File ‹Tools/Function/pat_completeness.ML›
signature PAT_COMPLETENESS =
sig
val pat_completeness_tac: Proof.context -> int -> tactic
val prove_completeness: Proof.context -> term list -> term -> term list list ->
term list list -> thm
end
structure Pat_Completeness : PAT_COMPLETENESS =
struct
open Function_Lib
open Function_Common
fun mk_argvar i T = Free ("_av" ^ (string_of_int i), T)
fun mk_patvar i T = Free ("_pv" ^ (string_of_int i), T)
fun inst_free var inst = Thm.forall_elim inst o Thm.forall_intr var
fun inst_case_thm ctxt x P thm =
let val [P_name, x_name] = Term.add_var_names (Thm.prop_of thm) []
in
thm |> infer_instantiate ctxt [(x_name, Thm.cterm_of ctxt x), (P_name, Thm.cterm_of ctxt P)]
end
fun invent_vars constr i =
let
val Ts = binder_types (fastype_of constr)
val j = i + length Ts
val is = i upto (j - 1)
val avs = map2 mk_argvar is Ts
val pvs = map2 mk_patvar is Ts
in
(avs, pvs, j)
end
fun filter_pats _ _ _ [] = []
| filter_pats _ _ _ (([], _) :: _) = raise Match
| filter_pats ctxt cons pvars (((pat as Free _) :: pats, thm) :: pts) =
let val inst = list_comb (cons, pvars) in
(inst :: pats, inst_free (Thm.cterm_of ctxt pat) (Thm.cterm_of ctxt inst) thm) ::
filter_pats ctxt cons pvars pts
end
| filter_pats ctxt cons pvars ((pat :: pats, thm) :: pts) =
if fst (strip_comb pat) = cons
then (pat :: pats, thm) :: filter_pats ctxt cons pvars pts
else filter_pats ctxt cons pvars pts
fun transform_pat _ _ _ ([] , _) = raise Match
| transform_pat ctxt avars c_assum (pat :: pats, thm) =
let
val (_, subps) = strip_comb pat
val eqs = map (Thm.cterm_of ctxt o HOLogic.mk_Trueprop o HOLogic.mk_eq) (avars ~~ subps)
val c_eq_pat =
simplify (put_simpset HOL_basic_ss ctxt addsimps (map Thm.assume eqs)) c_assum
in
(subps @ pats,
fold_rev Thm.implies_intr eqs (Thm.implies_elim thm c_eq_pat))
end
exception COMPLETENESS
fun constr_case ctxt P idx (v :: vs) pats cons =
let
val (avars, pvars, newidx) = invent_vars cons idx
val c_hyp =
Thm.cterm_of ctxt
(HOLogic.mk_Trueprop (HOLogic.mk_eq (v, list_comb (cons, avars))))
val c_assum = Thm.assume c_hyp
val newpats = map (transform_pat ctxt avars c_assum) (filter_pats ctxt cons pvars pats)
in
o_alg ctxt P newidx (avars @ vs) newpats
|> Thm.implies_intr c_hyp
|> fold_rev (Thm.forall_intr o Thm.cterm_of ctxt) avars
end
| constr_case _ _ _ _ _ _ = raise Match
and o_alg _ P idx [] (([], Pthm) :: _) = Pthm
| o_alg _ P idx (v :: vs) [] = raise COMPLETENESS
| o_alg ctxt P idx (v :: vs) pts =
if forall (is_Free o hd o fst) pts
then o_alg ctxt P idx vs
(map (fn (pv :: pats, thm) =>
(pats, refl RS
(inst_free (Thm.cterm_of ctxt pv)
(Thm.cterm_of ctxt v) thm))) pts)
else
let
val T as Type (tname, _) = fastype_of v
val SOME {exhaust=case_thm, ...} = Ctr_Sugar.ctr_sugar_of ctxt tname
val constrs = inst_constrs_of ctxt T
val c_cases = map (constr_case ctxt P idx (v :: vs) pts) constrs
in
inst_case_thm ctxt v P case_thm
|> fold (curry op COMP) c_cases
end
| o_alg _ _ _ _ _ = raise Match
fun prove_completeness ctxt xs P qss patss =
let
fun mk_assum qs pats =
HOLogic.mk_Trueprop P
|> fold_rev (curry Logic.mk_implies o HOLogic.mk_Trueprop o HOLogic.mk_eq) (xs ~~ pats)
|> fold_rev Logic.all qs
|> Thm.cterm_of ctxt
val hyps = map2 mk_assum qss patss
fun inst_hyps hyp qs = fold (Thm.forall_elim o Thm.cterm_of ctxt) qs (Thm.assume hyp)
val assums = map2 inst_hyps hyps qss
in
o_alg ctxt P 2 xs (patss ~~ assums)
|> fold_rev Thm.implies_intr hyps
end
fun pat_completeness_tac ctxt = SUBGOAL (fn (subgoal, i) =>
let
val (vs, subgf) = dest_all_all subgoal
val (cases, _ $ thesis) = Logic.strip_horn subgf
handle Bind => raise COMPLETENESS
fun pat_of assum =
let
val (qs, imp) = dest_all_all assum
val prems = Logic.strip_imp_prems imp
in
(qs, map (HOLogic.dest_eq o HOLogic.dest_Trueprop) prems)
end
val (qss, x_pats) = split_list (map pat_of cases)
val xs = map fst (hd x_pats)
handle List.Empty => raise COMPLETENESS
val patss = map (map snd) x_pats
val complete_thm = prove_completeness ctxt xs thesis qss patss
|> fold_rev (Thm.forall_intr o Thm.cterm_of ctxt) vs
in
PRIMITIVE (fn st => Drule.compose (complete_thm, i, st))
end
handle COMPLETENESS => no_tac)
end