.le-imp-diff-is-add)

then have (length L − 1) ^ 3 + length (enumerate-pairs [0 ..<length x]) <
length L ^ 3

using length-enumerate-pairs[of [0 ..<length x]] length-x by auto
then have length x ^ 3 + length (enumerate-pairs [0 ..<length x])
< length L ^ 3 + length idx-pairs − i
using i-bound length-x by simp

then have ?thesis by simp
}
ultimately show ?thesis by linarith

qed

function WEST-simp-helper :: WEST-regex ⇒ (nat × nat) list ⇒ nat ⇒ nat ⇒
WEST-regex

where WEST-simp-helper L idx-pairs i num-vars =
(if (idx-pairs 6= enum-pairs L ∨ i ≥ length idx-pairs) then L else
(if (check-simp (L!(fst (idx-pairs!i))) (L!(snd (idx-pairs!i)))) then
(let newL = update-L L (idx-pairs!i) num-vars in
WEST-simp-helper newL (enum-pairs newL) 0 num-vars)
else WEST-simp-helper L idx-pairs (i+1) num-vars))

apply fast by blast
termination
apply (relation measure (λ(L , idx-list, i, num-vars). (length L^3 + length idx-list
− i)))

apply simp using WEST-simp-termination1 apply blast by auto

declare WEST-simp-helper .simps[simp del]

fun WEST-simp:: WEST-regex ⇒ nat ⇒ WEST-regex
where WEST-simp L num-vars =
WEST-simp-helper L (enum-pairs L) 0 num-vars

value WEST-simp [[[S , S , One]],[[S , One, S]], [[S , S , Zero]]] 3
value WEST-simp [[[S , One]],[[One, S]], [[Zero, Zero]]] 2
value WEST-simp [[[One, One]],[[Zero, Zero]], [[One, Zero]], [[Zero, One]]] 2

1.3.3 AND and OR operations with WEST-simp
fun WEST-and-simp:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒ WEST-regex

where WEST-and-simp L1 L2 num-vars = WEST-simp (WEST-and L1 L2)
num-vars

11

fun WEST-or-simp:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒ WEST-regex
where WEST-or-simp L1 L2 num-vars = WEST-simp (L1@L2) num-vars

1.3.4 Useful Helper Functions
fun arbitrary-state::nat ⇒ state-regex

where arbitrary-state num-vars = map (λ k. S) [0 ..< num-vars]

fun arbitrary-trace::nat ⇒ nat ⇒ trace-regex
where arbitrary-trace num-vars num-pad = map (λ k. (arbitrary-state num-vars))

[0 ..< num-pad]

fun shift:: WEST-regex ⇒ nat ⇒ nat ⇒ WEST-regex
where shift traceList num-vars num-pad = map (λ trace. (arbitrary-trace num-vars

num-pad)@trace) traceList

fun pad:: trace-regex ⇒ nat ⇒ nat ⇒ trace-regex
where pad trace num-vars num-pad = trace@(arbitrary-trace num-vars num-pad)

1.3.5 WEST Temporal Operations
fun WEST-global:: WEST-regex ⇒ nat ⇒ nat ⇒ nat ⇒ WEST-regex
where WEST-global L a b num-vars = (
if (a = b) then (shift L num-vars a)

else (if (a < b) then (WEST-and-simp (shift L num-vars b)
(WEST-global L a (b−1) num-vars) num-vars)

else []))

fun WEST-future:: WEST-regex ⇒ nat ⇒ nat ⇒ nat ⇒ WEST-regex
where WEST-future L a b num-vars = (
if (a = b)
then (shift L num-vars a)
else (

if (a < b)
then WEST-or-simp (shift L num-vars b) (WEST-future L a (b−1) num-vars)

num-vars
else []))

fun WEST-until:: WEST-regex ⇒ WEST-regex ⇒ nat ⇒
nat ⇒ nat ⇒ WEST-regex

where WEST-until L-ϕ L-ψ a b num-vars = (
if (a=b)
then (WEST-global L-ψ a a num-vars)
else (

if (a < b)
then WEST-or-simp (WEST-until L-ϕ L-ψ a (b−1) num-vars)

(WEST-and-simp (WEST-global L-ϕ a (b−1) num-vars)
(WEST-global L-ψ b b num-vars) num-vars) num-vars

12

else []))

fun WEST-release-helper :: WEST-regex ⇒ WEST-regex ⇒
nat ⇒ nat ⇒ nat ⇒ WEST-regex

where WEST-release-helper L-ϕ L-ψ a ub num-vars = (
if (a=ub)
then (WEST-and-simp (WEST-global L-ϕ a a num-vars) (WEST-global L-ψ a a

num-vars) num-vars)
else (

if (a < ub)
then WEST-or-simp (WEST-release-helper L-ϕ L-ψ a (ub−1) num-vars)

(WEST-and-simp (WEST-global L-ψ a ub num-vars)
(WEST-global L-ϕ ub ub num-vars) num-vars) num-vars

else []))

fun WEST-release:: WEST-regex ⇒ WEST-regex ⇒ nat
⇒ nat ⇒ nat ⇒ WEST-regex

where WEST-release L-ϕ L-ψ a b num-vars = (
if (b > a)
then (WEST-or-simp (WEST-global L-ψ a b num-vars) (WEST-release-helper

L-ϕ L-ψ a (b−1) num-vars) num-vars)
else (WEST-global L-ψ a b num-vars))

1.3.6 WEST recursive reg Function
lemma exhaustive:
shows

∧
x:: nat mltl × nat.

∧
P::bool. (

∧
num-vars::nat. x = (True-mltl, num-vars)

=⇒ P) =⇒
(
∧

num-vars::nat. x = (False-mltl, num-vars) =⇒ P) =⇒
(
∧

p num-vars::nat. x = (Prop-mltl p, num-vars) =⇒ P) =⇒
(
∧

p num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) =⇒ P) =⇒
(
∧
ϕ ψ num-vars. x = (Or-mltl ϕ ψ, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ num-vars. x = (And-mltl ϕ ψ, num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Future-mltl ϕ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Global-mltl ϕ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ a b num-vars. x = (Until-mltl ϕ ψ a b, num-vars) =⇒ P) =⇒

(
∧
ϕ ψ a b num-vars. x = (Release-mltl ϕ ψ a b, num-vars) =⇒ P) =⇒

(
∧

num-vars. x = (Not-mltl True-mltl, num-vars) =⇒ P) =⇒
(
∧

num-vars. x = (Not-mltl False-mltl, num-vars) =⇒ P) =⇒
(
∧
ϕ ψ num-vars. x = (Not-mltl (And-mltl ϕ ψ), num-vars) =⇒ P) =⇒

(
∧
ϕ ψ num-vars. x = (Not-mltl (Or-mltl ϕ ψ), num-vars) =⇒ P) =⇒

(
∧
ϕ a b num-vars. x = (Not-mltl (Future-mltl ϕ a b), num-vars) =⇒ P)

=⇒
(
∧
ϕ a b num-vars. x = (Not-mltl (Global-mltl ϕ a b), num-vars) =⇒ P)

=⇒
(
∧
ϕ ψ a b num-vars. x = (Not-mltl (Until-mltl ϕ ψ a b), num-vars) =⇒

P) =⇒
(
∧
ϕ ψ a b num-vars. x = (Not-mltl (Release-mltl ϕ ψ a b), num-vars)

13

=⇒ P) =⇒
(
∧
ϕ num-vars. x = (Not-mltl (Not-mltl ϕ), num-vars) =⇒ P) =⇒ P

proof −
fix x::nat mltl × nat
fix P:: bool
assume t: (

∧
num-vars::nat. x = (True-mltl, num-vars) =⇒ P)

assume fa: (
∧

num-vars::nat. x = (False-mltl, num-vars) =⇒ P)
assume p: (

∧
p num-vars::nat. x = (Prop-mltl p, num-vars) =⇒ P)

assume n1 : (
∧

p num-vars::nat. x = (Not-mltl (Prop-mltl p), num-vars) =⇒ P)

assume o: (
∧
ϕ ψ num-vars. x = (Or-mltl ϕ ψ, num-vars) =⇒ P)

assume a: (
∧
ϕ ψ num-vars. x = (And-mltl ϕ ψ, num-vars) =⇒ P)

assume f : (
∧
ϕ a b num-vars. x = (Future-mltl ϕ a b, num-vars) =⇒ P)

assume g: (
∧
ϕ a b num-vars. x = (Global-mltl ϕ a b, num-vars) =⇒ P)

assume u: (
∧
ϕ ψ a b num-vars. x = (Until-mltl ϕ ψ a b, num-vars) =⇒ P)

assume r : (
∧
ϕ ψ a b num-vars. x = (Release-mltl ϕ ψ a b, num-vars) =⇒ P)

assume n2 : (
∧

num-vars. x = (Not-mltl True-mltl, num-vars) =⇒ P)
assume n3 : (

∧
num-vars. x = (Not-mltl False-mltl, num-vars) =⇒ P)

assume n4 : (
∧
ϕ ψ num-vars. x = (Not-mltl (And-mltl ϕ ψ), num-vars) =⇒ P)

assume n5 : (
∧
ϕ ψ num-vars. x = (Not-mltl (Or-mltl ϕ ψ), num-vars) =⇒ P)

assume n6 : (
∧
ϕ a b num-vars. x = (Not-mltl (Future-mltl ϕ a b), num-vars)

=⇒ P)
assume n7 : (

∧
ϕ a b num-vars. x = (Not-mltl (Global-mltl ϕ a b), num-vars)

=⇒ P)
assume n8 : (

∧
ϕ ψ a b num-vars. x = (Not-mltl (Until-mltl ϕ ψ a b), num-vars)

=⇒ P)
assume n9 : (

∧
ϕ ψ a b num-vars. x = (Not-mltl (Release-mltl ϕ ψ a b), num-vars)

=⇒ P)
assume n10 : (

∧
ϕ num-vars. x = (Not-mltl (Not-mltl ϕ), num-vars) =⇒ P)

show P proof (cases fst x)
case True-mltl
then show ?thesis using t

by (metis eq-fst-iff)
next

case False-mltl
then show ?thesis using fa eq-fst-iff by metis

next
case (Prop-mltl p)
then show ?thesis using p

by (metis prod.collapse)
next

case (Not-mltl ϕ)
then have fst-x: fst x = Not-mltl ϕ

by auto
then show ?thesis proof (cases ϕ)

case True-mltl
then show ?thesis using n2

by (metis Not-mltl split-pairs)

14

next
case False-mltl
then show ?thesis using n3

by (metis Not-mltl prod.collapse)
next

case (Prop-mltl p)
then show ?thesis using n1

by (metis Not-mltl split-pairs)
next

case (Not-mltl ϕ1)
then show ?thesis using n10 fst-x

by (metis prod.collapse)
next

case (And-mltl ϕ1 ϕ2)
then show ?thesis

by (metis Not-mltl n4 prod.collapse)
next

case (Or-mltl ϕ1 ϕ2)
then show ?thesis using n5 Not-mltl

by (metis prod.collapse)
next

case (Future-mltl a b ϕ1)
then show ?thesis using n6 Not-mltl

by (metis prod.collapse)
next

case (Global-mltl a b ϕ1)
then show ?thesis using n7 Not-mltl

by (metis prod.collapse)
next

case (Until-mltl ϕ1 a b ϕ2)
then show ?thesis using n8 Not-mltl

by (metis prod.collapse)
next

case (Release-mltl ϕ1 a b ϕ2)
then show ?thesis using n9 Not-mltl

by (metis prod.collapse)
qed

next
case (And-mltl ϕ1 ϕ2)
then show ?thesis using a

by (metis prod.collapse)
next

case (Or-mltl ϕ1 ϕ2)
then show ?thesis using o

by (metis prod.collapse)
next

case (Future-mltl a b ϕ1)
then show ?thesis using f

by (metis split-pairs)

15

next
case (Global-mltl a b ϕ1)
then show ?thesis using g

by (metis prod.collapse)
next

case (Until-mltl ϕ1 a b ϕ2)
then show ?thesis using u

by (metis split-pairs)
next

case (Release-mltl ϕ1 a b ϕ2)
then show ?thesis using r

by (metis split-pairs)
qed

qed

fun WEST-termination-measure:: (nat) mltl ⇒ nat
where WEST-termination-measure Truem = 1
| WEST-termination-measure (Notm Truem) = 4
| WEST-termination-measure Falsem = 1
| WEST-termination-measure (Notm Falsem) = 4
| WEST-termination-measure (Propm (p)) = 1
| WEST-termination-measure (Notm (Propm (p))) = 4
| WEST-termination-measure (ϕ Orm ψ) = 1 + (WEST-termination-measure

ϕ) + (WEST-termination-measure ψ)
| WEST-termination-measure (ϕ Andm ψ) = 1 + (WEST-termination-measure

ϕ) + (WEST-termination-measure ψ)
| WEST-termination-measure (Fm [a,b] ϕ) = 1 + (WEST-termination-measure

ϕ)
| WEST-termination-measure (Gm [a,b] ϕ) = 1 + (WEST-termination-measure

ϕ)
|WEST-termination-measure (ϕ Um[a,b] ψ) = 1 + (WEST-termination-measure
ϕ) + (WEST-termination-measure ψ)
|WEST-termination-measure (ϕ Rm[a,b] ψ) = 1 + (WEST-termination-measure
ϕ) + (WEST-termination-measure ψ)
|WEST-termination-measure (Notm (ϕ Orm ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Orm ψ))
|WEST-termination-measure (Notm (ϕ Andm ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Andm ψ))
|WEST-termination-measure (Notm (Fm[a,b] ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Fm[a,b] ϕ))
|WEST-termination-measure (Notm (Gm[a,b] ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Gm[a,b] ϕ))
|WEST-termination-measure (Notm (ϕ Um[a,b] ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Um[a,b] ψ))
|WEST-termination-measure (Notm (ϕ Rm[a,b] ψ)) = 1 + 3 ∗ (WEST-termination-measure

(ϕ Rm[a,b] ψ))
|WEST-termination-measure (Notm (Notm ϕ)) = 1 + 3 ∗ (WEST-termination-measure

(Notm ϕ))

16

lemma WEST-termination-measure-not:
fixes ϕ::(nat) mltl
shows WEST-termination-measure (Not-mltl ϕ) = 1 + 3 ∗ (WEST-termination-measure
ϕ)

apply (induction ϕ) by simp-all

function WEST-reg-aux:: (nat) mltl ⇒ nat ⇒ WEST-regex
where WEST-reg-aux Truem num-vars = [[(map (λ j. S) [0 ..< num-vars])]]
| WEST-reg-aux Falsem num-vars = []
| WEST-reg-aux (Propm (p)) num-vars = [[(map (λ j. (if (p=j) then One else

S)) [0 ..< num-vars])]]
| WEST-reg-aux (Notm (Propm (p))) num-vars = [[(map (λ j. (if (p=j) then

Zero else S)) [0 ..< num-vars])]]
| WEST-reg-aux (ϕ Orm ψ) num-vars = WEST-or-simp (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) num-vars
| WEST-reg-aux (ϕ Andm ψ) num-vars = (WEST-and-simp (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) num-vars)
|WEST-reg-aux (Fm[a,b] ϕ) num-vars = (WEST-future (WEST-reg-aux ϕ num-vars)

a b num-vars)
|WEST-reg-aux (Gm[a,b] ϕ) num-vars = (WEST-global (WEST-reg-aux ϕ num-vars)

a b num-vars)
| WEST-reg-aux (ϕ Um[a,b] ψ) num-vars = (WEST-until (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) a b num-vars)
| WEST-reg-aux (ϕ Rm[a,b] ψ) num-vars = WEST-release (WEST-reg-aux ϕ

num-vars) (WEST-reg-aux ψ num-vars) a b num-vars
| WEST-reg-aux (Notm Truem) num-vars = WEST-reg-aux Falsem num-vars
| WEST-reg-aux (Notm Falsem) num-vars = WEST-reg-aux Truem num-vars
| WEST-reg-aux (Notm (ϕ Andm ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Orm (Notm ψ)) num-vars
|WEST-reg-aux (Notm (ϕ Orm ψ)) num-vars = WEST-reg-aux ((Notm ϕ) Andm

(Notm ψ)) num-vars
|WEST-reg-aux (Notm (Fm[a,b] ϕ)) num-vars = WEST-reg-aux (Gm[a,b] (Notm
ϕ)) num-vars
|WEST-reg-aux (Notm (Gm[a,b] ϕ)) num-vars = WEST-reg-aux (Fm[a,b] (Notm
ϕ)) num-vars
| WEST-reg-aux (Notm (ϕ Um[a,b] ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Rm[a,b] (Notm ψ)) num-vars
| WEST-reg-aux (Notm (ϕ Rm[a,b] ψ)) num-vars = WEST-reg-aux ((Notm ϕ)

Um[a,b] (Notm ψ)) num-vars
| WEST-reg-aux (Notm (Notm ϕ)) num-vars = WEST-reg-aux ϕ num-vars
using exhaustive convert-nnf .cases using exhaustive apply (smt (z3))

defer apply blast apply simp-all .
termination

apply (relation measure (λ(F ,num-vars). (WEST-termination-measure F)))
using WEST-termination-measure-not by simp-all

17

fun WEST-num-vars:: (nat) mltl ⇒ nat
where WEST-num-vars Truem = 1
| WEST-num-vars Falsem = 1
| WEST-num-vars (Propm (p)) = p+1
| WEST-num-vars (Notm ϕ) = WEST-num-vars ϕ
| WEST-num-vars (ϕ Andm ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}
| WEST-num-vars (ϕ Orm ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars

ψ)}
| WEST-num-vars (Fm[a,b] ϕ) = WEST-num-vars ϕ
| WEST-num-vars (Gm[a,b] ϕ) = WEST-num-vars ϕ
|WEST-num-vars (ϕ Um[a,b] ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}
|WEST-num-vars (ϕ Rm[a,b] ψ) = Max {(WEST-num-vars ϕ), (WEST-num-vars
ψ)}

fun WEST-reg:: (nat) mltl ⇒ WEST-regex
where WEST-reg F = (let nnf-F = convert-nnf F in WEST-reg-aux nnf-F

(WEST-num-vars F))

1.3.7 Adding padding
fun pad-WEST-reg:: nat mltl ⇒ WEST-regex

where pad-WEST-reg ϕ = (let unpadded = WEST-reg ϕ in
(let complen = complen-mltl ϕ in
(let num-vars = WEST-num-vars ϕ in

(map (λ L. (if (length L < complen)then (pad L num-vars
(complen−(length L))) else L))) unpadded)))

fun simp-pad-WEST-reg:: nat mltl ⇒ WEST-regex
where simp-pad-WEST-reg ϕ = WEST-simp (pad-WEST-reg ϕ) (WEST-num-vars
ϕ)

2 Some examples and Code Export
Base cases
value WEST-reg Truem
value WEST-reg Falsem
value WEST-reg (Propm (1))
value WEST-reg (Notm (Propm (0)))

Test cases for recursion
value WEST-reg ((Notm (Propm (0))) Andm (Propm (1)))
value WEST-reg (Fm[0 ,2] (Propm (1)))
value WEST-reg ((Notm (Propm (0))) Orm (Propm (0)))

value pad-WEST-reg ((Propm (0)) Um[0 ,2] (Propm (0)))

18

value simp-pad-WEST-reg ((Prop-mltl 0) Um[0 ,2] (Prop-mltl 0))

export-code WEST-reg in Haskell module-name WEST
export-code simp-pad-WEST-reg in Haskell module-name WEST-simp-pad

end

3 WEST Proofs
theory WEST-Proofs

imports WEST-Algorithms

begin

3.1 Useful Definitions
definition trace-of-vars::trace ⇒ nat ⇒ bool

where trace-of-vars trace num-vars = (
∀ k. (k < (length trace) −→ (∀ p∈(trace!k). p < num-vars)))

definition state-regex-of-vars::state-regex ⇒ nat ⇒ bool
where state-regex-of-vars state num-vars = ((length state) = num-vars)

definition trace-regex-of-vars::trace-regex ⇒ nat ⇒ bool
where trace-regex-of-vars trace num-vars =
(∀ i < (length trace). length (trace!i) = num-vars)

definition WEST-regex-of-vars::WEST-regex ⇒ nat ⇒ bool
where WEST-regex-of-vars traceList num-vars =
(∀ k<length traceList. trace-regex-of-vars (traceList!k) num-vars)

3.2 Proofs about Traces Matching Regular Expressions
value match-regex [{0 ::nat}, {0 ,1}, {}] []
lemma arbitrary-regtrace-matches-any-trace:

fixes num-vars::nat
fixes π::trace
assumes π-of-num-vars: trace-of-vars π num-vars
shows match-regex π []

proof−
have get-state-empty: (WEST-get-state [] time num-vars) = (map (λ k. S) [0 ..<

num-vars]) for time
by auto

have match-arbitrary-state: (match-timestep state (map (λ k. S) [0 ..< num-vars]))
= True if state-of-vars:(∀ p∈state. p < num-vars) for state

19

using state-of-vars
unfolding match-timestep-def
by simp

have eliminate-forall: match-timestep (π ! time) (WEST-get-state [] time num-vars)
if time-bounded:time < length π for time

using time-bounded π-of-num-vars get-state-empty[of time] match-arbitrary-state[of
π ! time] unfolding match-regex-def trace-of-vars-def

by (metis (mono-tags, lifting))
then show ?thesis

unfolding match-regex-def trace-of-vars-def
by auto

qed

lemma WEST-and-state-difflengths-is-none:
assumes length s1 6= length s2
shows WEST-and-state s1 s2 = None
using assms
proof (induction s1 arbitrary: s2)

case Nil
then show ?case

apply (induction s2) by simp-all
next

case (Cons a s1)
then show ?case
proof (induction s2)

case Nil
then show ?case by auto

next
case (Cons b s2)
have length s1 6= length s2 using Cons.prems(2)

by auto
then have and-s1-s2-none: WEST-and-state s1 s2 = None using Cons.prems(1)[of

s2]
by simp

{assume ab-none: WEST-and-bitwise a b = None
then have ?case

by simp
}
moreover {assume ab-not-none: WEST-and-bitwise a b 6= None
then have ?case using and-s1-s2-none using WEST-and-state.simps(2)[of

a s1 b s2]
by auto

}
ultimately show ?case

by blast
qed

qed

20

3.3 Facts about the WEST and operator
3.3.1 Commutative
lemma WEST-and-bitwise-commutative:

fixes b1 b2 ::WEST-bit
shows WEST-and-bitwise b1 b2 = WEST-and-bitwise b2 b1
apply (cases b2)

apply (cases b1) apply simp-all
apply(cases b1) apply simp-all

apply (cases b1) by simp-all

fun remove-option-type-bit:: WEST-bit option ⇒ WEST-bit
where remove-option-type-bit (Some i) = i
| remove-option-type-bit - = S

lemma WEST-and-state-commutative:
fixes s1 s2 ::state-regex
assumes same-len: length s1 = length s2
shows WEST-and-state s1 s2 = WEST-and-state s2 s1

proof−
show ?thesis using same-len
proof (induct length s1 arbitrary: s1 s2)

case 0
then show ?case using WEST-and-state.simps by simp

next
case (Suc x)
obtain h1 T1 where s1 = h1#T1

using Suc.hyps(2)
by (metis length-Suc-conv)

obtain h2 T2 where s2 = h2#T2
using Suc.prems(1) Suc.hyps(2)
by (metis length-Suc-conv)

then show ?case using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
h1 T1 h2 T2]

WEST-and-state.simps(2)[of h2 T2 h1 T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(1) Suc-length-conv

WEST-and-bitwise-commutative ‹s1 = h1 # T1 › list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)

qed
qed

lemma WEST-and-trace-commutative:
fixes num-vars::nat
fixes regtrace1 ::trace-regex
fixes regtrace2 ::trace-regex
assumes regtrace1-of-num-vars: trace-regex-of-vars regtrace1 num-vars
assumes regtrace2-of-num-vars: trace-regex-of-vars regtrace2 num-vars
shows (WEST-and-trace regtrace1 regtrace2) = (WEST-and-trace regtrace2 reg-

21

trace1)
proof−
have WEST-and-bitwise-commutative: WEST-and-bitwise b1 b2 = WEST-and-bitwise

b2 b1 for b1 b2
apply (cases b2)

apply (cases b1) apply simp-all
apply(cases b1) apply simp-all

apply (cases b1) by simp-all
then have WEST-and-state-commutative: WEST-and-state s1 s2 = WEST-and-state

s2 s1 if same-len: (length s1) = (length s2) for s1 s2
using same-len
proof (induct length s1 arbitrary: s1 s2)

case 0
then show ?case using WEST-and-state.simps by simp

next
case (Suc x)
obtain h1 T1 where s1 = h1#T1

using Suc.hyps(2)
by (metis length-Suc-conv)

obtain h2 T2 where s2 = h2#T2
using Suc.prems(2) Suc.hyps(2)
by (metis length-Suc-conv)

then show ?case using WEST-and-bitwise-commutative[of h1 h2] WEST-and-state.simps(2)[of
h1 T1 h2 T2]

WEST-and-state.simps(2)[of h2 T2 h1 T1]
by (metis (no-types, lifting) Suc.hyps(1) Suc.hyps(2) Suc.prems(2) Suc-length-conv

WEST-and-bitwise-commutative ‹s1 = h1 # T1 › list.inject option.simps(4) op-
tion.simps(5) remove-option-type-bit.cases)

qed
show ?thesis using regtrace1-of-num-vars regtrace2-of-num-vars
proof (induction regtrace1 arbitrary: regtrace2)

case Nil
then show ?case using WEST-and-trace.simps(1−2)

by (metis neq-Nil-conv)
next

case (Cons h1 T1)
{assume ∗: regtrace2 = []

then have ?case using WEST-and-trace.simps
by simp

} moreover {assume ∗: regtrace2 6= []
then obtain h2 T2 where h2T2 : regtrace2 = h2#T2

by (meson list.exhaust)
have comm-1 : WEST-and-trace T1 T2 = WEST-and-trace T2 T1

using Cons h2T2
unfolding trace-regex-of-vars-def
by (metis Suc-less-eq length-Cons nth-Cons-Suc)

have comm-2 : WEST-and-state h1 h2 = WEST-and-state h2 h1
using WEST-and-state-commutative[of h1 h2] h2T2
Cons(2−3) unfolding trace-regex-of-vars-def

22

by (metis WEST-and-state-difflengths-is-none)
have ?case using WEST-and-trace.simps(3)[of h1 T1 h2 T2]

h2T2 WEST-and-trace.simps(3)[of h2 T2 h1 T1] comm-1 comm-2
by presburger

}
ultimately show ?case by blast

qed
qed

lemma WEST-and-helper-subset:
shows set (WEST-and-helper h L) ⊆ set (WEST-and-helper h (a # L))

proof −
{assume ∗: WEST-and-trace h a = None

then have WEST-and-helper h L = WEST-and-helper h (a # L)
using WEST-and-helper .simps(2)[of h a L] by auto

then have ?thesis by simp
}
moreover {assume ∗: WEST-and-trace h a 6= None

then obtain res where WEST-and-trace h a = Some res
by auto

then have WEST-and-helper h (a#L) = res # WEST-and-helper h L
using WEST-and-helper .simps(2)[of h a L] by auto

then have ?thesis by auto
}
ultimately show ?thesis by blast

qed

lemma WEST-and-helper-set-member-converse:
fixes regtrace h::trace-regex
fixes L::WEST-regex
assumes assumption: (∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h

(L ! loc) = Some sometrace ∧ regtrace = sometrace))
shows regtrace ∈ set (WEST-and-helper h L)

proof −
show ?thesis using assumption
proof (induct L)

case Nil
then show ?case using WEST-and-helper .simps(1)

by simp
next

case (Cons a L)
then obtain loc sometrace where obt: loc < length (a#L) ∧ WEST-and-trace

h ((a#L) ! loc) = Some sometrace ∧ regtrace = sometrace
by blast

{assume ∗: loc = 0
then have WEST-and-trace h a = Some sometrace ∧ regtrace = sometrace

using obt
by simp

23

then have ?case using WEST-and-helper .simps(2)[of h a L]
by auto

} moreover {assume ∗: loc > 0
then have loc: loc−1 < length L ∧

WEST-and-trace h (L ! (loc−1)) = Some sometrace ∧ regtrace = sometrace
using obt by auto

have set (WEST-and-helper h L) ⊆ set (WEST-and-helper h (a # L))
using WEST-and-helper-subset by blast

then have ?case using Cons(1) loc by blast
}
ultimately show ?case by auto

qed
qed

lemma WEST-and-helper-set-member-forward:
fixes regtrace h::trace-regex
fixes L::WEST-regex
assumes regtrace ∈ set (WEST-and-helper h L)
shows (∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h (L ! loc) =

Some sometrace ∧ regtrace = sometrace))
using assms proof (induction L)

case Nil
then show ?case by simp

next
case (Cons a L)
{assume ∗: WEST-and-trace h a = None

then have ?case using WEST-and-helper .simps(2)[of h a L] Cons
by force

} moreover {assume ∗: WEST-and-trace h a 6= None
then obtain res where res: WEST-and-trace h a = Some res

by auto
then have WEST-and-helper h (a#L) = res # WEST-and-helper h L

using WEST-and-helper .simps(2)[of h a L] by auto
then have eo: regtrace = res ∨ regtrace ∈ set (WEST-and-helper h L)

using Cons(2)
by auto

{assume ∗: regtrace = res
then have ?case using res by auto

} moreover {assume ∗: regtrace ∈ set (WEST-and-helper h L)
then obtain loc where loc-prop: loc<length L ∧
(∃ sometrace. WEST-and-trace h (L ! loc) = Some sometrace ∧ regtrace =

sometrace)
using Cons.IH by blast

then have loc+1<length (a#L) ∧
(∃ sometrace. WEST-and-trace h ((a#L) ! (loc+1)) = Some sometrace ∧

regtrace = sometrace)
by auto

then have ?case by blast
}

24

ultimately have ?case using eo
by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-helper-set-member :
fixes regtrace h::trace-regex
fixes L::WEST-regex
shows regtrace ∈ set (WEST-and-helper h L) ←→
(∃ loc. loc < length L ∧ (∃ sometrace. WEST-and-trace h (L ! loc) = Some

sometrace ∧ regtrace = sometrace))
using WEST-and-helper-set-member-forward WEST-and-helper-set-member-converse
by blast

lemma WEST-and-set-member-dir1 :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace ∈ set (WEST-and L1 L2)
shows (∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧

(∃ sometrace. WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace))

using assms proof (induct L1 arbitrary: L2)
case Nil
then show ?case using WEST-and.simps(2) WEST-and.simps(1)

by (metis list.distinct(1) list.exhaust list.set-cases)
next

case (Cons head tail)
{assume L2-empty: L2 = []

then have ?case
using Cons.prems(3) by auto

}
moreover { assume L2-not-empty: L2 6= []

{assume regtrace-in-head-L2 : regtrace ∈ set (WEST-and-helper head L2)
then obtain loc2 where (loc2<length L2 ∧
(∃ sometrace. WEST-and-trace head (L2 ! loc2) = Some sometrace ∧ regtrace

= sometrace))
using WEST-and-helper-set-member [of regtrace head L2]
by blast

then have 0 < length (head # tail) ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((head # tail) ! 0) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace)

using regtrace-in-head-L2

25

by simp
then have ?case

by blast
}
moreover {assume regtrace-notin-head-L2 : regtrace /∈ set (WEST-and-helper

head L2)
obtain h2 T2 where h2T2 :L2 = h2#T2 using L2-not-empty

by (meson list.exhaust)
{assume ∗: WEST-and-helper head (h2 # T2) = []

then have WEST-and (head # tail) L2 = WEST-and tail L2
using WEST-and.simps(3)[of head tail h2 T2] h2T2 by simp

}
moreover {assume ∗: WEST-and-helper head (h2 # T2) 6= []

then have WEST-and (head # tail) L2 = (WEST-and-helper head L2) @
WEST-and tail L2

using WEST-and.simps(3)[of head tail h2 T2] h2T2
by (simp add: list.case-eq-if)

}
ultimately have e-o: WEST-and (head # tail) L2 = WEST-and tail L2 ∨

WEST-and (head # tail) L2 = (WEST-and-helper head L2) @ WEST-and tail L2
by blast
have regtrace-in: regtrace ∈ set (WEST-and tail L2) using L2-not-empty

regtrace-notin-head-L2 Cons.prems(3) h2T2 e-o
by fastforce

have ∀ k<length (head # tail). trace-regex-of-vars ((head # tail) ! k) num-vars
using Cons.prems(1) unfolding WEST-regex-of-vars-def by argo

then have regtracelist-tail: WEST-regex-of-vars tail num-vars
unfolding WEST-regex-of-vars-def by auto

obtain loc1 loc2 where loc1 < length tail ∧
loc2 < length L2 ∧ (∃ sometrace. WEST-and-trace (tail ! loc1) (L2 ! loc2)

= Some sometrace ∧ regtrace = sometrace)
using Cons.hyps[OF regtracelist-tail Cons.prems(2) regtrace-in] by blast

then have loc1+1 < length (head # tail) ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((head # tail) ! (loc1+1)) (L2 ! loc2) = Some sometrace
∧

regtrace = sometrace)
by simp

then have ?case
by blast

}
ultimately have ?case

by blast
}
ultimately show ?case

by blast
qed

26

lemma WEST-and-subset:
shows set (WEST-and T1 L2) ⊆ set (WEST-and (h1#T1) L2)

proof −
{assume ∗: L2 = []

then have ?thesis by auto
} moreover {assume ∗: L2 6= []

then obtain h2 T2 where L2 = h2#T2
using list.exhaust-sel by blast

then have ?thesis
using WEST-and.simps(3)[of h1 T1 h2 T2]
by (simp add: list.case-eq-if)

}
ultimately show ?thesis by blast

qed

lemma WEST-and-set-member-dir2 :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes exists-locs: (∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧

(∃ sometrace. WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace))

shows regtrace ∈ set (WEST-and L1 L2) using assms
proof (induct L1 arbitrary: L2)

case Nil
then show ?case by auto

next
case (Cons h1 T1)
then obtain loc1 loc2 where loc1loc2 : loc1 < length (h1 # T1) ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace ((h1 # T1) ! loc1) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace) by blast

{assume ∗: L2 = []
then have ?case using Cons by auto

} moreover {assume ∗: L2 6= []
then obtain h2 T2 where h2T2 : L2 = h2#T2

using list.exhaust-sel by blast
have ∀ k<length (h1 # T1). trace-regex-of-vars ((h1 # T1) ! k) num-vars

using Cons.prems(1) unfolding WEST-regex-of-vars-def by argo
then have regtraceList-T1 : WEST-regex-of-vars T1 num-vars

unfolding WEST-regex-of-vars-def by auto
{assume ∗∗: WEST-and-helper h1 L2 = []

then have loc1 > 0
using loc1loc2

by (metis WEST-and-helper .simps(1) WEST-and-helper-set-member gr-implies-not-zero
list.size(3) not-gr0 nth-Cons-0)

27

then have exi: ∃ loc1 loc2 .
loc1 < length T1 ∧
loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (T1 ! loc1) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace)

using loc1loc2
by (metis One-nat-def Suc-pred bot-nat-0 .not-eq-extremum length-Cons

nat-add-left-cancel-less nth-Cons ′ plus-1-eq-Suc)
then have ?case

using Cons.hyps[OF regtraceList-T1 Cons(3) exi] WEST-and-subset
by auto

} moreover {assume ∗∗: WEST-and-helper h1 L2 6= []
then have WEST-and (h1 # T1) (h2 # T2) = WEST-and-helper h1 (h2

T2) @ WEST-and T1 (h2 # T2)
by (simp add: list.case-eq-if)

then have ?case
using Cons.hyps[OF regtraceList-T1 Cons.prems(2)]

by (metis One-nat-def Suc-pred Un-iff WEST-and-helper-set-member-converse
gr-implies-not-zero h2T2 length-Cons linorder-neqE-nat loc1loc2 nat-add-left-cancel-less
nth-Cons ′ plus-1-eq-Suc set-append)

}
ultimately have ?case

by auto
}
ultimately show ?case

by auto
qed

lemma WEST-and-set-member :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regtrace ∈ set (WEST-and L1 L2) ←→
(∃ loc1 loc2 . loc1 < length L1 ∧ loc2 < length L2 ∧
(∃ sometrace. WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace ∧

regtrace = sometrace))
using WEST-and-set-member-dir1 WEST-and-set-member-dir2 assms by blast

lemma WEST-and-commutative-sets-member :
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
assumes regtrace-in: regtrace ∈ set (WEST-and L1 L2)
shows regtrace ∈ set (WEST-and L2 L1)

28

proof −
obtain loc1 loc2 where loc1loc2 : loc1 < length L1 ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (L1 ! loc1) (L2 ! loc2) = Some sometrace ∧
regtrace = sometrace)

using WEST-and-set-member [OF L1-of-num-vars L2-of-num-vars] regtrace-in
by auto
have loc1 : trace-regex-of-vars (L1 ! loc1) num-vars

using L1-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)

have loc2 : trace-regex-of-vars (L2 ! loc2) num-vars
using L2-of-num-vars loc1loc2 unfolding WEST-regex-of-vars-def
by (meson less-imp-le-nat)
have loc1 < length L1 ∧

loc2 < length L2 ∧
(∃ sometrace.

WEST-and-trace (L2 ! loc2) (L1 ! loc1) = Some sometrace ∧
regtrace = sometrace)

using loc1loc2 WEST-and-trace-commutative[OF loc1 loc2]
by simp

then show ?thesis using loc1loc2
using WEST-and-set-member [OF L2-of-num-vars L1-of-num-vars]
by blast

qed

lemma WEST-and-commutative-sets:
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows set (WEST-and L1 L2) = set (WEST-and L2 L1)
using WEST-and-commutative-sets-member [OF L1-of-num-vars L2-of-num-vars]

WEST-and-commutative-sets-member [OF L2-of-num-vars L1-of-num-vars]
by blast

lemma WEST-and-commutative:
fixes num-vars::nat
fixes L1 ::WEST-regex
fixes L2 ::WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 num-vars
assumes L2-of-num-vars: WEST-regex-of-vars L2 num-vars
shows regex-equiv (WEST-and L1 L2) (WEST-and L2 L1)

proof −
have set (WEST-and L1 L2) = set (WEST-and L2 L1)

using WEST-and-commutative-sets assms
by blast

then have match π (WEST-and L1 L2) = match π (WEST-and L2 L1) for π

29

using match-def match-regex-def
by (metis in-set-conv-nth)

then show ?thesis
unfolding regex-equiv-def by auto

qed

3.3.2 Identity and Zero
lemma WEST-and-helper-identity:

shows WEST-and-helper [] trace = trace
proof (induct trace)

case Nil
then show ?case by auto

next
case (Cons h T)
then show ?case

using WEST-and-helper .simps(2)[of [] h T]
by (smt (verit) WEST-and-trace.elims list.discI option.simps(5))

qed

lemma WEST-and-identity: WEST-and [[]] L = L
proof−

{assume ∗: L = []
then have ?thesis

by auto
} moreover {assume ∗: L 6= []

then obtain h T where hT : L = h#T
using list.exhaust by auto

then have ?thesis using WEST-and.simps(3)[of [] [] h T]
using hT
by (metis (no-types, lifting) WEST-and.simps(2) WEST-and-helper-identity

append.right-neutral list.simps(5))
}
ultimately show ?thesis by linarith

qed

lemma WEST-and-zero: WEST-and L [] = []
by simp

3.3.3 WEST-and-state
Well Defined fun advance-state:: state ⇒ state

where advance-state state = {x−1 | x. (x∈state ∧ x 6= 0)}

lemma advance-state-elt-bound:
fixes state::state
fixes num-vars::nat
assumes ∀ x∈state. x < num-vars
shows ∀ x∈(advance-state state). x < (num-vars−1)

30

using assms advance-state.simps by auto

lemma advance-state-elt-member :
fixes state::state
fixes x::nat
assumes x+1 ∈ state
shows x ∈ advance-state state
using assms advance-state.simps by force

lemma advance-state-match-timestep:
fixes h::WEST-bit
fixes t::state-regex
fixes state::state
assumes match-timestep state (h#t)
shows match-timestep (advance-state state) t

proof−
have (∀ x<length (h # t).

