File ‹Tools/Lifting/lifting_def.ML›
signature LIFTING_DEF =
sig
datatype code_eq = UNKNOWN_EQ | NONE_EQ | ABS_EQ | REP_EQ
type lift_def
val rty_of_lift_def: lift_def -> typ
val qty_of_lift_def: lift_def -> typ
val rhs_of_lift_def: lift_def -> term
val lift_const_of_lift_def: lift_def -> term
val def_thm_of_lift_def: lift_def -> thm
val rsp_thm_of_lift_def: lift_def -> thm
val abs_eq_of_lift_def: lift_def -> thm
val rep_eq_of_lift_def: lift_def -> thm option
val code_eq_of_lift_def: lift_def -> code_eq
val transfer_rules_of_lift_def: lift_def -> thm list
val morph_lift_def: morphism -> lift_def -> lift_def
val inst_of_lift_def: Proof.context -> typ -> lift_def -> lift_def
val mk_lift_const_of_lift_def: typ -> lift_def -> term
type config = { notes: bool }
val map_config: (bool -> bool) -> config -> config
val default_config: config
val generate_parametric_transfer_rule:
Proof.context -> thm -> thm -> thm
val add_lift_def:
config -> binding * mixfix -> typ -> term -> thm -> thm list -> local_theory ->
lift_def * local_theory
val prepare_lift_def:
(binding * mixfix -> typ -> term -> thm -> thm list -> Proof.context ->
lift_def * local_theory) ->
binding * mixfix -> typ -> term -> thm list -> local_theory ->
term option * (thm -> Proof.context -> lift_def * local_theory)
val gen_lift_def:
(binding * mixfix -> typ -> term -> thm -> thm list -> local_theory ->
lift_def * local_theory) ->
binding * mixfix -> typ -> term -> (Proof.context -> tactic) -> thm list ->
local_theory -> lift_def * local_theory
val lift_def:
config -> binding * mixfix -> typ -> term -> (Proof.context -> tactic) -> thm list ->
local_theory -> lift_def * local_theory
val can_generate_code_cert: thm -> bool
end
structure Lifting_Def: LIFTING_DEF =
struct
open Lifting_Util
infix 0 MRSL
datatype code_eq = UNKNOWN_EQ | NONE_EQ | ABS_EQ | REP_EQ
datatype lift_def = LIFT_DEF of {
rty: typ,
qty: typ,
rhs: term,
lift_const: term,
def_thm: thm,
rsp_thm: thm,
abs_eq: thm,
rep_eq: thm option,
code_eq: code_eq,
transfer_rules: thm list
};
fun rep_lift_def (LIFT_DEF lift_def) = lift_def;
val rty_of_lift_def = #rty o rep_lift_def;
val qty_of_lift_def = #qty o rep_lift_def;
val rhs_of_lift_def = #rhs o rep_lift_def;
val lift_const_of_lift_def = #lift_const o rep_lift_def;
val def_thm_of_lift_def = #def_thm o rep_lift_def;
val rsp_thm_of_lift_def = #rsp_thm o rep_lift_def;
val abs_eq_of_lift_def = #abs_eq o rep_lift_def;
val rep_eq_of_lift_def = #rep_eq o rep_lift_def;
val code_eq_of_lift_def = #code_eq o rep_lift_def;
val transfer_rules_of_lift_def = #transfer_rules o rep_lift_def;
fun mk_lift_def rty qty rhs lift_const def_thm rsp_thm abs_eq rep_eq code_eq transfer_rules =
LIFT_DEF {rty = rty, qty = qty,
rhs = rhs, lift_const = lift_const,
def_thm = def_thm, rsp_thm = rsp_thm, abs_eq = abs_eq, rep_eq = rep_eq,
code_eq = code_eq, transfer_rules = transfer_rules };
