File ‹Tools/Nunchaku/nunchaku_collect.ML›
signature NUNCHAKU_COLLECT =
sig
val dest_co_datatype_case: Proof.context -> string * typ -> (string * typ) list
type isa_type_spec =
{abs_typ: typ,
rep_typ: typ,
wrt: term,
abs: term,
rep: term}
type isa_co_data_spec =
{typ: typ,
ctrs: term list}
type isa_const_spec =
{const: term,
props: term list}
type isa_rec_spec =
{const: term,
props: term list,
pat_complete: bool}
type isa_consts_spec =
{consts: term list,
props: term list}
datatype isa_command =
ITVal of typ * (int option * int option)
| ITypedef of isa_type_spec
| IQuotient of isa_type_spec
| ICoData of BNF_Util.fp_kind * isa_co_data_spec list
| IVal of term
| ICoPred of BNF_Util.fp_kind * bool * isa_const_spec list
| IRec of isa_rec_spec list
| ISpec of isa_consts_spec
| IAxiom of term
| IGoal of term
| IEval of term
type isa_problem =
{commandss: isa_command list list,
sound: bool,
complete: bool}
exception CYCLIC_DEPS of unit
exception TOO_DEEP_DEPS of unit
exception TOO_META of term
exception UNEXPECTED_POLYMORPHISM of term
exception UNEXPECTED_VAR of term
exception UNSUPPORTED_FUNC of term
val isa_problem_of_subgoal: Proof.context -> bool -> ((string * typ) option * bool option) list ->
(term option * bool) list -> (typ option * (int option * int option)) list -> bool ->
Time.time -> term list -> term list -> term -> term list * isa_problem
val pat_completes_of_isa_problem: isa_problem -> term list
val str_of_isa_problem: Proof.context -> isa_problem -> string
end;
structure Nunchaku_Collect : NUNCHAKU_COLLECT =
struct
open Nunchaku_Util;
type isa_type_spec =
{abs_typ: typ,
rep_typ: typ,
wrt: term,
abs: term,
rep: term};
type isa_co_data_spec =
{typ: typ,
ctrs: term list};
type isa_const_spec =
{const: term,
props: term list};
type isa_rec_spec =
{const: term,
props: term list,
pat_complete: bool};
type isa_consts_spec =
{consts: term list,
props: term list};
datatype isa_command =
ITVal of typ * (int option * int option)
| ITypedef of isa_type_spec
| IQuotient of isa_type_spec
| ICoData of BNF_Util.fp_kind * isa_co_data_spec list
| IVal of term
| ICoPred of BNF_Util.fp_kind * bool * isa_const_spec list
| IRec of isa_rec_spec list
| ISpec of isa_consts_spec
| IAxiom of term
| IGoal of term
| IEval of term;
type isa_problem =
{commandss: isa_command list list,
sound: bool,
complete: bool};
exception CYCLIC_DEPS of unit;
exception TOO_DEEP_DEPS of unit;
exception TOO_META of term;
exception UNEXPECTED_POLYMORPHISM of term;
exception UNEXPECTED_VAR of term;
exception UNSUPPORTED_FUNC of term;
fun str_of_and_list str_of_elem =
map str_of_elem #> space_implode ("\nand ");
val key_of_typ =
let
fun key_of (Type (s, [])) = s
| key_of (Type (s, Ts)) = s ^ "(" ^ commas (map key_of Ts) ^ ")"
| key_of (TFree (s, _)) = s;
in
prefix "y" o key_of
end;
fun key_of_const ctxt =
let
val thy = Proof_Context.theory_of ctxt;
fun key_of (Const (x as (s, _))) =
(case Sign.const_typargs thy x of
[] => s
| Ts => s ^ "(" ^ commas (map key_of_typ Ts) ^ ")")
| key_of (Free (s, _)) = s;
in
prefix "t" o key_of
end;
val add_type_keys = fold_subtypes (insert (op =) o key_of_typ);
fun add_aterm_keys ctxt t =
if is_Const t orelse is_Free t then insert (op =) (key_of_const ctxt t) else I;
fun add_keys ctxt t =
fold_aterms (add_aterm_keys ctxt) t
#> fold_types add_type_keys t;
fun close_form except t =
fold (fn ((s, i), T) => fn t' =>
HOLogic.all_const T $ Abs (s, T, abstract_over (Var ((s, i), T), t')))
(Term.add_vars t [] |> subtract (op =) except) t;
val basic_defs =
@{thms Ball_def[abs_def] Bex_def[abs_def] case_bool_if Ex1_def[abs_def]
imp_conjL[symmetric, abs_def] Let_def[abs_def] rmember_def[symmetric, abs_def]};
fun unfold_basic_def ctxt =
let val thy = Proof_Context.theory_of ctxt in
Pattern.rewrite_term thy (map (Logic.dest_equals o Thm.prop_of) basic_defs) []
end;
val has_polymorphism = exists_type (exists_subtype is_TVar);
fun whack_term thy whacks =
let
fun whk t =
if triple_lookup (term_match thy o swap) whacks t = SOME true then
Const (\<^const_name>‹unreachable›, fastype_of t)
else
(case t of
u $ v => whk u $ whk v
| Abs (s, T, u) => Abs (s, T, whk u)
| _ => t);
in
whk
end;
fun preprocess_term_basic falsify ctxt whacks t =
let val thy = Proof_Context.theory_of ctxt in
if has_polymorphism t then