((h # t) ! x = One −→ x ∈ state) ∧ ((h # t) ! x = Zero −→ x /∈ state))
using assms unfolding match-timestep-def by argo

then have ∀ x<length t.
((h # t) ! (x+1) = One −→ (x+1) ∈ state) ∧ ((h # t) ! (x+1) = Zero

−→ (x+1) /∈ state) by auto
then have ∀ x<length t.

(t ! x = One −→ x ∈ (advance-state state)) ∧ (t ! x = Zero −→ x /∈
(advance-state state))

using advance-state.simps advance-state-elt-member by fastforce
then show ?thesis using assms unfolding match-timestep-def by metis

qed

lemma WEST-and-state-well-defined:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes π-match-r1-r2 : match-timestep state s1 ∧ match-timestep state s2
shows WEST-and-state s1 s2 6= None

proof−
have same-length: length s1 = length s2

using assms unfolding state-regex-of-vars-def by simp
have (∀ x. x < num-vars −→ (((s1 ! x = One) −→ x ∈ state) ∧ ((s1 ! x =

Zero) −→ x /∈ state)))
using assms unfolding match-timestep-def state-regex-of-vars-def by metis

then have match-timestep-s1-unfold: ∀ x∈state. x < num-vars −→ ((s1 ! x =
One) ∨ (s1 ! x = S))

using assms by (meson WEST-bit.exhaust)
then have x-in-state-s1 : ∀ x. (x < num-vars ∧ x ∈ state) −→ ((s1 ! x = One)
∨ (s1 ! x = S)) by blast

31

then have x-notin-state-s1 : ∀ x. (x < num-vars ∧ x /∈ state) −→ ((s1 ! x =
Zero) ∨ (s1 ! x = S))

using match-timestep-s1-unfold
by (meson WEST-bit.exhaust ‹∀ x<num-vars. (s1 ! x = One −→ x ∈ state) ∧

(s1 ! x = Zero −→ x /∈ state)›)
have match-timestep-s2-unfold: (∀ x. x < num-vars −→ (((s2 ! x = One) −→ x
∈ state) ∧ ((s2 ! x = Zero) −→ x /∈ state)))

using assms unfolding match-timestep-def state-regex-of-vars-def by metis
then have ∀ x∈state. x < num-vars −→ ((s2 ! x = One) ∨ (s2 ! x = S))

using assms by (meson WEST-bit.exhaust)
then have x-in-state-s2 : ∀ x. (x < num-vars ∧ x ∈ state) −→ ((s2 ! x = One)
∨ (s2 ! x = S)) by blast

then have x-notin-state-s2 : ∀ x. (x < num-vars ∧ x /∈ state) −→ ((s2 ! x =
Zero) ∨ (s2 ! x = S))

using match-timestep-s1-unfold
by (meson WEST-bit.exhaust ‹∀ x<num-vars. (s2 ! x = One −→ x ∈ state) ∧

(s2 ! x = Zero −→ x /∈ state)›)
have no-contradictory-bits1 : ∀ x∈state. x < num-vars −→WEST-and-bitwise (s1

! x) (s2 ! x) 6= None
using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
by (metis match-timestep-s2-unfold not-Some-eq)

then have no-contradictory-bits2 : ∀ x. (x /∈ state ∧ x < num-vars) −→WEST-and-bitwise
(s1 ! x) (s2 ! x) 6= None

using x-in-state-s1 x-notin-state-s1 x-in-state-s2 x-notin-state-s2 WEST-and-bitwise.simps
by fastforce

have no-contradictory-bits: ∀ x. x < num-vars −→ WEST-and-bitwise (s1 ! x)
(s2 ! x) 6= None

using no-contradictory-bits1 no-contradictory-bits2
by blast

show ?thesis using same-length no-contradictory-bits assms
proof (induct s1 arbitrary: s2 num-vars state)

case Nil
then show ?case by auto

next
case (Cons a s1)
then have num-vars-bound: num-vars = (length s1) + 1

unfolding state-regex-of-vars-def by simp
then have len-s2 : length s2 = num-vars using Cons by simp
then have length s2 ≥ 1 using num-vars-bound by simp
then have s2-ht-exists: ∃ h t. s2 = h#t
by (metis Suc-eq-plus1 Suc-le-length-iff ‹length s2 = num-vars› not-less-eq-eq

num-vars-bound)
obtain h t where s2-ht: s2 = h#t using s2-ht-exists by blast
{assume ∗: WEST-and-bitwise a h = None

then have ?case using WEST-and-state.simps(2)
using Cons.prems(2) ‹length s2 = num-vars› s2-ht by force

} moreover {assume ∗∗: WEST-and-bitwise a h 6= None
have h1 : length s1 = length t

using len-s2 num-vars-bound s2-ht by simp

32

obtain num-var-minus1 where nvm1-def : num-var-minus1 = num-vars −
1 by simp

then have ∀ x<(num-vars−1). WEST-and-bitwise ((a#s1) ! (x+1)) ((h#t)
! (x+1)) 6= None

using Cons.prems(2)
using num-vars-bound s2-ht by auto

then have h2 : ∀ x<num-var-minus1 . WEST-and-bitwise (s1 ! x) (t ! x) 6=
None

using nvm1-def by simp
obtain adv-state where adv-state-def : adv-state = advance-state state by

simp
have h4 : state-regex-of-vars s1 num-var-minus1

using Cons.prems unfolding state-regex-of-vars-def
by (simp add: add-implies-diff num-vars-bound nvm1-def)

have h5 : state-regex-of-vars t num-var-minus1
using h4 h1 unfolding state-regex-of-vars-def by simp

have h6 : match-timestep adv-state s1 ∧ match-timestep adv-state t
using Cons.prems(5) s2-ht adv-state-def
using advance-state-match-timestep by blast

have ih: WEST-and-state s1 t 6= None
using Cons.hyps[of t num-var-minus1 adv-state] h1 h2 h4 h5 h6 by auto

have ?case using WEST-and-state.simps(2)[of a s1 h t] ∗∗ ih s2-ht by auto
}
ultimately show ?case

by blast
qed

qed

Correct Forward lemma WEST-and-state-length:
fixes s1 s2 ::state-regex
assumes samelen: length s1 = length s2
assumes r-exists: (WEST-and-state s1 s2) 6= None
shows ∃ r . length r = length s1 ∧ WEST-and-state s1 s2 = Some r

proof−
have s1s2-exists: ∃ r . WEST-and-state s1 s2 = Some r

using assms by simp
then obtain r where s1s2-obt: WEST-and-state s1 s2 = Some r by auto
let ?n = length s1
have s1s2-length-n: length r = ?n

using assms s1s2-obt
proof (induct ?n arbitrary: s1 s2 r)

case 0
then show ?case using WEST-and-state.simps(1) by simp

next
case (Suc x)
have length s1 ≥ 1 using Suc.hyps(2) by simp
then have ∃ h1 t1 . s1 = h1 # t1 by (simp add: Suc-le-length-iff)
then obtain h1 t1 where h1t1 : s1 = h1 # t1 by blast
have length s2 ≥ 1 using Suc.hyps(2) Suc.prems(1) by auto

33

then have ∃ h2 t2 . s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2 : s2 = h2 # t2 by blast
have WEST-and-bitwise h1 h2 6= None

using Suc.prems h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.simps(4))

then obtain h1h2 where h1h2-and: Some h1h2 = WEST-and-bitwise h1 h2
by auto

have WEST-and-state t1 t2 6= None
using Suc.prems h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis (no-types, lifting) not-None-eq option.simps(4) option.simps(5))

then obtain t1t2 where t1t2-and: Some t1t2 = WEST-and-state t1 t2 by
auto

have cond1 : x = length t1 using h1t1 Suc.hyps(2) by auto
have cond2 : length t1 = length t2 using h1t1 h2t2 Suc.prems(1) by auto
have len-t1t2 : length t1t2 = length t1

using Suc.hyps(1)[of t1 t2 t1t2] using cond1 cond2 t1t2-and
using ‹WEST-and-state t1 t2 6= None› by fastforce

have r-decomp: r = h1h2 # t1t2
using Suc.prems(3) h1h2-and t1t2-and WEST-and-state.simps(2)
by (metis h1t1 h2t2 option.inject option.simps(5))

show ?case using r-decomp len-t1t2 h1t1 h2t2 by auto
qed
then show ?thesis using assms s1s2-obt s1s2-exists by simp

qed

lemma index-shift:
fixes a::WEST-bit
fixes t::state-regex
fixes state::state
assumes (a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)
assumes ∀ x<length t. ((t!x) = One −→ x + 1 ∈ state) ∧ ((t!x) = Zero −→ x

+ 1 /∈ state)
shows ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x = Zero
−→ x /∈ state)
proof−

have (a = One −→ 0 ∈ state) using assms by auto
then have a-one: (a#t)!0 = One −→ 0 ∈ state by simp
have t-one: ∀ x<length t. (t!x) = One −→ x + 1 ∈ state using assms by auto
have ∀ x<(length t)+1 . (x 6= 0 ∧ (a#t)!x = One) −→ x ∈ state

using t-one assms(2)
by (metis (no-types, lifting) Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel

gr-zeroI less-numeral-extra(1) linordered-semidom-class.add-diff-inverse nth-Cons ′

verit-comp-simplify1 (1))
then have at-one: ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state)

using a-one t-one by (simp add: nth-Cons ′)
have (a = Zero −→ 0 /∈ state) using assms by auto
then have a-zero: (a#t)!0 = Zero −→ 0 /∈ state by simp
have t-zero: ∀ x<length t. (t!x) = Zero −→ x + 1 /∈ state using assms by auto

34

have ∀ x<(length t)+1 . (x 6= 0 ∧ (a#t)!x = Zero) −→ x /∈ state
using t-zero assms(2)

by (metis Nat.add-0-right Suc-diff-1 Suc-less-eq add-Suc-right cancel-comm-monoid-add-class.diff-cancel
less-one not-gr-zero nth-Cons ′)

then have at-zero: ∀ x<length (a#t). ((a#t) ! x = Zero −→ x /∈ state)
using a-zero t-zero by (simp add: nth-Cons ′)

show ?thesis using at-one at-zero by blast
qed

lemma index-shift-reverse:
fixes a::WEST-bit
fixes t::state-regex
fixes state::state
assumes ∀ x<length (a#t). ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x =

Zero −→ x /∈ state)
shows ∀ x<length t. ((t!x) = One −→ x + 1 ∈ state) ∧ ((t!x) = Zero −→ x +

1 /∈ state)
proof−

have length (a#t) = (length t) + 1 by simp
then have ∀ x<(length t)+1 . ((a#t) ! x = One −→ x ∈ state) ∧ ((a#t) ! x =

Zero −→ x /∈ state)
using assms by metis

then show ?thesis by simp
qed

lemma WEST-and-state-correct-forward:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-both: match-timestep state s1 ∧ match-timestep state s2
shows ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state s1 s2)

= Some somestate
proof−

have WEST-and-state s1 s2 6= None
using WEST-and-state-well-defined assms by simp

then have ∃ somestate. WEST-and-state s1 s2 = Some somestate by auto
then obtain somestate where somestate-obt: WEST-and-state s1 s2 = Some

somestate by auto
have samelength: length s1 = length s2 using assms(1 , 2) unfolding state-regex-of-vars-def

by auto
have len-s1 : length s1 = num-vars using assms unfolding state-regex-of-vars-def

by auto
have len-s2 : length s2 = num-vars using samelength len-s1 by auto
have len-somestate: length somestate = num-vars
using samelength somestate-obt WEST-and-state.simps WEST-and-state-length

35

using len-s1 len-s2
by fastforce

have s1-bits: ∀ x<num-vars. (s1 ! x = One −→ x ∈ state) ∧ (s1 ! x = Zero −→
x /∈ state)

using assms(3) len-s1 unfolding match-timestep-def by metis
have s2-bits: ∀ x<num-vars. (s2 ! x = One −→ x ∈ state) ∧ (s2 ! x = Zero −→

x /∈ state)
using assms(3) len-s2 unfolding match-timestep-def len-s2 by metis

have somestate-bits: ∀ x<num-vars. (somestate ! x = One −→ x ∈ state)
∧ (somestate ! x = Zero −→ x /∈ state)

using s1-bits s2-bits somestate-obt len-s1 len-s2 len-somestate assms(1)
proof(induct somestate arbitrary: s1 s2 num-vars state)

case Nil
then show ?case

by (metis less-nat-zero-code list.size(3))
next

case (Cons a t)
have length s1 ≥ 1 using Cons.prems(4 , 5 , 6) by auto
then have ∃ h1 t1 . s1 = h1 # t1 by (simp add: Suc-le-length-iff)
then obtain h1 t1 where h1t1 : s1 = h1 # t1 by auto
have length s2 ≥ 1 using Cons.prems(4 , 5 , 6) by auto
then have ∃ h2 t2 . s2 = h2 # t2 by (simp add: Suc-le-length-iff)
then obtain h2 t2 where h2t2 : s2 = h2 # t2 by auto
have h1h2-not-none: WEST-and-bitwise h1 h2 6= None

using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.discI option.simps(4))

then have t1t2-not-none: WEST-and-state t1 t2 6= None
using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.distinct(1))

have h1h2-is-a: WEST-and-bitwise h1 h2 = Some a
using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto

have t1t2-is-t: WEST-and-state t1 t2 = Some t
using Cons.prems(3) h1t1 h2t2 WEST-and-state.simps(2)[of h1 t1 h2 t2]
using t1t2-not-none h1h2-not-none by auto

let ?num-vars-m1 = num-vars − 1
have len-t: Suc (length t) = num-vars

using Cons.prems(1−6) by simp
then have length-t: length t = ?num-vars-m1 by simp
then have length-t1 : length t1 = ?num-vars-m1 using Cons.prems(1−6) h1t1

by simp
then have length-t2 : length t2 = ?num-vars-m1 using Cons.prems(1−6) h2t2

by simp
have (a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)

using h1h2-is-a Cons.prems(1 , 2) h1t1 h2t2 WEST-and-bitwise.simps
by (smt (verit) WEST-and-bitwise.elims len-t nth-Cons-0 option.inject zero-less-Suc)
then have a-fact: ((a # t) ! 0 = One −→ 0 ∈ state) ∧ ((a # t) ! 0 = Zero

−→ 0 /∈ state) by auto
let ?adv-state = advance-state state

36

have ∀ x<num-vars.((h1#t1) ! x = One −→ x ∈ state) ∧ ((h1#t1) ! x = Zero
−→ x /∈ state)

using Cons.prems(1) h1t1 advance-state.simps[of state] by blast
then have cond1 : ∀ x<num-vars−1 .(t1 ! x = One −→ (x+1) ∈ state) ∧ (t1

! x = Zero −→ (x+1) /∈ state)
using index-shift-reverse[of h1 t1] by simp

then have cond1 : ∀ x<num-vars−1 .(t1 ! x = One −→ x ∈ ?adv-state) ∧ (t1
! x = Zero −→ x /∈ ?adv-state)

using advance-state-elt-member by fastforce
have ∀ x<num-vars.((h2#t2) ! x = One −→ x ∈ state) ∧ ((h2#t2) ! x = Zero

−→ x /∈ state)
using Cons.prems(2) h2t2 advance-state.simps[of state] by blast

then have ∀ x<num-vars−1 .(t2 ! x = One −→ (x+1) ∈ state) ∧ (t2 ! x =
Zero −→ (x+1) /∈ state)

using index-shift-reverse[of h2 t2] by simp
then have cond2 : ∀ x<num-vars−1 .(t2 ! x = One −→ x ∈ ?adv-state) ∧ (t2

! x = Zero −→ x /∈ ?adv-state)
using advance-state-elt-member by fastforce

have t-fact: ∀ x < length t. (t ! x = One −→ x ∈ ?adv-state) ∧ (t ! x = Zero
−→ x /∈ ?adv-state)

using Cons.hyps[of ?num-vars-m1 t1 ?adv-state t2]
using length-t length-t1 length-t2 t1t2-is-t cond1 cond2
by (metis (mono-tags, opaque-lifting) state-regex-of-vars-def)

then have t-fact: ∀ x < length t. (t ! x = One −→ (x+1) ∈ state) ∧ (t ! x =
Zero −→ (x+1) /∈ state)

using advance-state-elt-member by auto
have cons-index: ∀ x < length (a#t). (t ! x) = (a#t)!(x+1) by auto
have somestate-fact: ∀ x<length (a#t). ((a # t) ! x = One −→ x ∈ state) ∧

((a # t) ! x = Zero −→ x /∈ state)
using a-fact t-fact index-shift[of a state] Cons.prems(5 ,6)
using ‹(a = One −→ 0 ∈ state) ∧ (a = Zero −→ 0 /∈ state)› by blast

show ?case
using somestate-fact len-t by auto

qed
have match-somestate: match-timestep state somestate

using somestate-obt assms somestate-bits
using len-s2 len-somestate
unfolding match-timestep-def
by metis

then show ?thesis using somestate-obt by simp
qed

Correct Converse lemma WEST-and-state-indices:
fixes s s1 s2 ::state-regex
assumes WEST-and-state s1 s2 = Some s
assumes length s1 = length s2
assumes x<length s
shows Some (s!x) = WEST-and-bitwise (s1 !x) (s2 !x)
using assms

37

proof(induct s arbitrary: s1 s2 x)
case Nil
then show ?case by simp

next
case (Cons h t)
then obtain h1 t1 where h1t1 : s1 = h1 # t1

by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)

obtain h2 t2 where h2t2 : s2 = h2 # t2
using Cons

by (metis WEST-and-state.simps(1) length-greater-0-conv neq-Nil-conv op-
tion.inject)

have notnone1 : WEST-and-bitwise h1 h2 6= None using h1t1 h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]

by (metis option.distinct(1) option.simps(4))
have notnone2 : WEST-and-state t1 t2 6= None using h1t1 h2t2 Cons(2)

WEST-and-state.simps(2)[of h1 t1 h2 t2]
by (metis option.case-eq-if option.discI)

have someh: WEST-and-bitwise h1 h2 = Some h using h1t1 h2t2 Cons(2)
WEST-and-state.simps(2)[of h1 t1 h2 t2]

notnone1 notnone2 by auto
have somet: WEST-and-state t1 t2 = Some t using h1t1 h2t2 Cons(2) WEST-and-state.simps(2)[of

h1 t1 h2 t2]
notnone1 notnone2 by auto

then have some-t: x < length t =⇒ Some (t ! x) = WEST-and-bitwise (t1 ! x)
(t2 ! x) for x

using h1t1 h2t2 Cons(1)[OF somet] Cons(3)
by simp

have some-zero: Some ((h # t) ! 0) = WEST-and-bitwise (s1 ! 0) (s2 ! 0)
using someh h1t1 h2t2 by simp

{assume ∗: x = 0
then have ?case

using some-zero by auto
} moreover {assume ∗: x > 0

then have xminus-lt: x−1 < length t
using Cons(4) by simp

have Some ((h # t) ! x) = Some (t ! (x−1))
using ∗
by auto

then have ?case
using some-t[OF xminus-lt] h1t1 h2t2
by (simp add: ∗)

}
ultimately show ?case

by blast
qed

lemma WEST-and-state-correct-converse-s1 :
fixes num-vars::nat

38

fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state

s1 s2) = Some somestate
shows match-timestep state s1

proof−
have s1-bits: (∀ x<length s1 . (s1 ! x = One −→ x ∈ state) ∧ (s1 ! x = Zero −→

x /∈ state))
using assms

proof(induct s1 arbitrary: s2 num-vars state)
case Nil
then show ?case by auto

next
case (Cons h1 t1)
obtain somestate where
somestate-obt: (match-timestep state somestate) ∧ (WEST-and-state (h1#t1)

s2) = Some somestate
using Cons.prems(3) by auto

have len-s1 : length (h1#t1) = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp

have len-s2 : length s2 = num-vars using Cons.prems unfolding state-regex-of-vars-def
by simp

then obtain h2 t2 where h2t2 : s2=h2#t2
by (metis WEST-and-state.simps(3) neq-Nil-conv not-Some-eq somestate-obt)

have len-somestate: length somestate = num-vars
using somestate-obt WEST-and-state-length[of - s2] unfolding state-regex-of-vars-def

len-s2
using len-s1 by fastforce

then obtain h t where ht: somestate = h#t using len-s1
by (metis Ex-list-of-length Zero-not-Suc length-Cons neq-Nil-conv)

have somestate-bits: (∀ x<length somestate. (somestate ! x = One −→ x ∈
state) ∧ (somestate ! x = Zero −→ x /∈ state))

using somestate-obt unfolding match-timestep-def by argo
then have somestate-bits-conv: (∀ x<length somestate. (x ∈ state −→ (somestate

! x = One ∨ somestate ! x = S)) ∧
(x /∈ state −→ (somestate ! x = Zero ∨ somestate ! x

= S)))
by (meson WEST-bit.exhaust)

have WEST-and-state (h1#t1) s2 = Some somestate using somestate-obt by
blast

then have somestate-and: WEST-and-state (h1#t1) (h2#t2) = Some (h#t)
using h2t2 ht by simp

have (somestate ! 0 = One −→ 0 ∈ state) ∧ (somestate ! 0 = Zero −→ 0 /∈
state)

39

using somestate-bits len-somestate len-s1 by simp
then have somestate-bit0 : (h = One −→ 0 ∈ state) ∧ (h = Zero −→ 0 /∈

state)
using ht by simp

have h1h2-not-none: WEST-and-bitwise h1 h2 6= None
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h2t2
using option.simps(4) by fastforce

have t1t2-not-none: WEST-and-state t1 t2 6= None
using h1h2-not-none somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2]
using option.simps(4) by fastforce

then have h1h2-is-h: WEST-and-bitwise h1 h2 = Some h
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] h1h2-not-none

by auto
have h-fact-converse: (0 ∈ state −→ (h1 = One ∨ h1 = S)) ∧ (0 /∈ state −→

(h1 = Zero ∨ h1 = S))
using somestate-bit0 h1h2-is-h WEST-and-bitwise.simps[of h1] h1h2-not-none
by (metis (full-types) WEST-and-bitwise.elims option.inject)

then have h-fact: (h1 = One −→ 0 ∈ state) ∧ (h1 = Zero −→ 0 /∈ state) by
auto

have somestate-bits-t: ∀ x<length t. (t!x = One −→ (x+1) ∈ state) ∧ (t!x =
Zero −→ (x+1) /∈ state)

using index-shift-reverse[of h t] Cons.prems(1) somestate-bits len-somestate
len-s1 ht by blast

have t1t2-is-t: WEST-and-state t1 t2 = Some t
using somestate-and WEST-and-state.simps(2)[of h1 t1 h2 t2] t1t2-not-none

h1h2-not-none by auto
then have t1t2-is-t-indices: ∀ x<length t. Some (t!x) = WEST-and-bitwise

(t1 !x) (t2 !x)
using WEST-and-state-indices[of t1 t2 t] len-s1 len-s2 h2t2 by simp

have t-fact-converse1 :
∧

x. x<length t1 =⇒ (((x+1) ∈ state −→ (t1 !x = One
∨ t1 !x = S)) ∧ ((x+1) /∈ state −→ (t1 !x = Zero ∨ t1 !x = S)))

proof −
fix x
assume x-lt: x<length t1
have ∗:(t!x = One −→ (x+1) ∈ state) ∧ (t!x = Zero −→ (x+1) /∈ state)

using x-lt somestate-bits-t len-s1 len-somestate ht by auto
have ∗∗: Some (t ! x) = WEST-and-bitwise (t1 ! x) (t2 ! x)

using x-lt somestate-bits-t len-s1 len-somestate ht t1t2-is-t-indices by auto

{assume case1 : (x+1) ∈ state
then have t!x = One ∨ t1 !x = S

using ∗
by (smt (verit) ∗∗ WEST-and-bitwise.elims WEST-and-bitwise.simps(2)

option.distinct(1) option.inject)
then have (t1 !x = One ∨ t1 !x = S)

using x-lt WEST-and-bitwise.simps[of t1 !x] ∗ ∗∗
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)

} moreover {assume case2 : (x+1) /∈ state

40

then have t!x = Zero ∨ t1 !x = S
using ∗
by (smt (verit) ∗∗ WEST-and-bitwise.elims WEST-and-bitwise.simps(2)

option.distinct(1) option.inject)
then have (t1 !x = Zero ∨ t1 !x = S)

using x-lt WEST-and-bitwise.simps[of t1 !x] ∗ ∗∗
by (metis (full-types) WEST-bit.exhaust not-None-eq option.inject)

}
ultimately show (((x+1) ∈ state −→ (t1 !x = One ∨ t1 !x = S)) ∧ ((x+1)

/∈ state −→ (t1 !x = Zero ∨ t1 !x = S)))
by blast

qed
then have t-fact: ∀ x<length t1 . (t1 !x = One −→ (x+1)∈state) ∧ (t1 !x =

Zero −→ (x+1)/∈state)
by force

show ?case
using h-fact t-fact Cons.prems len-s2 len-somestate index-shift[of h1 state]
unfolding state-regex-of-vars-def by blast

qed

show ?thesis
using s1-bits assms(1) unfolding match-timestep-def
using state-regex-of-vars-def s1-of-num-vars by presburger

qed

lemma WEST-and-state-correct-converse:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex
assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
assumes match-and: ∃ somestate. (match-timestep state somestate) ∧ (WEST-and-state

s1 s2) = Some somestate
shows match-timestep state s1 ∧ match-timestep state s2

proof−
have match-s1 : match-timestep state s1 using assms WEST-and-state-correct-converse-s1

by simp
have match-s2 : match-timestep state s2
using assms WEST-and-state-correct-converse-s1 WEST-and-state-commutative
by (simp add: state-regex-of-vars-def)

show ?thesis using match-s1 match-s2 by simp
qed

lemma WEST-and-state-correct:
fixes num-vars::nat
fixes state::state
fixes s1 s2 :: state-regex

41

assumes s1-of-num-vars: state-regex-of-vars s1 num-vars
assumes s2-of-num-vars: state-regex-of-vars s2 num-vars
shows (match-timestep state s1 ∧ match-timestep state s2) ←→ (∃ somestate.

match-timestep state somestate ∧ (WEST-and-state s1 s2) = Some somestate)
using assms WEST-and-state-correct-converse

WEST-and-state-correct-forward by metis

3.3.4 WEST-and-trace
Well Defined lemma WEST-and-trace-well-defined:

fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes π-match-r1-r2 : match-regex π r1 ∧ match-regex π r2
shows WEST-and-trace r1 r2 6= None

proof−
show ?thesis using assms
proof(induct r1 arbitrary: r2 π num-vars)

case Nil
{assume r2-empty:r2 = []

then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2 6=[]

then obtain h2 t2 where r2 = h2#t2
by (metis trim-reversed-regex.cases)

then have?case using WEST-and-trace.simps(2)[of h2 t2] by blast
}
ultimately show ?case by blast

next
case (Cons h1 t1)
{assume r2-empty:r2 = []

then have ?case using WEST-and-trace.simps by blast
} moreover {assume r2-nonempty: r2 6=[]

then obtain h2 t2 where h2t2 : r2 = h2#t2
by (metis trim-reversed-regex.cases)

have h1t1-nv: ∀ i<length (h1 # t1). length ((h1 # t1) ! i) = num-vars
using Cons.prems(1) unfolding trace-regex-of-vars-def by argo

then have length ((h1 # t1) ! 0) = num-vars by blast
then have h1-nv: state-regex-of-vars h1 num-vars

unfolding state-regex-of-vars-def by simp
have h2t2-nv: ∀ i<length (h2 # t2). length ((h2 # t2) ! i) = num-vars

using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by metis
then have length ((h2 # t2) ! 0) = num-vars by blast
then have h2-nv: state-regex-of-vars h2 num-vars

unfolding state-regex-of-vars-def by simp

have match-timestep (π ! 0) h1 ∧ match-timestep (π ! 0) h2

42

using Cons(4) unfolding match-regex-def
by (metis h2t2 length-greater-0-conv list.distinct(1) nth-Cons-0)

then have h1h2-notnone: WEST-and-state h1 h2 6= None
using WEST-and-state-well-defined[of h1 num-vars h2 π!0 , OF h1-nv h2-nv]

by blast

have t1-nv: trace-regex-of-vars t1 num-vars
using h1t1-nv unfolding trace-regex-of-vars-def by auto

have t2-nv: trace-regex-of-vars t2 num-vars
using h2t2-nv unfolding trace-regex-of-vars-def by auto

have unfold-prem3 : (∀ time<length (h1 # t1). match-timestep (π ! time) ((h1
t1) ! time)) ∧

length (h1 # t1) ≤ length π ∧ (∀ time<length r2 . match-timestep (π ! time)
(r2 ! time)) ∧ length r2 ≤ length π

using Cons.prems(3) unfolding match-regex-def by argo

have unfold-prem3-bounds: length (h1 # t1) ≤ length π ∧ length r2 ≤ length
π

using unfold-prem3 by blast
have π-drop1-len: length (drop 1 π) = (length π)−1 by simp

have len-t1t2 : length t1 = length (h1#t1)−1 ∧ length t2 = length (h2#t2)−1
by simp

have bounds: length t1 ≤ length (drop 1 π) ∧ length t2 ≤ length (drop 1 π)
using unfold-prem3-bounds h2t2 π-drop1-len len-t1t2 h2t2
by (metis diff-le-mono)

have unfold-prem3-matches: (∀ time<length (h1 # t1). match-timestep (π !
time) ((h1 # t1) ! time)) ∧

(∀ time<length (h2 # t2). match-timestep (π ! time)
((h2 # t2) ! time))

using unfold-prem3 h2t2 by blast

have h1t1-match:(∀ time<length (h1 # t1). match-timestep (π ! time) ((h1
t1) ! time))

using unfold-prem3-matches by blast
then have (

∧
time. time<length t1 =⇒ match-timestep (drop 1 π ! time) (t1

! time))
proof−

fix time
assume time-bound: time < length t1
have time+1 < length (h1#t1) using time-bound by auto
then have match-timestep (π ! (time+1)) ((h1 # t1) ! (time+1)) using

h1t1-match by auto
then show match-timestep (drop 1 π ! time) (t1 ! time)

using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
qed
then have t1-match: (∀ time<length t1 . match-timestep (drop 1 π ! time) (t1

! time))

43

by blast

have h2t2-match: ∀ time < length (h2 # t2). match-timestep (π ! time) ((h2
t2) ! time)

using unfold-prem3-matches by blast
then have (

∧
time. time<length t2 =⇒ match-timestep (drop 1 π ! time) (t2

! time))
proof−
fix time
assume time-bound: time < length t2
have time+1 < length (h2#t2) using time-bound by auto
then have match-timestep (π ! (time+1)) ((h2 # t2) ! (time+1)) using

h2t2-match by auto
then show match-timestep (drop 1 π ! time) (t2 ! time)

using cancel-comm-monoid-add-class.diff-cancel unfold-prem3 by auto
qed
then have t2-match: (∀ time<length t2 . match-timestep (drop 1 π ! time) (t2

! time))
by blast

then have matches: (∀ time<length t1 . match-timestep (drop 1 π ! time) (t1
! time)) ∧

(∀ time<length t2 . match-timestep (drop 1 π ! time) (t2 ! time))
using t1-match t2-match by blast

have match-regex (drop 1 π) t1 ∧ match-regex (drop 1 π) t2
using bounds matches unfolding match-regex-def h2t2 by auto

then have t1t2-notnone: WEST-and-trace t1 t2 6= None
using Cons.hyps[of num-vars t2 drop 1 π, OF t1-nv t2-nv] by simp

have WEST-and-trace (h1 # t1) (h2 # t2) 6= None
using h1h2-notnone t1t2-notnone WEST-and-trace.simps(3) by auto

then have ?case using h2t2 by auto
}
ultimately show ?case by blast

qed
qed

Correct Forward lemma WEST-and-trace-correct-forward-aux:
assumes match-regex π (h#t)
shows match-timestep (π!0) h ∧ match-regex (drop 1 π) t

proof −
have ind-h: (∀ time<length (h#t). match-timestep (π ! time) ((h#t) ! time)) ∧

length (h#t) ≤ length π
using assms unfolding match-regex-def by metis

then have part1 : match-timestep (π ! 0) h
by auto

have part2 : match-timestep (drop 1 π ! time) (t ! time) if time-lt: time<length
t for time

proof −

44

have match: match-timestep (π ! (time+1)) ((h # t) ! (time+1))
using ind-h time-lt by auto

have (π ! (time + 1)) = (drop 1 π ! time)
using add.commute add-gr-0 impossible-Cons ind-h less-add-same-cancel2

less-eq-iff-succ-less by auto
then show ?thesis using match by auto

qed
have part3 : length t ≤ length (drop 1 π)

using ind-h by auto
show ?thesis using part1 part2 part3 unfolding match-regex-def by simp

qed

lemma WEST-and-trace-correct-forward-aux-converse:
assumes π = hxi#txi
assumes match-timestep (hxi) h
assumes match-regex txi t
shows match-regex π (h#t)

proof−
have all-time-t: ∀ time<length t. match-timestep (txi ! time) (t ! time)

using assms(3) unfolding match-regex-def by argo
have len-t-leq: length t ≤ length txi

using assms(3) unfolding match-regex-def by argo
have match-ht: match-timestep (π ! time) ((h # t) ! time) if time-ht: time<length

(h # t)
for time

proof −
{assume ∗: time = 0

then have ?thesis
using assms(2) assms(1)
by auto

} moreover {assume ∗: time > 0
then have ?thesis
using time-ht all-time-t assms(1)
by auto

}
ultimately show ?thesis

by blast
qed
have len-condition: length (h # t) ≤ length π

using assms(1) len-t-leq by auto
then show ?thesis

using match-ht len-condition unfolding match-regex-def by simp
qed

lemma WEST-and-trace-correct-forward-empty-trace:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex

45

assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match1 : match-regex [] r1
assumes match2 : match-regex [] r2
shows ∃ sometrace. match-regex [] sometrace ∧ (WEST-and-trace r1 r2) = Some

sometrace
proof −

have r1-empty: length r1 ≤ length []
using match1 unfolding match-regex-def
by (metis list.size(3))

have r2-empty: length r2 ≤ length []
using match2 unfolding match-regex-def

by (metis list.size(3))
have r1r2 : r1 = [] ∧ r2 = []

using r1-empty r2-empty by simp
have match-regex [] [] ∧ (WEST-and-trace [] []) = Some []

unfolding WEST-and-trace.simps match-regex-def by simp
then show ?thesis using r1r2

by blast
qed

lemma WEST-and-trace-correct-forward-nonempty-trace:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∧ match-regex π r2
assumes length π > 0
shows ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2) = Some

sometrace
proof−

have WEST-and-trace r1 r2 6= None
using WEST-and-trace-well-defined[of r1 num-vars r2 π] assms by blast

then obtain sometrace where sometrace-obt: WEST-and-trace r1 r2 = Some
sometrace by blast

have match-regex π sometrace
using assms sometrace-obt

proof(induct sometrace arbitrary: r1 r2 π)
case Nil
then show ?case unfolding match-regex-def by auto

next
case (Cons h t)

have match-r1 : (∀ time<length r1 . match-timestep (π ! time) (r1 ! time))
using Cons.prems(3) unfolding match-regex-def by argo

have match-r2 : (∀ time<length r2 . match-timestep (π ! time) (r2 ! time))

46

using Cons.prems(3) unfolding match-regex-def by argo

have match-h-match-t: match-timestep (π!0) h ∧ match-regex (drop 1 π) t
proof−

{assume r1r2-empty: r1 = [] ∧ r2 = []
have WEST-and-trace r1 r2 = Some []

using WEST-and-trace.simps r1r2-empty by blast
then have ht-empty: h = [] ∧ t = []

using Cons.prems by simp
have match-timestep (π!0) [] ∧ match-regex (drop 1 π) []

unfolding match-regex-def match-timestep-def by simp
then have match-timestep (π!0) h ∧ match-regex (drop 1 π) t

using ht-empty by simp
} moreover {

assume r1-empty: r1 = [] ∧ r2 6= []
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r1-empty)
have WEST-and-trace r1 r2 = Some (h2#t2)

using r1-empty WEST-and-trace.simps(2)[of h2 t2] h2t2 by blast
then have hh2-tt2 : h=h2 ∧ t=t2

using Cons.prems by simp
have match-timestep (π!0) h2 ∧ match-regex (drop 1 π) t2

using WEST-and-trace-correct-forward-aux[of π h2 t2] Cons(4) h2t2 by
auto

then have match-timestep (π!0) h ∧ match-regex (drop 1 π) t
using hh2-tt2 by simp

} moreover {
assume r2-empty: r2 = [] ∧ r1 6= []
obtain h1 t1 where h1t1 : r1 = h1#t1

by (meson neq-Nil-conv r2-empty)
have WEST-and-trace r1 r2 = Some (h1#t1)

using r2-empty WEST-and-trace.simps(1)[of r1] h1t1
by blast

then have hh1-tt1 : h=h1 ∧ t=t1
using Cons.prems by simp

have match-timestep (π!0) h ∧ match-regex (drop 1 π) t
using WEST-and-trace-correct-forward-aux[of π h1 t1] Cons(4) h1t1

hh1-tt1
by blast

} moreover {
assume r1r2-nonempty: r1 6= [] ∧ r2 6= []
obtain h1 t1 where h1t1 : r1 = h1#t1

by (meson neq-Nil-conv r1r2-nonempty)
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r1r2-nonempty)

have ht: WEST-and-trace (h1#t1) (h2#t2) = Some (h # t)
using Cons(6) h1t1 h2t2 by blast

then have h1h2-notnone: WEST-and-state h1 h2 6= None

47

using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
using not-None-eq by fastforce

then have t1t2-notnone: WEST-and-trace t1 t2 6= None
using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
using not-None-eq

using ‹WEST-and-trace (h1 # t1) (h2 # t2) = Some (h # t)› by fastforce
have h-is: (WEST-and-state h1 h2) = Some h
using WEST-and-trace.simps(3)[of h1 t1 h2 t2] h1h2-notnone t1t2-notnone

ht
by auto

have t-is: (WEST-and-trace t1 t2) = Some t
using WEST-and-trace.simps(3)[of h1 t1 h2 t2] h1h2-notnone t1t2-notnone

ht
by auto

have h1t1-nv: ∀ i<length (h1#t1). length ((h1#t1) ! i) = num-vars
using Cons.prems(1) h1t1 unfolding trace-regex-of-vars-def by meson

then have hyp1 : trace-regex-of-vars t1 num-vars
unfolding trace-regex-of-vars-def by auto

have h2t2-nv: ∀ i<length (h2#t2). length ((h2#t2) ! i) = num-vars
using Cons.prems(2) h2t2 unfolding trace-regex-of-vars-def by meson

then have hyp2 : trace-regex-of-vars t2 num-vars
unfolding trace-regex-of-vars-def by auto

have hyp3a: match-regex (drop 1 π) t1
using WEST-and-trace-correct-forward-aux[of π h1 t1] h1t1 Cons.prems(3)

by blast
have hyp3b: match-regex (drop 1 π) t2
using WEST-and-trace-correct-forward-aux[of π h2 t2] h2t2 Cons.prems(3)

by blast
have hyp3 : match-regex (drop 1 π) t1 ∧ match-regex (drop 1 π) t2

using hyp3a hyp3b by auto

have match-regex (drop 1 π) t if [] = (drop 1 π)
using WEST-and-trace-correct-forward-empty-trace[of t1 num-vars t2]
using hyp3a hyp3b hyp1 hyp2
using t-is that by auto

then have match-t: match-regex (drop 1 π) t
using Cons.hyps[of t1 t2 (drop 1 π), OF hyp1 hyp2 hyp3] t-is
by fastforce

have h1-nv: state-regex-of-vars h1 num-vars
using h1t1-nv unfolding state-regex-of-vars-def by auto

have h2-nv: state-regex-of-vars h2 num-vars
using h2t2-nv unfolding state-regex-of-vars-def by auto

have match-h1 : match-timestep (π ! 0) h1
using Cons.prems(3) h1t1 unfolding match-regex-def
using Cons.prems(3) WEST-and-trace-correct-forward-aux by blast