fun map_lift_def f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
(LIFT_DEF {rty = rty, qty = qty, rhs = rhs, lift_const = lift_const,
def_thm = def_thm, rsp_thm = rsp_thm, abs_eq = abs_eq, rep_eq = rep_eq, code_eq = code_eq,
transfer_rules = transfer_rules }) =
LIFT_DEF {rty = f1 rty, qty = f2 qty, rhs = f3 rhs, lift_const = f4 lift_const,
def_thm = f5 def_thm, rsp_thm = f6 rsp_thm, abs_eq = f7 abs_eq, rep_eq = f8 rep_eq,
code_eq = f9 code_eq, transfer_rules = f10 transfer_rules }
fun morph_lift_def phi =
let
val mtyp = Morphism.typ phi
val mterm = Morphism.term phi
val mthm = Morphism.thm phi
in
map_lift_def mtyp mtyp mterm mterm mthm mthm mthm (Option.map mthm) I (map mthm)
end
fun mk_inst_of_lift_def qty lift_def = Vartab.empty |> Type.raw_match (qty_of_lift_def lift_def, qty)
fun mk_lift_const_of_lift_def qty lift_def = Envir.subst_term_types (mk_inst_of_lift_def qty lift_def)
(lift_const_of_lift_def lift_def)
fun inst_of_lift_def ctxt qty lift_def =
let
val instT =
Vartab.fold (fn (a, (S, T)) => cons ((a, S), Thm.ctyp_of ctxt T))
(mk_inst_of_lift_def qty lift_def) []
val phi = Morphism.instantiate_morphism (TVars.make instT, Vars.empty)
in morph_lift_def phi lift_def end
type config = { notes: bool };
fun map_config f1 { notes = notes } = { notes = f1 notes }
val default_config = { notes = true };
fun mono_eq_prover ctxt prop =
let
val refl_rules = Lifting_Info.get_reflexivity_rules ctxt
val transfer_rules = Transfer.get_transfer_raw ctxt
fun main_tac i = (REPEAT_ALL_NEW (DETERM o resolve_tac ctxt refl_rules) THEN_ALL_NEW
(REPEAT_ALL_NEW (DETERM o resolve_tac ctxt transfer_rules))) i
in
SOME (Goal.prove ctxt [] [] prop (K (main_tac 1)))
handle ERROR _ => NONE
end
fun try_prove_refl_rel ctxt rel =
let
fun mk_ge_eq x =
let
val T = fastype_of x
in
Const (\<^const_name>‹less_eq›, T --> T --> HOLogic.boolT) $
(Const (\<^const_name>‹HOL.eq›, T)) $ x
end;
val goal = HOLogic.mk_Trueprop (mk_ge_eq rel);
in
mono_eq_prover ctxt goal
end;
fun try_prove_reflexivity ctxt prop =
let
val cprop = Thm.cterm_of ctxt prop
val rule = @{thm ge_eq_refl}
val concl_pat = Drule.strip_imp_concl (Thm.cprop_of rule)
val insts = Thm.first_order_match (concl_pat, cprop)
val rule = Drule.instantiate_normalize insts rule
val prop = hd (Thm.prems_of rule)
in
case mono_eq_prover ctxt prop of
SOME thm => SOME (thm RS rule)
| NONE => NONE
end
fun generate_parametric_transfer_rule ctxt0 transfer_rule parametric_transfer_rule =
let
fun preprocess ctxt thm =
let
val tm = (strip_args 2 o HOLogic.dest_Trueprop o Thm.concl_of) thm;
val param_rel = (snd o dest_comb o fst o dest_comb) tm;
val free_vars = Term.add_vars param_rel [];
fun make_subst (xi, typ) subst =
let
val [rty, rty'] = binder_types typ
in
if Term.is_TVar rty andalso Term.is_Type rty' then
(xi, Thm.cterm_of ctxt (HOLogic.eq_const rty')) :: subst
else
subst
end;
val inst_thm = infer_instantiate ctxt (fold make_subst free_vars []) thm;