raise UNEXPECTED_POLYMORPHISM t
else
t
|> Term.smash_sorts \<^sort>‹type›
|> whack_term thy whacks
|> Object_Logic.atomize_term ctxt
|> tap (fn t' => fastype_of t' <> \<^typ>‹prop› orelse raise TOO_META t)
|> falsify ? HOLogic.mk_not
|> unfold_basic_def ctxt
end;
val check_closed = tap (fn t => null (Term.add_vars t []) orelse raise UNEXPECTED_VAR t);
val preprocess_prop = close_form [] oooo preprocess_term_basic;
val preprocess_closed_term = check_closed ooo preprocess_term_basic false;
val is_type_builtin = member (op =) [\<^type_name>‹bool›, \<^type_name>‹fun›];
val is_const_builtin =
member (op =) [\<^const_name>‹All›, \<^const_name>‹conj›, \<^const_name>‹disj›, \<^const_name>‹Eps›,
\<^const_name>‹HOL.eq›, \<^const_name>‹Ex›, \<^const_name>‹False›, \<^const_name>‹If›,
\<^const_name>‹implies›, \<^const_name>‹Not›, \<^const_name>‹The›, \<^const_name>‹The_unsafe›,
\<^const_name>‹True›];
datatype type_classification = Builtin | TVal | Typedef | Quotient | Co_Datatype;
fun classify_type_name ctxt T_name =
if is_type_builtin T_name then
Builtin
else if T_name = \<^type_name>‹itself› then
Co_Datatype
else
(case BNF_FP_Def_Sugar.fp_sugar_of ctxt T_name of
SOME _ => Co_Datatype
| NONE =>
(case Ctr_Sugar.ctr_sugar_of ctxt T_name of
SOME _ => Co_Datatype
| NONE =>
(case Quotient_Info.lookup_quotients ctxt T_name of
SOME _ => Quotient
| NONE =>
if T_name = \<^type_name>‹set› then
Typedef
else
(case Typedef.get_info ctxt T_name of
_ :: _ => Typedef
| [] => TVal))));
fun fp_kind_of_ctr_sugar_kind Ctr_Sugar.Codatatype = BNF_Util.Greatest_FP
| fp_kind_of_ctr_sugar_kind _ = BNF_Util.Least_FP;
fun mutual_co_datatypes_of ctxt (T_name, Ts) =
(if T_name = \<^type_name>‹itself› then
(BNF_Util.Least_FP, [\<^typ>‹'a itself›], [[\<^Const>‹Pure.type \<^typ>‹'a››]])
else
let
val (fp, ctr_sugars) =
(case BNF_FP_Def_Sugar.fp_sugar_of ctxt T_name of
SOME (fp_sugar as {fp, fp_res = {Ts, ...}, ...}) =>
(fp,
(case Ts of
[_] => [fp_sugar]
| _ => map (the o BNF_FP_Def_Sugar.fp_sugar_of ctxt o fst o dest_Type) Ts)
|> map (#ctr_sugar o #fp_ctr_sugar))
| NONE =>
(case Ctr_Sugar.ctr_sugar_of ctxt T_name of
SOME (ctr_sugar as {kind, ...}) =>
(fp_kind_of_ctr_sugar_kind kind, [ctr_sugar])));
in
(fp, map #T ctr_sugars, map #ctrs ctr_sugars)
end)
|> @{apply 3(2)} (map ((fn Type (s, _) => Type (s, Ts))))
|> @{apply 3(3)} (map (map (Ctr_Sugar.mk_ctr Ts)));
fun typedef_of ctxt T_name =
if T_name = \<^type_name>‹set› then
let
val A = Logic.varifyT_global \<^typ>‹'a›;
val absT = Type (\<^type_name>‹set›, [A]);
val repT = A --> HOLogic.boolT;
val pred = Abs (Name.uu, repT, \<^Const>‹True›);
val abs = Const (\<^const_name>‹Collect›, repT --> absT);
val rep = Const (\<^const_name>‹rmember›, absT --> repT);
in
(absT, repT, pred, abs, rep)
end
else
(case Typedef.get_info ctxt T_name of
({abs_type, rep_type, Abs_name, Rep_name, ...}, {Rep, ...}) :: _ =>
let
val absT = Logic.varifyT_global abs_type;
val repT = Logic.varifyT_global rep_type;
val set = Thm.prop_of Rep
|> HOLogic.dest_Trueprop
|> HOLogic.dest_mem
|> snd;
val pred = Abs (Name.uu, repT, HOLogic.mk_mem (Bound 0, set));
val abs = Const (Abs_name, repT --> absT);
val rep = Const (Rep_name, absT --> repT);
in
(absT, repT, pred, abs, rep)
end);
fun quotient_of ctxt T_name =
(case Quotient_Info.lookup_quotients ctxt T_name of
SOME {equiv_rel, qtyp, rtyp, quot_thm, ...} =>
let val _ $ (_ $ _ $ abs $ rep) = Thm.prop_of quot_thm in
(qtyp, rtyp, equiv_rel, abs, rep)
end);
fun is_co_datatype_ctr ctxt (s, T) =
(case body_type T of
Type (fpT_name, Ts) =>
classify_type_name ctxt fpT_name = Co_Datatype andalso
let
val ctrs =
if fpT_name = \<^type_name>‹itself› then
[Const (\<^const_name>‹Pure.type›, \<^typ>‹'a itself›)]
else
(case BNF_FP_Def_Sugar.fp_sugar_of ctxt fpT_name of
SOME {fp_ctr_sugar = {ctr_sugar = {ctrs, ...}, ...}, ...} => ctrs
| NONE =>
(case Ctr_Sugar.ctr_sugar_of ctxt fpT_name of
SOME {ctrs, ...} => ctrs
| _ => []));
fun is_right_ctr (t' as Const (s', _)) =
s = s' andalso fastype_of (Ctr_Sugar.mk_ctr Ts t') = T;
in
exists is_right_ctr ctrs
end
| _ => false);
fun dest_co_datatype_case ctxt (s, T) =
let val thy = Proof_Context.theory_of ctxt in
(case strip_fun_type (Sign.the_const_type thy s) of
(gen_branch_Ts, gen_body_fun_T) =>
(case gen_body_fun_T of
Type (\<^type_name>‹fun›, [Type (fpT_name, _), _]) =>
