File ‹Tools/Nitpick/nitpick_preproc.ML›
signature NITPICK_PREPROC =
sig
type hol_context = Nitpick_HOL.hol_context
val preprocess_formulas :
hol_context -> term list -> term
-> term list * term list * term list * bool * bool * bool
end;
structure Nitpick_Preproc : NITPICK_PREPROC =
struct
open Nitpick_Util
open Nitpick_HOL
open Nitpick_Mono
fun is_positive_existential polar quant_s =
(polar = Pos andalso quant_s = \<^const_name>‹Ex›) orelse
(polar = Neg andalso quant_s <> \<^const_name>‹Ex›)
val is_descr =
member (op =) [\<^const_name>‹The›, \<^const_name>‹Eps›, \<^const_name>‹safe_The›]
val binary_int_threshold = 3
val may_use_binary_ints =
let
fun aux def \<^Const_>‹Pure.eq _ for t1 t2› = aux def t1 andalso aux false t2
| aux def \<^Const_>‹Pure.imp for t1 t2› = aux false t1 andalso aux def t2
| aux def \<^Const_>‹HOL.eq _ for t1 t2› = aux def t1 andalso aux false t2
| aux def \<^Const_>‹implies for t1 t2› = aux false t1 andalso aux def t2
| aux def (t1 $ t2) = aux def t1 andalso aux def t2
| aux def (t as Const (s, _)) = (not def orelse t <> \<^Const>‹Suc›) andalso
not (member (op =)
[\<^const_name>‹Abs_Frac›, \<^const_name>‹Rep_Frac›,
\<^const_name>‹nat_gcd›, \<^const_name>‹nat_lcm›,
\<^const_name>‹Frac›, \<^const_name>‹norm_frac›] s)
| aux def (Abs (_, _, t')) = aux def t'
| aux _ _ = true
in aux end
val should_use_binary_ints =
let
fun aux (t1 $ t2) = aux t1 orelse aux t2
| aux (Const (s, T)) =
((s = \<^const_name>‹times› orelse s = \<^const_name>‹Rings.divide›) andalso
is_integer_type (body_type T)) orelse
(String.isPrefix numeral_prefix s andalso
let val n = the (Int.fromString (unprefix numeral_prefix s)) in
n < ~ binary_int_threshold orelse n > binary_int_threshold
end)
| aux (Abs (_, _, t')) = aux t'
| aux _ = false
in aux end
fun add_to_uncurry_table ctxt t =
let
fun aux (t1 $ t2) args table =
let val table = aux t2 [] table in aux t1 (t2 :: args) table end
| aux (Abs (_, _, t')) _ table = aux t' [] table
| aux (t as Const (x as (s, _))) args table =
if is_built_in_const x orelse is_nonfree_constr ctxt x orelse
is_sel s orelse s = \<^const_name>‹Sigma› then
table
else
Termtab.map_default (t, 65536) (Integer.min (length args)) table
| aux _ _ table = table
in aux t [] end
fun uncurry_prefix_for k j =
uncurry_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
fun uncurry_term table t =
let
fun aux (t1 $ t2) args = aux t1 (aux t2 [] :: args)
| aux (Abs (s, T, t')) args = s_betapplys [] (Abs (s, T, aux t' []), args)
| aux (t as Const (s, T)) args =
(case Termtab.lookup table t of
SOME n =>
if n >= 2 then
let
val arg_Ts = strip_n_binders n T |> fst
val j =
if is_iterator_type (hd arg_Ts) then
1
else case find_index (not_equal bool_T) arg_Ts of
~1 => n
| j => j
val ((before_args, tuple_args), after_args) =
args |> chop n |>> chop j
val ((before_arg_Ts, tuple_arg_Ts), rest_T) =
T |> strip_n_binders n |>> chop j
val tuple_T = HOLogic.mk_tupleT tuple_arg_Ts
in
if n - j < 2 then
s_betapplys [] (t, args)
else
s_betapplys []
(Const (uncurry_prefix_for (n - j) j ^ s,
before_arg_Ts ---> tuple_T --> rest_T),
before_args @ [mk_flat_tuple tuple_T tuple_args] @
after_args)
end
else
s_betapplys [] (t, args)
| NONE => s_betapplys [] (t, args))
| aux t args = s_betapplys [] (t, args)
in aux t [] end
fun box_fun_and_pair_in_term (hol_ctxt as {ctxt, ...}) def orig_t =
let
fun box_relational_operator_type (Type (\<^type_name>‹fun›, Ts)) =
Type (\<^type_name>‹fun›, map box_relational_operator_type Ts)
| box_relational_operator_type (Type (\<^type_name>‹prod›, Ts)) =
Type (\<^type_name>‹prod›, map (box_type hol_ctxt InPair) Ts)
| box_relational_operator_type T = T
fun add_boxed_types_for_var (z as (_, T)) (T', t') =
case t' of
Var z' => z' = z ? insert (op =) T'
| Const (\<^const_name>‹Pair›, _) $ t1 $ t2 =>
(case T' of
Type (_, [T1, T2]) =>
fold (add_boxed_types_for_var z) [(T1, t1), (T2, t2)]
| _ => raise TYPE ("Nitpick_Preproc.box_fun_and_pair_in_term.\
\add_boxed_types_for_var", [T'], []))
| _ => exists_subterm (curry (op =) (Var z)) t' ? insert (op =) T
fun box_var_in_def new_Ts old_Ts t (z as (_, T)) =
case t of
\<^Const_>‹Trueprop for t1› => box_var_in_def new_Ts old_Ts t1 z
| Const (s0, _) $ t1 $ _ =>
if s0 = \<^const_name>‹Pure.eq› orelse s0 = \<^const_name>‹HOL.eq› then
let
val (t', args) = strip_comb t1
val T' = fastype_of1 (new_Ts, do_term new_Ts old_Ts Neut t')
in
case fold (add_boxed_types_for_var z)
(fst (strip_n_binders (length args) T') ~~ args) [] of
[T''] => T''
| _ => T
end
else
T
| _ => T
and do_quantifier new_Ts old_Ts polar quant_s quant_T abs_s abs_T t =
let
val abs_T' =
if polar = Neut orelse is_positive_existential polar quant_s then
box_type hol_ctxt InFunLHS abs_T
else
abs_T
val body_T = body_type quant_T
in
Const (quant_s, (abs_T' --> body_T) --> body_T)
$ Abs (abs_s, abs_T',
t |> do_term (abs_T' :: new_Ts) (abs_T :: old_Ts) polar)
end
and do_equals new_Ts old_Ts s0 T0 t1 t2 =
let
val (t1, t2) = apply2 (do_term new_Ts old_Ts Neut) (t1, t2)
val (T1, T2) = apply2 (curry fastype_of1 new_Ts) (t1, t2)
val T = if def then T1 else [T1, T2] |> sort (int_ord o apply2 size_of_typ) |> hd
in
list_comb (Const (s0, T --> T --> body_type T0),
map2 (coerce_term hol_ctxt new_Ts T) [T1, T2] [t1, t2])