in
Conv.fconv_rule
((Conv.concl_conv (Thm.nprems_of inst_thm) o
HOLogic.Trueprop_conv o Conv.fun2_conv o Conv.arg1_conv)
(Raw_Simplifier.rewrite ctxt false (Transfer.get_sym_relator_eq ctxt))) inst_thm
end
fun inst_relcomppI ctxt ant1 ant2 =
let
val t1 = (HOLogic.dest_Trueprop o Thm.concl_of) ant1
val t2 = (HOLogic.dest_Trueprop o Thm.prop_of) ant2
val fun1 = Thm.cterm_of ctxt (strip_args 2 t1)
val args1 = map (Thm.cterm_of ctxt) (get_args 2 t1)
val fun2 = Thm.cterm_of ctxt (strip_args 2 t2)
val args2 = map (Thm.cterm_of ctxt) (get_args 1 t2)
val relcomppI = Drule.incr_indexes2 ant1 ant2 @{thm relcomppI}
val vars = map #1 (rev (Term.add_vars (Thm.prop_of relcomppI) []))
in
infer_instantiate ctxt (vars ~~ ([fun1] @ args1 @ [fun2] @ args2)) relcomppI
end
fun zip_transfer_rules ctxt thm =
let
fun mk_POS ty = Const (\<^const_name>‹POS›, ty --> ty --> HOLogic.boolT)
val rel = (Thm.dest_fun2 o Thm.dest_arg o Thm.cprop_of) thm
val typ = Thm.typ_of_cterm rel
val POS_const = Thm.cterm_of ctxt (mk_POS typ)
val var = Thm.cterm_of ctxt (Var (("X", Thm.maxidx_of_cterm rel + 1), typ))
val goal =
Thm.apply (Thm.cterm_of ctxt HOLogic.Trueprop) (Thm.apply (Thm.apply POS_const rel) var)
in
[Lifting_Term.merge_transfer_relations ctxt goal, thm] MRSL @{thm POS_apply}
end
val thm =
inst_relcomppI ctxt0 parametric_transfer_rule transfer_rule
OF [parametric_transfer_rule, transfer_rule]
val preprocessed_thm = preprocess ctxt0 thm
val (fixed_thm, ctxt1) = ctxt0
|> yield_singleton (apfst snd oo Variable.import true) preprocessed_thm
val assms = cprems_of fixed_thm
val add_transfer_rule = Thm.attribute_declaration Transfer.transfer_add
val (prems, ctxt2) = ctxt1 |> fold_map Thm.assume_hyps assms
val ctxt3 = ctxt2 |> Context.proof_map (fold add_transfer_rule prems)
val zipped_thm =
fixed_thm
|> undisch_all
|> zip_transfer_rules ctxt3
|> implies_intr_list assms
|> singleton (Variable.export ctxt3 ctxt0)
in
zipped_thm
end
fun print_generate_transfer_info msg =
let
val error_msg = cat_lines
["Generation of a parametric transfer rule failed.",
(Pretty.string_of (Pretty.block
[Pretty.str "Reason:", Pretty.brk 2, msg]))]
in
error error_msg
end
fun map_ter _ x [] = x
| map_ter f _ xs = map f xs
fun generate_transfer_rules lthy quot_thm rsp_thm def_thm par_thms =
let
val transfer_rule =
([quot_thm, rsp_thm, def_thm] MRSL @{thm Quotient_to_transfer})
|> Lifting_Term.parametrize_transfer_rule lthy
in
(map_ter (generate_parametric_transfer_rule lthy transfer_rule) [transfer_rule] par_thms
handle Lifting_Term.MERGE_TRANSFER_REL msg => (print_generate_transfer_info msg; [transfer_rule]))
end
fun get_body_types (Type ("fun", [_, U]), Type ("fun", [_, V])) = get_body_types (U, V)
| get_body_types (U, V) = (U, V)
fun get_binder_types (Type ("fun", [T, U]), Type ("fun", [V, W])) = (T, V) :: get_binder_types (U, W)
| get_binder_types _ = []
