File ‹Tools/boolean_algebra_cancel.ML›
signature BOOLEAN_ALGEBRA_CANCEL =
sig
val cancel_sup_conv: conv
val cancel_inf_conv: conv
end
structure Boolean_Algebra_Cancel: BOOLEAN_ALGEBRA_CANCEL =
struct
fun move_to_front rule path = Conv.rewr_conv (Library.foldl (op RS) (rule, path))
fun add_atoms sup pos path (t as Const (\<^const_name>‹Lattices.sup›, _) $ x $ y) =
if sup then
add_atoms sup pos (@{thm boolean_algebra_cancel.sup1}::path) x #>
add_atoms sup pos (@{thm boolean_algebra_cancel.sup2}::path) y
else cons ((pos, t), path)
| add_atoms sup pos path (t as Const (\<^const_name>‹Lattices.inf›, _) $ x $ y) =
if not sup then
add_atoms sup pos (@{thm boolean_algebra_cancel.inf1}::path) x #>
add_atoms sup pos (@{thm boolean_algebra_cancel.inf2}::path) y
else cons ((pos, t), path)
| add_atoms _ _ _ (Const (\<^const_name>‹Orderings.bot›, _)) = I
| add_atoms _ _ _ (Const (\<^const_name>‹Orderings.top›, _)) = I
| add_atoms _ pos path (Const (\<^const_name>‹Groups.uminus›, _) $ x) = cons ((not pos, x), path)
| add_atoms _ pos path x = cons ((pos, x), path);
fun atoms sup pos t = add_atoms sup pos [] t []
val coeff_ord = prod_ord bool_ord Term_Ord.term_ord
fun find_common ord xs ys =
let
fun find (xs as (x, px)::xs') (ys as (y, py)::ys') =
(case ord (x, y) of
EQUAL => SOME (fst x, px, py)
| LESS => find xs' ys
| GREATER => find xs ys')
| find _ _ = NONE
fun ord' ((x, _), (y, _)) = ord (x, y)
in
find (sort ord' xs) (sort ord' ys)
end
fun cancel_conv sup rule ct =
let
val rule0 =
if sup then @{thm boolean_algebra_cancel.sup0} else @{thm boolean_algebra_cancel.inf0}
fun cancel1_conv (pos, lpath, rpath) =
let
val lconv = move_to_front rule0 lpath
val rconv = move_to_front rule0 rpath
val conv1 = Conv.combination_conv (Conv.arg_conv lconv) rconv
in
conv1 then_conv Conv.rewr_conv (rule pos)
end
val ((_, lhs), rhs) = (apfst dest_comb o dest_comb) (Thm.term_of ct)
val common = find_common coeff_ord (atoms sup true lhs) (atoms sup false rhs)
val conv =
case common of NONE => Conv.no_conv
| SOME x => cancel1_conv x
in conv ct end
val cancel_sup_conv = cancel_conv true (fn pos => if pos then mk_meta_eq @{thm sup_cancel_left1} else mk_meta_eq @{thm sup_cancel_left2})
val cancel_inf_conv = cancel_conv false (fn pos => if pos then mk_meta_eq @{thm inf_cancel_left1} else mk_meta_eq @{thm inf_cancel_left2})
end