File ‹Tools/SMT/z3_replay.ML›
signature Z3_REPLAY =
sig
val parse_proof: Proof.context -> SMT_Translate.replay_data ->
((string * ATP_Problem_Generate.stature) * thm) list -> term list -> term -> string list ->
SMT_Solver.parsed_proof
val replay: Proof.context -> SMT_Translate.replay_data -> string list -> thm
end;
structure Z3_Replay: Z3_REPLAY =
struct
local
fun extract (Z3_Proof.Z3_Step {id, rule, concl, fixes, ...}) = (id, rule, concl, fixes)
fun cond rule = Z3_Proof.is_assumption rule andalso rule <> Z3_Proof.Hypothesis
in
val add_asserted = SMT_Replay.add_asserted Inttab.update Inttab.empty extract cond
end
fun add_paramTs names t =
fold2 (fn n => fn (_, T) => AList.update (op =) (n, T)) names (SMT_Replay.params_of t)
fun new_fixes ctxt nTs =
let
val (ns, ctxt') = Variable.variant_fixes (replicate (length nTs) "") ctxt
fun mk (n, T) n' = (n, Thm.cterm_of ctxt' (Free (n', T)))
in (ctxt', Symtab.make (map2 mk nTs ns)) end
fun forall_elim_term ct (Const (\<^const_name>‹Pure.all›, _) $ (a as Abs _)) =
Term.betapply (a, Thm.term_of ct)
| forall_elim_term _ qt = raise TERM ("forall_elim'", [qt])
fun apply_fixes elim env = fold (elim o the o Symtab.lookup env)
val apply_fixes_prem = uncurry o apply_fixes Thm.forall_elim
val apply_fixes_concl = apply_fixes forall_elim_term
fun export_fixes env names = Drule.forall_intr_list (map (the o Symtab.lookup env) names)
fun under_fixes f ctxt (prems, nthms) names concl =
let
val thms1 = map (SMT_Replay.varify ctxt) prems
val (ctxt', env) =
add_paramTs names concl []
|> fold (uncurry add_paramTs o apsnd Thm.prop_of) nthms
|> new_fixes ctxt
val thms2 = map (apply_fixes_prem env) nthms
val t = apply_fixes_concl env names concl
in export_fixes env names (f ctxt' (thms1 @ thms2) t) end
fun replay_thm ctxt assumed nthms (Z3_Proof.Z3_Step {id, rule, concl, fixes, is_fix_step, ...}) =
if Z3_Proof.is_assumption rule then
(case Inttab.lookup assumed id of
SOME (_, thm) => thm
| NONE => Thm.assume (Thm.cterm_of ctxt concl))
else
under_fixes (Z3_Replay_Methods.method_for rule) ctxt
(if is_fix_step then (map snd nthms, []) else ([], nthms)) fixes concl
fun replay_step ctxt assumed (step as Z3_Proof.Z3_Step {id, rule, prems, fixes, ...}) state =
let
val (proofs, stats) = state
val nthms = map (the o Inttab.lookup proofs) prems
val replay = Timing.timing (replay_thm ctxt assumed nthms)
val ({elapsed, ...}, thm) =
SMT_Config.with_time_limit ctxt SMT_Config.reconstruction_step_timeout replay step
handle Timeout.TIMEOUT _ => raise SMT_Failure.SMT SMT_Failure.Time_Out
val stats' = Symtab.cons_list (Z3_Proof.string_of_rule rule, Time.toMilliseconds elapsed) stats
in (Inttab.update (id, (fixes, thm)) proofs, stats') end
local
val sk_rules = @{lemma
"c = (SOME x. P x) ⟹ (∃x. P x) = P c"
"c = (SOME x. ¬ P x) ⟹ (¬ (∀x. P x)) = (¬ P c)"
by (metis someI_ex)+}
in
fun discharge_sk_tac ctxt i st =
(resolve_tac ctxt @{thms trans} i
THEN resolve_tac ctxt sk_rules i
THEN (resolve_tac ctxt @{thms refl} ORELSE' discharge_sk_tac ctxt) (i+1)
THEN resolve_tac ctxt @{thms refl} i) st
end
val true_thm = @{lemma "¬False" by simp}