fun get_binder_types_by_rel (Const (\<^const_name>‹rel_fun›, _) $ _ $ S) (Type ("fun", [T, U]), Type ("fun", [V, W])) =
(T, V) :: get_binder_types_by_rel S (U, W)
| get_binder_types_by_rel _ _ = []
fun get_body_type_by_rel (Const (\<^const_name>‹rel_fun›, _) $ _ $ S) (Type ("fun", [_, U]), Type ("fun", [_, V])) =
get_body_type_by_rel S (U, V)
| get_body_type_by_rel _ (U, V) = (U, V)
fun get_binder_rels (Const (\<^const_name>‹rel_fun›, _) $ R $ S) = R :: get_binder_rels S
| get_binder_rels _ = []
fun force_rty_type ctxt rty rhs =
let
val thy = Proof_Context.theory_of ctxt
val rhs_schematic = singleton (Variable.polymorphic ctxt) rhs
val rty_schematic = fastype_of rhs_schematic
val match = Sign.typ_match thy (rty_schematic, rty) Vartab.empty
in
Envir.subst_term_types match rhs_schematic
end
fun unabs_def ctxt def =
let
val (_, rhs) = Thm.dest_equals (Thm.cprop_of def)
fun dest_abs (Abs (var_name, T, _)) = (var_name, T)
| dest_abs tm = raise TERM("get_abs_var",[tm])
val (var_name, T) = dest_abs (Thm.term_of rhs)
val (new_var_names, ctxt') = Variable.variant_fixes [var_name] ctxt
val refl_thm = Thm.reflexive (Thm.cterm_of ctxt' (Free (hd new_var_names, T)))
in
Thm.combination def refl_thm |>
singleton (Proof_Context.export ctxt' ctxt)
end
fun unabs_all_def ctxt def =
let
val (_, rhs) = Thm.dest_equals (Thm.cprop_of def)
val xs = strip_abs_vars (Thm.term_of rhs)
in
fold (K (unabs_def ctxt)) xs def
end
val map_fun_unfolded =
@{thm map_fun_def[abs_def]} |>
unabs_def \<^context> |>
unabs_def \<^context> |>
Local_Defs.unfold0 \<^context> [@{thm comp_def}]
fun unfold_fun_maps ctm =
let
fun unfold_conv ctm =
case (Thm.term_of ctm) of
Const (\<^const_name>‹map_fun›, _) $ _ $ _ =>
(Conv.arg_conv unfold_conv then_conv Conv.rewr_conv map_fun_unfolded) ctm
| _ => Conv.all_conv ctm
in
(Conv.fun_conv unfold_conv) ctm
end
fun unfold_fun_maps_beta ctm =
let val try_beta_conv = Conv.try_conv (Thm.beta_conversion false)
in
(unfold_fun_maps then_conv try_beta_conv) ctm
end
fun prove_rel ctxt rsp_thm (rty, qty) =
let
val ty_args = get_binder_types (rty, qty)
fun disch_arg args_ty thm =
let
val quot_thm = Lifting_Term.prove_quot_thm ctxt args_ty
in
[quot_thm, thm] MRSL @{thm apply_rsp''}
end
in
fold disch_arg ty_args rsp_thm
end
exception CODE_CERT_GEN of string
fun simplify_code_eq ctxt def_thm =
Local_Defs.unfold0 ctxt [@{thm o_apply}, @{thm map_fun_def}, @{thm id_apply}] def_thm
fun can_generate_code_cert quot_thm =
case quot_thm_rel quot_thm of
Const (\<^const_name>‹HOL.eq›, _) => true
| Const (\<^const_name>‹eq_onp›, _) $ _ => true
| _ => false
fun generate_rep_eq ctxt def_thm rsp_thm (rty, qty) =
let
val unfolded_def = Conv.fconv_rule (Conv.arg_conv unfold_fun_maps_beta) def_thm
val unabs_def = unabs_all_def ctxt unfolded_def
in
if body_type rty = body_type qty then
SOME (simplify_code_eq ctxt (HOLogic.mk_obj_eq unabs_def))
else
let
val quot_thm = Lifting_Term.prove_quot_thm ctxt (get_body_types (rty, qty))
