File ‹Tools/SMT/smt_solver.ML›
signature SMT_SOLVER =
sig
datatype outcome = Unsat | Sat | Unknown | Time_Out
type parsed_proof =
{outcome: SMT_Failure.failure option,
fact_ids: (int * ((string * ATP_Problem_Generate.stature) * thm)) list option,
atp_proof: unit -> (term, string) ATP_Proof.atp_step list}
type solver_config =
{name: string,
class: Proof.context -> SMT_Util.class,
avail: unit -> bool,
command: unit -> string list,
options: Proof.context -> string list,
smt_options: (string * string) list,
good_slices: ((int * bool * bool * int * string) * string list) list,
outcome: string -> string list -> outcome * string list,
parse_proof: (Proof.context -> SMT_Translate.replay_data ->
((string * ATP_Problem_Generate.stature) * thm) list -> term list -> term -> string list ->
parsed_proof) option,
replay: (Proof.context -> SMT_Translate.replay_data -> string list -> thm) option}
val add_solver: solver_config -> theory -> theory
val good_slices: Proof.context -> string ->
((int * bool * bool * int * string) * string list) list
val smt_filter: Proof.context -> thm -> ((string * ATP_Problem_Generate.stature) * thm) list ->
int -> Time.time -> string list -> parsed_proof
val smt_tac: Proof.context -> thm list -> int -> tactic
val smt_tac': Proof.context -> thm list -> int -> tactic
type solver_info = {
command: unit -> string list,
smt_options: (string * string) list,
good_slices: ((int * bool * bool * int * string) * string list) list,
parse_proof: Proof.context -> SMT_Translate.replay_data ->
((string * ATP_Problem_Generate.stature) * thm) list -> term list -> term -> string list ->
parsed_proof,
replay: Proof.context -> SMT_Translate.replay_data -> string list -> thm}
val name_and_info_of: Proof.context -> string * solver_info
end;
structure SMT_Solver: SMT_SOLVER =
struct
local
fun make_command command options problem_path proof_path =
Bash.strings (command () @ options) ^ " " ^
File.bash_platform_path problem_path ^
" > " ^ File.bash_path proof_path ^ " 2>&1"
fun with_trace ctxt msg f x =
let val _ = SMT_Config.trace_msg ctxt (fn () => msg) ()
in f x end
fun run ctxt name mk_cmd input =
(case SMT_Config.certificates_of ctxt of
NONE =>
if not (SMT_Config.is_available ctxt name) then
error ("The SMT solver " ^ quote name ^ " is not installed")
else if Config.get ctxt SMT_Config.debug_files = "" then
with_trace ctxt ("Invoking SMT solver " ^ quote name ^ " ...") (Cache_IO.run mk_cmd) input
else
let
val base_path = Path.explode (Config.get ctxt SMT_Config.debug_files)
val in_path = Path.ext "smt_in" base_path
val out_path = Path.ext "smt_out" base_path
in Cache_IO.raw_run mk_cmd input in_path out_path end
| SOME certs =>
(case Cache_IO.lookup certs input of
(NONE, key) =>
if Config.get ctxt SMT_Config.read_only_certificates then
error ("Bad certificate cache: missing certificate")
else
Cache_IO.run_and_cache certs key mk_cmd input
| (SOME output, _) =>
with_trace ctxt ("Using cached certificate from " ^
Path.print (Cache_IO.cache_path_of certs) ^ " ...") I output))
fun normal_return_codes "z3" = [0, 1]
| normal_return_codes "verit" = [0, 14, 255]
| normal_return_codes _ = [0, 1]
fun run_solver ctxt name mk_cmd input =
let
fun pretty tag lines = Pretty.string_of (Pretty.big_list tag (map Pretty.str lines))
val _ = SMT_Config.trace_msg ctxt (pretty "Problem:" o split_lines) input
val ({elapsed, ...}, {redirected_output = res, output = err, return_code}) =
Timing.timing (SMT_Config.with_timeout ctxt (run ctxt name mk_cmd)) input
val _ = SMT_Config.trace_msg ctxt (pretty "Solver:") err
val output = drop_suffix (equal "") res
val _ = SMT_Config.trace_msg ctxt (pretty "Result:") output