end
and do_descr s T =
let val T1 = box_type hol_ctxt InFunLHS (range_type T) in
Const (s, (T1 --> bool_T) --> T1)
end
and do_term new_Ts old_Ts polar t =
case t of
Const (s0 as \<^const_name>‹Pure.all›, T0) $ Abs (s1, T1, t1) =>
do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
| Const (s0 as \<^const_name>‹Pure.eq›, T0) $ t1 $ t2 =>
do_equals new_Ts old_Ts s0 T0 t1 t2
| \<^Const_>‹Pure.imp for t1 t2› =>
\<^Const>‹Pure.imp for ‹do_term new_Ts old_Ts (flip_polarity polar) t1›
‹do_term new_Ts old_Ts polar t2››
| \<^Const_>‹Pure.conjunction for t1 t2› =>
\<^Const>‹Pure.conjunction for ‹do_term new_Ts old_Ts polar t1›
‹do_term new_Ts old_Ts polar t2››
| \<^Const_>‹Trueprop for t1› => \<^Const>‹Trueprop for ‹do_term new_Ts old_Ts polar t1››
| \<^Const_>‹Not for t1› => \<^Const>‹Not for ‹do_term new_Ts old_Ts (flip_polarity polar) t1››
| Const (s0 as \<^const_name>‹All›, T0) $ Abs (s1, T1, t1) =>
do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
| Const (s0 as \<^const_name>‹Ex›, T0) $ Abs (s1, T1, t1) =>
do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
| Const (s0 as \<^const_name>‹HOL.eq›, T0) $ t1 $ t2 =>
do_equals new_Ts old_Ts s0 T0 t1 t2
| \<^Const_>‹conj for t1 t2› =>
\<^Const>‹conj for ‹do_term new_Ts old_Ts polar t1›
‹do_term new_Ts old_Ts polar t2››
| \<^Const_>‹disj for t1 t2› =>
\<^Const>‹disj for ‹do_term new_Ts old_Ts polar t1›
‹do_term new_Ts old_Ts polar t2››
| \<^Const_>‹implies for t1 t2› =>
\<^Const>‹implies for ‹do_term new_Ts old_Ts (flip_polarity polar) t1›
‹do_term new_Ts old_Ts polar t2››
| Const (x as (s, T)) =>
if is_descr s then
do_descr s T
else
Const (s, if s = \<^const_name>‹converse› orelse
s = \<^const_name>‹trancl› then
box_relational_operator_type T
else if String.isPrefix quot_normal_prefix s then
let val T' = box_type hol_ctxt InFunLHS (domain_type T) in
T' --> T'
end
else if is_built_in_const x orelse
s = \<^const_name>‹Sigma› then
T
else if is_nonfree_constr ctxt x then
box_type hol_ctxt InConstr T
else if is_sel s orelse is_rep_fun ctxt x then
box_type hol_ctxt InSel T
else
box_type hol_ctxt InExpr T)
| t1 $ Abs (s, T, t2') =>
let
val t1 = do_term new_Ts old_Ts Neut t1
val T1 = fastype_of1 (new_Ts, t1)
val (s1, Ts1) = dest_Type T1
val T' = hd (snd (dest_Type (hd Ts1)))
val t2 = Abs (s, T', do_term (T' :: new_Ts) (T :: old_Ts) Neut t2')
val T2 = fastype_of1 (new_Ts, t2)
val t2 = coerce_term hol_ctxt new_Ts (hd Ts1) T2 t2
in
s_betapply new_Ts (if s1 = \<^type_name>‹fun› then
t1
else
select_nth_constr_arg ctxt
(\<^const_name>‹FunBox›,
Type (\<^type_name>‹fun›, Ts1) --> T1) t1 0
(Type (\<^type_name>‹fun›, Ts1)), t2)
end
| t1 $ t2 =>
let
val t1 = do_term new_Ts old_Ts Neut t1
val T1 = fastype_of1 (new_Ts, t1)
val (s1, Ts1) = dest_Type T1
val t2 = do_term new_Ts old_Ts Neut t2
val T2 = fastype_of1 (new_Ts, t2)
val t2 = coerce_term hol_ctxt new_Ts (hd Ts1) T2 t2
in
s_betapply new_Ts (if s1 = \<^type_name>‹fun› then
t1
else
select_nth_constr_arg ctxt
(\<^const_name>‹FunBox›,
Type (\<^type_name>‹fun›, Ts1) --> T1) t1 0
(Type (\<^type_name>‹fun›, Ts1)), t2)
end
| Free (s, T) => Free (s, box_type hol_ctxt InExpr T)
| Var (z as (x, T)) =>
Var (x, if def then box_var_in_def new_Ts old_Ts orig_t z
else box_type hol_ctxt InExpr T)
| Bound _ => t
| Abs (s, T, t') =>
Abs (s, T, do_term (T :: new_Ts) (T :: old_Ts) Neut t')
in do_term [] [] Pos orig_t end
fun destroy_set_Collect (Const (\<^const_name>‹Set.member›, _) $ t1
$ (Const (\<^const_name>‹Collect›, _) $ t2)) =
destroy_set_Collect (t2 $ t1)
| destroy_set_Collect (t1 $ t2) =
destroy_set_Collect t1 $ destroy_set_Collect t2
| destroy_set_Collect (Abs (s, T, t')) = Abs (s, T, destroy_set_Collect t')
| destroy_set_Collect t = t
val val_var_prefix = nitpick_prefix ^ "v"
fun fresh_value_var Ts k n j t =
Var ((val_var_prefix ^ nat_subscript (n - j), k), fastype_of1 (Ts, t))
fun has_heavy_bounds_or_vars Ts t =
let
fun aux [] = false
| aux [T] = is_fun_or_set_type T orelse is_pair_type T
| aux _ = true
in aux (map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t)) end
fun pull_out_constr_comb ({ctxt, ...} : hol_context) Ts relax k level t args
seen =
let val t_comb = list_comb (t, args) in
case t of
Const x =>
if not relax andalso is_constr ctxt x andalso
not (is_fun_or_set_type (fastype_of1 (Ts, t_comb))) andalso
has_heavy_bounds_or_vars Ts t_comb andalso
not (loose_bvar (t_comb, level)) then
let
val (j, seen) = case find_index (curry (op =) t_comb) seen of
~1 => (0, t_comb :: seen)
| j => (j, seen)
in (fresh_value_var Ts k (length seen) j t_comb, seen) end
else
(t_comb, seen)
| _ => (t_comb, seen)
end
fun equations_for_pulled_out_constrs mk_eq Ts k seen =
let val n = length seen in
map2 (fn j => fn t => mk_eq (fresh_value_var Ts k n j t, t))
(index_seq 0 n) seen
end
fun pull_out_universal_constrs hol_ctxt def t =
let
val k = maxidx_of_term t + 1
fun do_term Ts def t args seen =
case t of
(t0 as Const (\<^const_name>‹Pure.eq›, _)) $ t1 $ t2 =>
do_eq_or_imp Ts true def t0 t1 t2 seen
| (t0 as \<^Const_>‹Pure.imp›) $ t1 $ t2 =>
if def then (t, []) else do_eq_or_imp Ts false def t0 t1 t2 seen
| (t0 as Const (\<^const_name>‹HOL.eq›, _)) $ t1 $ t2 =>