val rel_fun = prove_rel ctxt rsp_thm (rty, qty)
val rep_abs_thm = [quot_thm, rel_fun] MRSL @{thm Quotient_rep_abs_eq}
in
case mono_eq_prover ctxt (hd (Thm.prems_of rep_abs_thm)) of
SOME mono_eq_thm =>
let
val rep_abs_eq = mono_eq_thm RS rep_abs_thm
val rep = Thm.cterm_of ctxt (quot_thm_rep quot_thm)
val rep_refl = HOLogic.mk_obj_eq (Thm.reflexive rep)
val repped_eq = [rep_refl, HOLogic.mk_obj_eq unabs_def] MRSL @{thm cong}
val code_cert = [repped_eq, rep_abs_eq] MRSL trans
in
SOME (simplify_code_eq ctxt code_cert)
end
| NONE => NONE
end
end
fun generate_abs_eq ctxt def_thm rsp_thm quot_thm =
let
val abs_eq_with_assms =
let
val (rty, qty) = quot_thm_rty_qty quot_thm
val rel = quot_thm_rel quot_thm
val ty_args = get_binder_types_by_rel rel (rty, qty)
val body_type = get_body_type_by_rel rel (rty, qty)
val quot_ret_thm = Lifting_Term.prove_quot_thm ctxt body_type
val rep_abs_folded_unmapped_thm =
let
val rep_id = [quot_thm, def_thm] MRSL @{thm Quotient_Rep_eq}
val ctm = Thm.dest_equals_lhs (Thm.cprop_of rep_id)
val unfolded_maps_eq = unfold_fun_maps ctm
val t1 = [quot_thm, def_thm, rsp_thm] MRSL @{thm Quotient_rep_abs_fold_unmap}
val prems_pat = (hd o Drule.cprems_of) t1
val insts = Thm.first_order_match (prems_pat, Thm.cprop_of unfolded_maps_eq)
in
unfolded_maps_eq RS (Drule.instantiate_normalize insts t1)
end
in
rep_abs_folded_unmapped_thm
|> fold (fn _ => fn thm => thm RS @{thm rel_funD2}) ty_args
|> (fn x => x RS (@{thm Quotient_rel_abs2} OF [quot_ret_thm]))
end
val prem_rels = get_binder_rels (quot_thm_rel quot_thm);
val proved_assms = prem_rels |> map (try_prove_refl_rel ctxt)
|> map_index (apfst (fn x => x + 1)) |> filter (is_some o snd) |> map (apsnd the)
|> map (apsnd (fn assm => assm RS @{thm ge_eq_refl}))
val abs_eq = fold_rev (fn (i, assm) => fn thm => assm RSN (i, thm)) proved_assms abs_eq_with_assms
in
simplify_code_eq ctxt abs_eq
end
fun register_code_eq_thy abs_eq_thm opt_rep_eq_thm (rty, qty) thy =
let
fun no_abstr (t $ u) = no_abstr t andalso no_abstr u
| no_abstr (Abs (_, _, t)) = no_abstr t
| no_abstr (Const (name, _)) = not (Code.is_abstr thy name)
| no_abstr _ = true
fun is_valid_eq eqn = can (Code.assert_eqn thy) (mk_meta_eq eqn, true)
andalso no_abstr (Thm.prop_of eqn)
fun is_valid_abs_eq abs_eq = can (Code.assert_abs_eqn thy NONE) (mk_meta_eq abs_eq)
in
if is_valid_eq abs_eq_thm then
(ABS_EQ, Code.declare_default_eqns_global [(abs_eq_thm, true)] thy)
else
let
val (rty_body, qty_body) = get_body_types (rty, qty)
in
if rty_body = qty_body then
(REP_EQ, Code.declare_default_eqns_global [(the opt_rep_eq_thm, true)] thy)
else
if is_some opt_rep_eq_thm andalso is_valid_abs_eq (the opt_rep_eq_thm)
then
(REP_EQ, Code.declare_abstract_eqn_global (the opt_rep_eq_thm) thy)
else
(NONE_EQ, thy)
end
end
local
fun no_no_code ctxt (rty, qty) =
if same_type_constrs (rty, qty) then
forall (no_no_code ctxt) (Targs rty ~~ Targs qty)