48

have match-h2 : match-timestep (π ! 0) h2
using Cons.prems(3) h2t2 unfolding match-regex-def
using Cons.prems(3) WEST-and-trace-correct-forward-aux by blast

have match-h: match-timestep (π!0) h
using WEST-and-state-correct-forward[of h1 num-vars h2 π!0 , OF h1-nv

h2-nv] h-is
using match-h1 match-h2 by simp

have match-timestep (π!0) h ∧ match-regex (drop 1 π) t
using match-h match-t by blast

}
ultimately show match-timestep (π!0) h ∧ match-regex (drop 1 π) t

by blast
qed

have match-h: match-timestep (π!0) h
using match-h-match-t by auto

have match-t: match-regex (drop 1 π) t
using match-h-match-t by auto

have len-π: length (drop 1 π) = (length π)−1 by auto
have len-ht: length t = length (h#t)−1 by auto
have length t ≤ length (drop 1 π) using match-t unfolding match-regex-def

by argo
then have (length (h#t))−1 ≤ (length π)−1 using len-π len-ht by argo
then have ht-less-π: length (h#t) ≤ length π

using Cons.prems(4)
by linarith

have (
∧

time. time<length (h # t) =⇒ (match-timestep (π ! time) ((h # t) !
time)) ∧

length (h # t) ≤ length π)
proof−

fix time
assume time-bound: time<length (h # t)
{assume ∗:time=0

have (match-timestep (π ! 0) h) ∧ length (h # t) ≤ length π
using match-h ht-less-π by simp

then have (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h # t) ≤
length π

using ∗ by simp
} moreover {

assume ∗∗: time > 0
have time-m1 : time−1 < length t

using time-bound
using ∗∗ len-ht by linarith

have (∀ time<length t. match-timestep (drop 1 π ! time) (t ! time))
using match-t unfolding match-regex-def by argo

then have fact0 : match-timestep (drop 1 π ! (time−1)) (t ! (time−1))

49

using time-m1 by blast
have fact1 : (t ! (time−1)) = ((h # t) ! time)

by (simp add: ∗∗)
have fact2 : (drop 1 π ! (time−1)) = (π ! time)

using ∗∗ time-m1 ht-less-π by force

then have (match-timestep (π ! time) ((h # t) ! time))
using fact1 fact2 fact0 by simp

then have (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h # t) ≤
length π

using ht-less-π by simp
}
ultimately show (match-timestep (π ! time) ((h # t) ! time)) ∧ length (h #

t) ≤ length π
by (metis bot-nat-0 .not-eq-extremum)

qed
then show ?case unfolding match-regex-def by auto

qed
then show ?thesis using sometrace-obt by blast

qed

lemma WEST-and-trace-correct-forward:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∧ match-regex π r2
shows ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2) = Some

sometrace
using WEST-and-trace-correct-forward-empty-trace WEST-and-trace-correct-forward-nonempty-trace
assms by fast

Correct Converse lemma WEST-and-trace-nonempty-args:
fixes h1 h2 ::state-regex
fixes t t1 t2 ::trace-regex
assumes WEST-and-trace (h1 # t1) (h2 # t2) = Some (h # t)
shows WEST-and-state h1 h2 = Some h ∧ WEST-and-trace t1 t2 = Some t

proof−
have h1h2-nn: (WEST-and-state h1 h2) 6= None

using WEST-and-trace.simps(3)[of h1 t1 h2 t2] assms
using option.simps(4) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using assms WEST-and-trace.simps(3)[of h1 t1 h2 t2]

by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1) option.simps(4) option.simps(5))

have nn: WEST-and-trace (h1 # t1) (h2 # t2) 6= None using assms by blast
then have h-fact: WEST-and-state h1 h2 = Some h

50

using h1h2-nn t1t2-nn assms WEST-and-trace.simps(3)[of h1 t1 h2 t2] by auto
then have t-fact: WEST-and-trace t1 t2 = Some t

using t1t2-nn h1h2-nn assms WEST-and-trace.simps(3)[of h1 t1 h2 t2] nn by
auto

show ?thesis using h-fact t-fact by blast
qed

lemma WEST-and-trace-lengths-r1 :
assumes trace-regex-of-vars r1 n
assumes trace-regex-of-vars r2 n
assumes (WEST-and-trace r1 r2) = Some sometrace
shows length sometrace ≥ length r1
using assms

proof(induction r1 arbitrary:r2 sometrace)
case Nil
then show ?case by simp

next
case (Cons h1 t1)
{assume r2-empty: r2 = []

have WEST-and-trace (h1 # t1) r2 = Some (h1 # t1)
using Cons WEST-and-trace.simps(1) r2-empty by blast

then have ?case using Cons by simp
} moreover {

assume r2-nonempty: r2 6= []
obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson neq-Nil-conv r2-nonempty)
have h1t1-and-h2t2 : WEST-and-trace (h1 # t1) (h2 # t2) = Some sometrace

using Cons WEST-and-trace.simps(3) h2t2 by blast
then have h1h2-nn: (WEST-and-state h1 h2) 6= None

using WEST-and-trace.simps(3)[of h1 t1 h2 t2]
using option.simps(4) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using h1t1-and-h2t2 WEST-and-trace.simps(3)[of h1 t1 h2 t2]

by (metis (no-types, lifting) WEST-and-state-difflengths-is-none WEST-and-state-length
option.distinct(1) option.simps(4) option.simps(5))

obtain h where h-obt: WEST-and-state h1 h2 = Some h using h1h2-nn by
blast

obtain t where t-obt: WEST-and-trace t1 t2 = Some t using t1t2-nn by blast
then have ∗: sometrace = h # t

using h-obt t-obt h1t1-and-h2t2 by auto
then have sometrace-ht: WEST-and-trace (h1 # t1) (h2 # t2) = Some (h #

t)
using h2t2 h1t1-and-h2t2 by blast

have ∀ i<length (h1 # t1). length ((h1 # t1) ! i) = n
using Cons.prems unfolding trace-regex-of-vars-def by argo

then have hyp1 : trace-regex-of-vars t1 n
unfolding trace-regex-of-vars-def by auto

have ∀ i<length (h2 # t2). length ((h2 # t2) ! i) = n

51

using Cons.prems h2t2 unfolding trace-regex-of-vars-def by meson
then have hyp2 : trace-regex-of-vars t2 n

unfolding trace-regex-of-vars-def by auto

have length t ≥ length t1
using Cons(1)[of t2 t, OF hyp1 hyp2 t-obt] by simp

then have ?case using ∗ by simp
}
ultimately show ?case by blast

qed

lemma WEST-and-trace-lengths:
assumes trace-regex-of-vars r1 n
assumes trace-regex-of-vars r2 n
assumes (WEST-and-trace r1 r2) = Some sometrace
shows length sometrace ≥ length r1 ∧ length sometrace ≥ length r2
using assms WEST-and-trace-lengths-r1 WEST-and-trace-commutative

proof−
have lenr1 : length r1 ≤ length sometrace

using assms WEST-and-trace-lengths-r1 [of r1 n r2 sometrace] by blast
have WEST-and-trace r1 r2 = WEST-and-trace r2 r1

using WEST-and-trace-commutative assms by blast
then have lenr2 : length r2 ≤ length sometrace

using WEST-and-trace-lengths-r1 [of r2 n r1 sometrace] assms by auto
show ?thesis using lenr1 lenr2 by auto

qed

lemma WEST-and-trace-correct-converse-r1 :
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes (∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2) =

Some sometrace)
shows match-regex π r1
using assms

proof(induct r1 arbitrary: r2 π)
case Nil

then show ?case
unfolding match-regex-def by auto

next
case (Cons h1 t1)

obtain sometrace where sometrace-obt: match-regex π sometrace ∧ (WEST-and-trace
(h1#t1) r2) = Some sometrace

using Cons.prems by blast
have match-sometrace-pre: match-regex π sometrace using sometrace-obt by

simp
have r1r2-is-sometrace: (WEST-and-trace (h1#t1) r2) = Some sometrace

52

using sometrace-obt by simp
have match-sometrace: ∀ time<length sometrace. match-timestep (π ! time)

(sometrace ! time)
using match-sometrace-pre unfolding match-regex-def by argo

have len-r1 : length (h1#t1) ≤ length π
using Cons.prems sometrace-obt WEST-and-trace-lengths
by (meson le-trans match-regex-def)

{assume empty-trace: π = []
then have ?case using len-r1 by simp

} moreover {
assume nonempty-trace: π 6= []
{assume r2-empty: r2 = []

have WEST-and-trace (h1#t1) r2 = Some (h1#t1)
using sometrace-obt WEST-and-trace.simps r2-empty by simp

then have ?case using sometrace-obt
unfolding match-regex-def by force

} moreover {
assume r2-nonempty: r2 6= []

obtain hxi txi where hxitxi: π = hxi#txi using nonempty-trace by (meson
list.exhaust)

obtain h2 t2 where h2t2 : r2 = h2#t2 using r2-nonempty by (meson
list.exhaust)

have not-none: WEST-and-trace (h1#t1) (h2#t2) = Some sometrace
using sometrace-obt h2t2 by blast

have h1h2-nn: WEST-and-state h1 h2 6= None
using not-none WEST-and-trace.simps(3)[of h1 t1 h2 t2] not-none
using option.simps(4) by fastforce

then have t1t2-nn: WEST-and-trace t1 t2 6= None
using not-none WEST-and-trace.simps(3)[of h1 t1 h2 t2] not-none
using option.simps(4) by fastforce

obtain h t where sometrace-ht: sometrace = h#t
using not-none h1h2-nn t1t2-nn by auto

have h1h2-h: WEST-and-state h1 h2 = Some h
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-

trace-ht
by blast

have t1t2-t: WEST-and-trace t1 t2 = Some t
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2 h t] not-none some-

trace-ht
by blast

have match-ht: ∀ time<length (h#t). match-timestep ((hxi # txi) ! time)
(((h#t)) ! time)

using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
by meson

have h1-nv: state-regex-of-vars h1 num-vars

53

using Cons.prems unfolding trace-regex-of-vars-def state-regex-of-vars-def
by (metis Ex-list-of-length append-self-conv2 arbitrary-regtrace-matches-any-trace

bot-nat-0 .not-eq-extremum le-0-eq less-nat-zero-code list.pred-inject(2) list-all-length
list-ex-length list-ex-simps(1) match-regex-def nth-append-length trace-of-vars-def)

have h2-nv: state-regex-of-vars h2 num-vars
using Cons.prems unfolding trace-regex-of-vars-def h2t2 state-regex-of-vars-def
by (metis Ex-list-of-length append-self-conv2 arbitrary-regtrace-matches-any-trace

bot-nat-0 .not-eq-extremum le-0-eq less-nat-zero-code list.pred-inject(2) list-all-length
list-ex-length list-ex-simps(1) match-regex-def nth-append-length trace-of-vars-def)

have match-h: match-timestep hxi h
using match-ht unfolding match-regex-def by auto

have match-h1 : match-timestep hxi h1
using WEST-and-state-correct-converse-s1 [of h1 num-vars h2 hxi, OF

h1-nv h2-nv]
using sometrace-ht h1h2-h match-h by blast

have ∀ i<length (h1 # t1). length ((h1 # t1) ! i) = num-vars
using Cons.prems unfolding trace-regex-of-vars-def by argo

then have t1-nv: trace-regex-of-vars t1 num-vars
unfolding trace-regex-of-vars-def by auto

have ∀ i<length (h2 # t2). length ((h2 # t2) ! i) = num-vars
using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis

then have t2-nv: trace-regex-of-vars t2 num-vars
unfolding trace-regex-of-vars-def h2t2 by auto

have match-regex π (h # t)
using sometrace-ht sometrace-obt hxitxi unfolding match-regex-def
by blast

then have match-regex txi t
using hxitxi WEST-and-trace-correct-forward-aux[of π h t]
unfolding match-regex-def by fastforce

then have match-t1 : match-regex txi t1
using Cons.hyps[of t2 txi, OF t1-nv t2-nv] t1t2-t by blast

have ?case
using match-h1 match-t1 len-r1

using WEST-and-trace-correct-forward-aux-converse[OF - match-h1
match-t1 , of π] hxitxi

by blast
}
ultimately have ?case by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-trace-correct-converse:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex

54

assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
assumes (∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace r1 r2) =

Some sometrace)
shows match-regex π r1 ∧ match-regex π r2

proof−
show ?thesis using WEST-and-trace-correct-converse-r1 WEST-and-trace-commutative

using assms(3) r1-of-num-vars r2-of-num-vars by presburger
qed

lemma WEST-and-trace-correct:
fixes num-vars::nat
fixes π::trace
fixes r1 r2 :: trace-regex
assumes r1-of-num-vars: trace-regex-of-vars r1 num-vars
assumes r2-of-num-vars: trace-regex-of-vars r2 num-vars
shows match-regex π r1 ∧ match-regex π r2 ←→ (∃ sometrace. match-regex π

sometrace ∧ (WEST-and-trace r1 r2) = Some sometrace)
using WEST-and-trace-correct-forward WEST-and-trace-correct-converse assms

by blast

3.3.5 WEST-and correct
Correct Forward lemma WEST-and-helper-subset-of-WEST-and:

assumes List.member L1 elem
shows set (WEST-and-helper elem (h2#T2)) ⊆ set (WEST-and L1 (h2#T2))
using assms

proof (induct L1)
case Nil
then show ?case

by (simp add: member-rec(2))
next

case (Cons h1 T1)
{assume ∗: h1 = elem

then have ?case using WEST-and.simps(3)[of h1 T1 h2 T2]
by (simp add: list.case-eq-if)

} moreover {assume ∗: h1 6= elem
then have List.member T1 elem

using Cons
by (simp add: member-rec(1))

then have ?case using Cons WEST-and-subset by blast
}
ultimately show ?case by blast

qed

lemma WEST-and-trace-element-of-WEST-and-helper :
assumes List.member L2 elem2
assumes (WEST-and-trace elem1 elem2) = Some sometrace
shows sometrace ∈ set (WEST-and-helper elem1 L2)

55

using assms
proof (induct L2)

case Nil
then show ?case

by (simp add: member-rec(2))
next

case (Cons h2 T2)
{assume ∗: elem2 = h2

then have ?case
using WEST-and-helper .simps(2)[of elem1 h2 t2]
using assms(2) by fastforce

} moreover {assume ∗: elem2 6= h2
then have List.member T2 elem2 using Cons(2)

by (simp add: member-rec(1))
then have ?case using Cons(1 , 3) WEST-and-helper-subset

by blast
}

ultimately show ?case by blast
qed

lemma index-of-L-in-L:
assumes i < length L
shows List.member L (L ! i)
using assms in-set-member by force

lemma WEST-and-indices:
fixes L1 L2 ::WEST-regex
fixes sometrace::trace-regex
assumes ∃ i1 i2 . i1 < length L1 ∧ i2 < length L2 ∧ WEST-and-trace (L1 ! i1)

(L2 ! i2) = Some sometrace
shows ∃ i<length (WEST-and L1 L2). WEST-and L1 L2 ! i = sometrace

proof−
obtain i1 i2 where i1-e2-prop: i1 < length L1 ∧ i2 < length L2 ∧WEST-and-trace

(L1 ! i1) (L2 ! i2) = Some sometrace
using assms by blast

then have elem: List.member L1 (L1 ! i1)
using index-of-L-in-L i1-e2-prop by blast

have elem2 : List.member L2 (L2 ! i2)
using index-of-L-in-L i1-e2-prop by blast

let ?L = WEST-and L1 L2
have L1-nonempty: L1 6= []

using i1-e2-prop by fastforce
have L2-nonempty: L2 6= []

using i1-e2-prop by fastforce

obtain h1 t1 where h1t1 : L1 = h1#t1 using L1-nonempty using list.exhaust
by blast

56

obtain h2 t2 where h2t2 : L2 = h2#t2 using L2-nonempty using list.exhaust
by blast

then have set-subset: set (WEST-and-helper (L1 ! i1) L2) ⊆ set (WEST-and
L1 L2)

using h2t2 WEST-and-helper-subset-of-WEST-and[of L1 (L1 ! i1) h2 t2] elem
by blast

have sometrace-in: sometrace ∈ set (WEST-and-helper (L1 ! i1) L2)
using WEST-and-trace-element-of-WEST-and-helper [OF elem2 , of (L1 ! i1)

sometrace]
i1-e2-prop by blast

show ?thesis using set-subset sometrace-in
by (simp add: in-set-conv-nth subset-code(1))

qed

lemma WEST-and-correct-forward:
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π L1 ∧ match π L2
shows match π (WEST-and L1 L2)

proof−
have L1-nonempty: L1 6= []

using assms(3) unfolding match-def by auto
have L2-nonempty: L2 6= []

using assms(3) unfolding match-def by auto

obtain i1 i2 where ∗:i1 < length L1 ∧ i2 < length L2 ∧ match-regex π (L1 !i1)
∧ match-regex π (L2 !i2)

using assms(3) unfolding match-def by metis

let ?r1 = L1 !i1
let ?r2 = L2 !i2
have bounds: i1 < length L1 ∧ i2 < length L2 using ∗ by auto
have match-r1r2 : match-regex π ?r1 ∧ match-regex π ?r2 using ∗ by simp

have r1-nv: trace-regex-of-vars (L1 ! i1) n
using bounds assms(1) unfolding WEST-regex-of-vars-def by metis

have r2-nv: trace-regex-of-vars (L2 ! i2) n
using bounds assms(2) unfolding WEST-regex-of-vars-def by metis

have ∃ sometrace. match-regex π sometrace ∧ (WEST-and-trace ?r1 ?r2) = Some
sometrace

using WEST-and-trace-correct-forward[of ?r1 n ?r2 π, OF r1-nv r2-nv match-r1r2]
by blast

57

then obtain sometrace where sometrace-obt: match-regex π sometrace ∧ (WEST-and-trace
?r1 ?r2) = Some sometrace

by auto

have ∃ i1 i2 .
i1 < length L1 ∧
i2 < length L2 ∧ WEST-and-trace (L1 ! i1) (L2 ! i2) = Some sometrace

using bounds sometrace-obt by blast
then have ∃ i < length (WEST-and L1 L2). (WEST-and L1 L2)!i = sometrace

using WEST-and-indices[of L1 L2 sometrace]
using sometrace-obt by force

then obtain i where sometrace-index: i < length (WEST-and L1 L2) ∧ (WEST-and
L1 L2)!i = sometrace

by blast
have sometrace-match: match-regex π sometrace using sometrace-obt by auto
have ∃ i<length (WEST-and L1 L2). match-regex π (WEST-and L1 L2 ! i)

using sometrace-index sometrace-match by blast
then show?thesis

unfolding match-def by simp
qed

Correct Converse lemma WEST-and-correct-converse-L1 :
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π (WEST-and L1 L2)
shows match π L1

proof−
have ∃ i<length (WEST-and L1 L2). match-regex π ((WEST-and L1 L2) ! i)

using assms unfolding match-def by argo
then obtain i where i-obt: i<length (WEST-and L1 L2) ∧

match-regex π ((WEST-and L1 L2) ! i) by auto
then obtain i1 i2 where i1i2 : i1 < length L1 ∧ i2 < length L2 ∧ Some

((WEST-and L1 L2)!i) = WEST-and-trace (L1 !i1) (L2 !i2)
using WEST-and.simps WEST-and-helper .simps
by (metis L1-of-num-vars L2-of-num-vars WEST-and-set-member nth-mem)

have i1-L1 : i1 < length L1 using i1i2 by auto
have i2-L2 : i2 < length L2 using i1i2 by auto

let ?r1 = L1 !i1
let ?r2 = L2 !i2
let ?r = WEST-and L1 L2 ! i

have r1-of-nv: trace-regex-of-vars (L1 ! i1) n using assms(1) i1-L1
unfolding WEST-regex-of-vars-def by metis

58

have r2-of-nv: trace-regex-of-vars (L2 ! i2) n using assms(2) i2-L2
unfolding WEST-regex-of-vars-def by metis

have match-regex π ?r
using WEST-and-trace-correct-converse[of ?r1 n ?r2 π, OF r1-of-nv r2-of-nv]
using i-obt i1i2 by auto

then have match-regex π (WEST-and L1 L2 ! i) unfolding match-def by simp
then have match-r1r2 : (match-regex π (L1 ! i1) ∧ match-regex π (L2 ! i2))

using WEST-and-trace-correct-converse[of ?r1 n ?r2 π, OF r1-of-nv r2-of-nv]
using i1i2 i-obt by force

then have ∃ i<length [L1 ! i1]. match-regex π ([L1 ! i1] ! i) unfolding match-def
by auto

then have ∃ i<1 . match-regex π ([L1 ! i1] ! i) unfolding match-def by auto
then have match-regex π (L1 ! i1) by simp
then show?thesis using i1-L1

unfolding match-def by auto
qed

lemma WEST-and-correct-converse:
fixes n::nat
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
assumes match π (WEST-and L1 L2)
shows match π L1 ∧ match π L2

proof−
show?thesis using WEST-and-correct-converse-L1 WEST-and-commutative assms

by (meson regex-equiv-def)
qed

lemma WEST-and-correct:
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
shows match π L1 ∧ match π L2 ←→ match π (WEST-and L1 L2)

proof−
show?thesis using WEST-and-correct-forward WEST-and-correct-converse assms

by blast
qed

3.4 Facts about the WEST or operator
lemma WEST-or-correct:

fixes π::trace
fixes L1 L2 ::WEST-regex

59

shows match π (L1@L2) ←→ (match π L1) ∨ (match π L2)
proof−

have forward: match π (L1@L2) −→ (match π L1) ∨ (match π L2)
unfolding match-def

by (metis add-diff-inverse-nat length-append nat-add-left-cancel-less nth-append)

have converse: (match π L1) ∨ (match π L2) −→ match π (L1@L2)
unfolding match-def by (metis list-ex-append list-ex-length)

show ?thesis
using forward converse by blast

qed

3.5 Pad and Match Facts
lemma shift-match-regex:

assumes length π ≥ a
assumes match-regex π ((arbitrary-trace num-vars a)@L)
shows match-regex (drop a π) (drop a ((arbitrary-trace num-vars a)@L))

proof−
have drop-a: (drop a ((arbitrary-trace num-vars a)@L)) = L

using arbitrary-trace.simps[of num-vars a] by simp
let ?padL = (arbitrary-trace num-vars a)@L
have length (arbitrary-trace num-vars a @ L) = a + (length L)

by auto
then have match-all: ∀ time<a+(length L). match-timestep (π ! time) (?padL !

time)
using assms(2) arbitrary-trace.simps[of num-vars a]
unfolding match-regex-def by metis

have len-xi: length π ≥ a + (length L)
using assms(2) arbitrary-trace.simps[of num-vars a]
unfolding match-regex-def
using ‹length (arbitrary-trace num-vars a @ L) = a + length L› by argo

then have match-drop-a: match-timestep (drop a π ! time) (L ! time)
if time-le: time < length L for time

proof−
have time + a < a + (length L) using time-le by simp
then have fact1 : match-timestep (π ! (time + a)) (?padL ! (time + a))

using match-all by blast
have fact2 : (π ! (time + a)) = (drop a π ! time)

using time-le len-xi
by (simp add: add.commute)

have fact3 : (?padL ! (time + a)) = (L ! time)
using time-le len-xi

by (metis ‹length (arbitrary-trace num-vars a @ L) = a + length L› add.commute
drop-a le-add1 nth-drop)

show ?thesis
using fact1 fact2 fact3 by argo

60

qed

have len-L-drop-a: length L ≤ length (drop a π)
using assms(2) unfolding match-regex-def
by (metis assms(1) diff-add drop-a drop-drop drop-eq-Nil length-drop)

then have match-regex (drop a π) L unfolding match-regex-def
using match-drop-a by metis

then show ?thesis using drop-a assms by argo
qed

lemma match-regex:
assumes length π ≥ a
assumes length L1 = a
assumes match-regex π (L1@L2)
shows match-regex (drop a π) (drop a (L1@L2))

proof −
have time-h: ∀ time<length (L1 @ L2). match-timestep (π ! time) ((L1 @ L2) !

time)
using assms unfolding match-regex-def by argo

then have time: match-timestep (drop a π ! time) ((drop a (L1 @ L2)) ! time)
if time-lt: time<length (drop a (L1 @ L2)) for time

proof −
have time + a < length (L1@L2)

using time-lt assms(2) by auto
then have h0 : match-timestep (π ! (time + a)) ((L1 @ L2) ! (time + a))

using time-h by blast
have h1 : π ! (time + a) = (drop a π) ! time

using assms(1)
by (simp add: add.commute)

have h2 : ((L1 @ L2) ! (time + a)) = (drop a (L1 @ L2)) ! time
using assms(2)
by (metis add.commute append-eq-conv-conj nth-append-length-plus)

then show ?thesis using assms h0 h1 h2 by simp
qed
have len-h: length (L1 @ L2) ≤ length π

using assms unfolding match-regex-def by argo
then have len: length (drop a (L1 @ L2)) ≤ length (drop a π)

using assms(1−2) by auto
show ?thesis

using len time unfolding match-regex-def
by argo

qed

lemma match-regex-converse:
assumes length π ≥ a
assumes L1 = (arbitrary-trace num-vars a)
assumes match-regex (drop a π) (drop a (L1@L2))
shows match-regex π (L1@L2)

61

proof−
have length (drop a (L1 @ L2)) = length L2

using arbitrary-trace.simps[of num-vars a] assms by simp
then have match-L2 :

∧
time. time<length L2 =⇒ match-timestep ((drop a π) !

time) (L2 ! time)
proof−

fix time
assume time-lt: time<length L2
then have time-lt-dropa-L1L2 : time < length (drop a (L1 @ L2))

using assms(2) arbitrary-trace.simps[of num-vars a] by auto
have ∀ time<length (drop a (L1 @ L2)). match-timestep (drop a π ! time) (drop

a (L1 @ L2) ! time)
using assms unfolding match-regex-def by metis

then have match-timestep (drop a π ! time) (drop a (L1 @ L2) ! time)
using time-lt-dropa-L1L2 by blast

then show match-timestep (drop a π ! time) (L2 ! time)
using assms(2) arbitrary-trace.simps[of num-vars a] by simp

qed
have match-L1L2 : match-timestep (π ! time) ((L1 @ L2) ! time) if time-le-L1L2 :

time<length (L1 @ L2) for time
proof−

{assume time-le-L1 : time < length L1
{assume L1-empty: L1 = []

have match-timestep (π ! time) (L2 ! time)
using assms unfolding match-regex-def arbitrary-trace.simps
using L1-empty time-le-L1 by auto

then have ?thesis using L1-empty by simp
} moreover {

assume L1-nonempty: L1 6= []
have L1-arb: (L1 !time) = arbitrary-state num-vars

using assms unfolding arbitrary-trace.simps time-le-L1
using time-le-L1 by auto

have match-timestep (π ! time) (arbitrary-state num-vars)
unfolding arbitrary-state.simps match-timestep-def by auto

then have match-L1 : match-timestep (π ! time) (L1 !time)
using L1-arb by auto

have (L1 @ L2) ! time = L1 !time
using time-le-L1L2 time-le-L1 L1-nonempty by (meson nth-append)

then have ?thesis using match-L1 by auto
}
ultimately have ?thesis by blast

} moreover {
assume time-geq-L1 : time ≥ length L1
then have time-minus-a-le-L2 : time − a < length L2

using assms(2) time-le-L1L2 unfolding arbitrary-trace.simps by simp
then have match-time-minus-a: match-timestep ((drop a π) ! (time − a))

(L2 ! (time − a))

62

using match-L2 by blast

have length (drop a (L1 @ L2)) ≤ length (drop a π)
using assms unfolding match-regex-def by metis

then have L2-le-dropa-xi: length L2 ≤ length (drop a π)
using assms unfolding arbitrary-trace.simps by simp

then have fact1-h1 : length L2 ≤ length π − a by auto
have fact1-h2 : length L1 ≤ time using time-geq-L1 by blast
have fact1-h3 : time − a < length L2 using time-minus-a-le-L2 by auto
have fact1-h4 : time < length L1 + length L2 using time-le-L1L2 by simp
have length L2 ≤ length π − a =⇒

length L1 ≤ time =⇒
time − a < length L2 =⇒
time < length L1 + length L2 =⇒ π ! (a + (time − a)) = π ! time

using fact1-h1 fact1-h2 fact1-h3 fact1-h4 time-geq-L1 assms
unfolding arbitrary-trace.simps by simp

then have fact1 : drop a π ! (time − a) = π ! time
using time-geq-L1 time-minus-a-le-L2 time-le-L1L2 L2-le-dropa-xi by simp

have L1-a: length L1 = a using assms unfolding arbitrary-trace.simps by
auto

then have fact2 : L2 ! (time − a) = (L1 @ L2) ! time
using fact1-h2 fact1-h3 fact1-h4 time-geq-L1
by (metis le-add-diff-inverse nth-append-length-plus)

have ?thesis using fact1 fact2 match-time-minus-a by auto
}
ultimately show ?thesis by force

qed
have length (drop a (L1 @ L2)) ≤ length (drop a π)

using assms(2) arbitrary-trace.simps[of num-vars num-pad]
by (metis assms(3) match-regex-def)

then have length (L1 @ L2) ≤ length π
using assms unfolding match-regex-def by simp

then show ?thesis using match-L1L2 unfolding match-regex-def by simp
qed

lemma shift-match:
assumes length π ≥ a
assumes match π (shift L num-vars a)
shows match (drop a π) L

proof−
obtain i where i-obt: i<length (shift L num-vars a) ∧ match-regex π (shift L

num-vars a ! i)
using assms unfolding match-def by force

have (shift L num-vars a ! i) = (arbitrary-trace num-vars a)@(L!i)
using shift.simps
using ‹i < length (shift L num-vars a) ∧ match-regex π (shift L num-vars a !

63

i)› by auto

then have match: match-regex π ((arbitrary-trace num-vars a)@(L!i))
using i-obt by argo

have len-at: length (arbitrary-trace num-vars a) = a
unfolding arbitrary-trace.simps by simp

have drop-a: (drop a (arbitrary-trace num-vars a)@(L!i)) = L!i
using arbitrary-trace.simps[of num-vars a] by simp

then have match-regex (drop a π) (drop a (arbitrary-trace num-vars a)@(L!i))
using match using match-regex[OF assms(1) len-at] by simp

then have match-regex (drop a π) (L ! i)
using drop-a by argo

then show ?thesis using assms i-obt unfolding match-def by auto
qed

lemma shift-match-converse:
assumes length π ≥ a
assumes match (drop a π) L
shows match π (shift L num-vars a)

proof−
obtain i where i-obt: match-regex (drop a π) (L!i) ∧ i < length L

using assms unfolding match-def by metis
then have match-padLi: match-regex π ((arbitrary-trace num-vars a)@(L!i))

using match-regex-converse assms by auto
have i-bound: i<length (shift L num-vars a)

using shift.simps i-obt by auto
have (shift L num-vars a ! i) = (arbitrary-trace num-vars a)@(L!i)

unfolding shift.simps
by (simp add: i-obt)

then have ∃ i<length (shift L num-vars a). match-regex π (shift L num-vars a !
i)

using assms match-padLi i-bound by metis
then show ?thesis unfolding match-def by argo

qed

lemma pad-zero:
shows shift L2 num-vars 0 = L2
unfolding shift.simps arbitrary-trace.simps

proof −
have ∃wsss. L2 = wsss ∧ (@) ([]::trace-regex) = (λwss. wss) ∧ L2 = wsss

by blast
then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0])) L2 = L2

by simp
qed

64

3.6 Facts about WEST num vars
lemma regtrace-append:

assumes trace-regex-of-vars L1 k
assumes trace-regex-of-vars L2 k
shows trace-regex-of-vars (L1@L2) k
using assms unfolding trace-regex-of-vars-def
by (simp add: nth-append)

lemma WEST-num-vars-subformulas:
assumes G ∈ subformulas F
shows (WEST-num-vars F) ≥ WEST-num-vars G
using assms

proof (induct F)
case True-mltl
then show ?case unfolding subformulas.simps by auto

next
case False-mltl
then show ?case unfolding subformulas.simps by auto

next
case (Prop-mltl x)
then show ?case unfolding subformulas.simps by auto

next
case (Not-mltl F)
then show ?case unfolding subformulas.simps by auto

next
case (And-mltl F1 F2)
then show ?case unfolding subformulas.simps by auto

next
case (Or-mltl F1 F2)
then show ?case unfolding subformulas.simps by auto

next
case (Future-mltl F x2 x3a)
then show ?case unfolding subformulas.simps by auto

next
case (Global-mltl F x2 x3a)
then show ?case unfolding subformulas.simps by auto

next
case (Until-mltl F1 F2 x3a x4a)
then show ?case unfolding subformulas.simps by auto

next
case (Release-mltl F1 F2 x3a x4a)
then show ?case unfolding subformulas.simps by auto

qed

lemma WEST-num-vars-nnf :
shows (WEST-num-vars ϕ) = WEST-num-vars (convert-nnf ϕ)

proof (induction depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)

65

case True-mltl
then show ?thesis by auto

next
case False-mltl
then show ?thesis by auto

next
case (Prop-mltl x3)
then show ?thesis by auto

next
case (Not-mltl p)
then show ?thesis proof (induct p)

case True-mltl
then show ?case using Not-mltl less by auto

next
case False-mltl
then show ?case using Not-mltl less by auto

next
case (Prop-mltl x)
then show ?case using Not-mltl less by auto

next
case (Not-mltl p)
then show ?case using Not-mltl less by auto

next
case (And-mltl ϕ1 ϕ2)
then have phi-is: ϕ = Not-mltl (And-mltl ϕ1 ϕ2)

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2))

using less[of Not-mltl ϕ2] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Or-mltl ϕ1 ϕ2)
then have phi-is: ϕ = Not-mltl (Or-mltl ϕ1 ϕ2)

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2))

using less[of Not-mltl ϕ2] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Future-mltl a b ϕ1)
then have phi-is: ϕ = Not-mltl (Future-mltl a b ϕ1)

66

using Not-mltl
by auto
have ind1 : WEST-num-vars ϕ = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

then show ?case using ind1 phi-is
by auto

next
case (Global-mltl a b ϕ1)
then have phi-is: ϕ = Not-mltl (Global-mltl a b ϕ1)

using Not-mltl
by auto
have ind1 : WEST-num-vars ϕ = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

then show ?case using ind1 phi-is
by auto

next
case (Until-mltl ϕ1 a b ϕ2)
then have phi-is: ϕ = Not-mltl (Until-mltl ϕ1 a b ϕ2)

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2))

using less[of Not-mltl ϕ2] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
next

case (Release-mltl ϕ1 a b ϕ2)
then have phi-is: ϕ = Not-mltl (Release-mltl ϕ1 a b ϕ2)

using Not-mltl by auto
have ind1 : WEST-num-vars ϕ1 = WEST-num-vars (convert-nnf (Not-mltl

ϕ1))
using less[of Not-mltl ϕ1] phi-is by auto

have ind2 : WEST-num-vars ϕ2 = WEST-num-vars (convert-nnf (Not-mltl
ϕ2))

using less[of Not-mltl ϕ2] phi-is by auto
then show ?case using ind1 ind2 phi-is

by auto
qed

next
case (And-mltl ϕ1 ϕ2)
then show ?thesis using less by auto

next
case (Or-mltl ϕ1 ϕ2)
then show ?thesis using less by auto

next

67

case (Future-mltl a b ϕ)
then show ?thesis using less by auto

next
case (Global-mltl a b ϕ)
then show ?thesis using less by auto

next
case (Until-mltl ϕ1 a b ϕ2)
then show ?thesis using less by auto

next
case (Release-mltl ϕ1 a b ϕ2)
then show ?thesis using less by auto

qed
qed

3.6.1 Facts about num vars for different WEST operators
lemma length-WEST-and:

assumes length state1 = k
assumes length state2 = k
assumes WEST-and-state state1 state2 = Some state
shows length state = k
using assms

proof (induct length state1 arbitrary: state1 state2 k state rule: less-induct)
case less
{assume ∗: k = 0

then have ?case using less(2−3) less(4) WEST-and-state.simps(1)
by auto

} moreover {assume ∗: k > 0
obtain h1 t1 where h1t1 : state1 = h1#t1

using ∗ less(2)
using list.exhaust by auto

obtain h2 t2 where h2t2 : state2 = h2#t2
using ∗ less(3)
using list.exhaust by auto

have WEST-and-bitwise h1 h2 6= None
by (metis WEST-and-state.simps(2) h1t1 h2t2 less.prems(3) option.discI

option.simps(4))
then obtain h where someh: WEST-and-bitwise h1 h2 = Some h

by blast
have WEST-and-state t1 t2 6= None
by (metis (no-types, lifting) WEST-and-state.simps(2) h1t1 h2t2 less.prems(3)

option.case-eq-if option.discI)
then obtain t where somet: WEST-and-state t1 t2 = Some t

by blast
then have length t = k−1

using less(1)[of t1 k−1 t2] h1t1 h2t2
by (metis WEST-and-state-difflengths-is-none diff-Suc-1 length-Cons less.prems(1)

lessI option.distinct(1))
then have ?case using less WEST-and-state.simps(2)[of h1 t1 h2 t2]

68

using someh somet
by (metis WEST-and-state-length option.discI option.inject)

}
ultimately show ?case

by auto
qed

lemma WEST-and-trace-num-vars:
assumes trace-regex-of-vars r1 k
assumes trace-regex-of-vars r2 k
assumes (WEST-and-trace r1 r2) = Some sometrace
shows trace-regex-of-vars sometrace k
using assms

proof(induct r1 arbitrary: r2 sometrace)
case Nil
then have sometrace = r2

using WEST-and-trace.simps(2)
by (metis WEST-and-trace.simps(1) WEST-and-trace-commutative option.inject)

then show ?case using Nil unfolding trace-regex-of-vars-def by blast
next

case (Cons h1 t1)
{assume r2-empty: r2 = []

then have sometrace = (h1#t1)
using WEST-and-trace.simps WEST-and-trace-commutative(1) Cons.prems

by auto
then have ?case using Cons

unfolding trace-regex-of-vars-def by blast
} moreover {

assume r2-nonempty: r2 6= []
then obtain h2 t2 where h2t2 : r2 = h2#t2

by (meson trim-reversed-regex.cases)
{assume sometrace-empty: sometrace = []

then have ?case unfolding trace-regex-of-vars-def by simp
} moreover {

assume sometrace-nonempty: sometrace 6= []
then obtain h t where ht-obt: WEST-and-state h1 h2 = Some h ∧WEST-and-trace

t1 t2 = Some t
using WEST-and-trace-nonempty-args[of h1 t1 h2 t2] Cons.prems(3)
by (metis ‹r2 = h2 # t2 › trim-reversed-regex.cases)

then have sometrace-ht: sometrace = h#t
using Cons.prems(3) unfolding h2t2 by auto

have h1t1-nv: ∀ i<length (h1 # t1). length ((h1 # t1) ! i) = k
using Cons.prems unfolding trace-regex-of-vars-def by argo

have h1-nv: length h1 = k
using h1t1-nv by auto

have t1-nv: trace-regex-of-vars t1 k
using h1t1-nv unfolding trace-regex-of-vars-def by auto

have h2t2-nv: ∀ i<length (h2 # t2). length ((h2 # t2) ! i) = k

69

using Cons.prems h2t2 unfolding trace-regex-of-vars-def by metis
have h2-nv: length h2 = k

using h2t2-nv by auto
have t2-nv: trace-regex-of-vars t2 k

using h2t2-nv unfolding trace-regex-of-vars-def by auto

have h1h2-h: WEST-and-state h1 h2 = Some h
using ht-obt by simp

then have h-nv: length h = k using h1-nv h2-nv
using length-WEST-and by blast

have t1t2-t: WEST-and-trace t1 t2 = Some t
using ht-obt by simp

then have t-nv: trace-regex-of-vars t k
using Cons.hyps[of t2 t, OF t1-nv t2-nv] by blast

have t-nv-unfold: ∀ i<length t. length (t ! i) = k
using h-nv t-nv sometrace-ht unfolding trace-regex-of-vars-def by presburger

then have length (sometrace ! i) = k if i-lt: i<length sometrace for i
using i-lt sometrace-ht h-nv

proof−
{assume ∗: i = 0

then have ?thesis
using sometrace-ht h-nv by auto

} moreover {assume ∗: i > 0
then have sometrace ! i = t ! (i−1)

using i-lt sometrace-ht by simp

then have ?thesis
using t-nv-unfold i-lt sometrace-ht
by (metis ∗ One-nat-def Suc-less-eq Suc-pred length-Cons)