do_eq_or_imp Ts true def t0 t1 t2 seen
| (t0 as \<^Const_>‹implies›) $ t1 $ t2 =>
do_eq_or_imp Ts false def t0 t1 t2 seen
| Abs (s, T, t') =>
let val (t', seen) = do_term (T :: Ts) def t' [] seen in
(list_comb (Abs (s, T, t'), args), seen)
end
| t1 $ t2 =>
let val (t2, seen) = do_term Ts def t2 [] seen in
do_term Ts def t1 (t2 :: args) seen
end
| _ => pull_out_constr_comb hol_ctxt Ts def k 0 t args seen
and do_eq_or_imp Ts eq def t0 t1 t2 seen =
let
val (t2, seen) = if eq andalso def then (t2, seen)
else do_term Ts false t2 [] seen
val (t1, seen) = do_term Ts false t1 [] seen
in (t0 $ t1 $ t2, seen) end
val (concl, seen) = do_term [] def t [] []
in
Logic.list_implies (equations_for_pulled_out_constrs Logic.mk_equals [] k
seen, concl)
end
fun mk_exists v t =
HOLogic.exists_const (fastype_of v) $ lambda v (incr_boundvars 1 t)
fun pull_out_existential_constrs hol_ctxt t =
let
val k = maxidx_of_term t + 1
fun aux Ts num_exists t args seen =
case t of
(t0 as Const (\<^const_name>‹Ex›, _)) $ Abs (s1, T1, t1) =>
let
val (t1, seen') = aux (T1 :: Ts) (num_exists + 1) t1 [] []
val n = length seen'
fun vars () = map2 (fresh_value_var Ts k n) (index_seq 0 n) seen'
in
(equations_for_pulled_out_constrs HOLogic.mk_eq Ts k seen'
|> List.foldl s_conj t1 |> fold mk_exists (vars ())
|> curry3 Abs s1 T1 |> curry (op $) t0, seen)
end
| t1 $ t2 =>
let val (t2, seen) = aux Ts num_exists t2 [] seen in
aux Ts num_exists t1 (t2 :: args) seen
end
| Abs (s, T, t') =>
let
val (t', seen) = aux (T :: Ts) 0 t' [] (map (incr_boundvars 1) seen)
in (list_comb (Abs (s, T, t'), args), map (incr_boundvars ~1) seen) end
| _ =>
if num_exists > 0 then
pull_out_constr_comb hol_ctxt Ts false k num_exists t args seen
else
(list_comb (t, args), seen)
in aux [] 0 t [] [] |> fst end
fun destroy_pulled_out_constrs (hol_ctxt as {ctxt, ...}) axiom strong t =
let
val num_occs_of_var =
fold_aterms (fn Var z => (fn f => fn z' => f z' |> z = z' ? Integer.add 1)
| _ => I) t (K 0)
fun aux Ts careful ((t0 as Const (\<^const_name>‹Pure.eq›, _)) $ t1 $ t2) =
aux_eq Ts careful true t0 t1 t2
| aux Ts careful ((t0 as \<^Const_>‹Pure.imp›) $ t1 $ t2) =
t0 $ aux Ts false t1 $ aux Ts careful t2
| aux Ts careful ((t0 as Const (\<^const_name>‹HOL.eq›, _)) $ t1 $ t2) =
aux_eq Ts careful true t0 t1 t2
| aux Ts careful ((t0 as \<^Const_>‹implies›) $ t1 $ t2) =
t0 $ aux Ts false t1 $ aux Ts careful t2
| aux Ts careful (Abs (s, T, t')) = Abs (s, T, aux (T :: Ts) careful t')
| aux Ts careful (t1 $ t2) = aux Ts careful t1 $ aux Ts careful t2
| aux _ _ t = t
and aux_eq Ts careful pass1 t0 t1 t2 =
((if careful orelse
not (strong orelse forall (is_constr_pattern ctxt) [t1, t2]) then
raise SAME ()
else if axiom andalso is_Var t2 andalso
num_occs_of_var (dest_Var t2) = 1 then
\<^Const>‹True›
else case strip_comb t2 of
(Const (\<^const_name>‹PairBox›, _),
[Const (\<^const_name>‹fst›, _) $ Var z1,
Const (\<^const_name>‹snd›, _) $ Var z2]) =>
if z1 = z2 andalso num_occs_of_var z1 = 2 then \<^Const>‹True›
else raise SAME ()
| (Const (x as (s, T)), args) =>
let
val (arg_Ts, dataT) = strip_type T
val n = length arg_Ts
in
if length args = n andalso
(is_constr ctxt x orelse s = \<^const_name>‹Pair› orelse
x = (\<^const_name>‹Suc›, nat_T --> nat_T)) andalso
(not careful orelse not (is_Var t1) orelse
String.isPrefix val_var_prefix (fst (fst (dest_Var t1)))) then
s_let Ts "l" (n + 1) dataT bool_T
(fn t1 =>
discriminate_value hol_ctxt x t1 ::
@{map 3} (sel_eq Ts x t1) (index_seq 0 n) arg_Ts args
|> foldr1 s_conj) t1
else
raise SAME ()
end
| _ => raise SAME ())
|> body_type (type_of t0) = prop_T ? HOLogic.mk_Trueprop)
handle SAME () => if pass1 then aux_eq Ts careful false t0 t2 t1
else t0 $ aux Ts false t2 $ aux Ts false t1
and sel_eq Ts x t n nth_T nth_t =
HOLogic.eq_const nth_T $ nth_t $ select_nth_constr_arg ctxt x t n nth_T
|> aux Ts false
in aux [] axiom t end
fun curry_assms \<^Const_>‹Pure.imp for \<^Const>‹Trueprop for \<^Const_>‹conj for t1 t2›› t3› =
curry_assms (Logic.list_implies ([t1, t2] |> map HOLogic.mk_Trueprop, t3))
| curry_assms \<^Const_>‹Pure.imp for t1 t2› = \<^Const>‹Pure.imp for ‹curry_assms t1› ‹curry_assms t2››
| curry_assms t = t
val destroy_universal_equalities =
let
fun aux prems zs t =
case t of
\<^Const_>‹Pure.imp for t1 t2› => aux_implies prems zs t1 t2
| _ => Logic.list_implies (rev prems, t)
and aux_implies prems zs t1 t2 =
case t1 of
\<^Const_>‹Pure.eq _ for ‹Var z› t'› => aux_eq prems zs z t' t1 t2
| \<^Const_>‹Trueprop for \<^Const_>‹HOL.eq _ for ‹Var z› t'›› => aux_eq prems zs z t' t1 t2
| \<^Const_>‹Trueprop for \<^Const_>‹HOL.eq _ for t' ‹Var z››› => aux_eq prems zs z t' t1 t2
| _ => aux (t1 :: prems) (Term.add_vars t1 zs) t2
and aux_eq prems zs z t' t1 t2 =
if not (member (op =) zs z) andalso
not (exists_subterm (curry (op =) (Var z)) t') then
aux prems zs (subst_free [(Var z, t')] t2)
else
aux (t1 :: prems) (Term.add_vars t1 zs) t2
in aux [] [] end
fun find_bound_assign ctxt j =
let
fun do_term _ [] = NONE
| do_term seen (t :: ts) =
let
fun do_eq pass1 t1 t2 =
(if loose_bvar1 (t2, j) then
if pass1 then do_eq false t2 t1 else raise SAME ()
else case t1 of
Bound j' => if j' = j then SOME (t2, ts @ seen) else raise SAME ()