if classify_type_name ctxt fpT_name = Co_Datatype then
let
val Type (_, fpTs) = domain_type (funpow (length gen_branch_Ts) range_type T);
val (ctrs0, Const (case_name, _)) =
(case BNF_FP_Def_Sugar.fp_sugar_of ctxt fpT_name of
SOME {fp_ctr_sugar = {ctr_sugar = {ctrs, casex, ...}, ...}, ...} => (ctrs, casex)
| NONE =>
(case Ctr_Sugar.ctr_sugar_of ctxt fpT_name of
SOME {ctrs, casex, ...} => (ctrs, casex)));
in
if s = case_name then map (dest_Const o Ctr_Sugar.mk_ctr fpTs) ctrs0
else raise Fail "non-case"
end
else
raise Fail "non-case"))
end;
val is_co_datatype_case = can o dest_co_datatype_case;
fun is_quotient_abs ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [_, Type (absT_name, _)]) =>
classify_type_name ctxt absT_name = Quotient andalso
(case quotient_of ctxt absT_name of
(_, _, _, Const (s', _), _) => s' = s)
| _ => false);
fun is_quotient_rep ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [Type (absT_name, _), _]) =>
classify_type_name ctxt absT_name = Quotient andalso
(case quotient_of ctxt absT_name of
(_, _, _, _, Const (s', _)) => s' = s)
| _ => false);
fun is_maybe_typedef_abs ctxt absT_name s =
if absT_name = \<^type_name>‹set› then
s = \<^const_name>‹Collect›
else
(case try (typedef_of ctxt) absT_name of
SOME (_, _, _, Const (s', _), _) => s' = s
| NONE => false);
fun is_maybe_typedef_rep ctxt absT_name s =
if absT_name = \<^type_name>‹set› then
s = \<^const_name>‹rmember›
else
(case try (typedef_of ctxt) absT_name of
SOME (_, _, _, _, Const (s', _)) => s' = s
| NONE => false);
fun is_typedef_abs ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [_, Type (absT_name, _)]) =>
classify_type_name ctxt absT_name = Typedef andalso is_maybe_typedef_abs ctxt absT_name s
| _ => false);
fun is_typedef_rep ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [Type (absT_name, _), _]) =>
classify_type_name ctxt absT_name = Typedef andalso is_maybe_typedef_rep ctxt absT_name s
| _ => false);
fun is_stale_typedef_abs ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [_, Type (absT_name, _)]) =>
classify_type_name ctxt absT_name <> Typedef andalso is_maybe_typedef_abs ctxt absT_name s
| _ => false);
fun is_stale_typedef_rep ctxt (s, T) =
(case T of
Type (\<^type_name>‹fun›, [Type (absT_name, _), _]) =>
classify_type_name ctxt absT_name <> Typedef andalso is_maybe_typedef_rep ctxt absT_name s
| _ => false);
fun instantiate_constant_types_in_term ctxt csts target =
let
val thy = Proof_Context.theory_of ctxt;
fun try_const _ _ (res as SOME _) = res
| try_const (s', T') cst NONE =
(case cst of
Const (s, T) =>
if s = s' then
SOME (Sign.typ_match thy (T', T) Vartab.empty)
handle Type.TYPE_MATCH => NONE
else
NONE
| _ => NONE);
fun subst_for (Const x) = fold (try_const x) csts NONE
| subst_for (t as Free _) = if member (op aconv) csts t then SOME Vartab.empty else NONE
| subst_for (t1 $ t2) = (case subst_for t1 of SOME subst => SOME subst | NONE => subst_for t2)
| subst_for (Abs (_, _, t')) = subst_for t'
| subst_for _ = NONE;
in
(case subst_for target of
SOME subst => Envir.subst_term_types subst target
| NONE => raise Type.TYPE_MATCH)
end;
datatype card = One | Fin | Fin_or_Inf | Inf
fun card_of_type ctxt =
let
fun max_card Inf _ = Inf
| max_card _ Inf = Inf
| max_card Fin_or_Inf _ = Fin_or_Inf
| max_card _ Fin_or_Inf = Fin_or_Inf
| max_card Fin _ = Fin
| max_card _ Fin = Fin
| max_card One One = One;
fun card_of avoid T =
if member (op =) avoid T then
Inf
else
(case T of
TFree _ => Fin_or_Inf
| TVar _ => Inf
| Type (\<^type_name>‹fun›, [T1, T2]) =>
(case (card_of avoid T1, card_of avoid T2) of
(_, One) => One
| (k1, k2) => max_card k1 k2)
| Type (\<^type_name>‹prod›, [T1, T2]) =>
(case (card_of avoid T1, card_of avoid T2) of
(k1, k2) => max_card k1 k2)
| Type (\<^type_name>‹set›, [T']) => card_of avoid (T' --> HOLogic.boolT)
| Type (T_name, Ts) =>
(case try (mutual_co_datatypes_of ctxt) (T_name, Ts) of
NONE => Inf
| SOME (_, fpTs, ctrss) =>
(case ctrss of [[_]] => One | _ => Fin)
|> fold (fold (fold (max_card o card_of (fpTs @ avoid)) o binder_types o fastype_of))
ctrss));
in
card_of []
end;
fun spec_rules_of ctxt (x as (s, T)) =
let
val thy = Proof_Context.theory_of ctxt;
fun subst_of t0 =
try (Sign.typ_match thy (fastype_of t0, T)) Vartab.empty;
fun process_spec _ (res as SOME _) = res