}
ultimately show ?thesis by auto

qed
then have ?case unfolding trace-regex-of-vars-def by auto

}
ultimately have ?case by blast

}
ultimately show ?case by blast

qed

lemma WEST-and-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-and L1 L2) k

proof−
{assume L1L2-empty: (WEST-and L1 L2) = []

70

then have ?thesis unfolding WEST-regex-of-vars-def by simp
} moreover {

assume L1L2-nonempty: WEST-and L1 L2 6= []

have trace-regex-of-vars (WEST-and L1 L2 ! i) k if i-index: i < length
(WEST-and L1 L2) for i

proof−
obtain sometrace where sometrace-obt: (WEST-and L1 L2)!i = sometrace

using L1L2-nonempty by simp
then obtain i1 i2 where i1i2-obt: i1 < length L1 ∧ i2 < length L2 ∧ Some

sometrace = WEST-and-trace (L1 !i1) (L2 !i2)
using WEST-and.simps WEST-and-helper .simps

by (metis WEST-and-set-member-dir1 assms(1) assms(2) i-index nth-mem)

let ?r1 = L1 !i1
let ?r2 = L2 !i2
have r1r2-sometrace: Some sometrace = WEST-and-trace (L1 !i1) (L2 !i2)

using i1i2-obt by blast
have r1-nv: trace-regex-of-vars ?r1 k

using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
have r2-nv: trace-regex-of-vars ?r2 k

using assms i1i2-obt unfolding WEST-regex-of-vars-def by metis
have trace-regex-of-vars sometrace k

using r1-nv r2-nv r1r2-sometrace WEST-and-trace-num-vars[of ?r1 k ?r2]
by metis

then show ?thesis
using sometrace-obt by blast

qed
then have ?thesis unfolding WEST-regex-of-vars-def by simp

}
ultimately show ?thesis by blast

qed

lemma WEST-or-num-vars:
assumes L1-nv: WEST-regex-of-vars L1 k
assumes L2-nv: WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (L1@L2) k

proof−
let ?L = L1@L2
have trace-regex-of-vars (?L!i) k if i-lt: i < length ?L for i
proof−

{assume in-L1 : i < length L1
then have L1-i-nv: trace-regex-of-vars (L1 !i) k

using L1-nv unfolding WEST-regex-of-vars-def by metis
have ?L!i = L1 !i

using in-L1
by (simp add: nth-append)

then have ?thesis using L1-i-nv by simp

71

} moreover {
assume in-L2 : i ≥ length L1
then have i − length L1 < length L2

using i-lt by auto
then have L2-i-nv: trace-regex-of-vars (L2 !(i − length L1)) k

using L2-nv unfolding WEST-regex-of-vars-def by metis
have (?L ! i) = L2 !(i − length L1)

using in-L2
by (simp add: nth-append)

then have ?thesis using L2-i-nv by simp
}
ultimately show ?thesis by fastforce

qed

then show ?thesis unfolding WEST-regex-of-vars-def by simp
qed

lemma regtraceList-cons-num-vars:
assumes trace-regex-of-vars h num-vars
assumes WEST-regex-of-vars T num-vars
shows WEST-regex-of-vars (h#T) num-vars

proof−
let ?H = [h]
have WEST-regex-of-vars ?H num-vars

using assms unfolding WEST-regex-of-vars-def by auto
then have WEST-regex-of-vars (?H@T) num-vars

using WEST-or-num-vars[of ?H num-vars T] assms by simp
then show ?thesis by simp

qed

lemma WEST-simp-state-num-vars:
assumes length s1 = num-vars
assumes length s2 = num-vars
shows length (WEST-simp-state s1 s2) = num-vars
using assms WEST-simp-state.simps by auto

lemma WEST-get-state-length:
assumes trace-regex-of-vars r num-vars
shows length (WEST-get-state r k num-vars) = num-vars
using assms unfolding trace-regex-of-vars-def
using WEST-get-state.simps[of r k num-vars]
by (metis leI length-map length-upt minus-nat.diff-0)

lemma WEST-simp-trace-num-vars:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars

72

shows trace-regex-of-vars (WEST-simp-trace r1 r2 num-vars) num-vars
using WEST-simp-state-num-vars assms
unfolding WEST-simp-trace.simps trace-regex-of-vars-def
using WEST-get-state-length assms(1) by auto

lemma remove-element-at-index-preserves-nv:
assumes i < length L
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (remove-element-at-index i L) num-vars

proof−
have length (take i L @ drop (i + 1) L) = length L−1

using assms by simp
have take-nv: WEST-regex-of-vars (take i L) num-vars

using assms unfolding WEST-regex-of-vars-def
by (metis in-set-conv-nth in-set-takeD)

have drop-nv: WEST-regex-of-vars (drop (i + 1) L) num-vars
using assms unfolding WEST-regex-of-vars-def
by (metis add.commute length-drop less-diff-conv less-iff-succ-less-eq nth-drop)

then show ?thesis
using take-nv drop-nv WEST-or-num-vars by simp

qed

lemma update-L-length:
assumes h ∈ set (enum-pairs L)
shows length (update-L L h num-var) = length L − 1

proof−
have length L ≤ 1 −→ enum-pairs L = []

unfolding enum-pairs.simps using enumerate-pairs.simps
by (simp add: upt-rec)

then have len-L: length L ≥ 2
using assms by auto

let ?i = fst h
let ?j = snd h
have i-le-j: ?i < ?j using enum-pairs-fact assms(1)

by metis
have j-bound: ?j < length L

using assms(1) enum-pairs-bound[of L]
by metis

then have i-bound: ?i < (length L)−1
using i-le-j by auto

have len-orsimp: length [WEST-simp-trace (L ! fst h) (L ! snd h) num-var] = 1
by simp

have length (remove-element-at-index (snd h) L) = length L − 1
using assms j-bound by auto

then have length (remove-element-at-index (fst h) (remove-element-at-index (snd
h) L)) = length L − 2

using assms i-bound j-bound by simp

73

then show ?thesis
using len-orsimp len-L

using length-append[of (remove-element-at-index (fst h) (remove-element-at-index
(snd h) L)) [WEST-simp-trace (L ! fst h) (L ! snd h) num-var]]

unfolding update-L.simps by linarith
qed

lemma update-L-preserves-num-vars:
assumes WEST-regex-of-vars L num-var
assumes h ∈ set (enum-pairs L)
assumes K = update-L L h num-var
shows WEST-regex-of-vars K num-var

proof−
have simp-nv: trace-regex-of-vars (WEST-simp-trace (L ! fst h) (L ! snd h)

num-var) num-var
using WEST-simp-trace-num-vars assms unfolding WEST-regex-of-vars-def
by (metis enum-pairs-bound enum-pairs-fact order .strict-trans)

then have simp-nv: WEST-regex-of-vars [WEST-simp-trace (L ! fst h) (L ! snd
h) num-var] num-var

unfolding WEST-regex-of-vars-def by auto
have ∗:WEST-regex-of-vars (remove-element-at-index (snd h) L) num-var

using assms remove-element-at-index-preserves-nv
using enum-pairs-fact[of L] enum-pairs-bound[of L]
using remove-element-at-index-preserves-nv by blast

let ?La = (remove-element-at-index (snd h) L)
have fst h < length (remove-element-at-index (snd h) L)

using enum-pairs-fact[of L] enum-pairs-bound[of L] assms(2)
by auto

then have WEST-regex-of-vars (remove-element-at-index (fst h) (remove-element-at-index
(snd h) L)) num-var

using remove-element-at-index-preserves-nv[of fst h ?La num-var] ∗
by blast

then show ?thesis
using simp-nv assms(3) unfolding update-L.simps using WEST-or-num-vars
using WEST-regex-of-vars-def by blast

qed

lemma WEST-simp-helper-can-simp:
assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

assumes min-j = Min {j. j < length (enum-pairs L) ∧ j ≥ i ∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}
assumes newL = update-L L (enum-pairs L ! min-j) num-vars
assumes i < length (enum-pairs L)
shows simp-L = WEST-simp-helper newL (enum-pairs newL) 0 num-vars

proof−

74

let ?j-set = {j. j < length (enum-pairs L) ∧ j ≥ i ∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}
have cond1 : finite ?j-set

by fast
have cond2 : ?j-set 6= {}

using assms(2) by blast
have min-j ∈ ?j-set

using Min-in[OF cond1 cond2] assms(3) by blast
then have min-j-props: min-j < length (enum-pairs L) ∧ min-j ≥ i

∧ check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

by blast
have minimality: ¬ (check-simp (L ! fst (enum-pairs L ! k))

(L ! snd (enum-pairs L ! k)))
if k-prop: (k < min-j ∧ k < length (enum-pairs L) ∧ k ≥ i)
for k

proof−
have k /∈ ?j-set

using assms(3) Min-gr-iff [of ?j-set k] k-prop
by (metis (no-types, lifting) empty-iff finite-nat-set-iff-bounded mem-Collect-eq

order-less-imp-not-eq2)
then show ?thesis using k-prop by blast

qed
then have minimality: ∀ k. (k < min-j ∧ k < length (enum-pairs L) ∧ k ≥ i)
−→

¬ (check-simp (L ! fst (enum-pairs L ! k))
(L ! snd (enum-pairs L ! k)))

by blast
show ?thesis

using assms(1 , 4 , 5) minimality min-j-props
proof(induction min-j − i arbitrary: min-j i L simp-L newL)

case 0
then have check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))
by force

then show ?case
using 0 WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by (metis diff-diff-cancel diff-zero linorder-not-less)

next
case (Suc x)
have min-j-eq: min-j − i = x+1

using Suc.hyps(2) by auto
then have min-j > i

by auto
then have cant-match-i: ¬ (check-simp (L ! fst (enum-pairs L ! i))

(L ! snd (enum-pairs L ! i)))
using Suc by fast

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars

75

let ?simp-Lnext = WEST-simp-helper L (enum-pairs L) (i+1) num-vars
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have simp-L-eq: ?simp-L = ?simp-Lnext
using cant-match-i WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]

Suc.prems(3)
by auto

have cond1 : x = min-j − (i+1)
using min-j-eq by auto

have cond2 : ?simp-Lnext = WEST-simp-helper L (enum-pairs L) (i+1) num-vars
by simp

have cond3 : ?newL = update-L L (enum-pairs L ! min-j) num-vars
by simp

have cond4 : i + 1 < length (enum-pairs L)
using Suc by linarith

have cond5 : ∀ k. k < min-j ∧ k < length (enum-pairs L) ∧ i + 1 ≤ k −→
¬ check-simp (L ! fst (enum-pairs L ! k))

(L ! snd (enum-pairs L ! k))
using Suc
using add-leD1 by blast

have cond6 : min-j < length (enum-pairs L) ∧ i + 1 ≤ min-j ∧
check-simp (L ! fst (enum-pairs L ! min-j))

(L ! snd (enum-pairs L ! min-j))
using Suc by linarith

have ?simp-Lnext = WEST-simp-helper newL (enum-pairs newL) 0 num-vars
using Suc.hyps(1)[OF cond1 cond2 cond3 cond4 cond5 cond6]
using Suc.prems by blast

then show ?case
using simp-L-eq Suc.prems(1) by argo

qed
qed

lemma WEST-simp-helper-cant-simp:
assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

shows simp-L = L
using assms

proof(induct length (enum-pairs L) − i arbitrary: simp-L L i)
case 0
then have i ≥ length (enum-pairs L)

by simp
then show ?case

using 0 (2) WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by auto

next
case (Suc x)
then have i-eq: i = length (enum-pairs L) − (x+1)

76

by simp
let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
let ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i+1) num-vars
have simp-L-eq: ?simp-L = ?simp-nextL

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
using i-eq Suc
by (metis diff-is-0-eq le-refl nat.distinct(1) zero-less-Suc zero-less-diff)

have cond1 : x = length (enum-pairs L) − (i+1)
using Suc.hyps(2) by auto

have cond2 : ?simp-nextL = WEST-simp-helper L (enum-pairs L) (i + 1) num-vars
by blast

have cond3 : ¬ (∃ j<length (enum-pairs L).
i + 1 ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

using Suc by auto
have ?simp-nextL = L

using Suc.hyps(1)[OF cond1 cond2 cond3] by auto
then show ?case

using Suc.prems(1) simp-L-eq by argo
qed

lemma WEST-simp-helper-length:
shows length (WEST-simp-helper L (enum-pairs L) i num-vars) ≤ length L

proof(induct length L arbitrary: L i rule: less-induct)
case less

{assume i-geq: length (enum-pairs L) ≤ i
then have WEST-simp-helper L (enum-pairs L) i num-vars = L

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

then have ?case
by auto

} moreover {
assume i-le: length (enum-pairs L) > i

then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
=

(if check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))

then let newL = update-L L (enum-pairs L ! i) num-vars
in WEST-simp-helper newL (enum-pairs newL) 0 num-vars

else WEST-simp-helper L (enum-pairs L) (i + 1) num-vars)
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
{assume can-simp: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs
L) ∧ j ≥ i ∧

77

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
using obt-min-j can-simp i-le by blast

have min-j-bounds: min-j < length (enum-pairs L) ∧ min-j ≥ i
using can-simp obt-min-j Min-in[of {j. j < length (enum-pairs L) ∧ j ≥ i

∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}]
by fastforce

have length ?newL < length L
using update-L-length[of enum-pairs L ! min-j L num-vars]
using min-j-bounds
by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem

zero-less-one)
then have ?case
using less(1)[of ?newL] less.prems min-j-bounds update-L-preserves-num-vars
by (metis (no-types, lifting) ‹WEST-simp-helper L (enum-pairs L) i num-vars

= WEST-simp-helper (update-L L (enum-pairs L ! min-j) num-vars) (enum-pairs
(update-L L (enum-pairs L ! min-j) num-vars)) 0 num-vars› leD le-trans nat-le-linear)

} moreover {
assume cant-simp: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have ?simp-L = L
using WEST-simp-helper-cant-simp i-le by blast

then have ?case by simp
}
ultimately have ?case using WEST-simp-helper-eq by blast

}
ultimately show ?case

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by fastforce

qed

lemma WEST-simp-helper-num-vars:
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (WEST-simp-helper L (enum-pairs L) i num-vars)

num-vars
using assms

proof(induct length L arbitrary: L i rule: less-induct)
case less
{assume i-geq: length (enum-pairs L) ≤ i

then have WEST-simp-helper L (enum-pairs L) i num-vars = L
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

78

then have ?case
using less by argo

} moreover {
assume i-le: length (enum-pairs L) > i

then have WEST-simp-helper-eq: WEST-simp-helper L (enum-pairs L) i num-vars
=

(if check-simp (L ! fst (enum-pairs L ! i))
(L ! snd (enum-pairs L ! i))

then let newL = update-L L (enum-pairs L ! i) num-vars
in WEST-simp-helper newL (enum-pairs newL) 0 num-vars

else WEST-simp-helper L (enum-pairs L) (i + 1) num-vars)
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by simp

let ?simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
{assume can-simp: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs
L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have ?simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using WEST-simp-helper-can-simp[of ?simp-L L i num-vars min-j ?newL]
using obt-min-j can-simp i-le by blast

have min-j-bounds: min-j < length (enum-pairs L) ∧ min-j ≥ i
using can-simp obt-min-j Min-in[of {j. j < length (enum-pairs L) ∧ j ≥ i

∧
check-simp (L ! fst (enum-pairs L ! j))

(L ! snd (enum-pairs L ! j))}]
by fastforce

have length ?newL < length L
using update-L-length[of enum-pairs L ! min-j L num-vars]
using min-j-bounds
by (metis diff-less enum-pairs-bound less-nat-zero-code not-gr-zero nth-mem

zero-less-one)
then have ?case
using less(1)[of ?newL] less.prems min-j-bounds update-L-preserves-num-vars
by (metis ‹WEST-simp-helper L (enum-pairs L) i num-vars = WEST-simp-helper

(update-L L (enum-pairs L ! min-j) num-vars) (enum-pairs (update-L L (enum-pairs
L ! min-j) num-vars)) 0 num-vars› nth-mem)

} moreover {
assume cant-simp: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have ?simp-L = L
using WEST-simp-helper-cant-simp i-le by blast

then have ?case using less by simp

79

}
ultimately have ?case using WEST-simp-helper-eq by blast

}
ultimately show ?case

using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by fastforce

qed

lemma WEST-simp-num-vars:
assumes WEST-regex-of-vars L num-vars
shows WEST-regex-of-vars (WEST-simp L num-vars) num-vars
unfolding WEST-simp.simps
using WEST-simp-helper-num-vars assms by blast

lemma WEST-and-simp-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-and-simp L1 L2 k) k
unfolding WEST-and-simp.simps
using WEST-simp-num-vars WEST-and-num-vars assms by blast

lemma WEST-or-simp-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
shows WEST-regex-of-vars (WEST-or-simp L1 L2 k) k
unfolding WEST-or-simp.simps
using WEST-simp-num-vars WEST-or-num-vars assms by blast

lemma shift-num-vars:
fixes L::WEST-regex
fixes a k::nat
assumes WEST-regex-of-vars L k
shows WEST-regex-of-vars (shift L k a) k
using assms

proof(induct L)
case Nil
then show ?case

unfolding WEST-regex-of-vars-def by auto
next

case (Cons h t)
let ?padding = arbitrary-trace k a
let ?padh = ?padding @ h
let ?padt = shift t k a
have padding-nv: ∀ i<length (arbitrary-trace k a). length (arbitrary-trace k a ! i)

= k
unfolding trace-regex-of-vars-def by auto

have h-nv: trace-regex-of-vars h k

80

using Cons.prems unfolding WEST-regex-of-vars-def
by (metis length-greater-0-conv list.distinct(1) nth-Cons-0)

then have h-nv: ∀ i<length h. length (h ! i) = k
unfolding trace-regex-of-vars-def by metis

have length ((?padding @ h) ! i) = k if i-lt: i < length (?padding @ h) for i
proof−

{assume in-padding: i < length ?padding
then have ?thesis

using padding-nv
by (metis nth-append)

} moreover {
assume in-h: i ≥ length ?padding
let ?index = i − (length ?padding)
have i − (length ?padding) < length h

using i-lt in-h by auto
then have h!?index = (?padding@h)!i

using i-lt in-h by (simp add: nth-append)
then have ?thesis using h-nv

by (metis ‹i − length (arbitrary-trace k a) < length h›)
}
ultimately show ?thesis by fastforce

qed
then have padh-nv: trace-regex-of-vars ?padh k

unfolding trace-regex-of-vars-def by simp
have ∀ ka<length (h # t). trace-regex-of-vars ((h # t) ! ka) k

using Cons.prems unfolding WEST-regex-of-vars-def by metis
then have WEST-regex-of-vars t k

unfolding WEST-regex-of-vars-def by auto
then have padt-nv: WEST-regex-of-vars ?padt k

using Cons.hyps by simp
then show ?case using padh-nv padt-nv

using regtraceList-cons-num-vars[of ?padh k ?padt] by simp
qed

lemma WEST-future-num-vars:
assumes WEST-regex-of-vars L k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-future L a b k) k
using assms

proof(induct b−a arbitrary: L a b)
case 0
then have a = b by simp
then have WEST-future-base: (WEST-future L a b k) = shift L k a

using WEST-future.simps[of L a b k] by auto
have WEST-regex-of-vars (shift L k a) k

using shift-num-vars 0 by blast
then show ?case using WEST-future-base by simp

next

81

case (Suc x)
then have b = a + (Suc x) by auto
then have west-future: WEST-future L a b k = WEST-or-simp (shift L k b)

(WEST-future L a (b − 1) k) k
using WEST-future.simps[of L a b k]
by (metis Suc.hyps(2) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq ′ linorder-le-less-linear)
have fact: WEST-regex-of-vars (shift L k b) k

using shift-num-vars Suc by blast
have indh: WEST-regex-of-vars (WEST-future L a (b − 1) k) k

using Suc.hyps Suc.prems by simp
show ?case

using west-future WEST-or-simp-num-vars fact indh by metis
qed

lemma WEST-global-num-vars:
assumes WEST-regex-of-vars L k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-global L a b k) k
using assms

proof(induct b−a arbitrary: L a b)
case 0
then have a = b by simp
then have WEST-global-base: (WEST-global L a b k) = shift L k a

using WEST-global.simps[of L a b k] by auto
have WEST-regex-of-vars (shift L k a) k

using shift-num-vars 0 by blast
then show ?case using WEST-global-base by simp

next
case (Suc x)
then have b = a + (Suc x) by auto
then have west-global: WEST-global L a b k = WEST-and-simp (shift L k b)

(WEST-global L a (b − 1) k) k
using WEST-global.simps[of L a b k]

by (metis Suc.hyps(2) Suc.prems(2) add-leE cancel-comm-monoid-add-class.diff-cancel
le-numeral-extra(3) nat-less-le not-one-le-zero plus-1-eq-Suc)

have fact: WEST-regex-of-vars (shift L k b) k
using shift-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-global L a (b − 1) k) k
using Suc.hyps Suc.prems by simp

show ?case
using west-global WEST-and-simp-num-vars fact indh
by metis

qed

lemma WEST-until-num-vars:
assumes WEST-regex-of-vars L1 k

82

assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-until L1 L2 a b k) k
using assms

proof(induct b−a arbitrary: L1 L2 a b)
case 0
then have a = b by auto
have WEST-until L1 L2 a b k = WEST-global L2 a a k

using WEST-until.simps[of L1 L2 a b k] 0 by auto
then show ?case using 0 WEST-global-num-vars[of L2 k a b] by simp

next
case (Suc x)
then have b = a + (Suc x) by auto
then have west-until: WEST-until L1 L2 a b k = WEST-or-simp (WEST-until

L1 L2 a (b − 1) k)
(WEST-and-simp (WEST-global L1 a (b

− 1) k) (WEST-global L2 b b k) k) k
using WEST-until.simps[of L1 L2 a b k]
by (metis Suc.prems(3) Zero-neq-Suc add-eq-self-zero order-neq-le-trans)

have fact1 : WEST-regex-of-vars (WEST-global L1 a (b − 1) k) k
using WEST-global-num-vars Suc by auto

have fact2 : WEST-regex-of-vars (WEST-global L2 b b k) k
using WEST-global-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-until L1 L2 a (b − 1) k) k
using Suc.hyps Suc.prems by simp

show ?case
using west-until WEST-and-num-vars fact1 fact2 indh
using WEST-and-simp-num-vars WEST-or-simp-num-vars by metis

qed

lemma WEST-release-helper-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-release-helper L1 L2 a b k) k
using assms

proof(induct b−a arbitrary: L1 L2 a b)
case 0
then have a = b by auto
then have WEST-release-helper L1 L2 a b k = WEST-and-simp (WEST-global

L1 a a k) (WEST-global L2 a a k) k
using WEST-release-helper .simps[of L1 L2 a b k] by argo

have fact1 : WEST-regex-of-vars (WEST-global L1 a a k) k
using WEST-global-num-vars[of L1 k a a] 0 by blast

have fact2 : WEST-regex-of-vars (WEST-global L2 a a k) k
using WEST-global-num-vars[of L2 k a a] 0 by blast

then show ?case using WEST-release-helper .simps[of L1 L2 a b k] 0

83

using fact1 fact2 WEST-and-simp-num-vars by auto
next

case (Suc x)
then have b = a + (Suc x) by auto
then have west-release-helper : WEST-release-helper L1 L2 a b k = WEST-or-simp

(WEST-release-helper L1 L2 a (b − 1) k)
(WEST-and-simp (WEST-global L2 a b k) (WEST-global L1 b b k) k) k

using WEST-release-helper .simps[of L1 L2 a b k]
by (metis Suc.hyps(2) Suc.prems(3) add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel

le-neq-implies-less plus-1-eq-Suc zero-neq-one)

have fact1 : WEST-regex-of-vars ((WEST-global L2 a b k)) k
using WEST-global-num-vars Suc by auto

have fact2 : WEST-regex-of-vars (WEST-global L1 b b k) k
using WEST-global-num-vars Suc by blast

have indh: WEST-regex-of-vars (WEST-release-helper L1 L2 a (b − 1) k) k
using Suc.hyps Suc.prems by simp

show ?case using WEST-release-helper .simps[of L1 L2 a b k]
using fact1 fact2 indh WEST-and-simp-num-vars WEST-or-simp-num-vars Suc
by presburger

qed

lemma WEST-release-num-vars:
assumes WEST-regex-of-vars L1 k
assumes WEST-regex-of-vars L2 k
assumes a ≤ b
shows WEST-regex-of-vars (WEST-release L1 L2 a b k) k
using assms

proof−
{assume a-eq-b: a = b

then have WEST-release L1 L2 a b k = WEST-global L2 a b k
using WEST-release.simps[of L1 L2 a b k] by auto

then have ?thesis using WEST-global-num-vars assms by auto
} moreover {

assume a-neq-b: a 6= b
then have b-pos: b > 0 using assms by simp
have a-leq-bm1 : a ≤ b−1 using a-neq-b assms by auto
then have a-le-b: a < b using b-pos by auto
have WEST-release L1 L2 a b k = WEST-or-simp (WEST-global L2 a b k)

(WEST-release-helper L1 L2 a (b − 1) k) k
using WEST-release.simps[of L1 L2 a b k] a-le-b by argo

then have ?thesis
using WEST-global-num-vars[of L2 a b k]
using WEST-release-helper-num-vars[of L1 k L2 a b]

using WEST-or-simp-num-vars[of WEST-global L2 a b k k WEST-release-helper
L1 L2 a (b − 1) k]

using WEST-global-num-vars WEST-release-helper-num-vars a-leq-bm1 assms(1)
assms(2) assms(3) by presburger

84

}
ultimately show ?thesis by blast

qed

lemma WEST-reg-aux-num-vars:
assumes is-nnf : ∃ ψ. F1 = (convert-nnf ψ)
assumes k ≥ WEST-num-vars F1
assumes intervals-welldef F1
shows WEST-regex-of-vars (WEST-reg-aux F1 k) k
using assms

proof (induct F1 rule: nnf-induct)
case nnf
then show ?case using is-nnf by simp

next
case True
then show ?case using WEST-reg-aux.simps(1)[of k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case False
show ?case using WEST-reg-aux.simps(2)

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (Prop p)
then show ?case using WEST-reg-aux.simps(3)[of p k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (NotProp F p)
then show ?case using WEST-reg-aux.simps(3)[of p k]

unfolding WEST-regex-of-vars-def trace-regex-of-vars-def by auto
next

case (And F F1 F2)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using And(1 , 4)

by (metis convert-nnf .simps(4) convert-nnf-convert-nnf mltl.inject(3))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using And by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ
by (metis And.hyps(1) And.prems(1) convert-nnf .simps(4) convert-nnf-convert-nnf

mltl.inject(3))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using And by auto
have nv-F1 : WEST-num-vars F1 ≤ k

using WEST-num-vars-subformulas[of F1 And-mltl F1 F2] And(1 ,5) unfold-
ing subformulas.simps

by simp
have nv-F2 : WEST-num-vars F2 ≤ k

using WEST-num-vars-subformulas[of F2 And-mltl F1 F2] And(1 ,5) unfold-
ing subformulas.simps

by simp

85

show ?case
using WEST-reg-aux.simps(6)[of F1 F2 k] And And(2)[OF nnf-F1 nv-F1]

And(3)[OF nnf-F2 nv-F2]
using WEST-and-simp-num-vars[of (WEST-reg-aux F1 k) k (WEST-reg-aux

F2 k)]
by auto

next
case (Or F F1 F2)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Or

by (metis convert-nnf .simps(5) convert-nnf-convert-nnf mltl.inject(4))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using Or by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ
by (metis Or .hyps(1) Or .prems(1) convert-nnf .simps(5) convert-nnf-convert-nnf

mltl.inject(4))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using Or by auto
let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have WEST-regex-of-vars ?L1 k

using Or nnf-F1 by simp
then have L1-nv: ∀ i<length (WEST-reg-aux F1 k). trace-regex-of-vars (WEST-reg-aux

F1 k ! i) k
unfolding WEST-regex-of-vars-def by metis

have WEST-regex-of-vars ?L2 k
using Or nnf-F2 by simp

then have L2-nv: ∀ j<length (WEST-reg-aux F2 k). trace-regex-of-vars (WEST-reg-aux
F2 k ! j) k

unfolding WEST-regex-of-vars-def by metis

have L1L2-L: WEST-reg-aux F k = WEST-or-simp ?L1 ?L2 k
using WEST-reg-aux.simps(5)[of F1 F2 k] Or by blast

let ?L = ?L1@?L2
show ?case

using WEST-or-simp-num-vars[of ?L1 k ?L2 , OF] L1-nv L2-nv L1L2-L
unfolding WEST-regex-of-vars-def by auto

next
case (Final F F1 a b)
let ?L1 = WEST-reg-aux F1 k
have F1-nnf : ∃ψ. F1 = convert-nnf ψ using Final

by (metis convert-nnf .simps(6) convert-nnf-convert-nnf mltl.inject(5))
then have L1-nv: WEST-regex-of-vars ?L1 k

using Final by simp
have WEST-reg-future: WEST-reg-aux (Future-mltl a b F1) k = WEST-future

?L1 a b k
using WEST-reg-aux.simps(7)[of a b F1 k] by blast

let ?L = WEST-future ?L1 a b k
have WEST-regex-of-vars ?L k

using L1-nv WEST-future-num-vars[of ?L1 k a b] Final by auto

86

then show ?case using WEST-reg-future Final by simp
next

case (Global F F1 a b)
let ?L1 = WEST-reg-aux F1 k
have F1-nnf : ∃ψ. F1 = convert-nnf ψ using Global

by (metis convert-nnf .simps(7) convert-nnf-convert-nnf mltl.inject(6))
then have L1-nv: WEST-regex-of-vars ?L1 k

using Global by simp
have WEST-regex-of-vars (WEST-global ?L1 a b k) k

using L1-nv WEST-global-num-vars[of ?L1 k a b] Global by simp
then show ?case using WEST-reg-aux.simps(8)[of a b F1 k] Global(1) by simp

next
case (Until F F1 F2 a b)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Until

by (metis convert-nnf .simps(8) convert-nnf-convert-nnf mltl.inject(7))
then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k

using Until by auto
have nnf-F2 : ∃ψ. F2 = convert-nnf ψ using Until

by (metis convert-nnf .simps(8) convert-nnf-convert-nnf mltl.inject(7))
then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k

using Until by auto
let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have L1-nv:WEST-regex-of-vars ?L1 k

using Until nnf-F1 by simp
have L2-nv:WEST-regex-of-vars ?L2 k

using Until nnf-F2 by simp

have WEST-regex-of-vars (WEST-until (WEST-reg-aux F1 k) (WEST-reg-aux
F2 k) a b k) k

using WEST-until-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Until by auto
then show ?case using Until(1) WEST-reg-aux.simps(9)[of F1 a b F2 k] by

auto
next

case (Release F F1 F2 a b)
have nnf-F1 : ∃ψ. F1 = convert-nnf ψ using Release

by (metis convert-nnf .simps(9) convert-nnf-convert-nnf mltl.inject(8))

then have F1-k: WEST-regex-of-vars (WEST-reg-aux F1 k) k
using Release by auto

have nnf-F2 : ∃ψ. F2 = convert-nnf ψ using Release
by (metis convert-nnf .simps(9) convert-nnf-convert-nnf mltl.inject(8))

then have F2-k: WEST-regex-of-vars (WEST-reg-aux F2 k) k
using Release by auto

let ?L1 = (WEST-reg-aux F1 k)
let ?L2 = (WEST-reg-aux F2 k)
have L1-nv:WEST-regex-of-vars ?L1 k

using Release nnf-F1 by simp
have L2-nv:WEST-regex-of-vars ?L2 k

87

using Release nnf-F2 by simp

have WEST-regex-of-vars (WEST-release (WEST-reg-aux F1 k) (WEST-reg-aux
F2 k) a b k) k

using WEST-release-num-vars[of ?L1 k ?L2 a b, OF L1-nv L2-nv] Release by
auto

then show ?case using WEST-reg-aux.simps(10)[of F1 a b F2 k] Release by
argo
qed

lemma nnf-intervals-welldef :
assumes intervals-welldef F1
shows intervals-welldef (convert-nnf F1)
using assms

proof (induct depth-mltl F1 arbitrary: F1 rule: less-induct)
case less
have iwd: intervals-welldef F2 =⇒

F1 = Not-mltl F2 =⇒
intervals-welldef (convert-nnf (Not-mltl F2))

for F2 apply (cases F2) using less by simp-all
then show ?case using less

apply (cases F1) by simp-all
qed

lemma WEST-reg-num-vars:
assumes intervals-welldef F1
shows WEST-regex-of-vars (WEST-reg F1) (WEST-num-vars F1)

proof −
have WEST-num-vars (convert-nnf F1) = WEST-num-vars F1

using WEST-num-vars-nnf by presburger
then have wnv: WEST-num-vars (convert-nnf F1) ≤ (WEST-num-vars F1)

by simp
have iwd: intervals-welldef (convert-nnf F1)

using assms nnf-intervals-welldef
by auto

show ?thesis
using assms WEST-reg-aux-num-vars[OF - wnv iwd]
unfolding WEST-reg.simps
by auto

qed

3.7 Correctness of WEST-simp
3.7.1 WEST-count-diff facts
lemma count-diff-property-aux:

assumes k < length r1 ∧ k < length r2
shows count-diff r1 r2 ≥ count-diff-state (r1 ! k) (r2 ! k)
using assms

proof (induct length r1 arbitrary: r1 r2 k)

88

case 0
then show ?case by simp

next
case (Suc x)
obtain h1 t1 h2 t2 where r1r2 : r1 = h1#t1 r2 = h2#t2

using Suc
by (metis length-0-conv not-less-zero trim-reversed-regex.cases)

have cd: count-diff r1 r2 = count-diff-state h1 h2 + count-diff t1 t2
using r1r2 count-diff .simps(4)[of h1 t1 h2 t2] by simp

{assume ∗: k = 0
have count-diff r1 r2 ≥ count-diff-state h1 h2

using cd
by auto

then have ?case using ∗ r1r2
by auto

} moreover {assume ∗: k > 0
have t1t2 : t1 ! (k−1) = r1 ! k ∧ t2 ! (k−1) = r2 ! k

using Suc(3) ∗ r1r2
by simp

have count-diff-state (t1 ! (k − 1)) (t2 ! (k − 1))
≤ count-diff t1 t2

using ∗ Suc(1)[of t1 k−1 t2]
Suc(2−3) r1r2
by (metis One-nat-def Suc-less-eq Suc-pred diff-Suc-1 ′ length-Cons)

then have ?case using cd t1t2
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-state-property:
assumes count-diff-state t1 t2 = 0
assumes ka < length t1 ∧ ka < length t2
shows t1 ! ka = t2 ! ka

using assms
proof (induct length t1 arbitrary: t1 t2 ka)

case 0
then show ?case by simp

next
case (Suc x)
obtain h1 T1 h2 T2 where t1t2 : t1 = h1#T1 t2 = h2#T2
using Suc
by (metis count-nonS-trace.cases length-0-conv less-nat-zero-code)

have cd: h1 = h2 ∧ count-diff-state t1 t2 = count-diff-state T1 T2
using t1t2 count-diff-state.simps(4)[of h1 T1 h2 T2]
Suc(3) by presburger

then have ind0 : count-diff-state T1 T2 = 0
using Suc(3) by auto

{assume ∗: ka = 0

89

then have ?case using cd t1t2
by auto

} moreover {assume ∗: ka > 0
have T1T2 : T1 ! (ka−1) = t1 ! ka ∧ T2 ! (ka−1) = t2 ! ka

using Suc(3) ∗ t1t2
by simp

have T1 ! (ka−1) = T2 ! (ka−1)
using ∗ Suc(1)[OF - ind0 , of ka]
Suc(2−3) t1t2

by (metis Suc.hyps(1) Suc.prems(2) Suc-less-eq Suc-pred diff-Suc-1 ind0
length-Cons)

then have ?case using T1T2
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-property:
assumes count-diff r1 r2 = 0
assumes k < length r1 ∧ k < length r2
assumes ka < length (r1 ! k) ∧ ka < length (r2 ! k)
shows r2 ! k ! ka = r1 ! k ! ka

proof −
have count-diff r1 r2 ≥ count-diff-state (r1 ! k) (r2 ! k)

using count-diff-property-aux[OF assms(2)]
by auto

then have cdt: count-diff-state (r1 ! k) (r2 ! k) = 0
using assms by auto

show ?thesis
using count-diff-state-property[OF cdt assms(3)]
by auto

qed

lemma count-nonS-trace-0-allS :
assumes length h = num-vars
assumes count-nonS-trace h = 0
shows h = map (λt. S) [0 ..<num-vars]
using assms

proof(induct num-vars arbitrary: h)
case 0
then show ?case by simp

next
case (Suc num-vars)
then obtain head tail where head-tail: h = head#tail

by (meson length-Suc-conv)
have tail = map (λt. S) [0 ..<num-vars]

using Suc(1)[of tail] head-tail Suc.prems
by (metis Zero-not-Suc count-nonS-trace.simps(2) length-Cons nat.inject

plus-1-eq-Suc)

90

then have count-nonS-trace tail = 0
using count-nonS-trace.simps Suc.prems(2)
by (metis Suc.prems(2) add-is-0 head-tail)

then show ?case
using count-nonS-trace.simps(2)[of head tail] head-tail

proof −
have f1 : 0 = Suc 0 + 0 ∨ head = S
using One-nat-def Suc.prems(2) ‹count-nonS-trace (head # tail) = (if head

6= S then 1 + count-nonS-trace tail else count-nonS-trace tail)› ‹count-nonS-trace
tail = 0 › head-tail by argo

have map (λn. S) [0 ..<Suc num-vars] = S # map (λn. S) [0 ..<num-vars]
using map-upt-Suc by blast

then show ?thesis
using f1 ‹tail = map (λt. S) [0 ..<num-vars]› head-tail by presburger

qed
qed

lemma trace-tail-num-vars:
assumes trace-regex-of-vars (h # trace) num-vars
shows trace-regex-of-vars trace num-vars

proof−
have

∧
i. i<length trace =⇒ length (trace ! i) = num-vars

proof−
fix i
assume i-le: i<length trace
have i+1 < length (h#trace)

using Cons
by (meson i-le impossible-Cons leI le-trans less-iff-succ-less-eq)

then have length ((h # trace) ! (i+1)) = num-vars
using assms unfolding trace-regex-of-vars-def by meson

then show length (trace ! i) = num-vars
by auto

qed
then show ?thesis

unfolding trace-regex-of-vars-def by auto
qed

lemma count-diff-property-S-aux:
assumes count-diff trace [] = 0
assumes k < length trace
assumes trace-regex-of-vars trace num-vars
assumes 1 ≤ num-vars
shows trace ! k = map (λt. S) [0 ..< num-vars]
using assms

proof(induct trace arbitrary: k num-vars)
case Nil
then show ?case by simp

next
case (Cons h trace)

91

{assume k-zero: k = 0
have cond1 : length h = num-vars

using Cons.prems(3) unfolding trace-regex-of-vars-def
by (metis Cons.prems(2) k-zero nth-Cons-0)

have cond2 : count-nonS-trace h = 0
using Cons.prems(1) count-diff .simps
by (metis add-is-0 count-diff-state.simps(3) count-nonS-trace.elims)

have h = map (λt. S) [0 ..<num-vars]
using count-nonS-trace-0-allS [OF cond1 cond2] by simp

then have ?case
by (simp add: k-zero)