else
if Term.is_Type qty then
if Lifting_Info.is_no_code_type ctxt (Tname qty) then false
else
let
val (rty', rtyq) = Lifting_Term.instantiate_rtys ctxt (rty, qty)
val (rty's, rtyqs) = (Targs rty', Targs rtyq)
in
forall (no_no_code ctxt) (rty's ~~ rtyqs)
end
else
true
fun encode_code_eq ctxt abs_eq opt_rep_eq (rty, qty) =
let
fun mk_type typ = typ |> Logic.mk_type |> Thm.cterm_of ctxt |> Drule.mk_term
in
Conjunction.intr_balanced [abs_eq, (the_default TrueI opt_rep_eq), mk_type rty, mk_type qty]
end
exception DECODE
fun decode_code_eq thm =
if Thm.nprems_of thm > 0 then raise DECODE
else
let
val [abs_eq, rep_eq, rty, qty] = Conjunction.elim_balanced 4 thm
val opt_rep_eq = if Thm.eq_thm_prop (rep_eq, TrueI) then NONE else SOME rep_eq
fun dest_type typ = typ |> Drule.dest_term |> Thm.term_of |> Logic.dest_type
in
(abs_eq, opt_rep_eq, (dest_type rty, dest_type qty))
end
structure Data = Generic_Data
(
type T = code_eq option
val empty = NONE
fun merge _ = NONE
);
fun register_encoded_code_eq thm thy =
let
val (abs_eq_thm, opt_rep_eq_thm, (rty, qty)) = decode_code_eq thm
val (code_eq, thy) = register_code_eq_thy abs_eq_thm opt_rep_eq_thm (rty, qty) thy
in
Context.theory_map (Data.put (SOME code_eq)) thy
end
handle DECODE => thy
val register_code_eq_attribute = Thm.declaration_attribute
(fn thm => Context.mapping (register_encoded_code_eq thm) I)
val register_code_eq_attrib = Attrib.internal ⌂ (K register_code_eq_attribute)
in
fun register_code_eq abs_eq_thm opt_rep_eq_thm (rty, qty) lthy =
let
val encoded_code_eq = encode_code_eq lthy abs_eq_thm opt_rep_eq_thm (rty, qty)
in
if no_no_code lthy (rty, qty) then
let
val lthy' = lthy
|> (#2 oo Local_Theory.note) ((Binding.empty, [register_code_eq_attrib]), [encoded_code_eq])
val opt_code_eq = Data.get (Context.Theory (Proof_Context.theory_of lthy'))
val code_eq =
if is_some opt_code_eq then the opt_code_eq
else UNKNOWN_EQ
val lthy'' = lthy'
|> Local_Theory.declaration {syntax = false, pervasive = true, pos = ⌂} (K (Data.put NONE))
in (code_eq, lthy'') end
else
(NONE_EQ, lthy)
end
end
fun add_lift_def (config: config) (binding, mx) qty rhs rsp_thm par_thms lthy0 =
let
val rty = fastype_of rhs
val quot_thm = Lifting_Term.prove_quot_thm lthy0 (rty, qty)
val absrep_trm = quot_thm_abs quot_thm
val rty_forced = (domain_type o fastype_of) absrep_trm
val forced_rhs = force_rty_type lthy0 rty_forced rhs
val lhs = Free (Binding.name_of binding, qty)
val prop = Logic.mk_equals (lhs, absrep_trm $ forced_rhs)
val (_, prop') = Local_Defs.cert_def lthy0 (K []) prop
val (_, newrhs) = Local_Defs.abs_def prop'
val var = ((#notes config = false ? Binding.concealed) binding, mx)
val def_name = Thm.make_def_binding (#notes config) (#1 var)
val ((lift_const, (_ , def_thm)), lthy1) = lthy0
|> Local_Theory.define (var, ((def_name, []), newrhs))
val transfer_rules = generate_transfer_rules lthy1 quot_thm rsp_thm def_thm par_thms