| process_spec {rough_classification = classif, terms = ts0, rules = ths as _ :: _, ...} NONE =
(case get_first subst_of ts0 of
SOME subst =>
(let
val ts = map (Envir.subst_term_types subst) ts0;
val poly_props = map Thm.prop_of ths;
val props = map (instantiate_constant_types_in_term ctxt ts) poly_props;
in
if exists (exists (exists_type (exists_subtype is_TVar))) [ts, props] then NONE
else SOME (classif, ts, props, poly_props)
end
handle Type.TYPE_MATCH => NONE)
| NONE => NONE)
| process_spec _ NONE = NONE;
fun spec_rules () =
Spec_Rules.retrieve ctxt (Const x)
|> sort (Spec_Rules.rough_classification_ord o apply2 #rough_classification);
val specs =
if s = \<^const_name>‹The› then
[{pos = Position.none, name = "", rough_classification = Spec_Rules.Unknown,
terms = [Logic.varify_global \<^term>‹The›],
rules = [@{thm theI_unique}]}]
else if s = \<^const_name>‹finite› then
let val card = card_of_type ctxt T in
if card = Inf orelse card = Fin_or_Inf then
spec_rules ()
else
[{pos = Position.none, name = "", rough_classification = Spec_Rules.equational,
terms = [Logic.varify_global \<^term>‹finite›],
rules = [Skip_Proof.make_thm thy (Logic.varify_global \<^prop>‹finite A = True›)]}]
end
else
spec_rules ();
in
fold process_spec specs NONE
end;
fun lhs_of_equation \<^Const_>‹Pure.eq _ for t _› = t
| lhs_of_equation \<^Const_>‹Trueprop for \<^Const_>‹HOL.eq _ for t _›› = t;
fun specialize_definition_type thy x def0 =
let
val def = specialize_type thy x def0;
val lhs = lhs_of_equation def;
in
if exists_Const (curry (op =) x) lhs then def else raise Fail "cannot specialize"
end;
fun definition_of thy (x as (s, _)) =
Defs.specifications_of (Theory.defs_of thy) (Defs.Const, s)
|> map_filter #def
|> map_filter (try (specialize_definition_type thy x o Thm.prop_of o Thm.axiom thy))
|> try hd;
fun is_builtin_theory thy_id =
Context.subthy_id (thy_id, Context.theory_id \<^theory>‹Hilbert_Choice›);
val orphan_axioms_of =
Spec_Rules.get
#> filter (Spec_Rules.is_unknown o #rough_classification)
#> filter (null o #terms)
#> maps #rules
#> filter_out (is_builtin_theory o Thm.theory_id)
#> map Thm.prop_of;
fun keys_of _ (ITVal (T, _)) = [key_of_typ T]
| keys_of _ (ITypedef {abs_typ, ...}) = [key_of_typ abs_typ]
| keys_of _ (IQuotient {abs_typ, ...}) = [key_of_typ abs_typ]
| keys_of _ (ICoData (_, specs)) = map (key_of_typ o #typ) specs
| keys_of ctxt (IVal const) = [key_of_const ctxt const]
| keys_of ctxt (ICoPred (_, _, specs)) = map (key_of_const ctxt o #const) specs
| keys_of ctxt (IRec specs) = map (key_of_const ctxt o #const) specs
| keys_of ctxt (ISpec {consts, ...}) = map (key_of_const ctxt) consts
| keys_of _ (IAxiom _) = []
| keys_of _ (IGoal _) = []
| keys_of _ (IEval _) = [];
fun co_data_spec_deps_of ctxt ({ctrs, ...} : isa_co_data_spec) =
fold (add_keys ctxt) ctrs [];
fun const_spec_deps_of ctxt consts props =
fold (add_keys ctxt) props [] |> subtract (op =) (map (key_of_const ctxt) consts);
fun consts_spec_deps_of ctxt {consts, props} =
fold (add_keys ctxt) props [] |> subtract (op =) (map (key_of_const ctxt) consts);
fun deps_of _ (ITVal _) = []
| deps_of ctxt (ITypedef {wrt, ...}) = add_keys ctxt wrt []
| deps_of ctxt (IQuotient {wrt, ...}) = add_keys ctxt wrt []
| deps_of ctxt (ICoData (_, specs)) = maps (co_data_spec_deps_of ctxt) specs
| deps_of _ (IVal const) = add_type_keys (fastype_of const) []
| deps_of ctxt (ICoPred (_, _, specs)) =
maps (const_spec_deps_of ctxt (map #const specs) o #props) specs
| deps_of ctxt (IRec specs) = maps (const_spec_deps_of ctxt (map #const specs) o #props) specs
| deps_of ctxt (ISpec spec) = consts_spec_deps_of ctxt spec
| deps_of ctxt (IAxiom prop) = add_keys ctxt prop []
| deps_of ctxt (IGoal prop) = add_keys ctxt prop []
| deps_of ctxt (IEval t) = add_keys ctxt t [];
fun consts_of_rec_or_spec (IRec specs) = map #const specs
| consts_of_rec_or_spec (ISpec {consts, ...}) = consts;
fun props_of_rec_or_spec (IRec specs) = maps #props specs
| props_of_rec_or_spec (ISpec {props, ...}) = props;
fun merge_two_rec_or_spec cmd cmd' =
ISpec {consts = consts_of_rec_or_spec cmd @ consts_of_rec_or_spec cmd',
props = props_of_rec_or_spec cmd @ props_of_rec_or_spec cmd'};
fun merge_two (ICoData (fp, specs)) (ICoData (fp', specs'), complete) =