val _ = SMT_Config.trace_msg ctxt (pretty "Time:") [Value.print_time elapsed ^ "s"]
val _ = SMT_Config.statistics_msg ctxt (pretty "Time:") [Value.print_time elapsed ^ "s"]
val _ = member (op =) (normal_return_codes name) return_code orelse
raise SMT_Failure.SMT (SMT_Failure.Abnormal_Termination return_code)
in output end
fun trace_assms ctxt =
SMT_Config.trace_msg ctxt (Pretty.string_of o
Pretty.big_list "Assertions:" o map (Thm.pretty_thm ctxt o snd))
fun trace_replay_data ({context = ctxt, typs, terms, ...} : SMT_Translate.replay_data) =
let
fun pretty_eq n p = Pretty.block [Pretty.str n, Pretty.str " = ", p]
fun p_typ (n, T) = pretty_eq n (Syntax.pretty_typ ctxt T)
fun p_term (n, t) = pretty_eq n (Syntax.pretty_term ctxt t)
in
SMT_Config.trace_msg ctxt (fn () =>
Pretty.string_of (Pretty.big_list "Names:" [
Pretty.big_list "sorts:" (map p_typ (Symtab.dest typs)),
Pretty.big_list "functions:" (map p_term (Symtab.dest terms))])) ()
end
in
fun invoke name command options smt_options ithms ctxt =
let
val options = options @ SMT_Config.solver_options_of ctxt
val comments = [space_implode " " options]
val (str, replay_data as {context = ctxt', ...}) =
ithms
|> tap (trace_assms ctxt)
|> SMT_Translate.translate ctxt name smt_options comments
||> tap trace_replay_data
in (run_solver ctxt' name (make_command command options) str, replay_data) end
end
datatype outcome = Unsat | Sat | Unknown | Time_Out
type parsed_proof =
{outcome: SMT_Failure.failure option,
fact_ids: (int * ((string * ATP_Problem_Generate.stature) * thm)) list option,
atp_proof: unit -> (term, string) ATP_Proof.atp_step list}
type solver_config =
{name: string,
class: Proof.context -> SMT_Util.class,
avail: unit -> bool,
command: unit -> string list,
options: Proof.context -> string list,
smt_options: (string * string) list,
good_slices: ((int * bool * bool * int * string) * string list) list,
outcome: string -> string list -> outcome * string list,
parse_proof: (Proof.context -> SMT_Translate.replay_data ->
((string * ATP_Problem_Generate.stature) * thm) list -> term list -> term -> string list ->
parsed_proof) option,
replay: (Proof.context -> SMT_Translate.replay_data -> string list -> thm) option}
val has_topsort = Term.exists_type (Term.exists_subtype (fn
TFree (_, []) => true
| TVar (_, []) => true
| _ => false))
fun check_topsort ctxt thm =
if has_topsort (Thm.prop_of thm) then (SMT_Normalize.drop_fact_warning ctxt thm; TrueI) else thm
type solver_info = {
command: unit -> string list,
smt_options: (string * string) list,
good_slices: ((int * bool * bool * int * string) * string list) list,
parse_proof: Proof.context -> SMT_Translate.replay_data ->
((string * ATP_Problem_Generate.stature) * thm) list -> term list -> term -> string list ->
parsed_proof,
replay: Proof.context -> SMT_Translate.replay_data -> string list -> thm}
structure Solvers = Generic_Data
(
type T = solver_info Symtab.table
val empty = Symtab.empty
fun merge data = Symtab.merge (K true) data
)
local
fun parse_proof outcome parse_proof0 outer_ctxt replay_data xfacts prems concl output =
(case outcome output of
(Unsat, lines) =>
(case parse_proof0 of
SOME pp => pp outer_ctxt replay_data xfacts prems concl lines
| NONE => {outcome = NONE, fact_ids = NONE, atp_proof = K []})
| (Time_Out, _) => raise SMT_Failure.SMT (SMT_Failure.Time_Out)
| (result, _) => raise SMT_Failure.SMT (SMT_Failure.Counterexample (result = Sat)))
fun replay outcome replay0 oracle outer_ctxt
(replay_data as {context = ctxt, ...} : SMT_Translate.replay_data) output =
(case outcome output of
(Unsat, lines) =>
if Config.get ctxt SMT_Config.oracle then
oracle ()