fun make_discharge_rules rules = rules @ [@{thm allI}, @{thm refl}, @{thm reflexive}, true_thm]
val intro_def_rules = @{lemma
"(¬ P ∨ P) ∧ (P ∨ ¬ P)"
"(P ∨ ¬ P) ∧ (¬ P ∨ P)"
by fast+}
fun discharge_assms_tac ctxt rules =
REPEAT
(HEADGOAL (resolve_tac ctxt (intro_def_rules @ rules) ORELSE'
SOLVED' (discharge_sk_tac ctxt)))
fun discharge_assms ctxt rules thm =
(if Thm.nprems_of thm = 0 then
thm
else
(case Seq.pull (discharge_assms_tac ctxt rules thm) of
SOME (thm', _) => thm'
| NONE => raise THM ("failed to discharge premise", 1, [thm])))
|> Goal.norm_result ctxt
fun discharge rules outer_ctxt inner_ctxt =
singleton (Proof_Context.export inner_ctxt outer_ctxt)
#> discharge_assms outer_ctxt (make_discharge_rules rules)
fun parse_proof outer_ctxt
({context = ctxt, typs, terms, ll_defs, rewrite_rules, assms} : SMT_Translate.replay_data)
xfacts prems concl output =
let
val (steps, ctxt2) = Z3_Proof.parse typs terms output ctxt
val ((iidths, _), _) = add_asserted outer_ctxt rewrite_rules (map (apfst fst) assms) steps ctxt2
fun id_of_index i = the_default ~1 (Option.map fst (AList.lookup (op =) iidths i))
val conjecture_i = 0
val prems_i = 1
val facts_i = prems_i + length prems
val conjecture_id = id_of_index conjecture_i
val prem_ids = map id_of_index (prems_i upto facts_i - 1)
val fact_ids' =
map_filter (fn (i, (id, _)) => try (apsnd (nth xfacts)) (id, i - facts_i)) iidths
val helper_ids' = map_filter (try (fn (~1, idth) => idth)) iidths
val fact_helper_ts =
map (fn (_, th) => (ATP_Util.short_thm_name ctxt th, Thm.prop_of th)) helper_ids' @
map (fn (_, ((s, _), th)) => (s, Thm.prop_of th)) fact_ids'
val fact_helper_ids' =
map (apsnd (ATP_Util.short_thm_name ctxt)) helper_ids' @ map (apsnd (fst o fst)) fact_ids'
in
{outcome = NONE, fact_ids = SOME fact_ids',
atp_proof = fn () => Z3_Isar.atp_proof_of_z3_proof ctxt ll_defs rewrite_rules prems concl
fact_helper_ts prem_ids conjecture_id fact_helper_ids' steps}
end
fun replay outer_ctxt
({context = ctxt, typs, terms, rewrite_rules, assms, ...} : SMT_Translate.replay_data) output =
let
val (steps, ctxt2) = Z3_Proof.parse typs terms output ctxt
val ((_, rules), (ctxt3, assumed)) =
add_asserted outer_ctxt rewrite_rules (map (apfst fst) assms) steps ctxt2
val ctxt4 =
ctxt3
|> put_simpset (SMT_Replay.make_simpset ctxt3 [])
|> Config.put SAT.solver (Config.get ctxt3 SMT_Config.sat_solver)
val len = length steps
val start = Timing.start ()
val print_runtime_statistics = SMT_Replay.intermediate_statistics ctxt4 start len
fun blockwise f (i, x) y =
(if i > 0 andalso i mod 100 = 0 then print_runtime_statistics i else (); f x y)
val (proofs, stats) =
fold_index (blockwise (replay_step ctxt4 assumed)) steps (assumed, Symtab.empty)
val _ = print_runtime_statistics len
val total = Time.toMilliseconds (#elapsed (Timing.result start))
val (_, Z3_Proof.Z3_Step {id, ...}) = split_last steps
val _ = SMT_Config.statistics_msg ctxt4 (Pretty.string_of o SMT_Replay.pretty_statistics "Z3" total) stats
in
Inttab.lookup proofs id |> the |> snd |> discharge rules outer_ctxt ctxt4
end
end;