(ICoData (BNF_Util.case_fp fp fp fp', specs @ specs'), complete andalso fp = fp')
| merge_two (IRec specs) (IRec specs', complete) = (IRec (specs @ specs'), complete)
| merge_two (cmd as IRec _) (cmd' as ISpec _, complete) =
(merge_two_rec_or_spec cmd cmd', complete)
| merge_two (cmd as ISpec _) (cmd' as IRec _, complete) =
(merge_two_rec_or_spec cmd cmd', complete)
| merge_two (cmd as ISpec _) (cmd' as ISpec _, complete) =
(merge_two_rec_or_spec cmd cmd', complete)
| merge_two _ _ = raise CYCLIC_DEPS ();
fun sort_isa_commands_topologically ctxt cmds =
let
fun normal_pairs [] = []
| normal_pairs (all as normal :: _) = map (rpair normal) all;
fun add_node [] _ = I
| add_node (normal :: _) cmd = Graph.new_node (normal, cmd);
fun merge_scc (cmd :: cmds) complete = fold merge_two cmds (cmd, complete);
fun sort_problem (cmds, complete) =
let
val keyss = map (keys_of ctxt) cmds;
val normal_keys = Symtab.make (maps normal_pairs keyss);
val normalize = Symtab.lookup normal_keys;
fun add_deps [] _ = I
| add_deps (normal :: _) cmd =
let
val deps = deps_of ctxt cmd
|> map_filter normalize
|> remove (op =) normal;
in
fold (fn dep => Graph.add_edge (dep, normal)) deps
end;
val cmd_of_key = the o AList.lookup (op =) (map hd keyss ~~ cmds);
val G = Graph.empty
|> fold2 add_node keyss cmds
|> fold2 add_deps keyss cmds;
val cmd_sccs = rev (Graph.strong_conn G)
|> map (map cmd_of_key);
in
if exists (can (fn _ :: _ :: _ => ())) cmd_sccs then
sort_problem (fold_map merge_scc cmd_sccs complete)
else
(Graph.schedule (K snd) G, complete)
end;
val typedecls = filter (can (fn ITVal _ => ())) cmds;
val (mixed, complete) =
(filter (can (fn ITypedef _ => () | IQuotient _ => () | ICoData _ => () | IVal _ => ()
| ICoPred _ => () | IRec _ => () | ISpec _ => ())) cmds, true)
|> sort_problem;
val axioms = filter (can (fn IAxiom _ => ())) cmds;
val goals = filter (can (fn IGoal _ => ())) cmds;
val evals = filter (can (fn IEval _ => ())) cmds;
in
(typedecls @ mixed @ axioms @ goals @ evals, complete)
end;
fun group_of (ITVal _) = 1
| group_of (ITypedef _) = 2
| group_of (IQuotient _) = 3
| group_of (ICoData _) = 4
| group_of (IVal _) = 5
| group_of (ICoPred _) = 6
| group_of (IRec _) = 7
| group_of (ISpec _) = 8
| group_of (IAxiom _) = 9
| group_of (IGoal _) = 10
| group_of (IEval _) = 11;
fun group_isa_commands [] = []
| group_isa_commands [cmd] = [[cmd]]
| group_isa_commands (cmd :: cmd' :: cmds) =
let val (group :: groups) = group_isa_commands (cmd' :: cmds) in
if group_of cmd = group_of cmd' then
(cmd :: group) :: groups
else
[cmd] :: (group :: groups)
end;
fun defined_by \<^Const_>‹All _ for t› = defined_by t
| defined_by (Abs (_, _, t)) = defined_by t
| defined_by \<^Const_>‹implies for _ u› = defined_by u
| defined_by \<^Const_>‹HOL.eq _ for t _› = head_of t
| defined_by t = head_of t;
fun partition_props [_] props = SOME [props]
| partition_props consts props =
let
val propss = map (fn const => filter (fn prop => defined_by prop aconv const) props) consts;
in
if eq_set (op aconv) (props, flat propss) andalso forall (not o null) propss then SOME propss
else NONE
end;
fun hol_concl_head (Const (\<^const_name>‹All›, _) $ Abs (_, _, t)) = hol_concl_head t
| hol_concl_head (Const (\<^const_name>‹implies›, _) $ _ $ t) = hol_concl_head t
| hol_concl_head (t $ _) = hol_concl_head t
| hol_concl_head t = t;
fun is_inductive_set_intro t =
(case hol_concl_head t of
Const (\<^const_name>‹rmember›, _) => true
| _ => false);
exception NO_TRIPLE of unit;
fun triple_for_intro_rule ctxt x rule =
let
val (prems, concl) = Logic.strip_horn rule
|>> map (Object_Logic.atomize_term ctxt)
||> Object_Logic.atomize_term ctxt;
val (mains, sides) = List.partition (exists_Const (curry (op =) x)) prems;
val is_right_head = curry (op aconv) (Const x) o head_of;
in
if forall is_right_head mains then (sides, mains, concl) else raise NO_TRIPLE ()
end;
val tuple_for_args = HOLogic.mk_tuple o snd o strip_comb;
fun wf_constraint_for rel sides concl mains =
HOLogic.mk_mem (HOLogic.mk_prod (apply2 tuple_for_args (mains, concl)), Var rel)
|> fold (curry HOLogic.mk_imp) sides
|> close_form [rel];
fun wf_constraint_for_triple rel (sides, mains, concl) =
map (wf_constraint_for rel sides concl) mains
|> foldr1 HOLogic.mk_conj;
fun terminates_by ctxt timeout goal tac =