val abs_eq_thm = generate_abs_eq lthy1 def_thm rsp_thm quot_thm
val opt_rep_eq_thm = generate_rep_eq lthy1 def_thm rsp_thm (rty_forced, qty)
fun notes names =
let
val lhs_name = Binding.reset_pos (#1 var)
val rsp_thmN = Binding.qualify_name true lhs_name "rsp"
val abs_eq_thmN = Binding.qualify_name true lhs_name "abs_eq"
val rep_eq_thmN = Binding.qualify_name true lhs_name "rep_eq"
val transfer_ruleN = Binding.qualify_name true lhs_name "transfer"
val notes =
[(rsp_thmN, [], [rsp_thm]),
(transfer_ruleN, @{attributes [transfer_rule]}, transfer_rules),
(abs_eq_thmN, [], [abs_eq_thm])]
@ (case opt_rep_eq_thm of SOME rep_eq_thm => [(rep_eq_thmN, [], [rep_eq_thm])] | NONE => [])
in
if names then map (fn (name, attrs, thms) => ((name, []), [(thms, attrs)])) notes
else map_filter (fn (_, attrs, thms) => if null attrs then NONE
else SOME (Binding.empty_atts, [(thms, attrs)])) notes
end
val (code_eq, lthy2) = lthy1
|> register_code_eq abs_eq_thm opt_rep_eq_thm (rty_forced, qty)
val lift_def = mk_lift_def rty_forced qty newrhs lift_const def_thm rsp_thm abs_eq_thm
opt_rep_eq_thm code_eq transfer_rules
in
lthy2
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.notes (notes (#notes config)) |> snd
|> `(fn lthy => morph_lift_def (Local_Theory.target_morphism lthy) lift_def)
||> Local_Theory.end_nested
end
fun get_cr_pcr_eqs ctxt =
let
fun collect (data : Lifting_Info.quotient) l =
if is_some (#pcr_info data)
then ((Thm.symmetric o safe_mk_meta_eq o Thm.transfer' ctxt o #pcr_cr_eq o the o #pcr_info) data :: l)
else l
val table = Lifting_Info.get_quotients ctxt
in
Symtab.fold (fn (_, data) => fn l => collect data l) table []
end
fun prepare_lift_def add_lift_def var qty rhs par_thms ctxt =
let
val rsp_rel = Lifting_Term.equiv_relation ctxt (fastype_of rhs, qty)
val rty_forced = (domain_type o fastype_of) rsp_rel;
val forced_rhs = force_rty_type ctxt rty_forced rhs;
val cr_to_pcr_conv = HOLogic.Trueprop_conv (Conv.fun2_conv
(Raw_Simplifier.rewrite ctxt false (get_cr_pcr_eqs ctxt)))
val (prsp_tm, rsp_prsp_eq) = HOLogic.mk_Trueprop (rsp_rel $ forced_rhs $ forced_rhs)
|> Thm.cterm_of ctxt
|> cr_to_pcr_conv
|> `Thm.concl_of
|>> Logic.dest_equals
|>> snd
val to_rsp = rsp_prsp_eq RS Drule.equal_elim_rule2
val opt_proven_rsp_thm = try_prove_reflexivity ctxt prsp_tm
fun after_qed internal_rsp_thm =
add_lift_def var qty rhs (internal_rsp_thm RS to_rsp) par_thms
in
case opt_proven_rsp_thm of
SOME thm => (NONE, K (after_qed thm))
| NONE => (SOME prsp_tm, after_qed)
end
fun gen_lift_def add_lift_def var qty rhs tac par_thms lthy =
let
val (goal, after_qed) = prepare_lift_def add_lift_def var qty rhs par_thms lthy
in
case goal of
SOME goal =>
let
val rsp_thm =
Goal.prove_sorry lthy [] [] goal (tac o #context)
|> Thm.close_derivation ⌂
in
after_qed rsp_thm lthy
end
| NONE => after_qed Drule.dummy_thm lthy
end
val lift_def = gen_lift_def o add_lift_def
end