} moreover {
assume k-ge-zero: k > 0
have cond1 : count-diff trace [] = 0
by (metis Cons.prems(1) count-diff .simps(2) count-diff .simps(3) neq-Nil-conv

zero-eq-add-iff-both-eq-0)
have cond2 : k−1 < length trace

using k-ge-zero Cons.prems(2) by auto
have cond3 : trace-regex-of-vars trace num-vars

using trace-tail-num-vars Cons(4)
unfolding trace-regex-of-vars-def
by blast

have trace ! (k−1) = map (λt. S) [0 ..< num-vars]
using Cons.hyps[OF cond1 cond2 cond3] Cons.prems by blast

then have ?case
using k-ge-zero by simp

}
ultimately show ?case by blast

qed

lemma count-diff-property-S :
assumes count-diff r1 r2 = 0
assumes k < length r1 ∧ length r2 ≤ k
assumes trace-regex-of-vars r1 num-vars
assumes num-vars ≥ 1
assumes ka < num-vars
shows r1 ! k = map (λt. S) [0 ..<num-vars]

proof−
have length r1 > length r2

using assms by simp
let ?tail = drop (length r2) r1
have cond1 : count-diff ?tail [] = 0

using assms(1 , 2)
proof(induct r2 arbitrary: r1 k)

case Nil
then show ?case by simp

next
case (Cons a r2)
then obtain h T where obt-hT : r1 = h#T

92

by (metis length-0-conv less-nat-zero-code trim-reversed-regex.cases)
have count-diff-state h a = 0

using count-diff .simps(4)[of h T a r2] Cons.prems obt-hT by simp
then have cond1 : count-diff T r2 = 0

using count-diff .simps(4)[of h T a r2] Cons.prems obt-hT by simp
have count-diff (drop (length r2) T) [] = 0

using Cons.hyps[OF cond1] Cons.prems obt-hT
by (metis count-diff .simps(1) drop-all linorder-le-less-linear order-refl)

then show ?case
using obt-hT by simp

qed
have cond2 : (k − length r2) < length (drop (length r2) r1)

using assms by auto
have cond3 : trace-regex-of-vars (drop (length r2) r1) num-vars

using assms(3 , 2) unfolding trace-regex-of-vars-def
by (metis ‹length r2 < length r1 › add.commute leI length-drop less-diff-conv

nth-drop order .asym)
have ?tail ! (k − length r2) = map (λt. S) [0 ..< num-vars]

using count-diff-property-S-aux[OF cond1 cond2 cond3] assms by blast
then show ?thesis

using assms by auto
qed

lemma count-diff-state-commutative:
shows count-diff-state e1 e2 = count-diff-state e2 e1
proof (induct e1 arbitrary: e2)

case Nil
then show ?case using count-diff-state.simps

by (metis count-nonS-trace.cases)
next

case (Cons h1 t1)
then show ?case

by (smt (verit) count-diff-state.elims list.inject null-rec(1) null-rec(2))
qed

lemma count-diff-commutative:
shows count-diff r1 r2 = count-diff r2 r1

proof (induct r1 arbitrary: r2)
case Nil
then show ?case using count-diff .simps

by (metis trim-reversed-regex.cases)
next

case (Cons h1 t1)
{assume ∗: r2 = []

then have ?case
using count-diff .simps by auto

} moreover {
assume ∗: r2 6= []

93

then obtain h2 t2 where r2 = h2#t2
by (meson neq-Nil-conv)

then have ?case using count-diff .simps(4)[of h1 t1 h2 t2]
Cons[of t2] ∗ count-diff-state-commutative
by auto

}
ultimately show ?case by blast

qed

lemma count-diff-same-trace:
shows count-diff trace trace = 0

proof(induct trace)
case Nil
then show ?case by simp

next
case (Cons a trace)
have count-diff-state a a = 0
proof(induct a)

case Nil
then show ?case by simp

next
case (Cons a1 a2)
then show ?case by simp

qed
then show ?case

using Cons count-diff .simps(4)[of a trace a trace] by auto
qed

lemma count-diff-state-0 :
assumes count-diff-state h1 h2 = 0
assumes length h1 = length h2
shows h1 = h2
using assms

proof(induct h1 arbitrary: h2)
case Nil
then show ?case by simp

next
case (Cons a h1)
then show ?case

by (metis count-diff-state-property nth-equalityI)
qed

lemma count-diff-state-1 :
assumes length h1 = length h2
assumes count-diff-state h1 h2 = 1
shows ∃ ka<length h1 . h1 !ka 6= h2 !ka
using assms

94

proof(induct h1 arbitrary: h2)
case Nil
then show ?case by simp

next
case (Cons a h1)
then obtain head tail where obt-headtail: h2 = head#tail

by (metis length-0-conv neq-Nil-conv)
{assume head-equal: a = head

then have count-diff-state h1 tail = 1
using count-diff-state.simps(4)[of a h1 head tail]
using Cons.prems(2) obt-headtail by auto

then have ∃ ka<length h1 . h1 ! ka 6= tail ! ka
using Cons.hyps[of tail] Cons.prems
by (simp add: obt-headtail)

then have ?case using obt-headtail by auto
} moreover {

assume head-notequal: a 6= head
then have ?case using obt-headtail by auto

}
ultimately show ?case by blast

qed

lemma count-diff-state-other-states:
assumes count-diff-state h1 h2 = 1
assumes length h1 = length h2
assumes h1 !k 6= h2 !k
assumes k < length h1
shows ∀ i<length h1 . k 6=i −→ h1 !i = h2 !i
using assms

proof(induct h1 arbitrary: h2 k)
case Nil
then show ?case by simp

next
case (Cons a h1)
then obtain head tail where headtail: h2 = head#tail

by (metis Suc-length-conv)
{assume k0 : k = 0

then have count-diff-state h1 tail = 0
using Cons.prems headtail count-diff-state.simps(4)[of a h1 head tail] by auto

then have h1 = tail
using count-diff-state-0 Cons.prems headtail by simp

then have ?case using k0 headtail by simp
} moreover {

assume k-not0 : k 6= 0
then have head-eq: a = head

using Cons headtail count-diff-state.simps(4)[of a h1 head tail]
by (metis One-nat-def Suc-inject count-diff-state-0 length-Cons nth-Cons ′

plus-1-eq-Suc)
then have count-diff-state h1 tail = 1

95

using Cons headtail count-diff-state.simps(4)[of a h1 head tail] by argo
then have induction: ∀ i<length h1 . k−1 6= i −→ h1 ! i = tail ! i

using Cons.hyps[of h2 k−1] Cons.prems headtail
by (smt (verit) Cons.hyps Suc-less-eq add-diff-inverse-nat k-not0 length-Cons

less-one nth-Cons ′ old.nat.inject plus-1-eq-Suc)
have

∧
i. (i<length (a # h1) ∧ k 6= i) =⇒ (a # h1) ! i = h2 ! i

proof−
fix i
assume i-facts: (i<length (a # h1) ∧ k 6= i)
{assume i0 : i = 0

then have (a # h1) ! i = h2 ! i
using headtail head-eq by simp

} moreover {
assume i-not0 : i 6= 0
then have (a # h1) ! i = h2 ! i

using induction k-not0 i-facts
using headtail length-Cons nth-Cons ′ zero-less-diff by auto

}
ultimately show (a # h1) ! i = h2 ! i by blast

qed
then have ?case by blast

}
ultimately show ?case by blast

qed

lemma count-diff-same-len:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff r1 r2 = 0
assumes length r1 = length r2
shows r1 = r2
using assms

proof(induct r1 arbitrary: r2)
case Nil
then show ?case by simp

next
case (Cons h1 r1)
then obtain h T where obt-hT : r2 = h#T

by (metis length-0-conv list.exhaust)
have cond1 : trace-regex-of-vars r1 num-vars

using trace-tail-num-vars Cons.prems by blast
have cond2 : trace-regex-of-vars T num-vars

using trace-tail-num-vars Cons.prems obt-hT by blast
have h1-h-samelen: length h1 = length h

using Cons.prems obt-hT unfolding trace-regex-of-vars-def
by (metis length-greater-0-conv nth-Cons-0)

have r1-eq-T : r1 = T
using Cons.hyps[OF cond1 cond2] Cons.prems
by (simp add: obt-hT)

96

then have count-diff r1 T = 0
using count-diff-same-trace by auto

then have count-diff-state h1 h = 0
using Cons.prems(3) obt-hT count-diff .simps(4)[of h1 r1 h T] by simp

then have h = h1 using h1-h-samelen
proof(induct h arbitrary: h1)

case Nil
then show ?case by simp

next
case (Cons a h)
then show ?case using count-diff-state.simps

Suc-inject count-diff-state.elims length-Cons less-iff-Suc-add not-less-eq
by (metis (no-types, opaque-lifting) count-diff-state-0)

qed
then show ?case

using r1-eq-T obt-hT by blast
qed

lemma count-diff-1 :
assumes count-diff r1 r2 = 1
assumes length r1 = length r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows ∃ k<length r1 . count-diff-state (r1 !k) (r2 !k) = 1
using assms

proof(induct length r1 arbitrary: r1 r2)
case 0
then show ?case by auto

next
case (Suc x)
obtain h1 T1 where obt-h1T1 : r1 = h1#T1 using Suc

by (metis length-Suc-conv)
obtain h2 T2 where obt-h2T2 : r2 = h2#T2 using Suc

by (metis length-Suc-conv)
{assume h1h2-same: h1 = h2

have count-diff-state h1 h2 = 0
using h1h2-same count-diff-state-0
by (metis Nat.add-0-right count-diff .simps(4) count-diff-same-trace)

then have cond2 : count-diff T1 T2 = 1
using h1h2-same Suc.prems(1) obt-h1T1 obt-h2T2
using count-diff .simps(4)[of h1 T1 h2 T2] by simp

have ∃ k<length T1 . count-diff-state (T1 ! k) (T2 ! k) = 1
using Suc obt-h1T1 obt-h2T2 h1h2-same
by (metis cond2 length-Cons nat.inject trace-tail-num-vars)

then have ?case using obt-h1T1 obt-h2T2
by fastforce

} moreover {
assume h1h2-notsame: h1 6= h2
have h1h2-nv: length h1 = length h2

97

using Suc.prems(3 , 4) unfolding trace-regex-of-vars-def
by (metis Suc.hyps(2) Suc.prems(2) nth-Cons-0 obt-h1T1 obt-h2T2 zero-less-Suc)
then have count-diff-state h1 h2 > 0

using count-diff-state-0 h1h2-notsame by auto
then have count-diff-state h1 h2 = 1

using count-diff .simps(4)[of h1 T1 h2 T2] Suc obt-h1T1 obt-h2T2 by auto
then have ?case using obt-h1T1 obt-h2T2 by auto

}
ultimately show ?case by blast

qed

lemma count-diff-1-other-states:
assumes count-diff r1 r2 = 1
assumes length r1 = length r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff-state (r1 !k) (r2 !k) = 1
shows ∀ i<length r1 . k 6=i −→ r1 !i = r2 !i
using assms

proof(induct length r1 arbitrary: r1 r2 k)
case 0
then show ?case by auto

next
case (Suc x)
obtain h1 T1 where obt-h1T1 : r1 = h1#T1 using Suc

by (metis length-Suc-conv)
obtain h2 T2 where obt-h2T2 : r2 = h2#T2 using Suc

by (metis length-Suc-conv)
{assume k0 : k = 0

have count-diff T1 T2 = 0
using Suc count-diff .simps(4)[of h1 T1 h2 T2] obt-h1T1 obt-h2T2 k0
by auto

then have ∀ i<length T1 . T1 ! i = T2 ! i
using Suc.prems count-diff-same-len trace-tail-num-vars
by (metis Suc-inject length-Cons obt-h1T1 obt-h2T2)

then have ?case using obt-h1T1 obt-h2T2 k0
using length-Cons by auto

} moreover {
assume k-not0 : k 6= 0
then have T1T2-diffby1 : count-diff T1 T2 = 1

using Suc.prems obt-h1T1 obt-h2T2 count-diff .simps(4)[of h1 T1 h2 T2]
by (metis One-nat-def add-right-imp-eq count-diff-same-len count-diff-state-1

list.size(4) not-gr-zero nth-Cons-pos one-is-add trace-tail-num-vars)
then have h1h2-same: h1 = h2
using k-not0 count-diff .simps(4)[of h1 T1 h2 T2] Suc.prems obt-h1T1 obt-h2T2

unfolding trace-regex-of-vars-def
by (metis Suc.hyps(2) add-cancel-right-left count-diff-state-0 nth-Cons-0

zero-less-Suc)

98

have induction: ∀ i<length T1 . (k−1) 6= i −→ T1 ! i = T2 ! i
using Suc.hyps(1)[of T1 T2 k−1] Suc.hyps(2) Suc.prems T1T2-diffby1

by (metis (mono-tags, lifting) k-not0 length-Cons nth-Cons ′ obt-h1T1 obt-h2T2
old.nat.inject trace-tail-num-vars)

then have ?case using obt-h1T1 obt-h2T2 k-not0 h1h2-same
by (simp add: nth-Cons ′)

}
ultimately show ?case by blast

qed

3.7.2 Orsimp-trace Facts
lemma WEST-simp-bitwise-identity:

assumes b1 = b2
shows WEST-simp-bitwise b1 b2 = b1
using assms WEST-simp-bitwise.simps
by (metis WEST-bit.exhaust)

lemma WEST-simp-bitwise-commutative:
shows WEST-simp-bitwise b1 b2 = WEST-simp-bitwise b2 b1
using WEST-simp-bitwise.simps
by (metis (full-types) WEST-simp-bitwise.elims)

lemma WEST-simp-state-commutative:
assumes length s1 = num-vars
assumes length s2 = num-vars
shows WEST-simp-state s1 s2 = WEST-simp-state s2 s1
using WEST-simp-state.simps[of s1 s2]
using WEST-simp-bitwise-commutative assms by simp

lemma WEST-simp-trace-commutative:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows WEST-simp-trace r1 r2 num-vars = WEST-simp-trace r2 r1 num-vars

proof−
have r1-vars: ∀ k. length (WEST-get-state r1 k num-vars) = num-vars

using assms WEST-get-state-length by blast
have r2-vars: ∀ k. length (WEST-get-state r2 k num-vars) = num-vars

using assms WEST-get-state-length by blast
have (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) = (λk. WEST-simp-state (WEST-get-state
r2 k num-vars)

(WEST-get-state r1 k num-vars))
using WEST-simp-state-commutative r1-vars r2-vars by fast

then show ?thesis
unfolding WEST-simp-trace.simps[of r1 r2 num-vars]
unfolding WEST-simp-trace.simps[of r2 r1 num-vars]
by (simp add: insert-commute)

99

qed

lemma WEST-simp-trace-identity:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes count-diff r1 r2 = 0
assumes length r1 ≥ length r2
shows WEST-simp-trace r1 r2 num-vars = r1

proof−
have of-vars: ∀ i<length r1 . length (r1 ! i) = num-vars

using assms unfolding trace-regex-of-vars-def by argo
have mapmap: map (λk. map (λka. (r1 !k)!ka)

[0 ..< num-vars]) [0 ..<length r1] = r1
using assms(1) unfolding trace-regex-of-vars-def [of r1 num-vars]
by (smt (verit) length-map list-eq-iff-nth-eq map-nth nth-map)

have r1-k-ka:
∧

ka. ka < num-vars =⇒
WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka
if k-lt: k<length r1 for k

proof −
fix ka
assume ka-lt: ka < num-vars
{assume ∗: k < length r2

have length (r1 ! k) = num-vars ∧ length (r2 ! k) = num-vars
using assms unfolding trace-regex-of-vars-def ∗ ka-lt
using ∗ that by presburger

then have (r2 ! k) ! ka = (r1 ! k) ! ka
using ∗ ka-lt using assms(3)
using count-diff-property-aux
using count-diff-property that by presburger
then have WEST-get-state r2 k num-vars ! ka = WEST-get-state r1 k

num-vars ! ka
unfolding WEST-get-state.simps using ∗ ka-lt
using leD that by auto

then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)
(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka

using WEST-simp-bitwise-identity that by force
} moreover {assume ∗: k ≥ length r2
then have WEST-get-state r2 k num-vars = (map (λ k. S) [0 ..< num-vars])

by simp
then have r2-k-ka-S : (WEST-get-state r2 k num-vars ! ka) = S

using ka-lt by simp

have r1-k-ka: (WEST-get-state r1 k num-vars ! ka) = r1 !k!ka
using k-lt by simp

have (r1 !k!ka) = S
using count-diff-property-S

100

using ∗ ka-lt assms(1 , 3 , 4)
using that
by simp

then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)
S = r1 !k!ka

using r1-k-ka by simp
then have WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka
using r2-k-ka-S by simp

}
ultimately show WEST-simp-bitwise (WEST-get-state r1 k num-vars ! ka)

(WEST-get-state r2 k num-vars ! ka) = r1 !k!ka by auto
qed
have len-lhs: length (map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1]) = length r1 for f :: nat ⇒ nat list ⇒ WEST-bit list

by auto
have aux-helper :

∧
i. i < length r1 =⇒ (map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1])! i= r1 ! i if f-prop: ∀ k<length r1 . (f k)

[0 ..< num-vars] = r1 !k for f
proof −

fix i
assume i < length r1
show map (λk. f k [0 ..<num-vars]) [0 ..<length r1] ! i = r1 ! i
using f-prop
by (simp add: ‹i < length r1 ›)

qed
have map-prop: map (λk. (f k)

[0 ..< num-vars])
[0 ..<length r1] = r1 if f-prop: ∀ k<length r1 . (f k)

[0 ..< num-vars] = r1 !k for f
using len-lhs[of f] aux-helper [of f] f-prop
by (metis nth-equalityI)

let ?f = λi. map (λka. WEST-simp-bitwise (WEST-get-state r1 i num-vars ! ka)
(WEST-get-state r2 i num-vars ! ka))

have ∀ k<length r1 . map (λka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)

(WEST-get-state r2 k num-vars ! ka))
[0 ..< num-vars] = r1 !k

using r1-k-ka
by (smt (z3) length-map length-upt minus-nat.diff-0 nth-equalityI nth-map-upt

of-vars plus-nat.add-0)

then have ∀ k<length r1 . (?f k)
[0 ..< num-vars] = r1 !k

by blast

101

then have map (λk. (?f k)
[0 ..< num-vars])

[0 ..<length r1] = r1
using map-prop[of ?f]
by blast

then have map (λk. map (λka. WEST-simp-bitwise (WEST-get-state r1 k num-vars
! ka)

(WEST-get-state r2 k num-vars ! ka))
[0 ..< num-vars])

[0 ..<length r1] = r1
using of-vars
by blast

then show ?thesis
unfolding WEST-simp-trace.simps WEST-simp-state.simps
using WEST-simp-bitwise-identity assms WEST-get-state-length
by simp

qed

lemma WEST-simp-trace-length:
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes length r1 = length r2
shows length (WEST-simp-trace r1 r2 num-vars) = length r1
using assms by simp

3.7.3 WEST-orsimp-trace-correct
lemma WEST-simp-trace-correct-forward:

assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes match-regex π (WEST-simp-trace r1 r2 num-vars)
shows match-regex π r1 ∨ match-regex π r2

proof−
{assume diff0 : count-diff r1 r2 = 0

then have ∗: (WEST-simp-trace r1 r2 num-vars) = r1
using WEST-simp-trace-identity assms diff0 by fastforce

have r1 = r2
using count-diff-same-len assms diff0 by force

then have ?thesis using assms ∗ by simp
} moreover {

assume diff1 : count-diff r1 r2 = 1
then obtain k where obt-k: k < length r1 ∧ count-diff-state (r1 !k) (r2 !k) =

1
using count-diff-1 [of r1 r2 num-vars] assms by fastforce

then have length (r1 ! k) = length (r2 ! k)
using assms unfolding trace-regex-of-vars-def
by (metis check-simp.simps)

then obtain ka where obt-ka: ka < length (r1 !k) ∧ (r1 !k!ka) 6= (r2 !k!ka)

102

using count-diff-state-1 [of r1 !k r2 !k] obt-k assms by blast

let ?r1r2 = (WEST-simp-trace r1 r2 num-vars)
have rest-of-states: ∀ i<length r1 . i 6=k −→ r1 !i = r2 !i

using count-diff-1-other-states assms obt-k
by (metis (no-types, opaque-lifting) check-simp.elims(2) diff1)

have fact1 :
∧

i. (i<length r1 ∧ i 6=k) =⇒
((match-timestep (π!i) (r1 !i)) ∨ (match-timestep (π!i) (r2 !i)))

proof−
fix i
assume i-assms: i<length r1 ∧ i 6=k
then have states-eq: r1 !i = r2 !i using rest-of-states by blast
have ?r1r2 = map (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) [0 ..<length r1]
using assms(1) unfolding check-simp.simps WEST-simp-trace.simps
by (metis (mono-tags, lifting) Max-singleton insert-absorb2)

then have ?r1r2 !i = WEST-simp-state (WEST-get-state r1 i num-vars)
(WEST-get-state r2 i num-vars)

using i-assms by simp
then have ?r1r2 !i = WEST-simp-state (r1 !i) (r2 !i)

using WEST-get-state.simps i-assms
by (metis assms(1) check-simp.elims(2) leD)

then have ?r1r2 !i = r1 !i
using WEST-simp-state.simps states-eq
using WEST-simp-bitwise.simps
using WEST-simp-bitwise-identity map-nth by fastforce

then show ((match-timestep (π!i) (r1 !i)) ∨ (match-timestep (π!i) (r2 !i)))
using assms states-eq unfolding match-regex-def
by (metis WEST-simp-trace-length check-simp.elims(2) i-assms)

qed
have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)
using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force

then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)
using obt-k assms by auto

then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)
using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)
(WEST-get-state r2 k num-vars)

using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force
then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)

using obt-k assms by auto
then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)

using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have state-fact1 :
∧

i. (i<length (r1 !k) ∧ i 6=ka) =⇒ (?r1r2 !k!i) = (r1 !k!i)

103

proof−
fix i
assume i-fact: i<length (r1 !k) ∧ i 6=ka
have length (r1 ! k) = length (r2 ! k)

using assms obt-k unfolding trace-regex-of-vars-def
by (simp add: ‹length (r1 ! k) = length (r2 ! k)›)

then show (?r1r2 !k!i) = (r1 !k!i)
using WEST-simp-state.simps[of r1 !k r2 !k] i-fact r1r2-k
by (simp add: WEST-simp-bitwise-identity ‹length (r1 ! k) = length (r2 !

k)› map-nth other-states)
qed
have r1r2-k-ka: ?r1r2 !k!ka = WEST-simp-bitwise (r1 ! k ! ka) (r2 ! k ! ka)

using WEST-simp-state.simps[of r1 !k r2 !k] r1r2-k obt-ka by simp
then have state-fact2 : ?r1r2 !k!ka = S

using obt-ka WEST-simp-bitwise.elims
by (metis (full-types))

then have cases: (r1 !k!ka = S) ∨ (r2 !k!ka = S)
∨(r1 !k!ka = One ∧ r2 !k!ka = Zero)
∨(r1 !k!ka = Zero ∧ r2 !k!ka = One)

using r1r2-k-ka
by (metis (full-types) WEST-bit.exhaust obt-ka)

have
∧

x. x<length (?r1r2 ! k) =⇒
(((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero −→ x /∈ π ! k))
∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))

using state-fact1 state-fact2
proof−

fix x
assume x-fact: x < length (?r1r2 !k)
{assume x-is-ka: x = ka

then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero
−→ x /∈ π ! k))

using state-fact2 by simp
} moreover {

assume x-not-ka: x 6= ka
then have ?r1r2 !k!x = r1 !k!x

using state-fact1 [of x] x-fact x-not-ka
using assms(3) check-simp.simps obt-k trace-regex-of-vars-def by fastforce

then have (((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero −→ x
/∈ π ! k))

∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))
using cases assms WEST-simp-trace-length check-simp.elims obt-k x-fact
unfolding match-timestep-def
by (metis (mono-tags, lifting) match-regex-def match-timestep-def)

}
ultimately show (((r1 ! k ! x = One −→ x ∈ π ! k) ∧ (r1 ! k ! x = Zero

−→ x /∈ π ! k))
∨((r2 ! k ! x = One −→ x ∈ π ! k) ∧ (r2 ! k ! x = Zero −→ x /∈ π ! k)))

by (metis obt-ka)
qed

104

then have fact2 : ((match-timestep (π!k) (r1 !k)) ∨ (match-timestep (π!k)
(r2 !k)))

unfolding match-timestep-def
by (metis WEST-simp-state-num-vars ‹length (r1 ! k) = length (r2 ! k)›

other-states r1r2-k)

have ∀ time<length ?r1r2 . ((match-timestep (π!time) (r1 !time)) ∨ (match-timestep
(π!time) (r2 !time)))

using fact1 fact2 assms
by (metis WEST-simp-trace-length check-simp.elims(2))

then have ?thesis
using assms WEST-simp-trace-length unfolding match-regex-def
by (smt (verit) check-simp.elims(2) rest-of-states)

}
ultimately show ?thesis

using check-simp.simps[of r1 r2] assms(1) by force
qed

lemma WEST-simp-trace-correct-converse:
assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
assumes match-regex π r1 ∨ match-regex π r2
shows match-regex π (WEST-simp-trace r1 r2 num-vars)

proof−
{assume diff0 : count-diff r1 r2 = 0

then have ∗: (WEST-simp-trace r1 r2 num-vars) = r1
using WEST-simp-trace-identity assms diff0 by fastforce

have r1 = r2
using count-diff-same-len assms diff0 by force

then have ?thesis using assms ∗ by simp
} moreover {

assume diff1 : count-diff r1 r2 = 1
then obtain k where obt-k: k < length r1 ∧ count-diff-state (r1 !k) (r2 !k) =

1
using count-diff-1 [of r1 r2 num-vars] assms by fastforce

then have length (r1 ! k) = length (r2 ! k)
using assms unfolding trace-regex-of-vars-def
by (metis check-simp.simps)

then obtain ka where obt-ka: ka < length (r1 !k) ∧ (r1 !k!ka) 6= (r2 !k!ka)
using count-diff-state-1 [of r1 !k r2 !k] obt-k assms by blast

let ?r1r2 = (WEST-simp-trace r1 r2 num-vars)
have rest-of-states: ∀ i<length r1 . i 6=k −→ r1 !i = r2 !i

using count-diff-1-other-states assms obt-k
by (metis (no-types, opaque-lifting) check-simp.elims(2) diff1)

have fact1 :
∧

i. (i<length r1 ∧ i 6=k) =⇒ match-timestep (π!i) (?r1r2 !i)
proof−

fix i

105

assume i-assms: i<length r1 ∧ i 6=k
then have states-eq: r1 !i = r2 !i using rest-of-states by blast
have ?r1r2 = map (λk. WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)) [0 ..<length r1]
using assms(1) unfolding check-simp.simps WEST-simp-trace.simps
by (metis (mono-tags, lifting) Max-singleton insert-absorb2)

then have ?r1r2 !i = WEST-simp-state (WEST-get-state r1 i num-vars)
(WEST-get-state r2 i num-vars)

using i-assms by simp
then have ?r1r2 !i = WEST-simp-state (r1 !i) (r2 !i)

using WEST-get-state.simps i-assms
by (metis assms(1) check-simp.elims(2) leD)

then have ?r1r2 !i = r1 !i
using WEST-simp-state.simps states-eq
using WEST-simp-bitwise.simps
using WEST-simp-bitwise-identity map-nth by fastforce

then show match-timestep (π!i) (?r1r2 !i)
using assms(4) states-eq unfolding match-regex-def
by (metis assms(1) check-simp.elims(2) i-assms)

qed
have ?r1r2 !k = WEST-simp-state (WEST-get-state r1 k num-vars)

(WEST-get-state r2 k num-vars)
using WEST-simp-trace.simps[of r1 r2 num-vars] obt-k by force

then have r1r2-k: ?r1r2 !k = WEST-simp-state (r1 !k) (r2 !k)
using obt-k assms by auto

then have other-states: ∀ i<length (r1 !k). i 6=ka −→ (r1 !k!i) = (r2 !k!i)
using count-diff-state-other-states[of r1 !k r2 !k ka]
using obt-ka obt-k assms fact1
using ‹length (r1 ! k) = length (r2 ! k)› by blast

have state-fact1 :
∧

i. (i<length (r1 !k) ∧ i 6=ka) =⇒ (?r1r2 !k!i) = (r1 !k!i)
proof−

fix i
assume i-fact: i<length (r1 !k) ∧ i 6=ka
have length (r1 ! k) = length (r2 ! k)

using assms obt-k unfolding trace-regex-of-vars-def
by (simp add: ‹length (r1 ! k) = length (r2 ! k)›)

then show (?r1r2 !k!i) = (r1 !k!i)
using WEST-simp-state.simps[of r1 !k r2 !k] i-fact r1r2-k
by (simp add: WEST-simp-bitwise-identity ‹length (r1 ! k) = length (r2 !

k)› map-nth other-states)
qed
have ?r1r2 !k!ka = WEST-simp-bitwise (r1 ! k ! ka) (r2 ! k ! ka)

using WEST-simp-state.simps[of r1 !k r2 !k] r1r2-k obt-ka by simp
then have state-fact2 : ?r1r2 !k!ka = S

using obt-ka WEST-simp-bitwise.elims
by (metis (full-types))

have match-state: match-timestep (π!k) (r1 !k) ∨ match-timestep (π!k) (r2 !k)
using assms(4) obt-k unfolding match-regex-def
by (metis assms(1) check-simp.elims(2))

106

have
∧

x. x<length (?r1r2 ! k) =⇒
((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero −→ x /∈ π !

k))
using state-fact1 state-fact2 match-state

proof−
fix x
assume x-fact: x < length (?r1r2 !k)
{assume x-is-ka: x = ka

then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero
−→ x /∈ π ! k))

using state-fact2 by simp
} moreover {

assume x-not-ka: x 6= ka
then have ?r1r2 !k!x = r1 !k!x

using state-fact1 [of x] x-fact x-not-ka
using assms(3) check-simp.simps obt-k trace-regex-of-vars-def by fastforce
then have ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x = Zero

−→ x /∈ π ! k))
using match-state unfolding match-timestep-def
by (smt (verit, best) WEST-simp-trace-length WEST-simp-trace-num-vars

‹∀ i<length (r1 ! k). i 6= ka −→ r1 ! k ! i = r2 ! k ! i› assms(1) assms(2) assms(3)
check-simp.simps obt-k trace-regex-of-vars-def x-fact x-not-ka)

}
ultimately show ((?r1r2 ! k ! x = One −→ x ∈ π ! k) ∧ (?r1r2 ! k ! x =

Zero −→ x /∈ π ! k))
by blast

qed
then have fact2 : match-timestep (π ! k) (?r1r2 ! k)

unfolding match-timestep-def by argo
have ∀ time<length ?r1r2 . match-timestep (π ! time) (?r1r2 ! time)

using fact1 fact2 assms
by (metis WEST-simp-trace-length check-simp.elims(2))

then have ?thesis
using assms WEST-simp-trace-length unfolding match-regex-def
by (metis (no-types, lifting) check-simp.simps)

}
ultimately show ?thesis using check-simp.simps[of r1 r2] assms(1) by force

qed

lemma WEST-simp-trace-correct:
assumes check-simp r1 r2
assumes trace-regex-of-vars r1 num-vars
assumes trace-regex-of-vars r2 num-vars
shows match-regex π (WEST-simp-trace r1 r2 num-vars) ←→ match-regex π r1
∨ match-regex π r2
using assms WEST-simp-trace-correct-forward WEST-simp-trace-correct-converse

by metis

107

3.7.4 Simp-helper Correct
lemma WEST-simp-helper-can-simp-bound:

assumes simp-L = WEST-simp-helper L (enum-pairs L) i num-vars
assumes ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

assumes i < length (enum-pairs L)
shows length simp-L < length L

proof−
obtain min-j where obt-min-j: min-j = Min {j. j < length (enum-pairs L) ∧ j
≥ i ∧

check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
then have min-j-props: min-j < length (enum-pairs L) ∧ min-j ≥ i ∧

check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using Min-in[of {j. j < length (enum-pairs L) ∧
i ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}]

by (smt (verit, ccfv-threshold) assms(2) empty-Collect-eq finite-nat-set-iff-bounded
mem-Collect-eq)

let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have length-newL: length ?newL = length L − 1

using update-L-length assms min-j-props by auto
have simp-L = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars
using WEST-simp-helper-can-simp[OF assms(1) assms(2) obt-min-j, of ?newL]

assms
by blast

then show ?thesis
using assms WEST-simp-helper-length length-newL

by (metis add-le-cancel-right enum-pairs-bound gen-length-def le-neq-implies-less
length-code less-nat-zero-code less-one linordered-semidom-class.add-diff-inverse nth-mem)
qed

lemma WEST-simp-helper-same-length:
assumes WEST-regex-of-vars L num-vars
assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
assumes length K = length L
shows L = K
using WEST-simp-helper-can-simp[of K L 0 num-vars] assms WEST-simp-helper-cant-simp
by (metis (no-types, lifting) WEST-simp-helper-can-simp-bound gr-zeroI less-irrefl-nat

less-nat-zero-code)

lemma WEST-simp-helper-less-length:
assumes WEST-regex-of-vars L num-vars
assumes length K < length L

108

assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
shows ∃min-j.

(min-j < length (enum-pairs L) ∧
K =
WEST-simp-helper (update-L L (enum-pairs L ! min-j) num-vars)
(enum-pairs
(update-L L (enum-pairs L ! min-j) num-vars))

0 num-vars
∧ check-simp (L ! fst (enum-pairs L ! min-j)) (L ! snd (enum-pairs L !

min-j)))
using assms

proof−
have ∃ j<length (enum-pairs L).

0 ≤ j ∧
check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

using assms WEST-simp-helper-can-simp[of K L 0 num-vars]
by (metis (no-types, lifting) WEST-simp-helper-cant-simp less-irrefl-nat)

then obtain min-j where obt-min-j: min-j = Min{j. j<length (enum-pairs L)
∧

0 ≤ j ∧ check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
then have min-j-props: min-j<length (enum-pairs L) ∧

0 ≤ min-j ∧ check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using Min-in
by (smt (verit) ‹∃ j<length (enum-pairs L). 0 ≤ j ∧ check-simp (L ! fst

(enum-pairs L ! j)) (L ! snd (enum-pairs L ! j))› empty-def finite-nat-set-iff-bounded
mem-Collect-eq)

let ?newL = update-L L (enum-pairs L ! min-j) num-vars
have K = WEST-simp-helper ?newL (enum-pairs ?newL) 0 num-vars

using obt-min-j assms
using WEST-simp-helper-can-simp ‹∃ j<length (enum-pairs L). 0 ≤ j ∧ check-simp

(L ! fst (enum-pairs L ! j)) (L ! snd (enum-pairs L ! j))› dual-order .strict-trans2
by blast

then show ?thesis
using assms min-j-props by blast

qed

lemma remove-element-at-index-subset:
fixes i::nat
assumes i < length L
shows set (remove-element-at-index i L) ⊆ set L

proof−
have fact1 : set (take i L) ⊆ set L

using assms unfolding remove-element-at-index.simps
by (meson set-take-subset)

have fact2 : set (drop (i + 1) L) ⊆ set L

109

using assms unfolding remove-element-at-index.simps
by (simp add: set-drop-subset)

have set (take i L @ drop (i + 1) L) = set (take i L) ∪ set (drop (i + 1) L)
by simp

then show ?thesis
using fact1 fact2 unfolding remove-element-at-index.simps
by blast

qed

lemma WEST-simp-helper-correct-forward:
assumes WEST-regex-of-vars L num-vars
assumes match π K
assumes K = WEST-simp-helper L (enum-pairs L) 0 num-vars
shows match π L
using assms

proof (induct length L − length K arbitrary: K L num-vars rule: less-induct)
case less
{assume same-len: length K = length L

then have K = L
using WEST-simp-helper-same-length[OF less.prems(1) less.prems(3)] by

blast
then have ?case using less by blast

} moreover {
assume diff-len: length K 6= length L
then have K-le-L: length L > length K

using less(4) WEST-simp-helper-length[of L 0 num-vars] by simp

then obtain min-j where obt-min-j: min-j < length (enum-pairs L) ∧
K = WEST-simp-helper
(update-L L ((enum-pairs L)!min-j) num-vars)
(enum-pairs (update-L L ((enum-pairs L)!min-j) num-vars))
0 num-vars
∧ check-simp (L ! fst (enum-pairs L ! min-j)) (L ! snd (enum-pairs L ! min-j))
using WEST-simp-helper-less-length less.prems by blast

let ?nextL = (update-L L ((enum-pairs L)!min-j) num-vars)
let ?simp-nextL = WEST-simp-helper ?nextL (enum-pairs ?nextL) 0 num-vars
have length ?nextL = length L − 1

using update-L-length obt-min-j by force
then have cond1 : length ?nextL − length K < length L − length K

using obt-min-j
by (metis K-le-L Suc-diff-Suc diff-Suc-eq-diff-pred lessI)

have cond2 : WEST-regex-of-vars (update-L L (enum-pairs L ! min-j) num-vars)
num-vars

using update-L-preserves-num-vars[of L num-vars (enum-pairs L)!min-j
?nextL]

using less
using nth-mem obt-min-j by blast

let ?h = (enum-pairs L ! min-j)
let ?updateL = (update-L L ?h num-vars)

110

have match π ?updateL
using less.hyps[OF cond1 cond2 less.prems(2)] obt-min-j by blast

have updateL-eq: ?updateL = remove-element-at-index (fst ?h)
(remove-element-at-index (snd ?h) L) @
[WEST-simp-trace (L ! fst ?h) (L ! snd ?h) num-vars]

using update-L.simps[of L ?h num-vars] by blast
have fst-le-snd: fst ?h < snd ?h

using enum-pairs-fact nth-mem obt-min-j by blast
have h-bound: snd ?h < length L

using enum-pairs-bound[of L] obt-min-j
using nth-mem by blast

{assume match-simped-part: match π [WEST-simp-trace (L ! fst ?h) (L ! snd
?h) num-vars]

have cond1 : check-simp (L ! fst (enum-pairs L ! min-j))
(L ! snd (enum-pairs L ! min-j))

using obt-min-j by blast
have cond2 : trace-regex-of-vars (L ! fst (enum-pairs L ! min-j)) num-vars

using less.prems(1) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
by (meson order-less-trans)

have cond3 : trace-regex-of-vars (L ! snd (enum-pairs L ! min-j)) num-vars
using less.prems(1) fst-le-snd h-bound unfolding WEST-regex-of-vars-def
by (meson order-less-trans)

have match-either : match-regex π (L ! fst ?h) ∨ match-regex π (L ! snd ?h)
using WEST-simp-trace-correct-forward[OF cond1 cond2 cond3]
using match-simped-part unfolding match-def by force

then have ?case unfolding match-def
using fst-le-snd h-bound
by (meson Suc-lessD less-trans-Suc)

} moreover {
let ?other-part = (remove-element-at-index (fst ?h)

(remove-element-at-index (snd ?h) L))
assume match-other-part: match π ?other-part
have set (remove-element-at-index (fst (enum-pairs L ! min-j))

(remove-element-at-index (snd (enum-pairs L ! min-j)) L))
⊆ set (remove-element-at-index (snd (enum-pairs L ! min-j)) L)

using fst-le-snd h-bound remove-element-at-index-subset
[of fst (enum-pairs L ! min-j) (remove-element-at-index (snd (enum-pairs

L ! min-j)) L)]
by simp

then have other-part-subset: set ?other-part ⊆ set L
using fst-le-snd h-bound remove-element-at-index-subset

[of snd (enum-pairs L ! min-j) L] by blast
then obtain idx where obt-idx: match-regex π (?other-part!idx) ∧ idx <

length ?other-part
using match-other-part unfolding match-def by metis

then have (?other-part!idx) ∈ set L
using updateL-eq fst-le-snd h-bound other-part-subset
by (meson in-mono nth-mem)

then have ?case

111

using obt-idx unfolding match-def
by (metis in-set-conv-nth)

}
ultimately have ?case using updateL-eq WEST-or-correct

by (metis ‹match π (update-L L (enum-pairs L ! min-j) num-vars)›)
}
ultimately show ?case by blast

qed

lemma remove-element-at-index-fact:
assumes j1 < j2
assumes j2 < length L
assumes i < length L
assumes i 6= j1
assumes i 6= j2
shows L ! i
∈ set (remove-element-at-index j1 (remove-element-at-index j2 L))

proof−
{assume L-small: length L ≤ 2

then have (remove-element-at-index j1 (remove-element-at-index j2 L)) = []
unfolding remove-element-at-index.simps using assms by simp

then have ?thesis using assms by auto
} moreover {

assume L-big: length L ≥ 3
then have length (remove-element-at-index j1 (remove-element-at-index j2 L))