can (SINGLE (Classical.safe_tac ctxt) #> the
#> SINGLE (DETERM_TIMEOUT timeout (tac ctxt (auto_tac ctxt))) #> the
#> Goal.finish ctxt) goal;
val max_cached_wfs = 50;
val cached_timeout = Synchronized.var "Nunchaku_Collect.cached_timeout" Time.zeroTime;
val cached_wf_props = Synchronized.var "Nunchaku_Collect.cached_wf_props" ([] : (term * bool) list);
val termination_tacs = [Lexicographic_Order.lex_order_tac true, ScnpReconstruct.sizechange_tac];
fun is_wellfounded_inductive_predicate ctxt wfs debug wf_timeout const intros =
let
val thy = Proof_Context.theory_of ctxt;
val Const (x as (_, T)) = head_of (HOLogic.dest_Trueprop (Logic.strip_imp_concl (hd intros)));
in
(case triple_lookup (const_match thy o swap) wfs (dest_Const const) of
SOME (SOME wf) => wf
| _ =>
(case map (triple_for_intro_rule ctxt x) intros |> filter_out (null o #2) of
[] => true
| triples =>
let
val binders_T = HOLogic.mk_tupleT (binder_types T);
val rel_T = HOLogic.mk_setT (HOLogic.mk_prodT (binders_T, binders_T));
val j = fold (Integer.max o maxidx_of_term) intros 0 + 1;
val rel = (("R", j), rel_T);
val prop =
Const (\<^const_abbrev>‹wf›, rel_T --> HOLogic.boolT) $ Var rel ::
map (wf_constraint_for_triple rel) triples
|> foldr1 HOLogic.mk_conj
|> HOLogic.mk_Trueprop;
in
if debug then writeln ("Wellfoundedness goal: " ^ Syntax.string_of_term ctxt prop)
else ();
if wf_timeout = Synchronized.value cached_timeout andalso
length (Synchronized.value cached_wf_props) < max_cached_wfs then
()
else
(Synchronized.change cached_wf_props (K []);
Synchronized.change cached_timeout (K wf_timeout));
(case AList.lookup (op =) (Synchronized.value cached_wf_props) prop of
SOME wf => wf
| NONE =>
let
val goal = Goal.init (Thm.cterm_of ctxt prop);
val wf = exists (terminates_by ctxt wf_timeout goal) termination_tacs;
in
Synchronized.change cached_wf_props (cons (prop, wf)); wf
end)
end)
handle
List.Empty => false
| NO_TRIPLE () => false)
end;
datatype lhs_pat =
Only_Vars
| Prim_Pattern of string
| Any_Pattern;
fun is_apparently_pat_complete ctxt props =
let
val is_Var_or_Bound = is_Var orf is_Bound;
fun lhs_pat_of t =
(case t of
Const (\<^const_name>‹All›, _) $ Abs (_, _, t) => lhs_pat_of t
| Const (\<^const_name>‹HOL.eq›, _) $ u $ _ =>
(case filter_out is_Var_or_Bound (snd (strip_comb u)) of
[] => Only_Vars
| [v] =>
(case strip_comb v of
(cst as Const (_, T), args) =>
(case body_type T of
Type (T_name, _) =>
if can (Ctr_Sugar.dest_ctr ctxt T_name) cst andalso forall is_Var_or_Bound args then
Prim_Pattern T_name
else
Any_Pattern
| _ => Any_Pattern)
| _ => Any_Pattern)
| _ => Any_Pattern)
| _ => Any_Pattern);
in
(case map lhs_pat_of props of
[] => false
| pats as Prim_Pattern T_name :: _ =>
forall (can (fn Prim_Pattern _ => ())) pats andalso
length pats = length (#ctrs (the (Ctr_Sugar.ctr_sugar_of ctxt T_name)))
| pats => forall (curry (op =) Only_Vars) pats)
end;
val axioms_max_depth = 255
fun isa_problem_of_subgoal ctxt falsify wfs whacks cards debug wf_timeout evals0 some_assms0
subgoal0 =
let
val thy = Proof_Context.theory_of ctxt;
fun card_of T =
(case triple_lookup (typ_match thy o swap) cards T of
NONE => (NONE, NONE)
| SOME (c1, c2) => (if c1 = SOME 1 then NONE else c1, c2));
fun axioms_of_class class =
#axioms (Axclass.get_info thy class)
handle ERROR _ => [];
fun monomorphize_class_axiom T t =
(case Term.add_tvars t [] of
[] => t
| [(x, S)] => Envir.subst_term_types (Vartab.make [(x, (S, T))]) t);
fun consider_sort depth T S (seens as (seenS, seenT, seen), problem) =
if member (op =) seenS S then
(seens, problem)
else if depth > axioms_max_depth then
raise TOO_DEEP_DEPS ()
else
let
val seenS = S :: seenS;
val seens = (seenS, seenT, seen);
val supers = Sign.complete_sort thy S;
val axioms0 = maps (map Thm.prop_of o axioms_of_class) supers;
val axioms = map (preprocess_prop false ctxt whacks o monomorphize_class_axiom T) axioms0;
in
(seens, map IAxiom axioms @ problem)
|> fold (consider_term (depth + 1)) axioms
end
and consider_type depth T =
(case T of
Type (s, Ts) =>
if is_type_builtin s then fold (consider_type depth) Ts
else consider_non_builtin_type depth T
| _ => consider_non_builtin_type depth T)
and consider_non_builtin_type depth T (seens as (seenS, seenT, seen), problem) =
if member (op =) seenT T then
(seens, problem)
else
let
val seenT = T :: seenT;