| Const (s, Type (\<^type_name>‹fun›, [T1, T2])) $ Bound j' =>
if j' = j andalso
s = nth_sel_name_for_constr_name \<^const_name>‹FunBox› 0 then
SOME (construct_value ctxt
(\<^const_name>‹FunBox›, T2 --> T1) [t2],
ts @ seen)
else
raise SAME ()
| _ => raise SAME ())
handle SAME () => do_term (t :: seen) ts
in
case t of
Const (\<^const_name>‹HOL.eq›, _) $ t1 $ t2 => do_eq true t1 t2
| _ => do_term (t :: seen) ts
end
in do_term end
fun subst_one_bound j arg t =
let
fun aux (Bound i, lev) =
if i < lev then raise SAME ()
else if i = lev then incr_boundvars (lev - j) arg
else Bound (i - 1)
| aux (Abs (a, T, body), lev) = Abs (a, T, aux (body, lev + 1))
| aux (f $ t, lev) =
(aux (f, lev) $ (aux (t, lev) handle SAME () => t)
handle SAME () => f $ aux (t, lev))
| aux _ = raise SAME ()
in aux (t, j) handle SAME () => t end
fun destroy_existential_equalities ({ctxt, ...} : hol_context) =
let
fun kill [] [] ts = foldr1 s_conj ts
| kill (s :: ss) (T :: Ts) ts =
(case find_bound_assign ctxt (length ss) [] ts of
SOME (_, []) => \<^Const>‹True›
| SOME (arg_t, ts) =>
kill ss Ts (map (subst_one_bound (length ss)
(incr_bv ~1 (length ss + 1) arg_t)) ts)
| NONE =>
Const (\<^const_name>‹Ex›, (T --> bool_T) --> bool_T)
$ Abs (s, T, kill ss Ts ts))
| kill _ _ _ = raise ListPair.UnequalLengths
fun gather ss Ts (Const (\<^const_name>‹Ex›, _) $ Abs (s1, T1, t1)) =
gather (ss @ [s1]) (Ts @ [T1]) t1
| gather [] [] (Abs (s, T, t1)) = Abs (s, T, gather [] [] t1)
| gather [] [] (t1 $ t2) = gather [] [] t1 $ gather [] [] t2
| gather [] [] t = t
| gather ss Ts t = kill ss Ts (conjuncts_of (gather [] [] t))
in gather [] [] end
fun skolem_prefix_for k j =
skolem_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
fun skolemize_term_and_more (hol_ctxt as {thy, def_tables, skolems, ...})
skolem_depth =
let
val incrs = map (Integer.add 1)
fun aux ss Ts js skolemizable polar t =
let
fun do_quantifier quant_s quant_T abs_s abs_T t =
(if not (loose_bvar1 (t, 0)) then
aux ss Ts js skolemizable polar (incr_boundvars ~1 t)
else if is_positive_existential polar quant_s then
let
val j = length (!skolems) + 1
in
if skolemizable andalso length js <= skolem_depth then
let
val sko_s = skolem_prefix_for (length js) j ^ abs_s
val _ = Unsynchronized.change skolems (cons (sko_s, ss))
val sko_t = list_comb (Const (sko_s, rev Ts ---> abs_T),
map Bound (rev js))
val abs_t = Abs (abs_s, abs_T,
aux ss Ts (incrs js) skolemizable polar t)
in
if null js then
s_betapply Ts (abs_t, sko_t)
else
Const (\<^const_name>‹Let›, abs_T --> quant_T) $ sko_t
$ abs_t
end
else
raise SAME ()
end
else
raise SAME ())
handle SAME () =>
Const (quant_s, quant_T)
$ Abs (abs_s, abs_T,
aux (abs_s :: ss) (abs_T :: Ts) (0 :: incrs js)
(skolemizable andalso
not (is_higher_order_type abs_T)) polar t)
in
case t of
Const (s0 as \<^const_name>‹Pure.all›, T0) $ Abs (s1, T1, t1) =>
do_quantifier s0 T0 s1 T1 t1
| \<^Const_>‹Pure.imp for t1 t2› =>
\<^Const>‹Pure.imp for ‹aux ss Ts js skolemizable (flip_polarity polar) t1›
‹aux ss Ts js skolemizable polar t2››
| \<^Const_>‹Pure.conjunction for t1 t2› =>
\<^Const>‹Pure.conjunction for ‹aux ss Ts js skolemizable polar t1›
‹aux ss Ts js skolemizable polar t2››
| \<^Const_>‹Trueprop for t1› =>
\<^Const>‹Trueprop for ‹aux ss Ts js skolemizable polar t1››
| \<^Const_>‹Not for t1› =>
\<^Const>‹Not for ‹aux ss Ts js skolemizable (flip_polarity polar) t1››
| Const (s0 as \<^const_name>‹All›, T0) $ Abs (s1, T1, t1) =>
do_quantifier s0 T0 s1 T1 t1
| Const (s0 as \<^const_name>‹Ex›, T0) $ Abs (s1, T1, t1) =>
do_quantifier s0 T0 s1 T1 t1
| \<^Const_>‹conj for t1 t2› =>
s_conj (apply2 (aux ss Ts js skolemizable polar) (t1, t2))
| \<^Const_>‹disj for t1 t2› =>
s_disj (apply2 (aux ss Ts js skolemizable polar) (t1, t2))
| \<^Const_>‹implies for t1 t2› =>
\<^Const>‹implies for ‹aux ss Ts js skolemizable (flip_polarity polar) t1›
‹aux ss Ts js skolemizable polar t2››
| (t0 as Const (\<^const_name>‹Let›, _)) $ t1 $ t2 =>
t0 $ t1 $ aux ss Ts js skolemizable polar t2
| Const (x as (s, T)) =>
if is_raw_inductive_pred hol_ctxt x andalso
not (is_raw_equational_fun hol_ctxt x) andalso
not (is_well_founded_inductive_pred hol_ctxt x) then
let
val gfp = (fixpoint_kind_of_const thy def_tables x = Gfp)
val (pref, connective) =
if gfp then (lbfp_prefix, \<^Const>‹disj›)
else (ubfp_prefix, \<^Const>‹conj›)
fun pos () = unrolled_inductive_pred_const hol_ctxt gfp x
|> aux ss Ts js skolemizable polar
fun neg () = Const (pref ^ s, T)
in
case polar |> gfp ? flip_polarity of
Pos => pos ()
| Neg => neg ()
| Neut =>
let
val arg_Ts = binder_types T
fun app f =
list_comb (f (), map Bound (length arg_Ts - 1 downto 0))
in
fold_rev absdummy arg_Ts (connective $ app pos $ app neg)
end
end
else
Const x
| t1 $ t2 =>
s_betapply Ts (aux ss Ts js false polar t1,
aux ss Ts js false Neut t2)
| Abs (s, T, t1) =>
Abs (s, T, aux ss Ts (incrs js) skolemizable polar t1)
| _ => t
end
in aux [] [] [] true Pos end
fun params_in_equation \<^Const_>‹Pure.imp for _ t2› = params_in_equation t2
| params_in_equation \<^Const_>‹Trueprop for t1› = params_in_equation t1
| params_in_equation \<^Const_>‹HOL.eq _ for t1 _› = snd (strip_comb t1)
| params_in_equation _ = []
fun specialize_fun_axiom x x' fixed_js fixed_args extra_args t =