≥ 1
unfolding remove-element-at-index.simps using assms by auto

{assume in-front: i < j1
then have i-bound: i < length (take j2 L)

using assms by simp
have L!i = (take j1 L)!i

using in-front assms by auto
then have L!i ∈ set (take j1 L)

using in-front assms
by (metis length-take min-less-iff-conj nth-mem)

then have Li-in: L!i ∈ set (take j1 (take j2 L))
using assms by auto

have set (take j1 (take j2 L @ drop (j2 + 1) L)) = set (take j1 (take j2 L))
using assms(1) assms(2) by simp

then have L!i ∈ set (take j1 (take j2 L @ drop (j2 + 1) L))
using Li-in by blast

then have ?thesis unfolding remove-element-at-index.simps
by auto

} moreover {
assume in-middle: j1 < i ∧ i < j2
then have i-len: i < length (take j2 L)

using assms by auto
then have Li-eq: L!i = (take j2 L)!i

112

by simp
then have L!i ∈ set (take j2 L)

by (metis ‹i < length (take j2 L)› in-set-member index-of-L-in-L)
have i−(j1+1) < length (drop (j1 + 1) (take j2 L @ drop (j2 + 1) L))

using assms i-len in-middle by auto
then have L!i = (drop (j1 + 1) (take j2 L)) ! (i−(j1+1))

using assms i-len in-middle Li-eq by auto
then have L!i ∈ set (drop (j1 + 1) (take j2 L))

by (metis diff-less-mono i-len in-middle length-drop less-iff-succ-less-eq
nth-mem)

then have ?thesis
unfolding remove-element-at-index.simps by auto

} moreover {
assume in-back: j2 < i
then have i−(j2+1) < length (drop (j2 + 1) L)

using assms by auto
then have Li-eq: L!i = (drop (j2 + 1) L)!(i−(j2+1))

using assms in-back by auto
then have L!i ∈ set (drop (j2 + 1) L)

by (metis ‹i − (j2 + 1) < length (drop (j2 + 1) L)› nth-mem)
then have L!i ∈ set(drop (j1 + 1) (take j2 L @ drop (j2 + 1) L))

using assms by auto
then have ?thesis unfolding remove-element-at-index.simps

by auto
}
ultimately have ?thesis unfolding remove-element-at-index.simps

using assms L-big by linarith
}
ultimately show ?thesis by linarith

qed

lemma update-L-match:
assumes WEST-regex-of-vars L num-var
assumes match π L
assumes h ∈ set (enum-pairs L)
assumes check-simp (L!(fst h)) (L!(snd h))
shows match π (update-L L h num-var)

proof−
obtain i where i-obt: i < length L ∧ match-regex π (L!i)

using assms(2) unfolding match-def by metis
have fst-le-snd: fst h < snd h

using assms enum-pairs-fact by auto
have h-bound: snd h < length L

using assms enum-pairs-bound
by blast

{assume in-simped: i = fst h ∨ i = snd h
let ?r1 = (L!(fst h))
let ?r2 = (L!(snd h))
have match-regex π (WEST-simp-trace (L ! fst h) (L ! snd h) num-var)

113

using WEST-simp-trace-correct-converse[of ?r1 ?r2 num-var]
using assms unfolding WEST-regex-of-vars-def

by (metis (mono-tags, lifting) WEST-simp-trace-correct-converse i-obt enum-pairs-bound
enum-pairs-fact in-simped order .strict-trans)

then have ?thesis
unfolding update-L.simps match-regex-def

by (metis (no-types, lifting) WEST-or-correct ‹match-regex π (WEST-simp-trace
(L ! fst h) (L ! snd h) num-var)› append.right-neutral append-eq-append-conv2 im-
possible-Cons le-eq-less-or-eq match-def nat-le-linear nth-append-length same-append-eq)

} moreover {
assume in-rest: i 6= fst h ∧ i 6= snd h
have L!i ∈ set L

using i-obt by simp
have L!i ∈ set (remove-element-at-index (fst h) (remove-element-at-index (snd

h) L))
using fst-le-snd h-bound i-obt in-rest
using remove-element-at-index-fact by blast

then have match π
(remove-element-at-index (fst h) (remove-element-at-index (snd h) L))
unfolding match-def using i-obt
by (metis in-set-conv-nth)

then have ?thesis unfolding update-L.simps match-def
using WEST-or-correct match-def by blast

}
ultimately show ?thesis by blast

qed

lemma WEST-simp-helper-correct-converse:
assumes WEST-regex-of-vars L num-vars
assumes match π L
assumes K = WEST-simp-helper L (enum-pairs L) i num-vars
shows match π K
using assms
proof (induct length L arbitrary: K L i num-vars rule: less-induct)

case less
{assume ∗: length (enum-pairs L) ≤ i

then have K = L
using less(4)
using WEST-simp-helper .simps[of L (enum-pairs L) i num-vars]
by argo

then have ?case
using less(3)
by blast

} moreover {assume ∗: length (enum-pairs L) > i
{assume ∗∗: ∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧ check-simp (L ! fst

(enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))

then obtain j-min where j-min-obt: j-min = Min {j. j < length (enum-pairs

114

L) ∧ j ≥ i ∧ check-simp (L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j))}

by blast
have j-min-props: j-min < length (enum-pairs L) ∧ j-min ≥ i ∧ check-simp

(L ! fst (enum-pairs L ! j-min))
(L ! snd (enum-pairs L ! j-min))

using j-min-obt Min-in
by (metis (mono-tags, lifting) ∗∗ Collect-empty-eq finite-nat-set-iff-bounded

mem-Collect-eq)
have K-eq: K = (let newL =

update-L L (enum-pairs L ! j-min)
num-vars

in WEST-simp-helper newL
(enum-pairs newL) 0 num-vars)

using less(4) ∗ ∗∗ WEST-simp-helper .simps[of L (enum-pairs L) j-min
num-vars]

using WEST-simp-helper-can-simp
by (metis (no-types, lifting) j-min-obt)

let ?h = (enum-pairs L ! j-min)
have cond1 : length (update-L L (enum-pairs L ! j-min) num-vars) < length

L
using update-L-length[of ?h L num-vars] j-min-props

by (metis diff-less enum-pairs-bound less-nat-zero-code less-one not-gr-zero
nth-mem)

have cond2 : WEST-regex-of-vars (update-L L (enum-pairs L ! j-min)
num-vars) num-vars

using update-L-preserves-num-vars[of L num-vars ?h K] less
using j-min-props nth-mem update-L-preserves-num-vars by blast

have cond3 : match π (update-L L (enum-pairs L ! j-min) num-vars)
using update-L-match[OF less(2) less(3), of ?h] j-min-props
by fastforce

have ?case
using less(1)[OF cond1 cond2 , of K]
using K-eq
by (metis cond3)

}
moreover {assume ∗∗: ¬(∃ j. j < length (enum-pairs L) ∧ j ≥ i ∧ check-simp

(L ! fst (enum-pairs L ! j))
(L ! snd (enum-pairs L ! j)))

then have K-eq: K = L
using WEST-simp-helper-cant-simp less.prems(3)
by presburger

then have ?case
using less(3)

by blast
}
ultimately have ?case

by blast
}

115

ultimately show ?case
by linarith

qed

3.7.5 WEST-simp Correct
lemma simp-correct-forward:

assumes WEST-regex-of-vars L num-vars
assumes match π (WEST-simp L num-vars)
shows match π L
unfolding WEST-simp.simps using WEST-simp-helper-correct-forward assms
by (metis WEST-simp.elims)

lemma simp-correct-converse:
assumes WEST-regex-of-vars L num-vars
assumes match π L
shows match π (WEST-simp L num-vars)
unfolding WEST-simp.simps using WEST-simp-helper-correct-converse assms
by blast

lemma simp-correct:
assumes WEST-regex-of-vars L num-vars
shows match π (WEST-simp L num-vars) ←→ match π L
using simp-correct-forward simp-correct-converse assms
by blast

3.8 Correctness of WEST-and-simp/WEST-or-simp
lemma WEST-and-simp-correct:

fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n
shows match π L1 ∧ match π L2 ←→ match π (WEST-and-simp L1 L2 n)

proof−
show ?thesis

using simp-correct[of WEST-and L1 L2 n π] assms WEST-and-correct[of L1 n
L2 π]

unfolding WEST-and-simp.simps
using WEST-and-num-vars by blast

qed

lemma WEST-or-simp-correct:
fixes π::trace
fixes L1 L2 :: WEST-regex
assumes L1-of-num-vars: WEST-regex-of-vars L1 n
assumes L2-of-num-vars: WEST-regex-of-vars L2 n

116

shows match π L1 ∨ match π L2 ←→ match π (WEST-or-simp L1 L2 n)
proof−

show ?thesis
using simp-correct[of L1@L2 n π]
using assms WEST-or-correct[of π L1 L2]
unfolding WEST-or-simp.simps
using WEST-or-num-vars by blast

qed

3.9 Facts about the WEST future operator
lemma WEST-future-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes match π (WEST-future L a b num-vars)
shows π |=m (Fm [a,b] F)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have WEST-future L a b num-vars = shift L num-vars a

using WEST-future.simps[of L a b num-vars] by simp
then have match π (shift L num-vars a)

using 0 by simp
then have match-dropa-L: match (drop a π) L

using shift-match[of a π L num-vars] 0 a-eq-b by auto

have complen-mltl F ≤ length (drop a π)
using 0 (2)[of (drop a π)] 0 (6) a-eq-b complen-geq-one[of F] by simp

then have semantics-mltl (drop a π) F
using 0 (2)[of (drop a π)] match-dropa-L by blast

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
using a-eq-b by blast

then show ?case unfolding semantics-mltl.simps
using 0 (1 , 6) a-eq-b complen-geq-one[of F] by simp

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (b − 1) num-vars) num-vars
using WEST-future.simps[of L a b num-vars]

by (metis Suc.hyps(2) Suc.prems(4) add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
nat-less-le plus-1-eq-Suc zero-neq-one)

then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars
b) (WEST-future L a (a + x) num-vars) num-vars

117

using b-asucx
by (metis add-diff-cancel-left ′ le-add1 ordered-cancel-comm-monoid-diff-class.diff-add-assoc

plus-1-eq-Suc)
{assume match-head: match π (shift L num-vars b)

then obtain i where match-regex π (shift L num-vars b ! i)
unfolding match-def by metis

have match (drop b π) L
using shift-match[of b π L num-vars] Suc(7) match-head by auto

then have semantics-mltl (drop b π) F
using Suc by simp

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
using Suc.prems(4) by auto

} moreover {
assume match-tail: match π (WEST-future L a (a + x) num-vars)
have hyp1 : x = b − 1 − a using Suc by simp
have hyp2 : (

∧
π. complen-mltl F ≤ length π −→ match π L = semantics-mltl

π F)
using Suc.prems by blast

have hyp3 : WEST-regex-of-vars L num-vars using Suc.prems by simp
have hyp4 : WEST-num-vars F ≤ num-vars using Suc.prems by blast
have hyp5 : a ≤ b − 1 using Suc.prems Suc.hyps by auto
have hyp6 : complen-mltl F + (b − 1) ≤ length π using Suc.prems by simp
have hyp7 : match π (WEST-future L a (b − 1) num-vars)

using match-tail Suc.hyps(2)
using b-asucx by fastforce

have semantics-mltl π (Future-mltl a (a+x) F)
using Suc.hyps(1)[of b−1 a F L π, OF hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7]
using b-asucx by simp

then have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F
unfolding semantics-mltl.simps b-asucx by auto

}
ultimately have ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl (drop i π) F

unfolding match-def
by (metis Nat.add-diff-assoc Suc.prems(2) Suc.prems(6) WEST-future-num-vars

WEST-or-simp-correct shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp
(shift L num-vars b) (WEST-future L a (b − 1) num-vars) num-vars› ‹match π
(WEST-future L a (a + x) num-vars) =⇒ ∃ i. (a ≤ i ∧ i ≤ b) ∧ semantics-mltl
(drop i π) F› ‹match π (shift L num-vars b) =⇒ ∃ i. (a ≤ i ∧ i ≤ b) ∧ seman-
tics-mltl (drop i π) F› b-asucx diff-add-inverse le-add1 plus-1-eq-Suc)

then show ?case
using Suc unfolding semantics-mltl.simps by auto

qed

lemma WEST-future-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars

118

assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes π |=m (Future-mltl a b F)
shows match π (WEST-future L a b num-vars)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have west-future-aa: WEST-future L a b num-vars = shift L num-vars a

using WEST-future.simps[of L a b num-vars] by simp
have match (drop a π) L

using assms(1)[of drop a π] assms complen-geq-one
using 0 .prems(1) 0 .prems(5) 0 .prems(6) a-eq-b le-antisym length-drop seman-

tics-mltl.simps(7) by auto
then have match π (shift L num-vars a)

using shift-match-converse 0 by auto
then show ?case using west-future-aa by simp

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (b − 1) num-vars) num-vars
using WEST-future.simps[of L a b num-vars]
by (metis Suc.hyps(2) Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq ′ linorder-le-less-linear)
then have (WEST-future L a b num-vars) = WEST-or-simp (shift L num-vars

b) (WEST-future L a (a + x) num-vars) num-vars
using b-asucx
by (metis add-Suc-right diff-Suc-1)

{assume sat-b: semantics-mltl (drop b π) F
then have match (drop b π) L using Suc by simp
then have match π (shift L num-vars b)

using shift-match Suc
by (metis add.commute add-leD1 shift-match-converse)

then have ?case using WEST-future.simps[of L a b num-vars] Suc
by (metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct

shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b − 1) num-vars) num-vars› b-asucx le-add1 plus-1-eq-Suc)

} moreover {
assume sat-before-b: semantics-mltl π (Future-mltl a (a+x) F)
have match π (WEST-future L a (a + x) num-vars)

using Suc.hyps(1)[of a+x a F L π] Suc sat-before-b by simp
have ?case

using WEST-future.simps[of L a b num-vars] Suc
by (metis Nat.add-diff-assoc WEST-future-num-vars WEST-or-simp-correct

shift-num-vars ‹WEST-future L a b num-vars = WEST-or-simp (shift L num-vars
b) (WEST-future L a (b − 1) num-vars) num-vars› ‹match π (WEST-future L a
(a + x) num-vars)› diff-add-inverse le-add1 plus-1-eq-Suc)

119

}
ultimately show ?case using b-asucx

by (metis (no-types, lifting) Suc.prems(6) add-Suc-right le-SucE le-antisym
semantics-mltl.simps(7))
qed

lemma WEST-future-correct:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
shows match π (WEST-future L a b num-vars) ←→

semantics-mltl π (Future-mltl a b F)
using assms WEST-future-correct-forward WEST-future-correct-converse by blast

3.10 Facts about the WEST global operator
lemma WEST-global-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes match π (WEST-global L a b num-vars)
shows semantics-mltl π (Global-mltl a b F)
using assms

proof(induct b−a arbitrary: π L F a b)
case 0
then have a-eq-b: a = b by simp
then have WEST-global L a b num-vars = shift L num-vars a

using assms WEST-global.simps[of L a b num-vars] by auto
then have match π (shift L num-vars a) using 0 by simp
then have match (drop a π) L

using shift-match[of a π L num-vars] 0 by auto
then have semantics-mltl (drop a π) F

using 0 (2)[of (drop a π)] complen-geq-one[of F] 0 a-eq-b by auto
then show ?case using 0

unfolding semantics-mltl.simps by auto
next

case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have (WEST-global L a b num-vars) = WEST-and-simp (shift L num-vars

b) (WEST-global L a (a + x) num-vars) num-vars
using WEST-global.simps[of L a b num-vars]

by (metis add-diff-cancel-left ′ cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq

120

less-eq-Suc-le not-less-eq-eq ordered-cancel-comm-monoid-diff-class.diff-add-assoc plus-1-eq-Suc
zero-eq-add-iff-both-eq-0)

have nv1 : WEST-regex-of-vars (shift L num-vars b) num-vars
using shift-num-vars Suc by blast

have nv2 : WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
using WEST-global-num-vars Suc b-asucx
by (metis le-iff-add)

have match-h: match π (shift L num-vars b)
using WEST-and-correct-converse nv1 nv2 Suc

by (metis WEST-and-simp-correct ‹WEST-global L a b num-vars = WEST-and-simp
(shift L num-vars b) (WEST-global L a (a + x) num-vars) num-vars›)

then have match (drop b π) L
using shift-match Suc
using add-leD2 by blast

then have sat-b: semantics-mltl (drop b π) F using Suc by auto

have match-t: match π (WEST-global L a (a + x) num-vars)
using Suc.hyps(1)[of a+x a F L π] Suc b-asucx

by (metis WEST-and-simp-correct ‹WEST-global L a b num-vars = WEST-and-simp
(shift L num-vars b) (WEST-global L a (a + x) num-vars) num-vars› nv1 nv2)

then have semantics-mltl π (Global-mltl a (a+x) F)
using Suc by fastforce

then have sat-before-b: ∀ i. a ≤ i ∧ i ≤ a + x −→ semantics-mltl (drop i π) F
using Suc unfolding semantics-mltl.simps by auto

have ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F
using sat-b sat-before-b unfolding semantics-mltl.simps
by (metis add-Suc-right b-asucx le-antisym not-less-eq-eq)

then show ?case using Suc
unfolding semantics-mltl.simps by blast

qed

lemma WEST-global-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
assumes semantics-mltl π (Global-mltl a b F)
shows match π (WEST-global L a b num-vars)
using assms

using assms
proof(induct b−a arbitrary: π L F a b)

case 0
then have a-eq-b: a = b by simp
then have west-global-aa: WEST-global L a b num-vars = shift L num-vars a

using WEST-global.simps[of L a b num-vars] by simp

121

have match (drop a π) L
using assms(1)[of drop a π] assms complen-geq-one

by (metis (mono-tags, lifting) 0 .prems(1) 0 .prems(5) 0 .prems(6) a-eq-b add-le-imp-le-diff
drop-all le-trans length-0-conv length-drop not-one-le-zero semantics-mltl.simps(8))

then have match π (shift L num-vars a)
using shift-match-converse 0 by auto

then show ?case using west-global-aa by simp
next

case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
then have west-global: (WEST-global L a b num-vars) = WEST-and-simp (shift

L num-vars b) (WEST-global L a (a + x) num-vars) num-vars
using WEST-global.simps[of L a b num-vars]

by (metis add-diff-cancel-left ′ add-eq-0-iff-both-eq-0 cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq less-eq-Suc-le not-less-eq-eq ordered-cancel-comm-monoid-diff-class.diff-add-assoc
plus-1-eq-Suc)

have sat-b: semantics-mltl (drop b π) F
using Suc unfolding semantics-mltl.simps by auto

then have match (drop b π) L using Suc by simp
then have match-head: match π (shift L num-vars b)

using shift-match Suc
by (metis add.commute add-leD1 shift-match-converse)

have sat-before-b: semantics-mltl π (Future-mltl a (a+x) F)
using Suc unfolding semantics-mltl.simps by auto

have match-tail: match π (WEST-global L a (a + x) num-vars)
using Suc.hyps(1)[of a+x a F L π] Suc sat-before-b
by (simp add: b-asucx nle-le not-less-eq-eq)

have nv1 : WEST-regex-of-vars (shift L num-vars b) num-vars
using shift-num-vars Suc by blast

have nv2 : WEST-regex-of-vars (WEST-global L a (a + x) num-vars) num-vars
using WEST-global-num-vars Suc b-asucx
by (metis le-iff-add)

show ?case using b-asucx match-head match-tail
using west-global WEST-and-simp-correct nv1 nv2 by metis

qed

lemma WEST-global-correct:
assumes

∧
π. (length π ≥ complen-mltl F −→ (match π L ←→ semantics-mltl

π F))
assumes WEST-regex-of-vars L num-vars
assumes WEST-num-vars F ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl F) + b
shows match π (WEST-global L a b num-vars) ←→

122

semantics-mltl π (Global-mltl a b F)
using assms WEST-global-correct-forward WEST-global-correct-converse by blast

3.11 Facts about the WEST until operator
lemma WEST-until-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Until-mltl F1 a b F2)
assumes match π (WEST-until L1 L2 a b num-vars)
shows semantics-mltl π (Until-mltl F1 a b F2)
using assms

proof(induct b−a arbitrary: π L1 L2 F1 F2 a b)
case 0
then have a-eq-b: b = a by simp
have len-xi: complen-mltl F2 + a ≤ length π

using 0 complen-geq-one by auto
have until-aa: WEST-until L1 L2 a b num-vars = WEST-global L2 a a num-vars

using WEST-until.simps[of L1 L2 a b num-vars] a-eq-b by auto
then have WEST-global L2 a a num-vars = shift L2 num-vars a by auto
then have match π (shift L2 num-vars a)

using until-aa 0 by argo
then have match (drop a π) L2

using shift-match[of a π L2 num-vars] 0 by simp
then have semantics-mltl (drop a π) F2 using 0 by auto
then have sem-until: (∃ i. (a ≤ i ∧ i ≤ a) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1))

by auto
have max (complen-mltl F1 − 1) (complen-mltl F2) ≥ 1

using complen-geq-one[of F2] by auto
then have a < length π

using 0 (9) using a-eq-b
unfolding complen-mltl.simps
by linarith

then show ?case using sem-until
unfolding a-eq-b semantics-mltl.simps
by blast

next
case (Suc x)
then have b-asucx: b = a + (Suc x) by simp
have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2 a

123

(a + x) num-vars)
(WEST-and-simp (WEST-global L1 a (a + x) num-vars) (WEST-global

L2 b b num-vars) num-vars) num-vars
using WEST-until.simps[of L1 L2 a b num-vars] Suc b-asucx
by (metis add-Suc-right cancel-comm-monoid-add-class.diff-cancel diff-Suc-1

less-add-Suc1 n-not-Suc-n zero-diff)

let ?rec = WEST-until L1 L2 a (a + x) num-vars
let ?base = WEST-and-simp (WEST-global L1 a (a + x) num-vars) (WEST-global

L2 b b num-vars) num-vars
have sem-until: (∃ i. (a ≤ i ∧ i ≤ b) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1))

proof−
{assume match-base: match π ?base

have nv1 : WEST-regex-of-vars (WEST-global L2 b b num-vars) num-vars
using WEST-global-num-vars[of L2 num-vars b b] Suc by simp
have nv2 : WEST-regex-of-vars (WEST-global L1 a (a + x) num-vars)

num-vars
using WEST-global-num-vars[of L1 num-vars a a+x] Suc by auto

have match π (WEST-global L2 b b num-vars)
using match-base WEST-and-simp-correct Suc nv1 nv2 by blast

then have match π (shift L2 num-vars b)
using WEST-global.simps[of L2 b b num-vars] by simp

then have cond1 : semantics-mltl (drop b π) F2
using shift-match[of b π L2 num-vars] Suc by simp

have match π (WEST-global L1 a (a + x) num-vars)
using match-base WEST-and-simp-correct Suc nv1 nv2 by blast

then have semantics-mltl π (Global-mltl a (a+x) F1)
using WEST-global-correct[of F1 L1 num-vars a a+x π] Suc by auto

then have ∀ i. a ≤ i ∧ i ≤ a + x −→ semantics-mltl (drop i π) F1
using Suc by auto

then have cond2 : ∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1
using b-asucx by auto

have semantics-mltl (drop b π) F2 ∧
(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1)

using cond1 cond2 by auto
then have ?thesis using Suc by blast

} moreover {
assume match-rec: match π ?rec
then have semantics-mltl π (Until-mltl F1 a (a+x) F2)

using Suc.hyps(1)[of a+x a F1 L1 F2 L2 π] Suc by auto
then obtain i where i-obt: (a ≤ i ∧ i ≤ (a+x)) ∧
semantics-mltl (drop i π) F2 ∧ (∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop

j π) F1)
by auto

have ?thesis using i-obt b-asucx by auto

124

}
ultimately show ?thesis using WEST-until.simps[of L1 L2 a b num-vars] Suc

using WEST-or-simp-correct
using ‹WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1

L2 a (a + x) num-vars) (WEST-and-simp (WEST-global L1 a (a + x) num-vars)
(WEST-global L2 b b num-vars) num-vars) num-vars›

by (metis (no-types, lifting) WEST-and-simp-num-vars WEST-global-num-vars
WEST-until-num-vars le-add1 order-refl)

qed
have a < length π

using Suc(10) using b-asucx complen-geq-one by auto
then show ?case using sem-until

unfolding semantics-mltl.simps by auto
qed

lemma WEST-until-correct-converse:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ (complen-mltl (Until-mltl F1 a b F2))
assumes semantics-mltl π (Until-mltl F1 a b F2)
shows match π (WEST-until L1 L2 a b num-vars)
using assms

proof(induct b−a arbitrary: π L1 L2 F1 F2 a b)
case 0
then have a-eq-b: b = a using 0 by simp
then have semantics-mltl (drop a π) F2

using assms unfolding semantics-mltl.simps
by (metis 0 .prems(9) le-antisym semantics-mltl.simps(9))

then have match (drop a π) L2
using 0 by simp

then have match π (WEST-global L2 a a num-vars)
using shift-match-converse[of a π L2 num-vars] 0 by auto

then show ?case using WEST-until.simps[of L1 L2 a a num-vars] a-eq-b by
simp
next

case (Suc x)
have max (complen-mltl F1 − 1) (complen-mltl F2) ≥ 1

using complen-geq-one[of F2] by auto
then have b-lt: b ≤ length π using Suc.prems(8) unfolding complen-mltl.simps

by linarith
have b-asucx: b = a + (Suc x) using Suc by simp

125

{assume sat-b: semantics-mltl (drop b π) F2 ∧
(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1)

have match (drop b π) L2
using sat-b Suc by auto

then have match π (shift L2 num-vars b)
using shift-match[of b π L2] shift-match-converse[OF b-lt] by auto

then have match-L2 : match π (WEST-global L2 b b num-vars)
using WEST-global.simps[of L2 b b num-vars] by simp

have semantics-mltl π (Global-mltl a (b−1) F1)
using sat-b Suc unfolding semantics-mltl.simps by auto

then have match-L1 : match π (WEST-global L1 a (b−1) num-vars)
using WEST-global-correct[of F1 L1 num-vars a b−1 π] Suc by auto

have nv1 : WEST-regex-of-vars (WEST-global L1 a (b − 1) num-vars) num-vars
using WEST-global-num-vars[of L1 num-vars a b−1] Suc by auto

have nv2 : WEST-regex-of-vars ((WEST-global L2 b b num-vars)) num-vars
using WEST-global-num-vars[of L2 num-vars b b] Suc by auto

have match π (WEST-and-simp (WEST-global L1 a (b − 1) num-vars) (WEST-global
L2 b b num-vars) num-vars)

using match-L2 match-L1 nv1 nv2 WEST-and-simp-correct by blast
then have ?case

using WEST-until.simps[of L1 L2 a b num-vars]
by (metis Suc.prems(3) Suc.prems(4) Suc.prems(7) WEST-and-simp-num-vars

WEST-or-simp-correct WEST-until-num-vars ‹semantics-mltl π (Global-mltl a (b
− 1) F1)› le-antisym linorder-not-less match-L2 nv1 nv2 semantics-mltl.simps(8))

} moreover {
assume ¬(semantics-mltl (drop b π) F2 ∧

(∀ j. a ≤ j ∧ j < b −→ semantics-mltl (drop j π) F1))
then have sab-before-b: (∃ i. (a ≤ i ∧ i ≤ (a+x)) ∧

semantics-mltl (drop i π) F2 ∧
(∀ j. a ≤ j ∧ j < i −→ semantics-mltl (drop j π) F1))

using Suc(11) b-asucx unfolding semantics-mltl.simps
by (metis add-Suc-right le-antisym not-less-eq-eq)

then have semantics-mltl π (Until-mltl F1 a (b − 1) F2)
using Suc b-asucx
unfolding semantics-mltl.simps by auto

then have match-rec: match π (WEST-until L1 L2 a (b − 1) num-vars)
using Suc.hyps(1)[of b−1 a F1 L1 F2 L2 π] Suc by auto

have WEST-until L1 L2 a b num-vars = WEST-or-simp (WEST-until L1 L2
a (b − 1) num-vars)

(WEST-and-simp (WEST-global L1 a (b − 1) num-vars)
(WEST-global L2 b b num-vars) num-vars)

num-vars
using WEST-until.simps[of L1 L2 a b num-vars] Suc
by (metis add-eq-self-zero b-asucx nat.discI nless-le)

then have ?case
using match-rec Suc WEST-or-simp-correct

126

by (metis WEST-and-simp-num-vars WEST-global-num-vars WEST-until-num-vars
‹semantics-mltl π (Until-mltl F1 a (b − 1) F2)› eq-imp-le semantics-mltl.simps(9))

}
ultimately show ?case by blast

qed

lemma WEST-until-correct:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Until-mltl F1 a b F2)
shows match π (WEST-until L1 L2 a b num-vars) ←→

semantics-mltl π (Until-mltl F1 a b F2)
using WEST-until-correct-forward[OF assms(1) assms(2) assms(3) assms(4)

assms(5) assms(6) assms(7) assms(8)]
WEST-until-correct-converse[OF assms(1) assms(2) assms(3) assms(4) assms(5)

assms(6) assms(7) assms(8)]
by blast

3.12 Facts about the WEST release Operator
lemma WEST-release-correct-forward:

assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a-leq-b: a ≤ b
assumes len: length π ≥ complen-mltl (Release-mltl F1 a b F2)
assumes match π (WEST-release L1 L2 a b num-vars)
shows semantics-mltl π (Release-mltl F1 a b F2)

proof−
{assume match-base: match π (WEST-global L2 a b num-vars)

{assume ∗ : a = 0 ∧ b = 0
then have WEST-global L2 a b num-vars = L2

using WEST-global.simps pad-zero by simp
then have matchL2 : match π L2

using match-base by auto
have complen-mltl F2 ≤ length π

127

using assms(8) by auto
then have (semantics-mltl π F2)

using matchL2 assms(2)[of π] ∗
by blast

then have ?thesis using ∗ by simp
} moreover {assume ∗ : b > 0
then have semantics-mltl π (Global-mltl a b F2)

using match-base WEST-global-correct[of F2 L2 num-vars a b π] assms by
auto

then have ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F2
unfolding semantics-mltl.simps using assms ∗ add-cancel-right-left com-

plen-geq-one le-add2 le-trans max-nat.neutr-eq-iff nle-le not-one-le-zero
by (smt (verit, best) add-diff-cancel-left ′ complen-mltl.simps(9) diff-is-0-eq ′)

then have ?thesis unfolding semantics-mltl.simps using assms by blast
} ultimately have ?thesis using a-leq-b by blast

} moreover {
assume no-match-base: match π (WEST-release-helper L1 L2 a (b−1) num-vars)

∧ a < b
have a-le-b: a < b using no-match-base by simp

have no-match: match π (WEST-release-helper L1 L2 a (b−1) num-vars) using
no-match-base by blast

have (∃ j≥a. j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2))

using assms a-le-b no-match
proof(induct b−a−1 arbitrary: π L1 L2 F1 F2 a b)

case 0
have max (complen-mltl F1 − 1) (complen-mltl F2) ≥ 0

by force
then have a-leq: a ≤ length π

using 0 (8−9) unfolding complen-mltl.simps
by auto

have b-aplus1 : b = a+1 using 0 by presburger
then have match-rec: match π (WEST-release-helper L1 L2 a a num-vars)
using 0 (10) using WEST-release.simps[of L1 L2 a b num-vars] WEST-or-correct

0
by (metis diff-add-inverse2)
then have match π (WEST-and-simp (WEST-global L1 a a num-vars)

(WEST-global L2 a a num-vars) num-vars)
using 0 WEST-release-helper .simps by metis

then have match π (WEST-global L1 a a num-vars) ∧ match π (WEST-global
L2 a a num-vars)

using WEST-and-simp-correct 0
using WEST-global-num-vars[of L1 num-vars a a] WEST-global-num-vars[of

L2 num-vars a a]
by blast

then have match π (shift L1 num-vars a) ∧ match π (shift L1 num-vars a)
by auto

then have match-L1L2 : match (drop a π) L1 ∧ match (drop a π) L2

128

using shift-match 0 a-leq
by (metis WEST-global.simps ‹match π (WEST-global L1 a a num-vars) ∧

match π (WEST-global L2 a a num-vars)›)
have b − a + max (complen-mltl F1 − 1) (complen-mltl F2) ≤ length (drop

a π)
using 0 (9) unfolding complen-mltl.simps using 0 (1 , 8) by auto

then have b − a + complen-mltl F1 − 1 ≤ length (drop a π)
unfolding complen-mltl.simps using 0 (1) by auto

then have complen-mltl F1 ≤ length (drop a π)
using 0 (1) complen-geq-one[of F1]
by (simp add: b-aplus1)
then have F1-equiv: semantics-mltl (drop a π) F1 = match π (shift L1

num-vars a)
using 0
using ‹match π (shift L1 num-vars a) ∧ match π (shift L1 num-vars a)›

match-L1L2 by blast
have b − a + max (complen-mltl F2 − 1) (complen-mltl F2) ≤ length (drop

a π)
using 0 (9) unfolding complen-mltl.simps using 0 (1 , 8) by auto

then have b − a + complen-mltl F2 ≤ length (drop a π)
unfolding complen-mltl.simps using 0 (1) by auto

then have complen-mltl F2 ≤ length (drop a π)
using 0 (1) complen-geq-one[of F1]
by (simp add: b-aplus1)
then have F2-equiv: semantics-mltl (drop a π) F2 = match π (shift L2

num-vars a)
using 0 a-leq match-L1L2 shift-match-converse by blast

have semantics-mltl (drop a π) F1 ∧ semantics-mltl (drop a π) F2
using F1-equiv F2-equiv match-L1L2
using a-leq shift-match-converse by blast

then show ?case using b-aplus1 by auto
next

case (Suc x)
then have b-aplus2 : b = a+x+2 by linarith

then have match-rec: match π (WEST-release-helper L1 L2 a (a+x+1)
num-vars)

using WEST-release.simps[of L1 L2 a a+x+2 num-vars] WEST-or-correct
Suc

by (metis Suc-1 Suc-eq-plus1 add-Suc-shift add-diff-cancel-right ′)
have west-release-helper : WEST-release-helper L1 L2 a (a+x+1) num-vars

= WEST-or-simp (WEST-release-helper L1 L2 a (a + x) num-vars)
(WEST-and-simp (WEST-global L2 a (a + x + 1) num-vars)

(WEST-global L1 (a + x + 1) (a + x + 1) num-vars) num-vars) num-vars
using WEST-release-helper .simps[of L1 L2 a a+x+1 num-vars]

by (metis add.commute add-diff-cancel-right ′ less-add-Suc1 less-add-one
not-add-less1 plus-1-eq-Suc)

let ?rec = WEST-release-helper L1 L2 a (a + x) num-vars
let ?base = WEST-and-simp (WEST-global L2 a (a + x + 1) num-vars)

(WEST-global L1 (a + x + 1) (a + x + 1) num-vars) num-vars

129

have match-rec-or-base: match π ?rec ∨ match π ?base
using WEST-or-simp-correct WEST-release-helper-num-vars WEST-and-simp-num-vars

WEST-global-num-vars
by (metis (mono-tags, lifting) Suc.prems(3) Suc.prems(4) ab-semigroup-add-class.add-ac(1)

eq-imp-le le-add1 match-rec west-release-helper)
have ∃ j≥a. j ≤ a+x+1 ∧

semantics-mltl (drop j π) F1 ∧ (∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl
(drop k π) F2)

proof−
{assume match-rec: match π (WEST-release-helper L1 L2 a (a + x)

num-vars)
have x-is: x = a + x + 1 − a − 1

by auto
have a-leq: a ≤ a + x + 1

by simp
have a-lt: a < a + x + 1

by auto
have complen: complen-mltl (Release-mltl F1 a (a + x + 1) F2) ≤ length

π
using Suc(10) Suc(2) by simp

have sum: a + x + 1 = b − 1
using Suc(2) by auto
have important-match: match π (WEST-release-helper L1 L2 a (b−2)

num-vars)
using match-rec sum b-aplus2 by simp
have match π (WEST-or-simp (WEST-global L2 a (b − 1) num-vars)

(WEST-release-helper L1 L2 a (b − 2) num-vars) num-vars)
using important-match b-aplus2

using WEST-or-simp-correct[of WEST-global L2 a (b − 1) num-vars
num-vars WEST-release-helper L1 L2 a (b − 2) num-vars π]

by (metis Suc.prems(3) Suc.prems(4) WEST-global-num-vars WEST-release-helper-num-vars
a-leq diff-add-inverse2 le-add1 sum)

then have match1 : match π (WEST-release L1 L2 a (a + x + 1) num-vars)
unfolding WEST-release.simps
using b-aplus2 sum
by (metis (full-types) Suc-1 a-lt diff-diff-left plus-1-eq-Suc)

have match2 : match π (WEST-release-helper L1 L2 a (a + x + 1 − 1)
num-vars)

using important-match b-aplus2 by auto
have ∃ j≥a. j ≤ a + x ∧

semantics-mltl (drop j π) F1 ∧ (∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl
(drop k π) F2)

using Suc.hyps(1)[OF x-is Suc(3) Suc(4) Suc(5) Suc(6) Suc(7) Suc(8)
a-leq complen - a-lt]

match1 match2
by (metis add-diff-cancel-right ′)

then have ?case using b-aplus2 by auto
} moreover {

assume match-base: match π (WEST-and-simp (WEST-global L2 a (a +

130

x + 1) num-vars)
(WEST-global L1 (a + x + 1) (a + x + 1) num-vars)

num-vars)
have match π (WEST-global L2 a (a + x + 1) num-vars)

using match-base WEST-and-simp-correct WEST-global-num-vars
by (metis Suc.prems(3) Suc.prems(4) add.commute eq-imp-le less-add-Suc1

order-less-le plus-1-eq-Suc)
then have semantics-mltl π (Global-mltl a (a + x + 1) F2)

using WEST-global-correct[of F2 L2 num-vars a a + x + 1 π]
using Suc.prems(2 , 4 , 6 , 8) Suc.hyps(2) by simp

then have fact2 : (∀ k. a ≤ k ∧ k ≤ (a + x + 1) −→ semantics-mltl (drop
k π) F2)

unfolding semantics-mltl.simps using Suc.prems(8 , 10)
unfolding complen-mltl.simps by simp

have match π (WEST-global L1 (a + x + 1) (a + x + 1) num-vars)
using match-base WEST-and-simp-correct WEST-global-num-vars

by (metis Suc.prems(3) Suc.prems(4) add.commute eq-imp-le less-add-Suc1
order-less-le plus-1-eq-Suc)

then have match π (shift L1 num-vars (a + x + 1))
using WEST-global.simps[of L1 a + x + 1 a + x + 1 num-vars] by

metis
then have match (drop (a + x + 1) π) L1

using shift-match[of a + x + 1 π L1 num-vars]
using Suc.prems(8) unfolding complen-mltl.simps using b-aplus2 by

simp
then have fact1 : semantics-mltl (drop (a + x + 1) π) F1

using Suc.prems(1)[of drop (a + x + 1) π]
using Suc.prems(8) unfolding complen-mltl.simps using b-aplus2 by

auto
have ?case using b-aplus2 fact1 fact2

by (smt (verit) Suc.hyps(2) Suc.prems(10) Suc-diff-Suc ab-semigroup-add-class.add-ac(1)
add.commute add-diff-cancel-left ′ antisym-conv1 le-iff-add order-less-imp-le plus-1-eq-Suc)

}
ultimately show ?thesis using match-rec-or-base
by (smt (verit, best) Suc.hyps(2) Suc-eq-plus1 add.assoc diff-right-commute

le-trans ordered-cancel-comm-monoid-diff-class.add-diff-inverse)
qed
then show ?case using b-aplus2 by simp

qed

then have ?thesis unfolding semantics-mltl.simps by auto
}
ultimately show ?thesis using WEST-release.simps assms(9)
by (smt (verit, ccfv-SIG) WEST-global-num-vars WEST-or-simp-correct WEST-release-helper-num-vars

a-leq-b add-leD2 add-le-cancel-right assms(3) assms(4) diff-add less-iff-succ-less-eq)
qed

lemma WEST-release-correct-converse:

131

assumes
∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Release-mltl F1 a b F2)
assumes semantics-mltl π (Release-mltl F1 a b F2)
shows match π (WEST-release L1 L2 a b num-vars)

proof−
have len-xi: a < length π

using assms(7 , 8) unfolding complen-mltl.simps
by (metis (no-types, lifting) add-leD1 complen-geq-one diff-add-inverse diff-is-0-eq ′

le-add-diff-inverse le-neq-implies-less le-zero-eq less-numeral-extra(4) less-one max-nat.eq-neutr-iff)

{assume case1 : ∀ i. a ≤ i ∧ i ≤ b −→ semantics-mltl (drop i π) F2
then have match π (WEST-global L2 a b num-vars)

using WEST-global-correct-converse assms by fastforce
then have ?thesis unfolding WEST-release.simps

using WEST-or-simp-correct
by (smt (verit) WEST-global-num-vars WEST-release-helper-num-vars add-leE

add-le-cancel-right assms(3) assms(4) diff-add less-iff-succ-less-eq)
} moreover {

assume case2 : ∃ j≥a. j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2)

then obtain j where obtain-j: a ≤ j ∧ j ≤ b − 1 ∧
semantics-mltl (drop j π) F1 ∧
(∀ k. a ≤ k ∧ k ≤ j −→ semantics-mltl (drop k π) F2)

by blast
{

assume a-eq-b: a = b
then have ?thesis using case2

using calculation le-antisym by blast
} moreover {

assume a-le-b: a < b

have semantics-mltl π (Global-mltl j j F1) using obtain-j
by auto

have (complen-mltl F1 − 1) + b ≤ length π
using assms(8) obtain-j unfolding complen-mltl.simps by auto

then have complen-mltl F1 + j ≤ length π
using obtain-j a-le-b by auto

then have match-global1 : match π (WEST-global L1 j j num-vars)
using WEST-global-correct-converse[of F1 L1 num-vars j j π] assms
using ‹semantics-mltl π (Global-mltl j j F1)› by blast

132

have len-xi-f2j: complen-mltl F2 + j ≤ length π
using assms(8) obtain-j by auto

have a ≤ j
using a-le-b obtain-j by blast

then have semantics-mltl π (Global-mltl a j F2)
using obtain-j a-le-b
unfolding semantics-mltl.simps by blast

then have match-global2 : match π (WEST-global L2 a j num-vars)
using WEST-global-correct-converse[of F2 L2 num-vars a j π] len-xi-f2j

assms
by simp

have j-bounds: a ≤ j ∧ j ≤ b − 1 using obtain-j by blast
have match π (WEST-release-helper L1 L2 a (b − 1) num-vars)

using match-global1 match-global2 a-le-b j-bounds assms(1−6)
proof(induct b−1−a arbitrary: a b L1 L2 F1 F2)

case 0
then have match π (WEST-and-simp (WEST-global L1 a a num-vars)

(WEST-global L2 a a num-vars) num-vars)
using WEST-and-simp-correct
by (metis WEST-global-num-vars diff-is-0-eq ′ diffs0-imp-equal le-trans)

then show ?case
using WEST-release-helper .simps[of L1 L2 a b−1 num-vars] 0
by (metis diff-diff-cancel diff-zero le-trans)

next
case (Suc x)
have match-helper : match π (WEST-or-simp (WEST-release-helper L1 L2

a (b − 1 − 1) num-vars)
(WEST-and-simp (WEST-global L2 a (b − 1) num-vars)
(WEST-global L1 (b − 1) (b − 1) num-vars) num-vars) num-vars)

using Suc
proof−

{assume j-eq-bm1 : j = b−1
then have match π (WEST-and-simp (WEST-global L2 a (b − 1)

num-vars)
(WEST-global L1 (b − 1) (b − 1) num-vars) num-vars)
using Suc WEST-and-simp-correct
by (meson WEST-global-num-vars)

then have ?thesis using WEST-or-simp-correct
by (metis Suc.hyps(2) Suc.prems(4) Suc.prems(7) Suc.prems(8)

WEST-and-simp-num-vars WEST-global-num-vars WEST-release-helper-num-vars
cancel-comm-monoid-add-class.diff-cancel diff-less-Suc j-eq-bm1 le-SucE le-add1 not-add-less1
ordered-cancel-comm-monoid-diff-class.add-diff-inverse plus-1-eq-Suc)

} moreover {
assume j-le-bm1 : j < b−1
have match π (WEST-release-helper L1 L2 a (b − 1 − 1) num-vars)

using Suc.hyps(1)[of b−1 a L1 L2 F1 F2] Suc
by (smt (verit) Suc-leI diff-Suc-1 diff-le-mono diff-right-commute

j-le-bm1 le-eq-less-or-eq not-less-eq-eq)

133

then have ?thesis using WEST-or-simp-correct
using Suc.hyps(2) Suc.prems(4) Suc.prems(7) Suc.prems(8) WEST-and-simp-num-vars

WEST-global-num-vars WEST-release-helper-num-vars
by (smt (verit, del-insts) Nat.lessE Suc-leI diff-Suc-1 j-le-bm1 le-Suc-eq

le-trans)
}
ultimately show ?thesis using Suc(6)

by (meson le-neq-implies-less)
qed

have a < b−1 using Suc(2) by simp
then show ?case
using WEST-release-helper .simps[of L1 L2 a b−1 num-vars] match-helper
by presburger

qed

then have match π (WEST-or-simp (WEST-global L2 a b num-vars) (WEST-release-helper
L1 L2 a (b − 1) num-vars) num-vars)

using WEST-or-simp-correct assms
by (meson WEST-global-num-vars WEST-release-helper-num-vars j-bounds

le-trans)
then have ?thesis using a-le-b unfolding WEST-release.simps

by presburger
}
ultimately have ?thesis using assms(7) by fastforce

}
ultimately show ?thesis unfolding semantics-mltl.simps using len-xi assms(9)

by fastforce
qed

lemma WEST-release-correct:
assumes

∧
π. (length π ≥ complen-mltl F1 −→ (match π L1 ←→ semantics-mltl

π F1))
assumes

∧
π. (length π ≥ complen-mltl F2 −→ (match π L2 ←→ semantics-mltl

π F2))
assumes WEST-regex-of-vars L1 num-vars
assumes WEST-regex-of-vars L2 num-vars
assumes WEST-num-vars F1 ≤ num-vars
assumes WEST-num-vars F2 ≤ num-vars
assumes a ≤ b
assumes length π ≥ complen-mltl (Release-mltl F1 a b F2)
shows semantics-mltl π (Release-mltl F1 a b F2) ←→ match π (WEST-release

L1 L2 a b num-vars)
using WEST-release-correct-converse[OF assms(1−8)] WEST-release-correct-forward[OF

assms(1−8)]
by blast

134

3.13 Top level result: Shows that WEST reg is correct
lemma WEST-reg-aux-correct:

assumes π-long-enough: length π ≥ complen-mltl F
assumes is-nnf : ∃ ψ. F = (convert-nnf ψ)
assumes ϕ-nv: WEST-num-vars F ≤ num-vars
assumes intervals-welldef F
shows match π (WEST-reg-aux F num-vars) ←→ semantics-mltl π F
using assms
proof (induction F arbitrary: π rule: nnf-induct)
case nnf
then show ?case using is-nnf by auto

next
case True
have semantics-true: semantics-mltl π True-mltl = True by simp
have WEST-reg-aux True-mltl num-vars = [[map (λj. S) [0 ..<num-vars]]]

using WEST-reg-aux.simps(1) by blast
have match-state: match-timestep (π ! 0) (map (λj. S) [0 ..<num-vars])

unfolding match-timestep-def by auto
have length π ≥ 1 using True by auto
then have match-regex π [(map (λj. S) [0 ..<num-vars])] = True

using True match-state unfolding match-regex-def by simp
then have match π (WEST-reg-aux True-mltl num-vars) = True

using WEST-reg-aux.simps(1)[of num-vars] unfolding match-def by simp
then show ?case

using semantics-true by auto
next

case False
have semantics-false: semantics-mltl π False-mltl = False by simp
have match π [] = False

unfolding match-def by simp
then show ?case

using semantics-false by simp
next

case (Prop p)
have trace-nonempty: length π ≥ 1 using Prop by simp
let ?state = π!0
{assume p-in: p ∈ ?state

then have semantics-prop-true: semantics-mltl π (Prop-mltl p) = True
using semantics-mltl.simps(3)[of π] trace-nonempty by auto

have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (λj. if p
= j then One else S) [0 ..<num-vars]]]

using WEST-reg-aux.simps(3) by blast
have p < num-vars =⇒ p ∈ π ! 0

using p-in Prop by blast
then have match-timestep ?state (map (λj. if p = j then One else S) [0 ..<num-vars])

= True
unfolding match-timestep-def p-in by auto

then have match-regex π (WEST-reg-aux (Prop-mltl p) num-vars ! 0) = True
using trace-nonempty WEST-prop unfolding match-regex-def by auto

135

then have match π (WEST-reg-aux (Prop-mltl p) num-vars) = True
unfolding match-def by auto

then have ?case using semantics-prop-true by blast
} moreover {

assume p-notin: p /∈ ?state
then have semantics-prop-false: semantics-mltl π (Prop-mltl p) = False

using semantics-mltl.simps(3)[of π] trace-nonempty by auto
have WEST-prop: (WEST-reg-aux (Prop-mltl p) num-vars) = [[map (λj. if p

= j then One else S) [0 ..<num-vars]]]
using WEST-reg-aux.simps(3) by blast

have p < num-vars ∧ p /∈ π ! 0
using p-notin Prop by auto

then have match-timestep ?state (map (λj. if p = j then One else S) [0 ..<num-vars])
= False

unfolding match-timestep-def p-notin by auto
then have match-regex π (WEST-reg-aux (Prop-mltl p) num-vars ! 0) = False

using trace-nonempty WEST-prop unfolding match-regex-def by auto
then have match π (WEST-reg-aux (Prop-mltl p) num-vars) = False

unfolding match-def by auto
then have ?case using semantics-prop-false by blast

}
ultimately show ?case by blast

next
case (NotProp F p)
have trace-nonempty: length π ≥ 1 using NotProp by simp
let ?state = π!0
{assume p-in: p ∈ ?state

then have semantics-prop-true: semantics-mltl π (Not-mltl (Prop-mltl p)) =
False

using semantics-mltl.simps trace-nonempty by auto
have WEST-prop: (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = [[map

(λj. if p = j then Zero else S) [0 ..<num-vars]]]
using WEST-reg-aux.simps by blast

have p < num-vars ∧ p ∈ π ! 0
using p-in NotProp by simp

then have match-timestep ?state (map (λj. if p = j then Zero else S) [0 ..<num-vars])
= False

unfolding match-timestep-def p-in by auto
then have match-regex π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars !

0) = False
using trace-nonempty WEST-prop unfolding match-regex-def by auto

then have match π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = False
unfolding match-def by auto

then have ?case using semantics-prop-true NotProp by blast
} moreover {

assume p-notin: p /∈ ?state
then have semantics-prop-false: semantics-mltl π (Not-mltl (Prop-mltl p)) =

True
using semantics-mltl.simps(3)[of π] trace-nonempty by auto

136

have WEST-prop: (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = [[map
(λj. if p = j then Zero else S) [0 ..<num-vars]]]

using WEST-reg-aux.simps by blast
have p < num-vars ∧ p /∈ π ! 0

using p-notin NotProp by auto
then have match-timestep ?state (map (λj. if p = j then Zero else S) [0 ..<num-vars])

= True
unfolding match-timestep-def p-notin by auto

then have match-regex π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars !
0) = True

using trace-nonempty WEST-prop unfolding match-regex-def by auto
then have match π (WEST-reg-aux (Not-mltl (Prop-mltl p)) num-vars) = True

unfolding match-def by simp
then have ?case using semantics-prop-false NotProp by blast

}
ultimately show ?case by blast

next
case (And F F1 F2)
have subformula1 : WEST-num-vars F1 ≤ num-vars

using WEST-num-vars-subformulas[of F1 F] And(1 ,6) by simp
have subformula2 : WEST-num-vars F2 ≤ num-vars

using WEST-num-vars-subformulas[of F2 F] And(1 ,6) by simp
have complen-mltl F1 ≤ complen-mltl F

using And(1) complen-mltl.simps(5)[of F1 F2] by auto
then have cp-F1 : complen-mltl F1 ≤ length π

using And.prems by auto
have h2 : match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1

using And(2)[OF cp-F1] subformula1
by (metis And.hyps And.prems(2) And.prems(4) convert-nnf .simps(4) con-

vert-nnf-convert-nnf intervals-welldef .simps(5) mltl.inject(3))
have complen-mltl F2 ≤ complen-mltl F

using And(1) complen-mltl.simps(5)[of F2 F2] by simp
then have cp-F2 : complen-mltl F2 ≤ length π

using And.prems by auto
have h1 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2

using And.prems(2) And(1) And(3)[OF cp-F2] subformula2
by (metis And.prems(4) convert-nnf .simps(4) convert-nnf-convert-nnf inter-

vals-welldef .simps(5) mltl.inject(3))
let ?n = num-vars
have F1-nv: WEST-regex-of-vars (WEST-reg-aux F1 num-vars) num-vars
using WEST-reg-aux-num-vars[of F1 num-vars] subformula1 And(1) And.prems(2)
using WEST-num-vars-subformulas
by (metis And.prems(4) convert-nnf .simps(4) convert-nnf-convert-nnf inter-

vals-welldef .simps(5) mltl.inject(3))
have F2-nv: WEST-regex-of-vars (WEST-reg-aux F2 num-vars) num-vars
using WEST-reg-aux-num-vars[of F2 num-vars] subformula1 And(1) And.prems(2)
using WEST-num-vars-subformulas
by (metis And.prems(4) convert-nnf .simps(4) convert-nnf-convert-nnf inter-

vals-welldef .simps(5) mltl.inject(3) subformula2)

137

have match: match π (WEST-and (WEST-reg-aux F1 ?n) (WEST-reg-aux F2
?n)) = (match π (WEST-reg-aux F1 ?n) ∧ match π (WEST-reg-aux F2 ?n))

using WEST-and-correct[of WEST-reg-aux F1 ?n ?n WEST-reg-aux F2 ?n π,
OF F1-nv F2-nv]

by blast
have WEST-reg-F : WEST-reg-aux F num-vars = WEST-and-simp (WEST-reg-aux

F1 num-vars) (WEST-reg-aux F2 num-vars) num-vars
using And(1) WEST-reg-aux.simps(6)[of F1 F2 num-vars] by argo

have semantics-F : semantics-mltl π (And-mltl F1 F2) = (semantics-mltl π F1
∧ semantics-mltl π F2)

using semantics-mltl.simps(5)[of π F1 F2] by blast
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using And(1) And(5) nnf-subformulas[of F - F1]
by (metis convert-nnf .simps(4) convert-nnf-convert-nnf mltl.inject(3))

have F1-correct: match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1
using And(2)[OF cp-F1 F1-nnf] WEST-num-vars-subformulas And by auto

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using And(1) And(5) nnf-subformulas[of F - F2]
by (metis convert-nnf .simps(4) convert-nnf-convert-nnf mltl.inject(3))

have F2-correct: match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using And(3)[OF cp-F2 F2-nnf] WEST-num-vars-subformulas And by auto

show ?case
using WEST-reg-F F1-correct F2-correct
using semantics-mltl.simps(5)[of π F1 F2] And(1) match
by (metis F1-nv F2-nv WEST-and-simp-correct)

next
case (Or F F1 F2)
have cp-F1 : complen-mltl F1 ≤ length π

using Or complen-mltl.simps(6)[of F1 F2] by simp
have cp-F2 : complen-mltl F2 ≤ length π

using Or complen-mltl.simps(6)[of F1 F2] by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Or(1) nnf-subformulas[of F - F1]
by (metis Or .prems(2) convert-nnf .simps(5) convert-nnf-convert-nnf mltl.inject(4))

have F1-correct: match π (WEST-reg-aux F1 num-vars) = semantics-mltl π F1
using Or(2)[OF cp-F1 F1-nnf] WEST-num-vars-subformulas Or by simp

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using Or nnf-subformulas[of F - F2]
by (metis convert-nnf .simps(5) convert-nnf-convert-nnf mltl.inject(4))

have F2-correct: match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Or(3)[OF cp-F2 F2-nnf] WEST-num-vars-subformulas Or by simp

let ?L1 = (WEST-reg-aux F1 num-vars)
let ?L2 = (WEST-reg-aux F2 num-vars)
have L1-nv: WEST-regex-of-vars ?L1 num-vars

using WEST-reg-aux-num-vars[of F1 num-vars, OF F1-nnf]
using Or(1 , 6 , 7) by auto

have L2-nv: WEST-regex-of-vars ?L2 num-vars
using WEST-reg-aux-num-vars[of F2 num-vars, OF F2-nnf]
using Or(1 , 6 , 7) by auto

138

have (match π ?L1 ∨ match π ?L2) = match π (WEST-or-simp ?L1 ?L2
num-vars)

using WEST-or-simp-correct[of ?L1 num-vars ?L2 π, OF L1-nv L2-nv] by
blast

then show ?case
using F1-correct F2-correct
using semantics-mltl.simps(6)[of π F1 F2]
unfolding Or(1) unfolding WEST-reg-aux.simps by blast

next
case (Final F F1 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Final by auto
have cp-F1 : complen-mltl F1 ≤ length π

using Final by simp
then have len-xi: length π ≥ (complen-mltl F1) + b using Final by auto
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Final
by (metis convert-nnf .simps(6) convert-nnf-convert-nnf mltl.inject(5))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Final(2)[OF cp-F1 F1-nnf F1-nv] Final by auto
have intervals-welldef-F1 : intervals-welldef F1

using Final by auto
have a-le-b: a ≤ b

using Final by simp
show ?case using WEST-reg-aux.simps(7)[of a b F1 num-vars] Final

using match-F1 WEST-future-correct F1-nv len-xi
using a-le-b intervals-welldef-F1
by (metis F1-nnf WEST-reg-aux-num-vars)

next
case (Global F F1 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Global by auto
have cp-F1 : complen-mltl F1 ≤ length π

using Global by simp
then have len-xi: length π ≥ (complen-mltl F1) + b using Global by auto
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Global
by (metis convert-nnf .simps(7) convert-nnf-convert-nnf mltl.inject(6))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Global(2)[OF cp-F1 F1-nnf F1-nv] Global by auto
then show ?case using WEST-reg-aux.simps(8)[of a b F1 num-vars] Global

using match-F1 WEST-global-correct F1-nv
by (metis F1-nnf WEST-reg-aux-num-vars intervals-welldef .simps(8) len-xi)

next
case (Until F F1 F2 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Until by auto

139

{assume ∗: a = 0 ∧ b = 0
have complen-leq: complen-mltl F2 ≤ length π

using Until(1) Until.prems(1) by simp
have some-nnf : ∃ψ. F2 = convert-nnf ψ

using Until(1) Until.prems(2)
by (metis convert-nnf .simps(8) convert-nnf-convert-nnf mltl.inject(7))

have F2 ∈ subformulas (Until-mltl F1 a b F2)
unfolding subformulas.simps by blast

then have num-vars: WEST-num-vars F2 ≤ num-vars
using Until(1) Until.prems(3) WEST-num-vars-subformulas[of F2 F]
by auto

have match-F2 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Until(1) Until(3)[OF complen-leq some-nnf num-vars] Until.prems
by simp

have max (complen-mltl F1 − 1) (complen-mltl F2) >= 1
using complen-geq-one[of F2] by auto

then have len-gt: length π > 0
using Until.prems(1) Until(1) by auto

have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift
(WEST-reg-aux F2 num-vars) num-vars 0

using WEST-global.simps[of - 0 0] by auto
have map (λk. arbitrary-state num-vars) [0 ..<0] = []

by simp
then have padis: shift (WEST-reg-aux F2 num-vars) num-vars 0 = WEST-reg-aux

F2 num-vars
unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8)

map-ident upt-0
proof −

have (@) (map (λn. arbitrary-state num-vars) ([]::nat list)) = (λwss. wss)
by blast

then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0])) (WEST-reg-aux
F2 num-vars) = WEST-reg-aux F2 num-vars

by simp
qed

then have match π (WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars)
=

(semantics-mltl π F2)
using match-F2 global padis by simp

then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 num-vars) 0 0 num-vars) =

(semantics-mltl π F2)
using WEST-until.simps[of - - 0 0 num-vars] by auto

then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux
F2 num-vars) 0 0 num-vars) =

(semantics-mltl (drop 0 π) F2 ∧ (∀ j. 0 ≤ j ∧ j < 0 −→ semantics-mltl (drop
j π) F1))

by auto
then have match π (WEST-reg-aux (Until-mltl F1 0 0 F2) num-vars) =

semantics-mltl π (Until-mltl F1 0 0 F2)

140

using len-gt ∗
unfolding semantics-mltl.simps WEST-reg-aux.simps by auto

then have ?case using Until(1) ∗ by auto
} moreover {assume ∗: b > 0
then have cp-F1 : complen-mltl F1 ≤ length π

using complen-mltl.simps(10)[of F1 a b F2] Until by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Until
by (metis convert-nnf .simps(8) convert-nnf-convert-nnf mltl.inject(7))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Until(2)[OF cp-F1 F1-nnf F1-nv] Until by auto
have F2-nv: WEST-num-vars F2 ≤ num-vars

using Until by auto
have cp-F2 : complen-mltl F2 ≤ length π

using complen-mltl.simps(10)[of F1 a b F2] Until by simp
have F2-nnf : ∃ψ. F2 = convert-nnf ψ

using Until
by (metis convert-nnf .simps(8) convert-nnf-convert-nnf mltl.inject(7))

let ?L2 = (WEST-reg-aux F2 num-vars)
have match-F2 : match π ?L2 = semantics-mltl π F2

using Until(3)[OF cp-F2 F2-nnf F2-nv] Until by simp
have len-xi: length π ≥ complen-mltl (Until-mltl F1 a b F2) using Until by auto
then have ?case using WEST-until-correct[of F1 ?L1 F2 ?L2 num-vars a b π]

using Until F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2
using WEST-reg-aux.simps(9)[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
by (metis (no-types, lifting) intervals-welldef .simps(9))

}
ultimately show ?case using Until.prems(4) Until(1)

by fastforce
next

case (Release F F1 F2 a b)
have F1-nv: WEST-num-vars F1 ≤ num-vars

using Release by auto
{assume ∗: a = 0 ∧ b = 0

have complen-leq: complen-mltl F2 ≤ length π
using Release(1) Release.prems(1) by simp

have some-nnf : ∃ψ. F2 = convert-nnf ψ
using Release(1) Release.prems(2)
by (metis convert-nnf .simps(9) convert-nnf-convert-nnf mltl.inject(8))

have F2 ∈ subformulas (Until-mltl F1 a b F2)
unfolding subformulas.simps by blast

then have num-vars: WEST-num-vars F2 ≤ num-vars
using Release(1) Release.prems(3) WEST-num-vars-subformulas[of F2 F]
by auto

have match-F2 : match π (WEST-reg-aux F2 num-vars) = semantics-mltl π F2
using Release(1) Release(3)[OF complen-leq some-nnf num-vars] Release.prems

by simp
have max (complen-mltl F1 − 1) (complen-mltl F2) >= 1

141

using complen-geq-one[of F2] by auto
then have len-gt: length π > 0

using Release.prems(1) Release(1) by auto
have global: WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars = shift

(WEST-reg-aux F2 num-vars) num-vars 0
using WEST-global.simps[of - 0 0] by auto

have map (λk. arbitrary-state num-vars) [0 ..<0] = []
by simp

then have padis: shift (WEST-reg-aux F2 num-vars) num-vars 0 = WEST-reg-aux
F2 num-vars

unfolding shift.simps arbitrary-trace.simps using append.left-neutral list.simps(8)
map-ident upt-0

proof −
have (@) (map (λn. arbitrary-state num-vars) ([]::nat list)) = (λwss. wss)

by blast
then show map ((@) (map (λn. arbitrary-state num-vars) [0 ..<0])) (WEST-reg-aux

F2 num-vars) = WEST-reg-aux F2 num-vars
by simp

qed
then have match π (WEST-global (WEST-reg-aux F2 num-vars) 0 0 num-vars)

=
(semantics-mltl π F2)

using match-F2 global padis by simp
then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux

F2 num-vars) 0 0 num-vars) =
(semantics-mltl π F2)

using WEST-until.simps[of - - 0 0 num-vars] by auto
then have match π (WEST-until (WEST-reg-aux F1 num-vars) (WEST-reg-aux

F2 num-vars) 0 0 num-vars) =
(semantics-mltl (drop 0 π) F2 ∧ (∀ j. 0 ≤ j ∧ j < 0 −→ semantics-mltl (drop

j π) F1))
by auto

then have match π (WEST-reg-aux (Release-mltl F1 0 0 F2) num-vars) =
semantics-mltl π (Release-mltl F1 0 0 F2)

using len-gt ∗
unfolding semantics-mltl.simps WEST-reg-aux.simps by auto

then have ?case using Release(1) ∗
by auto

} moreover {assume ∗: b > 0
then have cp-F1 : complen-mltl F1 ≤ length π

using complen-mltl.simps(10)[of F1 a b F2] Release by simp
have F1-nnf : ∃ψ. F1 = convert-nnf ψ

using Release
by (metis convert-nnf .simps(9) convert-nnf-convert-nnf mltl.inject(8))

let ?L1 = (WEST-reg-aux F1 num-vars)
have match-F1 : match π ?L1 = semantics-mltl π F1

using Release(2)[OF cp-F1 F1-nnf F1-nv] Release by auto
have F2-nv: WEST-num-vars F2 ≤ num-vars

using Release by auto

142

have cp-F2 : complen-mltl F2 ≤ length π
using complen-mltl.simps(10)[of F1 a b F2] Release by simp

have F2-nnf : ∃ψ. F2 = convert-nnf ψ
using Release
by (metis convert-nnf .simps(9) convert-nnf-convert-nnf mltl.inject(8))

let ?L2 = (WEST-reg-aux F2 num-vars)
have match-F2 : match π ?L2 = semantics-mltl π F2

using Release(3)[OF cp-F2 F2-nnf F2-nv] Release by simp
have len-xi: length π ≥ (max ((complen-mltl F1)−1) (complen-mltl F2)) + b

using ∗ Release
by auto

have ?case using WEST-release-correct[of F1 ?L1 F2 ?L2 num-vars a b π]
using Release F1-nv F2-nv cp-F1 cp-F2 F1-nnf F2-nnf match-F1 match-F2

using WEST-reg-aux.simps(10)[of F1 a b F2 num-vars] WEST-reg-aux-num-vars
by (metis (full-types) intervals-welldef .simps(10))

}
ultimately show ?case using Release(7) Release(1) by fastforce

qed

lemma complen-convert-nnf :
shows complen-mltl (convert-nnf ϕ) = complen-mltl ϕ

proof(induction depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)

case True-mltl
then show ?thesis by simp

next
case False-mltl
then show ?thesis by simp

next
case (Prop-mltl p)
then show ?thesis by simp

next
case (Not-mltl p)
then show ?thesis proof (induct p)

case True-mltl
then show ?case using Not-mltl less by auto

next
case False-mltl
then show ?case using Not-mltl less by auto

next
case (Prop-mltl x)
then show ?case using Not-mltl less by auto

next
case (Not-mltl p)
then show ?case using Not-mltl less by auto

next
case (And-mltl p1 p2)
then show ?case using Not-mltl less by auto

143

next
case (Or-mltl p1 p2)
then show ?case using Not-mltl less by auto

next
case (Future-mltl a b x)
then show ?case using Not-mltl less by auto

next
case (Global-mltl a b x)
then show ?case using Not-mltl less by auto

next
case (Until-mltl x a b y)
then show ?case using Not-mltl less by auto

next
case (Release-mltl x a b y)
then show ?case using Not-mltl less by auto

qed
next

case (And-mltl x y)
then show ?thesis using less by auto

next
case (Or-mltl x y)
then show ?thesis using less by auto

next
case (Future-mltl a b x)
then show ?thesis using less by auto

next
case (Global-mltl a b x)
then show ?thesis using less by auto

next
case (Until-mltl x a b y)
then show ?thesis using less by auto

next
case (Release-mltl x a b y)
then show ?thesis using less by auto

qed
qed

lemma nnf-int-welldef :
assumes intervals-welldef ϕ
shows intervals-welldef (convert-nnf ϕ)
using assms

proof (induct depth-mltl ϕ arbitrary: ϕ rule: less-induct)
case less
then show ?case proof (cases ϕ)

case True-mltl
then show ?thesis by simp

next
case False-mltl

144

then show ?thesis by simp
next

case (Prop-mltl p)
then show ?thesis by simp

next
case (Not-mltl ψ)
then have phi-is: ϕ = Not-mltl ψ

by auto
show ?thesis proof (cases ψ)

case True-mltl
then show ?thesis using Not-mltl by simp

next
case False-mltl
then show ?thesis using Not-mltl by simp

next
case (Prop-mltl p)
then show ?thesis using Not-mltl by simp

next
case (Not-mltl F)
then have iwd: intervals-welldef (convert-nnf F)

using phi-is less by simp
have ϕ = Not-mltl (Not-mltl F)

using phi-is Not-mltl by auto
then show ?thesis using iwd

convert-nnf .simps(13)[of F] by simp
next

case (And-mltl x y)
then show ?thesis using Not-mltl less by simp

next
case (Or-mltl x y)
then show ?thesis using Not-mltl less by simp

next
case (Future-mltl a b x)
then show ?thesis using Not-mltl less by simp

next
case (Global-mltl a b x)
then show ?thesis using Not-mltl less by simp

next
case (Until-mltl x a b y)
then show ?thesis using Not-mltl less by simp

next
case (Release-mltl x a b y)
then show ?thesis using Not-mltl less by simp

qed
next

case (And-mltl x y)
then show ?thesis using less by simp

next
case (Or-mltl x y)

145

then show ?thesis using less by simp
next

case (Future-mltl a b x)
then show ?thesis using less by simp

next
case (Global-mltl a b x)
then show ?thesis using less by simp

next
case (Until-mltl x a b y)
then show ?thesis using less by simp

next
case (Release-mltl x a b y)
then show ?thesis using less by simp

qed
qed

lemma WEST-correct:
fixes ϕ::(nat) mltl
fixes π::trace
assumes int-welldef : intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl (convert-nnf ϕ)
shows match π (WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof−
let ?n = WEST-num-vars ϕ
have match π (WEST-reg-aux (convert-nnf ϕ) (WEST-num-vars ϕ)) = seman-

tics-mltl π (convert-nnf ϕ)
using WEST-reg-aux-correct[OF assms(2) - - nnf-int-welldef , of WEST-num-vars

ϕ] WEST-num-vars-nnf [of ϕ]
using int-welldef by auto

then show ?thesis
unfolding WEST-reg.simps

using WEST-num-vars-nnf [of ϕ] convert-nnf-preserves-semantics[OF assms(1)]
by simp

qed

lemma WEST-correct-v2 :
fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof−
show ?thesis

using WEST-correct complen-convert-nnf
by (metis π-long-enough assms(1))

qed

146

3.14 Top level result for padded version
lemma WEST-correct-pad-aux:

fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (pad-WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof −
let ?unpadded = WEST-reg ϕ
let ?complen = complen-mltl ϕ
let ?num-vars = WEST-num-vars ϕ
let ?len = length (WEST-reg ϕ)
have pwr-is: pad-WEST-reg ϕ = (map (λL. if length L < ?complen

then L @ arbitrary-trace ?num-vars (?complen − length L)
else L) ?unpadded)

unfolding pad-WEST-reg.simps
by (metis (no-types, lifting) map-equality-iff pad.elims)

then have length ?unpadded = length (pad-WEST-reg ϕ)
by auto

then have pwr-k-is: (pad-WEST-reg ϕ ! k) = (if length (?unpadded!k) < ?complen
then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen −

length (?unpadded!k))
else (?unpadded!k)) if k-lt: k<length (pad-WEST-reg ϕ) for k

using k-lt pwr-is
by fastforce

have same-len: length (pad-WEST-reg ϕ) = length (WEST-reg ϕ)
unfolding pad-WEST-reg.simps
by (meson length-map)

have match-regex π (if length (WEST-reg ϕ ! k) < complen-mltl ϕ
then WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))

else WEST-reg ϕ ! k) =
match-regex π (WEST-reg ϕ ! k) if k-lt: k < ?len for k

proof −
{assume ∗: length (WEST-reg ϕ ! k) < complen-mltl ϕ

then have len-is: length (WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) =

complen-mltl ϕ
by auto

have univ-prop:
∧

A B:: ′a list. (∀ time<length
(A @ B). (time ≥ length A −→

P time)) =⇒ ((∀ time<length
(A @ B). P time) = (∀ time<length
A . P time)) for P::nat ⇒ bool

by auto
have match-timestep (π ! time)

((WEST-reg ϕ ! k @

147

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

if time-prop: time < length (WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)

(complen-mltl ϕ − length (WEST-reg ϕ ! k))) ∧ time ≥ length
(WEST-reg ϕ ! k)

for time
proof −

have access: ((WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

= (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! (time − (length (WEST-reg ϕ ! k)))

using time-prop
by (meson leD nth-append)

have (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! (time − (length (WEST-reg ϕ ! k)))

= arbitrary-state (WEST-num-vars ϕ)
unfolding arbitrary-trace.simps using ∗ time-prop
by (metis diff-less-mono diff-zero len-is nth-map-upt)

then have access2 : ((WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) ! time)

= arbitrary-state (WEST-num-vars ϕ)
using access
by auto

have match-timestep (π ! time) (arbitrary-state (WEST-num-vars ϕ))
unfolding arbitrary-state.simps
match-timestep-def by simp

then show ?thesis using access2 by auto
qed

then have (∀ time<length
(WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))).

match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time)) =
(∀ time<length

(WEST-reg ϕ ! k).

148

match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time))
using univ-prop[of WEST-reg ϕ ! k arbitrary-trace (WEST-num-vars ϕ)

(complen-mltl ϕ −
length (WEST-reg ϕ ! k))]

by auto
then have (∀ time<length

(WEST-reg ϕ ! k @
arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))).

match-timestep (π ! time)
((WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ −
length (WEST-reg ϕ ! k))) !

time)) =
(∀ time<length (WEST-reg ϕ ! k).

match-timestep (π ! time)
(WEST-reg ϕ ! k ! time))

by (simp add: nth-append)
then have match-regex π (WEST-reg ϕ ! k @

arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) =

match-regex π (WEST-reg ϕ ! k)
using len-is π-long-enough ∗
unfolding match-regex-def
by auto

then have ?thesis
using ∗ by auto

}
moreover {assume ∗: length (WEST-reg ϕ ! k) ≥ complen-mltl ϕ

then have ?thesis by simp
}
ultimately show ?thesis

by argo
qed
then have match-regex π (pad-WEST-reg ϕ ! k) =

match-regex π (WEST-reg ϕ ! k) if k-lt: k < ?len for k
using pwr-k-is k-lt same-len by presburger

then have match π (pad-WEST-reg ϕ) ←→ match π (WEST-reg ϕ)
using π-long-enough same-len
unfolding match-def
by auto

then show ?thesis

149

using assms WEST-correct-v2
by blast

qed

lemma WEST-correct-pad:
fixes ϕ::(nat) mltl
fixes π::trace
assumes intervals-welldef ϕ
assumes π-long-enough: length π ≥ complen-mltl ϕ
shows match π (simp-pad-WEST-reg ϕ) ←→ semantics-mltl π ϕ

proof −
let ?unpadded = WEST-reg ϕ
let ?complen = complen-mltl ϕ
let ?num-vars = WEST-num-vars ϕ
have pwr-is: pad-WEST-reg ϕ = (map (λL. if length L < ?complen

then L @ arbitrary-trace ?num-vars (?complen − length L)
else L) ?unpadded)

unfolding pad-WEST-reg.simps
by (metis (no-types, lifting) map-equality-iff pad.elims)

then have length ?unpadded = length (pad-WEST-reg ϕ)
by auto

then have pwr-k-is: (pad-WEST-reg ϕ ! k) = (if length (?unpadded!k) < ?complen
then (?unpadded!k) @ arbitrary-trace ?num-vars (?complen −

length (?unpadded!k))
else (?unpadded!k)) if k-lt: k<length (pad-WEST-reg ϕ) for k

using k-lt pwr-is
by fastforce

have length (pad-WEST-reg ϕ ! k ! i) =
WEST-num-vars ϕ if i-is: i<length (pad-WEST-reg ϕ ! k) ∧k<length

(pad-WEST-reg ϕ)
for i k

proof −
{assume ∗: length (?unpadded!k) < ?complen

then have pad-is: (pad-WEST-reg ϕ ! k) = (?unpadded!k) @ arbitrary-trace
?num-vars (?complen − length (?unpadded!k))

using pwr-k-is that by presburger
have regtrace1 : trace-regex-of-vars (arbitrary-trace (WEST-num-vars ϕ)
(complen-mltl ϕ − length (WEST-reg ϕ ! k))) (WEST-num-vars ϕ)

unfolding arbitrary-trace.simps
trace-regex-of-vars-def
by auto

have regtrace2 : trace-regex-of-vars (WEST-reg ϕ ! k) (WEST-num-vars ϕ)
using WEST-reg-num-vars[OF assms(1)]

by (metis ‹length (WEST-reg ϕ) = length (pad-WEST-reg ϕ)› WEST-regex-of-vars-def
that)

have ?thesis
using pad-is
using regtrace-append[OF regtrace1 regtrace2]

150

by (metis regtrace1 regtrace2 regtrace-append trace-regex-of-vars-def that)
} moreover {assume ∗: length (?unpadded!k) ≥ ?complen

then have (pad-WEST-reg ϕ ! k) = (?unpadded!k)
using pwr-k-is that by presburger

then have ?thesis
using WEST-reg-num-vars[OF assms(1)]

by (metis ‹length (WEST-reg ϕ) = length (pad-WEST-reg ϕ)› WEST-regex-of-vars-def
trace-regex-of-vars-def that)

}
ultimately show ?thesis by linarith

qed
then have trace-regex-of-vars (pad-WEST-reg ϕ ! k)

(WEST-num-vars ϕ) if k-lt: k<length (pad-WEST-reg ϕ) for k
unfolding trace-regex-of-vars-def
using k-lt by auto

then have WEST-regex-of-vars (pad-WEST-reg ϕ)
(WEST-num-vars ϕ)

unfolding WEST-regex-of-vars-def
by blast

then show ?thesis
using WEST-correct-pad-aux[OF assms]
unfolding simp-pad-WEST-reg.simps
using simp-correct[of (pad-WEST-reg ϕ) (WEST-num-vars ϕ) π]
by blast

qed

end

4 Key algorithms for WEST
theory Regex-Equivalence

imports WEST-Algorithms WEST-Proofs

begin

fun depth-dataype-list:: state-regex ⇒ nat
where depth-dataype-list [] = 0
| depth-dataype-list (One#T) = 1 + depth-dataype-list T
| depth-dataype-list (Zero#T) = 1 + depth-dataype-list T
| depth-dataype-list (S#T) = 2 + 2∗(depth-dataype-list T)

function enumerate-list:: state-regex ⇒ trace-regex
where enumerate-list [] = [[]]
| enumerate-list (One#T) = (map (λx. One#x) (enumerate-list T))
| enumerate-list (Zero#T) = (map (λx. Zero#x) (enumerate-list T))
| enumerate-list (S#T) = (enumerate-list (Zero#T))@(enumerate-list (One#T))

151

apply (metis WEST-and-bitwise.elims list.exhaust)
by simp-all

termination apply (relation measure (λL. depth-dataype-list L))
by simp-all

fun flatten-list:: ′a list list ⇒ ′a list
where flatten-list L = foldr (@) L []

value flatten-list [[12 , 13 ::nat], [15]]

value flatten-list (let enumerate-H = enumerate-list [S , One] in
let enumerate-T = [[]] in
map (λt. (map (λh. h#t) enumerate-H)) enumerate-T)

fun enumerate-trace:: trace-regex ⇒ WEST-regex
where enumerate-trace [] = [[]]
| enumerate-trace (H#T) = flatten-list
(let enumerate-H = enumerate-list H in
let enumerate-T = enumerate-trace T in
map (λt. (map (λh. h#t) enumerate-H)) enumerate-T)

value enumerate-trace [[S , One], [S], [One]]
value enumerate-trace [[]]

fun enumerate-sets:: WEST-regex ⇒ trace-regex set
where enumerate-sets [] = {}
| enumerate-sets (h#T) = (set (enumerate-trace h)) ∪ (enumerate-sets T)

fun naive-equivalence:: WEST-regex ⇒ WEST-regex ⇒ bool
where naive-equivalence A B = (A = B ∨ (enumerate-sets A) = (enumerate-sets