val seens = (seenS, seenT, seen);
fun consider_typedef_or_quotient itypedef_or_quotient tuple_of s =
let
val (T0, repT0, wrt0, abs0, rep0) = tuple_of ctxt s;
val tyenv = Sign.typ_match thy (T0, T) Vartab.empty;
val substT = Envir.subst_type tyenv;
val subst = Envir.subst_term_types tyenv;
val repT = substT repT0;
val wrt = preprocess_prop false ctxt whacks (subst wrt0);
val abs = subst abs0;
val rep = subst rep0;
in
apsnd (cons (itypedef_or_quotient {abs_typ = T, rep_typ = repT, wrt = wrt, abs = abs,
rep = rep}))
#> consider_term (depth + 1) wrt
end;
in
(seens, problem)
|> (case T of
TFree (_, S) =>
apsnd (cons (ITVal (T, card_of T)))
#> consider_sort depth T S
| TVar (_, S) => consider_sort depth T S
| Type (s, Ts) =>
fold (consider_type depth) Ts
#> (case classify_type_name ctxt s of
Co_Datatype =>
let
val (fp, fpTs, ctrss) = mutual_co_datatypes_of ctxt (s, Ts);
val specs = map2 (fn T => fn ctrs => {typ = T, ctrs = ctrs}) fpTs ctrss;
in
(fn ((seenS, seenT, seen), problem) =>
((seenS, union (op =) fpTs seenT, seen), ICoData (fp, specs) :: problem))
#> fold (fold (consider_type (depth + 1) o fastype_of)) ctrss
end
| Typedef => consider_typedef_or_quotient ITypedef typedef_of s
| Quotient => consider_typedef_or_quotient IQuotient quotient_of s
| TVal => apsnd (cons (ITVal (T, card_of T)))))
end
and consider_term depth t =
(case t of
t1 $ t2 => fold (consider_term depth) [t1, t2]
| Var (_, T) => consider_type depth T
| Bound _ => I
| Abs (_, T, t') =>
consider_term depth t'
#> consider_type depth T
| _ => (fn (seens as (seenS, seenT, seen), problem) =>
if member (op aconv) seen t then
(seens, problem)
else if depth > axioms_max_depth then
raise TOO_DEEP_DEPS ()
else
let
val seen = t :: seen;
val seens = (seenS, seenT, seen);
in
(case t of
Const (x as (s, T)) =>
(if is_const_builtin s orelse is_co_datatype_ctr ctxt x orelse
is_co_datatype_case ctxt x orelse is_quotient_abs ctxt x orelse
is_quotient_rep ctxt x orelse is_typedef_abs ctxt x orelse
is_typedef_rep ctxt x then
(seens, problem)
else if is_stale_typedef_abs ctxt x orelse is_stale_typedef_rep ctxt x then
raise UNSUPPORTED_FUNC t
else
(case spec_rules_of ctxt x of
SOME (classif, consts, props0, poly_props) =>
let
val props = map (preprocess_prop false ctxt whacks) props0;
fun def_or_spec () =
(case definition_of thy x of
SOME eq0 =>
let val eq = preprocess_prop false ctxt whacks eq0 in
([eq], [IRec [{const = t, props = [eq], pat_complete = true}]])
end
| NONE => (props, [ISpec {consts = consts, props = props}]));
val (props', cmds) =
if null props then
([], map IVal consts)
else if Spec_Rules.is_equational classif then
(case partition_props consts props of
SOME propss =>
(props,
[IRec (map2 (fn const => fn props =>
{const = const, props = props,
pat_complete = is_apparently_pat_complete ctxt props})
consts propss)])
| NONE => def_or_spec ())
else if Spec_Rules.is_relational classif
then
if is_inductive_set_intro (hd props) then
def_or_spec ()
else
(case partition_props consts props of
SOME propss =>
(props,
[ICoPred (if Spec_Rules.is_inductive classif then BNF_Util.Least_FP
else BNF_Util.Greatest_FP,
length consts = 1 andalso
is_wellfounded_inductive_predicate ctxt wfs debug wf_timeout
(the_single consts) poly_props,
map2 (fn const => fn props => {const = const, props = props})
consts propss)])
| NONE => def_or_spec ())
else
def_or_spec ();
in
((seenS, seenT, union (op aconv) consts seen), cmds @ problem)
|> fold (consider_term (depth + 1)) props'
end
| NONE =>
(case definition_of thy x of
SOME eq0 =>
let val eq = preprocess_prop false ctxt whacks eq0 in
(seens, IRec [{const = t, props = [eq], pat_complete = true}] :: problem)
|> consider_term (depth + 1) eq
end
| NONE => (seens, IVal t :: problem))))
|> consider_type depth T
| Free (_, T) =>
(seens, IVal t :: problem)
|> consider_type depth T)
end));
val (poly_axioms, mono_axioms0) = orphan_axioms_of ctxt
|> List.partition has_polymorphism;
fun implicit_evals_of pol \<^Const_>‹Not for t› = implicit_evals_of (not pol) t
| implicit_evals_of pol \<^Const_>‹implies for t u› =
(case implicit_evals_of pol u of
[] => implicit_evals_of (not pol) t
| ts => ts)
| implicit_evals_of pol \<^Const_>‹conj for t u› =
union (op aconv) (implicit_evals_of pol t) (implicit_evals_of pol u)