else
(case replay0 of
SOME replay => replay outer_ctxt replay_data lines
| NONE => error "No proof reconstruction for solver -- \
\declare [[smt_oracle]] to allow oracle")
| (Time_Out, _) => raise SMT_Failure.SMT (SMT_Failure.Time_Out)
| (result, _) => raise SMT_Failure.SMT (SMT_Failure.Counterexample (result = Sat)))
val cfalse = Thm.cterm_of \<^context> \<^prop>‹False›
in
fun add_solver ({name, class, avail, command, options, smt_options, good_slices, outcome,
parse_proof = parse_proof0, replay = replay0} : solver_config) =
let
fun solver oracle = {
command = command,
smt_options = smt_options,
good_slices = good_slices,
parse_proof = parse_proof (outcome name) parse_proof0,
replay = replay (outcome name) replay0 oracle}
val info = {name = name, class = class, avail = avail, options = options}
in
Thm.add_oracle (Binding.name name, K cfalse) #-> (fn (_, oracle) =>
Context.theory_map (Solvers.map (Symtab.update_new (name, solver oracle)))) #>
Context.theory_map (SMT_Config.add_solver info)
end
end
fun get_info ctxt name = the (Symtab.lookup (Solvers.get (Context.Proof ctxt)) name)
fun name_and_info_of ctxt =
let val name = SMT_Config.solver_of ctxt
in (name, get_info ctxt name) end
val good_slices = #good_slices oo get_info
fun apply_solver_and_replay ctxt thms0 =
let
val thms = map (pair SMT_Util.Axiom o check_topsort ctxt) thms0
val (name, {command, smt_options, replay, ...}) = name_and_info_of ctxt
val (output, replay_data) =
invoke name command [] smt_options (SMT_Normalize.normalize ctxt thms) ctxt
in replay ctxt replay_data output end
fun smt_filter ctxt0 goal xfacts i time_limit options =
let
val ctxt = ctxt0 |> Config.put SMT_Config.timeout (Time.toReal time_limit)
val ({context = ctxt, prems, concl, ...}, _) = Subgoal.focus ctxt i NONE goal
fun negate ct = Thm.dest_comb ct ||> Thm.apply \<^cterm>‹Not› |-> Thm.apply
val cprop =
(case try negate (Thm.rhs_of (SMT_Normalize.atomize_conv ctxt concl)) of
SOME ct => ct
| NONE => raise SMT_Failure.SMT (SMT_Failure.Other_Failure "cannot atomize goal"))
val conjecture = Thm.assume cprop
val thms =
(SMT_Util.Conjecture, conjecture) ::
map (pair SMT_Util.Hypothesis) prems @
map (pair SMT_Util.Axiom o snd) xfacts
|> map (apsnd (check_topsort ctxt))
val (name, {command, smt_options, parse_proof, ...}) = name_and_info_of ctxt
val (output, replay_data) =
invoke name command options smt_options (SMT_Normalize.normalize ctxt thms) ctxt
in
parse_proof ctxt replay_data xfacts (map Thm.prop_of prems) (Thm.term_of concl) output
end
handle SMT_Failure.SMT fail => {outcome = SOME fail, fact_ids = NONE, atp_proof = K []}
local
fun str_of ctxt fail =
"Solver " ^ SMT_Config.solver_of ctxt ^ ": " ^ SMT_Failure.string_of_failure fail
fun safe_solve ctxt facts = SOME (apply_solver_and_replay ctxt facts)
handle
SMT_Failure.SMT (fail as SMT_Failure.Counterexample _) =>
(SMT_Config.verbose_msg ctxt (str_of ctxt) fail; NONE)
| SMT_Failure.SMT (fail as SMT_Failure.Time_Out) =>
(SMT_Config.verbose_msg ctxt (K ("SMT: Solver " ^ quote (SMT_Config.solver_of ctxt) ^ ": " ^
SMT_Failure.string_of_failure fail ^ " (setting the " ^
"configuration option " ^ quote (Config.name_of SMT_Config.timeout) ^ " might help)")) ();
NONE)
| SMT_Failure.SMT fail => error (str_of ctxt fail)
fun resolve ctxt (SOME thm) = resolve_tac ctxt [thm] 1
| resolve _ NONE = no_tac
fun tac prove ctxt rules =
CONVERSION (SMT_Normalize.atomize_conv ctxt)
THEN' resolve_tac ctxt @{thms ccontr}
THEN' SUBPROOF (fn {context = ctxt', prems, ...} =>
resolve ctxt' (prove ctxt' (rules @ prems))) ctxt
in
val smt_tac = tac safe_solve
val smt_tac' = tac (SOME oo apply_solver_and_replay)
end
end;