B))

5 Regex Equivalence Correctness
lemma enumerate-list-len-alt:

shows ∀ state ∈ set (enumerate-list state-regex).
length state = length state-regex

proof(induct state-regex)
case Nil
then show ?case by simp

next
case (Cons a state-regex)
{assume zero: a = Zero

then have ∀ state ∈ set (enumerate-list state-regex).
length state = length state-regex

using Cons by blast

152

then have ?case unfolding zero
by simp

} moreover {
assume one: a = One
then have ∀ state ∈ set (enumerate-list state-regex).

length state = length state-regex
using Cons by blast

then have ?case unfolding one
by simp

} moreover {
assume s: a = S
then have ∀ state ∈ set (enumerate-list state-regex).

length state = length state-regex
using Cons by blast

then have ?case unfolding s by auto
}
ultimately show ?case

using WEST-bit.exhaust by blast
qed

lemma enumerate-list-len:
assumes state ∈ set (enumerate-list state-regex)
shows length state = length state-regex
using assms enumerate-list-len-alt by blast

lemma enumerate-list-prop:
assumes (

∧
k. List.member j k =⇒ k 6= S)

shows enumerate-list j = [j]
using assms

proof (induct j)
case Nil
then show ?case by auto

next
case (Cons h t)
then have elt: enumerate-list t = [t]

by (simp add: member-rec(1))
then have h = One ∨ h = Zero

using Cons
by (meson WEST-bit.exhaust member-rec(1))

then show ?case using enumerate-list.simps(2−3) elt
by fastforce

qed

lemma enumerate-fixed-trace:
fixes h1 :: trace-regex
assumes

∧
j. List.member h1 j =⇒ (

∧
k. List.member j k =⇒ k 6= S)

153

shows (enumerate-trace h1) = [h1]
using assms

proof (induct h1)
case Nil
then show ?case by auto

next
case (Cons h t)
then have ind: enumerate-trace t = [t]

by (meson member-rec(1))
have enumerate-list h = [h]

using enumerate-list-prop Cons
by (meson member-rec(1))

then show ?case
using Cons ind unfolding enumerate-trace.simps
by auto

qed

If we have two state regexs that don’t contain S’s, then enumerate trace
on each is different.
lemma enum-trace-prop:

fixes h1 h2 :: trace-regex
assumes

∧
j. List.member h1 j =⇒ (

∧
k. List.member j k =⇒ k 6= S)

assumes
∧

j. List.member h2 j =⇒ (
∧

k. List.member j k =⇒ k 6= S)
assumes (set h1) 6= (set h2)
shows set (enumerate-trace h1) 6= set (enumerate-trace h2)
using enumerate-fixed-trace[of h1] enumerate-fixed-trace[of h2] assms
by auto

lemma enumerate-list-tail-in:
assumes head-t#tail-t ∈ set (enumerate-list (h#trace))
shows tail-t ∈ set (enumerate-list trace)

proof−
{assume one: h = One

have ?thesis
using assms unfolding one enumerate-list.simps by auto

} moreover {
assume zero: h = Zero
have ?thesis

using assms unfolding zero enumerate-list.simps by auto
} moreover {

assume s: h = S
have ?thesis

using assms unfolding s enumerate-list.simps by auto
}
ultimately show ?thesis using WEST-bit.exhaust by blast

qed

lemma enumerate-list-fixed:
assumes t ∈ set (enumerate-list trace)

154

shows (∀ k. List.member t k −→ k 6= S)
using assms

proof (induct trace arbitrary: t)
case Nil
then show ?case using member-rec(2) by force

next
case (Cons h trace)
obtain head-t tail-t where obt: t = head-t#tail-t

using Cons.prems enumerate-list-len
by (metis length-0-conv neq-Nil-conv)

have tail-t ∈ set (enumerate-list trace)
using enumerate-list.simps obt Cons.prems enumerate-list-tail-in by blast

then have hyp: ∀ k. List.member tail-t k −→ k 6= S
using Cons.hyps(1)[of tail-t] by auto

{assume one: h = One
then have head-t = One

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (simp add: member-rec(1))

} moreover {
assume zero: h = Zero
then have head-t = Zero

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (simp add: member-rec(1))

} moreover {
assume s: h = S
then have head-t = Zero ∨ head-t = One

using obt Cons.prems unfolding enumerate-list.simps by auto
then have ?case

using hyp obt
by (metis calculation(1) calculation(2) member-rec(1) s)

}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma map-enum-list-nonempty:
fixes t::WEST-bit list list
fixes head::WEST-bit list
shows map (λh. h # t) (enumerate-list head) 6= []

proof(induct head arbitrary: t)
case Nil
then show ?case by simp

next
case (Cons a head)
{assume a: a = One

155

then have ?case unfolding a enumerate-list.simps
using Cons by auto

} moreover {
assume a: a = Zero
then have ?case unfolding a enumerate-list.simps

using Cons by auto
} moreover {

assume a: a = S
then have ?case unfolding a enumerate-list.simps

using Cons by auto
}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma length-of-flatten-list:
assumes flat =

foldr (@)
(map (λt. map (λh. h # t) H) T) []

shows length flat = length T ∗ length H
using assms

proof (induct T arbitrary: flat)
case Nil
then show ?case by auto

next
case (Cons t1 T2)
then have flat = foldr (@)

(map (λt. map (λh. h # t) H) (t1 # T2)) []
by auto

then have flat = foldr (@)
(map (λh. h # t1) H #(map (λt. map (λh. h # t) H) T2)) []
by auto

then have flat = map (λh. h # t1) H @ (foldr (@) (map (λt. map (λh. h # t)
H) T2)) []

by simp
then have length flat = length H + length (T2) ∗ length H

using Cons by auto
then show ?case by simp

qed

lemma flatten-list-idx:
assumes flat = flatten-list (map (λt. map (λh. h # t) head) tail)
assumes i < length tail
assumes j < length head
shows (head!j)#(tail!i) = flat!(i∗(length head) + j) ∧ i∗(length head) + j <

length flat
using assms

156

proof(induct tail arbitrary: head i j flat)
case Nil
then show ?case

by auto
next

case (Cons a tail)
let ?flat = flatten-list (map (λt. map (λh. h # t) head) tail)
have cond1 : ?flat = ?flat by auto
have equiv: (map (λt. map (λh. h # t) head) (a # tail)) =

(map (λh. h # a) head) # (map (λt. map (λh. h # t) head) tail)
by auto

then have flat-is: flat = (map (λh. h # a) head) @ flatten-list (map (λt. map
(λh. h # t) head) tail)

using Cons(2) unfolding flatten-list.simps by simp

{assume i0 : i = 0
then have bound: i ∗ length head + j < length flat

using Cons by simp
have length (map (λh. h # a) head) > j
using Cons(4) by auto

then have (map (λh. h # a) head) ! j = flat ! j
using flat-is
by (simp add: nth-append)

then have (head ! j)#a = flat ! j
using Cons(4) by simp

then have head ! j # (a # tail) ! i = flat ! (i ∗ length head + j)
unfolding i0 by simp

then have ?case using bound by auto
} moreover {

assume i-ge-0 : i > 0
have len-flat: length flat = length head ∗ length (a # tail)
using Cons(3−4) length-of-flatten-list[of flat head a#tail]
Cons(2) unfolding flatten-list.simps

by simp
have i ∗ length head ≤ (length (a # tail) − 1)∗length head

using Cons(3) by auto
then have i ∗ length head ≤ (length (a # tail))∗length head − length head

by auto
then have i ∗ length head + j < (length (a # tail))∗length head − length head

+ length head
using Cons(4) by linarith

then have i ∗ length head + j < (length (a # tail))∗length head
by auto

then have bound: i ∗ length head + j < length flat
using len-flat
by (simp add: mult.commute)

have i-minus: i − 1 < length tail
using i-ge-0 Cons(3)
by auto

157

have flat ! (i ∗ length head + j) = flat ! ((i−1) ∗ length head + j + length
head)

using i-ge-0
by (smt (z3) add.commute bot-nat-0 .not-eq-extremum group-cancel.add1

mult-eq-if)
then have flat ! (i ∗ length head + j) = flatten-list
(map (λt. map (λh. h # t) head) tail) !
((i − 1) ∗ length head + j)

using flat-is
by (smt (verit, ccfv-threshold) add.commute length-map nth-append-length-plus)
then have flat ! (i ∗ length head + j) = head ! j # tail ! (i − 1)

using Cons.hyps[OF cond1 i-minus Cons(4)]
by argo

then have access: head ! j # (a # tail) ! i =
flat ! (i ∗ length head + j)

using i-ge-0
by simp

have ?case
using bound access
by auto

}
ultimately show ?case by blast

qed

lemma flatten-list-shape:
assumes List.member flat x1
assumes flat = flatten-list (map (λt. map (λh. h # t) H) T)
shows ∃ x1-head x1-tail. x1 = x1-head#x1-tail ∧ List.member H x1-head ∧

List.member T x1-tail
using assms

proof(induction T arbitrary: flat H)
case Nil
have flat = (flatten-list (map (λt. map (λh. h # t) H) []))

using Nil(1) unfolding Nil by blast
then have flat = []

by simp
then show ?case

using Nil
by (simp add: member-rec(2))

next
case (Cons a T)
have ∃ k. x1 = flat ! k ∧ k < length flat

using Cons(2)
by (metis in-set-conv-nth member-def)

then obtain k where k-is: x1 = flat ! k ∧ k < length flat
by auto

have len-flat: length flat = (length (a#T)∗length H)
using Cons(3) length-of-flatten-list

158

by auto
let ?j = k mod (length H)
have ∃ i . k = (i∗(length H)+?j)

by (meson mod-div-decomp)
then obtain i where i-is: k = (i∗(length H)+?j)

by auto
then have i-lt: i < length (a#T)

using len-flat k-is
by (metis add-lessD1 mult-less-cancel2)

have j-lt: ?j < length H
by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor

mult-0-right)
have ∃ i < length (a # T). k = (i∗(length H)+?j)

using i-is i-lt by blast
then have ∃ i < length (a # T). ∃ j < length H . k = (i∗(length H)+j)

using j-lt by blast
then obtain i j where ij-props: i < length (a#T) j < length H k = (i∗(length

H)+j)
by blast

then have flat ! k = H ! j # (a # T) ! i
using flatten-list-idx[OF Cons(3) ij-props(1) ij-props(2)]

Cons(2) k-is ij-props(3)
by argo

then obtain x1-head x1-tail where x1 = x1-head#x1-tail
and List.member H x1-head and List.member (a#T) x1-tail

using ij-props
by (simp add: index-of-L-in-L k-is)

then show ?case
using Cons(3) by simp

qed

lemma flatten-list-len:
assumes

∧
t. List.member T t =⇒ length t = n

assumes flat = flatten-list (map (λt. map (λh. h # t) H) T)
shows

∧
x1 . List.member flat x1 =⇒ length x1 = n+1

using assms
proof(induction T arbitrary: flat n H)

case Nil
have flat = (flatten-list (map (λt. map (λh. h # t) H) []))

using Nil(1) unfolding Nil(3) by blast
then have flat = []

by simp
then show ?case

using Nil by (simp add: member-rec(2))
next

case (Cons a T)
have ∃ k. x1 = flat ! k ∧ k < length flat

using Cons(2)

159

by (metis in-set-conv-nth member-def)
then obtain k where k-is: x1 = flat ! k ∧ k < length flat

by auto
have len-flat: length flat = (length (a#T)∗length H)

using Cons(4) length-of-flatten-list
by auto

let ?j = k mod (length H)
have ∃ i . k = (i∗(length H)+?j)

by (meson mod-div-decomp)
then obtain i where i-is: k = (i∗(length H)+?j)

by auto
then have i-lt: i < length (a#T)

using len-flat k-is
by (metis add-lessD1 mult-less-cancel2)

have j-lt: ?j < length H
by (metis k-is len-flat length-0-conv length-greater-0-conv mod-by-0 mod-less-divisor

mult-0-right)
have ∃ i < length (a # T). k = (i∗(length H)+?j)

using i-is i-lt by blast
then have ∃ i < length (a # T). ∃ j < length H . k = (i∗(length H)+j)

using j-lt by blast
then obtain i j where ij-props: i < length (a#T) j < length H k = (i∗(length

H)+j)
by blast

then have flat ! k = H ! j # (a # T) ! i
using flatten-list-idx[OF Cons(4) ij-props(1) ij-props(2)]

Cons(2) k-is ij-props(3)
by argo

then obtain x1-head x1-tail where x1 = x1-head#x1-tail
and List.member H x1-head and List.member (a#T) x1-tail

using ij-props
by (simp add: index-of-L-in-L k-is)

then show ?case
using Cons(3) by simp

qed

lemma flatten-list-lemma:
assumes

∧
x1 . List.member to-flatten x1 =⇒ (

∧
x2 . List.member x1 x2 =⇒

length x2 = length trace)
assumes a ∈ set (flatten-list to-flatten)
shows length a = length trace
using assms proof (induct to-flatten)
case Nil
then show ?case by auto

next
case (Cons h t)
have a-in: a ∈ set h ∨ a ∈ set (flatten-list t)

using Cons(3) unfolding flatten-list.simps foldr-def by simp

160

{assume ∗: a ∈ set h
then have ?case

using Cons(2)[of h]
by (simp add: in-set-member member-rec(1))

} moreover {assume ∗: a ∈ set (flatten-list t)
have ind-h-setup: (

∧
x1 x2 . List.member t x1 =⇒ List.member x1 x2 =⇒

length x2 = length trace)
using Cons(2) by (meson member-rec(1))

have a ∈ set (flatten-list t) =⇒ length a = length trace
using Cons(1) ind-h-setup
by auto

then have ?case
using ∗ by auto

}
ultimately show ?case

using a-in by blast
qed

lemma enumerate-trace-len:
assumes a ∈ set (enumerate-trace trace)
shows length a = length trace
using assms

proof(induct length trace arbitrary: trace a)
case 0
then show ?case by auto

next
case (Suc x)
then obtain h t where trace-is: trace = h#t

by (meson Suc-length-conv)
obtain i where (enumerate-trace trace)!i = a

using Suc.prems
by (meson in-set-conv-nth)

let ?enumerate-H = enumerate-list h
let ?enumerate-t = enumerate-trace t
have enum-tr-is: enumerate-trace trace =

flatten-list (map (λt. map (λh. h # t) ?enumerate-H) ?enumerate-t)
using trace-is by auto

let ?to-flatten = map (λt. map (λh. h # t) ?enumerate-H) ?enumerate-t

have all-w: (
∧

w. List.member (enumerate-trace t) w =⇒ length w = length t)
using Suc(1)[of t] Suc(2) trace-is
by (simp add: in-set-member)

have a-mem: List.member (enumerate-trace trace) a
using Suc(3) in-set-member by fast

show ?case
using flatten-list-len[OF - enum-tr-is a-mem, of length t] all-w
trace-is by simp

qed

161

definition regex-zeros-and-ones:: trace-regex ⇒ bool
where regex-zeros-and-ones tr =
(∀ j. List.member tr j −→ (∀ k. List.member j k −→ k 6= S))

lemma match-enumerate-state-aux-first-bit:
assumes a-head = Zero ∨ a-head = One
assumes a-head # a-tail ∈ set (enumerate-list (h-head # h))
shows h-head = a-head ∨ h-head = S

proof−
{assume h-head: h-head = One

then have ?thesis
using assms unfolding h-head enumerate-list.simps by auto

} moreover {
assume h-head: h-head = Zero
then have ?thesis

using assms unfolding h-head enumerate-list.simps by auto
} moreover {

assume h-head = S
then have ?thesis by auto

}
ultimately show ?thesis using WEST-bit.exhaust by blast

qed

lemma advance-state-iff :
assumes x > 0
shows x ∈ state ←→ (x−1) ∈ advance-state state

proof−
have forward: x ∈ state −→ (x−1) ∈ advance-state state

using assms by auto
have converse: (x−1) ∈ advance-state state −→ x ∈ state

unfolding advance-state.simps using assms
by (smt (verit, best) Suc-diff-1 diff-0-eq-0 diff-Suc-1 ′ diff-self-eq-0 less-one

mem-Collect-eq nat.distinct(1) not0-implies-Suc not-gr-zero old.nat.exhaust)
show ?thesis using forward converse by blast

qed

lemma match-enumerate-state-aux:
assumes a ∈ set (enumerate-list h)
assumes match-timestep state a
shows match-timestep state h
using assms

proof(induct h arbitrary: state a)
case Nil
have a = []

using Nil by auto
then show ?case using Nil by blast

next

162

case (Cons h-head h)
then obtain a-head a-tail where obt: a = a-head#a-tail

using enumerate-list-len Cons
by (metis length-0-conv list.exhaust)

let ?adv-state = advance-state state
{assume in-state: 0 ∈ state

then have a-head = One
using Cons.prems(2) unfolding obt match-timestep-def
using enumerate-list-fixed

by (metis WEST-bit.exhaust Cons(2) length-pos-if-in-set list.set-intros(1)
member-rec(1) nth-Cons-0 obt)

then have h-head: h-head = One ∨ h-head = S
using Cons.prems(1) unfolding obt
using match-enumerate-state-aux-first-bit by blast

have match-adv: match-timestep (advance-state state) h
using Cons.hyps[of a-tail ?adv-state]
using Cons.prems(1) Cons.prems(2) advance-state-match-timestep enumer-

ate-list-tail-in obt by blast
have

∧
x. x<length (h-head # h) =⇒

((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (h-head # h)
let ?thesis = ((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

{assume x0 : x = 0
then have ?thesis unfolding x0 using h-head in-state by auto

} moreover {
assume x-ge-0 : x > 0
then have x−1 < length h

using x by simp
then have ∗:(h ! (x−1) = One −→ (x−1) ∈ advance-state state) ∧

(h ! (x−1) = Zero −→ (x−1) /∈ advance-state state)
using match-adv unfolding match-timestep-def by blast

have h ! (x−1) = (h-head # h) ! x using x-ge-0 by auto
then have ∗: ((h-head # h) ! x = One −→ (x−1) ∈ advance-state state) ∧

((h-head # h) ! x = Zero −→ (x−1) /∈ advance-state state)
using ∗ by argo

then have ?thesis using advance-state-iff x-ge-0 by blast
}
ultimately show ?thesis by blast

qed
then have ?case

using h-head unfolding match-timestep-def by blast
} moreover {

assume not-in: 0 /∈ state
then have a-head = Zero

using Cons.prems(2) unfolding obt match-timestep-def

163

using enumerate-list-fixed
by (metis WEST-bit.exhaust Cons(2) length-pos-if-in-set list.set-intros(1)

member-rec(1) nth-Cons-0 obt)
then have h-head: h-head = Zero ∨ h-head = S

using Cons.prems(1) unfolding obt
using match-enumerate-state-aux-first-bit by blast

have match-adv: match-timestep (advance-state state) h
using Cons.hyps[of a-tail ?adv-state]
using Cons.prems(1) Cons.prems(2) advance-state-match-timestep enumer-

ate-list-tail-in obt by blast
have

∧
x. x<length (h-head # h) =⇒

((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (h-head # h)
let ?thesis = ((h-head # h) ! x = One −→ x ∈ state) ∧
((h-head # h) ! x = Zero −→ x /∈ state)

{assume x0 : x = 0
then have ?thesis unfolding x0 using h-head not-in by auto

} moreover {
assume x-ge-0 : x > 0
then have x−1 < length h

using x by simp
then have ∗:(h ! (x−1) = One −→ (x−1) ∈ advance-state state) ∧

(h ! (x−1) = Zero −→ (x−1) /∈ advance-state state)
using match-adv unfolding match-timestep-def by blast

have h ! (x−1) = (h-head # h) ! x using x-ge-0 by auto
then have ∗: ((h-head # h) ! x = One −→ (x−1) ∈ advance-state state) ∧

((h-head # h) ! x = Zero −→ (x−1) /∈ advance-state state)
using ∗ by argo

then have ?thesis using advance-state-iff x-ge-0 by blast
}
ultimately show ?thesis by blast

qed
then have ?case

using h-head unfolding match-timestep-def by blast
}
ultimately show ?case using WEST-bit.exhaust by blast

qed

lemma enumerate-list-index-one:
assumes j < length (enumerate-list a)
shows One # enumerate-list a ! j = enumerate-list (S # a) ! (length (enumerate-list

a) + j) ∧
(length (enumerate-list a) + j < length (enumerate-list (S # a)))

using assms
proof(induct a arbitrary: j)

164

case Nil
then show ?case by auto

next
case (Cons a1 a2)
then show ?case unfolding enumerate-list.simps

by (metis (mono-tags, lifting) length-append length-map nat-add-left-cancel-less
nth-append-length-plus nth-map)
qed

lemma list-concat-index:
assumes j < length L1
shows (L1@L2)!j = L1 !j
using assms
by (simp add: nth-append)

lemma enumerate-list-index-zero:
assumes j < length (enumerate-list a)
shows Zero # enumerate-list a ! j = enumerate-list (S # a) ! j ∧

j < length (enumerate-list (S # a))
using assms unfolding enumerate-list.simps

proof(induct a arbitrary: j)
case Nil
then show ?case by simp

next
case (Cons a1 a2)
then have j-bound: j < length (enumerate-list (S # a1 # a2))

by simp
let ?subgoal = Zero # enumerate-list (a1 # a2) ! j = enumerate-list (S # a1

a2) ! j
have j < length (map ((#) Zero) (enumerate-list (a1 # a2)))

using j-bound Cons by simp
then have (((map ((#) Zero) (enumerate-list (a1 # a2)) @

map ((#) One) (enumerate-list (a1 # a2)))) !
j) = (map ((#) Zero) (enumerate-list (a1 # a2)))!j
using Cons.prems j-bound list-concat-index by blast

then have ?subgoal using Cons unfolding enumerate-list.simps
by simp

then show ?case using j-bound by auto
qed

lemma match-enumerate-list:
assumes match-timestep state a
shows ∃ j<length (enumerate-list a).

match-timestep state (enumerate-list a ! j)
using assms

proof(induct a arbitrary: state)
case Nil
then show ?case by simp

165

next
case (Cons head a)
let ?adv-state = advance-state state
{assume in-state: 0 ∈ state

then have (head # a) ! 0 6= Zero
using Cons.prems unfolding match-timestep-def by blast

then have head: head = One ∨ head = S
using WEST-bit.exhaust by auto

have match-timestep ?adv-state a
using Cons.prems
using advance-state-match-timestep by auto

then obtain j where obt: match-timestep ?adv-state (enumerate-list a ! j)
∧ j < length (enumerate-list a)

using Cons.hyps[of ?adv-state] by blast
let ?state = (enumerate-list a ! j)
{assume headcase: head = One

let ?s = One # ?state
have

∧
x. x<length ?s =⇒

((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using in-state by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (One = One −→ 0 ∈ state) ∧ (One = Zero −→ 0 /∈ state)

using in-state by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (One # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of One state ?state, OF cond1 cond2] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase in-state unfolding match-timestep-def by blast
have (map ((#) One) (enumerate-list a) ! j) = One # (enumerate-list a ! j)

using obt by simp
then have ?case unfolding headcase enumerate-list.simps

using match obt by auto
} moreover {

assume headcase: head = S
let ?s = One # ?state

166

have
∧

x. x<length ?s =⇒
((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))

proof−
fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using in-state by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (One = One −→ 0 ∈ state) ∧ (One = Zero −→ 0 /∈ state)

using in-state by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (One # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of One state ?state, OF cond1 cond2] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase in-state unfolding match-timestep-def by blast
have

∧
x. x<length (S # enumerate-list a ! j) =⇒

((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (S # enumerate-list a ! j)
let ?thesis = ((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)
{assume x0 : x = 0

then have ?thesis by auto
} moreover {

assume x-ge-0 : x > 0
then have ?thesis using x match unfolding match-timestep-def by simp

}
ultimately show ?thesis by blast

qed
then have match-S : match-timestep state (S # enumerate-list a ! j)

using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)

using obt by blast
have ?s = enumerate-list (S # a)!((length (enumerate-list a))+j)

∧ (length (enumerate-list a))+j < length (enumerate-list (S # a))
using j-bound enumerate-list-index-one by blast

then have ?case unfolding headcase

167

using match obt match-S by metis
}
ultimately have ?case using head by blast

} moreover {
assume not-in: 0 /∈ state
then have (head # a) ! 0 6= One

using Cons.prems unfolding match-timestep-def by blast
then have head: head = Zero ∨ head = S

using WEST-bit.exhaust by auto
have match-timestep ?adv-state a

using Cons.prems
using advance-state-match-timestep by auto

then obtain j where obt: match-timestep ?adv-state (enumerate-list a ! j)
∧ j < length (enumerate-list a)

using Cons.hyps[of ?adv-state] by blast
let ?state = (enumerate-list a ! j)
{assume headcase: head = Zero

let ?s = Zero # ?state
have

∧
x. x<length ?s =⇒

((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using not-in headcase by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (Zero = One −→ 0 ∈ state) ∧ (Zero = Zero −→ 0 /∈ state)

using not-in by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (Zero # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of Zero state ?state, OF cond1 cond2] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase not-in unfolding match-timestep-def by blast
have ?case unfolding headcase enumerate-list.simps

using match obt by auto
} moreover {

assume headcase: head = S
let ?s = Zero # ?state
have

∧
x. x<length ?s =⇒

168

((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
proof−

fix x
assume x: x<length ?s

let ?thesis = ((?s ! x = One −→ x ∈ state) ∧ (?s ! x = Zero −→ x /∈ state))
{assume x0 : x = 0

then have ?thesis using not-in by simp
} moreover {

assume x-ge-0 : x > 0
have cond1 : (Zero = One −→ 0 ∈ state) ∧ (Zero = Zero −→ 0 /∈ state)

using not-in by blast
have cond2 : ∀ x<length (enumerate-list a ! j).

(enumerate-list a ! j ! x = One −→ x + 1 ∈ state) ∧
(enumerate-list a ! j ! x = Zero −→ x + 1 /∈ state)

using obt unfolding match-timestep-def advance-state-iff by fastforce
have x<length (Zero # enumerate-list a ! j)

using x by blast
then have ?thesis

using index-shift[of Zero state ?state, OF cond1 cond2] by blast
}
ultimately show ?thesis by blast

qed
then have match: match-timestep state ?s

using obt headcase not-in unfolding match-timestep-def by blast
have

∧
x. x<length (S # enumerate-list a ! j) =⇒

((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)

proof−
fix x
assume x: x<length (S # enumerate-list a ! j)
let ?thesis = ((S # enumerate-list a ! j) ! x = One −→ x ∈ state) ∧
((S # enumerate-list a ! j) ! x = Zero −→ x /∈ state)
{assume x0 : x = 0

then have ?thesis by auto
} moreover {

assume x-ge-0 : x > 0
then have ?thesis using x match unfolding match-timestep-def by simp

}
ultimately show ?thesis by blast

qed
then have match-S : match-timestep state (S # enumerate-list a ! j)

using match unfolding match-timestep-def by blast
have j-bound: j < length (enumerate-list a)

using obt by blast
have ?s = enumerate-list (S # a)!(j)

∧ j < length (enumerate-list (S # a))
using j-bound enumerate-list-index-zero by blast

then have ?case unfolding headcase
using match obt match-S by metis

169

}
ultimately have ?case using head by blast

}
ultimately show ?case by blast

qed

lemma enumerate-trace-head-in:
assumes a-head # a-tail ∈ set (enumerate-trace (h # trace))
shows a-head ∈ set (enumerate-list h)

proof −
let ?flat = flatten-list
(map (λt. map (λh. h # t)

(enumerate-list h))
(enumerate-trace trace))

have flat-is: ?flat = ?flat
by auto

have mem: List.member
?flat
(a-head # a-tail)
using assms unfolding enumerate-trace.simps
using in-set-member by metis

then obtain x1-head x1-tail where
x1-props: a-head # a-tail = x1-head # x1-tail ∧

List.member (enumerate-list h) x1-head ∧
List.member (enumerate-trace trace) x1-tail
using flatten-list-shape[OF mem flat-is] by auto

then have a-head = x1-head
by auto

then have List.member (enumerate-list h) a-head
using x1-props
by auto

then show ?thesis
using in-set-member
by fast

qed

lemma enumerate-trace-tail-in:
assumes a-head # a-tail ∈ set (enumerate-trace (h # trace))
shows a-tail ∈ set (enumerate-trace trace)

proof −
let ?flat = flatten-list
(map (λt. map (λh. h # t)

(enumerate-list h))
(enumerate-trace trace))

have flat-is: ?flat = ?flat
by auto

have mem: List.member

170

?flat
(a-head # a-tail)
using assms unfolding enumerate-trace.simps
using in-set-member by metis

then obtain x1-head x1-tail where
x1-props: a-head # a-tail = x1-head # x1-tail ∧

List.member (enumerate-list h) x1-head ∧
List.member (enumerate-trace trace) x1-tail
using flatten-list-shape[OF mem flat-is] by auto

then have a-tail = x1-tail
by auto

then have List.member (enumerate-trace trace) a-tail
using x1-props
by auto

then show ?thesis
using in-set-member
by fast

qed

Intuitively, this says that the traces in enumerate trace h are “more
specific” than h, which is “more generic”—i.e., h matches everything that
each element of enumerate trace h matches.
lemma match-enumerate-trace-aux:

assumes a ∈ set (enumerate-trace trace)
assumes match-regex π a
shows match-regex π trace

proof −
show ?thesis using assms proof (induct trace arbitrary: a π)

case Nil
then show ?case by auto

next
case (Cons h trace)
then obtain a-head a-tail where obt-a: a = a-head#a-tail

using enumerate-trace-len
by (metis length-0-conv neq-Nil-conv)

have length π > 0
using Cons unfolding match-regex-def obt-a by auto

then obtain π-head π-tail where obt-π: π = π-head#π-tail
using min-list.cases by auto

have cond1 : a-tail ∈ set (enumerate-trace trace)
using Cons.prems(1) unfolding obt-a
using enumerate-trace-tail-in by blast

have cond2 : match-regex π-tail a-tail
using Cons.prems(2) unfolding obt-a obt-π match-regex-def by auto

have match-tail: match-regex π-tail trace
using Cons.hyps[OF cond1 cond2] by blast

have a-head: a-head ∈ set (enumerate-list h)
using Cons.prems(1) unfolding obt-a
using enumerate-trace-head-in by blast

171

have match-timestep π-head a-head
using Cons.prems(2) unfolding obt-π match-regex-def
using obt-a by auto

then have match-head: match-timestep π-head h
using match-enumerate-state-aux[of a-head h π-head] a-head by blast

have
∧

time. time<length (h # trace) =⇒
match-timestep ((π-head # π-tail) ! time) ((h # trace) ! time)

proof−
fix time
assume time: time<length (h # trace)
let ?thesis = match-timestep ((π-head # π-tail) ! time) ((h # trace) ! time)
{assume time0 : time = 0

then have ?thesis using match-head by simp
} moreover {

assume time-ge-0 : time > 0
then have ?thesis

using match-tail time-ge-0 time unfolding match-regex-def by simp
}
ultimately show ?thesis by blast

qed
then show ?case using match-tail unfolding match-regex-def obt-a obt-π

by simp
qed

qed

lemma match-enumerate-trace:
assumes a ∈ set (enumerate-trace h) ∧ match-regex π a
shows match π (h # T)

proof−
show ?thesis

unfolding match-def
using match-enumerate-trace-aux assms
by auto

qed

lemma match-enumerate-sets1 :
assumes (∃ r ∈ (enumerate-sets R). match-regex π r)
shows (match π R)
using assms

proof (induct R)
case Nil
then show ?case by simp

next
case (Cons h T)
then obtain a where a-prop: a∈set (enumerate-trace h) ∪ enumerate-sets T ∧

match-regex π a
by auto

172

{ assume ∗: a ∈ set (enumerate-trace h)
then have ?case

using match-enumerate-trace a-prop
by blast

} moreover {assume ∗: a ∈ enumerate-sets T
then have match π T

using Cons a-prop by blast
then have ?case

by (metis Suc-leI le-imp-less-Suc length-Cons match-def nth-Cons-Suc)
}
ultimately show ?case

using a-prop by auto
qed

lemma match-cases:
assumes match π (a # R)
shows match π [a] ∨ match π R

proof−
obtain i where obt: match-regex π ((a # R)!i) ∧ i < length (a # R)

using assms unfolding match-def by blast
{assume i0 : i = 0

then have ?thesis
using assms unfolding match-def using obt by simp

} moreover {
assume i-ge-0 : i > 0
then have match-regex π (R ! (i−1))

using assms obt unfolding match-def by simp
then have match π R

unfolding match-def using obt i-ge-0
by (metis Suc-diff-1 Suc-less-eq length-Cons)

then have ?thesis by blast
}
ultimately show ?thesis using assms unfolding match-def by blast

qed

lemma enumerate-trace-decompose:
assumes state ∈ set (enumerate-list h)
assumes trace ∈ set (enumerate-trace T)
shows state#trace ∈ set (enumerate-trace (h#T))

proof−
let ?enumh = enumerate-list h
let ?enumT = enumerate-trace T
let ?flat = flatten-list (map (λt. map (λh. h # t) ?enumh) ?enumT)
have enum: enumerate-trace (h#T) = ?flat

unfolding enumerate-trace.simps by simp
obtain i where i: ?enumT !i = trace ∧ i < length ?enumT

using assms(2) by (meson in-set-conv-nth)
obtain j where j: ?enumh!j = state ∧ j < length ?enumh

173

using assms(1) by (meson in-set-conv-nth)
have enumerate-list h ! j # enumerate-trace T ! i =

flatten-list (map (λt. map (λh. h # t) (enumerate-list h)) (enumerate-trace T))
!

(i ∗ length (enumerate-list h) + j) ∧
i ∗ length (enumerate-list h) + j
< length

(flatten-list
(map (λt. map (λh. h # t) (enumerate-list h)) (enumerate-trace T)))

using flatten-list-idx[of ?flat ?enumh ?enumT i j] enum i j by blast
then show ?thesis

using i j enum by simp
qed

lemma match-enumerate-trace-aux-converse:
assumes match-regex π trace
shows match π (enumerate-trace trace)
using assms

proof(induct trace arbitrary: π)
case Nil
have enum: enumerate-trace [] = [[]]

by simp
show ?case unfolding enum match-def match-regex-def by auto

next
case (Cons a trace)
have length π > 0

using Cons.prems unfolding match-regex-def by auto
then obtain pi-head pi-tail where pi-obt: π = pi-head#pi-tail

using list.exhaust by auto
have cond: match-regex pi-tail trace

using Cons.prems pi-obt unfolding match-regex-def by auto
then have match-tail: match pi-tail (enumerate-trace trace)

using Cons.hyps by blast
then obtain i where obt-i: match-regex pi-tail (enumerate-trace trace ! i) ∧

i<length (enumerate-trace trace)
unfolding match-def by blast

let ?enum-tail = (enumerate-trace trace ! i)

have match-head: match-timestep pi-head a
using Cons.prems unfolding match-regex-def
by (metis Cons.prems WEST-and-trace-correct-forward-aux nth-Cons ′ pi-obt)

then have ∃ j < length (enumerate-list a).
match-timestep pi-head ((enumerate-list a)!j)

using match-enumerate-list by blast
then obtain j where obt-j: match-timestep pi-head ((enumerate-list a)!j) ∧

j < length (enumerate-list a)
by blast

let ?enum-head = (enumerate-list a)!j

174

have (?enum-head#?enum-tail) ∈ set(enumerate-trace (a # trace))
using enumerate-trace-decompose
by (meson in-set-conv-nth obt-i obt-j)

have match-tail: match-regex pi-tail ?enum-tail
using obt-i by blast

have match-head: match-timestep pi-head ((enumerate-list a)!j)
using obt-j by blast

have match: match-regex π (?enum-head#?enum-tail)
using match-head match-tail

using WEST-and-trace-correct-forward-aux-converse[OF pi-obt match-head match-tail]
by auto

let ?flat = flatten-list
(map (λt. map (λh. h # t) (enumerate-list a))
(enumerate-trace trace))

have enumerate-list a ! j # enumerate-trace trace ! i =
flatten-list
(map (λt. map (λh. h # t) (enumerate-list a)) (enumerate-trace trace)) !
(i ∗ length (enumerate-list a) + j) ∧
i ∗ length (enumerate-list a) + j
< length

(flatten-list
(map (λt. map (λh. h # t) (enumerate-list a)) (enumerate-trace trace)))

using flatten-list-idx[of ?flat enumerate-list a enumerate-trace trace i j]
using obt-i obt-j by blast

then show ?case
unfolding match-def using match
by auto

qed

lemma match-enumerate-sets2 :
assumes (match π R)
shows (∃ r ∈ enumerate-sets R. match-regex π r)
using assms

proof(induct R arbitrary: π)
case Nil
then show ?case unfolding match-def by auto

next
case (Cons a R)
have enumerate-sets (a # R) = set (enumerate-trace a) ∪ enumerate-sets R

unfolding enumerate-sets.simps by blast
{assume match-a: match π [a]

then have match-regex π a
unfolding match-def by simp

then have match π (enumerate-trace a)
using match-enumerate-trace-aux
using match-enumerate-trace-aux-converse by blast

then have ∃ b ∈ set (enumerate-trace a). match-regex π b

175

unfolding match-def by auto
then have ?case by auto

} moreover {
assume match-R: match π R
then have ?case

using Cons by auto
}
ultimately show ?case

using Cons.prems match-cases by blast
qed

lemma match-enumerate-sets:
shows (∃ r ∈ enumerate-sets R. match-regex π r) ←→ (match π R)
using match-enumerate-sets1 match-enumerate-sets2
by blast

lemma regex-equivalence-correct1 :
assumes (naive-equivalence A B)
shows match π A = match π B
unfolding regex-equiv-def
using match-enumerate-sets[of A π] match-enumerate-sets[of B π]
using assms
unfolding naive-equivalence.simps
by blast

lemma regex-equivalence-correct:
shows (naive-equivalence A B) −→ (regex-equiv A B)
using regex-equivalence-correct1
unfolding regex-equiv-def
by metis

export-code naive-equivalence in Haskell module-name regex-equiv

end

References
[1] J. Elwing, L. Gamboa-Guzman, J. Sorkin, C. Travesset, Z. Wang, and

K. Y. Rozier. Mission-time LTL (MLTL) formula validation via regular
expressions. In P. Herber and A. Wijs, editors, iFM, volume 14300 of
LNCS, pages 279–301. Springer, 2023.

[2] Z. Wang, L. P. Gamboa-Guzman, and K. Y. Rozier. WEST: Interactive
Validation of Mission-time Linear Temporal Logic (MLTL). 2024.

176

	Key algorithms for WEST
	Custom Types
	Trace Regular Expressions
	WEST Operations
	AND
	Simp
	AND and OR operations with WEST-simp
	Useful Helper Functions
	WEST Temporal Operations
	WEST recursive reg Function
	Adding padding

	Some examples and Code Export
	WEST Proofs
	Useful Definitions
	Proofs about Traces Matching Regular Expressions
	Facts about the WEST and operator
	Commutative
	Identity and Zero
	WEST-and-state
	WEST-and-trace
	WEST-and correct

	Facts about the WEST or operator
	Pad and Match Facts
	Facts about WEST num vars
	Facts about num vars for different WEST operators

	Correctness of WEST-simp
	WEST-count-diff facts
	Orsimp-trace Facts
	WEST-orsimp-trace-correct
	Simp-helper Correct
	WEST-simp Correct

	Correctness of WEST-and-simp/WEST-or-simp
	Facts about the WEST future operator
	Facts about the WEST global operator
	Facts about the WEST until operator
	Facts about the WEST release Operator
	Top level result: Shows that WEST reg is correct
	Top level result for padded version

	Key algorithms for WEST
	Regex Equivalence Correctness