| implicit_evals_of pol \<^Const_>‹disj for t u› =
union (op aconv) (implicit_evals_of pol t) (implicit_evals_of pol u)
| implicit_evals_of false (Const (\<^const_name>‹HOL.eq›, _) $ t $ u) =
distinct (op aconv) [t, u]
| implicit_evals_of true (Const (\<^const_name>‹HOL.eq›, _) $ t $ _) = [t]
| implicit_evals_of _ _ = [];
val mono_axioms_and_some_assms =
map (preprocess_prop false ctxt whacks) (mono_axioms0 @ some_assms0);
val subgoal = preprocess_prop falsify ctxt whacks subgoal0;
val implicit_evals = implicit_evals_of true subgoal;
val evals = map (preprocess_closed_term ctxt whacks) evals0;
val seens = ([], [], []);
val (commandss, complete) =
(seens,
map IAxiom mono_axioms_and_some_assms @ [IGoal subgoal] @ map IEval (implicit_evals @ evals))
|> fold (consider_term 0) (subgoal :: evals @ mono_axioms_and_some_assms)
|> snd
|> rev
|> sort_isa_commands_topologically ctxt
|>> group_isa_commands;
in
(poly_axioms, {commandss = commandss, sound = true, complete = complete})
end;
fun add_pat_complete_of_command cmd =
(case cmd of
ICoPred (_, _, specs) => union (op =) (map #const specs)
| IRec specs =>
union (op =) (map_filter (try (fn {const, pat_complete = true, ...} => const)) specs)
| _ => I);
fun pat_completes_of_isa_problem {commandss, ...} =
fold (fold add_pat_complete_of_command) commandss [];
fun str_of_isa_term_with_type ctxt t =
Syntax.string_of_term ctxt t ^ " : " ^ Syntax.string_of_typ ctxt (fastype_of t);
fun is_triv_wrt (Abs (_, _, body)) = is_triv_wrt body
| is_triv_wrt \<^Const>‹True› = true
| is_triv_wrt _ = false;
fun str_of_isa_type_spec ctxt {abs_typ, rep_typ, wrt, abs, rep} =
Syntax.string_of_typ ctxt abs_typ ^ " := " ^ Syntax.string_of_typ ctxt rep_typ ^
(if is_triv_wrt wrt then "" else "\n wrt " ^ Syntax.string_of_term ctxt wrt) ^
"\n abstract " ^ Syntax.string_of_term ctxt abs ^
"\n concrete " ^ Syntax.string_of_term ctxt rep;
fun str_of_isa_co_data_spec ctxt {typ, ctrs} =
Syntax.string_of_typ ctxt typ ^ " :=\n " ^
space_implode "\n| " (map (str_of_isa_term_with_type ctxt) ctrs);
fun str_of_isa_const_spec ctxt {const, props} =
str_of_isa_term_with_type ctxt const ^ " :=\n " ^
space_implode ";\n " (map (Syntax.string_of_term ctxt) props);
fun str_of_isa_rec_spec ctxt {const, props, pat_complete} =
str_of_isa_term_with_type ctxt const ^ (if pat_complete then " [pat_complete]" else "") ^
" :=\n " ^ space_implode ";\n " (map (Syntax.string_of_term ctxt) props);
fun str_of_isa_consts_spec ctxt {consts, props} =
space_implode " and\n " (map (str_of_isa_term_with_type ctxt) consts) ^ " :=\n " ^
space_implode ";\n " (map (Syntax.string_of_term ctxt) props);
fun str_of_isa_card NONE = ""
| str_of_isa_card (SOME k) = signed_string_of_int k;
fun str_of_isa_cards_suffix (NONE, NONE) = ""
| str_of_isa_cards_suffix (c1, c2) = " " ^ str_of_isa_card c1 ^ "-" ^ str_of_isa_card c2;
fun str_of_isa_command ctxt (ITVal (T, cards)) =
"type " ^ Syntax.string_of_typ ctxt T ^ str_of_isa_cards_suffix cards
| str_of_isa_command ctxt (ITypedef spec) = "typedef " ^ str_of_isa_type_spec ctxt spec
| str_of_isa_command ctxt (IQuotient spec) = "quotient " ^ str_of_isa_type_spec ctxt spec
| str_of_isa_command ctxt (ICoData (fp, specs)) =
BNF_Util.case_fp fp "data" "codata" ^ " " ^ str_of_and_list (str_of_isa_co_data_spec ctxt) specs
| str_of_isa_command ctxt (IVal t) = "val " ^ str_of_isa_term_with_type ctxt t
| str_of_isa_command ctxt (ICoPred (fp, wf, specs)) =
BNF_Util.case_fp fp "pred" "copred" ^ " " ^ (if wf then "[wf] " else "") ^
str_of_and_list (str_of_isa_const_spec ctxt) specs
| str_of_isa_command ctxt (IRec specs) = "rec " ^ str_of_and_list (str_of_isa_rec_spec ctxt) specs
| str_of_isa_command ctxt (ISpec spec) = "spec " ^ str_of_isa_consts_spec ctxt spec
| str_of_isa_command ctxt (IAxiom prop) = "axiom " ^ Syntax.string_of_term ctxt prop
| str_of_isa_command ctxt (IGoal prop) = "goal " ^ Syntax.string_of_term ctxt prop
| str_of_isa_command ctxt (IEval t) = "eval " ^ Syntax.string_of_term ctxt t;
fun str_of_isa_problem ctxt {commandss, sound, complete} =
map (cat_lines o map (suffix "." o str_of_isa_command ctxt)) commandss
|> space_implode "\n\n" |> suffix "\n"
|> prefix ("# " ^ (if sound then "sound" else "unsound") ^ "\n")
|> prefix ("# " ^ (if complete then "complete" else "incomplete") ^ "\n");
end;