let
val k = fold Integer.max (map maxidx_of_term (fixed_args @ extra_args)) 0
+ 1
val t = map_aterms (fn Var ((s, i), T) => Var ((s, k + i), T) | t' => t') t
val fixed_params = filter_indices fixed_js (params_in_equation t)
fun aux args (Abs (s, T, t)) = list_comb (Abs (s, T, aux [] t), args)
| aux args (t1 $ t2) = aux (aux [] t2 :: args) t1
| aux args t =
if t = Const x then
list_comb (Const x', extra_args @ filter_out_indices fixed_js args)
else
let val j = find_index (curry (op =) t) fixed_params in
list_comb (if j >= 0 then nth fixed_args j else t, args)
end
in aux [] t end
fun static_args_in_term ({ersatz_table, ...} : hol_context) x t =
let
fun fun_calls (Abs (_, _, t)) _ = fun_calls t []
| fun_calls (t1 $ t2) args = fun_calls t2 [] #> fun_calls t1 (t2 :: args)
| fun_calls t args =
(case t of
Const (x' as (s', T')) =>
x = x' orelse (case AList.lookup (op =) ersatz_table s' of
SOME s'' => x = (s'', T')
| NONE => false)
| _ => false) ? cons args
fun call_sets [] [] vs = [vs]
| call_sets [] uss vs = vs :: call_sets uss [] []
| call_sets ([] :: _) _ _ = []
| call_sets ((t :: ts) :: tss) uss vs =
Ord_List.insert Term_Ord.term_ord t vs |> call_sets tss (ts :: uss)
val sets = call_sets (fun_calls t [] []) [] []
val indexed_sets = sets ~~ (index_seq 0 (length sets))
in
fold_rev (fn (set, j) =>
case set of
[Var _] => AList.lookup (op =) indexed_sets set = SOME j
? cons (j, NONE)
| [t as Const _] => cons (j, SOME t)
| [t as Free _] => cons (j, SOME t)
| _ => I) indexed_sets []
end
fun static_args_in_terms hol_ctxt x =
map (static_args_in_term hol_ctxt x)
#> fold1 (Ord_List.inter (prod_ord int_ord (option_ord Term_Ord.term_ord)))
fun overlapping_indices [] _ = []
| overlapping_indices _ [] = []
| overlapping_indices (ps1 as (j1, t1) :: ps1') (ps2 as (j2, t2) :: ps2') =
if j1 < j2 then overlapping_indices ps1' ps2
else if j1 > j2 then overlapping_indices ps1 ps2'
else overlapping_indices ps1' ps2' |> the_default t2 t1 = t2 ? cons j1
fun special_prefix_for j = special_prefix ^ string_of_int j ^ name_sep
val special_max_depth = 20
val bound_var_prefix = "b"
fun special_fun_aconv ((x1, js1, ts1), (x2, js2, ts2)) =
x1 = x2 andalso js1 = js2 andalso length ts1 = length ts2 andalso
forall (op aconv) (ts1 ~~ ts2)
fun specialize_consts_in_term
(hol_ctxt as {ctxt, thy, specialize, def_tables, simp_table,
special_funs, ...}) def depth t =
if not specialize orelse depth > special_max_depth then
t
else
let
val blacklist =
if def then case term_under_def t of Const x => [x] | _ => [] else []
fun aux args Ts (Const (x as (s, T))) =
((if not (member (op =) blacklist x) andalso not (null args) andalso
not (String.isPrefix special_prefix s) andalso
not (is_built_in_const x) andalso
(is_equational_fun hol_ctxt x orelse
(is_some (def_of_const thy def_tables x) andalso
not (is_of_class_const thy x) andalso
not (is_constr ctxt x) andalso
not (is_choice_spec_fun hol_ctxt x))) then
let
val eligible_args =
filter (is_special_eligible_arg true Ts o snd)
(index_seq 0 (length args) ~~ args)
val _ = not (null eligible_args) orelse raise SAME ()
val old_axs = equational_fun_axioms hol_ctxt x
|> map (destroy_existential_equalities hol_ctxt)
val static_params = static_args_in_terms hol_ctxt x old_axs
val fixed_js = overlapping_indices static_params eligible_args
val _ = not (null fixed_js) orelse raise SAME ()
val fixed_args = filter_indices fixed_js args
val vars = fold Term.add_vars fixed_args []
|> sort (Term_Ord.fast_indexname_ord o apply2 fst)
val bound_js = fold (fn t => fn js => add_loose_bnos (t, 0, js))
fixed_args []
|> sort int_ord
val live_args = filter_out_indices fixed_js args
val extra_args = map Var vars @ map Bound bound_js @ live_args
val extra_Ts = map snd vars @ filter_indices bound_js Ts
val k = maxidx_of_term t + 1
fun var_for_bound_no j =
Var ((bound_var_prefix ^
nat_subscript (find_index (curry (op =) j) bound_js
+ 1), k),
nth Ts j)
val fixed_args_in_axiom =
map (curry subst_bounds
(map var_for_bound_no (index_seq 0 (length Ts))))
fixed_args
in
case AList.lookup special_fun_aconv (!special_funs)
(x, fixed_js, fixed_args_in_axiom) of
SOME x' => list_comb (Const x', extra_args)
| NONE =>
let
val extra_args_in_axiom =
map Var vars @ map var_for_bound_no bound_js
val x' as (s', _) =
(special_prefix_for (length (!special_funs) + 1) ^ s,
extra_Ts @ filter_out_indices fixed_js (binder_types T)
---> body_type T)
val new_axs =
map (specialize_fun_axiom x x' fixed_js
fixed_args_in_axiom extra_args_in_axiom) old_axs
val _ =
Unsynchronized.change special_funs
(cons ((x, fixed_js, fixed_args_in_axiom), x'))
val _ = add_simps simp_table s' new_axs
in list_comb (Const x', extra_args) end
end
else
raise SAME ())
handle SAME () => list_comb (Const x, args))
| aux args Ts (Abs (s, T, t)) =
list_comb (Abs (s, T, aux [] (T :: Ts) t), args)
| aux args Ts (t1 $ t2) = aux (aux [] Ts t2 :: args) Ts t1
| aux args _ t = list_comb (t, args)
in aux [] [] t end
type special_triple = int list * term list * (string * typ)
val cong_var_prefix = "c"
fun special_congruence_axiom T (js1, ts1, x1) (js2, ts2, x2) =
let
val (bounds1, bounds2) = apply2 (map Var o special_bounds) (ts1, ts2)
