File ‹Tools/Nitpick/nitpick_util.ML›
signature NITPICK_UTIL =
sig
datatype polarity = Pos | Neg | Neut
exception ARG of string * string
exception BAD of string * string
exception TOO_SMALL of string * string
exception TOO_LARGE of string * string
exception NOT_SUPPORTED of string
exception SAME of unit
val nitpick_prefix : string
val curry3 : ('a * 'b * 'c -> 'd) -> 'a -> 'b -> 'c -> 'd
val pairf : ('a -> 'b) -> ('a -> 'c) -> 'a -> 'b * 'c
val pair_from_fun : (bool -> 'a) -> 'a * 'a
val fun_from_pair : 'a * 'a -> bool -> 'a
val int_from_bool : bool -> int
val nat_minus : int -> int -> int
val reasonable_power : int -> int -> int
val exact_log : int -> int -> int
val exact_root : int -> int -> int
val offset_list : int list -> int list
val index_seq : int -> int -> int list
val filter_indices : int list -> 'a list -> 'a list
val filter_out_indices : int list -> 'a list -> 'a list
val fold1 : ('a -> 'a -> 'a) -> 'a list -> 'a
val replicate_list : int -> 'a list -> 'a list
val n_fold_cartesian_product : 'a list list -> 'a list list
val all_distinct_unordered_pairs_of : ''a list -> (''a * ''a) list
val nth_combination : (int * int) list -> int -> int list
val all_combinations : (int * int) list -> int list list
val all_permutations : 'a list -> 'a list list
val chunk_list : int -> 'a list -> 'a list list
val chunk_list_unevenly : int list -> 'a list -> 'a list list
val double_lookup :
('a * 'a -> bool) -> ('a option * 'b) list -> 'a -> 'b option
val triple_lookup :
(''a * ''a -> bool) -> (''a option * 'b) list -> ''a -> 'b option
val is_substring_of : string -> string -> bool
val plural_s : int -> string
val plural_s_for_list : 'a list -> string
val serial_commas : string -> string list -> string list
val pretty_serial_commas : string -> Pretty.T list -> Pretty.T list
val parse_bool_option : bool -> string -> string -> bool option
val parse_time : string -> string -> Time.time
val string_of_time : Time.time -> string
val nat_subscript : int -> string
val flip_polarity : polarity -> polarity
val prop_T : typ
val bool_T : typ
val nat_T : typ
val int_T : typ
val simple_string_of_typ : typ -> string
val num_binder_types : typ -> int
val varify_type : Proof.context -> typ -> typ
val instantiate_type : theory -> typ -> typ -> typ -> typ
val varify_and_instantiate_type : Proof.context -> typ -> typ -> typ -> typ
val varify_and_instantiate_type_global : theory -> typ -> typ -> typ -> typ
val is_of_class_const : theory -> string * typ -> bool
val get_class_def : theory -> string -> (string * term) option
val specialize_type : theory -> string * typ -> term -> term
val eta_expand : typ list -> term -> int -> term
val DETERM_TIMEOUT : Time.time -> tactic -> tactic
val indent_size : int
val pretty_maybe_quote : Proof.context -> Pretty.T -> Pretty.T
val hash_term : term -> int
val spying : bool -> (unit -> Proof.state * int * string) -> unit
end;
structure Nitpick_Util : NITPICK_UTIL =
struct
datatype polarity = Pos | Neg | Neut
exception ARG of string * string
exception BAD of string * string
exception TOO_SMALL of string * string
exception TOO_LARGE of string * string
exception NOT_SUPPORTED of string
exception SAME of unit
val nitpick_prefix = "Nitpick" ^ Long_Name.separator
val timestamp = ATP_Util.timestamp