val Ts = binder_types T
val max_j = fold (fold Integer.max) [js1, js2] ~1
val (eqs, (args1, args2)) =
fold (fn j => case apply2 (fn ps => AList.lookup (op =) ps j)
(js1 ~~ ts1, js2 ~~ ts2) of
(SOME t1, SOME t2) => apfst (cons (t1, t2))
| (SOME t1, NONE) => apsnd (apsnd (cons t1))
| (NONE, SOME t2) => apsnd (apfst (cons t2))
| (NONE, NONE) =>
let val v = Var ((cong_var_prefix ^ nat_subscript j, 0),
nth Ts j) in
apsnd (apply2 (cons v))
end) (max_j downto 0) ([], ([], []))
in
Logic.list_implies (eqs |> filter_out (op aconv) |> distinct (op =)
|> map Logic.mk_equals,
Logic.mk_equals (list_comb (Const x1, bounds1 @ args1),
list_comb (Const x2, bounds2 @ args2)))
end
fun special_congruence_axioms (hol_ctxt as {special_funs, ...}) ts =
let
val groups =
!special_funs
|> map (fn ((x, js, ts), x') => (x, (js, ts, x')))
|> AList.group (op =)
|> filter_out (is_equational_fun_surely_complete hol_ctxt o fst)
|> map (fn (x, zs) =>
(x, zs |> member (op =) ts (Const x) ? cons ([], [], x)))
fun generality (js, _, _) = ~(length js)
fun is_more_specific (j1, t1, x1) (j2, t2, x2) =
x1 <> x2 andalso length j2 < length j1 andalso
Ord_List.subset (prod_ord int_ord Term_Ord.term_ord) (j2 ~~ t2, j1 ~~ t1)
fun do_pass_1 _ [] [_] [_] = I
| do_pass_1 T skipped _ [] = do_pass_2 T skipped
| do_pass_1 T skipped all (z :: zs) =
case filter (is_more_specific z) all
|> sort (int_ord o apply2 generality) of
[] => do_pass_1 T (z :: skipped) all zs
| (z' :: _) => cons (special_congruence_axiom T z z')
#> do_pass_1 T skipped all zs
and do_pass_2 _ [] = I
| do_pass_2 T (z :: zs) =
fold (cons o special_congruence_axiom T z) zs #> do_pass_2 T zs
in fold (fn ((_, T), zs) => do_pass_1 T [] zs zs) groups [] end
fun defined_free_by_assumption t =
let
fun do_equals u def =
if exists_subterm (curry (op aconv) u) def then NONE else SOME u
in
case t of
\<^Const_>‹Pure.eq _ for ‹u as Free _› def› => do_equals u def
| \<^Const_>‹Trueprop› $ \<^Const_>‹HOL.eq _ for ‹u as Free _› def› => do_equals u def
| _ => NONE
end
fun assumption_exclusively_defines_free assm_ts t =
case defined_free_by_assumption t of
SOME u =>
length (filter ((fn SOME u' => u aconv u' | NONE => false)
o defined_free_by_assumption) assm_ts) = 1
| NONE => false
fun all_table_entries table = Symtab.fold (append o snd) table []
fun extra_table tables s =
Symtab.make [(s, apply2 all_table_entries tables |> op @)]
fun eval_axiom_for_term j t =
Logic.mk_equals (Const (eval_prefix ^ string_of_int j, fastype_of t), t)
val is_trivial_equation = the_default false o try (op aconv o Logic.dest_equals)
val axioms_max_depth = 255
fun axioms_for_term
(hol_ctxt as {thy, ctxt, max_bisim_depth, user_axioms, evals,
def_tables, nondef_table, choice_spec_table, nondefs,
...}) assm_ts neg_t =
let
val (def_assm_ts, nondef_assm_ts) =
List.partition (assumption_exclusively_defines_free assm_ts) assm_ts
val def_assm_table = map (`(the o defined_free_by_assumption)) def_assm_ts
type accumulator = (string * typ) list * (term list * term list)
fun add_axiom get app def depth t (accum as (seen, axs)) =
let
val t = t |> unfold_defs_in_term hol_ctxt
|> skolemize_term_and_more hol_ctxt ~1
in
if is_trivial_equation t then
accum
else
let val t' = t |> specialize_consts_in_term hol_ctxt def depth in
if exists (member (op aconv) (get axs)) [t, t'] then accum
else add_axioms_for_term (depth + 1) t' (seen, app (cons t') axs)
end
end
and add_def_axiom depth = add_axiom fst apfst true depth
and add_nondef_axiom depth = add_axiom snd apsnd false depth
and add_maybe_def_axiom depth t =
(if head_of t <> \<^Const>‹Pure.imp› then add_def_axiom
else add_nondef_axiom) depth t
and add_eq_axiom depth t =
(if is_constr_pattern_formula ctxt t then add_def_axiom
else add_nondef_axiom) depth t
and add_axioms_for_term depth t (accum as (seen, axs)) =
case t of
t1 $ t2 => accum |> fold (add_axioms_for_term depth) [t1, t2]
| Const (x as (s, T)) =>
(if member (op aconv) seen t orelse is_built_in_const x then
accum
else
let val accum = (t :: seen, axs) in
if depth > axioms_max_depth then
raise TOO_LARGE ("Nitpick_Preproc.axioms_for_term.\
\add_axioms_for_term",
"too many nested axioms (" ^
string_of_int depth ^ ")")
else if is_of_class_const thy x then
let
val class = Logic.class_of_const s
val of_class = Logic.mk_of_class (TVar (("'a", 0), [class]),
class)
val ax1 = try (specialize_type thy x) of_class
val ax2 = Option.map (specialize_type thy x o snd)
(get_class_def thy class)
in
fold (add_maybe_def_axiom depth) (map_filter I [ax1, ax2])
accum
end
else if is_constr ctxt x then
accum
else if is_descr (original_name s) then
fold (add_nondef_axiom depth) (equational_fun_axioms hol_ctxt x)
accum
else if is_equational_fun hol_ctxt x then
fold (add_eq_axiom depth) (equational_fun_axioms hol_ctxt x)
accum
else if is_choice_spec_fun hol_ctxt x then
fold (add_nondef_axiom depth)
(nondef_props_for_const thy true choice_spec_table x) accum
else if is_abs_fun ctxt x then
accum |> fold (add_nondef_axiom depth)
(nondef_props_for_const thy false nondef_table x)
|> (is_funky_typedef ctxt (range_type T) orelse
range_type T = nat_T)
? fold (add_maybe_def_axiom depth)
(nondef_props_for_const thy true
(extra_table def_tables s) x)
else if is_rep_fun ctxt x then
accum |> fold (add_nondef_axiom depth)
(nondef_props_for_const thy false nondef_table x)
|> (is_funky_typedef ctxt (range_type T) orelse
range_type T = nat_T)
? fold (add_maybe_def_axiom depth)
(nondef_props_for_const thy true
(extra_table def_tables s) x)
|> add_axioms_for_term depth
(Const (mate_of_rep_fun ctxt x))
|> fold (add_def_axiom depth)
(inverse_axioms_for_rep_fun ctxt x)
else if s = \<^const_name>‹Pure.type› then
accum
else case def_of_const thy def_tables x of
SOME _ =>
fold (add_eq_axiom depth) (equational_fun_axioms hol_ctxt x)
accum
| NONE =>
accum |> user_axioms <> SOME false
? fold (add_nondef_axiom depth)
(nondef_props_for_const thy false nondef_table x)
end)
|> add_axioms_for_type depth T
| Free (_, T) =>
(if member (op aconv) seen t then
accum
else case AList.lookup (op =) def_assm_table t of
SOME t => add_def_axiom depth t accum
| NONE => accum)
|> add_axioms_for_type depth T
| Var (_, T) => add_axioms_for_type depth T accum
| Bound _ => accum
| Abs (_, T, t) => accum |> add_axioms_for_term depth t
|> add_axioms_for_type depth T
and add_axioms_for_type depth T =
case T of
Type (\<^type_name>‹fun›, Ts) => fold (add_axioms_for_type depth) Ts
| Type (\<^type_name>‹prod›, Ts) => fold (add_axioms_for_type depth) Ts
| Type (\<^type_name>‹set›, Ts) => fold (add_axioms_for_type depth) Ts
| \<^typ>‹prop› => I
| \<^typ>‹bool› => I
| TFree (_, S) => add_axioms_for_sort depth T S
| TVar (_, S) => add_axioms_for_sort depth T S
| Type (z as (_, Ts)) =>
fold (add_axioms_for_type depth) Ts
#> (if is_pure_typedef ctxt T then
fold (add_maybe_def_axiom depth) (optimized_typedef_axioms ctxt z)
else if is_quot_type ctxt T then
fold (add_def_axiom depth) (optimized_quot_type_axioms ctxt z)
else if max_bisim_depth >= 0 andalso is_codatatype ctxt T then
fold (add_maybe_def_axiom depth)
(codatatype_bisim_axioms hol_ctxt T)
else
I)
and add_axioms_for_sort depth T S =
let
val supers = Sign.complete_sort thy S
val class_axioms =
maps (fn class => map Thm.prop_of (Axclass.get_info thy class |> #axioms
handle ERROR _ => [])) supers
val monomorphic_class_axioms =
map (fn t => case Term.add_tvars t [] of
[] => t
| [(x, S)] =>
Envir.subst_term_types (Vartab.make [(x, (S, T))]) t
| _ => raise TERM ("Nitpick_Preproc.axioms_for_term.\
\add_axioms_for_sort", [t]))
class_axioms
in fold (add_nondef_axiom depth) monomorphic_class_axioms end
val (mono_nondefs, poly_nondefs) =
List.partition (null o Term.hidden_polymorphism) nondefs
val eval_axioms = map2 eval_axiom_for_term (index_seq 0 (length evals))
evals
val (seen, (defs, nondefs)) =
([], ([], []))
|> add_axioms_for_term 1 neg_t
|> fold_rev (add_nondef_axiom 1) nondef_assm_ts
|> fold_rev (add_def_axiom 1) eval_axioms
|> user_axioms = SOME true ? fold (add_nondef_axiom 1) mono_nondefs
val defs = defs @ special_congruence_axioms hol_ctxt seen
val got_all_mono_user_axioms =
(user_axioms = SOME true orelse null mono_nondefs)
in (neg_t :: nondefs, defs, got_all_mono_user_axioms, null poly_nondefs) end
fun simplify_constrs_and_sels ctxt t =
let
fun is_nth_sel_on constr_s t' n (Const (s, _) $ t) =
(t = t' andalso is_sel_like_and_no_discr s andalso
constr_name_for_sel_like s = constr_s andalso sel_no_from_name s = n)
| is_nth_sel_on _ _ _ _ = false
fun do_term (Const (\<^const_name>‹Rep_Frac›, _)
$ (Const (\<^const_name>‹Abs_Frac›, _) $ t1)) [] =
do_term t1 []
| do_term (Const (\<^const_name>‹Abs_Frac›, _)
$ (Const (\<^const_name>‹Rep_Frac›, _) $ t1)) [] =
do_term t1 []
| do_term (t1 $ t2) args = do_term t1 (do_term t2 [] :: args)
| do_term (t as Const (x as (s, T))) (args as _ :: _) =
((if is_nonfree_constr ctxt x then
if length args = num_binder_types T then
case hd args of
Const (_, T') $ t' =>
if domain_type T' = body_type T andalso
forall (uncurry (is_nth_sel_on s t'))
(index_seq 0 (length args) ~~ args) then
t'
else
raise SAME ()
| _ => raise SAME ()
else
raise SAME ()
else if is_sel_like_and_no_discr s then
case strip_comb (hd args) of
(Const (x' as (s', T')), ts') =>
if is_free_constr ctxt x' andalso
constr_name_for_sel_like s = s' andalso
not (exists is_pair_type (binder_types T')) then
list_comb (nth ts' (sel_no_from_name s), tl args)
else
raise SAME ()
| _ => raise SAME ()
else
raise SAME ())
handle SAME () => s_betapplys [] (t, args))
| do_term (Abs (s, T, t')) args =
s_betapplys [] (Abs (s, T, do_term t' []), args)
| do_term t args = s_betapplys [] (t, args)
in do_term t [] end
fun distribute_quantifiers t =
case t of
(t0 as Const (\<^const_name>‹All›, T0)) $ Abs (s, T1, t1) =>
(case t1 of
(t10 as \<^Const_>‹conj›) $ t11 $ t12 =>
t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
$ distribute_quantifiers (t0 $ Abs (s, T1, t12))
| (t10 as \<^Const_>‹Not›) $ t11 =>
t10 $ distribute_quantifiers (Const (\<^const_name>‹Ex›, T0)
$ Abs (s, T1, t11))
| t1 =>
if not (loose_bvar1 (t1, 0)) then
distribute_quantifiers (incr_boundvars ~1 t1)
else
t0 $ Abs (s, T1, distribute_quantifiers t1))
| (t0 as Const (\<^const_name>‹Ex›, T0)) $ Abs (s, T1, t1) =>
(case distribute_quantifiers t1 of
(t10 as \<^Const_>‹disj›) $ t11 $ t12 =>
t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
$ distribute_quantifiers (t0 $ Abs (s, T1, t12))