fun curry3 f = fn x => fn y => fn z => f (x, y, z)
fun pairf f g x = (f x, g x)
fun pair_from_fun f = (f false, f true)
fun fun_from_pair (f, t) b = if b then t else f
fun int_from_bool b = if b then 1 else 0
fun nat_minus i j = if i > j then i - j else 0
val max_exponent = 16384
fun reasonable_power _ 0 = 1
| reasonable_power a 1 = a
| reasonable_power 0 _ = 0
| reasonable_power 1 _ = 1
| reasonable_power a b =
if b < 0 then
raise ARG ("Nitpick_Util.reasonable_power",
"negative exponent (" ^ signed_string_of_int b ^ ")")
else if b > max_exponent then
raise TOO_LARGE ("Nitpick_Util.reasonable_power",
"too large exponent (" ^ signed_string_of_int a ^ " ^ " ^
signed_string_of_int b ^ ")")
else
let val c = reasonable_power a (b div 2) in
c * c * reasonable_power a (b mod 2)
end
fun exact_log m n =
let
val r = Math.ln (Real.fromInt n) / Math.ln (Real.fromInt m) |> Real.round
in
if reasonable_power m r = n then
r
else
raise ARG ("Nitpick_Util.exact_log",
commas (map signed_string_of_int [m, n]))
end
fun exact_root m n =
let val r = Math.pow (Real.fromInt n, 1.0 / (Real.fromInt m)) |> Real.round in
if reasonable_power r m = n then
r
else
raise ARG ("Nitpick_Util.exact_root",
commas (map signed_string_of_int [m, n]))
end
fun fold1 f = foldl1 (uncurry f)
fun replicate_list 0 _ = []
| replicate_list n xs = xs @ replicate_list (n - 1) xs
fun offset_list ns = rev (tl (fold (fn x => fn xs => (x + hd xs) :: xs) ns [0]))
fun index_seq j0 n = if j0 < 0 then j0 downto j0 - n + 1 else j0 upto j0 + n - 1
fun filter_indices js xs =
let
fun aux _ [] _ = []
| aux i (j :: js) (x :: xs) =
if i = j then x :: aux (i + 1) js xs else aux (i + 1) (j :: js) xs
| aux _ _ _ = raise ARG ("Nitpick_Util.filter_indices",
"indices unordered or out of range")
in aux 0 js xs end
fun filter_out_indices js xs =
let
fun aux _ [] xs = xs
| aux i (j :: js) (x :: xs) =
if i = j then aux (i + 1) js xs else x :: aux (i + 1) (j :: js) xs
| aux _ _ _ = raise ARG ("Nitpick_Util.filter_out_indices",
"indices unordered or out of range")
in aux 0 js xs end
fun cartesian_product [] _ = []
| cartesian_product (x :: xs) yss = map (cons x) yss @ cartesian_product xs yss
fun n_fold_cartesian_product xss = fold_rev cartesian_product xss [[]]
fun all_distinct_unordered_pairs_of [] = []
| all_distinct_unordered_pairs_of (x :: xs) =
map (pair x) xs @ all_distinct_unordered_pairs_of xs
val nth_combination =
let
fun aux [] n = ([], n)
| aux ((k, j0) :: xs) n =
let val (js, n) = aux xs n in ((n mod k) + j0 :: js, n div k) end
in fst oo aux end
val all_combinations = n_fold_cartesian_product o map (uncurry index_seq o swap)
fun all_permutations [] = [[]]
| all_permutations xs =
maps (fn j => map (cons (nth xs j)) (all_permutations (nth_drop j xs)))
(index_seq 0 (length xs))
val chunk_list = ATP_Util.chunk_list
fun chunk_list_unevenly _ [] = []
| chunk_list_unevenly [] xs = map single xs
| chunk_list_unevenly (k :: ks) xs =
let val (xs1, xs2) = chop k xs in xs1 :: chunk_list_unevenly ks xs2 end
fun double_lookup eq ps key =
case AList.lookup (fn (SOME x, SOME y) => eq (x, y) | _ => false) ps
(SOME key) of
SOME z => SOME z
| NONE => ps |> find_first (is_none o fst) |> Option.map snd
fun triple_lookup _ [(NONE, z)] _ = SOME z
| triple_lookup eq ps key =
case AList.lookup (op =) ps (SOME key) of
SOME z => SOME z
| NONE => double_lookup eq ps key
fun is_substring_of needle stack =
not (Substring.isEmpty (snd (Substring.position needle
(Substring.full stack))))
val plural_s = Sledgehammer_Util.plural_s
fun plural_s_for_list xs = plural_s (length xs)
val serial_commas = Try.serial_commas
fun pretty_serial_commas _ [] = []
| pretty_serial_commas _ [p] = [p]
| pretty_serial_commas conj [p1, p2] =
[p1, Pretty.brk 1, Pretty.str conj, Pretty.brk 1, p2]
| pretty_serial_commas conj [p1, p2, p3] =
[p1, Pretty.str ",", Pretty.brk 1, p2, Pretty.str ",", Pretty.brk 1,
Pretty.str conj, Pretty.brk 1, p3]
| pretty_serial_commas conj (p :: ps) =
p :: Pretty.str "," :: Pretty.brk 1 :: pretty_serial_commas conj ps
val parse_bool_option = Sledgehammer_Util.parse_bool_option
val parse_time = Sledgehammer_Util.parse_time
val string_of_time = ATP_Util.string_of_time
val subscript = implode o map (prefix "⇩") o Symbol.explode
fun nat_subscript n =
n |> signed_string_of_int |> not (print_mode_active Print_Mode.ASCII) ? subscript
fun flip_polarity Pos = Neg
| flip_polarity Neg = Pos
| flip_polarity Neut = Neut
val prop_T = \<^typ>‹prop›
val bool_T = \<^typ>‹bool›
val nat_T = \<^typ>‹nat›
val int_T = \<^typ>‹int›
fun simple_string_of_typ (Type (s, _)) = s
| simple_string_of_typ (TFree (s, _)) = s
| simple_string_of_typ (TVar ((s, _), _)) = s
val num_binder_types = BNF_Util.num_binder_types
val varify_type = ATP_Util.varify_type
val instantiate_type = ATP_Util.instantiate_type
val varify_and_instantiate_type = ATP_Util.varify_and_instantiate_type
fun varify_and_instantiate_type_global thy T1 T1' T2 =
instantiate_type thy (Logic.varifyT_global T1) T1' (Logic.varifyT_global T2)
fun is_of_class_const thy (s, _) =
member (op =) (map Logic.const_of_class (Sign.all_classes thy)) s
fun get_class_def thy class =
let val axname = class ^ "_class_def" in
Option.map (pair axname)
(AList.lookup (op =) (Theory.all_axioms_of thy) axname)
end;
val specialize_type = ATP_Util.specialize_type
val eta_expand = ATP_Util.eta_expand
fun DETERM_TIMEOUT delay tac st =
Seq.of_list (the_list (Timeout.apply delay (fn () => SINGLE tac st) ()))
val indent_size = 2
fun pretty_maybe_quote ctxt pretty =
let val s = Pretty.unformatted_string_of pretty in
if ATP_Util.maybe_quote ctxt s = s then pretty
else if Config.get ctxt ATP_Util.proof_cartouches then Pretty.cartouche pretty
else Pretty.quote pretty
end
val hashw = ATP_Util.hashw
val hashw_string = ATP_Util.hashw_string
fun hashw_term (t1 $ t2) = hashw (hashw_term t1, hashw_term t2)
| hashw_term (Const (s, _)) = hashw_string (s, 0w0)
| hashw_term (Free (s, _)) = hashw_string (s, 0w0)
| hashw_term _ = 0w0
val hash_term = Word.toInt o hashw_term
val hackish_string_of_term = Sledgehammer_Util.hackish_string_of_term
val spying_version = "b"
fun spying false _ = ()
| spying true f =
let
val (state, i, message) = f ()
val ctxt = Proof.context_of state
val goal = Logic.get_goal (Thm.prop_of (#goal (Proof.goal state))) i
val hash = String.substring (SHA1.rep (SHA1.digest (hackish_string_of_term ctxt goal)), 0, 12)
in
File.append (Path.explode "$ISABELLE_HOME_USER/spy_nitpick")
(spying_version ^ " " ^ timestamp () ^ ": " ^ hash ^ ": " ^ message ^ "\n")
end
end;