| (t10 as \<^Const_>‹implies›) $ t11 $ t12 =>
t10 $ distribute_quantifiers (Const (\<^const_name>‹All›, T0)
$ Abs (s, T1, t11))
$ distribute_quantifiers (t0 $ Abs (s, T1, t12))
| (t10 as \<^Const_>‹Not›) $ t11 =>
t10 $ distribute_quantifiers (Const (\<^const_name>‹All›, T0)
$ Abs (s, T1, t11))
| t1 =>
if not (loose_bvar1 (t1, 0)) then
distribute_quantifiers (incr_boundvars ~1 t1)
else
t0 $ Abs (s, T1, distribute_quantifiers t1))
| t1 $ t2 => distribute_quantifiers t1 $ distribute_quantifiers t2
| Abs (s, T, t') => Abs (s, T, distribute_quantifiers t')
| _ => t
fun renumber_bounds j n f t =
case t of
t1 $ t2 => renumber_bounds j n f t1 $ renumber_bounds j n f t2
| Abs (s, T, t') => Abs (s, T, renumber_bounds (j + 1) n f t')
| Bound j' =>
Bound (if j' >= j andalso j' < j + n then f (j' - j) + j else j')
| _ => t
val quantifier_cluster_threshold = 7
val push_quantifiers_inward =
let
fun aux quant_s ss Ts t =
(case t of
Const (s0, _) $ Abs (s1, T1, t1 as _ $ _) =>
if s0 = quant_s then
aux s0 (s1 :: ss) (T1 :: Ts) t1
else if quant_s = "" andalso
(s0 = \<^const_name>‹All› orelse s0 = \<^const_name>‹Ex›) then
aux s0 [s1] [T1] t1
else
raise SAME ()
| _ => raise SAME ())
handle SAME () =>
case t of
t1 $ t2 =>
if quant_s = "" then
aux "" [] [] t1 $ aux "" [] [] t2
else
let
fun big_union proj ps =
fold (fold (insert (op =)) o proj) ps []
val (ts, connective) = strip_any_connective t
val T_costs = map typical_card_of_type Ts
val t_costs = map size_of_term ts
val num_Ts = length Ts
val flip = curry (op -) (num_Ts - 1)
val t_boundss = map (map flip o loose_bnos) ts
fun merge costly_boundss [] = costly_boundss
| merge costly_boundss (j :: js) =
let
val (yeas, nays) =
List.partition (fn (bounds, _) =>
member (op =) bounds j)
costly_boundss
val yeas_bounds = big_union fst yeas
val yeas_cost = Integer.sum (map snd yeas)
* nth T_costs j
in merge ((yeas_bounds, yeas_cost) :: nays) js end
val cost = Integer.sum o map snd oo merge
fun heuristically_best_permutation _ [] = []
| heuristically_best_permutation costly_boundss js =
let
val (costly_boundss, (j, js)) =
js |> map (`(merge costly_boundss o single))
|> sort (int_ord
o apply2 (Integer.sum o map snd o fst))
|> split_list |>> hd ||> pairf hd tl
in
j :: heuristically_best_permutation costly_boundss js
end
val js =
if length Ts <= quantifier_cluster_threshold then
all_permutations (index_seq 0 num_Ts)
|> map (`(cost (t_boundss ~~ t_costs)))
|> sort (int_ord o apply2 fst) |> hd |> snd
else
heuristically_best_permutation (t_boundss ~~ t_costs)
(index_seq 0 num_Ts)
val back_js = map (fn j => find_index (curry (op =) j) js)
(index_seq 0 num_Ts)
val ts = map (renumber_bounds 0 num_Ts (nth back_js o flip))
ts
fun mk_connection [] =
raise ARG ("Nitpick_Preproc.push_quantifiers_inward.aux.\
\mk_connection", "")
| mk_connection ts_cum_bounds =
ts_cum_bounds |> map fst
|> foldr1 (fn (t1, t2) => connective $ t1 $ t2)
fun build ts_cum_bounds [] = ts_cum_bounds |> mk_connection
| build ts_cum_bounds (j :: js) =
let
val (yeas, nays) =
List.partition (fn (_, bounds) =>
member (op =) bounds j)
ts_cum_bounds
||> map (apfst (incr_boundvars ~1))
in
if null yeas then
build nays js
else
let val T = nth Ts (flip j) in
build ((Const (quant_s, (T --> bool_T) --> bool_T)
$ Abs (nth ss (flip j), T,
mk_connection yeas),
big_union snd yeas) :: nays) js
end
end
in build (ts ~~ t_boundss) js end
| Abs (s, T, t') => Abs (s, T, aux "" [] [] t')
| _ => t
in aux "" [] [] end
val max_skolem_depth = 3
fun preprocess_formulas
(hol_ctxt as {ctxt, binary_ints, destroy_constrs, boxes, needs, ...})
assm_ts neg_t =
let
val (nondef_ts, def_ts, got_all_mono_user_axioms, no_poly_user_axioms) =
neg_t |> unfold_defs_in_term hol_ctxt
|> close_form
|> skolemize_term_and_more hol_ctxt max_skolem_depth
|> specialize_consts_in_term hol_ctxt false 0
|> axioms_for_term hol_ctxt assm_ts
val binarize =
case binary_ints of
SOME false => false
| _ => forall (may_use_binary_ints false) nondef_ts andalso
forall (may_use_binary_ints true) def_ts andalso
(binary_ints = SOME true orelse
exists should_use_binary_ints (nondef_ts @ def_ts))
val box = exists (not_equal (SOME false) o snd) boxes
val table =
Termtab.empty
|> box ? fold (add_to_uncurry_table ctxt) (nondef_ts @ def_ts)
fun do_middle def =
binarize ? binarize_nat_and_int_in_term
#> box ? uncurry_term table
#> box ? box_fun_and_pair_in_term hol_ctxt def
fun do_tail def =
destroy_set_Collect
#> destroy_constrs ? (pull_out_universal_constrs hol_ctxt def
#> pull_out_existential_constrs hol_ctxt)
#> destroy_pulled_out_constrs hol_ctxt def destroy_constrs
#> curry_assms
#> destroy_universal_equalities
#> destroy_existential_equalities hol_ctxt
#> simplify_constrs_and_sels ctxt
#> distribute_quantifiers
#> push_quantifiers_inward
#> close_form
#> Term.map_abs_vars shortest_name
val nondef_ts = nondef_ts |> map (do_middle false)
val need_ts =
case needs of
SOME needs =>
needs |> map (unfold_defs_in_term hol_ctxt #> do_middle false)
| NONE => []
val nondef_ts = nondef_ts |> map (do_tail false)
val def_ts = def_ts |> map (do_middle true #> do_tail true)
in
(nondef_ts, def_ts, need_ts, got_all_mono_user_axioms, no_poly_user_axioms,
binarize)
end
end;